fuse-exfat-1.0.1/ 0000775 0000764 0000764 00000000000 12103217511 012547 5 ustar relan relan fuse-exfat-1.0.1/ChangeLog 0000664 0000764 0000764 00000007756 12103217511 014340 0 ustar relan relan 1.0.1 (2013-02-02)
* Fixed unexpected removal of a directory if it is moved into itself.
* Fixed "Operation not permitted" error on reading an empty file.
1.0.0 (2013-01-19)
* Fixed crash when renaming a file within a single directory and a new name
differs only in case.
* Fixed clusters allocation: a cluster beyond valid clusters range could be
allocated.
* Fixed crash when a volume is unmounted while some files are open.
* SConscript now respects AR and RANLIB environment variables.
* Improved error handling.
Linux:
* Enabled big_writes. This improves write speed (larger block size means less
switches between kernel- and user-space).
* Do BLKROGET ioctl to make sure the device is not read-only: after
"blockdev --setro" kernel still allows to open the device in read-write mode
but fails writes.
OS X:
* Fixed OS X 10.8 support.
* Switched to 64-bit inode numbers (now Mac OS X 10.5 or later is required).
* Switched from unmaintained MacFUSE to OSXFUSE (http://osxfuse.github.com).
* Fixed device size detection. Now mkfs works.
* Workarounded some utilities failures due to missing chmod() support.
* Disabled (senseless) permission checks made by FUSE.
0.9.8 (2012-08-09)
* The mkfs utility can now create huge file systems (up to several exabytes).
* Fixed handling of characters beyond Basic Multilingual Plane.
* Echo messages to syslog only if stderr is not connected to a terminal.
0.9.7 (2012-03-08)
* Out-of-the-box FreeBSD support (via ublio library).
* Fixed "missing EOD entry" error (could happen while reading directory that
consists of several clusters).
* Fixed interpretation of minutes field in files timestamps (minutes could be
displayed incorrectly).
* Fixed mtime seconds field initialization for newly created file (mtime could
be 1 sec less than creation time).
* SConscript now respects CC, CCFLAGS and LDFLAGS environment variables.
0.9.6 (2012-01-14)
* Fixed write performance regression introduced in 0.9.4.
* Mount in read-only mode if the device is write-protected.
* Set ctime to mtime to ensure we don't break programs that rely on ctime
(e.g. rsync considered that all files are outdated) [Eldad Zack].
* Indicate that FS in not clean when it was not cleanly unmounted.
* Utilities are now compatible with GNU/Hurd.
* Fixed several memory leaks that could occur on error handling paths.
* Improved handling of corrupted file systems.
0.9.5 (2011-05-15)
* Fixed erasing of the root directory cluster when creating a new FS with
mkexfatfs. This bug could cause mkexfatfs to produce invalid FS.
* Utilities are not linked with libfuse anymore.
* Ensure that the path being opened is either a device or a regular file.
0.9.4 (2011-03-05)
* Introduced exfat-utils: dumpexfat, exfatfsck, mkexfatfs, exfatlabel.
* Fixed "Invalid argument" error while mounting a volume from a disk with sector size greater than 512 bytes.
* Wait for all data to be flushed to disk on unmount.
* Kernel cache is no longer flushed on open. This can slightly improve read performance by avoiding extra read requests from kernel to user-space.
* Allow to unmount volumes as user (fusermount -u) if they were mounted from the very same user [Tino Lange].
* Errors and warnings are now duplicated to syslog.
0.9.3 (2010-09-25)
* Directories now can shrink.
* Improved timestamps resolution from 2 sec to 1 sec.
* Fixed timestamps displaying under Mac OS X when compiled for i386 or ppc.
* Fixed FS size displaying for non-GNU systems.
0.9.2 (2010-07-24)
* Fixed a bug which could cause the whole directory to become unreadable after renaming a file in it.
* Support for Solaris and various *BSD [Albert Lee].
* Improved error handling on corrupted volumes.
* Improved allowed file name characters filter.
* Added man page.
0.9.1 (2010-06-12)
* Implemented automounting (util-linux-ng 2.18 or later is required).
* Fixed mounting when cluster bitmap is larger than expected.
* Fixed crash on statfs() when root directory contains error.
* Fixed bugs specific to big-endian machines.
* Other bugfixes.
0.9.0 (2010-03-21)
* Initial release.
fuse-exfat-1.0.1/COPYING 0000664 0000764 0000764 00000104513 12103217511 013606 0 ustar relan relan GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc.
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
Copyright (C)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
Copyright (C)
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
.
fuse-exfat-1.0.1/SConstruct 0000664 0000764 0000764 00000010273 12103217511 014604 0 ustar relan relan #
# SConstruct (10.09.09)
# SConscript for all components.
#
# Copyright (C) 2010-2013 Andrew Nayenko
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see .
#
import os
import platform
import SCons
env = Environment(**ARGUMENTS)
for var in ['PATH', 'SYSROOT']:
if var in os.environ:
env['ENV'][var] = os.environ[var]
destdir = env.get('DESTDIR', '/sbin');
libs = ['exfat']
libfuse = 'fuse'
if not env.GetOption('clean'):
conf = Configure(env)
if 'AR' in os.environ:
conf.env.Replace(AR = os.environ['AR'])
if 'RANLIB' in os.environ:
conf.env.Replace(RANLIB = os.environ['RANLIB'])
if 'CC' in os.environ:
conf.env.Replace(CC = os.environ['CC'])
if 'CCFLAGS' in os.environ:
conf.env.Replace(CCFLAGS = os.environ['CCFLAGS'])
# Set default CCFLAGS for known compilers
if not conf.env['CCFLAGS']:
if conf.env['CC'] == 'gcc':
conf.env.Replace(CCFLAGS = '-Wall -O2 -ggdb -std=c99')
elif conf.env['CC'] == 'clang':
conf.env.Replace(CCFLAGS = '-Wall -O2 -g -std=c99')
if 'CPPFLAGS' in os.environ:
conf.env.Replace(CPPFLAGS = os.environ['CPPFLAGS'])
conf.env.Append(CPPDEFINES = {'_FILE_OFFSET_BITS' : 64})
conf.env.Append(CPPPATH = ['libexfat'])
if 'LDFLAGS' in os.environ:
conf.env.Append(LINKFLAGS = os.environ['LDFLAGS'])
conf.env.Append(LIBPATH = ['libexfat'])
# GNU/Linux requires _BSD_SOURCE define for vsyslog(), _XOPEN_SOURCE >= 500
# for pread(), pwrite(), snprintf(), strdup(), etc. Everything needed is
# enabled by _GNU_SOURCE.
if platform.system() == 'Linux':
conf.env.Append(CPPDEFINES = '_GNU_SOURCE');
# Use 64-bit inode numbers (introduced in Mac OS X 10.5 Leopard). Require
# OSXFUSE (http://osxfuse.github.com).
if platform.system() == 'Darwin':
conf.env.Append(CPPDEFINES = '_DARWIN_USE_64_BIT_INODE')
conf.env.Append(CPPDEFINES = {'__DARWIN_UNIX03' : 1})
conf.env.Append(CPPPATH = ['/usr/local/include/osxfuse'])
conf.env.Append(CFLAGS = '-mmacosx-version-min=10.5')
conf.env.Append(LINKFLAGS = '-mmacosx-version-min=10.5')
libfuse = 'osxfuse_i64'
# FreeBSD does not support block devices, only raw devices. Ublio is
# required for unaligned I/O and caching.
if platform.system() == 'FreeBSD':
conf.env.Append(CPPDEFINES = 'USE_UBLIO')
libs.append('ublio')
conf.env.Append(CPPPATH = ['/usr/local/include'])
conf.env.Append(LIBPATH = ['/usr/local/lib'])
if not conf.CheckCC():
print '''
A working C compiler is needed very much.
'''
Exit(1)
if not conf.CheckTypeSize('off_t', '#include ', 'C', 8):
print '''
The size of off_t type must be 64 bits. File systems larger than
2 GB will be corrupted with 32-bit off_t.
'''
Exit(1)
env = conf.Finish()
def make_symlink(dir, target, link_name):
workdir = os.getcwd()
os.chdir(dir)
try:
os.remove(link_name)
except OSError:
pass
os.symlink(target, link_name)
os.chdir(workdir)
symlink = SCons.Action.ActionFactory(make_symlink,
lambda dir, target, link_name:
'make_symlink("%s", "%s", "%s")' % (dir, target, link_name))
def program(pattern, output, alias, libs):
sources = Glob(pattern)
if not sources:
return
target = env.Program(output, sources, LIBS = libs)
if alias:
Clean(Alias('install', Install(destdir, target),
symlink(destdir, os.path.basename(output), alias)),
destdir + '/' + alias)
else:
Alias('install', Install(destdir, target))
env.Library('libexfat/exfat', Glob('libexfat/*.c'))
program('fuse/*.c', 'fuse/mount.exfat-fuse', 'mount.exfat', [libs + [libfuse]])
program('dump/*.c', 'dump/dumpexfat', None, libs)
program('fsck/*.c', 'fsck/exfatfsck', 'fsck.exfat', libs)
program('mkfs/*.c', 'mkfs/mkexfatfs', 'mkfs.exfat', libs)
program('label/*.c', 'label/exfatlabel', None, libs)
fuse-exfat-1.0.1/fuse/ 0000775 0000764 0000764 00000000000 12103217511 013511 5 ustar relan relan fuse-exfat-1.0.1/fuse/mount.exfat-fuse.8 0000664 0000764 0000764 00000002752 12103217511 017020 0 ustar relan relan .\" Copyright (C) 2010 Andrew Nayenko
.\"
.TH EXFAT-FUSE 8 "July 2010"
.SH NAME
mount.exfat-fuse \- mount an exFAT file system
.SH SYNOPSIS
.B mount.exfat-fuse
[
.B \-d
]
[
.B \-o
.I options
]
[
.B \-v
]
.I device dir
.SH DESCRIPTION
.B mount.exfat-fuse
is a free exFAT file system implementation with write support. exFAT is a
simple file system created by Microsoft. It is intended to replace FAT32
removing some of it's limitations. exFAT is a standard FS for SDXC memory
cards.
.SH COMMAND LINE OPTIONS
Command line options available:
.TP
.BI \-d
Enable debug logging and do not detach from shell.
.TP
.BI \-o " options"
File system specific options. For more details see
.B FILE SYSTEM OPTIONS
section below.
.TP
.BI \-v
Print version and copyright.
.SH FILE SYSTEM OPTIONS
.TP
.BI umask= value
Set the umask (the bitmask of the permissions that are
.B not
present, in octal).
The default is the umask of the current process.
.TP
.BI dmask= value
Set the umask for directories only.
.TP
.BI fmask= value
Set the umask for files only.
.TP
.BI uid= n
Set the owner for all files and directories.
The default is the owner of the current process.
.TP
.BI gid= n
Set the group for all files and directories.
The default is the group of the current process.
.TP
.BI ro
Mount the file system in read only mode.
.TP
.BI noatime
Do not update access time when file is read.
.SH EXIT CODES
Zero is returned on successful mount. Any other code means an error.
.SH AUTHOR
Andrew Nayenko
.SH SEE ALSO
.BR mount (8)
fuse-exfat-1.0.1/fuse/main.c 0000664 0000764 0000764 00000030245 12103217511 014605 0 ustar relan relan /*
main.c (01.09.09)
FUSE-based exFAT implementation. Requires FUSE 2.6 or later.
Copyright (C) 2010-2013 Andrew Nayenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#define FUSE_USE_VERSION 26
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define exfat_debug(format, ...)
#if !defined(FUSE_VERSION) || (FUSE_VERSION < 26)
#error FUSE 2.6 or later is required
#endif
const char* default_options = "ro_fallback,allow_other,blkdev,big_writes,"
"defer_permissions";
struct exfat ef;
static struct exfat_node* get_node(const struct fuse_file_info* fi)
{
return (struct exfat_node*) (size_t) fi->fh;
}
static void set_node(struct fuse_file_info* fi, struct exfat_node* node)
{
fi->fh = (uint64_t) (size_t) node;
}
static int fuse_exfat_getattr(const char* path, struct stat* stbuf)
{
struct exfat_node* node;
int rc;
exfat_debug("[%s] %s", __func__, path);
rc = exfat_lookup(&ef, &node, path);
if (rc != 0)
return rc;
exfat_stat(&ef, node, stbuf);
exfat_put_node(&ef, node);
return 0;
}
static int fuse_exfat_truncate(const char* path, off_t size)
{
struct exfat_node* node;
int rc;
exfat_debug("[%s] %s, %"PRId64, __func__, path, size);
rc = exfat_lookup(&ef, &node, path);
if (rc != 0)
return rc;
rc = exfat_truncate(&ef, node, size);
exfat_put_node(&ef, node);
return rc;
}
static int fuse_exfat_readdir(const char* path, void* buffer,
fuse_fill_dir_t filler, off_t offset, struct fuse_file_info* fi)
{
struct exfat_node* parent;
struct exfat_node* node;
struct exfat_iterator it;
int rc;
char name[EXFAT_NAME_MAX + 1];
exfat_debug("[%s] %s", __func__, path);
rc = exfat_lookup(&ef, &parent, path);
if (rc != 0)
return rc;
if (!(parent->flags & EXFAT_ATTRIB_DIR))
{
exfat_put_node(&ef, parent);
exfat_error("`%s' is not a directory (0x%x)", path, parent->flags);
return -ENOTDIR;
}
filler(buffer, ".", NULL, 0);
filler(buffer, "..", NULL, 0);
rc = exfat_opendir(&ef, parent, &it);
if (rc != 0)
{
exfat_put_node(&ef, parent);
exfat_error("failed to open directory `%s'", path);
return rc;
}
while ((node = exfat_readdir(&ef, &it)))
{
exfat_get_name(node, name, EXFAT_NAME_MAX);
exfat_debug("[%s] %s: %s, %"PRId64" bytes, cluster 0x%x", __func__,
name, IS_CONTIGUOUS(*node) ? "contiguous" : "fragmented",
node->size, node->start_cluster);
filler(buffer, name, NULL, 0);
exfat_put_node(&ef, node);
}
exfat_closedir(&ef, &it);
exfat_put_node(&ef, parent);
return 0;
}
static int fuse_exfat_open(const char* path, struct fuse_file_info* fi)
{
struct exfat_node* node;
int rc;
exfat_debug("[%s] %s", __func__, path);
rc = exfat_lookup(&ef, &node, path);
if (rc != 0)
return rc;
set_node(fi, node);
fi->keep_cache = 1;
return 0;
}
static int fuse_exfat_release(const char* path, struct fuse_file_info* fi)
{
exfat_debug("[%s] %s", __func__, path);
exfat_put_node(&ef, get_node(fi));
return 0;
}
static int fuse_exfat_read(const char* path, char* buffer, size_t size,
off_t offset, struct fuse_file_info* fi)
{
ssize_t ret;
exfat_debug("[%s] %s (%zu bytes)", __func__, path, size);
ret = exfat_generic_pread(&ef, get_node(fi), buffer, size, offset);
if (ret < 0)
return -EIO;
return ret;
}
static int fuse_exfat_write(const char* path, const char* buffer, size_t size,
off_t offset, struct fuse_file_info* fi)
{
ssize_t ret;
exfat_debug("[%s] %s (%zu bytes)", __func__, path, size);
ret = exfat_generic_pwrite(&ef, get_node(fi), buffer, size, offset);
if (ret < 0)
return -EIO;
return ret;
}
static int fuse_exfat_unlink(const char* path)
{
struct exfat_node* node;
int rc;
exfat_debug("[%s] %s", __func__, path);
rc = exfat_lookup(&ef, &node, path);
if (rc != 0)
return rc;
rc = exfat_unlink(&ef, node);
exfat_put_node(&ef, node);
return rc;
}
static int fuse_exfat_rmdir(const char* path)
{
struct exfat_node* node;
int rc;
exfat_debug("[%s] %s", __func__, path);
rc = exfat_lookup(&ef, &node, path);
if (rc != 0)
return rc;
rc = exfat_rmdir(&ef, node);
exfat_put_node(&ef, node);
return rc;
}
static int fuse_exfat_mknod(const char* path, mode_t mode, dev_t dev)
{
exfat_debug("[%s] %s 0%ho", __func__, path, mode);
return exfat_mknod(&ef, path);
}
static int fuse_exfat_mkdir(const char* path, mode_t mode)
{
exfat_debug("[%s] %s 0%ho", __func__, path, mode);
return exfat_mkdir(&ef, path);
}
static int fuse_exfat_rename(const char* old_path, const char* new_path)
{
exfat_debug("[%s] %s => %s", __func__, old_path, new_path);
return exfat_rename(&ef, old_path, new_path);
}
static int fuse_exfat_utimens(const char* path, const struct timespec tv[2])
{
struct exfat_node* node;
int rc;
exfat_debug("[%s] %s", __func__, path);
rc = exfat_lookup(&ef, &node, path);
if (rc != 0)
return rc;
exfat_utimes(node, tv);
exfat_put_node(&ef, node);
return 0;
}
#ifdef __APPLE__
static int fuse_exfat_chmod(const char* path, mode_t mode)
{
exfat_debug("[%s] %s 0%ho", __func__, path, mode);
/* make OS X utilities happy */
return 0;
}
#endif
static int fuse_exfat_statfs(const char* path, struct statvfs* sfs)
{
exfat_debug("[%s]", __func__);
sfs->f_bsize = CLUSTER_SIZE(*ef.sb);
sfs->f_frsize = CLUSTER_SIZE(*ef.sb);
sfs->f_blocks = le64_to_cpu(ef.sb->sector_count) >> ef.sb->spc_bits;
sfs->f_bavail = exfat_count_free_clusters(&ef);
sfs->f_bfree = sfs->f_bavail;
sfs->f_namemax = EXFAT_NAME_MAX;
/*
Below are fake values because in exFAT there is
a) no simple way to count files;
b) no such thing as inode;
So here we assume that inode = cluster.
