atlasrep-2.1.8/bibl/Atlas1bib.xml0000644000175000017500000002327011777255330014731 0ustar samsam E.Artin Geometric algebra Interscience Publishers, Inc., New York-London 1957 0082463 (18,553e) 15.0X J. Dieudonné x+214 E.Artin Geometric algebra John Wiley & Sons Inc. 1988 Wiley Classics Library
New York
Reprint of the 1957 original, A Wiley-Interscience Publication 0-471-60839-4 1009557 (90h:51003) 51-02 (11Exx) x+214 Art57
Roger W.Carter Simple groups of <C>L</C>ie type John Wiley & Sons, London-New York-Sydney 1972 Pure and Applied Mathematics, Vol. 28 0407163 (53 #10946) 20G15 (20D05 22E20) Louis Solomon viii+331 Roger W.Carter Simple groups of <C>L</C>ie type John Wiley & Sons Inc. 1989 Wiley Classics Library
New York
Reprint of the 1972 original, A Wiley-Interscience Publication 0-471-50683-4 1013112 (90g:20001) 20-02 (20D05 20E32 20G15 20G40 22-02) x+335 Car72
Roger W.Carter Finite groups of <C>L</C>ie type John Wiley & Sons Inc. 1985 Pure and Applied Mathematics (New York)
New York
Conjugacy classes and complex characters, A Wiley-Interscience Publication 0-471-90554-2 794307 (87d:20060) 20G40 (20-02 20C15) David B. Surowski xii+544
Roger W.Carter Finite groups of <C>L</C>ie type John Wiley & Sons Ltd. 1993 Wiley Classics Library
Chichester
Conjugacy classes and complex characters, Reprint of the 1985 original, A Wiley-Interscience Publication 0-471-94109-3 1266626 (94k:20020) 20C33 (20-02 20G40) xii+544 Car85
C.Chevalley Sur certains groupes simples Tôhoku Math. J. (2) 1955 7 14–66 0040-8735 0073602 (17,457c) 20.0X F. I. Mautner The Tohoku Mathematical Journal. Second Series
H. S. M.Coxeter W. O. J.Moser Generators and relations for discrete groups Springer-Verlag 1965 Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 14
Berlin
0174618 (30 #4818) 20.10 ix+161
H. S. M.Coxeter W. O. J.Moser Generators and relations for discrete groups Springer-Verlag 1972
New York
Third Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 14 0349820 (50 #2313) 20-02 (05-02) ix+161
H. S. M.Coxeter W. O. J.Moser Generators and relations for discrete groups Springer-Verlag 1980 14 Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas]
Berlin
Fourth 3-540-09212-9 562913 (81a:20001) 20-01 ix+169
ConstanceDavis A bibliographical survey of simple groups of finite order, 1900–1965 Courant Institute of Mathematical Sciences, New York Univ., New York 1969 0248203 (40 #1457) 20.00 A. P. Street xxi+209 Leonard EugeneDickson Linear groups: <C>W</C>ith an exposition of the <C>G</C>alois field theory Dover Publications Inc. 1958 with an introduction by W. Magnus
New York
0104735 (21 #3488) 20.00 xvi+312
JeanDieudonné La géométrie des groupes classiques Springer-Verlag 1963 Seconde édition, revue et corrigée
Berlin
0158011 (28 #1239) 20.70 viii+125
Jean A.Dieudonné La géométrie des groupes classiques Springer-Verlag 1971
Berlin
Troisième édition, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 5 0310083 (46 #9186) 20G15 (15A63 15A66) J. Burlak viii+129
D.Gorenstein Reviews on finite groups American Mathematical Society 1974
Providence, R.I.
Reviews reprinted from Mathematical Reviews, Vols. 1-40, published during 1940–1970, Classified by Daniel Gorenstein 0349819 (50 #2312) 20-XX (00A15) xi+706 0282.00024
DanielGorenstein Finite simple groups Plenum Publishing Corp. 1982 University Series in Mathematics
New York
An introduction to their classification 0-306-40779-5 698782 (84j:20002) 20-02 (20D05) R. Solomon x+333
BhamaSrinivasan Representations of finite <C>C</C>hevalley groups Springer-Verlag 1979 764 Lecture Notes in Mathematics
Berlin
A survey 3-540-09716-3 551499 (83a:20054) 20G05 (14L30 20C15 20G40) G. I. Lehrer x+177
RobertSteinberg Variations on a theme of <C>C</C>hevalley Pacific J. Math. 1959 9 875–891 0030-8730 0109191 (22 #79) 22.00 (20.00) Rimhak Ree Pacific Journal of Mathematics
atlasrep-2.1.8/bibl/Atlas2bib.xml0000644000175000017500000062331113135072621014722 0ustar samsam D. R.Hughes A combinatorial construction of the small <C>M</C>athieu designs and groups Algebraic and geometric combinatorics North-Holland 1982 65 North-Holland Math. Stud. 259–264
Amsterdam
Men82 772601 (86j:05028) 05B05 (20D08) M11
GordonKeller A characterization of <C><M>A_6</M></C> and <C><M>M_{11}</M></C> J. Algebra 1969 13 409–421 0021-8693 0249498 (40 #2743) 20.20 M. Herzog Journal of Algebra M11
HiroshiKimura A characterization of <C><M>A_7</M></C> and <C><M>M_{11}</M></C>. <C>I</C> Hokkaido Math. J. 1974 3 213–217 0385-4035 0354827 (50 #7304) 20B10 David R. Mason Hokkaido Mathematical Journal M11
HiroshiKimura A characterization of <C><M>A_7</M></C> and <C><M>M_{11}</M></C>. <C>II</C> Hokkaido Math. J. 1975 4 39–44 0385-4035 0390028 (52 #10855a) 20B10 David R. Mason Hokkaido Mathematical Journal M11
HiroshiKimura A characterization of <C><M>A_7</M></C> and <C><M>M_{11}</M></C>. <C>III</C> Hokkaido Math. J. 1975 4 2 273–277 0385-4035 0390029 (52 #10855b) 20B10 David R. Mason Hokkaido Mathematical Journal M11
W. O. J.Moser Abstract definitions for the <C>M</C>athieu groups <C><M>M_{11}</M></C> and <C><M>M_{12}</M></C> Canad. Math. Bull. 1959 2 9–13 0008-4395 0101268 (21 #81) 20.00 Graham Higman Canadian Mathematical Bulletin. Bulletin Canadien de Mathématiques M11
Christopher W.Norman A characterization of the <C>M</C>athieu group <C><M>M_{11}</M></C> Math. Z. 1968 106 162–166 0025-5874 0230637 (37 #6197) 05.20 (20.00) R. G. Stanton Mathematische Zeitschrift M11
DavidParrott On the <C>M</C>athieu groups <C><M>M_{22}</M></C> and <C><M>M_{11}</M></C> Bull. Austral. Math. Soc. 1970 3 141–142 M11
DavidParrott On the <C>M</C>athieu groups <C><M>M_{22}</M></C> and <C><M>M_{11}</M></C> J. Austral. Math. Soc. 1970 11 69–81 0263-6115 0255669 (41 #329) 20.29 W. J. Wong Australian Mathematical Society. Journal. Series A. Pure Mathematics and Statistics M11
G. J. A.Schneider The Mathieu group <M>M_{11}</M> Oxford 1979 M. Sc. thesis M11
K. C.Ts'eng C. S.Li On the commutators of the simple <C>M</C>athieu groups J. China Univ. Sci. Techn. 1965 1 1 43–48 0253-2778 0217179 (36 \#270) 20.29 C. Y. Chao Journal of China University of Science and Technology. Zhongguo Kexue Jishu Daxue Xuebao M11
Harold N.Ward A form for <C><M>M_{11}</M></C> J. Algebra 1975 37 2 340–361 0021-8693 0384907 (52 #5777) 20B25 Gareth A. Jones Journal of Algebra M11
KenziAkiyama A note on the <C>M</C>athieu groups <C><M>M_{12}</M></C> and <C><M>M_{23}</M></C> Bull. Central Res. Inst. Fukuoka Univ. 1983 66 1–5 0287-0002 730316 (86m:20003a) 20B10 (20D08) Bulletin of Central Research Institute Fukuoka University M12
RichardBrauer PaulFong A characterization of the <C>M</C>athieu group <C><M>{\germ M}_{12}</M></C> Trans. Amer. Math. Soc. 1966 122 18–47 0002-9947 0207817 (34 #7631) 20.27 (20.80) Graham Higman Transactions of the American Mathematical Society M12
F.Buekenhout Geometries for the <C>M</C>athieu group <C><M>M_{12}</M></C> Combinatorial theory (Schloss Rauischholzhausen, 1982) Springer 1982 969 Lecture Notes in Math. 74–85
Berlin
JV82 692234 (84h:51034) 51E25 (05B25 20D08) M12
J. H.Conway Hexacode and tetracode—<C>MOG</C> and <C>MINIMOG</C> Computational group theory (Durham, 1982) Academic Press 1984 359–365
London
Atk84 760670 (86b:94020) 94B25 (05B05) Wolfgang Knapp M12
J. H.Conway Three lectures on exceptional groups Finite simple groups (Proc. Instructional Conf., Oxford, 1969) Academic Press 1971 215–247
London
PH71 0338152 (49 #2918) 20D05 Thomas Laffey M12
H. S. M.Coxeter Twelve points in <C><M>{\rm PG}(5,\,3)</M></C> with <C><M>95040</M></C> self-transformations Proc. Roy. Soc. London. Ser. A 1958 247 279–293 0962-8444 0120289 (22 #11044) 20.00 (50.00) R. G. Stanton Proceedings of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences M12
R. T.Curtis The <C>S</C>teiner system <C><M>S(5,\,6,\,12)</M></C>, the <C>M</C>athieu group <C><M>M_{12}</M></C> and the ``kitten'' Computational group theory (Durham, 1982) Academic Press 1984 353–358
London
Atk84 760669 (86a:05011) 05B05 (20B25) Peter M. Neumann M12
G.Frobenius Über die Charaktere der mehrfach transitiven Gruppen Berliner Berichte 1904 558–571 M12
MarshallHall Jr. Note on the <C>M</C>athieu group <C><M>M_{12}</M></C> Arch. Math. 1962 13 334–340 0003-9268 0146245 (26 #3767) 20.29 W. Moser Archiv für Mathematische Logik und Grundlagenforschung M12
D. R.Hughes A combinatorial construction of the small <C>M</C>athieu designs and groups Algebraic and geometric combinatorics North-Holland 1982 65 North-Holland Math. Stud. 259–264
Amsterdam
Men82 772601 (86j:05028) 05B05 (20D08) M12
J. F.Humphreys The projective characters of the <C>M</C>athieu group <C><M>M_{12}</M></C> and of its automorphism group Math. Proc. Cambridge Philos. Soc. 1980 87 3 401–412 0305-0041 556920 (81k:20021) 20C25 (20C30) V. D. Mazurov MPCPCO Mathematical Proceedings of the Cambridge Philosophical Society M12
B. HeinrichMatzat Konstruktion von <C>Z</C>ahlkörpern mit der <C>G</C>aloisgruppe <C><M>M_{12}</M></C> über <C><M>{\bf Q}(\sqrt{{-5}})</M></C> Arch. Math. (Basel) 1983 40 3 245–254 0003-889X 701271 (85g:11102) 11R32 Jack Sonn ACVMAL Archiv der Mathematik M12
W. O. J.Moser Abstract definitions for the <C>M</C>athieu groups <C><M>M_{11}</M></C> and <C><M>M_{12}</M></C> Canad. Math. Bull. 1959 2 9–13 0008-4395 0101268 (21 #81) 20.00 Graham Higman Canadian Mathematical Bulletin. Bulletin Canadien de Mathématiques M12
Gerhard J. A.Schneider On the <C><M>2</M></C>-modular representations of <C><M>M_{12}</M></C> Representations of algebras (Puebla, 1980) Springer 1981 903 Lecture Notes in Math. 302–314
Berlin
AL81 654719 (83g:20014) 20C20 (20C30) A. V. Borovik M12
Gerhard J. A.Schneider The vertices of the simple modules of <C><M>M_{12}</M></C> over a field of characteristic <C><M>2</M></C> J. Algebra 1983 83 1 189–200 0021-8693 710594 (84i:20013) 20C20 (20D08) P. Donovan JALGA4 Journal of Algebra M12
R. G.Stanton The <C>M</C>athieu groups Canadian J. Math. 1951 3 164–174 0008-414X 0040304 (12,672d) 20.0X J. S. Frame Canadian Journal of Mathematics. Journal Canadien de Mathématiques M12
G. N.Thwaites A characterization of <C><M>M_{12}</M></C> by centralizer of involution Quart. J. Math. Oxford Ser. (2) 1973 24 537–557 0033-5606 0332955 (48 #11280) 20D05 Mark P. Hale, Jr. The Quarterly Journal of Mathematics. Oxford. Second Series M12
J. A.Todd On representations of the <C>M</C>athieu groups as collineation groups J. London Math. Soc. 1959 34 406–416 0024-6107 0120290 (22 #11045) 20.00 (50.00) T. G. Room Journal of the London Mathematical Society. Second Series M12
J. A.Todd Abstract definitions for the <C>M</C>athieu groups Quart. J. Math. Oxford Ser. (2) 1970 21 421–424 0033-5606 0272878 (42 #7759) 20.10 A. P. Street The Quarterly Journal of Mathematics. Oxford. Second Series M12
T. A.Whitelaw On the <C>M</C>athieu group of degree twelve Proc. Cambridge Philos. Soc. 1966 62 351–364 0194520 (33 #2730) 20.72 (50.60) H. S. M. Coxeter M12
E.Witt Die 5-fach transitiven Gruppen von Mathieu Abh. Math. Sem. Hamburg 1938 12 256–264 M12
W. J.Wong A characterization of the <C>M</C>athieu group <C><M>M_{12}</M></C> Math. Z. 1964 84 378–388 0025-5874 0167522 (29 #4794) 20.29 W. Moser Mathematische Zeitschrift M12
Peter J.Cameron Another characterization of the small <C>J</C>anko group J. Math. Soc. Japan 1973 25 591–595 0320124 (47 #8665) 20B20 (20D05) Peter M. Neumann J1
G. R.Chapman Generators and relations for the cohomology ring of <C>J</C>anko's first group in the first twenty-one dimensions Groups—St. Andrews 1981 (St. Andrews, 1981) Cambridge Univ. Press 1982 71 London Math. Soc. Lecture Note Ser. 201–206
Cambridge
CR82b 679161 (83m:20068) 20J05 J1
J. H.Conway Three lectures on exceptional groups Finite simple groups (Proc. Instructional Conf., Oxford, 1969) Academic Press 1971 215–247
London
PH71 0338152 (49 #2918) 20D05 Thomas Laffey J1
PaulFong On decomposition numbers of <C><M>J_1</M></C> and <C><M>R(q)</M></C> Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972) Academic Press 1974 415–422
London
0357578 (50 #10046) 20C20 I. M. Isaacs J1
Terence M.Gagen On groups with abelian <C>S</C>ylow <C><M>2</M></C>-groups Math. Z. 1965 90 268–272 see MR0215897, p. 99–100 0025-5874 0191963 (33 #190) 20.43 S. Lipschutz Mathematische Zeitschrift J1
T. M.Gagen On groups with Abelian 2-Sylow subgroups Proceedings of the International Conference on the Theory of Groups Gordon and Breach Science Publishers 1967 99–100
New York
KN67 J1
T. M.Gagen A characterization of <C>J</C>anko's simple group Proc. Amer. Math. Soc. 1968 19 1393–1395 0002-9939 0236257 (38 #4554) 20.29 M. Herzog Proceedings of the American Mathematical Society J1
G.Higman Construction of simple groups from character tables Finite simple groups (Proc. Instructional Conf., Oxford, 1969) Academic Press 1971 205–214
London
PH71 0342603 (49 #7349) 20D05 G. de B. Robinson J1
ZvonimirJanko A new finite simple group with abelian <C><M>2</M></C>-<C>S</C>ylow subgroups Proc. Nat. Acad. Sci. U.S.A. 1965 53 657–658 0173704 (30 #3914) 20.29 W. E. Deskins J1
ZvonimirJanko A new finite simple group with abelian <C>S</C>ylow <C><M>2</M></C>-subgroups and its characterization J. Algebra 1966 3 147–186 0021-8693 0193138 (33 #1359) 20.29 W. E. Deskins Journal of Algebra J1
ZvonimirJanko A characterization of a new simple group Proceedings of the International Conference on the Theory of Groups Gordon and Breach Science Publishers 1967 205–208
New York
KN67 J1
PeterLandrock Gerhard O.Michler Block structure of the smallest <C>J</C>anko group Math. Ann. 1978 232 3 205–238 0025-5831 0491929 (58 #11100) 20D05 W. Feit Mathematische Annalen J1
Jiong ShengLi The commutators of the small <C>J</C>anko group <C><M>J_1</M></C> J. Math. (Wuhan) 1981 1 2 175–179 Chinese 0255-7797 647861 (83j:20029) 20D08 Journal of Mathematics. Shuxue Zazhi J1
DonaldLivingstone On a permutation representation of the <C>J</C>anko group J. Algebra 1967 6 43–55 0021-8693 0207819 (34 #7633) 20.29 (20.80) F. C. Piper Journal of Algebra J1
R. P.Martineau A characterization of <C>J</C>anko's simple group of order <C><M>175,560</M></C> Proc. London Math. Soc. (3) 1969 19 709–729 0024-6115 0257215 (41 #1866) 20.29 W. J. Wong Proceedings of the London Mathematical Society. Third Series J1
ManleyPerkel A characterization of <C><M>J_1</M></C> in terms of its geometry Geom. Dedicata 1980 9 3 291–298 0304-4637 585936 (81j:05066) 05C25 (20B25 20D08) Hugo S. Sun GEMDAT Geometriae Dedicata J1
E.Shult A note on <C>J</C>anko's simple group of order <C><M>175,560</M></C> Proc. Amer. Math. Soc. 1972 35 342–348 0002-9939 0306303 (46 #5429) 20D05 M. Herzog Proceedings of the American Mathematical Society J1
T. A.Whitelaw Janko's group as a collineation group in <C><M>{\rm PG}(6,\,11)</M></C> Proc. Cambridge Philos. Soc. 1967 63 663–677 0214673 (35 #5522) 20.72 P. Dembowski J1
HiroyoshiYamaki On the <C>J</C>anko's simple group of order <C><M>175560</M></C> Osaka J. Math. 1972 9 111–112 0030-6126 0302757 (46 #1900) 20D05 R. W. Carter Osaka Journal of Mathematics J1
Stephen M.Gagola Jr. Sidney C.Garrison III Real characters, double covers, and the multiplier J. Algebra 1982 74 1 20–51 0021-8693 644216 (83a:20016) 20C25 J. L. Alperin JALGA4 Journal of Algebra M22
R. L.Griess The covering group of <M>M_{22}</M> and associated component problems Abstracts Amer. Math. Soc. 1980 1 213 M22
DieterHeld Eine <C>K</C>ennzeichnung der <C>M</C>athieu-<C>G</C>ruppe <C><M>M_{22}</M></C> und der alternierenden <C>G</C>ruppe <C><M>A_{10}</M></C> J. Algebra 1968 8 436–449 0021-8693 0229709 (37 #5283) 20.20 D. A. Robinson Journal of Algebra M22
J. F.Humphreys The projective characters of the <C>M</C>athieu group <C><M>M_{22}</M></C> J. Algebra 1982 76 1 1–24 0021-8693 659207 (83g:20015) 20C25 (20D08) V. D. Mazurov JALGA4 Journal of Algebra M22
ZvonimirJanko A characterization of the <C>M</C>athieu simple groups. <C>I</C>, <C>II</C> J. Algebra 9 (1968), 1-19; ibid. 1968 9 20–41 0021-8693 0229710 (37 #5284) 20.29 P. Fong Journal of Algebra M22
W.Jónsson J.McKay More about the <C>M</C>athieu group <C><M>M_{22}</M></C> Canad. J. Math. 1976 38 5 929–937 0008-414X 0427103 (55 #139) 05B25 (20D05) Francis Buekenhout Canadian Journal of Mathematics. Journal Canadien de Mathématiques M22
PierreMazet Sur le multiplicateur de <C>S</C>chur du groupe de <C>M</C>athieu <C><M>M_{22}</M></C> C. R. Acad. Sci. Paris Sér. A-B 1979 289 14 A659–A661 0151-0509 560327 (80m:20032) 20E34 (20D05) CHASAP Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences. Séries A et B M22
DavidParrott On the <C>M</C>athieu groups <C><M>M_{22}</M></C> and <C><M>M_{11}</M></C> Bull. Austral. Math. Soc. 1970 3 141–142 M22
DavidParrott On the <C>M</C>athieu groups <C><M>M_{22}</M></C> and <C><M>M_{11}</M></C> J. Austral. Math. Soc. 1970 11 69–81 0263-6115 0255669 (41 #329) 20.29 W. J. Wong Australian Mathematical Society. Journal. Series A. Pure Mathematics and Statistics M22
J.Tits Sur les systèmes de <C>S</C>teiner associés aux trois ``grands'' groupes de <C>M</C>athieu Rend. Mat. e Appl. (5) 1964 23 166–184 0183785 (32 #1262) 05.20 (20.20) J. E. McLaughlin M22 0126.26303
K. C.Ts'eng C. S.Li On the commutators of the simple <C>M</C>athieu groups J. China Univ. Sci. Techn. 1965 1 1 43–48 0253-2778 0217179 (36 \#270) 20.29 C. Y. Chao Journal of China University of Science and Technology. Zhongguo Kexue Jishu Daxue Xuebao M22
Arjeh M.Cohen Finite quaternionic reflection groups J. Algebra 1980 64 2 293–324 0021-8693 579063 (81g:20093) 20H15 J. D. Dixon JALGA4 Journal of Algebra J2
L.Finkelstein A.Rudvalis Maximal subgroups of the <C>H</C>all-<C>J</C>anko-<C>W</C>ales group J. Algebra 1973 24 486–493 0021-8693 0323889 (48 #2242) 20D05 B. Chang Journal of Algebra J2
Stephen M.Gagola Jr. Sidney C.Garrison III Real characters, double covers, and the multiplier J. Algebra 1982 74 1 20–51 0021-8693 644216 (83a:20016) 20C25 J. L. Alperin JALGA4 Journal of Algebra J2
DanielGorenstein KoichiroHarada A characterization of <C>J</C>anko's two new simple groups J. Fac. Sci. Univ. Tokyo Sect. I 1969 16 331–406 (1970) 0040-8980 0283075 (44 #308) 20.29 J. H. Walter Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics J2
MarshallHall Jr. DavidWales The simple group of order <C><M>604,800</M></C> J. Algebra 1968 9 417–450 0021-8693 0240192 (39 #1544) 20.29 A. Mann Journal of Algebra J2
MarshallHall Jr. DavidWales The simple group of order <C><M>604,800</M></C> Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968) Benjamin, New York 1969 79–90 BS69 0255668 (41 #328) 20.29 H. Nagao J2
A. P.Ilʹinyh A characterization of the <C>H</C>all-<C>J</C>anko finite simple group Mat. Zametki 1973 14 535–542 0025-567X 0325756 (48 #4102) 20D05 M. Herzog Akademiya Nauk SSSR. Matematicheskie Zametki J2
Z.Janko Some new simple groups of finite order Theory of finite groups: A symposium W. A. Benjamin, Inc., New York-Amsterdam 1969 Edited by Richard Brauer and Chih-han Sah 63–64 BS69 J2
J. H.Lindsey II On a projective representation of the <C>H</C>all-<C>J</C>anko group Bull. Amer. Math. Soc. 1968 74 1094 0230812 (37 #6370) 20.29 D. Wales J2
J. H.Lindsey Linear groups of degree 6 and the Hall-Janko group Theory of finite groups: A symposium W. A. Benjamin, Inc., New York-Amsterdam 1969 Edited by Richard Brauer and Chih-han Sah 97–100 BS69 J2
J. H.Lindsey II On a six dimensional projective representation of the <C>H</C>all-<C>J</C>anko group Pacific J. Math. 1970 35 175–186 0030-8730 0272888 (42 #7769) 20.29 J. D. Dixon Pacific Journal of Mathematics J2
JohnMcKay DavidWales The multipliers of the simple groups of order <C><M>604,800</M></C> and <C><M>50,232,960</M></C> J. Algebra 1971 17 262–272 0021-8693 0274577 (43 #340) 20.29 W. J. Wong Journal of Algebra J2
FredrickSmith A general characterization of the <C>J</C>anko simple group <C><M>J_2</M></C> Arch. Math. (Basel) 1974 25 17–22 0003-889X 0357585 (50 #10053) 20D05 Mark P. Hale, Jr. Archiv der Mathematik J2
J.Tits Le groupe de Janko d'ordre 604,800 Theory of finite groups: A symposium W. A. Benjamin, Inc., New York-Amsterdam 1969 Edited by Richard Brauer and Chih-han Sah 91–95 BS69 J2
D.Wales The uniqueness of the simple group of order <C><M>604800</M></C> as a subgroup of <C><M>{\rm SL}_6\,(4)</M></C> J. Algebra 1969 11 455–460 0021-8693 0236259 (38 #4556) 20.29 A. Mann Journal of Algebra J2
David B.Wales Generators of the <C>H</C>all-<C>J</C>anko group as a subgroup of <C><M>G_2\,(4)</M></C> J. Algebra 1969 13 513–516 0021-8693 0251133 (40 #4364) 20.29 A. P. Street Journal of Algebra J2
Robert A.Wilson The geometry of the <C>H</C>all-<C>J</C>anko group as a quaternionic reflection group Geom. Dedicata 1986 20 2 157–173 0046-5755 833844 (87i:20031) 20D08 (20H15 51F15) Stephen D. Smith GEMDAT Geometriae Dedicata b J2
KenziAkiyama A note on the <C>M</C>athieu groups <C><M>M_{12}</M></C> and <C><M>M_{23}</M></C> Bull. Central Res. Inst. Fukuoka Univ. 1983 66 1–5 0287-0002 730316 (86m:20003a) 20B10 (20D08) Bulletin of Central Research Institute Fukuoka University M23
N.Bryce On the <C>M</C>athieu group <C><M>M_{23}</M></C> J. Austral. Math. Soc. 1971 12 385–392 0263-6115 0291278 (45 #372) 20D05 W. J. Wong Australian Mathematical Society. Journal. Series A. Pure Mathematics and Statistics M23
UlrichDempwolff Eine <C>K</C>ennzeichnung der <C>G</C>ruppen <C><M>A_5</M></C> und <C><M>M_{23}</M></C> J. Algebra 1972 23 590–601 0021-8693 0314961 (47 #3510) 20D05 Henry S. Leonard, Jr. Journal of Algebra M23
ZvonimirJanko A characterization of the <C>M</C>athieu simple groups. <C>I</C>, <C>II</C> J. Algebra 9 (1968), 1-19; ibid. 1968 9 20–41 0021-8693 0229710 (37 #5284) 20.29 P. Fong Journal of Algebra M23
Lowell J.Paige A note on the <C>M</C>athieu groups Canad. J. Math. 1957 9 15–18 0008-414X 0084506 (18,871f) 20.0X T. Nakayama Canadian Journal of Mathematics. Journal Canadien de Mathématiques M23
J.Tits Sur les systèmes de <C>S</C>teiner associés aux trois ``grands'' groupes de <C>M</C>athieu Rend. Mat. e Appl. (5) 1964 23 166–184 0183785 (32 #1262) 05.20 (20.20) J. E. McLaughlin M23 0126.26303
A. E.Brouwer Polarities of <C>G</C>. <C>H</C>igman's symmetric design and a strongly regular graph on <C><M>176</M></C> vertices Aequationes Math. 1982 25 1 77–82 0001-9054 716379 (85e:05089) 05C25 (20B25 20D60) W. M. Kantor AEMABN Aequationes Mathematicae HS
A. R.Calderbank David B.Wales A global code invariant under the <C>H</C>igman-<C>S</C>ims group J. Algebra 1982 75 1 233–260 0021-8693 650419 (83d:20011) 20D08 (94B05) L. Dornhoff JALGA4 Journal of Algebra HS
J. S.Frame Computation of characters of the <C>H</C>igman-<C>S</C>ims group and its automorphism group J. Algebra 1972 20 320–349 0021-8693 0286902 (44 #4109) 20.80 I. M. Isaacs Journal of Algebra HS
DanielGorenstein Morton E.Harris A characterization of the <C>H</C>igman-<C>S</C>ims simple group J. Algebra 1973 24 565–590 0021-8693 0311756 (47 #318) 20D05 Graham Higman Journal of Algebra HS
Donald G.Higman Charles C.Sims A simple group of order <C><M>44,352,000</M></C> Math. Z. 1968 105 110–113 0025-5874 0227269 (37 #2854) 20.29 D. A. Robinson Mathematische Zeitschrift HS
GrahamHigman On the simple group of <C>D</C>. <C>G</C>. <C>H</C>igman and <C>C</C>. <C>C</C>. <C>S</C>ims Illinois J. Math. 1969 13 74–80 0019-2082 0240193 (39 #1545) 20.29 A. Mann Illinois Journal of Mathematics HS
J. F.Humphreys The modular characters of the <C>H</C>igman-<C>S</C>ims simple group Proc. Roy. Soc. Edinburgh Sect. A 1982 92 3-4 319–335 0308-2105 677491 (83m:20017) 20C20 (20D08) M. Herzog PEAMDU Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences HS
ZvonimirJanko S. K.Wong A characterization of the <C>H</C>igman-<C>S</C>ims simple group J. Algebra 1969 13 517–534 0021-8693 0260866 (41 #5486) 20.29 D. Gorenstein Journal of Algebra HS
HiroshiKimura On the <C>H</C>igman-<C>S</C>ims simple group of order <C><M>44,353,000</M></C> J. Algebra 1978 52 1 88–93 0021-8693 0480721 (58 #874) 20D05 George Glauberman Journal of Algebra HS
S. S.Magliveras The maximal subgroups of the Higman-Sims group Birmingham 1970 HS
Spyros S.Magliveras The subgroup structure of the <C>H</C>igman-<C>S</C>ims simple group Bull. Amer. Math. Soc. 1971 77 535–539 0283077 (44 #310) 20.29 W. J. Wong HS
JohnMcKay DavidWales The multiplier of the <C>H</C>igman-<C>S</C>ims simple group Bull. London Math. Soc. 1971 3 283–285 0024-6093 0292931 (45 #2012) 20D05 W. J. Wong The Bulletin of the London Mathematical Society HS
DavidParrott S. K.Wong On the <C>H</C>igman-<C>S</C>ims simple group of order <C><M>44,352,000</M></C> Pacific J. Math. 1970 32 501–516 0030-8730 0257216 (41 #1867) 20.29 D. A. Robinson Pacific Journal of Mathematics HS
ArunasRudvalis Characters of the covering group of the <C>H</C>igman-<C>S</C>ims group J. Algebra 1975 33 135–143 0021-8693 0354834 (50 #7311) 20C15 J. S. Frame Journal of Algebra HS
Charles C.Sims On the isomorphism of two groups of order <C><M>44,352,000</M></C> Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968) Benjamin, New York 1969 101–108 BS69 0248215 (40 #1469) 20.29 J. McKay HS
M. S.Smith On rank <C><M>3</M></C> permutation groups J. Algebra 1975 33 22–42 0021-8693 0384905 (52 #5775) 20B15 (05C99) E. L. Spitznagel, Jr. Journal of Algebra HS
Margaret S.Smith On the isomorphism of two simple groups of order <C><M>44,352,000</M></C> J. Algebra 1976 41 1 172–174 0021-8693 0417275 (54 #5332) 20D05 David C. Hunt Journal of Algebra HS
Margaret S.Smith A combinatorial configuration associated with the <C>H</C>igman-<C>S</C>ims simple group J. Algebra 1976 41 1 175–195 0021-8693 0447384 (56 #5696) 20B25 (05B30) Spyros S. Magliveras Journal of Algebra HS
DavidWales Uniqueness of the graph of a rank three group Pacific J. Math. 1969 30 271–276 0030-8730 0246947 (40 #216) 20.20 A. R. Camina Pacific Journal of Mathematics HS
Robert A.Wilson Maximal subgroups of automorphism groups of simple groups J. London Math. Soc. (2) 1985 32 3 460–466 0024-6107 825921 (87a:20017) 20D08 (20D45) Koichiro Harada JLMSAK Journal of the London Mathematical Society. Second Series c HS
J. H.Conway D. B.Wales Matrix generators for <C><M>J_3</M></C> J. Algebra 1974 29 474–476 0021-8693 0344331 (49 #9070) 20D05 Bhama Srinivasan Journal of Algebra J3
L.Finkelstein A.Rudvalis The maximal subgroups of <C>J</C>anko's simple group of order <C><M>50,\,232,\,960</M></C> J. Algebra 1974 30 122–143 0021-8693 0354846 (50 #7323) 20D05 David R. Mason Journal of Algebra J3
DanielFrohardt A trilinear form for the third <C>J</C>anko group J. Algebra 1983 83 2 349–379 0021-8693 714249 (84m:20023) 20D08 Michael Wester JALGA4 Journal of Algebra J3
DanielGorenstein KoichiroHarada A characterization of <C>J</C>anko's two new simple groups J. Fac. Sci. Univ. Tokyo Sect. I 1969 16 331–406 (1970) 0040-8980 0283075 (44 #308) 20.29 J. H. Walter Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics J3
GrahamHigman JohnMcKay On <C>J</C>anko's simple group of order <C><M>50,232,960</M></C> Bull. London Math. Soc. 1 (1969), 89–94; correction, ibid. 1969 1 219 0024-6093 0246955 (40 #224) 20.29 Charles C. Sims The Bulletin of the London Mathematical Society J3
GrahamHigman J.McKay On <C>J</C>anko's simple group of order <C><M>50,\,232,\,960</M></C> Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968) Benjamin, New York 1969 65–77 BS69 0245668 (39 #6974) 20.29 A. P. Street J3 Z.Janko Some new simple groups of finite order Theory of finite groups: A symposium W. A. Benjamin, Inc., New York-Amsterdam 1969 Edited by Richard Brauer and Chih-han Sah 63–64 BS69 J3 ZvonimirJanko Some new simple groups of finite order. <C>I</C> Symposia Mathematica (INDAM, Rome, 1967/68), Vol. 1 Academic Press 1969 25–64
London
0244371 (39 #5686) 20.29 A. P. Street J3
JohnMcKay DavidWales The multipliers of the simple groups of order <C><M>604,800</M></C> and <C><M>50,232,960</M></C> J. Algebra 1971 17 262–272 0021-8693 0274577 (43 #340) 20.29 W. J. Wong Journal of Algebra J3
RichardWeiss A geometric construction of <C>J</C>anko's group <C><M>J_3</M></C> Math. Z. 1982 179 1 91–95 0025-5874 643049 (84i:05062) 05C25 (05B25 20D08) MAZEAX Mathematische Zeitschrift J3
RichardWeiss On the geometry of <C>J</C>anko's group <C><M>J_3</M></C> Arch. Math. (Basel) 1982 38 5 410–419 0003-889X 666912 (83k:05054) 05C25 (20D08 20F32 51J05) Jürgen Bierbrauer ACVMAL Archiv der Mathematik. Archives of Mathematics. Archives Mathématiques J3
S. K.Wong On a new finite non-abelian simple group of <C>J</C>anko Bull. Austral. Math. Soc. 1969 1 59–79 0004-9727 0269734 (42 #4629) 20.29 A. Mann Bulletin of the Australian Mathematical Society J3
E. F.Assmus Jr. H. F.Mattson Perfect codes and the <C>M</C>athieu groups Arch. Math. (Basel) 1966 17 121–135 0003-889X 0204206 (34 #4050) 94.10 E. Weiss Archiv der Mathematik M24
N.Burgoyne P.Fong The <C>S</C>chur multipliers of the <C>M</C>athieu groups Nagoya Math. J. 1966 27 733–745 0027-7630 0197542 (33 #5707) 20.25 O. H. Kegel Nagoya Mathematical Journal M24
N.Burgoyne P.Fong A correction to: <Wrap Name="IntRef">``<C>T</C>he <C>S</C>chur multipliers of the <C>M</C>athieu groups''</Wrap> Nagoya Math. J. 1968 31 297–304 0027-7630 0219626 (36 #2705) 20.48 O. H. Kegel Nagoya Mathematical Journal M24 BF66b
ChangChoi On subgroups of <C><M>M_{24}</M></C>. <C>I</C>. <C>S</C>tabilizers of subsets Trans. Amer. Math. Soc. 1972 167 1–27 0002-9947 0294472 (45 #3542) 20B20 Gary M. Seitz Transactions of the American Mathematical Society M24
ChangChoi On subgroups of <C><M>M_{24}</M></C>. <C>II</C>. <C>T</C>he maximal subgroups of <C><M>M_{24}</M></C> Trans. Amer. Math. Soc. 1972 167 29–47 0002-9947 0294473 (45 #3543) 20B20 Gary M. Seitz Transactions of the American Mathematical Society M24
J. H.Conway The miracle octad generator Topics in group theory and computation (Proc. Summer School, University Coll., Galway, 1973) Academic Press 1977 62–68
London
Cur77b 0472991 (57 #12670) 20C30 (05B05 05C25) Norman Biggs a M24
J. H.Conway Hexacode and tetracode—<C>MOG</C> and <C>MINIMOG</C> Computational group theory (Durham, 1982) Academic Press 1984 359–365
London
Atk84 760670 (86b:94020) 94B25 (05B05) Wolfgang Knapp M24
J. H.Conway Three lectures on exceptional groups Finite simple groups (Proc. Instructional Conf., Oxford, 1969) Academic Press 1971 215–247
London
PH71 0338152 (49 #2918) 20D05 Thomas Laffey M24
R. T.Curtis On the Mathieu group <M>M_{24}</M> and related topics Cambridge 1972 M24
R. T.Curtis A new combinatorial approach to <C><M>M_{24}</M></C> Math. Proc. Cambridge Philos. Soc. 1976 79 1 25–42 0305-0041 0399247 (53 #3098) 20D05 Robert A. Liebler Mathematical Proceedings of the Cambridge Philosophical Society M24
R. T.Curtis The maximal subgroups of <C><M>M_{24}</M></C> Math. Proc. Cambridge Philos. Soc. 1977 81 2 185–192 0305-0041 0439926 (55 #12807) 20D05 Robert A. Liebler Mathematical Proceedings of the Cambridge Philosophical Society M24
G.Frobenius Über die Charaktere der mehrfach transitiven Gruppen Berliner Berichte 1904 558–571 M24
DietmarGarbe Jens L.Mennicke Some remarks on the <C>M</C>athieu groups Canad. Math. Bull. 1964 7 201–212 0008-4395 0162846 (29 #150) 20.29 J. A. Todd Canadian Mathematical Bulletin. Bulletin Canadien de Mathématiques M24
D.Garbe J.Mennicke Corrections: <Wrap Name="IntRef">``<C>S</C>ome remarks on the <C>M</C>athieu groups''</Wrap> Canad. Math. Bull. 1972 15 147 0008-4395 0311755 (47 #317) 20D05 Canadian Mathematical Bulletin. Bulletin Canadien de Mathématiques M24 GM64
Philip J.Greenberg Mathieu groups Courant Institute of Mathematical Sciences New York University 1973
New York
0352244 (50 #4731) 20D05 P. Fong iv+189 M24
DieterHeld The simple groups related to <C><M>M_{24}</M></C> J. Algebra 1969 13 253–296 0021-8693 0249500 (40 #2745) 20.25 J. H. Walter Journal of Algebra M24
G. D.James The modular characters of the <C>M</C>athieu groups J. Algebra 1973 27 57–111 0021-8693 0330277 (48 #8614) 20C20 J. S. Frame Journal of Algebra M24
M.Koike Automorphic forms and Mathieu groups Topics in finite group theory Kyoto University Research Institute for Mathematical Sciences 1982 47–56
Kyoto
Kyo82 M24
Jelisaveta KovačStriko A characterization of the finite simple groups <C><M>M_{24}, He</M></C> and <C><M>L_5(2).</M></C> J. Algebra 1976 43 2 375–397 0021-8693 0422406 (54 #10395) 20D05 David C. Hunt Journal of Algebra M24
Rudy J.List On the maximal subgroups of the <C>M</C>athieu groups. <C>I</C>. <C><M>M_{24}</M></C> Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 1977 62 4 432–438 0491909 (58 #11086) 20B20 (20D05) Ascher Wagner Atti della Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze Fisiche, Matematiche e Naturali M24
HeinzLüneburg Über die <C>G</C>ruppen von <C>M</C>athieu J. Algebra 1968 10 194–210 0021-8693 0231900 (38 #226) 20.20 (50.00) P. Dembowski Journal of Algebra M24
David R.Mason On the construction of the <C>S</C>teiner system <C><M>S(5,8,24)</M></C> J. Algebra 1977 47 1 77–79 0021-8693 0444752 (56 #3100) 20B25 (05B05) Hugo S. Sun Journal of Algebra M24
E.Mathieu Memoire sur l'etude des fonctions de plusieurs quantites J. Math. Pures Appl. 1861 6 241–243 M24
E.Mathieu Sur les fonctions cinq fois transitives de 24 quantites J. Math. Pures Appl. 1873 18 25–46 M24
PierreMazet Sur les multiplicateurs de <C>S</C>chur des groupes de <C>M</C>athieu J. Algebra 1982 77 2 552–576 0021-8693 673133 (84b:20011) 20C25 P. Fong JALGA4 Journal of Algebra M24
G. A.Miller Sur plusieurs groupes simples Bull. Soc. Math. France 1900 28 266–267 0037-9484 1504378 Contributed Item BSMFAA Bulletin de la Société Mathématique de France M24
VeraPless On the uniqueness of the <C>G</C>olay codes J. Combinatorial Theory 1968 5 215–228 0242561 (39 #3892) 94.10 P. Camion M24
RichardRasala Split codes and the <C>M</C>athieu groups J. Algebra 1976 42 2 422–471 0021-8693 0441544 (55 #14407) 94A10 (20B25) Harold N. Ward Journal of Algebra M24
Mark A.Ronan Locally truncated buildings and <C><M>M_{24}</M></C> Math. Z. 1982 180 4 489–501 0025-5874 667004 (83i:51022) 51E25 (05B25 20B25) Francis Buekenhout MAZEAX Mathematische Zeitschrift M24
U.Schoenwaelder Finite groups with a <C>S</C>ylow <C><M>2</M></C>-subgroup of type <C><M>M_{24}</M></C>. <C>I</C>, <C>II</C> J. Algebra 1974 28 20–45; ibid. 28 (1974), 46–56 0021-8693 0369511 (51 #5744) 20D05 M. Herzog Journal of Algebra M24
J. A.de Séguier Sur les equations de certains groupes C. R. Acad. Sci. Paris 1901 132 1030–1033 M24
J. A.de Séguier Sur certains groupes de <C>M</C>athieu Bull. Soc. Math. France 1904 32 116–124 0037-9484 1504474 Contributed Item BSMFAA Bulletin de la Société Mathématique de France M24
R. G.Stanton The <C>M</C>athieu groups Canadian J. Math. 1951 3 164–174 0008-414X 0040304 (12,672d) 20.0X J. S. Frame Canadian Journal of Mathematics. Journal Canadien de Mathématiques M24
J.Tits Sur les systèmes de <C>S</C>teiner associés aux trois ``grands'' groupes de <C>M</C>athieu Rend. Mat. e Appl. (5) 1964 23 166–184 0183785 (32 #1262) 05.20 (20.20) J. E. McLaughlin M24 0126.26303
J. A.Todd On representations of the <C>M</C>athieu groups as collineation groups J. London Math. Soc. 1959 34 406–416 0024-6107 0120290 (22 #11045) 20.00 (50.00) T. G. Room Journal of the London Mathematical Society. Second Series M24
J. A.Todd A representation of the <C>M</C>athieu group <C><M>M_{24}</M></C> as a collineation group Ann. Mat. Pura Appl. (4) 1966 71 199–238 0003-4622 0202854 (34 #2713) 20.72 (20.80) T. G. Room Annali di Matematica Pura ed Applicata. Serie Quarta M24
J. A.Todd A representation of the <C>M</C>athieu group <C><M>M_{24}</M></C> as a collineation group Rend. Mat. Appl., V. Ser. 1966 25 29–32 group theory English M24 0156.03102
J. A.Todd Abstract definitions for the <C>M</C>athieu groups Quart. J. Math. Oxford Ser. (2) 1970 21 421–424 0033-5606 0272878 (42 #7759) 20.10 A. P. Street The Quarterly Journal of Mathematics. Oxford. Second Series M24
E.Witt Die 5-fach transitiven Gruppen von Mathieu Abh. Math. Sem. Hamburg 1938 12 256–264 M24
E.Witt Über Steinersche Systeme Abh. Math. Sem. Hamburg 1938 12 265–274 M24
O.Diawara Sur le groupe simple de J. McLaughlin Bruxelles 1984 McL
LarryFinkelstein The maximal subgroups of <C>C</C>onway's group <C><M>C_3</M></C> and <C>M</C>c<C>L</C>aughlin's group J. Algebra 1973 25 58–89 0021-8693 0346046 (49 #10772) 20D05 T. M. Gagen Journal of Algebra McL
ZvonimirJanko S. K.Wong A characterization of the <C>M</C>c<C>L</C>aughlin's simple group J. Algebra 1972 20 203–225 0021-8693 0302756 (46 #1899) 20D05 H. Nagao Journal of Algebra McL
JackMcLaughlin A simple group of order <C><M>898,128,000</M></C> Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968) Benjamin, New York 1969 109–111 BS69 0242941 (39 #4268) 20.29 (05.00) E. L. Spitznagel, Jr. McL
M. S.Smith On rank <C><M>3</M></C> permutation groups J. Algebra 1975 33 22–42 0021-8693 0384905 (52 #5775) 20B15 (05C99) E. L. Spitznagel, Jr. Journal of Algebra McL
A. V.Borovik <C><M>3</M></C>-local characterization of the <C>H</C>eld group Algebra i Logika 1980 19 4 387–404, 503 Russian, English translation: Algebra and Logic 19 (1980), no.4, 255–266 (1981) 0373-9252 609020 (82g:20040) 20D08 B. K. Durakov Akademiya Nauk SSSR. Sibirskoe Otdelenie. Institut Matematiki. Algebra i Logika He
GregoryButler The maximal subgroups of the sporadic simple group of <C>H</C>eld J. Algebra 1981 69 1 67–81 0021-8693 613857 (82e:20022) 20D08 (20E28) Stephen D. Smith JALGA4 Journal of Algebra He
John J.Cannon GeorgeHavas Defining relations for the <C>H</C>eld-<C>H</C>igman-<C>T</C>hompson simple group Bull. Austral. Math. Soc. 1974 11 43–46 0004-9727 0360795 (50 #13242) 20D05 F. A. Sherk Bulletin of the Australian Mathematical Society He
MichaelDeckers On groups related to <C>H</C>eld's simple group Arch. Math. (Basel) 1974 25 23–28 0003-889X 0357581 (50 #10049) 20D05 Mark P. Hale, Jr. Archiv der Mathematik He
Ismail ŞuayipGüloğlu A characterization of the simple group <C><M>{\rm He}</M></C> J. Algebra 1979 60 1 261–281 0021-8693 549111 (80k:20018) 20D08 (20D05) Gary L. Walls JALGA4 Journal of Algebra He
DieterHeld Some simple groups related to <C><M>M_{24}</M></C> Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968) Benjamin, New York 1969 121–124 BS69 0241526 (39 #2866) 20.29 He
DieterHeld The simple groups related to <C><M>M_{24}</M></C> J. Algebra 1969 13 253–296 0021-8693 0249500 (40 #2745) 20.25 J. H. Walter Journal of Algebra He
DieterHeld The simple groups related to <C><M>M_{24}</M></C>. <C>II</C> J. Austral. Math. Soc. 1973 16 24–28 Collection of articles dedicated to the memory of Hanna Neumann, I 0263-6115 0327890 (48 #6232) 20D05 David R. Mason Australian Mathematical Society. Journal. Series A. Pure Mathematics and Statistics He
Jelisaveta KovačStriko A characterization of the finite simple groups <C><M>M_{24}, He</M></C> and <C><M>L_5(2).</M></C> J. Algebra 1976 43 2 375–397 0021-8693 0422406 (54 #10395) 20D05 David C. Hunt Journal of Algebra He
GeoffreyMason Stephen D.Smith Minimal <C><M>2</M></C>-local geometries for the <C>H</C>eld and <C>R</C>udvalis sporadic groups J. Algebra 1982 79 2, part 1 286–306 0021-8693 682880 (85b:20004) 20B25 (20D08 51E20) W. M. Kantor JALGA4 Journal of Algebra He
JohnMcKay Computing with finite simple groups Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973) 1974 448–452. Lecture Notes in Math., Vol. 372
Berlin
Springer New74 0364431 (51 #685) 20D05 Henry S. Leonard, Jr. He
U.Schoenwaelder Finite groups with a <C>S</C>ylow <C><M>2</M></C>-subgroup of type <C><M>M_{24}</M></C>. <C>I</C>, <C>II</C> J. Algebra 1974 28 20–45; ibid. 28 (1974), 46–56 0021-8693 0369511 (51 #5744) 20D05 M. Herzog Journal of Algebra He
Robert A.Wilson Maximal subgroups of automorphism groups of simple groups J. London Math. Soc. (2) 1985 32 3 460–466 0024-6107 825921 (87a:20017) 20D08 (20D45) Koichiro Harada JLMSAK Journal of the London Mathematical Society. Second Series c He
Steven BrentAssa A characterization of <C><M>{}^2F_4(2)'</M></C> and the <C>R</C>udvalis group J. Algebra 1976 41 2 473–495 0021-8693 0414687 (54 #2782) 20D05 Gernot Stroth Journal of Algebra Ru
JürgenBierbrauer A <C><M>2</M></C>-local characterization of the <C>R</C>udvalis simple group J. Algebra 1979 58 2 563–571 0021-8693 540658 (80h:20028) 20D08 Arthur Reifart JALGA4 Journal of Algebra Ru
J. H.Conway A quaternionic construction for the <C>R</C>udvalis group Topics in group theory and computation (Proc. Summer School, University Coll., Galway, 1973) Academic Press 1977 69–81
London
Cur77b 0472996 (57 #12675) 20D05 Ulrich Dempwolff b Ru
J. H.Conway D. B.Wales Construction of the <C>R</C>udvalis group of order <C><M>145,\,926,\,144,\,000</M></C> J. Algebra 1973 27 538–548 0021-8693 0335620 (49 #400) 20D05 Henry S. Leonard, Jr. Journal of Algebra Ru
UlrichDempwolff A characterization of the <C>R</C>udvalis simple group of order <C><M>2^{14} \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 13 \cdot 29</M></C> by the centralizers of noncentral involutions J. Algebra 1974 32 53–88 0021-8693 0352242 (50 #4729) 20D05 U. Schoenwaelder Journal of Algebra Ru
M.Hall A representation of the Rudvalis group Notices Amer. Math. Soc. 1973 20 A-88 Ru
GeoffreyMason Stephen D.Smith Minimal <C><M>2</M></C>-local geometries for the <C>H</C>eld and <C>R</C>udvalis sporadic groups J. Algebra 1982 79 2, part 1 286–306 0021-8693 682880 (85b:20004) 20B25 (20D08 51E20) W. M. Kantor JALGA4 Journal of Algebra Ru
V. D.Mazurov Characterization of the <C>R</C>udvalis group Mat. Zametki 1982 31 3 321–338, 473 Russian, English translation: Math. Notes 31 (1982), no. 3–4, 165–173 0025-567X 652837 (83f:20015) 20D08 József Pelikán Akademiya Nauk Soyuza SSR. Matematicheskie Zametki Ru
TetsuroOkuyama TomoyukiYoshida A characterization of the <C>R</C>udvalis group J. Math. Soc. Japan 1978 30 3 463–474 0491930 (58 #11101) 20D05 J. L. Alperin Ru
Michael E.O'Nan A characterization of the <C>R</C>udvalis group Comm. Algebra 1978 6 2 107–147 0092-7872 0498834 (58 #16870) 20D05 D. Wales Communications in Algebra Ru
DavidParrott A characterization of the <C>R</C>udvalis simple group Proc. London Math. Soc. (3) 1976 32 1 25–51 0024-6115 0390043 (52 #10869) 20D05 Ulrich Dempwolff Proceedings of the London Mathematical Society. Third Series Ru
A.Rudvalis A new simple group of order <M>2^{14}.3^3.5^3.7.13.29</M> Notices Amer. Math. Soc. 1973 20 A-95 Ru
A.Rudvalis The graph for a new group of order <M>2^{14}.3^3.5^3.7.13.29</M> Michigan 1972 preprint Ru
ArunasRudvalis A rank <C><M>3</M></C> simple group of order <C><M>2^{14} \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 13 \cdot 29</M></C>. <C>I</C> J. Algebra 1984 86 1 181–218 0021-8693 727376 (86f:20018a) 20D08 (20E32) D. Wales JALGA4 Journal of Algebra Ru
ArunasRudvalis A rank <C><M>3</M></C> simple group <C><M>G</M></C> of order <C><M>2^{14} \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 13 \cdot 29</M></C>. <C>II</C>. <C>C</C>haracters of <C><M>G</M></C> and <C><M>\hat{{G}}</M></C> J. Algebra 1984 86 1 219–258 0021-8693 727377 (86f:20018b) 20D08 (20E32) D. Wales JALGA4 Journal of Algebra Ru
Robert A.Wilson The geometry and maximal subgroups of the simple groups of <C>A</C>. <C>R</C>udvalis and <C>J</C>. <C>T</C>its Proc. London Math. Soc. (3) 1984 48 3 533–563 0024-6115 735227 (86e:20035) 20E28 (20C30 20D08) David C. Hunt PLMTAL Proceedings of the London Mathematical Society. Third Series b Ru
SatoshiYoshiara Maximal subgroups of the sporadic simple group of <C>R</C>udvalis Nihonkai Math. J. 1991 2 1 1–24 1341-9951 1120697 (93c:20035) 20D08 David C. Hunt Nihonkai Mathematical Journal Ru
K-C.Young Some simple subgroups of the Rudvalis simple group Notices Amer. Math. Soc. 1974 21 A-481 Ru
J. H.Lindsey II A correlation between <C><M>{\rm PSU}_4\,(3)</M></C>, the <C>S</C>uzuki group, and the <C>C</C>onway group Trans. Amer. Math. Soc. 1971 157 189–204 0002-9947 0283097 (44 #330) 20.75 A. Rudvalis Transactions of the American Mathematical Society Suz
J. H.Lindsey II On the <C>S</C>uzuki and <C>C</C>onway groups Bull. Amer. Math. Soc. 1970 76 1088–1090 0262388 (41 #6996) 20.80 J. D. Dixon Suz
J. H.Lindsey II On the <C>S</C>uzuki and <C>C</C>onway groups Representation theory of finite groups and related topics (Proc. Sympos. Pure Math., Vol. XXI, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc. 1971 107–109
Providence, R.I.
Rei71 0316552 (47 #5099) 20D05 S. Oates Macdonald Suz
N. J.Patterson S. K.Wong A characterization of the <C>S</C>uzuki sporadic simple group of order <C><M>448, 345, 497, 600</M></C> J. Algebra 1976 39 1 277–286 0021-8693 0399253 (53 #3104) 20D05 David C. Hunt Journal of Algebra Suz
ArthurReifart A characterization of <C><M>{\rm Sz}</M></C> by the <C>S</C>ylow <C><M>2</M></C>-subgroup J. Algebra 1975 36 3 348–363 0021-8693 0387400 (52 #8243) 20D05 Thomas Laffey Journal of Algebra Suz
ArthurReifart A characterization of the sporadic simple group of <C>S</C>uzuki J. Algebra 1975 33 288–305 0021-8693 0374258 (51 #10458) 20D05 Henry S. Leonard, Jr. Journal of Algebra Suz
L. H.Soicher A natural series of presentations for the Suzuki chain of groups 1984 preprint Suz MichioSuzuki A simple group of order <C><M>448,345,497,600</M></C> Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968) Benjamin, New York 1969 113–119 BS69 0241527 (39 #2867) 20.29 Suz
Robert A.Wilson The complex <C>L</C>eech lattice and maximal subgroups of the <C>S</C>uzuki group J. Algebra 1983 84 1 151–188 0021-8693 716777 (86e:20034b) 20E28 (20D08) Stephen D. Smith JALGA4 Journal of Algebra c Suz
DonaldWright The irreducible characters of the simple group of <C>M</C>. <C>S</C>uzuki of order <C><M>448</M></C>, <C><M>345</M></C>, <C><M>497</M></C>, <C><M>600</M></C> J. Algebra 1974 29 303–323 0021-8693 0357576 (50 #10044) 20C15 D. Wales Journal of Algebra Suz
HiroyoshiYamaki A characterization of the <C>S</C>uzuki simple group of order <C><M>448, 345, 497,600</M></C> J. Algebra 1976 40 1 229–244 0021-8693 0409632 (53 #13384) 20D05 Geoffrey Mason Journal of Algebra Suz
HiroyoshiYamaki Characterizing the sporadic simple group of <C>S</C>uzuki by a <C><M>2</M></C>-local subgroup Math. Z. 1976 151 3 239–242 0025-5874 0422407 (54 #10396) 20D05 Geoffrey Mason Mathematische Zeitschrift Suz
S.Yoshiara The complex Leech lattice and sporadic Suzuki group Topics in finite group theory Kyoto University Research Institute for Mathematical Sciences 1982 26–46
Kyoto
Kyo82 Suz
S.Andrilli On the uniqueness of O'Nan's sporadic simple group Rutgers 1980 ON
Ismail ŞuayipGüloğlu A characterization of the simple group <C><M>{\rm ON}</M></C> Osaka J. Math. 1981 18 1 25–31 0030-6126 609975 (82g:20034) 20D05 A. V. Borovik OJMAA7 Osaka Journal of Mathematics b ON
A. P.Ilʹinyh Characterization of the simple <C>O</C>'<C>N</C>an-<C>S</C>ims group by the centralizer of an element of order three Mat. Zametki 1978 24 4 487–497, 589 0025-567X 513650 (80b:20016) 20D05 N. D. Podufalov Akademiya Nauk Soyuza SSR. Matematicheskie Zametki ON
Michael E.O'Nan Some evidence for the existence of a new simple group Proc. London Math. Soc. (3) 1976 32 3 421–479 0024-6115 0401905 (53 #5731) 20D05 Ulrich Dempwolff Proceedings of the London Mathematical Society. Third Series ON
A. J. E.Ryba The existence of a 45-dimensional 7-modular representation of <M>3.O'N</M> 1984 preprint, Cambridge ON
L. H.Soicher Presentations of some finite groups with applications to the <C>O</C>'<C>N</C>an simple group J. Algebra 1987 108 2 310–316 0021-8693 892906 (88e:20036) 20F05 (20D08) P. Fong JALGA4 Journal of Algebra ON
S. A.Syskin <C><M>3</M></C>-characterization of the <C>O</C>'<C>N</C>an-<C>S</C>ims group Mat. Sb. (N.S.) 1981 114(156) 3 471–478, 480 Russian 0368-8666 610210 (82f:20036) 20D08 M. Herzog Matematicheskiĭ Sbornik. Novaya Seriya ON
Robert A.Wilson The maximal subgroups of the <C>O</C>'<C>N</C>an group J. Algebra 1985 97 2 467–473 0021-8693 812997 (87d:20022) 20D08 József Pelikán JALGA4 Journal of Algebra b ON
SatoshiYoshiara The maximal subgroups of the sporadic simple group of <C>O</C>'<C>N</C>an J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1985 32 1 105–141 0040-8980 783183 (86m:20025) 20D08 Mark A. Ronan JFTMAT Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics ON
DanielFendel A characterization of <C>C</C>onway's group <C><M>.3</M></C> Yale 1970 Co3
DanielFendel A characterization of <C>C</C>onway's group <C><M>.3</M></C> Bull. Amer. Math. Soc. 1970 76 1024–1025 0263915 (41 #8514) 20.29 W. J. Wong Co3
DanielFendel A characterization of <C>C</C>onway's group. 3 J. Algebra 1973 24 159–196 0021-8693 0314962 (47 #3511) 20D05 M. Herzog Journal of Algebra Co3
LarryFinkelstein The maximal subgroups of <C>C</C>onway's group <C><M>C_3</M></C> and <C>M</C>c<C>L</C>aughlin's group J. Algebra 1973 25 58–89 0021-8693 0346046 (49 #10772) 20D05 T. M. Gagen Journal of Algebra Co3
B.Mortimer The modular permutation representations of Conway's third group Carleton Math. Ser. 1981 172 Co3
M. F.Worboys Generators for the sporadic group <C><M>{\rm Co}_3</M></C> as a <C><M>(2,\,3,\,7)</M></C> group Proc. Edinburgh Math. Soc. (2) 1982 25 1 65–68 0013-0915 648901 (83h:20023) 20D08 Gerard M. Enright PEMSA3 Proceedings of the Edinburgh Mathematical Society. Series II Co3
TomoyukiYoshida A characterization of <C>C</C>onway's group <C><M>C_3</M></C> Hokkaido Math. J. 1974 3 232–242 0385-4035 0369513 (51 #5746) 20D05 M. Herzog Hokkaido Mathematical Journal Co3
Fredrick L.Smith A characterization of the <C><M>.2</M></C> <C>C</C>onway simple group J. Algebra 1974 31 91–116 0021-8693 0349832 (50 #2325) 20D05 W. J. Wong Journal of Algebra Co2
Robert A.Wilson The maximal subgroups of <C>C</C>onway's group <M>\cdot 2</M> J. Algebra 1983 84 1 107–114 0021-8693 716772 (86e:20034a) 20E28 (20D08) Stephen D. Smith JALGA4 Journal of Algebra b Co2
TomoyukiYoshida A characterization of the <C><M>.2</M></C> <C>C</C>onway simple group J. Algebra 1977 46 2 405–414 0021-8693 0439930 (55 #12811) 20D05 Arthur Reifart Journal of Algebra Co2
Steven B.Assa A characterization of <C><M>M(22)</M></C> J. Algebra 1981 69 2 455–466 0021-8693 617089 (82g:20032) 20D05 (20D08) Gerard M. Enright JALGA4 Journal of Algebra Fi22
J. H.Conway A construction for the smallest <C>F</C>ischer group <C><M>F_{22}</M></C> Finite groups '72 (Proc. Gainesville Conf., Univ. Florida, Gainesville, Fla., 1972) North-Holland 1973 27–35. North-Holland Math. Studies, Vol. 7
Amsterdam
GHS73 0372016 (51 #8233) 20D05 Ulrich Dempwolff Fi22
G. M.Enright The structure and subgroups of the Fischer groups <M>F_{22}</M> and <M>F_{23}</M> Cambridge 1976 Fi22
Gerard M.Enright A description of the <C>F</C>ischer group <C><M>F_{22}</M></C> J. Algebra 1977 46 2 334–343 0021-8693 0450389 (56 #8684) 20D05 David C. Hunt Journal of Algebra Fi22
Gerard M.Enright Subgroups generated by transpositions in <C><M>F_{22}</M></C> and <C><M>F_{23}</M></C> Comm. Algebra 1978 6 8 823–837 0092-7872 0476844 (57 #16395) 20D05 Koichiro Harada Communications in Algebra Fi22
BerndFischer Finite groups generated by <C><M>3</M></C>-transpositions. <C>I</C> Invent. Math. 1971 13 232–246 0020-9910 0294487 (45 #3557) 20D99 A. R. Camina Inventiones Mathematicae Fi22
D. G.Flaass <C><M>2</M></C>-local subgroups of <C>F</C>ischer groups Mat. Zametki 1984 35 3 333–342 Russian 0025-567X 741800 (86a:20014) 20D08 József Pelikán Akademiya Nauk SSSR. Matematicheskie Zametki Fi22
D. C.Hunt A sporadic simple group of B. Fischer of order <M>64,561,751,654,400</M> Warwick 1970 Fi22
David C.Hunt Character tables of certain finite simple groups Bull. Austral. Math. Soc. 1971 5 1–42 0004-9727 0302753 (46 #1896) 20C15 M. Herzog Bulletin of the Australian Mathematical Society Fi22
David C.Hunt A characterization of the finite simple group <C><M>M(22)</M></C> J. Algebra 1972 21 103–112 0021-8693 0299673 (45 #8721) 20D05 Henry S. Leonard, Jr. Journal of Algebra Fi22
JamshidMoori On certain groups associated with the smallest <C>F</C>ischer group J. London Math. Soc. (2) 1981 23 1 61–67 0024-6107 602239 (82g:20041) 20D08 (20C30) Henry S. Leonard, Jr. JLMSAK The Journal of the London Mathematical Society. Second Series Fi22
DavidParrott Characterizations of the <C>F</C>ischer groups. <C>I</C>, <C>II</C>, <C>III</C> Trans. Amer. Math. Soc. 1981 265 2 303–347 0002-9947 610952 (82d:20018) 20D05 Leo J. Alex TAMTAM Transactions of the American Mathematical Society Fi22
Robert A.Wilson On maximal subgroups of the <C>F</C>ischer group <C><M>{\rm Fi}_{22}</M></C> Math. Proc. Cambridge Philos. Soc. 1984 95 2 197–222 0305-0041 735364 (86e:20036) 20E28 (20D08) Gerard M. Enright MPCPCO Mathematical Proceedings of the Cambridge Philosophical Society a Fi22
BertBeisiegel A note on <C>H</C>arada's simple group <C><M>F</M></C> J. Algebra 1977 48 1 142–149 0021-8693 0450387 (56 #8682) 20D05 Koichiro Harada Journal of Algebra HN
KoichiroHarada On the simple group <C><M>F</M></C> of order <C><M>2^{14} \cdot 3^6 \cdot 5^6 \cdot 7 \cdot 11 \cdot 19</M></C> Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975) 1976 119–276
New York
Academic Press SG76 0401904 (53 #5730) 20D05 W. J. Wong HN
KoichiroHarada The automorphism group and the <C>S</C>chur multiplier of the simple group of order <C><M>2^{14} \cdot 3^6 \cdot 5^6 \cdot 7 \cdot 11 \cdot 19</M></C> Osaka J. Math. 1978 15 3 633–635 0030-6126 510500 (80c:20016) 20D05 (20D45) Geoffrey Mason OJMAA7 Osaka Journal of Mathematics HN
S. P.Norton F and other simple groups Cambridge 1975 HN
S. P.Norton R. A.Wilson Maximal subgroups of the <C>H</C>arada-<C>N</C>orton group J. Algebra 1986 103 1 362–376 0021-8693 860712 (88b:20029) 20D08 (20E28) Geoffrey Mason JALGA4 Journal of Algebra HN
P. E.Smith On certain finite simple groups Cambridge 1975 HN
RichardLyons Evidence for a new finite simple group J. Algebra 1972 20 540–569 0021-8693 0299674 (45 #8722) 20D05 W. J. Wong Journal of Algebra Ly
RichardLyons Errata: <Wrap Name="IntRef">``<C>E</C>vidence for a new finite simple group'' (<Wrap Name="Bib_journal"><C>J</C>. <C>A</C>lgebra</Wrap> <Wrap Name="Bib_volume">20</Wrap> (<Wrap Name="Bib_year">1972</Wrap>), <Wrap Name="Bib_pages">540–569</Wrap>)</Wrap> J. Algebra 1975 34 188–189 0021-8693 0369506 (51 #5739) 20D05 W. J. Wong Journal of Algebra Ly Lyo72
WernerMeyer WolframNeutsch Über <C><M>5</M></C>-<C>D</C>arstellungen der <C>L</C>yonsgruppe Math. Ann. 1984 267 4 519–535 0025-5831 742897 (85k:20038) 20C20 (20D08 51E20) Stephen D. Smith MAANA Mathematische Annalen Ly
WernerMeyer WolframNeutsch RichardParker The minimal <C><M>5</M></C>-representation of <C>L</C>yons' sporadic group Math. Ann. 1985 272 1 29–39 0025-5831 794089 (86i:20025) 20D08 R. W. Carter MAANA Mathematische Annalen Ly
Charles C.Sims The existence and uniqueness of <C>L</C>yons' group Finite groups '72 (Proc. Gainesville Conf., Univ. Florida, Gainesville, Fla., 1972) North-Holland 1973 138–141. North-Holland Math. Studies, Vol. 7
Amsterdam
GHS73 0354881 (50 #7358) 20F10 Ly
Robert A.Wilson The subgroup structure of the <C>L</C>yons group Math. Proc. Cambridge Philos. Soc. 1984 95 3 403–409 0305-0041 755827 (86h:20018) 20D05 Geoffrey Mason MPCPCO Mathematical Proceedings of the Cambridge Philosophical Society Ly
Robert A.Wilson The maximal subgroups of the <C>L</C>yons group Math. Proc. Cambridge Philos. Soc. 1985 97 3 433–436 0305-0041 778677 (86e:20017) 20D08 Geoffrey Mason MPCPCO Mathematical Proceedings of the Cambridge Philosophical Society a Ly
RichardLyons The <C>S</C>chur multiplier of <C><M>F_3</M></C> is trivial Comm. Algebra 1984 12 15-16 1889–1898 0092-7872 745173 (85e:20019) 20D08 M. E. Harris COALDM Communications in Algebra Th
RobertMarkot A <C><M>2</M></C>-local characterization of the simple group <C><M>E</M></C> J. Algebra 1976 40 2 585–595 0021-8693 0409628 (53 #13380) 20D05 Ulrich Dempwolff Journal of Algebra Th
DavidParrott On <C>T</C>hompson's simple group J. Algebra 1977 46 2 389–404 0021-8693 0447396 (56 #5708) 20D05 David R. Mason Journal of Algebra Th
ArthurReifart A characterization of <C>T</C>hompson's sporadic simple group J. Algebra 1976 38 1 192–200 0021-8693 0393217 (52 #14027) 20D05 Koichiro Harada Journal of Algebra Th
P. E.Smith On certain finite simple groups Cambridge 1975 Th
P. E.Smith A simple subgroup of <C><M>M?</M></C> and <C><M>E_8(3)</M></C> Bull. London Math. Soc. 1976 8 2 161–165 0024-6093 0409630 (53 #13382) 20D05 David C. Hunt The Bulletin of the London Mathematical Society Th
FrancisBuekenhout Diagrams for geometries and groups J. Combin. Theory Ser. A 1979 27 2 121–151 0097-3165 542524 (83f:51003) 51A05 (20D08 51J05) Joseph A. Thas JCBTA7 Journal of Combinatorial Theory. Series A Fi23
G. M.Enright The structure and subgroups of the Fischer groups <M>F_{22}</M> and <M>F_{23}</M> Cambridge 1976 Fi23
Gerard M.Enright A description of the <C>F</C>ischer group <C><M>F_{23}</M></C> J. Algebra 1977 46 2 344–354 0021-8693 0450390 (56 #8685) 20D05 David C. Hunt Journal of Algebra Fi23
Gerard M.Enright Subgroups generated by transpositions in <C><M>F_{22}</M></C> and <C><M>F_{23}</M></C> Comm. Algebra 1978 6 8 823–837 0092-7872 0476844 (57 #16395) 20D05 Koichiro Harada Communications in Algebra Fi23
BerndFischer Finite groups generated by <C><M>3</M></C>-transpositions. <C>I</C> Invent. Math. 1971 13 232–246 0020-9910 0294487 (45 #3557) 20D99 A. R. Camina Inventiones Mathematicae Fi23
David C.Hunt A characterization of the finite simple group <C><M>M(23)</M></C> J. Algebra 1973 26 431–439 0021-8693 0322046 (48 #410) 20D05 David R. Mason Journal of Algebra Fi23
David C.Hunt The character table of <C>F</C>ischer's simple group, <C><M>M(23)</M></C> Math. Comp. 1974 28 660–661; addendum, ibid. 28 (1974), no. 126, loose microfiche suppl. E6-F9 0025-5718 0369494 (51 #5727) 20C15 (20D05) M. Herzog Mathematics of Computation Fi23
DavidParrott Characterizations of the <C>F</C>ischer groups. <C>I</C>, <C>II</C>, <C>III</C> Trans. Amer. Math. Soc. 1981 265 2 303–347 0002-9947 610952 (82d:20018) 20D05 Leo J. Alex TAMTAM Transactions of the American Mathematical Society Fi23
S. K.Wong A characterization of the <C>F</C>ischer group <C><M>M(23)</M></C> by a <C><M>2</M></C>-local subgroup J. Algebra 1977 44 1 143–151 0021-8693 0424934 (54 #12892) 20D20 Arthur Reifart Journal of Algebra Fi23
J. H.Conway A perfect group of order <C><M>8,315,553,613,086,720,000</M></C> and the sporadic simple groups Proc. Nat. Acad. Sci. U.S.A. 1968 61 398–400 0237634 (38 #5915) 20.27 J. E. McLaughlin Co1
J. H.Conway A group of order <C><M>8,315,553,613,086,720,000</M></C> Bull. London Math. Soc. 1969 1 79–88 0024-6093 0248216 (40 #1470) 20.29 W. J. Wong The Bulletin of the London Mathematical Society Co1
J. H.Conway A characterisation of <C>L</C>eech's lattice Invent. Math. 1969 7 137–142 0020-9910 0245518 (39 #6824) 10.20 G. K. White Inventiones Mathematicae Co1
J. H.Conway Three lectures on exceptional groups Finite simple groups (Proc. Instructional Conf., Oxford, 1969) Academic Press 1971 215–247
London
PH71 0338152 (49 #2918) 20D05 Thomas Laffey Co1
J. H.Conway Groups, lattices, and quadratic forms Computers in algebra and number theory (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1970) Amer. Math. Soc. 1971 135–139. SIAM-AMS Proc., Vol. IV
Providence, R.I.
BH71 0342602 (49 #7348) 20D05 (10E45) E. A. Connors Co1
J. H.Conway The automorphism group of the <C><M>26</M></C>-dimensional even unimodular <C>L</C>orentzian lattice J. Algebra 1983 80 1 159–163 0021-8693 690711 (85k:11030) 11H06 (05B40 11E57 11H31 11H99 20B25) JALGA4 Journal of Algebra Co1
J. H.Conway R. A.Parker N. J. A.Sloane The covering radius of the <C>L</C>eech lattice Proc. Roy. Soc. London Ser. A 1982 380 1779 261–290 0080-4630 660415 (84m:10022b) 10E30 (52A43 94B40) PRLAAZ Proceedings of the Royal Society. London. Series A. Mathematical and Physical Sciences Co1
J. H.Conway N. J. A.Sloane Twenty-three constructions for the <C>L</C>eech lattice Proc. Roy. Soc. London Ser. A 1982 381 1781 275–283 0080-4630 661720 (84m:10020) 10E05 (20F32 52A43 94B40) PRLAAZ Proceedings of the Royal Society. London. Series A. Mathematical and Physical Sciences Co1
J. H.Conway N. J. A.Sloane Lorentzian forms for the <C>L</C>eech lattice Bull. Amer. Math. Soc. (N.S.) 1982 6 2 215–217 0273-0979 640949 (84d:10036) 10E05 (10E25) J. S. Hsia BAMOAD American Mathematical Society. Bulletin. New Series Co1
R. T.Curtis On the Mathieu group <M>M_{24}</M> and related topics Cambridge 1972 Co1
R. T.Curtis On subgroups of <C><M>^{\ast}O</M></C>. <C>I</C>. <C>L</C>attice stabilizers J. Algebra 1973 27 549–573 0021-8693 0340404 (49 #5159) 20D05 Henry S. Leonard, Jr. Journal of Algebra Co1
R. T.Curtis On subgroups of <C><M>\cdot O</M></C>. <C>II</C>. <C>L</C>ocal structure J. Algebra 1980 63 2 413–434 0021-8693 570721 (81f:20020) 20D05 Henry S. Leonard, Jr. JALGA4 Journal of Algebra Co1
JamesLepowsky ArneMeurman An <C><M>E_8</M></C>-approach to the <C>L</C>eech lattice and the <C>C</C>onway group J. Algebra 1982 77 2 484–504 0021-8693 673130 (84a:10033) 10E30 (17B10 20D08 94B40) N. J. A. Sloane JALGA4 Journal of Algebra Co1
S.Norton A bound for the covering radius of the <C>L</C>eech lattice Proc. Roy. Soc. London Ser. A 1982 380 1779 259–260 0080-4630 660414 (84m:10022a) 10E30 (52A43 94B40) PRLAAZ Proceedings of the Royal Society. London. Series A. Mathematical and Physical Sciences Co1
N. J.Patterson On Conway's group .0 and some subgroups Cambridge 1972 Co1
ArthurReifart A remark on <C>C</C>onway's group .1 Arch. Math. (Basel) 1977 29 4 389–391 0003-889X 0473000 (57 #12679) 20D05 (20D45) R. G. Stanton Archiv der Mathematik Co1 0377.20011
ArthurReifart A <C><M>2</M></C>-local characterization of the simple groups <C><M>M(24)', .1</M></C>, and <C><M>J_4</M></C> J. Algebra 1978 50 1 213–227 0021-8693 0466302 (57 #6182) 20D05 Koichiro Harada Journal of Algebra Co1
J. G.Thompson Finite groups and even lattices J. Algebra 1976 38 2 523–524 0021-8693 0399257 (53 #3108) 20D30 A. R. Camina Journal of Algebra Co1
J.Tits Four presentations of Leech's lattice Proceedings of the Symposium held at the University of Durham, Durham, July 31–August 10, 1978 Academic Press Inc. [Harcourt Brace Jovanovich Publishers] 1980 303–307
London
Col80 Co1
Robert A.Wilson The maximal subgroups of <C>C</C>onway's group <C><M>{\rm Co}_1</M></C> J. Algebra 1983 85 1 144–165 0021-8693 723071 (86b:20015) 20D05 (20D08) JALGA4 Journal of Algebra a Co1
D. J.Benson The simple group <M>J_4</M> Cambridge 1980 J4
Ismail ŞuayipGüloğlu A characterization of the simple group <C><M>J_4</M></C> Osaka J. Math. 1981 18 1 13–24 0030-6126 609974 (82g:20033) 20D05 A. V. Borovik OJMAA7 Osaka Journal of Mathematics a J4
ZvonimirJanko A new finite simple group of order <C><M>86,775,571,046,077,562,880</M></C> which possesses <C><M>M_{24}</M></C> and the full covering group of <C><M>M_{22}</M></C> as subgroups J. Algebra 1976 42 2 564–596 0021-8693 0432751 (55 #5734) 20D05 Peter Landrock Journal of Algebra J4 0344.20010
WolfgangLempken The <C>S</C>chur multiplier of <C><M>J_4</M></C> is trivial Arch. Math. (Basel) 1978 30 267–270 0003-889X 0472998 (57 #12677) 20D05 Ulrich Dempwolff Archiv der Mathematik J4
WolfgangLempken A <C><M>2</M></C>-local characterization of <C>J</C>anko's simple group <C><M>J_4</M></C> J. Algebra 1978 55 2 403–445 0021-8693 523466 (80g:20026) 20D05 A. V. Borovik JALGA4 Journal of Algebra J4
GeoffreyMason Some remarks on groups of type <C><M>J_4</M></C> Arch. Math. (Basel) 1977 29 6 574–582 0003-889X 0463284 (57 #3237) 20D05 Koichiro Harada Archiv der Mathematik J4
SimonNorton The construction of <C><M>J_4</M></C> The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Amer. Math. Soc. 1980 37 Proc. Sympos. Pure Math. 271–277
Providence, R.I.
CM80b 604593 (82a:20030) 20D08 J4
ArthurReifart Some simple groups related <C><M>M_{24}</M></C> J. Algebra 1977 45 1 199–209 0021-8693 0430056 (55 #3063) 20D05 Michael J. Collins Journal of Algebra J4
ArthurReifart Another characterization of <C>J</C>anko's simple group <C><M>J_4</M></C> J. Algebra 1977 49 2 621–627 0021-8693 0457555 (56 #15760) 20D05 Geoffrey Mason Journal of Algebra J4
ArthurReifart A <C><M>2</M></C>-local characterization of the simple groups <C><M>M(24)', .1</M></C>, and <C><M>J_4</M></C> J. Algebra 1978 50 1 213–227 0021-8693 0466302 (57 #6182) 20D05 Koichiro Harada Journal of Algebra J4
R. M.Stafford A characterization of Janko's new simple group <M>J_4</M> Notices Amer. Math. Soc. 1978 25 A-423 J4
Richard M.Stafford A characterization of <C>J</C>anko's simple group <C><M>J_4</M></C> by centralizers of elements of order <C><M>3</M></C> J. Algebra 1979 57 2 555–566 0021-8693 533814 (80h:20029) 20D08 W. J. Wong JALGA4 Journal of Algebra J4
G.Stroth An odd characterization of <C><M>J_4</M></C> Israel J. Math. 1978 31 2 189–192 0021-2172 516255 (80b:20018) 20D05 Shui Chi Chang ISJMAP Israel Journal of Mathematics J4
Stephen L.Davis RonaldSolomon Some sporadic characterizations Comm. Algebra 1981 9 17 1725–1742 0092-7872 631885 (83a:20024) 20D08 David C. Hunt COALDM Communications in Algebra Fi24'
BerndFischer Finite groups generated by <C><M>3</M></C>-transpositions. <C>I</C> Invent. Math. 1971 13 232–246 0020-9910 0294487 (45 #3557) 20D99 A. R. Camina Inventiones Mathematicae Fi24'
S. P.Norton F and other simple groups Cambridge 1975 Fi24' S. P.Norton Transposition algebras and the group <M>F_{24}</M> preprint Cambridge Fi24'
DavidParrott Characterizations of the <C>F</C>ischer groups. <C>I</C>, <C>II</C>, <C>III</C> Trans. Amer. Math. Soc. 1981 265 2 303–347 0002-9947 610952 (82d:20018) 20D05 Leo J. Alex TAMTAM Transactions of the American Mathematical Society Fi24'
ArthurReifart Some simple groups related <C><M>M_{24}</M></C> J. Algebra 1977 45 1 199–209 0021-8693 0430056 (55 #3063) 20D05 Michael J. Collins Journal of Algebra Fi24'
ArthurReifart A <C><M>2</M></C>-local characterization of the simple groups <C><M>M(24)', .1</M></C>, and <C><M>J_4</M></C> J. Algebra 1978 50 1 213–227 0021-8693 0466302 (57 #6182) 20D05 Koichiro Harada Journal of Algebra Fi24'
JürgenBierbrauer A characterization of the ``baby monster'' <C><M>F_2</M></C>, including a note on <C><M>^2E_6(2)</M></C> J. Algebra 1979 56 2 384–395 0021-8693 528582 (80h:20027) 20D06 (20D08) Leo J. Alex JALGA4 Journal of Algebra B
D. G.Higman A monomial character of <C>F</C>ischer's baby monster Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975) 1976 277–283
New York
Academic Press SG76 0409627 (53 #13379) 20D05 Bhama Srinivasan B
OveKroll PeterLandrock The characters of some <C><M>2</M></C>-blocks of the babymonster, its covering group and the monster Comm. Algebra 1978 6 18 1893–1921 0092-7872 511168 (80f:20016) 20D08 David C. Hunt COALDM Communications in Algebra B
Jeffrey S.Leon On the irreducible characters of a simple group of order <C><M>2^{41} \cdot 3^{13} \cdot 5^6 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47</M></C> Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975) 1976 285–299
New York
Academic Press SG76 0401890 (53 #5716) 20C15 Leo J. Alex B
Jeffrey S.Leon Charles C.Sims The existence and uniqueness of a simple group generated by <C><M>\{ 3, 4 \}</M></C>-transpositions Bull. Amer. Math. Soc. 1977 83 5 1039–1040 0444765 (56 #3113) 20D05 A. R. Camina B
Charles C.Sims How to construct a Baby Monster Proceedings of the Symposium held at the University of Durham, Durham, July 31–August 10, 1978 Academic Press Inc. [Harcourt Brace Jovanovich Publishers] 1980 339–345
London
Col80 B
G.Stroth A characterization of <C>F</C>ischer's sporadic simple group of the order <C><M>2^{41} \cdot 3^{13} \cdot 5^6 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47</M></C> J. Algebra 1976 40 2 499–531 0021-8693 0417277 (54 #5334) 20D05 David C. Hunt Journal of Algebra B
J. H.Conway Monsters and moonshine Math. Intelligencer 1979/80 2 4 165–171 0343-6993 600222 (82a:20028) 20D08 (10D12) Stephen D. Smith MAINDC The Mathematical Intelligencer M
J. H.Conway A simple construction for the <C>F</C>ischer-<C>G</C>riess monster group Invent. Math. 1985 79 3 513–540 0020-9910 782233 (86h:20019) 20D08 Geoffrey Mason INVMBH Inventiones Mathematicae M
J. H.Conway S. P.Norton Monstrous moonshine Bull. London Math. Soc. 1979 11 3 308–339 0024-6093 554399 (81j:20028) 20D08 (10D12) Stephen D. Smith LMSBBT The Bulletin of the London Mathematical Society M
Stephen L.Davis RonaldSolomon Some sporadic characterizations Comm. Algebra 1981 9 17 1725–1742 0092-7872 631885 (83a:20024) 20D08 David C. Hunt COALDM Communications in Algebra M
PaulFong Characters arising in the <C>M</C>onster-modular connection The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Amer. Math. Soc. 1980 37 Proc. Sympos. Pure Math. 557–559
Providence, R.I.
CM80b 604633 (82a:20029) 20D08 (10D05 20C30) M
I. B.Frenkel J.Lepowsky A.Meurman A natural representation of the <C>F</C>ischer-<C>G</C>riess <C>M</C>onster with the modular function <C><M>J</M></C> as character Proc. Nat. Acad. Sci. U.S.A. 1984 81 10, Phys. Sci. 3256–3260 0027-8424 747596 (85e:20018) 20D08 (17B67 20C20) PNASA6 Proceedings of the National Academy of Sciences of the United States of America M
Robert L.Griess Jr. The structure of the ``monster'' simple group Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975) 1976 113–118
New York
Academic Press SG76 0399248 (53 #3099) 20D05 David C. Hunt M
Robert L.Griess Jr. A construction of <C><M>F_1</M></C> as automorphisms of a <C><M>196,883</M></C>-dimensional algebra Proc. Nat. Acad. Sci. U.S.A. 1981 78 2, part 1 686–691 0027-8424 605419 (82d:20022) 20D08 (17D99) Stephen D. Smith PNASA6 Proceedings of the National Academy of Sciences of the United States of America M
Robert L.Griess Jr. The friendly giant Invent. Math. 1982 69 1 1–102 0020-9910 671653 (84m:20024) 20D08 George Glauberman INVMBH Inventiones Mathematicae M
Robert L.Griess Jr. The <C>M</C>onster and its nonassociative algebra Finite groups—coming of age (Montreal, Que., 1982) Amer. Math. Soc. 1985 45 Contemp. Math. 121–157
Providence, RI
McK85 822237 (87f:20025) 20D08 Geoffrey Mason M
Victor G.Kac A remark on the <C>C</C>onway-<C>N</C>orton conjecture about the ``<C>M</C>onster'' simple group Proc. Nat. Acad. Sci. U.S.A. 1980 77 9, part 1 5048–5049 0027-8424 587277 (81m:20026) 20D08 (10D12 81D05) Stephen D. Smith PNASA6 Proceedings of the National Academy of Sciences of the United States of America M
O.Kroll The characters of a non-principal 2-block of the Monster <M>F_1</M> (?) Preprint Ser. Math. Inst. Aarhus Univ. 1977 31 M
OveKroll PeterLandrock The characters of some <C><M>2</M></C>-blocks of the babymonster, its covering group and the monster Comm. Algebra 1978 6 18 1893–1921 0092-7872 511168 (80f:20016) 20D08 David C. Hunt COALDM Communications in Algebra M
S. P.Norton The uniqueness of the <C>F</C>ischer-<C>G</C>riess <C>M</C>onster Finite groups—coming of age (Montreal, Que., 1982) Amer. Math. Soc. 1985 45 Contemp. Math. 271–285
Providence, RI
McK85 822242 (87b:20025) 20D08 (20D05) Koichiro Harada M
J. G.Thompson Uniqueness of the <C>F</C>ischer-<C>G</C>riess monster Bull. London Math. Soc. 1979 11 3 340–346 0024-6093 554400 (81e:20024) 20D08 Arthur Reifart LMSBBT The Bulletin of the London Mathematical Society a M
J. G.Thompson Finite groups and modular functions Bull. London Math. Soc. 1979 11 3 347–351 0024-6093 554401 (81j:20029) 20D08 (10D12) Stephen D. Smith LMSBBT The Bulletin of the London Mathematical Society b M
J. G.Thompson Some numerology between the <C>F</C>ischer-<C>G</C>riess <C>M</C>onster and the elliptic modular function Bull. London Math. Soc. 1979 11 3 352–353 0024-6093 554402 (81j:20030) 20D08 (10D12) Stephen D. Smith LMSBBT The Bulletin of the London Mathematical Society c M
JacquesTits Le <C>M</C>onstre (d'après <C>R</C>. <C>G</C>riess, <C>B</C>. <C>F</C>ischer et al.) Astérisque 1985 121-122 105–122 Seminar Bourbaki, Vol. 1983/84 0303-1179 768956 (86j:20014) 20D08 P. Fong Astérisque M
J.Tits On <C>R</C>. <C>G</C>riess' ``friendly giant'' Invent. Math. 1984 78 3 491–499 0020-9910 768989 (86f:20019) 20D08 Stephen D. Smith INVMBH Inventiones Mathematicae M
Tran VanTrung On the ``monster'' simple group J. Algebra 1979 60 2 559–562 0021-8693 549947 (81a:20030) 20D25 David C. Hunt JALGA4 Journal of Algebra M
L. G.Kovács B. H.Neumann Proceedings of the <C>I</C>nternational <C>C</C>onference on the <C>T</C>heory of <C>G</C>roups Gordon and Breach Science Publishers 1967
New York
0215897 (35 #6732) 20.00 xvii+397 0158.00208
R.Brauer C.Sah Theory of finite groups: <C>A</C> symposium W. A. Benjamin, Inc., New York-Amsterdam 1969 0240186 (39 #1538) 20.25 xiii+263 pp. (erratum, p. xiii) Topics in finite group theory 1982
Kyoto
Kyoto University Research Institute for Mathematical Sciences Sûrikaisekikenkyûsho Kôkyûroku No. 475 (1982) 702351 (84d:20004) 20-06 (20Dxx) Proceedings of a Symposium held at the Research Institute for Mathematical Sciences, Kyoto University, Kyoto, October 21–23, 1982 i–iii and 1–169 Kyo82
Michael J.Collins Finite simple groups. <C>II</C> 1980
London
Academic Press Inc. [Harcourt Brace Jovanovich Publishers] 0-12-181480-7 606048 (82h:20021) 20D05 (20C15 20C20 20D08) Stephen D. Smith Proceedings of the Symposium held at the University of Durham, Durham, July 31–August 10, 1978 xv+345
Michael D.Atkinson Computational group theory 1984
London
Academic Press Inc. [Harcourt Brace Jovanovich Publishers] 0-12-066270-1 760641 (85g:20001) 20-06 (68-06) Proceedings of the London Mathematical Society symposium held in Durham, July 30–August 9, 1982 xii+375
M. B.Powell G.Higman Finite simple groups Academic Press 1971
London
0327886 (48 #6228) 20DXX Proceedings of an Instructional Conference organized by the London Mathematical Society (a NATO Advanced Study Institute), Oxford, September 1969 xi+327
GarrettBirkhoff MarshallHall Jr. Computers in algebra and number theory American Mathematical Society 1971
Providence, R.I.
0327414 (48 #5756) 00A10 (10-04 20-04) SIAM-AMS Proceedings, Vol. IV vii+200
MauriceAuslander EmiloLluis Representations of algebras 1981 903 Lecture Notes in Mathematics
Berlin
Springer-Verlag 3-540-11179-4 654698 (83c:16030) 16A64 Proceedings of the Third International Conference held in Puebla, August 4–8, 1980 xv+371
Colin M.Campbell Edmund F.Robertson Groups—<C>S</C>t. <C>A</C>ndrews 1981 1982 71 London Mathematical Society Lecture Note Series
Cambridge
Cambridge University Press 0-521-28974-2 679152 (83j:20005) 20-06 Proceedings of the International Conference on Groups held at the Mathematical Institute, University of St. Andrews, St. Andrews, July 25–August 8, 1981 viii+360
Michael P. J.Curran Topics in group theory and computation Academic Press [Harcourt Brace Jovanovich Publishers] 1977
London
0-12-200150-8 0460427 (57 #421) 20-06 Proceedings of a Summer School held at University College, Galway, from 16th to 21st August, 1973 xiii+118
M. F.Newman Proceedings of the <C>S</C>econd <C>I</C>nternational <C>C</C>onference on the <C>T</C>heory of <C>G</C>roups Springer-Verlag 1974
Berlin
Held at the Australian National University, Canberra, August 13–24, 1973, With an introduction by B. H. Neumann, Lecture Notes in Mathematics, Vol. 372 0344315 (49 #9054) 20-06 vii+740
TerrenceGagen Mark P.Hale Jr. Ernest E.Shult Finite groups '72 North-Holland Publishing Co. 1973
Amsterdam
North-Holland Mathematics Studies, Vol. 7 0347962 (50 #460) 20DXX Proceedings of the Gainesville Conference on Finite Groups, University of Florida, Gainesville, Fla., March 23–24, 1972 vi+158 pp. (4 plates)
William R.Scott FletcherGross Proceedings of the <C>C</C>onference on <C>F</C>inite <C>G</C>roups Academic Press Inc. [Harcourt Brace Jovanovich Publishers] 1976
New York
Held at the University of Utah, Park City, Utah, February 10–13, 1975 0393202 (52 #14012) 20-06 xiii+565
EricMendelsohn Algebraic and geometric combinatorics North-Holland Publishing Co. 1982 65 North-Holland Mathematics Studies
Amsterdam
Annals of Discrete Mathematics, 15 0-444-86365-6 772576 (85k:05002) 05-06 xiii+376
DieterJungnickel KlausVedder Combinatorial theory 1982 969 Lecture Notes in Mathematics
Berlin
Springer-Verlag 3-540-11971-X 692229 (84b:05005) 05-06 Proceedings of a Conference held at Schloss Rauischholzhausen, May 6–9, 1982 ii+326
IrvingReiner Representation theory of finite groups and related topics American Mathematical Society 1971
Providence, R.I.
0314948 (47 #3497) 20CXX Proceedings of Symposia in Pure Mathematics, Vol. XXI v+178
BruceCooperstein GeoffreyMason The <C>S</C>anta <C>C</C>ruz <C>C</C>onference on <C>F</C>inite <C>G</C>roups American Mathematical Society 1980 37 Proceedings of Symposia in Pure Mathematics
Providence, R.I.
Held at the University of California, Santa Cruz, Calif., June 25–July 20, 1979 0-8218-1440-0 604551 (81m:20004) 20-06 (20Dxx) xviii+634
JohnMcKay Finite groups—coming of age 1985 45 Contemporary Mathematics
Providence, RI
American Mathematical Society 0-8218-5047-4 822230 (86j:20002) 20-06 (20Dxx) Proceedings of the Canadian Mathematical Society conference held at Concordia University, Montreal, Que., June 15–28, 1982 x+350
atlasrep-2.1.8/bibl/ABCbiblbib.xml0000644000175000017500000014770311777255330015032 0ustar samsam
D. J.Benson Brauer trees for <C><M>12M_{22}</M></C> J. Algebra 1985 95 2 398–408 0021-8693 801275 (87c:20030) 20C25 (20C20) John F. Humphreys JALGA4 Journal of Algebra
D. J.Benson J. F.Carlson Nilpotent elements in the <C>G</C>reen ring J. Algebra 1986 104 2 329–350 0021-8693 866779 (88b:20021) 20C20 (20C11) S. B. Conlon JALGA4 Journal of Algebra
R.Brauer C.Nesbitt <C>On the modular representations of groups of finite order. I.</C> Univ. of Toronto Studies, Math. Ser. 4. Toronto: Univ. of Toronto Press. 21 p. 1937 {Group theory} English 0018.29504
R.Brauer C.Nesbitt On the modular characters of groups Ann. of Math. (2) 1941 42 556–590 0003-486X 0004042 (2,309c) 20.0X G. de B. Robinson Annals of Mathematics. Second Series
R.Burkhardt Die <C>Z</C>erlegungsmatrizen der <C>G</C>ruppen <C><M>{\rm PSL}(2,p^f)</M></C> J. Algebra 1976 40 1 75–96 0021-8693 0480710 (58 #864) 20C20 P. Donovan Journal of Algebra
R.Burkhardt Über die <C>Z</C>erlegungszahlen der <C>S</C>uzukigruppen <C><M>{\rm Sz}(q)</M></C> J. Algebra 1979 59 2 421–433 0021-8693 543261 (81a:20018) 20C99 Karin Erdmann JALGA4 Journal of Algebra
R.Burkhardt Über die <C>Z</C>erlegungszahlen der unitären <C>G</C>ruppen <C><M>{\rm PSU}(3,\,2^{2f})</M></C> J. Algebra 1979 61 2 548–581 0021-8693 559855 (81a:20055) 20H05 (20C20 20C30) Ulrich Dempwolff JALGA4 Journal of Algebra
J. H.Conway R. T.Curtis S. P.Norton R. A.Parker R. A.Wilson Atlas of finite groups Oxford University Press 1985
Eynsham
Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray 0-19-853199-0 827219 (88g:20025) 20D05 (20-02) R. L. Griess xxxiv+252
Charles W.Curtis IrvingReiner Methods of representation theory. <C>V</C>ol. <C>I</C> John Wiley & Sons Inc. 1981
New York
With applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication 0-471-18994-4 632548 (82i:20001) 20-02 (10C30 12A57 20Cxx) J. L. Alperin xxi+819
Charles W.Curtis IrvingReiner Methods of representation theory. <C>V</C>ol. <C>I</C> John Wiley & Sons Inc. 1990 Wiley Classics Library
New York
With applications to finite groups and orders, Reprint of the 1981 original, A Wiley-Interscience Publication 0-471-52367-4 1038525 (90k:20001) 20-02 (01A75 11R33 20Cxx) xxiv+819 CR81
David M.Evans The <C><M>7</M></C>-modular representations of <C>J</C>anko's smallest simple group J. Algebra 1985 96 1 35–44 0021-8693 808838 (86m:20012) 20C20 (20-04) P. Fong JALGA4 Journal of Algebra
WalterFeit The representation theory of finite groups North-Holland Publishing Co. 1982 25 North-Holland Mathematical Library
Amsterdam
0-444-86155-6 661045 (83g:20001) 20-02 (20C20) J. L. Alperin xiv+502
WalterFeit Blocks with cyclic defect groups for some sporadic groups Representation theory, II (Ottawa, Ont., 1984) Springer 1986 1178 Lecture Notes in Math. 25–63
Berlin
DGM86 842477 (87e:20023) 20C20 (20D08) J. L. Alperin
PaulFong On decomposition numbers of <C><M>J_1</M></C> and <C><M>R(q)</M></C> Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972) Academic Press 1974 415–422
London
0357578 (50 #10046) 20C20 I. M. Isaacs
PaulFong BhamaSrinivasan Blocks with cyclic defect groups in <C><M>{\rm GL}(n,\,q)</M></C> Bull. Amer. Math. Soc. (N.S.) 1980 3 3 1041–1044 0002-9904 585186 (81k:20019) 20C20 (20G40) Karin Erdmann BAMOAD American Mathematical Society. Bulletin. New Series
PaulFong BhamaSrinivasan The blocks of finite general linear and unitary groups Invent. Math. 1982 69 1 109–153 0020-9910 671655 (83k:20013) 20C20 (20G05) P. Donovan INVMBH Inventiones Mathematicae
PaulFong BhamaSrinivasan Brauer trees in classical groups J. Algebra 1990 131 1 179–225 0021-8693 1055005 (91i:20008) 20C20 (20G40) Gerhard Hiss JALGA4 Journal of Algebra
M.Geck Beiträge zur Darstellungstheorie von Iwahori–Hecke Algebren RWTH Aachen 1993 Habilitationsschrift
Peter B.Gilkey Gary M.Seitz Some representations of exceptional <C>L</C>ie algebras Geom. Dedicata 1988 25 1-3 407–416 Geometries and groups (Noordwijkerhout, 1986) 0046-5755 925845 (89h:20056) 20G05 (17B25) G. E. Wall GEMDAT Geometriae Dedicata
David M.Goldschmidt Lectures on character theory Publish or Perish Inc. 1980
Wilmington, Del.
0-914098-17-9 575526 (81f:20001) 20-02 (20C10 20C15) Stephen D. Smith 249 pp. (not consecutively paged)
GerhardHiss The modular characters of the <C>T</C>its simple group and its automorphism group Comm. Algebra 1986 14 1 125–154 0092-7872 814141 (87c:20029) 20C20 Wolfgang Knapp COALDM Communications in Algebra
GerhardHiss On the decomposition numbers of <C><M>G_2(q)</M></C> J. Algebra 1989 120 2 339–360 0021-8693 989902 (90j:20011) 20C05 (16A26 20C20) Reiner Staszewski JALGA4 Journal of Algebra
G.Hiss Zerlegungszahlen endlicher <C>G</C>ruppen vom <C>L</C>ie-<C>T</C>yp in nicht-definierender <C>C</C>harakteristik. RWTH Aachen 1990 Habilitationsschrift
GerhardHiss The <C><M>3</M></C>-modular characters of the <C>R</C>udvalis sporadic simple group and its covering group Math. Comp. 1994 62 206 851–863 0025-5718 1212267 (94g:20013) 20C20 (20C34 20D08) P. Fong MCMPAF Mathematics of Computation
GerhardHiss KlausLux The <C>B</C>rauer characters of the <C>H</C>all-<C>J</C>anko group Comm. Algebra 1988 16 2 357–398 0092-7872 929124 (89d:20011) 20C20 Karin Erdmann COALDM Communications in Algebra
G.Hiss K.Lux Brauer trees of sporadic groups The Clarendon Press Oxford University Press 1989 Oxford Science Publications
New York
0-19-853381-0 1033265 (91k:20018) 20C20 (20-02 20D08) Harvey Blau x+526
GerhardHiss KlausLux The <C><M>5</M></C>-modular characters of the sporadic simple <C>F</C>ischer groups <C><M>{\rm Fi}_{22}</M></C> and <C><M>{\rm Fi}_{23}</M></C> Comm. Algebra 1994 22 9 3563–3590 With an appendix by Thomas Breuer 0092-7872 1278806 (95e:20020) 20C34 (20C40) A. S. Kondratʹev COALDM Communications in Algebra
GerhardHiss JürgenMüller The <C><M>5</M></C>-modular characters of the sporadic simple <C>R</C>udvalis group and its covering group Comm. Algebra 1995 23 12 4633–4667 0092-7872 1352561 (96h:20027) 20C34 (20C20) Donald L. White COALDM Communications in Algebra
GerhardHiss Donald L.White The <C><M>5</M></C>-modular characters of the covering group of the sporadic simple <C>F</C>ischer group <C><M>{\rm Fi}_{22}</M></C> and its automorphism group Comm. Algebra 1994 22 9 3591–3611 0092-7872 1278807 (95e:20021) 20C34 (20C40) A. S. Kondratʹev COALDM Communications in Algebra
GerhardHiss KlausLux RichardParker The <C><M>5</M></C>-modular characters of the <C>M</C>c<C>L</C>aughlin group and its covering group Manuscripta Math. 1991 73 1 91–114 0025-2611 1124313 (92g:20017) 20C20 (20D08) David Benson MSMHB2 Manuscripta Mathematica
GerhardHiss KlausLux JürgenMüller The <C><M>2</M></C>-modular decomposition matrices of the non-principal blocks of maximal defect of the triple cover of the sporadic simple <C>M</C>c<C>L</C>aughlin group J. Symbolic Comput. 1995 19 6 585–600 0747-7171 1370624 (96m:20023) 20C34 (20C40) Peter Fleischmann Journal of Symbolic Computation
G.Hiss C.Jansen K.Lux R. A.Parker Computing with <C>M</C>odular <C>C</C>haracters http://www.math.rwth-aachen.de/LDFM/homes/MOC/CoMoChaT/
J. F.Humphreys The projective characters of the <C>M</C>athieu group <C><M>M_{12}</M></C> and of its automorphism group Math. Proc. Cambridge Philos. Soc. 1980 87 3 401–412 0305-0041 556920 (81k:20021) 20C25 (20C30) V. D. Mazurov MPCPCO Mathematical Proceedings of the Cambridge Philosophical Society
J. F.Humphreys The modular characters of the <C>H</C>igman-<C>S</C>ims simple group Proc. Roy. Soc. Edinburgh Sect. A 1982 92 3-4 319–335 0308-2105 677491 (83m:20017) 20C20 (20D08) M. Herzog PEAMDU Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences
I. MartinIsaacs Character theory of finite groups Academic Press [Harcourt Brace Jovanovich Publishers] 1976
New York
Pure and Applied Mathematics, No. 69 0460423 (57 #417) 20-02 Stephen D. Smith xii+303
I. MartinIsaacs Character theory of finite groups Dover Publications Inc. 1994
New York
Corrected reprint of the 1976 original [Academic Press, New York; MR0460423 (57 #417)] 0-486-68014-2 1280461 20C15 xii+303 Isa76
I. MartinIsaacs Character theory of finite groups AMS Chelsea Publishing, Providence, RI 2006 Corrected reprint of the 1976 original [Academic Press, New York; MR0460423] 978-0-8218-4229-4; 0-8218-4229-3 2270898 20-02 (20C05 20C15 20C20 20C25) xii+310 Isa76
G. D.James The modular characters of the <C>M</C>athieu groups J. Algebra 1973 27 57–111 0021-8693 0330277 (48 #8614) 20C20 J. S. Frame Journal of Algebra
G. D.James Representations of the symmetric groups over the field of order <C><M>2</M></C> J. Algebra 1976 38 2 280–308 0021-8693 0396734 (53 #595) 20C30 G. de B. Robinson Journal of Algebra
G. D.James On the decomposition matrices of the symmetric groups. <C>I</C> J. Algebra 1976 43 1 42–44 0021-8693 0430049 (55 #3057a) 20C30 A. Kerber Journal of Algebra
G. D.James On the decomposition matrices of the symmetric groups. <C>II</C> J. Algebra 1976 43 1 45–54 0021-8693 0430050 (55 #3057b) 20C30 A. Kerber Journal of Algebra
G. D.James A note on the decomposition matrices of <C><M>S_{12}</M></C> and <C><M>S_{13}</M></C> for the prime <C><M>3</M></C> J. Algebra 1978 53 2 410–411 0021-8693 502639 (80a:20005) 20B10 (20C15) H. Nagao JALGA4 Journal of Algebra
G. D.James The representation theory of the symmetric groups Springer 1978 682 Lecture Notes in Mathematics
Berlin
3-540-08948-9 513828 (80g:20019) 20C30 (20-02) Dragomir Ž. Ðoković v+156
GordonJames AdalbertKerber The representation theory of the symmetric group Addison-Wesley Publishing Co., Reading, Mass. 1981 16 Encyclopedia of Mathematics and its Applications With a foreword by P. M. Cohn, With an introduction by Gilbert de B. Robinson 0-201-13515-9 644144 (83k:20003) 20-02 (20C30) A. O. Morris xxviii+510
C.Jansen R. A.Wilson Two new constructions of the <C>O</C>'<C>N</C>an group J. London Math. Soc. (2) 1997 56 3 579–583 0024-6107 1610479 (98m:20022) 20D08 JLMSAK Journal of the London Mathematical Society. Second Series
C.Jansen R. A.Wilson The <C><M>2</M></C>-modular and <C><M>3</M></C>-modular decomposition numbers for the sporadic simple <C>O</C>'<C>N</C>an group and its triple cover J. London Math. Soc. (2) 1998 57 1 71–90 0024-6107 1624797 (99g:20025) 20C34 (20C20 20C40) Gerhard Hiss JLMSAK Journal of the London Mathematical Society. Second Series
C.Jansen R. A.Wilson The minimal faithful <C><M>3</M></C>-modular representation for the <C>L</C>yons group Comm. Algebra 1996 24 3 873–879 0092-7872 1374641 (97a:20021) 20C34 (20C40 20D08) Herbert Pahlings COALDM Communications in Algebra
FiroozKhosraviyani Decomposition numbers of exceptional <C>W</C>eyl groups. <C>I</C> J. Algebra 1984 91 2 390–409 0021-8693 769582 (86h:20011) 20C20 Richard Dipper JALGA4 Journal of Algebra
FiroozKhosraviyani Alun O.Morris Decomposition numbers of exceptional <C>W</C>eyl groups. <C>II</C> J. Algebra 1985 92 2 525–531 0021-8693 778465 (86m:20013) 20C20 Richard Dipper JALGA4 Journal of Algebra
A. S.Kondratʹev Decomposition numbers of the group <C><M>J_2</M></C> Algebra i Logika 1988 27 5 535–561, 619 Russian, translation in Algebra and Logic 27 (1988), no. 5, 333–349 (1989) 0373-9252 1047503 (91g:20017) 20D08 È. M. Palʹchik Akademiya Nauk SSSR. Sibirskoe Otdelenie. Institut Matematiki. Algebra i Logika
A. S.Kondratʹev Decomposition numbers of the groups <C><M>\hat{{J}}_2</M></C> and <C><M>{\rm Aut}(J_2)</M></C> Algebra i Logika 1988 27 6 690–710, 737 Russian, translation in Algebra and Logic 27 (1988), no. 6, 429–444 (1989) 0373-9252 1038106 (91b:20024) 20D08 È. M. Palʹchik Akademiya Nauk SSSR. Sibirskoe Otdelenie. Institut Matematiki. Algebra i Logika
P.Landrock Finite group algebras and their modules Cambridge University Press 1983 84 London Mathematical Society Lecture Note Series
Cambridge
0-521-27487-7 737910 (85h:20002) 20-02 (16A26 20C05 20C20) J. L. Alperin x+274
W.Lempken Constructing <C><M>J_4</M></C> in <C><M>{\rm GL}(1333,11)</M></C> Comm. Algebra 1993 21 12 4311–4351 0092-7872 1242834 (94i:20032) 20D08 Jonathan I. Hall COALDM Communications in Algebra
W.Lempken R.Staszewski Some <C><M>5</M></C>-modular representation theory for the simple group <C><M>{\rm McL}</M></C> Comm. Algebra 1993 21 5 1611–1629 0092-7872 1213977 (94a:20027) 20C34 (20D08) P. Fong COALDM Communications in Algebra
W.Lempken R.Staszewski A construction of <C><M>\widehat{{3}}{\rm McL}</M></C> and some representation theory in characteristic <C><M>5</M></C> Linear Algebra Appl. 1993 192 205–234 Computational linear algebra in algebraic and related problems (Essen, 1992) 0024-3795 1236744 (94k:20015) 20C20 V. D. Mazurov LAAPAW Linear Algebra and its Applications
K.Lux H.Pahlings Computational aspects of representation theory of finite groups Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991) Birkhäuser 1991 95 Progr. Math. 37–64
Basel
MR91 1112157 (92g:20025) 20C40 Wolfgang Knapp
R. PatrickMartineau On representations of the <C>S</C>uzuki groups over fields of odd characteristic J. London Math. Soc. (2) 1972 6 153–160 0024-6107 0369498 (51 #5731) 20C20 A. O. Morris Journal of the London Mathematical Society. Second Series
WernerMeyer WolframNeutsch Über <C><M>5</M></C>-<C>D</C>arstellungen der <C>L</C>yonsgruppe Math. Ann. 1984 267 4 519–535 0025-5831 742897 (85k:20038) 20C20 (20D08 51E20) Stephen D. Smith MAANA Mathematische Annalen
WernerMeyer WolframNeutsch RichardParker The minimal <C><M>5</M></C>-representation of <C>L</C>yons' sporadic group Math. Ann. 1985 272 1 29–39 0025-5831 794089 (86i:20025) 20D08 R. W. Carter MAANA Mathematische Annalen
W.Nickel Endliche <C>K</C>örper in dem gruppentheoretischen <C>P</C>rogrammsystem <C>GAP</C> RWTH Aachen 1988 Diplomarbeit R. A.Parker The computer calculation of modular characters (the meat-axe) Computational group theory (Durham, 1982) Academic Press 1984 267–274
London
Atk84 760660 (85k:20041) 20C20 (20-04) Leo J. Alex
M.Ringe The <C>C</C>-<C>M</C>eat<C>A</C>xe, <C>D</C>ocumentation RWTH Aachen 1992
A. J. E.Ryba Calculation of the <C><M>7</M></C>-modular characters of the <C>H</C>eld group J. Algebra 1988 117 1 240–255 0021-8693 955602 (89g:20026) 20C20 (20D08) David Benson JALGA4 Journal of Algebra b
Alexander J. E.Ryba Robert A.Wilson Matrix generators for the <C>H</C>arada-<C>N</C>orton group Experiment. Math. 1994 3 2 137–145 1058-6458 1313878 (95k:20017) 20C34 (20C40 20D08) Wujie Shi Experimental Mathematics
M.Schönert Gap–3.4, <C>M</C>anual RWTH Aachen 1994
RobertSteinberg Representations of algebraic groups Nagoya Math. J. 1963 22 33–56 0027-7630 0155937 (27 #5870) 22.90 (14.50) H. K. Farahat Nagoya Mathematical Journal
I. A. I.Suleiman Modular Representations of Finite Simple Groups The University of Birmingham 1990 Ph. D. thesis
Ibrahim A. I.Suleiman The modular characters of the twisted <C>C</C>hevalley group <C><M>{}^2D_4(2)</M></C> and <C><M>{}^2D_4(2).2</M></C> Math. Japon. 1994 39 1 107–117 0025-5513 1261343 (94m:20038) 20C33 (20C20 20C40) Donald L. White MAJAA9 Mathematica Japonica
Ibrahim A.Suleiman Robert A.Wilson Computer construction of matrix representations of the covering group of the <C>H</C>igman-<C>S</C>ims group J. Algebra 1992 148 1 219–224 0021-8693 1161573 (93d:20029) 20C34 (20C20 20C40) Wolfgang Knapp JALGA4 Journal of Algebra
Ibrahim A.Suleiman Robert A.Wilson The <C><M>3</M></C>- and <C><M>5</M></C>-modular characters of the covering and the automorphism groups of the <C>H</C>igman-<C>S</C>ims group J. Algebra 1992 148 1 225–242 0021-8693 1161574 (93d:20030) 20C34 (20C20 20C40) Wolfgang Knapp JALGA4 Journal of Algebra
Ibrahim A.Suleiman Robert A.Wilson The <C><M>3</M></C>-modular characters of the <C>M</C>c<C>L</C>aughlin group <C><M>{\rm McL}</M></C> and its automorphism group <C><M>{\rm McL}.2</M></C> Groups, combinatorics & geometry (Durham, 1990) Cambridge Univ. Press 1992 165 London Math. Soc. Lecture Note Ser. 422–437
Cambridge
LS92a 1200279 (94c:20031) 20C34 (20C20) Peter Fleischmann
Ibrahim A. I.Suleiman Robert A.Wilson Construction of the fourfold cover of the <C>M</C>athieu group <C><M>M_{22}</M></C> Experiment. Math. 1993 2 1 11–14 1058-6458 1246480 (94h:20022) 20C34 Experimental Mathematics
Ibrahim A. I.Suleiman Robert A.Wilson The <C><M>2</M></C>-modular characters of <C>C</C>onway's group <C><M>{\rm Co}_2</M></C> Math. Proc. Cambridge Philos. Soc. 1994 116 2 275–283 0305-0041 1281546 (95e:20024) 20C40 (20C34) Herbert Pahlings MPCPCO Mathematical Proceedings of the Cambridge Philosophical Society
J. G.Thackray Modular Representations of Some Finite Groups University of Cambridge 1981 Ph. D. thesis John G.Thompson Some finite groups which appear as <C><M>{\rm Gal}\,L/K</M></C>, where <C><M>K \subseteq{\bf Q}(μ_n)</M></C> Group theory, Beijing 1984 Springer 1986 1185 Lecture Notes in Math. 210–230
Berlin
Dua86 842445 (87i:11160) 11R32 (12F10 20C99) Richard Massy
Donald L.White Brauer trees of <C><M>2.F_4(2)</M></C> Comm. Algebra 1992 20 11 3353–3368 0092-7872 1186712 (93i:20009) 20C20 (20C33) Stefan Heiss COALDM Communications in Algebra
W.Willems Metrische Moduln über Gruppenringen Mainz 1976 Dissertation
Robert A.Wilson The <C><M>2</M></C>- and <C><M>3</M></C>-modular characters of <C><M>J_3</M></C>, its covering group and automorphism group J. Symbolic Comput. 1990 10 6 647–656 0747-7171 1087984 (92b:20016) 20C20 (20C40 20D08) Wolfgang Knapp Journal of Symbolic Computation
Robert A.Wilson Matrix generators for <C>F</C>ischer's group <C><M>{\rm Fi}_{24}</M></C> Math. Proc. Cambridge Philos. Soc. 1993 113 1 5–8 0305-0041 1188814 (93j:20042) 20D08 Ulrich Meierfrankenfeld MPCPCO Mathematical Proceedings of the Cambridge Philosophical Society
Robert A.Wilson A new construction of the <C>B</C>aby <C>M</C>onster and its applications Bull. London Math. Soc. 1993 25 5 431–437 0024-6093 1233405 (94k:20027) 20D08 (20C34 20C40) Richard Lyons LMSBBT The Bulletin of the London Mathematical Society
Robert A.Wilson The <C>B</C>rauer tree for <C><M>J_3</M></C> in characteristic <C><M>17</M></C> J. Symbolic Comput. 1993 15 3 325–330 0747-7171 1229639 (94g:20021) 20C34 (68Q40) Jamshid Moori Journal of Symbolic Computation
Andrew J.Woldar On the <C><M>5</M></C>-decomposition matrix for <C>M</C>c<C>L</C>aughlin's sporadic simple group Comm. Algebra 1986 14 2 277–291 0092-7872 817046 (87a:20007) 20C20 (20D08) J. L. Alperin COALDM Communications in Algebra
Michael D.Atkinson Computational group theory 1984
London
Academic Press Inc. [Harcourt Brace Jovanovich Publishers] 0-12-066270-1 760641 (85g:20001) 20-06 (68-06) Proceedings of the London Mathematical Society symposium held in Durham, July 30–August 9, 1982 xii+375
V.Dlab P.Gabriel G.Michler Representation theory. <C>II</C> 1986 1178 Lecture Notes in Mathematics
Berlin
Springer-Verlag Groups and orders 3-540-16433-2 842475 (87b:20003) 20-06 (16-06 20Cxx) Proceedings of the fourth international conference on representations of algebras held at Carleton University, Ottawa, Ont., August 16–25, 1984 xvi+370
G. O.Michler C. M.Ringel Representation theory of finite groups and finite-dimensional algebras 1991 95 Progress in Mathematics
Basel
Birkhäuser Verlag 3-7643-2604-2 1112154 (91m:20005) 20-06 (00B25 16-06 20Cxx) Proceedings of the conference held at the University of Bielefeld, Bielefeld, May 15–17, 1991 x+520
MartinLiebeck JanSaxl Groups, combinatorics & geometry 1992 165 London Mathematical Society Lecture Note Series
Cambridge
Cambridge University Press 0-521-40685-4 1200244 (93g:20001) 20-06 (00B25 20Dxx) Proceedings of the L.M.S. Symposium on Groups and Combinatorics held in Durham, July 5–15, 1990 xiv+489
Hsio-FuTuan Group theory, <C>B</C>eijing 1984 1986 1185 Lecture Notes in Mathematics
Berlin
Springer-Verlag 3-540-16456-1 842438 (87d:20004) 20-06 Proceedings of an international symposium held at Beijing University, Beijing, August 27–September 8, 1984 vi+403
atlasrep-2.1.8/bibl/ABCapp2bib.xml0000644000175000017500000107465011777255330014765 0ustar samsam
MarkBenard Schur indexes of sporadic simple groups J. Algebra 1979 58 2 508–522 0021-8693 540655 (80e:20022) 20D08 (20C15) Gary L. Walls JALGA4 Journal of Algebra
JürgenBierbrauer A <C><M>2</M></C>-local characterization of the <C>R</C>udvalis simple group J. Algebra 1979 58 2 563–571 0021-8693 540658 (80h:20028) 20D08 Arthur Reifart JALGA4 Journal of Algebra
John J.Cannon JohnMcKay Kiang ChuenYoung The nonabelian simple groups <C><M>G</M></C>, <C><M>|G| < 10^5</M></C>\thinspace —\thinspace presentations Comm. Algebra 1979 7 13 1397–1406 0092-7872 539356 (80e:20023) 20D08 COALDM Communications in Algebra
Ismail ŞuayipGüloğlu A characterization of the simple group <C><M>{\rm He}</M></C> J. Algebra 1979 60 1 261–281 0021-8693 549111 (80k:20018) 20D08 (20D05) Gary L. Walls JALGA4 Journal of Algebra
OveKroll PeterLandrock The characters of some <C><M>2</M></C>-blocks of the babymonster, its covering group and the monster Comm. Algebra 1978 6 18 1893–1921 0092-7872 511168 (80f:20016) 20D08 David C. Hunt COALDM Communications in Algebra
PeterLandrock The non-principal <C><M>2</M></C>-blocks of sporadic simple groups Comm. Algebra 1978 6 18 1865–1891 0092-7872 511167 (80b:20020) 20D08 Lino Di Martino COALDM Communications in Algebra
JohnMcKay The non-abelian simple groups <C><M>G</M></C>, <C><M>|G| < 10^6</M></C>\thinspace —\thinspace character tables Comm. Algebra 1979 7 13 1407–1445 0092-7872 539357 (80e:20024) 20D08 COALDM Communications in Algebra
Stephen D.Smith Large extraspecial subgroups of widths <C><M>4</M></C> and <C><M>6</M></C> J. Algebra 1979 58 2 251–281 0021-8693 540638 (80g:20030) 20D08 Arthur Reifart JALGA4 Journal of Algebra
Richard M.Stafford A characterization of <C>J</C>anko's simple group <C><M>J_4</M></C> by centralizers of elements of order <C><M>3</M></C> J. Algebra 1979 57 2 555–566 0021-8693 533814 (80h:20029) 20D08 W. J. Wong JALGA4 Journal of Algebra
JürgenBierbrauer A characterization of the ``baby monster'' <C><M>F_2</M></C>, including a note on <C><M>^2E_6(2)</M></C> J. Algebra 1979 56 2 384–395 0021-8693 528582 (80h:20027) 20D06 (20D08) Leo J. Alex JALGA4 Journal of Algebra
FrancisBuekenhout The geometry of diagrams Relations between combinatorics and other parts of mathematics (Proc. Sympos. Pure Math., Ohio State Univ., Columbus, Ohio, 1978) Amer. Math. Soc. 1979 Proc. Sympos. Pure Math., XXXIV 69–75
Providence, R.I.
RC79 525320 (80b:51005) 51E99 (05B25 20D08) Joseph A. Thas
B. K.Durakov Characterization of some finite simple groups by a centralizer of elements of order three Mat. Sb. (N.S.) 1979 109(151) 4 533–554, 647 Russian 0368-8666 545053 (80m:20015) 20D06 (20D08) S. S. Levīshchenko Matematicheskiĭ Sbornik. Novaya Seriya
MichaelWester Endliche <C>G</C>ruppen, die eine <C>I</C>nvolution <C><M>z</M></C> besitzen, so daß <C><M>F^{\ast}(C(z))</M></C> das direkte <C>P</C>rodukt einer extraspeziellen <C><M>2</M></C>-<C>G</C>ruppe von kleiner <C>W</C>eite mit einer elementar-abelschen <C><M>2</M></C>-<C>G</C>ruppe ist. <C>I</C> J. Algebra 1979 60 2 321–336 0021-8693 549933 (80k:20015) 20D05 (20D08) W. J. Wong JALGA4 Journal of Algebra
JürgenBierbrauer On a certain class of <C><M>2</M></C>-local subgroups in finite simple groups Rend. Sem. Mat. Univ. Padova 1980 62 137–163 0041-8994 582947 (81i:20017) 20D08 Gerard M. Enright Rendiconti del Seminario Matematico dell'Università di Padova
J. H.Conway S. P.Norton Monstrous moonshine Bull. London Math. Soc. 1979 11 3 308–339 0024-6093 554399 (81j:20028) 20D08 (10D12) Stephen D. Smith LMSBBT The Bulletin of the London Mathematical Society
Victor G.Kac A remark on the <C>C</C>onway-<C>N</C>orton conjecture about the ``<C>M</C>onster'' simple group Proc. Nat. Acad. Sci. U.S.A. 1980 77 9, part 1 5048–5049 0027-8424 587277 (81m:20026) 20D08 (10D12 81D05) Stephen D. Smith PNASA6 Proceedings of the National Academy of Sciences of the United States of America
RonaldSolomon Some standard components of sporadic type J. Algebra 1978 53 1 93–124 0021-8693 498549 (81h:20018) 20D08 U. Dempwolff JALGA4 Journal of Algebra
J. G.Thompson Uniqueness of the <C>F</C>ischer-<C>G</C>riess monster Bull. London Math. Soc. 1979 11 3 340–346 0024-6093 554400 (81e:20024) 20D08 Arthur Reifart LMSBBT The Bulletin of the London Mathematical Society a
J. G.Thompson Finite groups and modular functions Bull. London Math. Soc. 1979 11 3 347–351 0024-6093 554401 (81j:20029) 20D08 (10D12) Stephen D. Smith LMSBBT The Bulletin of the London Mathematical Society b
J. G.Thompson Some numerology between the <C>F</C>ischer-<C>G</C>riess <C>M</C>onster and the elliptic modular function Bull. London Math. Soc. 1979 11 3 352–353 0024-6093 554402 (81j:20030) 20D08 (10D12) Stephen D. Smith LMSBBT The Bulletin of the London Mathematical Society c
KoichiroHarada DavidParrott On finite groups having <C><M>2</M></C>-local subgroups <C><M>E_{{2^{2n}}}{\rm O}^{±}\,(2n,\,2)</M></C> J. Algebra 1980 63 2 331–345 0021-8693 570716 (81g:20030) 20D05 (20D08) Gary L. Walls JALGA4 Journal of Algebra
ManleyPerkel A characterization of <C><M>J_1</M></C> in terms of its geometry Geom. Dedicata 1980 9 3 291–298 0304-4637 585936 (81j:05066) 05C25 (20B25 20D08) Hugo S. Sun GEMDAT Geometriae Dedicata
A. V.Borovik <C><M>3</M></C>-local characterization of the <C>H</C>eld group Algebra i Logika 1980 19 4 387–404, 503 Russian, English translation: Algebra and Logic 19 (1980), no.4, 255–266 (1981) 0373-9252 609020 (82g:20040) 20D08 B. K. Durakov Akademiya Nauk SSSR. Sibirskoe Otdelenie. Institut Matematiki. Algebra i Logika
GregoryButler The maximal subgroups of the sporadic simple group of <C>H</C>eld J. Algebra 1981 69 1 67–81 0021-8693 613857 (82e:20022) 20D08 (20E28) Stephen D. Smith JALGA4 Journal of Algebra
J. H.Conway Monsters and moonshine Math. Intelligencer 1979/80 2 4 165–171 0343-6993 600222 (82a:20028) 20D08 (10D12) Stephen D. Smith MAINDC The Mathematical Intelligencer
PaulFong Characters arising in the <C>M</C>onster-modular connection The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Amer. Math. Soc. 1980 37 Proc. Sympos. Pure Math. 557–559
Providence, R.I.
CM80b 604633 (82a:20029) 20D08 (10D05 20C30)
Robert L.Griess Jr. A construction of <C><M>F_1</M></C> as automorphisms of a <C><M>196,883</M></C>-dimensional algebra Proc. Nat. Acad. Sci. U.S.A. 1981 78 2, part 1 686–691 0027-8424 605419 (82d:20022) 20D08 (17D99) Stephen D. Smith PNASA6 Proceedings of the National Academy of Sciences of the United States of America
MarcelHerzog DavidWright Characterization of a family of simple groups by their character table. <C>II</C> J. Austral. Math. Soc. Ser. A 1980/81 30 2 168–170 0263-6115 607927 (82e:20023) 20D08 (20C15) JAMADS Australian Mathematical Society. Journal. Series A
JamshidMoori On certain groups associated with the smallest <C>F</C>ischer group J. London Math. Soc. (2) 1981 23 1 61–67 0024-6107 602239 (82g:20041) 20D08 (20C30) Henry S. Leonard, Jr. JLMSAK The Journal of the London Mathematical Society. Second Series
SimonNorton The construction of <C><M>J_4</M></C> The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Amer. Math. Soc. 1980 37 Proc. Sympos. Pure Math. 271–277
Providence, R.I.
CM80b 604593 (82a:20030) 20D08
LarissaQueen Modular functions and finite simple groups The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Amer. Math. Soc. 1980 37 Proc. Sympos. Pure Math. 561–566
Providence, R.I.
CM80b 604634 (82g:20042) 20D08 (10D05 20G30)
Charles C.Sims How to construct a Baby Monster Proceedings of the Symposium held at the University of Durham, Durham, July 31–August 10, 1978 Academic Press Inc. [Harcourt Brace Jovanovich Publishers] 1980 339–345
London
Col80
S. A.Syskin <C><M>3</M></C>-characterization of the <C>O</C>'<C>N</C>an-<C>S</C>ims group Mat. Sb. (N.S.) 1981 114(156) 3 471–478, 480 Russian 0368-8666 610210 (82f:20036) 20D08 M. Herzog Matematicheskiĭ Sbornik. Novaya Seriya
J.Tits Quaternions over <C><M>{\bf Q}(\sqrt{{5}})</M></C>, <C>L</C>eech's lattice and the sporadic group of <C>H</C>all-<C>J</C>anko J. Algebra 1980 63 1 56–75 0021-8693 568564 (82k:20034) 20D08 (10E20) II J. H. Lindsey JALGA4 Journal of Algebra
Steven B.Assa A characterization of <C><M>M(22)</M></C> J. Algebra 1981 69 2 455–466 0021-8693 617089 (82g:20032) 20D05 (20D08) Gerard M. Enright JALGA4 Journal of Algebra
David C.Hunt A computer-based atlas of finite simple groups The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Amer. Math. Soc. 1980 37 Proc. Sympos. Pure Math. 507–510
Providence, R.I.
CM80b 604629 (82a:20022) 20C30 (20D08)
J.Lepowsky Euclidean <C>L</C>ie algebras and the modular function <C><M>j</M></C> The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Amer. Math. Soc. 1980 37 Proc. Sympos. Pure Math. 567–570
Providence, R.I.
CM80b 604635 (82h:17010) 17B65 (20D08) S. Milne
V. I.Loginov A note on finite groups that admit coprime automorphisms Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1980 6 58–61, 118 Russian. English summary 0201-7385 602689 (82b:20028) 20D10 (20D08) Vestnik Moskovskogo Universiteta. Seriya I. Matematika, Mekhanika
A. P.Ogg Modular functions The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Amer. Math. Soc. 1980 37 Proc. Sympos. Pure Math. 521–532
Providence, R.I.
CM80b 604631 (82h:10037) 10D05 (20D08) David Goss
ArthurReifart GernotStroth Some simple groups with <C><M>2</M></C>-local <C><M>3</M></C>-rank at most <C><M>3</M></C> J. Algebra 1980 64 1 102–139 0021-8693 575786 (82d:20019) 20D05 (20D08) Stephen D. Smith JALGA4 Journal of Algebra
Gary M.Seitz Some standard groups J. Algebra 1981 70 1 299–302 0021-8693 618396 (82g:20037) 20D05 (20D08) Gerard M. Enright JALGA4 Journal of Algebra
J. G.Thompson A finiteness theorem for subgroups of <C><M>{\rm PSL}(2,\,{\bf R})</M></C> which are commensurable with <C><M>{\rm PSL}(2,\,{\bf Z})</M></C> The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Amer. Math. Soc. 1980 37 Proc. Sympos. Pure Math. 533–555
Providence, R.I.
CM80b 604632 (82b:20067) 20H05 (10D07 20D08 22E40) James E. Humphreys
J. G.Thompson Finite-dimensional representations of free products with an amalgamated subgroup J. Algebra 1981 69 1 146–149 0021-8693 613864 (82e:20007) 20C15 (20D08) Stephen D. Smith JALGA4 Journal of Algebra
Tran VanTrung Eine <C>K</C>ennzeichnung der endlichen einfachen <C>G</C>ruppe <C><M>J_4</M></C> von <C>J</C>anko durch eine <C><M>2</M></C>-lokale <C>U</C>ntergruppe Rend. Sem. Mat. Univ. Padova 1980 62 35–45 0041-8994 582939 (82f:20035) 20D05 (20D08) Bernd Baumann Rendiconti del Seminario Matematico dell'Università di Padova
A. R.Calderbank David B.Wales A global code invariant under the <C>H</C>igman-<C>S</C>ims group J. Algebra 1982 75 1 233–260 0021-8693 650419 (83d:20011) 20D08 (94B05) L. Dornhoff JALGA4 Journal of Algebra
K. B.Tchakerian The maximal subgroups of the <C>T</C>its simple group C. R. Acad. Bulgare Sci. 1981 34 12 1637 0366-8681 655846 (83e:20023) 20D08 CRABAA Doklady Bolgarskoĭ Akademii Nauk. Comptes Rendus de l'Académie Bulgare des Sciences
Stephen L.Davis RonaldSolomon Some sporadic characterizations Comm. Algebra 1981 9 17 1725–1742 0092-7872 631885 (83a:20024) 20D08 David C. Hunt COALDM Communications in Algebra
Jiong ShengLi The commutators of the small <C>J</C>anko group <C><M>J_1</M></C> J. Math. (Wuhan) 1981 1 2 175–179 Chinese 0255-7797 647861 (83j:20029) 20D08 Journal of Mathematics. Shuxue Zazhi
V. D.Mazurov Characterization of the <C>R</C>udvalis group Mat. Zametki 1982 31 3 321–338, 473 Russian, English translation: Math. Notes 31 (1982), no. 3–4, 165–173 0025-567X 652837 (83f:20015) 20D08 József Pelikán Akademiya Nauk Soyuza SSR. Matematicheskie Zametki
S. A.Syskin Abstract properties of sporadic simple groups Uspekhi Mat. Nauk 1980 35 5(215) 181–212, 272 Russian, English translation: Russian Math. Surveys 35 (1980), no. 5, 209–246 0042-1316 595144 (83c:20027) 20D08 Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk
M. F.Worboys Generators for the sporadic group <C><M>{\rm Co}_3</M></C> as a <C><M>(2,\,3,\,7)</M></C> group Proc. Edinburgh Math. Soc. (2) 1982 25 1 65–68 0013-0915 648901 (83h:20023) 20D08 Gerard M. Enright PEMSA3 Proceedings of the Edinburgh Mathematical Society. Series II
FrancisBuekenhout Diagrams for geometries and groups J. Combin. Theory Ser. A 1979 27 2 121–151 0097-3165 542524 (83f:51003) 51A05 (20D08 51J05) Joseph A. Thas JCBTA7 Journal of Combinatorial Theory. Series A
Kai NahCheng DieterHeld Finite groups with a standard component of type <C><M>L_3(4)</M></C>. <C>I</C> Rend. Sem. Mat. Univ. Padova 1981 65 59–75 (1982) 0041-8994 653283 (83h:20020) 20D05 (20D08) Gerard M. Enright Rendiconti del Seminario Matematico dell'Università di Padova
JózsefDénes Ki HangKim Simple groups and <C>B</C>oolean matrices An. Fac. Ciênc. Univ. Porto 1980 62 1-4 5–7 0374-521X 663063 (83j:20028) 20D06 (05C25 20D08) AFPOAI Anais de Faculdade de Ciências. Universidade do Porto
DavidFord JohnMcKay Representations and <C>C</C>oxeter graphs The geometric vein Springer 1981 549–554
New York
DGS81 661802 (83h:20010) 20C15 (20D08)
KoichiroHarada On a commutative nonassociative algebra associated with a multiply transitive group J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1981 28 3 843–849 (1982) 0040-8980 656059 (83g:20005) 20B25 (20D08) V. D. Mazurov JFTMAT Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics
J. F.Humphreys The projective characters of the <C>M</C>athieu group <C><M>M_{22}</M></C> J. Algebra 1982 76 1 1–24 0021-8693 659207 (83g:20015) 20C25 (20D08) V. D. Mazurov JALGA4 Journal of Algebra
J. F.Humphreys The modular characters of the <C>H</C>igman-<C>S</C>ims simple group Proc. Roy. Soc. Edinburgh Sect. A 1982 92 3-4 319–335 0308-2105 677491 (83m:20017) 20C20 (20D08) M. Herzog PEAMDU Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences
V. G.Kac Infinite-dimensional algebras, <C>D</C>edekind's <C><M>η</M></C>-function, classical <C>M</C>öbius function and the very strange formula Adv. in Math. 1978 30 2 85–136 0001-8708 513845 (83a:17014a) 17B65 (10A45 20D08) Ronald C. King ADMTA4 Advances in Mathematics
V. G.Kac An elucidation of: <Wrap Name="IntRef">``<C>I</C>nfinite-dimensional algebras, <C>D</C>edekind's <C><M>η</M></C>-function, classical <C>M</C>öbius function and the very strange formula''</Wrap>. <C><M>E_8^{(1)}</M></C> and the cube root of the modular invariant <C><M>j</M></C> Adv. in Math. 1980 35 3 264–273 0001-8708 563927 (83a:17014b) 17B65 (10A45 20D08) Ronald C. King ADMTA4 Advances in Mathematics Kac78
``A note on the Mathieu groups M_{12} and M_{23}''
GabrieleKorchmáros The line ovals of the <C>L</C>üneburg plane of order <C><M>2^{2r}</M></C> that can be transformed into themselves by a collineation group isomorphic to the simple group <C><M>{\rm Sz}(2^r)</M></C> of <C>S</C>uzuki Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8) 1979 15 6 293–315 0365-0286 560152 (83c:51005) 51A40 (05B25 20D08) C. W. L. Garner AALMAP Atti della Accademia Nazionale dei Lincei. Memorie. Classe di Scienze Fisiche, Matematiche e Naturali. Sezione Ia. Matematica, Meccanica, Astronomia, Geodesia e Geofisica. Serie VIII
LarissaQueen Modular functions arising from some finite groups Math. Comp. 1981 37 156 547–580 0025-5718 628715 (83d:20008) 20C15 (10D07 20D08) Leo J. Alex MCMPAF Mathematics of Computation
Mark A.Ronan Coverings of certain finite geometries Finite geometries and designs (Proc. Conf., Chelwood Gate, 1980) Cambridge Univ. Press 1981 49 London Math. Soc. Lecture Note Ser. 316–331
Cambridge
CHH81 627510 (83b:51015) 51E99 (05B25 20D08) Francis Buekenhout
RichardWeiss On the geometry of <C>J</C>anko's group <C><M>J_3</M></C> Arch. Math. (Basel) 1982 38 5 410–419 0003-889X 666912 (83k:05054) 05C25 (20D08 20F32 51J05) Jürgen Bierbrauer ACVMAL Archiv der Mathematik. Archives of Mathematics. Archives Mathématiques
MichelBroué MichelEnguehard <C>G</C>éométrie de <C>G</C>raham <C>H</C>igman et groupe de <C>H</C>igman-<C>S</C>ims Séminaire sur les groupes finis. Tome I Université de Paris VII U.E.R. de Mathématiques 1983 14 Publications Mathématiques de l'Université Paris VII [Mathematical Publications of the University of Paris VII] 1–49
Paris
MichelBroué <C>G</C>roupes finis, séries formelles et fonctions modulaires Séminaire sur les groupes finis. Tome I Université de Paris VII U.E.R. de Mathématiques 1983 14 Publications Mathématiques de l'Université Paris VII [Mathematical Publications of the University of Paris VII] 105–127
Paris
DanielFrohardt A trilinear form for the third <C>J</C>anko group J. Algebra 1983 83 2 349–379 0021-8693 714249 (84m:20023) 20D08 Michael Wester JALGA4 Journal of Algebra
Robert L.Griess Jr. The friendly giant Invent. Math. 1982 69 1 1–102 0020-9910 671653 (84m:20024) 20D08 George Glauberman INVMBH Inventiones Mathematicae
Robert A.Wilson The quaternionic lattice for <C><M>2G_2(4)</M></C> and its maximal subgroups J. Algebra 1982 77 2 449–466 0021-8693 673128 (84f:20020) 20D08 (20D45) James F. Hurley JALGA4 Journal of Algebra
ThomasBeth DieterJungnickel Mathieu groups, <C>W</C>itt designs, and <C>G</C>olay codes Geometries and groups (Berlin, 1981) Springer 1981 893 Lecture Notes in Math. 157–179
Berlin
AJ81 655063 (84a:05009) 05B25 (20D08 51E05) Robert A. Liebler
F.Buekenhout Geometries for the <C>M</C>athieu group <C><M>M_{12}</M></C> Combinatorial theory (Schloss Rauischholzhausen, 1982) Springer 1982 969 Lecture Notes in Math. 74–85
Berlin
JV82 692234 (84h:51034) 51E25 (05B25 20D08)
Colin M.Campbell Edmund F.Robertson The efficiency of simple groups of order <C><M>< 10^5</M></C> Comm. Algebra 1982 10 2 217–225 0092-7872 674990 (84g:20028) 20D06 (20D08 20F05) Gerard M. Enright COALDM Communications in Algebra
LinoDi Martino M. ChiaraTamburini Bellani Do finite simple groups always contain subgroups which are not intersection of maximal subgroups? Istit. Lombardo Accad. Sci. Lett. Rend. A 1980 114 65–72 (1982) Italian summary 0021-2504 698670 (84i:20018) 20D06 (20D08) Gerard M. Enright Istituto Lombardo. Accademia di Scienze e Lettere. Rendiconti. Scienze Matematiche, Fisiche, Chimiche e Geologiche. A
J. F.Humphreys Projective character tables for the finite simple groups of order less than one million Comm. Algebra 1983 11 7 725–751 0092-7872 694599 (84e:20012) 20C25 (20D06 20D08) W. J. Wong COALDM Communications in Algebra
JamesLepowsky ArneMeurman An <C><M>E_8</M></C>-approach to the <C>L</C>eech lattice and the <C>C</C>onway group J. Algebra 1982 77 2 484–504 0021-8693 673130 (84a:10033) 10E30 (17B10 20D08 94B40) N. J. A. Sloane JALGA4 Journal of Algebra
A.Reifart G.Stroth On finite simple groups containing perspectivities Geom. Dedicata 1982 13 1 7–46 0046-5755 679214 (84g:20005) 20B25 (20D08 51A10) Ascher Wagner GEMDAT Geometriae Dedicata
Gerhard J. A.Schneider The vertices of the simple modules of <C><M>M_{12}</M></C> over a field of characteristic <C><M>2</M></C> J. Algebra 1983 83 1 189–200 0021-8693 710594 (84i:20013) 20C20 (20D08) P. Donovan JALGA4 Journal of Algebra
RichardWeiss A geometric construction of <C>J</C>anko's group <C><M>J_3</M></C> Math. Z. 1982 179 1 91–95 0025-5874 643049 (84i:05062) 05C25 (05B25 20D08) MAZEAX Mathematische Zeitschrift
AlmaD'Aniello On the existence of self-normalizing nilpotent subgroups in some simple groups. <C>I</C> Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 1982 73 6 203–206 (1983) Italian. English summary 0392-7881 739389 (85g:20022a) 20D08 (20D10) R. Schmidt AANLAW Atti della Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze Fisiche, Matematiche e Naturali. Serie VIII
AlmaD'Aniello On the existence of self-normalizing nilpotent subgroups in some simple groups. <C>II</C> Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 1983 74 1 1–6 Italian. English summary 0392-7881 739392 (85g:20022b) 20D08 (20D10) R. Schmidt AANLAW Atti della Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze Fisiche, Matematiche e Naturali. Serie VIII
I. B.Frenkel J.Lepowsky A.Meurman A natural representation of the <C>F</C>ischer-<C>G</C>riess <C>M</C>onster with the modular function <C><M>J</M></C> as character Proc. Nat. Acad. Sci. U.S.A. 1984 81 10, Phys. Sci. 3256–3260 0027-8424 747596 (85e:20018) 20D08 (17B67 20C20) PNASA6 Proceedings of the National Academy of Sciences of the United States of America
RichardLyons The <C>S</C>chur multiplier of <C><M>F_3</M></C> is trivial Comm. Algebra 1984 12 15-16 1889–1898 0092-7872 745173 (85e:20019) 20D08 M. E. Harris COALDM Communications in Algebra
M. A.Ronan G.Stroth Minimal parabolic geometries for the sporadic groups European J. Combin. 1984 5 1 59–91 0195-6698 746047 (85e:20020) 20D08 (51B25 51E25) W. M. Kantor European Journal of Combinatorics
HiroyoshiYamaki A conjecture of <C>F</C>robenius and the sporadic simple groups Comm. Algebra 1983 11 22 2513–2518 0092-7872 733339 (85k:20049) 20D08 Richard M. Thomas COALDM Communications in Algebra
R. E.Borcherds J. H.Conway L.Queen N. J. A.Sloane A monster <C>L</C>ie algebra? Adv. in Math. 1984 53 1 75–79 0001-8708 748897 (85j:17024) 17B67 (11H06 20D08) O. V. Shvartsman ADMTA4 Advances in Mathematics
Colin M.Campbell Edmund F.Robertson Presentations for the simple groups <C><M>G</M></C>, <C><M>10^5 < |G| < 10^6</M></C> Comm. Algebra 1984 12 21-22 2643–2663 0092-7872 757785 (85m:20020) 20D06 (20-04 20D08 20F05) David C. Hunt COALDM Communications in Algebra
R. T.Curtis Eight octads suffice J. Combin. Theory Ser. A 1984 36 1 116–123 0097-3165 728509 (85b:05030) 05B05 (20D08) T. S. Griggs JCBTA7 Journal of Combinatorial Theory. Series A
GeoffreyMason Stephen D.Smith Minimal <C><M>2</M></C>-local geometries for the <C>H</C>eld and <C>R</C>udvalis sporadic groups J. Algebra 1982 79 2, part 1 286–306 0021-8693 682880 (85b:20004) 20B25 (20D08 51E20) W. M. Kantor JALGA4 Journal of Algebra
WernerMeyer WolframNeutsch Über <C><M>5</M></C>-<C>D</C>arstellungen der <C>L</C>yonsgruppe Math. Ann. 1984 267 4 519–535 0025-5831 742897 (85k:20038) 20C20 (20D08 51E20) Stephen D. Smith MAANA Mathematische Annalen
J. H.Conway A simple construction for the <C>F</C>ischer-<C>G</C>riess monster group Invent. Math. 1985 79 3 513–540 0020-9910 782233 (86h:20019) 20D08 Geoffrey Mason INVMBH Inventiones Mathematicae
LinoDi Martino Maria ChiaraTamburini Bellani On the solvability of finite <C>IM</C>-groups Istit. Lombardo Accad. Sci. Lett. Rend. A 1981 115 235–242 (1984) Italian summary 0021-2504 780472 (86g:20020) 20D08 (20F99) G. Zappa Istituto Lombardo. Accademia di Scienze e Lettere. Rendiconti. Scienze Matematiche e Applicazioni. A
D. G.Flaass <C><M>2</M></C>-local subgroups of <C>F</C>ischer groups Mat. Zametki 1984 35 3 333–342 Russian 0025-567X 741800 (86a:20014) 20D08 József Pelikán Akademiya Nauk SSSR. Matematicheskie Zametki
Igor B.Frenkel JamesLepowsky ArneMeurman A moonshine module for the <C>M</C>onster Vertex operators in mathematics and physics (Berkeley, Calif., 1983) Springer 1985 3 Math. Sci. Res. Inst. Publ. 231–273
New York
LMS85 781381 (86m:20024) 20D08 (17B10 17B67) Alex Jay Feingold
D.Frohardt Toward the construction of an algebra for <C>O</C>'<C>N</C>an's group Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge Univ. Press 1985 107–110
Cambridge
AGLetal85 817241 20D08 (20C20)
D. F.Holt The triviality of the multiplier of <C>T</C>hompson's group <C><M>F_3</M></C> J. Algebra 1985 94 2 317–323 0021-8693 792957 (86f:20017) 20D08 (20E32 20F05) Ulrich Dempwolff JALGA4 Journal of Algebra
MasaakiKitazume A <C><M>2</M></C>-local geometry for the <C>F</C>ischer group <C><M>F_{24}</M></C> J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1984 31 1 59–79 0040-8980 743519 (86e:20016) 20D08 (20F32 51E30) Stephen D. Smith JFTMAT Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics
R. J.List M. A.Salman On the representation of <C>C</C>onway's group in <C><M>{\rm O}^+_{24}(2)</M></C> Geom. Dedicata 1984 17 2 185–188 0046-5755 771195 (86c:20020) 20D08 Geoffrey Mason GEMDAT Geometriae Dedicata
A. A.Makhnëv A characterization of the <C>T</C>its simple group Groups and other algebraic systems with finiteness conditions ``Nauka'' Sibirsk. Otdel. 1984 4 Trudy Inst. Mat. 28–49
Novosibirsk
Russian Mer84 755885 (86k:20012) 20D08 V. Mazurov
WernerMeyer WolframNeutsch RichardParker The minimal <C><M>5</M></C>-representation of <C>L</C>yons' sporadic group Math. Ann. 1985 272 1 29–39 0025-5831 794089 (86i:20025) 20D08 R. W. Carter MAANA Mathematische Annalen
S. P.Norton More on moonshine Computational group theory (Durham, 1982) Academic Press 1984 185–193
London
Atk84 760657 (86h:20020) 20D08
ArunasRudvalis A rank <C><M>3</M></C> simple group of order <C><M>2^{14} \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 13 \cdot 29</M></C>. <C>I</C> J. Algebra 1984 86 1 181–218 0021-8693 727376 (86f:20018a) 20D08 (20E32) D. Wales JALGA4 Journal of Algebra
ArunasRudvalis A rank <C><M>3</M></C> simple group <C><M>G</M></C> of order <C><M>2^{14} \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 13 \cdot 29</M></C>. <C>II</C>. <C>C</C>haracters of <C><M>G</M></C> and <C><M>\hat{{G}}</M></C> J. Algebra 1984 86 1 219–258 0021-8693 727377 (86f:20018b) 20D08 (20E32) D. Wales JALGA4 Journal of Algebra
G.Stroth S. K.Wong Minimal parabolic systems involving <C><M>S_5</M></C> and <C><M>S_3</M></C> Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge Univ. Press 1985 225–228
Cambridge
AGLetal85 817254 20D08 (20G05 20G40)
J.Tits On <C>R</C>. <C>G</C>riess' ``friendly giant'' Invent. Math. 1984 78 3 491–499 0020-9910 768989 (86f:20019) 20D08 Stephen D. Smith INVMBH Inventiones Mathematicae
JacquesTits Le <C>M</C>onstre (d'après <C>R</C>. <C>G</C>riess, <C>B</C>. <C>F</C>ischer et al.) Astérisque 1985 121-122 105–122 Seminar Bourbaki, Vol. 1983/84 0303-1179 768956 (86j:20014) 20D08 P. Fong Astérisque
Robert A.Wilson The maximal subgroups of the <C>L</C>yons group Math. Proc. Cambridge Philos. Soc. 1985 97 3 433–436 0305-0041 778677 (86e:20017) 20D08 Geoffrey Mason MPCPCO Mathematical Proceedings of the Cambridge Philosophical Society b
SatoshiYoshiara The maximal subgroups of the sporadic simple group of <C>O</C>'<C>N</C>an J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1985 32 1 105–141 0040-8980 783183 (86m:20025) 20D08 Mark A. Ronan JFTMAT Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics
KenziAkiyama A note on the <C>M</C>athieu groups <C><M>M_{12}</M></C> and <C><M>M_{23}</M></C> Bull. Central Res. Inst. Fukuoka Univ. 1983 66 1–5 0287-0002 730316 (86m:20003a) 20B10 (20D08) Bulletin of Central Research Institute Fukuoka University
KenziAkiyama Corrections and supplements to: <Wrap Name="IntRef">``<C>A</C> note on the <C>M</C>athieu groups <C><M>M_{12}</M></C> and <C><M>M_{23}</M></C>''</Wrap> Fukuoka Univ. Sci. Rep. 1984 14 2 53–59 0386-118X 771175 (86m:20003b) 20B10 (20D08) Fukuoka University Science Reports Aki83
M.Aschbacher R.Guralnick Some applications of the first cohomology group J. Algebra 1984 90 2 446–460 0021-8693 760022 (86m:20060) 20J06 (20C15 20D08) W. Kimmerle JALGA4 Journal of Algebra
J. L.Brenner R. M.Guralnick JamesWiegold Two-generator groups. <C>III</C> Contributions to group theory Amer. Math. Soc. 1984 33 Contemp. Math. 82–89
Providence, RI
ARS84 767101 (86f:20030) 20F05 (20D08) H. Heineken
Patrick L. H.Brooke On matrix representations and codes associated with the simple group of order <C><M>25920</M></C> J. Algebra 1984 91 2 536–566 0021-8693 769588 (86d:20012) 20C20 (20B25 20D08 94B99) Jürgen Bierbrauer JALGA4 Journal of Algebra
Colin M.Campbell Edmund F.Robertson On the simple groups of order less than <C><M>10^5</M></C> Groups—Korea 1983 (Kyoungju, 1983) Springer 1984 1098 Lecture Notes in Math. 15–20
Berlin
KN84 781353 (86g:20018) 20D06 (20D08 20F05) Gerard M. Enright
A. N.Fëdorov Quasi-identities of finite simple groups Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1983 5 16–18 Russian, English translation: Moscow Univ. Math. Bull. 38 (1983), no. 5, 17–20 0201-7385 722443 (86a:20013) 20D06 (08B05 20D08) Vestnik Moskovskogo Universiteta. Seriya I. Matematika, Mekhanika
D. R.Hughes A combinatorial construction of the small <C>M</C>athieu designs and groups Algebraic and geometric combinatorics North-Holland 1982 65 North-Holland Math. Stud. 259–264
Amsterdam
Men82 772601 (86j:05028) 05B05 (20D08)
John F.Humphreys The <C>S</C>chur multiplier of the automorphism group of the <C>M</C>athieu group <C><M>M_{22}</M></C> Rocky Mountain J. Math. 1985 15 1 155–156 0035-7596 779259 (86e:20013) 20C25 (20D08 20F28) Henry S. Leonard, Jr. RMJMAE The Rocky Mountain Journal of Mathematics
A. I.Kostrikin The mathematical heritage of <C>O</C>. <C>Y</C>u. <C>S</C>hmidt Algebra Moskov. Gos. Univ. 1982 3–6
Moscow
Russian Kos82a 790697 (86h:01058) 01A60 (20D08) E. G. Giessmann
G.Mason Modular forms and the theory of <C>T</C>hompson series Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) 1985 391–407
Cambridge
Cambridge Univ. Press AGLetal85 817271 11F11 (11F33 20C30 20D08)
A.Neumaier Rectagraphs, diagrams, and <C>S</C>uzuki's sporadic simple group Algebraic and geometric combinatorics North-Holland 1982 65 North-Holland Math. Stud. 305–318
Amsterdam
Men82 772605 (86b:51024) 51E25 (05C25 20D08) Francis Buekenhout
Cheryl E.Praeger Symmetric graphs and the classification of the finite simple groups Groups—Korea 1983 (Kyoungju, 1983) Springer 1984 1098 Lecture Notes in Math. 99–110
Berlin
KN84 781363 (86f:05069) 05C25 (20B15 20D08) Norman Biggs
Thomas M.Thompson From error-correcting codes through sphere packings to simple groups Mathematical Association of America 1983 21 Carus Mathematical Monographs
Washington, DC
0-88385-023-0 749038 (86j:94002) 94-03 (01A60 11T71 20D08 52A45 94Bxx) M. Răduică xiv+228
JacquesTits Symétries C. R. Acad. Sci. Sér. Gén. Vie Sci. 1985 2 1 13–25 0762-0969 795679 (86i:20001) 20-01 (12F10 20D08) H. S. M. Coxeter Comptes Rendus de l'Académie des Sciences. Série Générale. La Vie des Sciences
Robert A.Wilson The maximal subgroups of <C>C</C>onway's group <C><M>{\rm Co}_1</M></C> J. Algebra 1983 85 1 144–165 0021-8693 723071 (86b:20015) 20D05 (20D08) JALGA4 Journal of Algebra a
Robert A.Wilson The maximal subgroups of <C>C</C>onway's group <M>\cdot 2</M> J. Algebra 1983 84 1 107–114 0021-8693 716772 (86e:20034a) 20E28 (20D08) Stephen D. Smith JALGA4 Journal of Algebra b
Robert A.Wilson The complex <C>L</C>eech lattice and maximal subgroups of the <C>S</C>uzuki group J. Algebra 1983 84 1 151–188 0021-8693 716777 (86e:20034b) 20E28 (20D08) Stephen D. Smith JALGA4 Journal of Algebra c
Robert A.Wilson On maximal subgroups of the <C>F</C>ischer group <C><M>{\rm Fi}_{22}</M></C> Math. Proc. Cambridge Philos. Soc. 1984 95 2 197–222 0305-0041 735364 (86e:20036) 20E28 (20D08) Gerard M. Enright MPCPCO Mathematical Proceedings of the Cambridge Philosophical Society b
Robert A.Wilson The geometry and maximal subgroups of the simple groups of <C>A</C>. <C>R</C>udvalis and <C>J</C>. <C>T</C>its Proc. London Math. Soc. (3) 1984 48 3 533–563 0024-6115 735227 (86e:20035) 20E28 (20C30 20D08) David C. Hunt PLMTAL Proceedings of the London Mathematical Society. Third Series a
MichaelAschbacher Overgroups of <C>S</C>ylow subgroups in sporadic groups Mem. Amer. Math. Soc. 1986 60 343 iv+235 0065-9266 831891 (87e:20037) 20D08 (20B25 20D05) Gernot Stroth MAMCAU Memoirs of the American Mathematical Society
FrancisBuekenhout Diagram geometries for sporadic groups Finite groups—coming of age (Montreal, Que., 1982) Amer. Math. Soc. 1985 45 Contemp. Math. 1–32
Providence, RI
McK85 822231 (87d:20019) 20D08 (51B25) S. V. Tsaranov
Kerope B.Tchakerian The maximal subgroups of the <C>T</C>its simple group Pliska Stud. Math. Bulgar. 1986 8 85–93 0204-9805 866648 (87m:20050) 20D08 (20E28) Geoffrey Mason Pliska Studia Mathematica Bulgarica
LinoDi Martino Mathieu groups Note Mat. 1984 4 2 149–435 (1985) Italian 1123-2536 820420 (87a:20015) 20D08 Jürgen Bierbrauer Note di Matematica
I. B.Frenkel J.Lepowsky A.Meurman An <C><M>E_8</M></C>-approach to <C><M>F_1</M></C> Finite groups—coming of age (Montreal, Que., 1982) Amer. Math. Soc. 1985 45 Contemp. Math. 99–120
Providence, RI
McK85 822236 (87e:20038) 20D08 (17B25) O. V. Shvartsman
I. B.Frenkel J.Lepowsky A.Meurman An introduction to the <C>M</C>onster Workshop on unified string theories (Santa Barbara, Calif., 1985) World Sci. Publishing 1986 533–546
Singapore
GG86 849120 20D08
Robert L.Griess Jr. The <C>M</C>onster and its nonassociative algebra Finite groups—coming of age (Montreal, Que., 1982) Amer. Math. Soc. 1985 45 Contemp. Math. 121–157
Providence, RI
McK85 822237 (87f:20025) 20D08 Geoffrey Mason
R. L.Griess Jr. Schur multipliers of the known finite simple groups. <C>III</C> Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge Univ. Press 1985 69–80
Cambridge
DGM86 817238 (87g:20027) 20D08 (20C25) R. W. Carter
Jonathan I.Hall MarshallHall Jr. Geometry of the <C>H</C>all-<C>J</C>anko group Proceedings of the conference on groups and geometry, Part B (Madison, Wis., 1985) 1985 2 390–398 COS85 0741-9937 852415 (87m:20051) 20D08 (51E30) Geoffrey Mason Algebras, Groups and Geometries Algebras Groups Geom. Jian HuaHuang A characterization of the <C><M>2</M></C>-local subgroups of <C>R</C>udvalis group and <C>H</C>igman-<C>S</C>ims group Group theory, Beijing 1984 Springer 1986 1185 Lecture Notes in Math. 289–307
Berlin
Dua86 842449 (87g:20028) 20D08 Gernot Stroth
David C.Hunt Rational rigidity and the sporadic groups J. Algebra 1986 99 2 577–592 0021-8693 837564 (87h:20036) 20D08 Koichiro Harada JALGA4 Journal of Algebra
A. A.Ivanov S. V.Tsaranov S. V.Shpektorov Maximal subgroups of the <C>O</C>'<C>N</C>an-<C>S</C>ims sporadic simple group and its automorphism group Dokl. Akad. Nauk SSSR 1986 291 4 777–780 Russian, English translation: Soviet Math. Dokl. 34 (1987), no. 3, 534–537 0002-3264 871938 (87m:20052) 20D08 (20E28) V. D. Mazurov Doklady Akademii Nauk SSSR
L. S.Kazarin A problem of <C>S</C>. <C>A</C>. <C>C</C>hunikhin Studies in group theory Akad. Nauk SSSR Ural. Nauchn. Tsentr 1984 81–99, 151
Sverdlovsk
Russian Sta84 818998 (87c:20042) 20D08 V. D. Mazurov
V. D.Mazurov N. P.Mazurova Large subgroups of the simple group <C><M>F_2</M></C> Mat. Zametki 1985 37 2 145–151, 299 Russian 0025-567X 784358 (87a:20016) 20D08 (20-04) József Pelikán Akademiya Nauk SSSR. Matematicheskie Zametki
S. P.Norton The uniqueness of the <C>F</C>ischer-<C>G</C>riess <C>M</C>onster Finite groups—coming of age (Montreal, Que., 1982) Amer. Math. Soc. 1985 45 Contemp. Math. 271–285
Providence, RI
McK85 822242 (87b:20025) 20D08 (20D05) Koichiro Harada
M. A.Ronan Buildings and sporadic groups Finite groups—coming of age (Montreal, Que., 1982) Amer. Math. Soc. 1985 45 Contemp. Math. 295–301
Providence, RI
McK85 822244 (87d:20020) 20D08 (51B25) S. V. Tsaranov
L. A.Rosati Buildings and the geometry of diagrams Springer-Verlag 1986 1181 Lecture Notes in Mathematics
Berlin
Lectures given at the third 1984 session of the Centro Internazionale Matematico Estivo (CIME) held in Como, August 26–September 4, 1984 3-540-16466-9 843388 (87d:51001) 51-06 (00A11 05-06 20-06 20D05 20D08 20E32 51B05) viii+269
Stephen D.Smith On the head characters of the <C>M</C>onster simple group Finite groups—coming of age (Montreal, Que., 1982) Amer. Math. Soc. 1985 45 Contemp. Math. 303–313
Providence, RI
McK85 822245 (87h:20037) 20D08 Geoffrey Mason
G.Stroth Parabolics in finite groups Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge Univ. Press 1985 211–223
Cambridge
AGLetal85 817253 (87d:20021) 20D08 (20-02 20G40) Francis Buekenhout
Robert A.Wilson The maximal subgroups of the <C>O</C>'<C>N</C>an group J. Algebra 1985 97 2 467–473 0021-8693 812997 (87d:20022) 20D08 József Pelikán JALGA4 Journal of Algebra c
Robert A.Wilson Maximal subgroups of automorphism groups of simple groups J. London Math. Soc. (2) 1985 32 3 460–466 0024-6107 825921 (87a:20017) 20D08 (20D45) Koichiro Harada JLMSAK Journal of the London Mathematical Society. Second Series a
Robert A.Wilson Is <C><M>J_1</M></C> a subgroup of the <C>M</C>onster? Bull. London Math. Soc. 1986 18 4 349–350 0024-6093 838799 (87i:20030) 20D08 P. Fong LMSBBT The Bulletin of the London Mathematical Society b
Robert A.Wilson The geometry of the <C>H</C>all-<C>J</C>anko group as a quaternionic reflection group Geom. Dedicata 1986 20 2 157–173 0046-5755 833844 (87i:20031) 20D08 (20H15 51F15) Stephen D. Smith GEMDAT Geometriae Dedicata a
HiroyoshiYamaki A conjecture of <C>F</C>robenius and the sporadic simple groups. <C>II</C> Math. Comp. 1986 46 174 609–611, S43–S46 0025-5718 829631 (87i:20033) 20D08 Richard M. Thomas MCMPAF Mathematics of Computation
Z.Arad J.Stavi M.Herzog Powers and products of conjugacy classes in groups Products of conjugacy classes in groups Springer 1985 1112 Lecture Notes in Math. 6–51
Berlin
AH85 783068 20D06 (20A15 20D08)
ZviArad DavidChillag GadiMoran Groups with a small covering number Products of conjugacy classes in groups Springer 1985 1112 Lecture Notes in Math. 222–244
Berlin
AH85 783071 20D06 (20D08 20D60)
V. A.Belonogov A generalization of thin groups Studies in group theory Akad. Nauk SSSR Ural. Nauchn. Tsentr 1984 32–38, 150
Sverdlovsk
Russian Sta84 818992 (87b:20019) 20D05 (20D08) N. D. Podufalov
Richard E.Borcherds Vertex algebras, <C>K</C>ac-<C>M</C>oody algebras, and the <C>M</C>onster Proc. Nat. Acad. Sci. U.S.A. 1986 83 10 3068–3071 0027-8424 843307 (87m:17033) 17B67 (17B10 20D08) S. I. Gelʹfand PNASA6 Proceedings of the National Academy of Sciences of the United States of America
Kai NahCheng DieterHeld Finite groups with a standard-component of type <C><M>L_3(4)</M></C>. <C>II</C> Rend. Sem. Mat. Univ. Padova 1985 73 147–167 0041-8994 799904 (87c:20037) 20D05 (20D08) Gerard M. Enright Rendiconti del Seminario Matematico della Università di Padova. The Mathematical Journal of the University of Padova
WalterFeit Blocks with cyclic defect groups for some sporadic groups Representation theory, II (Ottawa, Ont., 1984) Springer 1986 1178 Lecture Notes in Math. 25–63
Berlin
DGM86 842477 (87e:20023) 20C20 (20D08) J. L. Alperin
J. A.Harvey Twisting the heterotic string Workshop on unified string theories (Santa Barbara, Calif., 1985) World Sci. Publishing 1986 704–718
Singapore
GG86 849133 81G20 (20D08 81E20)
GudrunHoyden-Siedersleben Realisierung der <C>J</C>ankogruppen <C><M>J_1</M></C> und <C><M>J_2</M></C> als <C>G</C>aloisgruppen über <C><M>{\bf Q}</M></C> J. Algebra 1985 97 1 17–22 0021-8693 812166 (87e:12004) 12E05 (11R32 20D08) W. Feit JALGA4 Journal of Algebra
Michael J.Kallaher John B.Fink Sporadic simple groups acting on finite translation planes Finite geometries (Winnipeg, Man., 1984) Dekker 1985 103 Lecture Notes in Pure and Appl. Math. 171–178
New York
BB85 826807 (87k:51025) 51E15 (20B25 20D08 20H15 51A40)
ShimyKarni Covering numbers of groups of small order and sporadic groups Products of conjugacy classes in groups Springer 1985 1112 Lecture Notes in Math. 52–196
Berlin
AH85 783069 20D06 (20C15 20D08 20D60)
MasaoKoike Mathieu group <C><M>M_{24}</M></C> and modular forms Nagoya Math. J. 1985 99 147–157 0027-7630 805086 (87e:11060) 11F11 (11F20 20D08) Marvin I. Knopp NGMJA2 Nagoya Mathematical Journal
A. A.Makhnëv Finite simple groups with a standard subgroup of type <C><M>L_3(4)</M></C> Mat. Zametki 1985 37 1 7–12, 137 Russian 0025-567X 792228 (87e:20034) 20D05 (20D08) Sergei A. Syskin Akademiya Nauk SSSR. Matematicheskie Zametki
GeoffreyMason <C><M>M_{24}</M></C> and certain automorphic forms Finite groups—coming of age (Montreal, Que., 1982) Amer. Math. Soc. 1985 45 Contemp. Math. 223–244
Providence, RI
McK85 822240 (87c:11041) 11F11 (20C15 20D08) Marvin I. Knopp
A. V.Romanovskiĭ Isklyuchitelnye kharaktery konechnykh grupp ``Nauka i Tekhnika'' 1985
Minsk
806958 (87a:20005) 20C15 (20D08 20D20) Gerhard Pazderski 148
Mark A.Ronan Stephen D.Smith Universal presheaves on group geometries, and modular representations J. Algebra 1986 102 1 135–154 0021-8693 853235 (87m:20022) 20C05 (20D08 20G05 51B25 57S30) Guy Rousseau JALGA4 Journal of Algebra
Stephen D.Smith Residual geometries for sporadic and classical groups—a survey Finite groups—coming of age (Montreal, Que., 1982) Amer. Math. Soc. 1985 45 Contemp. Math. 315–334
Providence, RI
McK85 822246 (87d:51010) 51B25 (20D08) Francis Buekenhout
John G.Thompson Some finite groups which appear as <C><M>{\rm Gal}\,L/K</M></C>, where <C><M>K \subseteq{\bf Q}(μ_n)</M></C> J. Algebra 1984 89 2 437–499 0021-8693 751155 (87f:12012) 12F10 (11F80 20D08) B. Heinrich Matzat JALGA4 Journal of Algebra
RichardWeiss A characterization of the group <C><M>\hat{{M}}_{12}</M></C> Proceedings of the conference on groups and geometry, Part B (Madison, Wis., 1985) 1985 2 555–563 COS85 0741-9937 852424 (87k:20010) 20B25 (05C25 20D08) Geoffrey Mason Algebras, Groups and Geometries Algebras Groups Geom.
Andrew J.Woldar On the <C><M>5</M></C>-decomposition matrix for <C>M</C>c<C>L</C>aughlin's sporadic simple group Comm. Algebra 1986 14 2 277–291 0092-7872 817046 (87a:20007) 20C20 (20D08) J. L. Alperin COALDM Communications in Algebra
FrancisBuekenhout SarahRees The subgroup structure of the <C>M</C>athieu group <C><M>M_{12}</M></C> Math. Comp. 1988 50 182 595–605 0025-5718 929556 (88m:20024) 20D08 Koichiro Harada MCMPAF Mathematics of Computation
Ts. R.Gentchev Factorizations of the sporadic simple groups Arch. Math. (Basel) 1986 47 2 97–102 0003-889X 859256 (88f:20031) 20D08 (20D40) ACVMAL Archiv der Mathematik
Robert L.Griess Jr. The <C>S</C>chur multiplier of <C>M</C>c<C>L</C>aughlin's simple group. <C>A</C>ddendum: <Wrap Name="IntRef">``<C>S</C>chur multipliers of the known finite simple groups. <C>III</C>'' [<C>P</C>roceedings of the <C>R</C>utgers group theory year, 1983–1984 (<C>N</C>ew <C>B</C>runswick, <C>N</C>.<C>J</C>., 1983–1984), 69–80, <C>C</C>ambridge <C>U</C>niv. <C>P</C>ress, <C>C</C>ambridge, 1985; <C>MR</C>0817238 (87g:20027)]</Wrap> Arch. Math. (Basel) 1987 48 1 31 0003-889X 878003 (88d:20029) 20D08 (20C25) R. W. Carter ACVMAL Archiv der Mathematik Gri85b
Robert L.Griess Jr. Sporadic groups, code loops and nonvanishing cohomology Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985) 1987 44 191–214 0022-4049 FP87 885104 (88c:20024) 20D08 (20J06 20N05) David Benson JPAAA2 Journal of Pure and Applied Algebra J. Pure Appl. Algebra
A. A.Ivanov S. V.Shpektorov A geometry for the <C>O</C>'<C>N</C>an-<C>S</C>ims group, connected with the <C>P</C>etersen graph Uspekhi Mat. Nauk 1986 41 3(249) 183–184 Russian 0042-1316 854252 (88j:20014) 20D08 (05C25 51B25) Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk
Mohammad I.Khanfar A <C><M>28</M></C>-dimensional representation in <C><M>F_2</M></C> of a subgroup of the <C>R</C>udvalis group Arabian J. Sci. Engrg. 1987 12 2 231–235 Arabic summary 0377-9211 886721 (88g:20026) 20D08 (20F05) Gerard M. Enright AJSEDY Arabian Journal for Science and Engineering
Peter B.Kleidman Robert A.Wilson <C>T</C>he maximal subgroups of <C><M>{\rm Fi}_{22}</M></C> Math. Proc. Cambridge Philos. Soc. 1987 102 1 17–23 0305-0041 886431 (88j:20015a) 20D08 (20E28) Geoffrey Mason MPCPCO Mathematical Proceedings of the Cambridge Philosophical Society
Peter B.Kleidman Robert A.Wilson Corrigendum: <Wrap Name="IntRef">``<C>T</C>he maximal subgroups of <C><M>{\rm Fi}_{22}</M></C>''</Wrap> Math. Proc. Cambridge Philos. Soc. 1988 103 2 383 0305-0041 923691 (88j:20015b) 20D08 (20E28) Geoffrey Mason MPCPCO Mathematical Proceedings of the Cambridge Philosophical Society KW87
N. P.Mazurova Subgroups of large finite groups and a problem of linear optimization Algebra i Logika 1986 25 4 405–414, 494 Russian, English translation: Algebra and Logic 25 (1986), no. 4, 257–260 0373-9252 903552 (88m:20025) 20D08 (90C05) È. M. Palʹchik Akademiya Nauk SSSR. Sibirskoe Otdelenie. Institut Matematiki. Algebra i Logika
S. P.Norton R. A.Wilson Maximal subgroups of the <C>H</C>arada-<C>N</C>orton group J. Algebra 1986 103 1 362–376 0021-8693 860712 (88b:20029) 20D08 (20E28) Geoffrey Mason JALGA4 Journal of Algebra
HerbertPahlings The subgroup structure of the <C>H</C>all-<C>J</C>anko group <C><M>J_2</M></C> Bayreuth. Math. Schr. 1987 23 135–165 0172-1062 882062 (88g:20027) 20D08 (20E07 20E28) Gerard M. Enright Bayreuther Mathematische Schriften
Wu JieShi A characterization of <C><M>J_1</M></C> and <C><M>{\rm PSL}_2(2^n)</M></C> Adv. in Math. (Beijing) 1987 16 4 397–401 Chinese. English summary 1000-0917 915862 (88i:20025) 20D08 (20D06 20G40) Advances in Mathematics. Shuxue Jinzhan
RichardWeiss A characterization and another construction of <C>J</C>anko's group <C><M>J_3</M></C> Trans. Amer. Math. Soc. 1986 298 2 621–633 0002-9947 860383 (88g:20028) 20D08 (05C25 20F05) Richard M. Thomas TAMTAM Transactions of the American Mathematical Society
R. A.Wilson Maximal subgroups of sporadic groups Proceedings of groups—St. Andrews 1985 Cambridge Univ. Press 1986 121 London Math. Soc. Lecture Note Ser. 352–358
Cambridge
RC86 896534 (88e:20016) 20D08 (20E28) Koichiro Harada c
Robert A.Wilson Some subgroups of the <C>B</C>aby <C>M</C>onster Invent. Math. 1987 89 1 197–218 0020-9910 892191 (88d:20030) 20D08 (20E28) Bernd Baumann INVMBH Inventiones Mathematicae a
Robert A.Wilson The local subgroups of the <C>F</C>ischer groups J. London Math. Soc. (2) 1987 36 1 77–94 0024-6107 897676 (88k:20037) 20D08 Geoffrey Mason JLMSAK Journal of the London Mathematical Society. Second Series b
Robert A.Wilson The odd-local subgroups of the <C>M</C>onster J. Austral. Math. Soc. Ser. A 1988 44 1 1–16 0263-6115 914399 (88k:20038) 20D08 Gernot Stroth JAMADS Australian Mathematical Society. Journal. Series A. Pure Mathematics and Statistics a
Robert A.Wilson Some subgroups of the <C>T</C>hompson group J. Austral. Math. Soc. Ser. A 1988 44 1 17–32 0263-6115 914400 (88k:20039) 20D08 Gernot Stroth JAMADS Australian Mathematical Society. Journal. Series A. Pure Mathematics and Statistics c
Andrew J.Woldar On the maximal subgroups of <C>L</C>yons' group Comm. Algebra 1987 15 6 1195–1203 0092-7872 882949 (88b:20030) 20D08 (20E28) Koichiro Harada COALDM Communications in Algebra
L. B.Beasley J. L.Brenner Two-generator groups. <C>IV</C>. <C>C</C>onjugate pairs of generators in <C><M>{\rm PSL}(2,p),\;{\rm PSL}(3,p)</M></C>. <C>T</C>he spread of the <C>M</C>athieu groups. <C>C</C>ospread. <C>O</C>uter dimension Proceedings of the seventeenth Southeastern international conference on combinatorics, graph theory, and computing (Boca Raton, Fla., 1986) 1986 53 95–112 HMSR86 0384-9864 885239 (88f:20052) 20F05 (20D06 20D08 20G40) H. Heineken Congressus Numerantium. A Conference Journal on Numerical Themes Congr. Numer.
OusmaneDiawara Les caractères permutants primitifs du groupe sporadique de <C>M</C>c<C>L</C>aughlin Bull. Soc. Math. Belg. Sér. B 1986 38 2 131–135 0037-9476 871308 (88h:20009) 20C15 (20D08) BMBEAC Bulletin de la Société Mathématique de Belgique. Série B
JohnFink Michael J.Kallaher Simple groups acting on translation planes J. Geom. 1987 29 2 126–139 0047-2468 904569 (88j:51009) 51E15 (20D08 51A40) Ulrich Dempwolff JGMAY3 Journal of Geometry
J. A.Harvey Twisting the heterotic string Lewes string theory workshop (Lewes, Del., 1985) World Sci. Publishing 1986 262–276
Singapore
CH86 848762 81E20 (20D08 83E15)
GudrunHoyden-Siedersleben B. HeinrichMatzat Realisierung sporadischer einfacher <C>G</C>ruppen als <C>G</C>aloisgruppen über <C>K</C>reisteilungskörpern J. Algebra 1986 101 1 273–286 0021-8693 843705 (88d:12001) 12E05 (11R32 20D08) W. Feit JALGA4 Journal of Algebra
A. A.Ivanov I. V.Chuvaeva Action of the group <C><M>M_{12}</M></C> on <C>H</C>adamard matrices Investigations in the algebraic theory of combinatorial objects (Russian) Vsesoyuz. Nauchno-Issled. Inst. Sistem. Issled. 1985 159–169
Moscow
Russian KF85b 921467 (88k:20033) 20C30 (05B20 20D08) E. J. F. Primrose
B. HeinrichMatzat AndreasZeh-Marschke Realisierung der <C>M</C>athieugruppen <C><M>M_{11}</M></C> und <C><M>M_{12}</M></C> als <C>G</C>aloisgruppen über <C><M>{\bf Q}</M></C> J. Number Theory 1986 23 2 195–202 0022-314X 845901 (88c:12008) 12G05 (11R32 20D08) W. Feit JNUTA9 Journal of Number Theory
Th.Ostermann Charaktertafeln von <C>S</C>ylownormalisatoren sporadischer einfacher <C>G</C>ruppen Universität Essen Fachbereich Mathematik 1986 14 Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen]
Essen
872094 (88g:20002) 20-04 (20C20 20D08) M. F. Newman x+187
L. H.Soicher Presentations of some finite groups with applications to the <C>O</C>'<C>N</C>an simple group J. Algebra 1987 108 2 310–316 0021-8693 892906 (88e:20036) 20F05 (20D08) P. Fong JALGA4 Journal of Algebra
Francesca DallaVolta Sporadic groups generated by three involutions Istit. Lombardo Accad. Sci. Lett. Rend. A 1985 119 65–87 (1987) Italian. English summary 0021-2504 927856 (89f:20023) 20D08 (20D05) F. Pérez Monasor Istituto Lombardo. Accademia di Scienze e Lettere. Rendiconti. Scienze Matematiche e Applicazioni. A
O.Diawara Sur les classes de conjugaison des sous-groupes du groupe simple sporadique <C><M>{\rm Mc}</M></C> de <C>J</C>. <C>M</C>c<C>L</C>aughlin. <C>I</C> Simon Stevin 1987 61 3-4 217–234 0037-5454 941731 (89j:20023a) 20D08 (20E15) P. Fong SSWNAX Simon Stevin. A Quarterly Journal of Pure and Applied Mathematics
O.Diawara Sur les classes de conjugaison des sous-groupes du groupe simple sporadique <C><M>{\rm Mc}</M></C> de <C>J</C>. <C>M</C>c<C>L</C>aughlin. <C>II</C> Simon Stevin 1987 61 3-4 235–263 0037-5454 941732 (89j:20023b) 20D08 (20E15) P. Fong SSWNAX Simon Stevin. A Quarterly Journal of Pure and Applied Mathematics
Dragomir Ž.Ðoković Presentations of some finite simple groups J. Austral. Math. Soc. Ser. A 1988 45 2 143–168 0263-6115 951574 (89k:20023) 20D08 (20F05) Gerard M. Enright JAMADS Australian Mathematical Society. Journal. Series A. Pure Mathematics and Statistics
AdilsonGonçalves A characterization of <C><M>J_1</M></C> by a piece of its character table Notas Soc. Mat. Chile 1987 6 1 27–36 0716-1298 933016 (89d:20015) 20D08 (20C15) P. Fong Notas de la Sociedad de Matemática de Chile
Chat YinHo A new <C><M>7</M></C>-local subgroup of the <C>M</C>onster J. Algebra 1988 115 2 513–520 0021-8693 943274 (89h:20026) 20D08 Geoffrey Mason JALGA4 Journal of Algebra
A. A.Ivanov S. V.Shpectorov Geometries for sporadic groups related to the <C>P</C>etersen graph. <C>I</C> Comm. Algebra 1988 16 5 925–953 0092-7872 926330 (89c:20031) 20D08 (05C25 51B25) Jonathan I. Hall COALDM Communications in Algebra
Peter B.Kleidman The maximal subgroups of the <C>S</C>teinberg triality groups <C><M>^3D_4(q)</M></C> and of their automorphism groups J. Algebra 1988 115 1 182–199 0021-8693 937609 (89f:20024) 20D08 (20E28) È. M. Palʹchik JALGA4 Journal of Algebra
Peter B.Kleidman Robert A.Wilson The maximal subgroups of <C><M>J_4</M></C> Proc. London Math. Soc. (3) 1988 56 3 484–510 0024-6115 931511 (89b:20044) 20D08 (20E28) Gernot Stroth PLMTAL Proceedings of the London Mathematical Society. Third Series
V. D.Mazurov N. P.Mazurova Broad subgroups of sporadic groups. <C>I</C> Structural problems in group theory (Russian) Akad. Nauk SSSR Ural. Nauchn. Tsentr 1986 71–84, 140
Sverdlovsk
Russian Sta86 915193 (89e:20035) 20D08 È. M. Palʹchik
Simon P.Norton On the group <C><M>{\rm Fi}_{24}</M></C> Geom. Dedicata 1988 25 1-3 483–501 Geometries and groups (Noordwijkerhout, 1986) 0046-5755 ACK88 925848 (89k:20024) 20D08 GEMDAT Geometriae Dedicata
A. J. E.Ryba A new construction of the <C>O</C>'<C>N</C>an simple group J. Algebra 1988 112 1 173–197 0021-8693 921973 (89b:20045) 20D08 Geoffrey Mason JALGA4 Journal of Algebra a
Wu JieShi A new characterization of the sporadic simple groups Group theory (Singapore, 1987) de Gruyter 1989 531–540
Berlin
CL89 981868 (89k:20025) 20D08 P. Fong
Leonard H.Soicher Presentations for <C>C</C>onway's group <C><M>{\rm Co}_1</M></C> Math. Proc. Cambridge Philos. Soc. 1987 102 1 1–3 0305-0041 886429 (89b:20046) 20D08 (20F05) MPCPCO Mathematical Proceedings of the Cambridge Philosophical Society
GernotStroth RichardWeiss Modified <C>S</C>teinberg relations for the group <C><M>J_4</M></C> Geom. Dedicata 1988 25 1-3 513–525 Geometries and groups (Noordwijkerhout, 1986) 0046-5755 ACK88 925850 (89c:20032) 20D08 R. W. Carter GEMDAT Geometriae Dedicata
MichioSuzuki Elementary proof of the simplicity of sporadic groups Group theory (Singapore, 1987) de Gruyter 1989 195–206
Berlin
CL89 981842 (89k:20026) 20D08 Ulrich Dempwolff
JacquesTits Théorie des groupes Ann. Collège France 1985/86 86 101–112 0069-5580 965793 (89h:20027) 20D08 (11F22) Antonio Pasini Annuaire du Collège de France
JacquesTits Le module du ``moonshine'' [d'après <C>I</C>. <C>F</C>renkel, <C>J</C>. <C>L</C>epowsky et <C>A</C>. <C>M</C>eurman] Astérisque 1987 152-153 5, 285–303 (1988) Séminaire Bourbaki, Vol. 1986/87 0303-1179 936860 (89i:20030) 20D08 (11F22 17B65) P. Fong Astérisque
Marguerite-MarieVirotte-Ducharme Une construction du groupe de <C>F</C>ischer <C><M>{\rm Fi}(24)</M></C> Mém. Soc. Math. France (N.S.) 1987 27 73 English summary 0037-9484 911223 (89a:20013) 20D08 Jonathan I. Hall Mémoires de la Société Mathématique de France. Nouvelle Série
Robert A.Wilson On the <C><M>3</M></C>-local subgroups of <C>C</C>onway's group <C><M>{\rm Co}_1</M></C> J. Algebra 1988 113 1 261–262 0021-8693 928064 (89c:20033) 20D08 Geoffrey Mason JALGA4 Journal of Algebra b
TakeshiKondo TakashiTasaka The theta functions of sublattices of the <C>L</C>eech lattice. <C>II</C> J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1987 34 3 545–572 0040-8980 927601 (89h:11030) 11H06 (11E45 11F27 20D08) N. J. A. Sloane JFTMAT Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics
J. H.Lindsey II A new lattice for the <C>H</C>all-<C>J</C>anko group Proc. Amer. Math. Soc. 1988 103 3 703–709 0002-9939 947642 (89g:20075) 20G20 (11H06 20D08 20G05) Geoffrey Mason PAMYAR Proceedings of the American Mathematical Society
H.Pahlings Some sporadic groups as <C>G</C>alois groups Rend. Sem. Mat. Univ. Padova 1988 79 97–107 0041-8994 964023 (89i:12004) 12F10 (20D08) J. L. Alperin Rendiconti del Seminario Matematico della Università di Padova. The Mathematical Journal of the University of Padova
Wei ShengQiu An equivalent representation of the <C>M</C>athieu group <C><M>M_{11}</M></C> and its equicentralizer subgroups Northeast. Math. J. 1988 4 1 90–100 1000-1778 970648 (89k:05017) 05B05 (20B25 20D08) Cheryl E. Praeger Northeastern Mathematical Journal. Dongbei Shuxue
A. J. E.Ryba Calculation of the <C><M>7</M></C>-modular characters of the <C>H</C>eld group J. Algebra 1988 117 1 240–255 0021-8693 955602 (89g:20026) 20C20 (20D08) David Benson JALGA4 Journal of Algebra b
S. V.Shpektorov Geometric characterization of the group <C><M>M_{22}</M></C> Investigations in the algebraic theory of combinatorial objects (Russian) Vsesoyuz. Nauchno-Issled. Inst. Sistem. Issled. 1985 112–123
Moscow
Russian KF85b 921463 (89m:51012) 51D20 (20D08 51B05) S. V. Tsaranov
AllanTrojan Geometry in <C>J</C>anko's first group J. Geom. 1988 33 1-2 168–171 0047-2468 963995 (89m:20005) 20B25 (05C25 20D08 51E30) Gernot Stroth JGMAY3 Journal of Geometry
SatoshiYoshiara A lattice theoretical construction of a <C>GAB</C> of the <C>S</C>uzuki sporadic simple group J. Algebra 1988 112 1 198–239 0021-8693 921974 (89a:51030) 51E25 (20D08) Gernot Stroth JALGA4 Journal of Algebra
Johnv. Bon Arjeh M.Cohen HansCuypers Graphs related to <C>H</C>eld's simple group J. Algebra 1989 123 1 6–26 0021-8693 1000473 (90h:20019) 20D08 (05C25 20B25) Marston Conder JALGA4 Journal of Algebra
R. T.Curtis Further elementary techniques using the miracle octad generator Proc. Edinburgh Math. Soc. (2) 1989 32 3 345–353 0013-0915 1015478 (90k:20031) 20D08 Geoffrey Mason PEMSA3 Proceedings of the Edinburgh Mathematical Society. Series II a
R. T.Curtis Natural constructions of the <C>M</C>athieu groups Math. Proc. Cambridge Philos. Soc. 1989 106 3 423–429 0305-0041 1010366 (90h:20020) 20D08 Geoffrey Mason MPCPCO Mathematical Proceedings of the Cambridge Philosophical Society b
OusmaneDiawara The primitive permutation characters of the <C>H</C>eld sporadic simple group Bull. Soc. Math. Belg. Sér. B 1989 41 2 239–246 0037-9476 1022749 (90k:20032) 20D08 (20C15) Gerard M. Enright BMBEAC Bulletin de la Société Mathématique de Belgique. Série B
Robert L.Griess Jr. UlrichMeierfrankenfeld YoavSegev A uniqueness proof for the <C>M</C>onster Ann. of Math. (2) 1989 130 3 567–602 0003-486X 1025167 (90j:20030) 20D08 Gernot Stroth ANMAAH Annals of Mathematics. Second Series
DieterHeld The situation of <C><M>{\rm Sp}_4(4) \cdot 2</M></C> in the sporadic simple group <C><M>{\rm He}</M></C> Rend. Sem. Mat. Univ. Padova 1988 80 117–125 (1989) 0041-8994 988117 (90f:20021) 20D08 S. V. Tsaranov Rendiconti del Seminario Matematico della Università di Padova. The Mathematical Journal of the University of Padova
G.Hiss K.Lux Brauer trees of sporadic groups The Clarendon Press Oxford University Press 1989 Oxford Science Publications
New York
0-19-853381-0 1033265 (91k:20018) 20C20 (20-02 20D08) Harvey Blau x+526
A. A.Ivanov S. V.Shpectorov Geometries for sporadic groups related to the <C>P</C>etersen graph. <C>II</C> European J. Combin. 1989 10 4 347–361 0195-6698 1005841 (90h:20021) 20D08 (05B25 05C25 51B25) Jonathan I. Hall European Journal of Combinatorics
Peter B.Kleidman Richard A.Parker Robert A.Wilson The maximal subgroups of the <C>F</C>ischer group <C><M>{\rm Fi}_{23}</M></C> J. London Math. Soc. (2) 1989 39 1 89–101 0024-6107 989922 (90e:20014) 20D08 S. V. Tsaranov JLMSAK Journal of the London Mathematical Society. Second Series
MasaoKoike Moonshine. <C>S</C>imple groups and unusual relations to automorphic functions Sūgaku 1988 40 3 237–246 Japanese 0039-470X 974763 (90c:20023) 20D08 (11F03 11F20 11F22) Hong Wen Lu SUGKAQ Mathematical Society of Japan. Sūgaku (Mathematics)
Stephen A.Linton The maximal subgroups of the <C>T</C>hompson group J. London Math. Soc. (2) 1989 39 1 79–88 0024-6107 989921 (90c:20024) 20D08 (20E28) S. V. Tsaranov JLMSAK Journal of the London Mathematical Society. Second Series
V. D.Mazurov N. P.Mazurova A minimal permutation representation of the simple group <C><M>F_5</M></C> Algebra i Logika 1987 26 3 298–317, 398 Russian, English translation: Algebra and Logic 26 (1987), no. 3, 167–178 0373-9252 962884 (90d:20034) 20D08 (20D05) Akademiya Nauk SSSR. Sibirskoe Otdelenie. Institut Matematiki. Algebra i Logika
V. D.Mazurov N. P.Mazurova The minimal permutation representation of the <C>T</C>hompson group Problems in algebra, No. 4 (Russian) (Gomelʹ, 1986) ``Universitet·skoe'' 1989 115–123
Minsk
Russian She89 1011920 (90i:20019) 20D08 (20B15) È. M. Palʹchik
WolframNeutsch WernerMeyer A root system for the <C>L</C>yons group Math. Ann. 1989 283 2 285–299 0025-5831 980599 (90a:20029) 20D08 (51B25) Richard M. Thomas MAANA Mathematische Annalen
PeterRowley On the minimal parabolic system related to <C><M>M_{24}</M></C> J. London Math. Soc. (2) 1989 40 1 40–56 0024-6107 1028913 (90k:20033) 20D08 Gernot Stroth JLMSAK Journal of the London Mathematical Society. Second Series
Wu JieShi A characteristic property of the <C>M</C>athieu groups Chinese Ann. Math. Ser. A 1988 9 5 575–580 Chinese 1000-8314 996733 (90d:20035) 20D08 Jian Hua Huang Chinese Annals of Mathematics. Series A. Shuxue Niankan. A Ji
Wu JieShi A characterization of the <C>C</C>onway simple group <C><M>{\rm Co}_2</M></C> J. Math. (Wuhan) 1989 9 2 171–172 Chinese 0255-7797 1015210 (90g:20016) 20D08 Dao-Rong Ton Journal of Mathematics. Shuxue Zazhi
Anestis A.Toptsis New two-element generating sets for <C><M>M22</M></C>, <C><M>M23</M></C>, <C><M>M24</M></C> Computers in algebra (Chicago, IL, 1985) Dekker 1988 111 Lecture Notes in Pure and Appl. Math. 155–159
New York
Tan88 1060767 20D08 (20F05)
E FangWang Equicentralizer subgroups of sporadic simple groups Group theory (Singapore, 1987) de Gruyter 1989 541–551
Berlin
CL89 981869 (90a:20030) 20D08 (20D25) Wujie Shi
JieWang Computing covering numbers of sporadic simple groups Beijing Daxue Xuebao 1988 24 5 527–534 Chinese. English summary 0479-8023 999245 (90d:20036) 20D08 Jian Hua Huang Beijing Daxue Xuebao. Ziran Kexue Ban. Beijing University Journal. Natural Sciences
Andrew J.Woldar On <C>H</C>urwitz generation and genus actions of sporadic groups Illinois J. Math. 1989 33 3 416–437 0019-2082 996351 (90i:20020) 20D08 (57S25) Marston Conder IJMTAW Illinois Journal of Mathematics b
SatoshiYoshiara Some geometries for <C><M>J_3</M></C> and <C><M>\textrm{O'N}</M></C> European J. Combin. 1989 10 5 499–506 0195-6698 1014558 (90j:20031) 20D08 (20F32 51E30) Ulrich Dempwolff European Journal of Combinatorics b
SatoshiYoshiara On the geometry of the <C>H</C>all-<C>J</C>anko group on 315 points Geom. Dedicata 1989 32 2 173–201 0046-5755 1029673 (90m:20020) 20D08 (51E30) Ulrich Dempwolff GEMDAT Geometriae Dedicata a
IlanZisser The covering numbers of the sporadic simple groups Israel J. Math. 1989 67 2 217–224 0021-2172 1026564 (90k:20034) 20D08 P. Fong ISJMAP Israel Journal of Mathematics
ZviArad HinnitLipman-Gutweter On products of characters in finite groups Houston J. Math. 1989 15 3 305–326 0362-1588 1032392 (90k:20014) 20C15 (20D06 20D08) David Chillag HJMADZ Houston Journal of Mathematics
R. T.Curtis Geometric interpretations of the ``natural'' generators of the <C>M</C>athieu groups Math. Proc. Cambridge Philos. Soc. 1990 107 1 19–26 0305-0041 1021870 (90j:20008) 20B25 (20D08 94B05) Marston Conder MPCPCO Mathematical Proceedings of the Cambridge Philosophical Society
L.Dixon P.Ginsparg J.Harvey Beauty and the beast: superconformal symmetry in a <C>M</C>onster module Comm. Math. Phys. 1988 119 2 221–241 0010-3616 968697 (90b:81119) 81E99 (17A70 17B65 20D08 81E40) Geoffrey Mason CMPHAY Communications in Mathematical Physics
WalterFeit Some finite groups with nontrivial centers which are <C>G</C>alois groups Group theory (Singapore, 1987) de Gruyter 1989 87–109
Berlin
CL89 981836 (90d:12004) 12F10 (12E10 20D06 20D08) Cheryl E. Praeger
DavidFord JohnMcKay Ramifications of <C>R</C>amanujan's work on <C><M>η</M></C>-products Proc. Indian Acad. Sci. Math. Sci. 1989 99 3 221–229 0253-4142 1032708 (90k:11051) 11F22 (11F20 20D08 81E40) Geoffrey Mason Indian Academy of Sciences. Proceedings. Mathematical Sciences
IgorFrenkel JamesLepowsky ArneMeurman Vertex operator algebras and the <C>M</C>onster Academic Press Inc. 1988 134 Pure and Applied Mathematics
Boston, MA
0-12-267065-5 996026 (90h:17026) 17B65 (17B67 20D08 81D15 81E40) Kailash C. Misra liv+508
Jian HuaHuang Ji XinMa BerndStellmacher Amalgams of rank <C><M>2</M></C> in characteristic <C><M>3</M></C> involving <C><M>L_2(5)</M></C> Acta Math. Sinica (N.S.) 1989 5 3 263–270 A Chinese summary appears in Acta Math. Sinica 33 (1990), no. 4, 576 1000-9574 1019626 (90j:20056) 20E06 (20D08) Gernot Stroth Acta Mathematica Sinica. New Series
MasaoKoike Modular forms and the automorphism group of <C>L</C>eech lattice Nagoya Math. J. 1988 112 63–79 0027-7630 974265 (90h:11038) 11F22 (20D08) Geoffrey Mason NGMJA2 Nagoya Mathematical Journal
Mong-LungLang On a question raised by <C>C</C>onway-<C>N</C>orton J. Math. Soc. Japan 1989 41 2 263–284 0025-5645 984751 (90h:11039) 11F22 (11H06 20D08) Geoffrey Mason NISUBC Journal of the Mathematical Society of Japan
HanfriedLenz Variations on the projective plane of order four Mitt. Math. Sem. Giessen 1989 192 79–84 0373-8221 1010202 (90i:51006) 51E05 (05B30 20D08) Ferenc Wettl MMUGAU Mitteilungen aus dem Mathematischen Seminar Giessen
J.Lepowsky Perspectives on vertex operators and the <C>M</C>onster The mathematical heritage of Hermann Weyl (Durham, NC, 1987) Amer. Math. Soc. 1988 48 Proc. Sympos. Pure Math. 181–197
Providence, RI
Wel88 974335 (90f:17031) 17B65 (05A19 17B10 17B67 20D08 81E40) Vyjayanthi Chari
Martin W.Liebeck Cheryl E.Praeger JanSaxl The maximal factorizations of the finite simple groups and their automorphism groups Mem. Amer. Math. Soc. 1990 86 432 iv+151 0065-9266 1016353 (90k:20048) 20D40 (20D06 20D08 20G40) Ulrich Dempwolff MAMCAU Memoirs of the American Mathematical Society
Eric A.Lord Geometry of the <C>M</C>athieu groups and <C>G</C>olay codes Proc. Indian Acad. Sci. Math. Sci. 1988 98 2-3 153–177 0253-4142 994130 (90g:11168) 11T71 (20D08 51E20 94B25) Jacques Wolfmann Indian Academy of Sciences. Proceedings. Mathematical Sciences
GeoffreyMason Finite groups and <C>H</C>ecke operators Math. Ann. 1989 283 3 381–409 0025-5831 985239 (90k:11052) 11F22 (11F25 20D08) Marvin I. Knopp MAANA Mathematische Annalen
JohnMcKay HubertusStrauss The <C><M>q</M></C>-series of monstrous moonshine and the decomposition of the head characters Comm. Algebra 1990 18 1 253–278 0092-7872 1037906 (90m:11065) 11F22 (20C15 20D08 33A99) Geoffrey Mason COALDM Communications in Algebra
ShigeruMukai Finite groups of automorphisms of <C><M>K3</M></C> surfaces and the <C>M</C>athieu group Invent. Math. 1988 94 1 183–221 0020-9910 958597 (90b:32053) 32J15 (14J28 14J50 20B25 20D08) Geoffrey Mason INVMBH Inventiones Mathematicae
Alan R.Prince The <C>H</C>all-<C>J</C>anko group as a collineation group of an infinite projective plane Quart. J. Math. Oxford Ser. (2) 1989 40 157 93–100 0033-5606 985539 (90a:51004) 51A10 (20B25 20D08 20H15 51A35) Ulrich Dempwolff QJMAAT The Quarterly Journal of Mathematics. Oxford. Second Series
Mark A.Ronan Stephen D.Smith Computation of <C><M>2</M></C>-modular sheaves and representations for <C><M>L_4(2), A_7, 3S_6,</M></C> and <C><M>M_{24}</M></C> Comm. Algebra 1989 17 5 1199–1237 0092-7872 993399 (90c:20020) 20C20 (20D08 51D20) Gernot Stroth COALDM Communications in Algebra
Leonard H.Soicher Presentations for some groups related to <C><M>{\rm Co}_1</M></C> Computers in algebra (Chicago, IL, 1985) Dekker 1988 111 Lecture Notes in Pure and Appl. Math. 151–154
New York
Tan88 1060766 20F05 (20D08)
Leonard H.Soicher From the <C>M</C>onster to the <C>B</C>imonster J. Algebra 1989 121 2 275–280 0021-8693 992763 (90j:20071) 20F05 (20D08) Gerard M. Enright JALGA4 Journal of Algebra
Gary L.Walls Nonsimple groups which are the product of simple groups Arch. Math. (Basel) 1989 53 3 209–216 0003-889X 1006709 (90k:20049) 20D40 (20D06 20D08) Gerard M. Enright ACVMAL Archiv der Mathematik
Andrew J.Woldar Genus actions of finite simple groups Illinois J. Math. 1989 33 3 438–450 0019-2082 996352 (90h:20038) 20E32 (20D08 57S25) Marston Conder IJMTAW Illinois Journal of Mathematics a
MichaelAschbacher The existence of <C><M>J_3</M></C> and its embeddings in <C><M>E_6</M></C> Geom. Dedicata 1990 35 1-3 143–154 0046-5755 1066563 (91i:20016) 20D08 Jian Hua Huang GEMDAT Geometriae Dedicata
Thomas A.Fournelle Kenneth W.Weston A geometric approach to some group presentations Combinatorial group theory (College Park, MD, 1988) Amer. Math. Soc. 1990 109 Contemp. Math. 25–33
Providence, RI
FGT90 1076374 (91k:20023) 20D08 (20F05) R. W. Carter
D.Held J.Hrabě de Angelis A block-theory-free characterization of <C><M>M_{24}</M></C> Rend. Sem. Mat. Univ. Padova 1989 82 133–150 (1990) 0041-8994 1049588 (91f:20018) 20D08 (20F05) Gernot Stroth Rendiconti del Seminario Matematico della Università di Padova. The Mathematical Journal of the University of Padova
DieterHeld JörgHrabě de Angelis A character-theory-free characterization of the <C>M</C>athieu group <C><M>M_{12}</M></C> J. Austral. Math. Soc. Ser. A 1990 49 2 212–230 0263-6115 1061042 (91j:20042) 20D08 Geoffrey Mason JAMADS Australian Mathematical Society. Journal. Series A. Pure Mathematics and Statistics
A. S.Kondratʹev Decomposition numbers of the groups <C><M>\hat{{J}}_2</M></C> and <C><M>{\rm Aut}(J_2)</M></C> Algebra i Logika 1988 27 6 690–710, 737 Russian, translation in Algebra and Logic 27 (1988), no. 6, 429–444 (1989) 0373-9252 1038106 (91b:20024) 20D08 È. M. Palʹchik Akademiya Nauk SSSR. Sibirskoe Otdelenie. Institut Matematiki. Algebra i Logika
A. S.Kondratʹev Decomposition numbers of the group <C><M>J_2</M></C> Algebra i Logika 1988 27 5 535–561, 619 Russian, translation in Algebra and Logic 27 (1988), no. 5, 333–349 (1989) 0373-9252 1047503 (91g:20017) 20D08 È. M. Palʹchik Akademiya Nauk SSSR. Sibirskoe Otdelenie. Institut Matematiki. Algebra i Logika
WolfgangLempken On local and maximal subgroups of <C>J</C>anko's simple group <C><M>J_4</M></C> Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 1989 13 1 47–103 Italian summary 0392-4106 1041743 (91f:20019) 20D08 (20E28) Gerard M. Enright Rendiconti. Accademia Nazionale delle Scienze detta dei XL. Serie V. Memorie di Matematica. Parte I
V. D.Mazurov The minimal permutation representation of the <C>T</C>hompson simple group Algebra i Logika 1988 27 5 562–580, 619 Russian, translation in Algebra and Logic 27 (1988), no. 5, 350–361 0373-9252 1047504 (91c:20031) 20D08 È. M. Palʹchik Akademiya Nauk SSSR. Sibirskoe Otdelenie. Institut Matematiki. Algebra i Logika
U.Meierfrankenfeld G.Stroth Quadratic <C><M>{\rm GF}(2)</M></C>-modules for sporadic simple groups and alternating groups Comm. Algebra 1990 18 7 2099–2139 0092-7872 1063127 (91g:20018) 20D08 (20C20 20D06) Stephen D. Smith COALDM Communications in Algebra
A. J. E.Ryba Matrix generators for the <C>H</C>eld group Computers in algebra (Chicago, IL, 1985) Dekker 1988 111 Lecture Notes in Pure and Appl. Math. 135–141
New York
Tan88 1060764 (91k:20024) 20D08 (20-04) c
Wu JieShi A characterization of the <C>H</C>igman-<C>S</C>ims simple group Houston J. Math. 1990 16 4 597–602 0362-1588 1097091 (91m:20024) 20D08 HJMADZ Houston Journal of Mathematics
V. M.Sitnikov Minimal permutation representation of <C>J</C>anko's finite simple group <C><M>J_4</M></C> Mat. Zametki 1990 47 1 137–146, 173 Russian, translation in Math. Notes 47 (1990), no. 1–2, 88–94 0025-567X 1048270 (91c:20032) 20D08 (20B99) È. M. Palʹchik Akademiya Nauk SSSR. Matematicheskie Zametki
Leonard H.Soicher A new existence and uniqueness proof for the <C>O</C>'<C>N</C>an group Bull. London Math. Soc. 1990 22 2 148–152 0024-6093 1045285 (91i:20017) 20D08 Gerard M. Enright LMSBBT The Bulletin of the London Mathematical Society
G.Stroth R.Weiss A new construction of the group <C><M>{\rm Ru}</M></C> Quart. J. Math. Oxford Ser. (2) 1990 41 162 237–243 0033-5606 1053664 (91m:20025) 20D08 Gerard M. Enright QJMAAT The Quarterly Journal of Mathematics. Oxford. Second Series
RichardWeiss SatoshiYoshiara A geometric characterization of the groups <C><M>{\rm Suz}</M></C> and <C><M>{\rm HS}</M></C> J. Algebra 1990 133 1 182–196 0021-8693 1063390 (91g:20019) 20D08 (20F32 51E12) Ulrich Dempwolff JALGA4 Journal of Algebra
Robert A.Wilson Vector stabilizers and subgroups of <C>L</C>eech lattice groups J. Algebra 1989 127 2 387–408 0021-8693 1028461 (91g:20020) 20D08 (20C20 20E28) JALGA4 Journal of Algebra
Andrew J.Woldar Representing <C><M>M_{11},\;M_{12},\;M_{22}</M></C> and <C><M>M_{23}</M></C> on surfaces of least genus Comm. Algebra 1990 18 1 15–86 0092-7872 1037897 (91g:20021a) 20D08 (57S25) Marston Conder COALDM Communications in Algebra a
Andrew J.Woldar Corrigendum to: <Wrap Name="IntRef">``<C>R</C>epresenting <C><M>M_{11},\;M_{12},\;M_{22}</M></C> and <C><M>M_{23}</M></C> on surfaces of least genus''</Wrap> Comm. Algebra 1990 18 2 605 0092-7872 1047330 (91g:20021b) 20D08 (57S25) Marston Conder COALDM Communications in Algebra b Wol90a
MichaelAschbacher Peter B.Kleidman On a conjecture of <C>Q</C>uillen and a lemma of <C>R</C>obinson Arch. Math. (Basel) 1990 55 3 209–217 0003-889X 1075043 (91j:20040) 20D06 (20D08) P. Fong ACVMAL Archiv der Mathematik
L.Babai W. M.Kantor A.Lubotsky Small-diameter <C>C</C>ayley graphs for finite simple groups European J. Combin. 1989 10 6 507–522 0195-6698 1022771 (91a:20038) 20F32 (05C25 20D06 20D08) Dave Witte Morris European Journal of Combinatorics
Richard E.Borcherds The monster <C>L</C>ie algebra Adv. in Math. 1990 83 1 30–47 0001-8708 1069386 (91k:17027) 17B67 (11F22 11H06 20D08) Geoffrey Mason ADMTA4 Advances in Mathematics
Colin M.Campbell E. F.Robertson P. D.Williams Efficient presentations for finite simple groups and related groups Groups—Korea 1988 (Pusan, 1988) Springer 1989 1398 Lecture Notes in Math. 65–72
Berlin
KN89 1032811 (91a:20031) 20F05 (20D06 20D08) Wolfgang Knapp
L.Dolan P.Goddard P.Montague Conformal field theory, triality and the <C>M</C>onster group Phys. Lett. B 1990 236 2 165–172 0370-2693 1040215 (91f:17019) 17B65 (20D08 81T40) Geoffrey Mason PYLBAJ Physics Letters. B b
ElisabethGerner-Henrich Ein <C>A</C>partment für eine <C>G</C>eometrie der sporadischen einfachen <C>G</C>ruppe <C><M>{\rm He}</M></C> J. Algebra 1990 135 1 228–246 0021-8693 1076088 (91h:51010) 51E24 (20D08) Francis Buekenhout JALGA4 Journal of Algebra
A. A.Ivanov S. V.Shpectorov The <C><M>P</M></C>-geometry for <C><M>M_{23}</M></C> has no nontrivial <C><M>2</M></C>-coverings European J. Combin. 1990 11 4 373–379 0195-6698 1067208 (91j:51018) 51E24 (20D08) Gernot Stroth European Journal of Combinatorics
YasushiIwakata Minimal subschemes of the group association schemes of <C>M</C>athieu groups Graphs Combin. 1990 6 3 239–244 0911-0119 1081198 (91i:05123) 05E30 (20D08) GRCOE5 Graphs and Combinatorics
A.Jamali E. F.Robertson Efficient presentations for certain simple groups Comm. Algebra 1989 17 10 2521–2528 0092-7872 1019179 (91c:20045) 20F05 (20D06 20D08) COALDM Communications in Algebra
W. M.Kantor Some <C>C</C>ayley graphs for simple groups Discrete Appl. Math. 1989 25 1-2 99–104 Combinatorics and complexity (Chicago, IL, 1987) 0166-218X 1031265 (91a:20039) 20F32 (05C25 20D06 20D08) Dave Witte Morris DAMADU Discrete Applied Mathematics. The Journal of Combinatorial Algorithms, Informatics and Computational Sciences
AvinoamMann DanSegal Uniform finiteness conditions in residually finite groups Proc. London Math. Soc. (3) 1990 61 3 529–545 0024-6115 1069514 (91j:20093) 20F22 (20D08 20E26) Maziar Shirvani PLMTAL Proceedings of the London Mathematical Society. Third Series
H.Pahlings Some sporadic groups as <C>G</C>alois groups. <C>II</C> Rend. Sem. Mat. Univ. Padova 1989 82 163–171 (1990) 0041-8994 1049591 (91b:12006) 12F12 (20D08) J. L. Alperin Rendiconti del Seminario Matematico della Università di Padova. The Mathematical Journal of the University of Padova
R. A.Parker R. A.Wilson The computer construction of matrix representations of finite groups over finite fields J. Symbolic Comput. 1990 9 5-6 583–590 Computational group theory, Part 1 0747-7171 1075424 (91j:20001) 20-04 (20C40 20D08) R. W. Carter Journal of Symbolic Computation
G.Stroth Some geometry for <C>M</C>c<C>L</C> Comm. Algebra 1989 17 11 2825–2833 0092-7872 1025611 (91b:51019) 51E24 (20D08) S. V. Tsaranov COALDM Communications in Algebra
G.Stroth Chamber systems, geometries and parabolic systems whose diagram contains only bonds of strength <C><M>1</M></C> and <C><M>2</M></C> Invent. Math. 1990 102 1 209–234 0020-9910 1069247 (91h:20059) 20F32 (05B25 20D06 20D08 51E24) Stephen D. Smith INVMBH Inventiones Mathematicae
Sergey V.Tsaranov Geometries and amalgams of <C><M>J_1</M></C> Comm. Algebra 1990 18 4 1119–1135 0092-7872 1059942 (91m:51012a) 51E25 (20D08 51E24) Guy Rousseau COALDM Communications in Algebra a
Sergei V.Tsaranov Corrections to the paper: <Wrap Name="IntRef">``<C>G</C>eometries and amalgams of <C><M>J_1</M></C>''</Wrap> Comm. Algebra 1990 18 12 4387 0092-7872 1084454 (91m:51012b) 51E25 (20D08 51E24) Guy Rousseau COALDM Communications in Algebra b Tsa90a
MichaelAschbacher YoavSegev The uniqueness of groups of type <C><M>J_4</M></C> Invent. Math. 1991 105 3 589–607 0020-9910 1117152 (92g:20026) 20D08 Gernot Stroth INVMBH Inventiones Mathematicae
MichaelAschbacher YoavSegev The uniqueness of groups of <C>L</C>yons type J. Amer. Math. Soc. 1992 5 1 75–98 0894-0347 1124978 (92k:20022) 20D08 Gernot Stroth Journal of the American Mathematical Society a
MarstonConder Random walks in large finite groups Australas. J. Combin. 1991 4 49–57 Combinatorial mathematics and combinatorial computing (Palmerston North, 1990) 1034-4942 1129268 (92h:20030) 20D08 (20P05) Gary Sherman The Australasian Journal of Combinatorics
MarstonConder The symmetric genus of the <C>M</C>athieu groups Bull. London Math. Soc. 1991 23 5 445–453 0024-6093 1141014 (92k:20023) 20D08 (20D60) Andrew Woldar LMSBBT The Bulletin of the London Mathematical Society
John H.Conway Simon P.Norton Leonard H.Soicher The <C>B</C>imonster, the group <C><M>Y_{555}</M></C>, and the projective plane of order <C><M>3</M></C> Computers in algebra (Chicago, IL, 1985) Dekker 1988 111 Lecture Notes in Pure and Appl. Math. 27–50
New York
Tan88 1060755 (92f:20018) 20D08 (51E15) J. Weinstein
WolfgangLempken ChristopherParker PeterRowley <C><M>(S_3,S_5)</M></C>- and <C><M>(S_3,S_6)</M></C>-amalgams J. Algebra 1991 143 2 518–522 0021-8693 1132585 (92j:20010) 20D08 (20E42) Gernot Stroth JALGA4 Journal of Algebra
Stephen A.Linton Corrections to: <Wrap Name="IntRef">``<C>T</C>he maximal subgroups of the <C>T</C>hompson group'' [<Wrap Name="Bib_journal"><C>J</C>. <C>L</C>ondon <C>M</C>ath. <C>S</C>oc. (2)</Wrap> <Wrap Name="Bib_volume">39</Wrap> (<Wrap Name="Bib_year">1989</Wrap>), <Wrap Name="Bib_number">no. 1</Wrap>, <Wrap Name="Bib_pages">79–88</Wrap>; <C>MR</C>0989921 (90c:20024)]</Wrap> J. London Math. Soc. (2) 1991 43 2 253–254 0024-6107 1111583 (92c:20031) 20D08 (20E28) JLMSAK Journal of the London Mathematical Society. Second Series Lin89
Stephen A.Linton Robert A.Wilson The maximal subgroups of the <C>F</C>ischer groups <C><M>{\rm Fi}_{24}</M></C> and <C><M>{\rm Fi}'_{24}</M></C> Proc. London Math. Soc. (3) 1991 63 1 113–164 0024-6115 1105720 (92h:20031) 20D08 (20E28) Gerard M. Enright PLMTAL Proceedings of the London Mathematical Society. Third Series
OliverPfaff On the simplicity of <C><M>{\cdot}2</M></C> and <C><M>{\cdot}3</M></C> Discrete Math. 1991 97 1-3 319–331 0012-365X 1140813 (92k:20024) 20D08 Ulrich Meierfrankenfeld DSMHA4 Discrete Mathematics
Yong CaiRen Finite simple groups all of whose <C><M>2</M></C>-maximal subgroups are <C>PQN</C>-groups Acta Math. Sinica 1990 33 6 798–803 Chinese 0583-1431 1090630 (92c:20032) 20D08 (20D25 20E28) Jian Hua Huang SHHPBO Acta Mathematica Sinica. Shuxue Xuebao
YoavSegev On the uniqueness of <C>F</C>ischer's <C>B</C>aby <C>M</C>onster Proc. London Math. Soc. (3) 1991 62 3 509–536 0024-6115 1095231 (92c:20033) 20D08 Gernot Stroth PLMTAL Proceedings of the London Mathematical Society. Third Series
Leonard H.Soicher A new uniqueness proof for the <C>H</C>eld group Bull. London Math. Soc. 1991 23 3 235–238 0024-6093 1123331 (92k:20025) 20D08 Gerard M. Enright LMSBBT The Bulletin of the London Mathematical Society
Leonard H.Soicher More on the group <C><M>Y_{555}</M></C> and the projective plane of order <C><M>3</M></C> J. Algebra 1991 136 1 168–174 0021-8693 1085128 (92d:20020) 20D08 (20F05 51E15) Ulrich Dempwolff JALGA4 Journal of Algebra
Andrew J.Woldar Sporadic simple groups which are <C>H</C>urwitz J. Algebra 1991 144 2 443–450 0021-8693 1140615 (92k:20026) 20D08 Ronald Solomon JALGA4 Journal of Algebra
AlejandroAdem JohnMaginnis R. JamesMilgram The geometry and cohomology of the <C>M</C>athieu group <C><M>M_{12}</M></C> J. Algebra 1991 139 1 90–133 0021-8693 1106342 (92g:20083) 20J06 (20D08) David Benson JALGA4 Journal of Algebra
L.Dolan Conformal field theory, triality and the <C>M</C>onster group Superstrings and particle theory (Tuscaloosa, AL, 1989) World Sci. Publ., River Edge, NJ 1990 103–116 CH90 1158066 81T40 (11H06 20D08 94B05)
L.Dolan P.Goddard P.Montague Conformal field theory of twisted vertex operators Nuclear Phys. B 1990 338 3 529–601 0550-3213 1063589 (92a:17032) 17B65 (17B81 20D08 81T40) Geoffrey Mason NUPBBO Nuclear Physics. B a
GerhardHiss KlausLux RichardParker The <C><M>5</M></C>-modular characters of the <C>M</C>c<C>L</C>aughlin group and its covering group Manuscripta Math. 1991 73 1 91–114 0025-2611 1124313 (92g:20017) 20C20 (20D08) David Benson MSMHB2 Manuscripta Mathematica
Peter B.Kleidman Robert A.Wilson <C><M>J_3 < E_6(4)</M></C> and <C><M>M_{12} < E_6(5)</M></C> J. London Math. Soc. (2) 1990 42 3 555–561 0024-6107 1087228 (92b:20056) 20G40 (20D08 20E28) Ulrich Dempwolff JLMSAK Journal of the London Mathematical Society. Second Series
GeoffreyMason <C><M>G</M></C>-elliptic systems and the genus zero problem for <C><M>M_{24}</M></C> Bull. Amer. Math. Soc. (N.S.) 1991 25 1 45–53 0273-0979 1080615 (92b:11027) 11F22 (20D08) Marvin I. Knopp BAMOAD American Mathematical Society. Bulletin. New Series
SerdarNergiz CihanSaçlıoğlu On-shell three-string amplitudes and the structure constants of the <C>M</C>onster <C>L</C>ie algebra Internat. J. Modern Phys. A 1990 5 13 2647–2665 0217-751X 1057668 (92f:17038) 17B81 (11H06 20D08 81R10 81T30) Geoffrey Mason International Journal of Modern Physics A. Particles and Fields. Gravitation. Cosmology. Nuclear Physics
JacquesTits Symmetrie Miscellanea mathematica Springer 1991 293–304
Berlin
HHR91 1131132 (92g:51018) 51F15 (20D08 20H15) J. M. Wills
RichardWeiss A characterization of the group <C><M>{\rm Co}_3</M></C> as a transitive extension of <C><M>{\rm HS}</M></C> Arch. Math. (Basel) 1991 56 3 209–213 0003-889X 1091872 (92c:51023) 51E24 (20B25 20D08) Norbert Knarr ACVMAL Archiv der Mathematik
RichardWeiss A geometric characterization of the groups <C><M>M_{12},\;{\rm He}</M></C> and <C><M>{\rm Ru}</M></C> J. Math. Soc. Japan 1991 43 4 795–814 0025-5645 1126150 (92k:20076) 20F32 (20D08 51E12) Ulrich Dempwolff NISUBC Journal of the Mathematical Society of Japan
Robert A.Wilson The <C><M>2</M></C>- and <C><M>3</M></C>-modular characters of <C><M>J_3</M></C>, its covering group and automorphism group J. Symbolic Comput. 1990 10 6 647–656 0747-7171 1087984 (92b:20016) 20C20 (20C40 20D08) Wolfgang Knapp Journal of Symbolic Computation
IlanZisser The product of all the irreducible characters of a finite simple group Arch. Math. (Basel) 1991 57 2 109–113 0003-889X 1116186 (92e:20005) 20C15 (20D06 20D08) Roderick Gow ACVMAL Archiv der Mathematik
M. D. E.Conder R. A.Wilson A. J.Woldar The symmetric genus of sporadic groups Proc. Amer. Math. Soc. 1992 116 3 653–663 0002-9939 1126192 (93a:20027) 20D08 Gernot Stroth PAMYAR Proceedings of the American Mathematical Society
H.Pahlings Errata corrige: <Wrap Name="IntRef">``<C>S</C>ome sporadic groups as <C>G</C>alois groups. <C>II</C>'' [<Wrap Name="Bib_journal"><C>R</C>end. <C>S</C>em. <C>M</C>at. <C>U</C>niv. <C>P</C>adova</Wrap> <Wrap Name="Bib_volume">82</Wrap> (<Wrap Name="Bib_year">1989</Wrap>), <Wrap Name="Bib_pages">163–171</Wrap>; <C>MR</C>1049591 (91b:12006)]</Wrap> Rend. Sem. Mat. Univ. Padova 1991 85 309–310 0041-8994 1142546 (93a:12006) 12F12 (20D08) Rendiconti del Seminario Matematico della Università di Padova. The Mathematical Journal of the University of Padova Pah89
S. G.Chekanov Broad subgroups of some sporadic groups Algebra i Logika 1990 29 1 82–101, 130 Russian, translation in Algebra and Logic 29 (1990), no. 1, 60–74 (1991) 0373-9252 1131606 (93b:20029) 20D08 V. D. Mazurov Akademiya Nauk SSSR. Sibirskoe Otdelenie. Institut Matematiki. Algebra i Logika
A. A.Ivanov A presentation for <C><M>J_4</M></C> Proc. London Math. Soc. (3) 1992 64 2 369–396 0024-6115 1143229 (93b:20030) 20D08 (20B25 20F29) Gernot Stroth PLMTAL Proceedings of the London Mathematical Society. Third Series
Andrew J.Woldar The symmetric genus of the <C>H</C>igman-<C>S</C>ims group <C>HS</C> and bounds for <C>C</C>onway's groups <C><M>{\rm Co}_1, {\rm Co}_2</M></C> Illinois J. Math. 1992 36 1 47–52 0019-2082 1133769 (93b:20031) 20D08 (57S99) Geoffrey Mason IJMTAW Illinois Journal of Mathematics
A. R.Prince Strongly irreducible collineation groups and the <C>H</C>all-<C>J</C>anko group Period. Math. Hungar. 1991 23 2 99–104 0031-5303 1142510 (93b:51013) 51E15 (20B25 20D08) Gernot Stroth PMHGAW Periodica Mathematica Hungarica. Journal of the János Bolyai Mathematical Society
SatoshiYoshiara Maximal subgroups of the sporadic simple group of <C>R</C>udvalis Nihonkai Math. J. 1991 2 1 1–24 1341-9951 1120697 (93c:20035) 20D08 David C. Hunt Nihonkai Mathematical Journal
MichaelAschbacher YoavSegev Extending morphisms of groups and graphs Ann. of Math. (2) 1992 135 2 297–323 0003-486X 1154595 (93d:20034) 20D08 (05C25) Ulrich Meierfrankenfeld ANMAAH Annals of Mathematics. Second Series b
Johnvan Bon RichardWeiss A characterization of the groups <C><M>{\rm Fi}_{22},\;{\rm Fi}_{23}</M></C> and <C><M>{\rm Fi}_{24}</M></C> Forum Math. 1992 4 4 425–432 0933-7741 1166264 (93d:20035) 20D08 FOMAEF Forum Mathematicum
Alexander A.Ivanov Geometric presentations of groups with an application to the <C>M</C>onster Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) 1991 1443–1453
Tokyo
Math. Soc. Japan Sat91 1159328 (93d:20036) 20D08 (20F05) Gernot Stroth
A. A.Makhnëv Finite groups with small <C><M>3</M></C>-element centralizers Group-theoretic investigations (Russian) Akad. Nauk SSSR Ural. Otdel. 1990 43–53
Sverdlovsk
Sta90 1159129 (93e:20027) 20D08 (20D20) I. Ya. Subbotin
P.Bántay Orbifolds, <C>H</C>opf algebras, and the <C>M</C>oonshine Lett. Math. Phys. 1991 22 3 187–194 0377-9017 1129173 (93e:17012) 17B37 (11F22 16W30 20D08 81R50) Geoffrey Mason LMPHDY Letters in Mathematical Physics. A Journal for the Rapid Dissemination of Short Contributions in the Field of Mathematical Physics
Michael P.Tuite Monstrous <C>M</C>oonshine from orbifolds Comm. Math. Phys. 1992 146 2 277–309 0010-3616 1165184 (93f:11036) 11F22 (20D08) Geoffrey Mason CMPHAY Communications in Mathematical Physics
Martin W.Liebeck JanSaxl Maximal subgroups of finite simple groups and their automorphism groups Proceedings of the International Conference on Algebra, Part 1 (Novosibirsk, 1989) 1992 131 Contemp. Math. 243–259
Providence, RI
Amer. Math. Soc. BEK92 1175777 (93g:20032) 20D06 (20D08 20E28) A. S. Kondratʹev
Johnvan Bon RichardWeiss An existence lemma for groups generated by <C><M>3</M></C>-transpositions Invent. Math. 1992 109 3 519–534 0020-9910 1176202 (93g:20033) 20D08 (05C25) A. S. Kondratʹev INVMBH Inventiones Mathematicae
ChristopherParker Some module results for groups with diagram <Alt Only="LaTeX"> <M>\circ\!\textrm{---}\!\!\circ\widetilde{\!\!=\!=\!}\circ</M></Alt> <Alt Not="LaTeX">o--o=~=o</Alt> Comm. Algebra 1992 20 7 1857–1871 0092-7872 1167078 (93g:20034) 20D08 (20E06) Gernot Stroth COALDM Communications in Algebra
RichardWeiss A geometric characterization of the groups <C><M>{\rm McL}</M></C> and <C><M>{\rm Co}_3</M></C> J. London Math. Soc. (2) 1991 44 2 261–269 0024-6107 1136439 (93g:20035) 20D08 JLMSAK Journal of the London Mathematical Society. Second Series
Alexander A.Ivanov A geometric characterization of <C>F</C>ischer's <C>B</C>aby <C>M</C>onster J. Algebraic Combin. 1992 1 1 45–69 0925-9899 1162641 (93h:20018) 20D08 (20F32) Ulrich Meierfrankenfeld JAOME7 Journal of Algebraic Combinatorics. An International Journal
G.Stroth S. K.Wong Some chamber systems belonging to sporadic simple groups Proc. London Math. Soc. (3) 1992 65 3 505–554 0024-6115 1182101 (93h:20019) 20D08 (20F32) Ulrich Meierfrankenfeld PLMTAL Proceedings of the London Mathematical Society. Third Series
S. V.Shpectorov The universal <C><M>2</M></C>-cover of the <C><M>P</M></C>-geometry <C><M>G(\textrm{Co}_2)</M></C> European J. Combin. 1992 13 4 291–312 0195-6698 1179526 (93h:51014) 51E24 (20D08) Hendrik Van Maldeghem European Journal of Combinatorics
Ts. R.Gentchev K. B.Tchakerian Factorizations of simple groups of order up to <C><M>10^{12}</M></C> C. R. Acad. Bulgare Sci. 1992 45 2 9–12 1310-1331 1184894 (93i:20033) 20E32 (20D08) Jian Hua Huang Dokladi na B\cdprime lgarskata Akademiya na Naukite. Comptes Rendus de l'Académie Bulgare des Sciences
Robert A.Wilson Some new subgroups of the <C>B</C>aby <C>M</C>onster Bull. London Math. Soc. 1993 25 1 23–28 0024-6093 1190359 (93j:20041) 20D08 È. M. Palʹchik LMSBBT The Bulletin of the London Mathematical Society
Robert A.Wilson Matrix generators for <C>F</C>ischer's group <C><M>{\rm Fi}_{24}</M></C> Math. Proc. Cambridge Philos. Soc. 1993 113 1 5–8 0305-0041 1188814 (93j:20042) 20D08 Ulrich Meierfrankenfeld MPCPCO Mathematical Proceedings of the Cambridge Philosophical Society
V. P.Burichenko On a special loop, <C>D</C>ixon form and lattice connected with <C><M>{\rm O}_7(3)</M></C> Mat. Sb. 1991 182 10 1408–1429 Russian, translation in Math. USSR-Sb. 74 (1993), no. 1, 145–167 0368-8666 1135932 (93k:20031) 20D08 (20N05) R. L. Griess Matematicheskiĭ Sbornik
David JohnGreen On the cohomology of the sporadic simple group <C><M>J_4</M></C> Math. Proc. Cambridge Philos. Soc. 1993 113 2 253–266 0305-0041 1198410 (93k:20073) 20J06 (20D08) Robert M. Guralnick MPCPCO Mathematical Proceedings of the Cambridge Philosophical Society
AlejandroAdem R. JamesMilgram <C><M>A_5</M></C>-invariants, the cohomology of <C><M>L_3(4)</M></C> and related extensions Proc. London Math. Soc. (3) 1993 66 1 187–224 0024-6115 1189097 (93m:20070) 20J06 (20D08 55R35 55R40) Nobuaki Yagita PLMTAL Proceedings of the London Mathematical Society. Third Series
J. H.Conway N. J. A.Sloane Sphere packings, lattices and groups Springer-Verlag 1993 290 Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
New York
Second With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov 0-387-97912-3 1194619 (93h:11069) 11H31 (05B40 11H06 20D08 52C07 52C17 94B75) xliv+679
GeoffreyMason Remarks on moonshine and orbifolds Groups, combinatorics & geometry (Durham, 1990) Cambridge Univ. Press 1992 165 London Math. Soc. Lecture Note Ser. 108–120
Cambridge
LS92a 1200254 (93m:11034) 11F22 (20D08) Steven N. Kass
J. H.Conway <C><M>Y_{555}</M></C> and all that Groups, combinatorics & geometry (Durham, 1990) Cambridge Univ. Press 1992 165 London Math. Soc. Lecture Note Ser. 22–23
Cambridge
LS92a 1200247 (94a:20032) 20D08 Wujie Shi
J. H.Conway A. D.Pritchard Hyperbolic reflections for the <C>B</C>imonster and <C><M>3{\rm Fi}_{24}</M></C> Groups, combinatorics & geometry (Durham, 1990) Cambridge Univ. Press 1992 165 London Math. Soc. Lecture Note Ser. 24–45
Cambridge
LS92a 1200248 (94a:20033) 20D08 Wujie Shi
ChristopherParker Groups containing a subdiagram <Alt Only="LaTeX"> <M>\circ\!\textrm{---}\!\!\circ\widetilde{\!\!=\!=\!}\circ</M></Alt> <Alt Not="LaTeX">o--o=~=o</Alt> Proc. London Math. Soc. (3) 1992 65 1 85–120 0024-6115 1162489 (94a:20034) 20D08 Jonathan I. Hall PLMTAL Proceedings of the London Mathematical Society. Third Series
YoavSegev On the uniqueness of the <C>H</C>arada-<C>N</C>orton group J. Algebra 1992 151 2 261–303 0021-8693 1184036 (94a:20035) 20D08 Jonathan I. Hall JALGA4 Journal of Algebra
Daniel E.Frohardt Stephen D.Smith Universal embeddings for the <C><M>{}^3\!D_4(2)</M></C> hexagon and <C><M>J_2</M></C> near-octagon European J. Combin. 1992 13 6 455–472 0195-6698 1193554 (94a:51004) 51A45 (20D08 51E12) Norbert Knarr European Journal of Combinatorics
DieterHeld JörgHrabě de Angelis A character-theory-free characterization of the simple groups <C><M>M_{11}</M></C> and <C><M>L_3(3)</M></C> Note Mat. 1990 10 suppl. 2 283–304 1123-2536 1221946 (94b:20026) 20D05 (20D08) N. K. Dickson Note di Matematica
Leonard H.Soicher On simplicial complexes related to the <C>S</C>uzuki sequence graphs Groups, combinatorics & geometry (Durham, 1990) Cambridge Univ. Press 1992 165 London Math. Soc. Lecture Note Ser. 240–248
Cambridge
LS92a 1200264 (94b:51020) 51E24 (05C25 20D08) Antonio Pasini
A. A.Ivanov A geometric characterization of the <C>M</C>onster Groups, combinatorics & geometry (Durham, 1990) Cambridge Univ. Press 1992 165 London Math. Soc. Lecture Note Ser. 46–62
Cambridge
LS92a 1200249 (94c:20033) 20D08 (51E24) Ronald Solomon
S. P.Norton Constructing the <C>M</C>onster Groups, combinatorics & geometry (Durham, 1990) Cambridge Univ. Press 1992 165 London Math. Soc. Lecture Note Ser. 63–76
Cambridge
LS92a 1200250 (94c:20034) 20D08 Ronald Solomon
Marguerite-MarieVirotte-Ducharme Présentations des groupes de <C>F</C>ischer. <C>II</C> Geom. Dedicata 1993 45 2 121–162 English summary 0046-5755 1202096 (94c:20035) 20D08 (20F05) Jonathan I. Hall GEMDAT Geometriae Dedicata
GheorgheSilberberg Simple groups of near factorial order Pure Math. Appl. Ser. A 1992 3 1-2 9–16 (1993) 0866-4943 1217457 (94d:20015) 20D06 (20D08) Stephen D. Smith Pure Mathematics and Applications. Series A
BhaskarBagchi A regular two-graph admitting the <C>H</C>all-<C>J</C>anko-<C>W</C>ales group Sankhyā Ser. A 1992 54 Special Issue 35–45 Combinatorial mathematics and applications (Calcutta, 1988) 0581-572X 1234676 (94d:05149) 05E30 (20B25 20D08) Sankhyā. The Indian Journal of Statistics. Series A
A. A.Ivanov The minimal parabolic geometry of the <C>C</C>onway group <C><M>{\rm Co}_1</M></C> is simply connected Combinatorics '90 (Gaeta, 1990) North-Holland 1992 52 Ann. Discrete Math. 259–273
Amsterdam
BBC92 1195816 (94d:51014) 51E24 (20D08) Gernot Stroth
Peter B.Kleidman Robert A.Wilson Sporadic simple subgroups of finite exceptional groups of <C>L</C>ie type J. Algebra 1993 157 2 316–330 0021-8693 1220771 (94e:20020) 20D06 (20D08 20G40) R. W. Carter JALGA4 Journal of Algebra
MichaelAschbacher YoavSegev Uniqueness of sporadic groups Groups, combinatorics & geometry (Durham, 1990) Cambridge Univ. Press 1992 165 London Math. Soc. Lecture Note Ser. 1–11
Cambridge
LS92a 1200245 (94e:20021) 20D08 A. A. Makhnev
MichaelAschbacher YoavSegev The study of <C><M>J_4</M></C> via the theory of uniqueness systems Groups, combinatorics & geometry (Durham, 1990) Cambridge Univ. Press 1992 165 London Math. Soc. Lecture Note Ser. 12–21
Cambridge
LS92a 1200246 (94e:20022) 20D08 A. A. Makhnev
Hui LingLi Wu JieShi Characterization of some sporadic simple groups Chinese Ann. Math. Ser. A 1993 14 2 144–151 Chinese. Chinese summary 1000-8314 1229814 (94e:20023) 20D08 Dao-Rong Ton SANJEG Chinese Annals of Mathematics. Series A. Shuxue Niankan. A Ji
S.Pianta Projective embedding of fibered groups and the <C>S</C>uzuki groups Combinatorics '90 (Gaeta, 1990) North-Holland 1992 52 Ann. Discrete Math. 463–469
Amsterdam
BBC92 1195828 (94e:51005) 51A45 (20D08) Jonathan I. Hall
M. D. E.Conder R. A.Wilson A. J.Woldar The symmetric genus of sporadic groups: announced results Coding theory, design theory, group theory (Burlington, VT, 1990) Wiley 1993 Wiley-Intersci. Publ. 163–169
New York
JVA93 1227128 (94f:20033) 20D08 (20F32)
Richard E.Borcherds Monstrous moonshine and monstrous <C>L</C>ie superalgebras Invent. Math. 1992 109 2 405–444 0020-9910 1172696 (94f:11030) 11F22 (17A70 17B67 20D08) Steven N. Kass INVMBH Inventiones Mathematicae b
D.Alexander C.Cummins J.McKay C.Simons Completely replicable functions Groups, combinatorics & geometry (Durham, 1990) Cambridge Univ. Press 1992 165 London Math. Soc. Lecture Note Ser. 87–98
Cambridge
LS92a 1200252 (94g:11029) 11F22 (20D08)
WernerMeyer WolframNeutsch Associative subalgebras of the <C>G</C>riess algebra J. Algebra 1993 158 1 1–17 0021-8693 1223664 (94g:17007) 17A99 (20D08) Jonathan I. Hall JALGA4 Journal of Algebra
J. H.Conway From hyperbolic reflections to finite groups Groups and computation (New Brunswick, NJ, 1991) Amer. Math. Soc. 1993 11 DIMACS Series in Discrete Mathematics and Theoretical Computer Science 41–51
Providence, RI
FK93 1235794 (94h:20023) 20D06 (20D08 20F05 20F55) Hiroyoshi Yamaki
Richard E.Borcherds Introduction to the <C>M</C>onster <C>L</C>ie algebra Groups, combinatorics & geometry (Durham, 1990) Cambridge Univ. Press 1992 165 London Math. Soc. Lecture Note Ser. 99–107
Cambridge
LS92a 1200253 (94h:11043) 11F22 (17A70 17B10 17B67 20D08) Steven N. Kass a
Charles R.Ferenbaugh The genus-zero problem for <C><M>n|h</M></C>-type groups Duke Math. J. 1993 72 1 31–63 0012-7094 1242878 (94i:20030) 20D08 (11F06) Wujie Shi DUMJAO Duke Mathematical Journal
DanielGorenstein A brief history of the sporadic simple groups The Gelʹfand Mathematical Seminars, 1990–1992 Birkhäuser Boston 1993 137–143
Boston, MA
CGL93 1247286 (94i:20031) 20D08 (20-02) Richard Lyons
W.Lempken Constructing <C><M>J_4</M></C> in <C><M>{\rm GL}(1333,11)</M></C> Comm. Algebra 1993 21 12 4311–4351 0092-7872 1242834 (94i:20032) 20D08 Jonathan I. Hall COALDM Communications in Algebra
MichaelAschbacher Simple connectivity of <C><M>p</M></C>-group complexes Israel J. Math. 1993 82 1-3 1–43 0021-2172 1239044 (94j:20012) 20D06 (20D08) Ronald Solomon ISJMAP Israel Journal of Mathematics
A. A.Ivanov Constructing the <C>M</C>onster via its <C><M>Y</M></C>-presentation Combinatorics, Paul Erdős is eighty, Vol. 1 János Bolyai Math. Soc. 1993 Bolyai Soc. Math. Stud. 253–269
Budapest
MSSz93 1249716 (94j:20013) 20D08 Ulrich Meierfrankenfeld
KayMagaard Monodromy and sporadic groups Comm. Algebra 1993 21 12 4271–4297 0092-7872 1242832 (94j:20014) 20D08 (20F05) Andrew Woldar COALDM Communications in Algebra
L.Dolan Fermionic conformal field theory Strings '90 (College Station, TX, 1990) World Sci. Publ., River Edge, NJ 1991 347–354 ABD91 1256507 (94j:81217) 81T40 (17B81 20D08 81R10)
Hui LingLi Wu JieShi A characterization of some sporadic simple groups Chinese J. Contemp. Math. 1993 14 2 105–113 0898-5111 1260347 (94k:20026) 20D08 (20D60) A. S. Kondratʹev Chinese Journal of Contemporary Mathematics
Robert A.Wilson A new construction of the <C>B</C>aby <C>M</C>onster and its applications Bull. London Math. Soc. 1993 25 5 431–437 0024-6093 1233405 (94k:20027) 20D08 (20C34 20C40) Richard Lyons LMSBBT The Bulletin of the London Mathematical Society
Robert A.Wilson The symmetric genus of the <C>B</C>aby <C>M</C>onster Quart. J. Math. Oxford Ser. (2) 1993 44 176 513–516 0033-5606 1251930 (94k:20028) 20D08 Jonathan I. Hall QJMAAT The Quarterly Journal of Mathematics. Oxford. Second Series
Andrew J.Woldar <C><M>3/2</M></C>-generation of the sporadic simple groups Comm. Algebra 1994 22 2 675–685 0092-7872 1255885 (94k:20029) 20D08 (20E32) Jian Hua Huang COALDM Communications in Algebra
A.Shaalan M.Ramadan On <C>MNP</C>-groups Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1993 36 23–30 0524-9007 1250471 (94k:20032) 20D10 (20D08 20F16) Gary L. Walls ABRMBT Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio Mathematica
GeoffreyMason Vertex operator representations of <C><M>\hat{{A}}_N</M></C> organized by an affine space J. Algebra 1993 157 1 128–160 0021-8693 1219662 (94k:17046) 17B67 (17B40 17B68 20D08) Alex Jay Feingold JALGA4 Journal of Algebra
A. I.Kostrikin Algebra Moskov. Gos. Univ. 1982
Moscow
Russian 790696 (86d:00003) 00A10 164
MartinAigner DieterJungnickel Geometries and groups 1981 893 Lecture Notes in Mathematics
Berlin
Springer-Verlag 3-540-11166-2 655055 (83c:51002) 51-06 (05-06 20-06) Proceedings of the Colloquium held at the Freie Universität Berlin, Berlin, May 1981 x+250
DieterJungnickel KlausVedder Combinatorial theory 1982 969 Lecture Notes in Mathematics
Berlin
Springer-Verlag 3-540-11971-X 692229 (84b:05005) 05-06 Proceedings of a Conference held at Schloss Rauischholzhausen, May 6–9, 1982 ii+326
P. J.Cameron J. W. P.Hirschfeld D. R.Hughes Finite geometries and designs 1981 49 London Mathematical Society Lecture Note Series
Cambridge
Cambridge University Press 0-521-28378-7 627480 (82g:05003) 05-06 (05Bxx 20B25 51Exx) Proceedings of the Second Isle of Thorns Conference held at Chelwood Gate, June 15–19, 1980 iii+371
ChandlerDavis BrankoGrünbaum F. A.Sherk The geometric vein Springer-Verlag 1981
New York
The Coxeter Festschrift 0-387-90587-1 661767 (83e:51003) 51-06 (01A70 52-06) viii+598 pp. (1 plate)
EricMendelsohn Algebraic and geometric combinatorics North-Holland Publishing Co. 1982 65 North-Holland Mathematics Studies
Amsterdam
Annals of Discrete Mathematics, 15 0-444-86365-6 772576 (85k:05002) 05-06 xiii+376
PeterHilton FriedrichHirzebruch ReinholdRemmert Miscellanea mathematica Springer-Verlag 1991
Berlin
3-540-54174-8 1131113 (92d:00038) 00B30 (01-06) xiv+326
Kenneth I.Appel John G.Ratcliffe Paul E.Schupp Contributions to group theory American Mathematical Society 1984 33 Contemporary Mathematics
Providence, RI
Papers dedicated to Roger C. Lyndon on the occasion of his sixty-fifth birthday 0-8218-5035-0 767092 (85g:20002) 20-06 xi+519
L. A.Shemetkov Voprosy algebry. <C>V</C>yp. 4 ``Universitet·skoe'' 1989
Minsk
Papers from the Tenth All-Union Symposium on Group Theory held in Gomelʹ, September 9–11, 1986 1011905 (90d:20003) 20-06 183
M. Kh.Klin I. A.Faradzhev Issledovaniya po algebraicheskoi teorii kombinatornykh obektov Vsesoyuz. Nauchno-Issled. Inst. Sistem. Issled. 1985
Moscow
921454 (88h:05002) 05-06 (00A10) 187
L.Clavelli B.Harms Superstrings and particle theory World Scientific Publishing Co. Inc. 1990
River Edge, NJ
Papers from the conference held at the University of Alabama, Tuscaloosa, Alabama, November 8–11, 1989 981-02-0157-5 1158059 (92m:81226) 81T30 (81-06) x+353
Z.Arad M.Herzog Products of conjugacy classes in groups Springer-Verlag 1985 1112 Lecture Notes in Mathematics
Berlin
3-540-13916-8 783067 (87h:20001) 20-02 (03C60) J. L. Brenner i+244
Hsio-FuTuan Group theory, <C>B</C>eijing 1984 1986 1185 Lecture Notes in Mathematics
Berlin
Springer-Verlag 3-540-16456-1 842438 (87d:20004) 20-06 Proceedings of an international symposium held at Beijing University, Beijing, August 27–September 8, 1984 vi+403
J.Lepowsky S.Mandelstam I. M.Singer Vertex operators in mathematics and physics 1985 3 Mathematical Sciences Research Institute Publications
New York
Springer-Verlag 0-387-96121-6 781369 (86b:17001) 17-06 (81-06 81Exx) Proceedings of a conference held at the Mathematical Sciences Research Institute, Berkeley, Calif., November 10–17, 1983 xiv+482
Martin C.Tangora Computers in algebra Marcel Dekker Inc. 1988 111 Lecture Notes in Pure and Applied Mathematics
New York
Papers from the conference held at the University of Illinois at Chicago, Chicago, Illinois, December 1985 0-8247-7975-4 1060752 (90m:00036) 00A11 (20-06) viii+162
Michael J.Collins Finite simple groups. <C>II</C> 1980
London
Academic Press Inc. [Harcourt Brace Jovanovich Publishers] 0-12-181480-7 606048 (82h:20021) 20D05 (20C15 20C20 20D08) Stephen D. Smith Proceedings of the Symposium held at the University of Durham, Durham, July 31–August 10, 1978 xv+345
Michael D.Atkinson Computational group theory 1984
London
Academic Press Inc. [Harcourt Brace Jovanovich Publishers] 0-12-066270-1 760641 (85g:20001) 20-06 (68-06) Proceedings of the London Mathematical Society symposium held in Durham, July 30–August 9, 1982 xii+375
R. O.Wells Jr. The mathematical heritage of <C>H</C>ermann <C>W</C>eyl 1988 48 Proceedings of Symposia in Pure Mathematics
Providence, RI
American Mathematical Society 0-8218-1482-6 974327 (89f:00026) 00A11 Proceedings of a conference held at Duke University, Durham, North Carolina, May 12–16, 1987 viii+344
A. C.Kim B. H.Neumann Groups—<C>K</C>orea 1983 1984 1098 Lecture Notes in Mathematics
Berlin
Springer-Verlag 3-540-13890-0 781351 (86b:20002) 20-06 Proceedings of a conference on combinatorial group theory held at Kyoungju, August 26–31, 1983 viii+183
A. C.Kim B. H.Neumann Groups—<C>K</C>orea 1988 1989 1398 Lecture Notes in Mathematics
Berlin
Springer-Verlag 3-540-51695-6 1032805 (90h:20004) 20-06 Proceedings of the Second International Conference on Group Theory held in Pusan, August 15–21, 1988 vi+189
L.Clavelli A.Halprin Lewes string theory workshop 1986
Singapore
World Scientific Publishing Co. 9971-50-033-7 848750 (88a:81006) 81-06 (81E20 81E30 81G25 83E15) M. A. Namazie Proceedings of the workshop held in Lewes, Del., July 6–27, 1985 viii+302
Donald W.Crowe J. MarshallOsborn LouisSolomon Proceedings of the conference on groups and geometry. <C>P</C>art <C>B</C> 1985
Palm Harbor, FL
Hadronic Press Inc. Held in honor of Richard H. Bruck at the University of Wisconsin, Madison, Wis., July 21–24, 1985, Algebras Groups Geom. 2 (1985), no. 4 0741-9937 852413 (87d:51002) 51-06 i–v and 380–578
BenjaminFine AnthonyGaglione Francis C. Y.Tang Combinatorial group theory 1990 109 Contemporary Mathematics
Providence, RI
American Mathematical Society 0-8218-5116-0 1076370 (91e:20001) 20-06 Proceedings of the AMS Special Session on Combinatorial Group Theory—Infinite Groups held at the University of Maryland, College Park, Maryland, April 23–24, 1988 xii+191
JohnMcKay Finite groups—coming of age 1985 45 Contemporary Mathematics
Providence, RI
American Mathematical Society 0-8218-5047-4 822230 (86j:20002) 20-06 (20Dxx) Proceedings of the Canadian Mathematical Society conference held at Concordia University, Montreal, Que., June 15–28, 1982 x+350
M.Aschbacher A. M.Cohen W. M.Kantor Geometries and groups 1988
Dordrecht
D. Reidel Publishing Co. Geom. Dedicata 25 (1988), no. 1-3 0046-5755 925831 (88j:20002) 20-06 (51-06) Proceedings of the workshop on geometries and groups, finite and algebraic, held in Noordwijkerhout, March 24–28, 1986 GEMDAT i–viii and 1–542
Yu. I.Merzlyakov Gruppy i drugie algebraicheskie sistemy s usloviyami konechnosti 1984 4 Trudy Instituta Matematiki [Proceedings of the Institute of Mathematics]
Novosibirsk
``Nauka'' Sibirsk. Otdel. 755883 (85f:20003) 20-06 (17-06) 160
V.Dlab P.Gabriel G.Michler Representation theory. <C>II</C> 1986 1178 Lecture Notes in Mathematics
Berlin
Springer-Verlag Groups and orders 3-540-16433-2 842475 (87b:20003) 20-06 (16-06 20Cxx) Proceedings of the fourth international conference on representations of algebras held at Carleton University, Ottawa, Ont., August 16–25, 1984 xvi+370
MichaelAschbacher DanielGorenstein RichardLyons MichaelO'Nan CharlesSims WalterFeit Proceedings of the <C>R</C>utgers group theory year, 1983–1984 1985
Cambridge
Cambridge University Press Held at Rutgers University, New Brunswick, N.J., January 1983–June 1984 0-521-26493-6 817229 (86j:20003) 20-06 xii+415
M.Green D.Gross Workshop on unified string theories World Scientific Publishing Co. 1986
Singapore
Papers from the workshop held at the University of California, Santa Barbara, Calif., July 29–August 16, 1985 9971-50-031-0; 9971-50-032-9 849101 (87i:81012) 81-06 (81G20 83-06 83E15 83E50) Arthur Greenspoon viii+745
Kai NahCheng Yu KiangLeong Group theory 1989
Berlin
Walter de Gruyter & Co. 3-11-011366-X 981831 (89j:20001) 20-06 Proceedings of the Singapore Group Theory Conference held at the National University of Singapore, Singapore, June 8–19, 1987 xviii+586
A. I.Starostin Issledovaniya po teorii grupp Akad. Nauk SSSR Ural. Nauchn. Tsentr 1984
Sverdlovsk
818990 (86i:20006) 20-06 152
A. I.Starostin Strukturnye voprosy teorii grupp Akad. Nauk SSSR Ural. Nauchn. Tsentr 1986
Sverdlovsk
915187 (88f:20007) 20-06 144
Dijen K.Ray-Chaudhuri Relations between combinatorics and other parts of mathematics 1979 Proceedings of Symposia in Pure Mathematics, XXXIV
Providence, R.I.
American Mathematical Society 0-8218-1434-6 525315 (80a:05005) 05-06 Proceedings of the Symposium in Pure Mathematics of the American Mathematical Society held at the Ohio State University, Columbus, Ohio, March 20–23, 1978 xiii+378
BruceCooperstein GeoffreyMason The <C>S</C>anta <C>C</C>ruz <C>C</C>onference on <C>F</C>inite <C>G</C>roups American Mathematical Society 1980 37 Proceedings of Symposia in Pure Mathematics
Providence, R.I.
Held at the University of California, Santa Cruz, Calif., June 25–July 20, 1979 0-8218-1440-0 604551 (81m:20004) 20-06 (20Dxx) xviii+634
E. F.Robertson C. M.Campbell Proceedings of groups—<C>S</C>t. <C>A</C>ndrews 1985 1986 121 London Mathematical Society Lecture Note Series
Cambridge
Cambridge University Press Held at the University of St. Andrews, St. Andrews, July 27–August 10, 1985 0-521-33854-9 896497 (88e:20005) 20-06 x+358
Catharine AnneBaker Lynn MargaretBatten Finite geometries Marcel Dekker Inc. 1985 103 Lecture Notes in Pure and Applied Mathematics
New York
Papers from the conference held at Saint John's College, Winnipeg, Man., July 9–18, 1984 0-8247-7488-4 826788 (87a:51002) 51-06 (05B25) xiv+375
Ichir{ō}Satake Proceedings of the <C>I</C>nternational <C>C</C>ongress of <C>M</C>athematicians. <C>V</C>ol. <C>I</C>, <C>II</C> 1991
Tokyo
Mathematical Society of Japan Held in Kyoto, August 21–29, 1990 4-431-70047-1 1159197 (92m:00054) 00B25 Vol. I: lxxxviii+768 pp.; Vol. II: pp. i–xiv and 769–1684
A. I.Starostin Teoretiko-gruppovye issledovaniya Akad. Nauk SSSR Ural. Otdel. 1990
Sverdlovsk
1159124 (92k:20002) 20-06 144
L. A.Bokutʹ Yu. L.Ershov A. I.Kostrikin Proceedings of the <C>I</C>nternational <C>C</C>onference on <C>A</C>lgebra. <C>P</C>art 1 1992 131 Contemporary Mathematics
Providence, RI
American Mathematical Society Dedicated to the memory of A. I. Malʹcev [A. I. Malʹtsev], Held in Novosibirsk, August 21–26, 1989 0-8218-5136-5 1175757 (93b:00029) 00B25 (00B30) xxvi+712
MartinLiebeck JanSaxl Groups, combinatorics & geometry 1992 165 London Mathematical Society Lecture Note Series
Cambridge
Cambridge University Press 0-521-40685-4 1200244 (93g:20001) 20-06 (00B25 20Dxx) Proceedings of the L.M.S. Symposium on Groups and Combinatorics held in Durham, July 5–15, 1990 xiv+489
A.Barlotti A.Bichara P. V.Ceccherini G.Tallini Combinatorics '90 1992 52 Annals of Discrete Mathematics
Amsterdam
North-Holland Publishing Co. Recent trends and applications 0-444-89452-7 1195793 (93f:05003) 05-06 (00B25 51-06) Proceedings of the International Conference held in Gaeta, May 20–27, 1990 x+566
D.Jungnickel S. A.Vanstone K. T.Arasu M.Aschbacher J.Dinitz R.Foote Coding theory, design theory, group theory 1993 A Wiley-Interscience Publication
New York
John Wiley & Sons Inc. 0-471-55703-X 1227113 (94b:00043) 00B30 (05-06 20-06 51-06) Proceedings of the Marshall Hall Conference held at the University of Vermont, Burlington, Vermont, September 13–18, 1990 xxviii+299
LarryFinkelstein William M.Kantor Groups and computation 1993 11 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
Providence, RI
American Mathematical Society 0-8218-6599-4 1235790 (94c:20003) 20-06 (20B40) Proceedings of the DIMACS Workshop held at Rutgers University, New Brunswick, New Jersey, October 7–10, 1991 xx+313
L.Corwin I.Gelʹfand J.Lepowsky The <C>G</C>elʹfand <C>M</C>athematical <C>S</C>eminars, 1990–1992 Birkhäuser Boston Inc. 1993
Boston, MA
0-8176-3689-7 1247277 (94e:00018) 00B15 x+235
D.Miklós V. T.Sós T.Szőnyi Combinatorics, <C>P</C>aul <C>E</C>rdős is eighty. <C>V</C>ol. 1 János Bolyai Mathematical Society 1993 Bolyai Society Mathematical Studies
Budapest
963-8022-74-4 1249700 (94e:00019) 00B25 (05-06) 527
R.Arnowitt R.Bryan M. J.Duff D.Nanopoulos C. N.Pope E.Sezgin Strings '90 1991
River Edge, NJ
World Scientific Publishing Co. Inc. 981-02-0312-8 1256491 (94h:81126) 81T30 (81-06) Proceedings of the Fourth Annual Superstring Workshop held at Texas A & M University, College Station, Texas, March 12–17, 1990 xii+533
E. M.Friedlander S. B.Priddy Proceedings of the <C>N</C>orthwestern conference on cohomology of groups 1987
Amsterdam
Elsevier Science B.V. Held at Northwestern University, Evanston, Ill., March 18–22, 1985, J. Pure Appl. Algebra 44 (1987), no. 1-3 0022-4049 885091 (87m:20002) 20-06 (20Jxx) JPAAA2 i–viii and 1–353
F.Hoffman R. C.Mullin R. G.Stanton K. B.Reid Proceedings of the seventeenth <C>S</C>outheastern international conference on combinatorics, graph theory, and computing 1986
Winnipeg, MB
Utilitas Mathematica Publishing Inc. Held at Florida Atlantic University, Boca Raton, Fla., February 10–14, 1986, Congr. Numer. 53 (1986) 0384-9864 885228 (87m:05005a) 05-06 1–288
atlasrep-2.1.8/bibl/mindegbib.xml0000644000175000017500000005205114230472571015041 0ustar samsam D. J.Benson The simple group <M>J_4</M> Cambridge 1980 J. H.Conway R. T.Curtis S. P.Norton R. A.Parker R. A.Wilson Atlas of finite groups Oxford University Press 1985
Eynsham
Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray 0-19-853199-0 827219 (88g:20025) 20D05 (20-02) R. L. Griess xxxiv+252
<Wrap Name="Package">GAP</Wrap> – <C>G</C>roups, <C>A</C>lgorithms, and <C>P</C>rogramming, <C>V</C>ersion 4.4 http://www.gap-system.org 2004 GAP groups; *; gap; manual The GAP Group
Robert L.Griess Jr. Stephen D.Smith Minimal dimensions for modular representations of the <C>M</C>onster Comm. Algebra 1994 22 15 6279–6294 0092-7872 1303004 (96a:20021) 20C34 Ulrich Meierfrankenfeld COALDM Communications in Algebra
AnneHenke GerhardHiss JürgenMüller The <C><M>7</M></C>-modular decomposition matrices of the sporadic <C>O</C>'<C>N</C>an group J. London Math. Soc. (2) 1999 60 1 58–70 0024-6107 1721815 (2000i:20023) 20C34 (20C20 20C33 20C40) Donald L. White JLMSAK Journal of the London Mathematical Society. Second Series
S.Hensing <M>5</M>-modulare <C>Z</C>erlegungszahlen der sporadischen einfachen <C>G</C>ruppe <C><M>Co_1</M></C> und ihrer Überlagerungsgruppe <C><M>2.Co_1</M></C> Universität Heidelberg 1993 Diplomarbeit
GerhardHiss The <C><M>3</M></C>-modular characters of the <C>R</C>udvalis sporadic simple group and its covering group Math. Comp. 1994 62 206 851–863 0025-5718 1212267 (94g:20013) 20C20 (20C34 20D08) P. Fong MCMPAF Mathematics of Computation
GerhardHiss Decomposition matrices of the <C>C</C>hevalley group <C><M>F_4(2)</M></C> and its covering group Comm. Algebra 1997 25 8 2539–2555 0092-7872 1459575 (98d:20016) 20C33 (20C20 20C40) Julianne G. Rainbolt COALDM Communications in Algebra
G.Hiss K.Lux Brauer trees of sporadic groups The Clarendon Press Oxford University Press 1989 Oxford Science Publications
New York
0-19-853381-0 1033265 (91k:20018) 20C20 (20-02 20D08) Harvey Blau x+526
GerhardHiss KlausLux The <C><M>5</M></C>-modular characters of the sporadic simple <C>F</C>ischer groups <C><M>{\rm Fi}_{22}</M></C> and <C><M>{\rm Fi}_{23}</M></C> Comm. Algebra 1994 22 9 3563–3590 With an appendix by Thomas Breuer 0092-7872 1278806 (95e:20020) 20C34 (20C40) A. S. Kondratʹev COALDM Communications in Algebra
GerhardHiss JürgenMüller The <C><M>5</M></C>-modular characters of the sporadic simple <C>R</C>udvalis group and its covering group Comm. Algebra 1995 23 12 4633–4667 0092-7872 1352561 (96h:20027) 20C34 (20C20) Donald L. White COALDM Communications in Algebra
GerhardHiss Donald L.White The <C><M>5</M></C>-modular characters of the covering group of the sporadic simple <C>F</C>ischer group <C><M>{\rm Fi}_{22}</M></C> and its automorphism group Comm. Algebra 1994 22 9 3591–3611 0092-7872 1278807 (95e:20021) 20C34 (20C40) A. S. Kondratʹev COALDM Communications in Algebra
G.Hiss C.Jansen K.Lux R. A.Parker Computing with <C>M</C>odular <C>C</C>haracters http://www.math.rwth-aachen.de/LDFM/homes/MOC/CoMoChaT/ BertramHuppert Character theory of finite groups Walter de Gruyter & Co. 1998 25 de Gruyter Expositions in Mathematics
Berlin
3-11-015421-8 1645304 (99j:20011) 20C15 (20C05 20C10) Gerhard Hiss vi+618
BertramHuppert NormanBlackburn Finite groups. <C>II</C> Springer-Verlag 1982 242 Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
Berlin
AMD, 44 3-540-10632-4 650245 (84i:20001a) 20-02 (20Dxx) xiii+531
C.Jansen Ein <C>A</C>tlas <M>3</M>-modularer <C>C</C>haraktertafeln RWTH Aachen 1995 Dissertation
ChristophJansen The minimal degrees of faithful representations of the sporadic simple groups and their covering groups LMS J. Comput. Math. 2005 8 122–144 (electronic) 1461-1570 2153793 (2006e:20026) 20C34 Robert A. Wilson LMS Journal of Computation and Mathematics
ChristophJansen JürgenMüller The <C><M>3</M></C>-modular decomposition numbers of the sporadic simple <C>S</C>uzuki group Comm. Algebra 1997 25 8 2437–2458 0092-7872 1459570 (98e:20019) 20C34 (20D08) Koichiro Harada COALDM Communications in Algebra
C.Jansen R. A.Wilson The minimal faithful <C><M>3</M></C>-modular representation for the <C>L</C>yons group Comm. Algebra 1996 24 3 873–879 0092-7872 1374641 (97a:20021) 20C34 (20C40 20D08) Herbert Pahlings COALDM Communications in Algebra
C.Jansen R. A.Wilson The <C><M>2</M></C>-modular and <C><M>3</M></C>-modular decomposition numbers for the sporadic simple <C>O</C>'<C>N</C>an group and its triple cover J. London Math. Soc. (2) 1998 57 1 71–90 0024-6107 1624797 (99g:20025) 20C34 (20C20 20C40) Gerhard Hiss JLMSAK Journal of the London Mathematical Society. Second Series
C.Jansen K.Lux R.Parker R.Wilson An atlas of <C>B</C>rauer characters The Clarendon Press Oxford University Press 1995 11 London Mathematical Society Monographs. New Series
New York
Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications 0-19-851481-6 1367961 (96k:20016) 20C20 (20-00 20D06 20D08) J. L. Alperin xviii+327 JLPW95
WernerMeyer WolframNeutsch RichardParker The minimal <C><M>5</M></C>-representation of <C>L</C>yons' sporadic group Math. Ann. 1985 272 1 29–39 0025-5831 794089 (86i:20025) 20D08 R. W. Carter MAANA Mathematische Annalen
JürgenMüller The <M>5</M>-modular decomposition matrix of the sporadic simple <C>C</C>onway group <C><M>Co_3</M></C>. Gloor, Oliver (ed.), Proceedings of the 1998 international symposium on symbolic and algebraic computation, ISSAC '98, Rostock, Germany, August 13–15, 1998. New York, NY: ACM Press. 179–185 (1998). 1998 Glo98 Summary: The 5-modular decomposition matrix of the principal block of the sporadic simple Conway group $Co_3$ is determined. The results are obtained by a combination of character theoretic methods and explicit module constructions and analyses, especially condensation techniques, with the assistance of the computer algebra systems GAP, MOC, and MeatAxe. $5$-modular decomposition matrices; principal blocks; sporadic simple Conway group $Co_3$ English *20C34 (Representations of sporadic groups) 20C20 (Modular representations and characters of groups) 0921.20012 JürgenMüller JensRosenboom Condensation of induced representations and an application: the <C><M>2</M></C>-modular decomposition numbers of <C><M>{\rm Co}_2</M></C> Computational methods for representations of groups and algebras (Essen, 1997) Birkhäuser 1999 173 Progr. Math. 309–321
Basel
DMR99 1714619 (2000g:20024) 20C15 (20C40 20D08)
HirosiNagao YukioTsushima Representations of finite groups Academic Press Inc. 1989
Boston, MA
Translated from the Japanese 0-12-513660-9 998775 (90h:20008) 20Cxx (20-01 20C20) Roderick Gow xviii+424
Simon P.Norton On the group <C><M>{\rm Fi}_{24}</M></C> Geom. Dedicata 1988 25 1-3 483–501 Geometries and groups (Noordwijkerhout, 1986) 0046-5755 925848 (89k:20024) 20D08 GEMDAT Geometriae Dedicata
A. J. E.Ryba Calculation of the <C><M>7</M></C>-modular characters of the <C>H</C>eld group J. Algebra 1988 117 1 240–255 0021-8693 955602 (89g:20026) 20C20 (20D08) David Benson JALGA4 Journal of Algebra
Ibrahim A. I.Suleiman Robert A.Wilson The <C><M>2</M></C>-modular characters of <C>C</C>onway's group <C><M>{\rm Co}_2</M></C> Math. Proc. Cambridge Philos. Soc. 1994 116 2 275–283 0305-0041 1281546 (95e:20024) 20C40 (20C34) Herbert Pahlings MPCPCO Mathematical Proceedings of the Cambridge Philosophical Society
Ibrahim A. I.Suleiman Robert A.Wilson The <C><M>2</M></C>-modular characters of <C>C</C>onway's third group <C><M>{\rm Co}_3</M></C> J. Symbolic Comput. 1997 24 3-4 493–506 Computational algebra and number theory (London, 1993) 0747-7171 1484495 (98k:20018) 20C34 (20C20 20C40 20D08) Herbert Pahlings Journal of Symbolic Computation
Robert A.Wilson A new construction of the <C>B</C>aby <C>M</C>onster and its applications Bull. London Math. Soc. 1993 25 5 431–437 0024-6093 1233405 (94k:20027) 20D08 (20C34 20C40) Richard Lyons LMSBBT The Bulletin of the London Mathematical Society
Robert A.Wilson <Wrap Name="Package">ATLAS</Wrap> <C>of Finite Group Representations</C> http://atlas.math.rwth-aachen.de/Atlas/ ATLAS O.Gloor Proceedings of the 1998 <C>I</C>nternational <C>S</C>ymposium on <C>S</C>ymbolic and <C>A</C>lgebraic <C>C</C>omputation 1998
New York
The Association for Computing Machinery Association for Computing Machinery (ACM) Held in Rostock, August 13–15, 1998 ACM 1805195 (2001m:68004) 68-06 (00B25 68W30) front matter+321 pp. (electronic)
P.Dräxler G. O.Michler C. M.Ringel Computational methods for representations of groups and algebras Birkhäuser Verlag 1999 173 Progress in Mathematics
Basel
Papers from the 1st Euroconference held at the University of Essen, Essen, April 1–5, 1997 3-7643-6063-1 1714600 (2000d:16001) 16-06 (00B25 20-06) xiv+357
atlasrep-2.1.8/datapkg/2J2G1-kerJ2W10000644000175000017500000000003012216407160014715 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/12M22G1-ker6M22W10000644000175000017500000000006512312130633015241 0ustar samsaminp 2 mu 2 1 3 pwr 3 3 4 mu 2 4 5 pwr 66 5 6 oup 1 6 atlasrep-2.1.8/datapkg/53L35G2-kerL35W10000644000175000017500000000015412365220725015200 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 4 3 5 pwr 5 5 6 mu 3 4 7 pwr 5 7 8 pwr 2 3 9 mu 9 2 10 pwr 5 10 11 oup 3 6 8 11 atlasrep-2.1.8/datapkg/3S7G1-kerS7W10000644000175000017500000000007712340443077014772 0ustar samsaminp 2 mu 2 1 3 pwr 2 2 4 pwr 2 3 5 mu 4 5 6 pwr 7 6 7 oup 1 7 atlasrep-2.1.8/datapkg/2G24G1-kerG24W10000644000175000017500000000006512216407160015067 0ustar samsaminp 2 mu 2 1 3 pwr 2 3 4 mu 2 4 5 pwr 15 5 6 oup 1 6 atlasrep-2.1.8/datapkg/2M12d2G1-kerM12d2W10000644000175000017500000000004212216407160015544 0ustar samsaminp 2 mu 1 2 3 pwr 12 3 4 oup 1 4 atlasrep-2.1.8/datapkg/6O73G1-p3374B0.m10000644000175000017500000003663712635607475015155 0ustar samsam12 1 3374 1 1456 1397 133 296 1045 2026 567 740 1768 1309 792 1817 29 1158 999 1012 1223 1477 657 568 934 812 1644 1881 642 1061 36 963 402 1315 899 1370 756 830 97 604 381 1600 1221 1068 52 35 289 1173 751 1501 1102 1156 1367 928 47 917 33 42 122 1372 2057 130 61 72 92 1842 548 1121 1023 1041 1667 1466 100 1510 1042 78 332 1048 60 1236 935 75 1985 1579 788 845 263 1287 1392 1197 125 1564 1336 39 1378 856 609 944 1291 1786 54 1970 1244 1074 70 2151 936 618 144 1484 1326 101 1239 633 2076 1522 1276 678 1926 1811 1736 1273 312 1666 1348 84 1584 395 128 87 1143 126 1346 840 1058 1138 345 333 1968 1399 771 822 307 181 1595 1097 1910 435 1251 730 104 1495 423 489 105 1554 1298 1621 853 532 1179 1787 1091 193 905 818 1511 1305 2176 183 4 1450 1506 239 1376 1914 1384 241 311 421 2145 804 1672 1218 166 782 140 58 806 1328 147 3 363 2007 1905 2059 232 1224 12 223 264 390 2079 1572 321 581 1646 504 330 594 1624 712 1545 2067 620 1602 1530 1849 640 1878 266 6 2111 376 1604 1862 857 308 1915 1503 394 91 189 2042 2008 275 218 553 1123 1702 1721 428 327 906 253 923 485 295 170 1200 356 322 265 729 420 1679 606 813 862 2032 521 1953 337 2046 809 874 182 1427 335 1803 663 217 1015 229 2207 1897 1906 1345 160 1164 2038 2117 227 124 748 1385 698 1919 679 284 817 758 426 418 571 555 718 766 238 341 1552 1782 641 961 1959 2150 2022 1025 1582 2068 201 248 2174 1583 142 79 2224 2131 452 57 695 525 2172 861 139 224 1947 2118 799 660 245 682 1608 250 1209 969 1532 907 471 318 440 1083 938 768 167 1039 1496 1035 188 247 2009 535 372 793 855 349 1334 1274 1001 359 1063 725 346 468 2048 497 270 1776 2185 794 1741 1720 850 1708 2086 687 1694 1859 1804 211 724 1490 326 2183 704 81 23 546 2058 19 198 1426 998 414 1217 1748 2097 1079 1289 658 1680 603 196 286 590 829 472 1381 1264 1791 1921 844 759 7 20 37 582 387 659 11 31 1719 754 206 301 1410 1562 749 350 1718 1431 244 1261 1939 694 416 580 1130 151 1936 964 1320 636 2034 1898 1155 1323 1363 653 1267 360 2153 677 454 2020 1585 1065 841 2157 2102 943 1000 2064 1142 1840 1444 1310 559 1664 629 980 518 808 2213 249 560 598 1215 1152 713 491 136 1207 967 1669 586 486 386 431 293 670 2033 1797 407 1368 1344 410 750 1064 932 328 1614 1548 1950 1457 1692 728 242 1167 287 870 1465 765 1265 383 540 1988 1413 1829 960 731 447 1940 1814 208 2115 946 1361 2162 2178 1990 868 1715 2099 667 1075 692 377 358 1422 1885 1118 1077 828 676 408 1073 2173 691 1645 1066 66 752 1105 1293 403 340 1284 587 464 53 292 827 552 1082 1481 1635 490 542 572 493 904 379 767 285 409 673 735 2196 1657 981 1157 1303 509 294 570 1432 919 2214 137 558 1880 1775 5 1488 1788 1701 251 1292 178 2021 261 1790 1482 1178 993 283 703 1423 174 1700 1890 138 720 773 977 734 1925 883 610 705 187 864 220 534 1379 613 574 789 1230 1235 2140 445 2075 2186 90 49 2005 1946 258 717 1640 1903 2025 365 683 2055 1347 1358 1057 872 477 744 951 1171 2119 466 746 2188 1047 484 281 424 569 2088 1163 269 637 112 194 373 1710 1248 2100 1168 195 760 1234 1962 522 470 203 291 867 1055 362 1111 805 1703 1059 352 425 1383 1149 890 723 617 243 2030 1832 1837 398 622 1078 623 985 27 412 721 1896 1678 1108 545 533 1958 257 523 2211 2071 1212 1980 483 1853 823 693 156 710 621 348 417 2154 516 205 300 28 1938 699 701 761 1673 1802 1619 662 276 1972 1691 1311 625 644 630 1286 396 415 16 48 578 1263 288 41 557 892 419 566 931 624 983 1479 1033 433 202 413 234 1851 1113 482 986 355 1429 1269 1184 1628 1185 1008 1056 875 83 779 1471 2203 1182 2165 995 649 1038 894 432 688 254 1318 2116 1478 873 378 1858 1747 681 1285 1597 646 131 686 448 473 1430 1492 34 366 975 1850 1618 1175 77 1181 1546 884 93 616 539 700 900 556 843 13 22 339 2010 925 2066 1317 1923 2155 930 1394 184 2133 824 512 565 996 1547 871 1952 1917 528 2095 2236 615 781 821 59 399 952 158 1192 306 367 1515 309 1321 1126 2108 369 1480 1076 878 1084 1489 584 1007 1590 802 2231 1989 2101 1861 2135 155 351 1071 772 1681 2061 1912 709 384 753 911 1017 858 1519 1440 1549 726 1050 1110 487 1103 411 76 498 199 1601 1570 1051 1313 886 1884 991 1843 807 755 798 262 860 1411 1588 204 976 955 457 2069 94 1742 958 573 463 780 389 162 209 1187 2107 316 838 2039 833 2141 50 1800 476 2208 1911 1759 1242 626 1941 1369 1882 942 1918 2232 940 2189 503 146 825 517 99 1081 1225 1400 2142 1382 82 1396 1613 1767 1542 795 505 18 797 1887 446 763 869 576 1852 15 912 1386 1127 743 1054 776 1290 1046 458 382 970 602 21 702 2212 611 1442 1770 1780 783 933 854 1005 1586 2228 2126 494 1272 739 267 1308 1314 1713 1417 1879 1277 1605 1195 1674 153 507 2062 1133 2113 2045 1591 1687 579 2087 164 1543 1278 1016 10 1889 63 30 1717 1231 401 997 40 1390 1487 1237 1620 1948 1374 1469 877 1006 684 185 916 2147 524 1704 347 17 1404 585 1449 656 74 2011 554 1090 474 1509 722 1026 842 962 279 2047 1245 404 1883 2226 2078 51 1359 180 1257 1364 109 1329 1226 1648 1998 950 175 228 665 1688 1745 1086 64 2053 1867 1089 2130 690 1414 1485 25 1991 475 866 1733 1762 1794 442 2023 2027 903 1632 116 1650 1581 1460 888 1027 2082 526 1266 1724 1300 1728 1955 1575 1630 186 1933 2170 1283 2138 86 1281 1516 1448 2167 2122 708 1458 901 770 2002 1836 538 45 549 354 2139 113 1021 1037 1014 8 1799 989 924 200 1929 2199 627 1553 819 1633 506 2012 1455 589 1676 1520 44 1011 1528 914 643 1452 1247 697 1573 1462 65 2036 1563 1474 1191 460 127 1498 1322 169 1395 1438 1453 317 1643 1188 966 453 1093 2201 1536 738 315 992 543 1177 388 1598 1106 1391 632 1609 495 1387 479 331 2191 1282 1096 650 1316 2222 1784 953 651 161 826 1072 159 1873 2074 1229 1660 437 1375 480 1249 1172 937 1754 152 290 2019 1160 1502 550 1219 1659 2235 1739 607 1053 757 562 9 2003 467 1136 1003 1854 2092 787 95 14 1723 1254 1295 1307 1599 1662 1198 949 2237 885 595 551 55 1557 280 1470 118 803 747 1655 1161 1324 1571 304 1128 1576 2109 2169 764 2114 344 1565 1162 790 342 496 1166 2072 1556 791 71 1539 226 814 811 212 2175 1505 221 1022 897 1377 1826 132 329 1222 1615 2239 1763 297 197 1220 1696 972 1199 1331 2004 1594 816 343 154 88 2205 207 2220 1525 1874 978 1343 1366 338 910 1354 461 1067 1777 26 1764 465 1238 1280 1373 110 648 674 1180 455 85 1357 1559 965 141 1504 1098 733 1937 561 73 707 252 397 887 666 1476 1823 1069 89 56 1637 213 1507 846 499 898 1405 1246 2015 1446 1517 1208 478 1338 1865 1822 2000 1960 1193 2014 501 1150 1567 1773 1190 1751 982 2219 2103 508 68 1833 2129 391 1335 1514 1002 927 165 769 1951 1904 1134 2179 1416 1186 1537 1494 1726 774 1393 2096 1651 1332 1743 1538 1087 163 2217 1202 1508 2090 1491 1493 514 1109 1942 1114 1437 1019 1707 2209 536 605 1555 2225 1560 1214 1009 2216 1902 922 2190 876 612 1352 577 1419 405 588 1920 820 1151 148 1070 1176 918 325 1216 2200 1813 1325 1796 492 1727 1144 2158 1403 732 1104 835 107 1339 246 1531 1513 69 108 168 2210 1203 2037 1848 1117 1551 1824 1211 32 1439 1099 216 1544 1279 1342 2043 1043 1443 839 1201 1668 913 2184 1398 896 1772 2227 1044 2128 1967 1408 1306 481 103 106 971 2 1535 1839 1500 353 669 145 1424 893 123 1966 1262 990 422 1961 921 129 1036 1695 1459 1774 1730 2163 1024 671 1018 1270 1711 1028 2065 1828 1409 2230 1856 319 38 1288 1213 784 2171 1194 1965 1388 1243 1765 1934 1617 171 908 596 1088 1350 310 2197 438 865 443 1296 1845 1870 1092 1686 1340 1863 1831 1406 240 1610 1731 1526 1353 716 1356 274 1684 1964 121 1649 1675 157 1004 2013 1124 1656 1607 1781 599 406 2202 1529 462 1665 1566 1992 2024 696 511 891 114 1445 1240 1351 1137 2233 2192 2029 2159 1020 1815 762 2204 1233 1031 1924 1758 2181 444 1860 172 143 134 1524 1709 597 1032 1100 1297 1789 1627 859 689 173 282 987 2041 1750 1169 1838 1330 179 736 2051 1866 1165 515 1712 531 638 1612 2070 1738 1978 429 801 62 915 1362 2240 1683 1418 529 1810 1250 1268 1830 1189 2083 370 1954 1183 43 1252 256 117 2136 1159 1752 1577 1420 1349 2001 1716 1944 1341 1766 1153 1174 863 237 1894 1259 1699 1899 255 945 1975 1864 737 2063 593 277 1977 1928 1463 2218 1670 668 1693 1930 1729 1365 1228 1141 1592 1154 1611 1062 1785 1744 1407 510 1131 775 1574 1521 1461 1943 601 298 1060 231 1995 777 1734 364 2016 1258 1761 1119 1677 968 1868 2125 563 1428 2031 1145 2040 1486 1893 1569 742 929 1447 1101 268 303 675 1888 2166 1642 1963 1753 235 1690 1 711 1844 1812 672 2168 1957 2094 2234 974 941 1795 1682 1606 2160 1483 502 1755 1337 1205 1467 2195 1949 1116 1206 1689 1401 645 1523 236 685 1631 1327 2017 2182 1735 1746 796 583 2035 614 1771 680 2098 1568 1253 302 1913 851 260 1333 1732 973 1816 1256 1626 1997 1122 1996 1808 1094 1625 1805 2194 1982 1841 1294 600 451 832 1355 2193 441 2229 741 1973 1312 430 1979 2148 150 1740 1993 1085 191 537 1737 2137 2093 1412 2060 1129 272 192 2084 1806 1825 67 715 544 1639 120 834 2044 880 836 400 1578 564 1139 956 1593 719 111 1778 1706 1622 1714 1994 2187 2238 1661 2073 527 1080 46 608 361 895 1415 1857 1798 909 2018 385 1779 2050 513 2177 879 439 1757 1112 1433 1809 520 176 1561 149 1875 1819 1170 1475 1834 1821 1120 2127 102 2105 979 1908 639 1801 1891 1705 1260 2077 664 2110 1653 2052 2223 119 635 1835 500 848 436 1135 1871 1983 1935 1052 1641 1629 1241 1725 80 1435 1115 1769 1616 1697 1671 271 1927 357 954 1049 591 1869 1473 1550 1654 1827 1986 800 24 2006 375 96 1872 2206 233 135 2106 1877 1204 1499 368 2164 259 2104 920 1792 392 1389 1518 1909 1807 1147 1818 1302 222 1380 519 2156 1987 1685 1895 1255 2144 778 2152 939 323 273 1974 988 1299 214 575 1999 225 219 320 810 634 948 1040 1931 1095 654 115 1976 706 334 2091 2089 1434 1756 1271 314 530 1304 380 1901 1820 1900 1907 2081 1454 881 1638 278 1125 371 902 849 1847 1464 984 1969 1981 831 1855 1029 2028 210 2146 1301 1034 541 815 393 177 628 2143 2124 1107 1371 2120 1634 786 1971 1232 1468 1148 2161 488 450 1722 852 2180 2080 1196 1275 652 926 592 2121 2112 324 2054 1360 2049 2221 374 98 1663 469 959 957 1892 2123 1793 1783 1846 2085 336 1945 2132 1013 230 1527 1916 1030 2198 1472 305 889 619 1603 427 1956 434 2149 2134 2056 456 661 1932 299 655 1534 631 727 1589 1210 1876 1533 1652 1558 459 1596 2215 1623 1319 1227 1658 1010 1636 745 215 190 714 1421 1451 947 994 449 547 1140 1587 1512 1132 1441 1497 1436 1540 313 1984 1425 647 1146 785 1580 1886 847 837 1647 1541 1698 882 1760 1922 1402 1749 2294 2242 2243 3362 3365 3154 2697 3272 2816 2250 3304 3216 2253 3346 3173 2256 2511 2897 2259 2260 2261 2672 2822 2264 2395 3111 2347 2640 3334 2270 2271 2368 2601 2366 2686 3295 2277 2338 2279 2280 2281 2721 2324 2437 3211 2451 2665 2358 2289 2290 2291 2625 2593 2241 2407 3257 2908 2412 2573 2916 2926 2576 2406 2994 2443 2306 2600 2615 3232 2310 2311 2361 2669 2997 3006 2532 2473 2657 3147 2418 2321 2664 2563 2283 3230 2776 2531 2738 2329 2330 2331 2379 2333 2334 2335 2799 2337 2278 2339 2340 2342 2341 3077 2901 3280 2936 2267 2348 2349 2350 2351 2906 2353 2354 2458 2868 2357 2288 2359 2360 2312 2362 2550 3004 2365 2274 2910 2272 2805 3082 3165 2944 2373 2374 3228 2376 3064 2378 2332 2380 3024 2568 3209 3117 2605 2386 3357 2845 2389 2390 2503 2866 2393 2756 2265 2727 3103 3095 3170 2400 2401 3246 3212 2720 2405 2303 2295 2524 2567 3183 2509 2298 2413 3371 2663 2792 3310 2320 2830 2762 3200 3262 2423 2424 2425 3091 3022 2590 2429 2541 2436 2432 3144 2434 3282 2431 2284 2438 2439 2440 2441 2442 2305 3288 3311 2499 2577 2647 2925 2450 2286 2876 3174 3074 2790 2706 3323 2355 2782 3203 3069 2462 2463 2464 2930 2655 2555 2643 3290 2516 2471 2472 2317 2474 3167 2556 2477 2478 2479 2480 2481 3176 3355 2484 2592 2699 2637 2488 2948 2490 2508 3208 2493 2835 3218 2999 2497 3149 2446 2793 2873 2502 2391 2504 2505 2718 3087 2491 2411 2767 2257 3328 2513 2514 3180 2470 3172 2518 2519 3163 3221 3313 3250 2408 2525 2526 3306 2528 2529 2530 2327 2316 2575 2599 3354 2536 2537 2538 2539 2540 2430 3030 2543 3329 2545 2574 2709 3036 2549 2363 2551 2552 3002 3339 2467 2476 2557 2839 2610 3097 2561 3194 2323 3094 3239 3289 2409 2382 2569 3314 2571 2572 2299 2546 2533 2302 2447 3102 3231 2580 2986 2582 2583 2584 2734 3051 2919 2588 2589 2428 2591 2485 2293 2594 2935 3135 3001 2598 2534 2307 2273 2602 2923 2604 2385 2606 3276 2969 3213 2559 2611 2612 2613 2614 2308 2616 2766 3233 3275 3245 2621 2854 3204 3330 2292 2626 3052 2976 2801 3303 2781 3125 2905 3098 2635 2758 2487 2638 3034 2268 2641 2642 2468 2859 2964 2646 2448 3161 3065 2650 2651 3105 2993 2654 2466 2656 2318 2658 3164 3058 2922 2662 2415 2322 2287 2666 2667 2668 2313 2670 2715 2262 3222 3112 3308 3255 2677 2678 2679 2680 2838 2682 2783 3133 3319 2275 2687 3129 2813 2690 2871 3017 3045 3012 2695 2832 2247 2800 2486 2700 3134 2702 2743 2704 3366 2456 2898 2708 2547 3225 2992 3141 2713 2750 2671 3005 2717 2506 2719 2404 2282 2840 2723 2724 3348 3205 2396 2904 2808 2880 2751 2864 2957 2585 2735 2736 2737 2328 3316 2740 2881 3023 2703 2744 3344 2995 2892 2748 2749 2714 2731 2752 3018 3055 3345 2394 2757 2636 3333 2760 2761 2420 2763 3048 2765 2617 2510 2773 2853 3193 2771 2920 2768 2774 2775 2326 2777 2778 2779 2780 2631 2459 2683 3088 2785 2786 3011 3086 2789 2455 3363 2416 2500 3081 2984 2796 2797 2841 2336 2698 2629 2802 2803 3351 2369 3146 2953 2729 3177 2829 2958 3108 2689 2814 2912 2249 3220 3240 3236 2820 2946 2263 2823 2824 3326 2909 3059 2828 2810 2419 2831 2696 3294 2834 2494 2836 2837 2681 2558 2722 2798 2842 3000 2844 2388 2846 2847 2848 3057 2850 2851 2852 2769 2622 3364 2856 2857 2941 2644 3158 2861 2983 3337 2732 2865 2392 2867 2356 2869 2870 2691 2872 2501 2903 3242 2452 2877 3162 3140 2730 2741 2882 2883 2884 2885 2886 3331 2888 2889 3274 2891 2747 2968 2949 3171 3297 2258 2707 3327 2900 2344 2902 2874 2728 2633 2352 2971 2297 2826 2367 2911 2815 3300 2914 2915 2300 2917 3248 2587 2772 2921 2661 2603 2924 2449 2301 3264 2928 3343 2465 2931 2932 2933 2987 2595 2346 2959 3138 3190 3136 2858 2942 2943 2372 2945 2821 3359 2489 2894 2950 2951 3347 2807 2954 3139 2956 2733 2811 2937 2960 2961 2962 2963 2645 3145 3050 3089 2893 2608 2970 2907 2972 2973 2974 2975 2628 3179 2978 2979 2980 2988 2982 2862 2795 3269 2581 2934 2981 2989 2990 3037 2711 2653 2304 2746 2996 2314 3026 2496 2843 2597 2553 3003 2364 2716 2315 3207 3258 3009 3010 2787 2694 3015 3040 3013 3107 2692 2753 3187 3020 3021 2427 2742 2381 3025 2998 3027 3028 3029 2542 3042 3032 3033 2639 3227 2548 2991 3038 3039 3014 3041 3031 3043 3152 2693 3046 3299 2764 3302 2966 2586 2627 3053 3254 2754 3056 2849 2660 2827 3060 3061 3062 3210 2377 2649 3066 3067 3068 2461 3070 3071 3192 3073 2454 3075 3076 2343 3114 3361 3080 2794 2370 3083 3298 3085 2788 2507 2784 2967 3307 2426 3092 3093 2564 2398 3096 2560 2634 3110 3370 3101 2578 2397 3104 2652 3106 3016 2812 3128 3099 2266 2674 3113 3078 3115 3116 2384 3118 3278 3234 3121 3122 3137 3202 2632 3126 3336 3109 2688 3130 3296 3335 2684 2701 2596 2940 3123 2938 2955 2879 2712 3142 3143 2433 2965 2806 2319 3148 2498 3150 3151 3044 3153 2246 3155 3325 3157 2860 3184 3160 2648 2878 2520 2659 2371 3166 2475 3372 3169 2399 2895 2517 2255 2453 3175 2482 2809 3178 2977 2515 3181 3182 2410 3159 3318 3186 3019 3188 3189 2939 3191 3072 2770 2562 3195 3196 3197 3198 3199 2421 3201 3124 2460 2623 2726 3206 3007 2492 2383 3063 2285 2403 2609 3214 3215 2252 3217 2495 3360 2817 2521 2673 3342 3224 2710 3226 3035 2375 3229 2325 2579 2309 2618 3120 3235 2819 3237 3358 2565 2818 3241 2875 3243 3244 2620 2402 3247 2918 3249 2523 3251 3349 3253 3054 2676 3279 2296 3008 3259 3260 3261 2422 3263 2927 3373 3266 3267 3268 2985 3270 3271 2248 3324 2890 2619 2607 3277 3119 3256 2345 3281 2435 3283 3353 3285 3286 3287 2444 2566 2469 3291 3292 3293 2833 2276 3131 2896 3084 3047 2913 3301 3049 2630 2251 3341 2527 3090 2675 3309 2417 2445 3312 2522 2570 3315 2739 3317 3185 2685 3320 3321 3352 2457 3273 3156 2825 2899 2512 2544 2624 2887 3332 2759 2269 3132 3127 2863 3338 2554 3340 3305 3223 2929 2745 2755 2254 2952 2725 3252 3350 2804 3322 3284 2535 2483 3356 2387 3238 2947 3219 3079 2244 2791 2855 2245 2705 3367 3368 3369 3100 2414 3168 3265 3374 atlasrep-2.1.8/datapkg/6F22G1-kerF22W10000644000175000017500000000007012216407160015061 0ustar samsaminp 2 mu 1 2 3 mu 3 2 4 pwr 11 3 5 pwr 21 4 6 oup 2 5 6 atlasrep-2.1.8/datapkg/2S7iG1-kerS7W10000644000175000017500000000003112340440472015124 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/3TE62d2G1-kerTE62d2W10000644000175000017500000000007712361301277016022 0ustar samsaminp 2 mu 2 1 3 pwr 3 3 4 mu 2 4 5 mu 2 5 6 pwr 11 6 7 oup 1 7 atlasrep-2.1.8/datapkg/12aL34d2aG1-ker2L34d2aW10000644000175000017500000000012212361032150016351 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 4 3 5 mu 2 4 6 mu 6 5 7 pwr 8 7 8 pwr 7 3 9 oup 2 8 9 atlasrep-2.1.8/datapkg/3S6G1-kerS6W10000644000175000017500000000012312216407160014753 0ustar samsaminp 2 mu 1 2 3 mu 2 3 4 iv 1 6 iv 4 7 mu 6 7 8 mu 8 1 9 mu 9 4 5 pwr 2 5 6 oup 1 6 atlasrep-2.1.8/datapkg/2L213d2G1-kerL213d2W10000644000175000017500000000003012361040512015700 0ustar samsaminp 2 mu 1 1 3 oup 1 3 atlasrep-2.1.8/datapkg/Mmax9G0-kerThW10000644000175000017500000000005712365214361015467 0ustar samsaminp 2 mu 2 1 3 pwr 3 2 4 pwr 19 3 5 oup 2 4 5 atlasrep-2.1.8/datapkg/25L52G1-kerL52W10000644000175000017500000000025012361277150015171 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 3 4 5 pwr 5 5 6 mu 4 3 7 pwr 5 7 8 mu 2 4 9 mu 9 4 10 pwr 2 10 11 mu 4 9 12 pwr 2 12 13 mu 1 4 14 mu 14 2 15 pwr 5 15 16 oup 5 6 8 11 13 16 atlasrep-2.1.8/datapkg/6U62G1-ker3U62W10000644000175000017500000000010612312140776015216 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 pwr 3 4 6 mu 2 6 7 mu 7 3 5 pwr 9 5 7 oup 1 7 atlasrep-2.1.8/datapkg/6Suzd2G1-kerSuzd2W10000644000175000017500000000013412216407160016216 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 pwr 2 4 5 pwr 2 3 6 mu 5 6 7 pwr 7 7 9 pwr 2 1 10 mu 9 10 8 oup 1 8 atlasrep-2.1.8/datapkg/6F22G1-ker3F22W10000644000175000017500000000005312312401762015144 0ustar samsaminp 2 mu 1 2 3 mu 3 2 4 pwr 21 4 5 oup 1 5 atlasrep-2.1.8/datapkg/4TE62G1-kerTE62W10000644000175000017500000000020112513007236015331 0ustar samsaminp 2 mu 2 1 3 pwr 3 3 4 mu 2 4 5 pwr 33 5 6 mu 2 3 7 mu 7 7 8 mu 7 3 9 mu 8 9 10 mu 10 9 11 mu 11 4 12 pwr 33 12 13 oup 2 6 13 atlasrep-2.1.8/datapkg/12aL34G1-kerL34W10000644000175000017500000000047012216407160015325 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 oup 1 30 atlasrep-2.1.8/datapkg/2U42d2G1-kerU42d2W10000644000175000017500000000003012216407160015567 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/ONd2G1-find20000644000175000017500000000124012522430773014751 0ustar samsam# Black box algorithm to find standard generators of O'N.2 set F 0 set G 0 set V 0 lbl SEMISTD rand 1 ord 1 A incr V if V gt 1000 then timeout if A notin 1 2 3 4 5 6 7 8 10 11 12 14 15 16 19 20 22 24 & 28 30 31 38 56 then fail if F eq 0 then if A in 22 30 38 then div A 2 B pwr B 1 2 set F 1 endif endif if G eq 0 then if A in 20 28 56 then div A 4 C pwr C 1 3 set G 1 endif endif if F eq 0 then jmp SEMISTD if G eq 0 then jmp SEMISTD set X 0 lbl CONJUGATE incr X if X gt 1000 then timeout rand 4 cjr 3 4 mu 2 3 5 ord 5 D if D notin 2 6 8 10 14 22 24 30 38 56 then fail if D noteq 22 then jmp CONJUGATE oup 2 2 3 atlasrep-2.1.8/datapkg/12bL34G1-ker3L34W10000644000175000017500000000050412312134563015410 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 pwr 3 30 31 oup 1 31 atlasrep-2.1.8/datapkg/6Suzd2G1-ker2Suzd2W10000644000175000017500000000014512312141576016305 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 pwr 2 4 5 pwr 2 3 6 mu 5 6 7 pwr 7 7 9 pwr 2 1 10 mu 9 10 8 mu 8 8 9 oup 1 9 atlasrep-2.1.8/datapkg/M20G1-kerA5W10000644000175000017500000000020412365213234014715 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 pwr 2 1 5 mu 4 2 6 mu 4 3 7 mu 7 1 8 mu 3 4 9 mu 9 1 10 pwr 2 6 11 pwr 2 8 12 pwr 2 10 13 oup 4 5 11 12 13 atlasrep-2.1.8/datapkg/2S63d2G1-kerS63d2W10000644000175000017500000000003112340443642015575 0ustar samsaminp 2 pwr 4 2 3 oup 1 3 atlasrep-2.1.8/datapkg/2M12d2iG1-kerM12d2W10000644000175000017500000000003012216407160015712 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/3F22d2G1-kerF22d2W10000644000175000017500000000011412216407160015531 0ustar samsaminp 2 mu 1 2 3 iv 2 4 mu 1 4 5 mu 5 4 6 mu 3 6 7 mu 7 4 8 pwr 8 8 9 oup 1 9 atlasrep-2.1.8/datapkg/12M22d2G1-ker3M22d2W10000644000175000017500000000010512312131670015707 0ustar samsaminp 2 mu 1 2 3 mu 3 2 4 mu 3 3 6 mu 4 4 7 mu 6 7 8 pwr 3 8 9 oup 1 9 atlasrep-2.1.8/datapkg/12bL34G1-ker6L34W10000644000175000017500000000050412312134623015410 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 pwr 6 30 31 oup 1 31 atlasrep-2.1.8/datapkg/6O73G1-ker2O73W10000644000175000017500000000004212312140414015171 0ustar samsaminp 2 mu 2 1 3 pwr 13 3 4 oup 1 4 atlasrep-2.1.8/datapkg/2S14G1-kerS14W10000644000175000017500000000016112216407160015112 0ustar samsaminp 2 mu 2 1 3 mu 1 3 4 pwr 2 3 5 mu 4 5 6 mu 1 2 7 mu 2 7 8 pwr 2 7 9 mu 8 9 10 mu 6 10 11 pwr 2 11 12 oup 1 12 atlasrep-2.1.8/datapkg/6U62G1-kerU62W10000644000175000017500000000012312216407160015126 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 pwr 3 4 6 mu 2 6 7 mu 7 3 5 pwr 11 3 6 pwr 9 5 7 oup 2 6 7 atlasrep-2.1.8/datapkg/2O73G1-kerO73W10000644000175000017500000000003012216407160015107 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/2A13G1-kerA13W10000644000175000017500000000004312340207452015043 0ustar samsaminp 2 mu 2 1 3 pwr 13 3 4 oup 1 4 atlasrep-2.1.8/datapkg/6S6G1-kerS6W10000644000175000017500000000012312216407160014756 0ustar samsaminp 2 mu 1 2 3 mu 2 3 4 iv 1 6 iv 4 7 mu 6 7 8 mu 8 1 9 mu 9 4 5 pwr 2 5 6 oup 1 6 atlasrep-2.1.8/datapkg/F22d2G1-max3W20000644000175000017500000000005512515536063015051 0ustar samsammu 2 1 3 mu 3 3 4 mu 2 4 3 mu 3 2 4 mu 3 4 2 atlasrep-2.1.8/datapkg/3J3G1-kerJ3W10000644000175000017500000000025112216407160014725 0ustar samsaminp 2 mu 1 2 3 pwr 2 3 4 mu 2 1 5 mu 1 5 6 mu 3 6 7 mu 4 7 8 mu 2 3 9 mu 5 9 10 mu 10 7 11 mu 8 11 12 pwr 2 5 13 mu 13 10 14 mu 7 10 15 mu 14 15 16 mu 12 16 17 oup 1 17 atlasrep-2.1.8/datapkg/4bL34G1-kerL34W10000644000175000017500000000047012216407160015247 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 oup 1 30 atlasrep-2.1.8/datapkg/2U42G1-kerU42W10000644000175000017500000000012712216407160015122 0ustar samsaminp 2 iv 1 3 iv 2 4 mu 3 4 5 pwr 2 5 6 mu 1 2 7 pwr 2 7 8 mu 6 8 9 pwr 2 9 10 oup 1 10 atlasrep-2.1.8/datapkg/3Suzd2G1-kerSuzd2W10000644000175000017500000000010712216407160016213 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 pwr 2 4 5 pwr 2 3 6 mu 5 6 7 pwr 7 7 8 oup 1 8 atlasrep-2.1.8/datapkg/G25G1-cycW20000644000175000017500000000056112522741407014535 0ustar samsammu 1 2 3 mu 3 2 4 mu 3 4 5 mu 3 5 6 mu 6 3 7 mu 7 4 8 mu 3 8 31A mu 5 8 10C mu 4 10C 25A mu 6 25A 24C mu 8 25A 20A mu 31A 25A 30A mu 5 24C 21B mu 6 24C 6C mu 6 20A 20B mu 10C 30A 30B mu 8 30A 15B mu 10C 24C 15C mu 2 30B 24B mu 3 20B 10D oup 14 6C 10C 10D 15B 15C 20A 20B 21B 24B 24C 25A 30A 30B 31A echo "Classes 6C 10C 10D 15B 15C 20A 20B 21B 24B 24C 25A 30A 30B 31A" atlasrep-2.1.8/datapkg/Mmax18G0-kerS12W10000644000175000017500000000007012360557517015544 0ustar samsaminp 2 mu 1 2 3 pwr 11 3 4 mu 1 4 5 pwr 2 5 6 oup 2 4 6 atlasrep-2.1.8/datapkg/2O8m3G1-kerO8m3W10000644000175000017500000000003012361041261015440 0ustar samsaminp 2 mu 1 1 3 oup 1 3 atlasrep-2.1.8/datapkg/3McLG1-kerMcLW10000644000175000017500000000004212216407160015321 0ustar samsaminp 2 mu 1 2 3 pwr 11 3 4 oup 1 4 atlasrep-2.1.8/datapkg/Mmax29G0-ker2L27d2iW10000644000175000017500000000005612601212254016212 0ustar samsaminp 2 mu 1 1 3 cj 3 2 4 cj 4 1 5 oup 3 3 4 5 atlasrep-2.1.8/datapkg/2L219G1-kerL219W10000644000175000017500000000003012361040575015251 0ustar samsaminp 2 mu 1 1 3 oup 1 3 atlasrep-2.1.8/datapkg/Mmax41G0-ker2L27W10000644000175000017500000000007612365224064015620 0ustar samsaminp 2 mu 2 1 3 mu 3 1 4 mu 2 4 5 mu 4 5 6 mu 5 4 7 oup 2 6 7 atlasrep-2.1.8/datapkg/3A6G1-kerA6W10000644000175000017500000000004112216407160014706 0ustar samsaminp 2 mu 1 2 3 pwr 5 3 4 oup 1 4 atlasrep-2.1.8/datapkg/12M22G1-ker3M22W10000644000175000017500000000006512312130610015231 0ustar samsaminp 2 mu 2 1 3 pwr 3 3 4 mu 2 4 5 pwr 33 5 6 oup 1 6 atlasrep-2.1.8/datapkg/3F22G1-kerF22W10000644000175000017500000000004212216407160015055 0ustar samsaminp 2 mu 1 2 3 pwr 11 3 4 oup 1 4 atlasrep-2.1.8/datapkg/6O73G1-kerO73W10000644000175000017500000000005612216407160015123 0ustar samsaminp 2 pwr 2 1 3 mu 2 1 4 pwr 13 4 5 oup 2 3 5 atlasrep-2.1.8/datapkg/9U43D8G1-kerU43D8W10000644000175000017500000000015012361304365015523 0ustar samsaminp 2 mu 2 1 3 mu 2 2 4 mu 4 3 5 mu 3 3 6 mu 5 6 7 mu 3 7 8 pwr 5 8 9 mu 7 3 10 pwr 5 10 11 oup 2 9 11 atlasrep-2.1.8/datapkg/2O73d2G1-p4480B0.m20000644000175000017500000005147112635566116015364 0ustar samsam12 1 4480 1 2 4 5 7 9 10 12 13 15 17 18 20 22 23 24 25 27 29 30 32 33 34 36 38 40 41 43 44 46 47 48 1 51 53 54 56 57 59 60 62 63 64 66 67 68 69 71 72 73 74 76 77 79 81 82 83 84 85 3 86 87 89 91 93 94 95 96 98 99 100 101 102 103 105 106 1227 109 110 111 112 113 115 117 118 119 121 123 124 126 127 128 129 130 132 6 134 135 136 137 138 139 141 142 143 145 144 147 148 149 151 8 154 156 157 159 160 161 163 164 165 166 167 55 170 171 173 175 177 179 181 182 184 185 187 188 189 11 191 192 193 195 197 198 199 201 202 204 206 208 209 211 212 213 215 216 218 219 220 61 221 14 223 1242 226 228 230 1157 232 233 235 237 238 16 240 241 242 243 244 246 247 1278 249 250 252 253 254 256 258 260 261 263 19 265 266 267 268 269 271 273 75 275 276 277 1141 279 281 282 284 285 286 1392 288 289 290 292 293 294 296 297 1162 299 300 1212 302 303 304 305 307 308 310 311 313 315 316 318 319 321 323 324 325 1347 327 26 330 331 332 116 214 335 337 338 340 341 343 344 28 346 348 349 350 351 352 354 355 356 358 31 360 361 362 364 365 367 176 369 371 372 373 375 376 377 378 379 380 382 370 384 385 387 388 389 391 393 395 396 35 398 399 400 401 402 404 406 407 408 409 410 412 413 39 97 333 416 417 419 421 422 424 425 426 405 381 427 428 430 1325 432 433 434 436 437 1282 439 440 441 442 444 1494 446 447 449 450 452 454 1454 456 457 231 459 45 460 462 463 464 466 1365 467 468 469 470 49 472 473 475 476 477 200 478 50 479 481 482 483 484 486 487 489 490 492 52 493 495 496 497 499 500 502 503 505 506 507 508 510 511 512 514 515 516 518 180 520 522 523 525 526 527 58 1210 529 531 259 533 535 536 1275 537 539 540 458 542 544 545 546 547 548 550 552 553 554 556 557 559 560 562 563 1411 1260 565 1377 561 564 568 569 571 572 1608 65 574 576 577 578 579 580 581 582 583 524 585 586 1621 588 589 590 70 591 280 1510 480 595 597 598 600 601 602 603 1198 1390 606 607 608 610 584 612 614 615 617 1641 618 620 622 623 625 627 628 630 632 633 634 636 342 638 1639 640 641 1298 643 80 645 1288 646 648 649 650 651 653 654 655 657 658 660 1384 662 664 665 611 667 669 670 672 673 674 675 677 678 679 680 1786 681 683 1796 1477 686 687 689 690 692 88 694 695 697 698 700 702 704 705 707 708 709 710 711 1558 713 386 714 716 1832 347 1755 1729 718 719 721 1648 723 724 725 435 726 727 728 397 729 1432 730 731 555 733 735 616 737 1327 1840 739 1856 741 742 743 744 745 746 747 749 104 750 751 752 753 754 755 757 1772 759 760 761 763 764 766 768 769 108 770 1585 773 774 775 776 778 567 779 781 782 1695 785 786 787 788 789 656 1571 790 1781 791 792 793 794 1535 1449 566 795 796 797 798 255 114 800 1310 802 1273 803 805 806 808 809 1551 494 509 125 812 813 815 816 817 819 120 822 530 824 825 1852 593 1741 826 827 828 829 831 832 833 835 818 820 1887 1523 838 840 841 811 843 844 845 846 847 236 849 411 850 852 693 854 274 855 856 858 131 639 345 1903 859 860 485 862 863 864 865 133 867 868 701 869 871 169 872 874 875 876 877 878 879 881 1540 883 885 886 836 888 1486 1811 889 890 892 893 2000 895 194 810 897 146 898 870 1421 900 894 637 902 903 1446 905 907 1904 1927 1637 866 910 912 913 1565 914 916 917 918 150 1819 919 920 921 2028 922 152 1712 248 923 541 925 926 927 929 930 1344 1654 933 1503 935 1751 1892 936 938 939 1733 328 940 941 943 944 1483 946 947 948 949 950 814 951 2007 952 953 1707 954 955 671 958 959 961 896 963 964 965 966 498 703 967 969 1788 644 937 971 172 924 973 974 976 977 978 174 1954 979 663 980 353 982 983 183 1658 906 986 987 801 988 989 186 1802 990 203 991 992 799 993 995 997 998 2095 756 1001 1002 1950 1004 1005 196 962 642 1804 1007 2029 956 804 504 210 911 1488 931 1010 1371 1993 262 429 2011 1013 1746 928 1014 1015 1016 1017 942 1018 1019 1020 1022 1023 771 1025 1027 1028 2052 1030 1031 1032 1033 217 1459 1034 1035 1036 336 1900 624 1038 222 1039 1882 1981 1041 1042 1043 1044 225 1045 1046 1868 1047 1048 1538 1973 1049 229 1575 1026 823 2170 1052 1479 839 1054 1000 1055 1024 234 2176 1058 1059 1003 1060 659 848 239 1062 1063 765 1065 945 1067 1514 1068 1767 1070 2126 1071 717 1072 1725 1835 278 1429 1858 1073 1074 1076 2129 1012 857 851 1077 414 688 1078 1011 1079 1671 2149 1941 904 1739 2157 1080 1081 1082 1040 1083 1084 283 1086 1087 706 322 1075 2128 1842 314 899 287 1089 599 453 1091 1092 994 295 1057 915 298 984 2116 1563 320 2208 1094 957 1096 306 317 604 2119 1093 1099 1100 1860 2217 1066 970 1101 685 758 1897 981 2021 1749 1104 1591 1105 1107 448 2105 1690 1069 1108 513 1109 1103 1652 1110 1053 1111 1543 1957 2218 543 1112 1106 2004 2054 1594 1678 1113 392 1114 1816 2171 1693 2002 1611 968 596 1115 1116 461 1117 2210 1118 972 2205 2184 549 1714 1854 842 1119 1120 2215 1021 2181 1102 960 1122 1124 1125 1127 1129 1130 1132 1133 1135 1137 1138 1140 1142 1143 1144 1145 1147 1149 1150 1152 1153 1154 1156 1158 1160 1161 1163 1164 1166 1167 1168 1121 1171 1173 1174 1176 1177 1179 1180 1182 1183 1184 1186 1187 1188 1189 1191 1192 1193 1194 1196 1197 1199 1201 1202 1203 1204 1205 1123 1206 1207 1209 1211 1213 1214 1215 1216 1218 1219 1220 1221 1222 1223 1225 1226 107 1229 1230 1231 1232 1233 1235 1237 1238 1239 1241 1243 1244 1246 1247 1248 1249 1250 1252 1126 1254 1255 1256 1257 1258 1259 1261 1262 1263 1265 1264 1267 1268 1269 1271 1128 1274 1276 1277 1279 1280 1281 1283 1284 1285 1286 1287 1175 1290 1291 1293 1295 1297 1299 1301 1302 1304 1305 1307 1308 1309 1131 1311 1312 1313 1315 1317 1318 1319 1321 1322 1324 1326 1328 1329 1331 1332 1333 1335 1336 1338 1339 1340 1181 1341 1134 1343 122 1346 1348 1350 37 1352 1353 1355 1357 1358 1136 1360 1361 1362 1363 1364 1366 1367 158 1369 1370 1372 1373 1374 1376 1378 1380 1381 1383 1139 1385 1386 1387 1388 1389 1391 1393 1195 1395 1396 1397 21 1399 1401 1402 1404 1405 1406 272 1408 1409 1410 1412 1413 1414 1416 1417 42 1419 1420 92 1422 1423 1424 1425 1427 1428 1430 1431 1433 1435 1436 1438 1439 1441 1443 1444 1445 227 1447 1146 1450 1451 1452 1236 1334 1455 1457 1458 1460 1461 1463 1464 1148 1466 1468 1469 1470 1471 1472 1474 1475 1476 1478 1151 1480 1481 1482 1484 1485 1487 1296 1489 1491 1492 1493 1495 1496 1497 1498 1499 1500 1502 1490 1504 1505 1507 1508 1509 1511 1513 1515 1516 1155 1518 1519 1520 1521 1522 1524 1526 1527 1528 1529 1530 1532 1533 1159 1217 1453 1536 1537 1539 1541 1542 1544 1545 1546 1525 1501 1547 1548 1550 205 1552 1553 1554 1556 1557 162 1559 1560 1561 1562 1564 374 1566 1567 1569 1570 1572 1574 334 1576 1577 1351 1579 1165 1580 1582 1583 1584 1586 245 1587 1588 1589 1590 1169 1592 1593 1595 1596 1597 1320 1598 1170 1599 1601 1602 1603 1604 1606 1607 1609 1610 1612 1172 1613 1615 1616 1617 1619 1620 1622 1623 1625 1626 1627 1628 1630 1631 1632 1634 1635 1636 1638 1300 1640 1642 1643 1645 1646 1647 1178 90 1649 1651 1379 1653 1655 1656 155 1657 1659 1660 1578 1662 1664 1665 1666 1667 1668 1670 1672 1673 1674 1676 1677 1679 1680 1682 1683 291 140 1685 257 1681 1684 1688 1689 1691 1692 488 1185 1694 1696 1697 1698 1699 1700 1701 1702 1703 1644 1705 1706 501 1708 1709 1710 1190 1711 1400 390 1600 1715 1717 1718 1720 1721 1722 1723 78 270 1726 1727 1728 1730 1704 1732 1734 1735 1737 521 1738 1740 1742 1743 1745 1747 1748 1750 1752 1753 1754 1756 1462 1758 519 1760 1761 178 1763 1200 1765 168 1766 1768 1769 1770 1771 1773 1774 1775 1777 1778 1780 264 1782 1784 1785 1731 1787 1789 1790 1792 1793 1794 1795 1797 1798 1799 1800 666 1801 1803 676 357 1806 1807 1809 1810 1812 1208 1814 1815 1817 1818 1820 1822 1824 1825 1827 1828 1829 1830 1831 438 1833 1506 1834 1836 712 1467 635 609 1838 1839 1841 528 1843 1844 1845 1555 1846 1847 1848 1517 1849 312 1850 1851 1675 1853 1855 1736 1857 207 720 1859 736 1861 1862 1863 1864 1865 1866 1867 1869 1224 1870 1871 1872 1873 1874 1875 1877 652 1879 1880 1881 1883 1884 1886 1888 1889 1228 1890 465 1893 1894 1895 1896 1898 1687 1899 1901 1902 575 1905 1906 1907 1908 1909 1776 451 1910 661 1911 1912 1913 1914 415 329 1686 1915 1916 1917 1918 1375 1234 1920 190 1922 153 1923 1925 1926 1928 1929 431 1614 1629 1245 1932 1933 1935 1936 1937 1939 1240 1942 1650 1944 1945 732 1713 621 1946 1947 1948 1949 1951 1952 1953 1955 1938 1940 767 403 1958 1960 1961 1931 1963 1964 1965 1966 1967 1356 1969 1531 1970 1972 1813 1974 1394 1975 1976 1978 1251 1759 1465 783 1979 1980 1605 1982 1983 1984 1985 1253 1987 1988 1821 1989 1991 1289 1992 1994 1995 1996 1997 1998 1999 2001 420 2003 2005 2006 1956 2008 366 691 2009 2010 2012 2013 880 2015 1314 1930 2017 1266 2018 1990 301 2020 2014 1757 2022 2023 326 2025 2027 784 807 517 1986 2030 2032 2033 445 2034 2036 2037 2038 1270 699 2039 2040 2041 908 2042 1272 592 1368 2043 1661 2045 2046 2047 2049 2050 224 534 2053 383 2055 631 772 2056 2058 2059 613 1448 2060 2061 2063 2064 363 2066 2067 2068 2069 2070 1934 2071 887 2072 2073 587 2074 2075 1791 2078 2079 2081 2016 2083 2084 2085 2086 1618 1823 2087 2089 668 1764 2057 2091 1292 2044 2093 2094 2096 2097 2098 1294 834 2099 1783 2100 1473 2102 2103 1303 538 2026 2106 2107 1921 2108 2109 1306 682 2110 1323 2111 2112 1919 2113 2115 2117 2118 975 1876 2121 2122 830 2124 2125 1316 2082 1762 684 2127 909 2076 1924 1624 1330 2031 368 2051 2130 251 873 1382 1549 891 2133 626 2048 2134 2135 2136 2137 2062 2138 2139 2140 2142 2143 1891 2145 2147 2148 932 2150 2151 2152 2153 1337 339 2154 2155 2156 1456 780 1744 2158 1342 2159 762 861 2161 2162 2163 2164 1345 2165 2166 748 2167 2168 418 853 2169 1349 455 2146 1943 1050 2172 359 1959 2174 2120 2175 2144 1354 1056 2178 2179 2123 2180 1779 1968 1359 2182 2183 1885 2185 2065 2187 394 2188 647 2190 1006 2191 1837 2192 605 715 1398 309 738 2193 2194 2196 1009 2132 1977 1971 2197 1534 1808 2198 2131 2199 551 1029 821 2024 619 1037 2200 2201 2202 2160 2203 2204 1403 2206 2207 1826 1442 2195 1008 722 1434 2019 1407 2209 1719 1573 2211 2212 2114 1415 2177 2035 1418 2104 996 443 1440 1088 2214 2077 2216 1426 1437 1724 999 2213 2219 2220 740 1097 2186 2090 2221 1805 1878 777 2101 901 629 2224 471 2225 2227 1568 985 570 2189 2228 1633 2229 2223 532 2230 2173 2231 423 837 1098 1663 2232 2226 884 934 474 558 2233 1512 2234 696 1051 573 882 491 2088 1716 2235 2236 1581 2237 1090 2238 2092 1085 1064 1669 594 734 1962 2239 2240 1095 2141 1061 2222 2080 2242 2244 2245 2247 2249 2250 2252 2253 2255 2257 2258 2260 2262 2263 2264 2265 2267 2269 2270 2272 2273 2274 2276 2278 2280 2281 2283 2284 2286 2287 2288 2241 2291 2293 2294 2296 2297 2299 2300 2302 2303 2304 2306 2307 2308 2309 2311 2312 2313 2314 2316 2317 2319 2321 2322 2323 2324 2325 2243 2326 2327 2329 2331 2333 2334 2335 2336 2338 2339 2340 2341 2342 2343 2345 2346 3467 2349 2350 2351 2352 2353 2355 2357 2358 2359 2361 2363 2364 2366 2367 2368 2369 2370 2372 2246 2374 2375 2376 2377 2378 2379 2381 2382 2383 2385 2384 2387 2388 2389 2391 2248 2394 2396 2397 2399 2400 2401 2403 2404 2405 2406 2407 2295 2410 2411 2413 2415 2417 2419 2421 2422 2424 2425 2427 2428 2429 2251 2431 2432 2433 2435 2437 2438 2439 2441 2442 2444 2446 2448 2449 2451 2452 2453 2455 2456 2458 2459 2460 2301 2461 2254 2463 3482 2466 2468 2470 3397 2472 2473 2475 2477 2478 2256 2480 2481 2482 2483 2484 2486 2487 3518 2489 2490 2492 2493 2494 2496 2498 2500 2501 2503 2259 2505 2506 2507 2508 2509 2511 2513 2315 2515 2516 2517 3381 2519 2521 2522 2524 2525 2526 3632 2528 2529 2530 2532 2533 2534 2536 2537 3402 2539 2540 3452 2542 2543 2544 2545 2547 2548 2550 2551 2553 2555 2556 2558 2559 2561 2563 2564 2565 3587 2567 2266 2570 2571 2572 2356 2454 2575 2577 2578 2580 2581 2583 2584 2268 2586 2588 2589 2590 2591 2592 2594 2595 2596 2598 2271 2600 2601 2602 2604 2605 2607 2416 2609 2611 2612 2613 2615 2616 2617 2618 2619 2620 2622 2610 2624 2625 2627 2628 2629 2631 2633 2635 2636 2275 2638 2639 2640 2641 2642 2644 2646 2647 2648 2649 2650 2652 2653 2279 2337 2573 2656 2657 2659 2661 2662 2664 2665 2666 2645 2621 2667 2668 2670 3565 2672 2673 2674 2676 2677 3522 2679 2680 2681 2682 2684 3734 2686 2687 2689 2690 2692 2694 3694 2696 2697 2471 2699 2285 2700 2702 2703 2704 2706 3605 2707 2708 2709 2710 2289 2712 2713 2715 2716 2717 2440 2718 2290 2719 2721 2722 2723 2724 2726 2727 2729 2730 2732 2292 2733 2735 2736 2737 2739 2740 2742 2743 2745 2746 2747 2748 2750 2751 2752 2754 2755 2756 2758 2420 2760 2762 2763 2765 2766 2767 2298 3450 2769 2771 2499 2773 2775 2776 3515 2777 2779 2780 2698 2782 2784 2785 2786 2787 2788 2790 2792 2793 2794 2796 2797 2799 2800 2802 2803 3651 3500 2805 3617 2801 2804 2808 2809 2811 2812 3848 2305 2814 2816 2817 2818 2819 2820 2821 2822 2823 2764 2825 2826 3861 2828 2829 2830 2310 2831 2520 3750 2720 2835 2837 2838 2840 2841 2842 2843 3438 3630 2846 2847 2848 2850 2824 2852 2854 2855 2857 3881 2858 2860 2862 2863 2865 2867 2868 2870 2872 2873 2874 2876 2582 2878 3879 2880 2881 3538 2883 2320 2885 3528 2886 2888 2889 2890 2891 2893 2894 2895 2897 2898 2900 3624 2902 2904 2905 2851 2907 2909 2910 2912 2913 2914 2915 2917 2918 2919 2920 4026 2921 2923 4036 3717 2926 2927 2929 2930 2932 2328 2934 2935 2937 2938 2940 2942 2944 2945 2947 2948 2949 2950 2951 3798 2953 2626 2954 2956 4072 2587 3995 3969 2958 2959 2961 3888 2963 2964 2965 2675 2966 2967 2968 2637 2969 3672 2970 2971 2795 2973 2975 2856 2977 3567 4080 2979 4096 2981 2982 2983 2984 2985 2986 2987 2989 2344 2990 2991 2992 2993 2994 2995 2997 4012 2999 3000 3001 3003 3004 3006 3008 3009 2348 3010 3825 3013 3014 3015 3016 3018 2807 3019 3021 3022 3935 3025 3026 3027 3028 3029 2896 3811 3030 4021 3031 3032 3033 3034 3775 3689 2806 3035 3036 3037 3038 2495 2354 3040 3550 3042 3513 3043 3045 3046 3048 3049 3791 2734 2749 2365 3052 3053 3055 3056 3057 3059 2360 3062 2770 3064 3065 4092 2833 3981 3066 3067 3068 3069 3071 3072 3073 3075 3058 3060 4127 3763 3078 3080 3081 3051 3083 3084 3085 3086 3087 2476 3089 2651 3090 3092 2933 3094 2514 3095 3096 3098 2371 2879 2585 4143 3099 3100 2725 3102 3103 3104 3105 2373 3107 3108 2941 3109 3111 2409 3112 3114 3115 3116 3117 3118 3119 3121 3780 3123 3125 3126 3076 3128 3726 4051 3129 3130 3132 3133 4240 3135 2434 3050 3137 2386 3138 3110 3661 3140 3134 2877 3142 3143 3686 3145 3147 4144 4167 3877 3106 3150 3152 3153 3805 3154 3156 3157 3158 2390 4059 3159 3160 3161 4268 3162 2392 3952 2488 3163 2781 3165 3166 3167 3169 3170 3584 3894 3173 3743 3175 3991 4132 3176 3178 3179 3973 2568 3180 3181 3183 3184 3723 3186 3187 3188 3189 3190 3054 3191 4247 3192 3193 3947 3194 3195 2911 3198 3199 3201 3136 3203 3204 3205 3206 2738 2943 3207 3209 4028 2884 3177 3211 2412 3164 3213 3214 3216 3217 3218 2414 4194 3219 2903 3220 2593 3222 3223 2423 3898 3146 3226 3227 3041 3228 3229 2426 4042 3230 2443 3231 3232 3039 3233 3235 3237 3238 4335 2996 3241 3242 4190 3244 3245 2436 3202 2882 4044 3247 4269 3196 3044 2744 2450 3151 3728 3171 3250 3611 4233 2502 2669 4251 3253 3986 3168 3254 3255 3256 3257 3182 3258 3259 3260 3262 3263 3011 3265 3267 3268 4292 3270 3271 3272 3273 2457 3699 3274 3275 3276 2576 4140 2864 3278 2462 3279 4122 4221 3281 3282 3283 3284 2465 3285 3286 4108 3287 3288 3778 4213 3289 2469 3815 3266 3063 4410 3292 3719 3079 3294 3240 3295 3264 2474 4416 3298 3299 3243 3300 2899 3088 2479 3302 3303 3005 3305 3185 3307 3754 3308 4007 3310 4366 3311 2957 3312 3965 4075 2518 3669 4098 3313 3314 3316 4369 3252 3097 3091 3317 2654 2928 3318 3251 3319 3911 4389 4181 3144 3979 4397 3320 3321 3322 3280 3323 3324 2523 3326 3327 2946 2562 3315 4368 4082 2554 3139 2527 3329 2839 2693 3331 3332 3234 2535 3297 3155 2538 3224 4356 3803 2560 4448 3334 3197 3336 2546 2557 2844 4359 3333 3339 3340 4100 4457 3306 3210 3341 2925 2998 4137 3221 4261 3989 3344 3831 3345 3347 2688 4345 3930 3309 3348 2753 3349 3343 3892 3350 3293 3351 3783 4197 4458 2783 3352 3346 4244 4294 3834 3918 3353 2632 3354 4056 4411 3933 4242 3851 3208 2836 3355 3356 2701 3357 4450 3358 3212 4445 4424 2789 3954 4094 3082 3359 3360 4455 3261 4421 3342 3200 3362 3364 3365 3367 3369 3370 3372 3373 3375 3377 3378 3380 3382 3383 3384 3385 3387 3389 3390 3392 3393 3394 3396 3398 3400 3401 3403 3404 3406 3407 3408 3361 3411 3413 3414 3416 3417 3419 3420 3422 3423 3424 3426 3427 3428 3429 3431 3432 3433 3434 3436 3437 3439 3441 3442 3443 3444 3445 3363 3446 3447 3449 3451 3453 3454 3455 3456 3458 3459 3460 3461 3462 3463 3465 3466 2347 3469 3470 3471 3472 3473 3475 3477 3478 3479 3481 3483 3484 3486 3487 3488 3489 3490 3492 3366 3494 3495 3496 3497 3498 3499 3501 3502 3503 3505 3504 3507 3508 3509 3511 3368 3514 3516 3517 3519 3520 3521 3523 3524 3525 3526 3527 3415 3530 3531 3533 3535 3537 3539 3541 3542 3544 3545 3547 3548 3549 3371 3551 3552 3553 3555 3557 3558 3559 3561 3562 3564 3566 3568 3569 3571 3572 3573 3575 3576 3578 3579 3580 3421 3581 3374 3583 2362 3586 3588 3590 2277 3592 3593 3595 3597 3598 3376 3600 3601 3602 3603 3604 3606 3607 2398 3609 3610 3612 3613 3614 3616 3618 3620 3621 3623 3379 3625 3626 3627 3628 3629 3631 3633 3435 3635 3636 3637 2261 3639 3641 3642 3644 3645 3646 2512 3648 3649 3650 3652 3653 3654 3656 3657 2282 3659 3660 2332 3662 3663 3664 3665 3667 3668 3670 3671 3673 3675 3676 3678 3679 3681 3683 3684 3685 2467 3687 3386 3690 3691 3692 3476 3574 3695 3697 3698 3700 3701 3703 3704 3388 3706 3708 3709 3710 3711 3712 3714 3715 3716 3718 3391 3720 3721 3722 3724 3725 3727 3536 3729 3731 3732 3733 3735 3736 3737 3738 3739 3740 3742 3730 3744 3745 3747 3748 3749 3751 3753 3755 3756 3395 3758 3759 3760 3761 3762 3764 3766 3767 3768 3769 3770 3772 3773 3399 3457 3693 3776 3777 3779 3781 3782 3784 3785 3786 3765 3741 3787 3788 3790 2445 3792 3793 3794 3796 3797 2402 3799 3800 3801 3802 3804 2614 3806 3807 3809 3810 3812 3814 2574 3816 3817 3591 3819 3405 3820 3822 3823 3824 3826 2485 3827 3828 3829 3830 3409 3832 3833 3835 3836 3837 3560 3838 3410 3839 3841 3842 3843 3844 3846 3847 3849 3850 3852 3412 3853 3855 3856 3857 3859 3860 3862 3863 3865 3866 3867 3868 3870 3871 3872 3874 3875 3876 3878 3540 3880 3882 3883 3885 3886 3887 3418 2330 3889 3891 3619 3893 3895 3896 2395 3897 3899 3900 3818 3902 3904 3905 3906 3907 3908 3910 3912 3913 3914 3916 3917 3919 3920 3922 3923 2531 2380 3925 2497 3921 3924 3928 3929 3931 3932 2728 3425 3934 3936 3937 3938 3939 3940 3941 3942 3943 3884 3945 3946 2741 3948 3949 3950 3430 3951 3640 2630 3840 3955 3957 3958 3960 3961 3962 3963 2318 2510 3966 3967 3968 3970 3944 3972 3974 3975 3977 2761 3978 3980 3982 3983 3985 3987 3988 3990 3992 3993 3994 3996 3702 3998 2759 4000 4001 2418 4003 3440 4005 2408 4006 4008 4009 4010 4011 4013 4014 4015 4017 4018 4020 2504 4022 4024 4025 3971 4027 4029 4030 4032 4033 4034 4035 4037 4038 4039 4040 2906 4041 4043 2916 2597 4046 4047 4049 4050 4052 3448 4054 4055 4057 4058 4060 4062 4064 4065 4067 4068 4069 4070 4071 2678 4073 3746 4074 4076 2952 3707 2875 2849 4078 4079 4081 2768 4083 4084 4085 3795 4086 4087 4088 3757 4089 2552 4090 4091 3915 4093 4095 3976 4097 2447 2960 4099 2976 4101 4102 4103 4104 4105 4106 4107 4109 3464 4110 4111 4112 4113 4114 4115 4117 2892 4119 4120 4121 4123 4124 4126 4128 4129 3468 4130 2705 4133 4134 4135 4136 4138 3927 4139 4141 4142 2815 4145 4146 4147 4148 4149 4016 2691 4150 2901 4151 4152 4153 4154 2655 2569 3926 4155 4156 4157 4158 3615 3474 4160 2430 4162 2393 4163 4165 4166 4168 4169 2671 3854 3869 3485 4172 4173 4175 4176 4177 4179 3480 4182 3890 4184 4185 2972 3953 2861 4186 4187 4188 4189 4191 4192 4193 4195 4178 4180 3007 2643 4198 4200 4201 4171 4203 4204 4205 4206 4207 3596 4209 3771 4210 4212 4053 4214 3634 4215 4216 4218 3491 3999 3705 3023 4219 4220 3845 4222 4223 4224 4225 3493 4227 4228 4061 4229 4231 3529 4232 4234 4235 4236 4237 4238 4239 4241 2660 4243 4245 4246 4196 4248 2606 2931 4249 4250 4252 4253 3120 4255 3554 4170 4257 3506 4258 4230 2541 4260 4254 3997 4262 4263 2566 4265 4267 3024 3047 2757 4226 4270 4272 4273 2685 4274 4276 4277 4278 3510 2939 4279 4280 4281 3148 4282 3512 2832 3608 4283 3901 4285 4286 4287 4289 4290 2464 2774 4293 2623 4295 2871 3012 4296 4298 4299 2853 3688 4300 4301 4303 4304 2603 4306 4307 4308 4309 4310 4174 4311 3127 4312 4313 2827 4314 4315 4031 4318 4319 4321 4256 4323 4324 4325 4326 3858 4063 4327 4329 2908 4004 4297 4331 3532 4284 4333 4334 4336 4337 4338 3534 3074 4339 4023 4340 3713 4342 4343 3543 2778 4266 4346 4347 4161 4348 4349 3546 2922 4350 3563 4351 4352 4159 4353 4355 4357 4358 3215 4116 4361 4362 3070 4364 4365 3556 4322 4002 2924 4367 3149 4316 4164 3864 3570 4271 2608 4291 4370 2491 3113 3622 3789 3131 4373 2866 4288 4374 4375 4376 4377 4302 4378 4379 4380 4382 4383 4131 4385 4387 4388 3172 4390 4391 4392 4393 3577 2579 4394 4395 4396 3696 3020 3984 4398 3582 4399 3002 3101 4401 4402 4403 4404 3585 4405 4406 2988 4407 4408 2658 3093 4409 3589 2695 4386 4183 3290 4412 2599 4199 4414 4360 4415 4384 3594 3296 4418 4419 4363 4420 4019 4208 3599 4422 4423 4125 4425 4305 4427 2634 4428 2887 4430 3246 4431 4077 4432 2845 2955 3638 2549 2978 4433 4434 4436 3249 4372 4217 4211 4437 3774 4048 4438 4371 4439 2791 3269 3061 4264 2859 3277 4440 4441 4442 4400 4443 4444 3643 4446 4447 4066 3682 4435 3248 2962 3674 4259 3647 4449 3959 3813 4451 4452 4354 3655 4417 4275 3658 4344 3236 2683 3680 3328 4454 4317 4456 3666 3677 3964 3239 4453 4459 4460 2980 3337 4426 4330 4461 4045 4118 3017 4341 3141 2869 4464 2711 4465 4467 3808 3225 2810 4429 4468 3873 4469 4463 2772 4470 4413 4471 2663 3077 3338 3903 4472 4466 3124 3174 2714 2798 4473 3752 4474 2936 3291 2813 3122 2731 4328 3956 4475 4476 3821 4477 3330 4478 4332 3325 3304 3909 2834 2974 4202 4479 4480 3335 4381 3301 4462 4320 atlasrep-2.1.8/datapkg/2S62G1-kerS62W10000644000175000017500000000003012216407160015113 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/12bL34G1-ker4bL34W10000644000175000017500000000050412312134607015552 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 pwr 4 30 31 oup 1 31 atlasrep-2.1.8/datapkg/Mmax21G0-kerS5W10000644000175000017500000000005512361030367015451 0ustar samsaminp 2 pwr 5 2 3 mu 1 3 4 mu 4 1 5 oup 2 3 5 atlasrep-2.1.8/datapkg/3A7G1-kerA7W10000644000175000017500000000005312216407160014713 0ustar samsaminp 2 pwr 2 2 4 mu 4 1 3 pwr 7 3 4 oup 1 4 atlasrep-2.1.8/datapkg/Bmax4G0-f2r180B0.m10000644000175000017500000010030113463765126015605 0ustar samsam 1 2 180 180 01110100110100000100010010011011111000010001011001000111010101000111001110110011 00110100001110111010010000011111010110011010101101010111010110111111010111010000 01111011101101011111 01011010100010110110111110000110011101000100111010011001011111001110111101100100 01111011111111000010111100011000101101001010000010111110101011000101000010101110 01001111001110111110 00011111111010101111101000010001010010101111100111111011011010111011111110001011 11111100010001011010011010011011110010011011000010000110111111000110111101010111 01010001110111001111 01001100010011001100100010101111010111111100011001110010001001000000101011000001 11001100011101010100111000101100100000100000110101010000110011101001111101111010 00001010001111100100 10110111110100011110011110000000100101000000110001011001011001000101110010001110 11101110001001110011111010011000111111100101000011011110111101000000101101010100 10100111110010110000 11101100100101011000011111110001101111100010110110111000110100110000111101101011 10001111000000001110111111101111001110101011000111110101100100110010101010001101 10011000111010011101 11111100010010101101110110011100111001101000010110111011110011011111111111011101 10010001100101000011110110111111100000000110010110000111010100111100011010101110 10110011011011011111 11010010111001001011100010111000110110111010100110111011110001110111110011000001 00010001000011011001001011101001001000000101110000000000010101100010001000101101 01110011101011101100 10010111111101100111011000100101111101000010100111001110000110111100011011111001 00000100000010110100110010101000000100100001011010000001011010010000010111111101 00100000010101110100 00000001101111110100001011111101100111011001110010001001011110100100110111011001 00010000111111010011110110001101110111101101101100010110010000011111101111011110 00100011100111110001 11111000110010010000001001010100001000100001100000111011010001101111010011110010 01001001010100110110001000100001000101100010011000100110110101110011111101011110 11000001010100011011 01110111110111000110111111010010011110001000001001010000101010100110000111110111 10000110010010010010011011100111100000111001011100101110010001111110011000001010 01001110110101101100 11001111011001010001010011110000011101110010100001110110110000100100101010001110 00001011100100100000110000010001100010001001111011110011111111111100101111110011 01111000011111011010 01001110010011010010010100101001000001010101110000011001110010001001111111000100 00000011011011110000101011101010000101111011110001011000010111100100011000101110 10000101101110010011 10100010110010000111101000010001010010101111100111111011011010111011111110001011 11111100010001011010011010011011110010011011000010000110111111000110111101010111 01010001110111001111 10001111000010000110110000010001100110000011110100011101000100011010010000000100 01100100110111000011001010111011001010000111000010111100000110011111110111010111 01001111010001000100 11010100110101011101011010101001011011010100000001010100010001101010001010100100 11000001001101111100101110001100001010010011110100001010011100110101011000000000 11111100010101100001 11110110000010000111000010111110001110111110101101111011110111111100111100101011 10000100110101101000001101101001011010101010110001100000000011100111100111010111 10011011010111100010 10001110000010010001110110001111010100000011101000110000101010001100100000001100 00011000100100101110000100001010011101010100101100100010010010100000110111111010 00010100101001101111 10001010001111110111010100001110000001101101010001001100110101110010101110101110 01010100010111001101000010110001101110110110101011100011110100010011010010001010 01010000010011100111 10100111111111111111000001111000011010010101110010000110111001010100000110100100 11001100100100011111110011100001100111111111001110110110001000000000010000000000 11010100000110100110 01010011100100100101110010110100101100111110100101100010000110101000010101011010 10000001101110100000001011000000101000011010110101000011000011001001000101110100 01010010000101001010 11011001110011111110101000101100010111110001100000011111010001011000110110111010 00000111100100111001011001100010110101110101010111010101110000000001101101011101 00110111010001100100 10010110101001111110011011101111010010011001101010100010000010111101111110001000 01101000101100110110000110010110000111000010001101101000011101111000000010100111 11011111101101101010 00011011110110111101000111010000100111111110111010000011001101000011110010000011 00001010010010101000011001000001001100011111010111011111100010110000000111111101 11110100010011010010 10101000110101010000001001111010110110010001100011110110011001010011101111100100 01101110010000001111110011110110100000111110010011110101000000001011000000001010 10110010100000001101 00100011010010100011101100100100000010110000000101011110100011100101010111101000 01011100100101100100100110110111111001010110000011001110111100111101111010000111 11111110011100110110 10000011101110000010000010000011001010110001110111100110001000011110111101110001 10010101100110110011101000110110101011000000101011100011010000011000000010100111 11011111101101101010 10000100100001111100110100010011000111111011011001010001111101101111010110100110 00111101100111000010111111010011000100001111101011010001101101010011111010000100 11011100011111101111 11011111101010000010001100110100011011101010101011100000010111000101011001010001 00000001011000001100001000111001101100101111110110101001001111001010011101110111 10001100010011110010 00000011101110011110101110100010010011000010010101110000011001000001010010000100 00010011100110101000011100101001100000111111110100101000001010010100111111010100 01000101000001011010 01011110110011010101111100100111010001100111101100001011011010011010001010100111 10001001000011111011101100100010010100001100010000101011101010100010101101110000 01101100101001001111 00110000101100011110110100010111110010101101011110111001011011000000100101111101 01000100011111001100010110110101110110101010101000001101110001110110001101010000 10110001001101110010 10001010001001001110101011101111011110001110111100110000110000100100010011000101 00110000111101001000100110110001101110110001011110010110111010000000100111111010 11000000101111001001 00100011101001101001100001010000110001111000001010110100101100010101100101001101 00010101111001001110001010011110011110010001011010011101001000000101110000001110 01110000011001101001 10100001011110100011010100000111111011110100011111110110010000000000101101001101 10000101010101011001011111001111010011011000100010101101110011110110001111110111 01101110100000011000 11110101111010011111111101111001100100100101110010110010101001001001111110111001 11001011111010001110110101010001110101100100111100110010010001110100100111011101 00101001110111101111 01010011100101110001110010100011011010111001110101000010100011010110010000100110 00101100111011010111100100111001011001101010111110100000010000100001001010000000 00011110100110001011 10101111101100011111101100111000001010111011100010111101100100101001101110010111 10001000101110101000111100010101101010110000010001110001101000110110100010100011 11001001010010101000 10101100111101010110100001001100011111100001101100001010101000001101110011011110 10011001110111111000000110110010110111011011000111000000011000100011001000000011 00001010010000011110 10000101011111000000010000001000100100000101111011011101100111111111000100011110 01011010000011111101110001110100010010111101000010111110011110100110100111111001 11100010101100010000 10100000000001100110100100011011110101100001001110010010000111110010111111110010 01100011101111001111011111111011101001111011011110100101100001000011011010100100 00000001111011010010 10111010110011100101100010110001011110010000101110100111110111111110011011010110 11110110001000000010001110001010101000100101001101100100111001011101110111010100 01101101010010011101 10010011001111010101011000000101110011111010001000111001111110111001010100101111 10001100010010100111110010001011101111001101011000101100001011100010001101010000 10110001001101110010 00000011100001000000001011010011110011000101011101001100110000111011111000000001 01101101111000010101111011010001001011100010111101110110110000110100010111011010 11001001001101010010 01101011100110101111010111101110110101101100001000100000110001101101110110000111 00001110011010101100010111001000100011001001111001111111011111001110011000101101 10100111101101001010 00001111110000011111010011110111110000110111010111001001010101011100011001100001 11101110001010100100001010101000101000111000010010010001100101100001101101111010 11011110001001000010 11111111110111010000000111100001010101101111001000000111100011100000010000001010 10011011101100011001101111111100101000011110001000000110100100111111010111010000 01111011101101011111 00101010110010010011111001100000001111100000101111101000111001011111010111000001 00100101110001001110011111101001011001001010010001010101111000100111100111010111 10011011010111100010 00101011000110011100000110001001010011100011000000001010001011010000101010100101 10000111110100010111100111101010100110111101110110010100011101100011001111011001 00010111011011101010 11111010110101101111101101110010001001001110110110010101111010001010111001000100 10000111010101101110101011010100111110010101011011110010010110001111101010000100 00001000011001001001 00001001000101110111111000000101011010000111011111001010011010110010101011101110 10011010001101110000011101010100011010011111100100110110011000111100100111011101 00101001110111101111 11110110011111111100101101010000011100011001110000110110010111000010000110011011 00001110010001111010101001101111010110010001110111000100010110110010111000101010 10010011010001010001 10000010001100011101000101000101100100111001011101111011011110001000111010111111 11110001001011010010100011100100110100011101001011001011100011011000001101010011 10010011001110101011 11000011001000101101100001110110111110111101010010110110010010000001101110000101 00110100101101100110011100100011100110000100111100000100000110100010101101110000 01101100101001001111 10100011011001001011110110011101100110001011010001000001011001110111000010110011 10010100101101001111010010011010111100101111101111010100000011000100001000001001 10111000110000010011 00010010101001010101011010011111001111010001001111000001001001001001010101100011 11101101000000111011110111001000100101001100111001001101001100000100100000000111 00110100111100011011 10111000001000110100010011101100101011000110111101110000010111010101101100011100 01001010111001010011010010100010010101000001001110110110011100110001000010001001 10100110010110011000 00011100001101011100010111010110100000101100011110111000010001110000010001001111 11101110000000100010010101001011000101011100110001010110110000001001101101011101 00110111010001100100 00001011011101010001111000001100000100001100100110110000001101001011001110000010 00110010010000001001100011000110001011111011111000001111011001101100010101111101 00010110100000111000 11101000110110000110110001111100100110001101101100010110110111101111011100100010 10101001100010101011001011100110000100111011011001010000001111001001001111111101 11011100000000010101 00001101000100000100101100111011110101000011001111001011011100110101001010010000 01111110011110000110111101111010011010111101010110001100001110101110011010001010 01111000000000100000 01001010101011010100100101111110110110101011011100011011011110110100110011001000 10011010011011111000111111110011010011101111101010000011100110100111100101010111 10101101100010101110 01011011000001101010100000001111100001101011111111001100101111011000001010000011 01101001110100010001100101101111010100000111111111010101000000011001011010100111 00100011111000001011 01011010111000000001001011111110011101000110101101010110101111100101110000111011 01011010001001110011000111010000010100111011110011110100011111101111011111111110 00101010000101101010 11101111011111101100000010010111101110101011101100100010100011001000010100001100 00110111000010000100101000111001000011100000101000011011110110100101110101010100 01011011100111010001 01001010101111100000000100100101101000101011100011101101101100011111101111110101 10111111101010011000110100101010010101110011100000001110100001110101010111110100 10110000110110100000 10110000110101110100111000111100111100000001110011011010000010100110000011110100 10010010111101100000101010001110100010011100100001110011000001010000001111110100 01001100100011000001 10001111011101111000101011011110100101011001100111111000011001000101000010010001 00011000110111110001010010110101111001111010100111001101111011010010001111010000 10000111111000111110 00111001001010001011011001111111100101010010111101001110111101010000011111011000 00101000010111001100011001010100111110100100110011000101011010000100101000101001 01100101010100101110 11001000011011110100111101001111111100101110011110100001001001001010110100001101 11011010111100010110110000011011110100100000010000011100001010011010010010100100 00101001101000010101 01001110111010011110100010001111011110011001110110101000101110101111011000100001 00110001101100111110110000110110000011001110100100000011010111010100011000101110 10000101101110010011 01101011111101100010111111110010101010111100101010110010010000111110101000010001 11111000101001101011110011101110110100011010001110101100100010111000011101010011 01000111001000001101 01011001101110111101000010110101010010100001011100011100100101111100111010011110 11111011000100011111101001100000010000000111110001100000001001101101011111111101 00001000000110110011 00111000001100110111100110011010001100110010111110111000010110000111001001110111 11010101110110001000101100100001110011100010010011010110110000100010101010001101 10011000111010011101 10111011000101111101000011101101110000111100101010000011000001001100100110100101 01000001001110001101011111110110011000000111001101000101011010101100101010101001 01010011100001100010 00000011010100011110010101011100101000110100001111110110100001100101101000010101 01101010000111111111010111110001111111011110101001100011110010000001010010001001 01110010010000111110 00001101010011110110011110110111101111010001111101110001010001110000001010011101 00000111110110011011001010010010000110010001011000000001100000111000011101010011 01000111001000001101 01000000001010101001111000011010111001110001111000101010011111110010110010111010 00001001000111011111010111110100011100100100001000110110111101101011110111010111 01001111010001000100 01100101001100111101100110010010011001110111000001110000111000110111010110101100 01110011000110001011101000110001011010000011010111001110111100010011011010000011 11101000100011110100 00001111110011011011111100111111001110010000101111110001110110110110110101100001 10000000110110011100101110110111101011100000110011100011011101000110001010001010 10101100000110000110 11001100101011101100100001111110101011001011011101010101101011110011100001100101 00101110110101110001101010000011011011100010001111011000110000101001001000000000 00101000010011000111 01100110110110011111101011010010001000000010110000001111000010011100101100011011 00100111111010011101110011111111100000100101101100001010010101101110110010000100 11110100001100101000 10100010100101101101000101001110001010110100000001110010001010100100111010101111 11101100110001011001100101100110100001111110000011000001100010101110001101110111 01011000010101010100 10100111101011000010100111111110011110100101010100001110101100011010111001110001 01011100100101111111100100011011011010100000101011000101000111000101001111011010 00110101011000110011 10011000011111101100001111000101100001010010101111000011110111110110100011000110 00110010100100001100010000001000010110100011011001111110110001001011100111110000 01110010001111000100 00001101011000001111101010010001001001110001010100011001101001110100100010010010 11001110011101101101000011000000111000011011001101000000111010010001100010001110 10010010101010000011 10110000010010111111001100110010000110100111111010000111100000111111111011001111 10000101000101111010011000001011001000101110100110111101110000001000011010001001 01011010000011111001 01010011110101111110010100000001100110101011110101000001111010001000101000000101 11011110110100010110001100000001011011111100000111100001101100111010101010101010 01110001100010111011 10101101001101100111011101010011100011011101001101100001111100001101000101011010 10001010101011110010000001001001111111111101011010010110111110101111000101010000 10011001011110110101 00001110001010010100011000101011001011110100010010111010100101000010010101101110 11100110101100000000011011100101111011101001111100110111101110010101011000100111 00010101001101000111 00001100110011110011000101010010100111001011011110100000101000100111111101110111 00110001100111000101100110110011000100010001011010000110101101010111000010001010 10000100010101000001 11111110011101010000100001001110001001111100110001111101000100010101001000100000 00010010101100110010100111110001100000010111000010010010100010101110100000100011 11111111100111100100 00000111010100011010101110100000110111100011100010001111001101110000110001001010 00010100010111110111100110111110101110111011000010000010000101001111110000101010 10111011000010010110 11001110000101111101001101100010111001101101010010100111001011110101110011101100 11000000010011101100110010111100011010101011000010100010011111111011010010101101 10111001001011000001 11010111101100111000000011010001001111001111011111100000000010000101011000011111 01100101000011011010010110111010011111100101000111011000100100110100111101010100 01110011110100010110 00110010000110111110100101101101011001111011000000010010110111011111100000111110 10001010101010101011000001111000000011100010101000101011011001011110101111110000 01011010011100000011 00010001101000010010000010000110000001011011100000011111101100001110110111110111 11011001010001110011101100111011110111001101101000010101010100000101100000001110 10100100011111001111 10010010011111010001000101001110001100111001100101100010110110001111010010011100 01100001101000011101111000001100100000001010100111010100010000111110011111010000 01010011111110011000 00100101111101001001101001000010100101011000011100000010101010100001111100011011 01101110111111111110000001000001011010101111000011010101000101011110101000001101 10101110001111010001 10011011000111101110100001111101001101011101011001100101101101101001111001111100 01001001011100000100110111111101000000101111000110000111001010111011110111110000 10100110001001100010 01000100100001010010111101100011010010000001100100001010111010101011011001100111 11100000011100100001111001011000011111011011101110100101111100110011010111010000 01111011101101011111 10100111110001001000101001000100110000010101101010100111110110110001010100100001 10100111010001010110111100000101110100100100001000100101010000111111111111111001 00011110111001110001 01001111110100100101110110100111001101010010001111010100100100001010000010011011 00100000110110011110001110110000101110010111110110111101011010010101101111011101 00000001100100101000 00101011001011100111101101011011011110101001010101111100001000100000111010110101 10110100011100100011100110100111101100111101001101101100101011100110010111011001 11101011001110001011 01001011011100101100000000000101101100000110011111010010011010000010100111101001 01011000100011000001011110101110000100101011000110000001011001000110010010100100 00101001101000010101 00100101011111001111110011100101110101000000110011101111100010100001100001111001 01110100000010110101001101110010110001111010100000100011000000001001100010101001 01111011110010100101 10111001110010101010110001010000000000010111001111001101011101011000100000101011 10110011010111001001000010101001111110111011101011011011100010000011101101011110 00010101010010111101 10010001001101110011001101000011011101011001001010111101101101101001100111001111 10010111011110001110010010001101010000010010100010100001000011011000000111011010 00011101001011110100 01010110010110000001010010011001101011101010111101000110001101100101000100000001 11110100011111010011011101010110111010001001010111001000010000001101011101111101 00111110110011111111 01101001111001000100111011000011011110101111001000000100111001011010011001110000 11110111111100010101010100110110000101111111100100011010101011111101101101111010 11011110001001000010 00011101110000011011001100011010001001100110110110001111001100011010000101000111 01000110000010011010010000011011011100001100111011100100000101110010011111010000 01010011111110011000 11111000100101111110000001101010101100011001100010101111011010011111001101011100 01000100100011000100000110011010110000000001110011110011111110001111101101111001 11111100001010011011 01010010010000100101100011011011100111001101101110001000011100000111100011100110 00010101111000011000110100111011101100001001001000001110110000010111000010101101 01101101001101100111 10001110010010110000011011110000011010010010010001000111111011011111000100000010 01001010000010111101010001101000011001110110100100110011111101110000000000000000 00000000000000000000 01100011101010010010110110000100001101010100001010001111111001111110000000000101 00100001000110011110010110011010010010011001011100100000001010001001001000100111 11000001001011100001 11110101000110011011110101101010000000010000101111111000010000010000101011101101 00111111101101110010001001111011000010111001000010000111111100011101100111110011 01010000001100011101 01110000001000111101011111110111000001010110100010101000011110111101101011111101 11101001111001010011010010100101101111001011110010110111001001101001110000001110 01110000011001101001 10110011101001101111110010100000111001110100001010001000101000111000000100000011 11110100000110101010110000101010000101000100111100110111000100101100100101111010 11110110011010000101 10010001111000101001000010011010101100001100011000110110010001100010011100101101 11100011010000101010010011111001111110101100110001011001000110010110110000000100 11000010111001100100 01010111111111010101101100100011010100001010001000100011001001010110011010110101 00010100010000100011000101000001001010011011001011101110010111010111101000000100 00111110101100000101 00110100100000001011011011111011111000110001011001110100000111101000010110111000 01011001001011101100100111111001010000000000010001001101001011101011111111011110 11110111100001010111 01101001000010011001001011111101111001110101110011011010110111001011111100000010 11011001011111111010110101100001011011101010110001010111101101100100000111011010 00011101001011110100 01000000011011010001010011000001001110001000010010001101001111000010101101001010 11001111000111001010100101110011011011111000111001000011001110110011110000001101 01010010011010110000 01001001011011011101100011001110101011110100000110101111000001101010011110011100 11001100111111111011000011110110011000101110011010010101011000010101011111111101 00001000000110110011 00101111011011110100100001001101100111010010000101000111101011010101011100110001 11101110101101001010000011101111010101111011100010000101101110001001110010101001 10101111110100000011 10110111101000000100110010101011010111011110000110001110011100111110000011100110 01101100011001101110110100110000111000001011000110010010011000101101001111111101 11011100000000010101 01010010111010110000010011111011011001000000101100111001010010010111010001100010 11010111001001100110111000011011110111111100001000000010111001100101111101011101 11100011010111000010 10000100001010100001001100000000011010111011001101111000011000100011001001110101 01100100000001000001010001100001110101011111001000000011010011000000011000101110 10000101101110010011 01110010010100100011111111101101111111101101000100100001111001110010111011001001 11000011011101100010101010111110101001000110000110010110111110011000110010100000 00111111010111010111 10100100011110010011011000011010110011011101100111111000101111110000000010011100 00101111100010011111100000100000011010110001010101111101010101111111000101010000 10011001011110110101 11100110101011001100111001010110111001001000101001100010001110111011110110111100 01100100110101000101111111011001010010111101000001010001100011101100010111111101 00100000010101110100 01011111000111110110100000010001001101100100000110000001011101110011110101011110 11000111100010011001000110100111000010110001110000010001001101000110011000101101 10100111101101001010 10100101000010001101001100101100000010111100111010010111011100000010001000111000 11011111100110101011010110011110001110001011110011101001010011100001000010001001 10100110010110011000 00101000001111101001010000100110111000000000001110000001111111010010001000000111 00010000111111010111000010111101111111001010100100100111001010010010101010101010 01110001100010111011 01011100101111100011110101101011000010001001011010000011000111101101000101000010 01010001001000011000100000111101011011001110000010011011111111000000011111010011 01110001111101000001 10111101001101100101100000100000101110100110111000100101010111011110111010100011 11001101011010100101101011000000100110101100010111011010001111001010011000101101 10100111101101001010 00011111111000100010110001101101001001100111010101101111011000011001000011001111 00100111001111000001011000100100100001111100000010010100000010101101111000000111 11001000101001111010 10101101011111010010001101010010100101101101100010110001011110100011110110000001 01101011100110011011101000011000101111100111111101010101101101111010011000001010 01001110110101101100 11100111110110001010001100000011010111100011100011001110100001000101010110110110 10001111101000000001001001001010111111101111100110111110000101100100001010001001 10001110000101011111 00001011010010001110100000011100001000111001110011011010001011011010001101110111 10101010010010110111001110001111101001110100100010010110011011100100011000101110 10000101101110010011 11000110000101000110000000010100101000011100101100111100111110011100111100110011 01101101000010110101010010110111011010111100001010011100000110101000011010101110 10110011011011011111 10000110111000101001111100011001101101111011011101010110100111101000001111010111 01001000101100000110111001000100000001011100001011100110001000110001000111010011 10001101101000100000 01100010011110100011110101010100010011111100001110001011100000010001001101100101 11001100000010010010011001010011011101001000011000000101000111000100100010000111 00000010001001010111 11011011101011011111010110010011010111111011100111000010011010111101001101001110 10101100100101010000111100011011100000011110000101010111111010110110011000001010 01001110110101101100 11101110100110010011001100111010010111001001011110000010100001111111010001101110 00010001001011001100011100000011000101000100010010111100010110100001101111111010 11101000111100001110 01011101000111100101110011011000101100000011101110111010000100100100100010110001 00001001010110011011001000111001101100010100111011011001101100110000010110011110 00010101010010111101 00001010010110001011010110110000111000000100100101100010111101010101101001000010 10001001011111110001010110111010001011100100101001111001100111001000111010000011 00001010010000011110 11001110100010101011001010110111101001110001000101000001011101100000101000001000 00110110000111000110011111111100100000000111100111001001001101001110110010000011 11000000110000110011 01000011110110101100101101101111101001111000000111011111011100000011100110001110 10000101001111011000001001111010100000001001000000100011111111100101110100110000 01101100101001001111 00100011111011011001001100110000001000011101101101001101101011001100101011010001 10101000101011100000100111000011100011011000101011100110110110101100111111111010 00010100101001101111 00001101000100110000001000011100010100100110011011111110111110001111110110010000 00010001100000111110111100110101110101001110111000001001110001111001100100101101 10111001001011000001 01010010000001001000011011100110001110000011010011100110100110010010101100001001 00000001100010011101101101110110101110000011010011101001000100011101101101111110 00011100110000100110 10010011100110011111010100011011111100001110000010000010000010000111010100111010 11000111100001000100111100101001000110000110011100010011101011001110010010100111 00100011111000001011 00000011110011100011011100101100100001010100100100101011101010110010001001001001 00101110101011110101111100100111000110111010000101000011011011110111110000001110 01001111001110111110 00000111011000000101011110011011011011101111001101011000111000110111111000111111 01011111010011001000011000110110000011010100101101001101001010000100101010110100 11010011000001111001 11001111111101110001101110001011100011001100101101100110001001001111000011010000 01110110100111011100101100110001001000101011100001000101101010011000101111100011 10101010010001101010 01011011001010110001111110111011000101110000111100100000011110101011101001001001 00010010110011110001000000011000011000110010100110101101100001000101001101101010 00111101101100011000 11100101110111011110111100010111011010000110010001111011011011100111101001101000 10011010011011101101000100110100010001100011100010110100110011001011100010011110 00010110001011011001 01101011011000110101011000101011110010010010111111011111000111101011011001111011 00011000101011000111000000010101110011001110100010001000000101110010101110100101 01110011011001110100 11111111101111100100011010100110001011000000001110110100100100011010110100011001 01010111100000000111010110001001111011011101011010110111101001011011111110010100 00001001011101111010 01110001110000010100111011000010100011110000001100000100010010001000110000000000 01101100001101101010011100110100111010001000000100010000110000110000100100100111 11101011110011000001 11100100101011010000100010001110010100111101001101001111000111000101111101111011 11101110100001001011111011000011101100110100001001000101111101100101111111010100 00100000010001100111 01011111111001101010011110011010110000001100110011000101001000100101111001100011 10001010000010001000000011100010100111111111100100001001101000000000101001111101 11111101001110000011 01000011011001110100010011101000001110011000011010010011011101111000101000101111 10101100111010100011111010100101100101001011000010010101110110000101101000010000 10010110100101101111 00111010011101001111001010101110111001010010001110001010111110000011110111000100 11010100001000110100001000010000011101011110011010111101111000100010000011000110 10011111010001100001 10101001110010101110010010101111001001111011101010110011001101110101110011010000 10101001011110111110000011100110100000011001011011111001000010100010101100000011 10101110110100011110 10000001101011011100101011110110100010110001101010100010101001110001001110000000 01101001110101010110100101110010100011001110010111011101010001010001100110101000 10001001010010110011 10111011100100011000101100110011101100001001100111011010001011010001111100111111 11010011000001010010100011101001111011110011010001111011011100010010111010000100 00111000110000001000 00001000010101101101011011011110010011111011111100010011011110010010000011010001 01101100001100000010011110111101010101110011000100100110110101011101001100100110 10010011100100101101 01100110000011011010110000000001110010111110111110101111001101011011111100001110 01011000100110111111110011011000001011110111101000000100101010110100000001011011 11011000010110101110 10010101111000111010010111011101001100000101001100111010111101100111111001100101 11010100001110011100111011001110011101111000010010001001110011001100011001010010 00010101110011000001 00111001011011001111111101101101111100110111110011000000000010000010111000100111 01101001000000101000011001010011100000111001110110001100111000100001100101101101 10010000011101010001 00111111000101101110111110100011000001111001101000001000010011000001000100010110 00001000001001100101000101010100110101100011000110110100111101100111100010100111 01111000001111111101 10000011111011111101101011000001100110011000100110111101111111110111110110000111 11000111111000100001001110111001110010111000011000111000011001001011100010110100 10101111010111011100 00011101101011011010001101011000000001110110101010100101000101011010010101111110 11101110101000010001100010100111100010110011111001010111100011000011111101011100 10110000101111001001 00101011111101101011011001000111101001010000000001111111011011110100111110011000 10011101101011000110111000011000001100110101100111000010010100000111111010000110 10101101100100100101 10100110111111100001100001100011010011110101001101000000010101111110000011100000 10011100011111111110110001111001111110100010010100011110011101110110100100110111 11111111110110000111 01011010011110111101011001001000101001001000101101110011011101101000010001010010 11011110101100000001101010110001110011101001100001111110000111011011101011110011 10011101010111101000 10111111101101011101110101000100111011010000010101101010111110110001101010000111 11100100011010111000100111110101010110000110101100011110111011011100111011000010 00110100101011111110 atlasrep-2.1.8/datapkg/12aL34d2aG1-ker3L34d2aW10000644000175000017500000000012012361032425016355 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 pwr 2 4 6 mu 6 3 5 mu 2 4 6 mu 6 5 7 pwr 7 7 8 oup 1 8 atlasrep-2.1.8/datapkg/6L34G1-ker2L34W10000644000175000017500000000050412312137612015166 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 pwr 2 30 31 oup 1 31 atlasrep-2.1.8/datapkg/G25G1cycW2-cclsW20000644000175000017500000000147612522742260015617 0ustar samsaminp 14 6C 10C 10D 15B 15C 20A 20B 21B 24B 24C 25A 30A 30B 31A pwr 2 31A 31B pwr 2 30B 15E pwr 2 30A 15A pwr 2 24B 12A pwr 2 24C 12B pwr 2 21B 21A pwr 2 20B 10A pwr 2 20A 10B pwr 2 15C 15D pwr 2 10D 5E pwr 2 10C 5C pwr 2 6C 3B pwr 2 31B 31C pwr 2 12A 6A pwr 2 12B 6B pwr 2 10A 5A pwr 2 10B 5B pwr 2 31C 31D pwr 2 6A 3A pwr 2 31D 31E pwr 3 24B 8A pwr 3 24C 8B pwr 3 21B 7A pwr 3 15C 5D pwr 3 6C 2A pwr 3 12A 4A pwr 3 12B 4B pwr 3 3B 1A pwr 7 24B 24A pwr 7 24C 24D oup 22 1A 2A 3A 3B 4A 4B 5A 5B 5C 5D 5E 6A 6B 6C 7A 8A 8B 10A 10B 10C 10D 12A oup 18 12B 15A 15B 15C 15D 15E 20A 20B 21A 21B 24A 24B 24C 24D 25A 30A 30B 31A oup 4 31B 31C 31D 31E echo "Classes 1A 2A 3A 3B 4A 4B 5A 5B 5C 5D 5E 6A 6B 6C 7A 8A 8B 10A 10B" echo "10C 10D 12A 12B 15A 15B 15C 15D 15E 20A 20B 21A 21B 24A 24B 24C 24D" echo "25A 30A 30B 31A 31B 31C 31D 31E" atlasrep-2.1.8/datapkg/12aL34d2aG1-ker4aL34d2aW10000644000175000017500000000004212360570062016525 0ustar samsaminp 2 mu 2 1 3 pwr 7 3 4 oup 1 4 atlasrep-2.1.8/datapkg/2L213G1-kerL213W10000644000175000017500000000003112340211743015230 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/2S11G1-kerS11W10000644000175000017500000000005512340207173015106 0ustar samsaminp 2 pwr 2 2 3 mu 3 1 4 pwr 30 4 5 oup 1 5 atlasrep-2.1.8/datapkg/4aL34d2aG1-ker2L34d2aW10000644000175000017500000000010612361303575016310 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 2 4 5 mu 5 4 6 mu 6 3 7 pwr 8 7 8 oup 1 8 atlasrep-2.1.8/datapkg/6F22d2G1-ker2F22d2W10000644000175000017500000000011412312401142015605 0ustar samsaminp 2 mu 1 2 3 iv 2 4 mu 1 4 5 mu 5 4 6 mu 3 6 7 mu 7 4 8 pwr 8 8 9 oup 1 9 atlasrep-2.1.8/datapkg/2F42G1-kerF42W10000644000175000017500000000011112340445566015067 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 pwr 2 4 5 pwr 3 3 6 mu 5 6 7 pwr 21 7 8 oup 1 8 atlasrep-2.1.8/datapkg/6A7G1-ker3A7W10000644000175000017500000000006412312136437015006 0ustar samsaminp 2 mu 2 1 3 pwr 2 3 4 mu 4 1 5 pwr 3 5 6 oup 1 6 atlasrep-2.1.8/datapkg/6O73d2G1-p5614B0.m20000644000175000017500000006453712635600340015363 0ustar samsam12 1 5614 1 2 4 5 7 9 10 12 13 15 17 18 20 22 23 24 25 27 29 30 32 33 34 36 38 40 41 43 44 46 47 48 1 51 53 54 56 57 59 60 62 63 64 66 67 68 69 71 72 73 74 76 77 79 81 82 83 84 85 3 86 87 89 91 93 94 95 96 98 99 100 101 102 103 105 106 1227 109 110 111 112 113 115 117 118 119 121 123 124 126 127 128 129 130 132 6 134 135 136 137 138 139 141 142 143 145 144 147 148 149 151 8 154 156 157 159 160 161 163 164 165 166 167 55 170 171 173 175 177 179 181 182 184 185 187 188 189 11 191 192 193 195 197 198 199 201 202 204 206 208 209 211 212 213 215 216 218 219 220 61 221 14 223 1242 226 228 230 1157 232 233 235 237 238 16 240 241 242 243 244 246 247 1278 249 250 252 253 254 256 258 260 261 263 19 265 266 267 268 269 271 273 75 275 276 277 1141 279 281 282 284 285 286 1392 288 289 290 292 293 294 296 297 1162 299 300 1212 302 303 304 305 307 308 310 311 313 315 316 318 319 321 323 324 325 1347 327 26 330 331 332 116 214 335 337 338 340 341 343 344 28 346 348 349 350 351 352 354 355 356 358 31 360 361 362 364 365 367 176 369 371 372 373 375 376 377 378 379 380 382 370 384 385 387 388 389 391 393 395 396 35 398 399 400 401 402 404 406 407 408 409 410 412 413 39 97 333 416 417 419 421 422 424 425 426 405 381 427 428 430 1325 432 433 434 436 437 1282 439 440 441 442 444 1494 446 447 449 450 452 454 1454 456 457 231 459 45 460 462 463 464 466 1365 467 468 469 470 49 472 473 475 476 477 200 478 50 479 481 482 483 484 486 487 489 490 492 52 493 495 496 497 499 500 502 503 505 506 507 508 510 511 512 514 515 516 518 180 520 522 523 525 526 527 58 1210 529 531 259 533 535 536 1275 537 539 540 458 542 544 545 546 547 548 550 552 553 554 556 557 559 560 562 563 1411 1260 565 1377 561 564 568 569 571 572 1608 65 574 576 577 578 579 580 581 582 583 524 585 586 1621 588 589 590 70 591 280 1510 480 595 597 598 600 601 602 603 1198 1390 606 607 608 610 584 612 614 615 617 1641 618 620 622 623 625 627 628 630 632 633 634 636 342 638 1639 640 641 1298 643 80 645 1288 646 648 649 650 651 653 654 655 657 658 660 1384 662 664 665 611 667 669 670 672 673 674 675 677 678 679 680 1786 681 683 1796 1477 686 687 689 690 692 88 694 695 697 698 700 702 704 705 707 708 709 710 711 1558 713 386 714 716 1832 347 1755 1729 718 719 721 1648 723 724 725 435 726 727 728 397 729 1432 730 731 555 733 735 616 737 1327 1840 739 1856 741 742 743 744 745 746 747 749 104 750 751 752 753 754 755 757 1772 759 760 761 763 764 766 768 769 108 770 1585 773 774 775 776 778 567 779 781 782 1695 785 786 787 788 789 656 1571 790 1781 791 792 793 794 1535 1449 566 795 796 797 798 255 114 800 1310 802 1273 803 805 806 808 809 1551 494 509 125 812 813 815 816 817 819 120 822 530 824 825 1852 593 1741 826 827 828 829 831 832 833 835 818 820 1887 1523 838 840 841 811 843 844 845 846 847 236 849 411 850 852 693 854 274 855 856 858 131 639 345 1903 859 860 485 862 863 864 865 133 867 868 701 869 871 169 872 874 875 876 877 878 879 881 1540 883 885 886 836 888 1486 1811 889 890 892 893 2000 895 194 810 897 146 898 870 1421 900 894 637 902 903 1446 905 907 1904 1927 1637 866 910 912 913 1565 914 916 917 918 150 1819 919 920 921 2028 922 152 1712 248 923 541 925 926 927 929 930 1344 1654 933 1503 935 1751 1892 936 938 939 1733 328 940 941 943 944 1483 946 947 948 949 950 814 951 2007 952 953 1707 954 955 671 958 959 961 896 963 964 965 966 498 703 967 969 1788 644 937 971 172 924 973 974 976 977 978 174 1954 979 663 980 353 982 983 183 1658 906 986 987 801 988 989 186 1802 990 203 991 992 799 993 995 997 998 2095 756 1001 1002 1950 1004 1005 196 962 642 1804 1007 2029 956 804 504 210 911 1488 931 1010 1371 1993 262 429 2011 1013 1746 928 1014 1015 1016 1017 942 1018 1019 1020 1022 1023 771 1025 1027 1028 2052 1030 1031 1032 1033 217 1459 1034 1035 1036 336 1900 624 1038 222 1039 1882 1981 1041 1042 1043 1044 225 1045 1046 1868 1047 1048 1538 1973 1049 229 1575 1026 823 2170 1052 1479 839 1054 1000 1055 1024 234 2176 1058 1059 1003 1060 659 848 239 1062 1063 765 1065 945 1067 1514 1068 1767 1070 2126 1071 717 1072 1725 1835 278 1429 1858 1073 1074 1076 2129 1012 857 851 1077 414 688 1078 1011 1079 1671 2149 1941 904 1739 2157 1080 1081 1082 1040 1083 1084 283 1086 1087 706 322 1075 2128 1842 314 899 287 1089 599 453 1091 1092 994 295 1057 915 298 984 2116 1563 320 2208 1094 957 1096 306 317 604 2119 1093 1099 1100 1860 2217 1066 970 1101 685 758 1897 981 2021 1749 1104 1591 1105 1107 448 2105 1690 1069 1108 513 1109 1103 1652 1110 1053 1111 1543 1957 2218 543 1112 1106 2004 2054 1594 1678 1113 392 1114 1816 2171 1693 2002 1611 968 596 1115 1116 461 1117 2210 1118 972 2205 2184 549 1714 1854 842 1119 1120 2215 1021 2181 1102 960 1122 1124 1125 1127 1129 1130 1132 1133 1135 1137 1138 1140 1142 1143 1144 1145 1147 1149 1150 1152 1153 1154 1156 1158 1160 1161 1163 1164 1166 1167 1168 1121 1171 1173 1174 1176 1177 1179 1180 1182 1183 1184 1186 1187 1188 1189 1191 1192 1193 1194 1196 1197 1199 1201 1202 1203 1204 1205 1123 1206 1207 1209 1211 1213 1214 1215 1216 1218 1219 1220 1221 1222 1223 1225 1226 107 1229 1230 1231 1232 1233 1235 1237 1238 1239 1241 1243 1244 1246 1247 1248 1249 1250 1252 1126 1254 1255 1256 1257 1258 1259 1261 1262 1263 1265 1264 1267 1268 1269 1271 1128 1274 1276 1277 1279 1280 1281 1283 1284 1285 1286 1287 1175 1290 1291 1293 1295 1297 1299 1301 1302 1304 1305 1307 1308 1309 1131 1311 1312 1313 1315 1317 1318 1319 1321 1322 1324 1326 1328 1329 1331 1332 1333 1335 1336 1338 1339 1340 1181 1341 1134 1343 122 1346 1348 1350 37 1352 1353 1355 1357 1358 1136 1360 1361 1362 1363 1364 1366 1367 158 1369 1370 1372 1373 1374 1376 1378 1380 1381 1383 1139 1385 1386 1387 1388 1389 1391 1393 1195 1395 1396 1397 21 1399 1401 1402 1404 1405 1406 272 1408 1409 1410 1412 1413 1414 1416 1417 42 1419 1420 92 1422 1423 1424 1425 1427 1428 1430 1431 1433 1435 1436 1438 1439 1441 1443 1444 1445 227 1447 1146 1450 1451 1452 1236 1334 1455 1457 1458 1460 1461 1463 1464 1148 1466 1468 1469 1470 1471 1472 1474 1475 1476 1478 1151 1480 1481 1482 1484 1485 1487 1296 1489 1491 1492 1493 1495 1496 1497 1498 1499 1500 1502 1490 1504 1505 1507 1508 1509 1511 1513 1515 1516 1155 1518 1519 1520 1521 1522 1524 1526 1527 1528 1529 1530 1532 1533 1159 1217 1453 1536 1537 1539 1541 1542 1544 1545 1546 1525 1501 1547 1548 1550 205 1552 1553 1554 1556 1557 162 1559 1560 1561 1562 1564 374 1566 1567 1569 1570 1572 1574 334 1576 1577 1351 1579 1165 1580 1582 1583 1584 1586 245 1587 1588 1589 1590 1169 1592 1593 1595 1596 1597 1320 1598 1170 1599 1601 1602 1603 1604 1606 1607 1609 1610 1612 1172 1613 1615 1616 1617 1619 1620 1622 1623 1625 1626 1627 1628 1630 1631 1632 1634 1635 1636 1638 1300 1640 1642 1643 1645 1646 1647 1178 90 1649 1651 1379 1653 1655 1656 155 1657 1659 1660 1578 1662 1664 1665 1666 1667 1668 1670 1672 1673 1674 1676 1677 1679 1680 1682 1683 291 140 1685 257 1681 1684 1688 1689 1691 1692 488 1185 1694 1696 1697 1698 1699 1700 1701 1702 1703 1644 1705 1706 501 1708 1709 1710 1190 1711 1400 390 1600 1715 1717 1718 1720 1721 1722 1723 78 270 1726 1727 1728 1730 1704 1732 1734 1735 1737 521 1738 1740 1742 1743 1745 1747 1748 1750 1752 1753 1754 1756 1462 1758 519 1760 1761 178 1763 1200 1765 168 1766 1768 1769 1770 1771 1773 1774 1775 1777 1778 1780 264 1782 1784 1785 1731 1787 1789 1790 1792 1793 1794 1795 1797 1798 1799 1800 666 1801 1803 676 357 1806 1807 1809 1810 1812 1208 1814 1815 1817 1818 1820 1822 1824 1825 1827 1828 1829 1830 1831 438 1833 1506 1834 1836 712 1467 635 609 1838 1839 1841 528 1843 1844 1845 1555 1846 1847 1848 1517 1849 312 1850 1851 1675 1853 1855 1736 1857 207 720 1859 736 1861 1862 1863 1864 1865 1866 1867 1869 1224 1870 1871 1872 1873 1874 1875 1877 652 1879 1880 1881 1883 1884 1886 1888 1889 1228 1890 465 1893 1894 1895 1896 1898 1687 1899 1901 1902 575 1905 1906 1907 1908 1909 1776 451 1910 661 1911 1912 1913 1914 415 329 1686 1915 1916 1917 1918 1375 1234 1920 190 1922 153 1923 1925 1926 1928 1929 431 1614 1629 1245 1932 1933 1935 1936 1937 1939 1240 1942 1650 1944 1945 732 1713 621 1946 1947 1948 1949 1951 1952 1953 1955 1938 1940 767 403 1958 1960 1961 1931 1963 1964 1965 1966 1967 1356 1969 1531 1970 1972 1813 1974 1394 1975 1976 1978 1251 1759 1465 783 1979 1980 1605 1982 1983 1984 1985 1253 1987 1988 1821 1989 1991 1289 1992 1994 1995 1996 1997 1998 1999 2001 420 2003 2005 2006 1956 2008 366 691 2009 2010 2012 2013 880 2015 1314 1930 2017 1266 2018 1990 301 2020 2014 1757 2022 2023 326 2025 2027 784 807 517 1986 2030 2032 2033 445 2034 2036 2037 2038 1270 699 2039 2040 2041 908 2042 1272 592 1368 2043 1661 2045 2046 2047 2049 2050 224 534 2053 383 2055 631 772 2056 2058 2059 613 1448 2060 2061 2063 2064 363 2066 2067 2068 2069 2070 1934 2071 887 2072 2073 587 2074 2075 1791 2078 2079 2081 2016 2083 2084 2085 2086 1618 1823 2087 2089 668 1764 2057 2091 1292 2044 2093 2094 2096 2097 2098 1294 834 2099 1783 2100 1473 2102 2103 1303 538 2026 2106 2107 1921 2108 2109 1306 682 2110 1323 2111 2112 1919 2113 2115 2117 2118 975 1876 2121 2122 830 2124 2125 1316 2082 1762 684 2127 909 2076 1924 1624 1330 2031 368 2051 2130 251 873 1382 1549 891 2133 626 2048 2134 2135 2136 2137 2062 2138 2139 2140 2142 2143 1891 2145 2147 2148 932 2150 2151 2152 2153 1337 339 2154 2155 2156 1456 780 1744 2158 1342 2159 762 861 2161 2162 2163 2164 1345 2165 2166 748 2167 2168 418 853 2169 1349 455 2146 1943 1050 2172 359 1959 2174 2120 2175 2144 1354 1056 2178 2179 2123 2180 1779 1968 1359 2182 2183 1885 2185 2065 2187 394 2188 647 2190 1006 2191 1837 2192 605 715 1398 309 738 2193 2194 2196 1009 2132 1977 1971 2197 1534 1808 2198 2131 2199 551 1029 821 2024 619 1037 2200 2201 2202 2160 2203 2204 1403 2206 2207 1826 1442 2195 1008 722 1434 2019 1407 2209 1719 1573 2211 2212 2114 1415 2177 2035 1418 2104 996 443 1440 1088 2214 2077 2216 1426 1437 1724 999 2213 2219 2220 740 1097 2186 2090 2221 1805 1878 777 2101 901 629 2224 471 2225 2227 1568 985 570 2189 2228 1633 2229 2223 532 2230 2173 2231 423 837 1098 1663 2232 2226 884 934 474 558 2233 1512 2234 696 1051 573 882 491 2088 1716 2235 2236 1581 2237 1090 2238 2092 1085 1064 1669 594 734 1962 2239 2240 1095 2141 1061 2222 2080 2242 2244 2245 2247 2249 2250 2252 2253 2255 2257 2258 2260 2262 2263 2264 2265 2267 2269 2270 2272 2273 2274 2276 2278 2280 2281 2283 2284 2286 2287 2288 2241 2291 2293 2294 2296 2297 2299 2300 2302 2303 2304 2306 2307 2308 2309 2311 2312 2313 2314 2316 2317 2319 2321 2322 2323 2324 2325 2243 2326 2327 2329 2331 2333 2334 2335 2336 2338 2339 2340 2341 2342 2343 2345 2346 3467 2349 2350 2351 2352 2353 2355 2357 2358 2359 2361 2363 2364 2366 2367 2368 2369 2370 2372 2246 2374 2375 2376 2377 2378 2379 2381 2382 2383 2385 2384 2387 2388 2389 2391 2248 2394 2396 2397 2399 2400 2401 2403 2404 2405 2406 2407 2295 2410 2411 2413 2415 2417 2419 2421 2422 2424 2425 2427 2428 2429 2251 2431 2432 2433 2435 2437 2438 2439 2441 2442 2444 2446 2448 2449 2451 2452 2453 2455 2456 2458 2459 2460 2301 2461 2254 2463 3482 2466 2468 2470 3397 2472 2473 2475 2477 2478 2256 2480 2481 2482 2483 2484 2486 2487 3518 2489 2490 2492 2493 2494 2496 2498 2500 2501 2503 2259 2505 2506 2507 2508 2509 2511 2513 2315 2515 2516 2517 3381 2519 2521 2522 2524 2525 2526 3632 2528 2529 2530 2532 2533 2534 2536 2537 3402 2539 2540 3452 2542 2543 2544 2545 2547 2548 2550 2551 2553 2555 2556 2558 2559 2561 2563 2564 2565 3587 2567 2266 2570 2571 2572 2356 2454 2575 2577 2578 2580 2581 2583 2584 2268 2586 2588 2589 2590 2591 2592 2594 2595 2596 2598 2271 2600 2601 2602 2604 2605 2607 2416 2609 2611 2612 2613 2615 2616 2617 2618 2619 2620 2622 2610 2624 2625 2627 2628 2629 2631 2633 2635 2636 2275 2638 2639 2640 2641 2642 2644 2646 2647 2648 2649 2650 2652 2653 2279 2337 2573 2656 2657 2659 2661 2662 2664 2665 2666 2645 2621 2667 2668 2670 3565 2672 2673 2674 2676 2677 3522 2679 2680 2681 2682 2684 3734 2686 2687 2689 2690 2692 2694 3694 2696 2697 2471 2699 2285 2700 2702 2703 2704 2706 3605 2707 2708 2709 2710 2289 2712 2713 2715 2716 2717 2440 2718 2290 2719 2721 2722 2723 2724 2726 2727 2729 2730 2732 2292 2733 2735 2736 2737 2739 2740 2742 2743 2745 2746 2747 2748 2750 2751 2752 2754 2755 2756 2758 2420 2760 2762 2763 2765 2766 2767 2298 3450 2769 2771 2499 2773 2775 2776 3515 2777 2779 2780 2698 2782 2784 2785 2786 2787 2788 2790 2792 2793 2794 2796 2797 2799 2800 2802 2803 3651 3500 2805 3617 2801 2804 2808 2809 2811 2812 3848 2305 2814 2816 2817 2818 2819 2820 2821 2822 2823 2764 2825 2826 3861 2828 2829 2830 2310 2831 2520 3750 2720 2835 2837 2838 2840 2841 2842 2843 3438 3630 2846 2847 2848 2850 2824 2852 2854 2855 2857 3881 2858 2860 2862 2863 2865 2867 2868 2870 2872 2873 2874 2876 2582 2878 3879 2880 2881 3538 2883 2320 2885 3528 2886 2888 2889 2890 2891 2893 2894 2895 2897 2898 2900 3624 2902 2904 2905 2851 2907 2909 2910 2912 2913 2914 2915 2917 2918 2919 2920 4026 2921 2923 4036 3717 2926 2927 2929 2930 2932 2328 2934 2935 2937 2938 2940 2942 2944 2945 2947 2948 2949 2950 2951 3798 2953 2626 2954 2956 4072 2587 3995 3969 2958 2959 2961 3888 2963 2964 2965 2675 2966 2967 2968 2637 2969 3672 2970 2971 2795 2973 2975 2856 2977 3567 4080 2979 4096 2981 2982 2983 2984 2985 2986 2987 2989 2344 2990 2991 2992 2993 2994 2995 2997 4012 2999 3000 3001 3003 3004 3006 3008 3009 2348 3010 3825 3013 3014 3015 3016 3018 2807 3019 3021 3022 3935 3025 3026 3027 3028 3029 2896 3811 3030 4021 3031 3032 3033 3034 3775 3689 2806 3035 3036 3037 3038 2495 2354 3040 3550 3042 3513 3043 3045 3046 3048 3049 3791 2734 2749 2365 3052 3053 3055 3056 3057 3059 2360 3062 2770 3064 3065 4092 2833 3981 3066 3067 3068 3069 3071 3072 3073 3075 3058 3060 4127 3763 3078 3080 3081 3051 3083 3084 3085 3086 3087 2476 3089 2651 3090 3092 2933 3094 2514 3095 3096 3098 2371 2879 2585 4143 3099 3100 2725 3102 3103 3104 3105 2373 3107 3108 2941 3109 3111 2409 3112 3114 3115 3116 3117 3118 3119 3121 3780 3123 3125 3126 3076 3128 3726 4051 3129 3130 3132 3133 4240 3135 2434 3050 3137 2386 3138 3110 3661 3140 3134 2877 3142 3143 3686 3145 3147 4144 4167 3877 3106 3150 3152 3153 3805 3154 3156 3157 3158 2390 4059 3159 3160 3161 4268 3162 2392 3952 2488 3163 2781 3165 3166 3167 3169 3170 3584 3894 3173 3743 3175 3991 4132 3176 3178 3179 3973 2568 3180 3181 3183 3184 3723 3186 3187 3188 3189 3190 3054 3191 4247 3192 3193 3947 3194 3195 2911 3198 3199 3201 3136 3203 3204 3205 3206 2738 2943 3207 3209 4028 2884 3177 3211 2412 3164 3213 3214 3216 3217 3218 2414 4194 3219 2903 3220 2593 3222 3223 2423 3898 3146 3226 3227 3041 3228 3229 2426 4042 3230 2443 3231 3232 3039 3233 3235 3237 3238 4335 2996 3241 3242 4190 3244 3245 2436 3202 2882 4044 3247 4269 3196 3044 2744 2450 3151 3728 3171 3250 3611 4233 2502 2669 4251 3253 3986 3168 3254 3255 3256 3257 3182 3258 3259 3260 3262 3263 3011 3265 3267 3268 4292 3270 3271 3272 3273 2457 3699 3274 3275 3276 2576 4140 2864 3278 2462 3279 4122 4221 3281 3282 3283 3284 2465 3285 3286 4108 3287 3288 3778 4213 3289 2469 3815 3266 3063 4410 3292 3719 3079 3294 3240 3295 3264 2474 4416 3298 3299 3243 3300 2899 3088 2479 3302 3303 3005 3305 3185 3307 3754 3308 4007 3310 4366 3311 2957 3312 3965 4075 2518 3669 4098 3313 3314 3316 4369 3252 3097 3091 3317 2654 2928 3318 3251 3319 3911 4389 4181 3144 3979 4397 3320 3321 3322 3280 3323 3324 2523 3326 3327 2946 2562 3315 4368 4082 2554 3139 2527 3329 2839 2693 3331 3332 3234 2535 3297 3155 2538 3224 4356 3803 2560 4448 3334 3197 3336 2546 2557 2844 4359 3333 3339 3340 4100 4457 3306 3210 3341 2925 2998 4137 3221 4261 3989 3344 3831 3345 3347 2688 4345 3930 3309 3348 2753 3349 3343 3892 3350 3293 3351 3783 4197 4458 2783 3352 3346 4244 4294 3834 3918 3353 2632 3354 4056 4411 3933 4242 3851 3208 2836 3355 3356 2701 3357 4450 3358 3212 4445 4424 2789 3954 4094 3082 3359 3360 4455 3261 4421 3342 3200 3362 3364 3365 3367 3369 3370 3372 3373 3375 3377 3378 3380 3382 3383 3384 3385 3387 3389 3390 3392 3393 3394 3396 3398 3400 3401 3403 3404 3406 3407 3408 3361 3411 3413 3414 3416 3417 3419 3420 3422 3423 3424 3426 3427 3428 3429 3431 3432 3433 3434 3436 3437 3439 3441 3442 3443 3444 3445 3363 3446 3447 3449 3451 3453 3454 3455 3456 3458 3459 3460 3461 3462 3463 3465 3466 2347 3469 3470 3471 3472 3473 3475 3477 3478 3479 3481 3483 3484 3486 3487 3488 3489 3490 3492 3366 3494 3495 3496 3497 3498 3499 3501 3502 3503 3505 3504 3507 3508 3509 3511 3368 3514 3516 3517 3519 3520 3521 3523 3524 3525 3526 3527 3415 3530 3531 3533 3535 3537 3539 3541 3542 3544 3545 3547 3548 3549 3371 3551 3552 3553 3555 3557 3558 3559 3561 3562 3564 3566 3568 3569 3571 3572 3573 3575 3576 3578 3579 3580 3421 3581 3374 3583 2362 3586 3588 3590 2277 3592 3593 3595 3597 3598 3376 3600 3601 3602 3603 3604 3606 3607 2398 3609 3610 3612 3613 3614 3616 3618 3620 3621 3623 3379 3625 3626 3627 3628 3629 3631 3633 3435 3635 3636 3637 2261 3639 3641 3642 3644 3645 3646 2512 3648 3649 3650 3652 3653 3654 3656 3657 2282 3659 3660 2332 3662 3663 3664 3665 3667 3668 3670 3671 3673 3675 3676 3678 3679 3681 3683 3684 3685 2467 3687 3386 3690 3691 3692 3476 3574 3695 3697 3698 3700 3701 3703 3704 3388 3706 3708 3709 3710 3711 3712 3714 3715 3716 3718 3391 3720 3721 3722 3724 3725 3727 3536 3729 3731 3732 3733 3735 3736 3737 3738 3739 3740 3742 3730 3744 3745 3747 3748 3749 3751 3753 3755 3756 3395 3758 3759 3760 3761 3762 3764 3766 3767 3768 3769 3770 3772 3773 3399 3457 3693 3776 3777 3779 3781 3782 3784 3785 3786 3765 3741 3787 3788 3790 2445 3792 3793 3794 3796 3797 2402 3799 3800 3801 3802 3804 2614 3806 3807 3809 3810 3812 3814 2574 3816 3817 3591 3819 3405 3820 3822 3823 3824 3826 2485 3827 3828 3829 3830 3409 3832 3833 3835 3836 3837 3560 3838 3410 3839 3841 3842 3843 3844 3846 3847 3849 3850 3852 3412 3853 3855 3856 3857 3859 3860 3862 3863 3865 3866 3867 3868 3870 3871 3872 3874 3875 3876 3878 3540 3880 3882 3883 3885 3886 3887 3418 2330 3889 3891 3619 3893 3895 3896 2395 3897 3899 3900 3818 3902 3904 3905 3906 3907 3908 3910 3912 3913 3914 3916 3917 3919 3920 3922 3923 2531 2380 3925 2497 3921 3924 3928 3929 3931 3932 2728 3425 3934 3936 3937 3938 3939 3940 3941 3942 3943 3884 3945 3946 2741 3948 3949 3950 3430 3951 3640 2630 3840 3955 3957 3958 3960 3961 3962 3963 2318 2510 3966 3967 3968 3970 3944 3972 3974 3975 3977 2761 3978 3980 3982 3983 3985 3987 3988 3990 3992 3993 3994 3996 3702 3998 2759 4000 4001 2418 4003 3440 4005 2408 4006 4008 4009 4010 4011 4013 4014 4015 4017 4018 4020 2504 4022 4024 4025 3971 4027 4029 4030 4032 4033 4034 4035 4037 4038 4039 4040 2906 4041 4043 2916 2597 4046 4047 4049 4050 4052 3448 4054 4055 4057 4058 4060 4062 4064 4065 4067 4068 4069 4070 4071 2678 4073 3746 4074 4076 2952 3707 2875 2849 4078 4079 4081 2768 4083 4084 4085 3795 4086 4087 4088 3757 4089 2552 4090 4091 3915 4093 4095 3976 4097 2447 2960 4099 2976 4101 4102 4103 4104 4105 4106 4107 4109 3464 4110 4111 4112 4113 4114 4115 4117 2892 4119 4120 4121 4123 4124 4126 4128 4129 3468 4130 2705 4133 4134 4135 4136 4138 3927 4139 4141 4142 2815 4145 4146 4147 4148 4149 4016 2691 4150 2901 4151 4152 4153 4154 2655 2569 3926 4155 4156 4157 4158 3615 3474 4160 2430 4162 2393 4163 4165 4166 4168 4169 2671 3854 3869 3485 4172 4173 4175 4176 4177 4179 3480 4182 3890 4184 4185 2972 3953 2861 4186 4187 4188 4189 4191 4192 4193 4195 4178 4180 3007 2643 4198 4200 4201 4171 4203 4204 4205 4206 4207 3596 4209 3771 4210 4212 4053 4214 3634 4215 4216 4218 3491 3999 3705 3023 4219 4220 3845 4222 4223 4224 4225 3493 4227 4228 4061 4229 4231 3529 4232 4234 4235 4236 4237 4238 4239 4241 2660 4243 4245 4246 4196 4248 2606 2931 4249 4250 4252 4253 3120 4255 3554 4170 4257 3506 4258 4230 2541 4260 4254 3997 4262 4263 2566 4265 4267 3024 3047 2757 4226 4270 4272 4273 2685 4274 4276 4277 4278 3510 2939 4279 4280 4281 3148 4282 3512 2832 3608 4283 3901 4285 4286 4287 4289 4290 2464 2774 4293 2623 4295 2871 3012 4296 4298 4299 2853 3688 4300 4301 4303 4304 2603 4306 4307 4308 4309 4310 4174 4311 3127 4312 4313 2827 4314 4315 4031 4318 4319 4321 4256 4323 4324 4325 4326 3858 4063 4327 4329 2908 4004 4297 4331 3532 4284 4333 4334 4336 4337 4338 3534 3074 4339 4023 4340 3713 4342 4343 3543 2778 4266 4346 4347 4161 4348 4349 3546 2922 4350 3563 4351 4352 4159 4353 4355 4357 4358 3215 4116 4361 4362 3070 4364 4365 3556 4322 4002 2924 4367 3149 4316 4164 3864 3570 4271 2608 4291 4370 2491 3113 3622 3789 3131 4373 2866 4288 4374 4375 4376 4377 4302 4378 4379 4380 4382 4383 4131 4385 4387 4388 3172 4390 4391 4392 4393 3577 2579 4394 4395 4396 3696 3020 3984 4398 3582 4399 3002 3101 4401 4402 4403 4404 3585 4405 4406 2988 4407 4408 2658 3093 4409 3589 2695 4386 4183 3290 4412 2599 4199 4414 4360 4415 4384 3594 3296 4418 4419 4363 4420 4019 4208 3599 4422 4423 4125 4425 4305 4427 2634 4428 2887 4430 3246 4431 4077 4432 2845 2955 3638 2549 2978 4433 4434 4436 3249 4372 4217 4211 4437 3774 4048 4438 4371 4439 2791 3269 3061 4264 2859 3277 4440 4441 4442 4400 4443 4444 3643 4446 4447 4066 3682 4435 3248 2962 3674 4259 3647 4449 3959 3813 4451 4452 4354 3655 4417 4275 3658 4344 3236 2683 3680 3328 4454 4317 4456 3666 3677 3964 3239 4453 4459 4460 2980 3337 4426 4330 4461 4045 4118 3017 4341 3141 2869 4464 2711 4465 4467 3808 3225 2810 4429 4468 3873 4469 4463 2772 4470 4413 4471 2663 3077 3338 3903 4472 4466 3124 3174 2714 2798 4473 3752 4474 2936 3291 2813 3122 2731 4328 3956 4475 4476 3821 4477 3330 4478 4332 3325 3304 3909 2834 2974 4202 4479 4480 3335 4381 3301 4462 4320 4482 4484 4485 4487 4489 4490 4492 4493 4495 4496 4497 4499 4501 4502 4504 4506 4508 4509 4510 4511 4513 4515 4516 4517 4518 4520 4521 4522 4524 4481 4527 4528 4530 4531 4533 4535 4537 4538 4539 4541 4543 4544 4545 4547 4548 4549 4551 4552 4553 4555 4557 4558 4559 4560 4562 4563 4483 4566 4568 4569 4570 4571 4573 4575 4576 4577 4579 4581 4582 4567 4584 4586 4587 4588 4589 4590 4591 4592 4594 4596 4597 4599 4601 4602 4603 4605 4606 4607 4609 4486 4612 4613 4614 4615 4617 4619 4621 4622 4624 4625 4626 4628 4629 4630 4631 4633 4634 4636 4488 4639 4640 4616 4642 4643 4644 4646 4647 4648 4650 4651 4653 4654 4656 4657 4658 4659 4661 4662 4664 4665 4666 4668 4669 4670 4672 4673 4491 4674 4676 4677 4679 4681 4682 4684 4685 4687 4688 4690 4692 4694 4696 4697 4698 4700 4701 4703 4704 4705 4706 4708 4709 4711 4494 4713 4714 4716 4718 4720 4721 4722 4723 4724 4726 4727 4728 4730 4732 4733 4735 4736 4737 4739 4740 4742 4743 4745 4746 4734 4748 4749 4750 4751 4752 4754 4755 4757 4759 4760 4762 4763 4765 4767 4768 4498 4771 4772 4773 4729 4775 4683 4738 4777 4778 4500 4779 4780 4764 4783 4784 4785 4786 4787 4789 4790 4792 4660 4794 4795 4797 4798 4799 4753 4756 4801 4802 4803 4804 4806 4807 4809 4810 4503 4813 4815 4816 4817 4818 4819 4820 4822 4823 4825 4505 4827 4828 4830 4831 4832 4833 4835 4836 4838 4839 4840 4842 4699 4844 4845 4507 4848 4849 4850 4851 4852 4854 4855 4857 4858 4860 4862 4863 4865 4867 4868 4869 4870 4872 4526 4874 4875 4877 4879 4881 4882 4808 4884 4886 4887 4888 4890 4891 4892 4512 4895 4896 4897 4899 4900 4902 4903 4904 4906 4907 4909 4514 4911 4912 4914 4915 4916 4917 4919 4921 4923 4924 4926 4928 4929 4931 4933 4934 4935 4937 4938 4939 4941 4942 4944 4946 4948 4949 4951 4953 4930 4955 4956 4958 4959 4960 4556 4519 4961 4963 4861 4965 4967 4893 4969 4970 4971 4972 4974 4975 4976 4978 4979 4980 4982 4983 4532 4984 4985 4986 4988 4990 4991 4523 4993 4994 4880 4996 4998 5000 5001 5002 5003 5005 5007 5008 5010 5011 5012 5013 5014 5016 5017 5018 5019 5021 5022 4525 5024 5025 5027 4966 5029 5030 5032 5033 4968 5036 4943 5038 5039 5040 4529 5042 4922 5044 5045 4873 5047 5048 5050 5051 5053 5054 5015 5056 5057 4981 5059 5060 5061 5062 5064 5065 5066 5068 5069 4534 5070 5072 5020 5074 5075 5076 5077 5079 5080 5081 5082 5083 5084 5085 5086 5087 5089 5090 5091 5093 4536 5095 5096 5097 4999 5099 5046 5101 4811 5102 5103 4758 5105 5106 5107 5108 4542 4550 5110 5112 5113 5114 5115 4841 5116 5118 5119 4540 5122 5124 5126 5123 5127 5128 5129 5130 5131 5132 5134 5135 4962 5138 5139 5141 5143 5144 5146 5147 5148 5149 5150 5152 5092 5154 5155 5156 4883 4987 5157 5158 4546 5160 5161 5163 5164 5165 5167 5168 5169 5171 5035 5173 5175 5176 5177 5179 5181 5182 5183 5184 5185 5186 5188 5190 4992 5192 4826 5120 5193 5194 5073 5196 5037 5197 4717 5199 5200 5202 5203 5204 5205 5206 4905 5207 5208 4554 5210 5211 5213 5214 5215 5217 5218 5219 5220 5221 5222 5137 5224 5111 5226 5227 5229 5166 5231 5232 5234 5235 5236 5237 4781 5067 5238 4561 5240 5242 5243 5244 5245 5247 5249 4952 5251 5252 5254 5256 5142 5257 5259 5260 5261 5262 5263 5264 4564 5265 5266 5117 4769 5267 4565 4649 5270 5271 5253 5201 5273 5274 5275 5276 5277 5279 5280 4843 5282 5283 5285 4585 4583 5287 5288 5289 5291 5292 4663 5295 5296 5298 5299 4572 5172 5300 5302 5041 5304 5305 4574 5246 5307 5162 5308 5310 4655 5312 5314 5174 4595 5315 5316 5317 4731 5228 5318 5319 5321 5323 4847 5324 4846 5327 4618 5328 5329 5178 5326 4578 5332 5189 5334 5335 4866 5109 5336 5337 5338 5339 4632 5341 4686 4580 5342 5344 5345 4620 4940 5346 5153 5348 4678 5350 5351 5125 5353 5354 5355 4623 5357 5358 5272 5297 5359 4667 5362 5363 4747 5365 4627 5367 5369 5370 5371 5233 4702 5372 5294 5373 5375 5377 5379 5250 5381 4680 5383 5384 4593 5385 5386 5387 5388 5390 4695 5392 5394 5395 5396 5398 5058 5399 4977 4712 5401 5402 5376 5330 5241 4598 5403 5405 5406 5407 5290 4604 5409 4814 4600 5410 5411 5412 5413 5415 5416 4878 5417 5418 4920 5420 5421 5422 5424 5248 5374 5425 5426 5427 5429 5430 5009 4671 4608 5431 5433 5434 5435 5436 5437 5439 4610 5309 5441 5442 4693 4776 5444 4611 5445 5446 5043 5333 5449 5450 4864 5452 5454 4641 5455 5400 5456 5352 5458 5408 5459 5230 5460 5462 5463 5465 4913 5466 4898 5467 5468 5469 4936 5470 4645 5471 5223 5331 5472 5473 5474 4927 5476 5478 5480 5481 5482 5483 4885 5484 5485 5486 5487 5180 5281 5488 5490 5423 4793 5368 5492 5493 4989 5495 5382 5496 5404 5497 5498 4871 4796 4635 5499 5311 5500 5501 5293 4637 5145 5502 5389 4638 5503 5191 4689 5506 4725 5507 4719 5508 5509 4995 5510 5457 4774 5512 5325 5121 5440 5340 5513 5306 5514 5516 5517 4834 5518 5055 5520 5380 5170 5453 5522 5524 5525 5526 4788 5527 5528 5088 4652 5529 5530 5531 5378 5533 5534 5535 5536 5511 5537 5538 5539 5451 4901 5494 4932 4710 4691 5540 5541 5391 5542 5343 5505 5313 4973 5052 5543 5544 5545 5546 5360 4964 5028 4805 4824 5004 5151 5419 5549 5550 5198 5552 5553 5443 5554 5555 4675 4889 5347 5557 5026 5558 5397 5269 5559 5547 5286 5133 5448 5548 5562 5187 5563 5564 5566 4821 5195 5100 5532 5568 5569 5094 5570 5447 4856 5301 4766 5572 5438 5573 5574 5575 5576 5571 5491 5414 5393 5577 5209 4837 4859 4741 5578 4707 4925 5071 5104 5140 5556 4791 4715 4947 5098 5320 5356 4876 5268 4945 5580 5581 5567 5583 4950 5159 5255 5023 5585 5504 5586 4782 5587 4957 5479 4997 5589 5225 5591 5322 5515 5592 4812 4744 5593 4761 5594 5349 4954 5596 5597 5258 5598 5049 4800 5464 5489 5599 5031 5600 5584 5078 5565 5602 5361 5428 4770 5519 5603 5604 5216 5588 4829 5461 5136 5212 5239 5590 5034 5582 5605 4910 5278 5606 4908 5521 5560 5303 5608 5475 4918 5063 5006 5607 5609 5366 4853 5610 5601 5611 5551 5612 4894 5595 5613 5614 5561 5477 5432 5579 5284 5364 5523 atlasrep-2.1.8/datapkg/R27d3G1cycW1-cclsW10000644000175000017500000000152410571114034016045 0ustar samsaminp 11 19 5 12 8 10 14 15 6 17 3 7 pwr 2 10 37DEF pwr 2 7 27A\' pwr 2 8 13DEF pwr 2 3 21A\' pwr 2 6 9E\' pwr 2 17 9F\' pwr 2 5 7A pwr 2 15 9D\' pwr 2 14 3D\' pwr 2 27A\' 27C pwr 2 13DEF 13ABC pwr 2 9E\' 9E pwr 2 9F\' 9F pwr 2 3D\' 3D pwr 2 27C 27B\' pwr 2 27B\' 27A pwr 2 27A 27C\' pwr 3 7 9B pwr 3 6 6A pwr 3 17 6B pwr 3 19 3A pwr 3 14 2A pwr 3 27A\' 9C pwr 3 9E\' 3C pwr 3 9F\' 3B pwr 3 3D\' 1A pwr 7 8 26DEF pwr 5 14 6C\' pwr 5 6 18A\' pwr 5 17 18B\' echo "Classes 1A 2A 3A 3B 3C 6A 6B 7A 9A 9B 9C 13ABC 13DEF 14ABC 19ABC" oup 15 1A 2A 3A 3B 3C 6A 6B 7A 19 9B 9C 13ABC 13DEF 5 12 echo "Classes 26ABC 26DEF 37ABC 37DEF 3D 3D' 6C 6C' 9D 9D' 9E 9E' 9F 9F'" oup 14 8 26DEF 10 37DEF 3D 3D\' 14 6C\' 15 9D\' 9E 9E\' 9F 9F\' echo "Classes 18A 18A' 18B 18B' 21A 21A' 27A 27A' 27B 27B' 27C 27C'" oup 12 6 18A\' 17 18B\' 3 21A\' 27A 27A\' 7 27B\' 27C 27C\' atlasrep-2.1.8/datapkg/6L34G1-kerL34W10000644000175000017500000000047012216407160015107 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 oup 1 30 atlasrep-2.1.8/datapkg/2M22d2iG1-kerM22d2W10000644000175000017500000000003112340440021015704 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/2O8p3G1-kerO8p3W10000644000175000017500000000005412361041532015455 0ustar samsaminp 2 mu 2 2 3 mu 3 1 4 pwr 14 4 5 oup 1 5 atlasrep-2.1.8/datapkg/4M22d2G1-ker2M22d2W10000644000175000017500000000010512312135451015630 0ustar samsaminp 2 mu 1 2 3 mu 3 2 4 mu 3 3 5 mu 4 4 6 mu 5 6 7 pwr 6 7 8 oup 1 8 atlasrep-2.1.8/datapkg/F42G1-find10000664000175000017500000000237213176705670014561 0ustar samsam # Black box algorithm to find standard generators of F4(2): # Standard generators of F4(2) are a, b where a is in class 2C, # b is in class 3C, # ab is in class 17 # and ababababbababbabb is in class 13. # # - find an element a of order 20, then the 10th power is in 2C # - find an element b of order 18, then the 6th power is in 3C # - conjugate b s. t. ab has order 17 and ababababbababbabb has order 13 # set V 0 lbl SEMISTD rand 1 ord 1 A incr V if V gt 1000 then timeout if A notin 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 20 21 24 28 30 then fail if A noteq 20 then jmp SEMISTD lbl SEMISTD2 rand 2 ord 2 B incr V if V gt 1000 then timeout if B notin 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 20 21 24 28 30 then fail if B noteq 18 then jmp SEMISTD2 pwr 10 1 3 pwr 6 2 4 set X 0 lbl CONJUGATE incr X if X gt 1000 then timeout rand 5 cjr 4 5 mu 3 4 6 ord 6 D if D noteq 17 then jmp CONJUGATE mu 6 4 7 mu 6 7 8 mu 8 8 9 mu 9 7 10 mu 6 10 11 mu 6 11 12 ord 12 E if E noteq 13 then jmp CONJUGATE oup 2 3 4 atlasrep-2.1.8/datapkg/L34G1max3W1-A6G1W10000644000175000017500000000006512525142760015421 0ustar samsam# generators of the restriction are in fact standard atlasrep-2.1.8/datapkg/3U311d2G1-kerU311d2W10000644000175000017500000000007612361302063015735 0ustar samsaminp 2 mu 2 1 3 mu 2 2 4 mu 4 3 5 mu 5 3 6 pwr 37 6 7 oup 1 7 atlasrep-2.1.8/datapkg/6F22d2iG1-kerF22d2W10000644000175000017500000000012412361456221015711 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 2 4 5 mu 5 4 6 mu 6 3 7 pwr 13 7 8 pwr 18 2 9 oup 2 8 9 atlasrep-2.1.8/datapkg/2A6G1-kerA6W10000644000175000017500000000003012216407160014703 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/12M22G1-kerM22W10000644000175000017500000000006512216407160015160 0ustar samsaminp 2 mu 2 1 3 pwr 3 3 4 mu 2 4 5 pwr 11 5 6 oup 1 6 atlasrep-2.1.8/datapkg/4U62G1-ker2U62W10000644000175000017500000000006412312530603015206 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 2 4 5 pwr 11 5 6 oup 1 6 atlasrep-2.1.8/datapkg/3L37d2G1-f7r6aB0.m20000644000175000017500000000006212515532365015512 0ustar samsam1 7 6 6 000563 000451 000442 360000 103000 241000 atlasrep-2.1.8/datapkg/12M22d2G1-kerM22d2W10000644000175000017500000000017412216407160015635 0ustar samsaminp 2 mu 1 2 3 mu 3 2 4 iv 1 6 iv 2 7 mu 6 7 8 mu 8 1 9 mu 9 2 5 mu 3 3 6 mu 4 4 7 mu 6 7 8 pwr 3 8 9 pwr 4 5 10 oup 2 9 10 atlasrep-2.1.8/datapkg/2F22d2iG1-kerF22d2W10000644000175000017500000000003212361275004015701 0ustar samsaminp 2 pwr 18 2 3 oup 1 3 atlasrep-2.1.8/datapkg/L38G1cycW1-cclsW10000644000175000017500000000304310571114222015607 0ustar samsaminp 6 20 19 6 17 12 9 pwr 2 9 73C pwr 2 12 63C pwr 2 17 7C pwr 2 6 7J pwr 2 20 2A pwr 2 73C 73E pwr 2 63C 63E pwr 2 7C 7E pwr 2 7J 7K pwr 2 2A 1A pwr 2 7E 7A pwr 3 9 73N pwr 3 12 21F pwr 3 17 14F pwr 3 19 7H pwr 3 73C 73P pwr 3 63C 21B pwr 3 7C 7B pwr 3 73E 73R pwr 3 63E 21D pwr 3 7E 7D pwr 3 7A 7F pwr 3 73N 73B pwr 3 14F 14C pwr 3 73P 73D pwr 3 73R 73F pwr 3 73B 73M pwr 3 14C 14B pwr 3 73D 73O pwr 3 73F 73Q pwr 3 14B 14E pwr 3 14E 14D pwr 7 9 73G pwr 7 12 9B pwr 7 73C 73I pwr 7 63C 9C pwr 7 73E 73K pwr 7 63E 9A pwr 7 73N 73T pwr 7 21F 3A pwr 7 73P 73V pwr 7 73R 73X pwr 7 73B 73H pwr 7 73D 73J pwr 7 73F 73L pwr 7 73M 73S pwr 7 73O 73U pwr 7 73Q 73W pwr 10 12 63J pwr 10 63C 63L pwr 10 63E 63H pwr 10 21F 21C pwr 10 21B 21E pwr 10 21D 21A pwr 10 63J 63Q pwr 10 63L 63M pwr 10 63H 63O pwr 10 63Q 63B pwr 10 63M 63D pwr 10 63O 63F pwr 10 63B 63I pwr 10 63D 63K pwr 10 63F 63G pwr 10 63I 63R pwr 10 63K 63N pwr 10 63G 63P echo "Classes 1A 2A 3A 4A 7A 7B 7C 7D 7E 7F 7G 7H 7I 7J 7K 9A 9B 9C 14A" oup 19 1A 2A 3A 20 7A 7B 7C 7D 7E 7F 19 7H 6 7J 7K 9A 9B 9C 17 echo "Classes 14B 14C 14D 14E 14F 21A 21B 21C 21D 21E 21F 63A 63B 63C 63D" oup 15 14B 14C 14D 14E 14F 21A 21B 21C 21D 21E 21F 12 63B 63C 63D echo "Classes 63E 63F 63G 63H 63I 63J 63K 63L 63M 63N 63O 63P 63Q 63R 73A" oup 15 63E 63F 63G 63H 63I 63J 63K 63L 63M 63N 63O 63P 63Q 63R 9 echo "Classes 73B 73C 73D 73E 73F 73G 73H 73I 73J 73K 73L 73M 73N 73O 73P" oup 15 73B 73C 73D 73E 73F 73G 73H 73I 73J 73K 73L 73M 73N 73O 73P echo "Classes 73Q 73R 73S 73T 73U 73V 73W 73X" oup 8 73Q 73R 73S 73T 73U 73V 73W 73X atlasrep-2.1.8/datapkg/6S7G1-ker2S7W10000644000175000017500000000007712312540705015052 0ustar samsaminp 2 mu 2 1 3 pwr 2 2 4 pwr 2 3 5 mu 4 5 6 pwr 14 6 7 oup 1 7 atlasrep-2.1.8/datapkg/Mmax23G0-kerL27d2W10000644000175000017500000000005512361031272015752 0ustar samsaminp 2 pwr 3 1 3 mu 2 3 4 mu 4 2 5 oup 2 3 5 atlasrep-2.1.8/datapkg/L38d3G1cycW1-cclsW10000644000175000017500000000174210571114303016042 0ustar samsaminp 7 21 18 17 14 9 2 3 pwr 2 3 21G\' pwr 2 18 7ACE pwr 2 2 6B\' pwr 2 9 9D\' pwr 2 6B\' 3B pwr 2 3B 3B\' pwr 3 14 73NPR pwr 3 17 21BDF pwr 3 3 7H pwr 3 18 14BDF pwr 3 2 4A pwr 3 9 3A pwr 3 7ACE 7BDF pwr 3 6B\' 2A pwr 3 3B 1A pwr 3 73NPR 73BDF pwr 3 7H 7G pwr 3 73BDF 73MOQ pwr 7 14 73GIK pwr 7 17 9ABC pwr 7 73NPR 73TVX pwr 7 73BDF 73HJL pwr 7 73MOQ 73SUW pwr 10 17 63HJL pwr 10 3 21H pwr 10 21G\' 21H\' pwr 10 21BDF 21ACE pwr 10 63HJL 63MOQ pwr 10 63MOQ 63BDF pwr 10 63BDF 63GIK pwr 10 63GIK 63NPR pwr 5 6B\' 6B pwr 5 2 12A\' echo "Classes 1A 2A 3A 4A 7ACE 7BDF 7G 7H 7IJK 9ABC 14ACE 14BDF 21ACE" oup 13 1A 2A 3A 4A 7ACE 7BDF 7G 7H 21 9ABC 18 14BDF 21ACE echo "Classes 21BDF 63ACE 63BDF 63GIK 63HJL 63MOQ 63NPR 73ACE 73BDF 73GIK" oup 10 21BDF 17 63BDF 63GIK 63HJL 63MOQ 63NPR 14 73BDF 73GIK echo "Classes 73HJL 73MOQ 73NPR 73SUW 73TVX 3B 3B' 6B 6B' 9D 9D' 12A 12A'" oup 13 73HJL 73MOQ 73NPR 73SUW 73TVX 3B 3B\' 6B 6B\' 9 9D\' 2 12A\' echo "Classes 21G 21G' 21H 21H'" oup 4 3 21G\' 21H 21H\' atlasrep-2.1.8/datapkg/6M22G1-kerM22W10000644000175000017500000000010312216407160015074 0ustar samsaminp 2 mu 1 2 3 mu 3 3 4 iv 2 5 mu 1 5 6 mu 4 6 7 pwr 5 7 8 oup 1 8 atlasrep-2.1.8/datapkg/3G23d2G1-kerG23d2W10000644000175000017500000000013212361304645015542 0ustar samsaminp 2 mu 2 1 3 mu 2 2 4 mu 4 3 5 mu 5 3 6 mu 5 6 7 mu 7 6 8 mu 8 3 9 pwr 7 9 10 oup 1 10 atlasrep-2.1.8/datapkg/2A9G1-kerA9W10000644000175000017500000000004212340206105014706 0ustar samsaminp 2 mu 2 1 3 pwr 9 3 4 oup 1 4 atlasrep-2.1.8/datapkg/6O73d2G1-p5614B0.m10000644000175000017500000006453712635600350015363 0ustar samsam12 1 5614 1 2241 2243 2242 2246 2248 2244 2251 2245 2254 2256 2247 2259 2261 2249 2255 2250 2266 2268 2252 2271 2253 3382 2275 2277 2279 2257 2282 2258 2285 3404 2260 2289 2290 2292 2263 2295 2264 2298 2265 2301 3420 2267 2305 3390 2269 2286 2310 3417 2272 2273 2315 2274 2318 2320 2276 3416 3408 2278 2311 3401 2280 2328 2330 2332 2283 3426 3427 2337 2313 2287 2299 3432 2309 2344 2291 2347 2348 2293 2331 2294 2321 2354 2356 2336 2338 2360 2362 2302 2365 2303 2319 2304 2333 2371 2373 2324 2308 2325 3477 2375 2341 2380 3479 2314 2384 2386 2316 2317 2361 2390 2392 2393 2395 2322 2398 2323 3459 2402 3463 2326 2349 2327 2408 2409 2329 2412 2414 2416 2418 2420 2334 2423 2335 2426 2340 2400 2430 3498 3537 2342 2434 2436 3535 2345 2440 2346 2443 2445 2447 2350 2450 2351 2352 2454 2353 2457 3573 2355 2460 2376 2462 2358 2464 2465 2467 2469 2471 2363 2364 2474 2476 2366 2479 2367 3503 2368 3499 2369 2485 2370 2488 3552 2372 2491 2452 2374 2495 2497 2499 2377 2502 3542 2504 2381 3620 2382 2437 2510 2512 2385 2514 3600 2387 2518 2388 2520 2389 2523 3637 2391 2527 2425 3517 2394 2531 3576 2396 2535 2530 2399 2538 2401 2541 2403 2404 3586 2405 2546 2406 2549 2407 2552 2554 2410 2557 2411 2560 2562 2413 3562 2566 2482 2568 2569 2419 2571 2573 2421 2574 2576 2424 2579 3683 2582 2427 2585 2428 2587 2429 3555 2564 2431 2593 2433 2539 2597 3710 2599 3714 2438 2603 2439 2606 2441 2608 2610 3569 2444 2614 2446 2616 3679 2448 3727 2621 2623 2451 2612 2626 2459 2455 2630 2632 2634 2458 2536 2637 2461 2505 3733 2463 2643 2645 3664 2580 2468 2649 2651 2470 2654 2551 2472 2655 2473 2658 2660 2475 2663 3642 2477 3681 2478 3613 2501 2669 2481 2671 2483 2484 2675 2486 2678 2487 2489 2680 2490 2683 2685 2492 2545 2688 2494 2691 2693 2496 2695 2498 3758 2698 3627 3814 2701 2503 3629 2705 2690 2506 2699 2508 2702 3767 2711 2511 2714 2605 2513 3644 2515 3729 2516 2720 2528 3660 2519 2725 2521 2728 2716 2731 2624 2525 2734 2526 2620 2738 2529 2741 2708 2744 2532 3751 2533 2749 2534 3755 2753 2537 3708 2757 2759 3874 2761 2542 2764 2543 2646 3721 2768 2547 2770 2548 2772 2774 2550 2553 2656 2778 2555 2781 2556 2783 2662 2558 3891 2665 2789 2791 3895 2565 2795 2567 2798 2776 2801 2570 2803 2804 2572 3799 2575 2806 2807 2577 2810 2578 2813 2727 2581 2815 2596 2583 3872 2584 3711 2586 2743 2824 2589 2598 2827 2592 2600 2703 3824 2595 2832 2833 2628 2834 2836 2602 2839 3833 2604 2715 2618 2844 2845 2822 2611 2849 2851 2846 2853 2615 2856 2687 2617 2859 2861 2619 2864 2866 2622 2869 2871 3857 2625 2875 2877 2627 2879 2696 2629 2745 2882 3943 2884 2633 2756 2887 3812 2636 3761 2892 2750 2639 2896 2640 2899 2642 2901 2903 2644 2865 2906 2908 2648 2911 2650 3784 2652 2916 2653 3788 2673 2777 2657 2922 2924 2659 2925 2661 2928 2912 2931 2933 4043 2666 2936 2667 2939 2941 2943 2670 2946 3958 2672 2840 2920 2674 2952 2676 2677 2955 2681 2682 2957 2809 2684 2847 2960 2686 2962 2689 4079 2888 3938 2819 2918 4039 2719 3867 2697 2951 2972 2700 2974 2976 2830 2978 2706 2707 2709 2980 2710 3974 3917 2712 2799 3961 2988 2950 2717 2718 2723 2811 2848 2721 2996 2722 2998 2724 3957 3002 2726 3005 3007 2729 2921 2730 3011 3012 2732 2765 2733 3017 4124 2735 3020 2736 3023 3024 3022 2739 4113 2740 2983 2742 4000 2994 2746 2969 2748 4013 4150 2751 2817 4097 2991 3016 2755 4005 4014 3039 2758 3041 2898 2760 3044 2762 3047 2763 4133 3050 2766 3051 2767 3025 3054 2769 2785 3058 3060 3061 2773 3063 2820 3941 2800 2860 2779 3908 2780 2782 3070 4047 2784 3074 2987 2786 3076 2787 3077 3079 2790 3082 4152 2792 4195 2793 4091 2794 3088 4173 2796 3091 4104 3093 2843 2825 2802 3097 4074 2805 4121 2808 3031 3936 2812 3101 2814 3099 3027 3106 4086 2967 3065 2883 3110 4062 2826 3113 2828 3115 2829 4009 2831 3120 2835 3122 3124 2878 4068 3127 2986 2930 2842 4214 3131 2890 3134 3996 2881 3136 2850 4231 2852 3095 3139 4076 2855 3141 3988 2857 3144 2858 3146 3148 3149 2862 2863 4024 3151 3078 2891 2867 3155 4274 2870 3092 2874 2872 2873 2909 3109 2964 4257 4154 4006 2958 4058 3164 4149 4155 3168 3169 3171 2895 3172 2897 3174 3143 2900 4295 3177 2902 3179 3100 2905 2907 3182 4065 2910 3185 3056 4177 2913 3189 2914 2915 3191 2917 4308 2968 3066 3104 3196 3197 2926 3200 3202 3129 2929 4060 2932 2934 3015 2935 3208 4327 2937 3203 3210 3212 4258 4301 2944 3215 4334 2947 3021 2949 4109 2999 3096 2953 3221 2963 3049 2961 3224 3225 3067 3176 2965 4238 3229 3026 2970 4117 3153 2973 3125 2975 3234 3236 4227 3239 2979 3240 2981 3243 2982 3114 3245 2985 4248 3073 3246 2990 3248 3249 2992 4350 2995 4148 4206 3000 3251 3003 3252 3043 3006 3219 3008 4300 3009 3010 3150 3014 3195 3112 4139 3018 3261 4337 3264 3265 3266 4382 3241 3269 3033 4352 3272 4287 3036 3037 4393 3038 3040 3277 3042 4165 3105 3046 3280 3048 4267 4207 3052 3231 3284 3055 3186 3187 4184 3059 3279 3062 4312 3290 4346 3152 3068 3069 3291 3199 3071 3293 3072 3083 3296 3260 3297 4201 3080 4329 3084 3301 3085 3283 4210 3089 3304 4277 3306 3145 3305 3098 4342 3309 3102 3103 4314 3307 4348 3108 4255 3183 4285 4395 3116 3315 3117 3281 3238 3119 3121 3162 4362 3123 4391 3126 3130 3310 3132 3133 3276 3140 3142 3257 4374 4415 4405 3253 4402 3325 3205 3156 4281 3263 3158 3159 3160 3327 3328 3163 3330 4364 3166 4290 3333 4353 3250 3173 4437 3190 3178 3237 4378 3213 3184 4376 3335 4456 3337 3338 3193 3198 4451 3201 3340 4375 3204 3206 3298 3342 4423 3211 3343 4420 3216 3220 3218 3227 3346 3223 3247 3311 3322 3344 3314 3235 3348 4398 3323 4454 4440 3321 3312 3318 4461 3259 4446 3267 3268 4449 3270 4412 3354 3274 4439 3286 4407 3288 3289 4473 3294 4444 3299 3302 3313 4465 3308 4477 3316 4478 4470 3352 3351 4459 3332 4476 4475 4467 4469 4479 3360 3361 3363 3362 3366 3368 3364 3371 3365 3374 3376 3367 3379 3381 3369 3375 3370 3386 3388 3372 3391 3373 2262 3395 3397 3399 3377 3402 3378 3405 2284 3380 3409 3410 3412 3383 3415 3384 3418 3385 3421 2300 3387 3425 2270 3389 3406 3430 2297 3392 3393 3435 3394 3438 3440 3396 2296 2288 3398 3431 2281 3400 3448 3450 3452 3403 2306 2307 3457 3433 3407 3419 2312 3429 3464 3411 3467 3468 3413 3451 3414 3441 3474 3476 3456 3458 3480 3482 3422 3485 3423 3439 3424 3453 3491 3493 3444 3428 3445 2357 3495 3461 3500 2359 3434 3504 3506 3436 3437 3481 3510 3512 3513 3515 3442 3518 3443 2339 3522 2343 3446 3469 3447 3528 3529 3449 3532 3534 3536 3538 3540 3454 3543 3455 3546 3460 3520 3550 2378 2417 3462 3554 3556 2415 3465 3560 3466 3563 3565 3567 3470 3570 3471 3472 3574 3473 3577 2453 3475 3580 3496 3582 3478 3584 3585 3587 3589 3591 3483 3484 3594 3596 3486 3599 3487 2383 3488 2379 3489 3605 3490 3608 2432 3492 3611 3572 3494 3615 3617 3619 3497 3622 2422 3624 3501 2500 3502 3557 3630 3632 3505 3634 2480 3507 3638 3508 3640 3509 3643 2517 3511 3647 3545 2397 3514 3651 2456 3516 3655 3650 3519 3658 3521 3661 3523 3524 2466 3525 3666 3526 3669 3527 3672 3674 3530 3677 3531 3680 3682 3533 2442 3686 3602 3688 3689 3539 3691 3693 3541 3694 3696 3544 3699 2563 3702 3547 3705 3548 3707 3549 2435 3684 3551 3713 3553 3659 3717 2590 3719 2594 3558 3723 3559 3726 3561 3728 3730 2449 3564 3734 3566 3736 2559 3568 2607 3741 3743 3571 3732 3746 3579 3575 3750 3752 3754 3578 3656 3757 3581 3625 2613 3583 3763 3765 2544 3700 3588 3769 3771 3590 3774 3671 3592 3775 3593 3778 3780 3595 3783 2522 3597 2561 3598 2493 3621 3789 3601 3791 3603 3604 3795 3606 3798 3607 3609 3800 3610 3803 3805 3612 3665 3808 3614 3811 3813 3616 3815 3618 2638 3818 2507 2694 3821 3623 2509 3825 3810 3626 3819 3628 3822 2647 3831 3631 3834 3725 3633 2524 3635 2609 3636 3840 3648 2540 3639 3845 3641 3848 3836 3851 3744 3645 3854 3646 3740 3858 3649 3861 3828 3864 3652 2631 3653 3869 3654 2635 3873 3657 2588 3877 3879 2754 3881 3662 3884 3663 3766 2601 3888 3667 3890 3668 3892 3894 3670 3673 3776 3898 3675 3901 3676 3903 3782 3678 2771 3785 3909 3911 2775 3685 3915 3687 3918 3896 3921 3690 3923 3924 3692 2679 3695 3926 3927 3697 3930 3698 3933 3847 3701 3935 3716 3703 2752 3704 2591 3706 3863 3944 3709 3718 3947 3712 3720 3823 2704 3715 3952 3953 3748 3954 3956 3722 3959 2713 3724 3835 3738 3964 3965 3942 3731 3969 3971 3966 3973 3735 3976 3807 3737 3979 3981 3739 3984 3986 3742 3989 3991 2737 3745 3995 3997 3747 3999 3816 3749 3865 4002 2823 4004 3753 3876 4007 2692 3756 2641 4012 3870 3759 4016 3760 4019 3762 4021 4023 3764 3985 4026 4028 3768 4031 3770 2664 3772 4036 3773 2668 3793 3897 3777 4042 4044 3779 4045 3781 4048 4032 4051 4053 2923 3786 4056 3787 4059 4061 4063 3790 4066 2838 3792 3960 4040 3794 4072 3796 3797 4075 3801 3802 4077 3929 3804 3967 4080 3806 4082 3809 2959 4008 2818 3939 4038 2919 3839 2747 3817 4071 4092 3820 4094 4096 3950 4098 3826 3827 3829 4100 3830 2854 2797 3832 3919 2841 4108 4070 3837 3838 3843 3931 3968 3841 4116 3842 4118 3844 2837 4122 3846 4125 4127 3849 4041 3850 4131 4132 3852 3885 3853 4137 3004 3855 4140 3856 4143 4144 4142 3859 2993 3860 4103 3862 2880 4114 3866 4089 3868 2893 3030 3871 3937 2977 4111 4136 3875 2885 2894 4159 3878 4161 4018 3880 4164 3882 4167 3883 3013 4170 3886 4171 3887 4145 4174 3889 3905 4178 4180 4181 3893 4183 3940 2821 3920 3980 3899 2788 3900 3902 4190 2927 3904 4194 4107 3906 4196 3907 4197 4199 3910 4202 3032 3912 3075 3913 2971 3914 4208 3053 3916 4211 2984 4213 3963 3945 3922 4217 2954 3925 3001 3928 4151 2816 3932 4221 3934 4219 4147 4226 2966 4087 4185 4003 4230 2942 3946 4233 3948 4235 3949 2889 3951 4240 3955 4242 4244 3998 2948 4247 4106 4050 3962 3094 4251 4010 4254 2876 4001 4256 3970 3111 3972 4215 4259 2956 3975 4261 2868 3977 4264 3978 4266 4268 4269 3982 3983 2904 4271 4198 4011 3987 4275 3154 3990 4212 3994 3992 3993 4029 4229 4084 3137 3034 2886 4078 2938 4284 3029 3035 4288 4289 4291 4015 4292 4017 4294 4263 4020 3175 4297 4022 4299 4220 4025 4027 4302 2945 4030 4305 4176 3057 4033 4309 4034 4035 4311 4037 3188 4088 4186 4224 4316 4317 4046 4320 4322 4249 4049 2940 4052 4054 4135 4055 4328 3207 4057 4323 4330 4332 3138 3181 4064 4335 3214 4067 4141 4069 2989 4119 4216 4073 4341 4083 4169 4081 4344 4345 4187 4296 4085 3118 4349 4146 4090 2997 4273 4093 4245 4095 4354 4356 3107 4359 4099 4360 4101 4363 4102 4234 4365 4105 3128 4193 4366 4110 4368 4369 4112 3230 4115 3028 3086 4120 4371 4123 4372 4163 4126 4339 4128 3180 4129 4130 4270 4134 4315 4232 3019 4138 4381 3217 4384 4385 4386 3262 4361 4389 4153 3232 4392 3167 4156 4157 3273 4158 4160 4397 4162 3045 4225 4166 4400 4168 3147 3087 4172 4351 4404 4175 4306 4307 3064 4179 4399 4182 3192 4410 3226 4272 4188 4189 4411 4319 4191 4413 4192 4203 4416 4380 4417 3081 4200 3209 4204 4421 4205 4403 3090 4209 4424 3157 4426 4265 4425 4218 3222 4429 4222 4223 3194 4427 3228 4228 3135 4303 3165 3275 4236 4435 4237 4401 4358 4239 4241 4282 3242 4243 3271 4246 4250 4430 4252 4253 4396 4260 4262 4377 3254 3295 3285 4373 3282 4445 4325 4276 3161 4383 4278 4279 4280 4447 4448 4283 4450 3244 4286 3170 4453 3233 4370 4293 3317 4310 4298 4357 3258 4333 4304 3256 4455 3336 4457 4458 4313 4318 3331 4321 4460 3255 4324 4326 4418 4462 3303 4331 4463 3300 4336 4340 4338 4347 4466 4343 4367 4431 4442 4464 4434 4355 4468 3278 4443 3334 3320 4441 4432 4438 3341 4379 3326 4387 4388 3329 4390 3292 4474 4394 3319 4406 3287 4408 4409 3353 4414 3324 4419 4422 4433 3345 4428 3357 4436 3358 3350 4472 4471 3339 4452 3356 3355 3347 3349 3359 4480 1121 1123 1122 1126 1128 1124 1131 1125 1134 1136 1127 1139 1141 1129 1135 1130 1146 1148 1132 1151 1133 22 1155 1157 1159 1137 1162 1138 1165 44 1140 1169 1170 1172 1143 1175 1144 1178 1145 1181 60 1147 1185 30 1149 1166 1190 57 1152 1153 1195 1154 1198 1200 1156 56 48 1158 1191 41 1160 1208 1210 1212 1163 66 67 1217 1193 1167 1179 72 1189 1224 1171 1227 1228 1173 1211 1174 1201 1234 1236 1216 1218 1240 1242 1182 1245 1183 1199 1184 1213 1251 1253 1204 1188 1205 117 1255 1221 1260 119 1194 1264 1266 1196 1197 1241 1270 1272 1273 1275 1202 1278 1203 99 1282 103 1206 1229 1207 1288 1289 1209 1292 1294 1296 1298 1300 1214 1303 1215 1306 1220 1280 1310 138 177 1222 1314 1316 175 1225 1320 1226 1323 1325 1327 1230 1330 1231 1232 1334 1233 1337 213 1235 1340 1256 1342 1238 1344 1345 1347 1349 1351 1243 1244 1354 1356 1246 1359 1247 143 1248 139 1249 1365 1250 1368 192 1252 1371 1332 1254 1375 1377 1379 1257 1382 182 1384 1261 260 1262 1317 1390 1392 1265 1394 240 1267 1398 1268 1400 1269 1403 277 1271 1407 1305 157 1274 1411 216 1276 1415 1410 1279 1418 1281 1421 1283 1284 226 1285 1426 1286 1429 1287 1432 1434 1290 1437 1291 1440 1442 1293 202 1446 1362 1448 1449 1299 1451 1453 1301 1454 1456 1304 1459 323 1462 1307 1465 1308 1467 1309 195 1444 1311 1473 1313 1419 1477 350 1479 354 1318 1483 1319 1486 1321 1488 1490 209 1324 1494 1326 1496 319 1328 367 1501 1503 1331 1492 1506 1339 1335 1510 1512 1514 1338 1416 1517 1341 1385 373 1343 1523 1525 304 1460 1348 1529 1531 1350 1534 1431 1352 1535 1353 1538 1540 1355 1543 282 1357 321 1358 253 1381 1549 1361 1551 1363 1364 1555 1366 1558 1367 1369 1560 1370 1563 1565 1372 1425 1568 1374 1571 1573 1376 1575 1378 398 1578 267 454 1581 1383 269 1585 1570 1386 1579 1388 1582 407 1591 1391 1594 1485 1393 284 1395 369 1396 1600 1408 300 1399 1605 1401 1608 1596 1611 1504 1405 1614 1406 1500 1618 1409 1621 1588 1624 1412 391 1413 1629 1414 395 1633 1417 348 1637 1639 514 1641 1422 1644 1423 1526 361 1648 1427 1650 1428 1652 1654 1430 1433 1536 1658 1435 1661 1436 1663 1542 1438 531 1545 1669 1671 535 1445 1675 1447 1678 1656 1681 1450 1683 1684 1452 439 1455 1686 1687 1457 1690 1458 1693 1607 1461 1695 1476 1463 512 1464 351 1466 1623 1704 1469 1478 1707 1472 1480 1583 464 1475 1712 1713 1508 1714 1716 1482 1719 473 1484 1595 1498 1724 1725 1702 1491 1729 1731 1726 1733 1495 1736 1567 1497 1739 1741 1499 1744 1746 1502 1749 1751 497 1505 1755 1757 1507 1759 1576 1509 1625 1762 583 1764 1513 1636 1767 452 1516 401 1772 1630 1519 1776 1520 1779 1522 1781 1783 1524 1745 1786 1788 1528 1791 1530 424 1532 1796 1533 428 1553 1657 1537 1802 1804 1539 1805 1541 1808 1792 1811 1813 683 1546 1816 1547 1819 1821 1823 1550 1826 598 1552 1720 1800 1554 1832 1556 1557 1835 1561 1562 1837 1689 1564 1727 1840 1566 1842 1569 719 1768 578 1699 1798 679 1599 507 1577 1831 1852 1580 1854 1856 1710 1858 1586 1587 1589 1860 1590 614 557 1592 1679 601 1868 1830 1597 1598 1603 1691 1728 1601 1876 1602 1878 1604 597 1882 1606 1885 1887 1609 1801 1610 1891 1892 1612 1645 1613 1897 764 1615 1900 1616 1903 1904 1902 1619 753 1620 1863 1622 640 1874 1626 1849 1628 653 790 1631 1697 737 1871 1896 1635 645 654 1919 1638 1921 1778 1640 1924 1642 1927 1643 773 1930 1646 1931 1647 1905 1934 1649 1665 1938 1940 1941 1653 1943 1700 581 1680 1740 1659 548 1660 1662 1950 687 1664 1954 1867 1666 1956 1667 1957 1959 1670 1962 792 1672 835 1673 731 1674 1968 813 1676 1971 744 1973 1723 1705 1682 1977 714 1685 761 1688 1911 576 1692 1981 1694 1979 1907 1986 726 1847 1945 1763 1990 702 1706 1993 1708 1995 1709 649 1711 2000 1715 2002 2004 1758 708 2007 1866 1810 1722 854 2011 1770 2014 636 1761 2016 1730 871 1732 1975 2019 716 1735 2021 628 1737 2024 1738 2026 2028 2029 1742 1743 664 2031 1958 1771 1747 2035 914 1750 1972 1754 1752 1753 1789 1989 1844 897 794 646 1838 698 2044 789 795 2048 2049 2051 1775 2052 1777 2054 2023 1780 935 2057 1782 2059 1980 1785 1787 2062 705 1790 2065 1936 817 1793 2069 1794 1795 2071 1797 948 1848 1946 1984 2076 2077 1806 2080 2082 2009 1809 700 1812 1814 1895 1815 2088 967 1817 2083 2090 2092 898 941 1824 2095 974 1827 1901 1829 749 1879 1976 1833 2101 1843 1929 1841 2104 2105 1947 2056 1845 878 2109 1906 1850 757 2033 1853 2005 1855 2114 2116 867 2119 1859 2120 1861 2123 1862 1994 2125 1865 888 1953 2126 1870 2128 2129 1872 990 1875 788 846 1880 2131 1883 2132 1923 1886 2099 1888 940 1889 1890 2030 1894 2075 1992 779 1898 2141 977 2144 2145 2146 1022 2121 2149 1913 992 2152 927 1916 1917 1033 1918 1920 2157 1922 805 1985 1926 2160 1928 907 847 1932 2111 2164 1935 2066 2067 824 1939 2159 1942 952 2170 986 2032 1948 1949 2171 2079 1951 2173 1952 1963 2176 2140 2177 841 1960 969 1964 2181 1965 2163 850 1969 2184 917 2186 2025 2185 1978 982 2189 1982 1983 954 2187 988 1988 895 2063 925 1035 1996 2195 1997 2161 2118 1999 2001 2042 1002 2003 1031 2006 2010 2190 2012 2013 2156 2020 2022 2137 1014 1055 1045 2133 1042 2205 2085 2036 921 2143 2038 2039 2040 2207 2208 2043 2210 1004 2046 930 2213 993 2130 2053 1077 2070 2058 2117 1018 2093 2064 1016 2215 1096 2217 2218 2073 2078 1091 2081 2220 1015 2084 2086 2178 2222 1063 2091 2223 1060 2096 2100 2098 2107 2226 2103 2127 2191 2202 2224 2194 2115 2228 1038 2203 1094 1080 2201 2192 2198 1101 2139 1086 2147 2148 1089 2150 1052 2234 2154 1079 2166 1047 2168 2169 1113 2174 1084 2179 2182 2193 1105 2188 1117 2196 1118 1110 2232 2231 1099 2212 1116 1115 1107 1109 1119 2240 1 3 2 6 8 4 11 5 14 16 7 19 21 9 15 10 26 28 12 31 13 1142 35 37 39 17 42 18 45 1164 20 49 50 52 23 55 24 58 25 61 1180 27 65 1150 29 46 70 1177 32 33 75 34 78 80 36 1176 1168 38 71 1161 40 88 90 92 43 1186 1187 97 73 47 59 1192 69 104 51 107 108 53 91 54 81 114 116 96 98 120 122 62 125 63 79 64 93 131 133 84 68 85 1237 135 101 140 1239 74 144 146 76 77 121 150 152 153 155 82 158 83 1219 162 1223 86 109 87 168 169 89 172 174 176 178 180 94 183 95 186 100 160 190 1258 1297 102 194 196 1295 105 200 106 203 205 207 110 210 111 112 214 113 217 1333 115 220 136 222 118 224 225 227 229 231 123 124 234 236 126 239 127 1263 128 1259 129 245 130 248 1312 132 251 212 134 255 257 259 137 262 1302 264 141 1380 142 197 270 272 145 274 1360 147 278 148 280 149 283 1397 151 287 185 1277 154 291 1336 156 295 290 159 298 161 301 163 164 1346 165 306 166 309 167 312 314 170 317 171 320 322 173 1322 326 242 328 329 179 331 333 181 334 336 184 339 1443 342 187 345 188 347 189 1315 324 191 353 193 299 357 1470 359 1474 198 363 199 366 201 368 370 1329 204 374 206 376 1439 208 1487 381 383 211 372 386 219 215 390 392 394 218 296 397 221 265 1493 223 403 405 1424 340 228 409 411 230 414 311 232 415 233 418 420 235 423 1402 237 1441 238 1373 261 429 241 431 243 244 435 246 438 247 249 440 250 443 445 252 305 448 254 451 453 256 455 258 1518 458 1387 1574 461 263 1389 465 450 266 459 268 462 1527 471 271 474 365 273 1404 275 1489 276 480 288 1420 279 485 281 488 476 491 384 285 494 286 380 498 289 501 468 504 292 1511 293 509 294 1515 513 297 1468 517 519 1634 521 302 524 303 406 1481 528 307 530 308 532 534 310 313 416 538 315 541 316 543 422 318 1651 425 549 551 1655 325 555 327 558 536 561 330 563 564 332 1559 335 566 567 337 570 338 573 487 341 575 356 343 1632 344 1471 346 503 584 349 358 587 352 360 463 1584 355 592 593 388 594 596 362 599 1593 364 475 378 604 605 582 371 609 611 606 613 375 616 447 377 619 621 379 624 626 382 629 631 1617 385 635 637 387 639 456 389 505 642 1703 644 393 516 647 1572 396 1521 652 510 399 656 400 659 402 661 663 404 625 666 668 408 671 410 1544 412 676 413 1548 433 537 417 682 684 419 685 421 688 672 691 693 1803 426 696 427 699 701 703 430 706 1718 432 600 680 434 712 436 437 715 441 442 717 569 444 607 720 446 722 449 1839 648 1698 579 678 1799 479 1627 457 711 732 460 734 736 590 738 466 467 469 740 470 1734 1677 472 559 1721 748 710 477 478 483 571 608 481 756 482 758 484 1717 762 486 765 767 489 681 490 771 772 492 525 493 777 1884 495 780 496 783 784 782 499 1873 500 743 502 1760 754 506 729 508 1773 1910 511 577 1857 751 776 515 1765 1774 799 518 801 658 520 804 522 807 523 1893 810 526 811 527 785 814 529 545 818 820 821 533 823 580 1701 560 620 539 1668 540 542 830 1807 544 834 747 546 836 547 837 839 550 842 1912 552 1955 553 1851 554 848 1933 556 851 1864 853 603 585 562 857 1834 565 1881 568 791 1696 572 861 574 859 787 866 1846 727 825 643 870 1822 586 873 588 875 589 1769 591 880 595 882 884 638 1828 887 746 690 602 1974 891 650 894 1756 641 896 610 1991 612 855 899 1836 615 901 1748 617 904 618 906 908 909 622 623 1784 911 838 651 627 915 2034 630 852 634 632 633 669 869 724 2017 1914 1766 718 1818 924 1909 1915 928 929 931 655 932 657 934 903 660 2055 937 662 939 860 665 667 942 1825 670 945 816 1937 673 949 674 675 951 677 2068 728 826 864 956 957 686 960 962 889 689 1820 692 694 775 695 968 2087 697 963 970 972 2018 2061 704 975 2094 707 781 709 1869 759 856 713 981 723 809 721 984 985 827 936 725 1998 989 786 730 1877 913 733 885 735 994 996 1987 999 739 1000 741 1003 742 874 1005 745 2008 833 1006 750 1008 1009 752 2110 755 1908 1966 760 1011 763 1012 803 766 979 768 2060 769 770 910 774 955 872 1899 778 1021 2097 1024 1025 1026 2142 1001 1029 793 2112 1032 2047 796 797 2153 798 800 1037 802 1925 865 806 1040 808 2027 1967 812 991 1044 815 946 947 1944 819 1039 822 2072 1050 2106 912 828 829 1051 959 831 1053 832 843 1056 1020 1057 1961 840 2089 844 1061 845 1043 1970 849 1064 2037 1066 905 1065 858 2102 1069 862 863 2074 1067 2108 868 2015 943 2045 2155 876 1075 877 1041 998 879 881 922 2122 883 2151 886 890 1070 892 893 1036 900 902 1017 2134 2175 2165 1013 2162 1085 965 916 2041 1023 918 919 920 1087 1088 923 1090 2124 926 2050 1093 2113 1010 933 2197 950 938 997 2138 973 944 2136 1095 2216 1097 1098 953 958 2211 961 1100 2135 964 966 1058 1102 2183 971 1103 2180 976 980 978 987 1106 983 1007 1071 1082 1104 1074 995 1108 2158 1083 2214 2200 1081 1072 1078 2221 1019 2206 1027 1028 2209 1030 2172 1114 1034 2199 1046 2167 1048 1049 2233 1054 2204 1059 1062 1073 2225 1068 2237 1076 2238 2230 1112 1111 2219 1092 2236 2235 2227 2229 2239 1120 4481 4483 4482 4486 4488 4484 4491 4485 4494 4490 4487 4498 4500 4489 4503 4505 4507 4492 4504 4493 4512 4514 4495 4499 4496 4519 4497 4508 4523 4525 4526 4501 4529 4502 4532 4534 4536 4518 4506 4540 4542 4533 4509 4546 4510 4511 4550 4549 4513 4554 4556 4515 4522 4516 4561 4517 4564 4565 4567 4520 4555 4521 4572 4574 4545 4524 4578 4580 4528 4527 4583 4585 4553 4530 4541 4531 4557 4558 4593 4595 4535 4598 4600 4537 4538 4604 4539 4606 4608 4610 4611 4543 4573 4544 4616 4618 4620 4547 4623 4548 4581 4627 4551 4584 4552 4632 4587 4635 4637 4638 4613 4641 4559 4594 4560 4645 4597 4562 4649 4563 4652 4602 4655 4566 4605 4568 4660 4569 4663 4570 4571 4667 4591 4625 4671 4575 4617 4576 4675 4577 4678 4680 4579 4683 4614 4686 4582 4689 4691 4693 4695 4586 4690 4699 4588 4702 4589 4590 4639 4707 4592 4710 4673 4712 4596 4715 4717 4719 4599 4658 4669 4601 4725 4694 4603 4729 4731 4650 4734 4607 4700 4738 4609 4741 4704 4744 4612 4747 4651 4748 4615 4711 4643 4753 4619 4756 4758 4621 4761 4622 4764 4766 4624 4769 4770 4626 4726 4774 4628 4633 4629 4776 4630 4654 4631 4696 4781 4782 4634 4661 4701 4636 4788 4665 4791 4793 4640 4708 4796 4642 4672 4644 4800 4714 4646 4716 4647 4805 4648 4808 4721 4811 4812 4814 4653 4687 4752 4739 4656 4821 4657 4824 4826 4659 4735 4829 4828 4662 4728 4834 4664 4837 4790 4666 4841 4843 4668 4670 4846 4847 4751 4727 4674 4801 4853 4676 4856 4677 4859 4861 4679 4864 4866 4681 4765 4682 4871 4873 4684 4685 4876 4878 4880 4688 4883 4692 4885 4778 4786 4889 4697 4698 4893 4894 4785 4779 4898 4703 4901 4743 4705 4905 4706 4908 4910 4709 4797 4913 4912 4713 4754 4918 4920 4922 4718 4925 4927 4720 4930 4932 4722 4723 4936 4724 4815 4940 4865 4943 4945 4947 4730 4950 4952 4732 4954 4733 4957 4737 4736 4895 4831 4882 4962 4740 4964 4966 4742 4968 4839 4840 4745 4973 4746 4907 4977 4749 4750 4981 4849 4978 4851 4852 4755 4987 4989 4757 4921 4992 4759 4995 4760 4997 4999 4762 4817 4763 5004 5006 4869 5009 4767 4933 4768 4979 5015 4771 4937 4772 5020 4773 5023 4832 4775 5026 4777 5028 4887 5031 4780 5034 5035 5037 4783 4784 4830 4959 5041 4787 5043 4900 4789 5046 5030 5049 4792 5052 4844 4794 5055 4795 5058 4799 4798 4914 5059 5063 4984 4802 5067 4803 4857 4804 5071 5073 4806 4939 4807 4928 5078 4809 5080 4810 4872 5057 4935 4813 4877 5088 4926 4816 5092 5094 4818 4944 4819 5098 4820 5100 4963 4822 5029 4823 5104 4825 5007 4956 4827 4958 4896 5109 5111 4833 4949 4835 4965 4836 5117 4838 5120 5121 5123 5125 4842 4974 4975 4991 4845 4850 4874 5133 4848 5136 5137 4917 5140 5142 4854 5145 4855 4990 4976 4858 5151 5153 4860 5070 4862 5072 4863 5089 5154 5002 5159 4867 5162 4868 4955 5166 4870 5010 5170 5172 5038 5174 4875 5016 5178 5180 5066 4879 5021 5075 4881 5187 5189 4884 5191 4886 4951 4903 4888 5195 5042 4890 4891 5198 4892 5013 5201 5131 4897 5033 4899 5192 5101 4902 5047 5209 4904 5212 5122 4906 5216 5069 4909 5056 4934 4911 4915 5223 5225 5062 4916 5228 5230 5019 4919 5233 5054 4996 4923 4998 4924 5074 5022 5239 5241 4929 5079 4931 5246 5248 5250 5149 5176 5253 5255 4938 5000 5258 5227 4941 5257 4942 5148 5259 5194 4946 5112 4948 5045 5268 5269 4953 5138 5165 5173 5272 4960 5132 4961 5099 5278 5114 5281 5196 4967 5284 5286 4969 4970 5051 4971 5290 4972 5293 5294 5147 5297 5199 5040 5110 4980 5301 5303 4982 4983 5105 5306 4985 5245 4986 5309 5311 4988 5313 5128 5095 5084 5150 4993 5152 4994 5001 5316 5320 5322 5318 5003 5325 5326 5005 5163 5305 5106 5008 5330 5331 5333 5011 5251 5012 5107 5014 5332 5085 5177 5017 5340 5018 5181 5308 5343 5285 5264 5263 5024 5347 5025 5349 5027 5044 5352 5097 5032 5116 5356 5036 5130 5200 5039 5221 5360 5361 5277 5265 5364 5366 5048 5368 5215 5050 5339 5214 5211 5053 5217 5374 5376 5378 5202 5380 5060 5382 5061 5243 5091 5064 5291 5065 5389 5391 5068 5393 5358 5236 5397 5238 5076 5400 5077 5327 5226 5244 5141 5081 5247 5082 5404 5083 5171 5338 5086 5408 5087 5379 5093 5090 5096 5260 5414 5365 5186 5185 5206 5419 5283 5102 5103 5423 5402 5108 5299 5296 5359 5428 5205 5113 5362 5363 5115 5432 5267 5118 5184 5119 5438 5440 5372 5124 5229 5443 5126 5127 5444 5274 5129 5447 5273 5448 5134 5451 5135 5453 5164 5139 5455 5182 5143 5457 5144 5392 5146 5394 5461 5155 5464 5158 5319 5156 5409 5157 5434 5324 5160 5161 5242 5328 5329 5167 5168 5175 5169 5475 5477 5479 5337 5252 5213 5179 5465 5456 5183 5420 5441 5346 5188 5489 5190 5353 5491 5193 5350 5494 5355 5197 5357 5235 5275 5203 5204 5279 5280 5207 5262 5208 5501 5210 5458 5482 5371 5289 5373 5218 5504 5219 5505 5220 5256 5222 5422 5224 5497 5476 5502 5436 5511 5388 5231 5390 5232 5312 5234 5314 5515 5463 5237 5506 5519 5240 5471 5271 5521 5249 5523 5449 5522 5254 5321 5433 5411 5507 5413 5261 5495 5532 5472 5431 5266 5344 5421 5381 5270 5467 5425 5426 5508 5276 5429 5430 5418 5282 5410 5323 5435 5386 5500 5287 5492 5288 5345 5442 5292 5295 5547 5503 5298 5300 5406 5450 5302 5548 5304 5551 5307 5342 5310 5369 5545 5556 5315 5462 5396 5317 5341 5517 5424 5486 5469 5520 5401 5417 5560 5561 5334 5384 5335 5565 5336 5516 5567 5370 5528 5527 5485 5468 5531 5571 5348 5533 5351 5439 5493 5354 5415 5518 5383 5555 5541 5437 5367 5385 5446 5375 5377 5398 5412 5427 5537 5579 5387 5512 5513 5514 5395 5480 5466 5496 5399 5470 5403 5407 5405 5582 5569 5584 5484 5483 5553 5530 5487 5416 5490 5534 5535 5588 5509 5558 5590 5573 5499 5587 5554 5568 5459 5546 5445 5452 5595 5563 5454 5583 5529 5543 5498 5460 5557 5538 5570 5473 5474 5601 5550 5564 5478 5580 5481 5544 5525 5559 5488 5577 5540 5604 5591 5596 5572 5578 5510 5566 5600 5524 5552 5526 5585 5586 5542 5536 5607 5539 5575 5592 5598 5594 5549 5576 5597 5593 5599 5581 5562 5611 5606 5574 5605 5603 5589 5608 5614 5610 5602 5613 5612 5609 atlasrep-2.1.8/datapkg/F22d2G1-max6W20000644000175000017500000000035312515672527015063 0ustar samsammu 2 2 3 pwr 7 3 4 mu 3 3 5 mu 1 2 6 mu 1 5 7 mu 1 3 8 mu 8 6 9 pwr 3 6 10 mu 10 2 11 mu 11 11 5 mu 6 9 10 mu 1 4 11 mu 11 7 1 mu 1 2 4 mu 4 6 1 mu 7 8 4 mu 4 2 6 mu 3 10 4 mu 4 10 3 mu 3 2 4 mu 4 9 3 mu 3 5 4 iv 4 2 mu 2 6 3 mu 3 4 2 atlasrep-2.1.8/datapkg/3M22d2G1-kerM22d2W10000644000175000017500000000010112216407160015543 0ustar samsaminp 2 iv 1 4 iv 2 5 mu 4 5 6 mu 6 1 7 mu 7 2 3 pwr 4 3 4 oup 1 4 atlasrep-2.1.8/datapkg/6S6G1-ker2S6W10000644000175000017500000000012312312140012015023 0ustar samsaminp 2 mu 1 2 3 mu 2 3 4 iv 1 6 iv 4 7 mu 6 7 8 mu 8 1 9 mu 9 4 5 pwr 4 5 6 oup 1 6 atlasrep-2.1.8/datapkg/2aM20G1-kerA5W10000644000175000017500000000022112361300066015133 0ustar samsaminp 2 mu 1 1 3 mu 2 3 4 pwr 3 4 5 mu 2 1 6 mu 2 6 7 mu 7 4 8 pwr 2 8 9 mu 7 2 10 pwr 2 10 11 mu 6 7 12 mu 12 1 13 pwr 2 13 14 oup 5 3 5 9 11 14 atlasrep-2.1.8/datapkg/F22d2G1-max5W20000644000175000017500000000007112515536063015051 0ustar samsampwr 15 2 3 pwr 4 2 4 mu 4 1 2 mu 2 3 5 mu 5 1 3 mu 3 4 2 atlasrep-2.1.8/datapkg/F22d2G1-max8W20000644000175000017500000000021212515536063015051 0ustar samsammu 1 2 3 mu 2 3 4 mu 3 4 5 pwr 10 2 6 mu 5 4 2 pwr 3 2 7 mu 4 6 2 mu 2 4 6 iv 6 2 mu 2 7 4 mu 4 6 2 mu 5 5 4 mu 3 3 5 mu 4 5 3 pwr 12 3 1 atlasrep-2.1.8/datapkg/3F24d2G1-kerF24d2W10000644000175000017500000000026512236254467015560 0ustar samsaminp 2 mu 2 1 3 mu 1 3 4 mu 2 4 5 mu 3 4 6 mu 4 6 7 mu 5 7 8 mu 6 7 9 mu 3 9 10 mu 8 10 11 mu 9 10 12 mu 10 12 13 mu 11 7 14 mu 12 7 15 mu 13 15 16 mu 14 16 17 pwr 29 17 18 oup 1 18 atlasrep-2.1.8/datapkg/F22d2G1-max10W20000644000175000017500000000006712515536063015132 0ustar samsammu 1 2 3 mu 3 2 4 mu 4 3 5 mu 5 5 4 pwr 3 3 5 mu 4 5 2 atlasrep-2.1.8/datapkg/2Co1G1-Zr24aB0.g0000644000175000017500000000610712522422660015225 0ustar samsam# F:=RationalField(); local result; result:= rec(); result.comment:= "2.Co1 as 24 x 24 matrices over Z.