*/
sfs->f_files = (sfs->f_blocks - sfs->f_bfree) >> ef.sb->spc_bits;
sfs->f_favail = sfs->f_bfree >> ef.sb->spc_bits;
sfs->f_ffree = sfs->f_bavail;
return 0;
}
static void* fuse_exfat_init(struct fuse_conn_info* fci)
{
exfat_debug("[%s]", __func__);
#ifdef FUSE_CAP_BIG_WRITES
fci->want |= FUSE_CAP_BIG_WRITES;
#endif
return NULL;
}
static void fuse_exfat_destroy(void* unused)
{
exfat_debug("[%s]", __func__);
exfat_unmount(&ef);
}
static void usage(const char* prog)
{
fprintf(stderr, "Usage: %s [-d] [-o options] [-v] \n", prog);
exit(1);
}
static struct fuse_operations fuse_exfat_ops =
{
.getattr = fuse_exfat_getattr,
.truncate = fuse_exfat_truncate,
.readdir = fuse_exfat_readdir,
.open = fuse_exfat_open,
.release = fuse_exfat_release,
.read = fuse_exfat_read,
.write = fuse_exfat_write,
.unlink = fuse_exfat_unlink,
.rmdir = fuse_exfat_rmdir,
.mknod = fuse_exfat_mknod,
.mkdir = fuse_exfat_mkdir,
.rename = fuse_exfat_rename,
.utimens = fuse_exfat_utimens,
#ifdef __APPLE__
.chmod = fuse_exfat_chmod,
#endif
.statfs = fuse_exfat_statfs,
.init = fuse_exfat_init,
.destroy = fuse_exfat_destroy,
};
static char* add_option(char* options, const char* name, const char* value)
{
size_t size;
if (value)
size = strlen(options) + strlen(name) + strlen(value) + 3;
else
size = strlen(options) + strlen(name) + 2;
options = realloc(options, size);
if (options == NULL)
{
exfat_error("failed to reallocate options string");
return NULL;
}
strcat(options, ",");
strcat(options, name);
if (value)
{
strcat(options, "=");
strcat(options, value);
}
return options;
}
static char* add_fsname_option(char* options, const char* spec)
{
char* spec_abs = realpath(spec, NULL);
if (spec_abs == NULL)
{
free(options);
exfat_error("failed to get absolute path for `%s'", spec);
return NULL;
}
options = add_option(options, "fsname", spec_abs);
free(spec_abs);
return options;
}
static char* add_user_option(char* options)
{
struct passwd* pw;
if (getuid() == 0)
return options;
pw = getpwuid(getuid());
if (pw == NULL || pw->pw_name == NULL)
{
free(options);
exfat_error("failed to determine username");
return NULL;
}
return add_option(options, "user", pw->pw_name);
}
static char* add_blksize_option(char* options, long cluster_size)
{
long page_size = sysconf(_SC_PAGESIZE);
char blksize[20];
if (page_size < 1)
page_size = 0x1000;
snprintf(blksize, sizeof(blksize), "%ld", MIN(page_size, cluster_size));
return add_option(options, "blksize", blksize);
}
static char* add_fuse_options(char* options, const char* spec)
{
options = add_fsname_option(options, spec);
if (options == NULL)
return NULL;
options = add_user_option(options);
if (options == NULL)
return NULL;
options = add_blksize_option(options, CLUSTER_SIZE(*ef.sb));
if (options == NULL)
return NULL;
return options;
}
int main(int argc, char* argv[])
{
struct fuse_args mount_args = FUSE_ARGS_INIT(0, NULL);
struct fuse_args newfs_args = FUSE_ARGS_INIT(0, NULL);
const char* spec = NULL;
const char* mount_point = NULL;
char* mount_options;
int debug = 0;
struct fuse_chan* fc = NULL;
struct fuse* fh = NULL;
char** pp;
printf("FUSE exfat %u.%u.%u\n",
EXFAT_VERSION_MAJOR, EXFAT_VERSION_MINOR, EXFAT_VERSION_PATCH);
mount_options = strdup(default_options);
if (mount_options == NULL)
{
exfat_error("failed to allocate options string");
return 1;
}
for (pp = argv + 1; *pp; pp++)
{
if (strcmp(*pp, "-o") == 0)
{
pp++;
if (*pp == NULL)
usage(argv[0]);
mount_options = add_option(mount_options, *pp, NULL);
if (mount_options == NULL)
return 1;
}
else if (strcmp(*pp, "-d") == 0)
debug = 1;
else if (strcmp(*pp, "-v") == 0)
{
free(mount_options);
puts("Copyright (C) 2010-2013 Andrew Nayenko");
return 0;
}
else if (spec == NULL)
spec = *pp;
else if (mount_point == NULL)
mount_point = *pp;
else
{
free(mount_options);
usage(argv[0]);
}
}
if (spec == NULL || mount_point == NULL)
{
free(mount_options);
usage(argv[0]);
}
if (exfat_mount(&ef, spec, mount_options) != 0)
{
free(mount_options);
return 1;
}
if (ef.ro == -1) /* read-only fallback was used */
{
mount_options = add_option(mount_options, "ro", NULL);
if (mount_options == NULL)
{
exfat_unmount(&ef);
return 1;
}
}
mount_options = add_fuse_options(mount_options, spec);
if (mount_options == NULL)
{
exfat_unmount(&ef);
return 1;
}
/* create arguments for fuse_mount() */
if (fuse_opt_add_arg(&mount_args, "exfat") != 0 ||
fuse_opt_add_arg(&mount_args, "-o") != 0 ||
fuse_opt_add_arg(&mount_args, mount_options) != 0)
{
exfat_unmount(&ef);
free(mount_options);
return 1;
}
free(mount_options);
/* create FUSE mount point */
fc = fuse_mount(mount_point, &mount_args);
fuse_opt_free_args(&mount_args);
if (fc == NULL)
{
exfat_unmount(&ef);
return 1;
}
/* create arguments for fuse_new() */
if (fuse_opt_add_arg(&newfs_args, "") != 0 ||
(debug && fuse_opt_add_arg(&newfs_args, "-d") != 0))
{
fuse_unmount(mount_point, fc);
exfat_unmount(&ef);
return 1;
}
/* create new FUSE file system */
fh = fuse_new(fc, &newfs_args, &fuse_exfat_ops,
sizeof(struct fuse_operations), NULL);
fuse_opt_free_args(&newfs_args);
if (fh == NULL)
{
fuse_unmount(mount_point, fc);
exfat_unmount(&ef);
return 1;
}
/* exit session on HUP, TERM and INT signals and ignore PIPE signal */
if (fuse_set_signal_handlers(fuse_get_session(fh)) != 0)
{
fuse_unmount(mount_point, fc);
fuse_destroy(fh);
exfat_unmount(&ef);
exfat_error("failed to set signal handlers");
return 1;
}
/* go to background (unless "-d" option is passed) and run FUSE
main loop */
if (fuse_daemonize(debug) == 0)
{
if (fuse_loop(fh) != 0)
exfat_error("FUSE loop failure");
}
else
exfat_error("failed to daemonize");
fuse_remove_signal_handlers(fuse_get_session(fh));
/* note that fuse_unmount() must be called BEFORE fuse_destroy() */
fuse_unmount(mount_point, fc);
fuse_destroy(fh);
return 0;
}
fuse-exfat-1.0.1/libexfat/ 0000775 0000764 0000764 00000000000 12103217511 014345 5 ustar relan relan fuse-exfat-1.0.1/libexfat/version.h 0000664 0000764 0000764 00000001603 12103217511 016203 0 ustar relan relan /*
version.h (12.06.10)
Version constants.
Copyright (C) 2010-2013 Andrew Nayenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifndef VERSION_H_INCLUDED
#define VERSION_H_INCLUDED
#define EXFAT_VERSION_MAJOR 1
#define EXFAT_VERSION_MINOR 0
#define EXFAT_VERSION_PATCH 1
#endif /* ifndef VERSION_H_INCLUDED */
fuse-exfat-1.0.1/libexfat/exfat.h 0000664 0000764 0000764 00000016510 12103217511 015630 0 ustar relan relan /*
exfat.h (29.08.09)
Definitions of structures and constants used in exFAT file system
implementation.
Copyright (C) 2010-2013 Andrew Nayenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifndef EXFAT_H_INCLUDED
#define EXFAT_H_INCLUDED
#include
#include
#include
#include
#include
#include
#include "exfatfs.h"
#include "version.h"
#define EXFAT_NAME_MAX 256
#define EXFAT_ATTRIB_CONTIGUOUS 0x10000
#define EXFAT_ATTRIB_CACHED 0x20000
#define EXFAT_ATTRIB_DIRTY 0x40000
#define EXFAT_ATTRIB_UNLINKED 0x80000
#define IS_CONTIGUOUS(node) (((node).flags & EXFAT_ATTRIB_CONTIGUOUS) != 0)
#define SECTOR_SIZE(sb) (1 << (sb).sector_bits)
#define CLUSTER_SIZE(sb) (SECTOR_SIZE(sb) << (sb).spc_bits)
#define CLUSTER_INVALID(c) \
((c) < EXFAT_FIRST_DATA_CLUSTER || (c) > EXFAT_LAST_DATA_CLUSTER)
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define DIV_ROUND_UP(x, d) (((x) + (d) - 1) / (d))
#define ROUND_UP(x, d) (DIV_ROUND_UP(x, d) * (d))
#define BMAP_GET(bitmap, index) \
(((uint8_t*) bitmap)[(index) / 8] & (1u << ((index) % 8)))
#define BMAP_SET(bitmap, index) \
((uint8_t*) bitmap)[(index) / 8] |= (1u << ((index) % 8))
#define BMAP_CLR(bitmap, index) \
((uint8_t*) bitmap)[(index) / 8] &= ~(1u << ((index) % 8))
struct exfat_node
{
struct exfat_node* parent;
struct exfat_node* child;
struct exfat_node* next;
struct exfat_node* prev;
int references;
uint32_t fptr_index;
cluster_t fptr_cluster;
cluster_t entry_cluster;
off_t entry_offset;
cluster_t start_cluster;
int flags;
uint64_t size;
time_t mtime, atime;
le16_t name[EXFAT_NAME_MAX + 1];
};
enum exfat_mode
{
EXFAT_MODE_RO,
EXFAT_MODE_RW,
EXFAT_MODE_ANY,
};
struct exfat_dev;
struct exfat
{
struct exfat_dev* dev;
struct exfat_super_block* sb;
le16_t* upcase;
size_t upcase_chars;
struct exfat_node* root;
struct
{
cluster_t start_cluster;
uint32_t size; /* in bits */
uint8_t* chunk;
uint32_t chunk_size; /* in bits */
bool dirty;
}
cmap;
char label[EXFAT_ENAME_MAX * 6 + 1]; /* a character can occupy up to
6 bytes in UTF-8 */
void* zero_cluster;
int dmask, fmask;
uid_t uid;
gid_t gid;
int ro;
bool noatime;
};
/* in-core nodes iterator */
struct exfat_iterator
{
struct exfat_node* parent;
struct exfat_node* current;
};
struct exfat_human_bytes
{
uint64_t value;
const char* unit;
};
extern int exfat_errors;
void exfat_bug(const char* format, ...)
__attribute__((format(printf, 1, 2), noreturn));
void exfat_error(const char* format, ...)
__attribute__((format(printf, 1, 2)));
void exfat_warn(const char* format, ...)
__attribute__((format(printf, 1, 2)));
void exfat_debug(const char* format, ...)
__attribute__((format(printf, 1, 2)));
struct exfat_dev* exfat_open(const char* spec, enum exfat_mode mode);
int exfat_close(struct exfat_dev* dev);
int exfat_fsync(struct exfat_dev* dev);
enum exfat_mode exfat_get_mode(const struct exfat_dev* dev);
off_t exfat_get_size(const struct exfat_dev* dev);
off_t exfat_seek(struct exfat_dev* dev, off_t offset, int whence);
ssize_t exfat_read(struct exfat_dev* dev, void* buffer, size_t size);
ssize_t exfat_write(struct exfat_dev* dev, const void* buffer, size_t size);
void exfat_pread(struct exfat_dev* dev, void* buffer, size_t size,
off_t offset);
void exfat_pwrite(struct exfat_dev* dev, const void* buffer, size_t size,
off_t offset);
ssize_t exfat_generic_pread(const struct exfat* ef, struct exfat_node* node,
void* buffer, size_t size, off_t offset);
ssize_t exfat_generic_pwrite(struct exfat* ef, struct exfat_node* node,
const void* buffer, size_t size, off_t offset);
int exfat_opendir(struct exfat* ef, struct exfat_node* dir,
struct exfat_iterator* it);
void exfat_closedir(struct exfat* ef, struct exfat_iterator* it);
struct exfat_node* exfat_readdir(struct exfat* ef, struct exfat_iterator* it);
int exfat_lookup(struct exfat* ef, struct exfat_node** node,
const char* path);
int exfat_split(struct exfat* ef, struct exfat_node** parent,
struct exfat_node** node, le16_t* name, const char* path);
off_t exfat_c2o(const struct exfat* ef, cluster_t cluster);
cluster_t exfat_next_cluster(const struct exfat* ef,
const struct exfat_node* node, cluster_t cluster);
cluster_t exfat_advance_cluster(const struct exfat* ef,
struct exfat_node* node, uint32_t count);
void exfat_flush_cmap(struct exfat* ef);
int exfat_truncate(struct exfat* ef, struct exfat_node* node, uint64_t size);
uint32_t exfat_count_free_clusters(const struct exfat* ef);
int exfat_find_used_sectors(const struct exfat* ef, off_t* a, off_t* b);
void exfat_stat(const struct exfat* ef, const struct exfat_node* node,
struct stat* stbuf);
void exfat_get_name(const struct exfat_node* node, char* buffer, size_t n);
uint16_t exfat_start_checksum(const struct exfat_entry_meta1* entry);
uint16_t exfat_add_checksum(const void* entry, uint16_t sum);
le16_t exfat_calc_checksum(const struct exfat_entry_meta1* meta1,
const struct exfat_entry_meta2* meta2, const le16_t* name);
uint32_t exfat_vbr_start_checksum(const void* sector, size_t size);
uint32_t exfat_vbr_add_checksum(const void* sector, size_t size, uint32_t sum);
le16_t exfat_calc_name_hash(const struct exfat* ef, const le16_t* name);
void exfat_humanize_bytes(uint64_t value, struct exfat_human_bytes* hb);
void exfat_print_info(const struct exfat_super_block* sb,
uint32_t free_clusters);
int utf16_to_utf8(char* output, const le16_t* input, size_t outsize,
size_t insize);
int utf8_to_utf16(le16_t* output, const char* input, size_t outsize,
size_t insize);
size_t utf16_length(const le16_t* str);
struct exfat_node* exfat_get_node(struct exfat_node* node);
void exfat_put_node(struct exfat* ef, struct exfat_node* node);
int exfat_cache_directory(struct exfat* ef, struct exfat_node* dir);
void exfat_reset_cache(struct exfat* ef);
void exfat_flush_node(struct exfat* ef, struct exfat_node* node);
int exfat_unlink(struct exfat* ef, struct exfat_node* node);
int exfat_rmdir(struct exfat* ef, struct exfat_node* node);
int exfat_mknod(struct exfat* ef, const char* path);
int exfat_mkdir(struct exfat* ef, const char* path);
int exfat_rename(struct exfat* ef, const char* old_path, const char* new_path);
void exfat_utimes(struct exfat_node* node, const struct timespec tv[2]);
void exfat_update_atime(struct exfat_node* node);
void exfat_update_mtime(struct exfat_node* node);
const char* exfat_get_label(struct exfat* ef);
int exfat_set_label(struct exfat* ef, const char* label);
int exfat_mount(struct exfat* ef, const char* spec, const char* options);
void exfat_unmount(struct exfat* ef);
time_t exfat_exfat2unix(le16_t date, le16_t time, uint8_t centisec);
void exfat_unix2exfat(time_t unix_time, le16_t* date, le16_t* time,
uint8_t* centisec);
void exfat_tzset(void);
#endif /* ifndef EXFAT_H_INCLUDED */
fuse-exfat-1.0.1/libexfat/exfatfs.h 0000664 0000764 0000764 00000012300 12103217511 016152 0 ustar relan relan /*
exfatfs.h (29.08.09)
Definitions of structures and constants used in exFAT file system.