\n\ "; # result.symmetricforms:= []; # result.antisymmetricforms:= []; # result.hermitianforms:= []; # result.centralizeralgebra:= []; result.generators:= [ [[2,0,0,-3,-2,-1,0,-2,1,1,0,1,1,0,0,1,-1,-1,0,0,-1,0,0,0], [-4,1,0,6,4,2,2,3,-1,-3,-1,0,-2,-1,-1,-1,1,1,0,1,0,0,0,0], [4,-1,0,-6,-4,-2,-3,-4,2,4,3,-3,2,1,2,0,1,-1,-1,-1,1,0,-1,1], [4,1,1,-6,-3,-2,-1,-4,2,2,1,0,1,0,1,2,0,-1,-1,0,-1,0,0,1], [5,-2,0,-8,-5,-3,-2,-4,2,4,2,0,2,2,1,1,-1,-1,0,0,0,1,-1,0], [-3,0,-1,4,1,2,1,1,0,-2,0,0,0,-1,-1,-1,0,0,0,0,-1,-1,0,0], [1,0,-1,-2,-2,-1,0,-2,0,1,1,0,0,0,0,0,-1,0,0,-1,0,0,0,0], [-3,1,-1,5,3,1,2,2,-1,-2,-1,0,-1,-1,-1,-1,0,0,1,0,0,0,0,0], [-2,2,0,3,3,0,2,2,0,-1,-2,1,0,-1,0,0,1,-1,1,1,0,0,0,1], [9,-1,-1,-13,-9,-5,-4,-9,4,6,4,-1,3,1,2,2,-1,-3,-1,-1,-2,1,-1,1], [1,-1,-1,-3,-3,-1,-1,-4,2,2,3,-2,1,0,0,0,0,0,-1,-1,0,0,-1,1], [4,-1,1,-6,-4,-2,-2,-3,2,3,2,-1,2,1,1,1,0,-1,-1,0,0,0,-1,1], [-4,0,0,5,3,2,2,3,-2,-2,-1,0,-2,0,-1,-1,0,2,0,0,1,0,0,-1], [8,2,2,-9,-5,-4,0,-5,2,2,2,1,0,1,1,2,-1,0,-1,1,-1,1,0,1], [-3,0,0,3,3,1,0,3,-1,-1,-1,0,0,0,0,0,1,0,1,0,1,-1,0,0], [-5,2,0,6,4,3,3,2,-1,-4,-2,1,-2,-2,-2,0,0,1,0,0,-1,-1,1,0], [3,0,0,-3,-3,-1,0,-2,0,1,1,0,0,0,0,0,-1,0,-1,-1,0,0,0,0], [0,0,0,1,1,0,0,2,-1,0,-2,1,0,0,0,0,0,-1,1,0,0,0,0,-1], [-1,0,-1,2,0,1,-1,0,0,0,0,-1,1,-1,0,-1,1,-1,0,-1,0,-1,0,0], [-4,-1,-1,4,2,2,0,2,-1,-2,-1,1,-1,-1,-1,0,0,1,0,0,-1,0,1,-1], [-9,1,0,11,7,5,3,6,-2,-5,-3,1,-2,-2,-2,-1,1,2,0,1,0,-1,1,0], [-6,1,0,9,5,4,3,4,-2,-4,-1,-1,-2,-1,-1,-2,1,2,0,0,1,-1,0,0], [5,1,-1,-7,-5,-3,-1,-6,2,3,3,0,1,0,1,1,-1,0,-1,-1,-1,1,0,1], [6,0,1,-6,-4,-2,-2,-3,1,2,1,0,2,1,1,1,-1,-1,0,0,-1,0,0,0]], [[0,0,1,0,0,0,-1,1,1,0,-1,0,1,0,1,0,1,0,0,1,0,1,0,1], [3,1,-1,-3,-2,-2,0,-3,1,2,2,-1,1,0,1,0,0,-1,0,-1,0,-1,-1,0], [-4,0,-1,7,4,3,1,4,-3,-3,-2,0,-1,-1,-1,-1,0,0,1,-1,0,-1,1,-1], [0,-1,0,1,0,1,-1,1,0,0,0,-1,1,0,1,-1,0,0,0,0,0,0,0,0], [6,0,2,-6,-4,-2,-3,-2,1,2,1,-1,1,1,2,1,1,-1,-1,0,0,1,0,1], [2,0,-1,-5,-3,-3,-1,-4,3,3,1,0,2,0,1,1,0,-1,0,0,0,1,-1,1], [-10,0,0,12,8,5,4,7,-3,-6,-3,1,-3,-1,-3,-1,0,3,1,1,1,-1,1,-1], [-1,4,1,5,4,1,3,3,-2,-3,-2,1,-1,-1,0,0,1,1,1,0,0,-1,1,0], [-1,0,1,3,2,1,-1,3,-1,-1,-2,0,1,0,1,0,1,0,1,0,0,0,1,0], [2,2,1,0,0,0,0,0,0,0,0,-1,1,0,2,0,1,0,0,0,0,0,0,1], [-5,3,0,11,7,4,4,6,-4,-5,-3,0,-2,-2,-1,-2,1,1,1,-1,1,-2,1,-1], [3,0,1,-2,-1,-1,-1,0,0,1,-1,0,1,0,1,0,0,-1,0,0,0,1,0,0], [-4,0,-1,5,3,2,2,2,-1,-3,0,0,-2,-1,-2,-1,0,1,0,0,0,-1,0,-1], [2,-1,1,-2,-1,-1,-1,0,1,1,1,-1,1,1,1,0,0,0,0,1,1,0,-1,0], [2,-1,1,-3,-1,-1,-1,0,-1,1,-1,1,-1,1,0,1,-1,0,0,0,0,1,1,-1], [-2,0,-1,3,1,1,1,1,0,-1,0,0,0,-1,0,-1,0,1,0,0,0,0,0,0], [-11,-2,-1,12,7,5,3,7,-2,-5,-3,1,-2,-1,-3,-2,0,2,1,1,1,0,0,-1], [-2,0,1,2,2,1,0,3,-1,-1,-2,1,-1,0,0,0,1,0,0,1,0,1,0,0], [-6,1,-1,7,5,2,2,4,-2,-2,-3,1,-1,-1,-1,-1,1,0,1,0,1,0,0,0], [-3,1,-1,3,2,1,2,0,0,-1,0,0,-1,-1,-1,-1,0,0,0,0,0,-1,0,0], [2,-2,-2,-6,-5,-2,-2,-6,3,4,3,-1,2,0,0,0,-1,-1,-1,-1,-1,0,-1,0], [2,-1,-2,-4,-4,-1,-1,-5,2,2,4,-2,1,0,0,0,-1,0,-1,-2,0,-1,-1,0], [-6,1,0,8,5,4,3,3,-2,-4,-1,0,-2,-1,-2,-1,0,2,0,0,0,-2,1,-1], [14,1,2,-18,-11,-7,-4,-10,4,7,4,0,3,2,3,3,-1,-2,-2,0,-1,2,-1,2]] ]; return result; atlasrep-2.1.8/datapkg/4M22G1-ker2M22W10000644000175000017500000000010412312135437015157 0ustar samsaminp 2 mu 1 2 3 mu 3 3 4 iv 2 5 mu 1 5 6 mu 4 6 7 pwr 10 7 8 oup 1 8 atlasrep-2.1.8/datapkg/2A11G1-kerA11W10000644000175000017500000000005412236251070015040 0ustar samsaminp 2 pwr 3 2 4 mu 4 1 3 pwr 15 3 5 oup 1 5 atlasrep-2.1.8/datapkg/6A7G1-kerA7W10000644000175000017500000000012312216407160014714 0ustar samsaminp 2 mu 2 1 3 pwr 2 2 5 mu 5 1 4 pwr 2 3 6 mu 6 1 5 pwr 7 4 6 pwr 3 5 7 oup 2 6 7 atlasrep-2.1.8/datapkg/3ONd2G1-kerONd2W10000644000175000017500000000006412216407160015503 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 4 3 5 pwr 31 5 6 oup 1 6 atlasrep-2.1.8/datapkg/3L37d2G1-kerL37d2W10000644000175000017500000000007712350303674015575 0ustar samsaminp 2 mu 2 1 3 pwr 2 3 4 pwr 2 2 5 mu 5 4 6 pwr 19 6 7 oup 1 7 atlasrep-2.1.8/datapkg/6A7G1-ker2A7W10000644000175000017500000000005312312136311014772 0ustar samsaminp 2 pwr 2 2 3 mu 3 1 4 pwr 7 4 5 oup 1 5 atlasrep-2.1.8/datapkg/2J2d2iG1-kerJ2d2W10000644000175000017500000000006512216407160015552 0ustar samsaminp 2 mu 2 1 3 pwr 3 3 4 mu 2 4 5 pwr 12 5 6 oup 1 6 atlasrep-2.1.8/datapkg/2L34G1-kerL34W10000644000175000017500000000047012216407160015103 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 oup 1 30 atlasrep-2.1.8/datapkg/6Suzd2G1-ker3Suzd2W10000644000175000017500000000014612312141620016275 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 pwr 2 4 5 pwr 2 3 6 mu 5 6 7 pwr 7 7 9 pwr 2 1 10 mu 9 10 8 pwr 3 8 9 oup 1 9 atlasrep-2.1.8/datapkg/2O73d2iG1-f3r8B0.m20000644000175000017500000000013512522367650015524 0ustar samsam 1 3 8 8 11010011 10121000 20000221 12101200 11001011 22000112 12121220 01201002 atlasrep-2.1.8/datapkg/Mmax30G0-kerM11W10000644000175000017500000000013112365215461015517 0ustar samsaminp 2 mu 2 1 3 mu 1 2 4 pwr 3 3 5 mu 2 5 6 pwr 11 3 7 pwr 11 4 8 pwr 11 6 9 oup 3 7 8 9 atlasrep-2.1.8/datapkg/3L34d2aG1-kerL34d2aW10000644000175000017500000000004212361301411016046 0ustar samsaminp 2 mu 2 1 3 pwr 7 3 4 oup 1 4 atlasrep-2.1.8/datapkg/Mmax23G0-kerS44d4W10000644000175000017500000000006712360431547015775 0ustar samsaminp 2 pwr 2 1 3 mu 2 3 4 mu 4 2 5 pwr 2 5 6 oup 2 3 6 atlasrep-2.1.8/datapkg/6SuzG1-ker2SuzW10000644000175000017500000000013212312141152015613 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 4 3 5 pwr 2 5 6 pwr 2 3 7 mu 4 6 9 mu 9 7 8 pwr 28 8 9 oup 1 9 atlasrep-2.1.8/datapkg/4bL34d2aG1-kerL34d2aW10000644000175000017500000000010712361302605016221 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 pwr 3 4 5 mu 2 5 6 mu 6 3 7 pwr 7 7 8 oup 1 8 atlasrep-2.1.8/datapkg/6S7G1-kerS7W10000644000175000017500000000007612312540550014765 0ustar samsaminp 2 mu 2 1 3 pwr 2 2 4 pwr 2 3 5 mu 4 5 6 pwr 7 6 7 oup 1 7 atlasrep-2.1.8/datapkg/6F22d2G1-ker3F22d2W10000644000175000017500000000007212312401244015614 0ustar samsaminp 2 mu 2 1 3 iv 3 4 mu 4 1 5 mu 5 2 6 pwr 3 6 7 oup 1 7 atlasrep-2.1.8/datapkg/Mmax7G0-ker2Suzd2W10000644000175000017500000000062712365237732016215 0ustar samsam# take the conjugates of the 3rd generator by the first powers # of the product of the first two generators inp 4 mu 1 2 5 iv 5 6 mu 6 3 7 mu 7 5 8 mu 6 8 9 mu 9 5 10 mu 6 10 11 mu 11 5 12 mu 6 12 13 mu 13 5 14 mu 6 14 15 mu 15 5 16 mu 6 16 17 mu 17 5 18 mu 6 18 19 mu 19 5 20 mu 6 20 21 mu 21 5 22 mu 6 22 23 mu 23 5 24 mu 6 24 25 mu 25 5 26 mu 6 26 27 mu 27 5 28 oup 12 3 8 10 12 14 16 18 20 22 24 26 28 atlasrep-2.1.8/datapkg/4Sz8d3G1-kerSz8d3W10000644000175000017500000000111412216407160016023 0ustar samsaminp 2 iv 1 3 mu 3 2 4 iv 2 5 mu 3 5 6 mu 4 6 7 mu 2 3 8 mu 3 8 9 mu 6 9 10 mu 7 10 11 mu 5 3 12 pwr 2 12 13 mu 2 6 14 mu 8 14 15 mu 13 15 16 mu 11 16 17 mu 1 2 18 mu 1 5 19 mu 18 19 20 mu 2 1 21 mu 1 21 22 mu 19 22 23 mu 20 23 24 mu 5 1 25 mu 21 25 26 mu 2 19 27 mu 21 27 28 mu 26 28 29 mu 24 29 30 mu 17 30 31 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 mu 2 3 7 mu 7 5 8 mu 6 8 9 iv 2 10 mu 1 10 11 mu 2 11 12 mu 10 1 13 mu 1 13 14 mu 12 14 15 mu 10 11 16 mu 16 5 17 mu 15 17 18 mu 9 18 19 mu 4 7 20 mu 14 7 21 mu 20 21 22 mu 5 16 23 mu 14 16 24 mu 23 24 25 mu 22 25 26 mu 19 26 27 oup 2 31 27 atlasrep-2.1.8/datapkg/6L34d2aG1-kerL34d2aW10000644000175000017500000000012312361303055016057 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 pwr 3 4 5 mu 2 5 6 mu 6 3 7 pwr 7 7 8 pwr 7 3 9 oup 2 8 9 atlasrep-2.1.8/datapkg/4Sz8G1-kerSz8W10000644000175000017500000000027612312527402015354 0ustar samsaminp 2 mu 1 2 3 mu 3 2 4 mu 3 4 5 mu 5 4 6 mu 2 5 7 mu 5 6 8 mu 8 6 9 mu 7 6 10 mu 9 7 11 mu 11 7 12 mu 12 10 13 mu 13 4 14 mu 9 5 15 mu 15 10 16 mu 16 7 17 mu 17 5 18 mu 18 2 19 oup 2 14 19 atlasrep-2.1.8/datapkg/Mmax26G0-kerL211d2W10000644000175000017500000000007112360430572016033 0ustar samsaminp 2 mu 2 1 3 mu 1 2 4 pwr 10 3 5 pwr 10 4 6 oup 2 5 6 atlasrep-2.1.8/datapkg/3SuzG1-kerSuzW10000644000175000017500000000013212216407160015535 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 4 3 5 pwr 2 5 6 pwr 2 3 7 mu 4 6 9 mu 9 7 8 pwr 14 8 9 oup 1 9 atlasrep-2.1.8/datapkg/6F22d2G1-kerF22d2W10000644000175000017500000000020012312400746015530 0ustar samsaminp 2 mu 1 2 3 iv 1 5 iv 2 6 mu 5 6 7 mu 7 1 8 mu 8 2 4 mu 1 6 7 mu 7 6 8 mu 3 8 9 mu 9 6 10 pwr 8 10 11 pwr 3 4 12 oup 2 11 12 atlasrep-2.1.8/datapkg/3O73G1-kerO73W10000644000175000017500000000004212216407160015113 0ustar samsaminp 2 mu 2 1 3 pwr 13 3 4 oup 1 4 atlasrep-2.1.8/datapkg/4Sz8G1-ker2Sz8W10000644000175000017500000000030712312530270015426 0ustar samsaminp 2 mu 1 2 3 mu 3 2 4 mu 3 4 5 mu 5 4 6 mu 2 5 7 mu 5 6 8 mu 8 6 9 mu 7 6 10 mu 9 7 11 mu 11 7 12 mu 12 10 13 mu 13 4 14 mu 9 5 15 mu 15 10 16 mu 16 7 17 mu 17 5 18 mu 18 2 19 mu 14 19 20 oup 1 20 atlasrep-2.1.8/datapkg/6L34d2aG1-ker3L34d2aW10000644000175000017500000000010712361302676016154 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 pwr 3 4 5 mu 2 5 6 mu 6 3 7 pwr 7 7 8 oup 1 8 atlasrep-2.1.8/datapkg/2S45G1-kerS45W10000644000175000017500000000003012361041241015110 0ustar samsaminp 2 mu 1 1 3 oup 1 3 atlasrep-2.1.8/datapkg/2HSG1-kerHSW10000644000175000017500000000005312216407160015020 0ustar samsaminp 2 mu 1 2 3 mu 3 2 4 pwr 10 4 5 oup 1 5 atlasrep-2.1.8/datapkg/6M22G1-ker2M22W10000644000175000017500000000010412312136657015166 0ustar samsaminp 2 mu 1 2 3 mu 3 3 4 iv 2 5 mu 1 5 6 mu 4 6 7 pwr 10 7 8 oup 1 8 atlasrep-2.1.8/datapkg/3U38G1-kerU38W10000644000175000017500000000022012216407160015127 0ustar samsaminp 2 mu 1 2 3 pwr 3 3 4 iv 2 5 mu 1 5 6 mu 4 6 7 pwr 3 7 8 mu 8 6 9 mu 9 3 10 pwr 3 6 11 mu 10 11 12 mu 12 3 13 mu 13 6 14 mu 14 6 15 oup 1 15 atlasrep-2.1.8/datapkg/L34G1-max5W20000644000175000017500000000005612522503214014625 0ustar samsammu 2 1 3 mu 3 2 4 mu 3 4 5 mu 4 2 3 mu 3 5 2 atlasrep-2.1.8/datapkg/12aL34G1-ker3L34W10000644000175000017500000000050412312134116015401 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 pwr 3 30 31 oup 1 31 atlasrep-2.1.8/datapkg/L34G1-max4W20000644000175000017500000000005612522503165014631 0ustar samsammu 1 2 3 mu 2 3 4 mu 4 3 5 mu 2 4 3 mu 5 3 2 atlasrep-2.1.8/datapkg/2Co1G1-kerCo1W10000644000175000017500000000003012216407160015233 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/O10m2G1-P10000644000175000017500000000133313606655714014276 0ustar samsam# translation of a Magma format presentation inp 2 chor 1 2 chor 2 5 cj 1 2 3 # y^-1 x y mu 1 3 4 chor 4 3 cj 3 2 5 # y^-2 x y^2 mu 1 5 6 chor 6 4 pwr 2 2 7 # y^2 mu 7 1 8 # y^2 x mu 2 1 9 # y x mu 8 9 10 # y^2 x y x mu 10 7 11 cj 1 11 12 mu 1 12 13 chor 13 2 mu 8 7 14 cj 1 14 15 mu 1 15 16 chor 16 3 pwr 2 9 17 # y x y x mu 17 8 18 # y x y x y^2 x mu 18 5 19 # y x y x y^2 x y^-2 x y^2 mu 1 2 20 # x y pwr 2 20 21 # (x y)^2 mu 19 21 22 cj 1 22 23 mu 1 23 24 chor 24 1 mu 21 1 25 # x y x y x mu 25 5 26 # x y x y x y^-2 x y^2 mu 26 20 27 # x y x y x y^-2 x y^2 x y mu 27 7 28 # x y x y x y^-2 x y^2 x y^3 chor 28 3 mu 17 9 29 # y x y x y x mu 29 2 30 cj 1 30 31 mu 1 31 32 chor 32 2 chor 9 33 mu 29 8 33 chor 33 8 atlasrep-2.1.8/datapkg/3McLd2G1-kerMcLd2W10000644000175000017500000000024012216407160015775 0ustar samsaminp 2 mu 1 2 3 iv 2 4 mu 1 4 5 mu 3 5 6 mu 2 6 7 mu 7 1 8 mu 8 8 9 mu 9 2 10 mu 5 5 11 mu 10 11 12 iv 1 14 iv 12 15 mu 14 15 16 mu 16 1 17 mu 17 12 13 oup 1 13 atlasrep-2.1.8/datapkg/Mmax30G0-kerA6V4W10000644000175000017500000000007112365215761015647 0ustar samsaminp 2 mu 2 1 3 mu 1 2 4 pwr 10 3 5 pwr 10 4 6 oup 2 5 6 atlasrep-2.1.8/datapkg/2S5iG1-kerS5W10000644000175000017500000000003012216407160015116 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/4bL34d2aG1-ker2L34d2aW10000644000175000017500000000007612361302301016301 0ustar samsaminp 2 mu 2 1 3 pwr 3 3 4 mu 2 2 5 mu 5 4 6 pwr 5 6 7 oup 1 7 atlasrep-2.1.8/datapkg/2cM20G1-kerA5W10000644000175000017500000000022212361301010015124 0ustar samsaminp 2 mu 1 1 3 mu 2 1 4 mu 2 4 5 mu 5 2 6 pwr 2 6 7 mu 6 3 8 pwr 2 8 9 mu 5 1 10 mu 4 10 11 pwr 2 11 12 mu 10 4 13 pwr 2 13 14 oup 5 3 7 9 12 14 atlasrep-2.1.8/datapkg/3O73d2G1-kerO73d2W10000644000175000017500000000006512361301744015576 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 4 3 5 pwr 14 5 6 oup 1 6 atlasrep-2.1.8/datapkg/Mmax18G0-kerS5W10000644000175000017500000000005612360427303015457 0ustar samsaminp 2 mu 2 1 3 pwr 4 2 4 pwr 5 3 5 oup 2 5 4 atlasrep-2.1.8/datapkg/12U62G1-ker6U62W10000644000175000017500000000006412312533401015270 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 2 4 5 pwr 11 5 6 oup 1 6 atlasrep-2.1.8/datapkg/F22d2G1-max11W20000644000175000017500000000024312515536063015127 0ustar samsampwr 4 2 3 pwr 4 3 4 pwr 3 2 5 mu 1 4 6 mu 1 2 7 mu 1 3 4 mu 4 5 8 mu 7 7 4 mu 1 5 2 mu 8 4 1 mu 3 6 4 mu 4 2 3 mu 3 7 4 mu 6 6 3 mu 3 7 5 iv 4 2 mu 2 5 3 mu 3 4 2 atlasrep-2.1.8/datapkg/6M22G1-ker3M22W10000644000175000017500000000010412312136676015170 0ustar samsaminp 2 mu 1 2 3 mu 3 3 4 iv 2 5 mu 1 5 6 mu 4 6 7 pwr 15 7 8 oup 1 8 atlasrep-2.1.8/datapkg/4U62G1-kerU62W10000644000175000017500000000013412216407160015126 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 2 4 5 pwr 3 4 7 mu 2 7 8 mu 8 3 6 pwr 11 5 7 pwr 9 6 8 oup 2 7 8 atlasrep-2.1.8/datapkg/3J3d2G1-kerJ3d2W10000644000175000017500000000041312216407160015401 0ustar samsaminp 2 iv 1 3 iv 2 4 mu 4 3 5 mu 3 5 6 mu 2 3 7 pwr 2 7 8 mu 6 8 9 mu 3 4 10 mu 4 10 11 pwr 2 10 12 mu 11 12 13 mu 9 13 14 mu 2 1 15 mu 1 15 16 pwr 2 15 17 mu 16 17 18 mu 1 4 19 mu 2 19 20 mu 1 2 21 mu 19 21 22 mu 20 22 23 mu 18 23 24 mu 14 24 25 pwr 2 25 26 oup 1 26 atlasrep-2.1.8/datapkg/4TE62G1-ker2TE62W10000644000175000017500000000006612365776002015435 0ustar samsaminp 2 mu 2 1 3 pwr 3 3 4 mu 2 4 5 pwr 33 5 6 oup 1 6 atlasrep-2.1.8/datapkg/12bL34d2aG1-ker6L34d2aW10000644000175000017500000000007712361034502016372 0ustar samsaminp 2 mu 2 1 3 pwr 3 3 4 mu 2 4 5 mu 2 5 6 pwr 15 6 7 oup 1 7 atlasrep-2.1.8/datapkg/3TE62G1-kerTE62W10000644000175000017500000000011112361301226015325 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 pwr 3 3 5 pwr 2 4 6 mu 6 5 7 pwr 35 7 8 oup 1 8 atlasrep-2.1.8/datapkg/2L249G1-kerL249W10000644000175000017500000000003012361040723015252 0ustar samsaminp 2 mu 1 1 3 oup 1 3 atlasrep-2.1.8/datapkg/4aL34G1-ker2L34W10000644000175000017500000000050412312135063015323 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 mu 30 30 31 oup 1 31 atlasrep-2.1.8/datapkg/2Sz8G1-kerSz8W10000644000175000017500000000044412216407160015350 0ustar samsaminp 2 mu 2 1 3 mu 1 3 4 pwr 2 2 5 mu 5 1 6 mu 4 6 7 iv 2 8 mu 1 2 9 mu 8 9 10 mu 6 10 11 mu 7 11 12 mu 1 5 13 pwr 2 13 14 mu 8 1 15 mu 1 15 16 mu 3 5 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 8 24 mu 13 24 25 mu 18 25 26 mu 23 26 27 mu 20 27 28 oup 1 28 atlasrep-2.1.8/datapkg/6O73G1-ker3O73W10000644000175000017500000000003012312140431015166 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/3U62G1-kerU62W10000644000175000017500000000004212216407160015123 0ustar samsaminp 2 mu 2 1 3 pwr 11 3 4 oup 1 4 atlasrep-2.1.8/datapkg/12U62G1-ker3U62W10000644000175000017500000000013412312133147015266 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 2 4 5 pwr 3 4 7 mu 2 7 8 mu 8 3 6 pwr 11 5 8 pwr 9 6 9 oup 2 8 9 atlasrep-2.1.8/datapkg/12M22G1-ker4M22W10000644000175000017500000000006512312130622015235 0ustar samsaminp 2 mu 2 1 3 pwr 3 3 4 mu 2 4 5 pwr 44 5 6 oup 1 6 atlasrep-2.1.8/datapkg/4M22d2G1-kerM22d2W10000644000175000017500000000010512216407160015550 0ustar samsaminp 2 mu 1 2 3 mu 3 2 4 mu 3 3 5 mu 4 4 6 mu 5 6 7 pwr 3 7 8 oup 1 8 atlasrep-2.1.8/datapkg/2A12G1-kerA12W10000644000175000017500000000004212216407160015040 0ustar samsaminp 2 mu 2 1 3 pwr 10 3 4 oup 1 4 atlasrep-2.1.8/datapkg/6SuzG1-kerSuzW10000644000175000017500000000013212216407160015540 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 4 3 5 pwr 2 5 6 pwr 2 3 7 mu 4 6 9 mu 9 7 8 pwr 14 8 9 oup 1 9 atlasrep-2.1.8/datapkg/2U62G1-kerU62W10000644000175000017500000000010612216407160015123 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 pwr 3 4 6 mu 2 6 7 mu 7 3 5 pwr 9 5 6 oup 1 6 atlasrep-2.1.8/datapkg/3M22G1-kerM22W10000644000175000017500000000004212216407160015073 0ustar samsaminp 2 mu 1 2 3 pwr 11 3 4 oup 1 4 atlasrep-2.1.8/datapkg/2L223d2iG1-kerL223d2W10000644000175000017500000000006412361301636016071 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 4 3 5 pwr 4 5 6 oup 1 6 atlasrep-2.1.8/datapkg/2M12G1-kerM12W10000644000175000017500000000003012216407160015065 0ustar samsaminp 2 pwr 3 2 3 oup 1 3 atlasrep-2.1.8/datapkg/Mmax21G0-kerU38d6W10000644000175000017500000000005712360430067015775 0ustar samsaminp 2 mu 2 1 3 pwr 3 2 4 pwr 18 3 5 oup 2 5 4 atlasrep-2.1.8/datapkg/6M22d2G1-kerM22d2W10000644000175000017500000000017412216407160015560 0ustar samsaminp 2 mu 1 2 3 mu 3 2 4 iv 1 6 iv 2 7 mu 6 7 8 mu 8 1 9 mu 9 2 5 mu 3 3 6 mu 4 4 7 mu 6 7 8 pwr 4 5 9 pwr 3 8 10 oup 2 9 10 atlasrep-2.1.8/datapkg/L34G1max5W2-A6G1W10000644000175000017500000000006512525143004015414 0ustar samsam# generators of the restriction are in fact standard atlasrep-2.1.8/datapkg/2L34d2aG1-kerL34d2aW10000644000175000017500000000012012361042246016052 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 pwr 2 4 6 mu 6 3 5 mu 2 4 6 mu 6 5 7 pwr 7 7 8 oup 1 8 atlasrep-2.1.8/datapkg/6U62G1-ker2U62W10000644000175000017500000000004212312140725015206 0ustar samsaminp 2 mu 2 1 3 pwr 11 3 4 oup 1 4 atlasrep-2.1.8/datapkg/2F22d2G1-kerF22d2W10000644000175000017500000000010112216407160015524 0ustar samsaminp 2 iv 1 4 iv 2 5 mu 4 5 6 mu 6 1 7 mu 7 2 3 pwr 3 3 4 oup 1 4 atlasrep-2.1.8/datapkg/Bmax4G0-f2r180B0.m20000644000175000017500000010030113463765126015606 0ustar samsam 1 2 180 180 10100011101001001001001100000000011101001111100001110010110001101000101001100000 10000110000110100011101111101001010010110101001101110011001111010010000101101101 01000111110101110100 10110111111000100100100100111011111001010010110100110001010010001001010010111100 10100101010110001010011011010101100011110010011111001001000010111001010111100010 00010100000100110010 11100111111001110011001000010010100101000000010101101000100000011001111101011100 01001000111000010100000000011000011010101101101101011000000000010011010011001000 11011001101111111001 01000001101100100100110011110011111000010101110101011100010111010001101111110011 11100001100111100011001001000101100011100111010101100001100001111011000011101010 11001100100101010100 10110110010000101100011000101010011010001000011010011001001010011110101110000011 10100100001101110000100110101111100011101111010010000100000100110110101001100111 11011011000011101110 11100110100000100000001101011111011111000111000001000011100101101111111001101111 10111101010111101111010110001110101001100000111000111111011000011111110101100101 11011110001111011100 11010011110100000111111011101011011110110000111111100100001100000001011110101110 10000101100011101111011110010100100010111000111010010100100000011010010001101000 11100110101011011011 00000101001001000011010011100101001101000001011011010111110001011111000011110010 01000101001011011000110010101011111101110110111110101101110100100000100010011010 10010011010101100101 10110101011100011110110111100001000000011010000001000110000110100000111011001111 00101111011001010100100110110100101011111111110101001010101110111010010101001111 01010010111111011001 01101010100011101011110101110011000001110111001011001000110001000010100101001111 01001110011000100111001111001111001110010111100100001001010010000011001011000111 00101110000001010110 10110010001011111011111010010001011010111000010000111100111110000100110110000011 10101110100100111110111011110000101101101101111100100101110101110111110110101000 00101101100011011110 00100011000011101011001010111111010000100100110001000110110010001101001001011101 11100110111101100001100110101001001010111110101000110101100100001001101101110111 01110000111111111000 10010111010010110110010010110000001100101100100100110110011110010001011111111100 01010010100110001100011100000101011101010001001001001100100010011111010011011000 11111001001110111011 01011010000011111100000011011101110010001001010100100110011011011000010000101101 10101001111110111100010100011100000100110100000001110001110000000101011000110101 10010001111001110010 00011001100011001111001000010010100101000000010101101000100000011001111101011100 01001000111000010100000000011000011010101101101101011000000000010011010011001000 11011001101111111001 01100010100110000010000100000010001001100011001010000011101001001100001010011110 00111101010000110100101011110001010010010001000101010101010100110000100000010000 11101010100111011000 01111000010011110101000011110010110111101100000100011111000110010011100100001110 10010101010100111001011111010110101011000110110000100001110011010111001110110111 00110000101010101001 10011110001011000011101111110100101110011011110101111111101001001000111111001101 01000100010000100010001111010001111101101011110011100000110010101111011100011111 01011100010010111001 10011110010101111100101100100100111111101100010001110111011110010001010101110111 00110111110111000011111110100111001100011001010000010011000000110000111000001111 00111101101000110101 01010001011101000111001111100110101010110101000000111010001001101110110001011110 01111110111100111000000110011101011110010110100100010100000111011110011110101111 01000011110111011001 00001000011100110011111010001111100001010101100100001010010100110001011101110101 11010111010100011000111110000101101100001001111101011000001111100111111100001111 10110110110101100001 01011100110101001001101100100111111111010111010010000010011111010111100100010111 01011011010000010011000110011101111011111010100011111101001111101110001101000000 10100101010001110110 00010000111001101101100011101111100010101111100110101111101100110111011110000111 10011001011011110100001111100011010110110010001000011001101110111110000100111010 11101101001010001001 01110111011010010100101010010110100000110001010001110100100100000000010100111111 00000000001010011100110001100010010010001010001000000101111100111101110010000010 11100000001000010101 10000010011000011011001001111010000000000100000110110010001110011000011111001011 10110000101110010111010110001000111111111000011011100001111011111001100001111101 00100110001111111000 01100010111000011100101111111001010001011000011100101011101011010101000001000000 00000110010111000101001101101101011110000011111011110100001100110110100011000000 01000000010101010001 10001001101001011001010100000011100011010010011100010000001001110101001000110010 11101001100100111101111011111001111011010001110011101100110111110010101010101010 00101000101111101100 11100000100000000011101000001011100101010011011111010011111000000010000100000011 00100001111111010110001010011010110110011101111001001011001011001001110010000010 11100000001000010101 01101101001001110110000110111101111001100110110011111001010111010110110101011101 00110101010001000110100101000110110001110011011011111111100101010000100100110111 01011110110011011010 11100100001010001100010011101001010011100011101000100010000001001001110100111111 00101011000000000010100110011010101111001101110011000010100011111011001101101010 11100011100111101001 01110011000101010001101010011110000010101010011011001000111100010000101100011100 11100011011100001011010111000010010110101101001001010011001011110010011100110101 00011010100100100110 00110010110100101111001110100001010100100001001010110001001100010100000100101000 00101011110111111101111111111110011111100100110011010010101011010010010100011000 11111000000000100100 01110110111110001001110110100011011000110000111000010100010111010001101010100111 00010100001011000000101100010011000001000010101001010001001000100110000010000111 00000000001101110100 01100000011111010110011111110111001011101010000111011011101000000000001111101000 00001101001100100100100011110000101001111110011111111100011010111111000100000000 10001011011101010100 01101101100111111101110101101110000100010011111010011101110111011101000110001101 11010000011110000000011110011011111000000110101111010011101101100101111100010010 11101111101011101010 10001100111100101100100000001001101000111111111000010111010101000000110010001111 10000111010000011110000100111000111011011001010010000101101011011011110000000101 11100000000101100001 10101000001001011101101110101001011101111100101001001001101110101101111111000110 01000111011001000111011000101111111100000111001101000010001011101001111111011111 00011100000111101000 00011101100101100010000010100110000101011110001110010011011010111011111101011100 00100110000101111110000010100011000110111010000100001101111001000111111011100101 11110001001101100001 10100110001011011111010001011001010101111111000011100011100111101011011111010101 00000000111011101111010000111111111000101111010100100111101100110101010001011111 11111001000011001111 01000101000010110100011010001011111111011111100010111101111010011001000101001010 00010000010010000110001000000101100111001100011101000110101000100010110100011000 00110010000110111110 11011011111011100101111001010001110111110000010000101010100010101010101010101001 01101010100110110010010000010000000110011010000000011100101101000101001010011101 11111101000001100010 00100100101100111010100010000000010011011010010100101101001100000100010100010111 10001110010010001100011100010001011000000000110001100011011010011100111010010101 01100100111011001010 10011000011101100000101000100111111010011000001110000100000001011110000010010110 11001000000001111001001000010101000010101001001101101110100111111110100110110000 01011110111110101110 11000111000100110011100011010000100101000111000110001100001100100100100101100001 00111111101100010110100101010110001101101011110000111001110110010110000010000111 00000000001101110100 01111100001111111000001110000101011010100001110111101101011010101110110010110000 01111110010010101101011001110001011110110000110100011100011100110000101110010000 11000101100101100101 01111101010001111100100000000100101111111111100000010011110100001110101110101101 00111011010111110000000110011001110100100000000101100100111000100111011110010101 00100101100000000100 10001011001001000111101001001100111111010111010001011001010000110100011111110010 01101001011000100100111111101010001000001100010111001100010001011000110111011000 10111000010101110101 01000010101110001001011010111011110000000010011111101101000010011000111001010110 11100001100011010100010011011100100001101011100110110100000011110010000101101101 01000111110101110100 10000011101000001101010010101110101001011101010111000100100000000100100000111010 11100001110100001000001010110010111111001110000001011110010000010111011100011111 01011100010010111001 10110110110111001010000100110001101000100011000100000000101101000000001011001101 10011011010001001001001000101110010010110000011011101110100110011001100110000111 01000001010110111010 01101010111011000001010001000000101000100111001000011101001000101010011011011011 00000001000100001100111101000001011000111110000001100101001111000111010000000101 00101010000011111011 01101001111001101010111011110110010101000000000000001101110100001110010101011101 11101100000111100101011010101110001000110000110001100001101010001101111111011111 00011100000111101000 11110100111000110001000101001111101110010011000110011101010110111101000100110010 10111111000110010100001001001111001100111001000111100110010010100001111011101000 10001000110010101000 01000000110110000101101001101000111011000111110101110010111110000111001001111101 01011101011010011000101110111001100000110110011110110110101110111100000100100111 10110100010100000010 11001001110000110000010010111011000111001110110100011010001001010100110111010000 00110001111010110111111100111010100101000011010011001111110111101110011100100101 00111010000101100100 00011011001000010111011011001010010100011100110111101011000000101011010000010001 11000111011100001110100111001101000111101100101001110011100011011000010111011000 01110010010011101111 10100101000100101111101111101011100001101011001101010010000101111110001011101101 01000100100101010011101101111000011110101010111001101110011110011110100101111101 10101101010010101100 10011111111100001010011100001110101001100110111000101100110010010010000011000110 10100110010100000110010100010100100111000100011000100000011010110111101100111101 10000011011110001110 11111000011000111011100010010010100110101110111000001100111000101001001010010010 11110001011101100010011001100100100010001111010000011111001111010110001100000111 00101111001111001001 00010100010111001000110100101000101001111110101110110001101001010010000000001101 01100000111010000010000001111111000000101010101101011000101110111101011100010010 00100101101101110000 11001011010000011000001101111111100110110011101100001101101001011010111101000011 00100100001001011101011100010000101100011000110110010011000101000001011011111000 01100010010101110000 00010110010111011000010001100111000001000001110010010000111000101100010111100011 01011101100101111101101111100001111001110011001110110001100100100110101100010111 11000101101000010001 00010000011011101111100101110000110000010100010111011100110111010101111111100001 00100000000011010011101001001110111010110111011011010000101101100100010101000010 00101011000000010000 11001000001010010110110100100110101001011000011100111011111100110110101100010111 01100101111110100001111001101000101000110001010000000111110100110010110100001000 00010010100111111100 01110001110001110011101000010111110000110101101000011010110111010100110000011110 00010110011111001011000110111010110100100100001010010110011001000000101001101010 10100010111100100111 00100001000101111111111000010101110111110000111010010100011000010110111000001010 00000111101011000110000101000101001111100001000110000100100000101101101111101101 00101001101100000111 10000110111010100000001010010101101101110101011001011100010000001111100000010001 11010000010011101000000001100101000110010101011100011100010110101110111000010010 01100100110110111110 00001000011110010001110010111100010011101011010010000011110111011001010101011001 01111000110001010010001111100100010110110011010101000000110101100001110110100101 01010100011100010111 00101001011000010110101100010001000000111110111001000010111110001011011000101101 01111101010001110000100110010011000010111001010010001111010110110101001011011010 01110111011111011101 11110111001101111110110010001100110110101010101110101011101111101110011000100100 00111001111000110011100001000010011100110001111111011100110011011000001001111010 01001000011011111111 01111010011011100111101010000000011111001101110100000010111101000001110011001001 01100000110001011111110011101111110001000001110100010100010111011000001000101101 11100010100100000010 00010010001000100010011100000001010101101010101001000111110010110000001110110101 10110100100001010111110011001100101011110111001001101101111111110001011000110101 10010001111001110010 00011011001000000011100010001100101100010011110010010010111010001111000100000001 11111011100100011111101000011011000110010011101001100011101011011011111000101000 00000010100001100011 01010001110110001100100010011110100101100101000101110011001001001011010000001110 11000110011011010001001110010011001111111010100101011110001100011010101111001010 00010110100101010001 00101101011111000001111001100000100011011110100001111110110001001001000000111111 00000111000100000011111000001111010000101101011011100000011011100111110101100101 11011110001111011100 01000111001010010000001000110000110011000000000010000111101100110000001100011100 11000100101110010001100110001101111000001101101001000001000100001011000000100111 00111111001001010110 00010101000011001000110000001001111010100101101101000110111011000110000110011111 00000000111100001010100001010000100011110111101111110100000110111000011000001111 11110111101110101111 00100010111100001100001010011101000010111111100100101010100110100000111100111101 10001001101111010000011010001000100011010110011110010100010000001111110000010101 11000000100100100011 00000100101110111101011101110000001110011001110100010111100110110110101010101101 01000100001101011111010001101011000001011110001000000010001000100000100000010000 11101010100111011000 01100101100001100111101011111101111110110001101000000100101111101111100011111101 10101100011100010100111010011010101011101000011101110001111111001010001001110111 00110001100100110110 00011011100101100100011100110100100110011100000010101000110110111011111111101001 01100100010111101101101101111101100100001101010011110110010111100101011000100101 10110001011000110000 01001001110110000001111101010110111101101101010111111110111100000000011100100011 00011011110001010110101011000111001001010010011010111110001010100100110010111000 10000110011111001000 11100110011001100001000101111010100001000011001000001011001010001011001111100000 00100011110100110101010100110100110001111101111011000111011001010000011110110010 00011010101001010010 10000110001110110000100100000101001100110010000000011001101011001011011110001011 11101111100111101100100011100110110101000101000100000111111011101100111001011000 10010111010111001000 00111000000011001111111101000111101010010010001000011111000110001110100000100100 01010001110101101010100010111010011010100001011000100011010110100011101000011010 00110111001010001100 00111111001000110001101011010010011000101101100101010001011000011000100101001101 01110110001110010011100101001111100000010100000010111011011001111001101111111101 00001001001101000101 11111110111000100000000000011110111110110101000000010110001110101101101110001101 00010101000000000111011011101111001110101101110001000110100010011101000001111101 11101100001001100010 01011011101010111010000011011101100011101101110001000110000100111000010111010101 01101000001001100000111000110110111010111101110000001111101110000000101010110111 01110001110001100111 01101111101001111011101100110110011011100010011001001101110100001101110000101110 11110101100001111010011111010001000101010100011001110010111101011001000110000111 10001011010000100000 00001110111000011111001111100010110101011000011010001011101001111010110000010110 00000011111011110100010110001010100000110011110011100011011100011110111000000010 01000100010111111100 11111111011000011110110010111111011010000101110010000100011000010001000101000100 11000100100111111111101111110100001011111000101010011110011100000001111101010101 01100101110101010101 01010111101110001100110010001011010000010010110000110000110101000111001000011110 11101101111110000101100000000011011110000100100010110011010111000001101010011101 00110111000111111000 11110110000011111111101101111001111001110101111010111011001011111001101101010011 00010011101000000011111000111101110000100001000101011100110011011010010000111111 01001100010100100110 01100101110000101111000110101011110011100100100010010100011110100111011001000000 00100100110101101010011010110001001110110101111010010010011010001001001001010000 00001110101101100000 00100101111111001000000001010000010000001010000011001100111110011001111101101000 00011000001110000001011001110001101110100100110001000010111010000000101101001101 00010110101000100101 00100001011111000011101111101010010000010100111000110010100000001110101101001101 10110101000110110100000100101100110111010101011101001011110110111001010101101000 01101101110110001111 01001110110101010010110101001101101011111101000010000111000100001010000101100010 01011001001010101001011010010000000110001010000111100100000001110001010101111000 01001101010111001101 00011011100100110000110011010010011101000001110010011011010001100101111011101111 11000011100111000111100101111111101100001010011001001010110111100110000000011101 01011001011110001011 11100011100010011001100101010110100111100101111111011110110010001101111010101101 11100001001001001111110100001101101001010100101110001100111001100110111111101000 00000011101111111100 01111001110001100000010011010010100101101011101100011101111000110011011010100111 11101111100100010000101100110011011011000011111111101110010100011100110100000101 01101011011000110101 01000000010011100111010110000011111010101000010000100110000011000101001011001100 10010100100100010110111010010000000110010010100100110000111101010010011011001111 01111101111101100100 11010011010110100010010110101101110111001011111101011111011111010100001111000011 11001111011101001101001010000010100000000010101000100110101010011110001101010000 10000101110000110100 01110110000100010011100111011000001101011011010101111100111000011010111111010111 00000110000101100100010110110101110010101000101111100011111101011010001100010111 00001111101110001011 01001000100100101011011111101101001001100001101101100110001111111100111100011111 10101000000111010110100111001110110101001100010001000101110100100101000101011010 01011000011101100000 11101111010001110101000101000001111000000111011010110010111111110101001101011110 10011110000111011111100000111100010110010101010100110100001010001110100000001101 10110011111001010011 10000111011001000111111000100010001010000010011010100110101110100011001001110111 10001110010011000111000101010100100011100001001100111101101011100100000000010000 00100000100001000010 10001100011011010011010001001001111011111001110011100000110110110001101111010000 00011000101100000100100010011001000000001101000000110110100100100111110010011111 10111001010110011110 11101110100111101010101011110111100100111001010011000000111010000010110111110100 10101101000100001101000100100111101101000010101001001000011101101000001010100111 10011011010110111111 01000011010001000001101010000001011110001111111011010111100110010010011110011001 01100010010011110100110001101111000000000010010001101110100001111111011010100010 10110001010101000100 11110101111010100100001100100101111000111000000101010111111010111010101100110101 01111100001101011101100100010010101111101101111101010111001000100101100110010111 01100001110111111000 11001110111111001010000011000111111101101010110010001111110101101011111111100100 10010110101000100011101110011111001001100011100100001111010110100000111111100101 01111010010000110101 10011100110010111111001000110000110010000011000100111011011001011010110110110000 01100111111010000101111011001010111100011110011101110101001001011110111111101000 00000011101111111100 01011111011100000111001000010000101010010011000110100010010101110010100101101101 01100000011000011011000111010111111001001000000001101001110001110010110001111000 00001100001100000011 00111011111010011011101011111101111001011001100011000000101011111101001110110001 01111111110000011001000100011100001001010010101001111111101000011111010001000010 10100000011101000100 10000111011011000101111100010100100110001010011000001110101111111010100000001100 11110001001000110000100001100100111001011101001011000101101011000000000000000000 00000000000000000000 00101011010001100010000001100010001110001110011010000011011010111001101110011110 01011001110010001011001100011111110101100100100100100010101001101110001001100111 00010001000101110100 11011000110001111010000100110001110110101110001101011100101011100100101000100011 11111111011100011111011101001110100111111100010100000000010011011011101001011101 10111101010100110011 11000100100111001001111111000010011011010011100110100011101000000010100101011001 00011011101000000011011000001010101110011000111111000010100101100101111100010010 11101111101011101010 00110111100110110011011100001100100001111001110100111011011000000010111101001100 11000101111101100000000010010111001010101110100011000111001111110000001101011101 11111100001111111101 11001010110011010000111100111100110000000111011011001110010001111011000111111110 01001110101000100011100110010101110101010100110010010110000100000011010111101111 01101101111011111011 10010011111001101000101011110010000110001000001010100110000010101010010100110010 01010010100101101011010001111011011011010100010001001110101001001000010001100101 10011111010100010010 00100010100010100100010010110110001111101011011000001100011011100010000100110110 10111111100101000110111110000000001011010010000111111001001111010000111111110101 01011010110001110111 11101100010000010001011101011111000111011001100011111111101001111111111110100110 00101101001100110010100100110100010110111111110101011110000111100111011010100010 10110001010101000100 10010000000111001111111111101111100100100011001011010111011010110000011000111100 00101100110110101010101001011011100001100101011011001011110111011111110010001111 10011001110111011100 10111101111101010111110100100110101001110001010010010011110111101001100001111001 01000100000100000011110110000110001010110001111001000100100000110010101111001010 00010110100101010001 10100001111011100111000010101000111000101011101001101110111111101000101000011011 10101001111010100001101110011000001100010010101110100000011110111000000110101101 11001101100110111111 01000000100010101110111110100100110010110111010110110000111111111100110001011011 00011101010110111010001011111010011101100100110000111011110011100001010011000101 10100000010000110000 10101011011011111010101101101000101001010111110000110001100000000001000011001010 01101001101001110000000100111000011000101101110001100001111111110101110000001000 10011001111010101000 00101001101000010101001101000000110001001101011010110110100100110011010100010000 10101011100001000101010101101000010001111001111110010001010101110101010000001000 01010011111100110010 01100110010010011100000111011000101100010101010110100010110001111001110101101011 00101000101110010110000000010111110000110011000011011000001101100000101011110000 11111011101111011000 01001000010111110101101110110110101101001000010000000011101101010110011000110111 10010000001100100011010110101100000000110001110010111010111000001110110000111111 10000110010010111100 11110100111110110100010011000001000011000011001010011100100001000010111111001100 00110010010001011100001111101110110101101100001011111100101001111110011101110010 10010000111010011001 10100101011111010011010101111011110100101010110110110010110100000101011110111101 10010101101100100110011111001110011110011001010101111010010111110111011110010101 00100101100000000100 11000101111111111101111000000000000011101110000011111000010101101101010011101010 11001001000111100011111110001001011101111011100011011100100001101011101100111101 10000011011110001110 10000001100011101000010000101000111100100010111110011101111000011100101111000101 00100111010111000100110110011011111001110011101100111110101001110101001110111010 01001001010101100000 01001000000101101111010000110110000000010010100011010011111111011100111010111011 10010100111111110100110101010101101000001111100111111110011111101100110001110101 01110101110011001010 01100010111000101000100110000010110000100001111100100110111001110111111001010001 10010111101101001000110100111101010110100001111101000011101110011111010110101000 11100111100101000100 10001100101010011101100110100010100000111001010101011011100000100110001000101000 10110001011011110101110001110101001100101101011001111111110100011001100011110111 01011111111101000101 00100110010111001011111000101101000110100101010111101101101100010001101010101010 01010001100100011001000001110111110010010110000000010010110110011101101101110111 01110000111111111000 01000000001101010010110010101011011001101001000011111011010000111000011001100000 01101101100110111010101000111010000011100011011101000101000010110111011110000101 00000101000001000110 10110001001101001111111101000001101011100010100110101110011100100000011110101001 01111101000000110100011111101100111010100111001110100011001110000001010000001000 01010011111100110010 01101001111111100111001010001100101000100011011110101111001111111001001101010110 10000110110010000110100111100011000101100000111111001111011101001110010001101000 11100110101011011011 10010100100110101100111010010111110111111010010100101110100010010110110101011110 11110001110000111111111101011100011011000111111010110111011110010011111111000010 01000101011001100011 00001110110000011001100001100101100101111011011110011101011101001001001110010011 10010001101001100111101011001101000011111100000001011011011001000101100100011101 00011000000101000101 01111110101000001111111111111001110111011011011000011100000100011010100100110000 01001001101100000000001100100101010000011101111001011111000100111001100101001010 10110010111010111000 11111111011100010100110100110101001000100100000111111101000000000011011011110011 10011101001101110100110110100100100011000010111000111011111110111111111110000101 11001111000111011100 00110001001001101101001110001010001000110011001110111001001010100000111001001111 10000100100001010010100111011010000111001000010111100001101011001110110101100111 10011011010110111111 00001010100100000011101110000111000001110001100101110010111111010110111110010010 01010010001011101111101001000010111001010011001100011110101011000101000000011000 00110010000110111110 11101010011111101000101101101001000001110011101111000011001001010000101101111000 01000010110100000110000111110110001001110111110100110101011101010001100110110010 01110101111110111110 11001001111111001010110110000110001101101100000010001011100010101000111111110001 10000000101110000100111101010010100111010110010101111011010010011110101000100101 00111010000101100100 10000001000100001110011011110000101101111011100011011111110110001101010101101100 01100110100110011000000100111101110101111010111010010011011101001011001000110010 11111111101101110101 11001010010111100100101011000011000101111000111100000100111010010001000000011111 11000001110111011001101000010111110100100101100011010011000000110100101100110000 11010100101101100101 10010000001110111001111110001110111011111101000001111001001100001100001110001000 00001101000001010100010101101000101100010010101010110000100100011110100100110111 11010101101110001110 01110001000000101101010000011001111110000001101111101100111010010001011000010111 01000110101101100001101000110110101011101011001110001001101000000010101101110101 11010000100010111100 10001110110110111111100011010101101000101110101010011101101010001000000000100100 11101001100010100110101111011100101010100111110110110000111101011010110011000010 00010100000100110010 00111000100010011101001111100011100000111001101111000111101001100100001001000111 01111011011010100111010101101110010110011010111100000101000100000111000000000101 11110100110111101101 01010001100110110011011011000011101010111111110001101010001010010100000000010011 10110110111111010000101011111100100100110010011111011010011011101100001010111101 00101100111001110110 01000111000011011100111110110111011101111000100000110100100100110110110001001000 10011100000011100000110101100111000110010111011101010011011111011111110110000001 11110010011110100101 10110001010010010011101001010101001011100100001001000111110010100001010001001010 00110011110101011111111000010100011001011001011011111010011001010011010010011011 01010111111110010010 10001011001000011011111000100101001100100101010011111100111110110101001011001111 00010001000101011101101001111111000111101000101001100101011010110110000100101101 00000101001110010111 11101100010111001110111010000000010000000001100100101101111110101000111011011110 00101011011100010000011000001000000001000101100001100100010101010111010111001110 01110010110100011000 11010101100111101101011001111000100101001011101110010011110010111001110101100111 10110010000111110100101001010101001110000011001110111110110110100110110111010110 00001010100111110100 11111010110101111111010011000111010011000010111001101111111011001100001000111001 00000110000110001101100011101001000011011111111101011100100110000111100001100101 11101000010101110011 11011011011000001110100000100000111011100110110011111100010011110100010010010001 01110001000100001111000101100001010010000111000100001110011100001101111010010001 11010111011000000110 10010010110111101110110000000011111100110011101011011101010000100011111001111000 10100111011110010100111100000110111111111010101001110010011100111110000101111000 11001000110100010111 11111100101010101101000111001001110000000000010110110010011110110111110111100110 10000011000001001011111100100010001100011010111010111111000000101010011011001011 11011001100011001110 10010001010111110111111100110010110110100111100001101010000100000000111001101001 11101000101001001011010010011010100100101010100101111110111100101110011000001100 11000001010111010101 00011000110000101000000000010101011100000011001001101000001010111011010100101000 00111001010101000000111100010100011100001111001101001001010001000010011100100110 00011001101011100010 01000110011011100000100000000101010101011111110111000010000111000110001010001111 10001000100111110011000001011111011110100110000101100011011101010111101000110001 01001100000100111110 01100111101001100101010111101000010100001111001111101000001100111000101100101011 10011111101101101100000011110000101101101111010100111001011010001000010011111001 01101000000011001000 10100100111010011011100101000100001010101100010010001101011000010101111110110100 11100110111000110001000000011101110100000011010010111011111101000110011110111001 01101011000101100110 10011101011000111001001000000000100000011000110101110001001000111110100110111000 00000110001001100110111111100011110111101010000110000000000111011001000011100011 11100100000100101010 10011000010100010110100110010101111011001010010101011101100100011001011001101011 01010110100010011100110101010000110100001011100100111101001001000101011001110110 11101111011000011100 01100101000100100011100000001010100101100111100010100101100001010000111001111011 10010000010110001111000110000011001011110001000001110010001000010001001001011001 10000000111001111011 01111001110100101101010111111100000010000011101110000000011101000101110101001100 11101010010100110100000100011110011010101001000001101100000011001101110100011001 01001011000000010000 11000110010010110010011111001101001110010100000111001001010110100010101110101001 01111010001000001101101010010101111010000110101011000100100001001100111100110000 11111110001010110100 11001101011011000000000100111010101100010101011011010101110011010101011110010011 11001111101001100000010111100110101010001011011011110110011100001110010010111001 10011110010111110110 01010000101001000011011001110010000001001110010000010110111011010010011000111010 01110010110111001110101110100110000001011101010011110110101100100111101011110011 11010001111010111101 01000111111000011101100100010001101101101010011001101000100000001011010001011101 00111101011001010111011111010100111011010100001101100100001100000101010110100101 11111010100011010001 10101011001001111001101000100011010000111011101001101111111111110110110110111001 01110000010000110001100111011011001000001101110110111000001011100101101000101001 00100000001100101101 atlasrep-2.1.8/datapkg/M3max7G0-ker6Suzd2W10000644000175000017500000000062712365237230016275 0ustar samsam# take the conjugates of the 3rd generator by the first powers # of the product of the first two generators inp 4 mu 1 2 5 iv 5 6 mu 6 3 7 mu 7 5 8 mu 6 8 9 mu 9 5 10 mu 6 10 11 mu 11 5 12 mu 6 12 13 mu 13 5 14 mu 6 14 15 mu 15 5 16 mu 6 16 17 mu 17 5 18 mu 6 18 19 mu 19 5 20 mu 6 20 21 mu 21 5 22 mu 6 22 23 mu 23 5 24 mu 6 24 25 mu 25 5 26 mu 6 26 27 mu 27 5 28 oup 12 3 8 10 12 14 16 18 20 22 24 26 28 atlasrep-2.1.8/datapkg/Sz8d3G1cycW1-cclsW10000644000175000017500000000054710571114150016162 0ustar samsaminp 4 8 5 7 3 pwr 2 3 15A\' pwr 2 7 6A\' pwr 2 6A\' 3A pwr 2 3A 3A\' pwr 3 3 5A pwr 3 7 4B pwr 3 6A\' 2A pwr 3 3A 1A pwr 3 4B 4A pwr 5 7 12A\' pwr 5 6A\' 6A pwr 7 7 12B pwr 7 12A\' 12B\' echo "Classes 1A 2A 4A 4B 5A 7ABC 13ABC 3A 3A' 6A 6A' 12A 12A' 12B 12B'" oup 15 1A 2A 4A 4B 5A 8 5 3A 3A\' 6A 6A\' 7 12A\' 12B 12B\' echo "Classes 15A 15A'" oup 2 3 15A\' atlasrep-2.1.8/datapkg/6A6G1-kerA6W10000644000175000017500000000005512216407160014716 0ustar samsaminp 2 mu 1 2 3 pwr 5 3 4 pwr 2 1 5 oup 2 4 5 atlasrep-2.1.8/datapkg/6SuzG1-ker3SuzW10000644000175000017500000000013212312141166015621 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 4 3 5 pwr 2 5 6 pwr 2 3 7 mu 4 6 9 mu 9 7 8 pwr 42 8 9 oup 1 9 atlasrep-2.1.8/datapkg/2S6G1-kerS6W10000644000175000017500000000004112216407160014751 0ustar samsaminp 2 mu 1 2 3 pwr 6 3 4 oup 1 4 atlasrep-2.1.8/datapkg/6S6G1-ker3S6W10000644000175000017500000000012312312140026015031 0ustar samsaminp 2 mu 1 2 3 mu 2 3 4 iv 1 6 iv 4 7 mu 6 7 8 mu 8 1 9 mu 9 4 5 pwr 6 5 6 oup 1 6 atlasrep-2.1.8/datapkg/2A8G1-kerA8W10000644000175000017500000000005312216407160014714 0ustar samsaminp 2 pwr 2 1 4 mu 2 4 3 pwr 7 3 4 oup 1 4 atlasrep-2.1.8/datapkg/F22d2G1-max9W20000644000175000017500000000026312515536063015060 0ustar samsammu 1 2 3 mu 2 2 4 mu 4 4 5 mu 2 3 6 mu 3 5 7 pwr 3 5 8 mu 7 6 9 mu 4 9 5 mu 3 4 1 mu 1 6 4 mu 4 6 1 mu 7 8 4 mu 4 9 7 mu 5 6 4 mu 4 8 5 mu 5 3 4 mu 4 2 3 iv 3 2 mu 2 7 4 mu 4 3 2 atlasrep-2.1.8/datapkg/F22d2G1-max4W20000644000175000017500000000022112515536063015045 0ustar samsampwr 7 2 3 mu 1 3 4 mu 4 3 5 mu 2 1 6 mu 2 2 7 mu 5 6 8 mu 8 7 9 pwr 3 9 1 mu 2 5 3 mu 3 5 8 mu 8 7 3 mu 3 6 5 pwr 3 4 2 iv 5 3 mu 3 2 4 mu 4 5 2 atlasrep-2.1.8/datapkg/2L229G1-kerL229W10000644000175000017500000000003012361040672015251 0ustar samsaminp 2 mu 1 1 3 oup 1 3 atlasrep-2.1.8/datapkg/2L231G1-kerL231W10000644000175000017500000000003012361040705015230 0ustar samsaminp 2 mu 1 1 3 oup 1 3 atlasrep-2.1.8/datapkg/2L27G1-kerL27W10000644000175000017500000000003012216407160015077 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/2S5G1-kerS5W10000644000175000017500000000003012216407160014745 0ustar samsaminp 2 pwr 4 2 3 oup 1 3 atlasrep-2.1.8/datapkg/12U62G1-kerU62W10000644000175000017500000000015112216407160015204 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 2 4 5 pwr 3 4 7 mu 2 7 8 mu 8 3 6 pwr 11 3 7 pwr 11 5 8 pwr 9 6 9 oup 3 7 8 9 atlasrep-2.1.8/datapkg/12M22d2G1-ker6M22d2W10000644000175000017500000000012012312132252015704 0ustar samsaminp 2 mu 1 2 3 mu 3 2 4 mu 3 3 6 mu 4 4 7 mu 6 7 8 pwr 3 8 9 mu 9 9 10 oup 1 10 atlasrep-2.1.8/datapkg/12M22d2G1-ker4M22d2W10000644000175000017500000000012512312132036015707 0ustar samsaminp 2 mu 1 2 3 mu 3 2 4 iv 1 6 iv 2 7 mu 6 7 8 mu 8 1 9 mu 9 2 5 pwr 4 5 10 oup 1 10 atlasrep-2.1.8/datapkg/2F42d2G1-kerF42d2W10000644000175000017500000000012212365775510015547 0ustar samsaminp 2 mu 2 1 3 pwr 2 3 4 mu 3 4 5 mu 2 5 6 pwr 2 6 7 mu 7 4 8 pwr 13 8 9 oup 1 9 atlasrep-2.1.8/datapkg/2S14iG1-kerS14W10000644000175000017500000000003012216407160015256 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/2A14G1-kerA14W10000644000175000017500000000004312340207634015047 0ustar samsaminp 2 mu 2 1 3 pwr 12 3 4 oup 1 4 atlasrep-2.1.8/datapkg/U63G1-P10000644000175000017500000000055113606604770014052 0ustar samsam# translation of a Magma format presentation inp 2 chor 1 2 chor 2 15 mu 1 2 3 chor 3 91 mu 3 2 4 chor 4 14 iv 1 5 # x^-1 cj 1 2 6 # y^-1 x y mu 5 6 7 chor 7 2 cj 6 2 8 # y^-2 x y^2 mu 5 8 9 chor 9 3 cj 8 2 10 # y^-3 x y^3 mu 5 10 11 chor 11 4 cj 10 2 12 # y^-4 x y^4 mu 5 12 13 chor 13 3 pwr 3 2 14 mu 8 14 15 mu 15 4 16 cj 1 16 17 mu 5 17 18 chor 18 1 atlasrep-2.1.8/datapkg/2M22d2G1-kerM22d2W10000644000175000017500000000010512216407160015546 0ustar samsaminp 2 mu 1 2 3 mu 3 2 4 mu 3 3 5 mu 4 4 6 mu 5 6 7 pwr 3 7 8 oup 1 8 atlasrep-2.1.8/datapkg/12aL34G1-ker6L34W10000644000175000017500000000050412312134202015400 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 pwr 6 30 31 oup 1 31 atlasrep-2.1.8/datapkg/6A6G1-ker3A6W10000644000175000017500000000003012312136032014764 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/Mmax16G0-kerJ2d2W10000644000175000017500000000024712365223463015677 0ustar samsaminp 2 mu 2 1 3 mu 1 2 4 mu 3 1 5 mu 4 1 6 mu 5 1 7 mu 6 1 8 pwr 2 1 9 pwr 14 3 10 pwr 14 4 11 pwr 5 5 12 pwr 5 6 13 pwr 14 7 14 pwr 14 8 15 oup 7 9 10 11 12 13 14 15 atlasrep-2.1.8/datapkg/12aL34G1-ker4aL34W10000644000175000017500000000050412312134165015547 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 pwr 4 30 31 oup 1 31 atlasrep-2.1.8/datapkg/2L217d2G1-kerL217d2W10000644000175000017500000000003012361040557015721 0ustar samsaminp 2 mu 1 1 3 oup 1 3 atlasrep-2.1.8/datapkg/12bL34d2aG1-ker3L34d2aW10000644000175000017500000000012012361032577016366 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 pwr 2 4 6 mu 6 3 5 mu 2 4 6 mu 6 5 7 pwr 7 7 8 oup 1 8 atlasrep-2.1.8/datapkg/12bL34G1-ker2L34W10000644000175000017500000000050412312134532015403 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 mu 30 30 31 oup 1 31 atlasrep-2.1.8/datapkg/6L34G1-ker3L34W10000644000175000017500000000050412312137623015171 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 pwr 3 30 31 oup 1 31 atlasrep-2.1.8/datapkg/2O73d2G1-kerO73d2W10000644000175000017500000000002712526276456015611 0ustar samsaminp 2 mu 1 1 3 oup 1 3 atlasrep-2.1.8/datapkg/12bL34d2aG1-ker4bL34d2aW10000644000175000017500000000004212360570034016526 0ustar samsaminp 2 mu 2 1 3 pwr 7 3 4 oup 1 4 atlasrep-2.1.8/datapkg/12aL34G1-ker2L34W10000644000175000017500000000050412312134065015403 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 mu 30 30 31 oup 1 31 atlasrep-2.1.8/datapkg/2TE62G1-kerTE62W10000644000175000017500000000014712513004727015342 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 4 4 5 mu 4 3 6 pwr 3 3 7 mu 5 6 8 mu 8 6 9 mu 9 7 10 pwr 33 10 11 oup 1 11 atlasrep-2.1.8/datapkg/12U62G1-ker2U62W10000644000175000017500000000010112312533646015267 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 2 4 5 pwr 11 3 6 pwr 11 5 7 oup 2 6 7 atlasrep-2.1.8/datapkg/3L34G1-kerL34W10000644000175000017500000000014512216407160015103 0ustar samsaminp 2 mu 2 1 3 mu 1 3 4 pwr 2 3 5 mu 4 5 6 mu 1 2 7 mu 2 7 8 pwr 2 7 9 mu 8 9 10 mu 6 10 11 oup 1 11 atlasrep-2.1.8/datapkg/2Suzd2G1-kerSuzd2W10000644000175000017500000000003012216407160016205 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/2S63G1-kerS63W10000644000175000017500000000005512340443521015123 0ustar samsaminp 2 pwr 2 2 3 mu 3 1 4 pwr 14 4 5 oup 1 5 atlasrep-2.1.8/datapkg/2G24d2iG1-kerG24d2W10000644000175000017500000000003012361275106015710 0ustar samsaminp 2 mu 1 1 3 oup 1 3 atlasrep-2.1.8/datapkg/6A6G1-ker2A6W10000644000175000017500000000004112312135762014776 0ustar samsaminp 2 mu 1 2 3 pwr 5 3 4 oup 1 4 atlasrep-2.1.8/datapkg/Mmax19G0-kerL35W10000644000175000017500000000013312365222011015522 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 1 2 5 pwr 3 2 6 pwr 31 3 7 pwr 31 4 8 pwr 31 5 9 oup 4 6 7 8 9 atlasrep-2.1.8/datapkg/6L34d2aG1-ker2L34d2aW10000644000175000017500000000004212361301477016147 0ustar samsaminp 2 mu 2 1 3 pwr 7 3 4 oup 1 4 atlasrep-2.1.8/datapkg/2O73d2iG1-f3r8B0.m10000644000175000017500000000013512522367627015527 0ustar samsam 1 3 8 8 01200212 10011201 20201110 02122011 01111002 00211210 20212110 00111021 atlasrep-2.1.8/datapkg/2L217G1-kerL217W10000644000175000017500000000003112340212104015230 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/O10p2G1-P10000644000175000017500000000144213606652405014274 0ustar samsam# translation of a Magma format presentation inp 2 chor 1 2 chor 2 20 mu 1 2 3 chor 3 21 cj 1 2 4 # y^-1 x y mu 1 4 5 chor 5 3 cj 4 2 6 # y^-2 x y^2 mu 1 6 7 chor 7 3 cj 6 2 8 # y^-3 x y^3 mu 1 8 9 chor 9 2 cj 8 2 10 # y^-4 x y^4 mu 1 10 11 chor 11 4 cj 10 2 12 # y^-5 x y^5 mu 1 12 13 chor 13 3 mu 2 2 14 # y^2 mu 2 14 15 # y^3 cj 12 15 16 # y^-8 x y^8 mu 1 16 17 chor 17 3 mu 15 2 18 # y^4 mu 1 18 19 # x*y^4 chor 19 6 mu 18 2 20 # y^5 pwr 2 20 21 # y^10 mu 1 21 22 # x*y^10 chor 22 3 mu 19 4 23 mu 23 19 24 mu 24 18 25 mu 25 4 26 mu 26 23 27 mu 27 12 28 cj 16 18 29 # y^-12 x y^12 mu 28 29 30 mu 30 18 31 chor 31 1 mu 14 1 32 mu 32 21 33 mu 33 12 34 mu 34 21 35 mu 35 6 36 cj 1 36 37 mu 1 37 38 chor 38 1 mu 16 10 39 mu 39 19 40 mu 40 15 41 mu 41 20 42 cj 1 42 43 mu 1 43 44 chor 44 1 atlasrep-2.1.8/datapkg/2G24d2G1-kerG24d2W10000644000175000017500000000007712340205566015552 0ustar samsaminp 2 mu 2 1 3 pwr 2 2 4 pwr 2 3 5 mu 4 5 6 pwr 6 6 7 oup 1 7 atlasrep-2.1.8/datapkg/12U62G1-ker4U62W10000644000175000017500000000004212312133256015266 0ustar samsaminp 2 mu 2 1 3 pwr 11 3 4 oup 1 4 atlasrep-2.1.8/datapkg/3G23G1-kerG23W10000644000175000017500000000017112216407160015064 0ustar samsaminp 2 mu 1 2 3 mu 3 3 4 pwr 3 3 5 iv 2 6 mu 1 6 7 mu 5 7 8 mu 8 8 9 mu 9 4 10 mu 10 7 11 mu 11 7 12 pwr 2 12 13 oup 1 13 atlasrep-2.1.8/datapkg/A5G1-cclsW10000644000175000017500000000011112510561665014604 0ustar samsammu 1 2 3 mu 3 3 4 mu 1 1 5 echo "Classes 1A 2A 3A 5A 5B" oup 5 5 1 2 3 4 atlasrep-2.1.8/datapkg/2HSd2G1-kerHSd2W10000644000175000017500000000010112216407160015466 0ustar samsaminp 2 iv 1 4 iv 2 5 mu 4 5 6 mu 6 1 7 mu 7 2 3 pwr 3 3 4 oup 1 4 atlasrep-2.1.8/datapkg/6S7G1-ker3S7W10000644000175000017500000000003012312540620015034 0ustar samsaminp 2 pwr 6 2 3 oup 1 3 atlasrep-2.1.8/datapkg/F22d2G1-max7W20000644000175000017500000000052012515536063015052 0ustar samsammu 1 2 3 mu 3 2 4 mu 2 2 5 mu 5 2 6 mu 5 5 7 mu 7 7 8 mu 8 8 9 pwr 14 2 10 mu 3 8 1 mu 4 3 11 mu 3 9 12 mu 4 8 13 mu 4 7 14 mu 7 13 15 mu 15 15 16 mu 5 16 17 mu 17 11 18 iv 18 16 mu 12 11 17 mu 16 17 15 mu 15 18 2 mu 6 4 16 mu 16 5 15 mu 15 12 16 mu 16 9 15 mu 15 3 16 mu 16 7 19 pwr 3 14 15 iv 19 16 mu 16 15 17 mu 17 19 3 oup 3 1 2 3 atlasrep-2.1.8/datapkg/2TE62d2G1-kerTE62d2W10000644000175000017500000000013512365775162016030 0ustar samsaminp 2 mu 2 1 3 pwr 2 3 4 mu 2 4 5 pwr 2 5 6 mu 6 3 7 mu 2 7 8 mu 2 8 9 pwr 33 9 10 oup 1 10 atlasrep-2.1.8/datapkg/24A8G1-kerA8W10000644000175000017500000000017112361276253015011 0ustar samsaminp 2 mu 2 1 3 mu 1 3 4 pwr 7 4 5 mu 3 1 6 pwr 7 6 7 mu 2 6 8 pwr 4 8 9 mu 1 2 10 mu 10 3 11 pwr 4 11 12 oup 4 5 7 9 12 atlasrep-2.1.8/datapkg/Mmax34G0-kerL27d2W10000644000175000017500000000011112360427041015747 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 4 3 5 mu 3 4 6 pwr 4 5 7 pwr 4 6 8 oup 2 7 8 atlasrep-2.1.8/datapkg/2O73d2G1-f9r8B0.m20000644000175000017500000000012012525453105015345 0ustar samsam1 9 8 8 11010011 10121000 20000221 12101200 11001011 22000112 12121220 01201002 atlasrep-2.1.8/datapkg/12bL34G1-kerL34W10000644000175000017500000000047012216407160015326 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 oup 1 30 atlasrep-2.1.8/datapkg/Mmax12G0-kerHNd2W10000644000175000017500000000005712360430217015714 0ustar samsaminp 2 mu 2 1 3 pwr 2 1 4 pwr 42 3 5 oup 2 5 4 atlasrep-2.1.8/datapkg/6F22G1-ker2F22W10000644000175000017500000000004212312401663015141 0ustar samsaminp 2 mu 1 2 3 pwr 11 3 4 oup 1 4 atlasrep-2.1.8/datapkg/12aL34d2aG1-ker6L34d2aW10000644000175000017500000000010612361031760016365 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 4 3 5 mu 2 4 6 mu 6 5 7 pwr 8 7 8 oup 1 8 atlasrep-2.1.8/datapkg/2J2d2G1-kerJ2d2W10000644000175000017500000000003112340205242015365 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/6F22d2iG1-ker2F22d2iW10000644000175000017500000000010712361456141016146 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 2 4 5 mu 5 4 6 mu 6 3 7 pwr 13 7 8 oup 1 8 atlasrep-2.1.8/datapkg/Mmax35G0-kerL33d2W10000644000175000017500000000004512360425346015761 0ustar samsaminp 2 pwr 2 1 3 pwr 4 2 4 oup 2 3 4 atlasrep-2.1.8/datapkg/2L27d2iG1-kerL27d2W10000644000175000017500000000004112216407160015726 0ustar samsaminp 2 mu 1 2 3 pwr 8 3 4 oup 1 4 atlasrep-2.1.8/datapkg/A7G1-P10000644000175000017500000000021513606601506013733 0ustar samsam# translation of a Magma format presentation inp 2 chor 1 3 chor 2 5 mu 1 2 3 chor 3 7 cj 1 2 4 mu 1 4 5 chor 5 2 cj 4 2 6 mu 1 6 7 chor 7 2 atlasrep-2.1.8/datapkg/4aL34d2aG1-kerL34d2aW10000644000175000017500000000010712361302632016220 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 pwr 3 4 5 mu 2 5 6 mu 6 3 7 pwr 7 7 8 oup 1 8 atlasrep-2.1.8/datapkg/3F24G1-kerF24W10000644000175000017500000000025112236254273015072 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 3 4 5 pwr 2 5 6 pwr 2 4 7 mu 6 7 8 mu 3 5 9 mu 9 4 10 mu 10 6 11 mu 11 3 12 mu 12 8 13 mu 13 7 14 mu 14 4 15 mu 15 8 16 pwr 23 16 17 oup 1 17 atlasrep-2.1.8/datapkg/6M22d2G1-ker3M22d2W10000644000175000017500000000010512312137400015627 0ustar samsaminp 2 mu 1 2 3 mu 3 2 4 mu 3 3 5 mu 4 4 6 mu 5 6 7 pwr 3 7 8 oup 1 8 atlasrep-2.1.8/datapkg/Mmax17G0-kerHed2W10000644000175000017500000000007012360425660015751 0ustar samsaminp 2 pwr 2 1 3 mu 1 2 4 mu 2 4 5 pwr 17 5 6 oup 2 3 6 atlasrep-2.1.8/datapkg/4bL34G1-ker2L34W10000644000175000017500000000050412312135076015330 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 mu 30 30 31 oup 1 31 atlasrep-2.1.8/datapkg/2O93G1-kerO93W10000644000175000017500000000005412361041473015123 0ustar samsaminp 2 mu 2 2 3 mu 3 1 4 pwr 52 4 5 oup 1 5 atlasrep-2.1.8/datapkg/4aL34G1-kerL34W10000644000175000017500000000047012216407160015246 0ustar samsaminp 2 mu 1 2 3 mu 2 1 4 mu 1 4 5 mu 3 5 6 pwr 2 2 7 mu 7 1 8 iv 2 9 mu 9 3 10 mu 8 10 11 mu 6 11 12 mu 1 7 13 mu 3 13 14 mu 9 1 15 mu 1 15 16 mu 2 3 17 mu 16 17 18 mu 14 18 19 mu 12 19 20 mu 13 16 21 mu 17 13 22 mu 21 22 23 mu 1 9 24 mu 24 5 25 mu 4 7 26 mu 26 24 27 mu 25 27 28 mu 23 28 29 mu 20 29 30 oup 1 30 atlasrep-2.1.8/datapkg/J4G2-P10000644000175000017500000000153613516377276013767 0ustar samsam# translation of the Magma format presentation in the AGR inp 3 chor 1 2 chor 2 3 chor 3 2 mu 1 2 4 # x*y chor 4 23 iv 2 5 mu 1 5 6 # x*y^-1 mu 6 4 7 # Comm(x,y) chor 7 12 mu 2 4 8 # yxy com 1 8 9 chor 9 5 mu 4 6 10 # xyxy^-1 mu 4 10 11 # x*y*x*y*x*y^-1 mu 10 6 12 # x*y*x*y^-1*x*y^-1 pwr 3 11 13 pwr 3 12 14 mu 13 14 15 # (x*y*x*y*x*y^-1)^3*(x*y*x*y^-1*x*y^-1)^3 chor 15 1 pwr 3 10 16 mu 4 16 17 chor 17 4 mu 3 1 18 # tx chor 18 2 pwr 2 6 19 # (x*y^-1)^2 pwr 3 4 20 # (x*y)^3 mu 8 19 21 # y*x*y*(x*y^-1)^2 mu 21 20 22 # y*x*y*(x*y^-1)^2*(x*y)^3 com 3 22 23 chor 23 1 pwr 2 8 24 # yxy^-1xy mu 24 6 25 # yxy^-1xyxy^-1 mu 25 1 26 # (y*x*y^-1*x*y*x*y^-1*x) cj 3 26 27 # t^... mu 2 27 28 chor 28 3 mu 2 20 29 # y*x*y*x*y*x*y pwr 2 20 30 # (xy)^6 mu 20 2 31 mu 31 30 32 mu 32 2 33 # (x*y)^3*y*(x*y)^6*y cj 3 33 34 # t^... pwr 3 29 35 mu 35 3 36 mu 36 34 37 chor 37 2 atlasrep-2.1.8/datapkg/2O73d2G1-p4480B0.m10000644000175000017500000005147112635566106015362 0ustar samsam12 1 4480 1 2241 2243 2242 2246 2248 2244 2251 2245 2254 2256 2247 2259 2261 2249 2255 2250 2266 2268 2252 2271 2253 3382 2275 2277 2279 2257 2282 2258 2285 3404 2260 2289 2290 2292 2263 2295 2264 2298 2265 2301 3420 2267 2305 3390 2269 2286 2310 3417 2272 2273 2315 2274 2318 2320 2276 3416 3408 2278 2311 3401 2280 2328 2330 2332 2283 3426 3427 2337 2313 2287 2299 3432 2309 2344 2291 2347 2348 2293 2331 2294 2321 2354 2356 2336 2338 2360 2362 2302 2365 2303 2319 2304 2333 2371 2373 2324 2308 2325 3477 2375 2341 2380 3479 2314 2384 2386 2316 2317 2361 2390 2392 2393 2395 2322 2398 2323 3459 2402 3463 2326 2349 2327 2408 2409 2329 2412 2414 2416 2418 2420 2334 2423 2335 2426 2340 2400 2430 3498 3537 2342 2434 2436 3535 2345 2440 2346 2443 2445 2447 2350 2450 2351 2352 2454 2353 2457 3573 2355 2460 2376 2462 2358 2464 2465 2467 2469 2471 2363 2364 2474 2476 2366 2479 2367 3503 2368 3499 2369 2485 2370 2488 3552 2372 2491 2452 2374 2495 2497 2499 2377 2502 3542 2504 2381 3620 2382 2437 2510 2512 2385 2514 3600 2387 2518 2388 2520 2389 2523 3637 2391 2527 2425 3517 2394 2531 3576 2396 2535 2530 2399 2538 2401 2541 2403 2404 3586 2405 2546 2406 2549 2407 2552 2554 2410 2557 2411 2560 2562 2413 3562 2566 2482 2568 2569 2419 2571 2573 2421 2574 2576 2424 2579 3683 2582 2427 2585 2428 2587 2429 3555 2564 2431 2593 2433 2539 2597 3710 2599 3714 2438 2603 2439 2606 2441 2608 2610 3569 2444 2614 2446 2616 3679 2448 3727 2621 2623 2451 2612 2626 2459 2455 2630 2632 2634 2458 2536 2637 2461 2505 3733 2463 2643 2645 3664 2580 2468 2649 2651 2470 2654 2551 2472 2655 2473 2658 2660 2475 2663 3642 2477 3681 2478 3613 2501 2669 2481 2671 2483 2484 2675 2486 2678 2487 2489 2680 2490 2683 2685 2492 2545 2688 2494 2691 2693 2496 2695 2498 3758 2698 3627 3814 2701 2503 3629 2705 2690 2506 2699 2508 2702 3767 2711 2511 2714 2605 2513 3644 2515 3729 2516 2720 2528 3660 2519 2725 2521 2728 2716 2731 2624 2525 2734 2526 2620 2738 2529 2741 2708 2744 2532 3751 2533 2749 2534 3755 2753 2537 3708 2757 2759 3874 2761 2542 2764 2543 2646 3721 2768 2547 2770 2548 2772 2774 2550 2553 2656 2778 2555 2781 2556 2783 2662 2558 3891 2665 2789 2791 3895 2565 2795 2567 2798 2776 2801 2570 2803 2804 2572 3799 2575 2806 2807 2577 2810 2578 2813 2727 2581 2815 2596 2583 3872 2584 3711 2586 2743 2824 2589 2598 2827 2592 2600 2703 3824 2595 2832 2833 2628 2834 2836 2602 2839 3833 2604 2715 2618 2844 2845 2822 2611 2849 2851 2846 2853 2615 2856 2687 2617 2859 2861 2619 2864 2866 2622 2869 2871 3857 2625 2875 2877 2627 2879 2696 2629 2745 2882 3943 2884 2633 2756 2887 3812 2636 3761 2892 2750 2639 2896 2640 2899 2642 2901 2903 2644 2865 2906 2908 2648 2911 2650 3784 2652 2916 2653 3788 2673 2777 2657 2922 2924 2659 2925 2661 2928 2912 2931 2933 4043 2666 2936 2667 2939 2941 2943 2670 2946 3958 2672 2840 2920 2674 2952 2676 2677 2955 2681 2682 2957 2809 2684 2847 2960 2686 2962 2689 4079 2888 3938 2819 2918 4039 2719 3867 2697 2951 2972 2700 2974 2976 2830 2978 2706 2707 2709 2980 2710 3974 3917 2712 2799 3961 2988 2950 2717 2718 2723 2811 2848 2721 2996 2722 2998 2724 3957 3002 2726 3005 3007 2729 2921 2730 3011 3012 2732 2765 2733 3017 4124 2735 3020 2736 3023 3024 3022 2739 4113 2740 2983 2742 4000 2994 2746 2969 2748 4013 4150 2751 2817 4097 2991 3016 2755 4005 4014 3039 2758 3041 2898 2760 3044 2762 3047 2763 4133 3050 2766 3051 2767 3025 3054 2769 2785 3058 3060 3061 2773 3063 2820 3941 2800 2860 2779 3908 2780 2782 3070 4047 2784 3074 2987 2786 3076 2787 3077 3079 2790 3082 4152 2792 4195 2793 4091 2794 3088 4173 2796 3091 4104 3093 2843 2825 2802 3097 4074 2805 4121 2808 3031 3936 2812 3101 2814 3099 3027 3106 4086 2967 3065 2883 3110 4062 2826 3113 2828 3115 2829 4009 2831 3120 2835 3122 3124 2878 4068 3127 2986 2930 2842 4214 3131 2890 3134 3996 2881 3136 2850 4231 2852 3095 3139 4076 2855 3141 3988 2857 3144 2858 3146 3148 3149 2862 2863 4024 3151 3078 2891 2867 3155 4274 2870 3092 2874 2872 2873 2909 3109 2964 4257 4154 4006 2958 4058 3164 4149 4155 3168 3169 3171 2895 3172 2897 3174 3143 2900 4295 3177 2902 3179 3100 2905 2907 3182 4065 2910 3185 3056 4177 2913 3189 2914 2915 3191 2917 4308 2968 3066 3104 3196 3197 2926 3200 3202 3129 2929 4060 2932 2934 3015 2935 3208 4327 2937 3203 3210 3212 4258 4301 2944 3215 4334 2947 3021 2949 4109 2999 3096 2953 3221 2963 3049 2961 3224 3225 3067 3176 2965 4238 3229 3026 2970 4117 3153 2973 3125 2975 3234 3236 4227 3239 2979 3240 2981 3243 2982 3114 3245 2985 4248 3073 3246 2990 3248 3249 2992 4350 2995 4148 4206 3000 3251 3003 3252 3043 3006 3219 3008 4300 3009 3010 3150 3014 3195 3112 4139 3018 3261 4337 3264 3265 3266 4382 3241 3269 3033 4352 3272 4287 3036 3037 4393 3038 3040 3277 3042 4165 3105 3046 3280 3048 4267 4207 3052 3231 3284 3055 3186 3187 4184 3059 3279 3062 4312 3290 4346 3152 3068 3069 3291 3199 3071 3293 3072 3083 3296 3260 3297 4201 3080 4329 3084 3301 3085 3283 4210 3089 3304 4277 3306 3145 3305 3098 4342 3309 3102 3103 4314 3307 4348 3108 4255 3183 4285 4395 3116 3315 3117 3281 3238 3119 3121 3162 4362 3123 4391 3126 3130 3310 3132 3133 3276 3140 3142 3257 4374 4415 4405 3253 4402 3325 3205 3156 4281 3263 3158 3159 3160 3327 3328 3163 3330 4364 3166 4290 3333 4353 3250 3173 4437 3190 3178 3237 4378 3213 3184 4376 3335 4456 3337 3338 3193 3198 4451 3201 3340 4375 3204 3206 3298 3342 4423 3211 3343 4420 3216 3220 3218 3227 3346 3223 3247 3311 3322 3344 3314 3235 3348 4398 3323 4454 4440 3321 3312 3318 4461 3259 4446 3267 3268 4449 3270 4412 3354 3274 4439 3286 4407 3288 3289 4473 3294 4444 3299 3302 3313 4465 3308 4477 3316 4478 4470 3352 3351 4459 3332 4476 4475 4467 4469 4479 3360 3361 3363 3362 3366 3368 3364 3371 3365 3374 3376 3367 3379 3381 3369 3375 3370 3386 3388 3372 3391 3373 2262 3395 3397 3399 3377 3402 3378 3405 2284 3380 3409 3410 3412 3383 3415 3384 3418 3385 3421 2300 3387 3425 2270 3389 3406 3430 2297 3392 3393 3435 3394 3438 3440 3396 2296 2288 3398 3431 2281 3400 3448 3450 3452 3403 2306 2307 3457 3433 3407 3419 2312 3429 3464 3411 3467 3468 3413 3451 3414 3441 3474 3476 3456 3458 3480 3482 3422 3485 3423 3439 3424 3453 3491 3493 3444 3428 3445 2357 3495 3461 3500 2359 3434 3504 3506 3436 3437 3481 3510 3512 3513 3515 3442 3518 3443 2339 3522 2343 3446 3469 3447 3528 3529 3449 3532 3534 3536 3538 3540 3454 3543 3455 3546 3460 3520 3550 2378 2417 3462 3554 3556 2415 3465 3560 3466 3563 3565 3567 3470 3570 3471 3472 3574 3473 3577 2453 3475 3580 3496 3582 3478 3584 3585 3587 3589 3591 3483 3484 3594 3596 3486 3599 3487 2383 3488 2379 3489 3605 3490 3608 2432 3492 3611 3572 3494 3615 3617 3619 3497 3622 2422 3624 3501 2500 3502 3557 3630 3632 3505 3634 2480 3507 3638 3508 3640 3509 3643 2517 3511 3647 3545 2397 3514 3651 2456 3516 3655 3650 3519 3658 3521 3661 3523 3524 2466 3525 3666 3526 3669 3527 3672 3674 3530 3677 3531 3680 3682 3533 2442 3686 3602 3688 3689 3539 3691 3693 3541 3694 3696 3544 3699 2563 3702 3547 3705 3548 3707 3549 2435 3684 3551 3713 3553 3659 3717 2590 3719 2594 3558 3723 3559 3726 3561 3728 3730 2449 3564 3734 3566 3736 2559 3568 2607 3741 3743 3571 3732 3746 3579 3575 3750 3752 3754 3578 3656 3757 3581 3625 2613 3583 3763 3765 2544 3700 3588 3769 3771 3590 3774 3671 3592 3775 3593 3778 3780 3595 3783 2522 3597 2561 3598 2493 3621 3789 3601 3791 3603 3604 3795 3606 3798 3607 3609 3800 3610 3803 3805 3612 3665 3808 3614 3811 3813 3616 3815 3618 2638 3818 2507 2694 3821 3623 2509 3825 3810 3626 3819 3628 3822 2647 3831 3631 3834 3725 3633 2524 3635 2609 3636 3840 3648 2540 3639 3845 3641 3848 3836 3851 3744 3645 3854 3646 3740 3858 3649 3861 3828 3864 3652 2631 3653 3869 3654 2635 3873 3657 2588 3877 3879 2754 3881 3662 3884 3663 3766 2601 3888 3667 3890 3668 3892 3894 3670 3673 3776 3898 3675 3901 3676 3903 3782 3678 2771 3785 3909 3911 2775 3685 3915 3687 3918 3896 3921 3690 3923 3924 3692 2679 3695 3926 3927 3697 3930 3698 3933 3847 3701 3935 3716 3703 2752 3704 2591 3706 3863 3944 3709 3718 3947 3712 3720 3823 2704 3715 3952 3953 3748 3954 3956 3722 3959 2713 3724 3835 3738 3964 3965 3942 3731 3969 3971 3966 3973 3735 3976 3807 3737 3979 3981 3739 3984 3986 3742 3989 3991 2737 3745 3995 3997 3747 3999 3816 3749 3865 4002 2823 4004 3753 3876 4007 2692 3756 2641 4012 3870 3759 4016 3760 4019 3762 4021 4023 3764 3985 4026 4028 3768 4031 3770 2664 3772 4036 3773 2668 3793 3897 3777 4042 4044 3779 4045 3781 4048 4032 4051 4053 2923 3786 4056 3787 4059 4061 4063 3790 4066 2838 3792 3960 4040 3794 4072 3796 3797 4075 3801 3802 4077 3929 3804 3967 4080 3806 4082 3809 2959 4008 2818 3939 4038 2919 3839 2747 3817 4071 4092 3820 4094 4096 3950 4098 3826 3827 3829 4100 3830 2854 2797 3832 3919 2841 4108 4070 3837 3838 3843 3931 3968 3841 4116 3842 4118 3844 2837 4122 3846 4125 4127 3849 4041 3850 4131 4132 3852 3885 3853 4137 3004 3855 4140 3856 4143 4144 4142 3859 2993 3860 4103 3862 2880 4114 3866 4089 3868 2893 3030 3871 3937 2977 4111 4136 3875 2885 2894 4159 3878 4161 4018 3880 4164 3882 4167 3883 3013 4170 3886 4171 3887 4145 4174 3889 3905 4178 4180 4181 3893 4183 3940 2821 3920 3980 3899 2788 3900 3902 4190 2927 3904 4194 4107 3906 4196 3907 4197 4199 3910 4202 3032 3912 3075 3913 2971 3914 4208 3053 3916 4211 2984 4213 3963 3945 3922 4217 2954 3925 3001 3928 4151 2816 3932 4221 3934 4219 4147 4226 2966 4087 4185 4003 4230 2942 3946 4233 3948 4235 3949 2889 3951 4240 3955 4242 4244 3998 2948 4247 4106 4050 3962 3094 4251 4010 4254 2876 4001 4256 3970 3111 3972 4215 4259 2956 3975 4261 2868 3977 4264 3978 4266 4268 4269 3982 3983 2904 4271 4198 4011 3987 4275 3154 3990 4212 3994 3992 3993 4029 4229 4084 3137 3034 2886 4078 2938 4284 3029 3035 4288 4289 4291 4015 4292 4017 4294 4263 4020 3175 4297 4022 4299 4220 4025 4027 4302 2945 4030 4305 4176 3057 4033 4309 4034 4035 4311 4037 3188 4088 4186 4224 4316 4317 4046 4320 4322 4249 4049 2940 4052 4054 4135 4055 4328 3207 4057 4323 4330 4332 3138 3181 4064 4335 3214 4067 4141 4069 2989 4119 4216 4073 4341 4083 4169 4081 4344 4345 4187 4296 4085 3118 4349 4146 4090 2997 4273 4093 4245 4095 4354 4356 3107 4359 4099 4360 4101 4363 4102 4234 4365 4105 3128 4193 4366 4110 4368 4369 4112 3230 4115 3028 3086 4120 4371 4123 4372 4163 4126 4339 4128 3180 4129 4130 4270 4134 4315 4232 3019 4138 4381 3217 4384 4385 4386 3262 4361 4389 4153 3232 4392 3167 4156 4157 3273 4158 4160 4397 4162 3045 4225 4166 4400 4168 3147 3087 4172 4351 4404 4175 4306 4307 3064 4179 4399 4182 3192 4410 3226 4272 4188 4189 4411 4319 4191 4413 4192 4203 4416 4380 4417 3081 4200 3209 4204 4421 4205 4403 3090 4209 4424 3157 4426 4265 4425 4218 3222 4429 4222 4223 3194 4427 3228 4228 3135 4303 3165 3275 4236 4435 4237 4401 4358 4239 4241 4282 3242 4243 3271 4246 4250 4430 4252 4253 4396 4260 4262 4377 3254 3295 3285 4373 3282 4445 4325 4276 3161 4383 4278 4279 4280 4447 4448 4283 4450 3244 4286 3170 4453 3233 4370 4293 3317 4310 4298 4357 3258 4333 4304 3256 4455 3336 4457 4458 4313 4318 3331 4321 4460 3255 4324 4326 4418 4462 3303 4331 4463 3300 4336 4340 4338 4347 4466 4343 4367 4431 4442 4464 4434 4355 4468 3278 4443 3334 3320 4441 4432 4438 3341 4379 3326 4387 4388 3329 4390 3292 4474 4394 3319 4406 3287 4408 4409 3353 4414 3324 4419 4422 4433 3345 4428 3357 4436 3358 3350 4472 4471 3339 4452 3356 3355 3347 3349 3359 4480 1121 1123 1122 1126 1128 1124 1131 1125 1134 1136 1127 1139 1141 1129 1135 1130 1146 1148 1132 1151 1133 22 1155 1157 1159 1137 1162 1138 1165 44 1140 1169 1170 1172 1143 1175 1144 1178 1145 1181 60 1147 1185 30 1149 1166 1190 57 1152 1153 1195 1154 1198 1200 1156 56 48 1158 1191 41 1160 1208 1210 1212 1163 66 67 1217 1193 1167 1179 72 1189 1224 1171 1227 1228 1173 1211 1174 1201 1234 1236 1216 1218 1240 1242 1182 1245 1183 1199 1184 1213 1251 1253 1204 1188 1205 117 1255 1221 1260 119 1194 1264 1266 1196 1197 1241 1270 1272 1273 1275 1202 1278 1203 99 1282 103 1206 1229 1207 1288 1289 1209 1292 1294 1296 1298 1300 1214 1303 1215 1306 1220 1280 1310 138 177 1222 1314 1316 175 1225 1320 1226 1323 1325 1327 1230 1330 1231 1232 1334 1233 1337 213 1235 1340 1256 1342 1238 1344 1345 1347 1349 1351 1243 1244 1354 1356 1246 1359 1247 143 1248 139 1249 1365 1250 1368 192 1252 1371 1332 1254 1375 1377 1379 1257 1382 182 1384 1261 260 1262 1317 1390 1392 1265 1394 240 1267 1398 1268 1400 1269 1403 277 1271 1407 1305 157 1274 1411 216 1276 1415 1410 1279 1418 1281 1421 1283 1284 226 1285 1426 1286 1429 1287 1432 1434 1290 1437 1291 1440 1442 1293 202 1446 1362 1448 1449 1299 1451 1453 1301 1454 1456 1304 1459 323 1462 1307 1465 1308 1467 1309 195 1444 1311 1473 1313 1419 1477 350 1479 354 1318 1483 1319 1486 1321 1488 1490 209 1324 1494 1326 1496 319 1328 367 1501 1503 1331 1492 1506 1339 1335 1510 1512 1514 1338 1416 1517 1341 1385 373 1343 1523 1525 304 1460 1348 1529 1531 1350 1534 1431 1352 1535 1353 1538 1540 1355 1543 282 1357 321 1358 253 1381 1549 1361 1551 1363 1364 1555 1366 1558 1367 1369 1560 1370 1563 1565 1372 1425 1568 1374 1571 1573 1376 1575 1378 398 1578 267 454 1581 1383 269 1585 1570 1386 1579 1388 1582 407 1591 1391 1594 1485 1393 284 1395 369 1396 1600 1408 300 1399 1605 1401 1608 1596 1611 1504 1405 1614 1406 1500 1618 1409 1621 1588 1624 1412 391 1413 1629 1414 395 1633 1417 348 1637 1639 514 1641 1422 1644 1423 1526 361 1648 1427 1650 1428 1652 1654 1430 1433 1536 1658 1435 1661 1436 1663 1542 1438 531 1545 1669 1671 535 1445 1675 1447 1678 1656 1681 1450 1683 1684 1452 439 1455 1686 1687 1457 1690 1458 1693 1607 1461 1695 1476 1463 512 1464 351 1466 1623 1704 1469 1478 1707 1472 1480 1583 464 1475 1712 1713 1508 1714 1716 1482 1719 473 1484 1595 1498 1724 1725 1702 1491 1729 1731 1726 1733 1495 1736 1567 1497 1739 1741 1499 1744 1746 1502 1749 1751 497 1505 1755 1757 1507 1759 1576 1509 1625 1762 583 1764 1513 1636 1767 452 1516 401 1772 1630 1519 1776 1520 1779 1522 1781 1783 1524 1745 1786 1788 1528 1791 1530 424 1532 1796 1533 428 1553 1657 1537 1802 1804 1539 1805 1541 1808 1792 1811 1813 683 1546 1816 1547 1819 1821 1823 1550 1826 598 1552 1720 1800 1554 1832 1556 1557 1835 1561 1562 1837 1689 1564 1727 1840 1566 1842 1569 719 1768 578 1699 1798 679 1599 507 1577 1831 1852 1580 1854 1856 1710 1858 1586 1587 1589 1860 1590 614 557 1592 1679 601 1868 1830 1597 1598 1603 1691 1728 1601 1876 1602 1878 1604 597 1882 1606 1885 1887 1609 1801 1610 1891 1892 1612 1645 1613 1897 764 1615 1900 1616 1903 1904 1902 1619 753 1620 1863 1622 640 1874 1626 1849 1628 653 790 1631 1697 737 1871 1896 1635 645 654 1919 1638 1921 1778 1640 1924 1642 1927 1643 773 1930 1646 1931 1647 1905 1934 1649 1665 1938 1940 1941 1653 1943 1700 581 1680 1740 1659 548 1660 1662 1950 687 1664 1954 1867 1666 1956 1667 1957 1959 1670 1962 792 1672 835 1673 731 1674 1968 813 1676 1971 744 1973 1723 1705 1682 1977 714 1685 761 1688 1911 576 1692 1981 1694 1979 1907 1986 726 1847 1945 1763 1990 702 1706 1993 1708 1995 1709 649 1711 2000 1715 2002 2004 1758 708 2007 1866 1810 1722 854 2011 1770 2014 636 1761 2016 1730 871 1732 1975 2019 716 1735 2021 628 1737 2024 1738 2026 2028 2029 1742 1743 664 2031 1958 1771 1747 2035 914 1750 1972 1754 1752 1753 1789 1989 1844 897 794 646 1838 698 2044 789 795 2048 2049 2051 1775 2052 1777 2054 2023 1780 935 2057 1782 2059 1980 1785 1787 2062 705 1790 2065 1936 817 1793 2069 1794 1795 2071 1797 948 1848 1946 1984 2076 2077 1806 2080 2082 2009 1809 700 1812 1814 1895 1815 2088 967 1817 2083 2090 2092 898 941 1824 2095 974 1827 1901 1829 749 1879 1976 1833 2101 1843 1929 1841 2104 2105 1947 2056 1845 878 2109 1906 1850 757 2033 1853 2005 1855 2114 2116 867 2119 1859 2120 1861 2123 1862 1994 2125 1865 888 1953 2126 1870 2128 2129 1872 990 1875 788 846 1880 2131 1883 2132 1923 1886 2099 1888 940 1889 1890 2030 1894 2075 1992 779 1898 2141 977 2144 2145 2146 1022 2121 2149 1913 992 2152 927 1916 1917 1033 1918 1920 2157 1922 805 1985 1926 2160 1928 907 847 1932 2111 2164 1935 2066 2067 824 1939 2159 1942 952 2170 986 2032 1948 1949 2171 2079 1951 2173 1952 1963 2176 2140 2177 841 1960 969 1964 2181 1965 2163 850 1969 2184 917 2186 2025 2185 1978 982 2189 1982 1983 954 2187 988 1988 895 2063 925 1035 1996 2195 1997 2161 2118 1999 2001 2042 1002 2003 1031 2006 2010 2190 2012 2013 2156 2020 2022 2137 1014 1055 1045 2133 1042 2205 2085 2036 921 2143 2038 2039 2040 2207 2208 2043 2210 1004 2046 930 2213 993 2130 2053 1077 2070 2058 2117 1018 2093 2064 1016 2215 1096 2217 2218 2073 2078 1091 2081 2220 1015 2084 2086 2178 2222 1063 2091 2223 1060 2096 2100 2098 2107 2226 2103 2127 2191 2202 2224 2194 2115 2228 1038 2203 1094 1080 2201 2192 2198 1101 2139 1086 2147 2148 1089 2150 1052 2234 2154 1079 2166 1047 2168 2169 1113 2174 1084 2179 2182 2193 1105 2188 1117 2196 1118 1110 2232 2231 1099 2212 1116 1115 1107 1109 1119 2240 1 3 2 6 8 4 11 5 14 16 7 19 21 9 15 10 26 28 12 31 13 1142 35 37 39 17 42 18 45 1164 20 49 50 52 23 55 24 58 25 61 1180 27 65 1150 29 46 70 1177 32 33 75 34 78 80 36 1176 1168 38 71 1161 40 88 90 92 43 1186 1187 97 73 47 59 1192 69 104 51 107 108 53 91 54 81 114 116 96 98 120 122 62 125 63 79 64 93 131 133 84 68 85 1237 135 101 140 1239 74 144 146 76 77 121 150 152 153 155 82 158 83 1219 162 1223 86 109 87 168 169 89 172 174 176 178 180 94 183 95 186 100 160 190 1258 1297 102 194 196 1295 105 200 106 203 205 207 110 210 111 112 214 113 217 1333 115 220 136 222 118 224 225 227 229 231 123 124 234 236 126 239 127 1263 128 1259 129 245 130 248 1312 132 251 212 134 255 257 259 137 262 1302 264 141 1380 142 197 270 272 145 274 1360 147 278 148 280 149 283 1397 151 287 185 1277 154 291 1336 156 295 290 159 298 161 301 163 164 1346 165 306 166 309 167 312 314 170 317 171 320 322 173 1322 326 242 328 329 179 331 333 181 334 336 184 339 1443 342 187 345 188 347 189 1315 324 191 353 193 299 357 1470 359 1474 198 363 199 366 201 368 370 1329 204 374 206 376 1439 208 1487 381 383 211 372 386 219 215 390 392 394 218 296 397 221 265 1493 223 403 405 1424 340 228 409 411 230 414 311 232 415 233 418 420 235 423 1402 237 1441 238 1373 261 429 241 431 243 244 435 246 438 247 249 440 250 443 445 252 305 448 254 451 453 256 455 258 1518 458 1387 1574 461 263 1389 465 450 266 459 268 462 1527 471 271 474 365 273 1404 275 1489 276 480 288 1420 279 485 281 488 476 491 384 285 494 286 380 498 289 501 468 504 292 1511 293 509 294 1515 513 297 1468 517 519 1634 521 302 524 303 406 1481 528 307 530 308 532 534 310 313 416 538 315 541 316 543 422 318 1651 425 549 551 1655 325 555 327 558 536 561 330 563 564 332 1559 335 566 567 337 570 338 573 487 341 575 356 343 1632 344 1471 346 503 584 349 358 587 352 360 463 1584 355 592 593 388 594 596 362 599 1593 364 475 378 604 605 582 371 609 611 606 613 375 616 447 377 619 621 379 624 626 382 629 631 1617 385 635 637 387 639 456 389 505 642 1703 644 393 516 647 1572 396 1521 652 510 399 656 400 659 402 661 663 404 625 666 668 408 671 410 1544 412 676 413 1548 433 537 417 682 684 419 685 421 688 672 691 693 1803 426 696 427 699 701 703 430 706 1718 432 600 680 434 712 436 437 715 441 442 717 569 444 607 720 446 722 449 1839 648 1698 579 678 1799 479 1627 457 711 732 460 734 736 590 738 466 467 469 740 470 1734 1677 472 559 1721 748 710 477 478 483 571 608 481 756 482 758 484 1717 762 486 765 767 489 681 490 771 772 492 525 493 777 1884 495 780 496 783 784 782 499 1873 500 743 502 1760 754 506 729 508 1773 1910 511 577 1857 751 776 515 1765 1774 799 518 801 658 520 804 522 807 523 1893 810 526 811 527 785 814 529 545 818 820 821 533 823 580 1701 560 620 539 1668 540 542 830 1807 544 834 747 546 836 547 837 839 550 842 1912 552 1955 553 1851 554 848 1933 556 851 1864 853 603 585 562 857 1834 565 1881 568 791 1696 572 861 574 859 787 866 1846 727 825 643 870 1822 586 873 588 875 589 1769 591 880 595 882 884 638 1828 887 746 690 602 1974 891 650 894 1756 641 896 610 1991 612 855 899 1836 615 901 1748 617 904 618 906 908 909 622 623 1784 911 838 651 627 915 2034 630 852 634 632 633 669 869 724 2017 1914 1766 718 1818 924 1909 1915 928 929 931 655 932 657 934 903 660 2055 937 662 939 860 665 667 942 1825 670 945 816 1937 673 949 674 675 951 677 2068 728 826 864 956 957 686 960 962 889 689 1820 692 694 775 695 968 2087 697 963 970 972 2018 2061 704 975 2094 707 781 709 1869 759 856 713 981 723 809 721 984 985 827 936 725 1998 989 786 730 1877 913 733 885 735 994 996 1987 999 739 1000 741 1003 742 874 1005 745 2008 833 1006 750 1008 1009 752 2110 755 1908 1966 760 1011 763 1012 803 766 979 768 2060 769 770 910 774 955 872 1899 778 1021 2097 1024 1025 1026 2142 1001 1029 793 2112 1032 2047 796 797 2153 798 800 1037 802 1925 865 806 1040 808 2027 1967 812 991 1044 815 946 947 1944 819 1039 822 2072 1050 2106 912 828 829 1051 959 831 1053 832 843 1056 1020 1057 1961 840 2089 844 1061 845 1043 1970 849 1064 2037 1066 905 1065 858 2102 1069 862 863 2074 1067 2108 868 2015 943 2045 2155 876 1075 877 1041 998 879 881 922 2122 883 2151 886 890 1070 892 893 1036 900 902 1017 2134 2175 2165 1013 2162 1085 965 916 2041 1023 918 919 920 1087 1088 923 1090 2124 926 2050 1093 2113 1010 933 2197 950 938 997 2138 973 944 2136 1095 2216 1097 1098 953 958 2211 961 1100 2135 964 966 1058 1102 2183 971 1103 2180 976 980 978 987 1106 983 1007 1071 1082 1104 1074 995 1108 2158 1083 2214 2200 1081 1072 1078 2221 1019 2206 1027 1028 2209 1030 2172 1114 1034 2199 1046 2167 1048 1049 2233 1054 2204 1059 1062 1073 2225 1068 2237 1076 2238 2230 1112 1111 2219 1092 2236 2235 2227 2229 2239 1120 atlasrep-2.1.8/datapkg/2L211G1-kerL211W10000644000175000017500000000003012216407160015225 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/2SuzG1-kerSuzW10000644000175000017500000000003012216407160015531 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/2F42d4iG1-kerF42d2W10000644000175000017500000000003012360566325015715 0ustar samsaminp 2 mu 1 1 3 oup 1 3 atlasrep-2.1.8/datapkg/6O73G1-p3374B0.m20000644000175000017500000003663712635607457015156 0ustar samsam12 1 3374 1 2 4 5 7 9 10 12 13 15 17 18 20 22 23 24 25 27 29 30 32 33 35 37 39 41 42 44 45 47 49 50 1 53 54 56 57 59 60 62 63 65 67 68 70 72 73 74 75 77 79 80 81 83 85 86 88 90 91 93 95 96 3 98 99 101 102 104 106 107 109 110 111 113 114 115 116 117 118 120 121 123 124 126 127 129 131 132 133 134 135 137 138 140 119 141 142 143 145 147 148 150 152 153 154 155 156 158 159 6 162 163 164 165 167 168 169 170 171 172 174 176 177 179 178 181 183 185 186 188 189 190 192 8 195 197 198 200 166 202 204 206 208 187 210 211 212 58 215 216 218 219 220 222 224 226 228 229 231 233 234 235 237 239 240 241 242 11 245 247 249 251 253 254 256 257 259 261 262 264 265 267 125 269 270 271 273 274 276 278 280 281 283 284 285 287 288 290 292 293 64 294 295 296 14 298 300 301 303 304 306 308 310 311 312 314 316 317 16 320 322 323 325 326 328 329 331 332 334 336 337 339 340 342 343 246 345 327 346 348 350 352 354 355 356 358 359 361 362 19 364 146 366 368 370 371 373 375 376 377 378 380 382 82 384 386 387 389 390 21 393 395 396 398 248 400 402 403 405 406 408 409 410 412 413 415 416 418 420 421 423 424 425 426 428 430 432 433 435 436 438 440 441 442 260 444 446 447 449 450 78 453 455 456 458 459 461 463 464 465 467 468 470 472 473 319 475 335 26 478 479 480 139 286 483 484 486 488 489 491 492 493 495 497 498 401 501 502 28 504 506 507 508 509 511 512 514 515 517 519 520 522 524 525 105 527 529 530 531 532 533 535 536 31 537 538 540 542 305 544 546 547 549 223 551 552 554 555 556 557 558 559 560 562 563 565 566 567 381 569 570 510 34 572 573 574 576 577 579 581 553 583 585 586 587 589 590 591 593 594 596 598 599 36 601 603 605 606 608 609 610 611 612 613 614 615 617 618 38 620 621 623 624 385 625 626 627 629 630 40 112 632 481 634 635 637 639 640 642 643 644 622 580 646 647 649 650 651 653 654 656 657 659 661 392 663 664 665 667 668 250 670 671 43 71 673 674 675 677 679 680 681 682 672 683 604 684 686 688 341 689 691 693 694 696 697 309 700 46 701 702 704 706 707 709 705 485 48 711 541 714 715 716 717 97 718 719 721 722 723 725 726 728 729 730 731 732 734 735 736 737 738 51 277 740 741 743 744 745 263 746 52 749 750 752 753 754 756 757 758 759 760 761 762 763 764 766 768 769 770 771 772 774 775 777 778 779 781 782 55 783 785 786 787 788 789 791 793 794 796 797 799 800 802 804 805 807 808 810 812 813 815 816 818 819 820 372 822 823 825 227 828 829 831 833 835 836 838 840 841 843 844 845 846 61 209 848 850 351 852 854 855 236 857 858 860 861 699 863 865 866 867 869 870 872 733 874 876 877 103 879 868 821 882 875 884 66 885 886 888 889 891 892 894 895 897 898 899 252 901 687 903 904 896 900 907 908 910 911 912 914 69 916 917 919 920 922 923 817 925 926 928 929 930 931 932 933 837 935 936 937 938 451 939 92 940 814 942 943 944 945 947 948 949 950 951 76 952 953 955 956 958 960 330 961 963 94 964 404 966 968 751 969 970 971 856 973 975 161 976 978 980 981 982 128 660 985 755 986 988 989 990 992 934 994 995 182 998 1000 1002 1003 1004 1005 1007 84 1008 1010 1011 1012 1013 1015 1017 1019 1020 1022 954 1023 1025 1026 1028 1029 1031 996 1034 1035 1037 1039 1040 578 87 1042 1044 1045 698 500 1048 1050 1051 1052 834 1054 1055 89 1057 1059 1061 839 1062 1064 927 1065 1066 1067 513 1069 826 1072 619 1073 108 1075 1076 1078 1079 1080 1082 1083 1084 1085 1086 1087 1089 528 1091 1092 1093 1095 1096 993 1097 1098 1099 1100 1101 1102 1104 1106 1107 1109 1110 1112 1113 1115 1116 1117 1118 1119 419 1121 1122 1124 1126 724 1128 1129 1131 1132 1134 1135 100 1138 1139 1141 1142 1144 1145 1147 1074 1148 1150 1151 1152 1153 1154 1155 1157 1159 1160 1162 1164 979 1166 1168 1169 1170 1171 1172 1174 588 1176 1177 1179 349 437 1180 1181 505 1183 1184 1185 1186 1188 1190 878 1191 1192 1194 1195 1196 1198 1200 1201 1203 1205 1206 666 1207 1208 1209 1210 602 1211 1212 1213 1214 1215 1216 887 1219 1221 1046 1222 1224 1225 1226 1227 1228 1229 1230 1232 1021 1234 1235 1237 369 1239 1241 1242 997 1244 561 592 1247 1156 394 1249 1250 1251 1253 1254 1255 1257 1258 1260 1261 1262 1264 1265 1266 1267 1268 1270 122 1271 1272 1273 1275 1276 1278 1279 1280 1281 1283 1284 1286 1288 1289 1071 1290 1291 1293 1294 1296 832 1298 1300 1301 1243 1304 1305 1307 1309 1311 1312 1263 1314 1315 1316 1317 1319 1321 1322 1324 1326 1327 130 1328 1329 959 1332 1333 1334 1335 1336 1338 906 1340 1342 1343 1193 1346 1347 1348 1349 1351 1352 1353 1354 1081 708 1355 1357 1238 1358 1359 1220 452 1361 213 1362 1363 1365 1367 1368 905 1370 1371 1372 1373 1375 690 1376 347 136 1377 1378 962 1380 1381 1382 1384 431 1386 1387 1388 795 1390 1392 1393 1395 1396 1398 1399 1400 1401 1014 784 1404 482 344 1407 1318 1409 806 149 1411 1412 1414 1415 1416 1418 1419 144 1422 849 1424 1425 1426 967 175 1427 1058 1299 1428 1429 1430 880 1431 1433 1435 1436 1438 1417 1420 1440 151 720 1442 1444 1446 1447 1410 1450 1451 1453 1217 1454 1456 1458 1459 1461 1463 1465 1467 1468 1246 1469 1470 315 1472 628 1474 1476 1167 1478 1479 1480 1481 1136 1483 383 1484 1485 1486 1488 1252 1490 157 1049 503 1493 1495 1496 1497 1498 1499 1500 773 1502 1503 1492 1504 1506 1507 1508 1510 1511 1512 1513 1514 1515 1516 1517 160 1310 1056 957 1519 1520 1521 1146 669 1523 1524 1526 1405 214 1528 1529 1531 1532 1120 1534 1236 1535 1536 1537 1538 1540 1295 1369 1541 1542 1543 1544 1546 1173 1491 1547 1549 1550 662 1009 1552 279 1187 1554 987 1555 1001 173 1558 801 1560 427 1562 1563 1473 1565 1566 1568 1570 1571 1572 1439 1574 1041 1575 1576 1577 1579 1581 1582 1584 1585 1587 652 1588 1590 1591 255 1403 1593 180 1595 1596 1525 324 1032 1597 1594 1557 1601 1599 1603 1339 1605 1606 184 1608 727 1402 1611 1391 1613 1614 1615 1617 1618 921 1619 1350 1564 1622 1623 1624 1625 526 1374 1628 1583 1047 1630 1631 543 1633 1635 1621 1638 1548 1077 1518 1640 1642 1643 1645 1646 1647 1649 1650 1652 1653 191 1197 1654 1655 1656 379 1658 1659 1660 193 1356 1364 1245 194 1366 333 1663 862 1664 1662 633 1666 357 1667 1668 196 1522 1669 1670 1672 1673 965 1674 243 365 1677 199 1545 1679 1681 201 883 1683 767 1685 291 1527 1686 203 678 1688 1308 1610 1690 1692 1693 1189 1694 205 476 1695 1696 1697 414 1233 1699 1700 207 1701 1703 1704 890 1706 1707 1708 1709 1710 1509 1413 1712 1713 1714 1716 1389 1717 1719 1720 1721 1108 1724 1725 1727 1728 1592 1730 1731 1732 1733 1734 1457 1736 790 1158 1737 1739 1256 1060 1741 1691 1743 1744 217 1665 1746 1748 545 1750 1751 1752 1715 1753 1754 1755 1573 1756 1757 941 1758 1760 1761 1763 1764 1766 1767 221 1768 1769 1771 1287 1772 1773 1774 1094 1627 1776 521 1778 1779 225 1676 1780 499 1781 1782 1783 1784 1551 1786 230 1787 1634 434 1791 1792 1735 1794 232 1796 1797 1799 1801 1803 1805 1806 1385 1807 1808 1809 1810 238 1494 1811 902 1812 266 1813 1814 1038 1331 1816 1817 1818 1383 600 1819 244 1820 1821 1822 1823 1825 1827 1828 1455 1240 1829 1830 1018 523 1831 1832 1833 1834 1836 1837 1282 1839 1840 1449 1747 1841 1843 1844 1846 1848 1849 1851 1852 1853 258 1711 1729 1053 1133 1441 1856 1857 1859 1860 1722 1394 798 1759 575 1765 1863 1864 1865 443 282 1641 1867 268 299 1675 584 471 1866 1489 1868 1600 1068 1815 474 1345 1027 1397 824 1795 1872 1651 1874 924 1876 1877 272 1143 1878 1202 1879 1578 1644 1636 275 1881 516 1883 1884 360 658 1886 1887 1303 1671 1888 1016 1274 1889 1890 1891 1702 1892 399 747 1556 1894 1895 1897 518 1899 1900 1330 1902 1904 1906 1907 1908 1909 397 550 1910 1912 1914 1915 1917 1918 1919 1920 289 1921 1922 1924 439 1926 363 1927 853 1928 582 1689 487 1616 1030 1931 1932 1933 1934 1935 297 1936 1602 1938 417 1939 1940 1941 638 1943 1945 1946 1947 1948 302 1949 1950 1770 1951 1952 1953 616 1880 1954 1955 1956 307 1958 1959 1961 1204 1903 1423 1963 1965 842 1445 1967 1785 1838 1968 1901 313 1971 1972 1973 1974 1976 1977 1850 1979 534 1981 1088 1984 1471 1985 1986 318 1987 1988 1269 1462 1989 636 1482 1991 321 367 1661 1598 1992 1993 1323 374 1996 1997 1705 1854 548 1999 2000 2002 2004 2005 1070 2006 2007 2009 1090 338 2012 597 2014 1682 1871 2017 1607 2019 2020 1033 2021 1962 2023 1680 2024 2025 2026 2027 1990 2028 1218 1586 2030 2031 1182 2033 2034 2035 1775 1718 2037 388 2038 469 748 353 1175 1553 1178 1913 2039 2041 2042 2043 2045 2046 1885 1487 1320 1501 2048 2049 1762 2015 1475 2052 2053 2054 631 2056 2057 2058 1995 2059 1862 1898 2060 2062 1130 2064 2065 1882 2067 1559 2001 2069 2070 918 2071 2072 1464 1632 1604 2013 1749 391 2075 2076 1533 1580 2077 1842 1983 1905 2079 2080 1609 1123 2082 1437 1297 2083 1893 1916 2084 1639 2085 2086 1937 2087 2088 407 571 2090 2091 1161 462 2092 2094 2044 2095 1505 454 1626 2096 411 2098 2099 2100 1923 2102 977 2066 2101 692 1248 2105 2106 792 2011 2108 1824 2110 422 2111 1970 2107 1341 1302 1648 429 1678 2040 1960 607 1788 1845 859 2114 2115 1103 2063 1432 2104 1925 460 2117 2118 1723 2120 445 457 2068 2051 983 466 2050 448 809 2125 703 2126 1835 2109 2128 2129 1698 2130 1998 1742 2074 2131 2132 2133 1105 2134 1127 2116 2136 1379 1285 1612 2137 1847 2123 2138 2139 2121 2141 2142 1657 1777 1869 1306 2145 2147 2148 1163 1125 2150 1325 1969 1452 2081 2152 2153 2155 1063 477 1930 712 2008 2156 1199 655 685 2022 2036 873 1024 490 2158 2160 984 2161 494 2122 1292 1337 496 2163 695 2016 2164 2165 1137 2032 2162 2166 2167 2169 2170 811 2171 2144 1870 1826 676 564 1589 2112 1629 1790 881 1793 2173 645 2097 568 2175 2176 2177 2178 2179 539 710 1966 1114 1149 2181 2182 2047 1036 739 999 2151 2183 1277 1043 2168 1861 1789 1873 2184 2185 1637 2143 864 2186 2154 1944 2187 2188 2189 1421 765 1929 2180 1443 1875 2127 1165 1313 2010 2191 595 648 776 2192 803 2195 851 2194 2124 2197 2196 1684 2198 2199 2193 913 1942 1980 1006 830 1344 2201 1738 974 1567 641 2159 2018 2202 2203 2204 1569 2205 1957 1964 2206 1858 780 713 1140 946 2207 2208 1798 1911 1800 2209 1223 2210 1745 2211 1687 909 915 1804 2212 827 2055 2213 2172 2215 2200 2216 2146 2093 2073 1530 1477 1434 2003 2218 2220 2149 871 1466 2103 742 2174 1406 1855 1539 972 1231 2217 2222 1448 2223 847 2224 2225 2221 991 1975 2113 2214 2227 2229 2140 2230 2226 1460 2232 1896 893 2029 2078 1111 1620 2157 2089 1994 1982 2190 2233 2234 2231 2235 2135 2236 1408 2237 1360 2119 1726 2219 2238 1802 1740 1259 2240 2228 1561 2239 1978 2061 2242 2244 2245 2247 2249 2250 2252 2253 2255 2256 2257 2259 2261 2262 2264 2266 2268 2269 2270 2271 2273 2275 2276 2277 2278 2280 2281 2282 2284 2241 2287 2288 2290 2291 2293 2295 2297 2298 2299 2301 2303 2304 2305 2307 2308 2309 2311 2312 2313 2315 2317 2318 2319 2320 2322 2323 2243 2326 2328 2329 2330 2331 2333 2335 2336 2337 2339 2341 2342 2327 2344 2346 2347 2348 2349 2350 2351 2352 2354 2356 2357 2359 2361 2362 2363 2365 2366 2367 2369 2246 2372 2373 2374 2375 2377 2379 2381 2382 2384 2385 2386 2388 2389 2390 2391 2393 2394 2396 2248 2399 2400 2376 2402 2403 2404 2406 2407 2408 2410 2411 2413 2414 2416 2417 2418 2419 2421 2422 2424 2425 2426 2428 2429 2430 2432 2433 2251 2434 2436 2437 2439 2441 2442 2444 2445 2447 2448 2450 2452 2454 2456 2457 2458 2460 2461 2463 2464 2465 2466 2468 2469 2471 2254 2473 2474 2476 2478 2480 2481 2482 2483 2484 2486 2487 2488 2490 2492 2493 2495 2496 2497 2499 2500 2502 2503 2505 2506 2494 2508 2509 2510 2511 2512 2514 2515 2517 2519 2520 2522 2523 2525 2527 2528 2258 2531 2532 2533 2489 2535 2443 2498 2537 2538 2260 2539 2540 2524 2543 2544 2545 2546 2547 2549 2550 2552 2420 2554 2555 2557 2558 2559 2513 2516 2561 2562 2563 2564 2566 2567 2569 2570 2263 2573 2575 2576 2577 2578 2579 2580 2582 2583 2585 2265 2587 2588 2590 2591 2592 2593 2595 2596 2598 2599 2600 2602 2459 2604 2605 2267 2608 2609 2610 2611 2612 2614 2615 2617 2618 2620 2622 2623 2625 2627 2628 2629 2630 2632 2286 2634 2635 2637 2639 2641 2642 2568 2644 2646 2647 2648 2650 2651 2652 2272 2655 2656 2657 2659 2660 2662 2663 2664 2666 2667 2669 2274 2671 2672 2674 2675 2676 2677 2679 2681 2683 2684 2686 2688 2689 2691 2693 2694 2695 2697 2698 2699 2701 2702 2704 2706 2708 2709 2711 2713 2690 2715 2716 2718 2719 2720 2316 2279 2721 2723 2621 2725 2727 2653 2729 2730 2731 2732 2734 2735 2736 2738 2739 2740 2742 2743 2292 2744 2745 2746 2748 2750 2751 2283 2753 2754 2640 2756 2758 2760 2761 2762 2763 2765 2767 2768 2770 2771 2772 2773 2774 2776 2777 2778 2779 2781 2782 2285 2784 2785 2787 2726 2789 2790 2792 2793 2728 2796 2703 2798 2799 2800 2289 2802 2682 2804 2805 2633 2807 2808 2810 2811 2813 2814 2775 2816 2817 2741 2819 2820 2821 2822 2824 2825 2826 2828 2829 2294 2830 2832 2780 2834 2835 2836 2837 2839 2840 2841 2842 2843 2844 2845 2846 2847 2849 2850 2851 2853 2296 2855 2856 2857 2759 2859 2806 2861 2571 2862 2863 2518 2865 2866 2867 2868 2302 2310 2870 2872 2873 2874 2875 2601 2876 2878 2879 2300 2882 2884 2886 2883 2887 2888 2889 2890 2891 2892 2894 2895 2722 2898 2899 2901 2903 2904 2906 2907 2908 2909 2910 2912 2852 2914 2915 2916 2643 2747 2917 2918 2306 2920 2921 2923 2924 2925 2927 2928 2929 2931 2795 2933 2935 2936 2937 2939 2941 2942 2943 2944 2945 2946 2948 2950 2752 2952 2586 2880 2953 2954 2833 2956 2797 2957 2477 2959 2960 2962 2963 2964 2965 2966 2665 2967 2968 2314 2970 2971 2973 2974 2975 2977 2978 2979 2980 2981 2982 2897 2984 2871 2986 2987 2989 2926 2991 2992 2994 2995 2996 2997 2541 2827 2998 2321 3000 3002 3003 3004 3005 3007 3009 2712 3011 3012 3014 3016 2902 3017 3019 3020 3021 3022 3023 3024 2324 3025 3026 2877 2529 3027 2325 2409 3030 3031 3013 2961 3033 3034 3035 3036 3037 3039 3040 2603 3042 3043 3045 2345 2343 3047 3048 3049 3051 3052 2423 3055 3056 3058 3059 2332 2932 3060 3062 2801 3064 3065 2334 3006 3067 2922 3068 3070 2415 3072 3074 2934 2355 3075 3076 3077 2491 2988 3078 3079 3081 3083 2607 3084 2606 3087 2378 3088 3089 2938 3086 2338 3092 2949 3094 3095 2626 2869 3096 3097 3098 3099 2392 3101 2446 2340 3102 3104 3105 2380 2700 3106 2913 3108 2438 3110 3111 2885 3113 3114 3115 2383 3117 3118 3032 3057 3119 2427 3122 3123 2507 3125 2387 3127 3129 3130 3131 2993 2462 3132 3054 3133 3135 3137 3139 3010 3141 2440 3143 3144 2353 3145 3146 3147 3148 3150 2455 3152 3154 3155 3156 3158 2818 3159 2737 2472 3161 3162 3136 3090 3001 2358 3163 3165 3166 3167 3050 2364 3169 2574 2360 3170 3171 3172 3173 3175 3176 2638 3177 3178 2680 3180 3181 3182 3184 3008 3134 3185 3186 3187 3189 3190 2769 2431 2368 3191 3193 3194 3195 3196 3197 3199 2370 3069 3201 3202 2453 2536 3204 2371 3205 3206 2803 3093 3209 3210 2624 3212 3214 2401 3215 3160 3216 3112 3218 3168 3219 2990 3220 3222 3223 3225 2673 3226 2658 3227 3228 3229 2696 3230 2405 3231 2983 3091 3232 3233 3234 2687 3236 3238 3240 3241 3242 3243 2645 3244 3245 3246 3247 2940 3041 3248 3250 3183 2553 3128 3252 3253 2749 3255 3142 3256 3164 3257 3258 2631 2556 2395 3259 3071 3260 3261 3053 2397 2905 3262 3149 2398 3263 2951 2449 3266 2485 3267 2479 3268 3269 2755 3270 3217 2534 3272 3085 2881 3200 3100 3273 3066 3274 3276 3277 2594 3278 2815 3280 3140 2930 3213 3282 3284 3285 3286 2548 3287 3288 2848 2412 3289 3290 3291 3138 3293 3294 3295 3296 3271 3297 3298 3299 3211 2661 3254 2692 2470 2451 3300 3301 3151 3302 3103 3265 3073 2733 2812 3303 3304 3305 3306 3120 2724 2788 2565 2584 2764 2911 3179 3309 3310 2958 3312 3313 3203 3314 3315 2435 2649 3107 3317 2786 3318 3157 3029 3319 3307 3046 2893 3208 3308 3322 2947 3323 3324 3326 2581 2955 2860 3292 3328 3329 2854 3330 3207 2616 3061 2526 3332 3198 3333 3334 3335 3336 3331 3251 3174 3153 3337 2969 2597 2619 2501 3338 2467 2685 2831 2864 2900 3316 2551 2475 2707 2858 3080 3116 2636 3028 2705 3340 3341 3327 3343 2710 2919 3015 2783 3345 3264 3346 2542 3347 2717 3239 2757 3349 2985 3351 3082 3275 3352 2572 2504 3353 2521 3354 3109 2714 3356 3357 3018 3358 2809 2560 3224 3249 3359 2791 3360 3344 2838 3325 3362 3121 3188 2530 3279 3363 3364 2976 3348 2589 3221 2896 2972 2999 3350 2794 3342 3365 2670 3038 3366 2668 3281 3320 3063 3368 3235 2678 2823 2766 3367 3369 3126 2613 3370 3361 3371 3311 3372 2654 3355 3373 3374 3321 3237 3192 3339 3044 3124 3283 atlasrep-2.1.8/datapkg/2M22G1-kerM22W10000644000175000017500000000010312216407160015070 0ustar samsaminp 2 mu 1 2 3 mu 3 3 4 iv 2 5 mu 1 5 6 mu 4 6 7 pwr 5 7 8 oup 1 8 atlasrep-2.1.8/datapkg/6F22d2iG1-ker3F22d2W10000644000175000017500000000003212361274763016003 0ustar samsaminp 2 pwr 18 2 3 oup 1 3 atlasrep-2.1.8/datapkg/2O73d2iG1-kerO73d2W10000644000175000017500000000005312526300240015734 0ustar samsaminp 2 mu 2 2 3 mu 3 1 4 pwr 28 4 5 oup 1 5 atlasrep-2.1.8/datapkg/2A7G1-kerA7W10000644000175000017500000000006412236251232014713 0ustar samsaminp 2 mu 2 1 3 pwr 2 3 5 mu 5 1 4 pwr 3 4 6 oup 1 6 atlasrep-2.1.8/datapkg/L34G1max4W2-A6G1W10000644000175000017500000000006512525142774015430 0ustar samsam# generators of the restriction are in fact standard atlasrep-2.1.8/datapkg/12bL34d2aG1-ker2L34d2aW10000644000175000017500000000007612361034626016374 0ustar samsaminp 2 mu 2 1 3 pwr 3 3 4 mu 2 4 5 mu 2 5 6 pwr 5 6 7 oup 1 7 atlasrep-2.1.8/datapkg/J2d2G1-P20000644000175000017500000000040512522426722014170 0ustar samsamchor 1 2 chor 2 5 mu 1 2 3 chor 3 14 com 1 2 4 chor 4 7 mu 3 2 5 # cd^2 iv 2 6 mu 1 6 7 # cd^-1 mu 7 6 8 # cd^-2 mu 3 3 9 mu 8 8 10 mu 9 10 11 chor 11 3 mu 2 3 12 com 1 12 13 chor 13 3 mu 9 5 14 pwr 3 14 15 mu 15 7 18 mu 18 9 19 mu 19 7 20 mu 20 5 21 chor 21 1 atlasrep-2.1.8/datapkg/Mmax26G0-kerM12d2W10000644000175000017500000000007112360430655015755 0ustar samsaminp 2 mu 2 1 3 mu 1 2 4 pwr 12 3 5 pwr 12 4 6 oup 2 5 6 atlasrep-2.1.8/datapkg/12M22d2G1-ker2M22d2W10000644000175000017500000000017412312131514015711 0ustar samsaminp 2 mu 1 2 3 mu 3 2 4 iv 1 6 iv 2 7 mu 6 7 8 mu 8 1 9 mu 9 2 5 mu 3 3 6 mu 4 4 7 mu 6 7 8 pwr 6 8 9 pwr 4 5 10 oup 2 9 10 atlasrep-2.1.8/datapkg/F22d2G1-max12W20000644000175000017500000000021012515536063015122 0ustar samsammu 1 2 3 mu 3 2 4 mu 4 3 5 mu 4 5 6 mu 2 2 5 mu 4 5 3 pwr 3 6 7 mu 3 5 2 mu 4 3 5 mu 2 5 3 iv 3 2 mu 2 7 5 mu 5 3 2 mu 4 6 3 pwr 15 3 1 atlasrep-2.1.8/datapkg/2S7G1-kerS7W10000644000175000017500000000003112340206267014755 0ustar samsaminp 2 pwr 6 2 3 oup 1 3 atlasrep-2.1.8/datapkg/2O73d2G1-f9r8B0.m10000644000175000017500000000012012525453073015350 0ustar samsam1 9 8 8 04800848 40044804 80804440 08488044 04444008 00844840 80848440 00444084 atlasrep-2.1.8/datapkg/2L223G1-kerL223W10000644000175000017500000000003012361040635015234 0ustar samsaminp 2 mu 1 1 3 oup 1 3 atlasrep-2.1.8/datapkg/3ONG1-kerONW10000644000175000017500000000004212216407160015023 0ustar samsaminp 2 mu 2 1 3 pwr 11 3 4 oup 1 4 atlasrep-2.1.8/datapkg/12aL34d2aG1-kerL34d2aW10000644000175000017500000000013512361036307016303 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 2 4 5 mu 5 4 6 mu 6 4 7 mu 7 3 8 pwr 7 3 9 pwr 7 8 10 oup 2 9 10 atlasrep-2.1.8/datapkg/Sz8G1cycW1-cclsW10000644000175000017500000000027310571114103015725 0ustar samsaminp 4 2 3 4 6 pwr 2 6 13B pwr 2 4 7B pwr 2 2 2A pwr 2 13B 13C pwr 2 7B 7C pwr 2 2A 1A pwr 3 2 4B echo "Classes 1A 2A 4A 4B 5A 7A 7B 7C 13A 13B 13C" oup 11 1A 2A 2 4B 3 4 7B 7C 6 13B 13C atlasrep-2.1.8/datapkg/L43G1-P10000644000175000017500000000116213606672352014037 0ustar samsam# translation of a Magma format presentation inp 2 chor 1 2 chor 2 4 mu 1 2 3 # a b pwr 2 2 4 # b^2 mu 2 4 5 # b^-1 mu 3 4 6 # a b^-1 mu 6 3 7 # a b^-1 a b chor 7 4 mu 1 4 8 # a b^2 chor 8 8 chor 6 13 mu 7 3 9 mu 2 3 10 mu 9 10 11 mu 9 11 12 mu 12 7 13 mu 13 2 14 mu 14 11 15 chor 15 1 mu 3 6 16 mu 16 7 17 chor 17 4 pwr 3 8 18 mu 18 6 19 mu 19 18 20 mu 20 3 21 mu 21 19 22 mu 22 19 23 chor 23 1 mu 8 6 24 mu 24 19 25 pwr 2 25 26 mu 26 8 27 mu 27 3 28 mu 28 18 29 mu 29 3 30 chor 30 1 mu 8 3 31 mu 31 3 32 pwr 4 6 33 pwr 2 31 34 pwr 2 32 35 mu 8 34 36 mu 36 33 37 mu 37 7 38 mu 38 31 39 mu 39 8 40 mu 40 35 41 chor 41 1 atlasrep-2.1.8/datapkg/2F22G1-kerF22W10000644000175000017500000000005312216407160015056 0ustar samsaminp 2 mu 1 2 3 mu 3 2 4 pwr 21 4 5 oup 1 5 atlasrep-2.1.8/datapkg/2L219d2iG1-kerL219d2W10000644000175000017500000000004312340441027016074 0ustar samsaminp 2 mu 2 1 3 pwr 20 3 4 oup 1 4 atlasrep-2.1.8/datapkg/3U311G1-kerU311W10000644000175000017500000000006612361302166015264 0ustar samsaminp 2 mu 2 1 3 pwr 3 3 4 mu 2 4 5 pwr 37 5 6 oup 1 6 atlasrep-2.1.8/datapkg/3L37d2G1-f7r6aB0.m10000644000175000017500000000006212515532351015504 0ustar samsam1 7 6 6 000454 000103 000163 321000 016000 622000 atlasrep-2.1.8/datapkg/3L37G1-kerL37W10000644000175000017500000000006612346074422015120 0ustar samsaminp 2 mu 2 1 3 pwr 4 3 4 mu 2 4 5 pwr 19 5 6 oup 1 6 atlasrep-2.1.8/datapkg/2L227G1-kerL227W10000644000175000017500000000003012361040654015245 0ustar samsaminp 2 mu 1 1 3 oup 1 3 atlasrep-2.1.8/datapkg/12M22G1-ker2M22W10000644000175000017500000000006512312130237015235 0ustar samsaminp 2 mu 2 1 3 pwr 3 3 4 mu 2 4 5 pwr 22 5 6 oup 1 6 atlasrep-2.1.8/datapkg/2L27d2G1-kerL27d2W10000644000175000017500000000003012216407160015553 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/12bL34d2aG1-kerL34d2aW10000644000175000017500000000013512361037020016275 0ustar samsaminp 2 mu 2 1 3 mu 2 3 4 mu 2 4 5 mu 5 4 6 mu 6 4 7 mu 7 3 8 pwr 7 3 9 pwr 7 8 10 oup 2 9 10 atlasrep-2.1.8/datapkg/2A10G1-kerA10W10000644000175000017500000000005412340206730015035 0ustar samsaminp 2 pwr 2 1 3 mu 2 3 4 pwr 9 4 5 oup 1 5 atlasrep-2.1.8/datapkg/4M22G1-kerM22W10000644000175000017500000000010312216407160015072 0ustar samsaminp 2 mu 1 2 3 mu 3 3 4 iv 2 5 mu 1 5 6 mu 4 6 7 pwr 5 7 8 oup 1 8 atlasrep-2.1.8/datapkg/2RuG1-kerRuW10000644000175000017500000000003012216407160015143 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/6M22d2G1-ker2M22d2W10000644000175000017500000000010112312137267015635 0ustar samsaminp 2 iv 1 3 iv 2 4 mu 3 4 5 mu 5 1 6 mu 6 2 7 pwr 4 7 8 oup 1 8 atlasrep-2.1.8/datapkg/2A5G1-kerA5W10000644000175000017500000000003012216407160014701 0ustar samsaminp 2 pwr 2 1 3 oup 1 3 atlasrep-2.1.8/datapkg/toc.json0000644000175000017500000013772014272726533014577 0ustar samsam{ "ID":"internal", "Version":"2019-12-17", "DataURL":"https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/datapkg", "SelfURL":"https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/datapkg/toc.json", "LocalDirectory":"atlasrep/datapkg", "Data":[ ["GNAN",["2^(9+16).S8(2)","Bmax4"]], ["GRS",["2^(9+16).S8(2)",1589728887019929600]], ["TOC",["kernel","12M22G1-ker2M22W1",[-125457725]]], ["TOC",["kernel","12M22G1-ker3M22W1",[-87365270]]], ["TOC",["kernel","12M22G1-ker4M22W1",[86385463]]], ["TOC",["kernel","12M22G1-ker6M22W1",[28877924]]], ["TOC",["kernel","12M22G1-kerM22W1",[-28021191]]], ["TOC",["kernel","12M22d2G1-ker2M22d2W1",[44278172]]], ["TOC",["kernel","12M22d2G1-ker3M22d2W1",[95729726]]], ["TOC",["kernel","12M22d2G1-ker4M22d2W1",[-27766137]]], ["TOC",["kernel","12M22d2G1-ker6M22d2W1",[79718378]]], ["TOC",["kernel","12M22d2G1-kerM22d2W1",[47546634]]], ["TOC",["kernel","12U62G1-ker2U62W1",[-116303251]]], ["TOC",["kernel","12U62G1-ker3U62W1",[7428660]]], ["TOC",["kernel","12U62G1-ker4U62W1",[27738036]]], ["TOC",["kernel","12U62G1-ker6U62W1",[-40294072]]], ["TOC",["kernel","12U62G1-kerU62W1",[5452715]]], ["TOC",["kernel","12aL34G1-ker2L34W1",[13986286]]], ["TOC",["kernel","12aL34G1-ker3L34W1",[-107034625]]], ["TOC",["kernel","12aL34G1-ker4aL34W1",[-73932741]]], ["TOC",["kernel","12aL34G1-ker6L34W1",[114567479]]], ["TOC",["kernel","12aL34G1-kerL34W1",[-3299970]]], ["TOC",["kernel","12aL34d2aG1-ker2L34d2aW1",[-36045273]]], ["TOC",["kernel","12aL34d2aG1-ker3L34d2aW1",[86150635]]], ["TOC",["kernel","12aL34d2aG1-ker4aL34d2aW1",[-111486392]]], ["TOC",["kernel","12aL34d2aG1-ker6L34d2aW1",[-111846590]]], ["TOC",["kernel","12aL34d2aG1-kerL34d2aW1",[58236639]]], ["TOC",["kernel","12bL34G1-ker2L34W1",[13986286]]], ["TOC",["kernel","12bL34G1-ker3L34W1",[-107034625]]], ["TOC",["kernel","12bL34G1-ker4bL34W1",[-73932741]]], ["TOC",["kernel","12bL34G1-ker6L34W1",[114567479]]], ["TOC",["kernel","12bL34G1-kerL34W1",[-3299970]]], ["TOC",["kernel","12bL34d2aG1-ker2L34d2aW1",[-30235002]]], ["TOC",["kernel","12bL34d2aG1-ker3L34d2aW1",[86150635]]], ["TOC",["kernel","12bL34d2aG1-ker4bL34d2aW1",[-111486392]]], ["TOC",["kernel","12bL34d2aG1-ker6L34d2aW1",[-87245116]]], ["TOC",["kernel","12bL34d2aG1-kerL34d2aW1",[58236639]]], ["TOC",["kernel","24A8G1-kerA8W1",[85207691]]], ["TOC",["kernel","25L52G1-kerL52W1",[44331106]]], ["TOC",["kernel","2A10G1-kerA10W1",[-78273632]]], ["TOC",["kernel","2A11G1-kerA11W1",[-132684731]]], ["TOC",["kernel","2A12G1-kerA12W1",[-126369373]]], ["TOC",["kernel","2A13G1-kerA13W1",[-5123074]]], ["TOC",["kernel","2A14G1-kerA14W1",[107032041]]], ["TOC",["kernel","2A5G1-kerA5W1",[-70336600]]], ["TOC",["kernel","2A6G1-kerA6W1",[-70336600]]], ["TOC",["kernel","2A7G1-kerA7W1",[-110727589]]], ["TOC",["kernel","2A8G1-kerA8W1",[-123226927]]], ["TOC",["kernel","2A9G1-kerA9W1",[98791184]]], ["TOC",["matint","2Co1G1-Zr24aB0.g",[-47691132]]], ["TOC",["kernel","2Co1G1-kerCo1W1",[-70336600]]], ["TOC",["kernel","2F22G1-kerF22W1",[-51107995]]], ["TOC",["kernel","2F22d2G1-kerF22d2W1",[-65334992]]], ["TOC",["kernel","2F22d2iG1-kerF22d2W1",[20536998]]], ["TOC",["kernel","2F42G1-kerF42W1",[-12541179]]], ["TOC",["kernel","2F42d2G1-kerF42d2W1",[-132567691]]], ["TOC",["kernel","2F42d4iG1-kerF42d2W1",[76357350]]], ["TOC",["kernel","2G24G1-kerG24W1",[-41516069]]], ["TOC",["kernel","2G24d2G1-kerG24d2W1",[60044531]]], ["TOC",["kernel","2G24d2iG1-kerG24d2W1",[76357350]]], ["TOC",["kernel","2HSG1-kerHSW1",[70455253]]], ["TOC",["kernel","2HSd2G1-kerHSd2W1",[-65334992]]], ["TOC",["kernel","2J2G1-kerJ2W1",[-70336600]]], ["TOC",["kernel","2J2d2G1-kerJ2d2W1",[-70336600]]], ["TOC",["kernel","2J2d2iG1-kerJ2d2W1",[-107840412]]], ["TOC",["kernel","2L211G1-kerL211W1",[-70336600]]], ["TOC",["kernel","2L213G1-kerL213W1",[-70336600]]], ["TOC",["kernel","2L213d2G1-kerL213d2W1",[76357350]]], ["TOC",["kernel","2L217G1-kerL217W1",[-70336600]]], ["TOC",["kernel","2L217d2G1-kerL217d2W1",[76357350]]], ["TOC",["kernel","2L219G1-kerL219W1",[76357350]]], ["TOC",["kernel","2L219d2iG1-kerL219d2W1",[-111143164]]], ["TOC",["kernel","2L223G1-kerL223W1",[76357350]]], ["TOC",["kernel","2L223d2iG1-kerL223d2W1",[34054464]]], ["TOC",["kernel","2L227G1-kerL227W1",[76357350]]], ["TOC",["kernel","2L229G1-kerL229W1",[76357350]]], ["TOC",["kernel","2L231G1-kerL231W1",[76357350]]], ["TOC",["kernel","2L249G1-kerL249W1",[76357350]]], ["TOC",["kernel","2L27G1-kerL27W1",[-70336600]]], ["TOC",["kernel","2L27d2G1-kerL27d2W1",[-70336600]]], ["TOC",["kernel","2L27d2iG1-kerL27d2W1",[-98176703]]], ["TOC",["kernel","2L34G1-kerL34W1",[-3299970]]], ["TOC",["kernel","2L34d2aG1-kerL34d2aW1",[86150635]]], ["TOC",["kernel","2M12G1-kerM12W1",[90680464]]], ["TOC",["kernel","2M12d2G1-kerM12d2W1",[38905119]]], ["TOC",["kernel","2M12d2iG1-kerM12d2W1",[-70336600]]], ["TOC",["kernel","2M22G1-kerM22W1",[-119798676]]], ["TOC",["kernel","2M22d2G1-kerM22d2W1",[-64749018]]], ["TOC",["kernel","2M22d2iG1-kerM22d2W1",[-70336600]]], ["TOC",["kernel","2O73G1-kerO73W1",[-70336600]]], ["TOC",["matff","2O73d2G1-f9r8B0.m",[56946410,107870055]]], ["TOC",["kernel","2O73d2G1-kerO73d2W1",[76357350]]], ["TOC",["perm","2O73d2G1-p4480B0.m",[-52225772,29769403]]], ["TOC",["matff","2O73d2iG1-f3r8B0.m",[86289905,-36268741]]], ["TOC",["kernel","2O73d2iG1-kerO73d2W1",[128414775]]], ["TOC",["kernel","2O8m3G1-kerO8m3W1",[76357350]]], ["TOC",["kernel","2O8p3G1-kerO8p3W1",[69204866]]], ["TOC",["kernel","2O93G1-kerO93W1",[53746031]]], ["TOC",["kernel","2RuG1-kerRuW1",[-70336600]]], ["TOC",["kernel","2S11G1-kerS11W1",[-16920819]]], ["TOC",["kernel","2S14G1-kerS14W1",[39121645]]], ["TOC",["kernel","2S14iG1-kerS14W1",[-70336600]]], ["TOC",["kernel","2S45G1-kerS45W1",[76357350]]], ["TOC",["kernel","2S5G1-kerS5W1",[54228540]]], ["TOC",["kernel","2S5iG1-kerS5W1",[-70336600]]], ["TOC",["kernel","2S62G1-kerS62W1",[-70336600]]], ["TOC",["kernel","2S63G1-kerS63W1",[99577061]]], ["TOC",["kernel","2S63d2G1-kerS63d2W1",[54228540]]], ["TOC",["kernel","2S6G1-kerS6W1",[110904345]]], ["TOC",["kernel","2S7G1-kerS7W1",[-47342986]]], ["TOC",["kernel","2S7iG1-kerS7W1",[-70336600]]], ["TOC",["kernel","2SuzG1-kerSuzW1",[-70336600]]], ["TOC",["kernel","2Suzd2G1-kerSuzd2W1",[-70336600]]], ["TOC",["kernel","2Sz8G1-kerSz8W1",[-50617242]]], ["TOC",["kernel","2TE62G1-kerTE62W1",[-29198125]]], ["TOC",["kernel","2TE62d2G1-kerTE62d2W1",[-132354862]]], ["TOC",["kernel","2U42G1-kerU42W1",[-61523266]]], ["TOC",["kernel","2U42d2G1-kerU42d2W1",[-70336600]]], ["TOC",["kernel","2U62G1-kerU62W1",[-116542949]]], ["TOC",["kernel","2aM20G1-kerA5W1",[38732162]]], ["TOC",["kernel","2cM20G1-kerA5W1",[28381399]]], ["TOC",["kernel","3A6G1-kerA6W1",[22697540]]], ["TOC",["kernel","3A7G1-kerA7W1",[103709983]]], ["TOC",["kernel","3F22G1-kerF22W1",[93828930]]], ["TOC",["kernel","3F22d2G1-kerF22d2W1",[115375897]]], ["TOC",["kernel","3F24G1-kerF24W1",[123914158]]], ["TOC",["kernel","3F24d2G1-kerF24d2W1",[-9781815]]], ["TOC",["kernel","3G23G1-kerG23W1",[-25217472]]], ["TOC",["kernel","3G23d2G1-kerG23d2W1",[103297434]]], ["TOC",["kernel","3J3G1-kerJ3W1",[-12219576]]], ["TOC",["kernel","3J3d2G1-kerJ3d2W1",[65035875]]], ["TOC",["kernel","3L34G1-kerL34W1",[-78240851]]], ["TOC",["kernel","3L34d2aG1-kerL34d2aW1",[-111486392]]], ["TOC",["kernel","3L37G1-kerL37W1",[43582626]]], ["TOC",["matff","3L37d2G1-f7r6aB0.m",[17546022,-47201674]]], ["TOC",["kernel","3L37d2G1-kerL37d2W1",[5484765]]], ["TOC",["kernel","3M22G1-kerM22W1",[93828930]]], ["TOC",["kernel","3M22d2G1-kerM22d2W1",[-95958116]]], ["TOC",["kernel","3McLG1-kerMcLW1",[93828930]]], ["TOC",["kernel","3McLd2G1-kerMcLd2W1",[-25983841]]], ["TOC",["kernel","3O73G1-kerO73W1",[-5123074]]], ["TOC",["kernel","3O73d2G1-kerO73d2W1",[67449070]]], ["TOC",["kernel","3ONG1-kerONW1",[27738036]]], ["TOC",["kernel","3ONd2G1-kerONd2W1",[113732881]]], ["TOC",["kernel","3S6G1-kerS6W1",[115593151]]], ["TOC",["kernel","3S7G1-kerS7W1",[-96154908]]], ["TOC",["kernel","3SuzG1-kerSuzW1",[-119256677]]], ["TOC",["kernel","3Suzd2G1-kerSuzd2W1",[69470206]]], ["TOC",["kernel","3TE62G1-kerTE62W1",[117588000]]], ["TOC",["kernel","3TE62d2G1-kerTE62d2W1",[-78219723]]], ["TOC",["kernel","3U311G1-kerU311W1",[-78634597]]], ["TOC",["kernel","3U311d2G1-kerU311d2W1",[-49742156]]], ["TOC",["kernel","3U38G1-kerU38W1",[-131447880]]], ["TOC",["kernel","3U62G1-kerU62W1",[27738036]]], ["TOC",["kernel","4M22G1-ker2M22W1",[42360160]]], ["TOC",["kernel","4M22G1-kerM22W1",[-119798676]]], ["TOC",["kernel","4M22d2G1-ker2M22d2W1",[74331328]]], ["TOC",["kernel","4M22d2G1-kerM22d2W1",[-64749018]]], ["TOC",["kernel","4Sz8G1-ker2Sz8W1",[-101613207]]], ["TOC",["kernel","4Sz8G1-kerSz8W1",[-40097802]]], ["TOC",["kernel","4Sz8d3G1-kerSz8d3W1",[7961662]]], ["TOC",["kernel","4TE62G1-ker2TE62W1",[-87365270]]], ["TOC",["kernel","4TE62G1-kerTE62W1",[-33332286]]], ["TOC",["kernel","4U62G1-ker2U62W1",[-40294072]]], ["TOC",["kernel","4U62G1-kerU62W1",[1387879]]], ["TOC",["kernel","4aL34G1-ker2L34W1",[13986286]]], ["TOC",["kernel","4aL34G1-kerL34W1",[-3299970]]], ["TOC",["kernel","4aL34d2aG1-ker2L34d2aW1",[-19710052]]], ["TOC",["kernel","4aL34d2aG1-kerL34d2aW1",[68276288]]], ["TOC",["kernel","4bL34G1-ker2L34W1",[13986286]]], ["TOC",["kernel","4bL34G1-kerL34W1",[-3299970]]], ["TOC",["kernel","4bL34d2aG1-ker2L34d2aW1",[-30104429]]], ["TOC",["kernel","4bL34d2aG1-kerL34d2aW1",[68276288]]], ["TOC",["kernel","53L35G2-kerL35W1",[-74242534]]], ["TOC",["kernel","6A6G1-ker2A6W1",[22697540]]], ["TOC",["kernel","6A6G1-ker3A6W1",[-70336600]]], ["TOC",["kernel","6A6G1-kerA6W1",[73939594]]], ["TOC",["kernel","6A7G1-ker2A7W1",[-64368731]]], ["TOC",["kernel","6A7G1-ker3A7W1",[-123182359]]], ["TOC",["kernel","6A7G1-kerA7W1",[34439341]]], ["TOC",["kernel","6F22G1-ker2F22W1",[93828930]]], ["TOC",["kernel","6F22G1-ker3F22W1",[-51107995]]], ["TOC",["kernel","6F22G1-kerF22W1",[-20149097]]], ["TOC",["kernel","6F22d2G1-ker2F22d2W1",[115375897]]], ["TOC",["kernel","6F22d2G1-ker3F22d2W1",[116198591]]], ["TOC",["kernel","6F22d2G1-kerF22d2W1",[14691670]]], ["TOC",["kernel","6F22d2iG1-ker2F22d2iW1",[-98712604]]], ["TOC",["kernel","6F22d2iG1-ker3F22d2W1",[20536998]]], ["TOC",["kernel","6F22d2iG1-kerF22d2W1",[51549685]]], ["TOC",["kernel","6L34G1-ker2L34W1",[31763275]]], ["TOC",["kernel","6L34G1-ker3L34W1",[-107034625]]], ["TOC",["kernel","6L34G1-kerL34W1",[-3299970]]], ["TOC",["kernel","6L34d2aG1-ker2L34d2aW1",[-111486392]]], ["TOC",["kernel","6L34d2aG1-ker3L34d2aW1",[68276288]]], ["TOC",["kernel","6L34d2aG1-kerL34d2aW1",[-67059432]]], ["TOC",["kernel","6M22G1-ker2M22W1",[42360160]]], ["TOC",["kernel","6M22G1-ker3M22W1",[-87266426]]], ["TOC",["kernel","6M22G1-kerM22W1",[-119798676]]], ["TOC",["kernel","6M22d2G1-ker2M22d2W1",[-74675773]]], ["TOC",["kernel","6M22d2G1-ker3M22d2W1",[-64749018]]], ["TOC",["kernel","6M22d2G1-kerM22d2W1",[93936483]]], ["TOC",["kernel","6O73G1-ker2O73W1",[-5123074]]], ["TOC",["kernel","6O73G1-ker3O73W1",[-70336600]]], ["TOC",["kernel","6O73G1-kerO73W1",[-73336351]]], ["TOC",["perm","6O73G1-p3374B0.m",[46549419,-78936975]]], ["TOC",["perm","6O73d2G1-p5614B0.m",[-132714113,-103855504]]], ["TOC",["kernel","6S6G1-ker2S6W1",[-110105852]]], ["TOC",["kernel","6S6G1-ker3S6W1",[125372238]]], ["TOC",["kernel","6S6G1-kerS6W1",[115593151]]], ["TOC",["kernel","6S7G1-ker2S7W1",[-36853663]]], ["TOC",["kernel","6S7G1-ker3S7W1",[-47342986]]], ["TOC",["kernel","6S7G1-kerS7W1",[-96154908]]], ["TOC",["kernel","6SuzG1-ker2SuzW1",[-77806034]]], ["TOC",["kernel","6SuzG1-ker3SuzW1",[72357576]]], ["TOC",["kernel","6SuzG1-kerSuzW1",[-119256677]]], ["TOC",["kernel","6Suzd2G1-ker2Suzd2W1",[122182117]]], ["TOC",["kernel","6Suzd2G1-ker3Suzd2W1",[-7315957]]], ["TOC",["kernel","6Suzd2G1-kerSuzd2W1",[133821480]]], ["TOC",["kernel","6U62G1-ker2U62W1",[27738036]]], ["TOC",["kernel","6U62G1-ker3U62W1",[106964924]]], ["TOC",["kernel","6U62G1-kerU62W1",[2097080]]], ["TOC",["kernel","9U43D8G1-kerU43D8W1",[9902498]]], ["TOC",["classes","A5G1-cclsW1",[60699576]]], ["TOC",["pres","A7G1-P1",[-28752559]]], ["TOC",["matff","Bmax4G0-f2r180B0.m",[-48198122,20493377]]], ["TOC",["maxes","F22d2G1-max10W2",[-16071716]]], ["TOC",["maxes","F22d2G1-max11W2",[38598217]]], ["TOC",["maxes","F22d2G1-max12W2",[49895113]]], ["TOC",["maxes","F22d2G1-max3W2",[-39119864]]], ["TOC",["maxes","F22d2G1-max4W2",[9720346]]], ["TOC",["maxes","F22d2G1-max5W2",[-96577681]]], ["TOC",["maxes","F22d2G1-max6W2",[-125311811]]], ["TOC",["maxes","F22d2G1-max7W2",[18019907]]], ["TOC",["maxes","F22d2G1-max8W2",[37724809]]], ["TOC",["maxes","F22d2G1-max9W2",[-84466289]]], ["TOC",["find","F42G1-find1",[100835234]]], ["TOC",["cyclic","G25G1-cycW2",[87200760]]], ["TOC",["cyc2ccl","G25G1cycW2-cclsW2",[-14726419]]], ["TOC",["pres","J2d2G1-P2",[-47042141]]], ["TOC",["pres","J4G2-P1",[48217531]]], ["TOC",["maxes","L34G1-max4W2",[-45445883]]], ["TOC",["maxes","L34G1-max5W2",[-37920043]]], ["TOC",["maxstd","L34G1max3W1-A6G1W1",[113321740]]], ["TOC",["maxstd","L34G1max4W2-A6G1W1",[113321740]]], ["TOC",["maxstd","L34G1max5W2-A6G1W1",[113321740]]], ["TOC",["cyc2ccl","L38G1cycW1-cclsW1",[130024516]]], ["TOC",["cyc2ccl","L38d3G1cycW1-cclsW1",[93794585]]], ["TOC",["pres","L43G1-P1",[-103704094]]], ["TOC",["kernel","M20G1-kerA5W1",[-133953139]]], ["TOC",["kernel","M3max7G0-ker6Suzd2W1",[-67900103]]], ["TOC",["kernel","Mmax12G0-kerHNd2W1",[-55247173]]], ["TOC",["kernel","Mmax16G0-kerJ2d2W1",[-78563449]]], ["TOC",["kernel","Mmax17G0-kerHed2W1",[109432721]]], ["TOC",["kernel","Mmax18G0-kerS12W1",[34527374]]], ["TOC",["kernel","Mmax18G0-kerS5W1",[-112273260]]], ["TOC",["kernel","Mmax19G0-kerL35W1",[7514544]]], ["TOC",["kernel","Mmax21G0-kerS5W1",[111568888]]], ["TOC",["kernel","Mmax21G0-kerU38d6W1",[-117231360]]], ["TOC",["kernel","Mmax23G0-kerL27d2W1",[52396064]]], ["TOC",["kernel","Mmax23G0-kerS44d4W1",[-116000272]]], ["TOC",["kernel","Mmax26G0-kerL211d2W1",[62482537]]], ["TOC",["kernel","Mmax26G0-kerM12d2W1",[101902679]]], ["TOC",["kernel","Mmax29G0-ker2L27d2iW1",[-77464200]]], ["TOC",["kernel","Mmax30G0-kerA6V4W1",[62482537]]], ["TOC",["kernel","Mmax30G0-kerM11W1",[-111550926]]], ["TOC",["kernel","Mmax34G0-kerL27d2W1",[131392678]]], ["TOC",["kernel","Mmax35G0-kerL33d2W1",[122678842]]], ["TOC",["kernel","Mmax41G0-ker2L27W1",[38682689]]], ["TOC",["kernel","Mmax7G0-ker2Suzd2W1",[-67900103]]], ["TOC",["kernel","Mmax9G0-kerThW1",[-100676229]]], ["TOC",["pres","O10m2G1-P1",[-2833584]]], ["TOC",["pres","O10p2G1-P1",[-63157504]]], ["TOC",["find","ONd2G1-find2",[-120994932]]], ["TOC",["cyc2ccl","R27d3G1cycW1-cclsW1",[-124898313]]], ["TOC",["cyc2ccl","Sz8G1cycW1-cclsW1",[-118730523]]], ["TOC",["cyc2ccl","Sz8d3G1cycW1-cclsW1",[-78569143]]], ["TOC",["pres","U63G1-P1",[86770149]]], ["TOCEXT",["12M22",1,1,["M22G1-max1W1"]]], ["TOCEXT",["12M22",1,2,["M22G1-max2W1"]]], ["TOCEXT",["12M22",1,3,["M22G1-max3W1"]]], ["TOCEXT",["12M22",1,4,["M22G1-max4W1"]]], ["TOCEXT",["12M22",1,5,["M22G1-max5W1","M22"]]], ["TOCEXT",["12M22",1,6,["M22G1-max6W1","M22"]]], ["TOCEXT",["12M22",1,7,["M22G1-max7W1"]]], ["TOCEXT",["12M22",1,7,["M22G1-max7W2"]]], ["TOCEXT",["12M22",1,8,["M22G1-max8W1","M22"]]], ["TOCEXT",["12U62",1,1,["U62G1-max1W1","U6(2)"]]], ["TOCEXT",["12U62",1,1,["U62G1-max1W2","U6(2)"]]], ["TOCEXT",["12U62",1,10,["U62G1-max10W1","U6(2)"]]], ["TOCEXT",["12U62",1,11,["U62G1-max11W1","U6(2)"]]], ["TOCEXT",["12U62",1,11,["U62G1-max11W2","U6(2)"]]], ["TOCEXT",["12U62",1,12,["U62G1-max12W1"]]], ["TOCEXT",["12U62",1,13,["U62G1-max13W1"]]], ["TOCEXT",["12U62",1,14,["U62G1-max14W1","U6(2)"]]], ["TOCEXT",["12U62",1,15,["U62G1-max15W1"]]], ["TOCEXT",["12U62",1,16,["U62G1-max16W1"]]], ["TOCEXT",["12U62",1,2,["U62G1-max2W1","U6(2)"]]], ["TOCEXT",["12U62",1,3,["U62G1-max3W1"]]], ["TOCEXT",["12U62",1,4,["U62G1-max4W1","U6(2)"]]], ["TOCEXT",["12U62",1,4,["U62G1-max4W2","U6(2)"]]], ["TOCEXT",["12U62",1,5,["U62G1-max5W1","U6(2)"]]], ["TOCEXT",["12U62",1,6,["U62G1-max6W1"]]], ["TOCEXT",["12U62",1,7,["U62G1-max7W1"]]], ["TOCEXT",["12U62",1,8,["U62G1-max8W1","U6(2)"]]], ["TOCEXT",["12U62",1,8,["U62G1-max8W2","U6(2)"]]], ["TOCEXT",["12U62",1,9,["U62G1-max9W1","U6(2)"]]], ["TOCEXT",["12aL34",1,1,["L34G1-max1W1"]]], ["TOCEXT",["12aL34",1,2,["L34G1-max2W1"]]], ["TOCEXT",["12aL34",1,3,["L34G1-max3W1","L3(4)"]]], ["TOCEXT",["12aL34",1,6,["L34G1-max6W1","L3(4)"]]], ["TOCEXT",["12aL34",1,7,["L34G1-max7W1","L3(4)"]]], ["TOCEXT",["12aL34",1,8,["L34G1-max8W1","L3(4)"]]], ["TOCEXT",["12aL34",1,9,["L34G1-max9W1"]]], ["TOCEXT",["12bL34",1,1,["L34G1-max1W1"]]], ["TOCEXT",["12bL34",1,2,["L34G1-max2W1"]]], ["TOCEXT",["12bL34",1,3,["L34G1-max3W1","L3(4)"]]], ["TOCEXT",["12bL34",1,6,["L34G1-max6W1","L3(4)"]]], ["TOCEXT",["12bL34",1,7,["L34G1-max7W1","L3(4)"]]], ["TOCEXT",["12bL34",1,8,["L34G1-max8W1","L3(4)"]]], ["TOCEXT",["12bL34",1,9,["L34G1-max9W1"]]], ["TOCEXT",["2A5",1,1,["A5G1-max1W1"]]], ["TOCEXT",["2A5",1,2,["A5G1-max2W1"]]], ["TOCEXT",["2A5",1,3,["A5G1-max3W1"]]], ["TOCEXT",["2A6",1,1,["A6G1-max1W1"]]], ["TOCEXT",["2A6",1,2,["A6G1-max2W1"]]], ["TOCEXT",["2A6",1,3,["A6G1-max3W1"]]], ["TOCEXT",["2A6",1,4,["A6G1-max4W1"]]], ["TOCEXT",["2A6",1,5,["A6G1-max5W1"]]], ["TOCEXT",["2A7",1,1,["A7G1-max1W1"]]], ["TOCEXT",["2A7",1,2,["A7G1-max2W1"]]], ["TOCEXT",["2Co1",1,1,["Co1G1-max1W1"]]], ["TOCEXT",["2Co1",1,2,["Co1G1-max2W1"]]], ["TOCEXT",["2Co1",1,3,["Co1G1-max3W1"]]], ["TOCEXT",["2Co1",1,4,["Co1G1-max4W1"]]], ["TOCEXT",["2Co1",1,5,["Co1G1-max5W1"]]], ["TOCEXT",["2Co1",1,6,["Co1G1-max6W1","Co1"]]], ["TOCEXT",["2F22",1,1,["F22G1-max1W1"]]], ["TOCEXT",["2F22",1,10,["F22G1-max10W1"]]], ["TOCEXT",["2F22",1,11,["F22G1-max11W1"]]], ["TOCEXT",["2F22",1,12,["F22G1-max12W1","Fi22"]]], ["TOCEXT",["2F22",1,13,["F22G1-max13W1"]]], ["TOCEXT",["2F22",1,13,["F22G1-max13W2","Fi22"]]], ["TOCEXT",["2F22",1,14,["F22G1-max14W1","Fi22"]]], ["TOCEXT",["2F22",1,2,["F22G1-max2W1"]]], ["TOCEXT",["2F22",1,3,["F22G1-max3W1"]]], ["TOCEXT",["2F22",1,3,["F22G1-max3W2"]]], ["TOCEXT",["2F22",1,4,["F22G1-max4W1","Fi22"]]], ["TOCEXT",["2F22",1,5,["F22G1-max5W1"]]], ["TOCEXT",["2F22",1,6,["F22G1-max6W1"]]], ["TOCEXT",["2F22",1,7,["F22G1-max7W1"]]], ["TOCEXT",["2F22",1,8,["F22G1-max8W1"]]], ["TOCEXT",["2F22",1,9,["F22G1-max9W1","Fi22"]]], ["TOCEXT",["2F22d2",1,1,["F22d2G1-max1W1"]]], ["TOCEXT",["2F22d2",1,10,["F22d2G1-max10W2"]]], ["TOCEXT",["2F22d2",1,11,["F22d2G1-max11W2"]]], ["TOCEXT",["2F22d2",1,12,["F22d2G1-max12W2"]]], ["TOCEXT",["2F22d2",1,13,["F22d2G1-max13W1"]]], ["TOCEXT",["2F22d2",1,2,["F22d2G1-max2W2"]]], ["TOCEXT",["2F22d2",1,3,["F22d2G1-max3W2"]]], ["TOCEXT",["2F22d2",1,4,["F22d2G1-max4W2"]]], ["TOCEXT",["2F22d2",1,5,["F22d2G1-max5W2"]]], ["TOCEXT",["2F22d2",1,6,["F22d2G1-max6W2"]]], ["TOCEXT",["2F22d2",1,7,["F22d2G1-max7W2"]]], ["TOCEXT",["2F22d2",1,8,["F22d2G1-max8W2","Fi22.2"]]], ["TOCEXT",["2F22d2",1,9,["F22d2G1-max9W2"]]], ["TOCEXT",["2G24",1,1,["G24G1-max1W1"]]], ["TOCEXT",["2G24",1,2,["G24G1-max2W1"]]], ["TOCEXT",["2G24",1,3,["G24G1-max3W1"]]], ["TOCEXT",["2G24",1,4,["G24G1-max4W1"]]], ["TOCEXT",["2G24",1,5,["G24G1-max5W1"]]], ["TOCEXT",["2G24",1,6,["G24G1-max6W1"]]], ["TOCEXT",["2G24",1,7,["G24G1-max7W1"]]], ["TOCEXT",["2G24",1,8,["G24G1-max8W1"]]], ["TOCEXT",["2HS",1,1,["HSG1-max1W1"]]], ["TOCEXT",["2HS",1,10,["HSG1-max10W1"]]], ["TOCEXT",["2HS",1,11,["HSG1-max11W1"]]], ["TOCEXT",["2HS",1,12,["HSG1-max12W1"]]], ["TOCEXT",["2HS",1,2,["HSG1-max2W1"]]], ["TOCEXT",["2HS",1,3,["HSG1-max3W1"]]], ["TOCEXT",["2HS",1,4,["HSG1-max4W1"]]], ["TOCEXT",["2HS",1,5,["HSG1-max5W1"]]], ["TOCEXT",["2HS",1,6,["HSG1-max6W1"]]], ["TOCEXT",["2HS",1,7,["HSG1-max7W1"]]], ["TOCEXT",["2HS",1,8,["HSG1-max8W1","HS"]]], ["TOCEXT",["2HS",1,9,["HSG1-max9W1","HS"]]], ["TOCEXT",["2HSd2",1,1,["HSd2G1-max1W1"]]], ["TOCEXT",["2HSd2",1,10,["HSd2G1-max10W1"]]], ["TOCEXT",["2HSd2",1,2,["HSd2G1-max2W1"]]], ["TOCEXT",["2HSd2",1,2,["HSd2G1-max2W2"]]], ["TOCEXT",["2HSd2",1,3,["HSd2G1-max3W1"]]], ["TOCEXT",["2HSd2",1,4,["HSd2G1-max4W1"]]], ["TOCEXT",["2HSd2",1,4,["HSd2G1-max4W2"]]], ["TOCEXT",["2HSd2",1,5,["HSd2G1-max5W1"]]], ["TOCEXT",["2HSd2",1,6,["HSd2G1-max6W1"]]], ["TOCEXT",["2HSd2",1,6,["HSd2G1-max6W2"]]], ["TOCEXT",["2HSd2",1,7,["HSd2G1-max7W1"]]], ["TOCEXT",["2HSd2",1,8,["HSd2G1-max8W1"]]], ["TOCEXT",["2HSd2",1,9,["HSd2G1-max9W1"]]], ["TOCEXT",["2J2",1,1,["J2G1-max1W1","J2"]]], ["TOCEXT",["2J2",1,2,["J2G1-max2W1"]]], ["TOCEXT",["2J2",1,3,["J2G1-max3W1"]]], ["TOCEXT",["2J2",1,4,["J2G1-max4W1"]]], ["TOCEXT",["2J2",1,5,["J2G1-max5W1"]]], ["TOCEXT",["2J2",1,6,["J2G1-max6W1"]]], ["TOCEXT",["2J2",1,7,["J2G1-max7W1"]]], ["TOCEXT",["2J2",1,8,["J2G1-max8W1"]]], ["TOCEXT",["2J2",1,9,["J2G1-max9W1"]]], ["TOCEXT",["2J2d2",1,1,["J2d2G1-max1W1"]]], ["TOCEXT",["2J2d2",1,10,["J2d2G1-max10W1"]]], ["TOCEXT",["2J2d2",1,10,["J2d2G1-max10W2"]]], ["TOCEXT",["2J2d2",1,2,["J2d2G1-max2W1"]]], ["TOCEXT",["2J2d2",1,2,["J2d2G1-max2W2"]]], ["TOCEXT",["2J2d2",1,3,["J2d2G1-max3W1"]]], ["TOCEXT",["2J2d2",1,3,["J2d2G1-max3W2"]]], ["TOCEXT",["2J2d2",1,4,["J2d2G1-max4W1"]]], ["TOCEXT",["2J2d2",1,5,["J2d2G1-max5W1"]]], ["TOCEXT",["2J2d2",1,6,["J2d2G1-max6W1"]]], ["TOCEXT",["2J2d2",1,7,["J2d2G1-max7W1"]]], ["TOCEXT",["2J2d2",1,8,["J2d2G1-max8W1"]]], ["TOCEXT",["2J2d2",1,8,["J2d2G1-max8W2"]]], ["TOCEXT",["2J2d2",1,9,["J2d2G1-max9W1"]]], ["TOCEXT",["2J2d2i",1,1,["J2d2G1-max1W1"]]], ["TOCEXT",["2J2d2i",1,10,["J2d2G1-max10W1"]]], ["TOCEXT",["2J2d2i",1,2,["J2d2G1-max2W1","J2.2"]]], ["TOCEXT",["2J2d2i",1,3,["J2d2G1-max3W1"]]], ["TOCEXT",["2J2d2i",1,4,["J2d2G1-max4W1"]]], ["TOCEXT",["2J2d2i",1,5,["J2d2G1-max5W1"]]], ["TOCEXT",["2J2d2i",1,6,["J2d2G1-max6W1"]]], ["TOCEXT",["2J2d2i",1,7,["J2d2G1-max7W1"]]], ["TOCEXT",["2J2d2i",1,8,["J2d2G1-max8W1"]]], ["TOCEXT",["2J2d2i",1,9,["J2d2G1-max9W1"]]], ["TOCEXT",["2L27",1,1,["L27G1-max1W1"]]], ["TOCEXT",["2L27",1,1,["L27G1-max1W2"]]], ["TOCEXT",["2L27",1,1,["L27G1-max1W3"]]], ["TOCEXT",["2L27",1,2,["L27G1-max2W1"]]], ["TOCEXT",["2L27",1,2,["L27G1-max2W2"]]], ["TOCEXT",["2L27",1,2,["L27G1-max2W3"]]], ["TOCEXT",["2L27",1,3,["L27G1-max3W1","L3(2)"]]], ["TOCEXT",["2L27",1,3,["L27G1-max3W2","L3(2)"]]], ["TOCEXT",["2L27",1,3,["L27G1-max3W3","L3(2)"]]], ["TOCEXT",["2L27d2",1,1,["L27d2G1-max1W1"]]], ["TOCEXT",["2L27d2",1,1,["L27d2G1-max1W2"]]], ["TOCEXT",["2L27d2",1,2,["L27d2G1-max2W1"]]], ["TOCEXT",["2L27d2",1,3,["L27d2G1-max3W1"]]], ["TOCEXT",["2L27d2",1,4,["L27d2G1-max4W1"]]], ["TOCEXT",["2L27d2i",1,1,["L27d2G1-max1W1"]]], ["TOCEXT",["2L27d2i",1,2,["L27d2G1-max2W1","L3(2).2"]]], ["TOCEXT",["2L27d2i",1,3,["L27d2G1-max3W1"]]], ["TOCEXT",["2L27d2i",1,4,["L27d2G1-max4W1"]]], ["TOCEXT",["2L34",1,1,["L34G1-max1W1"]]], ["TOCEXT",["2L34",1,2,["L34G1-max2W1"]]], ["TOCEXT",["2L34",1,3,["L34G1-max3W1","L3(4)"]]], ["TOCEXT",["2L34",1,4,["L34G1-max4W2"]]], ["TOCEXT",["2L34",1,5,["L34G1-max5W2"]]], ["TOCEXT",["2L34",1,6,["L34G1-max6W1","L3(4)"]]], ["TOCEXT",["2L34",1,7,["L34G1-max7W1"]]], ["TOCEXT",["2L34",1,8,["L34G1-max8W1"]]], ["TOCEXT",["2L34",1,9,["L34G1-max9W1"]]], ["TOCEXT",["2M12",1,1,["M12G1-max1W1","M12"]]], ["TOCEXT",["2M12",1,10,["M12G1-max10W1"]]], ["TOCEXT",["2M12",1,11,["M12G1-max11W1"]]], ["TOCEXT",["2M12",1,2,["M12G1-max2W1","M12"]]], ["TOCEXT",["2M12",1,3,["M12G1-max3W1"]]], ["TOCEXT",["2M12",1,4,["M12G1-max4W1"]]], ["TOCEXT",["2M12",1,5,["M12G1-max5W1"]]], ["TOCEXT",["2M12",1,6,["M12G1-max6W1"]]], ["TOCEXT",["2M12",1,7,["M12G1-max7W1"]]], ["TOCEXT",["2M12",1,8,["M12G1-max8W1"]]], ["TOCEXT",["2M12",1,9,["M12G1-max9W1"]]], ["TOCEXT",["2M12",1,9,["M12G1-max9W2"]]], ["TOCEXT",["2M12d2",1,2,["M12d2G1-max2W1","M12.2"]]], ["TOCEXT",["2M12d2",1,2,["M12d2G1-max2W2","M12.2"]]], ["TOCEXT",["2M12d2",1,3,["M12d2G1-max3W1"]]], ["TOCEXT",["2M12d2",1,3,["M12d2G1-max3W2"]]], ["TOCEXT",["2M12d2",1,4,["M12d2G1-max4W1"]]], ["TOCEXT",["2M12d2",1,5,["M12d2G1-max5W1"]]], ["TOCEXT",["2M12d2",1,6,["M12d2G1-max6W1"]]], ["TOCEXT",["2M12d2",1,7,["M12d2G1-max7W1","M12.2"]]], ["TOCEXT",["2M12d2",1,8,["M12d2G1-max8W1"]]], ["TOCEXT",["2M12d2",1,9,["M12d2G1-max9W1"]]], ["TOCEXT",["2M22",1,1,["M22G1-max1W1"]]], ["TOCEXT",["2M22",1,2,["M22G1-max2W1"]]], ["TOCEXT",["2M22",1,3,["M22G1-max3W1"]]], ["TOCEXT",["2M22",1,4,["M22G1-max4W1"]]], ["TOCEXT",["2M22",1,5,["M22G1-max5W1"]]], ["TOCEXT",["2M22",1,6,["M22G1-max6W1"]]], ["TOCEXT",["2M22",1,7,["M22G1-max7W1"]]], ["TOCEXT",["2M22",1,7,["M22G1-max7W2"]]], ["TOCEXT",["2M22",1,8,["M22G1-max8W1"]]], ["TOCEXT",["2M22d2",1,1,["M22d2G1-max1W1"]]], ["TOCEXT",["2M22d2",1,1,["M22d2G1-max1W2"]]], ["TOCEXT",["2M22d2",1,2,["M22d2G1-max2W1"]]], ["TOCEXT",["2M22d2",1,2,["M22d2G1-max2W2"]]], ["TOCEXT",["2M22d2",1,3,["M22d2G1-max3W1"]]], ["TOCEXT",["2M22d2",1,4,["M22d2G1-max4W1"]]], ["TOCEXT",["2M22d2",1,5,["M22d2G1-max5W1"]]], ["TOCEXT",["2M22d2",1,5,["M22d2G1-max5W2","M22.2"]]], ["TOCEXT",["2M22d2",1,6,["M22d2G1-max6W1"]]], ["TOCEXT",["2M22d2",1,7,["M22d2G1-max7W1","M22.2"]]], ["TOCEXT",["2M22d2",1,7,["M22d2G1-max7W2","M22.2"]]], ["TOCEXT",["2Ru",1,1,["RuG1-max1W1"]]], ["TOCEXT",["2Ru",1,1,["RuG1-max1W2"]]], ["TOCEXT",["2Ru",1,10,["RuG1-max10W1","Ru"]]], ["TOCEXT",["2Ru",1,10,["RuG1-max10W2","Ru"]]], ["TOCEXT",["2Ru",1,11,["RuG1-max11W1"]]], ["TOCEXT",["2Ru",1,11,["RuG1-max11W2"]]], ["TOCEXT",["2Ru",1,12,["RuG1-max12W1"]]], ["TOCEXT",["2Ru",1,12,["RuG1-max12W2"]]], ["TOCEXT",["2Ru",1,13,["RuG1-max13W1"]]], ["TOCEXT",["2Ru",1,13,["RuG1-max13W2"]]], ["TOCEXT",["2Ru",1,14,["RuG1-max14W1"]]], ["TOCEXT",["2Ru",1,14,["RuG1-max14W2"]]], ["TOCEXT",["2Ru",1,15,["RuG1-max15W1"]]], ["TOCEXT",["2Ru",1,15,["RuG1-max15W2"]]], ["TOCEXT",["2Ru",1,15,["RuG1-max15W3"]]], ["TOCEXT",["2Ru",1,2,["RuG1-max2W1"]]], ["TOCEXT",["2Ru",1,2,["RuG1-max2W2"]]], ["TOCEXT",["2Ru",1,3,["RuG1-max3W1"]]], ["TOCEXT",["2Ru",1,3,["RuG1-max3W2"]]], ["TOCEXT",["2Ru",1,4,["RuG1-max4W1"]]], ["TOCEXT",["2Ru",1,4,["RuG1-max4W2"]]], ["TOCEXT",["2Ru",1,5,["RuG1-max5W1","Ru"]]], ["TOCEXT",["2Ru",1,5,["RuG1-max5W2"]]], ["TOCEXT",["2Ru",1,6,["RuG1-max6W1"]]], ["TOCEXT",["2Ru",1,6,["RuG1-max6W2"]]], ["TOCEXT",["2Ru",1,7,["RuG1-max7W1"]]], ["TOCEXT",["2Ru",1,7,["RuG1-max7W2"]]], ["TOCEXT",["2Ru",1,8,["RuG1-max8W1"]]], ["TOCEXT",["2Ru",1,8,["RuG1-max8W2","Ru"]]], ["TOCEXT",["2Ru",1,9,["RuG1-max9W1"]]], ["TOCEXT",["2Ru",1,9,["RuG1-max9W2"]]], ["TOCEXT",["2Ru",1,9,["RuG1-max9W3"]]], ["TOCEXT",["2S5",1,1,["S5G1-max1W1"]]], ["TOCEXT",["2S5",1,2,["S5G1-max2W1"]]], ["TOCEXT",["2S5",1,3,["S5G1-max3W1"]]], ["TOCEXT",["2S5",1,4,["S5G1-max4W1"]]], ["TOCEXT",["2S5i",1,1,["S5G1-max1W1"]]], ["TOCEXT",["2S5i",1,2,["S5G1-max2W1"]]], ["TOCEXT",["2S5i",1,3,["S5G1-max3W1"]]], ["TOCEXT",["2S5i",1,4,["S5G1-max4W1"]]], ["TOCEXT",["2S6",1,1,["S6G1-max1W1"]]], ["TOCEXT",["2S6",1,2,["S6G1-max2W1"]]], ["TOCEXT",["2S6",1,3,["S6G1-max3W1"]]], ["TOCEXT",["2S6",1,4,["S6G1-max4W1"]]], ["TOCEXT",["2S6",1,5,["S6G1-max5W1"]]], ["TOCEXT",["2S6",1,6,["S6G1-max6W1"]]], ["TOCEXT",["2S62",1,1,["S62G1-max1W1"]]], ["TOCEXT",["2S62",1,2,["S62G1-max2W1"]]], ["TOCEXT",["2S62",1,3,["S62G1-max3W1"]]], ["TOCEXT",["2S62",1,4,["S62G1-max4W1","S6(2)"]]], ["TOCEXT",["2S62",1,5,["S62G1-max5W1"]]], ["TOCEXT",["2S62",1,6,["S62G1-max6W1"]]], ["TOCEXT",["2S62",1,7,["S62G1-max7W1"]]], ["TOCEXT",["2S62",1,8,["S62G1-max8W1","S6(2)"]]], ["TOCEXT",["2Suz",1,1,["SuzG1-max1W1"]]], ["TOCEXT",["2Suz",1,10,["SuzG1-max10W1"]]], ["TOCEXT",["2Suz",1,11,["SuzG1-max11W1"]]], ["TOCEXT",["2Suz",1,12,["SuzG1-max12W1"]]], ["TOCEXT",["2Suz",1,13,["SuzG1-max13W1"]]], ["TOCEXT",["2Suz",1,14,["SuzG1-max14W1"]]], ["TOCEXT",["2Suz",1,15,["SuzG1-max15W1"]]], ["TOCEXT",["2Suz",1,16,["SuzG1-max16W1"]]], ["TOCEXT",["2Suz",1,17,["SuzG1-max17W1"]]], ["TOCEXT",["2Suz",1,2,["SuzG1-max2W1"]]], ["TOCEXT",["2Suz",1,3,["SuzG1-max3W1"]]], ["TOCEXT",["2Suz",1,4,["SuzG1-max4W1"]]], ["TOCEXT",["2Suz",1,5,["SuzG1-max5W1"]]], ["TOCEXT",["2Suz",1,6,["SuzG1-max6W1"]]], ["TOCEXT",["2Suz",1,7,["SuzG1-max7W1"]]], ["TOCEXT",["2Suz",1,8,["SuzG1-max8W1"]]], ["TOCEXT",["2Suz",1,9,["SuzG1-max9W1"]]], ["TOCEXT",["2Suzd2",1,1,["Suzd2G1-max1W1"]]], ["TOCEXT",["2Suzd2",1,10,["Suzd2G1-max10W1"]]], ["TOCEXT",["2Suzd2",1,11,["Suzd2G1-max11W1"]]], ["TOCEXT",["2Suzd2",1,11,["Suzd2G1-max11W2"]]], ["TOCEXT",["2Suzd2",1,12,["Suzd2G1-max12W1"]]], ["TOCEXT",["2Suzd2",1,13,["Suzd2G1-max13W1"]]], ["TOCEXT",["2Suzd2",1,13,["Suzd2G1-max13W2"]]], ["TOCEXT",["2Suzd2",1,14,["Suzd2G1-max14W1"]]], ["TOCEXT",["2Suzd2",1,15,["Suzd2G1-max15W1"]]], ["TOCEXT",["2Suzd2",1,16,["Suzd2G1-max16W1"]]], ["TOCEXT",["2Suzd2",1,16,["Suzd2G1-max16W2"]]], ["TOCEXT",["2Suzd2",1,2,["Suzd2G1-max2W1"]]], ["TOCEXT",["2Suzd2",1,2,["Suzd2G1-max2W2"]]], ["TOCEXT",["2Suzd2",1,3,["Suzd2G1-max3W1"]]], ["TOCEXT",["2Suzd2",1,4,["Suzd2G1-max4W1"]]], ["TOCEXT",["2Suzd2",1,5,["Suzd2G1-max5W1"]]], ["TOCEXT",["2Suzd2",1,5,["Suzd2G1-max5W2"]]], ["TOCEXT",["2Suzd2",1,6,["Suzd2G1-max6W1","Suz.2"]]], ["TOCEXT",["2Suzd2",1,7,["Suzd2G1-max7W1"]]], ["TOCEXT",["2Suzd2",1,7,["Suzd2G1-max7W2"]]], ["TOCEXT",["2Suzd2",1,8,["Suzd2G1-max8W1"]]], ["TOCEXT",["2Suzd2",1,8,["Suzd2G1-max8W2"]]], ["TOCEXT",["2Suzd2",1,9,["Suzd2G1-max9W1"]]], ["TOCEXT",["2Sz8",1,1,["Sz8G1-max1W1"]]], ["TOCEXT",["2Sz8",1,2,["Sz8G1-max2W1"]]], ["TOCEXT",["2Sz8",1,3,["Sz8G1-max3W1"]]], ["TOCEXT",["2Sz8",1,4,["Sz8G1-max4W1","Sz(8)"]]], ["TOCEXT",["2U62",1,1,["U62G1-max1W1","U6(2)"]]], ["TOCEXT",["2U62",1,1,["U62G1-max1W2","U6(2)"]]], ["TOCEXT",["2U62",1,10,["U62G1-max10W1"]]], ["TOCEXT",["2U62",1,11,["U62G1-max11W1","U6(2)"]]], ["TOCEXT",["2U62",1,11,["U62G1-max11W2","U6(2)"]]], ["TOCEXT",["2U62",1,12,["U62G1-max12W1"]]], ["TOCEXT",["2U62",1,13,["U62G1-max13W1"]]], ["TOCEXT",["2U62",1,14,["U62G1-max14W1","U6(2)"]]], ["TOCEXT",["2U62",1,15,["U62G1-max15W1"]]], ["TOCEXT",["2U62",1,16,["U62G1-max16W1"]]], ["TOCEXT",["2U62",1,2,["U62G1-max2W1"]]], ["TOCEXT",["2U62",1,3,["U62G1-max3W1"]]], ["TOCEXT",["2U62",1,4,["U62G1-max4W1","U6(2)"]]], ["TOCEXT",["2U62",1,4,["U62G1-max4W2","U6(2)"]]], ["TOCEXT",["2U62",1,5,["U62G1-max5W1"]]], ["TOCEXT",["2U62",1,6,["U62G1-max6W1"]]], ["TOCEXT",["2U62",1,7,["U62G1-max7W1"]]], ["TOCEXT",["2U62",1,8,["U62G1-max8W1","U6(2)"]]], ["TOCEXT",["2U62",1,8,["U62G1-max8W2","U6(2)"]]], ["TOCEXT",["2U62",1,9,["U62G1-max9W1"]]], ["TOCEXT",["3A6",1,1,["A6G1-max1W1"]]], ["TOCEXT",["3A6",1,2,["A6G1-max2W1"]]], ["TOCEXT",["3A6",1,3,["A6G1-max3W1"]]], ["TOCEXT",["3A6",1,4,["A6G1-max4W1"]]], ["TOCEXT",["3A6",1,5,["A6G1-max5W1"]]], ["TOCEXT",["3A7",1,1,["A7G1-max1W1"]]], ["TOCEXT",["3A7",1,2,["A7G1-max2W1"]]], ["TOCEXT",["3F22",1,1,["F22G1-max1W1"]]], ["TOCEXT",["3F22",1,10,["F22G1-max10W1"]]], ["TOCEXT",["3F22",1,11,["F22G1-max11W1"]]], ["TOCEXT",["3F22",1,12,["F22G1-max12W1"]]], ["TOCEXT",["3F22",1,13,["F22G1-max13W1"]]], ["TOCEXT",["3F22",1,13,["F22G1-max13W2","Fi22"]]], ["TOCEXT",["3F22",1,14,["F22G1-max14W1"]]], ["TOCEXT",["3F22",1,2,["F22G1-max2W1"]]], ["TOCEXT",["3F22",1,3,["F22G1-max3W1"]]], ["TOCEXT",["3F22",1,3,["F22G1-max3W2"]]], ["TOCEXT",["3F22",1,4,["F22G1-max4W1"]]], ["TOCEXT",["3F22",1,5,["F22G1-max5W1"]]], ["TOCEXT",["3F22",1,6,["F22G1-max6W1","Fi22"]]], ["TOCEXT",["3F22",1,7,["F22G1-max7W1"]]], ["TOCEXT",["3F22",1,8,["F22G1-max8W1"]]], ["TOCEXT",["3F22",1,9,["F22G1-max9W1"]]], ["TOCEXT",["3F22d2",1,1,["F22d2G1-max1W1"]]], ["TOCEXT",["3F22d2",1,10,["F22d2G1-max10W2"]]], ["TOCEXT",["3F22d2",1,11,["F22d2G1-max11W2"]]], ["TOCEXT",["3F22d2",1,12,["F22d2G1-max12W2"]]], ["TOCEXT",["3F22d2",1,13,["F22d2G1-max13W1","Fi22.2"]]], ["TOCEXT",["3F22d2",1,2,["F22d2G1-max2W1"]]], ["TOCEXT",["3F22d2",1,2,["F22d2G1-max2W2"]]], ["TOCEXT",["3F22d2",1,3,["F22d2G1-max3W2","Fi22.2"]]], ["TOCEXT",["3F22d2",1,4,["F22d2G1-max4W2"]]], ["TOCEXT",["3F22d2",1,5,["F22d2G1-max5W2","Fi22.2"]]], ["TOCEXT",["3F22d2",1,6,["F22d2G1-max6W2"]]], ["TOCEXT",["3F22d2",1,7,["F22d2G1-max7W2"]]], ["TOCEXT",["3F22d2",1,8,["F22d2G1-max8W2","Fi22.2"]]], ["TOCEXT",["3F22d2",1,9,["F22d2G1-max9W2"]]], ["TOCEXT",["3F24d2",1,1,["F24d2G1-max1W1"]]], ["TOCEXT",["3F24d2",1,10,["F24d2G1-max10W1"]]], ["TOCEXT",["3F24d2",1,11,["F24d2G1-max11W1"]]], ["TOCEXT",["3F24d2",1,12,["F24d2G1-max12W1"]]], ["TOCEXT",["3F24d2",1,13,["F24d2G1-max13W1"]]], ["TOCEXT",["3F24d2",1,14,["F24d2G1-max14W1"]]], ["TOCEXT",["3F24d2",1,15,["F24d2G1-max15W1","Fi24'.2"]]], ["TOCEXT",["3F24d2",1,16,["F24d2G1-max16W1"]]], ["TOCEXT",["3F24d2",1,17,["F24d2G1-max17W1","Fi24'.2"]]], ["TOCEXT",["3F24d2",1,18,["F24d2G1-max18W1"]]], ["TOCEXT",["3F24d2",1,19,["F24d2G1-max19W1"]]], ["TOCEXT",["3F24d2",1,2,["F24d2G1-max2W1"]]], ["TOCEXT",["3F24d2",1,20,["F24d2G1-max20W1","Fi24'.2"]]], ["TOCEXT",["3F24d2",1,21,["F24d2G1-max21W1","Fi24'.2"]]], ["TOCEXT",["3F24d2",1,3,["F24d2G1-max3W1"]]], ["TOCEXT",["3F24d2",1,4,["F24d2G1-max4W1"]]], ["TOCEXT",["3F24d2",1,5,["F24d2G1-max5W1","Fi24'.2"]]], ["TOCEXT",["3F24d2",1,6,["F24d2G1-max6W1"]]], ["TOCEXT",["3F24d2",1,7,["F24d2G1-max7W1"]]], ["TOCEXT",["3F24d2",1,8,["F24d2G1-max8W1","Fi24'.2"]]], ["TOCEXT",["3F24d2",1,9,["F24d2G1-max9W1","Fi24'.2"]]], ["TOCEXT",["3G23",1,1,["G23G1-max1W1","G2(3)"]]], ["TOCEXT",["3G23",1,10,["G23G1-max10W1"]]], ["TOCEXT",["3G23",1,2,["G23G1-max2W1","G2(3)"]]], ["TOCEXT",["3G23",1,3,["G23G1-max3W1"]]], ["TOCEXT",["3G23",1,4,["G23G1-max4W1"]]], ["TOCEXT",["3G23",1,5,["G23G1-max5W1"]]], ["TOCEXT",["3G23",1,6,["G23G1-max6W1"]]], ["TOCEXT",["3G23",1,7,["G23G1-max7W1","G2(3)"]]], ["TOCEXT",["3G23",1,8,["G23G1-max8W1"]]], ["TOCEXT",["3G23",1,9,["G23G1-max9W1"]]], ["TOCEXT",["3J3",1,1,["J3G1-max1W1","J3"]]], ["TOCEXT",["3J3",1,2,["J3G1-max2W1"]]], ["TOCEXT",["3J3",1,3,["J3G1-max3W1"]]], ["TOCEXT",["3J3",1,4,["J3G1-max4W1"]]], ["TOCEXT",["3J3",1,5,["J3G1-max5W1"]]], ["TOCEXT",["3J3",1,6,["J3G1-max6W1"]]], ["TOCEXT",["3J3",1,7,["J3G1-max7W1"]]], ["TOCEXT",["3J3",1,8,["J3G1-max8W1"]]], ["TOCEXT",["3J3",1,9,["J3G1-max9W1","J3"]]], ["TOCEXT",["3J3d2",1,1,["J3d2G1-max1W1"]]], ["TOCEXT",["3J3d2",1,1,["J3d2G1-max1W2"]]], ["TOCEXT",["3J3d2",1,2,["J3d2G1-max2W1","J3.2"]]], ["TOCEXT",["3J3d2",1,2,["J3d2G1-max2W2","J3.2"]]], ["TOCEXT",["3J3d2",1,3,["J3d2G1-max3W1","J3.2"]]], ["TOCEXT",["3J3d2",1,3,["J3d2G1-max3W2","J3.2"]]], ["TOCEXT",["3J3d2",1,4,["J3d2G1-max4W1","J3.2"]]], ["TOCEXT",["3J3d2",1,4,["J3d2G1-max4W2","J3.2"]]], ["TOCEXT",["3J3d2",1,4,["J3d2G1-max4W2","J3.2"]]], ["TOCEXT",["3J3d2",1,5,["J3d2G1-max5W1"]]], ["TOCEXT",["3J3d2",1,5,["J3d2G1-max5W2"]]], ["TOCEXT",["3J3d2",1,6,["J3d2G1-max6W1"]]], ["TOCEXT",["3J3d2",1,6,["J3d2G1-max6W2"]]], ["TOCEXT",["3J3d2",1,7,["J3d2G1-max7W1","J3.2"]]], ["TOCEXT",["3J3d2",1,7,["J3d2G1-max7W2","J3.2"]]], ["TOCEXT",["3J3d2",1,8,["J3d2G1-max8W1","J3.2"]]], ["TOCEXT",["3J3d2",1,8,["J3d2G1-max8W2","J3.2"]]], ["TOCEXT",["3J3d2",1,9,["J3d2G1-max9W1","J3.2"]]], ["TOCEXT",["3J3d2",1,9,["J3d2G1-max9W2"]]], ["TOCEXT",["3L34",1,1,["L34G1-max1W1"]]], ["TOCEXT",["3L34",1,2,["L34G1-max2W1"]]], ["TOCEXT",["3L34",1,3,["L34G1-max3W1"]]], ["TOCEXT",["3L34",1,6,["L34G1-max6W1","L3(4)"]]], ["TOCEXT",["3L34",1,7,["L34G1-max7W1","L3(4)"]]], ["TOCEXT",["3L34",1,8,["L34G1-max8W1","L3(4)"]]], ["TOCEXT",["3L34",1,9,["L34G1-max9W1"]]], ["TOCEXT",["3M22",1,1,["M22G1-max1W1"]]], ["TOCEXT",["3M22",1,2,["M22G1-max2W1"]]], ["TOCEXT",["3M22",1,3,["M22G1-max3W1"]]], ["TOCEXT",["3M22",1,4,["M22G1-max4W1"]]], ["TOCEXT",["3M22",1,5,["M22G1-max5W1","M22"]]], ["TOCEXT",["3M22",1,6,["M22G1-max6W1","M22"]]], ["TOCEXT",["3M22",1,7,["M22G1-max7W1"]]], ["TOCEXT",["3M22",1,7,["M22G1-max7W2"]]], ["TOCEXT",["3M22",1,8,["M22G1-max8W1","M22"]]], ["TOCEXT",["3M22d2",1,1,["M22d2G1-max1W1"]]], ["TOCEXT",["3M22d2",1,1,["M22d2G1-max1W2"]]], ["TOCEXT",["3M22d2",1,2,["M22d2G1-max2W1"]]], ["TOCEXT",["3M22d2",1,2,["M22d2G1-max2W2"]]], ["TOCEXT",["3M22d2",1,3,["M22d2G1-max3W1"]]], ["TOCEXT",["3M22d2",1,4,["M22d2G1-max4W1"]]], ["TOCEXT",["3M22d2",1,5,["M22d2G1-max5W1","M22.2"]]], ["TOCEXT",["3M22d2",1,5,["M22d2G1-max5W2","M22.2"]]], ["TOCEXT",["3M22d2",1,6,["M22d2G1-max6W1"]]], ["TOCEXT",["3M22d2",1,7,["M22d2G1-max7W1","M22.2"]]], ["TOCEXT",["3M22d2",1,7,["M22d2G1-max7W2","M22.2"]]], ["TOCEXT",["3McL",1,1,["McLG1-max1W1"]]], ["TOCEXT",["3McL",1,10,["McLG1-max10W1"]]], ["TOCEXT",["3McL",1,11,["McLG1-max11W1","McL"]]], ["TOCEXT",["3McL",1,12,["McLG1-max12W1"]]], ["TOCEXT",["3McL",1,2,["McLG1-max2W1"]]], ["TOCEXT",["3McL",1,3,["McLG1-max3W1"]]], ["TOCEXT",["3McL",1,4,["McLG1-max4W1"]]], ["TOCEXT",["3McL",1,5,["McLG1-max5W1"]]], ["TOCEXT",["3McL",1,6,["McLG1-max6W1"]]], ["TOCEXT",["3McL",1,7,["McLG1-max7W1"]]], ["TOCEXT",["3McL",1,8,["McLG1-max8W1","McL"]]], ["TOCEXT",["3McL",1,9,["McLG1-max9W1"]]], ["TOCEXT",["3McLd2",1,1,["McLd2G1-max1W1"]]], ["TOCEXT",["3McLd2",1,10,["McLd2G1-max10W1"]]], ["TOCEXT",["3McLd2",1,2,["McLd2G1-max2W1"]]], ["TOCEXT",["3McLd2",1,3,["McLd2G1-max3W1"]]], ["TOCEXT",["3McLd2",1,4,["McLd2G1-max4W1"]]], ["TOCEXT",["3McLd2",1,5,["McLd2G1-max5W1"]]], ["TOCEXT",["3McLd2",1,6,["McLd2G1-max6W1"]]], ["TOCEXT",["3McLd2",1,7,["McLd2G1-max7W1"]]], ["TOCEXT",["3McLd2",1,7,["McLd2G1-max7W2"]]], ["TOCEXT",["3McLd2",1,8,["McLd2G1-max8W1"]]], ["TOCEXT",["3McLd2",1,8,["McLd2G1-max8W2","McL.2"]]], ["TOCEXT",["3McLd2",1,9,["McLd2G1-max9W1"]]], ["TOCEXT",["3ON",1,1,["ONG1-max1W1","ON"]]], ["TOCEXT",["3ON",1,10,["ONG1-max10W1"]]], ["TOCEXT",["3ON",1,11,["ONG1-max11W1"]]], ["TOCEXT",["3ON",1,12,["ONG1-max12W1"]]], ["TOCEXT",["3ON",1,13,["ONG1-max13W1"]]], ["TOCEXT",["3ON",1,2,["ONG1-max2W1","ON"]]], ["TOCEXT",["3ON",1,3,["ONG1-max3W1","ON"]]], ["TOCEXT",["3ON",1,4,["ONG1-max4W1"]]], ["TOCEXT",["3ON",1,5,["ONG1-max5W1"]]], ["TOCEXT",["3ON",1,6,["ONG1-max6W1"]]], ["TOCEXT",["3ON",1,7,["ONG1-max7W1"]]], ["TOCEXT",["3ON",1,8,["ONG1-max8W1"]]], ["TOCEXT",["3ON",1,9,["ONG1-max9W1","ON"]]], ["TOCEXT",["3ONd2",1,1,["ONd2G1-max1W1"]]], ["TOCEXT",["3ONd2",1,10,["ONd2G1-max10W1"]]], ["TOCEXT",["3ONd2",1,2,["ONd2G1-max2W1"]]], ["TOCEXT",["3ONd2",1,3,["ONd2G1-max3W1"]]], ["TOCEXT",["3ONd2",1,4,["ONd2G1-max4W1"]]], ["TOCEXT",["3ONd2",1,5,["ONd2G1-max5W1"]]], ["TOCEXT",["3ONd2",1,6,["ONd2G1-max6W1","ON.2"]]], ["TOCEXT",["3ONd2",1,7,["ONd2G1-max7W1","ON.2"]]], ["TOCEXT",["3ONd2",1,8,["ONd2G1-max8W1"]]], ["TOCEXT",["3ONd2",1,9,["ONd2G1-max9W1"]]], ["TOCEXT",["3S6",1,1,["S6G1-max1W1"]]], ["TOCEXT",["3S6",1,2,["S6G1-max2W1","A6.2_1"]]], ["TOCEXT",["3S6",1,3,["S6G1-max3W1","A6.2_1"]]], ["TOCEXT",["3S6",1,4,["S6G1-max4W1"]]], ["TOCEXT",["3S6",1,5,["S6G1-max5W1","A6.2_1"]]], ["TOCEXT",["3S6",1,6,["S6G1-max6W1","A6.2_1"]]], ["TOCEXT",["3Suz",1,1,["SuzG1-max1W1","Suz"]]], ["TOCEXT",["3Suz",1,10,["SuzG1-max10W1","Suz"]]], ["TOCEXT",["3Suz",1,11,["SuzG1-max11W1"]]], ["TOCEXT",["3Suz",1,12,["SuzG1-max12W1"]]], ["TOCEXT",["3Suz",1,13,["SuzG1-max13W1"]]], ["TOCEXT",["3Suz",1,14,["SuzG1-max14W1","Suz"]]], ["TOCEXT",["3Suz",1,15,["SuzG1-max15W1","Suz"]]], ["TOCEXT",["3Suz",1,16,["SuzG1-max16W1","Suz"]]], ["TOCEXT",["3Suz",1,17,["SuzG1-max17W1"]]], ["TOCEXT",["3Suz",1,2,["SuzG1-max2W1"]]], ["TOCEXT",["3Suz",1,3,["SuzG1-max3W1","Suz"]]], ["TOCEXT",["3Suz",1,4,["SuzG1-max4W1","Suz"]]], ["TOCEXT",["3Suz",1,5,["SuzG1-max5W1"]]], ["TOCEXT",["3Suz",1,6,["SuzG1-max6W1","Suz"]]], ["TOCEXT",["3Suz",1,7,["SuzG1-max7W1","Suz"]]], ["TOCEXT",["3Suz",1,8,["SuzG1-max8W1"]]], ["TOCEXT",["3Suz",1,9,["SuzG1-max9W1"]]], ["TOCEXT",["3Suzd2",1,1,["Suzd2G1-max1W1"]]], ["TOCEXT",["3Suzd2",1,10,["Suzd2G1-max10W1","Suz.2"]]], ["TOCEXT",["3Suzd2",1,11,["Suzd2G1-max11W1","Suz.2"]]], ["TOCEXT",["3Suzd2",1,11,["Suzd2G1-max11W2"]]], ["TOCEXT",["3Suzd2",1,12,["Suzd2G1-max12W1"]]], ["TOCEXT",["3Suzd2",1,13,["Suzd2G1-max13W1"]]], ["TOCEXT",["3Suzd2",1,13,["Suzd2G1-max13W2"]]], ["TOCEXT",["3Suzd2",1,14,["Suzd2G1-max14W1"]]], ["TOCEXT",["3Suzd2",1,15,["Suzd2G1-max15W1","Suz.2"]]], ["TOCEXT",["3Suzd2",1,16,["Suzd2G1-max16W1"]]], ["TOCEXT",["3Suzd2",1,16,["Suzd2G1-max16W2"]]], ["TOCEXT",["3Suzd2",1,2,["Suzd2G1-max2W1"]]], ["TOCEXT",["3Suzd2",1,2,["Suzd2G1-max2W2","Suz.2"]]], ["TOCEXT",["3Suzd2",1,3,["Suzd2G1-max3W1"]]], ["TOCEXT",["3Suzd2",1,4,["Suzd2G1-max4W1","Suz.2"]]], ["TOCEXT",["3Suzd2",1,5,["Suzd2G1-max5W1","Suz.2"]]], ["TOCEXT",["3Suzd2",1,5,["Suzd2G1-max5W2"]]], ["TOCEXT",["3Suzd2",1,6,["Suzd2G1-max6W1"]]], ["TOCEXT",["3Suzd2",1,7,["Suzd2G1-max7W1"]]], ["TOCEXT",["3Suzd2",1,7,["Suzd2G1-max7W2"]]], ["TOCEXT",["3Suzd2",1,8,["Suzd2G1-max8W1","Suz.2"]]], ["TOCEXT",["3Suzd2",1,8,["Suzd2G1-max8W2","Suz.2"]]], ["TOCEXT",["3Suzd2",1,9,["Suzd2G1-max9W1"]]], ["TOCEXT",["3U62",1,1,["U62G1-max1W1","U6(2)"]]], ["TOCEXT",["3U62",1,1,["U62G1-max1W2"]]], ["TOCEXT",["3U62",1,10,["U62G1-max10W1"]]], ["TOCEXT",["3U62",1,11,["U62G1-max11W1"]]], ["TOCEXT",["3U62",1,11,["U62G1-max11W2"]]], ["TOCEXT",["3U62",1,12,["U62G1-max12W1"]]], ["TOCEXT",["3U62",1,13,["U62G1-max13W1"]]], ["TOCEXT",["3U62",1,14,["U62G1-max14W1","U6(2)"]]], ["TOCEXT",["3U62",1,15,["U62G1-max15W1"]]], ["TOCEXT",["3U62",1,16,["U62G1-max16W1"]]], ["TOCEXT",["3U62",1,2,["U62G1-max2W1","U6(2)"]]], ["TOCEXT",["3U62",1,3,["U62G1-max3W1"]]], ["TOCEXT",["3U62",1,4,["U62G1-max4W1"]]], ["TOCEXT",["3U62",1,4,["U62G1-max4W2"]]], ["TOCEXT",["3U62",1,5,["U62G1-max5W1"]]], ["TOCEXT",["3U62",1,6,["U62G1-max6W1"]]], ["TOCEXT",["3U62",1,7,["U62G1-max7W1"]]], ["TOCEXT",["3U62",1,8,["U62G1-max8W1","U6(2)"]]], ["TOCEXT",["3U62",1,8,["U62G1-max8W2","U6(2)"]]], ["TOCEXT",["3U62",1,9,["U62G1-max9W1"]]], ["TOCEXT",["4M22",1,1,["M22G1-max1W1"]]], ["TOCEXT",["4M22",1,2,["M22G1-max2W1"]]], ["TOCEXT",["4M22",1,3,["M22G1-max3W1"]]], ["TOCEXT",["4M22",1,4,["M22G1-max4W1"]]], ["TOCEXT",["4M22",1,5,["M22G1-max5W1"]]], ["TOCEXT",["4M22",1,6,["M22G1-max6W1"]]], ["TOCEXT",["4M22",1,7,["M22G1-max7W1"]]], ["TOCEXT",["4M22",1,7,["M22G1-max7W2"]]], ["TOCEXT",["4M22",1,8,["M22G1-max8W1"]]], ["TOCEXT",["4Sz8",1,1,["Sz8G1-max1W1"]]], ["TOCEXT",["4Sz8",1,2,["Sz8G1-max2W1","Sz(8)"]]], ["TOCEXT",["4Sz8",1,3,["Sz8G1-max3W1","Sz(8)"]]], ["TOCEXT",["4Sz8",1,4,["Sz8G1-max4W1","Sz(8)"]]], ["TOCEXT",["4Sz8d3",1,1,["Sz8d3G1-max1W1"]]], ["TOCEXT",["4Sz8d3",1,1,["Sz8d3G1-max1W2"]]], ["TOCEXT",["4Sz8d3",1,2,["Sz8d3G1-max2W1"]]], ["TOCEXT",["4Sz8d3",1,3,["Sz8d3G1-max3W1"]]], ["TOCEXT",["4Sz8d3",1,4,["Sz8d3G1-max4W1","Sz(8).3"]]], ["TOCEXT",["4Sz8d3",1,5,["Sz8d3G1-max5W1"]]], ["TOCEXT",["4U62",1,1,["U62G1-max1W1","U6(2)"]]], ["TOCEXT",["4U62",1,1,["U62G1-max1W2","U6(2)"]]], ["TOCEXT",["4U62",1,10,["U62G1-max10W1","U6(2)"]]], ["TOCEXT",["4U62",1,11,["U62G1-max11W1","U6(2)"]]], ["TOCEXT",["4U62",1,11,["U62G1-max11W2","U6(2)"]]], ["TOCEXT",["4U62",1,12,["U62G1-max12W1"]]], ["TOCEXT",["4U62",1,13,["U62G1-max13W1"]]], ["TOCEXT",["4U62",1,14,["U62G1-max14W1","U6(2)"]]], ["TOCEXT",["4U62",1,15,["U62G1-max15W1"]]], ["TOCEXT",["4U62",1,16,["U62G1-max16W1"]]], ["TOCEXT",["4U62",1,2,["U62G1-max2W1"]]], ["TOCEXT",["4U62",1,3,["U62G1-max3W1"]]], ["TOCEXT",["4U62",1,4,["U62G1-max4W1","U6(2)"]]], ["TOCEXT",["4U62",1,4,["U62G1-max4W2","U6(2)"]]], ["TOCEXT",["4U62",1,5,["U62G1-max5W1","U6(2)"]]], ["TOCEXT",["4U62",1,6,["U62G1-max6W1"]]], ["TOCEXT",["4U62",1,7,["U62G1-max7W1"]]], ["TOCEXT",["4U62",1,8,["U62G1-max8W1","U6(2)"]]], ["TOCEXT",["4U62",1,8,["U62G1-max8W2","U6(2)"]]], ["TOCEXT",["4U62",1,9,["U62G1-max9W1","U6(2)"]]], ["TOCEXT",["4aL34",1,1,["L34G1-max1W1"]]], ["TOCEXT",["4aL34",1,2,["L34G1-max2W1"]]], ["TOCEXT",["4aL34",1,3,["L34G1-max3W1","L3(4)"]]], ["TOCEXT",["4aL34",1,6,["L34G1-max6W1","L3(4)"]]], ["TOCEXT",["4aL34",1,7,["L34G1-max7W1"]]], ["TOCEXT",["4aL34",1,8,["L34G1-max8W1"]]], ["TOCEXT",["4aL34",1,9,["L34G1-max9W1"]]], ["TOCEXT",["4bL34",1,1,["L34G1-max1W1"]]], ["TOCEXT",["4bL34",1,2,["L34G1-max2W1"]]], ["TOCEXT",["4bL34",1,3,["L34G1-max3W1","L3(4)"]]], ["TOCEXT",["4bL34",1,6,["L34G1-max6W1","L3(4)"]]], ["TOCEXT",["4bL34",1,7,["L34G1-max7W1"]]], ["TOCEXT",["4bL34",1,8,["L34G1-max8W1"]]], ["TOCEXT",["4bL34",1,9,["L34G1-max9W1"]]], ["TOCEXT",["6A6",1,1,["A6G1-max1W1"]]], ["TOCEXT",["6A6",1,2,["A6G1-max2W1"]]], ["TOCEXT",["6A6",1,3,["A6G1-max3W1"]]], ["TOCEXT",["6A6",1,4,["A6G1-max4W1"]]], ["TOCEXT",["6A6",1,5,["A6G1-max5W1"]]], ["TOCEXT",["6A7",1,1,["A7G1-max1W1"]]], ["TOCEXT",["6A7",1,2,["A7G1-max2W1"]]], ["TOCEXT",["6F22",1,1,["F22G1-max1W1"]]], ["TOCEXT",["6F22",1,10,["F22G1-max10W1"]]], ["TOCEXT",["6F22",1,11,["F22G1-max11W1"]]], ["TOCEXT",["6F22",1,12,["F22G1-max12W1","Fi22"]]], ["TOCEXT",["6F22",1,13,["F22G1-max13W1"]]], ["TOCEXT",["6F22",1,13,["F22G1-max13W2","Fi22"]]], ["TOCEXT",["6F22",1,14,["F22G1-max14W1","Fi22"]]], ["TOCEXT",["6F22",1,2,["F22G1-max2W1"]]], ["TOCEXT",["6F22",1,3,["F22G1-max3W1"]]], ["TOCEXT",["6F22",1,3,["F22G1-max3W2"]]], ["TOCEXT",["6F22",1,4,["F22G1-max4W1","Fi22"]]], ["TOCEXT",["6F22",1,5,["F22G1-max5W1"]]], ["TOCEXT",["6F22",1,6,["F22G1-max6W1","Fi22"]]], ["TOCEXT",["6F22",1,7,["F22G1-max7W1"]]], ["TOCEXT",["6F22",1,8,["F22G1-max8W1"]]], ["TOCEXT",["6F22",1,9,["F22G1-max9W1","Fi22"]]], ["TOCEXT",["6F22d2",1,1,["F22d2G1-max1W1"]]], ["TOCEXT",["6F22d2",1,13,["F22d2G1-max13W1","Fi22.2","Fi22.2"]]], ["TOCEXT",["6F22d2",1,2,["F22d2G1-max2W1"]]], ["TOCEXT",["6L34",1,1,["L34G1-max1W1"]]], ["TOCEXT",["6L34",1,2,["L34G1-max2W1"]]], ["TOCEXT",["6L34",1,3,["L34G1-max3W1","L3(4)"]]], ["TOCEXT",["6L34",1,6,["L34G1-max6W1","L3(4)"]]], ["TOCEXT",["6L34",1,7,["L34G1-max7W1","L3(4)"]]], ["TOCEXT",["6L34",1,8,["L34G1-max8W1","L3(4)"]]], ["TOCEXT",["6L34",1,9,["L34G1-max9W1"]]], ["TOCEXT",["6M22",1,1,["M22G1-max1W1"]]], ["TOCEXT",["6M22",1,2,["M22G1-max2W1"]]], ["TOCEXT",["6M22",1,3,["M22G1-max3W1"]]], ["TOCEXT",["6M22",1,4,["M22G1-max4W1"]]], ["TOCEXT",["6M22",1,5,["M22G1-max5W1","M22"]]], ["TOCEXT",["6M22",1,6,["M22G1-max6W1","M22"]]], ["TOCEXT",["6M22",1,7,["M22G1-max7W1"]]], ["TOCEXT",["6M22",1,7,["M22G1-max7W2"]]], ["TOCEXT",["6M22",1,8,["M22G1-max8W1","M22"]]], ["TOCEXT",["6M22d2",1,1,["M22d2G1-max1W1"]]], ["TOCEXT",["6M22d2",1,1,["M22d2G1-max1W2"]]], ["TOCEXT",["6M22d2",1,2,["M22d2G1-max2W1"]]], ["TOCEXT",["6M22d2",1,2,["M22d2G1-max2W2"]]], ["TOCEXT",["6M22d2",1,3,["M22d2G1-max3W1"]]], ["TOCEXT",["6M22d2",1,4,["M22d2G1-max4W1"]]], ["TOCEXT",["6M22d2",1,5,["M22d2G1-max5W1","M22.2"]]], ["TOCEXT",["6M22d2",1,5,["M22d2G1-max5W2","M22.2"]]], ["TOCEXT",["6M22d2",1,6,["M22d2G1-max6W1"]]], ["TOCEXT",["6M22d2",1,7,["M22d2G1-max7W1","M22.2"]]], ["TOCEXT",["6M22d2",1,7,["M22d2G1-max7W2","M22.2"]]], ["TOCEXT",["6S6",1,1,["S6G1-max1W1"]]], ["TOCEXT",["6S6",1,2,["S6G1-max2W1","A6.2_1"]]], ["TOCEXT",["6S6",1,3,["S6G1-max3W1","A6.2_1"]]], ["TOCEXT",["6S6",1,4,["S6G1-max4W1"]]], ["TOCEXT",["6S6",1,5,["S6G1-max5W1","A6.2_1"]]], ["TOCEXT",["6S6",1,6,["S6G1-max6W1","A6.2_1"]]], ["TOCEXT",["6Suz",1,1,["SuzG1-max1W1","Suz"]]], ["TOCEXT",["6Suz",1,10,["SuzG1-max10W1","Suz"]]], ["TOCEXT",["6Suz",1,11,["SuzG1-max11W1"]]], ["TOCEXT",["6Suz",1,12,["SuzG1-max12W1"]]], ["TOCEXT",["6Suz",1,13,["SuzG1-max13W1"]]], ["TOCEXT",["6Suz",1,14,["SuzG1-max14W1","Suz"]]], ["TOCEXT",["6Suz",1,15,["SuzG1-max15W1","Suz"]]], ["TOCEXT",["6Suz",1,16,["SuzG1-max16W1","Suz"]]], ["TOCEXT",["6Suz",1,17,["SuzG1-max17W1"]]], ["TOCEXT",["6Suz",1,2,["SuzG1-max2W1"]]], ["TOCEXT",["6Suz",1,3,["SuzG1-max3W1","Suz"]]], ["TOCEXT",["6Suz",1,4,["SuzG1-max4W1","Suz"]]], ["TOCEXT",["6Suz",1,5,["SuzG1-max5W1"]]], ["TOCEXT",["6Suz",1,6,["SuzG1-max6W1","Suz"]]], ["TOCEXT",["6Suz",1,7,["SuzG1-max7W1","Suz"]]], ["TOCEXT",["6Suz",1,8,["SuzG1-max8W1"]]], ["TOCEXT",["6Suz",1,9,["SuzG1-max9W1"]]], ["TOCEXT",["6Suzd2",1,1,["Suzd2G1-max1W1"]]], ["TOCEXT",["6Suzd2",1,10,["Suzd2G1-max10W1","Suz.2"]]], ["TOCEXT",["6Suzd2",1,11,["Suzd2G1-max11W1","Suz.2"]]], ["TOCEXT",["6Suzd2",1,11,["Suzd2G1-max11W2"]]], ["TOCEXT",["6Suzd2",1,12,["Suzd2G1-max12W1"]]], ["TOCEXT",["6Suzd2",1,13,["Suzd2G1-max13W1"]]], ["TOCEXT",["6Suzd2",1,13,["Suzd2G1-max13W2"]]], ["TOCEXT",["6Suzd2",1,14,["Suzd2G1-max14W1"]]], ["TOCEXT",["6Suzd2",1,15,["Suzd2G1-max15W1","Suz.2"]]], ["TOCEXT",["6Suzd2",1,16,["Suzd2G1-max16W1"]]], ["TOCEXT",["6Suzd2",1,16,["Suzd2G1-max16W2"]]], ["TOCEXT",["6Suzd2",1,2,["Suzd2G1-max2W1"]]], ["TOCEXT",["6Suzd2",1,2,["Suzd2G1-max2W2","Suz.2"]]], ["TOCEXT",["6Suzd2",1,3,["Suzd2G1-max3W1"]]], ["TOCEXT",["6Suzd2",1,4,["Suzd2G1-max4W1","Suz.2"]]], ["TOCEXT",["6Suzd2",1,5,["Suzd2G1-max5W1","Suz.2"]]], ["TOCEXT",["6Suzd2",1,5,["Suzd2G1-max5W2"]]], ["TOCEXT",["6Suzd2",1,6,["Suzd2G1-max6W1","Suz.2"]]], ["TOCEXT",["6Suzd2",1,7,["Suzd2G1-max7W1"]]], ["TOCEXT",["6Suzd2",1,7,["Suzd2G1-max7W2"]]], ["TOCEXT",["6Suzd2",1,8,["Suzd2G1-max8W1","Suz.2"]]], ["TOCEXT",["6Suzd2",1,8,["Suzd2G1-max8W2","Suz.2"]]], ["TOCEXT",["6Suzd2",1,9,["Suzd2G1-max9W1"]]], ["TOCEXT",["6U62",1,1,["U62G1-max1W1","U6(2)"]]], ["TOCEXT",["6U62",1,1,["U62G1-max1W2","U6(2)"]]], ["TOCEXT",["6U62",1,10,["U62G1-max10W1"]]], ["TOCEXT",["6U62",1,11,["U62G1-max11W1","U6(2)"]]], ["TOCEXT",["6U62",1,11,["U62G1-max11W2","U6(2)"]]], ["TOCEXT",["6U62",1,12,["U62G1-max12W1"]]], ["TOCEXT",["6U62",1,13,["U62G1-max13W1"]]], ["TOCEXT",["6U62",1,14,["U62G1-max14W1","U6(2)"]]], ["TOCEXT",["6U62",1,15,["U62G1-max15W1"]]], ["TOCEXT",["6U62",1,16,["U62G1-max16W1"]]], ["TOCEXT",["6U62",1,2,["U62G1-max2W1","U6(2)"]]], ["TOCEXT",["6U62",1,3,["U62G1-max3W1"]]], ["TOCEXT",["6U62",1,4,["U62G1-max4W1","U6(2)"]]], ["TOCEXT",["6U62",1,4,["U62G1-max4W2","U6(2)"]]], ["TOCEXT",["6U62",1,5,["U62G1-max5W1"]]], ["TOCEXT",["6U62",1,6,["U62G1-max6W1"]]], ["TOCEXT",["6U62",1,7,["U62G1-max7W1"]]], ["TOCEXT",["6U62",1,8,["U62G1-max8W1","U6(2)"]]], ["TOCEXT",["6U62",1,8,["U62G1-max8W2","U6(2)"]]], ["TOCEXT",["6U62",1,9,["U62G1-max9W1"]]], ["API",["2O73d2G1-p4480B0",[1,12,"imprim","???"]]], ["API",["6O73G1-p3374B0",[0,[1134,2240]]]], ["API",["6O73d2G1-p5614B0",[0,[1134,4480]]]], ["CHAR",["2.O7(3).2","2O73d2G1-p4480B0",0,[1,2,7,8,13,14,20,21,[101,2]],"1ab+105ab+195ab+819ab+1120a^2"]], ["CHAR",["3.L3(7).2","3L37d2G1-f7r6aB0",7,20,"6a"]], ["CHAR",["6.O7(3)","6O73G1-p3374B0",0,[[1,2],4,6,[7,2],12,60,61,89,90,91,92],"1a^2+27ab+105a+182a+195a^2+351ab+560ab+819a"]] ] } atlasrep-2.1.8/datapkg/toc_SHA.json0000644000175000017500000017734114254677303015275 0ustar samsam{ "ID":"internal", "Version":"2022-06-22", "DataURL":"https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/datapkg", "SelfURL":"https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/datapkg/toc_SHA.json", "LocalDirectory":"atlasrep/datapkg", "Data":[ ["GNAN",["2^(9+16).S8(2)","Bmax4"]], ["GRS",["2^(9+16).S8(2)",1589728887019929600]], ["TOC",["kernel","12M22G1-ker2M22W1",["b08c39cbe7cde1a436b8eaa61cf1540275571adf7cde69c41f35c0dc9cad535e"]]], ["TOC",["kernel","12M22G1-ker3M22W1",["6c9790cd4266610f384536ff432890e7557e81beb2a3853d0895ece42c19295a"]]], ["TOC",["kernel","12M22G1-ker4M22W1",["93faba3df785adf4a837aa6aaf4d9b1d6747f5061bb1c571ec4e23d2f46aed3e"]]], ["TOC",["kernel","12M22G1-ker6M22W1",["cf0a262529c4ce9729a3ee50b6308f7713e3e1f5d3b69fd458281988e43d03cd"]]], ["TOC",["kernel","12M22G1-kerM22W1",["cc5a8d064a151438492d26d57862b6e17ad1feee0725aae1e496bd7ecef1bae"]]], ["TOC",["kernel","12M22d2G1-ker2M22d2W1",["fb044ea06a44dc8e1cb3eecd2e7207593ef4fd232537b141879ae5b8b3721327"]]], ["TOC",["kernel","12M22d2G1-ker3M22d2W1",["42a70d949ba9e891c071491070c13cbe0e1178b8948e92c78bc11e16e665e0b"]]], ["TOC",["kernel","12M22d2G1-ker4M22d2W1",["f5f38a0efcb63c37ce5ae3bcdef9af2f5c000f4c78b1368162b6f06b84af459c"]]], ["TOC",["kernel","12M22d2G1-ker6M22d2W1",["be5d7a94ba110963bf8b9f90d9a8f25d4ff866f445a7a39d1436145753e18393"]]], ["TOC",["kernel","12M22d2G1-kerM22d2W1",["79520580195d13c4f975f1c9ea663c9eaf9ed66cb6b839810d723fe2d158dc3c"]]], ["TOC",["kernel","12U62G1-ker2U62W1",["e4b4bb3e388ff57ca4ec8c948cd9a70d65794cc293d116892f06c247047f91db"]]], ["TOC",["kernel","12U62G1-ker3U62W1",["ee3a29aa7024499e8629c77b3a2aaad52c9358108ba55b5be72456b855a96f34"]]], ["TOC",["kernel","12U62G1-ker4U62W1",["aad24955baf7a51b64b7d99c8c6f07a340ac0f62da516679f1d44ef1278994e5"]]], ["TOC",["kernel","12U62G1-ker6U62W1",["2d24d085ccda5e3857150cd214fab7591f0dced309e8993e7499414118057ee1"]]], ["TOC",["kernel","12U62G1-kerU62W1",["346b8dd1e78e018cb4eda322bece6e5ee08cf440fa93d3ae32474e62b85006fe"]]], ["TOC",["kernel","12aL34G1-ker2L34W1",["c00ae3168d97562f629adb77736ef2fb068f2f2d617a0c8356e03f1423eee811"]]], ["TOC",["kernel","12aL34G1-ker3L34W1",["5b027a8c464d316ef8d9ddcfe48418df47959425290fcd760224f069a8f9439b"]]], ["TOC",["kernel","12aL34G1-ker4aL34W1",["8e3c72d518f807d5cf92bd59ad907bbb861f13bb30dae0bed9f0c4d2f121f8f3"]]], ["TOC",["kernel","12aL34G1-ker6L34W1",["743b984914709c350f0e9e5990d9a5854ec011745dc7d3112600c9b1d3046da2"]]], ["TOC",["kernel","12aL34G1-kerL34W1",["556ea5a4563a31733558b622fa481881b2230c8d4ae8995dea87f97c8fb30a2a"]]], ["TOC",["kernel","12aL34d2aG1-ker2L34d2aW1",["4be267e0a7d63c43441aed83b1a3774704bb25fccb3bbe8f9f7c59b9707229"]]], ["TOC",["kernel","12aL34d2aG1-ker3L34d2aW1",["96cd214daa0c42b36536416bcfad4deca5dde92f30eb159cacbce0693d82459e"]]], ["TOC",["kernel","12aL34d2aG1-ker4aL34d2aW1",["9531431b480f5c8c3fdc6710f2ba9f5708cd30ca7e3f720cdc68c2ed128a496c"]]], ["TOC",["kernel","12aL34d2aG1-ker6L34d2aW1",["450201e8d306b5cb43a72e9e0243ec5a710248a9821ab6acd5d318f96564936b"]]], ["TOC",["kernel","12aL34d2aG1-kerL34d2aW1",["8ad83dd88a0074144c3052b848d2ef354b836ca3d36fa6663d2bd3d27d8c3dff"]]], ["TOC",["kernel","12bL34G1-ker2L34W1",["c00ae3168d97562f629adb77736ef2fb068f2f2d617a0c8356e03f1423eee811"]]], ["TOC",["kernel","12bL34G1-ker3L34W1",["5b027a8c464d316ef8d9ddcfe48418df47959425290fcd760224f069a8f9439b"]]], ["TOC",["kernel","12bL34G1-ker4bL34W1",["8e3c72d518f807d5cf92bd59ad907bbb861f13bb30dae0bed9f0c4d2f121f8f3"]]], ["TOC",["kernel","12bL34G1-ker6L34W1",["743b984914709c350f0e9e5990d9a5854ec011745dc7d3112600c9b1d3046da2"]]], ["TOC",["kernel","12bL34G1-kerL34W1",["556ea5a4563a31733558b622fa481881b2230c8d4ae8995dea87f97c8fb30a2a"]]], ["TOC",["kernel","12bL34d2aG1-ker2L34d2aW1",["7fec6e1fdc84a2361e3c3a965b43a6018fe1c6e250035d116605f96afc292c5e"]]], ["TOC",["kernel","12bL34d2aG1-ker3L34d2aW1",["96cd214daa0c42b36536416bcfad4deca5dde92f30eb159cacbce0693d82459e"]]], ["TOC",["kernel","12bL34d2aG1-ker4bL34d2aW1",["9531431b480f5c8c3fdc6710f2ba9f5708cd30ca7e3f720cdc68c2ed128a496c"]]], ["TOC",["kernel","12bL34d2aG1-ker6L34d2aW1",["cdd25bf628705f75fb31dd05ad503a71006173bf091211a15d65d56ff80aaac1"]]], ["TOC",["kernel","12bL34d2aG1-kerL34d2aW1",["8ad83dd88a0074144c3052b848d2ef354b836ca3d36fa6663d2bd3d27d8c3dff"]]], ["TOC",["kernel","24A8G1-kerA8W1",["de6cf7c1d8c84d95a2a8325c4cca0be9c5f3710cedb7222b4319e14d838ac618"]]], ["TOC",["kernel","25L52G1-kerL52W1",["bf020b85882e2d473529546602ee835083d44094d7d9597df2cdc0cde5000c90"]]], ["TOC",["kernel","2A10G1-kerA10W1",["9f80e5eb274ceba6c03023cd2ef0cb290614e64498777f1d1295638c0e9d0d84"]]], ["TOC",["kernel","2A11G1-kerA11W1",["edf0c8dd60e87a45d64348e64e2ee138fc0e415a4a1f7db3ac9689ad1f7bd1fd"]]], ["TOC",["kernel","2A12G1-kerA12W1",["de76b6de7ed21fe97195a0b7074f2d57a80e65a477169a341f71f75ff645a403"]]], ["TOC",["kernel","2A13G1-kerA13W1",["89e3a2d18f446fdaa2be01e3806a05755e2069ea2ca07fc248526b6f23110fee"]]], ["TOC",["kernel","2A14G1-kerA14W1",["5caae530386101df86ea2cb0d6232ccd3ca39a565a6d1426a94e564ea112d85b"]]], ["TOC",["kernel","2A5G1-kerA5W1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["kernel","2A6G1-kerA6W1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["kernel","2A7G1-kerA7W1",["262ba557a2f5542f7bbfe31990234e552bba0ea28f431d478ec251c8c2d5cd14"]]], ["TOC",["kernel","2A8G1-kerA8W1",["decaa9725ff1eaa05026c3747bfa349b5ebd828f2fea300204672baf71bb4c2c"]]], ["TOC",["kernel","2A9G1-kerA9W1",["ad3da999a12f1c722c95d26a829a43cbb5bbca87af553888621ebc320fcd7f80"]]], ["TOC",["matint","2Co1G1-Zr24aB0.g",["56d10835d2fe69e9903c76582db19f3a547cd5d1f3965250d9ea0de9b7d0b6ca"]]], ["TOC",["kernel","2Co1G1-kerCo1W1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["kernel","2F22G1-kerF22W1",["41f44278284fddaaa5ce75a14e694ba4d7272d9771cbc7b249cd4fe901a471d9"]]], ["TOC",["kernel","2F22d2G1-kerF22d2W1",["88fbce9229725d47989400c2c7aaf4bc0344285932c23aa9d5760541c5f18b20"]]], ["TOC",["kernel","2F22d2iG1-kerF22d2W1",["39f1425677485794187f667f9e3c192c20ec4252671fc81d4d93dbcf45c15baa"]]], ["TOC",["kernel","2F42G1-kerF42W1",["915fe8df96c3a2675a08d0b0700c9ba18ddfa2f775dc83eb114c0438f089a8eb"]]], ["TOC",["kernel","2F42d2G1-kerF42d2W1",["c011052d08265ceb40a3015103aa7cc548645a1ffca398e9e4a814ca41369b4f"]]], ["TOC",["kernel","2F42d4iG1-kerF42d2W1",["ebb5723a50c6bfaa204f68b0c9652f60830a8baca4cb3c595e121d1530e9509d"]]], ["TOC",["kernel","2G24G1-kerG24W1",["2bc9a4d46fc091bd57a3088fd099e664a52372e87298e3ecdb1d62df65ac3b48"]]], ["TOC",["kernel","2G24d2G1-kerG24d2W1",["4d758aee5fc15d3879dfc646b81d6a643d4a86b236073cf92d24f66685e3a548"]]], ["TOC",["kernel","2G24d2iG1-kerG24d2W1",["ebb5723a50c6bfaa204f68b0c9652f60830a8baca4cb3c595e121d1530e9509d"]]], ["TOC",["kernel","2HSG1-kerHSW1",["f859c3ac355bdd0991bc11677eed2573192cf221fd4748ba12d273c122f45892"]]], ["TOC",["kernel","2HSd2G1-kerHSd2W1",["88fbce9229725d47989400c2c7aaf4bc0344285932c23aa9d5760541c5f18b20"]]], ["TOC",["kernel","2J2G1-kerJ2W1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["kernel","2J2d2G1-kerJ2d2W1",["bd19806f8a23014b22efbfd983eb8af350455e246f7594a31b60e2ce75aa44f9"]]], ["TOC",["kernel","2J2d2iG1-kerJ2d2W1",["ef41ef4b2e8f0e34c684b0226083a47b664a2c97d1120dac3e637704fcc89427"]]], ["TOC",["kernel","2L211G1-kerL211W1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["kernel","2L213G1-kerL213W1",["bd19806f8a23014b22efbfd983eb8af350455e246f7594a31b60e2ce75aa44f9"]]], ["TOC",["kernel","2L213d2G1-kerL213d2W1",["ebb5723a50c6bfaa204f68b0c9652f60830a8baca4cb3c595e121d1530e9509d"]]], ["TOC",["kernel","2L217G1-kerL217W1",["bd19806f8a23014b22efbfd983eb8af350455e246f7594a31b60e2ce75aa44f9"]]], ["TOC",["kernel","2L217d2G1-kerL217d2W1",["ebb5723a50c6bfaa204f68b0c9652f60830a8baca4cb3c595e121d1530e9509d"]]], ["TOC",["kernel","2L219G1-kerL219W1",["ebb5723a50c6bfaa204f68b0c9652f60830a8baca4cb3c595e121d1530e9509d"]]], ["TOC",["kernel","2L219d2iG1-kerL219d2W1",["c7e73f00c288258e201ef8d49eb8e9907cc0c8b981747fb18aec549d88a63b4a"]]], ["TOC",["kernel","2L223G1-kerL223W1",["ebb5723a50c6bfaa204f68b0c9652f60830a8baca4cb3c595e121d1530e9509d"]]], ["TOC",["kernel","2L223d2iG1-kerL223d2W1",["3b159a240d1e3a9ac651cd50fd1c550799bef9aa0f8acba73f2a7a9753fa5167"]]], ["TOC",["kernel","2L227G1-kerL227W1",["ebb5723a50c6bfaa204f68b0c9652f60830a8baca4cb3c595e121d1530e9509d"]]], ["TOC",["kernel","2L229G1-kerL229W1",["ebb5723a50c6bfaa204f68b0c9652f60830a8baca4cb3c595e121d1530e9509d"]]], ["TOC",["kernel","2L231G1-kerL231W1",["ebb5723a50c6bfaa204f68b0c9652f60830a8baca4cb3c595e121d1530e9509d"]]], ["TOC",["kernel","2L249G1-kerL249W1",["ebb5723a50c6bfaa204f68b0c9652f60830a8baca4cb3c595e121d1530e9509d"]]], ["TOC",["kernel","2L27G1-kerL27W1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["kernel","2L27d2G1-kerL27d2W1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["kernel","2L27d2iG1-kerL27d2W1",["884128a320c5ecdf848b1b70380f16559bd38679627221adc4265106f23cb126"]]], ["TOC",["kernel","2L34G1-kerL34W1",["556ea5a4563a31733558b622fa481881b2230c8d4ae8995dea87f97c8fb30a2a"]]], ["TOC",["kernel","2L34d2aG1-kerL34d2aW1",["96cd214daa0c42b36536416bcfad4deca5dde92f30eb159cacbce0693d82459e"]]], ["TOC",["kernel","2M12G1-kerM12W1",["d1887060ca9cd1191c0fc9e54128ad4ab6cd1b96a19b5636589b4d5290bfc1a4"]]], ["TOC",["kernel","2M12d2G1-kerM12d2W1",["3b16e09f162cd391783364b565b2fdcfeb1c410feb5e266720ca737a4a702625"]]], ["TOC",["kernel","2M12d2iG1-kerM12d2W1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["kernel","2M22G1-kerM22W1",["2bd8e54e6677a7b5a62f45542570c81639df41bbbfb19855a9aa626e11c15664"]]], ["TOC",["kernel","2M22d2G1-kerM22d2W1",["65de602c3eebcef167567d0fe1b579a9419d919b4bad90705dfeb257f1dd4ea4"]]], ["TOC",["kernel","2M22d2iG1-kerM22d2W1",["bd19806f8a23014b22efbfd983eb8af350455e246f7594a31b60e2ce75aa44f9"]]], ["TOC",["kernel","2O73G1-kerO73W1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["matff","2O73d2G1-f9r8B0.m",["860107e0b671b1eec4b32ede260dd91d93832e0680b44cce64f0a82473f7dedf","d1cee080df42a28b2bcb3776ca55a506463eec5799d20e3343868c00944fe0e1"]]], ["TOC",["kernel","2O73d2G1-kerO73d2W1",["23330647ded19a7218022ccc2dbeebfecd164326e682c52d12b5a11e07bdee47"]]], ["TOC",["perm","2O73d2G1-p4480B0.m",["57aa79519213b3c86d56f1579ce9ec44a6996bc18b35a6d39c447e999d9ea4be","195961e1114187d04a29447f945a750625a6fe41f0310ff7ee5f3953acf36d60"]]], ["TOC",["matff","2O73d2iG1-f3r8B0.m",["44410f58ec4b4743862a40e10b474a693d8806cb13fb7b3b0ec48b149ad6e69a","dd0f79825bf7b09236a23a44362f32438e65d86676082ff20192a3eb6fae1fe2"]]], ["TOC",["kernel","2O73d2iG1-kerO73d2W1",["8cbac449c339062f873b13c5a96277db880490ae68420055afce3e4ce93d7009"]]], ["TOC",["kernel","2O8m3G1-kerO8m3W1",["ebb5723a50c6bfaa204f68b0c9652f60830a8baca4cb3c595e121d1530e9509d"]]], ["TOC",["kernel","2O8p3G1-kerO8p3W1",["a97b10bedeff203e035c507504426819dbd07c1d615d65013d56a89dea29b80e"]]], ["TOC",["kernel","2O93G1-kerO93W1",["fc6714d337cfc66d55df6b8f796790a0cad8557c74da32c1149b65cb6aa4889b"]]], ["TOC",["kernel","2RuG1-kerRuW1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["kernel","2S11G1-kerS11W1",["2f2de422e807a0a0a1c168b3908f3cb9cf37917076c49d655104c58e3e0f951a"]]], ["TOC",["kernel","2S14G1-kerS14W1",["d22da9add3ad158381cbf901a1d374e6005800db8a7e9a1cc25288c54a654d6c"]]], ["TOC",["kernel","2S14iG1-kerS14W1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["kernel","2S45G1-kerS45W1",["ebb5723a50c6bfaa204f68b0c9652f60830a8baca4cb3c595e121d1530e9509d"]]], ["TOC",["kernel","2S5G1-kerS5W1",["3d43844a509fd90fb8e934c49a04486060b0232b6a8b62e79f339a7beec021cc"]]], ["TOC",["kernel","2S5iG1-kerS5W1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["kernel","2S62G1-kerS62W1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["kernel","2S63G1-kerS63W1",["efe79b0c2fb2f39b5c76b9ab7098655a06e70c06b03fa63540338ba212c98a87"]]], ["TOC",["kernel","2S63d2G1-kerS63d2W1",["ecd10341487314019dc26ce3ab8d9be964eb9e81a963ad93eda444ee063227ba"]]], ["TOC",["kernel","2S6G1-kerS6W1",["dc86b92e5582d65305af33e4378102061b6363f0db49f928e61719f949088f2b"]]], ["TOC",["kernel","2S7G1-kerS7W1",["df5269fc4cf9e966800cc17e47750e6633aa1b6266f1dda3d256abbc731ea30a"]]], ["TOC",["kernel","2S7iG1-kerS7W1",["bd19806f8a23014b22efbfd983eb8af350455e246f7594a31b60e2ce75aa44f9"]]], ["TOC",["kernel","2SuzG1-kerSuzW1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["kernel","2Suzd2G1-kerSuzd2W1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["kernel","2Sz8G1-kerSz8W1",["5fe6d67506a6c33fd8e7e0e5c85a8cf7cf202d74fee15572b301fa74483f622c"]]], ["TOC",["kernel","2TE62G1-kerTE62W1",["e7ce974ef4c379932e64e56609f5722cfabbe8dc90d7e765d2d506c277d7495d"]]], ["TOC",["kernel","2TE62d2G1-kerTE62d2W1",["c5d4cc39125891da7d3fd96bbd161769f128043b65b11ba92ed61d79ad317df7"]]], ["TOC",["kernel","2U42G1-kerU42W1",["83138dcbda892cfd1762aa3763e560096a5e43855fe7f32667b893c98122b05a"]]], ["TOC",["kernel","2U42d2G1-kerU42d2W1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["kernel","2U62G1-kerU62W1",["6b07a99249cf744884a8bdcf6a565309c10782a3cad83b0bf8aa7c675dba088b"]]], ["TOC",["kernel","2aM20G1-kerA5W1",["e80fc24cc97df97d3c556947669a373478061ccffe84a4115ce1c70ea6c79678"]]], ["TOC",["kernel","2cM20G1-kerA5W1",["ded3a486ba493d6c994e114f90e0760efad8ae02a4ac42936a5f7f8c4d47d279"]]], ["TOC",["kernel","3A6G1-kerA6W1",["6f6ab004e5d60b65d21a1a4bb306e350553bcc9e78b31f4295b930dc37cc92cb"]]], ["TOC",["kernel","3A7G1-kerA7W1",["94fd06aa0f3a5b245e07dbe5456609c6cd4b42f92647ba4a36396bd53e0c90c6"]]], ["TOC",["kernel","3F22G1-kerF22W1",["d026da62e184f1d917c32250f3ea9c8429871080f45bfd8d00af33c43f901ab9"]]], ["TOC",["kernel","3F22d2G1-kerF22d2W1",["3c2b0e59df0ee43a1256d9f2a7f6abbe82249794aba211537f45b32e2e09a71a"]]], ["TOC",["kernel","3F24G1-kerF24W1",["bff2ae726f2ce74d8b25b53979c953ec5f74d6d5e7206a4ca745be0f8c413284"]]], ["TOC",["kernel","3F24d2G1-kerF24d2W1",["c3fa7316363bc05193df186f5127de17954c07a35df4f27102b1dfc71f90a922"]]], ["TOC",["kernel","3G23G1-kerG23W1",["e51d7e6f68d272ad218f0c77a5ccacb5835ec956c1560217b887d0e3eae30465"]]], ["TOC",["kernel","3G23d2G1-kerG23d2W1",["5e2661c9f2209b5636dde31302e98de4e34c45709dba365733f66097b723db2"]]], ["TOC",["kernel","3J3G1-kerJ3W1",["f1d413be087772b087fc434f257241f345d3160a2a33e0e638b3ded03cf2841b"]]], ["TOC",["kernel","3J3d2G1-kerJ3d2W1",["68a72c6c5e1ef0ea140d2c368d21adac1295ac03b7bcf8b3e6c1efca21a97b14"]]], ["TOC",["kernel","3L34G1-kerL34W1",["1f920c431f34a3d65a6d6f753876ede3c2762a5f20f0d03968c73aeb372721c5"]]], ["TOC",["kernel","3L34d2aG1-kerL34d2aW1",["9531431b480f5c8c3fdc6710f2ba9f5708cd30ca7e3f720cdc68c2ed128a496c"]]], ["TOC",["kernel","3L37G1-kerL37W1",["c4e080c4ba3bae91f4e86505b02527821f5294c5ab71b5f2993dbee18022d39c"]]], ["TOC",["matff","3L37d2G1-f7r6aB0.m",["b23c71f9692c8c2d2c1f01f05b5d69d772f45ae1d914048f999809262cc9f213","c6b4b90c296a3d133f599cb0e1a6b3a7b32f3f7c6254b1142a96238c3ef681ef"]]], ["TOC",["kernel","3L37d2G1-kerL37d2W1",["cac20bdbcce93d1625a9c5d2b0a235d1903d4cc7421e1a84bfd184e4bcaf4ecc"]]], ["TOC",["kernel","3M22G1-kerM22W1",["d026da62e184f1d917c32250f3ea9c8429871080f45bfd8d00af33c43f901ab9"]]], ["TOC",["kernel","3M22d2G1-kerM22d2W1",["c230b24f16560b5524ace3476af9047b5c147bd042453104e1aad8c6b2c6825"]]], ["TOC",["kernel","3McLG1-kerMcLW1",["d026da62e184f1d917c32250f3ea9c8429871080f45bfd8d00af33c43f901ab9"]]], ["TOC",["kernel","3McLd2G1-kerMcLd2W1",["d579db655ebe365d6c8e2c1d857ce7072a1f2184e01778c7f18d4fbd021540ab"]]], ["TOC",["kernel","3O73G1-kerO73W1",["7ef2c63fa7dcc8ff2f1f60959beb8228fecb07d47b2efaecf69e733411106b8a"]]], ["TOC",["kernel","3O73d2G1-kerO73d2W1",["4c863922f05f970200c3acf721db23fb534df80f6684067f150cb7e326c6945b"]]], ["TOC",["kernel","3ONG1-kerONW1",["aad24955baf7a51b64b7d99c8c6f07a340ac0f62da516679f1d44ef1278994e5"]]], ["TOC",["kernel","3ONd2G1-kerONd2W1",["d73994a1b7b3711fe64105fe013b1d622d1ce8d6683056d679cafeab79b13be4"]]], ["TOC",["kernel","3S6G1-kerS6W1",["496a9ca646b0c3727baa9d10112be2aed88c424c700c1a8f064c2f5d5cff29a7"]]], ["TOC",["kernel","3S7G1-kerS7W1",["1f15273c566aa5e644d201ccd972437569fb0b0bf0e00f57bd57e0422fbd1a63"]]], ["TOC",["kernel","3SuzG1-kerSuzW1",["87dc101a99f024c05ab3c2fe2a836b4840fbca186eb06c2995c2c50d3bf5cd4f"]]], ["TOC",["kernel","3Suzd2G1-kerSuzd2W1",["c9fcd8f28be880998a6a0ccbbd40fa778c9e3ca28abc653ea2389798df862aae"]]], ["TOC",["kernel","3TE62G1-kerTE62W1",["a8612cac2023afc27f3a7bbe680670bf172d0dcf17885fd4998ced86918b67a2"]]], ["TOC",["kernel","3TE62d2G1-kerTE62d2W1",["21f75c95b0f23356fa06721edfc64829f950dc2d17bb2a2168dc25912d9ac6df"]]], ["TOC",["kernel","3U311G1-kerU311W1",["5a84f3d909c0d0820d2c7cec67bb20d615271e80b2189fb0e7be70e30c58a40b"]]], ["TOC",["kernel","3U311d2G1-kerU311d2W1",["c6c1a752196d7e81fe28f8ca242a2be5532e158046c2d8c8cf535d850dae3b7b"]]], ["TOC",["kernel","3U38G1-kerU38W1",["5564eb11f0300df2548bfa9579a290f3a66c4258d2f5ae4710b5b154659d1668"]]], ["TOC",["kernel","3U62G1-kerU62W1",["aad24955baf7a51b64b7d99c8c6f07a340ac0f62da516679f1d44ef1278994e5"]]], ["TOC",["kernel","4M22G1-ker2M22W1",["1b0cb0a366e07b7da08120e4f621efa25def4f286bf0f4e38f9b29af541dae0a"]]], ["TOC",["kernel","4M22G1-kerM22W1",["2bd8e54e6677a7b5a62f45542570c81639df41bbbfb19855a9aa626e11c15664"]]], ["TOC",["kernel","4M22d2G1-ker2M22d2W1",["1fe2d7a04527b7a241a3b2a950ad6fd4766572997242f0c0666f6c6f1d0c3f15"]]], ["TOC",["kernel","4M22d2G1-kerM22d2W1",["65de602c3eebcef167567d0fe1b579a9419d919b4bad90705dfeb257f1dd4ea4"]]], ["TOC",["kernel","4Sz8G1-ker2Sz8W1",["f1994e8ae6e875585ceaabde785613e9c961ef7b02af52b4b8f434462ff0b756"]]], ["TOC",["kernel","4Sz8G1-kerSz8W1",["178245a5beb159d27dd74c9eaee241246059cbffde9359aaaed7b21840186e8e"]]], ["TOC",["kernel","4Sz8d3G1-kerSz8d3W1",["22febe56fb7b4a0d3dc29391769b8c59a17783ce77329b2d667b7d7952d6c4f3"]]], ["TOC",["kernel","4TE62G1-ker2TE62W1",["ccdc2a8d765945221bd4d2517d1f97e5ce0e0b6a030b75aec8944ce44535c3a3"]]], ["TOC",["kernel","4TE62G1-kerTE62W1",["257328da1413d56d7131c8c246949659859bd29b7268f01826e53e39b4b9087a"]]], ["TOC",["kernel","4U62G1-ker2U62W1",["2d24d085ccda5e3857150cd214fab7591f0dced309e8993e7499414118057ee1"]]], ["TOC",["kernel","4U62G1-kerU62W1",["f7f999fde75b695ddbb6bb487af2a16c8f37f38494b8de302b36a2aeb8c00aef"]]], ["TOC",["kernel","4aL34G1-ker2L34W1",["c00ae3168d97562f629adb77736ef2fb068f2f2d617a0c8356e03f1423eee811"]]], ["TOC",["kernel","4aL34G1-kerL34W1",["556ea5a4563a31733558b622fa481881b2230c8d4ae8995dea87f97c8fb30a2a"]]], ["TOC",["kernel","4aL34d2aG1-ker2L34d2aW1",["670bd84457faeb4202c607abbe5fe77b3ca298728a597c03ab8f64e1b43e1244"]]], ["TOC",["kernel","4aL34d2aG1-kerL34d2aW1",["5446f5bbe569fa9607d32e9d51d93069b38a0e2300009bb487d0fab3293286cd"]]], ["TOC",["kernel","4bL34G1-ker2L34W1",["c00ae3168d97562f629adb77736ef2fb068f2f2d617a0c8356e03f1423eee811"]]], ["TOC",["kernel","4bL34G1-kerL34W1",["556ea5a4563a31733558b622fa481881b2230c8d4ae8995dea87f97c8fb30a2a"]]], ["TOC",["kernel","4bL34d2aG1-ker2L34d2aW1",["ac76f6fb7f3d2367f2430202b42bfd8b773c12baf38b74c501e64100c2181bee"]]], ["TOC",["kernel","4bL34d2aG1-kerL34d2aW1",["5446f5bbe569fa9607d32e9d51d93069b38a0e2300009bb487d0fab3293286cd"]]], ["TOC",["kernel","53L35G2-kerL35W1",["90d12df83792444598f30fd32b6721d8da4cb3947b6943eb6feefb03fba97a53"]]], ["TOC",["kernel","6A6G1-ker2A6W1",["6f6ab004e5d60b65d21a1a4bb306e350553bcc9e78b31f4295b930dc37cc92cb"]]], ["TOC",["kernel","6A6G1-ker3A6W1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["kernel","6A6G1-kerA6W1",["f2fc354a3e739fb55e61cae51d0eb05bd5cefc49dffcd6acabd5b8968828c99e"]]], ["TOC",["kernel","6A7G1-ker2A7W1",["81d1687f5f409aff56aba8d9c9eba4bc5ead07387122145d09f6919ac001c741"]]], ["TOC",["kernel","6A7G1-ker3A7W1",["22c94e0c86f394e8a5d2233fc6bf85fc85d6e8f01f167e41c2933f826d3e2dc3"]]], ["TOC",["kernel","6A7G1-kerA7W1",["a1714104d0d7f8e245e618160132713ed1a519efd29e9d8664ee85cc92362b1f"]]], ["TOC",["kernel","6F22G1-ker2F22W1",["d026da62e184f1d917c32250f3ea9c8429871080f45bfd8d00af33c43f901ab9"]]], ["TOC",["kernel","6F22G1-ker3F22W1",["41f44278284fddaaa5ce75a14e694ba4d7272d9771cbc7b249cd4fe901a471d9"]]], ["TOC",["kernel","6F22G1-kerF22W1",["b2333a6a7832a12c579ba037ab1a9e108c857d5f03f61293ae5c755ccbc3526f"]]], ["TOC",["kernel","6F22d2G1-ker2F22d2W1",["3c2b0e59df0ee43a1256d9f2a7f6abbe82249794aba211537f45b32e2e09a71a"]]], ["TOC",["kernel","6F22d2G1-ker3F22d2W1",["b7c2a458bcfb89da414dc98ba4548b1eef1b8ff0b77774a3a4f1e7f762975041"]]], ["TOC",["kernel","6F22d2G1-kerF22d2W1",["22f7eb5c3827dc73e918505d2c3dfc91dcbdc23257910c6c90aa1bd16a651e31"]]], ["TOC",["kernel","6F22d2iG1-ker2F22d2iW1",["53df7ddc6decb5121f3a930175fbcbeb2a4770d1a2bec683c5e359e8f67ede3"]]], ["TOC",["kernel","6F22d2iG1-ker3F22d2W1",["39f1425677485794187f667f9e3c192c20ec4252671fc81d4d93dbcf45c15baa"]]], ["TOC",["kernel","6F22d2iG1-kerF22d2W1",["7e023c19e8867bed64878514ca684122156fea9593b6003dfe58b54a2a6dcd1d"]]], ["TOC",["kernel","6L34G1-ker2L34W1",["71d579b4ea0456f214acd57381810cdbed0b3bf5cf6e665cfbeb9bef3735a459"]]], ["TOC",["kernel","6L34G1-ker3L34W1",["5b027a8c464d316ef8d9ddcfe48418df47959425290fcd760224f069a8f9439b"]]], ["TOC",["kernel","6L34G1-kerL34W1",["556ea5a4563a31733558b622fa481881b2230c8d4ae8995dea87f97c8fb30a2a"]]], ["TOC",["kernel","6L34d2aG1-ker2L34d2aW1",["9531431b480f5c8c3fdc6710f2ba9f5708cd30ca7e3f720cdc68c2ed128a496c"]]], ["TOC",["kernel","6L34d2aG1-ker3L34d2aW1",["5446f5bbe569fa9607d32e9d51d93069b38a0e2300009bb487d0fab3293286cd"]]], ["TOC",["kernel","6L34d2aG1-kerL34d2aW1",["658af095ddffc7fb0a899acd4cf856f7ec6bdc3c31138f7cdd7bcb1bfd4e1ee0"]]], ["TOC",["kernel","6M22G1-ker2M22W1",["1b0cb0a366e07b7da08120e4f621efa25def4f286bf0f4e38f9b29af541dae0a"]]], ["TOC",["kernel","6M22G1-ker3M22W1",["66882b31735802a5311026495b4c05527b411a5d527f4f85ebc42e4e70b29e68"]]], ["TOC",["kernel","6M22G1-kerM22W1",["2bd8e54e6677a7b5a62f45542570c81639df41bbbfb19855a9aa626e11c15664"]]], ["TOC",["kernel","6M22d2G1-ker2M22d2W1",["3ae0ee80932466e59727603bf61936ac9e3f5fc1ce82471176578b9ac3dae12a"]]], ["TOC",["kernel","6M22d2G1-ker3M22d2W1",["65de602c3eebcef167567d0fe1b579a9419d919b4bad90705dfeb257f1dd4ea4"]]], ["TOC",["kernel","6M22d2G1-kerM22d2W1",["5ddad8b235a6ef509284187e203041d369436c44164a5c3c3de9c1dfc9e6b2ef"]]], ["TOC",["kernel","6O73G1-ker2O73W1",["7ef2c63fa7dcc8ff2f1f60959beb8228fecb07d47b2efaecf69e733411106b8a"]]], ["TOC",["kernel","6O73G1-ker3O73W1",["cae350b4d7366069038153fa32e55f54eaeaf955bb0eeb0b38dff5a9e26b5704"]]], ["TOC",["kernel","6O73G1-kerO73W1",["a6516ce63b4a95996da93fe2df58fc2d310f17013260ed7d8d5214c6cd2f0741"]]], ["TOC",["perm","6O73G1-p3374B0.m",["9ee57d2241639a64e7838f3cf5f8117cedd76dbad8b82f4f8e827242ec2ccf25","98124d6c886c27fa1745ac1f527d4cfa891bd93da1dd622fa8b73eb8d98e4f0b"]]], ["TOC",["perm","6O73d2G1-p5614B0.m",["a0da13c8ad4e2e3c25663d4465940949471bd9fad567ddc853a76076e0307f99","4bcfa32583c3b6011509d9a511e87c2b346ef40524b1df0201c9eee7955610e9"]]], ["TOC",["kernel","6S6G1-ker2S6W1",["98e43c3732fc58018536f3fd7485e507851cb9f5c526e7b5ca6d1c1777f103e7"]]], ["TOC",["kernel","6S6G1-ker3S6W1",["366de90498d175e8e7262927bff8ca1963d0df0d9d4e26ec45faef997dc899e8"]]], ["TOC",["kernel","6S6G1-kerS6W1",["496a9ca646b0c3727baa9d10112be2aed88c424c700c1a8f064c2f5d5cff29a7"]]], ["TOC",["kernel","6S7G1-ker2S7W1",["e8747cd88565ae7fd9c67d7112c15283fd4403694ab7bc535d886012eb197880"]]], ["TOC",["kernel","6S7G1-ker3S7W1",["f023f3ad1e977d7f979e34e8dba50fd08850f9fecc98c13f0679ad914abf2936"]]], ["TOC",["kernel","6S7G1-kerS7W1",["b90968228575aecfd98852207b5b40fac44e88be2c8b1e54ed058706aae90c9c"]]], ["TOC",["kernel","6SuzG1-ker2SuzW1",["437b563884f5087388720e5af1535201ef648241de58346764c97415adc9a3f4"]]], ["TOC",["kernel","6SuzG1-ker3SuzW1",["c13df336608b1d3b7e9bcf214d16206d0515bc52d47711087ddd3854d9675b8b"]]], ["TOC",["kernel","6SuzG1-kerSuzW1",["87dc101a99f024c05ab3c2fe2a836b4840fbca186eb06c2995c2c50d3bf5cd4f"]]], ["TOC",["kernel","6Suzd2G1-ker2Suzd2W1",["8ceed6a962581e22bb720a7800c9356ed76601522c07c3bee8645eede1ffb782"]]], ["TOC",["kernel","6Suzd2G1-ker3Suzd2W1",["9bd9873f1ba704b7078f74e61f145556996bd6b90e6d60e5ac6ec8783381d2a0"]]], ["TOC",["kernel","6Suzd2G1-kerSuzd2W1",["ed74a6132c1be761a0d53224592fdef4fcd3371849d484a50a59563aa49107a2"]]], ["TOC",["kernel","6U62G1-ker2U62W1",["aad24955baf7a51b64b7d99c8c6f07a340ac0f62da516679f1d44ef1278994e5"]]], ["TOC",["kernel","6U62G1-ker3U62W1",["f627b21c26bbd71cf553ca317213d320c0ea1a6e2930bbd274cfcecf5d3d59fc"]]], ["TOC",["kernel","6U62G1-kerU62W1",["5bfbfd46a35d8df1dd75769d9c10502a552a140ecb6d9c742825cfb46bb9e351"]]], ["TOC",["kernel","9U43D8G1-kerU43D8W1",["ca39cea0cff8191f244cd592bd8317290932ed3ccfcdf8924fa733cc882e2e80"]]], ["TOC",["classes","A5G1-cclsW1",["fcdd23dba543d793a6eea7eed30efd0c63cf4b68cd1e9dd9368e570b4f57281"]]], ["TOC",["pres","A7G1-P1",["ff66b22ea05e6c18dd126839765756bda41f34e802cd33628ffb22091bfc43f"]]], ["TOC",["matff","Bmax4G0-f2r180B0.m",["a6c2905cf7336a3c8191ff69cea1148f577321022c38611aad864116284da911","e02600913051425891bca4dc1271af7b3eae53f873a0b06132832ac762c8879b"]]], ["TOC",["maxes","F22d2G1-max10W2",["67e15ee53fc9c4c4ed1bc2eea6349f317b84eb2563a454171892dadb4e37abd1"]]], ["TOC",["maxes","F22d2G1-max11W2",["ab571d4ed7d612b30dd19ce979a45aa0f41759dbb5c40c75445a7faa398ec58f"]]], ["TOC",["maxes","F22d2G1-max12W2",["d8aa4dec4a671ba0de658954b67a91c2bba89cf43f66dbfd900a0255b92dd850"]]], ["TOC",["maxes","F22d2G1-max3W2",["e1e9310404c206dce403c4ab7f5f48846d7712bca73fccdf46f63337eec1b7a"]]], ["TOC",["maxes","F22d2G1-max4W2",["845faf68aac22eb87927d4e4fa971ce7d15a09f79293bd841e27217d79c3198f"]]], ["TOC",["maxes","F22d2G1-max5W2",["533ab15bc8aa5e5ab1ab6e38862c3b777450202b96a2e935ca54f49e64411060"]]], ["TOC",["maxes","F22d2G1-max6W2",["cdb902c251e0e927d2c6e51ed9a382da65436f1a23901ada74438c2f88a79570"]]], ["TOC",["maxes","F22d2G1-max7W2",["b59881b7d4f76c609944a9ac69e652643b889da408051e549a75b98c48b42b76"]]], ["TOC",["maxes","F22d2G1-max8W2",["fd89d37d65a9967274a90ebeac7e6907cba2cf5e5a4853d4b050c3a40f493541"]]], ["TOC",["maxes","F22d2G1-max9W2",["341eb8a85fd0de81867d3bef4f2bde04706613b5164bb08e7d94e0b05fb3afde"]]], ["TOC",["find","F42G1-find1",["d8c6505f9a3593a2d1b295f09e2ec562ab9f4722de643f72881679859dc095ac"]]], ["TOC",["cyclic","G25G1-cycW2",["7d5e7010780ac732e21dc70228287ad8928337ab531baea1da6e97fe227cbf3"]]], ["TOC",["cyc2ccl","G25G1cycW2-cclsW2",["8c14fed9f42c19aa3f092da49e9107208fbf7be6e34f717e730988c862c016ae"]]], ["TOC",["pres","J2d2G1-P2",["b64db576ee5411bae87ed1ca8983f332c5298b3e0e3d50048a7f5ae1ba82c3e2"]]], ["TOC",["pres","J4G2-P1",["b5f600c2fe921e71829af94554aba285a227d1a4f334368e5c39a7247209842c"]]], ["TOC",["maxes","L34G1-max4W2",["78daf17d97e4f62578170d76e41a3781ef49ac7cc6246fcf9bd5028cda2951f9"]]], ["TOC",["maxes","L34G1-max5W2",["6728dba4cc5bcee1192eebf11f4db608e77d29288bbebef0f901389ec5ebd640"]]], ["TOC",["maxstd","L34G1max3W1-A6G1W1",["e0905b0f62b7d9fcc8554730dee2a6bf386317f7a2a6d0a958e3cd855516672e"]]], ["TOC",["maxstd","L34G1max4W2-A6G1W1",["e0905b0f62b7d9fcc8554730dee2a6bf386317f7a2a6d0a958e3cd855516672e"]]], ["TOC",["maxstd","L34G1max5W2-A6G1W1",["e0905b0f62b7d9fcc8554730dee2a6bf386317f7a2a6d0a958e3cd855516672e"]]], ["TOC",["cyc2ccl","L38G1cycW1-cclsW1",["a8240709323ab03aa19dbb878e5e578daa6e862a91e6352e0c81dca7b5c2f4d0"]]], ["TOC",["cyc2ccl","L38d3G1cycW1-cclsW1",["2833ad25cf8d06bdfa5133dc2fa5f18b65090708e13d35da063ad922fc8cf9e9"]]], ["TOC",["pres","L43G1-P1",["25fe75be1c2018b8afe6566f50d32a26e3a9fcb65817bdffa3b40949ecd36249"]]], ["TOC",["kernel","M20G1-kerA5W1",["eb34b5adf5d621eb3b8863d11b8978a54709f5982745679b4a0c8e63dc9dcb6"]]], ["TOC",["kernel","M3max7G0-ker6Suzd2W1",["8cc46ef5d273984e10cca167d3069ad8568c1fa8cfb53c601bd4b9f6422e4053"]]], ["TOC",["kernel","Mmax12G0-kerHNd2W1",["87750c7b1816efd4faa67e7b68a6512ebab366140c461b8f655c1b96c17b6c90"]]], ["TOC",["kernel","Mmax16G0-kerJ2d2W1",["bb6aef3fe0007d2ef835fafa5453972fb96c21a7af519d5cc794f72467efac84"]]], ["TOC",["kernel","Mmax17G0-kerHed2W1",["24a7d42e99f52e983a36b6fe48f5ecee1a57e0c3659d42cb9109771a7ba645c"]]], ["TOC",["kernel","Mmax18G0-kerS12W1",["2253d8d72c51ca6d76a93574ea4b130d1fb1ec02c51f962cbbe082521284af58"]]], ["TOC",["kernel","Mmax18G0-kerS5W1",["a672511767f6fb8a9869200e84f806a86702f9f605eb627288c7ed3046647e6d"]]], ["TOC",["kernel","Mmax19G0-kerL35W1",["129d60344dd5f803062260e15d6d10e19274f2eff725d83e97334b2a44ba37bd"]]], ["TOC",["kernel","Mmax21G0-kerS5W1",["28bb8ce101c843078edfd0d789fe415c9d3ce6d044102ddf9ada4fdbaaea79d6"]]], ["TOC",["kernel","Mmax21G0-kerU38d6W1",["7ec9d6fddfab7ff5f1a0efcb2e67adc7bc4ce1ce14526bdbe078b0d9a3ca55b4"]]], ["TOC",["kernel","Mmax23G0-kerL27d2W1",["96a61b98d89cb984cc5b12843dfc83a30254aa924107841c4f238b412f6943b0"]]], ["TOC",["kernel","Mmax23G0-kerS44d4W1",["d2ef194946cbc8330314e345b3c315539dc3ad0a0172b0c113cf3e083d2ea17e"]]], ["TOC",["kernel","Mmax26G0-kerL211d2W1",["a4861647ee9216876bcc349dd352721e8cb7a00f1fbd24846dfbdc70ca7324e1"]]], ["TOC",["kernel","Mmax26G0-kerM12d2W1",["9cda127115eef54e5d58f9ec79799ea923b12cd1f5a6e5cecf27608d4d8cfa55"]]], ["TOC",["kernel","Mmax29G0-ker2L27d2iW1",["5f09a66b5bb8f19ee9f566545c86daf29722e89fcb5d3c080a2dcaa83b1462d2"]]], ["TOC",["kernel","Mmax30G0-kerA6V4W1",["a4861647ee9216876bcc349dd352721e8cb7a00f1fbd24846dfbdc70ca7324e1"]]], ["TOC",["kernel","Mmax30G0-kerM11W1",["672c9c52b4957272fd728df0940401b630f3ae6d0a1ae466603761660877f576"]]], ["TOC",["kernel","Mmax34G0-kerL27d2W1",["1602b135c5cc345ecee3c44aa58c09bf17c73e49adb885fa1e7c30565fae202e"]]], ["TOC",["kernel","Mmax35G0-kerL33d2W1",["52fcfa47a525077533ad2b233032b3eb9e8558e4100d3cef7b2df8254a1bcada"]]], ["TOC",["kernel","Mmax41G0-ker2L27W1",["2f2ddfa4056e095e1511fe1d9c4dc39274e3d45770d488b1c93fe1f8d6ccd7ab"]]], ["TOC",["kernel","Mmax7G0-ker2Suzd2W1",["8cc46ef5d273984e10cca167d3069ad8568c1fa8cfb53c601bd4b9f6422e4053"]]], ["TOC",["kernel","Mmax9G0-kerThW1",["5c058782fe22ed5f51c0c861f1f3868654fc2a0bd2993bae48e9a216cfca9992"]]], ["TOC",["pres","O10m2G1-P1",["89db7641e1d36e61db0670cb6edb78e6c2d7fc56f40300842b929114831f4a8"]]], ["TOC",["pres","O10p2G1-P1",["9f789be7f0929659059a43088ab65bbec8c3c4b88575fba23a7b7a30c8bc0303"]]], ["TOC",["find","ONd2G1-find2",["14699450f11d6d1b6513eaf63c714e7a104d8714c20557c074e84ce23586e621"]]], ["TOC",["cyc2ccl","R27d3G1cycW1-cclsW1",["f87ac7590afa87fd4ff7a10d41fe2870484f7aff636514466ecb1043b591a266"]]], ["TOC",["cyc2ccl","Sz8G1cycW1-cclsW1",["4b125b1822f56529d33a4113c76b5940faabbcb8c6e11e68ab4aa4f40de425b"]]], ["TOC",["cyc2ccl","Sz8d3G1cycW1-cclsW1",["803d34a88046814e7369cdc3174e34857c3d6cdba15655ffe10caa9fa25538f4"]]], ["TOC",["pres","U63G1-P1",["f46f3b7c189cc46c8233b53dfdd4bae16bb174ee414586f4c7d55a0165f25eb8"]]], ["TOCEXT",["12M22",1,1,["M22G1-max1W1"]]], ["TOCEXT",["12M22",1,2,["M22G1-max2W1"]]], ["TOCEXT",["12M22",1,3,["M22G1-max3W1"]]], ["TOCEXT",["12M22",1,4,["M22G1-max4W1"]]], ["TOCEXT",["12M22",1,5,["M22G1-max5W1","M22"]]], ["TOCEXT",["12M22",1,6,["M22G1-max6W1","M22"]]], ["TOCEXT",["12M22",1,7,["M22G1-max7W1"]]], ["TOCEXT",["12M22",1,7,["M22G1-max7W2"]]], ["TOCEXT",["12M22",1,8,["M22G1-max8W1","M22"]]], ["TOCEXT",["12U62",1,1,["U62G1-max1W1","U6(2)"]]], ["TOCEXT",["12U62",1,1,["U62G1-max1W2","U6(2)"]]], ["TOCEXT",["12U62",1,10,["U62G1-max10W1","U6(2)"]]], ["TOCEXT",["12U62",1,11,["U62G1-max11W1","U6(2)"]]], ["TOCEXT",["12U62",1,11,["U62G1-max11W2","U6(2)"]]], ["TOCEXT",["12U62",1,12,["U62G1-max12W1"]]], ["TOCEXT",["12U62",1,13,["U62G1-max13W1"]]], ["TOCEXT",["12U62",1,14,["U62G1-max14W1","U6(2)"]]], ["TOCEXT",["12U62",1,15,["U62G1-max15W1"]]], ["TOCEXT",["12U62",1,16,["U62G1-max16W1"]]], ["TOCEXT",["12U62",1,2,["U62G1-max2W1","U6(2)"]]], ["TOCEXT",["12U62",1,3,["U62G1-max3W1"]]], ["TOCEXT",["12U62",1,4,["U62G1-max4W1","U6(2)"]]], ["TOCEXT",["12U62",1,4,["U62G1-max4W2","U6(2)"]]], ["TOCEXT",["12U62",1,5,["U62G1-max5W1","U6(2)"]]], ["TOCEXT",["12U62",1,6,["U62G1-max6W1"]]], ["TOCEXT",["12U62",1,7,["U62G1-max7W1"]]], ["TOCEXT",["12U62",1,8,["U62G1-max8W1","U6(2)"]]], ["TOCEXT",["12U62",1,8,["U62G1-max8W2","U6(2)"]]], ["TOCEXT",["12U62",1,9,["U62G1-max9W1","U6(2)"]]], ["TOCEXT",["12aL34",1,1,["L34G1-max1W1"]]], ["TOCEXT",["12aL34",1,2,["L34G1-max2W1"]]], ["TOCEXT",["12aL34",1,3,["L34G1-max3W1","L3(4)"]]], ["TOCEXT",["12aL34",1,6,["L34G1-max6W1","L3(4)"]]], ["TOCEXT",["12aL34",1,7,["L34G1-max7W1","L3(4)"]]], ["TOCEXT",["12aL34",1,8,["L34G1-max8W1","L3(4)"]]], ["TOCEXT",["12aL34",1,9,["L34G1-max9W1"]]], ["TOCEXT",["12bL34",1,1,["L34G1-max1W1"]]], ["TOCEXT",["12bL34",1,2,["L34G1-max2W1"]]], ["TOCEXT",["12bL34",1,3,["L34G1-max3W1","L3(4)"]]], ["TOCEXT",["12bL34",1,6,["L34G1-max6W1","L3(4)"]]], ["TOCEXT",["12bL34",1,7,["L34G1-max7W1","L3(4)"]]], ["TOCEXT",["12bL34",1,8,["L34G1-max8W1","L3(4)"]]], ["TOCEXT",["12bL34",1,9,["L34G1-max9W1"]]], ["TOCEXT",["2A5",1,1,["A5G1-max1W1"]]], ["TOCEXT",["2A5",1,2,["A5G1-max2W1"]]], ["TOCEXT",["2A5",1,3,["A5G1-max3W1"]]], ["TOCEXT",["2A6",1,1,["A6G1-max1W1"]]], ["TOCEXT",["2A6",1,2,["A6G1-max2W1"]]], ["TOCEXT",["2A6",1,3,["A6G1-max3W1"]]], ["TOCEXT",["2A6",1,4,["A6G1-max4W1"]]], ["TOCEXT",["2A6",1,5,["A6G1-max5W1"]]], ["TOCEXT",["2A7",1,1,["A7G1-max1W1"]]], ["TOCEXT",["2A7",1,2,["A7G1-max2W1"]]], ["TOCEXT",["2Co1",1,1,["Co1G1-max1W1"]]], ["TOCEXT",["2Co1",1,2,["Co1G1-max2W1"]]], ["TOCEXT",["2Co1",1,3,["Co1G1-max3W1"]]], ["TOCEXT",["2Co1",1,4,["Co1G1-max4W1"]]], ["TOCEXT",["2Co1",1,5,["Co1G1-max5W1"]]], ["TOCEXT",["2Co1",1,6,["Co1G1-max6W1","Co1"]]], ["TOCEXT",["2F22",1,1,["F22G1-max1W1"]]], ["TOCEXT",["2F22",1,10,["F22G1-max10W1"]]], ["TOCEXT",["2F22",1,11,["F22G1-max11W1"]]], ["TOCEXT",["2F22",1,12,["F22G1-max12W1","Fi22"]]], ["TOCEXT",["2F22",1,13,["F22G1-max13W1"]]], ["TOCEXT",["2F22",1,13,["F22G1-max13W2","Fi22"]]], ["TOCEXT",["2F22",1,14,["F22G1-max14W1","Fi22"]]], ["TOCEXT",["2F22",1,2,["F22G1-max2W1"]]], ["TOCEXT",["2F22",1,3,["F22G1-max3W1"]]], ["TOCEXT",["2F22",1,3,["F22G1-max3W2"]]], ["TOCEXT",["2F22",1,4,["F22G1-max4W1","Fi22"]]], ["TOCEXT",["2F22",1,5,["F22G1-max5W1"]]], ["TOCEXT",["2F22",1,6,["F22G1-max6W1"]]], ["TOCEXT",["2F22",1,7,["F22G1-max7W1"]]], ["TOCEXT",["2F22",1,8,["F22G1-max8W1"]]], ["TOCEXT",["2F22",1,9,["F22G1-max9W1","Fi22"]]], ["TOCEXT",["2F22d2",1,1,["F22d2G1-max1W1"]]], ["TOCEXT",["2F22d2",1,10,["F22d2G1-max10W2"]]], ["TOCEXT",["2F22d2",1,11,["F22d2G1-max11W2"]]], ["TOCEXT",["2F22d2",1,12,["F22d2G1-max12W2"]]], ["TOCEXT",["2F22d2",1,13,["F22d2G1-max13W1"]]], ["TOCEXT",["2F22d2",1,2,["F22d2G1-max2W2"]]], ["TOCEXT",["2F22d2",1,3,["F22d2G1-max3W2"]]], ["TOCEXT",["2F22d2",1,4,["F22d2G1-max4W2"]]], ["TOCEXT",["2F22d2",1,5,["F22d2G1-max5W2"]]], ["TOCEXT",["2F22d2",1,6,["F22d2G1-max6W2"]]], ["TOCEXT",["2F22d2",1,7,["F22d2G1-max7W2"]]], ["TOCEXT",["2F22d2",1,8,["F22d2G1-max8W2","Fi22.2"]]], ["TOCEXT",["2F22d2",1,9,["F22d2G1-max9W2"]]], ["TOCEXT",["2G24",1,1,["G24G1-max1W1"]]], ["TOCEXT",["2G24",1,2,["G24G1-max2W1"]]], ["TOCEXT",["2G24",1,3,["G24G1-max3W1"]]], ["TOCEXT",["2G24",1,4,["G24G1-max4W1"]]], ["TOCEXT",["2G24",1,5,["G24G1-max5W1"]]], ["TOCEXT",["2G24",1,6,["G24G1-max6W1"]]], ["TOCEXT",["2G24",1,7,["G24G1-max7W1"]]], ["TOCEXT",["2G24",1,8,["G24G1-max8W1"]]], ["TOCEXT",["2HS",1,1,["HSG1-max1W1"]]], ["TOCEXT",["2HS",1,10,["HSG1-max10W1"]]], ["TOCEXT",["2HS",1,11,["HSG1-max11W1"]]], ["TOCEXT",["2HS",1,12,["HSG1-max12W1"]]], ["TOCEXT",["2HS",1,2,["HSG1-max2W1"]]], ["TOCEXT",["2HS",1,3,["HSG1-max3W1"]]], ["TOCEXT",["2HS",1,4,["HSG1-max4W1"]]], ["TOCEXT",["2HS",1,5,["HSG1-max5W1"]]], ["TOCEXT",["2HS",1,6,["HSG1-max6W1"]]], ["TOCEXT",["2HS",1,7,["HSG1-max7W1"]]], ["TOCEXT",["2HS",1,8,["HSG1-max8W1","HS"]]], ["TOCEXT",["2HS",1,9,["HSG1-max9W1","HS"]]], ["TOCEXT",["2HSd2",1,1,["HSd2G1-max1W1"]]], ["TOCEXT",["2HSd2",1,10,["HSd2G1-max10W1"]]], ["TOCEXT",["2HSd2",1,2,["HSd2G1-max2W1"]]], ["TOCEXT",["2HSd2",1,2,["HSd2G1-max2W2"]]], ["TOCEXT",["2HSd2",1,3,["HSd2G1-max3W1"]]], ["TOCEXT",["2HSd2",1,4,["HSd2G1-max4W1"]]], ["TOCEXT",["2HSd2",1,4,["HSd2G1-max4W2"]]], ["TOCEXT",["2HSd2",1,5,["HSd2G1-max5W1"]]], ["TOCEXT",["2HSd2",1,6,["HSd2G1-max6W1"]]], ["TOCEXT",["2HSd2",1,6,["HSd2G1-max6W2"]]], ["TOCEXT",["2HSd2",1,7,["HSd2G1-max7W1"]]], ["TOCEXT",["2HSd2",1,8,["HSd2G1-max8W1"]]], ["TOCEXT",["2HSd2",1,9,["HSd2G1-max9W1"]]], ["TOCEXT",["2J2",1,1,["J2G1-max1W1","J2"]]], ["TOCEXT",["2J2",1,2,["J2G1-max2W1"]]], ["TOCEXT",["2J2",1,3,["J2G1-max3W1"]]], ["TOCEXT",["2J2",1,4,["J2G1-max4W1"]]], ["TOCEXT",["2J2",1,5,["J2G1-max5W1"]]], ["TOCEXT",["2J2",1,6,["J2G1-max6W1"]]], ["TOCEXT",["2J2",1,7,["J2G1-max7W1"]]], ["TOCEXT",["2J2",1,8,["J2G1-max8W1"]]], ["TOCEXT",["2J2",1,9,["J2G1-max9W1"]]], ["TOCEXT",["2J2d2",1,1,["J2d2G1-max1W1"]]], ["TOCEXT",["2J2d2",1,10,["J2d2G1-max10W1"]]], ["TOCEXT",["2J2d2",1,10,["J2d2G1-max10W2"]]], ["TOCEXT",["2J2d2",1,2,["J2d2G1-max2W1"]]], ["TOCEXT",["2J2d2",1,2,["J2d2G1-max2W2"]]], ["TOCEXT",["2J2d2",1,3,["J2d2G1-max3W1"]]], ["TOCEXT",["2J2d2",1,3,["J2d2G1-max3W2"]]], ["TOCEXT",["2J2d2",1,4,["J2d2G1-max4W1"]]], ["TOCEXT",["2J2d2",1,5,["J2d2G1-max5W1"]]], ["TOCEXT",["2J2d2",1,6,["J2d2G1-max6W1"]]], ["TOCEXT",["2J2d2",1,7,["J2d2G1-max7W1"]]], ["TOCEXT",["2J2d2",1,8,["J2d2G1-max8W1"]]], ["TOCEXT",["2J2d2",1,8,["J2d2G1-max8W2"]]], ["TOCEXT",["2J2d2",1,9,["J2d2G1-max9W1"]]], ["TOCEXT",["2J2d2i",1,1,["J2d2G1-max1W1"]]], ["TOCEXT",["2J2d2i",1,10,["J2d2G1-max10W1"]]], ["TOCEXT",["2J2d2i",1,2,["J2d2G1-max2W1","J2.2"]]], ["TOCEXT",["2J2d2i",1,3,["J2d2G1-max3W1"]]], ["TOCEXT",["2J2d2i",1,4,["J2d2G1-max4W1"]]], ["TOCEXT",["2J2d2i",1,5,["J2d2G1-max5W1"]]], ["TOCEXT",["2J2d2i",1,6,["J2d2G1-max6W1"]]], ["TOCEXT",["2J2d2i",1,7,["J2d2G1-max7W1"]]], ["TOCEXT",["2J2d2i",1,8,["J2d2G1-max8W1"]]], ["TOCEXT",["2J2d2i",1,9,["J2d2G1-max9W1"]]], ["TOCEXT",["2L27",1,1,["L27G1-max1W1"]]], ["TOCEXT",["2L27",1,1,["L27G1-max1W2"]]], ["TOCEXT",["2L27",1,1,["L27G1-max1W3"]]], ["TOCEXT",["2L27",1,2,["L27G1-max2W1"]]], ["TOCEXT",["2L27",1,2,["L27G1-max2W2"]]], ["TOCEXT",["2L27",1,2,["L27G1-max2W3"]]], ["TOCEXT",["2L27",1,3,["L27G1-max3W1","L3(2)"]]], ["TOCEXT",["2L27",1,3,["L27G1-max3W2","L3(2)"]]], ["TOCEXT",["2L27",1,3,["L27G1-max3W3","L3(2)"]]], ["TOCEXT",["2L27d2",1,1,["L27d2G1-max1W1"]]], ["TOCEXT",["2L27d2",1,1,["L27d2G1-max1W2"]]], ["TOCEXT",["2L27d2",1,2,["L27d2G1-max2W1"]]], ["TOCEXT",["2L27d2",1,3,["L27d2G1-max3W1"]]], ["TOCEXT",["2L27d2",1,4,["L27d2G1-max4W1"]]], ["TOCEXT",["2L27d2i",1,1,["L27d2G1-max1W1"]]], ["TOCEXT",["2L27d2i",1,2,["L27d2G1-max2W1","L3(2).2"]]], ["TOCEXT",["2L27d2i",1,3,["L27d2G1-max3W1"]]], ["TOCEXT",["2L27d2i",1,4,["L27d2G1-max4W1"]]], ["TOCEXT",["2L34",1,1,["L34G1-max1W1"]]], ["TOCEXT",["2L34",1,2,["L34G1-max2W1"]]], ["TOCEXT",["2L34",1,3,["L34G1-max3W1","L3(4)"]]], ["TOCEXT",["2L34",1,4,["L34G1-max4W2"]]], ["TOCEXT",["2L34",1,5,["L34G1-max5W2"]]], ["TOCEXT",["2L34",1,6,["L34G1-max6W1","L3(4)"]]], ["TOCEXT",["2L34",1,7,["L34G1-max7W1"]]], ["TOCEXT",["2L34",1,8,["L34G1-max8W1"]]], ["TOCEXT",["2L34",1,9,["L34G1-max9W1"]]], ["TOCEXT",["2M12",1,1,["M12G1-max1W1","M12"]]], ["TOCEXT",["2M12",1,10,["M12G1-max10W1"]]], ["TOCEXT",["2M12",1,11,["M12G1-max11W1"]]], ["TOCEXT",["2M12",1,2,["M12G1-max2W1","M12"]]], ["TOCEXT",["2M12",1,3,["M12G1-max3W1"]]], ["TOCEXT",["2M12",1,4,["M12G1-max4W1"]]], ["TOCEXT",["2M12",1,5,["M12G1-max5W1"]]], ["TOCEXT",["2M12",1,6,["M12G1-max6W1"]]], ["TOCEXT",["2M12",1,7,["M12G1-max7W1"]]], ["TOCEXT",["2M12",1,8,["M12G1-max8W1"]]], ["TOCEXT",["2M12",1,9,["M12G1-max9W1"]]], ["TOCEXT",["2M12",1,9,["M12G1-max9W2"]]], ["TOCEXT",["2M12d2",1,2,["M12d2G1-max2W1","M12.2"]]], ["TOCEXT",["2M12d2",1,2,["M12d2G1-max2W2","M12.2"]]], ["TOCEXT",["2M12d2",1,3,["M12d2G1-max3W1"]]], ["TOCEXT",["2M12d2",1,3,["M12d2G1-max3W2"]]], ["TOCEXT",["2M12d2",1,4,["M12d2G1-max4W1"]]], ["TOCEXT",["2M12d2",1,5,["M12d2G1-max5W1"]]], ["TOCEXT",["2M12d2",1,6,["M12d2G1-max6W1"]]], ["TOCEXT",["2M12d2",1,7,["M12d2G1-max7W1","M12.2"]]], ["TOCEXT",["2M12d2",1,8,["M12d2G1-max8W1"]]], ["TOCEXT",["2M12d2",1,9,["M12d2G1-max9W1"]]], ["TOCEXT",["2M22",1,1,["M22G1-max1W1"]]], ["TOCEXT",["2M22",1,2,["M22G1-max2W1"]]], ["TOCEXT",["2M22",1,3,["M22G1-max3W1"]]], ["TOCEXT",["2M22",1,4,["M22G1-max4W1"]]], ["TOCEXT",["2M22",1,5,["M22G1-max5W1"]]], ["TOCEXT",["2M22",1,6,["M22G1-max6W1"]]], ["TOCEXT",["2M22",1,7,["M22G1-max7W1"]]], ["TOCEXT",["2M22",1,7,["M22G1-max7W2"]]], ["TOCEXT",["2M22",1,8,["M22G1-max8W1"]]], ["TOCEXT",["2M22d2",1,1,["M22d2G1-max1W1"]]], ["TOCEXT",["2M22d2",1,1,["M22d2G1-max1W2"]]], ["TOCEXT",["2M22d2",1,2,["M22d2G1-max2W1"]]], ["TOCEXT",["2M22d2",1,2,["M22d2G1-max2W2"]]], ["TOCEXT",["2M22d2",1,3,["M22d2G1-max3W1"]]], ["TOCEXT",["2M22d2",1,4,["M22d2G1-max4W1"]]], ["TOCEXT",["2M22d2",1,5,["M22d2G1-max5W1"]]], ["TOCEXT",["2M22d2",1,5,["M22d2G1-max5W2","M22.2"]]], ["TOCEXT",["2M22d2",1,6,["M22d2G1-max6W1"]]], ["TOCEXT",["2M22d2",1,7,["M22d2G1-max7W1","M22.2"]]], ["TOCEXT",["2M22d2",1,7,["M22d2G1-max7W2","M22.2"]]], ["TOCEXT",["2Ru",1,1,["RuG1-max1W1"]]], ["TOCEXT",["2Ru",1,1,["RuG1-max1W2"]]], ["TOCEXT",["2Ru",1,10,["RuG1-max10W1","Ru"]]], ["TOCEXT",["2Ru",1,10,["RuG1-max10W2","Ru"]]], ["TOCEXT",["2Ru",1,11,["RuG1-max11W1"]]], ["TOCEXT",["2Ru",1,11,["RuG1-max11W2"]]], ["TOCEXT",["2Ru",1,12,["RuG1-max12W1"]]], ["TOCEXT",["2Ru",1,12,["RuG1-max12W2"]]], ["TOCEXT",["2Ru",1,13,["RuG1-max13W1"]]], ["TOCEXT",["2Ru",1,13,["RuG1-max13W2"]]], ["TOCEXT",["2Ru",1,14,["RuG1-max14W1"]]], ["TOCEXT",["2Ru",1,14,["RuG1-max14W2"]]], ["TOCEXT",["2Ru",1,15,["RuG1-max15W1"]]], ["TOCEXT",["2Ru",1,15,["RuG1-max15W2"]]], ["TOCEXT",["2Ru",1,15,["RuG1-max15W3"]]], ["TOCEXT",["2Ru",1,2,["RuG1-max2W1"]]], ["TOCEXT",["2Ru",1,2,["RuG1-max2W2"]]], ["TOCEXT",["2Ru",1,3,["RuG1-max3W1"]]], ["TOCEXT",["2Ru",1,3,["RuG1-max3W2"]]], ["TOCEXT",["2Ru",1,4,["RuG1-max4W1"]]], ["TOCEXT",["2Ru",1,4,["RuG1-max4W2"]]], ["TOCEXT",["2Ru",1,5,["RuG1-max5W1","Ru"]]], ["TOCEXT",["2Ru",1,5,["RuG1-max5W2"]]], ["TOCEXT",["2Ru",1,6,["RuG1-max6W1"]]], ["TOCEXT",["2Ru",1,6,["RuG1-max6W2"]]], ["TOCEXT",["2Ru",1,7,["RuG1-max7W1"]]], ["TOCEXT",["2Ru",1,7,["RuG1-max7W2"]]], ["TOCEXT",["2Ru",1,8,["RuG1-max8W1"]]], ["TOCEXT",["2Ru",1,8,["RuG1-max8W2","Ru"]]], ["TOCEXT",["2Ru",1,9,["RuG1-max9W1"]]], ["TOCEXT",["2Ru",1,9,["RuG1-max9W2"]]], ["TOCEXT",["2Ru",1,9,["RuG1-max9W3"]]], ["TOCEXT",["2S5",1,1,["S5G1-max1W1"]]], ["TOCEXT",["2S5",1,2,["S5G1-max2W1"]]], ["TOCEXT",["2S5",1,3,["S5G1-max3W1"]]], ["TOCEXT",["2S5",1,4,["S5G1-max4W1"]]], ["TOCEXT",["2S5i",1,1,["S5G1-max1W1"]]], ["TOCEXT",["2S5i",1,2,["S5G1-max2W1"]]], ["TOCEXT",["2S5i",1,3,["S5G1-max3W1"]]], ["TOCEXT",["2S5i",1,4,["S5G1-max4W1"]]], ["TOCEXT",["2S6",1,1,["S6G1-max1W1"]]], ["TOCEXT",["2S6",1,2,["S6G1-max2W1"]]], ["TOCEXT",["2S6",1,3,["S6G1-max3W1"]]], ["TOCEXT",["2S6",1,4,["S6G1-max4W1"]]], ["TOCEXT",["2S6",1,5,["S6G1-max5W1"]]], ["TOCEXT",["2S6",1,6,["S6G1-max6W1"]]], ["TOCEXT",["2S62",1,1,["S62G1-max1W1"]]], ["TOCEXT",["2S62",1,2,["S62G1-max2W1"]]], ["TOCEXT",["2S62",1,3,["S62G1-max3W1"]]], ["TOCEXT",["2S62",1,4,["S62G1-max4W1","S6(2)"]]], ["TOCEXT",["2S62",1,5,["S62G1-max5W1"]]], ["TOCEXT",["2S62",1,6,["S62G1-max6W1"]]], ["TOCEXT",["2S62",1,7,["S62G1-max7W1"]]], ["TOCEXT",["2S62",1,8,["S62G1-max8W1","S6(2)"]]], ["TOCEXT",["2Suz",1,1,["SuzG1-max1W1"]]], ["TOCEXT",["2Suz",1,10,["SuzG1-max10W1"]]], ["TOCEXT",["2Suz",1,11,["SuzG1-max11W1"]]], ["TOCEXT",["2Suz",1,12,["SuzG1-max12W1"]]], ["TOCEXT",["2Suz",1,13,["SuzG1-max13W1"]]], ["TOCEXT",["2Suz",1,14,["SuzG1-max14W1"]]], ["TOCEXT",["2Suz",1,15,["SuzG1-max15W1"]]], ["TOCEXT",["2Suz",1,16,["SuzG1-max16W1"]]], ["TOCEXT",["2Suz",1,17,["SuzG1-max17W1"]]], ["TOCEXT",["2Suz",1,2,["SuzG1-max2W1"]]], ["TOCEXT",["2Suz",1,3,["SuzG1-max3W1"]]], ["TOCEXT",["2Suz",1,4,["SuzG1-max4W1"]]], ["TOCEXT",["2Suz",1,5,["SuzG1-max5W1"]]], ["TOCEXT",["2Suz",1,6,["SuzG1-max6W1"]]], ["TOCEXT",["2Suz",1,7,["SuzG1-max7W1"]]], ["TOCEXT",["2Suz",1,8,["SuzG1-max8W1"]]], ["TOCEXT",["2Suz",1,9,["SuzG1-max9W1"]]], ["TOCEXT",["2Suzd2",1,1,["Suzd2G1-max1W1"]]], ["TOCEXT",["2Suzd2",1,10,["Suzd2G1-max10W1"]]], ["TOCEXT",["2Suzd2",1,11,["Suzd2G1-max11W1"]]], ["TOCEXT",["2Suzd2",1,11,["Suzd2G1-max11W2"]]], ["TOCEXT",["2Suzd2",1,12,["Suzd2G1-max12W1"]]], ["TOCEXT",["2Suzd2",1,13,["Suzd2G1-max13W1"]]], ["TOCEXT",["2Suzd2",1,13,["Suzd2G1-max13W2"]]], ["TOCEXT",["2Suzd2",1,14,["Suzd2G1-max14W1"]]], ["TOCEXT",["2Suzd2",1,15,["Suzd2G1-max15W1"]]], ["TOCEXT",["2Suzd2",1,16,["Suzd2G1-max16W1"]]], ["TOCEXT",["2Suzd2",1,16,["Suzd2G1-max16W2"]]], ["TOCEXT",["2Suzd2",1,2,["Suzd2G1-max2W1"]]], ["TOCEXT",["2Suzd2",1,2,["Suzd2G1-max2W2"]]], ["TOCEXT",["2Suzd2",1,3,["Suzd2G1-max3W1"]]], ["TOCEXT",["2Suzd2",1,4,["Suzd2G1-max4W1"]]], ["TOCEXT",["2Suzd2",1,5,["Suzd2G1-max5W1"]]], ["TOCEXT",["2Suzd2",1,5,["Suzd2G1-max5W2"]]], ["TOCEXT",["2Suzd2",1,6,["Suzd2G1-max6W1","Suz.2"]]], ["TOCEXT",["2Suzd2",1,7,["Suzd2G1-max7W1"]]], ["TOCEXT",["2Suzd2",1,7,["Suzd2G1-max7W2"]]], ["TOCEXT",["2Suzd2",1,8,["Suzd2G1-max8W1"]]], ["TOCEXT",["2Suzd2",1,8,["Suzd2G1-max8W2"]]], ["TOCEXT",["2Suzd2",1,9,["Suzd2G1-max9W1"]]], ["TOCEXT",["2Sz8",1,1,["Sz8G1-max1W1"]]], ["TOCEXT",["2Sz8",1,2,["Sz8G1-max2W1"]]], ["TOCEXT",["2Sz8",1,3,["Sz8G1-max3W1"]]], ["TOCEXT",["2Sz8",1,4,["Sz8G1-max4W1","Sz(8)"]]], ["TOCEXT",["2U62",1,1,["U62G1-max1W1","U6(2)"]]], ["TOCEXT",["2U62",1,1,["U62G1-max1W2","U6(2)"]]], ["TOCEXT",["2U62",1,10,["U62G1-max10W1"]]], ["TOCEXT",["2U62",1,11,["U62G1-max11W1","U6(2)"]]], ["TOCEXT",["2U62",1,11,["U62G1-max11W2","U6(2)"]]], ["TOCEXT",["2U62",1,12,["U62G1-max12W1"]]], ["TOCEXT",["2U62",1,13,["U62G1-max13W1"]]], ["TOCEXT",["2U62",1,14,["U62G1-max14W1","U6(2)"]]], ["TOCEXT",["2U62",1,15,["U62G1-max15W1"]]], ["TOCEXT",["2U62",1,16,["U62G1-max16W1"]]], ["TOCEXT",["2U62",1,2,["U62G1-max2W1"]]], ["TOCEXT",["2U62",1,3,["U62G1-max3W1"]]], ["TOCEXT",["2U62",1,4,["U62G1-max4W1","U6(2)"]]], ["TOCEXT",["2U62",1,4,["U62G1-max4W2","U6(2)"]]], ["TOCEXT",["2U62",1,5,["U62G1-max5W1"]]], ["TOCEXT",["2U62",1,6,["U62G1-max6W1"]]], ["TOCEXT",["2U62",1,7,["U62G1-max7W1"]]], ["TOCEXT",["2U62",1,8,["U62G1-max8W1","U6(2)"]]], ["TOCEXT",["2U62",1,8,["U62G1-max8W2","U6(2)"]]], ["TOCEXT",["2U62",1,9,["U62G1-max9W1"]]], ["TOCEXT",["3A6",1,1,["A6G1-max1W1"]]], ["TOCEXT",["3A6",1,2,["A6G1-max2W1"]]], ["TOCEXT",["3A6",1,3,["A6G1-max3W1"]]], ["TOCEXT",["3A6",1,4,["A6G1-max4W1"]]], ["TOCEXT",["3A6",1,5,["A6G1-max5W1"]]], ["TOCEXT",["3A7",1,1,["A7G1-max1W1"]]], ["TOCEXT",["3A7",1,2,["A7G1-max2W1"]]], ["TOCEXT",["3F22",1,1,["F22G1-max1W1"]]], ["TOCEXT",["3F22",1,10,["F22G1-max10W1"]]], ["TOCEXT",["3F22",1,11,["F22G1-max11W1"]]], ["TOCEXT",["3F22",1,12,["F22G1-max12W1"]]], ["TOCEXT",["3F22",1,13,["F22G1-max13W1"]]], ["TOCEXT",["3F22",1,13,["F22G1-max13W2","Fi22"]]], ["TOCEXT",["3F22",1,14,["F22G1-max14W1"]]], ["TOCEXT",["3F22",1,2,["F22G1-max2W1"]]], ["TOCEXT",["3F22",1,3,["F22G1-max3W1"]]], ["TOCEXT",["3F22",1,3,["F22G1-max3W2"]]], ["TOCEXT",["3F22",1,4,["F22G1-max4W1"]]], ["TOCEXT",["3F22",1,5,["F22G1-max5W1"]]], ["TOCEXT",["3F22",1,6,["F22G1-max6W1","Fi22"]]], ["TOCEXT",["3F22",1,7,["F22G1-max7W1"]]], ["TOCEXT",["3F22",1,8,["F22G1-max8W1"]]], ["TOCEXT",["3F22",1,9,["F22G1-max9W1"]]], ["TOCEXT",["3F22d2",1,1,["F22d2G1-max1W1"]]], ["TOCEXT",["3F22d2",1,10,["F22d2G1-max10W2"]]], ["TOCEXT",["3F22d2",1,11,["F22d2G1-max11W2"]]], ["TOCEXT",["3F22d2",1,12,["F22d2G1-max12W2"]]], ["TOCEXT",["3F22d2",1,13,["F22d2G1-max13W1","Fi22.2"]]], ["TOCEXT",["3F22d2",1,2,["F22d2G1-max2W1"]]], ["TOCEXT",["3F22d2",1,2,["F22d2G1-max2W2"]]], ["TOCEXT",["3F22d2",1,3,["F22d2G1-max3W2","Fi22.2"]]], ["TOCEXT",["3F22d2",1,4,["F22d2G1-max4W2"]]], ["TOCEXT",["3F22d2",1,5,["F22d2G1-max5W2","Fi22.2"]]], ["TOCEXT",["3F22d2",1,6,["F22d2G1-max6W2"]]], ["TOCEXT",["3F22d2",1,7,["F22d2G1-max7W2"]]], ["TOCEXT",["3F22d2",1,8,["F22d2G1-max8W2","Fi22.2"]]], ["TOCEXT",["3F22d2",1,9,["F22d2G1-max9W2"]]], ["TOCEXT",["3F24d2",1,1,["F24d2G1-max1W1"]]], ["TOCEXT",["3F24d2",1,10,["F24d2G1-max10W1"]]], ["TOCEXT",["3F24d2",1,11,["F24d2G1-max11W1"]]], ["TOCEXT",["3F24d2",1,12,["F24d2G1-max12W1"]]], ["TOCEXT",["3F24d2",1,13,["F24d2G1-max13W1"]]], ["TOCEXT",["3F24d2",1,14,["F24d2G1-max14W1"]]], ["TOCEXT",["3F24d2",1,15,["F24d2G1-max15W1","Fi24'.2"]]], ["TOCEXT",["3F24d2",1,16,["F24d2G1-max16W1"]]], ["TOCEXT",["3F24d2",1,17,["F24d2G1-max17W1","Fi24'.2"]]], ["TOCEXT",["3F24d2",1,18,["F24d2G1-max18W1"]]], ["TOCEXT",["3F24d2",1,19,["F24d2G1-max19W1"]]], ["TOCEXT",["3F24d2",1,2,["F24d2G1-max2W1"]]], ["TOCEXT",["3F24d2",1,20,["F24d2G1-max20W1","Fi24'.2"]]], ["TOCEXT",["3F24d2",1,21,["F24d2G1-max21W1","Fi24'.2"]]], ["TOCEXT",["3F24d2",1,3,["F24d2G1-max3W1"]]], ["TOCEXT",["3F24d2",1,4,["F24d2G1-max4W1"]]], ["TOCEXT",["3F24d2",1,5,["F24d2G1-max5W1","Fi24'.2"]]], ["TOCEXT",["3F24d2",1,6,["F24d2G1-max6W1"]]], ["TOCEXT",["3F24d2",1,7,["F24d2G1-max7W1"]]], ["TOCEXT",["3F24d2",1,8,["F24d2G1-max8W1","Fi24'.2"]]], ["TOCEXT",["3F24d2",1,9,["F24d2G1-max9W1","Fi24'.2"]]], ["TOCEXT",["3G23",1,1,["G23G1-max1W1","G2(3)"]]], ["TOCEXT",["3G23",1,10,["G23G1-max10W1"]]], ["TOCEXT",["3G23",1,2,["G23G1-max2W1","G2(3)"]]], ["TOCEXT",["3G23",1,3,["G23G1-max3W1"]]], ["TOCEXT",["3G23",1,4,["G23G1-max4W1"]]], ["TOCEXT",["3G23",1,5,["G23G1-max5W1"]]], ["TOCEXT",["3G23",1,6,["G23G1-max6W1"]]], ["TOCEXT",["3G23",1,7,["G23G1-max7W1","G2(3)"]]], ["TOCEXT",["3G23",1,8,["G23G1-max8W1"]]], ["TOCEXT",["3G23",1,9,["G23G1-max9W1"]]], ["TOCEXT",["3J3",1,1,["J3G1-max1W1","J3"]]], ["TOCEXT",["3J3",1,2,["J3G1-max2W1"]]], ["TOCEXT",["3J3",1,3,["J3G1-max3W1"]]], ["TOCEXT",["3J3",1,4,["J3G1-max4W1"]]], ["TOCEXT",["3J3",1,5,["J3G1-max5W1"]]], ["TOCEXT",["3J3",1,6,["J3G1-max6W1"]]], ["TOCEXT",["3J3",1,7,["J3G1-max7W1"]]], ["TOCEXT",["3J3",1,8,["J3G1-max8W1"]]], ["TOCEXT",["3J3",1,9,["J3G1-max9W1","J3"]]], ["TOCEXT",["3J3d2",1,1,["J3d2G1-max1W1"]]], ["TOCEXT",["3J3d2",1,1,["J3d2G1-max1W2"]]], ["TOCEXT",["3J3d2",1,2,["J3d2G1-max2W1","J3.2"]]], ["TOCEXT",["3J3d2",1,2,["J3d2G1-max2W2","J3.2"]]], ["TOCEXT",["3J3d2",1,3,["J3d2G1-max3W1","J3.2"]]], ["TOCEXT",["3J3d2",1,3,["J3d2G1-max3W2","J3.2"]]], ["TOCEXT",["3J3d2",1,4,["J3d2G1-max4W1","J3.2"]]], ["TOCEXT",["3J3d2",1,4,["J3d2G1-max4W2","J3.2"]]], ["TOCEXT",["3J3d2",1,4,["J3d2G1-max4W2","J3.2"]]], ["TOCEXT",["3J3d2",1,5,["J3d2G1-max5W1"]]], ["TOCEXT",["3J3d2",1,5,["J3d2G1-max5W2"]]], ["TOCEXT",["3J3d2",1,6,["J3d2G1-max6W1"]]], ["TOCEXT",["3J3d2",1,6,["J3d2G1-max6W2"]]], ["TOCEXT",["3J3d2",1,7,["J3d2G1-max7W1","J3.2"]]], ["TOCEXT",["3J3d2",1,7,["J3d2G1-max7W2","J3.2"]]], ["TOCEXT",["3J3d2",1,8,["J3d2G1-max8W1","J3.2"]]], ["TOCEXT",["3J3d2",1,8,["J3d2G1-max8W2","J3.2"]]], ["TOCEXT",["3J3d2",1,9,["J3d2G1-max9W1","J3.2"]]], ["TOCEXT",["3J3d2",1,9,["J3d2G1-max9W2"]]], ["TOCEXT",["3L34",1,1,["L34G1-max1W1"]]], ["TOCEXT",["3L34",1,2,["L34G1-max2W1"]]], ["TOCEXT",["3L34",1,3,["L34G1-max3W1"]]], ["TOCEXT",["3L34",1,6,["L34G1-max6W1","L3(4)"]]], ["TOCEXT",["3L34",1,7,["L34G1-max7W1","L3(4)"]]], ["TOCEXT",["3L34",1,8,["L34G1-max8W1","L3(4)"]]], ["TOCEXT",["3L34",1,9,["L34G1-max9W1"]]], ["TOCEXT",["3M22",1,1,["M22G1-max1W1"]]], ["TOCEXT",["3M22",1,2,["M22G1-max2W1"]]], ["TOCEXT",["3M22",1,3,["M22G1-max3W1"]]], ["TOCEXT",["3M22",1,4,["M22G1-max4W1"]]], ["TOCEXT",["3M22",1,5,["M22G1-max5W1","M22"]]], ["TOCEXT",["3M22",1,6,["M22G1-max6W1","M22"]]], ["TOCEXT",["3M22",1,7,["M22G1-max7W1"]]], ["TOCEXT",["3M22",1,7,["M22G1-max7W2"]]], ["TOCEXT",["3M22",1,8,["M22G1-max8W1","M22"]]], ["TOCEXT",["3M22d2",1,1,["M22d2G1-max1W1"]]], ["TOCEXT",["3M22d2",1,1,["M22d2G1-max1W2"]]], ["TOCEXT",["3M22d2",1,2,["M22d2G1-max2W1"]]], ["TOCEXT",["3M22d2",1,2,["M22d2G1-max2W2"]]], ["TOCEXT",["3M22d2",1,3,["M22d2G1-max3W1"]]], ["TOCEXT",["3M22d2",1,4,["M22d2G1-max4W1"]]], ["TOCEXT",["3M22d2",1,5,["M22d2G1-max5W1","M22.2"]]], ["TOCEXT",["3M22d2",1,5,["M22d2G1-max5W2","M22.2"]]], ["TOCEXT",["3M22d2",1,6,["M22d2G1-max6W1"]]], ["TOCEXT",["3M22d2",1,7,["M22d2G1-max7W1","M22.2"]]], ["TOCEXT",["3M22d2",1,7,["M22d2G1-max7W2","M22.2"]]], ["TOCEXT",["3McL",1,1,["McLG1-max1W1"]]], ["TOCEXT",["3McL",1,10,["McLG1-max10W1"]]], ["TOCEXT",["3McL",1,11,["McLG1-max11W1","McL"]]], ["TOCEXT",["3McL",1,12,["McLG1-max12W1"]]], ["TOCEXT",["3McL",1,2,["McLG1-max2W1"]]], ["TOCEXT",["3McL",1,3,["McLG1-max3W1"]]], ["TOCEXT",["3McL",1,4,["McLG1-max4W1"]]], ["TOCEXT",["3McL",1,5,["McLG1-max5W1"]]], ["TOCEXT",["3McL",1,6,["McLG1-max6W1"]]], ["TOCEXT",["3McL",1,7,["McLG1-max7W1"]]], ["TOCEXT",["3McL",1,8,["McLG1-max8W1","McL"]]], ["TOCEXT",["3McL",1,9,["McLG1-max9W1"]]], ["TOCEXT",["3McLd2",1,1,["McLd2G1-max1W1"]]], ["TOCEXT",["3McLd2",1,10,["McLd2G1-max10W1"]]], ["TOCEXT",["3McLd2",1,2,["McLd2G1-max2W1"]]], ["TOCEXT",["3McLd2",1,3,["McLd2G1-max3W1"]]], ["TOCEXT",["3McLd2",1,4,["McLd2G1-max4W1"]]], ["TOCEXT",["3McLd2",1,5,["McLd2G1-max5W1"]]], ["TOCEXT",["3McLd2",1,6,["McLd2G1-max6W1"]]], ["TOCEXT",["3McLd2",1,7,["McLd2G1-max7W1"]]], ["TOCEXT",["3McLd2",1,7,["McLd2G1-max7W2"]]], ["TOCEXT",["3McLd2",1,8,["McLd2G1-max8W1"]]], ["TOCEXT",["3McLd2",1,8,["McLd2G1-max8W2","McL.2"]]], ["TOCEXT",["3McLd2",1,9,["McLd2G1-max9W1"]]], ["TOCEXT",["3ON",1,1,["ONG1-max1W1","ON"]]], ["TOCEXT",["3ON",1,10,["ONG1-max10W1"]]], ["TOCEXT",["3ON",1,11,["ONG1-max11W1"]]], ["TOCEXT",["3ON",1,12,["ONG1-max12W1"]]], ["TOCEXT",["3ON",1,13,["ONG1-max13W1"]]], ["TOCEXT",["3ON",1,2,["ONG1-max2W1","ON"]]], ["TOCEXT",["3ON",1,3,["ONG1-max3W1","ON"]]], ["TOCEXT",["3ON",1,4,["ONG1-max4W1"]]], ["TOCEXT",["3ON",1,5,["ONG1-max5W1"]]], ["TOCEXT",["3ON",1,6,["ONG1-max6W1"]]], ["TOCEXT",["3ON",1,7,["ONG1-max7W1"]]], ["TOCEXT",["3ON",1,8,["ONG1-max8W1"]]], ["TOCEXT",["3ON",1,9,["ONG1-max9W1","ON"]]], ["TOCEXT",["3ONd2",1,1,["ONd2G1-max1W1"]]], ["TOCEXT",["3ONd2",1,10,["ONd2G1-max10W1"]]], ["TOCEXT",["3ONd2",1,2,["ONd2G1-max2W1"]]], ["TOCEXT",["3ONd2",1,3,["ONd2G1-max3W1"]]], ["TOCEXT",["3ONd2",1,4,["ONd2G1-max4W1"]]], ["TOCEXT",["3ONd2",1,5,["ONd2G1-max5W1"]]], ["TOCEXT",["3ONd2",1,6,["ONd2G1-max6W1","ON.2"]]], ["TOCEXT",["3ONd2",1,7,["ONd2G1-max7W1","ON.2"]]], ["TOCEXT",["3ONd2",1,8,["ONd2G1-max8W1"]]], ["TOCEXT",["3ONd2",1,9,["ONd2G1-max9W1"]]], ["TOCEXT",["3S6",1,1,["S6G1-max1W1"]]], ["TOCEXT",["3S6",1,2,["S6G1-max2W1","A6.2_1"]]], ["TOCEXT",["3S6",1,3,["S6G1-max3W1","A6.2_1"]]], ["TOCEXT",["3S6",1,4,["S6G1-max4W1"]]], ["TOCEXT",["3S6",1,5,["S6G1-max5W1","A6.2_1"]]], ["TOCEXT",["3S6",1,6,["S6G1-max6W1","A6.2_1"]]], ["TOCEXT",["3Suz",1,1,["SuzG1-max1W1","Suz"]]], ["TOCEXT",["3Suz",1,10,["SuzG1-max10W1","Suz"]]], ["TOCEXT",["3Suz",1,11,["SuzG1-max11W1"]]], ["TOCEXT",["3Suz",1,12,["SuzG1-max12W1"]]], ["TOCEXT",["3Suz",1,13,["SuzG1-max13W1"]]], ["TOCEXT",["3Suz",1,14,["SuzG1-max14W1","Suz"]]], ["TOCEXT",["3Suz",1,15,["SuzG1-max15W1","Suz"]]], ["TOCEXT",["3Suz",1,16,["SuzG1-max16W1","Suz"]]], ["TOCEXT",["3Suz",1,17,["SuzG1-max17W1"]]], ["TOCEXT",["3Suz",1,2,["SuzG1-max2W1"]]], ["TOCEXT",["3Suz",1,3,["SuzG1-max3W1","Suz"]]], ["TOCEXT",["3Suz",1,4,["SuzG1-max4W1","Suz"]]], ["TOCEXT",["3Suz",1,5,["SuzG1-max5W1"]]], ["TOCEXT",["3Suz",1,6,["SuzG1-max6W1","Suz"]]], ["TOCEXT",["3Suz",1,7,["SuzG1-max7W1","Suz"]]], ["TOCEXT",["3Suz",1,8,["SuzG1-max8W1"]]], ["TOCEXT",["3Suz",1,9,["SuzG1-max9W1"]]], ["TOCEXT",["3Suzd2",1,1,["Suzd2G1-max1W1"]]], ["TOCEXT",["3Suzd2",1,10,["Suzd2G1-max10W1","Suz.2"]]], ["TOCEXT",["3Suzd2",1,11,["Suzd2G1-max11W1","Suz.2"]]], ["TOCEXT",["3Suzd2",1,11,["Suzd2G1-max11W2"]]], ["TOCEXT",["3Suzd2",1,12,["Suzd2G1-max12W1"]]], ["TOCEXT",["3Suzd2",1,13,["Suzd2G1-max13W1"]]], ["TOCEXT",["3Suzd2",1,13,["Suzd2G1-max13W2"]]], ["TOCEXT",["3Suzd2",1,14,["Suzd2G1-max14W1"]]], ["TOCEXT",["3Suzd2",1,15,["Suzd2G1-max15W1","Suz.2"]]], ["TOCEXT",["3Suzd2",1,16,["Suzd2G1-max16W1"]]], ["TOCEXT",["3Suzd2",1,16,["Suzd2G1-max16W2"]]], ["TOCEXT",["3Suzd2",1,2,["Suzd2G1-max2W1"]]], ["TOCEXT",["3Suzd2",1,2,["Suzd2G1-max2W2","Suz.2"]]], ["TOCEXT",["3Suzd2",1,3,["Suzd2G1-max3W1"]]], ["TOCEXT",["3Suzd2",1,4,["Suzd2G1-max4W1","Suz.2"]]], ["TOCEXT",["3Suzd2",1,5,["Suzd2G1-max5W1","Suz.2"]]], ["TOCEXT",["3Suzd2",1,5,["Suzd2G1-max5W2"]]], ["TOCEXT",["3Suzd2",1,6,["Suzd2G1-max6W1"]]], ["TOCEXT",["3Suzd2",1,7,["Suzd2G1-max7W1"]]], ["TOCEXT",["3Suzd2",1,7,["Suzd2G1-max7W2"]]], ["TOCEXT",["3Suzd2",1,8,["Suzd2G1-max8W1","Suz.2"]]], ["TOCEXT",["3Suzd2",1,8,["Suzd2G1-max8W2","Suz.2"]]], ["TOCEXT",["3Suzd2",1,9,["Suzd2G1-max9W1"]]], ["TOCEXT",["3U62",1,1,["U62G1-max1W1","U6(2)"]]], ["TOCEXT",["3U62",1,1,["U62G1-max1W2"]]], ["TOCEXT",["3U62",1,10,["U62G1-max10W1"]]], ["TOCEXT",["3U62",1,11,["U62G1-max11W1"]]], ["TOCEXT",["3U62",1,11,["U62G1-max11W2"]]], ["TOCEXT",["3U62",1,12,["U62G1-max12W1"]]], ["TOCEXT",["3U62",1,13,["U62G1-max13W1"]]], ["TOCEXT",["3U62",1,14,["U62G1-max14W1","U6(2)"]]], ["TOCEXT",["3U62",1,15,["U62G1-max15W1"]]], ["TOCEXT",["3U62",1,16,["U62G1-max16W1"]]], ["TOCEXT",["3U62",1,2,["U62G1-max2W1","U6(2)"]]], ["TOCEXT",["3U62",1,3,["U62G1-max3W1"]]], ["TOCEXT",["3U62",1,4,["U62G1-max4W1"]]], ["TOCEXT",["3U62",1,4,["U62G1-max4W2"]]], ["TOCEXT",["3U62",1,5,["U62G1-max5W1"]]], ["TOCEXT",["3U62",1,6,["U62G1-max6W1"]]], ["TOCEXT",["3U62",1,7,["U62G1-max7W1"]]], ["TOCEXT",["3U62",1,8,["U62G1-max8W1","U6(2)"]]], ["TOCEXT",["3U62",1,8,["U62G1-max8W2","U6(2)"]]], ["TOCEXT",["3U62",1,9,["U62G1-max9W1"]]], ["TOCEXT",["4M22",1,1,["M22G1-max1W1"]]], ["TOCEXT",["4M22",1,2,["M22G1-max2W1"]]], ["TOCEXT",["4M22",1,3,["M22G1-max3W1"]]], ["TOCEXT",["4M22",1,4,["M22G1-max4W1"]]], ["TOCEXT",["4M22",1,5,["M22G1-max5W1"]]], ["TOCEXT",["4M22",1,6,["M22G1-max6W1"]]], ["TOCEXT",["4M22",1,7,["M22G1-max7W1"]]], ["TOCEXT",["4M22",1,7,["M22G1-max7W2"]]], ["TOCEXT",["4M22",1,8,["M22G1-max8W1"]]], ["TOCEXT",["4Sz8",1,1,["Sz8G1-max1W1"]]], ["TOCEXT",["4Sz8",1,2,["Sz8G1-max2W1","Sz(8)"]]], ["TOCEXT",["4Sz8",1,3,["Sz8G1-max3W1","Sz(8)"]]], ["TOCEXT",["4Sz8",1,4,["Sz8G1-max4W1","Sz(8)"]]], ["TOCEXT",["4Sz8d3",1,1,["Sz8d3G1-max1W1"]]], ["TOCEXT",["4Sz8d3",1,1,["Sz8d3G1-max1W2"]]], ["TOCEXT",["4Sz8d3",1,2,["Sz8d3G1-max2W1"]]], ["TOCEXT",["4Sz8d3",1,3,["Sz8d3G1-max3W1"]]], ["TOCEXT",["4Sz8d3",1,4,["Sz8d3G1-max4W1","Sz(8).3"]]], ["TOCEXT",["4Sz8d3",1,5,["Sz8d3G1-max5W1"]]], ["TOCEXT",["4U62",1,1,["U62G1-max1W1","U6(2)"]]], ["TOCEXT",["4U62",1,1,["U62G1-max1W2","U6(2)"]]], ["TOCEXT",["4U62",1,10,["U62G1-max10W1","U6(2)"]]], ["TOCEXT",["4U62",1,11,["U62G1-max11W1","U6(2)"]]], ["TOCEXT",["4U62",1,11,["U62G1-max11W2","U6(2)"]]], ["TOCEXT",["4U62",1,12,["U62G1-max12W1"]]], ["TOCEXT",["4U62",1,13,["U62G1-max13W1"]]], ["TOCEXT",["4U62",1,14,["U62G1-max14W1","U6(2)"]]], ["TOCEXT",["4U62",1,15,["U62G1-max15W1"]]], ["TOCEXT",["4U62",1,16,["U62G1-max16W1"]]], ["TOCEXT",["4U62",1,2,["U62G1-max2W1"]]], ["TOCEXT",["4U62",1,3,["U62G1-max3W1"]]], ["TOCEXT",["4U62",1,4,["U62G1-max4W1","U6(2)"]]], ["TOCEXT",["4U62",1,4,["U62G1-max4W2","U6(2)"]]], ["TOCEXT",["4U62",1,5,["U62G1-max5W1","U6(2)"]]], ["TOCEXT",["4U62",1,6,["U62G1-max6W1"]]], ["TOCEXT",["4U62",1,7,["U62G1-max7W1"]]], ["TOCEXT",["4U62",1,8,["U62G1-max8W1","U6(2)"]]], ["TOCEXT",["4U62",1,8,["U62G1-max8W2","U6(2)"]]], ["TOCEXT",["4U62",1,9,["U62G1-max9W1","U6(2)"]]], ["TOCEXT",["4aL34",1,1,["L34G1-max1W1"]]], ["TOCEXT",["4aL34",1,2,["L34G1-max2W1"]]], ["TOCEXT",["4aL34",1,3,["L34G1-max3W1","L3(4)"]]], ["TOCEXT",["4aL34",1,6,["L34G1-max6W1","L3(4)"]]], ["TOCEXT",["4aL34",1,7,["L34G1-max7W1"]]], ["TOCEXT",["4aL34",1,8,["L34G1-max8W1"]]], ["TOCEXT",["4aL34",1,9,["L34G1-max9W1"]]], ["TOCEXT",["4bL34",1,1,["L34G1-max1W1"]]], ["TOCEXT",["4bL34",1,2,["L34G1-max2W1"]]], ["TOCEXT",["4bL34",1,3,["L34G1-max3W1","L3(4)"]]], ["TOCEXT",["4bL34",1,6,["L34G1-max6W1","L3(4)"]]], ["TOCEXT",["4bL34",1,7,["L34G1-max7W1"]]], ["TOCEXT",["4bL34",1,8,["L34G1-max8W1"]]], ["TOCEXT",["4bL34",1,9,["L34G1-max9W1"]]], ["TOCEXT",["6A6",1,1,["A6G1-max1W1"]]], ["TOCEXT",["6A6",1,2,["A6G1-max2W1"]]], ["TOCEXT",["6A6",1,3,["A6G1-max3W1"]]], ["TOCEXT",["6A6",1,4,["A6G1-max4W1"]]], ["TOCEXT",["6A6",1,5,["A6G1-max5W1"]]], ["TOCEXT",["6A7",1,1,["A7G1-max1W1"]]], ["TOCEXT",["6A7",1,2,["A7G1-max2W1"]]], ["TOCEXT",["6F22",1,1,["F22G1-max1W1"]]], ["TOCEXT",["6F22",1,10,["F22G1-max10W1"]]], ["TOCEXT",["6F22",1,11,["F22G1-max11W1"]]], ["TOCEXT",["6F22",1,12,["F22G1-max12W1","Fi22"]]], ["TOCEXT",["6F22",1,13,["F22G1-max13W1"]]], ["TOCEXT",["6F22",1,13,["F22G1-max13W2","Fi22"]]], ["TOCEXT",["6F22",1,14,["F22G1-max14W1","Fi22"]]], ["TOCEXT",["6F22",1,2,["F22G1-max2W1"]]], ["TOCEXT",["6F22",1,3,["F22G1-max3W1"]]], ["TOCEXT",["6F22",1,3,["F22G1-max3W2"]]], ["TOCEXT",["6F22",1,4,["F22G1-max4W1","Fi22"]]], ["TOCEXT",["6F22",1,5,["F22G1-max5W1"]]], ["TOCEXT",["6F22",1,6,["F22G1-max6W1","Fi22"]]], ["TOCEXT",["6F22",1,7,["F22G1-max7W1"]]], ["TOCEXT",["6F22",1,8,["F22G1-max8W1"]]], ["TOCEXT",["6F22",1,9,["F22G1-max9W1","Fi22"]]], ["TOCEXT",["6F22d2",1,1,["F22d2G1-max1W1"]]], ["TOCEXT",["6F22d2",1,13,["F22d2G1-max13W1","Fi22.2","Fi22.2"]]], ["TOCEXT",["6F22d2",1,2,["F22d2G1-max2W1"]]], ["TOCEXT",["6L34",1,1,["L34G1-max1W1"]]], ["TOCEXT",["6L34",1,2,["L34G1-max2W1"]]], ["TOCEXT",["6L34",1,3,["L34G1-max3W1","L3(4)"]]], ["TOCEXT",["6L34",1,6,["L34G1-max6W1","L3(4)"]]], ["TOCEXT",["6L34",1,7,["L34G1-max7W1","L3(4)"]]], ["TOCEXT",["6L34",1,8,["L34G1-max8W1","L3(4)"]]], ["TOCEXT",["6L34",1,9,["L34G1-max9W1"]]], ["TOCEXT",["6M22",1,1,["M22G1-max1W1"]]], ["TOCEXT",["6M22",1,2,["M22G1-max2W1"]]], ["TOCEXT",["6M22",1,3,["M22G1-max3W1"]]], ["TOCEXT",["6M22",1,4,["M22G1-max4W1"]]], ["TOCEXT",["6M22",1,5,["M22G1-max5W1","M22"]]], ["TOCEXT",["6M22",1,6,["M22G1-max6W1","M22"]]], ["TOCEXT",["6M22",1,7,["M22G1-max7W1"]]], ["TOCEXT",["6M22",1,7,["M22G1-max7W2"]]], ["TOCEXT",["6M22",1,8,["M22G1-max8W1","M22"]]], ["TOCEXT",["6M22d2",1,1,["M22d2G1-max1W1"]]], ["TOCEXT",["6M22d2",1,1,["M22d2G1-max1W2"]]], ["TOCEXT",["6M22d2",1,2,["M22d2G1-max2W1"]]], ["TOCEXT",["6M22d2",1,2,["M22d2G1-max2W2"]]], ["TOCEXT",["6M22d2",1,3,["M22d2G1-max3W1"]]], ["TOCEXT",["6M22d2",1,4,["M22d2G1-max4W1"]]], ["TOCEXT",["6M22d2",1,5,["M22d2G1-max5W1","M22.2"]]], ["TOCEXT",["6M22d2",1,5,["M22d2G1-max5W2","M22.2"]]], ["TOCEXT",["6M22d2",1,6,["M22d2G1-max6W1"]]], ["TOCEXT",["6M22d2",1,7,["M22d2G1-max7W1","M22.2"]]], ["TOCEXT",["6M22d2",1,7,["M22d2G1-max7W2","M22.2"]]], ["TOCEXT",["6S6",1,1,["S6G1-max1W1"]]], ["TOCEXT",["6S6",1,2,["S6G1-max2W1","A6.2_1"]]], ["TOCEXT",["6S6",1,3,["S6G1-max3W1","A6.2_1"]]], ["TOCEXT",["6S6",1,4,["S6G1-max4W1"]]], ["TOCEXT",["6S6",1,5,["S6G1-max5W1","A6.2_1"]]], ["TOCEXT",["6S6",1,6,["S6G1-max6W1","A6.2_1"]]], ["TOCEXT",["6Suz",1,1,["SuzG1-max1W1","Suz"]]], ["TOCEXT",["6Suz",1,10,["SuzG1-max10W1","Suz"]]], ["TOCEXT",["6Suz",1,11,["SuzG1-max11W1"]]], ["TOCEXT",["6Suz",1,12,["SuzG1-max12W1"]]], ["TOCEXT",["6Suz",1,13,["SuzG1-max13W1"]]], ["TOCEXT",["6Suz",1,14,["SuzG1-max14W1","Suz"]]], ["TOCEXT",["6Suz",1,15,["SuzG1-max15W1","Suz"]]], ["TOCEXT",["6Suz",1,16,["SuzG1-max16W1","Suz"]]], ["TOCEXT",["6Suz",1,17,["SuzG1-max17W1"]]], ["TOCEXT",["6Suz",1,2,["SuzG1-max2W1"]]], ["TOCEXT",["6Suz",1,3,["SuzG1-max3W1","Suz"]]], ["TOCEXT",["6Suz",1,4,["SuzG1-max4W1","Suz"]]], ["TOCEXT",["6Suz",1,5,["SuzG1-max5W1"]]], ["TOCEXT",["6Suz",1,6,["SuzG1-max6W1","Suz"]]], ["TOCEXT",["6Suz",1,7,["SuzG1-max7W1","Suz"]]], ["TOCEXT",["6Suz",1,8,["SuzG1-max8W1"]]], ["TOCEXT",["6Suz",1,9,["SuzG1-max9W1"]]], ["TOCEXT",["6Suzd2",1,1,["Suzd2G1-max1W1"]]], ["TOCEXT",["6Suzd2",1,10,["Suzd2G1-max10W1","Suz.2"]]], ["TOCEXT",["6Suzd2",1,11,["Suzd2G1-max11W1","Suz.2"]]], ["TOCEXT",["6Suzd2",1,11,["Suzd2G1-max11W2"]]], ["TOCEXT",["6Suzd2",1,12,["Suzd2G1-max12W1"]]], ["TOCEXT",["6Suzd2",1,13,["Suzd2G1-max13W1"]]], ["TOCEXT",["6Suzd2",1,13,["Suzd2G1-max13W2"]]], ["TOCEXT",["6Suzd2",1,14,["Suzd2G1-max14W1"]]], ["TOCEXT",["6Suzd2",1,15,["Suzd2G1-max15W1","Suz.2"]]], ["TOCEXT",["6Suzd2",1,16,["Suzd2G1-max16W1"]]], ["TOCEXT",["6Suzd2",1,16,["Suzd2G1-max16W2"]]], ["TOCEXT",["6Suzd2",1,2,["Suzd2G1-max2W1"]]], ["TOCEXT",["6Suzd2",1,2,["Suzd2G1-max2W2","Suz.2"]]], ["TOCEXT",["6Suzd2",1,3,["Suzd2G1-max3W1"]]], ["TOCEXT",["6Suzd2",1,4,["Suzd2G1-max4W1","Suz.2"]]], ["TOCEXT",["6Suzd2",1,5,["Suzd2G1-max5W1","Suz.2"]]], ["TOCEXT",["6Suzd2",1,5,["Suzd2G1-max5W2"]]], ["TOCEXT",["6Suzd2",1,6,["Suzd2G1-max6W1","Suz.2"]]], ["TOCEXT",["6Suzd2",1,7,["Suzd2G1-max7W1"]]], ["TOCEXT",["6Suzd2",1,7,["Suzd2G1-max7W2"]]], ["TOCEXT",["6Suzd2",1,8,["Suzd2G1-max8W1","Suz.2"]]], ["TOCEXT",["6Suzd2",1,8,["Suzd2G1-max8W2","Suz.2"]]], ["TOCEXT",["6Suzd2",1,9,["Suzd2G1-max9W1"]]], ["TOCEXT",["6U62",1,1,["U62G1-max1W1","U6(2)"]]], ["TOCEXT",["6U62",1,1,["U62G1-max1W2","U6(2)"]]], ["TOCEXT",["6U62",1,10,["U62G1-max10W1"]]], ["TOCEXT",["6U62",1,11,["U62G1-max11W1","U6(2)"]]], ["TOCEXT",["6U62",1,11,["U62G1-max11W2","U6(2)"]]], ["TOCEXT",["6U62",1,12,["U62G1-max12W1"]]], ["TOCEXT",["6U62",1,13,["U62G1-max13W1"]]], ["TOCEXT",["6U62",1,14,["U62G1-max14W1","U6(2)"]]], ["TOCEXT",["6U62",1,15,["U62G1-max15W1"]]], ["TOCEXT",["6U62",1,16,["U62G1-max16W1"]]], ["TOCEXT",["6U62",1,2,["U62G1-max2W1","U6(2)"]]], ["TOCEXT",["6U62",1,3,["U62G1-max3W1"]]], ["TOCEXT",["6U62",1,4,["U62G1-max4W1","U6(2)"]]], ["TOCEXT",["6U62",1,4,["U62G1-max4W2","U6(2)"]]], ["TOCEXT",["6U62",1,5,["U62G1-max5W1"]]], ["TOCEXT",["6U62",1,6,["U62G1-max6W1"]]], ["TOCEXT",["6U62",1,7,["U62G1-max7W1"]]], ["TOCEXT",["6U62",1,8,["U62G1-max8W1","U6(2)"]]], ["TOCEXT",["6U62",1,8,["U62G1-max8W2","U6(2)"]]], ["TOCEXT",["6U62",1,9,["U62G1-max9W1"]]], ["API",["2O73d2G1-p4480B0",[1,12,"imprim","???"]]], ["API",["6O73G1-p3374B0",[0,[1134,2240]]]], ["API",["6O73d2G1-p5614B0",[0,[1134,4480]]]], ["CHAR",["2.O7(3).2","2O73d2G1-p4480B0",0,[1,2,7,8,13,14,20,21,[101,2]],"1ab+105ab+195ab+819ab+1120a^2"]], ["CHAR",["3.L3(7).2","3L37d2G1-f7r6aB0",7,20,"6a"]], ["CHAR",["6.O7(3)","6O73G1-p3374B0",0,[[1,2],4,6,[7,2],12,60,61,89,90,91,92],"1a^2+27ab+105a+182a+195a^2+351ab+560ab+819a"]] ] } atlasrep-2.1.8/doc/atlasreptoc_schema.json0000644000175000017500000004077113453601024016767 0ustar samsam { "$schema": "http://json-schema.org/schema#", "title": "AtlasRep t.o.c. file", "description": "JSON schema that defines the format of AtlasRep t.o.c. files", "definitions": { "posint": { "type": "integer", "minimum": 1 }, "nonnegint": { "type": "integer", "minimum": 0 }, "crclist": { "type": "array", "items": { "type": "integer" }, "minItems": 1 }, "crclist1": { "type": "array", "items": { "type": "integer" }, "minItems": 1, "maxItems": 1 }, "GNAN_Description": { "description": ", ", "type": "array", "items": [ { "type": "string" }, { "type": "string" } ], "additionalItems": false, "minItems": 2 }, "GNAN_Entry": { "type": "array", "items": [ { "enum": [ "GNAN" ] }, { "$ref": "#/definitions/GNAN_Description" } ], "additionalItems": false, "minItems": 2 }, "TOC_perm_Description": { "type": "array", "items": [ { "enum": [ "perm" ] }, { "description": "G-pB.m[]", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+-p[0-9]+([a-z]|[A-Z])*B[0-9]+.m$" }, { "$ref": "#/definitions/crclist" } ], "additionalItems": false, "minItems": 3 }, "TOC_matff_Description": { "type": "array", "items": [ { "enum": [ "matff" ] }, { "description": "G-frB.m[]", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+-f[0-9]+r[0-9]+([a-z]|[A-Z])*B[0-9]+.m$" }, { "$ref": "#/definitions/crclist" } ], "additionalItems": false, "minItems": 3 }, "TOC_matint_Description": { "type": "array", "items": [ { "enum": [ "matint" ] }, { "description": "G-ZrB.g", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+-Zr[0-9]+([a-z]|[A-Z])*B[0-9]+.g$" }, { "$ref": "#/definitions/crclist1" } ], "additionalItems": false, "minItems": 3 }, "TOC_matalg_Description": { "type": "array", "items": [ { "enum": [ "matalg" ] }, { "description": "G-ArB.g", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+-Ar[0-9]+([a-z]|[A-Z])*B[0-9]+.g$" }, { "$ref": "#/definitions/crclist1" } ], "additionalItems": false, "minItems": 3 }, "TOC_matmodn_Description": { "type": "array", "items": [ { "enum": [ "matmodn" ] }, { "description": "G-ZrB.g", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+-Z[0-9]+r[0-9]+([a-z]|[A-Z])*B[0-9]+.g$" }, { "$ref": "#/definitions/crclist1" } ], "additionalItems": false, "minItems": 3 }, "TOC_quat_Description": { "type": "array", "items": [ { "enum": [ "quat" ] }, { "description": "G-HrB.g", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+-Hr[0-9]+([a-z]|[A-Z])*B[0-9]+.g$" }, { "$ref": "#/definitions/crclist1" } ], "additionalItems": false, "minItems": 3 }, "TOC_maxes_Description": { "type": "array", "items": [ { "enum": [ "maxes" ] }, { "description": "G-maxW", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+-max[0-9]+W[0-9]+$" }, { "$ref": "#/definitions/crclist1" } ], "additionalItems": false, "minItems": 3 }, "TOC_classes_Description": { "type": "array", "items": [ { "enum": [ "classes" ] }, { "description": "G-cclsW", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+-cclsW[0-9]+$" }, { "$ref": "#/definitions/crclist1" } ], "additionalItems": false, "minItems": 3 }, "TOC_cyclic_Description": { "type": "array", "items": [ { "enum": [ "cyclic" ] }, { "description": "G-cycW", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+-cycW[0-9]+$" }, { "$ref": "#/definitions/crclist1" } ], "additionalItems": false, "minItems": 3 }, "TOC_cyc2ccl_Description": { "type": "array", "items": [ { "enum": [ "cyc2ccl" ] }, { "description": "GcycW-cclsW", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+-cycW[0-9]+-cclsW[0-9]+$" }, { "$ref": "#/definitions/crclist1" } ], "additionalItems": false, "minItems": 3 }, "TOC_kernel_Description": { "type": "array", "items": [ { "enum": [ "kernel" ] }, { "description": "G-kerW", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+-ker([a-z]|[A-Z]|[0-9])+W[0-9]+$" }, { "$ref": "#/definitions/crclist1" } ], "additionalItems": false, "minItems": 3 }, "TOC_maxstd_Description": { "type": "array", "items": [ { "enum": [ "maxstd" ] }, { "description": "GmaxW-GW", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+max[0-9]+W[0-9]+-([a-z]|[A-Z]|[0-9])G[0-9]+W[0-9]+$" }, { "$ref": "#/definitions/crclist1" } ], "additionalItems": false, "minItems": 3 }, "TOC_out_Description": { "type": "array", "items": [ { "enum": [ "out" ] }, { "description": "G-aW", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+-a([a-z]|[A-Z]|[0-9])+W[0-9]+$" }, { "$ref": "#/definitions/crclist1" } ], "additionalItems": false, "minItems": 3 }, "TOC_switch_Description": { "type": "array", "items": [ { "enum": [ "switch" ] }, { "description": "G-GW", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+-G[0-9]+W[0-9]+$" }, { "$ref": "#/definitions/crclist1" } ], "additionalItems": false, "minItems": 3 }, "TOC_find_Description": { "type": "array", "items": [ { "enum": [ "find" ] }, { "description": "G-find", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+-find[0-9]+$" }, { "$ref": "#/definitions/crclist1" } ], "additionalItems": false, "minItems": 3 }, "TOC_check_Description": { "type": "array", "items": [ { "enum": [ "check" ] }, { "description": "G-check", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+-check[0-9]+$" }, { "$ref": "#/definitions/crclist1" } ], "additionalItems": false, "minItems": 3 }, "TOC_pres_Description": { "type": "array", "items": [ { "enum": [ "pres" ] }, { "description": "G-P", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+-P[0-9]+$" }, { "$ref": "#/definitions/crclist1" } ], "additionalItems": false, "minItems": 3 }, "TOC_otherscripts_Description": { "type": "array", "items": [ { "enum": [ "otherscripts" ] }, { "description": "G-XW", "type": "string", "pattern": "^([a-z]|[A-Z]|[0-9])+G[0-9]+-X([a-z]|[A-Z]|[0-9])+W[0-9]+$" }, { "$ref": "#/definitions/crclist1" } ], "additionalItems": false, "minItems": 3 }, "TOC_Description": { "description": ", , ", "oneOf": [ { "$ref": "#/definitions/TOC_perm_Description" }, { "$ref": "#/definitions/TOC_matff_Description" }, { "$ref": "#/definitions/TOC_matint_Description" }, { "$ref": "#/definitions/TOC_matalg_Description" }, { "$ref": "#/definitions/TOC_matmodn_Description" }, { "$ref": "#/definitions/TOC_quat_Description" }, { "$ref": "#/definitions/TOC_maxes_Description" }, { "$ref": "#/definitions/TOC_classes_Description" }, { "$ref": "#/definitions/TOC_cyclic_Description" }, { "$ref": "#/definitions/TOC_cyc2ccl_Description" }, { "$ref": "#/definitions/TOC_kernel_Description" }, { "$ref": "#/definitions/TOC_maxstd_Description" }, { "$ref": "#/definitions/TOC_out_Description" }, { "$ref": "#/definitions/TOC_switch_Description" }, { "$ref": "#/definitions/TOC_find_Description" }, { "$ref": "#/definitions/TOC_check_Description" }, { "$ref": "#/definitions/TOC_pres_Description" }, { "$ref": "#/definitions/TOC_otherscripts_Description" } ] }, "TOC_Entry": { "type": "array", "items": [ { "enum": [ "TOC" ] }, { "$ref": "#/definitions/TOC_Description" } ], "additionalItems": false, "minItems": 2 }, "GRS_Description": { "description": ", ", "type": "array", "items": [ { "type": "string" }, { "$ref": "#/definitions/posint" } ], "additionalItems": false, "minItems": 2 }, "GRS_Entry": { "type": "array", "items": [ { "enum": [ "GRS" ] }, { "$ref": "#/definitions/GRS_Description" } ], "additionalItems": false, "minItems": 2 }, "MXN_Description": { "description": ", ", "type": "array", "items": [ { "type": "string" }, { "$ref": "#/definitions/posint" } ], "additionalItems": false, "minItems": 2 }, "MXN_Entry": { "type": "array", "items": [ { "enum": [ "MXN" ] }, { "$ref": "#/definitions/MXN_Description" } ], "additionalItems": false, "minItems": 2 }, "MXO_Description": { "description": ", ", "type": "array", "items": [ { "type": "string" }, { "type": "array", "items": { "$ref": "#/definitions/nonnegint" } } ], "additionalItems": false, "minItems": 2 }, "MXO_Entry": { "type": "array", "items": [ { "enum": [ "MXO" ] }, { "$ref": "#/definitions/MXO_Description" } ], "additionalItems": false, "minItems": 2 }, "MXS_Description": { "description": ", ", "type": "array", "items": [ { "type": "string" }, { "type": "array", "items": { "type": "string" } } ], "additionalItems": false, "minItems": 2 }, "MXS_Entry": { "type": "array", "items": [ { "enum": [ "MXS" ] }, { "$ref": "#/definitions/MXS_Description" } ], "additionalItems": false, "minItems": 2 }, "STDCOMP_Description": { "description": ", ", "type": "array", "items": [ { "type": "string" }, { "type": "array", "items": [ { "type": "integer" }, { "type": "string" }, { "type": "integer" }, { "type": "boolean" } ] } ], "additionalItems": false, "minItems": 2 }, "STDCOMP_Entry": { "type": "array", "items": [ { "enum": [ "STDCOMP" ] }, { "$ref": "#/definitions/STDCOMP_Description" } ], "additionalItems": false, "minItems": 2 }, "RNG_Description": { "description": ", ", "type": "array", "items": [ { "type": "string" }, { "type": "string" } ], "additionalItems": false, "minItems": 2 }, "RNG_Entry": { "type": "array", "items": [ { "enum": [ "RNG" ] }, { "$ref": "#/definitions/RNG_Description" } ], "additionalItems": false, "minItems": 2 }, "TOCEXT_Description": { "description": ", , , ", "type": "array", "items": [ { "type": "string" }, { "type": "integer" }, { "type": "integer" }, { "type": "array", "items": { "type": "string" } } ], "additionalItems": false }, "TOCEXT_Entry": { "type": "array", "items": [ { "enum": [ "TOCEXT" ] }, { "$ref": "#/definitions/TOCEXT_Description" } ], "additionalItems": false, "minItems": 2 }, "API_info_intrans": { "type": "array", "items": [ { "enum": [ 0 ] }, { "type": "array", "items": { "$ref": "#/definitions/posint" } } ], "additionalItems": false, "minItems": 2 }, "API_info_imprim": { "type": "array", "items": [ { "$ref": "#/definitions/posint" }, { "$ref": "#/definitions/posint" }, { "enum": [ "imprim" ] }, { "type": "string" } ], "additionalItems": false, "minItems": 4 }, "API_info_prim": { "type": "array", "items": [ { "$ref": "#/definitions/posint" }, { "$ref": "#/definitions/posint" }, { "enum": [ "prim" ] }, { "type": "string" }, { "oneOf": [ { "enum": [ "???" ] }, { "$ref": "#/definitions/posint" } ] } ], "additionalItems": false, "minItems": 5 }, "API_Description": { "description": ", ", "type": "array", "items": [ { "type": "string" }, { "oneOf": [ { "$ref": "#/definitions/API_info_intrans" }, { "$ref": "#/definitions/API_info_imprim" }, { "$ref": "#/definitions/API_info_prim" } ] } ], "additionalItems": false, "minItems": 2 }, "API_Entry": { "type": "array", "items": [ { "enum": [ "API" ] }, { "$ref": "#/definitions/API_Description" } ], "additionalItems": false, "minItems": 2 }, "CHAR_Description": { "description": ", , , [, ]", "type": "array", "items": [ { "type": "string" }, { "type": "string" }, { "type": "integer" }, { "type": "array", "items": { "$ref": "#/definitions/posint" } } ], "additionalItems": { "type": "string" }, "minItems": 4, "maxItems": 5 }, "CHAR_Entry": { "type": "array", "items": [ { "enum": [ "CHAR" ] }, { "$ref": "#/definitions/CHAR_Description" } ], "additionalItems": false, "minItems": 2 }, "Data_Entry": { "oneOf": [ { "$ref": "#/definitions/GNAN_Entry" }, { "$ref": "#/definitions/TOC_Entry" }, { "$ref": "#/definitions/GRS_Entry" }, { "$ref": "#/definitions/MXN_Entry" }, { "$ref": "#/definitions/MXO_Entry" }, { "$ref": "#/definitions/MXS_Entry" }, { "$ref": "#/definitions/STDCOMP_Entry" }, { "$ref": "#/definitions/RNG_Entry" }, { "$ref": "#/definitions/TOCEXT_Entry" }, { "$ref": "#/definitions/API_Entry" }, { "$ref": "#/definitions/CHAR_Entry" } ] } }, "type": "object", "properties": { "ID": { "type": "string" }, "Version": { "type": "string" }, "DataURL": { "type": "string", "format": "uri" }, "SelfURL": { "type": "string", "format": "uri" }, "LocalDirectory": { "description": "path relative to GAP's pkg directory", "type": "string", } "Data": { "type": "array", "items": { "$ref": "#/definitions/Data_Entry" }, "minItems": 1, "uniqueItems": true }, }, "required": [ "ID", "Data" ], "additionalProperties": false } atlasrep-2.1.8/doc/lefttoc.css0000644000175000017500000000047414545501244014407 0ustar samsam/* leftmenu.css Frank Lübeck */ /* Change default CSS to show section menu on left side */ body { padding-left: 28%; } body.chap0 { padding-left: 2%; } div.ChapSects div.ContSect:hover div.ContSSBlock { left: 15%; } div.ChapSects { left: 1%; width: 25%; } atlasrep-2.1.8/doc/manual.css0000644000175000017500000001575414545501244014233 0ustar samsam/* manual.css Frank Lübeck */ /* This is the default CSS style sheet for GAPDoc HTML manuals. */ /* basic settings, fonts, sizes, colors, ... */ body { position: relative; background: #ffffff; color: #000000; width: 70%; margin: 0pt; padding: 15pt; font-family: Helvetica,Verdana,Arial,sans-serif; text-align: justify; } /* no side toc on title page, bib and index */ body.chap0 { width: 95%; } body.chapBib { width: 95%; } body.chapInd { width: 95%; } h1 { font-size: 200%; } h2 { font-size: 160%; } h3 { font-size: 160%; } h4 { font-size: 130%; } h5 { font-size: 100%; } p.foot { font-size: 60%; font-style: normal; } a:link { color: #00008e; text-decoration: none; } a:visited { color: #00008e; text-decoration: none; } a:active { color: #000000; text-decoration: none; } a:hover { background: #eeeeee; } pre { font-family: "Courier New",Courier,monospace; font-size: 100%; color:#111111; } tt,code { font-family: "Courier New",Courier,monospace; font-size: 110%; color: #000000; } var { } /* general alignment classes */ .pcenter { text-align: center; } .pleft { text-align: left; } .pright { text-align: right; } /* layout for the definitions of functions, variables, ... */ div.func { background: #e0e0e0; margin: 0pt 0pt; } /* general and special table settings */ table { border-collapse: collapse; margin-left: auto; margin-right: auto; } td, th { border-style: none; } table.func { padding: 0pt 1ex; margin-left: 1ex; margin-right: 1ex; background: transparent; /* line-height: 1.1; */ width: 100%; } table.func td.tdright { padding-right: 2ex; } /* Example elements (for old converted manuals, now in div+pre */ table.example { background: #efefef; border-style: none; border-width: 0pt; padding: 0px; width: 100% } table.example td { border-style: none; border-width: 0pt; padding: 0ex 1ex; } /* becomes ... */ div.example { background: #efefef; padding: 0ex 1ex; /* overflow-x: auto; */ overflow: auto; } /* Links to chapters in all files at top and bottom. */ /* If there are too many chapters then use 'display: none' here. */ div.chlinktop { background: #dddddd; border-style: solid; border-width: thin; margin: 2px; text-align: center; } div.chlinktop a { margin: 3px; } div.chlinktop a:hover { background: #ffffff; } div.chlinkbot { background: #dddddd; border-style: solid; border-width: thin; margin: 2px; text-align: center; /* width: 100%; */ } div.chlinkbot a { margin: 3px; } span.chlink1 { } /* and this is for the "Top", "Prev", "Next" links */ div.chlinkprevnexttop { background: #dddddd; border-style: solid; border-width: thin; text-align: center; margin: 2px; } div.chlinkprevnexttop a:hover { background: #ffffff; } div.chlinkprevnextbot { background: #dddddd; border-style: solid; border-width: thin; text-align: center; margin: 2px; } div.chlinkprevnextbot a:hover { background: #ffffff; } /* table of contents, initially don't display subsections */ div.ContSSBlock { display: none; } div.ContSSBlock br { display: none; } /* format in separate lines */ span.tocline { display: block; width: 100%; } div.ContSSBlock a { display: block; } /* this is for the main table of contents */ div.ContChap { } div.ContChap div.ContSect:hover div.ContSSBlock { display: block; position: absolute; background: #eeeeee; border-style: solid; border-width: 1px 4px 4px 1px; border-color: #666666; padding-left: 0.5ex; color: #000000; left: 20%; width: 40%; z-index: 10000; } div.ContSSBlock a:hover { background: #ffffff; } /* and here for the side menu of contents in the chapter files */ div.ChapSects { } div.ChapSects a:hover { background: #eeeeee; } div.ChapSects a:hover { display: block; width: 100%; background: #eeeeee; color: #000000; } div.ChapSects div.ContSect:hover div.ContSSBlock { display: block; position: fixed; background: #eeeeee; border-style: solid; border-width: 1px 2px 2px 1px; border-color: #666666; padding-left: 0ex; padding-right: 0.5ex; color: #000000; left: 54%; width: 25%; z-index: 10000; } div.ChapSects div.ContSect:hover div.ContSSBlock a { display: block; margin-left: 3px; } div.ChapSects div.ContSect:hover div.ContSSBlock a:hover { display: block; background: #ffffff; } div.ContSect { text-align: left; margin-left: 1em; } div.ChapSects { position: fixed; left: 75%; font-size: 90%; overflow: auto; top: 10px; bottom: 0px; } /* Table elements */ table.GAPDocTable { border-collapse: collapse; border-style: none; border-color: black; } table.GAPDocTable td, table.GAPDocTable th { padding: 3pt; border-width: thin; border-style: solid; border-color: #555555; } caption.GAPDocTable { caption-side: bottom; width: 70%; margin-top: 1em; margin-left: auto; margin-right: auto; } td.tdleft { text-align: left; } table.GAPDocTablenoborder { border-collapse: collapse; border-style: none; border-color: black; } table.GAPDocTablenoborder td, table.GAPDocTable th { padding: 3pt; border-width: 0pt; border-style: solid; border-color: #555555; } caption.GAPDocTablenoborder { caption-side: bottom; width: 70%; margin-top: 1em; margin-left: auto; margin-right: auto; } td.tdleft { text-align: left; } td.tdright { text-align: right; } td.tdcenter { text-align: center; } /* Colors and fonts can be overwritten for some types of elements. */ /* Verb elements */ pre.normal { color: #000000; } /* Func-like elements and Ref to Func-like */ code.func { color: #000000; } /* K elements */ code.keyw { color: #770000; } /* F elements */ code.file { color: #8e4510; } /* C elements */ code.code { } /* Item elements */ code.i { } /* Button elements */ strong.button { } /* Headings */ span.Heading { } /* Arg elements */ var.Arg { color: #006600; } /* Example elements, is in tables, see above */ div.Example { } /* Package elements */ strong.pkg { } /* URL-like elements */ span.URL { } /* Mark elements */ strong.Mark { } /* Ref elements */ b.Ref { } span.Ref { } /* this contains the contents page */ div.contents { } /* this contains the index page */ div.index { } /* ignore some text for non-css layout */ span.nocss { display: none; } /* colors for ColorPrompt like examples */ span.GAPprompt { color: #000097; font-weight: normal; } span.GAPbrkprompt { color: #970000; font-weight: normal; } span.GAPinput { color: #970000; } /* Bib entries */ p.BibEntry { } span.BibKey { color: #005522; } span.BibKeyLink { } b.BibAuthor { } i.BibTitle { } i.BibBookTitle { } span.BibEditor { } span.BibJournal { } span.BibType { } span.BibPublisher { } span.BibSchool { } span.BibEdition { } span.BibVolume { } span.BibSeries { } span.BibNumber { } span.BibPages { } span.BibOrganization { } span.BibAddress { } span.BibYear { } span.BibPublisher { } span.BibNote { } span.BibHowpublished { } atlasrep-2.1.8/doc/manual.js0000644000175000017500000001011314545501244014037 0ustar samsam/* manual.js Frank Lübeck */ /* This file contains a few javascript functions which allow to switch between display styles for GAPDoc HTML manuals. If javascript is switched off in a browser or this file in not available in a manual directory, this is no problem. Users just cannot switch between several styles and don't see the corresponding button. A style with name mystyle can be added by providing two files (or only one of them). mystyle.js: Additional javascript code for the style, it is read in the HTML pages after this current file. The additional code may adjust the preprocessing function jscontent() with is called onload of a file. This is done by appending functions to jscontentfuncs (jscontentfuncs.push(newfunc);). Make sure, that your style is still usable without javascript. mystyle.css: CSS configuration, read after manual.css (so it can just reconfigure a few details, or overwrite everything). Then adjust chooser.html such that users can switch on and off mystyle. A user can change the preferred style permanently by using the [Style] link and choosing one. Or one can append '?GAPDocStyle=mystyle' to the URL when loading any file of the manual (so the style can be configured in the GAP user preferences). */ /* generic helper function */ function deleteCookie(nam) { document.cookie = nam+"=;Path=/;expires=Thu, 01 Jan 1970 00:00:00 GMT"; } /* read a value from a "nam1=val1;nam2=val2;..." string (e.g., the search part of an URL or a cookie */ function valueString(str,nam) { var cs = str.split(";"); for (var i=0; i < cs.length; i++) { var pos = cs[i].search(nam+"="); if (pos > -1) { pos = cs[i].indexOf("="); return cs[i].slice(pos+1); } } return 0; } /* when a non-default style is chosen via URL or a cookie, then the cookie is reset and the styles .js and .css files are read */ function overwriteStyle() { /* style in URL? */ var style = valueString(window.location.search, "GAPDocStyle"); /* otherwise check cookie */ if (style == 0) style = valueString(document.cookie, "GAPDocStyle"); if (style == 0) return; if (style == "default") deleteCookie("GAPDocStyle"); else { /* ok, we set the cookie for path "/" */ var path = "/"; /* or better like this ??? var here = window.location.pathname.split("/"); for (var i=0; i+3 < here.length; i++) path = path+"/"+here[i]; */ document.cookie = "GAPDocStyle="+style+";Path="+path; /* split into names of style files */ var stlist = style.split(","); /* read style's css and js files */ for (var i=0; i < stlist.length; i++) { document.writeln(''); document.writeln(''); } } } /* this adds a "[Style]" link next to the MathJax switcher */ function addStyleLink() { var line = document.getElementById("mathjaxlink"); var el = document.createElement("a"); var oncl = document.createAttribute("href"); var back = window.location.protocol+"//" if (window.location.protocol == "http:" || window.location.protocol == "https:") { back = back+window.location.host; if (window.location.port != "") { back = back+":"+window.location.port; } } back = back+window.location.pathname; oncl.nodeValue = "chooser.html?BACK="+back; el.setAttributeNode(oncl); var cont = document.createTextNode(" [Style]"); el.appendChild(cont); line.appendChild(el); } var jscontentfuncs = new Array(); jscontentfuncs.push(addStyleLink); /* the default jscontent() only adds the [Style] link to the page */ function jscontent () { for (var i=0; i < jscontentfuncs.length; i++) jscontentfuncs[i](); } atlasrep-2.1.8/doc/manual.lab0000644000175000017500000004262114545501244014172 0ustar samsam\GAPDocLabFile{atlasrep} \makelabel{atlasrep:Title page}{}{X7D2C85EC87DD46E5} \makelabel{atlasrep:Copyright}{}{X81488B807F2A1CF1} \makelabel{atlasrep:Table of Contents}{}{X8537FEB07AF2BEC8} \makelabel{atlasrep:Introduction to the AtlasRep Package}{1}{X780A68B584B7F3DF} \makelabel{atlasrep:The ATLAS of Group Representations}{1.1}{X7A76DF957E7AF8AE} \makelabel{atlasrep:The GAP Interface to the ATLAS of Group Representations}{1.2}{X8033B61682EE6A23} \makelabel{atlasrep:What's New in AtlasRep, Compared to Older Versions?}{1.3}{X7B864EDC7CB211FD} \makelabel{atlasrep:What's New in Version 2.1.8? (January 2024)}{1.3.1}{X85FE8BE580751F58} \makelabel{atlasrep:What's New in Version 2.1.7? (August 2023)}{1.3.2}{X7B5DB23579AD1066} \makelabel{atlasrep:What's New in Version 2.1.6? (October 2022)}{1.3.3}{X7D4644167F6C9D4C} \makelabel{atlasrep:What's New in Version 2.1.5? (August 2022)}{1.3.4}{X823B2D767C11246A} \makelabel{atlasrep:What's New in Version 2.1.4? (August 2022)}{1.3.5}{X7BEBD3618260FE03} \makelabel{atlasrep:What's New in Version 2.1.3? (August 2022)}{1.3.6}{X7DB709CD7FECC9B1} \makelabel{atlasrep:What's New in Version 2.1.2? (March 2022)}{1.3.7}{X7A2A60D7841AF2CE} \makelabel{atlasrep:What's New in Version 2.1.1? (February 2022)}{1.3.8}{X7B0E14E57E9FC37E} \makelabel{atlasrep:What's New in Version 2.1.0? (May 2019)}{1.3.9}{X7DA8E7647A422775} \makelabel{atlasrep:What's New in Version 1.5.1? (March 2016)}{1.3.10}{X7EACAC887E257302} \makelabel{atlasrep:What's New in Version 1.5? (July 2011)}{1.3.11}{X86002B747AE0741B} \makelabel{atlasrep:What's New in Version 1.4? (June 2008)}{1.3.12}{X878EBA108716DDF0} \makelabel{atlasrep:What's New in Version 1.3.1? (October 2007)}{1.3.13}{X87A53CE182C9E086} \makelabel{atlasrep:What's New in Version 1.3? (June 2007)}{1.3.14}{X79CCC5517897924C} \makelabel{atlasrep:What's New in Version 1.2? (November 2003)}{1.3.15}{X7BDCA94D83DCFFB8} \makelabel{atlasrep:What's New in Version 1.1? (October 2002)}{1.3.16}{X831628B47F669B29} \makelabel{atlasrep:Acknowledgements}{1.4}{X82A988D47DFAFCFA} \makelabel{atlasrep:Tutorial for the AtlasRep Package}{2}{X8171B3798425E183} \makelabel{atlasrep:Accessing a Specific Group in AtlasRep}{2.1}{X79CECBFE7A8EE2C2} \makelabel{atlasrep:Accessing a Group in AtlasRep via its Name}{2.1.1}{X87CD0FFB87D0BDD7} \makelabel{atlasrep:Accessing a Maximal Subgroup of a Group in AtlasRep}{2.1.2}{X826C681B7EB3B67A} \makelabel{atlasrep:Accessing Specific Generators in AtlasRep}{2.2}{X7F616D9685292471} \makelabel{atlasrep:Basic Concepts used in AtlasRep}{2.3}{X7D3A29F879B140D3} \makelabel{atlasrep:Groups, Generators, and Representations}{2.3.1}{X7E2FB5E5852AD970} \makelabel{atlasrep:Straight Line Programs}{2.3.2}{X7DC99E4284093FBB} \makelabel{atlasrep:Examples of Using the AtlasRep Package}{2.4}{X87ACE06E82B68589} \makelabel{atlasrep:Example: Class Representatives}{2.4.1}{X8563D96878AC685C} \makelabel{atlasrep:Example: Permutation and Matrix Representations}{2.4.2}{X81C9233778A3A817} \makelabel{atlasrep:Example: Outer Automorphisms}{2.4.3}{X8284D7E87D38889C} \makelabel{atlasrep:Example: Using Semi-presentations and Black Box Programs}{2.4.4}{X794D669E7A507310} \makelabel{atlasrep:Example: Using the GAP Library of Tables of Marks}{2.4.5}{X7CE7C2068017525C} \makelabel{atlasrep:Example: Index 770 Subgroups in M22}{2.4.6}{X82550A9683E0DCA2} \makelabel{atlasrep:Example: Index 462 Subgroups in M22}{2.4.7}{X84F9D163795B7DE1} \makelabel{atlasrep:The User Interface of the AtlasRep Package}{3}{X87EAF8E578D95793} \makelabel{atlasrep:Accessing vs. Constructing Representations}{3.1}{X87D26B13819A8209} \makelabel{atlasrep:Group Names Used in the AtlasRep Package}{3.2}{X81BF52FC7B8C08D4} \makelabel{atlasrep:Standard Generators Used in the AtlasRep Package}{3.3}{X795DB7E486E0817D} \makelabel{atlasrep:Class Names Used in the AtlasRep Package}{3.4}{X861CD545803B97E8} \makelabel{atlasrep:Definition of ATLAS Class Names}{3.4.1}{X850EEDEE831EE039} \makelabel{atlasrep:Accessing Data via AtlasRep}{3.5}{X7CC88B2287A72204} \makelabel{atlasrep:Examples for DisplayAtlasInfo}{3.5.2}{X7CE4FF2380DB47F2} \makelabel{atlasrep:AtlasGroup}{3.5.8}{X80AABEE783363B70} \makelabel{atlasrep:AtlasSubgroup}{3.5.9}{X7A3E460C82B3D9A3} \makelabel{atlasrep:EvaluatePresentation}{3.5.11}{X87B012B080D01413} \makelabel{atlasrep:StandardGeneratorsData}{3.5.12}{X79F63403821C1E24} \makelabel{atlasrep:Browse Applications Provided by AtlasRep}{3.6}{X790D5F8C7E8E6947} \makelabel{atlasrep:Customizations of the AtlasRep Package}{4}{X797694467B534D0E} \makelabel{atlasrep:Installing the AtlasRep Package}{4.1}{X7F25ECBA7B675901} \makelabel{atlasrep:User Preferences of the AtlasRep Package}{4.2}{X851A50E6810EF8C5} \makelabel{atlasrep:User preference AtlasRepAccessRemoteFiles}{4.2.1}{X7C3293A98577EE68} \makelabel{atlasrep:User preference AtlasRepDataDirectory}{4.2.2}{X7C36E9A78021A71A} \makelabel{atlasrep:User preference AtlasRepTOCData}{4.2.3}{X7F21FFBE7F8108E4} \makelabel{atlasrep:User preference CompressDownloadedMeatAxeFiles}{4.2.4}{X8766BE5D7AD6C526} \makelabel{atlasrep:User preference FileAccessFunctions}{4.2.5}{X81AD105979465162} \makelabel{atlasrep:User preference AtlasRepLocalServerPath}{4.2.6}{X85C48D6D81095161} \makelabel{atlasrep:User preference HowToReadMeatAxeTextFiles}{4.2.7}{X79993585808450FA} \makelabel{atlasrep:User preference WriteHeaderFormatOfMeatAxeFiles}{4.2.8}{X7B8F757B85F87936} \makelabel{atlasrep:User preference WriteMeatAxeFilesOfMode2}{4.2.9}{X7941C4378261E28A} \makelabel{atlasrep:User preference BaseOfMeatAxePermutation}{4.2.10}{X877E40DB7A4E36C9} \makelabel{atlasrep:User preference DisplayFunction}{4.2.11}{X81F055037F9D3068} \makelabel{atlasrep:User preference AtlasRepMarkNonCoreData}{4.2.12}{X862C660878D422FA} \makelabel{atlasrep:User preference DebugFileLoading}{4.2.13}{X80958D068147325B} \makelabel{atlasrep:User preference AtlasRepJsonFilesAddresses}{4.2.14}{X850D135E79EFF3F7} \makelabel{atlasrep:Web Contents for the AtlasRep Package}{4.3}{X7C50F18587ADC3B5} \makelabel{atlasrep:Extending the ATLAS Database}{4.4}{X7FB64AD37D4620E6} \makelabel{atlasrep:Extensions of the AtlasRep Package}{5}{X7B0718A178BB10CA} \makelabel{atlasrep:Notify Additional Data}{5.1}{X78E7F7347DE8A125} \makelabel{atlasrep:AtlasOfGroupRepresentationsNotifyData}{5.1.1}{X81B5FA0578257653} \makelabel{atlasrep:The Effect of Extensions on the User Interface}{5.2}{X7A6024EC87A95E0B} \makelabel{atlasrep:An Example of Extending the AtlasRep Data}{5.3}{X7E7307FC835D09DF} \makelabel{atlasrep:New GAP Objects and Utility Functions provided by the AtlasRep Package}{6}{X83827EDB7D36C407} \makelabel{atlasrep:Straight Line Decisions}{6.1}{X8121E9567A7137C9} \makelabel{atlasrep:Semi-Presentations and Presentations}{6.1.7}{X7C94ECAC8583CEAE} \makelabel{atlasrep:Black Box Programs}{6.2}{X7BE856BC785A9E8F} \makelabel{atlasrep:Representations of Minimal Degree}{6.3}{X87E1F08D80C9E069} \makelabel{atlasrep:Criteria Used to Compute Minimality Information}{6.3.4}{X7FC33DFF8481F8D1} \makelabel{atlasrep:A JSON Interface}{6.4}{X7E5CB1637F127B2E} \makelabel{atlasrep:Why JSON?}{6.4.1}{X7870BBB184574D18} \makelabel{atlasrep:Technicalities of the AtlasRep Package}{7}{X7F77634D817156B3} \makelabel{atlasrep:Global Variables Used by the AtlasRep Package}{7.1}{X7DC2B7917DC30B28} \makelabel{atlasrep:How to Customize the Access to Data files}{7.2}{X81C5B5E78215169D} \makelabel{atlasrep:Reading and Writing MeatAxe Format Files}{7.3}{X7D76D4437A9646E7} \makelabel{atlasrep:Reading and Writing ATLAS Straight Line Programs}{7.4}{X7FEE162B7F63BEA0} \makelabel{atlasrep:Data Types Used in the AtlasRep Package}{7.5}{X809898027EFDA56E} \makelabel{atlasrep:Filenames Used in the AtlasRep Package}{7.6}{X7A86627B80980F61} \makelabel{atlasrep:The record component identifier used by the AtlasRep Package}{7.7}{X7CCA3DE97E756F01} \makelabel{atlasrep:AtlasRepIdentifier}{7.7.1}{X81685FC979BC3FB8} \makelabel{atlasrep:The Tables of Contents of the AtlasRep Package}{7.8}{X7B1DECF080AEB806} \makelabel{atlasrep:Sanity Checks for the AtlasRep Package}{7.9}{X79C5F2267ACCF52A} \makelabel{atlasrep:Sanity Checks for a Table of Contents}{7.9.1}{X86FDCF0B85496AE5} \makelabel{atlasrep:Other Sanity Checks}{7.9.2}{X7FBFA8D287B807D2} \makelabel{atlasrep:Bibliography}{Bib}{X7A6F98FD85F02BFE} \makelabel{atlasrep:References}{Bib}{X7A6F98FD85F02BFE} \makelabel{atlasrep:Index}{Ind}{X83A0356F839C696F} \makelabel{atlasrep:AtlasRep}{}{X7D2C85EC87DD46E5} \makelabel{atlasrep:black box program}{1.1}{X7A76DF957E7AF8AE} \makelabel{atlasrep:straight line program}{1.1}{X7A76DF957E7AF8AE} \makelabel{atlasrep:MeatAxe}{1.1}{X7A76DF957E7AF8AE} \makelabel{atlasrep:Magma}{1.1}{X7A76DF957E7AF8AE} \makelabel{atlasrep:C-MeatAxe}{1.2}{X8033B61682EE6A23} \makelabel{atlasrep:wget}{1.3.14}{X79CCC5517897924C} \makelabel{atlasrep:ftp}{1.3.14}{X79CCC5517897924C} \makelabel{atlasrep:perl}{1.3.14}{X79CCC5517897924C} \makelabel{atlasrep:wget}{1.3.16}{X831628B47F669B29} \makelabel{atlasrep:gzip}{1.3.16}{X831628B47F669B29} \makelabel{atlasrep:perl}{1.4}{X82A988D47DFAFCFA} \makelabel{atlasrep:AtlasClassNames}{3.4.2}{X78166D1D7D18EFBF} \makelabel{atlasrep:AtlasCharacterNames}{3.4.3}{X7B14A254870BA5A1} \makelabel{atlasrep:DisplayAtlasInfo}{3.5.1}{X79DACFFA7E2D1A99} \makelabel{atlasrep:DisplayAtlasInfo for a group name, and optionally further restrictions}{3.5.1}{X79DACFFA7E2D1A99} \makelabel{atlasrep:straight line program}{3.5.1}{X79DACFFA7E2D1A99} \makelabel{atlasrep:AtlasGenerators}{3.5.3}{X7D1CCCF8852DFF39} \makelabel{atlasrep:AtlasGenerators for an identifier}{3.5.3}{X7D1CCCF8852DFF39} \makelabel{atlasrep:AtlasProgram}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:AtlasProgram for an identifier}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:straight line program for maximal subgroups}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:maximal subgroups}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:straight line program for normal subgroups}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:straight line program for kernels of epimorphisms}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:straight line program for class representatives}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:class representatives}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:straight line program for representatives of cyclic subgroups}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:cyclic subgroups}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:maximally cyclic subgroups}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:straight line program for outer automorphisms}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:automorphisms}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:straight line decision for checking standard generators}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:straight line decision encoding a presentation}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:black box program for finding standard generators}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:straight line program for restandardizing}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:straight line program free format}{3.5.4}{X801F2E657C8A79ED} \makelabel{atlasrep:AtlasProgramInfo}{3.5.5}{X83DFD8967E6BC831} \makelabel{atlasrep:OneAtlasGeneratingSetInfo}{3.5.6}{X841478AB7CD06D44} \makelabel{atlasrep:AllAtlasGeneratingSetInfos}{3.5.7}{X84C2D76482E60E42} \makelabel{atlasrep:AtlasGroup for various arguments}{3.5.8}{X80AABEE783363B70} \makelabel{atlasrep:AtlasGroup for an identifier record}{3.5.8}{X80AABEE783363B70} \makelabel{atlasrep:AtlasSubgroup for a group name (and various arguments) and a number}{3.5.9}{X7A3E460C82B3D9A3} \makelabel{atlasrep:AtlasSubgroup for an identifier record and a number}{3.5.9}{X7A3E460C82B3D9A3} \makelabel{atlasrep:AtlasSubgroup for a group and a number}{3.5.9}{X7A3E460C82B3D9A3} \makelabel{atlasrep:AtlasRepInfoRecord for a group}{3.5.10}{X87BC7D9C7BA2F27A} \makelabel{atlasrep:AtlasRepInfoRecord for a string}{3.5.10}{X87BC7D9C7BA2F27A} \makelabel{atlasrep:EvaluatePresentation for a group, a group name (and a number)}{3.5.11}{X87B012B080D01413} \makelabel{atlasrep:EvaluatePresentation for a list of generators, a group name (and a number)}{3.5.11}{X87B012B080D01413} \makelabel{atlasrep:StandardGeneratorsData for a group, a group name (and a number)}{3.5.12}{X79F63403821C1E24} \makelabel{atlasrep:StandardGeneratorsData for a list of generators, a group name (and a number)}{3.5.12}{X79F63403821C1E24} \makelabel{atlasrep:BrowseMinimalDegrees}{3.6.1}{X7F31A7CB841FE63F} \makelabel{atlasrep:BrowseBibliographySporadicSimple}{3.6.2}{X84ED4FC182C28198} \makelabel{atlasrep:AtlasRepAccessRemoteFiles}{4.2.1}{X7C3293A98577EE68} \makelabel{atlasrep:local access}{4.2.1}{X7C3293A98577EE68} \makelabel{atlasrep:remote access}{4.2.1}{X7C3293A98577EE68} \makelabel{atlasrep:AtlasRepDataDirectory}{4.2.2}{X7C36E9A78021A71A} \makelabel{atlasrep:AtlasRepTOCData}{4.2.3}{X7F21FFBE7F8108E4} \makelabel{atlasrep:CompressDownloadedMeatAxeFiles}{4.2.4}{X8766BE5D7AD6C526} \makelabel{atlasrep:compress}{4.2.4}{X8766BE5D7AD6C526} \makelabel{atlasrep:gzip}{4.2.4}{X8766BE5D7AD6C526} \makelabel{atlasrep:FileAccessFunctions}{4.2.5}{X81AD105979465162} \makelabel{atlasrep:AtlasRepLocalServerPath}{4.2.6}{X85C48D6D81095161} \makelabel{atlasrep:HowToReadMeatAxeTextFiles}{4.2.7}{X79993585808450FA} \makelabel{atlasrep:WriteHeaderFormatOfMeatAxeFiles}{4.2.8}{X7B8F757B85F87936} \makelabel{atlasrep:WriteMeatAxeFilesOfMode2}{4.2.9}{X7941C4378261E28A} \makelabel{atlasrep:BaseOfMeatAxePermutation}{4.2.10}{X877E40DB7A4E36C9} \makelabel{atlasrep:DisplayFunction}{4.2.11}{X81F055037F9D3068} \makelabel{atlasrep:AtlasRepMarkNonCoreData}{4.2.12}{X862C660878D422FA} \makelabel{atlasrep:DebugFileLoading}{4.2.13}{X80958D068147325B} \makelabel{atlasrep:AtlasRepJsonFilesAddresses}{4.2.14}{X850D135E79EFF3F7} \makelabel{atlasrep:AtlasOfGroupRepresentationsNotifyData for a local directory of private data}{5.1.1}{X81B5FA0578257653} \makelabel{atlasrep:AtlasOfGroupRepresentationsNotifyData for a local file describing private data}{5.1.1}{X81B5FA0578257653} \makelabel{atlasrep:AtlasOfGroupRepresentationsNotifyData for a remote file describing private data}{5.1.1}{X81B5FA0578257653} \makelabel{atlasrep:AtlasOfGroupRepresentationsForgetData}{5.1.2}{X7E0DC24681F17A9D} \makelabel{atlasrep:StringOfAtlasTableOfContents}{5.1.3}{X81C5440983E47DBD} \makelabel{atlasrep:IsStraightLineDecision}{6.1.1}{X8787E2EC7DB85A89} \makelabel{atlasrep:LinesOfStraightLineDecision}{6.1.2}{X82AFAD9F7FA5CE8A} \makelabel{atlasrep:NrInputsOfStraightLineDecision}{6.1.3}{X7B1A43427BD97FDF} \makelabel{atlasrep:ScanStraightLineDecision}{6.1.4}{X82A3632782E45F35} \makelabel{atlasrep:StraightLineDecision}{6.1.5}{X825C4E4180F3D989} \makelabel{atlasrep:StraightLineDecisionNC}{6.1.5}{X825C4E4180F3D989} \makelabel{atlasrep:ResultOfStraightLineDecision}{6.1.6}{X7E7B328A84685480} \makelabel{atlasrep:semi-presentation}{6.1.7}{X7C94ECAC8583CEAE} \makelabel{atlasrep:presentation}{6.1.7}{X7C94ECAC8583CEAE} \makelabel{atlasrep:AsStraightLineDecision}{6.1.8}{X7C13D08C7D55E20A} \makelabel{atlasrep:StraightLineProgramFromStraightLineDecision}{6.1.9}{X7EA613C57DDC67D5} \makelabel{atlasrep:IsBBoxProgram}{6.2.1}{X87CAF2DE870D0E3B} \makelabel{atlasrep:ScanBBoxProgram}{6.2.2}{X7EA20532868F9863} \makelabel{atlasrep:RunBBoxProgram}{6.2.3}{X7D211A5D8602B330} \makelabel{atlasrep:ResultOfBBoxProgram}{6.2.4}{X869BACFB80A3CC87} \makelabel{atlasrep:AsBBoxProgram}{6.2.5}{X826ACFE887E0B6B8} \makelabel{atlasrep:AsStraightLineProgram}{6.2.6}{X7D36DFA87C8B2C48} \makelabel{atlasrep:MinimalRepresentationInfo}{6.3.1}{X7DC66D8282B2BB7F} \makelabel{atlasrep:MinimalRepresentationInfoData}{6.3.2}{X7E1B76DC86A8C405} \makelabel{atlasrep:SetMinimalRepresentationInfo}{6.3.3}{X79C4C9F683E919C9} \makelabel{atlasrep:AGR.JsonText}{6.4.2}{X87A307D284975AA9} \makelabel{atlasrep:AGR.GapObjectOfJsonText}{6.4.3}{X79DF4DC67DCFE27B} \makelabel{atlasrep:InfoAtlasRep}{7.1.1}{X8006BE167EB81E16} \makelabel{atlasrep:InfoCMeatAxe}{7.1.2}{X78601C3A87921E08} \makelabel{atlasrep:InfoBBox}{7.1.3}{X80D5EF9A7FEF124B} \makelabel{atlasrep:AGR}{7.1.4}{X84A157BF7D0CB270} \makelabel{atlasrep:AtlasOfGroupRepresentationsInfo}{7.1.5}{X7BEC94A6781E126E} \makelabel{atlasrep:matrix MeatAxe format}{7.3}{X7D76D4437A9646E7} \makelabel{atlasrep:permutation MeatAxe format}{7.3}{X7D76D4437A9646E7} \makelabel{atlasrep:ScanMeatAxeFile}{7.3.1}{X83D5103780E1238F} \makelabel{atlasrep:zcv}{7.3.1}{X83D5103780E1238F} \makelabel{atlasrep:MeatAxeString}{7.3.2}{X7DDD09BE87063052} \makelabel{atlasrep:MeatAxeString for permutations and a degree}{7.3.2}{X7DDD09BE87063052} \makelabel{atlasrep:MeatAxeString for a permutation, q, and dims}{7.3.2}{X7DDD09BE87063052} \makelabel{atlasrep:MeatAxeString for a matrix of integers}{7.3.2}{X7DDD09BE87063052} \makelabel{atlasrep:FFList}{7.3.3}{X79D9AE4878E9DFA6} \makelabel{atlasrep:FFLists}{7.3.3}{X79D9AE4878E9DFA6} \makelabel{atlasrep:CMtxBinaryFFMatOrPerm}{7.3.4}{X8477AA668733255C} \makelabel{atlasrep:FFMatOrPermCMtxBinary}{7.3.5}{X872FA00C7F791FBB} \makelabel{atlasrep:ScanStraightLineProgram}{7.4.1}{X7D6617E47B013A37} \makelabel{atlasrep:AtlasStringOfProgram}{7.4.2}{X82842D807A7B7DF7} \makelabel{atlasrep:AtlasStringOfProgram for MeatAxe format output}{7.4.2}{X82842D807A7B7DF7} \makelabel{atlasrep:AGR.DeclareDataType}{7.5.1}{X836AA4EA8346BE5B} \makelabel{atlasrep:semi-presentation}{7.6}{X7A86627B80980F61} \makelabel{atlasrep:presentation}{7.6}{X7A86627B80980F61} \makelabel{atlasrep:black box program for finding standard generators}{7.6}{X7A86627B80980F61} \makelabel{atlasrep:AGR.ParseFilenameFormat}{7.6.1}{X8486CCB181FC99A3} \makelabel{atlasrep:AGR.FileContents}{7.6.2}{X78AB92DB7C2CAB6E} \makelabel{atlasrep:AtlasRepIdentifier convert an old type identifier to a new type one}{7.7.1}{X81685FC979BC3FB8} \makelabel{atlasrep:AtlasRepIdentifier convert a new type identifier to an old type one}{7.7.1}{X81685FC979BC3FB8} atlasrep-2.1.8/doc/manual.six0000644000175000017500000011600214545501241014227 0ustar samsam#SIXFORMAT GapDocGAP HELPBOOKINFOSIXTMP := rec( encoding := "UTF-8", bookname := "AtlasRep", entries := [ [ "Title page", "0.0", [ 0, 0, 0 ], 1, 1, "title page", "X7D2C85EC87DD46E5" ], [ "Copyright", "0.0-1", [ 0, 0, 1 ], 36, 2, "copyright", "X81488B807F2A1CF1" ], [ "Table of Contents", "0.0-2", [ 0, 0, 2 ], 44, 3, "table of contents", "X8537FEB07AF2BEC8" ], [ "\033[1X\033[33X\033[0;-2YIntroduction to the \033[5XAtlasRep\033[105X\033[\ 101X\027\033[1X\027 Package\033[133X\033[101X", "1", [ 1, 0, 0 ], 1, 5, "introduction to the atlasrep package", "X780A68B584B7F3DF" ], [ "\033[1X\033[33X\033[0;-2YThe \033[5XATLAS\033[105X\033[101X\027\033[1X\\ 027 of Group Representations\033[133X\033[101X", "1.1", [ 1, 1, 0 ], 36, 5, "the atlas of group representations", "X7A76DF957E7AF8AE" ], [ "\033[1X\033[33X\033[0;-2YThe GAP Interface to the \033[5XATLAS\033[105X\\ 033[101X\027\033[1X\027 of Group Representations\033[133X\033[101X", "1.2", [ 1, 2, 0 ], 73, 6, "the gap interface to the atlas of group representations", "X8033B61682EE6A23" ], [ "\033[1X\033[33X\033[0;-2YWhat's New in \033[5XAtlasRep\033[105X\033[101X\\ 027\033[1X\027, Compared to Older Versions?\033[133X\033[101X", "1.3", [ 1, 3, 0 ], 101, 6, "whats new in atlasrep compared to older versions?" , "X7B864EDC7CB211FD" ], [ "\033[1X\033[33X\033[0;-2YWhat's New in Version 2.1.8? (January 2024)\033[1\ 33X\033[101X", "1.3-1", [ 1, 3, 1 ], 104, 6, "whats new in version 2.1.8? january 2024", "X85FE8BE580751F58" ], [ "\033[1X\033[33X\033[0;-2YWhat's New in Version 2.1.7? (August 2023)\033[13\ 3X\033[101X", "1.3-2", [ 1, 3, 2 ], 113, 6, "whats new in version 2.1.7? august 2023", "X7B5DB23579AD1066" ], [ "\033[1X\033[33X\033[0;-2YWhat's New in Version 2.1.6? (October 2022)\033[1\ 33X\033[101X", "1.3-3", [ 1, 3, 3 ], 146, 7, "whats new in version 2.1.6? october 2022", "X7D4644167F6C9D4C" ], [ "\033[1X\033[33X\033[0;-2YWhat's New in Version 2.1.5? (August 2022)\033[13\ 3X\033[101X", "1.3-4", [ 1, 3, 4 ], 161, 7, "whats new in version 2.1.5? august 2022", "X823B2D767C11246A" ], [ "\033[1X\033[33X\033[0;-2YWhat's New in Version 2.1.4? (August 2022)\033[13\ 3X\033[101X", "1.3-5", [ 1, 3, 5 ], 168, 7, "whats new in version 2.1.4? august 2022", "X7BEBD3618260FE03" ], [ "\033[1X\033[33X\033[0;-2YWhat's New in Version 2.1.3? (August 2022)\033[13\ 3X\033[101X", "1.3-6", [ 1, 3, 6 ], 174, 7, "whats new in version 2.1.3? august 2022", "X7DB709CD7FECC9B1" ], [ "\033[1X\033[33X\033[0;-2YWhat's New in Version 2.1.2? (March 2022)\033[133\ X\033[101X", "1.3-7", [ 1, 3, 7 ], 188, 8, "whats new in version 2.1.2? march 2022", "X7A2A60D7841AF2CE" ], [ "\033[1X\033[33X\033[0;-2YWhat's New in Version 2.1.1? (February 2022)\033[\ 133X\033[101X", "1.3-8", [ 1, 3, 8 ], 198, 8, "whats new in version 2.1.1? february 2022", "X7B0E14E57E9FC37E" ], [ "\033[1X\033[33X\033[0;-2YWhat's New in Version 2.1.0? (May 2019)\033[133X\\ 033[101X", "1.3-9", [ 1, 3, 9 ], 235, 8, "whats new in version 2.1.0? may 2019", "X7DA8E7647A422775" ], [ "\033[1X\033[33X\033[0;-2YWhat's New in Version 1.5.1? (March 2016)\033[133\ X\033[101X", "1.3-10", [ 1, 3, 10 ], 382, 11, "whats new in version 1.5.1? march 2016", "X7EACAC887E257302" ], [ "\033[1X\033[33X\033[0;-2YWhat's New in Version 1.5? (July 2011)\033[133X\\ 033[101X", "1.3-11", [ 1, 3, 11 ], 431, 11, "whats new in version 1.5? july 2011", "X86002B747AE0741B" ], [ "\033[1X\033[33X\033[0;-2YWhat's New in Version 1.4? (June 2008)\033[133X\\ 033[101X", "1.3-12", [ 1, 3, 12 ], 500, 12, "whats new in version 1.4? june 2008", "X878EBA108716DDF0" ], [ "\033[1X\033[33X\033[0;-2YWhat's New in Version 1.3.1? (October 2007)\033[1\ 33X\033[101X", "1.3-13", [ 1, 3, 13 ], 550, 13, "whats new in version 1.3.1? october 2007", "X87A53CE182C9E086" ], [ "\033[1X\033[33X\033[0;-2YWhat's New in Version 1.3? (June 2007)\033[133X\\ 033[101X", "1.3-14", [ 1, 3, 14 ], 567, 13, "whats new in version 1.3? june 2007", "X79CCC5517897924C" ], [ "\033[1X\033[33X\033[0;-2YWhat's New in Version 1.2? (November 2003)\033[13\ 3X\033[101X", "1.3-15", [ 1, 3, 15 ], 628, 14, "whats new in version 1.2? november 2003", "X7BDCA94D83DCFFB8" ], [ "\033[1X\033[33X\033[0;-2YWhat's New in Version 1.1? (October 2002)\033[133\ X\033[101X", "1.3-16", [ 1, 3, 16 ], 665, 15, "whats new in version 1.1? october 2002", "X831628B47F669B29" ], [ "\033[1X\033[33X\033[0;-2YAcknowledgements\033[133X\033[101X", "1.4", [ 1, 4, 0 ], 708, 16, "acknowledgements", "X82A988D47DFAFCFA" ], [ "\033[1X\033[33X\033[0;-2YTutorial for the \033[5XAtlasRep\033[105X\033[101\ X\027\033[1X\027 Package\033[133X\033[101X", "2", [ 2, 0, 0 ], 1, 17, "tutorial for the atlasrep package", "X8171B3798425E183" ], [ "\033[1X\033[33X\033[0;-2YAccessing a Specific Group in \033[5XAtlasRep\\ 033[105X\033[101X\027\033[1X\027\033[133X\033[101X", "2.1", [ 2, 1, 0 ], 56, 18, "accessing a specific group in atlasrep", "X79CECBFE7A8EE2C2" ], [ "\033[1X\033[33X\033[0;-2YAccessing a Group in \033[5XAtlasRep\033[105X\\ 033[101X\027\033[1X\027 via its Name\033[133X\033[101X", "2.1-1", [ 2, 1, 1 ], 67, 18, "accessing a group in atlasrep via its name", "X87CD0FFB87D0BDD7" ], [ "\033[1X\033[33X\033[0;-2YAccessing a Maximal Subgroup of a Group in \033[5\ XAtlasRep\033[105X\033[101X\027\033[1X\027\033[133X\033[101X", "2.1-2", [ 2, 1, 2 ], 129, 19, "accessing a maximal subgroup of a group in atlasrep", "X826C681B7EB3B67A" ], [ "\033[1X\033[33X\033[0;-2YAccessing Specific Generators in \033[5XAtlasRep\\ 033[105X\033[101X\027\033[1X\027\033[133X\033[101X", "2.2", [ 2, 2, 0 ], 206, 20, "accessing specific generators in atlasrep", "X7F616D9685292471" ], [ "\033[1X\033[33X\033[0;-2YBasic Concepts used in \033[5XAtlasRep\033[105X\ \033[101X\027\033[1X\027\033[133X\033[101X", "2.3", [ 2, 3, 0 ], 288, 21, "basic concepts used in atlasrep", "X7D3A29F879B140D3" ], [ "\033[1X\033[33X\033[0;-2YGroups, Generators, and Representations\033[133X\\ 033[101X", "2.3-1", [ 2, 3, 1 ], 291, 21, "groups generators and representations", "X7E2FB5E5852AD970" ], [ "\033[1X\033[33X\033[0;-2YStraight Line Programs\033[133X\033[101X", "2.3-2", [ 2, 3, 2 ], 349, 22, "straight line programs", "X7DC99E4284093FBB" ], [ "\033[1X\033[33X\033[0;-2YExamples of Using the \033[5XAtlasRep\033[105X\\ 033[101X\027\033[1X\027 Package\033[133X\033[101X", "2.4", [ 2, 4, 0 ], 389, 23, "examples of using the atlasrep package", "X87ACE06E82B68589" ], [ "\033[1X\033[33X\033[0;-2YExample: Class Representatives\033[133X\033[101X" , "2.4-1", [ 2, 4, 1 ], 392, 23, "example: class representatives", "X8563D96878AC685C" ], [ "\033[1X\033[33X\033[0;-2YExample: Permutation and Matrix Representations\\ 033[133X\033[101X", "2.4-2", [ 2, 4, 2 ], 485, 25, "example: permutation and matrix representations", "X81C9233778A3A817" ] , [ "\033[1X\033[33X\033[0;-2YExample: Outer Automorphisms\033[133X\033[101X", "2.4-3", [ 2, 4, 3 ], 550, 26, "example: outer automorphisms", "X8284D7E87D38889C" ], [ "\033[1X\033[33X\033[0;-2YExample: Using Semi-presentations and Black Box P\ rograms\033[133X\033[101X", "2.4-4", [ 2, 4, 4 ], 642, 27, "example: using semi-presentations and black box programs", "X794D669E7A507310" ], [ "\033[1X\033[33X\033[0;-2YExample: Using the \033[5XGAP\033[105X\033[101X\\ 027\033[1X\027 Library of Tables of Marks\033[133X\033[101X", "2.4-5", [ 2, 4, 5 ], 779, 30, "example: using the gap library of tables of marks", "X7CE7C2068017525C" ], [ "\033[1X\033[33X\033[0;-2YExample: Index \033[22X770\033[122X\033[101X\027\\ 033[1X\027 Subgroups in \033[22XM_22\033[122X\033[101X\027\033[1X\027\033[133X\ \033[101X", "2.4-6", [ 2, 4, 6 ], 836, 31, "example: index 770 subgroups in m_22", "X82550A9683E0DCA2" ], [ "\033[1X\033[33X\033[0;-2YExample: Index \033[22X462\033[122X\033[101X\027\\ 033[1X\027 Subgroups in \033[22XM_22\033[122X\033[101X\027\033[1X\027\033[133X\ \033[101X", "2.4-7", [ 2, 4, 7 ], 905, 32, "example: index 462 subgroups in m_22", "X84F9D163795B7DE1" ], [ "\033[1X\033[33X\033[0;-2YThe User Interface of the \033[5XAtlasRep\033[105\ X\033[101X\027\033[1X\027 Package\033[133X\033[101X", "3", [ 3, 0, 0 ], 1, 35, "the user interface of the atlasrep package", "X87EAF8E578D95793" ], [ "\033[1X\033[33X\033[0;-2YAccessing vs. Constructing Representations\033[1\ 33X\033[101X", "3.1", [ 3, 1, 0 ], 14, 35, "accessing vs. constructing representations", "X87D26B13819A8209" ], [ "\033[1X\033[33X\033[0;-2YGroup Names Used in the \033[5XAtlasRep\033[105X\\ 033[101X\027\033[1X\027 Package\033[133X\033[101X", "3.2", [ 3, 2, 0 ], 27, 35, "group names used in the atlasrep package", "X81BF52FC7B8C08D4" ], [ "\033[1X\033[33X\033[0;-2YStandard Generators Used in the \033[5XAtlasRep\ \033[105X\033[101X\027\033[1X\027 Package\033[133X\033[101X", "3.3", [ 3, 3, 0 ], 55, 36, "standard generators used in the atlasrep package", "X795DB7E486E0817D" ], [ "\033[1X\033[33X\033[0;-2YClass Names Used in the \033[5XAtlasRep\033[105X\\ 033[101X\027\033[1X\027 Package\033[133X\033[101X", "3.4", [ 3, 4, 0 ], 79, 36, "class names used in the atlasrep package", "X861CD545803B97E8" ], [ "\033[1X\033[33X\033[0;-2YDefinition of \033[5XATLAS\033[105X\033[101X\027\ \033[1X\027 Class Names\033[133X\033[101X", "3.4-1", [ 3, 4, 1 ], 93, 36, "definition of atlas class names", "X850EEDEE831EE039" ], [ "\033[1X\033[33X\033[0;-2YAccessing Data via \033[5XAtlasRep\033[105X\033[1\ 01X\027\033[1X\027\033[133X\033[101X", "3.5", [ 3, 5, 0 ], 238, 39, "accessing data via atlasrep", "X7CC88B2287A72204" ], [ "\033[1X\033[33X\033[0;-2YExamples for DisplayAtlasInfo\033[133X\033[101X" , "3.5-2", [ 3, 5, 2 ], 507, 43, "examples for displayatlasinfo", "X7CE4FF2380DB47F2" ], [ "\033[1X\033[33X\033[0;-2YAtlasGroup\033[133X\033[101X", "3.5-8", [ 3, 5, 8 ], 1297, 56, "atlasgroup", "X80AABEE783363B70" ], [ "\033[1X\033[33X\033[0;-2YAtlasSubgroup\033[133X\033[101X", "3.5-9", [ 3, 5, 9 ], 1339, 57, "atlassubgroup", "X7A3E460C82B3D9A3" ], [ "\033[1X\033[33X\033[0;-2YEvaluatePresentation\033[133X\033[101X", "3.5-11", [ 3, 5, 11 ], 1457, 59, "evaluatepresentation", "X87B012B080D01413" ], [ "\033[1X\033[33X\033[0;-2YStandardGeneratorsData\033[133X\033[101X", "3.5-12", [ 3, 5, 12 ], 1508, 59, "standardgeneratorsdata", "X79F63403821C1E24" ], [ "\033[1X\033[33X\033[0;-2Y\033[5XBrowse\033[105X\033[101X\027\033[1X\027 Ap\ plications Provided by \033[5XAtlasRep\033[105X\033[101X\027\033[1X\027\033[13\ 3X\033[101X", "3.6", [ 3, 6, 0 ], 1642, 62, "browse applications provided by atlasrep", "X790D5F8C7E8E6947" ], [ "\033[1X\033[33X\033[0;-2YCustomizations of the \033[5XAtlasRep\033[105X\\ 033[101X\027\033[1X\027 Package\033[133X\033[101X", "4", [ 4, 0, 0 ], 1, 64, "customizations of the atlasrep package", "X797694467B534D0E" ], [ "\033[1X\033[33X\033[0;-2YInstalling the \033[5XAtlasRep\033[105X\033[101X\\ 027\033[1X\027 Package\033[133X\033[101X", "4.1", [ 4, 1, 0 ], 4, 64, "installing the atlasrep package", "X7F25ECBA7B675901" ], [ "\033[1X\033[33X\033[0;-2YUser Preferences of the \033[5XAtlasRep\033[105X\\ 033[101X\027\033[1X\027 Package\033[133X\033[101X", "4.2", [ 4, 2, 0 ], 50, 65, "user preferences of the atlasrep package", "X851A50E6810EF8C5" ], [ "\033[1X\033[33X\033[0;-2YUser preference \033[10XAtlasRepAccessRemoteFile\ s\033[110X\033[101X\027\033[1X\027\033[133X\033[101X", "4.2-1", [ 4, 2, 1 ], 99, 65, "user preference atlasrepaccessremotefiles", "X7C3293A98577EE68" ], [ "\033[1X\033[33X\033[0;-2YUser preference \033[10XAtlasRepDataDirectory\\ 033[110X\033[101X\027\033[1X\027\033[133X\033[101X", "4.2-2", [ 4, 2, 2 ], 113, 66, "user preference atlasrepdatadirectory", "X7C36E9A78021A71A" ], [ "\033[1X\033[33X\033[0;-2YUser preference \033[10XAtlasRepTOCData\033[110X\ \033[101X\027\033[1X\027\033[133X\033[101X", "4.2-3", [ 4, 2, 3 ], 129, 66, "user preference atlasreptocdata", "X7F21FFBE7F8108E4" ], [ "\033[1X\033[33X\033[0;-2YUser preference \033[10XCompressDownloadedMeatAxe\ Files\033[110X\033[101X\027\033[1X\027\033[133X\033[101X", "4.2-4", [ 4, 2, 4 ], 142, 66, "user preference compressdownloadedmeataxefiles", "X8766BE5D7AD6C526" ], [ "\033[1X\033[33X\033[0;-2YUser preference \033[10XFileAccessFunctions\033[1\ 10X\033[101X\027\033[1X\027\033[133X\033[101X", "4.2-5", [ 4, 2, 5 ], 157, 66, "user preference fileaccessfunctions", "X81AD105979465162" ], [ "\033[1X\033[33X\033[0;-2YUser preference \033[10XAtlasRepLocalServerPath\\ 033[110X\033[101X\027\033[1X\027\033[133X\033[101X", "4.2-6", [ 4, 2, 6 ], 179, 67, "user preference atlasreplocalserverpath", "X85C48D6D81095161" ], [ "\033[1X\033[33X\033[0;-2YUser preference \033[10XHowToReadMeatAxeTextFiles\ \033[110X\033[101X\027\033[1X\027\033[133X\033[101X", "4.2-7", [ 4, 2, 7 ], 193, 67, "user preference howtoreadmeataxetextfiles", "X79993585808450FA" ], [ "\033[1X\033[33X\033[0;-2YUser preference \033[10XWriteHeaderFormatOfMeatAx\ eFiles\033[110X\033[101X\027\033[1X\027\033[133X\033[101X", "4.2-8", [ 4, 2, 8 ], 216, 67, "user preference writeheaderformatofmeataxefiles", "X7B8F757B85F87936" ], [ "\033[1X\033[33X\033[0;-2YUser preference \033[10XWriteMeatAxeFilesOfMode2\\ 033[110X\033[101X\027\033[1X\027\033[133X\033[101X", "4.2-9", [ 4, 2, 9 ], 237, 67, "user preference writemeataxefilesofmode2", "X7941C4378261E28A" ], [ "\033[1X\033[33X\033[0;-2YUser preference \033[10XBaseOfMeatAxePermutation\\ 033[110X\033[101X\027\033[1X\027\033[133X\033[101X", "4.2-10", [ 4, 2, 10 ], 247, 68, "user preference baseofmeataxepermutation", "X877E40DB7A4E36C9" ], [ "\033[1X\033[33X\033[0;-2YUser preference \033[10XDisplayFunction\033[110X\\ 033[101X\027\033[1X\027\033[133X\033[101X", "4.2-11", [ 4, 2, 11 ], 259, 68, "user preference displayfunction", "X81F055037F9D3068" ], [ "\033[1X\033[33X\033[0;-2YUser preference \033[10XAtlasRepMarkNonCoreData\\ 033[110X\033[101X\027\033[1X\027\033[133X\033[101X", "4.2-12", [ 4, 2, 12 ], 271, 68, "user preference atlasrepmarknoncoredata", "X862C660878D422FA" ], [ "\033[1X\033[33X\033[0;-2YUser preference \033[10XDebugFileLoading\033[110X\ \033[101X\027\033[1X\027\033[133X\033[101X", "4.2-13", [ 4, 2, 13 ], 278, 68, "user preference debugfileloading", "X80958D068147325B" ], [ "\033[1X\033[33X\033[0;-2YUser preference \033[10XAtlasRepJsonFilesAddresse\ s\033[110X\033[101X\027\033[1X\027\033[133X\033[101X", "4.2-14", [ 4, 2, 14 ], 284, 68, "user preference atlasrepjsonfilesaddresses", "X850D135E79EFF3F7" ], [ "\033[1X\033[33X\033[0;-2YWeb Contents for the \033[5XAtlasRep\033[105X\\ 033[101X\027\033[1X\027 Package\033[133X\033[101X", "4.3", [ 4, 3, 0 ], 294, 68, "web contents for the atlasrep package", "X7C50F18587ADC3B5" ], [ "\033[1X\033[33X\033[0;-2YExtending the \033[5XATLAS\033[105X\033[101X\027\\ 033[1X\027 Database\033[133X\033[101X", "4.4", [ 4, 4, 0 ], 326, 69, "extending the atlas database", "X7FB64AD37D4620E6" ], [ "\033[1X\033[33X\033[0;-2YExtensions of the \033[5XAtlasRep\033[105X\033[10\ 1X\027\033[1X\027 Package\033[133X\033[101X", "5", [ 5, 0, 0 ], 1, 70, "extensions of the atlasrep package", "X7B0718A178BB10CA" ], [ "\033[1X\033[33X\033[0;-2YNotify Additional Data\033[133X\033[101X", "5.1", [ 5, 1, 0 ], 37, 70, "notify additional data", "X78E7F7347DE8A125" ], [ "\033[1X\033[33X\033[0;-2YAtlasOfGroupRepresentationsNotifyData\033[133X\\ 033[101X", "5.1-1", [ 5, 1, 1 ], 59, 71, "atlasofgrouprepresentationsnotifydata", "X81B5FA0578257653" ], [ "\033[1X\033[33X\033[0;-2YThe Effect of Extensions on the User Interface\\ 033[133X\033[101X", "5.2", [ 5, 2, 0 ], 215, 73, "the effect of extensions on the user interface", "X7A6024EC87A95E0B" ], [ "\033[1X\033[33X\033[0;-2YAn Example of Extending the \033[5XAtlasRep\033[\ 105X\033[101X\027\033[1X\027 Data\033[133X\033[101X", "5.3", [ 5, 3, 0 ], 234, 73, "an example of extending the atlasrep data", "X7E7307FC835D09DF" ], [ "\033[1X\033[33X\033[0;-2YNew \033[5XGAP\033[105X\033[101X\027\033[1X\027 O\ bjects and Utility Functions provided by the \033[5XAtlasRep\033[105X\033[101X\ \027\033[1X\027 Package\033[133X\033[101X", "6", [ 6, 0, 0 ], 1, 80, "new gap objects and utility functions provided by the atlasrep package" , "X83827EDB7D36C407" ], [ "\033[1X\033[33X\033[0;-2YStraight Line Decisions\033[133X\033[101X", "6.1", [ 6, 1, 0 ], 13, 80, "straight line decisions", "X8121E9567A7137C9" ], [ "\033[1X\033[33X\033[0;-2YSemi-Presentations and Presentations\033[133X\\ 033[101X", "6.1-7", [ 6, 1, 7 ], 215, 83, "semi-presentations and presentations", "X7C94ECAC8583CEAE" ], [ "\033[1X\033[33X\033[0;-2YBlack Box Programs\033[133X\033[101X", "6.2", [ 6, 2, 0 ], 375, 86, "black box programs", "X7BE856BC785A9E8F" ], [ "\033[1X\033[33X\033[0;-2YRepresentations of Minimal Degree\033[133X\033[10\ 1X", "6.3", [ 6, 3, 0 ], 688, 91, "representations of minimal degree", "X87E1F08D80C9E069" ], [ "\033[1X\033[33X\033[0;-2YCriteria Used to Compute Minimality Information\\ 033[133X\033[101X", "6.3-4", [ 6, 3, 4 ], 872, 94, "criteria used to compute minimality information", "X7FC33DFF8481F8D1" ] , [ "\033[1X\033[33X\033[0;-2YA JSON Interface\033[133X\033[101X", "6.4", [ 6, 4, 0 ], 928, 95, "a json interface", "X7E5CB1637F127B2E" ], [ "\033[1X\033[33X\033[0;-2YWhy JSON?