Copyright (C) 2010-2013 Andrew Nayenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifndef EXFATFS_H_INCLUDED
#define EXFATFS_H_INCLUDED
#include "byteorder.h"
typedef uint32_t cluster_t; /* cluster number */
#define EXFAT_FIRST_DATA_CLUSTER 2
#define EXFAT_LAST_DATA_CLUSTER 0xfffffff6
#define EXFAT_CLUSTER_FREE 0 /* free cluster */
#define EXFAT_CLUSTER_BAD 0xfffffff7 /* cluster contains bad sector */
#define EXFAT_CLUSTER_END 0xffffffff /* final cluster of file or directory */
#define EXFAT_STATE_MOUNTED 2
struct exfat_super_block
{
uint8_t jump[3]; /* 0x00 jmp and nop instructions */
uint8_t oem_name[8]; /* 0x03 "EXFAT " */
uint8_t __unused1[53]; /* 0x0B always 0 */
le64_t sector_start; /* 0x40 partition first sector */
le64_t sector_count; /* 0x48 partition sectors count */
le32_t fat_sector_start; /* 0x50 FAT first sector */
le32_t fat_sector_count; /* 0x54 FAT sectors count */
le32_t cluster_sector_start; /* 0x58 first cluster sector */
le32_t cluster_count; /* 0x5C total clusters count */
le32_t rootdir_cluster; /* 0x60 first cluster of the root dir */
le32_t volume_serial; /* 0x64 volume serial number */
struct /* 0x68 FS version */
{
uint8_t minor;
uint8_t major;
}
version;
le16_t volume_state; /* 0x6A volume state flags */
uint8_t sector_bits; /* 0x6C sector size as (1 << n) */
uint8_t spc_bits; /* 0x6D sectors per cluster as (1 << n) */
uint8_t fat_count; /* 0x6E always 1 */
uint8_t drive_no; /* 0x6F always 0x80 */
uint8_t allocated_percent; /* 0x70 percentage of allocated space */
uint8_t __unused2[397]; /* 0x71 always 0 */
le16_t boot_signature; /* the value of 0xAA55 */
}
__attribute__((__packed__));
#define EXFAT_ENTRY_VALID 0x80
#define EXFAT_ENTRY_CONTINUED 0x40
#define EXFAT_ENTRY_BITMAP (0x01 | EXFAT_ENTRY_VALID)
#define EXFAT_ENTRY_UPCASE (0x02 | EXFAT_ENTRY_VALID)
#define EXFAT_ENTRY_LABEL (0x03 | EXFAT_ENTRY_VALID)
#define EXFAT_ENTRY_FILE (0x05 | EXFAT_ENTRY_VALID)
#define EXFAT_ENTRY_FILE_INFO (0x00 | EXFAT_ENTRY_VALID | EXFAT_ENTRY_CONTINUED)
#define EXFAT_ENTRY_FILE_NAME (0x01 | EXFAT_ENTRY_VALID | EXFAT_ENTRY_CONTINUED)
struct exfat_entry /* common container for all entries */
{
uint8_t type; /* any of EXFAT_ENTRY_xxx */
uint8_t data[31];
}
__attribute__((__packed__));
#define EXFAT_ENAME_MAX 15
struct exfat_entry_bitmap /* allocated clusters bitmap */
{
uint8_t type; /* EXFAT_ENTRY_BITMAP */
uint8_t __unknown1[19];
le32_t start_cluster;
le64_t size; /* in bytes */
}
__attribute__((__packed__));
struct exfat_entry_upcase /* upper case translation table */
{
uint8_t type; /* EXFAT_ENTRY_UPCASE */
uint8_t __unknown1[3];
le32_t checksum;
uint8_t __unknown2[12];
le32_t start_cluster;
le64_t size; /* in bytes */
}
__attribute__((__packed__));
struct exfat_entry_label /* volume label */
{
uint8_t type; /* EXFAT_ENTRY_LABEL */
uint8_t length; /* number of characters */
le16_t name[EXFAT_ENAME_MAX]; /* in UTF-16LE */
}
__attribute__((__packed__));
#define EXFAT_ATTRIB_RO 0x01
#define EXFAT_ATTRIB_HIDDEN 0x02
#define EXFAT_ATTRIB_SYSTEM 0x04
#define EXFAT_ATTRIB_VOLUME 0x08
#define EXFAT_ATTRIB_DIR 0x10
#define EXFAT_ATTRIB_ARCH 0x20
struct exfat_entry_meta1 /* file or directory info (part 1) */
{
uint8_t type; /* EXFAT_ENTRY_FILE */
uint8_t continuations;
le16_t checksum;
le16_t attrib; /* combination of EXFAT_ATTRIB_xxx */
le16_t __unknown1;
le16_t crtime, crdate; /* creation date and time */
le16_t mtime, mdate; /* latest modification date and time */
le16_t atime, adate; /* latest access date and time */
uint8_t crtime_cs; /* creation time in cs (centiseconds) */
uint8_t mtime_cs; /* latest modification time in cs */
uint8_t __unknown2[10];
}
__attribute__((__packed__));
#define EXFAT_FLAG_ALWAYS1 (1u << 0)
#define EXFAT_FLAG_CONTIGUOUS (1u << 1)
struct exfat_entry_meta2 /* file or directory info (part 2) */
{
uint8_t type; /* EXFAT_ENTRY_FILE_INFO */
uint8_t flags; /* combination of EXFAT_FLAG_xxx */
uint8_t __unknown1;
uint8_t name_length;
le16_t name_hash;
le16_t __unknown2;
le64_t real_size; /* in bytes, equals to size */
uint8_t __unknown3[4];
le32_t start_cluster;
le64_t size; /* in bytes, equals to real_size */
}
__attribute__((__packed__));
struct exfat_entry_name /* file or directory name */
{
uint8_t type; /* EXFAT_ENTRY_FILE_NAME */
uint8_t __unknown;
le16_t name[EXFAT_ENAME_MAX]; /* in UTF-16LE */
}
__attribute__((__packed__));
#endif /* ifndef EXFATFS_H_INCLUDED */
fuse-exfat-1.0.1/libexfat/byteorder.h 0000664 0000764 0000764 00000006375 12103217511 016530 0 ustar relan relan /*
byteorder.h (12.01.10)
Endianness stuff. exFAT uses little-endian byte order.
Copyright (C) 2010-2013 Andrew Nayenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifndef BYTEORDER_H_INCLUDED
#define BYTEORDER_H_INCLUDED
#include
#if defined(__GLIBC__)
#include
#include
#elif defined(__APPLE__)
#include
#include
#define bswap_16(x) OSSwapInt16(x)
#define bswap_32(x) OSSwapInt32(x)
#define bswap_64(x) OSSwapInt64(x)
#define __BYTE_ORDER BYTE_ORDER
#define __LITTLE_ENDIAN LITTLE_ENDIAN
#define __BIG_ENDIAN BIG_ENDIAN
#elif defined(__FreeBSD__) || defined(__DragonFlyBSD__) || defined(__NetBSD__)
#include
#define bswap_16(x) bswap16(x)
#define bswap_32(x) bswap32(x)
#define bswap_64(x) bswap64(x)
#define __BYTE_ORDER _BYTE_ORDER
#define __LITTLE_ENDIAN _LITTLE_ENDIAN
#define __BIG_ENDIAN _BIG_ENDIAN
#elif defined(__OpenBSD__)
#include
#define bswap_16(x) swap16(x)
#define bswap_32(x) swap32(x)
#define bswap_64(x) swap64(x)
#define __BYTE_ORDER _BYTE_ORDER
#define __LITTLE_ENDIAN _LITTLE_ENDIAN
#define __BIG_ENDIAN _BIG_ENDIAN
#elif defined(__sun)
#include
#define bswap_16(x) BSWAP_16(x)
#define bswap_32(x) BSWAP_32(x)
#define bswap_64(x) BSWAP_64(x)
#define __LITTLE_ENDIAN 1234
#define __BIG_ENDIAN 4321
#ifdef _LITTLE_ENDIAN
#define __BYTE_ORDER __LITTLE_ENDIAN
#else
#define __BYTE_ORDER __BIG_ENDIAN
#endif
#else
#error No byte order macros available for your platform
#endif
typedef struct { uint16_t __u16; } le16_t;
typedef struct { uint32_t __u32; } le32_t;
typedef struct { uint64_t __u64; } le64_t;
#if __BYTE_ORDER == __LITTLE_ENDIAN
static inline uint16_t le16_to_cpu(le16_t v) { return v.__u16; }
static inline uint32_t le32_to_cpu(le32_t v) { return v.__u32; }
static inline uint64_t le64_to_cpu(le64_t v) { return v.__u64; }
static inline le16_t cpu_to_le16(uint16_t v) { le16_t t = {v}; return t; }
static inline le32_t cpu_to_le32(uint32_t v) { le32_t t = {v}; return t; }
static inline le64_t cpu_to_le64(uint64_t v) { le64_t t = {v}; return t; }
#elif __BYTE_ORDER == __BIG_ENDIAN
static inline uint16_t le16_to_cpu(le16_t v) { return bswap_16(v.__u16); }
static inline uint32_t le32_to_cpu(le32_t v) { return bswap_32(v.__u32); }
static inline uint64_t le64_to_cpu(le64_t v) { return bswap_64(v.__u64); }
static inline le16_t cpu_to_le16(uint16_t v)
{ le16_t t = {bswap_16(v)}; return t; }
static inline le32_t cpu_to_le32(uint32_t v)
{ le32_t t = {bswap_32(v)}; return t; }
static inline le64_t cpu_to_le64(uint64_t v)
{ le64_t t = {bswap_64(v)}; return t; }
#else
#error Wow! You have a PDP machine?!
#endif
#endif /* ifndef BYTEORDER_H_INCLUDED */
fuse-exfat-1.0.1/libexfat/utils.c 0000664 0000764 0000764 00000012116 12103217511 015652 0 ustar relan relan /*
utils.c (04.09.09)
exFAT file system implementation library.
Copyright (C) 2010-2013 Andrew Nayenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "exfat.h"
#include
#include
#include
void exfat_stat(const struct exfat* ef, const struct exfat_node* node,
struct stat* stbuf)
{
memset(stbuf, 0, sizeof(struct stat));
if (node->flags & EXFAT_ATTRIB_DIR)
stbuf->st_mode = S_IFDIR | (0777 & ~ef->dmask);
else
stbuf->st_mode = S_IFREG | (0777 & ~ef->fmask);
stbuf->st_nlink = 1;
stbuf->st_uid = ef->uid;
stbuf->st_gid = ef->gid;
stbuf->st_size = node->size;
stbuf->st_blocks = DIV_ROUND_UP(node->size, CLUSTER_SIZE(*ef->sb)) *
CLUSTER_SIZE(*ef->sb) / 512;
stbuf->st_mtime = node->mtime;
stbuf->st_atime = node->atime;
/* set ctime to mtime to ensure we don't break programs that rely on ctime
(e.g. rsync) */
stbuf->st_ctime = node->mtime;
}
void exfat_get_name(const struct exfat_node* node, char* buffer, size_t n)
{
if (utf16_to_utf8(buffer, node->name, n, EXFAT_NAME_MAX) != 0)
exfat_bug("failed to convert name to UTF-8");
}
uint16_t exfat_start_checksum(const struct exfat_entry_meta1* entry)
{
uint16_t sum = 0;
int i;
for (i = 0; i < sizeof(struct exfat_entry); i++)
if (i != 2 && i != 3) /* skip checksum field itself */
sum = ((sum << 15) | (sum >> 1)) + ((const uint8_t*) entry)[i];
return sum;
}
uint16_t exfat_add_checksum(const void* entry, uint16_t sum)
{
int i;
for (i = 0; i < sizeof(struct exfat_entry); i++)
sum = ((sum << 15) | (sum >> 1)) + ((const uint8_t*) entry)[i];
return sum;
}
le16_t exfat_calc_checksum(const struct exfat_entry_meta1* meta1,
const struct exfat_entry_meta2* meta2, const le16_t* name)
{
uint16_t checksum;
const int name_entries = DIV_ROUND_UP(utf16_length(name), EXFAT_ENAME_MAX);
int i;
checksum = exfat_start_checksum(meta1);
checksum = exfat_add_checksum(meta2, checksum);
for (i = 0; i < name_entries; i++)
{
struct exfat_entry_name name_entry = {EXFAT_ENTRY_FILE_NAME, 0};
memcpy(name_entry.name, name + i * EXFAT_ENAME_MAX,
EXFAT_ENAME_MAX * sizeof(le16_t));
checksum = exfat_add_checksum(&name_entry, checksum);
}
return cpu_to_le16(checksum);
}
uint32_t exfat_vbr_start_checksum(const void* sector, size_t size)
{
size_t i;
uint32_t sum = 0;
for (i = 0; i < size; i++)
/* skip volume_state and allocated_percent fields */
if (i != 0x6a && i != 0x6b && i != 0x70)
sum = ((sum << 31) | (sum >> 1)) + ((const uint8_t*) sector)[i];
return sum;
}
uint32_t exfat_vbr_add_checksum(const void* sector, size_t size, uint32_t sum)
{
size_t i;
for (i = 0; i < size; i++)
sum = ((sum << 31) | (sum >> 1)) + ((const uint8_t*) sector)[i];
return sum;
}
le16_t exfat_calc_name_hash(const struct exfat* ef, const le16_t* name)
{
size_t i;
size_t length = utf16_length(name);
uint16_t hash = 0;
for (i = 0; i < length; i++)
{
uint16_t c = le16_to_cpu(name[i]);
/* convert to upper case */
if (c < ef->upcase_chars)
c = le16_to_cpu(ef->upcase[c]);
hash = ((hash << 15) | (hash >> 1)) + (c & 0xff);
hash = ((hash << 15) | (hash >> 1)) + (c >> 8);
}
return cpu_to_le16(hash);
}
void exfat_humanize_bytes(uint64_t value, struct exfat_human_bytes* hb)
{
size_t i;
/* 16 EB (minus 1 byte) is the largest size that can be represented by
uint64_t */
const char* units[] = {"bytes", "KB", "MB", "GB", "TB", "PB", "EB"};
uint64_t divisor = 1;
uint64_t temp = 0;
for (i = 0; ; i++, divisor *= 1024)
{
temp = (value + divisor / 2) / divisor;
if (temp == 0)
break;
if (temp / 1024 * 1024 == temp)
continue;
if (temp < 10240)
break;
}
hb->value = temp;
hb->unit = units[i];
}
void exfat_print_info(const struct exfat_super_block* sb,
uint32_t free_clusters)
{
struct exfat_human_bytes hb;
off_t total_space = le64_to_cpu(sb->sector_count) * SECTOR_SIZE(*sb);
off_t avail_space = (off_t) free_clusters * CLUSTER_SIZE(*sb);
printf("File system version %hhu.%hhu\n",
sb->version.major, sb->version.minor);
exfat_humanize_bytes(SECTOR_SIZE(*sb), &hb);
printf("Sector size %10"PRIu64" %s\n", hb.value, hb.unit);
exfat_humanize_bytes(CLUSTER_SIZE(*sb), &hb);
printf("Cluster size %10"PRIu64" %s\n", hb.value, hb.unit);
exfat_humanize_bytes(total_space, &hb);
printf("Volume size %10"PRIu64" %s\n", hb.value, hb.unit);
exfat_humanize_bytes(total_space - avail_space, &hb);
printf("Used space %10"PRIu64" %s\n", hb.value, hb.unit);
exfat_humanize_bytes(avail_space, &hb);
printf("Available space %10"PRIu64" %s\n", hb.value, hb.unit);
}
fuse-exfat-1.0.1/libexfat/utf.c 0000664 0000764 0000764 00000012556 12103217511 015320 0 ustar relan relan /*
utf.c (13.09.09)
exFAT file system implementation library.
Copyright (C) 2010-2013 Andrew Nayenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "exfat.h"
#include
static char* wchar_to_utf8(char* output, wchar_t wc, size_t outsize)
{
if (wc <= 0x7f)
{
if (outsize < 1)
return NULL;
*output++ = (char) wc;
}
else if (wc <= 0x7ff)
{
if (outsize < 2)
return NULL;
*output++ = 0xc0 | (wc >> 6);
*output++ = 0x80 | (wc & 0x3f);
}
else if (wc <= 0xffff)
{
if (outsize < 3)
return NULL;
*output++ = 0xe0 | (wc >> 12);
*output++ = 0x80 | ((wc >> 6) & 0x3f);
*output++ = 0x80 | (wc & 0x3f);
}
else if (wc <= 0x1fffff)
{
if (outsize < 4)
return NULL;
*output++ = 0xf0 | (wc >> 18);
*output++ = 0x80 | ((wc >> 12) & 0x3f);
*output++ = 0x80 | ((wc >> 6) & 0x3f);
*output++ = 0x80 | (wc & 0x3f);
}
else if (wc <= 0x3ffffff)
{
if (outsize < 5)
return NULL;
*output++ = 0xf8 | (wc >> 24);
*output++ = 0x80 | ((wc >> 18) & 0x3f);
*output++ = 0x80 | ((wc >> 12) & 0x3f);
*output++ = 0x80 | ((wc >> 6) & 0x3f);
*output++ = 0x80 | (wc & 0x3f);
}
else if (wc <= 0x7fffffff)
{
if (outsize < 6)
return NULL;
*output++ = 0xfc | (wc >> 30);
*output++ = 0x80 | ((wc >> 24) & 0x3f);
*output++ = 0x80 | ((wc >> 18) & 0x3f);
*output++ = 0x80 | ((wc >> 12) & 0x3f);
*output++ = 0x80 | ((wc >> 6) & 0x3f);
*output++ = 0x80 | (wc & 0x3f);
}
else
return NULL;
return output;
}
static const le16_t* utf16_to_wchar(const le16_t* input, wchar_t* wc,
size_t insize)
{
if ((le16_to_cpu(input[0]) & 0xfc00) == 0xd800)
{
if (insize < 2 || (le16_to_cpu(input[1]) & 0xfc00) != 0xdc00)
return NULL;
*wc = ((wchar_t) (le16_to_cpu(input[0]) & 0x3ff) << 10);
*wc |= (le16_to_cpu(input[1]) & 0x3ff);
*wc += 0x10000;
return input + 2;
}
else
{
*wc = le16_to_cpu(*input);
return input + 1;
}
}
int utf16_to_utf8(char* output, const le16_t* input, size_t outsize,
size_t insize)
{
const le16_t* inp = input;
char* outp = output;
wchar_t wc;
while (inp - input < insize && le16_to_cpu(*inp))
{
inp = utf16_to_wchar(inp, &wc, insize - (inp - input));
if (inp == NULL)
{
exfat_error("illegal UTF-16 sequence");
return -EILSEQ;
}
outp = wchar_to_utf8(outp, wc, outsize - (outp - output));
if (outp == NULL)
{
exfat_error("name is too long");
return -ENAMETOOLONG;
}
}
*outp = '\0';
return 0;
}
static const char* utf8_to_wchar(const char* input, wchar_t* wc,
size_t insize)
{
if ((input[0] & 0x80) == 0 && insize >= 1)
{
*wc = (wchar_t) input[0];
return input + 1;
}
if ((input[0] & 0xe0) == 0xc0 && insize >= 2)
{
*wc = (((wchar_t) input[0] & 0x1f) << 6) |
((wchar_t) input[1] & 0x3f);
return input + 2;
}
if ((input[0] & 0xf0) == 0xe0 && insize >= 3)
{
*wc = (((wchar_t) input[0] & 0x0f) << 12) |
(((wchar_t) input[1] & 0x3f) << 6) |
((wchar_t) input[2] & 0x3f);
return input + 3;
}
if ((input[0] & 0xf8) == 0xf0 && insize >= 4)
{
*wc = (((wchar_t) input[0] & 0x07) << 18) |
(((wchar_t) input[1] & 0x3f) << 12) |
(((wchar_t) input[2] & 0x3f) << 6) |
((wchar_t) input[3] & 0x3f);
return input + 4;
}
if ((input[0] & 0xfc) == 0xf8 && insize >= 5)
{
*wc = (((wchar_t) input[0] & 0x03) << 24) |
(((wchar_t) input[1] & 0x3f) << 18) |
(((wchar_t) input[2] & 0x3f) << 12) |
(((wchar_t) input[3] & 0x3f) << 6) |
((wchar_t) input[4] & 0x3f);
return input + 5;
}
if ((input[0] & 0xfe) == 0xfc && insize >= 6)
{
*wc = (((wchar_t) input[0] & 0x01) << 30) |
(((wchar_t) input[1] & 0x3f) << 24) |
(((wchar_t) input[2] & 0x3f) << 18) |
(((wchar_t) input[3] & 0x3f) << 12) |
(((wchar_t) input[4] & 0x3f) << 6) |
((wchar_t) input[5] & 0x3f);
return input + 6;
}
return NULL;
}
static le16_t* wchar_to_utf16(le16_t* output, wchar_t wc, size_t outsize)
{
if (wc <= 0xffff) /* if character is from BMP */
{
if (outsize == 0)
return NULL;
output[0] = cpu_to_le16(wc);
return output + 1;
}
if (outsize < 2)
return NULL;
wc -= 0x10000;
output[0] = cpu_to_le16(0xd800 | ((wc >> 10) & 0x3ff));
output[1] = cpu_to_le16(0xdc00 | (wc & 0x3ff));
return output + 2;
}
int utf8_to_utf16(le16_t* output, const char* input, size_t outsize,
size_t insize)
{
const char* inp = input;
le16_t* outp = output;
wchar_t wc;
while (inp - input < insize && *inp)
{
inp = utf8_to_wchar(inp, &wc, insize - (inp - input));
if (inp == NULL)
{
exfat_error("illegal UTF-8 sequence");
return -EILSEQ;
}
outp = wchar_to_utf16(outp, wc, outsize - (outp - output));
if (outp == NULL)
{
exfat_error("name is too long");
return -ENAMETOOLONG;
}
}
*outp = cpu_to_le16(0);
return 0;
}
size_t utf16_length(const le16_t* str)
{
size_t i = 0;
while (le16_to_cpu(str[i]))
i++;
return i;
}
fuse-exfat-1.0.1/libexfat/time.c 0000664 0000764 0000764 00000011362 12103217511 015452 0 ustar relan relan /*
time.c (03.02.12)
exFAT file system implementation library.
Copyright (C) 2010-2013 Andrew Nayenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "exfat.h"
/* timezone offset from UTC in seconds; positive for western timezones,
negative for eastern ones */
static long exfat_timezone;
#define SEC_IN_MIN 60ll
#define SEC_IN_HOUR (60 * SEC_IN_MIN)
#define SEC_IN_DAY (24 * SEC_IN_HOUR)
#define SEC_IN_YEAR (365 * SEC_IN_DAY) /* not leap year */
/* Unix epoch started at 0:00:00 UTC 1 January 1970 */
#define UNIX_EPOCH_YEAR 1970
/* exFAT epoch started at 0:00:00 UTC 1 January 1980 */
#define EXFAT_EPOCH_YEAR 1980
/* number of years from Unix epoch to exFAT epoch */
#define EPOCH_DIFF_YEAR (EXFAT_EPOCH_YEAR - UNIX_EPOCH_YEAR)
/* number of days from Unix epoch to exFAT epoch (considering leap days) */
#define EPOCH_DIFF_DAYS (EPOCH_DIFF_YEAR * 365 + EPOCH_DIFF_YEAR / 4)
/* number of seconds from Unix epoch to exFAT epoch (considering leap days) */
#define EPOCH_DIFF_SEC (EPOCH_DIFF_DAYS * SEC_IN_DAY)
/* number of leap years passed from exFAT epoch to the specified year
(excluding the specified year itself) */
#define LEAP_YEARS(year) ((EXFAT_EPOCH_YEAR + (year) - 1) / 4 \
- (EXFAT_EPOCH_YEAR - 1) / 4)
/* checks whether the specified year is leap */
#define IS_LEAP_YEAR(year) ((EXFAT_EPOCH_YEAR + (year)) % 4 == 0)
static const time_t days_in_year[] =
{
/* Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec */
0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
};
time_t exfat_exfat2unix(le16_t date, le16_t time, uint8_t centisec)
{
time_t unix_time = EPOCH_DIFF_SEC;
uint16_t ndate = le16_to_cpu(date);
uint16_t ntime = le16_to_cpu(time);
uint16_t day = ndate & 0x1f; /* 5 bits, 1-31 */
uint16_t month = ndate >> 5 & 0xf; /* 4 bits, 1-12 */
uint16_t year = ndate >> 9; /* 7 bits, 1-127 (+1980) */
uint16_t twosec = ntime & 0x1f; /* 5 bits, 0-29 (2 sec granularity) */
uint16_t min = ntime >> 5 & 0x3f; /* 6 bits, 0-59 */
uint16_t hour = ntime >> 11; /* 5 bits, 0-23 */
if (day == 0 || month == 0 || month > 12)
{
exfat_error("bad date %u-%02hu-%02hu",
year + EXFAT_EPOCH_YEAR, month, day);
return 0;
}
if (hour > 23 || min > 59 || twosec > 29)
{
exfat_error("bad time %hu:%02hu:%02u",
hour, min, twosec * 2);
return 0;
}
if (centisec > 199)
{
exfat_error("bad centiseconds count %hhu", centisec);
return 0;
}
/* every 4th year between 1904 and 2096 is leap */
unix_time += year * SEC_IN_YEAR + LEAP_YEARS(year) * SEC_IN_DAY;
unix_time += days_in_year[month] * SEC_IN_DAY;
/* if it's leap year and February has passed we should add 1 day */
if ((EXFAT_EPOCH_YEAR + year) % 4 == 0 && month > 2)
unix_time += SEC_IN_DAY;
unix_time += (day - 1) * SEC_IN_DAY;
unix_time += hour * SEC_IN_HOUR;
unix_time += min * SEC_IN_MIN;
/* exFAT represents time with 2 sec granularity */
unix_time += twosec * 2;
unix_time += centisec / 100;
/* exFAT stores timestamps in local time, so we correct it to UTC */
unix_time += exfat_timezone;
return unix_time;
}
void exfat_unix2exfat(time_t unix_time, le16_t* date, le16_t* time,
uint8_t* centisec)
{
time_t shift = EPOCH_DIFF_SEC + exfat_timezone;
uint16_t day, month, year;
uint16_t twosec, min, hour;
int days;
int i;
/* time before exFAT epoch cannot be represented */
if (unix_time < shift)
unix_time = shift;
unix_time -= shift;
days = unix_time / SEC_IN_DAY;
year = (4 * days) / (4 * 365 + 1);
days -= year * 365 + LEAP_YEARS(year);
month = 0;
for (i = 1; i <= 12; i++)
{
int leap_day = (IS_LEAP_YEAR(year) && i == 2);
int leap_sub = (IS_LEAP_YEAR(year) && i >= 3);
if (i == 12 || days - leap_sub < days_in_year[i + 1] + leap_day)
{
month = i;
days -= days_in_year[i] + leap_sub;
break;
}
}
day = days + 1;
hour = (unix_time % SEC_IN_DAY) / SEC_IN_HOUR;
min = (unix_time % SEC_IN_HOUR) / SEC_IN_MIN;
twosec = (unix_time % SEC_IN_MIN) / 2;
*date = cpu_to_le16(day | (month << 5) | (year << 9));
*time = cpu_to_le16(twosec | (min << 5) | (hour << 11));
if (centisec)
*centisec = (unix_time % 2) * 100;
}
void exfat_tzset(void)
{
time_t now;
tzset();
now = time(NULL);
exfat_timezone = mktime(gmtime(&now)) - now;
}
fuse-exfat-1.0.1/libexfat/node.c 0000664 0000764 0000764 00000065521 12103217511 015447 0 ustar relan relan /*
node.c (09.10.09)
exFAT file system implementation library.
Copyright (C) 2010-2013 Andrew Nayenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "exfat.h"
#include
#include
#include
/* on-disk nodes iterator */
struct iterator
{
cluster_t cluster;
off_t offset;
int contiguous;
char* chunk;
};
struct exfat_node* exfat_get_node(struct exfat_node* node)
{
/* if we switch to multi-threaded mode we will need atomic
increment here and atomic decrement in exfat_put_node() */
node->references++;
return node;
}
void exfat_put_node(struct exfat* ef, struct exfat_node* node)
{
if (--node->references < 0)
{
char buffer[EXFAT_NAME_MAX + 1];
exfat_get_name(node, buffer, EXFAT_NAME_MAX);
exfat_bug("reference counter of `%s' is below zero", buffer);
}
if (node->references == 0)
{
if (node->flags & EXFAT_ATTRIB_DIRTY)
exfat_flush_node(ef, node);
if (node->flags & EXFAT_ATTRIB_UNLINKED)
{
/* free all clusters and node structure itself */
exfat_truncate(ef, node, 0);
free(node);
}
if (ef->cmap.dirty)
exfat_flush_cmap(ef);
}
}
/**
* Cluster + offset from the beginning of the directory to absolute offset.
*/
static off_t co2o(struct exfat* ef, cluster_t cluster, off_t offset)
{
return exfat_c2o(ef, cluster) + offset % CLUSTER_SIZE(*ef->sb);
}
static int opendir(struct exfat* ef, const struct exfat_node* dir,
struct iterator* it)
{
if (!(dir->flags & EXFAT_ATTRIB_DIR))
exfat_bug("not a directory");
it->cluster = dir->start_cluster;
it->offset = 0;
it->contiguous = IS_CONTIGUOUS(*dir);
it->chunk = malloc(CLUSTER_SIZE(*ef->sb));
if (it->chunk == NULL)
{
exfat_error("out of memory");
return -ENOMEM;
}
exfat_pread(ef->dev, it->chunk, CLUSTER_SIZE(*ef->sb),
exfat_c2o(ef, it->cluster));
return 0;
}
static void closedir(struct iterator* it)
{
it->cluster = 0;
it->offset = 0;
it->contiguous = 0;
free(it->chunk);
it->chunk = NULL;
}
static int fetch_next_entry(struct exfat* ef, const struct exfat_node* parent,
struct iterator* it)
{
/* move iterator to the next entry in the directory */
it->offset += sizeof(struct exfat_entry);
/* fetch the next cluster if needed */
if ((it->offset & (CLUSTER_SIZE(*ef->sb) - 1)) == 0)
{
/* reached the end of directory; the caller should check this
condition too */
if (it->offset >= parent->size)
return 0;
it->cluster = exfat_next_cluster(ef, parent, it->cluster);
if (CLUSTER_INVALID(it->cluster))
{
exfat_error("invalid cluster 0x%x while reading directory",
it->cluster);
return 1;
}
exfat_pread(ef->dev, it->chunk, CLUSTER_SIZE(*ef->sb),
exfat_c2o(ef, it->cluster));
}
return 0;
}
static struct exfat_node* allocate_node(void)
{
struct exfat_node* node = malloc(sizeof(struct exfat_node));
if (node == NULL)
{
exfat_error("failed to allocate node");
return NULL;
}
memset(node, 0, sizeof(struct exfat_node));
return node;
}
static void init_node_meta1(struct exfat_node* node,
const struct exfat_entry_meta1* meta1)
{
node->flags = le16_to_cpu(meta1->attrib);
node->mtime = exfat_exfat2unix(meta1->mdate, meta1->mtime,
meta1->mtime_cs);
/* there is no centiseconds field for atime */
node->atime = exfat_exfat2unix(meta1->adate, meta1->atime, 0);
}
static void init_node_meta2(struct exfat_node* node,
const struct exfat_entry_meta2* meta2)
{
node->size = le64_to_cpu(meta2->size);
node->start_cluster = le32_to_cpu(meta2->start_cluster);
node->fptr_cluster = node->start_cluster;
if (meta2->flags & EXFAT_FLAG_CONTIGUOUS)
node->flags |= EXFAT_ATTRIB_CONTIGUOUS;
}
static const struct exfat_entry* get_entry_ptr(const struct exfat* ef,
const struct iterator* it)
{
return (const struct exfat_entry*)
(it->chunk + it->offset % CLUSTER_SIZE(*ef->sb));
}
/*
* Reads one entry in directory at position pointed by iterator and fills
* node structure.