\033[133X\033[101X", "6.4-1", [ 6, 4, 1 ], 992, 96, "why json?", "X7870BBB184574D18" ], [ "\033[1X\033[33X\033[0;-2YTechnicalities of the \033[5XAtlasRep\033[105X\\ 033[101X\027\033[1X\027 Package\033[133X\033[101X", "7", [ 7, 0, 0 ], 1, 98, "technicalities of the atlasrep package", "X7F77634D817156B3" ], [ "\033[1X\033[33X\033[0;-2YGlobal Variables Used by the \033[5XAtlasRep\033[\ 105X\033[101X\027\033[1X\027 Package\033[133X\033[101X", "7.1", [ 7, 1, 0 ], 21, 98, "global variables used by the atlasrep package", "X7DC2B7917DC30B28" ], [ "\033[1X\033[33X\033[0;-2YHow to Customize the Access to Data files\033[133\ X\033[101X", "7.2", [ 7, 2, 0 ], 100, 100, "how to customize the access to data files", "X81C5B5E78215169D" ], [ "\033[1X\033[33X\033[0;-2YReading and Writing MeatAxe Format Files\033[133X\ \033[101X", "7.3", [ 7, 3, 0 ], 187, 101, "reading and writing meataxe format files", "X7D76D4437A9646E7" ], [ "\033[1X\033[33X\033[0;-2YReading and Writing \033[5XATLAS\033[105X\033[101\ X\027\033[1X\027 Straight Line Programs\033[133X\033[101X", "7.4", [ 7, 4, 0 ], 400, 104, "reading and writing atlas straight line programs", "X7FEE162B7F63BEA0" ], [ "\033[1X\033[33X\033[0;-2YData Types Used in the \033[5XAtlasRep\033[105X\\ 033[101X\027\033[1X\027 Package\033[133X\033[101X", "7.5", [ 7, 5, 0 ], 581, 107, "data types used in the atlasrep package", "X809898027EFDA56E" ], [ "\033[1X\033[33X\033[0;-2YFilenames Used in the \033[5XAtlasRep\033[105X\ \033[101X\027\033[1X\027 Package\033[133X\033[101X", "7.6", [ 7, 6, 0 ], 763, 110, "filenames used in the atlasrep package", "X7A86627B80980F61" ], [ "\033[1X\033[33X\033[0;-2YThe record component \033[10Xidentifier\033[110X\\ 033[101X\027\033[1X\027 used by the \033[5XAtlasRep\033[105X\033[101X\027\033[\ 1X\027 Package\033[133X\033[101X", "7.7", [ 7, 7, 0 ], 958, 114, "the record component identifier used by the atlasrep package", "X7CCA3DE97E756F01" ], [ "\033[1X\033[33X\033[0;-2YAtlasRepIdentifier\033[133X\033[101X", "7.7-1", [ 7, 7, 1 ], 1005, 114, "atlasrepidentifier", "X81685FC979BC3FB8" ], [ "\033[1X\033[33X\033[0;-2YThe Tables of Contents of the \033[5XAtlasRep\\ 033[105X\033[101X\027\033[1X\027 Package\033[133X\033[101X", "7.8", [ 7, 8, 0 ], 1060, 115, "the tables of contents of the atlasrep package" , "X7B1DECF080AEB806" ], [ "\033[1X\033[33X\033[0;-2YSanity Checks for the \033[5XAtlasRep\033[105X\\ 033[101X\027\033[1X\027 Package\033[133X\033[101X", "7.9", [ 7, 9, 0 ], 1227, 118, "sanity checks for the atlasrep package", "X79C5F2267ACCF52A" ], [ "\033[1X\033[33X\033[0;-2YSanity Checks for a Table of Contents\033[133X\\ 033[101X", "7.9-1", [ 7, 9, 1 ], 1255, 118, "sanity checks for a table of contents", "X86FDCF0B85496AE5" ], [ "\033[1X\033[33X\033[0;-2YOther Sanity Checks\033[133X\033[101X", "7.9-2", [ 7, 9, 2 ], 1402, 121, "other sanity checks", "X7FBFA8D287B807D2" ], [ "Bibliography", "bib", [ "Bib", 0, 0 ], 1, 122, "bibliography", "X7A6F98FD85F02BFE" ], [ "References", "bib", [ "Bib", 0, 0 ], 1, 122, "references", "X7A6F98FD85F02BFE" ], [ "Index", "ind", [ "Ind", 0, 0 ], 1, 124, "index", "X83A0356F839C696F" ], [ "AtlasRep", "0.0", [ 0, 0, 0 ], 1, 1, "atlasrep", "X7D2C85EC87DD46E5" ], [ "black box program", "1.1", [ 1, 1, 0 ], 36, 5, "black box program", "X7A76DF957E7AF8AE" ], [ "straight line program", "1.1", [ 1, 1, 0 ], 36, 5, "straight line program", "X7A76DF957E7AF8AE" ], [ "\033[5XMeatAxe\033[105X", "1.1", [ 1, 1, 0 ], 36, 5, "meataxe", "X7A76DF957E7AF8AE" ], [ "\033[5XMagma\033[105X", "1.1", [ 1, 1, 0 ], 36, 5, "magma", "X7A76DF957E7AF8AE" ], [ "\033[10XC\033[110X-\033[5XMeatAxe\033[105X", "1.2", [ 1, 2, 0 ], 73, 6, "c-meataxe", "X8033B61682EE6A23" ], [ "\033[11Xwget\033[111X", "1.3-14", [ 1, 3, 14 ], 567, 13, "wget", "X79CCC5517897924C" ], [ "\033[11Xftp\033[111X", "1.3-14", [ 1, 3, 14 ], 567, 13, "ftp", "X79CCC5517897924C" ], [ "\033[11Xperl\033[111X", "1.3-14", [ 1, 3, 14 ], 567, 13, "perl", "X79CCC5517897924C" ], [ "\033[11Xwget\033[111X", "1.3-16", [ 1, 3, 16 ], 665, 15, "wget", "X831628B47F669B29" ], [ "\033[11Xgzip\033[111X", "1.3-16", [ 1, 3, 16 ], 665, 15, "gzip", "X831628B47F669B29" ], [ "\033[11Xperl\033[111X", "1.4", [ 1, 4, 0 ], 708, 16, "perl", "X82A988D47DFAFCFA" ], [ "\033[2XAtlasClassNames\033[102X", "3.4-2", [ 3, 4, 2 ], 184, 38, "atlasclassnames", "X78166D1D7D18EFBF" ], [ "\033[2XAtlasCharacterNames\033[102X", "3.4-3", [ 3, 4, 3 ], 223, 38, "atlascharacternames", "X7B14A254870BA5A1" ], [ "\033[2XDisplayAtlasInfo\033[102X", "3.5-1", [ 3, 5, 1 ], 246, 39, "displayatlasinfo", "X79DACFFA7E2D1A99" ], [ "\033[2XDisplayAtlasInfo\033[102X for a group name, and optionally further \ restrictions", "3.5-1", [ 3, 5, 1 ], 246, 39, "displayatlasinfo for a group name and optionally further restrictions", "X79DACFFA7E2D1A99" ], [ "straight line program", "3.5-1", [ 3, 5, 1 ], 246, 39, "straight line program", "X79DACFFA7E2D1A99" ], [ "\033[2XAtlasGenerators\033[102X", "3.5-3", [ 3, 5, 3 ], 711, 46, "atlasgenerators", "X7D1CCCF8852DFF39" ], [ "\033[2XAtlasGenerators\033[102X for an identifier", "3.5-3", [ 3, 5, 3 ], 711, 46, "atlasgenerators for an identifier", "X7D1CCCF8852DFF39" ], [ "\033[2XAtlasProgram\033[102X", "3.5-4", [ 3, 5, 4 ], 873, 49, "atlasprogram", "X801F2E657C8A79ED" ], [ "\033[2XAtlasProgram\033[102X for an identifier", "3.5-4", [ 3, 5, 4 ], 873, 49, "atlasprogram for an identifier", "X801F2E657C8A79ED" ], [ "straight line program for maximal subgroups", "3.5-4", [ 3, 5, 4 ], 873, 49, "straight line program for maximal subgroups", "X801F2E657C8A79ED" ] , [ "maximal subgroups", "3.5-4", [ 3, 5, 4 ], 873, 49, "maximal subgroups", "X801F2E657C8A79ED" ], [ "straight line program for normal subgroups", "3.5-4", [ 3, 5, 4 ], 873, 49, "straight line program for normal subgroups", "X801F2E657C8A79ED" ], [ "straight line program for kernels of epimorphisms", "3.5-4", [ 3, 5, 4 ], 873, 49, "straight line program for kernels of epimorphisms", "X801F2E657C8A79ED" ], [ "straight line program for class representatives", "3.5-4", [ 3, 5, 4 ], 873, 49, "straight line program for class representatives", "X801F2E657C8A79ED" ], [ "class representatives", "3.5-4", [ 3, 5, 4 ], 873, 49, "class representatives", "X801F2E657C8A79ED" ], [ "straight line program for representatives of cyclic subgroups", "3.5-4", [ 3, 5, 4 ], 873, 49, "straight line program for representatives of cyclic subgroups", "X801F2E657C8A79ED" ], [ "cyclic subgroups", "3.5-4", [ 3, 5, 4 ], 873, 49, "cyclic subgroups", "X801F2E657C8A79ED" ], [ "maximally cyclic subgroups", "3.5-4", [ 3, 5, 4 ], 873, 49, "maximally cyclic subgroups", "X801F2E657C8A79ED" ], [ "straight line program for outer automorphisms", "3.5-4", [ 3, 5, 4 ], 873, 49, "straight line program for outer automorphisms", "X801F2E657C8A79ED" ], [ "automorphisms", "3.5-4", [ 3, 5, 4 ], 873, 49, "automorphisms", "X801F2E657C8A79ED" ], [ "straight line decision for checking standard generators", "3.5-4", [ 3, 5, 4 ], 873, 49, "straight line decision for checking standard generators", "X801F2E657C8A79ED" ], [ "straight line decision encoding a presentation", "3.5-4", [ 3, 5, 4 ], 873, 49, "straight line decision encoding a presentation", "X801F2E657C8A79ED" ], [ "black box program for finding standard generators", "3.5-4", [ 3, 5, 4 ], 873, 49, "black box program for finding standard generators", "X801F2E657C8A79ED" ], [ "straight line program for restandardizing", "3.5-4", [ 3, 5, 4 ], 873, 49, "straight line program for restandardizing", "X801F2E657C8A79ED" ], [ "straight line program free format", "3.5-4", [ 3, 5, 4 ], 873, 49, "straight line program free format", "X801F2E657C8A79ED" ], [ "\033[2XAtlasProgramInfo\033[102X", "3.5-5", [ 3, 5, 5 ], 1071, 52, "atlasprograminfo", "X83DFD8967E6BC831" ], [ "\033[2XOneAtlasGeneratingSetInfo\033[102X", "3.5-6", [ 3, 5, 6 ], 1090, 52, "oneatlasgeneratingsetinfo", "X841478AB7CD06D44" ], [ "\033[2XAllAtlasGeneratingSetInfos\033[102X", "3.5-7", [ 3, 5, 7 ], 1255, 55, "allatlasgeneratingsetinfos", "X84C2D76482E60E42" ], [ "\033[2XAtlasGroup\033[102X for various arguments", "3.5-8", [ 3, 5, 8 ], 1297, 56, "atlasgroup for various arguments", "X80AABEE783363B70" ], [ "\033[2XAtlasGroup\033[102X for an identifier record", "3.5-8", [ 3, 5, 8 ], 1297, 56, "atlasgroup for an identifier record", "X80AABEE783363B70" ], [ "\033[2XAtlasSubgroup\033[102X for a group name (and various arguments) and\ a number", "3.5-9", [ 3, 5, 9 ], 1339, 57, "atlassubgroup for a group name and various arguments and a number", "X7A3E460C82B3D9A3" ], [ "\033[2XAtlasSubgroup\033[102X for an identifier record and a number", "3.5-9", [ 3, 5, 9 ], 1339, 57, "atlassubgroup for an identifier record and a number", "X7A3E460C82B3D9A3" ], [ "\033[2XAtlasSubgroup\033[102X for a group and a number", "3.5-9", [ 3, 5, 9 ], 1339, 57, "atlassubgroup for a group and a number", "X7A3E460C82B3D9A3" ], [ "\033[2XAtlasRepInfoRecord\033[102X for a group", "3.5-10", [ 3, 5, 10 ], 1392, 58, "atlasrepinforecord for a group", "X87BC7D9C7BA2F27A" ], [ "\033[2XAtlasRepInfoRecord\033[102X for a string", "3.5-10", [ 3, 5, 10 ], 1392, 58, "atlasrepinforecord for a string", "X87BC7D9C7BA2F27A" ], [ "\033[2XEvaluatePresentation\033[102X for a group, a group name (and a numb\ er)", "3.5-11", [ 3, 5, 11 ], 1457, 59, "evaluatepresentation for a group a group name and a number", "X87B012B080D01413" ], [ "\033[2XEvaluatePresentation\033[102X for a list of generators, a group nam\ e (and a number)", "3.5-11", [ 3, 5, 11 ], 1457, 59, "evaluatepresentation for a list of generators a group name and a number\ ", "X87B012B080D01413" ], [ "\033[2XStandardGeneratorsData\033[102X for a group, a group name (and a nu\ mber)", "3.5-12", [ 3, 5, 12 ], 1508, 59, "standardgeneratorsdata for a group a group name and a number", "X79F63403821C1E24" ], [ "\033[2XStandardGeneratorsData\033[102X for a list of generators, a group n\ ame (and a number)", "3.5-12", [ 3, 5, 12 ], 1508, 59, "standardgeneratorsdata for a list of generators a group name and a numb\ er", "X79F63403821C1E24" ], [ "\033[2XBrowseMinimalDegrees\033[102X", "3.6-1", [ 3, 6, 1 ], 1650, 62, "browseminimaldegrees", "X7F31A7CB841FE63F" ], [ "\033[2XBrowseBibliographySporadicSimple\033[102X", "3.6-2", [ 3, 6, 2 ], 1709, 63, "browsebibliographysporadicsimple", "X84ED4FC182C28198" ], [ "\033[10XAtlasRepAccessRemoteFiles\033[110X", "4.2-1", [ 4, 2, 1 ], 99, 65, "atlasrepaccessremotefiles", "X7C3293A98577EE68" ], [ "local access", "4.2-1", [ 4, 2, 1 ], 99, 65, "local access", "X7C3293A98577EE68" ], [ "remote access", "4.2-1", [ 4, 2, 1 ], 99, 65, "remote access", "X7C3293A98577EE68" ], [ "\033[10XAtlasRepDataDirectory\033[110X", "4.2-2", [ 4, 2, 2 ], 113, 66, "atlasrepdatadirectory", "X7C36E9A78021A71A" ], [ "\033[10XAtlasRepTOCData\033[110X", "4.2-3", [ 4, 2, 3 ], 129, 66, "atlasreptocdata", "X7F21FFBE7F8108E4" ], [ "\033[10XCompressDownloadedMeatAxeFiles\033[110X", "4.2-4", [ 4, 2, 4 ], 142, 66, "compressdownloadedmeataxefiles", "X8766BE5D7AD6C526" ], [ "\033[10Xcompress\033[110X", "4.2-4", [ 4, 2, 4 ], 142, 66, "compress", "X8766BE5D7AD6C526" ], [ "\033[11Xgzip\033[111X", "4.2-4", [ 4, 2, 4 ], 142, 66, "gzip", "X8766BE5D7AD6C526" ], [ "\033[10XFileAccessFunctions\033[110X", "4.2-5", [ 4, 2, 5 ], 157, 66, "fileaccessfunctions", "X81AD105979465162" ], [ "\033[10XAtlasRepLocalServerPath\033[110X", "4.2-6", [ 4, 2, 6 ], 179, 67, "atlasreplocalserverpath", "X85C48D6D81095161" ], [ "\033[10XHowToReadMeatAxeTextFiles\033[110X", "4.2-7", [ 4, 2, 7 ], 193, 67, "howtoreadmeataxetextfiles", "X79993585808450FA" ], [ "\033[10XWriteHeaderFormatOfMeatAxeFiles\033[110X", "4.2-8", [ 4, 2, 8 ], 216, 67, "writeheaderformatofmeataxefiles", "X7B8F757B85F87936" ], [ "\033[10XWriteMeatAxeFilesOfMode2\033[110X", "4.2-9", [ 4, 2, 9 ], 237, 67, "writemeataxefilesofmode2", "X7941C4378261E28A" ], [ "\033[10XBaseOfMeatAxePermutation\033[110X", "4.2-10", [ 4, 2, 10 ], 247, 68, "baseofmeataxepermutation", "X877E40DB7A4E36C9" ], [ "\033[10XDisplayFunction\033[110X", "4.2-11", [ 4, 2, 11 ], 259, 68, "displayfunction", "X81F055037F9D3068" ], [ "\033[10XAtlasRepMarkNonCoreData\033[110X", "4.2-12", [ 4, 2, 12 ], 271, 68, "atlasrepmarknoncoredata", "X862C660878D422FA" ], [ "\033[10XDebugFileLoading\033[110X", "4.2-13", [ 4, 2, 13 ], 278, 68, "debugfileloading", "X80958D068147325B" ], [ "\033[10XAtlasRepJsonFilesAddresses\033[110X", "4.2-14", [ 4, 2, 14 ], 284, 68, "atlasrepjsonfilesaddresses", "X850D135E79EFF3F7" ], [ "\033[2XAtlasOfGroupRepresentationsNotifyData\033[102X for a local director\ y of private data", "5.1-1", [ 5, 1, 1 ], 59, 71, "atlasofgrouprepresentationsnotifydata for a local directory of private \ data", "X81B5FA0578257653" ], [ "\033[2XAtlasOfGroupRepresentationsNotifyData\033[102X for a local file des\ cribing private data", "5.1-1", [ 5, 1, 1 ], 59, 71, "atlasofgrouprepresentationsnotifydata for a local file describing priva\ te data", "X81B5FA0578257653" ], [ "\033[2XAtlasOfGroupRepresentationsNotifyData\033[102X for a remote file de\ scribing private data", "5.1-1", [ 5, 1, 1 ], 59, 71, "atlasofgrouprepresentationsnotifydata for a remote file describing priv\ ate data", "X81B5FA0578257653" ], [ "\033[2XAtlasOfGroupRepresentationsForgetData\033[102X", "5.1-2", [ 5, 1, 2 ], 176, 72, "atlasofgrouprepresentationsforgetdata", "X7E0DC24681F17A9D" ], [ "\033[2XStringOfAtlasTableOfContents\033[102X", "5.1-3", [ 5, 1, 3 ], 186, 73, "stringofatlastableofcontents", "X81C5440983E47DBD" ], [ "\033[2XIsStraightLineDecision\033[102X", "6.1-1", [ 6, 1, 1 ], 59, 81, "isstraightlinedecision", "X8787E2EC7DB85A89" ], [ "\033[2XLinesOfStraightLineDecision\033[102X", "6.1-2", [ 6, 1, 2 ], 66, 81, "linesofstraightlinedecision", "X82AFAD9F7FA5CE8A" ], [ "\033[2XNrInputsOfStraightLineDecision\033[102X", "6.1-3", [ 6, 1, 3 ], 84, 81, "nrinputsofstraightlinedecision", "X7B1A43427BD97FDF" ], [ "\033[2XScanStraightLineDecision\033[102X", "6.1-4", [ 6, 1, 4 ], 97, 81, "scanstraightlinedecision", "X82A3632782E45F35" ], [ "\033[2XStraightLineDecision\033[102X", "6.1-5", [ 6, 1, 5 ], 135, 82, "straightlinedecision", "X825C4E4180F3D989" ], [ "\033[2XStraightLineDecisionNC\033[102X", "6.1-5", [ 6, 1, 5 ], 135, 82, "straightlinedecisionnc", "X825C4E4180F3D989" ], [ "\033[2XResultOfStraightLineDecision\033[102X", "6.1-6", [ 6, 1, 6 ], 152, 82, "resultofstraightlinedecision", "X7E7B328A84685480" ], [ "semi-presentation", "6.1-7", [ 6, 1, 7 ], 215, 83, "semi-presentation", "X7C94ECAC8583CEAE" ], [ "presentation", "6.1-7", [ 6, 1, 7 ], 215, 83, "presentation", "X7C94ECAC8583CEAE" ], [ "\033[2XAsStraightLineDecision\033[102X", "6.1-8", [ 6, 1, 8 ], 301, 85, "asstraightlinedecision", "X7C13D08C7D55E20A" ], [ "\033[2XStraightLineProgramFromStraightLineDecision\033[102X", "6.1-9", [ 6, 1, 9 ], 327, 85, "straightlineprogramfromstraightlinedecision", "X7EA613C57DDC67D5" ], [ "\033[2XIsBBoxProgram\033[102X", "6.2-1", [ 6, 2, 1 ], 448, 87, "isbboxprogram", "X87CAF2DE870D0E3B" ], [ "\033[2XScanBBoxProgram\033[102X", "6.2-2", [ 6, 2, 2 ], 454, 87, "scanbboxprogram", "X7EA20532868F9863" ], [ "\033[2XRunBBoxProgram\033[102X", "6.2-3", [ 6, 2, 3 ], 517, 88, "runbboxprogram", "X7D211A5D8602B330" ], [ "\033[2XResultOfBBoxProgram\033[102X", "6.2-4", [ 6, 2, 4 ], 589, 89, "resultofbboxprogram", "X869BACFB80A3CC87" ], [ "\033[2XAsBBoxProgram\033[102X", "6.2-5", [ 6, 2, 5 ], 622, 90, "asbboxprogram", "X826ACFE887E0B6B8" ], [ "\033[2XAsStraightLineProgram\033[102X", "6.2-6", [ 6, 2, 6 ], 662, 91, "asstraightlineprogram", "X7D36DFA87C8B2C48" ], [ "\033[2XMinimalRepresentationInfo\033[102X", "6.3-1", [ 6, 3, 1 ], 702, 91, "minimalrepresentationinfo", "X7DC66D8282B2BB7F" ], [ "\033[2XMinimalRepresentationInfoData\033[102X", "6.3-2", [ 6, 3, 2 ], 776, 92, "minimalrepresentationinfodata", "X7E1B76DC86A8C405" ], [ "\033[2XSetMinimalRepresentationInfo\033[102X", "6.3-3", [ 6, 3, 3 ], 810, 93, "setminimalrepresentationinfo", "X79C4C9F683E919C9" ], [ "\033[2XAGR.JsonText\033[102X", "6.4-2", [ 6, 4, 2 ], 1037, 97, "agr.jsontext", "X87A307D284975AA9" ], [ "\033[2XAGR.GapObjectOfJsonText\033[102X", "6.4-3", [ 6, 4, 3 ], 1068, 97, "agr.gapobjectofjsontext", "X79DF4DC67DCFE27B" ], [ "\033[2XInfoAtlasRep\033[102X", "7.1-1", [ 7, 1, 1 ], 33, 98, "infoatlasrep", "X8006BE167EB81E16" ], [ "\033[2XInfoCMeatAxe\033[102X", "7.1-2", [ 7, 1, 2 ], 42, 98, "infocmeataxe", "X78601C3A87921E08" ], [ "\033[2XInfoBBox\033[102X", "7.1-3", [ 7, 1, 3 ], 50, 99, "infobbox", "X80D5EF9A7FEF124B" ], [ "\033[2XAGR\033[102X", "7.1-4", [ 7, 1, 4 ], 58, 99, "agr", "X84A157BF7D0CB270" ], [ "\033[2XAtlasOfGroupRepresentationsInfo\033[102X", "7.1-5", [ 7, 1, 5 ], 66, 99, "atlasofgrouprepresentationsinfo", "X7BEC94A6781E126E" ], [ "matrix MeatAxe format", "7.3", [ 7, 3, 0 ], 187, 101, "matrix meataxe format", "X7D76D4437A9646E7" ], [ "permutation MeatAxe format", "7.3", [ 7, 3, 0 ], 187, 101, "permutation meataxe format", "X7D76D4437A9646E7" ], [ "\033[2XScanMeatAxeFile\033[102X", "7.3-1", [ 7, 3, 1 ], 190, 101, "scanmeataxefile", "X83D5103780E1238F" ], [ "\033[11Xzcv\033[111X", "7.3-1", [ 7, 3, 1 ], 190, 101, "zcv", "X83D5103780E1238F" ], [ "\033[2XMeatAxeString\033[102X", "7.3-2", [ 7, 3, 2 ], 219, 101, "meataxestring", "X7DDD09BE87063052" ], [ "\033[2XMeatAxeString\033[102X for permutations and a degree", "7.3-2", [ 7, 3, 2 ], 219, 101, "meataxestring for permutations and a degree", "X7DDD09BE87063052" ], [ "\033[2XMeatAxeString\033[102X for a permutation, q, and dims", "7.3-2", [ 7, 3, 2 ], 219, 101, "meataxestring for a permutation q and dims", "X7DDD09BE87063052" ], [ "\033[2XMeatAxeString\033[102X for a matrix of integers", "7.3-2", [ 7, 3, 2 ], 219, 101, "meataxestring for a matrix of integers", "X7DDD09BE87063052" ], [ "\033[2XFFList\033[102X", "7.3-3", [ 7, 3, 3 ], 299, 103, "fflist", "X79D9AE4878E9DFA6" ], [ "\033[2XFFLists\033[102X", "7.3-3", [ 7, 3, 3 ], 299, 103, "fflists", "X79D9AE4878E9DFA6" ], [ "\033[2XCMtxBinaryFFMatOrPerm\033[102X", "7.3-4", [ 7, 3, 4 ], 340, 103, "cmtxbinaryffmatorperm", "X8477AA668733255C" ], [ "\033[2XFFMatOrPermCMtxBinary\033[102X", "7.3-5", [ 7, 3, 5 ], 376, 104, "ffmatorpermcmtxbinary", "X872FA00C7F791FBB" ], [ "\033[2XScanStraightLineProgram\033[102X", "7.4-1", [ 7, 4, 1 ], 403, 104, "scanstraightlineprogram", "X7D6617E47B013A37" ], [ "\033[2XAtlasStringOfProgram\033[102X", "7.4-2", [ 7, 4, 2 ], 502, 106, "atlasstringofprogram", "X82842D807A7B7DF7" ], [ "\033[2XAtlasStringOfProgram\033[102X for MeatAxe format output", "7.4-2", [ 7, 4, 2 ], 502, 106, "atlasstringofprogram for meataxe format output", "X82842D807A7B7DF7" ], [ "\033[2XAGR.DeclareDataType\033[102X", "7.5-1", [ 7, 5, 1 ], 608, 108, "agr.declaredatatype", "X836AA4EA8346BE5B" ], [ "semi-presentation", "7.6", [ 7, 6, 0 ], 763, 110, "semi-presentation", "X7A86627B80980F61" ], [ "presentation", "7.6", [ 7, 6, 0 ], 763, 110, "presentation", "X7A86627B80980F61" ], [ "black box program for finding standard generators", "7.6", [ 7, 6, 0 ], 763, 110, "black box program for finding standard generators", "X7A86627B80980F61" ], [ "\033[2XAGR.ParseFilenameFormat\033[102X", "7.6-1", [ 7, 6, 1 ], 906, 113, "agr.parsefilenameformat", "X8486CCB181FC99A3" ], [ "\033[2XAGR.FileContents\033[102X", "7.6-2", [ 7, 6, 2 ], 939, 113, "agr.filecontents", "X78AB92DB7C2CAB6E" ], [ "\033[2XAtlasRepIdentifier\033[102X convert an old type identifier to a new\ type one", "7.7-1", [ 7, 7, 1 ], 1005, 114, "atlasrepidentifier convert an old type identifier to a new type one", "X81685FC979BC3FB8" ], [ "\033[2XAtlasRepIdentifier\033[102X convert a new type identifier to an old\ type one", "7.7-1", [ 7, 7, 1 ], 1005, 114, "atlasrepidentifier convert a new type identifier to an old type one", "X81685FC979BC3FB8" ] ] ); atlasrep-2.1.8/doc/nocolorprompt.css0000644000175000017500000000031314545501244015654 0ustar samsam /* colors for ColorPrompt like examples */ span.GAPprompt { color: #000000; font-weight: normal; } span.GAPbrkprompt { color: #000000; font-weight: normal; } span.GAPinput { color: #000000; } atlasrep-2.1.8/doc/ragged.css0000644000175000017500000000023114545501244014167 0ustar samsam/* times.css Frank Lübeck */ /* Change default CSS to use Times font. */ body { text-align: left; } atlasrep-2.1.8/doc/rainbow.js0000644000175000017500000000533614545501244014236 0ustar samsam function randchar(str) { var i = Math.floor(Math.random() * str.length); while (i == str.length) i = Math.floor(Math.random() * str.length); return str[i]; } hexdigits = "0123456789abcdef"; function randlight() { return randchar("cdef")+randchar(hexdigits)+ randchar("cdef")+randchar(hexdigits)+ randchar("cdef")+randchar(hexdigits) } function randdark() { return randchar("012345789")+randchar(hexdigits)+ randchar("012345789")+randchar(hexdigits)+ randchar("102345789")+randchar(hexdigits) } document.write('\n'); atlasrep-2.1.8/doc/times.css0000644000175000017500000000026114545501244014062 0ustar samsam/* times.css Frank Lübeck */ /* Change default CSS to use Times font. */ body { font-family: Times,Times New Roman,serif; } atlasrep-2.1.8/doc/toggless.css0000644000175000017500000000167214545501244014577 0ustar samsam/* toggless.css Frank Lübeck */ /* Using javascript we change all div.ContSect to div.ContSectOpen or div.ContSectClosed. This way the config for div.ContSect in manual.css is no longer relevant. Here we add the CSS for the new elements. */ /* This layout is based on an idea by Burkhard Höfling. */ div.ContSectClosed { text-align: left; margin-left: 1em; } div.ContSectOpen { text-align: left; margin-left: 1em; } div.ContSectOpen div.ContSSBlock { display: block; text-align: left; margin-left: 1em; } div.ContSectOpen div.ContSSBlock a { display: block; width: 100%; margin-left: 1em; } span.tocline a:hover { display: inline; background: #eeeeee; } span.ContSS a:hover { display: inline; background: #eeeeee; } span.toctoggle { font-size: 80%; display: inline-block; width: 1.2em; } span.toctoggle:hover { background-color: #aaaaaa; } atlasrep-2.1.8/doc/toggless.js0000644000175000017500000000420514545501244014416 0ustar samsam/* toggless.js Frank Lübeck */ /* this file contains two functions: mergeSideTOCHooks: this changes div.ContSect elements to the class ContSectClosed and includes a hook to toggle between ContSectClosed and ContSectOpen. openclosetoc: this function does the toggling, the rest is done by CSS */ closedTOCMarker = "▶ "; openTOCMarker = "▼ "; noTOCMarker = " "; /* merge hooks into side toc for opening/closing subsections with openclosetoc */ function mergeSideTOCHooks() { var hlist = document.getElementsByTagName("div"); for (var i = 0; i < hlist.length; i++) { if (hlist[i].className == "ContSect") { var chlds = hlist[i].childNodes; var el = document.createElement("span"); var oncl = document.createAttribute("class"); oncl.nodeValue = "toctoggle"; el.setAttributeNode(oncl); var cont; if (chlds.length > 2) { var oncl = document.createAttribute("onclick"); oncl.nodeValue = "openclosetoc(event)"; el.setAttributeNode(oncl); cont = document.createTextNode(closedTOCMarker); } else { cont = document.createTextNode(noTOCMarker); } el.appendChild(cont); hlist[i].firstChild.insertBefore(el, hlist[i].firstChild.firstChild); hlist[i].className = "ContSectClosed"; } } } function openclosetoc (event) { /* first two steps to make it work in most browsers */ var evt=window.event || event; if (!evt.target) evt.target=evt.srcElement; var markClosed = document.createTextNode(closedTOCMarker); var markOpen = document.createTextNode(openTOCMarker); var par = evt.target.parentNode.parentNode; if (par.className == "ContSectOpen") { par.className = "ContSectClosed"; evt.target.replaceChild(markClosed, evt.target.firstChild); } else if (par.className == "ContSectClosed") { par.className = "ContSectOpen"; evt.target.replaceChild(markOpen, evt.target.firstChild); } } /* adjust jscontent which is called onload */ jscontentfuncs.push(mergeSideTOCHooks); atlasrep-2.1.8/doc/chap0.txt0000644000175000017500000002275314545501235013775 0ustar samsam AtlasRep --- A GAP 4 Package (Version 2.1.8) Robert A. Wilson Richard A. Parker Simon Nickerson John N. Bray Thomas Breuer Robert A. Wilson Email: mailto:R.A.Wilson@qmul.ac.uk Homepage: http://www.maths.qmw.ac.uk/~raw Richard A. Parker Email: mailto:richpark@gmx.co.uk Simon Nickerson Homepage: http://nickerson.org.uk/groups John N. Bray Email: mailto:J.N.Bray@qmul.ac.uk Homepage: http://www.maths.qmw.ac.uk/~jnb Thomas Breuer Email: mailto:sam@Math.RWTH-Aachen.De Homepage: https://www.math.rwth-aachen.de/~Thomas.Breuer ------------------------------------------------------- Copyright © 2002–2024 This package may be distributed under the terms and conditions of the GNU Public License Version 3 or later, see http://www.gnu.org/licenses. ------------------------------------------------------- Contents (AtlasRep) 1 Introduction to the AtlasRep Package 1.1 The ATLAS of Group Representations 1.2 The GAP Interface to the ATLAS of Group Representations 1.3 What's New in AtlasRep, Compared to Older Versions? 1.3-1 What's New in Version 2.1.8? (January 2024) 1.3-2 What's New in Version 2.1.7? (August 2023) 1.3-3 What's New in Version 2.1.6? (October 2022) 1.3-4 What's New in Version 2.1.5? (August 2022) 1.3-5 What's New in Version 2.1.4? (August 2022) 1.3-6 What's New in Version 2.1.3? (August 2022) 1.3-7 What's New in Version 2.1.2? (March 2022) 1.3-8 What's New in Version 2.1.1? (February 2022) 1.3-9 What's New in Version 2.1.0? (May 2019) 1.3-10 What's New in Version 1.5.1? (March 2016) 1.3-11 What's New in Version 1.5? (July 2011) 1.3-12 What's New in Version 1.4? (June 2008) 1.3-13 What's New in Version 1.3.1? (October 2007) 1.3-14 What's New in Version 1.3? (June 2007) 1.3-15 What's New in Version 1.2? (November 2003) 1.3-16 What's New in Version 1.1? (October 2002) 1.4 Acknowledgements 2 Tutorial for the AtlasRep Package 2.1 Accessing a Specific Group in AtlasRep 2.1-1 Accessing a Group in AtlasRep via its Name 2.1-2 Accessing a Maximal Subgroup of a Group in AtlasRep 2.2 Accessing Specific Generators in AtlasRep 2.3 Basic Concepts used in AtlasRep 2.3-1 Groups, Generators, and Representations 2.3-2 Straight Line Programs 2.4 Examples of Using the AtlasRep Package 2.4-1 Example: Class Representatives 2.4-2 Example: Permutation and Matrix Representations 2.4-3 Example: Outer Automorphisms 2.4-4 Example: Using Semi-presentations and Black Box Programs 2.4-5 Example: Using the GAP Library of Tables of Marks 2.4-6 Example: Index 770 Subgroups in M_22 2.4-7 Example: Index 462 Subgroups in M_22 3 The User Interface of the AtlasRep Package 3.1 Accessing vs. Constructing Representations 3.2 Group Names Used in the AtlasRep Package 3.3 Standard Generators Used in the AtlasRep Package 3.4 Class Names Used in the AtlasRep Package 3.4-1 Definition of ATLAS Class Names 3.4-2 AtlasClassNames 3.4-3 AtlasCharacterNames 3.5 Accessing Data via AtlasRep 3.5-1 DisplayAtlasInfo 3.5-2 Examples for DisplayAtlasInfo 3.5-3 AtlasGenerators 3.5-4 AtlasProgram 3.5-5 AtlasProgramInfo 3.5-6 OneAtlasGeneratingSetInfo 3.5-7 AllAtlasGeneratingSetInfos 3.5-8 AtlasGroup 3.5-9 AtlasSubgroup 3.5-10 AtlasRepInfoRecord 3.5-11 EvaluatePresentation 3.5-12 StandardGeneratorsData 3.6 Browse Applications Provided by AtlasRep 3.6-1 BrowseMinimalDegrees 3.6-2 BrowseBibliographySporadicSimple 4 Customizations of the AtlasRep Package 4.1 Installing the AtlasRep Package 4.2 User Preferences of the AtlasRep Package 4.2-1 User preference AtlasRepAccessRemoteFiles 4.2-2 User preference AtlasRepDataDirectory 4.2-3 User preference AtlasRepTOCData 4.2-4 User preference CompressDownloadedMeatAxeFiles 4.2-5 User preference FileAccessFunctions 4.2-6 User preference AtlasRepLocalServerPath 4.2-7 User preference HowToReadMeatAxeTextFiles 4.2-8 User preference WriteHeaderFormatOfMeatAxeFiles 4.2-9 User preference WriteMeatAxeFilesOfMode2 4.2-10 User preference BaseOfMeatAxePermutation 4.2-11 User preference DisplayFunction 4.2-12 User preference AtlasRepMarkNonCoreData 4.2-13 User preference DebugFileLoading 4.2-14 User preference AtlasRepJsonFilesAddresses 4.3 Web Contents for the AtlasRep Package 4.4 Extending the ATLAS Database 5 Extensions of the AtlasRep Package 5.1 Notify Additional Data 5.1-1 AtlasOfGroupRepresentationsNotifyData 5.1-2 AtlasOfGroupRepresentationsForgetData 5.1-3 StringOfAtlasTableOfContents 5.2 The Effect of Extensions on the User Interface 5.3 An Example of Extending the AtlasRep Data 6 New GAP Objects and Utility Functions provided by the AtlasRep Package 6.1 Straight Line Decisions 6.1-1 IsStraightLineDecision 6.1-2 LinesOfStraightLineDecision 6.1-3 NrInputsOfStraightLineDecision 6.1-4 ScanStraightLineDecision 6.1-5 StraightLineDecision 6.1-6 ResultOfStraightLineDecision 6.1-7 Semi-Presentations and Presentations 6.1-8 AsStraightLineDecision 6.1-9 StraightLineProgramFromStraightLineDecision 6.2 Black Box Programs 6.2-1 IsBBoxProgram 6.2-2 ScanBBoxProgram 6.2-3 RunBBoxProgram 6.2-4 ResultOfBBoxProgram 6.2-5 AsBBoxProgram 6.2-6 AsStraightLineProgram 6.3 Representations of Minimal Degree 6.3-1 MinimalRepresentationInfo 6.3-2 MinimalRepresentationInfoData 6.3-3 SetMinimalRepresentationInfo 6.3-4 Criteria Used to Compute Minimality Information 6.4 A JSON Interface 6.4-1 Why JSON? 6.4-2 AGR.JsonText 6.4-3 AGR.GapObjectOfJsonText 7 Technicalities of the AtlasRep Package 7.1 Global Variables Used by the AtlasRep Package 7.1-1 InfoAtlasRep 7.1-2 InfoCMeatAxe 7.1-3 InfoBBox 7.1-4 AGR 7.1-5 AtlasOfGroupRepresentationsInfo 7.2 How to Customize the Access to Data files 7.3 Reading and Writing MeatAxe Format Files 7.3-1 ScanMeatAxeFile 7.3-2 MeatAxeString 7.3-3 FFList 7.3-4 CMtxBinaryFFMatOrPerm 7.3-5 FFMatOrPermCMtxBinary 7.4 Reading and Writing ATLAS Straight Line Programs 7.4-1 ScanStraightLineProgram 7.4-2 AtlasStringOfProgram 7.5 Data Types Used in the AtlasRep Package 7.5-1 AGR.DeclareDataType 7.6 Filenames Used in the AtlasRep Package 7.6-1 AGR.ParseFilenameFormat 7.6-2 AGR.FileContents 7.7 The record component identifier used by the AtlasRep Package 7.7-1 AtlasRepIdentifier 7.8 The Tables of Contents of the AtlasRep Package 7.9 Sanity Checks for the AtlasRep Package 7.9-1 Sanity Checks for a Table of Contents 7.9-2 Other Sanity Checks  atlasrep-2.1.8/doc/chap4.txt0000644000175000017500000004611714545501235014001 0ustar samsam 4 Customizations of the AtlasRep Package 4.1 Installing the AtlasRep Package To install the package, unpack the archive file in a directory in the pkg directory of your local copy of GAP 4. This might be the pkg directory of the GAP 4 root directory, see 'Reference: Installing a GAP Package' for details. It is however also possible to keep an additional pkg directory somewhere else, see Section 'Reference: GAP Root Directories'. The latter possibility must be chosen if you do not have write access to the GAP root directory. If it is likely that you will work offline, it makes sense to install the starter archive that can be downloaded from the package's homepage. The package consists entirely of GAP code, no external binaries need to be compiled for the package itself. After unpacking the package archive, the write permissions for those directories should be checked into which users will download files. Every user can customize these paths via a user preference, see Section 4.2-2, the defaults are the subdirectories data* of the package directory. The recommended permissions under UNIX for the default directories are set as follows.  Example  you@unix> chmod 1777 atlasrep/data* you@unix> ls -ld atlasrep/data* drwxrwxrwt 3 you you 1024 Apr 12 12:34 dataext drwxrwxrwt 3 you you 1024 Apr 12 12:34 datagens drwxrwxrwt 3 you you 1024 Apr 12 12:34 datapkg drwxrwxrwt 3 you you 1024 Apr 12 12:34 dataword  For checking the installation of the package, you should start GAP and call  Example  gap> ReadPackage( "atlasrep", "tst/testinst.g" );  If the installation is o.k. then the GAP prompt appears without anything else being printed; otherwise the output lines tell you what should be changed. PDF, HTML, and text versions of the package manual are available in the doc directory of the package. 4.2 User Preferences of the AtlasRep Package This section describes global parameters for which it might make sense to change their defaults, using GAP's user preferences (see 'Reference: Configuring User preferences').  Is access to remote data allowed (see Section 4.2-1)? If yes then also the following parameters are of interest.  From where can the data be fetched (see Section 4.2-3)?  Where are local copies of these data stored (see Section 4.2-2)?  Shall files be compressed after they have been downloaded (see Section 4.2-4)?  The following parameters influence reading and writing of local files.  What shall actually happen when data are requested by the interface functions (see Section 4.2-5)?  If the value of the user preference FileAccessFunctions contains "direct access to a local server", what is its path (see Section 4.2-6)?  Shall ScanMeatAxeFile (7.3-1) focus on small runtime or on small space when reading MeatAxe text files (see Section 4.2-7)?  Which kind of headers shall MeatAxeString (7.3-2) create (see Section 4.2-8)?  Shall MeatAxeString (7.3-2) interpret permutation matrices more as permutations (mode 2) or as matrices (mode 1 or 6) (see Section 4.2-9)?  Shall the default for CMtxBinaryFFMatOrPerm (7.3-4) be to write binary files of zero-based or one-based permutations (see Section 4.2-10)?  Which function is used by DisplayAtlasInfo (3.5-1) for printing to the screen (see Section 4.2-11)?  How does DisplayAtlasInfo (3.5-1) mark data that do not belong to the core database (see Section 4.2-12)?  Shall debug messages be printed when local data files are read (see Section 4.2-13)? 4.2-1 User preference AtlasRepAccessRemoteFiles The value true (the default) allows the AtlasRep package to fetch data files that are not yet locally available. If the value is false then only those data files can be used that are available locally. If you are working offline then you should set the value to false. Changing the value in a running GAP session does not affect the information shown by DisplayAtlasInfo (3.5-1), this information depends on the value of the preference at the time when the AtlasRep package and its data extensions get loaded. 4.2-2 User preference AtlasRepDataDirectory The value must be a string that is either empty or the filename of a directory (in the sense of IsDirectoryPath (Reference: IsDirectoryPath)) that contains the directories in which downloaded data will be stored. An empty string means that downloaded data are just kept in the GAP session but not saved to local files. The default depends on the user's permissions for the subdirectories dataext, datagens, dataword of the AtlasRep directory: If these directories are writable for the user then the installation path of the AtlasRep package (including a trailing slash symbol) is taken, otherwise the default is an empty string. 4.2-3 User preference AtlasRepTOCData The value must be a list of strings of the form "ID|address" where ID is the id of a part of the database and address is an URL or a file path (as an absolute path or relative to the user's home directory, cf. Directory (Reference: Directory)) of a readable JSON format file that contain the table of contents of this part, see StringOfAtlasTableOfContents (5.1-3). The default lists four entries: the core database, the data distributed with the AtlasRep package, and the data that belong to the packages MFER and CTBlocks. 4.2-4 User preference CompressDownloadedMeatAxeFiles When used with UNIX, GAP can read gzipped files, see 'Reference: Saving and Loading a Workspace'. If the package's user preference CompressDownloadedMeatAxeFiles has the value true then each MeatAxe format text file that is downloaded from the internet is afterwards compressed with gzip. The default value is false. Compressing files saves a lot of space if many MeatAxe format files are accessed. (Note that data files in other formats are very small.) For example, at the time of the release of version 2.0 the core database contained about 8400 data files in MeatAxe format, which needed about 1400 MB in uncompressed text format and about 275 MB in compressed text format. 4.2-5 User preference FileAccessFunctions This preference allows one to customize what actually happens when data are requested by the interface functions: Is it necessary to download some files? If yes then which files are downloaded? If no then which files are actually read into GAP? Currently one can choose among the following features. 1 Download/read MeatAxe text files. 2 Prefer downloading/reading MeatAxe binary files. 3 Prefer reading locally available data files. (Of course files can be downloaded only if the user preference AtlasRepAccessRemoteFiles has the value true, see Section 4.2-1.) This feature could be used more generally, see Section 7.2 for technical details and the possibility to add other features. 4.2-6 User preference AtlasRepLocalServerPath If the data of the core database are available locally (for example because one has access to a local mirror of the data) then one may prefer reading these files instead of downloading data. In order to achieve this, one can set the user preference AtlasRepLocalServerPath and add "direct access to a local server" to the user preference FileAccessFunctions, see Section 4.2-5. The value must be a string that is the filename of a directory (in the sense of IsDirectoryPath (Reference: IsDirectoryPath)) that contains the data of the ATLAS of Group Representations, in the same directory tree structure as on the ATLAS server. 4.2-7 User preference HowToReadMeatAxeTextFiles The value "fast" means that ScanMeatAxeFile (7.3-1) reads text files via StringFile (GAPDoc: StringFile). Otherwise each file containing a matrix over a finite field is read line by line via ReadLine (Reference: ReadLine), and the GAP matrix is constructed line by line, in a compressed representation (see 'Reference: Row Vectors over Finite Fields' and 'Reference: Matrices over Finite Fields'); this makes it possible to read large matrices in a reasonable amount of space. The StringFile (GAPDoc: StringFile) approach is faster but needs more intermediate space when text files containing matrices over finite fields are read. For example, a 4370 by 4370 matrix over the field with two elements (as occurs for an irreducible representation of the Baby Monster) requires less than 3 MB space in GAP but the corresponding MeatAxe format text file is more than 19 MB large. This means that when one reads the file with the fast variant, GAP will temporarily grow by more than this value. Note that this parameter has an effect only when ScanMeatAxeFile (7.3-1) is used. It has no effect for example if MeatAxe binary files are read, cf. FFMatOrPermCMtxBinary (7.3-5). 4.2-8 User preference WriteHeaderFormatOfMeatAxeFiles This user preference determines the format of the header lines of MeatAxe format strings created by MeatAxeString (7.3-2), see the C-MeatAxe manual [Rin] for details. The following values are supported. "numeric" means that the header line of the returned string consists of four integers (in the case of a matrix these are mode, row number, column number and field size), "numeric (fixed)" means that the header line of the returned string consists of four integers as in the case "numeric", but additionally each integer is right aligned in a substring of length (at least) six, "textual" means that the header line of the returned string consists of assignments such as matrix field=2. 4.2-9 User preference WriteMeatAxeFilesOfMode2 The value true means that the function MeatAxeString (7.3-2) will encode permutation matrices via mode 2 descriptions, that is, the first entry in the header line is 2, and the following lines contain the positions of the nonzero entries. If the value is false (the default) then MeatAxeString (7.3-2) encodes permutation matrices via mode 1 or mode 6 descriptions, that is, the lines contain the matrix entries. 4.2-10 User preference BaseOfMeatAxePermutation The value 0 means that the function CMtxBinaryFFMatOrPerm (7.3-4) writes zero-based permutations, that is, permutations acting on the points from 0 to the degree minus one; this is achieved by shifting down all images of the GAP permutation by one. The value 1 (the default) means that the permutation stored in the binary file acts on the points from 1 to the degree. Up to version 2.3 of the C-MeatAxe, permutations in binary files were always one-based. Zero-based permutations were introduced in version 2.4. 4.2-11 User preference DisplayFunction The way how DisplayAtlasInfo (3.5-1) shows the requested overview is controlled by the package AtlasRep's user preference DisplayFunction. The value must be a string that evaluates to a GAP function. The default value is "Print" (see Print (Reference: Print)), other useful values are "PrintFormattedString" (see PrintFormattedString (GAPDoc: PrintFormattedString)) and "AGR.Pager"; the latter means that Pager (Reference: Pager) is called with the formatted option, which is necessary for switching off GAP's automatic line breaking. 4.2-12 User preference AtlasRepMarkNonCoreData The value is a string (the default is a star '*') that is used in DisplayAtlasInfo (3.5-1) to mark data that do not belong to the core database, see Section  5.2. 4.2-13 User preference DebugFileLoading If the value is true then debug messages are printed before and after data files get loaded. The default value is false. 4.2-14 User preference AtlasRepJsonFilesAddresses The value, if set, must be a list of length two, the first entry being an URL describing a directory that contains Json format files of the available matrix representations in characteristic zero, and the second being a directory path where these files shall be stored locally. If the value is set (this is the default) then the functions of the package use the Json format files instead of the GAP format files. 4.3 Web Contents for the AtlasRep Package The home page of the AtlasRep package (https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep) provides  package archives,  introductory package information,  the current table of contents of core data in the file atlasprm.json ( https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/atlasprm.json) of the package, cf. StringOfAtlasTableOfContents (5.1-3),  the list of changes of remote core data files ( https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/htm/data/changes.htm ),  a starter archive ( https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/atlasrepdata.tar.gz ) containing many small representations and programs, and  an overview of the core data (https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/htm/data) in a similar format as the information shown by the function DisplayAtlasInfo (3.5-1) of the package; more details can be found on the home page of the ATLAS of Group Representations (http://atlas.math.rwth-aachen.de/Atlas/v3). 4.4 Extending the ATLAS Database Users who have computed new representations that might be interesting for inclusion into the ATLAS of Group representations can send the data in question to mailto:R.A.Wilson@qmul.ac.uk. It is also possible to make additional representations and programs accessible for the GAP interface, and to use these private data in the same way as the core data. See Chapter 5 for details. atlasrep-2.1.8/doc/chap1.txt0000644000175000017500000013537014545501235013776 0ustar samsam 1 Introduction to the AtlasRep Package The aim of the GAP 4 package AtlasRep is to provide a link between GAP and databases such as the ATLAS of Group Representations [WWT+], which comprises generating permutations and matrices for many almost simple groups, and information about their maximal subgroups. This database is available independent of GAP at http://atlas.math.rwth-aachen.de/Atlas/v3. The AtlasRep package consists of this database (see Section 1.1) and a GAP interface (see Section 1.2); the latter is extended by further information available via the internet (see Section 4.3). This package manual has the following parts. A tutorial gives an overview how the functions of the package can be used, see Chapter 2. User interface functions are described in Chapter 3. Customizations of the package are described in Chapter 4. Information how to extend the database can be found in Chapter 5. More technical information can be found in the chapters 6 (concerning GAP objects that are introduced by the package) and 7 (concerning global variables and sanity checks). 1.1 The ATLAS of Group Representations The ATLAS of Group Representations  [WWT+] consists of matrices over various rings, permutations, and shell scripts encoding so-called black box programs (see [Nic06] and Section 6.2). Many of these scripts are straight line programs (see [BSWW01], [SWW00], and 'Reference: Straight Line Programs') and straight line decisions (see Section 6.1). These programs can be used to compute certain elements in a group G from its standard generators (see [Wil96] and Section 3.3) for example generators of maximal subgroups of G or representatives of conjugacy classes of G. The ATLAS of Group Representations has been prepared by Robert Wilson, Peter Walsh, Jonathan Tripp, Ibrahim Suleiman, Richard Parker, Simon Norton, Simon Nickerson, Steve Linton, John Bray, and Rachel Abbott (in reverse alphabetical order). The information was computed and composed using computer algebra systems such as MeatAxe (see [Rin]), Magma (see [CP96]), and GAP (in reverse alphabetical order). Part of the constructions have been documented in the literature on almost simple groups, or the results have been used in such publications, see for example the bibliographies in [CCN+85] and [BN95] which are available online at http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/bibl. If you use the ATLAS of Group Representations to solve a problem then please send a short email to mailto:R.A.Wilson@qmul.ac.uk about it. The ATLAS of Group Representations database should be referenced with the entry [WWT+] in the bibliography of this manual. If your work made use of functions of the GAP interface (see Section 1.2) then you should also reference this interface, using the information printed by the GAP function Cite (Reference: Cite). For referencing the GAP system in general, use the entry [GAP19] in the bibliography of this manual, see also http://www.gap-system.org. 1.2 The GAP Interface to the ATLAS of Group Representations The GAP interface to the ATLAS of Group Representations consists of essentially two parts.  First, there is the user interface which allows the user to get an overview of the contents of the database, and to access the data in GAP format; this is described in Chapter 3. Advanced users may add their own data to the database, this is described in Chapter 5.  Second, there is administrational information, which covers also the declaration of GAP objects such as straight line decisions and black box programs. This is important mainly for users interested in the actual implementation (e. g., for modifying the package) or in using it together with the C-MeatAxe standalone (see [Rin]); this is described in Chapter 7. Information concerning the C-MeatAxe, including the manual [Rin], can be found at http://www.math.rwth-aachen.de/~MTX The interface and this manual have been provided by Thomas Breuer, except for the interpreter for black box programs (see Section 6.2), which is due to Simon Nickerson. Comments, bug reports, and hints for improving the interface can be sent to mailto:sam@math.rwth-aachen.de. 1.3 What's New in AtlasRep, Compared to Older Versions? 1.3-1 What's New in Version 2.1.8? (January 2024) An example in Section 2.1-2 of the Tutorial had to be adjusted because the results of the function SmallerDegreePermutationRepresentation (Reference: SmallerDegreePermutationRepresentation) depend on random computations, in particular the implementation in GAP 4.13 may yield a nicer representation than had been shown before. 1.3-2 What's New in Version 2.1.7? (August 2023)  Requesting certain matrix groups in characteristic zero had caused an error in version 2.1.6, provided that the feature to store downloaded files was disabled, that is, the value of the user preference "AtlasRepDataDirectory" (see Section 4.2-2) was an empty string. This bug is now fixed. Thanks to Lixin Zheng for reporting this problem.  The name of a maximal subgroup of the group M_12.2 had to be changed from "D8.(S4x2)" to "2^3.(S4×2)" because the old name suggested a wrong group structure. This bug had been announced in a StackExchange discussion ( https://math.stackexchange.com/questions/4577016/group-names-in-gap-character-table-library ).  A typo in the documentation of AGR.MXS (see Section 7.8) was fixed. Thanks to Max Horn for spotting this.  GAP 4.13 will provide the new package extension feature, which allows a package to execute GAP code after the package and some other required packages have been loaded. In AtlasRep, this feature is now used for example in order to achieve that those functions which depend on the Browse package can be used also if this package gets (installed and) loaded after AtlasRep has been loaded.  The code for building the documentation of the package has been adjusted to a change in GAP 4.13 (https://github.com/gap-system/gap/pull/5178). This does not affect most users of the package because the package archive contains a ready documentation. 1.3-3 What's New in Version 2.1.6? (October 2022) The package now requires the utils package [BGH+22], and uses its Download (Utils: Download) function for downloading remote files. The former user preference FileTransferTool of the AtlasRep package is no longer supported; it had been used in older versions to distinguish between different download tools. A method for ConjugacyClasses (Reference: ConjugacyClasses attribute) has been added that uses a straight line program for computing class representatives of a group that has been created with AtlasGroup (3.5-8), provided such a program is available. Thanks to Frank Lübeck for suggesting this. 1.3-4 What's New in Version 2.1.5? (August 2022) Two bugs concerning local file permissions and the handling of download failures were fixed. Thanks to Frank Lübeck and Fabian Zickgraf for reporting these problems. 1.3-5 What's New in Version 2.1.4? (August 2022) A few changes in the code for downloading files were needed in order to make some CI tests happy. 1.3-6 What's New in Version 2.1.3? (August 2022) The server address for the core part of the database has changed. Additional table of contents files are now available, which contain checksums in SHA256 format instead of the checksums computed by CrcFile (Reference: CrcFile) and CrcString (Reference: CrcString). Note that the latter values can be interpreted only by GAP. For 364 representations, the corresponding characters have been identified and can thus be used for accessing these representations with OneAtlasGeneratingSetInfo (3.5-6), see DisplayAtlasInfo (3.5-1). 1.3-7 What's New in Version 2.1.2? (March 2022) Not much. The release of Version 2.1.2 was necessary for technical reasons: Now the testfile mentioned in PackageInfo.g exits GAP in the end, and the external links in the package documentation were corrected (the links in version 2.1.1 pointed to a wrong directory). 1.3-8 What's New in Version 2.1.1? (February 2022)  The new function EvaluatePresentation (3.5-11) computes the images of the relators of a presentation (see Section 6.1-7).  The new function StandardGeneratorsData (3.5-12) allows one to compute standard generators from given generators, provided a recipe for that task (a find straight line program) for the group in question is available.  The function AtlasGroup (3.5-8) sets known information about the group and the representation, such as IsPrimitive (Reference: IsPrimitive). (Thanks to Steve Linton for suggesting this feature.)  The function ResultOfBBoxProgram (6.2-4) now admits an optional argument, which is used as options record in calls to RunBBoxProgram (6.2-3).  The new user preference "AtlasRepJsonFilesAddresses" (see Section 4.2-14) allows one to use Json format data files for matrix representations in characteristic zero, which in turn makes it possible to create the matrices over prescribed fields, for example fields returned by AlgebraicExtension (Reference: AlgebraicExtension). The information stored in the table of contents file about the field of entries of the matrix representations has been extended by a GAP independent description of this field and the defining polynomial used in the Json format data files.  When the value of the user preference "AtlasRepDataDirectory" is an empty string then data files that are fetched from remote servers are read into the GAP session without storing the files. (An advantage is that one need not care about where one has permissions for storing files. A disadvantage is of course that one has to fetch a file again whenever it is needed.) 1.3-9 What's New in Version 2.1.0? (May 2019) The main differences to earlier versions concern extensions of the available data. Up to now, such extensions were possible only in the sense that one could notify certain locally available files to the package's functions. With this version, it becomes possible to notify also remote data files, i. e., data files which have to be downloaded before they can be read into GAP, in the same way as the data from the ATLAS of Group Representations. Two extensions of this kind become automatically available with this package version, see Section 5.1 for details. Thus the focus of the package has changed. In earlier versions, it provided a GAP interface to the data in the ATLAS of Group Representations, whereas now this database is regarded as one collection (the core part) among others. Where applicable, the package manual tries to distinguish between general data available to the AtlasRep functions and the data from the ATLAS of Group Representations. In order to provide this new functionality, the following changes have been implemented. Note that some are incompatible changes, compared with earlier versions of the package.  The format of the identifier components of the records returned by AtlasGenerators (3.5-3), AtlasProgram (3.5-4), etc., has been changed for those data that belong to extensions, see 7.7. In the new format, the name of the extension is not added to the group name but to the individual filenames; this allows for example the combination of files from the core database and from extensions in one identifier. Functions for converting between the old and the new format are available, see AtlasRepIdentifier (7.7-1).  The records returned by AtlasGenerators (3.5-3) etc. contain also a component contents, with value the identifier of the part of the database to shich the generators belong.  The tables of contents of the ATLAS of Group Representations and of extensions are no longer stored in the form of sequences of calls to GAP functions. Instead, each table of contents is defined via a JSON format file, see 6.4. In particular, the file atlasprm.json replaces the former gap/atlasprm.g. Two advantages of this change are that there is no danger to call unwanted GAP functions when such files (which are expected to be available in the world wide web) get evaluated, and that the information is independent of GAP –note that MeatAxe format files and straight line programs can be used by other program systems as well.  The functions ReloadAtlasTableOfContents, StoreAtlasTableOfContents, and ReplaceAtlasTableOfContents are no longer available. They had been intended for updating the table of contents of the ATLAS of Group Representations, but it has turned out that this was in fact not useful. The second major change concerns the handling of user parameters.  GAP's general user preferences mechanism (see SetUserPreference (Reference: SetUserPreference)) has been used since version 1.5.1 of the package for dealing with certain customizations of AtlasRep's behaviour, concerning the paths of data directories and two issues with MeatAxe format files. Now this mechanism is used in more cases, see Section 4.2 for an overview. The new user preferences replace certain components of the record AtlasOfGroupRepresentationsInfo (7.1-5) that were recommended in earlier versions of the package. These components are currently still available but are no longer used by the package's functions. Also the global variable ATLASREP_TOCFILE is no longer supported, use the user preference AtlasRepTOCData instead, see Section 4.2-3. Analogously, use the user preference HowToReadMeatAxeTextFiles instead of the no longer available CMeatAxe.FastRead. The switch to user preferences is an incompatible change if you are used to change the values of these components in your code, for example in your gaprc file, see 'Reference: The gap.ini and gaprc files'. All assignments to these components should be changed to calls of SetUserPreference (Reference: SetUserPreference). Another consequence of this change is that the former function AtlasOfGroupRepresentationsUserParameters of the package is no longer supported, use ShowUserPreferences (Reference: ShowUserPreferences) or BrowseUserPreferences (Browse: BrowseUserPreferences) with argument "AtlasRep" instead. Finally, the following improvements have been added.  Straight line programs for computing generators of normal subgroups can now be fetched with AtlasProgram (3.5-4), using the argument "kernel". The available programs of this type are shown in the DisplayAtlasInfo (3.5-1) overview for a group. More than 200 such programs are available in a new data directory datapkg of the package. If fact, this collection of files is part of an extension of the database that is distributed together with the package. In earlier versions of the package, this kind of information had been available only implicitly; it had been stored via AGR.KERPRG, which is not supported anymore.  AtlasProgram (3.5-4) supports more variants of arguments: "contents" can be used to list the available data extensions, "contents" and "version" can be used to restrict the data under consideration, and one can request a program for computing standard generators of some maximal subgroup, not just generators (provided that this information is available). The information about the version of straight line programs is shown by DisplayAtlasInfo (3.5-1), as well as the availability of straight line programs for computing standard generators of maximal subgroups. Making this information more explicit has the side-effect that the access to the AtlasRep data with BrowseAtlasInfo (Browse: BrowseAtlasInfo) is both safer and simpler, if at least version 1.8.6 of the Browse package is available. (For that, the function AGR.InfoPrgs has been extended such that also the identifier records are included in the result.)  Straight line programs for computing standard generators of a maximal subgroup, if available, can now be fetched with AtlasProgram (3.5-4), using the argument "maxstd".  The function AtlasRepInfoRecord (3.5-10) now admits a group name as its argument, and then returns information about the group and its maximal subgroups; this information had been used before by DisplayAtlasInfo (3.5-1), but it had not been programmatically accessible.  The sanity checks for the data (see Section 7.9) have been extended, in particular they can be applied also to data extensions. To some extent, these checks can be used also to derive new information; the code for that should be regarded as heuristic and experimental, runtimes and space requirements may be large, depending on the new data to be examined.  Different header formats are now supported when reading and writing MeatAxe format files, see Section 4.2-8, and one can set a global default for the creation of mode 2 MeatAxe files, see Section 4.2-9.  The function MeatAxeString (7.3-2) admits also an integer matrix as argument.  The function CMtxBinaryFFMatOrPerm (7.3-4) admits an optional argument base, in order to write MeatAxe format files that contain either zero based or one based permutations.  The meaningless lines about p-modular representations of groups with nontrivial p-core have been removed from the file gap/mindeg.g. 1.3-10 What's New in Version 1.5.1? (March 2016)  The paths of the directories where downloaded data files get stored are now customizable, see Section 4.2-2. Up to now, the data were stored in subdirectories of the package directory, which might cause problems with write permissions, depending on the installation of the package. (Note that choosing other data directories can be useful also in order to keep existing local data files when a new version of GAP or of the AtlasRep package gets installed.) Thanks to Bill Allombert for pointing out this problem.  The information about data files from the ATLAS of Group Representations has been extended by CrcFile (Reference: CrcFile) values. These values are checked whenever data from such a file are read, and an error is signalled if the checksum does not fit to the expected one. Note that several users may access the same data files, and a user should not suffer from perhaps corrupted files that have been downloaded by other users. Thanks to Frank Lübeck for the idea to introduce this consistency test.  Whenever StringFile (GAPDoc: StringFile) is called by functions of the package, this happens in the wrapper function AGR.StringFile, in order to replace occasional line breaks of the form "\r\n" by "\n". Apparently it may happen that the "\r" is silently smuggled in when data files get copied to the local computer. Thanks to Marek Mitros for help with detecting and fixing this problem.  The function FFMatOrPermCMtxBinary (7.3-5) can now read also permutations stored in binary files that have been created with version 2.4 of the C-MeatAxe; note that this format is different from the one that is written by version 2.3. Conversely, CMtxBinaryFFMatOrPerm (7.3-4) has been generalized such that both formats can be written. The reference to the C-MeatAxe documentation now points to that of version 2.4. Thanks to Jürgen Müller for pointing out this problem.  The function MeatAxeString (7.3-2) can now encode permutation matrices in different ways. The mode (the first header entry) can be either 2 (then the positions of the nonzero entries are listed) or 1 or 6 (then all entries of the matrix are listed). In previous versions, the function produced a matrix of mode 2 whenever this was possible, but this behaviour is not useful if the result is not processed by the C-MeatAxe. Thanks to Klaus Lux for pointing out this problem.  Depending on the terminal capabilities and the user preference DisplayFunction (see 4.2-11), some non-ASCII characters may appear in the output shown by DisplayAtlasInfo (3.5-1). 1.3-11 What's New in Version 1.5? (July 2011)  The function AtlasSubgroup (3.5-9) now admits also the return value of OneAtlasGeneratingSetInfo (3.5-6) or the return value of AtlasGroup (3.5-8) as its first argument. The latter is implemented via the new attribute AtlasRepInfoRecord (3.5-10), which is set in the groups constructed by AtlasGroup (3.5-8).  Information about transitivity, rank, primitivity, and point stabilizers of many permutation representations is now available. If applicable then this information appears in the records returned by OneAtlasGeneratingSetInfo (3.5-6), it is part of the overview shown by DisplayAtlasInfo (3.5-1), and it is shown also in the data overview in the web, see Section 4.3. Two new manual sections about point stabilizers have been added, see the sections 2.4-6 and 2.4-7.  Information about the characters afforded by many matrix and permutation representations is now available. If applicable then this information appears in the records returned by OneAtlasGeneratingSetInfo (3.5-6), for matrix representations it is part of the overview shown by DisplayAtlasInfo (3.5-1), and it is shown also in the data overview in the web, see Section 4.3.  The functions Character (Reference: Character for a character table and a list), Identifier (Reference: Identifier for character tables), IsPrimitive (Reference: IsPrimitive), IsTransitive (Reference: IsTransitive), Transitivity (Reference: Transitivity), and RankAction (Reference: RankAction) are now supported as input conditions in DisplayAtlasInfo (3.5-1) and OneAtlasGeneratingSetInfo (3.5-6).  It is now possible to restrict the data shown by DisplayAtlasInfo (3.5-1) or returned by OneAtlasGeneratingSetInfo (3.5-6) to private or non-private data.  A tutorial for beginners was added to the manual, see Chapter 2, and the manual was restructured.  In the overview shown by DisplayAtlasInfo (3.5-1) and in the data overview in the web (see Section 4.3), the ordering of groups was improved such that, e.g., "A9" precedes "A10".  The function AtlasClassNames (3.4-2) now admits also a Brauer table as its argument, and works also for character tables of bicyclic extensions of simple groups.  The group names that are entered in DisplayAtlasInfo (3.5-1), OneAtlasGeneratingSetInfo (3.5-6), etc., are now case insensitive, and if the package CTblLib is available then the admissible group names for the GAP character table of the group in question can be used in these functions.  In order to reduce the number of global variables, several functions have been turned into components of the new global variable AGR (7.1-4). A few of these functions had been documented in the previous version, the old values are still available if the package files gap/obsolete.gd and gap/obsolete.gi have been read. These files are read automatically if GAP's user preference "ReadObsolete" is true when the package gets loaded, see 'Reference: The gap.ini file'.  A few nicer characters are used by DisplayAtlasInfo (3.5-1) if GAPInfo.TermEncoding has the value "UTF-8" and if Print (Reference: Print) is not the display function to be used, see Section 4.2-11.  A bug in the function ReloadAtlasTableOfContents was fixed. Thanks to Jack Schmidt for reporting this bug. 1.3-12 What's New in Version 1.4? (June 2008)  In addition to the group orders that were added in version 1.3 (see Section 1.3-14), also many orders of maximal subgroups are now available. These values occur in the records returned by AtlasProgram (3.5-4) (for the case of "maxes" type programs) and of the three argument version of AtlasGenerators (3.5-3); now a size component may be bound. In these cases, the groups returned by AtlasSubgroup (3.5-9) have the Size (Reference: Size) attribute set.  The information about the number of maximal subgroups, if available, is now used in DisplayAtlasInfo (3.5-1).  In many cases, straight line programs for computing generators of maximal subgroups of a group G, say, can in fact be used to compute also generators of maximal subgroups of downward extensions of G; if not then it may suffice to extend the given straight line programs by additional generators. Currently this yields more than 200 new possibilities to compute maximal subgroups, this means a growth by about 25 percent. For example, all maximal subgroups of 12.M_22 and 2.Fi_22 can now be accessed via AtlasGenerators (3.5-3). (Of course this extension means only that one can access the straight line programs in question automatically via the GAP interface. In principle one could have used them already before, by explicitly applying a straight line program for a factor group to generators of a group, and perhaps adding some element in the kernel of the natural epimorphism.) For this feature, information about the compatibility of standard generators of groups and their factor groups was added.  The bibliographies contained in the ATLAS of Finite Groups [CCN+85] and in the ATLAS of Brauer Characters [JLPW95] are now available as HTML files, as BibXMLext files, and within GAP, see BrowseBibliographySporadicSimple (3.6-2).  If the GAP package Browse (see [BL18]) is loaded then the new functions BrowseMinimalDegrees (3.6-1) and BrowseBibliographySporadicSimple (3.6-2) are available; these functions can be called also by choosing the corresponding menu entries of the Browse application BrowseGapData (Browse: BrowseGapData).  The function AtlasGroup (3.5-8) now admits also the return value of OneAtlasGeneratingSetInfo (3.5-6) as its argument. 1.3-13 What's New in Version 1.3.1? (October 2007) This version was mainly released in order to fix a few problems. Now one does not get warnings about unbound variables when the package is loaded and the GAP package IO [Neu14] is not available, and pathological situations in FFMatOrPermCMtxBinary (7.3-5) (concerning extremely short corrupted data files and different byte orderings in binary files) are handled more carefully. Besides this, the two functions AtlasGroup (3.5-8) and AtlasSubgroup (3.5-9) were introduced, and the extended function QuaternionAlgebra (Reference: QuaternionAlgebra) of GAP 4.4.10 can now be used for describing base rings in OneAtlasGeneratingSetInfo (3.5-6) and AllAtlasGeneratingSetInfos (3.5-7). (This is the reason why this version of the package requires at least version 4.4.10 of GAP.) 1.3-14 What's New in Version 1.3? (June 2007)  The database was extended, see Section 4.2-4 for the number and size of files.  New data types and corresponding GAP objects have been introduced, for representing semi-presentations, presentations, and programs for finding standard generators. For details, see AtlasProgram (3.5-4), Chapter 6, and Section 7.6.  The records returned by the functions AtlasGenerators (3.5-3), OneAtlasGeneratingSetInfo (3.5-6), and AllAtlasGeneratingSetInfos (3.5-7) now contain the name and (if known) the order of the group in question, and also components describing the degree in the case of permutation representations or the dimension and the base ring of the natural module in the case of matrix representations.  For many of the groups, information about the minimal degree of faithful permutation representations and the minimal dimensions of faithful matrix representations in various characteristics is available for DisplayAtlasInfo (3.5-1), OneAtlasGeneratingSetInfo (3.5-6), and AllAtlasGeneratingSetInfos (3.5-7), see also Section 6.3. For these functions, also properties such as IsPrimeInt (Reference: IsPrimeInt) can be used to describe the intended restriction of the output.  One can now use Pager (Reference: Pager) functionality in DisplayAtlasInfo (3.5-1), see Section 4.2-11. An interactive alternative to DisplayAtlasInfo (3.5-1) is provided by the function BrowseAtlasInfo (Browse: BrowseAtlasInfo) from the new (recommended) GAP package Browse (see [BL18]).  The functions OneAtlasGeneratingSetInfo (3.5-6) and AllAtlasGeneratingSetInfos (3.5-7) now admit also a list of group names as the first argument.  The functions for actually accessing the data are more flexible now, see Section 7.2.  For transferring remote data, the GAP package IO (see [Neu14]) can now be used (and is recommended) as an alternative to wget.  The address of the data server has changed. The access to the server is no longer possible via ftp, thus the mechanism used up to version 1.2, which was based on ftp, had to be rewritten. The main consequence of this change is that information about updates of the table of contents is now provided at the package's homepage. This means that on the one hand, now package users cannot compute the table of contents directly from the server data, but on the other hand the update information can be downloaded without the necessity to install perl. Another consequence is that the system program ls is no longer needed, see Section 1.3-16.  The package manual has been restructured, extended and improved. It is now based on the package GAPDoc (see [LN18]). 1.3-15 What's New in Version 1.2? (November 2003) Not much. The release of Version 1.2 became necessary first of all in order to provide a package version that is compatible with GAP 4.4, since some cross-references into the GAP Reference Manual were broken due to changes of section names. Additionally, several web addresses concerning the package itself were changed and thus had to be adjusted. This opportunity was used  to upgrade the administrational part for loading the package to the mechanism that is recommended for GAP 4.4,  to extend the test suite, which now covers more consistency checks using the GAP Character Table Library (see [Bre22]),  to make the function ScanMeatAxeFile (7.3-1) more robust, due to the fact that the GAP function PermList (Reference: PermList) now returns fail instead of raising an error,  to change the way how representations with prescribed properties are accessed (the new function OneAtlasGeneratingSetInfo (3.5-6) is now preferred to the former OneAtlasGeneratingSet, and AllAtlasGeneratingSetInfos (3.5-7) has been added in order to provide programmatic access in parallel to the human readable descriptions printed by DisplayAtlasInfo (3.5-1)),  and last but not least to include the current table of contents of the underlying database. For AtlasRep users, the new feature of GAP 4.4 is particularly interesting that due to better kernel support, reading large matrices over finite fields is now faster than it was in GAP 4.3. 1.3-16 What's New in Version 1.1? (October 2002) The biggest change w. r. t. Version 1.1 is the addition of private extensions (see Chapter 5). It includes a new free format for straight line programs (see Section 5.2). Unfortunately, this feature requires the system program ls, so it may be not available for example under MS Windows operating systems. [But see Section 1.3-14.] In order to admit the addition of other types of data, the implementation of several functions has been changed. Data types are described in Section 7.5. An example of a new data type are quaternionic representations (see Section 7.6). The user interface itself (see Chapter 3) remained the same. As an alternative to perl, one can use wget now for transferring data files (see 4.2). Data files can be read much more efficiently in GAP 4.3 than in GAP 4.2. In Version 1.1 of the AtlasRep package, this feature is used for reading matrices and permutations in MeatAxe text format with ScanMeatAxeFile (7.3-1). As a consequence, (at least) GAP 4.3 is required for AtlasRep Version 1.1. The new compress component of the global variable AtlasOfGroupRepresentationsInfo (7.1-5) allows one to store data files automatically in gzipped form. For matrix representations in characteristic zero, invariant forms and generators for the centralizer algebra are now accessible in GAP if they are contained in the source files –this information had been ignored in Version 1.0. Additional information is now available via the internet (see 4.3). The facilities for updating the table of contents have been extended. The manual is now distributed also in PDF and HTML format; on the other hand, the PostScript format manual is no longer contained in the archives. Apart from these changes, a few minor bugs in the handling of MeatAxe files have been fixed, typos in the documentation have been corrected, and the syntax checks for ATLAS straight line programs (see 7.4) have been improved. 1.4 Acknowledgements  Frank Lübeck and Max Neunhöffer kindly provided the perl script that had been used for fetching remote data until version 1.2. Thanks also to Greg Gamble and Alexander Hulpke for technical hints concerning standard perl.  Ulrich Kaiser helped with preparing the package for MS Windows.  Klaus Lux had the idea to support data extensions, see Chapter 5, he did a lot of beta testing, and helped to fix several bugs.  Frank Lübeck contributed the functions CMtxBinaryFFMatOrPerm (7.3-4) and FFMatOrPermCMtxBinary (7.3-5).  Frank Lübeck and Max Neunhöffer wrote the GAPDoc package [LN18], which is used for processing the documentation of the AtlasRep package and for processing the bibliographies included in this package (see BrowseBibliographySporadicSimple (3.6-2)),  Max Neunhöffer wrote the GAP package IO [Neu14], which is recommended for transferring data.  Max Neunhöffer has also suggested the generalization of the data access described in Section 7.2, the admissibility of the function Character (Reference: Character for a character table and a list) as a filter in DisplayAtlasInfo (3.5-1), OneAtlasGeneratingSetInfo (3.5-6), and AllAtlasGeneratingSetInfos (3.5-7), and the variant of AtlasRepInfoRecord (3.5-10) that takes a group name as its input.  Gunter Malle suggested to make the information about representations of minimal degree accessible, see Section 6.3.  Andries Brouwer suggested to add a tutorial (see Chapter 2), Klaus Lux suggested several improvements of this chapter.  The development of this GAP package has been supported by the SFB-TRR 195 Symbolic Tools in Mathematics and their Applications (https://www.computeralgebra.de/sfb/) (from 2017 until 2022). atlasrep-2.1.8/doc/chapInd.txt0000644000175000017500000001164414545501235014345 0ustar samsam Index AGR 7.1-4 AGR.DeclareDataType 7.5-1 AGR.FileContents 7.6-2 AGR.GapObjectOfJsonText 6.4-3 AGR.JsonText 6.4-2 AGR.ParseFilenameFormat 7.6-1 AllAtlasGeneratingSetInfos 3.5-7 AsBBoxProgram 6.2-5 AsStraightLineDecision 6.1-8 AsStraightLineProgram 6.2-6 AtlasCharacterNames 3.4-3 AtlasClassNames 3.4-2 AtlasGenerators 3.5-3 for an identifier 3.5-3 AtlasGroup, for an identifier record 3.5-8 for various arguments 3.5-8 AtlasOfGroupRepresentationsForgetData 5.1-2 AtlasOfGroupRepresentationsInfo 7.1-5 AtlasOfGroupRepresentationsNotifyData, for a local directory of private data 5.1-1 for a local file describing private data 5.1-1 for a remote file describing private data 5.1-1 AtlasProgram 3.5-4 for an identifier 3.5-4 AtlasProgramInfo 3.5-5 AtlasRep 0.0 AtlasRepAccessRemoteFiles 4.2-1 AtlasRepDataDirectory 4.2-2 AtlasRepIdentifier, convert a new type identifier to an old type one 7.7-1 convert an old type identifier to a new type one 7.7-1 AtlasRepInfoRecord, for a group 3.5-10 for a string 3.5-10 AtlasRepJsonFilesAddresses 4.2-14 AtlasRepLocalServerPath 4.2-6 AtlasRepMarkNonCoreData 4.2-12 AtlasRepTOCData 4.2-3 AtlasStringOfProgram 7.4-2 for MeatAxe format output 7.4-2 AtlasSubgroup, for a group and a number 3.5-9 for a group name (and various arguments) and a number 3.5-9 for an identifier record and a number 3.5-9 automorphisms 3.5-4 BaseOfMeatAxePermutation 4.2-10 black box program 1.1 for finding standard generators 3.5-4 7.6 BrowseBibliographySporadicSimple 3.6-2 BrowseMinimalDegrees 3.6-1 C-MeatAxe 1.2 class representatives 3.5-4 CMtxBinaryFFMatOrPerm 7.3-4 compress 4.2-4 CompressDownloadedMeatAxeFiles 4.2-4 cyclic subgroups 3.5-4 DebugFileLoading 4.2-13 DisplayAtlasInfo 3.5-1 for a group name, and optionally further restrictions 3.5-1 DisplayFunction 4.2-11 EvaluatePresentation, for a group, a group name (and a number) 3.5-11 for a list of generators, a group name (and a number) 3.5-11 FFList 7.3-3 FFLists 7.3-3 FFMatOrPermCMtxBinary 7.3-5 FileAccessFunctions 4.2-5 ftp 1.3-14 gzip 1.3-16 4.2-4 HowToReadMeatAxeTextFiles 4.2-7 InfoAtlasRep 7.1-1 InfoBBox 7.1-3 InfoCMeatAxe 7.1-2 IsBBoxProgram 6.2-1 IsStraightLineDecision 6.1-1 LinesOfStraightLineDecision 6.1-2 local access 4.2-1 Magma 1.1 matrix, MeatAxe format 7.3 maximal subgroups 3.5-4 maximally cyclic subgroups 3.5-4 MeatAxe 1.1 MeatAxeString 7.3-2 for a matrix of integers 7.3-2 for a permutation, q, and dims 7.3-2 for permutations and a degree 7.3-2 MinimalRepresentationInfo 6.3-1 MinimalRepresentationInfoData 6.3-2 NrInputsOfStraightLineDecision 6.1-3 OneAtlasGeneratingSetInfo 3.5-6 perl 1.3-14 1.4 permutation, MeatAxe format 7.3 presentation 6.1-7 7.6 remote access 4.2-1 ResultOfBBoxProgram 6.2-4 ResultOfStraightLineDecision 6.1-6 RunBBoxProgram 6.2-3 ScanBBoxProgram 6.2-2 ScanMeatAxeFile 7.3-1 ScanStraightLineDecision 6.1-4 ScanStraightLineProgram 7.4-1 semi-presentation 6.1-7 7.6 SetMinimalRepresentationInfo 6.3-3 StandardGeneratorsData, for a group, a group name (and a number) 3.5-12 for a list of generators, a group name (and a number) 3.5-12 straight line decision, encoding a presentation 3.5-4 for checking standard generators 3.5-4 straight line program 1.1 3.5-1 for class representatives 3.5-4 for kernels of epimorphisms 3.5-4 for maximal subgroups 3.5-4 for normal subgroups 3.5-4 for outer automorphisms 3.5-4 for representatives of cyclic subgroups 3.5-4 for restandardizing 3.5-4 free format 3.5-4 StraightLineDecision 6.1-5 StraightLineDecisionNC 6.1-5 StraightLineProgramFromStraightLineDecision 6.1-9 StringOfAtlasTableOfContents 5.1-3 wget 1.3-14 1.3-16 WriteHeaderFormatOfMeatAxeFiles 4.2-8 WriteMeatAxeFilesOfMode2 4.2-9 zcv 7.3-1 ------------------------------------------------------- atlasrep-2.1.8/doc/chap3.txt0000644000175000017500000034076614545501235014007 0ustar samsam 3 The User Interface of the AtlasRep Package The user interface is the part of the GAP interface that allows one to display information about the current contents of the database and to access individual data (perhaps by downloading them, see Section 4.2-1). The corresponding functions are described in this chapter. See Section 2.4 for some small examples how to use the functions of the interface. Data extensions of the AtlasRep package are regarded as another part of the GAP interface, they are described in Chapter 5. Finally, the low level part of the interface is described in Chapter 7. 3.1 Accessing vs. Constructing Representations Note that accessing the data means in particular that it is not the aim of this package to construct representations from known ones. For example, if at least one permutation representation for a group G is stored but no matrix representation in a positive characteristic p, say, then OneAtlasGeneratingSetInfo (3.5-6) returns fail when it is asked for a description of an available set of matrix generators for G in characteristic p, although such a representation can be obtained by reduction modulo p of an integral matrix representation, which in turn can be constructed from any permutation representation. 3.2 Group Names Used in the AtlasRep Package When you access data via the AtlasRep package, you specify the group in question by an admissible name. Thus it is essential to know these names, which are called the GAP names of the group in the following. For a group G, say, whose character table is available in GAP's Character Table Library (see [Bre22]), the admissible names of G are the admissible names of this character table. One such name is the Identifier (Reference: Identifier for character tables) value of the character table, see 'CTblLib: Admissible Names for Character Tables in CTblLib'. This name is usually very similar to the name used in the ATLAS of Finite Groups [CCN+85]. For example, "M22" is a GAP name of the Mathieu group M_22, "12_1.U4(3).2_1" is a GAP name of 12_1.U_4(3).2_1, the two names "S5" and "A5.2" are GAP names of the symmetric group S_5, and the two names "F3+" and "Fi24'" are GAP names of the simple Fischer group Fi_24^'. When a GAP name is required as an input of a package function, this input is case insensitive. For example, both "A5" and "a5" are valid arguments of DisplayAtlasInfo (3.5-1). Internally, for example as part of filenames (see Section 7.6), the package uses names that may differ from the GAP names; these names are called ATLAS-file names. For example, "A5", "TE62", and "F24" are ATLAS-file names. Of these, only "A5" is also a GAP name, but the other two are not; corresponding GAP names are "2E6(2)" and "Fi24'", respectively. 3.3 Standard Generators Used in the AtlasRep Package For the general definition of standard generators of a group, see [Wil96]. Several different standard generators may be defined for a group, the definitions for each group that occurs in the ATLAS of Group Representations can be found at http://atlas.math.rwth-aachen.de/Atlas/v3. When one specifies the standardization, the i-th set of standard generators is denoted by the number i. Note that when more than one set of standard generators is defined for a group, one must be careful to use compatible standardization. For example, the straight line programs, straight line decisions and black box programs in the database refer to a specific standardization of their inputs. That is, a straight line program for computing generators of a certain subgroup of a group G is defined only for a specific set of standard generators of G, and applying the program to matrix or permutation generators of G but w. r. t. a different standardization may yield unpredictable results. Therefore the results returned by the functions described in this chapter contain information about the standardizations they refer to. 3.4 Class Names Used in the AtlasRep Package For each straight line program (see AtlasProgram (3.5-4)) that is used to compute lists of class representatives, it is essential to describe the classes in which these elements lie. Therefore, in these cases the records returned by the function AtlasProgram (3.5-4) contain a component outputs with value a list of class names. Currently we define these class names only for simple groups and certain extensions of simple groups, see Section 3.4-1. The function AtlasClassNames (3.4-2) can be used to compute the list of class names from the character table in the GAP Library. 3.4-1 Definition of ATLAS Class Names For the definition of class names of an almost simple group, we assume that the ordinary character tables of all nontrivial normal subgroups are shown in the ATLAS of Finite Groups [CCN+85]. Each class name is a string consisting of the element order of the class in question followed by a combination of capital letters, digits, and the characters ' and - (starting with a capital letter). For example, 1A, 12A1, and 3B' denote the class that contains the identity element, a class of element order 12, and a class of element order 3, respectively. 1 For the table of a simple group, the class names are the same as returned by the two argument version of the GAP function ClassNames (Reference: ClassNames), cf. [CCN+85, Chapter 7, Section 5]: The classes are arranged w. r. t. increasing element order and for each element order w. r. t. decreasing centralizer order, the conjugacy classes that contain elements of order n are named nA, nB, nC, ...; the alphabet used here is potentially infinite, and reads A, B, C, ..., Z, A1, B1, ..., A2, B2, .... For example, the classes of the alternating group A_5 have the names 1A, 2A, 3A, 5A, and 5B. 2 Next we consider the case of an upward extension G.A of a simple group G by a cyclic group of order A. The ATLAS defines class names for each element g of G.A only w. r. t. the group G.a, say, that is generated by G and g; namely, there is a power of g (with the exponent coprime to the order of g) for which the class has a name of the same form as the class names for simple groups, and the name of the class of g w. r. t. G.a is then obtained from this name by appending a suitable number of dashes '. So dashed class names refer exactly to those classes that are not printed in the ATLAS. For example, those classes of the symmetric group S_5 that do not lie in A_5 have the names 2B, 4A, and 6A. The outer classes of the group L_2(8).3 have the names 3B, 6A, 9D, and 3B', 6A', 9D'. The outer elements of order 5 in the group Sz(32).5 lie in the classes with names 5B, 5B', 5B'', and 5B'''. In the group G.A, the class of g may fuse with other classes. The name of the class of g in G.A is obtained from the names of the involved classes of G.a by concatenating their names after removing the element order part from all of them except the first one. For example, the elements of order 9 in the group L_2(27).6 are contained in the subgroup L_2(27).3 but not in L_2(27). In L_2(27).3, they lie in the classes 9A, 9A', 9B, and 9B'; in L_2(27).6, these classes fuse to 9AB and 9A'B'. 3 Now we define class names for general upward extensions G.A of a simple group G. Each element g of such a group lies in an upward extension G.a by a cyclic group, and the class names w. r. t. G.a are already defined. The name of the class of g in G.A is obtained by concatenating the names of the classes in the orbit of G.A on the classes of cyclic upward extensions of G, after ordering the names lexicographically and removing the element order part from all of them except the first one. An exception is the situation where dashed and non-dashed class names appear in an orbit; in this case, the dashed names are omitted. For example, the classes 21A and 21B of the group U_3(5).3 fuse in U_3(5).S_3 to the class 21AB, and the class 2B of U_3(5).2 fuses with the involution classes 2B', 2B'' in the groups U_3(5).2^' and U_3(5).2^{''} to the class 2B of U_3(5).S_3. It may happen that some names in the outputs component of a record returned by AtlasProgram (3.5-4) do not uniquely determine the classes of the corresponding elements. For example, the (algebraically conjugate) classes 39A and 39B of the group Co_1 have not been distinguished yet. In such cases, the names used contain a minus sign -, and mean one of the classes in the range described by the name before and the name after the minus sign; the element order part of the name does not appear after the minus sign. So the name 39A-B for the group Co_1 means 39A or 39B, and the name 20A-B''' for the group Sz(32).5 means one of the classes of element order 20 in this group (these classes lie outside the simple group Sz). 4 For a downward extension m.G.A of an almost simple group G.A by a cyclic group of order m, let π denote the natural epimorphism from m.G.A onto G.A. Each class name of m.G.A has the form nX_0, nX_1 etc., where nX is the class name of the image under π, and the indices 0, 1 etc. are chosen according to the position of the class in the lifting order rows for G, see [CCN+85, Chapter 7, Section 7, and the example in Section 8]). For example, if m = 6 then 1A_1 and 1A_5 denote the classes containing the generators of the kernel of π, that is, central elements of order 6. 3.4-2 AtlasClassNames AtlasClassNames( tbl )  function Returns: a list of class names. Let tbl be the ordinary or modular character table of a group G, say, that is almost simple or a downward extension of an almost simple group and such that tbl is an ATLAS table from the GAP Character Table Library, according to its InfoText (Reference: InfoText) value. Then AtlasClassNames returns the list of class names for G, as defined in Section 3.4-1. The ordering of class names is the same as the ordering of the columns of tbl. (The function may work also for character tables that are not ATLAS tables, but then clearly the class names returned are somewhat arbitrary.)  Example  gap> AtlasClassNames( CharacterTable( "L3(4).3" ) ); [ "1A", "2A", "3A", "4ABC", "5A", "5B", "7A", "7B", "3B", "3B'",   "3C", "3C'", "6B", "6B'", "15A", "15A'", "15B", "15B'", "21A",   "21A'", "21B", "21B'" ] gap> AtlasClassNames( CharacterTable( "U3(5).2" ) ); [ "1A", "2A", "3A", "4A", "5A", "5B", "5CD", "6A", "7AB", "8AB",   "10A", "2B", "4B", "6D", "8C", "10B", "12B", "20A", "20B" ] gap> AtlasClassNames( CharacterTable( "L2(27).6" ) ); [ "1A", "2A", "3AB", "7ABC", "13ABC", "13DEF", "14ABC", "2B", "4A",   "26ABC", "26DEF", "28ABC", "28DEF", "3C", "3C'", "6A", "6A'",   "9AB", "9A'B'", "6B", "6B'", "12A", "12A'" ] gap> AtlasClassNames( CharacterTable( "L3(4).3.2_2" ) ); [ "1A", "2A", "3A", "4ABC", "5AB", "7A", "7B", "3B", "3C", "6B",   "15A", "15B", "21A", "21B", "2C", "4E", "6E", "8D", "14A", "14B" ] gap> AtlasClassNames( CharacterTable( "3.A6" ) ); [ "1A_0", "1A_1", "1A_2", "2A_0", "2A_1", "2A_2", "3A_0", "3B_0",   "4A_0", "4A_1", "4A_2", "5A_0", "5A_1", "5A_2", "5B_0", "5B_1",   "5B_2" ] gap> AtlasClassNames( CharacterTable( "2.A5.2" ) ); [ "1A_0", "1A_1", "2A_0", "3A_0", "3A_1", "5AB_0", "5AB_1", "2B_0",   "4A_0", "4A_1", "6A_0", "6A_1" ]  3.4-3 AtlasCharacterNames AtlasCharacterNames( tbl )  function Returns: a list of character names. Let tbl be the ordinary or modular character table of a simple group. AtlasCharacterNames returns a list of strings, the i-th entry being the name of the i-th irreducible character of tbl; this name consists of the degree of this character followed by distinguishing lowercase letters.  Example  gap> AtlasCharacterNames( CharacterTable( "A5" ) );  [ "1a", "3a", "3b", "4a", "5a" ]  3.5 Accessing Data via AtlasRep The examples shown in this section refer to the situation that no extensions have been notified, and to a perhaps outdated table of contents. That is, the current version of the database may contain more information than is shown here. 3.5-1 DisplayAtlasInfo DisplayAtlasInfo( [listofnames][,] [std][,] ["contents", sources][,] [...] )  function DisplayAtlasInfo( gapname[, std][, ...] )  function This function lists the information available via the AtlasRep package, for the given input. There are essentially three ways of calling this function.  If there is no argument or if the first argument is a list listofnames of strings that are GAP names of groups, DisplayAtlasInfo shows an overview of the known information.  If the first argument is a string gapname that is a GAP name of a group, DisplayAtlasInfo shows an overview of the information that is available for this group.  If the string "contents" is the only argument then the function shows which parts of the database are available; these are at least the "core" part, which means the data from the ATLAS of Group Representations, and the "internal" part, which means the data that are distributed with the AtlasRep package. Other parts can become available by calls to AtlasOfGroupRepresentationsNotifyData (5.1-1). Note that the shown numbers of locally available files depend on what has already been downloaded. In each case, the information will be printed to the screen or will be fed into a pager, see Section 4.2-11. An interactive alternative to DisplayAtlasInfo is the function BrowseAtlasInfo (Browse: BrowseAtlasInfo), see [BL18]. The following paragraphs describe the structure of the output in the two cases. Examples can be found in Section 3.5-2. Called without arguments, DisplayAtlasInfo shows a general overview for all groups. If some information is available for the group G, say, then one line is shown for G, with the following columns. group the GAP name of G (see Section 3.2), # the number of faithful representations stored for G that satisfy the additional conditions given (see below), maxes the number of available straight line programs for computing generators of maximal subgroups of G, cl a + sign if at least one program for computing representatives of conjugacy classes of elements of G is stored, cyc a + sign if at least one program for computing representatives of classes of maximally cyclic subgroups of G is stored, out descriptions of outer automorphisms of G for which at least one program is stored, fnd a + sign if at least one program is available for finding standard generators, chk a + sign if at least one program is available for checking whether a set of generators is a set of standard generators, and prs a + sign if at least one program is available that encodes a presentation. Called with a list listofnames of strings that are GAP names of some groups, DisplayAtlasInfo prints the overview described above but restricted to the groups in this list. In addition to or instead of listofnames, the string "contents" and a description sources of the data may be given about which the overview is formed. See below for admissible values of sources. Called with a string gapname that is a GAP name of a group, DisplayAtlasInfo prints an overview of the information that is available for this group. One line is printed for each faithful representation, showing the number of this representation (which can be used in calls of AtlasGenerators (3.5-3)), and a string of one of the following forms; in both cases, id is a (possibly empty) string. G <= Sym(nid) denotes a permutation representation of degree n, for example G <= Sym(40a) and G <= Sym(40b) denote two (nonequivalent) representations of degree 40. G <= GL(nid,descr) denotes a matrix representation of dimension n over a coefficient ring described by descr, which can be a prime power, ℤ (denoting the ring of integers), a description of an algebraic extension field, ℂ (denoting an unspecified algebraic extension field), or ℤ/mℤ for an integer m (denoting the ring of residues mod m); for example, G <= GL(2a,4) and G <= GL(2b,4) denote two (nonequivalent) representations of dimension 2 over the field with four elements. After the representations, the programs available for gapname are listed. The following optional arguments can be used to restrict the overviews. std must be a positive integer or a list of positive integers; if it is given then only those representations are considered that refer to the std-th set of standard generators or the i-th set of standard generators, for i in std (see Section 3.3), "contents" and sources for a string or a list of strings sources, restrict the data about which the overview is formed; if sources is the string "core" then only data from the ATLAS of Group Representations are considered, if sources is a string that denotes a data extension in the sense of a dirid argument of AtlasOfGroupRepresentationsNotifyData (5.1-1) then only the data that belong to this data extension are considered; also a list of such strings may be given, then the union of these data is considered, Identifier and id restrict to representations with id component in the list id (note that this component is itself a list, entering this list is not admissible), or satisfying the function id, IsPermGroup and true (or false) restrict to permutation representations (or to representations that are not permutation representations), NrMovedPoints and n for a positive integer, a list of positive integers, or a property n, restrict to permutation representations of degree equal to n, or in the list n, or satisfying the function n, NrMovedPoints and the string "minimal" restrict to faithful permutation representations of minimal degree (if this information is available), IsTransitive and a boolean value restrict to transitive or intransitive permutation representations where this information is available (if the value true or false is given), or to representations for which this information is not available (if the value fail is given), IsPrimitive and a boolean value restrict to primitive or imprimitive permutation representations where this information is available (if the value true or false is given), or to representations for which this information is not available (if the value fail is given), Transitivity and n for a nonnegative integer, a list of nonnegative integers, or a property n, restrict to permutation representations for which the information is available that the transitivity is equal to n, or is in the list n, or satisfies the function n; if n is fail then restrict to all permutation representations for which this information is not available, RankAction and n for a nonnegative integer, a list of nonnegative integers, or a property n, restrict to permutation representations for which the information is available that the rank is equal to n, or is in the list n, or satisfies the function n; if n is fail then restrict to all permutation representations for which this information is not available, IsMatrixGroup and true (or false) restrict to matrix representations (or to representations that are not matrix representations), Characteristic and p for a prime integer, a list of prime integers, or a property p, restrict to matrix representations over fields of characteristic equal to p, or in the list p, or satisfying the function p (representations over residue class rings that are not fields can be addressed by entering fail as the value of p), Dimension and n for a positive integer, a list of positive integers, or a property n, restrict to matrix representations of dimension equal to n, or in the list n, or satisfying the function n, Characteristic, p, Dimension, and the string "minimal" for a prime integer p, restrict to faithful matrix representations over fields of characteristic p that have minimal dimension (if this information is available), Ring and R for a ring or a property R, restrict to matrix representations for which the information is available that the ring spanned by the matrix entries is contained in this ring or satisfies this property (note that the representation might be defined over a proper subring); if R is fail then restrict to all matrix representations for which this information is not available, Ring, R, Dimension, and the string "minimal" for a ring R, restrict to faithful matrix representations over this ring that have minimal dimension (if this information is available), Character and chi for a class function or a list of class functions chi, restrict to representations with these characters (note that the underlying characteristic of the class function, see Section 'Reference: UnderlyingCharacteristic', determines the characteristic of the representation), Character and name for a string name, restrict to representations for which the character is known to have this name, according to the information shown by DisplayAtlasInfo; if the characteristic is not specified then it defaults to zero, Character and n for a positive integer n, restrict to representations for which the character is known to be the n-th irreducible character in GAP's library character table of the group in question; if the characteristic is not specified then it defaults to zero, IsStraightLineProgram and true restrict to straight line programs, straight line decisions (see Section 6.1), and black box programs (see Section 6.2), and IsStraightLineProgram and false restrict to representations. Note that the above conditions refer only to the information that is available without accessing the representations. For example, if it is not stored in the table of contents whether a permutation representation is primitive then this representation does not match an IsPrimitive condition in DisplayAtlasInfo. If minimality information is requested and no available representation matches this condition then either no minimal representation is available or the information about the minimality is missing. See MinimalRepresentationInfo (6.3-1) for checking whether the minimality information is available for the group in question. Note that in the cases where the string "minimal" occurs as an argument, MinimalRepresentationInfo (6.3-1) is called with third argument "lookup"; this is because the stored information was precomputed just for the groups in the ATLAS of Group Representations, so trying to compute non-stored minimality information (using other available databases) will hardly be successful. The representations are ordered as follows. Permutation representations come first (ordered according to their degrees), followed by matrix representations over finite fields (ordered first according to the field size and second according to the dimension), matrix representations over the integers, and then matrix representations over algebraic extension fields (both kinds ordered according to the dimension), the last representations are matrix representations over residue class rings (ordered first according to the modulus and second according to the dimension). The maximal subgroups are ordered according to decreasing group order. For an extension G.p of a simple group G by an outer automorphism of prime order p, this means that G is the first maximal subgroup and then come the extensions of the maximal subgroups of G and the novelties; so the n-th maximal subgroup of G and the n-th maximal subgroup of G.p are in general not related. (This coincides with the numbering used for the Maxes (CTblLib: Maxes) attribute for character tables.) 3.5-2 Examples for DisplayAtlasInfo Here are some examples how DisplayAtlasInfo (3.5-1) can be called, and how its output can be interpreted.  Example  gap> DisplayAtlasInfo( "contents" ); - AtlasRepAccessRemoteFiles: false  - AtlasRepDataDirectory: /home/you/gap/pkg/atlasrep/  ID | address, version, files  ---------+------------------------------------------------ core | http://atlas.math.rwth-aachen.de/Atlas/,  | version 2019-04-08,   | 10586 files locally available.  ---------+------------------------------------------------ internal | atlasrep/datapkg,   | version 2019-05-06,   | 276 files locally available.  ---------+------------------------------------------------ mfer | http://www.math.rwth-aachen.de/~mfer/datagens/,  | version 2015-10-06,   | 34 files locally available.  ---------+------------------------------------------------ ctblocks | ctblocks/atlas/,   | version 2019-04-08,   | 121 files locally available.   Note: The above output does not fit to the rest of the manual examples, since data extensions except internal have been removed at the beginning of Chapter 2. The output tells us that two data extensions have been notified in addition to the core data from the ATLAS of Group Representations and the (local) internal data distributed with the AtlasRep package. The files of the extension mfer must be downloaded before they can be read (but note that the access to remote files is disabled), and the files of the extension ctblocks are locally available in the ctblocks/atlas subdirectory of the GAP package directory. This table (in particular the numbers of locally available files) depends on your installation of the package and how many files you have already downloaded.  Example  gap> DisplayAtlasInfo( [ "M11", "A5" ] ); group | # | maxes | cl | cyc | out | fnd | chk | prs ------+----+-------+----+-----+-----+-----+-----+---- M11 | 42 | 5 | + | + | | + | + | +  A5* | 18 | 3 | + | | | | + | +   The above output means that the database provides 42 representations of the Mathieu group M_11, straight line programs for computing generators of representatives of all five classes of maximal subgroups, for computing representatives of the conjugacy classes of elements and of generators of maximally cyclic subgroups, contains no straight line program for applying outer automorphisms (well, in fact M_11 admits no nontrivial outer automorphism), and contains straight line decisions that check a set of generators or a set of group elements for being a set of standard generators. Analogously, 18 representations of the alternating group A_5 are available, straight line programs for computing generators of representatives of all three classes of maximal subgroups, and no straight line programs for computing representatives of the conjugacy classes of elements, of generators of maximally cyclic subgroups, and no for computing images under outer automorphisms; straight line decisions for checking the standardization of generators or group elements are available.  Example  gap> DisplayAtlasInfo( [ "M11", "A5" ], NrMovedPoints, 11 ); group | # | maxes | cl | cyc | out | fnd | chk | prs ------+---+-------+----+-----+-----+-----+-----+---- M11 | 1 | 5 | + | + | | + | + | +   The given conditions restrict the overview to permutation representations on 11 points. The rows for all those groups are omitted for which no such representation is available, and the numbers of those representations are shown that satisfy the given conditions. In the above example, we see that no representation on 11 points is available for A_5, and exactly one such representation is available for M_11.  Example  gap> DisplayAtlasInfo( "A5", IsPermGroup, true ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.) 2: G <= Sym(6) 2-trans., on cosets of D10 (2nd max.) 3: G <= Sym(10) rank 3, on cosets of S3 (3rd max.) gap> DisplayAtlasInfo( "A5", NrMovedPoints, [ 4 .. 9 ] ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.) 2: G <= Sym(6) 2-trans., on cosets of D10 (2nd max.)  The first three representations stored for A_5 are (in fact primitive) permutation representations.  Example  gap> DisplayAtlasInfo( "A5", Dimension, [ 1 .. 3 ] ); Representations for G = A5: (all refer to std. generators 1) ---------------------------  8: G <= GL(2a,4) character 2a  9: G <= GL(2b,4) character 2b 10: G <= GL(3,5) character 3a 12: G <= GL(3a,9) character 3a 13: G <= GL(3b,9) character 3b 17: G <= GL(3a,Field([Sqrt(5)])) character 3a 18: G <= GL(3b,Field([Sqrt(5)])) character 3b gap> DisplayAtlasInfo( "A5", Characteristic, 0 ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 14: G <= GL(4,Z) character 4a 15: G <= GL(5,Z) character 5a 16: G <= GL(6,Z) character 3ab 17: G <= GL(3a,Field([Sqrt(5)])) character 3a 18: G <= GL(3b,Field([Sqrt(5)])) character 3b  The representations with number between 4 and 13 are (in fact irreducible) matrix representations over various finite fields, those with numbers 14 to 16 are integral matrix representations, and the last two are matrix representations over the field generated by sqrt{5} over the rational number field.  Example  gap> DisplayAtlasInfo( "A5", Identifier, "a" ); Representations for G = A5: (all refer to std. generators 1) ---------------------------  4: G <= GL(4a,2) character 4a  8: G <= GL(2a,4) character 2a 12: G <= GL(3a,9) character 3a 17: G <= GL(3a,Field([Sqrt(5)])) character 3a  Each of the representations with the numbers 4, 8, 12, and 17 is labeled with the distinguishing letter a.  Example  gap> DisplayAtlasInfo( "A5", NrMovedPoints, IsPrimeInt ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.) gap> DisplayAtlasInfo( "A5", Characteristic, IsOddInt ); Representations for G = A5: (all refer to std. generators 1) ---------------------------  6: G <= GL(4,3) character 4a  7: G <= GL(6,3) character 3ab 10: G <= GL(3,5) character 3a 11: G <= GL(5,5) character 5a 12: G <= GL(3a,9) character 3a 13: G <= GL(3b,9) character 3b gap> DisplayAtlasInfo( "A5", Dimension, IsPrimeInt ); Representations for G = A5: (all refer to std. generators 1) ---------------------------  8: G <= GL(2a,4) character 2a  9: G <= GL(2b,4) character 2b 10: G <= GL(3,5) character 3a 11: G <= GL(5,5) character 5a 12: G <= GL(3a,9) character 3a 13: G <= GL(3b,9) character 3b 15: G <= GL(5,Z) character 5a 17: G <= GL(3a,Field([Sqrt(5)])) character 3a 18: G <= GL(3b,Field([Sqrt(5)])) character 3b gap> DisplayAtlasInfo( "A5", Ring, IsFinite and IsPrimeField ); Representations for G = A5: (all refer to std. generators 1) ---------------------------  4: G <= GL(4a,2) character 4a  5: G <= GL(4b,2) character 2ab  6: G <= GL(4,3) character 4a  7: G <= GL(6,3) character 3ab 10: G <= GL(3,5) character 3a 11: G <= GL(5,5) character 5a  The above examples show how the output can be restricted using a property (a unary function that returns either true or false) that follows NrMovedPoints (Reference: NrMovedPoints for a permutation), Characteristic (Reference: Characteristic), Dimension (Reference: Dimension), or Ring (Reference: Ring) in the argument list of DisplayAtlasInfo (3.5-1).  Example  gap> DisplayAtlasInfo( "A5", IsStraightLineProgram, true ); Programs for G = A5: (all refer to std. generators 1) -------------------- - class repres.*  - presentation  - maxes (all 3):  1: A4   2: D10   3: S3  - std. gen. checker:  (check)   (pres)   Straight line programs are available for computing generators of representatives of the three classes of maximal subgroups of A_5, and a straight line decision for checking whether given generators are in fact standard generators is available as well as a presentation in terms of standard generators, see AtlasProgram (3.5-4). 3.5-3 AtlasGenerators AtlasGenerators( gapname, repnr[, maxnr] )  function AtlasGenerators( identifier )  function Returns: a record containing generators for a representation, or fail. In the first form, gapname must be a string denoting a GAP name (see Section 3.2) of a group, and repnr a positive integer. If at least repnr representations for the group with GAP name gapname are available then AtlasGenerators, when called with gapname and repnr, returns an immutable record describing the repnr-th representation; otherwise fail is returned. If a third argument maxnr, a positive integer, is given then an immutable record describing the restriction of the repnr-th representation to the maxnr-th maximal subgroup is returned. The result record has at least the following components. contents the identifier of the part of the database to which the generators belong, for example "core" or "internal", generators a list of generators for the group, groupname the GAP name of the group (see Section 3.2), identifier a GAP object (a list of filenames plus additional information) that uniquely determines the representation, see Section 7.7; the value can be used as identifier argument of AtlasGenerators. repname a string that is an initial part of the filenames of the generators. repnr the number of the representation in the current session, equal to the argument repnr if this is given. standardization the positive integer denoting the underlying standard generators, type a string that describes the type of the representation ("perm" for a permutation representation, "matff" for a matrix representation over a finite field, "matint" for a matrix representation over the ring of integers, "matalg" for a matrix representation over an algebraic number field). Additionally, the following describing components may be available if they are known, and depending on the data type of the representation. size the group order, id the distinguishing string as described for DisplayAtlasInfo (3.5-1), charactername a string that describes the character of the representation, constituents a list of positive integers denoting the positions of the irreducible constituents of the character of the representation, p (for permutation representations) for the number of moved points, dim (for matrix representations) the dimension of the matrices, ring (for matrix representations) the ring generated by the matrix entries, transitivity (for permutation representations) a nonnegative integer, see Transitivity (Reference: Transitivity), orbits (for intransitive permutation representations) the sorted list of orbit lengths on the set of moved points, rankAction (for transitive permutation representations) the number of orbits of the point stabilizer on the set of moved points, see RankAction (Reference: RankAction), stabilizer (for transitive permutation representations) a string that describes the structure of the point stabilizers, isPrimitive (for transitive permutation representations) true if the point stabilizers are maximal subgroups, and false otherwise, maxnr (for primitive permutation representations) the number of the class of maximal subgroups that contains the point stabilizers, w. r. t. the Maxes (CTblLib: Maxes) list. It should be noted that the number repnr refers to the number shown by DisplayAtlasInfo (3.5-1) in the current session; it may be that after the addition of new representations (for example after loading a package that provides some), repnr refers to another representation. The alternative form of AtlasGenerators, with only argument identifier, can be used to fetch the result record with identifier value equal to identifier. The purpose of this variant is to access the same representation also in different GAP sessions.  Example  gap> gens1:= AtlasGenerators( "A5", 1 ); rec( charactername := "1a+4a", constituents := [ 1, 4 ],   contents := "core", generators := [ (1,2)(3,4), (1,3,5) ],   groupname := "A5", id := "",   identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ],   isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,   repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4",   standardization := 1, transitivity := 3, type := "perm" ) gap> gens8:= AtlasGenerators( "A5", 8 ); rec( charactername := "2a", constituents := [ 2 ], contents := "core",  dim := 2,   generators := [ [ [ Z(2)^0, 0*Z(2) ], [ Z(2^2), Z(2)^0 ] ],   [ [ 0*Z(2), Z(2)^0 ], [ Z(2)^0, Z(2)^0 ] ] ], groupname := "A5",  id := "a",   identifier := [ "A5", [ "A5G1-f4r2aB0.m1", "A5G1-f4r2aB0.m2" ], 1,   4 ], repname := "A5G1-f4r2aB0", repnr := 8, ring := GF(2^2),   size := 60, standardization := 1, type := "matff" ) gap> gens17:= AtlasGenerators( "A5", 17 ); rec( charactername := "3a", constituents := [ 2 ], contents := "core",  dim := 3,   generators :=   [ [ [ -1, 0, 0 ], [ 0, -1, 0 ], [ -E(5)-E(5)^4, -E(5)-E(5)^4, 1 ]   ], [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] ],   groupname := "A5", id := "a",   identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ],   polynomial := [ -1, 1, 1 ], repname := "A5G1-Ar3aB0", repnr := 17,   ring := NF(5,[ 1, 4 ]), size := 60, standardization := 1,   type := "matalg" )  Each of the above pairs of elements generates a group isomorphic to A_5.  Example  gap> gens1max2:= AtlasGenerators( "A5", 1, 2 ); rec( charactername := "1a+4a", constituents := [ 1, 4 ],   contents := "core", generators := [ (1,2)(3,4), (2,3)(4,5) ],   groupname := "D10", id := "",   identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5, 2 ],  isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,   repname := "A5G1-p5B0", repnr := 1, size := 10, stabilizer := "A4",   standardization := 1, transitivity := 3, type := "perm" ) gap> id:= gens1max2.identifier;; gap> gens1max2 = AtlasGenerators( id ); true gap> max2:= Group( gens1max2.generators );; gap> Size( max2 ); 10 gap> IdGroup( max2 ) = IdGroup( DihedralGroup( 10 ) ); true  The elements stored in gens1max2.generators describe the restriction of the first representation of A_5 to a group in the second class of maximal subgroups of A_5 according to the list in the ATLAS of Finite Groups [CCN+85]; this subgroup is isomorphic to the dihedral group D_10. 3.5-4 AtlasProgram AtlasProgram( gapname[, std][, "contents", sources][, "version", vers], ... )  function AtlasProgram( identifier )  function Returns: a record containing a program, or fail. In the first form, gapname must be a string denoting a GAP name (see Section 3.2) of a group G, say. If the database contains a straight line program (see Section 'Reference: Straight Line Programs') or straight line decision (see Section 6.1) or black box program (see Section 6.2) as described by the arguments indicated by ... (see below) then AtlasProgram returns an immutable record containing this program. Otherwise fail is returned. If the optional argument std is given, only those straight line programs/decisions are considered that take generators from the std-th set of standard generators of G as input, see Section 3.3. If the optional arguments "contents" and sources are given then the latter must be either a string or a list of strings, with the same meaning as described for DisplayAtlasInfo (3.5-1). If the optional arguments "version" and vers are given then the latter must be either a number or a list of numbers, and only those straight line programs/decisions are considered whose version number fits to vers. The result record has at least the following components. groupname the string gapname, identifier a GAP object (a list of filenames plus additional information) that uniquely determines the program; the value can be used as identifier argument of AtlasProgram (see below), program the required straight line program/decision, or black box program, standardization the positive integer denoting the underlying standard generators of G, version the substring of the filename of the program that denotes the version of the program. If the program computes generators of the restriction to a maximal subgroup then also the following components are present. size the order of the maximal subgroup, subgroupname a string denoting a name of the maximal subgroup. In the first form, the arguments indicated by ... must be as follows. (the string "maxes" and) a positive integer maxnr  the required program computes generators of the maxnr-th maximal subgroup of the group with GAP name gapname. In this case, the result record of AtlasProgram also may contain a component size, whose value is the order of the maximal subgroup in question. the string "maxes" and two positive integers maxnr and std2 the required program computes standard generators of the maxnr-th maximal subgroup of the group with GAP name gapname, w. r. t. the standardization std2. A prescribed "version" parameter refers to the straight line program for computing the restriction, not to the program for standardizing the result of the restriction. The meaning of the component size in the result, if present, is the same as in the previous case. the string "maxstd" and three positive integers maxnr, vers, substd the required program computes standard generators of the maxnr-th maximal subgroup of the group with GAP name gapname w. r. t. standardization substd; in this case, the inputs of the program are not standard generators of the group with GAP name gapname but the outputs of the straight line program with version vers for computing generators of its maxnr-th maximal subgroup. the string "kernel" and a string factname the required program computes generators of the kernel of an epimorphism from G to a group with GAP name factname. one of the strings "classes" or "cyclic" the required program computes representatives of conjugacy classes of elements or representatives of generators of maximally cyclic subgroups of G, respectively. See [BSWW01] and [SWW00] for the background concerning these straight line programs. In these cases, the result record of AtlasProgram also contains a component outputs, whose value is a list of class names of the outputs, as described in Section 3.4. the string "cyc2ccl" (and the string vers) the required program computes representatives of conjugacy classes of elements from representatives of generators of maximally cyclic subgroups of G. Thus the inputs are the outputs of the program of type "cyclic" whose version is vers. the strings "cyc2ccl", vers1, "version", vers2 the required program computes representatives of conjugacy classes of elements from representatives of generators of maximally cyclic subgroups of G, where the inputs are the outputs of the program of type "cyclic" whose version is vers1 and the required program itself has version vers2. the strings "automorphism" and autname the required program computes images of standard generators under the outer automorphism of G that is given by this string. Note that a value "2" of autname means that the square of the automorphism is an inner automorphism of G (not necessarily the identity mapping) but the automorphism itself is not. the string "check" the required result is a straight line decision that takes a list of generators for G and returns true if these generators are standard generators of G w. r. t. the standardization std, and false otherwise. the string "presentation" the required result is a straight line decision that takes a list of group elements and returns true if these elements are standard generators of G w. r. t. the standardization std, and false otherwise. See StraightLineProgramFromStraightLineDecision (6.1-9) for an example how to derive defining relators for G in terms of the standard generators from such a straight line decision. the string "find" the required result is a black box program that takes G and returns a list of standard generators of G, w. r. t. the standardization std. the string "restandardize" and an integer std2 the required result is a straight line program that computes standard generators of G w. r. t. the std2-th set of standard generators of G; in this case, the argument std must be given. the strings "other" and descr the required program is described by descr. The second form of AtlasProgram, with only argument the list identifier, can be used to fetch the result record with identifier value equal to identifier.  Example  gap> prog:= AtlasProgram( "A5", 2 ); rec( groupname := "A5", identifier := [ "A5", "A5G1-max2W1", 1 ],   program := , size := 10,   standardization := 1, subgroupname := "D10", version := "1" ) gap> StringOfResultOfStraightLineProgram( prog.program, [ "a", "b" ] ); "[ a, bbab ]" gap> gens1:= AtlasGenerators( "A5", 1 ); rec( charactername := "1a+4a", constituents := [ 1, 4 ],   contents := "core", generators := [ (1,2)(3,4), (1,3,5) ],   groupname := "A5", id := "",   identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ],   isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,   repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4",   standardization := 1, transitivity := 3, type := "perm" ) gap> maxgens:= ResultOfStraightLineProgram( prog.program, >  gens1.generators ); [ (1,2)(3,4), (2,3)(4,5) ] gap> maxgens = gens1max2.generators; true  The above example shows that for restricting representations given by standard generators to a maximal subgroup of A_5, we can also fetch and apply the appropriate straight line program. Such a program (see 'Reference: Straight Line Programs') takes standard generators of a group –in this example A_5– as its input, and returns a list of elements in this group –in this example generators of the D_10 subgroup we had met above– which are computed essentially by evaluating structured words in terms of the standard generators.  Example  gap> prog:= AtlasProgram( "J1", "cyclic" ); rec( groupname := "J1", identifier := [ "J1", "J1G1-cycW1", 1 ],   outputs := [ "6A", "7A", "10B", "11A", "15B", "19A" ],   program := , standardization := 1,   version := "1" ) gap> gens:= GeneratorsOfGroup( FreeGroup( "x", "y" ) );; gap> ResultOfStraightLineProgram( prog.program, gens ); [ (x*y)^2*((y*x)^2*y^2*x)^2*y^2, x*y, (x*(y*x*y)^2)^2*y,   (x*y*x*(y*x*y)^3*x*y^2)^2*x*y*x*(y*x*y)^2*y, x*y*x*(y*x*y)^2*y,   (x*y)^2*y ]  The above example shows how to fetch and use straight line programs for computing generators of representatives of maximally cyclic subgroups of a given group. 3.5-5 AtlasProgramInfo AtlasProgramInfo( gapname[, std][, "contents", sources][, "version", vers], ... )  function Returns: a record describing a program, or fail. AtlasProgramInfo takes the same arguments as AtlasProgram (3.5-4), and returns a similar result. The only difference is that the records returned by AtlasProgramInfo have no components program and outputs. The idea is that one can use AtlasProgramInfo for testing whether the program in question is available at all, but without downloading files. The identifier component of the result of AtlasProgramInfo can then be used to fetch the program with AtlasProgram (3.5-4).  Example  gap> AtlasProgramInfo( "J1", "cyclic" ); rec( groupname := "J1", identifier := [ "J1", "J1G1-cycW1", 1 ],   standardization := 1, version := "1" )  3.5-6 OneAtlasGeneratingSetInfo OneAtlasGeneratingSetInfo( [gapname][,] [std][,] [...] )  function Returns: a record describing a representation that satisfies the conditions, or fail. Let gapname be a string denoting a GAP name (see Section 3.2) of a group G, say. If the database contains at least one representation for G with the required properties then OneAtlasGeneratingSetInfo returns a record r whose components are the same as those of the records returned by AtlasGenerators (3.5-3), except that the component generators is not contained, and an additional component givenRing is present if Ring is one of the arguments in the function call. The information in givenRing can be used later to construct the matrices over the prescribed ring. Note that this ring may be for example a domain constructed with AlgebraicExtension (Reference: AlgebraicExtension) instead of a field of cyclotomics or of a finite field constructed with GF (Reference: GF for field size). The component identifier of r can be used as input for AtlasGenerators (3.5-3) in order to fetch the generators. If no representation satisfying the given conditions is available then fail is returned. If the argument std is given then it must be a positive integer or a list of positive integers, denoting the sets of standard generators w. r. t. which the representation shall be given (see Section 3.3). The argument gapname can be missing (then all available groups are considered), or a list of group names can be given instead. Further restrictions can be entered as arguments, with the same meaning as described for DisplayAtlasInfo (3.5-1). The result of OneAtlasGeneratingSetInfo describes the first generating set for G that matches the restrictions, in the ordering shown by DisplayAtlasInfo (3.5-1). Note that even in the case that the user preference AtlasRepAccessRemoteFiles has the value true (see Section 4.2-1), OneAtlasGeneratingSetInfo does not attempt to transfer remote data files, just the table of contents is evaluated. So this function (as well as AllAtlasGeneratingSetInfos (3.5-7)) can be used to check for the availability of certain representations, and afterwards one can call AtlasGenerators (3.5-3) for those representations one wants to work with. In the following example, we try to access information about permutation representations for the alternating group A_5.  Example  gap> info:= OneAtlasGeneratingSetInfo( "A5" ); rec( charactername := "1a+4a", constituents := [ 1, 4 ],   contents := "core", groupname := "A5", id := "",   identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ],   isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,   repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4",   standardization := 1, transitivity := 3, type := "perm" ) gap> gens:= AtlasGenerators( info.identifier ); rec( charactername := "1a+4a", constituents := [ 1, 4 ],   contents := "core", generators := [ (1,2)(3,4), (1,3,5) ],   groupname := "A5", id := "",   identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ],   isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,   repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4",   standardization := 1, transitivity := 3, type := "perm" ) gap> info = OneAtlasGeneratingSetInfo( "A5", IsPermGroup, true ); true gap> info = OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, "minimal" ); true gap> info = OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, [ 1 .. 10 ] ); true gap> OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, 20 ); fail  Note that a permutation representation of degree 20 could be obtained by taking twice the primitive representation on 10 points; however, the database does not store this imprimitive representation (cf. Section 3.1). We continue this example. Next we access matrix representations of A_5.  Example  gap> info:= OneAtlasGeneratingSetInfo( "A5", IsMatrixGroup, true ); rec( charactername := "4a", constituents := [ 4 ], contents := "core",  dim := 4, groupname := "A5", id := "a",   identifier := [ "A5", [ "A5G1-f2r4aB0.m1", "A5G1-f2r4aB0.m2" ], 1,   2 ], repname := "A5G1-f2r4aB0", repnr := 4, ring := GF(2),   size := 60, standardization := 1, type := "matff" ) gap> gens:= AtlasGenerators( info.identifier ); rec( charactername := "4a", constituents := [ 4 ], contents := "core",  dim := 4,   generators := [ ,   ], groupname := "A5",   id := "a",   identifier := [ "A5", [ "A5G1-f2r4aB0.m1", "A5G1-f2r4aB0.m2" ], 1,   2 ], repname := "A5G1-f2r4aB0", repnr := 4, ring := GF(2),   size := 60, standardization := 1, type := "matff" ) gap> info = OneAtlasGeneratingSetInfo( "A5", Dimension, 4 ); true gap> info = OneAtlasGeneratingSetInfo( "A5", Characteristic, 2 ); true gap> info2:= OneAtlasGeneratingSetInfo( "A5", Ring, GF(2) );; gap> info.identifier = info2.identifier;  true gap> OneAtlasGeneratingSetInfo( "A5", Characteristic, [2,5], Dimension, 2 ); rec( charactername := "2a", constituents := [ 2 ], contents := "core",  dim := 2, groupname := "A5", id := "a",   identifier := [ "A5", [ "A5G1-f4r2aB0.m1", "A5G1-f4r2aB0.m2" ], 1,   4 ], repname := "A5G1-f4r2aB0", repnr := 8, ring := GF(2^2),   size := 60, standardization := 1, type := "matff" ) gap> OneAtlasGeneratingSetInfo( "A5", Characteristic, [2,5], Dimension, 1 ); fail gap> info:= OneAtlasGeneratingSetInfo( "A5", Characteristic, 0, >  Dimension, 4 ); rec( charactername := "4a", constituents := [ 4 ], contents := "core",  dim := 4, groupname := "A5", id := "",   identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ],   repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60,   standardization := 1, type := "matint" ) gap> gens:= AtlasGenerators( info.identifier ); rec( charactername := "4a", constituents := [ 4 ], contents := "core",  dim := 4,   generators :=   [   [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ],   [ -1, -1, -1, -1 ] ],   [ [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ],   [ 1, 0, 0, 0 ] ] ], groupname := "A5", id := "",   identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ],   repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60,   standardization := 1, type := "matint" ) gap> info = OneAtlasGeneratingSetInfo( "A5", Ring, Integers ); true gap> info2:= OneAtlasGeneratingSetInfo( "A5", Ring, CF(37) );; gap> info = info2; false gap> Difference( RecNames( info2 ), RecNames( info ) ); [ "givenRing" ] gap> info2.givenRing; CF(37) gap> OneAtlasGeneratingSetInfo( "A5", Ring, Integers mod 77 ); fail gap> info:= OneAtlasGeneratingSetInfo( "A5", Ring, CF(5), Dimension, 3 ); rec( charactername := "3a", constituents := [ 2 ], contents := "core",  dim := 3, givenRing := CF(5), groupname := "A5", id := "a",   identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ],   polynomial := [ -1, 1, 1 ], repname := "A5G1-Ar3aB0", repnr := 17,   ring := NF(5,[ 1, 4 ]), size := 60, standardization := 1,   type := "matalg" ) gap> gens:= AtlasGenerators( info ); rec( charactername := "3a", constituents := [ 2 ], contents := "core",  dim := 3,   generators :=   [ [ [ -1, 0, 0 ], [ 0, -1, 0 ], [ -E(5)-E(5)^4, -E(5)-E(5)^4, 1 ]   ], [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] ],   givenRing := CF(5), groupname := "A5", id := "a",   identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ],   polynomial := [ -1, 1, 1 ], repname := "A5G1-Ar3aB0", repnr := 17,   ring := NF(5,[ 1, 4 ]), size := 60, standardization := 1,   type := "matalg" ) gap> gens2:= AtlasGenerators( info.identifier );; gap> Difference( RecNames( gens ), RecNames( gens2 ) ); [ "givenRing" ] gap> OneAtlasGeneratingSetInfo( "A5", Ring, GF(17) ); fail  3.5-7 AllAtlasGeneratingSetInfos AllAtlasGeneratingSetInfos( [gapname][,] [std][,] [...] )  function Returns: the list of all records describing representations that satisfy the conditions. AllAtlasGeneratingSetInfos is similar to OneAtlasGeneratingSetInfo (3.5-6). The difference is that the list of all records describing the available representations with the given properties is returned instead of just one such component. In particular an empty list is returned if no such representation is available.  Example  gap> AllAtlasGeneratingSetInfos( "A5", IsPermGroup, true ); [ rec( charactername := "1a+4a", constituents := [ 1, 4 ],   contents := "core", groupname := "A5", id := "",   identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ]  , isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,   repname := "A5G1-p5B0", repnr := 1, size := 60,   stabilizer := "A4", standardization := 1, transitivity := 3,   type := "perm" ),   rec( charactername := "1a+5a", constituents := [ 1, 5 ],   contents := "core", groupname := "A5", id := "",   identifier := [ "A5", [ "A5G1-p6B0.m1", "A5G1-p6B0.m2" ], 1, 6 ]  , isPrimitive := true, maxnr := 2, p := 6, rankAction := 2,   repname := "A5G1-p6B0", repnr := 2, size := 60,   stabilizer := "D10", standardization := 1, transitivity := 2,   type := "perm" ),   rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ],   contents := "core", groupname := "A5", id := "",   identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1,   10 ], isPrimitive := true, maxnr := 3, p := 10,   rankAction := 3, repname := "A5G1-p10B0", repnr := 3,   size := 60, stabilizer := "S3", standardization := 1,   transitivity := 1, type := "perm" ) ]  Note that a matrix representation in any characteristic can be obtained by reducing a permutation representation or an integral matrix representation; however, the database does not store such a representation (cf. Section  3.1). 3.5-8 AtlasGroup AtlasGroup( [gapname][,] [std][,] [...] )  function AtlasGroup( identifier )  function Returns: a group that satisfies the conditions, or fail. AtlasGroup takes the same arguments as OneAtlasGeneratingSetInfo (3.5-6), and returns the group generated by the generators component of the record that is returned by OneAtlasGeneratingSetInfo (3.5-6) with these arguments; if OneAtlasGeneratingSetInfo (3.5-6) returns fail then also AtlasGroup returns fail.  Example  gap> g:= AtlasGroup( "A5" ); Group([ (1,2)(3,4), (1,3,5) ])  Alternatively, it is possible to enter exactly one argument, a record identifier as returned by OneAtlasGeneratingSetInfo (3.5-6) or AllAtlasGeneratingSetInfos (3.5-7), or the identifier component of such a record.  Example  gap> info:= OneAtlasGeneratingSetInfo( "A5" ); rec( charactername := "1a+4a", constituents := [ 1, 4 ],   contents := "core", groupname := "A5", id := "",   identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ],   isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,   repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4",   standardization := 1, transitivity := 3, type := "perm" ) gap> AtlasGroup( info ); Group([ (1,2)(3,4), (1,3,5) ]) gap> AtlasGroup( info.identifier ); Group([ (1,2)(3,4), (1,3,5) ])  In the groups returned by AtlasGroup, the value of the attribute AtlasRepInfoRecord (3.5-10) is set. This information is used for example by AtlasSubgroup (3.5-9) when this function is called with second argument a group created by AtlasGroup. 3.5-9 AtlasSubgroup AtlasSubgroup( gapname[, std][, ...], maxnr )  function AtlasSubgroup( identifier, maxnr )  function AtlasSubgroup( G, maxnr )  function Returns: a group that satisfies the conditions, or fail. The arguments of AtlasSubgroup, except the last argument maxnr, are the same as for AtlasGroup (3.5-8). If the database provides a straight line program for restricting representations of the group with name gapname (given w. r. t. the std-th standard generators) to the maxnr-th maximal subgroup and if a representation with the required properties is available, in the sense that calling AtlasGroup (3.5-8) with the same arguments except maxnr yields a group, then AtlasSubgroup returns the restriction of this representation to the maxnr-th maximal subgroup. In all other cases, fail is returned. Note that the conditions refer to the group and not to the subgroup. It may happen that in the restriction of a permutation representation to a subgroup, fewer points are moved, or that the restriction of a matrix representation turns out to be defined over a smaller ring. Here is an example.  Example  gap> g:= AtlasSubgroup( "A5", NrMovedPoints, 5, 1 ); Group([ (1,5)(2,3), (1,3,5) ]) gap> NrMovedPoints( g ); 4  Alternatively, it is possible to enter exactly two arguments, the first being a record identifier as returned by OneAtlasGeneratingSetInfo (3.5-6) or AllAtlasGeneratingSetInfos (3.5-7), or the identifier component of such a record, or a group G constructed with AtlasGroup (3.5-8).  Example  gap> info:= OneAtlasGeneratingSetInfo( "A5" ); rec( charactername := "1a+4a", constituents := [ 1, 4 ],   contents := "core", groupname := "A5", id := "",   identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ],   isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,   repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4",   standardization := 1, transitivity := 3, type := "perm" ) gap> AtlasSubgroup( info, 1 ); Group([ (1,5)(2,3), (1,3,5) ]) gap> AtlasSubgroup( info.identifier, 1 ); Group([ (1,5)(2,3), (1,3,5) ]) gap> AtlasSubgroup( AtlasGroup( "A5" ), 1 ); Group([ (1,5)(2,3), (1,3,5) ])  3.5-10 AtlasRepInfoRecord AtlasRepInfoRecord( G )  attribute AtlasRepInfoRecord( name )  attribute Returns: the record stored in the group G when this was constructed with AtlasGroup (3.5-8), or a record with information about the group with name name. For a group G that has been constructed with AtlasGroup (3.5-8), the value of this attribute is the info record that describes G, in the sense that this record was the first argument of the call to AtlasGroup (3.5-8), or it is the result of the call to OneAtlasGeneratingSetInfo (3.5-6) with the conditions that were listed in the call to AtlasGroup (3.5-8).  Example  gap> AtlasRepInfoRecord( AtlasGroup( "A5" ) ); rec( charactername := "1a+4a", constituents := [ 1, 4 ],   contents := "core", groupname := "A5", id := "",   identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ],   isPrimitive := true, maxnr := 1, p := 5, rankAction := 2,   repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4",   standardization := 1, transitivity := 3, type := "perm" )  For a string name that is a GAP name of a group G, say, AtlasRepInfoRecord returns a record that contains information about G which is used by DisplayAtlasInfo (3.5-1). The following components may be bound in the record. name the string name, nrMaxes the number of conjugacy classes of maximal subgroups of G, size the order of G, sizesMaxes a list which contains at position i, if bound, the order of a subgroup in the i-th class of maximal subgroups of G, slpMaxes a list of length two; the first entry is a list of positions i such that a straight line program for computing the restriction of representations of G to a subgroup in the i-th class of maximal subgroups is available via AtlasRep; the second entry is the corresponding list of standardizations of the generators of G for which these straight line programs are available, structureMaxes a list which contains at position i, if bound, a string that describes the structure of the subgroups in the i-th class of maximal subgroups of G.  Example  gap> AtlasRepInfoRecord( "A5" ); rec( name := "A5", nrMaxes := 3, size := 60,   sizesMaxes := [ 12, 10, 6 ],   slpMaxes := [ [ 1 .. 3 ], [ [ 1 ], [ 1 ], [ 1 ] ] ],   structureMaxes := [ "A4", "D10", "S3" ] ) gap> AtlasRepInfoRecord( "J5" ); rec( )  3.5-11 EvaluatePresentation EvaluatePresentation( G, gapname[, std] )  operation EvaluatePresentation( gens, gapname[, std] )  operation Returns: a list of group elements or fail. The first argument must be either a group G or a list gens of group generators, and gapname must be a string that is a GAP name (see Section 3.2) of a group H, say. The optional argument std, if given, must be a positive integer that denotes a standardization of generators of H, the default is 1. EvaluatePresentation returns fail if no presentation for H w. r. t. the standardization std is stored in the database, and otherwise returns the list of results of evaluating the relators of a presentation for H at gens or the GeneratorsOfGroup (Reference: GeneratorsOfGroup) value of G, respectively. (An error is signalled if the number of generators is not equal to the number of inputs of the presentation.) The result can be used as follows. Let N be the normal closure of the the result in G. The factor group G/N is an epimorphic image of H. In particular, if all entries of the result have order 1 then G itself is an epimorphic image of H. Moreover, an epimorphism is given by mapping the std-th standard generators of H to the N-cosets of the given generators of G.  Example  gap> g:= MathieuGroup( 12 );; gap> gens:= GeneratorsOfGroup( g );; # switch to 2 generators gap> g:= Group( gens[1] * gens[3], gens[2] * gens[3] );; gap> EvaluatePresentation( g, "J0" ); # no pres. for group "J0" fail gap> relimgs:= EvaluatePresentation( g, "M11" );; gap> List( relimgs, Order ); # wrong group [ 3, 1, 5, 4, 10 ] gap> relimgs:= EvaluatePresentation( g, "M12" );; gap> List( relimgs, Order ); # generators are not standard [ 3, 4, 5, 4, 4 ] gap> g:= AtlasGroup( "M12" );; gap> relimgs:= EvaluatePresentation( g, "M12", 1 );; gap> List( relimgs, Order ); # right group, std. generators [ 1, 1, 1, 1, 1 ] gap> g:= AtlasGroup( "2.M12" );; gap> relimgs:= EvaluatePresentation( g, "M12", 1 );; gap> List( relimgs, Order ); # std. generators for extension [ 1, 2, 1, 1, 2 ] gap> Size( NormalClosure( g, SubgroupNC( g, relimgs ) ) ); 2  3.5-12 StandardGeneratorsData StandardGeneratorsData( G, gapname[, std] )  operation StandardGeneratorsData( gens, gapname[, std] )  operation Returns: a record that describes standard generators of the group in question, or fail, or the string "timeout". The first argument must be either a group G or a list gens of group generators, and gapname must be a string that is a GAP name (see Section 3.2) of a group H, say. The optional argument std, if given, must be a positive integer that denotes a standardization of generators of H, the default is 1. If the global option projective is given then the group elements must be matrices over a finite field, and the group must be a central extension of the group H by a normal subgroup that consists of scalar matrices. In this case, all computations will be carried out modulo scalar matrices (in particular, element orders will be computed using ProjectiveOrder (Reference: ProjectiveOrder)), and the returned standard generators will belong to H. StandardGeneratorsData returns fail if no black box program for computing standard generators of H w. r. t. the standardization std is stored in the database, or if the black box program returns fail because a runtime error occurred or the program has proved that the given group or generators cannot generate a group isomorphic to H, "timeout" if the black box program returns "timeout", typically because some elements of a given order were not found among a reasonable number of random elements, or a record containing standard generators otherwise. When the result is not a record then either the group is not isomorphic to H (modulo scalars if applicable), or we were unlucky with choosing random elements. When a record is returned and G or the group generated by gens, respectively, is isomorphic to H (or to a central extension of H by a group of scalar matrices if the global option projective is given) then the result describes the desired standard generators. If G or the group generated by gens, respectively, is not isomorphic to H then it may still happen that StandardGeneratorsData returns a record. For a proof that the returned record describes the desired standard generators, one can use a presentation of H whose generators correspond to the std-th standard generators, see EvaluatePresentation (3.5-11). A returned record has the following components. gapname the string gapname, givengens the list of group generators from which standard generators were computed, either gens or the GeneratorsOfGroup (Reference: GeneratorsOfGroup) value of G, stdgens a list of standard generators of the group, givengenstostdgens a straight line program that takes givengens as inputs, and returns stdgens, std the underlying standardization std. The first examples show three cases of failure, due to the unavailability of a suitable black box program or to a wrong choice of gapname. (In the search for standard generators of M_11 in the group M_12, one may or may not find an element whose order does not appear in M_11; in the first case, the result is fail, whereas a record is returned in the second case. Both cases occur.)  Example  gap> StandardGeneratorsData( MathieuGroup( 11 ), "J0" ); fail gap> StandardGeneratorsData( MathieuGroup( 11 ), "M12" ); "timeout" gap> repeat >  res:= StandardGeneratorsData( MathieuGroup( 12 ), "M11" ); >  until res = fail;  The next example shows a computation of standard generators for the Mathieu group M_12. Using a presentation of M_12 w. r. t. these standard generators, we prove that the given group is isomorphic to M_12.  Example  gap> gens:= GeneratorsOfGroup( MathieuGroup( 12 ) );; gap> std:= 1;; gap> res:= StandardGeneratorsData( gens, "M12", std );; gap> Set( RecNames( res ) ); [ "gapname", "givengens", "givengenstostdgens", "std", "stdgens" ] gap> gens = res.givengens; true gap> ResultOfStraightLineProgram( res.givengenstostdgens, gens ) >  = res.stdgens; true gap> evl:= EvaluatePresentation( res.stdgens, "M12", std );; gap> ForAll( evl, IsOne ); true  The next example shows the use of the global option projective. We take an irreducible matrix representation of the double cover of the Mathieu group M_12 (thus the center is represented by scalar matrices) and compute standard generators of the factor group M_12. Using a presentation of M_12 w. r. t. these standard generators, we prove that the given group is modulo scalars isomorphic to M_12, and we get generators for the kernel.  Example  gap> g:= AtlasGroup( "2.M12", IsMatrixGroup, Characteristic, IsPosInt );; gap> gens:= Permuted( GeneratorsOfGroup( g ), (1,2) );; gap> res:= StandardGeneratorsData( gens, "M12", std : projective );; gap> gens = res.givengens; true gap> ResultOfStraightLineProgram( res.givengenstostdgens, gens ) >  = res.stdgens; true gap> evl:= EvaluatePresentation( res.stdgens, "M12", std );; gap> ForAll( evl, IsOne ); false gap> ForAll( evl, x -> IsCentral( g, x ) ); true  3.6 Browse Applications Provided by AtlasRep The functions BrowseMinimalDegrees (3.6-1), BrowseBibliographySporadicSimple (3.6-2), and BrowseAtlasInfo (Browse: BrowseAtlasInfo) (an alternative to DisplayAtlasInfo (3.5-1)) are available only if the GAP package Browse (see [BL18]) is loaded. 3.6-1 BrowseMinimalDegrees BrowseMinimalDegrees( [gapnames] )  function Returns: the list of info records for the clicked representations. If the GAP package Browse (see [BL18]) is loaded then this function is available. It opens a browse table whose rows correspond to the groups for which AtlasRep knows some information about minimal degrees, whose columns correspond to the characteristics that occur, and whose entries are the known minimal degrees.  Example  gap> if IsBound( BrowseMinimalDegrees ) then >  down:= NCurses.keys.DOWN;; DOWN:= NCurses.keys.NPAGE;; >  right:= NCurses.keys.RIGHT;; END:= NCurses.keys.END;; >  enter:= NCurses.keys.ENTER;; nop:= [ 14, 14, 14 ];; >  # just scroll in the table >  BrowseData.SetReplay( Concatenation( [ DOWN, DOWN, DOWN, >  right, right, right ], "sedddrrrddd", nop, nop, "Q" ) ); >  BrowseMinimalDegrees();; >  # restrict the table to the groups with minimal ordinary degree 6 >  BrowseData.SetReplay( Concatenation( "scf6", >  [ down, down, right, enter, enter ] , nop, nop, "Q" ) ); >  BrowseMinimalDegrees();; >  BrowseData.SetReplay( false ); > fi;  If an argument gapnames is given then it must be a list of GAP names of groups. The browse table is then restricted to the rows corresponding to these group names and to the columns that are relevant for these groups. A perhaps interesting example is the subtable with the data concerning sporadic simple groups and their covering groups, which has been published in [Jan05]. This table can be shown as follows.  Example  gap> if IsBound( BrowseMinimalDegrees ) then >  # just scroll in the table >  BrowseData.SetReplay( Concatenation( [ DOWN, DOWN, DOWN, END ], >  "rrrrrrrrrrrrrr", nop, nop, "Q" ) ); >  BrowseMinimalDegrees( BibliographySporadicSimple.groupNamesJan05 );; > fi;  The browse table does not contain rows for the groups 6.M_22, 12.M_22, 6.Fi_22. Note that in spite of the title of [Jan05], the entries in Table 1 of this paper are in fact the minimal degrees of faithful irreducible representations, and in the above three cases, these degrees are larger than the minimal degrees of faithful representations. The underlying data of the browse table is about the minimal faithful (but not necessarily irreducible) degrees. The return value of BrowseMinimalDegrees is the list of OneAtlasGeneratingSetInfo (3.5-6) values for those representations that have been clicked in visual mode. The variant without arguments of this function is also available in the menu shown by BrowseGapData (Browse: BrowseGapData). 3.6-2 BrowseBibliographySporadicSimple BrowseBibliographySporadicSimple( )  function Returns: a record as returned by ParseBibXMLExtString (GAPDoc: ParseBibXMLextString). If the GAP package Browse (see [BL18]) is loaded then this function is available. It opens a browse table whose rows correspond to the entries of the bibliographies in the ATLAS of Finite Groups [CCN+85] and in the ATLAS of Brauer Characters [JLPW95]. The function is based on BrowseBibliography (Browse: BrowseBibliography), see the documentation of this function for details, e.g., about the return value. The returned record encodes the bibliography entries corresponding to those rows of the table that are clicked in visual mode, in the same format as the return value of ParseBibXMLExtString (GAPDoc: ParseBibXMLextString), see the manual of the GAP package GAPDoc [LN18] for details. BrowseBibliographySporadicSimple can be called also via the menu shown by BrowseGapData (Browse: BrowseGapData).  Example  gap> if IsBound( BrowseBibliographySporadicSimple ) then >  enter:= NCurses.keys.ENTER;; nop:= [ 14, 14, 14 ];; >  BrowseData.SetReplay( Concatenation( >  # choose the application >  "/Bibliography of Sporadic Simple Groups", [ enter, enter ], >  # search in the title column for the Atlas of Finite Groups >  "scr/Atlas of finite groups", [ enter, >  # and quit >  nop, nop, nop, nop ], "Q" ) ); >  BrowseGapData();; >  BrowseData.SetReplay( false ); > fi;  The bibliographies contained in the ATLAS of Finite Groups [CCN+85] and in the ATLAS of Brauer Characters [JLPW95] are available online in HTML format, see http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/bibl/index.html. The source data in BibXMLext format, which are used by BrowseBibliographySporadicSimple, are distributed with the AtlasRep package, in four files with suffix xml in the package's bibl directory. Note that each of the two books contains two bibliographies. Details about the BibXMLext format, including information how to transform the data into other formats such as BibTeX, can be found in the GAP package GAPDoc (see [LN18]). atlasrep-2.1.8/doc/chap7.txt0000644000175000017500000027672614545501235014017 0ustar samsam 7 Technicalities of the AtlasRep Package This chapter describes those parts of the GAP interface to the ATLAS of Group Representations that do not belong to the user interface (cf. Chapter 3). Besides global variables used for administrational purposes (see Section 7.1) and several sanity checks (see Section 7.9), they can be regarded as the interface between the data actually contained in the files and the corresponding GAP objects (see Section 7.2, 7.3, 7.4, and 7.5), and the interface between the remote and the local version of the database (see Section 7.6 and 7.8). The former interface contains functions to read and write files in MeatAxe format, which may be interesting for users familiar with MeatAxe standalones (see for example [Rin]). Other low level functions may be undocumented in the sense that they are not described in this manual. Users interested in them may look at the actual implementation in the gap directory of the package, but it may happen that this will be changed in future versions of the package. 7.1 Global Variables Used by the AtlasRep Package For debugging purposes, AtlasRep functions print information depending on the info level of the info classes InfoAtlasRep (7.1-1), InfoCMeatAxe (7.1-2), and InfoBBox (7.1-3) (cf. 'Reference: Info Functions'). The info level of an info class can be changed using SetInfoLevel (Reference: InfoLevel). For example, the info level of InfoAtlasRep (7.1-1) can be set to the nonnegative integer n using SetInfoLevel( InfoAtlasRep, n ). 7.1-1 InfoAtlasRep InfoAtlasRep  info class If the info level of InfoAtlasRep is at least 1 then information about fail results of AtlasRep functions is printed. If the info level is at least 2 then also information about calls to external programs is printed. The default level is 0, no information is printed on this level. 7.1-2 InfoCMeatAxe InfoCMeatAxe  info class If the info level of InfoCMeatAxe is at least 1 then information about fail results of C-MeatAxe functions (see Section 7.3) is printed. The default level is zero, no information is printed on this level. 7.1-3 InfoBBox InfoBBox  info class If the info level of InfoBBox is at least 1 then information about fail results of functions dealing with black box programs (see Section 6.2) is printed. The default level is 0, no information is printed on this level. 7.1-4 AGR AGR  global variable is a record whose components are functions and data that are used by the high level interface functions. Some of the components are documented, see for example the index of the package manual. 7.1-5 AtlasOfGroupRepresentationsInfo AtlasOfGroupRepresentationsInfo  global variable This is a record that is defined in the file gap/types.g of the package, with the following components. GAPnames a list of pairs, each containing the GAP name and the ATLAS-file name of a group, see Section 3.2, notified a list used for administrating extensions of the database (see Chapter 5); the value is changed by AtlasOfGroupRepresentationsNotifyData (5.1-1) and AtlasOfGroupRepresentationsForgetData (5.1-2), characterinfo, permrepinfo, ringinfo additional information about representations, concerning the afforded characters, the point stabilizers of permutation representations, and the rings of definition of matrix representations; this information is used by DisplayAtlasInfo (3.5-1), TableOfContents a record with at most the components core, internal, local, merged, types, and the identifiers of database extensions. The value of the component types is set in AGR.DeclareDataType (7.5-1), and the values of the other components are created by AtlasOfGroupRepresentationsNotifyData (5.1-1). accessFunctions a list of records, each describing how to access the data files, see Sections 4.2-5 and 7.2, and 7.2 How to Customize the Access to Data files By default, locally available data files are stored in prescribed directories, and the files are exactly the text files that have been downloaded from appropriate places in the internet. However, a more flexible approach may be useful. First, one may want to use different file formats, for example MeatAxe binary files may be provided parallel to MeatAxe text files. Second, one may want to use a different directory structure, for example the same structure as used on some server –this makes sense for example if a local mirror of a server is available, because then one can read the server files directly, without transferring/copying them to another directory. In order to achieve this (and perhaps more), we admit to customize the meaning of the following three access steps. Are the required data locally available? There may be different file formats available, such as text or binary files, and it may happen that the data are available in one file or are distributed to several files. How can a file be made locally available? A different remote file may be fetched, or some postprocessing may be required. How is the data of a file accessed by GAP? A different function may be needed to evaluate the file contents. For creating an overview of the locally available data, the first of these steps must be available independent of actually accessing the file in question. For updating the local copy of the server data, the second of the above steps must be available independent of the third one. Therefore, the package provides the possibility to extend the default behaviour by adding new records to the accessFunctions component of AtlasOfGroupRepresentationsInfo (7.1-5). The relevant record components are as follows. description This must be a short string that describes for which kinds of files the functions in the current record are intended, which file formats are supported etc. The value is used as key in the user preference FileAccessFunctions, see Section 4.2-5.  location( files, type )  Let files be a list of pairs [ dirname, filename ], and type be the data type (see AGR.DeclareDataType (7.5-1)) to which the files belong. This function must return either the absolute paths where the mechanism implemented by the current record expects the local version of the given files, or fail if this function does not feel responsible for these files. The files are regarded as not locally available if all installed location functions return either fail or paths of nonexisting files, in the sense of IsExistingFile (Reference: IsExistingFile).  fetch( filepath, filename, dirname, type )  This function is called if a file is not locally available and if the location function in the current record has returned a list of paths. The argument type must be the same as for the location function, and filepath and filename must be strings (not lists of strings). The return value must be true if the function succeeded with making the file locally available (including postprocessing if applicable), a string with the contents of the data file if the remote data were directly loaded into the GAP session (if no local caching is possible), and false otherwise. contents( files, type, filepaths ) This function is called when the location function in the current record has returned the path(s) filepath, and if either these are paths of existing files or the fetch function in the current record has been called for these paths, and the return value was true. The first three arguments must be the same as for the location function. The return value must be the contents of the file(s), in the sense that the GAP matrix, matrix list, permutation, permutation list, or program described by the file(s) is returned. This means that besides reading the file(s) via the appropriate function, interpreting the contents may be necessary. In AGR.FileContents (7.6-2), those records in the accessFunctions component of AtlasOfGroupRepresentationsInfo (7.1-5) are considered –in reversed order– whose description component occurs in the user preference FileAccessFunctions, see Section 4.2-5. 7.3 Reading and Writing MeatAxe Format Files 7.3-1 ScanMeatAxeFile ScanMeatAxeFile( filename[, q][, "string"] )  function Returns: the matrix or list of permutations stored in the file or encoded by the string. Let filename be the name of a GAP readable file (see 'Reference: Filename') that contains a matrix or a permutation or a list of permutations in MeatAxe text format (see the section about the program zcv in the C-MeatAxe documentation [Rin]), and let q be a prime power. ScanMeatAxeFile returns the corresponding GAP matrix or list of permutations, respectively. If the file contains a matrix then the way how it is read by ScanMeatAxeFile depends on the value of the user preference HowToReadMeatAxeTextFiles, see Section 4.2-7. If the parameter q is given then the result matrix is represented over the field with q elements, the default for q is the field size stored in the file. If the file contains a list of permutations then it is read with StringFile (GAPDoc: StringFile); the parameter q, if given, is ignored in this case. If the string "string" is entered as the third argument then the first argument must be a string as obtained by reading a file in MeatAxe text format as a text stream (see InputTextFile (Reference: InputTextFile)). Also in this case, ScanMeatAxeFile returns the corresponding GAP matrix or list of permutations, respectively. 7.3-2 MeatAxeString MeatAxeString( mat, q )  operation MeatAxeString( perms, degree )  operation MeatAxeString( perm, q, dims )  operation MeatAxeString( intmat )  operation Returns: a string encoding the GAP objects given as input in C-MeatAxe text format, see [Rin]. In the first form, for a matrix mat whose entries lie in the finite field with q elements, MeatAxeString returns a string that encodes mat as a matrix over GF(q). In the second form, for a nonempty list perms of permutations that move only points up to the positive integer degree, MeatAxeString returns a string that encodes perms as permutations of degree degree. In the third form, for a permutation perm with largest moved point n, say, a prime power q, and a list dims of length two containing two positive integers larger than or equal to n, MeatAxeString returns a string that encodes perm as a matrix over GF(q), of dimensions dims, whose first n rows and columns describe the permutation matrix corresponding to perm, and the remaining rows and columns are zero. In the fourth form, for a matrix intmat of integers, MeatAxeString returns a string that encodes intmat as an integer matrix. When strings are printed to files using PrintTo (Reference: PrintTo) or AppendTo (Reference: AppendTo) then line breaks are inserted whenever lines exceed the number of characters given by the second entry of the list returned by SizeScreen (Reference: SizeScreen), see 'Reference: Operations for Output Streams'. This behaviour is not desirable for creating data files. So the recommended functions for printing the result of MeatAxeString to a file are FileString (GAPDoc: FileString) and WriteAll (Reference: WriteAll).  Example  gap> mat:= [ [ 1, -1 ], [ 0, 1 ] ] * Z(3)^0;; gap> str:= MeatAxeString( mat, 3 ); "1 3 2 2\n12\n01\n" gap> mat = ScanMeatAxeFile( str, "string" ); true gap> str:= MeatAxeString( mat, 9 ); "1 9 2 2\n12\n01\n" gap> mat = ScanMeatAxeFile( str, "string" ); true gap> perms:= [ (1,2,3)(5,6) ];; gap> str:= MeatAxeString( perms, 6 ); "12 1 6 1\n2\n3\n1\n4\n6\n5\n" gap> perms = ScanMeatAxeFile( str, "string" ); true gap> str:= MeatAxeString( perms, 8 ); "12 1 8 1\n2\n3\n1\n4\n6\n5\n7\n8\n" gap> perms = ScanMeatAxeFile( str, "string" ); true  Note that the output of MeatAxeString in the case of permutation matrices depends on the user preference WriteMeatAxeFilesOfMode2.  Example  gap> perm:= (1,2,4);; gap> str:= MeatAxeString( perm, 3, [ 5, 6 ] ); "2 3 5 6\n2\n4\n3\n1\n5\n" gap> mat:= ScanMeatAxeFile( str, "string" );; Print( mat, "\n" ); [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],   [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ],   [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ],   [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],   [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ] gap> pref:= UserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2" );; gap> SetUserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2", true ); gap> MeatAxeString( mat, 3 ) = str; true gap> SetUserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2", false ); gap> MeatAxeString( mat, 3 ); "1 3 5 6\n010000\n000100\n001000\n100000\n000010\n" gap> SetUserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2", pref );  7.3-3 FFList FFList( F )  function Returns: a list of elements in the given finite field. FFLists  global variable FFList is a utility program for the conversion of vectors and matrices from MeatAxe format to GAP format and vice versa. It is used by ScanMeatAxeFile (7.3-1) and MeatAxeString (7.3-2). For a finite field F, FFList returns a list l giving the correspondence between the MeatAxe numbering and the GAP numbering of the elements in F. The element of F corresponding to MeatAxe number n is l[ n+1 ], and the MeatAxe number of the field element z is Position( l, z ) - 1. The global variable FFLists is used to store the information about F once it has been computed.  Example  gap> FFList( GF(4) ); [ 0*Z(2), Z(2)^0, Z(2^2), Z(2^2)^2 ] gap> IsBound( FFLists[4] ); true  The MeatAxe defines the bijection between the elements in the field with q = p^d elements and the set { 0, 1, ..., q-1 } of integers by assigning the field element ∑_{i=0}^{d-1} c_i z^i to the integer ∑_{i=0}^{d-1} c_i p^i, where the c_i are in the set { 0, 1, ..., p-1 } and z is the primitive root of the field with q elements that corresponds to the residue class of the indeterminate, modulo the ideal spanned by the Conway polynomial of degree d over the field with p elements. The finite fields introduced by the StandardFF package [Lüb21] are supported by FFList and FFLists, in the sense that the bijection defined by StandardIsomorphismGF (StandardFF: StandardIsomorphismGF) is applied automatically when F is a field in the filter IsStandardFiniteField (StandardFF: IsStandardFiniteField). 7.3-4 CMtxBinaryFFMatOrPerm CMtxBinaryFFMatOrPerm( elm, def, outfile[, base] )  function Let the pair (elm, def) be either of the form (M, q) where M is a matrix over a finite field F, say, with q ≤ 256 elements, or of the form (π, n) where π is a permutation with largest moved point at most n. Let outfile be a string. CMtxBinaryFFMatOrPerm writes the C-MeatAxe binary format of M, viewed as a matrix over F, or of π, viewed as a permutation on the points up to n, to the file with name outfile. In the case of a permutation π, the optional argument base prescribes whether the binary file contains the points from 0 to deg- 1 (base= 0, supported by version 2.4 of the C-MeatAxe) or the points from 1 to deg (base= 1, supported by older versions of the C-MeatAxe). The default for base is given by the value of the user preference BaseOfMeatAxePermutation, see Section 4.2-10. (The binary format is described in the C-MeatAxe manual [Rin].)  Example  gap> tmpdir:= DirectoryTemporary();; gap> mat:= Filename( tmpdir, "mat" );; gap> q:= 4;; gap> mats:= GeneratorsOfGroup( GL(10,q) );; gap> CMtxBinaryFFMatOrPerm( mats[1], q, Concatenation( mat, "1" ) ); gap> CMtxBinaryFFMatOrPerm( mats[2], q, Concatenation( mat, "2" ) ); gap> prm:= Filename( tmpdir, "prm" );; gap> n:= 200;; gap> perms:= GeneratorsOfGroup( SymmetricGroup( n ) );; gap> CMtxBinaryFFMatOrPerm( perms[1], n, Concatenation( prm, "1" ) ); gap> CMtxBinaryFFMatOrPerm( perms[2], n, Concatenation( prm, "2" ) ); gap> CMtxBinaryFFMatOrPerm( perms[1], n, Concatenation( prm, "1a" ), 0 ); gap> CMtxBinaryFFMatOrPerm( perms[2], n, Concatenation( prm, "2b" ), 1 );  7.3-5 FFMatOrPermCMtxBinary FFMatOrPermCMtxBinary( fname )  function Returns: the matrix or permutation stored in the file. Let fname be the name of a file that contains the C-MeatAxe binary format of a matrix over a finite field or of a permutation, as is described in [Rin]. FFMatOrPermCMtxBinary returns the corresponding GAP matrix or permutation.  Example  gap> FFMatOrPermCMtxBinary( Concatenation( mat, "1" ) ) = mats[1]; true gap> FFMatOrPermCMtxBinary( Concatenation( mat, "2" ) ) = mats[2]; true gap> FFMatOrPermCMtxBinary( Concatenation( prm, "1" ) ) = perms[1]; true gap> FFMatOrPermCMtxBinary( Concatenation( prm, "2" ) ) = perms[2]; true gap> FFMatOrPermCMtxBinary( Concatenation( prm, "1a" ) ) = perms[1]; true gap> FFMatOrPermCMtxBinary( Concatenation( prm, "2b" ) ) = perms[2]; true  7.4 Reading and Writing ATLAS Straight Line Programs 7.4-1 ScanStraightLineProgram ScanStraightLineProgram( filename[, "string"] )  function Returns: a record containing the straight line program, or fail. Let filename be the name of a file that contains a straight line program in the sense that it consists only of lines in the following form. #anything lines starting with a hash sign # are ignored, echo anything lines starting with echo are ignored for the program component of the result record (see below), they are used to set up the bijection between the labels used in the program and conjugacy class names in the case that the program computes dedicated class representatives, inp n means that there are n inputs, referred to via the labels 1, 2, ..., n, inp k a1 a2 ... ak means that the next k inputs are referred to via the labels a1, a2, ..., ak, cjr a b means that a is replaced by b^(-1) * a * b, cj a b c means that c is defined as b^(-1) * a * b, com a b c means that c is defined as a^(-1) * b^(-1) * a * b, iv a b means that b is defined as a^(-1), mu a b c means that c is defined as a * b, pwr a b c means that c is defined as b^a, cp a b means that b is defined as a copy of a, oup l means that there are l outputs, stored in the labels 1, 2, ..., l, and oup l b1 b2 ... bl means that the next l outputs are stored in the labels b1, b2, ... bl. Each of the labels a, b, c can be any nonempty sequence of digits and alphabet characters, except that the first argument of pwr must denote an integer. If the inp or oup statements are missing then the input or output, respectively, is assumed to be given by the labels 1 and 2. There can be multiple inp lines at the beginning of the program and multiple oup lines at the end of the program. Only the first inp or oup line may omit the names of the elements. For example, an empty file filename or an empty string string represent a straight line program with two inputs that are returned as outputs. No command except cjr may overwrite its own input. For example, the line mu a b a is not legal. (This is not checked.) ScanStraightLineProgram returns a record containing as the value of its component program the corresponding GAP straight line program (see IsStraightLineProgram (Reference: IsStraightLineProgram)) if the input string satisfies the syntax rules stated above, and returns fail otherwise. In the latter case, information about the first corrupted line of the program is printed if the info level of InfoCMeatAxe (7.1-2) is at least 1. If the string "string" is entered as the second argument then the first argument must be a string as obtained by reading a file in MeatAxe text format as a text stream (see InputTextFile (Reference: InputTextFile)). Also in this case, ScanStraightLineProgram returns either a record with the corresponding GAP straight line program or fail. If the input describes a straight line program that computes certain class representatives of the group in question then the result record also contains the component outputs. Its value is a list of strings, the entry at position i denoting the name of the class in which the i output of the straight line program lies; see Section 3.4 for the definition of the class names that occur. Such straight line programs must end with a sequence of output specifications of the following form.  Example  echo "Classes 1A 2A 3A 5A 5B" oup 5 3 1 2 4 5  This example means that the list of outputs of the program contains elements of the classes 1A, 2A, 3A, 5A, and 5B (in this order), and that inside the program, these elements are referred to by the five names 3, 1, 2, 4, and 5. 7.4-2 AtlasStringOfProgram AtlasStringOfProgram( prog[, outputnames] )  function AtlasStringOfProgram( prog, "mtx" )  function Returns: a string encoding the straight line program/decision in the format used in ATLAS files. For a straight line program or straight line decision prog (see IsStraightLineProgram (Reference: IsStraightLineProgram) and IsStraightLineDecision (6.1-1)), this function returns a string describing the input format of an equivalent straight line program or straight line decision as used in the data files, that is, the lines are of the form described in ScanStraightLineProgram (7.4-1). A list of strings that is given as the optional second argument outputnames is interpreted as the class names corresponding to the outputs; this argument has the effect that appropriate echo statements appear in the result string. If the string "mtx" is given as the second argument then the result has the format used in the C-MeatAxe (see [Rin]) rather than the format described for ScanStraightLineProgram (7.4-1). (Note that the C-MeatAxe format does not make sense if the argument outputnames is given, and that this format does not support inp and oup statements.) The argument prog must not be a black box program (see IsBBoxProgram (6.2-1)).  Example  gap> str:= "inp 2\nmu 1 2 3\nmu 3 1 2\niv 2 1\noup 2 1 2";; gap> prg:= ScanStraightLineProgram( str, "string" ); rec( program := ) gap> prg:= prg.program;; gap> Display( prg ); # input: r:= [ g1, g2 ]; # program: r[3]:= r[1]*r[2]; r[2]:= r[3]*r[1]; r[1]:= r[2]^-1; # return values: [ r[1], r[2] ] gap> StringOfResultOfStraightLineProgram( prg, [ "a", "b" ] ); "[ (aba)^-1, aba ]" gap> AtlasStringOfProgram( prg ); "inp 2\nmu 1 2 3\nmu 3 1 2\niv 2 1\noup 2\n" gap> prg:= StraightLineProgram( "(a^2b^3)^-1", [ "a", "b" ] );  gap> Print( AtlasStringOfProgram( prg ) ); inp 2 pwr 2 1 4 pwr 3 2 5 mu 4 5 3 iv 3 4 oup 1 4 gap> prg:= StraightLineProgram( [ [2,3], [ [3,1,1,4], [1,2,3,1] ] ], 2 );  gap> Print( AtlasStringOfProgram( prg ) ); inp 2 pwr 3 2 3 pwr 4 1 5 mu 3 5 4 pwr 2 1 6 mu 6 3 5 oup 2 4 5 gap> Print( AtlasStringOfProgram( prg, "mtx" ) ); # inputs are expected in 1 2 zsm pwr3 2 3 zsm pwr4 1 5 zmu 3 5 4 zsm pwr2 1 6 zmu 6 3 5 echo "outputs are in 4 5" gap> str:= "inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5";; gap> prg:= ScanStraightLineDecision( str );; gap> AtlasStringOfProgram( prg.program ); "inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5\n"  7.5 Data Types Used in the AtlasRep Package Each representation or program that is administrated by the AtlasRep package belongs to a unique data type. Informally, examples of data types are permutation representation, matrix representation over the integers, or straight line program for computing class representatives. The idea is that for each data type, there can be  a column of its own in the output produced by DisplayAtlasInfo (3.5-1) when called without arguments or with only argument a list of group names,  a line format of its own for the output produced by DisplayAtlasInfo (3.5-1) when called with first argument a group name,  an input format of its own for AtlasProgram (3.5-4),  an input format of its own for OneAtlasGeneratingSetInfo (3.5-6), and  specific tests for the data of this data type; these functions are used by the global tests described in Section 7.9. Formally, a data type is defined by a record whose components are used by the interface functions. The details are described in the following. 7.5-1 AGR.DeclareDataType AGR.DeclareDataType( kind, name, record )  function Let kind be one of the strings "rep" or "prg", and record be a record. If kind is "rep" then AGR.DeclareDataType declares a new data type of representations, if kind is "prg" then it declares a new data type of programs. The string name is the name of the type, for example "perm", "matff", or "classes". AtlasRep stores the data for each group internally in a record whose component name holds the list of the data about the type with this name. Mandatory components of record are FilenameFormat This defines the format of the filenames containing data of the type in question. The value must be a list that can be used as the second argument of AGR.ParseFilenameFormat (7.6-1), such that only filenames of the type in question match. (It is not checked whether this detection function matches exactly one type, so declaring a new type needs care.) AddFileInfo This defines the information stored in the table of contents for the data of the type. The value must be a function that takes three arguments (the current list of data for the type and the given group, a list returned by AGR.ParseFilenameFormat (7.6-1) for the given type, and a filename). This function adds the necessary parts of the data entry to the list, and returns true if the data belongs to the type, otherwise false is returned; note that the latter case occurs if the filename matches the format description but additional conditions on the parts of the name are not satisfied (for example integer parts may be required to be positive or prime powers). ReadAndInterpretDefault This is the function that does the work for the default contents value of the accessFunctions component of AtlasOfGroupRepresentationsInfo (7.1-5), see Section 7.2. This function must take a path and return the GAP object given by this file. AddDescribingComponents (for rep only) This function takes two arguments, a record (that will be returned by AtlasGenerators (3.5-3), OneAtlasGeneratingSetInfo (3.5-6), or AllAtlasGeneratingSetInfos (3.5-7)) and the type record record. It sets the components p, dim, id, and ring that are promised for return values of the abovementioned three functions. DisplayGroup (for rep only) This defines the format of the lines printed by DisplayAtlasInfo (3.5-1) for a given group. The value must be a function that takes a list as returned by the function given in the component AddFileInfo, and returns the string to be printed for the representation in question. Optional components of record are DisplayOverviewInfo This is used to introduce a new column in the output of DisplayAtlasInfo (3.5-1) when this is called without arguments or with a list of group names as its only argument. The value must be a list of length three, containing at its first position a string used as the header of the column, at its second position one of the strings "r" or "l", denoting right or left aligned column entries, and at its third position a function that takes two arguments (a list of tables of contents of the AtlasRep package and a group name), and returns a list of length two, containing the string to be printed as the column value and true or false, depending on whether private data is involved or not. (The default is fail, indicating that no new column shall be printed.) DisplayPRG (for prg only) This is used in DisplayAtlasInfo (3.5-1) for ATLAS programs. The value must be a function that takes four arguments (a list of tables of contents to examine, a list containing the GAP name and the ATLAS name of the given group, a list of integers or true for the required standardization, and a list of all available standardizations), and returns the list of lines (strings) to be printed as the information about the available programs of the current type and for the given group. (The default is to return an empty list.) AccessGroupCondition (for rep only) This is used in DisplayAtlasInfo (3.5-1) and OneAtlasGeneratingSetInfo (3.5-6). The value must be a function that takes two arguments (a list as returned by OneAtlasGeneratingSetInfo (3.5-6), and a list of conditions), and returns true or false, depending on whether the first argument satisfies the conditions. (The default value is ReturnFalse (Reference: ReturnFalse).) The function must support conditions such as [ IsPermGroup, true ] and [ NrMovedPoints, [ 5, 6 ] ], in general a list of functions followed by a prescribed value, a list of prescribed values, another (unary) function, or the string "minimal". For an overview of the interesting functions, see DisplayAtlasInfo (3.5-1). AccessPRG (for prg only) This is used in AtlasProgram (3.5-4). The value must be a function that takes four arguments (the current table of contents, the group name, an integer or a list of integers or true for the required standardization, and a list of conditions given by the optional arguments of AtlasProgram (3.5-4)), and returns either fail or a list that together with the group name forms the identifier of a program that matches the conditions. (The default value is ReturnFail (Reference: ReturnFail).) AtlasProgram (for prg only) This is used in AtlasProgram (3.5-4) to create the result value from the identifier. (The default value is AtlasProgramDefault, which works whenever the second entry of the identifier is the filename; this is not the case for example if the program is the composition of several programs.) AtlasProgramInfo (for prg only) This is used in AtlasProgramInfo (3.5-5) to create the result value from the identifier. (The default value is AtlasProgramDefault.) TOCEntryString This is used in StringOfAtlasTableOfContents (5.1-3). The value must be a function that takes two or three arguments (the name name of the type, a list as returned by AGR.ParseFilenameFormat (7.6-1), and optionally a string that indicates the remote format) and returns a string that describes the appropriate data format. (The default value is TOCEntryStringDefault.) PostprocessFileInfo This is used in the construction of a table of contents for testing or rearranging the data of the current table of contents. The value must be a function that takes two arguments, the table of contents record and the record in it that belongs to one fixed group. (The default function does nothing.) SortTOCEntries This is used in the construction of a table of contents for sorting the entries after they have been added and after the value of the component PostprocessFileInfo has been called. The value must be a function that takes a list as returned by AGR.ParseFilenameFormat (7.6-1), and returns the sorting key. (There is no default value, which means that no sorting is needed.) TestFileHeaders (for rep only) This is used in the function AGR.Test.FileHeaders. The value must be a function that takes the same four arguments as AGR.FileContents (7.6-2), except that the third argument is a list as returned by AGR.ParseFilenameFormat (7.6-1). (The default value is ReturnTrue (Reference: ReturnTrue).) TestFiles (for rep only) This is used in the function AGR.Test.Files. The format of the value and the default are the same as for the component TestFileHeaders. TestWords (for prg only) This is used in the function AGR.Test.Words. The value must be a function that takes five arguments where the first four are the same arguments as for AGR.FileContents (7.6-2), except that the fifth argument is true or false, indicating verbose mode or not. 7.6 Filenames Used in the AtlasRep Package AtlasRep expects that the filename of each data file describes the contents of the file. This section lists the definitions of the supported structures of filenames. Each filename consists of two parts, separated by a minus sign -. The first part is always of the form groupnameGi, where the integer i denotes the i-th set of standard generators for the group G, say, with ATLAS-file name groupname (see 3.2). The translations of the name groupname to the name(s) used within GAP is given by the component GAPnames of AtlasOfGroupRepresentationsInfo (7.1-5). The names of files that contain straight line programs or straight line decisions have one of the following forms. In each of these cases, the suffix Wn means that n is the version number of the program. groupnameGi-cycWn In this case, the file contains a straight line program that returns a list of representatives of generators of maximally cyclic subgroups of G. An example is Co1G1-cycW1. groupnameGi-cclsWn In this case, the file contains a straight line program that returns a list of conjugacy class representatives of G. An example is RuG1-cclsW1. groupnameGicycWn-cclsWm In this case, the file contains a straight line program that takes the return value of the program in the file groupnameGi-cycWn (see above), and returns a list of conjugacy class representatives of G. An example is M11G1cycW1-cclsW1. groupnameGi-maxkWn In this case, the file contains a straight line program that takes generators of G w. r. t. the i-th set of standard generators, and returns a list of generators (in general not standard generators) for a subgroup U in the k-th class of maximal subgroups of G. An example is J1G1-max7W1. groupnameGimaxkWn-subgroupnameGjWm In this case, the file contains a straight line program that takes the return value of the program in the file groupnameGi-maxkWn (see above), which are generators for a group U, say; subgroupname is a name for U, and the return value is a list of standard generators for U, w. r. t. the j-th set of standard generators. (Of course this implies that the groups in the k-th class of maximal subgroups of G are isomorphic to the group with name subgroupname.) An example is J1G1max1W1-L211G1W1; the first class of maximal subgroups of the Janko group J_1 consists of groups isomorphic to the linear group L_2(11), for which standard generators are defined. groupnameGi-aoutnameWn In this case, the file contains a straight line program that takes generators of G w. r. t. the i-th set of standard generators, and returns the list of their images under the outer automorphism α of G given by the name outname; if this name is empty then α is the unique nontrivial outer automorphism of G; if it is a positive integer k then α is a generator of the unique cyclic order k subgroup of the outer automorphism group of G; if it is of the form 2_1 or 2a, 4_2 or 4b, 3_3 or 3c ... then α generates the cyclic group of automorphisms induced on G by G.2_1, G.4_2, G.3_3 ...; finally, if it is of the form kpd, with k one of the above forms and d an integer then d denotes the number of dashes appended to the automorphism described by k; if d = 1 then d can be omitted. Examples are A5G1-aW1, L34G1-a2_1W1, U43G1-a2_3pW1, and O8p3G1-a2_2p5W1; these file names describe the outer order 2 automorphism of A_5 (induced by the action of S_5) and the order 2 automorphisms of L_3(4), U_4(3), and O_8^+(3) induced by the actions of L_3(4).2_1, U_4(3).2_2^', and O_8^+(3).2_2^{'''''}, respectively. groupnameGi-kerfactgroupnameWn In this case, the file contains a straight line program that takes generators of G w. r. t. the i-th set of standard generators, and returns generators of the kernel of an epimorphism that maps G to a group with ATLAS-file name factgroupname. An example is 2A5G1-kerA5W1. groupnameGi-GjWn In this case, the file contains a straight line program that takes generators of G w. r. t. the i-th set of standard generators, and returns standard generators of G w. r. t. the j-th set of standard generators. An example is L35G1-G2W1. groupnameGi-checkn In this case, the file contains a straight line decision that takes generators of G, and returns true if these generators are standard generators w. r. t. the i-th standardization, and false otherwise. groupnameGi-Pn In this case, the file contains a straight line decision that takes some group elements, and returns true if these elements are standard generators for G, w. r. t. the i-th standardization, and false otherwise. groupnameGi-findn In this case, the file contains a black box program that takes a group, and returns (if it is successful) a set of standard generators for G, w. r. t. the i-th standardization. groupnameGi-XdescrWn In this case, the file contains a straight line program that takes generators of G w. r. t. the i-th set of standard generators, and whose return value corresponds to descr. This format is used only in private extensions (see Chapter 5), such a script can be accessed with descr as the third argument of AtlasProgram (3.5-4). The names of files that contain group generators have one of the following forms. In each of these cases, id is a (possibly empty) string that starts with a lowercase alphabet letter (see IsLowerAlphaChar (Reference: IsLowerAlphaChar)), and m is a nonnegative integer, meaning that the generators are written w. r. t. the m-th basis (the meaning is defined by the ATLAS developers). groupnameGi-fqrdimidBm.mnr a file in MeatAxe text file format containing the nr-th generator of a matrix representation over the field with q elements, of dimension dim. An example is S5G1-f2r4aB0.m1. groupnameGi-pnidBm.mnr a file in MeatAxe text file format containing the nr-th generator of a permutation representation on n points. An example is M11G1-p11B0.m1. groupnameGi-ArdimidBm.g a GAP readable file containing all generators of a matrix representation of dimension dim over an algebraic number field not specified further. An example is A5G1-Ar3aB0.g. groupnameGi-ZrdimidBm.g a GAP readable file containing all generators of a matrix representation over the integers, of dimension dim. An example is A5G1-Zr4B0.g. groupnameGi-HrdimidBm.g a GAP readable file containing all generators of a matrix representation over a quaternion algebra over an algebraic number field, of dimension dim. An example is 2A6G1-Hr2aB0.g. groupnameGi-ZnrdimidBm.g a GAP readable file containing all generators of a matrix representation of dimension dim over the ring of integers mod n. An example is 2A8G1-Z4r4aB0.g. 7.6-1 AGR.ParseFilenameFormat AGR.ParseFilenameFormat( string, format )  function Returns: a list of strings and integers if string matches format, and fail otherwise. Let string be a filename, and format be a list [ [ c_1, c_2, ..., c_n ], [ f_1, f_2, ..., f_n ] ] such that each entry c_i is a list of strings and of functions that take a character as their argument and return true or false, and such that each entry f_i is a function for parsing a filename, such as the currently undocumented functions ParseForwards and ParseBackwards. AGR.ParseFilenameFormat returns a list of strings and integers such that the concatenation of their String (Reference: String) values yields string if string matches format, and fail otherwise. Matching is defined as follows. Splitting string at each minus character (-) yields m parts s_1, s_2, ..., s_m. The string string matches format if s_i matches the conditions in c_i, for 1 ≤ i ≤ n, in the sense that applying f_i to s_i and c_i yields a non-fail result.  Example  gap> format:= [ [ [ IsChar, "G", IsDigitChar ], >  [ "p", IsDigitChar, AGR.IsLowerAlphaOrDigitChar, >  "B", IsDigitChar, ".m", IsDigitChar ] ], >  [ ParseBackwards, ParseForwards ] ];; gap> AGR.ParseFilenameFormat( "A6G1-p10B0.m1", format ); [ "A6", "G", 1, "p", 10, "", "B", 0, ".m", 1 ] gap> AGR.ParseFilenameFormat( "A6G1-p15aB0.m1", format ); [ "A6", "G", 1, "p", 15, "a", "B", 0, ".m", 1 ] gap> AGR.ParseFilenameFormat( "A6G1-f2r16B0.m1", format ); fail  7.6-2 AGR.FileContents AGR.FileContents( files, type )  function Returns: the GAP object obtained from reading and interpreting the file(s) given by files. Let files be a list of pairs of the form [ dirname, filename ], where dirname and filename are strings, and let type be a data type (see AGR.DeclareDataType (7.5-1)). Each dirname must be one of "datagens", "dataword", or the dirid value of a data extension (see AtlasOfGroupRepresentationsNotifyData (5.1-1)). If the contents of each of the files in question is accessible and their data belong to the data type type then AGR.FileContents returns the contents of the files; otherwise fail is returned. Note that if some file is already stored in the dirname directory then AGR.FileContents does not check whether the relevant table of contents actually contains filename. 7.7 The record component identifier used by the AtlasRep Package The functions AtlasGenerators (3.5-3), AtlasProgram (3.5-4), AtlasProgramInfo (3.5-5), OneAtlasGeneratingSetInfo (3.5-6), and AllAtlasGeneratingSetInfos (3.5-7) return records which have a component identifier. The value of this component describes the record in the sense that one can reconstruct the whole record from it, and the identifier value can be used as an input for AtlasGenerators (3.5-3), AtlasProgram (3.5-4), AtlasProgramInfo (3.5-5), AtlasGroup (3.5-8), and AtlasSubgroup (3.5-9). The identifier component has the following format.  For records describing representations, it is a list of the form [ gapname, files, std, info ].  For records describing straight line programs and straight line decisions, it is a list of the form [ gapname, files, std ]. Here gapname is the GAP name of the group in question, files defines the data files, std is the standardization of its generators, and info is some information that depends on the type of the representation, for example the number of moved points in the case of a permutation representation. The files entry has one of the following formats:  a string, in the case that exactly one file is needed that does not belong to a private extension; an example of such an identifier value is [ "J1", "J1G1-cycW1", 1 ]  a list whose entries are strings (which refer to files from the core part of the database) and pairs of the form [ tocid, file ] (which refer to files from the extension given by tocid); examples of identifier values are [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], [ "2.M12", [ [ "mfer", "2M12G1-cclsW1" ] ], 1 ], [ "2.M12", [ "M12G1-max1W1", [ "internal", "2M12G1-kerM12W1" ] ], 1 ], [ "2.M12", [ [ "mfer", "2M12G1-p24bB0.m1" ], [ "mfer", "2M12G1-p24bB0.m2" ] ], 1, 24 ]. Up to version 1.5 of the AtlasRep package, a different identifier format was used for files from extensions of the database. Namely, the first entry of the list was a pair [ tocid, groupname ], and the second entry was either a string or a list of strings. Note that with that old format, it was not possible to describe a combination of several files from different sources (core part and extension, or different extensions). The function AtlasRepIdentifier (7.7-1) can be used to convert between the two formats. 7.7-1 AtlasRepIdentifier AtlasRepIdentifier( oldid )  function AtlasRepIdentifier( id, "old" )  function This function converts between the old format (the one used up to version 1.5.1 of the package) and the new format (the one used since version 2.0) of the identifier component of the records returned by AtlasRep functions. Note that the two formats differ only for identifier components that describe data from non-core parts of the database. If the only argument is a list oldid that is an identifier in old format then the function returns the corresponding identifier in new format. If there are two arguments, a list id that is an identifier in new format and the string "old", then the function returns the corresponding identifier in old format if this is possible, and fail otherwise.  Example  gap> id:= [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ];; gap> AtlasRepIdentifier( id ) = id; true gap> id:= [ "L2(8)", "L28G1-check1", 1, 1 ];; gap> AtlasRepIdentifier( id ) = id; true gap> oldid:= [ [ "priv", "C4" ], [ "C4G1-p4B0.m1" ], 1, 4 ];; gap> newid:= AtlasRepIdentifier( oldid ); [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ] gap> oldid = AtlasRepIdentifier( newid, "old" ); true gap> oldid:= [ [ "priv", "C4" ], "C4G1-max1W1", 1 ];; gap> newid:= AtlasRepIdentifier( oldid ); [ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ] gap> oldid = AtlasRepIdentifier( newid, "old" ); true gap> oldid:= [ [ "priv", "C4" ], "C4G1-Ar1aB0.g", 1, 1 ];; gap> newid:= AtlasRepIdentifier( oldid ); [ "C4", [ [ "priv", "C4G1-Ar1aB0.g" ] ], 1, 1 ] gap> oldid = AtlasRepIdentifier( newid, "old" ); true gap> oldid:= [ [ "priv", "C4" ], "C4G1-XtestW1", 1 ];; gap> newid:= AtlasRepIdentifier( oldid ); [ "C4", [ [ "priv", "C4G1-XtestW1" ] ], 1 ] gap> oldid = AtlasRepIdentifier( newid, "old" ); true gap> oldid:= [ [ "mfer", "2.M12" ], >  [ "2M12G1-p264aB0.m1", "2M12G1-p264aB0.m2" ], 1, 264 ];; gap> newid:= AtlasRepIdentifier( oldid ); [ "2.M12",   [ [ "mfer", "2M12G1-p264aB0.m1" ], [ "mfer", "2M12G1-p264aB0.m2" ] ]  , 1, 264 ] gap> oldid = AtlasRepIdentifier( newid, "old" ); true  7.8 The Tables of Contents of the AtlasRep Package The list of AtlasRep data is stored in several tables of contents, which are given essentially by JSON documents, one for the core data and one for each data extension in the sense of Chapter 5. The only exception are data extensions by locally available files in a given directory, where the contents of this directory itself describes the data in question. One can create such a JSON document for the contents of a given local data directory with the function StringOfAtlasTableOfContents (5.1-3). Here are the administrational functions that are called when a data extension gets notified with AtlasOfGroupRepresentationsNotifyData (5.1-1). In each case, gapname and atlasname denote the GAP and ATLAS name of the group in question (see Section 3.2), and dirid denotes the identifier of the data extension. The following functions define group names, available representations, and straight line programs. AGR.GNAN( gapname, atlasname[, dirid] ) Called with two strings gapname (the GAP name of the group) and atlasname (the ATLAS name of the group), AGR.GNAN stores the information in the list AtlasOfGroupRepresentationsInfo.GAPnames, which defines the name mapping between the ATLAS names and GAP names of the groups. An example of a valid call is AGR.GNAN("A5.2","S5"). AGR.TOC( typename, filename, crc[, dirid] ) AGR.TOC notifies an entry to the TableOfContents.( dirid ) component of AtlasOfGroupRepresentationsInfo (7.1-5). The string typename must be the name of the data type to which the entry belongs, the string filename must be the prefix of the data file(s), and crc must be a list that contains the checksums of the data files, which are either integers (see CrcFile (Reference: CrcFile)) or strings (see HexSHA256). In particular, the number of files that are described by the entry equals the length of crc. The optional argument dirid is equal to the argument with the same name in the corresponding call of AtlasOfGroupRepresentationsNotifyData (5.1-1). If no dirid argument is given then the current value of AGR.DIRID is taken as the default; this value is set automatically before a toc.json file gets evaluated by AtlasOfGroupRepresentationsNotifyData (5.1-1), and is reset afterwards. If AGR.DIRID is not bound and dirid is not given then this function has no effect. An example of a valid call is AGR.TOC("perm","alt/A5/mtx/S5G1-p5B0.m", [-3581724,115937465]). The following functions add data about the groups and their standard generators. The function calls must be executed after the corresponding AGR.GNAN calls. AGR.GRS( gapname, size[, dirid] ) The integer size is stored as the order of the group with GAP name gapname, in AtlasOfGroupRepresentationsInfo.GAPnames. An example of a valid call is AGR.GRS("A5.2",120). AGR.MXN( gapname, nrMaxes[, dirid] ) The integer nrMaxes is stored as the number of classes of maximal subgroups of the group with GAP name gapname, in AtlasOfGroupRepresentationsInfo.GAPnames. An example of a valid call is AGR.MXN("A5.2",4). AGR.MXO( gapname, sizesMaxes[, dirid] ) The list sizesMaxes of subgroup orders of the classes of maximal subgroups of the group with GAP name gapname (not necessarily dense, in non-increasing order) is stored in AtlasOfGroupRepresentationsInfo.GAPnames. An example of a valid call is AGR.MXO("A5.2",[60,24,20,12]). AGR.MXS( gapname, structureMaxes[, dirid] ) The list structureMaxes of strings describing the structures of the maximal subgroups of the group with GAP name gapname (not necessarily dense), is stored in AtlasOfGroupRepresentationsInfo.GAPnames. An example of a valid call is AGR.MXS("A5.2",["A5","S4","5:4","S3x2"]). AGR.STDCOMP( gapname, factorCompatibility[, dirid] ) The list factorCompatibility (with entries the standardization of the group with GAP name gapname , the GAP name of a factor group, the standardization of this factor group, and true or false, indicating whether mapping the standard generators for gapname to those of factgapname defines an epimorphism) is stored in AtlasOfGroupRepresentationsInfo.GAPnames. An example of a valid call is AGR.STDCOMP("2.A5.2",[1,"A5.2",1,true]). The following functions add data about representations or straight line programs that are already known. The function calls must be executed after the corresponding AGR.TOC calls. AGR.RNG( repname, descr[, dirid] ) Called with two strings repname (denoting the name of a file containing the generators of a matrix representation over a ring that is not determined by the filename) and descr (describing this ring R, say), AGR.RNG adds the triple [ repname, descr, R ] to the list stored in the ringinfo component of AtlasOfGroupRepresentationsInfo (7.1-5). An example of a valid call is AGR.RNG("A5G1-Ar3aB0","Field([Sqrt(5)])"). AGR.TOCEXT( atlasname, std, maxnr, files[, dirid] ) Called with atlasname, the positive integers std (the standardization) and maxnr (the number of the class of maximal subgroups), and the list files (of filenames of straight line programs for computing generators of the maxnr-th maximal subgroup, using a straight line program for a factor group plus perhaps some straight line program for computing kernel generators), AGR.TOCEXT stores the information in AtlasOfGroupRepresentationsInfo.GAPnames. An example of a valid call is AGR.TOCEXT("2A5",1,3,["A5G1-max3W1"]). AGR.API( repname, info[, dirid] ) Called with the string repname (denoting the name of a permutation representation) and the list info (describing the point stabilizer of this representation), AGR.API binds the component repname of the record AtlasOfGroupRepresentationsInfo.permrepinfo to a record that describes the contents of info. info has the following entries.  At position 1, the transitivity is stored.  If the transitivity is zero then info has length two, and the second entry is the list of orbit lengths.  If the transitivity is positive then info has length four or five, and the second entry is the rank of the action.  If the transitivity is positive then the third entry is one of the strings "prim", "imprim", denoting primitivity or not.  If the transitivity is positive then the fourth entry is either the string "???" or a string that describes the structure of the point stabilizer. If the third entry is "imprim" then this description consists of a subgroup part and a maximal subgroup part, separated by " < ".  If the third entry is "prim" then the fifth entry is either the string "???" or the number of the class of maximal subgroups that are the point stabilizers. An example of a valid call is AGR.API("A5G1-p5B0",[3,2,"prim","A4",1]). AGR.CHAR( gapname, repname, char, pos[, charname[, dirid]] ) Called with the strings gapname and repname (denoting the name of the representation), the integer char (the characteristic of the representation), and pos (the position or list of positions of the irreducible constituent(s)), AGR.CHAR stores the information in AtlasOfGroupRepresentationsInfo.characterinfo. A string describing the character can be entered as charname. If dirid is given but no charname is known then one can enter fail as the fifth argument. An example of a valid call is AGR.CHAR("M11","M11G1-p11B0",0,[1,2],"1a+10a"). 7.9 Sanity Checks for the AtlasRep Package The file tst/testall.g of the package contains Test (Reference: Test) statements for checking whether the AtlasRep functions behave as documented. One can run these tests by calling ReadPackage( "AtlasRep", "tst/testall.g" ). The examples in the package manual form a part of the tests, they are collected in the file tst/docxpl.tst of the package. The remainder of this section deals with consistency checks of the data. The tests described in Section 7.9-1 can be used for data from any extension of the database (see Chapter 5), Section 7.9-2 lists tests which apply only to the core part of the database. All these tests apply only to locally available files (see Section 7.8), no files are downloaded during the tests. Thus the required space and time for running these tests depend on the amount of locally available data. Some of the tests compute and verify additional data, such as information about point stabilizers of permutation representations. In these cases, output lines starting with #E are error messages that point to inconsistencies, whereas output lines starting with #I inform about data that have been computed and were not yet stored, or about stored data that were not verified. These tests are experimental in the sense that they involve several heuristics. Depending on the data to which they are applied, it may happen that the tests run out of space or do not finish in acceptable time. Please inform the package maintainer if you run into such problems. 7.9-1 Sanity Checks for a Table of Contents The following tests can be used to check the data that belong to a given part of the database (core data or extension). Each of these tests is given by a function with optional argument tocid, the identifying string that had been entered as the second argument of AtlasOfGroupRepresentationsNotifyData (5.1-1). The contents of the core part can be checked by entering "core", which is also the default for tocid. The function returns false if an error occurs, otherwise true. Currently the following tests of this kind are available. (For some of them, the global option TryToExtendData can be entered in order to try the computation of not yet stored data.) AGR.Test.GroupOrders() checks whether the group orders stored in the GAPnames component of AtlasOfGroupRepresentationsInfo (7.1-5) coincide with the group orders computed from an ATLAS permutation representation of degree up to AGR.Test.MaxTestDegree, from the available character table or table of marks with the given name, or from the structure of the name, in the sense that splitting the name at the first dot (.) or colon (:) and applying the same criteria to derive the group order from the two parts may yield enough information. AGR.Test.Words( [tocid] ) processes the straight line programs that belong to tocid, using the function stored in the TestWords component of the data type in question. The straight line programs for the cases listed in AGR.Test.HardCases.TestWords are omitted. AGR.Test.ClassScripts( [tocid] ) checks whether the straight line programs that belong to tocid and that compute representatives of certain conjugacy classes are consistent with information stored on the GAP character table of the group in question, in the sense that the given class names really occur in the character table and that the element orders and centralizer orders for the classes are correct. AGR.Test.CycToCcls( [tocid][:TryToExtendData] ) checks whether all straight line programs that belong to tocid and that compute class representatives from representatives of cyclic subgroups possess a corresponding straight line program (anywhere in the database) for computing representatives of cyclic subgroups. AGR.Test.FileHeaders( [tocid] ) checks whether the MeatAxe text files that belong to tocid have a header line that is consistent with the filename, and whether the contents of all GAP format data files that belong to tocid is consistent with the filename. AGR.Test.Files( [tocid] ) checks whether the MeatAxe text files that belong to tocid can be read with ScanMeatAxeFile (7.3-1) such that the result is not fail. The function does not check whether the first line of a MeatAxe text file is consistent with the filename, since this can be tested with AGR.Test.FileHeaders. AGR.Test.BinaryFormat( [tocid] ) checks whether all MeatAxe text files that belong to tocid satisfy that applying first CMtxBinaryFFMatOrPerm (7.3-4) and then FFMatOrPermCMtxBinary (7.3-5) yields the same object. AGR.Test.Primitivity( [tocid][:TryToExtendData] ) checks the stored primitivity information for the permutation representations that belong to tocid. That is, the number of orbits, in case of a transitive action the transitivity, the rank, the information about the point stabilizers are computed if possible, and compared with the stored information. AGR.Test.Characters( [tocid][:TryToExtendData] ) checks the character information (that belongs to tocid) for the matrix and permutation representations. AGR.Test.StdCompatibility( [tocid][:TryToExtendData] ) checks whether the information about the compatibility of standard generators of a group and its factor groups that is stored in the GAPnames component of AtlasOfGroupRepresentationsInfo (7.1-5) and belongs to tocid coincides with computed values. The following criterion is used for computing the value for a group G. Use the GAP Character Table Library to determine factor groups F of G for which standard generators are defined and moreover a presentation in terms of these standard generators is known. Evaluate the relators of the presentation in the standard generators of G, and let N be the normal closure of these elements in G. Then mapping the standard generators of F to the N-cosets of the standard generators of G is an epimorphism. If |G/N| = |F| holds then G/N and F are isomorphic, and the standard generators of G and F are compatible in the sense that mapping the standard generators of G to their N-cosets yields standard generators of F. AGR.Test.KernelGenerators( [tocid][:TryToExtendData] ) checks whether the straight line programs (that belong to tocid) for computing generators of kernels of natural epimorphisms between ATLAS groups compute generators of normal subgroups of the right group orders. If it is known that the given standard generators of the given group are compatible with some standard generators of the factor group in question (see the section about AGR.Test.StdCompatibility) then it is also checked whether evaluating the straight line program at these standard generators of the factor group yields only the identity. Note that the verification of normal subgroups of matrix groups may be very time and space consuming if the package recog [NSA+18] is not available. The function also tries to find words for computing kernel generators of those epimorphisms for which no straight line programs are stored; the candidates are given by stored factor fusions between the character tables from the GAP Character Table Library. AGR.Test.MaxesOrders( [tocid] ) checks whether the orders of maximal subgroups stored in the component GAPnames of AtlasOfGroupRepresentationsInfo (7.1-5) coincide with the orders computed from the restriction of an ATLAS permutation representation of degree up to AGR.Test.MaxTestDegree (using a straight line program that belongs to tocid), from the character table, or the table of marks with the given name, or from the information about maximal subgroups of the factor group modulo a normal subgroup that is contained in the Frattini subgroup. AGR.Test.MaxesStructure() checks whether the names of maximal subgroups stored in the component GAPnames of AtlasOfGroupRepresentationsInfo (7.1-5) coincide with the names computed from the GAP character table with the given name. AGR.Test.MaxesStandardization( [tocid] ) checks whether the straight line programs (that belong to tocid) for standardizing the generators of maximal subgroups are correct: If a semi-presentation is available for the maximal subgroup and the standardization in question then it is used, otherwise an explicit isomorphism is tried. AGR.Test.CompatibleMaxes( [tocid][:TryToExtendData] ) checks whether the information about deriving straight line programs for restricting to subgroups from straight line programs that belong to a factor group coincide with computed values. The following criterion is used for computing the value for a group G. If F is a factor group of G such that the standard generators of G and F are compatible (see the test function AGR.Test.StdCompatibility) and if there are a presentation for F and a permutation representation of G then it is checked whether the "maxes" type straight line programs for F can be used to compute generators for the maximal subgroups of G; if not then generators of the kernel of the natural epimorphism from G to F, must be added. 7.9-2 Other Sanity Checks The tests described in this section are intended for checking data that do not belong to a particular part of the AtlasRep database. Therefore all locally available data are used in these tests. Each of the tests is given by a function without arguments that returns false if a contradiction was found during the test, and true otherwise. Additionally, certain messages are printed when contradictions between stored and computed data are found, when stored data cannot be verified computationally, or when the computations yield improvements of the stored data. Currently the following tests of this kind are available. AGR.Test.Standardization() checks whether all generating sets corresponding to the same set of standard generators have the same element orders; for the case that straight line programs for computing certain class representatives are available, also the orders of these representatives are checked w. r. t. all generating sets. AGR.Test.StdTomLib() checks whether the standard generators are compatible with those that occur in the TomLib package. AGR.Test.MinimalDegrees() checks that the (permutation and matrix) representations available in the database do not have smaller degree than the minimum claimed in Section 6.3. Finally, we reset the user preference and the info level which had been set at the beginning of Chapter 2.  Example  gap> SetUserPreference( "AtlasRep", "DisplayFunction", origpref ); gap> SetInfoLevel( InfoAtlasRep, globallevel );  atlasrep-2.1.8/doc/chapBib.txt0000644000175000017500000001435414545501235014330 0ustar samsam References [BGH+22] Breuer, T., Gutsche, S., Horn, M., Hulpke, A., Kohl, S., Lübeck, F. and Wensley, C., utils, Utility functions in GAP, Version 0.77 (2022), (GAP package), https://gap-packages.github.io/utils. [BHM09] Breuer, T., Höhler, I. and Müller, J., MFER, multiplicity-free endomorphism rings of permutation modules of the sporadic simple groups and their cyclic and bicyclic extensions, Version 1.0.0 (2009), (GAP package), https://www.math.rwth-aachen.de/~MFER. [BL18] Breuer, T. and Lübeck, F., Browse, ncurses interface and browsing applications, Version 1.8.9 (2018), (GAP package), https://www.math.rwth-aachen.de/~Browse. [BN95] Breuer, T. and Norton, S. P., Improvements to the Atlas, The Clarendon Press Oxford University Press, London Mathematical Society Monographs. New Series, 11, New York (1995), 297–327, (Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications). [Bre14] Breuer, T., CTBlocks, Blocks of Character Tables, Version 0.9.3 (2014), (GAP package), https://www.math.rwth-aachen.de/~Thomas.Breuer/ctblocks. [Bre22] Breuer, T., The GAP Character Table Library, Version 1.3.3 (2022), (GAP package), https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib. [BSWW01] Bray, J. N., Suleiman, I. A. I., Walsh, P. G. and Wilson, R. A., Generating maximal subgroups of sporadic simple groups, Comm. Algebra, 29, 3 (2001), 1325–1337. [CCN+85] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of finite groups, Oxford University Press, Eynsham (1985), xxxiv+252 pages, (Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray). [CP96] Cannon, J. J. and Playoust, C., An introduction to algebraic programming in Magma, School of Mathematics and Statistics, University of Sydney, Sydney, Australia (1996), http://www.math.usyd.edu.au:8000/u/magma. [GAP19] GAP – Groups, Algorithms, and Programming, Version 4.10.2, The GAP Group (2019), http://www.gap-system.org. [HL89] Hiss, G. and Lux, K., Brauer trees of sporadic groups, The Clarendon Press, Oxford University Press, Oxford Science Publications, New York (1989), x+526 pages. [Hup67] Huppert, B., Endliche Gruppen. I, Springer-Verlag, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Berlin (1967), xii+793 pages. [Jan05] Jansen, C., The minimal degrees of faithful representations of the sporadic simple groups and their covering groups, LMS J. Comput. Math., 8 (2005), 122–144 (electronic). [JLPW95] Jansen, C., Lux, K., Parker, R. and Wilson, R., An atlas of Brauer characters, The Clarendon Press Oxford University Press, London Mathematical Society Monographs. New Series, 11, New York (1995), xviii+327 pages, (Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications). [JSO14] (Bray, T., Ed.), The JavaScript Object Notation (JSON) Data Interchange Format (2014), http://www.rfc-editor.org/info/rfc7159. [LN18] Lübeck, F. and Neunhöffer, M., GAPDoc, A Meta Package for GAP Documentation, Version 1.6.2 (2018), (GAP package), https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc. [Lüb21] Lübeck, F., StandardFF, A GAP package for constructing finite fields (2021), (GAP package), https://github.com/frankluebeck/StandardFF/. [Neu14] Neunhöffer, M., IO, Bindings for low level C library IO, Version 4.3.1 (2014), (GAP package), http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html. [Nic06] Nickerson, S. J., An Atlas of Characteristic Zero Representations, Phd thesis, School of Mathematics, University of Birmingham (2006). [NMP18] Naughton, L., Merkwitz, T. and Pfeiffer, G., TomLib, The GAP Library of Tables of Marks, Version 1.2.7 (2018), (GAP package), http://schmidt.nuigalway.ie/tomlib. [NSA+18] Neunhöffer, M., Seress, Á., Ankaralioglu, N., Brooksbank, P., Celler, F., Howe, S., Law, M., Linton, S., Malle, G., Niemeyer, A., O'Brien, E., Roney-Dougal, C. M. and Horn, M., recog, A collection of group recognition methods, Version 1.3.1 (2018), (GAP package), https://gap-packages.github.io/recog. [NW05] Nickerson, S. J. and Wilson, R. A., Semi-presentations for the sporadic simple groups, Experiment. Math., 14, 3 (2005), 359–371. [Rin] Ringe, M., The C MeatAxe, Version 2.4, https://www.math.rwth-aachen.de/~MTX. [SWW00] Suleiman, I. A. I., Walsh, P. G. and Wilson, R. A., Conjugacy classes in sporadic simple groups, Comm. Algebra, 28, 7 (2000), 3209–3222. [Wil96] Wilson, R. A., Standard generators for sporadic simple groups, J. Algebra, 184, 2 (1996), 505–515. [WWT+] Wilson, R. A., Walsh, P., Tripp, J., Suleiman, I., Parker, R. A., Norton, S. P., Nickerson, S., Linton, S., Bray, J. and Abbott, R., ATLAS of Finite Group Representations, http://atlas.math.rwth-aachen.de/Atlas/v3.  atlasrep-2.1.8/doc/chap6.txt0000644000175000017500000020354414545501235014002 0ustar samsam 6 New GAP Objects and Utility Functions provided by the AtlasRep Package This chapter describes GAP objects and functions that are provided by the AtlasRep package but that might be of general interest. The new objects are straight line decisions (see Section 6.1) and black box programs (see Section 6.2). The new functions are concerned with representations of minimal degree, see Section 6.3, and a JSON interface, see Section 6.4. 6.1 Straight Line Decisions Straight line decisions are similar to straight line programs (see Section 'Reference: Straight Line Programs') but return true or false. A straight line decision checks whether its inputs have some property. An important example is to check whether a given list of group generators is in fact a list of standard generators (cf. Section3.3) for this group. A straight line decision in GAP is represented by an object in the filter IsStraightLineDecision (6.1-1) that stores a list of lines each of which has one of the following three forms. 1 a nonempty dense list l of integers, 2 a pair [ l, i ] where l is a list of form 1. and i is a positive integer, 3 a list [ "Order", i, n ] where i and n are positive integers. The first two forms have the same meaning as for straight line programs (see Section 'Reference: Straight Line Programs'), the last form means a check whether the element stored at the i-th label has the order n. For the meaning of the list of lines, see ResultOfStraightLineDecision (6.1-6). Straight line decisions can be constructed using StraightLineDecision (6.1-5), defining attributes for straight line decisions are NrInputsOfStraightLineDecision (6.1-3) and LinesOfStraightLineDecision (6.1-2), an operation for straight line decisions is ResultOfStraightLineDecision (6.1-6). Special methods applicable to straight line decisions are installed for the operations Display (Reference: Display), IsInternallyConsistent (Reference: IsInternallyConsistent), PrintObj (Reference: PrintObj), and ViewObj (Reference: ViewObj). For a straight line decision prog, the default Display (Reference: Display) method prints the interpretation of prog as a sequence of assignments of associative words and of order checks; a record with components gensnames (with value a list of strings) and listname (a string) may be entered as second argument of Display (Reference: Display), in this case these names are used, the default for gensnames is [ g1, g2, ... ], the default for listname is r. 6.1-1 IsStraightLineDecision IsStraightLineDecision( obj )  category Each straight line decision in GAP lies in the filter IsStraightLineDecision. 6.1-2 LinesOfStraightLineDecision LinesOfStraightLineDecision( prog )  operation Returns: the list of lines that define the straight line decision. This defining attribute for the straight line decision prog (see IsStraightLineDecision (6.1-1)) corresponds to LinesOfStraightLineProgram (Reference: LinesOfStraightLineProgram) for straight line programs.  Example  gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ], > [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] );  gap> LinesOfStraightLineDecision( dec ); [ [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 1, 2 ], [ "Order", 2, 3 ],   [ "Order", 3, 5 ] ]  6.1-3 NrInputsOfStraightLineDecision NrInputsOfStraightLineDecision( prog )  operation Returns: the number of inputs required for the straight line decision. This defining attribute corresponds to NrInputsOfStraightLineProgram (Reference: NrInputsOfStraightLineProgram).  Example  gap> NrInputsOfStraightLineDecision( dec ); 2  6.1-4 ScanStraightLineDecision ScanStraightLineDecision( string )  function Returns: a record containing the straight line decision, or fail. Let string be a string that encodes a straight line decision in the sense that it consists of the lines listed for ScanStraightLineProgram (7.4-1), except that oup lines are not allowed, and instead lines of the following form may occur. chor a b means that it is checked whether the order of the element at label a is b. ScanStraightLineDecision returns a record containing as the value of its component program the corresponding GAP straight line decision (see IsStraightLineDecision (6.1-1)) if the input string satisfies the syntax rules stated above, and returns fail otherwise. In the latter case, information about the first corrupted line of the program is printed if the info level of InfoCMeatAxe (7.1-2) is at least 1.  Example  gap> str:= "inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5";; gap> prg:= ScanStraightLineDecision( str ); rec( program := ) gap> prg:= prg.program;; gap> Display( prg ); # input: r:= [ g1, g2 ]; # program: if Order( r[1] ) <> 2 then return false; fi; if Order( r[2] ) <> 3 then return false; fi; r[3]:= r[1]*r[2]; if Order( r[3] ) <> 5 then return false; fi; # return value: true  6.1-5 StraightLineDecision StraightLineDecision( lines[, nrgens] )  function StraightLineDecisionNC( lines[, nrgens] )  function Returns: the straight line decision given by the list of lines. Let lines be a list of lists that defines a unique straight line decision (see IsStraightLineDecision (6.1-1)); in this case StraightLineDecision returns this program, otherwise an error is signalled. The optional argument nrgens specifies the number of input generators of the program; if a list of integers (a line of form 1. in the definition above) occurs in lines then this number is not determined by lines and therefore must be specified by the argument nrgens; if not then StraightLineDecision returns fail. StraightLineDecisionNC does the same as StraightLineDecision, except that the internal consistency of the program is not checked. 6.1-6 ResultOfStraightLineDecision ResultOfStraightLineDecision( prog, gens[, orderfunc] )  operation Returns: true if all checks succeed, otherwise false. ResultOfStraightLineDecision evaluates the straight line decision (see IsStraightLineDecision (6.1-1)) prog at the group elements in the list gens. The function for computing the order of a group element can be given as the optional argument orderfunc. For example, this may be a function that gives up at a certain limit if one has to be aware of extremely huge orders in failure cases. The result of a straight line decision with lines p_1, p_2, ..., p_k when applied to gens is defined as follows. (a) First a list r of intermediate values is initialized with a shallow copy of gens. (b) For i ≤ k, before the i-th step, let r be of length n. If p_i is the external representation of an associative word in the first n generators then the image of this word under the homomorphism that is given by mapping r to these first n generators is added to r. If p_i is a pair [ l, j ], for a list l, then the same element is computed, but instead of being added to r, it replaces the j-th entry of r. If p_i is a triple ["Order", i, n ] then it is checked whether the order of r[i] is n; if not then false is returned immediately. (c) If all k lines have been processed and no order check has failed then true is returned. Here are some examples.  Example  gap> dec:= StraightLineDecision( [ ], 1 );  gap> ResultOfStraightLineDecision( dec, [ () ] ); true  The above straight line decision dec returns true –for any input of the right length.  Example  gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ], >  [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] );  gap> LinesOfStraightLineDecision( dec ); [ [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 1, 2 ], [ "Order", 2, 3 ],   [ "Order", 3, 5 ] ] gap> ResultOfStraightLineDecision( dec, [ (), () ] ); false gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,4,5) ] ); true  The above straight line decision admits two inputs; it tests whether the orders of the inputs are 2 and 3, and the order of their product is 5. 6.1-7 Semi-Presentations and Presentations We can associate a finitely presented group F / R to each straight line decision dec, say, as follows. The free generators of the free group F are in bijection with the inputs, and the defining relators generating R as a normal subgroup of F are given by those words w^k for which dec contains a check whether the order of w equals k. So if dec returns true for the input list [ g_1, g_2, ..., g_n ] then mapping the free generators of F to the inputs defines an epimorphism Φ from F to the group G, say, that is generated by these inputs, such that R is contained in the kernel of Φ. (Note that satisfying dec is a stronger property than satisfying a presentation. For example, ⟨ x ∣ x^2 = x^3 = 1 ⟩ is a presentation for the trivial group, but the straight line decision that checks whether the order of x is both 2 and 3 clearly always returns false.) AtlasRep supports the following two kinds of straight line decisions.  A presentation is a straight line decision dec that is defined for a set of standard generators of a group G and that returns true if and only if the list of inputs is in fact a sequence of such standard generators for G. In other words, the relators derived from the order checks in the way described above are defining relators for G, and moreover these relators are words in terms of standard generators. (In particular the kernel of the map Φ equals R whenever dec returns true.)  A semi-presentation is a straight line decision dec that is defined for a set of standard generators of a group G and that returns true for a list of inputs that is known to generate a group isomorphic with G if and only if these inputs form in fact a sequence of standard generators for G. In other words, the relators derived from the order checks in the way described above are not necessarily defining relators for G, but if we assume that the g_i generate G then they are standard generators. (In particular, F / R may be a larger group than G but in this case Φ maps the free generators of F to standard generators of G.) More about semi-presentations can be found in [NW05]. Available presentations and semi-presentations are listed by DisplayAtlasInfo (3.5-1), they can be accessed via AtlasProgram (3.5-4). (Clearly each presentation is also a semi-presentation. So a semi-presentation for some standard generators of a group is regarded as available whenever a presentation for these standard generators and this group is available.) Note that different groups can have the same semi-presentation. We illustrate this with an example that is mentioned in [NW05]. The groups L_2(7) ≅ L_3(2) and L_2(8) are generated by elements of the orders 2 and 3 such that their product has order 7, and no further conditions are necessary to define standard generators.  Example  gap> check:= AtlasProgram( "L2(8)", "check" ); rec( groupname := "L2(8)",   identifier := [ "L2(8)", "L28G1-check1", 1, 1 ],   program := , standardization := 1,   version := "1" ) gap> gens:= AtlasGenerators( "L2(8)", 1 ); rec( charactername := "1a+8a", constituents := [ 1, 6 ],   contents := "core",   generators := [ (1,2)(3,4)(6,7)(8,9), (1,3,2)(4,5,6)(7,8,9) ],   groupname := "L2(8)", id := "",   identifier := [ "L2(8)", [ "L28G1-p9B0.m1", "L28G1-p9B0.m2" ], 1, 9   ], isPrimitive := true, maxnr := 1, p := 9, rankAction := 2,   repname := "L28G1-p9B0", repnr := 1, size := 504,   stabilizer := "2^3:7", standardization := 1, transitivity := 3,   type := "perm" ) gap> ResultOfStraightLineDecision( check.program, gens.generators ); true gap> gens:= AtlasGenerators( "L3(2)", 1 ); rec( contents := "core", generators := [ (2,4)(3,5), (1,2,3)(5,6,7) ],  groupname := "L3(2)", id := "a",   identifier := [ "L3(2)", [ "L27G1-p7aB0.m1", "L27G1-p7aB0.m2" ], 1,   7 ], isPrimitive := true, maxnr := 1, p := 7, rankAction := 2,   repname := "L27G1-p7aB0", repnr := 1, size := 168,   stabilizer := "S4", standardization := 1, transitivity := 2,   type := "perm" ) gap> ResultOfStraightLineDecision( check.program, gens.generators ); true  6.1-8 AsStraightLineDecision AsStraightLineDecision( bbox )  attribute Returns: an equivalent straight line decision for the given black box program, or fail. For a black box program (see IsBBoxProgram (6.2-1)) bbox, AsStraightLineDecision returns a straight line decision (see IsStraightLineDecision (6.1-1)) with the same output as bbox, in the sense of AsBBoxProgram (6.2-5), if such a straight line decision exists, and fail otherwise.  Example  gap> lines:= [ [ "Order", 1, 2 ], [ "Order", 2, 3 ], >  [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 3, 5 ] ];; gap> dec:= StraightLineDecision( lines, 2 );  gap> bboxdec:= AsBBoxProgram( dec );  gap> asdec:= AsStraightLineDecision( bboxdec );  gap> LinesOfStraightLineDecision( asdec ); [ [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ [ 1, 1, 2, 1 ], 3 ],   [ "Order", 3, 5 ] ]  6.1-9 StraightLineProgramFromStraightLineDecision StraightLineProgramFromStraightLineDecision( dec )  operation Returns: the straight line program associated to the given straight line decision. For a straight line decision dec (see IsStraightLineDecision (6.1-1), StraightLineProgramFromStraightLineDecision returns the straight line program (see IsStraightLineProgram (Reference: IsStraightLineProgram) obtained by replacing each line of type 3. (i.e, each order check) by an assignment of the power in question to a new slot, and by declaring the list of these elements as the return value. This means that the return value describes exactly the defining relators of the presentation that is associated to the straight line decision, see 6.1-7. For example, one can use the return value for printing the relators with StringOfResultOfStraightLineProgram (Reference: StringOfResultOfStraightLineProgram), or for explicitly constructing the relators as words in terms of free generators, by applying ResultOfStraightLineProgram (Reference: ResultOfStraightLineProgram) to the program and to these generators.  Example  gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ], > [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] );  gap> prog:= StraightLineProgramFromStraightLineDecision( dec );  gap> Display( prog ); # input: r:= [ g1, g2 ]; # program: r[3]:= r[1]*r[2]; r[4]:= r[1]^2; r[5]:= r[2]^3; r[6]:= r[3]^5; # return values: [ r[4], r[5], r[6] ] gap> StringOfResultOfStraightLineProgram( prog, [ "a", "b" ] ); "[ a^2, b^3, (ab)^5 ]" gap> gens:= GeneratorsOfGroup( FreeGroup( "a", "b" ) ); [ a, b ] gap> ResultOfStraightLineProgram( prog, gens ); [ a^2, b^3, (a*b)^5 ]  6.2 Black Box Programs Black box programs formalize the idea that one takes some group elements, forms arithmetic expressions in terms of them, tests properties of these expressions, executes conditional statements (including jumps inside the program) depending on the results of these tests, and eventually returns some result. A specification of the language can be found in [Nic06], see also http://atlas.math.rwth-aachen.de/Atlas/info/blackbox.html. The inputs of a black box program may be explicit group elements, and the program may also ask for random elements from a given group. The program steps form products, inverses, conjugates, commutators, etc. of known elements, tests concern essentially the orders of elements, and the result is a list of group elements or true or false or fail. Examples that can be modeled by black box programs are straight line programs, which require a fixed number of input elements and form arithmetic expressions of elements but do not use random elements, tests, conditional statements and jumps; the return value is always a list of elements; these programs are described in Section 'Reference: Straight Line Programs'. straight line decisions, which differ from straight line programs only in the sense that also order tests are admissible, and that the return value is true if all these tests are satisfied, and false as soon as the first such test fails; they are described in Section 6.1. scripts for finding standard generators, which take a group and a function to generate a random element in this group but no explicit input elements, admit all control structures, and return either a list of standard generators or fail; see ResultOfBBoxProgram (6.2-4) for examples. In the case of general black box programs, currently GAP provides only the possibility to read an existing program via ScanBBoxProgram (6.2-2), and to run the program using RunBBoxProgram (6.2-3). It is not our aim to write such programs in GAP. The special case of the find scripts mentioned above is also admissible as an argument of ResultOfBBoxProgram (6.2-4), which returns either the set of found generators or fail. Contrary to the general situation, more support is provided for straight line programs and straight line decisions in GAP, see Section 'Reference: Straight Line Programs' for functions that manipulate them (compose, restrict etc.). The functions AsStraightLineProgram (6.2-6) and AsStraightLineDecision (6.1-8) can be used to transform a general black box program object into a straight line program or a straight line decision if this is possible. Conversely, one can create an equivalent general black box program from a straight line program or from a straight line decision with AsBBoxProgram (6.2-5). Computing a straight line program related to a given straight line decision is supported in the sense of StraightLineProgramFromStraightLineDecision (6.1-9). Note that none of these three kinds of objects is a special case of another: Running a black box program with RunBBoxProgram (6.2-3) yields a record, running a straight line program with ResultOfStraightLineProgram (Reference: ResultOfStraightLineProgram) yields a list of elements, and running a straight line decision with ResultOfStraightLineDecision (6.1-6) yields true or false. 6.2-1 IsBBoxProgram IsBBoxProgram( obj )  category Each black box program in GAP lies in the filter IsBBoxProgram. 6.2-2 ScanBBoxProgram ScanBBoxProgram( string )  function Returns: a record containing the black box program encoded by the input string, or fail. For a string string that describes a black box program, e.g., the return value of StringFile (GAPDoc: StringFile), ScanBBoxProgram computes this black box program. If this is successful then the return value is a record containing as the value of its component program the corresponding GAP object that represents the program, otherwise fail is returned. As the first example, we construct a black box program that tries to find standard generators for the alternating group A_5; these standard generators are any pair of elements of the orders 2 and 3, respectively, such that their product has order 5.  Example  gap> findstr:= "\ >  set V 0\n\ > lbl START1\n\ >  rand 1\n\ >  ord 1 A\n\ >  incr V\n\ >  if V gt 100 then timeout\n\ >  if A notin 1 2 3 5 then fail\n\ >  if A noteq 2 then jmp START1\n\ > lbl START2\n\ >  rand 2\n\ >  ord 2 B\n\ >  incr V\n\ >  if V gt 100 then timeout\n\ >  if B notin 1 2 3 5 then fail\n\ >  if B noteq 3 then jmp START2\n\ >  # The elements 1 and 2 have the orders 2 and 3, respectively.\n\ >  set X 0\n\ > lbl CONJ\n\ >  incr X\n\ >  if X gt 100 then timeout\n\ >  rand 3\n\ >  cjr 2 3\n\ >  mu 1 2 4 # ab\n\ >  ord 4 C\n\ >  if C notin 2 3 5 then fail\n\ >  if C noteq 5 then jmp CONJ\n\ >  oup 2 1 2";; gap> find:= ScanBBoxProgram( findstr ); rec( program := )  The second example is a black box program that checks whether its two inputs are standard generators for A_5.  Example  gap> checkstr:= "\ > chor 1 2\n\ > chor 2 3\n\ > mu 1 2 3\n\ > chor 3 5";; gap> check:= ScanBBoxProgram( checkstr ); rec( program := )  6.2-3 RunBBoxProgram RunBBoxProgram( prog, G, input, options )  function Returns: a record describing the result and the statistics of running the black box program prog, or fail, or the string "timeout". For a black box program prog, a group G, a list input of group elements, and a record options, RunBBoxProgram applies prog to input, where G is used only to compute random elements. The return value is fail if a syntax error or an explicit fail statement is reached at runtime, and the string "timeout" if a timeout statement is reached. (The latter might mean that the random choices were unlucky.) Otherwise a record with the following components is returned. gens a list of group elements, bound if an oup statement was reached, result true if a true statement was reached, false if either a false statement or a failed order check was reached, The other components serve as statistical information about the numbers of the various operations (multiply, invert, power, order, random, conjugate, conjugateinplace, commutator), and the runtime in milliseconds (timetaken). The following components of options are supported. randomfunction the function called with argument G in order to compute a random element of G (default PseudoRandom (Reference: PseudoRandom)) orderfunction the function for computing element orders (default Order (Reference: Order)), quiet if true then ignore echo statements (default false), verbose if true then print information about the line that is currently processed, and about order checks (default false), allowbreaks if true then call Error (Reference: Error) when a break statement is reached, otherwise ignore break statements (default true). As an example, we run the black box programs constructed in the example for ScanBBoxProgram (6.2-2).  Example  gap> g:= AlternatingGroup( 5 );; gap> res:= RunBBoxProgram( find.program, g, [], rec() );; gap> IsBound( res.gens ); IsBound( res.result ); true false gap> List( res.gens, Order ); [ 2, 3 ] gap> Order( Product( res.gens ) ); 5 gap> res:= RunBBoxProgram( check.program, "dummy", res.gens, rec() );; gap> IsBound( res.gens ); IsBound( res.result ); false true gap> res.result; true gap> othergens:= GeneratorsOfGroup( g );; gap> res:= RunBBoxProgram( check.program, "dummy", othergens, rec() );; gap> res.result; false  6.2-4 ResultOfBBoxProgram ResultOfBBoxProgram( prog, G[, options] )  function Returns: a list of group elements or true, false, fail, or the string "timeout". This function calls RunBBoxProgram (6.2-3) with the black box program prog and second argument either a group or a list of group elements; if options is not given then the default options of RunBBoxProgram (6.2-3) are assumed. The return value is fail if this call yields fail, otherwise the gens component of the result, if bound, or the result component if not. Note that a group G is used as the second argument in the call of RunBBoxProgram (6.2-3) (the source for random elements), whereas a list G is used as the third argument (the inputs). As an example, we run the black box programs constructed in the example for ScanBBoxProgram (6.2-2).  Example  gap> g:= AlternatingGroup( 5 );; gap> res:= ResultOfBBoxProgram( find.program, g );; gap> List( res, Order ); [ 2, 3 ] gap> Order( Product( res ) ); 5 gap> res:= ResultOfBBoxProgram( check.program, res ); true gap> othergens:= GeneratorsOfGroup( g );; gap> res:= ResultOfBBoxProgram( check.program, othergens ); false  6.2-5 AsBBoxProgram AsBBoxProgram( slp )  attribute Returns: an equivalent black box program for the given straight line program or straight line decision. Let slp be a straight line program (see IsStraightLineProgram (Reference: IsStraightLineProgram)) or a straight line decision (see IsStraightLineDecision (6.1-1)). Then AsBBoxProgram returns a black box program bbox (see IsBBoxProgram (6.2-1)) with the same output as slp, in the sense that ResultOfBBoxProgram (6.2-4) yields the same result for bbox as ResultOfStraightLineProgram (Reference: ResultOfStraightLineProgram) or ResultOfStraightLineDecision (6.1-6), respectively, for slp.  Example  gap> f:= FreeGroup( "x", "y" );; gens:= GeneratorsOfGroup( f );; gap> slp:= StraightLineProgram( [ [1,2,2,3], [3,-1] ], 2 );  gap> ResultOfStraightLineProgram( slp, gens ); y^-3*x^-2 gap> bboxslp:= AsBBoxProgram( slp );  gap> ResultOfBBoxProgram( bboxslp, gens ); [ y^-3*x^-2 ] gap> lines:= [ [ "Order", 1, 2 ], [ "Order", 2, 3 ], >  [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 3, 5 ] ];; gap> dec:= StraightLineDecision( lines, 2 );  gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,3,5) ] ); true gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,3,4) ] ); false gap> bboxdec:= AsBBoxProgram( dec );  gap> ResultOfBBoxProgram( bboxdec, [ (1,2)(3,4), (1,3,5) ] ); true gap> ResultOfBBoxProgram( bboxdec, [ (1,2)(3,4), (1,3,4) ] ); false  6.2-6 AsStraightLineProgram AsStraightLineProgram( bbox )  attribute Returns: an equivalent straight line program for the given black box program, or fail. For a black box program (see AsBBoxProgram (6.2-5)) bbox, AsStraightLineProgram returns a straight line program (see IsStraightLineProgram (Reference: IsStraightLineProgram)) with the same output as bbox if such a straight line program exists, and fail otherwise.  Example  gap> Display( AsStraightLineProgram( bboxslp ) ); # input: r:= [ g1, g2 ]; # program: r[3]:= r[1]^2; r[4]:= r[2]^3; r[5]:= r[3]*r[4]; r[3]:= r[5]^-1; # return values: [ r[3] ] gap> AsStraightLineProgram( bboxdec ); fail  6.3 Representations of Minimal Degree This section deals with minimal degrees of permutation and matrix representations. We do not provide an algorithm that computes these degrees for an arbitrary group, we only provide some tools for evaluating known databases, mainly concerning bicyclic extensions (see [CCN+85, Section 6.5]) of simple groups, in order to derive the minimal degrees, see Section 6.3-4. In the AtlasRep package, this information can be used for prescribing minimality conditions in DisplayAtlasInfo (3.5-1), OneAtlasGeneratingSetInfo (3.5-6), and AllAtlasGeneratingSetInfos (3.5-7). An overview of the stored minimal degrees can be shown with BrowseMinimalDegrees (3.6-1). 6.3-1 MinimalRepresentationInfo MinimalRepresentationInfo( grpname, conditions )  function Returns: a record with the components value and source, or fail Let grpname be the GAP name of a group G, say. If the information described by conditions about minimal representations of this group can be computed or is stored then MinimalRepresentationInfo returns a record with the components value and source, otherwise fail is returned. The following values for conditions are supported.  If conditions is NrMovedPoints (Reference: NrMovedPoints for a permutation) then value, if known, is the degree of a minimal faithful (not necessarily transitive) permutation representation for G.  If conditions consists of Characteristic (Reference: Characteristic) and a prime integer p then value, if known, is the dimension of a minimal faithful (not necessarily irreducible) matrix representation in characteristic p for G.  If conditions consists of Size (Reference: Size) and a prime power q then value, if known, is the dimension of a minimal faithful (not necessarily irreducible) matrix representation over the field of size q for G. In all cases, the value of the component source is a list of strings that describe sources of the information, which can be the ordinary or modular character table of G (see [CCN+85], [JLPW95], [HL89]), the table of marks of G, or [Jan05]. For an overview of minimal degrees of faithful matrix representations for sporadic simple groups and their covering groups, see also http://www.math.rwth-aachen.de/~MOC/mindeg/. Note that MinimalRepresentationInfo cannot provide any information about minimal representations over prescribed fields in characteristic zero. Information about groups that occur in the AtlasRep package is precomputed in MinimalRepresentationInfoData (6.3-2), so the packages CTblLib and TomLib are not needed when MinimalRepresentationInfo is called for these groups. (The only case that is not covered by this list is that one asks for the minimal degree of matrix representations over a prescribed field in characteristic coprime to the group order.) One of the following strings can be given as an additional last argument. "cache" means that the function tries to compute (and then store) values that are not stored in MinimalRepresentationInfoData (6.3-2), but stored values are preferred; this is also the default. "lookup" means that stored values are returned but the function does not attempt to compute values that are not stored in MinimalRepresentationInfoData (6.3-2). "recompute" means that the function always tries to compute the desired value, and checks the result against stored values.  Example  gap> MinimalRepresentationInfo( "A5", NrMovedPoints ); rec(   source := [ "computed (alternating group)",   "computed (char. table)", "computed (subgroup tables)",   "computed (subgroup tables, known repres.)",   "computed (table of marks)" ], value := 5 ) gap> MinimalRepresentationInfo( "A5", Characteristic, 2 ); rec( source := [ "computed (char. table)" ], value := 2 ) gap> MinimalRepresentationInfo( "A5", Size, 2 ); rec( source := [ "computed (char. table)" ], value := 4 )  6.3-2 MinimalRepresentationInfoData MinimalRepresentationInfoData  global variable This is a record whose components are GAP names of groups for which information about minimal permutation and matrix representations were known in advance or have been computed in the current GAP session. The value for the group G, say, is a record with the following components. NrMovedPoints a record with the components value (the degree of a smallest faithful permutation representation of G) and source (a string describing the source of this information). Characteristic a record whose components are at most 0 and strings corresponding to prime integers, each bound to a record with the components value (the degree of a smallest faithful matrix representation of G in this characteristic) and source (a string describing the source of this information). CharacteristicAndSize a record whose components are strings corresponding to prime integers p, each bound to a record with the components sizes (a list of powers q of p), dimensions (the corresponding list of minimal dimensions of faithful matrix representations of G over a field of size q), sources (the corresponding list of strings describing the source of this information), and complete (a record with the components val (true if the minimal dimension over any finite field in characteristic p can be derived from the values in the record, and false otherwise) and source (a string describing the source of this information)). The values are set by SetMinimalRepresentationInfo (6.3-3). 6.3-3 SetMinimalRepresentationInfo SetMinimalRepresentationInfo( grpname, op, value, source )  function Returns: true if the values were successfully set, false if stored values contradict the given ones. This function sets an entry in MinimalRepresentationInfoData (6.3-2) for the group G, say, with GAP name grpname. Supported values for op are  "NrMovedPoints" (see NrMovedPoints (Reference: NrMovedPoints for a permutation)), which means that value is the degree of minimal faithful (not necessarily transitive) permutation representations of G,  a list of length two with first entry "Characteristic" (see Characteristic (Reference: Characteristic)) and second entry char either zero or a prime integer, which means that value is the dimension of minimal faithful (not necessarily irreducible) matrix representations of G in characteristic char,  a list of length two with first entry "Size" (see Size (Reference: Size)) and second entry a prime power q, which means that value is the dimension of minimal faithful (not necessarily irreducible) matrix representations of G over the field with q elements, and  a list of length three with first entry "Characteristic" (see Characteristic (Reference: Characteristic)), second entry a prime integer p, and third entry the string "complete", which means that the information stored for characteristic p is complete in the sense that for any given power q of p, the minimal faithful degree over the field with q elements equals that for the largest stored field size of which q is a power. In each case, source is a string describing the source of the data; computed values are detected from the prefix "comp" of source. If the intended value is already stored and differs from value then an error message is printed.  Example  gap> SetMinimalRepresentationInfo( "A5", "NrMovedPoints", 5, >  "computed (alternating group)" ); true gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 0 ], 3, >  "computed (char. table)" ); true gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 2 ], 2, >  "computed (char. table)" ); true gap> SetMinimalRepresentationInfo( "A5", [ "Size", 2 ], 4, >  "computed (char. table)" ); true gap> SetMinimalRepresentationInfo( "A5", [ "Size", 4 ], 2, >  "computed (char. table)" ); true gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 3 ], 3, >  "computed (char. table)" ); true  6.3-4 Criteria Used to Compute Minimality Information The information about the minimal degree of a faithful matrix representation of G in a given characteristic or over a given field in positive characteristic is derived from the relevant (ordinary or modular) character table of G, except in a few cases where this table itself is not known but enough information about the degrees is available in [HL89] and [Jan05]. The following criteria are used for deriving the minimal degree of a faithful permutation representation of G from the information in the GAP libraries of character tables and of tables of marks.  If the name of G has the form "An" or "An.2" (denoting alternating and symmetric groups, respectively) then the minimal degree is n, except if n is smaller than 3 or 2, respectively.  If the name of G has the form "L2(q)" (denoting projective special linear groups in dimension two) then the minimal degree is q + 1, except if q ∈ { 2, 3, 5, 7, 9, 11 }, see [Hup67, Satz II.8.28].  If the largest maximal subgroup of G is core-free then the index of this subgroup is the minimal degree. (This is used when the two character tables in question and the class fusion are available in GAP's Character Table Library [Bre22]; this happens for many character tables of simple groups.)  If G has a unique minimal normal subgroup then each minimal faithful permutation representation is transitive. (Note that the core of each point stabilizer is either trivial or contains the unique minimal normal subgroup.) In this case, the minimal degree can be computed directly from the information in the table of marks of G if this is available in GAP's Library of Tables of Marks [NMP18]. Suppose that the largest maximal subgroup of G is not core-free but simple and normal in G, and that the other maximal subgroups of G are core-free. In this case, we take the minimum of the indices of the core-free maximal subgroups and of the product of index and minimal degree of the normal maximal subgroup. (This suffices since no core-free subgroup of the whole group can contain a nontrivial normal subgroup of a normal maximal subgroup.) Let N be the unique minimal normal subgroup of G, and assume that G/N is simple and has minimal degree n, say. If there is a subgroup U of index n ⋅ |N| in G that intersects N trivially then the minimal degree of G is n ⋅ |N|. (This is used for the case that N is central in G and N × U occurs as a subgroup of G.)  If we know a subgroup of G whose minimal degree is n, say, and if we know either (a class fusion from) a core-free subgroup of index n in G or a faithful permutation representation of degree n for G then n is the minimal degree for G. (This happens often for tables of almost simple groups.) 6.4 A JSON Interface We define a mapping between certain GAP objects and JSON (JavaScript Object Notation) texts (see [JSO14]), as follows.  The three GAP values true, false, and fail correspond to the JSON texts true, false, and null, respectively.  GAP strings correspond to JSON strings; special characters in a GAP string (control characters ASCII 0 to 31, backslash and double quote) are mapped as defined in JSON's specification, and other ASCII characters are kept as they are; if a GAP string contains non-ASCII characters, it is assumed that it is UTF-8 encoded, and one may choose either to keep non-ASCII characters as they are, or to create an ASCII only JSON string, using JSON's syntax for Unicode code points (\uXXXX); in the other direction, JSON strings are assumed to be UTF-8 encoded, and are mapped to UTF-8 encoded GAP strings, by keeping the non-ASCII characters and converting substrings of the form \uXXXX accordingly.  GAP integers (in the sense of IsInt (Reference: IsInt)) are mapped to JSON numbers that consist of digits and optionally a leading sign character -; in the other direction, JSON numbers of this form and also JSON numbers that involve no decimal dots and have no negative exponent (for example "2e3") are mapped to GAP integers.  GAP rationals (in the sense of IsRat (Reference: IsRat)) which are not integers are represented by JSON floating point numbers; the JSON representation (and hence the precision) is given by first applying Float (Reference: Float) and then String (Reference: String).  GAP floats (in the sense of Chapter 'Reference: Floats' in the GAP Reference Manual) are mapped to JSON floating point numbers; the JSON representation (and hence the precision) is given by applying String (Reference: String); in the other direction, JSON numbers that involve a decimal dot or a negative exponent are mapped to GAP floats.  (Nested and not self-referential) dense GAP lists of objects correspond to JSON arrays such that the list entries correspond to each other. (Note that JSON does not support non-dense arrays.)  (Nested and not self-referential) GAP records correspond to JSON objects such that both labels (which are strings in GAP and JSON) and values correspond to each other. The GAP functions AGR.JsonText (6.4-2) and AGR.GapObjectOfJsonText (6.4-3) can be used to create a JSON text from a suitable GAP object and the GAP object that corresponds to a given JSON text, respectively. Note that the composition of the two functions is in general not the identity mapping, because AGR.JsonText (6.4-2) accepts non-integer rationals, whereas AGR.GapObjectOfJsonText (6.4-3) does not create such objects. Note also that the results of AGR.JsonText (6.4-2) do not contain information about dependencies between common subobjects. This is another reason why applying first AGR.JsonText (6.4-2) and then AGR.GapObjectOfJsonText (6.4-3) may yield a GAP object with different behaviour. Applying AGR.JsonText (6.4-2) to a self-referential object such as [ ~ ] will raise a recursion depth trap error. 6.4-1 Why JSON? The aim of this JSON interface is to read and write certain data files with GAP such that these files become easily accessible independent of GAP. The function AGR.JsonText (6.4-2) is intended just as a prototype, variants of this function are very likely to appear in other contexts, for example in order to force certain line formatting or ordering of record components. It is not the aim of the JSON interface to provide self-contained descriptions of arbitrary GAP objects, in order to read them into a GAP session. Note that those GAP objects for which a JSON equivalent exists (and many more) can be easily written to files as they are, and GAP can read them efficiently. On the other hand, more complicated GAP objects can be written and read via the so-called pickling, for which a framework is provided by the GAP package IO [Neu14]. Here are a few situations which are handled well by pickling but which cannot be addressed with a JSON interface.  Pickling and unpickling take care of common subobjects of the given GAP object. The following example shows that the applying first AGR.JsonText (6.4-2) and then AGR.GapObjectOfJsonText (6.4-3) may yield an object which behaves differently.   Example  gap> l:= [ [ 1 ] ];; l[2]:= l[1];; l; [ [ 1 ], [ 1 ] ] gap> new:= AGR.GapObjectOfJsonText( AGR.JsonText( l ) ).value; [ [ 1 ], [ 1 ] ] gap> Add( l[1], 2 ); l; [ [ 1, 2 ], [ 1, 2 ] ] gap> Add( new[1], 2 ); new; [ [ 1, 2 ], [ 1 ] ]   GAP admits self-referential objects, for example as follows.   Example  gap> l:= [];; l[1]:= l;;  Pickling and unpickling take care of self-referential objects, but AGR.JsonText (6.4-2) does not support the conversion of such objects. 6.4-2 AGR.JsonText AGR.JsonText( obj[, mode] )  function Returns: a new mutable string that describes obj as a JSON text, or fail. If obj is a GAP object for which a corresponding JSON text exists, according to the mapping described above, then such a JSON text is returned. Otherwise, fail is returned. If the optional argument mode is given and has the value "ASCII" then the result in an ASCII string, otherwise the encoding of strings that are involved in obj is kept.  Example  gap> AGR.JsonText( [] ); "[]" gap> AGR.JsonText( "" ); "\"\"" gap> AGR.JsonText( "abc\ndef\cghi" ); "\"abc\\ndef\\u0003ghi\"" gap> AGR.JsonText( rec() ); "{}" gap> AGR.JsonText( [ , 2 ] ); fail gap> str:= [ '\303', '\266' ];; # umlaut o gap> json:= AGR.JsonText( str );; List( json, IntChar ); [ 34, 195, 182, 34 ] gap> AGR.JsonText( str, "ASCII" ); "\"\\u00F6\""  6.4-3 AGR.GapObjectOfJsonText AGR.GapObjectOfJsonText( string )  function Returns: a new mutable record whose value component, if bound, contains a mutable GAP object that represents the JSON text string. If string is a string that represents a JSON text then the result is a record with the components value (the corresponding GAP object in the sense of the above interface) and status (value true). Otherwise, the result is a record with the components status (value false) and errpos (the position in string where the string turns out to be not valid JSON).  Example  gap> AGR.GapObjectOfJsonText( "{ \"a\": 1 }" ); rec( status := true, value := rec( a := 1 ) ) gap> AGR.GapObjectOfJsonText( "{ \"a\": x }" ); rec( errpos := 8, status := false )  atlasrep-2.1.8/doc/chap5.txt0000644000175000017500000010364614545501235014003 0ustar samsam 5 Extensions of the AtlasRep Package It may be interesting to use the functions of the GAP interface also for representations or programs that are not part of the ATLAS of Group Representations. This chapter describes how to achieve this. The main idea is that users can notify collections of private data files, which may consist of 1 new faithful representations and programs for groups that are declared already in the core part of the database that belongs to the official ATLAS of Group Representations (see Section 5.1), 2 the declaration of groups that are not declared in the ATLAS of Group Representations, and representations and programs for them (see Section 5.2), and 3 the definition of new kinds of representations and programs (see Section 7.5). A test example of a local extension is given in Section 5.3. Another such example is the small collection of data that is distributed together with the package, in its datapkg directory; its contents can be listed by calling DisplayAtlasInfo( "contents", "internal" ). Examples of extensions by files that can be downloaded from the internet can be found in the GAP packages MFER [BHM09] and CTBlocks [Bre14]. These extensions are automatically notified as soon as AtlasRep is available, via the default value of the user preference AtlasRepTOCData, see Section 4.2-3; their contents can be listed by calling DisplayAtlasInfo( "contents", "mfer" ) and DisplayAtlasInfo( "contents", "ctblocks" ), respectively. Several of the sanity checks for the core part of the AtlasRep data make sense also for data extensions, see Section 7.9 for more information. 5.1 Notify Additional Data After the AtlasRep package has been loaded into the GAP session, one can extend the data which the interface can access by own representations and programs. The following two variants are supported.  The additional data files are locally available in some directory. Information about the declaration of new groups or about additional information such as the character names of representations can be provided in an optional JSON format file named toc.json in this directory.  The data files can be downloaded from the internet. Both the list of available data and additional information as in the above case are given by either a local JSON format file or the URL of a JSON format file. This variant requires the user preference AtlasRepAccessRemoteFiles (see Section 4.2-1) to have the value true. In both cases, AtlasOfGroupRepresentationsNotifyData (5.1-1) can be used to make the private data available to the interface. 5.1-1 AtlasOfGroupRepresentationsNotifyData AtlasOfGroupRepresentationsNotifyData( dir, id[, test] )  function AtlasOfGroupRepresentationsNotifyData( filename[, id][, test] )  function AtlasOfGroupRepresentationsNotifyData( url[, id][, test] )  function Returns: true if the overview of the additional data can be evaluated and if the names of the data files in the extension are compatible with the data files that had been available before the call, otherwise false. The following variants are supported for notifying additional data. Contents of a local directory The first argument dir must be either a local directory (see 'Reference: Directories') or a string denoting the path of a local directory, such that the GAP object describing this directory can be obtained by calling Directory (Reference: Directory) with the argument dir; in the latter case, dir can be an absolute path or a path relative to the user's home directory (starting with a tilde character ~) or a path relative to the directory where GAP was started. The files contained in this directory or in its subdirectories (only one level deep) are considered. If the directory contains a JSON document in a file with the name toc.json then this file gets evaluated; its purpose is to provide additional information about the data files. Calling AtlasOfGroupRepresentationsNotifyData means to evaluate the contents of the directory and (if available) of the file toc.json. Accessing data means to read the locally available data files. The argument id must be a string. It will be used in the identifier components of the records that are returned by interface functions (see Section 3.5) for data contained in the directory dir. (Note that the directory name may be different in different GAP sessions or for different users who want to access the same data, whereas the identifier components shall be independent of such differences.) An example of a local extension is the contents of the datapkg directory of the AtlasRep package. This extension gets notified automatically when AtlasRep gets loaded. For restricting data collections to this extension, one can use the identifier "internal". Local file describing the contents of a local or remote directory The first argument filename must be the name of a local file whose content is a JSON document that lists the available data, additional information about these data, and an URL from where the data can be downloaded. The data format of this file is defined by the JSON schema file doc/atlasreptoc_schema.json of the AtlasRep package. Calling AtlasOfGroupRepresentationsNotifyData means to evaluate the contents of the file filename, without trying to access the remote data. The id is then either given implicitly by the ID component of the JSON document or can be given as the second argument. Downloaded data files are stored in the subdirectory dataext/id of the directory that is given by the user preference AtlasRepDataDirectory, see Section 4.2-2. Accessing data means to download remote files if necessary but to prefer files that are already locally available. An example of such an extension is the set of permutation representations provided by the MFER package [BHM09]; due to the file sizes, these representations are not distributed together with the MFER package. For restricting data collections to this extension, one can use the identifier "mfer". Another example is given by some of the data that belong to the CTBlocks package [Bre14]. These data are also distributed with that package, and notifying the extension in the situation that the CTBlocks package is available will make its local data available, via the component LocalDirectory of the JSON document ctblocks.json; notifying the extension in the situation that the CTBlocks package is not available will make the remote files available, via the component DataURL of this JSON document. For restricting data collections to this extension, one can use the identifier "ctblocks". URL of a file (This variant works only if the IO package [Neu14] is available.) The first argument url must be the URL of a JSON document as in the previous case. Calling AtlasOfGroupRepresentationsNotifyData in online mode (that is, the user preference AtlasRepAccessRemoteFiles has the value true) means to download this file and to evaluate it; the id is then given implicitly by the ID component of the JSON document, and the contents of the document gets stored in a file with name dataext/id/toc.json, relative to the directory given by the value of the user preference AtlasRepDataDirectory. Also downloaded files for this extension will be stored in the directory dataext/id. Calling AtlasOfGroupRepresentationsNotifyData in offline mode requires that the argument id is explicitly given. In this case, it is checked whether the dataext subdirectory contains a subdirectory with name id; if not then false is returned, if yes then the contents of this local directory gets notified via the first form described above. Accessing data in online mode means the same as in the case of a remote directory. Accessing data in offline mode means the same as in the case of a local directory. Examples of such extension are again the data from the packages CTBlocks and MFER described above, but in the situation that these packages are not loaded, and that just the web URLs of their JSON documents are entered which describe the contents. In all three cases, if the optional argument test is given then it must be either true or false. In the true case, consistency checks are switched on during the notification. The default for test is false. The notification of an extension may happen as a side-effect when a GAP package gets loaded that provides the data in question. Besides that, one may collect the notifications of data extensions in one's gaprc file (see Section 'Reference: The gap.ini and gaprc files'). 5.1-2 AtlasOfGroupRepresentationsForgetData AtlasOfGroupRepresentationsForgetData( dirid )  function If dirid is the identifier of a database extension that has been notified with AtlasOfGroupRepresentationsNotifyData (5.1-1) then AtlasOfGroupRepresentationsForgetData undoes the notification; this means that from then on, the data of this extension cannot be accessed anymore in the current session. 5.1-3 StringOfAtlasTableOfContents StringOfAtlasTableOfContents( inforec )  function For a record inforec with at least the component ID, with value "core" or the identifier of a data extension (see AtlasOfGroupRepresentationsNotifyData (5.1-1)), this function returns a string that describes the part of AtlasRep data belonging to inforec.ID. Printed to a file, the returned string can be used as the table of contents of this part of the data. For that purpose, also the following components of inforec must be bound (all strings). Version, SelfURL (the internet address of the table of contents file itself). At least one of the following two components must be bound. DataURL is the internet address of the directory from where the data in question can be downloaded. LocalDirectory is a path relative to GAP's pkg directory where the data may be stored locally (depending on whether some GAP package is installed). If the component DataURL is bound then the returned string contains the information about the data files; this is not necessary if the data are only locally available. If both DataURL and LocalDirectory are bound then locally available data will be prefered at runtime. Alternatively, inforec can also be the ID string; in this case, the values of those of the supported components mentioned above that are defined in an available JSON file for this ID are automatically inserted. (If there is no such file yet then entering the ID string as inforec does not make sense.) For an example how to use the function, see Section 5.3. 5.2 The Effect of Extensions on the User Interface First suppose that only new groups or new data for known groups or for new groups are added. In this case, DisplayAtlasInfo (3.5-1) lists the additional representations and programs in the same way as other data known to AtlasRep, except that parts outside the core database are marked with the string that is the value of the user preference AtlasRepMarkNonCoreData, see Section 4.2-12. The ordering of representations listed by DisplayAtlasInfo (3.5-1) (and referred to by AtlasGenerators (3.5-3)) will in general change whenever extensions get notified. For the other interface functions described in Chapter 3, the only difference is that also the additional data can be accessed. If also new data types are introduced in an extension (see Section 7.5) then additional columns or rows can appear in the output of DisplayAtlasInfo (3.5-1), and new inputs can become meaningful for all interface functions. 5.3 An Example of Extending the AtlasRep Data This section shows an extension by a few locally available files. We set the info level of InfoAtlasRep (7.1-1) to 1 in this section.  Example  gap> locallevel:= InfoLevel( InfoAtlasRep );; gap> SetInfoLevel( InfoAtlasRep, 1 );  Let us assume that the local directory privdir contains data for the cyclic group C_4 of order 4 and for the alternating group A_5 on 5 points, respectively. Note that it is obvious what the term standard generators means for the group C_4. Further let us assume that privdir contains the following files. C4G1-p4B0.m1 a faithful permutation representation of C_4 on 4 points, C4G1-max1W1 the straight line program that returns the square of its unique input, C4G1-a2W1 the straight line program that raises its unique input to the third power, C4G1-XtestW1 the straight line program that returns the square of its unique input, A5G1-p60B0.m1 and A5G1-p60B0.m2 standard generators for A_5 in its regular permutation representation. The directory and the files can be created as follows.  Example  gap> prv:= DirectoryTemporary( "privdir" );; gap> FileString( Filename( prv, "C4G1-p4B0.m1" ), >  MeatAxeString( [ (1,2,3,4) ], 4 ) );; gap> FileString( Filename( prv, "C4G1-max1W1" ), >  "inp 1\npwr 2 1 2\noup 1 2\n" );; gap> FileString( Filename( prv, "C4G1-XtestW1" ), >  "inp 1\npwr 2 1 2\noup 1 2\n" );; gap> FileString( Filename( prv, "C4G1-a2W1" ), >  "inp 1\npwr 3 1 2\noup 1 2\n" );; gap> FileString( Filename( prv, "C4G1-Ar1aB0.g" ), >  "return rec( generators:= [ [[E(4)]] ] );\n" );; gap> points:= Elements( AlternatingGroup( 5 ) );; gap> FileString( Filename( prv, "A5G1-p60B0.m1" ), >  MeatAxeString( [ Permutation( (1,2)(3,4), points, OnRight ) ], 60 ) );; gap> FileString( Filename( prv, "A5G1-p60B0.m2" ), >  MeatAxeString( [ Permutation( (1,3,5), points, OnRight ) ], 60 ) );;  (We could also introduce intermediate directories C4 and A5, say, each with the data for one group only.) The core part of the AtlasRep data does not contain information about C_4, so we first notify this group, in the file privdir/toc.json. Besides the name of the group, we store the following information: the group order, the number of (classes of) maximal subgroups, their orders, their structures, and describing data about the three representations. The group A_5 is already known with name A5 in the core part of the AtlasRep data, so it need not and cannot be notified again.  Example  gap> FileString( Filename( prv, "toc.json" ), Concatenation( [ "{\n", >  "\"ID\":\"priv\",\n", >  "\"Data\":[\n", >  "[\"GNAN\",[\"C4\",\"C4\"]],\n", >  "[\"GRS\",[\"C4\",4]],\n", >  "[\"MXN\",[\"C4\",1]],\n", >  "[\"MXO\",[\"C4\",[2]]],\n", >  "[\"MXS\",[\"C4\",[\"C2\"]]],\n", >  "[\"RNG\",[\"C4G1-Ar1aB0\",\"CF(4)\",", >  "[\"QuadraticField\",-1],[1,0,1]]],\n", >  "[\"API\",[\"C4G1-p4B0\",[1,4,\"imprim\",\"1 < C2\"]]],\n", >  "[\"API\",[\"A5G1-p60B0\",[1,60,\"imprim\",\"1 < S3\"]]]\n", >  "]\n", >  "}\n" ] ) );;  Then we notify the extension.  Example  gap> AtlasOfGroupRepresentationsNotifyData( prv, "priv", true ); true  Now we can use the interface functions for accessing the additional data.  Example  gap> DisplayAtlasInfo( [ "C4" ] ); group | # | maxes | cl | cyc | out | fnd | chk | prs ------+---+-------+----+-----+-----+-----+-----+---- C4* | 2 | 1 | | | 2 | | |  gap> DisplayAtlasInfo( "C4" ); Representations for G = C4: (all refer to std. generators 1) --------------------------- 1: G <= Sym(4)* rank 4, on cosets of 1 < C2 2: G <= GL(1a,CF(4))*   Programs for G = C4: (all refer to std. generators 1) -------------------- - automorphisms*:  2*  - maxes (all 1):  1*: C2  - other scripts*:  "test"*  gap> DisplayAtlasInfo( "C4", IsPermGroup, true ); Representations for G = C4: (all refer to std. generators 1) --------------------------- 1: G <= Sym(4)* rank 4, on cosets of 1 < C2 gap> DisplayAtlasInfo( "C4", IsMatrixGroup ); Representations for G = C4: (all refer to std. generators 1) --------------------------- 2: G <= GL(1a,CF(4))*  gap> DisplayAtlasInfo( "C4", Dimension, 2 ); gap> DisplayAtlasInfo( "A5", NrMovedPoints, 60 ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 4: G <= Sym(60)* rank 60, on cosets of 1 < S3 gap> info:= OneAtlasGeneratingSetInfo( "C4" ); rec( contents := "priv", groupname := "C4", id := "",   identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ],   isPrimitive := false, p := 4, rankAction := 4,   repname := "C4G1-p4B0", repnr := 1, size := 4,   stabilizer := "1 < C2", standardization := 1, transitivity := 1,   type := "perm" ) gap> AtlasGenerators( info.identifier ); rec( contents := "priv", generators := [ (1,2,3,4) ],   groupname := "C4", id := "",   identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ],   isPrimitive := false, p := 4, rankAction := 4,   repname := "C4G1-p4B0", repnr := 1, size := 4,   stabilizer := "1 < C2", standardization := 1, transitivity := 1,   type := "perm" ) gap> AtlasProgram( "C4", 1 ); rec( groupname := "C4",   identifier := [ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ],   program := , size := 2, standardization := 1,  subgroupname := "C2", version := "1" ) gap> AtlasProgram( "C4", "maxes", 1 ); rec( groupname := "C4",   identifier := [ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ],   program := , size := 2, standardization := 1,  subgroupname := "C2", version := "1" ) gap> AtlasProgram( "C4", "maxes", 2 ); fail gap> AtlasGenerators( "C4", 1 ); rec( contents := "priv", generators := [ (1,2,3,4) ],   groupname := "C4", id := "",   identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ],   isPrimitive := false, p := 4, rankAction := 4,   repname := "C4G1-p4B0", repnr := 1, size := 4,   stabilizer := "1 < C2", standardization := 1, transitivity := 1,   type := "perm" ) gap> AtlasGenerators( "C4", 2 ); rec( contents := "priv", dim := 1, generators := [ [ [ E(4) ] ] ],   groupname := "C4", id := "a",   identifier := [ "C4", [ [ "priv", "C4G1-Ar1aB0.g" ] ], 1, 1 ],   polynomial := [ 1, 0, 1 ], repname := "C4G1-Ar1aB0", repnr := 2,   ring := GaussianRationals, size := 4, standardization := 1,   type := "matalg" ) gap> AtlasGenerators( "C4", 3 ); fail gap> AtlasProgram( "C4", "other", "test" ); rec( groupname := "C4",   identifier := [ "C4", [ [ "priv", "C4G1-XtestW1" ] ], 1 ],   program := , standardization := 1,   version := "1" )  We can restrict the data shown by DisplayAtlasInfo (3.5-1) to our extension, as follows.  Example  gap> DisplayAtlasInfo( "contents", "priv" ); group | # | maxes | cl | cyc | out | fnd | chk | prs ------+---+-------+----+-----+-----+-----+-----+---- A5* | 1 | | | | | | |  C4* | 2 | 1 | | | 2 | | |   For checking the data in the extension, we apply the relevant sanity checks (see Section 7.9).  Example  gap> AGR.Test.Words( "priv" ); true gap> AGR.Test.FileHeaders( "priv" ); true gap> AGR.Test.Files( "priv" ); true gap> AGR.Test.BinaryFormat( "priv" ); true gap> AGR.Test.Primitivity( "priv" : TryToExtendData ); true gap> AGR.Test.Characters( "priv" : TryToExtendData ); #I AGR.Test.Character: #I add new info ["CHAR",["A5","A5G1-p60B0", 0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4a^4+5a^5"]], #I AGR.Test.Character: #I add new info ["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]], true  We did not store the character information in the file privdir/toc.json, and GAP was able to identify the characters of the two permutation representations. (The identification of the character for the matrix representation fails because we cannot distinguish between the two Galois conjugate faithful characters.) If we store the character information as proposed by GAP, this information will for example become part of the records returned by OneAtlasGeneratingSetInfo (3.5-6). (Note that we have to enter "priv" as the last argument of AGR.CHAR when we call the function interactively, in order to assign the information to the right context.)  Example  gap> AGR.CHAR("A5","A5G1-p60B0", > 0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4a^4+5a^5", "priv" ); gap> AGR.CHAR("C4","C4G1-p4B0",0,[1,2,3,4],"1abcd", "priv" ); gap> AGR.Test.Characters( "priv" ); true gap> OneAtlasGeneratingSetInfo( "C4" ); rec( charactername := "1abcd", constituents := [ 1, 2, 3, 4 ],   contents := "priv", groupname := "C4", id := "",   identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ],   isPrimitive := false, p := 4, rankAction := 4,   repname := "C4G1-p4B0", repnr := 1, size := 4,   stabilizer := "1 < C2", standardization := 1, transitivity := 1,   type := "perm" )  A string that describes the JSON format overview of the data extension can be created with StringOfAtlasTableOfContents (5.1-3).  Example  gap> Print( StringOfAtlasTableOfContents( "priv" ) ); { "ID":"priv", "Data":[ ["GNAN",["C4","C4"]],  ["GRS",["C4",4]],  ["MXN",["C4",1]],  ["MXO",["C4",[2]]],  ["MXS",["C4",["C2"]]],  ["RNG",["C4G1-Ar1aB0","CF(4)",["QuadraticField",-1],[1,0,1]]],  ["API",["A5G1-p60B0",[1,60,"imprim","1 < S3"]]], ["API",["C4G1-p4B0",[1,4,"imprim","1 < C2"]]],  ["CHAR",["A5","A5G1-p60B0",0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4\ a^4+5a^5"]], ["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]] ] }  If we prescribe a "DataURL" component that starts with "http" then also the "TOC" lines are listed, in order to enable remote access to the data.  Example  gap> Print( StringOfAtlasTableOfContents( >  rec( ID:= "priv", DataURL:= "http://someurl" ) ) ); { "ID":"priv", "DataURL":"http://someurl", "Data":[ ["GNAN",["C4","C4"]],  ["GRS",["C4",4]],  ["MXN",["C4",1]],  ["MXO",["C4",[2]]],  ["MXS",["C4",["C2"]]],  ["TOC",["perm","A5G1-p60B0.m",[118815263,24584221]]], ["TOC",["matalg","C4G1-Ar1aB0.g",[49815028]]], ["TOC",["otherscripts","C4G1-XtestW1",[-27672877]]], ["TOC",["out","C4G1-a2W1",[126435524]]], ["TOC",["maxes","C4G1-max1W1",[-27672877]]], ["TOC",["perm","C4G1-p4B0.m",[102601978]]],  ["RNG",["C4G1-Ar1aB0","CF(4)",["QuadraticField",-1],[1,0,1]]],  ["API",["A5G1-p60B0",[1,60,"imprim","1 < S3"]]], ["API",["C4G1-p4B0",[1,4,"imprim","1 < C2"]]],  ["CHAR",["A5","A5G1-p60B0",0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4\ a^4+5a^5"]], ["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]] ] }  Finally, we uninstall our extension, and reset the info level that had been set to 1 in the beginning. (Also the group name C4 is removed this way, which is an advantage of using a toc.json file over calling AGR.GNAN directly.),  Example  gap> AtlasOfGroupRepresentationsForgetData( "priv" ); gap> SetInfoLevel( InfoAtlasRep, locallevel );  We need not care about removing the temporary directory and the files in it. GAP will try to remove directories created with DirectoryTemporary (Reference: DirectoryTemporary) at the end of the GAP session. atlasrep-2.1.8/doc/chap2.txt0000644000175000017500000017636714545501235014012 0ustar samsam 2 Tutorial for the AtlasRep Package This chapter gives an overview of the basic functionality provided by the AtlasRep package. The main concepts and interface functions are presented in the first three sections, and Section 2.4 shows a few small examples. Let us first fix the setup for the examples shown in the package manual. 1 First of all, we load the AtlasRep package. Some of the examples require also the GAP packages CTblLib and TomLib, so we load also these packages.   Example  gap> LoadPackage( "AtlasRep", false ); true gap> LoadPackage( "CTblLib", false ); true gap> LoadPackage( "TomLib", false ); true  2 Depending on the terminal capabilities, the output of DisplayAtlasInfo (3.5-1) may contain non-ASCII characters, which are not supported by the LaTeX and HTML versions of GAPDoc documents. The examples in this manual are used for tests of the package's functionality, thus we set the user preference DisplayFunction (see Section 4.2-11) to the value "Print" in order to produce output consisting only of ASCII characters, which is assumed to work in any terminal.   Example  gap> origpref:= UserPreference( "AtlasRep", "DisplayFunction" );; gap> SetUserPreference( "AtlasRep", "DisplayFunction", "Print" );  3 The GAP output for the examples may look differently if data extensions have been loaded. In order to ignore these extensions in the examples, we unload them.   Example  gap> priv:= Difference( >  List( AtlasOfGroupRepresentationsInfo.notified, x -> x.ID ), >  [ "core", "internal" ] );; gap> Perform( priv, AtlasOfGroupRepresentationsForgetData );  4 If the info level of InfoAtlasRep (7.1-1) is larger than zero then additional output appears on the screen. In order to avoid this output, we set the level to zero.   Example  gap> globallevel:= InfoLevel( InfoAtlasRep );; gap> SetInfoLevel( InfoAtlasRep, 0 );  2.1 Accessing a Specific Group in AtlasRep An important database to which the AtlasRep package gives access is the ATLAS of Group Representations [WWT+]. It contains generators and related data for several groups, mainly for extensions of simple groups (see Section 2.1-1) and for their maximal subgroups (see Section 2.1-2). In general, these data are not part of the package. They are downloaded as soon as they are needed for the first time, see Section 4.2-1. 2.1-1 Accessing a Group in AtlasRep via its Name Each group that occurs in this database is specified by a name, which is a string similar to the name used in the ATLAS of Finite Groups [CCN+85]. For those groups whose character tables are contained in the GAP Character Table Library [Bre22], the names are equal to the Identifier (Reference: Identifier for character tables) values of these character tables. Examples of such names are "M24" for the Mathieu group M_24, "2.A6" for the double cover of the alternating group A_6, and "2.A6.2_1" for the double cover of the symmetric group S_6. The names that actually occur are listed in the first column of the overview table that is printed by the function DisplayAtlasInfo (3.5-1), called without arguments, see below. The other columns of the table describe the data that are available in the database. For example, DisplayAtlasInfo (3.5-1) may print the following lines. Omissions are indicated with ....  Example  gap> DisplayAtlasInfo(); group | # | maxes | cl | cyc | out | fnd | chk | prs -------------------------+----+-------+----+-----+-----+-----+-----+---- ... 2.A5 | 26 | 3 | | | | | + | +  2.A5.2 | 11 | 4 | | | | | + | +  2.A6 | 18 | 5 | | | | | |  2.A6.2_1 | 3 | 6 | | | | | |  2.A7 | 24 | 2 | | | | | |  2.A7.2 | 7 | | | | | | |  ... M22 | 58 | 8 | + | + | | + | + | +  M22.2 | 46 | 7 | + | + | | + | + | +  M23 | 66 | 7 | + | + | | + | + | +  M24 | 62 | 9 | + | + | | + | + | +  McL | 46 | 12 | + | + | | + | + | +  McL.2 | 27 | 10 | | + | | + | + | +  O7(3) | 28 | | | | | | |  O7(3).2 | 3 | | | | | | |  ... Suz | 30 | 17 | | + | 2 | + | + |  ...  Called with a group name as the only argument, the function AtlasGroup (3.5-8) returns a group isomorphic to the group with the given name, or fail. If permutation generators are available in the database then a permutation group (of smallest available degree) is returned, otherwise a matrix group.  Example  gap> g:= AtlasGroup( "M24" ); Group([ (1,4)(2,7)(3,17)(5,13)(6,9)(8,15)(10,19)(11,18)(12,21)(14,16)  (20,24)(22,23), (1,4,6)(2,21,14)(3,9,15)(5,18,10)(13,17,16)  (19,24,23) ]) gap> IsPermGroup( g ); NrMovedPoints( g ); Size( g ); true 24 244823040 gap> AtlasGroup( "J5" ); fail  2.1-2 Accessing a Maximal Subgroup of a Group in AtlasRep Many maximal subgroups of extensions of simple groups can be constructed using the function AtlasSubgroup (3.5-9). Given the name of the extension of the simple group and the number of the conjugacy class of maximal subgroups, this function returns a representative from this class.  Example  gap> g:= AtlasSubgroup( "M24", 1 ); Group([ (2,10)(3,12)(4,14)(6,9)(8,16)(15,18)(20,22)(21,24), (1,7,2,9)  (3,22,10,23)(4,19,8,12)(5,14)(6,18)(13,16,17,24) ]) gap> IsPermGroup( g ); NrMovedPoints( g ); Size( g ); true 23 10200960 gap> AtlasSubgroup( "M24", 100 ); fail  The classes of maximal subgroups are ordered w. r. t. decreasing subgroup order. So the first class contains maximal subgroups of smallest index. Note that groups obtained by AtlasSubgroup (3.5-9) may be not very suitable for computations in the sense that much nicer representations exist. For example, the sporadic simple O'Nan group O'N contains a maximal subgroup S isomorphic with the Janko group J_1; the smallest permutation representation of O'N has degree 122760, and restricting this representation to S yields a representation of J_1 of that degree. However, J_1 has a faithful permutation representation of degree 266, which admits much more efficient computations. If you are just interested in J_1 and not in its embedding into O'N then one possibility to get a nicer faithful representation is to call SmallerDegreePermutationRepresentation (Reference: SmallerDegreePermutationRepresentation). In the abovementioned example, this works quite well; note that in general, we cannot expect that we get a representation of smallest degree in this way.  Example  gap> s:= AtlasSubgroup( "ON", 3 );  gap> NrMovedPoints( s ); Size( s ); 122760 175560 gap> hom:= SmallerDegreePermutationRepresentation( s );; gap> NrMovedPoints( Image( hom ) ) < 2000; true  (Depending on random choices in the computations, one may or my not get the degree 266 representation.) In this particular case, one could of course also ask directly for the group J_1.  Example  gap> j1:= AtlasGroup( "J1" );  gap> NrMovedPoints( j1 ); 266  If you have a group G, say, and you are really interested in the embedding of a maximal subgroup of G into G then an easy way to get compatible generators is to create G with AtlasGroup (3.5-8) and then to call AtlasSubgroup (3.5-9) with first argument the group G.  Example  gap> g:= AtlasGroup( "ON" );  gap> s:= AtlasSubgroup( g, 3 );  gap> IsSubset( g, s ); true gap> IsSubset( g, j1 ); false  2.2 Accessing Specific Generators in AtlasRep The function DisplayAtlasInfo (3.5-1), called with an admissible name of a group as the only argument, lists the ATLAS data available for this group.  Example  gap> DisplayAtlasInfo( "A5" ); Representations for G = A5: (all refer to std. generators 1) ---------------------------  1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.)  2: G <= Sym(6) 2-trans., on cosets of D10 (2nd max.)  3: G <= Sym(10) rank 3, on cosets of S3 (3rd max.)  4: G <= GL(4a,2) character 4a  5: G <= GL(4b,2) character 2ab  6: G <= GL(4,3) character 4a  7: G <= GL(6,3) character 3ab  8: G <= GL(2a,4) character 2a  9: G <= GL(2b,4) character 2b 10: G <= GL(3,5) character 3a 11: G <= GL(5,5) character 5a 12: G <= GL(3a,9) character 3a 13: G <= GL(3b,9) character 3b 14: G <= GL(4,Z) character 4a 15: G <= GL(5,Z) character 5a 16: G <= GL(6,Z) character 3ab 17: G <= GL(3a,Field([Sqrt(5)])) character 3a 18: G <= GL(3b,Field([Sqrt(5)])) character 3b  Programs for G = A5: (all refer to std. generators 1) -------------------- - class repres.*  - presentation  - maxes (all 3):  1: A4   2: D10   3: S3  - std. gen. checker:  (check)   (pres)   In order to fetch one of the listed permutation groups or matrix groups, you can call AtlasGroup (3.5-8) with second argument the function Position (Reference: Position) and third argument the position in the list.  Example  gap> AtlasGroup( "A5", Position, 1 ); Group([ (1,2)(3,4), (1,3,5) ])  Note that this approach may yield a different group after a data extension has been loaded. Alternatively, you can describe the desired group by conditions, such as the degree in the case of a permutation group, and the dimension and the base ring in the case of a matrix group.  Example  gap> AtlasGroup( "A5", NrMovedPoints, 10 ); Group([ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ]) gap> AtlasGroup( "A5", Dimension, 4, Ring, GF(2) );   The same holds for the restriction to maximal subgroups: Use AtlasSubgroup (3.5-9) with the same arguments as AtlasGroup (3.5-8), except that additionally the number of the class of maximal subgroups is entered as the last argument. Note that the conditions refer to the group, not to the subgroup; it may happen that the subgroup moves fewer points than the big group.  Example  gap> AtlasSubgroup( "A5", Dimension, 4, Ring, GF(2), 1 );  gap> g:= AtlasSubgroup( "A5", NrMovedPoints, 10, 3 ); Group([ (2,4)(3,5)(6,8)(7,10), (1,4)(3,8)(5,7)(6,10) ]) gap> Size( g ); NrMovedPoints( g ); 6 9  2.3 Basic Concepts used in AtlasRep 2.3-1 Groups, Generators, and Representations Up to now, we have talked only about groups and subgroups. The AtlasRep package provides access to group generators, and in fact these generators have the property that mapping one set of generators to another set of generators for the same group defines an isomorphism. These generators are called standard generators, see Section 3.3. So instead of thinking about several generating sets of a group G, say, we can think about one abstract group G, with one fixed set of generators, and mapping these generators to any set of generators provided by AtlasRep defines a representation of G. This viewpoint had motivated the name ATLAS of Group Representations for the core part of the database. If you are interested in the generators provided by the database rather than in the groups they generate, you can use the function OneAtlasGeneratingSetInfo (3.5-6) instead of AtlasGroup (3.5-8), with the same arguments. This will yield a record that describes the representation in question. Calling the function AtlasGenerators (3.5-3) with this record will then yield a record with the additional component generators, which holds the list of generators.  Example  gap> info:= OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, 10 ); rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ],   contents := "core", groupname := "A5", id := "",   identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ],  isPrimitive := true, maxnr := 3, p := 10, rankAction := 3,   repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",  standardization := 1, transitivity := 1, type := "perm" ) gap> info2:= AtlasGenerators( info ); rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ],   contents := "core",   generators := [ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ],   groupname := "A5", id := "",   identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ],  isPrimitive := true, maxnr := 3, p := 10, rankAction := 3,   repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",  standardization := 1, transitivity := 1, type := "perm" ) gap> info2.generators; [ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ]  The record info appears as the value of the attribute AtlasRepInfoRecord (3.5-10) in groups that are returned by AtlasGroup (3.5-8).  Example  gap> g:= AtlasGroup( "A5", NrMovedPoints, 10 );; gap> AtlasRepInfoRecord( g ); rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ],   contents := "core", groupname := "A5", id := "",   identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ],  isPrimitive := true, maxnr := 3, p := 10, rankAction := 3,   repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",  standardization := 1, transitivity := 1, type := "perm" )  2.3-2 Straight Line Programs For computing certain group elements from standard generators, such as generators of a subgroup or class representatives, AtlasRep uses straight line programs, see 'Reference: Straight Line Programs'. Essentially this means to evaluate words in the generators, which is similar to MappedWord (Reference: MappedWord) but can be more efficient. It can be useful to deal with these straight line programs, see AtlasProgram (3.5-4). For example, an automorphism α, say, of the group G, if available in AtlasRep, is given by a straight line program that defines the images of standard generators of G. This way, one can for example compute the image of a subgroup U of G under α by first applying the straight line program for α to standard generators of G, and then applying the straight line program for the restriction from G to U.  Example  gap> prginfo:= AtlasProgramInfo( "A5", "maxes", 1 ); rec( groupname := "A5", identifier := [ "A5", "A5G1-max1W1", 1 ],   size := 12, standardization := 1, subgroupname := "A4",   version := "1" ) gap> prg:= AtlasProgram( prginfo.identifier ); rec( groupname := "A5", identifier := [ "A5", "A5G1-max1W1", 1 ],   program := , size := 12,   standardization := 1, subgroupname := "A4", version := "1" ) gap> Display( prg.program ); # input: r:= [ g1, g2 ]; # program: r[3]:= r[1]*r[2]; r[4]:= r[2]*r[1]; r[5]:= r[3]*r[3]; r[1]:= r[5]*r[4]; # return values: [ r[1], r[2] ] gap> ResultOfStraightLineProgram( prg.program, info2.generators ); [ (1,10)(2,3)(4,9)(7,8), (1,2,3)(4,6,7)(5,8,9) ]  2.4 Examples of Using the AtlasRep Package 2.4-1 Example: Class Representatives First we show the computation of class representatives of the Mathieu group M_11, in a 2-modular matrix representation. We start with the ordinary and Brauer character tables of this group.  Example  gap> tbl:= CharacterTable( "M11" );; gap> modtbl:= tbl mod 2;; gap> CharacterDegrees( modtbl ); [ [ 1, 1 ], [ 10, 1 ], [ 16, 2 ], [ 44, 1 ] ]  The output of CharacterDegrees (Reference: CharacterDegrees) means that the 2-modular irreducibles of M_11 have degrees 1, 10, 16, 16, and 44. Using DisplayAtlasInfo (3.5-1), we find out that matrix generators for the irreducible 10-dimensional representation are available in the database.  Example  gap> DisplayAtlasInfo( "M11", Characteristic, 2 ); Representations for G = M11: (all refer to std. generators 1) ----------------------------  6: G <= GL(10,2) character 10a  7: G <= GL(32,2) character 16ab  8: G <= GL(44,2) character 44a 16: G <= GL(16a,4) character 16a 17: G <= GL(16b,4) character 16b  So we decide to work with this representation. We fetch the generators and compute the list of class representatives of M_11 in the representation. The ordering of class representatives is the same as that in the character table of the ATLAS of Finite Groups ([CCN+85]), which coincides with the ordering of columns in the GAP table we have fetched above.  Example  gap> info:= OneAtlasGeneratingSetInfo( "M11", Characteristic, 2, >  Dimension, 10 );; gap> gens:= AtlasGenerators( info.identifier );; gap> ccls:= AtlasProgram( "M11", gens.standardization, "classes" ); rec( groupname := "M11", identifier := [ "M11", "M11G1-cclsW1", 1 ],   outputs := [ "1A", "2A", "3A", "4A", "5A", "6A", "8A", "8B", "11A",   "11B" ], program := ,   standardization := 1, version := "1" ) gap> reps:= ResultOfStraightLineProgram( ccls.program, gens.generators );;  If we would need only a few class representatives, we could use the GAP library function RestrictOutputsOfSLP (Reference: RestrictOutputsOfSLP) to create a straight line program that computes only specified outputs. Here is an example where only the class representatives of order eight are computed.  Example  gap> ord8prg:= RestrictOutputsOfSLP( ccls.program, >  Filtered( [ 1 .. 10 ], i -> ccls.outputs[i][1] = '8' ) );  gap> ord8reps:= ResultOfStraightLineProgram( ord8prg, gens.generators );; gap> List( ord8reps, m -> Position( reps, m ) ); [ 7, 8 ]  Let us check that the class representatives have the right orders.  Example  gap> List( reps, Order ) = OrdersClassRepresentatives( tbl ); true  From the class representatives, we can compute the Brauer character we had started with. This Brauer character is defined on all classes of the 2-modular table. So we first pick only those representatives, using the GAP function GetFusionMap (Reference: GetFusionMap); in this situation, it returns the class fusion from the Brauer table into the ordinary table.  Example  gap> fus:= GetFusionMap( modtbl, tbl ); [ 1, 3, 5, 9, 10 ] gap> modreps:= reps{ fus };;  Then we call the GAP function BrauerCharacterValue (Reference: BrauerCharacterValue), which computes the Brauer character value from the matrix given.  Example  gap> char:= List( modreps, BrauerCharacterValue ); [ 10, 1, 0, -1, -1 ] gap> Position( Irr( modtbl ), char ); 2  2.4-2 Example: Permutation and Matrix Representations The second example shows the computation of a permutation representation from a matrix representation. We work with the 10-dimensional representation used above, and consider the action on the 2^10 vectors of the underlying row space.  Example  gap> grp:= Group( gens.generators );; gap> v:= GF(2)^10;; gap> orbs:= Orbits( grp, AsList( v ) );; gap> List( orbs, Length ); [ 1, 396, 55, 330, 66, 165, 11 ]  We see that there are six nontrivial orbits, and we can compute the permutation actions on these orbits directly using Action (Reference: Action homomorphisms). However, for larger examples, one cannot write down all orbits on the row space, so one has to use another strategy if one is interested in a particular orbit. Let us assume that we are interested in the orbit of length 11. The point stabilizer is the first maximal subgroup of M_11, thus the restriction of the representation to this subgroup has a nontrivial fixed point space. This restriction can be computed using the AtlasRep package.  Example  gap> gens:= AtlasGenerators( "M11", 6, 1 );;  Now computing the fixed point space is standard linear algebra.  Example  gap> id:= IdentityMat( 10, GF(2) );; gap> sub1:= Subspace( v, NullspaceMat( gens.generators[1] - id ) );; gap> sub2:= Subspace( v, NullspaceMat( gens.generators[2] - id ) );; gap> fix:= Intersection( sub1, sub2 );   The final step is of course the computation of the permutation action on the orbit.  Example  gap> orb:= Orbit( grp, Basis( fix )[1] );; gap> act:= Action( grp, orb );; Print( act, "\n" ); Group( [ ( 1, 2)( 4, 6)( 5, 8)( 7,10), ( 1, 3, 5, 9)( 2, 4, 7,11) ] )  Note that this group is not equal to the group obtained by fetching the permutation representation from the database. This is due to a different numbering of the points, thus the groups are permutation isomorphic, that is, they are conjugate in the symmetric group on eleven points.  Example  gap> permgrp:= Group( AtlasGenerators( "M11", 1 ).generators );; gap> Print( permgrp, "\n" ); Group( [ ( 2,10)( 4,11)( 5, 7)( 8, 9), (1,4,3,8)(2,5,6,9) ] ) gap> permgrp = act; false gap> IsConjugate( SymmetricGroup(11), permgrp, act ); true  2.4-3 Example: Outer Automorphisms The straight line programs for applying outer automorphisms to standard generators can of course be used to define the automorphisms themselves as GAP mappings.  Example  gap> DisplayAtlasInfo( "G2(3)", IsStraightLineProgram ); Programs for G = G2(3): (all refer to std. generators 1) ----------------------- - class repres.  - presentation  - repr. cyc. subg.  - std. gen. checker  - automorphisms:  2  - maxes (all 10):  1: U3(3).2   2: U3(3).2   3: (3^(1+2)+x3^2):2S4   4: (3^(1+2)+x3^2):2S4   5: L3(3).2   6: L3(3).2   7: L2(8).3   8: 2^3.L3(2)   9: L2(13)   10: 2^(1+4)+:3^2.2  gap> prog:= AtlasProgram( "G2(3)", "automorphism", "2" ).program;; gap> info:= OneAtlasGeneratingSetInfo( "G2(3)", Dimension, 7 );; gap> gens:= AtlasGenerators( info ).generators;; gap> imgs:= ResultOfStraightLineProgram( prog, gens );;  If we are not suspicious whether the script really describes an automorphism then we should tell this to GAP, in order to avoid the expensive checks of the properties of being a homomorphism and bijective (see Section 'Reference: Creating Group Homomorphisms'). This looks as follows.  Example  gap> g:= Group( gens );; gap> aut:= GroupHomomorphismByImagesNC( g, g, gens, imgs );; gap> SetIsBijective( aut, true );  If we are suspicious whether the script describes an automorphism then we might have the idea to check it with GAP, as follows.  Example  gap> aut:= GroupHomomorphismByImages( g, g, gens, imgs );; gap> IsBijective( aut ); true  (Note that even for a comparatively small group such as G_2(3), this was a difficult task for GAP before version 4.3.) Often one can form images under an automorphism α, say, without creating the homomorphism object. This is obvious for the standard generators of the group G themselves, but also for generators of a maximal subgroup M computed from standard generators of G, provided that the straight line programs in question refer to the same standard generators. Note that the generators of M are given by evaluating words in terms of standard generators of G, and their images under α can be obtained by evaluating the same words at the images under α of the standard generators of G.  Example  gap> max1:= AtlasProgram( "G2(3)", 1 ).program;; gap> mgens:= ResultOfStraightLineProgram( max1, gens );; gap> comp:= CompositionOfStraightLinePrograms( max1, prog );; gap> mimgs:= ResultOfStraightLineProgram( comp, gens );;  The list mgens is the list of generators of the first maximal subgroup of G_2(3), mimgs is the list of images under the automorphism given by the straight line program prog. Note that applying the program returned by CompositionOfStraightLinePrograms (Reference: CompositionOfStraightLinePrograms) means to apply first prog and then max1. Since we have already constructed the GAP object representing the automorphism, we can check whether the results are equal.  Example  gap> mimgs = List( mgens, x -> x^aut ); true  However, it should be emphasized that using aut requires a huge machinery of computations behind the scenes, whereas applying the straight line programs prog and max1 involves only elementary operations with the generators. The latter is feasible also for larger groups, for which constructing the GAP automorphism might be too hard. 2.4-4 Example: Using Semi-presentations and Black Box Programs Let us suppose that we want to restrict a representation of the Mathieu group M_12 to a non-maximal subgroup of the type L_2(11). The idea is that this subgroup can be found as a maximal subgroup of a maximal subgroup of the type M_11, which is itself maximal in M_12. For that, we fetch a representation of M_12 and use a straight line program for restricting it to the first maximal subgroup, which has the type M_11.  Example  gap> info:= OneAtlasGeneratingSetInfo( "M12", NrMovedPoints, 12 ); rec( charactername := "1a+11a", constituents := [ 1, 2 ],   contents := "core", groupname := "M12", id := "a",   identifier := [ "M12", [ "M12G1-p12aB0.m1", "M12G1-p12aB0.m2" ], 1,   12 ], isPrimitive := true, maxnr := 1, p := 12, rankAction := 2,  repname := "M12G1-p12aB0", repnr := 1, size := 95040,   stabilizer := "M11", standardization := 1, transitivity := 5,   type := "perm" ) gap> gensM12:= AtlasGenerators( info.identifier );; gap> restM11:= AtlasProgram( "M12", "maxes", 1 );; gap> gensM11:= ResultOfStraightLineProgram( restM11.program, >  gensM12.generators ); [ (3,9)(4,12)(5,10)(6,8), (1,4,11,5)(2,10,8,3) ]  Now we cannot simply apply a straight line program for a group to some generators, since they are not necessarily standard generators of the group. We check this property using a semi-presentation for M_11, see 6.1-7.  Example  gap> checkM11:= AtlasProgram( "M11", "check" ); rec( groupname := "M11", identifier := [ "M11", "M11G1-check1", 1, 1 ]  , program := , standardization := 1,   version := "1" ) gap> ResultOfStraightLineDecision( checkM11.program, gensM11 ); true  So we are lucky that applying the appropriate program for M_11 will give us the required generators for L_2(11).  Example  gap> restL211:= AtlasProgram( "M11", "maxes", 2 );; gap> gensL211:= ResultOfStraightLineProgram( restL211.program, gensM11 ); [ (3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10) ] gap> G:= Group( gensL211 );; Size( G ); IsSimple( G ); 660 true  In this case, we could also use the information that is stored about M_11, as follows.  Example  gap> DisplayAtlasInfo( "M11", IsStraightLineProgram ); Programs for G = M11: (all refer to std. generators 1) --------------------- - presentation  - repr. cyc. subg.  - std. gen. finder  - class repres.:  (direct)   (composed)  - maxes (all 5):  1: A6.2_3   1: A6.2_3 (std. 1)  2: L2(11)   2: L2(11) (std. 1)  3: 3^2:Q8.2   4: S5   4: S5 (std. 1)  5: 2.S4  - standardizations of maxes:  from 1st max., version 1 to A6.2_3, std. 1   from 2nd max., version 1 to L2(11), std. 1   from 4th max., version 1 to A5.2, std. 1  - std. gen. checker:  (check)   (pres)   The entry std.1 in the line about the maximal subgroup of type L_2(11) means that a straight line program for computing standard generators (in standardization 1) of the subgroup. This program can be fetched as follows.  Example  gap> restL211std:= AtlasProgram( "M11", "maxes", 2, 1 );; gap> ResultOfStraightLineProgram( restL211std.program, gensM11 ); [ (3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10) ]  We see that we get the same generators for the subgroup as above. (In fact the second approach first applies the same program as is given by restL211.program, and then applies a program to the results that does nothing.) Usually representations are not given in terms of standard generators. For example, let us take the M_11 type group returned by the GAP function MathieuGroup (Reference: MathieuGroup).  Example  gap> G:= MathieuGroup( 11 );; gap> gens:= GeneratorsOfGroup( G ); [ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ] gap> ResultOfStraightLineDecision( checkM11.program, gens ); false  If we want to compute an L_2(11) type subgroup of this group, we can use a black box program for computing standard generators, and then apply the straight line program for computing the restriction.  Example  gap> find:= AtlasProgram( "M11", "find" ); rec( groupname := "M11", identifier := [ "M11", "M11G1-find1", 1, 1 ],  program := , standardization := 1,   version := "1" ) gap> stdgens:= ResultOfBBoxProgram( find.program, Group( gens ) );; gap> List( stdgens, Order ); [ 2, 4 ] gap> ResultOfStraightLineDecision( checkM11.program, stdgens ); true gap> gensL211:= ResultOfStraightLineProgram( restL211.program, stdgens );; gap> List( gensL211, Order ); [ 2, 3 ] gap> G:= Group( gensL211 );; Size( G ); IsSimple( G ); 660 true  Note that applying the black box program several times may yield different group elements, because computations of random elements are involved, see ResultOfBBoxProgram (6.2-4). All what the black box program promises is to construct standard generators, and these are defined only up to conjugacy in the automorphism group of the group in question. 2.4-5 Example: Using the GAP Library of Tables of Marks The GAP Library of Tables of Marks (the GAP package TomLib, [NMP18]) provides, for many almost simple groups, information for constructing representatives of all conjugacy classes of subgroups. If this information is compatible with the standard generators of the ATLAS of Group Representations then we can use it to restrict any representation from the ATLAS to prescribed subgroups. This is useful in particular for those subgroups for which the ATLAS of Group Representations itself does not contain a straight line program.  Example  gap> tom:= TableOfMarks( "A5" ); TableOfMarks( "A5" ) gap> info:= StandardGeneratorsInfo( tom ); [ rec( ATLAS := true, description := "|a|=2, |b|=3, |ab|=5",   generators := "a, b",   script := [ [ 1, 2 ], [ 2, 3 ], [ 1, 1, 2, 1, 5 ] ],   standardization := 1 ) ]  The true value of the component ATLAS indicates that the information stored on tom refers to the standard generators of type 1 in the ATLAS of Group Representations. We want to restrict a 4-dimensional integral representation of A_5 to a Sylow 2 subgroup of A_5, and use RepresentativeTomByGeneratorsNC (Reference: RepresentativeTomByGeneratorsNC) for that.  Example  gap> info:= OneAtlasGeneratingSetInfo( "A5", Ring, Integers, Dimension, 4 );; gap> stdgens:= AtlasGenerators( info.identifier ); rec( charactername := "4a", constituents := [ 4 ], contents := "core",  dim := 4,   generators :=   [   [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ],   [ -1, -1, -1, -1 ] ],   [ [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ],   [ 1, 0, 0, 0 ] ] ], groupname := "A5", id := "",   identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ],   repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60,   standardization := 1, type := "matint" ) gap> orders:= OrdersTom( tom ); [ 1, 2, 3, 4, 5, 6, 10, 12, 60 ] gap> pos:= Position( orders, 4 ); 4 gap> sub:= RepresentativeTomByGeneratorsNC( tom, pos, stdgens.generators );  gap> GeneratorsOfGroup( sub ); [ [ [ 1, 0, 0, 0 ], [ -1, -1, -1, -1 ], [ 0, 0, 0, 1 ],   [ 0, 0, 1, 0 ] ],   [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ],   [ -1, -1, -1, -1 ] ] ]  2.4-6 Example: Index 770 Subgroups in M_22 The sporadic simple Mathieu group M_22 contains a unique class of subgroups of index 770 (and order 576). This can be seen for example using GAP's Library of Tables of Marks.  Example  gap> tom:= TableOfMarks( "M22" ); TableOfMarks( "M22" ) gap> subord:= Size( UnderlyingGroup( tom ) ) / 770; 576 gap> ord:= OrdersTom( tom );; gap> tomstabs:= Filtered( [ 1 .. Length( ord ) ], i -> ord[i] = subord ); [ 144 ]  The permutation representation of M_22 on the right cosets of such a subgroup S is contained in the ATLAS of Group Representations.  Example  gap> DisplayAtlasInfo( "M22", NrMovedPoints, 770 ); Representations for G = M22: (all refer to std. generators 1) ---------------------------- 12: G <= Sym(770) rank 9, on cosets of (A4xA4):4 < 2^4:A6  Now we verify the information shown about the point stabilizer and about the maximal overgroups of S in M_22.  Example  gap> maxtom:= MaximalSubgroupsTom( tom ); [ [ 155, 154, 153, 152, 151, 150, 146, 145 ],   [ 22, 77, 176, 176, 231, 330, 616, 672 ] ] gap> List( tomstabs, i -> List( maxtom[1], j -> ContainedTom( tom, i, j ) ) ); [ [ 0, 10, 0, 0, 0, 0, 0, 0 ] ]  We see that the only maximal subgroups of M_22 that contain S have index 77 in M_22. According to the ATLAS of Finite Groups, these maximal subgroups have the structure 2^4:A_6. From that and from the structure of A_6, we conclude that S has the structure 2^4:(3^2:4). Alternatively, we look at the permutation representation of degree 770. We fetch it from the ATLAS of Group Representations. There is exactly one nontrivial block system for this representation, with 77 blocks of length 10.  Example  gap> g:= AtlasGroup( "M22", NrMovedPoints, 770 );  gap> allbl:= AllBlocks( g );; gap> List( allbl, Length ); [ 10 ]  Furthermore, GAP computes that the point stabilizer S has the structure (A_4 × A_4):4.  Example  gap> stab:= Stabilizer( g, 1 );; gap> StructureDescription( stab : nice ); "(A4 x A4) : C4" gap> blocks:= Orbit( g, allbl[1], OnSets );; gap> act:= Action( g, blocks, OnSets );; gap> StructureDescription( Stabilizer( act, 1 ) ); "(C2 x C2 x C2 x C2) : A6"  2.4-7 Example: Index 462 Subgroups in M_22 The ATLAS of Group Representations contains three degree 462 permutation representations of the group M_22.  Example  gap> DisplayAtlasInfo( "M22", NrMovedPoints, 462 ); Representations for G = M22: (all refer to std. generators 1) ---------------------------- 7: G <= Sym(462a) rank 5, on cosets of 2^4:A5 < 2^4:A6 8: G <= Sym(462b) rank 8, on cosets of 2^4:A5 < L3(4), 2^4:S5 9: G <= Sym(462c) rank 8, on cosets of 2^4:A5 < L3(4), 2^4:A6  The point stabilizers in these three representations have the structure 2^4:A_5. Using GAP's Library of Tables of Marks, we can show that these stabilizers are exactly the three classes of subgroups of order 960 in M_22. For that, we first verify that the group generators stored in GAP's table of marks coincide with the standard generators used by the ATLAS of Group Representations.  Example  gap> tom:= TableOfMarks( "M22" ); TableOfMarks( "M22" ) gap> genstom:= GeneratorsOfGroup( UnderlyingGroup( tom ) );; gap> checkM22:= AtlasProgram( "M22", "check" ); rec( groupname := "M22", identifier := [ "M22", "M22G1-check1", 1, 1 ]  , program := , standardization := 1,   version := "1" ) gap> ResultOfStraightLineDecision( checkM22.program, genstom ); true  There are indeed three classes of subgroups of order 960 in M_22.  Example  gap> ord:= OrdersTom( tom );; gap> tomstabs:= Filtered( [ 1 .. Length( ord ) ], i -> ord[i] = 960 ); [ 147, 148, 149 ]  Now we compute representatives of these three classes in the three representations 462a, 462b, and 462c. We see that each of the three classes occurs as a point stabilizer in exactly one of the three representations.  Example  gap> atlasreps:= AllAtlasGeneratingSetInfos( "M22", NrMovedPoints, 462 ); [ rec( charactername := "1a+21a+55a+154a+231a",   constituents := [ 1, 2, 5, 7, 9 ], contents := "core",   groupname := "M22", id := "a",   identifier :=   [ "M22", [ "M22G1-p462aB0.m1", "M22G1-p462aB0.m2" ], 1, 462 ],  isPrimitive := false, p := 462, rankAction := 5,   repname := "M22G1-p462aB0", repnr := 7, size := 443520,   stabilizer := "2^4:A5 < 2^4:A6", standardization := 1,   transitivity := 1, type := "perm" ),   rec( charactername := "1a+21a^2+55a+154a+210a",   constituents := [ 1, [ 2, 2 ], 5, 7, 8 ], contents := "core",   groupname := "M22", id := "b",   identifier :=   [ "M22", [ "M22G1-p462bB0.m1", "M22G1-p462bB0.m2" ], 1, 462 ],  isPrimitive := false, p := 462, rankAction := 8,   repname := "M22G1-p462bB0", repnr := 8, size := 443520,   stabilizer := "2^4:A5 < L3(4), 2^4:S5", standardization := 1,   transitivity := 1, type := "perm" ),   rec( charactername := "1a+21a^2+55a+154a+210a",   constituents := [ 1, [ 2, 2 ], 5, 7, 8 ], contents := "core",   groupname := "M22", id := "c",   identifier :=   [ "M22", [ "M22G1-p462cB0.m1", "M22G1-p462cB0.m2" ], 1, 462 ],  isPrimitive := false, p := 462, rankAction := 8,   repname := "M22G1-p462cB0", repnr := 9, size := 443520,   stabilizer := "2^4:A5 < L3(4), 2^4:A6", standardization := 1,   transitivity := 1, type := "perm" ) ] gap> atlasreps:= List( atlasreps, AtlasGroup );; gap> tomstabreps:= List( atlasreps, G -> List( tomstabs, > i -> RepresentativeTomByGenerators( tom, i, GeneratorsOfGroup( G ) ) ) );; gap> List( tomstabreps, x -> List( x, NrMovedPoints ) ); [ [ 462, 462, 461 ], [ 460, 462, 462 ], [ 462, 461, 462 ] ]  More precisely, we see that the point stabilizers in the three representations 462a, 462b, 462c lie in the subgroup classes 149, 147, 148, respectively, of the table of marks. The point stabilizers in the representations 462b and 462c are isomorphic, but not isomorphic with the point stabilizer in 462a.  Example  gap> stabs:= List( atlasreps, G -> Stabilizer( G, 1 ) );; gap> List( stabs, IdGroup ); [ [ 960, 11358 ], [ 960, 11357 ], [ 960, 11357 ] ] gap> List( stabs, PerfectIdentification ); [ [ 960, 2 ], [ 960, 1 ], [ 960, 1 ] ]  The three representations are imprimitive. The containment of the point stabilizers in maximal subgroups of M_22 can be computed using the table of marks of M_22.  Example  gap> maxtom:= MaximalSubgroupsTom( tom ); [ [ 155, 154, 153, 152, 151, 150, 146, 145 ],   [ 22, 77, 176, 176, 231, 330, 616, 672 ] ] gap> List( tomstabs, i -> List( maxtom[1], j -> ContainedTom( tom, i, j ) ) ); [ [ 21, 0, 0, 0, 1, 0, 0, 0 ], [ 21, 6, 0, 0, 0, 0, 0, 0 ],   [ 0, 6, 0, 0, 0, 0, 0, 0 ] ]  We see:  The point stabilizers in 462a (subgroups in the class 149 of the table of marks) are contained only in maximal subgroups in class 154; these groups have the structure 2^4:A_6.  The point stabilizers in 462b (subgroups in the class 147) are contained in maximal subgroups in the classes 155 and 151; these groups have the structures L_3(4) and 2^4:S_5, respectively.  The point stabilizers in 462c (subgroups in the class 148) are contained in maximal subgroups in the classes 155 and 154. We identify the supergroups of the point stabilizers by computing the block systems.  Example  gap> bl:= List( atlasreps, AllBlocks );; gap> List( bl, Length ); [ 1, 3, 2 ] gap> List( bl, l -> List( l, Length ) ); [ [ 6 ], [ 21, 21, 2 ], [ 21, 6 ] ]  Note that the two block systems with blocks of length 21 for 462b belong to the same supergroups (of the type L_3(4)); each of these subgroups fixes two different subsets of 21 points. The representation 462a is multiplicity-free, that is, it splits into a sum of pairwise nonisomorphic irreducible representations. This can be seen from the fact that the rank of this permutation representation (that is, the number of orbits of the point stabilizer) is five; each permutation representation with this property is multiplicity-free. The other two representations have rank eight. We have seen the ranks in the overview that was shown by DisplayAtlasInfo (3.5-1) in the beginning. Now we compute the ranks from the permutation groups.  Example  gap> List( atlasreps, RankAction ); [ 5, 8, 8 ]  In fact the two representations 462b and 462c have the same permutation character. We check this by computing the possible permutation characters of degree 462 for M_22, and decomposing them into irreducible characters, using the character table from GAP's Character Table Library.  Example  gap> t:= CharacterTable( "M22" );; gap> perms:= PermChars( t, 462 ); [ Character( CharacterTable( "M22" ),  [ 462, 30, 3, 2, 2, 2, 3, 0, 0, 0, 0, 0 ] ),   Character( CharacterTable( "M22" ),  [ 462, 30, 12, 2, 2, 2, 0, 0, 0, 0, 0, 0 ] ) ] gap> MatScalarProducts( t, Irr( t ), perms ); [ [ 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0 ],   [ 1, 2, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0 ] ]  In particular, we see that the rank eight characters are not multiplicity-free. atlasrep-2.1.8/doc/chapBib.html0000644000175000017500000003760114545501243014454 0ustar samsam GAP (AtlasRep) - References
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