*/
static int readdir(struct exfat* ef, const struct exfat_node* parent,
struct exfat_node** node, struct iterator* it)
{
int rc = -EIO;
const struct exfat_entry* entry;
const struct exfat_entry_meta1* meta1;
const struct exfat_entry_meta2* meta2;
const struct exfat_entry_name* file_name;
const struct exfat_entry_upcase* upcase;
const struct exfat_entry_bitmap* bitmap;
const struct exfat_entry_label* label;
uint8_t continuations = 0;
le16_t* namep = NULL;
uint16_t reference_checksum = 0;
uint16_t actual_checksum = 0;
uint64_t real_size = 0;
*node = NULL;
for (;;)
{
if (it->offset >= parent->size)
{
if (continuations != 0)
{
exfat_error("expected %hhu continuations", continuations);
goto error;
}
return -ENOENT; /* that's OK, means end of directory */
}
entry = get_entry_ptr(ef, it);
switch (entry->type)
{
case EXFAT_ENTRY_FILE:
if (continuations != 0)
{
exfat_error("expected %hhu continuations before new entry",
continuations);
goto error;
}
meta1 = (const struct exfat_entry_meta1*) entry;
continuations = meta1->continuations;
/* each file entry must have at least 2 continuations:
info and name */
if (continuations < 2)
{
exfat_error("too few continuations (%hhu)", continuations);
goto error;
}
reference_checksum = le16_to_cpu(meta1->checksum);
actual_checksum = exfat_start_checksum(meta1);
*node = allocate_node();
if (*node == NULL)
{
rc = -ENOMEM;
goto error;
}
/* new node has zero reference counter */
(*node)->entry_cluster = it->cluster;
(*node)->entry_offset = it->offset;
init_node_meta1(*node, meta1);
namep = (*node)->name;
break;
case EXFAT_ENTRY_FILE_INFO:
if (continuations < 2)
{
exfat_error("unexpected continuation (%hhu)",
continuations);
goto error;
}
meta2 = (const struct exfat_entry_meta2*) entry;
if (meta2->flags & ~(EXFAT_FLAG_ALWAYS1 | EXFAT_FLAG_CONTIGUOUS))
{
exfat_error("unknown flags in meta2 (0x%hhx)", meta2->flags);
goto error;
}
init_node_meta2(*node, meta2);
actual_checksum = exfat_add_checksum(entry, actual_checksum);
real_size = le64_to_cpu(meta2->real_size);
/* empty files must be marked as non-contiguous */
if ((*node)->size == 0 && (meta2->flags & EXFAT_FLAG_CONTIGUOUS))
{
exfat_error("empty file marked as contiguous (0x%hhx)",
meta2->flags);
goto error;
}
/* directories must be aligned on at cluster boundary */
if (((*node)->flags & EXFAT_ATTRIB_DIR) &&
(*node)->size % CLUSTER_SIZE(*ef->sb) != 0)
{
exfat_error("directory has invalid size %"PRIu64" bytes",
(*node)->size);
goto error;
}
--continuations;
break;
case EXFAT_ENTRY_FILE_NAME:
if (continuations == 0)
{
exfat_error("unexpected continuation");
goto error;
}
file_name = (const struct exfat_entry_name*) entry;
actual_checksum = exfat_add_checksum(entry, actual_checksum);
memcpy(namep, file_name->name, EXFAT_ENAME_MAX * sizeof(le16_t));
namep += EXFAT_ENAME_MAX;
if (--continuations == 0)
{
/*
There are two fields that contain file size. Maybe they
plan to add compression support in the future and one of
those fields is visible (uncompressed) size and the other
is real (compressed) size. Anyway, currently it looks like
exFAT does not support compression and both fields must be
equal.
There is an exception though: pagefile.sys (its real_size
is always 0).
*/
if (real_size != (*node)->size)
{
char buffer[EXFAT_NAME_MAX + 1];
exfat_get_name(*node, buffer, EXFAT_NAME_MAX);
exfat_error("`%s' real size does not equal to size "
"(%"PRIu64" != %"PRIu64")", buffer,
real_size, (*node)->size);
goto error;
}
if (actual_checksum != reference_checksum)
{
char buffer[EXFAT_NAME_MAX + 1];
exfat_get_name(*node, buffer, EXFAT_NAME_MAX);
exfat_error("`%s' has invalid checksum (0x%hx != 0x%hx)",
buffer, actual_checksum, reference_checksum);
goto error;
}
if (fetch_next_entry(ef, parent, it) != 0)
goto error;
return 0; /* entry completed */
}
break;
case EXFAT_ENTRY_UPCASE:
if (ef->upcase != NULL)
break;
upcase = (const struct exfat_entry_upcase*) entry;
if (CLUSTER_INVALID(le32_to_cpu(upcase->start_cluster)))
{
exfat_error("invalid cluster 0x%x in upcase table",
le32_to_cpu(upcase->start_cluster));
goto error;
}
if (le64_to_cpu(upcase->size) == 0 ||
le64_to_cpu(upcase->size) > 0xffff * sizeof(uint16_t) ||
le64_to_cpu(upcase->size) % sizeof(uint16_t) != 0)
{
exfat_error("bad upcase table size (%"PRIu64" bytes)",
le64_to_cpu(upcase->size));
goto error;
}
ef->upcase = malloc(le64_to_cpu(upcase->size));
if (ef->upcase == NULL)
{
exfat_error("failed to allocate upcase table (%"PRIu64" bytes)",
le64_to_cpu(upcase->size));
rc = -ENOMEM;
goto error;
}
ef->upcase_chars = le64_to_cpu(upcase->size) / sizeof(le16_t);
exfat_pread(ef->dev, ef->upcase, le64_to_cpu(upcase->size),
exfat_c2o(ef, le32_to_cpu(upcase->start_cluster)));
break;
case EXFAT_ENTRY_BITMAP:
bitmap = (const struct exfat_entry_bitmap*) entry;
ef->cmap.start_cluster = le32_to_cpu(bitmap->start_cluster);
if (CLUSTER_INVALID(ef->cmap.start_cluster))
{
exfat_error("invalid cluster 0x%x in clusters bitmap",
ef->cmap.start_cluster);
goto error;
}
ef->cmap.size = le32_to_cpu(ef->sb->cluster_count) -
EXFAT_FIRST_DATA_CLUSTER;
if (le64_to_cpu(bitmap->size) < (ef->cmap.size + 7) / 8)
{
exfat_error("invalid clusters bitmap size: %"PRIu64
" (expected at least %u)",
le64_to_cpu(bitmap->size), (ef->cmap.size + 7) / 8);
goto error;
}
/* FIXME bitmap can be rather big, up to 512 MB */
ef->cmap.chunk_size = ef->cmap.size;
ef->cmap.chunk = malloc(le64_to_cpu(bitmap->size));
if (ef->cmap.chunk == NULL)
{
exfat_error("failed to allocate clusters bitmap chunk "
"(%"PRIu64" bytes)", le64_to_cpu(bitmap->size));
rc = -ENOMEM;
goto error;
}
exfat_pread(ef->dev, ef->cmap.chunk, le64_to_cpu(bitmap->size),
exfat_c2o(ef, ef->cmap.start_cluster));
break;
case EXFAT_ENTRY_LABEL:
label = (const struct exfat_entry_label*) entry;
if (label->length > EXFAT_ENAME_MAX)
{
exfat_error("too long label (%hhu chars)", label->length);
goto error;
}
if (utf16_to_utf8(ef->label, label->name,
sizeof(ef->label), EXFAT_ENAME_MAX) != 0)
goto error;
break;
default:
if (entry->type & EXFAT_ENTRY_VALID)
{
exfat_error("unknown entry type 0x%hhx", entry->type);
goto error;
}
break;
}
if (fetch_next_entry(ef, parent, it) != 0)
goto error;
}
/* we never reach here */
error:
free(*node);
*node = NULL;
return rc;
}
int exfat_cache_directory(struct exfat* ef, struct exfat_node* dir)
{
struct iterator it;
int rc;
struct exfat_node* node;
struct exfat_node* current = NULL;
if (dir->flags & EXFAT_ATTRIB_CACHED)
return 0; /* already cached */
rc = opendir(ef, dir, &it);
if (rc != 0)
return rc;
while ((rc = readdir(ef, dir, &node, &it)) == 0)
{
node->parent = dir;
if (current != NULL)
{
current->next = node;
node->prev = current;
}
else
dir->child = node;
current = node;
}
closedir(&it);
if (rc != -ENOENT)
{
/* rollback */
for (current = dir->child; current; current = node)
{
node = current->next;
free(current);
}
dir->child = NULL;
return rc;
}
dir->flags |= EXFAT_ATTRIB_CACHED;
return 0;
}
static void tree_attach(struct exfat_node* dir, struct exfat_node* node)
{
node->parent = dir;
if (dir->child)
{
dir->child->prev = node;
node->next = dir->child;
}
dir->child = node;
}
static void tree_detach(struct exfat_node* node)
{
if (node->prev)
node->prev->next = node->next;
else /* this is the first node in the list */
node->parent->child = node->next;
if (node->next)
node->next->prev = node->prev;
node->parent = NULL;
node->prev = NULL;
node->next = NULL;
}
static void reset_cache(struct exfat* ef, struct exfat_node* node)
{
while (node->child)
{
struct exfat_node* p = node->child;
reset_cache(ef, p);
tree_detach(p);
free(p);
}
node->flags &= ~EXFAT_ATTRIB_CACHED;
if (node->references != 0)
{
char buffer[EXFAT_NAME_MAX + 1];
exfat_get_name(node, buffer, EXFAT_NAME_MAX);
exfat_warn("non-zero reference counter (%d) for `%s'",
node->references, buffer);
}
while (node->references)
exfat_put_node(ef, node);
}
void exfat_reset_cache(struct exfat* ef)
{
reset_cache(ef, ef->root);
}
void next_entry(struct exfat* ef, const struct exfat_node* parent,
cluster_t* cluster, off_t* offset)
{
*offset += sizeof(struct exfat_entry);
if (*offset % CLUSTER_SIZE(*ef->sb) == 0)
/* next cluster cannot be invalid */
*cluster = exfat_next_cluster(ef, parent, *cluster);
}
void exfat_flush_node(struct exfat* ef, struct exfat_node* node)
{
cluster_t cluster;
off_t offset;
off_t meta1_offset, meta2_offset;
struct exfat_entry_meta1 meta1;
struct exfat_entry_meta2 meta2;
if (ef->ro)
exfat_bug("unable to flush node to read-only FS");
if (node->parent == NULL)
return; /* do not flush unlinked node */
cluster = node->entry_cluster;
offset = node->entry_offset;
meta1_offset = co2o(ef, cluster, offset);
next_entry(ef, node->parent, &cluster, &offset);
meta2_offset = co2o(ef, cluster, offset);
exfat_pread(ef->dev, &meta1, sizeof(meta1), meta1_offset);
if (meta1.type != EXFAT_ENTRY_FILE)
exfat_bug("invalid type of meta1: 0x%hhx", meta1.type);
meta1.attrib = cpu_to_le16(node->flags);
exfat_unix2exfat(node->mtime, &meta1.mdate, &meta1.mtime, &meta1.mtime_cs);
exfat_unix2exfat(node->atime, &meta1.adate, &meta1.atime, NULL);
exfat_pread(ef->dev, &meta2, sizeof(meta2), meta2_offset);
if (meta2.type != EXFAT_ENTRY_FILE_INFO)
exfat_bug("invalid type of meta2: 0x%hhx", meta2.type);
meta2.size = meta2.real_size = cpu_to_le64(node->size);
meta2.start_cluster = cpu_to_le32(node->start_cluster);
meta2.flags = EXFAT_FLAG_ALWAYS1;
/* empty files must not be marked as contiguous */
if (node->size != 0 && IS_CONTIGUOUS(*node))
meta2.flags |= EXFAT_FLAG_CONTIGUOUS;
/* name hash remains unchanged, no need to recalculate it */
meta1.checksum = exfat_calc_checksum(&meta1, &meta2, node->name);
exfat_pwrite(ef->dev, &meta1, sizeof(meta1), meta1_offset);
exfat_pwrite(ef->dev, &meta2, sizeof(meta2), meta2_offset);
node->flags &= ~EXFAT_ATTRIB_DIRTY;
}
static void erase_entry(struct exfat* ef, struct exfat_node* node)
{
cluster_t cluster = node->entry_cluster;
off_t offset = node->entry_offset;
int name_entries = DIV_ROUND_UP(utf16_length(node->name), EXFAT_ENAME_MAX);
uint8_t entry_type;
entry_type = EXFAT_ENTRY_FILE & ~EXFAT_ENTRY_VALID;
exfat_pwrite(ef->dev, &entry_type, 1, co2o(ef, cluster, offset));
next_entry(ef, node->parent, &cluster, &offset);
entry_type = EXFAT_ENTRY_FILE_INFO & ~EXFAT_ENTRY_VALID;
exfat_pwrite(ef->dev, &entry_type, 1, co2o(ef, cluster, offset));
while (name_entries--)
{
next_entry(ef, node->parent, &cluster, &offset);
entry_type = EXFAT_ENTRY_FILE_NAME & ~EXFAT_ENTRY_VALID;
exfat_pwrite(ef->dev, &entry_type, 1, co2o(ef, cluster, offset));
}
}
static int shrink_directory(struct exfat* ef, struct exfat_node* dir,
off_t deleted_offset)
{
const struct exfat_node* node;
const struct exfat_node* last_node;
uint64_t entries = 0;
uint64_t new_size;
int rc;
if (!(dir->flags & EXFAT_ATTRIB_DIR))
exfat_bug("attempted to shrink a file");
if (!(dir->flags & EXFAT_ATTRIB_CACHED))
exfat_bug("attempted to shrink uncached directory");
for (last_node = node = dir->child; node; node = node->next)
{
if (deleted_offset < node->entry_offset)
{
/* there are other entries after the removed one, no way to shrink
this directory */
return 0;
}
if (last_node->entry_offset < node->entry_offset)
last_node = node;
}
if (last_node)
{
/* offset of the last entry */
entries += last_node->entry_offset / sizeof(struct exfat_entry);
/* two subentries with meta info */
entries += 2;
/* subentries with file name */
entries += DIV_ROUND_UP(utf16_length(last_node->name),
EXFAT_ENAME_MAX);
}
new_size = DIV_ROUND_UP(entries * sizeof(struct exfat_entry),
CLUSTER_SIZE(*ef->sb)) * CLUSTER_SIZE(*ef->sb);
if (new_size == 0) /* directory always has at least 1 cluster */
new_size = CLUSTER_SIZE(*ef->sb);
if (new_size == dir->size)
return 0;
rc = exfat_truncate(ef, dir, new_size);
if (rc != 0)
return rc;
return 0;
}
static int delete(struct exfat* ef, struct exfat_node* node)
{
struct exfat_node* parent = node->parent;
off_t deleted_offset = node->entry_offset;
int rc;
exfat_get_node(parent);
erase_entry(ef, node);
exfat_update_mtime(parent);
tree_detach(node);
rc = shrink_directory(ef, parent, deleted_offset);
exfat_put_node(ef, parent);
/* file clusters will be freed when node reference counter becomes 0 */
node->flags |= EXFAT_ATTRIB_UNLINKED;
return rc;
}
int exfat_unlink(struct exfat* ef, struct exfat_node* node)
{
if (node->flags & EXFAT_ATTRIB_DIR)
return -EISDIR;
return delete(ef, node);
}
int exfat_rmdir(struct exfat* ef, struct exfat_node* node)
{
if (!(node->flags & EXFAT_ATTRIB_DIR))
return -ENOTDIR;
/* check that directory is empty */
exfat_cache_directory(ef, node);
if (node->child)
return -ENOTEMPTY;
return delete(ef, node);
}
static int grow_directory(struct exfat* ef, struct exfat_node* dir,
uint64_t asize, uint32_t difference)
{
return exfat_truncate(ef, dir,
DIV_ROUND_UP(asize + difference, CLUSTER_SIZE(*ef->sb))
* CLUSTER_SIZE(*ef->sb));
}
static int find_slot(struct exfat* ef, struct exfat_node* dir,
cluster_t* cluster, off_t* offset, int subentries)
{
struct iterator it;
int rc;
const struct exfat_entry* entry;
int contiguous = 0;
rc = opendir(ef, dir, &it);
if (rc != 0)
return rc;
for (;;)
{
if (contiguous == 0)
{
*cluster = it.cluster;
*offset = it.offset;
}
entry = get_entry_ptr(ef, &it);
if (entry->type & EXFAT_ENTRY_VALID)
contiguous = 0;
else
contiguous++;
if (contiguous == subentries)
break; /* suitable slot is found */
if (it.offset + sizeof(struct exfat_entry) >= dir->size)
{
rc = grow_directory(ef, dir, dir->size,
(subentries - contiguous) * sizeof(struct exfat_entry));
if (rc != 0)
{
closedir(&it);
return rc;
}
}
if (fetch_next_entry(ef, dir, &it) != 0)
{
closedir(&it);
return -EIO;
}
}
closedir(&it);
return 0;
}
static int write_entry(struct exfat* ef, struct exfat_node* dir,
const le16_t* name, cluster_t cluster, off_t offset, uint16_t attrib)
{
struct exfat_node* node;
struct exfat_entry_meta1 meta1;
struct exfat_entry_meta2 meta2;
const size_t name_length = utf16_length(name);
const int name_entries = DIV_ROUND_UP(name_length, EXFAT_ENAME_MAX);
int i;
node = allocate_node();
if (node == NULL)
return -ENOMEM;
node->entry_cluster = cluster;
node->entry_offset = offset;
memcpy(node->name, name, name_length * sizeof(le16_t));
memset(&meta1, 0, sizeof(meta1));
meta1.type = EXFAT_ENTRY_FILE;
meta1.continuations = 1 + name_entries;
meta1.attrib = cpu_to_le16(attrib);
exfat_unix2exfat(time(NULL), &meta1.crdate, &meta1.crtime,
&meta1.crtime_cs);
meta1.adate = meta1.mdate = meta1.crdate;
meta1.atime = meta1.mtime = meta1.crtime;
meta1.mtime_cs = meta1.crtime_cs; /* there is no atime_cs */
memset(&meta2, 0, sizeof(meta2));
meta2.type = EXFAT_ENTRY_FILE_INFO;
meta2.flags = EXFAT_FLAG_ALWAYS1;
meta2.name_length = name_length;
meta2.name_hash = exfat_calc_name_hash(ef, node->name);
meta2.start_cluster = cpu_to_le32(EXFAT_CLUSTER_FREE);
meta1.checksum = exfat_calc_checksum(&meta1, &meta2, node->name);
exfat_pwrite(ef->dev, &meta1, sizeof(meta1), co2o(ef, cluster, offset));
next_entry(ef, dir, &cluster, &offset);
exfat_pwrite(ef->dev, &meta2, sizeof(meta2), co2o(ef, cluster, offset));
for (i = 0; i < name_entries; i++)
{
struct exfat_entry_name name_entry = {EXFAT_ENTRY_FILE_NAME, 0};
memcpy(name_entry.name, node->name + i * EXFAT_ENAME_MAX,
EXFAT_ENAME_MAX * sizeof(le16_t));
next_entry(ef, dir, &cluster, &offset);
exfat_pwrite(ef->dev, &name_entry, sizeof(name_entry),
co2o(ef, cluster, offset));
}
init_node_meta1(node, &meta1);
init_node_meta2(node, &meta2);
tree_attach(dir, node);
exfat_update_mtime(dir);
return 0;
}
static int create(struct exfat* ef, const char* path, uint16_t attrib)
{
struct exfat_node* dir;
struct exfat_node* existing;
cluster_t cluster = EXFAT_CLUSTER_BAD;
off_t offset = -1;
le16_t name[EXFAT_NAME_MAX + 1];
int rc;
rc = exfat_split(ef, &dir, &existing, name, path);
if (rc != 0)
return rc;
if (existing != NULL)
{
exfat_put_node(ef, existing);
exfat_put_node(ef, dir);
return -EEXIST;
}
rc = find_slot(ef, dir, &cluster, &offset,
2 + DIV_ROUND_UP(utf16_length(name), EXFAT_ENAME_MAX));
if (rc != 0)
{
exfat_put_node(ef, dir);
return rc;
}
rc = write_entry(ef, dir, name, cluster, offset, attrib);
exfat_put_node(ef, dir);
return rc;
}
int exfat_mknod(struct exfat* ef, const char* path)
{
return create(ef, path, EXFAT_ATTRIB_ARCH);
}
int exfat_mkdir(struct exfat* ef, const char* path)
{
int rc;
struct exfat_node* node;
rc = create(ef, path, EXFAT_ATTRIB_ARCH | EXFAT_ATTRIB_DIR);
if (rc != 0)
return rc;
rc = exfat_lookup(ef, &node, path);
if (rc != 0)
return 0;
/* directories always have at least one cluster */
rc = exfat_truncate(ef, node, CLUSTER_SIZE(*ef->sb));
if (rc != 0)
{
delete(ef, node);
exfat_put_node(ef, node);
return rc;
}
exfat_put_node(ef, node);
return 0;
}
static void rename_entry(struct exfat* ef, struct exfat_node* dir,
struct exfat_node* node, const le16_t* name, cluster_t new_cluster,
off_t new_offset)
{
struct exfat_entry_meta1 meta1;
struct exfat_entry_meta2 meta2;
cluster_t old_cluster = node->entry_cluster;
off_t old_offset = node->entry_offset;
const size_t name_length = utf16_length(name);
const int name_entries = DIV_ROUND_UP(name_length, EXFAT_ENAME_MAX);
int i;
exfat_pread(ef->dev, &meta1, sizeof(meta1),
co2o(ef, old_cluster, old_offset));
next_entry(ef, node->parent, &old_cluster, &old_offset);
exfat_pread(ef->dev, &meta2, sizeof(meta2),
co2o(ef, old_cluster, old_offset));
meta1.continuations = 1 + name_entries;
meta2.name_hash = exfat_calc_name_hash(ef, name);
meta2.name_length = name_length;
meta1.checksum = exfat_calc_checksum(&meta1, &meta2, name);
erase_entry(ef, node);
node->entry_cluster = new_cluster;
node->entry_offset = new_offset;
exfat_pwrite(ef->dev, &meta1, sizeof(meta1),
co2o(ef, new_cluster, new_offset));
next_entry(ef, dir, &new_cluster, &new_offset);
exfat_pwrite(ef->dev, &meta2, sizeof(meta2),
co2o(ef, new_cluster, new_offset));
for (i = 0; i < name_entries; i++)
{
struct exfat_entry_name name_entry = {EXFAT_ENTRY_FILE_NAME, 0};
memcpy(name_entry.name, name + i * EXFAT_ENAME_MAX,
EXFAT_ENAME_MAX * sizeof(le16_t));
next_entry(ef, dir, &new_cluster, &new_offset);
exfat_pwrite(ef->dev, &name_entry, sizeof(name_entry),
co2o(ef, new_cluster, new_offset));
}
memcpy(node->name, name, (EXFAT_NAME_MAX + 1) * sizeof(le16_t));
tree_detach(node);
tree_attach(dir, node);
}
int exfat_rename(struct exfat* ef, const char* old_path, const char* new_path)
{
struct exfat_node* node;
struct exfat_node* existing;
struct exfat_node* dir;
cluster_t cluster = EXFAT_CLUSTER_BAD;
off_t offset = -1;
le16_t name[EXFAT_NAME_MAX + 1];
int rc;
rc = exfat_lookup(ef, &node, old_path);
if (rc != 0)
return rc;
rc = exfat_split(ef, &dir, &existing, name, new_path);
if (rc != 0)
{
exfat_put_node(ef, node);
return rc;
}
/* check that target is not a subdirectory of the source */
if (node->flags & EXFAT_ATTRIB_DIR)
{
struct exfat_node* p;
for (p = dir; p; p = p->parent)
if (node == p)
{
if (existing != NULL)
exfat_put_node(ef, existing);
exfat_put_node(ef, dir);
exfat_put_node(ef, node);
return -EINVAL;
}
}
if (existing != NULL)
{
/* remove target if it's not the same node as source */
if (existing != node)
{
if (existing->flags & EXFAT_ATTRIB_DIR)
{
if (node->flags & EXFAT_ATTRIB_DIR)
rc = exfat_rmdir(ef, existing);
else
rc = -ENOTDIR;
}
else
{
if (!(node->flags & EXFAT_ATTRIB_DIR))
rc = exfat_unlink(ef, existing);
else
rc = -EISDIR;
}
exfat_put_node(ef, existing);
if (rc != 0)
{
exfat_put_node(ef, dir);
exfat_put_node(ef, node);
return rc;
}
}
else
exfat_put_node(ef, existing);
}
rc = find_slot(ef, dir, &cluster, &offset,
2 + DIV_ROUND_UP(utf16_length(name), EXFAT_ENAME_MAX));
if (rc != 0)
{
exfat_put_node(ef, dir);
exfat_put_node(ef, node);
return rc;
}
rename_entry(ef, dir, node, name, cluster, offset);
exfat_put_node(ef, dir);
exfat_put_node(ef, node);
return 0;
}
void exfat_utimes(struct exfat_node* node, const struct timespec tv[2])
{
node->atime = tv[0].tv_sec;
node->mtime = tv[1].tv_sec;
node->flags |= EXFAT_ATTRIB_DIRTY;
}
void exfat_update_atime(struct exfat_node* node)
{
node->atime = time(NULL);
node->flags |= EXFAT_ATTRIB_DIRTY;
}
void exfat_update_mtime(struct exfat_node* node)
{
node->mtime = time(NULL);
node->flags |= EXFAT_ATTRIB_DIRTY;
}
const char* exfat_get_label(struct exfat* ef)
{
return ef->label;
}
static int find_label(struct exfat* ef, cluster_t* cluster, off_t* offset)
{
struct iterator it;
int rc;
rc = opendir(ef, ef->root, &it);
if (rc != 0)
return rc;
for (;;)
{
if (it.offset >= ef->root->size)
{
closedir(&it);
return -ENOENT;
}
if (get_entry_ptr(ef, &it)->type == EXFAT_ENTRY_LABEL)
{
*cluster = it.cluster;
*offset = it.offset;
closedir(&it);
return 0;
}
if (fetch_next_entry(ef, ef->root, &it) != 0)
{
closedir(&it);
return -EIO;
}
}
}
int exfat_set_label(struct exfat* ef, const char* label)
{
le16_t label_utf16[EXFAT_ENAME_MAX + 1];
int rc;
cluster_t cluster;
off_t offset;
struct exfat_entry_label entry;
memset(label_utf16, 0, sizeof(label_utf16));
rc = utf8_to_utf16(label_utf16, label, EXFAT_ENAME_MAX, strlen(label));
if (rc != 0)
return rc;
rc = find_label(ef, &cluster, &offset);
if (rc == -ENOENT)
rc = find_slot(ef, ef->root, &cluster, &offset, 1);
if (rc != 0)
return rc;
entry.type = EXFAT_ENTRY_LABEL;
entry.length = utf16_length(label_utf16);
memcpy(entry.name, label_utf16, sizeof(entry.name));
if (entry.length == 0)
entry.type ^= EXFAT_ENTRY_VALID;
exfat_pwrite(ef->dev, &entry, sizeof(struct exfat_entry_label),
co2o(ef, cluster, offset));
return 0;
}
fuse-exfat-1.0.1/libexfat/mount.c 0000664 0000764 0000764 00000020045 12103217511 015654 0 ustar relan relan /*
mount.c (22.10.09)
exFAT file system implementation library.
Copyright (C) 2010-2013 Andrew Nayenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "exfat.h"
#include
#include
#include
#include
#include
static uint64_t rootdir_size(const struct exfat* ef)
{
uint64_t clusters = 0;
cluster_t rootdir_cluster = le32_to_cpu(ef->sb->rootdir_cluster);
while (!CLUSTER_INVALID(rootdir_cluster))
{
clusters++;
/* root directory cannot be contiguous because there is no flag
to indicate this */
rootdir_cluster = exfat_next_cluster(ef, ef->root, rootdir_cluster);
}
return clusters * CLUSTER_SIZE(*ef->sb);
}
static const char* get_option(const char* options, const char* option_name)
{
const char* p;
size_t length = strlen(option_name);
for (p = strstr(options, option_name); p; p = strstr(p + 1, option_name))
if ((p == options || p[-1] == ',') && p[length] == '=')
return p + length + 1;
return NULL;
}
static int get_int_option(const char* options, const char* option_name,
int base, int default_value)
{
const char* p = get_option(options, option_name);
if (p == NULL)
return default_value;
return strtol(p, NULL, base);
}
static bool match_option(const char* options, const char* option_name)
{
const char* p;
size_t length = strlen(option_name);
for (p = strstr(options, option_name); p; p = strstr(p + 1, option_name))
if ((p == options || p[-1] == ',') &&
(p[length] == ',' || p[length] == '\0'))
return true;
return false;
}
static void parse_options(struct exfat* ef, const char* options)
{
int sys_umask = umask(0);
int opt_umask;
umask(sys_umask); /* restore umask */
opt_umask = get_int_option(options, "umask", 8, sys_umask);
ef->dmask = get_int_option(options, "dmask", 8, opt_umask) & 0777;
ef->fmask = get_int_option(options, "fmask", 8, opt_umask) & 0777;
ef->uid = get_int_option(options, "uid", 10, geteuid());
ef->gid = get_int_option(options, "gid", 10, getegid());
ef->noatime = match_option(options, "noatime");
}
static int verify_vbr_checksum(struct exfat_dev* dev, void* sector,
off_t sector_size)
{
uint32_t vbr_checksum;
int i;
exfat_pread(dev, sector, sector_size, 0);
vbr_checksum = exfat_vbr_start_checksum(sector, sector_size);
for (i = 1; i < 11; i++)
{
exfat_pread(dev, sector, sector_size, i * sector_size);
vbr_checksum = exfat_vbr_add_checksum(sector, sector_size,
vbr_checksum);
}
exfat_pread(dev, sector, sector_size, i * sector_size);
for (i = 0; i < sector_size / sizeof(vbr_checksum); i++)
if (le32_to_cpu(((const le32_t*) sector)[i]) != vbr_checksum)
{
exfat_error("invalid VBR checksum 0x%x (expected 0x%x)",
le32_to_cpu(((const le32_t*) sector)[i]), vbr_checksum);
return 1;
}
return 0;
}
static int commit_super_block(const struct exfat* ef)
{
exfat_pwrite(ef->dev, ef->sb, sizeof(struct exfat_super_block), 0);
return exfat_fsync(ef->dev);
}
static int prepare_super_block(const struct exfat* ef)
{
if (le16_to_cpu(ef->sb->volume_state) & EXFAT_STATE_MOUNTED)
exfat_warn("volume was not unmounted cleanly");
if (ef->ro)
return 0;
ef->sb->volume_state = cpu_to_le16(
le16_to_cpu(ef->sb->volume_state) | EXFAT_STATE_MOUNTED);
return commit_super_block(ef);
}
int exfat_mount(struct exfat* ef, const char* spec, const char* options)
{
int rc;
enum exfat_mode mode;
exfat_tzset();
memset(ef, 0, sizeof(struct exfat));
parse_options(ef, options);
if (match_option(options, "ro"))
mode = EXFAT_MODE_RO;
else if (match_option(options, "ro_fallback"))
mode = EXFAT_MODE_ANY;
else
mode = EXFAT_MODE_RW;
ef->dev = exfat_open(spec, mode);
if (ef->dev == NULL)
return -EIO;
if (exfat_get_mode(ef->dev) == EXFAT_MODE_RO)
{
if (mode == EXFAT_MODE_ANY)
ef->ro = -1;
else
ef->ro = 1;
}
ef->sb = malloc(sizeof(struct exfat_super_block));
if (ef->sb == NULL)
{
exfat_close(ef->dev);
exfat_error("failed to allocate memory for the super block");
return -ENOMEM;
}
memset(ef->sb, 0, sizeof(struct exfat_super_block));
exfat_pread(ef->dev, ef->sb, sizeof(struct exfat_super_block), 0);
if (memcmp(ef->sb->oem_name, "EXFAT ", 8) != 0)
{
exfat_close(ef->dev);
free(ef->sb);
exfat_error("exFAT file system is not found");
return -EIO;
}
if (ef->sb->version.major != 1 || ef->sb->version.minor != 0)
{
exfat_close(ef->dev);
exfat_error("unsupported exFAT version: %hhu.%hhu",
ef->sb->version.major, ef->sb->version.minor);
free(ef->sb);
return -EIO;
}
if (ef->sb->fat_count != 1)
{
exfat_close(ef->dev);
free(ef->sb);
exfat_error("unsupported FAT count: %hhu", ef->sb->fat_count);
return -EIO;
}
/* officially exFAT supports cluster size up to 32 MB */
if ((int) ef->sb->sector_bits + (int) ef->sb->spc_bits > 25)
{
exfat_close(ef->dev);
free(ef->sb);
exfat_error("too big cluster size: 2^%d",
(int) ef->sb->sector_bits + (int) ef->sb->spc_bits);
return -EIO;
}
ef->zero_cluster = malloc(CLUSTER_SIZE(*ef->sb));
if (ef->zero_cluster == NULL)
{
exfat_close(ef->dev);
free(ef->sb);
exfat_error("failed to allocate zero sector");
return -ENOMEM;
}
/* use zero_cluster as a temporary buffer for VBR checksum verification */
if (verify_vbr_checksum(ef->dev, ef->zero_cluster,
SECTOR_SIZE(*ef->sb)) != 0)
{
free(ef->zero_cluster);
exfat_close(ef->dev);
free(ef->sb);
return -EIO;
}
memset(ef->zero_cluster, 0, CLUSTER_SIZE(*ef->sb));
ef->root = malloc(sizeof(struct exfat_node));
if (ef->root == NULL)
{
free(ef->zero_cluster);
exfat_close(ef->dev);
free(ef->sb);
exfat_error("failed to allocate root node");
return -ENOMEM;
}
memset(ef->root, 0, sizeof(struct exfat_node));
ef->root->flags = EXFAT_ATTRIB_DIR;
ef->root->start_cluster = le32_to_cpu(ef->sb->rootdir_cluster);
ef->root->fptr_cluster = ef->root->start_cluster;
ef->root->name[0] = cpu_to_le16('\0');
ef->root->size = rootdir_size(ef);
/* exFAT does not have time attributes for the root directory */
ef->root->mtime = 0;
ef->root->atime = 0;
/* always keep at least 1 reference to the root node */
exfat_get_node(ef->root);
rc = exfat_cache_directory(ef, ef->root);
if (rc != 0)
goto error;
if (ef->upcase == NULL)
{
exfat_error("upcase table is not found");
goto error;
}
if (ef->cmap.chunk == NULL)
{
exfat_error("clusters bitmap is not found");
goto error;
}
if (prepare_super_block(ef) != 0)
goto error;
return 0;
error:
exfat_put_node(ef, ef->root);
exfat_reset_cache(ef);
free(ef->root);
free(ef->zero_cluster);
exfat_close(ef->dev);
free(ef->sb);
return -EIO;
}
static void finalize_super_block(struct exfat* ef)
{
if (ef->ro)
return;
ef->sb->volume_state = cpu_to_le16(
le16_to_cpu(ef->sb->volume_state) & ~EXFAT_STATE_MOUNTED);
/* Some implementations set the percentage of allocated space to 0xff
on FS creation and never update it. In this case leave it as is. */
if (ef->sb->allocated_percent != 0xff)
{
uint32_t free, total;
free = exfat_count_free_clusters(ef);
total = le32_to_cpu(ef->sb->cluster_count);
ef->sb->allocated_percent = ((total - free) * 100 + total / 2) / total;
}
commit_super_block(ef);
}
void exfat_unmount(struct exfat* ef)
{
exfat_put_node(ef, ef->root);
exfat_reset_cache(ef);
free(ef->root);
ef->root = NULL;
finalize_super_block(ef);
exfat_close(ef->dev); /* close descriptor immediately after fsync */
ef->dev = NULL;
free(ef->zero_cluster);
ef->zero_cluster = NULL;
free(ef->cmap.chunk);
ef->cmap.chunk = NULL;
free(ef->sb);
ef->sb = NULL;
free(ef->upcase);
ef->upcase = NULL;
ef->upcase_chars = 0;
}
fuse-exfat-1.0.1/libexfat/lookup.c 0000664 0000764 0000764 00000011264 12103217511 016026 0 ustar relan relan /*
lookup.c (02.09.09)
exFAT file system implementation library.