References

[BGH+22] Breuer, T., Gutsche, S., Horn, M., Hulpke, A., Kohl, S., Lübeck, F. and Wensley, C., utils, Utility functions in GAP, Version 0.77 (2022)
(GAP package), https://gap-packages.github.io/utils.

[BHM09] Breuer, T., Höhler, I. and Müller, J., MFER, multiplicity-free endomorphism rings of permutation modules of the sporadic simple groups and their cyclic and bicyclic extensions, Version 1.0.0 (2009)
(GAP package), https://www.math.rwth-aachen.de/~MFER.

[BL18] Breuer, T. and Lübeck, F., Browse, ncurses interface and browsing applications, Version 1.8.9 (2018)
(GAP package), https://www.math.rwth-aachen.de/~Browse.

[BN95] Breuer, T. and Norton, S. P., Improvements to the Atlas, The Clarendon Press Oxford University Press, London Mathematical Society Monographs. New Series, 11, New York (1995), 297–327
(Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications).

[Bre14] Breuer, T., CTBlocks, Blocks of Character Tables, Version 0.9.3 (2014)
(GAP package), https://www.math.rwth-aachen.de/~Thomas.Breuer/ctblocks.

[Bre22] Breuer, T., The GAP Character Table Library, Version 1.3.3 (2022)
(GAP package), https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib.

[BSWW01] Bray, J. N., Suleiman, I. A. I., Walsh, P. G. and Wilson, R. A., Generating maximal subgroups of sporadic simple groups, Comm. Algebra, 29 (3) (2001), 1325–1337.

[CCN+85] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of finite groups, Oxford University Press, Eynsham (1985), xxxiv+252 pages
(Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray).

[CP96] Cannon, J. J. and Playoust, C., An introduction to algebraic programming in Magma, School of Mathematics and Statistics, University of Sydney, Sydney, Australia (1996), http://www.math.usyd.edu.au:8000/u/magma.

[GAP19] GAP – Groups, Algorithms, and Programming, Version 4.10.2, The GAP Group (2019), http://www.gap-system.org.

[HL89] Hiss, G. and Lux, K., Brauer trees of sporadic groups, The Clarendon Press, Oxford University Press, Oxford Science Publications, New York (1989), x+526 pages.

[Hup67] Huppert, B., Endliche Gruppen. I, Springer-Verlag, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Berlin (1967), xii+793 pages.

[Jan05] Jansen, C., The minimal degrees of faithful representations of the sporadic simple groups and their covering groups, LMS J. Comput. Math., 8 (2005), 122–144 (electronic).

[JLPW95] Jansen, C., Lux, K., Parker, R. and Wilson, R., An atlas of Brauer characters, The Clarendon Press Oxford University Press, London Mathematical Society Monographs. New Series, 11, New York (1995), xviii+327 pages
(Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications).

[JSO14] (Bray, T., Ed.), The JavaScript Object Notation (JSON) Data Interchange Format (2014), http://www.rfc-editor.org/info/rfc7159.

[LN18] Lübeck, F. and Neunhöffer, M., GAPDoc, A Meta Package for GAP Documentation, Version 1.6.2 (2018)
(GAP package), https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc.

[Lüb21] Lübeck, F., StandardFF, A GAP package for constructing finite fields (2021)
(GAP package), https://github.com/frankluebeck/StandardFF/.

[Neu14] Neunhöffer, M., IO, Bindings for low level C library IO, Version 4.3.1 (2014)
(GAP package), http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html.

[Nic06] Nickerson, S. J., An Atlas of Characteristic Zero Representations, Phd thesis, School of Mathematics, University of Birmingham (2006).

[NMP18] Naughton, L., Merkwitz, T. and Pfeiffer, G., TomLib, The GAP Library of Tables of Marks, Version 1.2.7 (2018)
(GAP package), http://schmidt.nuigalway.ie/tomlib.

[NSA+18] Neunhöffer, M., Seress, Á., Ankaralioglu, N., Brooksbank, P., Celler, F., Howe, S., Law, M., Linton, S., Malle, G., Niemeyer, A., O'Brien, E., Roney-Dougal, C. M. and Horn, M., recog, A collection of group recognition methods, Version 1.3.1 (2018)
(GAP package), https://gap-packages.github.io/recog.

[NW05] Nickerson, S. J. and Wilson, R. A., Semi-presentations for the sporadic simple groups, Experiment. Math., 14 (3) (2005), 359–371.

[Rin] Ringe, M., The C MeatAxe, Version 2.4, https://www.math.rwth-aachen.de/~MTX.

[SWW00] Suleiman, I. A. I., Walsh, P. G. and Wilson, R. A., Conjugacy classes in sporadic simple groups, Comm. Algebra, 28 (7) (2000), 3209–3222.

[Wil96] Wilson, R. A., Standard generators for sporadic simple groups, J. Algebra, 184 (2) (1996), 505–515.

[WWT+] Wilson, R. A., Walsh, P., Tripp, J., Suleiman, I., Parker, R. A., Norton, S. P., Nickerson, S., Linton, S., Bray, J. and Abbott, R., ATLAS of Finite Group Representations, http://atlas.math.rwth-aachen.de/Atlas/v3.

Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chap3.html0000644000175000017500000042236114545501243014123 0ustar samsam GAP (AtlasRep) - Chapter 3: The User Interface of the AtlasRep Package
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

3 The User Interface of the AtlasRep Package

The user interface is the part of the GAP interface that allows one to display information about the current contents of the database and to access individual data (perhaps by downloading them, see Section 4.2-1). The corresponding functions are described in this chapter. See Section 2.4 for some small examples how to use the functions of the interface.

Data extensions of the AtlasRep package are regarded as another part of the GAP interface, they are described in Chapter 5. Finally, the low level part of the interface is described in Chapter 7.

3.1 Accessing vs. Constructing Representations

Note that accessing the data means in particular that it is not the aim of this package to construct representations from known ones. For example, if at least one permutation representation for a group G is stored but no matrix representation in a positive characteristic p, say, then OneAtlasGeneratingSetInfo (3.5-6) returns fail when it is asked for a description of an available set of matrix generators for G in characteristic p, although such a representation can be obtained by reduction modulo p of an integral matrix representation, which in turn can be constructed from any permutation representation.

3.2 Group Names Used in the AtlasRep Package

When you access data via the AtlasRep package, you specify the group in question by an admissible name. Thus it is essential to know these names, which are called the GAP names of the group in the following.

For a group G, say, whose character table is available in GAP's Character Table Library (see [Bre22]), the admissible names of G are the admissible names of this character table. One such name is the Identifier (Reference: Identifier for character tables) value of the character table, see CTblLib: Admissible Names for Character Tables in CTblLib. This name is usually very similar to the name used in the ATLAS of Finite Groups [CCN+85]. For example, "M22" is a GAP name of the Mathieu group M_22, "12_1.U4(3).2_1" is a GAP name of 12_1.U_4(3).2_1, the two names "S5" and "A5.2" are GAP names of the symmetric group S_5, and the two names "F3+" and "Fi24'" are GAP names of the simple Fischer group Fi_24^'.

When a GAP name is required as an input of a package function, this input is case insensitive. For example, both "A5" and "a5" are valid arguments of DisplayAtlasInfo (3.5-1).

Internally, for example as part of filenames (see Section 7.6), the package uses names that may differ from the GAP names; these names are called ATLAS-file names. For example, "A5", "TE62", and "F24" are ATLAS-file names. Of these, only "A5" is also a GAP name, but the other two are not; corresponding GAP names are "2E6(2)" and "Fi24'", respectively.

3.3 Standard Generators Used in the AtlasRep Package

For the general definition of standard generators of a group, see [Wil96].

Several different standard generators may be defined for a group, the definitions for each group that occurs in the ATLAS of Group Representations can be found at

http://atlas.math.rwth-aachen.de/Atlas/v3.

When one specifies the standardization, the i-th set of standard generators is denoted by the number i. Note that when more than one set of standard generators is defined for a group, one must be careful to use compatible standardization. For example, the straight line programs, straight line decisions and black box programs in the database refer to a specific standardization of their inputs. That is, a straight line program for computing generators of a certain subgroup of a group G is defined only for a specific set of standard generators of G, and applying the program to matrix or permutation generators of G but w. r. t. a different standardization may yield unpredictable results. Therefore the results returned by the functions described in this chapter contain information about the standardizations they refer to.

3.4 Class Names Used in the AtlasRep Package

For each straight line program (see AtlasProgram (3.5-4)) that is used to compute lists of class representatives, it is essential to describe the classes in which these elements lie. Therefore, in these cases the records returned by the function AtlasProgram (3.5-4) contain a component outputs with value a list of class names.

Currently we define these class names only for simple groups and certain extensions of simple groups, see Section 3.4-1. The function AtlasClassNames (3.4-2) can be used to compute the list of class names from the character table in the GAP Library.

3.4-1 Definition of ATLAS Class Names

For the definition of class names of an almost simple group, we assume that the ordinary character tables of all nontrivial normal subgroups are shown in the ATLAS of Finite Groups [CCN+85].

Each class name is a string consisting of the element order of the class in question followed by a combination of capital letters, digits, and the characters ' and - (starting with a capital letter). For example, 1A, 12A1, and 3B' denote the class that contains the identity element, a class of element order 12, and a class of element order 3, respectively.

  1. For the table of a simple group, the class names are the same as returned by the two argument version of the GAP function ClassNames (Reference: ClassNames), cf. [CCN+85, Chapter 7, Section 5]: The classes are arranged w. r. t. increasing element order and for each element order w. r. t. decreasing centralizer order, the conjugacy classes that contain elements of order n are named nA, nB, nC, ...; the alphabet used here is potentially infinite, and reads A, B, C, ..., Z, A1, B1, ..., A2, B2, ....

    For example, the classes of the alternating group A_5 have the names 1A, 2A, 3A, 5A, and 5B.

  2. Next we consider the case of an upward extension G.A of a simple group G by a cyclic group of order A. The ATLAS defines class names for each element g of G.A only w. r. t. the group G.a, say, that is generated by G and g; namely, there is a power of g (with the exponent coprime to the order of g) for which the class has a name of the same form as the class names for simple groups, and the name of the class of g w. r. t. G.a is then obtained from this name by appending a suitable number of dashes '. So dashed class names refer exactly to those classes that are not printed in the ATLAS.

    For example, those classes of the symmetric group S_5 that do not lie in A_5 have the names 2B, 4A, and 6A. The outer classes of the group L_2(8).3 have the names 3B, 6A, 9D, and 3B', 6A', 9D'. The outer elements of order 5 in the group Sz(32).5 lie in the classes with names 5B, 5B', 5B'', and 5B'''.

    In the group G.A, the class of g may fuse with other classes. The name of the class of g in G.A is obtained from the names of the involved classes of G.a by concatenating their names after removing the element order part from all of them except the first one.

    For example, the elements of order 9 in the group L_2(27).6 are contained in the subgroup L_2(27).3 but not in L_2(27). In L_2(27).3, they lie in the classes 9A, 9A', 9B, and 9B'; in L_2(27).6, these classes fuse to 9AB and 9A'B'.

  3. Now we define class names for general upward extensions G.A of a simple group G. Each element g of such a group lies in an upward extension G.a by a cyclic group, and the class names w. r. t. G.a are already defined. The name of the class of g in G.A is obtained by concatenating the names of the classes in the orbit of G.A on the classes of cyclic upward extensions of G, after ordering the names lexicographically and removing the element order part from all of them except the first one. An exception is the situation where dashed and non-dashed class names appear in an orbit; in this case, the dashed names are omitted.

    For example, the classes 21A and 21B of the group U_3(5).3 fuse in U_3(5).S_3 to the class 21AB, and the class 2B of U_3(5).2 fuses with the involution classes 2B', 2B'' in the groups U_3(5).2^' and U_3(5).2^{''} to the class 2B of U_3(5).S_3.

    It may happen that some names in the outputs component of a record returned by AtlasProgram (3.5-4) do not uniquely determine the classes of the corresponding elements. For example, the (algebraically conjugate) classes 39A and 39B of the group Co_1 have not been distinguished yet. In such cases, the names used contain a minus sign -, and mean "one of the classes in the range described by the name before and the name after the minus sign"; the element order part of the name does not appear after the minus sign. So the name 39A-B for the group Co_1 means 39A or 39B, and the name 20A-B''' for the group Sz(32).5 means one of the classes of element order 20 in this group (these classes lie outside the simple group Sz).

  4. For a downward extension m.G.A of an almost simple group G.A by a cyclic group of order m, let π denote the natural epimorphism from m.G.A onto G.A. Each class name of m.G.A has the form nX_0, nX_1 etc., where nX is the class name of the image under π, and the indices 0, 1 etc. are chosen according to the position of the class in the lifting order rows for G, see [CCN+85, Chapter 7, Section 7, and the example in Section 8]).

    For example, if m = 6 then 1A_1 and 1A_5 denote the classes containing the generators of the kernel of π, that is, central elements of order 6.

3.4-2 AtlasClassNames
‣ AtlasClassNames( tbl )( function )

Returns: a list of class names.

Let tbl be the ordinary or modular character table of a group G, say, that is almost simple or a downward extension of an almost simple group and such that tbl is an ATLAS table from the GAP Character Table Library, according to its InfoText (Reference: InfoText) value. Then AtlasClassNames returns the list of class names for G, as defined in Section 3.4-1. The ordering of class names is the same as the ordering of the columns of tbl.

(The function may work also for character tables that are not ATLAS tables, but then clearly the class names returned are somewhat arbitrary.)

gap> AtlasClassNames( CharacterTable( "L3(4).3" ) );
[ "1A", "2A", "3A", "4ABC", "5A", "5B", "7A", "7B", "3B", "3B'", 
  "3C", "3C'", "6B", "6B'", "15A", "15A'", "15B", "15B'", "21A", 
  "21A'", "21B", "21B'" ]
gap> AtlasClassNames( CharacterTable( "U3(5).2" ) );
[ "1A", "2A", "3A", "4A", "5A", "5B", "5CD", "6A", "7AB", "8AB", 
  "10A", "2B", "4B", "6D", "8C", "10B", "12B", "20A", "20B" ]
gap> AtlasClassNames( CharacterTable( "L2(27).6" ) );
[ "1A", "2A", "3AB", "7ABC", "13ABC", "13DEF", "14ABC", "2B", "4A", 
  "26ABC", "26DEF", "28ABC", "28DEF", "3C", "3C'", "6A", "6A'", 
  "9AB", "9A'B'", "6B", "6B'", "12A", "12A'" ]
gap> AtlasClassNames( CharacterTable( "L3(4).3.2_2" ) );
[ "1A", "2A", "3A", "4ABC", "5AB", "7A", "7B", "3B", "3C", "6B", 
  "15A", "15B", "21A", "21B", "2C", "4E", "6E", "8D", "14A", "14B" ]
gap> AtlasClassNames( CharacterTable( "3.A6" ) );
[ "1A_0", "1A_1", "1A_2", "2A_0", "2A_1", "2A_2", "3A_0", "3B_0", 
  "4A_0", "4A_1", "4A_2", "5A_0", "5A_1", "5A_2", "5B_0", "5B_1", 
  "5B_2" ]
gap> AtlasClassNames( CharacterTable( "2.A5.2" ) );
[ "1A_0", "1A_1", "2A_0", "3A_0", "3A_1", "5AB_0", "5AB_1", "2B_0", 
  "4A_0", "4A_1", "6A_0", "6A_1" ]

3.4-3 AtlasCharacterNames
‣ AtlasCharacterNames( tbl )( function )

Returns: a list of character names.

Let tbl be the ordinary or modular character table of a simple group. AtlasCharacterNames returns a list of strings, the i-th entry being the name of the i-th irreducible character of tbl; this name consists of the degree of this character followed by distinguishing lowercase letters.

gap> AtlasCharacterNames( CharacterTable( "A5" ) );                   
[ "1a", "3a", "3b", "4a", "5a" ]

3.5 Accessing Data via AtlasRep

The examples shown in this section refer to the situation that no extensions have been notified, and to a perhaps outdated table of contents. That is, the current version of the database may contain more information than is shown here.

3.5-1 DisplayAtlasInfo
‣ DisplayAtlasInfo( [listofnames][,] [std][,] ["contents", sources][,] [...] )( function )
‣ DisplayAtlasInfo( gapname[, std][, ...] )( function )

This function lists the information available via the AtlasRep package, for the given input.

There are essentially three ways of calling this function.

  • If there is no argument or if the first argument is a list listofnames of strings that are GAP names of groups, DisplayAtlasInfo shows an overview of the known information.

  • If the first argument is a string gapname that is a GAP name of a group, DisplayAtlasInfo shows an overview of the information that is available for this group.

  • If the string "contents" is the only argument then the function shows which parts of the database are available; these are at least the "core" part, which means the data from the ATLAS of Group Representations, and the "internal" part, which means the data that are distributed with the AtlasRep package. Other parts can become available by calls to AtlasOfGroupRepresentationsNotifyData (5.1-1). Note that the shown numbers of locally available files depend on what has already been downloaded.

In each case, the information will be printed to the screen or will be fed into a pager, see Section 4.2-11. An interactive alternative to DisplayAtlasInfo is the function BrowseAtlasInfo (Browse: BrowseAtlasInfo), see [BL18].

The following paragraphs describe the structure of the output in the two cases. Examples can be found in Section 3.5-2.

Called without arguments, DisplayAtlasInfo shows a general overview for all groups. If some information is available for the group G, say, then one line is shown for G, with the following columns.

group

the GAP name of G (see Section 3.2),

#

the number of faithful representations stored for G that satisfy the additional conditions given (see below),

maxes

the number of available straight line programs for computing generators of maximal subgroups of G,

cl

a + sign if at least one program for computing representatives of conjugacy classes of elements of G is stored,

cyc

a + sign if at least one program for computing representatives of classes of maximally cyclic subgroups of G is stored,

out

descriptions of outer automorphisms of G for which at least one program is stored,

fnd

a + sign if at least one program is available for finding standard generators,

chk

a + sign if at least one program is available for checking whether a set of generators is a set of standard generators, and

prs

a + sign if at least one program is available that encodes a presentation.

Called with a list listofnames of strings that are GAP names of some groups, DisplayAtlasInfo prints the overview described above but restricted to the groups in this list.

In addition to or instead of listofnames, the string "contents" and a description sources of the data may be given about which the overview is formed. See below for admissible values of sources.

Called with a string gapname that is a GAP name of a group, DisplayAtlasInfo prints an overview of the information that is available for this group. One line is printed for each faithful representation, showing the number of this representation (which can be used in calls of AtlasGenerators (3.5-3)), and a string of one of the following forms; in both cases, id is a (possibly empty) string.

G <= Sym(nid)

denotes a permutation representation of degree n, for example G <= Sym(40a) and G <= Sym(40b) denote two (nonequivalent) representations of degree 40.

G <= GL(nid,descr)

denotes a matrix representation of dimension n over a coefficient ring described by descr, which can be a prime power, (denoting the ring of integers), a description of an algebraic extension field, (denoting an unspecified algebraic extension field), or ℤ/m for an integer m (denoting the ring of residues mod m); for example, G <= GL(2a,4) and G <= GL(2b,4) denote two (nonequivalent) representations of dimension 2 over the field with four elements.

After the representations, the programs available for gapname are listed. The following optional arguments can be used to restrict the overviews.

std

must be a positive integer or a list of positive integers; if it is given then only those representations are considered that refer to the std-th set of standard generators or the i-th set of standard generators, for i in std (see Section 3.3),

"contents" and sources

for a string or a list of strings sources, restrict the data about which the overview is formed; if sources is the string "core" then only data from the ATLAS of Group Representations are considered, if sources is a string that denotes a data extension in the sense of a dirid argument of AtlasOfGroupRepresentationsNotifyData (5.1-1) then only the data that belong to this data extension are considered; also a list of such strings may be given, then the union of these data is considered,

Identifier and id

restrict to representations with id component in the list id (note that this component is itself a list, entering this list is not admissible), or satisfying the function id,

IsPermGroup and true (or false)

restrict to permutation representations (or to representations that are not permutation representations),

NrMovedPoints and n

for a positive integer, a list of positive integers, or a property n, restrict to permutation representations of degree equal to n, or in the list n, or satisfying the function n,

NrMovedPoints and the string "minimal"

restrict to faithful permutation representations of minimal degree (if this information is available),

IsTransitive and a boolean value

restrict to transitive or intransitive permutation representations where this information is available (if the value true or false is given), or to representations for which this information is not available (if the value fail is given),

IsPrimitive and a boolean value

restrict to primitive or imprimitive permutation representations where this information is available (if the value true or false is given), or to representations for which this information is not available (if the value fail is given),

Transitivity and n

for a nonnegative integer, a list of nonnegative integers, or a property n, restrict to permutation representations for which the information is available that the transitivity is equal to n, or is in the list n, or satisfies the function n; if n is fail then restrict to all permutation representations for which this information is not available,

RankAction and n

for a nonnegative integer, a list of nonnegative integers, or a property n, restrict to permutation representations for which the information is available that the rank is equal to n, or is in the list n, or satisfies the function n; if n is fail then restrict to all permutation representations for which this information is not available,

IsMatrixGroup and true (or false)

restrict to matrix representations (or to representations that are not matrix representations),

Characteristic and p

for a prime integer, a list of prime integers, or a property p, restrict to matrix representations over fields of characteristic equal to p, or in the list p, or satisfying the function p (representations over residue class rings that are not fields can be addressed by entering fail as the value of p),

Dimension and n

for a positive integer, a list of positive integers, or a property n, restrict to matrix representations of dimension equal to n, or in the list n, or satisfying the function n,

Characteristic, p, Dimension, and the string "minimal"

for a prime integer p, restrict to faithful matrix representations over fields of characteristic p that have minimal dimension (if this information is available),

Ring and R

for a ring or a property R, restrict to matrix representations for which the information is available that the ring spanned by the matrix entries is contained in this ring or satisfies this property (note that the representation might be defined over a proper subring); if R is fail then restrict to all matrix representations for which this information is not available,

Ring, R, Dimension, and the string "minimal"

for a ring R, restrict to faithful matrix representations over this ring that have minimal dimension (if this information is available),

Character and chi

for a class function or a list of class functions chi, restrict to representations with these characters (note that the underlying characteristic of the class function, see Section Reference: UnderlyingCharacteristic, determines the characteristic of the representation),

Character and name

for a string name, restrict to representations for which the character is known to have this name, according to the information shown by DisplayAtlasInfo; if the characteristic is not specified then it defaults to zero,

Character and n

for a positive integer n, restrict to representations for which the character is known to be the n-th irreducible character in GAP's library character table of the group in question; if the characteristic is not specified then it defaults to zero,

IsStraightLineProgram and true

restrict to straight line programs, straight line decisions (see Section 6.1), and black box programs (see Section 6.2), and

IsStraightLineProgram and false

restrict to representations.

Note that the above conditions refer only to the information that is available without accessing the representations. For example, if it is not stored in the table of contents whether a permutation representation is primitive then this representation does not match an IsPrimitive condition in DisplayAtlasInfo.

If "minimality" information is requested and no available representation matches this condition then either no minimal representation is available or the information about the minimality is missing. See MinimalRepresentationInfo (6.3-1) for checking whether the minimality information is available for the group in question. Note that in the cases where the string "minimal" occurs as an argument, MinimalRepresentationInfo (6.3-1) is called with third argument "lookup"; this is because the stored information was precomputed just for the groups in the ATLAS of Group Representations, so trying to compute non-stored minimality information (using other available databases) will hardly be successful.

The representations are ordered as follows. Permutation representations come first (ordered according to their degrees), followed by matrix representations over finite fields (ordered first according to the field size and second according to the dimension), matrix representations over the integers, and then matrix representations over algebraic extension fields (both kinds ordered according to the dimension), the last representations are matrix representations over residue class rings (ordered first according to the modulus and second according to the dimension).

The maximal subgroups are ordered according to decreasing group order. For an extension G.p of a simple group G by an outer automorphism of prime order p, this means that G is the first maximal subgroup and then come the extensions of the maximal subgroups of G and the novelties; so the n-th maximal subgroup of G and the n-th maximal subgroup of G.p are in general not related. (This coincides with the numbering used for the Maxes (CTblLib: Maxes) attribute for character tables.)

3.5-2 Examples for DisplayAtlasInfo

Here are some examples how DisplayAtlasInfo (3.5-1) can be called, and how its output can be interpreted.

gap> DisplayAtlasInfo( "contents" );
- AtlasRepAccessRemoteFiles: false

- AtlasRepDataDirectory: /home/you/gap/pkg/atlasrep/

ID       | address, version, files                        
---------+------------------------------------------------
core     | http://atlas.math.rwth-aachen.de/Atlas/,
         | version 2019-04-08,                            
         | 10586 files locally available.                 
---------+------------------------------------------------
internal | atlasrep/datapkg,                              
         | version 2019-05-06,                            
         | 276 files locally available.                   
---------+------------------------------------------------
mfer     | http://www.math.rwth-aachen.de/~mfer/datagens/,
         | version 2015-10-06,                            
         | 34 files locally available.                    
---------+------------------------------------------------
ctblocks | ctblocks/atlas/,   
         | version 2019-04-08,                            
         | 121 files locally available.                   

Note: The above output does not fit to the rest of the manual examples, since data extensions except internal have been removed at the beginning of Chapter 2.

The output tells us that two data extensions have been notified in addition to the core data from the ATLAS of Group Representations and the (local) internal data distributed with the AtlasRep package. The files of the extension mfer must be downloaded before they can be read (but note that the access to remote files is disabled), and the files of the extension ctblocks are locally available in the ctblocks/atlas subdirectory of the GAP package directory. This table (in particular the numbers of locally available files) depends on your installation of the package and how many files you have already downloaded.

gap> DisplayAtlasInfo( [ "M11", "A5" ] );
group |  # | maxes | cl | cyc | out | fnd | chk | prs
------+----+-------+----+-----+-----+-----+-----+----
M11   | 42 |     5 |  + |  +  |     |  +  |  +  |  + 
A5*   | 18 |     3 |  + |     |     |     |  +  |  + 

The above output means that the database provides 42 representations of the Mathieu group M_11, straight line programs for computing generators of representatives of all five classes of maximal subgroups, for computing representatives of the conjugacy classes of elements and of generators of maximally cyclic subgroups, contains no straight line program for applying outer automorphisms (well, in fact M_11 admits no nontrivial outer automorphism), and contains straight line decisions that check a set of generators or a set of group elements for being a set of standard generators. Analogously, 18 representations of the alternating group A_5 are available, straight line programs for computing generators of representatives of all three classes of maximal subgroups, and no straight line programs for computing representatives of the conjugacy classes of elements, of generators of maximally cyclic subgroups, and no for computing images under outer automorphisms; straight line decisions for checking the standardization of generators or group elements are available.

gap> DisplayAtlasInfo( [ "M11", "A5" ], NrMovedPoints, 11 );
group | # | maxes | cl | cyc | out | fnd | chk | prs
------+---+-------+----+-----+-----+-----+-----+----
M11   | 1 |     5 |  + |  +  |     |  +  |  +  |  + 

The given conditions restrict the overview to permutation representations on 11 points. The rows for all those groups are omitted for which no such representation is available, and the numbers of those representations are shown that satisfy the given conditions. In the above example, we see that no representation on 11 points is available for A_5, and exactly one such representation is available for M_11.

gap> DisplayAtlasInfo( "A5", IsPermGroup, true );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
1: G <= Sym(5)  3-trans., on cosets of A4 (1st max.)
2: G <= Sym(6)  2-trans., on cosets of D10 (2nd max.)
3: G <= Sym(10) rank 3, on cosets of S3 (3rd max.)
gap> DisplayAtlasInfo( "A5", NrMovedPoints, [ 4 .. 9 ] );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.)
2: G <= Sym(6) 2-trans., on cosets of D10 (2nd max.)

The first three representations stored for A_5 are (in fact primitive) permutation representations.

gap> DisplayAtlasInfo( "A5", Dimension, [ 1 .. 3 ] );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
 8: G <= GL(2a,4)                character 2a
 9: G <= GL(2b,4)                character 2b
10: G <= GL(3,5)                 character 3a
12: G <= GL(3a,9)                character 3a
13: G <= GL(3b,9)                character 3b
17: G <= GL(3a,Field([Sqrt(5)])) character 3a
18: G <= GL(3b,Field([Sqrt(5)])) character 3b
gap> DisplayAtlasInfo( "A5", Characteristic, 0 );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
14: G <= GL(4,Z)                 character 4a
15: G <= GL(5,Z)                 character 5a
16: G <= GL(6,Z)                 character 3ab
17: G <= GL(3a,Field([Sqrt(5)])) character 3a
18: G <= GL(3b,Field([Sqrt(5)])) character 3b

The representations with number between 4 and 13 are (in fact irreducible) matrix representations over various finite fields, those with numbers 14 to 16 are integral matrix representations, and the last two are matrix representations over the field generated by sqrt{5} over the rational number field.

gap> DisplayAtlasInfo( "A5", Identifier, "a" );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
 4: G <= GL(4a,2)                character 4a
 8: G <= GL(2a,4)                character 2a
12: G <= GL(3a,9)                character 3a
17: G <= GL(3a,Field([Sqrt(5)])) character 3a

Each of the representations with the numbers 4, 8, 12, and 17 is labeled with the distinguishing letter a.

gap> DisplayAtlasInfo( "A5", NrMovedPoints, IsPrimeInt );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.)
gap> DisplayAtlasInfo( "A5", Characteristic, IsOddInt );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
 6: G <= GL(4,3)  character 4a
 7: G <= GL(6,3)  character 3ab
10: G <= GL(3,5)  character 3a
11: G <= GL(5,5)  character 5a
12: G <= GL(3a,9) character 3a
13: G <= GL(3b,9) character 3b
gap> DisplayAtlasInfo( "A5", Dimension, IsPrimeInt );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
 8: G <= GL(2a,4)                character 2a
 9: G <= GL(2b,4)                character 2b
10: G <= GL(3,5)                 character 3a
11: G <= GL(5,5)                 character 5a
12: G <= GL(3a,9)                character 3a
13: G <= GL(3b,9)                character 3b
15: G <= GL(5,Z)                 character 5a
17: G <= GL(3a,Field([Sqrt(5)])) character 3a
18: G <= GL(3b,Field([Sqrt(5)])) character 3b
gap> DisplayAtlasInfo( "A5", Ring, IsFinite and IsPrimeField );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
 4: G <= GL(4a,2) character 4a
 5: G <= GL(4b,2) character 2ab
 6: G <= GL(4,3)  character 4a
 7: G <= GL(6,3)  character 3ab
10: G <= GL(3,5)  character 3a
11: G <= GL(5,5)  character 5a

The above examples show how the output can be restricted using a property (a unary function that returns either true or false) that follows NrMovedPoints (Reference: NrMovedPoints for a permutation), Characteristic (Reference: Characteristic), Dimension (Reference: Dimension), or Ring (Reference: Ring) in the argument list of DisplayAtlasInfo (3.5-1).

gap> DisplayAtlasInfo( "A5", IsStraightLineProgram, true );
Programs for G = A5:    (all refer to std. generators 1)
--------------------
- class repres.*      
- presentation        
- maxes (all 3):
  1:  A4              
  2:  D10             
  3:  S3              
- std. gen. checker:
  (check)             
  (pres)              

Straight line programs are available for computing generators of representatives of the three classes of maximal subgroups of A_5, and a straight line decision for checking whether given generators are in fact standard generators is available as well as a presentation in terms of standard generators, see AtlasProgram (3.5-4).

3.5-3 AtlasGenerators
‣ AtlasGenerators( gapname, repnr[, maxnr] )( function )
‣ AtlasGenerators( identifier )( function )

Returns: a record containing generators for a representation, or fail.

In the first form, gapname must be a string denoting a GAP name (see Section 3.2) of a group, and repnr a positive integer. If at least repnr representations for the group with GAP name gapname are available then AtlasGenerators, when called with gapname and repnr, returns an immutable record describing the repnr-th representation; otherwise fail is returned. If a third argument maxnr, a positive integer, is given then an immutable record describing the restriction of the repnr-th representation to the maxnr-th maximal subgroup is returned.

The result record has at least the following components.

contents

the identifier of the part of the database to which the generators belong, for example "core" or "internal",

generators

a list of generators for the group,

groupname

the GAP name of the group (see Section 3.2),

identifier

a GAP object (a list of filenames plus additional information) that uniquely determines the representation, see Section 7.7; the value can be used as identifier argument of AtlasGenerators.

repname

a string that is an initial part of the filenames of the generators.

repnr

the number of the representation in the current session, equal to the argument repnr if this is given.

standardization

the positive integer denoting the underlying standard generators,

type

a string that describes the type of the representation ("perm" for a permutation representation, "matff" for a matrix representation over a finite field, "matint" for a matrix representation over the ring of integers, "matalg" for a matrix representation over an algebraic number field).

Additionally, the following describing components may be available if they are known, and depending on the data type of the representation.

size

the group order,

id

the distinguishing string as described for DisplayAtlasInfo (3.5-1),

charactername

a string that describes the character of the representation,

constituents

a list of positive integers denoting the positions of the irreducible constituents of the character of the representation,

p (for permutation representations)

for the number of moved points,

dim (for matrix representations)

the dimension of the matrices,

ring (for matrix representations)

the ring generated by the matrix entries,

transitivity (for permutation representations)

a nonnegative integer, see Transitivity (Reference: Transitivity),

orbits (for intransitive permutation representations)

the sorted list of orbit lengths on the set of moved points,

rankAction (for transitive permutation representations)

the number of orbits of the point stabilizer on the set of moved points, see RankAction (Reference: RankAction),

stabilizer (for transitive permutation representations)

a string that describes the structure of the point stabilizers,

isPrimitive (for transitive permutation representations)

true if the point stabilizers are maximal subgroups, and false otherwise,

maxnr (for primitive permutation representations)

the number of the class of maximal subgroups that contains the point stabilizers, w. r. t. the Maxes (CTblLib: Maxes) list.

It should be noted that the number repnr refers to the number shown by DisplayAtlasInfo (3.5-1) in the current session; it may be that after the addition of new representations (for example after loading a package that provides some), repnr refers to another representation.

The alternative form of AtlasGenerators, with only argument identifier, can be used to fetch the result record with identifier value equal to identifier. The purpose of this variant is to access the same representation also in different GAP sessions.

gap> gens1:= AtlasGenerators( "A5", 1 );
rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
  contents := "core", generators := [ (1,2)(3,4), (1,3,5) ], 
  groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], 
  isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
  repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", 
  standardization := 1, transitivity := 3, type := "perm" )
gap> gens8:= AtlasGenerators( "A5", 8 );
rec( charactername := "2a", constituents := [ 2 ], contents := "core",
  dim := 2, 
  generators := [ [ [ Z(2)^0, 0*Z(2) ], [ Z(2^2), Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0 ], [ Z(2)^0, Z(2)^0 ] ] ], groupname := "A5",
  id := "a", 
  identifier := [ "A5", [ "A5G1-f4r2aB0.m1", "A5G1-f4r2aB0.m2" ], 1, 
      4 ], repname := "A5G1-f4r2aB0", repnr := 8, ring := GF(2^2), 
  size := 60, standardization := 1, type := "matff" )
gap> gens17:= AtlasGenerators( "A5", 17 );
rec( charactername := "3a", constituents := [ 2 ], contents := "core",
  dim := 3, 
  generators := 
    [ [ [ -1, 0, 0 ], [ 0, -1, 0 ], [ -E(5)-E(5)^4, -E(5)-E(5)^4, 1 ] 
         ], [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] ], 
  groupname := "A5", id := "a", 
  identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], 
  polynomial := [ -1, 1, 1 ], repname := "A5G1-Ar3aB0", repnr := 17, 
  ring := NF(5,[ 1, 4 ]), size := 60, standardization := 1, 
  type := "matalg" )

Each of the above pairs of elements generates a group isomorphic to A_5.

gap> gens1max2:= AtlasGenerators( "A5", 1, 2 );
rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
  contents := "core", generators := [ (1,2)(3,4), (2,3)(4,5) ], 
  groupname := "D10", id := "", 
  identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5, 2 ],
  isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
  repname := "A5G1-p5B0", repnr := 1, size := 10, stabilizer := "A4", 
  standardization := 1, transitivity := 3, type := "perm" )
gap> id:= gens1max2.identifier;;
gap> gens1max2 = AtlasGenerators( id );
true
gap> max2:= Group( gens1max2.generators );;
gap> Size( max2 );
10
gap> IdGroup( max2 ) = IdGroup( DihedralGroup( 10 ) );
true

The elements stored in gens1max2.generators describe the restriction of the first representation of A_5 to a group in the second class of maximal subgroups of A_5 according to the list in the ATLAS of Finite Groups [CCN+85]; this subgroup is isomorphic to the dihedral group D_10.

3.5-4 AtlasProgram
‣ AtlasProgram( gapname[, std][, "contents", sources][, "version", vers], ... )( function )
‣ AtlasProgram( identifier )( function )

Returns: a record containing a program, or fail.

In the first form, gapname must be a string denoting a GAP name (see Section 3.2) of a group G, say. If the database contains a straight line program (see Section Reference: Straight Line Programs) or straight line decision (see Section 6.1) or black box program (see Section 6.2) as described by the arguments indicated by ... (see below) then AtlasProgram returns an immutable record containing this program. Otherwise fail is returned.

If the optional argument std is given, only those straight line programs/decisions are considered that take generators from the std-th set of standard generators of G as input, see Section 3.3.

If the optional arguments "contents" and sources are given then the latter must be either a string or a list of strings, with the same meaning as described for DisplayAtlasInfo (3.5-1).

If the optional arguments "version" and vers are given then the latter must be either a number or a list of numbers, and only those straight line programs/decisions are considered whose version number fits to vers.

The result record has at least the following components.

groupname

the string gapname,

identifier

a GAP object (a list of filenames plus additional information) that uniquely determines the program; the value can be used as identifier argument of AtlasProgram (see below),

program

the required straight line program/decision, or black box program,

standardization

the positive integer denoting the underlying standard generators of G,

version

the substring of the filename of the program that denotes the version of the program.

If the program computes generators of the restriction to a maximal subgroup then also the following components are present.

size

the order of the maximal subgroup,

subgroupname

a string denoting a name of the maximal subgroup.

In the first form, the arguments indicated by ... must be as follows.

(the string "maxes" and) a positive integer maxnr

the required program computes generators of the maxnr-th maximal subgroup of the group with GAP name gapname.

In this case, the result record of AtlasProgram also may contain a component size, whose value is the order of the maximal subgroup in question.

the string "maxes" and two positive integers maxnr and std2

the required program computes standard generators of the maxnr-th maximal subgroup of the group with GAP name gapname, w. r. t. the standardization std2.

A prescribed "version" parameter refers to the straight line program for computing the restriction, not to the program for standardizing the result of the restriction.

The meaning of the component size in the result, if present, is the same as in the previous case.

the string "maxstd" and three positive integers maxnr, vers, substd

the required program computes standard generators of the maxnr-th maximal subgroup of the group with GAP name gapname w. r. t. standardization substd; in this case, the inputs of the program are not standard generators of the group with GAP name gapname but the outputs of the straight line program with version vers for computing generators of its maxnr-th maximal subgroup.

the string "kernel" and a string factname

the required program computes generators of the kernel of an epimorphism from G to a group with GAP name factname.

one of the strings "classes" or "cyclic"

the required program computes representatives of conjugacy classes of elements or representatives of generators of maximally cyclic subgroups of G, respectively.

See [BSWW01] and [SWW00] for the background concerning these straight line programs. In these cases, the result record of AtlasProgram also contains a component outputs, whose value is a list of class names of the outputs, as described in Section 3.4.

the string "cyc2ccl" (and the string vers)

the required program computes representatives of conjugacy classes of elements from representatives of generators of maximally cyclic subgroups of G. Thus the inputs are the outputs of the program of type "cyclic" whose version is vers.

the strings "cyc2ccl", vers1, "version", vers2

the required program computes representatives of conjugacy classes of elements from representatives of generators of maximally cyclic subgroups of G, where the inputs are the outputs of the program of type "cyclic" whose version is vers1 and the required program itself has version vers2.

the strings "automorphism" and autname

the required program computes images of standard generators under the outer automorphism of G that is given by this string.

Note that a value "2" of autname means that the square of the automorphism is an inner automorphism of G (not necessarily the identity mapping) but the automorphism itself is not.

the string "check"

the required result is a straight line decision that takes a list of generators for G and returns true if these generators are standard generators of G w. r. t. the standardization std, and false otherwise.

the string "presentation"

the required result is a straight line decision that takes a list of group elements and returns true if these elements are standard generators of G w. r. t. the standardization std, and false otherwise.

See StraightLineProgramFromStraightLineDecision (6.1-9) for an example how to derive defining relators for G in terms of the standard generators from such a straight line decision.

the string "find"

the required result is a black box program that takes G and returns a list of standard generators of G, w. r. t. the standardization std.

the string "restandardize" and an integer std2

the required result is a straight line program that computes standard generators of G w. r. t. the std2-th set of standard generators of G; in this case, the argument std must be given.

the strings "other" and descr

the required program is described by descr.

The second form of AtlasProgram, with only argument the list identifier, can be used to fetch the result record with identifier value equal to identifier.

gap> prog:= AtlasProgram( "A5", 2 );
rec( groupname := "A5", identifier := [ "A5", "A5G1-max2W1", 1 ], 
  program := <straight line program>, size := 10, 
  standardization := 1, subgroupname := "D10", version := "1" )
gap> StringOfResultOfStraightLineProgram( prog.program, [ "a", "b" ] );
"[ a, bbab ]"
gap> gens1:= AtlasGenerators( "A5", 1 );
rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
  contents := "core", generators := [ (1,2)(3,4), (1,3,5) ], 
  groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], 
  isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
  repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", 
  standardization := 1, transitivity := 3, type := "perm" )
gap> maxgens:= ResultOfStraightLineProgram( prog.program,
>                  gens1.generators );
[ (1,2)(3,4), (2,3)(4,5) ]
gap> maxgens = gens1max2.generators;
true

The above example shows that for restricting representations given by standard generators to a maximal subgroup of A_5, we can also fetch and apply the appropriate straight line program. Such a program (see Reference: Straight Line Programs) takes standard generators of a group –in this example A_5– as its input, and returns a list of elements in this group –in this example generators of the D_10 subgroup we had met above– which are computed essentially by evaluating structured words in terms of the standard generators.

gap> prog:= AtlasProgram( "J1", "cyclic" );
rec( groupname := "J1", identifier := [ "J1", "J1G1-cycW1", 1 ], 
  outputs := [ "6A", "7A", "10B", "11A", "15B", "19A" ], 
  program := <straight line program>, standardization := 1, 
  version := "1" )
gap> gens:= GeneratorsOfGroup( FreeGroup( "x", "y" ) );;
gap> ResultOfStraightLineProgram( prog.program, gens );
[ (x*y)^2*((y*x)^2*y^2*x)^2*y^2, x*y, (x*(y*x*y)^2)^2*y, 
  (x*y*x*(y*x*y)^3*x*y^2)^2*x*y*x*(y*x*y)^2*y, x*y*x*(y*x*y)^2*y, 
  (x*y)^2*y ]

The above example shows how to fetch and use straight line programs for computing generators of representatives of maximally cyclic subgroups of a given group.

3.5-5 AtlasProgramInfo
‣ AtlasProgramInfo( gapname[, std][, "contents", sources][, "version", vers], ... )( function )

Returns: a record describing a program, or fail.

AtlasProgramInfo takes the same arguments as AtlasProgram (3.5-4), and returns a similar result. The only difference is that the records returned by AtlasProgramInfo have no components program and outputs. The idea is that one can use AtlasProgramInfo for testing whether the program in question is available at all, but without downloading files. The identifier component of the result of AtlasProgramInfo can then be used to fetch the program with AtlasProgram (3.5-4).

gap> AtlasProgramInfo( "J1", "cyclic" );
rec( groupname := "J1", identifier := [ "J1", "J1G1-cycW1", 1 ], 
  standardization := 1, version := "1" )

3.5-6 OneAtlasGeneratingSetInfo
‣ OneAtlasGeneratingSetInfo( [gapname][,] [std][,] [...] )( function )

Returns: a record describing a representation that satisfies the conditions, or fail.

Let gapname be a string denoting a GAP name (see Section 3.2) of a group G, say. If the database contains at least one representation for G with the required properties then OneAtlasGeneratingSetInfo returns a record r whose components are the same as those of the records returned by AtlasGenerators (3.5-3), except that the component generators is not contained, and an additional component givenRing is present if Ring is one of the arguments in the function call.

The information in givenRing can be used later to construct the matrices over the prescribed ring. Note that this ring may be for example a domain constructed with AlgebraicExtension (Reference: AlgebraicExtension) instead of a field of cyclotomics or of a finite field constructed with GF (Reference: GF for field size).

The component identifier of r can be used as input for AtlasGenerators (3.5-3) in order to fetch the generators. If no representation satisfying the given conditions is available then fail is returned.

If the argument std is given then it must be a positive integer or a list of positive integers, denoting the sets of standard generators w. r. t. which the representation shall be given (see Section 3.3).

The argument gapname can be missing (then all available groups are considered), or a list of group names can be given instead.

Further restrictions can be entered as arguments, with the same meaning as described for DisplayAtlasInfo (3.5-1). The result of OneAtlasGeneratingSetInfo describes the first generating set for G that matches the restrictions, in the ordering shown by DisplayAtlasInfo (3.5-1).

Note that even in the case that the user preference AtlasRepAccessRemoteFiles has the value true (see Section 4.2-1), OneAtlasGeneratingSetInfo does not attempt to transfer remote data files, just the table of contents is evaluated. So this function (as well as AllAtlasGeneratingSetInfos (3.5-7)) can be used to check for the availability of certain representations, and afterwards one can call AtlasGenerators (3.5-3) for those representations one wants to work with.

In the following example, we try to access information about permutation representations for the alternating group A_5.

gap> info:= OneAtlasGeneratingSetInfo( "A5" );
rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
  contents := "core", groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], 
  isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
  repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", 
  standardization := 1, transitivity := 3, type := "perm" )
gap> gens:= AtlasGenerators( info.identifier );
rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
  contents := "core", generators := [ (1,2)(3,4), (1,3,5) ], 
  groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], 
  isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
  repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", 
  standardization := 1, transitivity := 3, type := "perm" )
gap> info = OneAtlasGeneratingSetInfo( "A5", IsPermGroup, true );
true
gap> info = OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, "minimal" );
true
gap> info = OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, [ 1 .. 10 ] );
true
gap> OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, 20 );
fail

Note that a permutation representation of degree 20 could be obtained by taking twice the primitive representation on 10 points; however, the database does not store this imprimitive representation (cf. Section 3.1).

We continue this example. Next we access matrix representations of A_5.

gap> info:= OneAtlasGeneratingSetInfo( "A5", IsMatrixGroup, true );
rec( charactername := "4a", constituents := [ 4 ], contents := "core",
  dim := 4, groupname := "A5", id := "a", 
  identifier := [ "A5", [ "A5G1-f2r4aB0.m1", "A5G1-f2r4aB0.m2" ], 1, 
      2 ], repname := "A5G1-f2r4aB0", repnr := 4, ring := GF(2), 
  size := 60, standardization := 1, type := "matff" )
gap> gens:= AtlasGenerators( info.identifier );
rec( charactername := "4a", constituents := [ 4 ], contents := "core",
  dim := 4, 
  generators := [ <an immutable 4x4 matrix over GF2>, 
      <an immutable 4x4 matrix over GF2> ], groupname := "A5", 
  id := "a", 
  identifier := [ "A5", [ "A5G1-f2r4aB0.m1", "A5G1-f2r4aB0.m2" ], 1, 
      2 ], repname := "A5G1-f2r4aB0", repnr := 4, ring := GF(2), 
  size := 60, standardization := 1, type := "matff" )
gap> info = OneAtlasGeneratingSetInfo( "A5", Dimension, 4 );
true
gap> info = OneAtlasGeneratingSetInfo( "A5", Characteristic, 2 );
true
gap> info2:= OneAtlasGeneratingSetInfo( "A5", Ring, GF(2) );;
gap> info.identifier = info2.identifier; 
true
gap> OneAtlasGeneratingSetInfo( "A5", Characteristic, [2,5], Dimension, 2 );
rec( charactername := "2a", constituents := [ 2 ], contents := "core",
  dim := 2, groupname := "A5", id := "a", 
  identifier := [ "A5", [ "A5G1-f4r2aB0.m1", "A5G1-f4r2aB0.m2" ], 1, 
      4 ], repname := "A5G1-f4r2aB0", repnr := 8, ring := GF(2^2), 
  size := 60, standardization := 1, type := "matff" )
gap> OneAtlasGeneratingSetInfo( "A5", Characteristic, [2,5], Dimension, 1 );
fail
gap> info:= OneAtlasGeneratingSetInfo( "A5", Characteristic, 0,
>                                            Dimension, 4 );
rec( charactername := "4a", constituents := [ 4 ], contents := "core",
  dim := 4, groupname := "A5", id := "", 
  identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], 
  repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60, 
  standardization := 1, type := "matint" )
gap> gens:= AtlasGenerators( info.identifier );
rec( charactername := "4a", constituents := [ 4 ], contents := "core",
  dim := 4, 
  generators := 
    [ 
      [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], 
          [ -1, -1, -1, -1 ] ], 
      [ [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], 
          [ 1, 0, 0, 0 ] ] ], groupname := "A5", id := "", 
  identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], 
  repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60, 
  standardization := 1, type := "matint" )
gap> info = OneAtlasGeneratingSetInfo( "A5", Ring, Integers );
true
gap> info2:= OneAtlasGeneratingSetInfo( "A5", Ring, CF(37) );;
gap> info = info2;
false
gap> Difference( RecNames( info2 ), RecNames( info ) );
[ "givenRing" ]
gap> info2.givenRing;
CF(37)
gap> OneAtlasGeneratingSetInfo( "A5", Ring, Integers mod 77 );
fail
gap> info:= OneAtlasGeneratingSetInfo( "A5", Ring, CF(5), Dimension, 3 );
rec( charactername := "3a", constituents := [ 2 ], contents := "core",
  dim := 3, givenRing := CF(5), groupname := "A5", id := "a", 
  identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], 
  polynomial := [ -1, 1, 1 ], repname := "A5G1-Ar3aB0", repnr := 17, 
  ring := NF(5,[ 1, 4 ]), size := 60, standardization := 1, 
  type := "matalg" )
gap> gens:= AtlasGenerators( info );
rec( charactername := "3a", constituents := [ 2 ], contents := "core",
  dim := 3, 
  generators := 
    [ [ [ -1, 0, 0 ], [ 0, -1, 0 ], [ -E(5)-E(5)^4, -E(5)-E(5)^4, 1 ] 
         ], [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] ], 
  givenRing := CF(5), groupname := "A5", id := "a", 
  identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], 
  polynomial := [ -1, 1, 1 ], repname := "A5G1-Ar3aB0", repnr := 17, 
  ring := NF(5,[ 1, 4 ]), size := 60, standardization := 1, 
  type := "matalg" )
gap> gens2:= AtlasGenerators( info.identifier );;
gap> Difference( RecNames( gens ), RecNames( gens2 ) );
[ "givenRing" ]
gap> OneAtlasGeneratingSetInfo( "A5", Ring, GF(17) );
fail

3.5-7 AllAtlasGeneratingSetInfos
‣ AllAtlasGeneratingSetInfos( [gapname][,] [std][,] [...] )( function )

Returns: the list of all records describing representations that satisfy the conditions.

AllAtlasGeneratingSetInfos is similar to OneAtlasGeneratingSetInfo (3.5-6). The difference is that the list of all records describing the available representations with the given properties is returned instead of just one such component. In particular an empty list is returned if no such representation is available.

gap> AllAtlasGeneratingSetInfos( "A5", IsPermGroup, true );
[ rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
      contents := "core", groupname := "A5", id := "", 
      identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ]
        , isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
      repname := "A5G1-p5B0", repnr := 1, size := 60, 
      stabilizer := "A4", standardization := 1, transitivity := 3, 
      type := "perm" ), 
  rec( charactername := "1a+5a", constituents := [ 1, 5 ], 
      contents := "core", groupname := "A5", id := "", 
      identifier := [ "A5", [ "A5G1-p6B0.m1", "A5G1-p6B0.m2" ], 1, 6 ]
        , isPrimitive := true, maxnr := 2, p := 6, rankAction := 2, 
      repname := "A5G1-p6B0", repnr := 2, size := 60, 
      stabilizer := "D10", standardization := 1, transitivity := 2, 
      type := "perm" ), 
  rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], 
      contents := "core", groupname := "A5", id := "", 
      identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 
          10 ], isPrimitive := true, maxnr := 3, p := 10, 
      rankAction := 3, repname := "A5G1-p10B0", repnr := 3, 
      size := 60, stabilizer := "S3", standardization := 1, 
      transitivity := 1, type := "perm" ) ]

Note that a matrix representation in any characteristic can be obtained by reducing a permutation representation or an integral matrix representation; however, the database does not store such a representation (cf. Section  3.1).

3.5-8 AtlasGroup
‣ AtlasGroup( [gapname][,] [std][,] [...] )( function )
‣ AtlasGroup( identifier )( function )

Returns: a group that satisfies the conditions, or fail.

AtlasGroup takes the same arguments as OneAtlasGeneratingSetInfo (3.5-6), and returns the group generated by the generators component of the record that is returned by OneAtlasGeneratingSetInfo (3.5-6) with these arguments; if OneAtlasGeneratingSetInfo (3.5-6) returns fail then also AtlasGroup returns fail.

gap> g:= AtlasGroup( "A5" );
Group([ (1,2)(3,4), (1,3,5) ])

Alternatively, it is possible to enter exactly one argument, a record identifier as returned by OneAtlasGeneratingSetInfo (3.5-6) or AllAtlasGeneratingSetInfos (3.5-7), or the identifier component of such a record.

gap> info:= OneAtlasGeneratingSetInfo( "A5" );
rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
  contents := "core", groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], 
  isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
  repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", 
  standardization := 1, transitivity := 3, type := "perm" )
gap> AtlasGroup( info );
Group([ (1,2)(3,4), (1,3,5) ])
gap> AtlasGroup( info.identifier );
Group([ (1,2)(3,4), (1,3,5) ])

In the groups returned by AtlasGroup, the value of the attribute AtlasRepInfoRecord (3.5-10) is set. This information is used for example by AtlasSubgroup (3.5-9) when this function is called with second argument a group created by AtlasGroup.

3.5-9 AtlasSubgroup
‣ AtlasSubgroup( gapname[, std][, ...], maxnr )( function )
‣ AtlasSubgroup( identifier, maxnr )( function )
‣ AtlasSubgroup( G, maxnr )( function )

Returns: a group that satisfies the conditions, or fail.

The arguments of AtlasSubgroup, except the last argument maxnr, are the same as for AtlasGroup (3.5-8). If the database provides a straight line program for restricting representations of the group with name gapname (given w. r. t. the std-th standard generators) to the maxnr-th maximal subgroup and if a representation with the required properties is available, in the sense that calling AtlasGroup (3.5-8) with the same arguments except maxnr yields a group, then AtlasSubgroup returns the restriction of this representation to the maxnr-th maximal subgroup.

In all other cases, fail is returned.

Note that the conditions refer to the group and not to the subgroup. It may happen that in the restriction of a permutation representation to a subgroup, fewer points are moved, or that the restriction of a matrix representation turns out to be defined over a smaller ring. Here is an example.

gap> g:= AtlasSubgroup( "A5", NrMovedPoints, 5, 1 );
Group([ (1,5)(2,3), (1,3,5) ])
gap> NrMovedPoints( g );
4

Alternatively, it is possible to enter exactly two arguments, the first being a record identifier as returned by OneAtlasGeneratingSetInfo (3.5-6) or AllAtlasGeneratingSetInfos (3.5-7), or the identifier component of such a record, or a group G constructed with AtlasGroup (3.5-8).

gap> info:= OneAtlasGeneratingSetInfo( "A5" );
rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
  contents := "core", groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], 
  isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
  repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", 
  standardization := 1, transitivity := 3, type := "perm" )
gap> AtlasSubgroup( info, 1 );
Group([ (1,5)(2,3), (1,3,5) ])
gap> AtlasSubgroup( info.identifier, 1 );
Group([ (1,5)(2,3), (1,3,5) ])
gap> AtlasSubgroup( AtlasGroup( "A5" ), 1 );
Group([ (1,5)(2,3), (1,3,5) ])

3.5-10 AtlasRepInfoRecord
‣ AtlasRepInfoRecord( G )( attribute )
‣ AtlasRepInfoRecord( name )( attribute )

Returns: the record stored in the group G when this was constructed with AtlasGroup (3.5-8), or a record with information about the group with name name.

For a group G that has been constructed with AtlasGroup (3.5-8), the value of this attribute is the info record that describes G, in the sense that this record was the first argument of the call to AtlasGroup (3.5-8), or it is the result of the call to OneAtlasGeneratingSetInfo (3.5-6) with the conditions that were listed in the call to AtlasGroup (3.5-8).

gap> AtlasRepInfoRecord( AtlasGroup( "A5" ) );
rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
  contents := "core", groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], 
  isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
  repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", 
  standardization := 1, transitivity := 3, type := "perm" )

For a string name that is a GAP name of a group G, say, AtlasRepInfoRecord returns a record that contains information about G which is used by DisplayAtlasInfo (3.5-1). The following components may be bound in the record.

name

the string name,

nrMaxes

the number of conjugacy classes of maximal subgroups of G,

size

the order of G,

sizesMaxes

a list which contains at position i, if bound, the order of a subgroup in the i-th class of maximal subgroups of G,

slpMaxes

a list of length two; the first entry is a list of positions i such that a straight line program for computing the restriction of representations of G to a subgroup in the i-th class of maximal subgroups is available via AtlasRep; the second entry is the corresponding list of standardizations of the generators of G for which these straight line programs are available,

structureMaxes

a list which contains at position i, if bound, a string that describes the structure of the subgroups in the i-th class of maximal subgroups of G.

gap> AtlasRepInfoRecord( "A5" );
rec( name := "A5", nrMaxes := 3, size := 60, 
  sizesMaxes := [ 12, 10, 6 ], 
  slpMaxes := [ [ 1 .. 3 ], [ [ 1 ], [ 1 ], [ 1 ] ] ], 
  structureMaxes := [ "A4", "D10", "S3" ] )
gap> AtlasRepInfoRecord( "J5" );
rec(  )

3.5-11 EvaluatePresentation
‣ EvaluatePresentation( G, gapname[, std] )( operation )
‣ EvaluatePresentation( gens, gapname[, std] )( operation )

Returns: a list of group elements or fail.

The first argument must be either a group G or a list gens of group generators, and gapname must be a string that is a GAP name (see Section 3.2) of a group H, say. The optional argument std, if given, must be a positive integer that denotes a standardization of generators of H, the default is 1.

EvaluatePresentation returns fail if no presentation for H w. r. t. the standardization std is stored in the database, and otherwise returns the list of results of evaluating the relators of a presentation for H at gens or the GeneratorsOfGroup (Reference: GeneratorsOfGroup) value of G, respectively. (An error is signalled if the number of generators is not equal to the number of inputs of the presentation.)

The result can be used as follows. Let N be the normal closure of the the result in G. The factor group G/N is an epimorphic image of H. In particular, if all entries of the result have order 1 then G itself is an epimorphic image of H. Moreover, an epimorphism is given by mapping the std-th standard generators of H to the N-cosets of the given generators of G.

gap> g:= MathieuGroup( 12 );;
gap> gens:= GeneratorsOfGroup( g );;  # switch to 2 generators
gap> g:= Group( gens[1] * gens[3], gens[2] * gens[3] );;
gap> EvaluatePresentation( g, "J0" );  # no pres. for group "J0"
fail
gap> relimgs:= EvaluatePresentation( g, "M11" );;
gap> List( relimgs, Order );  # wrong group
[ 3, 1, 5, 4, 10 ]
gap> relimgs:= EvaluatePresentation( g, "M12" );;
gap> List( relimgs, Order );  # generators are not standard
[ 3, 4, 5, 4, 4 ]
gap> g:= AtlasGroup( "M12" );;
gap> relimgs:= EvaluatePresentation( g, "M12", 1 );;
gap> List( relimgs, Order );  # right group, std. generators
[ 1, 1, 1, 1, 1 ]
gap> g:= AtlasGroup( "2.M12" );;
gap> relimgs:= EvaluatePresentation( g, "M12", 1 );;
gap> List( relimgs, Order );  # std. generators for extension
[ 1, 2, 1, 1, 2 ]
gap> Size( NormalClosure( g, SubgroupNC( g, relimgs ) ) );
2

3.5-12 StandardGeneratorsData
‣ StandardGeneratorsData( G, gapname[, std] )( operation )
‣ StandardGeneratorsData( gens, gapname[, std] )( operation )

Returns: a record that describes standard generators of the group in question, or fail, or the string "timeout".

The first argument must be either a group G or a list gens of group generators, and gapname must be a string that is a GAP name (see Section 3.2) of a group H, say. The optional argument std, if given, must be a positive integer that denotes a standardization of generators of H, the default is 1.

If the global option projective is given then the group elements must be matrices over a finite field, and the group must be a central extension of the group H by a normal subgroup that consists of scalar matrices. In this case, all computations will be carried out modulo scalar matrices (in particular, element orders will be computed using ProjectiveOrder (Reference: ProjectiveOrder)), and the returned standard generators will belong to H.

StandardGeneratorsData returns

fail

if no black box program for computing standard generators of H w. r. t. the standardization std is stored in the database, or if the black box program returns fail because a runtime error occurred or the program has proved that the given group or generators cannot generate a group isomorphic to H,

"timeout"

if the black box program returns "timeout", typically because some elements of a given order were not found among a reasonable number of random elements, or

a record containing standard generators

otherwise.

When the result is not a record then either the group is not isomorphic to H (modulo scalars if applicable), or we were unlucky with choosing random elements.

When a record is returned and G or the group generated by gens, respectively, is isomorphic to H (or to a central extension of H by a group of scalar matrices if the global option projective is given) then the result describes the desired standard generators.

If G or the group generated by gens, respectively, is not isomorphic to H then it may still happen that StandardGeneratorsData returns a record. For a proof that the returned record describes the desired standard generators, one can use a presentation of H whose generators correspond to the std-th standard generators, see EvaluatePresentation (3.5-11).

A returned record has the following components.

gapname

the string gapname,

givengens

the list of group generators from which standard generators were computed, either gens or the GeneratorsOfGroup (Reference: GeneratorsOfGroup) value of G,

stdgens

a list of standard generators of the group,

givengenstostdgens

a straight line program that takes givengens as inputs, and returns stdgens,

std

the underlying standardization std.

The first examples show three cases of failure, due to the unavailability of a suitable black box program or to a wrong choice of gapname. (In the search for standard generators of M_11 in the group M_12, one may or may not find an element whose order does not appear in M_11; in the first case, the result is fail, whereas a record is returned in the second case. Both cases occur.)

gap> StandardGeneratorsData( MathieuGroup( 11 ), "J0" );
fail
gap> StandardGeneratorsData( MathieuGroup( 11 ), "M12" );
"timeout"
gap> repeat
>      res:= StandardGeneratorsData( MathieuGroup( 12 ), "M11" );
>    until res = fail;

The next example shows a computation of standard generators for the Mathieu group M_12. Using a presentation of M_12 w. r. t. these standard generators, we prove that the given group is isomorphic to M_12.

gap> gens:= GeneratorsOfGroup( MathieuGroup( 12 ) );;
gap> std:= 1;;
gap> res:= StandardGeneratorsData( gens, "M12", std );;
gap> Set( RecNames( res ) );
[ "gapname", "givengens", "givengenstostdgens", "std", "stdgens" ]
gap> gens = res.givengens;
true
gap> ResultOfStraightLineProgram( res.givengenstostdgens, gens )
>    = res.stdgens;
true
gap> evl:= EvaluatePresentation( res.stdgens, "M12", std );;
gap> ForAll( evl, IsOne );
true

The next example shows the use of the global option projective. We take an irreducible matrix representation of the double cover of the Mathieu group M_12 (thus the center is represented by scalar matrices) and compute standard generators of the factor group M_12. Using a presentation of M_12 w. r. t. these standard generators, we prove that the given group is modulo scalars isomorphic to M_12, and we get generators for the kernel.

gap> g:= AtlasGroup( "2.M12", IsMatrixGroup, Characteristic, IsPosInt );;
gap> gens:= Permuted( GeneratorsOfGroup( g ), (1,2) );;
gap> res:= StandardGeneratorsData( gens, "M12", std : projective );;
gap> gens = res.givengens;
true
gap> ResultOfStraightLineProgram( res.givengenstostdgens, gens )
>    = res.stdgens;
true
gap> evl:= EvaluatePresentation( res.stdgens, "M12", std );;
gap> ForAll( evl, IsOne );
false
gap> ForAll( evl, x -> IsCentral( g, x ) );
true

3.6 Browse Applications Provided by AtlasRep

The functions BrowseMinimalDegrees (3.6-1), BrowseBibliographySporadicSimple (3.6-2), and BrowseAtlasInfo (Browse: BrowseAtlasInfo) (an alternative to DisplayAtlasInfo (3.5-1)) are available only if the GAP package Browse (see [BL18]) is loaded.

3.6-1 BrowseMinimalDegrees
‣ BrowseMinimalDegrees( [gapnames] )( function )

Returns: the list of info records for the clicked representations.

If the GAP package Browse (see [BL18]) is loaded then this function is available. It opens a browse table whose rows correspond to the groups for which AtlasRep knows some information about minimal degrees, whose columns correspond to the characteristics that occur, and whose entries are the known minimal degrees.

gap> if IsBound( BrowseMinimalDegrees ) then
>   down:= NCurses.keys.DOWN;;  DOWN:= NCurses.keys.NPAGE;;
>   right:= NCurses.keys.RIGHT;;  END:= NCurses.keys.END;;
>   enter:= NCurses.keys.ENTER;;  nop:= [ 14, 14, 14 ];;
>   # just scroll in the table
>   BrowseData.SetReplay( Concatenation( [ DOWN, DOWN, DOWN,
>          right, right, right ], "sedddrrrddd", nop, nop, "Q" ) );
>   BrowseMinimalDegrees();;
>   # restrict the table to the groups with minimal ordinary degree 6
>   BrowseData.SetReplay( Concatenation( "scf6",
>        [ down, down, right, enter, enter ] , nop, nop, "Q" ) );
>   BrowseMinimalDegrees();;
>   BrowseData.SetReplay( false );
> fi;

If an argument gapnames is given then it must be a list of GAP names of groups. The browse table is then restricted to the rows corresponding to these group names and to the columns that are relevant for these groups. A perhaps interesting example is the subtable with the data concerning sporadic simple groups and their covering groups, which has been published in [Jan05]. This table can be shown as follows.

gap> if IsBound( BrowseMinimalDegrees ) then
>   # just scroll in the table
>   BrowseData.SetReplay( Concatenation( [ DOWN, DOWN, DOWN, END ],
>          "rrrrrrrrrrrrrr", nop, nop, "Q" ) );
>   BrowseMinimalDegrees( BibliographySporadicSimple.groupNamesJan05 );;
> fi;

The browse table does not contain rows for the groups 6.M_22, 12.M_22, 6.Fi_22. Note that in spite of the title of [Jan05], the entries in Table 1 of this paper are in fact the minimal degrees of faithful irreducible representations, and in the above three cases, these degrees are larger than the minimal degrees of faithful representations. The underlying data of the browse table is about the minimal faithful (but not necessarily irreducible) degrees.

The return value of BrowseMinimalDegrees is the list of OneAtlasGeneratingSetInfo (3.5-6) values for those representations that have been "clicked" in visual mode.

The variant without arguments of this function is also available in the menu shown by BrowseGapData (Browse: BrowseGapData).

3.6-2 BrowseBibliographySporadicSimple
‣ BrowseBibliographySporadicSimple( )( function )

Returns: a record as returned by ParseBibXMLExtString (GAPDoc: ParseBibXMLextString).

If the GAP package Browse (see [BL18]) is loaded then this function is available. It opens a browse table whose rows correspond to the entries of the bibliographies in the ATLAS of Finite Groups [CCN+85] and in the ATLAS of Brauer Characters [JLPW95].

The function is based on BrowseBibliography (Browse: BrowseBibliography), see the documentation of this function for details, e.g., about the return value.

The returned record encodes the bibliography entries corresponding to those rows of the table that are "clicked" in visual mode, in the same format as the return value of ParseBibXMLExtString (GAPDoc: ParseBibXMLextString), see the manual of the GAP package GAPDoc [LN18] for details.

BrowseBibliographySporadicSimple can be called also via the menu shown by BrowseGapData (Browse: BrowseGapData).

gap> if IsBound( BrowseBibliographySporadicSimple ) then
>   enter:= NCurses.keys.ENTER;;  nop:= [ 14, 14, 14 ];;
>   BrowseData.SetReplay( Concatenation(
>     # choose the application
>     "/Bibliography of Sporadic Simple Groups", [ enter, enter ],
>     # search in the title column for the Atlas of Finite Groups
>     "scr/Atlas of finite groups", [ enter,
>     # and quit
>     nop, nop, nop, nop ], "Q" ) );
>   BrowseGapData();;
>   BrowseData.SetReplay( false );
> fi;

The bibliographies contained in the ATLAS of Finite Groups [CCN+85] and in the ATLAS of Brauer Characters [JLPW95] are available online in HTML format, see http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/bibl/index.html.

The source data in BibXMLext format, which are used by BrowseBibliographySporadicSimple, are distributed with the AtlasRep package, in four files with suffix xml in the package's bibl directory. Note that each of the two books contains two bibliographies.

Details about the BibXMLext format, including information how to transform the data into other formats such as BibTeX, can be found in the GAP package GAPDoc (see [LN18]).

Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chap6_mj.html0000644000175000017500000026432114545501244014615 0ustar samsam GAP (AtlasRep) - Chapter 6: New GAP Objects and Utility Functions provided by the AtlasRep Package
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

6 New GAP Objects and Utility Functions provided by the AtlasRep Package

This chapter describes GAP objects and functions that are provided by the AtlasRep package but that might be of general interest.

The new objects are straight line decisions (see Section 6.1) and black box programs (see Section 6.2).

The new functions are concerned with representations of minimal degree, see Section 6.3, and a JSON interface, see Section 6.4.

6.1 Straight Line Decisions

Straight line decisions are similar to straight line programs (see Section Reference: Straight Line Programs) but return true or false. A straight line decision checks whether its inputs have some property. An important example is to check whether a given list of group generators is in fact a list of standard generators (cf. Section3.3) for this group.

A straight line decision in GAP is represented by an object in the filter IsStraightLineDecision (6.1-1) that stores a list of "lines" each of which has one of the following three forms.

  1. a nonempty dense list \(l\) of integers,

  2. a pair \([ l, i ]\) where \(l\) is a list of form 1. and \(i\) is a positive integer,

  3. a list \([\) "Order"\(, i, n ]\) where \(i\) and \(n\) are positive integers.

The first two forms have the same meaning as for straight line programs (see Section Reference: Straight Line Programs), the last form means a check whether the element stored at the \(i\)-th label has the order \(n\).

For the meaning of the list of lines, see ResultOfStraightLineDecision (6.1-6).

Straight line decisions can be constructed using StraightLineDecision (6.1-5), defining attributes for straight line decisions are NrInputsOfStraightLineDecision (6.1-3) and LinesOfStraightLineDecision (6.1-2), an operation for straight line decisions is ResultOfStraightLineDecision (6.1-6).

Special methods applicable to straight line decisions are installed for the operations Display (Reference: Display), IsInternallyConsistent (Reference: IsInternallyConsistent), PrintObj (Reference: PrintObj), and ViewObj (Reference: ViewObj).

For a straight line decision prog, the default Display (Reference: Display) method prints the interpretation of prog as a sequence of assignments of associative words and of order checks; a record with components gensnames (with value a list of strings) and listname (a string) may be entered as second argument of Display (Reference: Display), in this case these names are used, the default for gensnames is [ g1, g2, \(\ldots\) ], the default for listname is \(r\).

6.1-1 IsStraightLineDecision
‣ IsStraightLineDecision( obj )( category )

Each straight line decision in GAP lies in the filter IsStraightLineDecision.

6.1-2 LinesOfStraightLineDecision
‣ LinesOfStraightLineDecision( prog )( operation )

Returns: the list of lines that define the straight line decision.

This defining attribute for the straight line decision prog (see IsStraightLineDecision (6.1-1)) corresponds to LinesOfStraightLineProgram (Reference: LinesOfStraightLineProgram) for straight line programs.

gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ],
> [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] );
<straight line decision>
gap> LinesOfStraightLineDecision( dec );
[ [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 1, 2 ], [ "Order", 2, 3 ], 
  [ "Order", 3, 5 ] ]

6.1-3 NrInputsOfStraightLineDecision
‣ NrInputsOfStraightLineDecision( prog )( operation )

Returns: the number of inputs required for the straight line decision.

This defining attribute corresponds to NrInputsOfStraightLineProgram (Reference: NrInputsOfStraightLineProgram).

gap> NrInputsOfStraightLineDecision( dec );
2

6.1-4 ScanStraightLineDecision
‣ ScanStraightLineDecision( string )( function )

Returns: a record containing the straight line decision, or fail.

Let string be a string that encodes a straight line decision in the sense that it consists of the lines listed for ScanStraightLineProgram (7.4-1), except that oup lines are not allowed, and instead lines of the following form may occur.

chor \(a\) \(b\)

means that it is checked whether the order of the element at label \(a\) is \(b\).

ScanStraightLineDecision returns a record containing as the value of its component program the corresponding GAP straight line decision (see IsStraightLineDecision (6.1-1)) if the input string satisfies the syntax rules stated above, and returns fail otherwise. In the latter case, information about the first corrupted line of the program is printed if the info level of InfoCMeatAxe (7.1-2) is at least \(1\).

gap> str:= "inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5";;
gap> prg:= ScanStraightLineDecision( str );
rec( program := <straight line decision> )
gap> prg:= prg.program;;
gap> Display( prg );
# input:
r:= [ g1, g2 ];
# program:
if Order( r[1] ) <> 2 then  return false;  fi;
if Order( r[2] ) <> 3 then  return false;  fi;
r[3]:= r[1]*r[2];
if Order( r[3] ) <> 5 then  return false;  fi;
# return value:
true

6.1-5 StraightLineDecision
‣ StraightLineDecision( lines[, nrgens] )( function )
‣ StraightLineDecisionNC( lines[, nrgens] )( function )

Returns: the straight line decision given by the list of lines.

Let lines be a list of lists that defines a unique straight line decision (see IsStraightLineDecision (6.1-1)); in this case StraightLineDecision returns this program, otherwise an error is signalled. The optional argument nrgens specifies the number of input generators of the program; if a list of integers (a line of form 1. in the definition above) occurs in lines then this number is not determined by lines and therefore must be specified by the argument nrgens; if not then StraightLineDecision returns fail.

StraightLineDecisionNC does the same as StraightLineDecision, except that the internal consistency of the program is not checked.

6.1-6 ResultOfStraightLineDecision
‣ ResultOfStraightLineDecision( prog, gens[, orderfunc] )( operation )

Returns: true if all checks succeed, otherwise false.

ResultOfStraightLineDecision evaluates the straight line decision (see IsStraightLineDecision (6.1-1)) prog at the group elements in the list gens.

The function for computing the order of a group element can be given as the optional argument orderfunc. For example, this may be a function that gives up at a certain limit if one has to be aware of extremely huge orders in failure cases.

The result of a straight line decision with lines \(p_1, p_2, \ldots, p_k\) when applied to gens is defined as follows.

(a)

First a list \(r\) of intermediate values is initialized with a shallow copy of gens.

(b)

For \(i \leq k\), before the \(i\)-th step, let \(r\) be of length \(n\). If \(p_i\) is the external representation of an associative word in the first \(n\) generators then the image of this word under the homomorphism that is given by mapping \(r\) to these first \(n\) generators is added to \(r\). If \(p_i\) is a pair \([ l, j ]\), for a list \(l\), then the same element is computed, but instead of being added to \(r\), it replaces the \(j\)-th entry of \(r\). If \(p_i\) is a triple \([ \)"Order"\(, i, n ]\) then it is checked whether the order of \(r[i]\) is \(n\); if not then false is returned immediately.

(c)

If all \(k\) lines have been processed and no order check has failed then true is returned.

Here are some examples.

gap> dec:= StraightLineDecision( [ ], 1 );
<straight line decision>
gap> ResultOfStraightLineDecision( dec, [ () ] );
true

The above straight line decision dec returns true –for any input of the right length.

gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ],
>       [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] );
<straight line decision>
gap> LinesOfStraightLineDecision( dec );
[ [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 1, 2 ], [ "Order", 2, 3 ], 
  [ "Order", 3, 5 ] ]
gap> ResultOfStraightLineDecision( dec, [ (), () ] );
false
gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,4,5) ] );
true

The above straight line decision admits two inputs; it tests whether the orders of the inputs are \(2\) and \(3\), and the order of their product is \(5\).

6.1-7 Semi-Presentations and Presentations

We can associate a finitely presented group \(F / R\) to each straight line decision dec, say, as follows. The free generators of the free group \(F\) are in bijection with the inputs, and the defining relators generating \(R\) as a normal subgroup of \(F\) are given by those words \(w^k\) for which dec contains a check whether the order of \(w\) equals \(k\).

So if dec returns true for the input list \([ g_1, g_2, \ldots, g_n ]\) then mapping the free generators of \(F\) to the inputs defines an epimorphism \(\Phi\) from \(F\) to the group \(G\), say, that is generated by these inputs, such that \(R\) is contained in the kernel of \(\Phi\).

(Note that "satisfying dec" is a stronger property than "satisfying a presentation". For example, \(\langle x \mid x^2 = x^3 = 1 \rangle\) is a presentation for the trivial group, but the straight line decision that checks whether the order of \(x\) is both \(2\) and \(3\) clearly always returns false.)

AtlasRep supports the following two kinds of straight line decisions.

  • A presentation is a straight line decision dec that is defined for a set of standard generators of a group \(G\) and that returns true if and only if the list of inputs is in fact a sequence of such standard generators for \(G\). In other words, the relators derived from the order checks in the way described above are defining relators for \(G\), and moreover these relators are words in terms of standard generators. (In particular the kernel of the map \(\Phi\) equals \(R\) whenever dec returns true.)

  • A semi-presentation is a straight line decision dec that is defined for a set of standard generators of a group \(G\) and that returns true for a list of inputs that is known to generate a group isomorphic with \(G\) if and only if these inputs form in fact a sequence of standard generators for \(G\). In other words, the relators derived from the order checks in the way described above are not necessarily defining relators for \(G\), but if we assume that the \(g_i\) generate \(G\) then they are standard generators. (In particular, \(F / R\) may be a larger group than \(G\) but in this case \(\Phi\) maps the free generators of \(F\) to standard generators of \(G\).)

    More about semi-presentations can be found in [NW05].

Available presentations and semi-presentations are listed by DisplayAtlasInfo (3.5-1), they can be accessed via AtlasProgram (3.5-4). (Clearly each presentation is also a semi-presentation. So a semi-presentation for some standard generators of a group is regarded as available whenever a presentation for these standard generators and this group is available.)

Note that different groups can have the same semi-presentation. We illustrate this with an example that is mentioned in [NW05]. The groups \(L_2(7) \cong L_3(2)\) and \(L_2(8)\) are generated by elements of the orders \(2\) and \(3\) such that their product has order \(7\), and no further conditions are necessary to define standard generators.

gap> check:= AtlasProgram( "L2(8)", "check" );
rec( groupname := "L2(8)", 
  identifier := [ "L2(8)", "L28G1-check1", 1, 1 ], 
  program := <straight line decision>, standardization := 1, 
  version := "1" )
gap> gens:= AtlasGenerators( "L2(8)", 1 );
rec( charactername := "1a+8a", constituents := [ 1, 6 ], 
  contents := "core", 
  generators := [ (1,2)(3,4)(6,7)(8,9), (1,3,2)(4,5,6)(7,8,9) ], 
  groupname := "L2(8)", id := "", 
  identifier := [ "L2(8)", [ "L28G1-p9B0.m1", "L28G1-p9B0.m2" ], 1, 9 
     ], isPrimitive := true, maxnr := 1, p := 9, rankAction := 2, 
  repname := "L28G1-p9B0", repnr := 1, size := 504, 
  stabilizer := "2^3:7", standardization := 1, transitivity := 3, 
  type := "perm" )
gap> ResultOfStraightLineDecision( check.program, gens.generators );
true
gap> gens:= AtlasGenerators( "L3(2)", 1 );
rec( contents := "core", generators := [ (2,4)(3,5), (1,2,3)(5,6,7) ],
  groupname := "L3(2)", id := "a", 
  identifier := [ "L3(2)", [ "L27G1-p7aB0.m1", "L27G1-p7aB0.m2" ], 1, 
      7 ], isPrimitive := true, maxnr := 1, p := 7, rankAction := 2, 
  repname := "L27G1-p7aB0", repnr := 1, size := 168, 
  stabilizer := "S4", standardization := 1, transitivity := 2, 
  type := "perm" )
gap> ResultOfStraightLineDecision( check.program, gens.generators );
true

6.1-8 AsStraightLineDecision
‣ AsStraightLineDecision( bbox )( attribute )

Returns: an equivalent straight line decision for the given black box program, or fail.

For a black box program (see IsBBoxProgram (6.2-1)) bbox, AsStraightLineDecision returns a straight line decision (see IsStraightLineDecision (6.1-1)) with the same output as bbox, in the sense of AsBBoxProgram (6.2-5), if such a straight line decision exists, and fail otherwise.

gap> lines:= [ [ "Order", 1, 2 ], [ "Order", 2, 3 ],
>              [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 3, 5 ] ];;
gap> dec:= StraightLineDecision( lines, 2 );
<straight line decision>
gap> bboxdec:= AsBBoxProgram( dec );
<black box program>
gap> asdec:= AsStraightLineDecision( bboxdec );
<straight line decision>
gap> LinesOfStraightLineDecision( asdec );
[ [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ [ 1, 1, 2, 1 ], 3 ], 
  [ "Order", 3, 5 ] ]

6.1-9 StraightLineProgramFromStraightLineDecision
‣ StraightLineProgramFromStraightLineDecision( dec )( operation )

Returns: the straight line program associated to the given straight line decision.

For a straight line decision dec (see IsStraightLineDecision (6.1-1), StraightLineProgramFromStraightLineDecision returns the straight line program (see IsStraightLineProgram (Reference: IsStraightLineProgram) obtained by replacing each line of type 3. (i.e, each order check) by an assignment of the power in question to a new slot, and by declaring the list of these elements as the return value.

This means that the return value describes exactly the defining relators of the presentation that is associated to the straight line decision, see 6.1-7.

For example, one can use the return value for printing the relators with StringOfResultOfStraightLineProgram (Reference: StringOfResultOfStraightLineProgram), or for explicitly constructing the relators as words in terms of free generators, by applying ResultOfStraightLineProgram (Reference: ResultOfStraightLineProgram) to the program and to these generators.

gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ],
> [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] );
<straight line decision>
gap> prog:= StraightLineProgramFromStraightLineDecision( dec );
<straight line program>
gap> Display( prog );
# input:
r:= [ g1, g2 ];
# program:
r[3]:= r[1]*r[2];
r[4]:= r[1]^2;
r[5]:= r[2]^3;
r[6]:= r[3]^5;
# return values:
[ r[4], r[5], r[6] ]
gap> StringOfResultOfStraightLineProgram( prog, [ "a", "b" ] );
"[ a^2, b^3, (ab)^5 ]"
gap> gens:= GeneratorsOfGroup( FreeGroup( "a", "b" ) );
[ a, b ]
gap> ResultOfStraightLineProgram( prog, gens );
[ a^2, b^3, (a*b)^5 ]

6.2 Black Box Programs

Black box programs formalize the idea that one takes some group elements, forms arithmetic expressions in terms of them, tests properties of these expressions, executes conditional statements (including jumps inside the program) depending on the results of these tests, and eventually returns some result.

A specification of the language can be found in [Nic06], see also

http://atlas.math.rwth-aachen.de/Atlas/info/blackbox.html.

The inputs of a black box program may be explicit group elements, and the program may also ask for random elements from a given group. The program steps form products, inverses, conjugates, commutators, etc. of known elements, tests concern essentially the orders of elements, and the result is a list of group elements or true or false or fail.

Examples that can be modeled by black box programs are

straight line programs,

which require a fixed number of input elements and form arithmetic expressions of elements but do not use random elements, tests, conditional statements and jumps; the return value is always a list of elements; these programs are described in Section Reference: Straight Line Programs.

straight line decisions,

which differ from straight line programs only in the sense that also order tests are admissible, and that the return value is true if all these tests are satisfied, and false as soon as the first such test fails; they are described in Section 6.1.

scripts for finding standard generators,

which take a group and a function to generate a random element in this group but no explicit input elements, admit all control structures, and return either a list of standard generators or fail; see ResultOfBBoxProgram (6.2-4) for examples.

In the case of general black box programs, currently GAP provides only the possibility to read an existing program via ScanBBoxProgram (6.2-2), and to run the program using RunBBoxProgram (6.2-3). It is not our aim to write such programs in GAP.

The special case of the "find" scripts mentioned above is also admissible as an argument of ResultOfBBoxProgram (6.2-4), which returns either the set of found generators or fail.

Contrary to the general situation, more support is provided for straight line programs and straight line decisions in GAP, see Section Reference: Straight Line Programs for functions that manipulate them (compose, restrict etc.).

The functions AsStraightLineProgram (6.2-6) and AsStraightLineDecision (6.1-8) can be used to transform a general black box program object into a straight line program or a straight line decision if this is possible.

Conversely, one can create an equivalent general black box program from a straight line program or from a straight line decision with AsBBoxProgram (6.2-5).

Computing a straight line program related to a given straight line decision is supported in the sense of StraightLineProgramFromStraightLineDecision (6.1-9).

Note that none of these three kinds of objects is a special case of another: Running a black box program with RunBBoxProgram (6.2-3) yields a record, running a straight line program with ResultOfStraightLineProgram (Reference: ResultOfStraightLineProgram) yields a list of elements, and running a straight line decision with ResultOfStraightLineDecision (6.1-6) yields true or false.

6.2-1 IsBBoxProgram
‣ IsBBoxProgram( obj )( category )

Each black box program in GAP lies in the filter IsBBoxProgram.

6.2-2 ScanBBoxProgram
‣ ScanBBoxProgram( string )( function )

Returns: a record containing the black box program encoded by the input string, or fail.

For a string string that describes a black box program, e.g., the return value of StringFile (GAPDoc: StringFile), ScanBBoxProgram computes this black box program. If this is successful then the return value is a record containing as the value of its component program the corresponding GAP object that represents the program, otherwise fail is returned.

As the first example, we construct a black box program that tries to find standard generators for the alternating group \(A_5\); these standard generators are any pair of elements of the orders \(2\) and \(3\), respectively, such that their product has order \(5\).

gap> findstr:= "\
>   set V 0\n\
> lbl START1\n\
>   rand 1\n\
>   ord 1 A\n\
>   incr V\n\
>   if V gt 100 then timeout\n\
>   if A notin 1 2 3 5 then fail\n\
>   if A noteq 2 then jmp START1\n\
> lbl START2\n\
>   rand 2\n\
>   ord 2 B\n\
>   incr V\n\
>   if V gt 100 then timeout\n\
>   if B notin 1 2 3 5 then fail\n\
>   if B noteq 3 then jmp START2\n\
>   # The elements 1 and 2 have the orders 2 and 3, respectively.\n\
>   set X 0\n\
> lbl CONJ\n\
>   incr X\n\
>   if X gt 100 then timeout\n\
>   rand 3\n\
>   cjr 2 3\n\
>   mu 1 2 4   # ab\n\
>   ord 4 C\n\
>   if C notin 2 3 5 then fail\n\
>   if C noteq 5 then jmp CONJ\n\
>   oup 2 1 2";;
gap> find:= ScanBBoxProgram( findstr );
rec( program := <black box program> )

The second example is a black box program that checks whether its two inputs are standard generators for \(A_5\).

gap> checkstr:= "\
> chor 1 2\n\
> chor 2 3\n\
> mu 1 2 3\n\
> chor 3 5";;
gap> check:= ScanBBoxProgram( checkstr );
rec( program := <black box program> )

6.2-3 RunBBoxProgram
‣ RunBBoxProgram( prog, G, input, options )( function )

Returns: a record describing the result and the statistics of running the black box program prog, or fail, or the string "timeout".

For a black box program prog, a group G, a list input of group elements, and a record options, RunBBoxProgram applies prog to input, where G is used only to compute random elements.

The return value is fail if a syntax error or an explicit fail statement is reached at runtime, and the string "timeout" if a timeout statement is reached. (The latter might mean that the random choices were unlucky.) Otherwise a record with the following components is returned.

gens

a list of group elements, bound if an oup statement was reached,

result

true if a true statement was reached, false if either a false statement or a failed order check was reached,

The other components serve as statistical information about the numbers of the various operations (multiply, invert, power, order, random, conjugate, conjugateinplace, commutator), and the runtime in milliseconds (timetaken).

The following components of options are supported.

randomfunction

the function called with argument G in order to compute a random element of G (default PseudoRandom (Reference: PseudoRandom))

orderfunction

the function for computing element orders (default Order (Reference: Order)),

quiet

if true then ignore echo statements (default false),

verbose

if true then print information about the line that is currently processed, and about order checks (default false),

allowbreaks

if true then call Error (Reference: Error) when a break statement is reached, otherwise ignore break statements (default true).

As an example, we run the black box programs constructed in the example for ScanBBoxProgram (6.2-2).

gap> g:= AlternatingGroup( 5 );;
gap> res:= RunBBoxProgram( find.program, g, [], rec() );;
gap> IsBound( res.gens );  IsBound( res.result );
true
false
gap> List( res.gens, Order );
[ 2, 3 ]
gap> Order( Product( res.gens ) );
5
gap> res:= RunBBoxProgram( check.program, "dummy", res.gens, rec() );;
gap> IsBound( res.gens );  IsBound( res.result );
false
true
gap> res.result;
true
gap> othergens:= GeneratorsOfGroup( g );;
gap> res:= RunBBoxProgram( check.program, "dummy", othergens, rec() );;
gap> res.result;
false

6.2-4 ResultOfBBoxProgram
‣ ResultOfBBoxProgram( prog, G[, options] )( function )

Returns: a list of group elements or true, false, fail, or the string "timeout".

This function calls RunBBoxProgram (6.2-3) with the black box program prog and second argument either a group or a list of group elements; if options is not given then the default options of RunBBoxProgram (6.2-3) are assumed. The return value is fail if this call yields fail, otherwise the gens component of the result, if bound, or the result component if not.

Note that a group G is used as the second argument in the call of RunBBoxProgram (6.2-3) (the source for random elements), whereas a list G is used as the third argument (the inputs).

As an example, we run the black box programs constructed in the example for ScanBBoxProgram (6.2-2).

gap> g:= AlternatingGroup( 5 );;
gap> res:= ResultOfBBoxProgram( find.program, g );;
gap> List( res, Order );
[ 2, 3 ]
gap> Order( Product( res ) );
5
gap> res:= ResultOfBBoxProgram( check.program, res );
true
gap> othergens:= GeneratorsOfGroup( g );;
gap> res:= ResultOfBBoxProgram( check.program, othergens );
false

6.2-5 AsBBoxProgram
‣ AsBBoxProgram( slp )( attribute )

Returns: an equivalent black box program for the given straight line program or straight line decision.

Let slp be a straight line program (see IsStraightLineProgram (Reference: IsStraightLineProgram)) or a straight line decision (see IsStraightLineDecision (6.1-1)). Then AsBBoxProgram returns a black box program bbox (see IsBBoxProgram (6.2-1)) with the "same" output as slp, in the sense that ResultOfBBoxProgram (6.2-4) yields the same result for bbox as ResultOfStraightLineProgram (Reference: ResultOfStraightLineProgram) or ResultOfStraightLineDecision (6.1-6), respectively, for slp.

gap> f:= FreeGroup( "x", "y" );;  gens:= GeneratorsOfGroup( f );;
gap> slp:= StraightLineProgram( [ [1,2,2,3], [3,-1] ], 2 );
<straight line program>
gap> ResultOfStraightLineProgram( slp, gens );
y^-3*x^-2
gap> bboxslp:= AsBBoxProgram( slp );
<black box program>
gap> ResultOfBBoxProgram( bboxslp, gens );
[ y^-3*x^-2 ]
gap> lines:= [ [ "Order", 1, 2 ], [ "Order", 2, 3 ],
>              [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 3, 5 ] ];;
gap> dec:= StraightLineDecision( lines, 2 );
<straight line decision>
gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,3,5) ] );
true
gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,3,4) ] );
false
gap> bboxdec:= AsBBoxProgram( dec );
<black box program>
gap> ResultOfBBoxProgram( bboxdec, [ (1,2)(3,4), (1,3,5) ] );
true
gap> ResultOfBBoxProgram( bboxdec, [ (1,2)(3,4), (1,3,4) ] );
false

6.2-6 AsStraightLineProgram
‣ AsStraightLineProgram( bbox )( attribute )

Returns: an equivalent straight line program for the given black box program, or fail.

For a black box program (see AsBBoxProgram (6.2-5)) bbox, AsStraightLineProgram returns a straight line program (see IsStraightLineProgram (Reference: IsStraightLineProgram)) with the same output as bbox if such a straight line program exists, and fail otherwise.

gap> Display( AsStraightLineProgram( bboxslp ) );
# input:
r:= [ g1, g2 ];
# program:
r[3]:= r[1]^2;
r[4]:= r[2]^3;
r[5]:= r[3]*r[4];
r[3]:= r[5]^-1;
# return values:
[ r[3] ]
gap> AsStraightLineProgram( bboxdec );
fail

6.3 Representations of Minimal Degree

This section deals with minimal degrees of permutation and matrix representations. We do not provide an algorithm that computes these degrees for an arbitrary group, we only provide some tools for evaluating known databases, mainly concerning "bicyclic extensions" (see [CCN+85, Section 6.5]) of simple groups, in order to derive the minimal degrees, see Section 6.3-4.

In the AtlasRep package, this information can be used for prescribing "minimality conditions" in DisplayAtlasInfo (3.5-1), OneAtlasGeneratingSetInfo (3.5-6), and AllAtlasGeneratingSetInfos (3.5-7). An overview of the stored minimal degrees can be shown with BrowseMinimalDegrees (3.6-1).

6.3-1 MinimalRepresentationInfo
‣ MinimalRepresentationInfo( grpname, conditions )( function )

Returns: a record with the components value and source, or fail

Let grpname be the GAP name of a group \(G\), say. If the information described by conditions about minimal representations of this group can be computed or is stored then MinimalRepresentationInfo returns a record with the components value and source, otherwise fail is returned.

The following values for conditions are supported.

  • If conditions is NrMovedPoints (Reference: NrMovedPoints for a permutation) then value, if known, is the degree of a minimal faithful (not necessarily transitive) permutation representation for \(G\).

  • If conditions consists of Characteristic (Reference: Characteristic) and a prime integer p then value, if known, is the dimension of a minimal faithful (not necessarily irreducible) matrix representation in characteristic p for \(G\).

  • If conditions consists of Size (Reference: Size) and a prime power q then value, if known, is the dimension of a minimal faithful (not necessarily irreducible) matrix representation over the field of size q for \(G\).

In all cases, the value of the component source is a list of strings that describe sources of the information, which can be the ordinary or modular character table of \(G\) (see [CCN+85], [JLPW95], [HL89]), the table of marks of \(G\), or [Jan05]. For an overview of minimal degrees of faithful matrix representations for sporadic simple groups and their covering groups, see also

http://www.math.rwth-aachen.de/~MOC/mindeg/.

Note that MinimalRepresentationInfo cannot provide any information about minimal representations over prescribed fields in characteristic zero.

Information about groups that occur in the AtlasRep package is precomputed in MinimalRepresentationInfoData (6.3-2), so the packages CTblLib and TomLib are not needed when MinimalRepresentationInfo is called for these groups. (The only case that is not covered by this list is that one asks for the minimal degree of matrix representations over a prescribed field in characteristic coprime to the group order.)

One of the following strings can be given as an additional last argument.

"cache"

means that the function tries to compute (and then store) values that are not stored in MinimalRepresentationInfoData (6.3-2), but stored values are preferred; this is also the default.

"lookup"

means that stored values are returned but the function does not attempt to compute values that are not stored in MinimalRepresentationInfoData (6.3-2).

"recompute"

means that the function always tries to compute the desired value, and checks the result against stored values.

gap> MinimalRepresentationInfo( "A5", NrMovedPoints );
rec( 
  source := [ "computed (alternating group)", 
      "computed (char. table)", "computed (subgroup tables)", 
      "computed (subgroup tables, known repres.)", 
      "computed (table of marks)" ], value := 5 )
gap> MinimalRepresentationInfo( "A5", Characteristic, 2 );
rec( source := [ "computed (char. table)" ], value := 2 )
gap> MinimalRepresentationInfo( "A5", Size, 2 );
rec( source := [ "computed (char. table)" ], value := 4 )

6.3-2 MinimalRepresentationInfoData
‣ MinimalRepresentationInfoData( global variable )

This is a record whose components are GAP names of groups for which information about minimal permutation and matrix representations were known in advance or have been computed in the current GAP session. The value for the group \(G\), say, is a record with the following components.

NrMovedPoints

a record with the components value (the degree of a smallest faithful permutation representation of \(G\)) and source (a string describing the source of this information).

Characteristic

a record whose components are at most 0 and strings corresponding to prime integers, each bound to a record with the components value (the degree of a smallest faithful matrix representation of \(G\) in this characteristic) and source (a string describing the source of this information).

CharacteristicAndSize

a record whose components are strings corresponding to prime integers p, each bound to a record with the components sizes (a list of powers q of p), dimensions (the corresponding list of minimal dimensions of faithful matrix representations of \(G\) over a field of size q), sources (the corresponding list of strings describing the source of this information), and complete (a record with the components val (true if the minimal dimension over any finite field in characteristic p can be derived from the values in the record, and false otherwise) and source (a string describing the source of this information)).

The values are set by SetMinimalRepresentationInfo (6.3-3).

6.3-3 SetMinimalRepresentationInfo
‣ SetMinimalRepresentationInfo( grpname, op, value, source )( function )

Returns: true if the values were successfully set, false if stored values contradict the given ones.

This function sets an entry in MinimalRepresentationInfoData (6.3-2) for the group \(G\), say, with GAP name grpname.

Supported values for op are

  • "NrMovedPoints" (see NrMovedPoints (Reference: NrMovedPoints for a permutation)), which means that value is the degree of minimal faithful (not necessarily transitive) permutation representations of \(G\),

  • a list of length two with first entry "Characteristic" (see Characteristic (Reference: Characteristic)) and second entry char either zero or a prime integer, which means that value is the dimension of minimal faithful (not necessarily irreducible) matrix representations of \(G\) in characteristic char,

  • a list of length two with first entry "Size" (see Size (Reference: Size)) and second entry a prime power q, which means that value is the dimension of minimal faithful (not necessarily irreducible) matrix representations of \(G\) over the field with q elements, and

  • a list of length three with first entry "Characteristic" (see Characteristic (Reference: Characteristic)), second entry a prime integer p, and third entry the string "complete", which means that the information stored for characteristic p is complete in the sense that for any given power \(q\) of p, the minimal faithful degree over the field with \(q\) elements equals that for the largest stored field size of which \(q\) is a power.

In each case, source is a string describing the source of the data; computed values are detected from the prefix "comp" of source.

If the intended value is already stored and differs from value then an error message is printed.

gap> SetMinimalRepresentationInfo( "A5", "NrMovedPoints", 5,
>      "computed (alternating group)" );
true
gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 0 ], 3,
>      "computed (char. table)" );
true
gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 2 ], 2,
>      "computed (char. table)" );
true
gap> SetMinimalRepresentationInfo( "A5", [ "Size", 2 ], 4,
>      "computed (char. table)" );
true
gap> SetMinimalRepresentationInfo( "A5", [ "Size", 4 ], 2,
>      "computed (char. table)" );
true
gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 3 ], 3,
>      "computed (char. table)" );
true

6.3-4 Criteria Used to Compute Minimality Information

The information about the minimal degree of a faithful matrix representation of \(G\) in a given characteristic or over a given field in positive characteristic is derived from the relevant (ordinary or modular) character table of \(G\), except in a few cases where this table itself is not known but enough information about the degrees is available in [HL89] and [Jan05].

The following criteria are used for deriving the minimal degree of a faithful permutation representation of \(G\) from the information in the GAP libraries of character tables and of tables of marks.

  • If the name of \(G\) has the form "A\(n\)" or "A\(n\).2" (denoting alternating and symmetric groups, respectively) then the minimal degree is \(n\), except if \(n\) is smaller than \(3\) or \(2\), respectively.

  • If the name of \(G\) has the form "L2(\(q\))" (denoting projective special linear groups in dimension two) then the minimal degree is \(q + 1\), except if \(q \in \{ 2, 3, 5, 7, 9, 11 \}\), see [Hup67, Satz II.8.28].

  • If the largest maximal subgroup of \(G\) is core-free then the index of this subgroup is the minimal degree. (This is used when the two character tables in question and the class fusion are available in GAP's Character Table Library [Bre22]; this happens for many character tables of simple groups.)

  • If \(G\) has a unique minimal normal subgroup then each minimal faithful permutation representation is transitive. (Note that the core of each point stabilizer is either trivial or contains the unique minimal normal subgroup.)

    In this case, the minimal degree can be computed directly from the information in the table of marks of \(G\) if this is available in GAP's Library of Tables of Marks [NMP18].

    Suppose that the largest maximal subgroup of \(G\) is not core-free but simple and normal in \(G\), and that the other maximal subgroups of \(G\) are core-free. In this case, we take the minimum of the indices of the core-free maximal subgroups and of the product of index and minimal degree of the normal maximal subgroup. (This suffices since no core-free subgroup of the whole group can contain a nontrivial normal subgroup of a normal maximal subgroup.)

    Let \(N\) be the unique minimal normal subgroup of \(G\), and assume that \(G/N\) is simple and has minimal degree \(n\), say. If there is a subgroup \(U\) of index \(n \cdot |N|\) in \(G\) that intersects \(N\) trivially then the minimal degree of \(G\) is \(n \cdot |N|\). (This is used for the case that \(N\) is central in \(G\) and \(N \times U\) occurs as a subgroup of \(G\).)

  • If we know a subgroup of \(G\) whose minimal degree is \(n\), say, and if we know either (a class fusion from) a core-free subgroup of index \(n\) in \(G\) or a faithful permutation representation of degree \(n\) for \(G\) then \(n\) is the minimal degree for \(G\). (This happens often for tables of almost simple groups.)

6.4 A JSON Interface

We define a mapping between certain GAP objects and JSON (JavaScript Object Notation) texts (see [JSO14]), as follows.

  • The three GAP values true, false, and fail correspond to the JSON texts true, false, and null, respectively.

  • GAP strings correspond to JSON strings; special characters in a GAP string (control characters ASCII \(0\) to \(31\), backslash and double quote) are mapped as defined in JSON's specification, and other ASCII characters are kept as they are; if a GAP string contains non-ASCII characters, it is assumed that it is UTF-8 encoded, and one may choose either to keep non-ASCII characters as they are, or to create an ASCII only JSON string, using JSON's syntax for Unicode code points ("\uXXXX"); in the other direction, JSON strings are assumed to be UTF-8 encoded, and are mapped to UTF-8 encoded GAP strings, by keeping the non-ASCII characters and converting substrings of the form \uXXXX accordingly.

  • GAP integers (in the sense of IsInt (Reference: IsInt)) are mapped to JSON numbers that consist of digits and optionally a leading sign character -; in the other direction, JSON numbers of this form and also JSON numbers that involve no decimal dots and have no negative exponent (for example "2e3") are mapped to GAP integers.

  • GAP rationals (in the sense of IsRat (Reference: IsRat)) which are not integers are represented by JSON floating point numbers; the JSON representation (and hence the precision) is given by first applying Float (Reference: Float) and then String (Reference: String).

  • GAP floats (in the sense of Chapter Reference: Floats in the GAP Reference Manual) are mapped to JSON floating point numbers; the JSON representation (and hence the precision) is given by applying String (Reference: String); in the other direction, JSON numbers that involve a decimal dot or a negative exponent are mapped to GAP floats.

  • (Nested and not self-referential) dense GAP lists of objects correspond to JSON arrays such that the list entries correspond to each other. (Note that JSON does not support non-dense arrays.)

  • (Nested and not self-referential) GAP records correspond to JSON objects such that both labels (which are strings in GAP and JSON) and values correspond to each other.

The GAP functions AGR.JsonText (6.4-2) and AGR.GapObjectOfJsonText (6.4-3) can be used to create a JSON text from a suitable GAP object and the GAP object that corresponds to a given JSON text, respectively.

Note that the composition of the two functions is in general not the identity mapping, because AGR.JsonText (6.4-2) accepts non-integer rationals, whereas AGR.GapObjectOfJsonText (6.4-3) does not create such objects.

Note also that the results of AGR.JsonText (6.4-2) do not contain information about dependencies between common subobjects. This is another reason why applying first AGR.JsonText (6.4-2) and then AGR.GapObjectOfJsonText (6.4-3) may yield a GAP object with different behaviour.

Applying AGR.JsonText (6.4-2) to a self-referential object such as [ ~ ] will raise a "recursion depth trap" error.

6.4-1 Why JSON?

The aim of this JSON interface is to read and write certain data files with GAP such that these files become easily accessible independent of GAP. The function AGR.JsonText (6.4-2) is intended just as a prototype, variants of this function are very likely to appear in other contexts, for example in order to force certain line formatting or ordering of record components.

It is not the aim of the JSON interface to provide self-contained descriptions of arbitrary GAP objects, in order to read them into a GAP session. Note that those GAP objects for which a JSON equivalent exists (and many more) can be easily written to files as they are, and GAP can read them efficiently. On the other hand, more complicated GAP objects can be written and read via the so-called pickling, for which a framework is provided by the GAP package IO [Neu14].

Here are a few situations which are handled well by pickling but which cannot be addressed with a JSON interface.

  • Pickling and unpickling take care of common subobjects of the given GAP object. The following example shows that the applying first AGR.JsonText (6.4-2) and then AGR.GapObjectOfJsonText (6.4-3) may yield an object which behaves differently.

    gap> l:= [ [ 1 ] ];; l[2]:= l[1];;  l;
    [ [ 1 ], [ 1 ] ]
    gap> new:= AGR.GapObjectOfJsonText( AGR.JsonText( l ) ).value;
    [ [ 1 ], [ 1 ] ]
    gap> Add( l[1], 2 );  l;
    [ [ 1, 2 ], [ 1, 2 ] ]
    gap> Add( new[1], 2 );  new;
    [ [ 1, 2 ], [ 1 ] ]
    
  • GAP admits self-referential objects, for example as follows.

    gap> l:= [];;  l[1]:= l;;
    

    Pickling and unpickling take care of self-referential objects, but AGR.JsonText (6.4-2) does not support the conversion of such objects.

6.4-2 AGR.JsonText
‣ AGR.JsonText( obj[, mode] )( function )

Returns: a new mutable string that describes obj as a JSON text, or fail.

If obj is a GAP object for which a corresponding JSON text exists, according to the mapping described above, then such a JSON text is returned. Otherwise, fail is returned.

If the optional argument mode is given and has the value "ASCII" then the result in an ASCII string, otherwise the encoding of strings that are involved in obj is kept.

gap> AGR.JsonText( [] );
"[]"
gap> AGR.JsonText( "" );
"\"\""
gap> AGR.JsonText( "abc\ndef\cghi" );
"\"abc\\ndef\\u0003ghi\""
gap> AGR.JsonText( rec() );
"{}"
gap> AGR.JsonText( [ , 2 ] );
fail
gap> str:= [ '\303', '\266' ];;  # umlaut o
gap> json:= AGR.JsonText( str );;  List( json, IntChar );
[ 34, 195, 182, 34 ]
gap> AGR.JsonText( str, "ASCII" );
"\"\\u00F6\""

6.4-3 AGR.GapObjectOfJsonText
‣ AGR.GapObjectOfJsonText( string )( function )

Returns: a new mutable record whose value component, if bound, contains a mutable GAP object that represents the JSON text string.

If string is a string that represents a JSON text then the result is a record with the components value (the corresponding GAP object in the sense of the above interface) and status (value true). Otherwise, the result is a record with the components status (value false) and errpos (the position in string where the string turns out to be not valid JSON).

gap> AGR.GapObjectOfJsonText( "{ \"a\": 1 }" );
rec( status := true, value := rec( a := 1 ) )
gap> AGR.GapObjectOfJsonText( "{ \"a\": x }" );
rec( errpos := 8, status := false )
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chap1.html0000644000175000017500000020403114545501243014111 0ustar samsam GAP (AtlasRep) - Chapter 1: Introduction to the AtlasRep Package
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

1 Introduction to the AtlasRep Package

The aim of the GAP 4 package AtlasRep is to provide a link between GAP and databases such as the ATLAS of Group Representations [WWT+], which comprises generating permutations and matrices for many almost simple groups, and information about their maximal subgroups. This database is available independent of GAP at

http://atlas.math.rwth-aachen.de/Atlas/v3.

The AtlasRep package consists of this database (see Section 1.1) and a GAP interface (see Section 1.2); the latter is extended by further information available via the internet (see Section 4.3).

This package manual has the following parts.

A tutorial

gives an overview how the functions of the package can be used, see Chapter 2.

User interface functions

are described in Chapter 3.

Customizations of the package

are described in Chapter 4.

Information how to extend the database

can be found in Chapter 5.

More technical information

can be found in the chapters 6 (concerning GAP objects that are introduced by the package) and 7 (concerning global variables and sanity checks).

1.1 The ATLAS of Group Representations

The ATLAS of Group Representations  [WWT+] consists of matrices over various rings, permutations, and shell scripts encoding so-called black box programs (see [Nic06] and Section 6.2). Many of these scripts are straight line programs (see [BSWW01], [SWW00], and Reference: Straight Line Programs) and straight line decisions (see Section 6.1). These programs can be used to compute certain elements in a group G from its standard generators (see [Wil96] and Section 3.3) for example generators of maximal subgroups of G or representatives of conjugacy classes of G.

The ATLAS of Group Representations has been prepared by Robert Wilson, Peter Walsh, Jonathan Tripp, Ibrahim Suleiman, Richard Parker, Simon Norton, Simon Nickerson, Steve Linton, John Bray, and Rachel Abbott (in reverse alphabetical order).

The information was computed and composed using computer algebra systems such as MeatAxe (see [Rin]), Magma (see [CP96]), and GAP (in reverse alphabetical order). Part of the constructions have been documented in the literature on almost simple groups, or the results have been used in such publications, see for example the bibliographies in [CCN+85] and [BN95] which are available online at http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/bibl.

If you use the ATLAS of Group Representations to solve a problem then please send a short email to R.A.Wilson@qmul.ac.uk about it. The ATLAS of Group Representations database should be referenced with the entry [WWT+] in the bibliography of this manual.

If your work made use of functions of the GAP interface (see Section 1.2) then you should also reference this interface, using the information printed by the GAP function Cite (Reference: Cite).

For referencing the GAP system in general, use the entry [GAP19] in the bibliography of this manual, see also http://www.gap-system.org.

1.2 The GAP Interface to the ATLAS of Group Representations

The GAP interface to the ATLAS of Group Representations consists of essentially two parts.

  • First, there is the user interface which allows the user to get an overview of the contents of the database, and to access the data in GAP format; this is described in Chapter 3. Advanced users may add their own data to the database, this is described in Chapter 5.

  • Second, there is administrational information, which covers also the declaration of GAP objects such as straight line decisions and black box programs. This is important mainly for users interested in the actual implementation (e. g., for modifying the package) or in using it together with the C-MeatAxe standalone (see [Rin]); this is described in Chapter 7.

Information concerning the C-MeatAxe, including the manual [Rin], can be found at

http://www.math.rwth-aachen.de/~MTX

The interface and this manual have been provided by Thomas Breuer, except for the interpreter for black box programs (see Section 6.2), which is due to Simon Nickerson. Comments, bug reports, and hints for improving the interface can be sent to sam@math.rwth-aachen.de.

1.3 What's New in AtlasRep, Compared to Older Versions?

1.3-1 What's New in Version 2.1.8? (January 2024)

An example in Section 2.1-2 of the Tutorial had to be adjusted because the results of the function SmallerDegreePermutationRepresentation (Reference: SmallerDegreePermutationRepresentation) depend on random computations, in particular the implementation in GAP 4.13 may yield a nicer representation than had been shown before.

1.3-2 What's New in Version 2.1.7? (August 2023)
  • Requesting certain matrix groups in characteristic zero had caused an error in version 2.1.6, provided that the feature to store downloaded files was disabled, that is, the value of the user preference "AtlasRepDataDirectory" (see Section 4.2-2) was an empty string. This bug is now fixed. Thanks to Lixin Zheng for reporting this problem.

  • The name of a maximal subgroup of the group M_12.2 had to be changed from "D8.(S4x2)" to "2^3.(S4×2)" because the old name suggested a wrong group structure. This bug had been announced in a StackExchange discussion.

  • A typo in the documentation of AGR.MXS (see Section 7.8) was fixed. Thanks to Max Horn for spotting this.

  • GAP 4.13 will provide the new "package extension" feature, which allows a package to execute GAP code after the package and some other required packages have been loaded. In AtlasRep, this feature is now used for example in order to achieve that those functions which depend on the Browse package can be used also if this package gets (installed and) loaded after AtlasRep has been loaded.

  • The code for building the documentation of the package has been adjusted to a change in GAP 4.13. This does not affect most users of the package because the package archive contains a ready documentation.

1.3-3 What's New in Version 2.1.6? (October 2022)

The package now requires the utils package [BGH+22], and uses its Download (Utils: Download) function for downloading remote files. The former user preference FileTransferTool of the AtlasRep package is no longer supported; it had been used in older versions to distinguish between different download tools.

A method for ConjugacyClasses (Reference: ConjugacyClasses attribute) has been added that uses a straight line program for computing class representatives of a group that has been created with AtlasGroup (3.5-8), provided such a program is available. Thanks to Frank Lübeck for suggesting this.

1.3-4 What's New in Version 2.1.5? (August 2022)

Two bugs concerning local file permissions and the handling of download failures were fixed. Thanks to Frank Lübeck and Fabian Zickgraf for reporting these problems.

1.3-5 What's New in Version 2.1.4? (August 2022)

A few changes in the code for downloading files were needed in order to make some CI tests happy.

1.3-6 What's New in Version 2.1.3? (August 2022)

The server address for the core part of the database has changed.

Additional table of contents files are now available, which contain checksums in SHA256 format instead of the checksums computed by CrcFile (Reference: CrcFile) and CrcString (Reference: CrcString). Note that the latter values can be interpreted only by GAP.

For 364 representations, the corresponding characters have been identified and can thus be used for accessing these representations with OneAtlasGeneratingSetInfo (3.5-6), see DisplayAtlasInfo (3.5-1).

1.3-7 What's New in Version 2.1.2? (March 2022)

Not much.

The release of Version 2.1.2 was necessary for technical reasons: Now the testfile mentioned in PackageInfo.g exits GAP in the end, and the external links in the package documentation were corrected (the links in version 2.1.1 pointed to a wrong directory).

1.3-8 What's New in Version 2.1.1? (February 2022)
  • The new function EvaluatePresentation (3.5-11) computes the images of the relators of a presentation (see Section 6.1-7).

  • The new function StandardGeneratorsData (3.5-12) allows one to compute standard generators from given generators, provided a recipe for that task (a "find" straight line program) for the group in question is available.

  • The function AtlasGroup (3.5-8) sets known information about the group and the representation, such as IsPrimitive (Reference: IsPrimitive).

    (Thanks to Steve Linton for suggesting this feature.)

  • The function ResultOfBBoxProgram (6.2-4) now admits an optional argument, which is used as options record in calls to RunBBoxProgram (6.2-3).

  • The new user preference "AtlasRepJsonFilesAddresses" (see Section 4.2-14) allows one to use Json format data files for matrix representations in characteristic zero, which in turn makes it possible to create the matrices over prescribed fields, for example fields returned by AlgebraicExtension (Reference: AlgebraicExtension). The information stored in the table of contents file about the field of entries of the matrix representations has been extended by a GAP independent description of this field and the defining polynomial used in the Json format data files.

  • When the value of the user preference "AtlasRepDataDirectory" is an empty string then data files that are fetched from remote servers are read into the GAP session without storing the files. (An advantage is that one need not care about where one has permissions for storing files. A disadvantage is of course that one has to fetch a file again whenever it is needed.)

1.3-9 What's New in Version 2.1.0? (May 2019)

The main differences to earlier versions concern extensions of the available data. Up to now, such extensions were possible only in the sense that one could notify certain locally available files to the package's functions. With this version, it becomes possible to notify also remote data files, i. e., data files which have to be downloaded before they can be read into GAP, in the same way as the data from the ATLAS of Group Representations. Two extensions of this kind become automatically available with this package version, see Section 5.1 for details.

Thus the focus of the package has changed. In earlier versions, it provided a GAP interface to the data in the ATLAS of Group Representations, whereas now this database is regarded as one collection (the "core part") among others. Where applicable, the package manual tries to distinguish between general data available to the AtlasRep functions and the data from the ATLAS of Group Representations.

In order to provide this new functionality, the following changes have been implemented. Note that some are incompatible changes, compared with earlier versions of the package.

  • The format of the identifier components of the records returned by AtlasGenerators (3.5-3), AtlasProgram (3.5-4), etc., has been changed for those data that belong to extensions, see 7.7. In the new format, the name of the extension is not added to the group name but to the individual filenames; this allows for example the combination of files from the core database and from extensions in one identifier. Functions for converting between the old and the new format are available, see AtlasRepIdentifier (7.7-1).

  • The records returned by AtlasGenerators (3.5-3) etc. contain also a component contents, with value the identifier of the part of the database to shich the generators belong.

  • The tables of contents of the ATLAS of Group Representations and of extensions are no longer stored in the form of sequences of calls to GAP functions. Instead, each table of contents is defined via a JSON format file, see 6.4. In particular, the file atlasprm.json replaces the former gap/atlasprm.g.

    Two advantages of this change are that there is no danger to call unwanted GAP functions when such files (which are expected to be available in the world wide web) get evaluated, and that the information is independent of GAP –note that MeatAxe format files and straight line programs can be used by other program systems as well.

  • The functions ReloadAtlasTableOfContents, StoreAtlasTableOfContents, and ReplaceAtlasTableOfContents are no longer available. They had been intended for updating the table of contents of the ATLAS of Group Representations, but it has turned out that this was in fact not useful.

The second major change concerns the handling of user parameters.

  • GAP's general user preferences mechanism (see SetUserPreference (Reference: SetUserPreference)) has been used since version 1.5.1 of the package for dealing with certain customizations of AtlasRep's behaviour, concerning the paths of data directories and two issues with MeatAxe format files.

    Now this mechanism is used in more cases, see Section 4.2 for an overview. The new user preferences replace certain components of the record AtlasOfGroupRepresentationsInfo (7.1-5) that were recommended in earlier versions of the package. These components are currently still available but are no longer used by the package's functions. Also the global variable ATLASREP_TOCFILE is no longer supported, use the user preference AtlasRepTOCData instead, see Section 4.2-3. Analogously, use the user preference HowToReadMeatAxeTextFiles instead of the no longer available CMeatAxe.FastRead.

    The switch to user preferences is an incompatible change if you are used to change the values of these components in your code, for example in your gaprc file, see Reference: The gap.ini and gaprc files. All assignments to these components should be changed to calls of SetUserPreference (Reference: SetUserPreference).

    Another consequence of this change is that the former function AtlasOfGroupRepresentationsUserParameters of the package is no longer supported, use ShowUserPreferences (Reference: ShowUserPreferences) or BrowseUserPreferences (Browse: BrowseUserPreferences) with argument "AtlasRep" instead.

Finally, the following improvements have been added.

  • Straight line programs for computing generators of normal subgroups can now be fetched with AtlasProgram (3.5-4), using the argument "kernel". The available programs of this type are shown in the DisplayAtlasInfo (3.5-1) overview for a group. More than 200 such programs are available in a new data directory datapkg of the package. If fact, this collection of files is part of an extension of the database that is distributed together with the package.

    In earlier versions of the package, this kind of information had been available only implicitly; it had been stored via AGR.KERPRG, which is not supported anymore.

  • AtlasProgram (3.5-4) supports more variants of arguments: "contents" can be used to list the available data extensions, "contents" and "version" can be used to restrict the data under consideration, and one can request a program for computing standard generators of some maximal subgroup, not just generators (provided that this information is available).

    The information about the version of straight line programs is shown by DisplayAtlasInfo (3.5-1), as well as the availability of straight line programs for computing standard generators of maximal subgroups.

    Making this information more explicit has the side-effect that the access to the AtlasRep data with BrowseAtlasInfo (Browse: BrowseAtlasInfo) is both safer and simpler, if at least version 1.8.6 of the Browse package is available. (For that, the function AGR.InfoPrgs has been extended such that also the identifier records are included in the result.)

  • Straight line programs for computing standard generators of a maximal subgroup, if available, can now be fetched with AtlasProgram (3.5-4), using the argument "maxstd".

  • The function AtlasRepInfoRecord (3.5-10) now admits a group name as its argument, and then returns information about the group and its maximal subgroups; this information had been used before by DisplayAtlasInfo (3.5-1), but it had not been programmatically accessible.

  • The sanity checks for the data (see Section 7.9) have been extended, in particular they can be applied also to data extensions. To some extent, these checks can be used also to derive new information; the code for that should be regarded as heuristic and experimental, runtimes and space requirements may be large, depending on the new data to be examined.

  • Different header formats are now supported when reading and writing MeatAxe format files, see Section 4.2-8, and one can set a global default for the creation of mode 2 MeatAxe files, see Section 4.2-9.

  • The function MeatAxeString (7.3-2) admits also an integer matrix as argument.

  • The function CMtxBinaryFFMatOrPerm (7.3-4) admits an optional argument base, in order to write MeatAxe format files that contain either zero based or one based permutations.

  • The meaningless lines about p-modular representations of groups with nontrivial p-core have been removed from the file gap/mindeg.g.

1.3-10 What's New in Version 1.5.1? (March 2016)
  • The paths of the directories where downloaded data files get stored are now customizable, see Section 4.2-2. Up to now, the data were stored in subdirectories of the package directory, which might cause problems with write permissions, depending on the installation of the package. (Note that choosing other data directories can be useful also in order to keep existing local data files when a new version of GAP or of the AtlasRep package gets installed.) Thanks to Bill Allombert for pointing out this problem.

  • The information about data files from the ATLAS of Group Representations has been extended by CrcFile (Reference: CrcFile) values. These values are checked whenever data from such a file are read, and an error is signalled if the checksum does not fit to the expected one. Note that several users may access the same data files, and a user should not suffer from perhaps corrupted files that have been downloaded by other users. Thanks to Frank Lübeck for the idea to introduce this consistency test.

  • Whenever StringFile (GAPDoc: StringFile) is called by functions of the package, this happens in the wrapper function AGR.StringFile, in order to replace occasional line breaks of the form "\r\n" by "\n". Apparently it may happen that the "\r" is silently smuggled in when data files get copied to the local computer. Thanks to Marek Mitros for help with detecting and fixing this problem.

  • The function FFMatOrPermCMtxBinary (7.3-5) can now read also permutations stored in binary files that have been created with version 2.4 of the C-MeatAxe; note that this format is different from the one that is written by version 2.3. Conversely, CMtxBinaryFFMatOrPerm (7.3-4) has been generalized such that both formats can be written. The reference to the C-MeatAxe documentation now points to that of version 2.4. Thanks to Jürgen Müller for pointing out this problem.

  • The function MeatAxeString (7.3-2) can now encode permutation matrices in different ways. The mode (the first header entry) can be either 2 (then the positions of the nonzero entries are listed) or 1 or 6 (then all entries of the matrix are listed). In previous versions, the function produced a matrix of mode 2 whenever this was possible, but this behaviour is not useful if the result is not processed by the C-MeatAxe. Thanks to Klaus Lux for pointing out this problem.

  • Depending on the terminal capabilities and the user preference DisplayFunction (see 4.2-11), some non-ASCII characters may appear in the output shown by DisplayAtlasInfo (3.5-1).

1.3-11 What's New in Version 1.5? (July 2011)
  • The function AtlasSubgroup (3.5-9) now admits also the return value of OneAtlasGeneratingSetInfo (3.5-6) or the return value of AtlasGroup (3.5-8) as its first argument. The latter is implemented via the new attribute AtlasRepInfoRecord (3.5-10), which is set in the groups constructed by AtlasGroup (3.5-8).

  • Information about transitivity, rank, primitivity, and point stabilizers of many permutation representations is now available. If applicable then this information appears in the records returned by OneAtlasGeneratingSetInfo (3.5-6), it is part of the overview shown by DisplayAtlasInfo (3.5-1), and it is shown also in the data overview in the web, see Section 4.3.

    Two new manual sections about point stabilizers have been added, see the sections 2.4-6 and 2.4-7.

  • Information about the characters afforded by many matrix and permutation representations is now available. If applicable then this information appears in the records returned by OneAtlasGeneratingSetInfo (3.5-6), for matrix representations it is part of the overview shown by DisplayAtlasInfo (3.5-1), and it is shown also in the data overview in the web, see Section 4.3.

  • The functions Character (Reference: Character for a character table and a list), Identifier (Reference: Identifier for character tables), IsPrimitive (Reference: IsPrimitive), IsTransitive (Reference: IsTransitive), Transitivity (Reference: Transitivity), and RankAction (Reference: RankAction) are now supported as input conditions in DisplayAtlasInfo (3.5-1) and OneAtlasGeneratingSetInfo (3.5-6).

  • It is now possible to restrict the data shown by DisplayAtlasInfo (3.5-1) or returned by OneAtlasGeneratingSetInfo (3.5-6) to private or non-private data.

  • A tutorial for beginners was added to the manual, see Chapter 2, and the manual was restructured.

  • In the overview shown by DisplayAtlasInfo (3.5-1) and in the data overview in the web (see Section 4.3), the ordering of groups was improved such that, e.g., "A9" precedes "A10".

  • The function AtlasClassNames (3.4-2) now admits also a Brauer table as its argument, and works also for character tables of bicyclic extensions of simple groups.

  • The group names that are entered in DisplayAtlasInfo (3.5-1), OneAtlasGeneratingSetInfo (3.5-6), etc., are now case insensitive, and if the package CTblLib is available then the admissible group names for the GAP character table of the group in question can be used in these functions.

  • In order to reduce the number of global variables, several functions have been turned into components of the new global variable AGR (7.1-4). A few of these functions had been documented in the previous version, the old values are still available if the package files gap/obsolete.gd and gap/obsolete.gi have been read. These files are read automatically if GAP's user preference "ReadObsolete" is true when the package gets loaded, see Reference: The gap.ini file.

  • A few nicer characters are used by DisplayAtlasInfo (3.5-1) if GAPInfo.TermEncoding has the value "UTF-8" and if Print (Reference: Print) is not the display function to be used, see Section 4.2-11.

  • A bug in the function ReloadAtlasTableOfContents was fixed. Thanks to Jack Schmidt for reporting this bug.

1.3-12 What's New in Version 1.4? (June 2008)
  • In addition to the group orders that were added in version 1.3 (see Section 1.3-14), also many orders of maximal subgroups are now available. These values occur in the records returned by AtlasProgram (3.5-4) (for the case of "maxes" type programs) and of the three argument version of AtlasGenerators (3.5-3); now a size component may be bound. In these cases, the groups returned by AtlasSubgroup (3.5-9) have the Size (Reference: Size) attribute set.

  • The information about the number of maximal subgroups, if available, is now used in DisplayAtlasInfo (3.5-1).

  • In many cases, straight line programs for computing generators of maximal subgroups of a group G, say, can in fact be used to compute also generators of maximal subgroups of downward extensions of G; if not then it may suffice to extend the given straight line programs by additional generators.

    Currently this yields more than 200 new possibilities to compute maximal subgroups, this means a growth by about 25 percent. For example, all maximal subgroups of 12.M_22 and 2.Fi_22 can now be accessed via AtlasGenerators (3.5-3).

    (Of course this extension means only that one can access the straight line programs in question automatically via the GAP interface. In principle one could have used them already before, by explicitly applying a straight line program for a factor group to generators of a group, and perhaps adding some element in the kernel of the natural epimorphism.)

    For this feature, information about the compatibility of standard generators of groups and their factor groups was added.

  • The bibliographies contained in the ATLAS of Finite Groups [CCN+85] and in the ATLAS of Brauer Characters [JLPW95] are now available as HTML files, as BibXMLext files, and within GAP, see BrowseBibliographySporadicSimple (3.6-2).

  • If the GAP package Browse (see [BL18]) is loaded then the new functions BrowseMinimalDegrees (3.6-1) and BrowseBibliographySporadicSimple (3.6-2) are available; these functions can be called also by choosing the corresponding menu entries of the Browse application BrowseGapData (Browse: BrowseGapData).

  • The function AtlasGroup (3.5-8) now admits also the return value of OneAtlasGeneratingSetInfo (3.5-6) as its argument.

1.3-13 What's New in Version 1.3.1? (October 2007)

This version was mainly released in order to fix a few problems. Now one does not get warnings about unbound variables when the package is loaded and the GAP package IO [Neu14] is not available, and pathological situations in FFMatOrPermCMtxBinary (7.3-5) (concerning extremely short corrupted data files and different byte orderings in binary files) are handled more carefully.

Besides this, the two functions AtlasGroup (3.5-8) and AtlasSubgroup (3.5-9) were introduced, and the extended function QuaternionAlgebra (Reference: QuaternionAlgebra) of GAP 4.4.10 can now be used for describing base rings in OneAtlasGeneratingSetInfo (3.5-6) and AllAtlasGeneratingSetInfos (3.5-7). (This is the reason why this version of the package requires at least version 4.4.10 of GAP.)

1.3-14 What's New in Version 1.3? (June 2007)
  • The database was extended, see Section 4.2-4 for the number and size of files.

  • New data types and corresponding GAP objects have been introduced, for representing semi-presentations, presentations, and programs for finding standard generators. For details, see AtlasProgram (3.5-4), Chapter 6, and Section 7.6.

  • The records returned by the functions AtlasGenerators (3.5-3), OneAtlasGeneratingSetInfo (3.5-6), and AllAtlasGeneratingSetInfos (3.5-7) now contain the name and (if known) the order of the group in question, and also components describing the degree in the case of permutation representations or the dimension and the base ring of the natural module in the case of matrix representations.

  • For many of the groups, information about the minimal degree of faithful permutation representations and the minimal dimensions of faithful matrix representations in various characteristics is available for DisplayAtlasInfo (3.5-1), OneAtlasGeneratingSetInfo (3.5-6), and AllAtlasGeneratingSetInfos (3.5-7), see also Section 6.3. For these functions, also properties such as IsPrimeInt (Reference: IsPrimeInt) can be used to describe the intended restriction of the output.

  • One can now use Pager (Reference: Pager) functionality in DisplayAtlasInfo (3.5-1), see Section 4.2-11.

    An interactive alternative to DisplayAtlasInfo (3.5-1) is provided by the function BrowseAtlasInfo (Browse: BrowseAtlasInfo) from the new (recommended) GAP package Browse (see [BL18]).

  • The functions OneAtlasGeneratingSetInfo (3.5-6) and AllAtlasGeneratingSetInfos (3.5-7) now admit also a list of group names as the first argument.

  • The functions for actually accessing the data are more flexible now, see Section 7.2.

  • For transferring remote data, the GAP package IO (see [Neu14]) can now be used (and is recommended) as an alternative to wget.

  • The address of the data server has changed. The access to the server is no longer possible via ftp, thus the mechanism used up to version 1.2, which was based on ftp, had to be rewritten.

    The main consequence of this change is that information about updates of the table of contents is now provided at the package's homepage. This means that on the one hand, now package users cannot compute the table of contents directly from the server data, but on the other hand the update information can be downloaded without the necessity to install perl.

    Another consequence is that the system program ls is no longer needed, see Section 1.3-16.

  • The package manual has been restructured, extended and improved. It is now based on the package GAPDoc (see [LN18]).

1.3-15 What's New in Version 1.2? (November 2003)

Not much.

The release of Version 1.2 became necessary first of all in order to provide a package version that is compatible with GAP 4.4, since some cross-references into the GAP Reference Manual were broken due to changes of section names. Additionally, several web addresses concerning the package itself were changed and thus had to be adjusted.

This opportunity was used

  • to upgrade the administrational part for loading the package to the mechanism that is recommended for GAP 4.4,

  • to extend the test suite, which now covers more consistency checks using the GAP Character Table Library (see [Bre22]),

  • to make the function ScanMeatAxeFile (7.3-1) more robust, due to the fact that the GAP function PermList (Reference: PermList) now returns fail instead of raising an error,

  • to change the way how representations with prescribed properties are accessed (the new function OneAtlasGeneratingSetInfo (3.5-6) is now preferred to the former OneAtlasGeneratingSet, and AllAtlasGeneratingSetInfos (3.5-7) has been added in order to provide programmatic access in parallel to the human readable descriptions printed by DisplayAtlasInfo (3.5-1)),

  • and last but not least to include the current table of contents of the underlying database.

For AtlasRep users, the new feature of GAP 4.4 is particularly interesting that due to better kernel support, reading large matrices over finite fields is now faster than it was in GAP 4.3.

1.3-16 What's New in Version 1.1? (October 2002)

The biggest change w. r. t. Version 1.1 is the addition of private extensions (see Chapter 5). It includes a new "free format" for straight line programs (see Section 5.2). Unfortunately, this feature requires the system program ls, so it may be not available for example under MS Windows operating systems. [But see Section 1.3-14.]

In order to admit the addition of other types of data, the implementation of several functions has been changed. Data types are described in Section 7.5. An example of a new data type are quaternionic representations (see Section 7.6). The user interface itself (see Chapter 3) remained the same.

As an alternative to perl, one can use wget now for transferring data files (see 4.2).

Data files can be read much more efficiently in GAP 4.3 than in GAP 4.2. In Version 1.1 of the AtlasRep package, this feature is used for reading matrices and permutations in MeatAxe text format with ScanMeatAxeFile (7.3-1). As a consequence, (at least) GAP 4.3 is required for AtlasRep Version 1.1.

The new compress component of the global variable AtlasOfGroupRepresentationsInfo (7.1-5) allows one to store data files automatically in gzipped form.

For matrix representations in characteristic zero, invariant forms and generators for the centralizer algebra are now accessible in GAP if they are contained in the source files –this information had been ignored in Version 1.0.

Additional information is now available via the internet (see 4.3).

The facilities for updating the table of contents have been extended.

The manual is now distributed also in PDF and HTML format; on the other hand, the PostScript format manual is no longer contained in the archives.

Apart from these changes, a few minor bugs in the handling of MeatAxe files have been fixed, typos in the documentation have been corrected, and the syntax checks for ATLAS straight line programs (see 7.4) have been improved.

1.4 Acknowledgements

  • Frank Lübeck and Max Neunhöffer kindly provided the perl script that had been used for fetching remote data until version 1.2. Thanks also to Greg Gamble and Alexander Hulpke for technical hints concerning "standard" perl.

  • Ulrich Kaiser helped with preparing the package for MS Windows.

  • Klaus Lux had the idea to support data extensions, see Chapter 5, he did a lot of beta testing, and helped to fix several bugs.

  • Frank Lübeck contributed the functions CMtxBinaryFFMatOrPerm (7.3-4) and FFMatOrPermCMtxBinary (7.3-5).

  • Frank Lübeck and Max Neunhöffer wrote the GAPDoc package [LN18], which is used for processing the documentation of the AtlasRep package and for processing the bibliographies included in this package (see BrowseBibliographySporadicSimple (3.6-2)),

  • Max Neunhöffer wrote the GAP package IO [Neu14], which is recommended for transferring data.

  • Max Neunhöffer has also suggested the generalization of the data access described in Section 7.2, the admissibility of the function Character (Reference: Character for a character table and a list) as a filter in DisplayAtlasInfo (3.5-1), OneAtlasGeneratingSetInfo (3.5-6), and AllAtlasGeneratingSetInfos (3.5-7), and the variant of AtlasRepInfoRecord (3.5-10) that takes a group name as its input.

  • Gunter Malle suggested to make the information about representations of minimal degree accessible, see Section 6.3.

  • Andries Brouwer suggested to add a tutorial (see Chapter 2), Klaus Lux suggested several improvements of this chapter.

  • The development of this GAP package has been supported by the SFB-TRR 195 "Symbolic Tools in Mathematics and their Applications" (from 2017 until 2022).

Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chap5_mj.html0000644000175000017500000011713514545501244014614 0ustar samsam GAP (AtlasRep) - Chapter 5: Extensions of the AtlasRep Package
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

5 Extensions of the AtlasRep Package

It may be interesting to use the functions of the GAP interface also for representations or programs that are not part of the ATLAS of Group Representations. This chapter describes how to achieve this.

The main idea is that users can notify collections of "private" data files, which may consist of

  1. new faithful representations and programs for groups that are declared already in the core part of the database that belongs to the "official" ATLAS of Group Representations (see Section 5.1),

  2. the declaration of groups that are not declared in the ATLAS of Group Representations, and representations and programs for them (see Section 5.2), and

  3. the definition of new kinds of representations and programs (see Section 7.5).

A test example of a local extension is given in Section 5.3. Another such example is the small collection of data that is distributed together with the package, in its datapkg directory; its contents can be listed by calling DisplayAtlasInfo( "contents", "internal" ).

Examples of extensions by files that can be downloaded from the internet can be found in the GAP packages MFER [BHM09] and CTBlocks [Bre14]. These extensions are automatically notified as soon as AtlasRep is available, via the default value of the user preference AtlasRepTOCData, see Section 4.2-3; their contents can be listed by calling DisplayAtlasInfo( "contents", "mfer" ) and DisplayAtlasInfo( "contents", "ctblocks" ), respectively.

Several of the sanity checks for the core part of the AtlasRep data make sense also for data extensions, see Section 7.9 for more information.

5.1 Notify Additional Data

After the AtlasRep package has been loaded into the GAP session, one can extend the data which the interface can access by own representations and programs. The following two variants are supported.

  • The additional data files are locally available in some directory. Information about the declaration of new groups or about additional information such as the character names of representations can be provided in an optional JSON format file named toc.json in this directory.

  • The data files can be downloaded from the internet. Both the list of available data and additional information as in the above case are given by either a local JSON format file or the URL of a JSON format file. This variant requires the user preference AtlasRepAccessRemoteFiles (see Section 4.2-1) to have the value true.

In both cases, AtlasOfGroupRepresentationsNotifyData (5.1-1) can be used to make the private data available to the interface.

5.1-1 AtlasOfGroupRepresentationsNotifyData
‣ AtlasOfGroupRepresentationsNotifyData( dir, id[, test] )( function )
‣ AtlasOfGroupRepresentationsNotifyData( filename[, id][, test] )( function )
‣ AtlasOfGroupRepresentationsNotifyData( url[, id][, test] )( function )

Returns: true if the overview of the additional data can be evaluated and if the names of the data files in the extension are compatible with the data files that had been available before the call, otherwise false.

The following variants are supported for notifying additional data.

Contents of a local directory

The first argument dir must be either a local directory (see Reference: Directories) or a string denoting the path of a local directory, such that the GAP object describing this directory can be obtained by calling Directory (Reference: Directory) with the argument dir; in the latter case, dir can be an absolute path or a path relative to the user's home directory (starting with a tilde character ~) or a path relative to the directory where GAP was started. The files contained in this directory or in its subdirectories (only one level deep) are considered. If the directory contains a JSON document in a file with the name toc.json then this file gets evaluated; its purpose is to provide additional information about the data files.

Calling AtlasOfGroupRepresentationsNotifyData means to evaluate the contents of the directory and (if available) of the file toc.json.

Accessing data means to read the locally available data files.

The argument id must be a string. It will be used in the identifier components of the records that are returned by interface functions (see Section 3.5) for data contained in the directory dir. (Note that the directory name may be different in different GAP sessions or for different users who want to access the same data, whereas the identifier components shall be independent of such differences.)

An example of a local extension is the contents of the datapkg directory of the AtlasRep package. This extension gets notified automatically when AtlasRep gets loaded. For restricting data collections to this extension, one can use the identifier "internal".

Local file describing the contents of a local or remote directory

The first argument filename must be the name of a local file whose content is a JSON document that lists the available data, additional information about these data, and an URL from where the data can be downloaded. The data format of this file is defined by the JSON schema file doc/atlasreptoc_schema.json of the AtlasRep package.

Calling AtlasOfGroupRepresentationsNotifyData means to evaluate the contents of the file filename, without trying to access the remote data. The id is then either given implicitly by the ID component of the JSON document or can be given as the second argument.

Downloaded data files are stored in the subdirectory dataext/id of the directory that is given by the user preference AtlasRepDataDirectory, see Section 4.2-2.

Accessing data means to download remote files if necessary but to prefer files that are already locally available.

An example of such an extension is the set of permutation representations provided by the MFER package [BHM09]; due to the file sizes, these representations are not distributed together with the MFER package. For restricting data collections to this extension, one can use the identifier "mfer".

Another example is given by some of the data that belong to the CTBlocks package [Bre14]. These data are also distributed with that package, and notifying the extension in the situation that the CTBlocks package is available will make its local data available, via the component LocalDirectory of the JSON document ctblocks.json; notifying the extension in the situation that the CTBlocks package is not available will make the remote files available, via the component DataURL of this JSON document. For restricting data collections to this extension, one can use the identifier "ctblocks".

URL of a file

(This variant works only if the IO package [Neu14] is available.)

The first argument url must be the URL of a JSON document as in the previous case.

Calling AtlasOfGroupRepresentationsNotifyData in online mode (that is, the user preference AtlasRepAccessRemoteFiles has the value true) means to download this file and to evaluate it; the id is then given implicitly by the ID component of the JSON document, and the contents of the document gets stored in a file with name dataext/id/toc.json, relative to the directory given by the value of the user preference AtlasRepDataDirectory. Also downloaded files for this extension will be stored in the directory dataext/id.

Calling AtlasOfGroupRepresentationsNotifyData in offline mode requires that the argument id is explicitly given. In this case, it is checked whether the dataext subdirectory contains a subdirectory with name id; if not then false is returned, if yes then the contents of this local directory gets notified via the first form described above.

Accessing data in online mode means the same as in the case of a remote directory. Accessing data in offline mode means the same as in the case of a local directory.

Examples of such extension are again the data from the packages CTBlocks and MFER described above, but in the situation that these packages are not loaded, and that just the web URLs of their JSON documents are entered which describe the contents.

In all three cases, if the optional argument test is given then it must be either true or false. In the true case, consistency checks are switched on during the notification. The default for test is false.

The notification of an extension may happen as a side-effect when a GAP package gets loaded that provides the data in question. Besides that, one may collect the notifications of data extensions in one's gaprc file (see Section Reference: The gap.ini and gaprc files).

5.1-2 AtlasOfGroupRepresentationsForgetData
‣ AtlasOfGroupRepresentationsForgetData( dirid )( function )

If dirid is the identifier of a database extension that has been notified with AtlasOfGroupRepresentationsNotifyData (5.1-1) then AtlasOfGroupRepresentationsForgetData undoes the notification; this means that from then on, the data of this extension cannot be accessed anymore in the current session.

5.1-3 StringOfAtlasTableOfContents
‣ StringOfAtlasTableOfContents( inforec )( function )

For a record inforec with at least the component ID, with value "core" or the identifier of a data extension (see AtlasOfGroupRepresentationsNotifyData (5.1-1)), this function returns a string that describes the part of AtlasRep data belonging to inforec.ID.

Printed to a file, the returned string can be used as the table of contents of this part of the data. For that purpose, also the following components of inforec must be bound (all strings). Version, SelfURL (the internet address of the table of contents file itself). At least one of the following two components must be bound. DataURL is the internet address of the directory from where the data in question can be downloaded. LocalDirectory is a path relative to GAP's pkg directory where the data may be stored locally (depending on whether some GAP package is installed). If the component DataURL is bound then the returned string contains the information about the data files; this is not necessary if the data are only locally available. If both DataURL and LocalDirectory are bound then locally available data will be prefered at runtime.

Alternatively, inforec can also be the ID string; in this case, the values of those of the supported components mentioned above that are defined in an available JSON file for this ID are automatically inserted. (If there is no such file yet then entering the ID string as inforec does not make sense.)

For an example how to use the function, see Section 5.3.

5.2 The Effect of Extensions on the User Interface

First suppose that only new groups or new data for known groups or for new groups are added.

In this case, DisplayAtlasInfo (3.5-1) lists the additional representations and programs in the same way as other data known to AtlasRep, except that parts outside the core database are marked with the string that is the value of the user preference AtlasRepMarkNonCoreData, see Section 4.2-12. The ordering of representations listed by DisplayAtlasInfo (3.5-1) (and referred to by AtlasGenerators (3.5-3)) will in general change whenever extensions get notified. For the other interface functions described in Chapter 3, the only difference is that also the additional data can be accessed.

If also new data types are introduced in an extension (see Section 7.5) then additional columns or rows can appear in the output of DisplayAtlasInfo (3.5-1), and new inputs can become meaningful for all interface functions.

5.3 An Example of Extending the AtlasRep Data

This section shows an extension by a few locally available files.

We set the info level of InfoAtlasRep (7.1-1) to \(1\) in this section.

gap> locallevel:= InfoLevel( InfoAtlasRep );;
gap> SetInfoLevel( InfoAtlasRep, 1 );

Let us assume that the local directory privdir contains data for the cyclic group \(C_4\) of order \(4\) and for the alternating group \(A_5\) on \(5\) points, respectively. Note that it is obvious what the term "standard generators" means for the group \(C_4\).

Further let us assume that privdir contains the following files.

C4G1-p4B0.m1

a faithful permutation representation of \(C_4\) on \(4\) points,

C4G1-max1W1

the straight line program that returns the square of its unique input,

C4G1-a2W1

the straight line program that raises its unique input to the third power,

C4G1-XtestW1

the straight line program that returns the square of its unique input,

A5G1-p60B0.m1 and A5G1-p60B0.m2

standard generators for \(A_5\) in its regular permutation representation.

The directory and the files can be created as follows.

gap> prv:= DirectoryTemporary( "privdir" );;
gap> FileString( Filename( prv, "C4G1-p4B0.m1" ),
>                MeatAxeString( [ (1,2,3,4) ], 4 ) );;
gap> FileString( Filename( prv, "C4G1-max1W1" ),
>                "inp 1\npwr 2 1 2\noup 1 2\n" );;
gap> FileString( Filename( prv, "C4G1-XtestW1" ),
>                "inp 1\npwr 2 1 2\noup 1 2\n" );;
gap> FileString( Filename( prv, "C4G1-a2W1" ),
>                "inp 1\npwr 3 1 2\noup 1 2\n" );;
gap> FileString( Filename( prv, "C4G1-Ar1aB0.g" ),
>                "return rec( generators:= [ [[E(4)]] ] );\n" );;
gap> points:= Elements( AlternatingGroup( 5 ) );;
gap> FileString( Filename( prv, "A5G1-p60B0.m1" ),
>      MeatAxeString( [ Permutation( (1,2)(3,4), points, OnRight ) ], 60 ) );;
gap> FileString( Filename( prv, "A5G1-p60B0.m2" ),
>      MeatAxeString( [ Permutation( (1,3,5), points, OnRight ) ], 60 ) );;

(We could also introduce intermediate directories C4 and A5, say, each with the data for one group only.)

The core part of the AtlasRep data does not contain information about \(C_4\), so we first notify this group, in the file privdir/toc.json. Besides the name of the group, we store the following information: the group order, the number of (classes of) maximal subgroups, their orders, their structures, and describing data about the three representations. The group \(A_5\) is already known with name A5 in the core part of the AtlasRep data, so it need not and cannot be notified again.

gap> FileString( Filename( prv, "toc.json" ), Concatenation( [ "{\n",
>        "\"ID\":\"priv\",\n",
>        "\"Data\":[\n",
>        "[\"GNAN\",[\"C4\",\"C4\"]],\n",
>        "[\"GRS\",[\"C4\",4]],\n",
>        "[\"MXN\",[\"C4\",1]],\n",
>        "[\"MXO\",[\"C4\",[2]]],\n",
>        "[\"MXS\",[\"C4\",[\"C2\"]]],\n",
>        "[\"RNG\",[\"C4G1-Ar1aB0\",\"CF(4)\",",
>                  "[\"QuadraticField\",-1],[1,0,1]]],\n",
>        "[\"API\",[\"C4G1-p4B0\",[1,4,\"imprim\",\"1 < C2\"]]],\n",
>        "[\"API\",[\"A5G1-p60B0\",[1,60,\"imprim\",\"1 < S3\"]]]\n",
>        "]\n",
>        "}\n" ] ) );;

Then we notify the extension.

gap> AtlasOfGroupRepresentationsNotifyData( prv, "priv", true );
true

Now we can use the interface functions for accessing the additional data.

gap> DisplayAtlasInfo( [ "C4" ] );
group | # | maxes | cl | cyc | out | fnd | chk | prs
------+---+-------+----+-----+-----+-----+-----+----
C4*   | 2 |     1 |    |     |   2 |     |     |    
gap> DisplayAtlasInfo( "C4" );
Representations for G = C4:    (all refer to std. generators 1)
---------------------------
1: G <= Sym(4)*       rank 4, on cosets of 1 < C2
2: G <= GL(1a,CF(4))* 

Programs for G = C4:    (all refer to std. generators 1)
--------------------
- automorphisms*:
  2*               
- maxes (all 1):
  1*:  C2          
- other scripts*:
  "test"*          
gap> DisplayAtlasInfo( "C4", IsPermGroup, true );
Representations for G = C4:    (all refer to std. generators 1)
---------------------------
1: G <= Sym(4)* rank 4, on cosets of 1 < C2
gap> DisplayAtlasInfo( "C4", IsMatrixGroup );
Representations for G = C4:    (all refer to std. generators 1)
---------------------------
2: G <= GL(1a,CF(4))* 
gap> DisplayAtlasInfo( "C4", Dimension, 2 );
gap> DisplayAtlasInfo( "A5", NrMovedPoints, 60 );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
4: G <= Sym(60)* rank 60, on cosets of 1 < S3
gap> info:= OneAtlasGeneratingSetInfo( "C4" );
rec( contents := "priv", groupname := "C4", id := "", 
  identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], 
  isPrimitive := false, p := 4, rankAction := 4, 
  repname := "C4G1-p4B0", repnr := 1, size := 4, 
  stabilizer := "1 < C2", standardization := 1, transitivity := 1, 
  type := "perm" )
gap> AtlasGenerators( info.identifier );
rec( contents := "priv", generators := [ (1,2,3,4) ], 
  groupname := "C4", id := "", 
  identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], 
  isPrimitive := false, p := 4, rankAction := 4, 
  repname := "C4G1-p4B0", repnr := 1, size := 4, 
  stabilizer := "1 < C2", standardization := 1, transitivity := 1, 
  type := "perm" )
gap> AtlasProgram( "C4", 1 );
rec( groupname := "C4", 
  identifier := [ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ], 
  program := <straight line program>, size := 2, standardization := 1,
  subgroupname := "C2", version := "1" )
gap> AtlasProgram( "C4", "maxes", 1 );
rec( groupname := "C4", 
  identifier := [ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ], 
  program := <straight line program>, size := 2, standardization := 1,
  subgroupname := "C2", version := "1" )
gap> AtlasProgram( "C4", "maxes", 2 );
fail
gap> AtlasGenerators( "C4", 1 );
rec( contents := "priv", generators := [ (1,2,3,4) ], 
  groupname := "C4", id := "", 
  identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], 
  isPrimitive := false, p := 4, rankAction := 4, 
  repname := "C4G1-p4B0", repnr := 1, size := 4, 
  stabilizer := "1 < C2", standardization := 1, transitivity := 1, 
  type := "perm" )
gap> AtlasGenerators( "C4", 2 );
rec( contents := "priv", dim := 1, generators := [ [ [ E(4) ] ] ], 
  groupname := "C4", id := "a", 
  identifier := [ "C4", [ [ "priv", "C4G1-Ar1aB0.g" ] ], 1, 1 ], 
  polynomial := [ 1, 0, 1 ], repname := "C4G1-Ar1aB0", repnr := 2, 
  ring := GaussianRationals, size := 4, standardization := 1, 
  type := "matalg" )
gap> AtlasGenerators( "C4", 3 );
fail
gap> AtlasProgram( "C4", "other", "test" );
rec( groupname := "C4", 
  identifier := [ "C4", [ [ "priv", "C4G1-XtestW1" ] ], 1 ], 
  program := <straight line program>, standardization := 1, 
  version := "1" )

We can restrict the data shown by DisplayAtlasInfo (3.5-1) to our extension, as follows.

gap> DisplayAtlasInfo( "contents", "priv" );
group | # | maxes | cl | cyc | out | fnd | chk | prs
------+---+-------+----+-----+-----+-----+-----+----
A5*   | 1 |       |    |     |     |     |     |    
C4*   | 2 |     1 |    |     |   2 |     |     |    

For checking the data in the extension, we apply the relevant sanity checks (see Section 7.9).

gap> AGR.Test.Words( "priv" );
true
gap> AGR.Test.FileHeaders( "priv" );
true
gap> AGR.Test.Files( "priv" );
true
gap> AGR.Test.BinaryFormat( "priv" );
true
gap> AGR.Test.Primitivity( "priv" : TryToExtendData );
true
gap> AGR.Test.Characters( "priv" : TryToExtendData );
#I  AGR.Test.Character:
#I  add new info
["CHAR",["A5","A5G1-p60B0",
0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4a^4+5a^5"]],
#I  AGR.Test.Character:
#I  add new info
["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]],
true

We did not store the character information in the file privdir/toc.json, and GAP was able to identify the characters of the two permutation representations. (The identification of the character for the matrix representation fails because we cannot distinguish between the two Galois conjugate faithful characters.)

If we store the character information as proposed by GAP, this information will for example become part of the records returned by OneAtlasGeneratingSetInfo (3.5-6). (Note that we have to enter "priv" as the last argument of AGR.CHAR when we call the function interactively, in order to assign the information to the right context.)

gap> AGR.CHAR("A5","A5G1-p60B0",
> 0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4a^4+5a^5", "priv" );
gap> AGR.CHAR("C4","C4G1-p4B0",0,[1,2,3,4],"1abcd", "priv" );
gap> AGR.Test.Characters( "priv" );
true
gap> OneAtlasGeneratingSetInfo( "C4" );
rec( charactername := "1abcd", constituents := [ 1, 2, 3, 4 ], 
  contents := "priv", groupname := "C4", id := "", 
  identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], 
  isPrimitive := false, p := 4, rankAction := 4, 
  repname := "C4G1-p4B0", repnr := 1, size := 4, 
  stabilizer := "1 < C2", standardization := 1, transitivity := 1, 
  type := "perm" )

A string that describes the JSON format overview of the data extension can be created with StringOfAtlasTableOfContents (5.1-3).

gap> Print( StringOfAtlasTableOfContents( "priv" ) );
{
"ID":"priv",
"Data":[
["GNAN",["C4","C4"]],

["GRS",["C4",4]],

["MXN",["C4",1]],

["MXO",["C4",[2]]],

["MXS",["C4",["C2"]]],

["RNG",["C4G1-Ar1aB0","CF(4)",["QuadraticField",-1],[1,0,1]]],

["API",["A5G1-p60B0",[1,60,"imprim","1 < S3"]]],
["API",["C4G1-p4B0",[1,4,"imprim","1 < C2"]]],

["CHAR",["A5","A5G1-p60B0",0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4\
a^4+5a^5"]],
["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]]
]
}

If we prescribe a "DataURL" component that starts with "http" then also the "TOC" lines are listed, in order to enable remote access to the data.

gap> Print( StringOfAtlasTableOfContents(
>               rec( ID:= "priv", DataURL:= "http://someurl" ) ) );
{
"ID":"priv",
"DataURL":"http://someurl",
"Data":[
["GNAN",["C4","C4"]],

["GRS",["C4",4]],

["MXN",["C4",1]],

["MXO",["C4",[2]]],

["MXS",["C4",["C2"]]],

["TOC",["perm","A5G1-p60B0.m",[118815263,24584221]]],
["TOC",["matalg","C4G1-Ar1aB0.g",[49815028]]],
["TOC",["otherscripts","C4G1-XtestW1",[-27672877]]],
["TOC",["out","C4G1-a2W1",[126435524]]],
["TOC",["maxes","C4G1-max1W1",[-27672877]]],
["TOC",["perm","C4G1-p4B0.m",[102601978]]],

["RNG",["C4G1-Ar1aB0","CF(4)",["QuadraticField",-1],[1,0,1]]],

["API",["A5G1-p60B0",[1,60,"imprim","1 < S3"]]],
["API",["C4G1-p4B0",[1,4,"imprim","1 < C2"]]],

["CHAR",["A5","A5G1-p60B0",0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4\
a^4+5a^5"]],
["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]]
]
}

Finally, we "uninstall" our extension, and reset the info level that had been set to \(1\) in the beginning. (Also the group name C4 is removed this way, which is an advantage of using a toc.json file over calling AGR.GNAN directly.),

gap> AtlasOfGroupRepresentationsForgetData( "priv" );
gap> SetInfoLevel( InfoAtlasRep, locallevel );

We need not care about removing the temporary directory and the files in it. GAP will try to remove directories created with DirectoryTemporary (Reference: DirectoryTemporary) at the end of the GAP session.

Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chap2.html0000644000175000017500000021630114545501243014115 0ustar samsam GAP (AtlasRep) - Chapter 2: Tutorial for the AtlasRep Package
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

2 Tutorial for the AtlasRep Package

This chapter gives an overview of the basic functionality provided by the AtlasRep package. The main concepts and interface functions are presented in the first three sections, and Section 2.4 shows a few small examples.

Let us first fix the setup for the examples shown in the package manual.

  1. First of all, we load the AtlasRep package. Some of the examples require also the GAP packages CTblLib and TomLib, so we load also these packages.

    gap> LoadPackage( "AtlasRep", false );
    true
    gap> LoadPackage( "CTblLib", false );
    true
    gap> LoadPackage( "TomLib", false );
    true
    
  2. Depending on the terminal capabilities, the output of DisplayAtlasInfo (3.5-1) may contain non-ASCII characters, which are not supported by the LaTeX and HTML versions of GAPDoc documents. The examples in this manual are used for tests of the package's functionality, thus we set the user preference DisplayFunction (see Section 4.2-11) to the value "Print" in order to produce output consisting only of ASCII characters, which is assumed to work in any terminal.

    gap> origpref:= UserPreference( "AtlasRep", "DisplayFunction" );;
    gap> SetUserPreference( "AtlasRep", "DisplayFunction", "Print" );
    
  3. The GAP output for the examples may look differently if data extensions have been loaded. In order to ignore these extensions in the examples, we unload them.

    gap> priv:= Difference(
    >     List( AtlasOfGroupRepresentationsInfo.notified, x -> x.ID ),
    >     [ "core", "internal" ] );;
    gap> Perform( priv, AtlasOfGroupRepresentationsForgetData );
    
  4. If the info level of InfoAtlasRep (7.1-1) is larger than zero then additional output appears on the screen. In order to avoid this output, we set the level to zero.

    gap> globallevel:= InfoLevel( InfoAtlasRep );;
    gap> SetInfoLevel( InfoAtlasRep, 0 );
    

2.1 Accessing a Specific Group in AtlasRep

An important database to which the AtlasRep package gives access is the ATLAS of Group Representations [WWT+]. It contains generators and related data for several groups, mainly for extensions of simple groups (see Section 2.1-1) and for their maximal subgroups (see Section 2.1-2).

In general, these data are not part of the package. They are downloaded as soon as they are needed for the first time, see Section 4.2-1.

2.1-1 Accessing a Group in AtlasRep via its Name

Each group that occurs in this database is specified by a name, which is a string similar to the name used in the ATLAS of Finite Groups [CCN+85]. For those groups whose character tables are contained in the GAP Character Table Library [Bre22], the names are equal to the Identifier (Reference: Identifier for character tables) values of these character tables. Examples of such names are "M24" for the Mathieu group M_24, "2.A6" for the double cover of the alternating group A_6, and "2.A6.2_1" for the double cover of the symmetric group S_6. The names that actually occur are listed in the first column of the overview table that is printed by the function DisplayAtlasInfo (3.5-1), called without arguments, see below. The other columns of the table describe the data that are available in the database.

For example, DisplayAtlasInfo (3.5-1) may print the following lines. Omissions are indicated with "...".

gap> DisplayAtlasInfo();
group                    |  # | maxes | cl | cyc | out | fnd | chk | prs
-------------------------+----+-------+----+-----+-----+-----+-----+----
...
2.A5                     | 26 |     3 |    |     |     |     |  +  |  + 
2.A5.2                   | 11 |     4 |    |     |     |     |  +  |  + 
2.A6                     | 18 |     5 |    |     |     |     |     |    
2.A6.2_1                 |  3 |     6 |    |     |     |     |     |    
2.A7                     | 24 |     2 |    |     |     |     |     |    
2.A7.2                   |  7 |       |    |     |     |     |     |    
...
M22                      | 58 |     8 |  + |  +  |     |  +  |  +  |  + 
M22.2                    | 46 |     7 |  + |  +  |     |  +  |  +  |  + 
M23                      | 66 |     7 |  + |  +  |     |  +  |  +  |  + 
M24                      | 62 |     9 |  + |  +  |     |  +  |  +  |  + 
McL                      | 46 |    12 |  + |  +  |     |  +  |  +  |  + 
McL.2                    | 27 |    10 |    |  +  |     |  +  |  +  |  + 
O7(3)                    | 28 |       |    |     |     |     |     |    
O7(3).2                  |  3 |       |    |     |     |     |     |    
...
Suz                      | 30 |    17 |    |  +  |   2 |  +  |  +  |    
...

Called with a group name as the only argument, the function AtlasGroup (3.5-8) returns a group isomorphic to the group with the given name, or fail. If permutation generators are available in the database then a permutation group (of smallest available degree) is returned, otherwise a matrix group.

gap> g:= AtlasGroup( "M24" );
Group([ (1,4)(2,7)(3,17)(5,13)(6,9)(8,15)(10,19)(11,18)(12,21)(14,16)
  (20,24)(22,23), (1,4,6)(2,21,14)(3,9,15)(5,18,10)(13,17,16)
  (19,24,23) ])
gap> IsPermGroup( g );  NrMovedPoints( g );  Size( g );
true
24
244823040
gap> AtlasGroup( "J5" );
fail

2.1-2 Accessing a Maximal Subgroup of a Group in AtlasRep

Many maximal subgroups of extensions of simple groups can be constructed using the function AtlasSubgroup (3.5-9). Given the name of the extension of the simple group and the number of the conjugacy class of maximal subgroups, this function returns a representative from this class.

gap> g:= AtlasSubgroup( "M24", 1 );
Group([ (2,10)(3,12)(4,14)(6,9)(8,16)(15,18)(20,22)(21,24), (1,7,2,9)
  (3,22,10,23)(4,19,8,12)(5,14)(6,18)(13,16,17,24) ])
gap> IsPermGroup( g );  NrMovedPoints( g );  Size( g );
true
23
10200960
gap> AtlasSubgroup( "M24", 100 );
fail

The classes of maximal subgroups are ordered w. r. t. decreasing subgroup order. So the first class contains maximal subgroups of smallest index.

Note that groups obtained by AtlasSubgroup (3.5-9) may be not very suitable for computations in the sense that much nicer representations exist. For example, the sporadic simple O'Nan group O'N contains a maximal subgroup S isomorphic with the Janko group J_1; the smallest permutation representation of O'N has degree 122760, and restricting this representation to S yields a representation of J_1 of that degree. However, J_1 has a faithful permutation representation of degree 266, which admits much more efficient computations. If you are just interested in J_1 and not in its embedding into O'N then one possibility to get a "nicer" faithful representation is to call SmallerDegreePermutationRepresentation (Reference: SmallerDegreePermutationRepresentation). In the abovementioned example, this works quite well; note that in general, we cannot expect that we get a representation of smallest degree in this way.

gap> s:= AtlasSubgroup( "ON", 3 );
<permutation group of size 175560 with 2 generators>
gap> NrMovedPoints( s );  Size( s );
122760
175560
gap> hom:= SmallerDegreePermutationRepresentation( s );;
gap> NrMovedPoints( Image( hom ) ) < 2000;
true

(Depending on random choices in the computations, one may or my not get the degree 266 representation.)

In this particular case, one could of course also ask directly for the group J_1.

gap> j1:= AtlasGroup( "J1" );
<permutation group of size 175560 with 2 generators>
gap> NrMovedPoints( j1 );
266

If you have a group G, say, and you are really interested in the embedding of a maximal subgroup of G into G then an easy way to get compatible generators is to create G with AtlasGroup (3.5-8) and then to call AtlasSubgroup (3.5-9) with first argument the group G.

gap> g:= AtlasGroup( "ON" );
<permutation group of size 460815505920 with 2 generators>
gap> s:= AtlasSubgroup( g, 3 );
<permutation group of size 175560 with 2 generators>
gap> IsSubset( g, s );
true
gap> IsSubset( g, j1 );
false

2.2 Accessing Specific Generators in AtlasRep

The function DisplayAtlasInfo (3.5-1), called with an admissible name of a group as the only argument, lists the ATLAS data available for this group.

gap> DisplayAtlasInfo( "A5" );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
 1: G <= Sym(5)                  3-trans., on cosets of A4 (1st max.)
 2: G <= Sym(6)                  2-trans., on cosets of D10 (2nd max.)
 3: G <= Sym(10)                 rank 3, on cosets of S3 (3rd max.)
 4: G <= GL(4a,2)                character 4a
 5: G <= GL(4b,2)                character 2ab
 6: G <= GL(4,3)                 character 4a
 7: G <= GL(6,3)                 character 3ab
 8: G <= GL(2a,4)                character 2a
 9: G <= GL(2b,4)                character 2b
10: G <= GL(3,5)                 character 3a
11: G <= GL(5,5)                 character 5a
12: G <= GL(3a,9)                character 3a
13: G <= GL(3b,9)                character 3b
14: G <= GL(4,Z)                 character 4a
15: G <= GL(5,Z)                 character 5a
16: G <= GL(6,Z)                 character 3ab
17: G <= GL(3a,Field([Sqrt(5)])) character 3a
18: G <= GL(3b,Field([Sqrt(5)])) character 3b

Programs for G = A5:    (all refer to std. generators 1)
--------------------
- class repres.*      
- presentation        
- maxes (all 3):
  1:  A4              
  2:  D10             
  3:  S3              
- std. gen. checker:
  (check)             
  (pres)              

In order to fetch one of the listed permutation groups or matrix groups, you can call AtlasGroup (3.5-8) with second argument the function Position (Reference: Position) and third argument the position in the list.

gap> AtlasGroup( "A5", Position, 1 );
Group([ (1,2)(3,4), (1,3,5) ])

Note that this approach may yield a different group after a data extension has been loaded.

Alternatively, you can describe the desired group by conditions, such as the degree in the case of a permutation group, and the dimension and the base ring in the case of a matrix group.

gap> AtlasGroup( "A5", NrMovedPoints, 10 );
Group([ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ])
gap> AtlasGroup( "A5", Dimension, 4, Ring, GF(2) );
<matrix group of size 60 with 2 generators>

The same holds for the restriction to maximal subgroups: Use AtlasSubgroup (3.5-9) with the same arguments as AtlasGroup (3.5-8), except that additionally the number of the class of maximal subgroups is entered as the last argument. Note that the conditions refer to the group, not to the subgroup; it may happen that the subgroup moves fewer points than the big group.

gap> AtlasSubgroup( "A5", Dimension, 4, Ring, GF(2), 1 );
<matrix group of size 12 with 2 generators>
gap> g:= AtlasSubgroup( "A5", NrMovedPoints, 10, 3 );
Group([ (2,4)(3,5)(6,8)(7,10), (1,4)(3,8)(5,7)(6,10) ])
gap> Size( g );  NrMovedPoints( g );
6
9

2.3 Basic Concepts used in AtlasRep

2.3-1 Groups, Generators, and Representations

Up to now, we have talked only about groups and subgroups. The AtlasRep package provides access to group generators, and in fact these generators have the property that mapping one set of generators to another set of generators for the same group defines an isomorphism. These generators are called standard generators, see Section 3.3.

So instead of thinking about several generating sets of a group G, say, we can think about one abstract group G, with one fixed set of generators, and mapping these generators to any set of generators provided by AtlasRep defines a representation of G. This viewpoint had motivated the name "ATLAS of Group Representations" for the core part of the database.

If you are interested in the generators provided by the database rather than in the groups they generate, you can use the function OneAtlasGeneratingSetInfo (3.5-6) instead of AtlasGroup (3.5-8), with the same arguments. This will yield a record that describes the representation in question. Calling the function AtlasGenerators (3.5-3) with this record will then yield a record with the additional component generators, which holds the list of generators.

gap> info:= OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, 10 );
rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], 
  contents := "core", groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ],
  isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, 
  repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",
  standardization := 1, transitivity := 1, type := "perm" )
gap> info2:= AtlasGenerators( info );
rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], 
  contents := "core", 
  generators := [ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ], 
  groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ],
  isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, 
  repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",
  standardization := 1, transitivity := 1, type := "perm" )
gap> info2.generators;
[ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ]

The record info appears as the value of the attribute AtlasRepInfoRecord (3.5-10) in groups that are returned by AtlasGroup (3.5-8).

gap> g:= AtlasGroup( "A5", NrMovedPoints, 10 );;
gap> AtlasRepInfoRecord( g );
rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], 
  contents := "core", groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ],
  isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, 
  repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",
  standardization := 1, transitivity := 1, type := "perm" )

2.3-2 Straight Line Programs

For computing certain group elements from standard generators, such as generators of a subgroup or class representatives, AtlasRep uses straight line programs, see Reference: Straight Line Programs. Essentially this means to evaluate words in the generators, which is similar to MappedWord (Reference: MappedWord) but can be more efficient.

It can be useful to deal with these straight line programs, see AtlasProgram (3.5-4). For example, an automorphism α, say, of the group G, if available in AtlasRep, is given by a straight line program that defines the images of standard generators of G. This way, one can for example compute the image of a subgroup U of G under α by first applying the straight line program for α to standard generators of G, and then applying the straight line program for the restriction from G to U.

gap> prginfo:= AtlasProgramInfo( "A5", "maxes", 1 );
rec( groupname := "A5", identifier := [ "A5", "A5G1-max1W1", 1 ], 
  size := 12, standardization := 1, subgroupname := "A4", 
  version := "1" )
gap> prg:= AtlasProgram( prginfo.identifier );
rec( groupname := "A5", identifier := [ "A5", "A5G1-max1W1", 1 ], 
  program := <straight line program>, size := 12, 
  standardization := 1, subgroupname := "A4", version := "1" )
gap> Display( prg.program );
# input:
r:= [ g1, g2 ];
# program:
r[3]:= r[1]*r[2];
r[4]:= r[2]*r[1];
r[5]:= r[3]*r[3];
r[1]:= r[5]*r[4];
# return values:
[ r[1], r[2] ]
gap> ResultOfStraightLineProgram( prg.program, info2.generators );
[ (1,10)(2,3)(4,9)(7,8), (1,2,3)(4,6,7)(5,8,9) ]

2.4 Examples of Using the AtlasRep Package

2.4-1 Example: Class Representatives

First we show the computation of class representatives of the Mathieu group M_11, in a 2-modular matrix representation. We start with the ordinary and Brauer character tables of this group.

gap> tbl:= CharacterTable( "M11" );;
gap> modtbl:= tbl mod 2;;
gap> CharacterDegrees( modtbl );
[ [ 1, 1 ], [ 10, 1 ], [ 16, 2 ], [ 44, 1 ] ]

The output of CharacterDegrees (Reference: CharacterDegrees) means that the 2-modular irreducibles of M_11 have degrees 1, 10, 16, 16, and 44.

Using DisplayAtlasInfo (3.5-1), we find out that matrix generators for the irreducible 10-dimensional representation are available in the database.

gap> DisplayAtlasInfo( "M11", Characteristic, 2 );
Representations for G = M11:    (all refer to std. generators 1)
----------------------------
 6: G <= GL(10,2)  character 10a
 7: G <= GL(32,2)  character 16ab
 8: G <= GL(44,2)  character 44a
16: G <= GL(16a,4) character 16a
17: G <= GL(16b,4) character 16b

So we decide to work with this representation. We fetch the generators and compute the list of class representatives of M_11 in the representation. The ordering of class representatives is the same as that in the character table of the ATLAS of Finite Groups ([CCN+85]), which coincides with the ordering of columns in the GAP table we have fetched above.

gap> info:= OneAtlasGeneratingSetInfo( "M11", Characteristic, 2,
>                                             Dimension, 10 );;
gap> gens:= AtlasGenerators( info.identifier );;
gap> ccls:= AtlasProgram( "M11", gens.standardization, "classes" );
rec( groupname := "M11", identifier := [ "M11", "M11G1-cclsW1", 1 ], 
  outputs := [ "1A", "2A", "3A", "4A", "5A", "6A", "8A", "8B", "11A", 
      "11B" ], program := <straight line program>, 
  standardization := 1, version := "1" )
gap> reps:= ResultOfStraightLineProgram( ccls.program, gens.generators );;

If we would need only a few class representatives, we could use the GAP library function RestrictOutputsOfSLP (Reference: RestrictOutputsOfSLP) to create a straight line program that computes only specified outputs. Here is an example where only the class representatives of order eight are computed.

gap> ord8prg:= RestrictOutputsOfSLP( ccls.program,
>                   Filtered( [ 1 .. 10 ], i -> ccls.outputs[i][1] = '8' ) );
<straight line program>
gap> ord8reps:= ResultOfStraightLineProgram( ord8prg, gens.generators );;
gap> List( ord8reps, m -> Position( reps, m ) );
[ 7, 8 ]

Let us check that the class representatives have the right orders.

gap> List( reps, Order ) = OrdersClassRepresentatives( tbl );
true

From the class representatives, we can compute the Brauer character we had started with. This Brauer character is defined on all classes of the 2-modular table. So we first pick only those representatives, using the GAP function GetFusionMap (Reference: GetFusionMap); in this situation, it returns the class fusion from the Brauer table into the ordinary table.

gap> fus:= GetFusionMap( modtbl, tbl );
[ 1, 3, 5, 9, 10 ]
gap> modreps:= reps{ fus };;

Then we call the GAP function BrauerCharacterValue (Reference: BrauerCharacterValue), which computes the Brauer character value from the matrix given.

gap> char:= List( modreps, BrauerCharacterValue );
[ 10, 1, 0, -1, -1 ]
gap> Position( Irr( modtbl ), char );
2

2.4-2 Example: Permutation and Matrix Representations

The second example shows the computation of a permutation representation from a matrix representation. We work with the 10-dimensional representation used above, and consider the action on the 2^10 vectors of the underlying row space.

gap> grp:= Group( gens.generators );;
gap> v:= GF(2)^10;;
gap> orbs:= Orbits( grp, AsList( v ) );;
gap> List( orbs, Length );
[ 1, 396, 55, 330, 66, 165, 11 ]

We see that there are six nontrivial orbits, and we can compute the permutation actions on these orbits directly using Action (Reference: Action homomorphisms). However, for larger examples, one cannot write down all orbits on the row space, so one has to use another strategy if one is interested in a particular orbit.

Let us assume that we are interested in the orbit of length 11. The point stabilizer is the first maximal subgroup of M_11, thus the restriction of the representation to this subgroup has a nontrivial fixed point space. This restriction can be computed using the AtlasRep package.

gap> gens:= AtlasGenerators( "M11", 6, 1 );;

Now computing the fixed point space is standard linear algebra.

gap> id:= IdentityMat( 10, GF(2) );;
gap> sub1:= Subspace( v, NullspaceMat( gens.generators[1] - id ) );;
gap> sub2:= Subspace( v, NullspaceMat( gens.generators[2] - id ) );;
gap> fix:= Intersection( sub1, sub2 );
<vector space of dimension 1 over GF(2)>

The final step is of course the computation of the permutation action on the orbit.

gap> orb:= Orbit( grp, Basis( fix )[1] );;
gap> act:= Action( grp, orb );;  Print( act, "\n" );
Group( [ ( 1, 2)( 4, 6)( 5, 8)( 7,10), ( 1, 3, 5, 9)( 2, 4, 7,11) ] )

Note that this group is not equal to the group obtained by fetching the permutation representation from the database. This is due to a different numbering of the points, thus the groups are permutation isomorphic, that is, they are conjugate in the symmetric group on eleven points.

gap> permgrp:= Group( AtlasGenerators( "M11", 1 ).generators );;
gap> Print( permgrp, "\n" );
Group( [ ( 2,10)( 4,11)( 5, 7)( 8, 9), (1,4,3,8)(2,5,6,9) ] )
gap> permgrp = act;
false
gap> IsConjugate( SymmetricGroup(11), permgrp, act );
true

2.4-3 Example: Outer Automorphisms

The straight line programs for applying outer automorphisms to standard generators can of course be used to define the automorphisms themselves as GAP mappings.

gap> DisplayAtlasInfo( "G2(3)", IsStraightLineProgram );
Programs for G = G2(3):    (all refer to std. generators 1)
-----------------------
- class repres.            
- presentation             
- repr. cyc. subg.         
- std. gen. checker        
- automorphisms:
  2                        
- maxes (all 10):
   1:  U3(3).2             
   2:  U3(3).2             
   3:  (3^(1+2)+x3^2):2S4  
   4:  (3^(1+2)+x3^2):2S4  
   5:  L3(3).2             
   6:  L3(3).2             
   7:  L2(8).3             
   8:  2^3.L3(2)           
   9:  L2(13)              
  10:  2^(1+4)+:3^2.2      
gap> prog:= AtlasProgram( "G2(3)", "automorphism", "2" ).program;;
gap> info:= OneAtlasGeneratingSetInfo( "G2(3)", Dimension, 7 );;
gap> gens:= AtlasGenerators( info ).generators;;
gap> imgs:= ResultOfStraightLineProgram( prog, gens );;

If we are not suspicious whether the script really describes an automorphism then we should tell this to GAP, in order to avoid the expensive checks of the properties of being a homomorphism and bijective (see Section Reference: Creating Group Homomorphisms). This looks as follows.

gap> g:= Group( gens );;
gap> aut:= GroupHomomorphismByImagesNC( g, g, gens, imgs );;
gap> SetIsBijective( aut, true );

If we are suspicious whether the script describes an automorphism then we might have the idea to check it with GAP, as follows.

gap> aut:= GroupHomomorphismByImages( g, g, gens, imgs );;
gap> IsBijective( aut );
true

(Note that even for a comparatively small group such as G_2(3), this was a difficult task for GAP before version 4.3.)

Often one can form images under an automorphism α, say, without creating the homomorphism object. This is obvious for the standard generators of the group G themselves, but also for generators of a maximal subgroup M computed from standard generators of G, provided that the straight line programs in question refer to the same standard generators. Note that the generators of M are given by evaluating words in terms of standard generators of G, and their images under α can be obtained by evaluating the same words at the images under α of the standard generators of G.

gap> max1:= AtlasProgram( "G2(3)", 1 ).program;;
gap> mgens:= ResultOfStraightLineProgram( max1, gens );;
gap> comp:= CompositionOfStraightLinePrograms( max1, prog );;
gap> mimgs:= ResultOfStraightLineProgram( comp, gens );;

The list mgens is the list of generators of the first maximal subgroup of G_2(3), mimgs is the list of images under the automorphism given by the straight line program prog. Note that applying the program returned by CompositionOfStraightLinePrograms (Reference: CompositionOfStraightLinePrograms) means to apply first prog and then max1. Since we have already constructed the GAP object representing the automorphism, we can check whether the results are equal.

gap> mimgs = List( mgens, x -> x^aut );
true

However, it should be emphasized that using aut requires a huge machinery of computations behind the scenes, whereas applying the straight line programs prog and max1 involves only elementary operations with the generators. The latter is feasible also for larger groups, for which constructing the GAP automorphism might be too hard.

2.4-4 Example: Using Semi-presentations and Black Box Programs

Let us suppose that we want to restrict a representation of the Mathieu group M_12 to a non-maximal subgroup of the type L_2(11). The idea is that this subgroup can be found as a maximal subgroup of a maximal subgroup of the type M_11, which is itself maximal in M_12. For that, we fetch a representation of M_12 and use a straight line program for restricting it to the first maximal subgroup, which has the type M_11.

gap> info:= OneAtlasGeneratingSetInfo( "M12", NrMovedPoints, 12 );
rec( charactername := "1a+11a", constituents := [ 1, 2 ], 
  contents := "core", groupname := "M12", id := "a", 
  identifier := [ "M12", [ "M12G1-p12aB0.m1", "M12G1-p12aB0.m2" ], 1, 
      12 ], isPrimitive := true, maxnr := 1, p := 12, rankAction := 2,
  repname := "M12G1-p12aB0", repnr := 1, size := 95040, 
  stabilizer := "M11", standardization := 1, transitivity := 5, 
  type := "perm" )
gap> gensM12:= AtlasGenerators( info.identifier );;
gap> restM11:= AtlasProgram( "M12", "maxes", 1 );;
gap> gensM11:= ResultOfStraightLineProgram( restM11.program,
>                                           gensM12.generators );
[ (3,9)(4,12)(5,10)(6,8), (1,4,11,5)(2,10,8,3) ]

Now we cannot simply apply a straight line program for a group to some generators, since they are not necessarily standard generators of the group. We check this property using a semi-presentation for M_11, see 6.1-7.

gap> checkM11:= AtlasProgram( "M11", "check" );
rec( groupname := "M11", identifier := [ "M11", "M11G1-check1", 1, 1 ]
    , program := <straight line decision>, standardization := 1, 
  version := "1" )
gap> ResultOfStraightLineDecision( checkM11.program, gensM11 );
true

So we are lucky that applying the appropriate program for M_11 will give us the required generators for L_2(11).

gap> restL211:= AtlasProgram( "M11", "maxes", 2 );;
gap> gensL211:= ResultOfStraightLineProgram( restL211.program, gensM11 );
[ (3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10) ]
gap> G:= Group( gensL211 );;  Size( G );  IsSimple( G );
660
true

In this case, we could also use the information that is stored about M_11, as follows.

gap> DisplayAtlasInfo( "M11", IsStraightLineProgram );
Programs for G = M11:    (all refer to std. generators 1)
---------------------
- presentation                                        
- repr. cyc. subg.                                    
- std. gen. finder                                    
- class repres.:
  (direct)                                            
  (composed)                                          
- maxes (all 5):
  1:  A6.2_3                                          
  1:  A6.2_3                                  (std. 1)
  2:  L2(11)                                          
  2:  L2(11)                                  (std. 1)
  3:  3^2:Q8.2                                        
  4:  S5                                              
  4:  S5                                      (std. 1)
  5:  2.S4                                            
- standardizations of maxes:
  from 1st max., version 1 to A6.2_3, std. 1          
  from 2nd max., version 1 to L2(11), std. 1          
  from 4th max., version 1 to A5.2, std. 1            
- std. gen. checker:
  (check)                                             
  (pres)                                              

The entry "std.1" in the line about the maximal subgroup of type L_2(11) means that a straight line program for computing standard generators (in standardization 1) of the subgroup. This program can be fetched as follows.

gap> restL211std:= AtlasProgram( "M11", "maxes", 2, 1 );;
gap> ResultOfStraightLineProgram( restL211std.program, gensM11 );
[ (3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10) ]

We see that we get the same generators for the subgroup as above. (In fact the second approach first applies the same program as is given by restL211.program, and then applies a program to the results that does nothing.)

Usually representations are not given in terms of standard generators. For example, let us take the M_11 type group returned by the GAP function MathieuGroup (Reference: MathieuGroup).

gap> G:= MathieuGroup( 11 );;
gap> gens:= GeneratorsOfGroup( G );
[ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ]
gap> ResultOfStraightLineDecision( checkM11.program, gens );
false

If we want to compute an L_2(11) type subgroup of this group, we can use a black box program for computing standard generators, and then apply the straight line program for computing the restriction.

gap> find:= AtlasProgram( "M11", "find" );
rec( groupname := "M11", identifier := [ "M11", "M11G1-find1", 1, 1 ],
  program := <black box program>, standardization := 1, 
  version := "1" )
gap> stdgens:= ResultOfBBoxProgram( find.program, Group( gens ) );;
gap> List( stdgens, Order );
[ 2, 4 ]
gap> ResultOfStraightLineDecision( checkM11.program, stdgens );
true
gap> gensL211:= ResultOfStraightLineProgram( restL211.program, stdgens );;
gap> List( gensL211, Order );
[ 2, 3 ]
gap> G:= Group( gensL211 );;  Size( G );  IsSimple( G );
660
true

Note that applying the black box program several times may yield different group elements, because computations of random elements are involved, see ResultOfBBoxProgram (6.2-4). All what the black box program promises is to construct standard generators, and these are defined only up to conjugacy in the automorphism group of the group in question.

2.4-5 Example: Using the GAP Library of Tables of Marks

The GAP Library of Tables of Marks (the GAP package TomLib, [NMP18]) provides, for many almost simple groups, information for constructing representatives of all conjugacy classes of subgroups. If this information is compatible with the standard generators of the ATLAS of Group Representations then we can use it to restrict any representation from the ATLAS to prescribed subgroups. This is useful in particular for those subgroups for which the ATLAS of Group Representations itself does not contain a straight line program.

gap> tom:= TableOfMarks( "A5" );
TableOfMarks( "A5" )
gap> info:= StandardGeneratorsInfo( tom );
[ rec( ATLAS := true, description := "|a|=2, |b|=3, |ab|=5", 
      generators := "a, b", 
      script := [ [ 1, 2 ], [ 2, 3 ], [ 1, 1, 2, 1, 5 ] ], 
      standardization := 1 ) ]

The true value of the component ATLAS indicates that the information stored on tom refers to the standard generators of type 1 in the ATLAS of Group Representations.

We want to restrict a 4-dimensional integral representation of A_5 to a Sylow 2 subgroup of A_5, and use RepresentativeTomByGeneratorsNC (Reference: RepresentativeTomByGeneratorsNC) for that.

gap> info:= OneAtlasGeneratingSetInfo( "A5", Ring, Integers, Dimension, 4 );;
gap> stdgens:= AtlasGenerators( info.identifier );
rec( charactername := "4a", constituents := [ 4 ], contents := "core",
  dim := 4, 
  generators := 
    [ 
      [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], 
          [ -1, -1, -1, -1 ] ], 
      [ [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], 
          [ 1, 0, 0, 0 ] ] ], groupname := "A5", id := "", 
  identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], 
  repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60, 
  standardization := 1, type := "matint" )
gap> orders:= OrdersTom( tom );
[ 1, 2, 3, 4, 5, 6, 10, 12, 60 ]
gap> pos:= Position( orders, 4 );
4
gap> sub:= RepresentativeTomByGeneratorsNC( tom, pos, stdgens.generators );
<matrix group of size 4 with 2 generators>
gap> GeneratorsOfGroup( sub );
[ [ [ 1, 0, 0, 0 ], [ -1, -1, -1, -1 ], [ 0, 0, 0, 1 ], 
      [ 0, 0, 1, 0 ] ], 
  [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], 
      [ -1, -1, -1, -1 ] ] ]

2.4-6 Example: Index 770 Subgroups in M_22

The sporadic simple Mathieu group M_22 contains a unique class of subgroups of index 770 (and order 576). This can be seen for example using GAP's Library of Tables of Marks.

gap> tom:= TableOfMarks( "M22" );
TableOfMarks( "M22" )
gap> subord:= Size( UnderlyingGroup( tom ) ) / 770;
576
gap> ord:= OrdersTom( tom );;
gap> tomstabs:= Filtered( [ 1 .. Length( ord ) ], i -> ord[i] = subord );
[ 144 ]

The permutation representation of M_22 on the right cosets of such a subgroup S is contained in the ATLAS of Group Representations.

gap> DisplayAtlasInfo( "M22", NrMovedPoints, 770 );
Representations for G = M22:    (all refer to std. generators 1)
----------------------------
12: G <= Sym(770) rank 9, on cosets of (A4xA4):4 < 2^4:A6

Now we verify the information shown about the point stabilizer and about the maximal overgroups of S in M_22.

gap> maxtom:= MaximalSubgroupsTom( tom );
[ [ 155, 154, 153, 152, 151, 150, 146, 145 ], 
  [ 22, 77, 176, 176, 231, 330, 616, 672 ] ]
gap> List( tomstabs, i -> List( maxtom[1], j -> ContainedTom( tom, i, j ) ) );
[ [ 0, 10, 0, 0, 0, 0, 0, 0 ] ]

We see that the only maximal subgroups of M_22 that contain S have index 77 in M_22. According to the ATLAS of Finite Groups, these maximal subgroups have the structure 2^4:A_6. From that and from the structure of A_6, we conclude that S has the structure 2^4:(3^2:4).

Alternatively, we look at the permutation representation of degree 770. We fetch it from the ATLAS of Group Representations. There is exactly one nontrivial block system for this representation, with 77 blocks of length 10.

gap> g:= AtlasGroup( "M22", NrMovedPoints, 770 );
<permutation group of size 443520 with 2 generators>
gap> allbl:= AllBlocks( g );;
gap> List( allbl, Length );
[ 10 ]

Furthermore, GAP computes that the point stabilizer S has the structure (A_4 × A_4):4.

gap> stab:= Stabilizer( g, 1 );;
gap> StructureDescription( stab : nice );
"(A4 x A4) : C4"
gap> blocks:= Orbit( g, allbl[1], OnSets );;
gap> act:= Action( g, blocks, OnSets );;
gap> StructureDescription( Stabilizer( act, 1 ) );
"(C2 x C2 x C2 x C2) : A6"

2.4-7 Example: Index 462 Subgroups in M_22

The ATLAS of Group Representations contains three degree 462 permutation representations of the group M_22.

gap> DisplayAtlasInfo( "M22", NrMovedPoints, 462 );
Representations for G = M22:    (all refer to std. generators 1)
----------------------------
7: G <= Sym(462a) rank 5, on cosets of 2^4:A5 < 2^4:A6
8: G <= Sym(462b) rank 8, on cosets of 2^4:A5 < L3(4), 2^4:S5
9: G <= Sym(462c) rank 8, on cosets of 2^4:A5 < L3(4), 2^4:A6

The point stabilizers in these three representations have the structure 2^4:A_5. Using GAP's Library of Tables of Marks, we can show that these stabilizers are exactly the three classes of subgroups of order 960 in M_22. For that, we first verify that the group generators stored in GAP's table of marks coincide with the standard generators used by the ATLAS of Group Representations.

gap> tom:= TableOfMarks( "M22" );
TableOfMarks( "M22" )
gap> genstom:= GeneratorsOfGroup( UnderlyingGroup( tom ) );;
gap> checkM22:= AtlasProgram( "M22", "check" );
rec( groupname := "M22", identifier := [ "M22", "M22G1-check1", 1, 1 ]
    , program := <straight line decision>, standardization := 1, 
  version := "1" )
gap> ResultOfStraightLineDecision( checkM22.program, genstom );
true

There are indeed three classes of subgroups of order 960 in M_22.

gap> ord:= OrdersTom( tom );;
gap> tomstabs:= Filtered( [ 1 .. Length( ord ) ], i -> ord[i] = 960 );
[ 147, 148, 149 ]

Now we compute representatives of these three classes in the three representations 462a, 462b, and 462c. We see that each of the three classes occurs as a point stabilizer in exactly one of the three representations.

gap> atlasreps:= AllAtlasGeneratingSetInfos( "M22", NrMovedPoints, 462 );
[ rec( charactername := "1a+21a+55a+154a+231a", 
      constituents := [ 1, 2, 5, 7, 9 ], contents := "core", 
      groupname := "M22", id := "a", 
      identifier := 
        [ "M22", [ "M22G1-p462aB0.m1", "M22G1-p462aB0.m2" ], 1, 462 ],
      isPrimitive := false, p := 462, rankAction := 5, 
      repname := "M22G1-p462aB0", repnr := 7, size := 443520, 
      stabilizer := "2^4:A5 < 2^4:A6", standardization := 1, 
      transitivity := 1, type := "perm" ), 
  rec( charactername := "1a+21a^2+55a+154a+210a", 
      constituents := [ 1, [ 2, 2 ], 5, 7, 8 ], contents := "core", 
      groupname := "M22", id := "b", 
      identifier := 
        [ "M22", [ "M22G1-p462bB0.m1", "M22G1-p462bB0.m2" ], 1, 462 ],
      isPrimitive := false, p := 462, rankAction := 8, 
      repname := "M22G1-p462bB0", repnr := 8, size := 443520, 
      stabilizer := "2^4:A5 < L3(4), 2^4:S5", standardization := 1, 
      transitivity := 1, type := "perm" ), 
  rec( charactername := "1a+21a^2+55a+154a+210a", 
      constituents := [ 1, [ 2, 2 ], 5, 7, 8 ], contents := "core", 
      groupname := "M22", id := "c", 
      identifier := 
        [ "M22", [ "M22G1-p462cB0.m1", "M22G1-p462cB0.m2" ], 1, 462 ],
      isPrimitive := false, p := 462, rankAction := 8, 
      repname := "M22G1-p462cB0", repnr := 9, size := 443520, 
      stabilizer := "2^4:A5 < L3(4), 2^4:A6", standardization := 1, 
      transitivity := 1, type := "perm" ) ]
gap> atlasreps:= List( atlasreps, AtlasGroup );;
gap> tomstabreps:= List( atlasreps, G -> List( tomstabs,
> i -> RepresentativeTomByGenerators( tom, i, GeneratorsOfGroup( G ) ) ) );;
gap> List( tomstabreps, x -> List( x, NrMovedPoints ) );
[ [ 462, 462, 461 ], [ 460, 462, 462 ], [ 462, 461, 462 ] ]

More precisely, we see that the point stabilizers in the three representations 462a, 462b, 462c lie in the subgroup classes 149, 147, 148, respectively, of the table of marks.

The point stabilizers in the representations 462b and 462c are isomorphic, but not isomorphic with the point stabilizer in 462a.

gap> stabs:= List( atlasreps, G -> Stabilizer( G, 1 ) );;
gap> List( stabs, IdGroup );
[ [ 960, 11358 ], [ 960, 11357 ], [ 960, 11357 ] ]
gap> List( stabs, PerfectIdentification );
[ [ 960, 2 ], [ 960, 1 ], [ 960, 1 ] ]

The three representations are imprimitive. The containment of the point stabilizers in maximal subgroups of M_22 can be computed using the table of marks of M_22.

gap> maxtom:= MaximalSubgroupsTom( tom );
[ [ 155, 154, 153, 152, 151, 150, 146, 145 ], 
  [ 22, 77, 176, 176, 231, 330, 616, 672 ] ]
gap> List( tomstabs, i -> List( maxtom[1], j -> ContainedTom( tom, i, j ) ) );
[ [ 21, 0, 0, 0, 1, 0, 0, 0 ], [ 21, 6, 0, 0, 0, 0, 0, 0 ], 
  [ 0, 6, 0, 0, 0, 0, 0, 0 ] ]

We see:

  • The point stabilizers in 462a (subgroups in the class 149 of the table of marks) are contained only in maximal subgroups in class 154; these groups have the structure 2^4:A_6.

  • The point stabilizers in 462b (subgroups in the class 147) are contained in maximal subgroups in the classes 155 and 151; these groups have the structures L_3(4) and 2^4:S_5, respectively.

  • The point stabilizers in 462c (subgroups in the class 148) are contained in maximal subgroups in the classes 155 and 154.

We identify the supergroups of the point stabilizers by computing the block systems.

gap> bl:= List( atlasreps, AllBlocks );;
gap> List( bl, Length );
[ 1, 3, 2 ]
gap> List( bl, l -> List( l, Length ) );
[ [ 6 ], [ 21, 21, 2 ], [ 21, 6 ] ]

Note that the two block systems with blocks of length 21 for 462b belong to the same supergroups (of the type L_3(4)); each of these subgroups fixes two different subsets of 21 points.

The representation 462a is multiplicity-free, that is, it splits into a sum of pairwise nonisomorphic irreducible representations. This can be seen from the fact that the rank of this permutation representation (that is, the number of orbits of the point stabilizer) is five; each permutation representation with this property is multiplicity-free.

The other two representations have rank eight. We have seen the ranks in the overview that was shown by DisplayAtlasInfo (3.5-1) in the beginning. Now we compute the ranks from the permutation groups.

gap> List( atlasreps, RankAction );
[ 5, 8, 8 ]

In fact the two representations 462b and 462c have the same permutation character. We check this by computing the possible permutation characters of degree 462 for M_22, and decomposing them into irreducible characters, using the character table from GAP's Character Table Library.

gap> t:= CharacterTable( "M22" );;
gap> perms:= PermChars( t, 462 );
[ Character( CharacterTable( "M22" ),
  [ 462, 30, 3, 2, 2, 2, 3, 0, 0, 0, 0, 0 ] ), 
  Character( CharacterTable( "M22" ),
  [ 462, 30, 12, 2, 2, 2, 0, 0, 0, 0, 0, 0 ] ) ]
gap> MatScalarProducts( t, Irr( t ), perms );
[ [ 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0 ], 
  [ 1, 2, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0 ] ]

In particular, we see that the rank eight characters are not multiplicity-free.

Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chap0.html0000644000175000017500000007466214545501243014127 0ustar samsam GAP (AtlasRep) - Contents
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

AtlasRep — A GAP 4 Package

(Version 2.1.8)

Robert A. Wilson
Email: R.A.Wilson@qmul.ac.uk
Homepage: http://www.maths.qmw.ac.uk/~raw

Richard A. Parker
Email: richpark@gmx.co.uk

Simon Nickerson
Homepage: http://nickerson.org.uk/groups

John N. Bray
Email: J.N.Bray@qmul.ac.uk
Homepage: http://www.maths.qmw.ac.uk/~jnb

Thomas Breuer
Email: sam@Math.RWTH-Aachen.De
Homepage: https://www.math.rwth-aachen.de/~Thomas.Breuer

Copyright

© 2002–2024

This package may be distributed under the terms and conditions of the GNU Public License Version 3 or later, see http://www.gnu.org/licenses.

Contents


Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chap4.html0000644000175000017500000007434314545501243014127 0ustar samsam GAP (AtlasRep) - Chapter 4: Customizations of the AtlasRep Package
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

4 Customizations of the AtlasRep Package

4.1 Installing the AtlasRep Package

To install the package, unpack the archive file in a directory in the pkg directory of your local copy of GAP 4. This might be the pkg directory of the GAP 4 root directory, see Reference: Installing a GAP Package for details. It is however also possible to keep an additional pkg directory somewhere else, see Section Reference: GAP Root Directories. The latter possibility must be chosen if you do not have write access to the GAP root directory.

If it is likely that you will work offline, it makes sense to install the "starter archive" that can be downloaded from the package's homepage.

The package consists entirely of GAP code, no external binaries need to be compiled for the package itself.

After unpacking the package archive, the write permissions for those directories should be checked into which users will download files. Every user can customize these paths via a user preference, see Section 4.2-2, the defaults are the subdirectories data* of the package directory. The recommended permissions under UNIX for the default directories are set as follows.

you@unix> chmod 1777 atlasrep/data*
you@unix> ls -ld atlasrep/data*
drwxrwxrwt   3 you      you          1024 Apr 12 12:34 dataext
drwxrwxrwt   3 you      you          1024 Apr 12 12:34 datagens
drwxrwxrwt   3 you      you          1024 Apr 12 12:34 datapkg
drwxrwxrwt   3 you      you          1024 Apr 12 12:34 dataword

For checking the installation of the package, you should start GAP and call

gap> ReadPackage( "atlasrep", "tst/testinst.g" );

If the installation is o.k. then the GAP prompt appears without anything else being printed; otherwise the output lines tell you what should be changed.

PDF, HTML, and text versions of the package manual are available in the doc directory of the package.

4.2 User Preferences of the AtlasRep Package

This section describes global parameters for which it might make sense to change their defaults, using GAP's user preferences (see Reference: Configuring User preferences).

  • Is access to remote data allowed (see Section 4.2-1)? If yes then also the following parameters are of interest.

    • From where can the data be fetched (see Section 4.2-3)?

    • Where are local copies of these data stored (see Section 4.2-2)?

    • Shall files be compressed after they have been downloaded (see Section 4.2-4)?

  • The following parameters influence reading and writing of local files.

    • What shall actually happen when data are requested by the interface functions (see Section 4.2-5)?

    • If the value of the user preference FileAccessFunctions contains "direct access to a local server", what is its path (see Section 4.2-6)?

    • Shall ScanMeatAxeFile (7.3-1) focus on small runtime or on small space when reading MeatAxe text files (see Section 4.2-7)?

    • Which kind of headers shall MeatAxeString (7.3-2) create (see Section 4.2-8)?

    • Shall MeatAxeString (7.3-2) interpret permutation matrices more as permutations (mode 2) or as matrices (mode 1 or 6) (see Section 4.2-9)?

    • Shall the default for CMtxBinaryFFMatOrPerm (7.3-4) be to write binary files of zero-based or one-based permutations (see Section 4.2-10)?

  • Which function is used by DisplayAtlasInfo (3.5-1) for printing to the screen (see Section 4.2-11)?

  • How does DisplayAtlasInfo (3.5-1) mark data that do not belong to the core database (see Section 4.2-12)?

  • Shall debug messages be printed when local data files are read (see Section 4.2-13)?

4.2-1 User preference AtlasRepAccessRemoteFiles

The value true (the default) allows the AtlasRep package to fetch data files that are not yet locally available. If the value is false then only those data files can be used that are available locally.

If you are working offline then you should set the value to false.

Changing the value in a running GAP session does not affect the information shown by DisplayAtlasInfo (3.5-1), this information depends on the value of the preference at the time when the AtlasRep package and its data extensions get loaded.

4.2-2 User preference AtlasRepDataDirectory

The value must be a string that is either empty or the filename of a directory (in the sense of IsDirectoryPath (Reference: IsDirectoryPath)) that contains the directories in which downloaded data will be stored.

An empty string means that downloaded data are just kept in the GAP session but not saved to local files.

The default depends on the user's permissions for the subdirectories dataext, datagens, dataword of the AtlasRep directory: If these directories are writable for the user then the installation path of the AtlasRep package (including a trailing slash symbol) is taken, otherwise the default is an empty string.

4.2-3 User preference AtlasRepTOCData

The value must be a list of strings of the form "ID|address" where ID is the id of a part of the database and address is an URL or a file path (as an absolute path or relative to the user's home directory, cf. Directory (Reference: Directory)) of a readable JSON format file that contain the table of contents of this part, see StringOfAtlasTableOfContents (5.1-3).

The default lists four entries: the core database, the data distributed with the AtlasRep package, and the data that belong to the packages MFER and CTBlocks.

4.2-4 User preference CompressDownloadedMeatAxeFiles

When used with UNIX, GAP can read gzipped files, see Reference: Saving and Loading a Workspace. If the package's user preference CompressDownloadedMeatAxeFiles has the value true then each MeatAxe format text file that is downloaded from the internet is afterwards compressed with gzip. The default value is false.

Compressing files saves a lot of space if many MeatAxe format files are accessed. (Note that data files in other formats are very small.) For example, at the time of the release of version 2.0 the core database contained about 8400 data files in MeatAxe format, which needed about 1400 MB in uncompressed text format and about 275 MB in compressed text format.

4.2-5 User preference FileAccessFunctions

This preference allows one to customize what actually happens when data are requested by the interface functions: Is it necessary to download some files? If yes then which files are downloaded? If no then which files are actually read into GAP?

Currently one can choose among the following features.

  1. Download/read MeatAxe text files.

  2. Prefer downloading/reading MeatAxe binary files.

  3. Prefer reading locally available data files.

(Of course files can be downloaded only if the user preference AtlasRepAccessRemoteFiles has the value true, see Section 4.2-1.)

This feature could be used more generally, see Section 7.2 for technical details and the possibility to add other features.

4.2-6 User preference AtlasRepLocalServerPath

If the data of the core database are available locally (for example because one has access to a local mirror of the data) then one may prefer reading these files instead of downloading data. In order to achieve this, one can set the user preference AtlasRepLocalServerPath and add "direct access to a local server" to the user preference FileAccessFunctions, see Section 4.2-5.

The value must be a string that is the filename of a directory (in the sense of IsDirectoryPath (Reference: IsDirectoryPath)) that contains the data of the ATLAS of Group Representations, in the same directory tree structure as on the ATLAS server.

4.2-7 User preference HowToReadMeatAxeTextFiles

The value "fast" means that ScanMeatAxeFile (7.3-1) reads text files via StringFile (GAPDoc: StringFile). Otherwise each file containing a matrix over a finite field is read line by line via ReadLine (Reference: ReadLine), and the GAP matrix is constructed line by line, in a compressed representation (see Reference: Row Vectors over Finite Fields and Reference: Matrices over Finite Fields); this makes it possible to read large matrices in a reasonable amount of space.

The StringFile (GAPDoc: StringFile) approach is faster but needs more intermediate space when text files containing matrices over finite fields are read. For example, a 4370 by 4370 matrix over the field with two elements (as occurs for an irreducible representation of the Baby Monster) requires less than 3 MB space in GAP but the corresponding MeatAxe format text file is more than 19 MB large. This means that when one reads the file with the fast variant, GAP will temporarily grow by more than this value.

Note that this parameter has an effect only when ScanMeatAxeFile (7.3-1) is used. It has no effect for example if MeatAxe binary files are read, cf. FFMatOrPermCMtxBinary (7.3-5).

4.2-8 User preference WriteHeaderFormatOfMeatAxeFiles

This user preference determines the format of the header lines of MeatAxe format strings created by MeatAxeString (7.3-2), see the C-MeatAxe manual [Rin] for details. The following values are supported.

"numeric"

means that the header line of the returned string consists of four integers (in the case of a matrix these are mode, row number, column number and field size),

"numeric (fixed)"

means that the header line of the returned string consists of four integers as in the case "numeric", but additionally each integer is right aligned in a substring of length (at least) six,

"textual"

means that the header line of the returned string consists of assignments such as matrix field=2.

4.2-9 User preference WriteMeatAxeFilesOfMode2

The value true means that the function MeatAxeString (7.3-2) will encode permutation matrices via mode 2 descriptions, that is, the first entry in the header line is 2, and the following lines contain the positions of the nonzero entries. If the value is false (the default) then MeatAxeString (7.3-2) encodes permutation matrices via mode 1 or mode 6 descriptions, that is, the lines contain the matrix entries.

4.2-10 User preference BaseOfMeatAxePermutation

The value 0 means that the function CMtxBinaryFFMatOrPerm (7.3-4) writes zero-based permutations, that is, permutations acting on the points from 0 to the degree minus one; this is achieved by shifting down all images of the GAP permutation by one. The value 1 (the default) means that the permutation stored in the binary file acts on the points from 1 to the degree.

Up to version 2.3 of the C-MeatAxe, permutations in binary files were always one-based. Zero-based permutations were introduced in version 2.4.

4.2-11 User preference DisplayFunction

The way how DisplayAtlasInfo (3.5-1) shows the requested overview is controlled by the package AtlasRep's user preference DisplayFunction. The value must be a string that evaluates to a GAP function. The default value is "Print" (see Print (Reference: Print)), other useful values are "PrintFormattedString" (see PrintFormattedString (GAPDoc: PrintFormattedString)) and "AGR.Pager"; the latter means that Pager (Reference: Pager) is called with the formatted option, which is necessary for switching off GAP's automatic line breaking.

4.2-12 User preference AtlasRepMarkNonCoreData

The value is a string (the default is a star '*') that is used in DisplayAtlasInfo (3.5-1) to mark data that do not belong to the core database, see Section  5.2.

4.2-13 User preference DebugFileLoading

If the value is true then debug messages are printed before and after data files get loaded. The default value is false.

4.2-14 User preference AtlasRepJsonFilesAddresses

The value, if set, must be a list of length two, the first entry being an URL describing a directory that contains Json format files of the available matrix representations in characteristic zero, and the second being a directory path where these files shall be stored locally. If the value is set (this is the default) then the functions of the package use the Json format files instead of the GAP format files.

4.3 Web Contents for the AtlasRep Package

The home page of the AtlasRep package provides

4.4 Extending the ATLAS Database

Users who have computed new representations that might be interesting for inclusion into the ATLAS of Group representations can send the data in question to R.A.Wilson@qmul.ac.uk.

It is also possible to make additional representations and programs accessible for the GAP interface, and to use these "private" data in the same way as the core data. See Chapter 5 for details.

Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chap6.html0000644000175000017500000026172314545501243014131 0ustar samsam GAP (AtlasRep) - Chapter 6: New GAP Objects and Utility Functions provided by the AtlasRep Package
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

6 New GAP Objects and Utility Functions provided by the AtlasRep Package

This chapter describes GAP objects and functions that are provided by the AtlasRep package but that might be of general interest.

The new objects are straight line decisions (see Section 6.1) and black box programs (see Section 6.2).

The new functions are concerned with representations of minimal degree, see Section 6.3, and a JSON interface, see Section 6.4.

6.1 Straight Line Decisions

Straight line decisions are similar to straight line programs (see Section Reference: Straight Line Programs) but return true or false. A straight line decision checks whether its inputs have some property. An important example is to check whether a given list of group generators is in fact a list of standard generators (cf. Section3.3) for this group.

A straight line decision in GAP is represented by an object in the filter IsStraightLineDecision (6.1-1) that stores a list of "lines" each of which has one of the following three forms.

  1. a nonempty dense list l of integers,

  2. a pair [ l, i ] where l is a list of form 1. and i is a positive integer,

  3. a list [ "Order", i, n ] where i and n are positive integers.

The first two forms have the same meaning as for straight line programs (see Section Reference: Straight Line Programs), the last form means a check whether the element stored at the i-th label has the order n.

For the meaning of the list of lines, see ResultOfStraightLineDecision (6.1-6).

Straight line decisions can be constructed using StraightLineDecision (6.1-5), defining attributes for straight line decisions are NrInputsOfStraightLineDecision (6.1-3) and LinesOfStraightLineDecision (6.1-2), an operation for straight line decisions is ResultOfStraightLineDecision (6.1-6).

Special methods applicable to straight line decisions are installed for the operations Display (Reference: Display), IsInternallyConsistent (Reference: IsInternallyConsistent), PrintObj (Reference: PrintObj), and ViewObj (Reference: ViewObj).

For a straight line decision prog, the default Display (Reference: Display) method prints the interpretation of prog as a sequence of assignments of associative words and of order checks; a record with components gensnames (with value a list of strings) and listname (a string) may be entered as second argument of Display (Reference: Display), in this case these names are used, the default for gensnames is [ g1, g2, ... ], the default for listname is r.

6.1-1 IsStraightLineDecision
‣ IsStraightLineDecision( obj )( category )

Each straight line decision in GAP lies in the filter IsStraightLineDecision.

6.1-2 LinesOfStraightLineDecision
‣ LinesOfStraightLineDecision( prog )( operation )

Returns: the list of lines that define the straight line decision.

This defining attribute for the straight line decision prog (see IsStraightLineDecision (6.1-1)) corresponds to LinesOfStraightLineProgram (Reference: LinesOfStraightLineProgram) for straight line programs.

gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ],
> [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] );
<straight line decision>
gap> LinesOfStraightLineDecision( dec );
[ [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 1, 2 ], [ "Order", 2, 3 ], 
  [ "Order", 3, 5 ] ]

6.1-3 NrInputsOfStraightLineDecision
‣ NrInputsOfStraightLineDecision( prog )( operation )

Returns: the number of inputs required for the straight line decision.

This defining attribute corresponds to NrInputsOfStraightLineProgram (Reference: NrInputsOfStraightLineProgram).

gap> NrInputsOfStraightLineDecision( dec );
2

6.1-4 ScanStraightLineDecision
‣ ScanStraightLineDecision( string )( function )

Returns: a record containing the straight line decision, or fail.

Let string be a string that encodes a straight line decision in the sense that it consists of the lines listed for ScanStraightLineProgram (7.4-1), except that oup lines are not allowed, and instead lines of the following form may occur.

chor a b

means that it is checked whether the order of the element at label a is b.

ScanStraightLineDecision returns a record containing as the value of its component program the corresponding GAP straight line decision (see IsStraightLineDecision (6.1-1)) if the input string satisfies the syntax rules stated above, and returns fail otherwise. In the latter case, information about the first corrupted line of the program is printed if the info level of InfoCMeatAxe (7.1-2) is at least 1.

gap> str:= "inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5";;
gap> prg:= ScanStraightLineDecision( str );
rec( program := <straight line decision> )
gap> prg:= prg.program;;
gap> Display( prg );
# input:
r:= [ g1, g2 ];
# program:
if Order( r[1] ) <> 2 then  return false;  fi;
if Order( r[2] ) <> 3 then  return false;  fi;
r[3]:= r[1]*r[2];
if Order( r[3] ) <> 5 then  return false;  fi;
# return value:
true

6.1-5 StraightLineDecision
‣ StraightLineDecision( lines[, nrgens] )( function )
‣ StraightLineDecisionNC( lines[, nrgens] )( function )

Returns: the straight line decision given by the list of lines.

Let lines be a list of lists that defines a unique straight line decision (see IsStraightLineDecision (6.1-1)); in this case StraightLineDecision returns this program, otherwise an error is signalled. The optional argument nrgens specifies the number of input generators of the program; if a list of integers (a line of form 1. in the definition above) occurs in lines then this number is not determined by lines and therefore must be specified by the argument nrgens; if not then StraightLineDecision returns fail.

StraightLineDecisionNC does the same as StraightLineDecision, except that the internal consistency of the program is not checked.

6.1-6 ResultOfStraightLineDecision
‣ ResultOfStraightLineDecision( prog, gens[, orderfunc] )( operation )

Returns: true if all checks succeed, otherwise false.

ResultOfStraightLineDecision evaluates the straight line decision (see IsStraightLineDecision (6.1-1)) prog at the group elements in the list gens.

The function for computing the order of a group element can be given as the optional argument orderfunc. For example, this may be a function that gives up at a certain limit if one has to be aware of extremely huge orders in failure cases.

The result of a straight line decision with lines p_1, p_2, ..., p_k when applied to gens is defined as follows.

(a)

First a list r of intermediate values is initialized with a shallow copy of gens.

(b)

For i ≤ k, before the i-th step, let r be of length n. If p_i is the external representation of an associative word in the first n generators then the image of this word under the homomorphism that is given by mapping r to these first n generators is added to r. If p_i is a pair [ l, j ], for a list l, then the same element is computed, but instead of being added to r, it replaces the j-th entry of r. If p_i is a triple ["Order", i, n ] then it is checked whether the order of r[i] is n; if not then false is returned immediately.

(c)

If all k lines have been processed and no order check has failed then true is returned.

Here are some examples.

gap> dec:= StraightLineDecision( [ ], 1 );
<straight line decision>
gap> ResultOfStraightLineDecision( dec, [ () ] );
true

The above straight line decision dec returns true –for any input of the right length.

gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ],
>       [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] );
<straight line decision>
gap> LinesOfStraightLineDecision( dec );
[ [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 1, 2 ], [ "Order", 2, 3 ], 
  [ "Order", 3, 5 ] ]
gap> ResultOfStraightLineDecision( dec, [ (), () ] );
false
gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,4,5) ] );
true

The above straight line decision admits two inputs; it tests whether the orders of the inputs are 2 and 3, and the order of their product is 5.

6.1-7 Semi-Presentations and Presentations

We can associate a finitely presented group F / R to each straight line decision dec, say, as follows. The free generators of the free group F are in bijection with the inputs, and the defining relators generating R as a normal subgroup of F are given by those words w^k for which dec contains a check whether the order of w equals k.

So if dec returns true for the input list [ g_1, g_2, ..., g_n ] then mapping the free generators of F to the inputs defines an epimorphism Φ from F to the group G, say, that is generated by these inputs, such that R is contained in the kernel of Φ.

(Note that "satisfying dec" is a stronger property than "satisfying a presentation". For example, ⟨ x ∣ x^2 = x^3 = 1 ⟩ is a presentation for the trivial group, but the straight line decision that checks whether the order of x is both 2 and 3 clearly always returns false.)

AtlasRep supports the following two kinds of straight line decisions.

  • A presentation is a straight line decision dec that is defined for a set of standard generators of a group G and that returns true if and only if the list of inputs is in fact a sequence of such standard generators for G. In other words, the relators derived from the order checks in the way described above are defining relators for G, and moreover these relators are words in terms of standard generators. (In particular the kernel of the map Φ equals R whenever dec returns true.)

  • A semi-presentation is a straight line decision dec that is defined for a set of standard generators of a group G and that returns true for a list of inputs that is known to generate a group isomorphic with G if and only if these inputs form in fact a sequence of standard generators for G. In other words, the relators derived from the order checks in the way described above are not necessarily defining relators for G, but if we assume that the g_i generate G then they are standard generators. (In particular, F / R may be a larger group than G but in this case Φ maps the free generators of F to standard generators of G.)

    More about semi-presentations can be found in [NW05].

Available presentations and semi-presentations are listed by DisplayAtlasInfo (3.5-1), they can be accessed via AtlasProgram (3.5-4). (Clearly each presentation is also a semi-presentation. So a semi-presentation for some standard generators of a group is regarded as available whenever a presentation for these standard generators and this group is available.)

Note that different groups can have the same semi-presentation. We illustrate this with an example that is mentioned in [NW05]. The groups L_2(7) ≅ L_3(2) and L_2(8) are generated by elements of the orders 2 and 3 such that their product has order 7, and no further conditions are necessary to define standard generators.

gap> check:= AtlasProgram( "L2(8)", "check" );
rec( groupname := "L2(8)", 
  identifier := [ "L2(8)", "L28G1-check1", 1, 1 ], 
  program := <straight line decision>, standardization := 1, 
  version := "1" )
gap> gens:= AtlasGenerators( "L2(8)", 1 );
rec( charactername := "1a+8a", constituents := [ 1, 6 ], 
  contents := "core", 
  generators := [ (1,2)(3,4)(6,7)(8,9), (1,3,2)(4,5,6)(7,8,9) ], 
  groupname := "L2(8)", id := "", 
  identifier := [ "L2(8)", [ "L28G1-p9B0.m1", "L28G1-p9B0.m2" ], 1, 9 
     ], isPrimitive := true, maxnr := 1, p := 9, rankAction := 2, 
  repname := "L28G1-p9B0", repnr := 1, size := 504, 
  stabilizer := "2^3:7", standardization := 1, transitivity := 3, 
  type := "perm" )
gap> ResultOfStraightLineDecision( check.program, gens.generators );
true
gap> gens:= AtlasGenerators( "L3(2)", 1 );
rec( contents := "core", generators := [ (2,4)(3,5), (1,2,3)(5,6,7) ],
  groupname := "L3(2)", id := "a", 
  identifier := [ "L3(2)", [ "L27G1-p7aB0.m1", "L27G1-p7aB0.m2" ], 1, 
      7 ], isPrimitive := true, maxnr := 1, p := 7, rankAction := 2, 
  repname := "L27G1-p7aB0", repnr := 1, size := 168, 
  stabilizer := "S4", standardization := 1, transitivity := 2, 
  type := "perm" )
gap> ResultOfStraightLineDecision( check.program, gens.generators );
true

6.1-8 AsStraightLineDecision
‣ AsStraightLineDecision( bbox )( attribute )

Returns: an equivalent straight line decision for the given black box program, or fail.

For a black box program (see IsBBoxProgram (6.2-1)) bbox, AsStraightLineDecision returns a straight line decision (see IsStraightLineDecision (6.1-1)) with the same output as bbox, in the sense of AsBBoxProgram (6.2-5), if such a straight line decision exists, and fail otherwise.

gap> lines:= [ [ "Order", 1, 2 ], [ "Order", 2, 3 ],
>              [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 3, 5 ] ];;
gap> dec:= StraightLineDecision( lines, 2 );
<straight line decision>
gap> bboxdec:= AsBBoxProgram( dec );
<black box program>
gap> asdec:= AsStraightLineDecision( bboxdec );
<straight line decision>
gap> LinesOfStraightLineDecision( asdec );
[ [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ [ 1, 1, 2, 1 ], 3 ], 
  [ "Order", 3, 5 ] ]

6.1-9 StraightLineProgramFromStraightLineDecision
‣ StraightLineProgramFromStraightLineDecision( dec )( operation )

Returns: the straight line program associated to the given straight line decision.

For a straight line decision dec (see IsStraightLineDecision (6.1-1), StraightLineProgramFromStraightLineDecision returns the straight line program (see IsStraightLineProgram (Reference: IsStraightLineProgram) obtained by replacing each line of type 3. (i.e, each order check) by an assignment of the power in question to a new slot, and by declaring the list of these elements as the return value.

This means that the return value describes exactly the defining relators of the presentation that is associated to the straight line decision, see 6.1-7.

For example, one can use the return value for printing the relators with StringOfResultOfStraightLineProgram (Reference: StringOfResultOfStraightLineProgram), or for explicitly constructing the relators as words in terms of free generators, by applying ResultOfStraightLineProgram (Reference: ResultOfStraightLineProgram) to the program and to these generators.

gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ],
> [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] );
<straight line decision>
gap> prog:= StraightLineProgramFromStraightLineDecision( dec );
<straight line program>
gap> Display( prog );
# input:
r:= [ g1, g2 ];
# program:
r[3]:= r[1]*r[2];
r[4]:= r[1]^2;
r[5]:= r[2]^3;
r[6]:= r[3]^5;
# return values:
[ r[4], r[5], r[6] ]
gap> StringOfResultOfStraightLineProgram( prog, [ "a", "b" ] );
"[ a^2, b^3, (ab)^5 ]"
gap> gens:= GeneratorsOfGroup( FreeGroup( "a", "b" ) );
[ a, b ]
gap> ResultOfStraightLineProgram( prog, gens );
[ a^2, b^3, (a*b)^5 ]

6.2 Black Box Programs

Black box programs formalize the idea that one takes some group elements, forms arithmetic expressions in terms of them, tests properties of these expressions, executes conditional statements (including jumps inside the program) depending on the results of these tests, and eventually returns some result.

A specification of the language can be found in [Nic06], see also

http://atlas.math.rwth-aachen.de/Atlas/info/blackbox.html.

The inputs of a black box program may be explicit group elements, and the program may also ask for random elements from a given group. The program steps form products, inverses, conjugates, commutators, etc. of known elements, tests concern essentially the orders of elements, and the result is a list of group elements or true or false or fail.

Examples that can be modeled by black box programs are

straight line programs,

which require a fixed number of input elements and form arithmetic expressions of elements but do not use random elements, tests, conditional statements and jumps; the return value is always a list of elements; these programs are described in Section Reference: Straight Line Programs.

straight line decisions,

which differ from straight line programs only in the sense that also order tests are admissible, and that the return value is true if all these tests are satisfied, and false as soon as the first such test fails; they are described in Section 6.1.

scripts for finding standard generators,

which take a group and a function to generate a random element in this group but no explicit input elements, admit all control structures, and return either a list of standard generators or fail; see ResultOfBBoxProgram (6.2-4) for examples.

In the case of general black box programs, currently GAP provides only the possibility to read an existing program via ScanBBoxProgram (6.2-2), and to run the program using RunBBoxProgram (6.2-3). It is not our aim to write such programs in GAP.

The special case of the "find" scripts mentioned above is also admissible as an argument of ResultOfBBoxProgram (6.2-4), which returns either the set of found generators or fail.

Contrary to the general situation, more support is provided for straight line programs and straight line decisions in GAP, see Section Reference: Straight Line Programs for functions that manipulate them (compose, restrict etc.).

The functions AsStraightLineProgram (6.2-6) and AsStraightLineDecision (6.1-8) can be used to transform a general black box program object into a straight line program or a straight line decision if this is possible.

Conversely, one can create an equivalent general black box program from a straight line program or from a straight line decision with AsBBoxProgram (6.2-5).

Computing a straight line program related to a given straight line decision is supported in the sense of StraightLineProgramFromStraightLineDecision (6.1-9).

Note that none of these three kinds of objects is a special case of another: Running a black box program with RunBBoxProgram (6.2-3) yields a record, running a straight line program with ResultOfStraightLineProgram (Reference: ResultOfStraightLineProgram) yields a list of elements, and running a straight line decision with ResultOfStraightLineDecision (6.1-6) yields true or false.

6.2-1 IsBBoxProgram
‣ IsBBoxProgram( obj )( category )

Each black box program in GAP lies in the filter IsBBoxProgram.

6.2-2 ScanBBoxProgram
‣ ScanBBoxProgram( string )( function )

Returns: a record containing the black box program encoded by the input string, or fail.

For a string string that describes a black box program, e.g., the return value of StringFile (GAPDoc: StringFile), ScanBBoxProgram computes this black box program. If this is successful then the return value is a record containing as the value of its component program the corresponding GAP object that represents the program, otherwise fail is returned.

As the first example, we construct a black box program that tries to find standard generators for the alternating group A_5; these standard generators are any pair of elements of the orders 2 and 3, respectively, such that their product has order 5.

gap> findstr:= "\
>   set V 0\n\
> lbl START1\n\
>   rand 1\n\
>   ord 1 A\n\
>   incr V\n\
>   if V gt 100 then timeout\n\
>   if A notin 1 2 3 5 then fail\n\
>   if A noteq 2 then jmp START1\n\
> lbl START2\n\
>   rand 2\n\
>   ord 2 B\n\
>   incr V\n\
>   if V gt 100 then timeout\n\
>   if B notin 1 2 3 5 then fail\n\
>   if B noteq 3 then jmp START2\n\
>   # The elements 1 and 2 have the orders 2 and 3, respectively.\n\
>   set X 0\n\
> lbl CONJ\n\
>   incr X\n\
>   if X gt 100 then timeout\n\
>   rand 3\n\
>   cjr 2 3\n\
>   mu 1 2 4   # ab\n\
>   ord 4 C\n\
>   if C notin 2 3 5 then fail\n\
>   if C noteq 5 then jmp CONJ\n\
>   oup 2 1 2";;
gap> find:= ScanBBoxProgram( findstr );
rec( program := <black box program> )

The second example is a black box program that checks whether its two inputs are standard generators for A_5.

gap> checkstr:= "\
> chor 1 2\n\
> chor 2 3\n\
> mu 1 2 3\n\
> chor 3 5";;
gap> check:= ScanBBoxProgram( checkstr );
rec( program := <black box program> )

6.2-3 RunBBoxProgram
‣ RunBBoxProgram( prog, G, input, options )( function )

Returns: a record describing the result and the statistics of running the black box program prog, or fail, or the string "timeout".

For a black box program prog, a group G, a list input of group elements, and a record options, RunBBoxProgram applies prog to input, where G is used only to compute random elements.

The return value is fail if a syntax error or an explicit fail statement is reached at runtime, and the string "timeout" if a timeout statement is reached. (The latter might mean that the random choices were unlucky.) Otherwise a record with the following components is returned.

gens

a list of group elements, bound if an oup statement was reached,

result

true if a true statement was reached, false if either a false statement or a failed order check was reached,

The other components serve as statistical information about the numbers of the various operations (multiply, invert, power, order, random, conjugate, conjugateinplace, commutator), and the runtime in milliseconds (timetaken).

The following components of options are supported.

randomfunction

the function called with argument G in order to compute a random element of G (default PseudoRandom (Reference: PseudoRandom))

orderfunction

the function for computing element orders (default Order (Reference: Order)),

quiet

if true then ignore echo statements (default false),

verbose

if true then print information about the line that is currently processed, and about order checks (default false),

allowbreaks

if true then call Error (Reference: Error) when a break statement is reached, otherwise ignore break statements (default true).

As an example, we run the black box programs constructed in the example for ScanBBoxProgram (6.2-2).

gap> g:= AlternatingGroup( 5 );;
gap> res:= RunBBoxProgram( find.program, g, [], rec() );;
gap> IsBound( res.gens );  IsBound( res.result );
true
false
gap> List( res.gens, Order );
[ 2, 3 ]
gap> Order( Product( res.gens ) );
5
gap> res:= RunBBoxProgram( check.program, "dummy", res.gens, rec() );;
gap> IsBound( res.gens );  IsBound( res.result );
false
true
gap> res.result;
true
gap> othergens:= GeneratorsOfGroup( g );;
gap> res:= RunBBoxProgram( check.program, "dummy", othergens, rec() );;
gap> res.result;
false

6.2-4 ResultOfBBoxProgram
‣ ResultOfBBoxProgram( prog, G[, options] )( function )

Returns: a list of group elements or true, false, fail, or the string "timeout".

This function calls RunBBoxProgram (6.2-3) with the black box program prog and second argument either a group or a list of group elements; if options is not given then the default options of RunBBoxProgram (6.2-3) are assumed. The return value is fail if this call yields fail, otherwise the gens component of the result, if bound, or the result component if not.

Note that a group G is used as the second argument in the call of RunBBoxProgram (6.2-3) (the source for random elements), whereas a list G is used as the third argument (the inputs).

As an example, we run the black box programs constructed in the example for ScanBBoxProgram (6.2-2).

gap> g:= AlternatingGroup( 5 );;
gap> res:= ResultOfBBoxProgram( find.program, g );;
gap> List( res, Order );
[ 2, 3 ]
gap> Order( Product( res ) );
5
gap> res:= ResultOfBBoxProgram( check.program, res );
true
gap> othergens:= GeneratorsOfGroup( g );;
gap> res:= ResultOfBBoxProgram( check.program, othergens );
false

6.2-5 AsBBoxProgram
‣ AsBBoxProgram( slp )( attribute )

Returns: an equivalent black box program for the given straight line program or straight line decision.

Let slp be a straight line program (see IsStraightLineProgram (Reference: IsStraightLineProgram)) or a straight line decision (see IsStraightLineDecision (6.1-1)). Then AsBBoxProgram returns a black box program bbox (see IsBBoxProgram (6.2-1)) with the "same" output as slp, in the sense that ResultOfBBoxProgram (6.2-4) yields the same result for bbox as ResultOfStraightLineProgram (Reference: ResultOfStraightLineProgram) or ResultOfStraightLineDecision (6.1-6), respectively, for slp.

gap> f:= FreeGroup( "x", "y" );;  gens:= GeneratorsOfGroup( f );;
gap> slp:= StraightLineProgram( [ [1,2,2,3], [3,-1] ], 2 );
<straight line program>
gap> ResultOfStraightLineProgram( slp, gens );
y^-3*x^-2
gap> bboxslp:= AsBBoxProgram( slp );
<black box program>
gap> ResultOfBBoxProgram( bboxslp, gens );
[ y^-3*x^-2 ]
gap> lines:= [ [ "Order", 1, 2 ], [ "Order", 2, 3 ],
>              [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 3, 5 ] ];;
gap> dec:= StraightLineDecision( lines, 2 );
<straight line decision>
gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,3,5) ] );
true
gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,3,4) ] );
false
gap> bboxdec:= AsBBoxProgram( dec );
<black box program>
gap> ResultOfBBoxProgram( bboxdec, [ (1,2)(3,4), (1,3,5) ] );
true
gap> ResultOfBBoxProgram( bboxdec, [ (1,2)(3,4), (1,3,4) ] );
false

6.2-6 AsStraightLineProgram
‣ AsStraightLineProgram( bbox )( attribute )

Returns: an equivalent straight line program for the given black box program, or fail.

For a black box program (see AsBBoxProgram (6.2-5)) bbox, AsStraightLineProgram returns a straight line program (see IsStraightLineProgram (Reference: IsStraightLineProgram)) with the same output as bbox if such a straight line program exists, and fail otherwise.

gap> Display( AsStraightLineProgram( bboxslp ) );
# input:
r:= [ g1, g2 ];
# program:
r[3]:= r[1]^2;
r[4]:= r[2]^3;
r[5]:= r[3]*r[4];
r[3]:= r[5]^-1;
# return values:
[ r[3] ]
gap> AsStraightLineProgram( bboxdec );
fail

6.3 Representations of Minimal Degree

This section deals with minimal degrees of permutation and matrix representations. We do not provide an algorithm that computes these degrees for an arbitrary group, we only provide some tools for evaluating known databases, mainly concerning "bicyclic extensions" (see [CCN+85, Section 6.5]) of simple groups, in order to derive the minimal degrees, see Section 6.3-4.

In the AtlasRep package, this information can be used for prescribing "minimality conditions" in DisplayAtlasInfo (3.5-1), OneAtlasGeneratingSetInfo (3.5-6), and AllAtlasGeneratingSetInfos (3.5-7). An overview of the stored minimal degrees can be shown with BrowseMinimalDegrees (3.6-1).

6.3-1 MinimalRepresentationInfo
‣ MinimalRepresentationInfo( grpname, conditions )( function )

Returns: a record with the components value and source, or fail

Let grpname be the GAP name of a group G, say. If the information described by conditions about minimal representations of this group can be computed or is stored then MinimalRepresentationInfo returns a record with the components value and source, otherwise fail is returned.

The following values for conditions are supported.

  • If conditions is NrMovedPoints (Reference: NrMovedPoints for a permutation) then value, if known, is the degree of a minimal faithful (not necessarily transitive) permutation representation for G.

  • If conditions consists of Characteristic (Reference: Characteristic) and a prime integer p then value, if known, is the dimension of a minimal faithful (not necessarily irreducible) matrix representation in characteristic p for G.

  • If conditions consists of Size (Reference: Size) and a prime power q then value, if known, is the dimension of a minimal faithful (not necessarily irreducible) matrix representation over the field of size q for G.

In all cases, the value of the component source is a list of strings that describe sources of the information, which can be the ordinary or modular character table of G (see [CCN+85], [JLPW95], [HL89]), the table of marks of G, or [Jan05]. For an overview of minimal degrees of faithful matrix representations for sporadic simple groups and their covering groups, see also

http://www.math.rwth-aachen.de/~MOC/mindeg/.

Note that MinimalRepresentationInfo cannot provide any information about minimal representations over prescribed fields in characteristic zero.

Information about groups that occur in the AtlasRep package is precomputed in MinimalRepresentationInfoData (6.3-2), so the packages CTblLib and TomLib are not needed when MinimalRepresentationInfo is called for these groups. (The only case that is not covered by this list is that one asks for the minimal degree of matrix representations over a prescribed field in characteristic coprime to the group order.)

One of the following strings can be given as an additional last argument.

"cache"

means that the function tries to compute (and then store) values that are not stored in MinimalRepresentationInfoData (6.3-2), but stored values are preferred; this is also the default.

"lookup"

means that stored values are returned but the function does not attempt to compute values that are not stored in MinimalRepresentationInfoData (6.3-2).

"recompute"

means that the function always tries to compute the desired value, and checks the result against stored values.

gap> MinimalRepresentationInfo( "A5", NrMovedPoints );
rec( 
  source := [ "computed (alternating group)", 
      "computed (char. table)", "computed (subgroup tables)", 
      "computed (subgroup tables, known repres.)", 
      "computed (table of marks)" ], value := 5 )
gap> MinimalRepresentationInfo( "A5", Characteristic, 2 );
rec( source := [ "computed (char. table)" ], value := 2 )
gap> MinimalRepresentationInfo( "A5", Size, 2 );
rec( source := [ "computed (char. table)" ], value := 4 )

6.3-2 MinimalRepresentationInfoData
‣ MinimalRepresentationInfoData( global variable )

This is a record whose components are GAP names of groups for which information about minimal permutation and matrix representations were known in advance or have been computed in the current GAP session. The value for the group G, say, is a record with the following components.

NrMovedPoints

a record with the components value (the degree of a smallest faithful permutation representation of G) and source (a string describing the source of this information).

Characteristic

a record whose components are at most 0 and strings corresponding to prime integers, each bound to a record with the components value (the degree of a smallest faithful matrix representation of G in this characteristic) and source (a string describing the source of this information).

CharacteristicAndSize

a record whose components are strings corresponding to prime integers p, each bound to a record with the components sizes (a list of powers q of p), dimensions (the corresponding list of minimal dimensions of faithful matrix representations of G over a field of size q), sources (the corresponding list of strings describing the source of this information), and complete (a record with the components val (true if the minimal dimension over any finite field in characteristic p can be derived from the values in the record, and false otherwise) and source (a string describing the source of this information)).

The values are set by SetMinimalRepresentationInfo (6.3-3).

6.3-3 SetMinimalRepresentationInfo
‣ SetMinimalRepresentationInfo( grpname, op, value, source )( function )

Returns: true if the values were successfully set, false if stored values contradict the given ones.

This function sets an entry in MinimalRepresentationInfoData (6.3-2) for the group G, say, with GAP name grpname.

Supported values for op are

  • "NrMovedPoints" (see NrMovedPoints (Reference: NrMovedPoints for a permutation)), which means that value is the degree of minimal faithful (not necessarily transitive) permutation representations of G,

  • a list of length two with first entry "Characteristic" (see Characteristic (Reference: Characteristic)) and second entry char either zero or a prime integer, which means that value is the dimension of minimal faithful (not necessarily irreducible) matrix representations of G in characteristic char,

  • a list of length two with first entry "Size" (see Size (Reference: Size)) and second entry a prime power q, which means that value is the dimension of minimal faithful (not necessarily irreducible) matrix representations of G over the field with q elements, and

  • a list of length three with first entry "Characteristic" (see Characteristic (Reference: Characteristic)), second entry a prime integer p, and third entry the string "complete", which means that the information stored for characteristic p is complete in the sense that for any given power q of p, the minimal faithful degree over the field with q elements equals that for the largest stored field size of which q is a power.

In each case, source is a string describing the source of the data; computed values are detected from the prefix "comp" of source.

If the intended value is already stored and differs from value then an error message is printed.

gap> SetMinimalRepresentationInfo( "A5", "NrMovedPoints", 5,
>      "computed (alternating group)" );
true
gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 0 ], 3,
>      "computed (char. table)" );
true
gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 2 ], 2,
>      "computed (char. table)" );
true
gap> SetMinimalRepresentationInfo( "A5", [ "Size", 2 ], 4,
>      "computed (char. table)" );
true
gap> SetMinimalRepresentationInfo( "A5", [ "Size", 4 ], 2,
>      "computed (char. table)" );
true
gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 3 ], 3,
>      "computed (char. table)" );
true

6.3-4 Criteria Used to Compute Minimality Information

The information about the minimal degree of a faithful matrix representation of G in a given characteristic or over a given field in positive characteristic is derived from the relevant (ordinary or modular) character table of G, except in a few cases where this table itself is not known but enough information about the degrees is available in [HL89] and [Jan05].

The following criteria are used for deriving the minimal degree of a faithful permutation representation of G from the information in the GAP libraries of character tables and of tables of marks.

  • If the name of G has the form "An" or "An.2" (denoting alternating and symmetric groups, respectively) then the minimal degree is n, except if n is smaller than 3 or 2, respectively.

  • If the name of G has the form "L2(q)" (denoting projective special linear groups in dimension two) then the minimal degree is q + 1, except if q ∈ { 2, 3, 5, 7, 9, 11 }, see [Hup67, Satz II.8.28].

  • If the largest maximal subgroup of G is core-free then the index of this subgroup is the minimal degree. (This is used when the two character tables in question and the class fusion are available in GAP's Character Table Library [Bre22]; this happens for many character tables of simple groups.)

  • If G has a unique minimal normal subgroup then each minimal faithful permutation representation is transitive. (Note that the core of each point stabilizer is either trivial or contains the unique minimal normal subgroup.)

    In this case, the minimal degree can be computed directly from the information in the table of marks of G if this is available in GAP's Library of Tables of Marks [NMP18].

    Suppose that the largest maximal subgroup of G is not core-free but simple and normal in G, and that the other maximal subgroups of G are core-free. In this case, we take the minimum of the indices of the core-free maximal subgroups and of the product of index and minimal degree of the normal maximal subgroup. (This suffices since no core-free subgroup of the whole group can contain a nontrivial normal subgroup of a normal maximal subgroup.)

    Let N be the unique minimal normal subgroup of G, and assume that G/N is simple and has minimal degree n, say. If there is a subgroup U of index n ⋅ |N| in G that intersects N trivially then the minimal degree of G is n ⋅ |N|. (This is used for the case that N is central in G and N × U occurs as a subgroup of G.)

  • If we know a subgroup of G whose minimal degree is n, say, and if we know either (a class fusion from) a core-free subgroup of index n in G or a faithful permutation representation of degree n for G then n is the minimal degree for G. (This happens often for tables of almost simple groups.)

6.4 A JSON Interface

We define a mapping between certain GAP objects and JSON (JavaScript Object Notation) texts (see [JSO14]), as follows.

  • The three GAP values true, false, and fail correspond to the JSON texts true, false, and null, respectively.

  • GAP strings correspond to JSON strings; special characters in a GAP string (control characters ASCII 0 to 31, backslash and double quote) are mapped as defined in JSON's specification, and other ASCII characters are kept as they are; if a GAP string contains non-ASCII characters, it is assumed that it is UTF-8 encoded, and one may choose either to keep non-ASCII characters as they are, or to create an ASCII only JSON string, using JSON's syntax for Unicode code points ("\uXXXX"); in the other direction, JSON strings are assumed to be UTF-8 encoded, and are mapped to UTF-8 encoded GAP strings, by keeping the non-ASCII characters and converting substrings of the form \uXXXX accordingly.

  • GAP integers (in the sense of IsInt (Reference: IsInt)) are mapped to JSON numbers that consist of digits and optionally a leading sign character -; in the other direction, JSON numbers of this form and also JSON numbers that involve no decimal dots and have no negative exponent (for example "2e3") are mapped to GAP integers.

  • GAP rationals (in the sense of IsRat (Reference: IsRat)) which are not integers are represented by JSON floating point numbers; the JSON representation (and hence the precision) is given by first applying Float (Reference: Float) and then String (Reference: String).

  • GAP floats (in the sense of Chapter Reference: Floats in the GAP Reference Manual) are mapped to JSON floating point numbers; the JSON representation (and hence the precision) is given by applying String (Reference: String); in the other direction, JSON numbers that involve a decimal dot or a negative exponent are mapped to GAP floats.

  • (Nested and not self-referential) dense GAP lists of objects correspond to JSON arrays such that the list entries correspond to each other. (Note that JSON does not support non-dense arrays.)

  • (Nested and not self-referential) GAP records correspond to JSON objects such that both labels (which are strings in GAP and JSON) and values correspond to each other.

The GAP functions AGR.JsonText (6.4-2) and AGR.GapObjectOfJsonText (6.4-3) can be used to create a JSON text from a suitable GAP object and the GAP object that corresponds to a given JSON text, respectively.

Note that the composition of the two functions is in general not the identity mapping, because AGR.JsonText (6.4-2) accepts non-integer rationals, whereas AGR.GapObjectOfJsonText (6.4-3) does not create such objects.

Note also that the results of AGR.JsonText (6.4-2) do not contain information about dependencies between common subobjects. This is another reason why applying first AGR.JsonText (6.4-2) and then AGR.GapObjectOfJsonText (6.4-3) may yield a GAP object with different behaviour.

Applying AGR.JsonText (6.4-2) to a self-referential object such as [ ~ ] will raise a "recursion depth trap" error.

6.4-1 Why JSON?

The aim of this JSON interface is to read and write certain data files with GAP such that these files become easily accessible independent of GAP. The function AGR.JsonText (6.4-2) is intended just as a prototype, variants of this function are very likely to appear in other contexts, for example in order to force certain line formatting or ordering of record components.

It is not the aim of the JSON interface to provide self-contained descriptions of arbitrary GAP objects, in order to read them into a GAP session. Note that those GAP objects for which a JSON equivalent exists (and many more) can be easily written to files as they are, and GAP can read them efficiently. On the other hand, more complicated GAP objects can be written and read via the so-called pickling, for which a framework is provided by the GAP package IO [Neu14].

Here are a few situations which are handled well by pickling but which cannot be addressed with a JSON interface.

  • Pickling and unpickling take care of common subobjects of the given GAP object. The following example shows that the applying first AGR.JsonText (6.4-2) and then AGR.GapObjectOfJsonText (6.4-3) may yield an object which behaves differently.

    gap> l:= [ [ 1 ] ];; l[2]:= l[1];;  l;
    [ [ 1 ], [ 1 ] ]
    gap> new:= AGR.GapObjectOfJsonText( AGR.JsonText( l ) ).value;
    [ [ 1 ], [ 1 ] ]
    gap> Add( l[1], 2 );  l;
    [ [ 1, 2 ], [ 1, 2 ] ]
    gap> Add( new[1], 2 );  new;
    [ [ 1, 2 ], [ 1 ] ]
    
  • GAP admits self-referential objects, for example as follows.

    gap> l:= [];;  l[1]:= l;;
    

    Pickling and unpickling take care of self-referential objects, but AGR.JsonText (6.4-2) does not support the conversion of such objects.

6.4-2 AGR.JsonText
‣ AGR.JsonText( obj[, mode] )( function )

Returns: a new mutable string that describes obj as a JSON text, or fail.

If obj is a GAP object for which a corresponding JSON text exists, according to the mapping described above, then such a JSON text is returned. Otherwise, fail is returned.

If the optional argument mode is given and has the value "ASCII" then the result in an ASCII string, otherwise the encoding of strings that are involved in obj is kept.

gap> AGR.JsonText( [] );
"[]"
gap> AGR.JsonText( "" );
"\"\""
gap> AGR.JsonText( "abc\ndef\cghi" );
"\"abc\\ndef\\u0003ghi\""
gap> AGR.JsonText( rec() );
"{}"
gap> AGR.JsonText( [ , 2 ] );
fail
gap> str:= [ '\303', '\266' ];;  # umlaut o
gap> json:= AGR.JsonText( str );;  List( json, IntChar );
[ 34, 195, 182, 34 ]
gap> AGR.JsonText( str, "ASCII" );
"\"\\u00F6\""

6.4-3 AGR.GapObjectOfJsonText
‣ AGR.GapObjectOfJsonText( string )( function )

Returns: a new mutable record whose value component, if bound, contains a mutable GAP object that represents the JSON text string.

If string is a string that represents a JSON text then the result is a record with the components value (the corresponding GAP object in the sense of the above interface) and status (value true). Otherwise, the result is a record with the components status (value false) and errpos (the position in string where the string turns out to be not valid JSON).

gap> AGR.GapObjectOfJsonText( "{ \"a\": 1 }" );
rec( status := true, value := rec( a := 1 ) )
gap> AGR.GapObjectOfJsonText( "{ \"a\": x }" );
rec( errpos := 8, status := false )
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chooser.html0000644000175000017500000000745614545501244014574 0ustar samsam GAPDoc Style Chooser

Setting preferences for GAPDoc manuals

Unfold subsections in menus only by mouse clicks: no (default)     yes

Show GAP examples as in sessions with ColorPrompt(true): yes (default)     no

Display side of table of contents within chapters: right (default)     left

Main document font: Helvetica/sans serif (default)     Times/serif

Paragraph formatting: left-right justified (default)     ragged right

Apply settings to last page.

atlasrep-2.1.8/doc/chap1_mj.html0000644000175000017500000020570714545501244014613 0ustar samsam GAP (AtlasRep) - Chapter 1: Introduction to the AtlasRep Package
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

1 Introduction to the AtlasRep Package

The aim of the GAP 4 package AtlasRep is to provide a link between GAP and databases such as the ATLAS of Group Representations [WWT+], which comprises generating permutations and matrices for many almost simple groups, and information about their maximal subgroups. This database is available independent of GAP at

http://atlas.math.rwth-aachen.de/Atlas/v3.

The AtlasRep package consists of this database (see Section 1.1) and a GAP interface (see Section 1.2); the latter is extended by further information available via the internet (see Section 4.3).

This package manual has the following parts.

A tutorial

gives an overview how the functions of the package can be used, see Chapter 2.

User interface functions

are described in Chapter 3.

Customizations of the package

are described in Chapter 4.

Information how to extend the database

can be found in Chapter 5.

More technical information

can be found in the chapters 6 (concerning GAP objects that are introduced by the package) and 7 (concerning global variables and sanity checks).

1.1 The ATLAS of Group Representations

The ATLAS of Group Representations  [WWT+] consists of matrices over various rings, permutations, and shell scripts encoding so-called black box programs (see [Nic06] and Section 6.2). Many of these scripts are straight line programs (see [BSWW01], [SWW00], and Reference: Straight Line Programs) and straight line decisions (see Section 6.1). These programs can be used to compute certain elements in a group \(G\) from its standard generators (see [Wil96] and Section 3.3) for example generators of maximal subgroups of \(G\) or representatives of conjugacy classes of \(G\).

The ATLAS of Group Representations has been prepared by Robert Wilson, Peter Walsh, Jonathan Tripp, Ibrahim Suleiman, Richard Parker, Simon Norton, Simon Nickerson, Steve Linton, John Bray, and Rachel Abbott (in reverse alphabetical order).

The information was computed and composed using computer algebra systems such as MeatAxe (see [Rin]), Magma (see [CP96]), and GAP (in reverse alphabetical order). Part of the constructions have been documented in the literature on almost simple groups, or the results have been used in such publications, see for example the bibliographies in [CCN+85] and [BN95] which are available online at http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/bibl.

If you use the ATLAS of Group Representations to solve a problem then please send a short email to R.A.Wilson@qmul.ac.uk about it. The ATLAS of Group Representations database should be referenced with the entry [WWT+] in the bibliography of this manual.

If your work made use of functions of the GAP interface (see Section 1.2) then you should also reference this interface, using the information printed by the GAP function Cite (Reference: Cite).

For referencing the GAP system in general, use the entry [GAP19] in the bibliography of this manual, see also http://www.gap-system.org.

1.2 The GAP Interface to the ATLAS of Group Representations

The GAP interface to the ATLAS of Group Representations consists of essentially two parts.

  • First, there is the user interface which allows the user to get an overview of the contents of the database, and to access the data in GAP format; this is described in Chapter 3. Advanced users may add their own data to the database, this is described in Chapter 5.

  • Second, there is administrational information, which covers also the declaration of GAP objects such as straight line decisions and black box programs. This is important mainly for users interested in the actual implementation (e. g., for modifying the package) or in using it together with the C-MeatAxe standalone (see [Rin]); this is described in Chapter 7.

Information concerning the C-MeatAxe, including the manual [Rin], can be found at

http://www.math.rwth-aachen.de/~MTX

The interface and this manual have been provided by Thomas Breuer, except for the interpreter for black box programs (see Section 6.2), which is due to Simon Nickerson. Comments, bug reports, and hints for improving the interface can be sent to sam@math.rwth-aachen.de.

1.3 What's New in AtlasRep, Compared to Older Versions?

1.3-1 What's New in Version 2.1.8? (January 2024)

An example in Section 2.1-2 of the Tutorial had to be adjusted because the results of the function SmallerDegreePermutationRepresentation (Reference: SmallerDegreePermutationRepresentation) depend on random computations, in particular the implementation in GAP 4.13 may yield a nicer representation than had been shown before.

1.3-2 What's New in Version 2.1.7? (August 2023)
  • Requesting certain matrix groups in characteristic zero had caused an error in version 2.1.6, provided that the feature to store downloaded files was disabled, that is, the value of the user preference "AtlasRepDataDirectory" (see Section 4.2-2) was an empty string. This bug is now fixed. Thanks to Lixin Zheng for reporting this problem.

  • The name of a maximal subgroup of the group \(M_{12}.2\) had to be changed from "D8.(S4x2)" to "2^3.(S4×2)" because the old name suggested a wrong group structure. This bug had been announced in a StackExchange discussion.

  • A typo in the documentation of AGR.MXS (see Section 7.8) was fixed. Thanks to Max Horn for spotting this.

  • GAP 4.13 will provide the new "package extension" feature, which allows a package to execute GAP code after the package and some other required packages have been loaded. In AtlasRep, this feature is now used for example in order to achieve that those functions which depend on the Browse package can be used also if this package gets (installed and) loaded after AtlasRep has been loaded.

  • The code for building the documentation of the package has been adjusted to a change in GAP 4.13. This does not affect most users of the package because the package archive contains a ready documentation.

1.3-3 What's New in Version 2.1.6? (October 2022)

The package now requires the utils package [BGH+22], and uses its Download (Utils: Download) function for downloading remote files. The former user preference FileTransferTool of the AtlasRep package is no longer supported; it had been used in older versions to distinguish between different download tools.

A method for ConjugacyClasses (Reference: ConjugacyClasses attribute) has been added that uses a straight line program for computing class representatives of a group that has been created with AtlasGroup (3.5-8), provided such a program is available. Thanks to Frank Lübeck for suggesting this.

1.3-4 What's New in Version 2.1.5? (August 2022)

Two bugs concerning local file permissions and the handling of download failures were fixed. Thanks to Frank Lübeck and Fabian Zickgraf for reporting these problems.

1.3-5 What's New in Version 2.1.4? (August 2022)

A few changes in the code for downloading files were needed in order to make some CI tests happy.

1.3-6 What's New in Version 2.1.3? (August 2022)

The server address for the core part of the database has changed.

Additional table of contents files are now available, which contain checksums in SHA256 format instead of the checksums computed by CrcFile (Reference: CrcFile) and CrcString (Reference: CrcString). Note that the latter values can be interpreted only by GAP.

For \(364\) representations, the corresponding characters have been identified and can thus be used for accessing these representations with OneAtlasGeneratingSetInfo (3.5-6), see DisplayAtlasInfo (3.5-1).

1.3-7 What's New in Version 2.1.2? (March 2022)

Not much.

The release of Version 2.1.2 was necessary for technical reasons: Now the testfile mentioned in PackageInfo.g exits GAP in the end, and the external links in the package documentation were corrected (the links in version 2.1.1 pointed to a wrong directory).

1.3-8 What's New in Version 2.1.1? (February 2022)
  • The new function EvaluatePresentation (3.5-11) computes the images of the relators of a presentation (see Section 6.1-7).

  • The new function StandardGeneratorsData (3.5-12) allows one to compute standard generators from given generators, provided a recipe for that task (a "find" straight line program) for the group in question is available.

  • The function AtlasGroup (3.5-8) sets known information about the group and the representation, such as IsPrimitive (Reference: IsPrimitive).

    (Thanks to Steve Linton for suggesting this feature.)

  • The function ResultOfBBoxProgram (6.2-4) now admits an optional argument, which is used as options record in calls to RunBBoxProgram (6.2-3).

  • The new user preference "AtlasRepJsonFilesAddresses" (see Section 4.2-14) allows one to use Json format data files for matrix representations in characteristic zero, which in turn makes it possible to create the matrices over prescribed fields, for example fields returned by AlgebraicExtension (Reference: AlgebraicExtension). The information stored in the table of contents file about the field of entries of the matrix representations has been extended by a GAP independent description of this field and the defining polynomial used in the Json format data files.

  • When the value of the user preference "AtlasRepDataDirectory" is an empty string then data files that are fetched from remote servers are read into the GAP session without storing the files. (An advantage is that one need not care about where one has permissions for storing files. A disadvantage is of course that one has to fetch a file again whenever it is needed.)

1.3-9 What's New in Version 2.1.0? (May 2019)

The main differences to earlier versions concern extensions of the available data. Up to now, such extensions were possible only in the sense that one could notify certain locally available files to the package's functions. With this version, it becomes possible to notify also remote data files, i. e., data files which have to be downloaded before they can be read into GAP, in the same way as the data from the ATLAS of Group Representations. Two extensions of this kind become automatically available with this package version, see Section 5.1 for details.

Thus the focus of the package has changed. In earlier versions, it provided a GAP interface to the data in the ATLAS of Group Representations, whereas now this database is regarded as one collection (the "core part") among others. Where applicable, the package manual tries to distinguish between general data available to the AtlasRep functions and the data from the ATLAS of Group Representations.

In order to provide this new functionality, the following changes have been implemented. Note that some are incompatible changes, compared with earlier versions of the package.

  • The format of the identifier components of the records returned by AtlasGenerators (3.5-3), AtlasProgram (3.5-4), etc., has been changed for those data that belong to extensions, see 7.7. In the new format, the name of the extension is not added to the group name but to the individual filenames; this allows for example the combination of files from the core database and from extensions in one identifier. Functions for converting between the old and the new format are available, see AtlasRepIdentifier (7.7-1).

  • The records returned by AtlasGenerators (3.5-3) etc. contain also a component contents, with value the identifier of the part of the database to shich the generators belong.

  • The tables of contents of the ATLAS of Group Representations and of extensions are no longer stored in the form of sequences of calls to GAP functions. Instead, each table of contents is defined via a JSON format file, see 6.4. In particular, the file atlasprm.json replaces the former gap/atlasprm.g.

    Two advantages of this change are that there is no danger to call unwanted GAP functions when such files (which are expected to be available in the world wide web) get evaluated, and that the information is independent of GAP –note that MeatAxe format files and straight line programs can be used by other program systems as well.

  • The functions ReloadAtlasTableOfContents, StoreAtlasTableOfContents, and ReplaceAtlasTableOfContents are no longer available. They had been intended for updating the table of contents of the ATLAS of Group Representations, but it has turned out that this was in fact not useful.

The second major change concerns the handling of user parameters.

  • GAP's general user preferences mechanism (see SetUserPreference (Reference: SetUserPreference)) has been used since version 1.5.1 of the package for dealing with certain customizations of AtlasRep's behaviour, concerning the paths of data directories and two issues with MeatAxe format files.

    Now this mechanism is used in more cases, see Section 4.2 for an overview. The new user preferences replace certain components of the record AtlasOfGroupRepresentationsInfo (7.1-5) that were recommended in earlier versions of the package. These components are currently still available but are no longer used by the package's functions. Also the global variable ATLASREP_TOCFILE is no longer supported, use the user preference AtlasRepTOCData instead, see Section 4.2-3. Analogously, use the user preference HowToReadMeatAxeTextFiles instead of the no longer available CMeatAxe.FastRead.

    The switch to user preferences is an incompatible change if you are used to change the values of these components in your code, for example in your gaprc file, see Reference: The gap.ini and gaprc files. All assignments to these components should be changed to calls of SetUserPreference (Reference: SetUserPreference).

    Another consequence of this change is that the former function AtlasOfGroupRepresentationsUserParameters of the package is no longer supported, use ShowUserPreferences (Reference: ShowUserPreferences) or BrowseUserPreferences (Browse: BrowseUserPreferences) with argument "AtlasRep" instead.

Finally, the following improvements have been added.

  • Straight line programs for computing generators of normal subgroups can now be fetched with AtlasProgram (3.5-4), using the argument "kernel". The available programs of this type are shown in the DisplayAtlasInfo (3.5-1) overview for a group. More than \(200\) such programs are available in a new data directory datapkg of the package. If fact, this collection of files is part of an extension of the database that is distributed together with the package.

    In earlier versions of the package, this kind of information had been available only implicitly; it had been stored via AGR.KERPRG, which is not supported anymore.

  • AtlasProgram (3.5-4) supports more variants of arguments: "contents" can be used to list the available data extensions, "contents" and "version" can be used to restrict the data under consideration, and one can request a program for computing standard generators of some maximal subgroup, not just generators (provided that this information is available).

    The information about the version of straight line programs is shown by DisplayAtlasInfo (3.5-1), as well as the availability of straight line programs for computing standard generators of maximal subgroups.

    Making this information more explicit has the side-effect that the access to the AtlasRep data with BrowseAtlasInfo (Browse: BrowseAtlasInfo) is both safer and simpler, if at least version 1.8.6 of the Browse package is available. (For that, the function AGR.InfoPrgs has been extended such that also the identifier records are included in the result.)

  • Straight line programs for computing standard generators of a maximal subgroup, if available, can now be fetched with AtlasProgram (3.5-4), using the argument "maxstd".

  • The function AtlasRepInfoRecord (3.5-10) now admits a group name as its argument, and then returns information about the group and its maximal subgroups; this information had been used before by DisplayAtlasInfo (3.5-1), but it had not been programmatically accessible.

  • The sanity checks for the data (see Section 7.9) have been extended, in particular they can be applied also to data extensions. To some extent, these checks can be used also to derive new information; the code for that should be regarded as heuristic and experimental, runtimes and space requirements may be large, depending on the new data to be examined.

  • Different header formats are now supported when reading and writing MeatAxe format files, see Section 4.2-8, and one can set a global default for the creation of mode 2 MeatAxe files, see Section 4.2-9.

  • The function MeatAxeString (7.3-2) admits also an integer matrix as argument.

  • The function CMtxBinaryFFMatOrPerm (7.3-4) admits an optional argument base, in order to write MeatAxe format files that contain either zero based or one based permutations.

  • The meaningless lines about \(p\)-modular representations of groups with nontrivial \(p\)-core have been removed from the file gap/mindeg.g.

1.3-10 What's New in Version 1.5.1? (March 2016)
  • The paths of the directories where downloaded data files get stored are now customizable, see Section 4.2-2. Up to now, the data were stored in subdirectories of the package directory, which might cause problems with write permissions, depending on the installation of the package. (Note that choosing other data directories can be useful also in order to keep existing local data files when a new version of GAP or of the AtlasRep package gets installed.) Thanks to Bill Allombert for pointing out this problem.

  • The information about data files from the ATLAS of Group Representations has been extended by CrcFile (Reference: CrcFile) values. These values are checked whenever data from such a file are read, and an error is signalled if the checksum does not fit to the expected one. Note that several users may access the same data files, and a user should not suffer from perhaps corrupted files that have been downloaded by other users. Thanks to Frank Lübeck for the idea to introduce this consistency test.

  • Whenever StringFile (GAPDoc: StringFile) is called by functions of the package, this happens in the wrapper function AGR.StringFile, in order to replace occasional line breaks of the form "\r\n" by "\n". Apparently it may happen that the "\r" is silently smuggled in when data files get copied to the local computer. Thanks to Marek Mitros for help with detecting and fixing this problem.

  • The function FFMatOrPermCMtxBinary (7.3-5) can now read also permutations stored in binary files that have been created with version 2.4 of the C-MeatAxe; note that this format is different from the one that is written by version 2.3. Conversely, CMtxBinaryFFMatOrPerm (7.3-4) has been generalized such that both formats can be written. The reference to the C-MeatAxe documentation now points to that of version 2.4. Thanks to Jürgen Müller for pointing out this problem.

  • The function MeatAxeString (7.3-2) can now encode permutation matrices in different ways. The mode (the first header entry) can be either 2 (then the positions of the nonzero entries are listed) or 1 or 6 (then all entries of the matrix are listed). In previous versions, the function produced a matrix of mode 2 whenever this was possible, but this behaviour is not useful if the result is not processed by the C-MeatAxe. Thanks to Klaus Lux for pointing out this problem.

  • Depending on the terminal capabilities and the user preference DisplayFunction (see 4.2-11), some non-ASCII characters may appear in the output shown by DisplayAtlasInfo (3.5-1).

1.3-11 What's New in Version 1.5? (July 2011)
  • The function AtlasSubgroup (3.5-9) now admits also the return value of OneAtlasGeneratingSetInfo (3.5-6) or the return value of AtlasGroup (3.5-8) as its first argument. The latter is implemented via the new attribute AtlasRepInfoRecord (3.5-10), which is set in the groups constructed by AtlasGroup (3.5-8).

  • Information about transitivity, rank, primitivity, and point stabilizers of many permutation representations is now available. If applicable then this information appears in the records returned by OneAtlasGeneratingSetInfo (3.5-6), it is part of the overview shown by DisplayAtlasInfo (3.5-1), and it is shown also in the data overview in the web, see Section 4.3.

    Two new manual sections about point stabilizers have been added, see the sections 2.4-6 and 2.4-7.

  • Information about the characters afforded by many matrix and permutation representations is now available. If applicable then this information appears in the records returned by OneAtlasGeneratingSetInfo (3.5-6), for matrix representations it is part of the overview shown by DisplayAtlasInfo (3.5-1), and it is shown also in the data overview in the web, see Section 4.3.

  • The functions Character (Reference: Character for a character table and a list), Identifier (Reference: Identifier for character tables), IsPrimitive (Reference: IsPrimitive), IsTransitive (Reference: IsTransitive), Transitivity (Reference: Transitivity), and RankAction (Reference: RankAction) are now supported as input conditions in DisplayAtlasInfo (3.5-1) and OneAtlasGeneratingSetInfo (3.5-6).

  • It is now possible to restrict the data shown by DisplayAtlasInfo (3.5-1) or returned by OneAtlasGeneratingSetInfo (3.5-6) to private or non-private data.

  • A tutorial for beginners was added to the manual, see Chapter 2, and the manual was restructured.

  • In the overview shown by DisplayAtlasInfo (3.5-1) and in the data overview in the web (see Section 4.3), the ordering of groups was improved such that, e.g., "A9" precedes "A10".

  • The function AtlasClassNames (3.4-2) now admits also a Brauer table as its argument, and works also for character tables of bicyclic extensions of simple groups.

  • The group names that are entered in DisplayAtlasInfo (3.5-1), OneAtlasGeneratingSetInfo (3.5-6), etc., are now case insensitive, and if the package CTblLib is available then the admissible group names for the GAP character table of the group in question can be used in these functions.

  • In order to reduce the number of global variables, several functions have been turned into components of the new global variable AGR (7.1-4). A few of these functions had been documented in the previous version, the old values are still available if the package files gap/obsolete.gd and gap/obsolete.gi have been read. These files are read automatically if GAP's user preference "ReadObsolete" is true when the package gets loaded, see Reference: The gap.ini file.

  • A few nicer characters are used by DisplayAtlasInfo (3.5-1) if GAPInfo.TermEncoding has the value "UTF-8" and if Print (Reference: Print) is not the display function to be used, see Section 4.2-11.

  • A bug in the function ReloadAtlasTableOfContents was fixed. Thanks to Jack Schmidt for reporting this bug.

1.3-12 What's New in Version 1.4? (June 2008)
  • In addition to the group orders that were added in version 1.3 (see Section 1.3-14), also many orders of maximal subgroups are now available. These values occur in the records returned by AtlasProgram (3.5-4) (for the case of "maxes" type programs) and of the three argument version of AtlasGenerators (3.5-3); now a size component may be bound. In these cases, the groups returned by AtlasSubgroup (3.5-9) have the Size (Reference: Size) attribute set.

  • The information about the number of maximal subgroups, if available, is now used in DisplayAtlasInfo (3.5-1).

  • In many cases, straight line programs for computing generators of maximal subgroups of a group \(G\), say, can in fact be used to compute also generators of maximal subgroups of downward extensions of \(G\); if not then it may suffice to extend the given straight line programs by additional generators.

    Currently this yields more than \(200\) new possibilities to compute maximal subgroups, this means a growth by about \(25\) percent. For example, all maximal subgroups of \(12.M_{22}\) and \(2.Fi_{22}\) can now be accessed via AtlasGenerators (3.5-3).

    (Of course this extension means only that one can access the straight line programs in question automatically via the GAP interface. In principle one could have used them already before, by explicitly applying a straight line program for a factor group to generators of a group, and perhaps adding some element in the kernel of the natural epimorphism.)

    For this feature, information about the compatibility of standard generators of groups and their factor groups was added.

  • The bibliographies contained in the ATLAS of Finite Groups [CCN+85] and in the ATLAS of Brauer Characters [JLPW95] are now available as HTML files, as BibXMLext files, and within GAP, see BrowseBibliographySporadicSimple (3.6-2).

  • If the GAP package Browse (see [BL18]) is loaded then the new functions BrowseMinimalDegrees (3.6-1) and BrowseBibliographySporadicSimple (3.6-2) are available; these functions can be called also by choosing the corresponding menu entries of the Browse application BrowseGapData (Browse: BrowseGapData).

  • The function AtlasGroup (3.5-8) now admits also the return value of OneAtlasGeneratingSetInfo (3.5-6) as its argument.

1.3-13 What's New in Version 1.3.1? (October 2007)

This version was mainly released in order to fix a few problems. Now one does not get warnings about unbound variables when the package is loaded and the GAP package IO [Neu14] is not available, and pathological situations in FFMatOrPermCMtxBinary (7.3-5) (concerning extremely short corrupted data files and different byte orderings in binary files) are handled more carefully.

Besides this, the two functions AtlasGroup (3.5-8) and AtlasSubgroup (3.5-9) were introduced, and the extended function QuaternionAlgebra (Reference: QuaternionAlgebra) of GAP 4.4.10 can now be used for describing base rings in OneAtlasGeneratingSetInfo (3.5-6) and AllAtlasGeneratingSetInfos (3.5-7). (This is the reason why this version of the package requires at least version 4.4.10 of GAP.)

1.3-14 What's New in Version 1.3? (June 2007)
  • The database was extended, see Section 4.2-4 for the number and size of files.

  • New data types and corresponding GAP objects have been introduced, for representing semi-presentations, presentations, and programs for finding standard generators. For details, see AtlasProgram (3.5-4), Chapter 6, and Section 7.6.

  • The records returned by the functions AtlasGenerators (3.5-3), OneAtlasGeneratingSetInfo (3.5-6), and AllAtlasGeneratingSetInfos (3.5-7) now contain the name and (if known) the order of the group in question, and also components describing the degree in the case of permutation representations or the dimension and the base ring of the natural module in the case of matrix representations.

  • For many of the groups, information about the minimal degree of faithful permutation representations and the minimal dimensions of faithful matrix representations in various characteristics is available for DisplayAtlasInfo (3.5-1), OneAtlasGeneratingSetInfo (3.5-6), and AllAtlasGeneratingSetInfos (3.5-7), see also Section 6.3. For these functions, also properties such as IsPrimeInt (Reference: IsPrimeInt) can be used to describe the intended restriction of the output.

  • One can now use Pager (Reference: Pager) functionality in DisplayAtlasInfo (3.5-1), see Section 4.2-11.

    An interactive alternative to DisplayAtlasInfo (3.5-1) is provided by the function BrowseAtlasInfo (Browse: BrowseAtlasInfo) from the new (recommended) GAP package Browse (see [BL18]).

  • The functions OneAtlasGeneratingSetInfo (3.5-6) and AllAtlasGeneratingSetInfos (3.5-7) now admit also a list of group names as the first argument.

  • The functions for actually accessing the data are more flexible now, see Section 7.2.

  • For transferring remote data, the GAP package IO (see [Neu14]) can now be used (and is recommended) as an alternative to wget.

  • The address of the data server has changed. The access to the server is no longer possible via ftp, thus the mechanism used up to version 1.2, which was based on ftp, had to be rewritten.

    The main consequence of this change is that information about updates of the table of contents is now provided at the package's homepage. This means that on the one hand, now package users cannot compute the table of contents directly from the server data, but on the other hand the update information can be downloaded without the necessity to install perl.

    Another consequence is that the system program ls is no longer needed, see Section 1.3-16.

  • The package manual has been restructured, extended and improved. It is now based on the package GAPDoc (see [LN18]).

1.3-15 What's New in Version 1.2? (November 2003)

Not much.

The release of Version 1.2 became necessary first of all in order to provide a package version that is compatible with GAP 4.4, since some cross-references into the GAP Reference Manual were broken due to changes of section names. Additionally, several web addresses concerning the package itself were changed and thus had to be adjusted.

This opportunity was used

  • to upgrade the administrational part for loading the package to the mechanism that is recommended for GAP 4.4,

  • to extend the test suite, which now covers more consistency checks using the GAP Character Table Library (see [Bre22]),

  • to make the function ScanMeatAxeFile (7.3-1) more robust, due to the fact that the GAP function PermList (Reference: PermList) now returns fail instead of raising an error,

  • to change the way how representations with prescribed properties are accessed (the new function OneAtlasGeneratingSetInfo (3.5-6) is now preferred to the former OneAtlasGeneratingSet, and AllAtlasGeneratingSetInfos (3.5-7) has been added in order to provide programmatic access in parallel to the human readable descriptions printed by DisplayAtlasInfo (3.5-1)),

  • and last but not least to include the current table of contents of the underlying database.

For AtlasRep users, the new feature of GAP 4.4 is particularly interesting that due to better kernel support, reading large matrices over finite fields is now faster than it was in GAP 4.3.

1.3-16 What's New in Version 1.1? (October 2002)

The biggest change w. r. t. Version 1.1 is the addition of private extensions (see Chapter 5). It includes a new "free format" for straight line programs (see Section 5.2). Unfortunately, this feature requires the system program ls, so it may be not available for example under MS Windows operating systems. [But see Section 1.3-14.]

In order to admit the addition of other types of data, the implementation of several functions has been changed. Data types are described in Section 7.5. An example of a new data type are quaternionic representations (see Section 7.6). The user interface itself (see Chapter 3) remained the same.

As an alternative to perl, one can use wget now for transferring data files (see 4.2).

Data files can be read much more efficiently in GAP 4.3 than in GAP 4.2. In Version 1.1 of the AtlasRep package, this feature is used for reading matrices and permutations in MeatAxe text format with ScanMeatAxeFile (7.3-1). As a consequence, (at least) GAP 4.3 is required for AtlasRep Version 1.1.

The new compress component of the global variable AtlasOfGroupRepresentationsInfo (7.1-5) allows one to store data files automatically in gzipped form.

For matrix representations in characteristic zero, invariant forms and generators for the centralizer algebra are now accessible in GAP if they are contained in the source files –this information had been ignored in Version 1.0.

Additional information is now available via the internet (see 4.3).

The facilities for updating the table of contents have been extended.

The manual is now distributed also in PDF and HTML format; on the other hand, the PostScript format manual is no longer contained in the archives.

Apart from these changes, a few minor bugs in the handling of MeatAxe files have been fixed, typos in the documentation have been corrected, and the syntax checks for ATLAS straight line programs (see 7.4) have been improved.

1.4 Acknowledgements

  • Frank Lübeck and Max Neunhöffer kindly provided the perl script that had been used for fetching remote data until version 1.2. Thanks also to Greg Gamble and Alexander Hulpke for technical hints concerning "standard" perl.

  • Ulrich Kaiser helped with preparing the package for MS Windows.

  • Klaus Lux had the idea to support data extensions, see Chapter 5, he did a lot of beta testing, and helped to fix several bugs.

  • Frank Lübeck contributed the functions CMtxBinaryFFMatOrPerm (7.3-4) and FFMatOrPermCMtxBinary (7.3-5).

  • Frank Lübeck and Max Neunhöffer wrote the GAPDoc package [LN18], which is used for processing the documentation of the AtlasRep package and for processing the bibliographies included in this package (see BrowseBibliographySporadicSimple (3.6-2)),

  • Max Neunhöffer wrote the GAP package IO [Neu14], which is recommended for transferring data.

  • Max Neunhöffer has also suggested the generalization of the data access described in Section 7.2, the admissibility of the function Character (Reference: Character for a character table and a list) as a filter in DisplayAtlasInfo (3.5-1), OneAtlasGeneratingSetInfo (3.5-6), and AllAtlasGeneratingSetInfos (3.5-7), and the variant of AtlasRepInfoRecord (3.5-10) that takes a group name as its input.

  • Gunter Malle suggested to make the information about representations of minimal degree accessible, see Section 6.3.

  • Andries Brouwer suggested to add a tutorial (see Chapter 2), Klaus Lux suggested several improvements of this chapter.

  • The development of this GAP package has been supported by the SFB-TRR 195 "Symbolic Tools in Mathematics and their Applications" (from 2017 until 2022).

Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chap4_mj.html0000644000175000017500000007530514545501244014615 0ustar samsam GAP (AtlasRep) - Chapter 4: Customizations of the AtlasRep Package
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

4 Customizations of the AtlasRep Package

4.1 Installing the AtlasRep Package

To install the package, unpack the archive file in a directory in the pkg directory of your local copy of GAP 4. This might be the pkg directory of the GAP 4 root directory, see Reference: Installing a GAP Package for details. It is however also possible to keep an additional pkg directory somewhere else, see Section Reference: GAP Root Directories. The latter possibility must be chosen if you do not have write access to the GAP root directory.

If it is likely that you will work offline, it makes sense to install the "starter archive" that can be downloaded from the package's homepage.

The package consists entirely of GAP code, no external binaries need to be compiled for the package itself.

After unpacking the package archive, the write permissions for those directories should be checked into which users will download files. Every user can customize these paths via a user preference, see Section 4.2-2, the defaults are the subdirectories data* of the package directory. The recommended permissions under UNIX for the default directories are set as follows.

you@unix> chmod 1777 atlasrep/data*
you@unix> ls -ld atlasrep/data*
drwxrwxrwt   3 you      you          1024 Apr 12 12:34 dataext
drwxrwxrwt   3 you      you          1024 Apr 12 12:34 datagens
drwxrwxrwt   3 you      you          1024 Apr 12 12:34 datapkg
drwxrwxrwt   3 you      you          1024 Apr 12 12:34 dataword

For checking the installation of the package, you should start GAP and call

gap> ReadPackage( "atlasrep", "tst/testinst.g" );

If the installation is o.k. then the GAP prompt appears without anything else being printed; otherwise the output lines tell you what should be changed.

PDF, HTML, and text versions of the package manual are available in the doc directory of the package.

4.2 User Preferences of the AtlasRep Package

This section describes global parameters for which it might make sense to change their defaults, using GAP's user preferences (see Reference: Configuring User preferences).

  • Is access to remote data allowed (see Section 4.2-1)? If yes then also the following parameters are of interest.

    • From where can the data be fetched (see Section 4.2-3)?

    • Where are local copies of these data stored (see Section 4.2-2)?

    • Shall files be compressed after they have been downloaded (see Section 4.2-4)?

  • The following parameters influence reading and writing of local files.

    • What shall actually happen when data are requested by the interface functions (see Section 4.2-5)?

    • If the value of the user preference FileAccessFunctions contains "direct access to a local server", what is its path (see Section 4.2-6)?

    • Shall ScanMeatAxeFile (7.3-1) focus on small runtime or on small space when reading MeatAxe text files (see Section 4.2-7)?

    • Which kind of headers shall MeatAxeString (7.3-2) create (see Section 4.2-8)?

    • Shall MeatAxeString (7.3-2) interpret permutation matrices more as permutations (mode 2) or as matrices (mode 1 or 6) (see Section 4.2-9)?

    • Shall the default for CMtxBinaryFFMatOrPerm (7.3-4) be to write binary files of zero-based or one-based permutations (see Section 4.2-10)?

  • Which function is used by DisplayAtlasInfo (3.5-1) for printing to the screen (see Section 4.2-11)?

  • How does DisplayAtlasInfo (3.5-1) mark data that do not belong to the core database (see Section 4.2-12)?

  • Shall debug messages be printed when local data files are read (see Section 4.2-13)?

4.2-1 User preference AtlasRepAccessRemoteFiles

The value true (the default) allows the AtlasRep package to fetch data files that are not yet locally available. If the value is false then only those data files can be used that are available locally.

If you are working offline then you should set the value to false.

Changing the value in a running GAP session does not affect the information shown by DisplayAtlasInfo (3.5-1), this information depends on the value of the preference at the time when the AtlasRep package and its data extensions get loaded.

4.2-2 User preference AtlasRepDataDirectory

The value must be a string that is either empty or the filename of a directory (in the sense of IsDirectoryPath (Reference: IsDirectoryPath)) that contains the directories in which downloaded data will be stored.

An empty string means that downloaded data are just kept in the GAP session but not saved to local files.

The default depends on the user's permissions for the subdirectories dataext, datagens, dataword of the AtlasRep directory: If these directories are writable for the user then the installation path of the AtlasRep package (including a trailing slash symbol) is taken, otherwise the default is an empty string.

4.2-3 User preference AtlasRepTOCData

The value must be a list of strings of the form "ID|address" where ID is the id of a part of the database and address is an URL or a file path (as an absolute path or relative to the user's home directory, cf. Directory (Reference: Directory)) of a readable JSON format file that contain the table of contents of this part, see StringOfAtlasTableOfContents (5.1-3).

The default lists four entries: the core database, the data distributed with the AtlasRep package, and the data that belong to the packages MFER and CTBlocks.

4.2-4 User preference CompressDownloadedMeatAxeFiles

When used with UNIX, GAP can read gzipped files, see Reference: Saving and Loading a Workspace. If the package's user preference CompressDownloadedMeatAxeFiles has the value true then each MeatAxe format text file that is downloaded from the internet is afterwards compressed with gzip. The default value is false.

Compressing files saves a lot of space if many MeatAxe format files are accessed. (Note that data files in other formats are very small.) For example, at the time of the release of version 2.0 the core database contained about \(8\,400\) data files in MeatAxe format, which needed about \(1\,400\) MB in uncompressed text format and about \(275\) MB in compressed text format.

4.2-5 User preference FileAccessFunctions

This preference allows one to customize what actually happens when data are requested by the interface functions: Is it necessary to download some files? If yes then which files are downloaded? If no then which files are actually read into GAP?

Currently one can choose among the following features.

  1. Download/read MeatAxe text files.

  2. Prefer downloading/reading MeatAxe binary files.

  3. Prefer reading locally available data files.

(Of course files can be downloaded only if the user preference AtlasRepAccessRemoteFiles has the value true, see Section 4.2-1.)

This feature could be used more generally, see Section 7.2 for technical details and the possibility to add other features.

4.2-6 User preference AtlasRepLocalServerPath

If the data of the core database are available locally (for example because one has access to a local mirror of the data) then one may prefer reading these files instead of downloading data. In order to achieve this, one can set the user preference AtlasRepLocalServerPath and add "direct access to a local server" to the user preference FileAccessFunctions, see Section 4.2-5.

The value must be a string that is the filename of a directory (in the sense of IsDirectoryPath (Reference: IsDirectoryPath)) that contains the data of the ATLAS of Group Representations, in the same directory tree structure as on the ATLAS server.

4.2-7 User preference HowToReadMeatAxeTextFiles

The value "fast" means that ScanMeatAxeFile (7.3-1) reads text files via StringFile (GAPDoc: StringFile). Otherwise each file containing a matrix over a finite field is read line by line via ReadLine (Reference: ReadLine), and the GAP matrix is constructed line by line, in a compressed representation (see Reference: Row Vectors over Finite Fields and Reference: Matrices over Finite Fields); this makes it possible to read large matrices in a reasonable amount of space.

The StringFile (GAPDoc: StringFile) approach is faster but needs more intermediate space when text files containing matrices over finite fields are read. For example, a \(4\,370\) by \(4\,370\) matrix over the field with two elements (as occurs for an irreducible representation of the Baby Monster) requires less than \(3\) MB space in GAP but the corresponding MeatAxe format text file is more than \(19\) MB large. This means that when one reads the file with the fast variant, GAP will temporarily grow by more than this value.

Note that this parameter has an effect only when ScanMeatAxeFile (7.3-1) is used. It has no effect for example if MeatAxe binary files are read, cf. FFMatOrPermCMtxBinary (7.3-5).

4.2-8 User preference WriteHeaderFormatOfMeatAxeFiles

This user preference determines the format of the header lines of MeatAxe format strings created by MeatAxeString (7.3-2), see the C-MeatAxe manual [Rin] for details. The following values are supported.

"numeric"

means that the header line of the returned string consists of four integers (in the case of a matrix these are mode, row number, column number and field size),

"numeric (fixed)"

means that the header line of the returned string consists of four integers as in the case "numeric", but additionally each integer is right aligned in a substring of length (at least) six,

"textual"

means that the header line of the returned string consists of assignments such as matrix field=2.

4.2-9 User preference WriteMeatAxeFilesOfMode2

The value true means that the function MeatAxeString (7.3-2) will encode permutation matrices via mode 2 descriptions, that is, the first entry in the header line is 2, and the following lines contain the positions of the nonzero entries. If the value is false (the default) then MeatAxeString (7.3-2) encodes permutation matrices via mode 1 or mode 6 descriptions, that is, the lines contain the matrix entries.

4.2-10 User preference BaseOfMeatAxePermutation

The value \(0\) means that the function CMtxBinaryFFMatOrPerm (7.3-4) writes zero-based permutations, that is, permutations acting on the points from \(0\) to the degree minus one; this is achieved by shifting down all images of the GAP permutation by one. The value \(1\) (the default) means that the permutation stored in the binary file acts on the points from \(1\) to the degree.

Up to version 2.3 of the C-MeatAxe, permutations in binary files were always one-based. Zero-based permutations were introduced in version 2.4.

4.2-11 User preference DisplayFunction

The way how DisplayAtlasInfo (3.5-1) shows the requested overview is controlled by the package AtlasRep's user preference DisplayFunction. The value must be a string that evaluates to a GAP function. The default value is "Print" (see Print (Reference: Print)), other useful values are "PrintFormattedString" (see PrintFormattedString (GAPDoc: PrintFormattedString)) and "AGR.Pager"; the latter means that Pager (Reference: Pager) is called with the formatted option, which is necessary for switching off GAP's automatic line breaking.

4.2-12 User preference AtlasRepMarkNonCoreData

The value is a string (the default is a star '*') that is used in DisplayAtlasInfo (3.5-1) to mark data that do not belong to the core database, see Section  5.2.

4.2-13 User preference DebugFileLoading

If the value is true then debug messages are printed before and after data files get loaded. The default value is false.

4.2-14 User preference AtlasRepJsonFilesAddresses

The value, if set, must be a list of length two, the first entry being an URL describing a directory that contains Json format files of the available matrix representations in characteristic zero, and the second being a directory path where these files shall be stored locally. If the value is set (this is the default) then the functions of the package use the Json format files instead of the GAP format files.

4.3 Web Contents for the AtlasRep Package

The home page of the AtlasRep package provides

4.4 Extending the ATLAS Database

Users who have computed new representations that might be interesting for inclusion into the ATLAS of Group representations can send the data in question to R.A.Wilson@qmul.ac.uk.

It is also possible to make additional representations and programs accessible for the GAP interface, and to use these "private" data in the same way as the core data. See Chapter 5 for details.

Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chap7_mj.html0000644000175000017500000040765614545501244014630 0ustar samsam GAP (AtlasRep) - Chapter 7: Technicalities of the AtlasRep Package
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

7 Technicalities of the AtlasRep Package

This chapter describes those parts of the GAP interface to the ATLAS of Group Representations that do not belong to the user interface (cf. Chapter 3).

Besides global variables used for administrational purposes (see Section 7.1) and several sanity checks (see Section 7.9), they can be regarded as the interface between the data actually contained in the files and the corresponding GAP objects (see Section 7.2, 7.3, 7.4, and 7.5), and the interface between the remote and the local version of the database (see Section 7.6 and 7.8). The former interface contains functions to read and write files in MeatAxe format, which may be interesting for users familiar with MeatAxe standalones (see for example [Rin]). Other low level functions may be undocumented in the sense that they are not described in this manual. Users interested in them may look at the actual implementation in the gap directory of the package, but it may happen that this will be changed in future versions of the package.

7.1 Global Variables Used by the AtlasRep Package

For debugging purposes, AtlasRep functions print information depending on the info level of the info classes InfoAtlasRep (7.1-1), InfoCMeatAxe (7.1-2), and InfoBBox (7.1-3) (cf. Reference: Info Functions).

The info level of an info class can be changed using SetInfoLevel (Reference: InfoLevel). For example, the info level of InfoAtlasRep (7.1-1) can be set to the nonnegative integer \(n\) using SetInfoLevel( InfoAtlasRep, \(n\) ).

7.1-1 InfoAtlasRep
‣ InfoAtlasRep( info class )

If the info level of InfoAtlasRep is at least \(1\) then information about fail results of AtlasRep functions is printed. If the info level is at least \(2\) then also information about calls to external programs is printed. The default level is \(0\), no information is printed on this level.

7.1-2 InfoCMeatAxe
‣ InfoCMeatAxe( info class )

If the info level of InfoCMeatAxe is at least \(1\) then information about fail results of C-MeatAxe functions (see Section 7.3) is printed. The default level is zero, no information is printed on this level.

7.1-3 InfoBBox
‣ InfoBBox( info class )

If the info level of InfoBBox is at least \(1\) then information about fail results of functions dealing with black box programs (see Section 6.2) is printed. The default level is \(0\), no information is printed on this level.

7.1-4 AGR
‣ AGR( global variable )

is a record whose components are functions and data that are used by the high level interface functions. Some of the components are documented, see for example the index of the package manual.

7.1-5 AtlasOfGroupRepresentationsInfo
‣ AtlasOfGroupRepresentationsInfo( global variable )

This is a record that is defined in the file gap/types.g of the package, with the following components.

GAPnames

a list of pairs, each containing the GAP name and the ATLAS-file name of a group, see Section 3.2,

notified

a list used for administrating extensions of the database (see Chapter 5); the value is changed by AtlasOfGroupRepresentationsNotifyData (5.1-1) and AtlasOfGroupRepresentationsForgetData (5.1-2),

characterinfo, permrepinfo, ringinfo

additional information about representations, concerning the afforded characters, the point stabilizers of permutation representations, and the rings of definition of matrix representations; this information is used by DisplayAtlasInfo (3.5-1),

TableOfContents

a record with at most the components core, internal, local, merged, types, and the identifiers of database extensions. The value of the component types is set in AGR.DeclareDataType (7.5-1), and the values of the other components are created by AtlasOfGroupRepresentationsNotifyData (5.1-1).

accessFunctions

a list of records, each describing how to access the data files, see Sections 4.2-5 and 7.2, and

7.2 How to Customize the Access to Data files

By default, locally available data files are stored in prescribed directories, and the files are exactly the text files that have been downloaded from appropriate places in the internet. However, a more flexible approach may be useful.

First, one may want to use different file formats, for example MeatAxe binary files may be provided parallel to MeatAxe text files. Second, one may want to use a different directory structure, for example the same structure as used on some server –this makes sense for example if a local mirror of a server is available, because then one can read the server files directly, without transferring/copying them to another directory.

In order to achieve this (and perhaps more), we admit to customize the meaning of the following three access steps.

Are the required data locally available?

There may be different file formats available, such as text or binary files, and it may happen that the data are available in one file or are distributed to several files.

How can a file be made locally available?

A different remote file may be fetched, or some postprocessing may be required.

How is the data of a file accessed by GAP?

A different function may be needed to evaluate the file contents.

For creating an overview of the locally available data, the first of these steps must be available independent of actually accessing the file in question. For updating the local copy of the server data, the second of the above steps must be available independent of the third one. Therefore, the package provides the possibility to extend the default behaviour by adding new records to the accessFunctions component of AtlasOfGroupRepresentationsInfo (7.1-5). The relevant record components are as follows.

description

This must be a short string that describes for which kinds of files the functions in the current record are intended, which file formats are supported etc. The value is used as key in the user preference FileAccessFunctions, see Section 4.2-5.

location( \(files, type\) )

Let \(files\) be a list of pairs [ dirname, filename ], and \(type\) be the data type (see AGR.DeclareDataType (7.5-1)) to which the files belong. This function must return either the absolute paths where the mechanism implemented by the current record expects the local version of the given files, or fail if this function does not feel responsible for these files.

The files are regarded as not locally available if all installed location functions return either fail or paths of nonexisting files, in the sense of IsExistingFile (Reference: IsExistingFile).

fetch( \(filepath, filename, dirname, type\) )

This function is called if a file is not locally available and if the location function in the current record has returned a list of paths. The argument \(type\) must be the same as for the location function, and \(filepath\) and \(filename\) must be strings (not lists of strings).

The return value must be true if the function succeeded with making the file locally available (including postprocessing if applicable), a string with the contents of the data file if the remote data were directly loaded into the GAP session (if no local caching is possible), and false otherwise.

contents( \(files, type, filepaths\) )

This function is called when the location function in the current record has returned the path(s) \(filepath\), and if either these are paths of existing files or the fetch function in the current record has been called for these paths, and the return value was true. The first three arguments must be the same as for the location function.

The return value must be the contents of the file(s), in the sense that the GAP matrix, matrix list, permutation, permutation list, or program described by the file(s) is returned. This means that besides reading the file(s) via the appropriate function, interpreting the contents may be necessary.

In AGR.FileContents (7.6-2), those records in the accessFunctions component of AtlasOfGroupRepresentationsInfo (7.1-5) are considered –in reversed order– whose description component occurs in the user preference FileAccessFunctions, see Section 4.2-5.

7.3 Reading and Writing MeatAxe Format Files

7.3-1 ScanMeatAxeFile
‣ ScanMeatAxeFile( filename[, q][, "string"] )( function )

Returns: the matrix or list of permutations stored in the file or encoded by the string.

Let filename be the name of a GAP readable file (see Reference: Filename) that contains a matrix or a permutation or a list of permutations in MeatAxe text format (see the section about the program zcv in the C-MeatAxe documentation [Rin]), and let q be a prime power. ScanMeatAxeFile returns the corresponding GAP matrix or list of permutations, respectively.

If the file contains a matrix then the way how it is read by ScanMeatAxeFile depends on the value of the user preference HowToReadMeatAxeTextFiles, see Section 4.2-7.

If the parameter q is given then the result matrix is represented over the field with q elements, the default for q is the field size stored in the file.

If the file contains a list of permutations then it is read with StringFile (GAPDoc: StringFile); the parameter q, if given, is ignored in this case.

If the string "string" is entered as the third argument then the first argument must be a string as obtained by reading a file in MeatAxe text format as a text stream (see InputTextFile (Reference: InputTextFile)). Also in this case, ScanMeatAxeFile returns the corresponding GAP matrix or list of permutations, respectively.

7.3-2 MeatAxeString
‣ MeatAxeString( mat, q )( operation )
‣ MeatAxeString( perms, degree )( operation )
‣ MeatAxeString( perm, q, dims )( operation )
‣ MeatAxeString( intmat )( operation )

Returns: a string encoding the GAP objects given as input in C-MeatAxe text format, see [Rin].

In the first form, for a matrix mat whose entries lie in the finite field with q elements, MeatAxeString returns a string that encodes mat as a matrix over GF(q).

In the second form, for a nonempty list perms of permutations that move only points up to the positive integer degree, MeatAxeString returns a string that encodes perms as permutations of degree degree.

In the third form, for a permutation perm with largest moved point \(n\), say, a prime power q, and a list dims of length two containing two positive integers larger than or equal to \(n\), MeatAxeString returns a string that encodes perm as a matrix over GF(q), of dimensions dims, whose first \(n\) rows and columns describe the permutation matrix corresponding to perm, and the remaining rows and columns are zero.

In the fourth form, for a matrix intmat of integers, MeatAxeString returns a string that encodes intmat as an integer matrix.

When strings are printed to files using PrintTo (Reference: PrintTo) or AppendTo (Reference: AppendTo) then line breaks are inserted whenever lines exceed the number of characters given by the second entry of the list returned by SizeScreen (Reference: SizeScreen), see Reference: Operations for Output Streams. This behaviour is not desirable for creating data files. So the recommended functions for printing the result of MeatAxeString to a file are FileString (GAPDoc: FileString) and WriteAll (Reference: WriteAll).

gap> mat:= [ [ 1, -1 ], [ 0, 1 ] ] * Z(3)^0;;
gap> str:= MeatAxeString( mat, 3 );
"1 3 2 2\n12\n01\n"
gap> mat = ScanMeatAxeFile( str, "string" );
true
gap> str:= MeatAxeString( mat, 9 );
"1 9 2 2\n12\n01\n"
gap> mat = ScanMeatAxeFile( str, "string" );
true
gap> perms:= [ (1,2,3)(5,6) ];;
gap> str:= MeatAxeString( perms, 6 );
"12 1 6 1\n2\n3\n1\n4\n6\n5\n"
gap> perms = ScanMeatAxeFile( str, "string" );
true
gap> str:= MeatAxeString( perms, 8 );
"12 1 8 1\n2\n3\n1\n4\n6\n5\n7\n8\n"
gap> perms = ScanMeatAxeFile( str, "string" );
true

Note that the output of MeatAxeString in the case of permutation matrices depends on the user preference WriteMeatAxeFilesOfMode2.

gap> perm:= (1,2,4);;
gap> str:= MeatAxeString( perm, 3, [ 5, 6 ] );
"2 3 5 6\n2\n4\n3\n1\n5\n"
gap> mat:= ScanMeatAxeFile( str, "string" );;  Print( mat, "\n" );
[ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
  [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
  [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], 
  [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
  [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ]
gap> pref:= UserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2" );;
gap> SetUserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2", true );
gap> MeatAxeString( mat, 3 ) = str;
true
gap> SetUserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2", false );
gap> MeatAxeString( mat, 3 );
"1 3 5 6\n010000\n000100\n001000\n100000\n000010\n"
gap> SetUserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2", pref );

7.3-3 FFList
‣ FFList( F )( function )

Returns: a list of elements in the given finite field.

‣ FFLists( global variable )

FFList is a utility program for the conversion of vectors and matrices from MeatAxe format to GAP format and vice versa. It is used by ScanMeatAxeFile (7.3-1) and MeatAxeString (7.3-2).

For a finite field F, FFList returns a list \(l\) giving the correspondence between the MeatAxe numbering and the GAP numbering of the elements in F.

The element of F corresponding to MeatAxe number \(n\) is \(l[ n+1 ]\), and the MeatAxe number of the field element \(z\) is Position( \(l, z\) ) - 1.

The global variable FFLists is used to store the information about F once it has been computed.

gap> FFList( GF(4) );
[ 0*Z(2), Z(2)^0, Z(2^2), Z(2^2)^2 ]
gap> IsBound( FFLists[4] );
true

The MeatAxe defines the bijection between the elements in the field with \(q = p^d\) elements and the set \(\{ 0, 1, \ldots, q-1 \}\) of integers by assigning the field element \(\sum_{{i=0}}^{{d-1}} c_i z^i\) to the integer \(\sum_{{i=0}}^{{d-1}} c_i p^i\), where the \(c_i\) are in the set \(\{ 0, 1, \ldots, p-1 \}\) and \(z\) is the primitive root of the field with \(q\) elements that corresponds to the residue class of the indeterminate, modulo the ideal spanned by the Conway polynomial of degree \(d\) over the field with \(p\) elements.

The finite fields introduced by the StandardFF package [Lüb21] are supported by FFList and FFLists, in the sense that the bijection defined by StandardIsomorphismGF (StandardFF: StandardIsomorphismGF) is applied automatically when F is a field in the filter IsStandardFiniteField (StandardFF: IsStandardFiniteField).

7.3-4 CMtxBinaryFFMatOrPerm
‣ CMtxBinaryFFMatOrPerm( elm, def, outfile[, base] )( function )

Let the pair \((\textit{elm}, \textit{def})\) be either of the form \((M, q)\) where \(M\) is a matrix over a finite field \(F\), say, with \(q \leq 256\) elements, or of the form \((\pi, n)\) where \(\pi\) is a permutation with largest moved point at most \(n\). Let outfile be a string. CMtxBinaryFFMatOrPerm writes the C-MeatAxe binary format of \(M\), viewed as a matrix over \(F\), or of \(\pi\), viewed as a permutation on the points up to \(n\), to the file with name outfile.

In the case of a permutation \(\pi\), the optional argument base prescribes whether the binary file contains the points from \(0\) to deg\( - 1\) (base\( = 0\), supported by version 2.4 of the C-MeatAxe) or the points from \(1\) to deg (base\( = 1\), supported by older versions of the C-MeatAxe). The default for base is given by the value of the user preference BaseOfMeatAxePermutation, see Section 4.2-10.

(The binary format is described in the C-MeatAxe manual [Rin].)

gap> tmpdir:= DirectoryTemporary();;
gap> mat:= Filename( tmpdir, "mat" );;
gap> q:= 4;;
gap> mats:= GeneratorsOfGroup( GL(10,q) );;
gap> CMtxBinaryFFMatOrPerm( mats[1], q, Concatenation( mat, "1" ) );
gap> CMtxBinaryFFMatOrPerm( mats[2], q, Concatenation( mat, "2" ) );
gap> prm:= Filename( tmpdir, "prm" );;
gap> n:= 200;;
gap> perms:= GeneratorsOfGroup( SymmetricGroup( n ) );;
gap> CMtxBinaryFFMatOrPerm( perms[1], n, Concatenation( prm, "1" ) );
gap> CMtxBinaryFFMatOrPerm( perms[2], n, Concatenation( prm, "2" ) );
gap> CMtxBinaryFFMatOrPerm( perms[1], n, Concatenation( prm, "1a" ), 0 );
gap> CMtxBinaryFFMatOrPerm( perms[2], n, Concatenation( prm, "2b" ), 1 );

7.3-5 FFMatOrPermCMtxBinary
‣ FFMatOrPermCMtxBinary( fname )( function )

Returns: the matrix or permutation stored in the file.

Let fname be the name of a file that contains the C-MeatAxe binary format of a matrix over a finite field or of a permutation, as is described in [Rin]. FFMatOrPermCMtxBinary returns the corresponding GAP matrix or permutation.

gap> FFMatOrPermCMtxBinary( Concatenation( mat, "1" ) ) = mats[1];
true
gap> FFMatOrPermCMtxBinary( Concatenation( mat, "2" ) ) = mats[2];
true
gap> FFMatOrPermCMtxBinary( Concatenation( prm, "1" ) ) = perms[1];
true
gap> FFMatOrPermCMtxBinary( Concatenation( prm, "2" ) ) = perms[2];
true
gap> FFMatOrPermCMtxBinary( Concatenation( prm, "1a" ) ) = perms[1];
true
gap> FFMatOrPermCMtxBinary( Concatenation( prm, "2b" ) ) = perms[2];
true

7.4 Reading and Writing ATLAS Straight Line Programs

7.4-1 ScanStraightLineProgram
‣ ScanStraightLineProgram( filename[, "string"] )( function )

Returns: a record containing the straight line program, or fail.

Let filename be the name of a file that contains a straight line program in the sense that it consists only of lines in the following form.

#\(anything\)

lines starting with a hash sign # are ignored,

echo \(anything\)

lines starting with echo are ignored for the program component of the result record (see below), they are used to set up the bijection between the labels used in the program and conjugacy class names in the case that the program computes dedicated class representatives,

inp \(n\)

means that there are \(n\) inputs, referred to via the labels 1, 2, \(\ldots\), \(n\),

inp \(k\) \(a1\) \(a2\) ... \(ak\)

means that the next \(k\) inputs are referred to via the labels \(a1\), \(a2\), ..., \(ak\),

cjr \(a\) \(b\)

means that \(a\) is replaced by \(b\)^(-1) * \(a\) * \(b\),

cj \(a\) \(b\) \(c\)

means that \(c\) is defined as \(b\)^(-1) * \(a\) * \(b\),

com \(a\) \(b\) \(c\)

means that \(c\) is defined as \(a\)^(-1) * \(b\)^(-1) * \(a\) * \(b\),

iv \(a\) \(b\)

means that \(b\) is defined as \(a\)^(-1),

mu \(a\) \(b\) \(c\)

means that \(c\) is defined as \(a\) * \(b\),

pwr \(a\) \(b\) \(c\)

means that \(c\) is defined as \(b\)^\(a\),

cp \(a\) \(b\)

means that \(b\) is defined as a copy of \(a\),

oup \(l\)

means that there are \(l\) outputs, stored in the labels 1, 2, \(\ldots\), \(l\), and

oup \(l\) \(b1\) \(b2\) ... \(bl\)

means that the next \(l\) outputs are stored in the labels \(b1\), \(b2\), ... \(bl\).

Each of the labels \(a\), \(b\), \(c\) can be any nonempty sequence of digits and alphabet characters, except that the first argument of pwr must denote an integer.

If the inp or oup statements are missing then the input or output, respectively, is assumed to be given by the labels 1 and 2. There can be multiple inp lines at the beginning of the program and multiple oup lines at the end of the program. Only the first inp or oup line may omit the names of the elements. For example, an empty file filename or an empty string string represent a straight line program with two inputs that are returned as outputs.

No command except cjr may overwrite its own input. For example, the line mu a b a is not legal. (This is not checked.)

ScanStraightLineProgram returns a record containing as the value of its component program the corresponding GAP straight line program (see IsStraightLineProgram (Reference: IsStraightLineProgram)) if the input string satisfies the syntax rules stated above, and returns fail otherwise. In the latter case, information about the first corrupted line of the program is printed if the info level of InfoCMeatAxe (7.1-2) is at least \(1\).

If the string "string" is entered as the second argument then the first argument must be a string as obtained by reading a file in MeatAxe text format as a text stream (see InputTextFile (Reference: InputTextFile)). Also in this case, ScanStraightLineProgram returns either a record with the corresponding GAP straight line program or fail.

If the input describes a straight line program that computes certain class representatives of the group in question then the result record also contains the component outputs. Its value is a list of strings, the entry at position \(i\) denoting the name of the class in which the \(i\) output of the straight line program lies; see Section 3.4 for the definition of the class names that occur.

Such straight line programs must end with a sequence of output specifications of the following form.

echo "Classes 1A 2A 3A 5A 5B"
oup 5 3 1 2 4 5

This example means that the list of outputs of the program contains elements of the classes 1A, 2A, 3A, 5A, and 5B (in this order), and that inside the program, these elements are referred to by the five names 3, 1, 2, 4, and 5.

7.4-2 AtlasStringOfProgram
‣ AtlasStringOfProgram( prog[, outputnames] )( function )
‣ AtlasStringOfProgram( prog, "mtx" )( function )

Returns: a string encoding the straight line program/decision in the format used in ATLAS files.

For a straight line program or straight line decision prog (see IsStraightLineProgram (Reference: IsStraightLineProgram) and IsStraightLineDecision (6.1-1)), this function returns a string describing the input format of an equivalent straight line program or straight line decision as used in the data files, that is, the lines are of the form described in ScanStraightLineProgram (7.4-1).

A list of strings that is given as the optional second argument outputnames is interpreted as the class names corresponding to the outputs; this argument has the effect that appropriate echo statements appear in the result string.

If the string "mtx" is given as the second argument then the result has the format used in the C-MeatAxe (see [Rin]) rather than the format described for ScanStraightLineProgram (7.4-1). (Note that the C-MeatAxe format does not make sense if the argument outputnames is given, and that this format does not support inp and oup statements.)

The argument prog must not be a black box program (see IsBBoxProgram (6.2-1)).

gap> str:= "inp 2\nmu 1 2 3\nmu 3 1 2\niv 2 1\noup 2 1 2";;
gap> prg:= ScanStraightLineProgram( str, "string" );
rec( program := <straight line program> )
gap> prg:= prg.program;;
gap> Display( prg );
# input:
r:= [ g1, g2 ];
# program:
r[3]:= r[1]*r[2];
r[2]:= r[3]*r[1];
r[1]:= r[2]^-1;
# return values:
[ r[1], r[2] ]
gap> StringOfResultOfStraightLineProgram( prg, [ "a", "b" ] );
"[ (aba)^-1, aba ]"
gap> AtlasStringOfProgram( prg );
"inp 2\nmu 1 2 3\nmu 3 1 2\niv 2 1\noup 2\n"
gap> prg:= StraightLineProgram( "(a^2b^3)^-1", [ "a", "b" ] );
<straight line program>
gap> Print( AtlasStringOfProgram( prg ) );
inp 2
pwr 2 1 4
pwr 3 2 5
mu 4 5 3
iv 3 4
oup 1 4
gap> prg:= StraightLineProgram( [ [2,3], [ [3,1,1,4], [1,2,3,1] ] ], 2 );
<straight line program>
gap> Print( AtlasStringOfProgram( prg ) );
inp 2
pwr 3 2 3
pwr 4 1 5
mu 3 5 4
pwr 2 1 6
mu 6 3 5
oup 2 4 5
gap> Print( AtlasStringOfProgram( prg, "mtx" ) );
# inputs are expected in 1 2
zsm pwr3 2 3
zsm pwr4 1 5
zmu 3 5 4
zsm pwr2 1 6
zmu 6 3 5
echo "outputs are in 4 5"
gap> str:= "inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5";;
gap> prg:= ScanStraightLineDecision( str );;
gap> AtlasStringOfProgram( prg.program );
"inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5\n"

7.5 Data Types Used in the AtlasRep Package

Each representation or program that is administrated by the AtlasRep package belongs to a unique data type. Informally, examples of data types are "permutation representation", "matrix representation over the integers", or "straight line program for computing class representatives".

The idea is that for each data type, there can be

  • a column of its own in the output produced by DisplayAtlasInfo (3.5-1) when called without arguments or with only argument a list of group names,

  • a line format of its own for the output produced by DisplayAtlasInfo (3.5-1) when called with first argument a group name,

  • an input format of its own for AtlasProgram (3.5-4),

  • an input format of its own for OneAtlasGeneratingSetInfo (3.5-6), and

  • specific tests for the data of this data type; these functions are used by the global tests described in Section 7.9.

Formally, a data type is defined by a record whose components are used by the interface functions. The details are described in the following.

7.5-1 AGR.DeclareDataType
‣ AGR.DeclareDataType( kind, name, record )( function )

Let kind be one of the strings "rep" or "prg", and record be a record. If kind is "rep" then AGR.DeclareDataType declares a new data type of representations, if kind is "prg" then it declares a new data type of programs. The string name is the name of the type, for example "perm", "matff", or "classes". AtlasRep stores the data for each group internally in a record whose component name holds the list of the data about the type with this name.

Mandatory components of record are

FilenameFormat

This defines the format of the filenames containing data of the type in question. The value must be a list that can be used as the second argument of AGR.ParseFilenameFormat (7.6-1), such that only filenames of the type in question match. (It is not checked whether this "detection function" matches exactly one type, so declaring a new type needs care.)

AddFileInfo

This defines the information stored in the table of contents for the data of the type. The value must be a function that takes three arguments (the current list of data for the type and the given group, a list returned by AGR.ParseFilenameFormat (7.6-1) for the given type, and a filename). This function adds the necessary parts of the data entry to the list, and returns true if the data belongs to the type, otherwise false is returned; note that the latter case occurs if the filename matches the format description but additional conditions on the parts of the name are not satisfied (for example integer parts may be required to be positive or prime powers).

ReadAndInterpretDefault

This is the function that does the work for the default contents value of the accessFunctions component of AtlasOfGroupRepresentationsInfo (7.1-5), see Section 7.2. This function must take a path and return the GAP object given by this file.

AddDescribingComponents (for rep only)

This function takes two arguments, a record (that will be returned by AtlasGenerators (3.5-3), OneAtlasGeneratingSetInfo (3.5-6), or AllAtlasGeneratingSetInfos (3.5-7)) and the type record record. It sets the components p, dim, id, and ring that are promised for return values of the abovementioned three functions.

DisplayGroup (for rep only)

This defines the format of the lines printed by DisplayAtlasInfo (3.5-1) for a given group. The value must be a function that takes a list as returned by the function given in the component AddFileInfo, and returns the string to be printed for the representation in question.

Optional components of record are

DisplayOverviewInfo

This is used to introduce a new column in the output of DisplayAtlasInfo (3.5-1) when this is called without arguments or with a list of group names as its only argument. The value must be a list of length three, containing at its first position a string used as the header of the column, at its second position one of the strings "r" or "l", denoting right or left aligned column entries, and at its third position a function that takes two arguments (a list of tables of contents of the AtlasRep package and a group name), and returns a list of length two, containing the string to be printed as the column value and true or false, depending on whether private data is involved or not. (The default is fail, indicating that no new column shall be printed.)

DisplayPRG (for prg only)

This is used in DisplayAtlasInfo (3.5-1) for ATLAS programs. The value must be a function that takes four arguments (a list of tables of contents to examine, a list containing the GAP name and the ATLAS name of the given group, a list of integers or true for the required standardization, and a list of all available standardizations), and returns the list of lines (strings) to be printed as the information about the available programs of the current type and for the given group. (The default is to return an empty list.)

AccessGroupCondition (for rep only)

This is used in DisplayAtlasInfo (3.5-1) and OneAtlasGeneratingSetInfo (3.5-6). The value must be a function that takes two arguments (a list as returned by OneAtlasGeneratingSetInfo (3.5-6), and a list of conditions), and returns true or false, depending on whether the first argument satisfies the conditions. (The default value is ReturnFalse (Reference: ReturnFalse).)

The function must support conditions such as [ IsPermGroup, true ] and [ NrMovedPoints, [ 5, 6 ] ], in general a list of functions followed by a prescribed value, a list of prescribed values, another (unary) function, or the string "minimal". For an overview of the interesting functions, see DisplayAtlasInfo (3.5-1).

AccessPRG (for prg only)

This is used in AtlasProgram (3.5-4). The value must be a function that takes four arguments (the current table of contents, the group name, an integer or a list of integers or true for the required standardization, and a list of conditions given by the optional arguments of AtlasProgram (3.5-4)), and returns either fail or a list that together with the group name forms the identifier of a program that matches the conditions. (The default value is ReturnFail (Reference: ReturnFail).)

AtlasProgram (for prg only)

This is used in AtlasProgram (3.5-4) to create the result value from the identifier. (The default value is AtlasProgramDefault, which works whenever the second entry of the identifier is the filename; this is not the case for example if the program is the composition of several programs.)

AtlasProgramInfo (for prg only)

This is used in AtlasProgramInfo (3.5-5) to create the result value from the identifier. (The default value is AtlasProgramDefault.)

TOCEntryString

This is used in StringOfAtlasTableOfContents (5.1-3). The value must be a function that takes two or three arguments (the name name of the type, a list as returned by AGR.ParseFilenameFormat (7.6-1), and optionally a string that indicates the "remote" format) and returns a string that describes the appropriate data format. (The default value is TOCEntryStringDefault.)

PostprocessFileInfo

This is used in the construction of a table of contents for testing or rearranging the data of the current table of contents. The value must be a function that takes two arguments, the table of contents record and the record in it that belongs to one fixed group. (The default function does nothing.)

SortTOCEntries

This is used in the construction of a table of contents for sorting the entries after they have been added and after the value of the component PostprocessFileInfo has been called. The value must be a function that takes a list as returned by AGR.ParseFilenameFormat (7.6-1), and returns the sorting key. (There is no default value, which means that no sorting is needed.)

TestFileHeaders (for rep only)

This is used in the function AGR.Test.FileHeaders. The value must be a function that takes the same four arguments as AGR.FileContents (7.6-2), except that the third argument is a list as returned by AGR.ParseFilenameFormat (7.6-1). (The default value is ReturnTrue (Reference: ReturnTrue).)

TestFiles (for rep only)

This is used in the function AGR.Test.Files. The format of the value and the default are the same as for the component TestFileHeaders.

TestWords (for prg only)

This is used in the function AGR.Test.Words. The value must be a function that takes five arguments where the first four are the same arguments as for AGR.FileContents (7.6-2), except that the fifth argument is true or false, indicating verbose mode or not.

7.6 Filenames Used in the AtlasRep Package

AtlasRep expects that the filename of each data file describes the contents of the file. This section lists the definitions of the supported structures of filenames.

Each filename consists of two parts, separated by a minus sign -. The first part is always of the form \(groupname\)G\(i\), where the integer \(i\) denotes the \(i\)-th set of standard generators for the group \(G\), say, with ATLAS-file name \(groupname\) (see 3.2). The translations of the name \(groupname\) to the name(s) used within GAP is given by the component GAPnames of AtlasOfGroupRepresentationsInfo (7.1-5).

The names of files that contain straight line programs or straight line decisions have one of the following forms. In each of these cases, the suffix W\(n\) means that \(n\) is the version number of the program.

\(groupname\)G\(i\)-cycW\(n\)

In this case, the file contains a straight line program that returns a list of representatives of generators of maximally cyclic subgroups of \(G\). An example is Co1G1-cycW1.

\(groupname\)G\(i\)-cclsW\(n\)

In this case, the file contains a straight line program that returns a list of conjugacy class representatives of \(G\). An example is RuG1-cclsW1.

\(groupname\)G\(i\)cycW\(n\)-cclsW\(m\)

In this case, the file contains a straight line program that takes the return value of the program in the file \(groupname\)G\(i\)-cycW\(n\) (see above), and returns a list of conjugacy class representatives of \(G\). An example is M11G1cycW1-cclsW1.

\(groupname\)G\(i\)-max\(k\)W\(n\)

In this case, the file contains a straight line program that takes generators of \(G\) w. r. t. the \(i\)-th set of standard generators, and returns a list of generators (in general not standard generators) for a subgroup \(U\) in the \(k\)-th class of maximal subgroups of \(G\). An example is J1G1-max7W1.

\(groupname\)G\(i\)max\(k\)W\(n\)-\(subgroupname\)G\(j\)W\(m\)

In this case, the file contains a straight line program that takes the return value of the program in the file \(groupname\)G\(i\)-max\(k\)W\(n\) (see above), which are generators for a group \(U\), say; \(subgroupname\) is a name for \(U\), and the return value is a list of standard generators for \(U\), w. r. t. the \(j\)-th set of standard generators. (Of course this implies that the groups in the \(k\)-th class of maximal subgroups of \(G\) are isomorphic to the group with name \(subgroupname\).) An example is J1G1max1W1-L211G1W1; the first class of maximal subgroups of the Janko group \(J_1\) consists of groups isomorphic to the linear group \(L_2(11)\), for which standard generators are defined.

\(groupname\)G\(i\)-a\(outname\)W\(n\)

In this case, the file contains a straight line program that takes generators of \(G\) w. r. t. the \(i\)-th set of standard generators, and returns the list of their images under the outer automorphism \(\alpha\) of \(G\) given by the name \(outname\); if this name is empty then \(\alpha\) is the unique nontrivial outer automorphism of \(G\); if it is a positive integer \(k\) then \(\alpha\) is a generator of the unique cyclic order \(k\) subgroup of the outer automorphism group of \(G\); if it is of the form 2_1 or 2a, 4_2 or 4b, 3_3 or 3c \(\ldots\) then \(\alpha\) generates the cyclic group of automorphisms induced on \(G\) by \(G.2_1\), \(G.4_2\), \(G.3_3\) \(\ldots\); finally, if it is of the form \(k\)p\(d\), with \(k\) one of the above forms and \(d\) an integer then \(d\) denotes the number of dashes appended to the automorphism described by \(k\); if \(d = 1\) then \(d\) can be omitted. Examples are A5G1-aW1, L34G1-a2_1W1, U43G1-a2_3pW1, and O8p3G1-a2_2p5W1; these file names describe the outer order \(2\) automorphism of \(A_5\) (induced by the action of \(S_5\)) and the order \(2\) automorphisms of \(L_3(4)\), \(U_4(3)\), and \(O_8^+(3)\) induced by the actions of \(L_3(4).2_1\), \(U_4(3).2_2^{\prime}\), and \(O_8^+(3).2_2^{{\prime\prime\prime\prime\prime}}\), respectively.

\(groupname\)G\(i\)-ker\(factgroupname\)W\(n\)

In this case, the file contains a straight line program that takes generators of \(G\) w. r. t. the \(i\)-th set of standard generators, and returns generators of the kernel of an epimorphism that maps \(G\) to a group with ATLAS-file name \(factgroupname\). An example is 2A5G1-kerA5W1.

\(groupname\)G\(i\)-G\(j\)W\(n\)

In this case, the file contains a straight line program that takes generators of \(G\) w. r. t. the \(i\)-th set of standard generators, and returns standard generators of \(G\) w. r. t. the \(j\)-th set of standard generators. An example is L35G1-G2W1.

\(groupname\)G\(i\)-check\(n\)

In this case, the file contains a straight line decision that takes generators of \(G\), and returns true if these generators are standard generators w. r. t. the \(i\)-th standardization, and false otherwise.

\(groupname\)G\(i\)-P\(n\)

In this case, the file contains a straight line decision that takes some group elements, and returns true if these elements are standard generators for \(G\), w. r. t. the \(i\)-th standardization, and false otherwise.

\(groupname\)G\(i\)-find\(n\)

In this case, the file contains a black box program that takes a group, and returns (if it is successful) a set of standard generators for \(G\), w. r. t. the \(i\)-th standardization.

\(groupname\)G\(i\)-X\(descr\)W\(n\)

In this case, the file contains a straight line program that takes generators of \(G\) w. r. t. the \(i\)-th set of standard generators, and whose return value corresponds to \(descr\). This format is used only in private extensions (see Chapter 5), such a script can be accessed with \(descr\) as the third argument of AtlasProgram (3.5-4).

The names of files that contain group generators have one of the following forms. In each of these cases, \(id\) is a (possibly empty) string that starts with a lowercase alphabet letter (see IsLowerAlphaChar (Reference: IsLowerAlphaChar)), and \(m\) is a nonnegative integer, meaning that the generators are written w. r. t. the \(m\)-th basis (the meaning is defined by the ATLAS developers).

\(groupname\)G\(i\)-f\(q\)r\(dim\)\(id\)B\(m\).m\(nr\)

a file in MeatAxe text file format containing the \(nr\)-th generator of a matrix representation over the field with \(q\) elements, of dimension \(dim\). An example is S5G1-f2r4aB0.m1.

\(groupname\)G\(i\)-p\(n\)\(id\)B\(m\).m\(nr\)

a file in MeatAxe text file format containing the \(nr\)-th generator of a permutation representation on \(n\) points. An example is M11G1-p11B0.m1.

\(groupname\)G\(i\)-Ar\(dim\)\(id\)B\(m\).g

a GAP readable file containing all generators of a matrix representation of dimension \(dim\) over an algebraic number field not specified further. An example is A5G1-Ar3aB0.g.

\(groupname\)G\(i\)-Zr\(dim\)\(id\)B\(m\).g

a GAP readable file containing all generators of a matrix representation over the integers, of dimension \(dim\). An example is A5G1-Zr4B0.g.

\(groupname\)G\(i\)-Hr\(dim\)\(id\)B\(m\).g

a GAP readable file containing all generators of a matrix representation over a quaternion algebra over an algebraic number field, of dimension \(dim\). An example is 2A6G1-Hr2aB0.g.

\(groupname\)G\(i\)-Z\(n\)r\(dim\)\(id\)B\(m\).g

a GAP readable file containing all generators of a matrix representation of dimension \(dim\) over the ring of integers mod \(n\). An example is 2A8G1-Z4r4aB0.g.

7.6-1 AGR.ParseFilenameFormat
‣ AGR.ParseFilenameFormat( string, format )( function )

Returns: a list of strings and integers if string matches format, and fail otherwise.

Let string be a filename, and format be a list \([ [ c_1, c_2, \ldots, c_n ], [ f_1, f_2, \ldots, f_n ] ]\) such that each entry \(c_i\) is a list of strings and of functions that take a character as their argument and return true or false, and such that each entry \(f_i\) is a function for parsing a filename, such as the currently undocumented functions ParseForwards and ParseBackwards.

AGR.ParseFilenameFormat returns a list of strings and integers such that the concatenation of their String (Reference: String) values yields string if string matches format, and fail otherwise. Matching is defined as follows. Splitting string at each minus character (-) yields \(m\) parts \(s_1, s_2, \ldots, s_m\). The string string matches format if \(s_i\) matches the conditions in \(c_i\), for \(1 \leq i \leq n\), in the sense that applying \(f_i\) to \(s_i\) and \(c_i\) yields a non-fail result.

gap> format:= [ [ [ IsChar, "G", IsDigitChar ],
>                 [ "p", IsDigitChar, AGR.IsLowerAlphaOrDigitChar,
>                   "B", IsDigitChar, ".m", IsDigitChar ] ],
>               [ ParseBackwards, ParseForwards ] ];;
gap> AGR.ParseFilenameFormat( "A6G1-p10B0.m1", format );
[ "A6", "G", 1, "p", 10, "", "B", 0, ".m", 1 ]
gap> AGR.ParseFilenameFormat( "A6G1-p15aB0.m1", format );
[ "A6", "G", 1, "p", 15, "a", "B", 0, ".m", 1 ]
gap> AGR.ParseFilenameFormat( "A6G1-f2r16B0.m1", format );
fail

7.6-2 AGR.FileContents
‣ AGR.FileContents( files, type )( function )

Returns: the GAP object obtained from reading and interpreting the file(s) given by files.

Let files be a list of pairs of the form [ dirname, filename ], where dirname and filename are strings, and let type be a data type (see AGR.DeclareDataType (7.5-1)). Each dirname must be one of "datagens", "dataword", or the dirid value of a data extension (see AtlasOfGroupRepresentationsNotifyData (5.1-1)). If the contents of each of the files in question is accessible and their data belong to the data type type then AGR.FileContents returns the contents of the files; otherwise fail is returned.

Note that if some file is already stored in the dirname directory then AGR.FileContents does not check whether the relevant table of contents actually contains filename.

7.7 The record component identifier used by the AtlasRep Package

The functions AtlasGenerators (3.5-3), AtlasProgram (3.5-4), AtlasProgramInfo (3.5-5), OneAtlasGeneratingSetInfo (3.5-6), and AllAtlasGeneratingSetInfos (3.5-7) return records which have a component identifier. The value of this component describes the record in the sense that one can reconstruct the whole record from it, and the identifier value can be used as an input for AtlasGenerators (3.5-3), AtlasProgram (3.5-4), AtlasProgramInfo (3.5-5), AtlasGroup (3.5-8), and AtlasSubgroup (3.5-9).

The identifier component has the following format.

  • For records describing representations, it is a list of the form [ gapname, files, std, info ].

  • For records describing straight line programs and straight line decisions, it is a list of the form [ gapname, files, std ].

Here gapname is the GAP name of the group in question, files defines the data files, std is the standardization of its generators, and info is some information that depends on the type of the representation, for example the number of moved points in the case of a permutation representation.

The files entry has one of the following formats:

  • a string, in the case that exactly one file is needed that does not belong to a private extension; an example of such an identifier value is [ "J1", "J1G1-cycW1", 1 ]

  • a list whose entries are strings (which refer to files from the core part of the database) and pairs of the form [ tocid, file ] (which refer to files from the extension given by tocid); examples of identifier values are [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], [ "2.M12", [ [ "mfer", "2M12G1-cclsW1" ] ], 1 ], [ "2.M12", [ "M12G1-max1W1", [ "internal", "2M12G1-kerM12W1" ] ], 1 ], [ "2.M12", [ [ "mfer", "2M12G1-p24bB0.m1" ], [ "mfer", "2M12G1-p24bB0.m2" ] ], 1, 24 ].

Up to version 1.5 of the AtlasRep package, a different identifier format was used for files from extensions of the database. Namely, the first entry of the list was a pair [ tocid, groupname ], and the second entry was either a string or a list of strings. Note that with that old format, it was not possible to describe a combination of several files from different sources (core part and extension, or different extensions). The function AtlasRepIdentifier (7.7-1) can be used to convert between the two formats.

7.7-1 AtlasRepIdentifier
‣ AtlasRepIdentifier( oldid )( function )
‣ AtlasRepIdentifier( id, "old" )( function )

This function converts between the "old format" (the one used up to version 1.5.1 of the package) and the "new format" (the one used since version 2.0) of the identifier component of the records returned by AtlasRep functions. Note that the two formats differ only for identifier components that describe data from non-core parts of the database.

If the only argument is a list oldid that is an identifier in old format then the function returns the corresponding identifier in new format. If there are two arguments, a list id that is an identifier in new format and the string "old", then the function returns the corresponding identifier in old format if this is possible, and fail otherwise.

gap> id:= [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ];;
gap> AtlasRepIdentifier( id ) = id;
true
gap> id:= [ "L2(8)", "L28G1-check1", 1, 1 ];;
gap> AtlasRepIdentifier( id ) = id;
true
gap> oldid:= [ [ "priv", "C4" ], [ "C4G1-p4B0.m1" ], 1, 4 ];;
gap> newid:= AtlasRepIdentifier( oldid );
[ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ]
gap> oldid = AtlasRepIdentifier( newid, "old" );
true
gap> oldid:= [ [ "priv", "C4" ], "C4G1-max1W1", 1 ];;
gap> newid:= AtlasRepIdentifier( oldid );
[ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ]
gap> oldid = AtlasRepIdentifier( newid, "old" );
true
gap> oldid:= [ [ "priv", "C4" ], "C4G1-Ar1aB0.g", 1, 1 ];;
gap> newid:= AtlasRepIdentifier( oldid );
[ "C4", [ [ "priv", "C4G1-Ar1aB0.g" ] ], 1, 1 ]
gap> oldid = AtlasRepIdentifier( newid, "old" );
true
gap> oldid:= [ [ "priv", "C4" ], "C4G1-XtestW1", 1 ];;
gap> newid:= AtlasRepIdentifier( oldid );
[ "C4", [ [ "priv", "C4G1-XtestW1" ] ], 1 ]
gap> oldid = AtlasRepIdentifier( newid, "old" );
true
gap> oldid:= [ [ "mfer", "2.M12" ],
>  [ "2M12G1-p264aB0.m1", "2M12G1-p264aB0.m2" ], 1, 264 ];;
gap> newid:= AtlasRepIdentifier( oldid );
[ "2.M12", 
  [ [ "mfer", "2M12G1-p264aB0.m1" ], [ "mfer", "2M12G1-p264aB0.m2" ] ]
    , 1, 264 ]
gap> oldid = AtlasRepIdentifier( newid, "old" );
true

7.8 The Tables of Contents of the AtlasRep Package

The list of AtlasRep data is stored in several tables of contents, which are given essentially by JSON documents, one for the core data and one for each data extension in the sense of Chapter 5. The only exception are data extensions by locally available files in a given directory, where the contents of this directory itself describes the data in question. One can create such a JSON document for the contents of a given local data directory with the function StringOfAtlasTableOfContents (5.1-3).

Here are the administrational functions that are called when a data extension gets notified with AtlasOfGroupRepresentationsNotifyData (5.1-1). In each case, \(gapname\) and \(atlasname\) denote the GAP and ATLAS name of the group in question (see Section 3.2), and \(dirid\) denotes the identifier of the data extension.

The following functions define group names, available representations, and straight line programs.

AGR.GNAN( \(gapname, atlasname[, dirid]\) )

Called with two strings \(gapname\) (the GAP name of the group) and \(atlasname\) (the ATLAS name of the group), AGR.GNAN stores the information in the list AtlasOfGroupRepresentationsInfo.GAPnames, which defines the name mapping between the ATLAS names and GAP names of the groups.

An example of a valid call is AGR.GNAN("A5.2","S5").

AGR.TOC( \(typename, filename, crc[, dirid]\) )

AGR.TOC notifies an entry to the TableOfContents.( \(dirid\) ) component of AtlasOfGroupRepresentationsInfo (7.1-5). The string \(typename\) must be the name of the data type to which the entry belongs, the string \(filename\) must be the prefix of the data file(s), and \(crc\) must be a list that contains the checksums of the data files, which are either integers (see CrcFile (Reference: CrcFile)) or strings (see HexSHA256). In particular, the number of files that are described by the entry equals the length of \(crc\).

The optional argument \(dirid\) is equal to the argument with the same name in the corresponding call of AtlasOfGroupRepresentationsNotifyData (5.1-1). If no \(dirid\) argument is given then the current value of AGR.DIRID is taken as the default; this value is set automatically before a toc.json file gets evaluated by AtlasOfGroupRepresentationsNotifyData (5.1-1), and is reset afterwards. If AGR.DIRID is not bound and \(dirid\) is not given then this function has no effect.

An example of a valid call is AGR.TOC("perm","alt/A5/mtx/S5G1-p5B0.m", [-3581724,115937465]).

The following functions add data about the groups and their standard generators. The function calls must be executed after the corresponding AGR.GNAN calls.

AGR.GRS( \(gapname, size[, dirid]\) )

The integer \(size\) is stored as the order of the group with GAP name \(gapname\), in AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.GRS("A5.2",120).

AGR.MXN( \(gapname, nrMaxes[, dirid]\) )

The integer \(nrMaxes\) is stored as the number of classes of maximal subgroups of the group with GAP name \(gapname\), in AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.MXN("A5.2",4).

AGR.MXO( \(gapname, sizesMaxes[, dirid]\) )

The list \(sizesMaxes\) of subgroup orders of the classes of maximal subgroups of the group with GAP name \(gapname\) (not necessarily dense, in non-increasing order) is stored in AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.MXO("A5.2",[60,24,20,12]).

AGR.MXS( \(gapname, structureMaxes[, dirid]\) )

The list \(structureMaxes\) of strings describing the structures of the maximal subgroups of the group with GAP name \(gapname\) (not necessarily dense), is stored in AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.MXS("A5.2",["A5","S4","5:4","S3x2"]).

AGR.STDCOMP( \(gapname, factorCompatibility[, dirid]\) )

The list \(factorCompatibility\) (with entries the standardization of the group with GAP name \(gapname\) , the GAP name of a factor group, the standardization of this factor group, and true or false, indicating whether mapping the standard generators for \(gapname\) to those of \(factgapname\) defines an epimorphism) is stored in AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.STDCOMP("2.A5.2",[1,"A5.2",1,true]).

The following functions add data about representations or straight line programs that are already known. The function calls must be executed after the corresponding AGR.TOC calls.

AGR.RNG( \(repname, descr[, dirid]\) )

Called with two strings \(repname\) (denoting the name of a file containing the generators of a matrix representation over a ring that is not determined by the filename) and \(descr\) (describing this ring \(R\), say), AGR.RNG adds the triple \([ repname, descr, R ]\) to the list stored in the ringinfo component of AtlasOfGroupRepresentationsInfo (7.1-5).

An example of a valid call is AGR.RNG("A5G1-Ar3aB0","Field([Sqrt(5)])").

AGR.TOCEXT( \(atlasname, std, maxnr, files[, dirid]\) )

Called with \(atlasname\), the positive integers \(std\) (the standardization) and \(maxnr\) (the number of the class of maximal subgroups), and the list \(files\) (of filenames of straight line programs for computing generators of the \(maxnr\)-th maximal subgroup, using a straight line program for a factor group plus perhaps some straight line program for computing kernel generators), AGR.TOCEXT stores the information in AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.TOCEXT("2A5",1,3,["A5G1-max3W1"]).

AGR.API( \(repname, info[, dirid]\) )

Called with the string \(repname\) (denoting the name of a permutation representation) and the list \(info\) (describing the point stabilizer of this representation), AGR.API binds the component \(repname\) of the record AtlasOfGroupRepresentationsInfo.permrepinfo to a record that describes the contents of \(info\).

\(info\) has the following entries.

  • At position \(1\), the transitivity is stored.

  • If the transitivity is zero then \(info\) has length two, and the second entry is the list of orbit lengths.

  • If the transitivity is positive then \(info\) has length four or five, and the second entry is the rank of the action.

  • If the transitivity is positive then the third entry is one of the strings "prim", "imprim", denoting primitivity or not.

  • If the transitivity is positive then the fourth entry is either the string "???" or a string that describes the structure of the point stabilizer. If the third entry is "imprim" then this description consists of a subgroup part and a maximal subgroup part, separated by " < ".

  • If the third entry is "prim" then the fifth entry is either the string "???" or the number of the class of maximal subgroups that are the point stabilizers.

An example of a valid call is AGR.API("A5G1-p5B0",[3,2,"prim","A4",1]).

AGR.CHAR( \(gapname, repname, char, pos[, charname[, dirid]]\) )

Called with the strings \(gapname\) and \(repname\) (denoting the name of the representation), the integer \(char\) (the characteristic of the representation), and \(pos\) (the position or list of positions of the irreducible constituent(s)), AGR.CHAR stores the information in AtlasOfGroupRepresentationsInfo.characterinfo.

A string describing the character can be entered as \(charname\).

If \(dirid\) is given but no \(charname\) is known then one can enter fail as the fifth argument.

An example of a valid call is AGR.CHAR("M11","M11G1-p11B0",0,[1,2],"1a+10a").

7.9 Sanity Checks for the AtlasRep Package

The file tst/testall.g of the package contains Test (Reference: Test) statements for checking whether the AtlasRep functions behave as documented. One can run these tests by calling ReadPackage( "AtlasRep", "tst/testall.g" ). The examples in the package manual form a part of the tests, they are collected in the file tst/docxpl.tst of the package.

The remainder of this section deals with consistency checks of the data. The tests described in Section 7.9-1 can be used for data from any extension of the database (see Chapter 5), Section 7.9-2 lists tests which apply only to the core part of the database.

All these tests apply only to locally available files (see Section 7.8), no files are downloaded during the tests. Thus the required space and time for running these tests depend on the amount of locally available data.

Some of the tests compute and verify additional data, such as information about point stabilizers of permutation representations. In these cases, output lines starting with #E are error messages that point to inconsistencies, whereas output lines starting with #I inform about data that have been computed and were not yet stored, or about stored data that were not verified. These tests are experimental in the sense that they involve several heuristics. Depending on the data to which they are applied, it may happen that the tests run out of space or do not finish in acceptable time. Please inform the package maintainer if you run into such problems.

7.9-1 Sanity Checks for a Table of Contents

The following tests can be used to check the data that belong to a given part of the database (core data or extension). Each of these tests is given by a function with optional argument \(tocid\), the identifying string that had been entered as the second argument of AtlasOfGroupRepresentationsNotifyData (5.1-1). The contents of the core part can be checked by entering "core", which is also the default for \(tocid\). The function returns false if an error occurs, otherwise true. Currently the following tests of this kind are available. (For some of them, the global option TryToExtendData can be entered in order to try the computation of not yet stored data.)

AGR.Test.GroupOrders()

checks whether the group orders stored in the GAPnames component of AtlasOfGroupRepresentationsInfo (7.1-5) coincide with the group orders computed from an ATLAS permutation representation of degree up to AGR.Test.MaxTestDegree, from the available character table or table of marks with the given name, or from the structure of the name, in the sense that splitting the name at the first dot (.) or colon (:) and applying the same criteria to derive the group order from the two parts may yield enough information.

AGR.Test.Words( [\(tocid\)] )

processes the straight line programs that belong to \(tocid\), using the function stored in the TestWords component of the data type in question.

The straight line programs for the cases listed in AGR.Test.HardCases.TestWords are omitted.

AGR.Test.ClassScripts( [\(tocid\)] )

checks whether the straight line programs that belong to \(tocid\) and that compute representatives of certain conjugacy classes are consistent with information stored on the GAP character table of the group in question, in the sense that the given class names really occur in the character table and that the element orders and centralizer orders for the classes are correct.

AGR.Test.CycToCcls( [\(tocid\)][:TryToExtendData] )

checks whether all straight line programs that belong to \(tocid\) and that compute class representatives from representatives of cyclic subgroups possess a corresponding straight line program (anywhere in the database) for computing representatives of cyclic subgroups.

AGR.Test.FileHeaders( [\(tocid\)] )

checks whether the MeatAxe text files that belong to \(tocid\) have a header line that is consistent with the filename, and whether the contents of all GAP format data files that belong to \(tocid\) is consistent with the filename.

AGR.Test.Files( [\(tocid\)] )

checks whether the MeatAxe text files that belong to \(tocid\) can be read with ScanMeatAxeFile (7.3-1) such that the result is not fail. The function does not check whether the first line of a MeatAxe text file is consistent with the filename, since this can be tested with AGR.Test.FileHeaders.

AGR.Test.BinaryFormat( [\(tocid\)] )

checks whether all MeatAxe text files that belong to \(tocid\) satisfy that applying first CMtxBinaryFFMatOrPerm (7.3-4) and then FFMatOrPermCMtxBinary (7.3-5) yields the same object.

AGR.Test.Primitivity( [\(tocid\)][:TryToExtendData] )

checks the stored primitivity information for the permutation representations that belong to \(tocid\). That is, the number of orbits, in case of a transitive action the transitivity, the rank, the information about the point stabilizers are computed if possible, and compared with the stored information.

AGR.Test.Characters( [\(tocid\)][:TryToExtendData] )

checks the character information (that belongs to \(tocid\)) for the matrix and permutation representations.

AGR.Test.StdCompatibility( [\(tocid\)][:TryToExtendData] )

checks whether the information about the compatibility of standard generators of a group and its factor groups that is stored in the GAPnames component of AtlasOfGroupRepresentationsInfo (7.1-5) and belongs to \(tocid\) coincides with computed values.

The following criterion is used for computing the value for a group \(G\). Use the GAP Character Table Library to determine factor groups \(F\) of \(G\) for which standard generators are defined and moreover a presentation in terms of these standard generators is known. Evaluate the relators of the presentation in the standard generators of \(G\), and let \(N\) be the normal closure of these elements in \(G\). Then mapping the standard generators of \(F\) to the \(N\)-cosets of the standard generators of \(G\) is an epimorphism. If \(|G/N| = |F|\) holds then \(G/N\) and \(F\) are isomorphic, and the standard generators of \(G\) and \(F\) are compatible in the sense that mapping the standard generators of \(G\) to their \(N\)-cosets yields standard generators of \(F\).

AGR.Test.KernelGenerators( [\(tocid\)][:TryToExtendData] )

checks whether the straight line programs (that belong to \(tocid\)) for computing generators of kernels of natural epimorphisms between ATLAS groups compute generators of normal subgroups of the right group orders. If it is known that the given standard generators of the given group are compatible with some standard generators of the factor group in question (see the section about AGR.Test.StdCompatibility) then it is also checked whether evaluating the straight line program at these standard generators of the factor group yields only the identity.

Note that the verification of normal subgroups of matrix groups may be very time and space consuming if the package recog [NSA+18] is not available.

The function also tries to find words for computing kernel generators of those epimorphisms for which no straight line programs are stored; the candidates are given by stored factor fusions between the character tables from the GAP Character Table Library.

AGR.Test.MaxesOrders( [\(tocid\)] )

checks whether the orders of maximal subgroups stored in the component GAPnames of AtlasOfGroupRepresentationsInfo (7.1-5) coincide with the orders computed from the restriction of an ATLAS permutation representation of degree up to AGR.Test.MaxTestDegree (using a straight line program that belongs to \(tocid\)), from the character table, or the table of marks with the given name, or from the information about maximal subgroups of the factor group modulo a normal subgroup that is contained in the Frattini subgroup.

AGR.Test.MaxesStructure()

checks whether the names of maximal subgroups stored in the component GAPnames of AtlasOfGroupRepresentationsInfo (7.1-5) coincide with the names computed from the GAP character table with the given name.

AGR.Test.MaxesStandardization( [\(tocid\)] )

checks whether the straight line programs (that belong to \(tocid\)) for standardizing the generators of maximal subgroups are correct: If a semi-presentation is available for the maximal subgroup and the standardization in question then it is used, otherwise an explicit isomorphism is tried.

AGR.Test.CompatibleMaxes( [\(tocid\)][:TryToExtendData] )

checks whether the information about deriving straight line programs for restricting to subgroups from straight line programs that belong to a factor group coincide with computed values.

The following criterion is used for computing the value for a group \(G\). If \(F\) is a factor group of \(G\) such that the standard generators of \(G\) and \(F\) are compatible (see the test function AGR.Test.StdCompatibility) and if there are a presentation for \(F\) and a permutation representation of \(G\) then it is checked whether the "maxes" type straight line programs for \(F\) can be used to compute generators for the maximal subgroups of \(G\); if not then generators of the kernel of the natural epimorphism from \(G\) to \(F\), must be added.

7.9-2 Other Sanity Checks

The tests described in this section are intended for checking data that do not belong to a particular part of the AtlasRep database. Therefore all locally available data are used in these tests. Each of the tests is given by a function without arguments that returns false if a contradiction was found during the test, and true otherwise. Additionally, certain messages are printed when contradictions between stored and computed data are found, when stored data cannot be verified computationally, or when the computations yield improvements of the stored data. Currently the following tests of this kind are available.

AGR.Test.Standardization()

checks whether all generating sets corresponding to the same set of standard generators have the same element orders; for the case that straight line programs for computing certain class representatives are available, also the orders of these representatives are checked w. r. t. all generating sets.

AGR.Test.StdTomLib()

checks whether the standard generators are compatible with those that occur in the TomLib package.

AGR.Test.MinimalDegrees()

checks that the (permutation and matrix) representations available in the database do not have smaller degree than the minimum claimed in Section 6.3.

Finally, we reset the user preference and the info level which had been set at the beginning of Chapter 2.

gap> SetUserPreference( "AtlasRep", "DisplayFunction", origpref );
gap> SetInfoLevel( InfoAtlasRep, globallevel );
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chap3_mj.html0000644000175000017500000042625714545501244014622 0ustar samsam GAP (AtlasRep) - Chapter 3: The User Interface of the AtlasRep Package
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

3 The User Interface of the AtlasRep Package

The user interface is the part of the GAP interface that allows one to display information about the current contents of the database and to access individual data (perhaps by downloading them, see Section 4.2-1). The corresponding functions are described in this chapter. See Section 2.4 for some small examples how to use the functions of the interface.

Data extensions of the AtlasRep package are regarded as another part of the GAP interface, they are described in Chapter 5. Finally, the low level part of the interface is described in Chapter 7.

3.1 Accessing vs. Constructing Representations

Note that accessing the data means in particular that it is not the aim of this package to construct representations from known ones. For example, if at least one permutation representation for a group \(G\) is stored but no matrix representation in a positive characteristic \(p\), say, then OneAtlasGeneratingSetInfo (3.5-6) returns fail when it is asked for a description of an available set of matrix generators for \(G\) in characteristic \(p\), although such a representation can be obtained by reduction modulo \(p\) of an integral matrix representation, which in turn can be constructed from any permutation representation.

3.2 Group Names Used in the AtlasRep Package

When you access data via the AtlasRep package, you specify the group in question by an admissible name. Thus it is essential to know these names, which are called the GAP names of the group in the following.

For a group \(G\), say, whose character table is available in GAP's Character Table Library (see [Bre22]), the admissible names of \(G\) are the admissible names of this character table. One such name is the Identifier (Reference: Identifier for character tables) value of the character table, see CTblLib: Admissible Names for Character Tables in CTblLib. This name is usually very similar to the name used in the ATLAS of Finite Groups [CCN+85]. For example, "M22" is a GAP name of the Mathieu group \(M_{22}\), "12_1.U4(3).2_1" is a GAP name of \(12_1.U_4(3).2_1\), the two names "S5" and "A5.2" are GAP names of the symmetric group \(S_5\), and the two names "F3+" and "Fi24'" are GAP names of the simple Fischer group \(Fi_{24}^\prime\).

When a GAP name is required as an input of a package function, this input is case insensitive. For example, both "A5" and "a5" are valid arguments of DisplayAtlasInfo (3.5-1).

Internally, for example as part of filenames (see Section 7.6), the package uses names that may differ from the GAP names; these names are called ATLAS-file names. For example, "A5", "TE62", and "F24" are ATLAS-file names. Of these, only "A5" is also a GAP name, but the other two are not; corresponding GAP names are "2E6(2)" and "Fi24'", respectively.

3.3 Standard Generators Used in the AtlasRep Package

For the general definition of standard generators of a group, see [Wil96].

Several different standard generators may be defined for a group, the definitions for each group that occurs in the ATLAS of Group Representations can be found at

http://atlas.math.rwth-aachen.de/Atlas/v3.

When one specifies the standardization, the \(i\)-th set of standard generators is denoted by the number \(i\). Note that when more than one set of standard generators is defined for a group, one must be careful to use compatible standardization. For example, the straight line programs, straight line decisions and black box programs in the database refer to a specific standardization of their inputs. That is, a straight line program for computing generators of a certain subgroup of a group \(G\) is defined only for a specific set of standard generators of \(G\), and applying the program to matrix or permutation generators of \(G\) but w. r. t. a different standardization may yield unpredictable results. Therefore the results returned by the functions described in this chapter contain information about the standardizations they refer to.

3.4 Class Names Used in the AtlasRep Package

For each straight line program (see AtlasProgram (3.5-4)) that is used to compute lists of class representatives, it is essential to describe the classes in which these elements lie. Therefore, in these cases the records returned by the function AtlasProgram (3.5-4) contain a component outputs with value a list of class names.

Currently we define these class names only for simple groups and certain extensions of simple groups, see Section 3.4-1. The function AtlasClassNames (3.4-2) can be used to compute the list of class names from the character table in the GAP Library.

3.4-1 Definition of ATLAS Class Names

For the definition of class names of an almost simple group, we assume that the ordinary character tables of all nontrivial normal subgroups are shown in the ATLAS of Finite Groups [CCN+85].

Each class name is a string consisting of the element order of the class in question followed by a combination of capital letters, digits, and the characters ' and - (starting with a capital letter). For example, 1A, 12A1, and 3B' denote the class that contains the identity element, a class of element order \(12\), and a class of element order \(3\), respectively.

  1. For the table of a simple group, the class names are the same as returned by the two argument version of the GAP function ClassNames (Reference: ClassNames), cf. [CCN+85, Chapter 7, Section 5]: The classes are arranged w. r. t. increasing element order and for each element order w. r. t. decreasing centralizer order, the conjugacy classes that contain elements of order \(n\) are named \(n\)A, \(n\)B, \(n\)C, \(\ldots\); the alphabet used here is potentially infinite, and reads A, B, C, \(\ldots\), Z, A1, B1, \(\ldots\), A2, B2, \(\ldots\).

    For example, the classes of the alternating group \(A_5\) have the names 1A, 2A, 3A, 5A, and 5B.

  2. Next we consider the case of an upward extension \(G.A\) of a simple group \(G\) by a cyclic group of order \(A\). The ATLAS defines class names for each element \(g\) of \(G.A\) only w. r. t. the group \(G.a\), say, that is generated by \(G\) and \(g\); namely, there is a power of \(g\) (with the exponent coprime to the order of \(g\)) for which the class has a name of the same form as the class names for simple groups, and the name of the class of \(g\) w. r. t. \(G.a\) is then obtained from this name by appending a suitable number of dashes '. So dashed class names refer exactly to those classes that are not printed in the ATLAS.

    For example, those classes of the symmetric group \(S_5\) that do not lie in \(A_5\) have the names 2B, 4A, and 6A. The outer classes of the group \(L_2(8).3\) have the names 3B, 6A, 9D, and 3B', 6A', 9D'. The outer elements of order \(5\) in the group \(Sz(32).5\) lie in the classes with names 5B, 5B', 5B'', and 5B'''.

    In the group \(G.A\), the class of \(g\) may fuse with other classes. The name of the class of \(g\) in \(G.A\) is obtained from the names of the involved classes of \(G.a\) by concatenating their names after removing the element order part from all of them except the first one.

    For example, the elements of order \(9\) in the group \(L_2(27).6\) are contained in the subgroup \(L_2(27).3\) but not in \(L_2(27)\). In \(L_2(27).3\), they lie in the classes 9A, 9A', 9B, and 9B'; in \(L_2(27).6\), these classes fuse to 9AB and 9A'B'.

  3. Now we define class names for general upward extensions \(G.A\) of a simple group \(G\). Each element \(g\) of such a group lies in an upward extension \(G.a\) by a cyclic group, and the class names w. r. t. \(G.a\) are already defined. The name of the class of \(g\) in \(G.A\) is obtained by concatenating the names of the classes in the orbit of \(G.A\) on the classes of cyclic upward extensions of \(G\), after ordering the names lexicographically and removing the element order part from all of them except the first one. An exception is the situation where dashed and non-dashed class names appear in an orbit; in this case, the dashed names are omitted.

    For example, the classes 21A and 21B of the group \(U_3(5).3\) fuse in \(U_3(5).S_3\) to the class 21AB, and the class 2B of \(U_3(5).2\) fuses with the involution classes 2B', 2B'' in the groups \(U_3(5).2^{\prime}\) and \(U_3(5).2^{{\prime\prime}}\) to the class 2B of \(U_3(5).S_3\).

    It may happen that some names in the outputs component of a record returned by AtlasProgram (3.5-4) do not uniquely determine the classes of the corresponding elements. For example, the (algebraically conjugate) classes 39A and 39B of the group \(Co_1\) have not been distinguished yet. In such cases, the names used contain a minus sign -, and mean "one of the classes in the range described by the name before and the name after the minus sign"; the element order part of the name does not appear after the minus sign. So the name 39A-B for the group \(Co_1\) means 39A or 39B, and the name 20A-B''' for the group \(Sz(32).5\) means one of the classes of element order \(20\) in this group (these classes lie outside the simple group \(Sz\)).

  4. For a downward extension \(m.G.A\) of an almost simple group \(G.A\) by a cyclic group of order \(m\), let \(\pi\) denote the natural epimorphism from \(m.G.A\) onto \(G.A\). Each class name of \(m.G.A\) has the form nX_0, nX_1 etc., where nX is the class name of the image under \(\pi\), and the indices 0, 1 etc. are chosen according to the position of the class in the lifting order rows for \(G\), see [CCN+85, Chapter 7, Section 7, and the example in Section 8]).

    For example, if \(m = 6\) then 1A_1 and 1A_5 denote the classes containing the generators of the kernel of \(\pi\), that is, central elements of order \(6\).

3.4-2 AtlasClassNames
‣ AtlasClassNames( tbl )( function )

Returns: a list of class names.

Let tbl be the ordinary or modular character table of a group \(G\), say, that is almost simple or a downward extension of an almost simple group and such that tbl is an ATLAS table from the GAP Character Table Library, according to its InfoText (Reference: InfoText) value. Then AtlasClassNames returns the list of class names for \(G\), as defined in Section 3.4-1. The ordering of class names is the same as the ordering of the columns of tbl.

(The function may work also for character tables that are not ATLAS tables, but then clearly the class names returned are somewhat arbitrary.)

gap> AtlasClassNames( CharacterTable( "L3(4).3" ) );
[ "1A", "2A", "3A", "4ABC", "5A", "5B", "7A", "7B", "3B", "3B'", 
  "3C", "3C'", "6B", "6B'", "15A", "15A'", "15B", "15B'", "21A", 
  "21A'", "21B", "21B'" ]
gap> AtlasClassNames( CharacterTable( "U3(5).2" ) );
[ "1A", "2A", "3A", "4A", "5A", "5B", "5CD", "6A", "7AB", "8AB", 
  "10A", "2B", "4B", "6D", "8C", "10B", "12B", "20A", "20B" ]
gap> AtlasClassNames( CharacterTable( "L2(27).6" ) );
[ "1A", "2A", "3AB", "7ABC", "13ABC", "13DEF", "14ABC", "2B", "4A", 
  "26ABC", "26DEF", "28ABC", "28DEF", "3C", "3C'", "6A", "6A'", 
  "9AB", "9A'B'", "6B", "6B'", "12A", "12A'" ]
gap> AtlasClassNames( CharacterTable( "L3(4).3.2_2" ) );
[ "1A", "2A", "3A", "4ABC", "5AB", "7A", "7B", "3B", "3C", "6B", 
  "15A", "15B", "21A", "21B", "2C", "4E", "6E", "8D", "14A", "14B" ]
gap> AtlasClassNames( CharacterTable( "3.A6" ) );
[ "1A_0", "1A_1", "1A_2", "2A_0", "2A_1", "2A_2", "3A_0", "3B_0", 
  "4A_0", "4A_1", "4A_2", "5A_0", "5A_1", "5A_2", "5B_0", "5B_1", 
  "5B_2" ]
gap> AtlasClassNames( CharacterTable( "2.A5.2" ) );
[ "1A_0", "1A_1", "2A_0", "3A_0", "3A_1", "5AB_0", "5AB_1", "2B_0", 
  "4A_0", "4A_1", "6A_0", "6A_1" ]

3.4-3 AtlasCharacterNames
‣ AtlasCharacterNames( tbl )( function )

Returns: a list of character names.

Let tbl be the ordinary or modular character table of a simple group. AtlasCharacterNames returns a list of strings, the \(i\)-th entry being the name of the \(i\)-th irreducible character of tbl; this name consists of the degree of this character followed by distinguishing lowercase letters.

gap> AtlasCharacterNames( CharacterTable( "A5" ) );                   
[ "1a", "3a", "3b", "4a", "5a" ]

3.5 Accessing Data via AtlasRep

The examples shown in this section refer to the situation that no extensions have been notified, and to a perhaps outdated table of contents. That is, the current version of the database may contain more information than is shown here.

3.5-1 DisplayAtlasInfo
‣ DisplayAtlasInfo( [listofnames][,] [std][,] ["contents", sources][,] [...] )( function )
‣ DisplayAtlasInfo( gapname[, std][, ...] )( function )

This function lists the information available via the AtlasRep package, for the given input.

There are essentially three ways of calling this function.

  • If there is no argument or if the first argument is a list listofnames of strings that are GAP names of groups, DisplayAtlasInfo shows an overview of the known information.

  • If the first argument is a string gapname that is a GAP name of a group, DisplayAtlasInfo shows an overview of the information that is available for this group.

  • If the string "contents" is the only argument then the function shows which parts of the database are available; these are at least the "core" part, which means the data from the ATLAS of Group Representations, and the "internal" part, which means the data that are distributed with the AtlasRep package. Other parts can become available by calls to AtlasOfGroupRepresentationsNotifyData (5.1-1). Note that the shown numbers of locally available files depend on what has already been downloaded.

In each case, the information will be printed to the screen or will be fed into a pager, see Section 4.2-11. An interactive alternative to DisplayAtlasInfo is the function BrowseAtlasInfo (Browse: BrowseAtlasInfo), see [BL18].

The following paragraphs describe the structure of the output in the two cases. Examples can be found in Section 3.5-2.

Called without arguments, DisplayAtlasInfo shows a general overview for all groups. If some information is available for the group \(G\), say, then one line is shown for \(G\), with the following columns.

group

the GAP name of \(G\) (see Section 3.2),

#

the number of faithful representations stored for \(G\) that satisfy the additional conditions given (see below),

maxes

the number of available straight line programs for computing generators of maximal subgroups of \(G\),

cl

a + sign if at least one program for computing representatives of conjugacy classes of elements of \(G\) is stored,

cyc

a + sign if at least one program for computing representatives of classes of maximally cyclic subgroups of \(G\) is stored,

out

descriptions of outer automorphisms of \(G\) for which at least one program is stored,

fnd

a + sign if at least one program is available for finding standard generators,

chk

a + sign if at least one program is available for checking whether a set of generators is a set of standard generators, and

prs

a + sign if at least one program is available that encodes a presentation.

Called with a list listofnames of strings that are GAP names of some groups, DisplayAtlasInfo prints the overview described above but restricted to the groups in this list.

In addition to or instead of listofnames, the string "contents" and a description \(sources\) of the data may be given about which the overview is formed. See below for admissible values of \(sources\).

Called with a string gapname that is a GAP name of a group, DisplayAtlasInfo prints an overview of the information that is available for this group. One line is printed for each faithful representation, showing the number of this representation (which can be used in calls of AtlasGenerators (3.5-3)), and a string of one of the following forms; in both cases, \(id\) is a (possibly empty) string.

G <= Sym(\(n\)\(id\))

denotes a permutation representation of degree \(n\), for example G <= Sym(40a) and G <= Sym(40b) denote two (nonequivalent) representations of degree \(40\).

G <= GL(\(n\)\(id\),\(descr\))

denotes a matrix representation of dimension \(n\) over a coefficient ring described by \(descr\), which can be a prime power, (denoting the ring of integers), a description of an algebraic extension field, (denoting an unspecified algebraic extension field), or ℤ/\(m\) for an integer \(m\) (denoting the ring of residues mod \(m\)); for example, G <= GL(2a,4) and G <= GL(2b,4) denote two (nonequivalent) representations of dimension \(2\) over the field with four elements.

After the representations, the programs available for gapname are listed. The following optional arguments can be used to restrict the overviews.

std

must be a positive integer or a list of positive integers; if it is given then only those representations are considered that refer to the std-th set of standard generators or the \(i\)-th set of standard generators, for \(i\) in std (see Section 3.3),

"contents" and \(sources\)

for a string or a list of strings \(sources\), restrict the data about which the overview is formed; if \(sources\) is the string "core" then only data from the ATLAS of Group Representations are considered, if \(sources\) is a string that denotes a data extension in the sense of a dirid argument of AtlasOfGroupRepresentationsNotifyData (5.1-1) then only the data that belong to this data extension are considered; also a list of such strings may be given, then the union of these data is considered,

Identifier and \(id\)

restrict to representations with id component in the list \(id\) (note that this component is itself a list, entering this list is not admissible), or satisfying the function \(id\),

IsPermGroup and true (or false)

restrict to permutation representations (or to representations that are not permutation representations),

NrMovedPoints and \(n\)

for a positive integer, a list of positive integers, or a property \(n\), restrict to permutation representations of degree equal to \(n\), or in the list \(n\), or satisfying the function \(n\),

NrMovedPoints and the string "minimal"

restrict to faithful permutation representations of minimal degree (if this information is available),

IsTransitive and a boolean value

restrict to transitive or intransitive permutation representations where this information is available (if the value true or false is given), or to representations for which this information is not available (if the value fail is given),

IsPrimitive and a boolean value

restrict to primitive or imprimitive permutation representations where this information is available (if the value true or false is given), or to representations for which this information is not available (if the value fail is given),

Transitivity and \(n\)

for a nonnegative integer, a list of nonnegative integers, or a property \(n\), restrict to permutation representations for which the information is available that the transitivity is equal to \(n\), or is in the list \(n\), or satisfies the function \(n\); if \(n\) is fail then restrict to all permutation representations for which this information is not available,

RankAction and \(n\)

for a nonnegative integer, a list of nonnegative integers, or a property \(n\), restrict to permutation representations for which the information is available that the rank is equal to \(n\), or is in the list \(n\), or satisfies the function \(n\); if \(n\) is fail then restrict to all permutation representations for which this information is not available,

IsMatrixGroup and true (or false)

restrict to matrix representations (or to representations that are not matrix representations),

Characteristic and \(p\)

for a prime integer, a list of prime integers, or a property \(p\), restrict to matrix representations over fields of characteristic equal to \(p\), or in the list \(p\), or satisfying the function \(p\) (representations over residue class rings that are not fields can be addressed by entering fail as the value of \(p\)),

Dimension and \(n\)

for a positive integer, a list of positive integers, or a property \(n\), restrict to matrix representations of dimension equal to \(n\), or in the list \(n\), or satisfying the function \(n\),

Characteristic, \(p\), Dimension, and the string "minimal"

for a prime integer \(p\), restrict to faithful matrix representations over fields of characteristic \(p\) that have minimal dimension (if this information is available),

Ring and \(R\)

for a ring or a property \(R\), restrict to matrix representations for which the information is available that the ring spanned by the matrix entries is contained in this ring or satisfies this property (note that the representation might be defined over a proper subring); if \(R\) is fail then restrict to all matrix representations for which this information is not available,

Ring, \(R\), Dimension, and the string "minimal"

for a ring \(R\), restrict to faithful matrix representations over this ring that have minimal dimension (if this information is available),

Character and \(chi\)

for a class function or a list of class functions \(chi\), restrict to representations with these characters (note that the underlying characteristic of the class function, see Section Reference: UnderlyingCharacteristic, determines the characteristic of the representation),

Character and \(name\)

for a string \(name\), restrict to representations for which the character is known to have this name, according to the information shown by DisplayAtlasInfo; if the characteristic is not specified then it defaults to zero,

Character and \(n\)

for a positive integer \(n\), restrict to representations for which the character is known to be the \(n\)-th irreducible character in GAP's library character table of the group in question; if the characteristic is not specified then it defaults to zero,

IsStraightLineProgram and true

restrict to straight line programs, straight line decisions (see Section 6.1), and black box programs (see Section 6.2), and

IsStraightLineProgram and false

restrict to representations.

Note that the above conditions refer only to the information that is available without accessing the representations. For example, if it is not stored in the table of contents whether a permutation representation is primitive then this representation does not match an IsPrimitive condition in DisplayAtlasInfo.

If "minimality" information is requested and no available representation matches this condition then either no minimal representation is available or the information about the minimality is missing. See MinimalRepresentationInfo (6.3-1) for checking whether the minimality information is available for the group in question. Note that in the cases where the string "minimal" occurs as an argument, MinimalRepresentationInfo (6.3-1) is called with third argument "lookup"; this is because the stored information was precomputed just for the groups in the ATLAS of Group Representations, so trying to compute non-stored minimality information (using other available databases) will hardly be successful.

The representations are ordered as follows. Permutation representations come first (ordered according to their degrees), followed by matrix representations over finite fields (ordered first according to the field size and second according to the dimension), matrix representations over the integers, and then matrix representations over algebraic extension fields (both kinds ordered according to the dimension), the last representations are matrix representations over residue class rings (ordered first according to the modulus and second according to the dimension).

The maximal subgroups are ordered according to decreasing group order. For an extension \(G.p\) of a simple group \(G\) by an outer automorphism of prime order \(p\), this means that \(G\) is the first maximal subgroup and then come the extensions of the maximal subgroups of \(G\) and the novelties; so the \(n\)-th maximal subgroup of \(G\) and the \(n\)-th maximal subgroup of \(G.p\) are in general not related. (This coincides with the numbering used for the Maxes (CTblLib: Maxes) attribute for character tables.)

3.5-2 Examples for DisplayAtlasInfo

Here are some examples how DisplayAtlasInfo (3.5-1) can be called, and how its output can be interpreted.

gap> DisplayAtlasInfo( "contents" );
- AtlasRepAccessRemoteFiles: false

- AtlasRepDataDirectory: /home/you/gap/pkg/atlasrep/

ID       | address, version, files                        
---------+------------------------------------------------
core     | http://atlas.math.rwth-aachen.de/Atlas/,
         | version 2019-04-08,                            
         | 10586 files locally available.                 
---------+------------------------------------------------
internal | atlasrep/datapkg,                              
         | version 2019-05-06,                            
         | 276 files locally available.                   
---------+------------------------------------------------
mfer     | http://www.math.rwth-aachen.de/~mfer/datagens/,
         | version 2015-10-06,                            
         | 34 files locally available.                    
---------+------------------------------------------------
ctblocks | ctblocks/atlas/,   
         | version 2019-04-08,                            
         | 121 files locally available.                   

Note: The above output does not fit to the rest of the manual examples, since data extensions except internal have been removed at the beginning of Chapter 2.

The output tells us that two data extensions have been notified in addition to the core data from the ATLAS of Group Representations and the (local) internal data distributed with the AtlasRep package. The files of the extension mfer must be downloaded before they can be read (but note that the access to remote files is disabled), and the files of the extension ctblocks are locally available in the ctblocks/atlas subdirectory of the GAP package directory. This table (in particular the numbers of locally available files) depends on your installation of the package and how many files you have already downloaded.

gap> DisplayAtlasInfo( [ "M11", "A5" ] );
group |  # | maxes | cl | cyc | out | fnd | chk | prs
------+----+-------+----+-----+-----+-----+-----+----
M11   | 42 |     5 |  + |  +  |     |  +  |  +  |  + 
A5*   | 18 |     3 |  + |     |     |     |  +  |  + 

The above output means that the database provides \(42\) representations of the Mathieu group \(M_{11}\), straight line programs for computing generators of representatives of all five classes of maximal subgroups, for computing representatives of the conjugacy classes of elements and of generators of maximally cyclic subgroups, contains no straight line program for applying outer automorphisms (well, in fact \(M_{11}\) admits no nontrivial outer automorphism), and contains straight line decisions that check a set of generators or a set of group elements for being a set of standard generators. Analogously, \(18\) representations of the alternating group \(A_5\) are available, straight line programs for computing generators of representatives of all three classes of maximal subgroups, and no straight line programs for computing representatives of the conjugacy classes of elements, of generators of maximally cyclic subgroups, and no for computing images under outer automorphisms; straight line decisions for checking the standardization of generators or group elements are available.

gap> DisplayAtlasInfo( [ "M11", "A5" ], NrMovedPoints, 11 );
group | # | maxes | cl | cyc | out | fnd | chk | prs
------+---+-------+----+-----+-----+-----+-----+----
M11   | 1 |     5 |  + |  +  |     |  +  |  +  |  + 

The given conditions restrict the overview to permutation representations on \(11\) points. The rows for all those groups are omitted for which no such representation is available, and the numbers of those representations are shown that satisfy the given conditions. In the above example, we see that no representation on \(11\) points is available for \(A_5\), and exactly one such representation is available for \(M_{11}\).

gap> DisplayAtlasInfo( "A5", IsPermGroup, true );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
1: G <= Sym(5)  3-trans., on cosets of A4 (1st max.)
2: G <= Sym(6)  2-trans., on cosets of D10 (2nd max.)
3: G <= Sym(10) rank 3, on cosets of S3 (3rd max.)
gap> DisplayAtlasInfo( "A5", NrMovedPoints, [ 4 .. 9 ] );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.)
2: G <= Sym(6) 2-trans., on cosets of D10 (2nd max.)

The first three representations stored for \(A_5\) are (in fact primitive) permutation representations.

gap> DisplayAtlasInfo( "A5", Dimension, [ 1 .. 3 ] );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
 8: G <= GL(2a,4)                character 2a
 9: G <= GL(2b,4)                character 2b
10: G <= GL(3,5)                 character 3a
12: G <= GL(3a,9)                character 3a
13: G <= GL(3b,9)                character 3b
17: G <= GL(3a,Field([Sqrt(5)])) character 3a
18: G <= GL(3b,Field([Sqrt(5)])) character 3b
gap> DisplayAtlasInfo( "A5", Characteristic, 0 );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
14: G <= GL(4,Z)                 character 4a
15: G <= GL(5,Z)                 character 5a
16: G <= GL(6,Z)                 character 3ab
17: G <= GL(3a,Field([Sqrt(5)])) character 3a
18: G <= GL(3b,Field([Sqrt(5)])) character 3b

The representations with number between \(4\) and \(13\) are (in fact irreducible) matrix representations over various finite fields, those with numbers \(14\) to \(16\) are integral matrix representations, and the last two are matrix representations over the field generated by \(\sqrt{{5}}\) over the rational number field.

gap> DisplayAtlasInfo( "A5", Identifier, "a" );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
 4: G <= GL(4a,2)                character 4a
 8: G <= GL(2a,4)                character 2a
12: G <= GL(3a,9)                character 3a
17: G <= GL(3a,Field([Sqrt(5)])) character 3a

Each of the representations with the numbers \(4, 8, 12\), and \(17\) is labeled with the distinguishing letter a.

gap> DisplayAtlasInfo( "A5", NrMovedPoints, IsPrimeInt );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.)
gap> DisplayAtlasInfo( "A5", Characteristic, IsOddInt );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
 6: G <= GL(4,3)  character 4a
 7: G <= GL(6,3)  character 3ab
10: G <= GL(3,5)  character 3a
11: G <= GL(5,5)  character 5a
12: G <= GL(3a,9) character 3a
13: G <= GL(3b,9) character 3b
gap> DisplayAtlasInfo( "A5", Dimension, IsPrimeInt );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
 8: G <= GL(2a,4)                character 2a
 9: G <= GL(2b,4)                character 2b
10: G <= GL(3,5)                 character 3a
11: G <= GL(5,5)                 character 5a
12: G <= GL(3a,9)                character 3a
13: G <= GL(3b,9)                character 3b
15: G <= GL(5,Z)                 character 5a
17: G <= GL(3a,Field([Sqrt(5)])) character 3a
18: G <= GL(3b,Field([Sqrt(5)])) character 3b
gap> DisplayAtlasInfo( "A5", Ring, IsFinite and IsPrimeField );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
 4: G <= GL(4a,2) character 4a
 5: G <= GL(4b,2) character 2ab
 6: G <= GL(4,3)  character 4a
 7: G <= GL(6,3)  character 3ab
10: G <= GL(3,5)  character 3a
11: G <= GL(5,5)  character 5a

The above examples show how the output can be restricted using a property (a unary function that returns either true or false) that follows NrMovedPoints (Reference: NrMovedPoints for a permutation), Characteristic (Reference: Characteristic), Dimension (Reference: Dimension), or Ring (Reference: Ring) in the argument list of DisplayAtlasInfo (3.5-1).

gap> DisplayAtlasInfo( "A5", IsStraightLineProgram, true );
Programs for G = A5:    (all refer to std. generators 1)
--------------------
- class repres.*      
- presentation        
- maxes (all 3):
  1:  A4              
  2:  D10             
  3:  S3              
- std. gen. checker:
  (check)             
  (pres)              

Straight line programs are available for computing generators of representatives of the three classes of maximal subgroups of \(A_5\), and a straight line decision for checking whether given generators are in fact standard generators is available as well as a presentation in terms of standard generators, see AtlasProgram (3.5-4).