Copyright (C) 2010-2013 Andrew Nayenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "exfat.h"
#include
#include
#include
int exfat_opendir(struct exfat* ef, struct exfat_node* dir,
struct exfat_iterator* it)
{
int rc;
exfat_get_node(dir);
it->parent = dir;
it->current = NULL;
rc = exfat_cache_directory(ef, dir);
if (rc != 0)
exfat_put_node(ef, dir);
return rc;
}
void exfat_closedir(struct exfat* ef, struct exfat_iterator* it)
{
exfat_put_node(ef, it->parent);
it->parent = NULL;
it->current = NULL;
}
struct exfat_node* exfat_readdir(struct exfat* ef, struct exfat_iterator* it)
{
if (it->current == NULL)
it->current = it->parent->child;
else
it->current = it->current->next;
if (it->current != NULL)
return exfat_get_node(it->current);
else
return NULL;
}
static int compare_char(struct exfat* ef, uint16_t a, uint16_t b)
{
if (a >= ef->upcase_chars || b >= ef->upcase_chars)
return (int) a - (int) b;
return (int) le16_to_cpu(ef->upcase[a]) - (int) le16_to_cpu(ef->upcase[b]);
}
static int compare_name(struct exfat* ef, const le16_t* a, const le16_t* b)
{
while (le16_to_cpu(*a) && le16_to_cpu(*b))
{
int rc = compare_char(ef, le16_to_cpu(*a), le16_to_cpu(*b));
if (rc != 0)
return rc;
a++;
b++;
}
return compare_char(ef, le16_to_cpu(*a), le16_to_cpu(*b));
}
static int lookup_name(struct exfat* ef, struct exfat_node* parent,
struct exfat_node** node, const char* name, size_t n)
{
struct exfat_iterator it;
le16_t buffer[EXFAT_NAME_MAX + 1];
int rc;
*node = NULL;
rc = utf8_to_utf16(buffer, name, EXFAT_NAME_MAX, n);
if (rc != 0)
return rc;
rc = exfat_opendir(ef, parent, &it);
if (rc != 0)
return rc;
while ((*node = exfat_readdir(ef, &it)))
{
if (compare_name(ef, buffer, (*node)->name) == 0)
{
exfat_closedir(ef, &it);
return 0;
}
exfat_put_node(ef, *node);
}
exfat_closedir(ef, &it);
return -ENOENT;
}
static size_t get_comp(const char* path, const char** comp)
{
const char* end;
*comp = path + strspn(path, "/"); /* skip leading slashes */
end = strchr(*comp, '/');
if (end == NULL)
return strlen(*comp);
else
return end - *comp;
}
int exfat_lookup(struct exfat* ef, struct exfat_node** node,
const char* path)
{
struct exfat_node* parent;
const char* p;
size_t n;
int rc;
/* start from the root directory */
parent = *node = exfat_get_node(ef->root);
for (p = path; (n = get_comp(p, &p)); p += n)
{
if (n == 1 && *p == '.') /* skip "." component */
continue;
rc = lookup_name(ef, parent, node, p, n);
if (rc != 0)
{
exfat_put_node(ef, parent);
return rc;
}
exfat_put_node(ef, parent);
parent = *node;
}
return 0;
}
static bool is_last_comp(const char* comp, size_t length)
{
const char* p = comp + length;
return get_comp(p, &p) == 0;
}
static bool is_allowed(const char* comp, size_t length)
{
size_t i;
for (i = 0; i < length; i++)
switch (comp[i])
{
case 0x01 ... 0x1f:
case '/':
case '\\':
case ':':
case '*':
case '?':
case '"':
case '<':
case '>':
case '|':
return false;
}
return true;
}
int exfat_split(struct exfat* ef, struct exfat_node** parent,
struct exfat_node** node, le16_t* name, const char* path)
{
const char* p;
size_t n;
int rc;
memset(name, 0, (EXFAT_NAME_MAX + 1) * sizeof(le16_t));
*parent = *node = exfat_get_node(ef->root);
for (p = path; (n = get_comp(p, &p)); p += n)
{
if (n == 1 && *p == '.')
continue;
if (is_last_comp(p, n))
{
if (!is_allowed(p, n))
{
/* contains characters that are not allowed */
exfat_put_node(ef, *parent);
return -ENOENT;
}
rc = utf8_to_utf16(name, p, EXFAT_NAME_MAX, n);
if (rc != 0)
{
exfat_put_node(ef, *parent);
return rc;
}
rc = lookup_name(ef, *parent, node, p, n);
if (rc != 0 && rc != -ENOENT)
{
exfat_put_node(ef, *parent);
return rc;
}
return 0;
}
rc = lookup_name(ef, *parent, node, p, n);
if (rc != 0)
{
exfat_put_node(ef, *parent);
return rc;
}
exfat_put_node(ef, *parent);
*parent = *node;
}
exfat_bug("impossible");
}
fuse-exfat-1.0.1/libexfat/log.c 0000664 0000764 0000764 00000004272 12103217511 015277 0 ustar relan relan /*
log.c (02.09.09)
exFAT file system implementation library.
Copyright (C) 2010-2013 Andrew Nayenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "exfat.h"
#include
#include
#include
int exfat_errors;
/*
* This message means an internal bug in exFAT implementation.
*/
void exfat_bug(const char* format, ...)
{
va_list ap, aq;
va_start(ap, format);
va_copy(aq, ap);
fflush(stdout);
fputs("BUG: ", stderr);
vfprintf(stderr, format, ap);
va_end(ap);
fputs(".\n", stderr);
if (!isatty(STDERR_FILENO))
vsyslog(LOG_CRIT, format, aq);
va_end(aq);
abort();
}
/*
* This message means an error in exFAT file system.
*/
void exfat_error(const char* format, ...)
{
va_list ap, aq;
exfat_errors++;
va_start(ap, format);
va_copy(aq, ap);
fflush(stdout);
fputs("ERROR: ", stderr);
vfprintf(stderr, format, ap);
va_end(ap);
fputs(".\n", stderr);
if (!isatty(STDERR_FILENO))
vsyslog(LOG_ERR, format, aq);
va_end(aq);
}
/*
* This message means that there is something unexpected in exFAT file system
* that can be a potential problem.
*/
void exfat_warn(const char* format, ...)
{
va_list ap, aq;
va_start(ap, format);
va_copy(aq, ap);
fflush(stdout);
fputs("WARN: ", stderr);
vfprintf(stderr, format, ap);
va_end(ap);
fputs(".\n", stderr);
if (!isatty(STDERR_FILENO))
vsyslog(LOG_WARNING, format, aq);
va_end(aq);
}
/*
* Just debug message. Disabled by default.
*/
void exfat_debug(const char* format, ...)
{
va_list ap;
fflush(stdout);
fputs("DEBUG: ", stderr);
va_start(ap, format);
vfprintf(stderr, format, ap);
va_end(ap);
fputs(".\n", stderr);
}
fuse-exfat-1.0.1/libexfat/io.c 0000664 0000764 0000764 00000020172 12103217511 015122 0 ustar relan relan /*
io.c (02.09.09)
exFAT file system implementation library.
Copyright (C) 2010-2013 Andrew Nayenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "exfat.h"
#include
#include
#include
#include
#include
#include
#include
#ifdef __APPLE__
#include
#endif
#ifdef USE_UBLIO
#include
#include
#endif
struct exfat_dev
{
int fd;
enum exfat_mode mode;
off_t size; /* in bytes */
#ifdef USE_UBLIO
off_t pos;
ublio_filehandle_t ufh;
#endif
};
static int open_ro(const char* spec)
{
return open(spec, O_RDONLY);
}
static int open_rw(const char* spec)
{
int fd = open(spec, O_RDWR);
#ifdef __linux__
int ro = 0;
/*
This ioctl is needed because after "blockdev --setro" kernel still
allows to open the device in read-write mode but fails writes.
*/
if (fd != -1 && ioctl(fd, BLKROGET, &ro) == 0 && ro)
{
close(fd);
return -1;
}
#endif
return fd;
}
struct exfat_dev* exfat_open(const char* spec, enum exfat_mode mode)
{
struct exfat_dev* dev;
struct stat stbuf;
#ifdef USE_UBLIO
struct ublio_param up;
#endif
dev = malloc(sizeof(struct exfat_dev));
if (dev == NULL)
{
exfat_error("failed to allocate memory for device structure");
return NULL;
}
switch (mode)
{
case EXFAT_MODE_RO:
dev->fd = open_ro(spec);
if (dev->fd == -1)
{
free(dev);
exfat_error("failed to open `%s' in read-only mode", spec);
return NULL;
}
dev->mode = EXFAT_MODE_RO;
break;
case EXFAT_MODE_RW:
dev->fd = open_rw(spec);
if (dev->fd == -1)
{
free(dev);
exfat_error("failed to open `%s' in read-write mode", spec);
return NULL;
}
dev->mode = EXFAT_MODE_RW;
break;
case EXFAT_MODE_ANY:
dev->fd = open_rw(spec);
if (dev->fd != -1)
{
dev->mode = EXFAT_MODE_RW;
break;
}
dev->fd = open_ro(spec);
if (dev->fd != -1)
{
dev->mode = EXFAT_MODE_RO;
exfat_warn("`%s' is write-protected, mounting read-only", spec);
break;
}
free(dev);
exfat_error("failed to open `%s'", spec);
return NULL;
}
if (fstat(dev->fd, &stbuf) != 0)
{
close(dev->fd);
free(dev);
exfat_error("failed to fstat `%s'", spec);
return NULL;
}
if (!S_ISBLK(stbuf.st_mode) &&
!S_ISCHR(stbuf.st_mode) &&
!S_ISREG(stbuf.st_mode))
{
close(dev->fd);
free(dev);
exfat_error("`%s' is neither a device, nor a regular file", spec);
return NULL;
}
#ifdef __APPLE__
if (!S_ISREG(stbuf.st_mode))
{
uint32_t block_size = 0;
uint64_t blocks = 0;
if (ioctl(dev->fd, DKIOCGETBLOCKSIZE, &block_size) != 0)
{
close(dev->fd);
free(dev);
exfat_error("failed to get block size");
return NULL;
}
if (ioctl(dev->fd, DKIOCGETBLOCKCOUNT, &blocks) != 0)
{
close(dev->fd);
free(dev);
exfat_error("failed to get blocks count");
return NULL;
}
dev->size = blocks * block_size;
}
else
#endif
{
/* works for Linux, FreeBSD, Solaris */
dev->size = exfat_seek(dev, 0, SEEK_END);
if (dev->size <= 0)
{
close(dev->fd);
free(dev);
exfat_error("failed to get size of `%s'", spec);
return NULL;
}
if (exfat_seek(dev, 0, SEEK_SET) == -1)
{
close(dev->fd);
free(dev);
exfat_error("failed to seek to the beginning of `%s'", spec);
return NULL;
}
}
#ifdef USE_UBLIO
memset(&up, 0, sizeof(struct ublio_param));
up.up_blocksize = 256 * 1024;
up.up_items = 64;
up.up_grace = 32;
up.up_priv = &dev->fd;
dev->pos = 0;
dev->ufh = ublio_open(&up);
if (dev->ufh == NULL)
{
close(dev->fd);
free(dev);
exfat_error("failed to initialize ublio");
return NULL;
}
#endif
return dev;
}
int exfat_close(struct exfat_dev* dev)
{
#ifdef USE_UBLIO
if (ublio_close(dev->ufh) != 0)
exfat_error("failed to close ublio");
#endif
if (close(dev->fd) != 0)
{
free(dev);
exfat_error("failed to close device");
return 1;
}
free(dev);
return 0;
}
int exfat_fsync(struct exfat_dev* dev)
{
#ifdef USE_UBLIO
if (ublio_fsync(dev->ufh) != 0)
#else
if (fsync(dev->fd) != 0)
#endif
{
exfat_error("fsync failed");
return 1;
}
return 0;
}
enum exfat_mode exfat_get_mode(const struct exfat_dev* dev)
{
return dev->mode;
}
off_t exfat_get_size(const struct exfat_dev* dev)
{
return dev->size;
}
off_t exfat_seek(struct exfat_dev* dev, off_t offset, int whence)
{
#ifdef USE_UBLIO
/* XXX SEEK_CUR will be handled incorrectly */
return dev->pos = lseek(dev->fd, offset, whence);
#else
return lseek(dev->fd, offset, whence);
#endif
}
ssize_t exfat_read(struct exfat_dev* dev, void* buffer, size_t size)
{
#ifdef USE_UBLIO
ssize_t result = ublio_pread(dev->ufh, buffer, size, dev->pos);
if (result >= 0)
dev->pos += size;
return result;
#else
return read(dev->fd, buffer, size);
#endif
}
ssize_t exfat_write(struct exfat_dev* dev, const void* buffer, size_t size)
{
#ifdef USE_UBLIO
ssize_t result = ublio_pwrite(dev->ufh, buffer, size, dev->pos);
if (result >= 0)
dev->pos += size;
return result;
#else
return write(dev->fd, buffer, size);
#endif
}
void exfat_pread(struct exfat_dev* dev, void* buffer, size_t size,
off_t offset)
{
#ifdef USE_UBLIO
if (ublio_pread(dev->ufh, buffer, size, offset) != size)
#else
if (pread(dev->fd, buffer, size, offset) != size)
#endif
exfat_bug("failed to read %zu bytes from file at %"PRIu64, size,
(uint64_t) offset);
}
void exfat_pwrite(struct exfat_dev* dev, const void* buffer, size_t size,
off_t offset)
{
#ifdef USE_UBLIO
if (ublio_pwrite(dev->ufh, buffer, size, offset) != size)
#else
if (pwrite(dev->fd, buffer, size, offset) != size)
#endif
exfat_bug("failed to write %zu bytes to file at %"PRIu64, size,
(uint64_t) offset);
}
ssize_t exfat_generic_pread(const struct exfat* ef, struct exfat_node* node,
void* buffer, size_t size, off_t offset)
{
cluster_t cluster;
char* bufp = buffer;
off_t lsize, loffset, remainder;
if (offset >= node->size)
return 0;
if (size == 0)
return 0;
cluster = exfat_advance_cluster(ef, node, offset / CLUSTER_SIZE(*ef->sb));
if (CLUSTER_INVALID(cluster))
{
exfat_error("invalid cluster 0x%x while reading", cluster);
return -1;
}
loffset = offset % CLUSTER_SIZE(*ef->sb);
remainder = MIN(size, node->size - offset);
while (remainder > 0)
{
if (CLUSTER_INVALID(cluster))
{
exfat_error("invalid cluster 0x%x while reading", cluster);
return -1;
}
lsize = MIN(CLUSTER_SIZE(*ef->sb) - loffset, remainder);
exfat_pread(ef->dev, bufp, lsize, exfat_c2o(ef, cluster) + loffset);
bufp += lsize;
loffset = 0;
remainder -= lsize;
cluster = exfat_next_cluster(ef, node, cluster);
}
if (!ef->ro && !ef->noatime)
exfat_update_atime(node);
return MIN(size, node->size - offset) - remainder;
}
ssize_t exfat_generic_pwrite(struct exfat* ef, struct exfat_node* node,
const void* buffer, size_t size, off_t offset)
{
cluster_t cluster;
const char* bufp = buffer;
off_t lsize, loffset, remainder;
if (offset + size > node->size)
if (exfat_truncate(ef, node, offset + size) != 0)
return -1;
if (size == 0)
return 0;
cluster = exfat_advance_cluster(ef, node, offset / CLUSTER_SIZE(*ef->sb));
if (CLUSTER_INVALID(cluster))
{
exfat_error("invalid cluster 0x%x while writing", cluster);
return -1;
}
loffset = offset % CLUSTER_SIZE(*ef->sb);
remainder = size;
while (remainder > 0)
{
if (CLUSTER_INVALID(cluster))
{
exfat_error("invalid cluster 0x%x while writing", cluster);
return -1;
}
lsize = MIN(CLUSTER_SIZE(*ef->sb) - loffset, remainder);
exfat_pwrite(ef->dev, bufp, lsize, exfat_c2o(ef, cluster) + loffset);
bufp += lsize;
loffset = 0;
remainder -= lsize;
cluster = exfat_next_cluster(ef, node, cluster);
}
exfat_update_mtime(node);
return size - remainder;
}
fuse-exfat-1.0.1/libexfat/cluster.c 0000664 0000764 0000764 00000025236 12103217511 016202 0 ustar relan relan /*
cluster.c (03.09.09)
exFAT file system implementation library.
Copyright (C) 2010-2013 Andrew Nayenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "exfat.h"
#include
#include
/*
* Sector to absolute offset.
*/
static off_t s2o(const struct exfat* ef, off_t sector)
{
return sector << ef->sb->sector_bits;
}
/*
* Cluster to sector.
*/
static off_t c2s(const struct exfat* ef, cluster_t cluster)
{
if (cluster < EXFAT_FIRST_DATA_CLUSTER)
exfat_bug("invalid cluster number %u", cluster);
return le32_to_cpu(ef->sb->cluster_sector_start) +
((off_t) (cluster - EXFAT_FIRST_DATA_CLUSTER) << ef->sb->spc_bits);
}
/*
* Cluster to absolute offset.
*/
off_t exfat_c2o(const struct exfat* ef, cluster_t cluster)
{
return s2o(ef, c2s(ef, cluster));
}
/*
* Sector to cluster.
*/
static cluster_t s2c(const struct exfat* ef, off_t sector)
{
return ((sector - le32_to_cpu(ef->sb->cluster_sector_start)) >>
ef->sb->spc_bits) + EXFAT_FIRST_DATA_CLUSTER;
}
/*
* Size in bytes to size in clusters (rounded upwards).
*/
static uint32_t bytes2clusters(const struct exfat* ef, uint64_t bytes)
{
uint64_t cluster_size = CLUSTER_SIZE(*ef->sb);
return (bytes + cluster_size - 1) / cluster_size;
}
cluster_t exfat_next_cluster(const struct exfat* ef,
const struct exfat_node* node, cluster_t cluster)
{
le32_t next;
off_t fat_offset;
if (cluster < EXFAT_FIRST_DATA_CLUSTER)
exfat_bug("bad cluster 0x%x", cluster);
if (IS_CONTIGUOUS(*node))
return cluster + 1;
fat_offset = s2o(ef, le32_to_cpu(ef->sb->fat_sector_start))
+ cluster * sizeof(cluster_t);
exfat_pread(ef->dev, &next, sizeof(next), fat_offset);
return le32_to_cpu(next);
}
cluster_t exfat_advance_cluster(const struct exfat* ef,
struct exfat_node* node, uint32_t count)
{
uint32_t i;
if (node->fptr_index > count)
{
node->fptr_index = 0;
node->fptr_cluster = node->start_cluster;
}
for (i = node->fptr_index; i < count; i++)
{
node->fptr_cluster = exfat_next_cluster(ef, node, node->fptr_cluster);
if (CLUSTER_INVALID(node->fptr_cluster))
break; /* the caller should handle this and print appropriate
error message */
}
node->fptr_index = count;
return node->fptr_cluster;
}
static cluster_t find_bit_and_set(uint8_t* bitmap, size_t start, size_t end)
{
const size_t start_index = start / 8;
const size_t end_index = DIV_ROUND_UP(end, 8);
size_t i;
size_t c;
for (i = start_index; i < end_index; i++)
{
if (bitmap[i] == 0xff)
continue;
for (c = MAX(i * 8, start); c < MIN((i + 1) * 8, end); c++)
if (BMAP_GET(bitmap, c) == 0)
{
BMAP_SET(bitmap, c);
return c + EXFAT_FIRST_DATA_CLUSTER;
}
}
return EXFAT_CLUSTER_END;
}
void exfat_flush_cmap(struct exfat* ef)
{
exfat_pwrite(ef->dev, ef->cmap.chunk, (ef->cmap.chunk_size + 7) / 8,
exfat_c2o(ef, ef->cmap.start_cluster));
ef->cmap.dirty = false;
}
static void set_next_cluster(const struct exfat* ef, int contiguous,
cluster_t current, cluster_t next)
{
off_t fat_offset;
le32_t next_le32;
if (contiguous)
return;
fat_offset = s2o(ef, le32_to_cpu(ef->sb->fat_sector_start))
+ current * sizeof(cluster_t);
next_le32 = cpu_to_le32(next);
exfat_pwrite(ef->dev, &next_le32, sizeof(next_le32), fat_offset);
}
static cluster_t allocate_cluster(struct exfat* ef, cluster_t hint)
{
cluster_t cluster;
hint -= EXFAT_FIRST_DATA_CLUSTER;
if (hint >= ef->cmap.chunk_size)
hint = 0;
cluster = find_bit_and_set(ef->cmap.chunk, hint, ef->cmap.chunk_size);
if (cluster == EXFAT_CLUSTER_END)
cluster = find_bit_and_set(ef->cmap.chunk, 0, hint);
if (cluster == EXFAT_CLUSTER_END)
{
exfat_error("no free space left");
return EXFAT_CLUSTER_END;
}
ef->cmap.dirty = true;
return cluster;
}
static void free_cluster(struct exfat* ef, cluster_t cluster)
{
if (CLUSTER_INVALID(cluster))
exfat_bug("freeing invalid cluster 0x%x", cluster);
if (cluster - EXFAT_FIRST_DATA_CLUSTER >= ef->cmap.size)
exfat_bug("freeing non-existing cluster 0x%x (0x%x)", cluster,
ef->cmap.size);
BMAP_CLR(ef->cmap.chunk, cluster - EXFAT_FIRST_DATA_CLUSTER);
ef->cmap.dirty = true;
}
static void make_noncontiguous(const struct exfat* ef, cluster_t first,
cluster_t last)
{
cluster_t c;
for (c = first; c < last; c++)
set_next_cluster(ef, 0, c, c + 1);
}
static int shrink_file(struct exfat* ef, struct exfat_node* node,
uint32_t current, uint32_t difference);
static int grow_file(struct exfat* ef, struct exfat_node* node,
uint32_t current, uint32_t difference)
{
cluster_t previous;
cluster_t next;
uint32_t allocated = 0;
if (difference == 0)
exfat_bug("zero clusters count passed");
if (node->start_cluster != EXFAT_CLUSTER_FREE)
{
/* get the last cluster of the file */
previous = exfat_advance_cluster(ef, node, current - 1);
if (CLUSTER_INVALID(previous))
{
exfat_error("invalid cluster 0x%x while growing", previous);
return -EIO;
}
}
else
{
if (node->fptr_index != 0)
exfat_bug("non-zero pointer index (%u)", node->fptr_index);
/* file does not have clusters (i.e. is empty), allocate
the first one for it */
previous = allocate_cluster(ef, 0);
if (CLUSTER_INVALID(previous))
return -ENOSPC;
node->fptr_cluster = node->start_cluster = previous;
allocated = 1;
/* file consists of only one cluster, so it's contiguous */
node->flags |= EXFAT_ATTRIB_CONTIGUOUS;
}
while (allocated < difference)
{
next = allocate_cluster(ef, previous + 1);
if (CLUSTER_INVALID(next))
{
if (allocated != 0)
shrink_file(ef, node, current + allocated, allocated);
return -ENOSPC;
}
if (next != previous - 1 && IS_CONTIGUOUS(*node))
{
/* it's a pity, but we are not able to keep the file contiguous
anymore */
make_noncontiguous(ef, node->start_cluster, previous);
node->flags &= ~EXFAT_ATTRIB_CONTIGUOUS;
node->flags |= EXFAT_ATTRIB_DIRTY;
}
set_next_cluster(ef, IS_CONTIGUOUS(*node), previous, next);
previous = next;
allocated++;
}
set_next_cluster(ef, IS_CONTIGUOUS(*node), previous, EXFAT_CLUSTER_END);
return 0;
}
static int shrink_file(struct exfat* ef, struct exfat_node* node,
uint32_t current, uint32_t difference)
{
cluster_t previous;
cluster_t next;
if (difference == 0)
exfat_bug("zero difference passed");
if (node->start_cluster == EXFAT_CLUSTER_FREE)
exfat_bug("unable to shrink empty file (%u clusters)", current);
if (current < difference)
exfat_bug("file underflow (%u < %u)", current, difference);
/* crop the file */
if (current > difference)
{
cluster_t last = exfat_advance_cluster(ef, node,
current - difference - 1);
if (CLUSTER_INVALID(last))
{
exfat_error("invalid cluster 0x%x while shrinking", last);
return -EIO;
}
previous = exfat_next_cluster(ef, node, last);
set_next_cluster(ef, IS_CONTIGUOUS(*node), last, EXFAT_CLUSTER_END);
}
else
{
previous = node->start_cluster;
node->start_cluster = EXFAT_CLUSTER_FREE;
}
node->fptr_index = 0;
node->fptr_cluster = node->start_cluster;
/* free remaining clusters */
while (difference--)
{
if (CLUSTER_INVALID(previous))
{
exfat_error("invalid cluster 0x%x while freeing after shrink",
previous);
return -EIO;
}
next = exfat_next_cluster(ef, node, previous);
set_next_cluster(ef, IS_CONTIGUOUS(*node), previous,
EXFAT_CLUSTER_FREE);
free_cluster(ef, previous);
previous = next;
}
return 0;
}
static void erase_raw(struct exfat* ef, size_t size, off_t offset)
{
exfat_pwrite(ef->dev, ef->zero_cluster, size, offset);
}
static int erase_range(struct exfat* ef, struct exfat_node* node,
uint64_t begin, uint64_t end)
{
uint64_t cluster_boundary;
cluster_t cluster;
if (begin >= end)
return 0;
cluster_boundary = (begin | (CLUSTER_SIZE(*ef->sb) - 1)) + 1;
cluster = exfat_advance_cluster(ef, node,
begin / CLUSTER_SIZE(*ef->sb));
if (CLUSTER_INVALID(cluster))
{
exfat_error("invalid cluster 0x%x while erasing", cluster);
return -EIO;
}
/* erase from the beginning to the closest cluster boundary */
erase_raw(ef, MIN(cluster_boundary, end) - begin,
exfat_c2o(ef, cluster) + begin % CLUSTER_SIZE(*ef->sb));
/* erase whole clusters */
while (cluster_boundary < end)
{
cluster = exfat_next_cluster(ef, node, cluster);
/* the cluster cannot be invalid because we have just allocated it */
if (CLUSTER_INVALID(cluster))
exfat_bug("invalid cluster 0x%x after allocation", cluster);
erase_raw(ef, CLUSTER_SIZE(*ef->sb), exfat_c2o(ef, cluster));
cluster_boundary += CLUSTER_SIZE(*ef->sb);
}
return 0;
}
int exfat_truncate(struct exfat* ef, struct exfat_node* node, uint64_t size)
{
uint32_t c1 = bytes2clusters(ef, node->size);
uint32_t c2 = bytes2clusters(ef, size);
int rc = 0;
if (node->references == 0 && node->parent)
exfat_bug("no references, node changes can be lost");
if (node->size == size)
return 0;
if (c1 < c2)
rc = grow_file(ef, node, c1, c2 - c1);
else if (c1 > c2)
rc = shrink_file(ef, node, c1, c1 - c2);
if (rc != 0)
return rc;
rc = erase_range(ef, node, node->size, size);
if (rc != 0)
return rc;
exfat_update_mtime(node);
node->size = size;
node->flags |= EXFAT_ATTRIB_DIRTY;
return 0;
}
uint32_t exfat_count_free_clusters(const struct exfat* ef)
{
uint32_t free_clusters = 0;
uint32_t i;
for (i = 0; i < ef->cmap.size; i++)
if (BMAP_GET(ef->cmap.chunk, i) == 0)
free_clusters++;
return free_clusters;
}
static int find_used_clusters(const struct exfat* ef,
cluster_t* a, cluster_t* b)
{
const cluster_t end = le32_to_cpu(ef->sb->cluster_count);
/* find first used cluster */
for (*a = *b + 1; *a < end; (*a)++)
if (BMAP_GET(ef->cmap.chunk, *a - EXFAT_FIRST_DATA_CLUSTER))
break;
if (*a >= end)
return 1;
/* find last contiguous used cluster */
for (*b = *a; *b < end; (*b)++)
if (BMAP_GET(ef->cmap.chunk, *b - EXFAT_FIRST_DATA_CLUSTER) == 0)
{
(*b)--;
break;
}
return 0;
}
int exfat_find_used_sectors(const struct exfat* ef, off_t* a, off_t* b)
{
cluster_t ca, cb;
if (*a == 0 && *b == 0)
ca = cb = EXFAT_FIRST_DATA_CLUSTER - 1;
else
{
ca = s2c(ef, *a);
cb = s2c(ef, *b);
}
if (find_used_clusters(ef, &ca, &cb) != 0)
return 1;
if (*a != 0 || *b != 0)
*a = c2s(ef, ca);
*b = c2s(ef, cb) + (CLUSTER_SIZE(*ef->sb) - 1) / SECTOR_SIZE(*ef->sb);
return 0;
}