3.5-3 AtlasGenerators
‣ AtlasGenerators( gapname, repnr[, maxnr] )( function )
‣ AtlasGenerators( identifier )( function )

Returns: a record containing generators for a representation, or fail.

In the first form, gapname must be a string denoting a GAP name (see Section 3.2) of a group, and repnr a positive integer. If at least repnr representations for the group with GAP name gapname are available then AtlasGenerators, when called with gapname and repnr, returns an immutable record describing the repnr-th representation; otherwise fail is returned. If a third argument maxnr, a positive integer, is given then an immutable record describing the restriction of the repnr-th representation to the maxnr-th maximal subgroup is returned.

The result record has at least the following components.

contents

the identifier of the part of the database to which the generators belong, for example "core" or "internal",

generators

a list of generators for the group,

groupname

the GAP name of the group (see Section 3.2),

identifier

a GAP object (a list of filenames plus additional information) that uniquely determines the representation, see Section 7.7; the value can be used as identifier argument of AtlasGenerators.

repname

a string that is an initial part of the filenames of the generators.

repnr

the number of the representation in the current session, equal to the argument repnr if this is given.

standardization

the positive integer denoting the underlying standard generators,

type

a string that describes the type of the representation ("perm" for a permutation representation, "matff" for a matrix representation over a finite field, "matint" for a matrix representation over the ring of integers, "matalg" for a matrix representation over an algebraic number field).

Additionally, the following describing components may be available if they are known, and depending on the data type of the representation.

size

the group order,

id

the distinguishing string as described for DisplayAtlasInfo (3.5-1),

charactername

a string that describes the character of the representation,

constituents

a list of positive integers denoting the positions of the irreducible constituents of the character of the representation,

p (for permutation representations)

for the number of moved points,

dim (for matrix representations)

the dimension of the matrices,

ring (for matrix representations)

the ring generated by the matrix entries,

transitivity (for permutation representations)

a nonnegative integer, see Transitivity (Reference: Transitivity),

orbits (for intransitive permutation representations)

the sorted list of orbit lengths on the set of moved points,

rankAction (for transitive permutation representations)

the number of orbits of the point stabilizer on the set of moved points, see RankAction (Reference: RankAction),

stabilizer (for transitive permutation representations)

a string that describes the structure of the point stabilizers,

isPrimitive (for transitive permutation representations)

true if the point stabilizers are maximal subgroups, and false otherwise,

maxnr (for primitive permutation representations)

the number of the class of maximal subgroups that contains the point stabilizers, w. r. t. the Maxes (CTblLib: Maxes) list.

It should be noted that the number repnr refers to the number shown by DisplayAtlasInfo (3.5-1) in the current session; it may be that after the addition of new representations (for example after loading a package that provides some), repnr refers to another representation.

The alternative form of AtlasGenerators, with only argument identifier, can be used to fetch the result record with identifier value equal to identifier. The purpose of this variant is to access the same representation also in different GAP sessions.

gap> gens1:= AtlasGenerators( "A5", 1 );
rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
  contents := "core", generators := [ (1,2)(3,4), (1,3,5) ], 
  groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], 
  isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
  repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", 
  standardization := 1, transitivity := 3, type := "perm" )
gap> gens8:= AtlasGenerators( "A5", 8 );
rec( charactername := "2a", constituents := [ 2 ], contents := "core",
  dim := 2, 
  generators := [ [ [ Z(2)^0, 0*Z(2) ], [ Z(2^2), Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0 ], [ Z(2)^0, Z(2)^0 ] ] ], groupname := "A5",
  id := "a", 
  identifier := [ "A5", [ "A5G1-f4r2aB0.m1", "A5G1-f4r2aB0.m2" ], 1, 
      4 ], repname := "A5G1-f4r2aB0", repnr := 8, ring := GF(2^2), 
  size := 60, standardization := 1, type := "matff" )
gap> gens17:= AtlasGenerators( "A5", 17 );
rec( charactername := "3a", constituents := [ 2 ], contents := "core",
  dim := 3, 
  generators := 
    [ [ [ -1, 0, 0 ], [ 0, -1, 0 ], [ -E(5)-E(5)^4, -E(5)-E(5)^4, 1 ] 
         ], [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] ], 
  groupname := "A5", id := "a", 
  identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], 
  polynomial := [ -1, 1, 1 ], repname := "A5G1-Ar3aB0", repnr := 17, 
  ring := NF(5,[ 1, 4 ]), size := 60, standardization := 1, 
  type := "matalg" )

Each of the above pairs of elements generates a group isomorphic to \(A_5\).

gap> gens1max2:= AtlasGenerators( "A5", 1, 2 );
rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
  contents := "core", generators := [ (1,2)(3,4), (2,3)(4,5) ], 
  groupname := "D10", id := "", 
  identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5, 2 ],
  isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
  repname := "A5G1-p5B0", repnr := 1, size := 10, stabilizer := "A4", 
  standardization := 1, transitivity := 3, type := "perm" )
gap> id:= gens1max2.identifier;;
gap> gens1max2 = AtlasGenerators( id );
true
gap> max2:= Group( gens1max2.generators );;
gap> Size( max2 );
10
gap> IdGroup( max2 ) = IdGroup( DihedralGroup( 10 ) );
true

The elements stored in gens1max2.generators describe the restriction of the first representation of \(A_5\) to a group in the second class of maximal subgroups of \(A_5\) according to the list in the ATLAS of Finite Groups [CCN+85]; this subgroup is isomorphic to the dihedral group \(D_{10}\).

3.5-4 AtlasProgram
‣ AtlasProgram( gapname[, std][, "contents", sources][, "version", vers], ... )( function )
‣ AtlasProgram( identifier )( function )

Returns: a record containing a program, or fail.

In the first form, gapname must be a string denoting a GAP name (see Section 3.2) of a group \(G\), say. If the database contains a straight line program (see Section Reference: Straight Line Programs) or straight line decision (see Section 6.1) or black box program (see Section 6.2) as described by the arguments indicated by ... (see below) then AtlasProgram returns an immutable record containing this program. Otherwise fail is returned.

If the optional argument std is given, only those straight line programs/decisions are considered that take generators from the std-th set of standard generators of \(G\) as input, see Section 3.3.

If the optional arguments "contents" and sources are given then the latter must be either a string or a list of strings, with the same meaning as described for DisplayAtlasInfo (3.5-1).

If the optional arguments "version" and vers are given then the latter must be either a number or a list of numbers, and only those straight line programs/decisions are considered whose version number fits to vers.

The result record has at least the following components.

groupname

the string gapname,

identifier

a GAP object (a list of filenames plus additional information) that uniquely determines the program; the value can be used as identifier argument of AtlasProgram (see below),

program

the required straight line program/decision, or black box program,

standardization

the positive integer denoting the underlying standard generators of \(G\),

version

the substring of the filename of the program that denotes the version of the program.

If the program computes generators of the restriction to a maximal subgroup then also the following components are present.

size

the order of the maximal subgroup,

subgroupname

a string denoting a name of the maximal subgroup.

In the first form, the arguments indicated by ... must be as follows.

(the string "maxes" and) a positive integer \(maxnr\)

the required program computes generators of the \(maxnr\)-th maximal subgroup of the group with GAP name \(gapname\).

In this case, the result record of AtlasProgram also may contain a component size, whose value is the order of the maximal subgroup in question.

the string "maxes" and two positive integers \(maxnr\) and \(std2\)

the required program computes standard generators of the \(maxnr\)-th maximal subgroup of the group with GAP name \(gapname\), w. r. t. the standardization \(std2\).

A prescribed "version" parameter refers to the straight line program for computing the restriction, not to the program for standardizing the result of the restriction.

The meaning of the component size in the result, if present, is the same as in the previous case.

the string "maxstd" and three positive integers \(maxnr\), \(vers\), \(substd\)

the required program computes standard generators of the \(maxnr\)-th maximal subgroup of the group with GAP name \(gapname\) w. r. t. standardization \(substd\); in this case, the inputs of the program are not standard generators of the group with GAP name \(gapname\) but the outputs of the straight line program with version \(vers\) for computing generators of its \(maxnr\)-th maximal subgroup.

the string "kernel" and a string \(factname\)

the required program computes generators of the kernel of an epimorphism from \(G\) to a group with GAP name \(factname\).

one of the strings "classes" or "cyclic"

the required program computes representatives of conjugacy classes of elements or representatives of generators of maximally cyclic subgroups of \(G\), respectively.

See [BSWW01] and [SWW00] for the background concerning these straight line programs. In these cases, the result record of AtlasProgram also contains a component outputs, whose value is a list of class names of the outputs, as described in Section 3.4.

the string "cyc2ccl" (and the string \(vers\))

the required program computes representatives of conjugacy classes of elements from representatives of generators of maximally cyclic subgroups of \(G\). Thus the inputs are the outputs of the program of type "cyclic" whose version is \(vers\).

the strings "cyc2ccl", \(vers1\), "version", \(vers2\)

the required program computes representatives of conjugacy classes of elements from representatives of generators of maximally cyclic subgroups of \(G\), where the inputs are the outputs of the program of type "cyclic" whose version is \(vers1\) and the required program itself has version \(vers2\).

the strings "automorphism" and \(autname\)

the required program computes images of standard generators under the outer automorphism of \(G\) that is given by this string.

Note that a value "2" of \(autname\) means that the square of the automorphism is an inner automorphism of \(G\) (not necessarily the identity mapping) but the automorphism itself is not.

the string "check"

the required result is a straight line decision that takes a list of generators for \(G\) and returns true if these generators are standard generators of \(G\) w. r. t. the standardization std, and false otherwise.

the string "presentation"

the required result is a straight line decision that takes a list of group elements and returns true if these elements are standard generators of \(G\) w. r. t. the standardization std, and false otherwise.

See StraightLineProgramFromStraightLineDecision (6.1-9) for an example how to derive defining relators for \(G\) in terms of the standard generators from such a straight line decision.

the string "find"

the required result is a black box program that takes \(G\) and returns a list of standard generators of \(G\), w. r. t. the standardization std.

the string "restandardize" and an integer \(std2\)

the required result is a straight line program that computes standard generators of \(G\) w. r. t. the \(std2\)-th set of standard generators of \(G\); in this case, the argument std must be given.

the strings "other" and \(descr\)

the required program is described by \(descr\).

The second form of AtlasProgram, with only argument the list identifier, can be used to fetch the result record with identifier value equal to identifier.

gap> prog:= AtlasProgram( "A5", 2 );
rec( groupname := "A5", identifier := [ "A5", "A5G1-max2W1", 1 ], 
  program := <straight line program>, size := 10, 
  standardization := 1, subgroupname := "D10", version := "1" )
gap> StringOfResultOfStraightLineProgram( prog.program, [ "a", "b" ] );
"[ a, bbab ]"
gap> gens1:= AtlasGenerators( "A5", 1 );
rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
  contents := "core", generators := [ (1,2)(3,4), (1,3,5) ], 
  groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], 
  isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
  repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", 
  standardization := 1, transitivity := 3, type := "perm" )
gap> maxgens:= ResultOfStraightLineProgram( prog.program,
>                  gens1.generators );
[ (1,2)(3,4), (2,3)(4,5) ]
gap> maxgens = gens1max2.generators;
true

The above example shows that for restricting representations given by standard generators to a maximal subgroup of \(A_5\), we can also fetch and apply the appropriate straight line program. Such a program (see Reference: Straight Line Programs) takes standard generators of a group –in this example \(A_5\)– as its input, and returns a list of elements in this group –in this example generators of the \(D_{10}\) subgroup we had met above– which are computed essentially by evaluating structured words in terms of the standard generators.

gap> prog:= AtlasProgram( "J1", "cyclic" );
rec( groupname := "J1", identifier := [ "J1", "J1G1-cycW1", 1 ], 
  outputs := [ "6A", "7A", "10B", "11A", "15B", "19A" ], 
  program := <straight line program>, standardization := 1, 
  version := "1" )
gap> gens:= GeneratorsOfGroup( FreeGroup( "x", "y" ) );;
gap> ResultOfStraightLineProgram( prog.program, gens );
[ (x*y)^2*((y*x)^2*y^2*x)^2*y^2, x*y, (x*(y*x*y)^2)^2*y, 
  (x*y*x*(y*x*y)^3*x*y^2)^2*x*y*x*(y*x*y)^2*y, x*y*x*(y*x*y)^2*y, 
  (x*y)^2*y ]

The above example shows how to fetch and use straight line programs for computing generators of representatives of maximally cyclic subgroups of a given group.

3.5-5 AtlasProgramInfo
‣ AtlasProgramInfo( gapname[, std][, "contents", sources][, "version", vers], ... )( function )

Returns: a record describing a program, or fail.

AtlasProgramInfo takes the same arguments as AtlasProgram (3.5-4), and returns a similar result. The only difference is that the records returned by AtlasProgramInfo have no components program and outputs. The idea is that one can use AtlasProgramInfo for testing whether the program in question is available at all, but without downloading files. The identifier component of the result of AtlasProgramInfo can then be used to fetch the program with AtlasProgram (3.5-4).

gap> AtlasProgramInfo( "J1", "cyclic" );
rec( groupname := "J1", identifier := [ "J1", "J1G1-cycW1", 1 ], 
  standardization := 1, version := "1" )

3.5-6 OneAtlasGeneratingSetInfo
‣ OneAtlasGeneratingSetInfo( [gapname][,] [std][,] [...] )( function )

Returns: a record describing a representation that satisfies the conditions, or fail.

Let gapname be a string denoting a GAP name (see Section 3.2) of a group \(G\), say. If the database contains at least one representation for \(G\) with the required properties then OneAtlasGeneratingSetInfo returns a record \(r\) whose components are the same as those of the records returned by AtlasGenerators (3.5-3), except that the component generators is not contained, and an additional component givenRing is present if Ring is one of the arguments in the function call.

The information in givenRing can be used later to construct the matrices over the prescribed ring. Note that this ring may be for example a domain constructed with AlgebraicExtension (Reference: AlgebraicExtension) instead of a field of cyclotomics or of a finite field constructed with GF (Reference: GF for field size).

The component identifier of \(r\) can be used as input for AtlasGenerators (3.5-3) in order to fetch the generators. If no representation satisfying the given conditions is available then fail is returned.

If the argument std is given then it must be a positive integer or a list of positive integers, denoting the sets of standard generators w. r. t. which the representation shall be given (see Section 3.3).

The argument gapname can be missing (then all available groups are considered), or a list of group names can be given instead.

Further restrictions can be entered as arguments, with the same meaning as described for DisplayAtlasInfo (3.5-1). The result of OneAtlasGeneratingSetInfo describes the first generating set for \(G\) that matches the restrictions, in the ordering shown by DisplayAtlasInfo (3.5-1).

Note that even in the case that the user preference AtlasRepAccessRemoteFiles has the value true (see Section 4.2-1), OneAtlasGeneratingSetInfo does not attempt to transfer remote data files, just the table of contents is evaluated. So this function (as well as AllAtlasGeneratingSetInfos (3.5-7)) can be used to check for the availability of certain representations, and afterwards one can call AtlasGenerators (3.5-3) for those representations one wants to work with.

In the following example, we try to access information about permutation representations for the alternating group \(A_5\).

gap> info:= OneAtlasGeneratingSetInfo( "A5" );
rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
  contents := "core", groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], 
  isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
  repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", 
  standardization := 1, transitivity := 3, type := "perm" )
gap> gens:= AtlasGenerators( info.identifier );
rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
  contents := "core", generators := [ (1,2)(3,4), (1,3,5) ], 
  groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], 
  isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
  repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", 
  standardization := 1, transitivity := 3, type := "perm" )
gap> info = OneAtlasGeneratingSetInfo( "A5", IsPermGroup, true );
true
gap> info = OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, "minimal" );
true
gap> info = OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, [ 1 .. 10 ] );
true
gap> OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, 20 );
fail

Note that a permutation representation of degree \(20\) could be obtained by taking twice the primitive representation on \(10\) points; however, the database does not store this imprimitive representation (cf. Section 3.1).

We continue this example. Next we access matrix representations of \(A_5\).

gap> info:= OneAtlasGeneratingSetInfo( "A5", IsMatrixGroup, true );
rec( charactername := "4a", constituents := [ 4 ], contents := "core",
  dim := 4, groupname := "A5", id := "a", 
  identifier := [ "A5", [ "A5G1-f2r4aB0.m1", "A5G1-f2r4aB0.m2" ], 1, 
      2 ], repname := "A5G1-f2r4aB0", repnr := 4, ring := GF(2), 
  size := 60, standardization := 1, type := "matff" )
gap> gens:= AtlasGenerators( info.identifier );
rec( charactername := "4a", constituents := [ 4 ], contents := "core",
  dim := 4, 
  generators := [ <an immutable 4x4 matrix over GF2>, 
      <an immutable 4x4 matrix over GF2> ], groupname := "A5", 
  id := "a", 
  identifier := [ "A5", [ "A5G1-f2r4aB0.m1", "A5G1-f2r4aB0.m2" ], 1, 
      2 ], repname := "A5G1-f2r4aB0", repnr := 4, ring := GF(2), 
  size := 60, standardization := 1, type := "matff" )
gap> info = OneAtlasGeneratingSetInfo( "A5", Dimension, 4 );
true
gap> info = OneAtlasGeneratingSetInfo( "A5", Characteristic, 2 );
true
gap> info2:= OneAtlasGeneratingSetInfo( "A5", Ring, GF(2) );;
gap> info.identifier = info2.identifier; 
true
gap> OneAtlasGeneratingSetInfo( "A5", Characteristic, [2,5], Dimension, 2 );
rec( charactername := "2a", constituents := [ 2 ], contents := "core",
  dim := 2, groupname := "A5", id := "a", 
  identifier := [ "A5", [ "A5G1-f4r2aB0.m1", "A5G1-f4r2aB0.m2" ], 1, 
      4 ], repname := "A5G1-f4r2aB0", repnr := 8, ring := GF(2^2), 
  size := 60, standardization := 1, type := "matff" )
gap> OneAtlasGeneratingSetInfo( "A5", Characteristic, [2,5], Dimension, 1 );
fail
gap> info:= OneAtlasGeneratingSetInfo( "A5", Characteristic, 0,
>                                            Dimension, 4 );
rec( charactername := "4a", constituents := [ 4 ], contents := "core",
  dim := 4, groupname := "A5", id := "", 
  identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], 
  repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60, 
  standardization := 1, type := "matint" )
gap> gens:= AtlasGenerators( info.identifier );
rec( charactername := "4a", constituents := [ 4 ], contents := "core",
  dim := 4, 
  generators := 
    [ 
      [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], 
          [ -1, -1, -1, -1 ] ], 
      [ [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], 
          [ 1, 0, 0, 0 ] ] ], groupname := "A5", id := "", 
  identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], 
  repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60, 
  standardization := 1, type := "matint" )
gap> info = OneAtlasGeneratingSetInfo( "A5", Ring, Integers );
true
gap> info2:= OneAtlasGeneratingSetInfo( "A5", Ring, CF(37) );;
gap> info = info2;
false
gap> Difference( RecNames( info2 ), RecNames( info ) );
[ "givenRing" ]
gap> info2.givenRing;
CF(37)
gap> OneAtlasGeneratingSetInfo( "A5", Ring, Integers mod 77 );
fail
gap> info:= OneAtlasGeneratingSetInfo( "A5", Ring, CF(5), Dimension, 3 );
rec( charactername := "3a", constituents := [ 2 ], contents := "core",
  dim := 3, givenRing := CF(5), groupname := "A5", id := "a", 
  identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], 
  polynomial := [ -1, 1, 1 ], repname := "A5G1-Ar3aB0", repnr := 17, 
  ring := NF(5,[ 1, 4 ]), size := 60, standardization := 1, 
  type := "matalg" )
gap> gens:= AtlasGenerators( info );
rec( charactername := "3a", constituents := [ 2 ], contents := "core",
  dim := 3, 
  generators := 
    [ [ [ -1, 0, 0 ], [ 0, -1, 0 ], [ -E(5)-E(5)^4, -E(5)-E(5)^4, 1 ] 
         ], [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] ], 
  givenRing := CF(5), groupname := "A5", id := "a", 
  identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], 
  polynomial := [ -1, 1, 1 ], repname := "A5G1-Ar3aB0", repnr := 17, 
  ring := NF(5,[ 1, 4 ]), size := 60, standardization := 1, 
  type := "matalg" )
gap> gens2:= AtlasGenerators( info.identifier );;
gap> Difference( RecNames( gens ), RecNames( gens2 ) );
[ "givenRing" ]
gap> OneAtlasGeneratingSetInfo( "A5", Ring, GF(17) );
fail

3.5-7 AllAtlasGeneratingSetInfos
‣ AllAtlasGeneratingSetInfos( [gapname][,] [std][,] [...] )( function )

Returns: the list of all records describing representations that satisfy the conditions.

AllAtlasGeneratingSetInfos is similar to OneAtlasGeneratingSetInfo (3.5-6). The difference is that the list of all records describing the available representations with the given properties is returned instead of just one such component. In particular an empty list is returned if no such representation is available.

gap> AllAtlasGeneratingSetInfos( "A5", IsPermGroup, true );
[ rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
      contents := "core", groupname := "A5", id := "", 
      identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ]
        , isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
      repname := "A5G1-p5B0", repnr := 1, size := 60, 
      stabilizer := "A4", standardization := 1, transitivity := 3, 
      type := "perm" ), 
  rec( charactername := "1a+5a", constituents := [ 1, 5 ], 
      contents := "core", groupname := "A5", id := "", 
      identifier := [ "A5", [ "A5G1-p6B0.m1", "A5G1-p6B0.m2" ], 1, 6 ]
        , isPrimitive := true, maxnr := 2, p := 6, rankAction := 2, 
      repname := "A5G1-p6B0", repnr := 2, size := 60, 
      stabilizer := "D10", standardization := 1, transitivity := 2, 
      type := "perm" ), 
  rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], 
      contents := "core", groupname := "A5", id := "", 
      identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 
          10 ], isPrimitive := true, maxnr := 3, p := 10, 
      rankAction := 3, repname := "A5G1-p10B0", repnr := 3, 
      size := 60, stabilizer := "S3", standardization := 1, 
      transitivity := 1, type := "perm" ) ]

Note that a matrix representation in any characteristic can be obtained by reducing a permutation representation or an integral matrix representation; however, the database does not store such a representation (cf. Section  3.1).

3.5-8 AtlasGroup
‣ AtlasGroup( [gapname][,] [std][,] [...] )( function )
‣ AtlasGroup( identifier )( function )

Returns: a group that satisfies the conditions, or fail.

AtlasGroup takes the same arguments as OneAtlasGeneratingSetInfo (3.5-6), and returns the group generated by the generators component of the record that is returned by OneAtlasGeneratingSetInfo (3.5-6) with these arguments; if OneAtlasGeneratingSetInfo (3.5-6) returns fail then also AtlasGroup returns fail.

gap> g:= AtlasGroup( "A5" );
Group([ (1,2)(3,4), (1,3,5) ])

Alternatively, it is possible to enter exactly one argument, a record identifier as returned by OneAtlasGeneratingSetInfo (3.5-6) or AllAtlasGeneratingSetInfos (3.5-7), or the identifier component of such a record.

gap> info:= OneAtlasGeneratingSetInfo( "A5" );
rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
  contents := "core", groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], 
  isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
  repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", 
  standardization := 1, transitivity := 3, type := "perm" )
gap> AtlasGroup( info );
Group([ (1,2)(3,4), (1,3,5) ])
gap> AtlasGroup( info.identifier );
Group([ (1,2)(3,4), (1,3,5) ])

In the groups returned by AtlasGroup, the value of the attribute AtlasRepInfoRecord (3.5-10) is set. This information is used for example by AtlasSubgroup (3.5-9) when this function is called with second argument a group created by AtlasGroup.

3.5-9 AtlasSubgroup
‣ AtlasSubgroup( gapname[, std][, ...], maxnr )( function )
‣ AtlasSubgroup( identifier, maxnr )( function )
‣ AtlasSubgroup( G, maxnr )( function )

Returns: a group that satisfies the conditions, or fail.

The arguments of AtlasSubgroup, except the last argument maxnr, are the same as for AtlasGroup (3.5-8). If the database provides a straight line program for restricting representations of the group with name gapname (given w. r. t. the std-th standard generators) to the maxnr-th maximal subgroup and if a representation with the required properties is available, in the sense that calling AtlasGroup (3.5-8) with the same arguments except maxnr yields a group, then AtlasSubgroup returns the restriction of this representation to the maxnr-th maximal subgroup.

In all other cases, fail is returned.

Note that the conditions refer to the group and not to the subgroup. It may happen that in the restriction of a permutation representation to a subgroup, fewer points are moved, or that the restriction of a matrix representation turns out to be defined over a smaller ring. Here is an example.

gap> g:= AtlasSubgroup( "A5", NrMovedPoints, 5, 1 );
Group([ (1,5)(2,3), (1,3,5) ])
gap> NrMovedPoints( g );
4

Alternatively, it is possible to enter exactly two arguments, the first being a record identifier as returned by OneAtlasGeneratingSetInfo (3.5-6) or AllAtlasGeneratingSetInfos (3.5-7), or the identifier component of such a record, or a group G constructed with AtlasGroup (3.5-8).

gap> info:= OneAtlasGeneratingSetInfo( "A5" );
rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
  contents := "core", groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], 
  isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
  repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", 
  standardization := 1, transitivity := 3, type := "perm" )
gap> AtlasSubgroup( info, 1 );
Group([ (1,5)(2,3), (1,3,5) ])
gap> AtlasSubgroup( info.identifier, 1 );
Group([ (1,5)(2,3), (1,3,5) ])
gap> AtlasSubgroup( AtlasGroup( "A5" ), 1 );
Group([ (1,5)(2,3), (1,3,5) ])

3.5-10 AtlasRepInfoRecord
‣ AtlasRepInfoRecord( G )( attribute )
‣ AtlasRepInfoRecord( name )( attribute )

Returns: the record stored in the group G when this was constructed with AtlasGroup (3.5-8), or a record with information about the group with name name.

For a group G that has been constructed with AtlasGroup (3.5-8), the value of this attribute is the info record that describes G, in the sense that this record was the first argument of the call to AtlasGroup (3.5-8), or it is the result of the call to OneAtlasGeneratingSetInfo (3.5-6) with the conditions that were listed in the call to AtlasGroup (3.5-8).

gap> AtlasRepInfoRecord( AtlasGroup( "A5" ) );
rec( charactername := "1a+4a", constituents := [ 1, 4 ], 
  contents := "core", groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], 
  isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, 
  repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", 
  standardization := 1, transitivity := 3, type := "perm" )

For a string name that is a GAP name of a group \(G\), say, AtlasRepInfoRecord returns a record that contains information about \(G\) which is used by DisplayAtlasInfo (3.5-1). The following components may be bound in the record.

name

the string name,

nrMaxes

the number of conjugacy classes of maximal subgroups of \(G\),

size

the order of \(G\),

sizesMaxes

a list which contains at position \(i\), if bound, the order of a subgroup in the \(i\)-th class of maximal subgroups of \(G\),

slpMaxes

a list of length two; the first entry is a list of positions \(i\) such that a straight line program for computing the restriction of representations of \(G\) to a subgroup in the \(i\)-th class of maximal subgroups is available via AtlasRep; the second entry is the corresponding list of standardizations of the generators of \(G\) for which these straight line programs are available,

structureMaxes

a list which contains at position \(i\), if bound, a string that describes the structure of the subgroups in the \(i\)-th class of maximal subgroups of \(G\).

gap> AtlasRepInfoRecord( "A5" );
rec( name := "A5", nrMaxes := 3, size := 60, 
  sizesMaxes := [ 12, 10, 6 ], 
  slpMaxes := [ [ 1 .. 3 ], [ [ 1 ], [ 1 ], [ 1 ] ] ], 
  structureMaxes := [ "A4", "D10", "S3" ] )
gap> AtlasRepInfoRecord( "J5" );
rec(  )

3.5-11 EvaluatePresentation
‣ EvaluatePresentation( G, gapname[, std] )( operation )
‣ EvaluatePresentation( gens, gapname[, std] )( operation )

Returns: a list of group elements or fail.

The first argument must be either a group G or a list gens of group generators, and gapname must be a string that is a GAP name (see Section 3.2) of a group \(H\), say. The optional argument std, if given, must be a positive integer that denotes a standardization of generators of \(H\), the default is \(1\).

EvaluatePresentation returns fail if no presentation for \(H\) w. r. t. the standardization std is stored in the database, and otherwise returns the list of results of evaluating the relators of a presentation for \(H\) at gens or the GeneratorsOfGroup (Reference: GeneratorsOfGroup) value of G, respectively. (An error is signalled if the number of generators is not equal to the number of inputs of the presentation.)

The result can be used as follows. Let \(N\) be the normal closure of the the result in G. The factor group G\(/N\) is an epimorphic image of \(H\). In particular, if all entries of the result have order \(1\) then G itself is an epimorphic image of \(H\). Moreover, an epimorphism is given by mapping the std-th standard generators of \(H\) to the \(N\)-cosets of the given generators of G.

gap> g:= MathieuGroup( 12 );;
gap> gens:= GeneratorsOfGroup( g );;  # switch to 2 generators
gap> g:= Group( gens[1] * gens[3], gens[2] * gens[3] );;
gap> EvaluatePresentation( g, "J0" );  # no pres. for group "J0"
fail
gap> relimgs:= EvaluatePresentation( g, "M11" );;
gap> List( relimgs, Order );  # wrong group
[ 3, 1, 5, 4, 10 ]
gap> relimgs:= EvaluatePresentation( g, "M12" );;
gap> List( relimgs, Order );  # generators are not standard
[ 3, 4, 5, 4, 4 ]
gap> g:= AtlasGroup( "M12" );;
gap> relimgs:= EvaluatePresentation( g, "M12", 1 );;
gap> List( relimgs, Order );  # right group, std. generators
[ 1, 1, 1, 1, 1 ]
gap> g:= AtlasGroup( "2.M12" );;
gap> relimgs:= EvaluatePresentation( g, "M12", 1 );;
gap> List( relimgs, Order );  # std. generators for extension
[ 1, 2, 1, 1, 2 ]
gap> Size( NormalClosure( g, SubgroupNC( g, relimgs ) ) );
2

3.5-12 StandardGeneratorsData
‣ StandardGeneratorsData( G, gapname[, std] )( operation )
‣ StandardGeneratorsData( gens, gapname[, std] )( operation )

Returns: a record that describes standard generators of the group in question, or fail, or the string "timeout".

The first argument must be either a group G or a list gens of group generators, and gapname must be a string that is a GAP name (see Section 3.2) of a group \(H\), say. The optional argument std, if given, must be a positive integer that denotes a standardization of generators of \(H\), the default is \(1\).

If the global option projective is given then the group elements must be matrices over a finite field, and the group must be a central extension of the group \(H\) by a normal subgroup that consists of scalar matrices. In this case, all computations will be carried out modulo scalar matrices (in particular, element orders will be computed using ProjectiveOrder (Reference: ProjectiveOrder)), and the returned standard generators will belong to \(H\).

StandardGeneratorsData returns

fail

if no black box program for computing standard generators of \(H\) w. r. t. the standardization std is stored in the database, or if the black box program returns fail because a runtime error occurred or the program has proved that the given group or generators cannot generate a group isomorphic to \(H\),

"timeout"

if the black box program returns "timeout", typically because some elements of a given order were not found among a reasonable number of random elements, or

a record containing standard generators

otherwise.

When the result is not a record then either the group is not isomorphic to \(H\) (modulo scalars if applicable), or we were unlucky with choosing random elements.

When a record is returned and G or the group generated by gens, respectively, is isomorphic to \(H\) (or to a central extension of \(H\) by a group of scalar matrices if the global option projective is given) then the result describes the desired standard generators.

If G or the group generated by gens, respectively, is not isomorphic to \(H\) then it may still happen that StandardGeneratorsData returns a record. For a proof that the returned record describes the desired standard generators, one can use a presentation of \(H\) whose generators correspond to the std-th standard generators, see EvaluatePresentation (3.5-11).

A returned record has the following components.

gapname

the string gapname,

givengens

the list of group generators from which standard generators were computed, either gens or the GeneratorsOfGroup (Reference: GeneratorsOfGroup) value of G,

stdgens

a list of standard generators of the group,

givengenstostdgens

a straight line program that takes givengens as inputs, and returns stdgens,

std

the underlying standardization std.

The first examples show three cases of failure, due to the unavailability of a suitable black box program or to a wrong choice of gapname. (In the search for standard generators of \(M_{11}\) in the group \(M_{12}\), one may or may not find an element whose order does not appear in \(M_{11}\); in the first case, the result is fail, whereas a record is returned in the second case. Both cases occur.)

gap> StandardGeneratorsData( MathieuGroup( 11 ), "J0" );
fail
gap> StandardGeneratorsData( MathieuGroup( 11 ), "M12" );
"timeout"
gap> repeat
>      res:= StandardGeneratorsData( MathieuGroup( 12 ), "M11" );
>    until res = fail;

The next example shows a computation of standard generators for the Mathieu group \(M_{12}\). Using a presentation of \(M_{12}\) w. r. t. these standard generators, we prove that the given group is isomorphic to \(M_{12}\).

gap> gens:= GeneratorsOfGroup( MathieuGroup( 12 ) );;
gap> std:= 1;;
gap> res:= StandardGeneratorsData( gens, "M12", std );;
gap> Set( RecNames( res ) );
[ "gapname", "givengens", "givengenstostdgens", "std", "stdgens" ]
gap> gens = res.givengens;
true
gap> ResultOfStraightLineProgram( res.givengenstostdgens, gens )
>    = res.stdgens;
true
gap> evl:= EvaluatePresentation( res.stdgens, "M12", std );;
gap> ForAll( evl, IsOne );
true

The next example shows the use of the global option projective. We take an irreducible matrix representation of the double cover of the Mathieu group \(M_{12}\) (thus the center is represented by scalar matrices) and compute standard generators of the factor group \(M_{12}\). Using a presentation of \(M_{12}\) w. r. t. these standard generators, we prove that the given group is modulo scalars isomorphic to \(M_{12}\), and we get generators for the kernel.

gap> g:= AtlasGroup( "2.M12", IsMatrixGroup, Characteristic, IsPosInt );;
gap> gens:= Permuted( GeneratorsOfGroup( g ), (1,2) );;
gap> res:= StandardGeneratorsData( gens, "M12", std : projective );;
gap> gens = res.givengens;
true
gap> ResultOfStraightLineProgram( res.givengenstostdgens, gens )
>    = res.stdgens;
true
gap> evl:= EvaluatePresentation( res.stdgens, "M12", std );;
gap> ForAll( evl, IsOne );
false
gap> ForAll( evl, x -> IsCentral( g, x ) );
true

3.6 Browse Applications Provided by AtlasRep

The functions BrowseMinimalDegrees (3.6-1), BrowseBibliographySporadicSimple (3.6-2), and BrowseAtlasInfo (Browse: BrowseAtlasInfo) (an alternative to DisplayAtlasInfo (3.5-1)) are available only if the GAP package Browse (see [BL18]) is loaded.

3.6-1 BrowseMinimalDegrees
‣ BrowseMinimalDegrees( [gapnames] )( function )

Returns: the list of info records for the clicked representations.

If the GAP package Browse (see [BL18]) is loaded then this function is available. It opens a browse table whose rows correspond to the groups for which AtlasRep knows some information about minimal degrees, whose columns correspond to the characteristics that occur, and whose entries are the known minimal degrees.

gap> if IsBound( BrowseMinimalDegrees ) then
>   down:= NCurses.keys.DOWN;;  DOWN:= NCurses.keys.NPAGE;;
>   right:= NCurses.keys.RIGHT;;  END:= NCurses.keys.END;;
>   enter:= NCurses.keys.ENTER;;  nop:= [ 14, 14, 14 ];;
>   # just scroll in the table
>   BrowseData.SetReplay( Concatenation( [ DOWN, DOWN, DOWN,
>          right, right, right ], "sedddrrrddd", nop, nop, "Q" ) );
>   BrowseMinimalDegrees();;
>   # restrict the table to the groups with minimal ordinary degree 6
>   BrowseData.SetReplay( Concatenation( "scf6",
>        [ down, down, right, enter, enter ] , nop, nop, "Q" ) );
>   BrowseMinimalDegrees();;
>   BrowseData.SetReplay( false );
> fi;

If an argument gapnames is given then it must be a list of GAP names of groups. The browse table is then restricted to the rows corresponding to these group names and to the columns that are relevant for these groups. A perhaps interesting example is the subtable with the data concerning sporadic simple groups and their covering groups, which has been published in [Jan05]. This table can be shown as follows.

gap> if IsBound( BrowseMinimalDegrees ) then
>   # just scroll in the table
>   BrowseData.SetReplay( Concatenation( [ DOWN, DOWN, DOWN, END ],
>          "rrrrrrrrrrrrrr", nop, nop, "Q" ) );
>   BrowseMinimalDegrees( BibliographySporadicSimple.groupNamesJan05 );;
> fi;

The browse table does not contain rows for the groups \(6.M_{22}\), \(12.M_{22}\), \(6.Fi_{22}\). Note that in spite of the title of [Jan05], the entries in Table 1 of this paper are in fact the minimal degrees of faithful irreducible representations, and in the above three cases, these degrees are larger than the minimal degrees of faithful representations. The underlying data of the browse table is about the minimal faithful (but not necessarily irreducible) degrees.

The return value of BrowseMinimalDegrees is the list of OneAtlasGeneratingSetInfo (3.5-6) values for those representations that have been "clicked" in visual mode.

The variant without arguments of this function is also available in the menu shown by BrowseGapData (Browse: BrowseGapData).

3.6-2 BrowseBibliographySporadicSimple
‣ BrowseBibliographySporadicSimple( )( function )

Returns: a record as returned by ParseBibXMLExtString (GAPDoc: ParseBibXMLextString).

If the GAP package Browse (see [BL18]) is loaded then this function is available. It opens a browse table whose rows correspond to the entries of the bibliographies in the ATLAS of Finite Groups [CCN+85] and in the ATLAS of Brauer Characters [JLPW95].

The function is based on BrowseBibliography (Browse: BrowseBibliography), see the documentation of this function for details, e.g., about the return value.

The returned record encodes the bibliography entries corresponding to those rows of the table that are "clicked" in visual mode, in the same format as the return value of ParseBibXMLExtString (GAPDoc: ParseBibXMLextString), see the manual of the GAP package GAPDoc [LN18] for details.

BrowseBibliographySporadicSimple can be called also via the menu shown by BrowseGapData (Browse: BrowseGapData).

gap> if IsBound( BrowseBibliographySporadicSimple ) then
>   enter:= NCurses.keys.ENTER;;  nop:= [ 14, 14, 14 ];;
>   BrowseData.SetReplay( Concatenation(
>     # choose the application
>     "/Bibliography of Sporadic Simple Groups", [ enter, enter ],
>     # search in the title column for the Atlas of Finite Groups
>     "scr/Atlas of finite groups", [ enter,
>     # and quit
>     nop, nop, nop, nop ], "Q" ) );
>   BrowseGapData();;
>   BrowseData.SetReplay( false );
> fi;

The bibliographies contained in the ATLAS of Finite Groups [CCN+85] and in the ATLAS of Brauer Characters [JLPW95] are available online in HTML format, see http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/bibl/index.html.

The source data in BibXMLext format, which are used by BrowseBibliographySporadicSimple, are distributed with the AtlasRep package, in four files with suffix xml in the package's bibl directory. Note that each of the two books contains two bibliographies.

Details about the BibXMLext format, including information how to transform the data into other formats such as BibTeX, can be found in the GAP package GAPDoc (see [LN18]).

Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chapBib_mj.html0000644000175000017500000004012414545501244015135 0ustar samsam GAP (AtlasRep) - References
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

References

[BGH+22] Breuer, T., Gutsche, S., Horn, M., Hulpke, A., Kohl, S., Lübeck, F. and Wensley, C., utils, Utility functions in GAP, Version 0.77 (2022)
(GAP package), https://gap-packages.github.io/utils.

[BHM09] Breuer, T., Höhler, I. and Müller, J., MFER, multiplicity-free endomorphism rings of permutation modules of the sporadic simple groups and their cyclic and bicyclic extensions, Version 1.0.0 (2009)
(GAP package), https://www.math.rwth-aachen.de/~MFER.

[BL18] Breuer, T. and Lübeck, F., Browse, ncurses interface and browsing applications, Version 1.8.9 (2018)
(GAP package), https://www.math.rwth-aachen.de/~Browse.

[BN95] Breuer, T. and Norton, S. P., Improvements to the Atlas, The Clarendon Press Oxford University Press, London Mathematical Society Monographs. New Series, 11, New York (1995), 297–327
(Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications).

[Bre14] Breuer, T., CTBlocks, Blocks of Character Tables, Version 0.9.3 (2014)
(GAP package), https://www.math.rwth-aachen.de/~Thomas.Breuer/ctblocks.

[Bre22] Breuer, T., The GAP Character Table Library, Version 1.3.3 (2022)
(GAP package), https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib.

[BSWW01] Bray, J. N., Suleiman, I. A. I., Walsh, P. G. and Wilson, R. A., Generating maximal subgroups of sporadic simple groups, Comm. Algebra, 29 (3) (2001), 1325–1337.

[CCN+85] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of finite groups, Oxford University Press, Eynsham (1985), xxxiv+252 pages
(Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray).

[CP96] Cannon, J. J. and Playoust, C., An introduction to algebraic programming in Magma, School of Mathematics and Statistics, University of Sydney, Sydney, Australia (1996), http://www.math.usyd.edu.au:8000/u/magma.

[GAP19] GAP – Groups, Algorithms, and Programming, Version 4.10.2, The GAP Group (2019), http://www.gap-system.org.

[HL89] Hiss, G. and Lux, K., Brauer trees of sporadic groups, The Clarendon Press, Oxford University Press, Oxford Science Publications, New York (1989), x+526 pages.

[Hup67] Huppert, B., Endliche Gruppen. I, Springer-Verlag, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Berlin (1967), xii+793 pages.

[Jan05] Jansen, C., The minimal degrees of faithful representations of the sporadic simple groups and their covering groups, LMS J. Comput. Math., 8 (2005), 122–144 (electronic).

[JLPW95] Jansen, C., Lux, K., Parker, R. and Wilson, R., An atlas of Brauer characters, The Clarendon Press Oxford University Press, London Mathematical Society Monographs. New Series, 11, New York (1995), xviii+327 pages
(Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications).

[JSO14] (Bray, T., Ed.), The JavaScript Object Notation (JSON) Data Interchange Format (2014), http://www.rfc-editor.org/info/rfc7159.

[LN18] Lübeck, F. and Neunhöffer, M., GAPDoc, A Meta Package for GAP Documentation, Version 1.6.2 (2018)
(GAP package), https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc.

[Lüb21] Lübeck, F., StandardFF, A GAP package for constructing finite fields (2021)
(GAP package), https://github.com/frankluebeck/StandardFF/.

[Neu14] Neunhöffer, M., IO, Bindings for low level C library IO, Version 4.3.1 (2014)
(GAP package), http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html.

[Nic06] Nickerson, S. J., An Atlas of Characteristic Zero Representations, Phd thesis, School of Mathematics, University of Birmingham (2006).

[NMP18] Naughton, L., Merkwitz, T. and Pfeiffer, G., TomLib, The GAP Library of Tables of Marks, Version 1.2.7 (2018)
(GAP package), http://schmidt.nuigalway.ie/tomlib.

[NSA+18] Neunhöffer, M., Seress, Á., Ankaralioglu, N., Brooksbank, P., Celler, F., Howe, S., Law, M., Linton, S., Malle, G., Niemeyer, A., O'Brien, E., Roney-Dougal, C. M. and Horn, M., recog, A collection of group recognition methods, Version 1.3.1 (2018)
(GAP package), https://gap-packages.github.io/recog.

[NW05] Nickerson, S. J. and Wilson, R. A., Semi-presentations for the sporadic simple groups, Experiment. Math., 14 (3) (2005), 359–371.

[Rin] Ringe, M., The C MeatAxe, Version 2.4, https://www.math.rwth-aachen.de/~MTX.

[SWW00] Suleiman, I. A. I., Walsh, P. G. and Wilson, R. A., Conjugacy classes in sporadic simple groups, Comm. Algebra, 28 (7) (2000), 3209–3222.

[Wil96] Wilson, R. A., Standard generators for sporadic simple groups, J. Algebra, 184 (2) (1996), 505–515.

[WWT+] Wilson, R. A., Walsh, P., Tripp, J., Suleiman, I., Parker, R. A., Norton, S. P., Nickerson, S., Linton, S., Bray, J. and Abbott, R., ATLAS of Finite Group Representations, http://atlas.math.rwth-aachen.de/Atlas/v3.

Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chapInd.html0000644000175000017500000003512514545501243014471 0ustar samsam GAP (AtlasRep) - Index
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

Index

AGR 7.1-4
AGR.DeclareDataType 7.5-1
AGR.FileContents 7.6-2
AGR.GapObjectOfJsonText 6.4-3
AGR.JsonText 6.4-2
AGR.ParseFilenameFormat 7.6-1
AllAtlasGeneratingSetInfos 3.5-7
AsBBoxProgram 6.2-5
AsStraightLineDecision 6.1-8
AsStraightLineProgram 6.2-6
AtlasCharacterNames 3.4-3
AtlasClassNames 3.4-2
AtlasGenerators 3.5-3
    for an identifier 3.5-3
AtlasGroup, for an identifier record 3.5-8
    for various arguments 3.5-8
AtlasOfGroupRepresentationsForgetData 5.1-2
AtlasOfGroupRepresentationsInfo 7.1-5
AtlasOfGroupRepresentationsNotifyData, for a local directory of private data 5.1-1
    for a local file describing private data 5.1-1
    for a remote file describing private data 5.1-1
AtlasProgram 3.5-4
    for an identifier 3.5-4
AtlasProgramInfo 3.5-5
AtlasRep .
AtlasRepAccessRemoteFiles 4.2-1
AtlasRepDataDirectory 4.2-2
AtlasRepIdentifier, convert a new type identifier to an old type one 7.7-1
    convert an old type identifier to a new type one 7.7-1
AtlasRepInfoRecord, for a group 3.5-10
    for a string 3.5-10
AtlasRepJsonFilesAddresses 4.2-14
AtlasRepLocalServerPath 4.2-6
AtlasRepMarkNonCoreData 4.2-12
AtlasRepTOCData 4.2-3
AtlasStringOfProgram 7.4-2
    for MeatAxe format output 7.4-2
AtlasSubgroup, for a group and a number 3.5-9
    for a group name (and various arguments) and a number 3.5-9
    for an identifier record and a number 3.5-9
automorphisms 3.5-4
BaseOfMeatAxePermutation 4.2-10
black box program 1.1
    for finding standard generators 3.5-4 7.6
BrowseBibliographySporadicSimple 3.6-2
BrowseMinimalDegrees 3.6-1
C-MeatAxe 1.2
class representatives 3.5-4
CMtxBinaryFFMatOrPerm 7.3-4
compress 4.2-4
CompressDownloadedMeatAxeFiles 4.2-4
cyclic subgroups 3.5-4
DebugFileLoading 4.2-13
DisplayAtlasInfo 3.5-1
    for a group name, and optionally further restrictions 3.5-1
DisplayFunction 4.2-11
EvaluatePresentation, for a group, a group name (and a number) 3.5-11
    for a list of generators, a group name (and a number) 3.5-11
FFList 7.3-3
FFLists 7.3-3
FFMatOrPermCMtxBinary 7.3-5
FileAccessFunctions 4.2-5
ftp 1.3-14
gzip 1.3-16 4.2-4
HowToReadMeatAxeTextFiles 4.2-7
InfoAtlasRep 7.1-1
InfoBBox 7.1-3
InfoCMeatAxe 7.1-2
IsBBoxProgram 6.2-1
IsStraightLineDecision 6.1-1
LinesOfStraightLineDecision 6.1-2
local access 4.2-1
Magma 1.1
matrix, MeatAxe format 7.3
maximal subgroups 3.5-4
maximally cyclic subgroups 3.5-4
MeatAxe 1.1
MeatAxeString 7.3-2
    for a matrix of integers 7.3-2
    for a permutation, q, and dims 7.3-2
    for permutations and a degree 7.3-2
MinimalRepresentationInfo 6.3-1
MinimalRepresentationInfoData 6.3-2
NrInputsOfStraightLineDecision 6.1-3
OneAtlasGeneratingSetInfo 3.5-6
perl 1.3-14 1.4
permutation, MeatAxe format 7.3
presentation 6.1-7 7.6
remote access 4.2-1
ResultOfBBoxProgram 6.2-4
ResultOfStraightLineDecision 6.1-6
RunBBoxProgram 6.2-3
ScanBBoxProgram 6.2-2
ScanMeatAxeFile 7.3-1
ScanStraightLineDecision 6.1-4
ScanStraightLineProgram 7.4-1
semi-presentation 6.1-7 7.6
SetMinimalRepresentationInfo 6.3-3
StandardGeneratorsData, for a group, a group name (and a number) 3.5-12
    for a list of generators, a group name (and a number) 3.5-12
straight line decision, encoding a presentation 3.5-4
    for checking standard generators 3.5-4
straight line program 1.1 3.5-1
    for class representatives 3.5-4
    for kernels of epimorphisms 3.5-4
    for maximal subgroups 3.5-4
    for normal subgroups 3.5-4
    for outer automorphisms 3.5-4
    for representatives of cyclic subgroups 3.5-4
    for restandardizing 3.5-4
    free format 3.5-4
StraightLineDecision 6.1-5
StraightLineDecisionNC 6.1-5
StraightLineProgramFromStraightLineDecision 6.1-9
StringOfAtlasTableOfContents 5.1-3
wget 1.3-14 1.3-16
WriteHeaderFormatOfMeatAxeFiles 4.2-8
WriteMeatAxeFilesOfMode2 4.2-9
zcv 7.3-1

Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chap2_mj.html0000644000175000017500000022031014545501244014577 0ustar samsam GAP (AtlasRep) - Chapter 2: Tutorial for the AtlasRep Package
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

2 Tutorial for the AtlasRep Package

This chapter gives an overview of the basic functionality provided by the AtlasRep package. The main concepts and interface functions are presented in the first three sections, and Section 2.4 shows a few small examples.

Let us first fix the setup for the examples shown in the package manual.

  1. First of all, we load the AtlasRep package. Some of the examples require also the GAP packages CTblLib and TomLib, so we load also these packages.

    gap> LoadPackage( "AtlasRep", false );
    true
    gap> LoadPackage( "CTblLib", false );
    true
    gap> LoadPackage( "TomLib", false );
    true
    
  2. Depending on the terminal capabilities, the output of DisplayAtlasInfo (3.5-1) may contain non-ASCII characters, which are not supported by the LaTeX and HTML versions of GAPDoc documents. The examples in this manual are used for tests of the package's functionality, thus we set the user preference DisplayFunction (see Section 4.2-11) to the value "Print" in order to produce output consisting only of ASCII characters, which is assumed to work in any terminal.

    gap> origpref:= UserPreference( "AtlasRep", "DisplayFunction" );;
    gap> SetUserPreference( "AtlasRep", "DisplayFunction", "Print" );
    
  3. The GAP output for the examples may look differently if data extensions have been loaded. In order to ignore these extensions in the examples, we unload them.

    gap> priv:= Difference(
    >     List( AtlasOfGroupRepresentationsInfo.notified, x -> x.ID ),
    >     [ "core", "internal" ] );;
    gap> Perform( priv, AtlasOfGroupRepresentationsForgetData );
    
  4. If the info level of InfoAtlasRep (7.1-1) is larger than zero then additional output appears on the screen. In order to avoid this output, we set the level to zero.

    gap> globallevel:= InfoLevel( InfoAtlasRep );;
    gap> SetInfoLevel( InfoAtlasRep, 0 );
    

2.1 Accessing a Specific Group in AtlasRep

An important database to which the AtlasRep package gives access is the ATLAS of Group Representations [WWT+]. It contains generators and related data for several groups, mainly for extensions of simple groups (see Section 2.1-1) and for their maximal subgroups (see Section 2.1-2).

In general, these data are not part of the package. They are downloaded as soon as they are needed for the first time, see Section 4.2-1.

2.1-1 Accessing a Group in AtlasRep via its Name

Each group that occurs in this database is specified by a name, which is a string similar to the name used in the ATLAS of Finite Groups [CCN+85]. For those groups whose character tables are contained in the GAP Character Table Library [Bre22], the names are equal to the Identifier (Reference: Identifier for character tables) values of these character tables. Examples of such names are "M24" for the Mathieu group \(M_{24}\), "2.A6" for the double cover of the alternating group \(A_6\), and "2.A6.2_1" for the double cover of the symmetric group \(S_6\). The names that actually occur are listed in the first column of the overview table that is printed by the function DisplayAtlasInfo (3.5-1), called without arguments, see below. The other columns of the table describe the data that are available in the database.

For example, DisplayAtlasInfo (3.5-1) may print the following lines. Omissions are indicated with "...".

gap> DisplayAtlasInfo();
group                    |  # | maxes | cl | cyc | out | fnd | chk | prs
-------------------------+----+-------+----+-----+-----+-----+-----+----
...
2.A5                     | 26 |     3 |    |     |     |     |  +  |  + 
2.A5.2                   | 11 |     4 |    |     |     |     |  +  |  + 
2.A6                     | 18 |     5 |    |     |     |     |     |    
2.A6.2_1                 |  3 |     6 |    |     |     |     |     |    
2.A7                     | 24 |     2 |    |     |     |     |     |    
2.A7.2                   |  7 |       |    |     |     |     |     |    
...
M22                      | 58 |     8 |  + |  +  |     |  +  |  +  |  + 
M22.2                    | 46 |     7 |  + |  +  |     |  +  |  +  |  + 
M23                      | 66 |     7 |  + |  +  |     |  +  |  +  |  + 
M24                      | 62 |     9 |  + |  +  |     |  +  |  +  |  + 
McL                      | 46 |    12 |  + |  +  |     |  +  |  +  |  + 
McL.2                    | 27 |    10 |    |  +  |     |  +  |  +  |  + 
O7(3)                    | 28 |       |    |     |     |     |     |    
O7(3).2                  |  3 |       |    |     |     |     |     |    
...
Suz                      | 30 |    17 |    |  +  |   2 |  +  |  +  |    
...

Called with a group name as the only argument, the function AtlasGroup (3.5-8) returns a group isomorphic to the group with the given name, or fail. If permutation generators are available in the database then a permutation group (of smallest available degree) is returned, otherwise a matrix group.

gap> g:= AtlasGroup( "M24" );
Group([ (1,4)(2,7)(3,17)(5,13)(6,9)(8,15)(10,19)(11,18)(12,21)(14,16)
  (20,24)(22,23), (1,4,6)(2,21,14)(3,9,15)(5,18,10)(13,17,16)
  (19,24,23) ])
gap> IsPermGroup( g );  NrMovedPoints( g );  Size( g );
true
24
244823040
gap> AtlasGroup( "J5" );
fail

2.1-2 Accessing a Maximal Subgroup of a Group in AtlasRep

Many maximal subgroups of extensions of simple groups can be constructed using the function AtlasSubgroup (3.5-9). Given the name of the extension of the simple group and the number of the conjugacy class of maximal subgroups, this function returns a representative from this class.

gap> g:= AtlasSubgroup( "M24", 1 );
Group([ (2,10)(3,12)(4,14)(6,9)(8,16)(15,18)(20,22)(21,24), (1,7,2,9)
  (3,22,10,23)(4,19,8,12)(5,14)(6,18)(13,16,17,24) ])
gap> IsPermGroup( g );  NrMovedPoints( g );  Size( g );
true
23
10200960
gap> AtlasSubgroup( "M24", 100 );
fail

The classes of maximal subgroups are ordered w. r. t. decreasing subgroup order. So the first class contains maximal subgroups of smallest index.

Note that groups obtained by AtlasSubgroup (3.5-9) may be not very suitable for computations in the sense that much nicer representations exist. For example, the sporadic simple O'Nan group \(O'N\) contains a maximal subgroup \(S\) isomorphic with the Janko group \(J_1\); the smallest permutation representation of \(O'N\) has degree \(122760\), and restricting this representation to \(S\) yields a representation of \(J_1\) of that degree. However, \(J_1\) has a faithful permutation representation of degree \(266\), which admits much more efficient computations. If you are just interested in \(J_1\) and not in its embedding into \(O'N\) then one possibility to get a "nicer" faithful representation is to call SmallerDegreePermutationRepresentation (Reference: SmallerDegreePermutationRepresentation). In the abovementioned example, this works quite well; note that in general, we cannot expect that we get a representation of smallest degree in this way.

gap> s:= AtlasSubgroup( "ON", 3 );
<permutation group of size 175560 with 2 generators>
gap> NrMovedPoints( s );  Size( s );
122760
175560
gap> hom:= SmallerDegreePermutationRepresentation( s );;
gap> NrMovedPoints( Image( hom ) ) < 2000;
true

(Depending on random choices in the computations, one may or my not get the degree \(266\) representation.)

In this particular case, one could of course also ask directly for the group \(J_1\).

gap> j1:= AtlasGroup( "J1" );
<permutation group of size 175560 with 2 generators>
gap> NrMovedPoints( j1 );
266

If you have a group \(G\), say, and you are really interested in the embedding of a maximal subgroup of \(G\) into \(G\) then an easy way to get compatible generators is to create \(G\) with AtlasGroup (3.5-8) and then to call AtlasSubgroup (3.5-9) with first argument the group \(G\).

gap> g:= AtlasGroup( "ON" );
<permutation group of size 460815505920 with 2 generators>
gap> s:= AtlasSubgroup( g, 3 );
<permutation group of size 175560 with 2 generators>
gap> IsSubset( g, s );
true
gap> IsSubset( g, j1 );
false

2.2 Accessing Specific Generators in AtlasRep

The function DisplayAtlasInfo (3.5-1), called with an admissible name of a group as the only argument, lists the ATLAS data available for this group.

gap> DisplayAtlasInfo( "A5" );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
 1: G <= Sym(5)                  3-trans., on cosets of A4 (1st max.)
 2: G <= Sym(6)                  2-trans., on cosets of D10 (2nd max.)
 3: G <= Sym(10)                 rank 3, on cosets of S3 (3rd max.)
 4: G <= GL(4a,2)                character 4a
 5: G <= GL(4b,2)                character 2ab
 6: G <= GL(4,3)                 character 4a
 7: G <= GL(6,3)                 character 3ab
 8: G <= GL(2a,4)                character 2a
 9: G <= GL(2b,4)                character 2b
10: G <= GL(3,5)                 character 3a
11: G <= GL(5,5)                 character 5a
12: G <= GL(3a,9)                character 3a
13: G <= GL(3b,9)                character 3b
14: G <= GL(4,Z)                 character 4a
15: G <= GL(5,Z)                 character 5a
16: G <= GL(6,Z)                 character 3ab
17: G <= GL(3a,Field([Sqrt(5)])) character 3a
18: G <= GL(3b,Field([Sqrt(5)])) character 3b

Programs for G = A5:    (all refer to std. generators 1)
--------------------
- class repres.*      
- presentation        
- maxes (all 3):
  1:  A4              
  2:  D10             
  3:  S3              
- std. gen. checker:
  (check)             
  (pres)              

In order to fetch one of the listed permutation groups or matrix groups, you can call AtlasGroup (3.5-8) with second argument the function Position (Reference: Position) and third argument the position in the list.

gap> AtlasGroup( "A5", Position, 1 );
Group([ (1,2)(3,4), (1,3,5) ])

Note that this approach may yield a different group after a data extension has been loaded.

Alternatively, you can describe the desired group by conditions, such as the degree in the case of a permutation group, and the dimension and the base ring in the case of a matrix group.

gap> AtlasGroup( "A5", NrMovedPoints, 10 );
Group([ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ])
gap> AtlasGroup( "A5", Dimension, 4, Ring, GF(2) );
<matrix group of size 60 with 2 generators>

The same holds for the restriction to maximal subgroups: Use AtlasSubgroup (3.5-9) with the same arguments as AtlasGroup (3.5-8), except that additionally the number of the class of maximal subgroups is entered as the last argument. Note that the conditions refer to the group, not to the subgroup; it may happen that the subgroup moves fewer points than the big group.

gap> AtlasSubgroup( "A5", Dimension, 4, Ring, GF(2), 1 );
<matrix group of size 12 with 2 generators>
gap> g:= AtlasSubgroup( "A5", NrMovedPoints, 10, 3 );
Group([ (2,4)(3,5)(6,8)(7,10), (1,4)(3,8)(5,7)(6,10) ])
gap> Size( g );  NrMovedPoints( g );
6
9

2.3 Basic Concepts used in AtlasRep

2.3-1 Groups, Generators, and Representations

Up to now, we have talked only about groups and subgroups. The AtlasRep package provides access to group generators, and in fact these generators have the property that mapping one set of generators to another set of generators for the same group defines an isomorphism. These generators are called standard generators, see Section 3.3.

So instead of thinking about several generating sets of a group \(G\), say, we can think about one abstract group \(G\), with one fixed set of generators, and mapping these generators to any set of generators provided by AtlasRep defines a representation of \(G\). This viewpoint had motivated the name "ATLAS of Group Representations" for the core part of the database.

If you are interested in the generators provided by the database rather than in the groups they generate, you can use the function OneAtlasGeneratingSetInfo (3.5-6) instead of AtlasGroup (3.5-8), with the same arguments. This will yield a record that describes the representation in question. Calling the function AtlasGenerators (3.5-3) with this record will then yield a record with the additional component generators, which holds the list of generators.

gap> info:= OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, 10 );
rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], 
  contents := "core", groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ],
  isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, 
  repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",
  standardization := 1, transitivity := 1, type := "perm" )
gap> info2:= AtlasGenerators( info );
rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], 
  contents := "core", 
  generators := [ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ], 
  groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ],
  isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, 
  repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",
  standardization := 1, transitivity := 1, type := "perm" )
gap> info2.generators;
[ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ]

The record info appears as the value of the attribute AtlasRepInfoRecord (3.5-10) in groups that are returned by AtlasGroup (3.5-8).

gap> g:= AtlasGroup( "A5", NrMovedPoints, 10 );;
gap> AtlasRepInfoRecord( g );
rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], 
  contents := "core", groupname := "A5", id := "", 
  identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ],
  isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, 
  repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3",
  standardization := 1, transitivity := 1, type := "perm" )

2.3-2 Straight Line Programs

For computing certain group elements from standard generators, such as generators of a subgroup or class representatives, AtlasRep uses straight line programs, see Reference: Straight Line Programs. Essentially this means to evaluate words in the generators, which is similar to MappedWord (Reference: MappedWord) but can be more efficient.

It can be useful to deal with these straight line programs, see AtlasProgram (3.5-4). For example, an automorphism \(\alpha\), say, of the group \(G\), if available in AtlasRep, is given by a straight line program that defines the images of standard generators of \(G\). This way, one can for example compute the image of a subgroup \(U\) of \(G\) under \(\alpha\) by first applying the straight line program for \(\alpha\) to standard generators of \(G\), and then applying the straight line program for the restriction from \(G\) to \(U\).

gap> prginfo:= AtlasProgramInfo( "A5", "maxes", 1 );
rec( groupname := "A5", identifier := [ "A5", "A5G1-max1W1", 1 ], 
  size := 12, standardization := 1, subgroupname := "A4", 
  version := "1" )
gap> prg:= AtlasProgram( prginfo.identifier );
rec( groupname := "A5", identifier := [ "A5", "A5G1-max1W1", 1 ], 
  program := <straight line program>, size := 12, 
  standardization := 1, subgroupname := "A4", version := "1" )
gap> Display( prg.program );
# input:
r:= [ g1, g2 ];
# program:
r[3]:= r[1]*r[2];
r[4]:= r[2]*r[1];
r[5]:= r[3]*r[3];
r[1]:= r[5]*r[4];
# return values:
[ r[1], r[2] ]
gap> ResultOfStraightLineProgram( prg.program, info2.generators );
[ (1,10)(2,3)(4,9)(7,8), (1,2,3)(4,6,7)(5,8,9) ]

2.4 Examples of Using the AtlasRep Package

2.4-1 Example: Class Representatives

First we show the computation of class representatives of the Mathieu group \(M_{11}\), in a \(2\)-modular matrix representation. We start with the ordinary and Brauer character tables of this group.

gap> tbl:= CharacterTable( "M11" );;
gap> modtbl:= tbl mod 2;;
gap> CharacterDegrees( modtbl );
[ [ 1, 1 ], [ 10, 1 ], [ 16, 2 ], [ 44, 1 ] ]

The output of CharacterDegrees (Reference: CharacterDegrees) means that the \(2\)-modular irreducibles of \(M_{11}\) have degrees \(1\), \(10\), \(16\), \(16\), and \(44\).

Using DisplayAtlasInfo (3.5-1), we find out that matrix generators for the irreducible \(10\)-dimensional representation are available in the database.

gap> DisplayAtlasInfo( "M11", Characteristic, 2 );
Representations for G = M11:    (all refer to std. generators 1)
----------------------------
 6: G <= GL(10,2)  character 10a
 7: G <= GL(32,2)  character 16ab
 8: G <= GL(44,2)  character 44a
16: G <= GL(16a,4) character 16a
17: G <= GL(16b,4) character 16b

So we decide to work with this representation. We fetch the generators and compute the list of class representatives of \(M_{11}\) in the representation. The ordering of class representatives is the same as that in the character table of the ATLAS of Finite Groups ([CCN+85]), which coincides with the ordering of columns in the GAP table we have fetched above.

gap> info:= OneAtlasGeneratingSetInfo( "M11", Characteristic, 2,
>                                             Dimension, 10 );;
gap> gens:= AtlasGenerators( info.identifier );;
gap> ccls:= AtlasProgram( "M11", gens.standardization, "classes" );
rec( groupname := "M11", identifier := [ "M11", "M11G1-cclsW1", 1 ], 
  outputs := [ "1A", "2A", "3A", "4A", "5A", "6A", "8A", "8B", "11A", 
      "11B" ], program := <straight line program>, 
  standardization := 1, version := "1" )
gap> reps:= ResultOfStraightLineProgram( ccls.program, gens.generators );;

If we would need only a few class representatives, we could use the GAP library function RestrictOutputsOfSLP (Reference: RestrictOutputsOfSLP) to create a straight line program that computes only specified outputs. Here is an example where only the class representatives of order eight are computed.

gap> ord8prg:= RestrictOutputsOfSLP( ccls.program,
>                   Filtered( [ 1 .. 10 ], i -> ccls.outputs[i][1] = '8' ) );
<straight line program>
gap> ord8reps:= ResultOfStraightLineProgram( ord8prg, gens.generators );;
gap> List( ord8reps, m -> Position( reps, m ) );
[ 7, 8 ]

Let us check that the class representatives have the right orders.

gap> List( reps, Order ) = OrdersClassRepresentatives( tbl );
true

From the class representatives, we can compute the Brauer character we had started with. This Brauer character is defined on all classes of the \(2\)-modular table. So we first pick only those representatives, using the GAP function GetFusionMap (Reference: GetFusionMap); in this situation, it returns the class fusion from the Brauer table into the ordinary table.

gap> fus:= GetFusionMap( modtbl, tbl );
[ 1, 3, 5, 9, 10 ]
gap> modreps:= reps{ fus };;

Then we call the GAP function BrauerCharacterValue (Reference: BrauerCharacterValue), which computes the Brauer character value from the matrix given.

gap> char:= List( modreps, BrauerCharacterValue );
[ 10, 1, 0, -1, -1 ]
gap> Position( Irr( modtbl ), char );
2

2.4-2 Example: Permutation and Matrix Representations

The second example shows the computation of a permutation representation from a matrix representation. We work with the \(10\)-dimensional representation used above, and consider the action on the \(2^{10}\) vectors of the underlying row space.

gap> grp:= Group( gens.generators );;
gap> v:= GF(2)^10;;
gap> orbs:= Orbits( grp, AsList( v ) );;
gap> List( orbs, Length );
[ 1, 396, 55, 330, 66, 165, 11 ]

We see that there are six nontrivial orbits, and we can compute the permutation actions on these orbits directly using Action (Reference: Action homomorphisms). However, for larger examples, one cannot write down all orbits on the row space, so one has to use another strategy if one is interested in a particular orbit.

Let us assume that we are interested in the orbit of length \(11\). The point stabilizer is the first maximal subgroup of \(M_{11}\), thus the restriction of the representation to this subgroup has a nontrivial fixed point space. This restriction can be computed using the AtlasRep package.

gap> gens:= AtlasGenerators( "M11", 6, 1 );;

Now computing the fixed point space is standard linear algebra.

gap> id:= IdentityMat( 10, GF(2) );;
gap> sub1:= Subspace( v, NullspaceMat( gens.generators[1] - id ) );;
gap> sub2:= Subspace( v, NullspaceMat( gens.generators[2] - id ) );;
gap> fix:= Intersection( sub1, sub2 );
<vector space of dimension 1 over GF(2)>

The final step is of course the computation of the permutation action on the orbit.

gap> orb:= Orbit( grp, Basis( fix )[1] );;
gap> act:= Action( grp, orb );;  Print( act, "\n" );
Group( [ ( 1, 2)( 4, 6)( 5, 8)( 7,10), ( 1, 3, 5, 9)( 2, 4, 7,11) ] )

Note that this group is not equal to the group obtained by fetching the permutation representation from the database. This is due to a different numbering of the points, thus the groups are permutation isomorphic, that is, they are conjugate in the symmetric group on eleven points.

gap> permgrp:= Group( AtlasGenerators( "M11", 1 ).generators );;
gap> Print( permgrp, "\n" );
Group( [ ( 2,10)( 4,11)( 5, 7)( 8, 9), (1,4,3,8)(2,5,6,9) ] )
gap> permgrp = act;
false
gap> IsConjugate( SymmetricGroup(11), permgrp, act );
true

2.4-3 Example: Outer Automorphisms

The straight line programs for applying outer automorphisms to standard generators can of course be used to define the automorphisms themselves as GAP mappings.

gap> DisplayAtlasInfo( "G2(3)", IsStraightLineProgram );
Programs for G = G2(3):    (all refer to std. generators 1)
-----------------------
- class repres.            
- presentation             
- repr. cyc. subg.         
- std. gen. checker        
- automorphisms:
  2                        
- maxes (all 10):
   1:  U3(3).2             
   2:  U3(3).2             
   3:  (3^(1+2)+x3^2):2S4  
   4:  (3^(1+2)+x3^2):2S4  
   5:  L3(3).2             
   6:  L3(3).2             
   7:  L2(8).3             
   8:  2^3.L3(2)           
   9:  L2(13)              
  10:  2^(1+4)+:3^2.2      
gap> prog:= AtlasProgram( "G2(3)", "automorphism", "2" ).program;;
gap> info:= OneAtlasGeneratingSetInfo( "G2(3)", Dimension, 7 );;
gap> gens:= AtlasGenerators( info ).generators;;
gap> imgs:= ResultOfStraightLineProgram( prog, gens );;

If we are not suspicious whether the script really describes an automorphism then we should tell this to GAP, in order to avoid the expensive checks of the properties of being a homomorphism and bijective (see Section Reference: Creating Group Homomorphisms). This looks as follows.

gap> g:= Group( gens );;
gap> aut:= GroupHomomorphismByImagesNC( g, g, gens, imgs );;
gap> SetIsBijective( aut, true );

If we are suspicious whether the script describes an automorphism then we might have the idea to check it with GAP, as follows.

gap> aut:= GroupHomomorphismByImages( g, g, gens, imgs );;
gap> IsBijective( aut );
true

(Note that even for a comparatively small group such as \(G_2(3)\), this was a difficult task for GAP before version 4.3.)

Often one can form images under an automorphism \(\alpha\), say, without creating the homomorphism object. This is obvious for the standard generators of the group \(G\) themselves, but also for generators of a maximal subgroup \(M\) computed from standard generators of \(G\), provided that the straight line programs in question refer to the same standard generators. Note that the generators of \(M\) are given by evaluating words in terms of standard generators of \(G\), and their images under \(\alpha\) can be obtained by evaluating the same words at the images under \(\alpha\) of the standard generators of \(G\).

gap> max1:= AtlasProgram( "G2(3)", 1 ).program;;
gap> mgens:= ResultOfStraightLineProgram( max1, gens );;
gap> comp:= CompositionOfStraightLinePrograms( max1, prog );;
gap> mimgs:= ResultOfStraightLineProgram( comp, gens );;

The list mgens is the list of generators of the first maximal subgroup of \(G_2(3)\), mimgs is the list of images under the automorphism given by the straight line program prog. Note that applying the program returned by CompositionOfStraightLinePrograms (Reference: CompositionOfStraightLinePrograms) means to apply first prog and then max1. Since we have already constructed the GAP object representing the automorphism, we can check whether the results are equal.

gap> mimgs = List( mgens, x -> x^aut );
true

However, it should be emphasized that using aut requires a huge machinery of computations behind the scenes, whereas applying the straight line programs prog and max1 involves only elementary operations with the generators. The latter is feasible also for larger groups, for which constructing the GAP automorphism might be too hard.

2.4-4 Example: Using Semi-presentations and Black Box Programs

Let us suppose that we want to restrict a representation of the Mathieu group \(M_{12}\) to a non-maximal subgroup of the type \(L_2(11)\). The idea is that this subgroup can be found as a maximal subgroup of a maximal subgroup of the type \(M_{11}\), which is itself maximal in \(M_{12}\). For that, we fetch a representation of \(M_{12}\) and use a straight line program for restricting it to the first maximal subgroup, which has the type \(M_{11}\).

gap> info:= OneAtlasGeneratingSetInfo( "M12", NrMovedPoints, 12 );
rec( charactername := "1a+11a", constituents := [ 1, 2 ], 
  contents := "core", groupname := "M12", id := "a", 
  identifier := [ "M12", [ "M12G1-p12aB0.m1", "M12G1-p12aB0.m2" ], 1, 
      12 ], isPrimitive := true, maxnr := 1, p := 12, rankAction := 2,
  repname := "M12G1-p12aB0", repnr := 1, size := 95040, 
  stabilizer := "M11", standardization := 1, transitivity := 5, 
  type := "perm" )
gap> gensM12:= AtlasGenerators( info.identifier );;
gap> restM11:= AtlasProgram( "M12", "maxes", 1 );;
gap> gensM11:= ResultOfStraightLineProgram( restM11.program,
>                                           gensM12.generators );
[ (3,9)(4,12)(5,10)(6,8), (1,4,11,5)(2,10,8,3) ]

Now we cannot simply apply a straight line program for a group to some generators, since they are not necessarily standard generators of the group. We check this property using a semi-presentation for \(M_{11}\), see 6.1-7.

gap> checkM11:= AtlasProgram( "M11", "check" );
rec( groupname := "M11", identifier := [ "M11", "M11G1-check1", 1, 1 ]
    , program := <straight line decision>, standardization := 1, 
  version := "1" )
gap> ResultOfStraightLineDecision( checkM11.program, gensM11 );
true

So we are lucky that applying the appropriate program for \(M_{11}\) will give us the required generators for \(L_2(11)\).

gap> restL211:= AtlasProgram( "M11", "maxes", 2 );;
gap> gensL211:= ResultOfStraightLineProgram( restL211.program, gensM11 );
[ (3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10) ]
gap> G:= Group( gensL211 );;  Size( G );  IsSimple( G );
660
true

In this case, we could also use the information that is stored about \(M_{11}\), as follows.

gap> DisplayAtlasInfo( "M11", IsStraightLineProgram );
Programs for G = M11:    (all refer to std. generators 1)
---------------------
- presentation                                        
- repr. cyc. subg.                                    
- std. gen. finder                                    
- class repres.:
  (direct)                                            
  (composed)                                          
- maxes (all 5):
  1:  A6.2_3                                          
  1:  A6.2_3                                  (std. 1)
  2:  L2(11)                                          
  2:  L2(11)                                  (std. 1)
  3:  3^2:Q8.2                                        
  4:  S5                                              
  4:  S5                                      (std. 1)
  5:  2.S4                                            
- standardizations of maxes:
  from 1st max., version 1 to A6.2_3, std. 1          
  from 2nd max., version 1 to L2(11), std. 1          
  from 4th max., version 1 to A5.2, std. 1            
- std. gen. checker:
  (check)                                             
  (pres)                                              

The entry "std.1" in the line about the maximal subgroup of type \(L_2(11)\) means that a straight line program for computing standard generators (in standardization 1) of the subgroup. This program can be fetched as follows.

gap> restL211std:= AtlasProgram( "M11", "maxes", 2, 1 );;
gap> ResultOfStraightLineProgram( restL211std.program, gensM11 );
[ (3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10) ]

We see that we get the same generators for the subgroup as above. (In fact the second approach first applies the same program as is given by restL211.program, and then applies a program to the results that does nothing.)

Usually representations are not given in terms of standard generators. For example, let us take the \(M_{11}\) type group returned by the GAP function MathieuGroup (Reference: MathieuGroup).

gap> G:= MathieuGroup( 11 );;
gap> gens:= GeneratorsOfGroup( G );
[ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ]
gap> ResultOfStraightLineDecision( checkM11.program, gens );
false

If we want to compute an \(L_2(11)\) type subgroup of this group, we can use a black box program for computing standard generators, and then apply the straight line program for computing the restriction.

gap> find:= AtlasProgram( "M11", "find" );
rec( groupname := "M11", identifier := [ "M11", "M11G1-find1", 1, 1 ],
  program := <black box program>, standardization := 1, 
  version := "1" )
gap> stdgens:= ResultOfBBoxProgram( find.program, Group( gens ) );;
gap> List( stdgens, Order );
[ 2, 4 ]
gap> ResultOfStraightLineDecision( checkM11.program, stdgens );
true
gap> gensL211:= ResultOfStraightLineProgram( restL211.program, stdgens );;
gap> List( gensL211, Order );
[ 2, 3 ]
gap> G:= Group( gensL211 );;  Size( G );  IsSimple( G );
660
true

Note that applying the black box program several times may yield different group elements, because computations of random elements are involved, see ResultOfBBoxProgram (6.2-4). All what the black box program promises is to construct standard generators, and these are defined only up to conjugacy in the automorphism group of the group in question.

2.4-5 Example: Using the GAP Library of Tables of Marks

The GAP Library of Tables of Marks (the GAP package TomLib, [NMP18]) provides, for many almost simple groups, information for constructing representatives of all conjugacy classes of subgroups. If this information is compatible with the standard generators of the ATLAS of Group Representations then we can use it to restrict any representation from the ATLAS to prescribed subgroups. This is useful in particular for those subgroups for which the ATLAS of Group Representations itself does not contain a straight line program.

gap> tom:= TableOfMarks( "A5" );
TableOfMarks( "A5" )
gap> info:= StandardGeneratorsInfo( tom );
[ rec( ATLAS := true, description := "|a|=2, |b|=3, |ab|=5", 
      generators := "a, b", 
      script := [ [ 1, 2 ], [ 2, 3 ], [ 1, 1, 2, 1, 5 ] ], 
      standardization := 1 ) ]

The true value of the component ATLAS indicates that the information stored on tom refers to the standard generators of type \(1\) in the ATLAS of Group Representations.

We want to restrict a \(4\)-dimensional integral representation of \(A_5\) to a Sylow \(2\) subgroup of \(A_5\), and use RepresentativeTomByGeneratorsNC (Reference: RepresentativeTomByGeneratorsNC) for that.

gap> info:= OneAtlasGeneratingSetInfo( "A5", Ring, Integers, Dimension, 4 );;
gap> stdgens:= AtlasGenerators( info.identifier );
rec( charactername := "4a", constituents := [ 4 ], contents := "core",
  dim := 4, 
  generators := 
    [ 
      [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], 
          [ -1, -1, -1, -1 ] ], 
      [ [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], 
          [ 1, 0, 0, 0 ] ] ], groupname := "A5", id := "", 
  identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], 
  repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60, 
  standardization := 1, type := "matint" )
gap> orders:= OrdersTom( tom );
[ 1, 2, 3, 4, 5, 6, 10, 12, 60 ]
gap> pos:= Position( orders, 4 );
4
gap> sub:= RepresentativeTomByGeneratorsNC( tom, pos, stdgens.generators );
<matrix group of size 4 with 2 generators>
gap> GeneratorsOfGroup( sub );
[ [ [ 1, 0, 0, 0 ], [ -1, -1, -1, -1 ], [ 0, 0, 0, 1 ], 
      [ 0, 0, 1, 0 ] ], 
  [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], 
      [ -1, -1, -1, -1 ] ] ]

2.4-6 Example: Index \(770\) Subgroups in \(M_{22}\)

The sporadic simple Mathieu group \(M_{22}\) contains a unique class of subgroups of index \(770\) (and order \(576\)). This can be seen for example using GAP's Library of Tables of Marks.

gap> tom:= TableOfMarks( "M22" );
TableOfMarks( "M22" )
gap> subord:= Size( UnderlyingGroup( tom ) ) / 770;
576
gap> ord:= OrdersTom( tom );;
gap> tomstabs:= Filtered( [ 1 .. Length( ord ) ], i -> ord[i] = subord );
[ 144 ]

The permutation representation of \(M_{22}\) on the right cosets of such a subgroup \(S\) is contained in the ATLAS of Group Representations.

gap> DisplayAtlasInfo( "M22", NrMovedPoints, 770 );
Representations for G = M22:    (all refer to std. generators 1)
----------------------------
12: G <= Sym(770) rank 9, on cosets of (A4xA4):4 < 2^4:A6

Now we verify the information shown about the point stabilizer and about the maximal overgroups of \(S\) in \(M_{22}\).

gap> maxtom:= MaximalSubgroupsTom( tom );
[ [ 155, 154, 153, 152, 151, 150, 146, 145 ], 
  [ 22, 77, 176, 176, 231, 330, 616, 672 ] ]
gap> List( tomstabs, i -> List( maxtom[1], j -> ContainedTom( tom, i, j ) ) );
[ [ 0, 10, 0, 0, 0, 0, 0, 0 ] ]

We see that the only maximal subgroups of \(M_{22}\) that contain \(S\) have index \(77\) in \(M_{22}\). According to the ATLAS of Finite Groups, these maximal subgroups have the structure \(2^4:A_6\). From that and from the structure of \(A_6\), we conclude that \(S\) has the structure \(2^4:(3^2:4)\).

Alternatively, we look at the permutation representation of degree \(770\). We fetch it from the ATLAS of Group Representations. There is exactly one nontrivial block system for this representation, with \(77\) blocks of length \(10\).

gap> g:= AtlasGroup( "M22", NrMovedPoints, 770 );
<permutation group of size 443520 with 2 generators>
gap> allbl:= AllBlocks( g );;
gap> List( allbl, Length );
[ 10 ]

Furthermore, GAP computes that the point stabilizer \(S\) has the structure \((A_4 \times A_4):4\).

gap> stab:= Stabilizer( g, 1 );;
gap> StructureDescription( stab : nice );
"(A4 x A4) : C4"
gap> blocks:= Orbit( g, allbl[1], OnSets );;
gap> act:= Action( g, blocks, OnSets );;
gap> StructureDescription( Stabilizer( act, 1 ) );
"(C2 x C2 x C2 x C2) : A6"

2.4-7 Example: Index \(462\) Subgroups in \(M_{22}\)

The ATLAS of Group Representations contains three degree \(462\) permutation representations of the group \(M_{22}\).

gap> DisplayAtlasInfo( "M22", NrMovedPoints, 462 );
Representations for G = M22:    (all refer to std. generators 1)
----------------------------
7: G <= Sym(462a) rank 5, on cosets of 2^4:A5 < 2^4:A6
8: G <= Sym(462b) rank 8, on cosets of 2^4:A5 < L3(4), 2^4:S5
9: G <= Sym(462c) rank 8, on cosets of 2^4:A5 < L3(4), 2^4:A6

The point stabilizers in these three representations have the structure \(2^4:A_5\). Using GAP's Library of Tables of Marks, we can show that these stabilizers are exactly the three classes of subgroups of order \(960\) in \(M_{22}\). For that, we first verify that the group generators stored in GAP's table of marks coincide with the standard generators used by the ATLAS of Group Representations.

gap> tom:= TableOfMarks( "M22" );
TableOfMarks( "M22" )
gap> genstom:= GeneratorsOfGroup( UnderlyingGroup( tom ) );;
gap> checkM22:= AtlasProgram( "M22", "check" );
rec( groupname := "M22", identifier := [ "M22", "M22G1-check1", 1, 1 ]
    , program := <straight line decision>, standardization := 1, 
  version := "1" )
gap> ResultOfStraightLineDecision( checkM22.program, genstom );
true

There are indeed three classes of subgroups of order \(960\) in \(M_{22}\).

gap> ord:= OrdersTom( tom );;
gap> tomstabs:= Filtered( [ 1 .. Length( ord ) ], i -> ord[i] = 960 );
[ 147, 148, 149 ]

Now we compute representatives of these three classes in the three representations 462a, 462b, and 462c. We see that each of the three classes occurs as a point stabilizer in exactly one of the three representations.

gap> atlasreps:= AllAtlasGeneratingSetInfos( "M22", NrMovedPoints, 462 );
[ rec( charactername := "1a+21a+55a+154a+231a", 
      constituents := [ 1, 2, 5, 7, 9 ], contents := "core", 
      groupname := "M22", id := "a", 
      identifier := 
        [ "M22", [ "M22G1-p462aB0.m1", "M22G1-p462aB0.m2" ], 1, 462 ],
      isPrimitive := false, p := 462, rankAction := 5, 
      repname := "M22G1-p462aB0", repnr := 7, size := 443520, 
      stabilizer := "2^4:A5 < 2^4:A6", standardization := 1, 
      transitivity := 1, type := "perm" ), 
  rec( charactername := "1a+21a^2+55a+154a+210a", 
      constituents := [ 1, [ 2, 2 ], 5, 7, 8 ], contents := "core", 
      groupname := "M22", id := "b", 
      identifier := 
        [ "M22", [ "M22G1-p462bB0.m1", "M22G1-p462bB0.m2" ], 1, 462 ],
      isPrimitive := false, p := 462, rankAction := 8, 
      repname := "M22G1-p462bB0", repnr := 8, size := 443520, 
      stabilizer := "2^4:A5 < L3(4), 2^4:S5", standardization := 1, 
      transitivity := 1, type := "perm" ), 
  rec( charactername := "1a+21a^2+55a+154a+210a", 
      constituents := [ 1, [ 2, 2 ], 5, 7, 8 ], contents := "core", 
      groupname := "M22", id := "c", 
      identifier := 
        [ "M22", [ "M22G1-p462cB0.m1", "M22G1-p462cB0.m2" ], 1, 462 ],
      isPrimitive := false, p := 462, rankAction := 8, 
      repname := "M22G1-p462cB0", repnr := 9, size := 443520, 
      stabilizer := "2^4:A5 < L3(4), 2^4:A6", standardization := 1, 
      transitivity := 1, type := "perm" ) ]
gap> atlasreps:= List( atlasreps, AtlasGroup );;
gap> tomstabreps:= List( atlasreps, G -> List( tomstabs,
> i -> RepresentativeTomByGenerators( tom, i, GeneratorsOfGroup( G ) ) ) );;
gap> List( tomstabreps, x -> List( x, NrMovedPoints ) );
[ [ 462, 462, 461 ], [ 460, 462, 462 ], [ 462, 461, 462 ] ]

More precisely, we see that the point stabilizers in the three representations 462a, 462b, 462c lie in the subgroup classes \(149\), \(147\), \(148\), respectively, of the table of marks.

The point stabilizers in the representations 462b and 462c are isomorphic, but not isomorphic with the point stabilizer in 462a.

gap> stabs:= List( atlasreps, G -> Stabilizer( G, 1 ) );;
gap> List( stabs, IdGroup );
[ [ 960, 11358 ], [ 960, 11357 ], [ 960, 11357 ] ]
gap> List( stabs, PerfectIdentification );
[ [ 960, 2 ], [ 960, 1 ], [ 960, 1 ] ]

The three representations are imprimitive. The containment of the point stabilizers in maximal subgroups of \(M_{22}\) can be computed using the table of marks of \(M_{22}\).

gap> maxtom:= MaximalSubgroupsTom( tom );
[ [ 155, 154, 153, 152, 151, 150, 146, 145 ], 
  [ 22, 77, 176, 176, 231, 330, 616, 672 ] ]
gap> List( tomstabs, i -> List( maxtom[1], j -> ContainedTom( tom, i, j ) ) );
[ [ 21, 0, 0, 0, 1, 0, 0, 0 ], [ 21, 6, 0, 0, 0, 0, 0, 0 ], 
  [ 0, 6, 0, 0, 0, 0, 0, 0 ] ]

We see:

  • The point stabilizers in 462a (subgroups in the class \(149\) of the table of marks) are contained only in maximal subgroups in class \(154\); these groups have the structure \(2^4:A_6\).

  • The point stabilizers in 462b (subgroups in the class \(147\)) are contained in maximal subgroups in the classes \(155\) and \(151\); these groups have the structures \(L_3(4)\) and \(2^4:S_5\), respectively.

  • The point stabilizers in 462c (subgroups in the class \(148\)) are contained in maximal subgroups in the classes \(155\) and \(154\).

We identify the supergroups of the point stabilizers by computing the block systems.

gap> bl:= List( atlasreps, AllBlocks );;
gap> List( bl, Length );
[ 1, 3, 2 ]
gap> List( bl, l -> List( l, Length ) );
[ [ 6 ], [ 21, 21, 2 ], [ 21, 6 ] ]

Note that the two block systems with blocks of length \(21\) for 462b belong to the same supergroups (of the type \(L_3(4)\)); each of these subgroups fixes two different subsets of \(21\) points.

The representation 462a is multiplicity-free, that is, it splits into a sum of pairwise nonisomorphic irreducible representations. This can be seen from the fact that the rank of this permutation representation (that is, the number of orbits of the point stabilizer) is five; each permutation representation with this property is multiplicity-free.

The other two representations have rank eight. We have seen the ranks in the overview that was shown by DisplayAtlasInfo (3.5-1) in the beginning. Now we compute the ranks from the permutation groups.

gap> List( atlasreps, RankAction );
[ 5, 8, 8 ]

In fact the two representations 462b and 462c have the same permutation character. We check this by computing the possible permutation characters of degree \(462\) for \(M_{22}\), and decomposing them into irreducible characters, using the character table from GAP's Character Table Library.

gap> t:= CharacterTable( "M22" );;
gap> perms:= PermChars( t, 462 );
[ Character( CharacterTable( "M22" ),
  [ 462, 30, 3, 2, 2, 2, 3, 0, 0, 0, 0, 0 ] ), 
  Character( CharacterTable( "M22" ),
  [ 462, 30, 12, 2, 2, 2, 0, 0, 0, 0, 0, 0 ] ) ]
gap> MatScalarProducts( t, Irr( t ), perms );
[ [ 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0 ], 
  [ 1, 2, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0 ] ]

In particular, we see that the rank eight characters are not multiplicity-free.

Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chapInd_mj.html0000644000175000017500000003623414545501244015162 0ustar samsam GAP (AtlasRep) - Index
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

Index

AGR 7.1-4
AGR.DeclareDataType 7.5-1
AGR.FileContents 7.6-2
AGR.GapObjectOfJsonText 6.4-3
AGR.JsonText 6.4-2
AGR.ParseFilenameFormat 7.6-1
AllAtlasGeneratingSetInfos 3.5-7
AsBBoxProgram 6.2-5
AsStraightLineDecision 6.1-8
AsStraightLineProgram 6.2-6
AtlasCharacterNames 3.4-3
AtlasClassNames 3.4-2
AtlasGenerators 3.5-3
    for an identifier 3.5-3
AtlasGroup, for an identifier record 3.5-8
    for various arguments 3.5-8
AtlasOfGroupRepresentationsForgetData 5.1-2
AtlasOfGroupRepresentationsInfo 7.1-5
AtlasOfGroupRepresentationsNotifyData, for a local directory of private data 5.1-1
    for a local file describing private data 5.1-1
    for a remote file describing private data 5.1-1
AtlasProgram 3.5-4
    for an identifier 3.5-4
AtlasProgramInfo 3.5-5
AtlasRep .
AtlasRepAccessRemoteFiles 4.2-1
AtlasRepDataDirectory 4.2-2
AtlasRepIdentifier, convert a new type identifier to an old type one 7.7-1
    convert an old type identifier to a new type one 7.7-1
AtlasRepInfoRecord, for a group 3.5-10
    for a string 3.5-10
AtlasRepJsonFilesAddresses 4.2-14
AtlasRepLocalServerPath 4.2-6
AtlasRepMarkNonCoreData 4.2-12
AtlasRepTOCData 4.2-3
AtlasStringOfProgram 7.4-2
    for MeatAxe format output 7.4-2
AtlasSubgroup, for a group and a number 3.5-9
    for a group name (and various arguments) and a number 3.5-9
    for an identifier record and a number 3.5-9
automorphisms 3.5-4
BaseOfMeatAxePermutation 4.2-10
black box program 1.1
    for finding standard generators 3.5-4 7.6
BrowseBibliographySporadicSimple 3.6-2
BrowseMinimalDegrees 3.6-1
C-MeatAxe 1.2
class representatives 3.5-4
CMtxBinaryFFMatOrPerm 7.3-4
compress 4.2-4
CompressDownloadedMeatAxeFiles 4.2-4
cyclic subgroups 3.5-4
DebugFileLoading 4.2-13
DisplayAtlasInfo 3.5-1
    for a group name, and optionally further restrictions 3.5-1
DisplayFunction 4.2-11
EvaluatePresentation, for a group, a group name (and a number) 3.5-11
    for a list of generators, a group name (and a number) 3.5-11
FFList 7.3-3
FFLists 7.3-3
FFMatOrPermCMtxBinary 7.3-5
FileAccessFunctions 4.2-5
ftp 1.3-14
gzip 1.3-16 4.2-4
HowToReadMeatAxeTextFiles 4.2-7
InfoAtlasRep 7.1-1
InfoBBox 7.1-3
InfoCMeatAxe 7.1-2
IsBBoxProgram 6.2-1
IsStraightLineDecision 6.1-1
LinesOfStraightLineDecision 6.1-2
local access 4.2-1
Magma 1.1
matrix, MeatAxe format 7.3
maximal subgroups 3.5-4
maximally cyclic subgroups 3.5-4
MeatAxe 1.1
MeatAxeString 7.3-2
    for a matrix of integers 7.3-2
    for a permutation, q, and dims 7.3-2
    for permutations and a degree 7.3-2
MinimalRepresentationInfo 6.3-1
MinimalRepresentationInfoData 6.3-2
NrInputsOfStraightLineDecision 6.1-3
OneAtlasGeneratingSetInfo 3.5-6
perl 1.3-14 1.4
permutation, MeatAxe format 7.3
presentation 6.1-7 7.6
remote access 4.2-1
ResultOfBBoxProgram 6.2-4
ResultOfStraightLineDecision 6.1-6
RunBBoxProgram 6.2-3
ScanBBoxProgram 6.2-2
ScanMeatAxeFile 7.3-1
ScanStraightLineDecision 6.1-4
ScanStraightLineProgram 7.4-1
semi-presentation 6.1-7 7.6
SetMinimalRepresentationInfo 6.3-3
StandardGeneratorsData, for a group, a group name (and a number) 3.5-12
    for a list of generators, a group name (and a number) 3.5-12
straight line decision, encoding a presentation 3.5-4
    for checking standard generators 3.5-4
straight line program 1.1 3.5-1
    for class representatives 3.5-4
    for kernels of epimorphisms 3.5-4
    for maximal subgroups 3.5-4
    for normal subgroups 3.5-4
    for outer automorphisms 3.5-4
    for representatives of cyclic subgroups 3.5-4
    for restandardizing 3.5-4
    free format 3.5-4
StraightLineDecision 6.1-5
StraightLineDecisionNC 6.1-5
StraightLineProgramFromStraightLineDecision 6.1-9
StringOfAtlasTableOfContents 5.1-3
wget 1.3-14 1.3-16
WriteHeaderFormatOfMeatAxeFiles 4.2-8
WriteMeatAxeFilesOfMode2 4.2-9
zcv 7.3-1

Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chap7.html0000644000175000017500000040272214545501243014126 0ustar samsam GAP (AtlasRep) - Chapter 7: Technicalities of the AtlasRep Package
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

7 Technicalities of the AtlasRep Package

This chapter describes those parts of the GAP interface to the ATLAS of Group Representations that do not belong to the user interface (cf. Chapter 3).

Besides global variables used for administrational purposes (see Section 7.1) and several sanity checks (see Section 7.9), they can be regarded as the interface between the data actually contained in the files and the corresponding GAP objects (see Section 7.2, 7.3, 7.4, and 7.5), and the interface between the remote and the local version of the database (see Section 7.6 and 7.8). The former interface contains functions to read and write files in MeatAxe format, which may be interesting for users familiar with MeatAxe standalones (see for example [Rin]). Other low level functions may be undocumented in the sense that they are not described in this manual. Users interested in them may look at the actual implementation in the gap directory of the package, but it may happen that this will be changed in future versions of the package.

7.1 Global Variables Used by the AtlasRep Package

For debugging purposes, AtlasRep functions print information depending on the info level of the info classes InfoAtlasRep (7.1-1), InfoCMeatAxe (7.1-2), and InfoBBox (7.1-3) (cf. Reference: Info Functions).

The info level of an info class can be changed using SetInfoLevel (Reference: InfoLevel). For example, the info level of InfoAtlasRep (7.1-1) can be set to the nonnegative integer n using SetInfoLevel( InfoAtlasRep, n ).

7.1-1 InfoAtlasRep
‣ InfoAtlasRep( info class )

If the info level of InfoAtlasRep is at least 1 then information about fail results of AtlasRep functions is printed. If the info level is at least 2 then also information about calls to external programs is printed. The default level is 0, no information is printed on this level.

7.1-2 InfoCMeatAxe
‣ InfoCMeatAxe( info class )

If the info level of InfoCMeatAxe is at least 1 then information about fail results of C-MeatAxe functions (see Section 7.3) is printed. The default level is zero, no information is printed on this level.

7.1-3 InfoBBox
‣ InfoBBox( info class )

If the info level of InfoBBox is at least 1 then information about fail results of functions dealing with black box programs (see Section 6.2) is printed. The default level is 0, no information is printed on this level.

7.1-4 AGR
‣ AGR( global variable )

is a record whose components are functions and data that are used by the high level interface functions. Some of the components are documented, see for example the index of the package manual.

7.1-5 AtlasOfGroupRepresentationsInfo
‣ AtlasOfGroupRepresentationsInfo( global variable )

This is a record that is defined in the file gap/types.g of the package, with the following components.

GAPnames

a list of pairs, each containing the GAP name and the ATLAS-file name of a group, see Section 3.2,

notified

a list used for administrating extensions of the database (see Chapter 5); the value is changed by AtlasOfGroupRepresentationsNotifyData (5.1-1) and AtlasOfGroupRepresentationsForgetData (5.1-2),

characterinfo, permrepinfo, ringinfo

additional information about representations, concerning the afforded characters, the point stabilizers of permutation representations, and the rings of definition of matrix representations; this information is used by DisplayAtlasInfo (3.5-1),

TableOfContents

a record with at most the components core, internal, local, merged, types, and the identifiers of database extensions. The value of the component types is set in AGR.DeclareDataType (7.5-1), and the values of the other components are created by AtlasOfGroupRepresentationsNotifyData (5.1-1).

accessFunctions

a list of records, each describing how to access the data files, see Sections 4.2-5 and 7.2, and

7.2 How to Customize the Access to Data files

By default, locally available data files are stored in prescribed directories, and the files are exactly the text files that have been downloaded from appropriate places in the internet. However, a more flexible approach may be useful.

First, one may want to use different file formats, for example MeatAxe binary files may be provided parallel to MeatAxe text files. Second, one may want to use a different directory structure, for example the same structure as used on some server –this makes sense for example if a local mirror of a server is available, because then one can read the server files directly, without transferring/copying them to another directory.

In order to achieve this (and perhaps more), we admit to customize the meaning of the following three access steps.

Are the required data locally available?

There may be different file formats available, such as text or binary files, and it may happen that the data are available in one file or are distributed to several files.

How can a file be made locally available?

A different remote file may be fetched, or some postprocessing may be required.

How is the data of a file accessed by GAP?

A different function may be needed to evaluate the file contents.

For creating an overview of the locally available data, the first of these steps must be available independent of actually accessing the file in question. For updating the local copy of the server data, the second of the above steps must be available independent of the third one. Therefore, the package provides the possibility to extend the default behaviour by adding new records to the accessFunctions component of AtlasOfGroupRepresentationsInfo (7.1-5). The relevant record components are as follows.

description

This must be a short string that describes for which kinds of files the functions in the current record are intended, which file formats are supported etc. The value is used as key in the user preference FileAccessFunctions, see Section 4.2-5.

location( files, type )

Let files be a list of pairs [ dirname, filename ], and type be the data type (see AGR.DeclareDataType (7.5-1)) to which the files belong. This function must return either the absolute paths where the mechanism implemented by the current record expects the local version of the given files, or fail if this function does not feel responsible for these files.

The files are regarded as not locally available if all installed location functions return either fail or paths of nonexisting files, in the sense of IsExistingFile (Reference: IsExistingFile).

fetch( filepath, filename, dirname, type )

This function is called if a file is not locally available and if the location function in the current record has returned a list of paths. The argument type must be the same as for the location function, and filepath and filename must be strings (not lists of strings).

The return value must be true if the function succeeded with making the file locally available (including postprocessing if applicable), a string with the contents of the data file if the remote data were directly loaded into the GAP session (if no local caching is possible), and false otherwise.

contents( files, type, filepaths )

This function is called when the location function in the current record has returned the path(s) filepath, and if either these are paths of existing files or the fetch function in the current record has been called for these paths, and the return value was true. The first three arguments must be the same as for the location function.

The return value must be the contents of the file(s), in the sense that the GAP matrix, matrix list, permutation, permutation list, or program described by the file(s) is returned. This means that besides reading the file(s) via the appropriate function, interpreting the contents may be necessary.

In AGR.FileContents (7.6-2), those records in the accessFunctions component of AtlasOfGroupRepresentationsInfo (7.1-5) are considered –in reversed order– whose description component occurs in the user preference FileAccessFunctions, see Section 4.2-5.

7.3 Reading and Writing MeatAxe Format Files

7.3-1 ScanMeatAxeFile
‣ ScanMeatAxeFile( filename[, q][, "string"] )( function )

Returns: the matrix or list of permutations stored in the file or encoded by the string.

Let filename be the name of a GAP readable file (see Reference: Filename) that contains a matrix or a permutation or a list of permutations in MeatAxe text format (see the section about the program zcv in the C-MeatAxe documentation [Rin]), and let q be a prime power. ScanMeatAxeFile returns the corresponding GAP matrix or list of permutations, respectively.

If the file contains a matrix then the way how it is read by ScanMeatAxeFile depends on the value of the user preference HowToReadMeatAxeTextFiles, see Section 4.2-7.

If the parameter q is given then the result matrix is represented over the field with q elements, the default for q is the field size stored in the file.

If the file contains a list of permutations then it is read with StringFile (GAPDoc: StringFile); the parameter q, if given, is ignored in this case.

If the string "string" is entered as the third argument then the first argument must be a string as obtained by reading a file in MeatAxe text format as a text stream (see InputTextFile (Reference: InputTextFile)). Also in this case, ScanMeatAxeFile returns the corresponding GAP matrix or list of permutations, respectively.

7.3-2 MeatAxeString
‣ MeatAxeString( mat, q )( operation )
‣ MeatAxeString( perms, degree )( operation )
‣ MeatAxeString( perm, q, dims )( operation )
‣ MeatAxeString( intmat )( operation )

Returns: a string encoding the GAP objects given as input in C-MeatAxe text format, see [Rin].

In the first form, for a matrix mat whose entries lie in the finite field with q elements, MeatAxeString returns a string that encodes mat as a matrix over GF(q).

In the second form, for a nonempty list perms of permutations that move only points up to the positive integer degree, MeatAxeString returns a string that encodes perms as permutations of degree degree.

In the third form, for a permutation perm with largest moved point n, say, a prime power q, and a list dims of length two containing two positive integers larger than or equal to n, MeatAxeString returns a string that encodes perm as a matrix over GF(q), of dimensions dims, whose first n rows and columns describe the permutation matrix corresponding to perm, and the remaining rows and columns are zero.

In the fourth form, for a matrix intmat of integers, MeatAxeString returns a string that encodes intmat as an integer matrix.

When strings are printed to files using PrintTo (Reference: PrintTo) or AppendTo (Reference: AppendTo) then line breaks are inserted whenever lines exceed the number of characters given by the second entry of the list returned by SizeScreen (Reference: SizeScreen), see Reference: Operations for Output Streams. This behaviour is not desirable for creating data files. So the recommended functions for printing the result of MeatAxeString to a file are FileString (GAPDoc: FileString) and WriteAll (Reference: WriteAll).

gap> mat:= [ [ 1, -1 ], [ 0, 1 ] ] * Z(3)^0;;
gap> str:= MeatAxeString( mat, 3 );
"1 3 2 2\n12\n01\n"
gap> mat = ScanMeatAxeFile( str, "string" );
true
gap> str:= MeatAxeString( mat, 9 );
"1 9 2 2\n12\n01\n"
gap> mat = ScanMeatAxeFile( str, "string" );
true
gap> perms:= [ (1,2,3)(5,6) ];;
gap> str:= MeatAxeString( perms, 6 );
"12 1 6 1\n2\n3\n1\n4\n6\n5\n"
gap> perms = ScanMeatAxeFile( str, "string" );
true
gap> str:= MeatAxeString( perms, 8 );
"12 1 8 1\n2\n3\n1\n4\n6\n5\n7\n8\n"
gap> perms = ScanMeatAxeFile( str, "string" );
true

Note that the output of MeatAxeString in the case of permutation matrices depends on the user preference WriteMeatAxeFilesOfMode2.

gap> perm:= (1,2,4);;
gap> str:= MeatAxeString( perm, 3, [ 5, 6 ] );
"2 3 5 6\n2\n4\n3\n1\n5\n"
gap> mat:= ScanMeatAxeFile( str, "string" );;  Print( mat, "\n" );
[ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
  [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
  [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], 
  [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
  [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ]
gap> pref:= UserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2" );;
gap> SetUserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2", true );
gap> MeatAxeString( mat, 3 ) = str;
true
gap> SetUserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2", false );
gap> MeatAxeString( mat, 3 );
"1 3 5 6\n010000\n000100\n001000\n100000\n000010\n"
gap> SetUserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2", pref );

7.3-3 FFList
‣ FFList( F )( function )

Returns: a list of elements in the given finite field.

‣ FFLists( global variable )

FFList is a utility program for the conversion of vectors and matrices from MeatAxe format to GAP format and vice versa. It is used by ScanMeatAxeFile (7.3-1) and MeatAxeString (7.3-2).

For a finite field F, FFList returns a list l giving the correspondence between the MeatAxe numbering and the GAP numbering of the elements in F.

The element of F corresponding to MeatAxe number n is l[ n+1 ], and the MeatAxe number of the field element z is Position( l, z ) - 1.

The global variable FFLists is used to store the information about F once it has been computed.

gap> FFList( GF(4) );
[ 0*Z(2), Z(2)^0, Z(2^2), Z(2^2)^2 ]
gap> IsBound( FFLists[4] );
true

The MeatAxe defines the bijection between the elements in the field with q = p^d elements and the set { 0, 1, ..., q-1 } of integers by assigning the field element ∑_{i=0}^{d-1} c_i z^i to the integer ∑_{i=0}^{d-1} c_i p^i, where the c_i are in the set { 0, 1, ..., p-1 } and z is the primitive root of the field with q elements that corresponds to the residue class of the indeterminate, modulo the ideal spanned by the Conway polynomial of degree d over the field with p elements.

The finite fields introduced by the StandardFF package [Lüb21] are supported by FFList and FFLists, in the sense that the bijection defined by StandardIsomorphismGF (StandardFF: StandardIsomorphismGF) is applied automatically when F is a field in the filter IsStandardFiniteField (StandardFF: IsStandardFiniteField).

7.3-4 CMtxBinaryFFMatOrPerm
‣ CMtxBinaryFFMatOrPerm( elm, def, outfile[, base] )( function )

Let the pair (elm, def) be either of the form (M, q) where M is a matrix over a finite field F, say, with q ≤ 256 elements, or of the form (π, n) where π is a permutation with largest moved point at most n. Let outfile be a string. CMtxBinaryFFMatOrPerm writes the C-MeatAxe binary format of M, viewed as a matrix over F, or of π, viewed as a permutation on the points up to n, to the file with name outfile.

In the case of a permutation π, the optional argument base prescribes whether the binary file contains the points from 0 to deg- 1 (base= 0, supported by version 2.4 of the C-MeatAxe) or the points from 1 to deg (base= 1, supported by older versions of the C-MeatAxe). The default for base is given by the value of the user preference BaseOfMeatAxePermutation, see Section 4.2-10.

(The binary format is described in the C-MeatAxe manual [Rin].)

gap> tmpdir:= DirectoryTemporary();;
gap> mat:= Filename( tmpdir, "mat" );;
gap> q:= 4;;
gap> mats:= GeneratorsOfGroup( GL(10,q) );;
gap> CMtxBinaryFFMatOrPerm( mats[1], q, Concatenation( mat, "1" ) );
gap> CMtxBinaryFFMatOrPerm( mats[2], q, Concatenation( mat, "2" ) );
gap> prm:= Filename( tmpdir, "prm" );;
gap> n:= 200;;
gap> perms:= GeneratorsOfGroup( SymmetricGroup( n ) );;
gap> CMtxBinaryFFMatOrPerm( perms[1], n, Concatenation( prm, "1" ) );
gap> CMtxBinaryFFMatOrPerm( perms[2], n, Concatenation( prm, "2" ) );
gap> CMtxBinaryFFMatOrPerm( perms[1], n, Concatenation( prm, "1a" ), 0 );
gap> CMtxBinaryFFMatOrPerm( perms[2], n, Concatenation( prm, "2b" ), 1 );

7.3-5 FFMatOrPermCMtxBinary
‣ FFMatOrPermCMtxBinary( fname )( function )

Returns: the matrix or permutation stored in the file.

Let fname be the name of a file that contains the C-MeatAxe binary format of a matrix over a finite field or of a permutation, as is described in [Rin]. FFMatOrPermCMtxBinary returns the corresponding GAP matrix or permutation.

gap> FFMatOrPermCMtxBinary( Concatenation( mat, "1" ) ) = mats[1];
true
gap> FFMatOrPermCMtxBinary( Concatenation( mat, "2" ) ) = mats[2];
true
gap> FFMatOrPermCMtxBinary( Concatenation( prm, "1" ) ) = perms[1];
true
gap> FFMatOrPermCMtxBinary( Concatenation( prm, "2" ) ) = perms[2];
true
gap> FFMatOrPermCMtxBinary( Concatenation( prm, "1a" ) ) = perms[1];
true
gap> FFMatOrPermCMtxBinary( Concatenation( prm, "2b" ) ) = perms[2];
true

7.4 Reading and Writing ATLAS Straight Line Programs

7.4-1 ScanStraightLineProgram
‣ ScanStraightLineProgram( filename[, "string"] )( function )

Returns: a record containing the straight line program, or fail.

Let filename be the name of a file that contains a straight line program in the sense that it consists only of lines in the following form.

#anything

lines starting with a hash sign # are ignored,

echo anything

lines starting with echo are ignored for the program component of the result record (see below), they are used to set up the bijection between the labels used in the program and conjugacy class names in the case that the program computes dedicated class representatives,

inp n

means that there are n inputs, referred to via the labels 1, 2, ..., n,

inp k a1 a2 ... ak

means that the next k inputs are referred to via the labels a1, a2, ..., ak,

cjr a b

means that a is replaced by b^(-1) * a * b,

cj a b c

means that c is defined as b^(-1) * a * b,

com a b c

means that c is defined as a^(-1) * b^(-1) * a * b,

iv a b

means that b is defined as a^(-1),

mu a b c

means that c is defined as a * b,

pwr a b c

means that c is defined as b^a,

cp a b

means that b is defined as a copy of a,

oup l

means that there are l outputs, stored in the labels 1, 2, ..., l, and

oup l b1 b2 ... bl

means that the next l outputs are stored in the labels b1, b2, ... bl.

Each of the labels a, b, c can be any nonempty sequence of digits and alphabet characters, except that the first argument of pwr must denote an integer.

If the inp or oup statements are missing then the input or output, respectively, is assumed to be given by the labels 1 and 2. There can be multiple inp lines at the beginning of the program and multiple oup lines at the end of the program. Only the first inp or oup line may omit the names of the elements. For example, an empty file filename or an empty string string represent a straight line program with two inputs that are returned as outputs.

No command except cjr may overwrite its own input. For example, the line mu a b a is not legal. (This is not checked.)

ScanStraightLineProgram returns a record containing as the value of its component program the corresponding GAP straight line program (see IsStraightLineProgram (Reference: IsStraightLineProgram)) if the input string satisfies the syntax rules stated above, and returns fail otherwise. In the latter case, information about the first corrupted line of the program is printed if the info level of InfoCMeatAxe (7.1-2) is at least 1.

If the string "string" is entered as the second argument then the first argument must be a string as obtained by reading a file in MeatAxe text format as a text stream (see InputTextFile (Reference: InputTextFile)). Also in this case, ScanStraightLineProgram returns either a record with the corresponding GAP straight line program or fail.

If the input describes a straight line program that computes certain class representatives of the group in question then the result record also contains the component outputs. Its value is a list of strings, the entry at position i denoting the name of the class in which the i output of the straight line program lies; see Section 3.4 for the definition of the class names that occur.

Such straight line programs must end with a sequence of output specifications of the following form.

echo "Classes 1A 2A 3A 5A 5B"
oup 5 3 1 2 4 5

This example means that the list of outputs of the program contains elements of the classes 1A, 2A, 3A, 5A, and 5B (in this order), and that inside the program, these elements are referred to by the five names 3, 1, 2, 4, and 5.

7.4-2 AtlasStringOfProgram
‣ AtlasStringOfProgram( prog[, outputnames] )( function )
‣ AtlasStringOfProgram( prog, "mtx" )( function )

Returns: a string encoding the straight line program/decision in the format used in ATLAS files.

For a straight line program or straight line decision prog (see IsStraightLineProgram (Reference: IsStraightLineProgram) and IsStraightLineDecision (6.1-1)), this function returns a string describing the input format of an equivalent straight line program or straight line decision as used in the data files, that is, the lines are of the form described in ScanStraightLineProgram (7.4-1).

A list of strings that is given as the optional second argument outputnames is interpreted as the class names corresponding to the outputs; this argument has the effect that appropriate echo statements appear in the result string.

If the string "mtx" is given as the second argument then the result has the format used in the C-MeatAxe (see [Rin]) rather than the format described for ScanStraightLineProgram (7.4-1). (Note that the C-MeatAxe format does not make sense if the argument outputnames is given, and that this format does not support inp and oup statements.)

The argument prog must not be a black box program (see IsBBoxProgram (6.2-1)).

gap> str:= "inp 2\nmu 1 2 3\nmu 3 1 2\niv 2 1\noup 2 1 2";;
gap> prg:= ScanStraightLineProgram( str, "string" );
rec( program := <straight line program> )
gap> prg:= prg.program;;
gap> Display( prg );
# input:
r:= [ g1, g2 ];
# program:
r[3]:= r[1]*r[2];
r[2]:= r[3]*r[1];
r[1]:= r[2]^-1;
# return values:
[ r[1], r[2] ]
gap> StringOfResultOfStraightLineProgram( prg, [ "a", "b" ] );
"[ (aba)^-1, aba ]"
gap> AtlasStringOfProgram( prg );
"inp 2\nmu 1 2 3\nmu 3 1 2\niv 2 1\noup 2\n"
gap> prg:= StraightLineProgram( "(a^2b^3)^-1", [ "a", "b" ] );
<straight line program>
gap> Print( AtlasStringOfProgram( prg ) );
inp 2
pwr 2 1 4
pwr 3 2 5
mu 4 5 3
iv 3 4
oup 1 4
gap> prg:= StraightLineProgram( [ [2,3], [ [3,1,1,4], [1,2,3,1] ] ], 2 );
<straight line program>
gap> Print( AtlasStringOfProgram( prg ) );
inp 2
pwr 3 2 3
pwr 4 1 5
mu 3 5 4
pwr 2 1 6
mu 6 3 5
oup 2 4 5
gap> Print( AtlasStringOfProgram( prg, "mtx" ) );
# inputs are expected in 1 2
zsm pwr3 2 3
zsm pwr4 1 5
zmu 3 5 4
zsm pwr2 1 6
zmu 6 3 5
echo "outputs are in 4 5"
gap> str:= "inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5";;
gap> prg:= ScanStraightLineDecision( str );;
gap> AtlasStringOfProgram( prg.program );
"inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5\n"

7.5 Data Types Used in the AtlasRep Package

Each representation or program that is administrated by the AtlasRep package belongs to a unique data type. Informally, examples of data types are "permutation representation", "matrix representation over the integers", or "straight line program for computing class representatives".

The idea is that for each data type, there can be

  • a column of its own in the output produced by DisplayAtlasInfo (3.5-1) when called without arguments or with only argument a list of group names,

  • a line format of its own for the output produced by DisplayAtlasInfo (3.5-1) when called with first argument a group name,

  • an input format of its own for AtlasProgram (3.5-4),

  • an input format of its own for OneAtlasGeneratingSetInfo (3.5-6), and

  • specific tests for the data of this data type; these functions are used by the global tests described in Section 7.9.

Formally, a data type is defined by a record whose components are used by the interface functions. The details are described in the following.

7.5-1 AGR.DeclareDataType
‣ AGR.DeclareDataType( kind, name, record )( function )

Let kind be one of the strings "rep" or "prg", and record be a record. If kind is "rep" then AGR.DeclareDataType declares a new data type of representations, if kind is "prg" then it declares a new data type of programs. The string name is the name of the type, for example "perm", "matff", or "classes". AtlasRep stores the data for each group internally in a record whose component name holds the list of the data about the type with this name.

Mandatory components of record are

FilenameFormat

This defines the format of the filenames containing data of the type in question. The value must be a list that can be used as the second argument of AGR.ParseFilenameFormat (7.6-1), such that only filenames of the type in question match. (It is not checked whether this "detection function" matches exactly one type, so declaring a new type needs care.)

AddFileInfo

This defines the information stored in the table of contents for the data of the type. The value must be a function that takes three arguments (the current list of data for the type and the given group, a list returned by AGR.ParseFilenameFormat (7.6-1) for the given type, and a filename). This function adds the necessary parts of the data entry to the list, and returns true if the data belongs to the type, otherwise false is returned; note that the latter case occurs if the filename matches the format description but additional conditions on the parts of the name are not satisfied (for example integer parts may be required to be positive or prime powers).

ReadAndInterpretDefault

This is the function that does the work for the default contents value of the accessFunctions component of AtlasOfGroupRepresentationsInfo (7.1-5), see Section 7.2. This function must take a path and return the GAP object given by this file.

AddDescribingComponents (for rep only)

This function takes two arguments, a record (that will be returned by AtlasGenerators (3.5-3), OneAtlasGeneratingSetInfo (3.5-6), or AllAtlasGeneratingSetInfos (3.5-7)) and the type record record. It sets the components p, dim, id, and ring that are promised for return values of the abovementioned three functions.

DisplayGroup (for rep only)

This defines the format of the lines printed by DisplayAtlasInfo (3.5-1) for a given group. The value must be a function that takes a list as returned by the function given in the component AddFileInfo, and returns the string to be printed for the representation in question.

Optional components of record are

DisplayOverviewInfo

This is used to introduce a new column in the output of DisplayAtlasInfo (3.5-1) when this is called without arguments or with a list of group names as its only argument. The value must be a list of length three, containing at its first position a string used as the header of the column, at its second position one of the strings "r" or "l", denoting right or left aligned column entries, and at its third position a function that takes two arguments (a list of tables of contents of the AtlasRep package and a group name), and returns a list of length two, containing the string to be printed as the column value and true or false, depending on whether private data is involved or not. (The default is fail, indicating that no new column shall be printed.)

DisplayPRG (for prg only)

This is used in DisplayAtlasInfo (3.5-1) for ATLAS programs. The value must be a function that takes four arguments (a list of tables of contents to examine, a list containing the GAP name and the ATLAS name of the given group, a list of integers or true for the required standardization, and a list of all available standardizations), and returns the list of lines (strings) to be printed as the information about the available programs of the current type and for the given group. (The default is to return an empty list.)

AccessGroupCondition (for rep only)

This is used in DisplayAtlasInfo (3.5-1) and OneAtlasGeneratingSetInfo (3.5-6). The value must be a function that takes two arguments (a list as returned by OneAtlasGeneratingSetInfo (3.5-6), and a list of conditions), and returns true or false, depending on whether the first argument satisfies the conditions. (The default value is ReturnFalse (Reference: ReturnFalse).)

The function must support conditions such as [ IsPermGroup, true ] and [ NrMovedPoints, [ 5, 6 ] ], in general a list of functions followed by a prescribed value, a list of prescribed values, another (unary) function, or the string "minimal". For an overview of the interesting functions, see DisplayAtlasInfo (3.5-1).

AccessPRG (for prg only)

This is used in AtlasProgram (3.5-4). The value must be a function that takes four arguments (the current table of contents, the group name, an integer or a list of integers or true for the required standardization, and a list of conditions given by the optional arguments of AtlasProgram (3.5-4)), and returns either fail or a list that together with the group name forms the identifier of a program that matches the conditions. (The default value is ReturnFail (Reference: ReturnFail).)

AtlasProgram (for prg only)

This is used in AtlasProgram (3.5-4) to create the result value from the identifier. (The default value is AtlasProgramDefault, which works whenever the second entry of the identifier is the filename; this is not the case for example if the program is the composition of several programs.)

AtlasProgramInfo (for prg only)

This is used in AtlasProgramInfo (3.5-5) to create the result value from the identifier. (The default value is AtlasProgramDefault.)

TOCEntryString

This is used in StringOfAtlasTableOfContents (5.1-3). The value must be a function that takes two or three arguments (the name name of the type, a list as returned by AGR.ParseFilenameFormat (7.6-1), and optionally a string that indicates the "remote" format) and returns a string that describes the appropriate data format. (The default value is TOCEntryStringDefault.)

PostprocessFileInfo

This is used in the construction of a table of contents for testing or rearranging the data of the current table of contents. The value must be a function that takes two arguments, the table of contents record and the record in it that belongs to one fixed group. (The default function does nothing.)

SortTOCEntries

This is used in the construction of a table of contents for sorting the entries after they have been added and after the value of the component PostprocessFileInfo has been called. The value must be a function that takes a list as returned by AGR.ParseFilenameFormat (7.6-1), and returns the sorting key. (There is no default value, which means that no sorting is needed.)

TestFileHeaders (for rep only)

This is used in the function AGR.Test.FileHeaders. The value must be a function that takes the same four arguments as AGR.FileContents (7.6-2), except that the third argument is a list as returned by AGR.ParseFilenameFormat (7.6-1). (The default value is ReturnTrue (Reference: ReturnTrue).)

TestFiles (for rep only)

This is used in the function AGR.Test.Files. The format of the value and the default are the same as for the component TestFileHeaders.

TestWords (for prg only)

This is used in the function AGR.Test.Words. The value must be a function that takes five arguments where the first four are the same arguments as for AGR.FileContents (7.6-2), except that the fifth argument is true or false, indicating verbose mode or not.

7.6 Filenames Used in the AtlasRep Package

AtlasRep expects that the filename of each data file describes the contents of the file. This section lists the definitions of the supported structures of filenames.

Each filename consists of two parts, separated by a minus sign -. The first part is always of the form groupnameGi, where the integer i denotes the i-th set of standard generators for the group G, say, with ATLAS-file name groupname (see 3.2). The translations of the name groupname to the name(s) used within GAP is given by the component GAPnames of AtlasOfGroupRepresentationsInfo (7.1-5).

The names of files that contain straight line programs or straight line decisions have one of the following forms. In each of these cases, the suffix Wn means that n is the version number of the program.

groupnameGi-cycWn

In this case, the file contains a straight line program that returns a list of representatives of generators of maximally cyclic subgroups of G. An example is Co1G1-cycW1.

groupnameGi-cclsWn

In this case, the file contains a straight line program that returns a list of conjugacy class representatives of G. An example is RuG1-cclsW1.

groupnameGicycWn-cclsWm

In this case, the file contains a straight line program that takes the return value of the program in the file groupnameGi-cycWn (see above), and returns a list of conjugacy class representatives of G. An example is M11G1cycW1-cclsW1.

groupnameGi-maxkWn

In this case, the file contains a straight line program that takes generators of G w. r. t. the i-th set of standard generators, and returns a list of generators (in general not standard generators) for a subgroup U in the k-th class of maximal subgroups of G. An example is J1G1-max7W1.

groupnameGimaxkWn-subgroupnameGjWm

In this case, the file contains a straight line program that takes the return value of the program in the file groupnameGi-maxkWn (see above), which are generators for a group U, say; subgroupname is a name for U, and the return value is a list of standard generators for U, w. r. t. the j-th set of standard generators. (Of course this implies that the groups in the k-th class of maximal subgroups of G are isomorphic to the group with name subgroupname.) An example is J1G1max1W1-L211G1W1; the first class of maximal subgroups of the Janko group J_1 consists of groups isomorphic to the linear group L_2(11), for which standard generators are defined.

groupnameGi-aoutnameWn

In this case, the file contains a straight line program that takes generators of G w. r. t. the i-th set of standard generators, and returns the list of their images under the outer automorphism α of G given by the name outname; if this name is empty then α is the unique nontrivial outer automorphism of G; if it is a positive integer k then α is a generator of the unique cyclic order k subgroup of the outer automorphism group of G; if it is of the form 2_1 or 2a, 4_2 or 4b, 3_3 or 3c ... then α generates the cyclic group of automorphisms induced on G by G.2_1, G.4_2, G.3_3 ...; finally, if it is of the form kpd, with k one of the above forms and d an integer then d denotes the number of dashes appended to the automorphism described by k; if d = 1 then d can be omitted. Examples are A5G1-aW1, L34G1-a2_1W1, U43G1-a2_3pW1, and O8p3G1-a2_2p5W1; these file names describe the outer order 2 automorphism of A_5 (induced by the action of S_5) and the order 2 automorphisms of L_3(4), U_4(3), and O_8^+(3) induced by the actions of L_3(4).2_1, U_4(3).2_2^', and O_8^+(3).2_2^{'''''}, respectively.

groupnameGi-kerfactgroupnameWn

In this case, the file contains a straight line program that takes generators of G w. r. t. the i-th set of standard generators, and returns generators of the kernel of an epimorphism that maps G to a group with ATLAS-file name factgroupname. An example is 2A5G1-kerA5W1.

groupnameGi-GjWn

In this case, the file contains a straight line program that takes generators of G w. r. t. the i-th set of standard generators, and returns standard generators of G w. r. t. the j-th set of standard generators. An example is L35G1-G2W1.

groupnameGi-checkn

In this case, the file contains a straight line decision that takes generators of G, and returns true if these generators are standard generators w. r. t. the i-th standardization, and false otherwise.

groupnameGi-Pn

In this case, the file contains a straight line decision that takes some group elements, and returns true if these elements are standard generators for G, w. r. t. the i-th standardization, and false otherwise.

groupnameGi-findn

In this case, the file contains a black box program that takes a group, and returns (if it is successful) a set of standard generators for G, w. r. t. the i-th standardization.

groupnameGi-XdescrWn

In this case, the file contains a straight line program that takes generators of G w. r. t. the i-th set of standard generators, and whose return value corresponds to descr. This format is used only in private extensions (see Chapter 5), such a script can be accessed with descr as the third argument of AtlasProgram (3.5-4).

The names of files that contain group generators have one of the following forms. In each of these cases, id is a (possibly empty) string that starts with a lowercase alphabet letter (see IsLowerAlphaChar (Reference: IsLowerAlphaChar)), and m is a nonnegative integer, meaning that the generators are written w. r. t. the m-th basis (the meaning is defined by the ATLAS developers).

groupnameGi-fqrdimidBm.mnr

a file in MeatAxe text file format containing the nr-th generator of a matrix representation over the field with q elements, of dimension dim. An example is S5G1-f2r4aB0.m1.

groupnameGi-pnidBm.mnr

a file in MeatAxe text file format containing the nr-th generator of a permutation representation on n points. An example is M11G1-p11B0.m1.

groupnameGi-ArdimidBm.g

a GAP readable file containing all generators of a matrix representation of dimension dim over an algebraic number field not specified further. An example is A5G1-Ar3aB0.g.

groupnameGi-ZrdimidBm.g

a GAP readable file containing all generators of a matrix representation over the integers, of dimension dim. An example is A5G1-Zr4B0.g.

groupnameGi-HrdimidBm.g

a GAP readable file containing all generators of a matrix representation over a quaternion algebra over an algebraic number field, of dimension dim. An example is 2A6G1-Hr2aB0.g.

groupnameGi-ZnrdimidBm.g

a GAP readable file containing all generators of a matrix representation of dimension dim over the ring of integers mod n. An example is 2A8G1-Z4r4aB0.g.

7.6-1 AGR.ParseFilenameFormat
‣ AGR.ParseFilenameFormat( string, format )( function )

Returns: a list of strings and integers if string matches format, and fail otherwise.

Let string be a filename, and format be a list [ [ c_1, c_2, ..., c_n ], [ f_1, f_2, ..., f_n ] ] such that each entry c_i is a list of strings and of functions that take a character as their argument and return true or false, and such that each entry f_i is a function for parsing a filename, such as the currently undocumented functions ParseForwards and ParseBackwards.

AGR.ParseFilenameFormat returns a list of strings and integers such that the concatenation of their String (Reference: String) values yields string if string matches format, and fail otherwise. Matching is defined as follows. Splitting string at each minus character (-) yields m parts s_1, s_2, ..., s_m. The string string matches format if s_i matches the conditions in c_i, for 1 ≤ i ≤ n, in the sense that applying f_i to s_i and c_i yields a non-fail result.

gap> format:= [ [ [ IsChar, "G", IsDigitChar ],
>                 [ "p", IsDigitChar, AGR.IsLowerAlphaOrDigitChar,
>                   "B", IsDigitChar, ".m", IsDigitChar ] ],
>               [ ParseBackwards, ParseForwards ] ];;
gap> AGR.ParseFilenameFormat( "A6G1-p10B0.m1", format );
[ "A6", "G", 1, "p", 10, "", "B", 0, ".m", 1 ]
gap> AGR.ParseFilenameFormat( "A6G1-p15aB0.m1", format );
[ "A6", "G", 1, "p", 15, "a", "B", 0, ".m", 1 ]
gap> AGR.ParseFilenameFormat( "A6G1-f2r16B0.m1", format );
fail

7.6-2 AGR.FileContents
‣ AGR.FileContents( files, type )( function )

Returns: the GAP object obtained from reading and interpreting the file(s) given by files.

Let files be a list of pairs of the form [ dirname, filename ], where dirname and filename are strings, and let type be a data type (see AGR.DeclareDataType (7.5-1)). Each dirname must be one of "datagens", "dataword", or the dirid value of a data extension (see AtlasOfGroupRepresentationsNotifyData (5.1-1)). If the contents of each of the files in question is accessible and their data belong to the data type type then AGR.FileContents returns the contents of the files; otherwise fail is returned.

Note that if some file is already stored in the dirname directory then AGR.FileContents does not check whether the relevant table of contents actually contains filename.

7.7 The record component identifier used by the AtlasRep Package

The functions AtlasGenerators (3.5-3), AtlasProgram (3.5-4), AtlasProgramInfo (3.5-5), OneAtlasGeneratingSetInfo (3.5-6), and AllAtlasGeneratingSetInfos (3.5-7) return records which have a component identifier. The value of this component describes the record in the sense that one can reconstruct the whole record from it, and the identifier value can be used as an input for AtlasGenerators (3.5-3), AtlasProgram (3.5-4), AtlasProgramInfo (3.5-5), AtlasGroup (3.5-8), and AtlasSubgroup (3.5-9).

The identifier component has the following format.

  • For records describing representations, it is a list of the form [ gapname, files, std, info ].

  • For records describing straight line programs and straight line decisions, it is a list of the form [ gapname, files, std ].

Here gapname is the GAP name of the group in question, files defines the data files, std is the standardization of its generators, and info is some information that depends on the type of the representation, for example the number of moved points in the case of a permutation representation.

The files entry has one of the following formats:

  • a string, in the case that exactly one file is needed that does not belong to a private extension; an example of such an identifier value is [ "J1", "J1G1-cycW1", 1 ]

  • a list whose entries are strings (which refer to files from the core part of the database) and pairs of the form [ tocid, file ] (which refer to files from the extension given by tocid); examples of identifier values are [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], [ "2.M12", [ [ "mfer", "2M12G1-cclsW1" ] ], 1 ], [ "2.M12", [ "M12G1-max1W1", [ "internal", "2M12G1-kerM12W1" ] ], 1 ], [ "2.M12", [ [ "mfer", "2M12G1-p24bB0.m1" ], [ "mfer", "2M12G1-p24bB0.m2" ] ], 1, 24 ].

Up to version 1.5 of the AtlasRep package, a different identifier format was used for files from extensions of the database. Namely, the first entry of the list was a pair [ tocid, groupname ], and the second entry was either a string or a list of strings. Note that with that old format, it was not possible to describe a combination of several files from different sources (core part and extension, or different extensions). The function AtlasRepIdentifier (7.7-1) can be used to convert between the two formats.

7.7-1 AtlasRepIdentifier
‣ AtlasRepIdentifier( oldid )( function )
‣ AtlasRepIdentifier( id, "old" )( function )

This function converts between the "old format" (the one used up to version 1.5.1 of the package) and the "new format" (the one used since version 2.0) of the identifier component of the records returned by AtlasRep functions. Note that the two formats differ only for identifier components that describe data from non-core parts of the database.

If the only argument is a list oldid that is an identifier in old format then the function returns the corresponding identifier in new format. If there are two arguments, a list id that is an identifier in new format and the string "old", then the function returns the corresponding identifier in old format if this is possible, and fail otherwise.

gap> id:= [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ];;
gap> AtlasRepIdentifier( id ) = id;
true
gap> id:= [ "L2(8)", "L28G1-check1", 1, 1 ];;
gap> AtlasRepIdentifier( id ) = id;
true
gap> oldid:= [ [ "priv", "C4" ], [ "C4G1-p4B0.m1" ], 1, 4 ];;
gap> newid:= AtlasRepIdentifier( oldid );
[ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ]
gap> oldid = AtlasRepIdentifier( newid, "old" );
true
gap> oldid:= [ [ "priv", "C4" ], "C4G1-max1W1", 1 ];;
gap> newid:= AtlasRepIdentifier( oldid );
[ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ]
gap> oldid = AtlasRepIdentifier( newid, "old" );
true
gap> oldid:= [ [ "priv", "C4" ], "C4G1-Ar1aB0.g", 1, 1 ];;
gap> newid:= AtlasRepIdentifier( oldid );
[ "C4", [ [ "priv", "C4G1-Ar1aB0.g" ] ], 1, 1 ]
gap> oldid = AtlasRepIdentifier( newid, "old" );
true
gap> oldid:= [ [ "priv", "C4" ], "C4G1-XtestW1", 1 ];;
gap> newid:= AtlasRepIdentifier( oldid );
[ "C4", [ [ "priv", "C4G1-XtestW1" ] ], 1 ]
gap> oldid = AtlasRepIdentifier( newid, "old" );
true
gap> oldid:= [ [ "mfer", "2.M12" ],
>  [ "2M12G1-p264aB0.m1", "2M12G1-p264aB0.m2" ], 1, 264 ];;
gap> newid:= AtlasRepIdentifier( oldid );
[ "2.M12", 
  [ [ "mfer", "2M12G1-p264aB0.m1" ], [ "mfer", "2M12G1-p264aB0.m2" ] ]
    , 1, 264 ]
gap> oldid = AtlasRepIdentifier( newid, "old" );
true

7.8 The Tables of Contents of the AtlasRep Package

The list of AtlasRep data is stored in several tables of contents, which are given essentially by JSON documents, one for the core data and one for each data extension in the sense of Chapter 5. The only exception are data extensions by locally available files in a given directory, where the contents of this directory itself describes the data in question. One can create such a JSON document for the contents of a given local data directory with the function StringOfAtlasTableOfContents (5.1-3).

Here are the administrational functions that are called when a data extension gets notified with AtlasOfGroupRepresentationsNotifyData (5.1-1). In each case, gapname and atlasname denote the GAP and ATLAS name of the group in question (see Section 3.2), and dirid denotes the identifier of the data extension.

The following functions define group names, available representations, and straight line programs.

AGR.GNAN( gapname, atlasname[, dirid] )

Called with two strings gapname (the GAP name of the group) and atlasname (the ATLAS name of the group), AGR.GNAN stores the information in the list AtlasOfGroupRepresentationsInfo.GAPnames, which defines the name mapping between the ATLAS names and GAP names of the groups.

An example of a valid call is AGR.GNAN("A5.2","S5").

AGR.TOC( typename, filename, crc[, dirid] )

AGR.TOC notifies an entry to the TableOfContents.( dirid ) component of AtlasOfGroupRepresentationsInfo (7.1-5). The string typename must be the name of the data type to which the entry belongs, the string filename must be the prefix of the data file(s), and crc must be a list that contains the checksums of the data files, which are either integers (see CrcFile (Reference: CrcFile)) or strings (see HexSHA256). In particular, the number of files that are described by the entry equals the length of crc.

The optional argument dirid is equal to the argument with the same name in the corresponding call of AtlasOfGroupRepresentationsNotifyData (5.1-1). If no dirid argument is given then the current value of AGR.DIRID is taken as the default; this value is set automatically before a toc.json file gets evaluated by AtlasOfGroupRepresentationsNotifyData (5.1-1), and is reset afterwards. If AGR.DIRID is not bound and dirid is not given then this function has no effect.

An example of a valid call is AGR.TOC("perm","alt/A5/mtx/S5G1-p5B0.m", [-3581724,115937465]).

The following functions add data about the groups and their standard generators. The function calls must be executed after the corresponding AGR.GNAN calls.

AGR.GRS( gapname, size[, dirid] )

The integer size is stored as the order of the group with GAP name gapname, in AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.GRS("A5.2",120).

AGR.MXN( gapname, nrMaxes[, dirid] )

The integer nrMaxes is stored as the number of classes of maximal subgroups of the group with GAP name gapname, in AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.MXN("A5.2",4).

AGR.MXO( gapname, sizesMaxes[, dirid] )

The list sizesMaxes of subgroup orders of the classes of maximal subgroups of the group with GAP name gapname (not necessarily dense, in non-increasing order) is stored in AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.MXO("A5.2",[60,24,20,12]).

AGR.MXS( gapname, structureMaxes[, dirid] )

The list structureMaxes of strings describing the structures of the maximal subgroups of the group with GAP name gapname (not necessarily dense), is stored in AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.MXS("A5.2",["A5","S4","5:4","S3x2"]).

AGR.STDCOMP( gapname, factorCompatibility[, dirid] )

The list factorCompatibility (with entries the standardization of the group with GAP name gapname , the GAP name of a factor group, the standardization of this factor group, and true or false, indicating whether mapping the standard generators for gapname to those of factgapname defines an epimorphism) is stored in AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.STDCOMP("2.A5.2",[1,"A5.2",1,true]).

The following functions add data about representations or straight line programs that are already known. The function calls must be executed after the corresponding AGR.TOC calls.

AGR.RNG( repname, descr[, dirid] )

Called with two strings repname (denoting the name of a file containing the generators of a matrix representation over a ring that is not determined by the filename) and descr (describing this ring R, say), AGR.RNG adds the triple [ repname, descr, R ] to the list stored in the ringinfo component of AtlasOfGroupRepresentationsInfo (7.1-5).

An example of a valid call is AGR.RNG("A5G1-Ar3aB0","Field([Sqrt(5)])").

AGR.TOCEXT( atlasname, std, maxnr, files[, dirid] )

Called with atlasname, the positive integers std (the standardization) and maxnr (the number of the class of maximal subgroups), and the list files (of filenames of straight line programs for computing generators of the maxnr-th maximal subgroup, using a straight line program for a factor group plus perhaps some straight line program for computing kernel generators), AGR.TOCEXT stores the information in AtlasOfGroupRepresentationsInfo.GAPnames.

An example of a valid call is AGR.TOCEXT("2A5",1,3,["A5G1-max3W1"]).

AGR.API( repname, info[, dirid] )

Called with the string repname (denoting the name of a permutation representation) and the list info (describing the point stabilizer of this representation), AGR.API binds the component repname of the record AtlasOfGroupRepresentationsInfo.permrepinfo to a record that describes the contents of info.

info has the following entries.

  • At position 1, the transitivity is stored.

  • If the transitivity is zero then info has length two, and the second entry is the list of orbit lengths.

  • If the transitivity is positive then info has length four or five, and the second entry is the rank of the action.

  • If the transitivity is positive then the third entry is one of the strings "prim", "imprim", denoting primitivity or not.

  • If the transitivity is positive then the fourth entry is either the string "???" or a string that describes the structure of the point stabilizer. If the third entry is "imprim" then this description consists of a subgroup part and a maximal subgroup part, separated by " < ".

  • If the third entry is "prim" then the fifth entry is either the string "???" or the number of the class of maximal subgroups that are the point stabilizers.

An example of a valid call is AGR.API("A5G1-p5B0",[3,2,"prim","A4",1]).

AGR.CHAR( gapname, repname, char, pos[, charname[, dirid]] )

Called with the strings gapname and repname (denoting the name of the representation), the integer char (the characteristic of the representation), and pos (the position or list of positions of the irreducible constituent(s)), AGR.CHAR stores the information in AtlasOfGroupRepresentationsInfo.characterinfo.

A string describing the character can be entered as charname.

If dirid is given but no charname is known then one can enter fail as the fifth argument.

An example of a valid call is AGR.CHAR("M11","M11G1-p11B0",0,[1,2],"1a+10a").

7.9 Sanity Checks for the AtlasRep Package

The file tst/testall.g of the package contains Test (Reference: Test) statements for checking whether the AtlasRep functions behave as documented. One can run these tests by calling ReadPackage( "AtlasRep", "tst/testall.g" ). The examples in the package manual form a part of the tests, they are collected in the file tst/docxpl.tst of the package.

The remainder of this section deals with consistency checks of the data. The tests described in Section 7.9-1 can be used for data from any extension of the database (see Chapter 5), Section 7.9-2 lists tests which apply only to the core part of the database.

All these tests apply only to locally available files (see Section 7.8), no files are downloaded during the tests. Thus the required space and time for running these tests depend on the amount of locally available data.

Some of the tests compute and verify additional data, such as information about point stabilizers of permutation representations. In these cases, output lines starting with #E are error messages that point to inconsistencies, whereas output lines starting with #I inform about data that have been computed and were not yet stored, or about stored data that were not verified. These tests are experimental in the sense that they involve several heuristics. Depending on the data to which they are applied, it may happen that the tests run out of space or do not finish in acceptable time. Please inform the package maintainer if you run into such problems.

7.9-1 Sanity Checks for a Table of Contents

The following tests can be used to check the data that belong to a given part of the database (core data or extension). Each of these tests is given by a function with optional argument tocid, the identifying string that had been entered as the second argument of AtlasOfGroupRepresentationsNotifyData (5.1-1). The contents of the core part can be checked by entering "core", which is also the default for tocid. The function returns false if an error occurs, otherwise true. Currently the following tests of this kind are available. (For some of them, the global option TryToExtendData can be entered in order to try the computation of not yet stored data.)

AGR.Test.GroupOrders()

checks whether the group orders stored in the GAPnames component of AtlasOfGroupRepresentationsInfo (7.1-5) coincide with the group orders computed from an ATLAS permutation representation of degree up to AGR.Test.MaxTestDegree, from the available character table or table of marks with the given name, or from the structure of the name, in the sense that splitting the name at the first dot (.) or colon (:) and applying the same criteria to derive the group order from the two parts may yield enough information.

AGR.Test.Words( [tocid] )

processes the straight line programs that belong to tocid, using the function stored in the TestWords component of the data type in question.

The straight line programs for the cases listed in AGR.Test.HardCases.TestWords are omitted.

AGR.Test.ClassScripts( [tocid] )

checks whether the straight line programs that belong to tocid and that compute representatives of certain conjugacy classes are consistent with information stored on the GAP character table of the group in question, in the sense that the given class names really occur in the character table and that the element orders and centralizer orders for the classes are correct.

AGR.Test.CycToCcls( [tocid][:TryToExtendData] )

checks whether all straight line programs that belong to tocid and that compute class representatives from representatives of cyclic subgroups possess a corresponding straight line program (anywhere in the database) for computing representatives of cyclic subgroups.

AGR.Test.FileHeaders( [tocid] )

checks whether the MeatAxe text files that belong to tocid have a header line that is consistent with the filename, and whether the contents of all GAP format data files that belong to tocid is consistent with the filename.

AGR.Test.Files( [tocid] )

checks whether the MeatAxe text files that belong to tocid can be read with ScanMeatAxeFile (7.3-1) such that the result is not fail. The function does not check whether the first line of a MeatAxe text file is consistent with the filename, since this can be tested with AGR.Test.FileHeaders.

AGR.Test.BinaryFormat( [tocid] )

checks whether all MeatAxe text files that belong to tocid satisfy that applying first CMtxBinaryFFMatOrPerm (7.3-4) and then FFMatOrPermCMtxBinary (7.3-5) yields the same object.

AGR.Test.Primitivity( [tocid][:TryToExtendData] )

checks the stored primitivity information for the permutation representations that belong to tocid. That is, the number of orbits, in case of a transitive action the transitivity, the rank, the information about the point stabilizers are computed if possible, and compared with the stored information.

AGR.Test.Characters( [tocid][:TryToExtendData] )

checks the character information (that belongs to tocid) for the matrix and permutation representations.

AGR.Test.StdCompatibility( [tocid][:TryToExtendData] )

checks whether the information about the compatibility of standard generators of a group and its factor groups that is stored in the GAPnames component of AtlasOfGroupRepresentationsInfo (7.1-5) and belongs to tocid coincides with computed values.

The following criterion is used for computing the value for a group G. Use the GAP Character Table Library to determine factor groups F of G for which standard generators are defined and moreover a presentation in terms of these standard generators is known. Evaluate the relators of the presentation in the standard generators of G, and let N be the normal closure of these elements in G. Then mapping the standard generators of F to the N-cosets of the standard generators of G is an epimorphism. If |G/N| = |F| holds then G/N and F are isomorphic, and the standard generators of G and F are compatible in the sense that mapping the standard generators of G to their N-cosets yields standard generators of F.

AGR.Test.KernelGenerators( [tocid][:TryToExtendData] )

checks whether the straight line programs (that belong to tocid) for computing generators of kernels of natural epimorphisms between ATLAS groups compute generators of normal subgroups of the right group orders. If it is known that the given standard generators of the given group are compatible with some standard generators of the factor group in question (see the section about AGR.Test.StdCompatibility) then it is also checked whether evaluating the straight line program at these standard generators of the factor group yields only the identity.

Note that the verification of normal subgroups of matrix groups may be very time and space consuming if the package recog [NSA+18] is not available.

The function also tries to find words for computing kernel generators of those epimorphisms for which no straight line programs are stored; the candidates are given by stored factor fusions between the character tables from the GAP Character Table Library.

AGR.Test.MaxesOrders( [tocid] )

checks whether the orders of maximal subgroups stored in the component GAPnames of AtlasOfGroupRepresentationsInfo (7.1-5) coincide with the orders computed from the restriction of an ATLAS permutation representation of degree up to AGR.Test.MaxTestDegree (using a straight line program that belongs to tocid), from the character table, or the table of marks with the given name, or from the information about maximal subgroups of the factor group modulo a normal subgroup that is contained in the Frattini subgroup.

AGR.Test.MaxesStructure()

checks whether the names of maximal subgroups stored in the component GAPnames of AtlasOfGroupRepresentationsInfo (7.1-5) coincide with the names computed from the GAP character table with the given name.

AGR.Test.MaxesStandardization( [tocid] )

checks whether the straight line programs (that belong to tocid) for standardizing the generators of maximal subgroups are correct: If a semi-presentation is available for the maximal subgroup and the standardization in question then it is used, otherwise an explicit isomorphism is tried.

AGR.Test.CompatibleMaxes( [tocid][:TryToExtendData] )

checks whether the information about deriving straight line programs for restricting to subgroups from straight line programs that belong to a factor group coincide with computed values.

The following criterion is used for computing the value for a group G. If F is a factor group of G such that the standard generators of G and F are compatible (see the test function AGR.Test.StdCompatibility) and if there are a presentation for F and a permutation representation of G then it is checked whether the "maxes" type straight line programs for F can be used to compute generators for the maximal subgroups of G; if not then generators of the kernel of the natural epimorphism from G to F, must be added.

7.9-2 Other Sanity Checks

The tests described in this section are intended for checking data that do not belong to a particular part of the AtlasRep database. Therefore all locally available data are used in these tests. Each of the tests is given by a function without arguments that returns false if a contradiction was found during the test, and true otherwise. Additionally, certain messages are printed when contradictions between stored and computed data are found, when stored data cannot be verified computationally, or when the computations yield improvements of the stored data. Currently the following tests of this kind are available.

AGR.Test.Standardization()

checks whether all generating sets corresponding to the same set of standard generators have the same element orders; for the case that straight line programs for computing certain class representatives are available, also the orders of these representatives are checked w. r. t. all generating sets.

AGR.Test.StdTomLib()

checks whether the standard generators are compatible with those that occur in the TomLib package.

AGR.Test.MinimalDegrees()

checks that the (permutation and matrix) representations available in the database do not have smaller degree than the minimum claimed in Section 6.3.

Finally, we reset the user preference and the info level which had been set at the beginning of Chapter 2.

gap> SetUserPreference( "AtlasRep", "DisplayFunction", origpref );
gap> SetInfoLevel( InfoAtlasRep, globallevel );
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chap5.html0000644000175000017500000011633714545501243014130 0ustar samsam GAP (AtlasRep) - Chapter 5: Extensions of the AtlasRep Package
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

5 Extensions of the AtlasRep Package

It may be interesting to use the functions of the GAP interface also for representations or programs that are not part of the ATLAS of Group Representations. This chapter describes how to achieve this.

The main idea is that users can notify collections of "private" data files, which may consist of

  1. new faithful representations and programs for groups that are declared already in the core part of the database that belongs to the "official" ATLAS of Group Representations (see Section 5.1),

  2. the declaration of groups that are not declared in the ATLAS of Group Representations, and representations and programs for them (see Section 5.2), and

  3. the definition of new kinds of representations and programs (see Section 7.5).

A test example of a local extension is given in Section 5.3. Another such example is the small collection of data that is distributed together with the package, in its datapkg directory; its contents can be listed by calling DisplayAtlasInfo( "contents", "internal" ).

Examples of extensions by files that can be downloaded from the internet can be found in the GAP packages MFER [BHM09] and CTBlocks [Bre14]. These extensions are automatically notified as soon as AtlasRep is available, via the default value of the user preference AtlasRepTOCData, see Section 4.2-3; their contents can be listed by calling DisplayAtlasInfo( "contents", "mfer" ) and DisplayAtlasInfo( "contents", "ctblocks" ), respectively.

Several of the sanity checks for the core part of the AtlasRep data make sense also for data extensions, see Section 7.9 for more information.

5.1 Notify Additional Data

After the AtlasRep package has been loaded into the GAP session, one can extend the data which the interface can access by own representations and programs. The following two variants are supported.

  • The additional data files are locally available in some directory. Information about the declaration of new groups or about additional information such as the character names of representations can be provided in an optional JSON format file named toc.json in this directory.

  • The data files can be downloaded from the internet. Both the list of available data and additional information as in the above case are given by either a local JSON format file or the URL of a JSON format file. This variant requires the user preference AtlasRepAccessRemoteFiles (see Section 4.2-1) to have the value true.

In both cases, AtlasOfGroupRepresentationsNotifyData (5.1-1) can be used to make the private data available to the interface.

5.1-1 AtlasOfGroupRepresentationsNotifyData
‣ AtlasOfGroupRepresentationsNotifyData( dir, id[, test] )( function )
‣ AtlasOfGroupRepresentationsNotifyData( filename[, id][, test] )( function )
‣ AtlasOfGroupRepresentationsNotifyData( url[, id][, test] )( function )

Returns: true if the overview of the additional data can be evaluated and if the names of the data files in the extension are compatible with the data files that had been available before the call, otherwise false.

The following variants are supported for notifying additional data.

Contents of a local directory

The first argument dir must be either a local directory (see Reference: Directories) or a string denoting the path of a local directory, such that the GAP object describing this directory can be obtained by calling Directory (Reference: Directory) with the argument dir; in the latter case, dir can be an absolute path or a path relative to the user's home directory (starting with a tilde character ~) or a path relative to the directory where GAP was started. The files contained in this directory or in its subdirectories (only one level deep) are considered. If the directory contains a JSON document in a file with the name toc.json then this file gets evaluated; its purpose is to provide additional information about the data files.

Calling AtlasOfGroupRepresentationsNotifyData means to evaluate the contents of the directory and (if available) of the file toc.json.

Accessing data means to read the locally available data files.

The argument id must be a string. It will be used in the identifier components of the records that are returned by interface functions (see Section 3.5) for data contained in the directory dir. (Note that the directory name may be different in different GAP sessions or for different users who want to access the same data, whereas the identifier components shall be independent of such differences.)

An example of a local extension is the contents of the datapkg directory of the AtlasRep package. This extension gets notified automatically when AtlasRep gets loaded. For restricting data collections to this extension, one can use the identifier "internal".

Local file describing the contents of a local or remote directory

The first argument filename must be the name of a local file whose content is a JSON document that lists the available data, additional information about these data, and an URL from where the data can be downloaded. The data format of this file is defined by the JSON schema file doc/atlasreptoc_schema.json of the AtlasRep package.

Calling AtlasOfGroupRepresentationsNotifyData means to evaluate the contents of the file filename, without trying to access the remote data. The id is then either given implicitly by the ID component of the JSON document or can be given as the second argument.

Downloaded data files are stored in the subdirectory dataext/id of the directory that is given by the user preference AtlasRepDataDirectory, see Section 4.2-2.

Accessing data means to download remote files if necessary but to prefer files that are already locally available.

An example of such an extension is the set of permutation representations provided by the MFER package [BHM09]; due to the file sizes, these representations are not distributed together with the MFER package. For restricting data collections to this extension, one can use the identifier "mfer".

Another example is given by some of the data that belong to the CTBlocks package [Bre14]. These data are also distributed with that package, and notifying the extension in the situation that the CTBlocks package is available will make its local data available, via the component LocalDirectory of the JSON document ctblocks.json; notifying the extension in the situation that the CTBlocks package is not available will make the remote files available, via the component DataURL of this JSON document. For restricting data collections to this extension, one can use the identifier "ctblocks".

URL of a file

(This variant works only if the IO package [Neu14] is available.)

The first argument url must be the URL of a JSON document as in the previous case.

Calling AtlasOfGroupRepresentationsNotifyData in online mode (that is, the user preference AtlasRepAccessRemoteFiles has the value true) means to download this file and to evaluate it; the id is then given implicitly by the ID component of the JSON document, and the contents of the document gets stored in a file with name dataext/id/toc.json, relative to the directory given by the value of the user preference AtlasRepDataDirectory. Also downloaded files for this extension will be stored in the directory dataext/id.

Calling AtlasOfGroupRepresentationsNotifyData in offline mode requires that the argument id is explicitly given. In this case, it is checked whether the dataext subdirectory contains a subdirectory with name id; if not then false is returned, if yes then the contents of this local directory gets notified via the first form described above.

Accessing data in online mode means the same as in the case of a remote directory. Accessing data in offline mode means the same as in the case of a local directory.

Examples of such extension are again the data from the packages CTBlocks and MFER described above, but in the situation that these packages are not loaded, and that just the web URLs of their JSON documents are entered which describe the contents.

In all three cases, if the optional argument test is given then it must be either true or false. In the true case, consistency checks are switched on during the notification. The default for test is false.

The notification of an extension may happen as a side-effect when a GAP package gets loaded that provides the data in question. Besides that, one may collect the notifications of data extensions in one's gaprc file (see Section Reference: The gap.ini and gaprc files).

5.1-2 AtlasOfGroupRepresentationsForgetData
‣ AtlasOfGroupRepresentationsForgetData( dirid )( function )

If dirid is the identifier of a database extension that has been notified with AtlasOfGroupRepresentationsNotifyData (5.1-1) then AtlasOfGroupRepresentationsForgetData undoes the notification; this means that from then on, the data of this extension cannot be accessed anymore in the current session.

5.1-3 StringOfAtlasTableOfContents
‣ StringOfAtlasTableOfContents( inforec )( function )

For a record inforec with at least the component ID, with value "core" or the identifier of a data extension (see AtlasOfGroupRepresentationsNotifyData (5.1-1)), this function returns a string that describes the part of AtlasRep data belonging to inforec.ID.

Printed to a file, the returned string can be used as the table of contents of this part of the data. For that purpose, also the following components of inforec must be bound (all strings). Version, SelfURL (the internet address of the table of contents file itself). At least one of the following two components must be bound. DataURL is the internet address of the directory from where the data in question can be downloaded. LocalDirectory is a path relative to GAP's pkg directory where the data may be stored locally (depending on whether some GAP package is installed). If the component DataURL is bound then the returned string contains the information about the data files; this is not necessary if the data are only locally available. If both DataURL and LocalDirectory are bound then locally available data will be prefered at runtime.

Alternatively, inforec can also be the ID string; in this case, the values of those of the supported components mentioned above that are defined in an available JSON file for this ID are automatically inserted. (If there is no such file yet then entering the ID string as inforec does not make sense.)

For an example how to use the function, see Section 5.3.

5.2 The Effect of Extensions on the User Interface

First suppose that only new groups or new data for known groups or for new groups are added.

In this case, DisplayAtlasInfo (3.5-1) lists the additional representations and programs in the same way as other data known to AtlasRep, except that parts outside the core database are marked with the string that is the value of the user preference AtlasRepMarkNonCoreData, see Section 4.2-12. The ordering of representations listed by DisplayAtlasInfo (3.5-1) (and referred to by AtlasGenerators (3.5-3)) will in general change whenever extensions get notified. For the other interface functions described in Chapter 3, the only difference is that also the additional data can be accessed.

If also new data types are introduced in an extension (see Section 7.5) then additional columns or rows can appear in the output of DisplayAtlasInfo (3.5-1), and new inputs can become meaningful for all interface functions.

5.3 An Example of Extending the AtlasRep Data

This section shows an extension by a few locally available files.

We set the info level of InfoAtlasRep (7.1-1) to 1 in this section.

gap> locallevel:= InfoLevel( InfoAtlasRep );;
gap> SetInfoLevel( InfoAtlasRep, 1 );

Let us assume that the local directory privdir contains data for the cyclic group C_4 of order 4 and for the alternating group A_5 on 5 points, respectively. Note that it is obvious what the term "standard generators" means for the group C_4.

Further let us assume that privdir contains the following files.

C4G1-p4B0.m1

a faithful permutation representation of C_4 on 4 points,

C4G1-max1W1

the straight line program that returns the square of its unique input,

C4G1-a2W1

the straight line program that raises its unique input to the third power,

C4G1-XtestW1

the straight line program that returns the square of its unique input,

A5G1-p60B0.m1 and A5G1-p60B0.m2

standard generators for A_5 in its regular permutation representation.

The directory and the files can be created as follows.

gap> prv:= DirectoryTemporary( "privdir" );;
gap> FileString( Filename( prv, "C4G1-p4B0.m1" ),
>                MeatAxeString( [ (1,2,3,4) ], 4 ) );;
gap> FileString( Filename( prv, "C4G1-max1W1" ),
>                "inp 1\npwr 2 1 2\noup 1 2\n" );;
gap> FileString( Filename( prv, "C4G1-XtestW1" ),
>                "inp 1\npwr 2 1 2\noup 1 2\n" );;
gap> FileString( Filename( prv, "C4G1-a2W1" ),
>                "inp 1\npwr 3 1 2\noup 1 2\n" );;
gap> FileString( Filename( prv, "C4G1-Ar1aB0.g" ),
>                "return rec( generators:= [ [[E(4)]] ] );\n" );;
gap> points:= Elements( AlternatingGroup( 5 ) );;
gap> FileString( Filename( prv, "A5G1-p60B0.m1" ),
>      MeatAxeString( [ Permutation( (1,2)(3,4), points, OnRight ) ], 60 ) );;
gap> FileString( Filename( prv, "A5G1-p60B0.m2" ),
>      MeatAxeString( [ Permutation( (1,3,5), points, OnRight ) ], 60 ) );;

(We could also introduce intermediate directories C4 and A5, say, each with the data for one group only.)

The core part of the AtlasRep data does not contain information about C_4, so we first notify this group, in the file privdir/toc.json. Besides the name of the group, we store the following information: the group order, the number of (classes of) maximal subgroups, their orders, their structures, and describing data about the three representations. The group A_5 is already known with name A5 in the core part of the AtlasRep data, so it need not and cannot be notified again.

gap> FileString( Filename( prv, "toc.json" ), Concatenation( [ "{\n",
>        "\"ID\":\"priv\",\n",
>        "\"Data\":[\n",
>        "[\"GNAN\",[\"C4\",\"C4\"]],\n",
>        "[\"GRS\",[\"C4\",4]],\n",
>        "[\"MXN\",[\"C4\",1]],\n",
>        "[\"MXO\",[\"C4\",[2]]],\n",
>        "[\"MXS\",[\"C4\",[\"C2\"]]],\n",
>        "[\"RNG\",[\"C4G1-Ar1aB0\",\"CF(4)\",",
>                  "[\"QuadraticField\",-1],[1,0,1]]],\n",
>        "[\"API\",[\"C4G1-p4B0\",[1,4,\"imprim\",\"1 < C2\"]]],\n",
>        "[\"API\",[\"A5G1-p60B0\",[1,60,\"imprim\",\"1 < S3\"]]]\n",
>        "]\n",
>        "}\n" ] ) );;

Then we notify the extension.

gap> AtlasOfGroupRepresentationsNotifyData( prv, "priv", true );
true

Now we can use the interface functions for accessing the additional data.

gap> DisplayAtlasInfo( [ "C4" ] );
group | # | maxes | cl | cyc | out | fnd | chk | prs
------+---+-------+----+-----+-----+-----+-----+----
C4*   | 2 |     1 |    |     |   2 |     |     |    
gap> DisplayAtlasInfo( "C4" );
Representations for G = C4:    (all refer to std. generators 1)
---------------------------
1: G <= Sym(4)*       rank 4, on cosets of 1 < C2
2: G <= GL(1a,CF(4))* 

Programs for G = C4:    (all refer to std. generators 1)
--------------------
- automorphisms*:
  2*               
- maxes (all 1):
  1*:  C2          
- other scripts*:
  "test"*          
gap> DisplayAtlasInfo( "C4", IsPermGroup, true );
Representations for G = C4:    (all refer to std. generators 1)
---------------------------
1: G <= Sym(4)* rank 4, on cosets of 1 < C2
gap> DisplayAtlasInfo( "C4", IsMatrixGroup );
Representations for G = C4:    (all refer to std. generators 1)
---------------------------
2: G <= GL(1a,CF(4))* 
gap> DisplayAtlasInfo( "C4", Dimension, 2 );
gap> DisplayAtlasInfo( "A5", NrMovedPoints, 60 );
Representations for G = A5:    (all refer to std. generators 1)
---------------------------
4: G <= Sym(60)* rank 60, on cosets of 1 < S3
gap> info:= OneAtlasGeneratingSetInfo( "C4" );
rec( contents := "priv", groupname := "C4", id := "", 
  identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], 
  isPrimitive := false, p := 4, rankAction := 4, 
  repname := "C4G1-p4B0", repnr := 1, size := 4, 
  stabilizer := "1 < C2", standardization := 1, transitivity := 1, 
  type := "perm" )
gap> AtlasGenerators( info.identifier );
rec( contents := "priv", generators := [ (1,2,3,4) ], 
  groupname := "C4", id := "", 
  identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], 
  isPrimitive := false, p := 4, rankAction := 4, 
  repname := "C4G1-p4B0", repnr := 1, size := 4, 
  stabilizer := "1 < C2", standardization := 1, transitivity := 1, 
  type := "perm" )
gap> AtlasProgram( "C4", 1 );
rec( groupname := "C4", 
  identifier := [ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ], 
  program := <straight line program>, size := 2, standardization := 1,
  subgroupname := "C2", version := "1" )
gap> AtlasProgram( "C4", "maxes", 1 );
rec( groupname := "C4", 
  identifier := [ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ], 
  program := <straight line program>, size := 2, standardization := 1,
  subgroupname := "C2", version := "1" )
gap> AtlasProgram( "C4", "maxes", 2 );
fail
gap> AtlasGenerators( "C4", 1 );
rec( contents := "priv", generators := [ (1,2,3,4) ], 
  groupname := "C4", id := "", 
  identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], 
  isPrimitive := false, p := 4, rankAction := 4, 
  repname := "C4G1-p4B0", repnr := 1, size := 4, 
  stabilizer := "1 < C2", standardization := 1, transitivity := 1, 
  type := "perm" )
gap> AtlasGenerators( "C4", 2 );
rec( contents := "priv", dim := 1, generators := [ [ [ E(4) ] ] ], 
  groupname := "C4", id := "a", 
  identifier := [ "C4", [ [ "priv", "C4G1-Ar1aB0.g" ] ], 1, 1 ], 
  polynomial := [ 1, 0, 1 ], repname := "C4G1-Ar1aB0", repnr := 2, 
  ring := GaussianRationals, size := 4, standardization := 1, 
  type := "matalg" )
gap> AtlasGenerators( "C4", 3 );
fail
gap> AtlasProgram( "C4", "other", "test" );
rec( groupname := "C4", 
  identifier := [ "C4", [ [ "priv", "C4G1-XtestW1" ] ], 1 ], 
  program := <straight line program>, standardization := 1, 
  version := "1" )

We can restrict the data shown by DisplayAtlasInfo (3.5-1) to our extension, as follows.

gap> DisplayAtlasInfo( "contents", "priv" );
group | # | maxes | cl | cyc | out | fnd | chk | prs
------+---+-------+----+-----+-----+-----+-----+----
A5*   | 1 |       |    |     |     |     |     |    
C4*   | 2 |     1 |    |     |   2 |     |     |    

For checking the data in the extension, we apply the relevant sanity checks (see Section 7.9).

gap> AGR.Test.Words( "priv" );
true
gap> AGR.Test.FileHeaders( "priv" );
true
gap> AGR.Test.Files( "priv" );
true
gap> AGR.Test.BinaryFormat( "priv" );
true
gap> AGR.Test.Primitivity( "priv" : TryToExtendData );
true
gap> AGR.Test.Characters( "priv" : TryToExtendData );
#I  AGR.Test.Character:
#I  add new info
["CHAR",["A5","A5G1-p60B0",
0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4a^4+5a^5"]],
#I  AGR.Test.Character:
#I  add new info
["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]],
true

We did not store the character information in the file privdir/toc.json, and GAP was able to identify the characters of the two permutation representations. (The identification of the character for the matrix representation fails because we cannot distinguish between the two Galois conjugate faithful characters.)

If we store the character information as proposed by GAP, this information will for example become part of the records returned by OneAtlasGeneratingSetInfo (3.5-6). (Note that we have to enter "priv" as the last argument of AGR.CHAR when we call the function interactively, in order to assign the information to the right context.)

gap> AGR.CHAR("A5","A5G1-p60B0",
> 0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4a^4+5a^5", "priv" );
gap> AGR.CHAR("C4","C4G1-p4B0",0,[1,2,3,4],"1abcd", "priv" );
gap> AGR.Test.Characters( "priv" );
true
gap> OneAtlasGeneratingSetInfo( "C4" );
rec( charactername := "1abcd", constituents := [ 1, 2, 3, 4 ], 
  contents := "priv", groupname := "C4", id := "", 
  identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], 
  isPrimitive := false, p := 4, rankAction := 4, 
  repname := "C4G1-p4B0", repnr := 1, size := 4, 
  stabilizer := "1 < C2", standardization := 1, transitivity := 1, 
  type := "perm" )

A string that describes the JSON format overview of the data extension can be created with StringOfAtlasTableOfContents (5.1-3).

gap> Print( StringOfAtlasTableOfContents( "priv" ) );
{
"ID":"priv",
"Data":[
["GNAN",["C4","C4"]],

["GRS",["C4",4]],

["MXN",["C4",1]],

["MXO",["C4",[2]]],

["MXS",["C4",["C2"]]],

["RNG",["C4G1-Ar1aB0","CF(4)",["QuadraticField",-1],[1,0,1]]],

["API",["A5G1-p60B0",[1,60,"imprim","1 < S3"]]],
["API",["C4G1-p4B0",[1,4,"imprim","1 < C2"]]],

["CHAR",["A5","A5G1-p60B0",0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4\
a^4+5a^5"]],
["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]]
]
}

If we prescribe a "DataURL" component that starts with "http" then also the "TOC" lines are listed, in order to enable remote access to the data.

gap> Print( StringOfAtlasTableOfContents(
>               rec( ID:= "priv", DataURL:= "http://someurl" ) ) );
{
"ID":"priv",
"DataURL":"http://someurl",
"Data":[
["GNAN",["C4","C4"]],

["GRS",["C4",4]],

["MXN",["C4",1]],

["MXO",["C4",[2]]],

["MXS",["C4",["C2"]]],

["TOC",["perm","A5G1-p60B0.m",[118815263,24584221]]],
["TOC",["matalg","C4G1-Ar1aB0.g",[49815028]]],
["TOC",["otherscripts","C4G1-XtestW1",[-27672877]]],
["TOC",["out","C4G1-a2W1",[126435524]]],
["TOC",["maxes","C4G1-max1W1",[-27672877]]],
["TOC",["perm","C4G1-p4B0.m",[102601978]]],

["RNG",["C4G1-Ar1aB0","CF(4)",["QuadraticField",-1],[1,0,1]]],

["API",["A5G1-p60B0",[1,60,"imprim","1 < S3"]]],
["API",["C4G1-p4B0",[1,4,"imprim","1 < C2"]]],

["CHAR",["A5","A5G1-p60B0",0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4\
a^4+5a^5"]],
["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]]
]
}

Finally, we "uninstall" our extension, and reset the info level that had been set to 1 in the beginning. (Also the group name C4 is removed this way, which is an advantage of using a toc.json file over calling AGR.GNAN directly.),

gap> AtlasOfGroupRepresentationsForgetData( "priv" );
gap> SetInfoLevel( InfoAtlasRep, locallevel );

We need not care about removing the temporary directory and the files in it. GAP will try to remove directories created with DirectoryTemporary (Reference: DirectoryTemporary) at the end of the GAP session.

Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/chap0_mj.html0000644000175000017500000007610314545501244014606 0ustar samsam GAP (AtlasRep) - Contents
Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

AtlasRep — A GAP 4 Package

(Version 2.1.8)

Robert A. Wilson
Email: R.A.Wilson@qmul.ac.uk
Homepage: http://www.maths.qmw.ac.uk/~raw

Richard A. Parker
Email: richpark@gmx.co.uk

Simon Nickerson
Homepage: http://nickerson.org.uk/groups

John N. Bray
Email: J.N.Bray@qmul.ac.uk
Homepage: http://www.maths.qmw.ac.uk/~jnb

Thomas Breuer
Email: sam@Math.RWTH-Aachen.De
Homepage: https://www.math.rwth-aachen.de/~Thomas.Breuer

Copyright

© 2002–2024

This package may be distributed under the terms and conditions of the GNU Public License Version 3 or later, see http://www.gnu.org/licenses.

Contents


Goto Chapter: Top 1 2 3 4 5 6 7 Bib Ind

generated by GAPDoc2HTML

atlasrep-2.1.8/doc/maintain.xml0000755000175000017500000010147714410314105014554 0ustar samsam Maintenance Issues of the &AtlasRep; Package This is just preliminary, in particular not intended for inclusion in the manual! This chapter describes why some data that are available in the web &ATLAS; are excluded from the &GAP; interface, by which data they have been replaced (if applicable), and which additional data are distributed together with the &AtlasRep; package. -> section on just added material, such as cyc2ccls scripts -> document all in datapkg!
Generators of Kernels - change the code! - test.g -> not only for compatible std. generators & same std.! run for 3^(1+12):2.Suz.2 Print( "hier\n" ); if entry[1] = "3^(1+12):2.Suz.2" then SetSize( N, 3^13 ); fi; #T for 3^13, calling Size exceeds the memory! #T (trans. permutation action on 3^12 = 531441 points!) -> how to verify that the kernel is correct? Note that the program computes elements in G, in particular we are not concerned with standardization in F, and we do not assume that the given standard generators of G are compatible with some standard generators of F. (Only relation: If G has several normal subgroups N such that G/N is isomorphic with F and if the i-th std. gens of G and F are compatible then we prefer the normal subgroup that is the kernel of the epim. given by mapping the i-th std. gen. of G to those of F.) - provide kernel info also for incompatible generators: AGR.STDCOMP("(A5xA12):2",[0,"A12.2",1,false]); AGR.STDCOMP("(A5xU3(8):3):2",[0,"A5.2",1,false]); AGR.STDCOMP("(L3(2)xS4(4):2).2",[0,"L3(2).2",1,false]); AGR.STDCOMP("2^2.2E6(2).S3",[0,"2E6(2).3.2",0,false]); AGR.STDCOMP("5^3.L3(5)",[2,"L3(5)",1,false]); - a new type of slps, many new scripts - hard case: 2.2E6(2) ->> 2E6(2) (and analog. 2^2.2E6(2) -> 2E6(2)) need to skip obviously unnecessary words; the > 5593818-th word works (which exactly?), but only 525 words must actually be tested (really?) (altogether 10 minutes runtime!) (done 2015-04-13 on gemma) 5593773- 5593781+ 5593782+ 5593813- 5593814+ 5593818- [ [ m2^2*m1*m2*(m2*m1*m2^2*m1)^2*(m2*m1)^4, 33 ], true ] -> is equal to (m2^2*m1)^3*m2*m1*m2^2*m1*(m2*m1)^4 with slp 3:= 2*1 4:= 2*3 5:= 4^3 (2 mult) 6:= 3^4 (2 mult) 7:= 5*3 8:= 7*4 9:= 8*6 thus 9 mult! -> add a remark about the arbitr. of the printed factoriz.! (only those numbers are shown for which all syllables are below the el. order, and "-" means that the order in the factor group is even, which need not be checked) - function is AGR.Test.ComputeKernelGenerators... -> better move out from Test! - really verify the non-cyclic kernels! (see TODO_2) -------------------------------------------------------------------------- kernel generators: - missing verifications in atlasrep/kerrun.out? (std. 0) - two kernels of order 3^13 --prove! # run on 2014-04-30 # add a test: # if a repres. for G and of m.G are avail. then try to compute kernel slp, # also if no compat. is assumed; # try also compatibility ... # add a test: are all files in the datapkg dir. of atlasrep valid? ...................................................................... # find a kernel generator: # see AGR.Test.ComputeKernelGenerators! (atlasrep/gap/test.g) fgens:= AtlasGenerators( "L3(7).2", 1 ).generators; gens:= AtlasGenerators( "3.L3(7).2", 1 ).generators; kergens:= []; kerwords:= []; f:= FreeMonoid( 2 ); mgens:= GeneratorsOfMonoid( f ); iter:= Iterator( f ); for word in iter do m:= MappedWord( word, mgens, gens ); fm:= MappedWord( word, mgens, fgens ); ord:= Order( fm ); if Order( m ) <> ord then kergen:= m^ord; if not kergen in kergens then Add( kergens, kergen ); Add( kerwords, word ); if Length( kerwords ) >= 1 then Error("!"); fi; fi; fi; od; word; Order( m ); Order( fm ); brk> word; m1 brk> Order( m ); 4 brk> Order( fm ); 2 m2^2*m1*m2*m1 slp:= StraightLineProgram( [[2,1,1,1],[3,2],[2,2],[5,1,4,1],[[6,19]]],2 ); ----------------------------------------------------------------------------- #I AGR.Test.KernelGenerators for 2.A10.2: missing kernels of epim. to #I [ "A10.2" ] #I AGR.Test.KernelGenerators for 2.A12.2: missing kernels of epim. to #I [ "A12.2" ] #I AGR.Test.KernelGenerators for 2.A13.2: missing kernels of epim. to #I [ "A13.2" ] #I AGR.Test.KernelGenerators for 2.A8.2: missing kernels of epim. to #I [ "A8.2" ] #I AGR.Test.KernelGenerators for 2.A9.2: missing kernels of epim. to #I [ "A9.2" ] #I AGR.Test.KernelGenerators for 2.B: missing kernels of epim. to #I [ "B" ] #I AGR.Test.KernelGenerators for 2.L2(25): missing kernels of epim. to #I [ "L2(25)" ] #I AGR.Test.KernelGenerators for 2.O7(3).2: missing kernels of epim. to #I [ "O7(3).2" ] #I AGR.Test.KernelGenerators for 2.O8+(2): missing kernels of epim. to #I [ "O8+(2)" ] #I AGR.Test.KernelGenerators for 2.O8+(2).2: missing kernels of epim. to #I [ "O8+(2).2" ] #I AGR.Test.KernelGenerators for 2.U6(2).2: missing kernels of epim. to #I [ "U6(2).2" ] omit 2^2.2E6(2) #I AGR.Test.KernelGenerators for 2^2.2E6(2).S3: missing kernels of epim. to #I [ "2E6(2).3.2" ] #I AGR.Test.KernelGenerators for 2^2.L3(4): missing kernels of epim. to #I [ "2.L3(4)", "L3(4)" ] #I AGR.Test.KernelGenerators for 2^2.L3(4).2_2: missing kernels of epim. to #I [ "L3(4).2_2" ] #I AGR.Test.KernelGenerators for 6.O7(3).2: missing kernels of epim. to #I [ "2.O7(3).2", "3.O7(3).2", "O7(3).2" ] #I AGR.Test.KernelGenerators for Isoclinic(12.M22.2): missing kernels of epim\ . to #I [ "2.M22.2", "3.M22.2", "6.M22.2", "M22.2" ] #I AGR.Test.KernelGenerators for Isoclinic(2.A8.2): missing kernels of epim. \ to #I [ "A8.2" ] #I AGR.Test.KernelGenerators for Isoclinic(2.HS.2): missing kernels of epim. \ to #I [ "HS.2" ] #I AGR.Test.KernelGenerators for Isoclinic(2.Suz.2): missing kernels of epim.\ to #I [ "Suz.2" ] #I AGR.Test.KernelGenerators for Isoclinic(4.M22.2): missing kernels of epim.\ to #I [ "2.M22.2", "M22.2" ] #I AGR.Test.KernelGenerators for Isoclinic(6.M22.2): missing kernels of epim.\ to #I [ "3.M22.2", "M22.2" ] -> no repres. #I AGR.Test.KernelGenerators for Isoclinic(6.Suz.2): missing kernels of epim.\ to #I [ "3.Suz.2", "Suz.2" ] ................ #I AGR.Test.KernelGenerators for 3^(1+12):2.Suz.2: missing kernels of epim. t\ o #I [ "2.Suz.2" ] #I AGR.Test.KernelGenerators for 3^(1+12):6.Suz.2: missing kernels of epim. t\ o #I [ "3^(1+12).2.Suz.2", "6.Suz.2" ] -> Vorsicht: Ich habe zwar gezeigt, dass die Konjugierten des 3. Erzeugers mindestens eine 3^13 erzeugen, aber ist es nicht vielleicht mehr? Und ich habe nicht gezeigt, dass die Untergruppe wirklich normal ist! (in beiden Fällen, M3max7G0-ker6Suzd2W1 und Mmax7G0-ker2Suzd2W1) gap> List( gens.generators, Order ); [ 4, 3, 3 ] gap> List( fgens.generators, Order ); [ 4, 3 ] gap> p:= Product( gens.generators{[1,2]} );; gap> l:= List( [0..11], x -> gens.generators[3]^(p^x) );; gap> cc:= Group(l );; gap> orb:= Orbit( cc, l[1][38] );; Length( orb ); 1 gap> orb:= Orbit( cc, l[1][78] );; Length( orb ); 1594323 gap> 3^13; 1594323 g:= Group( gens.generators ); kergens:= []; kerwords:= []; f:= FreeMonoid( 2 ); mgens:= GeneratorsOfMonoid( f ); iter:= Iterator( f ); for word in iter do m:= MappedWord( word, mgens, gens.generators ); ord:= Order( m ); if ord mod 7 = 0 then kergen:= m^(ord/7); if not kergen in kergens then n:= NormalClosure( g, SubgroupNC( g, [ kergen ] ) ); if 7^5 mod Size( n ) = 0 then Add( kergens, kergen ); Add( kerwords, [ word, ord/7 ] ); if Length( kerwords ) >= 1 then Error("!"); fi; fi; fi; fi; od;
ab hier o.k.!
Excluded data files A matrix representation of 3.L_3(7).2 The files 3L37d2G1-f7r6B0.m1 and 3L37d2G1-f7r6B0.m2 that are available in the web &ATLAS; contain generators for the group G = 3.L_3(7).2, but these generators are not standard. First we show this fact and then we compute standard generators.

The files look as follows.

1 7 6 6 000454 000103 000163 321000 016000 622000 and 1 7 6 6 000500 000416 000064 251000 212000 203000 Standard generators of G are defined as follows.

Std. gens. of L_3(7).2 are c, d, where c in 2B, d in 4B (two outer classes), |cd| = 19, |cdcdd| = 8. Std. gens. of 3.L_3(7).2 are preimages C, D where |CD| = 19.

We create the matrices in &GAP; and check the conditions.

gap> gens:= List( [ > " 1 7 6 6\n\ > 000454\n\ > 000103\n\ > 000163\n\ > 321000\n\ > 016000\n\ > 622000", > " 1 7 6 6\n\ > 000500\n\ > 000416\n\ > 000064\n\ > 251000\n\ > 212000\n\ > 203000" ], str -> ScanMeatAxeFile( str, 7, "string" ) ); [ < immutable compressed matrix 6x6 over GF(7) >, < immutable compressed matrix 6x6 over GF(7) > ] gap> List( gens, Order ); [ 2, 4 ] gap> Order( gens[1] * gens[2] ); 19 gap> Order( ( gens[1] * gens[2] )^2 * gens[2] ); 6

This shows that the given matrices are not standard generators of G. In order to convince ourselves that they generate G, we proceed as follows. First we compute a faithful permutation representation of the group H, say, that is generated by the given matrices. Then we show that the derived subgroup D of H is a perfect group with a central subgroup Z of order three such that the factor group D / Z is a simple group that is isomorphic with L_3(7), thus D is the triple cover of L_3(7). It remains to show that H / Z is not a direct product of D / Z and a group of order two; for that, it is enough to show that the centralizer of an element of order 19 in H has odd order.

gap> g:= GroupWithGenerators( gens );; gap> Size( g ); 11261376 gap> orbs:= Orbits( g, Elements( GF(7)^6 ) );; gap> Collected( List( orbs, Length ) ); [ [ 1, 1 ], [ 684, 1 ], [ 16416, 1 ], [ 16758, 6 ] ] gap> orb:= First( orbs, x -> Length( x ) = 684 );; gap> acthom:= ActionHomomorphism( g, orb, OnRight );; gap> img:= Image( acthom );; gap> Size( img ) = Size( g ); true gap> der:= DerivedSubgroup( img );; gap> IsPerfectGroup( der ); true gap> z:= Centre( der );; gap> Size( z ); 3 gap> f:= der / z;; gap> IsSimple( f ); true gap> IsomorphismTypeInfoFiniteSimpleGroup( f ); rec( name := "A(2,7) = L(3,7) ", parameter := [ 3, 7 ], series := "L" ) gap> gensimgs:= List( gens, x -> x^acthom );; gap> x:= gensimgs[1] * gensimgs[2];; gap> Order( x ); 19 gap> Size( Centralizer( img, x ) ); 57

Now let us find standard generators for G. According to , there is exactly one conjugacy class of elements of the orders 2 and 4 in G outside D, and the given generators have the right orders and lie outside D. Thus we may keep the first matrix and replace the second one by a suitable G-conjugate.

gap> c:= gensimgs[1];; gap> d:= gensimgs[2];; gap> repeat > dr:= d^Random( img ); > until Order( c * dr ) = 19 and Order( (c * dr)^2 * dr ) = 8 > and Size( img ) = Size( SubgroupNC( img, [ c, dr ] ) ); gap> gap> stdgens:= [ gens[1], PreImagesRepresentative( acthom, dr ) ]; [ < immutable compressed matrix 6x6 over GF(7) >, < immutable compressed matrix 6x6 over GF(7) > ]

The erroneous representation gets excluded from the &GAP; interface by removing it from the data list in the file gap/atlasprm.json of the &AtlasRep; package and then adding an entry to the global variable .

The standard generators computed as shown above have been added to the data that are distributed together with the &AtlasRep; package, the representation is now available with the name 3L37d2G1-f7r6aB0; note that the name 3L37d2G1-f7r6B0 must be avoided.

gap> OneAtlasGeneratingSetInfo( "3.L3(7).2", Dimension, 6, Ring, GF(7) ); rec( dim := 6, groupname := "3.L3(7).2", id := "a", identifier := [ "3.L3(7).2", [ [ "internal", "3L37d2G1-f7r6aB0.m1" ], [ "internal", "3L37d2G1-f7r6aB0.m2" ] ], 1, 7 ], repname := "3L37d2G1-f7r6aB0", repnr := 1, ring := GF(7), size := 11261376, standardization := 1, type := "matff" ) A matrix representation of 2.O_7(3).2^* The files 2O73d2G1-f3r8B0.m1 and 2O73d2G1-f3r8B0.m2 that are available in the web &ATLAS; do not contain generators for the group 2.O_7(3).2.

The files look as follows.

1 3 8 8 01200212 10011201 20201110 02122011 01111002 00211210 20212110 00111021 and 1 3 8 8 11010011 10121000 20000221 12101200 11001011 22000112 12121220 01201002 Standard generators of 2.O_7(3).2 are defined as follows.

Standard generators of O_7(3).2 are c, d where c is in class 2D, d has order 7, cd has order 26 and cdcdd has order 14. Standard generators of 2.O_7(3).2 are preimages C, D where D has order 7.

We create the matrices in &GAP; and check the conditions.

gap> gens:= List( [ > " 1 3 8 8\n\ > 01200212\n\ > 10011201\n\ > 20201110\n\ > 02122011\n\ > 01111002\n\ > 00211210\n\ > 20212110\n\ > 00111021", > " 1 3 8 8\n\ > 11010011\n\ > 10121000\n\ > 20000221\n\ > 12101200\n\ > 11001011\n\ > 22000112\n\ > 12121220\n\ > 01201002" ], str -> ScanMeatAxeFile( str, 3, "string" ) ); [ < immutable compressed matrix 8x8 over GF(3) >, < immutable compressed matrix 8x8 over GF(3) > ] gap> List( gens, Order ); [ 2, 7 ] gap> Order( gens[1] * gens[2] ); 26 gap> Order( ( gens[1] * gens[2] )^2 * gens[2] ); 28

Since the 2D elements in O_7(3).2 lift to elements of order four in 2.O_7(3).2, and since the elements of order 26 in O_7(3).2 lift to elements of order 52 in 2.O_7(3).2, the given matrices do not fit. They would fit, however, to the isoclinic variant G = 2.O_7(3).2^*, provided that they generate this group and that the first generator is a preimage of a 2D element (that is, not a preimage of a 2E element).

In order to convince ourselves that the given matrices generate G, we proceed as follows. First we compute a faithful permutation representation of the group H, say, that is generated by the given matrices. Then we show that the derived subgroup D of H is a perfect group with a central subgroup Z of order two such that the factor group D / Z is a simple group that is isomorphic with O_7(3), thus D is the double cover of O_7(3). It remains to show that H / Z is not a direct product of D / Z and a group of order two; for that, it is enough to show that the centre of H / Z is trivial.

gap> g:= GroupWithGenerators( gens );; gap> Size( g ); 18341406720 gap> orbs:= Orbits( g, Elements( GF(3)^8 ) );; gap> Collected( List( orbs, Length ) ); [ [ 1, 1 ], [ 2240, 1 ], [ 4320, 1 ] ] gap> orb:= First( orbs, x -> Length( x ) = 2240 );; gap> acthom:= ActionHomomorphism( g, orb, OnRight );; gap> img:= Image( acthom );; gap> Size( img ) = Size( g ); true gap> der:= DerivedSubgroup( img );; gap> IsPerfectGroup( der ); true gap> z:= Centre( der );; gap> Size( z ); 2 gap> blocks:= Orbits( z, MovedPoints( img ) );; gap> act:= Action( img, blocks, OnSets );; gap> Size( act ) = Size( g ) / Size( z ); true gap> IsSimple( act ); true gap> IsomorphismTypeInfoFiniteSimpleGroup( act ); rec( name := "B(3,3) = O(7,3)", parameter := [ 3, 3 ], series := "B" ) gap> Size( Centre( act ) ); 1

Now we show that the first generator is in fact a preimage of a 2D element in O_7(3).2; note that this conjugacy class is the first class outside O_7(3), and it is uniquely determined by the centralizer order of its elements.

gap> ind:= Permutation( gens[1]^acthom, blocks, OnSets );; gap> c:= Size( Centralizer( act, ind ) ); 24261120 gap> t:= CharacterTable( "O7(3).2" );; gap> Positions( SizesCentralizers( t ), c ); [ 53 ] gap> Positions( OrdersClassRepresentatives( t ), 2 ); [ 2, 3, 4, 53, 54, 55 ]

Thus we have shown that the given matrices are standard generators of the group G.

The erroneous representation gets excluded from the &GAP; interface by removing it from the data list in the file gap/atlasprm.json of the &AtlasRep; package and then adding an entry to the global variable .

The given matrices have been added to the data that are distributed together with the &AtlasRep; package, the representation is now available with the name 2O73d2iG1-f3r8B0. (In order to make this work, also the &ATLAS; name "2O73d2i" for the group with &GAP; name "Isoclinic(2.O7(3).2)" had to be notified via a call to AGR.GNAN.

gap> OneAtlasGeneratingSetInfo( "Isoclinic(2.O7(3).2)", Dimension, 8, > Ring, GF(3) ); rec( dim := 8, groupname := "Isoclinic(2.O7(3).2)", id := "", identifier := [ "Isoclinic(2.O7(3).2)", [ [ "internal", "2O73d2iG1-f3r8B0.m1" ], [ "internal", "2O73d2iG1-f3r8B0.m2" ] ], 1, 3 ], repname := "2O73d2iG1-f3r8B0", repnr := 1, ring := GF(3), standardization := 1, type := "matff" )

Of course we can create a representation of 2.O_7(3).2 from this representation, by multiplying the first generator with a fourth root of unity, for example with Z(9)^2. (see ). Note that this representation is defined over the field with 9 elements, and that 2.O_7(3).2 does not have a faithful matrix representation of degree 8 over the field with 3 elements. The data that are distributed together with the &AtlasRep; package contain also this representation, with the name 2O73d2G1-f9r8B0. gap> OneAtlasGeneratingSetInfo( "2.O7(3).2", Dimension, 8, Ring, GF(9) ); rec( dim := 8, groupname := "2.O7(3).2", id := "", identifier := [ "2.O7(3).2", [ [ "internal", "2O73d2G1-f9r8B0.m1" ], [ "internal", "2O73d2G1-f9r8B0.m2" ] ], 1, 9 ], repname := "2O73d2G1-f9r8B0", repnr := 1, ring := GF(3^2), size := 18341406720, standardization := 1, type := "matff" )

Some of the straight line programs that are available in the web &ATLAS; for computing generators of maximal subgroups of the group G = Fi_{22}.2 are not correct. In fact, all of these programs compute generators for maximal subgroups but for some of them, the maximal subgroup is in a class different from the one that is claimed.

Thus the programs in question have been excluded from the &GAP; interface by removing them from the data list in the file gap/atlasprm.json of the &AtlasRep; package and then adding entries to the global variable .

Then the same programs have been added to the data that are distributed together with the &AtlasRep; package, but with different names; the mapping of names is as follows. Order Excluded nameSupported name 2090188800 F22d2G1-max12W1F22d2G1-max3W2 908328960 F22d2G1-max10W1F22d2G1-max4W2 185794560 F22d2G1-max3W1F22d2G1-max5W2 106168320 F22d2G1-max4W1F22d2G1-max6W2 78382080 F22d2G1-max5W1F22d2G1-max7W2 35942400 F22d2G1-max6W1F22d2G1-max8W2 35389440 F22d2G1-max7W1F22d2G1-max9W2 25194240 F22d2G1-max8W1F22d2G1-max10W2 10077696 F22d2G1-max9W1F22d2G1-max11W2 8491392 F22d2G1-max11W1F22d2G1-max12W2

(A possible reason for the different numbering could be that the classes of maximal subgroups can be listed either according to non-increasing index or according to the ordering in ; note that in the latter ordering, the relatively small novelties G_2(3):2 and 3^5:(2 \times U_4(2).2) appear in the positions 3 and 4, respectively, whereas the positions of these groups according to increasing index must be 12 and 10, respectively. Reordering the classes from the latter ordering to the former one would result in the mapping that appears in the above table; unfortunately, the straight line programs had not been ordered according to the latter ordering.). Class representatives of L_3(8).2 1. the script is WRONG: Take the available 6-dim. repres. over GF(8), its Brauer character value at 63AB does not fit to the char. table! 2. thus CHOOSE the available repres. as the FIRST one in the table, find out in which classes the inner elements lie 3. next, determine the outer classes: - 18A-C by their squares, which are 7th powers of the order 63 elements - 14G-I by their squares which are connected to the 9th powers of the order 63 elements - 8A-B by a representation 4. thus get a unique script; add it! -> not unique program L38d2G1-cycW1 --can this be improved? outputs := [ "7GH", "14AB", "63AB", "73AB", "8A-B", "14G-I", "18A-C" ] -> on 8A-B: 2r2 on 14G-I: y7 on 18A-C: y9 -> mod 3: 8AB disting. by dim. 72, 14G-I by 657 -> mod 7: 8AB disting. by dim. 72, 14G-I by 511 -> mod 73: 8AB disting. by dim. 71, 14G-I by 657, 18A-C by 511 -> available: 9: G ≤ GL(72,7) -> does not help! 23: G ≤ GL(71,73) -> two irreducibles, decidable! 25: G ≤ GL(511a,73) 26: G ≤ GL(511b,73) 1a 2a 3a 4a 7a 7b 7c 7d 7e 7f 7g 9a 9b 9c 14a 14b 14c 21a 21b 21c 2P 1a 1a 3a 2a 7b 7c 7a 7d 7f 7g 7e 9b 9c 9a 7b 7c 7a 21b 21c 21a 3P 1a 2a 1a 4a 7c 7a 7b 7d 7g 7e 7f 3a 3a 3a 14c 14a 14b 7c 7a 7b 7P 1a 2a 3a 4a 1a 1a 1a 1a 1a 1a 1a 9b 9c 9a 2a 2a 2a 3a 3a 3a 73P 1a 2a 3a 4a 7c 7a 7b 7d 7g 7e 7f 9a 9b 9c 14c 14a 14b 21c 21a 21b X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.3 71 7 -1 -1 8 8 8 1 1 1 1 -1 -1 -1 . . . -1 -1 -1 X.4 71 7 -1 -1 8 8 8 1 1 1 1 -1 -1 -1 . . . -1 -1 -1 2 . . . . . . . . . 4 1 5 5 1 1 1 1 1 3 2 2 2 2 2 2 2 2 2 2 2 . . . . . 2 2 7 1 1 1 1 1 1 1 1 1 1 . . . 1 1 1 . . 73 . . . . . . . . . . . . . . . . . . 63a 63b 63c 63d 63e 63f 63g 63h 63i 2b 6a 8a 8b 14d 14e 14f 18a 18b 2P 63b 63c 63a 63e 63f 63d 63h 63i 63g 1a 3a 4a 4a 7f 7g 7e 9b 9c 3P 21c 21a 21b 21a 21b 21c 21b 21c 21a 2b 2b 8b 8a 14f 14d 14e 6a 6a 7P 9b 9c 9a 9a 9b 9c 9c 9a 9b 2b 6a 8a 8b 2b 2b 2b 18b 18c 73P 63e 63f 63d 63h 63i 63g 63b 63c 63a 2b 6a 8a 8b 14f 14d 14e 18a 18b X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 X.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 AQ *AQ -1 -1 -1 -1 -1 X.4 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -AQ -*AQ 1 1 1 1 1 2 1 3 2 7 . 73 . 18c 2P 9a 3P 6a 7P 18a 73P 18c X.1 1 X.2 -1 X.3 -1 X.4 1 AQ = -1+2*E(8)-2*E(8)^3 = -1+2*Sqrt(2) = -1+2r2 gap> prg:= AtlasProgram( "L3(8).2", "cyclic" ); rec( groupname := "L3(8).2", identifier := [ "L3(8).2", "L38d2G1-cycW1", 1 ], outputs := [ "7GH", "14AB", "63AB", "73AB", "8A-B", "14G-I", "18A-C" ], program := , standardization := 1, version := "1" ) gap> gens:= OneAtlasGeneratingSetInfo( "L3(8).2", Dimension, 71, Characteristic, 73 ); rec( dim := 71, groupname := "L3(8).2", id := "", identifier := [ "L3(8).2", [ "L38d2G1-f73r71B0.m1", "L38d2G1-f73r71B0.m2" ], 1, 73 ], repname := "L38d2G1-f73r71B0", repnr := 23, ring := GF(73), size := 32965632, standardization := 1, type := "matff" ) gap> gens:= AtlasGenerators( gens ); rec( dim := 71, generators := [ < immutable compressed matrix 71x71 over GF(73) >, < immutable compressed matrix 71x71 over GF(73) > ], groupname := "L3(8).2", id := "", identifier := [ "L3(8).2", [ "L38d2G1-f73r71B0.m1", "L38d2G1-f73r71B0.m2" ], 1, 73 ], repname := "L38d2G1-f73r71B0", repnr := 23, ring := GF(73), size := 32965632, standardization := 1, type := "matff" ) gap> res:= ResultOfStraightLineProgram( prg.program, gens.generators );; gap> Length( res ); 7 gap> 2b:= res[7]^9; < immutable compressed matrix 71x71 over GF(73) > gap> Order( last ); 2 gap> BrauerCharacterValue( 2b ); -1 gap> # thus we have 71a! gap> 8ab:= res[5]; < immutable compressed matrix 71x71 over GF(73) > gap> Order( last ); 8 gap> BrauerCharacterValue( 8ab ); -1-2*E(8)+2*E(8)^3 gap> Quadratic( last ); rec( ATLAS := "-1-2r2", a := -1, b := -2, d := 1, display := "-1-2*Sqrt(2)", root := 2 ) gap> # thus we have class 8B! concerning 18A-C: squares are in 9B, 9C, 9A and 9A is the 7th power of 63c, 63d, 63h and 9B is the 7th power of 63a, 63e, 63i and 9C is the 7th power of 63b, 63f, 63g -> so we could solve this without a repres.! (and the answer defines some repres.) -> what about 14G-I? squares: 14G -> 7f 14H -> 7g 14I -> 7e and 9th powers of 63 are 63a -> 21c -> 7b 63b -> 21a -> 7c 63c -> 21b -> 7a 63d -> 21a -> 7c 63e -> 21b -> 7a 63f -> 21c -> 7b 63g -> 21b -> 7a 63h -> 21c -> 7b 63i -> 21a -> 7c and there are representations of degree 146 or 1168 or 657 which couple 7a-c to 7d-f 23: G ≤ GL(71,73) 24: G ≤ GL(441,73) 25: G ≤ GL(511a,73) 26: G ≤ GL(511b,73) -> but we do not have it! -> in char. 3, also candidates: degrees 146, 657 -> use the nat. repres. in char. 2!

Maximal Subgroups of L_3(4) Two straight line programs that are available in the web &ATLAS; for computing generators of maximal subgroups of the group G = L_3(4) are not correct.

The contents of the file L34G1-max4W1 is as follows.

mu 1 2 3 mu 2 1 4 iv 3 5 mu 4 4 2 mu 2 5 4 mu 4 3 2

However, if we apply this program to standard generators of G then the outputs generate the whole group.

gap> slp:= ScanStraightLineProgram( "\ > mu 1 2 3\n\ > mu 2 1 4\n\ > iv 3 5\n\ > mu 4 4 2\n\ > mu 2 5 4\n\ > mu 4 3 2", "string" ); rec( program := ) gap> g:= AtlasGroup( "L3(4)" ); Group([ (1,2)(4,6)(5,7)(8,12)(9,14)(10,15)(11,17)(13,19), (2,3,5,4)(6,8,13,9)(7,10,16,11)(12,18)(14,20,21,15)(17,19) ]) gap> res:= ResultOfStraightLineProgram( slp.program, > GeneratorsOfGroup( g ) );; gap> Size( SubgroupNC( g, res ) ); 20160

Similarly, the file L34G1-max5W1 has the following contents.

mu 1 2 3 mu 2 1 4 iv 3 5 mu 4 5 2 mu 2 3 4 mu 4 3 2

The subgroup generated by the outputs of this program has order 10 and is hence too small.

gap> slp:= ScanStraightLineProgram( "\ > mu 1 2 3\n\ > mu 2 1 4\n\ > iv 3 5\n\ > mu 4 5 2\n\ > mu 2 3 4\n\ > mu 4 3 2", "string" ); rec( program := ) gap> res:= ResultOfStraightLineProgram( slp.program, > GeneratorsOfGroup( g ) );; gap> Size( SubgroupNC( g, res ) ); 10

Now we want to replace the wrong programs by correct ones. According to , the subgroups in the 3rd, 4th, and 5th class of maximal subgroups of G are all isomorphic with the alternating group A_6. Thus our task is to find two subgroups of type A_6 in G that are not conjugate to each other and also not conjugate to the representative of the 3rd class of maximal subgroups.

Our approach is to keep the first generator of G (an involution), and to iterate over short words in a free monoid until the corresponding word in the standard generators of G together with the involution generate a suitable subgroup. (Note that all subgroups of order 360 in G are maximal in G and have the type A_6.)

gap> g:= AtlasGroup( "L3(4)" );; gap> s3:= AtlasSubgroup( "L3(4)", 3 );; gap> Size( s3 ); IsSimple( s3 ); 360 true gap> gens:= ShallowCopy( GeneratorsOfGroup( g ) );; gap> f:= FreeMonoid( 2 );; gap> fgens:= GeneratorsOfMonoid( f );; [ m1, m2 ] gap> iter:= Iterator( f );; gap> repeat > w4:= NextIterator( iter ); > s4:= Group( gens[1], MappedWord( w4, fgens, gens ) ); > until Size( s4 ) = 360 and not IsConjugate( g, s3, s4 ); gap> w4; m2*m1*m2^3*m1*m2*m1*m2 gap> repeat > w5:= NextIterator( iter ); > s5:= Group( gens[1], MappedWord( w5, fgens, gens ) ); > until Size( s5 ) = 360 > and not IsConjugate( g, s3, s5 ) > and not IsConjugate( g, s4, s5 ); gap> w5; m2*m1*m2*m1*m2^3*m1*m2

The erroneous programs get excluded from the &GAP; interface by removing them from the data list in the file gap/atlasprm.json of the &AtlasRep; package and then adding entries to the global variable .

The above words have been turned into straight line programs and then added to the data that are distributed together with the &AtlasRep; package, the programs are now available with the names L34G1-max4W2; and L34G1-max5W2, respectively; note that the names L34G1-max4W1 and L34G1-max5W1 must be avoided.

gap> subs:= List( [3..5], i -> AtlasSubgroup( g, i ) );; gap> List( subs, Size ); [ 360, 360, 360 ] gap> IsConjugate( g, subs[1], subs[2] ); false gap> IsConjugate( g, subs[1], subs[3] ); false gap> IsConjugate( g, subs[2], subs[3] ); false

It turns out that the generators of the subgroups are in fact standard generators of A_6.

gap> prg:= AtlasProgram( "A6", 1, "check" ); rec( groupname := "A6", identifier := [ "A6", "A6G1-check1", 1, 1 ], program := , standardization := 1, version := "1" ) gap> ForAll( subs, s -> ResultOfStraightLineDecision( prg.program, > GeneratorsOfGroup( s ) ) ); true

Thus we can provide also the (empty) straight line programs L34G1max3W1-A6G1W1, L34G1max4W2-A6G1W1, and L34G1max5W2-A6G1W1, which express that the &GAP; interface provides standard generators for the maximal subgroups in question.

atlasrep-2.1.8/doc/manualbib.xml0000644000175000017500000003005014545263346014712 0ustar samsam JSON T.Bray The JavaScript Object Notation (JSON) Data Interchange Format http://www.rfc-editor.org/info/rfc7159 Mar 2014 10.17487/RFC7159 J. J.Cannon C.Playoust An introduction to algebraic programming in <C>Magma</C> http://www.math.usyd.edu.au:8000/u/magma 1996 Sydney, Australia School of Mathematics and Statistics, University of Sydney
ChristophJansen The minimal degrees of faithful representations of the sporadic simple groups and their covering groups LMS J. Comput. Math. 2005 8 122–144 (electronic) 1461-1570 2153793 (2006e:20026) 20C34 Robert A. Wilson LMS Journal of Computation and Mathematics
Ibrahim A. I.Suleiman Peter G.Walsh Robert A.Wilson Conjugacy classes in sporadic simple groups Comm. Algebra 2000 28 7 3209–3222 0092-7872 1765312 (2001c:20031) 20D08 (20E45) Wujie Shi COALDM Communications in Algebra
S. J.Nickerson R. A.Wilson Semi-presentations for the sporadic simple groups Experiment. Math. 2005 14 3 359–371 1058-6458 2172713 (2006h:20019) 20D08 (20F05) Andrea Previtali Experimental Mathematics
S. J.Nickerson An <C>A</C>tlas of <C>C</C>haracteristic <C>Z</C>ero <C>R</C>epresentations School of Mathematics, University of Birmingham 2006 Phd thesis Robert A.Wilson Richard A.Parker SimonNickerson John N.Bray ThomasBreuer <C>AtlasRep</C>, A <Wrap Name="Package">GAP</Wrap> <C>I</C>nterface to the <C>A</C>tlas of <C>G</C>roup <C>R</C>epresentations, <C>V</C>ersion 2.1.8 https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep Jan 2024 GAP package ThomasBreuer FrankLübeck <C>Browse</C>, ncurses interface and browsing applications, <C>V</C>ersion 1.8.9 https://www.math.rwth-aachen.de/~Browse Jun 2018 GAP package MichaelRinge The <C>C</C> <C>M</C>eat<C>A</C>xe, <C>V</C>ersion 2.4 https://www.math.rwth-aachen.de/~MTX ThomasBreuer <Wrap Name="Package">CTBlocks</Wrap>, <C>B</C>locks of <C>C</C>haracter <C>T</C>ables, <C>V</C>ersion 0.9.3 https://www.math.rwth-aachen.de/~Thomas.Breuer/ctblocks Feb 2014 GAP package T.Breuer The <Wrap Name="Package">GAP</Wrap> <C>C</C>haracter <C>T</C>able <C>L</C>ibrary, <C>V</C>ersion 1.3.3 https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib Mar 2022 GAP package FrankLübeck MaxNeunhöffer <Wrap Name="Package">GAPDoc</Wrap>, A <C>M</C>eta <C>P</C>ackage for <Wrap Name="Package">GAP</Wrap> <C>D</C>ocumentation, <C>V</C>ersion 1.6.2 https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc Oct 2018 GAP package MaxNeunhöffer <C>IO</C>, Bindings for low level <C>C</C> library <C>IO</C>, <C>V</C>ersion 4.3.1 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html Apr 2014 GAP package ThomasBreuer InesHöhler JürgenMüller <C>MFER</C>, multiplicity-free endomorphism rings of permutation modules of the sporadic simple groups and their cyclic and bicyclic extensions, <C>V</C>ersion 1.0.0 https://www.math.rwth-aachen.de/~MFER Jul 2009 GAP package multiplicity-free; permutation character; endomorphism ring; sporadic simple group FrankLübeck <Wrap Name="Package">StandardFF</Wrap>, A <Wrap Name="Package">GAP</Wrap> package for constructing finite fields https://github.com/frankluebeck/StandardFF/ 2021 GAP package <Wrap Name="Package">GAP</Wrap> – <C>G</C>roups, <C>A</C>lgorithms, and <C>P</C>rogramming, <C>V</C>ersion 4.10.2 The GAP Group http://www.gap-system.org Jun 2019 GAP groups; *; gap; manual GerhardHiss KlausLux Brauer trees of sporadic groups The Clarendon Press, Oxford University Press 1989 Oxford Science Publications
New York
0-19-853381-0 1033265 (91k:20018) 20C20 (20-02 20D08) Harvey Blau x+526
LiamNaughton ThomasMerkwitz GötzPfeiffer <C>TomLib</C>, The <Wrap Name="Package">GAP</Wrap> Library of Tables of Marks, <C>V</C>ersion 1.2.7 http://schmidt.nuigalway.ie/tomlib Oct 2018 GAP package table of marks; Burnside matrix; subgroup lattice; finite simple groups; Moebius function; Euler function MaxNeunhöffer ÁkosSeress NurullahAnkaralioglu PeterBrooksbank FrankCeller StephenHowe MaskaLaw SteveLinton GunterMalle AliceNiemeyer EamonnO'Brien Colva M.Roney-Dougal MaxHorn <C>recog</C>, A collection of group recognition methods, <C>V</C>ersion 1.3.1 https://gap-packages.github.io/recog Sep 2018 GAP package group recognition; matrix group recognition; permutation group; black box group; composition tree; Aschbacher classes; method selection ThomasBreuer SebastianGutsche MaxHorn AlexanderHulpke StefanKohl FrankLübeck ChrisWensley <C>utils</C>, Utility functions in GAP, <C>V</C>ersion 0.77 https://gap-packages.github.io/utils Aug 2022 GAP package Robert A.Wilson PeterWalsh JonathanTripp IbrahimSuleiman Richard A.Parker Simon P.Norton SimonNickerson SteveLinton JohnBray RachelAbbott <C>ATLAS of Finite Group Representations</C> http://atlas.math.rwth-aachen.de/Atlas/v3 ATLAS
atlasrep-2.1.8/doc/interfac.xml0000755000175000017500000002022014410314077014541 0ustar samsam The User Interface of the &AtlasRep; Package The user interface is the part of the &GAP; interface that allows one to display information about the current contents of the database and to access individual data (perhaps by downloading them, see Section ). The corresponding functions are described in this chapter. See Section  for some small examples how to use the functions of the interface.

Data extensions of the &AtlasRep; package are regarded as another part of the &GAP; interface, they are described in Chapter . Finally, the low level part of the interface is described in Chapter .

Accessing vs. Constructing Representations Note that accessing the data means in particular that it is not the aim of this package to construct representations from known ones. For example, if at least one permutation representation for a group G is stored but no matrix representation in a positive characteristic p, say, then returns fail when it is asked for a description of an available set of matrix generators for G in characteristic p, although such a representation can be obtained by reduction modulo p of an integral matrix representation, which in turn can be constructed from any permutation representation.
Group Names Used in the &AtlasRep; Package ]]> When you access data via the &AtlasRep; package, you specify the group in question by an admissible name. Thus it is essential to know these names, which are called the &GAP; names of the group in the following.

For a group G, say, whose character table is available in &GAP;'s Character Table Library (see ), the admissible names of G are the admissible names of this character table. One such name is the value of the character table, see . This name is usually very similar to the name used in the &ATLAS; of Finite Groups . For example, "M22" is a &GAP; name of the Mathieu group M_{22}, "12_1.U4(3).2_1" is a &GAP; name of 12_1.U_4(3).2_1, the two names "S5" and "A5.2" are &GAP; names of the symmetric group S_5, and the two names "F3+" and "Fi24'" are &GAP; names of the simple Fischer group Fi_{24}^\prime.

When a &GAP; name is required as an input of a package function, this input is case insensitive. For example, both "A5" and "a5" are valid arguments of .

Internally, for example as part of filenames (see Section ), the package uses names that may differ from the &GAP; names; these names are called &ATLAS;-file names. For example, "A5", "TE62", and "F24" are &ATLAS;-file names. Of these, only "A5" is also a &GAP; name, but the other two are not; corresponding &GAP; names are "2E6(2)" and "Fi24'", respectively.

Standard Generators Used in the &AtlasRep; Package For the general definition of standard generators of a group, see .

Several different standard generators may be defined for a group, the definitions for each group that occurs in the &ATLAS; of Group Representations can be found at

&ATLASSERVER;.

When one specifies the standardization, the i-th set of standard generators is denoted by the number i. Note that when more than one set of standard generators is defined for a group, one must be careful to use compatible standardization. For example, the straight line programs, straight line decisions and black box programs in the database refer to a specific standardization of their inputs. That is, a straight line program for computing generators of a certain subgroup of a group G is defined only for a specific set of standard generators of G, and applying the program to matrix or permutation generators of G but w. r. t. a different standardization may yield unpredictable results. Therefore the results returned by the functions described in this chapter contain information about the standardizations they refer to.

Class Names Used in the &AtlasRep; Package For each straight line program (see ) that is used to compute lists of class representatives, it is essential to describe the classes in which these elements lie. Therefore, in these cases the records returned by the function contain a component outputs with value a list of class names.

Currently we define these class names only for simple groups and certain extensions of simple groups, see Section . The function can be used to compute the list of class names from the character table in the &GAP; Library. <#Include Label="classnames"> <#Include Label="AtlasClassNames"> <#Include Label="AtlasCharacterNames">

Accessing Data via &AtlasRep; The examples shown in this section refer to the situation that no extensions have been notified, and to a perhaps outdated table of contents. That is, the current version of the database may contain more information than is shown here.

<#Include Label="DisplayAtlasInfo"> <#Include Label="AtlasGenerators"> <#Include Label="AtlasProgram"> <#Include Label="AtlasProgramInfo"> <#Include Label="OneAtlasGeneratingSetInfo"> <#Include Label="AllAtlasGeneratingSetInfos"> <#Include Label="AtlasGroup"> <#Include Label="AtlasSubgroup"> <#Include Label="AtlasRepInfoRecord"> <#Include Label="EvaluatePresentation"> <#Include Label="StandardGeneratorsData">

Browse Applications Provided by &AtlasRep; The functions , , and (an alternative to ) are available only if the &GAP; package Browse (see ) is loaded. <#Include Label="BrowseMinimalDegrees"> <#Include Label="BrowseBibliographySporadicSimple">
atlasrep-2.1.8/doc/utils.xml0000755000175000017500000000650614410314125014113 0ustar samsam New &GAP; Objects and Utility Functions provided by the &AtlasRep; Package This chapter describes &GAP; objects and functions that are provided by the &AtlasRep; package but that might be of general interest.

The new objects are straight line decisions (see Section ) and black box programs (see Section ).

The new functions are concerned with representations of minimal degree, see Section , and a JSON interface, see Section .

Straight Line Decisions <#Include Label="StraightLineDecisionIntro"> <#Include Label="IsStraightLineDecision"> <#Include Label="LinesOfStraightLineDecision"> <#Include Label="NrInputsOfStraightLineDecision"> <#Include Label="ScanStraightLineDecision"> <#Include Label="StraightLineDecision"> <#Include Label="ResultOfStraightLineDecision"> <#Include Label="Semi-Presentations"> <#Include Label="AsStraightLineDecision"> <#Include Label="StraightLineProgramFromStraightLineDecision">
Black Box Programs <#Include Label="BBoxIntro"> <#Include Label="IsBBoxProgram"> <#Include Label="ScanBBoxProgram"> <#Include Label="RunBBoxProgram"> <#Include Label="ResultOfBBoxProgram"> <#Include Label="AsBBoxProgram"> <#Include Label="AsStraightLineProgram">
Representations of Minimal Degree This section deals with minimal degrees of permutation and matrix representations. We do not provide an algorithm that computes these degrees for an arbitrary group, we only provide some tools for evaluating known databases, mainly concerning bicyclic extensions (see ) of simple groups, in order to derive the minimal degrees, see Section .

In the &AtlasRep; package, this information can be used for prescribing minimality conditions in , , and . An overview of the stored minimal degrees can be shown with . <#Include Label="MinimalRepresentationInfo"> <#Include Label="MinimalRepresentationInfoData"> <#Include Label="SetMinimalRepresentationInfo"> <#Include Label="subsect:minimality-criteria">

A JSON Interface <#Include Label="JsonIntro"> <#Include Label="AGR.JsonText"> <#Include Label="AGR.GapObjectOfJsonText">
atlasrep-2.1.8/doc/atlasrep.xml0000755000175000017500000001716114410314067014572 0ustar samsam Customizations of the &AtlasRep; Package
Installing the &AtlasRep; Package To install the package, unpack the archive file in a directory in the pkg directory of your local copy of &GAP; 4. This might be the pkg directory of the &GAP; 4 root directory, see  for details. It is however also possible to keep an additional pkg directory somewhere else, see Section . The latter possibility must be chosen if you do not have write access to the &GAP; root directory.

If it is likely that you will work offline, it makes sense to install the starter archive that can be downloaded from the package's homepage.

The package consists entirely of &GAP; code, no external binaries need to be compiled for the package itself.

After unpacking the package archive, the write permissions for those directories should be checked into which users will download files. Every user can customize these paths via a user preference, see Section , the defaults are the subdirectories data* of the package directory. The recommended permissions under UNIX for the default directories are set as follows.

chmod 1777 atlasrep/data* you@unix> ls -ld atlasrep/data* drwxrwxrwt 3 you you 1024 Apr 12 12:34 dataext drwxrwxrwt 3 you you 1024 Apr 12 12:34 datagens drwxrwxrwt 3 you you 1024 Apr 12 12:34 datapkg drwxrwxrwt 3 you you 1024 Apr 12 12:34 dataword ]]>

<#Include Label="[1]{testinst.g}">

PDF, HTML, and text versions of the package manual are available in the doc directory of the package.

User Preferences of the &AtlasRep; Package This section describes global parameters for which it might make sense to change their defaults, using &GAP;'s user preferences (see ).

Is access to remote data allowed (see Section )? If yes then also the following parameters are of interest.

From where can the data be fetched (see Section )? Where are local copies of these data stored (see Section )? Shall files be compressed after they have been downloaded (see Section )? The following parameters influence reading and writing of local files.

What shall actually happen when data are requested by the interface functions (see Section )? If the value of the user preference FileAccessFunctions contains "direct access to a local server", what is its path (see Section )? Shall focus on small runtime or on small space when reading &MeatAxe; text files (see Section )? Which kind of headers shall create (see Section )? Shall interpret permutation matrices more as permutations (mode 2) or as matrices (mode 1 or 6) (see Section )? Shall the default for be to write binary files of zero-based or one-based permutations (see Section )? Which function is used by for printing to the screen (see Section )? How does mark data that do not belong to the core database (see Section )? Shall debug messages be printed when local data files are read (see Section )? <#Include Label="AtlasRepAccessRemoteFiles"> <#Include Label="AtlasRepDataDirectory"> <#Include Label="AtlasRepTOCData"> <#Include Label="CompressDownloadedMeatAxeFiles"> <#Include Label="FileAccessFunctions"> <#Include Label="AtlasRepLocalServerPath"> <#Include Label="HowToReadMeatAxeTextFiles"> <#Include Label="WriteHeaderFormatOfMeatAxeFiles"> <#Include Label="WriteMeatAxeFilesOfMode2"> <#Include Label="BaseOfMeatAxePermutation"> <#Include Label="DisplayFunction"> <#Include Label="AtlasRepMarkNonCoreData"> <#Include Label="DebugFileLoading"> <#Include Label="AtlasRepJsonFilesAddresses">

Web Contents for the &AtlasRep; Package The &ATLASREPHOME;home page of the &AtlasRep; package provides

package archives, introductory package information, the current table of contents of core data in the file atlasprm.json&ATLASREPHOME;/atlasprm.json of the package, cf. , the list of changes of remote core data files&ATLASREPHOME;/htm/data/changes.htm, a starter archive&ATLASREPHOME;/atlasrepdata.tar.gz containing many small representations and programs, and an overview of the core data&ATLASREPHOME;/htm/data in a similar format as the information shown by the function of the package; more details can be found on the home page of the &ATLAS; of Group Representations&ATLASSERVER;.

Extending the &ATLAS; Database Users who have computed new representations that might be interesting for inclusion into the &ATLAS; of Group representations can send the data in question to &WILSONMAIL;.

It is also possible to make additional representations and programs accessible for the &GAP; interface, and to use these private data in the same way as the core data. See Chapter  for details.

atlasrep-2.1.8/doc/introduc.xml0000644000175000017500000013337114545501143014607 0ustar samsam Introduction to the &AtlasRep; Package The aim of the &GAP; 4 package &AtlasRep; is to provide a link between &GAP; and databases such as the &ATLAS; of Group Representations , which comprises generating permutations and matrices for many almost simple groups, and information about their maximal subgroups. This database is available independent of &GAP; at

&ATLASSERVER;.

The &AtlasRep; package consists of this database (see Section ) and a &GAP; interface (see Section ); the latter is extended by further information available via the internet (see Section ).

This package manual has the following parts. A tutorial gives an overview how the functions of the package can be used, see Chapter . User interface functions are described in Chapter . Customizations of the package are described in Chapter . Information how to extend the database can be found in Chapter . More technical information can be found in the chapters  (concerning &GAP; objects that are introduced by the package) and  (concerning global variables and sanity checks).

The &ATLAS; of Group Representations The &ATLAS; of Group Representations   consists of matrices over various rings, permutations, and shell scripts encoding so-called black box programs black box program (see and Section ). Many of these scripts are straight line programs straight line program (see , , and ) and straight line decisions (see Section ). These programs can be used to compute certain elements in a group G from its standard generators (see  and Section ) for example generators of maximal subgroups of G or representatives of conjugacy classes of G.

The &ATLAS; of Group Representations has been prepared by Robert Wilson, Peter Walsh, Jonathan Tripp, Ibrahim Suleiman, Richard Parker, Simon Norton, Simon Nickerson, Steve Linton, John Bray, and Rachel Abbott (in reverse alphabetical order).

The information was computed and composed using computer algebra systems such as &MeatAxe; (see ), Magma (see ), and &GAP; (in reverse alphabetical order). &MeatAxe; Magma Part of the constructions have been documented in the literature on almost simple groups, or the results have been used in such publications, see for example the bibliographies in  and  which are available online at http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/bibl.

If you use the &ATLAS; of Group Representations to solve a problem then please send a short email to &WILSONMAIL; about it. The &ATLAS; of Group Representations database should be referenced with the entry  in the bibliography of this manual.

If your work made use of functions of the &GAP; interface (see Section ) then you should also reference this interface, using the information printed by the &GAP; function .

For referencing the &GAP; system in general, use the entry  in the bibliography of this manual, see also http://www.gap-system.org.

The GAP Interface to the &ATLAS; of Group Representations C-&MeatAxe; The &GAP; interface to the &ATLAS; of Group Representations consists of essentially two parts. First, there is the user interface which allows the user to get an overview of the contents of the database, and to access the data in &GAP; format; this is described in Chapter . Advanced users may add their own data to the database, this is described in Chapter . Second, there is administrational information, which covers also the declaration of &GAP; objects such as straight line decisions and black box programs. This is important mainly for users interested in the actual implementation (e. g., for modifying the package) or in using it together with the C-&MeatAxe; standalone (see ); this is described in Chapter . Information concerning the C-&MeatAxe;, including the manual , can be found at

http://www.math.rwth-aachen.de/~MTX

The interface and this manual have been provided by Thomas Breuer, except for the interpreter for black box programs (see Section ), which is due to Simon Nickerson. Comments, bug reports, and hints for improving the interface can be sent to sam@math.rwth-aachen.de.

What's New in &AtlasRep;, Compared to Older Versions? ]]> What's New in Version &VERSIONNUMBER;? (&RELEASEMONTH; &RELEASEYEAR;) An example in Section of the Tutorial had to be adjusted because the results of the function depend on random computations, in particular the implementation in &GAP; 4.13 may yield a nicer representation than had been shown before. What's New in Version 2.1.7? (August 2023) Requesting certain matrix groups in characteristic zero had caused an error in version 2.1.6, provided that the feature to store downloaded files was disabled, that is, the value of the user preference "AtlasRepDataDirectory" (see Section ) was an empty string. This bug is now fixed. Thanks to Lixin Zheng for reporting this problem. The name of a maximal subgroup of the group M_{12}.2 had to be changed from "D8.(S4x2)" to "2^3.(S4×2)" because the old name suggested a wrong group structure. This bug had been announced in a StackExchange discussion https://math.stackexchange.com/questions/4577016/group-names-in-gap-character-table-library. A typo in the documentation of AGR.MXS (see Section ) was fixed. Thanks to Max Horn for spotting this. &GAP; 4.13 will provide the new package extension feature, which allows a package to execute &GAP; code after the package and some other required packages have been loaded. In &AtlasRep;, this feature is now used for example in order to achieve that those functions which depend on the Browse package can be used also if this package gets (installed and) loaded after &AtlasRep; has been loaded. The code for building the documentation of the package has been adjusted to a change in &GAP; 4.13 https://github.com/gap-system/gap/pull/5178. This does not affect most users of the package because the package archive contains a ready documentation. What's New in Version 2.1.6? (October 2022) The package now requires the utils package , and uses its function for downloading remote files. The former user preference FileTransferTool of the &AtlasRep; package is no longer supported; it had been used in older versions to distinguish between different download tools.

A method for has been added that uses a straight line program for computing class representatives of a group that has been created with , provided such a program is available. Thanks to Frank Lübeck for suggesting this. What's New in Version 2.1.5? (August 2022) Two bugs concerning local file permissions and the handling of download failures were fixed. Thanks to Frank Lübeck and Fabian Zickgraf for reporting these problems. What's New in Version 2.1.4? (August 2022) A few changes in the code for downloading files were needed in order to make some CI tests happy. What's New in Version 2.1.3? (August 2022) The server address for the core part of the database has changed.

Additional table of contents files are now available, which contain checksums in SHA256 format instead of the checksums computed by and . Note that the latter values can be interpreted only by &GAP;.

For 364 representations, the corresponding characters have been identified and can thus be used for accessing these representations with , see . What's New in Version 2.1.2? (March 2022) Not much.

The release of Version 2.1.2 was necessary for technical reasons: Now the testfile mentioned in PackageInfo.g exits &GAP; in the end, and the external links in the package documentation were corrected (the links in version 2.1.1 pointed to a wrong directory). What's New in Version 2.1.1? (February 2022) The new function computes the images of the relators of a presentation (see Section ). The new function allows one to compute standard generators from given generators, provided a recipe for that task (a find straight line program) for the group in question is available. The function sets known information about the group and the representation, such as .

(Thanks to Steve Linton for suggesting this feature.) The function now admits an optional argument, which is used as options record in calls to . The new user preference "AtlasRepJsonFilesAddresses" (see Section ) allows one to use Json format data files for matrix representations in characteristic zero, which in turn makes it possible to create the matrices over prescribed fields, for example fields returned by . The information stored in the table of contents file about the field of entries of the matrix representations has been extended by a &GAP; independent description of this field and the defining polynomial used in the Json format data files. When the value of the user preference "AtlasRepDataDirectory" is an empty string then data files that are fetched from remote servers are read into the &GAP; session without storing the files. (An advantage is that one need not care about where one has permissions for storing files. A disadvantage is of course that one has to fetch a file again whenever it is needed.) What's New in Version 2.1.0? (May 2019) The main differences to earlier versions concern extensions of the available data. Up to now, such extensions were possible only in the sense that one could notify certain locally available files to the package's functions. With this version, it becomes possible to notify also remote data files, i. e., data files which have to be downloaded before they can be read into &GAP;, in the same way as the data from the &ATLAS; of Group Representations. Two extensions of this kind become automatically available with this package version, see Section for details.

Thus the focus of the package has changed. In earlier versions, it provided a &GAP; interface to the data in the &ATLAS; of Group Representations, whereas now this database is regarded as one collection (the core part) among others. Where applicable, the package manual tries to distinguish between general data available to the &AtlasRep; functions and the data from the &ATLAS; of Group Representations.

In order to provide this new functionality, the following changes have been implemented. Note that some are incompatible changes, compared with earlier versions of the package.

The format of the identifier components of the records returned by , , etc., has been changed for those data that belong to extensions, see . In the new format, the name of the extension is not added to the group name but to the individual filenames; this allows for example the combination of files from the core database and from extensions in one identifier. Functions for converting between the old and the new format are available, see . The records returned by etc. contain also a component contents, with value the identifier of the part of the database to shich the generators belong. The tables of contents of the &ATLAS; of Group Representations and of extensions are no longer stored in the form of sequences of calls to &GAP; functions. Instead, each table of contents is defined via a JSON format file, see . In particular, the file atlasprm.json replaces the former gap/atlasprm.g.

Two advantages of this change are that there is no danger to call unwanted &GAP; functions when such files (which are expected to be available in the world wide web) get evaluated, and that the information is independent of &GAP; –note that &MeatAxe; format files and straight line programs can be used by other program systems as well. The functions ReloadAtlasTableOfContents, StoreAtlasTableOfContents, and ReplaceAtlasTableOfContents are no longer available. They had been intended for updating the table of contents of the &ATLAS; of Group Representations, but it has turned out that this was in fact not useful. The second major change concerns the handling of user parameters. &GAP;'s general user preferences mechanism (see ) has been used since version 1.5.1 of the package for dealing with certain customizations of &AtlasRep;'s behaviour, concerning the paths of data directories and two issues with &MeatAxe; format files.

Now this mechanism is used in more cases, see Section for an overview. The new user preferences replace certain components of the record that were recommended in earlier versions of the package. These components are currently still available but are no longer used by the package's functions. Also the global variable ATLASREP_TOCFILE is no longer supported, use the user preference AtlasRepTOCData instead, see Section . Analogously, use the user preference HowToReadMeatAxeTextFiles instead of the no longer available CMeatAxe.FastRead.

The switch to user preferences is an incompatible change if you are used to change the values of these components in your code, for example in your gaprc file, see . All assignments to these components should be changed to calls of .

Another consequence of this change is that the former function AtlasOfGroupRepresentationsUserParameters of the package is no longer supported, use or with argument "AtlasRep" instead. Finally, the following improvements have been added. Straight line programs for computing generators of normal subgroups can now be fetched with , using the argument "kernel". The available programs of this type are shown in the overview for a group. More than 200 such programs are available in a new data directory datapkg of the package. If fact, this collection of files is part of an extension of the database that is distributed together with the package.

In earlier versions of the package, this kind of information had been available only implicitly; it had been stored via AGR.KERPRG, which is not supported anymore. supports more variants of arguments: "contents" can be used to list the available data extensions, "contents" and "version" can be used to restrict the data under consideration, and one can request a program for computing standard generators of some maximal subgroup, not just generators (provided that this information is available).

The information about the version of straight line programs is shown by , as well as the availability of straight line programs for computing standard generators of maximal subgroups.

Making this information more explicit has the side-effect that the access to the &AtlasRep; data with is both safer and simpler, if at least version 1.8.6 of the Browse package is available. (For that, the function AGR.InfoPrgs has been extended such that also the identifier records are included in the result.) Straight line programs for computing standard generators of a maximal subgroup, if available, can now be fetched with , using the argument "maxstd". The function now admits a group name as its argument, and then returns information about the group and its maximal subgroups; this information had been used before by , but it had not been programmatically accessible. The sanity checks for the data (see Section ) have been extended, in particular they can be applied also to data extensions. To some extent, these checks can be used also to derive new information; the code for that should be regarded as heuristic and experimental, runtimes and space requirements may be large, depending on the new data to be examined. Different header formats are now supported when reading and writing &MeatAxe; format files, see Section , and one can set a global default for the creation of mode 2 &MeatAxe; files, see Section . The function admits also an integer matrix as argument. The function admits an optional argument base, in order to write &MeatAxe; format files that contain either zero based or one based permutations. The meaningless lines about p-modular representations of groups with nontrivial p-core have been removed from the file gap/mindeg.g. What's New in Version 1.5.1? (March 2016) The paths of the directories where downloaded data files get stored are now customizable, see Section . Up to now, the data were stored in subdirectories of the package directory, which might cause problems with write permissions, depending on the installation of the package. (Note that choosing other data directories can be useful also in order to keep existing local data files when a new version of &GAP; or of the &AtlasRep; package gets installed.) Thanks to Bill Allombert for pointing out this problem. The information about data files from the &ATLAS; of Group Representations has been extended by values. These values are checked whenever data from such a file are read, and an error is signalled if the checksum does not fit to the expected one. Note that several users may access the same data files, and a user should not suffer from perhaps corrupted files that have been downloaded by other users. Thanks to Frank Lübeck for the idea to introduce this consistency test. Whenever is called by functions of the package, this happens in the wrapper function AGR.StringFile, in order to replace occasional line breaks of the form "\r\n" by "\n". Apparently it may happen that the "\r" is silently smuggled in when data files get copied to the local computer. Thanks to Marek Mitros for help with detecting and fixing this problem. The function can now read also permutations stored in binary files that have been created with version 2.4 of the C-&MeatAxe;; note that this format is different from the one that is written by version 2.3. Conversely, has been generalized such that both formats can be written. The reference to the C-&MeatAxe; documentation now points to that of version 2.4. Thanks to Jürgen Müller for pointing out this problem. The function can now encode permutation matrices in different ways. The mode (the first header entry) can be either 2 (then the positions of the nonzero entries are listed) or 1 or 6 (then all entries of the matrix are listed). In previous versions, the function produced a matrix of mode 2 whenever this was possible, but this behaviour is not useful if the result is not processed by the C-&MeatAxe;. Thanks to Klaus Lux for pointing out this problem. Depending on the terminal capabilities and the user preference DisplayFunction (see ), some non-ASCII characters may appear in the output shown by . What's New in Version 1.5? (July 2011) The function now admits also the return value of or the return value of as its first argument. The latter is implemented via the new attribute , which is set in the groups constructed by . Information about transitivity, rank, primitivity, and point stabilizers of many permutation representations is now available. If applicable then this information appears in the records returned by , it is part of the overview shown by , and it is shown also in the data overview in the web, see Section .

Two new manual sections about point stabilizers have been added, see the sections and . Information about the characters afforded by many matrix and permutation representations is now available. If applicable then this information appears in the records returned by , for matrix representations it is part of the overview shown by , and it is shown also in the data overview in the web, see Section . The functions , , , , , and are now supported as input conditions in and . It is now possible to restrict the data shown by or returned by to private or non-private data. A tutorial for beginners was added to the manual, see Chapter , and the manual was restructured. In the overview shown by and in the data overview in the web (see Section ), the ordering of groups was improved such that, e.g., "A9" precedes "A10". The function now admits also a Brauer table as its argument, and works also for character tables of bicyclic extensions of simple groups. The group names that are entered in , , etc., are now case insensitive, and if the package CTblLib is available then the admissible group names for the &GAP; character table of the group in question can be used in these functions. In order to reduce the number of global variables, several functions have been turned into components of the new global variable . A few of these functions had been documented in the previous version, the old values are still available if the package files gap/obsolete.gd and gap/obsolete.gi have been read. These files are read automatically if &GAP;'s user preference "ReadObsolete" is true when the package gets loaded, see . A few nicer characters are used by if GAPInfo.TermEncoding has the value "UTF-8" and if is not the display function to be used, see Section . A bug in the function ReloadAtlasTableOfContents was fixed. Thanks to Jack Schmidt for reporting this bug. What's New in Version 1.4? (June 2008) In addition to the group orders that were added in version 1.3 (see Section ), also many orders of maximal subgroups are now available. These values occur in the records returned by (for the case of "maxes" type programs) and of the three argument version of ; now a size component may be bound. In these cases, the groups returned by have the attribute set. The information about the number of maximal subgroups, if available, is now used in . In many cases, straight line programs for computing generators of maximal subgroups of a group G, say, can in fact be used to compute also generators of maximal subgroups of downward extensions of G; if not then it may suffice to extend the given straight line programs by additional generators.

Currently this yields more than 200 new possibilities to compute maximal subgroups, this means a growth by about 25 percent. For example, all maximal subgroups of 12.M_{22} and 2.Fi_{22} can now be accessed via .

(Of course this extension means only that one can access the straight line programs in question automatically via the &GAP; interface. In principle one could have used them already before, by explicitly applying a straight line program for a factor group to generators of a group, and perhaps adding some element in the kernel of the natural epimorphism.)

For this feature, information about the compatibility of standard generators of groups and their factor groups was added. The bibliographies contained in the &ATLAS; of Finite Groups and in the &ATLAS; of Brauer Characters are now available as HTML files, as BibXMLext files, and within &GAP;, see . If the &GAP; package Browse (see ) is loaded then the new functions and are available; these functions can be called also by choosing the corresponding menu entries of the Browse application . The function now admits also the return value of as its argument. What's New in Version 1.3.1? (October 2007) This version was mainly released in order to fix a few problems. Now one does not get warnings about unbound variables when the package is loaded and the &GAP; package IO is not available, and pathological situations in (concerning extremely short corrupted data files and different byte orderings in binary files) are handled more carefully.

Besides this, the two functions and were introduced, and the extended function of &GAP; 4.4.10 can now be used for describing base rings in and . (This is the reason why this version of the package requires at least version 4.4.10 of &GAP;.) What's New in Version 1.3? (June 2007) The database was extended, see Section  for the number and size of files. New data types and corresponding &GAP; objects have been introduced, for representing semi-presentations, presentations, and programs for finding standard generators. For details, see , Chapter , and Section . The records returned by the functions , , and now contain the name and (if known) the order of the group in question, and also components describing the degree in the case of permutation representations or the dimension and the base ring of the natural module in the case of matrix representations. For many of the groups, information about the minimal degree of faithful permutation representations and the minimal dimensions of faithful matrix representations in various characteristics is available for , , and , see also Section . For these functions, also properties such as can be used to describe the intended restriction of the output. One can now use functionality in , see Section .

An interactive alternative to is provided by the function from the new (recommended) &GAP; package Browse (see ). The functions and now admit also a list of group names as the first argument. The functions for actually accessing the data are more flexible now, see Section . For transferring remote data, the &GAP; package IO (see ) can now be used (and is recommended) as an alternative to wget. wget The address of the data server has changed. ftp The access to the server is no longer possible via ftp, thus the mechanism used up to version 1.2, which was based on ftp, had to be rewritten.

The main consequence of this change is that information about updates of the table of contents is now provided at the package's homepage. This means that on the one hand, now package users cannot compute the table of contents directly from the server data, but on the other hand the update information can be downloaded without the necessity to install perl. perl

Another consequence is that the system program ls is no longer needed, see Section . The package manual has been restructured, extended and improved. It is now based on the package &GAPDoc; (see ). What's New in Version 1.2? (November 2003) Not much.

The release of Version 1.2 became necessary first of all in order to provide a package version that is compatible with &GAP; 4.4, since some cross-references into the &GAP; Reference Manual were broken due to changes of section names. Additionally, several web addresses concerning the package itself were changed and thus had to be adjusted.

This opportunity was used to upgrade the administrational part for loading the package to the mechanism that is recommended for &GAP; 4.4, to extend the test suite, which now covers more consistency checks using the &GAP; Character Table Library (see ), to make the function more robust, due to the fact that the &GAP; function now returns fail instead of raising an error, to change the way how representations with prescribed properties are accessed (the new function is now preferred to the former OneAtlasGeneratingSet, and has been added in order to provide programmatic access in parallel to the human readable descriptions printed by ), and last but not least to include the current table of contents of the underlying database.

For &AtlasRep; users, the new feature of &GAP; 4.4 is particularly interesting that due to better kernel support, reading large matrices over finite fields is now faster than it was in &GAP; 4.3. What's New in Version 1.1? (October 2002) The biggest change w. r. t. Version 1.1 is the addition of private extensions (see Chapter ). It includes a new free format for straight line programs (see Section ). Unfortunately, this feature requires the system program ls, so it may be not available for example under MS Windows operating systems. [But see Section .]

In order to admit the addition of other types of data, the implementation of several functions has been changed. Data types are described in Section . An example of a new data type are quaternionic representations (see Section ). The user interface itself (see Chapter ) remained the same.

wget As an alternative to perl, one can use wget now for transferring data files (see ).

Data files can be read much more efficiently in &GAP; 4.3 than in &GAP; 4.2. In Version 1.1 of the &AtlasRep; package, this feature is used for reading matrices and permutations in &MeatAxe; text format with . As a consequence, (at least) &GAP; 4.3 is required for &AtlasRep; Version 1.1.

gzip The new compress component of the global variable allows one to store data files automatically in gzipped form.

For matrix representations in characteristic zero, invariant forms and generators for the centralizer algebra are now accessible in &GAP; if they are contained in the source files –this information had been ignored in Version 1.0.

Additional information is now available via the internet (see ).

The facilities for updating the table of contents have been extended.

The manual is now distributed also in PDF and HTML format; on the other hand, the PostScript format manual is no longer contained in the archives.

Apart from these changes, a few minor bugs in the handling of &MeatAxe; files have been fixed, typos in the documentation have been corrected, and the syntax checks for &ATLAS; straight line programs (see ) have been improved.

Acknowledgements Frank Lübeck and Max Neunhöffer kindly provided the perl scriptperl that had been used for fetching remote data until version 1.2. Thanks also to Greg Gamble and Alexander Hulpke for technical hints concerning standard perl. Ulrich Kaiser helped with preparing the package for MS Windows. Klaus Lux had the idea to support data extensions, see Chapter , he did a lot of beta testing, and helped to fix several bugs. Frank Lübeck contributed the functions and . Frank Lübeck and Max Neunhöffer wrote the &GAPDoc; package , which is used for processing the documentation of the &AtlasRep; package and for processing the bibliographies included in this package (see ), Max Neunhöffer wrote the &GAP; package IO , which is recommended for transferring data. Max Neunhöffer has also suggested the generalization of the data access described in Section , the admissibility of the function as a filter in , , and , and the variant of that takes a group name as its input. Gunter Malle suggested to make the information about representations of minimal degree accessible, see Section . Andries Brouwer suggested to add a tutorial (see Chapter ), Klaus Lux suggested several improvements of this chapter. The development of this &GAP; package has been supported by the https://www.computeralgebra.de/sfb/ SFB-TRR 195 Symbolic Tools in Mathematics and their Applications (from 2017 until 2022).
atlasrep-2.1.8/doc/tutorial.xml0000755000175000017500000013650214545272651014636 0ustar samsam Tutorial for the &AtlasRep; Package This chapter gives an overview of the basic functionality provided by the &AtlasRep; package. The main concepts and interface functions are presented in the first three sections, and Section  shows a few small examples.

Let us first fix the setup for the examples shown in the package manual.

First of all, we load the &AtlasRep; package. Some of the examples require also the &GAP; packages CTblLib and TomLib, so we load also these packages.

LoadPackage( "AtlasRep", false ); true gap> LoadPackage( "CTblLib", false ); true gap> LoadPackage( "TomLib", false ); true ]]> Depending on the terminal capabilities, the output of may contain non-ASCII characters, which are not supported by the &LaTeX; and HTML versions of &GAPDoc; documents. The examples in this manual are used for tests of the package's functionality, thus we set the user preference DisplayFunction (see Section ) to the value "Print" in order to produce output consisting only of ASCII characters, which is assumed to work in any terminal.

origpref:= UserPreference( "AtlasRep", "DisplayFunction" );; gap> SetUserPreference( "AtlasRep", "DisplayFunction", "Print" ); ]]> The &GAP; output for the examples may look differently if data extensions have been loaded. In order to ignore these extensions in the examples, we unload them.

priv:= Difference( > List( AtlasOfGroupRepresentationsInfo.notified, x -> x.ID ), > [ "core", "internal" ] );; gap> Perform( priv, AtlasOfGroupRepresentationsForgetData ); ]]> If the info level of is larger than zero then additional output appears on the screen. In order to avoid this output, we set the level to zero. globallevel:= InfoLevel( InfoAtlasRep );; gap> SetInfoLevel( InfoAtlasRep, 0 ); ]]>

Accessing a Specific Group in &AtlasRep; An important database to which the &AtlasRep; package gives access is the &ATLAS; of Group Representations . It contains generators and related data for several groups, mainly for extensions of simple groups (see Section ) and for their maximal subgroups (see Section ).

In general, these data are not part of the package. They are downloaded as soon as they are needed for the first time, see Section . Accessing a Group in &AtlasRep; via its Name Each group that occurs in this database is specified by a name, which is a string similar to the name used in the &ATLAS; of Finite Groups . For those groups whose character tables are contained in the &GAP; Character Table Library , the names are equal to the values of these character tables. Examples of such names are "M24" for the Mathieu group M_{24}, "2.A6" for the double cover of the alternating group A_6, and "2.A6.2_1" for the double cover of the symmetric group S_6. The names that actually occur are listed in the first column of the overview table that is printed by the function , called without arguments, see below. The other columns of the table describe the data that are available in the database.

For example, may print the following lines. Omissions are indicated with .... DisplayAtlasInfo(); group | # | maxes | cl | cyc | out | fnd | chk | prs -------------------------+----+-------+----+-----+-----+-----+-----+---- ... 2.A5 | 26 | 3 | | | | | + | + 2.A5.2 | 11 | 4 | | | | | + | + 2.A6 | 18 | 5 | | | | | | 2.A6.2_1 | 3 | 6 | | | | | | 2.A7 | 24 | 2 | | | | | | 2.A7.2 | 7 | | | | | | | ... M22 | 58 | 8 | + | + | | + | + | + M22.2 | 46 | 7 | + | + | | + | + | + M23 | 66 | 7 | + | + | | + | + | + M24 | 62 | 9 | + | + | | + | + | + McL | 46 | 12 | + | + | | + | + | + McL.2 | 27 | 10 | | + | | + | + | + O7(3) | 28 | | | | | | | O7(3).2 | 3 | | | | | | | ... Suz | 30 | 17 | | + | 2 | + | + | ... ]]>

Called with a group name as the only argument, the function returns a group isomorphic to the group with the given name, or fail. If permutation generators are available in the database then a permutation group (of smallest available degree) is returned, otherwise a matrix group. g:= AtlasGroup( "M24" ); Group([ (1,4)(2,7)(3,17)(5,13)(6,9)(8,15)(10,19)(11,18)(12,21)(14,16) (20,24)(22,23), (1,4,6)(2,21,14)(3,9,15)(5,18,10)(13,17,16) (19,24,23) ]) gap> IsPermGroup( g ); NrMovedPoints( g ); Size( g ); true 24 244823040 gap> AtlasGroup( "J5" ); fail ]]> Accessing a Maximal Subgroup of a Group in &AtlasRep; Many maximal subgroups of extensions of simple groups can be constructed using the function . Given the name of the extension of the simple group and the number of the conjugacy class of maximal subgroups, this function returns a representative from this class. g:= AtlasSubgroup( "M24", 1 ); Group([ (2,10)(3,12)(4,14)(6,9)(8,16)(15,18)(20,22)(21,24), (1,7,2,9) (3,22,10,23)(4,19,8,12)(5,14)(6,18)(13,16,17,24) ]) gap> IsPermGroup( g ); NrMovedPoints( g ); Size( g ); true 23 10200960 gap> AtlasSubgroup( "M24", 100 ); fail ]]> The classes of maximal subgroups are ordered w. r. t. decreasing subgroup order. So the first class contains maximal subgroups of smallest index.

Note that groups obtained by may be not very suitable for computations in the sense that much nicer representations exist. For example, the sporadic simple O'Nan group O'N contains a maximal subgroup S isomorphic with the Janko group J_1; the smallest permutation representation of O'N has degree 122760, and restricting this representation to S yields a representation of J_1 of that degree. However, J_1 has a faithful permutation representation of degree 266, which admits much more efficient computations. If you are just interested in J_1 and not in its embedding into O'N then one possibility to get a nicer faithful representation is to call . In the abovementioned example, this works quite well; note that in general, we cannot expect that we get a representation of smallest degree in this way. s:= AtlasSubgroup( "ON", 3 ); gap> NrMovedPoints( s ); Size( s ); 122760 175560 gap> hom:= SmallerDegreePermutationRepresentation( s );; gap> NrMovedPoints( Image( hom ) ) < 2000; true ]]> (Depending on random choices in the computations, one may or my not get the degree 266 representation.)

In this particular case, one could of course also ask directly for the group J_1. j1:= AtlasGroup( "J1" ); gap> NrMovedPoints( j1 ); 266 ]]> If you have a group G, say, and you are really interested in the embedding of a maximal subgroup of G into G then an easy way to get compatible generators is to create G with and then to call with first argument the group G. g:= AtlasGroup( "ON" ); gap> s:= AtlasSubgroup( g, 3 ); gap> IsSubset( g, s ); true gap> IsSubset( g, j1 ); false ]]>

Accessing Specific Generators in &AtlasRep; The function , called with an admissible name of a group as the only argument, lists the &ATLAS; data available for this group. DisplayAtlasInfo( "A5" ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.) 2: G <= Sym(6) 2-trans., on cosets of D10 (2nd max.) 3: G <= Sym(10) rank 3, on cosets of S3 (3rd max.) 4: G <= GL(4a,2) character 4a 5: G <= GL(4b,2) character 2ab 6: G <= GL(4,3) character 4a 7: G <= GL(6,3) character 3ab 8: G <= GL(2a,4) character 2a 9: G <= GL(2b,4) character 2b 10: G <= GL(3,5) character 3a 11: G <= GL(5,5) character 5a 12: G <= GL(3a,9) character 3a 13: G <= GL(3b,9) character 3b 14: G <= GL(4,Z) character 4a 15: G <= GL(5,Z) character 5a 16: G <= GL(6,Z) character 3ab 17: G <= GL(3a,Field([Sqrt(5)])) character 3a 18: G <= GL(3b,Field([Sqrt(5)])) character 3b Programs for G = A5: (all refer to std. generators 1) -------------------- - class repres.* - presentation - maxes (all 3): 1: A4 2: D10 3: S3 - std. gen. checker: (check) (pres) ]]> In order to fetch one of the listed permutation groups or matrix groups, you can call with second argument the function and third argument the position in the list. AtlasGroup( "A5", Position, 1 ); Group([ (1,2)(3,4), (1,3,5) ]) ]]> Note that this approach may yield a different group after a data extension has been loaded.

Alternatively, you can describe the desired group by conditions, such as the degree in the case of a permutation group, and the dimension and the base ring in the case of a matrix group. AtlasGroup( "A5", NrMovedPoints, 10 ); Group([ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ]) gap> AtlasGroup( "A5", Dimension, 4, Ring, GF(2) ); ]]>

The same holds for the restriction to maximal subgroups: Use with the same arguments as , except that additionally the number of the class of maximal subgroups is entered as the last argument. Note that the conditions refer to the group, not to the subgroup; it may happen that the subgroup moves fewer points than the big group. AtlasSubgroup( "A5", Dimension, 4, Ring, GF(2), 1 ); gap> g:= AtlasSubgroup( "A5", NrMovedPoints, 10, 3 ); Group([ (2,4)(3,5)(6,8)(7,10), (1,4)(3,8)(5,7)(6,10) ]) gap> Size( g ); NrMovedPoints( g ); 6 9 ]]>

Basic Concepts used in &AtlasRep; Groups, Generators, and Representations Up to now, we have talked only about groups and subgroups. The &AtlasRep; package provides access to group generators, and in fact these generators have the property that mapping one set of generators to another set of generators for the same group defines an isomorphism. These generators are called standard generators, see Section .

So instead of thinking about several generating sets of a group G, say, we can think about one abstract group G, with one fixed set of generators, and mapping these generators to any set of generators provided by &AtlasRep; defines a representation of G. This viewpoint had motivated the name &ATLAS; of Group Representations for the core part of the database.

If you are interested in the generators provided by the database rather than in the groups they generate, you can use the function instead of , with the same arguments. This will yield a record that describes the representation in question. Calling the function with this record will then yield a record with the additional component generators, which holds the list of generators.

info:= OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, 10 ); rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ], isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3", standardization := 1, transitivity := 1, type := "perm" ) gap> info2:= AtlasGenerators( info ); rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], contents := "core", generators := [ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ], groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ], isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3", standardization := 1, transitivity := 1, type := "perm" ) gap> info2.generators; [ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ] ]]>

The record info appears as the value of the attribute in groups that are returned by .

g:= AtlasGroup( "A5", NrMovedPoints, 10 );; gap> AtlasRepInfoRecord( g ); rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ], isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3", standardization := 1, transitivity := 1, type := "perm" ) ]]> Straight Line Programs For computing certain group elements from standard generators, such as generators of a subgroup or class representatives, &AtlasRep; uses straight line programs, see . Essentially this means to evaluate words in the generators, which is similar to but can be more efficient.

It can be useful to deal with these straight line programs, see . For example, an automorphism \alpha, say, of the group G, if available in &AtlasRep;, is given by a straight line program that defines the images of standard generators of G. This way, one can for example compute the image of a subgroup U of G under \alpha by first applying the straight line program for \alpha to standard generators of G, and then applying the straight line program for the restriction from G to U.

prginfo:= AtlasProgramInfo( "A5", "maxes", 1 ); rec( groupname := "A5", identifier := [ "A5", "A5G1-max1W1", 1 ], size := 12, standardization := 1, subgroupname := "A4", version := "1" ) gap> prg:= AtlasProgram( prginfo.identifier ); rec( groupname := "A5", identifier := [ "A5", "A5G1-max1W1", 1 ], program := , size := 12, standardization := 1, subgroupname := "A4", version := "1" ) gap> Display( prg.program ); # input: r:= [ g1, g2 ]; # program: r[3]:= r[1]*r[2]; r[4]:= r[2]*r[1]; r[5]:= r[3]*r[3]; r[1]:= r[5]*r[4]; # return values: [ r[1], r[2] ] gap> ResultOfStraightLineProgram( prg.program, info2.generators ); [ (1,10)(2,3)(4,9)(7,8), (1,2,3)(4,6,7)(5,8,9) ] ]]>

Examples of Using the &AtlasRep; Package Example: Class Representatives First we show the computation of class representatives of the Mathieu group M_{11}, in a 2-modular matrix representation. We start with the ordinary and Brauer character tables of this group.

tbl:= CharacterTable( "M11" );; gap> modtbl:= tbl mod 2;; gap> CharacterDegrees( modtbl ); [ [ 1, 1 ], [ 10, 1 ], [ 16, 2 ], [ 44, 1 ] ] ]]>

The output of means that the 2-modular irreducibles of M_{11} have degrees 1, 10, 16, 16, and 44.

Using , we find out that matrix generators for the irreducible 10-dimensional representation are available in the database.

DisplayAtlasInfo( "M11", Characteristic, 2 ); Representations for G = M11: (all refer to std. generators 1) ---------------------------- 6: G <= GL(10,2) character 10a 7: G <= GL(32,2) character 16ab 8: G <= GL(44,2) character 44a 16: G <= GL(16a,4) character 16a 17: G <= GL(16b,4) character 16b ]]>

So we decide to work with this representation. We fetch the generators and compute the list of class representatives of M_{11} in the representation. The ordering of class representatives is the same as that in the character table of the &ATLAS; of Finite Groups (), which coincides with the ordering of columns in the &GAP; table we have fetched above.

info:= OneAtlasGeneratingSetInfo( "M11", Characteristic, 2, > Dimension, 10 );; gap> gens:= AtlasGenerators( info.identifier );; gap> ccls:= AtlasProgram( "M11", gens.standardization, "classes" ); rec( groupname := "M11", identifier := [ "M11", "M11G1-cclsW1", 1 ], outputs := [ "1A", "2A", "3A", "4A", "5A", "6A", "8A", "8B", "11A", "11B" ], program := , standardization := 1, version := "1" ) gap> reps:= ResultOfStraightLineProgram( ccls.program, gens.generators );; ]]>

If we would need only a few class representatives, we could use the &GAP; library function to create a straight line program that computes only specified outputs. Here is an example where only the class representatives of order eight are computed.

ord8prg:= RestrictOutputsOfSLP( ccls.program, > Filtered( [ 1 .. 10 ], i -> ccls.outputs[i][1] = '8' ) ); gap> ord8reps:= ResultOfStraightLineProgram( ord8prg, gens.generators );; gap> List( ord8reps, m -> Position( reps, m ) ); [ 7, 8 ] ]]>

Let us check that the class representatives have the right orders.

List( reps, Order ) = OrdersClassRepresentatives( tbl ); true ]]>

From the class representatives, we can compute the Brauer character we had started with. This Brauer character is defined on all classes of the 2-modular table. So we first pick only those representatives, using the &GAP; function ; in this situation, it returns the class fusion from the Brauer table into the ordinary table.

fus:= GetFusionMap( modtbl, tbl ); [ 1, 3, 5, 9, 10 ] gap> modreps:= reps{ fus };; ]]>

Then we call the &GAP; function , which computes the Brauer character value from the matrix given.

char:= List( modreps, BrauerCharacterValue ); [ 10, 1, 0, -1, -1 ] gap> Position( Irr( modtbl ), char ); 2 ]]> Example: Permutation and Matrix Representations The second example shows the computation of a permutation representation from a matrix representation. We work with the 10-dimensional representation used above, and consider the action on the 2^{10} vectors of the underlying row space.

grp:= Group( gens.generators );; gap> v:= GF(2)^10;; gap> orbs:= Orbits( grp, AsList( v ) );; gap> List( orbs, Length ); [ 1, 396, 55, 330, 66, 165, 11 ] ]]>

We see that there are six nontrivial orbits, and we can compute the permutation actions on these orbits directly using . However, for larger examples, one cannot write down all orbits on the row space, so one has to use another strategy if one is interested in a particular orbit.

Let us assume that we are interested in the orbit of length 11. The point stabilizer is the first maximal subgroup of M_{11}, thus the restriction of the representation to this subgroup has a nontrivial fixed point space. This restriction can be computed using the &AtlasRep; package.

gens:= AtlasGenerators( "M11", 6, 1 );; ]]>

Now computing the fixed point space is standard linear algebra.

id:= IdentityMat( 10, GF(2) );; gap> sub1:= Subspace( v, NullspaceMat( gens.generators[1] - id ) );; gap> sub2:= Subspace( v, NullspaceMat( gens.generators[2] - id ) );; gap> fix:= Intersection( sub1, sub2 ); ]]>

The final step is of course the computation of the permutation action on the orbit.

orb:= Orbit( grp, Basis( fix )[1] );; gap> act:= Action( grp, orb );; Print( act, "\n" ); Group( [ ( 1, 2)( 4, 6)( 5, 8)( 7,10), ( 1, 3, 5, 9)( 2, 4, 7,11) ] ) ]]>

Note that this group is not equal to the group obtained by fetching the permutation representation from the database. This is due to a different numbering of the points, thus the groups are permutation isomorphic, that is, they are conjugate in the symmetric group on eleven points.

permgrp:= Group( AtlasGenerators( "M11", 1 ).generators );; gap> Print( permgrp, "\n" ); Group( [ ( 2,10)( 4,11)( 5, 7)( 8, 9), (1,4,3,8)(2,5,6,9) ] ) gap> permgrp = act; false gap> IsConjugate( SymmetricGroup(11), permgrp, act ); true ]]> Example: Outer Automorphisms The straight line programs for applying outer automorphisms to standard generators can of course be used to define the automorphisms themselves as &GAP; mappings.

DisplayAtlasInfo( "G2(3)", IsStraightLineProgram ); Programs for G = G2(3): (all refer to std. generators 1) ----------------------- - class repres. - presentation - repr. cyc. subg. - std. gen. checker - automorphisms: 2 - maxes (all 10): 1: U3(3).2 2: U3(3).2 3: (3^(1+2)+x3^2):2S4 4: (3^(1+2)+x3^2):2S4 5: L3(3).2 6: L3(3).2 7: L2(8).3 8: 2^3.L3(2) 9: L2(13) 10: 2^(1+4)+:3^2.2 gap> prog:= AtlasProgram( "G2(3)", "automorphism", "2" ).program;; gap> info:= OneAtlasGeneratingSetInfo( "G2(3)", Dimension, 7 );; gap> gens:= AtlasGenerators( info ).generators;; gap> imgs:= ResultOfStraightLineProgram( prog, gens );; ]]>

If we are not suspicious whether the script really describes an automorphism then we should tell this to &GAP;, in order to avoid the expensive checks of the properties of being a homomorphism and bijective (see Section ). This looks as follows.

g:= Group( gens );; gap> aut:= GroupHomomorphismByImagesNC( g, g, gens, imgs );; gap> SetIsBijective( aut, true ); ]]>

If we are suspicious whether the script describes an automorphism then we might have the idea to check it with &GAP;, as follows.

aut:= GroupHomomorphismByImages( g, g, gens, imgs );; gap> IsBijective( aut ); true ]]>

(Note that even for a comparatively small group such as G_2(3), this was a difficult task for &GAP; before version 4.3.)

Often one can form images under an automorphism \alpha, say, without creating the homomorphism object. This is obvious for the standard generators of the group G themselves, but also for generators of a maximal subgroup M computed from standard generators of G, provided that the straight line programs in question refer to the same standard generators. Note that the generators of M are given by evaluating words in terms of standard generators of G, and their images under \alpha can be obtained by evaluating the same words at the images under \alpha of the standard generators of G.

max1:= AtlasProgram( "G2(3)", 1 ).program;; gap> mgens:= ResultOfStraightLineProgram( max1, gens );; gap> comp:= CompositionOfStraightLinePrograms( max1, prog );; gap> mimgs:= ResultOfStraightLineProgram( comp, gens );; ]]>

The list mgens is the list of generators of the first maximal subgroup of G_2(3), mimgs is the list of images under the automorphism given by the straight line program prog. Note that applying the program returned by means to apply first prog and then max1. Since we have already constructed the &GAP; object representing the automorphism, we can check whether the results are equal.

mimgs = List( mgens, x -> x^aut ); true ]]>

However, it should be emphasized that using aut requires a huge machinery of computations behind the scenes, whereas applying the straight line programs prog and max1 involves only elementary operations with the generators. The latter is feasible also for larger groups, for which constructing the &GAP; automorphism might be too hard. Example: Using Semi-presentations and Black Box Programs Let us suppose that we want to restrict a representation of the Mathieu group M_{12} to a non-maximal subgroup of the type L_2(11). The idea is that this subgroup can be found as a maximal subgroup of a maximal subgroup of the type M_{11}, which is itself maximal in M_{12}. For that, we fetch a representation of M_{12} and use a straight line program for restricting it to the first maximal subgroup, which has the type M_{11}.

info:= OneAtlasGeneratingSetInfo( "M12", NrMovedPoints, 12 ); rec( charactername := "1a+11a", constituents := [ 1, 2 ], contents := "core", groupname := "M12", id := "a", identifier := [ "M12", [ "M12G1-p12aB0.m1", "M12G1-p12aB0.m2" ], 1, 12 ], isPrimitive := true, maxnr := 1, p := 12, rankAction := 2, repname := "M12G1-p12aB0", repnr := 1, size := 95040, stabilizer := "M11", standardization := 1, transitivity := 5, type := "perm" ) gap> gensM12:= AtlasGenerators( info.identifier );; gap> restM11:= AtlasProgram( "M12", "maxes", 1 );; gap> gensM11:= ResultOfStraightLineProgram( restM11.program, > gensM12.generators ); [ (3,9)(4,12)(5,10)(6,8), (1,4,11,5)(2,10,8,3) ] ]]>

Now we cannot simply apply a straight line program for a group to some generators, since they are not necessarily standard generators of the group. We check this property using a semi-presentation for M_{11}, see .

checkM11:= AtlasProgram( "M11", "check" ); rec( groupname := "M11", identifier := [ "M11", "M11G1-check1", 1, 1 ] , program := , standardization := 1, version := "1" ) gap> ResultOfStraightLineDecision( checkM11.program, gensM11 ); true ]]>

So we are lucky that applying the appropriate program for M_{11} will give us the required generators for L_2(11).

restL211:= AtlasProgram( "M11", "maxes", 2 );; gap> gensL211:= ResultOfStraightLineProgram( restL211.program, gensM11 ); [ (3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10) ] gap> G:= Group( gensL211 );; Size( G ); IsSimple( G ); 660 true ]]> In this case, we could also use the information that is stored about M_{11}, as follows.

DisplayAtlasInfo( "M11", IsStraightLineProgram ); Programs for G = M11: (all refer to std. generators 1) --------------------- - presentation - repr. cyc. subg. - std. gen. finder - class repres.: (direct) (composed) - maxes (all 5): 1: A6.2_3 1: A6.2_3 (std. 1) 2: L2(11) 2: L2(11) (std. 1) 3: 3^2:Q8.2 4: S5 4: S5 (std. 1) 5: 2.S4 - standardizations of maxes: from 1st max., version 1 to A6.2_3, std. 1 from 2nd max., version 1 to L2(11), std. 1 from 4th max., version 1 to A5.2, std. 1 - std. gen. checker: (check) (pres) ]]>

The entry std.1 in the line about the maximal subgroup of type L_2(11) means that a straight line program for computing standard generators (in standardization 1) of the subgroup. This program can be fetched as follows.

restL211std:= AtlasProgram( "M11", "maxes", 2, 1 );; gap> ResultOfStraightLineProgram( restL211std.program, gensM11 ); [ (3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10) ] ]]>

We see that we get the same generators for the subgroup as above. (In fact the second approach first applies the same program as is given by restL211.program, and then applies a program to the results that does nothing.)

Usually representations are not given in terms of standard generators. For example, let us take the M_{11} type group returned by the &GAP; function .

G:= MathieuGroup( 11 );; gap> gens:= GeneratorsOfGroup( G ); [ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ] gap> ResultOfStraightLineDecision( checkM11.program, gens ); false ]]>

If we want to compute an L_2(11) type subgroup of this group, we can use a black box program for computing standard generators, and then apply the straight line program for computing the restriction.

find:= AtlasProgram( "M11", "find" ); rec( groupname := "M11", identifier := [ "M11", "M11G1-find1", 1, 1 ], program := , standardization := 1, version := "1" ) gap> stdgens:= ResultOfBBoxProgram( find.program, Group( gens ) );; gap> List( stdgens, Order ); [ 2, 4 ] gap> ResultOfStraightLineDecision( checkM11.program, stdgens ); true gap> gensL211:= ResultOfStraightLineProgram( restL211.program, stdgens );; gap> List( gensL211, Order ); [ 2, 3 ] gap> G:= Group( gensL211 );; Size( G ); IsSimple( G ); 660 true ]]>

Note that applying the black box program several times may yield different group elements, because computations of random elements are involved, see . All what the black box program promises is to construct standard generators, and these are defined only up to conjugacy in the automorphism group of the group in question. Example: Using the &GAP; Library of Tables of Marks The &GAP; Library of Tables of Marks (the &GAP; package TomLib, ) provides, for many almost simple groups, information for constructing representatives of all conjugacy classes of subgroups. If this information is compatible with the standard generators of the &ATLAS; of Group Representations then we can use it to restrict any representation from the &ATLAS; to prescribed subgroups. This is useful in particular for those subgroups for which the &ATLAS; of Group Representations itself does not contain a straight line program.

tom:= TableOfMarks( "A5" ); TableOfMarks( "A5" ) gap> info:= StandardGeneratorsInfo( tom ); [ rec( ATLAS := true, description := "|a|=2, |b|=3, |ab|=5", generators := "a, b", script := [ [ 1, 2 ], [ 2, 3 ], [ 1, 1, 2, 1, 5 ] ], standardization := 1 ) ] ]]>

The true value of the component ATLAS indicates that the information stored on tom refers to the standard generators of type 1 in the &ATLAS; of Group Representations.

We want to restrict a 4-dimensional integral representation of A_5 to a Sylow 2 subgroup of A_5, and use for that.

info:= OneAtlasGeneratingSetInfo( "A5", Ring, Integers, Dimension, 4 );; gap> stdgens:= AtlasGenerators( info.identifier ); rec( charactername := "4a", constituents := [ 4 ], contents := "core", dim := 4, generators := [ [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ -1, -1, -1, -1 ] ], [ [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 1, 0, 0, 0 ] ] ], groupname := "A5", id := "", identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60, standardization := 1, type := "matint" ) gap> orders:= OrdersTom( tom ); [ 1, 2, 3, 4, 5, 6, 10, 12, 60 ] gap> pos:= Position( orders, 4 ); 4 gap> sub:= RepresentativeTomByGeneratorsNC( tom, pos, stdgens.generators ); gap> GeneratorsOfGroup( sub ); [ [ [ 1, 0, 0, 0 ], [ -1, -1, -1, -1 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ] ], [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ -1, -1, -1, -1 ] ] ] ]]> Example: Index 770 Subgroups in M_{22} The sporadic simple Mathieu group M_{22} contains a unique class of subgroups of index 770 (and order 576). This can be seen for example using &GAP;'s Library of Tables of Marks.

tom:= TableOfMarks( "M22" ); TableOfMarks( "M22" ) gap> subord:= Size( UnderlyingGroup( tom ) ) / 770; 576 gap> ord:= OrdersTom( tom );; gap> tomstabs:= Filtered( [ 1 .. Length( ord ) ], i -> ord[i] = subord ); [ 144 ] ]]>

The permutation representation of M_{22} on the right cosets of such a subgroup S is contained in the &ATLAS; of Group Representations.

DisplayAtlasInfo( "M22", NrMovedPoints, 770 ); Representations for G = M22: (all refer to std. generators 1) ---------------------------- 12: G <= Sym(770) rank 9, on cosets of (A4xA4):4 < 2^4:A6 ]]>

Now we verify the information shown about the point stabilizer and about the maximal overgroups of S in M_{22}.

maxtom:= MaximalSubgroupsTom( tom ); [ [ 155, 154, 153, 152, 151, 150, 146, 145 ], [ 22, 77, 176, 176, 231, 330, 616, 672 ] ] gap> List( tomstabs, i -> List( maxtom[1], j -> ContainedTom( tom, i, j ) ) ); [ [ 0, 10, 0, 0, 0, 0, 0, 0 ] ] ]]>

We see that the only maximal subgroups of M_{22} that contain S have index 77 in M_{22}. According to the &ATLAS; of Finite Groups, these maximal subgroups have the structure 2^4:A_6. From that and from the structure of A_6, we conclude that S has the structure 2^4:(3^2:4).

Alternatively, we look at the permutation representation of degree 770. We fetch it from the &ATLAS; of Group Representations. There is exactly one nontrivial block system for this representation, with 77 blocks of length 10.

g:= AtlasGroup( "M22", NrMovedPoints, 770 ); gap> allbl:= AllBlocks( g );; gap> List( allbl, Length ); [ 10 ] ]]>

Furthermore, &GAP; computes that the point stabilizer S has the structure (A_4 \times A_4):4.

stab:= Stabilizer( g, 1 );; gap> StructureDescription( stab : nice ); "(A4 x A4) : C4" gap> blocks:= Orbit( g, allbl[1], OnSets );; gap> act:= Action( g, blocks, OnSets );; gap> StructureDescription( Stabilizer( act, 1 ) ); "(C2 x C2 x C2 x C2) : A6" ]]> Example: Index 462 Subgroups in M_{22} The &ATLAS; of Group Representations contains three degree 462 permutation representations of the group M_{22}.

DisplayAtlasInfo( "M22", NrMovedPoints, 462 ); Representations for G = M22: (all refer to std. generators 1) ---------------------------- 7: G <= Sym(462a) rank 5, on cosets of 2^4:A5 < 2^4:A6 8: G <= Sym(462b) rank 8, on cosets of 2^4:A5 < L3(4), 2^4:S5 9: G <= Sym(462c) rank 8, on cosets of 2^4:A5 < L3(4), 2^4:A6 ]]>

The point stabilizers in these three representations have the structure 2^4:A_5. Using &GAP;'s Library of Tables of Marks, we can show that these stabilizers are exactly the three classes of subgroups of order 960 in M_{22}. For that, we first verify that the group generators stored in &GAP;'s table of marks coincide with the standard generators used by the &ATLAS; of Group Representations.

tom:= TableOfMarks( "M22" ); TableOfMarks( "M22" ) gap> genstom:= GeneratorsOfGroup( UnderlyingGroup( tom ) );; gap> checkM22:= AtlasProgram( "M22", "check" ); rec( groupname := "M22", identifier := [ "M22", "M22G1-check1", 1, 1 ] , program := , standardization := 1, version := "1" ) gap> ResultOfStraightLineDecision( checkM22.program, genstom ); true ]]>

There are indeed three classes of subgroups of order 960 in M_{22}.

ord:= OrdersTom( tom );; gap> tomstabs:= Filtered( [ 1 .. Length( ord ) ], i -> ord[i] = 960 ); [ 147, 148, 149 ] ]]>

Now we compute representatives of these three classes in the three representations 462a, 462b, and 462c. We see that each of the three classes occurs as a point stabilizer in exactly one of the three representations.

atlasreps:= AllAtlasGeneratingSetInfos( "M22", NrMovedPoints, 462 ); [ rec( charactername := "1a+21a+55a+154a+231a", constituents := [ 1, 2, 5, 7, 9 ], contents := "core", groupname := "M22", id := "a", identifier := [ "M22", [ "M22G1-p462aB0.m1", "M22G1-p462aB0.m2" ], 1, 462 ], isPrimitive := false, p := 462, rankAction := 5, repname := "M22G1-p462aB0", repnr := 7, size := 443520, stabilizer := "2^4:A5 < 2^4:A6", standardization := 1, transitivity := 1, type := "perm" ), rec( charactername := "1a+21a^2+55a+154a+210a", constituents := [ 1, [ 2, 2 ], 5, 7, 8 ], contents := "core", groupname := "M22", id := "b", identifier := [ "M22", [ "M22G1-p462bB0.m1", "M22G1-p462bB0.m2" ], 1, 462 ], isPrimitive := false, p := 462, rankAction := 8, repname := "M22G1-p462bB0", repnr := 8, size := 443520, stabilizer := "2^4:A5 < L3(4), 2^4:S5", standardization := 1, transitivity := 1, type := "perm" ), rec( charactername := "1a+21a^2+55a+154a+210a", constituents := [ 1, [ 2, 2 ], 5, 7, 8 ], contents := "core", groupname := "M22", id := "c", identifier := [ "M22", [ "M22G1-p462cB0.m1", "M22G1-p462cB0.m2" ], 1, 462 ], isPrimitive := false, p := 462, rankAction := 8, repname := "M22G1-p462cB0", repnr := 9, size := 443520, stabilizer := "2^4:A5 < L3(4), 2^4:A6", standardization := 1, transitivity := 1, type := "perm" ) ] gap> atlasreps:= List( atlasreps, AtlasGroup );; gap> tomstabreps:= List( atlasreps, G -> List( tomstabs, > i -> RepresentativeTomByGenerators( tom, i, GeneratorsOfGroup( G ) ) ) );; gap> List( tomstabreps, x -> List( x, NrMovedPoints ) ); [ [ 462, 462, 461 ], [ 460, 462, 462 ], [ 462, 461, 462 ] ] ]]>

More precisely, we see that the point stabilizers in the three representations 462a, 462b, 462c lie in the subgroup classes 149, 147, 148, respectively, of the table of marks.

The point stabilizers in the representations 462b and 462c are isomorphic, but not isomorphic with the point stabilizer in 462a.

stabs:= List( atlasreps, G -> Stabilizer( G, 1 ) );; gap> List( stabs, IdGroup ); [ [ 960, 11358 ], [ 960, 11357 ], [ 960, 11357 ] ] gap> List( stabs, PerfectIdentification ); [ [ 960, 2 ], [ 960, 1 ], [ 960, 1 ] ] ]]>

The three representations are imprimitive. The containment of the point stabilizers in maximal subgroups of M_{22} can be computed using the table of marks of M_{22}.

maxtom:= MaximalSubgroupsTom( tom ); [ [ 155, 154, 153, 152, 151, 150, 146, 145 ], [ 22, 77, 176, 176, 231, 330, 616, 672 ] ] gap> List( tomstabs, i -> List( maxtom[1], j -> ContainedTom( tom, i, j ) ) ); [ [ 21, 0, 0, 0, 1, 0, 0, 0 ], [ 21, 6, 0, 0, 0, 0, 0, 0 ], [ 0, 6, 0, 0, 0, 0, 0, 0 ] ] ]]>

We see: The point stabilizers in 462a (subgroups in the class 149 of the table of marks) are contained only in maximal subgroups in class 154; these groups have the structure 2^4:A_6. The point stabilizers in 462b (subgroups in the class 147) are contained in maximal subgroups in the classes 155 and 151; these groups have the structures L_3(4) and 2^4:S_5, respectively. The point stabilizers in 462c (subgroups in the class 148) are contained in maximal subgroups in the classes 155 and 154.

We identify the supergroups of the point stabilizers by computing the block systems.

bl:= List( atlasreps, AllBlocks );; gap> List( bl, Length ); [ 1, 3, 2 ] gap> List( bl, l -> List( l, Length ) ); [ [ 6 ], [ 21, 21, 2 ], [ 21, 6 ] ] ]]>

Note that the two block systems with blocks of length 21 for 462b belong to the same supergroups (of the type L_3(4)); each of these subgroups fixes two different subsets of 21 points.

The representation 462a is multiplicity-free, that is, it splits into a sum of pairwise nonisomorphic irreducible representations. This can be seen from the fact that the rank of this permutation representation (that is, the number of orbits of the point stabilizer) is five; each permutation representation with this property is multiplicity-free.

The other two representations have rank eight. We have seen the ranks in the overview that was shown by in the beginning. Now we compute the ranks from the permutation groups.

List( atlasreps, RankAction ); [ 5, 8, 8 ] ]]>

In fact the two representations 462b and 462c have the same permutation character. We check this by computing the possible permutation characters of degree 462 for M_{22}, and decomposing them into irreducible characters, using the character table from &GAP;'s Character Table Library.

t:= CharacterTable( "M22" );; gap> perms:= PermChars( t, 462 ); [ Character( CharacterTable( "M22" ), [ 462, 30, 3, 2, 2, 2, 3, 0, 0, 0, 0, 0 ] ), Character( CharacterTable( "M22" ), [ 462, 30, 12, 2, 2, 2, 0, 0, 0, 0, 0, 0 ] ) ] gap> MatScalarProducts( t, Irr( t ), perms ); [ [ 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0 ], [ 1, 2, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0 ] ] ]]>

In particular, we see that the rank eight characters are not multiplicity-free.

atlasrep-2.1.8/doc/main.xml0000755000175000017500000000420514545263311013702 0ustar samsam ATLAS"> AtlasRep"> R.A.Wilson@qmul.ac.uk"> ---"> ]> &AtlasRep; — A GAP 4 Package<Index>AtlasRep</Index> (Version &VERSIONNUMBER;) Robert A. Wilson &WILSONMAIL; http://www.maths.qmw.ac.uk/~raw Richard A. Parker richpark@gmx.co.uk Simon Nickerson http://nickerson.org.uk/groups John N. Bray J.N.Bray@qmul.ac.uk http://www.maths.qmw.ac.uk/~jnb Thomas Breuer sam@Math.RWTH-Aachen.De https://www.math.rwth-aachen.de/~Thomas.Breuer ©right; 2002–&RELEASEYEAR;

This package may be distributed under the terms and conditions of the GNU Public License Version 3 or later, see http://www.gnu.org/licenses. <#Include SYSTEM "introduc.xml"> <#Include SYSTEM "tutorial.xml"> <#Include SYSTEM "interfac.xml"> <#Include SYSTEM "atlasrep.xml"> <#Include SYSTEM "extend.xml"> <#Include SYSTEM "utils.xml"> <#Include SYSTEM "technica.xml"> atlasrep-2.1.8/doc/technica.xml0000755000175000017500000002245514410314117014533 0ustar samsam Technicalities of the &AtlasRep; Package This chapter describes those parts of the &GAP; interface to the &ATLAS; of Group Representations that do not belong to the user interface (cf. Chapter ).

Besides global variables used for administrational purposes (see Section ) and several sanity checks (see Section ), they can be regarded as the interface between the data actually contained in the files and the corresponding &GAP; objects (see Section , , , and ), and the interface between the remote and the local version of the database (see Section  and ). The former interface contains functions to read and write files in &MeatAxe; format, which may be interesting for users familiar with &MeatAxe; standalones (see for example ). Other low level functions may be undocumented in the sense that they are not described in this manual. Users interested in them may look at the actual implementation in the gap directory of the package, but it may happen that this will be changed in future versions of the package.

Global Variables Used by the &AtlasRep; Package For debugging purposes, &AtlasRep; functions print information depending on the info level of the info classes , , and (cf. ).

The info level of an info class can be changed using . For example, the info level of can be set to the nonnegative integer n using SetInfoLevel( InfoAtlasRep, n ).

<#Include Label="InfoAtlasRep"> <#Include Label="InfoCMeatAxe"> <#Include Label="InfoBBox">

<#Include Label="AGR"> <#Include Label="AtlasOfGroupRepresentationsInfo">

How to Customize the Access to Data files <#Include Label="AccessFunctionsDefault">
Reading and Writing MeatAxe Format Files matrix permutation <#Include Label="ScanMeatAxeFile"> <#Include Label="MeatAxeString"> <#Include Label="FFList"> <#Include Label="CMtxBinaryFFMatOrPerm"> <#Include Label="FFMatOrPermCMtxBinary">
Reading and Writing &ATLAS; Straight Line Programs <#Include Label="ScanStraightLineProgram"> <#Include Label="AtlasStringOfProgram">
Data Types Used in the &AtlasRep; Package Each representation or program that is administrated by the &AtlasRep; package belongs to a unique data type. Informally, examples of data types are permutation representation, matrix representation over the integers, or straight line program for computing class representatives.

The idea is that for each data type, there can be a column of its own in the output produced by when called without arguments or with only argument a list of group names, a line format of its own for the output produced by when called with first argument a group name, an input format of its own for , an input format of its own for , and specific tests for the data of this data type; these functions are used by the global tests described in Section .

Formally, a data type is defined by a record whose components are used by the interface functions. The details are described in the following. <#Include Label="AGRDeclareDataType">

Filenames Used in the &AtlasRep; Package <#Include Label="[1]{access}">

<#Include Label="AGRParseFilenameFormat"> <#Include Label="AGRFileContents">

The record component identifier used by the &AtlasRep; Package The functions , , , , and return records which have a component identifier. The value of this component describes the record in the sense that one can reconstruct the whole record from it, and the identifier value can be used as an input for , , , , and .

The identifier component has the following format.

For records describing representations, it is a list of the form [ gapname, files, std, info ]. For records describing straight line programs and straight line decisions, it is a list of the form [ gapname, files, std ].

Here gapname is the &GAP; name of the group in question, files defines the data files, std is the standardization of its generators, and info is some information that depends on the type of the representation, for example the number of moved points in the case of a permutation representation.

The files entry has one of the following formats:

a string, in the case that exactly one file is needed that does not belong to a private extension; an example of such an identifier value is [ "J1", "J1G1-cycW1", 1 ] a list whose entries are strings (which refer to files from the core part of the database) and pairs of the form [ tocid, file ] (which refer to files from the extension given by tocid); examples of identifier values are [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], [ "2.M12", [ [ "mfer", "2M12G1-cclsW1" ] ], 1 ], [ "2.M12", [ "M12G1-max1W1", [ "internal", "2M12G1-kerM12W1" ] ], 1 ], [ "2.M12", [ [ "mfer", "2M12G1-p24bB0.m1" ], [ "mfer", "2M12G1-p24bB0.m2" ] ], 1, 24 ].

Up to version 1.5 of the &AtlasRep; package, a different identifier format was used for files from extensions of the database. Namely, the first entry of the list was a pair [ tocid, groupname ], and the second entry was either a string or a list of strings. Note that with that old format, it was not possible to describe a combination of several files from different sources (core part and extension, or different extensions). The function can be used to convert between the two formats. <#Include Label="AtlasRepIdentifier">

The Tables of Contents of the &AtlasRep; Package <#Include Label="toc">
Sanity Checks for the &AtlasRep; Package <#Include Label="tests"> Finally, we reset the user preference and the info level which had been set at the beginning of Chapter .

SetUserPreference( "AtlasRep", "DisplayFunction", origpref ); gap> SetInfoLevel( InfoAtlasRep, globallevel ); ]]>

atlasrep-2.1.8/doc/extend.xml0000755000175000017500000003777314410314072014255 0ustar samsam Extensions of the &AtlasRep; Package It may be interesting to use the functions of the &GAP; interface also for representations or programs that are not part of the &ATLAS; of Group Representations. This chapter describes how to achieve this.

The main idea is that users can notify collections of private data files, which may consist of new faithful representations and programs for groups that are declared already in the core part of the database that belongs to the official &ATLAS; of Group Representations (see Section ), the declaration of groups that are not declared in the &ATLAS; of Group Representations, and representations and programs for them (see Section ), and the definition of new kinds of representations and programs (see Section ).

A test example of a local extension is given in Section . Another such example is the small collection of data that is distributed together with the package, in its datapkg directory; its contents can be listed by calling DisplayAtlasInfo( "contents", "internal" ).

Examples of extensions by files that can be downloaded from the internet can be found in the &GAP; packages MFER and CTBlocks . These extensions are automatically notified as soon as &AtlasRep; is available, via the default value of the user preference AtlasRepTOCData, see Section ; their contents can be listed by calling DisplayAtlasInfo( "contents", "mfer" ) and DisplayAtlasInfo( "contents", "ctblocks" ), respectively.

Several of the sanity checks for the core part of the &AtlasRep; data make sense also for data extensions, see Section  for more information.

Notify Additional Data <#Include Label="addprivate"> <#Include Label="AtlasOfGroupRepresentationsNotifyData"> <#Include Label="AtlasOfGroupRepresentationsForgetData"> <#Include Label="StringOfAtlasTableOfContents">
The Effect of Extensions on the User Interface First suppose that only new groups or new data for known groups or for new groups are added.

In this case, lists the additional representations and programs in the same way as other data known to &AtlasRep;, except that parts outside the core database are marked with the string that is the value of the user preference AtlasRepMarkNonCoreData, see Section . The ordering of representations listed by (and referred to by ) will in general change whenever extensions get notified. For the other interface functions described in Chapter , the only difference is that also the additional data can be accessed.

If also new data types are introduced in an extension (see Section ) then additional columns or rows can appear in the output of , and new inputs can become meaningful for all interface functions.

An Example of Extending the &AtlasRep; Data This section shows an extension by a few locally available files.

We set the info level of to 1 in this section.

locallevel:= InfoLevel( InfoAtlasRep );; gap> SetInfoLevel( InfoAtlasRep, 1 ); ]]>

Let us assume that the local directory privdir contains data for the cyclic group C_4 of order 4 and for the alternating group A_5 on 5 points, respectively. Note that it is obvious what the term standard generators means for the group C_4.

Further let us assume that privdir contains the following files. C4G1-p4B0.m1 a faithful permutation representation of C_4 on 4 points, C4G1-max1W1 the straight line program that returns the square of its unique input, C4G1-a2W1 the straight line program that raises its unique input to the third power, C4G1-XtestW1 the straight line program that returns the square of its unique input, A5G1-p60B0.m1 and A5G1-p60B0.m2 standard generators for A_5 in its regular permutation representation.

The directory and the files can be created as follows.

prv:= DirectoryTemporary( "privdir" );; gap> FileString( Filename( prv, "C4G1-p4B0.m1" ), > MeatAxeString( [ (1,2,3,4) ], 4 ) );; gap> FileString( Filename( prv, "C4G1-max1W1" ), > "inp 1\npwr 2 1 2\noup 1 2\n" );; gap> FileString( Filename( prv, "C4G1-XtestW1" ), > "inp 1\npwr 2 1 2\noup 1 2\n" );; gap> FileString( Filename( prv, "C4G1-a2W1" ), > "inp 1\npwr 3 1 2\noup 1 2\n" );; gap> FileString( Filename( prv, "C4G1-Ar1aB0.g" ), > "return rec( generators:= [ [[E(4)]] ] );\n" );; gap> points:= Elements( AlternatingGroup( 5 ) );; gap> FileString( Filename( prv, "A5G1-p60B0.m1" ), > MeatAxeString( [ Permutation( (1,2)(3,4), points, OnRight ) ], 60 ) );; gap> FileString( Filename( prv, "A5G1-p60B0.m2" ), > MeatAxeString( [ Permutation( (1,3,5), points, OnRight ) ], 60 ) );; ]]>

(We could also introduce intermediate directories C4 and A5, say, each with the data for one group only.)

The core part of the &AtlasRep; data does not contain information about C_4, so we first notify this group, in the file privdir/toc.json. Besides the name of the group, we store the following information: the group order, the number of (classes of) maximal subgroups, their orders, their structures, and describing data about the three representations. The group A_5 is already known with name A5 in the core part of the &AtlasRep; data, so it need not and cannot be notified again.

FileString( Filename( prv, "toc.json" ), Concatenation( [ "{\n", > "\"ID\":\"priv\",\n", > "\"Data\":[\n", > "[\"GNAN\",[\"C4\",\"C4\"]],\n", > "[\"GRS\",[\"C4\",4]],\n", > "[\"MXN\",[\"C4\",1]],\n", > "[\"MXO\",[\"C4\",[2]]],\n", > "[\"MXS\",[\"C4\",[\"C2\"]]],\n", > "[\"RNG\",[\"C4G1-Ar1aB0\",\"CF(4)\",", > "[\"QuadraticField\",-1],[1,0,1]]],\n", > "[\"API\",[\"C4G1-p4B0\",[1,4,\"imprim\",\"1 < C2\"]]],\n", > "[\"API\",[\"A5G1-p60B0\",[1,60,\"imprim\",\"1 < S3\"]]]\n", > "]\n", > "}\n" ] ) );; ]]>

Then we notify the extension.

AtlasOfGroupRepresentationsNotifyData( prv, "priv", true ); true ]]>

Now we can use the interface functions for accessing the additional data.

DisplayAtlasInfo( [ "C4" ] ); group | # | maxes | cl | cyc | out | fnd | chk | prs ------+---+-------+----+-----+-----+-----+-----+---- C4* | 2 | 1 | | | 2 | | | gap> DisplayAtlasInfo( "C4" ); Representations for G = C4: (all refer to std. generators 1) --------------------------- 1: G <= Sym(4)* rank 4, on cosets of 1 < C2 2: G <= GL(1a,CF(4))* Programs for G = C4: (all refer to std. generators 1) -------------------- - automorphisms*: 2* - maxes (all 1): 1*: C2 - other scripts*: "test"* gap> DisplayAtlasInfo( "C4", IsPermGroup, true ); Representations for G = C4: (all refer to std. generators 1) --------------------------- 1: G <= Sym(4)* rank 4, on cosets of 1 < C2 gap> DisplayAtlasInfo( "C4", IsMatrixGroup ); Representations for G = C4: (all refer to std. generators 1) --------------------------- 2: G <= GL(1a,CF(4))* gap> DisplayAtlasInfo( "C4", Dimension, 2 ); gap> DisplayAtlasInfo( "A5", NrMovedPoints, 60 ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 4: G <= Sym(60)* rank 60, on cosets of 1 < S3 gap> info:= OneAtlasGeneratingSetInfo( "C4" ); rec( contents := "priv", groupname := "C4", id := "", identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], isPrimitive := false, p := 4, rankAction := 4, repname := "C4G1-p4B0", repnr := 1, size := 4, stabilizer := "1 < C2", standardization := 1, transitivity := 1, type := "perm" ) gap> AtlasGenerators( info.identifier ); rec( contents := "priv", generators := [ (1,2,3,4) ], groupname := "C4", id := "", identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], isPrimitive := false, p := 4, rankAction := 4, repname := "C4G1-p4B0", repnr := 1, size := 4, stabilizer := "1 < C2", standardization := 1, transitivity := 1, type := "perm" ) gap> AtlasProgram( "C4", 1 ); rec( groupname := "C4", identifier := [ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ], program := , size := 2, standardization := 1, subgroupname := "C2", version := "1" ) gap> AtlasProgram( "C4", "maxes", 1 ); rec( groupname := "C4", identifier := [ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ], program := , size := 2, standardization := 1, subgroupname := "C2", version := "1" ) gap> AtlasProgram( "C4", "maxes", 2 ); fail gap> AtlasGenerators( "C4", 1 ); rec( contents := "priv", generators := [ (1,2,3,4) ], groupname := "C4", id := "", identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], isPrimitive := false, p := 4, rankAction := 4, repname := "C4G1-p4B0", repnr := 1, size := 4, stabilizer := "1 < C2", standardization := 1, transitivity := 1, type := "perm" ) gap> AtlasGenerators( "C4", 2 ); rec( contents := "priv", dim := 1, generators := [ [ [ E(4) ] ] ], groupname := "C4", id := "a", identifier := [ "C4", [ [ "priv", "C4G1-Ar1aB0.g" ] ], 1, 1 ], polynomial := [ 1, 0, 1 ], repname := "C4G1-Ar1aB0", repnr := 2, ring := GaussianRationals, size := 4, standardization := 1, type := "matalg" ) gap> AtlasGenerators( "C4", 3 ); fail gap> AtlasProgram( "C4", "other", "test" ); rec( groupname := "C4", identifier := [ "C4", [ [ "priv", "C4G1-XtestW1" ] ], 1 ], program := , standardization := 1, version := "1" ) ]]>

We can restrict the data shown by to our extension, as follows.

DisplayAtlasInfo( "contents", "priv" ); group | # | maxes | cl | cyc | out | fnd | chk | prs ------+---+-------+----+-----+-----+-----+-----+---- A5* | 1 | | | | | | | C4* | 2 | 1 | | | 2 | | | ]]>

For checking the data in the extension, we apply the relevant sanity checks (see Section ).

AGR.Test.Words( "priv" ); true gap> AGR.Test.FileHeaders( "priv" ); true gap> AGR.Test.Files( "priv" ); true gap> AGR.Test.BinaryFormat( "priv" ); true gap> AGR.Test.Primitivity( "priv" : TryToExtendData ); true gap> AGR.Test.Characters( "priv" : TryToExtendData ); #I AGR.Test.Character: #I add new info ["CHAR",["A5","A5G1-p60B0", 0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4a^4+5a^5"]], #I AGR.Test.Character: #I add new info ["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]], true ]]>

We did not store the character information in the file privdir/toc.json, and &GAP; was able to identify the characters of the two permutation representations. (The identification of the character for the matrix representation fails because we cannot distinguish between the two Galois conjugate faithful characters.)

If we store the character information as proposed by &GAP;, this information will for example become part of the records returned by . (Note that we have to enter "priv" as the last argument of AGR.CHAR when we call the function interactively, in order to assign the information to the right context.)

AGR.CHAR("A5","A5G1-p60B0", > 0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4a^4+5a^5", "priv" ); gap> AGR.CHAR("C4","C4G1-p4B0",0,[1,2,3,4],"1abcd", "priv" ); gap> AGR.Test.Characters( "priv" ); true gap> OneAtlasGeneratingSetInfo( "C4" ); rec( charactername := "1abcd", constituents := [ 1, 2, 3, 4 ], contents := "priv", groupname := "C4", id := "", identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], isPrimitive := false, p := 4, rankAction := 4, repname := "C4G1-p4B0", repnr := 1, size := 4, stabilizer := "1 < C2", standardization := 1, transitivity := 1, type := "perm" ) ]]>

A string that describes the JSON format overview of the data extension can be created with .

Print( StringOfAtlasTableOfContents( "priv" ) ); { "ID":"priv", "Data":[ ["GNAN",["C4","C4"]], ["GRS",["C4",4]], ["MXN",["C4",1]], ["MXO",["C4",[2]]], ["MXS",["C4",["C2"]]], ["RNG",["C4G1-Ar1aB0","CF(4)",["QuadraticField",-1],[1,0,1]]], ["API",["A5G1-p60B0",[1,60,"imprim","1 < S3"]]], ["API",["C4G1-p4B0",[1,4,"imprim","1 < C2"]]], ["CHAR",["A5","A5G1-p60B0",0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4\ a^4+5a^5"]], ["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]] ] } ]]>

If we prescribe a "DataURL" component that starts with "http" then also the "TOC" lines are listed, in order to enable remote access to the data.

Print( StringOfAtlasTableOfContents( > rec( ID:= "priv", DataURL:= "http://someurl" ) ) ); { "ID":"priv", "DataURL":"http://someurl", "Data":[ ["GNAN",["C4","C4"]], ["GRS",["C4",4]], ["MXN",["C4",1]], ["MXO",["C4",[2]]], ["MXS",["C4",["C2"]]], ["TOC",["perm","A5G1-p60B0.m",[118815263,24584221]]], ["TOC",["matalg","C4G1-Ar1aB0.g",[49815028]]], ["TOC",["otherscripts","C4G1-XtestW1",[-27672877]]], ["TOC",["out","C4G1-a2W1",[126435524]]], ["TOC",["maxes","C4G1-max1W1",[-27672877]]], ["TOC",["perm","C4G1-p4B0.m",[102601978]]], ["RNG",["C4G1-Ar1aB0","CF(4)",["QuadraticField",-1],[1,0,1]]], ["API",["A5G1-p60B0",[1,60,"imprim","1 < S3"]]], ["API",["C4G1-p4B0",[1,4,"imprim","1 < C2"]]], ["CHAR",["A5","A5G1-p60B0",0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4\ a^4+5a^5"]], ["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]] ] } ]]>

Finally, we uninstall our extension, and reset the info level that had been set to 1 in the beginning. (Also the group name C4 is removed this way, which is an advantage of using a toc.json file over calling AGR.GNAN directly.),

AtlasOfGroupRepresentationsForgetData( "priv" ); gap> SetInfoLevel( InfoAtlasRep, locallevel ); ]]>

We need not care about removing the temporary directory and the files in it. &GAP; will try to remove directories created with at the end of the &GAP; session.

atlasrep-2.1.8/datagens/dummy0000664000175000017500000000000013455115645014324 0ustar samsamatlasrep-2.1.8/dataword/dummy0000664000175000017500000000000013455115664014344 0ustar samsamatlasrep-2.1.8/dataext/dummy0000664000175000017500000000000013455115667014174 0ustar samsamatlasrep-2.1.8/GPL0000644000175000017500000010451314355402502012030 0ustar samsam GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: Copyright (C) This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see . The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read . atlasrep-2.1.8/gap/types.g0000644000175000017500000043235114467421064013562 0ustar samsam############################################################################# ## #W types.g GAP 4 package AtlasRep Thomas Breuer ## ## This file contains implementations of the actual data types used in the ## &ATLAS; of Group Representations. ## ############################################################################# ## #V AtlasOfGroupRepresentationsInfo ## BindGlobal( "AtlasOfGroupRepresentationsInfo", rec( # user parameters accessFunctions := AtlasOfGroupRepresentationsAccessFunctionsDefault, # system parameters (filled automatically) GAPnames := [], ringinfo := [], permrepinfo := rec(), characterinfo := rec(), notified := [], filenames := [], newfilenames := [], TableOfContents := rec( core := rec(), types := rec( rep := [], prg := [], cache := [] ), merged := rec() ), TOC_Cache := rec(), ) ); ############################################################################# ## #D Permutation representations ## ## <#GAPDoc Label="type:perm:format"> ## groupnameGi-pnidBm.mnr ## ## a file in &MeatAxe; text file format ## containing the nr-th generator of a permutation representation ## on n points. ## An example is M11G1-p11B0.m1. ## ## <#/GAPDoc> ## AGR.DeclareDataType( "rep", "perm", rec( # `G-pB.m' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar ], [ "p", IsDigitChar, AGR.IsLowerAlphaOrDigitChar, "B", IsDigitChar, ".m", IsDigitChar ] ], [ ParseBackwards, ParseForwards ] ], AddDescribingComponents := function( record, type ) local repid, parsed, comp, info, pos; repid:= record.identifier[2][1]; if not IsString( repid ) then repid:= repid[2]; fi; parsed:= AGR.ParseFilenameFormat( repid, type[2].FilenameFormat ); record.p:= Int( parsed[5] ); record.id:= parsed[6]; repid:= repid{ [ 1 .. Position( repid, '.' ) - 1 ] }; if IsBound( AtlasOfGroupRepresentationsInfo.characterinfo.( record.groupname ) ) then info:= AtlasOfGroupRepresentationsInfo.characterinfo.( record.groupname ); if IsBound( info[1] ) then info:= info[1]; pos:= Position( info[2], repid ); if pos <> fail then record.constituents:= info[1][ pos ]; if info[3][ pos ] <> fail then record.charactername:= info[3][ pos ]; fi; fi; fi; fi; if IsBound( AtlasOfGroupRepresentationsInfo.permrepinfo.( repid ) ) then repid:= AtlasOfGroupRepresentationsInfo.permrepinfo.( repid ); for comp in [ "isPrimitive", "orbits", "rankAction", "stabilizer", "transitivity", "maxnr" ] do if IsBound( repid.( comp ) ) and repid.( comp ) <> "???" then record.( comp ):= repid.( comp ); fi; od; fi; end, # `[ , , , , ]' AddFileInfo := function( list, entry, name ) local known; if 0 < entry[5] then known:= First( list, x -> x{ [ 1 .. 4 ] } = entry{ [3, 5, 6, 8 ] } ); if known = fail then known:= entry{ [ 3, 5, 6, 8 ] }; Add( known, [] ); Add( list, known ); fi; known[5][ entry[10] ]:= name; return true; fi; return false; end, DisplayOverviewInfo := [ "#", "r", function( conditions ) # Put *all* types of representations together, in particular # assume that the functions for the other "rep" kind types are trivial! local info, no; conditions:= ShallowCopy( conditions ); conditions[1]:= conditions[1][1]; info:= CallFuncList( AllAtlasGeneratingSetInfos, conditions ); no:= Length( info ); if no = 0 then no:= ""; fi; return [ String( no ), not ForAll( info, x -> IsString( x.identifier[2] ) or ForAll( x.identifier[2], IsString ) ) ]; end ], AccessGroupCondition := function( info, cond ) return AGR.CheckOneCondition( IsPermGroup, x -> x = true, cond ) and AGR.CheckOneCondition( IsPermGroup, cond ) and AGR.CheckOneCondition( IsMatrixGroup, x -> x = false, cond ) and AGR.CheckOneCondition( NrMovedPoints, x -> ( IsFunction( x ) and x( info.p ) = true ) or info.p = x, cond ) and AGR.CheckOneCondition( IsTransitive, x -> ( not IsBound( info.transitivity ) and x = fail ) or ( IsBound( info.transitivity ) and ( ( IsFunction( x ) and x( info.transitivity > 0 ) = true ) or ( info.transitivity > 0 ) = x ) ), cond ) and AGR.CheckOneCondition( Transitivity, x -> ( not IsBound( info.transitivity ) and x = fail ) or ( IsBound( info.transitivity ) and ( ( IsFunction( x ) and x( info.transitivity ) = true ) or info.transitivity = x ) ), cond ) and AGR.CheckOneCondition( IsPrimitive, x -> ( not IsBound( info.isPrimitive ) and x = fail ) or ( IsBound( info.isPrimitive ) and ( ( IsFunction( x ) and x( info.isPrimitive ) = true ) or info.isPrimitive = x ) ), cond ) and AGR.CheckOneCondition( RankAction, x -> ( not IsBound( info.rankAction ) and x = fail ) or ( IsBound( info.rankAction ) and ( ( IsFunction( x ) and x( info.rankAction ) = true ) or info.rankAction = x ) ), cond ) and AGR.CheckOneCondition( Identifier, x -> ( IsFunction( x ) and x( info.id ) = true ) or info.id = x, cond ) and IsEmpty( cond ); end, DisplayGroup := function( r ) local disp, sep; if AGR.ShowOnlyASCII() then disp:= Concatenation( "G <= Sym(", String( r.p ), r.id, ")" ); else disp:= Concatenation( "G ≤ Sym(", String( r.p ), r.id, ")" ); fi; if IsBound( r.transitivity ) then disp:= [ disp ]; if r.transitivity = 0 then # For intransitive repres., show the orbit lengths. Add( disp, Concatenation( "orbit lengths ", JoinStringsWithSeparator( List( r.orbits, String ), ", " ) ) ); sep:= ", "; elif r.transitivity = 1 then # For transitivity 1, show the rank (if known). if IsBound( r.rankAction ) and r.rankAction <> "???" then Add( disp, Concatenation( "rank ", String( r.rankAction ) ) ); sep:= ", "; fi; elif IsInt( r.transitivity ) then # For transitivity at least 2, show the transitivity. Add( disp, Concatenation( String( r.transitivity ), "-trans." ) ); sep:= ", "; else # The transitivity is not known. Add( disp, "" ); sep:= ""; fi; if 0 < r.transitivity then # For transitive representations, more info may be available. if IsBound( r.isPrimitive ) and r.isPrimitive then if IsBound( r.stabilizer ) and r.stabilizer <> "???" then Add( disp, Concatenation( sep, "on cosets of " ) ); Add( disp, r.stabilizer ); if IsBound( r.maxnr ) and r.maxnr <> "???" then Add( disp, Concatenation( " (", Ordinal( r.maxnr ), " max.)" ) ); else Add( disp, "" ); fi; elif IsBound( r.maxnr ) and r.maxnr <> "???" then Add( disp, Concatenation( sep, "on cosets of ", Ordinal( r.maxnr ), " max." ) ); else Add( disp, Concatenation( sep, "primitive" ) ); fi; elif IsBound( r.stabilizer ) and r.stabilizer <> "???" then Add( disp, Concatenation( sep, "on cosets of " ) ); Add( disp, r.stabilizer ); fi; fi; fi; return disp; end, TestFileHeaders := function( tocid, groupname, entry, type ) local name, cand, filename, len, file, line; if tocid = "core" then tocid:= "datagens"; fi; # Each generator is stored in a file of its own. for name in entry[ Length( entry ) ] do # Consider only local files, do not download them. cand:= AtlasOfGroupRepresentationsLocalFilename( [ [ tocid, name ] ], type ); if not ( Length( cand ) = 1 and ForAll( cand[1][2], x -> x[2] ) ) then return true; fi; filename:= cand[1][2][1][1]; len:= Length( filename ); if 3 < len and filename{ [ len-2 .. len ] } = ".gz" then filename:= filename{ [ 1 .. len-3 ] }; fi; # Read the first line of the file. file:= InputTextFile( filename ); if file = fail then return Concatenation( "cannot create input stream for file `", filename,"'" ); fi; AGR.InfoRead( "#I reading `",filename,"' started\n" ); line:= ReadLine( file ); if line = fail then CloseStream( file ); return Concatenation( "no first line in file `",filename,"'" ); fi; while not '\n' in line do Append( line, ReadLine( file ) ); od; CloseStream( file ); AGR.InfoRead( "#I reading `",filename,"' done\n" ); # The header must consist of four nonnegative integers. line:= CMeatAxeFileHeaderInfo( line ); if line = fail then return Concatenation( "illegal header of file `", filename,"'" ); fi; # Start the specific tests for permutations. # Check mode, number of permutations, and degree. if line[1] <> 12 then return Concatenation( "mode of file `", name, "' differs from 12" ); elif line[4] <> 1 then return Concatenation( "more than one permutation in file `", name, "'" ); elif line[3] <> entry[2] then return Concatenation( "perm. degree in file `", name, "' is ", String( line[3] ) ); fi; od; return true; end, TestFiles := AGR.TestFilesMTX, # Permutation representations are sorted according to # degree and identification string. SortTOCEntries := entry -> entry{ [ 2, 3 ] }, # Check whether the right number of files is available for each repres. PostprocessFileInfo := function( toc, record ) local list, i; list:= record.perm; for i in [ 1 .. Length( list ) ] do if not IsDenseList( list[i][5] ) then #T better check whether the number of generators equals the number of #T standard generators Info( InfoAtlasRep, 1, "not all generators for ", list[i][5] ); Unbind( list[i] ); fi; od; if not IsDenseList( list ) then record.perm:= Compacted( list ); fi; end, # We store the type, the full filename, and the list of CRC values. TOCEntryString := function( typename, entry ) local list, pos, name, crc, info; list:= AtlasOfGroupRepresentationsInfo.filenames; pos:= List( entry[5], nam -> PositionSorted( list, [ nam ] ) ); if ForAll( pos, x -> x <= Length( list ) ) and List( pos, x -> list[x][1] ) = entry[5] then name:= list[ pos[1] ][2]; crc:= List( pos, i -> AGR_Checksum( list[i], typename ) ); info:= Concatenation( "\"", typename, "\",\"", name{ [ 1 .. PositionSublist( name, ".m" ) + 1 ] }, "\"" ); if not fail in crc then Append( info, Concatenation( ",[", JoinStringsWithSeparator( crc, "," ), "]" ) ); fi; return info; fi; return fail; end, # The default access reads the text format files. # Note that `ScanMeatAxeFile' returns a list of permutations. ReadAndInterpretDefault := paths -> Concatenation( List( paths, ScanMeatAxeFile ) ), InterpretDefault := strings -> Concatenation( List( strings, str -> ScanMeatAxeFile( str, "string" ) ) ), ) ); ############################################################################# ## #D Matrix representations over finite fields ## ## <#GAPDoc Label="type:matff:format"> ## groupnameGi-fqrdimidBm.mnr ## ## a file in &MeatAxe; text file format ## containing the nr-th generator of a matrix representation ## over the field with q elements, of dimension dim. ## An example is S5G1-f2r4aB0.m1. ## ## <#/GAPDoc> ## AGR.DeclareDataType( "rep", "matff", rec( # `G-frB.m' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar ], [ "f", IsDigitChar, "r", IsDigitChar, AGR.IsLowerAlphaOrDigitChar, "B", IsDigitChar, ".m", IsDigitChar ] ], [ ParseBackwards, ParseForwards ] ], AddDescribingComponents := function( record, type ) local repid, parsed, info, char, pos; repid:= record.identifier[2][1]; if not IsString( repid ) then repid:= repid[2]; fi; parsed:= AGR.ParseFilenameFormat( repid, type[2].FilenameFormat ); record.dim:= Int( parsed[7] ); record.id:= parsed[8]; record.ring:= GF( parsed[5] ); if IsBound( AtlasOfGroupRepresentationsInfo.characterinfo.( record.groupname ) ) then info:= AtlasOfGroupRepresentationsInfo.characterinfo.( record.groupname ); char:= Characteristic( record.ring ); if IsBound( info[ char ] ) then info:= info[ char ]; pos:= Position( info[2], repid{ [ 1 .. Position( repid, '.' ) - 1 ] } ); if pos <> fail then record.constituents:= info[1][ pos ]; if IsInt( record.constituents ) then record.constituents:= [ record.constituents ]; fi; if info[3][ pos ] <> fail then record.charactername:= info[3][ pos ]; fi; fi; fi; fi; end, # `[ , , , , , ]' AddFileInfo := function( list, entry, name ) local known; if IsPrimePowerInt( entry[5] ) and 0 < entry[7] then known:= First( list, x -> x{ [ 1 .. 5 ] } = entry{ [ 3, 5, 7, 8, 10 ] } ); if known = fail then known:= entry{ [ 3, 5, 7, 8, 10 ] }; Add( known, [] ); Add( list, known ); fi; known[6][ entry[12] ]:= name; return true; fi; return false; end, AccessGroupCondition := function( info, cond ) return AGR.CheckOneCondition( IsMatrixGroup, x -> x = true, cond ) and AGR.CheckOneCondition( IsMatrixGroup, cond ) and AGR.CheckOneCondition( IsPermGroup, x -> x = false, cond ) and AGR.CheckOneCondition( Characteristic, function( p ) local char; char:= SmallestRootInt( Size( info.ring ) ); return char = p or IsFunction( p ) and p( char ) = true; end, cond ) and AGR.CheckOneCondition( Dimension, x -> ( IsFunction( x ) and x( info.dim ) ) or info.dim = x, cond ) and AGR.CheckOneCondition( Ring, R -> ( IsFunction( R ) and R( info.ring ) ) or ( IsField( R ) and IsFinite( R ) and Size( info.ring ) mod Characteristic( R ) = 0 and DegreeOverPrimeField( R ) mod LogInt( Size( info.ring ), Characteristic( R ) ) = 0 ), cond ) and AGR.CheckOneCondition( Identifier, x -> ( IsFunction( x ) and x( info.id ) = true ) or info.id = x, cond ) and IsEmpty( cond ); end, DisplayGroup := function( r ) local disp; if AGR.ShowOnlyASCII() then disp:= Concatenation( "G <= GL(", String( r.dim ), r.id, ",", String( r.identifier[4] ), ")" ); if IsBound( r.charactername ) then disp:= [ disp, Concatenation( "character ", r.charactername ) ]; fi; else disp:= Concatenation( "G ≤ GL(", String( r.dim ), r.id, ",", String( r.identifier[4] ), ")" ); if IsBound( r.charactername ) then disp:= [ disp, Concatenation( "φ = ", r.charactername ) ]; fi; fi; return disp; end, TestFileHeaders := function( tocid, groupname, entry, type ) local name, cand, filename, len, file, line, errors; if tocid = "core" then tocid:= "datagens"; fi; # Each generator is stored in a file of its own. for name in entry[ Length( entry ) ] do # Consider only local files, do not download them. cand:= AtlasOfGroupRepresentationsLocalFilename( [ [ tocid, name ] ], type ); if not ( Length( cand ) = 1 and ForAll( cand[1][2], x -> x[2] ) ) then return true; fi; filename:= cand[1][2][1][1]; len:= Length( filename ); if 3 < len and filename{ [ len-2 .. len ] } = ".gz" then filename:= filename{ [ 1 .. len-3 ] }; fi; # Read the first line of the file. file:= InputTextFile( filename ); if file = fail then return Concatenation( "cannot create input stream for file `", filename,"'" ); fi; AGR.InfoRead( "#I reading `",filename,"' started\n" ); line:= ReadLine( file ); if line = fail then CloseStream( file ); return Concatenation( "no first line in file `",filename,"'" ); fi; while not '\n' in line do Append( line, ReadLine( file ) ); od; CloseStream( file ); AGR.InfoRead( "#I reading `",filename,"' done\n" ); # The header must consist of four nonnegative integers. line:= CMeatAxeFileHeaderInfo( line ); if line = fail then return Concatenation( "illegal header of file `", filename,"'" ); fi; # Start the specific tests for matrices over finite fields. # Check mode, field size, and dimension. errors:= ""; if 6 < line[1] then Append( errors, Concatenation( "mode of file `", name, "' is larger than 6" ) ); elif line[2] <> entry[2] then Append( errors, Concatenation( "file `", name, "': field is of size ", String( line[2] ) ) ); elif line[3] <> entry[3] then Append( errors, Concatenation( "file `", name, "': matrix dimension is ", String( line[3] ) ) ); elif line[3] <> line[4] then Append( errors, Concatenation( "file `", name, "': matrix is not square" ) ); fi; if not IsEmpty( errors ) then return errors; fi; od; return true; end, TestFiles := AGR.TestFilesMTX, # Matrix representations over finite fields are sorted according to # field size, dimension, and identification string. SortTOCEntries := entry -> entry{ [ 2 .. 4 ] }, # Check whether the right number of files is available for each repres. PostprocessFileInfo := function( toc, record ) local list, i; list:= record.matff; for i in [ 1 .. Length( list ) ] do if not IsDenseList( list[i][6] ) then #T better check whether the number of generators equals the number of #T standard generators Info( InfoAtlasRep, 1, "not all generators for ", list[i][6] ); Unbind( list[i] ); fi; od; if not IsDenseList( list ) then record.matff:= Compacted( list ); fi; end, # We store the type, the full filename, and the list of CRC values. TOCEntryString := function( typename, entry ) local list, pos, name, crc, info; list:= AtlasOfGroupRepresentationsInfo.filenames; pos:= List( entry[6], nam -> PositionSorted( list, [ nam ] ) ); if ForAll( pos, x -> x <= Length( list ) ) and List( pos, x -> list[x][1] ) = entry[6] then name:= list[ pos[1] ][2]; crc:= List( pos, i -> AGR_Checksum( list[i], typename ) ); info:= Concatenation( "\"", typename, "\",\"", name{ [ 1 .. PositionSublist( name, ".m" ) + 1 ] }, "\"" ); if not fail in crc then Append( info, Concatenation( ",[", JoinStringsWithSeparator( crc, "," ), "]" ) ); fi; return info; fi; return fail; end, # The default access reads the text format files. ReadAndInterpretDefault := paths -> List( paths, ScanMeatAxeFile ), InterpretDefault := strings -> List( strings, str -> ScanMeatAxeFile( str, "string" ) ), ) ); ############################################################################# ## #D Matrix representations over the integers ## ## <#GAPDoc Label="type:matint:format"> ## groupnameGi-ZrdimidBm.g ## ## a &GAP; readable file ## containing all generators of a matrix representation ## over the integers, of dimension dim. ## An example is A5G1-Zr4B0.g. ## ## <#/GAPDoc> ## AGR.DeclareDataType( "rep", "matint", rec( # `G-ZrB.g' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar ], [ "Zr", IsDigitChar, AGR.IsLowerAlphaOrDigitChar, "B", IsDigitChar, ".g" ] ], [ ParseBackwards, ParseForwards ] ], AddDescribingComponents := function( record, type ) local repid, parsed, info, pos; repid:= record.identifier[2]; if not IsString( repid ) then # one private file repid:= repid[1][2]; fi; parsed:= AGR.ParseFilenameFormat( repid, type[2].FilenameFormat ); record.dim:= Int( parsed[5] ); record.id:= parsed[6]; record.ring:= Integers; if IsBound( AtlasOfGroupRepresentationsInfo.characterinfo.( record.groupname ) ) then info:= AtlasOfGroupRepresentationsInfo.characterinfo.( record.groupname ); if IsBound( info[1] ) then info:= info[1]; pos:= Position( info[2], repid{ [ 1 .. Position( repid, '.' ) - 1 ] } ); if pos <> fail then record.constituents:= info[1][ pos ]; if IsInt( record.constituents ) then record.constituents:= [ record.constituents ]; fi; if info[3][ pos ] <> fail then record.charactername:= info[3][ pos ]; fi; fi; fi; fi; end, # `[ , , , , ]' AddFileInfo := function( list, entry, name ) if 0 < entry[5] then Add( list, Concatenation( entry{ [ 3, 5, 6, 8 ] }, [ name ] ) ); return true; fi; return false; end, AccessGroupCondition := function( info, cond ) return AGR.CheckOneCondition( IsMatrixGroup, x -> x = true, cond ) and AGR.CheckOneCondition( IsMatrixGroup, cond ) and AGR.CheckOneCondition( IsPermGroup, x -> x = false, cond ) and AGR.CheckOneCondition( Characteristic, p -> p = 0 or ( IsFunction( p ) and p( 0 ) = true ), cond ) and AGR.CheckOneCondition( Dimension, x -> ( IsFunction( x ) and x( info.dim ) ) or info.dim = x, cond ) and AGR.CheckOneCondition( Ring, R -> ( IsFunction( R ) and R( Integers ) ) or ( IsRing( R ) and IsCyclotomicCollection( R ) ), cond ) and AGR.CheckOneCondition( Identifier, x -> ( IsFunction( x ) and x( info.id ) = true ) or info.id = x, cond ) and IsEmpty( cond ); end, TestFileHeaders := function( tocid, groupname, entry, type ) return AGR.TestFileHeadersDefault( tocid, groupname, entry, type, entry[2], function( entry, mats, filename ) if not ForAll( mats, mat -> ForAll( mat, row -> ForAll( row, IsInt ) ) ) then return Concatenation( "matrices in `", filename, "' are not over the integers" ); fi; return true; end ); end, DisplayGroup := function( r ) local disp; if AGR.ShowOnlyASCII() then disp:= Concatenation( "G <= GL(", String( r.dim ), r.id, ",Z)" ); if IsBound( r.charactername ) then disp:= [ disp, Concatenation( "character ", r.charactername ) ]; fi; else disp:= Concatenation( "G ≤ GL(", String( r.dim ), r.id, ",ℤ)" ); if IsBound( r.charactername ) then disp:= [ disp, Concatenation( "χ = ", r.charactername ) ]; fi; fi; return disp; end, # Matrix representations over the integers are sorted according to # dimension and identification string. SortTOCEntries := entry -> entry{ [ 2, 3 ] }, # There is only one file. ReadAndInterpretDefault := function( paths ) if EndsWith( paths[1], ".json" ) then return AtlasDataJsonFormatFile( paths[1] ).generators; else return AtlasDataGAPFormatFile( paths[1] ).generators; fi; end, InterpretDefault := function( strings ) if strings[1][1] = '{' then return AtlasDataJsonFormatFile( strings[1], "string" ).generators; else return AtlasDataGAPFormatFile( strings[1], "string" ).generators; fi; end, ) ); ############################################################################# ## #D Matrix representations over algebraic number fields ## ## <#GAPDoc Label="type:matalg:format"> ## groupnameGi-ArdimidBm.g ## ## a &GAP; readable file ## containing all generators of a matrix representation of dimension ## dim over an algebraic number field not specified further. ## An example is A5G1-Ar3aB0.g. ## ## <#/GAPDoc> ## AGR.DeclareDataType( "rep", "matalg", rec( # `G-ArB.g' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar ], [ "Ar", IsDigitChar, AGR.IsLowerAlphaOrDigitChar, "B", IsDigitChar, ".g" ] ], [ ParseBackwards, ParseForwards ] ], AddDescribingComponents := function( record, type ) local repid, parsed, info, F, gens, pos; repid:= record.identifier[2]; if not IsString( repid ) then # one private file repid:= repid[1][2]; fi; parsed:= AGR.ParseFilenameFormat( repid, type[2].FilenameFormat ); record.dim:= Int( parsed[5] ); record.id:= parsed[6]; info:= repid{ [ 1 .. Position( repid, '.' )-1 ] }; info:= First( AtlasOfGroupRepresentationsInfo.ringinfo, x -> x[1] = info ); if info <> fail then F:= info[3]; record.ring:= F; if IsField( F ) then gens:= GeneratorsOfField( F ); if Length( gens ) = 1 then # is true for all currently available representations record.polynomial:= CoefficientsOfUnivariatePolynomial( MinimalPolynomial( Rationals, gens[1] ) ); fi; fi; fi; if IsBound( AtlasOfGroupRepresentationsInfo.characterinfo.( record.groupname ) ) then info:= AtlasOfGroupRepresentationsInfo.characterinfo.( record.groupname ); if IsBound( info[1] ) then info:= info[1]; pos:= Position( info[2], repid{ [ 1 .. Position( repid, '.' ) - 1 ] } ); if pos <> fail then record.constituents:= info[1][ pos ]; if IsInt( record.constituents ) then record.constituents:= [ record.constituents ]; fi; if info[3][ pos ] <> fail then record.charactername:= info[3][ pos ]; fi; fi; fi; fi; end, # `[ , , , , ]' AddFileInfo := function( list, entry, name ) if 0 < entry[5] then Add( list, Concatenation( entry{ [ 3, 5, 6, 8 ] }, [ name ] ) ); return true; fi; return false; end, AccessGroupCondition := function( info, cond ) return AGR.CheckOneCondition( IsMatrixGroup, x -> x = true, cond ) and AGR.CheckOneCondition( IsMatrixGroup, cond ) and AGR.CheckOneCondition( IsPermGroup, x -> x = false, cond ) and AGR.CheckOneCondition( Characteristic, p -> p = 0 or ( IsFunction( p ) and p( 0 ) = true ), cond ) and AGR.CheckOneCondition( Dimension, x -> ( IsFunction( x ) and x( info.dim ) = true ) or info.dim = x, cond ) and AGR.CheckOneCondition( Ring, x -> IsIdenticalObj( x, Cyclotomics ) or ( not IsBound( info.ring ) and x = fail ) or # case of a field consisting of cyclotomics ( IsBound( info.ring ) and ( ( IsFunction( x ) and x( info.ring ) = true ) or ( IsRing( x ) and IsCyclotomicCollection( x ) #T problem with GAP: #T 'IsSubset( Integers, CF(5) )' runs into an error and ( not IsIdenticalObj( x, Integers ) and IsSubset( x, info.ring ) ) ) ) ) or # case of a field not consisting of cyclotomics ( IsBound( info.ring ) and IsBound( info.polynomial ) and IsField( x ) and 1 in List( Factors( UnivariatePolynomial( x, info.polynomial * One( x ), 1 ) ), Degree ) ), cond ) and AGR.CheckOneCondition( Identifier, x -> ( IsFunction( x ) and x( info.id ) = true ) or info.id = x, cond ) and IsEmpty( cond ); end, TestFileHeaders := function( tocid, groupname, entry, type ) return AGR.TestFileHeadersDefault( tocid, groupname, entry, type, entry[2], function( entry, mats, filename ) local info; if not IsCyclotomicCollCollColl( mats ) then return Concatenation( "matrices in `",filename, "' are not over cyclotomics" ); elif ForAll( Flat( mats ), IsInt ) then return Concatenation( "matrices in `",filename, "' are over the integers" ); fi; filename:= filename{ [ 1 .. Position( filename, '.' )-1 ] }; info:= First( AtlasOfGroupRepresentationsInfo.ringinfo, l -> l[1] = filename ); if info = fail then return Concatenation( "field info for `",filename, "' missing" ); elif Field( Rationals, Flat( mats ) ) <> info[3] then return Concatenation( "field info for `",filename, "' should be ", String( Field( Rationals, Flat( mats ) ) ) ); fi; return true; end ); end, DisplayGroup := function( r ) local fld, disp; fld:= r.identifier[2]; if not IsString( fld ) then fld:= fld[1][2]; fi; fld:= fld{ [ 1 .. Length( fld )-2 ] }; fld:= First( AtlasOfGroupRepresentationsInfo.ringinfo, p -> p[1] = fld ); if AGR.ShowOnlyASCII() then if fld <> fail then fld:= fld[2]; else fld:= "C"; fi; disp:= Concatenation( "G <= GL(", String( r.dim ), r.id, ",", fld, ")" ); if IsBound( r.charactername ) then disp:= [ disp, Concatenation( "character ", r.charactername ) ]; fi; else if fld <> fail then fld:= fld[2]; else fld:= "ℂ"; fi; disp:= Concatenation( "G ≤ GL(", String( r.dim ), r.id, ",", fld, ")" ); if IsBound( r.charactername ) then disp:= [ disp, Concatenation( "χ = ", r.charactername ) ]; fi; fi; return disp; end, # Matrix representations over algebraic extension fields are sorted # according to dimension and identification string. SortTOCEntries := entry -> entry{ [ 2, 3 ] }, # There is only one file. # It may be a GAP format file or a Json format file. ReadAndInterpretDefault := function( paths ) if EndsWith( paths[1], ".json" ) then return AtlasDataJsonFormatFile( paths[1] ).generators; else return AtlasDataGAPFormatFile( paths[1] ).generators; fi; end, InterpretDefault := function( strings ) if strings[1][1] = '{' then return AtlasDataJsonFormatFile( strings[1], "string" ).generators; else return AtlasDataGAPFormatFile( strings[1], "string" ).generators; fi; end, ) ); ############################################################################# ## #D Matrix representations over residue class rings ## ## <#GAPDoc Label="type:matmodn:format"> ## groupnameGi-ZnrdimidBm.g ## ## a &GAP; readable file ## containing all generators of a matrix representation of dimension ## dim over the ring of integers mod n. ## An example is 2A8G1-Z4r4aB0.g. ## ## <#/GAPDoc> ## AGR.DeclareDataType( "rep", "matmodn", rec( # `G-ZrB.g' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar ], [ "Z", IsDigitChar, "r", IsDigitChar, AGR.IsLowerAlphaOrDigitChar, "B", IsDigitChar, ".g" ] ], [ ParseBackwards, ParseForwards ] ], AddDescribingComponents := function( record, type ) local repid, parsed; repid:= record.identifier[2]; if not IsString( repid ) then # one private file repid:= repid[1][2]; fi; parsed:= AGR.ParseFilenameFormat( repid, type[2].FilenameFormat ); record.dim:= Int( parsed[7] ); record.id:= parsed[8]; record.ring:= ZmodnZ( parsed[5] ); end, # `[ , , , , , ]' AddFileInfo := function( list, entry, name ) if 0 < entry[5] and 0 < entry[7] then Add( list, Concatenation( entry{ [ 3, 5, 7, 8, 10 ] }, [ name ] ) ); return true; fi; return false; end, AccessGroupCondition := function( info, cond ) return AGR.CheckOneCondition( IsMatrixGroup, x -> x = true, cond ) and AGR.CheckOneCondition( IsMatrixGroup, cond ) and AGR.CheckOneCondition( IsPermGroup, x -> x = false, cond ) and AGR.CheckOneCondition( Characteristic, p -> p = fail or ( IsFunction( p ) and p( fail ) = true ), cond ) and AGR.CheckOneCondition( Dimension, x -> ( IsFunction( x ) and x( info.dim ) ) or info.dim = x, cond ) and AGR.CheckOneCondition( Ring, R -> ( IsFunction( R ) and R( info.ring ) ) or ( IsRing( R ) and IsZmodnZObjNonprimeCollection( R ) and Characteristic( One( R ) ) = Size( info.ring ) ), cond ) and AGR.CheckOneCondition( Identifier, x -> ( IsFunction( x ) and x( info.id ) = true ) or info.id = x, cond ) and IsEmpty( cond ); end, DisplayGroup := function( r ) if AGR.ShowOnlyASCII() then return Concatenation( "G <= GL(",String( r.dim ), r.id, ",Z/", String( r.identifier[4] ),"Z)" ); else return Concatenation( "G ≤ GL(",String( r.dim ), r.id, ",ℤ/", String( r.identifier[4] ),"ℤ)" ); fi; end, TestFileHeaders := function( tocid, groupname, entry, type ) return AGR.TestFileHeadersDefault( tocid, groupname, entry, type, entry[3], function( entry, mats, filename ) if not IsZmodnZObjNonprimeCollCollColl( mats ) then return Concatenation( "matrices in `", filename, "' are not over a residue class ring" ); elif Characteristic( mats[1][1,1] ) <> entry[2] then return Concatenation( "matrices in `", filename, "' are not over Z/", entry[2], "Z" ); fi; return true; end ); end, # Matrix representations over residue class rings are sorted according # to modulus, dimension, and identification string. SortTOCEntries := entry -> entry{ [ 2 .. 4 ] }, # There is only one file. ReadAndInterpretDefault := paths -> AtlasDataGAPFormatFile( paths[1] ).generators, InterpretDefault := strings -> AtlasDataGAPFormatFile( strings[1], "string" ).generators, ) ); ############################################################################# ## #D Quaternionic matrix representations ## ## <#GAPDoc Label="type:quat:format"> ## groupnameGi-HrdimidBm.g ## ## a &GAP; readable file ## containing all generators of a matrix representation ## over a quaternion algebra over an algebraic number field, ## of dimension dim. ## An example is 2A6G1-Hr2aB0.g. ## ## <#/GAPDoc> ## AGR.DeclareDataType( "rep", "quat", rec( # `G-HrB.g' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar ], [ "Hr", IsDigitChar, AGR.IsLowerAlphaOrDigitChar, "B", IsDigitChar, ".g" ] ], [ ParseBackwards, ParseForwards ] ], AddDescribingComponents := function( record, type ) local repid, parsed, info; repid:= record.identifier[2]; if not IsString( repid ) then # one private file repid:= repid[1][2]; fi; parsed:= AGR.ParseFilenameFormat( repid, type[2].FilenameFormat ); record.dim:= Int( parsed[5] ); record.id:= parsed[6]; info:= repid{ [ 1 .. Position( repid, '.' )-1 ] }; info:= First( AtlasOfGroupRepresentationsInfo.ringinfo, x -> x[1] = info ); if info <> fail then record.ring:= info[3]; fi; end, # `[ , , , , ]' AddFileInfo := function( list, entry, name ) if 0 < entry[5] then Add( list, Concatenation( entry{ [ 3, 5, 6, 8 ] }, [ name ] ) ); return true; fi; return false; end, AccessGroupCondition := function( info, cond ) return AGR.CheckOneCondition( IsMatrixGroup, x -> x = true, cond ) and AGR.CheckOneCondition( IsMatrixGroup, cond ) and AGR.CheckOneCondition( IsPermGroup, x -> x = false, cond ) and AGR.CheckOneCondition( Characteristic, p -> p = 0 or ( IsFunction( p ) and p( 0 ) = true ), cond ) and AGR.CheckOneCondition( Dimension, x -> ( IsFunction( x ) and x( info.dim ) = true ) or info.dim = x, cond ) and AGR.CheckOneCondition( Ring, x -> ( not IsBound( info.ring ) and x = fail ) or ( IsBound( info.ring ) and ( ( IsFunction( x ) and x( info.ring ) = true ) or ( IsRing( x ) and IsQuaternionCollection( x ) and IsSubset( x, info.ring ) ) ) ), cond ) and AGR.CheckOneCondition( Identifier, x -> ( IsFunction( x ) and x( info.id ) = true ) or info.id = x, cond ) and IsEmpty( cond ); end, TestFileHeaders := function( tocid, groupname, entry, type ) return AGR.TestFileHeadersDefault( tocid, groupname, entry, type, entry[2], function( entry, mats, filename ) local info; if not ForAll( mats, IsQuaternionCollColl ) then return Concatenation( "matrices in `",filename, "' are not over the quaternions" ); fi; filename:= filename{ [ 1 .. Position( filename, '.' )-1 ] }; info:= First( AtlasOfGroupRepresentationsInfo.ringinfo, l -> l[1] = filename ); if info = fail then return Concatenation( "field info for `",filename, "' missing" ); elif Field( Flat( List( Flat( mats ), ExtRepOfObj ) ) ) <> EvalString( Concatenation( "Field", info[2]{ [ Position( info[2], '(' ) .. Length( info[2] ) ] } ) ) then return Concatenation( "field info for `", filename, "' should involve ", Field( Flat( List( Flat( mats ), ExtRepOfObj ) ) ) ); fi; return true; end ); end, DisplayGroup := function( r ) local fld; fld:= r.identifier[2]; if not IsString( fld ) then fld:= fld[1][2]; fi; fld:= fld{ [ 1 .. Length( fld )-2 ] }; fld:= First( AtlasOfGroupRepresentationsInfo.ringinfo, p -> p[1] = fld ); if AGR.ShowOnlyASCII() then if fld = fail then fld:= "QuaternionAlgebra(C)"; else fld:= fld[2]; fi; return Concatenation( "G <= GL(", String( r.dim ), r.id, ",", fld, ")" ); else if fld = fail then fld:= "QuaternionAlgebra(ℂ)"; else fld:= fld[2]; fi; return Concatenation( "G ≤ GL(", String( r.dim ), r.id, ",", fld, ")" ); fi; end, # Matrix representations over the quaternions are sorted according to # dimension and identification string. SortTOCEntries := entry -> entry{ [ 2, 3 ] }, # There is only one file. ReadAndInterpretDefault := paths -> AtlasDataGAPFormatFile( paths[1] ).generators, InterpretDefault := strings -> AtlasDataGAPFormatFile( strings[1], "string" ).generators, ) ); ############################################################################# ## #D Straight line programs for generators of maximal subgroups ## ## <#GAPDoc Label="type:maxes:format"> ## groupnameGi-maxkWn ## ## In this case, the file contains a straight line program that takes ## generators of G w. r. t. the i-th set ## of standard generators, ## and returns a list of generators ## (in general not standard generators) ## for a subgroup U in the k-th class of maximal subgroups ## of G. ## An example is J1G1-max7W1. ## ## <#/GAPDoc> ## AGR.DeclareDataType( "prg", "maxes", rec( # `G-maxW' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar ], [ "max", IsDigitChar, "W", IsDigitChar ] ], [ ParseBackwards, ParseForwards ] ], # `[ , , ]' AddFileInfo := function( list, entry, name ) if 0 < entry[5] then Add( list, Concatenation( entry{ [ 3, 5 ] }, [ name ] ) ); return true; fi; return false; end, DisplayOverviewInfo := [ "maxes", "r", function( conditions ) local groupname, tocs, std, info, factgroupinfo, maxext, value, private, toc, record, new, finfo, factgroupname; groupname:= conditions[1][2]; tocs:= AGR.TablesOfContents( conditions ); if Length( conditions ) = 1 or not ( IsInt( conditions[2] ) or IsList( conditions[2] ) ) then std:= true; else std:= conditions[2]; if IsInt( std ) then std:= [ std ]; fi; fi; info:= First( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[2] = groupname ); if info = fail or not IsBound( info[3].maxext ) or not IsBound( info[3].factorCompatibility ) then factgroupinfo:= []; maxext:= []; else factgroupinfo:= Filtered( info[3].factorCompatibility, x -> ( std = true or x[1] in std ) and x[4] = true ); maxext:= Filtered( info[3].maxext, x -> std = true or x[1] in std ); fi; value:= []; private:= false; for toc in tocs do # If a straight line program for the restriction is available # then take it. if IsBound( toc.( groupname ) ) then record:= toc.( groupname ); if IsBound( record.maxes ) then new:= List( Filtered( record.maxes, x -> std = true or x[1] in std ), x -> x[2] ); if toc.TocID <> "core" and not IsEmpty( new ) then private:= true; fi; UniteSet( value, new ); fi; fi; # If a straight line program is available for the restriction # to the maximal subgroup of a factor group, # and if this program can be used also here # then take it. for finfo in factgroupinfo do factgroupname:= finfo[2]; info:= First( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[1] = factgroupname ); factgroupname:= info[2]; if IsBound( toc.( factgroupname ) ) then record:= toc.( factgroupname ); if IsBound( record.maxes ) then new:= List( Filtered( maxext, l -> ForAny( record.maxes, fl -> fl[3] = l[3][1] ) ), x -> x[2] ); if toc.TocID <> "core" and not IsEmpty( new ) then private:= true; fi; UniteSet( value, new ); fi; fi; od; od; if IsEmpty( value ) then value:= ""; else value:= String( Length( value ) ); fi; return [ value, private ]; end ], DisplayPRG := function( tocs, names, std, stdavail ) local data, sortkeys, alltocs, info, factgroupinfo, maxext, prvwidth, toc, record, i, private, mxstd, pos, finfo, factgroupname, facti, ker, kerid, pi, result, nrmaxes, title, entry, line, width, prvphantom, maxnr, j, line2; data:= []; sortkeys:= []; alltocs := AGR.TablesOfContents( "all" ); info:= First( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[2] = names[2] ); if info = fail or not IsBound( info[3].maxext ) or not IsBound( info[3].factorCompatibility ) then factgroupinfo:= []; maxext:= []; else factgroupinfo:= Filtered( info[3].factorCompatibility, x -> ( std = true or x[1] in std ) and x[4] = true ); maxext:= Filtered( info[3].maxext, x -> std = true or x[1] in std ); fi; prvwidth:= 0; for toc in tocs do # If a straight line program for the restriction is available # then take it. if IsBound( toc.( names[2] ) ) then record:= toc.( names[2] ); if IsBound( record.maxes ) then for i in record.maxes do if std = true or i[1] in std then if toc.TocID <> "core" then private:= UserPreference( "AtlasRep", "AtlasRepMarkNonCoreData" ); prvwidth:= Length( private ); else private := ""; fi; entry:= [ , private, String( i[1] ), AGR.VersionOfSLP( i[3] ), [ names[1], i[3], i[1] ] ]; if toc.TocID <> "core" then entry[5][2]:= [ [ toc.TocID, entry[5][2] ] ]; fi; # If *standard* generators of the max. subgroup are available # (perhaps in another table of contents) then mention this, # in a line of its own; # note that Browse will allow one to click on the line. mxstd:= AGR.StandardizeMaximalSubgroup( names[2], i[3], true, true ); Add( data, entry ); Add( sortkeys, [ i[2], i[1], Int( entry[4] ) ] ); if mxstd <> fail then entry:= ShallowCopy( entry ); entry[5]:= ShallowCopy( entry[5] ); if IsString( entry[5][2] ) then entry[5][2]:= [ entry[5][2], mxstd[1] ]; else Add( entry[5][2], mxstd[1] ); fi; entry[6]:= Concatenation( "std. ", String( mxstd[2] ) ); Add( data, entry ); Add( sortkeys, [ i[2], i[1], Int( entry[4] ), mxstd[2] ] ); fi; fi; od; fi; fi; # If a straight line program is available for the restriction # to the maximal subgroup of a factor group, # and if this program can be used also here # then take it. for finfo in factgroupinfo do factgroupname:= finfo[2]; info:= First( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[1] = factgroupname ); factgroupname:= info[2]; if IsBound( toc.( factgroupname ) ) then record:= toc.( factgroupname ); if IsBound( record.maxes ) then for i in maxext do facti:= First( record.maxes, fl -> fl[3] = i[3][1] ); if facti <> fail and ( std = true or i[1] in std ) then if toc.TocID <> "core" then private:= UserPreference( "AtlasRep", "AtlasRepMarkNonCoreData" ); prvwidth:= Length( private ); else private := ""; fi; entry:= [ , private, String( i[1] ), AGR.VersionOfSLP( facti[3] ), [ names[1], i[3], i[1] ] ]; if Length( i[3] ) = 1 then entry[5][2]:= i[3][1]; # No additional kernel generators are needed. if toc.TocID <> "core" then entry[5][2]:= [ [ toc.TocID, entry[5][2] ] ]; fi; else # We have to specify a program for computing the kernel. ker:= AtlasProgramInfo( names[1], std, "kernel", finfo[2] ); if ker <> fail then kerid:= ker.identifier[2]; if IsString( kerid ) then entry[5][2]:= [ entry[5][2][1], kerid ]; else entry[5][2]:= [ entry[5][2][1], kerid[1] ]; fi; if toc.TocID <> "core" then entry[5][2][1]:= [ toc.TocID, entry[5][2][1] ]; fi; fi; fi; Add( data, entry ); Add( sortkeys, [ i[2], i[1], Int( entry[4] ) ] ); fi; od; fi; fi; od; od; title:= "maxes"; if not IsEmpty( data ) then entry:= First( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[2] = names[2] ); if IsBound( entry[3].nrMaxes ) then title:= "maxes ("; nrmaxes:= Length( Set( List( sortkeys, x -> x[1] ) ) ); if nrmaxes = entry[3].nrMaxes then Append( title, "all " ); else Append( title, String( nrmaxes ) ); Append( title, " out of " ); fi; Append( title, String( entry[3].nrMaxes ) ); Append( title, ")" ); fi; SortParallel( sortkeys, data ); width:= Length( String( sortkeys[ Length( sortkeys ) ][1] ) ); prvphantom:= RepeatedString( " ", prvwidth ); for i in [ 1 .. Length( data ) ] do # Compute the value for the first column (including privacy flag). maxnr:= sortkeys[i][1]; line:= String( maxnr, width ); Append( line, data[i][2] ); if IsBound( entry[3].structureMaxes ) and IsBound( entry[3].structureMaxes[ maxnr ] ) then Append( line, ": " ); if data[i][2] = "" then Append( line, prvphantom ); fi; Append( line, entry[3].structureMaxes[ maxnr ] ); fi; data[i][1]:= line; data[i][2]:= ""; od; fi; return AGR.CommonDisplayPRG( title, stdavail, data, false ); end, # Create the program info from the identifier. AtlasProgramInfo := function( type, identifier, groupname ) local filename, i, result, gapname; # We need only the information about the restriction part, # not a standardization or kernel generators. filename:= identifier[2]; if not IsString( filename ) then if IsString( filename[1] ) then filename:= filename[1]; else filename:= filename[1][2]; fi; fi; i:= AGR.ParseFilenameFormat( filename, type[2].FilenameFormat ); if i = fail then return fail; fi; i:= i[5]; result:= rec( standardization := identifier[3], identifier := identifier ); # Set the size if available. gapname:= First( AtlasOfGroupRepresentationsInfo.GAPnames, pair -> pair[2] = groupname ); if IsBound( gapname[3].sizesMaxes ) and IsBound( gapname[3].sizesMaxes[i] ) then result.size:= gapname[3].sizesMaxes[i]; fi; if IsBound( gapname[3].structureMaxes ) and IsBound( gapname[3].structureMaxes[i] ) then result.subgroupname:= gapname[3].structureMaxes[i]; fi; return result; end, # Create the program from the identifier. AtlasProgram := function( type, identifier, groupname ) local i, std, result, entry, prog, names, pos, maxstd, info, datadirs, name, kerprg, gapname; i:= identifier[2]; if not IsString( i ) then i:= i[1]; if not IsString( i ) then i:= i[2]; fi; fi; i:= AGR.ParseFilenameFormat( i, type[2].FilenameFormat ); if i = fail then return fail; fi; i:= i[5]; std:= identifier[3]; # The second entry is one of # - the filename of the program, # - this filename plus a filename for standardization # (so we need the *composition* of two programs). # - this filename plus a filename for kernel generators # (so we need the *union* of two sets of generators), if IsString( identifier[2] ) or Length( identifier[2] ) = 1 then # There is just one program. result:= AtlasProgramDefault( type, identifier, groupname ); elif Length( identifier[2] ) = 2 then # The second entry describes two files. entry:= identifier[2][1]; if IsString( entry ) then prog:= AGR.FileContents( [ [ "dataword", entry ] ], type ); names:= [ entry ]; else prog:= AGR.FileContents( [ entry ], type ); names:= [ entry[2] ]; fi; if prog = fail then return fail; fi; entry:= identifier[2][2]; if IsString( entry ) then Add( names, entry ); else Add( names, entry[2] ); entry:= [ entry ]; fi; # Decide in which situation we are. pos:= Position( names[2], '-' ); if pos <> fail and names[2]{ [ 1 .. pos - 1 ] } = ReplacedString( names[1], "-", "" ) then # One program for the restriction, one for the standardization. type:= First( AGR.DataTypes( "prg" ), x -> x[1] = "maxstd" ); maxstd:= AtlasProgramDefault( type, [ groupname, entry, std ], groupname ); if maxstd = fail then return fail; fi; prog:= CompositionOfStraightLinePrograms( maxstd.program, prog.program ); else # One program for a factor group and some kernel generators # must be integrated. type:= First( AGR.DataTypes( "prg" ), x -> x[1] = "kernel" ); kerprg:= AtlasProgramDefault( type, [ groupname, entry, std ], groupname ); if kerprg = fail then return fail; fi; prog:= [ prog.program, kerprg.program ]; prog:= IntegratedStraightLineProgram( prog ); fi; result:= rec( program := prog, standardization := std, identifier := identifier ); else return fail; fi; # Set subgroup size and subgroup name if available. gapname:= First( AtlasOfGroupRepresentationsInfo.GAPnames, pair -> pair[2] = groupname ); if IsBound( gapname[3].sizesMaxes ) and IsBound( gapname[3].sizesMaxes[i] ) then result.size:= gapname[3].sizesMaxes[i]; fi; if IsBound( gapname[3].structureMaxes ) and IsBound( gapname[3].structureMaxes[i] ) then result.subgroupname:= gapname[3].structureMaxes[i]; fi; return result; end, # entry: `[ , , ]', # conditions: `[ "maxes", ]' or `[ "maxes", , ]' # or together with `[ "version", ]' AccessPRG := function( toc, groupname, std, conditions ) local std2, version, record, entry, mxstd, info, factgroupinfo, maxext, finfo, factgroupname, i, istd, ker; std2:= true; version:= true; if not ( Length( conditions ) in [ 2 .. 5 ] and conditions[1] = "maxes" and IsPosInt( conditions[2] ) ) then return fail; elif Length( conditions ) = 3 then std2:= conditions[3]; if not IsPosInt( std2 ) then return fail; fi; elif Length( conditions ) = 4 then if conditions[3] <> "version" then return fail; fi; version:= String( conditions[4] ); elif Length( conditions ) = 5 then std2:= conditions[3]; if not ( IsPosInt( std2 ) and conditions[4] = "version" ) then return fail; fi; version:= String( conditions[5] ); fi; if IsBound( toc.( groupname ) ) then record:= toc.( groupname ); # If a straight line program for the restriction is available # then take it. if IsBound( record.maxes ) then for entry in record.maxes do if ( std = true or entry[1] in std ) and entry[2] = conditions[2] then if version = true or AGR.VersionOfSLP( entry[3] ) = version then # Note that the version number refers to the straight line # program for computing the restriction, not to the program # for standardizing the result of the restriction. # (This feature is needed by 'BrowseAtlasInfo'.) if std2 = true then # We need not standardize the subgroup generators. entry:= entry{ [ 3, 1 ] }; if toc.TocID <> "core" then entry[1]:= [ [ toc.TocID, entry[1] ] ]; fi; return entry; else # We have to find a slp for computing *standard* generators # of the max. subgp., perhaps in another table of contents. mxstd:= AGR.StandardizeMaximalSubgroup( groupname, entry[3], std2, true ); if mxstd <> fail then entry:= [ [ entry[3], mxstd[1] ], entry[1] ]; if toc.TocID <> "core" then entry[1][1]:= [ toc.TocID, entry[1][1] ]; fi; return entry; fi; fi; fi; fi; od; fi; fi; # If a straight line program is available for the restriction # to the maximal subgroup of a factor group, # and if this program can be used also here # then take it. # In this case, we cannot return *standard* generators. # We do not want to support version numbers, # they would depend on two programs. if Length( conditions ) <> 2 then return fail; fi; info:= First( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[2] = groupname ); if info = fail or not IsBound( info[3].maxext ) or not IsBound( info[3].factorCompatibility ) then return fail; fi; factgroupinfo:= Filtered( info[3].factorCompatibility, x -> ( std = true or x[1] in std ) and x[4] = true ); maxext:= Filtered( info[3].maxext, x -> ( std = true or x[1] in std ) and x[2] = conditions[2] ); for finfo in factgroupinfo do factgroupname:= finfo[2]; info:= First( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[1] = factgroupname ); factgroupname:= info[2]; if IsBound( toc.( factgroupname ) ) then record:= toc.( factgroupname ); if IsBound( record.maxes ) then for i in maxext do if ForAny( record.maxes, fl -> fl[3] = i[3][1] ) then entry:= i{ [ 3, 1 ] }; if Length( entry[1] ) = 1 then # No additional kernel generators are needed. entry[1]:= entry[1][1]; if toc.TocID <> "core" then entry[1]:= [ [ toc.TocID, entry[1] ] ]; fi; return entry; else # We have to specify a program for computing the kernel. if std = true then ker:= AtlasProgramInfo( AGR.GAPNameAtlasName( groupname ), "kernel", finfo[2] ); else for istd in std do ker:= AtlasProgramInfo( AGR.GAPNameAtlasName( groupname ), istd, "kernel", finfo[2] ); if ker <> fail then break; fi; od; fi; if ker <> fail then entry[1]:= ShallowCopy( entry[1] ); if IsString( ker.identifier[2] ) then entry[1][2]:= ker.identifier[2]; else entry[1][2]:= ker.identifier[2][1]; fi; if toc.TocID <> "core" then entry[1][1]:= [ toc.TocID, entry[1][1] ]; fi; return entry; fi; fi; fi; od; fi; fi; od; return fail; end, # Maxes are sorted according to their natural position. SortTOCEntries := entry -> entry[2], # In addition to the tests in `AGR.TestWordsSLPDefault', # compute the images in a representation if available, # and compare the group order with that stored in the # GAP Character Table Library (if available). TestWords:= function( tocid, name, file, type, verbose ) local prog, prg, gens, pos, pos2, maxnr, gapname, storedsize, tbl, subname, subtbl, std, grp, size; # Read the program. if tocid = "core" then tocid:= "dataword"; fi; prog:= AGR.FileContents( [ [ tocid, file ] ], type ); if prog = fail then Print( "#E file `", file, "' is corrupted\n" ); return false; fi; # Check consistency. if prog = fail or not IsInternallyConsistent( prog.program ) then Print( "#E program `", file, "' not internally consistent\n" ); return false; fi; prg:= prog.program; # Create a list of trivial generators. gens:= ListWithIdenticalEntries( NrInputsOfStraightLineProgram( prg ), () ); # Run the program. gens:= ResultOfStraightLineProgram( prg, gens ); # Compute the position in the `Maxes' list. pos:= PositionSublist( file, "-max" ); pos2:= pos + 4; while file[ pos2 ] <> 'W' do pos2:= pos2 + 1; od; maxnr:= Int( file{ [ pos+4 .. pos2-1 ] } ); # Fetch a perhaps stored value. gapname:= First( AtlasOfGroupRepresentationsInfo.GAPnames, pair -> name = pair[2] ); if gapname = fail then Print( "#E problem: no GAP name for `", name, "'\n" ); return false; fi; storedsize:= fail; if IsBound( gapname[3].sizesMaxes ) and IsBound( gapname[3].sizesMaxes[ maxnr ] ) then storedsize:= gapname[3].sizesMaxes[ maxnr ]; fi; # Identify the group in the GAP Character Table Library. tbl:= CharacterTable( gapname[1] ); if tbl = fail and storedsize = fail then if verbose then Print( "#I no character table for `", gapname[1], "', no check for `", file, "'\n" ); fi; return true; fi; # Identify the subgroup in the GAP Character Table Library. if tbl <> fail then if HasMaxes( tbl ) then if Length( Maxes( tbl ) ) < maxnr then Print( "#E program `", file, "' contradicts `Maxes( ", tbl, " )'\n" ); return false; fi; subname:= Maxes( tbl )[ maxnr ]; else subname:= Concatenation( Identifier( tbl ), "M", String( maxnr ) ); fi; subtbl:= CharacterTable( subname ); if IsCharacterTable( subtbl ) then if storedsize <> fail and storedsize <> Size( subtbl ) then Print( "#E program `", file, "' contradicts stored subgroup order'\n" ); return false; elif storedsize = fail then storedsize:= Size( subtbl ); fi; elif storedsize = fail then if verbose then Print( "#I no character table for `", subname, "', no check for `", file, "'\n" ); fi; return true; fi; fi; if storedsize = fail then return true; fi; # Compute the standardization. pos2:= pos - 1; while file[ pos2 ] <> 'G' do pos2:= pos2-1; od; std:= Int( file{ [ pos2+1 .. pos-1 ] } ); # Get a representation if available, and map the generators. gapname:= gapname[1]; gens:= OneAtlasGeneratingSetInfo( gapname, std, NrMovedPoints, [ 2 .. AGR.Test.MaxTestDegree ], "contents", [ tocid, "local" ] ); if gens = fail then if verbose then Print( "#I no perm. repres. for `", gapname, "', no check for `", file, "'\n" ); fi; else gens:= AtlasGenerators( gens ); grp:= Group( gens.generators ); if tbl <> fail then if IsBound( gens.size ) and gens.size <> Size( tbl ) then Print( "#E wrong size for group`", gapname, "'\n" ); return false; fi; SetSize( grp, Size( tbl ) ); fi; gens:= ResultOfStraightLineProgram( prg, gens.generators ); size:= Size( SubgroupNC( grp, gens ) ); if size <> storedsize then Print( "#E program `", file, "' for group of order ", size, " not ", storedsize, "\n" ); if subtbl <> fail then Print( "#E (contradicts character table of `", Identifier( subtbl ), "')\n" ); fi; return false; fi; fi; # No more tests are available. return true; end, # There is only one file. ReadAndInterpretDefault := paths -> ScanStraightLineProgram( paths[1] ), InterpretDefault := strings -> ScanStraightLineProgram( strings[1], "string" ), ) ); ############################################################################# ## #D Straight line programs for class representatives ## ## <#GAPDoc Label="type:classes:format"> ## groupnameGi-cclsWn ## ## In this case, the file contains a straight line program that returns ## a list of conjugacy class representatives of G. ## An example is RuG1-cclsW1. ## ## <#/GAPDoc> ## AGR.DeclareDataType( "prg", "classes", rec( # `G-cclsW' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar ], [ "cclsW", IsDigitChar ] ], [ ParseBackwards, ParseForwards ] ], # `[ , ]' AddFileInfo := function( list, entry, name ) Add( list, Concatenation( entry{ [ 3 ] }, [ name ] ) ); return true; end, DisplayOverviewInfo := [ "cl", "c", function( conditions ) local groupname, tocs, std, value, private, toc, record, i, pos, rel; groupname:= conditions[1][2]; tocs:= AGR.TablesOfContents( conditions ); if Length( conditions ) = 1 or not ( IsInt( conditions[2] ) or IsList( conditions[2] ) ) then std:= true; else std:= conditions[2]; if IsInt( std ) then std:= [ std ]; fi; fi; value:= false; private:= false; for toc in tocs do if IsBound( toc.( groupname ) ) then record:= toc.( groupname ); if IsBound( record.classes ) and ( ( std = true and not IsEmpty( record.classes ) ) or ForAny( record.classes, l -> l[1] in std ) ) then value:= true; elif IsBound( record.cyc2ccl ) and IsBound( record.cyclic ) then for i in record.cyc2ccl do # Check that for scripts of the form # `GcycW-cclsW', # a script of the form `G-cycW' is available. pos:= PositionSublist( i[2], "cycW" ); rel:= Concatenation( i[2]{ [ 1 .. pos-1 ] }, "-", i[2]{ [ pos .. Position( i[2], '-' ) - 1 ] } ); if ( std = true or i[1] in std ) and ForAny( record.cyclic, x -> x[2] = rel and ( std = true or x[1] in std ) ) then value:= true; break; fi; od; fi; if value then if toc.TocID <> "core" then private:= true; fi; break; fi; fi; od; if value then value:= "+"; else value:= ""; fi; return [ value, private ]; end ], DisplayPRG := function( tocs, names, std, stdavail ) local data, c2c, cyc, toc, record, private, i, filec2c, filecyc, pos, rel, match, entry; data:= []; # The information can be stored either directly or via two scripts # in `cyclic' and `cyc2ccl'. c2c:= []; cyc:= []; for toc in tocs do if IsBound( toc.( names[2] ) ) then record:= toc.( names[2] ); if toc.TocID <> "core" then private:= UserPreference( "AtlasRep", "AtlasRepMarkNonCoreData" ); else private:= ""; fi; if IsBound( record.classes ) then for i in record.classes do if std = true or i[1] in std then entry:= [ "", private, String( i[1] ), AGR.VersionOfSLP( i[2] ), [ names[1], i[2], i[1] ] ]; if toc.TocID <> "core" then entry[5][2]:= [ [ toc.TocID, entry[5][2] ] ]; fi; Add( data, entry ); fi; od; fi; if IsBound( record.cyc2ccl ) then for i in record.cyc2ccl do if std = true or i[1] in std then entry:= [ i, private ]; if toc.TocID <> "core" then entry[3]:= toc.TocID; fi; Add( c2c, entry ); fi; od; fi; if IsBound( record.cyclic ) then for i in record.cyclic do if std = true or i[1] in std then entry:= [ i, private ]; if toc.TocID <> "core" then entry[3]:= toc.TocID; fi; Add( cyc, entry ); fi; od; fi; fi; od; for i in c2c do # Check if for scripts of the form `GcycW-cclsW', # a script of the form `G-cycW' is available. filec2c:= i[1][2]; pos:= PositionSublist( filec2c, "cycW" ); rel:= Concatenation( filec2c{ [ 1 .. pos-1 ] }, "-", filec2c{ [ pos .. Position( filec2c, '-' ) - 1 ] } ); match:= First( cyc, x -> x[1][2] = rel ); if match <> fail then private:= ""; if i[2] <> "" then private:= i[2]; elif match[2] <> "" then private:= match[2]; fi; if Length( i ) = 3 then filec2c:= [ i[3], filec2c ]; fi; filecyc:= match[1][2]; if Length( match ) = 3 then filecyc:= [ match[3], filecyc ]; fi; entry:= [ "(composed)", private, String( match[1][1] ), JoinStringsWithSeparator( AGR.VersionOfSLP( filec2c ), ", " ), [ names[1], [ filec2c, filecyc ], match[1][1] ] ]; Add( data, entry ); fi; od; if ForAny( data, x -> x[1] = "(composed)" ) then for i in data do if i[1] = "" then i[1]:= "(direct)"; fi; od; fi; return AGR.CommonDisplayPRG( "class repres.", stdavail, data, true ); end, # entry: `[ , ]', # conditions: `[ "classes" ]' # or together with `[ "version", ]' AccessPRG := function( toc, groupname, std, conditions ) local version, record, entry, toc2, record2, pos, rel, entry2, file2; if not IsBound( toc.( groupname ) ) then return fail; elif Length( conditions ) = 1 and conditions[1] = "classes" then version:= true; elif Length( conditions ) = 3 and conditions[1] = "classes" and conditions[2] = "version" then version:= String( conditions[3] ); else return fail; fi; # Check whether there is a program for computing class repres. record:= toc.( groupname ); if IsBound( record.classes ) then for entry in record.classes do if ( std = true or entry[1] in std ) and ( version = true or AGR.VersionOfSLP( entry[2] ) = version ) then entry:= entry{ [ 2, 1 ] }; if toc.TocID <> "core" then entry[1]:= [ [ toc.TocID, entry[1] ] ]; fi; return entry; fi; od; fi; # Try to compose the program for computing classes # from a program for computing repres. of cyclic subgroups # (in the given table of contents) # and a program for computing class representatives from the outputs of # this program (in *any* table of contents). for toc2 in AGR.TablesOfContents( "all" ) do if IsBound( toc2.( groupname ) ) then record2:= toc2.( groupname ); if IsBound( record.cyclic ) and IsBound( record2.cyc2ccl ) and version = true then for entry2 in record2.cyc2ccl do if std = true or entry2[1] in std then # Check if for `GcycW-cclsW' scripts, # a script of the form `G-cycW' exists. file2:= entry2[2]; pos:= PositionSublist( file2, "cycW" ); rel:= Concatenation( file2{ [ 1 .. pos-1 ] }, "-", file2{ [ pos .. Position( file2, '-' ) - 1 ] } ); for entry in record.cyclic do if entry[2] = rel and ( std = true or entry[1] in std ) then if toc.TocID <> "core" then rel:= [ toc.TocID, rel ]; fi; if toc.TocID <> "core" then file2:= [ toc2.TocID, file2 ]; fi; return [ [ file2, rel ], entry2[1] ]; fi; od; fi; od; fi; fi; od; return fail; end, # Create the program info from the identifier. AtlasProgramInfo := function( type, identifier, groupname ) local filename; # If only one file is involved then use the default function. filename:= identifier[2]; if IsString( filename ) or Length( filename ) = 1 then return AtlasProgramInfoDefault( type, identifier, groupname ); fi; # Two files are involved. filename:= identifier[2][1]; if not IsString( filename ) then filename:= filename[2]; fi; type:= First( AGR.DataTypes( "prg" ), x -> x[1] = "cyc2ccl" ); if AGR.ParseFilenameFormat( filename, type[2].FilenameFormat ) = fail then return fail; fi; filename:= identifier[2][2]; if not IsString( filename ) then filename:= filename[2]; fi; type:= First( AGR.DataTypes( "prg" ), x -> x[1] = "cyclic" ); if AGR.ParseFilenameFormat( filename, type[2].FilenameFormat ) = fail then return fail; fi; return rec( standardization := identifier[3], identifier := identifier ); end, # Create the program from the identifier. AtlasProgram := function( type, identifier, groupname ) local type1, entry1, filename, type2, entry2, prog1, prog2, prog, result; if IsString( identifier[2] ) or Length( identifier[2] ) = 1 then # The second entry describes one file. return AtlasProgramDefault( type, identifier, groupname ); elif Length( identifier[2] ) = 2 then # The second entry describes two files to be composed. type1:= First( AGR.DataTypes( "prg" ), x -> x[1] = "cyclic" ); entry1:= identifier[2][2]; if IsString( entry1 ) then filename:= entry1; entry1:= [ "dataword", entry1 ]; else filename:= entry1[2]; fi; if AGR.ParseFilenameFormat( filename, type1[2].FilenameFormat ) = fail then return fail; fi; type2:= First( AGR.DataTypes( "prg" ), x -> x[1] = "cyc2ccl" ); entry2:= identifier[2][1]; if IsString( entry2 ) then filename:= entry2; entry2:= [ "dataword", entry2 ]; else filename:= entry2[2]; fi; if AGR.ParseFilenameFormat( filename, type2[2].FilenameFormat ) = fail then return fail; fi; prog1:= AGR.FileContents( [ entry1 ], type1 ); if prog1 = fail then return fail; fi; prog2:= AGR.FileContents( [ entry2 ], type2 ); if prog2 = fail then return fail; fi; prog:= CompositionOfStraightLinePrograms( prog2.program, prog1.program ); if prog = fail then return fail; fi; result:= rec( program := prog, standardization := identifier[3], identifier := identifier ); if IsBound( prog2.outputs ) then # Take the outputs of the last program in the composition. result.outputs:= prog2.outputs; fi; return result; fi; return fail; end, TestWords := function( tocid, name, file, type, verbose ) return AGR.TestWordsSLPDefault( tocid, name, file, type, true, verbose ); end, # There is only one file. ReadAndInterpretDefault := paths -> ScanStraightLineProgram( paths[1] ), InterpretDefault := strings -> ScanStraightLineProgram( strings[1], "string" ), ) ); ############################################################################# ## #D Straight line programs for representatives of cyclic subgroups ## ## <#GAPDoc Label="type:cyclic:format"> ## groupnameGi-cycWn ## ## In this case, the file contains a straight line program that returns ## a list of representatives of generators ## of maximally cyclic subgroups of G. ## An example is Co1G1-cycW1. ## ## <#/GAPDoc> ## AGR.DeclareDataType( "prg", "cyclic", rec( # `G-cycW' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar ], [ "cycW", IsDigitChar ] ], [ ParseBackwards, ParseForwards ] ], # `[ , ]' AddFileInfo := function( list, entry, name ) Add( list, Concatenation( entry{ [ 3 ] }, [ name ] ) ); return true; end, DisplayOverviewInfo := AGR.DisplayOverviewInfoDefault( "cyc", "c", "cyclic" ), DisplayPRG := function( tocs, names, std, stdavail ) local data, toc, record, private, i, entry; data:= []; for toc in tocs do if IsBound( toc.( names[2] ) ) then record:= toc.( names[2] ); if IsBound( record.cyclic ) then if toc.TocID <> "core" then private:= UserPreference( "AtlasRep", "AtlasRepMarkNonCoreData" ); else private := ""; fi; for i in record.cyclic do if std = true or i[1] in std then entry:= [ "", private, String( i[1] ), AGR.VersionOfSLP( i[2] ), [ names[1], i[2], i[1] ] ]; if toc.TocID <> "core" then entry[5][2]:= [ [ toc.TocID, entry[5][2] ] ]; fi; Add( data, entry ); fi; od; fi; fi; od; return AGR.CommonDisplayPRG( "repr. cyc. subg.", stdavail, data, true ); end, # entry: `[ , ]', # conditions: `[ "cyclic" ]' # or together with `[ "version", ]' AccessPRG := function( toc, groupname, std, conditions ) local version, record, entry; if not IsBound( toc.( groupname ) ) then return fail; elif Length( conditions ) = 1 and conditions[1] = "cyclic" then version:= true; elif Length( conditions ) = 3 and conditions[1] = "cyclic" and conditions[2] = "version" then version:= String( conditions[3] ); else return fail; fi; record:= toc.( groupname ); if IsBound( record.cyclic ) then for entry in record.cyclic do if ( std = true or entry[1] in std ) and ( version = true or AGR.VersionOfSLP( entry[2] ) = version ) then entry:= entry{ [ 2, 1 ] }; if toc.TocID <> "core" then entry[1]:= [ [ toc.TocID, entry[1] ] ]; fi; return entry; fi; od; fi; return fail; end, TestWords := function( tocid, name, file, type, verbose ) return AGR.TestWordsSLPDefault( tocid, name, file, type, true, verbose ); end, # There is only one file. ReadAndInterpretDefault := paths -> ScanStraightLineProgram( paths[1] ), InterpretDefault := strings -> ScanStraightLineProgram( strings[1], "string" ), ) ); ############################################################################# ## #D Straight line programs for computing class representatives from #D representatives of cyclic subgroups ## ## <#GAPDoc Label="type:cyc2ccls:format"> ## groupnameGicycWn-cclsWm ## ## In this case, the file contains a straight line program that takes ## the return value of the program in the file ## groupnameGi-cycWn ## (see above), ## and returns a list of conjugacy class representatives of G. ## An example is M11G1cycW1-cclsW1. ## ## <#/GAPDoc> ## AGR.DeclareDataType( "prg", "cyc2ccl", rec( # `GcycW-cclsW' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar, "cycW", IsDigitChar ], [ "cclsW", IsDigitChar ] ], [ ParseBackwards, ParseForwards ] ], # `[ , ]' AddFileInfo := function( list, entry, name ) Add( list, Concatenation( entry{ [ 3 ] }, [ name ] ) ); return true; end, # entry: `[ , ]', # conditions: `[ "cyc2ccl" ]' or # `[ "cyc2ccl", ]' or # `[ "cyc2ccl", "version", ]' or # `[ "cyc2ccl", , "version", ]' # where is the version number of the 'cyc' script # and is the version number of the program itself AccessPRG := function( toc, groupname, std, conditions ) local version, record, versions, entry; if not IsBound( toc.( groupname ) ) then return fail; elif Length( conditions ) = 1 and conditions[1] = "cyc2ccl" then version:= true; elif Length( conditions ) = 2 and conditions[1] = "cyc2ccl" then version:= [ conditions[2], true ]; elif Length( conditions ) = 3 and conditions[1] = "cyc2ccl" and conditions[2] = "version" then version:= [ true, conditions[3] ]; elif Length( conditions ) = 4 and conditions[1] = "cyc2ccl" and conditions[3] = "version" then version:= [ conditions[2], conditions[4] ]; else return fail; fi; record:= toc.( groupname ); if IsBound( record.cyc2ccl ) then for entry in record.cyc2ccl do if version <> true then # Note that 'AGR.VersionOfSLP' returns two strings in this case. versions:= AGR.VersionOfSLP( entry[2] ); fi; if ( std = true or entry[1] in std ) and ( version = true or ( ( version[1] = true or String( version[1] ) = versions[1] ) and ( version[2] = true or String( version[2] ) = versions[2] ) ) ) then entry:= entry{ [ 2, 1 ] }; if toc.TocID <> "core" then entry[1]:= [ [ toc.TocID, entry[1] ] ]; fi; return entry; fi; od; fi; return fail; end, TestWords := function( tocid, name, file, type, verbose ) return AGR.TestWordsSLPDefault( tocid, name, file, type, true, verbose ); end, # There is only one file. ReadAndInterpretDefault := paths -> ScanStraightLineProgram( paths[1] ), InterpretDefault := strings -> ScanStraightLineProgram( strings[1], "string" ), ) ); ############################################################################# ## #D Straight line programs for computing kernel generators ## ## <#GAPDoc Label="type:kernel:format"> ## groupnameGi-kerfactgroupnameWn ## ## In this case, the file contains a straight line program that takes ## generators of G w. r. t. the i-th set of ## standard generators, ## and returns generators of the kernel of an epimorphism ## that maps G to a group with ATLAS-file name ## factgroupname. ## An example is 2A5G1-kerA5W1. ## ## <#/GAPDoc> ## AGR.DeclareDataType( "prg", "kernel", rec( # `G-kerW' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar ], [ "ker", IsChar, "W", IsDigitChar ] ], [ ParseBackwards, ParseBackwardsWithPrefix ] ], # `[ , , ]' AddFileInfo := function( list, entry, name ) Add( list, [ entry[3], entry[5], name ] ); return true; end, # no DisplayOverviewInfo function DisplayPRG := function( tocs, names, std, stdavail ) local data, gapname, toc, record, private, i, entry; data:= []; if AGR.ShowOnlyASCII() then gapname:= Concatenation( names[1], " -> " ); else gapname:= Concatenation( names[1], " → " ); fi; for toc in tocs do if IsBound( toc.( names[2] ) ) then record:= toc.( names[2] ); if IsBound( record.kernel ) then if toc.TocID <> "core" then private:= UserPreference( "AtlasRep", "AtlasRepMarkNonCoreData" ); else private := ""; fi; for i in record.kernel do if std = true or i[1] in std then entry:= [ Concatenation( gapname, AGR.GAPNameAtlasName( i[2] ) ), private, String( i[1] ), AGR.VersionOfSLP( i[3] ), [ names[1], i[3], i[1] ] ]; if toc.TocID <> "core" then entry[5][2]:= [ [ toc.TocID, entry[5][2] ] ]; fi; Add( data, entry ); fi; od; fi; fi; od; return AGR.CommonDisplayPRG( "kernels", stdavail, data, false ); end, # entry: `[ , , ]', # conditions: `[ "kernel", ]' # or together with `[ "version", ]' AccessPRG := function( toc, groupname, std, conditions ) local version, record, info, entry; if not IsBound( toc.( groupname ) ) then return fail; elif Length( conditions ) = 2 and conditions[1] = "kernel" then version:= true; elif Length( conditions ) = 4 and conditions[1] = "kernel" and conditions[3] = "version" then version:= String( conditions[4] ); else return fail; fi; record:= toc.( groupname ); if IsBound( record.kernel ) then info:= First( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[1] = conditions[2] ); if info = fail then return fail; fi; info:= info[2]; for entry in record.kernel do if ( std = true or entry[1] in std ) and ( version = true or AGR.VersionOfSLP( entry[3] ) = version ) and info = entry[2] then entry:= entry{ [ 3, 1, 2 ] }; if toc.TocID <> "core" then entry[1]:= [ [ toc.TocID, entry[1] ] ]; fi; return entry; fi; od; fi; return fail; end, TestWords := function( tocid, name, file, type, verbose ) return AGR.TestWordsSLPDefault( tocid, name, file, type, false, verbose ); end, # There is only one file. ReadAndInterpretDefault := paths -> ScanStraightLineProgram( paths[1] ), InterpretDefault := strings -> ScanStraightLineProgram( strings[1], "string" ), ) ); ############################################################################# ## #D Straight line programs for standardizing generators of maximal subgroups ## ## <#GAPDoc Label="type:maxstd:format"> ## groupnameGimaxkWn-subgroupnameGjWm ## ## In this case, the file contains a straight line program that takes ## the return value of the program in the file ## groupnameGi-maxkWn ## (see above), ## which are generators for a group U, say; ## subgroupname is a name for U, ## and the return value is a list of standard generators for U, ## w. r. t. the j-th set of standard generators. ## (Of course this implies that the groups in the k-th class of ## maximal subgroups of G are isomorphic to the group with name ## subgroupname.) ## An example is J1G1max1W1-L211G1W1; ## the first class of maximal subgroups of the Janko group J_1 ## consists of groups isomorphic to the linear group L_2(11), ## for which standard generators are defined. ## ## <#/GAPDoc> ## AGR.DeclareDataType( "prg", "maxstd", rec( # `GmaxW-GW' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar, "max", IsDigitChar, "W", IsDigitChar ], [ IsChar, "G", IsDigitChar, "W", IsDigitChar ] ], [ ParseBackwards, ParseBackwards ] ], # `[ , , , , , ]' AddFileInfo := function( list, entry, name ) Add( list, Concatenation( entry{ [ 3, 5, 7, 8, 10 ] }, [ name ] ) ); return true; end, # no DisplayOverviewInfo function DisplayPRG := function( tocs, names, std, stdavail ) local data, toc, record, private, i, entry; data:= []; for toc in tocs do if IsBound( toc.( names[2] ) ) then record:= toc.( names[2] ); if IsBound( record.maxstd ) then if toc.TocID <> "core" then private:= UserPreference( "AtlasRep", "AtlasRepMarkNonCoreData" ); else private := ""; fi; for i in record.maxstd do if std = true or i[1] in std then entry:= [ Concatenation( "from ", Ordinal( i[2] ), " max., version ", String( i[3] ), " to ", AGR.GAPNameAtlasName( i[4] ), ", std. ", String( i[5] ) ), private, String( i[1] ), AGR.VersionOfSLP( i[6] ), [ names[1], i[6], i[1] ] ]; if toc.TocID <> "core" then entry[5][2]:= [ [ toc.TocID, entry[5][2] ] ]; fi; Add( data, entry ); fi; od; fi; fi; od; return AGR.CommonDisplayPRG( "standardizations of maxes", stdavail, data, false ); end, # Check whether ATLAS names are defined. PostprocessFileInfo := function( toc, record ) local list, i; list:= record.maxstd; for i in [ 1 .. Length( list ) ] do if ForAll( AtlasOfGroupRepresentationsInfo.GAPnames, pair -> pair[2] <> list[i][4] ) then Info( InfoAtlasRep, 3, "t.o.c. construction: ignoring name `", list[i][6], "'" ); Unbind( list[i] ); fi; od; if not IsDenseList( list ) then record.maxstd:= Compacted( list ); fi; end, # entry: `[ , , , , , ]', # conditions: `[ "maxstd", , , ]' # or together with `[ "version", ]' AccessPRG := function( toc, groupname, std, conditions ) local record, version, entry; if not IsBound( toc.( groupname ) ) then return fail; fi; record:= toc.( groupname ); if Length( conditions ) in [ 4, 6 ] and conditions[1] = "maxstd" and IsBound( record.maxstd ) then version:= true; if Length( conditions ) = 6 then if conditions[5] <> "version" then return fail; fi; version:= String( conditions[6] ); fi; for entry in record.maxstd do if ( std = true or entry[1] in std ) and conditions[2] = entry[2] and conditions[3] = entry[3] and conditions[4] = entry[5] and ( version = true or version = Int( AGR.VersionOfSLP( entry[6] ) ) ) then entry:= entry{ [ 6, 1, 2, 3, 5 ] }; if toc.TocID <> "core" then entry[1]:= [ [ toc.TocID, entry[1] ] ]; fi; return entry; fi; od; fi; return fail; end, TestWords := function( tocid, name, file, type, verbose ) return AGR.TestWordsSLPDefault( tocid, name, file, type, false, verbose ); end, # There is only one file. ReadAndInterpretDefault := paths -> ScanStraightLineProgram( paths[1] ), InterpretDefault := strings -> ScanStraightLineProgram( strings[1], "string" ), ) ); ############################################################################# ## #D Straight line programs for computing images of standard generators #D under outer automorphisms ## ## <#GAPDoc Label="type:out:format"> ## groupnameGi-aoutnameWn ## ## In this case, the file contains a straight line program that takes ## generators of G w. r. t. the i-th set ## of standard generators, ## and returns the list of their images ## under the outer automorphism \alpha of G ## given by the name outname; ## if this name is empty then \alpha is the unique nontrivial ## outer automorphism of G; ## if it is a positive integer k then \alpha is a ## generator of the unique cyclic order k subgroup of the outer ## automorphism group of G; ## if it is of the form 2_1 or 2a, ## 4_2 or 4b, 3_3 or 3c ## \ldots then \alpha ## generates the cyclic group of automorphisms induced on G by ## G.2_1, G.4_2, G.3_3 \ldots; ## finally, if it is of the form kpd, ## with k one of the above forms and d an integer then ## d denotes the number of dashes ## appended to the automorphism described by k; ## if d = 1 then d can be omitted. ## Examples are A5G1-aW1, L34G1-a2_1W1, ## U43G1-a2_3pW1, and O8p3G1-a2_2p5W1; ## these file names describe the outer order 2 automorphism of ## A_5 (induced by the action of S_5) ## and the order 2 automorphisms of ## L_3(4), U_4(3), and O_8^+(3) ## induced by the actions of ## L_3(4).2_1, U_4(3).2_2^{\prime}, ## and O_8^+(3).2_2^{{\prime\prime\prime\prime\prime}}, ## respectively. ## ## <#/GAPDoc> ## AGR.DeclareDataType( "prg", "out", rec( # `G-aW' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar ], [ "a", IsChar, "W", IsDigitChar ] ], [ ParseBackwards, ParseBackwardsWithPrefix ] ], # `[ , , ]' AddFileInfo := function( list, entry, name ) local std, descr, pos, dashes, order, index; std:= entry[3]; descr:= entry[5]; pos:= Position( descr, 'p' ); if pos = fail then dashes:= ""; pos:= Length( descr ) + 1; elif pos = Length( descr ) then dashes:= "'"; else dashes:= Int( descr{ [ pos+1 .. Length( descr ) ] } ); if dashes = fail then return false; fi; dashes:= ListWithIdenticalEntries( dashes, '\'' ); fi; descr:= descr{ [ 1 .. pos-1 ] }; pos:= Position( descr, '_' ); if pos = fail then order:= descr; index:= ""; else order:= descr{ [ 1 .. pos-1 ] }; index:= descr{ [ pos+1 .. Length( descr ) ] }; fi; if Int( order ) = fail or Int( index ) = fail then return false; elif order = "" then order:= "2"; fi; if index <> "" then order:= Concatenation( order, "_", index ); fi; order:= Concatenation( order, dashes ); Add( list, [ std, order, name ] ); return true; end, DisplayOverviewInfo := [ "out", "r", function( conditions ) local groupname, tocs, std, value, private, toc, record, new; groupname:= conditions[1][2]; tocs:= AGR.TablesOfContents( conditions ); if Length( conditions ) = 1 or not ( IsInt( conditions[2] ) or IsList( conditions[2] ) ) then std:= true; else std:= conditions[2]; if IsInt( std ) then std:= [ std ]; fi; fi; value:= [];; private:= false; for toc in tocs do if IsBound( toc.( groupname ) ) then record:= toc.( groupname ); if IsBound( record.out ) then new:= Set( List( Filtered( record.out, x -> std = true or x[1] in std ), x -> x[2] ) ); if toc.TocID <> "core" and not IsEmpty( new ) then private:= true; fi; UniteSet( value, new ); fi; fi; od; value:= JoinStringsWithSeparator( value, "," ); return [ value, private ]; end ], DisplayPRG := function( tocs, names, std, stdavail ) local data, toc, record, private, i, entry; data:= []; for toc in tocs do if IsBound( toc.( names[2] ) ) then record:= toc.( names[2] ); if IsBound( record.out ) then if toc.TocID <> "core" then private:= UserPreference( "AtlasRep", "AtlasRepMarkNonCoreData" ); else private:= ""; fi; for i in record.out do if std = true or i[1] in std then entry:= [ i[2], private, String( i[1] ), AGR.VersionOfSLP( i[3] ), [ names[1], i[3], i[1] ] ]; if toc.TocID <> "core" then entry[5][2]:= [ [ toc.TocID, entry[5][2] ] ]; fi; Add( data, entry ); fi; od; fi; fi; od; return AGR.CommonDisplayPRG( "automorphisms", stdavail, data, false ); end, # entry: `[ , , ]', # conditions: `[ "automorphism", ]' # or together with `[ "version", ]' AccessPRG := function( toc, groupname, std, conditions ) local version, record, entry; if not IsBound( toc.( groupname ) ) then return fail; elif Length( conditions ) = 2 and conditions[1] = "automorphism" then version:= true; elif Length( conditions ) = 4 and conditions[1] = "automorphism" and conditions[3] = "version" then version:= String( conditions[4] ); else return fail; fi; record:= toc.( groupname ); if IsBound( record.out ) then for entry in record.out do if ( std = true or entry[1] in std ) and ( version = true or AGR.VersionOfSLP( entry[3] ) = version ) and entry[2] = conditions[2] then entry:= entry{ [ 3, 1 ] }; if toc.TocID <> "core" then entry[1]:= [ [ toc.TocID, entry[1] ] ]; fi; return entry; fi; od; fi; return fail; end, # Create the program info from the identifier. AtlasProgramInfo := function( type, identifier, groupname ) local filename, parsed; filename:= identifier[2]; if not IsString( filename ) then filename:= filename[1][2]; fi; if IsString( filename ) then parsed:= AGR.ParseFilenameFormat( filename, type[2].FilenameFormat ); if parsed <> fail then return rec( standardization := identifier[3], identifier := identifier, autname := parsed[5] ); fi; fi; return fail; end, # It would be good to check whether the order of the automorphism # fits to the name of the script, but the scripts do not describe # automorphisms of minimal possible order. # (So the power given by the name of the script is an inner # automorphism; how could we check this with reasonable effort?) # Thus we check just whether the name fits to the structure of the # outer automorphism group and to the order of the automorphism. # (We copy the relevant part of the code of `AGR.TestWordsSLPDefault' # into this function.) TestWords := function( tocid, name, file, type, verbose ) local filename, prog, prg, gens, gapname, pos, claimedorder, tbl, outinfo, bound, imgs, order; # Read the program. if tocid = "core" then tocid:= "dataword"; fi; prog:= AGR.FileContents( [ [ tocid, file ] ], type ); if prog = fail then Print( "#E file `", file, "' is corrupted\n" ); return false; fi; # Check consistency. if prog = fail or not IsInternallyConsistent( prog.program ) then Print( "#E program `", file, "' not internally consistent\n" ); return false; fi; prg:= prog.program; # Create the list of (trivial) generators. gens:= ListWithIdenticalEntries( NrInputsOfStraightLineProgram( prg ), () ); # Run the program. gens:= ResultOfStraightLineProgram( prg, gens ); # Get the GAP name of `name'. gapname:= First( AtlasOfGroupRepresentationsInfo.GAPnames, pair -> name = pair[2] ); if gapname = fail then Print( "#E problem: no GAP name for `", name, "'\n" ); return false; fi; gapname:= gapname[1]; # Get the order of the automorphism from the filename. pos:= PositionSublist( file, "-a" ); claimedorder:= file{ [ pos+2 .. Length( file ) ] }; pos:= Position( claimedorder, 'W' ); claimedorder:= claimedorder{ [ 1 .. pos-1 ] }; pos:= Position( claimedorder, 'p' ); if pos <> fail then if not ForAll( claimedorder{ [ pos+1 .. Length( claimedorder ) ] }, IsDigitChar ) then Print( "#E wrong number of dashes in `", file, "'\n" ); return false; elif claimedorder{ [ pos+1 .. Length( claimedorder ) ] } = "0" then Print( "#E wrong name `", file, "'\n" ); return false; fi; claimedorder:= claimedorder{ [ 1 .. pos-1 ] }; fi; pos:= Position( claimedorder, '_' ); if pos <> fail then claimedorder:= claimedorder{ [ 1 .. pos-1 ] }; fi; if not ForAll( claimedorder, IsDigitChar ) then Print( "#E wrong name `", file, "'\n" ); return false; fi; claimedorder:= Int( claimedorder ); # Get the structure of the automorphism group. # If this group is cyclic then we compare orders. tbl:= CharacterTable( gapname ); if tbl <> fail and IsBound( AGR.HasExtensionInfoCharacterTable ) and AGR.HasExtensionInfoCharacterTable( tbl ) then outinfo:= AGR.ExtensionInfoCharacterTable( tbl )[2]; if outinfo = "" then Print( "#E automorphism `", file, "' for group without outer automorphisms\n" ); return false; elif outinfo <> "2" and claimedorder = 0 then Print( "#E automorphism `", file, "' but the outer automorphism is not unique\n" ); return false; elif Int( outinfo ) <> fail and claimedorder <> 0 and Int( outinfo ) mod claimedorder <> 0 then Print( "#E automorphism `", file, "' for outer automorphism group ", outinfo, "\n" ); return false; fi; fi; if claimedorder = 0 then claimedorder:= 2; fi; # Get generators of the group in question. gens:= OneAtlasGeneratingSetInfo( gapname, "contents", [ tocid, "local" ] ); if gens <> fail and tbl <> fail then gens:= AtlasGenerators( gens ); if gens <> fail then gens:= gens.generators; bound:= Exponent( tbl ) * claimedorder; # Compute the order of the automorphism. imgs:= ResultOfStraightLineProgram( prg, gens ); order:= 1; while order < bound and imgs <> gens do imgs:= ResultOfStraightLineProgram( prg, imgs ); order:= order + 1; od; if imgs <> gens then Print( "#E order ", order, " of automorphism `", file, "' is larger than ", bound, "\n" ); return false; elif order mod claimedorder <> 0 then Print( "#E order ", order, " of automorphism `", file, "' not divisible by ", claimedorder, "\n" ); return false; fi; fi; fi; return true; end, # There is only one file. ReadAndInterpretDefault := paths -> ScanStraightLineProgram( paths[1] ), InterpretDefault := strings -> ScanStraightLineProgram( strings[1], "string" ), ) ); ############################################################################# ## #D Straight line programs for switching between different standardizations ## ## <#GAPDoc Label="type:switch:format"> ## groupnameGi-GjWn ## ## In this case, the file contains a straight line program that takes ## generators of G w. r. t. the i-th set ## of standard generators, and returns standard generators of G ## w. r. t. the j-th set of standard generators. ## An example is L35G1-G2W1. ## ## <#/GAPDoc> ## AGR.DeclareDataType( "prg", "switch", rec( # `G-GW' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar ], [ "G", IsDigitChar, "W", IsDigitChar ] ], [ ParseBackwards, ParseForwards ] ], # `[ , , ]' AddFileInfo := function( list, entry, name ) Add( list, [ entry[3], entry[5], name ] ); return true; end, DisplayPRG := function( tocs, names, std, stdavail ) local data, toc, record, private, i, entry; data:= []; for toc in tocs do if IsBound( toc.( names[2] ) ) then record:= toc.( names[2] ); if IsBound( record.switch ) then if toc.TocID <> "core" then private:= UserPreference( "AtlasRep", "AtlasRepMarkNonCoreData" ); else private:= ""; fi; for i in record.switch do if std = true or i[1] in std then entry:= [ Concatenation( String( i[1] ), " -> ", String( i[2] ) ), private, String( i[1] ), AGR.VersionOfSLP( i[3] ), [ names[1], i[3], i[1] ] ]; if toc.TocID <> "core" then entry[5][2]:= [ [ toc.TocID, entry[5][2] ] ]; fi; Add( data, entry ); fi; od; fi; fi; od; return AGR.CommonDisplayPRG( "restandardizations", stdavail, data, false ); end, # entry: `[ , , ]', # conditions: `[ "restandardize", ]' # or together with `[ "version", ]' AccessPRG := function( toc, groupname, std, conditions ) local version, record, entry; if not IsBound( toc.( groupname ) ) then return fail; elif Length( conditions ) = 2 and conditions[1] = "restandardize" then version:= true; elif Length( conditions ) = 4 and conditions[1] = "restandardize" and conditions[3] = "version" then version:= String( conditions[4] ); else return fail; fi; record:= toc.( groupname ); if IsBound( record.switch ) then for entry in record.switch do if ( std = true or entry[1] in std ) and ( version = true or AGR.VersionOfSLP( entry[3] ) = version ) and conditions[2] = entry[2] then entry:= entry{ [ 3, 1, 2 ] }; if toc.TocID <> "core" then entry[1]:= [ [ toc.TocID, entry[1] ] ]; fi; return entry; fi; od; fi; return fail; end, TestWords := function( tocid, name, file, type, verbose ) return AGR.TestWordsSLPDefault( tocid, name, file, type, false, verbose ); end, # There is only one file. ReadAndInterpretDefault := paths -> ScanStraightLineProgram( paths[1] ), InterpretDefault := strings -> ScanStraightLineProgram( strings[1], "string" ), ) ); ############################################################################# ## #D Black box programs for finding standard generators ## ## <#GAPDoc Label="type:find:format"> ## groupnameGi-findn ## ## black box program ## ## In this case, the file contains a black box program that takes ## a group, and returns (if it is successful) a set of standard generators ## for G, w. r. t. the i-th standardization. ## ## <#/GAPDoc> ## AGR.DeclareDataType( "prg", "find", rec( # `G-find' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar ], [ "find", IsDigitChar ] ], [ ParseBackwards, ParseBackwardsWithPrefix ] ], # `[ , , ]' AddFileInfo := function( list, entry, name ) Add( list, [ entry[3], entry[5], name ] ); return true; end, DisplayOverviewInfo := AGR.DisplayOverviewInfoDefault( "fnd", "c", "find" ), DisplayPRG := function( tocs, names, std, stdavail ) local data, toc, record, private, i, entry; data:= []; for toc in tocs do if IsBound( toc.( names[2] ) ) then record:= toc.( names[2] ); if IsBound( record.find ) then if toc.TocID <> "core" then private:= UserPreference( "AtlasRep", "AtlasRepMarkNonCoreData" ); else private:= ""; fi; for i in record.find do if std = true or i[1] in std then entry:= [ "", private, String( i[1] ), String( i[2] ), [ names[1], i[3], i[1] ] ]; if toc.TocID <> "core" then entry[5][2]:= [ [ toc.TocID, entry[5][2] ] ]; fi; Add( data, entry ); fi; od; fi; fi; od; return AGR.CommonDisplayPRG( "std. gen. finder", stdavail, data, true ); end, # entry: `[ , , ]', # conditions: `[ "find" ]' # or together with `[ "version", ]' AccessPRG := function( toc, groupname, std, conditions ) local version, record, entry; if not IsBound( toc.( groupname ) ) then return fail; elif Length( conditions ) = 1 and conditions[1] = "find" then version:= true; elif Length( conditions ) = 3 and conditions[1] = "find" and conditions[2] = "version" then version:= String( conditions[3] ); else return fail; fi; record:= toc.( groupname ); if IsBound( record.find ) then for entry in record.find do if ( std = true or entry[1] in std ) and ( version = true or AGR.VersionOfSLP( entry[3] ) = version ) then # the part of the identifier entry:= entry{ [ 3, 1, 2 ] }; if toc.TocID <> "core" then entry[1]:= [ [ toc.TocID, entry[1] ] ]; fi; return entry; fi; od; fi; return fail; end, # There is only one file. ReadAndInterpretDefault := paths -> ScanBBoxProgram( AGR.StringFile( paths[1] ) ), InterpretDefault := strings -> ScanBBoxProgram( strings[1] ), # If there is a representation for this group (independent of the # standardization) then we apply the script, and check whether at least # the whole group is generated by the result; if also a `check' script # is available for this standardization then we run it on the result. TestWords := function( tocid, name, file, type, verbose ) local prog, prg, gapname, gens, G, res, pos, pos2, std, check; # Read the program. if tocid = "core" then tocid:= "dataword"; fi; prog:= AGR.FileContents( [ [ tocid, file ] ], type ); if prog = fail then Print( "#E file `", file, "' is corrupted\n" ); return false; fi; prg:= prog.program; # Get the GAP name of `name'. gapname:= First( AtlasOfGroupRepresentationsInfo.GAPnames, pair -> name = pair[2] ); if gapname = fail then Print( "#E problem: no GAP name for `", name, "'\n" ); return false; fi; # Get generators of the group in question. gens:= OneAtlasGeneratingSetInfo( gapname[1], "contents", "local" ); if gens <> fail then gens:= AtlasGenerators( gens ); if gens <> fail then gens:= gens.generators; G:= Group( gens ); if IsBound( gapname[3].size ) then SetSize( G, gapname[3].size ); fi; res:= ResultOfBBoxProgram( prg, G ); if IsList( res ) and not IsString( res ) then # Compute the standardization. pos:= Position( file, '-' ); pos2:= pos - 1; while file[ pos2 ] <> 'G' do pos2:= pos2-1; od; std:= Int( file{ [ pos2+1 .. pos-1 ] } ); check:= AtlasProgram( gapname[1], std, "check" ); if check <> fail then if not ResultOfStraightLineDecision( check.program, res ) then Print( "#E return values of `", file, "' do not fit to the check file\n" ); return false; fi; fi; # Check the group order only for permutation groups. if IsPermGroup( G ) then if not IsSubset( G, res ) then Print( "#E return values of `", file, "' do not lie in the group\n" ); return false; elif Size( SubgroupNC( G, res ) ) <> Size( G ) then Print( "#E return values of `", file, "' do not generate the group\n" ); return false; fi; fi; fi; fi; fi; return true; end, ) ); ############################################################################# ## #D Straight line programs for checking standard generators ## ## <#GAPDoc Label="type:check:format"> ## groupnameGi-checkn ## ## semi-presentation ## In this case, the file contains a straight line decision that takes ## generators of G, and returns true if these generators are ## standard generators w. r. t. the i-th ## standardization, and false otherwise. ## ## <#/GAPDoc> ## AGR.DeclareDataType( "prg", "check", rec( # `G-check' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar ], [ "check", IsDigitChar ] ], [ ParseBackwards, ParseBackwardsWithPrefix ] ], # `[ , , ]' AddFileInfo := function( list, entry, name ) Add( list, [ entry[3], entry[5], name ] ); return true; end, DisplayOverviewInfo := [ "chk", "c", function( conditions ) local groupname, tocs, std, value, private, toc, record; groupname:= conditions[1][2]; tocs:= AGR.TablesOfContents( conditions ); if Length( conditions ) = 1 or not ( IsInt( conditions[2] ) or IsList( conditions[2] ) ) then std:= true; else std:= conditions[2]; if IsInt( std ) then std:= [ std ]; fi; fi; value:= ""; private:= false; for toc in tocs do if IsBound( toc.( groupname ) ) then record:= toc.( groupname ); if ( IsBound( record.check ) and ForAny( record.check, x -> std = true or x[1] in std ) ) or ( IsBound( record.pres ) and ForAny( record.pres, x -> std = true or x[1] in std ) ) then value:= "+"; if toc.TocID <> "core" then private:= true; fi; break; fi; fi; od; return [ value, private ]; end ], DisplayPRG := function( tocs, names, std, stdavail ) local data, toc, record, private, comp, i, entry; data:= []; for toc in tocs do if IsBound( toc.( names[2] ) ) then record:= toc.( names[2] ); if toc.TocID <> "core" then private:= UserPreference( "AtlasRep", "AtlasRepMarkNonCoreData" ); else private:= ""; fi; for comp in [ "check", "pres" ] do if IsBound( record.( comp ) ) then for i in record.( comp ) do if std = true or i[1] in std then entry:= [ Concatenation( "(", comp, ")" ), private, String( i[1] ), String( i[2] ), [ names[1], i[3], i[1] ] ]; if toc.TocID <> "core" then entry[5][2]:= [ [ toc.TocID, entry[5][2] ] ]; fi; Add( data, entry ); fi; od; fi; od; fi; od; return AGR.CommonDisplayPRG( "std. gen. checker", stdavail, data, true ); end, # entry: `[ , , ]', # conditions: `[ "check" ]' # or together with `[ "version", ]' AccessPRG := function( toc, groupname, std, conditions ) local version, record, entry, comp; if not IsBound( toc.( groupname ) ) then return fail; elif Length( conditions ) = 1 and conditions[1] = "check" then version:= true; elif Length( conditions ) = 3 and conditions[1] = "check" and conditions[2] = "version" then version:= String( conditions[3] ); else return fail; fi; record:= toc.( groupname ); for comp in [ "check", "pres" ] do if IsBound( record.( comp ) ) then for entry in record.( comp ) do if ( std = true or entry[1] in std ) and ( version = true or AGR.VersionOfSLP( entry[3] ) = version ) then # the part of the identifier entry:= entry{ [ 3, 1, 2 ] }; if toc.TocID <> "core" then entry[1]:= [ [ toc.TocID, entry[1] ] ]; fi; return entry; fi; od; fi; od; return fail; end, TestWords := function( tocid, name, file, type, verbose ) return AGR.TestWordsSLDDefault( tocid, name, file, type, [ IsChar, "G", IsDigitChar, "-check", IsDigitChar ], verbose ); end, # There is only one file. ReadAndInterpretDefault := paths -> ScanStraightLineDecision( AGR.StringFile( paths[1] ) ), InterpretDefault := strings -> ScanStraightLineDecision( strings[1] ), ) ); ############################################################################# ## #D Straight line decisions representing presentations ## ## <#GAPDoc Label="type:pres:format"> ## groupnameGi-Pn ## ## presentation ## In this case, the file contains a straight line decision that takes ## some group elements, and returns true if these elements are ## standard generators for G, ## w. r. t. the i-th standardization, ## and false otherwise. ## ## <#/GAPDoc> ## AGR.DeclareDataType( "prg", "pres", rec( # `G-P' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar ], [ "P", IsDigitChar ] ], [ ParseBackwards, ParseBackwardsWithPrefix ] ], # `[ , , ]' AddFileInfo := function( list, entry, name ) Add( list, [ entry[3], entry[5], name ] ); return true; end, DisplayOverviewInfo := AGR.DisplayOverviewInfoDefault( "prs", "c", "pres" ), DisplayPRG := function( tocs, names, std, stdavail ) local data, toc, record, private, i, entry; data:= []; for toc in tocs do if IsBound( toc.( names[2] ) ) then record:= toc.( names[2] ); if IsBound( record.pres ) then if toc.TocID <> "core" then private:= UserPreference( "AtlasRep", "AtlasRepMarkNonCoreData" ); else private:= ""; fi; for i in record.pres do if std = true or i[1] in std then entry:= [ "", private, String( i[1] ), String( i[2] ), [ names[1], i[3], i[1] ] ]; if toc.TocID <> "core" then entry[5][2]:= [ [ toc.TocID, entry[5][2] ] ]; fi; Add( data, entry ); fi; od; fi; fi; od; #T better add rows for pres. obtained by restandardization, #T in analogy to the maxes scripts plus "std." info return AGR.CommonDisplayPRG( "presentation", stdavail, data, true ); end, # entry: `[ , , ]', # conditions: `[ "presentation" ]' # or together with `[ "version", ]' AccessPRG := function( toc, groupname, std, conditions ) local version, record, entry, tocs, toc2, record2, entry2, switch, pres; if not IsBound( toc.( groupname ) ) then return fail; elif Length( conditions ) = 1 and conditions[1] = "presentation" then version:= true; elif Length( conditions ) = 3 and conditions[1] = "presentation" and conditions[2] = "version" then version:= String( conditions[3] ); else return fail; fi; record:= toc.( groupname ); if IsBound( record.pres ) then # Look for a presentation in the required standardization. for entry in record.pres do if ( std = true or entry[1] in std ) and ( version = true or AGR.VersionOfSLP( entry[3] ) = version ) then # the part of the identifier entry:= entry{ [ 3, 1, 2 ] }; if toc.TocID <> "core" then entry[1]:= [ [ toc.TocID, entry[1] ] ]; fi; return entry; fi; od; if std <> true then # Look for a presentation in another standardization # such that we have a restandardization program # (in *any* table of contents). tocs:= AGR.TablesOfContents( "all" ); for entry in record.pres do if version = true or AGR.VersionOfSLP( entry[3] ) = version then for toc2 in tocs do if IsBound( toc2.( groupname ) ) then record2:= toc2.( groupname ); if IsBound( record2.switch ) then for entry2 in record2.switch do if entry2[1] in std and entry2[2] = entry[1] then pres:= entry[3]; if toc.TocID <> "core" then pres:= [ toc.TocID, pres ]; fi; switch:= entry2[3]; if toc2.TocID <> "core" then switch:= [ toc2.TocID, switch ]; fi; return [ [ pres, switch ], entry2[1], entry[1] ]; fi; od; fi; fi; od; fi; od; fi; fi; return fail; end, # Create the program info from the identifier. AtlasProgramInfo := function( type, identifier, groupname ) local filename; # If only one file is involved then use the default function. filename:= identifier[2]; if IsString( filename ) or Length( filename ) = 1 then return AtlasProgramInfoDefault( type, identifier, groupname ); fi; # Two files are involved. filename:= identifier[2][1]; if not IsString( filename ) then filename:= filename[2]; fi; type:= First( AGR.DataTypes( "prg" ), x -> x[1] = "pres" ); if AGR.ParseFilenameFormat( filename, type[2].FilenameFormat ) = fail then return fail; fi; filename:= identifier[2][2]; if not IsString( filename ) then filename:= filename[2]; fi; type:= First( AGR.DataTypes( "prg" ), x -> x[1] = "switch" ); if AGR.ParseFilenameFormat( filename, type[2].FilenameFormat ) = fail then return fail; fi; return rec( standardization := identifier[3], identifier := identifier ); end, # Create the program from the identifier. AtlasProgram := function( type, identifier, groupname ) local type1, entry1, filename, type2, entry2, prog1, prog2, prog, result; if IsString( identifier[2] ) or Length( identifier[2] ) = 1 then # The second entry describes one file. return AtlasProgramDefault( type, identifier, groupname ); elif Length( identifier[2] ) = 2 then # The second entry describes two files to be composed. type1:= First( AGR.DataTypes( "prg" ), x -> x[1] = "switch" ); entry1:= identifier[2][2]; if IsString( entry1 ) then filename:= entry1; entry1:= [ "dataword", entry1 ]; else filename:= entry1[2]; fi; if AGR.ParseFilenameFormat( filename, type1[2].FilenameFormat ) = fail then return fail; fi; type2:= First( AGR.DataTypes( "prg" ), x -> x[1] = "pres" ); entry2:= identifier[2][1]; if IsString( entry2 ) then filename:= entry2; entry2:= [ "dataword", entry2 ]; else filename:= entry2[2]; fi; if AGR.ParseFilenameFormat( filename, type2[2].FilenameFormat ) = fail then return fail; fi; prog1:= AGR.FileContents( [ entry1 ], type1 ); if prog1 = fail then return fail; fi; prog2:= AGR.FileContents( [ entry2 ], type2 ); if prog2 = fail then return fail; fi; prog:= CompositionOfSLDAndSLP( prog2.program, prog1.program ); if prog <> fail then return rec( program := prog, standardization := identifier[3], identifier := identifier ); fi; fi; return fail; end, TestWords := function( tocid, name, file, type, verbose ) return AGR.TestWordsSLDDefault( tocid, name, file, type, [ IsChar, "G", IsDigitChar, "-P", IsDigitChar ], verbose ); end, # There is only one file. ReadAndInterpretDefault := paths -> ScanStraightLineDecision( AGR.StringFile( paths[1] ) ), InterpretDefault := strings -> ScanStraightLineDecision( strings[1] ), ) ); ############################################################################# ## #D Other straight line programs ## ## <#GAPDoc Label="type:otherscripts:format"> ## groupnameGi-XdescrWn ## ## In this case, the file contains a straight line program that takes ## generators of G w. r. t. the i-th set ## of standard generators, ## and whose return value corresponds to descr. ## This format is used only in private extensions ## (see Chapter ), ## such a script can be accessed with descr as the third argument ## of . ## ## <#/GAPDoc> ## AGR.DeclareDataType( "prg", "otherscripts", rec( # `G-XW' FilenameFormat := [ [ [ IsChar, "G", IsDigitChar ], [ "X", IsChar, "W", IsDigitChar ] ], [ ParseBackwards, ParseBackwardsWithPrefix ] ], # `[ , , ]' AddFileInfo := function( list, entry, name ) Add( list, Concatenation( entry{ [ 3, 5 ] }, [ name ] ) ); return true; end, DisplayPRG := function( tocs, names, std, stdavail ) local data, toc, record, private, i, entry; data:= []; for toc in tocs do if IsBound( toc.( names[2] ) ) then record:= toc.( names[2] ); if IsBound( record.otherscripts ) then if toc.TocID <> "core" then private:= UserPreference( "AtlasRep", "AtlasRepMarkNonCoreData" ); else private:= ""; fi; for i in record.otherscripts do if std = true or i[1] in std then entry:= [ Concatenation( "\"", i[2], "\"" ), private, String( i[1] ), AGR.VersionOfSLP( i[3] ), [ names[1], i[3], i[1] ] ]; if toc.TocID <> "core" then entry[5][2]:= [ [ toc.TocID, entry[5][2] ] ]; fi; Add( data, entry ); fi; od; fi; fi; od; return AGR.CommonDisplayPRG( "other scripts", stdavail, data, false ); end, # entry: `[ , , ]', # conditions: `[ "other", ]' # or together with `[ "version", ]' AccessPRG := function( toc, groupname, std, conditions ) local version, record, entry; if not IsBound( toc.( groupname ) ) then return fail; elif Length( conditions ) = 2 and conditions[1] = "other" then version:= true; elif Length( conditions ) = 4 and conditions[1] = "other" and conditions[3] = "version" then version:= String( conditions[4] ); else return fail; fi; record:= toc.( groupname ); if IsBound( record.otherscripts ) then for entry in record.otherscripts do if ( std = true or entry[1] in std ) and ( version = true or AGR.VersionOfSLP( entry[3] ) = version ) and entry[2] = conditions[2] then entry:= entry{ [ 3, 1 ] }; if toc.TocID <> "core" then entry[1]:= [ [ toc.TocID, entry[1] ] ]; fi; return entry; fi; od; fi; return fail; end, TestWords := function( tocid, name, file, type, verbose ) return AGR.TestWordsSLPDefault( tocid, name, file, type, false, verbose ); end, # There is only one file. ReadAndInterpretDefault := paths -> ScanStraightLineProgram( paths[1] ), InterpretDefault := strings -> ScanStraightLineProgram( strings[1], "string" ), ) ); ############################################################################# ## ## Read the known tables of contents, ## as given by the user preference "AtlasRepTOCData". ## ## Note that the current file gets notified via ## 'DeclareAutoreadableVariables', ## because we want to delay the evaluation of the data. ## ## We cannot read the tables of contents in 'read.g' because this would ## trigger that 'gap/types.g' and then 'atlasprm.json' etc. are read. ## This would not work because some functions are not yet available in this ## situation. ## ## (A notification of the "internal" extension in test mode is contained ## in the test file 'tst/atlasrep.tst'.) ## AGR.EvaluateTOC:= function() local entry, pos, id, filename; for entry in UserPreference( "AtlasRep", "AtlasRepTOCData" ) do pos:= Position( entry, '|' ); if pos <> fail then id:= entry{ [ 1 .. pos-1 ] }; filename:= entry{ [ pos+1 .. Length( entry ) ] }; AtlasOfGroupRepresentationsNotifyData( filename, id ); fi; od; end; AGR.EvaluateTOC(); ############################################################################# ## ## For backwards compatibility, we set the components of the global record ## 'AtlasOfGroupRepresentationsInfo' that were used up to version 1.5.1 ## of the package, for specifying user preferences. ## Note that the values of the "real" user preferences ## are relevant for setting the record components, ## modifying the record components does *not* affect these user preferences. ## ## (We cannot move the code to 'obsolete.gi' because then 'types.g' would ## be read too early.) ## if UserPreference( "gap", "ReadObsolete" ) <> false then AtlasOfGroupRepresentationsInfo.SetComponentsOfUserParameters:= function() local url, pos; AtlasOfGroupRepresentationsInfo.remote:= UserPreference( "AtlasRep", "AtlasRepAccessRemoteFiles" ); url:= First( AtlasOfGroupRepresentationsInfo.notified, r -> r.ID = "core" ).DataURL; if 7 < Length( url ) and LowercaseString( url{ [ 1 .. 7 ] } ) = "http://" then url:= url{ [ 8 .. Length( url ) ] }; fi; pos:= Position( url, '/' ); AtlasOfGroupRepresentationsInfo.servers:= [ [ url{ [ 1 .. pos - 1 ] }, url{ [ pos+1 .. Length( url ) ] } ] ]; AtlasOfGroupRepresentationsInfo.wget:= false; AtlasOfGroupRepresentationsInfo.compress:= UserPreference( "AtlasRep", "CompressDownloadedMeatAxeFiles" ); AtlasOfGroupRepresentationsInfo.displayFunction:= EvalString( UserPreference( "AtlasRep", "DisplayFunction" ) ); AtlasOfGroupRepresentationsInfo.markprivate:= UserPreference( "AtlasRep", "AtlasRepMarkNonCoreData" ); end; AtlasOfGroupRepresentationsInfo.SetComponentsOfUserParameters(); fi; ############################################################################# ## #E atlasrep-2.1.8/gap/userpref.g0000644000175000017500000007131114410314014014224 0ustar samsam############################################################################# ## #W userpref.g GAP 4 package AtlasRep Thomas Breuer ## ## This file contains the declarations of the user preferences for the ## AtlasRep package. ## ############################################################################# ## #U AtlasRepAccessRemoteFiles ## ## <#GAPDoc Label="AtlasRepAccessRemoteFiles"> ## ## User preference AtlasRepAccessRemoteFiles ## AtlasRepAccessRemoteFiles ## local access ## remote access ## ## The value true (the default) allows the &AtlasRep; package ## to fetch data files that are not yet locally available. ## If the value is false then only those data files can be used ## that are available locally. ##

## If you are working offline then you should set the value to false. ##

## Changing the value in a running &GAP; session does not affect the ## information shown by , ## this information depends on the value of the preference at the time ## when the &AtlasRep; package and its data extensions get loaded. ## ## <#/GAPDoc> ## DeclareUserPreference( rec( name:= "AtlasRepAccessRemoteFiles", description:= [ "The value 'true' (the default) allows the AtlasRep package to fetch \ data files that are not yet locally available. \ If the value is 'false' then only those data files can be used that are \ available locally. \ Changing the value in a running GAP session does not affect the \ information shown by 'DisplayAtlasInfo', \ this information depends on the value of the preference at the time \ when the AtlasRep package and its data extensions get loaded." ], default:= true, values:= [ true, false ], multi:= false, package:= "AtlasRep", ) ); ############################################################################# ## #U AtlasRepDataDirectory ## ## <#GAPDoc Label="AtlasRepDataDirectory"> ## ## User preference AtlasRepDataDirectory ## AtlasRepDataDirectory ## ## The value must be a string that is either empty or the filename of a ## directory (in the sense of ) ## that contains the directories in which downloaded data will be stored. ##

## An empty string means that downloaded data are just kept in the &GAP; ## session but not saved to local files. ##

## The default depends on the user's permissions for the subdirectories ## dataext, datagens, dataword of the &AtlasRep; ## directory: ## If these directories are writable for the user then the installation path ## of the &AtlasRep; package (including a trailing slash symbol) is taken, ## otherwise the default is an empty string. ## ## <#/GAPDoc> ## DeclareUserPreference( rec( name:= "AtlasRepDataDirectory", description:= [ "The value must be a string that is either empty or the filename \ of a directory (in the sense of 'IsDirectoryPath') \ that contains the directories in which downloaded data will be stored. \ An empty string means that downloaded data are just kept in the GAP session \ but not saved to local files. \ The default depends on the user's permissions for the subdirectories \ 'dataext', 'datagens', 'dataword' of the AtlasRep directory: \ If these directories are writable for the user then the installation path \ of the AtlasRep package (including a trailing slash symbol) is taken, \ otherwise the default is an empty string." ], default:= function() local dir; dir:= DirectoriesPackageLibrary( "atlasrep", "" ); if ForAll( [ "dataext", "datagens", "dataword" ], subdir -> IsWritableFile( Filename( dir, subdir ) ) ) then # The package directory is the first default. return Filename( dir, "" ); else return ""; fi; end, package:= "AtlasRep", check:= function( val ) if val = "" then return true; elif not ( IsString( val ) and IsDirectoryPath( val ) ) then Info( InfoWarning, 1, "the value of the preference 'AtlasRepDataDirectory' must be\n", "#W an empty string or a directory path" ); return false; elif Last( val ) <> '/' then Info( InfoWarning, 1, "the value of the preference 'AtlasRepDataDirectory' must end ", "with '/'" ); return false; elif ForAny( [ "datagens", "dataword", "dataext" ], name -> not IsDirectoryPath( Concatenation( val, name ) ) ) then Info( InfoWarning, 1, "the directory given by the preference ", "'AtlasRepDataDirectory'\n", "#W must contain subdirectories 'datagens', 'dataword', ", "'dataext'" ); return false; fi; return true; end, ) ); ############################################################################# ## #U AtlasRepTOCData ## ## <#GAPDoc Label="AtlasRepTOCData"> ## ## User preference AtlasRepTOCData ## AtlasRepTOCData ## ## The value must be a list of strings of the form "ID|address" ## where ID is the id of a part of the database ## and address is an URL or a file path ## (as an absolute path or relative to the user's home directory, ## cf. ) of a readable ## JSON format file that contain the table of contents of this part, ## see . ##

## The default lists four entries: ## the core database, the data distributed with the &AtlasRep; package, ## and the data that belong to the packages ## MFER and CTBlocks. ## ## <#/GAPDoc> ## DeclareUserPreference( rec( name:= "AtlasRepTOCData", description:= [ "The value must be a list of strings of the form \"|

\" \ where is the id of a part of the database \ and
is an URL or a file path \ (as an absolute path or relative to the user's home directory) of a readable \ JSON format file that contain the table of contents of this part. \ The default lists four entries: \ the core database, the data distributed with the AtlasRep package, \ and the data that belong to the packages MFER and CTBlocks." ], default:= function() local res, file; # the two files from the AtlasRep package if IsBoundGlobal( "HexSHA256" ) then res:= [ Concatenation( "core|", Filename( DirectoriesPackageLibrary( "atlasrep", "" ), "atlasprm_SHA.json" ) ), Concatenation( "internal|", Filename( DirectoriesPackageLibrary( "atlasrep", "" ), "datapkg/toc_SHA.json" ) ) ]; else res:= [ Concatenation( "core|", Filename( DirectoriesPackageLibrary( "atlasrep", "" ), "atlasprm.json" ) ), Concatenation( "internal|", Filename( DirectoriesPackageLibrary( "atlasrep", "" ), "datapkg/toc.json" ) ) ]; fi; # the MFER file if IsBoundGlobal( "HexSHA256" ) then file:= Filename( DirectoriesPackageLibrary( "mfer", "" ), "mfertoc_SHA.json" ); if file <> fail then Add( res, Concatenation( "mfer|", file ) ); else Add( res, "mfer|http://www.math.rwth-aachen.de/~mfer/mfertoc_SHA.json" ); fi; else file:= Filename( DirectoriesPackageLibrary( "mfer", "" ), "mfertoc.json" ); if file <> fail then Add( res, Concatenation( "mfer|", file ) ); else Add( res, "mfer|http://www.math.rwth-aachen.de/~mfer/mfertoc.json" ); fi; fi; # the CTBlocks file if IsBoundGlobal( "HexSHA256" ) then file:= Filename( DirectoriesPackageLibrary( "ctblocks", "" ), "ctblockstoc_SHA.json" ); if file <> fail then Add( res, Concatenation( "ctblocks|", file ) ); else Add( res, "ctblocks|http://www.math.rwth-aachen.de/~Thomas.Breuer/ctblocks/ctblockstoc_SHA.json" ); fi; else file:= Filename( DirectoriesPackageLibrary( "ctblocks", "" ), "ctblockstoc.json" ); if file <> fail then Add( res, Concatenation( "ctblocks|", file ) ); else Add( res, "ctblocks|http://www.math.rwth-aachen.de/~Thomas.Breuer/ctblocks/ctblockstoc.json" ); fi; fi; return res; end, package:= "AtlasRep", check:= function( val ) local ok, entry, suffix; ok:= true; if not IsList( val ) then ok:= false; else for entry in val do if not ( IsString( entry ) and '|' in entry ) then ok:= false; break; else suffix:= entry{ [ Position( entry, '|' )+1 .. Length( entry ) ] }; if not ( StartsWith( suffix, "http" ) or IsReadableFile( suffix ) ) then ok:= false; break; fi; fi; od; fi; if not ok then Info( InfoWarning, 1, "the value of the preference 'AtlasRepTOCData' must be ", "a list of strings of the form \"|
\" ", "where
is an URL or a file path of a readable file" ); return false; fi; return true; end, ) ); ############################################################################# ## #U CompressDownloadedMeatAxeFiles ## ## <#GAPDoc Label="CompressDownloadedMeatAxeFiles"> ## ## User preference CompressDownloadedMeatAxeFiles ## CompressDownloadedMeatAxeFiles ## ## compress ## gzip ## When used with UNIX, &GAP; can read gzipped files, ## see . ## If the package's user preference CompressDownloadedMeatAxeFiles ## has the value true ## then each &MeatAxe; format text file that is downloaded from the internet ## is afterwards compressed with gzip. ## The default value is false. ##

## Compressing files saves a lot of space if many &MeatAxe; format files ## are accessed. ## (Note that data files in other formats are very small.) ## For example, at the time of the release of version 2.0 the core ## database contained about 8\,400 data files in &MeatAxe; format, ## which needed about 1\,400 MB in uncompressed text format ## and about 275 MB in compressed text format. ## ## <#/GAPDoc> ## DeclareUserPreference( rec( name:= "CompressDownloadedMeatAxeFiles", description:= [ "When used with UNIX, GAP can read 'gzip'ped files. \ If this preference has the value 'true' then each MeatAxe format text file \ that is downloaded from a remote server \ is afterwards compressed with 'gzip'. \ The default value is 'false'." ], default:= false, values:= [ true, false ], multi:= false, package:= "AtlasRep", ) ); ############################################################################# ## #U FileAccessFunctions ## ## <#GAPDoc Label="FileAccessFunctions"> ## ## User preference FileAccessFunctions ## FileAccessFunctions ## ## This preference allows one to customize what actually happens ## when data are requested by the interface functions: ## Is it necessary to download some files? ## If yes then which files are downloaded? ## If no then which files are actually read into &GAP;? ##

## Currently one can choose among the following features. ##

## ## ## Download/read &MeatAxe; text files. ## ## ## Prefer downloading/reading &MeatAxe; binary files. ## ## ## Prefer reading locally available data files. ## ## ##

## (Of course files can be downloaded only if the user preference ## AtlasRepAccessRemoteFiles has the value true, ## see Section .) ##

## This feature could be used more generally, ## see Section ## for technical details and the possibility to add other features. ## ## <#/GAPDoc> ## DeclareUserPreference( rec( name:= "FileAccessFunctions", description:= [ "This preference allows one to customize what actually happens \ when data are requested by the interface functions. \ (Of course files can be downloaded only if the user preference \ 'AtlasRepAccessRemoteFiles' has the value 'true'.)" ], default:= [ "download/read MeatAxe text files (default)" ], values:= [ "download/read MeatAxe text files (default)", "prefer downloading/reading MeatAxe binary files", # "prefer downloading/reading GAP format files", "prefer reading files available from a local server" ], multi:= true, package:= "AtlasRep", ) ); ############################################################################# ## #U AtlasRepMarkNonCoreData ## ## <#GAPDoc Label="AtlasRepMarkNonCoreData"> ## ## User preference AtlasRepMarkNonCoreData ## AtlasRepMarkNonCoreData ## ## The value is a string (the default is a star '*') ## that is used in to mark data that do not ## belong to the core database, ## see Section  . ## ## <#/GAPDoc> ## DeclareUserPreference( rec( name:= "AtlasRepMarkNonCoreData", description:= [ "The value is a string (the default is a star '*') \ that is used in 'DisplayAtlasInfo' to mark data that do not \ belong to the core database." ], default:= "*", package:= "AtlasRep", check:= IsString, ) ); ############################################################################# ## #U AtlasRepLocalServerPath ## ## <#GAPDoc Label="AtlasRepLocalServerPath"> ## ## User preference AtlasRepLocalServerPath ## AtlasRepLocalServerPath ## ## If the data of the core database are available locally ## (for example because one has access to a local mirror of the data) ## then one may prefer reading these files instead of downloading data. ## In order to achieve this, one can set the user preference ## AtlasRepLocalServerPath and add ## "direct access to a local server" to the user preference ## FileAccessFunctions, ## see Section . ##

## The value must be a string that is the filename of a directory ## (in the sense of ) ## that contains the data of the &ATLAS; of Group Representations, ## in the same directory tree structure as on the &ATLAS; server. ## ## <#/GAPDoc> ## DeclareUserPreference( rec( name:= "AtlasRepLocalServerPath", description:= [ "The value must be a string that is the filename of a directory \ (in the sense of 'IsDirectoryPath') \ that contains the data of the Atlas of Group Representations, \ in the same directory tree structure as on the Atlas server. \ This preference needs to be set only if \ \"direct access to a local server\" is an entry in the value of the \ user preference \"FileAccessFunctions\" of the AtlasRep package." ], default:= "", package:= "AtlasRep", check:= function( val ) local name; if not ( "direct access to a local server" in UserPreference( "AtlasRep", "FileAccessFunctions" ) ) then # The value of this user preference is irrelevant. return true; elif not ( IsString( val ) and IsDirectoryPath( val ) ) then Info( InfoWarning, 1, "the value of the preference 'AtlasRepLocalServerPath' must be ", "a directory path" ); return false; elif val[ Length( val ) ] <> '/' then Info( InfoWarning, 1, "the value of the preference 'AtlasRepLocalServerPath' must end ", "with '/'" ); return false; fi; return true; end, ) ); ############################################################################# ## #U HowToReadMeatAxeTextFiles ## ## <#GAPDoc Label="HowToReadMeatAxeTextFiles"> ## ## User preference HowToReadMeatAxeTextFiles ## HowToReadMeatAxeTextFiles ## ## The value "fast" means that reads ## text files via . ## Otherwise each file containing a matrix over a finite field is read ## line by line via , ## and the &GAP; matrix is constructed line by line, ## in a compressed representation ## (see  ## and ); ## this makes it possible to read large matrices in a reasonable amount ## of space. ##

## The approach is faster ## but needs more intermediate space when text files containing ## matrices over finite fields are read. ## For example, a 4\,370 by 4\,370 matrix over the field ## with two elements ## (as occurs for an irreducible representation of the Baby Monster) ## requires less than 3 MB space in &GAP; but the corresponding ## &MeatAxe; format text file is more than 19 MB large. ## This means that when one reads the file with the fast variant, ## &GAP; will temporarily grow by more than this value. ##

## Note that this parameter has an effect only when ## is used. ## It has no effect for example if &MeatAxe; binary files are read, ## cf. . ## ## <#/GAPDoc> ## DeclareUserPreference( rec( name:= "HowToReadMeatAxeTextFiles", description:= [ "The value '\"fast\"' means that 'ScanMeatAxeFile' reads \ MeatAxe text files via 'StringFile'. \ Otherwise each file containing a matrix over a finite \ field is read line by line via 'ReadLine', \ and the GAP matrix is constructed line by line, \ in a compressed representation; \ this makes it possible to read large matrices in a reasonable amount of \ space. \ The 'StringFile' approach is faster but needs more intermediate space \ when text files containing matrices over finite fields are read." ], default:= "minimizing the space", values:= [ "fast", "minimizing the space" ], multi:= false, package:= "AtlasRep", ) ); ############################################################################# ## #U WriteMeatAxeFilesOfMode2 ## ## <#GAPDoc Label="WriteMeatAxeFilesOfMode2"> ## ## User preference WriteMeatAxeFilesOfMode2 ## WriteMeatAxeFilesOfMode2 ## ## The value true means that the function ## will encode permutation matrices via mode 2 descriptions, that is, ## the first entry in the header line is 2, and the following lines contain ## the positions of the nonzero entries. ## If the value is false (the default) then ## encodes permutation matrices ## via mode 1 or mode 6 descriptions, that is, ## the lines contain the matrix entries. ## ## <#/GAPDoc> ## DeclareUserPreference( rec( name:= "WriteMeatAxeFilesOfMode2", description:= [ "The value 'true' means that the function 'MeatAxeString' \ will encode permutation matrices via mode 2 descriptions, that is, \ the first entry in the header line is 2, and the following lines contain \ the positions of the nonzero entries. \ If the value is 'false' (the default) then 'MeatAxeString' encodes \ permutation matrices via mode 1 or mode 6 descriptions, that is, \ the lines contain the matrix entries." ], default:= false, values:= [ true, false ], multi:= false, package:= "AtlasRep", ) ); ############################################################################# ## #U WriteHeaderFormatOfMeatAxeFiles ## ## <#GAPDoc Label="WriteHeaderFormatOfMeatAxeFiles"> ## ## User preference WriteHeaderFormatOfMeatAxeFiles ## WriteHeaderFormatOfMeatAxeFiles ## ## This user preference determines the format of the header lines of ## &MeatAxe; format strings created by , ## see the C-&MeatAxe; manual  ## for details. ## The following values are supported. ## ## "numeric" ## ## means that the header line of the returned string ## consists of four integers ## (in the case of a matrix these are mode, row number, column number ## and field size), ## ## "numeric (fixed)" ## ## means that the header line of the returned string ## consists of four integers as in the case "numeric", ## but additionally each integer is right aligned in a substring of ## length (at least) six, ## ## "textual" ## ## means that the header line of the returned string ## consists of assignments such as matrix field=2. ## ## ## ## <#/GAPDoc> ## DeclareUserPreference( rec( name:= "WriteHeaderFormatOfMeatAxeFiles", description:= [ "This user preference determines the format of the header lines of \ MeatAxe format strings created by MeatAxeString, \ see the C-MeatAxe manual for details. \ The following values are supported. \ \"numeric\" means that the header line of the returned string \ consists of four integers \ (in the case of a matrix these are mode, row number, column number \ and field size), \ \"numeric (fixed)\" means that the header line of the returned string \ consists of four integers as in the case \"numeric\", \ but additionally each integer is right aligned in a substring of \ length (at least) six, \ \"textual\" means that the header line of the returned string \ consists of assignments such as \"matrix field=2\"." ], default:= "numeric", values:= [ "numeric", "numeric (fixed)", "textual" ], multi:= false, package:= "AtlasRep", ) ); ############################################################################# ## #U BaseOfMeatAxePermutation ## ## <#GAPDoc Label="BaseOfMeatAxePermutation"> ## ## User preference BaseOfMeatAxePermutation ## BaseOfMeatAxePermutation ## ## The value 0 means that the function ## writes zero-based permutations, ## that is, permutations acting on the points from 0 to the ## degree minus one; this is achieved by shifting down all images of the ## &GAP; permutation by one. ## The value 1 (the default) means that the permutation stored in the ## binary file acts on the points from 1 to the degree. ##

## Up to version 2.3 of the C-&MeatAxe;, permutations in ## binary files were always one-based. ## Zero-based permutations were introduced in version 2.4. ## ## <#/GAPDoc> ## DeclareUserPreference( rec( name:= "BaseOfMeatAxePermutation", description:= [ "The value 0 means that the function 'CMtxBinaryFFMatOrPerm' \ writes zero-based permutations, \ that is, permutations acting on the points from 0 to the \ degree minus one; this is achieved by shifting down all images of the \ GAP permutation by one. \ The value 1 (the default) means that the permutation stored in the \ binary file acts on the points from 1 to the degree." ], default:= 1, values:= [ 0, 1 ], multi:= false, package:= "AtlasRep", ) ); ############################################################################# ## #U DisplayFunction ## ## <#GAPDoc Label="DisplayFunction"> ## ## User preference DisplayFunction ## DisplayFunction ## ## The way how ## ## shows the requested overview is controlled by the package ## &AtlasRep;'s user preference DisplayFunction. ## The value must be a string that evaluates to a &GAP; function. ## The default value is "Print" ## (see ), ## other useful values are "PrintFormattedString" ## (see ) ## and "AGR.Pager"; ## the latter means that is called with ## the formatted option, ## which is necessary for switching off &GAP;'s automatic line breaking. ## ## <#/GAPDoc> ## DeclareUserPreference( rec( name:= "DisplayFunction", description:= [ "This preference controls the way how 'DisplayAtlasInfo', \ 'DisplayBlockInvariants', and \ 'DisplayCTblLibInfo' show the requested overview. \ The value must be a string that evaluates to a GAP function. \ The default value is \"Print\", \ other useful values are \"PrintFormattedString\" and \"AGR.Pager\"; \ the latter calls 'Pager' with the 'formatted' option, \ which is necessary for switching off GAP's automatic line breaking." ], default:= "Print", package:= "AtlasRep", # check:= function( val ) ... end, #T BrowseData.TryEval could be used to check this more or less safely. #T Let us wait until the GAP library provides a function for that. ) ); ############################################################################# ## #U DebugFileLoading ## ## <#GAPDoc Label="DebugFileLoading"> ## ## User preference DebugFileLoading ## DebugFileLoading ## ## If the value is true then debug messages are printed before and ## after data files get loaded. ## The default value is false. ## ## <#/GAPDoc> ## DeclareUserPreference( rec( name:= "DebugFileLoading", description:= [ "If the value is 'true' then debug messages are printed before and \ after data files get loaded. \ The default value is 'false'." ], default:= false, values:= [ true, false ], multi:= false, package:= "AtlasRep", ) ); ############################################################################# ## #U AtlasRepJsonFilesAddresses ## ## <#GAPDoc Label="AtlasRepJsonFilesAddresses"> ## ## User preference AtlasRepJsonFilesAddresses ## AtlasRepJsonFilesAddresses ## ## The value, if set, must be a list of length two, ## the first entry being an URL describing a directory that contains ## Json format files of the available matrix representations in ## characteristic zero, ## and the second being a directory path where these files shall be ## stored locally. ## If the value is set (this is the default) then the functions ## of the package use the Json format files instead of the GAP format files. ## ## <#/GAPDoc> ## DeclareUserPreference( rec( name:= "AtlasRepJsonFilesAddresses", description:= [ "The value, if set, must be a list of length two, \ the first entry being an URL describing a directory that contains \ Json format files of the available matrix representations in \ characteristic zero, \ and the second being a directory path where these files shall be \ stored locally. \ If the value is set (this is the default) then the functions \ of the package use the Json format files instead of the GAP format files." ], default:= [ "http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/datachar0", Filename( DirectoriesPackageLibrary( "atlasrep", "datagens" ), "" ) ], package:= "AtlasRep", ) ); ############################################################################# ## #E atlasrep-2.1.8/gap/brmindeg.g0000644000175000017500000003365714410313657014207 0ustar samsam############################################################################# ## #W brmindeg.g GAP 4 package AtlasRep Thomas Breuer ## ## This file contains a Browse application for showing the minimal degree ## data in a table. ## ############################################################################# ## #F BrowseMinimalDegrees( [] ) ## ## <#GAPDoc Label="BrowseMinimalDegrees"> ## ## ## ## ## the list of info records for the clicked representations. ## ## ## If the &GAP; package Browse (see ) ## is loaded then this function is available. ## It opens a browse table whose rows correspond to the groups for which ## &AtlasRep; knows some information about minimal degrees, ## whose columns correspond to the characteristics that occur, ## and whose entries are the known minimal degrees. ##

## if IsBound( BrowseMinimalDegrees ) then ## > down:= NCurses.keys.DOWN;; DOWN:= NCurses.keys.NPAGE;; ## > right:= NCurses.keys.RIGHT;; END:= NCurses.keys.END;; ## > enter:= NCurses.keys.ENTER;; nop:= [ 14, 14, 14 ];; ## > # just scroll in the table ## > BrowseData.SetReplay( Concatenation( [ DOWN, DOWN, DOWN, ## > right, right, right ], "sedddrrrddd", nop, nop, "Q" ) ); ## > BrowseMinimalDegrees();; ## > # restrict the table to the groups with minimal ordinary degree 6 ## > BrowseData.SetReplay( Concatenation( "scf6", ## > [ down, down, right, enter, enter ] , nop, nop, "Q" ) ); ## > BrowseMinimalDegrees();; ## > BrowseData.SetReplay( false ); ## > fi; ## ]]> ##

## If an argument gapnames is given then it must be a list of ## &GAP; names of groups. ## The browse table is then restricted to the rows corresponding to these ## group names and to the columns that are relevant for these groups. ## A perhaps interesting example is the subtable with the data concerning ## sporadic simple groups and their covering groups, ## which has been published in . ## This table can be shown as follows. ##

## if IsBound( BrowseMinimalDegrees ) then ## > # just scroll in the table ## > BrowseData.SetReplay( Concatenation( [ DOWN, DOWN, DOWN, END ], ## > "rrrrrrrrrrrrrr", nop, nop, "Q" ) ); ## > BrowseMinimalDegrees( BibliographySporadicSimple.groupNamesJan05 );; ## > fi; ## ]]> ##

## The browse table does not contain rows for the groups ## 6.M_{22}, 12.M_{22}, 6.Fi_{22}. ## Note that in spite of the title of , the entries in ## Table 1 of this paper are in fact the minimal degrees of faithful ## irreducible representations, and in the above three cases, ## these degrees are larger than the minimal degrees of faithful ## representations. ## The underlying data of the browse table is about the minimal faithful ## (but not necessarily irreducible) degrees. ##

## The return value of is the list of ## values for those representations ## that have been clicked in visual mode. ##

## The variant without arguments of this function is also available ## in the menu shown by . ## ## ## <#/GAPDoc> ## BindGlobal( "BrowseMinimalDegrees", function( arg ) local data, name, char, lastj, labelsrow, mat, src, i, entry, pos, j, perm, info, file, parse, keys, modes, newactions, showaction, mode, table, result; if Length( arg ) = 0 then data:= MinimalRepresentationInfoData.datalist; elif Length( arg ) = 1 and IsList( arg[1] ) then data:= []; for name in arg[1] do Append( data, Filtered( MinimalRepresentationInfoData.datalist, x -> x[1] = name ) ); od; if IsEmpty( data ) then return []; fi; else Error( "usage: BrowseMinimalDegrees( [] )" ); fi; char:= Set( List( Filtered( data, x -> x[2][1] = "Characteristic" ), x -> x[2][2] ) ); lastj:= Length( char ) + 1; labelsrow:= []; mat:= []; src:= []; for i in [ 1 .. Length( data ) ] do entry:= data[i]; pos:= Position( labelsrow, entry[1] ); if pos = fail then pos:= Length( labelsrow ) + 1; labelsrow[ pos ]:= entry[1]; mat[ pos ]:= []; src[ pos ]:= []; fi; if entry[2][1] = "Characteristic" and IsInt( entry[3] ) then j:= Position( char, entry[2][2] ); if OneAtlasGeneratingSetInfo( labelsrow[ pos ], Characteristic, entry[2][2], Dimension, entry[3] ) = fail then mat[ pos ][j]:= String( entry[3] ); else mat[ pos ][j]:= rec( rows:= [ [ NCurses.attrs.BOLD, true, NCurses.ColorAttr( "blue", -1 ), true, String( entry[3] ) ] ], align:= "r" ); fi; if not IsBound( src[ pos ][j] ) then src[ pos ][j]:= []; fi; AddSet( src[ pos ][j], entry[4] ); elif entry[2] = "NrMovedPoints" then if OneAtlasGeneratingSetInfo( labelsrow[ pos ], NrMovedPoints, entry[3] ) = fail then mat[ pos ][ lastj ]:= String( entry[3] ); else mat[ pos ][ lastj ]:= rec( rows:= [ [ NCurses.attrs.BOLD, true, NCurses.ColorAttr( "blue", -1 ), true, String( entry[3] ) ] ], align:= "r" ); fi; if not IsBound( src[ pos ][ lastj ] ) then src[ pos ][ lastj ]:= []; fi; AddSet( src[ pos ][ lastj ], entry[4] ); fi; od; if Length( arg ) = 0 then # Sort the rows. perm:= Sortex( List( labelsrow, BrowseData.SplitStringIntoNumbersAndNonnumbers ) ); #T really better than BrowseData.CompareAsNumbersAndNonnumbers? labelsrow:= Permuted( labelsrow, perm ); mat:= Permuted( mat, perm ); src:= Permuted( src, perm ); fi; # Fill missing entries with a question mark. for i in [ 1 .. Length( mat ) ] do info:= First( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[1] = labelsrow[i] ); for j in [ 1 .. Length( char ) ] do if not IsBound( mat[i][j] ) then if char[j] = 0 or ( IsList( info ) and IsBound( info[3].size ) and info[3].size mod char[j] = 0 ) then mat[i][j]:= "?"; fi; fi; od; # perm. degree if not IsBound( mat[i][ lastj ] ) then mat[i][ lastj ]:= "?"; fi; od; # Load the bibliographic data. file:= Filename( DirectoriesPackageLibrary( "atlasrep", "bibl" ), "mindegbib.xml" ); parse:= ParseBibXMLextFiles( file ); keys:= List( parse.entries, e -> RecBibXMLEntry( e, "Text", parse.strings ).Label ); # Construct the extended modes if necessary. if not IsBound( BrowseData.defaults.work.customizedModes.brmindeg ) then # Create a shallow copy of each default mode for `Browse', and add # new actions to those modes where an entry is selected: # - vb: Show BibTeX format of the selected entry in a pager # - vh: Show HTML format of the selected entry in a pager # - vt: Show text format of the selected entry in a pager modes:= List( BrowseData.defaults.work.availableModes, BrowseData.ShallowCopyMode ); BrowseData.defaults.work.customizedModes.brmindeg:= modes; newactions:= [ [ "vb", "BibTeX" ], [ "vh", "HTML" ], [ "vt", "Text" ] ]; showaction:= pair -> [ [ pair[1] ], rec( helplines:= [ Concatenation( "show ", pair[2], " format of bibl. info" ), "for the selected entry in a pager" ], action:= function( t ) local row, col, disp, i, pos; if t.dynamic.selectedEntry <> [ 0, 0 ] then row:= t.dynamic.indexRow[ t.dynamic.selectedEntry[1] ] / 2; col:= t.dynamic.indexCol[ t.dynamic.selectedEntry[2] ] / 2; if IsBound( src[ row ][ col ] ) then disp:= []; for i in src[ row ][ col ] do pos:= Position( keys, i ); if pos <> fail then Add( disp, parse.entries[ pos ] ); fi; od; if not IsEmpty( disp ) then NCurses.hide_panel( t.dynamic.statuspanel ); NCurses.Pager( JoinStringsWithSeparator( List( disp, e -> BrowseData.SimplifiedString( StringBibXMLEntry( e, pair[2], parse.strings ) ) ), "\n" ) ); NCurses.show_panel( t.dynamic.statuspanel ); fi; fi; fi; t.dynamic.changed:= true; end ) ]; newactions:= List( newactions, showaction ); for mode in modes do if mode.name in [ "select_entry", "select_row_and_entry", "select_column_and_entry" ] then BrowseData.SetActions( mode, newactions ); fi; od; else modes:= BrowseData.defaults.work.customizedModes.brmindeg; fi; # Construct the browse table. table:= rec( work:= rec( availableModes:= modes, align:= "ct", header:= t -> BrowseData.HeaderWithRowCounter( t, "Minimal Degrees of Representations", Length( mat ) ), footer:= rec( # Show the sources of the data. select_entry:= function( t ) local entry, e, pos; entry:= ""; if t.dynamic.selectedEntry <> [ 0, 0 ] then e:= src[ t.dynamic.indexRow[ t.dynamic.selectedEntry[1] ] / 2 ]; pos:= t.dynamic.indexCol[ t.dynamic.selectedEntry[2] ] / 2; if IsBound( e[ pos ] ) and not IsEmpty( e[ pos ] ) then entry:= Concatenation( "source: ", JoinStringsWithSeparator( e[ pos ], ", " ) ); fi; fi; return [ entry ]; end ), footerLength:= rec( select_entry:= 1 ), CategoryValues:= function( t, i, j ) local val; val:= t.work.main[ i/2 ][ j/2 ]; if NCurses.IsAttributeLine( val ) then val:= NCurses.SimpleString( val ); else val:= Concatenation( List( val.rows, NCurses.SimpleString ) ); fi; if 2 * Length( char ) < j then return [ Concatenation( "min. perm. degree = ", val ) ]; else return [ Concatenation( "char. ", String( char[ j/2 ] ), ": ", val ) ]; fi; end, main:= mat, labelsRow:= List( labelsrow, x -> [ rec( rows:= [ x ], align:= "l" ) ] ), labelsCol:= [ Concatenation( List( char, x -> rec( rows:= [ String( x ) ], align:= "r" ) ), [ "perm. degree" ] ) ], sepLabelsRow:= "|", sepLabelsCol:= "|", sepRow:= "-", sepCol:= Concatenation( [ "| " ], List( [ 1 .. Length( char ) ], x -> " | " ), [ " |" ] ), SpecialGrid:= BrowseData.SpecialGridLineDraw, Click:= rec( select_entry:= rec( helplines:= [ "add the representation to the result list" ], action:= function( t ) local i, j, entry; if t.dynamic.selectedEntry <> [ 0, 0 ] then i:= t.dynamic.indexRow[ t.dynamic.selectedEntry[1] ] / 2; j:= t.dynamic.indexCol[ t.dynamic.selectedEntry[2] ] / 2; if IsBound( mat[i][j] ) then entry:= mat[i][j]; if IsRecord( entry ) then entry:= First( entry.rows[1], IsString ); fi; if j <= Length( char ) then info:= OneAtlasGeneratingSetInfo( labelsrow[i], Characteristic, char[j], Dimension, Int( entry ) ); else info:= OneAtlasGeneratingSetInfo( labelsrow[i], NrMovedPoints, Int( entry ) ); fi; if not info in t.dynamic.Return then Add( t.dynamic.Return, info ); fi; fi; fi; end ), ), ), dynamic:= rec( sortFunctionsForColumns:= List( [ 0 .. Length( char ) ], x -> BrowseData.CompareLenLex ), Return:= [], activeModes:= [ First( modes, x -> x.name = "browse" ) ], ), ); # Show the browse table. result:= NCurses.BrowseGeneric( table ); # Construct the return value. return result; end ); ############################################################################# ## ## Add the Browse application to the list shown by `BrowseGapData'. ## BrowseGapDataAdd( "Minimal Degrees of Representations", BrowseMinimalDegrees, true, "\ the list of known minimal degrees for the groups of the \ Atlas of Group Representations, \ shown in a browse table with one column for each characteristic \ plus a column for the minimal permutation degree; \ available representations are shown in boldface blue, \ clicking on the table cell of such a representation adds the \ info record for it to the result list; \ the inputs vb, vh, vt open a pager showing the bibliographic sources \ of the selected entry if available; \ try ?BrowseMinimalDegrees for details" ); ############################################################################# ## #E atlasrep-2.1.8/gap/ctbllib_only.g0000664000175000017500000002534014376762461015100 0ustar samsam############################################################################# ## #F MinimalPermutationRepresentationInfo( , ) ## InstallGlobalFunction( MinimalPermutationRepresentationInfo, function( grpname, mode ) local result, addvalue, parse, ordtbl, identifier, value, s, cand, maxes, indices, perms, m, corefreepos, cand1, other, minpos, cand2min, tom, faith, mincand, minsubmindeg, subname, subtbl, pi, submindeg, fus, n, N, l; # Initialize the result values. result:= rec( value:= "unknown", source:= [] ); addvalue:= function( val, src ) if result.value = "unknown" then result.value:= val; elif result.value <> val then Error( "inconsistent minimal degrees" ); fi; AddSet( result.source, src ); end; # `"A"' and `"A.2"' yield . parse:= ParseForwards( grpname, [ "A", IsDigitChar ] ); if parse <> fail then parse:= Int( parse[2] ); if parse < 3 then addvalue( 1, "computed (alternating group)" ); else addvalue( Int( parse ), "computed (alternating group)" ); fi; if mode = "one" then return result; fi; fi; parse:= ParseForwards( grpname, [ "A", IsDigitChar, ".2" ] ); if parse <> fail then parse:= Int( parse[2] ); if parse < 2 then Error( grpname, " makes no sense" ); else addvalue( Int( parse ), "computed (symmetric group)" ); fi; if mode = "one" then return result; fi; fi; # `"L2()"' yields $+1$ if $ \not\in \{ 2, 3, 5, 7, 9, 11 \}$. parse:= ParseForwards( grpname, [ "L2(", IsDigitChar, ")" ] ); if parse <> fail then parse:= Int( parse[2] ); if parse in [ 2, 3, 5, 7, 11 ] then addvalue( parse, "computed (PSL(2,q))" ); elif parse = 9 then addvalue( 6, "computed (PSL(2,q))" ); else addvalue( parse + 1, "computed (PSL(2,q))" ); fi; if mode = "one" then return result; fi; fi; # Use information from the character table from the library. ordtbl:= CharacterTable( grpname ); if IsCharacterTable( ordtbl ) then if HasConstructionInfoCharacterTable( ordtbl ) and IsList( ConstructionInfoCharacterTable( ordtbl ) ) and ConstructionInfoCharacterTable( ordtbl )[1] = "ConstructPermuted" and Length( ConstructionInfoCharacterTable( ordtbl )[2] ) = 1 then # Delegate to another table for which more information is available. identifier:= ConstructionInfoCharacterTable( ordtbl )[2][1]; value:= MinimalRepresentationInfo( identifier, NrMovedPoints ); if value <> fail then addvalue( value.value, Concatenation( "computed (char. table of ", identifier, ")" ) ); if mode = "one" then return result; fi; fi; else # If the first maximal subgroup is known and core-free # then take its index. (This happens for simple tables.) # (Here we need not assume that the permutation representation of # minimal degree is transitive.) s:= CharacterTable( Concatenation( Identifier( ordtbl ), "M1" ) ); if s <> fail and Length( ClassPositionsOfKernel( TrivialCharacter( s )^ordtbl ) ) = 1 then addvalue( Size( ordtbl ) / Size( s ), "computed (char. table)" ); if mode = "one" then return result; fi; fi; # If all tables of maximal subgroups are available then inspect them. # (We try to avoid assuming that the fusions are stored.) if HasMaxes( ordtbl ) then maxes:= List( Maxes( ordtbl ), CharacterTable ); indices:= List( maxes, s -> Size( ordtbl ) / Size( s ) ); if IsSimpleCharacterTable( ordtbl ) then # just a shortcut ... addvalue( Minimum( indices ), "computed (char. table)" ); if mode = "one" then return result; fi; fi; perms:= []; for m in maxes do if GetFusionMap( m, ordtbl ) <> fail then Add( perms, TrivialCharacter( m ) ^ ordtbl ); else Add( perms, fail ); fi; od; if IsSimpleCharacterTable( ordtbl ) then corefreepos:= [ 1 .. Length( perms ) ]; elif not fail in perms then corefreepos:= Filtered( [ 1 .. Length( perms ) ], i -> Length( ClassPositionsOfKernel( perms[i] ) ) = 1 ); else corefreepos:= fail; fi; # If the maximal subgroups of largest order are core-free # then we are done. if corefreepos <> fail and not IsEmpty( corefreepos ) then cand1:= Minimum( indices{ corefreepos } ); if Minimum( indices ) = cand1 then addvalue( cand1, "computed (char. table)" ); if mode = "one" then return result; fi; fi; fi; if corefreepos <> fail then # If the group has a unique minimal normal subgroup # (so the minimal permutation representation is transitive) # that is simple and maximal # then all candidate subgroups in this normal subgroup # are admissible also inside this subgroup; # so the candidate indices for point stabilizers inside this # normal subgroup are minimal degree times index. other:= Difference( [ 1 .. Length( maxes ) ], corefreepos ); if Length( other ) = 1 and IsSimpleCharacterTable( maxes[ other[1] ] ) then minpos:= ClassPositionsOfMinimalNormalSubgroups( ordtbl ); if Length( minpos ) = 1 and ClassPositionsOfKernel( TrivialCharacter( maxes[ other[1] ] )^ordtbl ) = minpos[1] then cand2min:= MinimalRepresentationInfo( Identifier( maxes[ other[1] ] ), NrMovedPoints ); if IsRecord( cand2min ) then addvalue( Minimum( cand1, indices[ other[1] ] * cand2min.value ), "computed (char. table)" ); if mode = "one" then return result; fi; fi; fi; fi; fi; fi; fi; # If the table of marks is known and the minimal permutation # representation is transitive then we can compute directly. if HasFusionToTom( ordtbl ) and Length( ClassPositionsOfMinimalNormalSubgroups( ordtbl ) ) = 1 then tom:= TableOfMarks( ordtbl ); if tom <> fail then if IsSimpleCharacterTable( ordtbl ) then maxes:= MaximalSubgroupsTom( tom ); addvalue( Minimum( maxes[2] ), "computed (table of marks)" ); if mode = "one" then return result; fi; else faith:= Filtered( PermCharsTom( ordtbl, tom ), x -> Length( ClassPositionsOfKernel( x ) ) = 1 ); addvalue( Minimum( List( faith, x -> x[1] ) ), "computed (table of marks)" ); if mode = "one" then return result; fi; fi; fi; fi; # If we have a subgroup with known minimal degree $n$ # and a core-free subgroup of index $n$, # then $n$ is the minimal degree of $G$. mincand:= infinity; minsubmindeg:= Maximum( PrimeDivisors( Size( ordtbl ) ) ); for subname in NamesOfFusionSources( ordtbl ) do subtbl:= CharacterTable( subname ); if subtbl <> fail and IsOrdinaryTable( subtbl ) and Length( ClassPositionsOfKernel( GetFusionMap( subtbl, ordtbl ) ) ) = 1 then pi:= TrivialCharacter( subtbl ) ^ ordtbl; if Length( ClassPositionsOfKernel( pi ) ) = 1 then if pi[1] < mincand then mincand:= pi[1]; fi; fi; submindeg:= MinimalRepresentationInfo( subname, NrMovedPoints ); if submindeg <> fail and minsubmindeg < submindeg.value then minsubmindeg:= submindeg.value; fi; if mincand = minsubmindeg then addvalue( minsubmindeg, "computed (subgroup tables)" ); if mode = "one" then return result; fi; fi; fi; od; # If we have a subgroup with known minimal degree $n$ # and a faithful permutation representation of degree $n$ for $G$ # then $n$ is the minimal degree of $G$. if OneAtlasGeneratingSetInfo( grpname, NrMovedPoints, minsubmindeg ) <> fail then addvalue( minsubmindeg, "computed (subgroup tables, known repres.)" ); if mode = "one" then return result; fi; fi; # If the factor group of $G$ modulo its unique minimal normal subgroup # $N$ is simple and has minimal degree $n$, # and if we know a subgroup $U$ of index $n |N|$ that intersects $N$ # trivially then the minimal degree is $n |N|$. minpos:= ClassPositionsOfMinimalNormalSubgroups( ordtbl ); if Length( minpos ) = 1 then fus:= First( ComputedClassFusions( ordtbl ), r -> ClassPositionsOfKernel( r.map ) = minpos[1] ); if fus <> fail then n:= MinimalRepresentationInfo( fus.name, NrMovedPoints ); if n <> fail then N:= Sum( SizesConjugacyClasses( ordtbl ){ minpos[1] } ); for subname in NamesOfFusionSources( ordtbl ) do subtbl:= CharacterTable( subname ); if subtbl <> fail and IsOrdinaryTable( subtbl ) and Size( ordtbl ) = Size( subtbl ) * n.value then fus:= GetFusionMap( subtbl, ordtbl ); if Length( ClassPositionsOfKernel( fus ) ) = 1 then for l in ClassPositionsOfDirectProductDecompositions( subtbl ) do if ForAny( l, x -> Sum( SizesConjugacyClasses( subtbl ){ x } ) = Size( subtbl ) / N and Intersection( fus{ x }, minpos[1] ) = [ 1 ] ) then addvalue( N * n.value, "computed (factor table)" ); if mode = "one" then return result; fi; fi; od; fi; fi; od; fi; fi; fi; fi; return result; end ); atlasrep-2.1.8/gap/browsectbllib_only.g0000664000175000017500000000020014376762240016301 0ustar samsam# Read Browse applications # after the Browse and CTblLib packages have been loaded. ReadPackage( "atlasrep", "gap/brspor.g" ); atlasrep-2.1.8/gap/brspor.g0000644000175000017500000002113714410313666013715 0ustar samsam############################################################################# ## #W brspor.g GAP 4 package AtlasRep Thomas Breuer ## ## This file contains ## - a record `BibliographySporadicSimple' containing the customizations for ## `BrowseBibliography' that are needed for showing the bibliographies in ## the Atlas of Finite Groups and in the Atlas of Brauer Characters and ## - a very small Browse application `BrowseBibliographySporadicSimple' ## for showing these data. ## ############################################################################# ## ## (Depending on the order of reading package files, ## `BrowseBibliography' may be not yet bound. ## Avoid the syntax error message.) ## if not IsBound( BrowseBibliography ) then BrowseBibliography:= "dummy"; fi; ############################################################################# ## #V BibliographySporadicSimple ## DeclareGlobalVariable( "BibliographySporadicSimple" ); InstallValue( BibliographySporadicSimple, rec( # auxiliary components emptycategory:= "(not assigned to a sporadic simple group)", groupnameinfo:= [ [ "M11", "Mathieu group", "M11" ], [ "M12", "Mathieu group", "M12" ], [ "J1", "Janko group", "J1" ], [ "M22", "Mathieu group", "M22" ], [ "J2", "Janko group", "J2" ], [ "M23", "Mathieu group", "M23" ], [ "HS", "Higman-Sims group", "HS" ], [ "J3", "Janko group", "J3" ], [ "M24", "Mathieu group", "M24" ], [ "McL", "McLaughlin group", "McL" ], [ "He", "Held group", "He" ], [ "Ru", "Rudvalis group", "Ru" ], [ "Suz", "Suzuki group", "Suz" ], [ "ON", "O'Nan group", "O'N" ], [ "Co3", "Conway group", "Co3" ], [ "Co2", "Conway group", "Co2" ], [ "Fi22", "Fischer group", "Fi22" ], [ "HN", "Harada-Norton group", "HN" ], [ "Ly", "Lyons group", "Ly" ], [ "Th", "Thompson group", "Th" ], [ "Fi23", "Fischer group", "Fi23" ], [ "Co1", "Conway group", "Co1" ], [ "J4", "Janko group", "J4" ], [ "Fi24'", "Fischer group", "Fi24'" ], [ "B", "Baby monster group", "B" ], [ "M", "Monster group", "M" ], ], groupnames:= Concatenation( [ ~.emptycategory ], List( ~.groupnameinfo, x -> x[1] ) ), # The following component is used in the manual example for # `BrowseMinimalDegrees'. groupNamesJan05:= [ "M11", "M12", "2.M12", "J1", "M22", "2.M22", "3.M22", "4.M22", "6.M22", "12.M22", "J2", "2.J2", "M23", "HS", "2.HS", "J3", "3.J3", "M24", "McL", "3.McL", "He", "Ru", "2.Ru", "Suz", "2.Suz", "3.Suz", "6.Suz", "ON", "3.ON", "Co3", "Co2", "Fi22", "2.Fi22", "3.Fi22", "6.Fi22", "HN", "Ly", "Th", "Fi23", "Co1", "2.Co1", "J4", "Fi24'", "3.Fi24'", "B", "2.B", "M", ], # the data components filesshort:= [ "Atlas1bib.xml", "Atlas2bib.xml", "ABCapp2bib.xml", "ABCbiblbib.xml" ], filecontents:= [ "ATLAS bibliography (p. 243)", "ATLAS bibliography (pp. 244-251)", "ABC appendix", "ABC bibliography" ], files:= List( ~.filesshort, x -> Filename( DirectoriesPackageLibrary( "atlasrep", "bibl" ), x ) ), header:= "Bibliography of Sporadic Simple Groups", columns:= [ rec( identifier:= "sporsimp", viewLabel:= "G", type:= "values", create:= function( attr, id ) local rows, r; rows:= []; for r in id do if IsBound( r[1].sporsimp ) and r[1].sporsimp <> "" and not r[1].sporsimp in rows then Add( rows, r[1].sporsimp ); fi; od; return rows; end, viewSort:= function( nam1, nam2 ) local list; # Sort sporadic simple groups according to their order. list:= BibliographySporadicSimple.groupnames; if nam1 = "Fi24'" then nam1:= "F3+"; fi; if nam2 = "Fi24'" then nam2:= "F3+"; fi; return Position( list, nam1 ) < Position( list, nam2 ); end, viewValue:= function( x ) if IsEmpty( x ) then return ""; else return rec( rows:= x, align:= "tl" ); fi; end, categoryValue:= value -> BrowseData.ReplacedEntry( value, [ "" ], [ BibliographySporadicSimple.emptycategory ] ), align:= "l", sortParameters:= [ "hide on categorizing", "no", "add counter on categorizing", "yes", "split rows on categorizing", "yes" ], ) ], choice:= [ "authors", "title", "year", "journal", "sporsimp", "sourcefilename" ], sortKeyFunction:= BrowseData.SortKeyFunctionBibRec, ) ); ############################################################################# ## #F BrowseBibliographySporadicSimple() ## ## <#GAPDoc Label="BrowseBibliographySporadicSimple"> ## ## ## ## ## a record as returned by ## . ## ## ## If the &GAP; package Browse (see ) ## is loaded then this function is available. ## It opens a browse table whose rows correspond to the entries of the ## bibliographies in the &ATLAS; of Finite Groups ## and in the &ATLAS; of Brauer Characters . ##

## The function is based on ## , ## see the documentation of this function for details, e.g., about the ## return value. ##

## The returned record encodes the bibliography entries corresponding to ## those rows of the table that are clicked in visual mode, ## in the same format as the return value of ## , ## see the manual of the &GAP; package &GAPDoc; ## for details. ##

## can be called also via ## the menu shown by . ##

## if IsBound( BrowseBibliographySporadicSimple ) then ## > enter:= NCurses.keys.ENTER;; nop:= [ 14, 14, 14 ];; ## > BrowseData.SetReplay( Concatenation( ## > # choose the application ## > "/Bibliography of Sporadic Simple Groups", [ enter, enter ], ## > # search in the title column for the Atlas of Finite Groups ## > "scr/Atlas of finite groups", [ enter, ## > # and quit ## > nop, nop, nop, nop ], "Q" ) ); ## > BrowseGapData();; ## > BrowseData.SetReplay( false ); ## > fi; ## ]]> ##

## The bibliographies contained in the &ATLAS; of Finite Groups ## and in the &ATLAS; of Brauer Characters ## are available online in HTML format, see ## http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/bibl/index.html. ##

## The source data in BibXMLext format, which are used by ## , ## are distributed with the &AtlasRep; package, ## in four files with suffix xml in the package's bibl ## directory. ## Note that each of the two books contains two bibliographies. ##

## Details about the BibXMLext format, including information how to ## transform the data into other formats such as BibTeX, ## can be found in the &GAP; package ## GAPDoc (see ). ## ## ## <#/GAPDoc> ## BindGlobal( "BrowseBibliographySporadicSimple", function() return BrowseBibliography( BibliographySporadicSimple ); end ); ############################################################################# ## ## Undo the dummy assignment. ## if IsString( BrowseBibliography ) then Unbind( BrowseBibliography ); fi; ############################################################################# ## ## Add the Browse application to the list shown by `BrowseGapData'. ## BrowseGapDataAdd( "Bibliography of Sporadic Simple Groups", BrowseBibliographySporadicSimple, true, "\ the contents of the bibliographies contained in the Atlas of Finite Groups \ and in the Atlas of Brauer Characters, \ based on the same Browse application as the menu entry \ ``GAP Bibliography''; \ try ?BrowseBibliographySporadicSimple for details" ); ############################################################################# ## #E atlasrep-2.1.8/gap/mindeg.g0000644000175000017500000113027214410313727013651 0ustar samsam############################################################################# ## #W mindeg.g GAP 4 package AtlasRep Thomas Breuer ## ## This file contains the data concerning representations of minimal degree ## for the groups that occur in the &ATLAS; of Group Representations. ## ############################################################################# ## #V MinimalRepresentationInfoData ## BindGlobal( "MinimalRepresentationInfoData", rec() ); MinimalRepresentationInfoData.datalist:= [ # non-computed values ["2.B",["Characteristic",3],96256,"Jan05"], ["2.B",["Characteristic",5],96256,"Jan05"], ["2.B",["Characteristic",7],96256,"Jan05"], ["2.B",["Characteristic",11],96256,"HL89"], ["2.B",["Characteristic",13],96256,"Jan05"], ["2.B",["Characteristic",17],96256,"HL89"], ["2.B",["Characteristic",19],96256,"HL89"], ["2.B",["Characteristic",23],96256,"HL89"], ["2.B",["Characteristic",31],96256,"Jan05"], ["2.B",["Characteristic",47],96256,"Jan05"], ["2.Co1",["Characteristic",3],24,"Jan95"], ["2.Co1",["Characteristic",5],24,"Hen93"], ["2.Co1",["Characteristic",7],24,"HJLP"], ["2.Co1",["Characteristic",11],24,"HL89"], ["2.Co1",["Characteristic",13],24,"HL89"], ["2.Co1",["Characteristic",23],24,"HL89"], ["2.Fi22",["Characteristic",3],176,"Jan95"], ["2.Fi22",["Characteristic",5],352,"HW94"], ["2.Fi22",["Characteristic",7],352,"HL89"], ["2.Fi22",["Characteristic",11],352,"HL89"], ["2.Fi22",["Characteristic",13],352,"HL89"], ["2.Ru",["Characteristic",3],28,"His94"], ["2.Ru",["Characteristic",5],28,"HM95"], ["3.Fi22",["Characteristic",2],27,"Jan05"], ["3.Fi22",["Characteristic",5],351,"HW94"], ["3.Fi22",["Characteristic",7],351,"HL89"], ["3.Fi22",["Characteristic",11],351,"HL89"], ["3.Fi22",["Characteristic",13],351,"HL89"], ["3.Fi24'",["Characteristic",2],783,"Jan05"], ["3.Fi24'",["Characteristic",5],783,"Jan05"], ["3.Fi24'",["Characteristic",7],783,"Jan05"], ["3.Fi24'",["Characteristic",11],783,"HL89"], ["3.Fi24'",["Characteristic",13],783,"HL89"], ["3.Fi24'",["Characteristic",17],783,"HL89"], ["3.Fi24'",["Characteristic",23],783,"HL89"], ["3.Fi24'",["Characteristic",29],783,"HL89"], ["3.ON",["Characteristic",2],153,"JW98"], ["6.Fi22",["Characteristic",5],1728,"HW94"], ["6.Fi22",["Characteristic",7],1728,"HL89"], ["6.Fi22",["Characteristic",11],1728,"HL89"], ["6.Fi22",["Characteristic",13],1728,"HL89"], ["B",["Characteristic",2],4370,"Jan05"], ["B",["Characteristic",3],4371,"Jan05"], ["B",["Characteristic",5],4371,"Jan05"], ["B",["Characteristic",7],4371,"Jan05"], ["B",["Characteristic",11],4371,"HL89"], ["B",["Characteristic",13],4371,"HL89"], ["B",["Characteristic",17],4371,"HL89"], ["B",["Characteristic",19],4371,"Jan05"], ["B",["Characteristic",23],4371,"HL89"], ["B",["Characteristic",31],4371,"HL89"], ["B",["Characteristic",47],4371,"Jan05"], ["Co1",["Characteristic",2],24,"Jan05"], ["Co1",["Characteristic",3],276,"Jan95"], ["Co1",["Characteristic",5],276,"Jan05"], ["Co1",["Characteristic",7],276,"Jan05"], ["Co1",["Characteristic",11],276,"HL89"], ["Co1",["Characteristic",13],276,"HL89"], ["Co1",["Characteristic",23],276,"HL89"], ["Co2",["Characteristic",2],22,"MR99"], ["Co2",["Characteristic",2],22,"SW94"], ["Co2",["Characteristic",3],23,"Jan95"], ["Co2",["Characteristic",5],23,"HJLP"], ["Co3",["Characteristic",2],22,"SW97"], ["Co3",["Characteristic",3],22,"Jan95"], ["Co3",["Characteristic",5],23,"Mue98"], ["Fi22",["Characteristic",2],78,"Jan05"], ["Fi22",["Characteristic",3],77,"Jan95"], ["Fi22",["Characteristic",5],78,"HL94"], ["Fi22",["Characteristic",5],78,"HW94"], ["Fi22",["Characteristic",7],78,"HL89"], ["Fi22",["Characteristic",11],78,"HL89"], ["Fi22",["Characteristic",13],78,"HL89"], ["Fi23",["Characteristic",2],782,"Jan05"], ["Fi23",["Characteristic",3],253,"Jan95"], ["Fi23",["Characteristic",5],782,"HL94"], ["Fi23",["Characteristic",7],782,"HL89"], ["Fi23",["Characteristic",11],782,"HL89"], ["Fi23",["Characteristic",13],782,"HL89"], ["Fi23",["Characteristic",17],782,"HL89"], ["Fi23",["Characteristic",23],782,"HL89"], ["Fi24'",["Characteristic",2],3774,"Jan05"], ["Fi24'",["Characteristic",3],781,"Jan95"], ["Fi24'",["Characteristic",5],8671,"Jan05"], ["Fi24'",["Characteristic",7],8671,"Jan05"], ["Fi24'",["Characteristic",11],8671,"HL89"], ["Fi24'",["Characteristic",13],8671,"HL89"], ["Fi24'",["Characteristic",17],8671,"HL89"], ["Fi24'",["Characteristic",23],8671,"HL89"], ["Fi24'",["Characteristic",29],8671,"HL89"], ["HN",["Characteristic",2],132,"Jan05"], ["HN",["Characteristic",3],133,"Jan95"], ["HN",["Characteristic",5],133,"Jan05"], ["HN",["Characteristic",7],133,"HL89"], ["HN",["Characteristic",11],133,"HL89"], ["HN",["Characteristic",19],133,"HL89"], ["He",["Characteristic",3],51,"Jan95"], ["He",["Characteristic",7],50,"Ryb88"], ["J4",["Characteristic",2],112,"Jan05"], ["J4",["Characteristic",3],1333,"Jan95"], ["J4",["Characteristic",5],1333,"HL89"], ["J4",["Characteristic",7],1333,"HL89"], ["J4",["Characteristic",11],1333,"Jan05"], ["J4",["Characteristic",23],1333,"HL89"], ["J4",["Characteristic",29],1333,"HL89"], ["J4",["Characteristic",31],1333,"HL89"], ["J4",["Characteristic",37],1333,"HL89"], ["J4",["Characteristic",43],1333,"HL89"], ["L3(5).2","NrMovedPoints",62,"CCNPW85"], ["Ly",["Characteristic",2],2480,"Jan05"], ["Ly",["Characteristic",3],651,"Jan95"], ["Ly",["Characteristic",5],111,"MNP85"], ["Ly",["Characteristic",7],2480,"HL89"], ["Ly",["Characteristic",11],2480,"HL89"], ["Ly",["Characteristic",31],2480,"HL89"], ["Ly",["Characteristic",37],2480,"HL89"], ["Ly",["Characteristic",67],2480,"HL89"], ["M",["Characteristic",2],196882,"GS94"], ["M",["Characteristic",3],196882,"GS94"], ["M",["Characteristic",5],196883,"GS94"], ["M",["Characteristic",7],196883,"GS94"], ["M",["Characteristic",11],196883,"GS94"], ["M",["Characteristic",13],196883,"GS94"], ["M",["Characteristic",29],196883,"GS94"], ["M",["Characteristic",41],196883,"GS94"], ["M",["Characteristic",47],196883,"GS94"], ["M",["Characteristic",59],196883,"GS94"], ["M",["Characteristic",71],196883,"GS94"], ["O8+(3).S4","NrMovedPoints",3360,"CCNPW85"], ["O8-(3)","NrMovedPoints",1066,"CCNPW85"], ["O8-(3).2^2","NrMovedPoints",1066,"CCNPW85"], ["O8-(3).2_1","NrMovedPoints",1066,"CCNPW85"], ["O8-(3).2_3","NrMovedPoints",1066,"CCNPW85"], ["ON",["Characteristic",2],10944,"JW98"], ["ON",["Characteristic",3],154,"JW98"], ["ON",["Characteristic",7],406,"HHM99"], ["ON.2","NrMovedPoints",245520,"CCNPW85"], ["R(27)","NrMovedPoints",19684,"CCNPW85"], ["R(27).3","NrMovedPoints",19684,"CCNPW85"], ["Ru",["Characteristic",3],378,"His94"], ["Ru",["Characteristic",5],133,"HM95"], ["S4(4).4","NrMovedPoints",170,"CCNPW85"], ["Suz",["Characteristic",3],64,"JM97"], ["Th",["Characteristic",2],248,"Jan05"], ["Th",["Characteristic",3],248,"Jan95"], ["Th",["Characteristic",5],248,"Jan05"], ["Th",["Characteristic",7],248,"Jan05"], ["Th",["Characteristic",13],248,"HL89"], ["Th",["Characteristic",19],248,"HL89"], ["Th",["Characteristic",31],248,"HL89"], ["U3(8).(S3x3)","NrMovedPoints",513,"CCNPW85"], ["U3(8).3^2","NrMovedPoints",513,"CCNPW85"], ["U6(2).S3","NrMovedPoints",672,"CCNPW85"], # computed values ["2.(2xF4(2)).2",["Characteristic",0],52,"computed (char. table)"], ["2.2E6(2)",["Characteristic",0],2432,"computed (char. table)"], ["2.2E6(2)",["Characteristic",11],2432,"computed (char. table)"], ["2.2E6(2)",["Characteristic",13],2432,"computed (char. table)"], ["2.2E6(2)",["Characteristic",17],2432,"computed (char. table)"], ["2.2E6(2)",["Characteristic",19],2432,"computed (char. table)"], ["2.2E6(2)",["Size",11],2432,"computed (char. table)"], ["2.2E6(2)",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.2E6(2)",["Size",13],2432,"computed (char. table)"], ["2.2E6(2)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.2E6(2)",["Size",17],2432,"computed (char. table)"], ["2.2E6(2)",["Characteristic",17,"complete"],true,"computed (char. table)"], ["2.2E6(2)",["Size",19],2432,"computed (char. table)"], ["2.2E6(2)",["Characteristic",19,"complete"],true,"computed (char. table)"], ["2.2E6(2).2",["Characteristic",0],2432,"computed (char. table)"], ["2.2E6(2).2",["Characteristic",11],2432,"computed (char. table)"], ["2.2E6(2).2",["Characteristic",13],2432,"computed (char. table)"], ["2.2E6(2).2",["Characteristic",17],2432,"computed (char. table)"], ["2.2E6(2).2",["Characteristic",19],2432,"computed (char. table)"], ["2.2E6(2).2",["Size",11],2432,"computed (char. table)"], ["2.2E6(2).2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.2E6(2).2",["Size",13],2432,"computed (char. table)"], ["2.2E6(2).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.2E6(2).2",["Size",17],2432,"computed (char. table)"], ["2.2E6(2).2",["Characteristic",17,"complete"],true,"computed (char. table)"], ["2.2E6(2).2",["Size",19],2432,"computed (char. table)"], ["2.2E6(2).2",["Characteristic",19,"complete"],true,"computed (char. table)"], ["2.A10",["Characteristic",0],16,"computed (char. table)"], ["2.A10",["Characteristic",3],16,"computed (char. table)"], ["2.A10",["Characteristic",5],8,"computed (char. table)"], ["2.A10",["Characteristic",7],16,"computed (char. table)"], ["2.A10",["Size",3],16,"computed (char. table)"], ["2.A10",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A10",["Size",5],8,"computed (char. table)"], ["2.A10",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A10",["Size",7],16,"computed (char. table)"], ["2.A10",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.A10.2",["Characteristic",0],16,"computed (char. table)"], ["2.A10.2",["Characteristic",3],16,"computed (char. table)"], ["2.A10.2",["Characteristic",5],16,"computed (char. table)"], ["2.A10.2",["Characteristic",7],16,"computed (char. table)"], ["2.A10.2",["Size",3],32,"computed (char. table)"], ["2.A10.2",["Size",9],16,"computed (char. table)"], ["2.A10.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A10.2",["Size",5],16,"computed (char. table)"], ["2.A10.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A10.2",["Size",7],32,"computed (char. table)"], ["2.A10.2",["Size",49],16,"computed (char. table)"], ["2.A10.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.A11",["Characteristic",0],16,"computed (char. table)"], ["2.A11",["Characteristic",3],16,"computed (char. table)"], ["2.A11",["Characteristic",5],16,"computed (char. table)"], ["2.A11",["Characteristic",7],16,"computed (char. table)"], ["2.A11",["Characteristic",11],16,"computed (char. table)"], ["2.A11",["Size",3],16,"computed (char. table)"], ["2.A11",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A11",["Size",5],16,"computed (char. table)"], ["2.A11",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A11",["Size",7],32,"computed (char. table)"], ["2.A11",["Size",49],16,"computed (char. table)"], ["2.A11",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.A11",["Size",11],16,"computed (char. table)"], ["2.A11",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.A11.2",["Characteristic",0],32,"computed (char. table)"], ["2.A11.2",["Characteristic",3],32,"computed (char. table)"], ["2.A11.2",["Characteristic",5],32,"computed (char. table)"], ["2.A11.2",["Characteristic",7],32,"computed (char. table)"], ["2.A11.2",["Characteristic",11],16,"computed (char. table)"], ["2.A11.2",["Size",3],32,"computed (char. table)"], ["2.A11.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A11.2",["Size",5],32,"computed (char. table)"], ["2.A11.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A11.2",["Size",7],32,"computed (char. table)"], ["2.A11.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.A11.2",["Size",11],16,"computed (char. table)"], ["2.A11.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.A12",["Characteristic",0],32,"computed (char. table)"], ["2.A12",["Characteristic",3],16,"computed (char. table)"], ["2.A12",["Characteristic",5],32,"computed (char. table)"], ["2.A12",["Characteristic",7],32,"computed (char. table)"], ["2.A12",["Characteristic",11],32,"computed (char. table)"], ["2.A12",["Size",3],16,"computed (char. table)"], ["2.A12",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A12",["Size",5],32,"computed (char. table)"], ["2.A12",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A12",["Size",7],32,"computed (char. table)"], ["2.A12",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.A12",["Size",11],32,"computed (char. table)"], ["2.A12",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.A12.2",["Characteristic",0],32,"computed (char. table)"], ["2.A12.2",["Characteristic",3],32,"computed (char. table)"], ["2.A12.2",["Characteristic",5],32,"computed (char. table)"], ["2.A12.2",["Characteristic",7],32,"computed (char. table)"], ["2.A12.2",["Characteristic",11],32,"computed (char. table)"], ["2.A12.2",["Size",3],32,"computed (char. table)"], ["2.A12.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A12.2",["Size",5],32,"computed (char. table)"], ["2.A12.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A12.2",["Size",7],32,"computed (char. table)"], ["2.A12.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.A12.2",["Size",11],32,"computed (char. table)"], ["2.A12.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.A13",["Characteristic",0],32,"computed (char. table)"], ["2.A13",["Characteristic",3],32,"computed (char. table)"], ["2.A13",["Characteristic",5],32,"computed (char. table)"], ["2.A13",["Characteristic",7],32,"computed (char. table)"], ["2.A13",["Characteristic",11],32,"computed (char. table)"], ["2.A13",["Characteristic",13],32,"computed (char. table)"], ["2.A13",["Size",3],32,"computed (char. table)"], ["2.A13",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A13",["Size",5],64,"computed (char. table)"], ["2.A13",["Size",25],32,"computed (char. table)"], ["2.A13",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A13",["Size",7],64,"computed (char. table)"], ["2.A13",["Size",49],32,"computed (char. table)"], ["2.A13",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.A13",["Size",11],64,"computed (char. table)"], ["2.A13",["Size",121],32,"computed (char. table)"], ["2.A13",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.A13",["Size",13],32,"computed (char. table)"], ["2.A13",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.A13.2",["Characteristic",0],64,"computed (char. table)"], ["2.A13.2",["Characteristic",3],64,"computed (char. table)"], ["2.A13.2",["Characteristic",5],64,"computed (char. table)"], ["2.A13.2",["Characteristic",7],64,"computed (char. table)"], ["2.A13.2",["Characteristic",11],64,"computed (char. table)"], ["2.A13.2",["Characteristic",13],32,"computed (char. table)"], ["2.A13.2",["Size",3],64,"computed (char. table)"], ["2.A13.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A13.2",["Size",5],64,"computed (char. table)"], ["2.A13.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A13.2",["Size",7],64,"computed (char. table)"], ["2.A13.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.A13.2",["Size",11],64,"computed (char. table)"], ["2.A13.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.A13.2",["Size",13],64,"computed (char. table)"], ["2.A13.2",["Size",169],32,"computed (char. table)"], ["2.A13.2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.A14.2",["Characteristic",0],64,"computed (char. table)"], ["2.A5","NrMovedPoints",24,"computed (table of marks)"], ["2.A5",["Characteristic",0],2,"computed (char. table)"], ["2.A5",["Characteristic",3],2,"computed (char. table)"], ["2.A5",["Characteristic",5],2,"computed (char. table)"], ["2.A5",["Size",3],4,"computed (char. table)"], ["2.A5",["Size",9],2,"computed (char. table)"], ["2.A5",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A5",["Size",5],2,"computed (char. table)"], ["2.A5",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A5.2","NrMovedPoints",40,"computed (table of marks)"], ["2.A5.2",["Characteristic",0],4,"computed (char. table)"], ["2.A5.2",["Characteristic",3],4,"computed (char. table)"], ["2.A5.2",["Characteristic",5],2,"computed (char. table)"], ["2.A5.2",["Size",3],4,"computed (char. table)"], ["2.A5.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A5.2",["Size",5],4,"computed (char. table)"], ["2.A5.2",["Size",25],2,"computed (char. table)"], ["2.A5.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A6","NrMovedPoints",80,"computed (table of marks)"], ["2.A6",["Characteristic",0],4,"computed (char. table)"], ["2.A6",["Characteristic",3],2,"computed (char. table)"], ["2.A6",["Characteristic",5],4,"computed (char. table)"], ["2.A6",["Size",3],4,"computed (char. table)"], ["2.A6",["Size",9],2,"computed (char. table)"], ["2.A6",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A6",["Size",5],4,"computed (char. table)"], ["2.A6",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A6.2_1","NrMovedPoints",80,"computed (subgroup tables, known repres.)"], ["2.A6.2_1","NrMovedPoints",80,"computed (table of marks)"], ["2.A6.2_1",["Characteristic",0],4,"computed (char. table)"], ["2.A6.2_1",["Characteristic",3],4,"computed (char. table)"], ["2.A6.2_1",["Characteristic",5],4,"computed (char. table)"], ["2.A6.2_1",["Size",3],4,"computed (char. table)"], ["2.A6.2_1",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A6.2_1",["Size",5],8,"computed (char. table)"], ["2.A6.2_1",["Size",25],4,"computed (char. table)"], ["2.A6.2_1",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A7","NrMovedPoints",240,"computed (table of marks)"], ["2.A7",["Characteristic",0],4,"computed (char. table)"], ["2.A7",["Characteristic",3],4,"computed (char. table)"], ["2.A7",["Characteristic",5],4,"computed (char. table)"], ["2.A7",["Characteristic",7],4,"computed (char. table)"], ["2.A7",["Size",3],8,"computed (char. table)"], ["2.A7",["Size",9],4,"computed (char. table)"], ["2.A7",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A7",["Size",5],8,"computed (char. table)"], ["2.A7",["Size",25],4,"computed (char. table)"], ["2.A7",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A7",["Size",7],4,"computed (char. table)"], ["2.A7",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.A7.2",["Characteristic",0],8,"computed (char. table)"], ["2.A7.2",["Characteristic",3],8,"computed (char. table)"], ["2.A7.2",["Characteristic",5],8,"computed (char. table)"], ["2.A7.2",["Characteristic",7],4,"computed (char. table)"], ["2.A7.2",["Size",3],8,"computed (char. table)"], ["2.A7.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A7.2",["Size",5],8,"computed (char. table)"], ["2.A7.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A7.2",["Size",7],8,"computed (char. table)"], ["2.A7.2",["Size",49],4,"computed (char. table)"], ["2.A7.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.A8","NrMovedPoints",240,"computed (subgroup tables, known repres.)"], ["2.A8","NrMovedPoints",240,"computed (table of marks)"], ["2.A8",["Characteristic",0],8,"computed (char. table)"], ["2.A8",["Characteristic",3],8,"computed (char. table)"], ["2.A8",["Characteristic",5],8,"computed (char. table)"], ["2.A8",["Characteristic",7],8,"computed (char. table)"], ["2.A8",["Size",3],8,"computed (char. table)"], ["2.A8",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A8",["Size",5],8,"computed (char. table)"], ["2.A8",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A8",["Size",7],8,"computed (char. table)"], ["2.A8",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.A8.2",["Characteristic",0],8,"computed (char. table)"], ["2.A8.2",["Characteristic",3],8,"computed (char. table)"], ["2.A8.2",["Characteristic",5],8,"computed (char. table)"], ["2.A8.2",["Characteristic",7],8,"computed (char. table)"], ["2.A8.2",["Size",3],16,"computed (char. table)"], ["2.A8.2",["Size",9],8,"computed (char. table)"], ["2.A8.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A8.2",["Size",5],8,"computed (char. table)"], ["2.A8.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A8.2",["Size",7],16,"computed (char. table)"], ["2.A8.2",["Size",49],8,"computed (char. table)"], ["2.A8.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.A9",["Characteristic",0],8,"computed (char. table)"], ["2.A9",["Characteristic",3],8,"computed (char. table)"], ["2.A9",["Characteristic",5],8,"computed (char. table)"], ["2.A9",["Characteristic",7],8,"computed (char. table)"], ["2.A9",["Size",3],8,"computed (char. table)"], ["2.A9",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A9",["Size",5],8,"computed (char. table)"], ["2.A9",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A9",["Size",7],8,"computed (char. table)"], ["2.A9",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.A9.2",["Characteristic",0],16,"computed (char. table)"], ["2.A9.2",["Characteristic",3],8,"computed (char. table)"], ["2.A9.2",["Characteristic",5],16,"computed (char. table)"], ["2.A9.2",["Characteristic",7],16,"computed (char. table)"], ["2.A9.2",["Size",3],16,"computed (char. table)"], ["2.A9.2",["Size",9],8,"computed (char. table)"], ["2.A9.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.A9.2",["Size",5],16,"computed (char. table)"], ["2.A9.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.A9.2",["Size",7],16,"computed (char. table)"], ["2.A9.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.B",["Characteristic",0],96256,"computed (char. table)"], ["2.B",["Characteristic",11],96256,"computed (char. table)"], ["2.B",["Characteristic",17],96256,"computed (char. table)"], ["2.B",["Characteristic",23],96256,"computed (char. table)"], ["2.Co1",["Characteristic",0],24,"computed (char. table)"], ["2.Co1",["Characteristic",7],24,"computed (char. table)"], ["2.Co1",["Characteristic",11],24,"computed (char. table)"], ["2.Co1",["Characteristic",13],24,"computed (char. table)"], ["2.Co1",["Characteristic",23],24,"computed (char. table)"], ["2.Co1",["Size",7],24,"computed (char. table)"], ["2.Co1",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.Co1",["Size",11],24,"computed (char. table)"], ["2.Co1",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.Co1",["Size",13],24,"computed (char. table)"], ["2.Co1",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.Co1",["Size",23],24,"computed (char. table)"], ["2.Co1",["Characteristic",23,"complete"],true,"computed (char. table)"], ["2.F4(2)",["Characteristic",0],52,"computed (char. table)"], ["2.F4(2)",["Characteristic",5],52,"computed (char. table)"], ["2.F4(2)",["Characteristic",7],52,"computed (char. table)"], ["2.F4(2)",["Characteristic",13],52,"computed (char. table)"], ["2.F4(2)",["Characteristic",17],52,"computed (char. table)"], ["2.F4(2)",["Size",5],52,"computed (char. table)"], ["2.F4(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.F4(2)",["Size",7],52,"computed (char. table)"], ["2.F4(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.F4(2)",["Size",13],52,"computed (char. table)"], ["2.F4(2)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.F4(2)",["Size",17],52,"computed (char. table)"], ["2.F4(2)",["Characteristic",17,"complete"],true,"computed (char. table)"], ["2.F4(2).2",["Characteristic",0],52,"computed (char. table)"], ["2.F4(2).2",["Characteristic",13],52,"computed (char. table)"], ["2.F4(2).2",["Size",13],104,"computed (char. table)"], ["2.F4(2).2",["Size",169],52,"computed (char. table)"], ["2.F4(2).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.Fi22",["Characteristic",0],352,"computed (char. table)"], ["2.Fi22",["Characteristic",3],176,"computed (char. table)"], ["2.Fi22",["Characteristic",5],352,"computed (char. table)"], ["2.Fi22",["Characteristic",7],352,"computed (char. table)"], ["2.Fi22",["Characteristic",11],352,"computed (char. table)"], ["2.Fi22",["Characteristic",13],352,"computed (char. table)"], ["2.Fi22",["Size",3],176,"computed (char. table)"], ["2.Fi22",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.Fi22",["Size",5],352,"computed (char. table)"], ["2.Fi22",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.Fi22",["Size",7],352,"computed (char. table)"], ["2.Fi22",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.Fi22",["Size",11],352,"computed (char. table)"], ["2.Fi22",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.Fi22",["Size",13],352,"computed (char. table)"], ["2.Fi22",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.Fi22.2",["Characteristic",0],352,"computed (char. table)"], ["2.Fi22.2",["Characteristic",3],352,"computed (char. table)"], ["2.Fi22.2",["Characteristic",5],352,"computed (char. table)"], ["2.Fi22.2",["Characteristic",7],352,"computed (char. table)"], ["2.Fi22.2",["Characteristic",11],352,"computed (char. table)"], ["2.Fi22.2",["Characteristic",13],352,"computed (char. table)"], ["2.Fi22.2",["Size",3],352,"computed (char. table)"], ["2.Fi22.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.Fi22.2",["Size",5],704,"computed (char. table)"], ["2.Fi22.2",["Size",25],352,"computed (char. table)"], ["2.Fi22.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.Fi22.2",["Size",7],352,"computed (char. table)"], ["2.Fi22.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.Fi22.2",["Size",11],704,"computed (char. table)"], ["2.Fi22.2",["Size",121],352,"computed (char. table)"], ["2.Fi22.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.Fi22.2",["Size",13],352,"computed (char. table)"], ["2.Fi22.2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.G2(4)",["Characteristic",0],12,"computed (char. table)"], ["2.G2(4)",["Characteristic",3],12,"computed (char. table)"], ["2.G2(4)",["Characteristic",5],12,"computed (char. table)"], ["2.G2(4)",["Characteristic",7],12,"computed (char. table)"], ["2.G2(4)",["Characteristic",13],12,"computed (char. table)"], ["2.G2(4)",["Size",3],12,"computed (char. table)"], ["2.G2(4)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.G2(4)",["Size",5],12,"computed (char. table)"], ["2.G2(4)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.G2(4)",["Size",7],12,"computed (char. table)"], ["2.G2(4)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.G2(4)",["Size",13],12,"computed (char. table)"], ["2.G2(4)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.G2(4).2",["Characteristic",0],12,"computed (char. table)"], ["2.G2(4).2",["Characteristic",3],12,"computed (char. table)"], ["2.G2(4).2",["Characteristic",5],12,"computed (char. table)"], ["2.G2(4).2",["Characteristic",7],12,"computed (char. table)"], ["2.G2(4).2",["Characteristic",13],12,"computed (char. table)"], ["2.G2(4).2",["Size",3],24,"computed (char. table)"], ["2.G2(4).2",["Size",9],12,"computed (char. table)"], ["2.G2(4).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.G2(4).2",["Size",5],24,"computed (char. table)"], ["2.G2(4).2",["Size",25],12,"computed (char. table)"], ["2.G2(4).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.G2(4).2",["Size",7],12,"computed (char. table)"], ["2.G2(4).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.G2(4).2",["Size",13],24,"computed (char. table)"], ["2.G2(4).2",["Size",169],12,"computed (char. table)"], ["2.G2(4).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.HS",["Characteristic",0],56,"computed (char. table)"], ["2.HS",["Characteristic",3],56,"computed (char. table)"], ["2.HS",["Characteristic",5],28,"computed (char. table)"], ["2.HS",["Characteristic",7],56,"computed (char. table)"], ["2.HS",["Characteristic",11],56,"computed (char. table)"], ["2.HS",["Size",3],56,"computed (char. table)"], ["2.HS",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.HS",["Size",5],28,"computed (char. table)"], ["2.HS",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.HS",["Size",7],56,"computed (char. table)"], ["2.HS",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.HS",["Size",11],56,"computed (char. table)"], ["2.HS",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.HS.2",["Characteristic",0],56,"computed (char. table)"], ["2.HS.2",["Characteristic",3],56,"computed (char. table)"], ["2.HS.2",["Characteristic",5],56,"computed (char. table)"], ["2.HS.2",["Characteristic",7],56,"computed (char. table)"], ["2.HS.2",["Characteristic",11],56,"computed (char. table)"], ["2.HS.2",["Size",3],112,"computed (char. table)"], ["2.HS.2",["Size",9],56,"computed (char. table)"], ["2.HS.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.HS.2",["Size",5],56,"computed (char. table)"], ["2.HS.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.HS.2",["Size",7],112,"computed (char. table)"], ["2.HS.2",["Size",49],56,"computed (char. table)"], ["2.HS.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.HS.2",["Size",11],56,"computed (char. table)"], ["2.HS.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.J2","NrMovedPoints",200,"computed (factor table)"], ["2.J2",["Characteristic",0],6,"computed (char. table)"], ["2.J2",["Characteristic",3],6,"computed (char. table)"], ["2.J2",["Characteristic",5],6,"computed (char. table)"], ["2.J2",["Characteristic",7],6,"computed (char. table)"], ["2.J2",["Size",3],12,"computed (char. table)"], ["2.J2",["Size",9],6,"computed (char. table)"], ["2.J2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.J2",["Size",5],6,"computed (char. table)"], ["2.J2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.J2",["Size",7],12,"computed (char. table)"], ["2.J2",["Size",49],6,"computed (char. table)"], ["2.J2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.J2.2",["Characteristic",0],12,"computed (char. table)"], ["2.J2.2",["Characteristic",3],12,"computed (char. table)"], ["2.J2.2",["Characteristic",5],6,"computed (char. table)"], ["2.J2.2",["Characteristic",7],12,"computed (char. table)"], ["2.J2.2",["Size",3],12,"computed (char. table)"], ["2.J2.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.J2.2",["Size",5],12,"computed (char. table)"], ["2.J2.2",["Size",25],6,"computed (char. table)"], ["2.J2.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.J2.2",["Size",7],12,"computed (char. table)"], ["2.J2.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.L2(11)",["Characteristic",0],6,"computed (char. table)"], ["2.L2(11)",["Characteristic",3],6,"computed (char. table)"], ["2.L2(11)",["Characteristic",5],6,"computed (char. table)"], ["2.L2(11)",["Characteristic",11],2,"computed (char. table)"], ["2.L2(11)",["Size",3],6,"computed (char. table)"], ["2.L2(11)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.L2(11)",["Size",5],6,"computed (char. table)"], ["2.L2(11)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.L2(11)",["Size",11],2,"computed (char. table)"], ["2.L2(11)",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.L2(13)",["Characteristic",0],6,"computed (char. table)"], ["2.L2(13)",["Characteristic",3],6,"computed (char. table)"], ["2.L2(13)",["Characteristic",7],6,"computed (char. table)"], ["2.L2(13)",["Characteristic",13],2,"computed (char. table)"], ["2.L2(13)",["Size",3],6,"computed (char. table)"], ["2.L2(13)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.L2(13)",["Size",7],12,"computed (char. table)"], ["2.L2(13)",["Size",49],6,"computed (char. table)"], ["2.L2(13)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.L2(13)",["Size",13],2,"computed (char. table)"], ["2.L2(13)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.L2(13).2",["Characteristic",0],12,"computed (char. table)"], ["2.L2(13).2",["Characteristic",3],12,"computed (char. table)"], ["2.L2(13).2",["Characteristic",7],12,"computed (char. table)"], ["2.L2(13).2",["Characteristic",13],2,"computed (char. table)"], ["2.L2(13).2",["Size",3],12,"computed (char. table)"], ["2.L2(13).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.L2(13).2",["Size",7],12,"computed (char. table)"], ["2.L2(13).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.L2(13).2",["Size",13],4,"computed (char. table)"], ["2.L2(13).2",["Size",169],2,"computed (char. table)"], ["2.L2(13).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.L2(17)",["Characteristic",0],8,"computed (char. table)"], ["2.L2(17)",["Characteristic",3],8,"computed (char. table)"], ["2.L2(17)",["Characteristic",17],2,"computed (char. table)"], ["2.L2(17)",["Size",3],16,"computed (char. table)"], ["2.L2(17)",["Size",9],8,"computed (char. table)"], ["2.L2(17)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.L2(17)",["Size",17],2,"computed (char. table)"], ["2.L2(17)",["Characteristic",17,"complete"],true,"computed (char. table)"], ["2.L2(17).2",["Characteristic",0],16,"computed (char. table)"], ["2.L2(17).2",["Characteristic",3],16,"computed (char. table)"], ["2.L2(17).2",["Characteristic",17],2,"computed (char. table)"], ["2.L2(17).2",["Size",3],16,"computed (char. table)"], ["2.L2(17).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.L2(17).2",["Size",17],4,"computed (char. table)"], ["2.L2(17).2",["Size",289],2,"computed (char. table)"], ["2.L2(17).2",["Characteristic",17,"complete"],true,"computed (char. table)"], ["2.L2(19)",["Characteristic",0],10,"computed (char. table)"], ["2.L2(19)",["Characteristic",3],10,"computed (char. table)"], ["2.L2(19)",["Characteristic",5],10,"computed (char. table)"], ["2.L2(19)",["Characteristic",19],2,"computed (char. table)"], ["2.L2(19)",["Size",3],18,"computed (char. table)"], ["2.L2(19)",["Size",9],10,"computed (char. table)"], ["2.L2(19)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.L2(19)",["Size",5],10,"computed (char. table)"], ["2.L2(19)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.L2(19)",["Size",19],2,"computed (char. table)"], ["2.L2(19)",["Characteristic",19,"complete"],true,"computed (char. table)"], ["2.L2(23)",["Characteristic",0],12,"computed (char. table)"], ["2.L2(23)",["Characteristic",3],12,"computed (char. table)"], ["2.L2(23)",["Characteristic",11],12,"computed (char. table)"], ["2.L2(23)",["Characteristic",23],2,"computed (char. table)"], ["2.L2(23)",["Size",3],12,"computed (char. table)"], ["2.L2(23)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.L2(23)",["Size",11],24,"computed (char. table)"], ["2.L2(23)",["Size",121],12,"computed (char. table)"], ["2.L2(23)",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.L2(23)",["Size",23],2,"computed (char. table)"], ["2.L2(23)",["Characteristic",23,"complete"],true,"computed (char. table)"], ["2.L2(25)",["Characteristic",0],12,"computed (char. table)"], ["2.L2(25)",["Characteristic",3],12,"computed (char. table)"], ["2.L2(25)",["Characteristic",5],2,"computed (char. table)"], ["2.L2(25)",["Characteristic",13],12,"computed (char. table)"], ["2.L2(25)",["Size",3],12,"computed (char. table)"], ["2.L2(25)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.L2(25)",["Size",5],4,"computed (char. table)"], ["2.L2(25)",["Size",25],2,"computed (char. table)"], ["2.L2(25)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.L2(25)",["Size",13],12,"computed (char. table)"], ["2.L2(25)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.L2(27)",["Characteristic",0],14,"computed (char. table)"], ["2.L2(27)",["Characteristic",3],2,"computed (char. table)"], ["2.L2(27)",["Characteristic",7],14,"computed (char. table)"], ["2.L2(27)",["Characteristic",13],14,"computed (char. table)"], ["2.L2(27)",["Size",3],6,"computed (char. table)"], ["2.L2(27)",["Size",27],2,"computed (char. table)"], ["2.L2(27)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.L2(27)",["Size",7],14,"computed (char. table)"], ["2.L2(27)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.L2(27)",["Size",13],14,"computed (char. table)"], ["2.L2(27)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.L2(29)",["Characteristic",0],14,"computed (char. table)"], ["2.L2(29)",["Characteristic",3],14,"computed (char. table)"], ["2.L2(29)",["Characteristic",5],14,"computed (char. table)"], ["2.L2(29)",["Characteristic",7],14,"computed (char. table)"], ["2.L2(29)",["Characteristic",29],2,"computed (char. table)"], ["2.L2(29)",["Size",3],28,"computed (char. table)"], ["2.L2(29)",["Size",9],14,"computed (char. table)"], ["2.L2(29)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.L2(29)",["Size",5],14,"computed (char. table)"], ["2.L2(29)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.L2(29)",["Size",7],14,"computed (char. table)"], ["2.L2(29)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.L2(29)",["Size",29],2,"computed (char. table)"], ["2.L2(29)",["Characteristic",29,"complete"],true,"computed (char. table)"], ["2.L2(31)",["Characteristic",0],16,"computed (char. table)"], ["2.L2(31)",["Characteristic",3],16,"computed (char. table)"], ["2.L2(31)",["Characteristic",5],16,"computed (char. table)"], ["2.L2(31)",["Characteristic",31],2,"computed (char. table)"], ["2.L2(31)",["Size",3],32,"computed (char. table)"], ["2.L2(31)",["Size",9],16,"computed (char. table)"], ["2.L2(31)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.L2(31)",["Size",5],16,"computed (char. table)"], ["2.L2(31)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.L2(31)",["Size",31],2,"computed (char. table)"], ["2.L2(31)",["Characteristic",31,"complete"],true,"computed (char. table)"], ["2.L2(49)",["Characteristic",0],24,"computed (char. table)"], ["2.L2(49)",["Characteristic",3],24,"computed (char. table)"], ["2.L2(49)",["Characteristic",5],24,"computed (char. table)"], ["2.L2(49)",["Size",3],24,"computed (char. table)"], ["2.L2(49)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.L2(49)",["Size",5],24,"computed (char. table)"], ["2.L2(49)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.L3(2)",["Characteristic",0],4,"computed (char. table)"], ["2.L3(2)",["Characteristic",3],4,"computed (char. table)"], ["2.L3(2)",["Characteristic",7],2,"computed (char. table)"], ["2.L3(2)",["Size",3],8,"computed (char. table)"], ["2.L3(2)",["Size",9],4,"computed (char. table)"], ["2.L3(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.L3(2)",["Size",7],2,"computed (char. table)"], ["2.L3(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.L3(2).2",["Characteristic",0],6,"computed (char. table)"], ["2.L3(2).2",["Characteristic",3],6,"computed (char. table)"], ["2.L3(2).2",["Characteristic",7],2,"computed (char. table)"], ["2.L3(2).2",["Size",3],8,"computed (char. table)"], ["2.L3(2).2",["Size",81],6,"computed (char. table)"], ["2.L3(2).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.L3(2).2",["Size",7],4,"computed (char. table)"], ["2.L3(2).2",["Size",49],2,"computed (char. table)"], ["2.L3(2).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.L3(4)",["Characteristic",0],10,"computed (char. table)"], ["2.L3(4)",["Characteristic",3],6,"computed (char. table)"], ["2.L3(4)",["Characteristic",5],10,"computed (char. table)"], ["2.L3(4)",["Characteristic",7],10,"computed (char. table)"], ["2.L3(4)",["Size",3],6,"computed (char. table)"], ["2.L3(4)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.L3(4)",["Size",5],20,"computed (char. table)"], ["2.L3(4)",["Size",25],10,"computed (char. table)"], ["2.L3(4)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.L3(4)",["Size",7],10,"computed (char. table)"], ["2.L3(4)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.L3(4).2_1",["Characteristic",0],20,"computed (char. table)"], ["2.L3(4).2_1",["Characteristic",3],6,"computed (char. table)"], ["2.L3(4).2_1",["Characteristic",5],20,"computed (char. table)"], ["2.L3(4).2_1",["Characteristic",7],10,"computed (char. table)"], ["2.L3(4).2_1",["Size",3],12,"computed (char. table)"], ["2.L3(4).2_1",["Size",9],6,"computed (char. table)"], ["2.L3(4).2_1",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.L3(4).2_1",["Size",5],20,"computed (char. table)"], ["2.L3(4).2_1",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.L3(4).2_1",["Size",7],10,"computed (char. table)"], ["2.L3(4).2_1",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.M12","NrMovedPoints",24,"computed (factor table)"], ["2.M12",["Characteristic",0],10,"computed (char. table)"], ["2.M12",["Characteristic",3],6,"computed (char. table)"], ["2.M12",["Characteristic",5],10,"computed (char. table)"], ["2.M12",["Characteristic",11],10,"computed (char. table)"], ["2.M12",["Size",3],6,"computed (char. table)"], ["2.M12",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.M12",["Size",5],12,"computed (char. table)"], ["2.M12",["Size",25],10,"computed (char. table)"], ["2.M12",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.M12",["Size",11],10,"computed (char. table)"], ["2.M12",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.M12.2",["Characteristic",0],10,"computed (char. table)"], ["2.M12.2",["Characteristic",3],10,"computed (char. table)"], ["2.M12.2",["Characteristic",5],10,"computed (char. table)"], ["2.M12.2",["Characteristic",11],10,"computed (char. table)"], ["2.M12.2",["Size",3],10,"computed (char. table)"], ["2.M12.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.M12.2",["Size",5],20,"computed (char. table)"], ["2.M12.2",["Size",25],10,"computed (char. table)"], ["2.M12.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.M12.2",["Size",11],10,"computed (char. table)"], ["2.M12.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.M22",["Characteristic",0],10,"computed (char. table)"], ["2.M22",["Characteristic",3],10,"computed (char. table)"], ["2.M22",["Characteristic",5],10,"computed (char. table)"], ["2.M22",["Characteristic",7],10,"computed (char. table)"], ["2.M22",["Characteristic",11],10,"computed (char. table)"], ["2.M22",["Size",3],20,"computed (char. table)"], ["2.M22",["Size",9],10,"computed (char. table)"], ["2.M22",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.M22",["Size",5],20,"computed (char. table)"], ["2.M22",["Size",25],10,"computed (char. table)"], ["2.M22",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.M22",["Size",7],10,"computed (char. table)"], ["2.M22",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.M22",["Size",11],10,"computed (char. table)"], ["2.M22",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.M22.2",["Characteristic",0],10,"computed (char. table)"], ["2.M22.2",["Characteristic",3],10,"computed (char. table)"], ["2.M22.2",["Characteristic",5],10,"computed (char. table)"], ["2.M22.2",["Characteristic",7],10,"computed (char. table)"], ["2.M22.2",["Characteristic",11],10,"computed (char. table)"], ["2.M22.2",["Size",3],20,"computed (char. table)"], ["2.M22.2",["Size",9],10,"computed (char. table)"], ["2.M22.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.M22.2",["Size",5],20,"computed (char. table)"], ["2.M22.2",["Size",25],10,"computed (char. table)"], ["2.M22.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.M22.2",["Size",7],10,"computed (char. table)"], ["2.M22.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.M22.2",["Size",11],10,"computed (char. table)"], ["2.M22.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.O7(3)",["Characteristic",0],520,"computed (char. table)"], ["2.O7(3)",["Characteristic",3],8,"computed (char. table)"], ["2.O7(3)",["Characteristic",5],520,"computed (char. table)"], ["2.O7(3)",["Characteristic",7],520,"computed (char. table)"], ["2.O7(3)",["Characteristic",13],520,"computed (char. table)"], ["2.O7(3)",["Size",3],8,"computed (char. table)"], ["2.O7(3)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.O7(3)",["Size",5],520,"computed (char. table)"], ["2.O7(3)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.O7(3)",["Size",7],520,"computed (char. table)"], ["2.O7(3)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.O7(3)",["Size",13],520,"computed (char. table)"], ["2.O7(3)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.O7(3).2",["Characteristic",0],520,"computed (char. table)"], ["2.O7(3).2",["Characteristic",3],8,"computed (char. table)"], ["2.O7(3).2",["Characteristic",5],520,"computed (char. table)"], ["2.O7(3).2",["Characteristic",7],520,"computed (char. table)"], ["2.O7(3).2",["Characteristic",13],520,"computed (char. table)"], ["2.O7(3).2",["Size",3],16,"computed (char. table)"], ["2.O7(3).2",["Size",9],8,"computed (char. table)"], ["2.O7(3).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.O7(3).2",["Size",5],1040,"computed (char. table)"], ["2.O7(3).2",["Size",25],520,"computed (char. table)"], ["2.O7(3).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.O7(3).2",["Size",7],520,"computed (char. table)"], ["2.O7(3).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.O7(3).2",["Size",13],1040,"computed (char. table)"], ["2.O7(3).2",["Size",169],520,"computed (char. table)"], ["2.O7(3).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.O8+(2)",["Characteristic",0],8,"computed (char. table)"], ["2.O8+(2)",["Characteristic",3],8,"computed (char. table)"], ["2.O8+(2)",["Characteristic",5],8,"computed (char. table)"], ["2.O8+(2)",["Characteristic",7],8,"computed (char. table)"], ["2.O8+(2)",["Size",3],8,"computed (char. table)"], ["2.O8+(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.O8+(2)",["Size",5],8,"computed (char. table)"], ["2.O8+(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.O8+(2)",["Size",7],8,"computed (char. table)"], ["2.O8+(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.O8+(2).2",["Characteristic",0],8,"computed (char. table)"], ["2.O8+(2).2",["Characteristic",3],8,"computed (char. table)"], ["2.O8+(2).2",["Characteristic",5],8,"computed (char. table)"], ["2.O8+(2).2",["Characteristic",7],8,"computed (char. table)"], ["2.O8+(2).2",["Size",3],8,"computed (char. table)"], ["2.O8+(2).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.O8+(2).2",["Size",5],8,"computed (char. table)"], ["2.O8+(2).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.O8+(2).2",["Size",7],8,"computed (char. table)"], ["2.O8+(2).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.Ru",["Characteristic",0],28,"computed (char. table)"], ["2.Ru",["Characteristic",3],28,"computed (char. table)"], ["2.Ru",["Characteristic",5],28,"computed (char. table)"], ["2.Ru",["Characteristic",7],28,"computed (char. table)"], ["2.Ru",["Characteristic",13],28,"computed (char. table)"], ["2.Ru",["Characteristic",29],28,"computed (char. table)"], ["2.Ru",["Size",3],56,"computed (char. table)"], ["2.Ru",["Size",9],28,"computed (char. table)"], ["2.Ru",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.Ru",["Size",5],28,"computed (char. table)"], ["2.Ru",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.Ru",["Size",7],56,"computed (char. table)"], ["2.Ru",["Size",49],28,"computed (char. table)"], ["2.Ru",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.Ru",["Size",13],28,"computed (char. table)"], ["2.Ru",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.Ru",["Size",29],28,"computed (char. table)"], ["2.Ru",["Characteristic",29,"complete"],true,"computed (char. table)"], ["2.S4(5)",["Characteristic",0],12,"computed (char. table)"], ["2.S4(5)",["Characteristic",3],12,"computed (char. table)"], ["2.S4(5)",["Characteristic",5],4,"computed (char. table)"], ["2.S4(5)",["Characteristic",13],12,"computed (char. table)"], ["2.S4(5)",["Size",3],24,"computed (char. table)"], ["2.S4(5)",["Size",9],12,"computed (char. table)"], ["2.S4(5)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.S4(5)",["Size",5],4,"computed (char. table)"], ["2.S4(5)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.S4(5)",["Size",13],24,"computed (char. table)"], ["2.S4(5)",["Size",169],12,"computed (char. table)"], ["2.S4(5)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.S6(2)","NrMovedPoints",240,"computed (subgroup tables, known repres.)"], ["2.S6(2)","NrMovedPoints",240,"computed (table of marks)"], ["2.S6(2)",["Characteristic",0],8,"computed (char. table)"], ["2.S6(2)",["Characteristic",3],8,"computed (char. table)"], ["2.S6(2)",["Characteristic",5],8,"computed (char. table)"], ["2.S6(2)",["Characteristic",7],8,"computed (char. table)"], ["2.S6(2)",["Size",3],8,"computed (char. table)"], ["2.S6(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.S6(2)",["Size",5],8,"computed (char. table)"], ["2.S6(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.S6(2)",["Size",7],8,"computed (char. table)"], ["2.S6(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.S6(3)",["Characteristic",0],14,"computed (char. table)"], ["2.S6(3)",["Characteristic",3],6,"computed (char. table)"], ["2.S6(3)",["Characteristic",5],14,"computed (char. table)"], ["2.S6(3)",["Characteristic",7],14,"computed (char. table)"], ["2.S6(3)",["Characteristic",13],14,"computed (char. table)"], ["2.S6(3)",["Size",3],6,"computed (char. table)"], ["2.S6(3)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.S6(3)",["Size",5],28,"computed (char. table)"], ["2.S6(3)",["Size",25],14,"computed (char. table)"], ["2.S6(3)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.S6(3)",["Size",7],14,"computed (char. table)"], ["2.S6(3)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.S6(3)",["Size",13],14,"computed (char. table)"], ["2.S6(3)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.S6(3).2",["Characteristic",0],28,"computed (char. table)"], ["2.S6(3).2",["Characteristic",3],6,"computed (char. table)"], ["2.S6(3).2",["Characteristic",5],28,"computed (char. table)"], ["2.S6(3).2",["Characteristic",7],28,"computed (char. table)"], ["2.S6(3).2",["Characteristic",13],28,"computed (char. table)"], ["2.S6(3).2",["Size",3],6,"computed (char. table)"], ["2.S6(3).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.S6(3).2",["Size",5],28,"computed (char. table)"], ["2.S6(3).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.S6(3).2",["Size",7],28,"computed (char. table)"], ["2.S6(3).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.S6(3).2",["Size",13],28,"computed (char. table)"], ["2.S6(3).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.Suz",["Characteristic",0],220,"computed (char. table)"], ["2.Suz",["Characteristic",3],12,"computed (char. table)"], ["2.Suz",["Characteristic",5],220,"computed (char. table)"], ["2.Suz",["Characteristic",7],220,"computed (char. table)"], ["2.Suz",["Characteristic",11],220,"computed (char. table)"], ["2.Suz",["Characteristic",13],220,"computed (char. table)"], ["2.Suz",["Size",3],12,"computed (char. table)"], ["2.Suz",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.Suz",["Size",5],220,"computed (char. table)"], ["2.Suz",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.Suz",["Size",7],220,"computed (char. table)"], ["2.Suz",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.Suz",["Size",11],220,"computed (char. table)"], ["2.Suz",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.Suz",["Size",13],220,"computed (char. table)"], ["2.Suz",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.Suz.2",["Characteristic",0],220,"computed (char. table)"], ["2.Suz.2",["Characteristic",3],12,"computed (char. table)"], ["2.Suz.2",["Characteristic",5],220,"computed (char. table)"], ["2.Suz.2",["Characteristic",7],220,"computed (char. table)"], ["2.Suz.2",["Characteristic",11],220,"computed (char. table)"], ["2.Suz.2",["Size",3],12,"computed (char. table)"], ["2.Suz.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.Suz.2",["Size",5],440,"computed (char. table)"], ["2.Suz.2",["Size",25],220,"computed (char. table)"], ["2.Suz.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.Suz.2",["Size",7],440,"computed (char. table)"], ["2.Suz.2",["Size",49],220,"computed (char. table)"], ["2.Suz.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.Suz.2",["Size",11],220,"computed (char. table)"], ["2.Suz.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2.Sz(8)",["Characteristic",0],40,"computed (char. table)"], ["2.Sz(8)",["Characteristic",5],8,"computed (char. table)"], ["2.Sz(8)",["Characteristic",7],40,"computed (char. table)"], ["2.Sz(8)",["Characteristic",13],16,"computed (char. table)"], ["2.Sz(8)",["Size",5],8,"computed (char. table)"], ["2.Sz(8)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.Sz(8)",["Size",7],40,"computed (char. table)"], ["2.Sz(8)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.Sz(8)",["Size",13],16,"computed (char. table)"], ["2.Sz(8)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2.U4(2)","NrMovedPoints",80,"computed (table of marks)"], ["2.U4(2)",["Characteristic",0],4,"computed (char. table)"], ["2.U4(2)",["Characteristic",3],4,"computed (char. table)"], ["2.U4(2)",["Characteristic",5],4,"computed (char. table)"], ["2.U4(2)",["Size",3],4,"computed (char. table)"], ["2.U4(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.U4(2)",["Size",5],8,"computed (char. table)"], ["2.U4(2)",["Size",25],4,"computed (char. table)"], ["2.U4(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.U4(2).2","NrMovedPoints",80,"computed (table of marks)"], ["2.U4(2).2",["Characteristic",0],8,"computed (char. table)"], ["2.U4(2).2",["Characteristic",3],4,"computed (char. table)"], ["2.U4(2).2",["Characteristic",5],8,"computed (char. table)"], ["2.U4(2).2",["Size",3],4,"computed (char. table)"], ["2.U4(2).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.U4(2).2",["Size",5],8,"computed (char. table)"], ["2.U4(2).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.U4(3).D8",["Characteristic",0],20,"computed (char. table)"], ["2.U6(2)",["Characteristic",0],56,"computed (char. table)"], ["2.U6(2)",["Characteristic",3],56,"computed (char. table)"], ["2.U6(2)",["Characteristic",5],56,"computed (char. table)"], ["2.U6(2)",["Characteristic",7],56,"computed (char. table)"], ["2.U6(2)",["Characteristic",11],56,"computed (char. table)"], ["2.U6(2)",["Size",3],56,"computed (char. table)"], ["2.U6(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2.U6(2)",["Size",5],56,"computed (char. table)"], ["2.U6(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2.U6(2)",["Size",7],56,"computed (char. table)"], ["2.U6(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2.U6(2)",["Size",11],56,"computed (char. table)"], ["2.U6(2)",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2E6(2)",["Characteristic",0],1938,"computed (char. table)"], ["2E6(2)",["Characteristic",11],1938,"computed (char. table)"], ["2E6(2)",["Characteristic",13],1938,"computed (char. table)"], ["2E6(2)",["Characteristic",17],1938,"computed (char. table)"], ["2E6(2)",["Characteristic",19],1938,"computed (char. table)"], ["2E6(2)",["Size",11],1938,"computed (char. table)"], ["2E6(2)",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2E6(2)",["Size",13],1938,"computed (char. table)"], ["2E6(2)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2E6(2)",["Size",17],1938,"computed (char. table)"], ["2E6(2)",["Characteristic",17,"complete"],true,"computed (char. table)"], ["2E6(2)",["Size",19],1938,"computed (char. table)"], ["2E6(2)",["Characteristic",19,"complete"],true,"computed (char. table)"], ["2E6(2).2",["Characteristic",0],1938,"computed (char. table)"], ["2E6(2).2",["Characteristic",11],1938,"computed (char. table)"], ["2E6(2).2",["Characteristic",13],1938,"computed (char. table)"], ["2E6(2).2",["Characteristic",17],1938,"computed (char. table)"], ["2E6(2).2",["Characteristic",19],1938,"computed (char. table)"], ["2E6(2).2",["Size",11],1938,"computed (char. table)"], ["2E6(2).2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["2E6(2).2",["Size",13],1938,"computed (char. table)"], ["2E6(2).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2E6(2).2",["Size",17],1938,"computed (char. table)"], ["2E6(2).2",["Characteristic",17,"complete"],true,"computed (char. table)"], ["2E6(2).2",["Size",19],1938,"computed (char. table)"], ["2E6(2).2",["Characteristic",19,"complete"],true,"computed (char. table)"], ["2E6(2).3",["Characteristic",0],1938,"computed (char. table)"], ["2E6(2).S3",["Characteristic",0],1938,"computed (char. table)"], ["2F4(2)'","NrMovedPoints",1600,"computed (char. table)"], ["2F4(2)'","NrMovedPoints",1600,"computed (table of marks)"], ["2F4(2)'",["Characteristic",0],26,"computed (char. table)"], ["2F4(2)'",["Characteristic",2],26,"computed (char. table)"], ["2F4(2)'",["Characteristic",3],26,"computed (char. table)"], ["2F4(2)'",["Characteristic",5],26,"computed (char. table)"], ["2F4(2)'",["Characteristic",13],26,"computed (char. table)"], ["2F4(2)'",["Size",2],26,"computed (char. table)"], ["2F4(2)'",["Characteristic",2,"complete"],true,"computed (char. table)"], ["2F4(2)'",["Size",3],26,"computed (char. table)"], ["2F4(2)'",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2F4(2)'",["Size",5],27,"computed (char. table)"], ["2F4(2)'",["Size",25],26,"computed (char. table)"], ["2F4(2)'",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2F4(2)'",["Size",13],27,"computed (char. table)"], ["2F4(2)'",["Size",169],26,"computed (char. table)"], ["2F4(2)'",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2F4(2)'.2",["Characteristic",0],27,"computed (char. table)"], ["2F4(2)'.2",["Characteristic",2],26,"computed (char. table)"], ["2F4(2)'.2",["Characteristic",3],27,"computed (char. table)"], ["2F4(2)'.2",["Characteristic",5],27,"computed (char. table)"], ["2F4(2)'.2",["Characteristic",13],27,"computed (char. table)"], ["2F4(2)'.2",["Size",2],26,"computed (char. table)"], ["2F4(2)'.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["2F4(2)'.2",["Size",3],52,"computed (char. table)"], ["2F4(2)'.2",["Size",9],27,"computed (char. table)"], ["2F4(2)'.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2F4(2)'.2",["Size",5],27,"computed (char. table)"], ["2F4(2)'.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2F4(2)'.2",["Size",13],27,"computed (char. table)"], ["2F4(2)'.2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2^(1+24).Co1",["Characteristic",0],98304,"computed (char. table)"], ["2^2.2E6(2).S3",["Characteristic",0],7296,"computed (char. table)"], ["2^2.L3(4).2_2","NrMovedPoints",224,"computed (table of marks)"], ["2^2.L3(4).2_2",["Characteristic",0],20,"computed (char. table)"], ["2^2.L3(4).2_2",["Characteristic",3],12,"computed (char. table)"], ["2^2.L3(4).2_2",["Characteristic",5],20,"computed (char. table)"], ["2^2.L3(4).2_2",["Characteristic",7],20,"computed (char. table)"], ["2^2.L3(4).2_2",["Size",3],12,"computed (char. table)"], ["2^2.L3(4).2_2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2^2.L3(4).2_2",["Size",5],40,"computed (char. table)"], ["2^2.L3(4).2_2",["Size",25],20,"computed (char. table)"], ["2^2.L3(4).2_2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2^2.L3(4).2_2",["Size",7],20,"computed (char. table)"], ["2^2.L3(4).2_2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2^2.Sz(8).3",["Characteristic",0],120,"computed (char. table)"], ["2^2.Sz(8).3",["Characteristic",3],120,"computed (char. table)"], ["2^2.Sz(8).3",["Characteristic",5],24,"computed (char. table)"], ["2^2.Sz(8).3",["Characteristic",7],120,"computed (char. table)"], ["2^2.Sz(8).3",["Characteristic",13],48,"computed (char. table)"], ["2^2.Sz(8).3",["Size",3],192,"computed (char. table)"], ["2^2.Sz(8).3",["Size",27],120,"computed (char. table)"], ["2^2.Sz(8).3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["2^2.Sz(8).3",["Size",5],24,"computed (char. table)"], ["2^2.Sz(8).3",["Characteristic",5,"complete"],true,"computed (char. table)"], ["2^2.Sz(8).3",["Size",7],120,"computed (char. table)"], ["2^2.Sz(8).3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["2^2.Sz(8).3",["Size",13],48,"computed (char. table)"], ["2^2.Sz(8).3",["Characteristic",13,"complete"],true,"computed (char. table)"], ["2^4.A8","NrMovedPoints",30,"computed (table of marks)"], ["2^4.A8",["Characteristic",0],15,"computed (char. table)"], ["3.2E6(2)",["Characteristic",0],46683,"computed (char. table)"], ["3.2E6(2).2",["Characteristic",0],93366,"computed (char. table)"], ["3.A6","NrMovedPoints",18,"computed (factor table)"], ["3.A6",["Characteristic",0],3,"computed (char. table)"], ["3.A6",["Characteristic",2],3,"computed (char. table)"], ["3.A6",["Characteristic",5],3,"computed (char. table)"], ["3.A6",["Size",2],6,"computed (char. table)"], ["3.A6",["Size",4],3,"computed (char. table)"], ["3.A6",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.A6",["Size",5],6,"computed (char. table)"], ["3.A6",["Size",25],3,"computed (char. table)"], ["3.A6",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.A6.2_1","NrMovedPoints",18,"computed (subgroup tables, known repres.)"], ["3.A6.2_1",["Characteristic",0],6,"computed (char. table)"], ["3.A6.2_1",["Characteristic",2],6,"computed (char. table)"], ["3.A6.2_1",["Characteristic",5],6,"computed (char. table)"], ["3.A6.2_1",["Size",2],6,"computed (char. table)"], ["3.A6.2_1",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.A6.2_1",["Size",5],6,"computed (char. table)"], ["3.A6.2_1",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.A7",["Characteristic",0],6,"computed (char. table)"], ["3.A7",["Characteristic",2],6,"computed (char. table)"], ["3.A7",["Characteristic",5],3,"computed (char. table)"], ["3.A7",["Characteristic",7],6,"computed (char. table)"], ["3.A7",["Size",2],12,"computed (char. table)"], ["3.A7",["Size",4],6,"computed (char. table)"], ["3.A7",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.A7",["Size",5],6,"computed (char. table)"], ["3.A7",["Size",25],3,"computed (char. table)"], ["3.A7",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.A7",["Size",7],6,"computed (char. table)"], ["3.A7",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.A7.2","NrMovedPoints",63,"computed (table of marks)"], ["3.A7.2",["Characteristic",0],12,"computed (char. table)"], ["3.A7.2",["Characteristic",2],12,"computed (char. table)"], ["3.A7.2",["Characteristic",5],6,"computed (char. table)"], ["3.A7.2",["Characteristic",7],12,"computed (char. table)"], ["3.A7.2",["Size",2],12,"computed (char. table)"], ["3.A7.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.A7.2",["Size",5],6,"computed (char. table)"], ["3.A7.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.A7.2",["Size",7],12,"computed (char. table)"], ["3.A7.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.Fi22",["Characteristic",0],351,"computed (char. table)"], ["3.Fi22",["Characteristic",2],27,"computed (char. table)"], ["3.Fi22",["Characteristic",5],351,"computed (char. table)"], ["3.Fi22",["Characteristic",7],351,"computed (char. table)"], ["3.Fi22",["Characteristic",11],351,"computed (char. table)"], ["3.Fi22",["Characteristic",13],351,"computed (char. table)"], ["3.Fi22",["Size",2],54,"computed (char. table)"], ["3.Fi22",["Size",4],27,"computed (char. table)"], ["3.Fi22",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.Fi22",["Size",5],702,"computed (char. table)"], ["3.Fi22",["Size",25],351,"computed (char. table)"], ["3.Fi22",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.Fi22",["Size",7],351,"computed (char. table)"], ["3.Fi22",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.Fi22",["Size",11],702,"computed (char. table)"], ["3.Fi22",["Size",121],351,"computed (char. table)"], ["3.Fi22",["Characteristic",11,"complete"],true,"computed (char. table)"], ["3.Fi22",["Size",13],351,"computed (char. table)"], ["3.Fi22",["Characteristic",13,"complete"],true,"computed (char. table)"], ["3.Fi22.2",["Characteristic",0],702,"computed (char. table)"], ["3.Fi22.2",["Characteristic",2],54,"computed (char. table)"], ["3.Fi22.2",["Characteristic",5],702,"computed (char. table)"], ["3.Fi22.2",["Characteristic",7],702,"computed (char. table)"], ["3.Fi22.2",["Characteristic",11],702,"computed (char. table)"], ["3.Fi22.2",["Characteristic",13],702,"computed (char. table)"], ["3.Fi22.2",["Size",2],54,"computed (char. table)"], ["3.Fi22.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.Fi22.2",["Size",5],702,"computed (char. table)"], ["3.Fi22.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.Fi22.2",["Size",7],702,"computed (char. table)"], ["3.Fi22.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.Fi22.2",["Size",11],702,"computed (char. table)"], ["3.Fi22.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["3.Fi22.2",["Size",13],702,"computed (char. table)"], ["3.Fi22.2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["3.Fi24'","NrMovedPoints",920808,"computed (factor table)"], ["3.Fi24'",["Characteristic",0],783,"computed (char. table)"], ["3.Fi24'",["Characteristic",11],783,"computed (char. table)"], ["3.Fi24'",["Characteristic",23],783,"computed (char. table)"], ["3.Fi24'",["Size",23],1566,"computed (char. table)"], ["3.Fi24'",["Size",529],783,"computed (char. table)"], ["3.Fi24'",["Characteristic",23,"complete"],true,"computed (char. table)"], ["3.Fi24'.2","NrMovedPoints",920808,"computed (subgroup tables, known repres.)"], ["3.Fi24'.2",["Characteristic",0],1566,"computed (char. table)"], ["3.Fi24'.2",["Characteristic",11],1566,"computed (char. table)"], ["3.Fi24'.2",["Characteristic",13],1566,"computed (char. table)"], ["3.Fi24'.2",["Characteristic",23],1566,"computed (char. table)"], ["3.Fi24'.2",["Size",11],1566,"computed (char. table)"], ["3.Fi24'.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["3.Fi24'.2",["Size",13],1566,"computed (char. table)"], ["3.Fi24'.2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["3.Fi24'.2",["Size",23],1566,"computed (char. table)"], ["3.Fi24'.2",["Characteristic",23,"complete"],true,"computed (char. table)"], ["3.G2(3)",["Characteristic",0],27,"computed (char. table)"], ["3.G2(3)",["Characteristic",2],27,"computed (char. table)"], ["3.G2(3)",["Characteristic",7],27,"computed (char. table)"], ["3.G2(3)",["Characteristic",13],27,"computed (char. table)"], ["3.G2(3)",["Size",2],54,"computed (char. table)"], ["3.G2(3)",["Size",4],27,"computed (char. table)"], ["3.G2(3)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.G2(3)",["Size",7],27,"computed (char. table)"], ["3.G2(3)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.G2(3)",["Size",13],27,"computed (char. table)"], ["3.G2(3)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["3.G2(3).2",["Characteristic",0],54,"computed (char. table)"], ["3.G2(3).2",["Characteristic",2],54,"computed (char. table)"], ["3.G2(3).2",["Characteristic",7],54,"computed (char. table)"], ["3.G2(3).2",["Characteristic",13],54,"computed (char. table)"], ["3.G2(3).2",["Size",2],54,"computed (char. table)"], ["3.G2(3).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.G2(3).2",["Size",7],54,"computed (char. table)"], ["3.G2(3).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.G2(3).2",["Size",13],54,"computed (char. table)"], ["3.G2(3).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["3.J3",["Characteristic",0],18,"computed (char. table)"], ["3.J3",["Characteristic",2],9,"computed (char. table)"], ["3.J3",["Characteristic",5],18,"computed (char. table)"], ["3.J3",["Characteristic",17],18,"computed (char. table)"], ["3.J3",["Characteristic",19],18,"computed (char. table)"], ["3.J3",["Size",2],18,"computed (char. table)"], ["3.J3",["Size",4],9,"computed (char. table)"], ["3.J3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.J3",["Size",5],36,"computed (char. table)"], ["3.J3",["Size",25],18,"computed (char. table)"], ["3.J3",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.J3",["Size",17],36,"computed (char. table)"], ["3.J3",["Size",289],18,"computed (char. table)"], ["3.J3",["Characteristic",17,"complete"],true,"computed (char. table)"], ["3.J3",["Size",19],18,"computed (char. table)"], ["3.J3",["Characteristic",19,"complete"],true,"computed (char. table)"], ["3.J3.2",["Characteristic",0],36,"computed (char. table)"], ["3.J3.2",["Characteristic",2],18,"computed (char. table)"], ["3.J3.2",["Characteristic",5],36,"computed (char. table)"], ["3.J3.2",["Characteristic",17],36,"computed (char. table)"], ["3.J3.2",["Characteristic",19],36,"computed (char. table)"], ["3.J3.2",["Size",2],18,"computed (char. table)"], ["3.J3.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.J3.2",["Size",5],36,"computed (char. table)"], ["3.J3.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.J3.2",["Size",17],36,"computed (char. table)"], ["3.J3.2",["Characteristic",17,"complete"],true,"computed (char. table)"], ["3.J3.2",["Size",19],36,"computed (char. table)"], ["3.J3.2",["Characteristic",19,"complete"],true,"computed (char. table)"], ["3.L3(4)","NrMovedPoints",63,"computed (table of marks)"], ["3.L3(4)",["Characteristic",0],15,"computed (char. table)"], ["3.L3(4)",["Characteristic",2],3,"computed (char. table)"], ["3.L3(4)",["Characteristic",5],15,"computed (char. table)"], ["3.L3(4)",["Characteristic",7],15,"computed (char. table)"], ["3.L3(4)",["Size",2],6,"computed (char. table)"], ["3.L3(4)",["Size",4],3,"computed (char. table)"], ["3.L3(4)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.L3(4)",["Size",5],30,"computed (char. table)"], ["3.L3(4)",["Size",25],15,"computed (char. table)"], ["3.L3(4)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.L3(4)",["Size",7],15,"computed (char. table)"], ["3.L3(4)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.L3(4).2_1",["Characteristic",0],15,"computed (char. table)"], ["3.L3(4).2_1",["Characteristic",2],6,"computed (char. table)"], ["3.L3(4).2_1",["Characteristic",5],15,"computed (char. table)"], ["3.L3(4).2_1",["Characteristic",7],15,"computed (char. table)"], ["3.L3(4).2_1",["Size",2],12,"computed (char. table)"], ["3.L3(4).2_1",["Size",4],6,"computed (char. table)"], ["3.L3(4).2_1",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.L3(4).2_1",["Size",5],30,"computed (char. table)"], ["3.L3(4).2_1",["Size",25],15,"computed (char. table)"], ["3.L3(4).2_1",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.L3(4).2_1",["Size",7],15,"computed (char. table)"], ["3.L3(4).2_1",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.L3(7)",["Characteristic",0],57,"computed (char. table)"], ["3.L3(7)",["Characteristic",2],57,"computed (char. table)"], ["3.L3(7)",["Characteristic",7],3,"computed (char. table)"], ["3.L3(7)",["Characteristic",19],57,"computed (char. table)"], ["3.L3(7)",["Size",2],114,"computed (char. table)"], ["3.L3(7)",["Size",4],57,"computed (char. table)"], ["3.L3(7)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.L3(7)",["Size",7],3,"computed (char. table)"], ["3.L3(7)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.L3(7)",["Size",19],57,"computed (char. table)"], ["3.L3(7)",["Characteristic",19,"complete"],true,"computed (char. table)"], ["3.L3(7).2",["Characteristic",0],114,"computed (char. table)"], ["3.L3(7).2",["Characteristic",2],114,"computed (char. table)"], ["3.L3(7).2",["Characteristic",7],6,"computed (char. table)"], ["3.L3(7).2",["Characteristic",19],114,"computed (char. table)"], ["3.L3(7).2",["Size",2],114,"computed (char. table)"], ["3.L3(7).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.L3(7).2",["Size",7],6,"computed (char. table)"], ["3.L3(7).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.L3(7).2",["Size",19],114,"computed (char. table)"], ["3.L3(7).2",["Characteristic",19,"complete"],true,"computed (char. table)"], ["3.M22",["Characteristic",0],21,"computed (char. table)"], ["3.M22",["Characteristic",2],6,"computed (char. table)"], ["3.M22",["Characteristic",5],21,"computed (char. table)"], ["3.M22",["Characteristic",7],21,"computed (char. table)"], ["3.M22",["Characteristic",11],21,"computed (char. table)"], ["3.M22",["Size",2],12,"computed (char. table)"], ["3.M22",["Size",4],6,"computed (char. table)"], ["3.M22",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.M22",["Size",5],42,"computed (char. table)"], ["3.M22",["Size",25],21,"computed (char. table)"], ["3.M22",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.M22",["Size",7],21,"computed (char. table)"], ["3.M22",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.M22",["Size",11],42,"computed (char. table)"], ["3.M22",["Size",121],21,"computed (char. table)"], ["3.M22",["Characteristic",11,"complete"],true,"computed (char. table)"], ["3.M22.2",["Characteristic",0],42,"computed (char. table)"], ["3.M22.2",["Characteristic",2],12,"computed (char. table)"], ["3.M22.2",["Characteristic",5],42,"computed (char. table)"], ["3.M22.2",["Characteristic",7],42,"computed (char. table)"], ["3.M22.2",["Characteristic",11],42,"computed (char. table)"], ["3.M22.2",["Size",2],12,"computed (char. table)"], ["3.M22.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.M22.2",["Size",5],42,"computed (char. table)"], ["3.M22.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.M22.2",["Size",7],42,"computed (char. table)"], ["3.M22.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.M22.2",["Size",11],42,"computed (char. table)"], ["3.M22.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["3.McL",["Characteristic",0],126,"computed (char. table)"], ["3.McL",["Characteristic",2],126,"computed (char. table)"], ["3.McL",["Characteristic",5],45,"computed (char. table)"], ["3.McL",["Characteristic",7],126,"computed (char. table)"], ["3.McL",["Characteristic",11],126,"computed (char. table)"], ["3.McL",["Size",2],252,"computed (char. table)"], ["3.McL",["Size",4],126,"computed (char. table)"], ["3.McL",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.McL",["Size",5],90,"computed (char. table)"], ["3.McL",["Size",25],45,"computed (char. table)"], ["3.McL",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.McL",["Size",7],252,"computed (char. table)"], ["3.McL",["Size",49],126,"computed (char. table)"], ["3.McL",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.McL",["Size",11],252,"computed (char. table)"], ["3.McL",["Size",121],126,"computed (char. table)"], ["3.McL",["Characteristic",11,"complete"],true,"computed (char. table)"], ["3.McL.2",["Characteristic",0],252,"computed (char. table)"], ["3.McL.2",["Characteristic",2],252,"computed (char. table)"], ["3.McL.2",["Characteristic",5],90,"computed (char. table)"], ["3.McL.2",["Characteristic",7],252,"computed (char. table)"], ["3.McL.2",["Characteristic",11],252,"computed (char. table)"], ["3.McL.2",["Size",2],504,"computed (char. table)"], ["3.McL.2",["Size",4],252,"computed (char. table)"], ["3.McL.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.McL.2",["Size",5],90,"computed (char. table)"], ["3.McL.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.McL.2",["Size",7],504,"computed (char. table)"], ["3.McL.2",["Size",49],252,"computed (char. table)"], ["3.McL.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.McL.2",["Size",11],252,"computed (char. table)"], ["3.McL.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["3.O7(3)",["Characteristic",0],27,"computed (char. table)"], ["3.O7(3)",["Characteristic",2],27,"computed (char. table)"], ["3.O7(3)",["Characteristic",5],27,"computed (char. table)"], ["3.O7(3)",["Characteristic",7],27,"computed (char. table)"], ["3.O7(3)",["Characteristic",13],27,"computed (char. table)"], ["3.O7(3)",["Size",2],54,"computed (char. table)"], ["3.O7(3)",["Size",4],27,"computed (char. table)"], ["3.O7(3)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.O7(3)",["Size",5],54,"computed (char. table)"], ["3.O7(3)",["Size",25],27,"computed (char. table)"], ["3.O7(3)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.O7(3)",["Size",7],27,"computed (char. table)"], ["3.O7(3)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.O7(3)",["Size",13],27,"computed (char. table)"], ["3.O7(3)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["3.O7(3).2",["Characteristic",0],54,"computed (char. table)"], ["3.O7(3).2",["Characteristic",2],54,"computed (char. table)"], ["3.O7(3).2",["Characteristic",5],54,"computed (char. table)"], ["3.O7(3).2",["Characteristic",7],54,"computed (char. table)"], ["3.O7(3).2",["Characteristic",13],54,"computed (char. table)"], ["3.O7(3).2",["Size",2],54,"computed (char. table)"], ["3.O7(3).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.O7(3).2",["Size",5],54,"computed (char. table)"], ["3.O7(3).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.O7(3).2",["Size",7],54,"computed (char. table)"], ["3.O7(3).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.O7(3).2",["Size",13],54,"computed (char. table)"], ["3.O7(3).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["3.ON",["Characteristic",0],342,"computed (char. table)"], ["3.ON",["Characteristic",2],153,"computed (char. table)"], ["3.ON",["Characteristic",5],342,"computed (char. table)"], ["3.ON",["Characteristic",7],45,"computed (char. table)"], ["3.ON",["Characteristic",11],342,"computed (char. table)"], ["3.ON",["Characteristic",19],342,"computed (char. table)"], ["3.ON",["Characteristic",31],342,"computed (char. table)"], ["3.ON",["Size",2],306,"computed (char. table)"], ["3.ON",["Size",4],153,"computed (char. table)"], ["3.ON",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.ON",["Size",5],684,"computed (char. table)"], ["3.ON",["Size",25],342,"computed (char. table)"], ["3.ON",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.ON",["Size",7],45,"computed (char. table)"], ["3.ON",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.ON",["Size",11],684,"computed (char. table)"], ["3.ON",["Size",121],342,"computed (char. table)"], ["3.ON",["Characteristic",11,"complete"],true,"computed (char. table)"], ["3.ON",["Size",19],495,"computed (char. table)"], ["3.ON",["Size",361],342,"computed (char. table)"], ["3.ON",["Characteristic",19,"complete"],true,"computed (char. table)"], ["3.ON",["Size",31],342,"computed (char. table)"], ["3.ON",["Characteristic",31,"complete"],true,"computed (char. table)"], ["3.ON.2",["Characteristic",0],684,"computed (char. table)"], ["3.ON.2",["Characteristic",2],306,"computed (char. table)"], ["3.ON.2",["Characteristic",5],684,"computed (char. table)"], ["3.ON.2",["Characteristic",7],90,"computed (char. table)"], ["3.ON.2",["Characteristic",11],684,"computed (char. table)"], ["3.ON.2",["Characteristic",19],684,"computed (char. table)"], ["3.ON.2",["Characteristic",31],684,"computed (char. table)"], ["3.ON.2",["Size",2],306,"computed (char. table)"], ["3.ON.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.ON.2",["Size",5],684,"computed (char. table)"], ["3.ON.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.ON.2",["Size",7],90,"computed (char. table)"], ["3.ON.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.ON.2",["Size",11],684,"computed (char. table)"], ["3.ON.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["3.ON.2",["Size",19],990,"computed (char. table)"], ["3.ON.2",["Size",361],684,"computed (char. table)"], ["3.ON.2",["Characteristic",19,"complete"],true,"computed (char. table)"], ["3.ON.2",["Size",31],684,"computed (char. table)"], ["3.ON.2",["Characteristic",31,"complete"],true,"computed (char. table)"], ["3.Suz","NrMovedPoints",5346,"computed (factor table)"], ["3.Suz",["Characteristic",0],66,"computed (char. table)"], ["3.Suz",["Characteristic",2],12,"computed (char. table)"], ["3.Suz",["Characteristic",5],66,"computed (char. table)"], ["3.Suz",["Characteristic",7],66,"computed (char. table)"], ["3.Suz",["Characteristic",11],66,"computed (char. table)"], ["3.Suz",["Characteristic",13],66,"computed (char. table)"], ["3.Suz",["Size",2],24,"computed (char. table)"], ["3.Suz",["Size",4],12,"computed (char. table)"], ["3.Suz",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.Suz",["Size",5],132,"computed (char. table)"], ["3.Suz",["Size",25],66,"computed (char. table)"], ["3.Suz",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.Suz",["Size",7],66,"computed (char. table)"], ["3.Suz",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.Suz",["Size",11],132,"computed (char. table)"], ["3.Suz",["Size",121],66,"computed (char. table)"], ["3.Suz",["Characteristic",11,"complete"],true,"computed (char. table)"], ["3.Suz",["Size",13],66,"computed (char. table)"], ["3.Suz",["Characteristic",13,"complete"],true,"computed (char. table)"], ["3.Suz.2","NrMovedPoints",5346,"computed (subgroup tables, known repres.)"], ["3.Suz.2",["Characteristic",0],132,"computed (char. table)"], ["3.Suz.2",["Characteristic",2],24,"computed (char. table)"], ["3.Suz.2",["Characteristic",5],132,"computed (char. table)"], ["3.Suz.2",["Characteristic",7],132,"computed (char. table)"], ["3.Suz.2",["Characteristic",11],132,"computed (char. table)"], ["3.Suz.2",["Characteristic",13],132,"computed (char. table)"], ["3.Suz.2",["Size",2],24,"computed (char. table)"], ["3.Suz.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.Suz.2",["Size",5],132,"computed (char. table)"], ["3.Suz.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.Suz.2",["Size",7],132,"computed (char. table)"], ["3.Suz.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.Suz.2",["Size",11],132,"computed (char. table)"], ["3.Suz.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["3.Suz.2",["Size",13],132,"computed (char. table)"], ["3.Suz.2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["3.U3(11)",["Characteristic",0],111,"computed (char. table)"], ["3.U3(11)",["Characteristic",2],111,"computed (char. table)"], ["3.U3(11)",["Characteristic",5],111,"computed (char. table)"], ["3.U3(11)",["Characteristic",11],3,"computed (char. table)"], ["3.U3(11)",["Characteristic",37],111,"computed (char. table)"], ["3.U3(11)",["Size",2],222,"computed (char. table)"], ["3.U3(11)",["Size",4],111,"computed (char. table)"], ["3.U3(11)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.U3(11)",["Size",5],222,"computed (char. table)"], ["3.U3(11)",["Size",25],111,"computed (char. table)"], ["3.U3(11)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.U3(11)",["Size",11],6,"computed (char. table)"], ["3.U3(11)",["Size",121],3,"computed (char. table)"], ["3.U3(11)",["Characteristic",11,"complete"],true,"computed (char. table)"], ["3.U3(11)",["Size",37],111,"computed (char. table)"], ["3.U3(11)",["Characteristic",37,"complete"],true,"computed (char. table)"], ["3.U3(11).2",["Characteristic",0],222,"computed (char. table)"], ["3.U3(11).2",["Characteristic",2],222,"computed (char. table)"], ["3.U3(11).2",["Characteristic",5],222,"computed (char. table)"], ["3.U3(11).2",["Characteristic",11],6,"computed (char. table)"], ["3.U3(11).2",["Characteristic",37],222,"computed (char. table)"], ["3.U3(11).2",["Size",2],222,"computed (char. table)"], ["3.U3(11).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.U3(11).2",["Size",5],222,"computed (char. table)"], ["3.U3(11).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.U3(11).2",["Size",11],6,"computed (char. table)"], ["3.U3(11).2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["3.U3(11).2",["Size",37],222,"computed (char. table)"], ["3.U3(11).2",["Characteristic",37,"complete"],true,"computed (char. table)"], ["3.U3(8)",["Characteristic",0],57,"computed (char. table)"], ["3.U3(8)",["Characteristic",2],3,"computed (char. table)"], ["3.U3(8)",["Characteristic",7],57,"computed (char. table)"], ["3.U3(8)",["Characteristic",19],57,"computed (char. table)"], ["3.U3(8)",["Size",2],18,"computed (char. table)"], ["3.U3(8)",["Size",4],9,"computed (char. table)"], ["3.U3(8)",["Size",8],6,"computed (char. table)"], ["3.U3(8)",["Size",64],3,"computed (char. table)"], ["3.U3(8)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.U3(8)",["Size",7],171,"computed (char. table)"], ["3.U3(8)",["Size",343],57,"computed (char. table)"], ["3.U3(8)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.U3(8)",["Size",19],57,"computed (char. table)"], ["3.U3(8)",["Characteristic",19,"complete"],true,"computed (char. table)"], ["3.U6(2)",["Characteristic",0],21,"computed (char. table)"], ["3.U6(2)",["Characteristic",2],6,"computed (char. table)"], ["3.U6(2)",["Characteristic",5],21,"computed (char. table)"], ["3.U6(2)",["Characteristic",7],21,"computed (char. table)"], ["3.U6(2)",["Characteristic",11],21,"computed (char. table)"], ["3.U6(2)",["Size",2],12,"computed (char. table)"], ["3.U6(2)",["Size",4],6,"computed (char. table)"], ["3.U6(2)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3.U6(2)",["Size",5],42,"computed (char. table)"], ["3.U6(2)",["Size",25],21,"computed (char. table)"], ["3.U6(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["3.U6(2)",["Size",7],21,"computed (char. table)"], ["3.U6(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3.U6(2)",["Size",11],42,"computed (char. table)"], ["3.U6(2)",["Size",121],21,"computed (char. table)"], ["3.U6(2)",["Characteristic",11,"complete"],true,"computed (char. table)"], ["3D4(2)","NrMovedPoints",819,"computed (table of marks)"], ["3D4(2)",["Characteristic",0],26,"computed (char. table)"], ["3D4(2)",["Characteristic",2],8,"computed (char. table)"], ["3D4(2)",["Characteristic",3],25,"computed (char. table)"], ["3D4(2)",["Characteristic",7],26,"computed (char. table)"], ["3D4(2)",["Characteristic",13],26,"computed (char. table)"], ["3D4(2)",["Size",2],24,"computed (char. table)"], ["3D4(2)",["Size",8],8,"computed (char. table)"], ["3D4(2)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3D4(2)",["Size",3],25,"computed (char. table)"], ["3D4(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["3D4(2)",["Size",7],26,"computed (char. table)"], ["3D4(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3D4(2)",["Size",13],26,"computed (char. table)"], ["3D4(2)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["3D4(2).3",["Characteristic",0],26,"computed (char. table)"], ["3D4(2).3",["Characteristic",2],24,"computed (char. table)"], ["3D4(2).3",["Characteristic",3],25,"computed (char. table)"], ["3D4(2).3",["Characteristic",7],26,"computed (char. table)"], ["3D4(2).3",["Characteristic",13],26,"computed (char. table)"], ["3D4(2).3",["Size",2],24,"computed (char. table)"], ["3D4(2).3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["3D4(2).3",["Size",3],25,"computed (char. table)"], ["3D4(2).3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["3D4(2).3",["Size",7],26,"computed (char. table)"], ["3D4(2).3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["3D4(2).3",["Size",13],26,"computed (char. table)"], ["3D4(2).3",["Characteristic",13,"complete"],true,"computed (char. table)"], ["3^2.U4(3).D8",["Characteristic",0],60,"computed (char. table)"], ["4.M22",["Characteristic",0],56,"computed (char. table)"], ["4.M22",["Characteristic",3],56,"computed (char. table)"], ["4.M22",["Characteristic",5],56,"computed (char. table)"], ["4.M22",["Characteristic",7],16,"computed (char. table)"], ["4.M22",["Characteristic",11],56,"computed (char. table)"], ["4.M22",["Size",3],112,"computed (char. table)"], ["4.M22",["Size",9],56,"computed (char. table)"], ["4.M22",["Characteristic",3,"complete"],true,"computed (char. table)"], ["4.M22",["Size",5],112,"computed (char. table)"], ["4.M22",["Size",25],56,"computed (char. table)"], ["4.M22",["Characteristic",5,"complete"],true,"computed (char. table)"], ["4.M22",["Size",7],32,"computed (char. table)"], ["4.M22",["Size",49],16,"computed (char. table)"], ["4.M22",["Characteristic",7,"complete"],true,"computed (char. table)"], ["4.M22",["Size",11],112,"computed (char. table)"], ["4.M22",["Size",121],56,"computed (char. table)"], ["4.M22",["Characteristic",11,"complete"],true,"computed (char. table)"], ["4.M22.2",["Characteristic",0],112,"computed (char. table)"], ["4.M22.2",["Characteristic",3],112,"computed (char. table)"], ["4.M22.2",["Characteristic",5],112,"computed (char. table)"], ["4.M22.2",["Characteristic",7],32,"computed (char. table)"], ["4.M22.2",["Characteristic",11],112,"computed (char. table)"], ["4.M22.2",["Size",3],112,"computed (char. table)"], ["4.M22.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["4.M22.2",["Size",5],224,"computed (char. table)"], ["4.M22.2",["Size",25],112,"computed (char. table)"], ["4.M22.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["4.M22.2",["Size",7],32,"computed (char. table)"], ["4.M22.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["4.M22.2",["Size",11],112,"computed (char. table)"], ["4.M22.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["41:40","NrMovedPoints",41,"computed (subgroup tables, known repres.)"], ["41:40",["Characteristic",0],40,"computed (char. table)"], ["41:40",["Characteristic",2],40,"computed (char. table)"], ["41:40",["Characteristic",5],40,"computed (char. table)"], ["41:40",["Size",2],40,"computed (char. table)"], ["41:40",["Characteristic",2,"complete"],true,"computed (char. table)"], ["41:40",["Size",5],40,"computed (char. table)"], ["41:40",["Characteristic",5,"complete"],true,"computed (char. table)"], ["41:40",["Characteristic",41,"complete"],true,"computed (char. table)"], ["4_1.L3(4)",["Characteristic",0],8,"computed (char. table)"], ["4_1.L3(4)",["Characteristic",3],8,"computed (char. table)"], ["4_1.L3(4)",["Characteristic",5],8,"computed (char. table)"], ["4_1.L3(4)",["Characteristic",7],8,"computed (char. table)"], ["4_1.L3(4)",["Size",3],16,"computed (char. table)"], ["4_1.L3(4)",["Size",9],8,"computed (char. table)"], ["4_1.L3(4)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["4_1.L3(4)",["Size",5],8,"computed (char. table)"], ["4_1.L3(4)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["4_1.L3(4)",["Size",7],16,"computed (char. table)"], ["4_1.L3(4)",["Size",49],8,"computed (char. table)"], ["4_1.L3(4)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["4_1.L3(4).2_1",["Characteristic",0],16,"computed (char. table)"], ["4_1.L3(4).2_1",["Characteristic",3],16,"computed (char. table)"], ["4_1.L3(4).2_1",["Characteristic",5],16,"computed (char. table)"], ["4_1.L3(4).2_1",["Characteristic",7],16,"computed (char. table)"], ["4_1.L3(4).2_1",["Size",3],16,"computed (char. table)"], ["4_1.L3(4).2_1",["Characteristic",3,"complete"],true,"computed (char. table)"], ["4_1.L3(4).2_1",["Size",5],16,"computed (char. table)"], ["4_1.L3(4).2_1",["Characteristic",5,"complete"],true,"computed (char. table)"], ["4_1.L3(4).2_1",["Size",7],16,"computed (char. table)"], ["4_1.L3(4).2_1",["Characteristic",7,"complete"],true,"computed (char. table)"], ["4_2.L3(4)",["Characteristic",0],20,"computed (char. table)"], ["4_2.L3(4)",["Characteristic",3],4,"computed (char. table)"], ["4_2.L3(4)",["Characteristic",5],20,"computed (char. table)"], ["4_2.L3(4)",["Characteristic",7],20,"computed (char. table)"], ["4_2.L3(4)",["Size",3],8,"computed (char. table)"], ["4_2.L3(4)",["Size",9],4,"computed (char. table)"], ["4_2.L3(4)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["4_2.L3(4)",["Size",5],20,"computed (char. table)"], ["4_2.L3(4)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["4_2.L3(4)",["Size",7],40,"computed (char. table)"], ["4_2.L3(4)",["Size",49],20,"computed (char. table)"], ["4_2.L3(4)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["4_2.L3(4).2_1",["Characteristic",0],40,"computed (char. table)"], ["4_2.L3(4).2_1",["Characteristic",3],8,"computed (char. table)"], ["4_2.L3(4).2_1",["Characteristic",5],40,"computed (char. table)"], ["4_2.L3(4).2_1",["Characteristic",7],40,"computed (char. table)"], ["4_2.L3(4).2_1",["Size",3],8,"computed (char. table)"], ["4_2.L3(4).2_1",["Characteristic",3,"complete"],true,"computed (char. table)"], ["4_2.L3(4).2_1",["Size",5],40,"computed (char. table)"], ["4_2.L3(4).2_1",["Characteristic",5,"complete"],true,"computed (char. table)"], ["4_2.L3(4).2_1",["Size",7],40,"computed (char. table)"], ["4_2.L3(4).2_1",["Characteristic",7,"complete"],true,"computed (char. table)"], ["6.L3(4)",["Characteristic",0],6,"computed (char. table)"], ["6.L3(4)",["Characteristic",5],6,"computed (char. table)"], ["6.L3(4)",["Characteristic",7],6,"computed (char. table)"], ["6.Suz",["Characteristic",0],12,"computed (char. table)"], ["6.Suz",["Characteristic",5],12,"computed (char. table)"], ["6.Suz",["Characteristic",7],12,"computed (char. table)"], ["6.Suz",["Characteristic",11],12,"computed (char. table)"], ["6.Suz",["Characteristic",13],12,"computed (char. table)"], ["7^(1+4):(3x2.S7)",["Characteristic",0],294,"computed (char. table)"], ["A10","NrMovedPoints",10,"computed (alternating group)"], ["A10","NrMovedPoints",10,"computed (char. table)"], ["A10","NrMovedPoints",10,"computed (subgroup tables)"], ["A10","NrMovedPoints",10,"computed (subgroup tables, known repres.)"], ["A10","NrMovedPoints",10,"computed (table of marks)"], ["A10",["Characteristic",0],9,"computed (char. table)"], ["A10",["Characteristic",2],8,"computed (char. table)"], ["A10",["Characteristic",3],9,"computed (char. table)"], ["A10",["Characteristic",5],8,"computed (char. table)"], ["A10",["Characteristic",7],9,"computed (char. table)"], ["A10",["Size",2],8,"computed (char. table)"], ["A10",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A10",["Size",3],9,"computed (char. table)"], ["A10",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A10",["Size",5],8,"computed (char. table)"], ["A10",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A10",["Size",7],9,"computed (char. table)"], ["A10",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A10.2","NrMovedPoints",10,"computed (subgroup tables)"], ["A10.2","NrMovedPoints",10,"computed (subgroup tables, known repres.)"], ["A10.2","NrMovedPoints",10,"computed (symmetric group)"], ["A10.2","NrMovedPoints",10,"computed (table of marks)"], ["A10.2",["Characteristic",0],9,"computed (char. table)"], ["A10.2",["Characteristic",2],8,"computed (char. table)"], ["A10.2",["Characteristic",3],9,"computed (char. table)"], ["A10.2",["Characteristic",5],8,"computed (char. table)"], ["A10.2",["Characteristic",7],9,"computed (char. table)"], ["A10.2",["Size",2],8,"computed (char. table)"], ["A10.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A10.2",["Size",3],9,"computed (char. table)"], ["A10.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A10.2",["Size",5],8,"computed (char. table)"], ["A10.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A10.2",["Size",7],9,"computed (char. table)"], ["A10.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A11","NrMovedPoints",11,"computed (alternating group)"], ["A11","NrMovedPoints",11,"computed (char. table)"], ["A11","NrMovedPoints",11,"computed (subgroup tables)"], ["A11","NrMovedPoints",11,"computed (subgroup tables, known repres.)"], ["A11","NrMovedPoints",11,"computed (table of marks)"], ["A11",["Characteristic",0],10,"computed (char. table)"], ["A11",["Characteristic",2],10,"computed (char. table)"], ["A11",["Characteristic",3],10,"computed (char. table)"], ["A11",["Characteristic",5],10,"computed (char. table)"], ["A11",["Characteristic",7],10,"computed (char. table)"], ["A11",["Characteristic",11],9,"computed (char. table)"], ["A11",["Size",2],10,"computed (char. table)"], ["A11",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A11",["Size",3],10,"computed (char. table)"], ["A11",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A11",["Size",5],10,"computed (char. table)"], ["A11",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A11",["Size",7],10,"computed (char. table)"], ["A11",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A11",["Size",11],9,"computed (char. table)"], ["A11",["Characteristic",11,"complete"],true,"computed (char. table)"], ["A11.2","NrMovedPoints",11,"computed (subgroup tables)"], ["A11.2","NrMovedPoints",11,"computed (subgroup tables, known repres.)"], ["A11.2","NrMovedPoints",11,"computed (symmetric group)"], ["A11.2","NrMovedPoints",11,"computed (table of marks)"], ["A11.2",["Characteristic",0],10,"computed (char. table)"], ["A11.2",["Characteristic",2],10,"computed (char. table)"], ["A11.2",["Characteristic",3],10,"computed (char. table)"], ["A11.2",["Characteristic",5],10,"computed (char. table)"], ["A11.2",["Characteristic",7],10,"computed (char. table)"], ["A11.2",["Characteristic",11],9,"computed (char. table)"], ["A11.2",["Size",2],10,"computed (char. table)"], ["A11.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A11.2",["Size",3],10,"computed (char. table)"], ["A11.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A11.2",["Size",5],10,"computed (char. table)"], ["A11.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A11.2",["Size",7],10,"computed (char. table)"], ["A11.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A11.2",["Size",11],9,"computed (char. table)"], ["A11.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["A12","NrMovedPoints",12,"computed (alternating group)"], ["A12","NrMovedPoints",12,"computed (subgroup tables)"], ["A12","NrMovedPoints",12,"computed (subgroup tables, known repres.)"], ["A12","NrMovedPoints",12,"computed (table of marks)"], ["A12",["Characteristic",0],11,"computed (char. table)"], ["A12",["Characteristic",2],10,"computed (char. table)"], ["A12",["Characteristic",3],10,"computed (char. table)"], ["A12",["Characteristic",5],11,"computed (char. table)"], ["A12",["Characteristic",7],11,"computed (char. table)"], ["A12",["Characteristic",11],11,"computed (char. table)"], ["A12",["Size",2],10,"computed (char. table)"], ["A12",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A12",["Size",3],10,"computed (char. table)"], ["A12",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A12",["Size",5],11,"computed (char. table)"], ["A12",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A12",["Size",7],11,"computed (char. table)"], ["A12",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A12",["Size",11],11,"computed (char. table)"], ["A12",["Characteristic",11,"complete"],true,"computed (char. table)"], ["A12.2","NrMovedPoints",12,"computed (subgroup tables, known repres.)"], ["A12.2","NrMovedPoints",12,"computed (symmetric group)"], ["A12.2","NrMovedPoints",12,"computed (table of marks)"], ["A12.2",["Characteristic",0],11,"computed (char. table)"], ["A12.2",["Characteristic",2],10,"computed (char. table)"], ["A12.2",["Characteristic",3],10,"computed (char. table)"], ["A12.2",["Characteristic",5],11,"computed (char. table)"], ["A12.2",["Characteristic",7],11,"computed (char. table)"], ["A12.2",["Characteristic",11],11,"computed (char. table)"], ["A12.2",["Size",2],10,"computed (char. table)"], ["A12.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A12.2",["Size",3],10,"computed (char. table)"], ["A12.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A12.2",["Size",5],11,"computed (char. table)"], ["A12.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A12.2",["Size",7],11,"computed (char. table)"], ["A12.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A12.2",["Size",11],11,"computed (char. table)"], ["A12.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["A13","NrMovedPoints",13,"computed (alternating group)"], ["A13","NrMovedPoints",13,"computed (subgroup tables, known repres.)"], ["A13","NrMovedPoints",13,"computed (table of marks)"], ["A13",["Characteristic",0],12,"computed (char. table)"], ["A13",["Characteristic",2],12,"computed (char. table)"], ["A13",["Characteristic",3],12,"computed (char. table)"], ["A13",["Characteristic",5],12,"computed (char. table)"], ["A13",["Characteristic",7],12,"computed (char. table)"], ["A13",["Characteristic",11],12,"computed (char. table)"], ["A13",["Characteristic",13],11,"computed (char. table)"], ["A13",["Size",2],12,"computed (char. table)"], ["A13",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A13",["Size",3],12,"computed (char. table)"], ["A13",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A13",["Size",5],12,"computed (char. table)"], ["A13",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A13",["Size",7],12,"computed (char. table)"], ["A13",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A13",["Size",11],12,"computed (char. table)"], ["A13",["Characteristic",11,"complete"],true,"computed (char. table)"], ["A13",["Size",13],11,"computed (char. table)"], ["A13",["Characteristic",13,"complete"],true,"computed (char. table)"], ["A13.2","NrMovedPoints",13,"computed (subgroup tables)"], ["A13.2","NrMovedPoints",13,"computed (subgroup tables, known repres.)"], ["A13.2","NrMovedPoints",13,"computed (symmetric group)"], ["A13.2",["Characteristic",0],12,"computed (char. table)"], ["A13.2",["Characteristic",2],12,"computed (char. table)"], ["A13.2",["Characteristic",3],12,"computed (char. table)"], ["A13.2",["Characteristic",5],12,"computed (char. table)"], ["A13.2",["Characteristic",7],12,"computed (char. table)"], ["A13.2",["Characteristic",11],12,"computed (char. table)"], ["A13.2",["Characteristic",13],11,"computed (char. table)"], ["A13.2",["Size",2],12,"computed (char. table)"], ["A13.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A13.2",["Size",3],12,"computed (char. table)"], ["A13.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A13.2",["Size",5],12,"computed (char. table)"], ["A13.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A13.2",["Size",7],12,"computed (char. table)"], ["A13.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A13.2",["Size",11],12,"computed (char. table)"], ["A13.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["A13.2",["Size",13],11,"computed (char. table)"], ["A13.2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["A14","NrMovedPoints",14,"computed (alternating group)"], ["A14","NrMovedPoints",14,"computed (char. table)"], ["A14",["Characteristic",0],13,"computed (char. table)"], ["A14",["Characteristic",2],12,"computed (char. table)"], ["A14",["Characteristic",3],13,"computed (char. table)"], ["A14",["Characteristic",5],13,"computed (char. table)"], ["A14",["Characteristic",7],12,"computed (char. table)"], ["A14",["Characteristic",11],13,"computed (char. table)"], ["A14",["Characteristic",13],13,"computed (char. table)"], ["A14",["Size",2],12,"computed (char. table)"], ["A14",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A14",["Size",3],13,"computed (char. table)"], ["A14",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A14",["Size",5],13,"computed (char. table)"], ["A14",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A14",["Size",7],12,"computed (char. table)"], ["A14",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A14",["Size",11],13,"computed (char. table)"], ["A14",["Characteristic",11,"complete"],true,"computed (char. table)"], ["A14",["Size",13],13,"computed (char. table)"], ["A14",["Characteristic",13,"complete"],true,"computed (char. table)"], ["A14.2","NrMovedPoints",14,"computed (subgroup tables)"], ["A14.2","NrMovedPoints",14,"computed (subgroup tables, known repres.)"], ["A14.2","NrMovedPoints",14,"computed (symmetric group)"], ["A14.2",["Characteristic",0],13,"computed (char. table)"], ["A14.2",["Characteristic",2],12,"computed (char. table)"], ["A14.2",["Characteristic",3],13,"computed (char. table)"], ["A14.2",["Characteristic",5],13,"computed (char. table)"], ["A14.2",["Characteristic",7],12,"computed (char. table)"], ["A14.2",["Characteristic",11],13,"computed (char. table)"], ["A14.2",["Characteristic",13],13,"computed (char. table)"], ["A14.2",["Size",2],12,"computed (char. table)"], ["A14.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A14.2",["Size",3],13,"computed (char. table)"], ["A14.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A14.2",["Size",5],13,"computed (char. table)"], ["A14.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A14.2",["Size",7],12,"computed (char. table)"], ["A14.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A14.2",["Size",11],13,"computed (char. table)"], ["A14.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["A14.2",["Size",13],13,"computed (char. table)"], ["A14.2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["A15","NrMovedPoints",15,"computed (alternating group)"], ["A15",["Characteristic",0],14,"computed (char. table)"], ["A15.2","NrMovedPoints",15,"computed (subgroup tables, known repres.)"], ["A15.2","NrMovedPoints",15,"computed (symmetric group)"], ["A15.2",["Characteristic",0],14,"computed (char. table)"], ["A15.2",["Characteristic",2],14,"computed (char. table)"], ["A15.2",["Characteristic",3],13,"computed (char. table)"], ["A15.2",["Characteristic",5],13,"computed (char. table)"], ["A15.2",["Characteristic",7],14,"computed (char. table)"], ["A15.2",["Characteristic",11],14,"computed (char. table)"], ["A15.2",["Characteristic",13],14,"computed (char. table)"], ["A15.2",["Size",2],14,"computed (char. table)"], ["A15.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A15.2",["Size",3],13,"computed (char. table)"], ["A15.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A15.2",["Size",5],13,"computed (char. table)"], ["A15.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A15.2",["Size",7],14,"computed (char. table)"], ["A15.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A15.2",["Size",11],14,"computed (char. table)"], ["A15.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["A15.2",["Size",13],14,"computed (char. table)"], ["A15.2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["A16","NrMovedPoints",16,"computed (alternating group)"], ["A16",["Characteristic",0],15,"computed (char. table)"], ["A16.2","NrMovedPoints",16,"computed (subgroup tables, known repres.)"], ["A16.2","NrMovedPoints",16,"computed (symmetric group)"], ["A16.2",["Characteristic",0],15,"computed (char. table)"], ["A16.2",["Characteristic",2],14,"computed (char. table)"], ["A16.2",["Characteristic",3],15,"computed (char. table)"], ["A16.2",["Characteristic",5],15,"computed (char. table)"], ["A16.2",["Characteristic",7],15,"computed (char. table)"], ["A16.2",["Characteristic",11],15,"computed (char. table)"], ["A16.2",["Characteristic",13],15,"computed (char. table)"], ["A16.2",["Size",2],14,"computed (char. table)"], ["A16.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A16.2",["Size",3],15,"computed (char. table)"], ["A16.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A16.2",["Size",5],15,"computed (char. table)"], ["A16.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A16.2",["Size",7],15,"computed (char. table)"], ["A16.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A16.2",["Size",11],15,"computed (char. table)"], ["A16.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["A16.2",["Size",13],15,"computed (char. table)"], ["A16.2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["A17","NrMovedPoints",17,"computed (alternating group)"], ["A17","NrMovedPoints",17,"computed (subgroup tables, known repres.)"], ["A17",["Characteristic",0],16,"computed (char. table)"], ["A17.2","NrMovedPoints",17,"computed (subgroup tables, known repres.)"], ["A17.2","NrMovedPoints",17,"computed (symmetric group)"], ["A17.2",["Characteristic",0],16,"computed (char. table)"], ["A17.2",["Characteristic",2],16,"computed (char. table)"], ["A17.2",["Characteristic",3],16,"computed (char. table)"], ["A17.2",["Characteristic",5],16,"computed (char. table)"], ["A17.2",["Characteristic",7],16,"computed (char. table)"], ["A17.2",["Characteristic",11],16,"computed (char. table)"], ["A17.2",["Characteristic",13],16,"computed (char. table)"], ["A17.2",["Characteristic",17],15,"computed (char. table)"], ["A17.2",["Size",2],16,"computed (char. table)"], ["A17.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A17.2",["Size",3],16,"computed (char. table)"], ["A17.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A17.2",["Size",5],16,"computed (char. table)"], ["A17.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A17.2",["Size",7],16,"computed (char. table)"], ["A17.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A17.2",["Size",11],16,"computed (char. table)"], ["A17.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["A17.2",["Size",13],16,"computed (char. table)"], ["A17.2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["A17.2",["Size",17],15,"computed (char. table)"], ["A17.2",["Characteristic",17,"complete"],true,"computed (char. table)"], ["A18","NrMovedPoints",18,"computed (alternating group)"], ["A18",["Characteristic",0],17,"computed (char. table)"], ["A18.2","NrMovedPoints",18,"computed (subgroup tables, known repres.)"], ["A18.2","NrMovedPoints",18,"computed (symmetric group)"], ["A18.2",["Characteristic",0],17,"computed (char. table)"], ["A19","NrMovedPoints",19,"computed (alternating group)"], ["A19.2","NrMovedPoints",19,"computed (symmetric group)"], ["A20","NrMovedPoints",20,"computed (alternating group)"], ["A20.2","NrMovedPoints",20,"computed (symmetric group)"], ["A21","NrMovedPoints",21,"computed (alternating group)"], ["A21.2","NrMovedPoints",21,"computed (symmetric group)"], ["A22","NrMovedPoints",22,"computed (alternating group)"], ["A22.2","NrMovedPoints",22,"computed (symmetric group)"], ["A23","NrMovedPoints",23,"computed (alternating group)"], ["A23.2","NrMovedPoints",23,"computed (symmetric group)"], ["A5","NrMovedPoints",5,"computed (alternating group)"], ["A5","NrMovedPoints",5,"computed (char. table)"], ["A5","NrMovedPoints",5,"computed (subgroup tables)"], ["A5","NrMovedPoints",5,"computed (subgroup tables, known repres.)"], ["A5","NrMovedPoints",5,"computed (table of marks)"], ["A5",["Characteristic",0],3,"computed (char. table)"], ["A5",["Characteristic",2],2,"computed (char. table)"], ["A5",["Characteristic",3],3,"computed (char. table)"], ["A5",["Characteristic",5],3,"computed (char. table)"], ["A5",["Size",2],4,"computed (char. table)"], ["A5",["Size",4],2,"computed (char. table)"], ["A5",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A5",["Size",3],4,"computed (char. table)"], ["A5",["Size",9],3,"computed (char. table)"], ["A5",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A5",["Size",5],3,"computed (char. table)"], ["A5",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A5.2","NrMovedPoints",5,"computed (char. table)"], ["A5.2","NrMovedPoints",5,"computed (subgroup tables)"], ["A5.2","NrMovedPoints",5,"computed (subgroup tables, known repres.)"], ["A5.2","NrMovedPoints",5,"computed (symmetric group)"], ["A5.2","NrMovedPoints",5,"computed (table of marks)"], ["A5.2",["Characteristic",0],4,"computed (char. table)"], ["A5.2",["Characteristic",2],4,"computed (char. table)"], ["A5.2",["Characteristic",3],4,"computed (char. table)"], ["A5.2",["Characteristic",5],3,"computed (char. table)"], ["A5.2",["Size",2],4,"computed (char. table)"], ["A5.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A5.2",["Size",3],4,"computed (char. table)"], ["A5.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A5.2",["Size",5],3,"computed (char. table)"], ["A5.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A6","NrMovedPoints",6,"computed (alternating group)"], ["A6","NrMovedPoints",6,"computed (char. table)"], ["A6","NrMovedPoints",6,"computed (table of marks)"], ["A6",["Characteristic",0],5,"computed (char. table)"], ["A6",["Characteristic",2],4,"computed (char. table)"], ["A6",["Characteristic",3],3,"computed (char. table)"], ["A6",["Characteristic",5],5,"computed (char. table)"], ["A6",["Size",2],4,"computed (char. table)"], ["A6",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A6",["Size",3],4,"computed (char. table)"], ["A6",["Size",9],3,"computed (char. table)"], ["A6",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A6",["Size",5],5,"computed (char. table)"], ["A6",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A6.2^2","NrMovedPoints",10,"computed (subgroup tables)"], ["A6.2^2","NrMovedPoints",10,"computed (subgroup tables, known repres.)"], ["A6.2^2","NrMovedPoints",10,"computed (table of marks)"], ["A6.2^2",["Characteristic",0],9,"computed (char. table)"], ["A6.2^2",["Characteristic",2],8,"computed (char. table)"], ["A6.2^2",["Characteristic",3],6,"computed (char. table)"], ["A6.2^2",["Characteristic",5],8,"computed (char. table)"], ["A6.2^2",["Size",2],8,"computed (char. table)"], ["A6.2^2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A6.2^2",["Size",3],6,"computed (char. table)"], ["A6.2^2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A6.2^2",["Size",5],8,"computed (char. table)"], ["A6.2^2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A6.2_1","NrMovedPoints",6,"computed (char. table)"], ["A6.2_1","NrMovedPoints",6,"computed (subgroup tables)"], ["A6.2_1","NrMovedPoints",6,"computed (subgroup tables, known repres.)"], ["A6.2_1","NrMovedPoints",6,"computed (table of marks)"], ["A6.2_1",["Characteristic",0],5,"computed (char. table)"], ["A6.2_1",["Characteristic",2],4,"computed (char. table)"], ["A6.2_1",["Characteristic",3],4,"computed (char. table)"], ["A6.2_1",["Characteristic",5],5,"computed (char. table)"], ["A6.2_1",["Size",2],4,"computed (char. table)"], ["A6.2_1",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A6.2_1",["Size",3],4,"computed (char. table)"], ["A6.2_1",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A6.2_1",["Size",5],5,"computed (char. table)"], ["A6.2_1",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A6.2_2","NrMovedPoints",10,"computed (table of marks)"], ["A6.2_2",["Characteristic",0],8,"computed (char. table)"], ["A6.2_2",["Characteristic",2],8,"computed (char. table)"], ["A6.2_2",["Characteristic",3],3,"computed (char. table)"], ["A6.2_2",["Characteristic",5],8,"computed (char. table)"], ["A6.2_2",["Size",2],8,"computed (char. table)"], ["A6.2_2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A6.2_2",["Size",3],6,"computed (char. table)"], ["A6.2_2",["Size",9],3,"computed (char. table)"], ["A6.2_2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A6.2_2",["Size",5],8,"computed (char. table)"], ["A6.2_2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A6.2_3","NrMovedPoints",10,"computed (table of marks)"], ["A6.2_3",["Characteristic",0],9,"computed (char. table)"], ["A6.2_3",["Characteristic",2],8,"computed (char. table)"], ["A6.2_3",["Characteristic",3],4,"computed (char. table)"], ["A6.2_3",["Characteristic",5],8,"computed (char. table)"], ["A6.2_3",["Size",2],8,"computed (char. table)"], ["A6.2_3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A6.2_3",["Size",3],4,"computed (char. table)"], ["A6.2_3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A6.2_3",["Size",5],8,"computed (char. table)"], ["A6.2_3",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A7","NrMovedPoints",7,"computed (alternating group)"], ["A7","NrMovedPoints",7,"computed (char. table)"], ["A7","NrMovedPoints",7,"computed (subgroup tables)"], ["A7","NrMovedPoints",7,"computed (subgroup tables, known repres.)"], ["A7","NrMovedPoints",7,"computed (table of marks)"], ["A7",["Characteristic",0],6,"computed (char. table)"], ["A7",["Characteristic",2],4,"computed (char. table)"], ["A7",["Characteristic",3],6,"computed (char. table)"], ["A7",["Characteristic",5],6,"computed (char. table)"], ["A7",["Characteristic",7],5,"computed (char. table)"], ["A7",["Size",2],4,"computed (char. table)"], ["A7",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A7",["Size",3],6,"computed (char. table)"], ["A7",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A7",["Size",5],6,"computed (char. table)"], ["A7",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A7",["Size",7],5,"computed (char. table)"], ["A7",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A7.2","NrMovedPoints",7,"computed (char. table)"], ["A7.2","NrMovedPoints",7,"computed (subgroup tables)"], ["A7.2","NrMovedPoints",7,"computed (subgroup tables, known repres.)"], ["A7.2","NrMovedPoints",7,"computed (symmetric group)"], ["A7.2","NrMovedPoints",7,"computed (table of marks)"], ["A7.2",["Characteristic",0],6,"computed (char. table)"], ["A7.2",["Characteristic",2],6,"computed (char. table)"], ["A7.2",["Characteristic",3],6,"computed (char. table)"], ["A7.2",["Characteristic",5],6,"computed (char. table)"], ["A7.2",["Characteristic",7],5,"computed (char. table)"], ["A7.2",["Size",2],6,"computed (char. table)"], ["A7.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A7.2",["Size",3],6,"computed (char. table)"], ["A7.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A7.2",["Size",5],6,"computed (char. table)"], ["A7.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A7.2",["Size",7],5,"computed (char. table)"], ["A7.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A8","NrMovedPoints",8,"computed (alternating group)"], ["A8","NrMovedPoints",8,"computed (char. table)"], ["A8","NrMovedPoints",8,"computed (subgroup tables)"], ["A8","NrMovedPoints",8,"computed (subgroup tables, known repres.)"], ["A8","NrMovedPoints",8,"computed (table of marks)"], ["A8",["Characteristic",0],7,"computed (char. table)"], ["A8",["Characteristic",2],4,"computed (char. table)"], ["A8",["Characteristic",3],7,"computed (char. table)"], ["A8",["Characteristic",5],7,"computed (char. table)"], ["A8",["Characteristic",7],7,"computed (char. table)"], ["A8",["Size",2],4,"computed (char. table)"], ["A8",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A8",["Size",3],7,"computed (char. table)"], ["A8",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A8",["Size",5],7,"computed (char. table)"], ["A8",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A8",["Size",7],7,"computed (char. table)"], ["A8",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A8.2","NrMovedPoints",8,"computed (subgroup tables)"], ["A8.2","NrMovedPoints",8,"computed (subgroup tables, known repres.)"], ["A8.2","NrMovedPoints",8,"computed (symmetric group)"], ["A8.2","NrMovedPoints",8,"computed (table of marks)"], ["A8.2",["Characteristic",0],7,"computed (char. table)"], ["A8.2",["Characteristic",2],6,"computed (char. table)"], ["A8.2",["Characteristic",3],7,"computed (char. table)"], ["A8.2",["Characteristic",5],7,"computed (char. table)"], ["A8.2",["Characteristic",7],7,"computed (char. table)"], ["A8.2",["Size",2],6,"computed (char. table)"], ["A8.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A8.2",["Size",3],7,"computed (char. table)"], ["A8.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A8.2",["Size",5],7,"computed (char. table)"], ["A8.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A8.2",["Size",7],7,"computed (char. table)"], ["A8.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A9","NrMovedPoints",9,"computed (alternating group)"], ["A9","NrMovedPoints",9,"computed (char. table)"], ["A9","NrMovedPoints",9,"computed (subgroup tables)"], ["A9","NrMovedPoints",9,"computed (subgroup tables, known repres.)"], ["A9","NrMovedPoints",9,"computed (table of marks)"], ["A9",["Characteristic",0],8,"computed (char. table)"], ["A9",["Characteristic",2],8,"computed (char. table)"], ["A9",["Characteristic",3],7,"computed (char. table)"], ["A9",["Characteristic",5],8,"computed (char. table)"], ["A9",["Characteristic",7],8,"computed (char. table)"], ["A9",["Size",2],8,"computed (char. table)"], ["A9",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A9",["Size",3],7,"computed (char. table)"], ["A9",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A9",["Size",5],8,"computed (char. table)"], ["A9",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A9",["Size",7],8,"computed (char. table)"], ["A9",["Characteristic",7,"complete"],true,"computed (char. table)"], ["A9.2","NrMovedPoints",9,"computed (char. table)"], ["A9.2","NrMovedPoints",9,"computed (subgroup tables)"], ["A9.2","NrMovedPoints",9,"computed (subgroup tables, known repres.)"], ["A9.2","NrMovedPoints",9,"computed (symmetric group)"], ["A9.2","NrMovedPoints",9,"computed (table of marks)"], ["A9.2",["Characteristic",0],8,"computed (char. table)"], ["A9.2",["Characteristic",2],8,"computed (char. table)"], ["A9.2",["Characteristic",3],7,"computed (char. table)"], ["A9.2",["Characteristic",5],8,"computed (char. table)"], ["A9.2",["Characteristic",7],8,"computed (char. table)"], ["A9.2",["Size",2],8,"computed (char. table)"], ["A9.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["A9.2",["Size",3],7,"computed (char. table)"], ["A9.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["A9.2",["Size",5],8,"computed (char. table)"], ["A9.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["A9.2",["Size",7],8,"computed (char. table)"], ["A9.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["B","NrMovedPoints",13571955000,"computed (char. table)"], ["B",["Characteristic",0],4371,"computed (char. table)"], ["B",["Characteristic",11],4371,"computed (char. table)"], ["B",["Characteristic",13],4371,"computed (char. table)"], ["B",["Characteristic",17],4371,"computed (char. table)"], ["B",["Characteristic",23],4371,"computed (char. table)"], ["B",["Characteristic",31],4371,"computed (char. table)"], ["Co1","NrMovedPoints",98280,"computed (char. table)"], ["Co1",["Characteristic",0],276,"computed (char. table)"], ["Co1",["Characteristic",7],276,"computed (char. table)"], ["Co1",["Characteristic",11],276,"computed (char. table)"], ["Co1",["Characteristic",13],276,"computed (char. table)"], ["Co1",["Characteristic",23],276,"computed (char. table)"], ["Co1",["Size",7],276,"computed (char. table)"], ["Co1",["Characteristic",7,"complete"],true,"computed (char. table)"], ["Co1",["Size",11],276,"computed (char. table)"], ["Co1",["Characteristic",11,"complete"],true,"computed (char. table)"], ["Co1",["Size",13],276,"computed (char. table)"], ["Co1",["Characteristic",13,"complete"],true,"computed (char. table)"], ["Co1",["Size",23],276,"computed (char. table)"], ["Co1",["Characteristic",23,"complete"],true,"computed (char. table)"], ["Co2","NrMovedPoints",2300,"computed (char. table)"], ["Co2",["Characteristic",0],23,"computed (char. table)"], ["Co2",["Characteristic",2],22,"computed (char. table)"], ["Co2",["Characteristic",3],23,"computed (char. table)"], ["Co2",["Characteristic",5],23,"computed (char. table)"], ["Co2",["Characteristic",7],23,"computed (char. table)"], ["Co2",["Characteristic",11],23,"computed (char. table)"], ["Co2",["Characteristic",23],23,"computed (char. table)"], ["Co2",["Size",2],22,"computed (char. table)"], ["Co2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["Co2",["Size",3],23,"computed (char. table)"], ["Co2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["Co2",["Size",5],23,"computed (char. table)"], ["Co2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Co2",["Size",7],23,"computed (char. table)"], ["Co2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["Co2",["Size",11],23,"computed (char. table)"], ["Co2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["Co2",["Size",23],23,"computed (char. table)"], ["Co2",["Characteristic",23,"complete"],true,"computed (char. table)"], ["Co3","NrMovedPoints",276,"computed (char. table)"], ["Co3","NrMovedPoints",276,"computed (table of marks)"], ["Co3",["Characteristic",0],23,"computed (char. table)"], ["Co3",["Characteristic",2],22,"computed (char. table)"], ["Co3",["Characteristic",3],22,"computed (char. table)"], ["Co3",["Characteristic",5],23,"computed (char. table)"], ["Co3",["Characteristic",7],23,"computed (char. table)"], ["Co3",["Characteristic",11],23,"computed (char. table)"], ["Co3",["Characteristic",23],23,"computed (char. table)"], ["Co3",["Size",2],22,"computed (char. table)"], ["Co3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["Co3",["Size",3],22,"computed (char. table)"], ["Co3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["Co3",["Size",5],23,"computed (char. table)"], ["Co3",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Co3",["Size",7],23,"computed (char. table)"], ["Co3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["Co3",["Size",11],23,"computed (char. table)"], ["Co3",["Characteristic",11,"complete"],true,"computed (char. table)"], ["Co3",["Size",23],23,"computed (char. table)"], ["Co3",["Characteristic",23,"complete"],true,"computed (char. table)"], ["E6(2)",["Characteristic",0],2482,"computed (char. table)"], ["F4(2)","NrMovedPoints",69615,"computed (char. table)"], ["F4(2)",["Characteristic",0],833,"computed (char. table)"], ["F4(2)",["Characteristic",5],833,"computed (char. table)"], ["F4(2)",["Characteristic",7],833,"computed (char. table)"], ["F4(2)",["Characteristic",13],833,"computed (char. table)"], ["F4(2)",["Characteristic",17],833,"computed (char. table)"], ["F4(2)",["Size",5],833,"computed (char. table)"], ["F4(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["F4(2)",["Size",7],833,"computed (char. table)"], ["F4(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["F4(2)",["Size",13],833,"computed (char. table)"], ["F4(2)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["F4(2)",["Size",17],833,"computed (char. table)"], ["F4(2)",["Characteristic",17,"complete"],true,"computed (char. table)"], ["F4(2).2",["Characteristic",0],833,"computed (char. table)"], ["F4(2).2",["Characteristic",13],833,"computed (char. table)"], ["F4(2).2",["Characteristic",17],833,"computed (char. table)"], ["F4(2).2",["Size",13],833,"computed (char. table)"], ["F4(2).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["F4(2).2",["Size",17],833,"computed (char. table)"], ["F4(2).2",["Characteristic",17,"complete"],true,"computed (char. table)"], ["Fi22","NrMovedPoints",3510,"computed (char. table)"], ["Fi22",["Characteristic",0],78,"computed (char. table)"], ["Fi22",["Characteristic",2],78,"computed (char. table)"], ["Fi22",["Characteristic",3],77,"computed (char. table)"], ["Fi22",["Characteristic",5],78,"computed (char. table)"], ["Fi22",["Characteristic",7],78,"computed (char. table)"], ["Fi22",["Characteristic",11],78,"computed (char. table)"], ["Fi22",["Characteristic",13],78,"computed (char. table)"], ["Fi22",["Size",2],78,"computed (char. table)"], ["Fi22",["Characteristic",2,"complete"],true,"computed (char. table)"], ["Fi22",["Size",3],77,"computed (char. table)"], ["Fi22",["Characteristic",3,"complete"],true,"computed (char. table)"], ["Fi22",["Size",5],78,"computed (char. table)"], ["Fi22",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Fi22",["Size",7],78,"computed (char. table)"], ["Fi22",["Characteristic",7,"complete"],true,"computed (char. table)"], ["Fi22",["Size",11],78,"computed (char. table)"], ["Fi22",["Characteristic",11,"complete"],true,"computed (char. table)"], ["Fi22",["Size",13],78,"computed (char. table)"], ["Fi22",["Characteristic",13,"complete"],true,"computed (char. table)"], ["Fi22.2","NrMovedPoints",3510,"computed (subgroup tables)"], ["Fi22.2","NrMovedPoints",3510,"computed (subgroup tables, known repres.)"], ["Fi22.2",["Characteristic",0],78,"computed (char. table)"], ["Fi22.2",["Characteristic",2],78,"computed (char. table)"], ["Fi22.2",["Characteristic",3],77,"computed (char. table)"], ["Fi22.2",["Characteristic",5],78,"computed (char. table)"], ["Fi22.2",["Characteristic",7],78,"computed (char. table)"], ["Fi22.2",["Characteristic",11],78,"computed (char. table)"], ["Fi22.2",["Characteristic",13],78,"computed (char. table)"], ["Fi22.2",["Size",2],78,"computed (char. table)"], ["Fi22.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["Fi22.2",["Size",3],77,"computed (char. table)"], ["Fi22.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["Fi22.2",["Size",5],78,"computed (char. table)"], ["Fi22.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Fi22.2",["Size",7],78,"computed (char. table)"], ["Fi22.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["Fi22.2",["Size",11],78,"computed (char. table)"], ["Fi22.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["Fi22.2",["Size",13],78,"computed (char. table)"], ["Fi22.2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["Fi23","NrMovedPoints",31671,"computed (char. table)"], ["Fi23",["Characteristic",0],782,"computed (char. table)"], ["Fi23",["Characteristic",2],782,"computed (char. table)"], ["Fi23",["Characteristic",5],782,"computed (char. table)"], ["Fi23",["Characteristic",7],782,"computed (char. table)"], ["Fi23",["Characteristic",11],782,"computed (char. table)"], ["Fi23",["Characteristic",13],782,"computed (char. table)"], ["Fi23",["Characteristic",17],782,"computed (char. table)"], ["Fi23",["Characteristic",23],782,"computed (char. table)"], ["Fi23",["Size",2],782,"computed (char. table)"], ["Fi23",["Characteristic",2,"complete"],true,"computed (char. table)"], ["Fi23",["Size",5],782,"computed (char. table)"], ["Fi23",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Fi23",["Size",7],782,"computed (char. table)"], ["Fi23",["Characteristic",7,"complete"],true,"computed (char. table)"], ["Fi23",["Size",11],782,"computed (char. table)"], ["Fi23",["Characteristic",11,"complete"],true,"computed (char. table)"], ["Fi23",["Size",13],782,"computed (char. table)"], ["Fi23",["Characteristic",13,"complete"],true,"computed (char. table)"], ["Fi23",["Size",23],782,"computed (char. table)"], ["Fi23",["Characteristic",23,"complete"],true,"computed (char. table)"], ["Fi24'","NrMovedPoints",306936,"computed (char. table)"], ["Fi24'",["Characteristic",0],8671,"computed (char. table)"], ["Fi24'",["Characteristic",11],8671,"computed (char. table)"], ["Fi24'",["Characteristic",17],8671,"computed (char. table)"], ["Fi24'",["Characteristic",23],8671,"computed (char. table)"], ["Fi24'",["Characteristic",29],8671,"computed (char. table)"], ["Fi24'",["Size",23],8671,"computed (char. table)"], ["Fi24'",["Characteristic",23,"complete"],true,"computed (char. table)"], ["Fi24'",["Size",29],8671,"computed (char. table)"], ["Fi24'",["Characteristic",29,"complete"],true,"computed (char. table)"], ["Fi24'.2","NrMovedPoints",306936,"computed (subgroup tables)"], ["Fi24'.2","NrMovedPoints",306936,"computed (subgroup tables, known repres.)"], ["Fi24'.2",["Characteristic",0],8671,"computed (char. table)"], ["Fi24'.2",["Characteristic",11],8671,"computed (char. table)"], ["Fi24'.2",["Characteristic",13],8671,"computed (char. table)"], ["Fi24'.2",["Characteristic",17],8671,"computed (char. table)"], ["Fi24'.2",["Characteristic",23],8671,"computed (char. table)"], ["Fi24'.2",["Characteristic",29],8671,"computed (char. table)"], ["Fi24'.2",["Size",11],8671,"computed (char. table)"], ["Fi24'.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["Fi24'.2",["Size",13],8671,"computed (char. table)"], ["Fi24'.2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["Fi24'.2",["Size",23],8671,"computed (char. table)"], ["Fi24'.2",["Characteristic",23,"complete"],true,"computed (char. table)"], ["Fi24'.2",["Size",29],8671,"computed (char. table)"], ["Fi24'.2",["Characteristic",29,"complete"],true,"computed (char. table)"], ["G2(3)","NrMovedPoints",351,"computed (char. table)"], ["G2(3)","NrMovedPoints",351,"computed (table of marks)"], ["G2(3)",["Characteristic",0],14,"computed (char. table)"], ["G2(3)",["Characteristic",2],14,"computed (char. table)"], ["G2(3)",["Characteristic",3],7,"computed (char. table)"], ["G2(3)",["Characteristic",7],14,"computed (char. table)"], ["G2(3)",["Characteristic",13],14,"computed (char. table)"], ["G2(3)",["Size",2],14,"computed (char. table)"], ["G2(3)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["G2(3)",["Size",3],7,"computed (char. table)"], ["G2(3)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["G2(3)",["Size",7],14,"computed (char. table)"], ["G2(3)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["G2(3)",["Size",13],14,"computed (char. table)"], ["G2(3)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["G2(3).2","NrMovedPoints",702,"computed (table of marks)"], ["G2(3).2",["Characteristic",0],14,"computed (char. table)"], ["G2(3).2",["Characteristic",2],14,"computed (char. table)"], ["G2(3).2",["Characteristic",3],14,"computed (char. table)"], ["G2(3).2",["Characteristic",7],14,"computed (char. table)"], ["G2(3).2",["Characteristic",13],14,"computed (char. table)"], ["G2(3).2",["Size",2],14,"computed (char. table)"], ["G2(3).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["G2(3).2",["Size",3],14,"computed (char. table)"], ["G2(3).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["G2(3).2",["Size",7],14,"computed (char. table)"], ["G2(3).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["G2(3).2",["Size",13],14,"computed (char. table)"], ["G2(3).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["G2(4)","NrMovedPoints",416,"computed (char. table)"], ["G2(4)","NrMovedPoints",416,"computed (table of marks)"], ["G2(4)",["Characteristic",0],65,"computed (char. table)"], ["G2(4)",["Characteristic",2],6,"computed (char. table)"], ["G2(4)",["Characteristic",3],64,"computed (char. table)"], ["G2(4)",["Characteristic",5],65,"computed (char. table)"], ["G2(4)",["Characteristic",7],65,"computed (char. table)"], ["G2(4)",["Characteristic",13],65,"computed (char. table)"], ["G2(4)",["Size",2],12,"computed (char. table)"], ["G2(4)",["Size",4],6,"computed (char. table)"], ["G2(4)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["G2(4)",["Size",3],64,"computed (char. table)"], ["G2(4)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["G2(4)",["Size",5],65,"computed (char. table)"], ["G2(4)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["G2(4)",["Size",7],65,"computed (char. table)"], ["G2(4)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["G2(4)",["Size",13],65,"computed (char. table)"], ["G2(4)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["G2(4).2","NrMovedPoints",416,"computed (subgroup tables)"], ["G2(4).2",["Characteristic",0],65,"computed (char. table)"], ["G2(4).2",["Characteristic",2],12,"computed (char. table)"], ["G2(4).2",["Characteristic",3],64,"computed (char. table)"], ["G2(4).2",["Characteristic",5],65,"computed (char. table)"], ["G2(4).2",["Characteristic",7],65,"computed (char. table)"], ["G2(4).2",["Characteristic",13],65,"computed (char. table)"], ["G2(4).2",["Size",2],12,"computed (char. table)"], ["G2(4).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["G2(4).2",["Size",3],64,"computed (char. table)"], ["G2(4).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["G2(4).2",["Size",5],65,"computed (char. table)"], ["G2(4).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["G2(4).2",["Size",7],65,"computed (char. table)"], ["G2(4).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["G2(4).2",["Size",13],65,"computed (char. table)"], ["G2(4).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["G2(5)","NrMovedPoints",3906,"computed (char. table)"], ["G2(5)",["Characteristic",0],124,"computed (char. table)"], ["G2(5)",["Characteristic",2],124,"computed (char. table)"], ["G2(5)",["Characteristic",3],124,"computed (char. table)"], ["G2(5)",["Characteristic",5],7,"computed (char. table)"], ["G2(5)",["Characteristic",7],124,"computed (char. table)"], ["G2(5)",["Characteristic",31],124,"computed (char. table)"], ["G2(5)",["Size",2],124,"computed (char. table)"], ["G2(5)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["G2(5)",["Size",3],124,"computed (char. table)"], ["G2(5)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["G2(5)",["Size",5],7,"computed (char. table)"], ["G2(5)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["G2(5)",["Size",7],124,"computed (char. table)"], ["G2(5)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["G2(5)",["Size",31],124,"computed (char. table)"], ["G2(5)",["Characteristic",31,"complete"],true,"computed (char. table)"], ["HN","NrMovedPoints",1140000,"computed (char. table)"], ["HN",["Characteristic",0],133,"computed (char. table)"], ["HN",["Characteristic",2],132,"computed (char. table)"], ["HN",["Characteristic",5],133,"computed (char. table)"], ["HN",["Characteristic",7],133,"computed (char. table)"], ["HN",["Characteristic",11],133,"computed (char. table)"], ["HN",["Characteristic",19],133,"computed (char. table)"], ["HN",["Size",2],264,"computed (char. table)"], ["HN",["Size",4],132,"computed (char. table)"], ["HN",["Characteristic",2,"complete"],true,"computed (char. table)"], ["HN",["Size",5],133,"computed (char. table)"], ["HN",["Characteristic",5,"complete"],true,"computed (char. table)"], ["HN",["Size",7],266,"computed (char. table)"], ["HN",["Size",49],133,"computed (char. table)"], ["HN",["Characteristic",7,"complete"],true,"computed (char. table)"], ["HN",["Size",11],133,"computed (char. table)"], ["HN",["Characteristic",11,"complete"],true,"computed (char. table)"], ["HN",["Size",19],133,"computed (char. table)"], ["HN",["Characteristic",19,"complete"],true,"computed (char. table)"], ["HN.2","NrMovedPoints",1140000,"computed (subgroup tables)"], ["HN.2",["Characteristic",0],266,"computed (char. table)"], ["HN.2",["Characteristic",2],264,"computed (char. table)"], ["HN.2",["Characteristic",5],133,"computed (char. table)"], ["HN.2",["Characteristic",7],266,"computed (char. table)"], ["HN.2",["Characteristic",11],266,"computed (char. table)"], ["HN.2",["Characteristic",19],266,"computed (char. table)"], ["HN.2",["Size",2],264,"computed (char. table)"], ["HN.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["HN.2",["Size",5],133,"computed (char. table)"], ["HN.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["HN.2",["Size",7],266,"computed (char. table)"], ["HN.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["HN.2",["Size",11],266,"computed (char. table)"], ["HN.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["HN.2",["Size",19],266,"computed (char. table)"], ["HN.2",["Characteristic",19,"complete"],true,"computed (char. table)"], ["HS","NrMovedPoints",100,"computed (char. table)"], ["HS","NrMovedPoints",100,"computed (table of marks)"], ["HS",["Characteristic",0],22,"computed (char. table)"], ["HS",["Characteristic",2],20,"computed (char. table)"], ["HS",["Characteristic",3],22,"computed (char. table)"], ["HS",["Characteristic",5],21,"computed (char. table)"], ["HS",["Characteristic",7],22,"computed (char. table)"], ["HS",["Characteristic",11],22,"computed (char. table)"], ["HS",["Size",2],20,"computed (char. table)"], ["HS",["Characteristic",2,"complete"],true,"computed (char. table)"], ["HS",["Size",3],22,"computed (char. table)"], ["HS",["Characteristic",3,"complete"],true,"computed (char. table)"], ["HS",["Size",5],21,"computed (char. table)"], ["HS",["Characteristic",5,"complete"],true,"computed (char. table)"], ["HS",["Size",7],22,"computed (char. table)"], ["HS",["Characteristic",7,"complete"],true,"computed (char. table)"], ["HS",["Size",11],22,"computed (char. table)"], ["HS",["Characteristic",11,"complete"],true,"computed (char. table)"], ["HS.2","NrMovedPoints",100,"computed (subgroup tables)"], ["HS.2","NrMovedPoints",100,"computed (subgroup tables, known repres.)"], ["HS.2",["Characteristic",0],22,"computed (char. table)"], ["HS.2",["Characteristic",2],20,"computed (char. table)"], ["HS.2",["Characteristic",3],22,"computed (char. table)"], ["HS.2",["Characteristic",5],21,"computed (char. table)"], ["HS.2",["Characteristic",7],22,"computed (char. table)"], ["HS.2",["Characteristic",11],22,"computed (char. table)"], ["HS.2",["Size",2],20,"computed (char. table)"], ["HS.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["HS.2",["Size",3],22,"computed (char. table)"], ["HS.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["HS.2",["Size",5],21,"computed (char. table)"], ["HS.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["HS.2",["Size",7],22,"computed (char. table)"], ["HS.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["HS.2",["Size",11],22,"computed (char. table)"], ["HS.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["He","NrMovedPoints",2058,"computed (char. table)"], ["He","NrMovedPoints",2058,"computed (table of marks)"], ["He",["Characteristic",0],51,"computed (char. table)"], ["He",["Characteristic",2],51,"computed (char. table)"], ["He",["Characteristic",3],51,"computed (char. table)"], ["He",["Characteristic",5],51,"computed (char. table)"], ["He",["Characteristic",7],50,"computed (char. table)"], ["He",["Characteristic",17],51,"computed (char. table)"], ["He",["Size",2],51,"computed (char. table)"], ["He",["Characteristic",2,"complete"],true,"computed (char. table)"], ["He",["Size",3],102,"computed (char. table)"], ["He",["Size",9],51,"computed (char. table)"], ["He",["Characteristic",3,"complete"],true,"computed (char. table)"], ["He",["Size",5],102,"computed (char. table)"], ["He",["Size",25],51,"computed (char. table)"], ["He",["Characteristic",5,"complete"],true,"computed (char. table)"], ["He",["Size",7],50,"computed (char. table)"], ["He",["Characteristic",7,"complete"],true,"computed (char. table)"], ["He",["Size",17],102,"computed (char. table)"], ["He",["Size",289],51,"computed (char. table)"], ["He",["Characteristic",17,"complete"],true,"computed (char. table)"], ["He.2","NrMovedPoints",2058,"computed (subgroup tables)"], ["He.2","NrMovedPoints",2058,"computed (subgroup tables, known repres.)"], ["He.2",["Characteristic",0],102,"computed (char. table)"], ["He.2",["Characteristic",2],102,"computed (char. table)"], ["He.2",["Characteristic",3],102,"computed (char. table)"], ["He.2",["Characteristic",5],102,"computed (char. table)"], ["He.2",["Characteristic",7],50,"computed (char. table)"], ["He.2",["Characteristic",17],102,"computed (char. table)"], ["He.2",["Size",2],102,"computed (char. table)"], ["He.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["He.2",["Size",3],102,"computed (char. table)"], ["He.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["He.2",["Size",5],102,"computed (char. table)"], ["He.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["He.2",["Size",7],50,"computed (char. table)"], ["He.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["He.2",["Size",17],102,"computed (char. table)"], ["He.2",["Characteristic",17,"complete"],true,"computed (char. table)"], ["Isoclinic(2.A14.2)",["Characteristic",0],64,"computed (char. table)"], ["Isoclinic(2.A5.2)","NrMovedPoints",48,"computed (table of marks)"], ["Isoclinic(2.A5.2)",["Characteristic",0],4,"computed (char. table)"], ["Isoclinic(2.A5.2)",["Characteristic",3],4,"computed (char. table)"], ["Isoclinic(2.A5.2)",["Characteristic",5],2,"computed (char. table)"], ["Isoclinic(2.A5.2)",["Size",3],4,"computed (char. table)"], ["Isoclinic(2.A5.2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["Isoclinic(2.A5.2)",["Size",5],4,"computed (char. table)"], ["Isoclinic(2.A5.2)",["Size",25],2,"computed (char. table)"], ["Isoclinic(2.A5.2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Isoclinic(2.A7.2)","NrMovedPoints",240,"computed (table of marks)"], ["Isoclinic(2.A7.2)",["Characteristic",0],8,"computed (char. table)"], ["Isoclinic(2.A7.2)",["Characteristic",3],8,"computed (char. table)"], ["Isoclinic(2.A7.2)",["Characteristic",5],8,"computed (char. table)"], ["Isoclinic(2.A7.2)",["Characteristic",7],4,"computed (char. table)"], ["Isoclinic(2.A7.2)",["Size",3],8,"computed (char. table)"], ["Isoclinic(2.A7.2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["Isoclinic(2.A7.2)",["Size",5],8,"computed (char. table)"], ["Isoclinic(2.A7.2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Isoclinic(2.A7.2)",["Size",7],4,"computed (char. table)"], ["Isoclinic(2.A7.2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["Isoclinic(2.A8.2)","NrMovedPoints",240,"computed (table of marks)"], ["Isoclinic(2.A8.2)",["Characteristic",0],8,"computed (char. table)"], ["Isoclinic(2.A8.2)",["Characteristic",3],8,"computed (char. table)"], ["Isoclinic(2.A8.2)",["Characteristic",5],8,"computed (char. table)"], ["Isoclinic(2.A8.2)",["Characteristic",7],8,"computed (char. table)"], ["Isoclinic(2.A8.2)",["Size",3],8,"computed (char. table)"], ["Isoclinic(2.A8.2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["Isoclinic(2.A8.2)",["Size",5],8,"computed (char. table)"], ["Isoclinic(2.A8.2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Isoclinic(2.A8.2)",["Size",7],8,"computed (char. table)"], ["Isoclinic(2.A8.2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["Isoclinic(2.G2(4).2)",["Characteristic",0],12,"computed (char. table)"], ["Isoclinic(2.G2(4).2)",["Characteristic",3],12,"computed (char. table)"], ["Isoclinic(2.G2(4).2)",["Characteristic",5],12,"computed (char. table)"], ["Isoclinic(2.G2(4).2)",["Characteristic",7],12,"computed (char. table)"], ["Isoclinic(2.G2(4).2)",["Characteristic",13],12,"computed (char. table)"], ["Isoclinic(2.G2(4).2)",["Size",3],12,"computed (char. table)"], ["Isoclinic(2.G2(4).2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["Isoclinic(2.G2(4).2)",["Size",5],24,"computed (char. table)"], ["Isoclinic(2.G2(4).2)",["Size",25],12,"computed (char. table)"], ["Isoclinic(2.G2(4).2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Isoclinic(2.G2(4).2)",["Size",7],24,"computed (char. table)"], ["Isoclinic(2.G2(4).2)",["Size",49],12,"computed (char. table)"], ["Isoclinic(2.G2(4).2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["Isoclinic(2.G2(4).2)",["Size",13],24,"computed (char. table)"], ["Isoclinic(2.G2(4).2)",["Size",169],12,"computed (char. table)"], ["Isoclinic(2.G2(4).2)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["Isoclinic(2.J2.2)",["Characteristic",0],12,"computed (char. table)"], ["Isoclinic(2.J2.2)",["Characteristic",3],12,"computed (char. table)"], ["Isoclinic(2.J2.2)",["Characteristic",5],6,"computed (char. table)"], ["Isoclinic(2.J2.2)",["Characteristic",7],12,"computed (char. table)"], ["Isoclinic(2.J2.2)",["Size",3],12,"computed (char. table)"], ["Isoclinic(2.J2.2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["Isoclinic(2.J2.2)",["Size",5],12,"computed (char. table)"], ["Isoclinic(2.J2.2)",["Size",25],6,"computed (char. table)"], ["Isoclinic(2.J2.2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Isoclinic(2.J2.2)",["Size",7],12,"computed (char. table)"], ["Isoclinic(2.J2.2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["Isoclinic(2.L2(19).2)",["Characteristic",0],18,"computed (char. table)"], ["Isoclinic(2.L2(19).2)",["Characteristic",3],18,"computed (char. table)"], ["Isoclinic(2.L2(19).2)",["Characteristic",5],18,"computed (char. table)"], ["Isoclinic(2.L2(19).2)",["Characteristic",19],2,"computed (char. table)"], ["Isoclinic(2.L2(19).2)",["Size",3],18,"computed (char. table)"], ["Isoclinic(2.L2(19).2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["Isoclinic(2.L2(19).2)",["Size",5],20,"computed (char. table)"], ["Isoclinic(2.L2(19).2)",["Size",25],18,"computed (char. table)"], ["Isoclinic(2.L2(19).2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Isoclinic(2.L2(19).2)",["Size",19],2,"computed (char. table)"], ["Isoclinic(2.L2(19).2)",["Characteristic",19,"complete"],true,"computed (char. table)"], ["Isoclinic(2.L2(23).2)",["Characteristic",0],22,"computed (char. table)"], ["Isoclinic(2.L2(23).2)",["Characteristic",3],22,"computed (char. table)"], ["Isoclinic(2.L2(23).2)",["Characteristic",11],22,"computed (char. table)"], ["Isoclinic(2.L2(23).2)",["Characteristic",23],2,"computed (char. table)"], ["Isoclinic(2.L2(23).2)",["Size",3],24,"computed (char. table)"], ["Isoclinic(2.L2(23).2)",["Size",81],22,"computed (char. table)"], ["Isoclinic(2.L2(23).2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["Isoclinic(2.L2(23).2)",["Size",11],24,"computed (char. table)"], ["Isoclinic(2.L2(23).2)",["Size",14641],22,"computed (char. table)"], ["Isoclinic(2.L2(23).2)",["Characteristic",11,"complete"],true,"computed (char. table)"], ["Isoclinic(2.L2(23).2)",["Size",23],2,"computed (char. table)"], ["Isoclinic(2.L2(23).2)",["Characteristic",23,"complete"],true,"computed (char. table)"], ["Isoclinic(2.L3(2).2)",["Characteristic",0],6,"computed (char. table)"], ["Isoclinic(2.L3(2).2)",["Characteristic",3],6,"computed (char. table)"], ["Isoclinic(2.L3(2).2)",["Characteristic",7],2,"computed (char. table)"], ["Isoclinic(2.L3(2).2)",["Size",3],8,"computed (char. table)"], ["Isoclinic(2.L3(2).2)",["Size",81],6,"computed (char. table)"], ["Isoclinic(2.L3(2).2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["Isoclinic(2.L3(2).2)",["Size",7],2,"computed (char. table)"], ["Isoclinic(2.L3(2).2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["J1","NrMovedPoints",266,"computed (char. table)"], ["J1","NrMovedPoints",266,"computed (table of marks)"], ["J1",["Characteristic",0],56,"computed (char. table)"], ["J1",["Characteristic",2],20,"computed (char. table)"], ["J1",["Characteristic",3],56,"computed (char. table)"], ["J1",["Characteristic",5],56,"computed (char. table)"], ["J1",["Characteristic",7],31,"computed (char. table)"], ["J1",["Characteristic",11],7,"computed (char. table)"], ["J1",["Characteristic",19],22,"computed (char. table)"], ["J1",["Size",2],20,"computed (char. table)"], ["J1",["Characteristic",2,"complete"],true,"computed (char. table)"], ["J1",["Size",3],76,"computed (char. table)"], ["J1",["Size",9],56,"computed (char. table)"], ["J1",["Characteristic",3,"complete"],true,"computed (char. table)"], ["J1",["Size",5],56,"computed (char. table)"], ["J1",["Characteristic",5,"complete"],true,"computed (char. table)"], ["J1",["Size",7],31,"computed (char. table)"], ["J1",["Characteristic",7,"complete"],true,"computed (char. table)"], ["J1",["Size",11],7,"computed (char. table)"], ["J1",["Characteristic",11,"complete"],true,"computed (char. table)"], ["J1",["Size",19],22,"computed (char. table)"], ["J1",["Characteristic",19,"complete"],true,"computed (char. table)"], ["J2","NrMovedPoints",100,"computed (char. table)"], ["J2","NrMovedPoints",100,"computed (table of marks)"], ["J2",["Characteristic",0],14,"computed (char. table)"], ["J2",["Characteristic",2],6,"computed (char. table)"], ["J2",["Characteristic",3],13,"computed (char. table)"], ["J2",["Characteristic",5],14,"computed (char. table)"], ["J2",["Characteristic",7],14,"computed (char. table)"], ["J2",["Size",2],12,"computed (char. table)"], ["J2",["Size",4],6,"computed (char. table)"], ["J2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["J2",["Size",3],26,"computed (char. table)"], ["J2",["Size",9],13,"computed (char. table)"], ["J2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["J2",["Size",5],14,"computed (char. table)"], ["J2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["J2",["Size",7],28,"computed (char. table)"], ["J2",["Size",49],14,"computed (char. table)"], ["J2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["J2.2","NrMovedPoints",100,"computed (char. table)"], ["J2.2","NrMovedPoints",100,"computed (subgroup tables)"], ["J2.2","NrMovedPoints",100,"computed (subgroup tables, known repres.)"], ["J2.2","NrMovedPoints",100,"computed (table of marks)"], ["J2.2",["Characteristic",0],28,"computed (char. table)"], ["J2.2",["Characteristic",2],12,"computed (char. table)"], ["J2.2",["Characteristic",3],26,"computed (char. table)"], ["J2.2",["Characteristic",5],14,"computed (char. table)"], ["J2.2",["Characteristic",7],28,"computed (char. table)"], ["J2.2",["Size",2],12,"computed (char. table)"], ["J2.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["J2.2",["Size",3],26,"computed (char. table)"], ["J2.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["J2.2",["Size",5],14,"computed (char. table)"], ["J2.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["J2.2",["Size",7],28,"computed (char. table)"], ["J2.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["J3","NrMovedPoints",6156,"computed (char. table)"], ["J3","NrMovedPoints",6156,"computed (table of marks)"], ["J3",["Characteristic",0],85,"computed (char. table)"], ["J3",["Characteristic",2],78,"computed (char. table)"], ["J3",["Characteristic",3],18,"computed (char. table)"], ["J3",["Characteristic",5],85,"computed (char. table)"], ["J3",["Characteristic",17],85,"computed (char. table)"], ["J3",["Characteristic",19],85,"computed (char. table)"], ["J3",["Size",2],80,"computed (char. table)"], ["J3",["Size",4],78,"computed (char. table)"], ["J3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["J3",["Size",3],36,"computed (char. table)"], ["J3",["Size",9],18,"computed (char. table)"], ["J3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["J3",["Size",5],85,"computed (char. table)"], ["J3",["Characteristic",5,"complete"],true,"computed (char. table)"], ["J3",["Size",17],85,"computed (char. table)"], ["J3",["Characteristic",17,"complete"],true,"computed (char. table)"], ["J3",["Size",19],85,"computed (char. table)"], ["J3",["Characteristic",19,"complete"],true,"computed (char. table)"], ["J3.2","NrMovedPoints",6156,"computed (char. table)"], ["J3.2","NrMovedPoints",6156,"computed (subgroup tables)"], ["J3.2","NrMovedPoints",6156,"computed (subgroup tables, known repres.)"], ["J3.2","NrMovedPoints",6156,"computed (table of marks)"], ["J3.2",["Characteristic",0],170,"computed (char. table)"], ["J3.2",["Characteristic",2],80,"computed (char. table)"], ["J3.2",["Characteristic",3],36,"computed (char. table)"], ["J3.2",["Characteristic",5],170,"computed (char. table)"], ["J3.2",["Characteristic",17],170,"computed (char. table)"], ["J3.2",["Characteristic",19],85,"computed (char. table)"], ["J3.2",["Size",2],80,"computed (char. table)"], ["J3.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["J3.2",["Size",3],36,"computed (char. table)"], ["J3.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["J3.2",["Size",5],170,"computed (char. table)"], ["J3.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["J3.2",["Size",17],170,"computed (char. table)"], ["J3.2",["Characteristic",17,"complete"],true,"computed (char. table)"], ["J3.2",["Size",19],85,"computed (char. table)"], ["J3.2",["Characteristic",19,"complete"],true,"computed (char. table)"], ["J4","NrMovedPoints",173067389,"computed (char. table)"], ["J4",["Characteristic",0],1333,"computed (char. table)"], ["J4",["Characteristic",5],1333,"computed (char. table)"], ["J4",["Characteristic",7],1333,"computed (char. table)"], ["J4",["Characteristic",37],1333,"computed (char. table)"], ["J4",["Size",5],2666,"computed (char. table)"], ["J4",["Size",25],1333,"computed (char. table)"], ["J4",["Characteristic",5,"complete"],true,"computed (char. table)"], ["J4",["Size",7],1333,"computed (char. table)"], ["J4",["Characteristic",7,"complete"],true,"computed (char. table)"], ["J4",["Size",37],1333,"computed (char. table)"], ["J4",["Characteristic",37,"complete"],true,"computed (char. table)"], ["L2(101)","NrMovedPoints",102,"computed (PSL(2,q))"], ["L2(101)","NrMovedPoints",102,"computed (table of marks)"], ["L2(101)",["Characteristic",0],51,"computed (char. table)"], ["L2(103)","NrMovedPoints",104,"computed (PSL(2,q))"], ["L2(103)","NrMovedPoints",104,"computed (table of marks)"], ["L2(103)",["Characteristic",0],51,"computed (char. table)"], ["L2(107)","NrMovedPoints",108,"computed (PSL(2,q))"], ["L2(107)","NrMovedPoints",108,"computed (table of marks)"], ["L2(107)",["Characteristic",0],53,"computed (char. table)"], ["L2(109)","NrMovedPoints",110,"computed (PSL(2,q))"], ["L2(109)","NrMovedPoints",110,"computed (table of marks)"], ["L2(109)",["Characteristic",0],55,"computed (char. table)"], ["L2(11)","NrMovedPoints",11,"computed (PSL(2,q))"], ["L2(11)","NrMovedPoints",11,"computed (char. table)"], ["L2(11)","NrMovedPoints",11,"computed (subgroup tables)"], ["L2(11)","NrMovedPoints",11,"computed (subgroup tables, known repres.)"], ["L2(11)","NrMovedPoints",11,"computed (table of marks)"], ["L2(11)",["Characteristic",0],5,"computed (char. table)"], ["L2(11)",["Characteristic",2],5,"computed (char. table)"], ["L2(11)",["Characteristic",3],5,"computed (char. table)"], ["L2(11)",["Characteristic",5],5,"computed (char. table)"], ["L2(11)",["Characteristic",11],3,"computed (char. table)"], ["L2(11)",["Size",2],10,"computed (char. table)"], ["L2(11)",["Size",4],5,"computed (char. table)"], ["L2(11)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(11)",["Size",3],5,"computed (char. table)"], ["L2(11)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(11)",["Size",5],5,"computed (char. table)"], ["L2(11)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(11)",["Size",11],3,"computed (char. table)"], ["L2(11)",["Characteristic",11,"complete"],true,"computed (char. table)"], ["L2(11).2","NrMovedPoints",12,"computed (char. table)"], ["L2(11).2","NrMovedPoints",12,"computed (table of marks)"], ["L2(11).2",["Characteristic",0],10,"computed (char. table)"], ["L2(11).2",["Characteristic",2],10,"computed (char. table)"], ["L2(11).2",["Characteristic",3],10,"computed (char. table)"], ["L2(11).2",["Characteristic",5],10,"computed (char. table)"], ["L2(11).2",["Characteristic",11],3,"computed (char. table)"], ["L2(11).2",["Size",2],10,"computed (char. table)"], ["L2(11).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(11).2",["Size",3],10,"computed (char. table)"], ["L2(11).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(11).2",["Size",5],10,"computed (char. table)"], ["L2(11).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(11).2",["Size",11],3,"computed (char. table)"], ["L2(11).2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["L2(113)","NrMovedPoints",114,"computed (PSL(2,q))"], ["L2(113)","NrMovedPoints",114,"computed (table of marks)"], ["L2(113)",["Characteristic",0],57,"computed (char. table)"], ["L2(127)","NrMovedPoints",128,"computed (PSL(2,q))"], ["L2(128)","NrMovedPoints",129,"computed (PSL(2,q))"], ["L2(13)","NrMovedPoints",14,"computed (PSL(2,q))"], ["L2(13)","NrMovedPoints",14,"computed (char. table)"], ["L2(13)","NrMovedPoints",14,"computed (table of marks)"], ["L2(13)",["Characteristic",0],7,"computed (char. table)"], ["L2(13)",["Characteristic",2],6,"computed (char. table)"], ["L2(13)",["Characteristic",3],7,"computed (char. table)"], ["L2(13)",["Characteristic",7],7,"computed (char. table)"], ["L2(13)",["Characteristic",13],3,"computed (char. table)"], ["L2(13)",["Size",2],12,"computed (char. table)"], ["L2(13)",["Size",4],6,"computed (char. table)"], ["L2(13)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(13)",["Size",3],7,"computed (char. table)"], ["L2(13)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(13)",["Size",7],12,"computed (char. table)"], ["L2(13)",["Size",49],7,"computed (char. table)"], ["L2(13)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L2(13)",["Size",13],3,"computed (char. table)"], ["L2(13)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L2(13).2","NrMovedPoints",14,"computed (subgroup tables, known repres.)"], ["L2(13).2","NrMovedPoints",14,"computed (table of marks)"], ["L2(13).2",["Characteristic",0],12,"computed (char. table)"], ["L2(13).2",["Characteristic",2],12,"computed (char. table)"], ["L2(13).2",["Characteristic",3],12,"computed (char. table)"], ["L2(13).2",["Characteristic",7],12,"computed (char. table)"], ["L2(13).2",["Characteristic",13],3,"computed (char. table)"], ["L2(13).2",["Size",2],12,"computed (char. table)"], ["L2(13).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(13).2",["Size",3],13,"computed (char. table)"], ["L2(13).2",["Size",27],12,"computed (char. table)"], ["L2(13).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(13).2",["Size",7],12,"computed (char. table)"], ["L2(13).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L2(13).2",["Size",13],3,"computed (char. table)"], ["L2(13).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L2(131)","NrMovedPoints",132,"computed (PSL(2,q))"], ["L2(137)","NrMovedPoints",138,"computed (PSL(2,q))"], ["L2(139)","NrMovedPoints",140,"computed (PSL(2,q))"], ["L2(149)","NrMovedPoints",150,"computed (PSL(2,q))"], ["L2(151)","NrMovedPoints",152,"computed (PSL(2,q))"], ["L2(157)","NrMovedPoints",158,"computed (PSL(2,q))"], ["L2(16)","NrMovedPoints",17,"computed (PSL(2,q))"], ["L2(16)","NrMovedPoints",17,"computed (subgroup tables, known repres.)"], ["L2(16)","NrMovedPoints",17,"computed (table of marks)"], ["L2(16)",["Characteristic",0],15,"computed (char. table)"], ["L2(16)",["Characteristic",2],2,"computed (char. table)"], ["L2(16)",["Characteristic",3],15,"computed (char. table)"], ["L2(16)",["Characteristic",5],15,"computed (char. table)"], ["L2(16)",["Characteristic",17],15,"computed (char. table)"], ["L2(16)",["Size",2],8,"computed (char. table)"], ["L2(16)",["Size",4],4,"computed (char. table)"], ["L2(16)",["Size",16],2,"computed (char. table)"], ["L2(16)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(16)",["Size",3],16,"computed (char. table)"], ["L2(16)",["Size",6561],15,"computed (char. table)"], ["L2(16)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(16)",["Size",5],16,"computed (char. table)"], ["L2(16)",["Size",390625],15,"computed (char. table)"], ["L2(16)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(16)",["Size",17],15,"computed (char. table)"], ["L2(16)",["Characteristic",17,"complete"],true,"computed (char. table)"], ["L2(16).2","NrMovedPoints",17,"computed (table of marks)"], ["L2(16).2",["Characteristic",0],16,"computed (char. table)"], ["L2(16).2",["Characteristic",2],4,"computed (char. table)"], ["L2(16).2",["Characteristic",3],16,"computed (char. table)"], ["L2(16).2",["Characteristic",5],16,"computed (char. table)"], ["L2(16).2",["Characteristic",17],15,"computed (char. table)"], ["L2(16).2",["Size",2],8,"computed (char. table)"], ["L2(16).2",["Size",4],4,"computed (char. table)"], ["L2(16).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(16).2",["Size",3],16,"computed (char. table)"], ["L2(16).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(16).2",["Size",5],16,"computed (char. table)"], ["L2(16).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(16).2",["Size",17],15,"computed (char. table)"], ["L2(16).2",["Characteristic",17,"complete"],true,"computed (char. table)"], ["L2(16).4","NrMovedPoints",17,"computed (table of marks)"], ["L2(16).4",["Characteristic",0],16,"computed (char. table)"], ["L2(16).4",["Characteristic",2],8,"computed (char. table)"], ["L2(16).4",["Characteristic",3],16,"computed (char. table)"], ["L2(16).4",["Characteristic",5],16,"computed (char. table)"], ["L2(16).4",["Characteristic",17],15,"computed (char. table)"], ["L2(16).4",["Size",2],8,"computed (char. table)"], ["L2(16).4",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(16).4",["Size",3],16,"computed (char. table)"], ["L2(16).4",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(16).4",["Size",5],16,"computed (char. table)"], ["L2(16).4",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(16).4",["Size",17],15,"computed (char. table)"], ["L2(16).4",["Characteristic",17,"complete"],true,"computed (char. table)"], ["L2(163)","NrMovedPoints",164,"computed (PSL(2,q))"], ["L2(167)","NrMovedPoints",168,"computed (PSL(2,q))"], ["L2(17)","NrMovedPoints",18,"computed (PSL(2,q))"], ["L2(17)","NrMovedPoints",18,"computed (table of marks)"], ["L2(17)",["Characteristic",0],9,"computed (char. table)"], ["L2(17)",["Characteristic",2],8,"computed (char. table)"], ["L2(17)",["Characteristic",3],9,"computed (char. table)"], ["L2(17)",["Characteristic",17],3,"computed (char. table)"], ["L2(17)",["Size",2],8,"computed (char. table)"], ["L2(17)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(17)",["Size",3],16,"computed (char. table)"], ["L2(17)",["Size",9],9,"computed (char. table)"], ["L2(17)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(17)",["Size",17],3,"computed (char. table)"], ["L2(17)",["Characteristic",17,"complete"],true,"computed (char. table)"], ["L2(17).2","NrMovedPoints",18,"computed (subgroup tables)"], ["L2(17).2","NrMovedPoints",18,"computed (subgroup tables, known repres.)"], ["L2(17).2",["Characteristic",0],16,"computed (char. table)"], ["L2(17).2",["Characteristic",2],16,"computed (char. table)"], ["L2(17).2",["Characteristic",3],16,"computed (char. table)"], ["L2(17).2",["Characteristic",17],3,"computed (char. table)"], ["L2(17).2",["Size",2],16,"computed (char. table)"], ["L2(17).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(17).2",["Size",3],16,"computed (char. table)"], ["L2(17).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(17).2",["Size",17],3,"computed (char. table)"], ["L2(17).2",["Characteristic",17,"complete"],true,"computed (char. table)"], ["L2(173)","NrMovedPoints",174,"computed (PSL(2,q))"], ["L2(179)","NrMovedPoints",180,"computed (PSL(2,q))"], ["L2(181)","NrMovedPoints",182,"computed (PSL(2,q))"], ["L2(19)","NrMovedPoints",20,"computed (PSL(2,q))"], ["L2(19)","NrMovedPoints",20,"computed (table of marks)"], ["L2(19)",["Characteristic",0],9,"computed (char. table)"], ["L2(19)",["Characteristic",2],9,"computed (char. table)"], ["L2(19)",["Characteristic",3],9,"computed (char. table)"], ["L2(19)",["Characteristic",5],9,"computed (char. table)"], ["L2(19)",["Characteristic",19],3,"computed (char. table)"], ["L2(19)",["Size",2],18,"computed (char. table)"], ["L2(19)",["Size",4],9,"computed (char. table)"], ["L2(19)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(19)",["Size",3],18,"computed (char. table)"], ["L2(19)",["Size",9],9,"computed (char. table)"], ["L2(19)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(19)",["Size",5],9,"computed (char. table)"], ["L2(19)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(19)",["Size",19],3,"computed (char. table)"], ["L2(19)",["Characteristic",19,"complete"],true,"computed (char. table)"], ["L2(19).2","NrMovedPoints",20,"computed (subgroup tables)"], ["L2(19).2","NrMovedPoints",20,"computed (subgroup tables, known repres.)"], ["L2(19).2",["Characteristic",0],18,"computed (char. table)"], ["L2(19).2",["Characteristic",2],18,"computed (char. table)"], ["L2(19).2",["Characteristic",3],18,"computed (char. table)"], ["L2(19).2",["Characteristic",5],18,"computed (char. table)"], ["L2(19).2",["Characteristic",19],3,"computed (char. table)"], ["L2(19).2",["Size",2],18,"computed (char. table)"], ["L2(19).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(19).2",["Size",3],18,"computed (char. table)"], ["L2(19).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(19).2",["Size",5],18,"computed (char. table)"], ["L2(19).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(19).2",["Size",19],3,"computed (char. table)"], ["L2(19).2",["Characteristic",19,"complete"],true,"computed (char. table)"], ["L2(191)","NrMovedPoints",192,"computed (PSL(2,q))"], ["L2(193)","NrMovedPoints",194,"computed (PSL(2,q))"], ["L2(197)","NrMovedPoints",198,"computed (PSL(2,q))"], ["L2(199)","NrMovedPoints",200,"computed (PSL(2,q))"], ["L2(211)","NrMovedPoints",212,"computed (PSL(2,q))"], ["L2(223)","NrMovedPoints",224,"computed (PSL(2,q))"], ["L2(227)","NrMovedPoints",228,"computed (PSL(2,q))"], ["L2(229)","NrMovedPoints",230,"computed (PSL(2,q))"], ["L2(23)","NrMovedPoints",24,"computed (PSL(2,q))"], ["L2(23)","NrMovedPoints",24,"computed (table of marks)"], ["L2(23)",["Characteristic",0],11,"computed (char. table)"], ["L2(23)",["Characteristic",2],11,"computed (char. table)"], ["L2(23)",["Characteristic",3],11,"computed (char. table)"], ["L2(23)",["Characteristic",11],11,"computed (char. table)"], ["L2(23)",["Characteristic",23],3,"computed (char. table)"], ["L2(23)",["Size",2],11,"computed (char. table)"], ["L2(23)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(23)",["Size",3],11,"computed (char. table)"], ["L2(23)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(23)",["Size",11],22,"computed (char. table)"], ["L2(23)",["Size",121],11,"computed (char. table)"], ["L2(23)",["Characteristic",11,"complete"],true,"computed (char. table)"], ["L2(23)",["Size",23],3,"computed (char. table)"], ["L2(23)",["Characteristic",23,"complete"],true,"computed (char. table)"], ["L2(23).2",["Characteristic",0],22,"computed (char. table)"], ["L2(23).2",["Characteristic",2],22,"computed (char. table)"], ["L2(23).2",["Characteristic",3],22,"computed (char. table)"], ["L2(23).2",["Characteristic",11],22,"computed (char. table)"], ["L2(23).2",["Characteristic",23],3,"computed (char. table)"], ["L2(23).2",["Size",2],22,"computed (char. table)"], ["L2(23).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(23).2",["Size",3],22,"computed (char. table)"], ["L2(23).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(23).2",["Size",11],22,"computed (char. table)"], ["L2(23).2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["L2(23).2",["Size",23],3,"computed (char. table)"], ["L2(23).2",["Characteristic",23,"complete"],true,"computed (char. table)"], ["L2(233)","NrMovedPoints",234,"computed (PSL(2,q))"], ["L2(239)","NrMovedPoints",240,"computed (PSL(2,q))"], ["L2(241)","NrMovedPoints",242,"computed (PSL(2,q))"], ["L2(25)","NrMovedPoints",26,"computed (PSL(2,q))"], ["L2(25)","NrMovedPoints",26,"computed (table of marks)"], ["L2(25)",["Characteristic",0],13,"computed (char. table)"], ["L2(25)",["Characteristic",2],12,"computed (char. table)"], ["L2(25)",["Characteristic",3],13,"computed (char. table)"], ["L2(25)",["Characteristic",5],3,"computed (char. table)"], ["L2(25)",["Characteristic",13],13,"computed (char. table)"], ["L2(25)",["Size",2],12,"computed (char. table)"], ["L2(25)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(25)",["Size",3],13,"computed (char. table)"], ["L2(25)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(25)",["Size",5],4,"computed (char. table)"], ["L2(25)",["Size",25],3,"computed (char. table)"], ["L2(25)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(25)",["Size",13],13,"computed (char. table)"], ["L2(25)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L2(25).2_1",["Characteristic",0],24,"computed (char. table)"], ["L2(25).2_1",["Characteristic",2],24,"computed (char. table)"], ["L2(25).2_1",["Characteristic",3],24,"computed (char. table)"], ["L2(25).2_1",["Characteristic",5],3,"computed (char. table)"], ["L2(25).2_1",["Characteristic",13],24,"computed (char. table)"], ["L2(25).2_1",["Size",2],24,"computed (char. table)"], ["L2(25).2_1",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(25).2_1",["Size",3],25,"computed (char. table)"], ["L2(25).2_1",["Size",27],24,"computed (char. table)"], ["L2(25).2_1",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(25).2_1",["Size",5],6,"computed (char. table)"], ["L2(25).2_1",["Size",25],3,"computed (char. table)"], ["L2(25).2_1",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(25).2_1",["Size",13],24,"computed (char. table)"], ["L2(25).2_1",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L2(25).2_2","NrMovedPoints",26,"computed (subgroup tables)"], ["L2(25).2_2","NrMovedPoints",26,"computed (table of marks)"], ["L2(25).2_2",["Characteristic",0],13,"computed (char. table)"], ["L2(25).2_2",["Characteristic",2],12,"computed (char. table)"], ["L2(25).2_2",["Characteristic",3],13,"computed (char. table)"], ["L2(25).2_2",["Characteristic",5],4,"computed (char. table)"], ["L2(25).2_2",["Characteristic",13],13,"computed (char. table)"], ["L2(25).2_2",["Size",2],12,"computed (char. table)"], ["L2(25).2_2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(25).2_2",["Size",3],13,"computed (char. table)"], ["L2(25).2_2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(25).2_2",["Size",5],4,"computed (char. table)"], ["L2(25).2_2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(25).2_2",["Size",13],13,"computed (char. table)"], ["L2(25).2_2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L2(25).2_3",["Characteristic",0],25,"computed (char. table)"], ["L2(25).2_3",["Characteristic",2],24,"computed (char. table)"], ["L2(25).2_3",["Characteristic",3],25,"computed (char. table)"], ["L2(25).2_3",["Characteristic",5],4,"computed (char. table)"], ["L2(25).2_3",["Characteristic",13],24,"computed (char. table)"], ["L2(25).2_3",["Size",2],24,"computed (char. table)"], ["L2(25).2_3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(25).2_3",["Size",3],25,"computed (char. table)"], ["L2(25).2_3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(25).2_3",["Size",5],6,"computed (char. table)"], ["L2(25).2_3",["Size",25],4,"computed (char. table)"], ["L2(25).2_3",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(25).2_3",["Size",13],24,"computed (char. table)"], ["L2(25).2_3",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L2(27)","NrMovedPoints",28,"computed (PSL(2,q))"], ["L2(27)","NrMovedPoints",28,"computed (table of marks)"], ["L2(27)",["Characteristic",0],13,"computed (char. table)"], ["L2(27)",["Characteristic",2],13,"computed (char. table)"], ["L2(27)",["Characteristic",3],3,"computed (char. table)"], ["L2(27)",["Characteristic",7],13,"computed (char. table)"], ["L2(27)",["Characteristic",13],13,"computed (char. table)"], ["L2(27)",["Size",2],26,"computed (char. table)"], ["L2(27)",["Size",4],13,"computed (char. table)"], ["L2(27)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(27)",["Size",3],9,"computed (char. table)"], ["L2(27)",["Size",27],3,"computed (char. table)"], ["L2(27)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(27)",["Size",7],13,"computed (char. table)"], ["L2(27)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L2(27)",["Size",13],13,"computed (char. table)"], ["L2(27)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L2(27).2",["Characteristic",0],26,"computed (char. table)"], ["L2(27).2",["Characteristic",2],26,"computed (char. table)"], ["L2(27).2",["Characteristic",3],3,"computed (char. table)"], ["L2(27).2",["Characteristic",7],26,"computed (char. table)"], ["L2(27).2",["Characteristic",13],26,"computed (char. table)"], ["L2(27).2",["Size",2],26,"computed (char. table)"], ["L2(27).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(27).2",["Size",3],9,"computed (char. table)"], ["L2(27).2",["Size",27],3,"computed (char. table)"], ["L2(27).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(27).2",["Size",7],26,"computed (char. table)"], ["L2(27).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L2(27).2",["Size",13],26,"computed (char. table)"], ["L2(27).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L2(27).3",["Characteristic",0],13,"computed (char. table)"], ["L2(27).3",["Characteristic",2],13,"computed (char. table)"], ["L2(27).3",["Characteristic",3],9,"computed (char. table)"], ["L2(27).3",["Characteristic",7],13,"computed (char. table)"], ["L2(27).3",["Characteristic",13],13,"computed (char. table)"], ["L2(27).3",["Size",2],26,"computed (char. table)"], ["L2(27).3",["Size",4],13,"computed (char. table)"], ["L2(27).3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(27).3",["Size",3],9,"computed (char. table)"], ["L2(27).3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(27).3",["Size",7],13,"computed (char. table)"], ["L2(27).3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L2(27).3",["Size",13],13,"computed (char. table)"], ["L2(27).3",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L2(27).6",["Characteristic",0],26,"computed (char. table)"], ["L2(27).6",["Characteristic",2],26,"computed (char. table)"], ["L2(27).6",["Characteristic",3],9,"computed (char. table)"], ["L2(27).6",["Characteristic",7],26,"computed (char. table)"], ["L2(27).6",["Characteristic",13],26,"computed (char. table)"], ["L2(27).6",["Size",2],26,"computed (char. table)"], ["L2(27).6",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(27).6",["Size",3],9,"computed (char. table)"], ["L2(27).6",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(27).6",["Size",7],26,"computed (char. table)"], ["L2(27).6",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L2(27).6",["Size",13],26,"computed (char. table)"], ["L2(27).6",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L2(29)","NrMovedPoints",30,"computed (PSL(2,q))"], ["L2(29)","NrMovedPoints",30,"computed (table of marks)"], ["L2(29)",["Characteristic",0],15,"computed (char. table)"], ["L2(29)",["Characteristic",2],14,"computed (char. table)"], ["L2(29)",["Characteristic",3],15,"computed (char. table)"], ["L2(29)",["Characteristic",5],15,"computed (char. table)"], ["L2(29)",["Characteristic",7],15,"computed (char. table)"], ["L2(29)",["Characteristic",29],3,"computed (char. table)"], ["L2(29)",["Size",2],28,"computed (char. table)"], ["L2(29)",["Size",4],14,"computed (char. table)"], ["L2(29)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(29)",["Size",3],28,"computed (char. table)"], ["L2(29)",["Size",9],15,"computed (char. table)"], ["L2(29)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(29)",["Size",5],15,"computed (char. table)"], ["L2(29)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(29)",["Size",7],15,"computed (char. table)"], ["L2(29)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L2(29)",["Size",29],3,"computed (char. table)"], ["L2(29)",["Characteristic",29,"complete"],true,"computed (char. table)"], ["L2(29).2","NrMovedPoints",30,"computed (subgroup tables)"], ["L2(29).2",["Characteristic",0],28,"computed (char. table)"], ["L2(29).2",["Characteristic",2],28,"computed (char. table)"], ["L2(29).2",["Characteristic",3],28,"computed (char. table)"], ["L2(29).2",["Characteristic",5],28,"computed (char. table)"], ["L2(29).2",["Characteristic",7],28,"computed (char. table)"], ["L2(29).2",["Characteristic",29],3,"computed (char. table)"], ["L2(29).2",["Size",2],28,"computed (char. table)"], ["L2(29).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(29).2",["Size",3],28,"computed (char. table)"], ["L2(29).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(29).2",["Size",5],28,"computed (char. table)"], ["L2(29).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(29).2",["Size",7],28,"computed (char. table)"], ["L2(29).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L2(29).2",["Size",29],3,"computed (char. table)"], ["L2(29).2",["Characteristic",29,"complete"],true,"computed (char. table)"], ["L2(31)","NrMovedPoints",32,"computed (PSL(2,q))"], ["L2(31)","NrMovedPoints",32,"computed (table of marks)"], ["L2(31)",["Characteristic",0],15,"computed (char. table)"], ["L2(31)",["Characteristic",2],15,"computed (char. table)"], ["L2(31)",["Characteristic",3],15,"computed (char. table)"], ["L2(31)",["Characteristic",5],15,"computed (char. table)"], ["L2(31)",["Characteristic",31],3,"computed (char. table)"], ["L2(31)",["Size",2],15,"computed (char. table)"], ["L2(31)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(31)",["Size",3],30,"computed (char. table)"], ["L2(31)",["Size",9],15,"computed (char. table)"], ["L2(31)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(31)",["Size",5],15,"computed (char. table)"], ["L2(31)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(31)",["Size",31],3,"computed (char. table)"], ["L2(31)",["Characteristic",31,"complete"],true,"computed (char. table)"], ["L2(31).2",["Characteristic",0],30,"computed (char. table)"], ["L2(31).2",["Characteristic",2],30,"computed (char. table)"], ["L2(31).2",["Characteristic",3],30,"computed (char. table)"], ["L2(31).2",["Characteristic",5],30,"computed (char. table)"], ["L2(31).2",["Characteristic",31],3,"computed (char. table)"], ["L2(31).2",["Size",2],30,"computed (char. table)"], ["L2(31).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(31).2",["Size",3],30,"computed (char. table)"], ["L2(31).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(31).2",["Size",5],30,"computed (char. table)"], ["L2(31).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(31).2",["Size",31],3,"computed (char. table)"], ["L2(31).2",["Characteristic",31,"complete"],true,"computed (char. table)"], ["L2(32)","NrMovedPoints",33,"computed (PSL(2,q))"], ["L2(32)","NrMovedPoints",33,"computed (table of marks)"], ["L2(32)",["Characteristic",0],31,"computed (char. table)"], ["L2(32)",["Characteristic",2],2,"computed (char. table)"], ["L2(32)",["Characteristic",3],31,"computed (char. table)"], ["L2(32)",["Characteristic",11],31,"computed (char. table)"], ["L2(32)",["Characteristic",31],31,"computed (char. table)"], ["L2(32)",["Size",2],10,"computed (char. table)"], ["L2(32)",["Size",32],2,"computed (char. table)"], ["L2(32)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(32)",["Size",3],31,"computed (char. table)"], ["L2(32)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(32)",["Size",11],31,"computed (char. table)"], ["L2(32)",["Characteristic",11,"complete"],true,"computed (char. table)"], ["L2(32)",["Size",31],31,"computed (char. table)"], ["L2(32)",["Characteristic",31,"complete"],true,"computed (char. table)"], ["L2(32).5","NrMovedPoints",33,"computed (subgroup tables, known repres.)"], ["L2(32).5",["Characteristic",0],31,"computed (char. table)"], ["L2(32).5",["Characteristic",2],10,"computed (char. table)"], ["L2(32).5",["Characteristic",3],31,"computed (char. table)"], ["L2(32).5",["Characteristic",5],31,"computed (char. table)"], ["L2(32).5",["Characteristic",11],31,"computed (char. table)"], ["L2(32).5",["Characteristic",31],31,"computed (char. table)"], ["L2(32).5",["Size",2],10,"computed (char. table)"], ["L2(32).5",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(32).5",["Size",3],31,"computed (char. table)"], ["L2(32).5",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(32).5",["Size",5],31,"computed (char. table)"], ["L2(32).5",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(32).5",["Size",11],31,"computed (char. table)"], ["L2(32).5",["Characteristic",11,"complete"],true,"computed (char. table)"], ["L2(32).5",["Size",31],31,"computed (char. table)"], ["L2(32).5",["Characteristic",31,"complete"],true,"computed (char. table)"], ["L2(37)","NrMovedPoints",38,"computed (PSL(2,q))"], ["L2(37)","NrMovedPoints",38,"computed (table of marks)"], ["L2(37)",["Characteristic",0],19,"computed (char. table)"], ["L2(41)","NrMovedPoints",42,"computed (PSL(2,q))"], ["L2(41)","NrMovedPoints",42,"computed (table of marks)"], ["L2(41)",["Characteristic",0],21,"computed (char. table)"], ["L2(43)","NrMovedPoints",44,"computed (PSL(2,q))"], ["L2(43)","NrMovedPoints",44,"computed (table of marks)"], ["L2(43)",["Characteristic",0],21,"computed (char. table)"], ["L2(47)","NrMovedPoints",48,"computed (PSL(2,q))"], ["L2(47)","NrMovedPoints",48,"computed (table of marks)"], ["L2(47)",["Characteristic",0],23,"computed (char. table)"], ["L2(49)","NrMovedPoints",50,"computed (PSL(2,q))"], ["L2(49)","NrMovedPoints",50,"computed (table of marks)"], ["L2(49)",["Characteristic",0],25,"computed (char. table)"], ["L2(49)",["Characteristic",2],24,"computed (char. table)"], ["L2(49)",["Characteristic",3],25,"computed (char. table)"], ["L2(49)",["Characteristic",5],25,"computed (char. table)"], ["L2(49)",["Size",2],24,"computed (char. table)"], ["L2(49)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(49)",["Size",3],25,"computed (char. table)"], ["L2(49)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(49)",["Size",5],25,"computed (char. table)"], ["L2(49)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(53)","NrMovedPoints",54,"computed (PSL(2,q))"], ["L2(53)","NrMovedPoints",54,"computed (table of marks)"], ["L2(53)",["Characteristic",0],27,"computed (char. table)"], ["L2(59)","NrMovedPoints",60,"computed (PSL(2,q))"], ["L2(59)","NrMovedPoints",60,"computed (table of marks)"], ["L2(59)",["Characteristic",0],29,"computed (char. table)"], ["L2(61)","NrMovedPoints",62,"computed (PSL(2,q))"], ["L2(61)","NrMovedPoints",62,"computed (table of marks)"], ["L2(61)",["Characteristic",0],31,"computed (char. table)"], ["L2(64)","NrMovedPoints",65,"computed (PSL(2,q))"], ["L2(64)","NrMovedPoints",65,"computed (table of marks)"], ["L2(64)",["Characteristic",0],63,"computed (char. table)"], ["L2(67)","NrMovedPoints",68,"computed (PSL(2,q))"], ["L2(67)","NrMovedPoints",68,"computed (table of marks)"], ["L2(67)",["Characteristic",0],33,"computed (char. table)"], ["L2(71)","NrMovedPoints",72,"computed (PSL(2,q))"], ["L2(71)","NrMovedPoints",72,"computed (table of marks)"], ["L2(71)",["Characteristic",0],35,"computed (char. table)"], ["L2(73)","NrMovedPoints",74,"computed (PSL(2,q))"], ["L2(73)","NrMovedPoints",74,"computed (table of marks)"], ["L2(73)",["Characteristic",0],37,"computed (char. table)"], ["L2(79)","NrMovedPoints",80,"computed (PSL(2,q))"], ["L2(79)","NrMovedPoints",80,"computed (table of marks)"], ["L2(79)",["Characteristic",0],39,"computed (char. table)"], ["L2(8)","NrMovedPoints",9,"computed (PSL(2,q))"], ["L2(8)","NrMovedPoints",9,"computed (table of marks)"], ["L2(8)",["Characteristic",0],7,"computed (char. table)"], ["L2(8)",["Characteristic",2],2,"computed (char. table)"], ["L2(8)",["Characteristic",3],7,"computed (char. table)"], ["L2(8)",["Characteristic",7],7,"computed (char. table)"], ["L2(8)",["Size",2],6,"computed (char. table)"], ["L2(8)",["Size",8],2,"computed (char. table)"], ["L2(8)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(8)",["Size",3],7,"computed (char. table)"], ["L2(8)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(8)",["Size",7],7,"computed (char. table)"], ["L2(8)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L2(8).3","NrMovedPoints",9,"computed (subgroup tables)"], ["L2(8).3","NrMovedPoints",9,"computed (subgroup tables, known repres.)"], ["L2(8).3","NrMovedPoints",9,"computed (table of marks)"], ["L2(8).3",["Characteristic",0],7,"computed (char. table)"], ["L2(8).3",["Characteristic",2],6,"computed (char. table)"], ["L2(8).3",["Characteristic",3],7,"computed (char. table)"], ["L2(8).3",["Characteristic",7],7,"computed (char. table)"], ["L2(8).3",["Size",2],6,"computed (char. table)"], ["L2(8).3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(8).3",["Size",3],7,"computed (char. table)"], ["L2(8).3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L2(8).3",["Size",7],7,"computed (char. table)"], ["L2(8).3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L2(81)","NrMovedPoints",82,"computed (PSL(2,q))"], ["L2(81)","NrMovedPoints",82,"computed (table of marks)"], ["L2(81)",["Characteristic",0],41,"computed (char. table)"], ["L2(81)",["Characteristic",2],40,"computed (char. table)"], ["L2(81)",["Characteristic",5],41,"computed (char. table)"], ["L2(81)",["Characteristic",41],41,"computed (char. table)"], ["L2(81)",["Size",2],40,"computed (char. table)"], ["L2(81)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L2(81)",["Size",5],41,"computed (char. table)"], ["L2(81)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L2(81)",["Size",41],41,"computed (char. table)"], ["L2(81)",["Characteristic",41,"complete"],true,"computed (char. table)"], ["L2(83)","NrMovedPoints",84,"computed (PSL(2,q))"], ["L2(83)","NrMovedPoints",84,"computed (table of marks)"], ["L2(83)",["Characteristic",0],41,"computed (char. table)"], ["L2(89)","NrMovedPoints",90,"computed (PSL(2,q))"], ["L2(89)","NrMovedPoints",90,"computed (table of marks)"], ["L2(89)",["Characteristic",0],45,"computed (char. table)"], ["L2(97)","NrMovedPoints",98,"computed (PSL(2,q))"], ["L2(97)","NrMovedPoints",98,"computed (table of marks)"], ["L2(97)",["Characteristic",0],49,"computed (char. table)"], ["L3(11)","NrMovedPoints",133,"computed (table of marks)"], ["L3(11)",["Characteristic",0],132,"computed (char. table)"], ["L3(2)","NrMovedPoints",7,"computed (char. table)"], ["L3(2)","NrMovedPoints",7,"computed (subgroup tables)"], ["L3(2)","NrMovedPoints",7,"computed (subgroup tables, known repres.)"], ["L3(2)","NrMovedPoints",7,"computed (table of marks)"], ["L3(2)",["Characteristic",0],3,"computed (char. table)"], ["L3(2)",["Characteristic",2],3,"computed (char. table)"], ["L3(2)",["Characteristic",3],3,"computed (char. table)"], ["L3(2)",["Characteristic",7],3,"computed (char. table)"], ["L3(2)",["Size",2],3,"computed (char. table)"], ["L3(2)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(2)",["Size",3],6,"computed (char. table)"], ["L3(2)",["Size",9],3,"computed (char. table)"], ["L3(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(2)",["Size",7],3,"computed (char. table)"], ["L3(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(2).2","NrMovedPoints",8,"computed (table of marks)"], ["L3(2).2",["Characteristic",0],6,"computed (char. table)"], ["L3(2).2",["Characteristic",2],6,"computed (char. table)"], ["L3(2).2",["Characteristic",3],6,"computed (char. table)"], ["L3(2).2",["Characteristic",7],3,"computed (char. table)"], ["L3(2).2",["Size",2],6,"computed (char. table)"], ["L3(2).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(2).2",["Size",3],6,"computed (char. table)"], ["L3(2).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(2).2",["Size",7],3,"computed (char. table)"], ["L3(2).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(3)","NrMovedPoints",13,"computed (subgroup tables)"], ["L3(3)","NrMovedPoints",13,"computed (subgroup tables, known repres.)"], ["L3(3)","NrMovedPoints",13,"computed (table of marks)"], ["L3(3)",["Characteristic",0],12,"computed (char. table)"], ["L3(3)",["Characteristic",2],12,"computed (char. table)"], ["L3(3)",["Characteristic",3],3,"computed (char. table)"], ["L3(3)",["Characteristic",13],11,"computed (char. table)"], ["L3(3)",["Size",2],12,"computed (char. table)"], ["L3(3)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(3)",["Size",3],3,"computed (char. table)"], ["L3(3)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(3)",["Size",13],11,"computed (char. table)"], ["L3(3)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L3(3).2","NrMovedPoints",26,"computed (table of marks)"], ["L3(3).2",["Characteristic",0],12,"computed (char. table)"], ["L3(3).2",["Characteristic",2],12,"computed (char. table)"], ["L3(3).2",["Characteristic",3],6,"computed (char. table)"], ["L3(3).2",["Characteristic",13],11,"computed (char. table)"], ["L3(3).2",["Size",2],12,"computed (char. table)"], ["L3(3).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(3).2",["Size",3],6,"computed (char. table)"], ["L3(3).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(3).2",["Size",13],11,"computed (char. table)"], ["L3(3).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L3(4)","NrMovedPoints",21,"computed (table of marks)"], ["L3(4)",["Characteristic",0],20,"computed (char. table)"], ["L3(4)",["Characteristic",2],8,"computed (char. table)"], ["L3(4)",["Characteristic",3],15,"computed (char. table)"], ["L3(4)",["Characteristic",5],20,"computed (char. table)"], ["L3(4)",["Characteristic",7],19,"computed (char. table)"], ["L3(4)",["Size",2],9,"computed (char. table)"], ["L3(4)",["Size",4],8,"computed (char. table)"], ["L3(4)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(4)",["Size",3],15,"computed (char. table)"], ["L3(4)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(4)",["Size",5],20,"computed (char. table)"], ["L3(4)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L3(4)",["Size",7],19,"computed (char. table)"], ["L3(4)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(4).2^2","NrMovedPoints",42,"computed (table of marks)"], ["L3(4).2^2",["Characteristic",0],20,"computed (char. table)"], ["L3(4).2^2",["Characteristic",2],16,"computed (char. table)"], ["L3(4).2^2",["Characteristic",3],15,"computed (char. table)"], ["L3(4).2^2",["Characteristic",5],20,"computed (char. table)"], ["L3(4).2^2",["Characteristic",7],19,"computed (char. table)"], ["L3(4).2^2",["Size",2],16,"computed (char. table)"], ["L3(4).2^2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(4).2^2",["Size",3],15,"computed (char. table)"], ["L3(4).2^2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(4).2^2",["Size",5],20,"computed (char. table)"], ["L3(4).2^2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L3(4).2^2",["Size",7],19,"computed (char. table)"], ["L3(4).2^2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(4).2_1","NrMovedPoints",42,"computed (table of marks)"], ["L3(4).2_1",["Characteristic",0],20,"computed (char. table)"], ["L3(4).2_1",["Characteristic",2],16,"computed (char. table)"], ["L3(4).2_1",["Characteristic",3],15,"computed (char. table)"], ["L3(4).2_1",["Characteristic",5],20,"computed (char. table)"], ["L3(4).2_1",["Characteristic",7],19,"computed (char. table)"], ["L3(4).2_1",["Size",2],16,"computed (char. table)"], ["L3(4).2_1",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(4).2_1",["Size",3],15,"computed (char. table)"], ["L3(4).2_1",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(4).2_1",["Size",5],20,"computed (char. table)"], ["L3(4).2_1",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L3(4).2_1",["Size",7],19,"computed (char. table)"], ["L3(4).2_1",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(4).2_2","NrMovedPoints",21,"computed (subgroup tables)"], ["L3(4).2_2","NrMovedPoints",21,"computed (table of marks)"], ["L3(4).2_2",["Characteristic",0],20,"computed (char. table)"], ["L3(4).2_2",["Characteristic",2],9,"computed (char. table)"], ["L3(4).2_2",["Characteristic",3],15,"computed (char. table)"], ["L3(4).2_2",["Characteristic",5],20,"computed (char. table)"], ["L3(4).2_2",["Characteristic",7],19,"computed (char. table)"], ["L3(4).2_2",["Size",2],9,"computed (char. table)"], ["L3(4).2_2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(4).2_2",["Size",3],15,"computed (char. table)"], ["L3(4).2_2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(4).2_2",["Size",5],20,"computed (char. table)"], ["L3(4).2_2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L3(4).2_2",["Size",7],19,"computed (char. table)"], ["L3(4).2_2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(4).2_3","NrMovedPoints",42,"computed (table of marks)"], ["L3(4).2_3",["Characteristic",0],20,"computed (char. table)"], ["L3(4).2_3",["Characteristic",2],8,"computed (char. table)"], ["L3(4).2_3",["Characteristic",3],15,"computed (char. table)"], ["L3(4).2_3",["Characteristic",5],20,"computed (char. table)"], ["L3(4).2_3",["Characteristic",7],19,"computed (char. table)"], ["L3(4).2_3",["Size",2],16,"computed (char. table)"], ["L3(4).2_3",["Size",4],8,"computed (char. table)"], ["L3(4).2_3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(4).2_3",["Size",3],15,"computed (char. table)"], ["L3(4).2_3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(4).2_3",["Size",5],20,"computed (char. table)"], ["L3(4).2_3",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L3(4).2_3",["Size",7],19,"computed (char. table)"], ["L3(4).2_3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(4).3","NrMovedPoints",21,"computed (table of marks)"], ["L3(4).3",["Characteristic",0],20,"computed (char. table)"], ["L3(4).3",["Characteristic",2],8,"computed (char. table)"], ["L3(4).3",["Characteristic",3],19,"computed (char. table)"], ["L3(4).3",["Characteristic",5],20,"computed (char. table)"], ["L3(4).3",["Characteristic",7],19,"computed (char. table)"], ["L3(4).3",["Size",2],9,"computed (char. table)"], ["L3(4).3",["Size",4],8,"computed (char. table)"], ["L3(4).3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(4).3",["Size",3],19,"computed (char. table)"], ["L3(4).3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(4).3",["Size",5],20,"computed (char. table)"], ["L3(4).3",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L3(4).3",["Size",7],19,"computed (char. table)"], ["L3(4).3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(4).6","NrMovedPoints",42,"computed (table of marks)"], ["L3(4).6",["Characteristic",0],20,"computed (char. table)"], ["L3(4).6",["Characteristic",2],16,"computed (char. table)"], ["L3(4).6",["Characteristic",3],19,"computed (char. table)"], ["L3(4).6",["Characteristic",5],20,"computed (char. table)"], ["L3(4).6",["Characteristic",7],19,"computed (char. table)"], ["L3(4).6",["Size",2],16,"computed (char. table)"], ["L3(4).6",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(4).6",["Size",3],19,"computed (char. table)"], ["L3(4).6",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(4).6",["Size",5],20,"computed (char. table)"], ["L3(4).6",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L3(4).6",["Size",7],19,"computed (char. table)"], ["L3(4).6",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(4).D12","NrMovedPoints",42,"computed (table of marks)"], ["L3(4).D12",["Characteristic",0],20,"computed (char. table)"], ["L3(4).D12",["Characteristic",2],16,"computed (char. table)"], ["L3(4).D12",["Characteristic",3],19,"computed (char. table)"], ["L3(4).D12",["Characteristic",5],20,"computed (char. table)"], ["L3(4).D12",["Characteristic",7],19,"computed (char. table)"], ["L3(4).D12",["Size",2],16,"computed (char. table)"], ["L3(4).D12",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(4).D12",["Size",3],19,"computed (char. table)"], ["L3(4).D12",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(4).D12",["Size",5],20,"computed (char. table)"], ["L3(4).D12",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L3(4).D12",["Size",7],19,"computed (char. table)"], ["L3(4).D12",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(5)","NrMovedPoints",31,"computed (subgroup tables)"], ["L3(5)","NrMovedPoints",31,"computed (subgroup tables, known repres.)"], ["L3(5)","NrMovedPoints",31,"computed (table of marks)"], ["L3(5)",["Characteristic",0],30,"computed (char. table)"], ["L3(5)",["Characteristic",2],30,"computed (char. table)"], ["L3(5)",["Characteristic",3],30,"computed (char. table)"], ["L3(5)",["Characteristic",5],3,"computed (char. table)"], ["L3(5)",["Characteristic",31],29,"computed (char. table)"], ["L3(5)",["Size",2],30,"computed (char. table)"], ["L3(5)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(5)",["Size",3],30,"computed (char. table)"], ["L3(5)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(5)",["Size",5],3,"computed (char. table)"], ["L3(5)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L3(5)",["Size",31],29,"computed (char. table)"], ["L3(5)",["Characteristic",31,"complete"],true,"computed (char. table)"], ["L3(5).2",["Characteristic",0],30,"computed (char. table)"], ["L3(5).2",["Characteristic",2],30,"computed (char. table)"], ["L3(5).2",["Characteristic",3],30,"computed (char. table)"], ["L3(5).2",["Characteristic",5],6,"computed (char. table)"], ["L3(5).2",["Characteristic",31],29,"computed (char. table)"], ["L3(5).2",["Size",2],30,"computed (char. table)"], ["L3(5).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(5).2",["Size",3],31,"computed (char. table)"], ["L3(5).2",["Size",9],30,"computed (char. table)"], ["L3(5).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(5).2",["Size",5],6,"computed (char. table)"], ["L3(5).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L3(5).2",["Size",31],29,"computed (char. table)"], ["L3(5).2",["Characteristic",31,"complete"],true,"computed (char. table)"], ["L3(7)","NrMovedPoints",57,"computed (char. table)"], ["L3(7)","NrMovedPoints",57,"computed (table of marks)"], ["L3(7)",["Characteristic",0],56,"computed (char. table)"], ["L3(7)",["Characteristic",2],56,"computed (char. table)"], ["L3(7)",["Characteristic",3],55,"computed (char. table)"], ["L3(7)",["Characteristic",7],8,"computed (char. table)"], ["L3(7)",["Characteristic",19],55,"computed (char. table)"], ["L3(7)",["Size",2],56,"computed (char. table)"], ["L3(7)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(7)",["Size",3],55,"computed (char. table)"], ["L3(7)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(7)",["Size",7],8,"computed (char. table)"], ["L3(7)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(7)",["Size",19],55,"computed (char. table)"], ["L3(7)",["Characteristic",19,"complete"],true,"computed (char. table)"], ["L3(7).2",["Characteristic",0],56,"computed (char. table)"], ["L3(7).2",["Characteristic",2],56,"computed (char. table)"], ["L3(7).2",["Characteristic",3],55,"computed (char. table)"], ["L3(7).2",["Characteristic",7],8,"computed (char. table)"], ["L3(7).2",["Characteristic",19],55,"computed (char. table)"], ["L3(7).2",["Size",2],56,"computed (char. table)"], ["L3(7).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(7).2",["Size",3],55,"computed (char. table)"], ["L3(7).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(7).2",["Size",7],8,"computed (char. table)"], ["L3(7).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(7).2",["Size",19],55,"computed (char. table)"], ["L3(7).2",["Characteristic",19,"complete"],true,"computed (char. table)"], ["L3(7).3",["Characteristic",0],56,"computed (char. table)"], ["L3(7).3",["Characteristic",2],56,"computed (char. table)"], ["L3(7).3",["Characteristic",3],55,"computed (char. table)"], ["L3(7).3",["Characteristic",7],8,"computed (char. table)"], ["L3(7).3",["Characteristic",19],55,"computed (char. table)"], ["L3(7).3",["Size",2],56,"computed (char. table)"], ["L3(7).3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(7).3",["Size",3],55,"computed (char. table)"], ["L3(7).3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(7).3",["Size",7],8,"computed (char. table)"], ["L3(7).3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(7).3",["Size",19],55,"computed (char. table)"], ["L3(7).3",["Characteristic",19,"complete"],true,"computed (char. table)"], ["L3(8)","NrMovedPoints",73,"computed (subgroup tables, known repres.)"], ["L3(8)","NrMovedPoints",73,"computed (table of marks)"], ["L3(8)",["Characteristic",0],72,"computed (char. table)"], ["L3(8)",["Characteristic",2],3,"computed (char. table)"], ["L3(8)",["Characteristic",3],72,"computed (char. table)"], ["L3(8)",["Characteristic",7],72,"computed (char. table)"], ["L3(8)",["Characteristic",73],71,"computed (char. table)"], ["L3(8)",["Size",2],9,"computed (char. table)"], ["L3(8)",["Size",8],3,"computed (char. table)"], ["L3(8)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(8)",["Size",3],72,"computed (char. table)"], ["L3(8)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(8)",["Size",7],72,"computed (char. table)"], ["L3(8)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(8)",["Size",73],71,"computed (char. table)"], ["L3(8)",["Characteristic",73,"complete"],true,"computed (char. table)"], ["L3(8).2",["Characteristic",0],72,"computed (char. table)"], ["L3(8).2",["Characteristic",2],6,"computed (char. table)"], ["L3(8).2",["Characteristic",3],72,"computed (char. table)"], ["L3(8).2",["Characteristic",7],72,"computed (char. table)"], ["L3(8).2",["Characteristic",73],71,"computed (char. table)"], ["L3(8).2",["Size",2],18,"computed (char. table)"], ["L3(8).2",["Size",8],6,"computed (char. table)"], ["L3(8).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(8).2",["Size",3],144,"computed (char. table)"], ["L3(8).2",["Size",9],72,"computed (char. table)"], ["L3(8).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(8).2",["Size",7],72,"computed (char. table)"], ["L3(8).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(8).2",["Size",73],71,"computed (char. table)"], ["L3(8).2",["Characteristic",73,"complete"],true,"computed (char. table)"], ["L3(8).3","NrMovedPoints",73,"computed (subgroup tables, known repres.)"], ["L3(8).3",["Characteristic",0],72,"computed (char. table)"], ["L3(8).3",["Characteristic",2],9,"computed (char. table)"], ["L3(8).3",["Characteristic",3],72,"computed (char. table)"], ["L3(8).3",["Characteristic",7],72,"computed (char. table)"], ["L3(8).3",["Characteristic",73],71,"computed (char. table)"], ["L3(8).3",["Size",2],9,"computed (char. table)"], ["L3(8).3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(8).3",["Size",3],72,"computed (char. table)"], ["L3(8).3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(8).3",["Size",7],72,"computed (char. table)"], ["L3(8).3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(8).3",["Size",73],71,"computed (char. table)"], ["L3(8).3",["Characteristic",73,"complete"],true,"computed (char. table)"], ["L3(8).6",["Characteristic",0],72,"computed (char. table)"], ["L3(8).6",["Characteristic",2],18,"computed (char. table)"], ["L3(8).6",["Characteristic",3],72,"computed (char. table)"], ["L3(8).6",["Characteristic",7],72,"computed (char. table)"], ["L3(8).6",["Characteristic",73],71,"computed (char. table)"], ["L3(8).6",["Size",2],18,"computed (char. table)"], ["L3(8).6",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(8).6",["Size",3],144,"computed (char. table)"], ["L3(8).6",["Size",9],72,"computed (char. table)"], ["L3(8).6",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(8).6",["Size",7],72,"computed (char. table)"], ["L3(8).6",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(8).6",["Size",73],71,"computed (char. table)"], ["L3(8).6",["Characteristic",73,"complete"],true,"computed (char. table)"], ["L3(9)","NrMovedPoints",91,"computed (table of marks)"], ["L3(9)",["Characteristic",0],90,"computed (char. table)"], ["L3(9)",["Characteristic",2],90,"computed (char. table)"], ["L3(9)",["Characteristic",3],3,"computed (char. table)"], ["L3(9)",["Characteristic",5],90,"computed (char. table)"], ["L3(9)",["Characteristic",7],89,"computed (char. table)"], ["L3(9)",["Characteristic",13],89,"computed (char. table)"], ["L3(9)",["Size",2],90,"computed (char. table)"], ["L3(9)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(9)",["Size",3],6,"computed (char. table)"], ["L3(9)",["Size",9],3,"computed (char. table)"], ["L3(9)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(9)",["Size",5],90,"computed (char. table)"], ["L3(9)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L3(9)",["Size",7],89,"computed (char. table)"], ["L3(9)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(9)",["Size",13],89,"computed (char. table)"], ["L3(9)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L3(9).2_1",["Characteristic",0],90,"computed (char. table)"], ["L3(9).2_1",["Characteristic",2],90,"computed (char. table)"], ["L3(9).2_1",["Characteristic",3],6,"computed (char. table)"], ["L3(9).2_1",["Characteristic",5],90,"computed (char. table)"], ["L3(9).2_1",["Characteristic",7],89,"computed (char. table)"], ["L3(9).2_1",["Characteristic",13],89,"computed (char. table)"], ["L3(9).2_1",["Size",2],90,"computed (char. table)"], ["L3(9).2_1",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(9).2_1",["Size",3],12,"computed (char. table)"], ["L3(9).2_1",["Size",9],6,"computed (char. table)"], ["L3(9).2_1",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(9).2_1",["Size",5],90,"computed (char. table)"], ["L3(9).2_1",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L3(9).2_1",["Size",7],89,"computed (char. table)"], ["L3(9).2_1",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(9).2_1",["Size",13],89,"computed (char. table)"], ["L3(9).2_1",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L3(9).2_2",["Characteristic",0],90,"computed (char. table)"], ["L3(9).2_2",["Characteristic",2],90,"computed (char. table)"], ["L3(9).2_2",["Characteristic",3],6,"computed (char. table)"], ["L3(9).2_2",["Characteristic",5],90,"computed (char. table)"], ["L3(9).2_2",["Characteristic",7],89,"computed (char. table)"], ["L3(9).2_2",["Characteristic",13],89,"computed (char. table)"], ["L3(9).2_2",["Size",2],90,"computed (char. table)"], ["L3(9).2_2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(9).2_2",["Size",3],6,"computed (char. table)"], ["L3(9).2_2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(9).2_2",["Size",5],90,"computed (char. table)"], ["L3(9).2_2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L3(9).2_2",["Size",7],89,"computed (char. table)"], ["L3(9).2_2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(9).2_2",["Size",13],89,"computed (char. table)"], ["L3(9).2_2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L3(9).2_3",["Characteristic",0],90,"computed (char. table)"], ["L3(9).2_3",["Characteristic",2],90,"computed (char. table)"], ["L3(9).2_3",["Characteristic",3],6,"computed (char. table)"], ["L3(9).2_3",["Characteristic",5],90,"computed (char. table)"], ["L3(9).2_3",["Characteristic",7],89,"computed (char. table)"], ["L3(9).2_3",["Characteristic",13],89,"computed (char. table)"], ["L3(9).2_3",["Size",2],90,"computed (char. table)"], ["L3(9).2_3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L3(9).2_3",["Size",3],12,"computed (char. table)"], ["L3(9).2_3",["Size",9],6,"computed (char. table)"], ["L3(9).2_3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L3(9).2_3",["Size",5],90,"computed (char. table)"], ["L3(9).2_3",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L3(9).2_3",["Size",7],89,"computed (char. table)"], ["L3(9).2_3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L3(9).2_3",["Size",13],89,"computed (char. table)"], ["L3(9).2_3",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L4(3)","NrMovedPoints",40,"computed (table of marks)"], ["L4(3)",["Characteristic",0],26,"computed (char. table)"], ["L4(3)",["Characteristic",2],26,"computed (char. table)"], ["L4(3)",["Characteristic",3],6,"computed (char. table)"], ["L4(3)",["Characteristic",5],26,"computed (char. table)"], ["L4(3)",["Characteristic",13],26,"computed (char. table)"], ["L4(3)",["Size",2],26,"computed (char. table)"], ["L4(3)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L4(3)",["Size",3],6,"computed (char. table)"], ["L4(3)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L4(3)",["Size",5],26,"computed (char. table)"], ["L4(3)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L4(3)",["Size",13],26,"computed (char. table)"], ["L4(3)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L4(3).2_1",["Characteristic",0],39,"computed (char. table)"], ["L4(3).2_1",["Characteristic",2],38,"computed (char. table)"], ["L4(3).2_1",["Characteristic",3],6,"computed (char. table)"], ["L4(3).2_1",["Characteristic",5],38,"computed (char. table)"], ["L4(3).2_1",["Characteristic",13],39,"computed (char. table)"], ["L4(3).2_1",["Size",2],38,"computed (char. table)"], ["L4(3).2_1",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L4(3).2_1",["Size",3],6,"computed (char. table)"], ["L4(3).2_1",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L4(3).2_1",["Size",5],38,"computed (char. table)"], ["L4(3).2_1",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L4(3).2_1",["Size",13],39,"computed (char. table)"], ["L4(3).2_1",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L4(3).2_2",["Characteristic",0],26,"computed (char. table)"], ["L4(3).2_2",["Characteristic",2],26,"computed (char. table)"], ["L4(3).2_2",["Characteristic",3],6,"computed (char. table)"], ["L4(3).2_2",["Characteristic",5],26,"computed (char. table)"], ["L4(3).2_2",["Characteristic",13],26,"computed (char. table)"], ["L4(3).2_2",["Size",2],26,"computed (char. table)"], ["L4(3).2_2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L4(3).2_2",["Size",3],6,"computed (char. table)"], ["L4(3).2_2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L4(3).2_2",["Size",5],26,"computed (char. table)"], ["L4(3).2_2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L4(3).2_2",["Size",13],26,"computed (char. table)"], ["L4(3).2_2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L4(3).2_3",["Characteristic",0],39,"computed (char. table)"], ["L4(3).2_3",["Characteristic",2],38,"computed (char. table)"], ["L4(3).2_3",["Characteristic",3],6,"computed (char. table)"], ["L4(3).2_3",["Characteristic",5],38,"computed (char. table)"], ["L4(3).2_3",["Characteristic",13],39,"computed (char. table)"], ["L4(3).2_3",["Size",2],38,"computed (char. table)"], ["L4(3).2_3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L4(3).2_3",["Size",3],12,"computed (char. table)"], ["L4(3).2_3",["Size",9],6,"computed (char. table)"], ["L4(3).2_3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L4(3).2_3",["Size",5],38,"computed (char. table)"], ["L4(3).2_3",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L4(3).2_3",["Size",13],39,"computed (char. table)"], ["L4(3).2_3",["Characteristic",13,"complete"],true,"computed (char. table)"], ["L4(4)",["Characteristic",0],84,"computed (char. table)"], ["L4(4)",["Characteristic",3],84,"computed (char. table)"], ["L4(4)",["Characteristic",5],83,"computed (char. table)"], ["L4(4)",["Characteristic",7],84,"computed (char. table)"], ["L4(4)",["Characteristic",17],83,"computed (char. table)"], ["L4(4)",["Size",3],84,"computed (char. table)"], ["L4(4)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L4(4)",["Size",5],83,"computed (char. table)"], ["L4(4)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L4(4)",["Size",7],84,"computed (char. table)"], ["L4(4)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L4(4)",["Size",17],83,"computed (char. table)"], ["L4(4)",["Characteristic",17,"complete"],true,"computed (char. table)"], ["L4(5)",["Characteristic",0],155,"computed (char. table)"], ["L5(2)","NrMovedPoints",31,"computed (subgroup tables)"], ["L5(2)","NrMovedPoints",31,"computed (subgroup tables, known repres.)"], ["L5(2)","NrMovedPoints",31,"computed (table of marks)"], ["L5(2)",["Characteristic",0],30,"computed (char. table)"], ["L5(2)",["Characteristic",2],5,"computed (char. table)"], ["L5(2)",["Characteristic",3],30,"computed (char. table)"], ["L5(2)",["Characteristic",5],30,"computed (char. table)"], ["L5(2)",["Characteristic",7],30,"computed (char. table)"], ["L5(2)",["Characteristic",31],29,"computed (char. table)"], ["L5(2)",["Size",2],5,"computed (char. table)"], ["L5(2)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L5(2)",["Size",3],30,"computed (char. table)"], ["L5(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L5(2)",["Size",5],30,"computed (char. table)"], ["L5(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L5(2)",["Size",7],30,"computed (char. table)"], ["L5(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L5(2)",["Size",31],29,"computed (char. table)"], ["L5(2)",["Characteristic",31,"complete"],true,"computed (char. table)"], ["L5(2).2",["Characteristic",0],30,"computed (char. table)"], ["L5(2).2",["Characteristic",2],10,"computed (char. table)"], ["L5(2).2",["Characteristic",3],30,"computed (char. table)"], ["L5(2).2",["Characteristic",5],30,"computed (char. table)"], ["L5(2).2",["Characteristic",7],30,"computed (char. table)"], ["L5(2).2",["Characteristic",31],29,"computed (char. table)"], ["L5(2).2",["Size",2],10,"computed (char. table)"], ["L5(2).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["L5(2).2",["Size",3],60,"computed (char. table)"], ["L5(2).2",["Size",9],30,"computed (char. table)"], ["L5(2).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L5(2).2",["Size",5],60,"computed (char. table)"], ["L5(2).2",["Size",25],30,"computed (char. table)"], ["L5(2).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L5(2).2",["Size",7],30,"computed (char. table)"], ["L5(2).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L5(2).2",["Size",31],29,"computed (char. table)"], ["L5(2).2",["Characteristic",31,"complete"],true,"computed (char. table)"], ["L5(3)",["Characteristic",0],120,"computed (char. table)"], ["L6(2)",["Characteristic",0],62,"computed (char. table)"], ["L6(2)",["Characteristic",3],61,"computed (char. table)"], ["L6(2)",["Characteristic",5],62,"computed (char. table)"], ["L6(2)",["Characteristic",7],61,"computed (char. table)"], ["L6(2)",["Characteristic",31],62,"computed (char. table)"], ["L6(2)",["Size",3],61,"computed (char. table)"], ["L6(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L6(2)",["Size",5],62,"computed (char. table)"], ["L6(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L6(2)",["Size",7],61,"computed (char. table)"], ["L6(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["L6(2)",["Size",31],62,"computed (char. table)"], ["L6(2)",["Characteristic",31,"complete"],true,"computed (char. table)"], ["L6(2).2",["Characteristic",0],62,"computed (char. table)"], ["L6(2).2",["Characteristic",3],61,"computed (char. table)"], ["L6(2).2",["Characteristic",5],62,"computed (char. table)"], ["L6(2).2",["Characteristic",31],62,"computed (char. table)"], ["L6(2).2",["Size",3],61,"computed (char. table)"], ["L6(2).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["L6(2).2",["Size",5],62,"computed (char. table)"], ["L6(2).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["L6(2).2",["Size",31],62,"computed (char. table)"], ["L6(2).2",["Characteristic",31,"complete"],true,"computed (char. table)"], ["L7(2)","NrMovedPoints",127,"computed (subgroup tables)"], ["L7(2)","NrMovedPoints",127,"computed (subgroup tables, known repres.)"], ["L7(2)",["Characteristic",0],126,"computed (char. table)"], ["L7(2).2",["Characteristic",0],126,"computed (char. table)"], ["Ly","NrMovedPoints",8835156,"computed (char. table)"], ["Ly",["Characteristic",0],2480,"computed (char. table)"], ["Ly",["Characteristic",7],2480,"computed (char. table)"], ["Ly",["Characteristic",11],2480,"computed (char. table)"], ["Ly",["Characteristic",31],2480,"computed (char. table)"], ["Ly",["Characteristic",37],2480,"computed (char. table)"], ["Ly",["Characteristic",67],2480,"computed (char. table)"], ["Ly",["Size",37],2480,"computed (char. table)"], ["Ly",["Characteristic",37,"complete"],true,"computed (char. table)"], ["Ly",["Size",67],2480,"computed (char. table)"], ["Ly",["Characteristic",67,"complete"],true,"computed (char. table)"], ["M","NrMovedPoints",97239461142009186000,"computed (char. table)"], ["M",["Characteristic",0],196883,"computed (char. table)"], ["M",["Characteristic",17],196883,"computed (char. table)"], ["M",["Characteristic",19],196883,"computed (char. table)"], ["M",["Characteristic",23],196883,"computed (char. table)"], ["M",["Characteristic",31],196883,"computed (char. table)"], ["M11","NrMovedPoints",11,"computed (char. table)"], ["M11","NrMovedPoints",11,"computed (subgroup tables)"], ["M11","NrMovedPoints",11,"computed (subgroup tables, known repres.)"], ["M11","NrMovedPoints",11,"computed (table of marks)"], ["M11",["Characteristic",0],10,"computed (char. table)"], ["M11",["Characteristic",2],10,"computed (char. table)"], ["M11",["Characteristic",3],5,"computed (char. table)"], ["M11",["Characteristic",5],10,"computed (char. table)"], ["M11",["Characteristic",11],9,"computed (char. table)"], ["M11",["Size",2],10,"computed (char. table)"], ["M11",["Characteristic",2,"complete"],true,"computed (char. table)"], ["M11",["Size",3],5,"computed (char. table)"], ["M11",["Characteristic",3,"complete"],true,"computed (char. table)"], ["M11",["Size",5],10,"computed (char. table)"], ["M11",["Characteristic",5,"complete"],true,"computed (char. table)"], ["M11",["Size",11],9,"computed (char. table)"], ["M11",["Characteristic",11,"complete"],true,"computed (char. table)"], ["M12","NrMovedPoints",12,"computed (char. table)"], ["M12","NrMovedPoints",12,"computed (subgroup tables)"], ["M12","NrMovedPoints",12,"computed (subgroup tables, known repres.)"], ["M12","NrMovedPoints",12,"computed (table of marks)"], ["M12",["Characteristic",0],11,"computed (char. table)"], ["M12",["Characteristic",2],10,"computed (char. table)"], ["M12",["Characteristic",3],10,"computed (char. table)"], ["M12",["Characteristic",5],11,"computed (char. table)"], ["M12",["Characteristic",11],11,"computed (char. table)"], ["M12",["Size",2],10,"computed (char. table)"], ["M12",["Characteristic",2,"complete"],true,"computed (char. table)"], ["M12",["Size",3],10,"computed (char. table)"], ["M12",["Characteristic",3,"complete"],true,"computed (char. table)"], ["M12",["Size",5],11,"computed (char. table)"], ["M12",["Characteristic",5,"complete"],true,"computed (char. table)"], ["M12",["Size",11],11,"computed (char. table)"], ["M12",["Characteristic",11,"complete"],true,"computed (char. table)"], ["M12.2","NrMovedPoints",24,"computed (char. table)"], ["M12.2","NrMovedPoints",24,"computed (table of marks)"], ["M12.2",["Characteristic",0],22,"computed (char. table)"], ["M12.2",["Characteristic",2],10,"computed (char. table)"], ["M12.2",["Characteristic",3],20,"computed (char. table)"], ["M12.2",["Characteristic",5],22,"computed (char. table)"], ["M12.2",["Characteristic",11],16,"computed (char. table)"], ["M12.2",["Size",2],10,"computed (char. table)"], ["M12.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["M12.2",["Size",3],20,"computed (char. table)"], ["M12.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["M12.2",["Size",5],22,"computed (char. table)"], ["M12.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["M12.2",["Size",11],16,"computed (char. table)"], ["M12.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["M22","NrMovedPoints",22,"computed (char. table)"], ["M22","NrMovedPoints",22,"computed (table of marks)"], ["M22",["Characteristic",0],21,"computed (char. table)"], ["M22",["Characteristic",2],10,"computed (char. table)"], ["M22",["Characteristic",3],21,"computed (char. table)"], ["M22",["Characteristic",5],21,"computed (char. table)"], ["M22",["Characteristic",7],21,"computed (char. table)"], ["M22",["Characteristic",11],20,"computed (char. table)"], ["M22",["Size",2],10,"computed (char. table)"], ["M22",["Characteristic",2,"complete"],true,"computed (char. table)"], ["M22",["Size",3],21,"computed (char. table)"], ["M22",["Characteristic",3,"complete"],true,"computed (char. table)"], ["M22",["Size",5],21,"computed (char. table)"], ["M22",["Characteristic",5,"complete"],true,"computed (char. table)"], ["M22",["Size",7],21,"computed (char. table)"], ["M22",["Characteristic",7,"complete"],true,"computed (char. table)"], ["M22",["Size",11],20,"computed (char. table)"], ["M22",["Characteristic",11,"complete"],true,"computed (char. table)"], ["M22.2","NrMovedPoints",22,"computed (char. table)"], ["M22.2","NrMovedPoints",22,"computed (subgroup tables)"], ["M22.2","NrMovedPoints",22,"computed (subgroup tables, known repres.)"], ["M22.2","NrMovedPoints",22,"computed (table of marks)"], ["M22.2",["Characteristic",0],21,"computed (char. table)"], ["M22.2",["Characteristic",2],10,"computed (char. table)"], ["M22.2",["Characteristic",3],21,"computed (char. table)"], ["M22.2",["Characteristic",5],21,"computed (char. table)"], ["M22.2",["Characteristic",7],21,"computed (char. table)"], ["M22.2",["Characteristic",11],20,"computed (char. table)"], ["M22.2",["Size",2],10,"computed (char. table)"], ["M22.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["M22.2",["Size",3],21,"computed (char. table)"], ["M22.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["M22.2",["Size",5],21,"computed (char. table)"], ["M22.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["M22.2",["Size",7],21,"computed (char. table)"], ["M22.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["M22.2",["Size",11],20,"computed (char. table)"], ["M22.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["M23","NrMovedPoints",23,"computed (char. table)"], ["M23","NrMovedPoints",23,"computed (subgroup tables)"], ["M23","NrMovedPoints",23,"computed (subgroup tables, known repres.)"], ["M23","NrMovedPoints",23,"computed (table of marks)"], ["M23",["Characteristic",0],22,"computed (char. table)"], ["M23",["Characteristic",2],11,"computed (char. table)"], ["M23",["Characteristic",3],22,"computed (char. table)"], ["M23",["Characteristic",5],22,"computed (char. table)"], ["M23",["Characteristic",7],22,"computed (char. table)"], ["M23",["Characteristic",11],22,"computed (char. table)"], ["M23",["Characteristic",23],21,"computed (char. table)"], ["M23",["Size",2],11,"computed (char. table)"], ["M23",["Characteristic",2,"complete"],true,"computed (char. table)"], ["M23",["Size",3],22,"computed (char. table)"], ["M23",["Characteristic",3,"complete"],true,"computed (char. table)"], ["M23",["Size",5],22,"computed (char. table)"], ["M23",["Characteristic",5,"complete"],true,"computed (char. table)"], ["M23",["Size",7],22,"computed (char. table)"], ["M23",["Characteristic",7,"complete"],true,"computed (char. table)"], ["M23",["Size",11],22,"computed (char. table)"], ["M23",["Characteristic",11,"complete"],true,"computed (char. table)"], ["M23",["Size",23],21,"computed (char. table)"], ["M23",["Characteristic",23,"complete"],true,"computed (char. table)"], ["M24","NrMovedPoints",24,"computed (char. table)"], ["M24","NrMovedPoints",24,"computed (subgroup tables)"], ["M24","NrMovedPoints",24,"computed (subgroup tables, known repres.)"], ["M24","NrMovedPoints",24,"computed (table of marks)"], ["M24",["Characteristic",0],23,"computed (char. table)"], ["M24",["Characteristic",2],11,"computed (char. table)"], ["M24",["Characteristic",3],22,"computed (char. table)"], ["M24",["Characteristic",5],23,"computed (char. table)"], ["M24",["Characteristic",7],23,"computed (char. table)"], ["M24",["Characteristic",11],23,"computed (char. table)"], ["M24",["Characteristic",23],23,"computed (char. table)"], ["M24",["Size",2],11,"computed (char. table)"], ["M24",["Characteristic",2,"complete"],true,"computed (char. table)"], ["M24",["Size",3],22,"computed (char. table)"], ["M24",["Characteristic",3,"complete"],true,"computed (char. table)"], ["M24",["Size",5],23,"computed (char. table)"], ["M24",["Characteristic",5,"complete"],true,"computed (char. table)"], ["M24",["Size",7],23,"computed (char. table)"], ["M24",["Characteristic",7,"complete"],true,"computed (char. table)"], ["M24",["Size",11],23,"computed (char. table)"], ["M24",["Characteristic",11,"complete"],true,"computed (char. table)"], ["M24",["Size",23],23,"computed (char. table)"], ["M24",["Characteristic",23,"complete"],true,"computed (char. table)"], ["McL","NrMovedPoints",275,"computed (char. table)"], ["McL","NrMovedPoints",275,"computed (table of marks)"], ["McL",["Characteristic",0],22,"computed (char. table)"], ["McL",["Characteristic",2],22,"computed (char. table)"], ["McL",["Characteristic",3],21,"computed (char. table)"], ["McL",["Characteristic",5],21,"computed (char. table)"], ["McL",["Characteristic",7],22,"computed (char. table)"], ["McL",["Characteristic",11],22,"computed (char. table)"], ["McL",["Size",2],22,"computed (char. table)"], ["McL",["Characteristic",2,"complete"],true,"computed (char. table)"], ["McL",["Size",3],21,"computed (char. table)"], ["McL",["Characteristic",3,"complete"],true,"computed (char. table)"], ["McL",["Size",5],21,"computed (char. table)"], ["McL",["Characteristic",5,"complete"],true,"computed (char. table)"], ["McL",["Size",7],22,"computed (char. table)"], ["McL",["Characteristic",7,"complete"],true,"computed (char. table)"], ["McL",["Size",11],22,"computed (char. table)"], ["McL",["Characteristic",11,"complete"],true,"computed (char. table)"], ["McL.2","NrMovedPoints",275,"computed (char. table)"], ["McL.2","NrMovedPoints",275,"computed (subgroup tables)"], ["McL.2","NrMovedPoints",275,"computed (subgroup tables, known repres.)"], ["McL.2","NrMovedPoints",275,"computed (table of marks)"], ["McL.2",["Characteristic",0],22,"computed (char. table)"], ["McL.2",["Characteristic",2],22,"computed (char. table)"], ["McL.2",["Characteristic",3],21,"computed (char. table)"], ["McL.2",["Characteristic",5],21,"computed (char. table)"], ["McL.2",["Characteristic",7],22,"computed (char. table)"], ["McL.2",["Characteristic",11],22,"computed (char. table)"], ["McL.2",["Size",2],22,"computed (char. table)"], ["McL.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["McL.2",["Size",3],21,"computed (char. table)"], ["McL.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["McL.2",["Size",5],21,"computed (char. table)"], ["McL.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["McL.2",["Size",7],22,"computed (char. table)"], ["McL.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["McL.2",["Size",11],22,"computed (char. table)"], ["McL.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["O10+(2)","NrMovedPoints",496,"computed (char. table)"], ["O10+(2)",["Characteristic",0],155,"computed (char. table)"], ["O10+(2)",["Characteristic",3],155,"computed (char. table)"], ["O10+(2)",["Characteristic",5],155,"computed (char. table)"], ["O10+(2)",["Characteristic",7],155,"computed (char. table)"], ["O10+(2)",["Characteristic",17],155,"computed (char. table)"], ["O10+(2)",["Characteristic",31],155,"computed (char. table)"], ["O10+(2)",["Size",3],155,"computed (char. table)"], ["O10+(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["O10+(2)",["Size",5],155,"computed (char. table)"], ["O10+(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["O10+(2)",["Size",7],155,"computed (char. table)"], ["O10+(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["O10+(2)",["Size",17],155,"computed (char. table)"], ["O10+(2)",["Characteristic",17,"complete"],true,"computed (char. table)"], ["O10+(2)",["Size",31],155,"computed (char. table)"], ["O10+(2)",["Characteristic",31,"complete"],true,"computed (char. table)"], ["O10+(2).2","NrMovedPoints",496,"computed (subgroup tables, known repres.)"], ["O10+(2).2",["Characteristic",0],155,"computed (char. table)"], ["O10+(2).2",["Characteristic",3],155,"computed (char. table)"], ["O10+(2).2",["Characteristic",5],155,"computed (char. table)"], ["O10+(2).2",["Characteristic",7],155,"computed (char. table)"], ["O10+(2).2",["Characteristic",17],155,"computed (char. table)"], ["O10+(2).2",["Characteristic",31],155,"computed (char. table)"], ["O10+(2).2",["Size",3],155,"computed (char. table)"], ["O10+(2).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["O10+(2).2",["Size",5],155,"computed (char. table)"], ["O10+(2).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["O10+(2).2",["Size",7],155,"computed (char. table)"], ["O10+(2).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["O10+(2).2",["Size",17],155,"computed (char. table)"], ["O10+(2).2",["Characteristic",17,"complete"],true,"computed (char. table)"], ["O10+(2).2",["Size",31],155,"computed (char. table)"], ["O10+(2).2",["Characteristic",31,"complete"],true,"computed (char. table)"], ["O10-(2)","NrMovedPoints",495,"computed (char. table)"], ["O10-(2)",["Characteristic",0],154,"computed (char. table)"], ["O10-(2)",["Characteristic",3],153,"computed (char. table)"], ["O10-(2)",["Characteristic",5],153,"computed (char. table)"], ["O10-(2)",["Characteristic",7],154,"computed (char. table)"], ["O10-(2)",["Characteristic",11],154,"computed (char. table)"], ["O10-(2)",["Characteristic",17],154,"computed (char. table)"], ["O10-(2)",["Size",3],153,"computed (char. table)"], ["O10-(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["O10-(2)",["Size",5],153,"computed (char. table)"], ["O10-(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["O10-(2)",["Size",7],154,"computed (char. table)"], ["O10-(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["O10-(2)",["Size",11],154,"computed (char. table)"], ["O10-(2)",["Characteristic",11,"complete"],true,"computed (char. table)"], ["O10-(2)",["Size",17],154,"computed (char. table)"], ["O10-(2)",["Characteristic",17,"complete"],true,"computed (char. table)"], ["O10-(2).2","NrMovedPoints",495,"computed (subgroup tables, known repres.)"], ["O10-(2).2",["Characteristic",0],154,"computed (char. table)"], ["O10-(2).2",["Characteristic",3],153,"computed (char. table)"], ["O10-(2).2",["Characteristic",5],153,"computed (char. table)"], ["O10-(2).2",["Characteristic",7],154,"computed (char. table)"], ["O10-(2).2",["Characteristic",11],154,"computed (char. table)"], ["O10-(2).2",["Characteristic",17],154,"computed (char. table)"], ["O10-(2).2",["Size",3],153,"computed (char. table)"], ["O10-(2).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["O10-(2).2",["Size",5],153,"computed (char. table)"], ["O10-(2).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["O10-(2).2",["Size",7],154,"computed (char. table)"], ["O10-(2).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["O10-(2).2",["Size",11],154,"computed (char. table)"], ["O10-(2).2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["O10-(2).2",["Size",17],154,"computed (char. table)"], ["O10-(2).2",["Characteristic",17,"complete"],true,"computed (char. table)"], ["O7(3)","NrMovedPoints",351,"computed (char. table)"], ["O7(3)","NrMovedPoints",351,"computed (subgroup tables)"], ["O7(3)","NrMovedPoints",351,"computed (subgroup tables, known repres.)"], ["O7(3)",["Characteristic",0],78,"computed (char. table)"], ["O7(3)",["Characteristic",2],78,"computed (char. table)"], ["O7(3)",["Characteristic",3],7,"computed (char. table)"], ["O7(3)",["Characteristic",5],78,"computed (char. table)"], ["O7(3)",["Characteristic",7],78,"computed (char. table)"], ["O7(3)",["Characteristic",13],78,"computed (char. table)"], ["O7(3)",["Size",2],78,"computed (char. table)"], ["O7(3)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["O7(3)",["Size",3],7,"computed (char. table)"], ["O7(3)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["O7(3)",["Size",5],78,"computed (char. table)"], ["O7(3)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["O7(3)",["Size",7],78,"computed (char. table)"], ["O7(3)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["O7(3)",["Size",13],78,"computed (char. table)"], ["O7(3)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["O7(3).2","NrMovedPoints",351,"computed (subgroup tables, known repres.)"], ["O7(3).2",["Characteristic",0],78,"computed (char. table)"], ["O7(3).2",["Characteristic",2],78,"computed (char. table)"], ["O7(3).2",["Characteristic",3],7,"computed (char. table)"], ["O7(3).2",["Characteristic",5],78,"computed (char. table)"], ["O7(3).2",["Characteristic",7],78,"computed (char. table)"], ["O7(3).2",["Characteristic",13],78,"computed (char. table)"], ["O7(3).2",["Size",2],78,"computed (char. table)"], ["O7(3).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["O7(3).2",["Size",3],7,"computed (char. table)"], ["O7(3).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["O7(3).2",["Size",5],78,"computed (char. table)"], ["O7(3).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["O7(3).2",["Size",7],78,"computed (char. table)"], ["O7(3).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["O7(3).2",["Size",13],78,"computed (char. table)"], ["O7(3).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["O8+(2)","NrMovedPoints",120,"computed (table of marks)"], ["O8+(2)",["Characteristic",0],28,"computed (char. table)"], ["O8+(2)",["Characteristic",2],8,"computed (char. table)"], ["O8+(2)",["Characteristic",3],28,"computed (char. table)"], ["O8+(2)",["Characteristic",5],28,"computed (char. table)"], ["O8+(2)",["Characteristic",7],28,"computed (char. table)"], ["O8+(2)",["Size",2],8,"computed (char. table)"], ["O8+(2)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["O8+(2)",["Size",3],28,"computed (char. table)"], ["O8+(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["O8+(2)",["Size",5],28,"computed (char. table)"], ["O8+(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["O8+(2)",["Size",7],28,"computed (char. table)"], ["O8+(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["O8+(2).2","NrMovedPoints",120,"computed (subgroup tables)"], ["O8+(2).2",["Characteristic",0],28,"computed (char. table)"], ["O8+(2).2",["Characteristic",2],8,"computed (char. table)"], ["O8+(2).2",["Characteristic",3],28,"computed (char. table)"], ["O8+(2).2",["Characteristic",5],28,"computed (char. table)"], ["O8+(2).2",["Characteristic",7],28,"computed (char. table)"], ["O8+(2).2",["Size",2],8,"computed (char. table)"], ["O8+(2).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["O8+(2).2",["Size",3],28,"computed (char. table)"], ["O8+(2).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["O8+(2).2",["Size",5],28,"computed (char. table)"], ["O8+(2).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["O8+(2).2",["Size",7],28,"computed (char. table)"], ["O8+(2).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["O8+(2).3",["Characteristic",0],28,"computed (char. table)"], ["O8+(2).3",["Characteristic",2],24,"computed (char. table)"], ["O8+(2).3",["Characteristic",3],28,"computed (char. table)"], ["O8+(2).3",["Characteristic",5],28,"computed (char. table)"], ["O8+(2).3",["Characteristic",7],28,"computed (char. table)"], ["O8+(2).3",["Size",2],24,"computed (char. table)"], ["O8+(2).3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["O8+(2).3",["Size",3],28,"computed (char. table)"], ["O8+(2).3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["O8+(2).3",["Size",5],28,"computed (char. table)"], ["O8+(2).3",["Characteristic",5,"complete"],true,"computed (char. table)"], ["O8+(2).3",["Size",7],28,"computed (char. table)"], ["O8+(2).3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["O8+(3)","NrMovedPoints",1080,"computed (char. table)"], ["O8+(3)",["Characteristic",0],260,"computed (char. table)"], ["O8+(3)",["Characteristic",2],260,"computed (char. table)"], ["O8+(3)",["Characteristic",5],260,"computed (char. table)"], ["O8+(3)",["Characteristic",7],260,"computed (char. table)"], ["O8+(3)",["Characteristic",13],260,"computed (char. table)"], ["O8+(3)",["Size",2],260,"computed (char. table)"], ["O8+(3)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["O8+(3)",["Size",5],260,"computed (char. table)"], ["O8+(3)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["O8+(3)",["Size",7],260,"computed (char. table)"], ["O8+(3)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["O8+(3)",["Size",13],260,"computed (char. table)"], ["O8+(3)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["O8+(3).S4",["Characteristic",0],300,"computed (char. table)"], ["O8+(3).S4",["Characteristic",2],298,"computed (char. table)"], ["O8+(3).S4",["Characteristic",5],300,"computed (char. table)"], ["O8+(3).S4",["Characteristic",7],299,"computed (char. table)"], ["O8+(3).S4",["Characteristic",13],300,"computed (char. table)"], ["O8+(3).S4",["Size",2],298,"computed (char. table)"], ["O8+(3).S4",["Characteristic",2,"complete"],true,"computed (char. table)"], ["O8+(3).S4",["Size",5],300,"computed (char. table)"], ["O8+(3).S4",["Characteristic",5,"complete"],true,"computed (char. table)"], ["O8+(3).S4",["Size",7],299,"computed (char. table)"], ["O8+(3).S4",["Characteristic",7,"complete"],true,"computed (char. table)"], ["O8+(3).S4",["Size",13],300,"computed (char. table)"], ["O8+(3).S4",["Characteristic",13,"complete"],true,"computed (char. table)"], ["O8-(2)","NrMovedPoints",119,"computed (char. table)"], ["O8-(2)","NrMovedPoints",119,"computed (table of marks)"], ["O8-(2)",["Characteristic",0],34,"computed (char. table)"], ["O8-(2)",["Characteristic",2],8,"computed (char. table)"], ["O8-(2)",["Characteristic",3],34,"computed (char. table)"], ["O8-(2)",["Characteristic",5],34,"computed (char. table)"], ["O8-(2)",["Characteristic",7],33,"computed (char. table)"], ["O8-(2)",["Characteristic",17],34,"computed (char. table)"], ["O8-(2)",["Size",2],8,"computed (char. table)"], ["O8-(2)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["O8-(2)",["Size",3],34,"computed (char. table)"], ["O8-(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["O8-(2)",["Size",5],34,"computed (char. table)"], ["O8-(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["O8-(2)",["Size",7],33,"computed (char. table)"], ["O8-(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["O8-(2)",["Size",17],34,"computed (char. table)"], ["O8-(2)",["Characteristic",17,"complete"],true,"computed (char. table)"], ["O8-(2).2","NrMovedPoints",119,"computed (subgroup tables, known repres.)"], ["O8-(2).2",["Characteristic",0],34,"computed (char. table)"], ["O8-(2).2",["Characteristic",2],8,"computed (char. table)"], ["O8-(2).2",["Characteristic",3],34,"computed (char. table)"], ["O8-(2).2",["Characteristic",5],34,"computed (char. table)"], ["O8-(2).2",["Characteristic",7],33,"computed (char. table)"], ["O8-(2).2",["Characteristic",17],34,"computed (char. table)"], ["O8-(2).2",["Size",2],8,"computed (char. table)"], ["O8-(2).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["O8-(2).2",["Size",3],34,"computed (char. table)"], ["O8-(2).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["O8-(2).2",["Size",5],34,"computed (char. table)"], ["O8-(2).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["O8-(2).2",["Size",7],33,"computed (char. table)"], ["O8-(2).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["O8-(2).2",["Size",17],34,"computed (char. table)"], ["O8-(2).2",["Characteristic",17,"complete"],true,"computed (char. table)"], ["O8-(3)",["Characteristic",0],246,"computed (char. table)"], ["O8-(3)",["Characteristic",2],246,"computed (char. table)"], ["O8-(3)",["Characteristic",5],246,"computed (char. table)"], ["O8-(3)",["Characteristic",7],246,"computed (char. table)"], ["O8-(3)",["Characteristic",13],245,"computed (char. table)"], ["O8-(3)",["Characteristic",41],246,"computed (char. table)"], ["O8-(3)",["Size",2],246,"computed (char. table)"], ["O8-(3)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["O8-(3)",["Size",5],246,"computed (char. table)"], ["O8-(3)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["O8-(3)",["Size",41],246,"computed (char. table)"], ["O8-(3)",["Characteristic",41,"complete"],true,"computed (char. table)"], ["O8-(3).2_1","NrMovedPoints",1066,"computed (subgroup tables, known repres.)"], ["O8-(3).2_1",["Characteristic",0],246,"computed (char. table)"], ["O9(3)",["Characteristic",0],780,"computed (char. table)"], ["ON","NrMovedPoints",122760,"computed (char. table)"], ["ON",["Characteristic",0],10944,"computed (char. table)"], ["ON",["Characteristic",2],10944,"computed (char. table)"], ["ON",["Characteristic",3],154,"computed (char. table)"], ["ON",["Characteristic",5],10943,"computed (char. table)"], ["ON",["Characteristic",7],406,"computed (char. table)"], ["ON",["Characteristic",11],10787,"computed (char. table)"], ["ON",["Characteristic",19],10944,"computed (char. table)"], ["ON",["Characteristic",31],1869,"computed (char. table)"], ["ON",["Size",2],10944,"computed (char. table)"], ["ON",["Characteristic",2,"complete"],true,"computed (char. table)"], ["ON",["Size",3],154,"computed (char. table)"], ["ON",["Characteristic",3,"complete"],true,"computed (char. table)"], ["ON",["Size",5],10943,"computed (char. table)"], ["ON",["Characteristic",5,"complete"],true,"computed (char. table)"], ["ON",["Size",7],406,"computed (char. table)"], ["ON",["Characteristic",7,"complete"],true,"computed (char. table)"], ["ON",["Size",11],10787,"computed (char. table)"], ["ON",["Characteristic",11,"complete"],true,"computed (char. table)"], ["ON",["Size",19],10944,"computed (char. table)"], ["ON",["Characteristic",19,"complete"],true,"computed (char. table)"], ["ON",["Size",31],1869,"computed (char. table)"], ["ON",["Characteristic",31,"complete"],true,"computed (char. table)"], ["ON.2",["Characteristic",0],10944,"computed (char. table)"], ["ON.2",["Characteristic",2],10944,"computed (char. table)"], ["ON.2",["Characteristic",5],10943,"computed (char. table)"], ["ON.2",["Characteristic",7],406,"computed (char. table)"], ["ON.2",["Characteristic",11],10787,"computed (char. table)"], ["ON.2",["Characteristic",19],10944,"computed (char. table)"], ["ON.2",["Characteristic",31],1869,"computed (char. table)"], ["ON.2",["Size",2],10944,"computed (char. table)"], ["ON.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["ON.2",["Size",5],10943,"computed (char. table)"], ["ON.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["ON.2",["Size",7],406,"computed (char. table)"], ["ON.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["ON.2",["Size",11],10787,"computed (char. table)"], ["ON.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["ON.2",["Size",19],10944,"computed (char. table)"], ["ON.2",["Characteristic",19,"complete"],true,"computed (char. table)"], ["ON.2",["Size",31],1869,"computed (char. table)"], ["ON.2",["Characteristic",31,"complete"],true,"computed (char. table)"], ["R(27)",["Characteristic",0],703,"computed (char. table)"], ["R(27)",["Characteristic",2],702,"computed (char. table)"], ["R(27)",["Characteristic",3],7,"computed (char. table)"], ["R(27)",["Characteristic",7],703,"computed (char. table)"], ["R(27)",["Characteristic",13],703,"computed (char. table)"], ["R(27)",["Characteristic",19],703,"computed (char. table)"], ["R(27)",["Characteristic",37],703,"computed (char. table)"], ["R(27)",["Size",2],702,"computed (char. table)"], ["R(27)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["R(27)",["Size",3],21,"computed (char. table)"], ["R(27)",["Size",27],7,"computed (char. table)"], ["R(27)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["R(27)",["Size",7],703,"computed (char. table)"], ["R(27)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["R(27)",["Size",37],703,"computed (char. table)"], ["R(27)",["Characteristic",37,"complete"],true,"computed (char. table)"], ["R(27).3","NrMovedPoints",19684,"computed (subgroup tables, known repres.)"], ["R(27).3",["Characteristic",0],703,"computed (char. table)"], ["R(27).3",["Characteristic",2],702,"computed (char. table)"], ["R(27).3",["Characteristic",3],21,"computed (char. table)"], ["R(27).3",["Characteristic",7],703,"computed (char. table)"], ["R(27).3",["Characteristic",13],703,"computed (char. table)"], ["R(27).3",["Characteristic",19],703,"computed (char. table)"], ["R(27).3",["Characteristic",37],703,"computed (char. table)"], ["R(27).3",["Size",2],702,"computed (char. table)"], ["R(27).3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["R(27).3",["Size",3],21,"computed (char. table)"], ["R(27).3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["R(27).3",["Size",7],703,"computed (char. table)"], ["R(27).3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["R(27).3",["Size",37],703,"computed (char. table)"], ["R(27).3",["Characteristic",37,"complete"],true,"computed (char. table)"], ["Ru","NrMovedPoints",4060,"computed (char. table)"], ["Ru",["Characteristic",0],378,"computed (char. table)"], ["Ru",["Characteristic",2],28,"computed (char. table)"], ["Ru",["Characteristic",3],378,"computed (char. table)"], ["Ru",["Characteristic",5],133,"computed (char. table)"], ["Ru",["Characteristic",7],378,"computed (char. table)"], ["Ru",["Characteristic",13],378,"computed (char. table)"], ["Ru",["Characteristic",29],378,"computed (char. table)"], ["Ru",["Size",2],28,"computed (char. table)"], ["Ru",["Characteristic",2,"complete"],true,"computed (char. table)"], ["Ru",["Size",3],406,"computed (char. table)"], ["Ru",["Size",9],378,"computed (char. table)"], ["Ru",["Characteristic",3,"complete"],true,"computed (char. table)"], ["Ru",["Size",5],133,"computed (char. table)"], ["Ru",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Ru",["Size",7],406,"computed (char. table)"], ["Ru",["Size",49],378,"computed (char. table)"], ["Ru",["Characteristic",7,"complete"],true,"computed (char. table)"], ["Ru",["Size",13],378,"computed (char. table)"], ["Ru",["Characteristic",13,"complete"],true,"computed (char. table)"], ["Ru",["Size",29],378,"computed (char. table)"], ["Ru",["Characteristic",29,"complete"],true,"computed (char. table)"], ["S10(2)","NrMovedPoints",496,"computed (subgroup tables)"], ["S10(2)","NrMovedPoints",496,"computed (subgroup tables, known repres.)"], ["S10(2)",["Characteristic",0],155,"computed (char. table)"], ["S10(2)",["Characteristic",5],155,"computed (char. table)"], ["S10(2)",["Characteristic",7],155,"computed (char. table)"], ["S10(2)",["Characteristic",11],155,"computed (char. table)"], ["S10(2)",["Characteristic",17],155,"computed (char. table)"], ["S10(2)",["Characteristic",31],155,"computed (char. table)"], ["S10(2)",["Size",5],155,"computed (char. table)"], ["S10(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["S10(2)",["Size",7],155,"computed (char. table)"], ["S10(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["S10(2)",["Size",11],155,"computed (char. table)"], ["S10(2)",["Characteristic",11,"complete"],true,"computed (char. table)"], ["S10(2)",["Size",17],155,"computed (char. table)"], ["S10(2)",["Characteristic",17,"complete"],true,"computed (char. table)"], ["S10(2)",["Size",31],155,"computed (char. table)"], ["S10(2)",["Characteristic",31,"complete"],true,"computed (char. table)"], ["S4(4)","NrMovedPoints",85,"computed (table of marks)"], ["S4(4)",["Characteristic",0],18,"computed (char. table)"], ["S4(4)",["Characteristic",2],4,"computed (char. table)"], ["S4(4)",["Characteristic",3],18,"computed (char. table)"], ["S4(4)",["Characteristic",5],18,"computed (char. table)"], ["S4(4)",["Characteristic",17],18,"computed (char. table)"], ["S4(4)",["Size",2],8,"computed (char. table)"], ["S4(4)",["Size",4],4,"computed (char. table)"], ["S4(4)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["S4(4)",["Size",3],18,"computed (char. table)"], ["S4(4)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["S4(4)",["Size",5],18,"computed (char. table)"], ["S4(4)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["S4(4)",["Size",17],18,"computed (char. table)"], ["S4(4)",["Characteristic",17,"complete"],true,"computed (char. table)"], ["S4(4).2","NrMovedPoints",85,"computed (table of marks)"], ["S4(4).2",["Characteristic",0],18,"computed (char. table)"], ["S4(4).2",["Characteristic",2],8,"computed (char. table)"], ["S4(4).2",["Characteristic",3],18,"computed (char. table)"], ["S4(4).2",["Characteristic",5],18,"computed (char. table)"], ["S4(4).2",["Characteristic",17],18,"computed (char. table)"], ["S4(4).2",["Size",2],8,"computed (char. table)"], ["S4(4).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["S4(4).2",["Size",3],34,"computed (char. table)"], ["S4(4).2",["Size",9],18,"computed (char. table)"], ["S4(4).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["S4(4).2",["Size",5],18,"computed (char. table)"], ["S4(4).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["S4(4).2",["Size",17],18,"computed (char. table)"], ["S4(4).2",["Characteristic",17,"complete"],true,"computed (char. table)"], ["S4(4).4",["Characteristic",0],18,"computed (char. table)"], ["S4(4).4",["Characteristic",2],16,"computed (char. table)"], ["S4(4).4",["Characteristic",3],18,"computed (char. table)"], ["S4(4).4",["Characteristic",5],18,"computed (char. table)"], ["S4(4).4",["Characteristic",17],18,"computed (char. table)"], ["S4(4).4",["Size",2],16,"computed (char. table)"], ["S4(4).4",["Characteristic",2,"complete"],true,"computed (char. table)"], ["S4(4).4",["Size",3],36,"computed (char. table)"], ["S4(4).4",["Size",9],18,"computed (char. table)"], ["S4(4).4",["Characteristic",3,"complete"],true,"computed (char. table)"], ["S4(4).4",["Size",5],18,"computed (char. table)"], ["S4(4).4",["Characteristic",5,"complete"],true,"computed (char. table)"], ["S4(4).4",["Size",17],18,"computed (char. table)"], ["S4(4).4",["Characteristic",17,"complete"],true,"computed (char. table)"], ["S4(5)","NrMovedPoints",156,"computed (table of marks)"], ["S4(5)",["Characteristic",0],13,"computed (char. table)"], ["S4(5)",["Characteristic",2],12,"computed (char. table)"], ["S4(5)",["Characteristic",3],13,"computed (char. table)"], ["S4(5)",["Characteristic",5],5,"computed (char. table)"], ["S4(5)",["Characteristic",13],13,"computed (char. table)"], ["S4(5)",["Size",2],24,"computed (char. table)"], ["S4(5)",["Size",4],12,"computed (char. table)"], ["S4(5)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["S4(5)",["Size",3],26,"computed (char. table)"], ["S4(5)",["Size",9],13,"computed (char. table)"], ["S4(5)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["S4(5)",["Size",5],5,"computed (char. table)"], ["S4(5)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["S4(5)",["Size",13],26,"computed (char. table)"], ["S4(5)",["Size",169],13,"computed (char. table)"], ["S4(5)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["S4(5).2",["Characteristic",0],26,"computed (char. table)"], ["S4(5).2",["Characteristic",2],24,"computed (char. table)"], ["S4(5).2",["Characteristic",3],26,"computed (char. table)"], ["S4(5).2",["Characteristic",5],5,"computed (char. table)"], ["S4(5).2",["Characteristic",13],26,"computed (char. table)"], ["S4(5).2",["Size",2],24,"computed (char. table)"], ["S4(5).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["S4(5).2",["Size",3],26,"computed (char. table)"], ["S4(5).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["S4(5).2",["Size",5],5,"computed (char. table)"], ["S4(5).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["S4(5).2",["Size",13],26,"computed (char. table)"], ["S4(5).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["S4(7)",["Characteristic",0],25,"computed (char. table)"], ["S4(7).2",["Characteristic",0],50,"computed (char. table)"], ["S4(9)",["Characteristic",0],41,"computed (char. table)"], ["S6(2)","NrMovedPoints",28,"computed (char. table)"], ["S6(2)","NrMovedPoints",28,"computed (subgroup tables)"], ["S6(2)","NrMovedPoints",28,"computed (subgroup tables, known repres.)"], ["S6(2)","NrMovedPoints",28,"computed (table of marks)"], ["S6(2)",["Characteristic",0],7,"computed (char. table)"], ["S6(2)",["Characteristic",2],6,"computed (char. table)"], ["S6(2)",["Characteristic",3],7,"computed (char. table)"], ["S6(2)",["Characteristic",5],7,"computed (char. table)"], ["S6(2)",["Characteristic",7],7,"computed (char. table)"], ["S6(2)",["Size",2],6,"computed (char. table)"], ["S6(2)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["S6(2)",["Size",3],7,"computed (char. table)"], ["S6(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["S6(2)",["Size",5],7,"computed (char. table)"], ["S6(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["S6(2)",["Size",7],7,"computed (char. table)"], ["S6(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["S6(3)","NrMovedPoints",364,"computed (char. table)"], ["S6(3)",["Characteristic",0],13,"computed (char. table)"], ["S6(3)",["Characteristic",2],13,"computed (char. table)"], ["S6(3)",["Characteristic",3],13,"computed (char. table)"], ["S6(3)",["Characteristic",5],13,"computed (char. table)"], ["S6(3)",["Characteristic",7],13,"computed (char. table)"], ["S6(3)",["Characteristic",13],13,"computed (char. table)"], ["S6(3)",["Size",2],26,"computed (char. table)"], ["S6(3)",["Size",4],13,"computed (char. table)"], ["S6(3)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["S6(3)",["Size",3],13,"computed (char. table)"], ["S6(3)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["S6(3)",["Size",5],26,"computed (char. table)"], ["S6(3)",["Size",25],13,"computed (char. table)"], ["S6(3)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["S6(3)",["Size",7],13,"computed (char. table)"], ["S6(3)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["S6(3)",["Size",13],13,"computed (char. table)"], ["S6(3)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["S6(3).2","NrMovedPoints",364,"computed (char. table)"], ["S6(3).2","NrMovedPoints",364,"computed (subgroup tables)"], ["S6(3).2","NrMovedPoints",364,"computed (subgroup tables, known repres.)"], ["S6(3).2",["Characteristic",0],26,"computed (char. table)"], ["S6(3).2",["Characteristic",2],26,"computed (char. table)"], ["S6(3).2",["Characteristic",3],13,"computed (char. table)"], ["S6(3).2",["Characteristic",5],26,"computed (char. table)"], ["S6(3).2",["Characteristic",7],26,"computed (char. table)"], ["S6(3).2",["Characteristic",13],26,"computed (char. table)"], ["S6(3).2",["Size",2],26,"computed (char. table)"], ["S6(3).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["S6(3).2",["Size",3],13,"computed (char. table)"], ["S6(3).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["S6(3).2",["Size",5],26,"computed (char. table)"], ["S6(3).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["S6(3).2",["Size",7],26,"computed (char. table)"], ["S6(3).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["S6(3).2",["Size",13],26,"computed (char. table)"], ["S6(3).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["S6(5)",["Characteristic",0],63,"computed (char. table)"], ["S8(2)","NrMovedPoints",120,"computed (char. table)"], ["S8(2)","NrMovedPoints",120,"computed (subgroup tables)"], ["S8(2)","NrMovedPoints",120,"computed (subgroup tables, known repres.)"], ["S8(2)",["Characteristic",0],35,"computed (char. table)"], ["S8(2)",["Characteristic",2],8,"computed (char. table)"], ["S8(2)",["Characteristic",3],35,"computed (char. table)"], ["S8(2)",["Characteristic",5],35,"computed (char. table)"], ["S8(2)",["Characteristic",7],35,"computed (char. table)"], ["S8(2)",["Characteristic",17],35,"computed (char. table)"], ["S8(2)",["Size",2],8,"computed (char. table)"], ["S8(2)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["S8(2)",["Size",3],35,"computed (char. table)"], ["S8(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["S8(2)",["Size",5],35,"computed (char. table)"], ["S8(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["S8(2)",["Size",7],35,"computed (char. table)"], ["S8(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["S8(2)",["Size",17],35,"computed (char. table)"], ["S8(2)",["Characteristic",17,"complete"],true,"computed (char. table)"], ["S8(3)",["Characteristic",0],41,"computed (char. table)"], ["Suz","NrMovedPoints",1782,"computed (char. table)"], ["Suz",["Characteristic",0],143,"computed (char. table)"], ["Suz",["Characteristic",2],110,"computed (char. table)"], ["Suz",["Characteristic",3],64,"computed (char. table)"], ["Suz",["Characteristic",5],143,"computed (char. table)"], ["Suz",["Characteristic",7],143,"computed (char. table)"], ["Suz",["Characteristic",11],143,"computed (char. table)"], ["Suz",["Characteristic",13],143,"computed (char. table)"], ["Suz",["Size",2],142,"computed (char. table)"], ["Suz",["Size",4],110,"computed (char. table)"], ["Suz",["Characteristic",2,"complete"],true,"computed (char. table)"], ["Suz",["Size",3],64,"computed (char. table)"], ["Suz",["Characteristic",3,"complete"],true,"computed (char. table)"], ["Suz",["Size",5],143,"computed (char. table)"], ["Suz",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Suz",["Size",7],143,"computed (char. table)"], ["Suz",["Characteristic",7,"complete"],true,"computed (char. table)"], ["Suz",["Size",11],143,"computed (char. table)"], ["Suz",["Characteristic",11,"complete"],true,"computed (char. table)"], ["Suz",["Size",13],143,"computed (char. table)"], ["Suz",["Characteristic",13,"complete"],true,"computed (char. table)"], ["Suz.2","NrMovedPoints",1782,"computed (char. table)"], ["Suz.2","NrMovedPoints",1782,"computed (subgroup tables)"], ["Suz.2","NrMovedPoints",1782,"computed (subgroup tables, known repres.)"], ["Suz.2",["Characteristic",0],143,"computed (char. table)"], ["Suz.2",["Characteristic",2],142,"computed (char. table)"], ["Suz.2",["Characteristic",3],64,"computed (char. table)"], ["Suz.2",["Characteristic",5],143,"computed (char. table)"], ["Suz.2",["Characteristic",7],143,"computed (char. table)"], ["Suz.2",["Characteristic",11],143,"computed (char. table)"], ["Suz.2",["Characteristic",13],143,"computed (char. table)"], ["Suz.2",["Size",2],142,"computed (char. table)"], ["Suz.2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["Suz.2",["Size",3],64,"computed (char. table)"], ["Suz.2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["Suz.2",["Size",5],143,"computed (char. table)"], ["Suz.2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Suz.2",["Size",7],143,"computed (char. table)"], ["Suz.2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["Suz.2",["Size",11],143,"computed (char. table)"], ["Suz.2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["Suz.2",["Size",13],143,"computed (char. table)"], ["Suz.2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["Sz(32)","NrMovedPoints",1025,"computed (char. table)"], ["Sz(32)","NrMovedPoints",1025,"computed (table of marks)"], ["Sz(32)",["Characteristic",0],124,"computed (char. table)"], ["Sz(32)",["Characteristic",2],4,"computed (char. table)"], ["Sz(32)",["Characteristic",5],124,"computed (char. table)"], ["Sz(32)",["Characteristic",31],124,"computed (char. table)"], ["Sz(32)",["Characteristic",41],124,"computed (char. table)"], ["Sz(32)",["Size",2],20,"computed (char. table)"], ["Sz(32)",["Size",32],4,"computed (char. table)"], ["Sz(32)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["Sz(32)",["Size",5],124,"computed (char. table)"], ["Sz(32)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Sz(32)",["Size",31],248,"computed (char. table)"], ["Sz(32)",["Size",961],124,"computed (char. table)"], ["Sz(32)",["Characteristic",31,"complete"],true,"computed (char. table)"], ["Sz(32)",["Size",41],124,"computed (char. table)"], ["Sz(32)",["Characteristic",41,"complete"],true,"computed (char. table)"], ["Sz(32).5","NrMovedPoints",1025,"computed (subgroup tables, known repres.)"], ["Sz(32).5",["Characteristic",0],124,"computed (char. table)"], ["Sz(32).5",["Characteristic",2],20,"computed (char. table)"], ["Sz(32).5",["Characteristic",5],124,"computed (char. table)"], ["Sz(32).5",["Characteristic",31],124,"computed (char. table)"], ["Sz(32).5",["Characteristic",41],124,"computed (char. table)"], ["Sz(32).5",["Size",2],20,"computed (char. table)"], ["Sz(32).5",["Characteristic",2,"complete"],true,"computed (char. table)"], ["Sz(32).5",["Size",5],124,"computed (char. table)"], ["Sz(32).5",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Sz(32).5",["Size",31],248,"computed (char. table)"], ["Sz(32).5",["Size",961],124,"computed (char. table)"], ["Sz(32).5",["Characteristic",31,"complete"],true,"computed (char. table)"], ["Sz(32).5",["Size",41],124,"computed (char. table)"], ["Sz(32).5",["Characteristic",41,"complete"],true,"computed (char. table)"], ["Sz(8)","NrMovedPoints",65,"computed (char. table)"], ["Sz(8)","NrMovedPoints",65,"computed (table of marks)"], ["Sz(8)",["Characteristic",0],14,"computed (char. table)"], ["Sz(8)",["Characteristic",2],4,"computed (char. table)"], ["Sz(8)",["Characteristic",5],14,"computed (char. table)"], ["Sz(8)",["Characteristic",7],14,"computed (char. table)"], ["Sz(8)",["Characteristic",13],14,"computed (char. table)"], ["Sz(8)",["Size",2],12,"computed (char. table)"], ["Sz(8)",["Size",8],4,"computed (char. table)"], ["Sz(8)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["Sz(8)",["Size",5],14,"computed (char. table)"], ["Sz(8)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Sz(8)",["Size",7],28,"computed (char. table)"], ["Sz(8)",["Size",49],14,"computed (char. table)"], ["Sz(8)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["Sz(8)",["Size",13],14,"computed (char. table)"], ["Sz(8)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["Sz(8).3","NrMovedPoints",65,"computed (char. table)"], ["Sz(8).3","NrMovedPoints",65,"computed (subgroup tables)"], ["Sz(8).3","NrMovedPoints",65,"computed (subgroup tables, known repres.)"], ["Sz(8).3",["Characteristic",0],14,"computed (char. table)"], ["Sz(8).3",["Characteristic",2],12,"computed (char. table)"], ["Sz(8).3",["Characteristic",3],14,"computed (char. table)"], ["Sz(8).3",["Characteristic",5],14,"computed (char. table)"], ["Sz(8).3",["Characteristic",7],14,"computed (char. table)"], ["Sz(8).3",["Characteristic",13],14,"computed (char. table)"], ["Sz(8).3",["Size",2],12,"computed (char. table)"], ["Sz(8).3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["Sz(8).3",["Size",3],28,"computed (char. table)"], ["Sz(8).3",["Size",9],14,"computed (char. table)"], ["Sz(8).3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["Sz(8).3",["Size",5],14,"computed (char. table)"], ["Sz(8).3",["Characteristic",5,"complete"],true,"computed (char. table)"], ["Sz(8).3",["Size",7],28,"computed (char. table)"], ["Sz(8).3",["Size",49],14,"computed (char. table)"], ["Sz(8).3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["Sz(8).3",["Size",13],14,"computed (char. table)"], ["Sz(8).3",["Characteristic",13,"complete"],true,"computed (char. table)"], ["Th","NrMovedPoints",143127000,"computed (char. table)"], ["Th",["Characteristic",0],248,"computed (char. table)"], ["Th",["Characteristic",13],248,"computed (char. table)"], ["Th",["Characteristic",19],248,"computed (char. table)"], ["Th",["Characteristic",31],248,"computed (char. table)"], ["Th",["Size",13],248,"computed (char. table)"], ["Th",["Characteristic",13,"complete"],true,"computed (char. table)"], ["Th",["Size",19],248,"computed (char. table)"], ["Th",["Characteristic",19,"complete"],true,"computed (char. table)"], ["Th",["Size",31],248,"computed (char. table)"], ["Th",["Characteristic",31,"complete"],true,"computed (char. table)"], ["U3(11)","NrMovedPoints",1332,"computed (table of marks)"], ["U3(11)",["Characteristic",0],110,"computed (char. table)"], ["U3(11)",["Characteristic",2],110,"computed (char. table)"], ["U3(11)",["Characteristic",3],110,"computed (char. table)"], ["U3(11)",["Characteristic",5],110,"computed (char. table)"], ["U3(11)",["Characteristic",11],8,"computed (char. table)"], ["U3(11)",["Characteristic",37],110,"computed (char. table)"], ["U3(11)",["Size",2],110,"computed (char. table)"], ["U3(11)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(11)",["Size",3],110,"computed (char. table)"], ["U3(11)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(11)",["Size",5],110,"computed (char. table)"], ["U3(11)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U3(11)",["Size",11],8,"computed (char. table)"], ["U3(11)",["Characteristic",11,"complete"],true,"computed (char. table)"], ["U3(11)",["Size",37],110,"computed (char. table)"], ["U3(11)",["Characteristic",37,"complete"],true,"computed (char. table)"], ["U3(11).2","NrMovedPoints",1332,"computed (subgroup tables, known repres.)"], ["U3(11).2",["Characteristic",0],110,"computed (char. table)"], ["U3(11).2",["Characteristic",2],110,"computed (char. table)"], ["U3(11).2",["Characteristic",3],110,"computed (char. table)"], ["U3(11).2",["Characteristic",5],110,"computed (char. table)"], ["U3(11).2",["Characteristic",11],8,"computed (char. table)"], ["U3(11).2",["Characteristic",37],110,"computed (char. table)"], ["U3(11).2",["Size",2],110,"computed (char. table)"], ["U3(11).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(11).2",["Size",3],110,"computed (char. table)"], ["U3(11).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(11).2",["Size",5],110,"computed (char. table)"], ["U3(11).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U3(11).2",["Size",11],8,"computed (char. table)"], ["U3(11).2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["U3(11).2",["Size",37],110,"computed (char. table)"], ["U3(11).2",["Characteristic",37,"complete"],true,"computed (char. table)"], ["U3(3)","NrMovedPoints",28,"computed (table of marks)"], ["U3(3)",["Characteristic",0],6,"computed (char. table)"], ["U3(3)",["Characteristic",2],6,"computed (char. table)"], ["U3(3)",["Characteristic",3],3,"computed (char. table)"], ["U3(3)",["Characteristic",7],6,"computed (char. table)"], ["U3(3)",["Size",2],6,"computed (char. table)"], ["U3(3)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(3)",["Size",3],6,"computed (char. table)"], ["U3(3)",["Size",9],3,"computed (char. table)"], ["U3(3)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(3)",["Size",7],6,"computed (char. table)"], ["U3(3)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U3(3).2","NrMovedPoints",28,"computed (char. table)"], ["U3(3).2","NrMovedPoints",28,"computed (subgroup tables)"], ["U3(3).2","NrMovedPoints",28,"computed (table of marks)"], ["U3(3).2",["Characteristic",0],6,"computed (char. table)"], ["U3(3).2",["Characteristic",2],6,"computed (char. table)"], ["U3(3).2",["Characteristic",3],6,"computed (char. table)"], ["U3(3).2",["Characteristic",7],6,"computed (char. table)"], ["U3(3).2",["Size",2],6,"computed (char. table)"], ["U3(3).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(3).2",["Size",3],6,"computed (char. table)"], ["U3(3).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(3).2",["Size",7],6,"computed (char. table)"], ["U3(3).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U3(4)","NrMovedPoints",65,"computed (table of marks)"], ["U3(4)",["Characteristic",0],12,"computed (char. table)"], ["U3(4)",["Characteristic",2],3,"computed (char. table)"], ["U3(4)",["Characteristic",3],12,"computed (char. table)"], ["U3(4)",["Characteristic",5],12,"computed (char. table)"], ["U3(4)",["Characteristic",13],12,"computed (char. table)"], ["U3(4)",["Size",2],12,"computed (char. table)"], ["U3(4)",["Size",4],6,"computed (char. table)"], ["U3(4)",["Size",16],3,"computed (char. table)"], ["U3(4)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(4)",["Size",3],12,"computed (char. table)"], ["U3(4)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(4)",["Size",5],12,"computed (char. table)"], ["U3(4)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U3(4)",["Size",13],12,"computed (char. table)"], ["U3(4)",["Characteristic",13,"complete"],true,"computed (char. table)"], ["U3(4).2","NrMovedPoints",65,"computed (subgroup tables, known repres.)"], ["U3(4).2","NrMovedPoints",65,"computed (table of marks)"], ["U3(4).2",["Characteristic",0],12,"computed (char. table)"], ["U3(4).2",["Characteristic",2],6,"computed (char. table)"], ["U3(4).2",["Characteristic",3],12,"computed (char. table)"], ["U3(4).2",["Characteristic",5],12,"computed (char. table)"], ["U3(4).2",["Characteristic",13],12,"computed (char. table)"], ["U3(4).2",["Size",2],12,"computed (char. table)"], ["U3(4).2",["Size",4],6,"computed (char. table)"], ["U3(4).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(4).2",["Size",3],24,"computed (char. table)"], ["U3(4).2",["Size",9],12,"computed (char. table)"], ["U3(4).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(4).2",["Size",5],12,"computed (char. table)"], ["U3(4).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U3(4).2",["Size",13],12,"computed (char. table)"], ["U3(4).2",["Characteristic",13,"complete"],true,"computed (char. table)"], ["U3(4).4","NrMovedPoints",65,"computed (subgroup tables, known repres.)"], ["U3(4).4",["Characteristic",0],12,"computed (char. table)"], ["U3(4).4",["Characteristic",2],12,"computed (char. table)"], ["U3(4).4",["Characteristic",3],12,"computed (char. table)"], ["U3(4).4",["Characteristic",5],12,"computed (char. table)"], ["U3(4).4",["Characteristic",13],12,"computed (char. table)"], ["U3(4).4",["Size",2],12,"computed (char. table)"], ["U3(4).4",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(4).4",["Size",3],24,"computed (char. table)"], ["U3(4).4",["Size",9],12,"computed (char. table)"], ["U3(4).4",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(4).4",["Size",5],12,"computed (char. table)"], ["U3(4).4",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U3(4).4",["Size",13],12,"computed (char. table)"], ["U3(4).4",["Characteristic",13,"complete"],true,"computed (char. table)"], ["U3(5)","NrMovedPoints",50,"computed (table of marks)"], ["U3(5)",["Characteristic",0],20,"computed (char. table)"], ["U3(5)",["Characteristic",2],20,"computed (char. table)"], ["U3(5)",["Characteristic",3],20,"computed (char. table)"], ["U3(5)",["Characteristic",5],8,"computed (char. table)"], ["U3(5)",["Characteristic",7],20,"computed (char. table)"], ["U3(5)",["Size",2],20,"computed (char. table)"], ["U3(5)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(5)",["Size",3],20,"computed (char. table)"], ["U3(5)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(5)",["Size",5],8,"computed (char. table)"], ["U3(5)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U3(5)",["Size",7],20,"computed (char. table)"], ["U3(5)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U3(5).2","NrMovedPoints",50,"computed (subgroup tables)"], ["U3(5).2","NrMovedPoints",50,"computed (subgroup tables, known repres.)"], ["U3(5).2","NrMovedPoints",50,"computed (table of marks)"], ["U3(5).2",["Characteristic",0],20,"computed (char. table)"], ["U3(5).2",["Characteristic",2],20,"computed (char. table)"], ["U3(5).2",["Characteristic",3],20,"computed (char. table)"], ["U3(5).2",["Characteristic",5],8,"computed (char. table)"], ["U3(5).2",["Characteristic",7],20,"computed (char. table)"], ["U3(5).2",["Size",2],20,"computed (char. table)"], ["U3(5).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(5).2",["Size",3],20,"computed (char. table)"], ["U3(5).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(5).2",["Size",5],8,"computed (char. table)"], ["U3(5).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U3(5).2",["Size",7],20,"computed (char. table)"], ["U3(5).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U3(5).3","NrMovedPoints",126,"computed (table of marks)"], ["U3(5).3",["Characteristic",0],20,"computed (char. table)"], ["U3(5).3",["Characteristic",2],20,"computed (char. table)"], ["U3(5).3",["Characteristic",3],20,"computed (char. table)"], ["U3(5).3",["Characteristic",5],8,"computed (char. table)"], ["U3(5).3",["Characteristic",7],20,"computed (char. table)"], ["U3(5).3",["Size",2],20,"computed (char. table)"], ["U3(5).3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(5).3",["Size",3],20,"computed (char. table)"], ["U3(5).3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(5).3",["Size",5],8,"computed (char. table)"], ["U3(5).3",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U3(5).3",["Size",7],20,"computed (char. table)"], ["U3(5).3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U3(7)","NrMovedPoints",344,"computed (table of marks)"], ["U3(7)",["Characteristic",0],42,"computed (char. table)"], ["U3(7)",["Characteristic",2],42,"computed (char. table)"], ["U3(7)",["Characteristic",3],42,"computed (char. table)"], ["U3(7)",["Characteristic",7],3,"computed (char. table)"], ["U3(7)",["Characteristic",43],42,"computed (char. table)"], ["U3(7)",["Size",2],42,"computed (char. table)"], ["U3(7)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(7)",["Size",3],42,"computed (char. table)"], ["U3(7)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(7)",["Size",7],6,"computed (char. table)"], ["U3(7)",["Size",49],3,"computed (char. table)"], ["U3(7)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U3(7)",["Size",43],42,"computed (char. table)"], ["U3(7)",["Characteristic",43,"complete"],true,"computed (char. table)"], ["U3(8)","NrMovedPoints",513,"computed (table of marks)"], ["U3(8)",["Characteristic",0],56,"computed (char. table)"], ["U3(8)",["Characteristic",2],8,"computed (char. table)"], ["U3(8)",["Characteristic",3],56,"computed (char. table)"], ["U3(8)",["Characteristic",7],56,"computed (char. table)"], ["U3(8)",["Characteristic",19],56,"computed (char. table)"], ["U3(8)",["Size",2],24,"computed (char. table)"], ["U3(8)",["Size",8],8,"computed (char. table)"], ["U3(8)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(8)",["Size",3],56,"computed (char. table)"], ["U3(8)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(8)",["Size",7],56,"computed (char. table)"], ["U3(8)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U3(8)",["Size",19],56,"computed (char. table)"], ["U3(8)",["Characteristic",19,"complete"],true,"computed (char. table)"], ["U3(8).2","NrMovedPoints",513,"computed (subgroup tables, known repres.)"], ["U3(8).2",["Characteristic",0],56,"computed (char. table)"], ["U3(8).2",["Characteristic",2],8,"computed (char. table)"], ["U3(8).2",["Characteristic",3],56,"computed (char. table)"], ["U3(8).2",["Characteristic",7],56,"computed (char. table)"], ["U3(8).2",["Characteristic",19],56,"computed (char. table)"], ["U3(8).2",["Size",2],24,"computed (char. table)"], ["U3(8).2",["Size",8],8,"computed (char. table)"], ["U3(8).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(8).2",["Size",3],56,"computed (char. table)"], ["U3(8).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(8).2",["Size",7],112,"computed (char. table)"], ["U3(8).2",["Size",49],56,"computed (char. table)"], ["U3(8).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U3(8).2",["Size",19],56,"computed (char. table)"], ["U3(8).2",["Characteristic",19,"complete"],true,"computed (char. table)"], ["U3(8).3_1","NrMovedPoints",513,"computed (subgroup tables, known repres.)"], ["U3(8).3_1",["Characteristic",0],56,"computed (char. table)"], ["U3(8).3_1",["Characteristic",2],24,"computed (char. table)"], ["U3(8).3_1",["Characteristic",3],56,"computed (char. table)"], ["U3(8).3_1",["Characteristic",7],56,"computed (char. table)"], ["U3(8).3_1",["Characteristic",19],56,"computed (char. table)"], ["U3(8).3_1",["Size",2],24,"computed (char. table)"], ["U3(8).3_1",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(8).3_1",["Size",3],56,"computed (char. table)"], ["U3(8).3_1",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(8).3_1",["Size",7],56,"computed (char. table)"], ["U3(8).3_1",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U3(8).3_1",["Size",19],56,"computed (char. table)"], ["U3(8).3_1",["Characteristic",19,"complete"],true,"computed (char. table)"], ["U3(8).3_2","NrMovedPoints",513,"computed (subgroup tables, known repres.)"], ["U3(8).3_2",["Characteristic",0],56,"computed (char. table)"], ["U3(8).3_2",["Characteristic",2],8,"computed (char. table)"], ["U3(8).3_2",["Characteristic",3],56,"computed (char. table)"], ["U3(8).3_2",["Characteristic",7],56,"computed (char. table)"], ["U3(8).3_2",["Characteristic",19],56,"computed (char. table)"], ["U3(8).3_2",["Size",2],24,"computed (char. table)"], ["U3(8).3_2",["Size",8],8,"computed (char. table)"], ["U3(8).3_2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(8).3_2",["Size",3],56,"computed (char. table)"], ["U3(8).3_2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(8).3_2",["Size",7],56,"computed (char. table)"], ["U3(8).3_2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U3(8).3_2",["Size",19],56,"computed (char. table)"], ["U3(8).3_2",["Characteristic",19,"complete"],true,"computed (char. table)"], ["U3(8).3_3","NrMovedPoints",513,"computed (subgroup tables, known repres.)"], ["U3(8).3_3",["Characteristic",0],56,"computed (char. table)"], ["U3(8).3_3",["Characteristic",2],24,"computed (char. table)"], ["U3(8).3_3",["Characteristic",3],56,"computed (char. table)"], ["U3(8).3_3",["Characteristic",7],56,"computed (char. table)"], ["U3(8).3_3",["Characteristic",19],56,"computed (char. table)"], ["U3(8).3_3",["Size",2],24,"computed (char. table)"], ["U3(8).3_3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(8).3_3",["Size",3],56,"computed (char. table)"], ["U3(8).3_3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(8).3_3",["Size",7],56,"computed (char. table)"], ["U3(8).3_3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U3(8).3_3",["Size",19],56,"computed (char. table)"], ["U3(8).3_3",["Characteristic",19,"complete"],true,"computed (char. table)"], ["U3(8).6","NrMovedPoints",513,"computed (subgroup tables, known repres.)"], ["U3(8).6",["Characteristic",0],56,"computed (char. table)"], ["U3(8).6",["Characteristic",2],24,"computed (char. table)"], ["U3(8).6",["Characteristic",3],56,"computed (char. table)"], ["U3(8).6",["Characteristic",7],56,"computed (char. table)"], ["U3(8).6",["Characteristic",19],56,"computed (char. table)"], ["U3(8).6",["Size",2],24,"computed (char. table)"], ["U3(8).6",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(8).6",["Size",3],56,"computed (char. table)"], ["U3(8).6",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(8).6",["Size",7],112,"computed (char. table)"], ["U3(8).6",["Size",49],56,"computed (char. table)"], ["U3(8).6",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U3(8).6",["Size",19],56,"computed (char. table)"], ["U3(8).6",["Characteristic",19,"complete"],true,"computed (char. table)"], ["U3(8).S3","NrMovedPoints",513,"computed (subgroup tables, known repres.)"], ["U3(8).S3",["Characteristic",0],56,"computed (char. table)"], ["U3(8).S3",["Characteristic",2],8,"computed (char. table)"], ["U3(8).S3",["Characteristic",3],56,"computed (char. table)"], ["U3(8).S3",["Characteristic",7],56,"computed (char. table)"], ["U3(8).S3",["Characteristic",19],56,"computed (char. table)"], ["U3(8).S3",["Size",2],24,"computed (char. table)"], ["U3(8).S3",["Size",8],8,"computed (char. table)"], ["U3(8).S3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(8).S3",["Size",3],56,"computed (char. table)"], ["U3(8).S3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(8).S3",["Size",7],112,"computed (char. table)"], ["U3(8).S3",["Size",49],56,"computed (char. table)"], ["U3(8).S3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U3(8).S3",["Size",19],56,"computed (char. table)"], ["U3(8).S3",["Characteristic",19,"complete"],true,"computed (char. table)"], ["U3(9)","NrMovedPoints",730,"computed (table of marks)"], ["U3(9)",["Characteristic",0],72,"computed (char. table)"], ["U3(9)",["Characteristic",2],72,"computed (char. table)"], ["U3(9)",["Characteristic",3],3,"computed (char. table)"], ["U3(9)",["Characteristic",5],72,"computed (char. table)"], ["U3(9)",["Characteristic",73],72,"computed (char. table)"], ["U3(9)",["Size",2],72,"computed (char. table)"], ["U3(9)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U3(9)",["Size",3],12,"computed (char. table)"], ["U3(9)",["Size",9],6,"computed (char. table)"], ["U3(9)",["Size",81],3,"computed (char. table)"], ["U3(9)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U3(9)",["Size",73],72,"computed (char. table)"], ["U3(9)",["Characteristic",73,"complete"],true,"computed (char. table)"], ["U4(2)","NrMovedPoints",27,"computed (subgroup tables)"], ["U4(2)","NrMovedPoints",27,"computed (subgroup tables, known repres.)"], ["U4(2)","NrMovedPoints",27,"computed (table of marks)"], ["U4(2)",["Characteristic",0],5,"computed (char. table)"], ["U4(2)",["Characteristic",2],4,"computed (char. table)"], ["U4(2)",["Characteristic",3],5,"computed (char. table)"], ["U4(2)",["Characteristic",5],5,"computed (char. table)"], ["U4(2)",["Size",2],6,"computed (char. table)"], ["U4(2)",["Size",4],4,"computed (char. table)"], ["U4(2)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U4(2)",["Size",3],5,"computed (char. table)"], ["U4(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U4(2)",["Size",5],6,"computed (char. table)"], ["U4(2)",["Size",25],5,"computed (char. table)"], ["U4(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U4(2).2","NrMovedPoints",27,"computed (subgroup tables)"], ["U4(2).2","NrMovedPoints",27,"computed (subgroup tables, known repres.)"], ["U4(2).2","NrMovedPoints",27,"computed (table of marks)"], ["U4(2).2",["Characteristic",0],6,"computed (char. table)"], ["U4(2).2",["Characteristic",2],6,"computed (char. table)"], ["U4(2).2",["Characteristic",3],5,"computed (char. table)"], ["U4(2).2",["Characteristic",5],6,"computed (char. table)"], ["U4(2).2",["Size",2],6,"computed (char. table)"], ["U4(2).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U4(2).2",["Size",3],5,"computed (char. table)"], ["U4(2).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U4(2).2",["Size",5],6,"computed (char. table)"], ["U4(2).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U4(3)","NrMovedPoints",112,"computed (char. table)"], ["U4(3)","NrMovedPoints",112,"computed (table of marks)"], ["U4(3)",["Characteristic",0],21,"computed (char. table)"], ["U4(3)",["Characteristic",2],20,"computed (char. table)"], ["U4(3)",["Characteristic",3],15,"computed (char. table)"], ["U4(3)",["Characteristic",5],21,"computed (char. table)"], ["U4(3)",["Characteristic",7],21,"computed (char. table)"], ["U4(3)",["Size",2],20,"computed (char. table)"], ["U4(3)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U4(3)",["Size",3],15,"computed (char. table)"], ["U4(3)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U4(3)",["Size",5],21,"computed (char. table)"], ["U4(3)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U4(3)",["Size",7],21,"computed (char. table)"], ["U4(3)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U4(3).2_1","NrMovedPoints",112,"computed (table of marks)"], ["U4(3).2_1",["Characteristic",0],21,"computed (char. table)"], ["U4(3).2_1",["Characteristic",2],20,"computed (char. table)"], ["U4(3).2_1",["Characteristic",3],15,"computed (char. table)"], ["U4(3).2_1",["Characteristic",5],21,"computed (char. table)"], ["U4(3).2_1",["Characteristic",7],21,"computed (char. table)"], ["U4(3).2_1",["Size",2],20,"computed (char. table)"], ["U4(3).2_1",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U4(3).2_1",["Size",3],15,"computed (char. table)"], ["U4(3).2_1",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U4(3).2_1",["Size",5],21,"computed (char. table)"], ["U4(3).2_1",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U4(3).2_1",["Size",7],21,"computed (char. table)"], ["U4(3).2_1",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U4(3).2_2",["Characteristic",0],21,"computed (char. table)"], ["U4(3).2_2",["Characteristic",2],20,"computed (char. table)"], ["U4(3).2_2",["Characteristic",3],15,"computed (char. table)"], ["U4(3).2_2",["Characteristic",5],21,"computed (char. table)"], ["U4(3).2_2",["Characteristic",7],21,"computed (char. table)"], ["U4(3).2_2",["Size",2],20,"computed (char. table)"], ["U4(3).2_2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U4(3).2_2",["Size",3],15,"computed (char. table)"], ["U4(3).2_2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U4(3).2_2",["Size",5],21,"computed (char. table)"], ["U4(3).2_2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U4(3).2_2",["Size",7],21,"computed (char. table)"], ["U4(3).2_2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U4(3).2_3","NrMovedPoints",112,"computed (subgroup tables)"], ["U4(3).2_3","NrMovedPoints",112,"computed (table of marks)"], ["U4(3).2_3",["Characteristic",0],21,"computed (char. table)"], ["U4(3).2_3",["Characteristic",2],20,"computed (char. table)"], ["U4(3).2_3",["Characteristic",3],15,"computed (char. table)"], ["U4(3).2_3",["Characteristic",5],21,"computed (char. table)"], ["U4(3).2_3",["Characteristic",7],21,"computed (char. table)"], ["U4(3).2_3",["Size",2],20,"computed (char. table)"], ["U4(3).2_3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U4(3).2_3",["Size",3],15,"computed (char. table)"], ["U4(3).2_3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U4(3).2_3",["Size",5],21,"computed (char. table)"], ["U4(3).2_3",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U4(3).2_3",["Size",7],21,"computed (char. table)"], ["U4(3).2_3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U4(3).4",["Characteristic",0],21,"computed (char. table)"], ["U4(3).4",["Characteristic",2],20,"computed (char. table)"], ["U4(3).4",["Characteristic",3],15,"computed (char. table)"], ["U4(3).4",["Characteristic",5],21,"computed (char. table)"], ["U4(3).4",["Characteristic",7],21,"computed (char. table)"], ["U4(3).4",["Size",2],20,"computed (char. table)"], ["U4(3).4",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U4(3).4",["Size",3],15,"computed (char. table)"], ["U4(3).4",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U4(3).4",["Size",5],21,"computed (char. table)"], ["U4(3).4",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U4(3).4",["Size",7],21,"computed (char. table)"], ["U4(3).4",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U4(3).D8","NrMovedPoints",112,"computed (subgroup tables, known repres.)"], ["U4(3).D8",["Characteristic",0],21,"computed (char. table)"], ["U4(3).D8",["Characteristic",2],20,"computed (char. table)"], ["U4(3).D8",["Characteristic",3],15,"computed (char. table)"], ["U4(3).D8",["Characteristic",5],21,"computed (char. table)"], ["U4(3).D8",["Characteristic",7],21,"computed (char. table)"], ["U4(3).D8",["Size",2],20,"computed (char. table)"], ["U4(3).D8",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U4(3).D8",["Size",3],15,"computed (char. table)"], ["U4(3).D8",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U4(3).D8",["Size",5],21,"computed (char. table)"], ["U4(3).D8",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U4(3).D8",["Size",7],21,"computed (char. table)"], ["U4(3).D8",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U4(4)",["Characteristic",0],51,"computed (char. table)"], ["U4(5)",["Characteristic",0],104,"computed (char. table)"], ["U5(2)","NrMovedPoints",165,"computed (char. table)"], ["U5(2)","NrMovedPoints",165,"computed (table of marks)"], ["U5(2)",["Characteristic",0],10,"computed (char. table)"], ["U5(2)",["Characteristic",2],5,"computed (char. table)"], ["U5(2)",["Characteristic",3],10,"computed (char. table)"], ["U5(2)",["Characteristic",5],10,"computed (char. table)"], ["U5(2)",["Characteristic",11],10,"computed (char. table)"], ["U5(2)",["Size",2],10,"computed (char. table)"], ["U5(2)",["Size",4],5,"computed (char. table)"], ["U5(2)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U5(2)",["Size",3],10,"computed (char. table)"], ["U5(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U5(2)",["Size",5],10,"computed (char. table)"], ["U5(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U5(2)",["Size",11],10,"computed (char. table)"], ["U5(2)",["Characteristic",11,"complete"],true,"computed (char. table)"], ["U5(2).2","NrMovedPoints",165,"computed (subgroup tables, known repres.)"], ["U5(2).2",["Characteristic",0],10,"computed (char. table)"], ["U5(2).2",["Characteristic",2],10,"computed (char. table)"], ["U5(2).2",["Characteristic",3],10,"computed (char. table)"], ["U5(2).2",["Characteristic",5],10,"computed (char. table)"], ["U5(2).2",["Characteristic",11],10,"computed (char. table)"], ["U5(2).2",["Size",2],10,"computed (char. table)"], ["U5(2).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U5(2).2",["Size",3],10,"computed (char. table)"], ["U5(2).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U5(2).2",["Size",5],20,"computed (char. table)"], ["U5(2).2",["Size",25],10,"computed (char. table)"], ["U5(2).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U5(2).2",["Size",11],10,"computed (char. table)"], ["U5(2).2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["U5(4)",["Characteristic",0],204,"computed (char. table)"], ["U6(2)","NrMovedPoints",672,"computed (char. table)"], ["U6(2)",["Characteristic",0],22,"computed (char. table)"], ["U6(2)",["Characteristic",2],20,"computed (char. table)"], ["U6(2)",["Characteristic",3],21,"computed (char. table)"], ["U6(2)",["Characteristic",5],22,"computed (char. table)"], ["U6(2)",["Characteristic",7],22,"computed (char. table)"], ["U6(2)",["Characteristic",11],22,"computed (char. table)"], ["U6(2)",["Size",2],20,"computed (char. table)"], ["U6(2)",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U6(2)",["Size",3],21,"computed (char. table)"], ["U6(2)",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U6(2)",["Size",5],22,"computed (char. table)"], ["U6(2)",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U6(2)",["Size",7],22,"computed (char. table)"], ["U6(2)",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U6(2)",["Size",11],22,"computed (char. table)"], ["U6(2)",["Characteristic",11,"complete"],true,"computed (char. table)"], ["U6(2).2","NrMovedPoints",672,"computed (subgroup tables)"], ["U6(2).2","NrMovedPoints",672,"computed (subgroup tables, known repres.)"], ["U6(2).2",["Characteristic",0],22,"computed (char. table)"], ["U6(2).2",["Characteristic",2],20,"computed (char. table)"], ["U6(2).2",["Characteristic",3],21,"computed (char. table)"], ["U6(2).2",["Characteristic",5],22,"computed (char. table)"], ["U6(2).2",["Characteristic",7],22,"computed (char. table)"], ["U6(2).2",["Characteristic",11],22,"computed (char. table)"], ["U6(2).2",["Size",2],20,"computed (char. table)"], ["U6(2).2",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U6(2).2",["Size",3],21,"computed (char. table)"], ["U6(2).2",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U6(2).2",["Size",5],22,"computed (char. table)"], ["U6(2).2",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U6(2).2",["Size",7],22,"computed (char. table)"], ["U6(2).2",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U6(2).2",["Size",11],22,"computed (char. table)"], ["U6(2).2",["Characteristic",11,"complete"],true,"computed (char. table)"], ["U6(2).3",["Characteristic",0],22,"computed (char. table)"], ["U6(2).3",["Characteristic",2],20,"computed (char. table)"], ["U6(2).3",["Characteristic",3],21,"computed (char. table)"], ["U6(2).3",["Characteristic",5],22,"computed (char. table)"], ["U6(2).3",["Characteristic",7],22,"computed (char. table)"], ["U6(2).3",["Characteristic",11],22,"computed (char. table)"], ["U6(2).3",["Size",2],20,"computed (char. table)"], ["U6(2).3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U6(2).3",["Size",3],21,"computed (char. table)"], ["U6(2).3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U6(2).3",["Size",5],22,"computed (char. table)"], ["U6(2).3",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U6(2).3",["Size",7],22,"computed (char. table)"], ["U6(2).3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U6(2).3",["Size",11],22,"computed (char. table)"], ["U6(2).3",["Characteristic",11,"complete"],true,"computed (char. table)"], ["U6(2).S3",["Characteristic",0],22,"computed (char. table)"], ["U6(2).S3",["Characteristic",2],20,"computed (char. table)"], ["U6(2).S3",["Characteristic",3],21,"computed (char. table)"], ["U6(2).S3",["Characteristic",5],22,"computed (char. table)"], ["U6(2).S3",["Characteristic",7],22,"computed (char. table)"], ["U6(2).S3",["Characteristic",11],22,"computed (char. table)"], ["U6(2).S3",["Size",2],20,"computed (char. table)"], ["U6(2).S3",["Characteristic",2,"complete"],true,"computed (char. table)"], ["U6(2).S3",["Size",3],21,"computed (char. table)"], ["U6(2).S3",["Characteristic",3,"complete"],true,"computed (char. table)"], ["U6(2).S3",["Size",5],22,"computed (char. table)"], ["U6(2).S3",["Characteristic",5,"complete"],true,"computed (char. table)"], ["U6(2).S3",["Size",7],22,"computed (char. table)"], ["U6(2).S3",["Characteristic",7,"complete"],true,"computed (char. table)"], ["U6(2).S3",["Size",11],22,"computed (char. table)"], ["U6(2).S3",["Characteristic",11,"complete"],true,"computed (char. table)"], ["W(F4)","NrMovedPoints",24,"computed (table of marks)"], ["W(F4)",["Characteristic",0],4,"computed (char. table)"], ["W(F4)",["Characteristic",3],4,"computed (char. table)"], ["W(F4)",["Size",3],4,"computed (char. table)"], ["W(F4)",["Characteristic",3,"complete"],true,"computed (char. table)"], ];; for entry in MinimalRepresentationInfoData.datalist do CallFuncList( SetMinimalRepresentationInfo, entry ); od; ############################################################################# ## #E atlasrep-2.1.8/gap/browse_only.g0000664000175000017500000000016414374734563014763 0ustar samsam# Read Browse applications # after the Browse package has been loaded. ReadPackage( "atlasrep", "gap/brmindeg.g" ); atlasrep-2.1.8/gap/json.g0000644000175000017500000007053414462136500013361 0ustar samsam############################################################################# ## #W json.g GAP 4 package AtlasRep Thomas Breuer ## ## This file defines and implements a conversion between certain low level ## GAP objects and JSON (JavaScript Object Notation). ## ############################################################################# ## ## <#GAPDoc Label="JsonIntro"> ## We define a mapping between certain &GAP; objects and ## JSON (JavaScript Object Notation) texts (see ), ## as follows. ##

## ## ## The three &GAP; values true, false, and fail ## correspond to the JSON texts true, false, ## and null, respectively. ## ## ## &GAP; strings correspond to JSON strings; ## special characters in a &GAP; string (control characters ASCII 0 ## to 31, backslash and double quote) are mapped as defined in ## JSON's specification, and other ASCII characters are kept as they are; ## if a &GAP; string contains non-ASCII characters, it is assumed that ## it is UTF-8 encoded, and one may choose either to keep non-ASCII ## characters as they are, or to create an ASCII only JSON string, using ## JSON's syntax for Unicode code points (\uXXXX); ## in the other direction, JSON strings are assumed to be UTF-8 encoded, ## and are mapped to UTF-8 encoded &GAP; strings, by keeping the non-ASCII ## characters and converting substrings of the form \uXXXX ## accordingly. ## ## ## &GAP; integers (in the sense of ) ## are mapped to JSON numbers that consist of digits and optionally ## a leading sign character -; ## in the other direction, JSON numbers of this form and also JSON numbers ## that involve no decimal dots and have no negative exponent ## (for example "2e3") are mapped to &GAP; integers. ## ## ## &GAP; rationals (in the sense of ) ## which are not integers are represented by ## JSON floating point numbers; ## the JSON representation (and hence the precision) is given by ## first applying and then ## . ## ## ## &GAP; floats (in the sense of Chapter ## in the &GAP; Reference Manual) ## are mapped to JSON floating point numbers; ## the JSON representation (and hence the precision) is given by ## applying ; ## in the other direction, JSON numbers that involve a decimal dot or ## a negative exponent are mapped to &GAP; floats. ## ## ## (Nested and not self-referential) dense &GAP; lists of objects ## correspond to JSON arrays such that the list entries correspond ## to each other. ## (Note that JSON does not support non-dense arrays.) ## ## ## (Nested and not self-referential) &GAP; records correspond to JSON ## objects such that both labels (which are strings in &GAP; and JSON) ## and values correspond to each other. ## ## ##

## The &GAP; functions and ## can be used to create a JSON ## text from a suitable &GAP; object and the &GAP; object that ## corresponds to a given JSON text, respectively. ##

## Note that the composition of the two functions is in general not ## the identity mapping, ## because accepts non-integer rationals, ## whereas does not create such ## objects. ##

## Note also that the results of do not contain ## information about dependencies between common subobjects. ## This is another reason why applying first and ## then may yield a &GAP; object with ## different behaviour. ##

## Applying to a self-referential object ## such as [ ~ ] will raise a recursion depth trap error. ## ## ## Why JSON? ## ## The aim of this JSON interface is to read and write certain data files ## with &GAP; such that these files become easily accessible independent ## of &GAP;. ## The function is intended just as a prototype, ## variants of this function are very likely to appear in other contexts, ## for example in order to force certain line formatting or ordering of ## record components. ##

## It is not the aim of the JSON interface to provide self-contained ## descriptions of arbitrary &GAP; objects, in order to read them into a ## &GAP; session. ## Note that those &GAP; objects for which a JSON equivalent exists (and ## many more) can be easily written to files as they are, ## and &GAP; can read them efficiently. ## On the other hand, more complicated &GAP; objects can be written and read ## via the so-called pickling, for which a framework is provided by ## the &GAP; package IO . ##

## Here are a few situations which are handled well by pickling but which ## cannot be addressed with a JSON interface. ##

## ## ## Pickling and unpickling take care of common subobjects of the given ## &GAP; object. ## The following example shows that the applying first ## and then ## ## may yield an object which behaves differently. ##

## l:= [ [ 1 ] ];; l[2]:= l[1];; l; ## [ [ 1 ], [ 1 ] ] ## gap> new:= AGR.GapObjectOfJsonText( AGR.JsonText( l ) ).value; ## [ [ 1 ], [ 1 ] ] ## gap> Add( l[1], 2 ); l; ## [ [ 1, 2 ], [ 1, 2 ] ] ## gap> Add( new[1], 2 ); new; ## [ [ 1, 2 ], [ 1 ] ] ## ]]> ## ## ## &GAP; admits self-referential objects, for example as follows. ##

## l:= [];; l[1]:= l;; ## ]]> ##

## Pickling and unpickling take care of self-referential objects, ## but does not support the conversion of such ## objects. ## ## ## ## <#/GAPDoc> ## ############################################################################# ## ## Every GAP function that produces a string for the outside world ## must say something about the encoding of this string. ## We provide a function that produces an ASCII string ## and a function that assumes UTF-8 encoding of GAP strings, ## and keeps this encoding except if the JSON specification prescribes ## something different. ## ############################################################################# ## #F AGR.JsonStringEncodeKeep( ) ## ## creates a string that describes the GAP string ## as a JSON string that has the same encoding as . ## We replace backslashes by double backslashes, ## escape double quotes, ## and replace the control characters 0, 1, ..., 31 ## by the corresponding values in JSON's '\uXXXX' format. ## ## Note that we do not check whether is a valid ## UTF-8 encoded string. ## AGR.JsonStringEncodeKeep:= function( string ) local replace, pair; replace:= [ [ "\\", "\\\\" ], [ "\"", "\\\"" ], [ "\000", "\\u0000" ], [ "\>", "\\u0001" ], [ "\<", "\\u0002" ], [ "\c", "\\u0003" ], [ "\004", "\\u0004" ], [ "\005", "\\u0005" ], [ "\006", "\\u0006" ], [ "\007", "\\u0007" ], [ "\b", "\\b" ], [ "\t", "\\t" ], [ "\n", "\\n" ], [ "\013", "\\u000B" ], [ "\014", "\\f" ], [ "\r", "\\r" ], [ "\016", "\\u000E" ], [ "\017", "\\u000F" ], [ "\020", "\\u0010" ], [ "\021", "\\u0011" ], [ "\022", "\\u0012" ], [ "\023", "\\u0013" ], [ "\024", "\\u0014" ], [ "\025", "\\u0015" ], [ "\026", "\\u0016" ], [ "\027", "\\u0017" ], [ "\030", "\\u0018" ], [ "\031", "\\u0019" ], [ "\032", "\\u001A" ], [ "\033", "\\u001B" ], [ "\034", "\\u001C" ], [ "\035", "\\u001D" ], [ "\036", "\\u001E" ], [ "\037", "\\u001F" ], ]; for pair in replace do string:= ReplacedString( string, pair[1], pair[2] ); od; return string; end; ############################################################################# ## #F AGR.JsonStringEncodeASCII( ) ## ## creates an ASCII string that describes the GAP string ## as a JSON string. ## We replace backslashes by double backslashes, ## escape double quotes, ## and replace the control characters 0, 1, ..., 31 ## by the corresponding values in JSON's '\uXXXX' format. ## Moreover, we rewrite all Unicode code points ## except lower half ASCII to JSON's '\uXXXX' format. ## Note that code points above U+FFFF are encoded via ## UTF-16 surrogate pairs, using the reserved codepoints U+D800 to U+DBFF ## for the first part and U+DC00 to U+DFFF for the second part. ## ## If is not a valid UTF-8 encoded string then 'fail' is returned. ## AGR.JsonStringEncodeASCII:= function( string ) local encodesmall, ustr, res, n, n2; encodesmall:= [ "\\u0000", "\\u0001", "\\u0002", "\\u0003", "\\u0004", "\\u0005", "\\u0006", "\\u0007", "\\b", "\\t", "\\n", "\\u000B", "\\f", "\\r", "\\u000E", "\\u000F", "\\u0010", "\\u0011", "\\u0012", "\\u0013", "\\u0014", "\\u0015", "\\u0016", "\\u0017", "\\u0018", "\\u0019", "\\u001A", "\\u001B", "\\u001C", "\\u001D", "\\u001E", "\\u001F", " ", "!", "\\\"" ]; ustr:= Unicode( string ); if ustr = fail then return fail; fi; res:= ""; for n in IntListUnicodeString( ustr ) do if n < 35 then Append( res, encodesmall[ n+1 ] ); elif n = 92 then Append( res, "\\\\" ); elif n < 128 then Add( res, CHAR_INT( n ) ); elif n < 256 then Append( res, "\\u00" ); Append( res, HexStringInt( n ) ); elif n < 4096 then Append( res, "\\u0" ); Append( res, HexStringInt( n ) ); elif n < 65536 then Append( res, "\\u" ); Append( res, HexStringInt( n ) ); elif n < 1114112 then n:= n - 65536; n2:= n mod 1024; Append( res, "\\u" ); Append( res, HexStringInt( ( n - n2 ) / 1024 + 55296 ) ); Append( res, "\\u" ); Append( res, HexStringInt( n2 + 56320 ) ); else return fail; fi; od; return res; end; ############################################################################# ## #F AGR.JsonText( [, ] ) ## ## <#GAPDoc Label="AGR.JsonText"> ## ## ## ## ## a new mutable string that describes obj as a JSON text, ## or fail. ## ## ## ## If obj is a &GAP; object for which a corresponding JSON text ## exists, according to the mapping described above, ## then such a JSON text is returned. ## Otherwise, fail is returned. ##

## If the optional argument mode is given and has the value ## "ASCII" then the result in an ASCII string, ## otherwise the encoding of strings that are involved in obj ## is kept. ##

## AGR.JsonText( [] ); ## "[]" ## gap> AGR.JsonText( "" ); ## "\"\"" ## gap> AGR.JsonText( "abc\ndef\cghi" ); ## "\"abc\\ndef\\u0003ghi\"" ## gap> AGR.JsonText( rec() ); ## "{}" ## gap> AGR.JsonText( [ , 2 ] ); ## fail ## gap> str:= [ '\303', '\266' ];; # umlaut o ## gap> json:= AGR.JsonText( str );; List( json, IntChar ); ## [ 34, 195, 182, 34 ] ## gap> AGR.JsonText( str, "ASCII" ); ## "\"\\u00F6\"" ## ]]> ## ## ## <#/GAPDoc> ## AGR.JsonText:= function( arg ) local mode, stringencode, obj, res, subobj, next, names, nam; stringencode:= AGR.JsonStringEncodeKeep; if Length( arg ) = 1 then obj:= arg[1]; mode:= ""; elif Length( arg ) = 2 and IsBound( GAPInfo ) then obj:= arg[1]; mode:= arg[2]; if mode = "ASCII" then stringencode:= AGR.JsonStringEncodeASCII; fi; else Error( "usage: AGR.JsonText( [, \"ASCII\"] )" ); fi; if IsString( obj ) and ( IsStringRep( obj ) or not IsEmpty( obj ) ) then obj:= stringencode( obj ); if obj = fail then return fail; else return Concatenation( "\"", obj, "\"" ); fi; elif IsInt( obj ) then return String( obj ); elif IsRat( obj ) then return String( Float( obj ) ); elif IsFloat( obj ) then return String( obj ); elif obj = true then return "true"; elif obj = false then return "false"; elif obj = fail then return "null"; elif IsDenseList( obj ) then res:= "["; if Length( obj ) = 0 then Add( res, ']' ); else for subobj in obj do next:= AGR.JsonText( subobj, mode ); if next = fail then return fail; fi; Append( res, next ); Add( res, ',' ); od; res[ Length( res ) ]:= ']'; fi; elif IsRecord( obj ) then res:= "{"; names:= RecNames( obj ); if Length( names ) = 0 then Add( res, '}' ); else for nam in names do next:= AGR.JsonText( nam, mode ); if next = fail then return fail; fi; Append( res, next ); Append( res, ":" ); next:= AGR.JsonText( obj.( nam ), mode ); if next = fail then return fail; fi; Append( res, next ); Add( res, ',' ); od; res[ Length( res ) ]:= '}'; fi; else return fail; fi; return res; end; ############################################################################# ## #F AGR.GapObjectOfJsonText( ) ## ## <#GAPDoc Label="AGR.GapObjectOfJsonText"> ## ## ## ## ## a new mutable record whose value component, if bound, ## contains a mutable &GAP; object that represents the JSON text ## string. ## ## ## If string is a string that represents a JSON text ## then the result is a record with the components value ## (the corresponding &GAP; object in the sense of the above interface) and ## status (value true). ## Otherwise, the result is a record with the components ## status (value false) and errpos (the position in ## string where the string turns out to be not valid JSON). ##

## AGR.GapObjectOfJsonText( "{ \"a\": 1 }" ); ## rec( status := true, value := rec( a := 1 ) ) ## gap> AGR.GapObjectOfJsonText( "{ \"a\": x }" ); ## rec( errpos := 8, status := false ) ## ]]> ## ## ## <#/GAPDoc> ## ## rules for UTF-8 encoding of unicode code points: ## 0000, ..., 007F in 1 byte, as 0xxxxxxx (7 bits) ## 0080, ..., 07FF in 2 bytes, as 110xxxxx 10xxxxxx (5+6 bits) ## 0800, ..., FFFF in 3 bytes, as 1110xxxx 10xxxxxx 10xxxxxx (4+6+6 bits) ## 10000, ..., 10FFFF in 4 bytes, as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx ## (3+6+6+6 bits) ## ## For example, U+0070 is encoded by 70, and U+0080 by C2 80. ## Not all such sequences of bytes represent code points, ## for example 0800 is binary 00001000 00000000, ## which is encoded as 11100000 10100000 10000000. ## AGR.GapObjectOfJsonText:= function( string ) local len, whitespace, res, pos, expectstringor\}, expectstring, SIGNEDCHARSDIGITS, HEXCHARS, c, val, i, pos2, hex, high, low, number, dpos, pos3, pos4, pos5, expsign, exp, new, pair; if not IsString( string ) then Error( " must be a nonempty string" ); fi; len:= Length( string ); if len = 0 then Error( " must be a nonempty string" ); fi; # Whitespace is defined as sequence of the HEX characters 09, 0A, 0D, 20. whitespace:= "\t\n\r "; res:= rec( type:= "unknown" ); pos:= 1; expectstringor\}:= false; expectstring:= false; SIGNEDCHARSDIGITS:= "-0123456789"; IsSSortedList( SIGNEDCHARSDIGITS ); # store that this is strictly sorted HEXCHARS:= "0123456789ABCDEFabcdef"; IsSSortedList( HEXCHARS ); # store that this is strictly sorted while pos <= len do c:= string[ pos ]; if c in whitespace then # Ignore whitespace. pos:= pos + 1; elif c = '\"' then # A string follows. # Rewrite the substrings \b, \f, \n, \r, \t, \\, \/, # and interpret \uXXXX. val:= ""; i:= pos + 1; while i <= len do c:= string[i]; if c = '\"' then # The string is complete. pos2:= i; break; elif c = '\\' then # Deal with a special character. if i = len then return rec( status:= false, errpos:= pos ); fi; i:= i+1; c:= string[i]; if c in "\\\"/" then Add( val, c ); elif c = 't' then Add( val, '\t' ); elif c = 'r' then Add( val, '\r' ); elif c = 'n' then Add( val, '\n' ); elif c = 'b' then Add( val, '\b' ); elif c = 'f' then Add( val, '\014' ); elif c = 'u' then # Add the encoding of a unicode code point. if len < i + 4 then return rec( status:= false, errpos:= pos ); fi; hex:= string{ [ i+1 .. i+4 ] }; if not IsSubset( HEXCHARS, hex ) then return rec( status:= false, errpos:= pos ); elif hex[1] in "Dd" then if hex[2] in "CDEFcdef" then # \uDC00 to \uDFFF must occur only as the second half # of a UTF-16 surrogate pair. return rec( status:= false, errpos:= pos ); elif hex[2] in "89ABab" then # This is the first half of a UTF-16 surrogate pair. high:= IntHexString( hex ) - 55296; if len < i + 10 or string{ [ i+5, i+6 ] } <> "\\u" then return rec( status:= false, errpos:= pos ); fi; hex:= string{ [ i+7 .. i+10 ] }; if not ( IsSubset( HEXCHARS, hex ) and hex[1] in "Dd" and hex[2] in "CDEFcdef" ) then return rec( status:= false, errpos:= pos ); fi; low:= IntHexString( hex ) - 56320; # Use an undocumented GAPDoc function. Append( val, UNICODE_RECODE.UTF8UnicodeChar( 1024 * high + low + 65536 ) ); i:= i + 10; else # Use an undocumented GAPDoc function. Append( val, UNICODE_RECODE.UTF8UnicodeChar( IntHexString( hex ) ) ); i:= i + 4; fi; else # Use an undocumented GAPDoc function. Append( val, UNICODE_RECODE.UTF8UnicodeChar( IntHexString( hex ) ) ); i:= i + 4; fi; else return rec( status:= false, errpos:= pos ); fi; elif IntChar( c ) <= 31 then return rec( status:= false, errpos:= pos ); else Add( val, c ); fi; i:= i + 1; od; if len < i then return rec( status:= false, errpos:= pos ); fi; res.type:= "string"; res.value:= val; expectstringor\}:= false; expectstring:= false; pos:= pos2 + 1; elif expectstring or ( expectstringor\} and c <> '}' ) then # We had just opened an object, or had just read a ',' in an object. return rec( status:= false, errpos:= pos ); elif c in SIGNEDCHARSDIGITS then # A number follows. res.type:= "number"; pos2:= pos + 1; if c = '-' then number:= 0; else number:= POS_LIST_DEFAULT( CHARS_DIGITS, c, 0 ) - 1; fi; while pos2 <= len do dpos:= POS_LIST_DEFAULT( CHARS_DIGITS, string[ pos2 ], 0 ); if dpos = fail then break; fi; number:= 10 * number + dpos - 1; pos2:= pos2 + 1; od; if ( c = '-' and ( pos2 = pos + 1 or ( pos + 2 < pos2 and string[ pos + 1 ] = '0' ) ) ) or ( c = '0' and pos + 1 < pos2 ) then return rec( status:= false, errpos:= pos ); elif len < pos2 then # end of the string if c = '-' then number:= - number; fi; res.value:= number; pos:= pos2; elif string[ pos2 ] = '.' then # A fractional part follows, we will create a float. pos3:= pos2 + 1; while pos3 <= len and string[ pos3 ] in CHARS_DIGITS do pos3:= pos3 + 1; od; if pos3 = pos2 + 1 then return rec( status:= false, errpos:= pos2 ); elif len < pos3 then res.value:= Float( string{ [ pos .. pos3 - 1 ] } ); pos:= pos3; elif string[ pos3 ] in "eE" then # An exponent follows after the fractional part: # [ pos .. pos2 - 1 ] is the integer part, # [ pos2 + 1 .. pos3 - 1 ] is the fractional part, # [ pos4 .. pos5 - 1 ] is the exponent, including the sign. pos4:= pos3; if len = pos4 then return rec( status:= false, errpos:= pos3 ); elif string[ pos4 + 1 ] = '+' then pos4:= pos4 + 1; elif string[ pos4 + 1 ] = '-' then pos4:= pos4 + 1; fi; pos5:= pos4 + 1; while pos5 <= len and string[ pos5 ] in CHARS_DIGITS do pos5:= pos5 + 1; od; if pos4 + 1 = pos5 then return rec( status:= false, errpos:= pos3 ); fi; res.value:= Float( string{ [ pos .. pos5 - 1 ] } ); pos:= pos5; else # There is no exponent. res.value:= Float( string{ [ pos .. pos3 - 1 ] } ); pos:= pos3; fi; elif string[ pos2 ] in "eE" then # An integer followed by an exponent (perhaps create an integer). # [ pos .. pos2-1 ] is the integer part, # [ pos3+1 .. pos4 - 1 ] is the abs. value of the exponent, # expsign det. the sign pos3:= pos2; expsign:= false; if len = pos3 then return rec( status:= false, errpos:= pos2 ); elif string[ pos3 + 1 ] = '+' then pos3:= pos3 + 1; elif string[ pos3 + 1 ] = '-' then pos3:= pos3 + 1; expsign:= true; fi; pos4:= pos3 + 1; while pos4 <= len and string[ pos4 ] in CHARS_DIGITS do pos4:= pos4 + 1; od; if pos3 + 1 = pos4 then return rec( status:= false, errpos:= pos3 ); elif expsign then # We create a float. res.value:= Float( string{ [ pos .. pos4 - 1 ] } ); else # We create an integer. exp:= 0; for i in [ pos3 + 1 .. pos4 - 1 ] do dpos:= POSITION_SORTED_LIST( CHARS_DIGITS, string[i] ); exp:= 10 * exp + dpos - 1; od; if c = '-' then number:= - number; fi; res.value:= number * 10 ^ exp; fi; pos:= pos4; else # The number is an integer. if c = '-' then number:= - number; fi; res.value:= number; pos:= pos2; fi; elif c = '[' then # An array follows. res.type:= "list"; new:= rec( type:= "unknown", parent:= res ); res.entries:= [ new ]; res.nrentries:= 1; res:= new; pos:= pos + 1; elif c = '{' then # An object follows. res.type:= "record"; expectstringor\}:= true; new:= rec( type:= "string", parent:= res ); res.pairs:= [ [ new ] ]; res.nrpairs:= 1; res.lenlastpair:= 1; res:= new; pos:= pos + 1; elif c = '}' then # If we are processing an object then it is closed now. if not IsBound( res.parent ) then return rec( status:= false, errpos:= pos ); fi; expectstringor\}:= false; res:= res.parent; if res.type <> "record" then return rec( status:= false, errpos:= pos ); elif res.nrpairs = 1 and res.lenlastpair = 1 and not IsBound( res.pairs[1][1].value ) then # The record is empty. res.value:= rec(); elif res.lenlastpair = 1 then return rec( status:= false, errpos:= pos ); else res.value:= rec(); for pair in res.pairs do res.value.( pair[1].value ):= pair[2].value; od; fi; pos:= pos + 1; elif c = ']' then # If we are processing a list then it is closed now. if not IsBound( res.parent ) then return rec( status:= false, errpos:= pos ); fi; res:= res.parent; if res.type <> "list" then return rec( status:= false, errpos:= pos ); elif res.nrentries = 1 and res.entries[1].type= "unknown" then # The list is empty. res.value:= []; elif res.entries[ res.nrentries ].type= "unknown" then return rec( status:= false, errpos:= pos ); else res.value:= List( res.entries, x -> x.value ); fi; pos:= pos + 1; elif c = ',' then # If we process an object or array then the next entry follows. if not IsBound( res.parent ) or not IsBound( res.value ) then return rec( status:= false, errpos:= pos ); fi; res:= res.parent; if res.type = "list" then # We have processed a value. res.nrentries:= res.nrentries + 1; new:= rec( type:= "unknown", parent:= res ); res.entries[ res.nrentries ]:= new; res:= new; elif res.type = "record" and res.lenlastpair = 2 then # We have processed both a label and a value. expectstring:= true; res.nrpairs:= res.nrpairs + 1; new:= rec( type:= "string", parent:= res ); res.pairs[ res.nrpairs ]:= [ new ]; res.lenlastpair:= 1; res:= new; else return rec( status:= false, errpos:= pos ); fi; pos:= pos + 1; elif c = ':' then # In an object, this character separates labels and values. if res.type <> "string" then return rec( status:= false, errpos:= pos ); fi; res:= res.parent; if res.type <> "record" or res.lenlastpair <> 1 then return rec( status:= false, errpos:= pos ); fi; # We have just processed a label. new:= rec( type:= "unknown", parent:= res ); res.pairs[ res.nrpairs ][2]:= new; res.lenlastpair:= 2; res:= new; pos:= pos + 1; elif c = 't' then # true follows. if len < pos + 3 or string{ [ pos .. pos + 3 ] } <> "true" then return rec( status:= false, errpos:= pos ); fi; res.type:= "constant"; res.value:= true; pos:= pos + 4; elif c = 'f' then # false follows. if len < pos + 4 or string{ [ pos .. pos + 4 ] } <> "false" then return rec( status:= false, errpos:= pos ); fi; res.type:= "constant"; res.value:= false; pos:= pos + 5; elif c = 'n' then # null follows. if len < pos + 3 or string{ [ pos .. pos + 3 ] } <> "null" then return rec( status:= false, errpos:= pos ); fi; res.type:= "constant"; res.value:= fail; pos:= pos + 4; else return rec( status:= false, errpos:= pos ); fi; od; if not IsBound( res.value ) or IsBound( res.parent) then return rec( status:= false, errpos:= pos ); fi; return rec( value:= res.value, status:= true ); end; ############################################################################# ## #E atlasrep-2.1.8/gap/utlmrkup.g0000644000175000017500000007325014410314027014264 0ustar samsam############################################################################# ## #W utlmrkup.g GAP 4 package CTblLib Thomas Breuer ## ## This file contains utility functions for creating HTML files. ## They are used for the web pages on ## - decomposition matrices, ## - the contents of the GAP Character Table Library, ## - the contents of the MFER database, ## - the contents of parts of the AtlasRep database. ## ############################################################################# ## #V MarkupGlobals ## ## The constant 'MarkupGlobals.CompareMark' is used in 'HTMLFooter' and ## 'PrintToIfChanged'. ## MarkupGlobals := rec( HTML:= rec( \+ := "+", \- := "−", lt := "<", leq := "≤", ast := "∗", cdot := " ⋅ ", rightarrow:= "→", sub := [ "", "" ], super := [ "", "" ], center:= [ "

", "
" ], bold := [ "", "" ], dot := ".", splitdot := ":", times := " × ", wreath := " ≀ ", xi := "ξ", Z := "ℤ", outerbrackets:= [ "", "" ], ), LaTeX:= rec( \+ := "+", \- := "-", lt := "<", leq := "\\leq", ast := "\\ast", cdot := " \\cdot ", rightarrow:= "\\rightarrow", sub := [ "_{", "}" ], super := [ "^{", "}" ], center:= [ "\n\\begin{center}\n", "\n\\end{center}\n" ], bold := [ "\\textbf{", "}" ], dot := ".", splitdot := ":", times := " \\times ", wreath := " \\wr ", xi := "\\xi", Z := "\\texttt{{\\ensuremath{\\mathbb Z}}}", outerbrackets:= [ "", "" ], ), MathJax:= rec( \+ := "+", \- := "-", lt := "<", leq := "\\leq", ast := "\\ast", cdot := " \\cdot ", rightarrow:= "\\rightarrow", sub := [ "_{", "}" ], super := [ "^{", "}" ], center:= [ "\n\\begin{center}\n", "\n\\end{center}\n" ], bold := [ "\\textbf{", "}" ], dot := ".", splitdot := ":", times := " \\times ", wreath := " \\wr ", xi := "\\xi", Z := "\\texttt{{\\ensuremath{\\mathbb Z}}}", outerbrackets:= [ "\\(", "\\)" ], ), CompareMark:= "File created automatically by GAP on ", ); ############################################################################# ## #F MarkupFactoredNumber( , ) ## ## This is used in 'ctbltoc/gap/htmltbl.g'. ## MarkupFactoredNumber:= function( n, global ) if global = "LaTeX" then global:= MarkupGlobals.LaTeX; elif global = "HTML" then global:= MarkupGlobals.HTML; fi; if not IsPosInt( n ) then Error( " must be a positive integer" ); elif n = 1 then return "1"; fi; # Loop over the prime factors and the corresponding exponents. return ReplacedString( JoinStringsWithSeparator( List( Collected( Factors( n ) ), pair -> Concatenation( String( pair[1] ), global.super[1], String( pair[2] ), global.super[2] ) ), global.cdot ), Concatenation( global.super[1], "1", global.super[2] ), "" ); end; ############################################################################# ## #F NormalizedNameOfGroup( , ) ## ## Let be a string describing a group structure, ## and be one of "HTML", "LaTex", "MathJax", or a component of ## 'MarkupGlobals'. ## This function proceeds as follows. ## - If consists of two group names that are combined with '" < "' ## or '" -> "' then treat the parts separately; ## this occurs in names used in the MFER package. ## - If contains the character '/' that is not surrounded by ## digit characters then just return ; ## this occurs for table identifiers such as 'P1/G1/L1/V1/ext2'. ## - If name ends with 'M' or 'N' or 'N' then keep this ## suffix and normalize the part until this suffix, ## *except* if 'M' stands for a Mathieu group. ## - In all other cases, it turns into a tree describing the ## hierarchy given by the substrings " < " and " -> " ## (only on the outermost level) and brackets, ## then splits the strings that occur in this tree at ## the following characters. ## ',' (appears in some MFER strings), ## 'x' (for direct product), ## '.' and ':' (for product and semidirect product, respectively), ## '_' (for a subscript), ## '^' (for an exponent), ## where the weakest binding is treated first. ## - Then the strings that occur in the resulting tree are converted: ## numbers following a capital letter are turned into subscripts, ## and the characters '+', '-' are turned into superscripts. ## - Finally, this tree is imploded into a string, where the characters at ## which the input was split are replaced by the relevant entries of ## . ## NormalizedNameOfGroup:= function( name, global ) local extractbrackets, split, convertstring, convertatoms, concatenate, pos, result, i; if IsString( global ) and IsBound( MarkupGlobals.( global ) ) then global:= MarkupGlobals.( global ); fi; extractbrackets:= function( str ) local tree, brackets, pos, minpos, b, closeb, closepos, open; tree:= []; brackets:= [ "([{", ")]}" ]; while str <> "" do pos:= List( brackets[1], b -> Position( str, b ) ); minpos:= Minimum( pos ); if minpos <> fail then b:= str[ minpos ]; closeb:= brackets[2][ Position( brackets[1], b ) ]; closepos:= minpos+1; open:= 0; while closepos <= Length( str ) and ( str[ closepos ] <> closeb or open <> 0 ) do if str[ closepos ] = b then open:= open+1; elif str[ closepos ] = closeb then open:= open-1; fi; closepos:= closepos + 1; od; if closepos > Length( str ) then return fail; fi; Append( tree, [ str{ [ 1 .. minpos-1 ] }, rec( op:= b, contents:= extractbrackets( str{ [ minpos+1 .. closepos-1 ] } ) ) ] ); str:= str{ [ closepos+1 .. Length( str ) ] }; else Add( tree, str ); str:= ""; fi; od; return tree; end; split:= function( tree ) local i, splitchar, found, entry, pos; tree:= ShallowCopy( tree ); for i in [ 1 .. Length( tree ) ] do entry:= tree[i]; if IsRecord( tree[i] ) then if IsBound( entry.contents ) then tree[i]:= rec( op:= entry.op, contents:= split( entry.contents ) ); else tree[i]:= rec( op:= entry.op, left:= split( entry.left ), right:= split( entry.right ) ); fi; fi; od; for splitchar in ",x.:_^" do # weakest binding first! for i in [ 1 .. Length( tree ) ] do entry:= tree[i]; if IsString( entry ) then pos:= Position( entry, splitchar ); if pos <> fail then return [ rec( op:= splitchar, left:= split( Concatenation( tree{ [ 1 .. i-1 ] }, [ entry{ [ 1 .. pos-1 ] } ] ) ), right:= split( Concatenation( [ entry{ [ pos+1 .. Length( entry ) ] } ], tree{ [ i+1 .. Length( tree ) ] } ) ) ) ]; fi; fi; od; od; for i in [ 1 .. Length( tree ) ] do entry:= tree[i]; if IsString( entry ) then pos:= PositionSublist( entry, "wr" ); if pos <> fail then return [ rec( op:= "wreath", left:= split( Concatenation( tree{ [ 1 .. i-1 ] }, [ entry{ [ 1 .. pos-1 ] } ] ) ), right:= split( Concatenation( [ entry{ [ pos+2 .. Length( entry ) ] } ], tree{ [ i+1 .. Length( tree ) ] } ) ) ) ]; fi; fi; od; return tree; end; #T If we want to replace '"L2(4)"' and not '"L2"' then #T first we have to implode locally, in order to get "(4)"; #T this is done by the following function. #T Afterwards, we have to implode locally the two parts in question. # concatenatenumberbrackets:= function( tree ) # local i; # # for i in [ 1 .. Length( tree ) ] do # if IsRecord( tree[i] ) then # if tree[i].op = '^' and Length( tree[i].left ) = 1 # and Length( tree[i].right ) = 1 # and IsString( tree[i].left[1] ) # and Int( tree[i].left[1] ) <> fail # and IsString( tree[i].right[1] ) # and Int( tree[i].right[1] ) <> fail then # tree[i]:= Concatenation( tree[i].left[1], global.super[1], # tree[i].right[1], global.super[2] ); # elif tree[i].op = '_' and Length( tree[i].left ) = 1 # and Length( tree[i].right ) = 1 # and IsString( tree[i].left[1] ) # and Int( tree[i].left[1] ) <> fail # and IsString( tree[i].right[1] ) # and Int( tree[i].right[1] ) <> fail then # tree[i]:= Concatenation( tree[i].left[1], global.sub[1], # tree[i].right[1], global.sub[2] ); # elif tree[i].op = '(' and Length( tree[i].contents ) = 1 # and IsString( tree[i].contents[1] ) # and Int( tree[i].contents[1] ) <> fail then # tree[i]:= Concatenation( "(", tree[i].contents[1], ")" ); # elif IsBound( tree[i].contents ) then # concatenatenumberbrackets( tree[i].contents ); # else # concatenatenumberbrackets( tree[i].left ); # concatenatenumberbrackets( tree[i].right ); # fi; # fi; # od; # # return tree; # end; convertstring:= function( str ) local digits, letters, lower, special, pos, len, string, dig; NormalizeWhitespace( str ); digits := "0123456789"; letters := "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"; lower := "abcdefghijklmnopqrstuvwxyz"; # translate special cases special:= TransposedMat( [ [ "McL", Concatenation( "M", global.super[1], "c", global.super[2], "L" ) ], [ "F3+", Concatenation( "F", global.sub[1], "3+", global.sub[2] ) ], [ "Fi24'", Concatenation( "Fi", global.sub[1], "24", global.sub[2], global.super[1], "'", global.super[2] ) ], [ "2E6", Concatenation( global.super[1], "2", global.super[2], "E", global.sub[1], "6", global.sub[2] ) ], [ "2F4", Concatenation( global.super[1], "2", global.super[2], "F", global.sub[1], "4", global.sub[2] ) ], [ "3D4", Concatenation( global.super[1], "3", global.super[2], "D", global.sub[1], "4", global.sub[2] ) ], ] ); pos:= Position( special[1], str ); if pos <> fail then string:= special[2][ pos ]; if StartsWith( string, "^" ) then # This happens only in the LaTeX situation. string:= Concatenation( "{}", string ); fi; return string; fi; # general heuristics pos:= 1; len:= Length( str ); string:= ""; # initial digits (happens if 'str' consists oly of digits) while pos <= len and str[ pos ] in digits do Add( string, str[ pos ] ); pos:= pos + 1; od; while pos <= len do # copy letter part if str[ pos ] in letters then while pos <= len and str[ pos ] in letters do Add( string, str[ pos ] ); pos:= pos + 1; od; fi; # following digits become subscripts if pos <= len and str[ pos ] in digits then Append( string, global.sub[1] ); while pos <= len and str[ pos ] in digits do Add( string, str[ pos ] ); pos:= pos + 1; od; Append( string, global.sub[2] ); fi; # A following '+' or '-' becomes a superscript if it is the last letter # except if it is the only letter # (and except for '"F3+"' but this has been handled above ...). if pos = len and str[ pos ] in "+-" then if pos = 1 then Append( string, global.( [ str[ pos ] ] ) ); pos:= pos + 1; else Append( string, global.super[1] ); Append( string, global.( [ str[ pos ] ] ) ); pos:= pos + 1; Append( string, global.super[2] ); fi; fi; if pos <= len and not IsAlphaChar( str[ pos ] ) then while pos <= len do if str[ pos ] <> '_' then Add( string, str[ pos ] ); pos:= pos + 1; else pos:= pos + 1; Append( string, global.sub[1] ); while pos <= len and str[ pos ] in digits do Add( string, str[ pos ] ); pos:= pos + 1; od; Append( string, global.sub[2] ); fi; od; fi; od; return string; end; convertatoms:= function( tree ) local i, entry; for i in [ 1 .. Length( tree ) ] do entry:= tree[i]; if IsString( entry ) then tree[i]:= convertstring( tree[i] ); elif IsBound( entry.contents ) then convertatoms( entry.contents ); else convertatoms( entry.left ); convertatoms( entry.right ); fi; od; return tree; end; # Concatenate the translated parts. concatenate:= function( tree ) local result, entry, right; result:= []; for entry in tree do if IsString( entry ) then Add( result, entry ); elif IsBound( entry.contents ) then if entry.op = '(' then Add( result, Concatenation( "(", concatenate( entry.contents ), ")" ) ); elif entry.op = '[' then Add( result, Concatenation( "[", concatenate( entry.contents ), "]" ) ); elif entry.op = '{' then Add( result, Concatenation( "{", concatenate( entry.contents ), "}" ) ); fi; else if entry.op = '^' then # Deal with superscripts # (remove brackets around the superscripts if they are unique). right:= concatenate( entry.right ); if Length( right ) > 0 and right[1] = '(' and right[ Length( right ) ] = ')' and Number( right, x -> x = '(' ) = 1 then right:= right{ [ 2 .. Length( right ) - 1 ] }; fi; Add( result, Concatenation( concatenate( entry.left ), global.super[1], right, global.super[2] ) ); elif entry.op = '_' then # Deal with subscripts # (remove brackets around the subscripts if they are unique). right:= concatenate( entry.right ); if Length( right ) > 0 and ( ( right[1] = '{' and right[ Length( right ) ] = '}' and Number( right, x -> x = '{' ) = 1 ) or ( right[1] = '(' and right[ Length( right ) ] = ')' and Number( right, x -> x = '(' ) = 1 ) ) then right:= right{ [ 2 .. Length( right ) - 1 ] }; fi; Add( result, Concatenation( concatenate( entry.left ), global.sub[1], right, global.sub[2] ) ); elif entry.op = 'x' then right:= concatenate( entry.right ); if Length( right ) = 0 then Add( result, Concatenation( concatenate( entry.left ), "x" ) ); else Add( result, Concatenation( concatenate( entry.left ), global.times, concatenate( entry.right ) ) ); fi; elif entry.op = "wreath" then Add( result, Concatenation( concatenate( entry.left ), global.wreath, concatenate( entry.right ) ) ); elif entry.op = '.' then Add( result, Concatenation( concatenate( entry.left ), global.dot, concatenate( entry.right ) ) ); elif entry.op = ':' then Add( result, Concatenation( concatenate( entry.left ), global.splitdot, concatenate( entry.right ) ) ); elif entry.op = ',' then Add( result, Concatenation( concatenate( entry.left ), ", ", concatenate( entry.right ) ) ); else Error( "unexpected entry.op" ); fi; fi; od; return Concatenation( result ); end; # If consists of two group names that are combined with '" < "' # or '" -> "' then treat the parts separately. pos:= PositionSublist( name, " < " ); if pos <> fail then return Concatenation( global.outerbrackets[1], NormalizedNameOfGroup( name{ [ 1 .. pos-1 ] }, global ), " ", global.lt, " ", NormalizedNameOfGroup( name{ [ pos+3 .. Length( name ) ] }, global ), global.outerbrackets[2] ); fi; pos:= PositionSublist( name, " -> " ); if pos <> fail then return Concatenation( global.outerbrackets[1], NormalizedNameOfGroup( name{ [ 1 .. pos-1 ] }, global ), " ", global.rightarrow, " ", NormalizedNameOfGroup( name{ [ pos+4 .. Length( name ) ] }, global ), global.outerbrackets[2] ); fi; # Replace by structure information known to CTblLib. if IsBound( StructureDescriptionCharacterTableName ) then name:= ValueGlobal( "StructureDescriptionCharacterTableName" )( name ); fi; # If contains the character '/' that is not surrounded by # digit characters then just return . pos:= Position( name, '/' ); if pos <> fail and pos <> 1 and pos <> Length( name ) and not ( IsDigitChar( name[ pos-1 ] ) and IsDigitChar( name[ pos+1 ] ) ) then return ShallowCopy( name ); fi; # If name ends with 'M' or 'N' or 'N' or 'C' # then keep this suffix and normalize the part until this suffix, # *except* if 'M' stands for a Mathieu group. pos:= Length( name ); while pos > 0 and IsDigitChar( name[ pos ] ) do pos:= pos - 1; od; if pos < Length( name ) and pos > 0 and name <> "3^6:2M12" and ( name[ pos ] = 'N' or name = "M12C4" or ( name[ pos ] = 'M' and pos > 1 and not name[ pos-1 ] in ".:x" ) ) then return Concatenation( NormalizedNameOfGroup( name{ [ 1 .. pos-1 ] }, global ), name{ [ pos .. Length( name ) ] } ); fi; pos:= Length( name ) - 1; while pos > 0 and IsDigitChar( name[ pos ] ) do pos:= pos - 1; od; if pos < Length( name ) - 1 and pos > 1 and name[ pos ] in "CN" then return Concatenation( NormalizedNameOfGroup( name{ [ 1 .. pos-1 ] }, global ), name{ [ pos .. Length( name ) ] } ); fi; # Hack for a few names which contain proper subnames 'N

': # If there is an outer round bracket then recurse with its contents. result:= extractbrackets( NormalizedWhitespace( name ) ); if Length( result ) = 3 and result[1] = "" and result[3] = ".2" and IsRecord( result[2] ) and result[2].op = '(' then return Concatenation( "(", NormalizedNameOfGroup( name{ [ 2 .. Length( name ) - 3 ] }, global ), ").2" ); fi; # Now apply the translation rules. result:= concatenate( convertatoms( split( extractbrackets( NormalizedWhitespace( name ) ) ) ) ); for i in [ 1 .. 3 ] do result:= ReplacedString( result, Concatenation( ".2", String( i ), "'" ), Concatenation( ".2", String( i ), "'" ) ); od; return Concatenation( global.outerbrackets[1], result, global.outerbrackets[2] ); end; ############################################################################# ## #F HTMLStandardTable(

, , , ) ## ##
## must be 'fail' (if no table header is wanted) or a list of strings, ## its entries are turned into elements ## (with the appropriate alignments), ## ## must be a nonempty list of lists of strings, ## the rows are turned into elements, ## the entries are turned into elements ## where unbound and empty entries are represented by " " ## (with the appropriate alignments), ## ## must be a style class for the table itself, ## ## must be a list of style classes for the and elements ## (typically defining the alignments of the columns). ## HTMLStandardTable:= function( header, matrix, tblclass, colclasses ) local str, i, ncols, row; str:= Concatenation( "\n" ); ncols:= Maximum( List( matrix, Length ) ); if IsList( header ) and not IsEmpty( header ) then ncols:= Maximum( ncols, Length( header ) ); Append( str, "\n" ); for i in [ 1 .. ncols ] do if IsBound( colclasses[i] ) then Append( str, "\n" ); od; Append( str, "\n" ); fi; for row in matrix do Append( str, "\n" ); for i in [ 1 .. ncols ] do if IsBound( colclasses[i] ) then Append( str, "\n" ); od; Append( str, "\n" ); od; Append( str, "
" ); else Append( str, "" ); fi; if not IsBound( header[i] ) or IsEmpty( header[i] ) then Append( str, " " ); else Append( str, header[i] ); fi; Append( str, "
" ); else Append( str, "" ); fi; if not IsBound( row[i] ) or row[i] = "" then Append( str, " " ); else Append( str, row[i] ); fi; Append( str, "
\n" ); return str; end; ############################################################################# ## #F HTMLHeader( , , , ) ## ## For the given four strings, ## 'HTMLHeader' returns the string that prints as follows. ## ## ## ## ## ## ## ## ## <titlestring> ## ## ## ## ## ##
## ##
##

## ##

## HTMLHeader:= function( titlestring, stylesheetpath, commonheading, heading ) local str; str:= ""; # Append the document type stuff. Append( str, "\n\n" ); Append( str, "\n\n" ); Append( str, "\n" ); # Append the head part, which contains the title. Append( str, "\n" ); Append( str, "\n" ); Append( str, titlestring ); Append( str, "\n\n" ); Append( str, "\n" ); # needed to display symbols properly if IsString( stylesheetpath ) then # Support a list of style sheet paths. stylesheetpath:= [ stylesheetpath ]; fi; if IsList( stylesheetpath ) and ForAll( stylesheetpath, IsString ) then Append( str, Concatenation( List( stylesheetpath, path -> Concatenation( "\n" ) ) ) ); fi; Append( str, "\n" ); # Append the body begin, with font specifications. Append( str, "\n" ); if commonheading <> fail then Append( str, "
" ); Append( str, commonheading ); Append( str, "\n
\n" ); fi; if heading <> fail then Append( str, "

" ); Append( str, heading ); Append( str, "\n

\n" ); fi; # Return the result. return str; end; ############################################################################# ## #F HTMLFooter() ## ## Let be a string describing the current date, ## as is returned by 'CurrentDateTimeString' (which belongs to 'AtlasRep' ## and therefore cannot be used here in general). ## 'HTMLFooter' returns the string that prints as follows. ## ##
##

File created by GAP on .

## ## ## ## HTMLFooter:= function( ) local date, name, out, pos, str; # Create a string that shows the current date. # (This is done as in AtlasRep's function 'CurrentDateTimeString'.) date:= "unknown"; name:= Filename( DirectoriesSystemPrograms(), "date" ); if name <> fail then date:= ""; out:= OutputTextString( date, true ); Process( DirectoryCurrent(), name, InputTextNone(), out, [ "-u", "+%s" ] ); CloseStream( out ); # Strip the trailing newline character. Unbind( date[ Length( date ) ] ); # Transform to a format that is compatible with # 'StringDate' and 'StringTime'. date:= Int( date ); date:= Concatenation( StringDate( Int( date / 86400 ) ), ", ", StringTime( 1000 * ( date mod 86400 ) ), " UTC" ); pos:= Position( date, ',' ); if pos <> fail then date:= date{ [ 1 .. pos-1 ] }; fi; fi; str:= ""; # Append a horizontal line. Append( str, "\n
\n" ); # Append the line about the file creation. Append( str, "

" ); Append( str, MarkupGlobals.CompareMark ); Append( str, date ); Append( str, ".

\n\n" ); # Append the closing brackets. Append( str, "\n" ); Append( str, "\n" ); # Return the result. return str; end; ############################################################################# ## #F PrintToIfChanged( , ); ## ## Let be a filename, and be a string. ## If no file with name exists or if the contents of the file ## with name is different from , up to the ''last changed'' ## line, is printed to the file. ## Otherwise nothing is done. ## PrintToIfChanged := function( filename, str ) local mark, oldfile, contents, pos, diffstr, diff, out, tmpfile; mark:= MarkupGlobals.CompareMark; # Check whether the file exists in the web directory. if IsExistingFile( filename ) then # Check whether the contents of the file differs from 'str'. oldfile:= filename; contents:= AGR.StringFile( filename ); pos:= PositionSublist( contents, mark ); if pos <> fail and pos = PositionSublist( str, mark ) and contents{ [ 1 .. pos-1 ] } = str{ [ 1 .. pos-1 ] } then return Concatenation( "unchanged: ", filename ); fi; fi; # The file does not yet exist or the info has changed, # so print a new file, and produce a 'diff' string if applicable. diffstr:= ""; if IsBound( oldfile ) then diffstr:= "\n"; diff:= Filename( DirectoriesSystemPrograms(), "diff" ); if diff <> fail and IsExecutableFile( diff ) then out:= OutputTextString( diffstr, true ); SetPrintFormattingStatus( out, false ); tmpfile:= TmpName(); FileString( tmpfile, str ); Process( DirectoryCurrent(), diff, InputTextNone(), out, [ oldfile, tmpfile ] ); CloseStream( out ); RemoveFile( tmpfile ); fi; fi; if FileString( filename, str ) = fail then Error( "cannot write file '", filename, "'" ); fi; return Concatenation( "replaced: ", filename, diffstr ); end; ############################################################################# ## #E atlasrep-2.1.8/gap/test.g0000644000175000017500000050333614545274617013406 0ustar samsam############################################################################# ## #W test.g GAP 4 package AtlasRep Thomas Breuer ## ## This file contains functions to test the data available in the ## ATLAS of Group Representations or in private extensions. ## ############################################################################# ## ## <#GAPDoc Label="tests"> ## The file tst/testall.g of the package ## contains statements ## for checking whether the &AtlasRep; functions behave as documented. ## One can run these tests by calling ## ReadPackage( "AtlasRep", "tst/testall.g" ). ## The examples in the package manual form a part of the tests, ## they are collected in the file tst/docxpl.tst of the package. ##

## The remainder of this section deals with consistency checks of the data. ## The tests described in Section ## can be used ## for data from any extension of the database ## (see Chapter ), ## Section lists tests ## which apply only to the core part of the database. ##

## All these tests apply only to locally available files ## (see Section ), ## no files are downloaded during the tests. ## Thus the required space and time for running these tests ## depend on the amount of locally available data. ##

## Some of the tests compute and verify additional data, ## such as information about point stabilizers of permutation ## representations. ## In these cases, output lines starting with #E are error messages ## that point to inconsistencies, ## whereas output lines starting with #I inform about data that have ## been computed and were not yet stored, ## or about stored data that were not verified. ## These tests are experimental in the sense that they involve several ## heuristics. Depending on the data to which they are applied, ## it may happen that the tests run out of space or do not finish in ## acceptable time. Please inform the package maintainer if you run into ## such problems. ## ## ## Sanity Checks for a Table of Contents ## ## The following tests can be used to check the data that belong to a given ## part of the database (core data or extension). ## Each of these tests is given by a function with optional argument ## tocid, the identifying string that had been entered as the second ## argument of ## . ## The contents of the core part can be checked by entering "core", ## which is also the default for tocid. ## The function returns false if an error occurs, ## otherwise true. ## Currently the following tests of this kind are available. ## (For some of them, the global option TryToExtendData can be ## entered in order to try the computation of not yet stored data.) ##

## ## <#Include Label="test:AGR.Test.GroupOrders"> ## ## <#Include Label="test:AGR.Test.Words"> ## <#Include Label="test:AGR.Test.ClassScripts"> ## <#Include Label="test:AGR.Test.CycToCcls"> ## <#Include Label="test:AGR.Test.FileHeaders"> ## <#Include Label="test:AGR.Test.Files"> ## <#Include Label="test:AGR.Test.BinaryFormat"> ## <#Include Label="test:AGR.Test.Primitivity"> ## <#Include Label="test:AGR.Test.Characters"> ## <#Include Label="test:AGR.Test.StdCompatibility"> ## <#Include Label="test:AGR.Test.KernelGenerators"> ## <#Include Label="test:AGR.Test.MaxesOrders"> ## <#Include Label="test:AGR.Test.MaxesStructure"> ## <#Include Label="test:AGR.Test.MaxesStandardization"> ## <#Include Label="test:AGR.Test.CompatibleMaxes"> ## ## ## ## ## ## Other Sanity Checks ## ## The tests described in this section are intended for checking data ## that do not belong to a particular part of the &AtlasRep; database. ## Therefore all locally available data are used in these tests. ## Each of the tests is given by a function without arguments that ## returns false if a contradiction was found during the test, ## and true otherwise. ## Additionally, certain messages are printed ## when contradictions between stored and computed data are found, ## when stored data cannot be verified computationally, ## or when the computations yield improvements of the stored data. ## Currently the following tests of this kind are available. ##

## ## <#Include Label="test:AGR.Test.Standardization"> ## <#Include Label="test:AGR.Test.StdTomLib"> ## <#Include Label="test:AGR.Test.MinimalDegrees"> ## ## ## ## <#/GAPDoc> ## if not IsPackageMarkedForLoading( "TomLib", "" ) then IsStandardGeneratorsOfGroup:= "dummy"; LIBTOMKNOWN:= "dummy"; fi; if not IsPackageMarkedForLoading( "CTblLib", "" ) then ConstructionInfoCharacterTable:= "dummy"; HasConstructionInfoCharacterTable:= "dummy"; LibInfoCharacterTable:= "dummy"; StructureDescriptionCharacterTableName:= "dummy"; fi; if not IsPackageMarkedForLoading( "Recog", "" ) then InfoRecog:= "dummy"; RecogniseGroup:= "dummy"; SLPforElement:= "dummy"; NiceGens:= "dummy"; fi; ############################################################################# ## AGR.FillHoles:= function( list, default ) local i; for i in [ 1 .. Length( list ) ] do if not IsBound( list[i] ) then list[i]:= default; fi; od; return list; end; AGR.TOCLine:= function( tag, name, values, default ) return Filtered( String( [ tag, [ name, AGR.FillHoles( values, default ) ] ] ), x -> x <> ' ' ); end; ############################################################################# ## #V AGR.Test #V AGR.Test.HardCases #V AGR.Test.HardCases.MaxNumberMaxes #V AGR.Test.HardCases.MaxNumberStd #V AGR.Test.HardCases.MaxNumberVersions #V AGR.Test.MaxTestDegree ## ## 'AGR.Test' is a record whose components belong to the various tests, ## and list data which shall be omitted from the tests ## because they would be too space or time consuming. ## ## In the test loops, we assume upper bounds on the numbers of available ## maximal subgroups and standardizations, ## and we perform some tests only if a sufficiently small permutation ## representation is available. ## AGR.Test:= rec(); AGR.Test.HardCases:= rec(); AGR.Test.HardCases.MaxNumberMaxes:= 50; AGR.Test.HardCases.MaxNumberStd:= 2; AGR.Test.HardCases.MaxNumberVersions:= 3; AGR.Test.MaxTestDegree:= 10^5; #T 6.Suz.2 needs 200000 ... #T 6.Fi22.2 needs ... ############################################################################# ## #F AGR.Test.Words( [[, ]][,][] ) ## ## <#GAPDoc Label="test:AGR.Test.Words"> ## AGR.Test.Words( [tocid] ) ## ## processes the straight line programs that belong to tocid, ## using the function stored in the TestWords component of the ## data type in question. ##

## The straight line programs for the cases listed in ## AGR.Test.HardCases.TestWords are omitted. ## ## <#/GAPDoc> ## AGR.Test.HardCases.TestWords:= [ [ "find", [ "B", "HN", "S417", "F24d2" ] ], [ "check", [ "B" ] ], [ "maxes", [ "Co1" ] ], #T doable with recog? ]; AGR.Test.Words:= function( arg ) local result, maxdeg, tocid, verbose, types, toc, name, r, type, omit, entry, prg, gens, grp, size; # Initialize the result. result:= true; maxdeg:= AGR.Test.MaxTestDegree; if Length( arg ) = 0 then return AGR.Test.Words( "core", false ); elif Length( arg ) = 1 and IsBool( arg[1] ) then return AGR.Test.Words( "core", arg[1] ); elif Length( arg ) = 1 and IsString( arg[1] ) then return AGR.Test.Words( arg[1], false ); elif Length( arg ) = 2 and IsString( arg[1] ) and IsString( arg[2] ) then return AGR.Test.Words( arg[1], arg[2], false ); elif Length( arg ) = 2 and IsString( arg[1] ) and IsBool( arg[2] ) then for name in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.Words( arg[1], name[1], arg[2] ) and result; od; return result; elif not ( Length( arg ) = 3 and IsString( arg[1] ) and IsString( arg[2] ) and IsBool( arg[3] ) ) then Error( "usage: AGR.Test.Words( [[, ", "]][,][] )" ); fi; tocid:= arg[1]; verbose:= arg[3]; # Check only straight line programs. types:= AGR.DataTypes( "prg" ); name:= First( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[1] = arg[2] ); for toc in AGR.TablesOfContents( [ tocid, "local" ] ) do if IsBound( toc.( name[2] ) ) then r:= toc.( name[2] ); # Note that the ordering in the 'and' statement must not be # changed, in order to execute all tests! for type in types do omit:= First( AGR.Test.HardCases.TestWords, pair -> pair[1] = type[1] ); if IsBound( r.( type[1] ) ) then if IsList( omit ) and name[2] in omit[2] then if verbose then Print( "#I AGR.Test.Words:\n", "#I omit TestWords for ", type[1], " and ", name[2], "\n" ); fi; else for entry in r.( type[1] ) do result:= type[2].TestWords( tocid, name[2], entry[ Length( entry ) ], type, verbose ) and result; od; fi; fi; od; # Check also those 'maxext' scripts (which do not form a data type) # that belong to the given t.o.c. r:= name[3]; if IsBound( r.maxext ) then for entry in Filtered( r.maxext, l -> l[4] = tocid ) do prg:= AtlasProgram( name[1], entry[1], "maxes", entry[2] ); if prg = fail then if verbose then Print( "#E AGR.Test.Words:\n", "#E cannot verify 'maxext' entry '", entry[3], "'\n" ); result:= false; fi; elif not IsInternallyConsistent( prg.program ) then Print( "#E AGR.Test.Words:\n", "#E program '", entry[3], "' not internally consistent\n" ); result:= false; else # Get a representation if available, and map the generators. gens:= OneAtlasGeneratingSetInfo( prg.groupname, prg.standardization, NrMovedPoints, [ 2 .. maxdeg ], "contents", [ tocid, "local" ] ); if gens = fail then if verbose then Print( "#I AGR.Test.Words:\n", "#I no perm. repres. for '", prg.groupname, "', no check for '", entry[3], "'\n" ); fi; else gens:= AtlasGenerators( gens ); grp:= Group( gens.generators ); if IsBound( gens.size ) then SetSize( grp, gens.size ); fi; gens:= ResultOfStraightLineProgram( prg.program, gens.generators ); size:= Size( SubgroupNC( grp, gens ) ); #T use the recog package for larger cases! if IsBound( prg.size ) then if size <> prg.size then Print( "#E AGR.Test.Words:\n", "#E program '", entry[3], "' for group of order ", size, " not ", prg.size, "\n" ); result:= false; fi; else Print( "#I AGR.Test.Words:\n", "#I add size ", size, " for program '", entry[3], "'\n" ); fi; fi; fi; od; fi; fi; od; # Return the result. return result; end; ############################################################################# ## #F AGR.Test.FileHeaders( [[,]] ) ## ## <#GAPDoc Label="test:AGR.Test.FileHeaders"> ## AGR.Test.FileHeaders( [tocid] ) ## ## checks whether the &MeatAxe; text files that belong to tocid ## have a header line that is consistent with the filename, ## and whether the contents of all &GAP; format data files that belong to ## tocid is consistent with the filename. ## ## <#/GAPDoc> ## AGR.Test.FileHeaders:= function( arg ) local result, name, toc, record, type, entry, test; # Initialize the result. result:= true; if Length( arg ) = 2 then name:= First( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[1] = arg[2] ); for toc in AGR.TablesOfContents( [ arg[1], "local" ] ) do if IsBound( toc.( name[2] ) ) then record:= toc.( name[2] ); for type in AGR.DataTypes( "rep" ) do if IsBound( record.( type[1] ) ) then for entry in record.( type[1] ) do test:= type[2].TestFileHeaders( arg[1], arg[2], entry, type ); if not IsBool( test ) then Print( "#E AGR.Test.FileHeaders:\n", "#E ", test, " for ", entry[ Length( entry ) ], "\n" ); test:= false; fi; result:= test and result; od; fi; od; fi; od; elif Length( arg ) = 1 then for entry in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.FileHeaders( arg[1], entry[1] ) and result; od; elif Length( arg ) = 0 then result:= AGR.Test.FileHeaders( "core" ); fi; # Return the result. return result; end; ############################################################################# ## #F AGR.Test.BinaryFormat( [] ) ## ## <#GAPDoc Label="test:AGR.Test.BinaryFormat"> ## AGR.Test.BinaryFormat( [tocid] ) ## ## checks whether all &MeatAxe; text files that belong to tocid ## satisfy that applying first and ## then yields the same object. ## ## <#/GAPDoc> ## AGR.Test.BinaryFormat:= function( arg ) local tmpfile, tocid, result, r, gens, gen, test, cnv; # Create one temporary file. tmpfile:= Filename( DirectoryTemporary(), "testfile" ); # Get the data directory. if IsEmpty( arg ) then tocid:= [ "core", "local" ]; else tocid:= arg[1]; fi; result:= true; for r in Concatenation( AllAtlasGeneratingSetInfos( "contents", tocid, IsPermGroup, true ), AllAtlasGeneratingSetInfos( "contents", tocid, Characteristic, IsPosInt ) ) do gens:= AtlasGenerators( r ); if gens <> fail then gens:= gens.generators; for gen in gens do test:= false; if IsPerm( gen ) then CMtxBinaryFFMatOrPerm( gen, LargestMovedPoint( gen ), tmpfile ); test:= true; elif IsMatrix( gen ) then cnv:= ConvertToMatrixRep( gen ); if IsInt( cnv ) then CMtxBinaryFFMatOrPerm( gen, cnv, tmpfile ); test:= true; fi; else Print( "#E AGR.Test.BinaryFormat:\n", "#E not permutation or matrix for '", r, "'\n" ); result:= false; fi; if test and gen <> FFMatOrPermCMtxBinary( tmpfile ) then Print( "#E AGR.Test.BinaryFormat:\n", "#E differences for '", r, "'\n" ); result:= false; fi; od; fi; od; # Remove the temporary file. RemoveFile( tmpfile ); # Return the result. return result; end; ############################################################################# ## #F AGR.Test.Standardization( [] ) ## ## <#GAPDoc Label="test:AGR.Test.Standardization"> ## AGR.Test.Standardization() ## ## checks whether all generating sets corresponding to the same set of ## standard generators have the same element orders; for the case that ## straight line programs for computing certain class representatives are ## available, also the orders of these representatives are checked ## w. r. t. all generating sets. ## ## <#/GAPDoc> ## AGR.Test.Standardization:= function( arg ) local result, name, gapname, gensorders, cclorders, cycorders, tbl, info, gens, std, ords, pair, prg, names, choice; # Initialize the result. result:= true; if Length( arg ) = 0 then for name in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.Standardization( name[1] ) and result; od; elif Length( arg ) = 1 and IsString( arg[1] ) then gapname:= arg[1]; if AGR.InfoForName( gapname ) = fail then Print( "#E AGR.Test.Standardization:\n", "#E no group with GAP name '", gapname, "'\n" ); return false; fi; gensorders:= []; cclorders:= []; cycorders:= []; tbl:= CharacterTable( gapname ); # Loop over the relevant representations. for info in AllAtlasGeneratingSetInfos( gapname, "contents", "local" ) do gens:= AtlasGenerators( info.identifier ); std:= gens.standardization; # Check that the generators are invertible, # and that the orders are equal in all representations. if ForAll( gens.generators, x -> Inverse( x ) <> fail ) then ords:= List( gens.generators, Order ); else ords:= [ fail ]; fi; if not ForAll( ords, IsInt ) then Print( "#E AGR.Test.Standardization:\n", "#E representation '", gens.identifier[2], "': non-finite order\n" ); result:= false; elif IsBound( gensorders[ std+1 ] ) then if gensorders[ std+1 ] <> ords then Print( "#E AGR.Test.Standardization:\n", "#E '", gapname, "': representation '", gens.identifier[2], "':\n", "#E incompatible generator orders ", ords, " and ", gensorders[ std+1 ], "\n" ); result:= false; fi; else gensorders[ std+1 ]:= ords; fi; # If scripts for computing representatives of cyclic subgroups # or representatives of conjugacy classes are available # then check that their orders are equal in all representations. for pair in [ [ cclorders, "classes" ], [ cycorders, "cyclic" ] ] do if not IsBound( pair[1][ std+1 ] ) then prg:= AtlasProgram( gapname, std, pair[2] ); if prg = fail then pair[1][ std+1 ]:= fail; else pair[1][ std+1 ]:= [ prg.program, List( ResultOfStraightLineProgram( prg.program, gens.generators ), Order ) ]; if tbl <> fail then names:= AtlasClassNames( tbl ); if IsBound( prg.outputs ) then choice:= List( prg.outputs, x -> Position( names, x ) ); if ( not fail in choice ) and pair[1][ std+1 ][2] <> OrdersClassRepresentatives( tbl ){ choice } then Print( "#E AGR.Test.Standardization:\n", "#E '", gapname, "': representation '", gens.identifier[2], "':\n", "#E ", pair[2], " orders differ from character table\n" ); result:= false; fi; else Print( "#E no component 'outputs' in '", pair[2], "' for '", gapname, "'\n" ); fi; fi; fi; elif pair[1][ std+1 ] <> fail then if pair[1][ std+1 ][2] <> List( ResultOfStraightLineProgram( pair[1][ std+1 ][1], gens.generators ), Order ) then Print( "#E AGR.Test.Standardization:\n", "#E '", gapname, "': representation '", gens.identifier[2], "':\n", "#E incompatible ", pair[2], " orders\n" ); result:= false; fi; fi; od; od; fi; # Return the result. return result; end; ############################################################################# ## #F AGR.Test.StdTomLib( [] ) ## ## <#GAPDoc Label="test:AGR.Test.StdTomLib"> ## AGR.Test.StdTomLib() ## ## checks whether the standard generators are compatible with those that ## occur in the TomLib package. ## ## <#/GAPDoc> ## AGR.Test.StdTomLib:= function( arg ) local result, name, tomnames, tbl, tom, gapname, info, allgens, stdavail, verified, falsified, G, i, iinfo, type, prg, res, gens, G2, fitstotom, fitstohom; if not IsPackageMarkedForLoading( "TomLib", "1.0" ) then Print( "#E AGR.Test.StdTomLib:\n", "#E TomLib not loaded, cannot verify ATLAS standardizations\n" ); return false; fi; # Initialize the result. result:= true; if Length( arg ) = 0 then for name in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.StdTomLib( name[1] ) and result; od; # Check also that all tables of marks which provide standardization # information really belong to ATLAS groups. tomnames:= Set( List( Filtered( LIBTOMKNOWN.STDGEN, x -> x[2] <> "N" ), x -> x[1] ) ); for name in AtlasOfGroupRepresentationsInfo.GAPnames do tbl:= CharacterTable( name[1] ); if tbl <> fail then tom:= TableOfMarks( tbl ); if tom <> fail then RemoveSet( tomnames, Identifier( tom ) ); fi; fi; od; if not IsEmpty( tomnames ) then Print( "#E AGR.Test.StdTomLib:\n", "#E cannot verify ATLAS standardizations for tables of ", "marks in\n", "#E ", tomnames, "\n" ); result:= false; fi; elif Length( arg ) = 1 and IsString( arg[1] ) then gapname:= arg[1]; if AGR.InfoForName( gapname ) = fail then Print( "#E AGR.Test.StdTomLib:\n", "#E no group with GAP name '", gapname, "'\n" ); return false; fi; tbl:= CharacterTable( gapname ); # Check the ATLAS standardization against the TomLib standardization. # (We consider only ATLAS permutation representations.) if tbl = fail then tom:= fail; else tom:= TableOfMarks( tbl ); fi; if tom <> fail then # The table of marks is available, # which implies that the TomLib package is loaded. # Thus '(Has)StandardGeneratorsInfo' is bound. # (But avoid a syntax error message when reading the file # in the case that TomLib is not available.) if ValueGlobal( "HasStandardGeneratorsInfo" )( tom ) then info:= ValueGlobal( "StandardGeneratorsInfo" )( tom ); else info:= []; fi; allgens:= AllAtlasGeneratingSetInfos( gapname, IsPermGroup, true, "contents", "local" ); stdavail:= Set( List( allgens, x -> x.standardization ) ); if not IsSubset( stdavail, Set( List( info, r -> r.standardization ) ) ) then Print( "#E AGR.Test.StdTomLib:\n", "#E strange standardization info ", " for table of marks of ", gapname, "\n" ); result:= false; fi; if not IsSubset( Set( List( info, r -> r.standardization ) ), stdavail ) then Print( "#I AGR.Test.StdTomLib:\n", "#I extend STDGEN info for ", gapname, "\n" ); fi; allgens:= List( stdavail, i -> First( allgens, x -> x.standardization = i ) ); verified:= []; falsified:= []; G:= UnderlyingGroup( tom ); for i in Union( stdavail, List( info, r -> r.standardization ) ) do # 1. Apply AtlasRep checks (using 'pres' and 'check' scripts) # to the TomLib generators. iinfo:= First( info, r -> IsBound( r.standardization ) and r.standardization = i ); if i in stdavail then for type in [ "pres", "check" ] do prg:= AtlasProgram( gapname, i, type ); if prg <> fail then res:= ResultOfStraightLineDecision( prg.program, GeneratorsOfGroup( G ) ); if res = true then AddSet( verified, i ); if iinfo = fail then Print( "#I AGR.Test.StdTomLib:\n", "#I ", gapname, ": extend TomLib standardization info, ", "we have standardization = ", i, "\n" ); elif ForAny( info, r -> IsBound( r.standardization ) and r.standardization <> i ) then Print( "#E AGR.Test.StdTomLib:\n", "#E ", gapname, ": different TomLib standardizations (", i, " verified)?\n" ); result:= false; fi; else AddSet( falsified, i ); if iinfo <> fail then Print( "#E AGR.Test.StdTomLib:\n", "#E ", gapname, ": TomLib standardization info is not ", i, "\n" ); result:= false; fi; fi; fi; od; fi; # 2. Apply TomLib checks to the Atlas generators # (permutations only). if iinfo.script = fail then Print( "#E AGR.Test.StdTomLib:\n", "#E ", gapname, ": script component 'fail' in TomLib standardization\n" ); else # Compare the available ATLAS generators # with this TomLib standardization. for gens in allgens do gens:= AtlasGenerators( gens.identifier ); G2:= Group( gens.generators ); fitstotom:= IsStandardGeneratorsOfGroup( info, G2, gens.generators ); fitstohom:= GroupHomomorphismByImages( G, G2, GeneratorsOfGroup( G ), gens.generators ) <> fail; if fitstotom <> fitstohom then Print( "#E AGR.Test.StdTomLib:\n", "#E ", gapname, ": IsStandardGeneratorsOfGroup and ", "homom. construction for standardization ", gens.standardization, " inconsistent\n" ); fi; if fitstotom then AddSet( verified, gens.standardization ); if IsBound( info.standardization ) then if info.standardization <> gens.standardization then Print( "#I AGR.Test.StdTomLib:\n", "#I ", gapname, ": TomLib standardization is ", gens.standardization, " not ", info.standardization, "\n" ); result:= false; fi; else Print( "#I AGR.Test.StdTomLib:\n", "#I ", gapname, ": TomLib standardization is ", gens.standardization, "\n" ); fi; else AddSet( falsified, gens.standardization ); if IsBound( info.standardization ) and info.standardization = gens.standardization then Print( "#E AGR.Test.StdTomLib:\n", "#E ", gapname, ": TomLib standardization is not ", info.standardization, "\n" ); fi; fi; od; fi; od; # Now 'verified' and 'falsified' are the lists of standardizations # that hold or do not hold, respectively, for the generators of 'G'. if IsEmpty( info ) then Print( "#I AGR.Test.StdTomLib:\n", "#I ", gapname, ": add TomLib info!\n" ); fi; if IsSubset( falsified, stdavail ) and ForAny( info, r -> r.ATLAS <> false ) then Print( "#E AGR.Test.StdTomLib:\n", "#E ", gapname, ": TomLib standardization info must be ATLAS = \"N\"\n" ); fi; if ( not IsSubset( falsified, stdavail ) ) and ForAny( info, r -> r.ATLAS = false ) then Print( "#E AGR.Test.StdTomLib:\n", "#E ", gapname, ": cannot verify TomLib info ATLAS = \"N\"\n" ); fi; fi; fi; # Return the result. return result; end; ############################################################################# ## #F AGR.Test.Files( [[, ]] ) ## ## <#GAPDoc Label="test:AGR.Test.Files"> ## AGR.Test.Files( [tocid] ) ## ## checks whether the &MeatAxe; text files that belong to tocid ## can be read with such that the result ## is not fail. ## The function does not check whether the first line of a &MeatAxe; text ## file is consistent with the filename, since this can be tested with ## AGR.Test.FileHeaders. ## ## <#/GAPDoc> ## AGR.Test.Files:= function( arg ) local result, entry, name, toc, record, type; # Initialize the result. result:= true; if IsEmpty( arg ) then result:= AGR.Test.Files( "core" ); elif Length( arg ) = 1 then for entry in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.Files( arg[1], entry[1] ) and result; od; elif Length( arg ) = 2 then name:= First( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[1] = arg[2] ); if name = fail then return result; fi; name:= name[2]; for toc in AGR.TablesOfContents( [ arg[1], "local" ] ) do if IsBound( toc.( name ) ) then record:= toc.( name ); for type in AGR.DataTypes( "rep" ) do if IsBound( record.( type[1] ) ) then for entry in record.( type[1] ) do result:= type[2].TestFiles( arg[1], name, entry, type ) and result; od; fi; od; fi; od; fi; # Return the result. return result; end; ############################################################################# ## #F AGR.Test.ClassScripts( [[, ]] ) ## ## <#GAPDoc Label="test:AGR.Test.ClassScripts"> ## AGR.Test.ClassScripts( [tocid] ) ## ## checks whether the straight line programs that belong to tocid ## and that compute representatives of certain conjugacy classes ## are consistent with information stored on the &GAP; character table ## of the group in question, in the sense that ## the given class names really occur in the character table and that ## the element orders and centralizer orders for the classes are correct. ## ## <#/GAPDoc> ## AGR.Test.ClassScripts:= function( arg ) local result, maxdeg, entry, tocid, gapname, groupname, toc, record, std, name, prg, tbl, outputs, ident, classnames, map, gens, roots, grp, reps, orders1, orders2, cents1, cents2, cycscript; # Initialize the result. result:= true; maxdeg:= AGR.Test.MaxTestDegree; if IsEmpty( arg ) then return AGR.Test.ClassScripts( "core" ); elif Length( arg ) = 1 and IsString( arg[1] ) then # The argument is an identifier of an extension. for entry in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.ClassScripts( arg[1], entry[1] ) and result; od; return result; elif Length( arg ) = 2 and IsString( arg[1] ) and IsString( arg[2] ) then # The arguments are an identifier and a group name. tocid:= arg[1]; gapname:= arg[2]; else Error( "usage: AGR.Test.ClassScripts( [[, ]] )" ); fi; groupname:= First( AtlasOfGroupRepresentationsInfo.GAPnames, pair -> pair[1] = gapname ); if groupname = fail then Print( "#E AGR.Test.ClassScripts:\n", "#E no group with name '", gapname, "'\n" ); return false; fi; groupname:= groupname[2]; for toc in AGR.TablesOfContents( [ tocid, "local" ] ) do if IsBound( toc.( groupname ) ) then record:= toc.( groupname ); for name in [ "cyclic", "classes", "cyc2ccl" ] do if IsBound( record.( name ) ) then for std in Set( List( record.( name ), x -> x[1] ) ) do prg:= AtlasProgram( gapname, std, name ); if prg = fail then Print( "#E AGR.Test.ClassScripts:\n", "#E inconsistent program '", name, "' for '", gapname, "'\n" ); result:= false; else # Fetch the character table of the group. # (No further tests are possible if it is not available.) tbl:= CharacterTable( gapname ); if tbl <> fail then ident:= prg.identifier[2]; classnames:= AtlasClassNames( tbl ); if classnames <> fail then if IsBound( prg.outputs ) then outputs:= prg.outputs; map:= List( outputs, x -> Position( classnames, x ) ); else Print( "#E AGR.Test.ClassScripts:\n", "#E no component 'outputs' in '", name, "' for '", gapname, "'\n" ); result:= false; outputs:= [ "-" ]; map:= [ fail ]; fi; prg:= prg.program; # (If '-' signs occur then we cannot test the names, # but the number of outputs can be checked.) roots:= ClassRoots( tbl ); roots:= Filtered( [ 1 .. Length( roots ) ], i -> IsEmpty( roots[i] ) ); roots:= Set( List( roots, x -> ClassOrbit( tbl, x ) ) ); if ForAll( outputs, x -> not '-' in x ) then # Check the class names. if fail in map then Print( "#E AGR.Test.ClassScripts:\n", "#E strange class names ", Difference( outputs, classnames ), " for program ", ident, "\n" ); result:= false; fi; if name in [ "classes", "cyc2ccl" ] and Set( classnames ) <> Set( outputs ) then Print( "#E AGR.Test.ClassScripts:\n", "#E class names ", Difference( classnames, outputs ), " not hit for program ", ident, "\n" ); result:= false; fi; if name = "cyclic" then # Check whether all maximally cyclic subgroups # are covered. roots:= Filtered( roots, list -> IsEmpty( Intersection( outputs, classnames{ list } ) ) ); if not IsEmpty( roots ) then Print( "#E AGR.Test.ClassScripts:\n", "#E maximally cyclic subgroups ", List( roots, x -> classnames{ x } ), " not hit for program ", ident, "\n" ); result:= false; fi; fi; elif name = "cyclic" and Length( outputs ) <> Length( roots ) and not ForAny( outputs, x -> '-' in x ) then # The programs 'F23G1-cycW1' and 'F24G1-cycW1' # specify some elements only up to Galois conjugacy. Print( "#E AGR.Test.ClassScripts:\n", "#E no. of outputs and cyclic subgroups differ", " for program '", ident, "'\n" ); result:= false; fi; if not fail in map then # Compute the representatives in a representation. # (No further tests are possible if none is available.) gens:= OneAtlasGeneratingSetInfo( gapname, std, NrMovedPoints, [ 2 .. maxdeg ], "contents", [ tocid, "local" ] ); if gens <> fail then gens:= AtlasGenerators( gens.identifier ); if gens <> fail then gens:= gens.generators; fi; if fail in gens then gens:= fail; fi; if not name in [ "cyclic", "classes" ] then # The input consists of the images of the standard # generators under the 'cyc' script (which may belong # to a different t.o.c.). cycscript:= AtlasProgram( gapname, std, "cyclic", "version", AGR.VersionOfSLP( ident )[1], "contents", [ tocid, "local" ] ); if cycscript = fail then gens:= fail; Print( "#E AGR.Test.ClassScripts:\n", "#E no script for computing the 'cyc' ", "part of '", ident, "' available\n" ); result:= false; elif gens <> fail then gens:= ResultOfStraightLineProgram( cycscript.program, gens ); fi; fi; fi; if gens <> fail then grp:= Group( gens ); reps:= ResultOfStraightLineProgram( prg, gens ); if Length( reps ) <> Length( outputs ) then Print( "#E AGR.Test.ClassScripts:\n", "#E inconsistent output numbers for ", "program ", ident, "\n" ); result:= false; else # Check element orders and centralizer orders. orders1:= OrdersClassRepresentatives( tbl ){ map }; orders2:= List( reps, Order ); if orders1 <> orders2 then Print( "#E AGR.Test.ClassScripts:\n", "#E element orders of ", outputs{ Filtered( [ 1 .. Length( outputs ) ], i -> orders1[i] <> orders2[i] ) }, " differ for program ", ident, "\n" ); result:= false; fi; cents1:= SizesCentralizers( tbl ){ map }; cents2:= List( reps, x -> Size( Centralizer(grp,x) ) ); if cents1 <> cents2 then Print( "#E AGR.Test.ClassScripts:\n", "#E centralizer orders of ", outputs{ Filtered( [ 1 .. Length( outputs ) ], i -> cents1[i] <> cents2[i] ) }, " differ for program ", ident, "\n" ); result:= false; fi; fi; fi; fi; fi; fi; fi; od; fi; od; fi; od; # Return the result. return result; end; ############################################################################# ## #F AGR.Test.CycToCcls( [[, ]] ) ## ## <#GAPDoc Label="test:AGR.Test.CycToCcls"> ## AGR.Test.CycToCcls( [tocid][:TryToExtendData] ) ## ## checks whether all straight line programs that belong to tocid ## and that compute class representatives from representatives of cyclic ## subgroups possess a corresponding straight line program ## (anywhere in the database) ## for computing representatives of cyclic subgroups. ## ## <#/GAPDoc> ## ## if the extend option is set then: ## checks whether some straight line program that computes representatives ## of conjugacy classes of a group can be computed from the ordinary ## &GAP; character table of that group and a straight line program in ## tocid that computes representatives of cyclic subgroups. ## In this case the missing scripts are printed. ## AGR.Test.CycToCcls:= function( arg ) local result, triple, tocid, groupname, gapname, toc, record, entry, versions, prg, tbl, version, str; # Initialize the result. result:= true; if IsEmpty( arg ) then return AGR.Test.CycToCcls( "core" ); elif Length( arg ) = 1 and IsString( arg[1] ) then # The argument is an identifier of an extension. for entry in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.CycToCcls( arg[1], entry[1] ) and result; od; return result; elif Length( arg ) = 2 and IsString( arg[1] ) and IsString( arg[2] ) then # The arguments are an identifier and a group name. tocid:= arg[1]; gapname:= arg[2]; else Error( "usage: AGR.Test.CycToCcls( [[, ]] )" ); fi; groupname:= First( AtlasOfGroupRepresentationsInfo.GAPnames, pair -> pair[1] = gapname ); if groupname = fail then Print( "#E AGR.Test.CycToCcls:\n", "#E no group with name '", gapname, "'\n" ); return false; fi; groupname:= groupname[2]; for toc in AGR.TablesOfContents( tocid ) do if not IsBound( toc.( groupname ) ) then return true; fi; record:= toc.( groupname ); # Run over the 'cyc2ccl' scripts that are available in this t.o.c, # and check whether *some t.o.c.* provides the corresponding 'cyc' script. if IsBound( record.cyc2ccl ) then for entry in record.cyc2ccl do versions:= AGR.VersionOfSLP( entry[2] ); prg:= AtlasProgramInfo( gapname, "cyclic", "version", versions[1] ); if prg = fail then Print( "#E AGR.Test.CycToCcls:\n", "#E no program '\"", ReplacedString( entry[2]{ [ 1 .. Position( entry[2], '-' )-1 ] }, "cyc", "-cyc" ), "\"' available\n" ); result:= false; fi; od; fi; if ValueOption( "TryToExtendData" ) <> true then return result; fi; # Check whether the current t.o.c. contains a 'cyc' script for which # no 'cyc2ccl' script is available in *any t.o.c.* but for which such a # script can be computed. # (This is possible only if we have the character table of the group.) tbl:= CharacterTable( gapname ); if tbl <> fail and IsBound( record.cyclic ) then for entry in record.cyclic do version:= AGR.VersionOfSLP( entry[2] ); prg:= AtlasProgram( gapname, "cyc2ccl", version, "contents", "local" ); if prg = fail then # There is no 'cyc2ccl' script but perhaps we can create it. prg:= AtlasProgram( gapname, "cyclic", version, "contents", "local" ); if prg = fail then Print( "#E AGR.Test.CycToCcls:\n", "#E cannot access program '\"", entry[2], "\"\n" ); result:= false; else str:= StringOfAtlasProgramCycToCcls( AtlasStringOfProgram( prg.program, prg.outputs ), tbl, "names" ); if str <> fail then prg:= ScanStraightLineProgram( str, "string" ); if prg = fail then Print( "#E AGR.Test.CycToCcls:\n", "#E automatically created cyc2ccl script for '", entry[2], "' would be incorrect" ); result:= false; else prg:= prg.program; Print( "#I AGR.Test.CycToCcls:\n", "#I add the following script, in the new file '", ReplacedString( entry[2], "-", "" ), "-cclsW1':\n", str, "\n" ); fi; fi; fi; fi; od; fi; od; # Return the result. return result; end; ############################################################################# ## #F AGR.Test.GroupOrders( [true] ) ## ## <#GAPDoc Label="test:AGR.Test.GroupOrders"> ## AGR.Test.GroupOrders() ## ## checks whether the group orders stored in the GAPnames component ## of coincide with the ## group orders computed from an &ATLAS; permutation representation of ## degree up to AGR.Test.MaxTestDegree, ## from the available character table or table of marks with the given name, ## or from the structure of the name, ## in the sense that splitting the name at the first dot (.) or ## colon (:) and applying the same criteria to derive the group ## order from the two parts may yield enough information. ## ## <#/GAPDoc> ## AGR.SizeExceptional2E6:= q -> q^36*(q^12-1)*(q^9+1)*(q^8-1)*(q^6-1)* (q^5+1)*(q^2-1) / Gcd( 3, q+1 ); AGR.SizeExceptionalE:= function( n, q ) local data; if n = 6 then data:= [ 36, [ 12, 9, 8, 6, 5, 2 ], Gcd( 3, q-1 ) ]; elif n = 7 then data:= [ 63, [ 18, 14, 12, 10, 8, 6, 2 ], Gcd( 2, q-1 ) ]; elif n = 8 then data:= [ 120, [ 30, 24, 20, 18, 14, 12, 8, 2 ], 1 ]; else Error( " must be one of 6, 7, 8" ); fi; return q^data[1] * Product( List( data[2], i -> q^i - 1 ) ) / data[3]; end; AGR.Test.GroupOrders:= function( arg ) local verbose, formats, maxdeg, HasRemovableOuterBrackets, SizesFromName, result, entry, size; verbose:= ( Length( arg ) <> 0 and arg[1] = true ); formats:= [ [ [ "L", IsDigitChar, "(", IsDigitChar, ")" ], l -> Size( PSL( l[2], l[4] ) ) ], [ [ "2.L", IsDigitChar, "(", IsDigitChar, ")" ], l -> 2 * Size( PSL( l[2], l[4] ) ) ], [ [ "S", IsDigitChar, "(", IsDigitChar, ")" ], l -> Size( PSp( l[2], l[4] ) ) ], [ [ "2.S", IsDigitChar, "(", IsDigitChar, ")" ], l -> 2 * Size( PSp( l[2], l[4] ) ) ], [ [ "U", IsDigitChar, "(", IsDigitChar, ")" ], l -> Size( PSU( l[2], l[4] ) ) ], [ [ "E", IsDigitChar, "(", IsDigitChar, ")" ], l -> AGR.SizeExceptionalE( l[2], l[4] ) ], [ [ "2E6(", IsDigitChar, ")" ], l -> AGR.SizeExceptional2E6( l[2] ) ], ]; maxdeg:= AGR.Test.MaxTestDegree; HasRemovableOuterBrackets:= function( name ) local len, open, i; len:= Length( name ); if Length( name ) < 2 or name[1] <> '(' or name[ len ] <> ')' then return false; fi; open:= 0; for i in [ 1 .. len-1 ] do if name[i] = '(' then open:= open + 1; elif name[i] = ')' then open:= open - 1; fi; if open = 0 then return false; fi; od; return true; end; SizesFromName:= function( name ) local result, pair, parse, tbl, tom, data, splitchar, pos, name1, name2, size1, size2; result:= []; # Strip outer brackets. while HasRemovableOuterBrackets( name ) do name:= name{ [ 2 .. Length( name ) - 1 ] }; od; # Deal with the case of integers. if ForAll( name, x -> IsDigitChar( x ) or x in "^()" ) then # No other criterion matches with this format, so we return. return [ EvalString( name ) ]; fi; #T perhaps improve: admit also '+' and '-' #T if ForAll( name, x -> IsDigitChar( x ) or x in "^()+-" ) then #T Print( "name not yet handled: ", name, "\n" ); #T fi; for pair in formats do parse:= ParseBackwards( name, pair[1] ); if parse <> fail then AddSet( result, pair[2]( parse ) ); fi; od; # Try to use the character table information. tbl:= CharacterTable( name ); if tbl <> fail then AddSet( result, Size( tbl ) ); fi; # Try to use the table of marks information. tom:= TableOfMarks( name ); if tom <> fail then AddSet( result, Size( UnderlyingGroup( tom ) ) ); fi; # Try to use the (locally available) database, # but only permutation representations up to degree 'maxdeg'. data:= OneAtlasGeneratingSetInfo( name, NrMovedPoints, [ 1 .. maxdeg ], "contents", "local" ); if data <> fail then data:= AtlasGenerators( data ); if data <> fail then AddSet( result, Size( Group( data.generators ) ) ); fi; fi; # Try to evaluate the name structure. for splitchar in ".:" do pos:= Position( name, splitchar ); while pos <> fail do name1:= name{ [ 1 .. pos-1 ] }; name2:= name{ [ pos+1 .. Length( name ) ] }; if Length( Positions( name1, '(' ) ) = Length( Positions( name1, ')' ) ) then size1:= SizesFromName( name1 ); size2:= SizesFromName( name2 ); if Length( size1 ) = 1 and Length( size2 ) = 1 then AddSet( result, size1[1] * size2[1] ); elif Length( size1 ) > 1 or Length( size2 ) > 1 then Print( "#E AGR.Test.GroupOrders:\n", "#E group orders: problem with '", name, "'\n" ); UniteSet( result, Concatenation( List( size1, x -> x * size2 ) ) ); fi; fi; pos:= Position( name, splitchar, pos ); od; od; return result; end; result:= true; for entry in AtlasOfGroupRepresentationsInfo.GAPnames do size:= SizesFromName( entry[1] ); if 1 < Length( size ) then Print( "#E AGR.Test.GroupOrders:\n", "#E several group orders for '", entry[1], "':\n#E ", size, "\n" ); result:= false; elif not IsBound( entry[3].size ) then if Length( size ) = 0 then if verbose then Print( "#I AGR.Test.GroupOrders:\n", "#I group order for '", entry[1], "' unknown\n" ); fi; else entry[3].size:= size[1]; Print( "#I AGR.Test.GroupOrders:\n", "#I set group order for '", entry[1], "'\n", "[\"GRS\",[\"", entry[1], "\",", size[1], "]],\n" ); fi; elif Length( size ) = 0 then if verbose then Print( "#I AGR.Test.GroupOrders:\n", "#I cannot verify group order for '", entry[1], "'\n" ); fi; elif size[1] <> entry[3].size then Print( "#E AGR.Test.GroupOrders:\n", "#E wrong group order for '", entry[1], "'\n" ); result:= false; fi; od; return result; end; ############################################################################# ## #F AGR.IsFactorFusionWhoseImageHasSameMaxes( , ) ## ## Let tbl be the character table of a group G, say, ## and factfus be a factor fusion record from tbl. ## Let F denote the factor group of G whose character table ## is given by factfus.name. ## If we can show that the maximal subgroups of F are exactly the ## images of the maximal subgroups of G under the epimorphism from ## G to F then this function returns true, ## otherwise fail. ##

## The function is used to deduce the orders of maximal subgroups from those ## of suitable factor groups. ##

## The following idea is applied: ## If K is a normal subgroup in G such that K ## is contained in the Frattini subgroup \Phi(G) of G ## (i. e., contained in any maximal subgroup of G) ## then the maximal subgroups of G are exactly the preimages of the ## maximal subgroups of G/K under the natural epimorphism. ##

## This situation occurs in the following cases. ## ## ## If G is perfect then Z(G) is contained in \Phi(G) ## because G' \cap Z(G) \leq \Phi(G) holds, ## by . ## For example, the orders of the maximal subgroups of 3.A_6 are ## the orders of the maximal subgroups of A_6, ## multiplied by the factor three. ## ## ## If G is an upward extension of a perfect group N ## then Z(N) is contained in \Phi(N), ## and since \Phi(N) \leq \Phi(G) holds for any normal subgroup ## N of G ## (see ), ## we get that Z(N) is contained in \Phi(G). ## For example the orders of the maximal subgroups of 3.A_6.2_1 are ## the orders of the maximal subgroups of A_6.2_1, ## multiplied by the factor three. ## ## ## AGR.IsFactorFusionWhoseImageHasSameMaxes:= function( tbl, factfus ) local ker, nam, subtbl, subfus, subker; # Compute the kernel K of the epimorphism. ker:= ClassPositionsOfKernel( factfus.map ); if Length( ker ) = 1 then # This is not a factor fusion. return fail; elif not IsSubset( ClassPositionsOfDerivedSubgroup( tbl ), ker ) then # We have no criterion for this case. return fail; elif IsSubset( ClassPositionsOfCentre( tbl ), ker ) then # We have K \leq G' \cap Z(G), # so the maximal subgroups are exactly the preimages of the # maximal subgroups in the factor group. return true; fi; # Look for a suitable normal subgroup N of G. for nam in NamesOfFusionSources( tbl ) do subtbl:= CharacterTable( nam ); if subtbl <> fail then subfus:= GetFusionMap( subtbl, tbl ); if Size( subtbl ) = Sum( SizesConjugacyClasses( tbl ){ Set( subfus ) } ) and IsSubset( subfus, ker ) then # N is normal in G, with K \leq N subker:= Filtered( [ 1 .. Length( subfus ) ], i -> subfus[i] in ker ); if IsSubset( ClassPositionsOfDerivedSubgroup( subtbl ), subker ) and IsSubset( ClassPositionsOfCentre( subtbl ), subker ) then # We have K \leq N' \cap Z(N). return true; fi; fi; fi; od; return fail; end; ############################################################################# ## #F AGR.Test.MaxesOrders( [,[ ][,][] ) ## ## <#GAPDoc Label="test:AGR.Test.MaxesOrders"> ## AGR.Test.MaxesOrders( [tocid] ) ## ## checks whether the orders of maximal subgroups stored in the component ## GAPnames of ## coincide with the orders computed from the restriction of an &ATLAS; ## permutation representation of degree up to ## AGR.Test.MaxTestDegree ## (using a straight line program that belongs to tocid), ## from the character table, or the table of marks with the given name, ## or from the information about maximal subgroups of the factor group ## modulo a normal subgroup that is contained in the Frattini subgroup. ## ## <#/GAPDoc> ## AGR.Test.MaxesOrders:= function( arg ) local verbose, tocid, result, toc, extend, maxdeg, maxmax, MaxesInfoForName, entry, info, size, filt; verbose:= ( Length( arg ) <> 0 and arg[ Length( arg ) ] = true ); tocid:= First( arg, IsString ); if tocid = fail then tocid:= "core"; fi; result:= true; toc:= AGR.TablesOfContents( [ tocid, "local" ] ); if toc = fail then return result; fi; toc:= toc[1]; extend:= ( ValueOption( "TryToExtendData" ) = true ); maxdeg:= AGR.Test.MaxTestDegree; maxmax:= AGR.Test.HardCases.MaxNumberMaxes; MaxesInfoForName:= function( name ) local result, nrmaxes, tbl, oneresult, i, subtbl, tom, std, g, prg, gens, factfus, recurs, good; result:= []; nrmaxes:= []; # Try to use the character table information. tbl:= CharacterTable( name ); if tbl <> fail then if HasMaxes( tbl ) then AddSet( nrmaxes, Length( Maxes( tbl ) ) ); AddSet( result, List( Maxes( tbl ), nam -> Size( CharacterTable( nam ) ) ) ); else # Try whether individual maxes are supported. oneresult:= []; if tbl <> fail then for i in [ 1 .. maxmax ] do subtbl:= CharacterTable( Concatenation( Identifier( tbl ), "M", String( i ) ) ); if subtbl <> fail then oneresult[i]:= Size( subtbl ); fi; od; fi; if not IsEmpty( oneresult ) then AddSet( result, oneresult ); fi; fi; fi; # Try to use the table of marks information. # more tests: how to identify FusionsToLibTom( tom )? tom:= TableOfMarks( name ); if tom <> fail then AddSet( nrmaxes, Length( MaximalSubgroupsTom( tom )[1] ) ); AddSet( result, Reversed( SortedList( OrdersTom( tom ){ MaximalSubgroupsTom( tom )[1] } ) ) ); fi; # Try to use the AtlasRep database. for std in [ 1 .. AGR.Test.HardCases.MaxNumberStd ] do g:= AtlasGroup( name, std, "contents", "local" ); if ( g <> fail ) and ( ( HasSize( g ) and Size( g ) < 10^7 ) or ( IsPermGroup( g ) and NrMovedPoints( g ) <= maxdeg ) ) then oneresult:= []; for i in [ 1 .. maxmax ] do if extend then prg:= AtlasProgram( name, std, "maxes", i, "contents", "local" ); else prg:= AtlasProgram( name, std, "maxes", i, "contents", [ tocid, "local" ] ); fi; if prg <> fail then gens:= ResultOfStraightLineProgram( prg.program, GeneratorsOfGroup( g ) ); if verbose then Print( "#I AGR.Test.MaxesOrders:\n", "#I computing max. ", i, " for ", name, "\n" ); fi; oneresult[i]:= Size( SubgroupNC( g, gens ) ); fi; od; if not IsEmpty( oneresult ) then AddSet( result, oneresult ); fi; fi; od; # Try to deduce the orders of maximal subgroups from those of factors. if tbl <> fail then for factfus in ComputedClassFusions( tbl ) do if AGR.IsFactorFusionWhoseImageHasSameMaxes( tbl, factfus ) = true then recurs:= MaxesInfoForName( factfus.name ); UniteSet( nrmaxes, recurs.nrmaxes ); UniteSet( result, recurs.maxesorders * Sum( SizesConjugacyClasses( tbl ){ ClassPositionsOfKernel( factfus.map ) } ) ); fi; od; fi; # Compact the partial results. good:= true; for oneresult in result{ [ 2 .. Length( result ) ] } do for i in [ 1 .. Length( oneresult ) ] do if IsBound( result[1][i] ) then if IsBound( oneresult[i] ) then if result[1][i] <> oneresult[i] then good:= false; fi; fi; elif IsBound( oneresult[i] ) then result[1][i]:= oneresult[i]; fi; od; od; if good and not IsEmpty( result ) then result:= [ result[1] ]; fi; return rec( maxesorders:= result, nrmaxes:= Set( nrmaxes ) ); end; if Length( arg ) = 0 or ForAll( arg, x -> IsString( x ) or IsBool( x ) ) then for entry in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.MaxesOrders( tocid, entry, verbose ) and result; od; else entry:= First( arg, x -> not IsBool( x ) and not IsString( x ) ); info:= MaxesInfoForName( entry[1] ); if not IsBound( entry[3].nrMaxes ) then if Length( info.nrmaxes ) = 1 then Print( "#I AGR.Test.MaxesOrders:\n", "#I set maxes number for '", entry[1], "':\n", "[\"MXN\",[\"", entry[1], "\",", info.nrmaxes[1], "]],\n" ); fi; elif Length( info.nrmaxes ) <> 1 then if verbose then Print( "#I AGR.Test.MaxesOrders:\n", "#I cannot verify stored maxes number for '", entry[1], "'\n" ); fi; fi; size:= info.maxesorders; if 1 < Length( size ) then Print( "#E AGR.Test.MaxesOrders:\n", "#E several maxes orders for '", entry[1], "':\n", "#E ", size, "\n" ); result:= false; elif not IsBound( entry[3].sizesMaxes ) or IsEmpty( entry[3].sizesMaxes ) then # No maxes orders are stored yet. if Length( size ) = 0 then if IsBound( toc.( entry[2] ) ) and IsBound( toc.( entry[2] ).maxes ) and not IsEmpty( toc.( entry[2] ).maxes ) then # We have at least one straight line program but no repres. Print( "#I AGR.Test.MaxesOrders:\n", "#I maxes orders for '", entry[1], "' unknown (but slps available)\n" ); elif verbose then # We have no information about maximal subgroups. Print( "#I AGR.Test.MaxesOrders:\n", "#I maxes orders for '", entry[1], "' unknown\n" ); fi; else if IsBound( entry[3].size ) then if entry[3].size in size[1] then Print( "#E AGR.Test.MaxesOrders:\n", "#E group order in maxes orders list for '", entry[1], "'\n" ); result:= false; fi; if ForAny( size[1], x -> entry[3].size mod x <> 0 ) then Print( "#E AGR.Test.MaxesOrders:\n", "#E strange subgp. order for '", entry[1], "'\n" ); result:= false; fi; fi; if IsSortedList( - Compacted( size[1] ) ) then entry[3].sizesMaxes:= size[1]; Print( "#I AGR.Test.MaxesOrders:\n", "#I set maxes orders for '", entry[1], "':\n", AGR.TOCLine( "MXO", entry[1], size[1], 0 ), ",\n" ); else Print( "#E AGR.Test.MaxesOrders:\n", "#E computed maxes orders for '", entry[1], "' are not sorted:\n", size[1], "\n" ); fi; fi; elif Length( size ) = 0 then if extend and verbose then Print( "#I AGR.Test.MaxesOrders:\n", "#I cannot verify stored maxes orders for '", entry[1], "'\n" ); fi; elif not IsSortedList( - Compacted( size[1] ) ) then Print( "#E AGR.Test.MaxesOrders:\n", "#E computed maxes orders for '", entry[1], "' are not sorted:\n", size[1], "\n" ); elif size[1] <> entry[3].sizesMaxes then filt:= Filtered( [ 1 .. Length( entry[3].sizesMaxes ) ], i -> IsBound( entry[3].sizesMaxes[i] ) and IsBound( size[1][i] ) and entry[3].sizesMaxes[i] <> size[1][i] ); if filt <> [] then # We have contradicting values. Print( "#E AGR.Test.MaxesOrders:\n", "#E computed and stored maxes orders for '", entry[1], "' differ at positions ", filt, ":\n", "#E ", size[1], " vs. ", entry[3].sizesMaxes, "\n" ); result:= false; elif ForAny( [ 1 .. Length( size[1] ) ], i -> IsBound( size[1][i] ) and not IsBound( entry[3].sizesMaxes[i] ) ) then # We have just extended the stored list. entry[3].sizesMaxes:= size[1]; Print( "#I AGR.Test.MaxesOrders:\n", "#I replace maxes orders for '", entry[1], "':\n", AGR.TOCLine( "MXO", entry[1], size[1], 0 ), ",\n" ); fi; fi; fi; return result; end; ############################################################################# ## #F AGR.Test.MaxesStructure( [] ) ## ## <#GAPDoc Label="test:AGR.Test.MaxesStructure"> ## AGR.Test.MaxesStructure() ## ## checks whether the names of maximal subgroups stored in the component ## GAPnames of ## coincide with the names computed from the &GAP; character table with ## the given name. ## ## <#/GAPDoc> ## AGR.Test.MaxesStructure:= function( arg ) local verbose, maxdeg, maxmax, MaxesInfoForName, result, toc, entry, info, size, struct; verbose:= ( Length( arg ) <> 0 and arg[1] = true ); maxdeg:= AGR.Test.MaxTestDegree; maxmax:= AGR.Test.HardCases.MaxNumberMaxes; MaxesInfoForName:= function( name ) local result, tbl, oneresult, i, relname, subtbl, prefix, good; result:= []; # Try to use the character table information. tbl:= CharacterTable( name ); if tbl <> fail then if HasMaxes( tbl ) then AddSet( result, List( Maxes( tbl ), StructureDescriptionCharacterTableName ) ); else # Check whether individual maxes are supported. oneresult:= []; if tbl <> fail then for i in [ 1 .. maxmax ] do relname:= Concatenation( Identifier( tbl ), "M", String( i ) ); subtbl:= CharacterTable( relname ); if subtbl <> fail then oneresult[i]:= StructureDescriptionCharacterTableName( Identifier( subtbl ) ); fi; od; fi; if not IsEmpty( oneresult ) then AddSet( result, oneresult ); fi; fi; fi; # Make sure that no relative names appear in the output. for oneresult in result do for relname in oneresult do i:= ParseBackwards( relname, [ IsChar, "M", IsDigitChar ] ); if i <> fail then # Exclude all cases where Mathieu groups are on the top. # (Currently there are a few tables with weird names.) prefix:= i[1]; if prefix <> [] and not prefix[ Length( prefix ) ] in ".:x" and not relname in [ "2^10:3M22", "2^11.3M22", "2x3^6:2M12", "3^6:2M12" ] then #T Is there a chance to get rid of these table identifiers? #T -> insert a dot before the M! #T -> would be better for the well-definedness of relative names #T (assuming that a dot cannot be the last character in a name!) Print( "#E AGR.Test.MaxesStructure:\n", "#E provide structure descr. for rel. name '", relname, "'\n" ); fi; fi; od; od; # Compact the partial results. good:= true; for oneresult in result{ [ 2 .. Length( result ) ] } do for i in [ 1 .. Length( oneresult ) ] do if IsBound( result[1][i] ) then if IsBound( oneresult[i] ) then if result[1][i] <> oneresult[i] then good:= false; fi; fi; elif IsBound( oneresult[i] ) then result[1][i]:= oneresult[i]; fi; od; od; if good and not IsEmpty( result ) then result:= [ result[1] ]; fi; return rec( maxesstructure:= result ); end; result:= true; toc:= AtlasOfGroupRepresentationsInfo.TableOfContents.core; for entry in AtlasOfGroupRepresentationsInfo.GAPnames do info:= MaxesInfoForName( entry[1] ); struct:= info.maxesstructure; if 1 < Length( struct ) then Print( "#E AGR.Test.MaxesStructure:\n", "#E several maxes structures for '", entry[1], "':\n", "#E ", struct, "\n" ); result:= false; elif not IsBound( entry[3].structureMaxes ) then # No maxes structures are stored yet. if Length( struct ) = 0 then if verbose or ( IsBound( toc.( entry[2] ) ) and IsBound( toc.( entry[2] ).maxes ) and not IsEmpty( toc.( entry[2] ).maxes ) ) then Print( "#I AGR.Test.MaxesStructure:\n", "#I maxes structures for '", entry[1], "' unknown\n" ); fi; elif Length( struct ) = 1 then Print( "#I AGR.Test.MaxesStructure:\n", "#I set maxes structures for '", entry[1], "':\n", AGR.TOCLine( "MXS", entry[1], struct[1], "" ), ",\n" ); fi; elif Length( struct ) = 0 then if verbose then Print( "#I AGR.Test.MaxesStructure:\n", "#I cannot verify stored maxes structures for '", entry[1], "'\n" ); fi; elif struct[1] <> entry[3].structureMaxes then if ForAll( [ 1 .. Length( entry[3].structureMaxes ) ], i -> ( not IsBound( entry[3].structureMaxes[i] ) ) or ( IsBound( struct[1][i] ) and entry[3].structureMaxes[i] = struct[1][i] ) ) then # New maximal subgroups were identified. Print( "#I AGR.Test.MaxesStructure:\n", "#I replace maxes structures for '", entry[1], "':\n", AGR.TOCLine( "MXS", entry[1], struct[1], "" ), ",\n" ); else # There is really a contradiction. Print( "#E AGR.Test.MaxesStructure:\n", "#E computed and stored maxes structures for '", entry[1], "' differ:\n", "#E ", struct[1], " vs. ", entry[3].structureMaxes, "\n" ); result:= false; fi; fi; od; return result; end; ############################################################################# ## #F AGR.Test.StdCompatibility( [[, ]][,][ ] ) ## ## <#GAPDoc Label="test:AGR.Test.StdCompatibility"> ## AGR.Test.StdCompatibility( [tocid][:TryToExtendData] ) ## ## checks whether the information about the compatibility of ## standard generators of a group and its factor groups that is stored in ## the GAPnames component of ## ## and belongs to tocid coincides with computed values. ##

## The following criterion is used for computing the value for a group ## G. ## Use the &GAP; Character Table Library to determine factor groups ## F of G for which standard generators are defined and ## moreover a presentation in terms of these standard generators is known. ## Evaluate the relators of the presentation in the standard generators of ## G, and let N be the normal closure of these elements in ## G. ## Then mapping the standard generators of F to the N-cosets ## of the standard generators of G is an epimorphism. ## If |G/N| = |F| holds then G/N and F are ## isomorphic, and the standard generators of G and F are ## compatible in the sense that mapping the standard generators of ## G to their N-cosets yields standard generators of ## F. ## ## <#/GAPDoc> ## AGR.Test.StdCompatibility:= function( arg ) local verbose, tocid, extend, maxstd, result, CompInfoForEntry, entry, info, filt, diff, l; if Length( arg ) <> 0 and arg[ Length( arg ) ] = true then verbose:= true; Remove( arg ); else verbose:= false; fi; if Length( arg ) = 0 then # Note that the 'factorCompatibility' entries for core data # have the fifth entry "core". tocid:= "core"; elif IsString( arg[1] ) then tocid:= arg[1]; arg:= arg{ [ 2 .. Length( arg ) ] }; else tocid:= "core"; fi; extend:= ( ValueOption( "TryToExtendData" ) = true ); maxstd:= AGR.Test.HardCases.MaxNumberStd; result:= true; CompInfoForEntry:= function( entry ) local result, tbl, fus, factstd, pres, std, gens, prg, res, ker, facttbl, G, F, hom; result:= []; tbl:= CharacterTable( entry[1] ); if tbl <> fail then for fus in ComputedClassFusions( tbl ) do if 1 < Length( ClassPositionsOfKernel( fus.map ) ) then if AGR.InfoForName( fus.name ) <> fail and ( extend or ForAny( entry[3].factorCompatibility, x -> x[2] = fus.name and x[5] = tocid ) ) then for factstd in [ 1 .. maxstd ] do pres:= AtlasProgram( fus.name, factstd, "presentation", "contents", "local" ); if pres <> fail then if verbose then Print( "#I AGR.Test.StdCompatibility:\n", "#I have pres. for factor group '", fus.name, "' (std. ", factstd, ")\n" ); fi; # The two sets of generators are compatible iff the # relators in terms of the generators of the big group # generate the kernel of the epimorphism. for std in [ 0 .. maxstd ] do gens:= AtlasGroup( entry[1], std, "contents", "local" ); if gens <> fail then prg:= StraightLineProgramFromStraightLineDecision( pres.program ); res:= ResultOfStraightLineProgram( prg, GeneratorsOfGroup( gens ) ); ker:= Group( res ); # 'ker' is assumed to be a very small group. if Size( tbl ) / Size( CharacterTable( fus.name ) ) = Size( ker ) then Add( result, [ std, fus.name, factstd, true, tocid ] ); else Add( result, [ std, fus.name, factstd, false, tocid ] ); fi; fi; od; else if verbose then Print( "#I AGR.Test.StdCompatibility:\n", "#I no pres. for factor group '", fus.name, "' (std. ", factstd, ")\n" ); fi; # Try to form the homomorphism object in GAP, # by mapping generators of the big group to generators # of the factor group. # If this defines a homomorphism and if this is surjective # then the generators are compatible. facttbl:= CharacterTable( fus.name ); if ClassPositionsOfFittingSubgroup( facttbl ) = [1] then for std in [ 0 .. maxstd ] do # Currently classes scripts are available only # for these tables, so other cases # are not really interesting at the moment. G:= AtlasGroup( entry[1], std, IsPermGroup, true, "contents", "local" ); F:= AtlasGroup( fus.name, factstd, IsPermGroup, true, "contents", "local" ); if G <> fail and F <> fail then if NrMovedPoints( G ) <= AGR.Test.MaxTestDegree and NrMovedPoints( F ) <= AGR.Test.MaxTestDegree then if verbose then Print( "#I AGR.Test.StdCompatibility:\n", "#I trying hom. ", entry[1], " ->> ", fus.name, "\n" ); fi; hom:= GroupHomomorphismByImages( G, F, GeneratorsOfGroup( G ), GeneratorsOfGroup( F ) ); if hom <> fail then Add( result, [ std, fus.name, factstd, true, tocid ] ); else Add( result, [ std, fus.name, factstd, false, tocid ] ); fi; elif verbose then Print( "#I AGR.Test.StdCompatibility:\n", "#I omit hom. ", entry[1], " ->> ", fus.name, ", too many points ...\n" ); fi; elif std = 1 and factstd = 1 and verbose then # Typically, G has only repres. of std. 0. Print( "#I AGR.Test.StdCompatibility:\n", "#I no hom. ", entry[1], " ->> ", fus.name, " to try?\n" ); fi; od; fi; fi; od; fi; fi; od; fi; return result; end; if Length( arg ) = 0 then for entry in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.StdCompatibility( tocid, entry, verbose ) and result; od; else entry:= arg[1]; if verbose then Print( "#I AGR.Test.StdCompatibility:\n", "#I called for ", entry[1], "\n" ); fi; if not IsBound( entry[3].factorCompatibility ) then entry[3].factorCompatibility:= []; fi; info:= CompInfoForEntry( entry ); filt:= entry[3].factorCompatibility; if not extend then filt:= Filtered( filt, x -> x[5] = tocid ); fi; diff:= Difference( info, filt ); if diff <> [] then Print( "#I AGR.Test.StdCompatibility:\n", "#I add compatibility info:\n" ); for l in diff do Print( "[\"STDCOMP\",[\"", entry[1], "\",", Filtered( String( l{ [ 1 .. 4 ] } ), x -> x <> ' ' ), "]],\n" ); od; fi; for l in Difference( filt, info ) do Print( "#I AGR.Test.StdCompatibility:\n", "#I cannot verify compatibility info \n", "#I '", l, "' for '", entry[1], "'\n" ); od; if ForAny( entry[3].factorCompatibility, l1 -> ForAny( info, l2 -> l1{[1..3]} = l2{[1..3]} and ( l1[4] <> l2[4] ) ) ) then Print( "#E AGR.Test.StdCompatibility:\n", "#E contradiction of compatibility info for '", entry[1], "'\n" ); result:= false; fi; fi; return result; end; ############################################################################# ## #F AGR.Test.CompatibleMaxes( [[, ]][,][ ] ) ## ## <#GAPDoc Label="test:AGR.Test.CompatibleMaxes"> ## AGR.Test.CompatibleMaxes( [tocid][:TryToExtendData] ) ## ## checks whether the information about deriving straight line programs ## for restricting to subgroups from straight line programs that belong ## to a factor group coincide with computed values. ##

## The following criterion is used for computing the value for a group ## G. ## If F is a factor group of G such that the standard ## generators of G and F are compatible ## (see the test function AGR.Test.StdCompatibility) ## and if there are a presentation for F and a permutation ## representation of G then it is checked whether the ## "maxes" type straight line programs for F can be used to ## compute generators for the maximal subgroups of G; ## if not then generators of the kernel of the natural epimorphism from ## G to F, must be added. ## ## <#/GAPDoc> ## ## If the global option 'TryToExtendData' has the value 'true' then ## the function also tries to compute compatibility information ## (independent of tocid) ## which is not yet stored. ## AGR.Test.CompatibleMaxes:= function( arg ) local verbose, extend, maxdeg, maxmax, maxversion, CompMaxForEntry, tocid, result, entry, info, stored, entry2, filename, factname, filt; if Length( arg ) <> 0 and arg[ Length( arg ) ] = true then verbose:= true; Remove( arg ); else verbose:= false; fi; extend:= ( ValueOption( "TryToExtendData" ) = true ); maxdeg:= AGR.Test.MaxTestDegree; maxmax:= AGR.Test.HardCases.MaxNumberMaxes; maxversion:= AGR.Test.HardCases.MaxNumberVersions; CompMaxForEntry:= function( entry, tocid ) local result, tbl, l, factname, factstd, gens, i, v, prg, max, kerprg; result:= []; tbl:= CharacterTable( entry[1] ); if tbl <> fail and IsBound( entry[3].sizesMaxes ) and IsBound( entry[3].factorCompatibility ) then # Maxes orders info and compatibility info are known. for l in Filtered( entry[3].factorCompatibility, x -> x[4] = true ) do # Check whether the maxes of the two groups are in bijection. factname:= l[2]; factstd:= l[3]; if ForAny( ComputedClassFusions( tbl ), fus -> fus.name = factname and AGR.IsFactorFusionWhoseImageHasSameMaxes( tbl, fus ) = true ) then gens:= AtlasGroup( entry[1], l[1], NrMovedPoints, [ 1 .. maxdeg ], "contents", "local" ); if gens <> fail then for i in [ 1 .. maxmax ] do for v in [ 1 .. maxversion ] do if extend then prg:= AtlasProgram( factname, factstd, "maxes", i, "version", v, "contents", "local" ); else prg:= AtlasProgram( factname, factstd, "maxes", i, "version", v, "contents", [ tocid, "local" ] ); fi; if prg <> fail and IsBound( entry[3].sizesMaxes[i] ) and ( extend or AtlasProgram( entry[1], l[1], "maxes", i, "contents", "local" ) <> fail ) then # try the program for the ext. gp. max:= ResultOfStraightLineProgram( prg.program, GeneratorsOfGroup( gens ) ); max:= Group( max ); if Size( max ) = entry[3].sizesMaxes[i] then # The program for the factor group is sufficient. Add( result, [ entry[2], factstd, i, [ prg.identifier[2] ] ] ); else kerprg:= AtlasProgram( entry[1], l[1], "kernel", factname, "contents", "local" ); if kerprg = fail then # No program for computing kernel generators # is available (in all table of contents). Print( "#I AGR.Test.CompatibleMaxes:\n", "#I SLP for kernel generators of ", entry[1], " ->> ", factname, " missing ", "\n#I (needed for max. ", i, ")\n" ); else max:= Group( Concatenation( GeneratorsOfGroup( max ), ResultOfStraightLineProgram( kerprg.program, GeneratorsOfGroup( gens ) ) ) ); if Size( max ) = entry[3].sizesMaxes[i] then Add( result, [ entry[2], factstd, i, [ prg.identifier[2], factname ] ] ); else Print( "#E AGR.Test.CompatibleMaxes:\n", "#E max. ", i, " together with kernel of ", entry[1], " ->> ", factname, " does not fit,\n", "#E size is ", Size( max ), " not ", entry[3].sizesMaxes[i], "\n" ); fi; fi; fi; fi; od; od; fi; fi; od; fi; return result; end; if Length( arg ) = 0 then tocid:= "core"; elif IsString( arg[1] ) then tocid:= arg[1]; arg:= arg{ [ 2 .. Length( arg ) ] }; fi; result:= true; if Length( arg ) = 0 then for entry in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.CompatibleMaxes( tocid, entry, verbose ) and result; od; else entry:= arg[1]; info:= CompMaxForEntry( entry, tocid ); stored:= []; if IsBound( entry[3].maxext ) then stored:= List( entry[3].maxext, x -> Concatenation( [ entry[2] ], x ) ); fi; for entry2 in info do filename:= entry2[4][1]; if not IsString( filename ) then filename:= filename[1][2]; entry2[4][1]:= filename; fi; if Length( entry2[4] ) = 2 then factname:= entry2[4][2]; else factname:= fail; fi; filt:= Filtered( stored, x -> x{ [ 1 .. 3 ] } = entry2{ [ 1 .. 3 ] } and x[4][1] = filename ); if IsEmpty( filt ) then # The entry is new. if factname = fail then # The script for restricting the repres. of the factor group # is good enough for the group. Print( "#I AGR.Test.CompatibleMaxes:\n", "#I set entry\n[\"TOCEXT\",[\"", entry2[1], "\",", entry2[2], ",", entry2[3], ",[\"", filename, "\"]]],\n" ); else # For restricting a repres. of the group, one needs the script # for the factor group plus some kernel elements. Print( "#I AGR.Test.CompatibleMaxes:\n", "#I set entry\n[\"TOCEXT\",[\"", entry2[1], "\",", entry2[2], ",", entry2[3], ",[\"", filename, "\",\"", factname, "\"]]],\n" ); fi; elif Length( entry2[4] ) <> Length( filt[1][4] ) then # We have already such an entry but it is different. Print( "#E AGR.Test.CompatibleMaxes:\n", "#E difference ", entry2, " (new) vs. ", filt[1], " (stored)\n" ); result:= false; fi; od; for entry2 in stored do filt:= Filtered( info, x -> x{ [ 1 .. 3 ] } = entry2{ [ 1 .. 3 ] } and x[4][1] = entry2[4][1] ); if IsEmpty( filt ) and ( extend or entry2[5] = tocid ) then Print( "#I AGR.Test.CompatibleMaxes:\n", "#I cannot verify stored value ", entry2, "\n" ); fi; od; fi; return result; end; ############################################################################# ## #F AGR.Test.KernelGeneratorsExtend( ) ## AGR.Test.KernelGeneratorsExtend:= function( entry ) local tbl, factcand, bound, std, factgapname, comp, try; # Compute the list of names of relevant factor tables # from the character table information. tbl:= CharacterTable( entry[1] ); if tbl = fail then return true; fi; factcand:= List( Filtered( ComputedClassFusions( tbl ), r -> 1 < Length( ClassPositionsOfKernel( r.map ) ) ), x -> x.name ); factcand:= Intersection( factcand, AGR.Test.FirstNames ); if Length( factcand ) = 0 then return true; fi; bound:= 10^6; for std in [ 0 .. AGR.Test.HardCases.MaxNumberStd ] do if OneAtlasGeneratingSetInfo( entry[1], std ) <> fail then # The 'std'-th standard generators are defined. if not IsBound( entry[3].factorCompatibility ) then Print( "#I AGR.Test.KernelGenerators for ", entry[1], ":\n", "#I no 'factorCompatibility' info stored\n" ); else for factgapname in factcand do comp:= First( entry[3].factorCompatibility, x -> x[1] = std and x[2] = factgapname ); if comp = fail then Print( "#I AGR.Test.KernelGenerators for ", entry[1], " (std. ", std, "):\n", "#I no 'factorCompatibility' info stored for\n", "#I ", factgapname, "\n" ); fi; comp:= First( entry[3].factorCompatibility, x -> x[1] = std and x[2] = factgapname and x[4] = true ); if comp <> fail and AtlasProgram( entry[1], std, "kernel", factgapname, "contents", "local" ) = fail then Print( "#I AGR.Test.KernelGenerators for ", entry[1], " (std. ", std, "):\n", "#I missing kernel of epim. to ", factgapname, "\n" ); try:= AtlasRepComputedKernelGenerators( entry[1], std, factgapname, comp[3], bound ); if try = fail then Print( "#I AGR.Test.KernelGenerators:\n", "#I 'fail' result for ", entry[1], " and ", factgapname, "\n", "#I (std is ", std, "\n" ); elif try[1] = [] then Print( "#I AGR.Test.KernelGenerators:\n", "#I no kernel generators found for ", entry[1], " and ", factgapname, "\n#I (std is ", std, "\n" ); elif try[2] = true then Print( "#I AGR.Test.KernelGenerators:\n", "#I kernel for ", entry[1], " and ", factgapname, " (std is ", std, ",\n", "#I name is ", First( AtlasOfGroupRepresentationsInfo.GAPnames, l -> l[1] = entry[1] )[2], "G", std, "-ker", First( AtlasOfGroupRepresentationsInfo.GAPnames, l -> l[1] = factgapname )[2], "W1),\n", "#I generated by ", try[1], "\n" ); else Print( "#I AGR.Test.KernelGenerators:\n", "#I kernel for ", entry[1], " and ", factgapname, " (std is ", std, "),\n", "#I did not find all kernel elements ", "among the first relevant ", bound, " words,\n", "#I SOME kernel generators are ", try[1], "\n" ); fi; fi; od; fi; fi; od; return true; end; ############################################################################# ## #F AGR.Test.KernelGenerators( [][,][][,][] ) ## ## <#GAPDoc Label="test:AGR.Test.KernelGenerators"> ## AGR.Test.KernelGenerators( [tocid][:TryToExtendData] ) ## ## checks whether the straight line programs (that belong to tocid) ## for computing generators of kernels of natural epimorphisms between ## &ATLAS; groups compute generators of normal subgroups of the right ## group orders. ## If it is known that the given standard generators of the given group ## are compatible with some standard generators of the factor group in ## question (see the section about AGR.Test.StdCompatibility) ## then it is also checked whether evaluating the straight line program ## at these standard generators of the factor group yields only the ## identity. ##

## Note that the verification of normal subgroups of matrix groups may ## be very time and space consuming if the package ## recog is not available. ##

## The function also tries to find words for ## computing kernel generators of those epimorphisms for which no ## straight line programs are stored; ## the candidates are given by stored factor fusions between the ## character tables from the &GAP; Character Table Library. ## ## <#/GAPDoc> ## ## If the global option 'TryToExtendData' has the value 'true' then ## the function also tries to compute kernel information ## (*independent* of tocid) ## which is not yet stored. ## AGR.Test.KernelGenerators:= function( arg ) local verbose, tocid, entry, result, record, list, gsize, l, factname, kersize, fentry, G, prg, res, N, level, recog, comp; verbose:= ForAny( arg, x -> x = true ); tocid:= First( arg, IsString ); if tocid = fail then tocid:= "core"; fi; entry:= First( arg, x -> IsList( x ) and not IsString( x ) ); result:= true; # Compute a global list of names only once. if not IsBound( AGR.Test.FirstNames ) then AGR.Test.FirstNames:= List( Filtered( List( RecNames( AGR.GAPnamesRec ), LibInfoCharacterTable ), IsRecord ), x -> x.firstName ); fi; if entry = fail then # Run over the groups. for entry in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.KernelGenerators( tocid, entry, verbose ) and result; od; return result; fi; # Treat one group. # Check that the available kernel scripts compute normal subgroups # of the right size. for record in AGR.TablesOfContents( [ tocid, "local" ] ) do list:= []; if IsBound( record.( entry[2] ) ) then record:= record.( entry[2] ); if IsBound( record.kernel ) then list:= record.kernel; fi; fi; gsize:= fail; if IsBound( entry[3].size ) then gsize:= entry[3].size; fi; for l in list do factname:= l[2]; kersize:= fail; if gsize <> fail then fentry:= First( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[2] = factname ); if fentry <> fail and IsBound( fentry[3].size ) then kersize:= gsize / fentry[3].size; fi; fi; G:= AtlasGroup( entry[1], l[1] ); prg:= fail; if G = fail then Print( "#I AGR.Test.KernelGenerators for ", entry[1], ":\n", "#I cannot verify script ", l[3], " (no repres.)\n" ); elif kersize = fail then Print( "#I AGR.Test.KernelGenerators for ", entry[1], ":\n", "#I do not know the order of the kernel", " of the epim. to ", factname, "\n" ); else prg:= AtlasProgram( entry[1], l[1], "kernel", fentry[1] ); if prg = fail then Print( "#E AGR.Test.KernelGenerators for ", entry[1], ":\n", "#E cannot access script ", l[3], "\n" ); result:= false; elif prg.identifier[2][1] <> [ tocid, l[3] ] then Print( "#E AGR.Test.KernelGenerators for ", entry[1], ":\n", "#E get script ", prg.identifier[2][1], " not ", [ tocid, l[3] ], "\n" ); result:= false; else res:= ResultOfStraightLineProgram( prg.program, GeneratorsOfGroup( G ) ); N:= Group( res ); if not IsAbelian( N ) and # Note that recog (up to 1.2.3) does not perform well on small (cyclic) groups. IsPackageMarkedForLoading( "recog", "" ) then # Without this approach, # the case "3^(1+12):2.Suz.2" seems to be hopeless. level:= InfoLevel( InfoRecog ); SetInfoLevel( InfoRecog, 0 ); recog:= RecogniseGroup( N ); SetInfoLevel( InfoRecog, level ); if recog = fail then Print( "#E AGR.Test.KernelGenerators for ", entry[1], ":\n", "#E recognition failed\n" ); result:= false; elif not ForAll( GeneratorsOfGroup( G ), g -> ForAll( List( res, n -> n^g ), conj -> conj = ResultOfStraightLineProgram( SLPforElement( recog, conj ), NiceGens( recog ) ) ) ) then Print( "#E AGR.Test.KernelGenerators for ", entry[1], ":\n", "#E subgroup gen. by ", l[3], " is not normal\n" ); result:= false; elif Size( recog ) <> kersize then Print( "#E AGR.Test.KernelGenerators for ", entry[1], ":\n", "#E subgroup gen. by ", l[3], " has size ", Size( recog ), " not ", kersize, "\n" ); result:= false; fi; else # At least the small cases can be verified. # Calling 'IsNormal( G, N )' for two matrix groups would result # in a delegation to their nice objects (why?), # even if the list of elements of 'N' is stored. # We avoid this. # Note that we must not create the normal subgroup with # 'Subgroup', otherwise the nice object of the supergroup wants # to be used. if IsAbelian( N ) then if not ForAll( GeneratorsOfGroup( G ), g -> ForAll( res, n -> n^g in Elements( N ) ) ) then Print( "#E AGR.Test.KernelGenerators for ", entry[1], ":\n", "#E subgroup gen. by ", l[3], " is not normal\n" ); result:= false; fi; elif not ForAll( GeneratorsOfGroup( G ), g -> ForAll( res, n -> n^g in N ) ) then Print( "#E AGR.Test.KernelGenerators for ", entry[1], ":\n", "#E subgroup gen. by ", l[3], " is not normal\n" ); result:= false; fi; if Size( N ) <> kersize then Print( "#E AGR.Test.KernelGenerators for ", entry[1], ":\n", "#E subgroup gen. by ", l[3], " has size ", Size( N ), " not ", kersize, "\n" ); result:= false; fi; fi; fi; fi; # If the generators of group and factor group are compatible then # check that evaluating the generators of the factor group with the # kernel script yields only the identity. if IsBound( entry[3].factorCompatibility ) then comp:= First( entry[3].factorCompatibility, x -> x[1] = l[1] and x[2] = factname and x[4] = true ); if comp <> fail then G:= AtlasGroup( factname, comp[3] ); if G <> fail then if prg = fail then prg:= AtlasProgram( entry[1], l[1], "kernel", l[2] ); fi; if prg <> fail then res:= ResultOfStraightLineProgram( prg.program, GeneratorsOfGroup( G ) ); if not ForAll( res, IsOne ) then Print( "#E AGR.Test.KernelGenerators for ", entry[1], ":\n", "#E evaluating the program at generators of the ", "factor ", factname, "\n", "#E yields nonidentity elements\n" ); result:= false; fi; fi; fi; fi; fi; od; if ValueOption( "TryToExtendData" ) = true then AGR.Test.KernelGeneratorsExtend( entry ); fi; od; return result; end; ############################################################################# ## #F AGR.CharacterNameFromMultiplicities( , ) ## AGR.CharacterNameFromMultiplicities:= function( tbl, mults ) local degrees, degreeset, positions, irrnames, i, alp, ATL, j, n, pair; degrees:= List( Irr( tbl ), x -> x[1] ); degreeset:= Set( degrees ); positions:= List( degreeset, x -> [] ); irrnames:= []; for i in [ 1 .. Length( degrees ) ] do Add( positions[ PositionSorted( degreeset, degrees[i] ) ], i ); od; alp:= List( "abcdefghijklmnopqrstuvwxyz", x -> [ x ] ); while Length( alp ) < Maximum( List( positions, Length ) ) do Append( alp, List( alp{ [ 1 .. 26 ] }, x -> Concatenation( "(", x, "')" ) ) ); od; if IsInt( mults ) then mults:= [ mults ]; fi; ATL:= []; for i in [ 1 .. Length( degreeset ) ] do ATL[i]:= ""; for j in [ 1 .. Length( positions[i] ) ] do n:= positions[i][j]; if n in mults then # appears once Append( ATL[i], alp[j] ); else pair:= First( mults, x -> IsList( x ) and x[1] = n ); if pair <> fail then # appears with larger mult. Append( ATL[i], alp[j] ); Append( ATL[i], "^" ); Append( ATL[i], String( pair[2] ) ); fi; fi; od; if ATL[i] <> "" then ATL[i]:= Concatenation( String( degreeset[i] ), ATL[i] ); fi; od; return JoinStringsWithSeparator( Filtered( ATL, x -> x <> "" ), "+" ); end; ############################################################################# ## ## Let $H$ be the point stabilizer of a transitive and faithful ## permutation action of $G$ of degree $d$, say. ## For any proper normal subgroup $N$ of prime order in $G$, ## we have $|N \cap H| = 1$ because $N$ cannot be contained in $H$, ## and the constituent $1_{HN}^G$ of $1_H^G$ can be identified with ## $1_{HN/N}^{G/N}$. ## The degree of the latter character is $d / |N|$. ## (In particular, $d$ must be divisible by $|N|$, otherwise there is no ## faithful transitive permutation representation of degree $d$.) ## AGR.Test.PermCharsFaithful:= function( tbl, degree ) local cand, maxname, subtbl, subdegree, fus, onlyfaithful, n, img, subcand, classes, nsg, nsize, facttbl, factcand, pi; if degree = 1 then cand:= [ TrivialCharacter( tbl ) ]; elif HasMaxes( tbl ) then cand:= []; for maxname in Maxes( tbl ) do subtbl:= CharacterTable( maxname ); subdegree:= degree / ( Size( tbl ) / Size( subtbl ) ); if IsInt( subdegree ) then # Note that the characters of the subgroup # need in general not be faithful. # However, if *any* normal subgroup of the subgroup # is also normal in the big group then we are interested # only in *faithful* characters of the subgroup. fus:= GetFusionMap( subtbl, tbl ); onlyfaithful:= false; if fus <> fail then onlyfaithful:= true; for n in ClassPositionsOfNormalSubgroups( subtbl ) do img:= Set( fus{ n } ); if not( img in ClassPositionsOfNormalSubgroups( tbl ) and Sum( SizesConjugacyClasses( subtbl ){ n } ) = Sum( SizesConjugacyClasses( tbl ){ img } ) ) then onlyfaithful:= false; break; fi; od; fi; if onlyfaithful then subcand:= AGR.Test.PermCharsFaithful( subtbl, subdegree ); else subcand:= PermChars( subtbl, rec( torso:= [ subdegree ] ) ); fi; UniteSet( cand, Induced( subtbl, tbl, subcand ) ); fi; od; else # Find a normal subgroup to factor out in the first step. classes:= SizesConjugacyClasses( tbl ); nsg:= First( ClassPositionsOfNormalSubgroups( tbl ), x -> IsPrimeInt( Sum( classes{ x } ) ) ); if nsg <> fail then nsize:= Sum( classes{ nsg } ); if degree mod nsize <> 0 then Info( InfoAtlasRep, 2, "AGR.Test.PermCharsFaithful:\n", "#I permcand. comput. done for ", Identifier( tbl ), "\n", "#I (no candidates of degree ", degree, ")" ); return []; fi; fus:= First( ComputedClassFusions( tbl ), x -> ClassPositionsOfKernel( x.map ) = nsg ); if fus = fail or CharacterTable( fus.name ) = fail then facttbl:= tbl / nsg; fus:= GetFusionMap( tbl, facttbl ); factcand:= AGR.Test.PermCharsFaithful( facttbl, degree / nsize ); else factcand:= AGR.Test.PermCharsFaithful( CharacterTable( fus.name ), degree / nsize ); fus:= fus.map; fi; cand:= []; for pi in factcand do UniteSet( cand, PermChars( tbl, rec( torso:= [ degree ], normalsubgroup:= nsg, nonfaithful:= pi{ fus } ) ) ); od; else # no reduction ... cand:= PermChars( tbl, rec( torso:= [ degree ] ) ); fi; fi; Info( InfoAtlasRep, 2, "AGR.Test.PermCharsFaithful:\n", "#I permcand. comput. done for ", Identifier( tbl ), "\n", "#I (found ", Length( cand ), " cand. of degree ", degree, ")" ); return cand; end; ############################################################################# ## #F AGR.Test.Character( , ) ## ## This function is called by 'AGR.Test.Characters'. ## It tries to compute class representatives or representatives of cyclic ## subgroups, and to compute the (Brauer) character values at these ## representatives. ## The return value must be a record with the following components. ## ## 'result': ## 'true' or 'false', ## ## 'p': ## the characteristic ('0' or a prime integer or 'fail', where 'fail' ## occurs in the case of matrix repres. over residue class rings), ## ## 'candidates' (if 'p' is not 'fail'): ## either 'fail' (if not enough information is available for computing ## a list of candidates) or the list of possible characters that may be ## afforded by the given representation; ## an empty list means that we have found some contradiction. ## ## 'tbl' (if 'p' is not 'fail'): ## the character table (ordinary or modular) that was used for the ## identification, ## ## 'constituents' (if 'p' is not 'fail'): ## either 'fail' (if the character is not uniquely determined) or an ## integer (the position of the character in the list of irreducibles if ## it is irreducible) or the list of positions of the constituents of ## the character. ## ## If is 'true' then no verification of a character is tried if ## character theoretic criteria determine the character uniquely. ## (In this case, no inconsistencies because of generality problems can be ## detected.) ## AGR.Test.Character:= function( inforec, quick ) local result, name, tbl, classnames, ccl, cyc, outputs1, prg1, poss, nam, ord, parts, outputs, prgs2, id, p, modtbl, fus, cand, pp, galoisfams, choice, phi, gens, pos, prgs, prg2, repprg, rep, val, orders, divisors, patterns, g, bound, good, x, inv, dec, i; result:= true; # Do nothing in the case of a matrix repres. over a residue class ring. if IsBound( inforec.ring ) and ( Characteristic( inforec.ring ) <> 0 and not IsPrimeInt( Characteristic( inforec.ring ) ) ) then return rec( result:= true, p:= fail ); fi; name:= inforec.groupname; tbl:= CharacterTable( name ); # If there are scripts for computing class representatives then # use them. classnames:= AtlasClassNames( tbl ); ccl:= AtlasProgram( name, inforec.standardization, "classes", "contents", "local" ); cyc:= AtlasProgram( name, inforec.standardization, "cyclic", "contents", "local" ); if ccl <> fail then if not IsBound( ccl.outputs ) then Print( "#E AGR.Test.Character:\n", "#E no component 'outputs' in ccl script for ", name, "\n" ); ccl:= fail; else outputs1:= ccl.outputs; prg1:= ccl.program; cyc:= fail; fi; elif cyc <> fail and classnames <> fail then if not IsBound( cyc.outputs ) then Print( "#E AGR.Test.Character:\n", "#E no component 'outputs' in cyc script for ", name, "\n" ); cyc:= fail; else outputs1:= cyc.outputs; prg1:= cyc.program; # Form all possibilities for proper class names. poss:= []; for nam in outputs1 do if nam in classnames then Add( poss, [ nam ] ); else # Assume that only single letters appear. #T problem with primes attached to class names! # L216d4G1-cycW1:echo "Classes 15ABCD 17EFGH 10AB 8A 12A'" # Sz32d5G1-cycW1:echo "Classes 25A-E 31A-O 41A-J 20A-B'''' 25F-F''''" # TD42d3G1-cycW1:echo "Classes 6B 12A 13ABC 18ABC 21ABC 28ABC 6D 12C' 12E 18D' 21D 24A 24B" ord:= nam{ [ 1 .. PositionProperty( nam, IsAlphaChar ) - 1 ] }; if '-' in nam then parts:= SplitString( nam{ [ Length( ord ) + 1 .. Length( nam ) ] }, "-" ); Add( poss, List( Filtered( List( CHARS_UALPHA, x -> [ x ] ), x -> parts[1] <= x and x <= parts[2] ), y -> Concatenation( ord, y ) ) ); else Add( poss, List( nam{ [ Length( ord ) + 1 .. Length( nam ) ] }, y -> Concatenation( ord, [ y ] ) ) ); fi; fi; od; if ForAny( poss, IsEmpty ) then Print( "#E AGR.Test.Character:\n", "#E not all classes identified in cyc script for ", name, "\n" ); cyc:= fail; else outputs:= List( Cartesian( poss ), names -> Concatenation( [ "oup ", String( Length( names ) ), " ", JoinStringsWithSeparator( names, " " ), "\n", "echo \"Classes ", JoinStringsWithSeparator( names, " " ), "\"" ] ) ); outputs:= List( outputs, str -> StringOfAtlasProgramCycToCcls( str, tbl, "names" ) ); if fail in outputs then # The "cyclic" script does not cover all maximally cyclic subgroups. # This happens for 'F24G1-cycW1' (classes "24C-D"). cyc:= fail; else outputs:= List( outputs, x -> ScanStraightLineProgram( x, "string" ) ); prgs2:= List( outputs, x -> rec( program:= CompositionOfStraightLinePrograms( x.program, prg1 ), outputs:= x.outputs ) ); fi; fi; fi; fi; id:= inforec.repname; if IsBound( inforec.p ) then # a permutation representation p:= 0; modtbl:= tbl; fus:= [ 1 .. NrConjugacyClasses( tbl ) ]; else if not IsBound( inforec.ring ) then gens:= AtlasGenerators( inforec ); if gens <> fail then gens:= gens.generators; p:= Characteristic( Flat( gens ) ); Info( InfoAtlasRep, 2, "AGR.Test.Character:\n", "#I store RNG info for ", id, ":\n", "#I ", Field( Flat( gens ) ), "\n" ); else p:= fail; fi; else p:= Characteristic( inforec.ring ); fi; if p = 0 then # a matrix representation in characteristic zero modtbl:= tbl; fus:= [ 1 .. NrConjugacyClasses( tbl ) ]; elif p <> fail and IsPrimeInt( p ) then # a matrix representation in finite characteristic modtbl:= tbl mod p; if modtbl = fail then fus:= fail; else fus:= GetFusionMap( modtbl, tbl ); fi; else # a matrix representation for which no info is stored, # and such that the generators are not accessible. fi; fi; # If possible then find a list of candidates. if IsBound( inforec.p ) then if IsBound( inforec.transitivity ) and inforec.transitivity > 0 then # In the case of transitive permutation representations, # compute the candidates from the character table, # and compare the character with them. Info( InfoAtlasRep, 2, "AGR.Test.Character:\n", "#I try perm. cand. comput. for ", Identifier( tbl ), ",\n#I degree ", inforec.p ); cand:= AGR.Test.PermCharsFaithful( tbl, inforec.p ); Info( InfoAtlasRep, 2, "AGR.Test.Character:\n", "#I found ", Length( cand ), " candidates" ); elif IsBound( inforec.orbits ) then # In the case of intransitive permutation representations, # compute candidates of not nec. faithful transitive permutation # characters for the orbit lengths, combine these constituents. Info( InfoAtlasRep, 2, "AGR.Test.Character:\n", "#I try perm. cand. comput. for ", Identifier( tbl ), ",\n#I degrees ", inforec.orbits ); cand:= List( inforec.orbits, p -> PermChars( tbl, rec( torso:= [ p ] ) ) ); Info( InfoAtlasRep, 2, "AGR.Test.Character:\n", "#I found ", List( cand, Length ), " candidates" ); cand:= CallFuncList( ListX, Concatenation( cand, [ function( arg ) return Sum( arg ); end ] ) ); cand:= Filtered( cand, x -> ClassPositionsOfKernel( x ) = [ 1 ] ); fi; elif IsBound( inforec.ring ) and IsField( inforec.ring ) and IsFinite( inforec.ring ) and modtbl <> fail then # In the case of an irreducible matrix representation over a finite # field, compute the candidates from the character table, # and compare the character with them. if IsBound( inforec.generators ) then gens:= inforec.generators; else gens:= AtlasGenerators( inforec ); if gens <> fail then gens:= gens.generators; fi; fi; if gens <> fail then # Check the irreducibility. if MTX.IsIrreducible( GModuleByMats( gens, inforec.ring ) ) then cand:= Filtered( RealizableBrauerCharacters( Irr( modtbl ), Size( inforec.ring ) ), x -> x[1] = inforec.dim ); fi; fi; elif IsBound( inforec.ring ) and IsIntegers( inforec.ring ) then # In the case of an irreducible integral matrix representation, # compute the candidates from the character table, # and compare the character with them. if IsBound( inforec.generators ) then gens:= inforec.generators; else gens:= AtlasGenerators( inforec ); if gens <> fail then gens:= gens.generators; fi; fi; if gens <> fail then # Check the irreducibility of a coprime reduction. pp:= 3; while Size( tbl ) mod pp = 0 do pp:= NextPrimeInt( pp ); od; if MTX.IsAbsolutelyIrreducible( GModuleByMats( gens * Z(pp)^0, GF(pp) ) ) then cand:= Filtered( Irr( tbl ), x -> x[1] = inforec.dim and ForAll( x, IsInt ) ); fi; fi; fi; # Determine representatives of Galois orbits. # We need values only for these classes. if modtbl <> fail then galoisfams:= GaloisMat( TransposedMat( Irr( modtbl ) ) ).galoisfams; choice:= Filtered( [ 1 .. Length( galoisfams ) ], i -> galoisfams[i] <> 0 ); fi; phi:= fail; if quick = true and IsBound( cand ) and Length( cand ) = 1 then phi:= cand[1]{ choice }; elif ccl <> fail or cyc <> fail then # Try to compute the character directly from the representation. if fus = fail then Info( InfoAtlasRep, 2, "AGR.Test.Character:\n", "#I no Brauer table available for identifying ", id ); elif classnames = fail then Info( InfoAtlasRep, 2, "AGR.Test.Character:\n", "#I no AtlasClassNames available for ", id ); else # Fetch generators if we haven't done this already. if not IsBound( gens ) then if IsBound( inforec.generators ) then gens:= inforec.generators; else gens:= AtlasGenerators( inforec ); if gens <> fail then gens:= gens.generators; fi; fi; fi; if gens <> fail and IsBound( choice ) then phi:= []; Info( InfoAtlasRep, 2, "AGR.Test.Character:\n", "#I need ", Length( choice ), " char. values for ", id ); for i in [ 1 .. Length( choice ) ] do pos:= fus[ choice[i] ]; if classnames[ pos ] in outputs1 then # The character value is uniquely determined. prgs:= [ rec( program:= prg1, outputs:= outputs1 ) ]; else # We have to check several possibilities. prgs:= prgs2; fi; for prg2 in prgs do repprg:= RestrictOutputsOfSLP( prg2.program, Position( prg2.outputs, classnames[ pos ] ) ); rep:= ResultOfStraightLineProgram( repprg, gens ); if IsBound( inforec.p ) then # permutation repres. val:= inforec.p - NrMovedPoints( rep ); elif Characteristic( rep ) = 0 then # ordinary matrix repres. val:= TraceMat( rep ); else # modular matrix repres. val:= BrauerCharacterValue( rep ); fi; if not IsBound( phi[i] ) then phi[i]:= val; elif phi[i] <> val then Print( "#I AGR.Test.Character:\n", "#I representation ", id, " yields information about class ", classnames[ pos ], "\n", "#I (values ", phi[i], " vs. ", val, ")\n" ); phi:= fail; result:= false; break; fi; od; if phi = fail then break; fi; Info( InfoAtlasRep, 2, "AGR.Test.Character:\n", "#I have the ", Ordinal( i ), " char. value for ", id ); od; Info( InfoAtlasRep, 2, "AGR.Test.Character:\n", "#I have the char. values for ", id ); fi; fi; else # ... #T If we know a script for a proper factor then use it. #T Otherwise try random elements and use possible patterns. fi; if phi = fail then Info( InfoAtlasRep, 2, "AGR.Test.Character:\n", "#I cannot identify explicitly character for ", id ); fi; # Now we have computed 'phi' from an explicit identification, # and we may have computed 'cand' from the character table. # Merge this information in order to get a new list 'cand'. if IsBound( cand ) then if phi <> fail then # We have both candidates and an explicit character. if ForAny( cand, x -> x{ choice } = phi ) then cand:= [ phi ]; else cand:= []; Print( "#E AGR.Test.Character:\n", "#E identified character info for ", id, "\n", "#E does not fit to candidates from char. table\n" ); result:= false; fi; fi; else # The representation did not admit a list of candidates. if phi = fail then cand:= fail; else cand:= [ phi ]; fi; fi; # If there are several candidates then try to exclude some of them, # using random elements. if cand <> fail and 1 < Length( cand ) then orders:= OrdersClassRepresentatives( modtbl ); divisors:= List( orders, DivisorsInt ); patterns:= List( cand, x -> Set( List( [ 1 .. Length( x ) ], i -> [ orders[i], List( divisors[i], d -> x[ PowerMap( modtbl, d, i ) ] ) ] ) ) ); cand:= List( cand, x -> x{ choice } ); orders:= OrdersClassRepresentatives( modtbl ){ choice }; if Length( Set( patterns ) ) = 1 then Info( InfoAtlasRep, 2, "AGR.Test.Character:\n", "#I values do not distinguish candidates for ", inforec.repname ); else # We have a chance to rule out some candidates. if IsBound( inforec.generators ) then gens:= inforec.generators; else gens:= AtlasGenerators( inforec ); if gens <> fail then gens:= gens.generators; fi; fi; if gens <> fail then g:= Group( gens ); while 1 < Length( Set( patterns ) ) do if ForAll( patterns, pt1 -> Number( patterns, pt2 -> IsEmpty( Difference( pt1, pt2 ) ) ) = 1 and Number( patterns, pt2 -> IsEmpty( Difference( pt2, pt1 ) ) ) = 1 ) then # For each pattern, there are elements that allow us # to either exclude this pattern or all others. bound:= infinity; else # Some pattern cannot be excluded, # but perhaps we are lucky. # (This would happen for M22d2G1-p1232cB0 # if no ccls script would be available.) bound:= 100; fi; i:= 1; while i <= bound do good:= [ 1 .. Length( patterns ) ]; repeat x:= PseudoRandom( g ); ord:= Order( x ); until IsPerm( x ) or Characteristic( x ) = 0 or ( ord mod Characteristic( x ) ) <> 0; if IsBound( inforec.p ) then # permutation repres. inv:= [ ord, List( DivisorsInt( ord ), d -> inforec.p - NrMovedPoints( x^d ) ) ]; elif Characteristic( x ) = 0 then # ordinary matrix repres. inv:= [ ord, List( DivisorsInt( ord ), d -> TraceMat( x^d ) ) ]; else # modular matrix repres. inv:= [ ord, List( DivisorsInt( ord ), d -> BrauerCharacterValue( x^d ) ) ]; fi; good:= Filtered( good, i -> inv in patterns[i] ); if Length( good ) < Length( patterns ) then patterns:= patterns{ good }; cand:= cand{ good }; Info( InfoAtlasRep, 2, "AGR.Test.Character:\n", "#I group comput. reduces to ", Length( good ), " candidates" ); break; fi; i:= i + 1; od; if not ( i <= bound ) then break; fi; od; fi; fi; elif cand <> fail and phi = fail then cand:= List( cand, x -> x{ choice } ); fi; # If the character is identified then compute # the coefficients of the constituents. pos:= fail; if cand <> fail and Length( cand ) = 1 then Info( InfoAtlasRep, 2, "AGR.Test.Character:\n", "#I found unique character for ", id ); dec:= Decomposition( List( Irr( modtbl ), x -> x{ choice } ), cand, "nonnegative" )[1]; if dec = fail then Print( "#E AGR.Test.Character:\n", "#E not decomposable character for ", id, ":\n", cand[1], "\n" ); result:= false; cand:= []; else pos:= []; for i in [ 1 .. Length( dec ) ] do if dec[i] = 1 then Add( pos, i ); elif 1 < dec[i] then Add( pos, [ i, dec[i] ] ); fi; od; if Length( pos ) = 1 and IsInt( pos[1] ) then pos:= pos[1]; fi; fi; else Info( InfoAtlasRep, 2, "AGR.Test.Character:\n", "#I not identified character for ", id ); pos:= fail; fi; return rec( result:= result, p:= p, tbl:= modtbl, candidates:= cand, constituents:= pos ); end; ############################################################################# ## #F AGR.Test.Characters( [[, [, ]]][,][ ] ) ## ## <#GAPDoc Label="test:AGR.Test.Characters"> ## AGR.Test.Characters( [tocid][:TryToExtendData] ) ## ## checks the character information (that belongs to tocid) ## for the matrix and permutation representations. ## ## <#/GAPDoc> ## ## If is 'true' then no further tests are applied if the character ## is uniquely determined by character-theoretic criteria. ## (In this case, no inconsistencies because of generality problems can be ## detected.) ## ## If the global option 'TryToExtendData' has the value 'true' then ## the function also tries to compute character information ## which is not yet stored. ## AGR.Test.Characters:= function( arg ) local quick, extend, result, name, cond, grpname, info, totest, test, map, charpos, nam, pos; if Length( arg ) <> 0 and IsBool( arg[ Length( arg ) ] ) then quick:= true; Remove( arg ); else quick:= false; fi; extend:= ( ValueOption( "TryToExtendData" ) = true ); # Initialize the result. result:= true; if IsEmpty( arg ) then return AGR.Test.Characters( "core" ); elif Length( arg ) = 1 then for name in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.Characters( arg[1], name[1] ) and result; od; return result; elif Length( arg ) = 2 then name:= arg[2]; cond:= []; elif Length( arg ) = 3 then name:= arg[2]; cond:= ShallowCopy( arg[3] ); else Error( "usage: AGR.Test.Characters( [[, [, ]]] )" ); fi; Append( cond, [ "contents", [ arg[1], "local" ] ] ); grpname:= AGR.InfoForName( name ); if grpname = fail then Print( "#E AGR.Test.Characters:\n", "#E no AtlasRep info stored for ", name, "\n" ); return false; elif CharacterTable( name ) = fail then # There is nothing to identify. return true; fi; totest:= CallFuncList( AllAtlasGeneratingSetInfos, Concatenation( [ name ], cond ) ); if not extend then totest:= Filtered( totest, r -> IsBound( r.constituents ) ); fi; for info in totest do test:= AGR.Test.Character( info, quick ); result:= test.result and result; # Check the character data stored for this representation. map:= AtlasOfGroupRepresentationsInfo.characterinfo; if not IsBound( map.( name ) ) then map.( name ):= []; fi; map:= map.( name ); if test.p = 0 then charpos:= 1; else charpos:= test.p; fi; if charpos <> fail then if not IsBound( map[ charpos ] ) then map[ charpos ]:= [ [], [], [], [] ]; fi; map:= map[ charpos ]; if test.candidates = [] then # We have found a contradiction. Print( "#E AGR.Test.Character:\n", "#E contradiction in character info for ", info.repname, "\n" ); result:= false; elif test.candidates = fail then # Test that NO character info is stored. if info.repname in map[2] then Print( "#E AGR.Test.Character:\n", "#E cannot verify stored character info for ", info.repname, "\n" ); result:= false; fi; elif info.repname in map[2] then # Test that NO OTHER character info is stored. if map[1][ Position( map[2], info.repname ) ] <> test.constituents then Print( "#E AGR.Test.Character:\n", "#E stored and computed character info for '", info.repname, "' differ\n", "#E ('", map[1][ Position( map[2], info.repname ) ], "' vs. '", test.constituents, "')\n" ); result:= false; fi; elif test.constituents <> fail then # Add the new information. nam:= AGR.CharacterNameFromMultiplicities( test.tbl, test.constituents ); pos:= ReplacedString( String( test.constituents ), " ", "" ); Print( "#I AGR.Test.Character:\n", "#I add new info\n", "[\"CHAR\",[\"", name, "\",\"", info.repname, "\",", test.p, ",", pos ); if nam <> fail then Print( ",\"", nam, "\"" ); fi; Print( "]],\n" ); fi; if test.candidates <> fail and test.candidates <> [] then # If the character is absolutely irreducible, # test whether the character name is compatible with 'info.repname'. if IsInt( test.constituents ) then nam:= AGR.CharacterNameFromMultiplicities( test.tbl, test.constituents ); if ( info.id = "" and nam <> Concatenation( String( info.dim ), "a" ) ) or ( info.id <> "" and nam <> Concatenation( String( info.dim ), info.id ) ) then Print( "#E AGR.Test.Character:\n", "#E character name '", nam, "' contradicts '", info.repname, "'\n" ); result:= false; fi; fi; fi; fi; od; return result; end; ############################################################################# ## #F AGR.PrimitivityInfo( ) ## ## is a record as returned by 'OneAtlasGeneratingSetInfo', ## for a permutation representation. ## ## - If a perm. repres. is intransitive then just compute the orbit lengths. ## - For a transitive perm. repres. of degree n, say, check primitivity: ## * If the restriction to a maximal subgroup fixes a point then ## this maximal subgroup is identified as the point stabilizer. ## * If the the degree is not an index of a maximal subgroup then we know ## that the repres. is not primitive. ## * If the restriction from G to a maximal subgroup M of G has an orbit ## of length n / [G:M] then M contains the point stabilizer. ## So if the restriction to M does not fix a point then the repres. is ## not primitive, ## and we know a maximal overgroup of the point stabilizer. ## AGR.PrimitivityInfo:= function( inforec ) local gens, gapname, orbs, G, tr, rk, atlasinfo, size, indices, cand, result, i, prg, rest, filt, tbl, max, stab, maxmax, maxcand; gens:= AtlasGenerators( inforec ); if gens <> fail then gens:= gens.generators; gapname:= inforec.groupname; # Check whether the group is transitive. orbs:= OrbitsPerms( gens, [ 1 .. inforec.p ] ); if 1 < Length( orbs ) then return rec( isPrimitive:= false, transitivity:= 0, orbitLengths:= SortedList( List( orbs, Length ) ), comment:= "explicit computation of orbits" ); fi; atlasinfo:= First( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[1] = gapname ); # Compute transitivity and primitivity. G:= Group( gens ); if IsBound( atlasinfo[3].size ) then SetSize( G, atlasinfo[3].size ); fi; tr:= Transitivity( G ); rk:= RankAction( G ); if IsBound( atlasinfo[3].nrMaxes ) and IsBound( atlasinfo[3].sizesMaxes ) and Number( atlasinfo[3].sizesMaxes ) = atlasinfo[3].nrMaxes then size:= Size( G ); indices:= List( atlasinfo[3].sizesMaxes, x -> size / x ); cand:= Filtered( [ 1 .. Length( indices ) ], i -> inforec.p mod indices[i] = 0 ); if inforec.p in indices and Length( cand ) = 1 then # The point stabilizer is contained in a unique class of maxes, # and since the degree occurs as index of a maximal subgroup, # this representation is necessarily primitive. # Moreover, we know the class of maximal subgroups that are # the point stabilizers. result:= rec( isPrimitive:= true, transitivity:= tr, rankAction:= rk, class:= cand[1], comment:= "unique class of maxes for given degree" ); if IsBound( atlasinfo[3].structureMaxes ) and IsBound( atlasinfo[3].structureMaxes[ cand[1] ] ) then result.structure:= atlasinfo[3].structureMaxes[ cand[1] ]; fi; return result; fi; else cand:= [ 1 .. AGR.Test.HardCases.MaxNumberMaxes ]; fi; # Check explicit restrictions to maximal subgroups M. # (If we know their orders then we check only those that can contain # the point stabilizer U.) # We prefer the smallest possible maximal subgroup that contains # the point stabilizer, so we run over the reversed list. for i in Reversed( cand ) do prg:= AtlasProgram( gapname, "maxes", i ); if prg <> fail then rest:= ResultOfStraightLineProgram( prg.program, gens ); if NrMovedPoints( rest ) < inforec.p then # If the restriction to M fixes a point then M is equal to U. result:= rec( isPrimitive:= true, transitivity:= tr, rankAction:= rk, class:= i, comment:= "restriction fixes a point" ); if IsBound( atlasinfo[3].structureMaxes ) and IsBound( atlasinfo[3].structureMaxes[i] ) then result.structure:= atlasinfo[3].structureMaxes[i]; fi; return result; elif IsBound( atlasinfo[3].sizesMaxes ) and IsBound( atlasinfo[3].sizesMaxes[i] ) then if inforec.p * atlasinfo[3].sizesMaxes[i] / Size( G ) in OrbitLengths( Group( rest ) ) then # The length of the M-orbit of a point is equal to the quotient # |M|/|U|, thus U is a proper subgroup of M. result:= rec( isPrimitive:= false, transitivity:= tr, rankAction:= rk, class:= i, comment:= "restriction contains point stab." ); if IsBound( atlasinfo[3].structureMaxes ) and IsBound( atlasinfo[3].structureMaxes[i] ) then # We know a maximal overgroup M of the stabilizer U. # Try to identify also U itself: # - If U is trivial then nothing is to do. # - If [M:U] is the index of the largest maximal subgroup of M # then take the description of it. # - If [M:U] = 2 and [M:M']_2 = 2 then U is the unique index # two subgroup of M. result.overgroup:= atlasinfo[3].structureMaxes[i]; if inforec.p = Size( G ) then result.subgroup:= "1"; else tbl:= CharacterTable( inforec.groupname ); if tbl <> fail then max:= CharacterTable( result.overgroup ); if max <> fail then if inforec.p * atlasinfo[3].sizesMaxes[i] / Size( G ) = 2 and Length( LinearCharacters( max ) ) mod 4 = 2 then stab:= Filtered( NamesOfFusionSources( max ), u -> Size( CharacterTable( u ) ) = Size( max ) / 2 ); if Length( stab ) = 1 then result.subgroup:= stab[1]; elif HasConstructionInfoCharacterTable( max ) and [ "Cyclic", 2 ] in ConstructionInfoCharacterTable( max )[2] then stab:= Difference( ConstructionInfoCharacterTable( max )[2], [ [ "Cyclic", 2 ] ] ); if Length( stab ) = 1 and Length( stab[1] ) = 1 and IsString( stab[1][1] ) then result.subgroup:= stab[1][1]; fi; fi; else maxmax:= CharacterTable( Concatenation( Identifier( max ), "M1" ) ); if maxmax <> fail and inforec.p * atlasinfo[3].sizesMaxes[i] / Size( G ) = Size( max ) / Size( maxmax ) then result.subgroup:= Identifier( maxmax ); fi; fi; fi; fi; fi; fi; if IsBound( result.subgroup ) then result.subgroup:= StructureDescriptionCharacterTableName( result.subgroup ); fi; return result; fi; fi; fi; od; if IsBound( atlasinfo[3].nrMaxes ) and IsBound( atlasinfo[3].sizesMaxes ) and Number( atlasinfo[3].sizesMaxes ) = atlasinfo[3].nrMaxes and not inforec.p in indices then # This representation is not primitive # but we do not know overgroups. return rec( isPrimitive:= false, transitivity:= tr, rankAction:= rk, comment:= "degree is not an index of a max. subgroup" ); fi; # Check explictly whether the action is primitive. if not IsPrimitive( G, MovedPoints( G ) ) then return rec( isPrimitive:= false, transitivity:= tr, rankAction:= rk, comment:= "explicit check of primitivity" ); fi; # Now we know that the action is primitive. if IsBound( atlasinfo[3].nrMaxes ) and IsBound( atlasinfo[3].sizesMaxes ) and Number( atlasinfo[3].sizesMaxes ) = atlasinfo[3].nrMaxes then maxcand:= Filtered( [ 1 .. Length( indices ) ], i -> inforec.p = indices[i] ); if Length( maxcand ) = 1 then # We know the class. result:= rec( isPrimitive:= true, transitivity:= tr, rankAction:= rk, class:= maxcand[1], comment:= "unique class of maxes for the given degree and prim. action" ); if IsBound( atlasinfo[3].structureMaxes ) and IsBound( atlasinfo[3].structureMaxes[ maxcand[1] ] ) then result.structure:= atlasinfo[3].structureMaxes[ maxcand[1] ]; fi; return result; fi; else return rec( isPrimitive:= true, transitivity:= tr, rankAction:= rk, comment:= "explicit check of primitivity, no more info" ); fi; fi; # We do not know how to deal with this case. return rec( isPrimitive:= fail ); end; ############################################################################# ## #F AGR.Test.Primitivity( [[, ]] ) ## ## <#GAPDoc Label="test:AGR.Test.Primitivity"> ## AGR.Test.Primitivity( [tocid][:TryToExtendData] ) ## ## checks the stored primitivity information for the permutation ## representations that belong to tocid. ## That is, the number of orbits, in case of a transitive action the ## transitivity, the rank, the information about the point stabilizers ## are computed if possible, and compared with the stored information. ## ## <#/GAPDoc> ## ## If the global option 'TryToExtendData' has the value 'true' then ## the function also tries to compute primitivity information ## which is not yet stored. ## AGR.Test.Primitivity:= function( arg ) local result, name, tocid, extend, tblid, totest, arec, repname, info, maxid, tbl, maxname, res, permrepinfo, stored, str, entry; # Initialize the result. result:= true; if IsEmpty( arg ) then return AGR.Test.Primitivity( "core" ); elif Length( arg ) = 1 then for name in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.Primitivity( arg[1], name[1] ) and result; od; return result; elif Length( arg ) = 2 then tocid:= arg[1]; name:= arg[2]; else Error( "usage: AGR.Test.Primitivity( [[, ]] )" ); fi; extend:= ( ValueOption( "TryToExtendData" ) = true ); tblid:= fail; if IsPackageMarkedForLoading( "CTblLib", "1.0" ) then tblid:= LibInfoCharacterTable( name ); if tblid <> fail then tblid:= tblid.firstName; fi; fi; totest:= AllAtlasGeneratingSetInfos( name, IsPermGroup, true, "contents", [ tocid, "local" ] ); if not extend then totest:= Filtered( totest, r -> IsBound( r.isPrimitive ) ); fi; for arec in totest do repname:= arec.repname; info:= AGR.PrimitivityInfo( arec ); # Translate 'info' to 'res'. if IsBound( info.transitivity ) and info.transitivity = 0 then res:= [ repname, [ 0, info.orbitLengths ] ]; elif info.isPrimitive = true then if IsBound( info.structure ) then res:= [ repname, [ info.transitivity, info.rankAction, "prim", info.structure, info.class ] ]; elif IsBound( info.class ) then if tblid <> fail then maxid:= Concatenation( tblid, "M", String( info.class ) ); tbl:= CharacterTable( maxid ); else tbl:= fail; fi; if tbl <> fail then maxname:= StructureDescriptionCharacterTableName( Identifier( tbl ) ); else maxname:= "???"; fi; res:= [ repname, [ info.transitivity, info.rankAction, "prim", maxname, info.class ] ]; elif IsBound( info.possclass ) then res:= [ repname, [ info.transitivity, info.rankAction, "prim", "???", info.possclass ] ]; else res:= [ repname, [ info.transitivity, info.rankAction, "prim", "???", "???" ] ]; fi; elif info.isPrimitive = false then if IsBound( info.overgroup ) then if IsBound( info.subgroup ) then res:= [ repname, [ info.transitivity, info.rankAction, "imprim", Concatenation( info.subgroup, " < ", info.overgroup ) ] ]; else res:= [ repname, [ info.transitivity, info.rankAction, "imprim", Concatenation( "??? < ", info.overgroup ) ] ]; fi; else res:= [ repname, [ info.transitivity, info.rankAction, "imprim", "???" ] ]; fi; else res:= fail; fi; # Compare the computed info with the stored one. #T extend the check: #T Compute the size of the stabilizer, #T and if the table with given name is available then compare! permrepinfo:= AtlasOfGroupRepresentationsInfo.permrepinfo; if IsBound( permrepinfo.( repname ) ) then stored:= permrepinfo.( repname ); if stored.transitivity = 0 then str:= [ stored.transitivity, stored.orbits ]; else str:= [ stored.transitivity, stored.rankAction,, stored.stabilizer ]; if stored.isPrimitive then str[3]:= "prim"; str[5]:= stored.maxnr; if '<' in stored.stabilizer then Print( "#E AGR.Test.Primitivity:\n", "#E prim. repres. with '<' in stabilizer string ", "for ", repname, "?\n" ); result:= false; fi; else str[3]:= "imprim"; if stored.stabilizer <> "???" and not '<' in stored.stabilizer then Print( "#E AGR.Test.Primitivity:\n", "#E imprim. repres. without '<' in stabilizer string ", "for ", repname, "?\n" ); result:= false; fi; fi; fi; else stored:= fail; fi; if stored = fail then if res <> fail then Print( "#I AGR.Test.Primitivity:\n", "#I add new AGR.API value:\n" ); str:= []; for entry in res[2] do if IsString( entry ) then Add( str, Concatenation( "\"", entry, "\"" ) ); elif IsList( entry ) and ForAll( entry, IsInt ) then Add( str, ReplacedString( String( entry ), " ", "" ) ); else Add( str, String( entry ) ); fi; od; if ForAny( res[2], x -> IsString( x ) and '?' in x ) then Print( "# " ); fi; Print( "[\"API\",[\"", res[1], "\",[", JoinStringsWithSeparator( str, "," ), "]]],\n" ); fi; elif res = fail then Print( "#I AGR.Test.Primitivity:\n", "#I cannot verify stored value '", str, "' for ", repname, "\n" ); else # We have a computed and a stored value. if res[2] <> str then # Report an error if the two values are not compatible, # report a difference if some part was not identified. if Length( str ) <> Length( res[2] ) or Length( str ) = 2 or str{ [ 1 .. 3 ] } <> res[2]{ [ 1 .. 3 ] } then Print( "#E AGR.Test.Primitivity:\n", "#E difference stored <-> computed for ", repname, ":\n#E ", str, " <-> ", res[2], "\n" ); result:= false; elif 4 <= Length( str ) and res[2][4] = "???" then Print( "#I AGR.Test.Primitivity:\n", "#I cannot identify stabilizer '", str[4], "' for ", repname, "\n" ); elif 4 <= Length( str ) and 6 < Length( res[2][4] ) and res[2][4]{ [ 1 .. 6 ] } = "??? < " then if '<' in str[4] and str[4]{ [ Position( str[4], '<' ) .. Length( str[4] ) ] } = res[2][4]{ [ Position( res[2][4], '<' ) .. Length( res[2][4] ) ] } then Print( "#I AGR.Test.Primitivity:\n", "#I cannot identify subgroup in stabilizer '", str[4], "' for ", repname, "\n" ); else Print( "#E AGR.Test.Primitivity:\n", "#E difference stored <-> computed for ", repname, ":\n#E ", str, " <-> ", res[2], "\n" ); result:= false; fi; else Print( "#E AGR.Test.Primitivity:\n", "#E difference stored <-> computed for ", repname, ":\n#E ", str, " <-> ", res[2], "\n" ); result:= false; fi; fi; fi; od; return result; end; ############################################################################# ## #F AGR.Test.MaxesStandardization( [][,][][,][] ) ## ## <#GAPDoc Label="test:AGR.Test.MaxesStandardization"> ## AGR.Test.MaxesStandardization( [tocid] ) ## ## checks whether the straight line programs (that belong to tocid) ## for standardizing the generators of maximal subgroups are correct: ## If a semi-presentation is available for the maximal subgroup and the ## standardization in question then it is used, otherwise an explicit ## isomorphism is tried. ## ## <#/GAPDoc> ## AGR.Test.MaxesStandardization:= function( arg ) local verbose, tocid, entry, result, toc, record, l, G, maxprg, maxstdprg, res, subname, check, H, cand, sml, hom; verbose:= ForAny( arg, x -> x = true ); tocid:= First( arg, IsString ); if tocid = fail then tocid:= "core"; fi; entry:= First( arg, x -> IsList( x ) and not IsString( x ) ); result:= true; if entry = fail then # Run over the groups. for entry in AtlasOfGroupRepresentationsInfo.GAPnames do result:= AGR.Test.MaxesStandardization( tocid, entry, verbose ) and result; od; return result; fi; # Treat one group. for toc in Filtered( AGR.TablesOfContents( [ tocid, "local" ] ), x -> IsBound( x.( entry[2] ) ) ) do record:= toc.( entry[2] ); if IsBound( record.maxstd ) then for l in record.maxstd do if verbose then Print( "#I AGR.Test.MaxesStandardization:\n", "#I entered for ", l[6], "\n" ); fi; G:= AtlasGroup( entry[1], l[1], "contents", "local" ); maxprg:= AtlasProgram( entry[1], l[1], "maxes", l[2], "version", l[3], "contents", "local" ); if G <> fail then if maxprg = fail then Print( "#E AGR.Test.MaxesStandardization for ", entry[1], ":\n", "#E no maxes script for ", l[6], "\n" ); result:= false; else maxstdprg:= AtlasProgram( entry[1], l[1], "maxstd", l[2], l[3], l[5], "contents", "local" ); if maxstdprg = fail then Print( "#E AGR.Test.MaxesStandardization for ", entry[1], ":\n", "#E no maxstd script for ", l[6], "\n" ); result:= false; else res:= ResultOfStraightLineProgram( maxprg.program, GeneratorsOfGroup( G ) ); res:= ResultOfStraightLineProgram( maxstdprg.program, res ); subname:= AGR.GAPNameAtlasName( l[4] ); check:= AtlasProgram( subname, l[5], "check", "contents", "local" ); if check = fail then # Verify an isomorphism. if verbose then Print( "#I AGR.Test.MaxesStandardization:\n", "#I no check program available,\n", "#I hard test for ", subname, " < ", entry[1], "\n" ); fi; H:= AtlasGroup( subname, l[5], "contents", "local" ); if H = fail then Print( "#E AGR.Test.MaxesStandardization for ", entry[1], ":\n", "#E no repres. for subgroup ", subname, "\n", "#E cannot verify the standardization script.\n" ); result:= false; else cand:= GroupWithGenerators( res ); if IsPermGroup( cand ) then # The 'cheap' option is crucial! sml:= SmallerDegreePermutationRepresentation( cand : cheap:= true ); if verbose then Print( "#I AGR.Test.MaxesStandardization:\n", "#I switched from perm. repres. on ", NrMovedPoints( cand ), "\n", "#I to ", NrMovedPoints( Images( sml ) ), " points\n" ); fi; res:= List( res, x -> x^sml ); cand:= GroupWithGenerators( res ); fi; hom:= GroupHomomorphismByImages( H, cand, GeneratorsOfGroup( H ), res ); if verbose then Print( "#I AGR.Test.MaxesStandardization for ", entry[1], ":\n", "#I have the homomorphism result\n" ); fi; if hom = fail or not IsBijective( hom ) then Print( "#E AGR.Test.MaxesStandardization for ", entry[1], ":\n", "#E restriction to ", subname, " is not standard!\n" ); result:= false; fi; if verbose then Print( "#I AGR.Test.MaxesStandardization for ", entry[1], ":\n", "#I have the isomorphism result\n" ); fi; fi; elif ResultOfStraightLineDecision( check.program, res ) <> true then Print( "#E AGR.Test.MaxesStandardization for ", entry[1], ":\n", "#E restriction to ", subname, " is not standard!\n" ); result:= false; fi; fi; fi; fi; od; fi; od; return result; end; ############################################################################# ## #F AGR.Test.MinimalDegrees( [] ) ## ## <#GAPDoc Label="test:AGR.Test.MinimalDegrees"> ## AGR.Test.MinimalDegrees() ## ## checks that the (permutation and matrix) representations available in ## the database do not have smaller degree than the minimum claimed in ## Section . ## ## <#/GAPDoc> ## AGR.Test.MinimalDegrees:= function( arg ) local result, verbose, info, grpname, known, knownzero, deg, mindeg, knownfinite, chars_and_sizes, size, p, knowncharp, q, knownsizeq; result:= true; verbose:= ( Length( arg ) <> 0 ); for info in AtlasOfGroupRepresentationsInfo.GAPnames do grpname:= info[1]; # Check permutation representations. known:= AllAtlasGeneratingSetInfos( grpname, IsPermGroup, true, "contents", "local" ); if not IsEmpty( known ) then deg:= Minimum( List( known, r -> r.p ) ); mindeg:= MinimalRepresentationInfo( grpname, NrMovedPoints, "lookup" ); if mindeg = fail then if verbose then Print( "#I AGR.Test.MinimalDegrees:\n", "#I '", grpname, "': degree ", deg, " perm. repr. known but no minimality info stored\n" ); fi; elif deg < mindeg.value then Print( "#E AGR.Test.MinimalDegrees:\n", "#E '", grpname, "': smaller perm. repr. (", deg, ") than minimal degree (", mindeg.value, ")\n" ); result:= false; fi; fi; # Check matrix representations over fields in characteristic zero. known:= AllAtlasGeneratingSetInfos( grpname, Ring, IsField, "contents", "local" ); knownzero:= Filtered( known, r -> IsBound( r.ring ) and not IsFinite( r.ring ) ); if not IsEmpty( knownzero ) then deg:= Minimum( List( knownzero, r -> r.dim ) ); mindeg:= MinimalRepresentationInfo( grpname, Characteristic, 0, "lookup" ); if mindeg = fail then if verbose then Print( "#I AGR.Test.MinimalDegrees:\n", "#I '", grpname, "': degree ", deg, " char. 0 ", "matrix repr. known but no minimality info stored\n" ); fi; elif deg < mindeg.value then Print( "#E AGR.Test.MinimalDegrees:\n", "#E '", grpname, "': smaller char. 0 matrix repr. (", deg, ") than minimal degree (", mindeg.value, ")\n" ); result:= false; fi; fi; # Check matrix representations over finite fields. knownfinite:= Filtered( known, r -> IsBound( r.ring ) and IsFinite( r.ring ) ); chars_and_sizes:= []; for size in Set( List( knownfinite, r -> Size( r.ring ) ) ) do p:= SmallestRootInt( size ); info:= First( chars_and_sizes, pair -> pair[1] = p ); if info = fail then Add( chars_and_sizes, [ p, [ size ] ] ); else Add( info[2], size ); fi; od; for info in chars_and_sizes do p:= info[1]; knowncharp:= Filtered( knownfinite, r -> Characteristic( r.ring ) = p ); deg:= Minimum( List( knowncharp, r -> r.dim ) ); mindeg:= MinimalRepresentationInfo( grpname, Characteristic, p, "lookup" ); if mindeg = fail then if verbose then Print( "#I AGR.Test.MinimalDegrees:\n", "#I '", grpname, "': degree ", deg, " char. ", p, " matrix repr. known but no minimality info stored\n" ); fi; elif deg < mindeg.value then Print( "#E AGR.Test.MinimalDegrees:\n", "#E '", grpname, "': smaller char. ", p, " matrix repr. (", deg, ") than minimal degree (", mindeg.value, ")\n" ); result:= false; fi; for q in info[2] do knownsizeq:= Filtered( knownfinite, r -> Size( r.ring ) = q ); deg:= Minimum( List( knownsizeq, r -> r.dim ) ); mindeg:= MinimalRepresentationInfo( grpname, Size, q, "lookup" ); if mindeg = fail then if verbose then Print( "#I AGR.Test.MinimalDegrees:\n", "#I '", grpname, "': degree ", deg, " size ", q, " matrix repr. known but no minimality info stored\n" ); fi; elif deg < mindeg.value then Print( "#E AGR.Test.MinimalDegrees:\n", "#E '", grpname, "': smaller size ", q, " matrix repr. (", deg, ") than minimal degree (", mindeg.value, ")\n" ); result:= false; fi; od; od; od; return result; end; ############################################################################# ## ## Note that the dummy variables are actually used only if the packages ## in question are available. ## if not IsPackageMarkedForLoading( "TomLib", "" ) then Unbind( IsStandardGeneratorsOfGroup ); Unbind( LIBTOMKNOWN ); fi; if not IsPackageMarkedForLoading( "CTblLib", "" ) then Unbind( ConstructionInfoCharacterTable ); Unbind( HasConstructionInfoCharacterTable ); Unbind( LibInfoCharacterTable ); Unbind( StructureDescriptionCharacterTableName ); fi; if not IsPackageMarkedForLoading( "Recog", "" ) then Unbind( InfoRecog ); Unbind( RecogniseGroup ); Unbind( SLPforElement ); Unbind( NiceGens ); fi; ############################################################################# ## #E atlasrep-2.1.8/gap/interfac.gi0000644000175000017500000017566314473574275014406 0ustar samsam############################################################################# ## #W interfac.gi GAP 4 package AtlasRep Thomas Breuer ## ## This file contains the implementation part of the ''high level'' GAP ## interface to the ATLAS of Group Representations. ## ############################################################################# ## #F AGR.Pager( ) ## ## Simply calling 'Pager' is not good enough, because GAP introduces ## line breaks in too long lines, and GAP does not compute the printable ## length of the line but the length as a string. ## ## If is empty then the builtin pager runs into an error, ## therefore we catch this case. ## AGR.Pager:= function( string ) if string <> "" then Pager( rec( lines:= string, formatted:= true ) ); fi; end; ############################################################################# ## #F AGR.ShowOnlyASCII() ## ## Show nicer grids and symbols such as ℤ if the terminal admits this. ## Currently we do *not* do this if 'Print' is used to show the data, ## because of the automatically inserted line breaks. ## AGR.ShowOnlyASCII:= function() return UserPreference( "AtlasRep", "DisplayFunction" ) = "Print" or GAPInfo.TermEncoding <> "UTF-8"; end; ############################################################################# ## #F AGR.StringAtlasInfoOverview( , ) ## AGR.StringAtlasInfoOverview:= function( gapnames, conditions ) local rep_rest_funs, only_if_rep, columns, len, type, widths, choice, i, j, fstring, result, mid; # Consider only those names for which actually information is available. # (The ordering shall be the same as in the input.) if gapnames = "all" then gapnames:= AtlasOfGroupRepresentationsInfo.GAPnamesSortDisp; else gapnames:= Filtered( List( gapnames, AGR.InfoForName ), x -> x <> fail ); fi; if IsEmpty( gapnames ) then return []; fi; # If 'conditions' restricts the representations then omit rows # with empty representations part. rep_rest_funs:= [ Characteristic, Dimension, Identifier, IsMatrixGroup, IsPermGroup, IsPrimitive, IsTransitive, NrMovedPoints, RankAction, Ring, Transitivity ]; only_if_rep:= ForAny( conditions, x -> x in rep_rest_funs ); # Compute the data of the columns. columns:= [ [ "group", "l", List( gapnames, x -> [ x[1], false ] ) ] ]; len:= 0; for type in AGR.DataTypes( "rep", "prg" ) do if type[2].DisplayOverviewInfo <> fail then Add( columns, [ type[2].DisplayOverviewInfo[1], type[2].DisplayOverviewInfo[2], List( gapnames, n -> type[2].DisplayOverviewInfo[3]( Concatenation( [ n ], conditions ) ) ) ] ); if only_if_rep then if type[3] = "rep" then len:= Length( columns ); fi; else len:= Length( columns ); fi; fi; od; # Initialize the column widths; the header string shall fit. widths:= List( columns, c -> [ Length( c[1] ), c[2] ] ); # Restrict the lists to the nonempty rows. choice:= []; for i in [ 1 .. Length( gapnames ) ] do if ForAny( [ 2 .. len ], c -> columns[c][3][i][1] <> "" ) then Add( choice, i ); # Evaluate the privacy flag. if ForAny( columns, x -> x[3][i][2] ) then columns[1][3][i][1]:= Concatenation( columns[1][3][i][1], UserPreference( "AtlasRep", "AtlasRepMarkNonCoreData" ) ); fi; for j in [ 1 .. Length( columns ) ] do widths[j][1]:= Maximum( widths[j][1], Length( columns[j][3][i][1] ) ); od; fi; od; if IsEmpty( choice ) then return []; fi; fstring:= function( string, width ) local strwidth, n, n1, n2; strwidth:= WidthUTF8String( string ); if width[1] <= strwidth then return string; elif width[2] = "l" then return Concatenation( string, RepeatedString( ' ', width[1] - strwidth ) ); elif width[2] = "r" then return Concatenation( RepeatedString( ' ', width[1] - strwidth ), string ); else n:= RepeatedString( ' ', width[1] - strwidth ); n1:= n{ [ QuoInt( Length( n ), 2 ) + 1 .. Length( n ) ] }; n2:= n{ [ 1 .. QuoInt( Length( n ), 2 ) ] }; return Concatenation( n1, string, n2 ); fi; end; result:= []; # Add the header line. if AGR.ShowOnlyASCII() then mid:= " | "; else mid:= " │ "; fi; Add( result, JoinStringsWithSeparator( List( [ 1 .. Length( columns ) ], j -> fstring( columns[j][1], widths[j] ) ), mid ) ); if AGR.ShowOnlyASCII() then Add( result, JoinStringsWithSeparator( List( [ 1 .. Length( columns ) ], j -> RepeatedString( "-", widths[j][1] ) ), "-+-" ) ); else Add( result, JoinStringsWithSeparator( List( [ 1 .. Length( columns ) ], j -> RepeatedUTF8String( "─", widths[j][1] ) ), "─┼─" ) ); fi; # Add the information for each group. for i in choice do Add( result, JoinStringsWithSeparator( List( [ 1 .. Length( columns ) ], j -> fstring( columns[j][3][i][1], widths[j] ) ), mid ) ); od; return result; end; ############################################################################# ## #F AGR.StringAtlasInfoContents() ## AGR.StringAtlasInfoContents:= function() local datadir, result, mid, dir, header, table, info, n, path, subdir, dstfile, prefix, ncols, widths, i, row, sep; # general information datadir:= UserPreference( "AtlasRep", "AtlasRepDataDirectory" ); if datadir = "" then datadir:= "(no local caches available)"; fi; result:= []; Add( result, Concatenation( "- AtlasRepAccessRemoteFiles: ", String( UserPreference( "AtlasRep", "AtlasRepAccessRemoteFiles" ) ), "\n" ) ); Add( result, Concatenation( "- AtlasRepDataDirectory: ", datadir, "\n" ) ); # information per part of the database if AGR.ShowOnlyASCII() then mid:= " | "; else mid:= " │ "; fi; dir:= Directory( datadir ); header:= [ "ID", mid, "address, version, files" ]; table:= []; for info in AtlasOfGroupRepresentationsInfo.notified do n:= 0; if info.ID = "core" then path:= Filename( dir, "datagens" ); if IsDirectoryPath( path ) then n:= n + Length( Difference( DirectoryContents( path ), [ ".", "..", "dummy" ] ) ); fi; path:= Filename( dir, "dataword" ); if IsDirectoryPath( path ) then n:= n + Length( Difference( DirectoryContents( path ), [ ".", "..", "dummy" ] ) ); fi; elif StartsWith( info.DataURL, "http" ) then # remote data extension path:= Filename( dir, Concatenation( "dataext/", info.ID ) ); if IsDirectoryPath( path ) then n:= n + Length( Difference( DirectoryContents( path ), [ ".", "..", "toc.json" ] ) ); fi; else # local data extension (perhaps with one intermediate directory level) path:= info.DataURL; if IsDirectoryPath( path ) then path:= Directory( path ); for subdir in Difference( DirectoryContents( path ), [ ".", "..", "toc.json" ] ) do dstfile:= Filename( path, subdir ); if IsDirectoryPath( dstfile ) then n:= n + Length( Difference( DirectoryContents( dstfile ), [ ".", ".." ] ) ); else n:= n + 1; fi; od; fi; fi; path:= info.DataURL; if not StartsWith( path, "http" ) then prefix:= First( List( DirectoriesLibrary( "pkg" ), d -> Filename( d, "" ) ), str -> StartsWith( path, str ) ); if prefix <> fail then path:= ReplacedString( path, prefix, "" ); fi; fi; Add( table, [ info.ID, mid, Concatenation( path, "," ) ] ); if IsBound( info.Version ) then Add( table, [ "", mid, Concatenation( "version ", info.Version, "," ) ] ); fi; Add( table, [ "", mid, Concatenation( String( n ), " files locally available." ) ] ); od; ncols:= Length( header ); widths:= List( header, Length ); for row in table do for i in [ 1 .. ncols ] do widths[i]:= Maximum( widths[i], WidthUTF8String( row[i] ) ); od; od; for i in [ 1, 3 ] do widths[i]:= -widths[i]; od; Add( result, Concatenation( List( [ 1 .. ncols ], i -> String( header[i], widths[i] ) ) ) ); if AGR.ShowOnlyASCII() then sep:= JoinStringsWithSeparator( List( [ 1, 3 .. ncols ], j -> RepeatedString( "-", AbsInt( widths[j] ) ) ), "-+-" ); else sep:= JoinStringsWithSeparator( List( [ 1, 3 .. ncols ], j -> RepeatedUTF8String( "─", AbsInt( widths[j] ) ) ), "─┼─" ); fi; for row in table do if row[1] <> "" then Add( result, sep ); fi; Add( result, Concatenation( List( [ 1 .. ncols ], i -> String( row[i], widths[i] ) ) ) ); od; return result; end; ############################################################################# ## #F AGR.InfoPrgs( ) ## AGR.InfoPrgs:= function( conditions ) local gapname, groupname, name, tocs, std, argpos, stdavail, toc, record, type, list, header, nams, sort, info, pi; gapname:= conditions[1]; groupname:= AGR.InfoForName( gapname ); if groupname = fail then return rec( list:= [] ); fi; conditions:= conditions{ [ 2 .. Length( conditions ) ] }; name:= groupname[2]; tocs:= AGR.TablesOfContents( conditions ); if Length( conditions ) = 0 or not ( IsInt( conditions[1] ) or IsList( conditions[1] ) ) then std:= true; argpos:= 1; else std:= conditions[1]; if IsInt( std ) then std:= [ std ]; fi; argpos:= 2; fi; # If the standardization is prescribed then do not mention it. # Otherwise if all information refers to the same standardization then # print just one line. # Otherwise print the standardization for each entry. stdavail:= []; if std = true or 1 < Length( std ) then for toc in tocs do if IsBound( toc.( name ) ) then record:= toc.( name ); for type in AGR.DataTypes( "prg" ) do if IsBound( record.( type[1] ) ) then for list in record.( type[1] ) do if std = true or list[1] in std then AddSet( stdavail, list[1] ); fi; od; fi; od; fi; od; fi; # Create the header line. # (Because of 'AGR.CreateHTMLInfoForGroup', # the group name must occur as an entry of its own .) header:= [ "Programs for G = ", groupname[1], ":" ]; if Length( stdavail ) = 1 then Append( header, [ " (all refer to std. generators ", String( stdavail[1] ), ")" ] ); fi; # Collect the info lines for the scripts. list:= []; nams:= []; sort:= []; if ( Length( conditions ) = argpos and conditions[ argpos ] = IsStraightLineProgram ) or ( Length( conditions ) = argpos + 1 and conditions[ argpos ] = IsStraightLineProgram and conditions[ argpos + 1 ] = true ) or Length( conditions ) < argpos then for type in AGR.DataTypes( "prg" ) do info:= type[2].DisplayPRG( tocs, [ gapname, groupname[2] ], std, stdavail ); Add( list, info ); if IsEmpty( info ) then Add( sort, [ 0 ] ); elif IsString( info[2] ) then Add( sort, [ 0, info[1] ] ); else Add( sort, [ 1, info[1] ] ); fi; Add( nams, type[1] ); od; fi; # Sort the information such that those come first for which a single # line is given. # (This is because 'BrowseAtlasInfo' turns the parts with more than # one line into a subcategory which is created from the first line.) # Inside this ordering of entries, sort the information alphabetically. pi:= Sortex( sort ); return rec( header := header, list := Permuted( list, pi ), nams := Permuted( nams, pi ) ); end; ############################################################################# ## #F AGR.EvaluateMinimalityCondition( , ) ## ## Evaluate conditions involving '"minimal"': ## Replace the string '"minimal"' by the number in question if known, ## return 'true' in this case and 'false' otherwise. ## (In the 'false' case, an info message is printed.) ## AGR.EvaluateMinimalityCondition:= function( gapname, conditions ) local pos, info, pos2; pos:= Position( conditions, "minimal" ); if pos <> fail and pos <> 1 then if IsIdenticalObj( conditions[ pos-1 ], NrMovedPoints ) then # ..., NrMovedPoints, "minimal", ... info:= MinimalRepresentationInfo( gapname, NrMovedPoints ); if info = fail then Info( InfoAtlasRep, 1, "minimal perm. repr. of '", gapname, "' not known" ); return false; fi; conditions[ pos ]:= info.value; elif IsIdenticalObj( conditions[ pos-1 ], Dimension ) then pos2:= Position( conditions, Characteristic ); if pos2 <> fail and pos2 < Length( conditions ) then # ..., Characteristic,

, ..., Dimension, "minimal", ... info:= MinimalRepresentationInfo( gapname, Characteristic, conditions[ pos2+1 ] ); if info = fail then Info( InfoAtlasRep, 1, "minimal matrix repr. of '", gapname, "' in characteristic ", conditions[ pos2+1 ], " not known" ); return false; fi; conditions[ pos ]:= info.value; else pos2:= Position( conditions, Ring ); if pos2 <> fail and pos2 < Length( conditions ) and IsField( conditions[ pos2+1 ] ) and IsFinite( conditions[ pos2+1 ] ) then # ..., Ring, , ..., Dimension, "minimal", ... info:= MinimalRepresentationInfo( gapname, Size, Size( conditions[ pos2+1 ] ) ); if info = fail then Info( InfoAtlasRep, 1, "minimal matrix repr. of '", gapname, "' over '", conditions[ pos2+1 ], "' not known" ); return false; fi; conditions[ pos ]:= info.value; fi; fi; fi; fi; return true; end; ############################################################################# ## #F AGR.InfoReps( ) ## ## This function is used by 'AGR.StringAtlasInfoGroup' and ## 'BrowseData.AtlasRepGroupInfoTable'. ## AGR.InfoReps:= function( conditions ) local info, stdavail, header, list, types, r, type, entry; info:= CallFuncList( AllAtlasGeneratingSetInfos, conditions ); # If all information refers to the same standardization then # print just one line. # Otherwise print the standardization for each entry. stdavail:= Set( List( info, x -> x.standardization ) ); # Construct the header line. # (Because of 'AGR.CreateHTMLInfoForGroup', # 'gapname' must occur as an entry of its own .) header:= [ "Representations for G = ", AGR.GAPName( conditions[1] ), ":" ]; if Length( stdavail ) = 1 then Add( header, Concatenation( " (all refer to std. generators ", String( stdavail[1] ), ")" ) ); fi; list:= []; types:= AGR.DataTypes( "rep" ); for r in info do type:= First( types, t -> t[1] = r.type ); entry:= type[2].DisplayGroup( r ); if IsString( entry ) then entry:= [ entry ]; fi; entry:= [ [ String( r.repnr ), ":" ], [ entry[1], "" ], entry{ [ 2 .. Length( entry ) ] } ]; if not ( IsString( r.identifier[2] ) or ForAll( r.identifier[2], IsString ) ) then entry[2][2]:= UserPreference( "AtlasRep", "AtlasRepMarkNonCoreData" ); fi; if 1 < Length( stdavail ) then Add( entry, [ ", w.r.t. std. gen. ", String( r.standardization ) ] ); fi; Add( list, entry ); od; return rec( header := header, list := list ); end; ############################################################################# ## #F AGR.StringAtlasInfoGroup( ) ## ## Deal with the detailed overview for one group. ## AGR.StringAtlasInfoGroup:= function( conditions ) local result, screenwidth, inforeps, list, line, len1, len2, indent, underline, bullet, bulletlength, i, prefix, entry, infoprgs, j, colsep; result:= []; screenwidth:= SizeScreen()[1] - 1; # 'DisplayAtlasInfo( [, ][, ] )' inforeps:= AGR.InfoReps( conditions ); if not IsEmpty( inforeps.list ) then list:= List( inforeps.list, line -> Concatenation( [ Concatenation( line[1] ), Concatenation( line[2] ) ], Concatenation( line{ [ 3 .. Length( line ) ] } ) ) ); len1:= Maximum( List( list, x -> WidthUTF8String( x[1] ) ) ); len2:= Maximum( List( list, x -> WidthUTF8String( x[2] ) ) ); indent:= 0; line:= Concatenation( inforeps.header{ [ 1 .. 3 ] } ); if AGR.ShowOnlyASCII() then underline:= RepeatedString( "-", Sum( List( inforeps.header{ [ 1 .. 3 ] }, Length ) ) ); else underline:= RepeatedUTF8String( "─", Sum( List( inforeps.header{ [ 1 .. 3 ] }, Length ) ) ); fi; for i in [ 4 .. Length( inforeps.header ) ] do if WidthUTF8String( line ) + WidthUTF8String( inforeps.header[i] ) >= screenwidth and WidthUTF8String( line ) <> indent then Add( result, line ); Add( result, underline ); underline:= ""; line:= ""; fi; Append( line, inforeps.header[i] ); od; if line <> "" then Add( result, line ); fi; if underline <> "" then Add( result, underline ); fi; indent:= len1 + len2 + 2; if indent >= screenwidth then indent:= 1; fi; prefix:= RepeatedString( " ", indent ); for entry in list do # right-aligned number, left-aligned description line:= Concatenation( String( entry[1], len1 ), " ", entry[2], RepeatedString( " ", len2 - WidthUTF8String( entry[2] ) ), " " ); for i in [ 3 .. Length( entry ) ] do if WidthUTF8String( line ) + WidthUTF8String( entry[i] ) >= screenwidth and Length( line ) <> indent then Add( result, line ); line:= ShallowCopy( prefix ); fi; Append( line, entry[i] ); od; Add( result, line ); od; fi; # 'DisplayAtlasInfo( [, ][, IsStraightLineProgram] )' infoprgs:= AGR.InfoPrgs( conditions ); if ForAny( infoprgs.list, x -> not IsEmpty( x ) ) then if IsBound( inforeps ) and not IsEmpty( inforeps.list ) then Add( result, "" ); fi; indent:= 0; # Format the header. line:= Concatenation( infoprgs.header{ [ 1 .. 3 ] } ); if AGR.ShowOnlyASCII() then underline:= RepeatedString( "-", Sum( List( infoprgs.header{ [ 1 .. 3 ] }, Length ) ) ); bullet:= "- "; else underline:= RepeatedUTF8String( "─", Sum( List( infoprgs.header{ [ 1 .. 3 ] }, Length ) ) ); bullet:= "• "; fi; bulletlength:= 2; for i in [ 4 .. Length( infoprgs.header ) ] do if WidthUTF8String( line ) + WidthUTF8String( infoprgs.header[i] ) >= screenwidth and WidthUTF8String( line ) <> indent then Add( result, line ); Add( result, underline ); underline:= ""; line:= ""; fi; Append( line, infoprgs.header[i] ); od; if line <> "" then Add( result, line ); fi; if underline <> "" then Add( result, underline ); fi; # Format the info list. Each entry is a list of the following type: # - empty or # - consists of two strings (corresponding to table columns), # plus a program identifier, or # - has a string at position 1 # and non-string lists of length 3 at the other positions, # each representing the columns of a table row, # plus a program identifier. len1:= 0; len2:= 0; for i in infoprgs.list do if not IsEmpty( i ) then if IsString( i[2] ) then # This happens if only one program is available, # and if the type is not "automorphisms", "kernels", or "maxes". len1:= Maximum( len1, WidthUTF8String( i[1] ) ); if Length( i ) = 2 then len2:= Maximum( len2, WidthUTF8String( i[2] ) ); fi; else # This happens for "automorphisms", "kernels", and "maxes", # and whenever more than one program is available for a type. len1:= Maximum( len1, WidthUTF8String( i[1] ) + 1 ); for j in [ 2 .. Length( i ) ] do len1:= Maximum( len1, WidthUTF8String( i[j][1] ) ); len2:= Maximum( len2, WidthUTF8String( i[j][2] ) ); od; fi; fi; od; # The two columns shall be left aligned. len1:= -len1; len2:= -len2; colsep:= " "; indent:= RepeatedString( " ", bulletlength ); for i in infoprgs.list do if not IsEmpty( i ) then if IsString( i[2] ) then Add( result, Concatenation( bullet, String( i[1], len1 ), colsep, String( i[2], len2 ) ) ); else Add( result, Concatenation( bullet, i[1], ":" ) ); for j in [ 2 .. Length( i ) ] do Add( result, Concatenation( indent, String( i[j][1], len1 ), colsep, String( i[j][2], len2 ) ) ); od; fi; fi; od; fi; return result; end; ############################################################################# ## #F DisplayAtlasInfo( [][,][][,]["contents", ] #F [, IsPermGroup[, true]] #F [, NrMovedPoints, ] #F [, IsTransitive[, ]] #F [, Transitivty[, ]] #F [, IsPrimitive[, ]] #F [, RankAction[, ]] #F [, IsMatrixGroup[, true]] #F [, Characteristic,

][, Dimension, ] #F [, Ring, ] #F [, Position, ] #F [, Character, ] #F [, Identifier, ] ) #F DisplayAtlasInfo( [, ][, "contents", ] #F [, IsPermGroup[, true]] #F [, NrMovedPoints, ] #F [, IsTransitive[, ]] #F [, Transitivty[, ]] #F [, IsPrimitive[, ]] #F [, RankAction[, ]] #F [, IsMatrixGroup[, true]] #F [, Characteristic,

][, Dimension, ] #F [, Ring, ] #F [, Position, ] #F [, Character, ] #F [, Identifier, ] #F [, IsStraightLineProgram[, true]] ) #F DisplayAtlasInfo( "contents" ) ## #T support DisplayAtlasInfo( ) for a character table #T with admissible Identifier value ## InstallGlobalFunction( DisplayAtlasInfo, function( arg ) local result, width, fun; # Distinguish the summary overview for at least one group # from the detailed overview for exactly one group. if Length( arg ) = 0 then result:= AGR.StringAtlasInfoOverview( "all", arg ); elif Length( arg ) = 1 and arg[1] = "contents" then result:= AGR.StringAtlasInfoContents(); elif IsList( arg[1] ) and ForAll( arg[1], IsString ) then result:= AGR.StringAtlasInfoOverview( arg[1], arg{ [ 2 .. Length( arg ) ] } ); elif not IsString( arg[1] ) or arg[1] = "contents" then result:= AGR.StringAtlasInfoOverview( "all", arg ); else result:= AGR.StringAtlasInfoGroup( arg ); fi; width:= SizeScreen()[1] - 2; if AGR.ShowOnlyASCII() then result:= List( result, l -> InitialSubstringUTF8String( l, width, "*" ) ); else result:= List( result, l -> InitialSubstringUTF8String( l, width, "⋯" ) ); fi; Add( result, "" ); fun:= EvalString( UserPreference( "AtlasRep", "DisplayFunction" ) ); fun( JoinStringsWithSeparator( result, "\n" ) ); end ); ############################################################################# ## #F AtlasGenerators( , [, ] ) #F AtlasGenerators( ) #F AtlasGenerators( ) ## ## is a list containing at the first position the string ## , ## at the second position a string or a list of strings ## (describing filenames), ## at the third position a positive integer denoting the standardization of ## the representation, ## at the fourth position a positive integer describing the common ring of ## the generators, ## and at the fifth position, if bound, a positive integer denoting the ## number of the maximal subgroup to which the representation is restricted. ## InstallGlobalFunction( AtlasGenerators, function( arg ) local identifier, gapname, id, maxnr, rep, repnr, reps, prog, filenames, i, groupname, type, gens, result; if Length( arg ) = 1 then # 'AtlasGenerators( )' identifier:= arg[1]; if IsRecord( identifier ) and IsBound( identifier.identifier ) then identifier:= identifier.identifier; fi; gapname:= identifier[1]; id:= identifier; if IsBound( identifier[5] ) then maxnr:= identifier[5]; id:= identifier{ [ 1 .. 4 ] }; fi; rep:= First( AGR.MergedTableOfContents( "all", gapname ), r -> r.identifier = id ); elif ( Length( arg ) = 2 and IsString( arg[1] ) and IsPosInt( arg[2] ) ) or ( Length( arg ) = 3 and IsString( arg[1] ) and IsPosInt( arg[2] ) and IsPosInt( arg[3] ) ) then # 'AtlasGenerators( , [, ] )' gapname:= arg[1]; repnr:= arg[2]; reps:= AGR.MergedTableOfContents( "all", gapname ); rep:= First( reps, r -> r.repnr = repnr ); if rep = fail then return fail; fi; identifier:= ShallowCopy( rep.identifier ); if IsBound( arg[3] ) then maxnr:= arg[3]; identifier[5]:= maxnr; fi; else Error( "usage: AtlasGenerators( ,[,] ) or\n", " AtlasGenerators( )" ); fi; # If the restriction to a subgroup is required then # try to fetch the program (w.r.t. the correct standardization) # *before* reading the generators; # if we do not get the program then the generators are not needed. if IsBound( maxnr ) then prog:= AtlasProgram( gapname, identifier[3], maxnr ); if prog = fail then return fail; fi; fi; filenames:= identifier[2]; if IsString( filenames ) then filenames:= [ [ "datagens", filenames ] ]; else filenames:= ShallowCopy( filenames ); for i in [ 1 .. Length( filenames ) ] do if IsString( filenames[i] ) then filenames[i]:= [ "datagens", filenames[i] ]; fi; od; fi; # Access the data file(s). groupname:= AGR.InfoForName( gapname ); if groupname = fail then Info( InfoAtlasRep, 1, "AtlasGenerators: no group with GAP name '", gapname, "'" ); return fail; fi; type:= First( AGR.DataTypes( "rep" ), l -> l[1] = rep.type ); if IsRecord( arg[1] ) then PushOptions( rec( inforecord:= arg[1] ) ); fi; gens:= AGR.FileContents( filenames, type ); if IsRecord( arg[1] ) then PopOptions(); fi; if gens = fail then return fail; fi; result:= ShallowCopy( rep ); if IsRecord( arg[1] ) then if IsBound( arg[1].givenRing ) then result.givenRing:= arg[1].givenRing; fi; if IsBound( arg[1].constructingFilter ) then result.constructingFilter:= arg[1].constructingFilter; fi; fi; if IsBound( maxnr ) then result.identifier:= identifier; # Evaluate the straight line program. result.generators:= ResultOfStraightLineProgram( prog.program, gens ); # Add/adjust info. if IsBound( groupname[3].sizesMaxes ) and IsBound( groupname[3].sizesMaxes[ maxnr ] ) then result.size:= groupname[3].sizesMaxes[ maxnr ]; fi; if IsBound( groupname[3].structureMaxes ) and IsBound( groupname[3].structureMaxes[ maxnr ] ) then result.groupname:= groupname[3].structureMaxes[ maxnr ]; fi; else result.generators:= gens; fi; # Return the result. return Immutable( result ); end ); ############################################################################# ## #F AGR.MergedTableOfContents( , ) ## ## 'AGR.MergedTableOfContents' returns a list of the known representations ## for the group with name . ## This list is sorted by types and for each type by its 'SortTOCEntries' ## function. ## The list is cached in the component of the global record ## 'AtlasOfGroupRepresentationsInfo.TableOfContents.merged'. ## When a new table of contents is notified with ## 'AtlasOfGroupRepresentationsNotifyPrivateDirectory' then the cache is ## cleared. ## AGR.MergedTableOfContents:= function( tocid, gapname ) local merged, label, groupname, result, tocs, type, typeresult, sortkeys, toc, record, id, i, repname, oneresult, types, r, loc; merged:= AtlasOfGroupRepresentationsInfo.TableOfContents.merged; if IsString( tocid ) then tocid:= [ tocid ]; fi; label:= Concatenation( JoinStringsWithSeparator( tocid, "|" ), "|", gapname ); if IsBound( merged.( label ) ) then return merged.( label ); fi; groupname:= AGR.InfoForName( gapname ); if groupname = fail then return []; elif tocid = [ "all" ] then result:= []; # collect all representations, sort them for each type. tocs:= AGR.TablesOfContents( [ "contents", "all" ] ); for type in AGR.DataTypes( "rep" ) do typeresult:= []; sortkeys:= []; for toc in tocs do if IsBound( toc.( groupname[2] ) ) then record:= toc.( groupname[2] ); if IsBound( record.( type[1] ) ) then for i in record.( type[1] ) do repname:= i[ Length(i) ]; if not IsString( repname ) then repname:= repname[1]; fi; repname:= repname{ [ 1 .. Position( repname, '.' )-1 ] }; id:= i[ Length(i) ]; if toc.TocID <> "core" then if IsString( id ) then id:= [ [ toc.TocID, id ] ]; else id:= List( id, x -> [ toc.TocID, x ] ); fi; fi; oneresult:= rec( groupname := gapname, identifier := [ gapname, id, i[1], i[2] ], repname := repname, standardization := i[1], type := type[1], contents := toc.TocID ); type[2].AddDescribingComponents( oneresult, type ); Add( typeresult, oneresult ); Add( sortkeys, type[2].SortTOCEntries( i ) ); od; fi; fi; od; SortParallel( sortkeys, typeresult ); Append( result, typeresult ); od; if IsBound( groupname[3].size ) then for i in result do i.size:= groupname[3].size; od; fi; for i in [ 1 .. Length( result ) ] do result[i].repnr:= i; od; elif tocid = [ "local" ] then types:= AGR.DataTypes( "rep" ); result:= []; for r in AGR.MergedTableOfContents( "all", gapname ) do type:= First( types, x -> x[1] = r.type ); if r.contents <> "core" then loc:= AtlasOfGroupRepresentationsLocalFilename( r.identifier[2], type ); elif IsString( r.identifier[2] ) then loc:= AtlasOfGroupRepresentationsLocalFilename( [ [ "datagens", r.identifier[2] ] ], type ); else loc:= AtlasOfGroupRepresentationsLocalFilename( List( r.identifier[2], x -> [ "datagens", x ] ), type ); fi; if not IsEmpty( loc ) and ForAll( loc[1][2], x -> x[2] ) then Add( result, r ); fi; od; else # Now we know that we have to filter a list which we can compute. if "local" in tocid then result:= AGR.MergedTableOfContents( "local", gapname ); else result:= AGR.MergedTableOfContents( "all", gapname ); fi; tocid:= Difference( tocid, [ "all", "local" ] ); result:= Filtered( result, r -> r.contents in tocid ); fi; merged.( label ):= result; return result; end; ############################################################################# ## #F AGR.EvaluateCharacterCondition( , , ) ## ## Evaluate conditions involving 'Character'. ## The list is changed in place such that the first occurrence ## of 'Character' and the subsequent entry (the condition on the character) ## are removed. ## The return value is the sublist of those entries in that satisfy ## the condition. ## AGR.EvaluateCharacterCondition:= function( gapname, conditions, reps ) local pos, map, pos2, p, chars, primes, consts, i, chi, tbl, ordtbl, dec, const, j, repnames, mapi, len; # If 'Character' does not occur then we need not work. pos:= Position( conditions, Character ); if pos = fail then return reps; elif pos = Length( conditions ) then return []; fi; map:= AtlasOfGroupRepresentationsInfo.characterinfo; if not IsBound( map.( gapname ) ) then Info( InfoAtlasRep, 1, "no character information for ", gapname, " known" ); return []; fi; map:= map.( gapname ); # Check whether also 'Characteristic' is specified. pos2:= Position( conditions, Characteristic ); if pos2 = fail then p:= "?"; elif pos2 = Length( conditions ) then return []; else p:= conditions[ pos2+1 ]; if IsInt( p ) then p:= [ p ]; fi; fi; # Interpret the character(s). chars:= conditions[ pos+1 ]; if IsClassFunction( chars ) then chars:= [ chars ]; fi; if IsList( chars ) and ForAll( chars, IsClassFunction ) then # The characters are explicitly given. # Compute the positions of their irreducible constituents. primes:= []; consts:= []; for i in [ 1 .. Length( chars ) ] do chi:= chars[i]; tbl:= UnderlyingCharacterTable( chi ); if IsOrdinaryTable( tbl ) then ordtbl:= tbl; else ordtbl:= OrdinaryCharacterTable( tbl ); fi; if gapname = Identifier( ordtbl ) and ( p = "?" or ( IsFunction( p ) and p( UnderlyingCharacteristic( tbl ) ) = true ) or ( IsList( p ) and UnderlyingCharacteristic( tbl ) in p ) ) then if IsOrdinaryTable( tbl ) then dec:= MatScalarProducts( tbl, Irr( tbl ), [ chi ] )[1]; else dec:= Decomposition( Irr( tbl ), [ chi ], "nonnegative" )[1]; fi; const:= []; if dec <> fail and ForAll( dec, x -> IsInt( x ) and 0 <= x ) then AddSet( primes, UnderlyingCharacteristic( tbl ) ); for j in [ 1 .. Length( dec ) ] do if dec[j] = 1 then Add( const, j ); elif 1 < dec[j] then Add( const, [ j, dec[j] ] ); fi; od; if Length( const ) = 1 and IsInt( const[1] ) then const:= const[1]; fi; Add( consts, const ); fi; fi; od; p:= primes; chi:= consts; elif not ( IsPosInt( chars ) or IsString( chars ) ) then #T perhaps admit a list of positions or strings? return []; else # The position in the list of irreducibles or the name is given. if p = "?" then # No characteristic is specified, this means *ordinary* character. p:= [ 0 ]; fi; chi:= chars; fi; # Look for the character(s) in the info lists. repnames:= []; for i in [ 1 .. Length( map ) ] do if IsBound( map[i] ) and ( ( IsFunction( p ) and ( ( i = 1 and p( 0 ) = true ) or ( 1 < i and p( i ) = true ) ) ) or ( IsList( p ) and ( ( i = 1 and 0 in p ) or i in p ) ) ) then mapi:= map[i]; for j in [ 1 .. Length( mapi[1] ) ] do if ( IsPosInt( chi ) and mapi[1][j] = chi ) or ( IsString( chi ) and mapi[3][j] = chi ) or ( IsList( chi ) and mapi[1][j] in chi ) then # We have found a character that matches. Add( repnames, mapi[2][j] ); fi; od; fi; od; if Length( repnames ) = 0 then return []; fi; # We will return a nonempty list. Remove 'Character' from 'conditions'. for i in [ pos .. Length( conditions )-2 ] do conditions[i]:= conditions[ i+2 ]; od; Remove( conditions ); Remove( conditions ); return Filtered( reps, r -> r.repname in repnames ); end; ############################################################################# ## #F AGR.AtlasGeneratingSetInfo( , "one" ) #F AGR.AtlasGeneratingSetInfo( , "all" ) #F AGR.AtlasGeneratingSetInfo( , ) ## ## This function does the work for 'OneAtlasGeneratingSetInfo', ## 'AllAtlasGeneratingSetInfos', and 'AGR.InfoReps'. ## The first entry in can be a group name ## or a list of group names. ## AGR.AtlasGeneratingSetInfo:= function( conditions, mode ) local pos, tocid, gapnames, types, std, filter, givenRing, position, result, gapname, reps, cond, info, type, F; # Ignore the condition that no straight line programs are wanted. pos:= Position( conditions, IsStraightLineProgram ); if pos <> fail and pos < Length( conditions ) and conditions[ pos + 1 ] = false then conditions:= Concatenation( conditions{ [ 1 .. pos-1 ] }, conditions{ [ pos+2 .. Length( conditions ) ] } ); fi; # Restrict the sources. pos:= Position( conditions, "contents" ); if pos <> fail then tocid:= conditions[ pos+1 ]; conditions:= Concatenation( conditions{ [ 1 .. pos-1 ] }, conditions{ [ pos+2 .. Length( conditions ) ] } ); else tocid:= "all"; fi; # The first argument (if there is one) is a group name, # or a list of group names, # or an integer (denoting a standardization), # or a function (denoting the first condition). if Length( conditions ) = 0 or IsInt( conditions[1] ) or IsFunction( conditions[1] ) then # The group is not restricted. gapnames:= List( AtlasOfGroupRepresentationsInfo.GAPnamesSortDisp, pair -> pair[1] ); elif IsString( conditions[1] ) then # Only one group is considered. gapnames:= [ AGR.GAPName( conditions[1] ) ]; conditions:= conditions{ [ 2 .. Length( conditions ) ] }; elif IsList( conditions[1] ) and ForAll( conditions[1], IsString ) then # A list of group names is prescribed. gapnames:= List( conditions[1], AGR.GAPName ); conditions:= conditions{ [ 2 .. Length( conditions ) ] }; else Error( "invalid first argument ", conditions[1] ); fi; types:= AGR.DataTypes( "rep" ); # Deal with a prescribed standardization. if 1 <= Length( conditions ) and ( IsInt( conditions[1] ) or ( IsList( conditions[1] ) and ForAll( conditions[1], IsInt ) ) ) then std:= conditions[1]; if IsInt( std ) then std:= [ std ]; fi; conditions:= conditions{ [ 2 .. Length( conditions ) ] }; else std:= true; fi; # Extract a prescribed 'ConstructingFilter'. filter:= fail; pos:= Position( conditions, ConstructingFilter ); if pos <> fail then if pos = Length( conditions ) or not IsFilter( conditions[ pos+1 ] ) then Error( "condition 'ConstructingFilter' must be followed by a filter" ); fi; filter:= conditions[ pos+1 ]; conditions:= Concatenation( conditions{ [ 1 .. pos-1 ] }, conditions{ [ pos+2 .. Length( conditions ) ] } ); fi; # Extract a prescribed ring (but leave it in 'conditions'). givenRing:= fail; pos:= Position( conditions, Ring ); if pos <> fail then if pos = Length( conditions ) or not ( IsRing( conditions[ pos+1 ] ) #T admit a list of rings! or IsFunction( conditions[ pos+1 ] ) or conditions[ pos+1 ] = fail ) then Error( "condition 'Ring' must be followed by a ring" ); elif IsRing( conditions[ pos+1 ] ) then givenRing:= conditions[ pos+1 ]; fi; fi; # Deal with a prescribed representation number. pos:= Position( conditions, Position ); if pos <> fail then if pos = Length( conditions ) or not IsPosInt( conditions[ pos+1 ] ) then Error( "condition 'Position' must be followed by a pos. integer" ); fi; position:= conditions[ pos+1 ]; conditions:= Concatenation( conditions{ [ 1 .. pos-1 ] }, conditions{ [ pos+2 .. Length( conditions ) ] } ); fi; result:= []; for gapname in gapnames do reps:= AGR.MergedTableOfContents( tocid, gapname ); # Evaluate the 'Position' condition. if pos <> fail then reps:= Filtered( reps, r -> r.repnr = position ); fi; cond:= ShallowCopy( conditions ); # Evaluate conditions involving '"minimal"' (modify 'cond' in place). if AGR.EvaluateMinimalityCondition( gapname, cond ) then # Evaluate the 'Character' condition. if Character in cond then reps:= AGR.EvaluateCharacterCondition( gapname, cond, reps ); fi; # Loop over the relevant representations. for info in reps do type:= First( types, t -> t[1] = info.type ); if ( std = true or info.standardization in std ) and type[2].AccessGroupCondition( info, ShallowCopy( cond ) ) then # Hack: # Store the desired ring/field if there is one, # in order to create the matrices over the correct ring/field. if givenRing <> fail and IsBound( info.ring ) and not IsIdenticalObj( givenRing, info.ring ) then info:= ShallowCopy( info ); info.givenRing:= givenRing; fi; if filter <> fail then info:= ShallowCopy( info ); #T twice copy? info.constructingFilter:= filter; fi; if mode = "one" then return info; else Add( result, info ); fi; fi; od; fi; od; # We have checked all available representations. if mode = "one" then return fail; else return result; fi; end; ############################################################################# ## #F OneAtlasGeneratingSetInfo( [][, ] ) #F OneAtlasGeneratingSetInfo( [][, ], IsPermGroup[, true] ) #F OneAtlasGeneratingSetInfo( [][, ], NrMovedPoints, ) #F OneAtlasGeneratingSetInfo( [][, ], IsMatrixGroup[, true] ) #F OneAtlasGeneratingSetInfo( [][, ][, Characteristic,

] #F [, Dimension, ] ) #F OneAtlasGeneratingSetInfo( [][, ][, Ring, ] #F [, Dimension, ] ) #F OneAtlasGeneratingSetInfo( [,][ ,] Position, ) ## InstallGlobalFunction( OneAtlasGeneratingSetInfo, function( arg ) return AGR.AtlasGeneratingSetInfo( arg, "one" ); end ); ############################################################################# ## #F AllAtlasGeneratingSetInfos( [][, ] ) #F AllAtlasGeneratingSetInfos( [][, ], IsPermGroup[, true] ) #F AllAtlasGeneratingSetInfos( [][, ], NrMovedPoints, ) #F AllAtlasGeneratingSetInfos( [][, ], IsMatrixGroup[, true] ) #F AllAtlasGeneratingSetInfos( [][, ][, Characteristic,

] #F [, Dimension, ] ) #F AllAtlasGeneratingSetInfos( [][, ][, Ring, ] #F [, Dimension, ] ) ## InstallGlobalFunction( AllAtlasGeneratingSetInfos, function( arg ) return AGR.AtlasGeneratingSetInfo( arg, "all" ); end ); ############################################################################# ## #M AtlasRepInfoRecord( ) ## InstallMethod( AtlasRepInfoRecord, [ "IsString" ], function( gapname ) local info, result, comp, groupname, name, maxes, maxstd, toc, record, i; # Make sure that the file 'gap/types.g' is already loaded. IsRecord( AtlasOfGroupRepresentationsInfo ); if not IsBound( AGR.GAPnamesRec.( gapname ) ) then return rec(); fi; info:= AGR.GAPnamesRec.( gapname )[3]; result:= rec( name:= gapname ); for comp in [ "size", "nrMaxes", "sizesMaxes", "structureMaxes" ] do if IsBound( info.( comp ) ) then result.( comp ):= StructuralCopy( info.( comp ) ); fi; od; groupname:= AGR.InfoForName( gapname ); name:= groupname[2]; maxes:= []; maxstd:= []; for toc in AGR.TablesOfContents( "all" ) do if IsBound( toc.( name ) ) then record:= toc.( name ); if IsBound( record.maxes ) then for i in record.maxes do if i[2] in maxes then AddSet( maxstd[ Position( maxes, i[2] ) ], i[1] ); else Add( maxes, i[2] ); Add( maxstd, [ i[1] ] ); fi; od; fi; fi; od; if IsBound( info.maxext ) then for i in info.maxext do if i[2] in maxes then AddSet( maxstd[ Position( maxes, i[2] ) ], i[1] ); else Add( maxes, i[2] ); Add( maxstd, [ i[1] ] ); fi; od; fi; if not IsEmpty( maxes ) then SortParallel( maxes, maxstd ); ConvertToRangeRep( maxes ); result.slpMaxes:= [ maxes, maxstd ]; fi; return result; end ); ############################################################################# ## #F AtlasGroup( [[, ]] ) #F AtlasGroup( [[, ]], IsPermGroup[, true] ) #F AtlasGroup( [[, ]], NrMovedPoints, ) #F AtlasGroup( [[, ]], IsMatrixGroup[, true] ) #F AtlasGroup( [[, ]][, Characteristic,

] #F [, Dimension, ] ) #F AtlasGroup( [[, ]][, Ring, ][, Dimension, ] ) #F AtlasGroup( [[, ]], Position, ) #F AtlasGroup( ) ## InstallGlobalFunction( AtlasGroup, function( arg ) local info, identifier, gapname, gens, result; if Length( arg ) = 1 and IsRecord( arg[1] ) then info:= arg[1]; elif Length( arg ) = 1 and IsList( arg[1] ) and not IsString( arg[1] ) then # Find the info record with this identifier. identifier:= arg[1]; gapname:= identifier[1]; info:= First( AGR.MergedTableOfContents( "all", gapname ), r -> r.identifier = identifier ); else info:= CallFuncList( OneAtlasGeneratingSetInfo, arg ); fi; if info <> fail then gens:= AtlasGenerators( info ); if gens <> fail then result:= GroupWithGenerators( gens.generators ); if IsBound( gens.isPrimitive ) then SetIsPrimitive( result, gens.isPrimitive ); fi; # Note that it would *not* be safe to set 'NrMovedPoints' # or 'LargestMovedPoint' to 'gens.p'. if IsBound( gens.rankAction ) then SetRankAction( result, gens.rankAction ); fi; if IsBound( gens.size ) then SetSize( result, gens.size ); fi; if IsBound( gens.transitivity ) then SetTransitivity( result, gens.transitivity ); SetIsTransitive( result, gens.transitivity > 0 ); fi; #T Set known info about the *group* (IsSimple etc., not stored in 'gens')! SetAtlasRepInfoRecord( result, info ); return result; fi; fi; return fail; end ); ############################################################################# ## #F AtlasSubgroup( [, ], ) #F AtlasSubgroup( [, ], IsPermGroup[, true], ) #F AtlasSubgroup( [, ], NrMovedPoints, , ) #F AtlasSubgroup( [, ], IsMatrixGroup[, true], ) #F AtlasSubgroup( [, ][, Characteristic,

] #F [, Dimension, ], ) #F AtlasSubgroup( [, ][, Ring, ] #F [, Dimension, ], ) #F AtlasSubgroup( [, ], Position, , ) #F AtlasSubgroup( , ) #F AtlasSubgroup( , ) ## #T ... or the same with '' replaced by '"maxes", , ' ## InstallGlobalFunction( AtlasSubgroup, function( arg ) local maxnr, info, groupname, std, prog, result, inforec; maxnr:= arg[ Length( arg ) ]; if not IsPosInt( maxnr ) then Error( " must be a positive integer" ); fi; if Length( arg ) = 2 and IsRecord( arg[1] ) then info:= arg[1]; groupname:= info.groupname; elif Length( arg ) = 2 and IsGroup( arg[1] ) then if not HasAtlasRepInfoRecord( arg[1] ) then Error( "the 'AtlasRepInfoRecord' value is not set for the group" ); fi; info:= AtlasRepInfoRecord( arg[1] ); groupname:= info.groupname; elif Length( arg ) = 2 and IsList( arg[1] ) and not IsString( arg[1] ) then info:= rec( identifier:= arg[1], standardization:= arg[1][3] ); groupname:= arg[1][1]; elif 1 < Length( arg ) then info:= CallFuncList( OneAtlasGeneratingSetInfo, arg{ [ 1 .. Length( arg ) - 1 ] } ); groupname:= arg[1]; else info:= fail; fi; if info = fail then return fail; fi; std:= info.standardization; prog:= AtlasProgram( groupname, std, "maxes", maxnr ); if prog = fail then return fail; fi; if Length( arg ) = 2 and IsGroup( arg[1] ) then # We need not load the generators from files. result:= GroupWithGenerators( ResultOfStraightLineProgram( prog.program, GeneratorsOfGroup( arg[1] ) ) ); else result:= AtlasGenerators( info ); if result = fail then return fail; fi; result:= GroupWithGenerators( ResultOfStraightLineProgram( prog.program, result.generators ) ); fi; if IsBound( prog.size ) then SetSize( result, prog.size ); fi; inforec:= rec( identifier:= Concatenation( info.identifier, [ maxnr ] ), standardization:= std ); if IsBound( info.repnr ) then inforec.repnr:= info.repnr; fi; if IsBound( prog.subgroupname ) then inforec.groupname:= prog.subgroupname; fi; if IsBound( prog.size ) then inforec.size:= prog.size; fi; SetAtlasRepInfoRecord( result, inforec ); return result; end ); ############################################################################# ## #M ConjugacyClasses( ) ## ## For a group with stored 'AtlasRepInfoRecord' value, ## there may be a straight line program that computes class representatives. ## If yes then use it, otherwise give up. ## ## Note that the 'ccls' straight line programs output the representatives ## in Atlas ordering, in particular the identity element comes first. ## #T Is there a way to express that a group constructed with 'AtlasSubgroup' #T does in fact have standard generators, #T such that class representatives can be computed with this method? ## InstallMethod( ConjugacyClasses, [ "IsGroup and IsFinite and HasAtlasRepInfoRecord" ], OVERRIDENICE + RankFilter( IsPermGroup ), # adjust to other uprankings function( G ) local info, prg, reps; info:= AtlasRepInfoRecord( G ); if info.groupname <> info.identifier[1] then # The group is just a subgroup of an Atlas group. TryNextMethod(); fi; prg:= AtlasProgram( info.groupname, info.standardization, "classes" ); if prg = fail then # We do not know a straight line program for computing class reps. TryNextMethod(); fi; reps:= ResultOfStraightLineProgram( prg.program, GeneratorsOfGroup( G ) ); return List( reps, x -> ConjugacyClass( G, x ) ); end ); ############################################################################# ## #F AtlasProgramInfo( [, ][, "maxes"], ) #F AtlasProgramInfo( [, ], "maxes", [, ] ) #F AtlasProgramInfo( [, ], "maxstd", , , ) #F AtlasProgramInfo( [, ], "kernel", ) #F AtlasProgramInfo( [, ], "classes" ) #F AtlasProgramInfo( [, ], "cyclic" ) #F AtlasProgramInfo( [, ], "cyc2ccl"[, ] ) #F AtlasProgramInfo( [, ], "automorphism", ) #F AtlasProgramInfo( [, ], "check" ) #F AtlasProgramInfo( [, ], "presentation" ) #F AtlasProgramInfo( [, ], "find" ) #F AtlasProgramInfo( , , "restandardize", ) #F AtlasProgramInfo( [, ], "other", ) ## InstallGlobalFunction( AtlasProgramInfo, function( arg ) local identifier, gapname, groupname, type, result, std, argpos, conditions, tocs, toc, id; if Length( arg ) = 1 then # 'AtlasProgramInfo( )' identifier:= arg[1]; gapname:= identifier[1]; groupname:= AGR.InfoForName( gapname ); if groupname = fail then return fail; fi; for type in AGR.DataTypes( "prg" ) do result:= type[2].AtlasProgramInfo( type, identifier, groupname[2] ); if result <> fail then result.groupname:= gapname; result.version:= AGR.VersionOfSLP( identifier[2] ); return Immutable( result ); fi; od; return fail; elif Length( arg ) = 0 or not IsString( arg[1] ) then Error( "the first argument must be the GAP name of a group" ); fi; # Now handle the cases of more than one argument. gapname:= arg[1]; groupname:= AGR.InfoForName( gapname ); if groupname = fail then Info( InfoAtlasRep, 1, "AtlasProgramInfo: no group with GAP name '", gapname, "'" ); return fail; fi; if IsInt( arg[2] ) and 2 < Length( arg ) then std:= [ arg[2] ]; argpos:= 3; elif IsBool( arg[2] ) and 2 < Length( arg ) then std:= true; argpos:= 3; else std:= true; argpos:= 2; fi; conditions:= arg{ [ argpos .. Length( arg ) ] }; # Restrict to a prescribed selection of tables of contents. tocs:= AGR.TablesOfContents( conditions ); # 'AtlasProgramInfo( [, ][, "maxes"], )' if ( Length( conditions ) = 1 and IsInt( conditions[1] ) ) or ( Length( conditions ) = 3 and IsInt( conditions[1] ) and conditions[2] = "version" ) then conditions:= Concatenation( [ "maxes" ], conditions ); fi; for toc in tocs do # Note that 'toc.( groupname[2] )' need not be bound # if database extensions provide straight line pograms. for type in AGR.DataTypes( "prg" ) do id:= type[2].AccessPRG( toc, groupname[2], std, conditions ); if id <> fail then # The table of contents provides a program as is required. return AtlasProgramInfo( Concatenation( [ groupname[1] ], id ) ); fi; od; od; # No program was found. Info( InfoAtlasRep, 2, "no program for conditions ", conditions, "\n", "#I of the group with GAP name '", groupname[1], "'" ); return fail; end ); ############################################################################# ## #F AtlasProgram( [, ][, "maxes"], ) #F AtlasProgram( [, ], "maxes", [, ] ) #F AtlasProgram( [, ], "maxstd", , , ) #F AtlasProgram( [, ], "kernel", ) #F AtlasProgram( [, ], "classes" ) #F AtlasProgram( [, ], "cyclic" ) #F AtlasProgram( [, ], "cyc2ccl"[, ] ) #F AtlasProgram( [, ], "automorphism", ) #F AtlasProgram( [, ], "check" ) #F AtlasProgram( [, ], "presentation" ) #F AtlasProgram( [, ], "find" ) #F AtlasProgram( , , "restandardize", ) #F AtlasProgram( [, ], "other", ) #F AtlasProgram( ) ## ## is a list containing at the first position the string ## , ## at the second position a string or a list of strings ## (describing the filenames involved), ## and at the third position a positive integer denoting the standardization ## of the program. ## InstallGlobalFunction( AtlasProgram, function( arg ) local identifier, gapname, groupname, type, result, info; if Length( arg ) = 1 then # 'AtlasProgram( )' identifier:= arg[1]; gapname:= identifier[1]; groupname:= AGR.InfoForName( gapname ); if groupname = fail then return fail; fi; for type in AGR.DataTypes( "prg" ) do result:= type[2].AtlasProgram( type, identifier, groupname[2] ); if result <> fail then result.groupname:= groupname[1]; result.version:= AGR.VersionOfSLP( identifier[2] ); return Immutable( result ); fi; od; return fail; elif Length( arg ) = 0 or not IsString( arg[1] ) then Error( "the first argument must be the GAP name of a group" ); fi; # Now handle the cases of more than one argument. info:= CallFuncList( AtlasProgramInfo, arg ); if info = fail then return fail; fi; return AtlasProgram( info.identifier ); end ); ############################################################################# ## #M EvaluatePresentation( , [, ] ) #M EvaluatePresentation( , [, ] ) ## InstallMethod( EvaluatePresentation, [ "IsGroup", "IsString" ], { G, gapname } -> EvaluatePresentation( GeneratorsOfGroup( G ), gapname, 1 ) ); InstallMethod( EvaluatePresentation, [ "IsHomogeneousList", "IsString" ], { gens, gapname } -> EvaluatePresentation( gens, gapname, 1 ) ); InstallMethod( EvaluatePresentation, [ "IsGroup", "IsString", "IsPosInt" ], { G, gapname, std } -> EvaluatePresentation( GeneratorsOfGroup( G ), gapname, std ) ); InstallMethod( EvaluatePresentation, [ "IsHomogeneousList", "IsString", "IsPosInt" ], function( gens, gapname, std ) local prg; prg:= AtlasProgram( gapname, std, "presentation" ); if prg = fail then return fail; elif NrInputsOfStraightLineDecision( prg.program ) <> Length( gens ) then Error( "presentation for \"", gapname, "\" has ", NrInputsOfStraightLineDecision( prg.program ), " generators but ", Length( gens ), " generators were given" ); fi; prg:= StraightLineProgramFromStraightLineDecision( prg.program ); return ResultOfStraightLineProgram( prg, gens ); end ); ############################################################################# ## #M StandardGeneratorsData( , [, ] ) #M StandardGeneratorsData( , [, ] ) ## InstallMethod( StandardGeneratorsData, [ "IsGroup", "IsString" ], function( G, gapname ) return StandardGeneratorsData( GeneratorsOfGroup( G ), gapname, 1 ); end ); InstallMethod( StandardGeneratorsData, [ "IsHomogeneousList", "IsString" ], { gens, gapname } -> StandardGeneratorsData( gens, gapname, 1 ) ); InstallMethod( StandardGeneratorsData, [ "IsGroup", "IsString", "IsPosInt" ], function( G, gapname, std ) return StandardGeneratorsData( GeneratorsOfGroup( G ), gapname, std ); end ); InstallMethod( StandardGeneratorsData, [ "IsHomogeneousList", "IsString", "IsPosInt" ], function( gens, gapname, std ) local prg, options, mgens, res; prg:= AtlasProgram( gapname, std, "find" ); if prg = fail then return fail; fi; prg:= prg.program; if ValueOption( "projective" ) = true then # This is supported only for FFE matrix groups. # We do not check this condition, # 'ProjectiveOrder' will run into an error if it is not satisfied. options:= rec( orderfunction:= mat -> ProjectiveOrder( mat )[1] ); else options:= rec(); fi; mgens:= GeneratorsWithMemory( gens ); res:= ResultOfBBoxProgram( prg, GroupWithGenerators( mgens ), options ); if res = "timeout" then return "timeout"; elif res = fail then # The program has detected that 'gens' cannot belong to 'gapname'. return fail; fi; return rec( gapname:= gapname, givengens:= gens, stdgens:= StripMemory( res ), givengenstostdgens:= SLPOfElms( res ), std:= std ); end ); ############################################################################# ## #E atlasrep-2.1.8/gap/access.gd0000644000175000017500000010471414410313625014011 0ustar samsam############################################################################# ## #W access.gd GAP 4 package AtlasRep Thomas Breuer ## ## This file contains functions for low level access to data from the ## ATLAS of Group Representations. ## ############################################################################# ## #V AGR ## ## <#GAPDoc Label="AGR"> ## ## ## ## ## is a record whose components are functions and data that are used by the ## high level interface functions. ## Some of the components are documented, see for example the index of the ## package manual. ## ## ## <#/GAPDoc> ## BindGlobal( "AGR", rec( GAPnamesRec:= rec() ) ); ############################################################################# ## #V InfoAtlasRep ## ## <#GAPDoc Label="InfoAtlasRep"> ## ## ## ## ## If the info level of is at least 1 ## then information about fail results of &AtlasRep; functions ## is printed. ## If the info level is at least 2 then also information about calls ## to external programs is printed. ## The default level is 0, no information is printed on this level. ## ## ## <#/GAPDoc> ## DeclareInfoClass( "InfoAtlasRep" ); ############################################################################# ## ## Filenames Used in the Atlas of Group Representations ## ## <#GAPDoc Label="[1]{access}"> ## &AtlasRep; expects that the filename of each data file describes ## the contents of the file. ## This section lists the definitions of the supported structures of ## filenames. ##

## Each filename consists of two parts, separated by a minus sign -. ## The first part is always of the form groupnameGi, ## where the integer i denotes the i-th set of standard ## generators for the group G, say, ## with ATLAS-file name groupname ## (see ). ## The translations of the name groupname to the name(s) used within ## &GAP; is given by the component GAPnames of ## . ##

## The names of files that contain straight line programs or straight line ## decisions have one of the following forms. ## In each of these cases, the suffix Wn means that n ## is the version number of the program. ## ## <#Include Label="type:cyclic:format"> ## <#Include Label="type:classes:format"> ## <#Include Label="type:cyc2ccls:format"> ## <#Include Label="type:maxes:format"> ## <#Include Label="type:maxstd:format"> ## <#Include Label="type:out:format"> ## <#Include Label="type:kernel:format"> ## <#Include Label="type:switch:format"> ## <#Include Label="type:check:format"> ## <#Include Label="type:pres:format"> ## <#Include Label="type:find:format"> ## <#Include Label="type:otherscripts:format"> ## ##

## The names of files that contain group generators have one of the ## following forms. ## In each of these cases, ## id is a (possibly empty) string that starts with a lowercase ## alphabet letter (see ), ## and m is a nonnegative integer, meaning that the generators are ## written w. r. t. the m-th basis ## (the meaning is defined by the ATLAS developers). ##

## ## <#Include Label="type:matff:format"> ## <#Include Label="type:perm:format"> ## <#Include Label="type:matalg:format"> ## <#Include Label="type:matint:format"> ## <#Include Label="type:quat:format"> ## <#Include Label="type:matmodn:format"> ## ## <#/GAPDoc> ## ############################################################################# ## #F AGR.ParseFilenameFormat( , ) ## ## <#GAPDoc Label="AGRParseFilenameFormat"> ## ## ## ## ## a list of strings and integers if string matches format, ## and fail otherwise. ## ## ## Let string be a filename, and format be a list ## [ [ c_1, c_2, \ldots, c_n ], [ f_1, f_2, \ldots, f_n ] ] ## such that each entry c_i is a list of strings and of functions ## that take a character as their argument and return true or ## false, ## and such that each entry f_i is a function for parsing a filename, ## such as the currently undocumented functions ParseForwards and ## ParseBackwards. ## ##

## returns a list of strings and ## integers such that the concatenation of their ## values yields string if ## string matches format, ## and fail otherwise. ## Matching is defined as follows. ## Splitting string at each minus character (-) ## yields m parts s_1, s_2, \ldots, s_m. ## The string string matches format if s_i matches ## the conditions in c_i, for 1 \leq i \leq n, ## in the sense that applying f_i to s_i ## and c_i yields a non-fail result. ##

## format:= [ [ [ IsChar, "G", IsDigitChar ], ## > [ "p", IsDigitChar, AGR.IsLowerAlphaOrDigitChar, ## > "B", IsDigitChar, ".m", IsDigitChar ] ], ## > [ ParseBackwards, ParseForwards ] ];; ## gap> AGR.ParseFilenameFormat( "A6G1-p10B0.m1", format ); ## [ "A6", "G", 1, "p", 10, "", "B", 0, ".m", 1 ] ## gap> AGR.ParseFilenameFormat( "A6G1-p15aB0.m1", format ); ## [ "A6", "G", 1, "p", 15, "a", "B", 0, ".m", 1 ] ## gap> AGR.ParseFilenameFormat( "A6G1-f2r16B0.m1", format ); ## fail ## ]]> ## ## ## <#/GAPDoc> ## ############################################################################# ## #F AtlasOfGroupRepresentationsLocalFilename( , , ) ## ## This implements the location step of the access to data files. ## The return value is a pair, the first entry being true if the ## file is already locally available, and false otherwise, ## and the second entry being a list of pairs ## [ path, r ], ## where path is the local path where the file can be found, ## or a list of such paths ## (after the file has been transferred if the first entry is false), ## and r is the record of functions to be used for transferring the ## file. ## DeclareGlobalFunction( "AtlasOfGroupRepresentationsLocalFilename" ); ############################################################################# ## #F AtlasOfGroupRepresentationsLocalFilenameTransfer( , , #F ) ## ## This implements the location and fetch steps ## of the access to data files. ## The return value is either fail ## or a pair [ paths, r ] ## where paths is the list of the local paths (which really exist) ## and r is the record containing the function to be used for reading ## and interpreting the file contents ## or a triple [ contents, r, "contents" ] ## where contents is the list of strings that describe the contents ## of the files and r is again the relevant record. ## DeclareGlobalFunction( "AtlasOfGroupRepresentationsLocalFilenameTransfer" ); ############################################################################# ## #F AtlasOfGroupRepresentationsTestTableOfContentsRemoteUpdates() ## ## ## ## ## ## the list of names of all locally available data files from the ## &ATLAS; of Group Representations that should be removed. ## ## ## This function fetches the file changes.html from the package's ## home page, extracts the times of changes for the data files in question, ## and compares them with the times of the last changes of the local data ## files. ## For that, the &GAP; package IO ## IO package ## is needed; ## if it is not available then an error message is printed, ## and fail is returned. ##

## If the time of the last modification of a server file is later than ## that of the local copy then the local file must be updated. ## touch ## (This means that touching files in the local directories ## will cheat this function.) ##

## It is useful that a system administrator (i. e., someone who has ## the permission to remove files from the data directories) ## runs this function from time to time, ## and afterwards removes the files in the list that is returned. ## This way, new versions of these files will be fetched automatically ## from the servers when a user asks for their data. ## ## ## ## The function was documented up to version 1.5.1. ## It does not fit to the user interface since version 2.0, ## but providing something inthis spirit might be useful in the future. ## DeclareGlobalFunction( "AtlasOfGroupRepresentationsTestTableOfContentsRemoteUpdates" ); ############################################################################# ## #F AGR.FileContents( , ) ## ## <#GAPDoc Label="AGRFileContents"> ## ## ## ## ## the &GAP; object obtained from reading and interpreting the file(s) given ## by files. ## ## ## Let files be a list of pairs of the form ## [ dirname, filename ], ## where dirname and filename are strings, ## and let type be a data type ## (see ). ## Each dirname must be one of "datagens", "dataword", ## or the dirid value of a data extension ## (see ). ## If the contents of each of the files in question is accessible ## and their data belong to the data type type then ## returns the contents of the files; ## otherwise fail is returned. ##

## Note that if some file is already stored in the ## dirname directory then ## does not check whether the relevant table of contents ## actually contains filename. ## ## ## <#/GAPDoc> ## ############################################################################# ## #V AtlasOfGroupRepresentationsAccessFunctionsDefault ## ## <#GAPDoc Label="AccessFunctionsDefault"> ## By default, locally available data files are stored in prescribed ## directories, ## and the files are exactly the text files that have been downloaded from ## appropriate places in the internet. ## However, a more flexible approach may be useful. ##

## First, one may want to use different file formats, ## for example &MeatAxe; binary files may be provided ## parallel to &MeatAxe; text files. ## Second, one may want to use a different directory structure, ## for example the same structure as used on some server ## –this makes sense for example if a local mirror of a server ## is available, because then one can read the server files directly, ## without transferring/copying them to another directory. ##

## In order to achieve this (and perhaps more), ## we admit to customize the meaning of the following three access steps. ##

## ## Are the required data locally available? ## ## There may be different file formats available, ## such as text or binary files, and it may happen that the data are ## available in one file or are distributed to several files. ## ## How can a file be made locally available? ## ## A different remote file may be fetched, ## or some postprocessing may be required. ## ## How is the data of a file accessed by &GAP;? ## ## A different function may be needed to evaluate the file contents. ## ## ##

## For creating an overview of the locally available data, ## the first of these steps must be available independent of ## actually accessing the file in question. ## For updating the local copy of the server data, ## the second of the above steps must be available independent of ## the third one. ## Therefore, the package provides the possibility to extend the default ## behaviour by adding new records to the accessFunctions ## component of . ## The relevant record components are as follows. ##

## ## description ## ## This must be a short string that describes for which kinds of files ## the functions in the current record are intended, ## which file formats are supported etc. ## The value is used as key in the user preference ## FileAccessFunctions, ## see Section . ## ## ## location( files, type ) ## ## ## Let files be a list of pairs [ dirname, filename ], ## and type be the data type ## (see ) to which the files belong. ## This function must return either the absolute paths where the ## mechanism implemented by the current record expects the local version ## of the given files, ## or fail if this function does not feel responsible for these ## files. ##

## The files are regarded as not locally available ## if all installed location functions return either fail ## or paths of nonexisting files, ## in the sense of . ## ## ## fetch( filepath, filename, dirname, type ) ## ## ## This function is called if a file is not locally available ## and if the location function in the current record has returned ## a list of paths. ## The argument type ## must be the same as for the location function, ## and filepath and filename must be strings ## (not lists of strings). ##

## The return value must be true if the function succeeded with ## making the file locally available (including postprocessing if ## applicable), a string with the contents of the data file if the remote ## data were directly loaded into the &GAP; session (if no local caching ## is possible), and false otherwise. ## ## contents( files, type, filepaths ) ## ## This function is called when the location function in the ## current record has returned the path(s) filepath, ## and if either these are paths of existing files ## or the fetch function in the current record has been called ## for these paths, and the return value was true. ## The first three arguments must be the same as for the location ## function. ##

## The return value must be the contents of the file(s), ## in the sense that the &GAP; matrix, matrix list, permutation, ## permutation list, or program described by the file(s) is returned. ## This means that besides reading the file(s) via the appropriate ## function, interpreting the contents may be necessary. ## ## ##

## In , those records in the ## accessFunctions component of ## are considered ## –in reversed order– ## whose description component occurs in the user preference ## FileAccessFunctions, ## see Section . ## <#/GAPDoc> ## DeclareGlobalVariable( "AtlasOfGroupRepresentationsAccessFunctionsDefault" ); ############################################################################# ## ## The Tables of Contents of the Atlas of Group Representations ## ## <#GAPDoc Label="toc"> ## The list of &AtlasRep; data is stored in several ## tables of contents, ## which are given essentially by JSON documents, ## one for the core data and one for each data extension in the sense of ## Chapter . ## The only exception are data extensions by locally available files in a ## given directory, where the contents of this directory itself describes ## the data in question. ## One can create such a JSON document for the contents of a given local ## data directory with the function ## . ##

## Here are the administrational functions that are called ## when a data extension gets notified with ## . ## In each case, gapname and atlasname denote the &GAP; and ## &ATLAS; name of the group in question ## (see Section ), ## and dirid denotes the identifier of the data extension. ##

## The following functions define group names, available representations, ## and straight line programs. ##

## ## <#Include Label="AGR.GNAN"> ## <#Include Label="AGR.TOC"> ## ##

## The following functions add data about the groups and their ## standard generators. ## The function calls must be executed after the corresponding ## AGR.GNAN calls. ##

## ## <#Include Label="AGR.GRS"> ## <#Include Label="AGR.MXN"> ## <#Include Label="AGR.MXO"> ## <#Include Label="AGR.MXS"> ## <#Include Label="AGR.STDCOMP"> ## ##

## The following functions add data about representations or ## straight line programs that are already known. ## The function calls must be executed after the corresponding ## AGR.TOC calls. ##

## ## <#Include Label="AGR.RNG"> ## <#Include Label="AGR.TOCEXT"> ## <#Include Label="AGR.API"> ## <#Include Label="AGR.CHAR"> ## ## <#/GAPDoc> ## ############################################################################# ## #F AtlasStringOfFieldOfMatrixEntries( ) #F AtlasStringOfFieldOfMatrixEntries( ) ## ## ## ## ## ## ## For a nonempty list mats of matrices of cyclotomics, ## let F be the field generated by all matrix entries. ## returns a pair ## [ F, descr ] ## where descr is a string describing F, as follows. ## If F is a quadratic field then descr is of the form ## "Field([Sqrt(n)])" where n is an integer; ## if F is the n-th cyclotomic field, ## for a positive integer n ## then descr is of the form "Field([E(n)])"; ## otherwise descr is the value ## of the field object. ##

## If the argument is a string filename then mats is obtained ## by reading the file with name filename via ## . ## ## ## DeclareGlobalFunction( "AtlasStringOfFieldOfMatrixEntries" ); ############################################################################# ## #F AtlasTableOfContents( , ) ## ## ## ## ## ## The function returns a record whose ## components are lastupdated (date and time of the last update of ## this table of contents) and the names that occur at the second position ## in the entries of AtlasOfGroupRepresentationsInfo.GAPnames; ## the value of each such component is a record whose components are the ## names of the available data types, see ## , ## for example perm, matff, classes, and maxes, ## all lists. ## tocid must be "core" or the identifier of an extension. ## allorlocal must be one of "all" or "local", ## where "local" means that only the locally available data are ## considered. ##

## Once a (local or remote) table of contents has been computed using ## , ## it is stored in the TableOfContents component of ## , ## and is just fetched when is called ## again. ## ## ## DeclareGlobalFunction( "AtlasTableOfContents" ); ############################################################################# ## #F StringOfAtlasTableOfContents( ) ## ## <#GAPDoc Label="StringOfAtlasTableOfContents"> ## ## ## ## ## For a record inforec with at least the component ID, ## with value "core" or the identifier of a data extension ## (see ), ## this function returns a string that describes the part of &AtlasRep; data ## belonging to inforec.ID. ##

## Printed to a file, the returned string can be used ## as the table of contents of this part of the data. ## For that purpose, also the following components of inforec must be ## bound (all strings). ## Version, ## SelfURL ## (the internet address of the table of contents file itself). ## At least one of the following two components must be bound. ## DataURL is the internet address of the directory from where the ## data in question can be downloaded. ## LocalDirectory is a path relative to &GAP;'s pkg directory ## where the data may be stored locally (depending on whether some &GAP; ## package is installed). ## If the component DataURL is bound then the returned string ## contains the information about the data files; ## this is not necessary if the data are only locally available. ## If both DataURL and LocalDirectory are bound then locally ## available data will be prefered at runtime. ##

## Alternatively, inforec can also be the ID string; ## in this case, the values of those of the supported components ## mentioned above that are defined in an available JSON file for this ## ID are automatically inserted. ## (If there is no such file yet then entering the ID string as ## inforec does not make sense.) ##

## For an example how to use the function, ## see Section . ## ## ## <#/GAPDoc> ## DeclareGlobalFunction( "StringOfAtlasTableOfContents" ); ############################################################################# ## ## <#GAPDoc Label="addprivate"> ## After the &AtlasRep; package has been loaded into the &GAP; session, ## one can extend the data which the interface can access by own ## representations and programs. ## The following two variants are supported. ##

## ## ## The additional data files are locally available in some directory. ## Information about the declaration of new groups or about ## additional information such as the character names of representations ## can be provided in an optional JSON format file named ## toc.json in this directory. ## ## ## The data files can be downloaded from the internet. ## Both the list of available data and additional information as in ## the above case are given by either a local JSON format file or ## the URL of a JSON format file. ## This variant requires the user preference ## AtlasRepAccessRemoteFiles ## (see Section ) ## to have the value true. ## ## ##

## In both cases, ## can be ## used to make the private data available to the interface. ## <#/GAPDoc> ## ## It should be noted that a data file is fetched from a server only if ## the local data directories do not contain a file with this name, ## independent of the contents of the files. ## (As a consequence, corrupted files in the local data directories are ## not automatically replaced by correct server files.) ## ############################################################################# ## #F AtlasOfGroupRepresentationsNotifyData(

, [, ] ) #F AtlasOfGroupRepresentationsNotifyData( [, ][, ] ) #F AtlasOfGroupRepresentationsNotifyData( [, ][, ] ) ## ## <#GAPDoc Label="AtlasOfGroupRepresentationsNotifyData"> ## ## AtlasOfGroupRepresentationsNotifyData ## ## ## ## ## ## true if the overview of the additional data can be evaluated and ## if the names of the data files in the extension are compatible ## with the data files that had been available before the call, ## otherwise false. ## ## ## ## The following variants are supported for notifying additional data. ##

## ## Contents of a local directory ## ## The first argument dir must be either a local directory ## (see ) ## or a string denoting the path of a local directory, ## such that the &GAP; object describing this directory can be obtained ## by calling with the argument ## dir; ## in the latter case, dir can be an absolute path or a path ## relative to the user's home directory (starting with a tilde character ## ~) or a path relative to the directory where &GAP; was started. ## The files contained in this directory or in its subdirectories ## (only one level deep) are considered. ## If the directory contains a JSON document in a file with the name ## toc.json then this file gets evaluated; ## its purpose is to provide additional information about the data files. ##

## Calling ## means to evaluate the contents of the directory ## and (if available) of the file toc.json. ##

## Accessing data means to read the locally available data files. ##

## The argument id must be a string. ## It will be used in the identifier components of the records ## that are returned by interface functions (see ## Section ) ## for data contained in the directory dir. ## (Note that the directory name may be different in different &GAP; ## sessions or for different users who want to access the same data, ## whereas the identifier components shall be independent of such ## differences.) ##

## An example of a local extension is the contents of the ## datapkg directory of the &AtlasRep; package. ## This extension gets notified automatically when &AtlasRep; gets loaded. ## For restricting data collections to this extension, ## one can use the identifier "internal". ## ## Local file describing the contents of a local or remote directory ## ## The first argument filename must be the name of a local file ## whose content is a JSON document that lists the available data, ## additional information about these data, ## and an URL from where the data can be downloaded. ## The data format of this file is defined by the JSON schema file ## doc/atlasreptoc_schema.json of the &AtlasRep; package. ##

## Calling ## means to evaluate the contents of the file filename, ## without trying to access the remote data. ## The id is then either given implicitly by the ID component ## of the JSON document or can be given as the second argument. ##

## Downloaded data files are stored in the subdirectory ## dataext/id of the directory that is given by the ## user preference AtlasRepDataDirectory, ## see Section . ##

## Accessing data means to download remote files if necessary but to ## prefer files that are already locally available. ##

## An example of such an extension is the set of permutation ## representations provided by the MFER package ## ; ## due to the file sizes, these representations are not distributed ## together with the MFER package. ## For restricting data collections to this extension, ## one can use the identifier "mfer". ##

## Another example is given by some of the data that belong to the ## CTBlocks package . ## These data are also distributed with that package, ## and notifying the extension in the situation that the ## CTBlocks package is available will make its ## local data available, ## via the component LocalDirectory of the JSON document ## ctblocks.json; ## notifying the extension in the situation that the ## CTBlocks package is not available ## will make the remote files available, ## via the component DataURL of this JSON document. ## For restricting data collections to this extension, ## one can use the identifier "ctblocks". ## ## URL of a file ## ## (This variant works only if the IO package ## is available.) ##

## The first argument url must be the URL of a JSON document ## as in the previous case. ##

## Calling ## in online mode (that is, the user preference ## AtlasRepAccessRemoteFiles has the value true) ## means to download this file and to evaluate it; ## the id is then given implicitly by the ID component ## of the JSON document, ## and the contents of the document gets stored in a file with name ## dataext/id/toc.json, ## relative to the directory given by the value of the user preference ## AtlasRepDataDirectory. ## Also downloaded files for this extension will be stored in the ## directory dataext/id. ##

## Calling ## in offline mode requires that the argument id is ## explicitly given. ## In this case, it is checked whether the dataext subdirectory ## contains a subdirectory with name id; ## if not then false is returned, ## if yes then the contents of this local directory gets notified via the ## first form described above. ##

## Accessing data in online mode means the same as in the case of a ## remote directory. ## Accessing data in offline mode means the same as in the case of a ## local directory. ##

## Examples of such extension are again the data from the packages ## CTBlocks and MFER described ## above, but in the situation that these packages are not loaded, ## and that just the web URLs of their JSON documents are entered which ## describe the contents. ## ## ##

## In all three cases, ## if the optional argument test is given then it must be either ## true or false. ## In the true case, consistency checks are switched on during the ## notification. ## The default for test is false. ##

## The notification of an extension may happen as a side-effect ## when a &GAP; package gets loaded that provides the data in question. ## Besides that, one may collect the notifications of data extensions ## in one's gaprc file (see ## Section ). ## ## ## <#/GAPDoc> ## DeclareGlobalFunction( "AtlasOfGroupRepresentationsNotifyData" ); ############################################################################# ## #F AtlasOfGroupRepresentationsForgetData( ) ## ## <#GAPDoc Label="AtlasOfGroupRepresentationsForgetData"> ## ## ## ## ## If dirid is the identifier of a database extension that has been ## notified with ## ## then ## undoes the notification; ## this means that from then on, the data of this extension cannot be ## accessed anymore in the current session. ## ## ## <#/GAPDoc> ## DeclareGlobalFunction( "AtlasOfGroupRepresentationsForgetData" ); ############################################################################# ## #E atlasrep-2.1.8/gap/bbox.gi0000644000175000017500000010037614410313653013510 0ustar samsam############################################################################# ## #W bbox.gi GAP 4 package AtlasRep Thomas Breuer #W Simon Nickerson ## ## This file contains the implementations of the operations ## for black box programs and straight line decisions. ## ## 1. Functions for black box algorithms ## 2. Functions for straight line decisions ## ############################################################################# ## ## 1. Functions for black box algorithms ## ############################################################################# ## #V BBoxProgramsDefaultType ## BindGlobal( "BBoxProgramsDefaultType", NewType( StraightLineProgramsFamily, IsBBoxProgram and IsAttributeStoringRep and HasLinesOfBBoxProgram ) ); ############################################################################# ## #M Display( ) #M Display( , ) ## InstallMethod( Display, "for a black box program", [ IsBBoxProgram ], function( prog ) local line; for line in LinesOfBBoxProgram( prog ) do Print( line, "\n" ); od; end ); ############################################################################# ## #M PrintObj( ) ## InstallMethod( PrintObj, "for a black box program", [ IsBBoxProgram ], function( prog ) Print( "" ); end ); ############################################################################# ## #M ViewObj( ) ## InstallMethod( ViewObj, "for a black box program", [ IsBBoxProgram ], function( prog ) Print( "" ); end ); ############################################################################# ## #F ScanBBoxProgram( ) ## InstallGlobalFunction( ScanBBoxProgram, function( string ) local keywords, rels, notrel, labels, prog, linenums, lines, linenum, s, filelinenum, line, i, ss, n, k, j, level, iflines, endifline, l, m, result; # Get and check the input. if string = fail then # This is used to simplify other programs. return fail; elif not IsString( string ) then Error( " must be `fail' or a string" ); fi; keywords:= [ "add", "break", "call", "chcl", "chor", "cj", "cjr", "com", "cp", "decr", "div", "echo", "else", "elseif", "endif", "fail", "false", "if", "incr", "inv", "iv", "jmp", "lbl", "mod", "mu", "mul", "nop", "ord", "oup", "pwr", "rand", "return", "set", "sub", "timeout", "true" ]; rels:= [ "eq", "in", "gt", "lt", "geq", "leq", "notin", "noteq" ]; notrel:= function( rel ) local i; i:= Position( rels, rel ); if i = fail then return fail; else return rels[ 9-i ]; fi; end; labels:= []; prog:= []; linenums:= []; lines:= SplitString( string, "\n", "\t" ); linenum:= 1; s:= []; for filelinenum in [ 1 .. Length( lines ) ] do line:= lines[ filelinenum ]; # Remove comments. i:= Position( line, '#' ); if i <> fail then line:= line{ [ 1 .. i-1 ] }; fi; # Split the line at whitespace, omitting empty words. ss:= SplitString( line, " ", " " ); if IsEmpty( ss ) then continue; elif ss[1] = "inp" then # This is in fact not a supported statement. continue; elif ss[ Length( ss ) ] = "&" then # The instruction is continued on the next line(s). Append( s, ss{ [ 1 .. Length( ss ) - 1 ] } ); else # An instruction is complete. Append( s, ss ); if 1 < Number( s, x -> x = "if" ) then Info( InfoBBox, 1, "cannot have more than one 'if' at line ", filelinenum ); return fail; elif not s[1] in keywords then Info( InfoBBox, 1, "invalid keyword '", s[1], "' at line ", filelinenum ); return fail; fi; # Replace strings representing integers by these integers. for i in [ 2 .. Length(s) ] do n:= Int( s[i] ); if n <> fail then s[i]:= n; fi; od; if s[1] = "lbl" then Add( labels, [ s[2], linenum ] ); elif s[1] = "elseif" or s[1] = "else" or s[1] = "endif" then Add( prog, [ "nop" ] ); Add( prog, s ); Add( linenums, 0 ); Add( linenums, filelinenum ); linenum := linenum + 2; elif s[1] = "if" and s[ Length(s) ] <> "then" then # if not ForAll( s, x -> x in keywords or x in rels # or IsInt( x ) or x = "then" # or ForAny( labels, y -> x = y[1] ) # or ( IsString( x ) and Length( x ) = 1 ) ) then # Info( InfoBBox, 1, # "invalid labels in `if' statement at line ", filelinenum ); # return fail; # fi; s[1]:= "_if"; Add( prog, s ); Add( linenums, filelinenum ); linenum:= linenum + 1; else Add( prog, s ); Add( linenums, filelinenum ); linenum:= linenum + 1; fi; s:= []; fi; od; for i in [ 1 .. Length( prog ) ] do k:= Position( prog[i], "jmp" ); if k = fail then k:= Position( prog[i], "call" ); fi; if k <> fail then j:= PositionProperty( labels, x -> x[1] = prog[i][k+1] ); if j = fail then Info( InfoBBox, 1, "label ", prog[i][k+1], " not found at line ", linenums[i] ); return fail; fi; prog[i][k+1]:= labels[j][2]; fi; od; # Preprocess 'if', 'elseif', 'else', 'then'. for i in [ 1 .. Length( prog ) ] do if prog[i][1] = "if" then level := 1; iflines := [ i ]; endifline := 0; for k in [ i+1 .. Length( prog ) ] do if prog[k][1] = "if" then level := level + 1; fi; if prog[k][1] = "endif" then level := level - 1; if level = 0 then Add(iflines, k); endifline := k; break; fi; fi; if level = 1 and prog[k][1] = "else" then Add(iflines, k); fi; if level = 1 and prog[k][1] = "elseif" then Add(iflines, k); fi; od; if endifline = 0 then Info( InfoBBox, 1, "no 'endif' for 'if' at line ", linenums[i] ); return fail; fi; for l in [1 .. Length( iflines ) - 1 ] do k:= iflines[l]; if prog[k][1] = "else" then prog[k][1] := "nop"; else prog[k][1] := "_if"; prog[k][3] := notrel(prog[k][3]); m := Position(prog[k], "then"); if m <> Length(prog[k]) then Info( InfoBBox, 1, "misplaced 'then' at line ", linenums[k] ); return fail; fi; Add(prog[k], "jmp"); Add(prog[k], iflines[l+1]); fi; prog[iflines[l+1]-1] := ["jmp", endifline]; od; prog[endifline] := [ "nop" ]; fi; if prog[i][1] in [ "else", "elseif", "endif" ] then Info( InfoBBox, 1, "unexpected '", prog[i][1], "' at line ", linenums[i] ); return fail; fi; od; result:= rec(); ObjectifyWithAttributes( result, BBoxProgramsDefaultType, LinesOfBBoxProgram, prog ); return rec( program:= result ); end ); ############################################################################# ## #F BBoxPerformInstruction( fullline, ins, G, ans, gpelts, ctr, options ) ## InstallGlobalFunction( BBoxPerformInstruction, function( fullline, ins, G, ans, gpelts, ctr, options ) local toval, tonum, testresult, set, i, o, newins, thenpos, elsepos; tonum:= x -> INT_CHAR( x[1] ) - 64; toval:= function(x) local n; n:= Int( x ); if n = fail then return ans.vars[ tonum( x ) ]; fi; return n; end; if ins[1] = "_if" then thenpos:= Position( ins, "then" ); if thenpos = fail then Info( InfoBBox, 1, "'if' statement must have corresponding 'then' at line ", ctr, "\n" ); return fail; fi; elsepos:= Position( ins, "else" ); if elsepos = fail then elsepos:= Length( ins ) + 1; fi; if ins[3] = "eq" then testresult:= ( toval( ins[2] ) = toval( ins[4] ) ); elif ins[3] = "noteq" then testresult:= ( toval( ins[2] ) <> toval( ins[4] ) ); elif ins[3] = "geq" then testresult:= ( toval( ins[2] ) >= toval( ins[4] ) ); elif ins[3] = "gt" then testresult:= ( toval( ins[2] ) > toval( ins[4] ) ); elif ins[3] = "leq" then testresult:= ( toval( ins[2] ) <= toval( ins[4] ) ); elif ins[3] = "lt" then testresult:= ( toval( ins[2] ) < toval( ins[4] ) ); elif ins[3] = "in" then set:= List( ins{ [ 4 .. thenpos-1 ] }, toval ); testresult:= ( toval( ins[2] ) in set ); elif ins[3] = "notin" then set:= List( ins{ [ 4 .. thenpos-1 ] }, toval ); testresult:= ( not toval( ins[2] ) in set ); else Info( InfoBBox, 1, "syntax error in 'if' statement at line ", ctr, "\n" ); return fail; fi; if testresult then ctr:= BBoxPerformInstruction( fullline, ins{ [ thenpos+1 .. elsepos-1 ] }, G, ans, gpelts, ctr, options ); elif elsepos <= Size( ins ) then newins := List([elsepos+1..Size(ins)], x->ins[x]); ctr:= BBoxPerformInstruction( fullline, ins{ [ elsepos+1 .. Size( ins ) ] }, G, ans, gpelts, ctr, options ); fi; elif ins[1] = "add" then ans.vars[ tonum( ins[4] ) ]:= toval( ins[2] ) + toval( ins[3] ); elif ins[1] = "break" then if options.allowbreaks then Error( "user defined break" ); fi; elif ins[1] = "call" then Add( ans.callstack, ctr ); if 10 < Length( ans.callstack ) then Info( InfoBBox, 1, "call stack overflow" ); return fail; fi; ctr:= ins[2] - 1; # -1 because ctr gets increased by 1 elif ins[1] = "chcl" then ans.result:= true; if not options.classfunction( gpelts[ ins[2] ], ins[3] ) then Info( InfoBBox, 1, "ccl check failed for element ", ins[2] ); ans.result:= false; return false; fi; ans.class:= ans.class + 1; elif ins[1] = "chor" then ans.result:= true; if options.orderfunction( gpelts[ ins[2] ] ) <> ins[3] then Info( InfoBBox, 1, "order check failed: element ", ins[2], " has order ", Order( gpelts[ ins[2] ] ), " not ", ins[3] ); ans.result := false; return false; fi; ans.order:= ans.order + 1; elif ins[1] = "cj" then gpelts[ ins[4] ]:= gpelts[ ins[2] ]^gpelts[ ins[3] ]; ans.conjugate:= ans.conjugate + 1; elif ins[1] = "cjr" then gpelts[ ins[2] ]:= gpelts[ ins[2] ]^gpelts[ ins[3] ]; ans.conjugateinplace:= ans.conjugateinplace + 1; elif ins[1] = "com" then gpelts[ ins[4] ]:= Comm( gpelts[ ins[2] ], gpelts[ ins[3] ] ); ans.commutator:= ans.commutator + 1; elif ins[1] = "cp" then gpelts[ ins[3] ]:= gpelts[ ins[2] ]; elif ins[1] = "decr" then ans.vars[ tonum( ins[2] ) ]:= ans.vars[ tonum( ins[2] ) ] - 1; elif ins[1] = "div" then ans.vars[ tonum( ins[4] ) ]:= Int( toval( ins[2] ) / toval( ins[3] ) ); elif ins[1] = "echo" then if not options.quiet then for i in [ 2 .. Length( ins ) ] do if IsString( ins[i] ) and ins[i][1] = '$' then Print( toval( ins[i]{ [ 2 ] } ), " " ); else Print( ins[i], " " ); fi; od; fi; Print( "\n" ); elif ins[1] = "fail" then Info( InfoBBox, 1, "black box algorithm failed,\n", "#I last line was: ", fullline, "\n", "#I variables: ", ans.vars ); return fail; elif ins[1] = "false" then ans.result:= false; return false; elif ins[1] = "incr" then ans.vars[ tonum( ins[2] ) ]:= ans.vars[ tonum( ins[2] ) ] + 1; elif ins[1] = "iv" or ins[1] = "inv" then gpelts[ ins[3] ]:= gpelts[ ins[2] ]^-1; ans.invert:= ans.invert + 1; elif ins[1] = "jmp" then ctr:= ins[2] - 1; # -1 because ctr gets increased by 1 elif ins[1] = "mod" then ans.vars[ tonum( ins[4] ) ]:= toval( ins[2] ) mod toval( ins[3] ); elif ins[1] = "mu" then gpelts[ ins[4] ]:= gpelts[ ins[2] ] * gpelts[ ins[3] ]; ans.multiply:= ans.multiply + 1; elif ins[1] = "mul" then ans.vars[ tonum( ins[4] ) ]:= toval( ins[2] ) * toval( ins[3] ); elif ins[1] = "nop" then # Do nothing elif ins[1] = "ord" then o:= options.orderfunction( gpelts[ ins[2] ] ); ans.vars[ tonum( ins[3] ) ]:= o; if options.verbose then Print( "#I o(g", ins[2], ") = ", o, "\n" ); fi; ans.order:= ans.order + 1; elif ins[1] = "oup" then ans.gens:= gpelts{ ins{ [ 3 .. 2 + ins[2] ] } }; return false; elif ins[1] = "pwr" then gpelts[ ins[4] ]:= gpelts[ ins[3] ] ^ ( toval( ins[2] ) ); ans.power:= ans.power + 1; elif ins[1] = "rand" then gpelts[ ins[2] ]:= options.randomfunction( G ); ans.random:= ans.random + 1; elif ins[1] = "return" then if IsEmpty( ans.callstack ) then Info( InfoBBox, 1, "call stack empty at line ", ctr ); return fail; fi; ctr:= ans.callstack[ Length( ans.callstack ) ]; # N.B. no -1 Unbind( ans.callstack[ Length( ans.callstack ) ] ); elif ins[1] = "set" then ans.vars[ tonum( ins[2] ) ]:= toval( ins[3] ); elif ins[1] = "sub" then ans.vars[ tonum( ins[4] ) ]:= toval( ins[2] ) - toval( ins[3] ); elif ins[1] = "timeout" then if options.hardtimeout then Info( InfoBBox, 1, "timed out: check group is correct" ); return "timeout"; else Info( InfoBBox, 1, "warning: timed out, continuing"); fi; elif ins[1] = "true" then ans.result:= true; return false; else Info( InfoBBox, 1, "unrecognised command '", ins[1], "' at line ", ctr ); return fail; fi; return ctr; end ); ############################################################################# ## #F RunBBoxProgram( , , , ) ## InstallGlobalFunction( "RunBBoxProgram", function( prog, G, input, options ) local ans, ctr, gpelts, starttime, lines, ins, i; # Set default options. if not IsBound( options.allowbreaks ) then options.allowbreaks:= true; fi; if not IsBound( options.verbose ) then options.verbose:= false; fi; if not IsBound( options.quiet ) then options.quiet:= false; fi; if not IsBound( options.orderfunction ) then options.orderfunction:= Order; fi; if not IsBound( options.hardtimeout ) then options.hardtimeout:= true; fi; if not IsBound( options.classfunction ) then options.classfunction:= function( x, y ) return true; end; fi; if not IsBound( options.randomfunction ) then options.randomfunction:= PseudoRandom; fi; # Initialize the result record. ans:= rec( multiply := 0, invert := 0, power := 0, order := 0, class := 0, random := 0, timetaken := 0, conjugate := 0, conjugateinplace := 0, commutator := 0, vars := [ ], callstack := [ ], ); ctr:= 1; gpelts:= ShallowCopy( input ); starttime:= Runtime(); lines:= LinesOfBBoxProgram( prog ); # Main loop repeat ins:= lines[ctr]; if options.verbose then if ctr < 100 then Print( " " ); fi; if ctr < 10 then Print( " " ); fi; Print( ctr, ". " ); for i in ins do Print( i, " " ); od; Print( "\n" ); fi; ctr:= BBoxPerformInstruction( ins, ins, G, ans, gpelts, ctr, options ); if ctr = fail or ctr = "timeout" then return ctr; elif ctr = false then break; fi; ctr:= ctr + 1; until Length( lines ) < ctr; ans.timetaken:= Runtime() - starttime; return ans; end ); ############################################################################# ## #F ResultOfBBoxProgram( , [, ] ) #F ResultOfBBoxProgram( , [, ] ) ## InstallGlobalFunction( ResultOfBBoxProgram, function( prog, G, options... ) local result; if Length( options ) = 1 and IsRecord( options[1] ) then options:= options[1]; else options:= rec(); fi; if IsList( G ) then # We need the argument list as inputs. result:= RunBBoxProgram( prog, "dummy", G, options ); else # We need the group for creating random elements. result:= RunBBoxProgram( prog, G, [], options ); fi; if result = fail or result = "timeout" then return result; elif IsBound( result.result ) then return result.result; else return result.gens; fi; end ); # blackboxtrials := function(G, filename, numtrials) # local i, prog, options, ans, cost, outputtime; # # prog := prepareblackbox(filename); # options := rec(allowbreaks := false, # verbose := false); # cost := 0; # outputtime := Runtime(); # for i in [1..numtrials] do # repeat # ans := blackbox(G, prog, options); # if ans = fail then # Print("Algorithm failed. Trying again.\n"); # fi; # until not ans = fail; # cost := cost + ans.random; # if Runtime() - outputtime > 5000 then # Print("Trial ", i, "/", numtrials, # ": average cost = ", Int(cost*100/i), "/100\n"); # outputtime := Runtime(); # fi; # od; # # return cost / numtrials; # # end; ############################################################################# ## ## 2. Functions for straight line decisions ## ############################################################################# ## #V StraightLineDecisionsFamily #V StraightLineDecisionsDefaultType ## BindGlobal( "StraightLineDecisionsFamily", NewFamily( "StraightLineDecisionsFamily", IsStraightLineDecision ) ); BindGlobal( "StraightLineDecisionsDefaultType", NewType( StraightLineDecisionsFamily, IsStraightLineDecision and IsAttributeStoringRep and HasLinesOfStraightLineDecision ) ); ############################################################################# ## #F StraightLineDecision( [, ] ) #F StraightLineDecisionNC( [, ] ) ## InstallGlobalFunction( StraightLineDecision, function( arg ) local result; result:= CallFuncList( StraightLineDecisionNC, arg ); if not IsStraightLineDecision( result ) or not IsInternallyConsistent( result ) then result:= fail; fi; return result; end ); InstallGlobalFunction( StraightLineDecisionNC, function( arg ) local lines, nrgens, prog; # Get the arguments. if Length( arg ) = 1 then lines := arg[1]; elif Length( arg ) = 2 then lines := arg[1]; nrgens := arg[2]; else Error( "usage: StraightLineDecisionNC( [, ] )" ); fi; prog:= rec(); ObjectifyWithAttributes( prog, StraightLineDecisionsDefaultType, LinesOfStraightLineDecision, lines ); if IsBound( nrgens ) and IsInt( nrgens ) and 0 <= nrgens then SetNrInputsOfStraightLineDecision( prog, nrgens ); fi; return prog; end ); ############################################################################# ## #M NrInputsOfStraightLineDecision( ) ## ## This is almost equal to the code for straight line programs. ## InstallMethod( NrInputsOfStraightLineDecision, "for a straight line decision", [ IsStraightLineDecision ], function( prog ) local defined, # list of currently assigned positions maxinput, # current maximum of input needed lines, # lines of `prog' len, # length of `lines' adjust, # local function to increase the number line, # one line of the program i, j; # loop over the lines defined:= []; maxinput:= 0; lines:= LinesOfStraightLineDecision( prog ); len:= Length( lines ); if len = 0 then # If the number of inputs is not known then this is not allowed. Error( " must not be empty, or input number must be known" ); fi; adjust:= function( line ) local needed; needed:= Difference( line{ [ 1, 3 .. Length( line ) - 1 ] }, defined ); if not IsEmpty( needed ) then needed:= MaximumList( needed ); if maxinput < needed then maxinput:= needed; fi; fi; end; # Inspect the lines. for i in [ 1 .. len ] do line:= lines[i]; if ForAll( line, IsInt ) then if i = len then adjust( line ); else Error( " contains a line of integers" ); fi; elif Length( line ) = 2 and IsInt( line[2] ) then adjust( line[1] ); AddSet( defined, line[2] ); elif i = len and ForAll( line, IsList ) then for j in line do adjust( j ); od; fi; od; return maxinput; end ); ############################################################################# ## #M ResultOfStraightLineDecision( , [, ] ) ## InstallMethod( ResultOfStraightLineDecision, "for a straight line decision, and a homogeneous list", [ IsStraightLineDecision, IsHomogeneousList ], function( prog, gens ) return ResultOfStraightLineDecision( prog, gens, Order ); end ); InstallMethod( ResultOfStraightLineDecision, "for a straight line decision, a homogeneous list, and a function", [ IsStraightLineDecision, IsHomogeneousList, IsFunction ], function( prog, gens, orderfunc ) local r, # list of intermediate results line, # loop over the lines ord; # result of an order check # Initialize the list of intermediate results. r:= ShallowCopy( gens ); # Initialize the list of intermediate results. r:= ShallowCopy( gens ); # Loop over the program. for line in LinesOfStraightLineDecision( prog ) do if IsInt( line[1] ) then # The line describes a word to be appended. Add( r, ResultOfLineOfStraightLineProgram( line, r ) ); elif line[1] = "Order" then # The line describes an order check. ord:= orderfunc( r[ line[2] ] ); if ord <> line[3] then if not IsInt( ord ) then Info( InfoBBox, 1, "order function returned `", ord, "'" ); fi; return false; fi; else # The line describes a word that shall replace. r[ line[2] ]:= ResultOfLineOfStraightLineProgram( line[1], r ); fi; od; # Return the result. return true; end ); ############################################################################# ## #M StraightLineProgramFromStraightLineDecision( ) ## InstallMethod( StraightLineProgramFromStraightLineDecision, "for a straight line decision", [ IsStraightLineDecision ], function( dec ) local lines, checkpos, maxslot, line, i, result; lines:= ShallowCopy( LinesOfStraightLineDecision( dec ) ); # Find the check lines. checkpos:= []; maxslot:= NrInputsOfStraightLineDecision( dec );; for i in [ 1 .. Length( lines ) ] do line:= lines[i]; if IsInt( line[1] ) then maxslot:= maxslot + 1; elif line[1] = "Order" then Add( checkpos, i ); elif maxslot < line[2] then maxslot:= line[2]; fi; od; # Replace the check lines. result:= []; for i in checkpos do maxslot:= maxslot + 1; line:= lines[i]; lines[i]:= [ [ line[2], line[3] ], maxslot ]; Add( result, [ maxslot, 1 ] ); od; Add( lines, result ); # Return the result. return StraightLineProgramNC( lines, NrInputsOfStraightLineDecision( dec ) ); end ); ############################################################################# ## #M Display( ) #M Display( , ) ## InstallMethod( Display, "for a straight line decision", [ IsStraightLineDecision ], function( dec ) Display( dec, rec() ); end ); InstallOtherMethod( Display, "for a straight line decision, and a record", [ IsStraightLineDecision, IsRecord ], function( prog, record ) local gensnames, listname, PrintLine, i, lines, len, line, j; # Get and check the arguments. if IsBound( record.gensnames ) then gensnames:= record.gensnames; else gensnames:= List( [ 1 .. NrInputsOfStraightLineDecision( prog ) ], i -> Concatenation( "g", String( i ) ) ); fi; listname:= "r"; if IsBound( record.listname ) then listname:= record.listname; fi; PrintLine := function( line ) local j; for j in [ 2, 4 .. Length( line )-2 ] do Print( "r[", line[ j-1 ], "]" ); if line[j] <> 1 then Print( "^", line[j] ); fi; Print( "*" ); od; j:= Length( line ); if 0 < j then Print( "r[", line[ j-1 ], "]" ); if line[j] <> 1 then Print( "^", line[j] ); fi; fi; end; # Print the initialisation. Print( "# input:\n" ); Print( listname, ":= [ " ); if not IsEmpty( gensnames ) then Print( gensnames[1] ); fi; for i in [ 2 .. Length( gensnames ) ] do Print( ", ", gensnames[i] ); od; Print( " ];\n" ); # Loop over the lines. lines:= LinesOfStraightLineDecision( prog ); len:= Length( gensnames ); Print( "# program:\n" ); for i in [ 1 .. Length( lines ) ] do line:= lines[i]; if Length( line ) = 2 and IsList( line[1] ) and IsPosInt( line[2] ) then Print( "r[", line[2], "]:= " ); PrintLine( line[1] ); Print( ";\n" ); if len < line[2] or i = Length( lines ) then len:= line[2]; fi; elif not IsEmpty( line ) and ForAll( line, IsInt ) then len:= len + 1; Print( "r[", len, "]:= " ); PrintLine( line ); Print( ";\n" ); elif line[1] = "Order" then Print( "if Order( r[", line[2], "] ) <> ", line[3], " then", " return false; fi;\n" ); fi; od; Print( "# return value:\ntrue\n" ); end ); ############################################################################# ## #M IsInternallyConsistent( ) ## InstallMethod( IsInternallyConsistent, "for a straight line decision", [ IsStraightLineDecision ], function( prog ) local lines, nrgens, defined, testline, len, i, line; lines:= LinesOfStraightLineDecision( prog ); if not IsList( lines ) then return false; fi; len:= Length( lines ); if HasNrInputsOfStraightLineDecision( prog ) then nrgens:= NrInputsOfStraightLineDecision( prog ); defined:= [ 1 .. nrgens ]; elif len = 0 then return false; else defined:= []; fi; testline:= function( line ) local len, gens; # The external representation of an associative word has even length, len:= Length( line ); if len mod 2 <> 0 then return false; fi; # and the generator numbers are stored at odd positions. gens:= line{ [ 1, 3 .. len-1 ] }; if not ForAll( gens, IsPosInt ) then return false; fi; # If the number of generators is stored then check # that only defined positions are accessed. if IsBound( nrgens ) and not IsSubset( defined, gens ) then return false; else return true; fi; end; for i in [ 1 .. len ] do line:= lines[i]; if not IsList( line ) then return false; elif not IsEmpty( line ) and ForAll( line, IsInt ) then if not testline( line ) or ( i < len and not IsBound( nrgens ) ) then return false; fi; AddSet( defined, Length( defined ) + 1 ); elif Length( line ) = 2 and IsPosInt( line[2] ) then if not ( IsList( line[1] ) and ForAll( line[1], IsInt ) ) then return false; fi; if not testline( line[1] ) then return false; fi; AddSet( defined, line[2] ); elif not ( Length( line ) = 3 and line[1] = "Order" and IsPosInt( line[2] ) and line[2] <= defined and IsPosInt( line[3] ) ) then # The syntax of the line is not correct. return false; fi; od; return true; end ); ############################################################################# ## #M PrintObj( ) ## InstallMethod( PrintObj, "for a straight line decision", [ IsStraightLineDecision ], function( prog ) Print( "StraightLineDecision( ", LinesOfStraightLineDecision( prog ) ); if HasNrInputsOfStraightLineDecision( prog ) then Print( ", ", NrInputsOfStraightLineDecision( prog ) ); fi; Print( " )" ); end ); ############################################################################# ## #M ViewObj( ) ## InstallMethod( ViewObj, "for a straight line decision", [ IsStraightLineDecision ], function( prog ) Print( "" ); end ); ############################################################################# ## #M AsBBoxProgram( ) ## InstallMethod( AsBBoxProgram, "for a straight line program", [ IsStraightLineProgram ], function( prog ) prog:= AtlasStringOfProgram( prog ); # Straight line programs use `iv', black box programs use `inv'. prog:= ReplacedString( prog, "\niv ", "\ninv " ); prog:= ScanBBoxProgram( prog ); if prog = fail then return fail; fi; return prog.program; end ); ############################################################################# ## #M AsBBoxProgram( ) ## InstallMethod( AsBBoxProgram, "for a straight line decision", [ IsStraightLineDecision ], function( dec ) dec:= AtlasStringOfProgram( dec ); # Straight line programs use `iv', black box programs use `inv'. dec:= ReplacedString( dec, "\niv ", "\ninv " ); dec:= ScanBBoxProgram( dec ); if dec = fail then return fail; fi; return dec.program; end ); ############################################################################# ## #M AsStraightLineProgram( ) ## InstallMethod( AsStraightLineProgram, "for a black box program", [ IsBBoxProgram ], function( bbox ) local lines; lines:= JoinStringsWithSeparator( List( LinesOfBBoxProgram( bbox ), l -> JoinStringsWithSeparator( List( l, String ), " " ) ), "\n" ); # Straight line programs use `iv', black box programs use `inv'. lines:= ReplacedString( lines, "\ninv ", "\niv " ); lines:= ScanStraightLineProgram( lines, "string" ); if lines = fail then return fail; fi; return lines.program; end ); ############################################################################# ## #M AsStraightLineDecision( ) ## InstallMethod( AsStraightLineDecision, "for a black box program", [ IsBBoxProgram ], function( bbox ) local lines; lines:= JoinStringsWithSeparator( List( LinesOfBBoxProgram( bbox ), l -> JoinStringsWithSeparator( List( l, String ), " " ) ), "\n" ); # Straight line programs use `iv', black box programs use `inv'. lines:= ReplacedString( lines, "\ninv ", "\niv " ); lines:= ScanStraightLineDecision( lines ); if lines <> fail then return lines.program; fi; end ); ############################################################################# ## #E atlasrep-2.1.8/gap/obsolete.gi0000644000175000017500000000330714410313747014372 0ustar samsam############################################################################# ## #W obsolete.gi GAP 4 package AtlasRep Thomas Breuer ## ## This file contains implementations of global variables ## that had been documented in earlier versions of the AtlasRep package. ## ############################################################################# ## #F AtlasOfGroupRepresentationsTestClassScripts( ... ) #F AtlasOfGroupRepresentationsTestCompatibleMaxes( ... ) #F AtlasOfGroupRepresentationsTestFileHeaders( ... ) #F AtlasOfGroupRepresentationsTestFiles( ... ) #F AtlasOfGroupRepresentationsTestGroupOrders( ... ) #F AtlasOfGroupRepresentationsTestStdCompatibility( ... ) #F AtlasOfGroupRepresentationsTestSubgroupOrders( ... ) #F AtlasOfGroupRepresentationsTestWords( ... ) ## ## These functions are deprecated since version 1.5 of the package. ## InstallGlobalFunction( AtlasOfGroupRepresentationsTestClassScripts, AGR.Test.ClassScripts ); InstallGlobalFunction( AtlasOfGroupRepresentationsTestCompatibleMaxes, AGR.Test.CompatibleMaxes ); InstallGlobalFunction( AtlasOfGroupRepresentationsTestFileHeaders, AGR.Test.FileHeaders ); InstallGlobalFunction( AtlasOfGroupRepresentationsTestFiles, AGR.Test.Files ); InstallGlobalFunction( AtlasOfGroupRepresentationsTestGroupOrders, AGR.Test.GroupOrders ); InstallGlobalFunction( AtlasOfGroupRepresentationsTestStdCompatibility, AGR.Test.StdCompatibility ); InstallGlobalFunction( AtlasOfGroupRepresentationsTestSubgroupOrders, AGR.Test.MaxesOrders ); InstallGlobalFunction( AtlasOfGroupRepresentationsTestWords, AGR.Test.Words ); ############################################################################# ## #E atlasrep-2.1.8/gap/obsolete.gd0000644000175000017500000002301014410313744014353 0ustar samsam############################################################################# ## #W obsolete.gd GAP 4 package AtlasRep Thomas Breuer ## ## This file contains declarations of global variables ## that had been documented in earlier versions of the AtlasRep package. ## ############################################################################# ## #F AGRGNAN( , [, [, [, "all" #F [, ]]]] ) ## ## This function is deprecated since version 1.5 of the package. ## ## Let be a string denoting a GAP group name, ## and be a string denoting the corresponding ATLAS-file name ## used in filenames of the ATLAS of Group Representations. ## The following optional arguments are supported. ## ## 'size': ## the order of the corresponding group, ## ## 'maxessizes': ## a (not necessarily dense) list of orders of the maximal subgroups of ## this group, ## ## 'complete': ## the string '"all"' if the list is known to be ## complete, or the string '"unknown"' if not, ## ## 'compatinfo': ## a list of entries of the form '[ , , , ]' ## meaning that mapping standard generators of standardization ## to the factor group with GAP group name , via the ## natural epimorphism, yields standard generators of standardization ## if is 'true'. ## ## 'AGRGNAN' adds the list of its arguments to the list stored ## in the 'GAPnames' component of 'AtlasOfGroupRepresentationsInfo', ## making the ATLAS data involving ## accessible for the group with name . ## ## An example of a valid call is 'AGRGNAN("A6.2_2","PGL29",360)', ## see also Section . ## BindGlobal( "AGRGNAN", function( arg ) local l; AGR.GNAN( arg[1], arg[2] ); if IsBound( arg[3] ) then AGR.GRS( arg[1], arg[3] ); fi; if IsBound( arg[4] ) then AGR.MXO( arg[1], arg[4] ); fi; if IsBound( arg[5] ) and arg[5] = "all" then AGR.MXN( arg[1], Length( AGR.GAPnamesRec.( arg[1] )[3].sizesMaxes ) ); fi; if IsBound( arg[6] ) then for l in arg[6] do AGR.STDCOMP( arg[1], l ); od; fi; end ); ############################################################################# ## #F AGRGRP( , , ) #F AGRRNG( ... ) #F AGRTOC( , [, ] ) #F AGRTOCEXT( , , , ) ## ## These functions are deprecated since version 1.5 of the package. ## ## These functions were used to create the initial table of contents for the ## server data of the AtlasRep package when the file ## 'atlasprm.g' in the 'gap' directory of the package was read. ## Conversely, encoding the table of contents in terms of calls to 'AGRGRP', ## 'AGRTOC' and 'AGRTOCEXT' was done by 'StringOfAtlasTableOfContents'. ## ## 'AGRGRP' does not make sense anymore since the data format of the ## table of contents was changed in version 1.6 of AtlasRep, ## in order to admit private extensions. ## (Each call of 'AGRGRP' notified the group with name , ## which was related to the simple group with name ## and for which the data on the servers were found in the directory ## with name .) ## ## The other functions can in principle still be used also with ## newer AtlasRep versions, provided that the current file has been read ## in the GAP session. ## ## Each call of 'AGRTOC' notifies an entry to the 'TableOfContents.remote' ## component of the global variable 'AtlasOfGroupRepresentationsInfo'. ## The arguments must be the name of the data type to which ## the entry belongs, the prefix of the data file(s), ## and if given the number of generators, which are then ## located in separate files. ## ## Each call of 'AGRTOCEXT' notifies an entry to the 'maxext' component in ## the record for the group with ATLAS name in the 'GAPnames' ## component of 'AtlasOfGroupRepresentationsInfo'. ## These entries concern straight line programs for computing generators of ## maximal subgroups from information about straight line programs for ## proper factor groups. ## BindGlobal( "AGRRNG", function( arg ) CallFuncList( AGR.RNG, arg ); end ); BindGlobal( "AGRTOC", function( arg ) CallFuncList( AGR.TOC, arg ); end ); BindGlobal( "AGRTOCEXT", function( arg ) CallFuncList( AGR.TOCEXT, arg ); end ); ############################################################################# ## #F AGRParseFilenameFormat( , ) ## BindGlobal( "AGRParseFilenameFormat", function( arg ) CallFuncList( AGR.ParseFilenameFormat, arg ); end ); ############################################################################# ## #F AtlasStraightLineProgram( ... ) ## ## This was the documented name before version 1.3 of the package, ## when no straight line decisions and black box programs were available. ## We keep it for backwards compatibility reasons, ## but leave it undocumented. ## DeclareSynonym( "AtlasStraightLineProgram", AtlasProgram ); ############################################################################# ## #F OneAtlasGeneratingSet( ... ) ## ## This function is deprecated since version 1.3 of the package. ## It was used in earlier versions, ## when 'OneAtlasGeneratingSetInfo' was not yet available. ## BindGlobal( "OneAtlasGeneratingSet", function( arg ) local res; res:= CallFuncList( OneAtlasGeneratingSetInfo, arg ); if res <> fail then res:= AtlasGenerators( res.identifier ); fi; return res; end ); ############################################################################# ## #F AtlasStringOfStraightLineProgram( ... ) ## ## This was the documented name before version 1.3 of the package, ## when no straight line decisions and black box programs were available. ## We keep it for backwards compatibility reasons, ## but leave it undocumented. ## DeclareSynonym( "AtlasStringOfStraightLineProgram", AtlasStringOfProgram ); ############################################################################# ## #F AtlasOfGroupRepresentationsShowUserParameters() #F AtlasOfGroupRepresentationsUserParameters() ## ## 'AtlasOfGroupRepresentationsShowUserParameters' is deprecated since ## version 1.5 of the package, ## when 'AtlasOfGroupRepresentationsUserParameters' was introduced. ## The latter is deprecated since version 1.6 of the package, ## which assumes GAP's user preferences mechanism. ## Thus one should use the general GAP library function ## 'ShowUserPreferences' instead. ## BindGlobal( "AtlasOfGroupRepresentationsShowUserParameters", function() ShowUserPreferences( "AtlasRep" ); end ); BindGlobal( "AtlasOfGroupRepresentationsUserParameters", function() local str; str:= "Please call 'ShowUserPreferences( \"AtlasRep\" );' "; if IsBoundGlobal( "BrowseUserPreferences" ) then Append( str, "or 'BrowseUserPreferences( \"AtlasRep\" );' " ); fi; Append( str, "for showing the user preferences that belong to " ); Append( str, "the AtlasRep package." ); return str; end ); ############################################################################# ## #F AtlasOfGroupRepresentationsTestClassScripts( ... ) #F AtlasOfGroupRepresentationsTestCompatibleMaxes( ... ) #F AtlasOfGroupRepresentationsTestFileHeaders( ... ) #F AtlasOfGroupRepresentationsTestFiles( ... ) #F AtlasOfGroupRepresentationsTestGroupOrders( ... ) #F AtlasOfGroupRepresentationsTestStdCompatibility( ... ) #F AtlasOfGroupRepresentationsTestSubgroupOrders( ... ) #F AtlasOfGroupRepresentationsTestWords( ... ) ## ## These functions are deprecated since version 1.5 of the package. ## DeclareGlobalFunction( "AtlasOfGroupRepresentationsTestClassScripts" ); DeclareGlobalFunction( "AtlasOfGroupRepresentationsTestCompatibleMaxes" ); DeclareGlobalFunction( "AtlasOfGroupRepresentationsTestFileHeaders" ); DeclareGlobalFunction( "AtlasOfGroupRepresentationsTestFiles" ); DeclareGlobalFunction( "AtlasOfGroupRepresentationsTestGroupOrders" ); DeclareGlobalFunction( "AtlasOfGroupRepresentationsTestStdCompatibility" ); DeclareGlobalFunction( "AtlasOfGroupRepresentationsTestSubgroupOrders" ); DeclareGlobalFunction( "AtlasOfGroupRepresentationsTestWords" ); ############################################################################# ## #F AtlasOfGroupRepresentationsNotifyPrivateDirectory( ... ) #F AtlasOfGroupRepresentationsForgetPrivateDirectory( ... ) ## ## These function names are deprecated since version 2.0 of the package. ## DeclareSynonym( "AtlasOfGroupRepresentationsNotifyPrivateDirectory", AtlasOfGroupRepresentationsNotifyData ); DeclareSynonym( "AtlasOfGroupRepresentationsForgetPrivateDirectory", AtlasOfGroupRepresentationsForgetData ); ############################################################################# ## #F ReloadAtlasTableOfContents( ) #F ReplaceAtlasTableOfContents( ) #F StoreAtlasTableOfContents( ) ## ## These functions are no longer available since version 2.0 of the package. ## BindGlobal( "ReloadAtlasTableOfContents", function( arg ) Error( "the functions ReloadAtlasTableOfContents, ", "ReplaceAtlasTableOfContents, and ", "StoreAtlasTableOfContents are no longer supported" ); end ); DeclareSynonym( "ReplaceAtlasTableOfContents", ReloadAtlasTableOfContents ); DeclareSynonym( "StoreAtlasTableOfContents", ReloadAtlasTableOfContents ); ############################################################################# ## #E atlasrep-2.1.8/gap/mindeg.gi0000644000175000017500000005242014410327164014017 0ustar samsam############################################################################# ## #W mindeg.gi GAP 4 package AtlasRep Thomas Breuer ## ## This file contains implementations for dealing with information about ## permutation and matrix representations of minimal degree ## for selected groups. ## ############################################################################# ## #F MinimalRepresentationInfo( , NrMovedPoints[, ] ) #F MinimalRepresentationInfo( , Characteristic,

[, ] ) #F MinimalRepresentationInfo( , Size, [, ] ) ## InstallGlobalFunction( MinimalRepresentationInfo, function( arg ) local grpname, info, conditions, known, result, mode, p, ordtbl, minpos, faith, Norder, modtbl, min, q, pos, cont; if Length( arg ) = 0 then Error( "usage: ", "MinimalRepresentationInfo( [, ] )" ); fi; grpname:= arg[1]; if not IsString( grpname ) then return fail; fi; if IsBound( MinimalRepresentationInfoData.( grpname ) ) then info:= MinimalRepresentationInfoData.( grpname ); else info:= fail; fi; conditions:= arg{ [ 2 .. Length( arg ) ] }; known:= fail; result:= fail; mode:= "cache"; if not IsEmpty( conditions ) and IsString( conditions[ Length( conditions ) ] ) then mode:= conditions[ Length( conditions ) ]; Unbind( conditions[ Length( conditions ) ] ); fi; if conditions = [ NrMovedPoints ] then # MinimalRepresentationInfo( , NrMovedPoints ) if info <> fail and IsBound( info.NrMovedPoints ) then known:= info.NrMovedPoints; fi; if mode = "lookup" or ( mode = "cache" and known <> fail ) then return known; fi; if IsBound( GAPInfo.PackagesLoaded.ctbllib ) then # This works only if the package `CTblLib' is available. if mode = "recompute" then result:= MinimalPermutationRepresentationInfo( grpname, "all" ); #T currently gets stuck at "B", because of missing fusion from "(2^2xF4(2)):2" elif known = fail then result:= MinimalPermutationRepresentationInfo( grpname, "one" ); fi; fi; if result = fail or IsEmpty( result.source ) then # We cannot compute the value, take the stored value. result:= known; else # Store the computed value, and compare it with the known one. SetMinimalRepresentationInfo( grpname, "NrMovedPoints", result.value, result.source ); fi; elif Length( conditions ) = 2 and conditions[1] = Characteristic then # MinimalRepresentationInfo( , Characteristic,

) p:= conditions[2]; if info <> fail and IsBound( info.Characteristic ) and IsBound( info.Characteristic.( p ) ) then known:= info.Characteristic.( p ); fi; if mode = "lookup" or ( mode = "cache" and known <> fail ) then return known; fi; if known = fail or mode = "recompute" then # For groups with a unique minimal normal subgroup # whose order is not a power of the characteristic, # a faithful matrix representation of minimal degree is irreducible. # (Consider a faithful reducible representation $\rho$ in block # diagonal form. # If the restriction to the minimal normal subgroup $N$ is trivial # on the two factors then the restriction of $\rho$ to $N$ is a group # of triangular matrices, i.e., a $p$-group.) ordtbl:= CharacterTable( grpname ); if ordtbl <> fail then minpos:= ClassPositionsOfMinimalNormalSubgroups( ordtbl ); if Length( minpos ) = 1 then if p = 0 or Size( ordtbl ) mod p <> 0 then # Consider the ordinary character table. # Take the smallest degree of a faithful irreducible character. faith:= Filtered( Irr( ordtbl ), x -> Length( ClassPositionsOfKernel( x ) ) = 1 ); result:= rec( value:= Minimum( List( faith, x -> x[1] ) ), source:= [ "computed (char. table)" ] ); elif IsPrimeInt( p ) then Norder:= Sum( SizesConjugacyClasses( ordtbl ){ minpos[1] } ); if not ( IsPrimePowerInt( Norder ) and Norder mod p = 0 ) then # Consider the Brauer table. modtbl:= ordtbl mod p; if modtbl <> fail then faith:= Filtered( Irr( modtbl ), x -> Length( ClassPositionsOfKernel( x ) ) = 1 ); result:= rec( value:= Minimum( List( faith, x -> x[1] ) ), source:= [ "computed (char. table)" ] ); fi; fi; fi; else # If the minimal nontrivial irreducible representation is # faithful then this irreducible is minimal. if p = 0 or Size( ordtbl ) mod p <> 0 then faith:= Filtered( Irr( ordtbl ), x -> Length( ClassPositionsOfKernel( x ) ) = 1 ); if not IsEmpty( faith ) then min:= Minimum( List( faith, x -> x[1] ) ); if ForAll( Irr( ordtbl ), x -> x[1] >= min or Set( x ) = [ 1 ] ) then result:= rec( value:= min, source:= [ "computed (char. table)" ] ); fi; fi; elif IsPrimeInt( p ) then minpos:= List( ClassPositionsOfNormalSubgroups( ordtbl ), x -> Sum( SizesConjugacyClasses( ordtbl ){ x } ) ); if not ForAny( minpos, x -> IsPrimePowerInt( x ) and x mod p = 0 ) then # Consider the Brauer table. modtbl:= ordtbl mod p; if modtbl <> fail then faith:= Filtered( Irr( modtbl ), x -> Length( ClassPositionsOfKernel( x ) ) = 1 ); if not IsEmpty( faith ) then min:= Minimum( List( faith, x -> x[1] ) ); if ForAll( Irr( modtbl ), x -> x[1] >= min or Set( x ) = [ 1 ] ) then result:= rec( value:= min, source:= [ "computed (char. table)" ] ); fi; fi; fi; fi; fi; fi; fi; fi; if result = fail then # We cannot compute the value, take the stored value. result:= known; else SetMinimalRepresentationInfo( grpname, [ "Characteristic", p ], result.value, result.source ); fi; elif Length( conditions ) = 2 and conditions[1] = Size then # MinimalRepresentationInfo( , Size, ) q:= conditions[2]; p:= SmallestRootInt( q ); if info <> fail and IsBound( info.CharacteristicAndSize ) and IsBound( info.CharacteristicAndSize.( p ) ) then info:= info.CharacteristicAndSize.( p ); pos:= Position( info.sizes, q ); if pos <> fail then known:= rec( value:= info.dimensions[ pos ], source:= info.sources[ pos ] ); elif info.complete.value then cont:= Filtered( [ 1 .. Length( info.sizes ) ], i -> LogInt( q, p ) mod LogInt( info.sizes[i], p ) = 0 ); known:= rec( value:= Minimum( info.dimensions{ cont } ), source:= [ "computed (stored data)" ] ); fi; fi; if mode = "lookup" or ( mode = "cache" and known <> fail ) then return known; fi; if known = fail or mode = "recompute" then # For groups with a unique minimal normal subgroup # whose order is not a power of the characteristic, # a faithful matrix representation of minimal degree is irreducible # (over a given field). ordtbl:= CharacterTable( grpname ); if IsPosInt( q ) and IsPrimePowerInt( q ) and ordtbl <> fail then minpos:= ClassPositionsOfMinimalNormalSubgroups( ordtbl ); if Length( minpos ) = 1 then if Size( ordtbl ) mod p <> 0 then # Consider the ordinary character table. # Take the smallest degree of a faithful irreducible character, # over the given field. faith:= Filtered( Irr( ordtbl ), x -> Length( ClassPositionsOfKernel( x ) ) = 1 ); faith:= RealizableBrauerCharacters( faith, q ); result:= rec( value:= Minimum( List( faith, x -> x[1] ) ), source:= [ "computed (char. table)" ] ); else Norder:= Sum( SizesConjugacyClasses( ordtbl ){ minpos[1] } ); if not ( IsPrimePowerInt( Norder ) and Norder mod p = 0 ) then # Consider the Brauer table. modtbl:= ordtbl mod p; if modtbl <> fail then faith:= Filtered( Irr( modtbl ), x -> Length( ClassPositionsOfKernel( x ) ) = 1 ); faith:= RealizableBrauerCharacters( faith, q ); if faith <> fail then result:= rec( value:= Minimum( List( faith, x -> x[1] ) ), source:= [ "computed (char. table)" ] ); fi; fi; fi; fi; fi; fi; fi; if result = fail then # We cannot compute the value, take the stored value. result:= known; else SetMinimalRepresentationInfo( grpname, [ "Size", q ], result.value, result.source ); fi; fi; return result; end ); ############################################################################# ## #F SetMinimalRepresentationInfo( , , , ) ## InstallGlobalFunction( SetMinimalRepresentationInfo, function( grpname, op, value, source ) local compare, info, p, q, pos; compare:= function( value, source, valuestored, sourcestored, type ) if value <> valuestored then Print( "#E ", type, ": incompatible minimum for `", grpname, "'\n" ); return false; fi; UniteSet( sourcestored, source ); return true; end; if IsString( source ) then source:= [ source ]; fi; if not IsBound( MinimalRepresentationInfoData.( grpname ) ) then MinimalRepresentationInfoData.( grpname ):= rec(); fi; info:= MinimalRepresentationInfoData.( grpname ); if op = "NrMovedPoints" then if IsBound( info.NrMovedPoints ) then info:= info.NrMovedPoints; return compare( value, source, info.value, info.source, "NrMovedPoints" ); else info.NrMovedPoints:= rec( value:= value, source:= source ); return true; fi; elif IsList( op ) and Length( op ) = 2 and op[1] = "Characteristic" and ( op[2] = 0 or IsPrimeInt( op[2] ) ) then if not IsBound( info.Characteristic ) then info.Characteristic:= rec(); fi; info:= info.Characteristic; p:= String( op[2] ); if IsBound( info.( p ) ) then info:= info.( p ); return compare( value, source, info.value, info.source, "Characteristic" ); else info.( p ):= rec( value:= value, source:= source ); return true; fi; elif IsList( op ) and Length( op ) = 3 and op[1] = "Characteristic" and IsPrimeInt( op[2] ) and op[3] = "complete" then if not IsBound( info.CharacteristicAndSize ) then info.CharacteristicAndSize:= rec(); fi; info:= info.CharacteristicAndSize; p:= String( op[2] ); if not IsBound( info.( p ) ) then info.( p ):= rec( sizes:= [], dimensions:= [], sources:= [] ); fi; info.( p ).complete:= rec( value:= value, source:= source ); return true; elif IsList( op ) and Length( op ) = 2 and op[1] = "Size" and IsInt( op[2] ) and IsPrimePowerInt( op[2] ) then if not IsBound( info.CharacteristicAndSize ) then info.CharacteristicAndSize:= rec(); fi; info:= info.CharacteristicAndSize; q:= op[2]; p:= String( SmallestRootInt( q ) ); if not IsBound( info.( p ) ) then info.( p ):= rec( sizes:= [], dimensions:= [], sources:= [], complete:= rec( value:= false, source:= "" ) ); fi; info:= info.( p ); pos:= Position( info.sizes, q ); if pos <> fail then # Compare the stored and the computed value. return compare( value, source, info.dimensions[ pos ], info.sources[ pos ], "Size" ); elif ForAll( [ 1 .. Length( info.sizes ) ], i -> not ( q = info.sizes[i] ^ LogInt( q, info.sizes[i] ) and info.dimensions[i] = value ) ) then Add( info.sizes, q ); Add( info.dimensions, value ); Add( info.sources, source ); return true; fi; else Error( "do not known how to store this info: , " ); fi; end ); ############################################################################# ## #F ComputedMinimalRepresentationInfo() ## InstallGlobalFunction( ComputedMinimalRepresentationInfo, function() local oldvalue, info, grpname, ordtbl, size, p, modtbl, sizes, q, r, entry, newvalue, diff, comp, char; # Save the stored list. oldvalue:= MinimalRepresentationInfoData; MakeReadWriteGlobal( "MinimalRepresentationInfoData" ); MinimalRepresentationInfoData:= rec(); # Add non-computed data. for entry in Filtered( oldvalue.datalist, e -> e[4]{ [ 1 .. 4 ] } <> "comp" ) do SetMinimalRepresentationInfo( entry[1], entry[2], entry[3], [ entry[4] ] ); od; # Recompute the data. for info in AtlasOfGroupRepresentationsInfo.GAPnames do grpname:= info[1]; MinimalRepresentationInfo( grpname, NrMovedPoints, "recompute" ); ordtbl:= CharacterTable( grpname ); MinimalRepresentationInfo( grpname, Characteristic, 0, "recompute" ); if IsBound( info[3].size ) then size:= info[3].size; for p in PrimeDivisors( size ) do MinimalRepresentationInfo( grpname, Characteristic, p, "recompute" ); # If O_p is nontrivial then the Brauer table belongs to a factor. if ordtbl <> fail and ClassPositionsOfPCore( ordtbl, p ) = [ 1 ] then modtbl:= ordtbl mod p; if modtbl <> fail then sizes:= Set( List( Irr( modtbl ), phi -> SizeOfFieldOfDefinition( phi, p ) ) ); for q in Filtered( sizes, IsInt ) do MinimalRepresentationInfo( grpname, Size, q, "recompute" ); od; if IsBound( MinimalRepresentationInfoData.( grpname ) ) then r:= MinimalRepresentationInfoData.( grpname ); if IsBound( r.CharacteristicAndSize ) then r:= r.CharacteristicAndSize; if not fail in sizes then SetMinimalRepresentationInfo( grpname, [ "Characteristic", p, "complete" ], true, [ "computed (char. table)" ] ); fi; fi; fi; fi; fi; od; fi; od; # Print information about differences. newvalue:= MinimalRepresentationInfoData; newvalue.datalist:= oldvalue.datalist; diff:= Difference( RecNames( oldvalue ), RecNames( newvalue ) ); if not IsEmpty( diff ) then Print( "#E missing min. repr. components:\n", diff, "\n" ); fi; diff:= Intersection( Difference( RecNames( newvalue ), RecNames( oldvalue ) ), List( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[1] ) ); if not IsEmpty( diff ) then Print( "#I new min. repr. components:\n", diff, "\n" ); fi; for comp in Intersection( RecNames( newvalue ), RecNames( oldvalue ) ) do if oldvalue.( comp ) <> newvalue.( comp ) then Print( "#I min. repr. differences for ", comp, "\n" ); if IsBound( oldvalue.( comp ).NrMovedPoints ) and IsBound( newvalue.( comp ).NrMovedPoints ) and oldvalue.( comp ).NrMovedPoints.source <> newvalue.( comp ).NrMovedPoints.source then Print( "#I (different `source' components for NrMovedPoints:\n", "#I ", oldvalue.( comp ).NrMovedPoints.source, "\n", "#I -> ", newvalue.( comp ).NrMovedPoints.source, ")\n" ); fi; if IsBound( oldvalue.( comp ).Characteristic ) and IsBound( newvalue.( comp ).Characteristic ) then for char in Intersection( RecNames( oldvalue.( comp ).Characteristic ), RecNames( newvalue.( comp ).Characteristic ) ) do if oldvalue.( comp ).Characteristic.( char ).source <> newvalue.( comp ).Characteristic.( char ).source then Print( "#I (different `source' components for characteristic ", char, ":\n", "#I ", oldvalue.( comp ).Characteristic.( char ).source, "\n#I -> ", newvalue.( comp ).Characteristic.( char ).source, ")\n" ); fi; od; fi; fi; od; # Reinstall the old value. MinimalRepresentationInfoData:= oldvalue; MakeReadOnlyGlobal( "MinimalRepresentationInfoData" ); # Return the new value. return newvalue; end ); ############################################################################# ## #F StringOfMinimalRepresentationInfoData( ) ## InstallGlobalFunction( StringOfMinimalRepresentationInfoData, function( record ) local lines, grpname, info, src, infoc, p, i, result, line; lines:= []; for grpname in Intersection( RecNames( record ), List( AtlasOfGroupRepresentationsInfo.GAPnames, x -> x[1] ) ) do info:= record.( grpname ); if IsBound( info.NrMovedPoints ) then for src in info.NrMovedPoints.source do Add( lines, [ src{ [ 1 .. 4 ] } = "comp", Concatenation( "[\"", grpname, "\",\"NrMovedPoints\",", String( info.NrMovedPoints.value ), ",\"", src, "\"],\n" ) ] ); od; fi; if IsBound( info.Characteristic ) then infoc:= info.Characteristic; for p in List( Set( List( RecNames( infoc ), Int ) ), String ) do for src in infoc.( p ).source do Add( lines, [ src{ [ 1 .. 4 ] } = "comp", Concatenation( "[\"", grpname, "\",[\"Characteristic\",", String( p ), "],", String( infoc.( p ).value ), ",\"", src, "\"],\n" ) ] ); od; od; fi; if IsBound( info.CharacteristicAndSize ) then infoc:= info.CharacteristicAndSize; for p in List( Set( List( RecNames( infoc ), Int ) ), String ) do for i in [ 1 .. Length( infoc.( p ).sizes ) ] do for src in infoc.( p ).sources[i] do Add( lines, [ src{ [ 1 .. 4 ] } = "comp", Concatenation( "[\"", grpname, "\",[\"Size\",", String( infoc.( p ).sizes[i] ), "],", String( infoc.( p ).dimensions[i] ), ",\"", src, "\"],\n" ) ] ); od; od; if infoc.( p ).complete.value then for src in infoc.( p ).complete.source do Add( lines, [ src{ [ 1 .. 4 ] } = "comp", Concatenation( "[\"", grpname, "\",[\"Characteristic\",", String( p ), ",\"complete\"],true,\"", src, "\"],\n" ) ] ); od; fi; od; fi; od; result:= "\nMinimalRepresentationInfoData.datalist:= [\n"; Append( result, "# non-computed values\n" ); for line in List( Filtered( lines, l -> not l[1] ), l -> l[2] ) do Append( result, line ); od; Append( result, "\n" ); Append( result, "# computed values\n" ); for line in List( Filtered( lines, l -> l[1] ), l -> l[2] ) do Append( result, line ); od; Append( result, "];;\n\n" ); Append( result, "for entry in MinimalRepresentationInfoData.datalist do\n" ); Append( result, " CallFuncList( SetMinimalRepresentationInfo, entry );\n" ); Append( result, "od;\n" ); return result; end ); ############################################################################# ## #E atlasrep-2.1.8/gap/access.gi0000644000175000017500000034017214467512144014027 0ustar samsam############################################################################# ## #W access.gi GAP 4 package AtlasRep Thomas Breuer ## ## This file contains functions for accessing data from the ATLAS of Group ## Representations. ## ############################################################################# ## #F AGR.InfoRead( , , ... ) ## AGR.InfoRead:= function( arg ) local str; if UserPreference( "AtlasRep", "DebugFileLoading" ) = true then for str in arg do Print( str ); od; fi; end; ############################################################################# ## #F AGR.StringFile( ) ## ## In unfortunate cases, files may contain line breaks of the form "\r\n" ## instead of "\n". ## 'Read' would recognize this situation, and would silently replace these ## line breaks, but 'StringFile' keeps the file contents. ## Therefore we remove the '\r' characters. ## AGR.StringFile:= function( filename ) local str; AGR.InfoRead( "#I reading `", filename, "' started\n" ); str:= StringFile( filename ); AGR.InfoRead( "#I reading `", filename, "' done\n" ); if IsString( str ) then str:= ReplacedString( str, "\r", "" ); fi; return str; end; ############################################################################# ## #F AGR.ExtensionInfoCharacterTable #F AGR.HasExtensionInfoCharacterTable #F AGR.LibInfoCharacterTable ## ## If the CTblLib package is not available then we cannot use these ## functions. ## if IsBound( ExtensionInfoCharacterTable ) then AGR.ExtensionInfoCharacterTable:= ExtensionInfoCharacterTable; AGR.HasExtensionInfoCharacterTable:= HasExtensionInfoCharacterTable; AGR.LibInfoCharacterTable:= LibInfoCharacterTable; fi; ############################################################################# ## #F AGR.IsLowerAlphaOrDigitChar( ) ## AGR.IsLowerAlphaOrDigitChar:= char -> IsLowerAlphaChar( char ) or IsDigitChar( char ); ############################################################################# ## #F AGR_ChecksumFits( , ) ## BindGlobal( "AGR_ChecksumFits", function( string, checksum ) if checksum = fail then # We cannot check anything. return true; elif IsString( checksum ) then # This is a 'SHA256' format string. return checksum = ValueGlobal( "HexSHA256" )( string ); elif IsInt( checksum ) then # This is a 'CrcString' value. return checksum = CrcString( string ); else Error( " must be a string or an integer" ); fi; end ); ############################################################################# ## ## If the IO package is not available then the following assignments have ## the effect that no warnings about unbound variables are printed when this ## file gets read. ## if not IsBound( IO_mkdir ) then IO_mkdir:= "dummy"; fi; if not IsBound( IO_stat ) then IO_stat:= "dummy"; fi; if not IsBound( IO_chmod ) then IO_chmod:= "dummy"; fi; ############################################################################# ## #F AtlasOfGroupRepresentationsTransferFile( , , ) ## ## This function encapsulates the access to the remote file at the address ## . ##

## If the access failed then false is returned, otherwise ## either the data are written to the local file with filename ## localpath (if this is a string and the user preference ## AtlasRepDataDirectory is nonempty), ## or a string with the contents of the file is returned. ## BindGlobal( "AtlasOfGroupRepresentationsTransferFile", function( url, localpath, crc ) local savetofile, pref, result, str, out; # Save the contents of the target file to a local file? # (The first two conditions mean that we *want* to avoid saving, # the third deals with the situation that the intended path does not # exist, probably due to missing write permissions.) savetofile:= not ( localpath = fail or IsEmpty( UserPreference( "AtlasRep", "AtlasRepDataDirectory" ) ) or not IsWritableFile( localpath{ [ 1 .. Last( Positions( localpath, '/' ) ) - 1 ] } ) ); Info( InfoAtlasRep, 2, "calling 'Download' with url '", url, "'" ); if savetofile then result:= Download( url, rec( target:= localpath ) ); elif EndsWith( url, ".gz" ) then # We can only download the compressed file and then load it. if not IsBound( AGR.TmpDir ) then AGR.TmpDir:= DirectoryTemporary(); fi; if AGR.TmpDir = fail then return false; fi; localpath:= Filename( AGR.TmpDir, "currentfile" ); result:= Download( url, rec( target:= localpath ) ); if result.success <> true then Info( InfoAtlasRep, 2, "Download failed" ); RemoveFile( localpath ); return false; fi; # Uncompress and load the contents. str:= StringFile( localpath ); RemoveFile( localpath ); if not AGR_ChecksumFits( str, crc ) then Info( InfoWarning, 1, "download of file '", url, "' does not yield a string with the expected crc value '", crc, "'" ); return false; fi; return str; else # Transfer the file into the GAP session. result:= Download( url, rec() ); fi; if result.success <> true then Info( InfoAtlasRep, 2, "Download failed with message\n#I ", result.error ); if savetofile and IsExistingFile( localpath ) then # This should not happen, 'Download' should have removed the file. if RemoveFile( localpath ) <> true then Error( "cannot remove corruped file '", localpath, "'" ); fi; fi; elif savetofile and not AGR_ChecksumFits( StringFile( localpath ), crc ) then Info( InfoWarning, 1, "download of file '", url, "' to '", localpath, "' does not yield a file with the expected crc value '", crc, "'" ); if RemoveFile( localpath ) <> true then Error( "cannot remove corruped file '", localpath, "'" ); fi; elif not savetofile and not AGR_ChecksumFits( result.result, crc ) then Info( InfoWarning, 1, "download of file '", url, "' does not yield a string with the expected crc value '", crc, "'" ); elif savetofile then # The file has been downloaded and stored and seems to be o.k. return true; else # The contents has been downloaded and seems to be o.k. return result.result; fi; return false; end ); ############################################################################# ## #F AGR.AccessFilesLocation( , , , ) ## AGR.AccessFilesLocation:= function( files, type, replace, compressed ) #T type is not used at all! local names, pref, pair, dirname, filename, datadirs, info, entry, prefjson, name, namegz; names:= []; pref:= UserPreference( "AtlasRep", "AtlasRepDataDirectory" ); if pref <> "" and not EndsWith( pref, "/" ) then pref:= Concatenation( pref, "/" ); fi; for pair in files do dirname:= pair[1]; filename:= pair[2]; if dirname in [ "datagens", "dataword" ] then datadirs:= [ Directory( Concatenation( pref, dirname ) ) ]; else datadirs:= fail; for info in AtlasOfGroupRepresentationsInfo.notified do if dirname = info.ID then if StartsWith( info.DataURL, "http" ) then # local directory of a remote data extension datadirs:= [ Directory( Concatenation( pref, "dataext/", info.ID ) ) ]; else # local data extension datadirs:= [ Directory( info.DataURL ) ]; entry:= First( AtlasOfGroupRepresentationsInfo.filenames, x -> x[1] = filename ); if entry = fail then Error( "do not know about " ); fi; filename:= entry[2]; fi; break; fi; od; if datadirs = fail then Error( "no data extension with identifier '", dirname, "'" ); fi; fi; if replace <> fail then filename:= ReplacedString( filename, replace[1], replace[2] ); fi; # Hack/experimental: # If wanted then switch to a JSON format alternative of # characteristic zero matrices (supported only for "datagens"). if dirname = "datagens" and ( PositionSublist( filename, "-Ar" ) <> fail or PositionSublist( filename, "-Zr" ) <> fail ) then prefjson:= UserPreference( "AtlasRep", "AtlasRepJsonFilesAddresses" ); if prefjson <> fail then # Use Json format files of characteristic zero # matrix representations instead of the GAP format files. datadirs:= [ Directory( prefjson[2] ) ]; filename:= ReplacedString( filename, ".g", ".json" ); fi; fi; # There may be an uncompressed or a compressed version. # If both are available then prefer the uncompressed version. # Take the compressed version only if the program 'gunzip' # is available. name:= Filename( datadirs, filename ); if name = fail or not IsReadableFile( name ) then if compressed and Filename( DirectoriesSystemPrograms(), "gunzip" ) <> fail then namegz:= Filename( datadirs, Concatenation( filename, ".gz" ) ); if namegz = fail then # No version is available yet. Add( names, Filename( datadirs[1], filename ) ); else Add( names, namegz ); fi; else # No version is available yet. Add( names, Filename( datadirs[1], filename ) ); fi; else Add( names, name ); fi; od; return names; end; ############################################################################# ## #F AGR.AccessFilesFetch( , , #F , , ) ## ## We assume that the local file is not yet available, ## and that we have to download the file. ## ## is the local path where the file shall be stored if local ## directories are writable (otherwise the content just gets downloaded), ## is the name part of the file in question. ## is one of "datagens", "dataword", or a private id. ## is a type record. ## is 'true' or 'false'. ## is either the expected crc value of the file or 'fail'. ## ## The function returns 'false' if the access failed, ## 'true' if the remote file was copied to a local file, ## and a string containing the contents of the file otherwise. ## AGR.AccessFilesFetch:= function( filepath, filename, dirname, type, compressed, crc ) local result, iscompressed, info, datadirs, pref, url, pos, gzip, gunzip; # Try to fetch the remote file. result:= fail; iscompressed:= false; if dirname in [ "datagens", "dataword" ] then # This is an 'official' file. dirname:= "core"; fi; # The domain is described by the 'notified' list. # We are in the case of a remote extension. datadirs:= fail; for info in AtlasOfGroupRepresentationsInfo.notified do if dirname = info.ID then if not IsBound( info.data ) then # This should happen only for pure local extension, Error( "non-available file of a local extension?" ); fi; # Fetch the file if possible. if EndsWith( filepath, ".json" ) and EndsWith( filename, ".g" ) then # Fetch the file from the address given by the user preference # 'AtlasRepJsonFilesAddresses'. filename:= filepath{ [ Last( Positions( filepath, '/' ) )+1 .. Length( filepath ) ] }; crc:= fail; pref:= UserPreference( "AtlasRep", "AtlasRepJsonFilesAddresses" ); url:= pref[1]; else # Use the standard addresses. url:= info.DataURL; fi; if not EndsWith( url, "/" ) then url:= Concatenation( url, "/" ); fi; url:= Concatenation( url, filename ); # First look for an uncompressed file. result:= AtlasOfGroupRepresentationsTransferFile( url, filepath, crc ); # In case of private MeatAxe text files # and if 'gunzip' is available, # look for a compressed version of the file. # (This is not supported for "core".) if result = false and compressed and dirname <> "core" then gunzip:= Filename( DirectoriesSystemPrograms(), "gunzip" ); if gunzip <> fail and not IsExecutableFile( gunzip ) then gunzip:= fail; fi; if gunzip <> fail then result:= AtlasOfGroupRepresentationsTransferFile( Concatenation( url, ".gz" ), Concatenation( filepath, ".gz" ), fail ); # If the file has been stored locally then it is compressed. # If the contents is stored in 'result' then it is *uncompressed*. if result = true then iscompressed:= true; fi; fi; fi; if result = false then Info( InfoAtlasRep, 1, "failed to transfer file '", url, "'" ); return false; fi; break; fi; od; if dirname <> info.ID then Error( "no data extension with identifier '", dirname, "'" ); fi; if result = true then # The contents has just been stored in a local file. # For MeatAxe text files, perform postprocessing: # If wanted and if the file is not yet compressed then compress it. if compressed and ( iscompressed = false ) and type[1] in [ "perm", "matff" ] and UserPreference( "AtlasRep", "CompressDownloadedMeatAxeFiles" ) = true then gzip:= Filename( DirectoriesSystemPrograms(), "gzip" ); if gzip = fail or not IsExecutableFile( gzip ) then Info( InfoAtlasRep, 1, "no 'gzip' executable found" ); else if not IsBound( gunzip ) then gunzip:= Filename( DirectoriesSystemPrograms(), "gunzip" ); if gunzip <> fail and not IsExecutableFile( gunzip ) then gunzip:= fail; fi; fi; if gunzip <> fail then result:= Process( DirectoryCurrent(), gzip, InputTextNone(), OutputTextNone(), [ filepath ] ); if result = fail then Info( InfoAtlasRep, 2, "impossible to compress file '", filepath, "'" ); fi; fi; fi; fi; fi; return result; end; ############################################################################# ## #F AGR.AtlasDataGAPFormatFile2( [, "string"] ) ## ## This function is used for reading a GAP format file containing ## a permutation or a matrix over a finite field. ## The assignment to a global variable is avoided by reading a modified ## version of the file. ## AGR.AtlasDataGAPFormatFile2:= function( filename, string... ) local str, pos, i; if Length( string ) = 0 then str:= AGR.StringFile( filename ); else str:= filename; fi; pos:= PositionSublist( str, ":=" ); if pos <> fail then str:= str{ [ pos + 2 .. Length( str ) ] }; fi; i := InputTextString( Concatenation( "return ", str ) ); i:= ReadAsFunction( i ); if i <> fail then i:= i(); fi; return i; end; ############################################################################# ## #V AtlasOfGroupRepresentationsAccessFunctionsDefault ## ## several functions may be provided; return value 'fail' means that ## the next function is tried, otherwise the result counts ## InstallValue( AtlasOfGroupRepresentationsAccessFunctionsDefault, [ rec( description:= "download/read MeatAxe text files (default)", location:= function( files, type ) return AGR.AccessFilesLocation( files, type, fail, true ); end, fetch:= function( filepath, filename, dirname, type, crc ) return AGR.AccessFilesFetch( filepath, filename, dirname, type, true, crc ); end, contents:= function( files, type, filepaths ) local i; if not ( IsExistingFile( filepaths[1] ) or IsExistingFile( Concatenation( filepaths[1], ".gz" ) ) ) then # We have the file contents. return type[2].InterpretDefault( filepaths ); else # We have the local filenames. filepaths:= ShallowCopy( filepaths ); for i in [ 1 .. Length( filepaths ) ] do if EndsWith( filepaths[i], ".gz" ) then filepaths[i]:= filepaths[i]{ [ 1 .. Length( filepaths[i] )-3 ] }; fi; od; return type[2].ReadAndInterpretDefault( filepaths ); fi; end, ), rec( description:= "prefer downloading/reading MeatAxe binary files", location:= function( files, type ) if ( not type[1] in [ "perm", "matff" ] ) or IsEmpty( UserPreference( "AtlasRep", "AtlasRepDataDirectory" ) ) then return fail; fi; # A list of file names is given, and the files are not compressed. # Replace the text format names by binary format names. return AGR.AccessFilesLocation( files, type, [ ".m", ".b" ], false ); end, fetch:= function( filepath, filename, dirname, type, crc ) # Replace the filename by that of the binary file. filename:= ReplacedString( filename, ".m", ".b" ); filename:= ReplacedString( filename, "/mtx/", "/bin/" ); return AGR.AccessFilesFetch( filepath, filename, dirname, type, false, fail ); end, contents:= function( files, type, filepaths ) # This function is called only for the types "perm" and "matff", # binary format files are *not* compressed, # and we are sure that we have the filenames not file contents. return List( filepaths, FFMatOrPermCMtxBinary ); end, ), # GAP format files means: # one generator per file, # the first line containing an assignment to a global variable, # the last character being a semicolon rec( description:= "prefer downloading/reading GAP format files", location:= function( files, type ) if not type[1] in [ "perm", "matff" ] then return fail; fi; # A list of file names is given, and the files are not compressed. # Replace the text format names by GAP format names. return AGR.AccessFilesLocation( files, type, [ ".m", ".g" ], false ); end, fetch:= function( filepath, filename, dirname, type, crc ) # Replace the filename by that of the GAP format file. filename:= ReplacedString( filename, ".m", ".g" ); filename:= ReplacedString( filename, "/mtx/", "/gap/" ); return AGR.AccessFilesFetch( filepath, filename, dirname, type, false, fail ); end, contents:= function( files, type, filepaths ) # This function is called only for the types "perm" and "matff", # and GAP format files are *not* compressed. if not ( IsExistingFile( filepaths[1] ) or IsExistingFile( Concatenation( filepaths[1], ".gz" ) ) ) then # We have the file contents. return List( filepaths, str -> AGR.AtlasDataGAPFormatFile2( str, "string" ) ); else # We have the local filenames. return List( filepaths, AGR.AtlasDataGAPFormatFile2 ); fi; end, ), rec( # This applies only to the "core" data, not to extensions. description:= "prefer reading files available from a local server", location:= function( files, type ) local localserverpath, names, pair, filename, info, name; # This is meaningful only for official data # and if there is a local server. localserverpath:= UserPreference( "AtlasRep", "AtlasRepLocalServerPath" ); if localserverpath = "" then return fail; fi; names:= []; for pair in files do # Compose the remote filename. if not pair[1] in [ "datagens", "dataword" ] then return fail; fi; filename:= pair[2]; info:= First( AtlasOfGroupRepresentationsInfo.filenames, x -> x[1] = filename ); if info = fail then Error( "do not know about " ); fi; filename:= info[2]; # Check whether the file(s) exist(s). name:= Concatenation( localserverpath, filename ); if IsReadableFile( name ) then Add( names, name ); else return fail; fi; od; return names; end, fetch:= function( filepath, filename, dirname, type, crc ) # The 'location' function has checked that the file exists. return true; end, contents:= function( files, type, filepaths ) # We need not care about compressed files, # and we know that we get filenames not file contents. return type[2].ReadAndInterpretDefault( filepaths ); end, ), ] ); ############################################################################# ## #F AtlasOfGroupRepresentationsLocalFilename( , ) ## InstallGlobalFunction( AtlasOfGroupRepresentationsLocalFilename, function( files, type ) local pref, cand, r, paths; pref:= UserPreference( "AtlasRep", "FileAccessFunctions" ); cand:= []; for r in Reversed( AtlasOfGroupRepresentationsInfo.accessFunctions ) do if r.description in pref then paths:= r.location( files, type ); if paths <> fail then if ForAll( paths, IsReadableFile ) then # This has priority, do not consider other sources. cand:= [ [ r, List( paths, x -> [ x, true ] ) ] ]; break; else Add( cand, [ r, List( paths, x -> [ x, IsReadableFile( x ) ] ) ] ); fi; fi; fi; od; return cand; end ); ############################################################################# ## #F AtlasOfGroupRepresentationsLocalFilenameTransfer( , ) ## InstallGlobalFunction( AtlasOfGroupRepresentationsLocalFilenameTransfer, function( files, type ) local cand, list, ok, result, fetchfun, i, filepath, filename, info, dirname, crc, res; # 1. Determine the local directory where to look for the file, # and the functions that claim to be applicable. cand:= AtlasOfGroupRepresentationsLocalFilename( files, type ); # 2. Check whether the files are already stored. # (If yes then 'cand' has length 1.) if Length( cand ) = 1 and ForAll( cand[1][2], x -> x[2] ) then # 3. We have the local files. Return paths and access functions. return [ List( cand[1][2], x -> x[1] ), cand[1][1] ]; elif UserPreference( "AtlasRep", "AtlasRepAccessRemoteFiles" ) = true then # Try to fetch the remote files, # using the applicable methods. for list in cand do if Length( list[2] ) = Length( files ) then ok:= true; result:= []; fetchfun:= list[1].fetch; for i in [ 1 .. Length( files ) ] do if not list[2][i][2] then filepath:= list[2][i][1]; filename:= files[i][2]; info:= First( AtlasOfGroupRepresentationsInfo.filenames, #T the list is ssorted; cheaper way! x -> x[1] = filename ); if info = fail then Error( "do not know about " ); fi; filename:= info[2]; dirname:= files[i][1]; if IsBound( info[4] ) then crc:= info[4]; else crc:= fail; fi; res:= fetchfun( filepath, filename, dirname, type, crc ); if res = false then ok:= false; fi; Add( result, res ); fi; od; if ok then # 3. We have either the local files or their contents. if result[1] = true then # Return paths and the relevant record of access functions. return [ List( list[2], x -> x[1] ), list[1] ]; else # Return contents and the relevant record of access functions. return [ result, list[1] ]; fi; fi; fi; od; fi; # The file cannot be made available. Info( InfoAtlasRep, 1, "no files '", files, "' found in the local directories" ); return fail; end ); ############################################################################# ## #F AtlasOfGroupRepresentationsTestTableOfContentsRemoteUpdates() ## InstallGlobalFunction( AtlasOfGroupRepresentationsTestTableOfContentsRemoteUpdates, function() local pref, version, inforec, home, result, lines, datadirs, line, pos, pos2, filename, localfile, servdate, stat; if not IsPackageMarkedForLoading( "io", "" ) then Info( InfoAtlasRep, 1, "the package IO is not available" ); return fail; fi; # If the data directories do not yet exist then nothing is to do. pref:= UserPreference( "AtlasRep", "AtlasRepDataDirectory" ); if not IsDirectoryPath( pref ) then return []; fi; # Download the file that lists the changes. version:= InstalledPackageVersion( "atlasrep" ); inforec:= First( PackageInfo( "atlasrep" ), r -> r.Version = version ); home:= inforec.PackageWWWHome; result:= AtlasOfGroupRepresentationsTransferFile( Concatenation( home, "/htm/data/changes.htm" ), fail, fail ); if result <> false then lines:= SplitString( result, "\n" ); result:= []; lines:= Filtered( lines, x -> 20 < Length( x ) and x{ [ 1 .. 4 ] } = "" and x{ [ -3 .. 0 ] + Length( x ) } = " -->" ); if pref <> "" and not EndsWith( pref, "/" ) then pref:= Concatenation( pref, "/" ); fi; datadirs:= [ Directory( Concatenation( pref, "datagens" ) ), Directory( Concatenation( pref, "dataword" ) ) ]; for line in lines do pos:= PositionSublist( line, "" ); if pos <> fail then pos2:= PositionSublist( line, "", pos ); filename:= line{ [ pos+9 .. pos2-1 ] }; localfile:= Filename( datadirs, filename ); if localfile <> fail then if not IsReadableFile( localfile ) then localfile:= Concatenation( localfile, ".gz" ); fi; if IsReadableFile( localfile ) then # There is something to compare. pos:= PositionSublist( line, " ## ## ## DeclareGlobalFunction( "ParseBackwards" ); DeclareGlobalFunction( "ParseBackwardsWithPrefix" ); DeclareGlobalFunction( "ParseForwards" ); DeclareGlobalFunction( "ParseForwardsWithSuffix" ); ############################################################################# ## #F AtlasRepIdentifier( ) #F AtlasRepIdentifier( , "old" ) ## ## <#GAPDoc Label="AtlasRepIdentifier"> ## ## AtlasRepIdentifier ## ## ## ## ## This function converts between the old format (the one used up to ## version 1.5.1 of the package) and the new format (the one used ## since version 2.0) of the identifier component of the records ## returned by &AtlasRep; functions. ## Note that the two formats differ only for identifier components ## that describe data from non-core parts of the database. ##

## If the only argument is a list oldid that is an identifier ## in old format then the function returns the corresponding ## identifier in new format. ## If there are two arguments, a list id that is an identifier ## in new format and the string "old", ## then the function returns the corresponding identifier in old ## format if this is possible, and fail otherwise. ##

## id:= [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ];; ## gap> AtlasRepIdentifier( id ) = id; ## true ## gap> id:= [ "L2(8)", "L28G1-check1", 1, 1 ];; ## gap> AtlasRepIdentifier( id ) = id; ## true ## gap> oldid:= [ [ "priv", "C4" ], [ "C4G1-p4B0.m1" ], 1, 4 ];; ## gap> newid:= AtlasRepIdentifier( oldid ); ## [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ] ## gap> oldid = AtlasRepIdentifier( newid, "old" ); ## true ## gap> oldid:= [ [ "priv", "C4" ], "C4G1-max1W1", 1 ];; ## gap> newid:= AtlasRepIdentifier( oldid ); ## [ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ] ## gap> oldid = AtlasRepIdentifier( newid, "old" ); ## true ## gap> oldid:= [ [ "priv", "C4" ], "C4G1-Ar1aB0.g", 1, 1 ];; ## gap> newid:= AtlasRepIdentifier( oldid ); ## [ "C4", [ [ "priv", "C4G1-Ar1aB0.g" ] ], 1, 1 ] ## gap> oldid = AtlasRepIdentifier( newid, "old" ); ## true ## gap> oldid:= [ [ "priv", "C4" ], "C4G1-XtestW1", 1 ];; ## gap> newid:= AtlasRepIdentifier( oldid ); ## [ "C4", [ [ "priv", "C4G1-XtestW1" ] ], 1 ] ## gap> oldid = AtlasRepIdentifier( newid, "old" ); ## true ## gap> oldid:= [ [ "mfer", "2.M12" ], ## > [ "2M12G1-p264aB0.m1", "2M12G1-p264aB0.m2" ], 1, 264 ];; ## gap> newid:= AtlasRepIdentifier( oldid ); ## [ "2.M12", ## [ [ "mfer", "2M12G1-p264aB0.m1" ], [ "mfer", "2M12G1-p264aB0.m2" ] ] ## , 1, 264 ] ## gap> oldid = AtlasRepIdentifier( newid, "old" ); ## true ## ]]> ## ## ## <#/GAPDoc> ## DeclareGlobalFunction( "AtlasRepIdentifier" ); ############################################################################# ## #F CompositionOfSLDAndSLP( , ) ## ## ## ## ## ## Return a straight line decision that first applies the straight line ## program slp to its inputs and then returns the result of the ## straight line decision sld on the outputs. ##

## A typical situation is that slp is a restandardization script ## and sld is a presentation. ## ## ## DeclareGlobalFunction( "CompositionOfSLDAndSLP" ); ############################################################################# ## #F AtlasRepComputedKernelGenerators( , , #F , , #F ) ## ## ## ## ## ## We assume that gapname and factgapname are valid arguments ## of , ## and that the std-th and factstd-th standard generators of ## the two groups G and F, say, are compatible ## in the sense that mapping the generators of G to those of F ## defines an epimorphism. ##

## If representations for the two groups in the given standardizations ## are locally available then the following happens. ##

## The function runs over the elements of a free monoid and collects those ## elements that evaluate to elements of different orders in the two groups ## and thus lie in the kernel of the epimorphism from G to F. ## Only those words in the free generators are considered for which the ## exponents of all syllables are smaller than the orders of the ## corresponding generators of G. ##

## If gapname and factgapname are two identifiers of ## character tables from the &GAP; Character Table Library such that ## a factor fusion from the table of gapname to that of ## factgapname is stored then the character tables are used ## to determine those orders of elements in F for which a preimage ## in G has larger order. ## In this case, only those elements of G are computed for which ## the order of the corresponding element of F admits a preimage of ## larger order in G. ##

## At most the first bound words in the free generators are checked ## for which an element of G is actually computed according to these ## rules. ##

## The function returns fail if it finds out that the generators ## are not compatible; ## in this case, a message about the details is printed ## if the info level of is at least 3. ## Otherwise, the function returns a list [ l, flag ], ## where l is a list of pairs [ w, o ] such that w^o ## describes an element in the kernel, ## and flag is true if these words are known to generate ## the kernel, and false otherwise. ##

## Yes, the strategy used is quite simpleminded: ## First, although the words in the free monoid are checked in an ordering ## that respects the length of the words, it may happen that some longer ## word can be evaluated with a straight line program that needs less ## multiplications. ## Second, the checks of many words are unnecessary because these words ## evaluate to the same elements as words that have been checked already. ##

## Moreover, the strategy is suitable only for computing small ## kernels, since membership tests for the kernel are needed if it is not ## cyclic. Large kernels occur for example in maximal subgroups of the ## Monster group; if such a kernel is an irreducible module then it is ## a better approach to find one nontrivial element in the kernel and ## suitable conjugating elements of the maximal subgroup. ##

## AtlasRepComputedKernelGenerators( "2.A5", 1, "A5", 1, 10^6 ); ## [ [ [ m1, 2 ] ], true ] ## gap> g:= AtlasGroup( "A5" );; ## gap> 2g:= AtlasGroup( "2.A5" );; ## gap> List( GeneratorsOfGroup( g ), Order ); ## [ 2, 3 ] ## gap> List( GeneratorsOfGroup( 2g ), Order ); ## [ 4, 3 ] ## ]]> ## ## ## DeclareGlobalFunction( "AtlasRepComputedKernelGenerators" ); ############################################################################# ## #E atlasrep-2.1.8/gap/bbox.gd0000644000175000017500000011037614410313647013507 0ustar samsam############################################################################# ## #W bbox.gd GAP 4 package AtlasRep Thomas Breuer #W Simon Nickerson ## ## This file contains the declarations of the operations ## for black box programs and straight line decisions. ## ## 1. Functions for black box algorithms ## 2. Functions for straight line decisions ## ############################################################################# ## ## 1. Functions for black box algorithms ## ## <#GAPDoc Label="BBoxIntro"> ## Black box programs formalize the idea that one takes some group ## elements, forms arithmetic expressions in terms of them, tests properties ## of these expressions, ## executes conditional statements (including jumps inside the program) ## depending on the results of these tests, ## and eventually returns some result. ##

## A specification of the language can be found in , ## see also ##

## http://atlas.math.rwth-aachen.de/Atlas/info/blackbox.html. ##

## The inputs of a black box program may be explicit group elements, ## and the program may also ask for random elements from a given group. ## The program steps form products, inverses, conjugates, ## commutators, etc. of known elements, ## tests concern essentially the orders of elements, ## and the result is a list of group elements or true or ## false or fail. ##

## Examples that can be modeled by black box programs are ##

## ## straight line programs, ## ## which require a fixed number of input elements and form arithmetic ## expressions of elements but do not use random elements, tests, ## conditional statements and jumps; ## the return value is always a list of elements; ## these programs are described ## in Section . ## ## straight line decisions, ## ## which differ from straight line programs only in the sense that also ## order tests are admissible, ## and that the return value is true if all these tests are ## satisfied, and false as soon as the first such test fails; ## they are described ## in Section . ## ## scripts for finding standard generators, ## ## which take a group and a function to generate a random element in this ## group but no explicit input elements, ## admit all control structures, and return either a list of standard ## generators or fail; ## see for examples. ## ## ##

## In the case of general black box programs, currently &GAP; provides only ## the possibility to read an existing program via ## , ## and to run the program using . ## It is not our aim to write such programs in &GAP;. ##

## The special case of the find scripts mentioned above is also ## admissible as an argument of , ## which returns either the set of found generators or fail. ##

## Contrary to the general situation, ## more support is provided for straight line programs and straight line ## decisions in &GAP;, ## see Section ## for functions that manipulate them (compose, restrict etc.). ##

## The functions and ## can be used to transform a general ## black box program object into a straight line program or a straight line ## decision if this is possible. ##

## Conversely, one can create an equivalent general black box program from ## a straight line program or from a straight line decision with ## . ##

## Computing a straight line program related to a given straight line ## decision is supported in the sense of ## . ##

## Note that none of these three kinds of objects is a special case of ## another: ## Running a black box program with yields a ## record, ## running a straight line program with ## yields a list of ## elements, ## and running a straight line decision with ## yields true or ## false. ## <#/GAPDoc> ## ############################################################################# ## #V InfoBBox ## ## <#GAPDoc Label="InfoBBox"> ## ## ## ## ## If the info level of is at least 1 ## then information about fail results of functions dealing with ## black box programs (see Section ) ## is printed. ## The default level is 0, no information is printed on this level. ## ## ## <#/GAPDoc> ## DeclareInfoClass( "InfoBBox" ); ############################################################################# ## #C IsBBoxProgram( ) ## ## <#GAPDoc Label="IsBBoxProgram"> ## ## ## ## ## Each black box program in &GAP; lies in the filter ## . ## ## ## <#/GAPDoc> ## DeclareCategory( "IsBBoxProgram", IsObject ); ############################################################################# ## #A LinesOfBBoxProgram( ) ## ## Since no black box program can be a straight line program, ## we (ab)use the available attribute. ## DeclareSynonymAttr( "LinesOfBBoxProgram", LinesOfStraightLineProgram ); ############################################################################# ## #F ScanBBoxProgram( ) ## ## <#GAPDoc Label="ScanBBoxProgram"> ## ## ## ## ## a record containing the black box program encoded by the input string, ## or fail. ## ## ## For a string string that describes a black box program, e.g., ## the return value of , ## computes this black box program. ## If this is successful then the return value is a record containing as the ## value of its component program the corresponding &GAP; object ## that represents the program, ## otherwise fail is returned. ##

## As the first example, we construct a black box program that tries to find ## standard generators for the alternating group A_5; ## these standard generators are any pair of elements of the orders 2 ## and 3, respectively, such that their product has order 5. ##

## findstr:= "\ ## > set V 0\n\ ## > lbl START1\n\ ## > rand 1\n\ ## > ord 1 A\n\ ## > incr V\n\ ## > if V gt 100 then timeout\n\ ## > if A notin 1 2 3 5 then fail\n\ ## > if A noteq 2 then jmp START1\n\ ## > lbl START2\n\ ## > rand 2\n\ ## > ord 2 B\n\ ## > incr V\n\ ## > if V gt 100 then timeout\n\ ## > if B notin 1 2 3 5 then fail\n\ ## > if B noteq 3 then jmp START2\n\ ## > # The elements 1 and 2 have the orders 2 and 3, respectively.\n\ ## > set X 0\n\ ## > lbl CONJ\n\ ## > incr X\n\ ## > if X gt 100 then timeout\n\ ## > rand 3\n\ ## > cjr 2 3\n\ ## > mu 1 2 4 # ab\n\ ## > ord 4 C\n\ ## > if C notin 2 3 5 then fail\n\ ## > if C noteq 5 then jmp CONJ\n\ ## > oup 2 1 2";; ## gap> find:= ScanBBoxProgram( findstr ); ## rec( program := ) ## ]]> ##

## The second example is a black box program that checks whether its two ## inputs are standard generators for A_5. ##

## checkstr:= "\ ## > chor 1 2\n\ ## > chor 2 3\n\ ## > mu 1 2 3\n\ ## > chor 3 5";; ## gap> check:= ScanBBoxProgram( checkstr ); ## rec( program := ) ## ]]> ## ## ## <#/GAPDoc> ## DeclareGlobalFunction( "ScanBBoxProgram" ); ############################################################################# ## #F BBoxPerformInstruction( fullline, ins, G, ans, gpelts, ctr, options ) ## ## local utility (but recursive, therefore we declare it here) ## DeclareGlobalFunction( "BBoxPerformInstruction" ); ############################################################################# ## #F RunBBoxProgram( , , , ) ## ## <#GAPDoc Label="RunBBoxProgram"> ## ## ## ## ## a record describing the result and the statistics of running the ## black box program prog, or fail, ## or the string "timeout". ## ## ## For a black box program prog, a group G, ## a list input of group elements, ## and a record options, ## applies prog to input, ## where G is used only to compute random elements. ##

## The return value is fail if a syntax error or ## an explicit fail statement is reached at runtime, ## and the string "timeout" if a timeout statement is reached. ## (The latter might mean that the random choices were unlucky.) ## Otherwise a record with the following components is returned. ##

## ## gens ## ## a list of group elements, bound if an oup statement was reached, ## ## result ## ## true if a true statement was reached, ## false if either a false statement or a failed order check ## was reached, ## ## ##

## The other components serve as statistical information about the numbers ## of the various operations (multiply, invert, power, ## order, random, conjugate, conjugateinplace, ## commutator), and the runtime in milliseconds (timetaken). ##

## The following components of options are supported. ##

## ## randomfunction ## ## the function called with argument G in order to compute a ## random element of G ## (default ) ## ## orderfunction ## ## the function for computing element orders ## (default ), ## ## quiet ## ## if true then ignore echo statements ## (default false), ## ## verbose ## ## if true then print information about the line that is currently ## processed, and about order checks (default false), ## ## allowbreaks ## ## if true then call when a ## break statement is reached, otherwise ignore break ## statements (default true). ## ## ##

## As an example, we run the black box programs constructed in the example ## for . ##

## g:= AlternatingGroup( 5 );; ## gap> res:= RunBBoxProgram( find.program, g, [], rec() );; ## gap> IsBound( res.gens ); IsBound( res.result ); ## true ## false ## gap> List( res.gens, Order ); ## [ 2, 3 ] ## gap> Order( Product( res.gens ) ); ## 5 ## gap> res:= RunBBoxProgram( check.program, "dummy", res.gens, rec() );; ## gap> IsBound( res.gens ); IsBound( res.result ); ## false ## true ## gap> res.result; ## true ## gap> othergens:= GeneratorsOfGroup( g );; ## gap> res:= RunBBoxProgram( check.program, "dummy", othergens, rec() );; ## gap> res.result; ## false ## ]]> ## ## ## <#/GAPDoc> ## DeclareGlobalFunction( "RunBBoxProgram" ); ############################################################################# ## #F ResultOfBBoxProgram( , [, ] ) #F ResultOfBBoxProgram( , [, ] ) ## ## <#GAPDoc Label="ResultOfBBoxProgram"> ## ## ## ## ## a list of group elements or true, false, fail, ## or the string "timeout". ## ## ## This function calls ## with the black box program prog and second argument either a group ## or a list of group elements; if options is not given then the ## default options of are assumed. ## The return value is fail if this call yields fail, ## otherwise the gens component of the result, if bound, ## or the result component if not. ##

## Note that a group G is used as the second argument in the ## call of (the source for random elements), ## whereas a list G is used as the third argument (the ## inputs). ##

## As an example, we run the black box programs constructed in the example ## for . ##

## g:= AlternatingGroup( 5 );; ## gap> res:= ResultOfBBoxProgram( find.program, g );; ## gap> List( res, Order ); ## [ 2, 3 ] ## gap> Order( Product( res ) ); ## 5 ## gap> res:= ResultOfBBoxProgram( check.program, res ); ## true ## gap> othergens:= GeneratorsOfGroup( g );; ## gap> res:= ResultOfBBoxProgram( check.program, othergens ); ## false ## ]]> ## ## ## <#/GAPDoc> ## DeclareGlobalFunction( "ResultOfBBoxProgram" ); ############################################################################# ## ## 2. Functions for straight line decisions ## ############################################################################# ## ## <#GAPDoc Label="StraightLineDecisionIntro"> ## Straight line decisions are similar to straight line programs ## (see Section ) ## but return true or false. ## A straight line decision checks whether its inputs have some property. ## An important example is to check whether a given list of group generators ## is in fact a list of standard generators ## (cf. Section) ## for this group. ##

## A straight line decision in &GAP; is represented by an object in the ## filter ## that stores a list of lines ## each of which has one of the following three forms. ##

## ## ## a nonempty dense list l of integers, ## ## ## a pair [ l, i ] where ## l is a list of form 1. and i is a positive integer, ## ## ## a list [ "Order", i, n ] ## where i and n are positive integers. ## ## ##

## The first two forms have the same meaning as for straight line programs ## (see Section ), ## the last form means a check whether the element stored at the ## i-th label has the order n. ##

## For the meaning of the list of lines, see ## . ##

## Straight line decisions can be constructed using ## , ## defining attributes for straight line decisions are ## and ## , ## an operation for straight line decisions is ## . ##

## Special methods applicable to straight line decisions are installed for ## the operations , ## , ## , ## and . ##

## For a straight line decision prog, ## the default method prints ## the interpretation of prog as a sequence of assignments ## of associative words and of order checks; ## a record with components gensnames (with value a list of strings) ## and listname (a string) may be entered as second argument of ## , ## in this case these names are used, the default for gensnames is ## [ g1, g2, \ldots ], ## the default for listname is r. ## <#/GAPDoc> ## ############################################################################# ## #C IsStraightLineDecision( ) ## ## <#GAPDoc Label="IsStraightLineDecision"> ## ## ## ## ## Each straight line decision in &GAP; lies in the filter ## . ## ## ## <#/GAPDoc> ## DeclareCategory( "IsStraightLineDecision", IsObject ); ############################################################################# ## #F StraightLineDecision( [, ] ) #F StraightLineDecisionNC( [, ] ) ## ## <#GAPDoc Label="StraightLineDecision"> ## ## ## ## ## ## the straight line decision given by the list of lines. ## ## ## Let lines be a list of lists that defines a unique ## straight line decision (see ); ## in this case returns this program, ## otherwise an error is signalled. ## The optional argument nrgens specifies the number of ## input generators of the program; ## if a list of integers (a line of form 1. in the definition above) occurs ## in lines then this number is not determined by lines ## and therefore must be specified by the argument nrgens; ## if not then returns fail. ##

## does the same as ## , ## except that the internal consistency of the program is not checked. ## ## ## <#/GAPDoc> ## DeclareGlobalFunction( "StraightLineDecision" ); DeclareGlobalFunction( "StraightLineDecisionNC" ); ############################################################################# ## #A LinesOfStraightLineDecision( ) ## ## <#GAPDoc Label="LinesOfStraightLineDecision"> ## ## ## ## ## the list of lines that define the straight line decision. ## ## ## This defining attribute for the straight line decision prog ## (see ) corresponds to ## ## for straight line programs. ##

## dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ], ## > [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] ); ## ## gap> LinesOfStraightLineDecision( dec ); ## [ [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 1, 2 ], [ "Order", 2, 3 ], ## [ "Order", 3, 5 ] ] ## ]]> ## ## ## <#/GAPDoc> ## DeclareAttribute( "LinesOfStraightLineDecision", IsStraightLineDecision ); ############################################################################# ## #A NrInputsOfStraightLineDecision( ) ## ## <#GAPDoc Label="NrInputsOfStraightLineDecision"> ## ## ## ## ## the number of inputs required for the straight line decision. ## ## ## This defining attribute corresponds to ## . ##

## NrInputsOfStraightLineDecision( dec ); ## 2 ## ]]> ## ## ## <#/GAPDoc> ## DeclareAttribute( "NrInputsOfStraightLineDecision", IsStraightLineDecision ); ############################################################################# ## #O ResultOfStraightLineDecision( , [, ] ) ## ## <#GAPDoc Label="ResultOfStraightLineDecision"> ## ## ## ## ## true if all checks succeed, otherwise false. ## ## ## evaluates the straight line ## decision (see ) prog ## at the group elements in the list gens. ##

## The function for computing the order of a group element can be given as ## the optional argument orderfunc. ## For example, this may be a function that gives up at a certain limit ## if one has to be aware of extremely huge orders in failure cases. ##

## The result of a straight line decision with lines ## p_1, p_2, \ldots, p_k ## when applied to gens is defined as follows. ##

## ## (a) ## ## First a list r of intermediate values is initialized ## with a shallow copy of gens. ## ## (b) ## ## For i \leq k, before the i-th step, ## let r be of length n. ## If p_i is the external representation of an associative word ## in the first n generators then the image of this word ## under the homomorphism that is given by mapping r ## to these first n generators is added to r. ## If p_i is a pair [ l, j ], for a list l, ## then the same element is computed, ## but instead of being added to r, ## it replaces the j-th entry of r. ## If p_i is a triple [ "Order", i, n ] ## then it is checked whether the order of r[i] is n; ## if not then false is returned immediately. ## ## (c) ## ## If all k lines have been processed and no order check ## has failed then true is returned. ## ## ##

## Here are some examples. ##

## dec:= StraightLineDecision( [ ], 1 ); ## ## gap> ResultOfStraightLineDecision( dec, [ () ] ); ## true ## ]]> ##

## The above straight line decision dec returns true ## –for any input of the right length. ##

## dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ], ## > [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] ); ## ## gap> LinesOfStraightLineDecision( dec ); ## [ [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 1, 2 ], [ "Order", 2, 3 ], ## [ "Order", 3, 5 ] ] ## gap> ResultOfStraightLineDecision( dec, [ (), () ] ); ## false ## gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,4,5) ] ); ## true ## ]]> ##

## The above straight line decision admits two inputs; ## it tests whether the orders of the inputs are 2 and 3, ## and the order of their product is 5. ## ## ## <#/GAPDoc> ## DeclareOperation( "ResultOfStraightLineDecision", [ IsStraightLineDecision, IsHomogeneousList ] ); DeclareOperation( "ResultOfStraightLineDecision", [ IsStraightLineDecision, IsHomogeneousList, IsFunction ] ); ############################################################################# ## ## <#GAPDoc Label="Semi-Presentations"> ## ## Semi-Presentations and Presentations ## ## semi-presentation ## We can associate a finitely presented group F / R ## to each straight line decision dec, say, as follows. ## The free generators of the free group F are in bijection ## with the inputs, and the defining relators generating R as a ## normal subgroup of F are given by those words w^k ## for which dec contains a check whether the order of w ## equals k. ##

## So if dec returns true for the input list ## [ g_1, g_2, \ldots, g_n ] then mapping the free generators of ## F to the inputs defines an epimorphism \Phi from F ## to the group G, say, that is generated by these inputs, ## such that R is contained in the kernel of \Phi. ##

## (Note that satisfying dec is a stronger property than ## satisfying a presentation.presentation ## For example, \langle x \mid x^2 = x^3 = 1 \rangle ## is a presentation for the trivial group, but the straight line decision ## that checks whether the order of x is both 2 and 3 ## clearly always returns false.) ##

## &AtlasRep; supports the following two kinds of straight line decisions. ##

## ## ## A presentation is a straight line decision dec ## that is defined for a set of standard generators of a group G ## and that returns true if and only if the list of inputs is ## in fact a sequence of such standard generators for G. ## In other words, the relators derived from the order checks in the way ## described above are defining relators for G, ## and moreover these relators are words in terms of standard generators. ## (In particular the kernel of the map \Phi equals R ## whenever dec returns true.) ## ## ## A semi-presentation is a straight line decision dec ## that is defined for a set of standard generators of a group G ## and that returns true for a list of inputs that is known to ## generate a group isomorphic with G if and only if ## these inputs form in fact a sequence of standard generators for ## G. ## In other words, the relators derived from the order checks in the way ## described above are not necessarily defining relators ## for G, but if we assume that the g_i generate G ## then they are standard generators. ## (In particular, F / R may be a larger group than G ## but in this case \Phi maps the free generators of F ## to standard generators of G.) ##

## More about semi-presentations can be found in . ## ## ##

## Available presentations and semi-presentations are listed by ## , ## they can be accessed via . ## (Clearly each presentation is also a semi-presentation. ## So a semi-presentation for some standard generators of a group is ## regarded as available whenever a presentation for these standard ## generators and this group is available.) ##

## Note that different groups can have the same semi-presentation. ## We illustrate this with an example that is mentioned in ## . ## The groups L_2(7) \cong L_3(2) and L_2(8) are generated by ## elements of the orders 2 and 3 such that their product has ## order 7, and no further conditions are necessary to define ## standard generators. ##

## check:= AtlasProgram( "L2(8)", "check" ); ## rec( groupname := "L2(8)", ## identifier := [ "L2(8)", "L28G1-check1", 1, 1 ], ## program := , standardization := 1, ## version := "1" ) ## gap> gens:= AtlasGenerators( "L2(8)", 1 ); ## rec( charactername := "1a+8a", constituents := [ 1, 6 ], ## contents := "core", ## generators := [ (1,2)(3,4)(6,7)(8,9), (1,3,2)(4,5,6)(7,8,9) ], ## groupname := "L2(8)", id := "", ## identifier := [ "L2(8)", [ "L28G1-p9B0.m1", "L28G1-p9B0.m2" ], 1, 9 ## ], isPrimitive := true, maxnr := 1, p := 9, rankAction := 2, ## repname := "L28G1-p9B0", repnr := 1, size := 504, ## stabilizer := "2^3:7", standardization := 1, transitivity := 3, ## type := "perm" ) ## gap> ResultOfStraightLineDecision( check.program, gens.generators ); ## true ## gap> gens:= AtlasGenerators( "L3(2)", 1 ); ## rec( contents := "core", generators := [ (2,4)(3,5), (1,2,3)(5,6,7) ], ## groupname := "L3(2)", id := "a", ## identifier := [ "L3(2)", [ "L27G1-p7aB0.m1", "L27G1-p7aB0.m2" ], 1, ## 7 ], isPrimitive := true, maxnr := 1, p := 7, rankAction := 2, ## repname := "L27G1-p7aB0", repnr := 1, size := 168, ## stabilizer := "S4", standardization := 1, transitivity := 2, ## type := "perm" ) ## gap> ResultOfStraightLineDecision( check.program, gens.generators ); ## true ## ]]> ## ## <#/GAPDoc> ## ############################################################################# ## #O StraightLineProgramFromStraightLineDecision( ) ## ## <#GAPDoc Label="StraightLineProgramFromStraightLineDecision"> ## ## ## ## ## the straight line program associated to the given straight line decision. ## ## ## For a straight line decision dec ## (see , ## returns the ## straight line program ## (see obtained by ## replacing each line of type 3. (i.e, each order check) by an ## assignment of the power in question to a new slot, ## and by declaring the list of these elements as the return value. ##

## This means that the return value describes exactly the defining relators ## of the presentation that is associated to the straight line decision, ## see . ##

## For example, one can use the return value for printing the relators with ## , ## or for explicitly constructing the relators as words in terms of free ## generators, ## by applying ## to the program and to these generators. ##

## dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ], ## > [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] ); ## ## gap> prog:= StraightLineProgramFromStraightLineDecision( dec ); ## ## gap> Display( prog ); ## # input: ## r:= [ g1, g2 ]; ## # program: ## r[3]:= r[1]*r[2]; ## r[4]:= r[1]^2; ## r[5]:= r[2]^3; ## r[6]:= r[3]^5; ## # return values: ## [ r[4], r[5], r[6] ] ## gap> StringOfResultOfStraightLineProgram( prog, [ "a", "b" ] ); ## "[ a^2, b^3, (ab)^5 ]" ## gap> gens:= GeneratorsOfGroup( FreeGroup( "a", "b" ) ); ## [ a, b ] ## gap> ResultOfStraightLineProgram( prog, gens ); ## [ a^2, b^3, (a*b)^5 ] ## ]]> ## ## ## <#/GAPDoc> ## DeclareOperation( "StraightLineProgramFromStraightLineDecision", [ IsStraightLineDecision ] ); ############################################################################# ## #A AsBBoxProgram( ) #A AsBBoxProgram( ) ## ## <#GAPDoc Label="AsBBoxProgram"> ## ## ## ## ## an equivalent black box program for the given straight line program ## or straight line decision. ## ## ## Let slp be a straight line program ## (see ) ## or a straight line decision (see ). ## Then returns a black box program bbox ## (see ) with the same output as ## slp, ## in the sense that yields the same ## result for bbox ## as or ## , respectively, for slp. ##

## f:= FreeGroup( "x", "y" );; gens:= GeneratorsOfGroup( f );; ## gap> slp:= StraightLineProgram( [ [1,2,2,3], [3,-1] ], 2 ); ## ## gap> ResultOfStraightLineProgram( slp, gens ); ## y^-3*x^-2 ## gap> bboxslp:= AsBBoxProgram( slp ); ## ## gap> ResultOfBBoxProgram( bboxslp, gens ); ## [ y^-3*x^-2 ] ## gap> lines:= [ [ "Order", 1, 2 ], [ "Order", 2, 3 ], ## > [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 3, 5 ] ];; ## gap> dec:= StraightLineDecision( lines, 2 ); ## ## gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,3,5) ] ); ## true ## gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,3,4) ] ); ## false ## gap> bboxdec:= AsBBoxProgram( dec ); ## ## gap> ResultOfBBoxProgram( bboxdec, [ (1,2)(3,4), (1,3,5) ] ); ## true ## gap> ResultOfBBoxProgram( bboxdec, [ (1,2)(3,4), (1,3,4) ] ); ## false ## ]]> ## ## ## <#/GAPDoc> ## DeclareAttribute( "AsBBoxProgram", IsStraightLineProgram ); DeclareAttribute( "AsBBoxProgram", IsStraightLineDecision ); ############################################################################# ## #A AsStraightLineProgram( ) ## ## <#GAPDoc Label="AsStraightLineProgram"> ## ## ## ## ## an equivalent straight line program for the given black box program, ## or fail. ## ## ## For a black box program (see ) bbox, ## returns a straight line program ## (see ) with the same ## output as bbox if such a straight line program exists, ## and fail otherwise. ##

## Display( AsStraightLineProgram( bboxslp ) ); ## # input: ## r:= [ g1, g2 ]; ## # program: ## r[3]:= r[1]^2; ## r[4]:= r[2]^3; ## r[5]:= r[3]*r[4]; ## r[3]:= r[5]^-1; ## # return values: ## [ r[3] ] ## gap> AsStraightLineProgram( bboxdec ); ## fail ## ]]> ## ## ## <#/GAPDoc> ## DeclareAttribute( "AsStraightLineProgram", IsBBoxProgram ); ############################################################################# ## #A AsStraightLineDecision( ) ## ## <#GAPDoc Label="AsStraightLineDecision"> ## ## ## ## ## an equivalent straight line decision for the given black box program, ## or fail. ## ## ## For a black box program (see ) bbox, ## returns a straight line decision ## (see ) with the same ## output as bbox, in the sense of , ## if such a straight line decision exists, ## and fail otherwise. ##

## lines:= [ [ "Order", 1, 2 ], [ "Order", 2, 3 ], ## > [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 3, 5 ] ];; ## gap> dec:= StraightLineDecision( lines, 2 ); ## ## gap> bboxdec:= AsBBoxProgram( dec ); ## ## gap> asdec:= AsStraightLineDecision( bboxdec ); ## ## gap> LinesOfStraightLineDecision( asdec ); ## [ [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ [ 1, 1, 2, 1 ], 3 ], ## [ "Order", 3, 5 ] ] ## ]]> ## ## ## <#/GAPDoc> ## DeclareAttribute( "AsStraightLineDecision", IsBBoxProgram ); ############################################################################# ## #E atlasrep-2.1.8/init.g0000644000175000017500000000171114410313216012565 0ustar samsam############################################################################# ## #W init.g GAP 4 package AtlasRep Thomas Breuer ## # Read the declaration part. ReadPackage( "atlasrep", "gap/userpref.g" ); ReadPackage( "atlasrep", "gap/bbox.gd" ); ReadPackage( "atlasrep", "gap/access.gd" ); if not IsBound( InfoCMeatAxe ) then # This file is also part of the C-MeaAxe package. ReadPackage( "atlasrep", "gap/scanmtx.gd" ); ReadPackage( "atlasrep", "gap/scanmtx.gi" ); fi; ReadPackage( "atlasrep", "gap/types.gd" ); ReadPackage( "atlasrep", "gap/interfac.gd" ); ReadPackage( "atlasrep", "gap/mindeg.gd" ); ReadPackage( "atlasrep", "gap/utils.gd" ); # Read obsolete variable names if this happens also in the GAP library. if UserPreference( "gap", "ReadObsolete" ) <> false then ReadPackage( "atlasrep", "gap/obsolete.gd" ); fi; ############################################################################# ## #E atlasrep-2.1.8/atlasprm.json0000644000175000017500000267047414545506165014234 0ustar samsam{ "ID":"core", "Version":"2023-12-22", "DataURL":"http://atlas.math.rwth-aachen.de/Atlas/", "SelfURL":"https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/atlasprm.json", "Data":[ ["GNAN",["(13:6xL3(3)).2","Mmax35"]], ["GNAN",["(2^2x3).U6(2)","12U62"]], ["GNAN",["(3^2:2xO8+(3)).S4","Mmax13"]], ["GNAN",["(5^2:[2^4]xU3(5)).S3","Mmax25"]], ["GNAN",["(7:3xHe):2","Mmax17"]], ["GNAN",["(7^2:(3x2A4)xL2(7)).2","Mmax34"]], ["GNAN",["(A5xA12):2","Mmax18"]], ["GNAN",["(A5xU3(8):3):2","Mmax21"]], ["GNAN",["(A6xA6xA6).(2xS4)","Mmax20"]], ["GNAN",["(A7x(A5xA5).4).2","Mmax27"]], ["GNAN",["(D10xHN).2","Mmax12"]], ["GNAN",["(L2(11)xL2(11)):4","Mmax32"]], ["GNAN",["(L2(11)xM12):2","Mmax26"]], ["GNAN",["(L3(2)xS4(4):2).2","Mmax23"]], ["GNAN",["(S5xS5xS5):S3","Mmax31"]], ["GNAN",["11^2:(5x2A5)","Mmax39"]], ["GNAN",["12.M22","12M22"]], ["GNAN",["12.M22.2","12M22d2"]], ["GNAN",["12_1.L3(4)","12aL34"]], ["GNAN",["12_1.L3(4).2_1","12aL34d2a"]], ["GNAN",["12_2.L3(4)","12bL34"]], ["GNAN",["12_2.L3(4).2_1","12bL34d2a"]], ["GNAN",["13^(1+2):(3x4S4)","Mmax36"]], ["GNAN",["13^2:2.L2(13).4","Mmax33"]], ["GNAN",["2.(2xF4(2)).2","2F42d4i"]], ["GNAN",["2.2E6(2)","2TE62"]], ["GNAN",["2.2E6(2).2","2TE62d2"]], ["GNAN",["2.A10","2A10"]], ["GNAN",["2.A10.2","2S10"]], ["GNAN",["2.A11","2A11"]], ["GNAN",["2.A11.2","2S11"]], ["GNAN",["2.A12","2A12"]], ["GNAN",["2.A12.2","2S12"]], ["GNAN",["2.A13","2A13"]], ["GNAN",["2.A13.2","2S13"]], ["GNAN",["2.A14","2A14"]], ["GNAN",["2.A14.2","2S14"]], ["GNAN",["2.A5","2A5"]], ["GNAN",["2.A5.2","2S5"]], ["GNAN",["2.A6","2A6"]], ["GNAN",["2.A6.2_1","2S6"]], ["GNAN",["2.A7","2A7"]], ["GNAN",["2.A7.2","2S7"]], ["GNAN",["2.A8","2A8"]], ["GNAN",["2.A8.2","2S8"]], ["GNAN",["2.A9","2A9"]], ["GNAN",["2.A9.2","2S9"]], ["GNAN",["2.B","2B"]], ["GNAN",["2.Co1","2Co1"]], ["GNAN",["2.F4(2)","2F42"]], ["GNAN",["2.F4(2).2","2F42d2"]], ["GNAN",["2.Fi22","2F22"]], ["GNAN",["2.Fi22.2","2F22d2"]], ["GNAN",["2.G2(4)","2G24"]], ["GNAN",["2.G2(4).2","2G24d2"]], ["GNAN",["2.HS","2HS"]], ["GNAN",["2.HS.2","2HSd2"]], ["GNAN",["2.J2","2J2"]], ["GNAN",["2.J2.2","2J2d2"]], ["GNAN",["2.L2(101)","2L2101"]], ["GNAN",["2.L2(103)","2L2103"]], ["GNAN",["2.L2(107)","2L2107"]], ["GNAN",["2.L2(109)","2L2109"]], ["GNAN",["2.L2(11)","2L211"]], ["GNAN",["2.L2(113)","2L2113"]], ["GNAN",["2.L2(127)","2L2127"]], ["GNAN",["2.L2(13)","2L213"]], ["GNAN",["2.L2(13).2","2L213d2"]], ["GNAN",["2.L2(131)","2L2131"]], ["GNAN",["2.L2(137)","2L2137"]], ["GNAN",["2.L2(139)","2L2139"]], ["GNAN",["2.L2(149)","2L2149"]], ["GNAN",["2.L2(151)","2L2151"]], ["GNAN",["2.L2(157)","2L2157"]], ["GNAN",["2.L2(163)","2L2163"]], ["GNAN",["2.L2(167)","2L2167"]], ["GNAN",["2.L2(17)","2L217"]], ["GNAN",["2.L2(17).2","2L217d2"]], ["GNAN",["2.L2(173)","2L2173"]], ["GNAN",["2.L2(179)","2L2179"]], ["GNAN",["2.L2(181)","2L2181"]], ["GNAN",["2.L2(19)","2L219"]], ["GNAN",["2.L2(191)","2L2191"]], ["GNAN",["2.L2(193)","2L2193"]], ["GNAN",["2.L2(197)","2L2197"]], ["GNAN",["2.L2(199)","2L2199"]], ["GNAN",["2.L2(211)","2L2211"]], ["GNAN",["2.L2(223)","2L2223"]], ["GNAN",["2.L2(227)","2L2227"]], ["GNAN",["2.L2(229)","2L2229"]], ["GNAN",["2.L2(23)","2L223"]], ["GNAN",["2.L2(233)","2L2233"]], ["GNAN",["2.L2(239)","2L2239"]], ["GNAN",["2.L2(241)","2L2241"]], ["GNAN",["2.L2(25)","2L225"]], ["GNAN",["2.L2(27)","2L227"]], ["GNAN",["2.L2(29)","2L229"]], ["GNAN",["2.L2(31)","2L231"]], ["GNAN",["2.L2(37)","2L237"]], ["GNAN",["2.L2(41)","2L241"]], ["GNAN",["2.L2(43)","2L243"]], ["GNAN",["2.L2(47)","2L247"]], ["GNAN",["2.L2(49)","2L249"]], ["GNAN",["2.L2(53)","2L253"]], ["GNAN",["2.L2(59)","2L259"]], ["GNAN",["2.L2(61)","2L261"]], ["GNAN",["2.L2(67)","2L267"]], ["GNAN",["2.L2(71)","2L271"]], ["GNAN",["2.L2(73)","2L273"]], ["GNAN",["2.L2(79)","2L279"]], ["GNAN",["2.L2(83)","2L283"]], ["GNAN",["2.L2(89)","2L289"]], ["GNAN",["2.L2(97)","2L297"]], ["GNAN",["2.L3(2)","2L27"]], ["GNAN",["2.L3(2).2","2L27d2"]], ["GNAN",["2.L3(4)","2L34"]], ["GNAN",["2.L3(4).2_1","2L34d2a"]], ["GNAN",["2.M12","2M12"]], ["GNAN",["2.M12.2","2M12d2"]], ["GNAN",["2.M22","2M22"]], ["GNAN",["2.M22.2","2M22d2"]], ["GNAN",["2.O7(3)","2O73"]], ["GNAN",["2.O7(3).2","2O73d2"]], ["GNAN",["2.O8+(2)","2O8p2"]], ["GNAN",["2.O8+(2).2","2O8p2d2"]], ["GNAN",["2.O8+(3)","2O8p3"]], ["GNAN",["2.O8-(3)","2O8m3"]], ["GNAN",["2.O8-(3).2_1","2O8m3d2a"]], ["GNAN",["2.O9(3)","2O93"]], ["GNAN",["2.O9(3).2","2O93d2"]], ["GNAN",["2.Ru","2Ru"]], ["GNAN",["2.S4(11)","2S411"]], ["GNAN",["2.S4(13)","2S413"]], ["GNAN",["2.S4(17)","2S417"]], ["GNAN",["2.S4(19)","2S419"]], ["GNAN",["2.S4(5)","2S45"]], ["GNAN",["2.S4(7)","2S47"]], ["GNAN",["2.S4(7).2","2S47d2"]], ["GNAN",["2.S4(9)","2S49"]], ["GNAN",["2.S6(2)","2S62"]], ["GNAN",["2.S6(3)","2S63"]], ["GNAN",["2.S6(3).2","2S63d2"]], ["GNAN",["2.Suz","2Suz"]], ["GNAN",["2.Suz.2","2Suzd2"]], ["GNAN",["2.Sz(8)","2Sz8"]], ["GNAN",["2.U4(2)","2U42"]], ["GNAN",["2.U4(2).2","2U42d2"]], ["GNAN",["2.U4(3).D8","2U43D8"]], ["GNAN",["2.U6(2)","2U62"]], ["GNAN",["2.U6(2).2","2U62d2"]], ["GNAN",["2E6(2)","TE62"]], ["GNAN",["2E6(2).2","TE62d2"]], ["GNAN",["2E6(2).3","TE62d3"]], ["GNAN",["2E6(2).S3","TE62S3"]], ["GNAN",["2F4(2)'","TF42"]], ["GNAN",["2F4(2)'.2","TF42d2"]], ["GNAN",["2^(1+24).Co1","Mmax2"]], ["GNAN",["2^(10+16).O10+(2)","Mmax5"]], ["GNAN",["2^(2+11+22).(M24xS3)","Mmax6"]], ["GNAN",["2^(5+10+20).(S3xL5(2))","Mmax8"]], ["GNAN",["2^14.U7(2)","214U72"]], ["GNAN",["2^2.2E6(2)","4TE62"]], ["GNAN",["2^2.2E6(2).S3","Mmax4"]], ["GNAN",["2^2.L3(4)","4L34"]], ["GNAN",["2^2.L3(4).2_2","4L34d2b"]], ["GNAN",["2^2.O8+(3).S4","4O8p3S4"]], ["GNAN",["2^2.Sz(8)","4Sz8"]], ["GNAN",["2^2.Sz(8).3","4Sz8d3"]], ["GNAN",["2^2.U6(2)","4U62"]], ["GNAN",["2^4.A8","24A8"]], ["GNAN",["2^5.L5(2)","25L52"]], ["GNAN",["2^[39].(L3(2)x3.S6)","Mmax10"]], ["GNAN",["2aM20","2aM20"]], ["GNAN",["2bM20","2bM20"]], ["GNAN",["2cM20","2cM20"]], ["GNAN",["3.2E6(2)","3TE62"]], ["GNAN",["3.2E6(2).2","3TE62d2"]], ["GNAN",["3.2E6(2).3","3TE62d3"]], ["GNAN",["3.2E6(2).S3","3TE62S3"]], ["GNAN",["3.A6","3A6"]], ["GNAN",["3.A6.2_1","3S6"]], ["GNAN",["3.A7","3A7"]], ["GNAN",["3.A7.2","3S7"]], ["GNAN",["3.E6(4)","3E64"]], ["GNAN",["3.E6(4).2","3E64d2"]], ["GNAN",["3.Fi22","3F22"]], ["GNAN",["3.Fi22.2","3F22d2"]], ["GNAN",["3.Fi24'","3F24"]], ["GNAN",["3.Fi24'.2","3F24d2"]], ["GNAN",["3.G2(3)","3G23"]], ["GNAN",["3.G2(3).2","3G23d2"]], ["GNAN",["3.J3","3J3"]], ["GNAN",["3.J3.2","3J3d2"]], ["GNAN",["3.L3(4)","3L34"]], ["GNAN",["3.L3(4).2_1","3L34d2a"]], ["GNAN",["3.L3(7)","3L37"]], ["GNAN",["3.L3(7).2","3L37d2"]], ["GNAN",["3.M22","3M22"]], ["GNAN",["3.M22.2","3M22d2"]], ["GNAN",["3.McL","3McL"]], ["GNAN",["3.McL.2","3McLd2"]], ["GNAN",["3.O7(3)","3O73"]], ["GNAN",["3.O7(3).2","3O73d2"]], ["GNAN",["3.ON","3ON"]], ["GNAN",["3.ON.2","3ONd2"]], ["GNAN",["3.Suz","3Suz"]], ["GNAN",["3.Suz.2","3Suzd2"]], ["GNAN",["3.U3(11)","3U311"]], ["GNAN",["3.U3(11).2","3U311d2"]], ["GNAN",["3.U3(8)","3U38"]], ["GNAN",["3.U6(2)","3U62"]], ["GNAN",["3D4(2)","TD42"]], ["GNAN",["3D4(2).3","TD42d3"]], ["GNAN",["3D4(3)","TD43"]], ["GNAN",["3^(1+12):2.Suz.2","Mmax7"]], ["GNAN",["3^(1+12):6.Suz.2","M3max7"]], ["GNAN",["3^(2+5+10).(M11x2S4)","Mmax14"]], ["GNAN",["3^(2+6+6):(L3(3)xSD16)","Mmax15q1"]], ["GNAN",["3^(3+2+6+6):(L3(3)xSD16)","Mmax15"]], ["GNAN",["3^(6+6):(L3(3)xSD16)","Mmax15q2"]], ["GNAN",["3^2.U4(3).D8","9U43D8"]], ["GNAN",["3^6:(L3(3)xSD16)","Mmax15q3"]], ["GNAN",["3^8.O8-(3).2_3","Mmax11"]], ["GNAN",["4.M22","4M22"]], ["GNAN",["4.M22.2","4M22d2"]], ["GNAN",["41:40","Mmax43"]], ["GNAN",["4_1.L3(4)","4aL34"]], ["GNAN",["4_1.L3(4).2_1","4aL34d2a"]], ["GNAN",["4_2.2^4:A5","4bM20"]], ["GNAN",["4_2.L3(4)","4bL34"]], ["GNAN",["4_2.L3(4).2_1","4bL34d2a"]], ["GNAN",["5^(1+6):2.J2.4","Mmax16"]], ["GNAN",["5^(2+2+4):(S3xGL2(5))","Mmax22"]], ["GNAN",["5^(3+3).(2xL3(5))","Mmax19"]], ["GNAN",["5^3.L3(5)","53L35"]], ["GNAN",["5^4:(3x2.L2(25)).2","Mmax28"]], ["GNAN",["6.A6","6A6"]], ["GNAN",["6.A6.2_1","6S6"]], ["GNAN",["6.A7","6A7"]], ["GNAN",["6.A7.2","6S7"]], ["GNAN",["6.Fi22","6F22"]], ["GNAN",["6.Fi22.2","6F22d2"]], ["GNAN",["6.L3(4)","6L34"]], ["GNAN",["6.L3(4).2_1","6L34d2a"]], ["GNAN",["6.M22","6M22"]], ["GNAN",["6.M22.2","6M22d2"]], ["GNAN",["6.O7(3)","6O73"]], ["GNAN",["6.O7(3).2","6O73d2"]], ["GNAN",["6.Suz","6Suz"]], ["GNAN",["6.Suz.2","6Suzd2"]], ["GNAN",["6.U6(2)","6U62"]], ["GNAN",["7^(1+4):(3x2.S7)","Mmax24"]], ["GNAN",["7^(2+1+2):GL2(7)","Mmax29"]], ["GNAN",["7^2:2.L2(7)","Mmax41"]], ["GNAN",["A10","A10"]], ["GNAN",["A10.2","S10"]], ["GNAN",["A11","A11"]], ["GNAN",["A11.2","S11"]], ["GNAN",["A12","A12"]], ["GNAN",["A12.2","S12"]], ["GNAN",["A13","A13"]], ["GNAN",["A13.2","S13"]], ["GNAN",["A14","A14"]], ["GNAN",["A14.2","S14"]], ["GNAN",["A15","A15"]], ["GNAN",["A15.2","S15"]], ["GNAN",["A16","A16"]], ["GNAN",["A16.2","S16"]], ["GNAN",["A17","A17"]], ["GNAN",["A17.2","S17"]], ["GNAN",["A18","A18"]], ["GNAN",["A18.2","S18"]], ["GNAN",["A19","A19"]], ["GNAN",["A19.2","S19"]], ["GNAN",["A20","A20"]], ["GNAN",["A20.2","S20"]], ["GNAN",["A21","A21"]], ["GNAN",["A21.2","S21"]], ["GNAN",["A22","A22"]], ["GNAN",["A22.2","S22"]], ["GNAN",["A23","A23"]], ["GNAN",["A23.2","S23"]], ["GNAN",["A5","A5"]], ["GNAN",["A5.2","S5"]], ["GNAN",["A6","A6"]], ["GNAN",["A6.2^2","A6V4"]], ["GNAN",["A6.2_1","S6"]], ["GNAN",["A6.2_2","PGL29"]], ["GNAN",["A6.2_3","M10"]], ["GNAN",["A7","A7"]], ["GNAN",["A7.2","S7"]], ["GNAN",["A8","A8"]], ["GNAN",["A8.2","S8"]], ["GNAN",["A9","A9"]], ["GNAN",["A9.2","S9"]], ["GNAN",["B","B"]], ["GNAN",["Co1","Co1"]], ["GNAN",["Co2","Co2"]], ["GNAN",["Co3","Co3"]], ["GNAN",["E6(2)","E62"]], ["GNAN",["E6(4)","E64"]], ["GNAN",["E6(4).2","E64d2"]], ["GNAN",["E7(2)","E72"]], ["GNAN",["E7(4)","E74"]], ["GNAN",["E8(2)","E82"]], ["GNAN",["E8(5)","E85"]], ["GNAN",["F4(2)","F42"]], ["GNAN",["F4(2).2","F42d2"]], ["GNAN",["Fi22","F22"]], ["GNAN",["Fi22.2","F22d2"]], ["GNAN",["Fi23","F23"]], ["GNAN",["Fi24'","F24"]], ["GNAN",["Fi24'.2","F24d2"]], ["GNAN",["G2(3)","G23"]], ["GNAN",["G2(3).2","G23d2"]], ["GNAN",["G2(4)","G24"]], ["GNAN",["G2(4).2","G24d2"]], ["GNAN",["G2(5)","G25"]], ["GNAN",["HN","HN"]], ["GNAN",["HN.2","HNd2"]], ["GNAN",["HS","HS"]], ["GNAN",["HS.2","HSd2"]], ["GNAN",["He","He"]], ["GNAN",["He.2","Hed2"]], ["GNAN",["Isoclinic(12.M22.2)","12M22d2i"]], ["GNAN",["Isoclinic(2.A14.2)","2S14i"]], ["GNAN",["Isoclinic(2.A5.2)","2S5i"]], ["GNAN",["Isoclinic(2.A7.2)","2S7i"]], ["GNAN",["Isoclinic(2.A8.2)","2S8i"]], ["GNAN",["Isoclinic(2.Fi22.2)","2F22d2i"]], ["GNAN",["Isoclinic(2.G2(4).2)","2G24d2i"]], ["GNAN",["Isoclinic(2.HS.2)","2HSd2i"]], ["GNAN",["Isoclinic(2.J2.2)","2J2d2i"]], ["GNAN",["Isoclinic(2.L2(19).2)","2L219d2i"]], ["GNAN",["Isoclinic(2.L2(23).2)","2L223d2i"]], ["GNAN",["Isoclinic(2.L3(2).2)","2L27d2i"]], ["GNAN",["Isoclinic(2.M12.2)","2M12d2i"]], ["GNAN",["Isoclinic(2.M22.2)","2M22d2i"]], ["GNAN",["Isoclinic(2.O7(3).2)","2O73d2i"]], ["GNAN",["Isoclinic(2.Suz.2)","2Suzd2i"]], ["GNAN",["Isoclinic(4.M22.2)","4M22d2i"]], ["GNAN",["Isoclinic(6.Fi22.2)","6F22d2i"]], ["GNAN",["Isoclinic(6.M22.2)","6M22d2i"]], ["GNAN",["Isoclinic(6.Suz.2)","6Suzd2i"]], ["GNAN",["J1","J1"]], ["GNAN",["J2","J2"]], ["GNAN",["J2.2","J2d2"]], ["GNAN",["J3","J3"]], ["GNAN",["J3.2","J3d2"]], ["GNAN",["J4","J4"]], ["GNAN",["L2(101)","L2101"]], ["GNAN",["L2(103)","L2103"]], ["GNAN",["L2(107)","L2107"]], ["GNAN",["L2(109)","L2109"]], ["GNAN",["L2(11)","L211"]], ["GNAN",["L2(11).2","L211d2"]], ["GNAN",["L2(113)","L2113"]], ["GNAN",["L2(127)","L2127"]], ["GNAN",["L2(128)","L2128"]], ["GNAN",["L2(13)","L213"]], ["GNAN",["L2(13).2","L213d2"]], ["GNAN",["L2(131)","L2131"]], ["GNAN",["L2(137)","L2137"]], ["GNAN",["L2(139)","L2139"]], ["GNAN",["L2(149)","L2149"]], ["GNAN",["L2(151)","L2151"]], ["GNAN",["L2(157)","L2157"]], ["GNAN",["L2(16)","L216"]], ["GNAN",["L2(16).2","L216d2"]], ["GNAN",["L2(16).4","L216d4"]], ["GNAN",["L2(163)","L2163"]], ["GNAN",["L2(167)","L2167"]], ["GNAN",["L2(17)","L217"]], ["GNAN",["L2(17).2","L217d2"]], ["GNAN",["L2(173)","L2173"]], ["GNAN",["L2(179)","L2179"]], ["GNAN",["L2(181)","L2181"]], ["GNAN",["L2(19)","L219"]], ["GNAN",["L2(19).2","L219d2"]], ["GNAN",["L2(191)","L2191"]], ["GNAN",["L2(193)","L2193"]], ["GNAN",["L2(197)","L2197"]], ["GNAN",["L2(199)","L2199"]], ["GNAN",["L2(211)","L2211"]], ["GNAN",["L2(223)","L2223"]], ["GNAN",["L2(227)","L2227"]], ["GNAN",["L2(229)","L2229"]], ["GNAN",["L2(23)","L223"]], ["GNAN",["L2(23).2","L223d2"]], ["GNAN",["L2(233)","L2233"]], ["GNAN",["L2(239)","L2239"]], ["GNAN",["L2(241)","L2241"]], ["GNAN",["L2(25)","L225"]], ["GNAN",["L2(25).2_1","L225d21"]], ["GNAN",["L2(25).2_2","L225d22"]], ["GNAN",["L2(25).2_3","L225d23"]], ["GNAN",["L2(27)","L227"]], ["GNAN",["L2(27).2","L227d2"]], ["GNAN",["L2(27).3","L227d3"]], ["GNAN",["L2(27).6","L227d6"]], ["GNAN",["L2(29)","L229"]], ["GNAN",["L2(29).2","L229d2"]], ["GNAN",["L2(31)","L231"]], ["GNAN",["L2(31).2","L231d2"]], ["GNAN",["L2(32)","L232"]], ["GNAN",["L2(32).5","L232d5"]], ["GNAN",["L2(37)","L237"]], ["GNAN",["L2(41)","L241"]], ["GNAN",["L2(43)","L243"]], ["GNAN",["L2(47)","L247"]], ["GNAN",["L2(49)","L249"]], ["GNAN",["L2(53)","L253"]], ["GNAN",["L2(59)","L259"]], ["GNAN",["L2(61)","L261"]], ["GNAN",["L2(64)","L264"]], ["GNAN",["L2(67)","L267"]], ["GNAN",["L2(71)","L271"]], ["GNAN",["L2(73)","L273"]], ["GNAN",["L2(79)","L279"]], ["GNAN",["L2(8)","L28"]], ["GNAN",["L2(8).3","L28d3"]], ["GNAN",["L2(81)","L281"]], ["GNAN",["L2(83)","L283"]], ["GNAN",["L2(89)","L289"]], ["GNAN",["L2(97)","L297"]], ["GNAN",["L3(11)","L311"]], ["GNAN",["L3(13)","L313"]], ["GNAN",["L3(2)","L27"]], ["GNAN",["L3(2).2","L27d2"]], ["GNAN",["L3(3)","L33"]], ["GNAN",["L3(3).2","L33d2"]], ["GNAN",["L3(4)","L34"]], ["GNAN",["L3(4).2^2","L34V4"]], ["GNAN",["L3(4).2_1","L34d2a"]], ["GNAN",["L3(4).2_2","L34d2b"]], ["GNAN",["L3(4).2_3","L34d2c"]], ["GNAN",["L3(4).3","L34d3"]], ["GNAN",["L3(4).6","L34d6"]], ["GNAN",["L3(4).D12","L34D12"]], ["GNAN",["L3(5)","L35"]], ["GNAN",["L3(5).2","L35d2"]], ["GNAN",["L3(7)","L37"]], ["GNAN",["L3(7).2","L37d2"]], ["GNAN",["L3(7).3","L37d3"]], ["GNAN",["L3(8)","L38"]], ["GNAN",["L3(8).2","L38d2"]], ["GNAN",["L3(8).3","L38d3"]], ["GNAN",["L3(8).6","L38d6"]], ["GNAN",["L3(9)","L39"]], ["GNAN",["L3(9).2_1","L39d21"]], ["GNAN",["L3(9).2_2","L39d22"]], ["GNAN",["L3(9).2_3","L39d23"]], ["GNAN",["L4(3)","L43"]], ["GNAN",["L4(3).2_1","L43d21"]], ["GNAN",["L4(3).2_2","L43d22"]], ["GNAN",["L4(3).2_3","L43d23"]], ["GNAN",["L4(4)","L44"]], ["GNAN",["L4(5)","L45"]], ["GNAN",["L5(2)","L52"]], ["GNAN",["L5(2).2","L52d2"]], ["GNAN",["L5(3)","L53"]], ["GNAN",["L6(2)","L62"]], ["GNAN",["L6(2).2","L62d2"]], ["GNAN",["L7(2)","L72"]], ["GNAN",["L7(2).2","L72d2"]], ["GNAN",["Ly","Ly"]], ["GNAN",["M","M"]], ["GNAN",["M11","M11"]], ["GNAN",["M11xA6.2^2","Mmax30"]], ["GNAN",["M12","M12"]], ["GNAN",["M12.2","M12d2"]], ["GNAN",["M20","M20"]], ["GNAN",["M22","M22"]], ["GNAN",["M22.2","M22d2"]], ["GNAN",["M23","M23"]], ["GNAN",["M24","M24"]], ["GNAN",["McL","McL"]], ["GNAN",["McL.2","McLd2"]], ["GNAN",["O10+(2)","O10p2"]], ["GNAN",["O10+(2).2","O10p2d2"]], ["GNAN",["O10-(2)","O10m2"]], ["GNAN",["O10-(2).2","O10m2d2"]], ["GNAN",["O7(3)","O73"]], ["GNAN",["O7(3).2","O73d2"]], ["GNAN",["O8+(2)","O8p2"]], ["GNAN",["O8+(2).2","O8p2d2"]], ["GNAN",["O8+(2).3","O8p2d3"]], ["GNAN",["O8+(3)","O8p3"]], ["GNAN",["O8+(3).S4","O8p3S4"]], ["GNAN",["O8-(2)","O8m2"]], ["GNAN",["O8-(2).2","O8m2d2"]], ["GNAN",["O8-(3)","O8m3"]], ["GNAN",["O8-(3).2^2","O8m3V4"]], ["GNAN",["O8-(3).2_1","O8m3d2a"]], ["GNAN",["O8-(3).2_2","O8m3d2b"]], ["GNAN",["O8-(3).2_3","O8m3d2c"]], ["GNAN",["O8-(3).D8","O8m3D8"]], ["GNAN",["O9(3)","O93"]], ["GNAN",["O9(3).2","O93d2"]], ["GNAN",["ON","ON"]], ["GNAN",["ON.2","ONd2"]], ["GNAN",["ON.4","ONd4"]], ["GNAN",["R(27)","R27"]], ["GNAN",["R(27).3","R27d3"]], ["GNAN",["Ru","Ru"]], ["GNAN",["S10(2)","S102"]], ["GNAN",["S3xTh","Mmax9"]], ["GNAN",["S4(11)","S411"]], ["GNAN",["S4(13)","S413"]], ["GNAN",["S4(17)","S417"]], ["GNAN",["S4(19)","S419"]], ["GNAN",["S4(4)","S44"]], ["GNAN",["S4(4).2","S44d2"]], ["GNAN",["S4(4).4","S44d4"]], ["GNAN",["S4(5)","S45"]], ["GNAN",["S4(5).2","S45d2"]], ["GNAN",["S4(7)","S47"]], ["GNAN",["S4(7).2","S47d2"]], ["GNAN",["S4(9)","S49"]], ["GNAN",["S6(2)","S62"]], ["GNAN",["S6(3)","S63"]], ["GNAN",["S6(3).2","S63d2"]], ["GNAN",["S6(5)","S65"]], ["GNAN",["S8(2)","S82"]], ["GNAN",["S8(3)","S83"]], ["GNAN",["Suz","Suz"]], ["GNAN",["Suz.2","Suzd2"]], ["GNAN",["Sz(32)","Sz32"]], ["GNAN",["Sz(32).5","Sz32d5"]], ["GNAN",["Sz(8)","Sz8"]], ["GNAN",["Sz(8).3","Sz8d3"]], ["GNAN",["Th","Th"]], ["GNAN",["U3(11)","U311"]], ["GNAN",["U3(11).2","U311d2"]], ["GNAN",["U3(13)","U313"]], ["GNAN",["U3(16)","U316"]], ["GNAN",["U3(3)","U33"]], ["GNAN",["U3(3).2","U33d2"]], ["GNAN",["U3(4)","U34"]], ["GNAN",["U3(4).2","U34d2"]], ["GNAN",["U3(4).4","U34d4"]], ["GNAN",["U3(5)","U35"]], ["GNAN",["U3(5).2","U35d2"]], ["GNAN",["U3(5).3","U35d3"]], ["GNAN",["U3(7)","U37"]], ["GNAN",["U3(8)","U38"]], ["GNAN",["U3(8).(S3x3)","U38S3x3"]], ["GNAN",["U3(8).2","U38d2"]], ["GNAN",["U3(8).3^2","U38E9"]], ["GNAN",["U3(8).3_1","U38d3a"]], ["GNAN",["U3(8).3_2","U38d3b"]], ["GNAN",["U3(8).3_3","U38d3c"]], ["GNAN",["U3(8).6","U38d6"]], ["GNAN",["U3(8).S3","U38S3"]], ["GNAN",["U3(9)","U39"]], ["GNAN",["U4(2)","U42"]], ["GNAN",["U4(2).2","U42d2"]], ["GNAN",["U4(3)","U43"]], ["GNAN",["U4(3).2_1","U43d21"]], ["GNAN",["U4(3).2_2","U43d22"]], ["GNAN",["U4(3).2_3","U43d23"]], ["GNAN",["U4(3).4","U43d4"]], ["GNAN",["U4(3).D8","U43D8"]], ["GNAN",["U4(4)","U44"]], ["GNAN",["U4(5)","U45"]], ["GNAN",["U5(2)","U52"]], ["GNAN",["U5(2).2","U52d2"]], ["GNAN",["U5(3)","U53"]], ["GNAN",["U5(4)","U54"]], ["GNAN",["U6(2)","U62"]], ["GNAN",["U6(2).2","U62d2"]], ["GNAN",["U6(2).3","U62d3"]], ["GNAN",["U6(2).S3","U62S3"]], ["GNAN",["U6(3)","U63"]], ["GNAN",["U7(2)","U72"]], ["GNAN",["U8(2)","U82"]], ["GNAN",["W(F4)","WF4"]], ["GRS",["(13:6xL3(3)).2",876096]], ["GRS",["(2^2x3).U6(2)",110361968640]], ["GRS",["(3^2:2xO8+(3)).S4",2139341679820800]], ["GRS",["(5^2:[2^4]xU3(5)).S3",302400000]], ["GRS",["(7:3xHe):2",169276262400]], ["GRS",["(7^2:(3x2A4)xL2(7)).2",1185408]], ["GRS",["(A5xA12):2",28740096000]], ["GRS",["(A5xU3(8):3):2",1985679360]], ["GRS",["(A6xA6xA6).(2xS4)",2239488000]], ["GRS",["(A7x(A5xA5).4).2",72576000]], ["GRS",["(D10xHN).2",5460618240000000]], ["GRS",["(L2(11)xL2(11)):4",1742400]], ["GRS",["(L2(11)xM12):2",125452800]], ["GRS",["(L3(2)xS4(4):2).2",658022400]], ["GRS",["(S5xS5xS5):S3",10368000]], ["GRS",["11^2:(5x2A5)",72600]], ["GRS",["12.M22",5322240]], ["GRS",["12.M22.2",10644480]], ["GRS",["12_1.L3(4)",241920]], ["GRS",["12_1.L3(4).2_1",483840]], ["GRS",["12_2.L3(4)",241920]], ["GRS",["12_2.L3(4).2_1",483840]], ["GRS",["13^(1+2):(3x4S4)",632736]], ["GRS",["13^2:2.L2(13).4",1476384]], ["GRS",["2.(2xF4(2)).2",26489012826931200]], ["GRS",["2.2E6(2)",153064959367549707878400]], ["GRS",["2.2E6(2).2",306129918735099415756800]], ["GRS",["2.A10",3628800]], ["GRS",["2.A10.2",7257600]], ["GRS",["2.A11",39916800]], ["GRS",["2.A11.2",79833600]], ["GRS",["2.A12",479001600]], ["GRS",["2.A12.2",958003200]], ["GRS",["2.A13",6227020800]], ["GRS",["2.A13.2",12454041600]], ["GRS",["2.A14",87178291200]], ["GRS",["2.A14.2",174356582400]], ["GRS",["2.A5",120]], ["GRS",["2.A5.2",240]], ["GRS",["2.A6",720]], ["GRS",["2.A6.2_1",1440]], ["GRS",["2.A7",5040]], ["GRS",["2.A7.2",10080]], ["GRS",["2.A8",40320]], ["GRS",["2.A8.2",80640]], ["GRS",["2.A9",362880]], ["GRS",["2.A9.2",725760]], ["GRS",["2.B",8309562962452852382355161088000000]], ["GRS",["2.Co1",8315553613086720000]], ["GRS",["2.F4(2)",6622253206732800]], ["GRS",["2.F4(2).2",13244506413465600]], ["GRS",["2.Fi22",129123503308800]], ["GRS",["2.Fi22.2",258247006617600]], ["GRS",["2.G2(4)",503193600]], ["GRS",["2.G2(4).2",1006387200]], ["GRS",["2.HS",88704000]], ["GRS",["2.HS.2",177408000]], ["GRS",["2.J2",1209600]], ["GRS",["2.J2.2",2419200]], ["GRS",["2.L2(101)",1030200]], ["GRS",["2.L2(103)",1092624]], ["GRS",["2.L2(107)",1224936]], ["GRS",["2.L2(109)",1294920]], ["GRS",["2.L2(11)",1320]], ["GRS",["2.L2(113)",1442784]], ["GRS",["2.L2(127)",2048256]], ["GRS",["2.L2(13)",2184]], ["GRS",["2.L2(13).2",4368]], ["GRS",["2.L2(131)",2247960]], ["GRS",["2.L2(137)",2571216]], ["GRS",["2.L2(139)",2685480]], ["GRS",["2.L2(149)",3307800]], ["GRS",["2.L2(151)",3442800]], ["GRS",["2.L2(157)",3869736]], ["GRS",["2.L2(163)",4330584]], ["GRS",["2.L2(167)",4657296]], ["GRS",["2.L2(17)",4896]], ["GRS",["2.L2(17).2",9792]], ["GRS",["2.L2(173)",5177544]], ["GRS",["2.L2(179)",5735160]], ["GRS",["2.L2(181)",5929560]], ["GRS",["2.L2(19)",6840]], ["GRS",["2.L2(191)",6967680]], ["GRS",["2.L2(193)",7188864]], ["GRS",["2.L2(197)",7645176]], ["GRS",["2.L2(199)",7880400]], ["GRS",["2.L2(211)",9393720]], ["GRS",["2.L2(223)",11089344]], ["GRS",["2.L2(227)",11696856]], ["GRS",["2.L2(229)",12008760]], ["GRS",["2.L2(23)",12144]], ["GRS",["2.L2(233)",12649104]], ["GRS",["2.L2(239)",13651680]], ["GRS",["2.L2(241)",13997280]], ["GRS",["2.L2(25)",15600]], ["GRS",["2.L2(27)",19656]], ["GRS",["2.L2(29)",24360]], ["GRS",["2.L2(31)",29760]], ["GRS",["2.L2(37)",50616]], ["GRS",["2.L2(41)",68880]], ["GRS",["2.L2(43)",79464]], ["GRS",["2.L2(47)",103776]], ["GRS",["2.L2(49)",117600]], ["GRS",["2.L2(53)",148824]], ["GRS",["2.L2(59)",205320]], ["GRS",["2.L2(61)",226920]], ["GRS",["2.L2(67)",300696]], ["GRS",["2.L2(71)",357840]], ["GRS",["2.L2(73)",388944]], ["GRS",["2.L2(79)",492960]], ["GRS",["2.L2(83)",571704]], ["GRS",["2.L2(89)",704880]], ["GRS",["2.L2(97)",912576]], ["GRS",["2.L3(2)",336]], ["GRS",["2.L3(2).2",672]], ["GRS",["2.L3(4)",40320]], ["GRS",["2.L3(4).2_1",80640]], ["GRS",["2.M12",190080]], ["GRS",["2.M12.2",380160]], ["GRS",["2.M22",887040]], ["GRS",["2.M22.2",1774080]], ["GRS",["2.O7(3)",9170703360]], ["GRS",["2.O7(3).2",18341406720]], ["GRS",["2.O8+(2)",348364800]], ["GRS",["2.O8+(2).2",696729600]], ["GRS",["2.O8+(3)",9904359628800]], ["GRS",["2.O8-(3)",20303937239040]], ["GRS",["2.O8-(3).2_1",40607874478080]], ["GRS",["2.O9(3)",131569513308979200]], ["GRS",["2.O9(3).2",263139026617958400]], ["GRS",["2.Ru",291852288000]], ["GRS",["2.S4(11)",25721308800]], ["GRS",["2.S4(13)",137037962880]], ["GRS",["2.S4(17)",2008994088960]], ["GRS",["2.S4(19)",6114035779200]], ["GRS",["2.S4(5)",9360000]], ["GRS",["2.S4(7)",276595200]], ["GRS",["2.S4(7).2",553190400]], ["GRS",["2.S4(9)",3443212800]], ["GRS",["2.S6(2)",2903040]], ["GRS",["2.S6(3)",9170703360]], ["GRS",["2.S6(3).2",18341406720]], ["GRS",["2.Suz",896690995200]], ["GRS",["2.Suz.2",1793381990400]], ["GRS",["2.Sz(8)",58240]], ["GRS",["2.U4(2)",51840]], ["GRS",["2.U4(2).2",103680]], ["GRS",["2.U4(3).D8",52254720]], ["GRS",["2.U6(2)",18393661440]], ["GRS",["2.U6(2).2",36787322880]], ["GRS",["2E6(2)",76532479683774853939200]], ["GRS",["2E6(2).2",153064959367549707878400]], ["GRS",["2E6(2).3",229597439051324561817600]], ["GRS",["2E6(2).S3",459194878102649123635200]], ["GRS",["2F4(2)'",17971200]], ["GRS",["2F4(2)'.2",35942400]], ["GRS",["2^(1+24).Co1",139511839126336328171520000]], ["GRS",["2^(10+16).O10+(2)",1577011055923770163200]], ["GRS",["2^(2+11+22).(M24xS3)",50472333605150392320]], ["GRS",["2^(5+10+20).(S3xL5(2))",2061452360684666880]], ["GRS",["2^14.U7(2)",3732063900024176640]], ["GRS",["2^2.2E6(2)",306129918735099415756800]], ["GRS",["2^2.2E6(2).S3",1836779512410596494540800]], ["GRS",["2^2.L3(4)",80640]], ["GRS",["2^2.L3(4).2_2",161280]], ["GRS",["2^2.O8+(3).S4",475409262182400]], ["GRS",["2^2.Sz(8)",116480]], ["GRS",["2^2.Sz(8).3",349440]], ["GRS",["2^2.U6(2)",36787322880]], ["GRS",["2^4.A8",322560]], ["GRS",["2^5.L5(2)",319979520]], ["GRS",["2^[39].(L3(2)x3.S6)",199495389743677440]], ["GRS",["2aM20",1920]], ["GRS",["2bM20",1920]], ["GRS",["2cM20",1920]], ["GRS",["3.2E6(2)",229597439051324561817600]], ["GRS",["3.2E6(2).2",459194878102649123635200]], ["GRS",["3.2E6(2).3",688792317153973685452800]], ["GRS",["3.2E6(2).S3",1377584634307947370905600]], ["GRS",["3.A6",1080]], ["GRS",["3.A6.2_1",2160]], ["GRS",["3.A7",7560]], ["GRS",["3.A7.2",15120]], ["GRS",["3.E6(4)",85528710781342640103833619055142765466746880000]], ["GRS",["3.E6(4).2",171057421562685280207667238110285530933493760000]], ["GRS",["3.Fi22",193685254963200]], ["GRS",["3.Fi22.2",387370509926400]], ["GRS",["3.Fi24'",3765617127571985163878400]], ["GRS",["3.Fi24'.2",7531234255143970327756800]], ["GRS",["3.G2(3)",12737088]], ["GRS",["3.G2(3).2",25474176]], ["GRS",["3.J3",150698880]], ["GRS",["3.J3.2",301397760]], ["GRS",["3.L3(4)",60480]], ["GRS",["3.L3(4).2_1",120960]], ["GRS",["3.L3(7)",5630688]], ["GRS",["3.L3(7).2",11261376]], ["GRS",["3.M22",1330560]], ["GRS",["3.M22.2",2661120]], ["GRS",["3.McL",2694384000]], ["GRS",["3.McL.2",5388768000]], ["GRS",["3.O7(3)",13756055040]], ["GRS",["3.O7(3).2",27512110080]], ["GRS",["3.ON",1382446517760]], ["GRS",["3.ON.2",2764893035520]], ["GRS",["3.Suz",1345036492800]], ["GRS",["3.Suz.2",2690072985600]], ["GRS",["3.U3(11)",212747040]], ["GRS",["3.U3(11).2",425494080]], ["GRS",["3.U3(8)",16547328]], ["GRS",["3.U6(2)",27590492160]], ["GRS",["3D4(2)",211341312]], ["GRS",["3D4(2).3",634023936]], ["GRS",["3D4(3)",20560831566912]], ["GRS",["3^(1+12):2.Suz.2",2859230155080499200]], ["GRS",["3^(1+12):6.Suz.2",8577690465241497600]], ["GRS",["3^(2+5+10).(M11x2S4)",49093924366080]], ["GRS",["3^(2+6+6):(L3(3)xSD16)",429778462464]], ["GRS",["3^(3+2+6+6):(L3(3)xSD16)",11604018486528]], ["GRS",["3^(6+6):(L3(3)xSD16)",47753162496]], ["GRS",["3^2.U4(3).D8",235146240]], ["GRS",["3^6:(L3(3)xSD16)",65505024]], ["GRS",["3^8.O8-(3).2_3",133214132225341440]], ["GRS",["4.M22",1774080]], ["GRS",["4.M22.2",3548160]], ["GRS",["41:40",1640]], ["GRS",["4_1.L3(4)",80640]], ["GRS",["4_1.L3(4).2_1",161280]], ["GRS",["4_2.2^4:A5",3840]], ["GRS",["4_2.L3(4)",80640]], ["GRS",["4_2.L3(4).2_1",161280]], ["GRS",["5^(1+6):2.J2.4",378000000000]], ["GRS",["5^(2+2+4):(S3xGL2(5))",1125000000]], ["GRS",["5^(3+3).(2xL3(5))",11625000000]], ["GRS",["5^3.L3(5)",46500000]], ["GRS",["5^4:(3x2.L2(25)).2",58500000]], ["GRS",["6.A6",2160]], ["GRS",["6.A6.2_1",4320]], ["GRS",["6.A7",15120]], ["GRS",["6.A7.2",30240]], ["GRS",["6.Fi22",387370509926400]], ["GRS",["6.Fi22.2",774741019852800]], ["GRS",["6.L3(4)",120960]], ["GRS",["6.L3(4).2_1",241920]], ["GRS",["6.M22",2661120]], ["GRS",["6.M22.2",5322240]], ["GRS",["6.O7(3)",27512110080]], ["GRS",["6.O7(3).2",55024220160]], ["GRS",["6.Suz",2690072985600]], ["GRS",["6.Suz.2",5380145971200]], ["GRS",["6.U6(2)",55180984320]], ["GRS",["7^(1+4):(3x2.S7)",508243680]], ["GRS",["7^(2+1+2):GL2(7)",33882912]], ["GRS",["7^2:2.L2(7)",16464]], ["GRS",["A10",1814400]], ["GRS",["A10.2",3628800]], ["GRS",["A11",19958400]], ["GRS",["A11.2",39916800]], ["GRS",["A12",239500800]], ["GRS",["A12.2",479001600]], ["GRS",["A13",3113510400]], ["GRS",["A13.2",6227020800]], ["GRS",["A14",43589145600]], ["GRS",["A14.2",87178291200]], ["GRS",["A15",653837184000]], ["GRS",["A15.2",1307674368000]], ["GRS",["A16",10461394944000]], ["GRS",["A16.2",20922789888000]], ["GRS",["A17",177843714048000]], ["GRS",["A17.2",355687428096000]], ["GRS",["A18",3201186852864000]], ["GRS",["A18.2",6402373705728000]], ["GRS",["A19",60822550204416000]], ["GRS",["A19.2",121645100408832000]], ["GRS",["A20",1216451004088320000]], ["GRS",["A20.2",2432902008176640000]], ["GRS",["A21",25545471085854720000]], ["GRS",["A21.2",51090942171709440000]], ["GRS",["A22",562000363888803840000]], ["GRS",["A22.2",1124000727777607680000]], ["GRS",["A23",12926008369442488320000]], ["GRS",["A23.2",25852016738884976640000]], ["GRS",["A5",60]], ["GRS",["A5.2",120]], ["GRS",["A6",360]], ["GRS",["A6.2^2",1440]], ["GRS",["A6.2_1",720]], ["GRS",["A6.2_2",720]], ["GRS",["A6.2_3",720]], ["GRS",["A7",2520]], ["GRS",["A7.2",5040]], ["GRS",["A8",20160]], ["GRS",["A8.2",40320]], ["GRS",["A9",181440]], ["GRS",["A9.2",362880]], ["GRS",["B",4154781481226426191177580544000000]], ["GRS",["Co1",4157776806543360000]], ["GRS",["Co2",42305421312000]], ["GRS",["Co3",495766656000]], ["GRS",["E6(2)",214841575522005575270400]], ["GRS",["E6(4)",28509570260447546701277873018380921822248960000]], ["GRS",["E6(4).2",57019140520895093402555746036761843644497920000]], ["GRS",["E7(2)",7997476042075799759100487262680802918400]], ["GRS",["E7(4)",111131458114940385379597233477884941280664199527155056307251745263504588800000000]], ["GRS",["E8(2)",337804753143634806261388190614085595079991692242467651576160959909068800000]], ["GRS",["E8(5)",212241934165081789939135106539938909320143178249948373703932419194549992287718687106371625640393677463164945340423628294956870377063751220703125000000000000000000000000000000]], ["GRS",["F4(2)",3311126603366400]], ["GRS",["F4(2).2",6622253206732800]], ["GRS",["Fi22",64561751654400]], ["GRS",["Fi22.2",129123503308800]], ["GRS",["Fi23",4089470473293004800]], ["GRS",["Fi24'",1255205709190661721292800]], ["GRS",["Fi24'.2",2510411418381323442585600]], ["GRS",["G2(3)",4245696]], ["GRS",["G2(3).2",8491392]], ["GRS",["G2(4)",251596800]], ["GRS",["G2(4).2",503193600]], ["GRS",["G2(5)",5859000000]], ["GRS",["HN",273030912000000]], ["GRS",["HN.2",546061824000000]], ["GRS",["HS",44352000]], ["GRS",["HS.2",88704000]], ["GRS",["He",4030387200]], ["GRS",["He.2",8060774400]], ["GRS",["Isoclinic(12.M22.2)",10644480]], ["GRS",["Isoclinic(2.A14.2)",174356582400]], ["GRS",["Isoclinic(2.A5.2)",240]], ["GRS",["Isoclinic(2.A7.2)",10080]], ["GRS",["Isoclinic(2.A8.2)",80640]], ["GRS",["Isoclinic(2.Fi22.2)",258247006617600]], ["GRS",["Isoclinic(2.G2(4).2)",1006387200]], ["GRS",["Isoclinic(2.HS.2)",177408000]], ["GRS",["Isoclinic(2.J2.2)",2419200]], ["GRS",["Isoclinic(2.L2(19).2)",13680]], ["GRS",["Isoclinic(2.L2(23).2)",24288]], ["GRS",["Isoclinic(2.L3(2).2)",672]], ["GRS",["Isoclinic(2.M12.2)",380160]], ["GRS",["Isoclinic(2.M22.2)",1774080]], ["GRS",["Isoclinic(2.O7(3).2)",18341406720]], ["GRS",["Isoclinic(2.Suz.2)",1793381990400]], ["GRS",["Isoclinic(4.M22.2)",3548160]], ["GRS",["Isoclinic(6.Fi22.2)",774741019852800]], ["GRS",["Isoclinic(6.M22.2)",5322240]], ["GRS",["Isoclinic(6.Suz.2)",5380145971200]], ["GRS",["J1",175560]], ["GRS",["J2",604800]], ["GRS",["J2.2",1209600]], ["GRS",["J3",50232960]], ["GRS",["J3.2",100465920]], ["GRS",["J4",86775571046077562880]], ["GRS",["L2(101)",515100]], ["GRS",["L2(103)",546312]], ["GRS",["L2(107)",612468]], ["GRS",["L2(109)",647460]], ["GRS",["L2(11)",660]], ["GRS",["L2(11).2",1320]], ["GRS",["L2(113)",721392]], ["GRS",["L2(127)",1024128]], ["GRS",["L2(128)",2097024]], ["GRS",["L2(13)",1092]], ["GRS",["L2(13).2",2184]], ["GRS",["L2(131)",1123980]], ["GRS",["L2(137)",1285608]], ["GRS",["L2(139)",1342740]], ["GRS",["L2(149)",1653900]], ["GRS",["L2(151)",1721400]], ["GRS",["L2(157)",1934868]], ["GRS",["L2(16)",4080]], ["GRS",["L2(16).2",8160]], ["GRS",["L2(16).4",16320]], ["GRS",["L2(163)",2165292]], ["GRS",["L2(167)",2328648]], ["GRS",["L2(17)",2448]], ["GRS",["L2(17).2",4896]], ["GRS",["L2(173)",2588772]], ["GRS",["L2(179)",2867580]], ["GRS",["L2(181)",2964780]], ["GRS",["L2(19)",3420]], ["GRS",["L2(19).2",6840]], ["GRS",["L2(191)",3483840]], ["GRS",["L2(193)",3594432]], ["GRS",["L2(197)",3822588]], ["GRS",["L2(199)",3940200]], ["GRS",["L2(211)",4696860]], ["GRS",["L2(223)",5544672]], ["GRS",["L2(227)",5848428]], ["GRS",["L2(229)",6004380]], ["GRS",["L2(23)",6072]], ["GRS",["L2(23).2",12144]], ["GRS",["L2(233)",6324552]], ["GRS",["L2(239)",6825840]], ["GRS",["L2(241)",6998640]], ["GRS",["L2(25)",7800]], ["GRS",["L2(25).2_1",15600]], ["GRS",["L2(25).2_2",15600]], ["GRS",["L2(25).2_3",15600]], ["GRS",["L2(27)",9828]], ["GRS",["L2(27).2",19656]], ["GRS",["L2(27).3",29484]], ["GRS",["L2(27).6",58968]], ["GRS",["L2(29)",12180]], ["GRS",["L2(29).2",24360]], ["GRS",["L2(31)",14880]], ["GRS",["L2(31).2",29760]], ["GRS",["L2(32)",32736]], ["GRS",["L2(32).5",163680]], ["GRS",["L2(37)",25308]], ["GRS",["L2(41)",34440]], ["GRS",["L2(43)",39732]], ["GRS",["L2(47)",51888]], ["GRS",["L2(49)",58800]], ["GRS",["L2(53)",74412]], ["GRS",["L2(59)",102660]], ["GRS",["L2(61)",113460]], ["GRS",["L2(64)",262080]], ["GRS",["L2(67)",150348]], ["GRS",["L2(71)",178920]], ["GRS",["L2(73)",194472]], ["GRS",["L2(79)",246480]], ["GRS",["L2(8)",504]], ["GRS",["L2(8).3",1512]], ["GRS",["L2(81)",265680]], ["GRS",["L2(83)",285852]], ["GRS",["L2(89)",352440]], ["GRS",["L2(97)",456288]], ["GRS",["L3(11)",212427600]], ["GRS",["L3(13)",270178272]], ["GRS",["L3(2)",168]], ["GRS",["L3(2).2",336]], ["GRS",["L3(3)",5616]], ["GRS",["L3(3).2",11232]], ["GRS",["L3(4)",20160]], ["GRS",["L3(4).2^2",80640]], ["GRS",["L3(4).2_1",40320]], ["GRS",["L3(4).2_2",40320]], ["GRS",["L3(4).2_3",40320]], ["GRS",["L3(4).3",60480]], ["GRS",["L3(4).6",120960]], ["GRS",["L3(4).D12",241920]], ["GRS",["L3(5)",372000]], ["GRS",["L3(5).2",744000]], ["GRS",["L3(7)",1876896]], ["GRS",["L3(7).2",3753792]], ["GRS",["L3(7).3",5630688]], ["GRS",["L3(8)",16482816]], ["GRS",["L3(8).2",32965632]], ["GRS",["L3(8).3",49448448]], ["GRS",["L3(8).6",98896896]], ["GRS",["L3(9)",42456960]], ["GRS",["L3(9).2_1",84913920]], ["GRS",["L3(9).2_2",84913920]], ["GRS",["L3(9).2_3",84913920]], ["GRS",["L4(3)",6065280]], ["GRS",["L4(3).2_1",12130560]], ["GRS",["L4(3).2_2",12130560]], ["GRS",["L4(3).2_3",12130560]], ["GRS",["L4(4)",987033600]], ["GRS",["L4(5)",7254000000]], ["GRS",["L5(2)",9999360]], ["GRS",["L5(2).2",19998720]], ["GRS",["L5(3)",237783237120]], ["GRS",["L6(2)",20158709760]], ["GRS",["L6(2).2",40317419520]], ["GRS",["L7(2)",163849992929280]], ["GRS",["L7(2).2",327699985858560]], ["GRS",["Ly",51765179004000000]], ["GRS",["M",808017424794512875886459904961710757005754368000000000]], ["GRS",["M11",7920]], ["GRS",["M11xA6.2^2",11404800]], ["GRS",["M12",95040]], ["GRS",["M12.2",190080]], ["GRS",["M20",960]], ["GRS",["M22",443520]], ["GRS",["M22.2",887040]], ["GRS",["M23",10200960]], ["GRS",["M24",244823040]], ["GRS",["McL",898128000]], ["GRS",["McL.2",1796256000]], ["GRS",["O10+(2)",23499295948800]], ["GRS",["O10+(2).2",46998591897600]], ["GRS",["O10-(2)",25015379558400]], ["GRS",["O10-(2).2",50030759116800]], ["GRS",["O7(3)",4585351680]], ["GRS",["O7(3).2",9170703360]], ["GRS",["O8+(2)",174182400]], ["GRS",["O8+(2).2",348364800]], ["GRS",["O8+(2).3",522547200]], ["GRS",["O8+(3)",4952179814400]], ["GRS",["O8+(3).S4",118852315545600]], ["GRS",["O8-(2)",197406720]], ["GRS",["O8-(2).2",394813440]], ["GRS",["O8-(3)",10151968619520]], ["GRS",["O8-(3).2^2",40607874478080]], ["GRS",["O8-(3).2_1",20303937239040]], ["GRS",["O8-(3).2_2",20303937239040]], ["GRS",["O8-(3).2_3",20303937239040]], ["GRS",["O8-(3).D8",81215748956160]], ["GRS",["O9(3)",65784756654489600]], ["GRS",["O9(3).2",131569513308979200]], ["GRS",["ON",460815505920]], ["GRS",["ON.2",921631011840]], ["GRS",["ON.4",1843262023680]], ["GRS",["R(27)",10073444472]], ["GRS",["R(27).3",30220333416]], ["GRS",["Ru",145926144000]], ["GRS",["S10(2)",24815256521932800]], ["GRS",["S3xTh",544475663327232000]], ["GRS",["S4(11)",12860654400]], ["GRS",["S4(13)",68518981440]], ["GRS",["S4(17)",1004497044480]], ["GRS",["S4(19)",3057017889600]], ["GRS",["S4(4)",979200]], ["GRS",["S4(4).2",1958400]], ["GRS",["S4(4).4",3916800]], ["GRS",["S4(5)",4680000]], ["GRS",["S4(5).2",9360000]], ["GRS",["S4(7)",138297600]], ["GRS",["S4(7).2",276595200]], ["GRS",["S4(9)",1721606400]], ["GRS",["S6(2)",1451520]], ["GRS",["S6(3)",4585351680]], ["GRS",["S6(3).2",9170703360]], ["GRS",["S6(5)",228501000000000]], ["GRS",["S8(2)",47377612800]], ["GRS",["S8(3)",65784756654489600]], ["GRS",["Suz",448345497600]], ["GRS",["Suz.2",896690995200]], ["GRS",["Sz(32)",32537600]], ["GRS",["Sz(32).5",162688000]], ["GRS",["Sz(8)",29120]], ["GRS",["Sz(8).3",87360]], ["GRS",["Th",90745943887872000]], ["GRS",["U3(11)",70915680]], ["GRS",["U3(11).2",141831360]], ["GRS",["U3(13)",811273008]], ["GRS",["U3(16)",4279234560]], ["GRS",["U3(3)",6048]], ["GRS",["U3(3).2",12096]], ["GRS",["U3(4)",62400]], ["GRS",["U3(4).2",124800]], ["GRS",["U3(4).4",249600]], ["GRS",["U3(5)",126000]], ["GRS",["U3(5).2",252000]], ["GRS",["U3(5).3",378000]], ["GRS",["U3(7)",5663616]], ["GRS",["U3(8)",5515776]], ["GRS",["U3(8).(S3x3)",99283968]], ["GRS",["U3(8).2",11031552]], ["GRS",["U3(8).3^2",49641984]], ["GRS",["U3(8).3_1",16547328]], ["GRS",["U3(8).3_2",16547328]], ["GRS",["U3(8).3_3",16547328]], ["GRS",["U3(8).6",33094656]], ["GRS",["U3(8).S3",33094656]], ["GRS",["U3(9)",42573600]], ["GRS",["U4(2)",25920]], ["GRS",["U4(2).2",51840]], ["GRS",["U4(3)",3265920]], ["GRS",["U4(3).2_1",6531840]], ["GRS",["U4(3).2_2",6531840]], ["GRS",["U4(3).2_3",6531840]], ["GRS",["U4(3).4",13063680]], ["GRS",["U4(3).D8",26127360]], ["GRS",["U4(4)",1018368000]], ["GRS",["U4(5)",14742000000]], ["GRS",["U5(2)",13685760]], ["GRS",["U5(2).2",27371520]], ["GRS",["U5(3)",258190571520]], ["GRS",["U5(4)",53443952640000]], ["GRS",["U6(2)",9196830720]], ["GRS",["U6(2).2",18393661440]], ["GRS",["U6(2).3",27590492160]], ["GRS",["U6(2).S3",55180984320]], ["GRS",["U6(3)",22837472432087040]], ["GRS",["U7(2)",227787103272960]], ["GRS",["U8(2)",7434971050829414400]], ["GRS",["W(F4)",1152]], ["MXN",["(2^2x3).U6(2)",16]], ["MXN",["12.M22",8]], ["MXN",["12.M22.2",7]], ["MXN",["12_1.L3(4)",9]], ["MXN",["12_1.L3(4).2_1",10]], ["MXN",["12_2.L3(4)",9]], ["MXN",["12_2.L3(4).2_1",10]], ["MXN",["2.A10",7]], ["MXN",["2.A10.2",8]], ["MXN",["2.A11",7]], ["MXN",["2.A11.2",7]], ["MXN",["2.A12",11]], ["MXN",["2.A12.2",11]], ["MXN",["2.A13",9]], ["MXN",["2.A13.2",8]], ["MXN",["2.A5",3]], ["MXN",["2.A5.2",4]], ["MXN",["2.A6",5]], ["MXN",["2.A6.2_1",6]], ["MXN",["2.A7",5]], ["MXN",["2.A7.2",5]], ["MXN",["2.A8",6]], ["MXN",["2.A8.2",7]], ["MXN",["2.A9",8]], ["MXN",["2.A9.2",7]], ["MXN",["2.B",30]], ["MXN",["2.Co1",22]], ["MXN",["2.Fi22",14]], ["MXN",["2.Fi22.2",13]], ["MXN",["2.G2(4)",8]], ["MXN",["2.G2(4).2",9]], ["MXN",["2.HS",12]], ["MXN",["2.HS.2",10]], ["MXN",["2.J2",9]], ["MXN",["2.J2.2",10]], ["MXN",["2.L2(11)",4]], ["MXN",["2.L2(13)",4]], ["MXN",["2.L2(13).2",5]], ["MXN",["2.L2(17)",5]], ["MXN",["2.L2(19)",5]], ["MXN",["2.L2(23)",5]], ["MXN",["2.L2(25)",5]], ["MXN",["2.L2(27)",4]], ["MXN",["2.L2(29)",5]], ["MXN",["2.L2(31)",7]], ["MXN",["2.L2(49)",7]], ["MXN",["2.L3(2)",3]], ["MXN",["2.L3(2).2",4]], ["MXN",["2.L3(4)",9]], ["MXN",["2.L3(4).2_1",10]], ["MXN",["2.M12",11]], ["MXN",["2.M12.2",9]], ["MXN",["2.M22",8]], ["MXN",["2.M22.2",7]], ["MXN",["2.O7(3)",15]], ["MXN",["2.O8+(2)",17]], ["MXN",["2.O8+(3)",27]], ["MXN",["2.Ru",15]], ["MXN",["2.S4(5)",8]], ["MXN",["2.S6(2)",8]], ["MXN",["2.S6(3)",11]], ["MXN",["2.Suz",17]], ["MXN",["2.Suz.2",16]], ["MXN",["2.Sz(8)",4]], ["MXN",["2.U4(2)",5]], ["MXN",["2.U4(2).2",6]], ["MXN",["2.U6(2)",16]], ["MXN",["2F4(2)'",8]], ["MXN",["2F4(2)'.2",7]], ["MXN",["2^2.L3(4)",9]], ["MXN",["2^2.L3(4).2_2",6]], ["MXN",["2^2.Sz(8)",4]], ["MXN",["2^2.Sz(8).3",5]], ["MXN",["2^2.U6(2)",16]], ["MXN",["3.A6",5]], ["MXN",["3.A6.2_1",6]], ["MXN",["3.A7",5]], ["MXN",["3.A7.2",5]], ["MXN",["3.Fi22",14]], ["MXN",["3.Fi22.2",13]], ["MXN",["3.Fi24'",25]], ["MXN",["3.Fi24'.2",21]], ["MXN",["3.G2(3)",10]], ["MXN",["3.G2(3).2",6]], ["MXN",["3.J3",9]], ["MXN",["3.J3.2",9]], ["MXN",["3.L3(4)",9]], ["MXN",["3.L3(4).2_1",10]], ["MXN",["3.L3(7)",8]], ["MXN",["3.M22",8]], ["MXN",["3.M22.2",7]], ["MXN",["3.McL",12]], ["MXN",["3.McL.2",10]], ["MXN",["3.O7(3)",15]], ["MXN",["3.ON",13]], ["MXN",["3.ON.2",10]], ["MXN",["3.Suz",17]], ["MXN",["3.Suz.2",16]], ["MXN",["3.U3(11)",11]], ["MXN",["3.U3(8)",7]], ["MXN",["3.U6(2)",16]], ["MXN",["3D4(2)",9]], ["MXN",["3D4(2).3",10]], ["MXN",["4.M22",8]], ["MXN",["4.M22.2",7]], ["MXN",["4_1.L3(4)",9]], ["MXN",["4_1.L3(4).2_1",10]], ["MXN",["4_2.L3(4)",9]], ["MXN",["4_2.L3(4).2_1",10]], ["MXN",["6.A6",5]], ["MXN",["6.A6.2_1",6]], ["MXN",["6.A7",5]], ["MXN",["6.A7.2",5]], ["MXN",["6.Fi22",14]], ["MXN",["6.Fi22.2",13]], ["MXN",["6.L3(4)",9]], ["MXN",["6.L3(4).2_1",10]], ["MXN",["6.M22",8]], ["MXN",["6.M22.2",7]], ["MXN",["6.O7(3)",15]], ["MXN",["6.Suz",17]], ["MXN",["6.Suz.2",16]], ["MXN",["6.U6(2)",16]], ["MXN",["A10",7]], ["MXN",["A10.2",8]], ["MXN",["A11",7]], ["MXN",["A11.2",7]], ["MXN",["A12",11]], ["MXN",["A12.2",11]], ["MXN",["A13",9]], ["MXN",["A13.2",8]], ["MXN",["A5",3]], ["MXN",["A5.2",4]], ["MXN",["A6",5]], ["MXN",["A6.2^2",6]], ["MXN",["A6.2_1",6]], ["MXN",["A6.2_2",4]], ["MXN",["A6.2_3",4]], ["MXN",["A7",5]], ["MXN",["A7.2",5]], ["MXN",["A8",6]], ["MXN",["A8.2",7]], ["MXN",["A9",8]], ["MXN",["A9.2",7]], ["MXN",["B",30]], ["MXN",["Co1",22]], ["MXN",["Co2",11]], ["MXN",["Co3",14]], ["MXN",["Fi22",14]], ["MXN",["Fi22.2",13]], ["MXN",["Fi23",14]], ["MXN",["Fi24'",25]], ["MXN",["Fi24'.2",21]], ["MXN",["G2(3)",10]], ["MXN",["G2(3).2",6]], ["MXN",["G2(4)",8]], ["MXN",["G2(4).2",9]], ["MXN",["G2(5)",7]], ["MXN",["HN",14]], ["MXN",["HN.2",13]], ["MXN",["HS",12]], ["MXN",["HS.2",10]], ["MXN",["He",11]], ["MXN",["He.2",12]], ["MXN",["Isoclinic(12.M22.2)",7]], ["MXN",["Isoclinic(2.A5.2)",4]], ["MXN",["Isoclinic(2.A7.2)",5]], ["MXN",["Isoclinic(2.A8.2)",7]], ["MXN",["Isoclinic(2.Fi22.2)",13]], ["MXN",["Isoclinic(2.G2(4).2)",9]], ["MXN",["Isoclinic(2.HS.2)",10]], ["MXN",["Isoclinic(2.J2.2)",10]], ["MXN",["Isoclinic(2.L3(2).2)",4]], ["MXN",["Isoclinic(2.M12.2)",9]], ["MXN",["Isoclinic(2.M22.2)",7]], ["MXN",["Isoclinic(2.Suz.2)",16]], ["MXN",["Isoclinic(4.M22.2)",7]], ["MXN",["Isoclinic(6.Fi22.2)",13]], ["MXN",["Isoclinic(6.M22.2)",7]], ["MXN",["Isoclinic(6.Suz.2)",16]], ["MXN",["J1",7]], ["MXN",["J2",9]], ["MXN",["J2.2",10]], ["MXN",["J3",9]], ["MXN",["J3.2",9]], ["MXN",["J4",13]], ["MXN",["L2(101)",5]], ["MXN",["L2(103)",5]], ["MXN",["L2(107)",4]], ["MXN",["L2(109)",5]], ["MXN",["L2(11)",4]], ["MXN",["L2(11).2",5]], ["MXN",["L2(113)",5]], ["MXN",["L2(127)",5]], ["MXN",["L2(13)",4]], ["MXN",["L2(13).2",5]], ["MXN",["L2(131)",5]], ["MXN",["L2(137)",5]], ["MXN",["L2(139)",5]], ["MXN",["L2(149)",5]], ["MXN",["L2(151)",7]], ["MXN",["L2(157)",4]], ["MXN",["L2(16)",4]], ["MXN",["L2(16).2",5]], ["MXN",["L2(16).4",5]], ["MXN",["L2(163)",4]], ["MXN",["L2(167)",5]], ["MXN",["L2(17)",5]], ["MXN",["L2(173)",4]], ["MXN",["L2(179)",5]], ["MXN",["L2(181)",5]], ["MXN",["L2(19)",5]], ["MXN",["L2(191)",7]], ["MXN",["L2(193)",5]], ["MXN",["L2(197)",4]], ["MXN",["L2(199)",7]], ["MXN",["L2(211)",5]], ["MXN",["L2(223)",5]], ["MXN",["L2(227)",4]], ["MXN",["L2(229)",5]], ["MXN",["L2(23)",5]], ["MXN",["L2(233)",5]], ["MXN",["L2(239)",7]], ["MXN",["L2(241)",7]], ["MXN",["L2(25)",5]], ["MXN",["L2(25).2_2",6]], ["MXN",["L2(27)",4]], ["MXN",["L2(29)",5]], ["MXN",["L2(31)",7]], ["MXN",["L2(32)",3]], ["MXN",["L2(32).5",4]], ["MXN",["L2(37)",4]], ["MXN",["L2(41)",7]], ["MXN",["L2(43)",4]], ["MXN",["L2(47)",5]], ["MXN",["L2(49)",7]], ["MXN",["L2(53)",4]], ["MXN",["L2(59)",5]], ["MXN",["L2(61)",5]], ["MXN",["L2(64)",5]], ["MXN",["L2(67)",4]], ["MXN",["L2(71)",7]], ["MXN",["L2(73)",5]], ["MXN",["L2(79)",7]], ["MXN",["L2(8)",3]], ["MXN",["L2(8).3",4]], ["MXN",["L2(81)",5]], ["MXN",["L2(83)",4]], ["MXN",["L2(89)",7]], ["MXN",["L2(97)",5]], ["MXN",["L3(11)",6]], ["MXN",["L3(2)",3]], ["MXN",["L3(2).2",4]], ["MXN",["L3(3)",4]], ["MXN",["L3(3).2",5]], ["MXN",["L3(4)",9]], ["MXN",["L3(4).2^2",8]], ["MXN",["L3(4).2_1",10]], ["MXN",["L3(4).2_2",6]], ["MXN",["L3(4).2_3",6]], ["MXN",["L3(4).3",5]], ["MXN",["L3(4).6",6]], ["MXN",["L3(4).D12",8]], ["MXN",["L3(5)",5]], ["MXN",["L3(7)",8]], ["MXN",["L3(8)",5]], ["MXN",["L3(9)",7]], ["MXN",["L4(3)",8]], ["MXN",["L5(2)",5]], ["MXN",["L6(2)",9]], ["MXN",["L7(2)",4]], ["MXN",["Ly",9]], ["MXN",["M",46]], ["MXN",["M11",5]], ["MXN",["M12",11]], ["MXN",["M12.2",9]], ["MXN",["M22",8]], ["MXN",["M22.2",7]], ["MXN",["M23",7]], ["MXN",["M24",9]], ["MXN",["McL",12]], ["MXN",["McL.2",10]], ["MXN",["O7(3)",15]], ["MXN",["O8+(2)",17]], ["MXN",["O8+(3)",27]], ["MXN",["O8-(2)",8]], ["MXN",["ON",13]], ["MXN",["ON.2",10]], ["MXN",["Ru",15]], ["MXN",["S4(4)",7]], ["MXN",["S4(4).2",8]], ["MXN",["S4(5)",8]], ["MXN",["S6(2)",8]], ["MXN",["S6(3)",11]], ["MXN",["S8(2)",11]], ["MXN",["Suz",17]], ["MXN",["Suz.2",16]], ["MXN",["Sz(32)",4]], ["MXN",["Sz(8)",4]], ["MXN",["Sz(8).3",5]], ["MXN",["Th",16]], ["MXN",["U3(11)",11]], ["MXN",["U3(3)",4]], ["MXN",["U3(3).2",5]], ["MXN",["U3(4)",4]], ["MXN",["U3(4).2",5]], ["MXN",["U3(5)",8]], ["MXN",["U3(5).2",6]], ["MXN",["U3(5).3",6]], ["MXN",["U3(7)",5]], ["MXN",["U3(8)",7]], ["MXN",["U3(9)",5]], ["MXN",["U4(2)",5]], ["MXN",["U4(2).2",6]], ["MXN",["U4(3)",16]], ["MXN",["U4(3).2_1",13]], ["MXN",["U4(3).2_3",11]], ["MXN",["U5(2)",6]], ["MXN",["U6(2)",16]], ["MXO",["(2^2x3).U6(2)",[164229120,159252480,123863040,78382080,78382080,78382080,17694720,17418240,17418240,17418240,5322240,5322240,5322240,1866240,1119744,483840]]], ["MXO",["12.M22",[241920,69120,30240,30240,23040,16128,8640,7920]]], ["MXO",["12.M22.2",[5322240,483840,138240,46080,32256,17280,15840]]], ["MXO",["12_1.L3(4)",[11520,11520,4320,4320,4320,2016,2016,2016,864]]], ["MXO",["12_1.L3(4).2_1",[241920,8640,8640,8640,4608,4032,4032,4032,1728,1440]]], ["MXO",["12_2.L3(4)",[11520,11520,4320,4320,4320,2016,2016,2016,864]]], ["MXO",["12_2.L3(4).2_1",[241920,8640,8640,8640,4608,4032,4032,4032,1728,1440]]], ["MXO",["2.2E6(2)",[0,0,6622253206732800,6622253206732800,6622253206732800,0,129123503308800,129123503308800,129123503308800,50030759116800,0,0,0,40310784,33094656]]], ["MXO",["2.A10",[362880,80640,30240,28800,17280,3840,1440]]], ["MXO",["2.A10.2",[3628800,725760,161280,60480,57600,34560,7680,2880]]], ["MXO",["2.A11",[3628800,725760,241920,120960,86400,15840,15840]]], ["MXO",["2.A11.2",[39916800,7257600,1451520,483840,241920,172800,220]]], ["MXO",["2.A12",[39916800,7257600,2177280,1036800,967680,604800,190080,190080,82944,46080,31104]]], ["MXO",["2.A12.2",[479001600,79833600,14515200,4354560,2073600,1935360,1209600,165888,92160,62208,2640]]], ["MXO",["2.A13",[479001600,79833600,21772800,8709120,4838400,3628800,11232,11232,156]]], ["MXO",["2.A13.2",[6227020800,958003200,159667200,43545600,17418240,9676800,7257600,312]]], ["MXO",["2.A14.2",[87178291200,12454041600]]], ["MXO",["2.A5",[24,20,12]]], ["MXO",["2.A5.2",[120,48,40,24]]], ["MXO",["2.A6",[120,120,72,48,48]]], ["MXO",["2.A6.2_1",[720,240,240,144,96,96]]], ["MXO",["2.A7",[720,336,336,240,144]]], ["MXO",["2.A7.2",[5040,1440,480,288,84]]], ["MXO",["2.A8",[5040,2688,2688,1440,1152,720]]], ["MXO",["2.A8.2",[40320,10080,2880,2304,1440,768,672]]], ["MXO",["2.A9",[40320,10080,4320,3024,3024,2880,1296,432]]], ["MXO",["2.A9.2",[362880,80640,20160,8640,5760,2592,864]]], ["MXO",["2.B",[612259837470198831513600,709767191322427392000,8178940946586009600,3179457774039859200,181491887775744000,52978025653862400,45717693482926080,21473462090465280,1549482039705600,1385384650997760,1092123648000000,237704631091200,261213880320,3762339840,3548160000,1725235200,408146688,212889600,116121600,93000000,48000000,4147200,576000,235200,29760,15840,11232,9792,2640,2162]]], ["MXO",["2.Co1",[84610842624000,5380145971200,1002795171840,991533312000,178362777600,110361968640,12076646400,3963617280,1698693120,470292480,277136640,145152000,50388480,8709120,5038848,2177280,1693440,288000,120000,120000,7056,6000]]], ["MXO",["2.F4(2)",[95126814720,95126814720,94755225600,94755225600,2113929216,2113929216,2090188800,0,1268047872,0,71884800,24261120]]], ["MXO",["2.Fi22",[36787322880,9170703360,9170703360,2090188800,908328960,185794560,106168320,78382080,35942400,35389440,10077696,7257600,7257600,190080]]], ["MXO",["2.Fi22.2",[129123503308800,73574645760,4180377600,1816657920,371589120,212336640,156764160,71884800,70778880,50388480,20155392,16982784,380160]]], ["MXO",["2.G2(4)",[1209600,368640,368640,249600,241920,24192,7200,2184]]], ["MXO",["2.G2(4).2",[503193600,2419200,737280,737280,499200,483840,48384,14400,4368]]], ["MXO",["2.HS",[887040,504000,504000,80640,80640,23040,21504,15840,15840,15360,5760,2400]]], ["MXO",["2.HS.2",[88704000,1774080,161280,161280,46080,43008,30720,11520,8000,4800]]], ["MXO",["2.J2",[12096,4320,3840,2304,1440,1200,672,600,120]]], ["MXO",["2.J2.2",[1209600,24192,8640,7680,4608,2880,2400,1344,1200,240]]], ["MXO",["2.L2(11)",[120,120,110,24]]], ["MXO",["2.L2(13)",[156,28,24,24]]], ["MXO",["2.L2(13).2",[2184,312,56,48,48]]], ["MXO",["2.L2(17)",[272,48,48,36,32]]], ["MXO",["2.L2(17).2",[4896,544]]], ["MXO",["2.L2(19)",[342,120,120,40,36]]], ["MXO",["2.L2(23)",[506,48,48,48,44]]], ["MXO",["2.L2(25)",[600,240,240,52,48]]], ["MXO",["2.L2(27)",[702,56,52,24]]], ["MXO",["2.L2(29)",[812,120,120,60,56]]], ["MXO",["2.L2(31)",[930,120,120,64,60,48,48]]], ["MXO",["2.L2(49)",[2352,672,672,120,120,100,96]]], ["MXO",["2.L3(2)",[48,48,42]]], ["MXO",["2.L3(2).2",[336,84,32,24]]], ["MXO",["2.L3(4)",[1920,1920,720,720,720,336,336,336,144]]], ["MXO",["2.L3(4).2_1",[40320,1440,1440,1440,768,672,672,672,288,240]]], ["MXO",["2.M12",[15840,15840,2880,2880,1320,864,864,480,384,384,144]]], ["MXO",["2.M12.2",[190080,2640,2640,960,768,768,432,288,240]]], ["MXO",["2.M22",[40320,11520,5040,5040,3840,2688,1440,1320]]], ["MXO",["2.M22.2",[887040,80640,23040,7680,5376,2880,2640]]], ["MXO",["2.O7(3)",[26127360,25194240,24261120,8491392,8491392,8188128,2903040,2903040,2519424,725760,725760,414720,322560,34560,27648]]], ["MXO",["2.O7(3).2",[9170703360,0,0,0,0,0,0,645120]]], ["MXO",["2.O8+(2)",[2903040,2903040,2903040,2580480,2580480,2580480,362880,362880,362880,311040,311040,311040,221184,31104,28800,28800,28800]]], ["MXO",["2.O8+(2).2",[348364800,5806080]]], ["MXO",["2.O8+(3)",[9170703360,9170703360,9170703360,9170703360,9170703360,9170703360,8843178240,8843178240,8843178240,348364800,348364800,348364800,348364800,272097792,52254720,52254720,52254720,1244160,1244160,1244160,1244160,1244160,1244160,1036800,1036800,1036800,663552]]], ["MXO",["2.O8-(3)",[19046845440,18341406720,18341406720,0,0,0,2488320,2488320,1062720]]], ["MXO",["2.Ru",[71884800,1548288,698880,688128,504000,491520,62400,40320,24360,24000,8640,8000,4368,2880,2400]]], ["MXO",["2.S4(5)",[60000,60000,31200,28800,1920,1440,960,720]]], ["MXO",["2.S6(2)",[103680,80640,46080,24192,21504,9216,8640,3024]]], ["MXO",["2.S6(3)",[25194240,8188128,2519424,1244160,82944,58968,48384,22464,2184,2184,120]]], ["MXO",["2.S6(3).2",[50388480]]], ["MXO",["2.Suz",[503193600,39191040,27371520,6635520,3849120,2419200,2211840,967680,737280,380160,279936,86400,51840,22464,22464,15600,5040]]], ["MXO",["2.Suz.2",[896690995200,1006387200,78382080,54743040,13271040,7698240,4838400,4423680,1935360,1474560,760320,559872,172800,103680,31200,10080]]], ["MXO",["2.Sz(8)",[896,104,40,28]]], ["MXO",["2.U4(2)",[1920,1440,1296,1296,1152]]], ["MXO",["2.U4(2).2",[51840,3840,2880,2592,2592,2304]]], ["MXO",["2.U6(2)",[27371520,26542080,20643840,13063680,13063680,13063680,2949120,2903040,2903040,2903040,887040,887040,887040,311040,186624,80640]]], ["MXO",["2.U6(2).2",[18393661440,54743040,0,0,0,0,5806080,1774080,622080]]], ["MXO",["2E6(2)",[0,0,3311126603366400,3311126603366400,3311126603366400,0,64561751654400,64561751654400,64561751654400,25015379558400,0,0,0,20155392,16547328]]], ["MXO",["2F4(2)'",[11232,11232,10240,7800,6144,1440,1440,1200]]], ["MXO",["2F4(2)'.2",[17971200,20480,15600,12288,2400,432,156]]], ["MXO",["2^2.2E6(2)",[0,0,13244506413465600,13244506413465600,13244506413465600,0,258247006617600,258247006617600,258247006617600,100061518233600,0,0,0,80621568,66189312]]], ["MXO",["2^2.L3(4)",[3840,3840,1440,1440,1440,672,672,672,288]]], ["MXO",["2^2.L3(4).2_2",[80640,7680,7680,2880,1344,576]]], ["MXO",["2^2.Sz(8)",[1792,208,80,56]]], ["MXO",["2^2.Sz(8).3",[116480,5376,624,240,168]]], ["MXO",["2^2.U6(2)",[54743040,53084160,41287680,26127360,26127360,26127360,5898240,5806080,5806080,5806080,1774080,1774080,1774080,622080,373248,161280]]], ["MXO",["3.2E6(2)",[0,0,9933379810099200,9933379810099200,9933379810099200,0,193685254963200,193685254963200,193685254963200,75046138675200,0,0,0,60466176,49641984]]], ["MXO",["3.A6",[180,180,108,72,72]]], ["MXO",["3.A6.2_1",[1080,360,360,216,144,144]]], ["MXO",["3.A7",[1080,504,504,360,216]]], ["MXO",["3.A7.2",[7560,2160,720,432,126]]], ["MXO",["3.Fi22",[55180984320,13756055040,13756055040,3135283200,1362493440,278691840,159252480,117573120,53913600,53084160,15116544,10886400,10886400,285120]]], ["MXO",["3.Fi22.2",[193685254963200,110361968640,6270566400,2724986880,557383680,318504960,235146240,107827200,106168320,75582720,30233088,25474176,570240]]], ["MXO",["3.Fi24'",[12268411419879014400,774741019852800,267417709977600,75046138675200,30084492372480,14546347960320,1504192757760,662171811840,481579499520,53722307808,41324852160,37623398400,24182323200,24182323200,5945425920,5945425920,458535168,65318400,1632960,317520,36288,36288,6552,6552,1218]]], ["MXO",["3.Fi24'.2",[3765617127571985163878400,24536822839758028800,1549482039705600,534835419955200,150092277350400,60168984744960,29092695920640,3008385515520,1324343623680,963158999040,107444615616,82649704320,75246796800,11890851840,11890851840,917070336,130636800,3265920,635040,74088,2436]]], ["MXO",["3.G2(3)",[36288,36288,34992,34992,33696,33696,4536,4032,3276,1728]]], ["MXO",["3.G2(3).2",[12737088,17496,9072,8064,6552,3456]]], ["MXO",["3.J3",[24480,10260,10260,8640,7344,6480,5832,5760,3456]]], ["MXO",["3.J3.2",[150698880,48960,17280,14688,12960,11664,11520,6912,1026]]], ["MXO",["3.L3(4)",[2880,2880,1080,1080,1080,504,504,504,216]]], ["MXO",["3.L3(4).2_1",[60480,2160,2160,2160,1152,1008,1008,1008,432,360]]], ["MXO",["3.L3(7)",[98784,98784,1008,1008,1008,216,216,171]]], ["MXO",["3.L3(7).2",[5630688,24696]]], ["MXO",["3.M22",[60480,17280,7560,7560,5760,4032,2160,1980]]], ["MXO",["3.M22.2",[1330560,120960,34560,11520,8064,4320,3960]]], ["MXO",["3.McL",[9797760,1330560,1330560,378000,174960,174960,120960,120960,120960,120960,23760,9000]]], ["MXO",["3.McL.2",[2694384000,19595520,756000,349920,349920,241920,241920,47520,18000,6912]]], ["MXO",["3.O7(3)",[39191040,37791360,36391680,12737088,12737088,12282192,4354560,4354560,3779136,1088640,1088640,622080,483840,51840,41472]]], ["MXO",["3.O7(3).2",[13756055040,0,0,0,0,0,0,967680]]], ["MXO",["3.ON",[11261376,11261376,526680,483840,77760,77760,44640,44640,32256,23760,23760,7560,7560]]], ["MXO",["3.ON.2",[1382446517760,1053360,967680,155520,155520,64512,49392,2790,2160,1008]]], ["MXO",["3.Suz",[754790400,58786560,41057280,9953280,5773680,3628800,3317760,1451520,1105920,570240,419904,129600,77760,33696,33696,23400,7560]]], ["MXO",["3.Suz.2",[1345036492800,1509580800,117573120,82114560,19906560,11547360,7257600,6635520,2903040,2211840,1140480,839808,259200,155520,46800,15120]]], ["MXO",["3.U3(11)",[159720,15840,3960,3960,3960,1080,1080,1080,864,333,216]]], ["MXO",["3.U3(8)",[32256,4536,648,648,648,486,171]]], ["MXO",["3.U6(2)",[41057280,39813120,30965760,19595520,19595520,19595520,4423680,4354560,4354560,4354560,1330560,1330560,1330560,466560,279936,120960]]], ["MXO",["3D4(2)",[258048,86016,12096,3024,2352,1296,1176,216,52]]], ["MXO",["3D4(2).3",[211341312,774144,258048,36288,9072,7056,3888,3528,648,156]]], ["MXO",["3^2.U4(3).D8",[0,0,0,2099520]]], ["MXO",["4.M22",[80640,23040,10080,10080,7680,5376,2880,2640]]], ["MXO",["4.M22.2",[1774080,161280,46080,15360,10752,5760,5280]]], ["MXO",["4_1.L3(4)",[3840,3840,1440,1440,1440,672,672,672,288]]], ["MXO",["4_1.L3(4).2_1",[80640,2880,2880,2880,1536,1344,1344,1344,576,480]]], ["MXO",["4_2.L3(4)",[3840,3840,1440,1440,1440,672,672,672,288]]], ["MXO",["4_2.L3(4).2_1",[80640,2880,2880,2880,1536,1344,1344,1344,576,480]]], ["MXO",["5^3.L3(5)",[]]], ["MXO",["6.A6",[360,360,216,144,144]]], ["MXO",["6.A6.2_1",[2160,720,720,432,288,288]]], ["MXO",["6.A7",[2160,1008,1008,720,432]]], ["MXO",["6.A7.2",[15120,4320,1440,864,252]]], ["MXO",["6.Fi22",[110361968640,27512110080,27512110080,6270566400,2724986880,557383680,318504960,235146240,107827200,106168320,30233088,21772800,21772800,570240]]], ["MXO",["6.Fi22.2",[387370509926400,220723937280,12541132800,5449973760,1114767360,637009920,470292480,215654400,212336640,151165440,60466176,50948352,1140480]]], ["MXO",["6.L3(4)",[5760,5760,2160,2160,2160,1008,1008,1008,432]]], ["MXO",["6.L3(4).2_1",[120960,4320,4320,4320,2304,2016,2016,2016,864,720]]], ["MXO",["6.M22",[120960,34560,15120,15120,11520,8064,4320,3960]]], ["MXO",["6.M22.2",[2661120,241920,69120,23040,16128,8640,7920]]], ["MXO",["6.O7(3)",[78382080,75582720,72783360,25474176,25474176,24564384,8709120,8709120,7558272,2177280,2177280,1244160,967680,103680,82944]]], ["MXO",["6.O7(3).2",[27512110080,0,0,0,0,0,0,1935360]]], ["MXO",["6.Suz",[1509580800,117573120,82114560,19906560,11547360,7257600,6635520,2903040,2211840,1140480,839808,259200,155520,67392,67392,46800,15120]]], ["MXO",["6.Suz.2",[2690072985600,3019161600,235146240,164229120,39813120,23094720,14515200,13271040,5806080,4423680,2280960,1679616,518400,311040,93600,30240]]], ["MXO",["6.U6(2)",[82114560,79626240,61931520,39191040,39191040,39191040,8847360,8709120,8709120,8709120,2661120,2661120,2661120,933120,559872,241920]]], ["MXO",["A10",[181440,40320,15120,14400,8640,1920,720]]], ["MXO",["A10.2",[1814400,362880,80640,30240,28800,17280,3840,1440]]], ["MXO",["A11",[1814400,362880,120960,60480,43200,7920,7920]]], ["MXO",["A11.2",[19958400,3628800,725760,241920,120960,86400,110]]], ["MXO",["A12",[19958400,3628800,1088640,518400,483840,302400,95040,95040,41472,23040,15552]]], ["MXO",["A12.2",[239500800,39916800,7257600,2177280,1036800,967680,604800,82944,46080,31104,1320]]], ["MXO",["A13",[239500800,39916800,10886400,4354560,2419200,1814400,5616,5616,78]]], ["MXO",["A13.2",[3113510400,479001600,79833600,21772800,8709120,4838400,3628800,156]]], ["MXO",["A14",[3113510400,479001600,0,0,0,21772800,0,322560,1092]]], ["MXO",["A14.2",[43589145600,6227020800]]], ["MXO",["A5",[12,10,6]]], ["MXO",["A5.2",[60,24,20,12]]], ["MXO",["A6",[60,60,36,24,24]]], ["MXO",["A6.2^2",[720,720,720,144,40,32]]], ["MXO",["A6.2_1",[360,120,120,72,48,48]]], ["MXO",["A6.2_2",[360,72,20,16]]], ["MXO",["A6.2_3",[360,72,20,16]]], ["MXO",["A7",[360,168,168,120,72]]], ["MXO",["A7.2",[2520,720,240,144,42]]], ["MXO",["A8",[2520,1344,1344,720,576,360]]], ["MXO",["A8.2",[20160,5040,1440,1152,720,384,336]]], ["MXO",["A9",[20160,5040,2160,1512,1512,1440,648,216]]], ["MXO",["A9.2",[181440,40320,10080,4320,2880,1296,432]]], ["MXO",["B",[306129918735099415756800,354883595661213696000,4089470473293004800,1589728887019929600,90745943887872000,26489012826931200,22858846741463040,10736731045232640,774741019852800,692692325498880,546061824000000,118852315545600,130606940160,1881169920,1774080000,862617600,204073344,106444800,58060800,46500000,24000000,2073600,288000,117600,14880,7920,5616,4896,1320,1081]]], ["MXO",["Co1",[42305421312000,2690072985600,501397585920,495766656000,89181388800,55180984320,6038323200,1981808640,849346560,235146240,138568320,72576000,25194240,4354560,2519424,1088640,846720,144000,60000,60000,3528,3000]]], ["MXO",["Co2",[18393661440,908328960,898128000,743178240,88704000,41287680,26127360,11796480,10200960,933120,12000]]], ["MXO",["Co3",[1796256000,44352000,13063680,10200960,3849120,2903040,756000,699840,322560,241920,190080,27648,9072,1440]]], ["MXO",["F4(2)",[47563407360,47563407360,47377612800,47377612800,1056964608,1056964608,1045094400,0,634023936,0,35942400,12130560]]], ["MXO",["Fi22",[18393661440,4585351680,4585351680,1045094400,454164480,92897280,53084160,39191040,17971200,17694720,5038848,3628800,3628800,95040]]], ["MXO",["Fi22.2",[64561751654400,36787322880,2090188800,908328960,185794560,106168320,78382080,35942400,35389440,25194240,10077696,8491392,190080]]], ["MXO",["Fi23",[129123503308800,29713078886400,73574645760,47377612800,27512110080,20891566080,3265173504,663238368,479001600,318504960,247726080,34836480,3916800,6072]]], ["MXO",["Fi24'",[4089470473293004800,258247006617600,89139236659200,25015379558400,10028164124160,4848782653440,501397585920,220723937280,160526499840,17907435936,13774950720,12541132800,8060774400,8060774400,1981808640,1981808640,152845056,21772800,544320,105840,12096,12096,2184,2184,406]]], ["MXO",["Fi24'.2",[1255205709190661721292800,8178940946586009600,516494013235200,178278473318400,50030759116800,20056328248320,9697565306880,1002795171840,441447874560,321052999680,35814871872,27549901440,25082265600,3963617280,3963617280,305690112,43545600,1088640,211680,24696,812]]], ["MXO",["G2(3)",[12096,12096,11664,11664,11232,11232,1512,1344,1092,576]]], ["MXO",["G2(3).2",[4245696,5832,3024,2688,2184,1152]]], ["MXO",["G2(4)",[604800,184320,184320,124800,120960,12096,3600,1092]]], ["MXO",["G2(4).2",[251596800,1209600,368640,368640,249600,241920,24192,7200,2184]]], ["MXO",["G2(5)",[1500000,1500000,756000,744000,14400,12096,1344]]], ["MXO",["HN",[239500800,177408000,16547328,3686400,2520000,2000000,1658880,1036800,1032192,750000,190080,190080,93312,58320]]], ["MXO",["HN.2",[273030912000000,479001600,354816000,33094656,7372800,5040000,4000000,3317760,2073600,2064384,1500000,186624,116640]]], ["MXO",["HS",[443520,252000,252000,40320,40320,11520,10752,7920,7920,7680,2880,1200]]], ["MXO",["HS.2",[44352000,887040,80640,80640,23040,21504,15360,5760,4000,2400]]], ["MXO",["He",[1958400,483840,138240,138240,21504,16464,15120,6174,4032,3528,1200]]], ["MXO",["He.2",[4030387200,3916800,967680,43008,32928,30240,28800,18432,12348,8064,7056,2400]]], ["MXO",["Isoclinic(12.M22.2)",[5322240,483840,138240,46080,32256,17280,15840]]], ["MXO",["Isoclinic(2.A14.2)",[87178291200,12454041600]]], ["MXO",["Isoclinic(2.A5.2)",[120,48,40,24]]], ["MXO",["Isoclinic(2.A7.2)",[5040,1440,480,288,84]]], ["MXO",["Isoclinic(2.A8.2)",[40320,10080,2880,2304,1440,768,672]]], ["MXO",["Isoclinic(2.Fi22.2)",[129123503308800,73574645760,4180377600,1816657920,371589120,212336640,156764160,71884800,70778880,50388480,20155392,16982784,380160]]], ["MXO",["Isoclinic(2.G2(4).2)",[503193600,2419200,737280,737280,499200,483840,48384,14400,4368]]], ["MXO",["Isoclinic(2.HS.2)",[88704000,1774080,161280,161280,46080,43008,30720,11520,8000,4800]]], ["MXO",["Isoclinic(2.J2.2)",[1209600,24192,8640,7680,4608,2880,2400,1344,1200,240]]], ["MXO",["Isoclinic(2.L2(19).2)",[6840,684]]], ["MXO",["Isoclinic(2.L2(23).2)",[0,1012]]], ["MXO",["Isoclinic(2.L3(2).2)",[336,84,32,24]]], ["MXO",["Isoclinic(2.M12.2)",[190080,2640,2640,960,768,768,432,288,240]]], ["MXO",["Isoclinic(2.M22.2)",[887040,80640,23040,7680,5376,2880,2640]]], ["MXO",["Isoclinic(2.O7(3).2)",[9170703360,0,0,0,0,0,0,645120]]], ["MXO",["Isoclinic(2.Suz.2)",[896690995200,1006387200,78382080,54743040,13271040,7698240,4838400,4423680,1935360,1474560,760320,559872,172800,103680,31200,10080]]], ["MXO",["Isoclinic(4.M22.2)",[1774080,161280,46080,15360,10752,5760,5280]]], ["MXO",["Isoclinic(6.Fi22.2)",[387370509926400,220723937280,12541132800,5449973760,1114767360,637009920,470292480,215654400,212336640,151165440,60466176,50948352,1140480]]], ["MXO",["Isoclinic(6.M22.2)",[2661120,241920,69120,23040,16128,8640,7920]]], ["MXO",["Isoclinic(6.Suz.2)",[2690072985600,3019161600,235146240,164229120,39813120,23094720,14515200,13271040,5806080,4423680,2280960,1679616,518400,311040,93600,30240]]], ["MXO",["J1",[660,168,120,114,110,60,42]]], ["MXO",["J2",[6048,2160,1920,1152,720,600,336,300,60]]], ["MXO",["J2.2",[604800,12096,4320,3840,2304,1440,1200,672,600,120]]], ["MXO",["J3",[8160,3420,3420,2880,2448,2160,1944,1920,1152]]], ["MXO",["J3.2",[50232960,16320,5760,4896,4320,3888,3840,2304,342]]], ["MXO",["J4",[501397585920,21799895040,10239344640,660602880,141831360,887040,319440,163680,12144,6048,812,602,444]]], ["MXO",["L2(101)",[5050,102,100,60,60]]], ["MXO",["L2(103)",[5253,104,102,24,24]]], ["MXO",["L2(107)",[5671,108,106,12]]], ["MXO",["L2(109)",[5886,110,108,60,60]]], ["MXO",["L2(11)",[60,60,55,12]]], ["MXO",["L2(11).2",[660,110,24,24,20]]], ["MXO",["L2(113)",[6328,114,112,24,24]]], ["MXO",["L2(127)",[8001,128,126,24,24]]], ["MXO",["L2(13)",[78,14,12,12]]], ["MXO",["L2(13).2",[1092,156,28,24,24]]], ["MXO",["L2(131)",[8515,132,130,60,60]]], ["MXO",["L2(137)",[9316,138,136,24,24]]], ["MXO",["L2(139)",[9591,140,138,60,60]]], ["MXO",["L2(149)",[11026,150,148,60,60]]], ["MXO",["L2(151)",[11325,152,150,60,60,24,24]]], ["MXO",["L2(157)",[12246,158,156,12]]], ["MXO",["L2(16)",[240,60,34,30]]], ["MXO",["L2(16).2",[4080,480,120,68,60]]], ["MXO",["L2(16).4",[8160,960,240,136,120]]], ["MXO",["L2(163)",[13203,164,162,12]]], ["MXO",["L2(167)",[13861,168,166,24,24]]], ["MXO",["L2(17)",[136,24,24,18,16]]], ["MXO",["L2(17).2",[2448,272]]], ["MXO",["L2(173)",[14878,174,172,12]]], ["MXO",["L2(179)",[15931,180,178,60,60]]], ["MXO",["L2(181)",[16290,182,180,60,60]]], ["MXO",["L2(19)",[171,60,60,20,18]]], ["MXO",["L2(19).2",[3420,342]]], ["MXO",["L2(191)",[18145,192,190,60,60,24,24]]], ["MXO",["L2(193)",[18528,194,192,24,24]]], ["MXO",["L2(197)",[19306,198,196,12]]], ["MXO",["L2(199)",[19701,200,198,60,60,24,24]]], ["MXO",["L2(211)",[22155,212,210,60,60]]], ["MXO",["L2(223)",[24753,224,222,24,24]]], ["MXO",["L2(227)",[25651,228,226,12]]], ["MXO",["L2(229)",[26106,230,228,60,60]]], ["MXO",["L2(23)",[253,24,24,24,22]]], ["MXO",["L2(23).2",[0,506]]], ["MXO",["L2(233)",[27028,234,232,24,24]]], ["MXO",["L2(239)",[28441,240,238,60,60,24,24]]], ["MXO",["L2(241)",[28920,242,240,60,60,24,24]]], ["MXO",["L2(25)",[300,120,120,26,24]]], ["MXO",["L2(25).2_2",[7800,600,240,240,52,48]]], ["MXO",["L2(27)",[351,28,26,12]]], ["MXO",["L2(29)",[406,60,60,30,28]]], ["MXO",["L2(29).2",[12180,812]]], ["MXO",["L2(31)",[465,60,60,32,30,24,24]]], ["MXO",["L2(32)",[992,66,62]]], ["MXO",["L2(32).5",[32736,4960,330,310]]], ["MXO",["L2(37)",[666,38,36,12]]], ["MXO",["L2(41)",[820,60,60,42,40,24,24]]], ["MXO",["L2(43)",[903,44,42,12]]], ["MXO",["L2(47)",[1081,48,46,24,24]]], ["MXO",["L2(49)",[1176,336,336,60,60,50,48]]], ["MXO",["L2(53)",[1378,54,52,12]]], ["MXO",["L2(59)",[1711,60,60,60,58]]], ["MXO",["L2(61)",[1830,62,60,60,60]]], ["MXO",["L2(64)",[4032,504,130,126,60]]], ["MXO",["L2(67)",[2211,68,66,12]]], ["MXO",["L2(71)",[2485,72,70,60,60,24,24]]], ["MXO",["L2(73)",[2628,74,72,24,24]]], ["MXO",["L2(79)",[3081,80,78,60,60,24,24]]], ["MXO",["L2(8)",[56,18,14]]], ["MXO",["L2(8).3",[504,168,54,42]]], ["MXO",["L2(81)",[3240,720,720,82,80]]], ["MXO",["L2(83)",[3403,84,82,12]]], ["MXO",["L2(89)",[3916,90,88,60,60,24,24]]], ["MXO",["L2(97)",[4656,98,96,24,24]]], ["MXO",["L3(11)",[1597200,1597200,1320,600,399,168]]], ["MXO",["L3(2)",[24,24,21]]], ["MXO",["L3(2).2",[168,42,16,12]]], ["MXO",["L3(3)",[432,432,39,24]]], ["MXO",["L3(3).2",[5616,216,96,78,48]]], ["MXO",["L3(4)",[960,960,360,360,360,168,168,168,72]]], ["MXO",["L3(4).2^2",[40320,40320,40320,1440,768,672,288,240]]], ["MXO",["L3(4).2_1",[20160,720,720,720,384,336,336,336,144,120]]], ["MXO",["L3(4).2_2",[20160,1920,1920,720,336,144]]], ["MXO",["L3(4).2_3",[20160,720,384,336,144,120]]], ["MXO",["L3(4).3",[20160,2880,2880,216,63]]], ["MXO",["L3(4).6",[60480,40320,1152,432,360,126]]], ["MXO",["L3(4).D12",[120960,120960,120960,80640,2304,864,720,252]]], ["MXO",["L3(5)",[12000,12000,120,96,93]]], ["MXO",["L3(5).2",[372000,4000,960,240,192,186]]], ["MXO",["L3(7)",[32928,32928,336,336,336,72,72,57]]], ["MXO",["L3(7).2",[1876896,8232]]], ["MXO",["L3(8)",[225792,225792,294,219,168]]], ["MXO",["L3(8).2",[16482816,0,0,0,0,336]]], ["MXO",["L3(8).3",[16482816,677376,677376,882,657,504]]], ["MXO",["L3(8).6",[49448448,32965632,150528,21168,1764,1314,1008]]], ["MXO",["L3(9)",[466560,466560,6048,5616,720,384,273]]], ["MXO",["L4(3)",[151632,151632,51840,51840,46656,2880,720,576]]], ["MXO",["L5(2)",[322560,322560,64512,64512,155]]], ["MXO",["L5(2).2",[9999360]]], ["MXO",["L6(2)",[319979520,319979520,30965760,30965760,14450688,1451520,362880,56448,10584]]], ["MXO",["L7(2)",[1290157424640,61436067840,13872660480,889]]], ["MXO",["L7(2).2",[163849992929280]]], ["MXO",["Ly",[5859000000,5388768000,46500000,39916800,9000000,3849120,699840,1474,666]]], ["MXO",["M",[8309562962452852382355161088000000,139511839126336328171520000,7531234255143970327756800,1836779512410596494540800,0,0,2859230155080499200,0,544475663327232000,0,0,5460618240000000,0,0,0,378000000000,169276262400,28740096000,11625000000,2239488000,1985679360,1125000000,658022400,508243680,302400000,125452800,72576000,58500000,33882912,11404800,10368000,1742400,1476384,1185408,876096,632736,178920,102660,72600,34440,24360,16464,6840,1640]]], ["MXO",["M11",[720,660,144,120,48]]], ["MXO",["M12",[7920,7920,1440,1440,660,432,432,240,192,192,72]]], ["MXO",["M12.2",[95040,1320,1320,480,384,384,216,144,120]]], ["MXO",["M22",[20160,5760,2520,2520,1920,1344,720,660]]], ["MXO",["M22.2",[443520,40320,11520,3840,2688,1440,1320]]], ["MXO",["M23",[443520,40320,40320,20160,7920,5760,253]]], ["MXO",["M24",[10200960,887040,322560,190080,138240,120960,64512,6072,168]]], ["MXO",["McL",[3265920,443520,443520,126000,58320,58320,40320,40320,40320,40320,7920,3000]]], ["MXO",["McL.2",[898128000,6531840,252000,116640,116640,80640,80640,15840,6000,2304]]], ["MXO",["O10+(2)",[47377612800,44590694400,10239344640,10239344640,1184440320,0,0,3110400]]], ["MXO",["O10+(2).2",[23499295948800,0,89181388800]]], ["MXO",["O10-(2)",[50536120320]]], ["MXO",["O10-(2).2",[25015379558400,101072240640]]], ["MXO",["O7(3)",[13063680,12597120,12130560,4245696,4245696,4094064,1451520,1451520,1259712,362880,362880,207360,161280,17280,13824]]], ["MXO",["O7(3).2",[4585351680,0,0,0,0,0,0,322560]]], ["MXO",["O8+(2)",[1451520,1451520,1451520,1290240,1290240,1290240,181440,181440,181440,155520,155520,155520,110592,15552,14400,14400,14400]]], ["MXO",["O8+(2).2",[174182400,2903040]]], ["MXO",["O8+(2).3",[174182400]]], ["MXO",["O8+(3)",[4585351680,4585351680,4585351680,4585351680,4585351680,4585351680,4421589120,4421589120,4421589120,174182400,174182400,174182400,174182400,136048896,26127360,26127360,26127360,622080,622080,622080,622080,622080,622080,518400,518400,518400,331776]]], ["MXO",["O8-(2)",[1658880,1451520,258048,184320,120960,8160,4320,168]]], ["MXO",["O8-(2).2",[197406720,3317760,2903040,0,0,241920,16320,8640,336]]], ["MXO",["O8-(3)",[9523422720,9170703360,9170703360,0,0,0,1244160,1244160,531360]]], ["MXO",["O8-(3).2_1",[10151968619520,0,18341406720,18341406720,0,0,97044480,0,0,1062720]]], ["MXO",["O8-(3).2_2",[10151968619520]]], ["MXO",["O8-(3).2_3",[10151968619520]]], ["MXO",["ON",[3753792,3753792,175560,161280,25920,25920,14880,14880,10752,7920,7920,2520,2520]]], ["MXO",["ON.2",[460815505920,351120,322560,51840,51840,21504,16464,930,720,336]]], ["MXO",["R(27)",[511758,19656,1512,222,168,114]]], ["MXO",["R(27).3",[10073444472,1535274,0,0,666,504,342]]], ["MXO",["Ru",[35942400,774144,349440,344064,252000,245760,31200,20160,12180,12000,4320,4000,2184,1440,1200]]], ["MXO",["S10(2)",[50030759116800,46998591897600,0,0,0,0,0,0,0,163680]]], ["MXO",["S4(4)",[11520,11520,8160,8160,7200,7200,720]]], ["MXO",["S4(4).2",[979200,23040,23040,16320,16320,14400,14400,1440]]], ["MXO",["S4(4).4",[0,0,0,0,272]]], ["MXO",["S4(5)",[30000,30000,15600,14400,960,720,480,360]]], ["MXO",["S6(2)",[51840,40320,23040,12096,10752,4608,4320,1512]]], ["MXO",["S6(3)",[12597120,4094064,1259712,622080,41472,29484,24192,11232,1092,1092,60]]], ["MXO",["S6(3).2",[25194240]]], ["MXO",["S8(2)",[394813440,348364800,185794560,20643840,8847360,8709120,4128768,3628800,1958400,1036800,2448]]], ["MXO",["Suz",[251596800,19595520,13685760,3317760,1924560,1209600,1105920,483840,368640,190080,139968,43200,25920,11232,11232,7800,2520]]], ["MXO",["Suz.2",[448345497600,503193600,39191040,27371520,6635520,3849120,2419200,2211840,967680,737280,380160,279936,86400,51840,15600,5040]]], ["MXO",["Sz(32)",[31744,164,100,62]]], ["MXO",["Sz(8)",[448,52,20,14]]], ["MXO",["Sz(8).3",[29120,1344,156,60,42]]], ["MXO",["Th",[634023936,319979520,92897280,33094656,25474176,944784,944784,349920,12000,12000,7056,6840,5616,720,465,120]]], ["MXO",["U3(11)",[53240,5280,1320,1320,1320,360,360,360,288,111,72]]], ["MXO",["U3(3)",[216,168,96,96]]], ["MXO",["U3(3).2",[6048,432,336,192,192]]], ["MXO",["U3(4)",[960,300,150,39]]], ["MXO",["U3(4).2",[62400,1920,600,300,78]]], ["MXO",["U3(4).4",[124800,3840,1200,600,156]]], ["MXO",["U3(5)",[2520,2520,2520,1000,720,720,720,240]]], ["MXO",["U3(5).2",[126000,5040,2000,1440,480,336]]], ["MXO",["U3(5).3",[126000,3000,720,216,216,63]]], ["MXO",["U3(7)",[16464,2688,384,336,129]]], ["MXO",["U3(8)",[10752,1512,216,216,216,162,57]]], ["MXO",["U3(8).3_1",[0,0,0,0,0,0,0,171]]], ["MXO",["U3(9)",[58320,7200,720,600,219]]], ["MXO",["U4(2)",[960,720,648,648,576]]], ["MXO",["U4(2).2",[25920,1920,1440,1296,1296,1152]]], ["MXO",["U4(3)",[29160,25920,25920,20160,20160,11664,6048,5760,5760,2520,2520,2520,2520,1152,720,720]]], ["MXO",["U4(3).2_1",[3265920,58320,51840,51840,40320,40320,23328,12096,11520,11520,2304,1440,1440]]], ["MXO",["U4(3).2_3",[3265920,58320,40320,40320,23328,12096,2304,1440,1440,1440,768]]], ["MXO",["U4(3).D8",[0,0,0,233280]]], ["MXO",["U5(2)",[82944,77760,46080,9720,3888,660]]], ["MXO",["U5(2).2",[13685760,165888,155520,92160,19440,0,1320]]], ["MXO",["U5(3)",[0,52254720,0,0,51840]]], ["MXO",["U6(2)",[13685760,13271040,10321920,6531840,6531840,6531840,1474560,1451520,1451520,1451520,443520,443520,443520,155520,93312,40320]]], ["MXO",["U6(2).2",[9196830720,27371520,0,0,0,0,2903040,887040,311040]]], ["MXO",["U6(2).3",[9196830720]]], ["MXO",["U7(2)",[84085309440,82771476480,0,0,0,0,3674160]]], ["MXS",["(2^2x3).U6(2)",["2^2x3xU5(2)","3x2^2.2^(1+8)_+:U4(2)","2^10:6.L3(4)","2x6_1.U4(3).2_2","2x6_1.U4(3).2_2","2x6_1.U4(3).2_2","3x2^2.2^(4+8):(S3xA5)","2^2x3xS6(2)","2^2x3xS6(2)","2^2x3xS6(2)","2x6.M22","2x6.M22","2x6.M22","2^2x3xS3xU4(2)","(2^2x3).(3^(1+4).[2^7.3])"]]], ["MXS",["12.M22",["12_1.L3(4)","2.2^5:3A6","2.(2x3.A7)","2.(2x3.A7)","3x2.(2^5:S5)","3x2.(2x2^3:L3(2))","(4x3.A6).2_3","3x2.(2xL2(11))"]]], ["MXS",["12_1.L3(4)",["3x4_1.2^4:A5"]]], ["MXS",["12_2.L3(4)",["3x4_2.2^4:A5"]]], ["MXS",["2.2E6(2)",["","","2xF4(2)","2.F4(2)","2.F4(2)","","2xFi22","2.Fi22","2.Fi22"]]], ["MXS",["2.A10",["2.A9","Isoclinic(2.A8.2)","(2.A7x3).2","2.(A5xA5).4","2.(A6xA4).2","2^(1+4).S5","M10x2"]]], ["MXS",["2.A11",["2.A10","Isoclinic(2.A9.2)","(2.A8x3).2","2.(A7xA4).2","2.(A6xA5).2","2xM11","2xM11"]]], ["MXS",["2.A12",["2.A11","Isoclinic(2.A10.2)","(2.A9x3).2","2.(A6xA6).2^2","2.(A8xA4).2","2.(A7xA5).2","2.M12","2.M12","2^(1+6)_-.3^3.S4","2.2^5.S6","2.3^4.2^3.S4"]]], ["MXS",["2.A5",["2.L2(3)","2.D10","2.S3"]]], ["MXS",["2.A5.2",["2.A5","2.S4","5:8","(2^2x3).2"]]], ["MXS",["2.A6",["2.A5","2.A5","3^2:8","2.S4","2.S4"]]], ["MXS",["2.A7",["2.A6","2.L3(2)","2.L3(2)","Isoclinic(2.A5.2)","(2.A4x3).2"]]], ["MXS",["2.A8",["2.A7","2^(1+3):L3(2)","2^(1+3):L3(2)","2.A6.2_1","2(A4xA4).2^2","(2.A5x3).2"]]], ["MXS",["2.A9",["2.A8","Isoclinic(2.A7.2)","(2.A6x3).2_1","L2(8):3x2","L2(8):3x2","2.(A5xA4).2","(2x3^3).S4","2x3^2:2A4"]]], ["MXS",["2.B",["2^2.2E6(2).2","","2xFi23","","2xTh","","","","(S3x2.Fi22).2","","","","","2.(3^2:D8xU4(3).2^2).2","","(GL(2,3)x2F4(2)').2","","","","","","","(5^2:4S4x2.A5):2","","","2xM11","","","","2x47:23"]]], ["MXS",["2.Co1",["2xCo2","6.Suz.2","2.2^11:M24","2xCo3","(2x2^(1+8)_+).O8+(2)","2xU6(2).3.2","2.(A4xG2(4)).2","2.2^(2+12):(A8xS3)","2.2^(4+12).(S3x3S6)","(3^2x2).U4(3).D8","2x3^6:2.M12","2.(A5xJ2).2","2x3^(1+4).2U4(2).2","(2.A6xU3(3)).2","3^(3+4):(2.S4)^2","2.A9xS3","(2.A7xL2(7)).2","(D10x2.(A5xA5).2).2","2x5^(1+2):GL2(5)","5^3:(4x(2xA5).2)","2x7^2:(3x2A4)","2x5^2:2A5"]]], ["MXS",["2.Fi22",["2^2.U6(2)","2xO7(3)","2xO7(3)","O8+(2):S3x2","2^11.M22","2^7:S6(2)","2.(2x2^(1+8)):U4(2):2","S3x2.U4(3).2_2","2x2F4(2)'","2^(1+5+8).(S3xA6)","2.(3^(1+6):2^(3+4):3^2:2)","S10x2","S10x2","2xM12"]]], ["MXS",["2.G2(4)",["2.J2","2.2^(2+8).(3xA5)","2.2^(4+6).(A5x3)","Isoclinic(2xU3(4).2)","Isoclinic(6.L3(4).2_3)","Isoclinic(2xU3(3).2)","2.A5xA5","2.L2(13)"]]], ["MXS",["2.HS",["2.M22","Isoclinic(U3(5).2x2)","Isoclinic(U3(5).2x2)","Isoclinic(2.L3(4).2_1)","Isoclinic(S8x2)","2.2^4.S6","2.4^3.L3(2)","2xM11","2xM11","2.4.2^4.S5","2.(2xA6.2^2)","5:4x2.A5"]]], ["MXS",["2.HS.2",["2.HS","2.M22.2","2.L3(4).(2^2)_(1*23)","","","","","","5^(1+2)_+:[2^6]"]]], ["MXS",["2.J2",["2xU3(3)","(2x3.A6).2","2^(1+4)_-:2A5","2^(3+4):(3xS3)","2A4xA5","2A5xD10","(2xL3(2)).2","2.(5^2:D12)","2.A5"]]], ["MXS",["2.J2.2",["2.J2","Isoclinic(2xU3(3).2)","","","","","(2.A5xD10).2"]]], ["MXS",["2.L2(11)",["2.A5","2.A5","2x11:5","2.D12"]]], ["MXS",["2.L2(13)",["(2x13).6","2.D14","2.D12","2.L2(3)"]]], ["MXS",["2.L2(17)",["(2x17).8","2.S4","2.S4","2.D18","2.D16"]]], ["MXS",["2.L2(19)",["2x19:9","2.A5","2.A5","2.D20","2.D18"]]], ["MXS",["2.L2(23)",["2x23:11","2.S4","2.S4","2.D24","2.D22"]]], ["MXS",["2.L2(25)",["(2x5^2).12","Isoclinic(2.A5.2)","Isoclinic(2.A5.2)","2.D26","2.D24"]]], ["MXS",["2.L2(27)",["2x3^3:13","2.D28","2.D26","2.L2(3)"]]], ["MXS",["2.L2(29)",["(2x29).14","2.A5","2.A5","2.D30","2.D28"]]], ["MXS",["2.L2(31)",["2x31:15","2.A5","2.A5","2.D32","2.D30","2.S4","2.S4"]]], ["MXS",["2.L3(2)",["2.S4","2.S4","2x7:3"]]], ["MXS",["2.L3(2).2",["2.L3(2)","7:12","2.D16","2.D12"]]], ["MXS",["2.L3(4)",["2^5:A5","2^5:A5","2xA6","2xA6","2xA6","2xL3(2)","2xL3(2)","2xL3(2)","Isoclinic(2x3^2:Q8)"]]], ["MXS",["2.M12",["2xM11","2xM11","A6.D8","A6.D8","2.L2(11)","2x3^2.2.S4","2x3^2.2.S4","4Y(2xA5):2","(2xQ8).S4","2.(4^2:D12)","2.A4xS3"]]], ["MXS",["2.M12.2",["2.M12","2xL2(11).2"]]], ["MXS",["2.M22",["2.L3(4)","2^5:A6","2xA7","2xA7","2^5:S5","2x2^3:L3(2)","(2xA6).2_3","2xL2(11)"]]], ["MXS",["2.M22.2",["2.M22","2.L3(4).2_2","2^5:S6","2^6:S5","2x2^3:L3(2)x2","(2xA6).2^2","2xL2(11).2"]]], ["MXS",["2.O7(3)",["4.U4(3).2_2","(2x3^5).U4(2).2","2.L4(3).2_2","2xG2(3)","2xG2(3)","2x3^(3+3):L3(3)","2.S6(2)","2.S6(2)","2.3^(1+6)_+.(2A4xA4).2","Isoclinic(2.A9.2)","Isoclinic(2.A9.2)","2.(2^2xU4(2)).2","2^(1+6)_+:A7","2.(S6xS4)","2.(A4x2(A4xA4).2).2"]]], ["MXS",["2.O8+(2)",["2xS6(2)","2.S6(2)","2.S6(2)","2^7.A8","2^(1+6)_+.A8","2^(1+6)_+.A8","2xA9","2.A9","2.A9","2x(3xU4(2)):2","(3x2.U4(2)):2","(3x2.U4(2)):2","2.2^(1+8)_+:(S3xS3xS3)","(2x3^4:2^3).S4","(A5xA5).(2x4)","2.(A5xA5).2^2","2.(A5xA5).2^2"]]], ["MXS",["2.Ru",["(2x2F4(2)').2","2.2^6:u3(3):2","2.(2^2xSz(8)):3","2.2^3+8:L3(2)","2xU3(5).2","2.2.2^4+6:S5","L2(25).(2x4)","2xA8","2.L2(29)","2x5^2:4S5","3.A6.(2x4)","5^(1+2):(4x4):4","Isoclinic(L2(13).2x2)","A6.D8","5:4x2.A5"]]], ["MXS",["2.S6(2)",["2.U4(2).2","Isoclinic(2.A8.2)","2.(2^5:S6)","2xU3(3).2","2.2^6.L3(2)","2^2.[2^6].(S3xS3)","2.(S3xS6)","L2(8):3x2"]]], ["MXS",["2.Suz",["2.G2(4)","Isoclinic(6_2.U4(3).2_3')","2xU5(2)","2.2^(1+6)_-.U4(2)","2x3^5:M11","2.J2.2","(2.2^4.2^6):3A6","2.(A4xL3(4)).2","2.(2^(2+8):(A5xS3))","Isoclinic(2.M12.2)","2.(3^(2+4):2(A4x2^2).2)","(A6x2.A5).2","(3^2:4x2.A6).2","(2xL3(3)).2","(2xL3(3)).2","2.L2(25)","2.A7"]]], ["MXS",["2.Suz.2",["2.Suz","Isoclinic(2.G2(4).2)","","","","","","","","","","","","","","2.A7.2"]]], ["MXS",["2.Sz(8)",["2.2^(3+3):7","2x13:4","2x5:4","D28"]]], ["MXS",["2.U4(2)",["2.(2^4:A5)","2.A6.2_1","2x3^(1+2)+:2A4","(2x3^3).S4","2.(2.(A4xA4).2)"]]], ["MXS",["2.U4(2).2",["2.U4(2)","2.(2^4:S5)","2.(S6x2)","2.(3^3:(S4x2))","2x3^(1+2)_+:2S4","2.(2.(A4xA4).2.2)"]]], ["MXS",["2.U6(2)",["2xU5(2)","2.2^(1+8)_+:U4(2)","2^10:L3(4)","2xU4(3).2_2","2.U4(3).2_2","2.U4(3).2_2","2.2^(4+8):(S3xA5)","2xS6(2)","2xS6(2)","2xS6(2)","2xM22","2.M22","2.M22","2xS3xU4(2)","2.(3^(1+4).[2^7.3])","2.L3(4).2_1"]]], ["MXS",["2.U6(2).2",["2.U6(2)"]]], ["MXS",["2E6(2)",["","","F4(2)","F4(2)","F4(2)","","Fi22","Fi22","Fi22","O10-(2)","","","","2E6(2)N3C","U3(8).3_1"]]], ["MXS",["2F4(2)'",["L3(3).2","L3(3).2","2.[2^8]:5:4","L2(25)","2^2.[2^8]:S3","A6.2^2","A6.2^2","5^2:4A4"]]], ["MXS",["2F4(2)'.2",["2F4(2)'","2.[2^9]:5:4","L2(25).2_3","2^2.[2^9]:S3","5^2:4S4","3^(1+2):SD16","13:12"]]], ["MXS",["2^2.2E6(2)",["","","2x2.F4(2)","2x2.F4(2)","2x2.F4(2)","","2x2.Fi22","2x2.Fi22","2x2.Fi22"]]], ["MXS",["2^2.L3(4)",["2^6.A5","2^6.A5","2^2xA6","2^2xA6","2^2xA6","2^2xL2(7)","2^2xL2(7)","2^2xL2(7)","2^2.(3^2:Q8)"]]], ["MXS",["2^2.L3(4).2_2",["2^2.L3(4)","2^2.2^4.S5","2^2.2^4.S5","2^2.S6","D8xL3(2)","2^2.(3^2:Q8.2)"]]], ["MXS",["2^2.Sz(8)",["2^2.2^(3+3):7","2^2x13:4","5:4x2^2","2^2xD14"]]], ["MXS",["2^2.Sz(8).3",["2^2.Sz(8)"]]], ["MXS",["2^2.U6(2)",["2^2xU5(2)","2^2.2^(1+8)_+:U4(2)","2^10:2.L3(4)","2x2.U4(3).2_2","2x2.U4(3).2_2","2x2.U4(3).2_2","2^2.2^(4+8):(S3xA5)","2^2xS6(2)","2^2xS6(2)","2^2xS6(2)","2x2.M22","2x2.M22","2x2.M22","2^2xS3xU4(2)"]]], ["MXS",["3.2E6(2)",["","","3xF4(2)","3xF4(2)","3xF4(2)","","3.Fi22","3.Fi22","3.Fi22"]]], ["MXS",["3.A6",["3xA5","3xA5","3^(1+2):4","3xS4","3xS4"]]], ["MXS",["3.A6.2_1",["3.A6"]]], ["MXS",["3.A7",["3.A6","3xL3(2)","3xL3(2)","3xA5.2","3.(A4x3):2"]]], ["MXS",["3.Fi22",["6.U6(2)","3.O7(3)","3.O7(3)","3xO8+(2):S3","2^10:3.M22","3x2^6:S6(2)","3x(2x2^(1+8)):U4(2):2","S3x3_1.U4(3).2_2","3x2F4(2)'","2^(5+8):(S3x3.A6)","3.3^(1+6):2^(3+4):3^2:2","3xA10.2","3xA10.2","3xM12"]]], ["MXS",["3.Fi22.2",["3.Fi22","6.U6(2).2"]]], ["MXS",["3.Fi24'",["3xFi23"]]], ["MXS",["3.Fi24'.2",["","","(S3x2.Fi22).2","","","","","","","","","","","","","(3^(1+2):2^2xG2(3)):2"]]], ["MXS",["3.G2(3)",["3xU3(3).2","3xU3(3).2","3.(3^(1+2)+x3^2):2S4","3.(3^(1+2)+x3^2):2S4","3xL3(3).2","3xL3(3).2","3xL2(8).3","3x2^3.L3(2)","3xL2(13)","3.2^(1+4)+:3^2.2"]]], ["MXS",["3.J3",["3xL2(16).2","3xL2(19)","3xL2(19)","3x2^4:(3xA5)","3xL2(17)","3x(3xA6):2_2","3^3.3^(1+2):8","3x2^(1+4)_-:A5","3x2^(2+4):(3xS3)"]]], ["MXS",["3.J3.2",["3.J3","(3xL2(16):2).2","","","3.(3xM10):2","3^3.3^(1+2):8.2"]]], ["MXS",["3.L3(4)",["3x2^4:A5","3x2^4:A5","3.A6","3.A6","3.A6","3xL3(2)","3xL3(2)","3xL3(2)","3^(1+2)_+:Q8"]]], ["MXS",["3.L3(7)",["3x7^2:2.L2(7).2","3x7^2:2.L2(7).2","3xL3(2).2","3xL3(2).2","3xL3(2).2","3.(A4x3):2","3^(1+2)_+:Q8","3x19:3"]]], ["MXS",["3.M22",["3.L3(4)","2^4:3A6","3.A7","3.A7","3x2^4:S5","3x2^3:L3(2)","3.A6.2_3","3xL2(11)"]]], ["MXS",["3.M22.2",["3.M22","3.L3(4).2_2","2^4:3.S6","(2^4:S5x3).2","2^3:L3(2)xS3","3.A6.2^2","(L2(11)x3).2"]]], ["MXS",["3.McL",["3_2.U4(3)","3.M22","3.M22","3.U3(5)","3.3^(1+4):2S5","3^5:M10","3xL3(4).2_2","3x2.A8","3.2^4:A7","3.2^4:A7","3xM11","3x5^(1+2):3:8"]]], ["MXS",["3.McL.2",["3.McL","3_2.U4(3).2_3'","3.U3(5).2","3.3^(1+4):4S5","3^5:(M10x2)","(3xL3(4).2_2).2","(2.A8x3).2","M11xS3","3.McL.2N5","3.2^(2+4):(S3xS3)"]]], ["MXS",["3.O7(3)",["6_1.U4(3).2_2","3.3^5:U4(2):2","3xL4(3).2_2","3.G2(3)","3.G2(3)","3.(3^(3+3):L3(3))","3xS6(2)","3xS6(2)","3.3^(1+6)_+.(2A4xA4).2","3xS9","3xS9","3x(2^2xU4(2)):2","2^6:3A7","3xS6xS4","3.(A4x2(A4xA4).2).2"]]], ["MXS",["3.ON",["3xL3(7).2","3xL3(7).2","3xJ1","12_2.L3(4).2_1","3.(3^2:4xA6).2","3^(1+4)_+:2^(1+4)_-D10","3xL2(31)","3xL2(31)","3x4^3.L3(2)","3xM11","3xM11","3.A7","3.A7"]]], ["MXS",["3.ON.2",["3.ON","","","3.(3^2:4xA6).2^2"]]], ["MXS",["3.Suz",["3xG2(4)","3^2.U4(3).2_3'","3xU5(2)","3x2^(1+6)_-.U4(2)","3^6.M11","3xJ2.2","3x2^(4+6).3A6","(A4x3.L3(4)).2","3x2^(2+8):(A5xS3)","3xM12.2","3.3^(2+4):2(A4x2^2).2","(3.A6xA5):2","(3^(1+2):4xA6).2","3xL3(3).2","3xL3(3).2","3xL2(25)","3.A7"]]], ["MXS",["3.Suz.2",["3.Suz","(3xG2(4)).2","3^2.U4(3).(2^2)_(133)","(3xU5(2)).2","(3x2^(1+6)_-.U4(2)).2","3^6:(M11x2)","S3xJ2.2","(3x2^(4+6):3A6).2","(A4x3.L3(4).2_3).2","(3x2^(2+8):(A5xS3)).2","S3xM12.2","3.3^(2+4):2(S4xD8)","(3.A6.2_2xA5):2","(3^(1+2):8xA6).2","(3xL2(25)).2_2","3.A7.2"]]], ["MXS",["3.U6(2)",["3xU5(2)","3x2^(1+8)_+:U4(2)","2^9:3.L3(4)","3_1.U4(3).2_2","3_1.U4(3).2_2","3_1.U4(3).2_2","3x2^(4+8):(S3xA5)","3xS6(2)","3xS6(2)","3xS6(2)","3.M22","3.M22","3.M22","3xS3xU4(2)","3.(3^(1+4).[2^7.3])","3.L3(4).2_1"]]], ["MXS",["3D4(2)",["2^(1+8)_+:L2(8)","2^2.[2^9]:(7xS3)","U3(3).2","S3xL2(8)","(7xL2(7)):2","3^(1+2)+.2S4","7^2:2A4","3^2:2A4","13:4"]]], ["MXS",["3D4(2).3",["3D4(2)","2^(1+8)_+:L2(8):3","2^2.[2^9]:(7:3xS3)","3xU3(3).2","S3xL2(8).3","(7:3xL2(7)):2","3^(1+2)_+.(2S4x3)","7^2:(3x2A4)","3^2:2A4x3","13:12"]]], ["MXS",["4.M22",["4_1.L3(4)","2.2^5:A6","2.(2xA7)","2.(2xA7)","2.(2^5:S5)","2.(2x2^3:L3(2))","(4xA6).2_3","2.(2xL2(11))"]]], ["MXS",["4_1.L3(4)",["4_1.2^4:A5"]]], ["MXS",["4_2.L3(4)",["4_2.2^4:A5"]]], ["MXS",["6.A6",["3x2.A5","3x2.A5","3^(1+2)_+:8","3x2.S4","3x2.S4"]]], ["MXS",["6.A6.2_1",["6.A6"]]], ["MXS",["6.A7",["6.A6","3x2.L3(2)","3x2.L3(2)","3xIsoclinic(2.A5.2)","6.(A4x3).2"]]], ["MXS",["6.Fi22",["(2^2x3).U6(2)","2x3.O7(3)","2x3.O7(3)","6xO8+(2):S3","2^11.3.M22","","","S3x6_1.U4(3).2_2"]]], ["MXS",["6.Fi22.2",["6.Fi22","(2^2x3).U6(2).2"]]], ["MXS",["6.L3(4)",["3x2^5.A5","","","","","6xL3(2)","6xL3(2)","6xL3(2)","Isoclinic(2x3^(1+2)_+:Q8)"]]], ["MXS",["6.M22",["6.L3(4)","2^5:3A6","2x(3.A7)","2x(3.A7)","3x2^5:S5","6x2^3:L3(2)","Isoclinic(3.A6.2_3x2)","6xL2(11)"]]], ["MXS",["6.M22.2",["6.M22","6.L3(4).2_2"]]], ["MXS",["6.O7(3)",["12_1.U4(3).2_2","6.(3^5:U4(2):2)","3x2.L4(3).2_2","2x3.G2(3)","2x3.G2(3)","2x3.(3^(3+3):L3(3))","3x2.S6(2)","3x2.S6(2)","6.3^(1+6)_+.(2A4xA4).2","3xIsoclinic(2.A9.2)","3xIsoclinic(2.A9.2)","3x2.(2^2xU4(2)).2","2^(1+6)_+:3A7","3x2.(S6xS4)","6.(A4x2(A4xA4).2).2"]]], ["MXS",["6.Suz",["3x2.G2(4)","Isoclinic((3^2x2).U4(3).2_3')","6xU5(2)","3x2.2^(1+6)_-.U4(2)","2x3^6.M11","3x2.J2.2","3x(2.2^4.2^6):3A6","2.(A4x3.L3(4)).2","3x2.(2^(2+8):(A5xS3))","3xIsoclinic(2.M12.2)","6.(3^(2+4):2(A4x2^2).2)","(3.A6x2.A5).2","(3^(1+2):4x2.A6).2","3x(2xL3(3)).2","3x(2xL3(3)).2","3x2.L2(25)","6.A7"]]], ["MXS",["6.Suz.2",["6.Suz","","","","","","","","","","","","","(3^(1+2):8x2.A6).2"]]], ["MXS",["6.U6(2)",["6xU5(2)","3x2.2^(1+8)_+:U4(2)","2^10:3.L3(4)","2x3_1.U4(3).2_2","6_1.U4(3).2_2","6_1.U4(3).2_2","3x2.2^(4+8):(S3xA5)","6xS6(2)","6xS6(2)","6xS6(2)","2x3.M22","6.M22","6.M22","6xS3xU4(2)","6.(3^(1+4).[2^7.3])","6.L3(4).2_1"]]], ["MXS",["A10",["A9","S8","(A7x3):2","(A5xA5):4","(A6xA4):2","2^4:S5","A6.2_3"]]], ["MXS",["A10.2",["A10","S9","S8x2","S7xS3","(S5xS5):2","S6xS4","2^5:S5","A6.2^2"]]], ["MXS",["A11",["A10","S9","(A8x3):2","(A7xA4):2","(A6xA5):2","M11","M11"]]], ["MXS",["A11.2",["A11","S10","S9x2","S8xS3","S7xS4","S6xS5","11:10"]]], ["MXS",["A12",["A11","S10","(A9x3):2","(A6xA6):2^2","(A8xA4):2","(A7xA5):2","M12","M12","2^6:3^3:S4","2^5:S6","3^4:2^3.S4"]]], ["MXS",["A12.2",["A12","S11","S10x2","S9xS3","(S6xS6):2","S8xS4","S7xS5","S4wrS3","2^6:S6","S3wrS4","L2(11).2"]]], ["MXS",["A13",["A12","S11","(A10x3):2","(A9xA4):2","(A8xA5):2","(A7xA6):2","L3(3)","L3(3)","13:6"]]], ["MXS",["A13.2",["A13","S12","S11x2","S10xS3","S9xS4","S8xS5","S7xS6","13:12"]]], ["MXS",["A14",["A13","S12","","","","(A5xA9):2","","2^6:S7","L2(13)"]]], ["MXS",["A14.2",["A14","A13.2"]]], ["MXS",["A5",["A4","D10","S3"]]], ["MXS",["A5.2",["A5","S4","5:4","S3x2"]]], ["MXS",["A6",["A5","A5","3^2:4","S4","S4"]]], ["MXS",["A6.2_1",["A6","S5","S5","3^2:D8","2xS4","S4x2"]]], ["MXS",["A6.2_3",["A6","3^2:Q8","5:4","M11N2"]]], ["MXS",["A7",["A6","L3(2)","L3(2)","S5","(A4x3):2"]]], ["MXS",["A7.2",["A7","S6","2xS5","S4xS3","7:6"]]], ["MXS",["A8",["A7","2^3:L3(2)","2^3:L3(2)","S6","2^4:(S3xS3)","(A5x3):2"]]], ["MXS",["A8.2",["A8","S7","S6x2","(S4xS4):2","S5xS3","2^4:S4","L3(2).2"]]], ["MXS",["A9",["A8","S7","(3xA6).2_1","L2(8).3","L2(8).3","(A4xA5):2","3^3.S4","3^2:2A4"]]], ["MXS",["A9.2",["A9","S8","S7x2","S3xS6","S5xS4","3^3:(S4x2)","3^2.2.S4"]]], ["MXS",["B",["2.2E6(2).2","2^(1+22).Co2","Fi23","2^(9+16).S8(2)","Th","(2^2xF4(2)):2","2^(2+10+20).(M22.2xS3)","[2^30].L5(2)","S3xFi22.2","[2^35].(S5xL3(2))","HN.2","O8+(3).S4","3^(1+8).2^(1+6).U4(2).2","(3^2:D8xU4(3).2^2).2","5:4xHS.2","S4x2F4(2)'.2","3^2.3^3.3^6.(S4x2S4)","A5.2xM22.2","(S6xL3(4).2).2","5^3.L3(5)","5^(1+4).2^(1+4).A5.4","(S6xS6).4","5^2:4S4xS5","L2(49).2_3","L2(31)","M11","L3(3)","L2(17).2","L2(11).2","47:23"]]], ["MXS",["Co1",["Co2","3.Suz.2","2^11:M24","Co3","2^(1+8)+.O8+(2)","U6(2).3.2","(A4xG2(4)):2","2^(2+12):(A8xS3)","2^(4+12).(S3x3S6)","3^2.U4(3).D8","3^6:2M12","(A5xJ2):2","3^(1+4).2U4(2).2","(A6xU3(3)):2","3^(3+4):2(S4xS4)","A9xS3","(A7xL2(7)):2","(D10x(A5xA5).2).2","5^(1+2):GL2(5)","5^3:(4xS5)","7^2:(3x2A4)","5^2:2A5"]]], ["MXS",["Co2",["U6(2).2","2^10:M22:2","McL","2^(1+8)_+:S6(2)","HS.2","(2^(1+6)_+x2^4).A8","U4(3).D8","2^(4+10)(S5xS3)","M23","3^(1+4)_+:2^(1+4)_-.S5","5^(1+2):4S4"]]], ["MXS",["Co3",["McL.2","HS","U4(3).(2^2)_(133)","M23","3^5:(2xM11)","2.S6(2)","U3(5).3.2","3^(1+4)_+:4S6","2^4.A8","L3(4).D12","2xM12","2^2.[2^7*3^2].S3","S3xL2(8).3","A4xS5"]]], ["MXS",["F4(2)",["(2^(1+8)x2^6):S6(2)","(2^(1+8)x2^6):S6(2)","S8(2)","S8(2)","[2^20]:(S3xL3(2))","[2^20]:(S3xL3(2))","O8+(2).3.2","","3D4(2).3","","2F4(2)'.2","L4(3).2_2"]]], ["MXS",["Fi22",["2.U6(2)","O7(3)","O7(3)","O8+(2).3.2","2^10:M22","2^6:S6(2)","(2x2^(1+8)):U4(2):2","S3xU4(3).2_2","2F4(2)'","2^(5+8):(S3xA6)","3^(1+6):2^(3+4):3^2:2","S10","S10","M12"]]], ["MXS",["Fi22.2",["Fi22","2.U6(2).2","O8+(2):S3x2","2^10:M22:2","2^7:S6(2)","(2x2^(1+8)):(U4(2):2x2)","S3xU4(3).(2^2)_(122)","2F4(2)'.2","2^(5+8):(S3xS6)","3^5:(2xU4(2).2)","3^(1+6)_+:2^(3+4):(S3xS3)","G2(3).2","M12.2"]]], ["MXS",["Fi23",["2.Fi22","O8+(3).3.2","2^2.U6(2).2","S8(2)","S3xO7(3)","2^11.M23","3^(1+8).2^(1+6).3^(1+2).2S4","3^3.[3^7].(2xL3(3))","S12","(2^2x2^(1+8)).(3xU4(2)).2","2^(6+8):(A7xS3)","S4xS6(2)","S4(4).4","L2(23)"]]], ["MXS",["Fi24'",["Fi23","2.Fi22.2","(3xO8+(3):3):2","O10-(2)","3^7.O7(3)","3^(1+10):U5(2):2","2^11.M24","2^2.U6(2).3.2","2^(1+12).3_1.U4(3).2_2'","3^3.[3^10].GL3(3)","3^2.3^4.3^8.(A5x2A4).2","(A4xO8+(2).3).2","He.2","He.2","2^(3+12).(L3(2)xA6)","2^(6+8).(S3xA8)","(3^2:2xG2(3)).2","(A5xA9):2","A6xL2(8):3","7:6xA7","U3(3).2","U3(3).2","L2(13).2","L2(13).2","29:14"]]], ["MXS",["Fi24'.2",["F3+","2xFi23","2^2.Fi22.2","S3xO8+(3):S3","O10-(2).2","3^7.O7(3):2","3^(1+10):(2xU5(2):2)","2^12.M24","2^2.U6(2):S3x2","2^(1+12)_+.3_1.U4(3).2^2_(122)","3^3.[3^10].(L3(3)x2^2)","3^2.3^4.3^8.(S5x2S4)","S4xO8+(2):S3","2^(3+12).(L3(2)xS6)","2^(7+8).(S3xA8)","(S3xS3xG2(3)):2","S5xS9","S6xL2(8):3","7:6xS7","7^(1+2)_+:(6xS3).2","29:28"]]], ["MXS",["G2(3)",["U3(3).2","U3(3).2","(3^(1+2)+x3^2):2S4","(3^(1+2)+x3^2):2S4","L3(3).2","L3(3).2","L2(8).3","2^3.L3(2)","L2(13)","2^(1+4)+:3^2.2"]]], ["MXS",["G2(3).2",["G2(3)","3^2.(3x3^(1+2)+):D8","L2(8):3x2","2^3.L3(2):2","L2(13).2","2^(1+4)+.(S3xS3)"]]], ["MXS",["G2(4)",["J2","2^(2+8):(3xA5)","2^(4+6):(A5x3)","U3(4).2","3.L3(4).2_3","U3(3).2","A5xA5","L2(13)"]]], ["MXS",["G2(4).2",["G2(4)","J2.2","2^(2+8):(3xA5):2","2^(4+6):(A5x3):2","U3(4).4","3.L3(4).2^2","2xU3(3).2","(A5xA5):2","L2(13).2"]]], ["MXS",["G2(5)",["5^(1+4)_+:GL(2,5)","5^2.5.5^2.4S5","3.U3(5).2","L3(5).2","2.(A5xA5).2","U3(3).2","2^3.L3(2)"]]], ["MXS",["HN",["A12","2.HS.2","U3(8).3_1","2^(1+8).(A5xA5).2","(D10xU3(5)).2","5^(1+4):2^(1+4).5.4","2^6.U4(2)","(A6xA6).D8","2^3.2^2.2^6.(3xL3(2))","5^2.5.5^2.4A5","M12.2","M12.2","3^4:2(A4xA4).4","3^(1+4):4A5"]]], ["MXS",["HN.2",["HN","S12","4.HS.2","U3(8).6","2^(1+8)_+.(A5xA5).2^2","5:4xU3(5):2","5^(1+4)_+:(4Y2^(1+4)_-.5.4)","2^6.U4(2).2","(S6xS6).2^2","2^3.2^2.2^6.(S3xL3(2))","5^2.5.5^2.4S5","3^4:2(S4xS4).2","3^(1+4)_+:4S5"]]], ["MXS",["HS",["M22","U3(5).2","U3(5).2","L3(4).2_1","S8","2^4.S6","4^3:L3(2)","M11","M11","4.2^4.S5","2xA6.2^2","5:4xA5"]]], ["MXS",["HS.2",["HS","M22.2","L3(4).2^2","S8x2","2^5.S6","4^3:(L3(2)x2)","2^(1+6)_+:S5","(2xA6.2^2).2","5^(1+2)_+:[2^5]","5:4xS5"]]], ["MXS",["He",["S4(4).2","2^2.L3(4).S3","2^6:3.S6","2^6:3.S6","2^(1+6)_+.L3(2)","7^2:2L2(7)","3.A7.2","7^(1+2):(S3x3)","S4xL3(2)","7:3xL3(2)","5^2:4A4"]]], ["MXS",["He.2",["He","S4(4).4","2^2.L3(4).D12","2^(1+6)_+.L3(2).2","7^2:2.L2(7).2","3.S7x2","(S5xS5):2","2^(4+4).(S3xS3).2","7^(1+2):(S3x6)","S4xL3(2).2","7:6xL3(2)","5^2:4S4"]]], ["MXS",["Isoclinic(2.A5.2)",["2.A5"]]], ["MXS",["Isoclinic(2.L3(2).2)",["2.L3(2)"]]], ["MXS",["J1",["L2(11)","2^3:7:3","2xA5","19:6","11:10","D6xD10","7:6"]]], ["MXS",["J2",["U3(3)","3.A6.2_2","2^(1+4)_-:A5","2^(2+4):(3xS3)","A4xA5","A5xD10","L3(2).2","5^2:D12","A5"]]], ["MXS",["J2.2",["J2","U3(3).2","3.A6.2^2","2^(1+4).S5","2^(2+4):(S3xS3)","(A4xA5):2","(A5xD10).2","L3(2).2x2","5^2:(4xS3)","S5"]]], ["MXS",["J3",["L2(16).2","L2(19)","L2(19)","2^4:(3xA5)","L2(17)","(3xA6):2_2","3^2.3^(1+2)_+:8","2^(1+4)_-:A5","2^(2+4):(3xS3)"]]], ["MXS",["J3.2",["J3","L2(16).4","2^4:(3xA5):2","L2(17)x2","(3xM10):2","3^2.3^(1+2):8.2","2^(1+4).S5","2^(2+4):(S3xS3)","19:18"]]], ["MXS",["J4",["2^11:M24","2^(1+12)_+.3.M22.2","2^10:L5(2)","2^(3+12).(S5xL3(2))","U3(11).2","M22.2","11+^(1+2):(5x2S4)","L2(32).5","L2(23).2","U3(3)","29:28","43:14","37:12"]]], ["MXS",["L2(109)",["109:54","D110","D108","A5","A5"]]], ["MXS",["L2(11)",["A5","A5","11:5","S3x2"]]], ["MXS",["L2(11).2",["L2(11)","11:10","S4","D24","D20"]]], ["MXS",["L2(113)",["113:56","D114","D112","S4","S4"]]], ["MXS",["L2(127)",["127:63","D128","D126","S4","S4"]]], ["MXS",["L2(13)",["13:6","D14","S3x2","A4"]]], ["MXS",["L2(131)",["131:65","D132","D130","A5","A5"]]], ["MXS",["L2(137)",["137:68","D138","D136","S4","S4"]]], ["MXS",["L2(139)",["139:69","D140","D138","A5","A5"]]], ["MXS",["L2(149)",["149:74","D150","D148","A5","A5"]]], ["MXS",["L2(151)",["151:75","D152","D150","A5","A5","S4","S4"]]], ["MXS",["L2(157)",["157:78","D158","D156","A4"]]], ["MXS",["L2(16).2",["L2(16)","","","","D6xD10"]]], ["MXS",["L2(163)",["163:81","D164","D162","A4"]]], ["MXS",["L2(167)",["167:83","D168","D166","S4","S4"]]], ["MXS",["L2(17)",["17:8","S4","S4","D18","D16"]]], ["MXS",["L2(17).2",["L2(17)","17:16"]]], ["MXS",["L2(173)",["173:86","D174","D172","A4"]]], ["MXS",["L2(179)",["179:89","D180","D178","A5","A5"]]], ["MXS",["L2(181)",["181:90","D182","D180","A5","A5"]]], ["MXS",["L2(19)",["19:9","A5","A5","D20","D18"]]], ["MXS",["L2(19).2",["L2(19)","19:18"]]], ["MXS",["L2(191)",["191:95","D192","D190","A5","A5","S4","S4"]]], ["MXS",["L2(193)",["193:96","D194","D192","S4","S4"]]], ["MXS",["L2(197)",["197:98","D198","D196","A4"]]], ["MXS",["L2(199)",["199:99","D200","D198","A5","A5","S4","S4"]]], ["MXS",["L2(211)",["211:105","D212","D210","A5","A5"]]], ["MXS",["L2(223)",["223:111","D224","D222","S4","S4"]]], ["MXS",["L2(227)",["227:113","D228","D226","A4"]]], ["MXS",["L2(229)",["229:114","D230","D228","A5","A5"]]], ["MXS",["L2(23)",["23:11","S4","S4","D24","D22"]]], ["MXS",["L2(233)",["233:116","D234","D232","S4","S4"]]], ["MXS",["L2(239)",["239:119","D240","D238","A5","A5","S4","S4"]]], ["MXS",["L2(241)",["241:120","D242","D240","A5","A5","S4","S4"]]], ["MXS",["L2(25)",["5^2:12","S5","S5","D26","D24"]]], ["MXS",["L2(27)",["3^3:13","D28","D26","A4"]]], ["MXS",["L2(29)",["29:14","A5","A5","D30","D28"]]], ["MXS",["L2(29).2",["L2(29)","29:28"]]], ["MXS",["L2(31)",["31:15","A5","A5","D32","D30","S4","S4"]]], ["MXS",["L2(32)",["","","D62"]]], ["MXS",["L2(32).5",["L2(32)"]]], ["MXS",["L2(8)",["2^3:7","D18","D14"]]], ["MXS",["L2(8).3",["L2(8)","2^3:7:3","9:6","7:6"]]], ["MXS",["L3(11)",["11^2:(5x2L2(11).2)","11^2:(5x2L2(11).2)","L2(11).2","10^2:S3","133:3","L3(2)"]]], ["MXS",["L3(2)",["S4","S4","7:3"]]], ["MXS",["L3(2).2",["L3(2)","7:6","D16","S3x2"]]], ["MXS",["L3(3)",["3^2.2.S4","3^2.2.S4","13:3","S4"]]], ["MXS",["L3(3).2",["L3(3)","3^(1+2):D8","group6","13:6","2xS4"]]], ["MXS",["L3(4)",["2^4:A5","2^4:A5","A6","A6","A6","L3(2)","L3(2)","L3(2)","3^2:Q8"]]], ["MXS",["L3(4).D12",["L3(4).3.2_3","L3(4).6","L3(4).3.2_2","L3(4).2^2","2^(2+4):(S3xS3)","2x3^2.2.S4","S5xS3","S3x7:6"]]], ["MXS",["L3(5)",["5^2:4S5","5^2:4S5","S5","4^2:S3","31:3"]]], ["MXS",["L3(5).2",["L3(5)","","","","","31:6"]]], ["MXS",["L3(7)",["7^2:2.L2(7).2","7^2:2.L2(7).2","L3(2).2","L3(2).2","L3(2).2","(A4x3):2","3^2:Q8","19:3"]]], ["MXS",["L3(7).2",["L3(7)","7^(1+2):(D8x3)"]]], ["MXS",["L3(8)",["2^6:(7xL2(8))","2^6:(7xL2(8))","7^2:S3","73:3","L3(2)"]]], ["MXS",["L3(8).2",["L3(8)","","","","","L3(2).2"]]], ["MXS",["L3(8).3",["L3(8)"]]], ["MXS",["L3(9)",["3^4:GL2(9)","3^4:GL2(9)","U3(3)","L3(3)","A6.2_2","8^2:S3","91:3"]]], ["MXS",["L4(3)",["3^3:L3(3)","3^3:L3(3)","U4(2).2","U4(2).2","3^4:2(A4xA4).2","(4xA6):2","A6.2_2","S4xS4"]]], ["MXS",["L5(2)",["2^4:A8","2^4:A8","2^6:(L3(2)xS3)","2^6:(L3(2)xS3)","31:5"]]], ["MXS",["L5(2).2",["L5(2)"]]], ["MXS",["L6(2)",["2^5:L5(2)","2^5:L5(2)","P2L62","P2L62","P3L62","S6(2)","3.L3(4).3.2_2","L3(2)wr2","(7xL2(8)).3"]]], ["MXS",["L7(2)",["2^6:L6(2)","2^10:(L5(2)xS3)","2^12:(L4(2)xL3(2))","127:7"]]], ["MXS",["L7(2).2",["L7(2)"]]], ["MXS",["Ly",["G2(5)","3.McL.2","5^3.L3(5)","2.A11","5^(1+4):4S6","3^5:(M11x2)","3^(2+4):2A5.D8","67:22","37:18"]]], ["MXS",["M",["2.B","2^(1+24).Co1","3.F3+.2","2^2.2E6(2).3.2","","","3^(1+12).2.Suz.2","","S3xTh","","","(D10xHN).2","","","","5^(1+6):2.J2.4","(7:3xHe):2","(A5xA12):2","5^(3+3).(2xL3(5))","(A6xA6xA6).(2xS4)","(A5xU3(8):3):2","5^(2+2+4):(S3xGL2(5))","(L3(2)xS4(4):2).2","7^(1+4):(3x2.S7)","(5^2:[2^4]xU3(5)).S3","(L2(11)xM12):2","(A7x(A5xA5):2^2):2","5^4:(3x2.L2(25)).2","7^(2+1+2):GL2(7)","M11xA6.2^2","(S5xS5xS5):S3","(L2(11)xL2(11)):4","13^2:2.L2(13).4","(7^2:(3x2A4)xL2(7)).2","(13:6xL3(3)).2","13^(1+2):(3x4S4)","L2(71)","L2(59)","11^2:(5x2.A5)","L2(41)","L2(29).2","7^2:2L2(7)","L2(19).2","41:40"]]], ["MXS",["M11",["A6.2_3","L2(11)","3^2:Q8.2","S5","2.S4"]]], ["MXS",["M12",["M11","M11","A6.2^2","A6.2^2","L2(11)","3^2.2.S4","3^2.2.S4","2xS5","M8.S4","4^2:D12","A4xS3"]]], ["MXS",["M12.2",["M12","L2(11).2","L2(11).2","(2^2xA5):2","2^3.(S4x2)","4^2:D12.2","3^(1+2):D8","S4xS3","S5"]]], ["MXS",["M22",["L3(4)","2^4:A6","A7","A7","2^4:S5","2^3:L3(2)","A6.2_3","L2(11)"]]], ["MXS",["M22.2",["M22","L3(4).2_2","2^4:S6","2^5:S5","2x2^3:L3(2)","A6.2^2","L2(11).2"]]], ["MXS",["M23",["M22","L3(4).2_2","2^4:A7","A8","M11","2^4:(3xA5):2","23:11"]]], ["MXS",["M24",["M23","M22.2","2^4:A8","M12.2","2^6:3.S6","L3(4).3.2_2","2^6:(L3(2)xS3)","L2(23)","L3(2)"]]], ["MXS",["McL",["U4(3)","M22","M22","U3(5)","3^(1+4)_+:2S5","3^4:M10","L3(4).2_2","2.A8","2^4:A7","2^4:A7","M11","5^(1+2)_+:3:8"]]], ["MXS",["McL.2",["McL","U4(3).2_3","U3(5).2","3^(1+4):4S5","3^4:(M10x2)","L3(4).2^2","Isoclinic(2.A8.2)","2xM11","5^(1+2):(24:2)","2^(2+4):(S3xS3)"]]], ["MXS",["O10+(2)",["S8(2)","2^8:O8+(2)","2^10:L5(2)","2^10:L5(2)","(3xO8-(2)):2","","","(A5xU4(2)):2"]]], ["MXS",["O10+(2).2",["O10+(2)","","2^8:O8+(2):2"]]], ["MXS",["O10-(2)",["2^8:O8-(2)"]]], ["MXS",["O10-(2).2",["O10-(2)","2^8:O8-(2):2"]]], ["MXS",["O7(3)",["2.U4(3).2_2","3^5:U4(2):2","L4(3).2_2","G2(3)","G2(3)","3^(3+3):L3(3)","S6(2)","S6(2)","3^(1+6)_+:(2A4xA4).2","S9","S9","(2^2xU4(2)):2","2^6:A7","S6xS4","(A4x2(A4xA4).2).2"]]], ["MXS",["O7(3).2",["O7(3)","","","","","","","2^6:S7"]]], ["MXS",["O8+(2)",["S6(2)","S6(2)","S6(2)","2^6:A8","2^6:A8","2^6:A8","A9","A9","A9","(3xU4(2)):2","(3xU4(2)):2","(3xU4(2)):2","2^(1+8)_+:(S3xS3xS3)","3^4:2^3.S4","(A5xA5):2^2","(A5xA5):2^2","(A5xA5):2^2"]]], ["MXS",["O8+(2).2",["O8+(2)","2xS6(2)"]]], ["MXS",["O8+(2).3",["O8+(2)"]]], ["MXS",["O8+(3)",["O7(3)","O7(3)","O7(3)","O7(3)","O7(3)","O7(3)","3^6:L4(3)","3^6:L4(3)","3^6:L4(3)","O8+(2)","O8+(2)","O8+(2)","O8+(2)","3^(1+8)_+:2(A4xA4xA4).2","2.U4(3).(2^2)_(122)","2.U4(3).(2^2)_(122)","2.U4(3).(2^2)_(122)","(A4xU4(2)):2","(A4xU4(2)):2","(A4xU4(2)):2","(A4xU4(2)):2","(A4xU4(2)):2","(A4xU4(2)):2","(A6xA6):2^2","(A6xA6):2^2","(A6xA6):2^2","2((A4wr2^2):2)"]]], ["MXS",["O8-(2)",["2^6:U4(2)","S6(2)","2^(3+6):(L3(2)x3)","2^(1+8)_+:(S3xA5)","(A8x3):2","L2(16).2","(S3xS3xA5):2","L3(2)"]]], ["MXS",["O8-(2).2",["O8-(2)","2^6:U4(2).2","2xS6(2)","","","S8xS3","L2(16).4","(S3xS3):2xS5","L3(2).2"]]], ["MXS",["O8-(3)",["3^6:2U4(3).2_1","O7(3).2","O7(3).2","","","","S4xU4(2).2","S4xU4(2).2","L2(81).2_1"]]], ["MXS",["O8-(3).2_1",["O8-(3)","","O7(3).2x2","O7(3).2x2","","","D8xL4(3).2_2","","","L2(81).4_1"]]], ["MXS",["O8-(3).2_2",["O8-(3)"]]], ["MXS",["O8-(3).2_3",["O8-(3)"]]], ["MXS",["ON",["L3(7).2","L3(7).2","J1","4_2.L3(4).2_1","(3^2:4xA6).2","3^4:2^(1+4)D10","L2(31)","L2(31)","4^3.L3(2)","M11","M11","A7","A7"]]], ["MXS",["ON.2",["ON","J1x2","4_2.L3(4).(2^2)_(12*3)","(3^2:4xA6).2^2","3^4:2^(1+4).(5:4)","4^3.(L3(2)x2)","7^(1+2)_+:(3xD16)","31:30","A6.2_2","L3(2).2"]]], ["MXS",["R(27)",["","","L2(8).3","","(2^2xD14):3","19:6"]]], ["MXS",["R(27).3",["R(27)","","","","37:18","","19:18"]]], ["MXS",["Ru",["2F4(2)'.2","(2^6:U3(3)):2","(2^2xSz(8)):3","2^3+8:L3(2)","U3(5).2","2.2^(4+6):S5","L2(25).2^2","A8","L2(29)","5^2:4S5","3.A6.2^2","5^1+2:(2^5)","L2(13).2","A6.2^2","5:4xA5"]]], ["MXS",["S10(2)",["O10-(2).2","O10+(2).2","","","","","","","","L2(32).5"]]], ["MXS",["S4(4)",["2^6:(3xA5)","2^6:(3xA5)","L2(16).2","L2(16).2","(A5xA5):2","(A5xA5):2","S6"]]], ["MXS",["S4(4).2",["S4(4)","2^6:(3xA5):2","2^6:(3xA5):2","L2(16).4","L2(16).4","(A5xA5):2^2","(A5xA5):2^2","S6x2"]]], ["MXS",["S4(5)",["5^(1+2)_+:4A5","5^3:(2xA5).2","L2(25).2_2","2.(A5xA5).2","2^4:A5","S5xS3","(2^2xA5):2","A6"]]], ["MXS",["S6(2)",["U4(2).2","S8","2^5:S6","U3(3).2","2^6:L3(2)","2.[2^6]:(S3xS3)","S3xS6","L2(8).3"]]], ["MXS",["S6(3)",["3^(1+4)_+.2U4(2)","3^6:L3(3)","3^(3+4):2(S4xA4)","2.(A4xU4(2))","2^(2+6):3^3:S3","L2(27).3","2xU3(3).2","L3(3).2","L2(13)","L2(13)","A5"]]], ["MXS",["S6(3).2",["3^(1+4).2U4(2).2"]]], ["MXS",["S8(2)",["O8-(2).2","O8+(2).2","2^7:S6(2)","2^10.A8","2^(3+8):(S3xS6)","S3xS6(2)","2^(6+6):(S3xL3(2))","S10","S4(4).2","(S6xS6):2","L2(17)"]]], ["MXS",["Suz",["G2(4)","3_2.U4(3).2_3'","U5(2)","2^(1+6)_-.U4(2)","3^5:M11","J2.2","2^(4+6):3A6","(A4xL3(4)):2_1","2^(2+8):(A5xS3)","M12.2","3^(2+4):2(A4x2^2).2","(A6xA5).2","(3^2:4xA6).2","L3(3).2","L3(3).2","L2(25)","A7"]]], ["MXS",["Suz.2",["Suz","G2(4).2","3_2.U4(3).(2^2)_(133)","U5(2).2","2^(1+6)_-.U4(2).2","3^5:(M11x2)","J2.2x2","2^(4+6):3S6","(A4xL3(4):2_3):2","2^(2+8):(S5xS3)","M12.2x2","3^(2+4):2(S4xD8)","(A6:2_2xA5).2","(3^2:8xA6).2","L2(25).2_2","S7"]]], ["MXS",["Sz(32)",["2^(5+5):31","41:4","25:4","D62"]]], ["MXS",["Sz(8)",["2^(3+3):7","13:4","5:4","D14"]]], ["MXS",["Sz(8).3",["Sz(8)","2^(3+3):7:3","13:12","5:4x3","7:6"]]], ["MXS",["Th",["3D4(2).3","2^5.L5(2)","2^(1+8)_+.A9","U3(8).6","(3xG2(3)):2","[3^9].2S4","3^2.[3^7].2S4","3^5:2S6","5^(1+2):4S4","5^2:4S5","7^2:(3x2S4)","L2(19).2","L3(3)","A6.2_3","31:15","S5"]]], ["MXS",["U3(11)",["11^(1+2)_+:40","2(L2(11)x2).2","L2(11).2","L2(11).2","L2(11).2","A6","A6","A6","(4^2x3):S3","37:3","3^2:Q8"]]], ["MXS",["U3(3)",["3^(1+2):8","L3(2)","4.s4","4^2:S3"]]], ["MXS",["U3(3).2",["U3(3)","3^(1+2):SD16","L3(2).2","2^(1+4).S3","4^2:D12"]]], ["MXS",["U3(4)",["2^(2+4):15","5xA5","5^2:S3","13:3"]]], ["MXS",["U3(4).2",["U3(4)","2^(2+4):(3xD10)","A5xD10","5^2:D12","13:6"]]], ["MXS",["U3(4).4",["U3(4).2"]]], ["MXS",["U3(5)",["A7","A7","A7","5^(1+2)+:8","A6.2_3","A6.2_3","A6.2_3","2.A5.2"]]], ["MXS",["U3(5).2",["U3(5)","S7","5^(1+2)_+:8:2","A6.2^2","2S5.2","L3(2).2"]]], ["MXS",["U3(5).3",["U3(5)","5^(1+2)+:24","3x2S5","3^2:2A4","6^2:S3","7:3x3"]]], ["MXS",["U3(7)",["7^(1+2):48","2(L2(7)x4).2","8^2:S3","L3(2).2","43:3"]]], ["MXS",["U3(8)",["2^(3+6):21","3xL2(8)","3^2:2A4","3^2:2A4","3^2:2A4","(9x3).S3","19:3"]]], ["MXS",["U3(9)",["3^(2+4):80","5xIsoclinic(2.A6.2_2)","A6.2_2","10^2:S3","73:3"]]], ["MXS",["U4(2)",["2^4:A5","S6","3^(1+2)+:2A4","3^3:S4","2.(A4xA4).2"]]], ["MXS",["U4(2).2",["U4(2)","2^4:S5","S6x2","3^(1+2)+:2S4","3^3:(S4x2)","W(F4)"]]], ["MXS",["U4(3)",["3^4:A6","U4(2)","U4(2)","L3(4)","L3(4)","3^(1+4)_+.2S4","U3(3)","2^4:A6","2^4:A6","A7","A7","A7","A7","2(A4xA4).2^2","A6.2_3","A6.2_3"]]], ["MXS",["U4(3).2_1",["U4(3)","3^4:(2xA6)","U4(2).2","U4(2).2","L3(4).2_2","L3(4).2_2","3^(1+4)+.4S4","2xU3(3)","2^4.S6","2^4.S6","4(A4xA4).4","A6.2^2","A6.2^2"]]], ["MXS",["U4(3).2_3",["U4(3)","3^4:M10","L3(4).2_3","L3(4).2_1","3^(1+4):4S4","U3(3).2","2(A4xA4).4.2","M10x2","A6.2^2","A6.2^2","(4^2x2)S4"]]], ["MXS",["U4(3).D8",["","","","3^4.A6.D8"]]], ["MXS",["U5(2)",["2^(1+6):3^(1+2):2A4","3xU4(2)","2^(4+4):(3xA5)","3^4:S5","S3x3^(1+2)+:2A4","L2(11)"]]], ["MXS",["U5(2).2",["U5(2)","","","","","","L2(11).2"]]], ["MXS",["U5(3)",["","4.U4(3).4","","","U4(2).2"]]], ["MXS",["U6(2)",["U5(2)","2^(1+8)_+:U4(2)","2^9.L3(4)","U4(3).2_2","U4(3).2_2","U4(3).2_2","2^(4+8):(S3xA5)","S6(2)","S6(2)","S6(2)","M22","M22","M22","S3xU4(2)","3^(1+4).2^(1+1+2+2).S3","L3(4).2_1"]]], ["MXS",["U6(2).2",["U6(2)","U5(2).2","","","","","","M22.2"]]], ["MXS",["U6(2).3",["U6(2)"]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr126B0.g",[-95054011]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr160B0.g",[130677506]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr210B0.g",[-50324182]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr224aB0.g",[14449435]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr224bB0.g",[9722007]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr225B0.g",[92776450]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr35B0.g",[-32813966]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr36B0.g",[-96721693]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr42B0.g",[-42808704]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr75B0.g",[-39718615]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr84B0.g",[-72574348]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr90B0.g",[92280715]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr9B0.g",[-98891693]]], ["TOC",["matff","alt/A10/mtx/2A10G1-f3r16B0.m",[133558569,7751303]]], ["TOC",["matff","alt/A10/mtx/2A10G1-f5r56B0.m",[106114504,-34223356]]], ["TOC",["matff","alt/A10/mtx/2A10G1-f5r8B0.m",[-66877760,-10441825]]], ["TOC",["matff","alt/A10/mtx/2A10G1-f7r16B0.m",[-17220168,-70753499]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r160B0.m",[-108474931,53236873]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r16B0.m",[120160813,-8096924]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r198B0.m",[-105966471,-118468514]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r200B0.m",[-8656884,-35106257]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r26B0.m",[-127808259,51214305]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r48B0.m",[-40159069,69033293]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r64aB0.m",[102693129,-74620347]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r64bB0.m",[-41003654,-56409287]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r8B0.m",[-61586491,-36854292]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r126B0.m",[-78356361,-85812365]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r224B0.m",[1648760,856544]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r279B0.m",[-116520136,28162794]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r34B0.m",[116362581,125729281]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r36B0.m",[106455816,-64542057]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r41B0.m",[14653233,-29570979]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r567B0.m",[91011213,-74458450]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r84B0.m",[94415076,14658731]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r90B0.m",[78489388,-59686310]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r9B0.m",[53453595,12047353]]], ["TOC",["matff","alt/A10/mtx/A10G1-f4r384aB0.m",[-123207845,39275593]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r133aB0.m",[-70040930,-96735440]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r133bB0.m",[51493024,-129195790]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r155B0.m",[92717858,102394010]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r160B0.m",[49454731,-48474287]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r217B0.m",[-56235224,15247604]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r225B0.m",[-8190879,-97782454]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r28B0.m",[-90587278,80332445]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r300B0.m",[52787442,-91676435]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r34B0.m",[98789892,-75428680]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r350B0.m",[46749588,-77482077]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r35aB0.m",[-119474236,-52956779]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r35bB0.m",[-53484651,-10489273]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r35cB0.m",[11802060,-95818840]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r450B0.m",[-117440006,132712395]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r525B0.m",[75956453,29937350]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r55B0.m",[82888492,-102206841]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r56B0.m",[114319833,-105781281]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r75B0.m",[81229174,-32299609]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r8B0.m",[27026655,56661990]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r124B0.m",[100318150,-86258861]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r126B0.m",[6788301,77348841]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r315B0.m",[103282695,-131481983]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r35B0.m",[68087422,-120300608]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r36B0.m",[-110628719,-116256108]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r66B0.m",[18002903,71997331]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r84B0.m",[6021581,68325023]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r89B0.m",[112847925,110296210]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r9B0.m",[65794752,-108123775]]], ["TOC",["perm","alt/A10/mtx/A10G1-p10B0.m",[-71915152,-73743375]]], ["TOC",["perm","alt/A10/mtx/A10G1-p120B0.m",[-50460702,13210237]]], ["TOC",["perm","alt/A10/mtx/A10G1-p126B0.m",[106657390,2967288]]], ["TOC",["perm","alt/A10/mtx/A10G1-p210B0.m",[-16598970,-21414041]]], ["TOC",["perm","alt/A10/mtx/A10G1-p2520B0.m",[-5920330,-5194892]]], ["TOC",["perm","alt/A10/mtx/A10G1-p45B0.m",[-93592591,-129651627]]], ["TOC",["perm","alt/A10/mtx/A10G1-p945B0.m",[-111054132,-8787620]]], ["TOC",["perm","alt/A10/mtx/S10G1-p10B0.m",[102663828,111534310]]], ["TOC",["check","alt/A10/words/A10G1-check1",[-65939754]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr10B0.g",[23979533]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr110B0.g",[-52829325]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr120B0.g",[-23105539]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr132B0.g",[-67485169]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr165B0.g",[23994767]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr210B0.g",[-7633503]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr231B0.g",[128797722]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr252B0.g",[28693334]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr44B0.g",[-14246691]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr45B0.g",[29857511]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f11r128B0.m",[114324617,-72745045]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f11r16B0.m",[58396455,-65921882]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f3r144B0.m",[-116903691,64591009]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f3r16aB0.m",[123701682,33852482]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f3r16bB0.m",[123701682,59228723]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f49r16aB0.m",[11117236,19201506]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f49r16bB0.m",[11117236,-96707409]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f5r16aB0.m",[-32608610,80948254]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f5r16bB0.m",[-32608610,-113956471]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f5r56aB0.m",[-4539481,-34223356]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f5r56bB0.m",[-118415370,-34223356]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f7r144B0.m",[30881969,-49107182]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f7r32B0.m",[46215404,-49071614]]], ["TOC",["perm","alt/A11/mtx/2A11G1-p5040B0.m",[10338093,35097820]]], ["TOC",["matff","alt/A11/mtx/2S11G1-f11r16B0.m",[43570399,99053214]]], ["TOC",["matff","alt/A11/mtx/2S11G1-f3r32B0.m",[-49041992,-17616148]]], ["TOC",["matff","alt/A11/mtx/2S11G1-f5r32B0.m",[121729623,-29237387]]], ["TOC",["matff","alt/A11/mtx/2S11G1-f7r32B0.m",[52776906,-56309454]]], ["TOC",["matff","alt/A11/mtx/A11G1-f11r36B0.m",[-20142313,14189331]]], ["TOC",["matff","alt/A11/mtx/A11G1-f11r44B0.m",[52850788,29978961]]], ["TOC",["matff","alt/A11/mtx/A11G1-f11r84B0.m",[36508214,39409034]]], ["TOC",["matff","alt/A11/mtx/A11G1-f11r9B0.m",[112234857,49850484]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r100B0.m",[-128987094,-105207191]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r10B0.m",[48163131,5174220]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r144B0.m",[-2485893,114401636]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r164B0.m",[-79537173,-81254819]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r186B0.m",[-52751286,111580947]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r198B0.m",[-2524017,-12277084]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r32B0.m",[117207733,-97550131]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r416B0.m",[-15467113,-22612587]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r44B0.m",[-46914518,-72072210]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r848B0.m",[55633855,-13433644]]], ["TOC",["matff","alt/A11/mtx/A11G1-f3r109B0.m",[-41552477,63109273]]], ["TOC",["matff","alt/A11/mtx/A11G1-f3r10B0.m",[34106404,11555461]]], ["TOC",["matff","alt/A11/mtx/A11G1-f3r120B0.m",[-9761398,-30517684]]], ["TOC",["matff","alt/A11/mtx/A11G1-f3r126aB0.m",[35299060,-55406114]]], ["TOC",["matff","alt/A11/mtx/A11G1-f3r126bB0.m",[78437011,-77493126]]], ["TOC",["matff","alt/A11/mtx/A11G1-f3r131B0.m",[84327974,84262247]]], ["TOC",["matff","alt/A11/mtx/A11G1-f3r34B0.m",[61022628,95804131]]], ["TOC",["matff","alt/A11/mtx/A11G1-f3r45B0.m",[-130379009,62508909]]], ["TOC",["matff","alt/A11/mtx/A11G1-f4r16aB0.m",[18792134,-62212692]]], ["TOC",["matff","alt/A11/mtx/A11G1-f4r16bB0.m",[18792134,46533207]]], ["TOC",["matff","alt/A11/mtx/A11G1-f4r584aB0.m",[8633406,11959365]]], ["TOC",["matff","alt/A11/mtx/A11G1-f5r10B0.m",[-94207968,42329417]]], ["TOC",["matff","alt/A11/mtx/A11G1-f5r110B0.m",[-70012073,89366508]]], ["TOC",["matff","alt/A11/mtx/A11G1-f5r120B0.m",[-76119583,126633378]]], ["TOC",["matff","alt/A11/mtx/A11G1-f5r43B0.m",[34567817,73351777]]], ["TOC",["matff","alt/A11/mtx/A11G1-f5r45B0.m",[73321059,-120290804]]], ["TOC",["matff","alt/A11/mtx/A11G1-f5r55B0.m",[28166287,41124467]]], ["TOC",["matff","alt/A11/mtx/A11G1-f5r89B0.m",[86657222,-77993041]]], ["TOC",["matff","alt/A11/mtx/A11G1-f7r10B0.m",[39992086,112310009]]], ["TOC",["matff","alt/A11/mtx/A11G1-f7r44B0.m",[36269917,-84016762]]], ["TOC",["matff","alt/A11/mtx/A11G1-f7r45B0.m",[66954439,-20316453]]], ["TOC",["matff","alt/A11/mtx/A11G1-f7r66B0.m",[-108604335,-125185286]]], ["TOC",["perm","alt/A11/mtx/A11G1-p11B0.m",[-122422017,-50694995]]], ["TOC",["perm","alt/A11/mtx/A11G1-p165B0.m",[-18343151,-94008167]]], ["TOC",["perm","alt/A11/mtx/A11G1-p2520aB0.m",[105442601,37888423]]], ["TOC",["perm","alt/A11/mtx/A11G1-p2520bB0.m",[72615956,-84822869]]], ["TOC",["perm","alt/A11/mtx/A11G1-p330B0.m",[91822824,134140254]]], ["TOC",["perm","alt/A11/mtx/A11G1-p462B0.m",[-56401454,11231997]]], ["TOC",["perm","alt/A11/mtx/A11G1-p55B0.m",[-57050664,-129624707]]], ["TOC",["matff","alt/A11/mtx/S11G1-f2r32B0.m",[36065907,-112645797]]], ["TOC",["perm","alt/A11/mtx/S11G1-p11B0.m",[-62830795,90530455]]], ["TOC",["check","alt/A11/words/A11G1-check1",[-31402064]]], ["TOC",["matint","alt/A12/gap0/A12G1-Zr11B0.g",[125437313]]], ["TOC",["matint","alt/A12/gap0/A12G1-Zr132B0.g",[-36047765]]], ["TOC",["matint","alt/A12/gap0/A12G1-Zr154B0.g",[-52095196]]], ["TOC",["matint","alt/A12/gap0/A12G1-Zr165B0.g",[-131843682]]], ["TOC",["matint","alt/A12/gap0/A12G1-Zr54B0.g",[103173145]]], ["TOC",["matint","alt/A12/gap0/A12G1-Zr55B0.g",[12195196]]], ["TOC",["matff","alt/A12/mtx/2A12G1-f11r32B0.m",[-109039991,95544775]]], ["TOC",["matff","alt/A12/mtx/2A12G1-f3r16aB0.m",[-64225267,-54027246]]], ["TOC",["matff","alt/A12/mtx/2A12G1-f3r16bB0.m",[-86938792,-126991049]]], ["TOC",["matff","alt/A12/mtx/2A12G1-f5r32B0.m",[-61034870,62977689]]], ["TOC",["matff","alt/A12/mtx/2A12G1-f7r32B0.m",[-103270775,5956786]]], ["TOC",["matff","alt/A12/mtx/A12G1-f2r100B0.m",[9829805,64944733]]], ["TOC",["matff","alt/A12/mtx/A12G1-f2r10B0.m",[-81984500,14420913]]], ["TOC",["matff","alt/A12/mtx/A12G1-f2r44B0.m",[32152614,60375361]]], ["TOC",["matff","alt/A12/mtx/A12G1-f3r10B0.m",[16812218,79853924]]], ["TOC",["matff","alt/A12/mtx/A12G1-f3r45B0.m",[-45141217,110111869]]], ["TOC",["matff","alt/A12/mtx/A12G1-f3r54B0.m",[-84738990,37226419]]], ["TOC",["matff","alt/A12/mtx/A12G1-f4r16aB0.m",[76799659,-45499329]]], ["TOC",["matff","alt/A12/mtx/A12G1-f4r16bB0.m",[119703462,-105516986]]], ["TOC",["matff","alt/A12/mtx/A12G1-f5r11B0.m",[-67336691,-27340083]]], ["TOC",["matff","alt/A12/mtx/A12G1-f5r43B0.m",[-20910589,119812772]]], ["TOC",["matff","alt/A12/mtx/A12G1-f5r55B0.m",[-99652203,73739525]]], ["TOC",["matff","alt/A12/mtx/A12G1-f5r89B0.m",[-53617829,85057506]]], ["TOC",["perm","alt/A12/mtx/A12G1-p12B0.m",[-123345274,-118831963]]], ["TOC",["perm","alt/A12/mtx/A12G1-p220B0.m",[-102069043,-40443727]]], ["TOC",["perm","alt/A12/mtx/A12G1-p2520B0.m",[48232624,-111485628]]], ["TOC",["perm","alt/A12/mtx/A12G1-p462B0.m",[-22764326,-42034140]]], ["TOC",["perm","alt/A12/mtx/A12G1-p495B0.m",[-90795333,9383447]]], ["TOC",["perm","alt/A12/mtx/A12G1-p66B0.m",[-25246166,-18460354]]], ["TOC",["perm","alt/A12/mtx/A12G1-p792B0.m",[-26141474,90886507]]], ["TOC",["perm","alt/A12/mtx/S12G1-p10395B0.m",[-51610573,116378558]]], ["TOC",["perm","alt/A12/mtx/S12G1-p12B0.m",[-42350936,107123575]]], ["TOC",["perm","alt/A12/mtx/S12G1-p15400B0.m",[-27006440,-21026234]]], ["TOC",["perm","alt/A12/mtx/S12G1-p220B0.m",[57884109,89270239]]], ["TOC",["perm","alt/A12/mtx/S12G1-p462B0.m",[-63147022,118662304]]], ["TOC",["perm","alt/A12/mtx/S12G1-p495B0.m",[-6958359,-14984501]]], ["TOC",["perm","alt/A12/mtx/S12G1-p5040B0.m",[54692524,99626862]]], ["TOC",["perm","alt/A12/mtx/S12G1-p5775B0.m",[-124106606,125652062]]], ["TOC",["perm","alt/A12/mtx/S12G1-p66B0.m",[40785526,93619813]]], ["TOC",["perm","alt/A12/mtx/S12G1-p792B0.m",[-24933435,65045476]]], ["TOC",["check","alt/A12/words/A12G1-check1",[-99479890]]], ["TOC",["matint","alt/A13/gap0/A13G1-Zr12B0.g",[120728346]]], ["TOC",["matint","alt/A13/gap0/A13G1-Zr208B0.g",[-107534939]]], ["TOC",["matint","alt/A13/gap0/A13G1-Zr220B0.g",[-88134109]]], ["TOC",["matint","alt/A13/gap0/A13G1-Zr65B0.g",[2800773]]], ["TOC",["matint","alt/A13/gap0/A13G1-Zr66B0.g",[28881576]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f11r64B0.m",[-117015385,78148566]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f121r32aB0.m",[50881057,-130550372]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f121r32bB0.m",[50881057,-63982107]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f13r32B0.m",[-58209584,-114347263]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f25r32aB0.m",[33870497,-25996768]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f25r32bB0.m",[-40107349,28570305]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f3r32aB0.m",[-48438656,-25967573]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f3r32bB0.m",[-72547795,-25967573]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f49r32aB0.m",[76294439,-63889848]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f49r32bB0.m",[35826406,-15518357]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f5r64B0.m",[106073587,32410936]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f7r64B0.m",[-25551508,44236352]]], ["TOC",["matff","alt/A13/mtx/A13G1-f2r64B0.m",[-47634882,-104269804]]], ["TOC",["matff","alt/A13/mtx/A13G1-f4r32aB0.m",[36325004,73236876]]], ["TOC",["matff","alt/A13/mtx/A13G1-f4r32bB0.m",[90761494,82555595]]], ["TOC",["perm","alt/A13/mtx/A13G1-p13B0.m",[-97296261,-13656475]]], ["TOC",["perm","alt/A13/mtx/A13G1-p78B0.m",[-25415461,119064830]]], ["TOC",["perm","alt/A13/mtx/S13G1-p13B0.m",[-80071545,-100550140]]], ["TOC",["perm","alt/A13/mtx/S13G1-p78B0.m",[53059074,122538641]]], ["TOC",["check","alt/A13/words/A13G1-check1",[-17573913]]], ["TOC",["matint","alt/A14/gap0/A14G1-Zr13B0.g",[-70843676]]], ["TOC",["matint","alt/A14/gap0/A14G1-Zr77B0.g",[-2326548]]], ["TOC",["matint","alt/A14/gap0/A14G1-Zr78B0.g",[89991440]]], ["TOC",["matff","alt/A14/mtx/2A14G1-f11r64B0.m",[-131121960,126664026]]], ["TOC",["matff","alt/A14/mtx/2A14G1-f13r64B0.m",[53258278,-9137520]]], ["TOC",["matff","alt/A14/mtx/2A14G1-f3r64B0.m",[-16434801,4266919]]], ["TOC",["matff","alt/A14/mtx/2A14G1-f49r32aB0.m",[125306939,129831096]]], ["TOC",["matff","alt/A14/mtx/2A14G1-f49r32bB0.m",[87690389,-48370874]]], ["TOC",["matff","alt/A14/mtx/2A14G1-f5r64B0.m",[55006074,-121179705]]], ["TOC",["matff","alt/A14/mtx/2A14G1-f7r64B0.m",[35153212,-38253902]]], ["TOC",["matff","alt/A14/mtx/2S14G1-f7r64B0.m",[-112425554,-57571696]]], ["TOC",["matff","alt/A14/mtx/2S14iG1-f7r64B0.m",[-57982903,108923491]]], ["TOC",["matff","alt/A14/mtx/A14G1-f11r13B0.m",[-40579482,7070752]]], ["TOC",["matff","alt/A14/mtx/A14G1-f11r77B0.m",[66192550,-81887409]]], ["TOC",["matff","alt/A14/mtx/A14G1-f11r78B0.m",[-8359030,-83684564]]], ["TOC",["matff","alt/A14/mtx/A14G1-f13r13B0.m",[85339373,-51256802]]], ["TOC",["matff","alt/A14/mtx/A14G1-f13r76B0.m",[-50909455,-106745514]]], ["TOC",["matff","alt/A14/mtx/A14G1-f13r78B0.m",[-4870702,69045892]]], ["TOC",["matff","alt/A14/mtx/A14G1-f2r12B0.m",[90619692,-106206654]]], ["TOC",["matff","alt/A14/mtx/A14G1-f2r64aB0.m",[-108438381,132295344]]], ["TOC",["matff","alt/A14/mtx/A14G1-f2r64bB0.m",[-4604054,-42310637]]], ["TOC",["matff","alt/A14/mtx/A14G1-f3r13B0.m",[-62501190,-113003570]]], ["TOC",["matff","alt/A14/mtx/A14G1-f3r64B0.m",[-129854222,-101838416]]], ["TOC",["matff","alt/A14/mtx/A14G1-f3r78B0.m",[106153952,59090292]]], ["TOC",["matff","alt/A14/mtx/A14G1-f5r13B0.m",[-9447070,-22406909]]], ["TOC",["matff","alt/A14/mtx/A14G1-f5r77B0.m",[-52183881,86223200]]], ["TOC",["matff","alt/A14/mtx/A14G1-f5r78B0.m",[96776073,-98672972]]], ["TOC",["matff","alt/A14/mtx/A14G1-f7r12B0.m",[8322888,20382436]]], ["TOC",["matff","alt/A14/mtx/A14G1-f7r66B0.m",[-29578574,127399051]]], ["TOC",["matff","alt/A14/mtx/A14G1-f7r77B0.m",[-123136507,109828362]]], ["TOC",["perm","alt/A14/mtx/A14G1-p1001B0.m",[-25420623,-45498004]]], ["TOC",["perm","alt/A14/mtx/A14G1-p14B0.m",[-129399038,14924943]]], ["TOC",["perm","alt/A14/mtx/A14G1-p1716B0.m",[90522554,-15099649]]], ["TOC",["perm","alt/A14/mtx/A14G1-p2002B0.m",[-88811657,80740978]]], ["TOC",["perm","alt/A14/mtx/A14G1-p3003B0.m",[-17346905,64146685]]], ["TOC",["perm","alt/A14/mtx/A14G1-p364B0.m",[-114206197,47209148]]], ["TOC",["perm","alt/A14/mtx/A14G1-p91B0.m",[-26777249,-82433735]]], ["TOC",["matff","alt/A14/mtx/S14G1-f2r12B0.m",[-40558018,-8180169]]], ["TOC",["matff","alt/A14/mtx/S14G1-f2r64aB0.m",[54153929,83763681]]], ["TOC",["matff","alt/A14/mtx/S14G1-f2r64bB0.m",[-117643475,-15897979]]], ["TOC",["matff","alt/A14/mtx/S14G1-f7r12B0.m",[-30708602,1214955]]], ["TOC",["perm","alt/A14/mtx/S14G1-p1001B0.m",[-120548559,116913207]]], ["TOC",["perm","alt/A14/mtx/S14G1-p14B0.m",[-2670655,14924943]]], ["TOC",["perm","alt/A14/mtx/S14G1-p1716B0.m",[14478156,-103414251]]], ["TOC",["perm","alt/A14/mtx/S14G1-p2002B0.m",[-121582665,25702096]]], ["TOC",["perm","alt/A14/mtx/S14G1-p3003B0.m",[-72022249,4619522]]], ["TOC",["perm","alt/A14/mtx/S14G1-p364B0.m",[-130142219,-94014842]]], ["TOC",["perm","alt/A14/mtx/S14G1-p91B0.m",[133786030,110984109]]], ["TOC",["pres","alt/A14/words/2A14G1-P1",[-109066728]]], ["TOC",["pres","alt/A14/words/2S14G1-P1",[-94902193]]], ["TOC",["pres","alt/A14/words/2S14iG1-P1",[-41871223]]], ["TOC",["pres","alt/A14/words/A14G1-P1",[86181627]]], ["TOC",["check","alt/A14/words/A14G1-check1",[-67998098]]], ["TOC",["pres","alt/A14/words/S14G1-P1",[14473659]]], ["TOC",["matint","alt/A15/gap0/A15G1-Zr14B0.g",[134144892]]], ["TOC",["matint","alt/A15/gap0/A15G1-Zr350B0.g",[-119131883]]], ["TOC",["matint","alt/A15/gap0/A15G1-Zr364B0.g",[60710542]]], ["TOC",["matint","alt/A15/gap0/A15G1-Zr90B0.g",[123203884]]], ["TOC",["matint","alt/A15/gap0/A15G1-Zr91B0.g",[-108993267]]], ["TOC",["matint","alt/A15/gap0/S15G1-Zr14B0.g",[112766668]]], ["TOC",["matint","alt/A15/gap0/S15G1-Zr350B0.g",[72073042]]], ["TOC",["matint","alt/A15/gap0/S15G1-Zr364B0.g",[112379418]]], ["TOC",["matint","alt/A15/gap0/S15G1-Zr90B0.g",[128405560]]], ["TOC",["matint","alt/A15/gap0/S15G1-Zr91B0.g",[20728690]]], ["TOC",["perm","alt/A15/mtx/A15G1-p105B0.m",[13694315,27801421]]], ["TOC",["perm","alt/A15/mtx/A15G1-p1365B0.m",[19949471,-88212599]]], ["TOC",["perm","alt/A15/mtx/A15G1-p15B0.m",[-71373987,-72340264]]], ["TOC",["perm","alt/A15/mtx/A15G1-p455B0.m",[-133728447,14431303]]], ["TOC",["perm","alt/A15/mtx/S15G1-p105B0.m",[-124686931,27357604]]], ["TOC",["perm","alt/A15/mtx/S15G1-p1365B0.m",[-32162156,93524484]]], ["TOC",["perm","alt/A15/mtx/S15G1-p15B0.m",[72860604,90003980]]], ["TOC",["perm","alt/A15/mtx/S15G1-p455B0.m",[54418637,-21074702]]], ["TOC",["check","alt/A15/words/A15G1-check1",[24354086]]], ["TOC",["matint","alt/A16/gap0/A16G1-Zr104B0.g",[-131498831]]], ["TOC",["matint","alt/A16/gap0/A16G1-Zr105B0.g",[71513223]]], ["TOC",["matint","alt/A16/gap0/A16G1-Zr15B0.g",[115743485]]], ["TOC",["matint","alt/A16/gap0/A16G1-Zr440B0.g",[-8453117]]], ["TOC",["matint","alt/A16/gap0/A16G1-Zr455B0.g",[55220984]]], ["TOC",["matint","alt/A16/gap0/S16G1-Zr104B0.g",[24464107]]], ["TOC",["matint","alt/A16/gap0/S16G1-Zr105B0.g",[39264249]]], ["TOC",["matint","alt/A16/gap0/S16G1-Zr15B0.g",[-13874193]]], ["TOC",["matint","alt/A16/gap0/S16G1-Zr440B0.g",[78269769]]], ["TOC",["matint","alt/A16/gap0/S16G1-Zr455B0.g",[-15698641]]], ["TOC",["perm","alt/A16/mtx/A16G1-p120B0.m",[-90432449,36585236]]], ["TOC",["perm","alt/A16/mtx/A16G1-p16B0.m",[122952804,-376850]]], ["TOC",["perm","alt/A16/mtx/A16G1-p1820B0.m",[35966948,-38081813]]], ["TOC",["perm","alt/A16/mtx/A16G1-p560B0.m",[31215885,-80762672]]], ["TOC",["perm","alt/A16/mtx/S16G1-p120B0.m",[102407611,36585236]]], ["TOC",["perm","alt/A16/mtx/S16G1-p16B0.m",[-9052479,-376850]]], ["TOC",["perm","alt/A16/mtx/S16G1-p1820B0.m",[131083269,-38081813]]], ["TOC",["perm","alt/A16/mtx/S16G1-p560B0.m",[-63521346,-80762672]]], ["TOC",["check","alt/A16/words/A16G1-check1",[-36113085]]], ["TOC",["matint","alt/A17/gap0/A17G1-Zr119B0.g",[69974062]]], ["TOC",["matint","alt/A17/gap0/A17G1-Zr120B0.g",[-78478323]]], ["TOC",["matint","alt/A17/gap0/A17G1-Zr16B0.g",[-93582348]]], ["TOC",["matint","alt/A17/gap0/A17G1-Zr544B0.g",[6475277]]], ["TOC",["matint","alt/A17/gap0/A17G1-Zr560B0.g",[99141318]]], ["TOC",["matint","alt/A17/gap0/S17G1-Zr119B0.g",[106578774]]], ["TOC",["matint","alt/A17/gap0/S17G1-Zr120B0.g",[-124042535]]], ["TOC",["matint","alt/A17/gap0/S17G1-Zr16B0.g",[-73625956]]], ["TOC",["matint","alt/A17/gap0/S17G1-Zr544B0.g",[68206623]]], ["TOC",["matint","alt/A17/gap0/S17G1-Zr560B0.g",[53861249]]], ["TOC",["perm","alt/A17/mtx/A17G1-p136B0.m",[69276995,-78469100]]], ["TOC",["perm","alt/A17/mtx/A17G1-p17B0.m",[55351626,60559978]]], ["TOC",["perm","alt/A17/mtx/A17G1-p2380B0.m",[-80483879,1460987]]], ["TOC",["perm","alt/A17/mtx/A17G1-p680B0.m",[-59984195,4367016]]], ["TOC",["perm","alt/A17/mtx/S17G1-p136B0.m",[131391594,583899]]], ["TOC",["perm","alt/A17/mtx/S17G1-p17B0.m",[28856792,45464758]]], ["TOC",["perm","alt/A17/mtx/S17G1-p2380B0.m",[-91386534,105407015]]], ["TOC",["perm","alt/A17/mtx/S17G1-p680B0.m",[-127764983,101324677]]], ["TOC",["check","alt/A17/words/A17G1-check1",[70828487]]], ["TOC",["matint","alt/A18/gap0/A18G1-Zr135B0.g",[-51082799]]], ["TOC",["matint","alt/A18/gap0/A18G1-Zr136B0.g",[-93500730]]], ["TOC",["matint","alt/A18/gap0/A18G1-Zr17B0.g",[-34881287]]], ["TOC",["matint","alt/A18/gap0/S18G1-Zr135B0.g",[91940979]]], ["TOC",["matint","alt/A18/gap0/S18G1-Zr136B0.g",[83030198]]], ["TOC",["matint","alt/A18/gap0/S18G1-Zr17B0.g",[99043014]]], ["TOC",["perm","alt/A18/mtx/A18G1-p153B0.m",[46570468,20559424]]], ["TOC",["perm","alt/A18/mtx/A18G1-p18B0.m",[-66217662,84223876]]], ["TOC",["perm","alt/A18/mtx/A18G1-p3060B0.m",[-53262680,-88231425]]], ["TOC",["perm","alt/A18/mtx/A18G1-p816B0.m",[42103723,-82034077]]], ["TOC",["perm","alt/A18/mtx/S18G1-p153B0.m",[-34063429,20559424]]], ["TOC",["perm","alt/A18/mtx/S18G1-p18B0.m",[122696316,84223876]]], ["TOC",["perm","alt/A18/mtx/S18G1-p3060B0.m",[-32850440,-88231425]]], ["TOC",["perm","alt/A18/mtx/S18G1-p816B0.m",[16262271,-82034077]]], ["TOC",["check","alt/A18/words/A18G1-check1",[49129175]]], ["TOC",["matint","alt/A19/gap0/A19G1-Zr152B0.g",[-34032615]]], ["TOC",["matint","alt/A19/gap0/A19G1-Zr153B0.g",[-113410101]]], ["TOC",["matint","alt/A19/gap0/A19G1-Zr18B0.g",[111598795]]], ["TOC",["matint","alt/A19/gap0/S19G1-Zr152B0.g",[91970872]]], ["TOC",["matint","alt/A19/gap0/S19G1-Zr153B0.g",[-20026772]]], ["TOC",["matint","alt/A19/gap0/S19G1-Zr18B0.g",[-86577001]]], ["TOC",["perm","alt/A19/mtx/A19G1-p171B0.m",[104846560,83307267]]], ["TOC",["perm","alt/A19/mtx/A19G1-p19B0.m",[77980294,63481327]]], ["TOC",["perm","alt/A19/mtx/A19G1-p969B0.m",[-23455783,105705335]]], ["TOC",["perm","alt/A19/mtx/S19G1-p171B0.m",[47420814,-126074704]]], ["TOC",["perm","alt/A19/mtx/S19G1-p19B0.m",[-133164478,84036778]]], ["TOC",["perm","alt/A19/mtx/S19G1-p969B0.m",[-64268110,117844450]]], ["TOC",["check","alt/A19/words/A19G1-check1",[-132931747]]], ["TOC",["matint","alt/A20/gap0/A20G1-Zr170B0.g",[-29615783]]], ["TOC",["matint","alt/A20/gap0/A20G1-Zr171B0.g",[-108958182]]], ["TOC",["matint","alt/A20/gap0/A20G1-Zr19B0.g",[36852471]]], ["TOC",["matint","alt/A20/gap0/S20G1-Zr170B0.g",[-99115043]]], ["TOC",["matint","alt/A20/gap0/S20G1-Zr171B0.g",[-72088388]]], ["TOC",["matint","alt/A20/gap0/S20G1-Zr19B0.g",[115694204]]], ["TOC",["perm","alt/A20/mtx/A20G1-p190B0.m",[-162219,37732335]]], ["TOC",["perm","alt/A20/mtx/A20G1-p20B0.m",[48720353,-84131166]]], ["TOC",["perm","alt/A20/mtx/S20G1-p190B0.m",[108406054,37732335]]], ["TOC",["perm","alt/A20/mtx/S20G1-p20B0.m",[-22765070,-84131166]]], ["TOC",["check","alt/A20/words/A20G1-check1",[-64749125]]], ["TOC",["matint","alt/A21/gap0/A21G1-Zr189B0.g",[115969211]]], ["TOC",["matint","alt/A21/gap0/A21G1-Zr190B0.g",[-17524123]]], ["TOC",["matint","alt/A21/gap0/A21G1-Zr20B0.g",[-29256843]]], ["TOC",["matint","alt/A21/gap0/S21G1-Zr189B0.g",[-74240563]]], ["TOC",["matint","alt/A21/gap0/S21G1-Zr190B0.g",[26185586]]], ["TOC",["matint","alt/A21/gap0/S21G1-Zr20B0.g",[11337534]]], ["TOC",["perm","alt/A21/mtx/A21G1-p210B0.m",[-18096588,39181620]]], ["TOC",["perm","alt/A21/mtx/A21G1-p21B0.m",[-106243427,32500336]]], ["TOC",["perm","alt/A21/mtx/S21G1-p210B0.m",[-47844635,127254386]]], ["TOC",["perm","alt/A21/mtx/S21G1-p21B0.m",[-47866677,-64381325]]], ["TOC",["check","alt/A21/words/A21G1-check1",[-14702897]]], ["TOC",["matint","alt/A22/gap0/A22G1-Zr209B0.g",[115062681]]], ["TOC",["matint","alt/A22/gap0/A22G1-Zr210B0.g",[88330207]]], ["TOC",["matint","alt/A22/gap0/A22G1-Zr21B0.g",[91357961]]], ["TOC",["matint","alt/A22/gap0/S22G1-Zr209B0.g",[38577085]]], ["TOC",["matint","alt/A22/gap0/S22G1-Zr210B0.g",[-50153160]]], ["TOC",["matint","alt/A22/gap0/S22G1-Zr21B0.g",[82882729]]], ["TOC",["perm","alt/A22/mtx/A22G1-p22B0.m",[105416884,-75538739]]], ["TOC",["perm","alt/A22/mtx/A22G1-p231B0.m",[30814105,-26069360]]], ["TOC",["perm","alt/A22/mtx/S22G1-p22B0.m",[91382033,-75538739]]], ["TOC",["perm","alt/A22/mtx/S22G1-p231B0.m",[-86852209,-26069360]]], ["TOC",["check","alt/A22/words/A22G1-check1",[121099186]]], ["TOC",["matint","alt/A23/gap0/A23G1-Zr22B0.g",[-48900386]]], ["TOC",["matint","alt/A23/gap0/A23G1-Zr230B0.g",[54170784]]], ["TOC",["matint","alt/A23/gap0/A23G1-Zr231B0.g",[-127813778]]], ["TOC",["matint","alt/A23/gap0/S23G1-Zr22B0.g",[-70091375]]], ["TOC",["matint","alt/A23/gap0/S23G1-Zr230B0.g",[-116716590]]], ["TOC",["matint","alt/A23/gap0/S23G1-Zr231B0.g",[-20002267]]], ["TOC",["perm","alt/A23/mtx/A23G1-p23B0.m",[-26635344,-79765368]]], ["TOC",["perm","alt/A23/mtx/A23G1-p253B0.m",[-43572899,-9303116]]], ["TOC",["perm","alt/A23/mtx/S23G1-p23B0.m",[-25964400,73432144]]], ["TOC",["perm","alt/A23/mtx/S23G1-p253B0.m",[-105428455,-96220929]]], ["TOC",["check","alt/A23/words/A23G1-check1",[15692441]]], ["TOC",["matalg","alt/A5/gap0/2A5G1-Ar2aB0.g",[-114960339]]], ["TOC",["matalg","alt/A5/gap0/2A5G1-Ar4aB0.g",[-11066115]]], ["TOC",["matalg","alt/A5/gap0/2A5G1-Ar4aB2.g",[-73445728]]], ["TOC",["matalg","alt/A5/gap0/2A5G1-Ar6B0.g",[-47602621]]], ["TOC",["matalg","alt/A5/gap0/2A5G1-Ar6B1.g",[58558068]]], ["TOC",["quat","alt/A5/gap0/2A5G1-Hr1aB0.g",[-18010219]]], ["TOC",["matint","alt/A5/gap0/2A5G1-Zr12B0.g",[-38359014]]], ["TOC",["matint","alt/A5/gap0/2A5G1-Zr8bB0.g",[-67529844]]], ["TOC",["matalg","alt/A5/gap0/2S5G1-Ar4bB0.g",[-69335290]]], ["TOC",["matint","alt/A5/gap0/2S5G1-Zr8aB0.g",[-19513480]]], ["TOC",["matalg","alt/A5/gap0/2S5iG1-Ar4aB1.g",[-34484899]]], ["TOC",["matalg","alt/A5/gap0/2S5iG1-Ar4aB2.g",[-121430132]]], ["TOC",["matalg","alt/A5/gap0/A5G1-Ar3aB0.g",[-4330172]]], ["TOC",["matalg","alt/A5/gap0/A5G1-Ar3bB0.g",[35818313]]], ["TOC",["matint","alt/A5/gap0/A5G1-Zr4B0.g",[61808604]]], ["TOC",["matint","alt/A5/gap0/A5G1-Zr5B0.g",[-8793917]]], ["TOC",["matint","alt/A5/gap0/A5G1-Zr6B0.g",[-110398703]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f2r10B0.m",[47305319,-73484398]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f2r8B0.m",[-125765411,64897650]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f2r9B0.m",[-29568269,132445224]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f3r4B0.m",[12103382,-106445221]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f3r6B0.m",[75322658,103965206]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f49r2aB0.m",[38536789,3772828]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f49r2bB0.m",[-41831557,120171565]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f4r5aB0.m",[58242329,47190084]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f4r5bB0.m",[-133306443,47190084]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f5r2B0.m",[-71107343,23495800]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f5r4B0.m",[-56856843,77384174]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f7r4aB0.m",[21980736,46839911]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f7r4bB0.m",[21980736,12748624]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f7r6B0.m",[91729598,112748688]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f9r2aB0.m",[19554613,-109536747]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f9r2bB0.m",[25071709,-109536747]]], ["TOC",["perm","alt/A5/mtx/2A5G1-p24B0.m",[-30277832,64338760]]], ["TOC",["perm","alt/A5/mtx/2A5G1-p40B0.m",[103308845,13304977]]], ["TOC",["matff","alt/A5/mtx/2S5G1-f25r2B0.m",[-62890617,123148176]]], ["TOC",["matff","alt/A5/mtx/2S5G1-f25r4aB0.m",[121947140,66663831]]], ["TOC",["matff","alt/A5/mtx/2S5G1-f3r4B0.m",[-34606504,-58385427]]], ["TOC",["matff","alt/A5/mtx/2S5G1-f3r6B0.m",[16290966,-31658096]]], ["TOC",["matff","alt/A5/mtx/2S5G1-f5r4bB0.m",[-55819744,-5592801]]], ["TOC",["matff","alt/A5/mtx/2S5G1-f5r8B0.m",[36619933,-56080989]]], ["TOC",["perm","alt/A5/mtx/2S5G1-p40aB0.m",[10665173,54144337]]], ["TOC",["perm","alt/A5/mtx/2S5G1-p40bB0.m",[-88101206,-46300861]]], ["TOC",["perm","alt/A5/mtx/2S5G1-p48B0.m",[-59922120,-99099063]]], ["TOC",["matff","alt/A5/mtx/2S5iG1-f25r2B0.m",[-105183709,-122321201]]], ["TOC",["matff","alt/A5/mtx/2S5iG1-f25r4aB0.m",[80569340,-124369574]]], ["TOC",["matff","alt/A5/mtx/2S5iG1-f3r12B0.m",[-113956411,-27894887]]], ["TOC",["matff","alt/A5/mtx/2S5iG1-f3r4B0.m",[12103382,-58183915]]], ["TOC",["matff","alt/A5/mtx/2S5iG1-f5r4bB0.m",[-66889965,121965102]]], ["TOC",["matff","alt/A5/mtx/2S5iG1-f5r8B0.m",[-41209421,30862683]]], ["TOC",["matff","alt/A5/mtx/2S5iG1-f9r6B0.m",[-117080397,10693481]]], ["TOC",["perm","alt/A5/mtx/2S5iG1-p48B0.m",[85389509,-85207509]]], ["TOC",["perm","alt/A5/mtx/2S5iG1-p80B0.m",[-14760622,-113949850]]], ["TOC",["matff","alt/A5/mtx/A5G1-f2r4aB0.m",[-59700458,75574133]]], ["TOC",["matff","alt/A5/mtx/A5G1-f2r4bB0.m",[132574147,-75334780]]], ["TOC",["matff","alt/A5/mtx/A5G1-f3r4B0.m",[-100741745,113839718]]], ["TOC",["matff","alt/A5/mtx/A5G1-f3r6B0.m",[-3808571,3567420]]], ["TOC",["matff","alt/A5/mtx/A5G1-f4r2aB0.m",[-3370782,9122982]]], ["TOC",["matff","alt/A5/mtx/A5G1-f4r2bB0.m",[-3099071,9122982]]], ["TOC",["matff","alt/A5/mtx/A5G1-f5r3B0.m",[-120405886,-65129013]]], ["TOC",["matff","alt/A5/mtx/A5G1-f5r5B0.m",[64884321,130032791]]], ["TOC",["matff","alt/A5/mtx/A5G1-f9r3aB0.m",[132629049,-68817283]]], ["TOC",["matff","alt/A5/mtx/A5G1-f9r3bB0.m",[-10391103,-68817283]]], ["TOC",["perm","alt/A5/mtx/A5G1-p10B0.m",[87876035,-33658054]]], ["TOC",["perm","alt/A5/mtx/A5G1-p5B0.m",[105959871,-132194423]]], ["TOC",["perm","alt/A5/mtx/A5G1-p6B0.m",[61180058,-37293998]]], ["TOC",["matff","alt/A5/mtx/S5G1-f2r4aB0.m",[83842337,117840626]]], ["TOC",["matff","alt/A5/mtx/S5G1-f2r4bB0.m",[82015106,-40261038]]], ["TOC",["matff","alt/A5/mtx/S5G1-f3r4B0.m",[127122134,-89443331]]], ["TOC",["matff","alt/A5/mtx/S5G1-f3r6B0.m",[-83885626,-57029490]]], ["TOC",["matff","alt/A5/mtx/S5G1-f5r3B0.m",[-62063879,-111834091]]], ["TOC",["matff","alt/A5/mtx/S5G1-f5r5B0.m",[-22534346,-120846077]]], ["TOC",["perm","alt/A5/mtx/S5G1-p10B0.m",[-78039502,-18399926]]], ["TOC",["perm","alt/A5/mtx/S5G1-p5B0.m",[-3581724,115937465]]], ["TOC",["perm","alt/A5/mtx/S5G1-p6B0.m",[122731789,-79969449]]], ["TOC",["pres","alt/A5/words/2A5G1-P1",[74027444]]], ["TOC",["pres","alt/A5/words/2S5G1-P1",[31126296]]], ["TOC",["pres","alt/A5/words/2S5iG1-P1",[-114755440]]], ["TOC",["pres","alt/A5/words/A5G1-P1",[133214225]]], ["TOC",["check","alt/A5/words/A5G1-check1",[133214225]]], ["TOC",["maxes","alt/A5/words/A5G1-max1W1",[109910985]]], ["TOC",["maxes","alt/A5/words/A5G1-max2W1",[98771752]]], ["TOC",["maxes","alt/A5/words/A5G1-max3W1",[-110887951]]], ["TOC",["pres","alt/A5/words/S5G1-P1",[-98868399]]], ["TOC",["maxes","alt/A5/words/S5G1-max1W1",[-18484748]]], ["TOC",["maxes","alt/A5/words/S5G1-max2W1",[31931707]]], ["TOC",["maxes","alt/A5/words/S5G1-max3W1",[53299536]]], ["TOC",["maxes","alt/A5/words/S5G1-max4W1",[-25589380]]], ["TOC",["matalg","alt/A6/gap0/2A6G1-Ar4B0.g",[-48048172]]], ["TOC",["matalg","alt/A6/gap0/2A6G1-Ar4aB0.g",[-114223694]]], ["TOC",["quat","alt/A6/gap0/2A6G1-Hr2aB0.g",[14366986]]], ["TOC",["matalg","alt/A6/gap0/3A6G1-Ar15B0.g",[62264135]]], ["TOC",["matalg","alt/A6/gap0/3A6G1-Ar3aB0.g",[98594020]]], ["TOC",["matalg","alt/A6/gap0/3A6G1-Ar6B0.g",[46743497]]], ["TOC",["matalg","alt/A6/gap0/3A6G1-Ar9B0.g",[19237101]]], ["TOC",["matalg","alt/A6/gap0/6A6G1-Ar12B0.g",[-59710906]]], ["TOC",["matalg","alt/A6/gap0/A6G1-Ar8aB0.g",[107672848]]], ["TOC",["matalg","alt/A6/gap0/A6G1-Ar8bB0.g",[30517665]]], ["TOC",["matint","alt/A6/gap0/A6G1-Zr10B0.g",[-74571095]]], ["TOC",["matint","alt/A6/gap0/A6G1-Zr16B0.g",[-116806540]]], ["TOC",["matint","alt/A6/gap0/A6G1-Zr5aB0.g",[100719862]]], ["TOC",["matint","alt/A6/gap0/A6G1-Zr5bB0.g",[125657418]]], ["TOC",["matint","alt/A6/gap0/A6G1-Zr9B0.g",[133517606]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f25r10aB0.m",[-106085167,-113549865]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f25r10bB0.m",[98754305,120285871]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f3r12B0.m",[-22045868,1768922]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f3r4B0.m",[-4837021,-103499355]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f5r20B0.m",[120797580,2598400]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f5r4aB0.m",[17900096,-96541165]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f5r4bB0.m",[20381152,-96541165]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f9r2aB0.m",[23246590,-65195923]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f9r2bB0.m",[-56273788,114713757]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f9r6aB0.m",[-117080397,-111824609]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f9r6bB0.m",[-117080397,-20471860]]], ["TOC",["perm","alt/A6/mtx/2A6G1-p144B0.m",[-96347,125801886]]], ["TOC",["perm","alt/A6/mtx/2A6G1-p240aB0.m",[-79548168,126895587]]], ["TOC",["perm","alt/A6/mtx/2A6G1-p240bB0.m",[-106514159,-132986516]]], ["TOC",["perm","alt/A6/mtx/2A6G1-p80B0.m",[102258790,74608568]]], ["TOC",["perm","alt/A6/mtx/2S6G1-p240aB0.m",[-85923730,26420057]]], ["TOC",["perm","alt/A6/mtx/2S6G1-p288B0.m",[116924951,-58411499]]], ["TOC",["perm","alt/A6/mtx/2S6G1-p80B0.m",[-1465137,-39728472]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f25r15aB0.m",[8408375,84491105]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f25r3aB0.m",[-11515690,-123381946]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f25r6aB0.m",[-30624642,-31855788]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f2r18B0.m",[-83402555,103762049]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f2r6aB0.m",[35911271,-9468330]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f2r6bB0.m",[128164886,-101302677]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f4r3aB0.m",[-61163955,62487747]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f4r3bB0.m",[-61163955,-113407058]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f4r9aB0.m",[26373939,-119266416]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f5r12B0.m",[132796687,9613992]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f5r30B0.m",[90929713,-6591506]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f5r6bB0.m",[-91892596,-21844883]]], ["TOC",["perm","alt/A6/mtx/3A6G1-p18aB0.m",[-27169755,-63884696]]], ["TOC",["perm","alt/A6/mtx/3A6G1-p18bB0.m",[-70831422,109435138]]], ["TOC",["perm","alt/A6/mtx/3A6G1-p45aB0.m",[95875628,133741471]]], ["TOC",["perm","alt/A6/mtx/3A6G1-p45bB0.m",[31154063,-131269737]]], ["TOC",["perm","alt/A6/mtx/3S6G1-p18aB0.m",[-90192914,58018384]]], ["TOC",["perm","alt/A6/mtx/3S6G1-p18bB0.m",[48380330,-74100289]]], ["TOC",["perm","alt/A6/mtx/3S6G1-p45aB0.m",[-36171649,-98566559]]], ["TOC",["perm","alt/A6/mtx/3S6G1-p45bB0.m",[-63653841,-22560631]]], ["TOC",["matff","alt/A6/mtx/6A6G1-f25r6aB0.m",[41241241,54241311]]], ["TOC",["matff","alt/A6/mtx/6A6G1-f25r6bB0.m",[114239719,-49023241]]], ["TOC",["matff","alt/A6/mtx/6A6G1-f5r12aB0.m",[82266534,63801793]]], ["TOC",["matff","alt/A6/mtx/6A6G1-f5r12bB0.m",[-16318809,-103450023]]], ["TOC",["matff","alt/A6/mtx/6A6G1-f9r6aB0.m",[-117080397,10712547]]], ["TOC",["perm","alt/A6/mtx/6A6G1-p432B0.m",[-70482918,5910727]]], ["TOC",["perm","alt/A6/mtx/6A6G1-p720aB0.m",[-117987490,78745458]]], ["TOC",["perm","alt/A6/mtx/6S6G1-p720aB0.m",[-101534071,-77411625]]], ["TOC",["matff","alt/A6/mtx/A6G1-f2r16B0.m",[130984727,-39278407]]], ["TOC",["matff","alt/A6/mtx/A6G1-f2r4aB0.m",[63125127,-51233355]]], ["TOC",["matff","alt/A6/mtx/A6G1-f2r4bB0.m",[63125127,23017655]]], ["TOC",["matff","alt/A6/mtx/A6G1-f3r4B0.m",[25891732,-79587657]]], ["TOC",["matff","alt/A6/mtx/A6G1-f3r6B0.m",[-98179095,-67444461]]], ["TOC",["matff","alt/A6/mtx/A6G1-f3r9B0.m",[-66167021,-116095810]]], ["TOC",["matff","alt/A6/mtx/A6G1-f4r8aB0.m",[117735458,-32704661]]], ["TOC",["matff","alt/A6/mtx/A6G1-f4r8bB0.m",[-76667929,125393531]]], ["TOC",["matff","alt/A6/mtx/A6G1-f5r10B0.m",[-103629574,30708049]]], ["TOC",["matff","alt/A6/mtx/A6G1-f5r5aB0.m",[26341713,-58803941]]], ["TOC",["matff","alt/A6/mtx/A6G1-f5r5bB0.m",[-92415994,96195433]]], ["TOC",["matff","alt/A6/mtx/A6G1-f5r8B0.m",[-2848528,-41002382]]], ["TOC",["matff","alt/A6/mtx/A6G1-f9r3aB0.m",[44653245,-127453367]]], ["TOC",["matff","alt/A6/mtx/A6G1-f9r3bB0.m",[44653245,14779569]]], ["TOC",["perm","alt/A6/mtx/A6G1-p10B0.m",[-27365038,76650249]]], ["TOC",["perm","alt/A6/mtx/A6G1-p15aB0.m",[-109444696,-87928583]]], ["TOC",["perm","alt/A6/mtx/A6G1-p15bB0.m",[-45631178,-128595033]]], ["TOC",["perm","alt/A6/mtx/A6G1-p6aB0.m",[108706813,-115759144]]], ["TOC",["perm","alt/A6/mtx/A6G1-p6bB0.m",[108706813,57093098]]], ["TOC",["perm","alt/A6/mtx/A6V4G1-p10B0.m",[6106500,-82871957]]], ["TOC",["perm","alt/A6/mtx/M10G1-p10B0.m",[-60216384,-124930269]]], ["TOC",["perm","alt/A6/mtx/PGL29G1-p10B0.m",[126537996,81841962]]], ["TOC",["perm","alt/A6/mtx/S6G1-p10B0.m",[-54706016,-57924782]]], ["TOC",["perm","alt/A6/mtx/S6G1-p15aB0.m",[86959444,-59558044]]], ["TOC",["perm","alt/A6/mtx/S6G1-p15bB0.m",[-94758333,-91650995]]], ["TOC",["perm","alt/A6/mtx/S6G1-p6aB0.m",[-20005392,79150440]]], ["TOC",["perm","alt/A6/mtx/S6G1-p6bB0.m",[-80081315,79150440]]], ["TOC",["pres","alt/A6/words/A6G1-P1",[-76021888]]], ["TOC",["check","alt/A6/words/A6G1-check1",[-102434184]]], ["TOC",["maxes","alt/A6/words/A6G1-max1W1",[-67607570]]], ["TOC",["maxes","alt/A6/words/A6G1-max2W1",[98771752]]], ["TOC",["maxes","alt/A6/words/A6G1-max3W1",[69578701]]], ["TOC",["maxes","alt/A6/words/A6G1-max4W1",[-45430912]]], ["TOC",["maxes","alt/A6/words/A6G1-max5W1",[42879257]]], ["TOC",["pres","alt/A6/words/A6V4G1-P1",[-62980510]]], ["TOC",["pres","alt/A6/words/M10G1-P1",[-14890401]]], ["TOC",["pres","alt/A6/words/PGL29G1-P1",[-132346814]]], ["TOC",["pres","alt/A6/words/S6G1-P1",[-111049475]]], ["TOC",["maxes","alt/A6/words/S6G1-max1W1",[83513557]]], ["TOC",["maxes","alt/A6/words/S6G1-max2W1",[18748601]]], ["TOC",["maxes","alt/A6/words/S6G1-max3W1",[-115734862]]], ["TOC",["maxes","alt/A6/words/S6G1-max4W1",[-67607570]]], ["TOC",["maxes","alt/A6/words/S6G1-max5W1",[-9427421]]], ["TOC",["maxes","alt/A6/words/S6G1-max6W1",[-67032013]]], ["TOC",["matalg","alt/A7/gap0/2A7G1-Ar20aB0.g",[-123007004]]], ["TOC",["matalg","alt/A7/gap0/2A7G1-Ar4aB0.g",[-92207492]]], ["TOC",["matalg","alt/A7/gap0/2A7G1-Ar4bB0.g",[-32729037]]], ["TOC",["matalg","alt/A7/gap0/3A7G1-Ar15aB0.g",[96656692]]], ["TOC",["matalg","alt/A7/gap0/3A7G1-Ar15bB0.g",[-107010826]]], ["TOC",["matalg","alt/A7/gap0/3A7G1-Ar21aB0.g",[-83149149]]], ["TOC",["matalg","alt/A7/gap0/3A7G1-Ar21bB0.g",[-51578621]]], ["TOC",["matalg","alt/A7/gap0/3A7G1-Ar6B0.g",[-33810209]]], ["TOC",["matint","alt/A7/gap0/A7G1-Zr14aB0.g",[24892537]]], ["TOC",["matint","alt/A7/gap0/A7G1-Zr14bB0.g",[-22139103]]], ["TOC",["matint","alt/A7/gap0/A7G1-Zr15B0.g",[-112180996]]], ["TOC",["matint","alt/A7/gap0/A7G1-Zr20B0.g",[-28988261]]], ["TOC",["matint","alt/A7/gap0/A7G1-Zr21B0.g",[-29742041]]], ["TOC",["matint","alt/A7/gap0/A7G1-Zr35B0.g",[22518441]]], ["TOC",["matint","alt/A7/gap0/A7G1-Zr6B0.g",[48360344]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f25r14aB0.m",[-31393230,46387995]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f25r14bB0.m",[54681285,9308579]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f25r4aB0.m",[-72664095,-38260269]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f25r4bB0.m",[-72664095,14497210]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f3r12B0.m",[-51516234,122247886]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f3r36B0.m",[-85449470,81866542]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f3r8B0.m",[115125557,-39989792]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f5r20aB0.m",[-94735395,75374541]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f5r20bB0.m",[-106463668,-19719920]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f5r28B0.m",[106917999,91869630]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f5r8B0.m",[-30079117,-64273702]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f7r14aB0.m",[-59913607,-114720184]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f7r14bB0.m",[98740750,32016585]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f7r16B0.m",[75299246,-132793868]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f7r20B0.m",[-47034929,87271692]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f7r4B0.m",[-72947581,-67923820]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f9r4aB0.m",[116086381,-66800019]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f9r4bB0.m",[116086381,-100788072]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f9r6aB0.m",[-48413873,-43569541]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f9r6bB0.m",[-8353157,96784847]]], ["TOC",["perm","alt/A7/mtx/2A7G1-p240B0.m",[-3292094,-27737806]]], ["TOC",["matff","alt/A7/mtx/2S7G1-f49r16aB0.m",[22960962,-41454301]]], ["TOC",["matff","alt/A7/mtx/2S7G1-f49r20aB0.m",[-54171207,-27657892]]], ["TOC",["matff","alt/A7/mtx/2S7G1-f49r4aB0.m",[-15044674,-73437953]]], ["TOC",["matff","alt/A7/mtx/2S7G1-f7r28B0.m",[-67980920,-35536298]]], ["TOC",["matff","alt/A7/mtx/2S7G1-f7r32B0.m",[-60511241,106583422]]], ["TOC",["matff","alt/A7/mtx/2S7G1-f7r40B0.m",[-44545978,16262383]]], ["TOC",["matff","alt/A7/mtx/2S7G1-f7r8B0.m",[-53522252,18330038]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f25r20aB0.m",[33577121,-84897365]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f3r12B0.m",[-3646128,-101443637]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f3r36aB0.m",[75934216,13394983]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f3r8B0.m",[49999329,107284394]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f5r20B0.m",[-49647592,55460638]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f5r28B0.m",[-16367108,-67711016]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f5r40B0.m",[60330914,-73388851]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f5r8B0.m",[-41209421,-94422757]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f7r16aB0.m",[-66493890,43278977]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f7r20aB0.m",[-110432753,-19780159]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f7r28B0.m",[-50217382,32343475]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f7r4aB0.m",[-128946870,-89499747]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f25r15aB0.m",[-87407590,46689140]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f25r15bB0.m",[62478524,-57683497]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f25r18B0.m",[-87517950,-119078156]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f25r21B0.m",[116472,-74374020]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f25r3B0.m",[30211216,101026231]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f25r6B0.m",[57090120,-35828918]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f2r12B0.m",[-53202595,30729675]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f2r30B0.m",[90337719,-90141803]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f2r48aB0.m",[75326183,-33290497]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f2r48bB0.m",[-67009732,-70678928]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f4r15B0.m",[-24520496,86249362]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f4r24aB0.m",[-51291230,34490550]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f4r24bB0.m",[-101760030,-13124942]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f4r6B0.m",[81090800,-50669809]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f5r12B0.m",[-104662262,69216411]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f5r30aB0.m",[121631521,110288714]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f5r30bB0.m",[19349938,123165985]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f5r36B0.m",[-40143423,7979341]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f5r42B0.m",[-77405396,54456798]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f5r6B0.m",[75634132,74423159]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f7r15B0.m",[64305697,-124550272]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f7r21aB0.m",[6811668,-29096036]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f7r21bB0.m",[-57960020,2288264]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f7r6B0.m",[-91983465,62064904]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f7r9B0.m",[98614202,94446836]]], ["TOC",["perm","alt/A7/mtx/3A7G1-p315B0.m",[-134162246,-86486884]]], ["TOC",["perm","alt/A7/mtx/3A7G1-p45aB0.m",[109537525,96508581]]], ["TOC",["perm","alt/A7/mtx/3A7G1-p45bB0.m",[-114892068,76407987]]], ["TOC",["perm","alt/A7/mtx/3A7G1-p63B0.m",[129538451,-52215497]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f2r12B0.m",[26970840,-9365810]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f2r30B0.m",[36334749,-43735233]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f2r96B0.m",[-34473643,57899234]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f5r12B0.m",[43656458,14004214]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f5r30aB0.m",[-121607974,-20499580]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f5r30bB0.m",[-13003126,-28767831]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f5r36B0.m",[-47119799,109713215]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f5r42B0.m",[-25680175,62700243]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f5r6B0.m",[-66460916,-115373300]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f7r12B0.m",[8273416,-83410363]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f7r18B0.m",[88355389,71668127]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f7r30B0.m",[110311840,-13780991]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f7r42aB0.m",[71229562,-110145426]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f7r42bB0.m",[98955354,114297898]]], ["TOC",["perm","alt/A7/mtx/3S7G1-p63B0.m",[31377868,111851509]]], ["TOC",["perm","alt/A7/mtx/3S7G1-p90B0.m",[-107847473,2297321]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f25r12B0.m",[-36169651,-100389795]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f25r24B0.m",[-19086814,-55349400]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f25r6aB0.m",[100353712,-121631318]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f25r6bB0.m",[-58835053,85206624]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f5r12aB0.m",[74207849,63560487]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f5r12bB0.m",[125659785,-53997618]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f5r24B0.m",[80969030,37253661]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f5r48B0.m",[42213017,109752579]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f7r24B0.m",[-102605978,106048389]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f7r6aB0.m",[96246682,39543939]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f7r6bB0.m",[34691837,-20531271]]], ["TOC",["perm","alt/A7/mtx/6A7G1-p720B0.m",[131742494,-73083657]]], ["TOC",["matff","alt/A7/mtx/6S7G1-f7r12B0.m",[-44861699,25585244]]], ["TOC",["matff","alt/A7/mtx/6S7G1-f7r48B0.m",[109965908,-114636847]]], ["TOC",["matff","alt/A7/mtx/A7G1-f25r10aB0.m",[98832882,52957486]]], ["TOC",["matff","alt/A7/mtx/A7G1-f25r10bB0.m",[-62846906,86891132]]], ["TOC",["matff","alt/A7/mtx/A7G1-f2r14B0.m",[88404425,-132995512]]], ["TOC",["matff","alt/A7/mtx/A7G1-f2r20B0.m",[-59840360,43050535]]], ["TOC",["matff","alt/A7/mtx/A7G1-f2r4aB0.m",[-75334780,133359621]]], ["TOC",["matff","alt/A7/mtx/A7G1-f2r4bB0.m",[-75334780,110723042]]], ["TOC",["matff","alt/A7/mtx/A7G1-f2r6B0.m",[-96431038,-96670665]]], ["TOC",["matff","alt/A7/mtx/A7G1-f3r13B0.m",[-1113830,116073952]]], ["TOC",["matff","alt/A7/mtx/A7G1-f3r15B0.m",[-121714200,40692474]]], ["TOC",["matff","alt/A7/mtx/A7G1-f3r20B0.m",[-132035023,-82990016]]], ["TOC",["matff","alt/A7/mtx/A7G1-f3r6B0.m",[-56494866,89026618]]], ["TOC",["matff","alt/A7/mtx/A7G1-f5r13B0.m",[-119963451,-120598875]]], ["TOC",["matff","alt/A7/mtx/A7G1-f5r15B0.m",[116088850,86554021]]], ["TOC",["matff","alt/A7/mtx/A7G1-f5r20B0.m",[-129342836,-87512862]]], ["TOC",["matff","alt/A7/mtx/A7G1-f5r35B0.m",[-74142229,31639714]]], ["TOC",["matff","alt/A7/mtx/A7G1-f5r6B0.m",[62597910,133847596]]], ["TOC",["matff","alt/A7/mtx/A7G1-f5r8B0.m",[-67278705,117637163]]], ["TOC",["matff","alt/A7/mtx/A7G1-f7r10B0.m",[-39370106,-111817133]]], ["TOC",["matff","alt/A7/mtx/A7G1-f7r14aB0.m",[77736448,5408238]]], ["TOC",["matff","alt/A7/mtx/A7G1-f7r14bB0.m",[51566638,59386993]]], ["TOC",["matff","alt/A7/mtx/A7G1-f7r21B0.m",[44369962,-60628903]]], ["TOC",["matff","alt/A7/mtx/A7G1-f7r35B0.m",[73079771,77988626]]], ["TOC",["matff","alt/A7/mtx/A7G1-f7r5B0.m",[81664664,66608321]]], ["TOC",["matff","alt/A7/mtx/A7G1-f9r10aB0.m",[-2625794,89301035]]], ["TOC",["matff","alt/A7/mtx/A7G1-f9r10bB0.m",[62947657,130497263]]], ["TOC",["perm","alt/A7/mtx/A7G1-p7B0.m",[45602091,-40128812]]], ["TOC",["matff","alt/A7/mtx/S7G1-f2r14B0.m",[65384245,74515664]]], ["TOC",["matff","alt/A7/mtx/S7G1-f2r20B0.m",[119920235,-124672320]]], ["TOC",["matff","alt/A7/mtx/S7G1-f2r6B0.m",[-22260173,-133387572]]], ["TOC",["matff","alt/A7/mtx/S7G1-f2r8B0.m",[-115100505,62527455]]], ["TOC",["matff","alt/A7/mtx/S7G1-f3r13aB0.m",[71390686,-62222796]]], ["TOC",["matff","alt/A7/mtx/S7G1-f3r15aB0.m",[-127891226,40566345]]], ["TOC",["matff","alt/A7/mtx/S7G1-f3r20B0.m",[-21513772,-52594721]]], ["TOC",["matff","alt/A7/mtx/S7G1-f3r6aB0.m",[-117937890,-131742766]]], ["TOC",["matff","alt/A7/mtx/S7G1-f5r13aB0.m",[59726521,-39695657]]], ["TOC",["matff","alt/A7/mtx/S7G1-f5r15aB0.m",[-104102442,129350008]]], ["TOC",["matff","alt/A7/mtx/S7G1-f5r20B0.m",[88841578,-3367921]]], ["TOC",["matff","alt/A7/mtx/S7G1-f5r35aB0.m",[-121898027,-26417368]]], ["TOC",["matff","alt/A7/mtx/S7G1-f5r6aB0.m",[-128822608,73110986]]], ["TOC",["matff","alt/A7/mtx/S7G1-f5r8aB0.m",[-116058506,105279481]]], ["TOC",["matff","alt/A7/mtx/S7G1-f7r10aB0.m",[-68463391,-40306517]]], ["TOC",["matff","alt/A7/mtx/S7G1-f7r14aB0.m",[46054514,-125849128]]], ["TOC",["matff","alt/A7/mtx/S7G1-f7r14bB0.m",[23987557,13911761]]], ["TOC",["matff","alt/A7/mtx/S7G1-f7r21aB0.m",[35754486,-86587203]]], ["TOC",["matff","alt/A7/mtx/S7G1-f7r35aB0.m",[70139229,-63087248]]], ["TOC",["matff","alt/A7/mtx/S7G1-f7r5aB0.m",[-86252045,-31938807]]], ["TOC",["perm","alt/A7/mtx/S7G1-p120B0.m",[92158314,118472449]]], ["TOC",["perm","alt/A7/mtx/S7G1-p21B0.m",[-121904583,105902254]]], ["TOC",["perm","alt/A7/mtx/S7G1-p30B0.m",[53165691,-63950219]]], ["TOC",["perm","alt/A7/mtx/S7G1-p35B0.m",[-68600957,-72406246]]], ["TOC",["perm","alt/A7/mtx/S7G1-p7B0.m",[-124593203,67443889]]], ["TOC",["check","alt/A7/words/A7G1-check1",[-63044540]]], ["TOC",["maxes","alt/A7/words/A7G1-max1W1",[70334159]]], ["TOC",["maxes","alt/A7/words/A7G1-max2W1",[-99809336]]], ["TOC",["maxes","alt/A7/words/S7G1-max1W1",[-14717004]]], ["TOC",["maxes","alt/A7/words/S7G1-max2W1",[19547313]]], ["TOC",["maxes","alt/A7/words/S7G1-max3W1",[98162325]]], ["TOC",["maxes","alt/A7/words/S7G1-max4W1",[-81647236]]], ["TOC",["maxes","alt/A7/words/S7G1-max5W1",[111003326]]], ["TOC",["matmodn","alt/A8/gap0/2A8G1-Z4r4aB0.g",[-25748035]]], ["TOC",["matint","alt/A8/gap0/2A8G1-Zr8B0.g",[-127813824]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr14B0.g",[6569637]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr20B0.g",[119136527]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr21aB0.g",[-35592612]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr28B0.g",[-20315578]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr35B0.g",[66933826]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr42B0.g",[-132523549]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr56B0.g",[-119222824]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr64B0.g",[-109047313]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr70B0.g",[-74724874]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr7B0.g",[44944099]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr90B0.g",[34617594]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f25r24aB0.m",[-86181411,71073867]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f25r24bB0.m",[120078495,26625097]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f25r32aB0.m",[1555143,4015084]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f25r32bB0.m",[133809283,133818942]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f3r48aB0.m",[-18748067,-87137760]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f3r48bB0.m",[-51957761,4460697]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f3r8B0.m",[110104467,103157578]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f49r56cB0.m",[36895777,31221483]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f49r56dB0.m",[11478413,58925510]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f5r48aB0.m",[-41187856,-68860196]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f5r48bB0.m",[-71781049,11730666]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f5r64B0.m",[46702969,55553521]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f5r8B0.m",[-13016887,68445041]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f7r112B0.m",[-10708772,86832890]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f7r16B0.m",[-35990194,-13511402]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f7r48B0.m",[55558781,17701250]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f7r56aB0.m",[123021175,34024872]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f7r56bB0.m",[-944491,-5197282]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f7r8B0.m",[-94094131,120686910]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f9r24aB0.m",[-58804603,44796249]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f9r24bB0.m",[-27097110,-15444090]]], ["TOC",["perm","alt/A8/mtx/2A8G1-p240aB0.m",[-96287219,100052245]]], ["TOC",["perm","alt/A8/mtx/2A8G1-p240bB0.m",[-102533315,44761083]]], ["TOC",["perm","alt/A8/mtx/2A8G1-p240cB0.m",[-98336336,26503074]]], ["TOC",["matff","alt/A8/mtx/A8G1-f2r14B0.m",[64744832,-32768114]]], ["TOC",["matff","alt/A8/mtx/A8G1-f2r20aB0.m",[87872891,48406533]]], ["TOC",["matff","alt/A8/mtx/A8G1-f2r20bB0.m",[127589419,-3907050]]], ["TOC",["matff","alt/A8/mtx/A8G1-f2r4aB0.m",[-75334780,-96547203]]], ["TOC",["matff","alt/A8/mtx/A8G1-f2r4bB0.m",[-75334780,-66578106]]], ["TOC",["matff","alt/A8/mtx/A8G1-f2r64B0.m",[86715581,-47507203]]], ["TOC",["matff","alt/A8/mtx/A8G1-f2r6B0.m",[-99095227,-29863203]]], ["TOC",["perm","alt/A8/mtx/A8G1-p15aB0.m",[41717428,-65350234]]], ["TOC",["perm","alt/A8/mtx/A8G1-p15bB0.m",[33188186,73649104]]], ["TOC",["perm","alt/A8/mtx/A8G1-p8B0.m",[-4527126,-126533380]]], ["TOC",["matff","alt/A8/mtx/S8G1-f2r14B0.m",[-123417179,-87483402]]], ["TOC",["matff","alt/A8/mtx/S8G1-f2r40B0.m",[48676847,4116683]]], ["TOC",["matff","alt/A8/mtx/S8G1-f2r64B0.m",[51117359,-72788269]]], ["TOC",["matff","alt/A8/mtx/S8G1-f2r6B0.m",[-22260173,-22867308]]], ["TOC",["matff","alt/A8/mtx/S8G1-f2r8B0.m",[84946852,-9458717]]], ["TOC",["perm","alt/A8/mtx/S8G1-p8B0.m",[123141729,85477392]]], ["TOC",["check","alt/A8/words/A8G1-check1",[39317844]]], ["TOC",["matalg","alt/A9/gap0/2A9G1-Ar8aB0.g",[-112500735]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr105B0.g",[-75292765]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr120B0.g",[33650659]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr162B0.g",[11215876]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr168B0.g",[-43654782]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr189B0.g",[-7898273]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr216B0.g",[-36845553]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr27B0.g",[-114160116]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr28B0.g",[-116816341]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr35aB0.g",[19143040]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr35bB0.g",[-127084087]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr42B0.g",[90871834]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr48B0.g",[94101296]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr56B0.g",[-105813169]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr84B0.g",[-106644844]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr8B0.g",[-113036087]]], ["TOC",["matff","alt/A9/mtx/2A9G1-f3r104B0.m",[44601680,708409]]], ["TOC",["matff","alt/A9/mtx/2A9G1-f3r48B0.m",[132400672,-55146633]]], ["TOC",["matff","alt/A9/mtx/2A9G1-f3r8B0.m",[-104094197,-8981692]]], ["TOC",["matff","alt/A9/mtx/2A9G1-f5r8aB0.m",[-72343023,-34091804]]], ["TOC",["matff","alt/A9/mtx/2A9G1-f5r8bB0.m",[-72343023,-36383995]]], ["TOC",["matff","alt/A9/mtx/2A9G1-f7r8aB0.m",[-93937177,119155111]]], ["TOC",["matff","alt/A9/mtx/2A9G1-f7r8bB0.m",[-93937177,63478918]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r160B0.m",[-113196594,126317842]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r20aB0.m",[-116012097,86559057]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r20bB0.m",[11313813,86297175]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r26B0.m",[-43555360,-29522564]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r48B0.m",[111876087,125026724]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r78B0.m",[93158443,111098730]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r8aB0.m",[76766072,112609927]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r8bB0.m",[102232623,14154429]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r8cB0.m",[102232623,95743374]]], ["TOC",["matff","alt/A9/mtx/A9G1-f3r162B0.m",[-82012771,117328868]]], ["TOC",["matff","alt/A9/mtx/A9G1-f3r189B0.m",[-100089248,-55976864]]], ["TOC",["matff","alt/A9/mtx/A9G1-f3r21B0.m",[97833906,-124795722]]], ["TOC",["matff","alt/A9/mtx/A9G1-f3r27B0.m",[53360387,-110179385]]], ["TOC",["matff","alt/A9/mtx/A9G1-f3r35B0.m",[-75914486,12943712]]], ["TOC",["matff","alt/A9/mtx/A9G1-f3r41B0.m",[113272071,-72099926]]], ["TOC",["matff","alt/A9/mtx/A9G1-f3r7B0.m",[-46888880,122989205]]], ["TOC",["matff","alt/A9/mtx/A9G1-f49r21aB0.m",[-57219481,58294530]]], ["TOC",["matff","alt/A9/mtx/A9G1-f49r21bB0.m",[113250307,-86761156]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r105B0.m",[42461781,58200084]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r120B0.m",[-119279049,47174249]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r133B0.m",[-18727663,16676412]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r134B0.m",[122853650,17410189]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r21B0.m",[-108469338,-14430805]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r27B0.m",[-60285001,52677281]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r28B0.m",[12673978,-10559459]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r34B0.m",[43023049,-34704766]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r35aB0.m",[-76520532,-97440845]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r35bB0.m",[-62633215,-123969685]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r56B0.m",[8891258,56683786]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r83B0.m",[-27507312,-27462102]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r8B0.m",[61715009,-104290189]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r101B0.m",[83654551,65363130]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r105B0.m",[118513256,80794670]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r115B0.m",[75626264,4993916]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r168B0.m",[94115553,-109033653]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r189B0.m",[126789110,111104490]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r19B0.m",[-37669067,-88156896]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r28B0.m",[-48096103,-37393314]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r35aB0.m",[-103551900,-102253729]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r35bB0.m",[-131920737,-22272726]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r42B0.m",[-91817450,-81644783]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r47B0.m",[120025081,-6775808]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r56B0.m",[-267432,3717887]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r84B0.m",[-56264078,58337040]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r8B0.m",[-45341592,39241079]]], ["TOC",["perm","alt/A9/mtx/A9G1-p120aB0.m",[123417366,12990255]]], ["TOC",["perm","alt/A9/mtx/A9G1-p120bB0.m",[-54926084,-114205725]]], ["TOC",["perm","alt/A9/mtx/A9G1-p126B0.m",[19487375,-73084215]]], ["TOC",["perm","alt/A9/mtx/A9G1-p280B0.m",[110225478,-24356222]]], ["TOC",["perm","alt/A9/mtx/A9G1-p36B0.m",[-32785314,-70178370]]], ["TOC",["perm","alt/A9/mtx/A9G1-p840B0.m",[118760487,43929662]]], ["TOC",["perm","alt/A9/mtx/A9G1-p84B0.m",[51265106,-49500979]]], ["TOC",["perm","alt/A9/mtx/A9G1-p9B0.m",[116601334,-62323096]]], ["TOC",["perm","alt/A9/mtx/S9G1-p9B0.m",[122091756,24861253]]], ["TOC",["check","alt/A9/words/A9G1-check1",[66671310]]], ["TOC",["matint","clas/O10m2/gap0/O10m2G1-Zr154B0.g",[-57005457]]], ["TOC",["matint","clas/O10m2/gap0/O10m2G1-Zr187B0.g",[-100202868]]], ["TOC",["matff","clas/O10m2/mtx/O10m2G1-f2r100B0.m",[92769221,-44362353]]], ["TOC",["matff","clas/O10m2/mtx/O10m2G1-f2r10B0.m",[-91875246,-117747323]]], ["TOC",["matff","clas/O10m2/mtx/O10m2G1-f2r164B0.m",[18230970,48739712]]], ["TOC",["matff","clas/O10m2/mtx/O10m2G1-f2r44B0.m",[-36564213,114587901]]], ["TOC",["matff","clas/O10m2/mtx/O10m2G1-f2r670B0.m",[61340105,69740282]]], ["TOC",["matff","clas/O10m2/mtx/O10m2G1-f4r16aB0.m",[61178056,-5229430]]], ["TOC",["matff","clas/O10m2/mtx/O10m2G1-f4r16bB0.m",[128197535,31596352]]], ["TOC",["perm","clas/O10m2/mtx/O10m2G1-p495B0.m",[-28308088,-22761395]]], ["TOC",["perm","clas/O10m2/mtx/O10m2G1-p528B0.m",[70479596,-62621089]]], ["TOC",["matff","clas/O10m2/mtx/O10m2d2G1-f2r100B0.m",[100488452,-14739345]]], ["TOC",["matff","clas/O10m2/mtx/O10m2d2G1-f2r10B0.m",[-2306716,-13453481]]], ["TOC",["matff","clas/O10m2/mtx/O10m2d2G1-f2r164B0.m",[-75666222,-60099061]]], ["TOC",["matff","clas/O10m2/mtx/O10m2d2G1-f2r32B0.m",[32911303,-129767206]]], ["TOC",["matff","clas/O10m2/mtx/O10m2d2G1-f2r44B0.m",[-104143658,103914544]]], ["TOC",["matff","clas/O10m2/mtx/O10m2d2G1-f2r670B0.m",[-126418327,88563704]]], ["TOC",["perm","clas/O10m2/mtx/O10m2d2G1-p104448B0.m",[50997897,113123073]]], ["TOC",["perm","clas/O10m2/mtx/O10m2d2G1-p495B0.m",[82167210,-72434757]]], ["TOC",["perm","clas/O10m2/mtx/O10m2d2G1-p528B0.m",[-117006734,-28217316]]], ["TOC",["matint","clas/O10p2/gap0/O10p2G1-Zr155B0.g",[97641513]]], ["TOC",["matint","clas/O10p2/gap0/O10p2G1-Zr186B0.g",[-108863655]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r100B0.m",[-30089365,57879096]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r10B0.m",[1103290,23925280]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r144aB0.m",[110645650,29636318]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r144bB0.m",[-30221860,44280011]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r164B0.m",[-22042842,30232047]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r16aB0.m",[-120091825,-123583018]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r16bB0.m",[-12069847,-35735047]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r320B0.m",[75333417,129740052]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r416aB0.m",[-108205687,102236385]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r416bB0.m",[101254524,51323514]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r44B0.m",[110527978,-100120992]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r670B0.m",[-130973724,2357046]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f3r155B0.m",[17052865,-30642849]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f3r185B0.m",[108681429,77852925]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f3r868B0.m",[-18367210,-8755148]]], ["TOC",["perm","clas/O10p2/mtx/O10p2G1-p19840B0.m",[-55658699,-102645640]]], ["TOC",["perm","clas/O10p2/mtx/O10p2G1-p2295aB0.m",[38660726,-113571137]]], ["TOC",["perm","clas/O10p2/mtx/O10p2G1-p2295bB0.m",[-48288307,-4515067]]], ["TOC",["perm","clas/O10p2/mtx/O10p2G1-p23715B0.m",[-19740974,108222650]]], ["TOC",["perm","clas/O10p2/mtx/O10p2G1-p39680B0.m",[-6853718,-83381012]]], ["TOC",["perm","clas/O10p2/mtx/O10p2G1-p496B0.m",[44844370,37744812]]], ["TOC",["perm","clas/O10p2/mtx/O10p2G1-p527B0.m",[-115724540,71638127]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r100B0.m",[-11949612,133828120]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r10B0.m",[98286660,84434027]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r164B0.m",[-83317851,-96030590]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r288B0.m",[-33354065,41077158]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r320B0.m",[-105116064,-3698751]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r32B0.m",[-30928128,-93439691]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r44B0.m",[104439943,58205560]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r670B0.m",[74131930,11768729]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r832B0.m",[-29701783,115777543]]], ["TOC",["perm","clas/O10p2/mtx/O10p2d2G1-p4590B0.m",[-109285430,6021856]]], ["TOC",["perm","clas/O10p2/mtx/O10p2d2G1-p496B0.m",[126131529,-42810830]]], ["TOC",["perm","clas/O10p2/mtx/O10p2d2G1-p527B0.m",[109880158,41785888]]], ["TOC",["out","clas/O10p2/words/O10p2G1-aW1",[-14956717]]], ["TOC",["maxes","clas/O10p2/words/O10p2G1-max1W1",[-101864758]]], ["TOC",["maxes","clas/O10p2/words/O10p2G1-max2W1",[-92187776]]], ["TOC",["maxes","clas/O10p2/words/O10p2G1-max3W1",[38781566]]], ["TOC",["maxes","clas/O10p2/words/O10p2G1-max4W1",[35823876]]], ["TOC",["pres","clas/O10p2/words/O10p2d2G1-P1",[-125096160]]], ["TOC",["matint","clas/O73/gap0/O73G1-Zr105B0.g",[-101644473]]], ["TOC",["matint","clas/O73/gap0/O73G1-Zr168B0.g",[66310041]]], ["TOC",["matint","clas/O73/gap0/O73G1-Zr182B0.g",[25658348]]], ["TOC",["matint","clas/O73/gap0/O73G1-Zr195B0.g",[131461461]]], ["TOC",["matint","clas/O73/gap0/O73G1-Zr78B0.g",[-90841402]]], ["TOC",["matint","clas/O73/gap0/O73G1-Zr91B0.g",[-89128615]]], ["TOC",["matff","clas/O73/mtx/2O73G1-f3r8B0.m",[127365476,25520583]]], ["TOC",["perm","clas/O73/mtx/2O73G1-p2160B0.m",[-52076683,-20333004]]], ["TOC",["matff","clas/O73/mtx/3O73G1-f4r27aB0.m",[-46449646,-117029484]]], ["TOC",["matff","clas/O73/mtx/3O73d2G1-f2r54B0.m",[-90690899,22318719]]], ["TOC",["matff","clas/O73/mtx/O73G1-f13r78B0.m",[-59693717,-91113521]]], ["TOC",["matff","clas/O73/mtx/O73G1-f2r104B0.m",[-89855475,46063845]]], ["TOC",["matff","clas/O73/mtx/O73G1-f2r260aB0.m",[-99269314,702557]]], ["TOC",["matff","clas/O73/mtx/O73G1-f2r260bB0.m",[-99269314,-47011243]]], ["TOC",["matff","clas/O73/mtx/O73G1-f2r78B0.m",[6999211,89780880]]], ["TOC",["matff","clas/O73/mtx/O73G1-f2r90B0.m",[-23762673,39638601]]], ["TOC",["matff","clas/O73/mtx/O73G1-f3r189aB0.m",[32603443,35965043]]], ["TOC",["matff","clas/O73/mtx/O73G1-f3r21B0.m",[82240744,21396837]]], ["TOC",["matff","clas/O73/mtx/O73G1-f3r27B0.m",[-47629963,-128106566]]], ["TOC",["matff","clas/O73/mtx/O73G1-f3r309B0.m",[82194057,63427926]]], ["TOC",["matff","clas/O73/mtx/O73G1-f3r35B0.m",[23866511,-48444403]]], ["TOC",["matff","clas/O73/mtx/O73G1-f3r63B0.m",[99738307,-113235112]]], ["TOC",["matff","clas/O73/mtx/O73G1-f3r7B0.m",[-73121160,-21443771]]], ["TOC",["matff","clas/O73/mtx/O73G1-f5r78B0.m",[51985420,113524193]]], ["TOC",["matff","clas/O73/mtx/O73G1-f7r78B0.m",[-46420014,-13996426]]], ["TOC",["perm","clas/O73/mtx/O73G1-p1080aB0.m",[-42599020,-36616958]]], ["TOC",["perm","clas/O73/mtx/O73G1-p1080bB0.m",[132529762,60964145]]], ["TOC",["perm","clas/O73/mtx/O73G1-p1120B0.m",[126618791,36524551]]], ["TOC",["perm","clas/O73/mtx/O73G1-p351B0.m",[82717158,59833498]]], ["TOC",["perm","clas/O73/mtx/O73G1-p3640B0.m",[-110156981,121387707]]], ["TOC",["perm","clas/O73/mtx/O73G1-p364B0.m",[44293817,98554937]]], ["TOC",["perm","clas/O73/mtx/O73G1-p378B0.m",[87776874,53481543]]], ["TOC",["matff","clas/O73/mtx/O73d2G1-f2r78B0.m",[-54160091,89711834]]], ["TOC",["matff","clas/O73/mtx/O73d2G1-f3r7B0.m",[-40632628,119474507]]], ["TOC",["perm","clas/O73/mtx/O73d2G1-p351B0.m",[-10725195,127224107]]], ["TOC",["matint","clas/O8m2/gap0/O8m2G1-Zr204aB0.g",[-545048]]], ["TOC",["matint","clas/O8m2/gap0/O8m2G1-Zr204bB0.g",[90706063]]], ["TOC",["matint","clas/O8m2/gap0/O8m2G1-Zr34B0.g",[12291934]]], ["TOC",["matint","clas/O8m2/gap0/O8m2G1-Zr51B0.g",[114705452]]], ["TOC",["matint","clas/O8m2/gap0/O8m2G1-Zr84B0.g",[-49115406]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f17r34B0.m",[-122498723,-76593032]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f17r51B0.m",[-19701269,38579551]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f17r83B0.m",[70197507,91520986]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f2r26B0.m",[67804363,-130270035]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f2r48B0.m",[-14063248,4273112]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f2r8B0.m",[-87980185,127418639]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f3r34B0.m",[-29666937,92656759]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f3r50B0.m",[-15689624,-98254103]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f4r48bB0.m",[-80990745,-24164226]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f4r48cB0.m",[97513962,82777957]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f4r8bB0.m",[-13058890,-119239206]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f4r8cB0.m",[70013215,-12653524]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f5r34B0.m",[15034639,90818541]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f5r51B0.m",[125362755,88918352]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f5r84B0.m",[-111056563,24817596]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f7r33B0.m",[44085251,37064396]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f7r51B0.m",[87717115,-65218449]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f7r84B0.m",[-58834030,96414922]]], ["TOC",["perm","clas/O8m2/mtx/O8m2G1-p1071B0.m",[133774932,-90078008]]], ["TOC",["perm","clas/O8m2/mtx/O8m2G1-p119B0.m",[-24365065,-85295695]]], ["TOC",["perm","clas/O8m2/mtx/O8m2G1-p136B0.m",[-84196655,23106023]]], ["TOC",["perm","clas/O8m2/mtx/O8m2G1-p1632B0.m",[-99000947,-108986222]]], ["TOC",["perm","clas/O8m2/mtx/O8m2G1-p24192B0.m",[-126775412,28682284]]], ["TOC",["perm","clas/O8m2/mtx/O8m2G1-p45696B0.m",[130548056,-93532377]]], ["TOC",["perm","clas/O8m2/mtx/O8m2G1-p765B0.m",[81333754,-50808634]]], ["TOC",["matff","clas/O8m2/mtx/O8m2d2G1-f2r8B0.m",[46258515,-78987090]]], ["TOC",["matff","clas/O8m2/mtx/O8m2d2G1-f3r34B0.m",[-120358158,-35720310]]], ["TOC",["matff","clas/O8m2/mtx/O8m2d2G1-f3r50B0.m",[-81409905,-77731908]]], ["TOC",["perm","clas/O8m2/mtx/O8m2d2G1-p119B0.m",[-6041009,115888367]]], ["TOC",["cyclic","clas/O8m2/words/O8m2G1-cycW1",[75038654]]], ["TOC",["cyc2ccl","clas/O8m2/words/O8m2G1cycW1-cclsW1",[-130617321]]], ["TOC",["cyclic","clas/O8m2/words/O8m2d2G1-cycW1",[84687561]]], ["TOC",["cyc2ccl","clas/O8m2/words/O8m2d2G1cycW1-cclsW1",[112814052]]], ["TOC",["matint","clas/O8m3/gap0/O8m3G1-Zr246B0.g",[-58311842]]], ["TOC",["matff","clas/O8m3/mtx/2O8m3G1-f3r16B0.m",[-47700701,134124282]]], ["TOC",["matff","clas/O8m3/mtx/2O8m3G1-f9r8aB0.m",[-98620704,-118542521]]], ["TOC",["matff","clas/O8m3/mtx/2O8m3G1-f9r8bB0.m",[4224939,-14594253]]], ["TOC",["matff","clas/O8m3/mtx/2O8m3d2aG1-f3r16B0.m",[-51454663,-42616726]]], ["TOC",["matff","clas/O8m3/mtx/O8m3D8G1-f3r8B0.m",[119493405,9420304]]], ["TOC",["matff","clas/O8m3/mtx/O8m3G1-f3r8B0.m",[-35438651,20098849]]], ["TOC",["perm","clas/O8m3/mtx/O8m3G1-p1066B0.m",[-37177084,99457625]]], ["TOC",["matff","clas/O8m3/mtx/O8m3V4G1-f3r16B0.m",[-21513338,-61914400]]], ["TOC",["perm","clas/O8m3/mtx/O8m3V4G1-p1066B0.m",[-125437571,-83299227]]], ["TOC",["matff","clas/O8m3/mtx/O8m3d2aG1-f3r8B0.m",[30174304,84036930]]], ["TOC",["perm","clas/O8m3/mtx/O8m3d2aG1-p1066B0.m",[101936687,-112453392]]], ["TOC",["matff","clas/O8m3/mtx/O8m3d2cG1-f3r8aB0.m",[16162087,-12619273]]], ["TOC",["perm","clas/O8m3/mtx/O8m3d2cG1-p1066B0.m",[50468861,-130105713]]], ["TOC",["perm","clas/O8m3/mtx/O8m3d2cG2-p1066B0.m",[42767122,-112906276]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr175B0.g",[98193599]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr210B0.g",[107071400]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr210aB0.g",[-77879394]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr210bB0.g",[-61543489]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr210cB0.g",[-67812962]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr28B0.g",[-80118051]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr35aB0.g",[-26379578]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr35bB0.g",[-117206642]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr35cB0.g",[123375245]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr50B0.g",[130935801]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr84aB0.g",[62823799]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr84bB0.g",[-90117537]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr84cB0.g",[-34245370]]], ["TOC",["pres","clas/O8p2/words/O8p2d2G1-P1",[115334752]]], ["TOC",["matff","clas/O8p3/mtx/2O8p3G1-f3r104B0.m",[112739598,125768182]]], ["TOC",["matff","clas/O8p3/mtx/2O8p3G1-f3r224aB0.m",[53015969,-35489900]]], ["TOC",["matff","clas/O8p3/mtx/2O8p3G1-f3r224bB0.m",[-46687382,107828721]]], ["TOC",["matff","clas/O8p3/mtx/2O8p3G1-f3r384B0.m",[-87738697,93596151]]], ["TOC",["matff","clas/O8p3/mtx/2O8p3G1-f3r56B0.m",[34510739,42120628]]], ["TOC",["matff","clas/O8p3/mtx/2O8p3G1-f3r8B0.m",[126054580,-51595733]]], ["TOC",["perm","clas/O8p3/mtx/2O8p3G1-p2160aB0.m",[104589607,120500317]]], ["TOC",["perm","clas/O8p3/mtx/2O8p3G1-p2160bB0.m",[-59887176,-111333114]]], ["TOC",["perm","clas/O8p3/mtx/2O8p3G1-p2240B0.m",[-29160158,-93829527]]], ["TOC",["matff","clas/O8p3/mtx/4O8p3S4G2-f3r24B0.m",[-37088614,-5932360]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f13r300B0.m",[-110252186,49072647]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f2r298B0.m",[-80048270,12965683]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r195B0.m",[-81944772,-115100921]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r28B0.m",[-38352800,-50831561]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r322B0.m",[-110644111,-106498308]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r35aB0.m",[-12113194,-122443902]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r35bB0.m",[-38499650,86939687]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r35cB0.m",[-49437023,-57407446]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r518aB0.m",[90564527,13554317]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r518bB0.m",[24959864,-28716903]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r518cB0.m",[-90638633,-117911955]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r567aB0.m",[86810431,652709]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r567bB0.m",[-18854913,10740889]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r567cB0.m",[-72848256,116897648]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f5r300B0.m",[-96518534,58939546]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f7r299B0.m",[49912950,109610342]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1080aB0.m",[76405715,119208768]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1080bB0.m",[-68159021,33166699]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1080cB0.m",[17260632,51712891]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1080dB0.m",[-125607236,-30759303]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1080eB0.m",[74691432,-55283348]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1080fB0.m",[54228347,106065431]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1120aB0.m",[52313105,-86975260]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1120bB0.m",[-121913929,-24963882]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1120cB0.m",[96067467,51334109]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p28431aB0.m",[48610439,-17098280]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p28431bB0.m",[102357116,-2915723]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p28431cB0.m",[-95236754,131710927]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p28431dB0.m",[103757910,-111662481]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p36400B0.m",[55974738,124609534]]], ["TOC",["perm","clas/O8p3/mtx/O8p3S4G2-p3360B0.m",[-73519604,92311368]]], ["TOC",["perm","clas/O8p3/mtx/O8p3S4G2-p6480B0.m",[-96733550,-79748109]]], ["TOC",["maxes","clas/O8p3/words/O8p3G1-max10W1",[-15154337]]], ["TOC",["maxes","clas/O8p3/words/O8p3G1-max11W1",[-131676141]]], ["TOC",["maxes","clas/O8p3/words/O8p3G1-max12W1",[41998115]]], ["TOC",["maxes","clas/O8p3/words/O8p3G1-max13W1",[-129259704]]], ["TOC",["maxes","clas/O8p3/words/O8p3G1-max1W1",[2216648]]], ["TOC",["maxes","clas/O8p3/words/O8p3G1-max2W1",[-28575246]]], ["TOC",["maxes","clas/O8p3/words/O8p3G1-max7W1",[57517580]]], ["TOC",["matff","clas/O93/mtx/2O93G1-f3r16B0.m",[-95326868,58590017]]], ["TOC",["matff","clas/O93/mtx/2O93d2G1-f3r16B0.m",[77369705,47492252]]], ["TOC",["matff","clas/O93/mtx/O93G1-f3r9B0.m",[129442029,88034840]]], ["TOC",["matff","clas/O93/mtx/O93d2G1-f3r9B0.m",[-79044930,88034840]]], ["TOC",["matint","clas/S102/gap0/S102G1-Zr155B0.g",[108190402]]], ["TOC",["matint","clas/S102/gap0/S102G1-Zr187B0.g",[93560770]]], ["TOC",["matint","clas/S102/gap0/S102G1-Zr341B0.g",[48503668]]], ["TOC",["matff","clas/S102/mtx/S102G1-f11r155B0.m",[8136867,88782646]]], ["TOC",["matff","clas/S102/mtx/S102G1-f17r155B0.m",[63442455,-63872646]]], ["TOC",["matff","clas/S102/mtx/S102G1-f2r100B0.m",[-132339785,-133660920]]], ["TOC",["matff","clas/S102/mtx/S102G1-f2r10B0.m",[124085043,-13453481]]], ["TOC",["matff","clas/S102/mtx/S102G1-f2r164B0.m",[-107118642,102810791]]], ["TOC",["matff","clas/S102/mtx/S102G1-f2r32B0.m",[-49264749,-91273828]]], ["TOC",["matff","clas/S102/mtx/S102G1-f2r44B0.m",[36644287,91403710]]], ["TOC",["matff","clas/S102/mtx/S102G1-f31r155B0.m",[87124238,112546228]]], ["TOC",["matff","clas/S102/mtx/S102G1-f3r155B0.m",[-92478285,76933694]]], ["TOC",["matff","clas/S102/mtx/S102G1-f5r155B0.m",[4586104,-94557375]]], ["TOC",["matff","clas/S102/mtx/S102G1-f7r155B0.m",[29485763,62763193]]], ["TOC",["perm","clas/S102/mtx/S102G1-p1023B0.m",[98443786,53485020]]], ["TOC",["perm","clas/S102/mtx/S102G1-p1056B0.m",[71933464,-92710051]]], ["TOC",["perm","clas/S102/mtx/S102G1-p496B0.m",[19286218,-67519190]]], ["TOC",["perm","clas/S102/mtx/S102G1-p528B0.m",[-38467752,-50310250]]], ["TOC",["perm","clas/S102/mtx/S102G1-p992B0.m",[-12757228,-113671661]]], ["TOC",["pres","clas/S102/words/S102G1-P1",[-55394161]]], ["TOC",["check","clas/S102/words/S102G1-check1",[-13486801]]], ["TOC",["find","clas/S102/words/S102G1-find1",[129550160]]], ["TOC",["matint","clas/S411/gap0/S411G1-Zr122B0.g",[50315406]]], ["TOC",["matff","clas/S411/mtx/2S411G1-f11r4B0.m",[-62133377,-81234251]]], ["TOC",["matint","clas/S413/gap0/S413G1-Zr170B0.g",[77408384]]], ["TOC",["matff","clas/S413/mtx/2S413G1-f13r4B0.m",[-26262853,11056926]]], ["TOC",["matint","clas/S417/gap0/S417G1-Zr290B0.g",[-72216373]]], ["TOC",["matff","clas/S417/mtx/2S417G1-f17r4B0.m",[-81277635,125804584]]], ["TOC",["check","clas/S417/words/S417G1-check1",[72575667]]], ["TOC",["find","clas/S417/words/S417G1-find1",[-18889750]]], ["TOC",["matint","clas/S419/gap0/S419G1-Zr362B0.g",[48497725]]], ["TOC",["matff","clas/S419/mtx/2S419G1-f19r4B0.m",[64679712,-133457148]]], ["TOC",["matalg","clas/S44/gap0/S44G1-Ar204aB0.g",[13435942]]], ["TOC",["matalg","clas/S44/gap0/S44G1-Ar204bB0.g",[-111688591]]], ["TOC",["matalg","clas/S44/gap0/S44G1-Ar51aB0.g",[-128202902]]], ["TOC",["matalg","clas/S44/gap0/S44G1-Ar51bB0.g",[-131177657]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr102B0.g",[-132149009]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr102aB0.g",[-16877799]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr102bB0.g",[-74561258]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr153B0.g",[15162004]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr18B0.g",[-92216193]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr34aB0.g",[-114599776]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr34bB0.g",[31318568]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr408aB0.g",[-23986942]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr408bB0.g",[-41782718]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr50B0.g",[82053304]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr50aB0.g",[127917418]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr85B0.g",[-60331055]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr85aB0.g",[-55355440]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr85bB0.g",[-87893036]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr900B0.g",[-56344576]]], ["TOC",["matff","clas/S44/mtx/S44G1-f17r18B0.m",[8287404,24636442]]], ["TOC",["matff","clas/S44/mtx/S44G1-f3r18B0.m",[114490907,99206197]]], ["TOC",["matff","clas/S44/mtx/S44G1-f4r4cB0.m",[-66916166,-36229155]]], ["TOC",["matff","clas/S44/mtx/S44G1-f5r18B0.m",[98095481,96944879]]], ["TOC",["matff","clas/S44/mtx/S44G1-f5r33bB0.m",[20921094,104905736]]], ["TOC",["perm","clas/S44/mtx/S44G1-p120bB0.m",[-55160714,-5595531]]], ["TOC",["perm","clas/S44/mtx/S44G1-p85aB0.m",[-4049736,98956541]]], ["TOC",["matff","clas/S44/mtx/S44d2G1-f2r8aB0.m",[84946852,69419253]]], ["TOC",["matff","clas/S44/mtx/S44d4G1-f2r16B0.m",[14450064,-31042563]]], ["TOC",["perm","clas/S44/mtx/S44d4G1-p170B0.m",[40288287,-41064186]]], ["TOC",["check","clas/S44/words/S44G1-check1",[25741154]]], ["TOC",["maxes","clas/S44/words/S44G1-max1W1",[-110197138]]], ["TOC",["maxes","clas/S44/words/S44G1-max2W1",[60156120]]], ["TOC",["maxes","clas/S44/words/S44G1-max3W1",[64975797]]], ["TOC",["maxes","clas/S44/words/S44G1-max4W1",[-4819000]]], ["TOC",["maxes","clas/S44/words/S44G1-max5W1",[-40888439]]], ["TOC",["maxes","clas/S44/words/S44G1-max6W1",[49264090]]], ["TOC",["maxes","clas/S44/words/S44G1-max7W1",[41124433]]], ["TOC",["matalg","clas/S45/gap0/S45G1-Ar13aB0.g",[82785093]]], ["TOC",["matalg","clas/S45/gap0/S45G1-Ar13bB0.g",[17930268]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr104aB0.g",[76838380]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr104bB0.g",[-9158621]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr104cB0.g",[-116564476]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr130B0.g",[83528461]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr156B0.g",[-22613123]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr40B0.g",[-38090816]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr416B0.g",[-132297784]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr65aB0.g",[-39598817]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr65bB0.g",[114339701]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr90B0.g",[-20169873]]], ["TOC",["matff","clas/S45/mtx/2S45G1-f5r4B0.m",[88096190,36430521]]], ["TOC",["perm","clas/S45/mtx/2S45G1-p624B0.m",[22743163,-27127675]]], ["TOC",["matff","clas/S45/mtx/S45G1-f4r12aB0.m",[-16820011,-122202833]]], ["TOC",["matff","clas/S45/mtx/S45G1-f5r5B0.m",[-132964163,87158107]]], ["TOC",["matff","clas/S45/mtx/S45G1-f9r13B0.m",[-64769881,16766469]]], ["TOC",["perm","clas/S45/mtx/S45G1-p156aB0.m",[-53395980,-100717682]]], ["TOC",["perm","clas/S45/mtx/S45G1-p156bB0.m",[-72278991,40973879]]], ["TOC",["perm","clas/S45/mtx/S45G1-p300B0.m",[-110880512,66617936]]], ["TOC",["perm","clas/S45/mtx/S45G1-p325B0.m",[41580917,-93531917]]], ["TOC",["matff","clas/S45/mtx/S45d2G1-f2r104aB0.m",[-31202775,-4732993]]], ["TOC",["matff","clas/S45/mtx/S45d2G1-f2r104bB0.m",[-45827951,-77407041]]], ["TOC",["matff","clas/S45/mtx/S45d2G1-f2r24B0.m",[28899340,92326707]]], ["TOC",["matff","clas/S45/mtx/S45d2G1-f2r40B0.m",[78563714,19245896]]], ["TOC",["matff","clas/S45/mtx/S45d2G1-f2r64B0.m",[-11818053,88475813]]], ["TOC",["matff","clas/S45/mtx/S45d2G1-f3r26B0.m",[-84226306,-131226197]]], ["TOC",["matff","clas/S45/mtx/S45d2G1-f5r5B0.m",[22450810,28252478]]], ["TOC",["check","clas/S45/words/S45G1-check1",[-128114345]]], ["TOC",["maxes","clas/S45/words/S45G1-max1W1",[-72800046]]], ["TOC",["maxes","clas/S45/words/S45G1-max2W1",[-110892584]]], ["TOC",["maxes","clas/S45/words/S45G1-max3W1",[1319277]]], ["TOC",["maxes","clas/S45/words/S45G1-max4W1",[92563265]]], ["TOC",["maxes","clas/S45/words/S45G1-max5W1",[-57392860]]], ["TOC",["maxes","clas/S45/words/S45G1-max6W1",[19135983]]], ["TOC",["maxes","clas/S45/words/S45G1-max7W1",[-11057337]]], ["TOC",["maxes","clas/S45/words/S45G1-max8W1",[25577408]]], ["TOC",["matalg","clas/S47/gap0/S47G1-Ar25aB0.g",[18948981]]], ["TOC",["matalg","clas/S47/gap0/S47G1-Ar25bB0.g",[-8439203]]], ["TOC",["matint","clas/S47/gap0/S47G1-Zr126B0.g",[-83694360]]], ["TOC",["matint","clas/S47/gap0/S47G1-Zr175aB0.g",[127121412]]], ["TOC",["matint","clas/S47/gap0/S47G1-Zr175bB0.g",[90115848]]], ["TOC",["matint","clas/S47/gap0/S47G1-Zr224B0.g",[110716248]]], ["TOC",["matff","clas/S47/mtx/2S47G1-f7r4B0.m",[-41072448,25081416]]], ["TOC",["matff","clas/S47/mtx/2S47d2G1-f7r4B0.m",[-9937153,25081416]]], ["TOC",["matff","clas/S47/mtx/S47G1-f7r5B0.m",[14910708,-106883497]]], ["TOC",["perm","clas/S47/mtx/S47G1-p1176B0.m",[-81024524,58885869]]], ["TOC",["perm","clas/S47/mtx/S47G1-p1225B0.m",[1082744,-130482058]]], ["TOC",["perm","clas/S47/mtx/S47G1-p400aB0.m",[8389418,-67580392]]], ["TOC",["perm","clas/S47/mtx/S47G1-p400bB0.m",[-63101719,-88778677]]], ["TOC",["matff","clas/S47/mtx/S47d2G1-f7r5B0.m",[55105936,-106883497]]], ["TOC",["perm","clas/S47/mtx/S47d2G1-p400aB0.m",[109276459,71668262]]], ["TOC",["perm","clas/S47/mtx/S47d2G1-p400bB0.m",[17015866,-56639780]]], ["TOC",["check","clas/S47/words/S47G1-check1",[-116457689]]], ["TOC",["matint","clas/S49/gap0/S49G1-Zr41aB0.g",[13872774]]], ["TOC",["matint","clas/S49/gap0/S49G1-Zr41bB0.g",[-48292814]]], ["TOC",["matff","clas/S49/mtx/2S49G1-f9r4B0.m",[71948431,7962193]]], ["TOC",["check","clas/S49/words/S49G1-check1",[49518488]]], ["TOC",["matint","clas/S62/gap0/2S62G1-Zr8B0.g",[11283237]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr105aB0.g",[44180138]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr105bB0.g",[16356187]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr105cB0.g",[-122949576]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr120B0.g",[-88554122]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr15B0.g",[-82755504]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr168B0.g",[-109579451]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr189aB0.g",[-76413044]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr189bB0.g",[-130727757]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr189cB0.g",[-127006297]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr210aB0.g",[-8691854]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr210bB0.g",[31690294]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr216B0.g",[-8956410]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr21aB0.g",[55698598]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr21bB0.g",[16632315]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr27B0.g",[116794220]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr35aB0.g",[-53184680]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr35bB0.g",[-96769678]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr56B0.g",[-118308605]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr70B0.g",[116739536]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr7B0.g",[129664427]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr84B0.g",[34354222]]], ["TOC",["matff","clas/S62/mtx/2S62G1-f3r104B0.m",[101455940,101636538]]], ["TOC",["matff","clas/S62/mtx/2S62G1-f3r272B0.m",[105650268,-120256780]]], ["TOC",["matff","clas/S62/mtx/2S62G1-f3r48B0.m",[-79973475,-86413405]]], ["TOC",["matff","clas/S62/mtx/2S62G1-f3r56aB0.m",[-41596615,50826804]]], ["TOC",["matff","clas/S62/mtx/2S62G1-f3r56bB0.m",[-89693038,-32511580]]], ["TOC",["matff","clas/S62/mtx/2S62G1-f3r8B0.m",[-44566694,-103259130]]], ["TOC",["perm","clas/S62/mtx/2S62G1-p1920B0.m",[-92122712,-128892606]]], ["TOC",["perm","clas/S62/mtx/2S62G1-p2160B0.m",[45205904,-45822516]]], ["TOC",["perm","clas/S62/mtx/2S62G1-p240aB0.m",[-56416490,105375861]]], ["TOC",["perm","clas/S62/mtx/2S62G1-p240bB0.m",[-54217874,-60810975]]], ["TOC",["perm","clas/S62/mtx/2S62G1-p480B0.m",[-14522420,-52304442]]], ["TOC",["matff","clas/S62/mtx/S62G1-f2r112B0.m",[-37025041,115526766]]], ["TOC",["matff","clas/S62/mtx/S62G1-f2r14B0.m",[-39020736,19866721]]], ["TOC",["matff","clas/S62/mtx/S62G1-f2r48B0.m",[-129537517,119805676]]], ["TOC",["matff","clas/S62/mtx/S62G1-f2r512B0.m",[-42832724,-21227198]]], ["TOC",["matff","clas/S62/mtx/S62G1-f2r64B0.m",[130963387,-97154552]]], ["TOC",["matff","clas/S62/mtx/S62G1-f2r6B0.m",[19312218,-22867308]]], ["TOC",["matff","clas/S62/mtx/S62G1-f2r8B0.m",[39687452,69277150]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r14B0.m",[84246854,-122001009]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r189aB0.m",[-94283157,28028612]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r189bB0.m",[31083669,51585246]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r189cB0.m",[-101055873,-58489210]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r196B0.m",[13250675,-109876925]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r21B0.m",[-71040565,54822646]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r27B0.m",[61965192,-133825964]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r34B0.m",[-84696386,-15969451]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r35B0.m",[83314843,-58488375]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r405B0.m",[-55323738,86907721]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r49B0.m",[-81505603,76099653]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r7B0.m",[-39696685,-56075794]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r91B0.m",[-61382880,118495085]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r98B0.m",[-92225131,-98952991]]], ["TOC",["perm","clas/S62/mtx/S62G1-p120B0.m",[-65949187,-39483980]]], ["TOC",["perm","clas/S62/mtx/S62G1-p126B0.m",[77733787,61299713]]], ["TOC",["perm","clas/S62/mtx/S62G1-p135B0.m",[133224275,-56905045]]], ["TOC",["perm","clas/S62/mtx/S62G1-p240B0.m",[14429414,108846365]]], ["TOC",["perm","clas/S62/mtx/S62G1-p288B0.m",[112742404,-128942657]]], ["TOC",["perm","clas/S62/mtx/S62G1-p28B0.m",[110976306,76931350]]], ["TOC",["perm","clas/S62/mtx/S62G1-p315B0.m",[-4879533,-105655093]]], ["TOC",["perm","clas/S62/mtx/S62G1-p336B0.m",[46625581,96365145]]], ["TOC",["perm","clas/S62/mtx/S62G1-p36B0.m",[48803935,71864601]]], ["TOC",["perm","clas/S62/mtx/S62G1-p378aB0.m",[91351044,-22337672]]], ["TOC",["perm","clas/S62/mtx/S62G1-p378bB0.m",[121182969,80992080]]], ["TOC",["perm","clas/S62/mtx/S62G1-p56B0.m",[-59385519,-91987812]]], ["TOC",["perm","clas/S62/mtx/S62G1-p63B0.m",[-107037313,69320616]]], ["TOC",["perm","clas/S62/mtx/S62G1-p72B0.m",[60101593,21113958]]], ["TOC",["perm","clas/S62/mtx/S62G1-p960B0.m",[73213424,-115372799]]], ["TOC",["pres","clas/S62/words/2S62G1-P1",[35544777]]], ["TOC",["pres","clas/S62/words/S62G1-P1",[-109008602]]], ["TOC",["classes","clas/S62/words/S62G1-cclsW1",[122548041]]], ["TOC",["check","clas/S62/words/S62G1-check1",[25881517]]], ["TOC",["cyclic","clas/S62/words/S62G1-cycW1",[71238045]]], ["TOC",["maxes","clas/S62/words/S62G1-max1W1",[65571750]]], ["TOC",["maxes","clas/S62/words/S62G1-max2W1",[-94856361]]], ["TOC",["maxes","clas/S62/words/S62G1-max3W1",[-20640548]]], ["TOC",["maxes","clas/S62/words/S62G1-max4W1",[78361775]]], ["TOC",["maxes","clas/S62/words/S62G1-max5W1",[2207467]]], ["TOC",["maxes","clas/S62/words/S62G1-max6W1",[-120723562]]], ["TOC",["maxes","clas/S62/words/S62G1-max7W1",[-37873323]]], ["TOC",["maxes","clas/S62/words/S62G1-max8W1",[117469055]]], ["TOC",["cyc2ccl","clas/S62/words/S62G1cycW1-cclsW1",[-58490974]]], ["TOC",["matalg","clas/S63/gap0/S63G1-Ar13aB0.g",[89649931]]], ["TOC",["matalg","clas/S63/gap0/S63G1-Ar13bB0.g",[23578946]]], ["TOC",["matalg","clas/S63/gap0/S63G1-Ar78B0.g",[-103564578]]], ["TOC",["matalg","clas/S63/gap0/S63G1-Ar91aB0.g",[110472391]]], ["TOC",["matalg","clas/S63/gap0/S63G1-Ar91bB0.g",[-74436229]]], ["TOC",["matint","clas/S63/gap0/S63G1-Zr105B0.g",[-14551475]]], ["TOC",["matint","clas/S63/gap0/S63G1-Zr168B0.g",[-118187547]]], ["TOC",["matint","clas/S63/gap0/S63G1-Zr195B0.g",[-42398291]]], ["TOC",["matff","clas/S63/mtx/2S63G1-f3r6B0.m",[126789964,91588475]]], ["TOC",["matff","clas/S63/mtx/2S63d2G1-f3r6B0.m",[25224878,-106581972]]], ["TOC",["perm","clas/S63/mtx/2S63d2G1-p728B0.m",[73132286,100183245]]], ["TOC",["matff","clas/S63/mtx/S63G1-f25r13aB0.m",[124735498,59699487]]], ["TOC",["matff","clas/S63/mtx/S63G1-f2r78B0.m",[-75626185,14759642]]], ["TOC",["matff","clas/S63/mtx/S63G1-f4r13aB0.m",[127110748,-48089272]]], ["TOC",["matff","clas/S63/mtx/S63G1-f7r13aB0.m",[46515349,10052906]]], ["TOC",["perm","clas/S63/mtx/S63G1-p1120B0.m",[-104841187,46945405]]], ["TOC",["perm","clas/S63/mtx/S63G1-p3640B0.m",[112776586,-63120543]]], ["TOC",["perm","clas/S63/mtx/S63G1-p364B0.m",[-118604311,-16543820]]], ["TOC",["perm","clas/S63/mtx/S63G1-p7371B0.m",[-117628514,52928025]]], ["TOC",["matff","clas/S63/mtx/S63d2G1-f2r26B0.m",[6007477,10315021]]], ["TOC",["matff","clas/S63/mtx/S63d2G1-f3r13B0.m",[32905713,123187964]]], ["TOC",["perm","clas/S63/mtx/S63d2G1-p1120B0.m",[-28676748,-78532620]]], ["TOC",["perm","clas/S63/mtx/S63d2G1-p3640B0.m",[-65079509,113173068]]], ["TOC",["perm","clas/S63/mtx/S63d2G1-p364B0.m",[-132668143,-95553371]]], ["TOC",["perm","clas/S63/mtx/S63d2G1-p7371B0.m",[-88145812,-44758761]]], ["TOC",["maxes","clas/S63/words/S63G1-max10W1",[-8454259]]], ["TOC",["maxes","clas/S63/words/S63G1-max11W1",[-79997220]]], ["TOC",["maxes","clas/S63/words/S63G1-max1W1",[65463392]]], ["TOC",["maxes","clas/S63/words/S63G1-max2W1",[-64140193]]], ["TOC",["maxes","clas/S63/words/S63G1-max4W1",[38624687]]], ["TOC",["maxes","clas/S63/words/S63G1-max5W1",[68902133]]], ["TOC",["maxes","clas/S63/words/S63G1-max6W1",[-11400556]]], ["TOC",["maxes","clas/S63/words/S63G1-max7W1",[3923366]]], ["TOC",["maxes","clas/S63/words/S63G1-max8W1",[-54178902]]], ["TOC",["maxes","clas/S63/words/S63G1-max9W1",[32541909]]], ["TOC",["perm","clas/S65/mtx/S65G1-p3906B0.m",[102938262,-63570841]]], ["TOC",["matint","clas/S82/gap0/S82G1-Zr119B0.g",[2402187]]], ["TOC",["matint","clas/S82/gap0/S82G1-Zr135B0.g",[-26481830]]], ["TOC",["matint","clas/S82/gap0/S82G1-Zr35B0.g",[49754726]]], ["TOC",["matint","clas/S82/gap0/S82G1-Zr51B0.g",[20525784]]], ["TOC",["matint","clas/S82/gap0/S82G1-Zr85B0.g",[89705460]]], ["TOC",["matff","clas/S82/mtx/S82G1-f17r35B0.m",[58019619,70088272]]], ["TOC",["matff","clas/S82/mtx/S82G1-f17r51B0.m",[106285395,57981536]]], ["TOC",["matff","clas/S82/mtx/S82G1-f2r16B0.m",[42863545,40375752]]], ["TOC",["matff","clas/S82/mtx/S82G1-f2r26B0.m",[-23871571,-36710350]]], ["TOC",["matff","clas/S82/mtx/S82G1-f2r48B0.m",[-44393766,36116544]]], ["TOC",["matff","clas/S82/mtx/S82G1-f2r8B0.m",[56786564,-7169716]]], ["TOC",["matff","clas/S82/mtx/S82G1-f3r35B0.m",[75102353,85985046]]], ["TOC",["matff","clas/S82/mtx/S82G1-f3r50B0.m",[128010346,-94475218]]], ["TOC",["matff","clas/S82/mtx/S82G1-f5r35B0.m",[111491901,6342229]]], ["TOC",["matff","clas/S82/mtx/S82G1-f5r51B0.m",[-2439101,80588667]]], ["TOC",["matff","clas/S82/mtx/S82G1-f7r35B0.m",[-121858343,9682389]]], ["TOC",["matff","clas/S82/mtx/S82G1-f7r51B0.m",[-31942209,67026475]]], ["TOC",["perm","clas/S82/mtx/S82G1-p120B0.m",[123689100,68180547]]], ["TOC",["perm","clas/S82/mtx/S82G1-p136B0.m",[100902606,-92322247]]], ["TOC",["perm","clas/S82/mtx/S82G1-p2295B0.m",[60858670,133484843]]], ["TOC",["perm","clas/S82/mtx/S82G1-p240B0.m",[-14798042,-44832011]]], ["TOC",["perm","clas/S82/mtx/S82G1-p255B0.m",[6989233,-25131992]]], ["TOC",["perm","clas/S82/mtx/S82G1-p272B0.m",[12328305,56946681]]], ["TOC",["perm","clas/S82/mtx/S82G1-p5355B0.m",[-8308181,-120195795]]], ["TOC",["perm","clas/S83/mtx/S83G1-p3280B0.m",[84149580,48280183]]], ["TOC",["matint","clas/U311/gap0/U311G1-Zr111aB0.g",[115143204]]], ["TOC",["matff","clas/U311/mtx/3U311G1-f121r3aB0.m",[54120386,43906884]]], ["TOC",["matff","clas/U311/mtx/3U311d2G1-f11r6B0.m",[113731019,-118688209]]], ["TOC",["matff","clas/U311/mtx/U311G1-f11r8B0.m",[46418923,50858867]]], ["TOC",["matff","clas/U311/mtx/U311G1-f121r10aB0.m",[-64091698,117096846]]], ["TOC",["matff","clas/U311/mtx/U311G1-f2r110B0.m",[101216104,41258540]]], ["TOC",["matff","clas/U311/mtx/U311G1-f2r370aB0.m",[-130658650,107378127]]], ["TOC",["matff","clas/U311/mtx/U311G1-f2r370bB0.m",[-9111653,98555252]]], ["TOC",["matff","clas/U311/mtx/U311G1-f2r370cB0.m",[-12366454,-40179653]]], ["TOC",["perm","clas/U311/mtx/U311G1-p1332B0.m",[-2399457,108019957]]], ["TOC",["matff","clas/U311/mtx/U311d2G1-f11r8B0.m",[-41729110,95592306]]], ["TOC",["matff","clas/U311/mtx/U311d2G1-f2r110B0.m",[99013278,-64869391]]], ["TOC",["perm","clas/U311/mtx/U311d2G1-p1332B0.m",[26476675,126722475]]], ["TOC",["maxes","clas/U311/words/U311G1-max1W1",[-20720980]]], ["TOC",["perm","clas/U313/mtx/U313G1-p2198B0.m",[-30735975,124277298]]], ["TOC",["perm","clas/U316/mtx/U316G1-p4097B0.m",[18404542,-121295681]]], ["TOC",["matalg","clas/U33/gap0/U33G1-Ar21bB0.g",[81149260]]], ["TOC",["matalg","clas/U33/gap0/U33G1-Ar21cB0.g",[-27355280]]], ["TOC",["matalg","clas/U33/gap0/U33G1-Ar28aB0.g",[50662159]]], ["TOC",["matalg","clas/U33/gap0/U33G1-Ar28bB0.g",[72291775]]], ["TOC",["matalg","clas/U33/gap0/U33G1-Ar6B0.g",[-20268958]]], ["TOC",["matalg","clas/U33/gap0/U33G1-Ar7bB0.g",[-131813230]]], ["TOC",["matalg","clas/U33/gap0/U33G1-Ar7cB0.g",[-53716445]]], ["TOC",["matint","clas/U33/gap0/U33G1-Zr14aB0.g",[-106033864]]], ["TOC",["matint","clas/U33/gap0/U33G1-Zr14bB0.g",[-58543616]]], ["TOC",["matint","clas/U33/gap0/U33G1-Zr21aB0.g",[-102667114]]], ["TOC",["matint","clas/U33/gap0/U33G1-Zr27B0.g",[-108905857]]], ["TOC",["matint","clas/U33/gap0/U33G1-Zr42B0.g",[124882003]]], ["TOC",["matint","clas/U33/gap0/U33G1-Zr56B0.g",[-18347513]]], ["TOC",["matint","clas/U33/gap0/U33G1-Zr64B0.g",[83283541]]], ["TOC",["matint","clas/U33/gap0/U33G1-Zr7aB0.g",[92550962]]], ["TOC",["matff","clas/U33/mtx/U33G1-f2r14B0.m",[-27564002,-65762614]]], ["TOC",["matff","clas/U33/mtx/U33G1-f2r32aB0.m",[-15599009,-66073448]]], ["TOC",["matff","clas/U33/mtx/U33G1-f2r32bB0.m",[30375039,71109397]]], ["TOC",["matff","clas/U33/mtx/U33G1-f2r6B0.m",[43979968,-57852349]]], ["TOC",["matff","clas/U33/mtx/U33G1-f3r27B0.m",[91599748,110775764]]], ["TOC",["matff","clas/U33/mtx/U33G1-f3r7B0.m",[34161718,-131142386]]], ["TOC",["matff","clas/U33/mtx/U33G1-f49r21bB0.m",[2731335,-42935579]]], ["TOC",["matff","clas/U33/mtx/U33G1-f49r28aB0.m",[-46082945,-65806978]]], ["TOC",["matff","clas/U33/mtx/U33G1-f49r7bB0.m",[11390124,13143680]]], ["TOC",["matff","clas/U33/mtx/U33G1-f7r14B0.m",[94291011,-47916281]]], ["TOC",["matff","clas/U33/mtx/U33G1-f7r21aB0.m",[121566276,29184447]]], ["TOC",["matff","clas/U33/mtx/U33G1-f7r26B0.m",[109924252,130651646]]], ["TOC",["matff","clas/U33/mtx/U33G1-f7r6B0.m",[-76570342,-90208870]]], ["TOC",["matff","clas/U33/mtx/U33G1-f7r7aB0.m",[-22429220,71209399]]], ["TOC",["matff","clas/U33/mtx/U33G1-f9r15bB0.m",[121556602,40972269]]], ["TOC",["matff","clas/U33/mtx/U33G1-f9r3bB0.m",[52521419,-95620519]]], ["TOC",["matff","clas/U33/mtx/U33G1-f9r6bB0.m",[71383686,62175400]]], ["TOC",["perm","clas/U33/mtx/U33G1-p28B0.m",[-55034865,68928245]]], ["TOC",["perm","clas/U33/mtx/U33G1-p36B0.m",[-61978097,99471259]]], ["TOC",["perm","clas/U33/mtx/U33G1-p63aB0.m",[-37936934,30232937]]], ["TOC",["perm","clas/U33/mtx/U33G1-p63bB0.m",[64607497,-91496811]]], ["TOC",["matff","clas/U33/mtx/U33d2G1-f2r14B0.m",[64470523,22539985]]], ["TOC",["matff","clas/U33/mtx/U33d2G1-f2r64B0.m",[77046502,-89597728]]], ["TOC",["matff","clas/U33/mtx/U33d2G1-f2r6B0.m",[-60926122,-82690472]]], ["TOC",["matff","clas/U33/mtx/U33d2G1-f3r12B0.m",[-86930532,-69681254]]], ["TOC",["matff","clas/U33/mtx/U33d2G1-f3r27B0.m",[55274905,101901216]]], ["TOC",["matff","clas/U33/mtx/U33d2G1-f3r30B0.m",[122666219,125434467]]], ["TOC",["matff","clas/U33/mtx/U33d2G1-f3r6B0.m",[-3081183,93673730]]], ["TOC",["matff","clas/U33/mtx/U33d2G1-f3r7B0.m",[37685085,71166098]]], ["TOC",["perm","clas/U33/mtx/U33d2G1-p63bB0.m",[9178498,132963313]]], ["TOC",["maxes","clas/U33/words/U33G1-max1W1",[131314018]]], ["TOC",["maxes","clas/U33/words/U33G1-max2W1",[-40241296]]], ["TOC",["maxes","clas/U33/words/U33G1-max4W1",[124599054]]], ["TOC",["maxes","clas/U33/words/U33d2G1-max1W1",[-62131944]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar12B0.g",[55185181]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar13aB0.g",[117438729]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar13bB0.g",[58046395]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar13cB0.g",[16609006]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar13dB0.g",[67909373]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar52aB0.g",[-104934326]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar52bB0.g",[24197759]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar52cB0.g",[-82220219]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar52dB0.g",[-116015156]]], ["TOC",["matint","clas/U34/gap0/U34G1-Zr260B0.g",[-72588755]]], ["TOC",["matint","clas/U34/gap0/U34G1-Zr300B0.g",[87311619]]], ["TOC",["matint","clas/U34/gap0/U34G1-Zr64B0.g",[-49267710]]], ["TOC",["matint","clas/U34/gap0/U34G1-Zr65aB0.g",[-57596787]]], ["TOC",["matff","clas/U34/mtx/U34G1-f13r12B0.m",[62408048,-109610137]]], ["TOC",["matff","clas/U34/mtx/U34G1-f13r208B0.m",[-108736538,67866]]], ["TOC",["matff","clas/U34/mtx/U34G1-f13r260B0.m",[50602510,103112632]]], ["TOC",["matff","clas/U34/mtx/U34G1-f13r52eB0.m",[54514785,103012193]]], ["TOC",["matff","clas/U34/mtx/U34G1-f13r63B0.m",[53184444,-72868675]]], ["TOC",["matff","clas/U34/mtx/U34G1-f13r65aB0.m",[-78103605,66500438]]], ["TOC",["matff","clas/U34/mtx/U34G1-f13r78B0.m",[113968884,-115040216]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r24aB0.m",[-119569304,132348686]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r24bB0.m",[-100531866,-8097523]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r24cB0.m",[4021513,219792]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r24dB0.m",[-40412631,13980730]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r3aB0.m",[122874177,-27123872]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r3bB0.m",[81574912,-27123872]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r3cB0.m",[-126807937,-27123872]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r3dB0.m",[-109357799,-27123872]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r9aB0.m",[-46965852,84366801]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r9bB0.m",[-18686435,-119537219]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r9cB0.m",[38986822,69465137]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r9dB0.m",[77726640,-84914934]]], ["TOC",["matff","clas/U34/mtx/U34G1-f25r150aB0.m",[-99531352,-98030002]]], ["TOC",["matff","clas/U34/mtx/U34G1-f25r150bB0.m",[69937018,21914643]]], ["TOC",["matff","clas/U34/mtx/U34G1-f2r12B0.m",[-10900053,78847107]]], ["TOC",["matff","clas/U34/mtx/U34G1-f2r16B0.m",[14396154,-41955931]]], ["TOC",["matff","clas/U34/mtx/U34G1-f2r36B0.m",[46976384,-17325910]]], ["TOC",["matff","clas/U34/mtx/U34G1-f2r64B0.m",[-118982544,-64223435]]], ["TOC",["matff","clas/U34/mtx/U34G1-f2r96B0.m",[-104284810,-124835199]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r12B0.m",[132589348,-122397110]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r208B0.m",[42907974,-68495142]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r52eB0.m",[-97982728,-41106856]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r64B0.m",[78225616,28949721]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r75aB0.m",[-80476965,-127074761]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r75bB0.m",[86181596,3348273]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r75cB0.m",[11829454,-73864367]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r75dB0.m",[75538121,28085319]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r78B0.m",[100243216,-48886087]]], ["TOC",["matff","clas/U34/mtx/U34G1-f4r18aB0.m",[123734973,-46092691]]], ["TOC",["matff","clas/U34/mtx/U34G1-f4r18bB0.m",[-93008733,-28725164]]], ["TOC",["matff","clas/U34/mtx/U34G1-f4r48aB0.m",[17578155,11361404]]], ["TOC",["matff","clas/U34/mtx/U34G1-f4r48bB0.m",[76888578,81472606]]], ["TOC",["matff","clas/U34/mtx/U34G1-f4r6aB0.m",[-85023623,93249437]]], ["TOC",["matff","clas/U34/mtx/U34G1-f4r6bB0.m",[-81819623,-69612063]]], ["TOC",["matff","clas/U34/mtx/U34G1-f4r8aB0.m",[-116176095,-1687181]]], ["TOC",["matff","clas/U34/mtx/U34G1-f4r8bB0.m",[-116176095,25980700]]], ["TOC",["matff","clas/U34/mtx/U34G1-f5r12B0.m",[-103789801,-34994288]]], ["TOC",["matff","clas/U34/mtx/U34G1-f5r300B0.m",[32081092,72335547]]], ["TOC",["matff","clas/U34/mtx/U34G1-f5r39B0.m",[-123208157,96692618]]], ["TOC",["matff","clas/U34/mtx/U34G1-f5r65B0.m",[-127352607,-60913270]]], ["TOC",["perm","clas/U34/mtx/U34G1-p1600B0.m",[30233884,-36051796]]], ["TOC",["perm","clas/U34/mtx/U34G1-p208B0.m",[80086357,75227372]]], ["TOC",["perm","clas/U34/mtx/U34G1-p416B0.m",[40674578,-88371304]]], ["TOC",["perm","clas/U34/mtx/U34G1-p65B0.m",[17360683,-78425434]]], ["TOC",["perm","clas/U34/mtx/U34d2G1-p1600B0.m",[-104360745,-53360206]]], ["TOC",["perm","clas/U34/mtx/U34d2G1-p208B0.m",[83117313,20247513]]], ["TOC",["perm","clas/U34/mtx/U34d2G1-p416B0.m",[1886698,126129251]]], ["TOC",["perm","clas/U34/mtx/U34d2G1-p65B0.m",[-70734908,-37630935]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f13r12aB0.m",[-49033489,-113664744]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f13r208B0.m",[41810714,-58248165]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f13r260B0.m",[115061945,-79350074]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f13r52B0.m",[32269842,20947821]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f13r63aB0.m",[39589624,93730429]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f13r65aB0.m",[32323730,-34684119]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f13r78aB0.m",[7163539,-77413724]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f2r12B0.m",[-35230972,-5909819]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f2r16B0.m",[-99589815,16092554]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f2r36B0.m",[-115096760,116994797]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f2r64B0.m",[81737749,110839647]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f2r96B0.m",[111876370,14679376]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f3r208B0.m",[70447454,58683363]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f3r24aB0.m",[-71815523,74229437]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f3r300B0.m",[44269910,-18762582]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f3r52B0.m",[-125141463,-64454306]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f3r64aB0.m",[-27767191,3232557]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f3r78aB0.m",[-51157972,-22461437]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f5r12aB0.m",[-20838787,25813836]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f5r300B0.m",[-91650518,81153656]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f5r39aB0.m",[-132884508,-90704902]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f5r65aB0.m",[-7273387,-110405782]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f9r12aB0.m",[-62172830,-103676483]]], ["TOC",["perm","clas/U34/mtx/U34d4G1-p1600B0.m",[101360521,-121654012]]], ["TOC",["perm","clas/U34/mtx/U34d4G1-p208B0.m",[117524311,84671893]]], ["TOC",["perm","clas/U34/mtx/U34d4G1-p416B0.m",[123189927,-3060560]]], ["TOC",["perm","clas/U34/mtx/U34d4G1-p65B0.m",[51089587,-21751821]]], ["TOC",["pres","clas/U34/words/U34G1-P1",[75167543]]], ["TOC",["out","clas/U34/words/U34G1-a4W1",[-70979454]]], ["TOC",["maxes","clas/U34/words/U34G1-max1W1",[53933446]]], ["TOC",["maxes","clas/U34/words/U34G1-max2W1",[96452593]]], ["TOC",["maxes","clas/U34/words/U34G1-max3W1",[-95177580]]], ["TOC",["maxes","clas/U34/words/U34G1-max4W1",[60732284]]], ["TOC",["pres","clas/U34/words/U34d2G1-P1",[132977188]]], ["TOC",["maxes","clas/U34/words/U34d2G1-max1W1",[-120957511]]], ["TOC",["maxes","clas/U34/words/U34d2G1-max2W1",[-23763886]]], ["TOC",["maxes","clas/U34/words/U34d2G1-max3W1",[-91366119]]], ["TOC",["maxes","clas/U34/words/U34d2G1-max4W1",[79541912]]], ["TOC",["maxes","clas/U34/words/U34d2G1-max5W1",[125232883]]], ["TOC",["pres","clas/U34/words/U34d4G1-P1",[91031702]]], ["TOC",["maxes","clas/U34/words/U34d4G1-max1W1",[-84053764]]], ["TOC",["maxes","clas/U34/words/U34d4G1-max2W1",[58465529]]], ["TOC",["maxes","clas/U34/words/U34d4G1-max3W1",[-104565319]]], ["TOC",["maxes","clas/U34/words/U34d4G1-max4W1",[93887266]]], ["TOC",["maxes","clas/U34/words/U34d4G1-max5W1",[58892799]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr105B0.g",[-102955911]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr125B0.g",[-6373310]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr126aB0.g",[35920565]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr21B0.g",[2647315]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr252B0.g",[83372172]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr288B0.g",[87573476]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr28aB0.g",[79144312]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr28bB0.g",[-127954516]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr28cB0.g",[-39999797]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr84B0.g",[-8847763]]], ["TOC",["perm","clas/U35/mtx/U35G1-p50B0.m",[79377838,90517095]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f2r104B0.m",[114461795,-73415614]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f2r20B0.m",[-51431499,91228414]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f2r288B0.m",[59152440,42208940]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f2r28B0.m",[-122141611,93684727]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f2r56B0.m",[-86578170,-2680064]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f3r126aB0.m",[-965303,-96109392]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f3r20aB0.m",[-62988035,19241242]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f3r21aB0.m",[-15314504,-74114415]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f3r252B0.m",[-133280960,121913998]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f3r288B0.m",[47530646,-33166197]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f3r28aB0.m",[96837566,94831662]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f3r56B0.m",[33744891,-36563831]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f3r84aB0.m",[-56302550,-113576911]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f5r125aB0.m",[-3874360,-11879661]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f5r19aB0.m",[95135359,-5952651]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f5r20B0.m",[-9118427,76229517]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f5r63aB0.m",[46850613,133206102]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f5r70B0.m",[119713154,-92650635]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f5r8aB0.m",[-25753737,-36465240]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r105aB0.m",[-9389598,115008169]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r124aB0.m",[-72369292,-84501320]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r126aB0.m",[43195759,54173438]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r20aB0.m",[25578130,49668197]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r21aB0.m",[30911428,-51107732]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r252B0.m",[108946009,113476800]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r28aB0.m",[121141020,-27438654]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r56B0.m",[-65748988,108569363]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r84aB0.m",[-128249178,-55277512]]], ["TOC",["perm","clas/U35/mtx/U35d2G1-p126B0.m",[57933489,-90868789]]], ["TOC",["perm","clas/U35/mtx/U35d2G1-p175B0.m",[-30143206,2795820]]], ["TOC",["perm","clas/U35/mtx/U35d2G1-p50B0.m",[1867987,597831]]], ["TOC",["perm","clas/U35/mtx/U35d2G1-p525B0.m",[52287825,117985980]]], ["TOC",["perm","clas/U35/mtx/U35d2G1-p750B0.m",[-61520747,-22238562]]], ["TOC",["pres","clas/U35/words/U35G1-P1",[33059216]]], ["TOC",["pres","clas/U35/words/U35d2G1-P1",[100875407]]], ["TOC",["maxes","clas/U35/words/U35d2G1-max2W1",[-103678865]]], ["TOC",["maxes","clas/U35/words/U35d2G1-max2W2",[-10329946]]], ["TOC",["maxes","clas/U35/words/U35d2G1-max3W1",[20496299]]], ["TOC",["maxes","clas/U35/words/U35d2G1-max4W1",[-120526082]]], ["TOC",["maxes","clas/U35/words/U35d2G1-max5W1",[96452593]]], ["TOC",["maxes","clas/U35/words/U35d2G1-max6W1",[42882023]]], ["TOC",["matint","clas/U37/gap0/U37G1-Zr43aB0.g",[101009663]]], ["TOC",["matff","clas/U37/mtx/U37G1-f2r258B0.m",[80235784,-27537996]]], ["TOC",["matff","clas/U37/mtx/U37G1-f2r344B0.m",[-62120321,110461212]]], ["TOC",["matff","clas/U37/mtx/U37G1-f2r42B0.m",[-55818718,638323]]], ["TOC",["matff","clas/U37/mtx/U37G1-f3r42B0.m",[87877314,-117514730]]], ["TOC",["matff","clas/U37/mtx/U37G1-f3r43aB0.m",[-87211028,20612456]]], ["TOC",["matff","clas/U37/mtx/U37G1-f43r42B0.m",[-32288733,-88899808]]], ["TOC",["matff","clas/U37/mtx/U37G1-f43r43aB0.m",[-36187826,130510881]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r12B0.m",[112552939,66100615]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r20B0.m",[-37672248,-3974413]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r27B0.m",[80204890,2243363]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r30aB0.m",[-111337443,106525141]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r30bB0.m",[-12708814,53781897]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r37B0.m",[-93467555,-92816406]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r42cB0.m",[-83217450,117281295]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r48B0.m",[-87749695,48539204]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r6cB0.m",[-82725300,91503278]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r8B0.m",[8670882,-42599195]]], ["TOC",["perm","clas/U37/mtx/U37G1-p1032B0.m",[-73970263,-89133614]]], ["TOC",["perm","clas/U37/mtx/U37G1-p1376B0.m",[124823241,73198391]]], ["TOC",["perm","clas/U37/mtx/U37G1-p14749B0.m",[-56081576,-114148754]]], ["TOC",["perm","clas/U37/mtx/U37G1-p16856B0.m",[43093642,39183080]]], ["TOC",["perm","clas/U37/mtx/U37G1-p2064B0.m",[-76288734,1970699]]], ["TOC",["perm","clas/U37/mtx/U37G1-p2107B0.m",[83952628,103638671]]], ["TOC",["perm","clas/U37/mtx/U37G1-p344B0.m",[31043946,-47100693]]], ["TOC",["perm","clas/U37/mtx/U37G1-p43904B0.m",[-64386534,119104327]]], ["TOC",["perm","clas/U37/mtx/U37G1-p688B0.m",[-127237955,72593137]]], ["TOC",["pres","clas/U37/words/U37G1-P1",[28359484]]], ["TOC",["out","clas/U37/words/U37G1-aW1",[8247317]]], ["TOC",["maxes","clas/U37/words/U37G1-max1W1",[-97795468]]], ["TOC",["maxes","clas/U37/words/U37G1-max2W1",[-56630200]]], ["TOC",["maxes","clas/U37/words/U37G1-max3W1",[-2253449]]], ["TOC",["maxes","clas/U37/words/U37G1-max4W1",[-84578960]]], ["TOC",["maxes","clas/U37/words/U37G1-max5W1",[49417287]]], ["TOC",["matint","clas/U38/gap0/U38G1-Zr114B0.g",[70366208]]], ["TOC",["matint","clas/U38/gap0/U38G1-Zr133aB0.g",[67465534]]], ["TOC",["matint","clas/U38/gap0/U38G1-Zr133bB0.g",[85793258]]], ["TOC",["matint","clas/U38/gap0/U38G1-Zr133cB0.g",[131204949]]], ["TOC",["matff","clas/U38/mtx/3U38G1-f64r3aB0.m",[-127003918,115807546]]], ["TOC",["perm","clas/U38/mtx/3U38G1-p32832B0.m",[-70568696,48614352]]], ["TOC",["perm","clas/U38/mtx/3U38G1-p4617B0.m",[104686114,-82412374]]], ["TOC",["perm","clas/U38/mtx/U38E9G1-p3648B0.m",[108918084,96674272]]], ["TOC",["perm","clas/U38/mtx/U38E9G1-p513B0.m",[-51718153,-7172068]]], ["TOC",["matff","clas/U38/mtx/U38G1-f3r56B0.m",[60901416,80285885]]], ["TOC",["perm","clas/U38/mtx/U38G1-p3648B0.m",[-132855599,94913045]]], ["TOC",["perm","clas/U38/mtx/U38G1-p513B0.m",[-79915265,-97999790]]], ["TOC",["perm","clas/U38/mtx/U38S3G1-p3648B0.m",[129298163,-32640650]]], ["TOC",["perm","clas/U38/mtx/U38S3G1-p513B0.m",[120040864,-107603928]]], ["TOC",["perm","clas/U38/mtx/U38S3x3G1-p3648B0.m",[14100675,72779990]]], ["TOC",["perm","clas/U38/mtx/U38S3x3G1-p513B0.m",[-7604460,-27922153]]], ["TOC",["perm","clas/U38/mtx/U38d2G1-p3648B0.m",[-102954589,7496962]]], ["TOC",["perm","clas/U38/mtx/U38d2G1-p513B0.m",[-12428198,-114715963]]], ["TOC",["perm","clas/U38/mtx/U38d3aG1-p3648B0.m",[-26653670,27700646]]], ["TOC",["perm","clas/U38/mtx/U38d3aG1-p513B0.m",[-17023673,-55556744]]], ["TOC",["perm","clas/U38/mtx/U38d3bG1-p3648B0.m",[46031347,66020914]]], ["TOC",["perm","clas/U38/mtx/U38d3bG1-p513B0.m",[-64368159,-37104193]]], ["TOC",["perm","clas/U38/mtx/U38d3cG1-p3648B0.m",[81885800,-100513959]]], ["TOC",["perm","clas/U38/mtx/U38d3cG1-p513B0.m",[66125187,78421743]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f2r192B0.m",[116361037,-84768179]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f2r24B0.m",[-43169189,106439536]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f2r432B0.m",[-126811112,-101025286]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f2r512B0.m",[21383515,128345998]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f2r54aB0.m",[-99197856,-22696828]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f2r54bB0.m",[-9921731,109048484]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f3r133aB0.m",[32879324,48179807]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f3r266B0.m",[25864402,-106835609]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f3r56aB0.m",[118935035,111312033]]], ["TOC",["perm","clas/U38/mtx/U38d6G1-p3648B0.m",[-67800605,10871735]]], ["TOC",["perm","clas/U38/mtx/U38d6G1-p513B0.m",[-46074225,-23985724]]], ["TOC",["pres","clas/U38/words/U38G1-P1",[114437562]]], ["TOC",["matint","clas/U39/gap0/U39G1-Zr73aB0.g",[116063303]]], ["TOC",["perm","clas/U39/mtx/U39G1-p730B0.m",[-6720510,103605478]]], ["TOC",["matalg","clas/U42/gap0/2U42G1-Ar20aB0.g",[-45988034]]], ["TOC",["matalg","clas/U42/gap0/2U42G1-Ar20bB0.g",[62493463]]], ["TOC",["matalg","clas/U42/gap0/2U42G1-Ar20cB0.g",[87714701]]], ["TOC",["matalg","clas/U42/gap0/2U42G1-Ar36aB0.g",[16848127]]], ["TOC",["matalg","clas/U42/gap0/2U42G1-Ar36bB0.g",[-17484990]]], ["TOC",["matalg","clas/U42/gap0/2U42G1-Ar4aB0.g",[128648158]]], ["TOC",["matalg","clas/U42/gap0/2U42G1-Ar4bB0.g",[-14476162]]], ["TOC",["matalg","clas/U42/gap0/2U42G1-Ar60bB0.g",[87834552]]], ["TOC",["matint","clas/U42/gap0/2U42G1-Zr8B0.g",[116145303]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar10B0.g",[-48475808]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar10aB0.g",[-33665179]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar10bB0.g",[-42222926]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar30bB0.g",[-88351826]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar30cB0.g",[-96100782]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar40aB0.g",[-113995891]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar40bB0.g",[53751750]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar45aB0.g",[-98981155]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar45bB0.g",[47258373]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar5aB0.g",[57904430]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar5bB0.g",[56439648]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr15aB0.g",[103762178]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr15bB0.g",[9414185]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr20B0.g",[-63236352]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr24B0.g",[-74726964]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr30aB0.g",[-118104298]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr60B0.g",[124718455]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr64B0.g",[-102877132]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr6B0.g",[31490574]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr80B0.g",[-70317204]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr81B0.g",[38380259]]], ["TOC",["matff","clas/U42/mtx/2U42G1-f3r16B0.m",[30238368,-84270813]]], ["TOC",["matff","clas/U42/mtx/2U42G1-f3r40B0.m",[114570034,68590057]]], ["TOC",["matff","clas/U42/mtx/2U42G1-f3r4B0.m",[-44010817,48225622]]], ["TOC",["perm","clas/U42/mtx/2U42G1-p240B0.m",[-112092215,107794298]]], ["TOC",["perm","clas/U42/mtx/2U42G1-p80B0.m",[-39324070,104832028]]], ["TOC",["matff","clas/U42/mtx/2U42d2G1-f3r4B0.m",[12103382,-127646183]]], ["TOC",["perm","clas/U42/mtx/2U42d2G1-p240B0.m",[-56416490,121403924]]], ["TOC",["matff","clas/U42/mtx/U42G1-f25r10bB0.m",[29324164,106311246]]], ["TOC",["matff","clas/U42/mtx/U42G1-f25r5aB0.m",[-118167804,38155024]]], ["TOC",["matff","clas/U42/mtx/U42G1-f3r10B0.m",[-75248600,-93817985]]], ["TOC",["matff","clas/U42/mtx/U42G1-f3r14B0.m",[-38066968,-37259744]]], ["TOC",["matff","clas/U42/mtx/U42G1-f3r25B0.m",[3033636,118025163]]], ["TOC",["matff","clas/U42/mtx/U42G1-f3r5B0.m",[56126559,96526580]]], ["TOC",["matff","clas/U42/mtx/U42G1-f3r81B0.m",[36994169,6807225]]], ["TOC",["matff","clas/U42/mtx/U42G1-f4r4aB0.m",[-64634504,-79998674]]], ["TOC",["matff","clas/U42/mtx/U42G1-f5r6B0.m",[-57231786,-115938955]]], ["TOC",["perm","clas/U42/mtx/U42G1-p27B0.m",[58456782,129640804]]], ["TOC",["perm","clas/U42/mtx/U42G1-p36B0.m",[19673844,-123531209]]], ["TOC",["perm","clas/U42/mtx/U42G1-p40aB0.m",[308248,-7687680]]], ["TOC",["perm","clas/U42/mtx/U42G1-p40bB0.m",[15659949,-23378134]]], ["TOC",["perm","clas/U42/mtx/U42G1-p45B0.m",[-75817052,-31383110]]], ["TOC",["matff","clas/U42/mtx/U42d2G1-f2r14B0.m",[-111373697,-8180035]]], ["TOC",["matff","clas/U42/mtx/U42d2G1-f2r40B0.m",[19725664,-103780895]]], ["TOC",["matff","clas/U42/mtx/U42d2G1-f2r64B0.m",[53719255,-56861084]]], ["TOC",["matff","clas/U42/mtx/U42d2G1-f2r6B0.m",[133436379,-52124901]]], ["TOC",["matff","clas/U42/mtx/U42d2G1-f2r8B0.m",[84946852,9312127]]], ["TOC",["matff","clas/U42/mtx/U42d2G1-f3r5B0.m",[-19187541,-45518448]]], ["TOC",["perm","clas/U42/mtx/U42d2G1-p27B0.m",[-114100809,181996]]], ["TOC",["perm","clas/U42/mtx/U42d2G1-p36B0.m",[-91912608,88502930]]], ["TOC",["perm","clas/U42/mtx/U42d2G1-p40aB0.m",[111542634,-1687551]]], ["TOC",["perm","clas/U42/mtx/U42d2G1-p40bB0.m",[-17644916,-39248668]]], ["TOC",["perm","clas/U42/mtx/U42d2G1-p45B0.m",[-87067104,-112303585]]], ["TOC",["pres","clas/U42/words/U42G1-P1",[-132148842]]], ["TOC",["check","clas/U42/words/U42G1-check1",[-87969859]]], ["TOC",["cyclic","clas/U42/words/U42G1-cycW1",[-28178722]]], ["TOC",["cyc2ccl","clas/U42/words/U42G1cycW1-cclsW1",[-82022088]]], ["TOC",["cyclic","clas/U42/words/U42d2G1-cycW1",[-133495148]]], ["TOC",["cyc2ccl","clas/U42/words/U42d2G1cycW1-cclsW1",[78750868]]], ["TOC",["matint","clas/U43/gap0/U43G1-Zr140B0.g",[-90197400]]], ["TOC",["matint","clas/U43/gap0/U43G1-Zr189B0.g",[101640512]]], ["TOC",["matint","clas/U43/gap0/U43G1-Zr210B0.g",[-95686246]]], ["TOC",["matint","clas/U43/gap0/U43G1-Zr21B0.g",[-92150417]]], ["TOC",["matint","clas/U43/gap0/U43G1-Zr35aB0.g",[-93457197]]], ["TOC",["matint","clas/U43/gap0/U43G1-Zr35bB0.g",[-131185618]]], ["TOC",["matint","clas/U43/gap0/U43G1-Zr90B0.g",[85869769]]], ["TOC",["matff","clas/U43/mtx/2U43D8G1-f3r6B0.m",[132445977,-90933685]]], ["TOC",["perm","clas/U43/mtx/9U43D8G1-p756aB0.m",[-129320174,104731858]]], ["TOC",["perm","clas/U43/mtx/9U43D8G1-p756bB0.m",[128140108,68787497]]], ["TOC",["perm","clas/U43/mtx/9U43D8G1-p972B0.m",[-112946109,-20072829]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p112B0.m",[52549505,-113190149]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p1134B0.m",[-2081105,24138224]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p252B0.m",[95175289,-24127842]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p280B0.m",[97473667,-96483440]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p2835B0.m",[-21040280,117093823]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p324B0.m",[97941105,55769944]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p4536B0.m",[110265871,1420758]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p5184B0.m",[-90710487,24022025]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p540B0.m",[-8901183,88748754]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p8505B0.m",[77730787,43511748]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p9072B0.m",[96704231,-108398996]]], ["TOC",["matint","clas/U44/gap0/U44G1-Zr442B0.g",[-118351305]]], ["TOC",["matint","clas/U44/gap0/U44G1-Zr52B0.g",[-81459854]]], ["TOC",["perm","clas/U44/mtx/U44G1-p1040B0.m",[26493434,-35888713]]], ["TOC",["perm","clas/U44/mtx/U44G1-p1105B0.m",[102738037,87270221]]], ["TOC",["perm","clas/U44/mtx/U44G1-p325B0.m",[-4568984,73773116]]], ["TOC",["perm","clas/U44/mtx/U44G1-p3264B0.m",[31163023,114008471]]], ["TOC",["check","clas/U44/words/U44G1-check1",[-73579303]]], ["TOC",["find","clas/U44/words/U44G1-find1",[-82272203]]], ["TOC",["matint","clas/U45/gap0/U45G1-Zr105B0.g",[73661285]]], ["TOC",["perm","clas/U45/mtx/U45G1-p1575B0.m",[99242668,-121336230]]], ["TOC",["perm","clas/U45/mtx/U45G1-p756B0.m",[-34242500,118724930]]], ["TOC",["matalg","clas/U52/gap0/U52G1-Ar66aB0.g",[-49682746]]], ["TOC",["matalg","clas/U52/gap0/U52G1-Ar66bB0.g",[130473718]]], ["TOC",["matint","clas/U52/gap0/U52G1-Zr120B0.g",[-18796342]]], ["TOC",["matint","clas/U52/gap0/U52G1-Zr165B0.g",[-51719883]]], ["TOC",["matint","clas/U52/gap0/U52G1-Zr176B0.g",[-18425186]]], ["TOC",["matint","clas/U52/gap0/U52G1-Zr55B0.g",[-29897748]]], ["TOC",["matff","clas/U52/mtx/U52G1-f11r119B0.m",[-92389899,-74596812]]], ["TOC",["matff","clas/U52/mtx/U52G1-f11r176B0.m",[-80326188,70745456]]], ["TOC",["matff","clas/U52/mtx/U52G1-f11r44B0.m",[-41592242,-133398667]]], ["TOC",["matff","clas/U52/mtx/U52G1-f2r24B0.m",[-6646933,95181238]]], ["TOC",["matff","clas/U52/mtx/U52G1-f2r74B0.m",[5774261,9017299]]], ["TOC",["matff","clas/U52/mtx/U52G1-f3r100B0.m",[62413950,64452365]]], ["TOC",["matff","clas/U52/mtx/U52G1-f3r10B0.m",[51319165,95596744]]], ["TOC",["matff","clas/U52/mtx/U52G1-f3r110B0.m",[116424182,-110537773]]], ["TOC",["matff","clas/U52/mtx/U52G1-f3r44B0.m",[57556832,114394891]]], ["TOC",["matff","clas/U52/mtx/U52G1-f3r55B0.m",[73293070,85776857]]], ["TOC",["matff","clas/U52/mtx/U52G1-f4r10aB0.m",[120911867,-98434121]]], ["TOC",["matff","clas/U52/mtx/U52G1-f4r10bB0.m",[95858797,-29754316]]], ["TOC",["matff","clas/U52/mtx/U52G1-f4r5aB0.m",[45995285,109882313]]], ["TOC",["matff","clas/U52/mtx/U52G1-f4r5bB0.m",[-126049394,109882313]]], ["TOC",["matff","clas/U52/mtx/U52G1-f5r120B0.m",[71232364,-62887381]]], ["TOC",["matff","clas/U52/mtx/U52G1-f5r176B0.m",[105144500,-121086734]]], ["TOC",["matff","clas/U52/mtx/U52G1-f5r43B0.m",[109287581,133998303]]], ["TOC",["matff","clas/U52/mtx/U52G1-f5r55aB0.m",[-22699903,43452043]]], ["TOC",["perm","clas/U52/mtx/U52G1-p1408B0.m",[29397990,64478573]]], ["TOC",["perm","clas/U52/mtx/U52G1-p165B0.m",[-50299563,36084085]]], ["TOC",["perm","clas/U52/mtx/U52G1-p176B0.m",[-19765875,-57819741]]], ["TOC",["perm","clas/U52/mtx/U52G1-p20736B0.m",[1158517,-47289782]]], ["TOC",["perm","clas/U52/mtx/U52G1-p297B0.m",[-120967324,-31238974]]], ["TOC",["perm","clas/U52/mtx/U52G1-p3520B0.m",[-7059345,-99124557]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r1024B0.m",[-86621839,-121614257]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r10B0.m",[18378846,132190822]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r20B0.m",[-21669052,-23087583]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r24B0.m",[101180288,-62246288]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r320B0.m",[-3086314,-108864461]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r560B0.m",[97547576,85138825]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r74B0.m",[85329492,-115838053]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r80aB0.m",[-74360706,39943991]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r80bB0.m",[-1356498,-96956770]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f3r10aB0.m",[-1510800,24690676]]], ["TOC",["perm","clas/U52/mtx/U52d2G1-p1408B0.m",[28425851,85558444]]], ["TOC",["perm","clas/U52/mtx/U52d2G1-p165B0.m",[-57172460,20622447]]], ["TOC",["perm","clas/U52/mtx/U52d2G1-p176B0.m",[33610714,-17129253]]], ["TOC",["perm","clas/U52/mtx/U52d2G1-p20736B0.m",[22897081,-85641987]]], ["TOC",["perm","clas/U52/mtx/U52d2G1-p297B0.m",[108956803,74418339]]], ["TOC",["perm","clas/U52/mtx/U52d2G1-p3520B0.m",[90434701,73097833]]], ["TOC",["pres","clas/U52/words/U52G1-P1",[46614605]]], ["TOC",["out","clas/U52/words/U52G1-aW1",[-13861810]]], ["TOC",["out","clas/U52/words/U52G1-aW2",[11605644]]], ["TOC",["cyclic","clas/U52/words/U52G1-cycW1",[118088632]]], ["TOC",["maxes","clas/U52/words/U52G1-max1W1",[119806179]]], ["TOC",["maxes","clas/U52/words/U52G1-max2W1",[87667606]]], ["TOC",["maxes","clas/U52/words/U52G1-max2W2",[-19990869]]], ["TOC",["maxes","clas/U52/words/U52G1-max3W1",[-83076794]]], ["TOC",["maxes","clas/U52/words/U52G1-max4W1",[-95177580]]], ["TOC",["maxes","clas/U52/words/U52G1-max6W1",[-112979582]]], ["TOC",["cyc2ccl","clas/U52/words/U52G1cycW1-cclsW1",[114777033]]], ["TOC",["pres","clas/U52/words/U52d2G1-P1",[40350727]]], ["TOC",["cyclic","clas/U52/words/U52d2G1-cycW1",[67412]]], ["TOC",["maxes","clas/U52/words/U52d2G1-max1W1",[-60089510]]], ["TOC",["maxes","clas/U52/words/U52d2G1-max1W2",[-108620177]]], ["TOC",["maxes","clas/U52/words/U52d2G1-max2W1",[-51320160]]], ["TOC",["maxes","clas/U52/words/U52d2G1-max3W1",[1858877]]], ["TOC",["maxes","clas/U52/words/U52d2G1-max4W1",[76528039]]], ["TOC",["maxes","clas/U52/words/U52d2G1-max5W1",[29377135]]], ["TOC",["maxes","clas/U52/words/U52d2G1-max7W1",[66340331]]], ["TOC",["cyc2ccl","clas/U52/words/U52d2G1cycW1-cclsW1",[54543807]]], ["TOC",["switch","clas/U52/words/U52d2G2-G1W1",[27934901]]], ["TOC",["matff","clas/U53/mtx/U53G1-f3r10cB0.m",[-71294271,53460609]]], ["TOC",["matff","clas/U53/mtx/U53G1-f3r20B0.m",[-76446202,79411588]]], ["TOC",["matff","clas/U53/mtx/U53G1-f3r24B0.m",[-1304893,68462119]]], ["TOC",["matff","clas/U53/mtx/U53G1-f3r30cB0.m",[35003819,112652284]]], ["TOC",["matff","clas/U53/mtx/U53G1-f3r51B0.m",[-21579018,61524488]]], ["TOC",["matff","clas/U53/mtx/U53G1-f9r10aB0.m",[133158952,58876621]]], ["TOC",["matff","clas/U53/mtx/U53G1-f9r10bB0.m",[-7853167,58876621]]], ["TOC",["matff","clas/U53/mtx/U53G1-f9r15aB0.m",[77460563,79938136]]], ["TOC",["matff","clas/U53/mtx/U53G1-f9r15bB0.m",[33945483,79938136]]], ["TOC",["matff","clas/U53/mtx/U53G1-f9r30aB0.m",[-98129367,34398421]]], ["TOC",["matff","clas/U53/mtx/U53G1-f9r30bB0.m",[28155437,-125271146]]], ["TOC",["matff","clas/U53/mtx/U53G1-f9r5aB0.m",[-69792451,-20114666]]], ["TOC",["matff","clas/U53/mtx/U53G1-f9r5bB0.m",[-63271252,-20114666]]], ["TOC",["out","clas/U53/words/U53G1-a2W1",[-58177742]]], ["TOC",["maxes","clas/U53/words/U53G1-max2W1",[-94856361]]], ["TOC",["perm","clas/U54/mtx/U54G1-p17425B0.m",[-36397966,129390617]]], ["TOC",["perm","clas/U54/mtx/U54G1-p52480B0.m",[-77574392,72052412]]], ["TOC",["matint","clas/U62/gap0/U62G1-Zr22B0.g",[-132792550]]], ["TOC",["matint","clas/U62/gap0/U62G1-Zr231B0.g",[60313821]]], ["TOC",["matff","clas/U62/mtx/12U62G1-f4r27aB0.m",[10613592,50813522]]], ["TOC",["perm","clas/U62/mtx/12U62G1-p4704B0.m",[-101774785,-95425735]]], ["TOC",["perm","clas/U62/mtx/12U62G1-p8064B0.m",[86938306,-50833643]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f11r176B0.m",[104896756,108616862]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f11r56B0.m",[27908730,-27439099]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f11r616B0.m",[116387240,49510959]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f3r120B0.m",[-70082088,46151118]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f3r560B0.m",[-40708738,89515918]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f3r56B0.m",[80171047,119446349]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f5r176B0.m",[-114775302,-93260331]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f5r56B0.m",[-14793534,-37421698]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f5r616B0.m",[-21861757,102388853]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f7r176B0.m",[-88318705,-13645495]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f7r56B0.m",[-64594542,128023405]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f7r616B0.m",[125102474,104459903]]], ["TOC",["perm","clas/U62/mtx/2U62G1-p12672aB0.m",[-19489142,-92387753]]], ["TOC",["perm","clas/U62/mtx/2U62G1-p12672bB0.m",[64419162,17018190]]], ["TOC",["perm","clas/U62/mtx/2U62G1-p12672cB0.m",[-117738472,100063194]]], ["TOC",["perm","clas/U62/mtx/2U62G1-p1344B0.m",[-96746660,-8098938]]], ["TOC",["perm","clas/U62/mtx/2U62G1-p2816aB0.m",[-9919004,73998730]]], ["TOC",["perm","clas/U62/mtx/2U62G1-p2816bB0.m",[-65197888,-2928696]]], ["TOC",["perm","clas/U62/mtx/2U62G1-p41472B0.m",[44143153,-113061034]]], ["TOC",["perm","clas/U62/mtx/2U62G1-p5632B0.m",[95706354,53705238]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f121r210aB0.m",[-83006052,74898468]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f121r21aB0.m",[108763121,21124389]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f121r231aB0.m",[-21409946,34760549]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f121r462aB0.m",[113570485,-34512749]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f25r210aB0.m",[131289013,-130678392]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f25r21aB0.m",[-22125326,90478363]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f25r231aB0.m",[47200870,92356985]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f25r462aB0.m",[-93859674,-71746983]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f4r15aB0.m",[15785005,-119828598]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f4r204aB0.m",[127497171,-12364456]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f4r384aB0.m",[119710625,-25413606]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f4r6aB0.m",[98156764,23845688]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f4r720aB0.m",[1216663,-109097078]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f4r84aB0.m",[102028100,35105847]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f4r90aB0.m",[-95435698,-133163104]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f4r924aB0.m",[-127560878,-32752002]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f7r210aB0.m",[37197289,87961912]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f7r21aB0.m",[-72638662,80390354]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f7r231aB0.m",[29301549,122118319]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f7r462aB0.m",[89063052,17828650]]], ["TOC",["perm","clas/U62/mtx/3U62G1-p18711B0.m",[85159923,-15080646]]], ["TOC",["perm","clas/U62/mtx/3U62G1-p19008aB0.m",[-8352431,-6985881]]], ["TOC",["perm","clas/U62/mtx/3U62G1-p19008bB0.m",[-84404157,-104255419]]], ["TOC",["perm","clas/U62/mtx/3U62G1-p19008cB0.m",[-36518996,-52242740]]], ["TOC",["perm","clas/U62/mtx/3U62G1-p2016B0.m",[-83499844,-94106975]]], ["TOC",["perm","clas/U62/mtx/3U62G1-p2079B0.m",[-15617918,-121099217]]], ["TOC",["perm","clas/U62/mtx/4U62G1-p2688B0.m",[35396781,38634506]]], ["TOC",["matff","clas/U62/mtx/6U62G1-f121r120aB0.m",[-76844812,95611100]]], ["TOC",["matff","clas/U62/mtx/6U62G1-f25r120aB0.m",[80043281,32783906]]], ["TOC",["matff","clas/U62/mtx/6U62G1-f4r27aB0.m",[53592681,50813522]]], ["TOC",["matff","clas/U62/mtx/6U62G1-f7r120aB0.m",[4292338,-72363337]]], ["TOC",["perm","clas/U62/mtx/6U62G1-p38016aB0.m",[115315823,-103442961]]], ["TOC",["perm","clas/U62/mtx/6U62G1-p38016bB0.m",[28138103,109024887]]], ["TOC",["perm","clas/U62/mtx/6U62G1-p38016cB0.m",[-83291309,-17325938]]], ["TOC",["perm","clas/U62/mtx/6U62G1-p4032B0.m",[119668217,104174186]]], ["TOC",["matff","clas/U62/mtx/U62G1-f11r22B0.m",[105876888,-46394941]]], ["TOC",["matff","clas/U62/mtx/U62G1-f11r231B0.m",[-121637817,16844877]]], ["TOC",["matff","clas/U62/mtx/U62G1-f11r251B0.m",[-50485223,42023145]]], ["TOC",["matff","clas/U62/mtx/U62G1-f11r440B0.m",[38620526,44520621]]], ["TOC",["matff","clas/U62/mtx/U62G1-f11r616B0.m",[58444823,-65919906]]], ["TOC",["matff","clas/U62/mtx/U62G1-f2r140B0.m",[42892782,-19795048]]], ["TOC",["matff","clas/U62/mtx/U62G1-f2r154B0.m",[131435381,-103954879]]], ["TOC",["matff","clas/U62/mtx/U62G1-f2r20B0.m",[78929209,67521214]]], ["TOC",["matff","clas/U62/mtx/U62G1-f2r34B0.m",[-40302981,118770259]]], ["TOC",["matff","clas/U62/mtx/U62G1-f2r400B0.m",[-85949792,-94085068]]], ["TOC",["matff","clas/U62/mtx/U62G1-f3r210B0.m",[100369997,93157187]]], ["TOC",["matff","clas/U62/mtx/U62G1-f3r21B0.m",[-4669439,-19190277]]], ["TOC",["matff","clas/U62/mtx/U62G1-f3r229B0.m",[49933568,-21740528]]], ["TOC",["matff","clas/U62/mtx/U62G1-f3r364B0.m",[106636200,-134035568]]], ["TOC",["matff","clas/U62/mtx/U62G1-f4r70aB0.m",[35930765,75285548]]], ["TOC",["matff","clas/U62/mtx/U62G1-f4r70bB0.m",[126649385,114789385]]], ["TOC",["matff","clas/U62/mtx/U62G1-f4r896aB0.m",[-95558439,13902304]]], ["TOC",["matff","clas/U62/mtx/U62G1-f5r22B0.m",[-42318656,-51119679]]], ["TOC",["matff","clas/U62/mtx/U62G1-f5r231B0.m",[-35969322,-112008815]]], ["TOC",["matff","clas/U62/mtx/U62G1-f5r252B0.m",[26531882,67559014]]], ["TOC",["matff","clas/U62/mtx/U62G1-f5r440B0.m",[85455555,125018485]]], ["TOC",["matff","clas/U62/mtx/U62G1-f5r616B0.m",[-3067103,-110616148]]], ["TOC",["matff","clas/U62/mtx/U62G1-f7r22B0.m",[-9800171,-117014354]]], ["TOC",["matff","clas/U62/mtx/U62G1-f7r231B0.m",[123139749,-39714473]]], ["TOC",["matff","clas/U62/mtx/U62G1-f7r252B0.m",[49291300,-82033320]]], ["TOC",["matff","clas/U62/mtx/U62G1-f7r439B0.m",[22238893,67944875]]], ["TOC",["matff","clas/U62/mtx/U62G1-f7r616B0.m",[40565128,129478709]]], ["TOC",["perm","clas/U62/mtx/U62G1-p12474B0.m",[660171,-128953529]]], ["TOC",["perm","clas/U62/mtx/U62G1-p1408aB0.m",[29635917,-100794787]]], ["TOC",["perm","clas/U62/mtx/U62G1-p1408bB0.m",[-124057494,18833616]]], ["TOC",["perm","clas/U62/mtx/U62G1-p1408cB0.m",[98628886,-49782471]]], ["TOC",["perm","clas/U62/mtx/U62G1-p20736aB0.m",[-113743555,-86287740]]], ["TOC",["perm","clas/U62/mtx/U62G1-p20736bB0.m",[4689720,128093826]]], ["TOC",["perm","clas/U62/mtx/U62G1-p20736cB0.m",[-61281304,-38305200]]], ["TOC",["perm","clas/U62/mtx/U62G1-p2816aB0.m",[29758525,110670709]]], ["TOC",["perm","clas/U62/mtx/U62G1-p2816bB0.m",[-128527360,-82297667]]], ["TOC",["perm","clas/U62/mtx/U62G1-p2816cB0.m",[-25922293,-50806016]]], ["TOC",["perm","clas/U62/mtx/U62G1-p59136B0.m",[-34349507,111415438]]], ["TOC",["perm","clas/U62/mtx/U62G1-p6237B0.m",[21756798,90148872]]], ["TOC",["perm","clas/U62/mtx/U62G1-p6336aB0.m",[60773858,-2454776]]], ["TOC",["perm","clas/U62/mtx/U62G1-p6336bB0.m",[-67876781,-101214989]]], ["TOC",["perm","clas/U62/mtx/U62G1-p6336cB0.m",[71320140,-7943165]]], ["TOC",["perm","clas/U62/mtx/U62G1-p672B0.m",[41883832,-119342788]]], ["TOC",["perm","clas/U62/mtx/U62G1-p693B0.m",[80011075,132849486]]], ["TOC",["perm","clas/U62/mtx/U62G1-p891B0.m",[-33758355,-102095511]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f11r22aB0.m",[-94587495,14032]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f2r140a0B0.m",[-26001990,54006778]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f2r140a1B0.m",[-129943537,44969268]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f2r140a2B0.m",[-119325519,30594248]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f2r154B0.m",[-44721626,97175721]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f2r20B0.m",[32957911,131281838]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f2r34B0.m",[-19555964,74226004]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f2r400B0.m",[-110153808,70135791]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f3r210aB0.m",[59581404,-112108450]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f3r21aB0.m",[100541190,-70773790]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f3r229aB0.m",[-110893949,82946128]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f3r364aB0.m",[-115141451,-120136105]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f5r22aB0.m",[127745745,58859989]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f7r22aB0.m",[-83283114,78672814]]], ["TOC",["perm","clas/U62/mtx/U62S3G1-p693B0.m",[82931017,-51445734]]], ["TOC",["perm","clas/U62/mtx/U62S3G1-p891B0.m",[44994054,66645969]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f11r22aB0.m",[-18994369,16334399]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f2r140B0.m",[36696581,-80935705]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f2r154B0.m",[121526487,55009857]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f2r20B0.m",[-53547535,85421330]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f2r34B0.m",[85750725,23928042]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f2r400B0.m",[-111007494,-131218683]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f3r210aB0.m",[38097441,-67797225]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f3r21aB0.m",[-13517125,63540903]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f3r229aB0.m",[89141837,54570259]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f3r364aB0.m",[-53381445,-12684210]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f5r22aB0.m",[108599543,71473481]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f7r22aB0.m",[-31038767,-17393281]]], ["TOC",["perm","clas/U62/mtx/U62d2G1-p1408B0.m",[-78375109,3254482]]], ["TOC",["perm","clas/U62/mtx/U62d2G1-p20736B0.m",[-9581899,25873638]]], ["TOC",["perm","clas/U62/mtx/U62d2G1-p6237B0.m",[59767995,-91383161]]], ["TOC",["perm","clas/U62/mtx/U62d2G1-p6336B0.m",[-21183900,40576140]]], ["TOC",["perm","clas/U62/mtx/U62d2G1-p672B0.m",[-25523369,12654911]]], ["TOC",["perm","clas/U62/mtx/U62d2G1-p693B0.m",[-115660627,-7137007]]], ["TOC",["perm","clas/U62/mtx/U62d2G1-p891B0.m",[129866173,15020256]]], ["TOC",["out","clas/U62/words/U62G1-a2W1",[-25509507]]], ["TOC",["out","clas/U62/words/U62G1-a3W1",[101719534]]], ["TOC",["maxes","clas/U62/words/U62G1-max10W1",[-17519713]]], ["TOC",["maxes","clas/U62/words/U62G1-max11W1",[24632921]]], ["TOC",["maxes","clas/U62/words/U62G1-max11W2",[132654305]]], ["TOC",["maxes","clas/U62/words/U62G1-max12W1",[-132834885]]], ["TOC",["maxes","clas/U62/words/U62G1-max13W1",[-57911926]]], ["TOC",["maxes","clas/U62/words/U62G1-max14W1",[-118829535]]], ["TOC",["maxes","clas/U62/words/U62G1-max15W1",[-51744826]]], ["TOC",["maxes","clas/U62/words/U62G1-max16W1",[-31621045]]], ["TOC",["maxes","clas/U62/words/U62G1-max1W1",[77681157]]], ["TOC",["maxes","clas/U62/words/U62G1-max1W2",[21370323]]], ["TOC",["maxes","clas/U62/words/U62G1-max2W1",[-41489840]]], ["TOC",["maxes","clas/U62/words/U62G1-max3W1",[20129642]]], ["TOC",["maxes","clas/U62/words/U62G1-max4W1",[91124264]]], ["TOC",["maxes","clas/U62/words/U62G1-max4W2",[-47760827]]], ["TOC",["maxes","clas/U62/words/U62G1-max5W1",[-42471960]]], ["TOC",["maxes","clas/U62/words/U62G1-max6W1",[44978555]]], ["TOC",["maxes","clas/U62/words/U62G1-max7W1",[-119865794]]], ["TOC",["maxes","clas/U62/words/U62G1-max8W1",[-63428706]]], ["TOC",["maxes","clas/U62/words/U62G1-max8W2",[47859679]]], ["TOC",["maxes","clas/U62/words/U62G1-max9W1",[49438861]]], ["TOC",["perm","clas/U63/mtx/U63G1-p22204B0.m",[-129387006,-85296839]]], ["TOC",["perm","clas/U63/mtx/U63G1-p44226B0.m",[-5726477,107460429]]], ["TOC",["matff","clas/U72/mtx/U72G1-f4r7aB0.m",[13572893,38482878]]], ["TOC",["matff","clas/U72/mtx/U72G1-f4r7bB0.m",[100370941,86400664]]], ["TOC",["perm","clas/U72/mtx/U72G1-p2709B0.m",[70182082,94994402]]], ["TOC",["perm","clas/U72/mtx/U72G1-p2752B0.m",[-58626643,56927715]]], ["TOC",["pres","clas/U72/words/U72G1-P1",[130497806]]], ["TOC",["out","clas/U72/words/U72G1-a2W1",[-14956717]]], ["TOC",["maxes","clas/U72/words/U72G1-max1W1",[22904209]]], ["TOC",["maxes","clas/U72/words/U72G1-max2W1",[-126405096]]], ["TOC",["maxes","clas/U72/words/U72G1-max7W1",[-13017910]]], ["TOC",["perm","clas/U82/mtx/U82G1-p10880B0.m",[-125558626,-28447926]]], ["TOC",["perm","clas/U82/mtx/U82G1-p10965B0.m",[97819035,-129611467]]], ["TOC",["matff","exc/E62/mtx/E62G0-f2r27aB0.m",[-70297767,-96163256]]], ["TOC",["matff","exc/E62/mtx/E62G0-f2r27bB0.m",[-68668655,69131024]]], ["TOC",["matff","exc/E62/mtx/E62G0-f2r78B0.m",[-4960328,48265225]]], ["TOC",["matff","exc/E62/mtx/E62G1-f2r27aB0.m",[-73318547,-70297767]]], ["TOC",["matff","exc/E62/mtx/E62G1-f2r27bB0.m",[-42383541,-68668655]]], ["TOC",["matff","exc/E62/mtx/E62G1-f2r78B0.m",[-25397445,20657147]]], ["TOC",["switch","exc/E62/words/E62G0-G1W1",[64513689]]], ["TOC",["matff","exc/E64/mtx/3E64G0-f4r27B0.m",[-57084589,-124036119]]], ["TOC",["matff","exc/E64/mtx/3E64d2G0-f4r54B0.m",[29419197,-64150288]]], ["TOC",["matff","exc/E64/mtx/E64G0-f4r78B0.m",[-132528501,61287473]]], ["TOC",["matff","exc/E72/mtx/E72G0-f2r132B0.m",[26817200,-121290106]]], ["TOC",["matff","exc/E72/mtx/E72G0-f2r56B0.m",[-10834863,91921389]]], ["TOC",["matff","exc/E74/mtx/E74G0-f4r132aB0.m",[-81050650,-36328227]]], ["TOC",["matff","exc/E74/mtx/E74G0-f4r248aB0.m",[-97730409,-25650350]]], ["TOC",["matff","exc/E74/mtx/E74G0-f4r56aB0.m",[22134173,-120967594]]], ["TOC",["matff","exc/E82/mtx/E82G0-f2r248B0.m",[-49071027,61315514]]], ["TOC",["matff","exc/E82/mtx/E82G1-f2r248B0.m",[96667557,-105591188,110839232,-68636897,-25809603,-71748353,-199247,87987784,50344029]]], ["TOC",["matff","exc/E85/mtx/E85G0-f5r248B0.m",[-93455430,-64034859]]], ["TOC",["matint","exc/F42/gap0/2F42G1-Zr52B0.g",[-104964656]]], ["TOC",["matff","exc/F42/mtx/2F42G1-f37r52B0.m",[103071728,-98691494]]], ["TOC",["matff","exc/F42/mtx/2F42G1-f3r2380B0.m",[-19179090,-6048453]]], ["TOC",["matff","exc/F42/mtx/2F42G1-f3r52B0.m",[-119545741,51871965]]], ["TOC",["matff","exc/F42/mtx/2F42G1-f5r52B0.m",[7798019,-110626250]]], ["TOC",["perm","exc/F42/mtx/2F42G1-p139776B0.m",[-43833682,-50779955]]], ["TOC",["matff","exc/F42/mtx/2F42d2G1-f25r52B0.m",[-129910373,79093558]]], ["TOC",["matff","exc/F42/mtx/2F42d4iG1-f5r52B0.m",[-51144607,52466815]]], ["TOC",["matff","exc/F42/mtx/F42G1-f2r26aB0.m",[87092000,-122290764]]], ["TOC",["perm","exc/F42/mtx/F42G1-p69888aB0.m",[-69475917,-84190098]]], ["TOC",["matff","exc/F42/mtx/F42d2G1-f2r52B0.m",[-130699985,-57245789]]], ["TOC",["out","exc/F42/words/F42G1-aW1",[-12804023]]], ["TOC",["maxes","exc/F42/words/F42G1-max3W1",[88368943]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr104B0.g",[-28104291]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr128B0.g",[-42573218]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr14B0.g",[-125439079]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr168B0.g",[-23126590]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr182aB0.g",[-1602808]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr182bB0.g",[-15191443]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr78B0.g",[-15372865]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr91aB0.g",[-64622020]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr91bB0.g",[-22531406]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr91cB0.g",[18002893]]], ["TOC",["matalg","exc/G23/gap0/G23d2G1-Ar14B0.g",[117470773]]], ["TOC",["matff","exc/G23/mtx/3G23G1-f13r27B0.m",[61117322,-70520800]]], ["TOC",["matff","exc/G23/mtx/3G23G1-f4r27B0.m",[37994813,131397011]]], ["TOC",["matff","exc/G23/mtx/3G23G1-f7r27B0.m",[-87624442,95048033]]], ["TOC",["perm","exc/G23/mtx/3G23G1-p1134B0.m",[-34025902,37530367]]], ["TOC",["matff","exc/G23/mtx/3G23d2G1-f2r54B0.m",[76280437,92930197]]], ["TOC",["matff","exc/G23/mtx/G23G1-f2r14B0.m",[86434273,-43037825]]], ["TOC",["matff","exc/G23/mtx/G23G1-f2r378B0.m",[51818618,71716851]]], ["TOC",["matff","exc/G23/mtx/G23G1-f2r78B0.m",[35032665,-63417450]]], ["TOC",["matff","exc/G23/mtx/G23G1-f2r90aB0.m",[69935322,-78029905]]], ["TOC",["matff","exc/G23/mtx/G23G1-f2r90bB0.m",[-23279448,19285845]]], ["TOC",["matff","exc/G23/mtx/G23G1-f2r90cB0.m",[-84439532,14115789]]], ["TOC",["matff","exc/G23/mtx/G23G1-f3r189aB0.m",[-79955435,-95389552]]], ["TOC",["matff","exc/G23/mtx/G23G1-f3r189bB0.m",[71038188,-112373668]]], ["TOC",["matff","exc/G23/mtx/G23G1-f3r27aB0.m",[-99882363,-16674426]]], ["TOC",["matff","exc/G23/mtx/G23G1-f3r27bB0.m",[-118117076,92962773]]], ["TOC",["matff","exc/G23/mtx/G23G1-f3r49B0.m",[9924097,56775392]]], ["TOC",["matff","exc/G23/mtx/G23G1-f3r729B0.m",[-134099399,25104360]]], ["TOC",["matff","exc/G23/mtx/G23G1-f3r7aB0.m",[-82008745,-123787747]]], ["TOC",["matff","exc/G23/mtx/G23G1-f3r7bB0.m",[37685085,20210123]]], ["TOC",["matff","exc/G23/mtx/G23G1-f4r64aB0.m",[83734468,46041958]]], ["TOC",["matff","exc/G23/mtx/G23d2G1-f13r14B0.m",[98088004,548769]]], ["TOC",["matff","exc/G23/mtx/G23d2G1-f13r434aB0.m",[74284224,37219817]]], ["TOC",["matff","exc/G23/mtx/G23d2G1-f2r14B0.m",[109031783,12990791]]], ["TOC",["matff","exc/G23/mtx/G23d2G1-f3r14B0.m",[73912942,80930425]]], ["TOC",["matff","exc/G23/mtx/G23d2G1-f7r14B0.m",[123985256,-80651691]]], ["TOC",["perm","exc/G23/mtx/G23d2G1-p756B0.m",[42478542,51190038]]], ["TOC",["pres","exc/G23/words/G23G1-P1",[-94264700]]], ["TOC",["out","exc/G23/words/G23G1-aW1",[22691057]]], ["TOC",["cyclic","exc/G23/words/G23G1-cycW1",[36668268]]], ["TOC",["maxes","exc/G23/words/G23G1-max10W1",[52528300]]], ["TOC",["maxes","exc/G23/words/G23G1-max1W1",[18720622]]], ["TOC",["maxes","exc/G23/words/G23G1-max2W1",[-17309167]]], ["TOC",["maxes","exc/G23/words/G23G1-max3W1",[-85688773]]], ["TOC",["maxes","exc/G23/words/G23G1-max4W1",[-102351042]]], ["TOC",["maxes","exc/G23/words/G23G1-max5W1",[-66384110]]], ["TOC",["maxes","exc/G23/words/G23G1-max6W1",[-13544917]]], ["TOC",["maxes","exc/G23/words/G23G1-max7W1",[38209968]]], ["TOC",["maxes","exc/G23/words/G23G1-max8W1",[-64232439]]], ["TOC",["maxes","exc/G23/words/G23G1-max9W1",[123477709]]], ["TOC",["cyc2ccl","exc/G23/words/G23G1cycW1-cclsW1",[-89533622]]], ["TOC",["cyclic","exc/G23/words/G23d2G1-cycW1",[37643139]]], ["TOC",["cyc2ccl","exc/G23/words/G23d2G1cycW1-cclsW1",[65429839]]], ["TOC",["matalg","exc/G24/gap0/2G24G1-Ar12B0.g",[51673463]]], ["TOC",["matint","exc/G24/gap0/G24G1-Zr350B0.g",[61213744]]], ["TOC",["matint","exc/G24/gap0/G24G1-Zr65B0.g",[-108898852]]], ["TOC",["matint","exc/G24/gap0/G24G1-Zr78B0.g",[102360278]]], ["TOC",["matff","exc/G24/mtx/2G24G1-f13r12B0.m",[-28440236,51252205]]], ["TOC",["matff","exc/G24/mtx/2G24G1-f3r12B0.m",[-67944567,-70203068]]], ["TOC",["matff","exc/G24/mtx/2G24G1-f5r12B0.m",[104442327,66070846]]], ["TOC",["matff","exc/G24/mtx/2G24G1-f5r92B0.m",[55965017,73607009]]], ["TOC",["matff","exc/G24/mtx/2G24G1-f7r12B0.m",[125615336,-4580527]]], ["TOC",["matff","exc/G24/mtx/2G24d2G1-f169r12B0.m",[-77376727,-39618687]]], ["TOC",["matff","exc/G24/mtx/2G24d2G1-f25r12B0.m",[-89736189,-64347559]]], ["TOC",["matff","exc/G24/mtx/2G24d2G1-f7r12B0.m",[-121289401,-94829410]]], ["TOC",["matff","exc/G24/mtx/2G24d2G1-f9r12B0.m",[2580368,-42882399]]], ["TOC",["matff","exc/G24/mtx/2G24d2iG1-f3r12B0.m",[-47661060,-125365015]]], ["TOC",["matff","exc/G24/mtx/G24G1-f13r65B0.m",[95368012,125051968]]], ["TOC",["matff","exc/G24/mtx/G24G1-f13r78B0.m",[29876060,-63293875]]], ["TOC",["matff","exc/G24/mtx/G24G1-f2r196B0.m",[-36645448,68701707]]], ["TOC",["matff","exc/G24/mtx/G24G1-f2r36B0.m",[-69550858,-88757509]]], ["TOC",["matff","exc/G24/mtx/G24G1-f3r286B0.m",[-16456749,82354631]]], ["TOC",["matff","exc/G24/mtx/G24G1-f3r64B0.m",[-61178871,47389179]]], ["TOC",["matff","exc/G24/mtx/G24G1-f3r78B0.m",[56754631,88353235]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r14aB0.m",[-118197343,86712798]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r14bB0.m",[-116763231,71178845]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r384aB0.m",[-82553044,-122520759]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r64aB0.m",[-7261211,21213869]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r64bB0.m",[-17269228,-73693460]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r6aB0.m",[-8236036,128010787]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r6bB0.m",[-112136579,-68650117]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r84aB0.m",[6140054,-24586477]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r84bB0.m",[34461358,-26016054]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r896aB0.m",[95398693,-63990656]]], ["TOC",["matff","exc/G24/mtx/G24G1-f5r350B0.m",[49463148,69419323]]], ["TOC",["matff","exc/G24/mtx/G24G1-f5r363aB0.m",[75975508,-74691309]]], ["TOC",["matff","exc/G24/mtx/G24G1-f5r650B0.m",[-50931554,98893669]]], ["TOC",["matff","exc/G24/mtx/G24G1-f5r65B0.m",[-127754414,76430054]]], ["TOC",["matff","exc/G24/mtx/G24G1-f5r78B0.m",[59900505,126954124]]], ["TOC",["matff","exc/G24/mtx/G24G1-f7r65B0.m",[20281126,107078106]]], ["TOC",["matff","exc/G24/mtx/G24G1-f7r78B0.m",[14130029,-11324105]]], ["TOC",["perm","exc/G24/mtx/G24G1-p1365aB0.m",[-115158810,123111142]]], ["TOC",["perm","exc/G24/mtx/G24G1-p1365bB0.m",[-616460,-44852760]]], ["TOC",["perm","exc/G24/mtx/G24G1-p2016B0.m",[-42357015,39146207]]], ["TOC",["perm","exc/G24/mtx/G24G1-p20800B0.m",[40526408,109930642]]], ["TOC",["perm","exc/G24/mtx/G24G1-p2080B0.m",[-71294971,42600740]]], ["TOC",["perm","exc/G24/mtx/G24G1-p416B0.m",[51929690,-126223003]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f13r65B0.m",[-18511590,120275590]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f2r128B0.m",[-115232965,-25353254]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f2r12B0.m",[53559400,10770446]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f2r168B0.m",[-128954098,-65897249]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f2r196B0.m",[-85543658,-1871408]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f2r28B0.m",[125029957,133176954]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f2r36B0.m",[4814614,-66949677]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f2r768B0.m",[-96415813,-49469578]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f3r64B0.m",[-119948435,-17965086]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f5r65B0.m",[-48774137,-119676318]]], ["TOC",["out","exc/G24/words/G24G1-aW1",[-50874917]]], ["TOC",["cyclic","exc/G24/words/G24G1-cycW1",[-125358015]]], ["TOC",["maxes","exc/G24/words/G24G1-max1W1",[-32570630]]], ["TOC",["maxes","exc/G24/words/G24G1-max2W1",[-67243668]]], ["TOC",["maxes","exc/G24/words/G24G1-max3W1",[-120914341]]], ["TOC",["maxes","exc/G24/words/G24G1-max4W1",[-110962718]]], ["TOC",["maxes","exc/G24/words/G24G1-max5W1",[-111848634]]], ["TOC",["maxes","exc/G24/words/G24G1-max6W1",[123150437]]], ["TOC",["maxes","exc/G24/words/G24G1-max7W1",[57286674]]], ["TOC",["maxes","exc/G24/words/G24G1-max8W1",[-76130921]]], ["TOC",["cyc2ccl","exc/G24/words/G24G1cycW1-cclsW1",[73001604]]], ["TOC",["cyclic","exc/G24/words/G24d2G1-cycW1",[109593526]]], ["TOC",["maxes","exc/G24/words/G24d2G1-max1W1",[-121379964]]], ["TOC",["cyc2ccl","exc/G24/words/G24d2G1cycW1-cclsW1",[15196885]]], ["TOC",["matff","exc/G25/mtx/G25G1-f2r124B0.m",[92148540,79477694]]], ["TOC",["matff","exc/G25/mtx/G25G1-f3r124B0.m",[9277469,-110639435]]], ["TOC",["matff","exc/G25/mtx/G25G1-f3r651B0.m",[-12979976,-77711058]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r14B0.m",[-21734629,-122434885]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r182B0.m",[-49451491,-111747915]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r189B0.m",[92584953,-111884055]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r196B0.m",[133353185,128963607]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r27B0.m",[129030369,-36682541]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r371B0.m",[-85524619,-89118573]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r469B0.m",[80896235,37618159]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r483B0.m",[36818705,-14747997]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r64B0.m",[64732108,58156458]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r721B0.m",[83883746,106891019]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r77aB0.m",[73899891,-59347764]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r77bB0.m",[22873994,-70431269]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r792B0.m",[6111574,-111486014]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r7B0.m",[-87260318,-71210308]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r97B0.m",[-112735515,68491092]]], ["TOC",["perm","exc/G25/mtx/G25G1-p3906aB0.m",[-46431010,61004361]]], ["TOC",["perm","exc/G25/mtx/G25G1-p3906bB0.m",[96097769,-18195913]]], ["TOC",["perm","exc/G25/mtx/G25G1-p7750B0.m",[31797774,-26503741]]], ["TOC",["perm","exc/G25/mtx/G25G1-p7875B0.m",[38818423,-40529780]]], ["TOC",["maxes","exc/G25/words/G25G1-max1W1",[116756554]]], ["TOC",["maxes","exc/G25/words/G25G1-max2W1",[-62289962]]], ["TOC",["maxes","exc/G25/words/G25G1-max3W1",[120656499]]], ["TOC",["maxes","exc/G25/words/G25G1-max4W1",[111454099]]], ["TOC",["maxes","exc/G25/words/G25G1-max5W1",[-103005232]]], ["TOC",["maxes","exc/G25/words/G25G1-max6W1",[-45312413]]], ["TOC",["maxes","exc/G25/words/G25G1-max7W1",[-59368457]]], ["TOC",["matff","exc/R27/mtx/R27G1-f27r7aB0.m",[-131893556,-92458544]]], ["TOC",["matff","exc/R27/mtx/R27G1-f2r702B0.m",[26647838,24903191]]], ["TOC",["perm","exc/R27/mtx/R27G1-p19684B0.m",[88111870,99184963]]], ["TOC",["matff","exc/R27/mtx/R27d3G1-f2r702B0.m",[-20100123,-116928782]]], ["TOC",["matff","exc/R27/mtx/R27d3G1-f3r21B0.m",[116304889,96169159]]], ["TOC",["matff","exc/R27/mtx/R27d3G1-f4r741B0.m",[-133120577,-27931998]]], ["TOC",["perm","exc/R27/mtx/R27d3G1-p19684B0.m",[64026943,29236333]]], ["TOC",["out","exc/R27/words/R27G1-a3W1",[-43269740]]], ["TOC",["cyclic","exc/R27/words/R27G1-cycW1",[73942379]]], ["TOC",["maxes","exc/R27/words/R27G1-max1W1",[-86545949]]], ["TOC",["maxes","exc/R27/words/R27G1-max2W1",[131433428]]], ["TOC",["maxes","exc/R27/words/R27G1-max3W1",[-20101048]]], ["TOC",["maxes","exc/R27/words/R27G1-max4W1",[-9024597]]], ["TOC",["maxes","exc/R27/words/R27G1-max5W1",[111943722]]], ["TOC",["maxes","exc/R27/words/R27G1-max6W1",[27654707]]], ["TOC",["cyc2ccl","exc/R27/words/R27G1cycW1-cclsW1",[43823151]]], ["TOC",["cyclic","exc/R27/words/R27d3G1-cycW1",[59432872]]], ["TOC",["maxes","exc/R27/words/R27d3G1-max1W1",[69723780]]], ["TOC",["maxes","exc/R27/words/R27d3G1-max2W1",[-101788691]]], ["TOC",["maxes","exc/R27/words/R27d3G1-max5W1",[-132658566]]], ["TOC",["switch","exc/R27/words/R27d3G2-G1W1",[-63317196]]], ["TOC",["matff","exc/Sz32/mtx/Sz32G1-f32r4aB0.m",[-39583783,77480269]]], ["TOC",["matff","exc/Sz32/mtx/Sz32G1-f41r124bB0.m",[-21014751,125604766]]], ["TOC",["matff","exc/Sz32/mtx/Sz32G1-f5r124aB0.m",[-85113157,34261390]]], ["TOC",["perm","exc/Sz32/mtx/Sz32G1-p1025B0.m",[-74943283,-38599391]]], ["TOC",["perm","exc/Sz32/mtx/Sz32G1-p198400B0.m",[-110250955,-38848881]]], ["TOC",["matff","exc/Sz32/mtx/Sz32d5G1-f2r20B0.m",[40805757,-50580400]]], ["TOC",["matff","exc/Sz32/mtx/Sz32d5G1-f41r124B0.m",[88762614,98369594]]], ["TOC",["matff","exc/Sz32/mtx/Sz32d5G1-f5r124B0.m",[-311161,-5295501]]], ["TOC",["matff","exc/Sz32/mtx/Sz32d5G1-f5r248B0.m",[-9152643,-78092594]]], ["TOC",["perm","exc/Sz32/mtx/Sz32d5G1-p1025B0.m",[-17269389,84602614]]], ["TOC",["cyclic","exc/Sz32/words/Sz32G1-cycW1",[119938586]]], ["TOC",["maxes","exc/Sz32/words/Sz32G1-max1W1",[25385764]]], ["TOC",["maxes","exc/Sz32/words/Sz32G1-max2W1",[8659865]]], ["TOC",["maxes","exc/Sz32/words/Sz32G1-max3W1",[-86222599]]], ["TOC",["maxes","exc/Sz32/words/Sz32G1-max4W1",[-64659392]]], ["TOC",["cyc2ccl","exc/Sz32/words/Sz32G1cycW1-cclsW1",[51030262]]], ["TOC",["cyclic","exc/Sz32/words/Sz32d5G1-cycW1",[67817474]]], ["TOC",["matalg","exc/Sz8/gap0/Sz8G1-Ar14aB0.g",[-8303044]]], ["TOC",["matalg","exc/Sz8/gap0/Sz8G1-Ar14bB0.g",[32973316]]], ["TOC",["matalg","exc/Sz8/gap0/Sz8G1-Ar65aB0.g",[39839717]]], ["TOC",["matalg","exc/Sz8/gap0/Sz8G1-Ar65bB0.g",[-97321434]]], ["TOC",["matalg","exc/Sz8/gap0/Sz8G1-Ar65cB0.g",[104586205]]], ["TOC",["matint","exc/Sz8/gap0/Sz8G1-Zr64B0.g",[-54004418]]], ["TOC",["matint","exc/Sz8/gap0/Sz8G1-Zr91B0.g",[109141593]]], ["TOC",["matff","exc/Sz8/mtx/2Sz8G1-f13r16B0.m",[-89521920,16445770]]], ["TOC",["matff","exc/Sz8/mtx/2Sz8G1-f13r24B0.m",[35347373,-120126973]]], ["TOC",["matff","exc/Sz8/mtx/2Sz8G1-f2r128B0.m",[92649122,89231077]]], ["TOC",["matff","exc/Sz8/mtx/2Sz8G1-f5r8B0.m",[124580415,2446579]]], ["TOC",["matff","exc/Sz8/mtx/2Sz8G1-f7r40B0.m",[-56647718,-17769151]]], ["TOC",["perm","exc/Sz8/mtx/2Sz8G1-p1040B0.m",[33264941,27987108]]], ["TOC",["matff","exc/Sz8/mtx/4Sz8d3G1-f13r48B0.m",[41418737,-71622098]]], ["TOC",["matff","exc/Sz8/mtx/4Sz8d3G1-f7r120B0.m",[-95140584,47871236]]], ["TOC",["perm","exc/Sz8/mtx/4Sz8d3G1-p2080B0.m",[-2101264,70462745]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f125r65aB0.m",[-10776260,-22856988]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f125r65bB0.m",[-45427874,81182393]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f125r65cB0.m",[41924281,21885908]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f13r14aB0.m",[-66344243,-33179604]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f13r14bB0.m",[47820803,-115122686]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f13r35B0.m",[101418339,31923402]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f13r65aB0.m",[-40648355,49826080]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f13r65bB0.m",[-47835996,38687356]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f13r65cB0.m",[52255716,31097004]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f13r91B0.m",[-64703317,-94406067]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f2r64B0.m",[-79065595,-38559232]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f49r14aB0.m",[37509277,17651471]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f5r14aB0.m",[10635806,-121759694]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f5r14bB0.m",[61058488,109021804]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f5r195B0.m",[22203286,-13340200]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f5r35aB0.m",[-59828866,131000197]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f5r35bB0.m",[-130041963,122519422]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f5r35cB0.m",[37522945,44869422]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f5r63B0.m",[-73238756,-16410445]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f7r105B0.m",[38624629,-102965256]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f7r64B0.m",[-123808239,-124110480]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f7r91B0.m",[-67586149,-983233]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f8r16aB0.m",[-13412516,102615520]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f8r4aB0.m",[-123386786,113139979]]], ["TOC",["perm","exc/Sz8/mtx/Sz8G1-p1456B0.m",[-9198948,90911383]]], ["TOC",["perm","exc/Sz8/mtx/Sz8G1-p2080B0.m",[75808414,82588160]]], ["TOC",["perm","exc/Sz8/mtx/Sz8G1-p520B0.m",[-56882349,-114530139]]], ["TOC",["perm","exc/Sz8/mtx/Sz8G1-p560B0.m",[123310580,-17176368]]], ["TOC",["perm","exc/Sz8/mtx/Sz8G1-p65B0.m",[-26581639,38161388]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f13r14B0.m",[-33472415,68968455]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f2r12B0.m",[-7393420,51938477]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f2r48B0.m",[89758950,-102260227]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f2r64B0.m",[5582233,-10305271]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f49r14B0.m",[-33148388,114852150]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f5r105B0.m",[-39927249,36852902]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f5r14B0.m",[128338057,43680009]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f5r195B0.m",[8609772,-123588745]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f5r63B0.m",[17291923,36419726]]], ["TOC",["perm","exc/Sz8/mtx/Sz8d3G1-p1456B0.m",[30603744,103276534]]], ["TOC",["perm","exc/Sz8/mtx/Sz8d3G1-p2080B0.m",[-117851698,-120267967]]], ["TOC",["perm","exc/Sz8/mtx/Sz8d3G1-p520B0.m",[-134036275,-37527552]]], ["TOC",["perm","exc/Sz8/mtx/Sz8d3G1-p560B0.m",[29082476,-77011387]]], ["TOC",["perm","exc/Sz8/mtx/Sz8d3G1-p65B0.m",[18689327,-130297361]]], ["TOC",["pres","exc/Sz8/words/2Sz8G1-P1",[90075528]]], ["TOC",["pres","exc/Sz8/words/4Sz8d3G1-P1",[-128061809]]], ["TOC",["pres","exc/Sz8/words/Sz8G1-P1",[-36123627]]], ["TOC",["pres","exc/Sz8/words/Sz8G1-P2",[-92624787]]], ["TOC",["out","exc/Sz8/words/Sz8G1-a3W1",[102410782]]], ["TOC",["classes","exc/Sz8/words/Sz8G1-cclsW1",[1795836]]], ["TOC",["cyclic","exc/Sz8/words/Sz8G1-cycW1",[63506842]]], ["TOC",["maxes","exc/Sz8/words/Sz8G1-max1W1",[-106792446]]], ["TOC",["maxes","exc/Sz8/words/Sz8G1-max2W1",[-36021094]]], ["TOC",["maxes","exc/Sz8/words/Sz8G1-max3W1",[-25404543]]], ["TOC",["maxes","exc/Sz8/words/Sz8G1-max4W1",[-30852836]]], ["TOC",["pres","exc/Sz8/words/Sz8d3G1-P1",[124335026]]], ["TOC",["classes","exc/Sz8/words/Sz8d3G1-cclsW1",[29754915]]], ["TOC",["cyclic","exc/Sz8/words/Sz8d3G1-cycW1",[94183098]]], ["TOC",["maxes","exc/Sz8/words/Sz8d3G1-max1W1",[23585294]]], ["TOC",["maxes","exc/Sz8/words/Sz8d3G1-max1W2",[56024232]]], ["TOC",["maxes","exc/Sz8/words/Sz8d3G1-max2W1",[-106795528]]], ["TOC",["maxes","exc/Sz8/words/Sz8d3G1-max3W1",[-85586222]]], ["TOC",["maxes","exc/Sz8/words/Sz8d3G1-max4W1",[45488179]]], ["TOC",["maxes","exc/Sz8/words/Sz8d3G1-max5W1",[110343436]]], ["TOC",["switch","exc/Sz8/words/Sz8d3G2-G1W1",[-92862509]]], ["TOC",["matint","exc/TD42/gap0/TD42G1-Zr196B0.g",[116322165]]], ["TOC",["matint","exc/TD42/gap0/TD42G1-Zr26B0.g",[-82811700]]], ["TOC",["matint","exc/TD42/gap0/TD42G1-Zr52B0.g",[58692512]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f13r26B0.m",[-30054543,96988669]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f27r351aB0.m",[-69567476,-46875777]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f27r351bB0.m",[52698257,-13710506]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f27r351cB0.m",[24139637,82594114]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f2r26B0.m",[6861405,27316309]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f3r1053B0.m",[-98355828,-121741633]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f3r196B0.m",[-56202347,82705611]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f3r25B0.m",[-111344188,-71017228]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f3r324B0.m",[44026544,-132500728]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f3r441B0.m",[-12427530,16658292]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f3r52B0.m",[25673339,-110318590]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f7r26B0.m",[-20015577,34677534]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f7r298B0.m",[-68795028,-97476619]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f8r8aB0.m",[93622710,-33344479]]], ["TOC",["perm","exc/TD42/mtx/TD42G1-p819B0.m",[-10501305,-99061254]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f13r26aB0.m",[119078174,21186735]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f2r144B0.m",[18107385,-117405903]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f2r246aB0.m",[92665502,-106689310]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f2r24B0.m",[97460247,-38233255]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f2r26B0.m",[51230031,-77205005]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f2r480B0.m",[45254823,20144904]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f3r196B0.m",[-89122273,-65715266]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f3r52B0.m",[-71771377,-89200195]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f7r26aB0.m",[37443700,77984633]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f7r273aB0.m",[125689997,30751760]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f7r298aB0.m",[75265722,76184115]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f7r467aB0.m",[-63050505,47319765]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f7r52aB0.m",[31761421,84408856]]], ["TOC",["out","exc/TD42/words/TD42G1-a3W1",[79559950]]], ["TOC",["cyclic","exc/TD42/words/TD42G1-cycW1",[109498448]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max1W1",[108517232]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max2W1",[-61427847]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max3W1",[71768213]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max4W1",[24910469]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max5W1",[-39788286]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max6W1",[3858362]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max7W1",[-92433715]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max8W1",[-21999476]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max9W1",[72478709]]], ["TOC",["cyc2ccl","exc/TD42/words/TD42G1cycW1-cclsW1",[-110910802]]], ["TOC",["cyclic","exc/TD42/words/TD42d3G1-cycW1",[-33183597]]], ["TOC",["maxes","exc/TD42/words/TD42d3G1-max4W1",[-80145308]]], ["TOC",["cyc2ccl","exc/TD42/words/TD42d3G1cycW1-cclsW1",[-90186984]]], ["TOC",["matff","exc/TD43/mtx/TD43G1-f27r8aB0.m",[-125396163,-72636897]]], ["TOC",["matff","exc/TD43/mtx/TD43G1-f2r218B0.m",[104905526,75727876]]], ["TOC",["perm","exc/TD43/mtx/TD43G1-p26572B0.m",[-88074186,-38786018]]], ["TOC",["matff","exc/TE62/mtx/2TE62G1-f2r1704B0.m",[98176133,73659634]]], ["TOC",["matff","exc/TE62/mtx/2TE62d2G1-f2r1705B0.m",[132074392,7708207]]], ["TOC",["matff","exc/TE62/mtx/2TE62d2G1-f3r2432B0.m",[31810249,-22770249]]], ["TOC",["matff","exc/TE62/mtx/3TE62G1-f4r27B0.m",[-89255860,-93293123]]], ["TOC",["matff","exc/TE62/mtx/3TE62S3G0-f2r54B0.m",[131898693,-116462187]]], ["TOC",["matff","exc/TE62/mtx/3TE62d2G1-f2r54B0.m",[35844574,-6779317]]], ["TOC",["matff","exc/TE62/mtx/3TE62d3G0-f4r27B0.m",[-8598482,-129967937]]], ["TOC",["matff","exc/TE62/mtx/4TE62G1-f2r1706B0.m",[-28003667,20498628]]], ["TOC",["matff","exc/TE62/mtx/TE62G1-f2r1705aB0.m",[83016690,-94650971]]], ["TOC",["matff","exc/TE62/mtx/TE62G1-f2r78B0.m",[29106086,-122397655]]], ["TOC",["matff","exc/TE62/mtx/TE62S3G0-f2r78B0.m",[83222518,90809456]]], ["TOC",["matff","exc/TE62/mtx/TE62d2G1-f2r78B0.m",[82064475,124956596]]], ["TOC",["matff","exc/TE62/mtx/TE62d2G1-f3r1938B0.m",[31851186,55531837]]], ["TOC",["matff","exc/TE62/mtx/TE62d3G0-f2r78B0.m",[83222518,106730798]]], ["TOC",["out","exc/TE62/words/TE62G1-a2W1",[-59453278]]], ["TOC",["out","exc/TE62/words/TE62G1-a3W1",[63184971]]], ["TOC",["matint","exc/TF42/gap0/TF42G1-Zr52B0.g",[47940272]]], ["TOC",["matint","exc/TF42/gap0/TF42G1-Zr78B0.g",[-46120530]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f13r27aB0.m",[-25896573,-59272896]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f13r27bB0.m",[6846205,93819061]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f13r52B0.m",[-67021491,-93909355]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f13r78B0.m",[-67757828,45547291]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f169r26B0.m",[89078598,14639889]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f25r109aB0.m",[-816843,-102780292]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f25r109bB0.m",[68604401,71301559]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f25r26aB0.m",[72243187,102875993]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f25r26bB0.m",[-118084756,-103588755]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f2r246B0.m",[-19232979,82932839]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f2r26B0.m",[-14435114,-113292396]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f3r124aB0.m",[-54985865,132715076]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f3r124bB0.m",[95513912,-73639791]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f3r26aB0.m",[-54455119,-36800145]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f3r26bB0.m",[53486701,-2015262]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f3r54B0.m",[-111305949,-116611254]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f3r77B0.m",[-80577335,116951646]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f4r2048aB0.m",[-101207181,23217347]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f5r218B0.m",[-120317877,-60225010]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f5r27aB0.m",[79127454,-62374549]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f5r27bB0.m",[27989765,75490599]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f5r52B0.m",[8121505,-80695927]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f5r78B0.m",[-89209549,-12947059]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f9r27aB0.m",[58474367,105018797]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f9r27bB0.m",[69866060,113452040]]], ["TOC",["perm","exc/TF42/mtx/TF42G1-p12480B0.m",[-23470927,51049576]]], ["TOC",["perm","exc/TF42/mtx/TF42G1-p14976B0.m",[121478237,-76779913]]], ["TOC",["perm","exc/TF42/mtx/TF42G1-p1600B0.m",[-37211084,-38897253]]], ["TOC",["perm","exc/TF42/mtx/TF42G1-p1755B0.m",[58998439,70853112]]], ["TOC",["perm","exc/TF42/mtx/TF42G1-p2304B0.m",[-120477733,-29507280]]], ["TOC",["perm","exc/TF42/mtx/TF42G1-p2925B0.m",[68358721,-45087045]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f13r1374B0.m",[72048076,-47464220]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f13r27aB0.m",[-71944661,-5801480]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f13r27bB0.m",[35975952,-60429928]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f13r78B0.m",[30775775,-60970092]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f2r246B0.m",[97755809,71082518]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f2r26B0.m",[-38675641,-39644523]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f3r52B0.m",[124402546,-54811053]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f3r77B0.m",[-109209670,113053227]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f5r218B0.m",[106581594,-105082374]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f5r27B0.m",[6496008,128767148]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f5r52B0.m",[24617056,99357518]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f5r78B0.m",[-91803490,-110346379]]], ["TOC",["perm","exc/TF42/mtx/TF42d2G1-p1755B0.m",[-52088433,-100606049]]], ["TOC",["perm","exc/TF42/mtx/TF42d2G1-p2304B0.m",[70494450,115546319]]], ["TOC",["pres","exc/TF42/words/TF42G1-P1",[-124990063]]], ["TOC",["cyclic","exc/TF42/words/TF42G1-cycW1",[112883162]]], ["TOC",["maxes","exc/TF42/words/TF42G1-max1W1",[-52963060]]], ["TOC",["maxes","exc/TF42/words/TF42G1-max2W1",[-21832158]]], ["TOC",["maxes","exc/TF42/words/TF42G1-max3W1",[-31485219]]], ["TOC",["maxes","exc/TF42/words/TF42G1-max4W1",[45633895]]], ["TOC",["maxes","exc/TF42/words/TF42G1-max5W1",[-2996082]]], ["TOC",["maxes","exc/TF42/words/TF42G1-max6W1",[-10856115]]], ["TOC",["maxes","exc/TF42/words/TF42G1-max7W1",[-18055979]]], ["TOC",["maxes","exc/TF42/words/TF42G1-max8W1",[-74592193]]], ["TOC",["cyc2ccl","exc/TF42/words/TF42G1cycW1-cclsW1",[105460752]]], ["TOC",["pres","exc/TF42/words/TF42d2G1-P1",[69865752]]], ["TOC",["maxes","exc/TF42/words/TF42d2G1-max1W1",[72641225]]], ["TOC",["matalg","lin/L2101/gap0/2L2101G1-Ar102aB0.g",[37573240]]], ["TOC",["matalg","lin/L2101/gap0/L2101G1-Ar102aB0.g",[123113277]]], ["TOC",["matint","lin/L2101/gap0/L2101G1-Zr101B0.g",[133076037]]], ["TOC",["out","lin/L2101/words/L2101G1-a2W1",[108609048]]], ["TOC",["maxes","lin/L2101/words/L2101G1-max1W1",[77543199]]], ["TOC",["maxes","lin/L2101/words/L2101G1-max2W1",[50083925]]], ["TOC",["maxes","lin/L2101/words/L2101G1-max3W1",[75530552]]], ["TOC",["maxes","lin/L2101/words/L2101G1-max4W1",[-85356476]]], ["TOC",["maxes","lin/L2101/words/L2101G1-max5W1",[20202362]]], ["TOC",["matalg","lin/L2103/gap0/2L2103G1-Ar104aB0.g",[91016307]]], ["TOC",["matalg","lin/L2103/gap0/L2103G1-Ar104aB0.g",[84974515]]], ["TOC",["matint","lin/L2103/gap0/L2103G1-Zr103B0.g",[124419151]]], ["TOC",["out","lin/L2103/words/L2103G1-a2W1",[-10449653]]], ["TOC",["maxes","lin/L2103/words/L2103G1-max1W1",[1168567]]], ["TOC",["maxes","lin/L2103/words/L2103G1-max2W1",[98771752]]], ["TOC",["maxes","lin/L2103/words/L2103G1-max3W1",[117428427]]], ["TOC",["maxes","lin/L2103/words/L2103G1-max4W1",[-15214501]]], ["TOC",["maxes","lin/L2103/words/L2103G1-max5W1",[-42252537]]], ["TOC",["matalg","lin/L2107/gap0/2L2107G1-Ar108aB0.g",[41610451]]], ["TOC",["matalg","lin/L2107/gap0/L2107G1-Ar108aB0.g",[74687386]]], ["TOC",["matint","lin/L2107/gap0/L2107G1-Zr107B0.g",[15234824]]], ["TOC",["out","lin/L2107/words/L2107G1-a2W1",[70000060]]], ["TOC",["maxes","lin/L2107/words/L2107G1-max1W1",[-77221955]]], ["TOC",["maxes","lin/L2107/words/L2107G1-max2W1",[50083925]]], ["TOC",["maxes","lin/L2107/words/L2107G1-max3W1",[117428427]]], ["TOC",["maxes","lin/L2107/words/L2107G1-max4W1",[-15986133]]], ["TOC",["matalg","lin/L2109/gap0/2L2109G1-Ar110aB0.g",[60416506]]], ["TOC",["matalg","lin/L2109/gap0/L2109G1-Ar110aB0.g",[-45121876]]], ["TOC",["matint","lin/L2109/gap0/L2109G1-Zr109B0.g",[-25735107]]], ["TOC",["out","lin/L2109/words/L2109G1-a2W1",[-68559136]]], ["TOC",["maxes","lin/L2109/words/L2109G1-max1W1",[-9769840]]], ["TOC",["maxes","lin/L2109/words/L2109G1-max2W1",[-52742966]]], ["TOC",["maxes","lin/L2109/words/L2109G1-max3W1",[20196712]]], ["TOC",["maxes","lin/L2109/words/L2109G1-max4W1",[-33392236]]], ["TOC",["maxes","lin/L2109/words/L2109G1-max5W1",[-95740597]]], ["TOC",["matalg","lin/L211/gap0/L211G1-Ar12aB0.g",[27330559]]], ["TOC",["matalg","lin/L211/gap0/L211G1-Ar12bB0.g",[16381729]]], ["TOC",["matalg","lin/L211/gap0/L211G1-Ar5aB0.g",[-134129477]]], ["TOC",["matalg","lin/L211/gap0/L211G1-Ar5bB0.g",[-10868109]]], ["TOC",["matint","lin/L211/gap0/L211G1-Zr10aB0.g",[96612861]]], ["TOC",["matint","lin/L211/gap0/L211G1-Zr10bB0.g",[-43431548]]], ["TOC",["matint","lin/L211/gap0/L211G1-Zr10cB0.g",[-47896152]]], ["TOC",["matint","lin/L211/gap0/L211G1-Zr11B0.g",[-2935033]]], ["TOC",["matff","lin/L211/mtx/2L211G1-f11r10B0.m",[-89819765,75567976]]], ["TOC",["matff","lin/L211/mtx/2L211G1-f11r2B0.m",[117641548,74616249]]], ["TOC",["matff","lin/L211/mtx/2L211G1-f11r4B0.m",[-109242231,56040120]]], ["TOC",["matff","lin/L211/mtx/2L211G1-f11r6B0.m",[52557305,-55918315]]], ["TOC",["matff","lin/L211/mtx/2L211G1-f11r8B0.m",[45283555,-83694066]]], ["TOC",["matff","lin/L211/mtx/L211G1-f11r11B0.m",[-13081487,-16982456]]], ["TOC",["matff","lin/L211/mtx/L211G1-f11r3B0.m",[-126750382,-73939341]]], ["TOC",["matff","lin/L211/mtx/L211G1-f11r5B0.m",[49307670,69480485]]], ["TOC",["matff","lin/L211/mtx/L211G1-f11r7B0.m",[86809882,-124515293]]], ["TOC",["matff","lin/L211/mtx/L211G1-f11r9B0.m",[75379312,53671949]]], ["TOC",["matff","lin/L211/mtx/L211G1-f2r10B0.m",[75057919,-104988621]]], ["TOC",["matff","lin/L211/mtx/L211G1-f2r10bB0.m",[38955196,127675444]]], ["TOC",["matff","lin/L211/mtx/L211G1-f2r24B0.m",[-78731294,-81476966]]], ["TOC",["matff","lin/L211/mtx/L211G1-f3r10B0.m",[-60642449,-82170516]]], ["TOC",["matff","lin/L211/mtx/L211G1-f3r24B0.m",[-112790947,866855]]], ["TOC",["matff","lin/L211/mtx/L211G1-f3r5aB0.m",[-18170891,-41767362]]], ["TOC",["matff","lin/L211/mtx/L211G1-f3r5bB0.m",[-29296439,5263909]]], ["TOC",["matff","lin/L211/mtx/L211G1-f4r12aB0.m",[104289404,-23317320]]], ["TOC",["matff","lin/L211/mtx/L211G1-f4r12bB0.m",[104289404,-122438266]]], ["TOC",["matff","lin/L211/mtx/L211G1-f4r5aB0.m",[-5236219,-90340470]]], ["TOC",["matff","lin/L211/mtx/L211G1-f4r5bB0.m",[13882788,46901805]]], ["TOC",["matff","lin/L211/mtx/L211G1-f5r10aB0.m",[117734711,82239949]]], ["TOC",["matff","lin/L211/mtx/L211G1-f5r10bB0.m",[119720900,44516691]]], ["TOC",["matff","lin/L211/mtx/L211G1-f5r11B0.m",[122075473,-83625436]]], ["TOC",["matff","lin/L211/mtx/L211G1-f5r5aB0.m",[-81550380,-131523481]]], ["TOC",["matff","lin/L211/mtx/L211G1-f5r5bB0.m",[-22534346,41800212]]], ["TOC",["matff","lin/L211/mtx/L211G1-f9r12aB0.m",[-127642448,-73986554]]], ["TOC",["matff","lin/L211/mtx/L211G1-f9r12bB0.m",[84450683,-61805314]]], ["TOC",["perm","lin/L211/mtx/L211G1-p11aB0.m",[-123271105,38306543]]], ["TOC",["perm","lin/L211/mtx/L211G1-p11bB0.m",[-123271105,-97689525]]], ["TOC",["perm","lin/L211/mtx/L211G1-p12B0.m",[-118120972,-27478863]]], ["TOC",["perm","lin/L211/mtx/L211G1-p55B0.m",[107363984,-70942041]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f11r11B0.m",[-83346262,-127633464]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f11r3B0.m",[105616142,51353074]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f11r5B0.m",[-40684042,69480485]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f11r7B0.m",[23007475,120910396]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f11r9B0.m",[47008813,122974778]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f2r10aB0.m",[-104455060,13626008]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f2r10bB0.m",[-64156113,112772673]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f4r12aB0.m",[-113262497,39895390]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f4r12bB0.m",[99408470,-26459309]]], ["TOC",["perm","lin/L211/mtx/L211d2G1-p12B0.m",[85376259,78759073]]], ["TOC",["perm","lin/L211/mtx/L211d2G1-p22B0.m",[81251837,-32416322]]], ["TOC",["perm","lin/L211/mtx/L211d2G1-p55aB0.m",[2562443,-64825489]]], ["TOC",["perm","lin/L211/mtx/L211d2G1-p55bB0.m",[-60945265,-71912953]]], ["TOC",["perm","lin/L211/mtx/L211d2G1-p66B0.m",[102861998,46609527]]], ["TOC",["pres","lin/L211/words/L211G1-P1",[94801920]]], ["TOC",["check","lin/L211/words/L211G1-check1",[100335170]]], ["TOC",["cyclic","lin/L211/words/L211G1-cycW1",[-123110936]]], ["TOC",["maxes","lin/L211/words/L211G1-max1W1",[-121742273]]], ["TOC",["maxes","lin/L211/words/L211G1-max2W1",[69578701]]], ["TOC",["maxes","lin/L211/words/L211G1-max3W1",[1157952]]], ["TOC",["maxes","lin/L211/words/L211G1-max4W1",[-119009509]]], ["TOC",["cyc2ccl","lin/L211/words/L211G1cycW1-cclsW1",[-37044661]]], ["TOC",["pres","lin/L211/words/L211d2G1-P1",[90675863]]], ["TOC",["check","lin/L211/words/L211d2G1-check1",[-13733630]]], ["TOC",["cyclic","lin/L211/words/L211d2G1-cycW1",[-77013908]]], ["TOC",["maxes","lin/L211/words/L211d2G1-max1W1",[-125255449]]], ["TOC",["maxes","lin/L211/words/L211d2G1-max2W1",[-111690704]]], ["TOC",["maxes","lin/L211/words/L211d2G1-max3W1",[-121742273]]], ["TOC",["maxes","lin/L211/words/L211d2G1-max4W1",[35382633]]], ["TOC",["maxes","lin/L211/words/L211d2G1-max5W1",[-69908688]]], ["TOC",["cyc2ccl","lin/L211/words/L211d2G1cycW1-cclsW1",[-95306297]]], ["TOC",["matalg","lin/L2113/gap0/2L2113G1-Ar114aB0.g",[19005607]]], ["TOC",["matalg","lin/L2113/gap0/L2113G1-Ar114aB0.g",[-29967839]]], ["TOC",["matint","lin/L2113/gap0/L2113G1-Zr113B0.g",[-17556175]]], ["TOC",["out","lin/L2113/words/L2113G1-a2W1",[-31749984]]], ["TOC",["maxes","lin/L2113/words/L2113G1-max1W1",[65275271]]], ["TOC",["maxes","lin/L2113/words/L2113G1-max2W1",[-41665027]]], ["TOC",["maxes","lin/L2113/words/L2113G1-max3W1",[40679634]]], ["TOC",["maxes","lin/L2113/words/L2113G1-max4W1",[70293248]]], ["TOC",["maxes","lin/L2113/words/L2113G1-max5W1",[7846482]]], ["TOC",["matalg","lin/L2127/gap0/2L2127G1-Ar128aB0.g",[64922225]]], ["TOC",["matalg","lin/L2127/gap0/L2127G1-Ar128aB0.g",[-34498964]]], ["TOC",["matint","lin/L2127/gap0/L2127G1-Zr127B0.g",[108137535]]], ["TOC",["out","lin/L2127/words/L2127G1-a2W1",[64553547]]], ["TOC",["maxes","lin/L2127/words/L2127G1-max1W1",[-6184603]]], ["TOC",["maxes","lin/L2127/words/L2127G1-max2W1",[98771752]]], ["TOC",["maxes","lin/L2127/words/L2127G1-max3W1",[-52742966]]], ["TOC",["maxes","lin/L2127/words/L2127G1-max4W1",[-81542613]]], ["TOC",["maxes","lin/L2127/words/L2127G1-max5W1",[-99847805]]], ["TOC",["matalg","lin/L2128/gap0/L2128G1-Ar129aB0.g",[43545524]]], ["TOC",["matint","lin/L2128/gap0/L2128G1-Zr128B0.g",[-77487496]]], ["TOC",["matalg","lin/L213/gap0/L213G1-Ar12aB0.g",[-59203708]]], ["TOC",["matalg","lin/L213/gap0/L213G1-Ar12bB0.g",[120191936]]], ["TOC",["matalg","lin/L213/gap0/L213G1-Ar12cB0.g",[20003507]]], ["TOC",["matint","lin/L213/gap0/L213G1-Zr13B0.g",[123011361]]], ["TOC",["matint","lin/L213/gap0/L213G1-Zr14aB0.g",[-123871088]]], ["TOC",["matint","lin/L213/gap0/L213G1-Zr14bB0.g",[-105815349]]], ["TOC",["matint","lin/L213/gap0/L213G1-Zr14cB0.g",[-7881673]]], ["TOC",["matint","lin/L213/gap0/L213G1-Zr36B0.g",[83179307]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f13r10B0.m",[-112678870,-54337710]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f13r12B0.m",[-10521917,-39316113]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f13r2B0.m",[98225255,13324548]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f13r4B0.m",[-123327193,-131294325]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f13r6B0.m",[77060268,4717066]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f13r8B0.m",[98600107,-4412184]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f27r12aB0.m",[-28729506,5105077]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f27r12bB0.m",[-5973322,47284698]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f27r12cB0.m",[-62161460,26516967]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f3r14B0.m",[88377861,-102827991]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f3r6aB0.m",[75322658,-28442581]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f3r6bB0.m",[-21583259,-66373345]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f49r14bB0.m",[44782079,-15650922]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f49r14cB0.m",[109663018,39620947]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f49r6aB0.m",[-35361606,71477118]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f49r6bB0.m",[-35361606,41211266]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f7r14aB0.m",[-67537133,108203959]]], ["TOC",["matff","lin/L213/mtx/2L213d2G1-f3r12aB0.m",[100717735,-74660203]]], ["TOC",["matff","lin/L213/mtx/L213G1-f13r11B0.m",[53072034,3244024]]], ["TOC",["matff","lin/L213/mtx/L213G1-f13r13B0.m",[104578255,-42907957]]], ["TOC",["matff","lin/L213/mtx/L213G1-f13r3B0.m",[63481373,105550590]]], ["TOC",["matff","lin/L213/mtx/L213G1-f13r5B0.m",[-39086473,41661632]]], ["TOC",["matff","lin/L213/mtx/L213G1-f13r7B0.m",[-113197285,-129463306]]], ["TOC",["matff","lin/L213/mtx/L213G1-f13r9B0.m",[127113446,64877555]]], ["TOC",["matff","lin/L213/mtx/L213G1-f2r14B0.m",[81634284,117900590]]], ["TOC",["matff","lin/L213/mtx/L213G1-f3r13B0.m",[-42206942,-74309834]]], ["TOC",["matff","lin/L213/mtx/L213G1-f4r6aB0.m",[65000190,89312086]]], ["TOC",["matff","lin/L213/mtx/L213G1-f4r6bB0.m",[65000190,-122360638]]], ["TOC",["matff","lin/L213/mtx/L213G1-f7r12B0.m",[-22464759,-111035448]]], ["TOC",["matff","lin/L213/mtx/L213G1-f8r12aB0.m",[-23961287,-122239881]]], ["TOC",["matff","lin/L213/mtx/L213G1-f8r12bB0.m",[15467192,110047527]]], ["TOC",["matff","lin/L213/mtx/L213G1-f8r12cB0.m",[81786641,81442952]]], ["TOC",["perm","lin/L213/mtx/L213G1-p14B0.m",[-91947287,82787547]]], ["TOC",["matff","lin/L213/mtx/L213d2G1-f13r3aB0.m",[-43727987,36597755]]], ["TOC",["matff","lin/L213/mtx/L213d2G1-f2r12aB0.m",[10533130,29850182]]], ["TOC",["matff","lin/L213/mtx/L213d2G1-f2r14B0.m",[-22148341,84612921]]], ["TOC",["perm","lin/L213/mtx/L213d2G1-p14B0.m",[-19041356,-77302057]]], ["TOC",["perm","lin/L213/mtx/L213d2G1-p78B0.m",[-115427218,-95892825]]], ["TOC",["perm","lin/L213/mtx/L213d2G1-p91aB0.m",[13099628,-115148298]]], ["TOC",["out","lin/L213/words/L213G1-a2W1",[-84768428]]], ["TOC",["check","lin/L213/words/L213G1-check1",[114923626]]], ["TOC",["cyclic","lin/L213/words/L213G1-cycW1",[-122829237]]], ["TOC",["cyc2ccl","lin/L213/words/L213G1cycW1-cclsW1",[98128951]]], ["TOC",["cyclic","lin/L213/words/L213d2G1-cycW1",[93407541]]], ["TOC",["cyc2ccl","lin/L213/words/L213d2G1cycW1-cclsW1",[-61538061]]], ["TOC",["matalg","lin/L2131/gap0/2L2131G1-Ar132aB0.g",[65865488]]], ["TOC",["matalg","lin/L2131/gap0/L2131G1-Ar132aB0.g",[104797209]]], ["TOC",["matint","lin/L2131/gap0/L2131G1-Zr131B0.g",[-68982411]]], ["TOC",["out","lin/L2131/words/L2131G1-a2W1",[79429276]]], ["TOC",["maxes","lin/L2131/words/L2131G1-max1W1",[66564897]]], ["TOC",["maxes","lin/L2131/words/L2131G1-max2W1",[-52742966]]], ["TOC",["maxes","lin/L2131/words/L2131G1-max3W1",[98771752]]], ["TOC",["maxes","lin/L2131/words/L2131G1-max4W1",[-97155444]]], ["TOC",["maxes","lin/L2131/words/L2131G1-max5W1",[82760492]]], ["TOC",["matalg","lin/L2137/gap0/2L2137G1-Ar138aB0.g",[-16526672]]], ["TOC",["matalg","lin/L2137/gap0/L2137G1-Ar138aB0.g",[117152392]]], ["TOC",["matint","lin/L2137/gap0/L2137G1-Zr137B0.g",[40430567]]], ["TOC",["out","lin/L2137/words/L2137G1-a2W1",[-102504060]]], ["TOC",["maxes","lin/L2137/words/L2137G1-max1W1",[-40146201]]], ["TOC",["maxes","lin/L2137/words/L2137G1-max2W1",[98771752]]], ["TOC",["maxes","lin/L2137/words/L2137G1-max3W1",[75295270]]], ["TOC",["maxes","lin/L2137/words/L2137G1-max4W1",[-102190056]]], ["TOC",["maxes","lin/L2137/words/L2137G1-max5W1",[-42658397]]], ["TOC",["matalg","lin/L2139/gap0/2L2139G1-Ar140aB0.g",[-126063759]]], ["TOC",["matalg","lin/L2139/gap0/L2139G1-Ar140aB0.g",[22634312]]], ["TOC",["matint","lin/L2139/gap0/L2139G1-Zr139B0.g",[-129819005]]], ["TOC",["out","lin/L2139/words/L2139G1-a2W1",[18854625]]], ["TOC",["maxes","lin/L2139/words/L2139G1-max1W1",[35356411]]], ["TOC",["maxes","lin/L2139/words/L2139G1-max2W1",[-52742966]]], ["TOC",["maxes","lin/L2139/words/L2139G1-max3W1",[-120005548]]], ["TOC",["maxes","lin/L2139/words/L2139G1-max4W1",[90241214]]], ["TOC",["maxes","lin/L2139/words/L2139G1-max5W1",[59236432]]], ["TOC",["matalg","lin/L2149/gap0/2L2149G1-Ar150aB0.g",[-11696483]]], ["TOC",["matalg","lin/L2149/gap0/L2149G1-Ar150aB0.g",[-37170719]]], ["TOC",["matint","lin/L2149/gap0/L2149G1-Zr149B0.g",[102968573]]], ["TOC",["out","lin/L2149/words/L2149G1-a2W1",[-7907886]]], ["TOC",["maxes","lin/L2149/words/L2149G1-max1W1",[-66969697]]], ["TOC",["maxes","lin/L2149/words/L2149G1-max2W1",[-52742966]]], ["TOC",["maxes","lin/L2149/words/L2149G1-max3W1",[-133853492]]], ["TOC",["maxes","lin/L2149/words/L2149G1-max4W1",[-87873653]]], ["TOC",["maxes","lin/L2149/words/L2149G1-max5W1",[47288309]]], ["TOC",["matalg","lin/L2151/gap0/2L2151G1-Ar152aB0.g",[-90245408]]], ["TOC",["matalg","lin/L2151/gap0/L2151G1-Ar152aB0.g",[53971443]]], ["TOC",["matint","lin/L2151/gap0/L2151G1-Zr151B0.g",[119951693]]], ["TOC",["out","lin/L2151/words/L2151G1-a2W1",[52782258]]], ["TOC",["maxes","lin/L2151/words/L2151G1-max1W1",[-6133708]]], ["TOC",["maxes","lin/L2151/words/L2151G1-max2W1",[117428427]]], ["TOC",["maxes","lin/L2151/words/L2151G1-max3W1",[-52742966]]], ["TOC",["maxes","lin/L2151/words/L2151G1-max4W1",[122228493]]], ["TOC",["maxes","lin/L2151/words/L2151G1-max5W1",[-33391375]]], ["TOC",["maxes","lin/L2151/words/L2151G1-max6W1",[113371709]]], ["TOC",["maxes","lin/L2151/words/L2151G1-max7W1",[-99321456]]], ["TOC",["matalg","lin/L2157/gap0/2L2157G1-Ar158aB0.g",[61720223]]], ["TOC",["matalg","lin/L2157/gap0/L2157G1-Ar158aB0.g",[-104420675]]], ["TOC",["matint","lin/L2157/gap0/L2157G1-Zr157B0.g",[9690336]]], ["TOC",["out","lin/L2157/words/L2157G1-a2W1",[48223269]]], ["TOC",["maxes","lin/L2157/words/L2157G1-max1W1",[32840683]]], ["TOC",["maxes","lin/L2157/words/L2157G1-max2W1",[98771752]]], ["TOC",["maxes","lin/L2157/words/L2157G1-max3W1",[-64843294]]], ["TOC",["maxes","lin/L2157/words/L2157G1-max4W1",[94147488]]], ["TOC",["matint","lin/L216/gap0/L216G1-Zr120B0.g",[51019731]]], ["TOC",["matint","lin/L216/gap0/L216G1-Zr16B0.g",[-24057002]]], ["TOC",["matint","lin/L216/gap0/L216G1-Zr17aB0.g",[113536300]]], ["TOC",["matint","lin/L216/gap0/L216G1-Zr34B0.g",[91957897]]], ["TOC",["matint","lin/L216/gap0/L216G1-Zr68B0.g",[-22096638]]], ["TOC",["matff","lin/L216/mtx/L216G1-f16r2aB0.m",[-97704224,-81575292]]], ["TOC",["matff","lin/L216/mtx/L216G1-f17r15B0.m",[-30169332,56986142]]], ["TOC",["matff","lin/L216/mtx/L216G1-f17r17B0.m",[-113610380,-12549422]]], ["TOC",["matff","lin/L216/mtx/L216G1-f17r34B0.m",[61736652,73455961]]], ["TOC",["matff","lin/L216/mtx/L216G1-f17r68B0.m",[-62662568,-59797617]]], ["TOC",["matff","lin/L216/mtx/L216G1-f3r16B0.m",[113301689,128988142]]], ["TOC",["matff","lin/L216/mtx/L216G1-f5r16B0.m",[13115658,23713490]]], ["TOC",["matff","lin/L216/mtx/L216G1-f9r17aB0.m",[-121570067,-7482952]]], ["TOC",["matff","lin/L216/mtx/L216G1-f9r17bB0.m",[-51916978,-114933949]]], ["TOC",["perm","lin/L216/mtx/L216G1-p17B0.m",[-25860833,85122705]]], ["TOC",["matff","lin/L216/mtx/L216d2G1-f4r4aB0.m",[-47692808,15333732]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f17r15aB0.m",[88941287,-15835311]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f17r17aB0.m",[-71828116,-16990703]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f17r34aB0.m",[-25415718,82510637]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f17r68B0.m",[117656541,101172947]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f25r60aB0.m",[-89876973,-104154660]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f25r60bB0.m",[-69261645,1618576]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f2r16aB0.m",[11242384,24314152]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f2r16bB0.m",[21535900,-45929875]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f2r32B0.m",[55087905,-27851192]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f2r8aB0.m",[84946852,63609119]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f2r8bB0.m",[100647892,-43619498]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f3r16aB0.m",[43948758,-10148193]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f5r16aB0.m",[-28597828,130368598]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f5r17aB0.m",[98773480,108401653]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f9r60aB0.m",[37571756,-14947100]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f9r60bB0.m",[-61514124,69703825]]], ["TOC",["out","lin/L216/words/L216G1-a2W1",[-12944666]]], ["TOC",["out","lin/L216/words/L216G1-a4W1",[-100971246]]], ["TOC",["check","lin/L216/words/L216G1-check1",[62665234]]], ["TOC",["cyclic","lin/L216/words/L216G1-cycW1",[107163383]]], ["TOC",["cyc2ccl","lin/L216/words/L216G1cycW1-cclsW1",[-123323472]]], ["TOC",["cyclic","lin/L216/words/L216d2G1-cycW1",[-48808806]]], ["TOC",["cyc2ccl","lin/L216/words/L216d2G1cycW1-cclsW1",[32833683]]], ["TOC",["cyclic","lin/L216/words/L216d4G1-cycW1",[-74070453]]], ["TOC",["cyc2ccl","lin/L216/words/L216d4G1cycW1-cclsW1",[-22952011]]], ["TOC",["matalg","lin/L2163/gap0/2L2163G1-Ar164aB0.g",[-120858578]]], ["TOC",["matalg","lin/L2163/gap0/L2163G1-Ar164aB0.g",[56363135]]], ["TOC",["matint","lin/L2163/gap0/L2163G1-Zr163B0.g",[44887671]]], ["TOC",["out","lin/L2163/words/L2163G1-a2W1",[33372122]]], ["TOC",["maxes","lin/L2163/words/L2163G1-max1W1",[-88602553]]], ["TOC",["maxes","lin/L2163/words/L2163G1-max2W1",[98771752]]], ["TOC",["maxes","lin/L2163/words/L2163G1-max3W1",[48045372]]], ["TOC",["maxes","lin/L2163/words/L2163G1-max4W1",[54062706]]], ["TOC",["matalg","lin/L2167/gap0/2L2167G1-Ar168aB0.g",[-30977759]]], ["TOC",["matalg","lin/L2167/gap0/L2167G1-Ar168aB0.g",[52761382]]], ["TOC",["matint","lin/L2167/gap0/L2167G1-Zr167B0.g",[-106781249]]], ["TOC",["out","lin/L2167/words/L2167G1-a2W1",[65102054]]], ["TOC",["maxes","lin/L2167/words/L2167G1-max1W1",[33227458]]], ["TOC",["maxes","lin/L2167/words/L2167G1-max2W1",[98771752]]], ["TOC",["maxes","lin/L2167/words/L2167G1-max3W1",[50083925]]], ["TOC",["maxes","lin/L2167/words/L2167G1-max4W1",[-63379587]]], ["TOC",["maxes","lin/L2167/words/L2167G1-max5W1",[-114911979]]], ["TOC",["matalg","lin/L217/gap0/L217G1-Ar9aB0.g",[125287525]]], ["TOC",["matalg","lin/L217/gap0/L217G1-Ar9bB0.g",[-115193717]]], ["TOC",["matint","lin/L217/gap0/L217G1-Zr16aB0.g",[107256525]]], ["TOC",["matint","lin/L217/gap0/L217G1-Zr17B0.g",[1797083]]], ["TOC",["matint","lin/L217/gap0/L217G1-Zr18aB0.g",[-127855891]]], ["TOC",["matint","lin/L217/gap0/L217G1-Zr18dB0.g",[90751802]]], ["TOC",["matint","lin/L217/gap0/L217G1-Zr48B0.g",[78630971]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f17r10B0.m",[-106402184,-86725200]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f17r12B0.m",[-128860262,42509507]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f17r14B0.m",[133839744,-115025145]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f17r16B0.m",[112291201,-77293894]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f17r2B0.m",[6911536,-105322369]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f17r4B0.m",[-63603009,22696976]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f17r6B0.m",[-78288000,-95930391]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f17r8B0.m",[36976965,-51146083]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f9r8aB0.m",[-117166958,82074942]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f9r8bB0.m",[47065598,29939158]]], ["TOC",["matff","lin/L217/mtx/2L217d2G1-f3r16B0.m",[6443587,-21386643]]], ["TOC",["matff","lin/L217/mtx/L217G1-f17r11B0.m",[26808255,-48153806]]], ["TOC",["matff","lin/L217/mtx/L217G1-f17r13B0.m",[-26821318,-28503130]]], ["TOC",["matff","lin/L217/mtx/L217G1-f17r15B0.m",[112207389,89241698]]], ["TOC",["matff","lin/L217/mtx/L217G1-f17r17B0.m",[11803114,124459896]]], ["TOC",["matff","lin/L217/mtx/L217G1-f17r3B0.m",[128164355,-54485786]]], ["TOC",["matff","lin/L217/mtx/L217G1-f17r5B0.m",[62752732,26959766]]], ["TOC",["matff","lin/L217/mtx/L217G1-f17r7B0.m",[130133111,7735069]]], ["TOC",["matff","lin/L217/mtx/L217G1-f17r9B0.m",[21224908,-33407977]]], ["TOC",["matff","lin/L217/mtx/L217G1-f2r16aB0.m",[32575162,38548666]]], ["TOC",["matff","lin/L217/mtx/L217G1-f2r48B0.m",[109629411,52173616]]], ["TOC",["matff","lin/L217/mtx/L217G1-f2r8aB0.m",[56350420,11326923]]], ["TOC",["matff","lin/L217/mtx/L217G1-f2r8bB0.m",[-66251727,-119035891]]], ["TOC",["matff","lin/L217/mtx/L217G1-f3r16B0.m",[-97474409,89597038]]], ["TOC",["matff","lin/L217/mtx/L217G1-f3r18aB0.m",[89711830,132717007]]], ["TOC",["matff","lin/L217/mtx/L217G1-f8r16bB0.m",[3907726,-34647212]]], ["TOC",["matff","lin/L217/mtx/L217G1-f8r16cB0.m",[56979279,76992993]]], ["TOC",["matff","lin/L217/mtx/L217G1-f8r16dB0.m",[-91570608,-109962938]]], ["TOC",["matff","lin/L217/mtx/L217G1-f9r18bB0.m",[97688817,-88837865]]], ["TOC",["matff","lin/L217/mtx/L217G1-f9r18cB0.m",[88953815,-96918747]]], ["TOC",["matff","lin/L217/mtx/L217G1-f9r9aB0.m",[3048714,57103623]]], ["TOC",["matff","lin/L217/mtx/L217G1-f9r9bB0.m",[123383675,-83522426]]], ["TOC",["perm","lin/L217/mtx/L217G1-p18B0.m",[-82912537,-44582286]]], ["TOC",["matff","lin/L217/mtx/L217d2G1-f17r3B0.m",[-28835866,-54485786]]], ["TOC",["perm","lin/L217/mtx/L217d2G1-p18B0.m",[2840279,5131224]]], ["TOC",["check","lin/L217/words/L217G1-check1",[10441786]]], ["TOC",["cyclic","lin/L217/words/L217G1-cycW1",[-14106864]]], ["TOC",["cyc2ccl","lin/L217/words/L217G1cycW1-cclsW1",[71146108]]], ["TOC",["matalg","lin/L2173/gap0/2L2173G1-Ar174aB0.g",[-129123955]]], ["TOC",["matalg","lin/L2173/gap0/L2173G1-Ar174aB0.g",[-77683382]]], ["TOC",["matint","lin/L2173/gap0/L2173G1-Zr173B0.g",[105934329]]], ["TOC",["out","lin/L2173/words/L2173G1-a2W1",[67011312]]], ["TOC",["maxes","lin/L2173/words/L2173G1-max1W1",[-22144534]]], ["TOC",["maxes","lin/L2173/words/L2173G1-max2W1",[98771752]]], ["TOC",["maxes","lin/L2173/words/L2173G1-max3W1",[-71547031]]], ["TOC",["maxes","lin/L2173/words/L2173G1-max4W1",[130757558]]], ["TOC",["matalg","lin/L2179/gap0/2L2179G1-Ar180aB0.g",[10497490]]], ["TOC",["matalg","lin/L2179/gap0/L2179G1-Ar180aB0.g",[-16440052]]], ["TOC",["matint","lin/L2179/gap0/L2179G1-Zr179B0.g",[81046310]]], ["TOC",["out","lin/L2179/words/L2179G1-a2W1",[18592174]]], ["TOC",["maxes","lin/L2179/words/L2179G1-max1W1",[109829600]]], ["TOC",["maxes","lin/L2179/words/L2179G1-max2W1",[-131103847]]], ["TOC",["maxes","lin/L2179/words/L2179G1-max3W1",[98771752]]], ["TOC",["maxes","lin/L2179/words/L2179G1-max4W1",[-30556931]]], ["TOC",["maxes","lin/L2179/words/L2179G1-max5W1",[33600339]]], ["TOC",["matalg","lin/L2181/gap0/2L2181G1-Ar182aB0.g",[87379586]]], ["TOC",["matalg","lin/L2181/gap0/L2181G1-Ar182aB0.g",[82987358]]], ["TOC",["matint","lin/L2181/gap0/L2181G1-Zr181B0.g",[71734082]]], ["TOC",["out","lin/L2181/words/L2181G1-a2W1",[92056087]]], ["TOC",["maxes","lin/L2181/words/L2181G1-max1W1",[89346661]]], ["TOC",["maxes","lin/L2181/words/L2181G1-max2W1",[-52742966]]], ["TOC",["maxes","lin/L2181/words/L2181G1-max3W1",[-131103847]]], ["TOC",["maxes","lin/L2181/words/L2181G1-max4W1",[50625176]]], ["TOC",["maxes","lin/L2181/words/L2181G1-max5W1",[74954710]]], ["TOC",["matint","lin/L219/gap0/L219G1-Zr18eB0.g",[-25045864]]], ["TOC",["matint","lin/L219/gap0/L219G1-Zr19B0.g",[49324283]]], ["TOC",["matint","lin/L219/gap0/L219G1-Zr20aB0.g",[-16623570]]], ["TOC",["matint","lin/L219/gap0/L219G1-Zr36aB0.g",[-70545514]]], ["TOC",["matff","lin/L219/mtx/2L219G1-f19r2B0.m",[-60529181,-81596629]]], ["TOC",["perm","lin/L219/mtx/2L219G1-p40B0.m",[-75425328,-81015716]]], ["TOC",["matff","lin/L219/mtx/2L219d2iG1-f19r2aB0.m",[-60529181,-81596629]]], ["TOC",["matff","lin/L219/mtx/2L219d2iG1-f3r20B0.m",[-38183413,93404023]]], ["TOC",["matff","lin/L219/mtx/2L219d2iG1-f5r20B0.m",[-481012,89842831]]], ["TOC",["matff","lin/L219/mtx/L219G1-f125r20bB0.m",[119940297,-57104473]]], ["TOC",["matff","lin/L219/mtx/L219G1-f125r20cB0.m",[-65838906,-95399319]]], ["TOC",["matff","lin/L219/mtx/L219G1-f125r20dB0.m",[-68813039,104603257]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r11B0.m",[102860803,102059262]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r13B0.m",[-42137490,94275844]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r15B0.m",[-5968738,31335985]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r17B0.m",[34260504,95947345]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r19B0.m",[-8457876,110671936]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r3B0.m",[-60856921,103602966]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r5B0.m",[55888539,-52479113]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r7B0.m",[-76314715,-97982965]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r9B0.m",[42106921,-61184509]]], ["TOC",["matff","lin/L219/mtx/L219G1-f2r20aB0.m",[20881578,-27015445]]], ["TOC",["matff","lin/L219/mtx/L219G1-f3r19B0.m",[-94940412,121630950]]], ["TOC",["matff","lin/L219/mtx/L219G1-f4r18aB0.m",[-100210374,125716156]]], ["TOC",["matff","lin/L219/mtx/L219G1-f4r18bB0.m",[27209702,-62352810]]], ["TOC",["matff","lin/L219/mtx/L219G1-f4r9aB0.m",[73176383,53415654]]], ["TOC",["matff","lin/L219/mtx/L219G1-f4r9bB0.m",[62934163,70154052]]], ["TOC",["matff","lin/L219/mtx/L219G1-f5r18B0.m",[-31242791,-50234523]]], ["TOC",["matff","lin/L219/mtx/L219G1-f5r20aB0.m",[-119786862,-22803290]]], ["TOC",["matff","lin/L219/mtx/L219G1-f5r9aB0.m",[77195259,99472639]]], ["TOC",["matff","lin/L219/mtx/L219G1-f5r9bB0.m",[36693084,17693932]]], ["TOC",["matff","lin/L219/mtx/L219G1-f8r20bB0.m",[55505572,-68483928]]], ["TOC",["matff","lin/L219/mtx/L219G1-f8r20cB0.m",[116520881,82160962]]], ["TOC",["matff","lin/L219/mtx/L219G1-f8r20dB0.m",[-81452471,-59801255]]], ["TOC",["matff","lin/L219/mtx/L219G1-f9r18aB0.m",[35351054,69514466]]], ["TOC",["matff","lin/L219/mtx/L219G1-f9r18bB0.m",[95590865,-45009283]]], ["TOC",["matff","lin/L219/mtx/L219G1-f9r18cB0.m",[20882251,106600166]]], ["TOC",["matff","lin/L219/mtx/L219G1-f9r18dB0.m",[-17358616,9069780]]], ["TOC",["matff","lin/L219/mtx/L219G1-f9r9aB0.m",[86818836,71785157]]], ["TOC",["matff","lin/L219/mtx/L219G1-f9r9bB0.m",[58361913,-79182132]]], ["TOC",["perm","lin/L219/mtx/L219G1-p171B0.m",[39319466,88018783]]], ["TOC",["perm","lin/L219/mtx/L219G1-p190B0.m",[-37790883,-8623862]]], ["TOC",["perm","lin/L219/mtx/L219G1-p20B0.m",[24659231,-127711181]]], ["TOC",["perm","lin/L219/mtx/L219G1-p57aB0.m",[-101429737,-69344254]]], ["TOC",["perm","lin/L219/mtx/L219G1-p57bB0.m",[17296078,-64512583]]], ["TOC",["matff","lin/L219/mtx/L219d2G1-f19r3B0.m",[57976465,-111736354]]], ["TOC",["perm","lin/L219/mtx/L219d2G1-p114B0.m",[12605773,-51667208]]], ["TOC",["perm","lin/L219/mtx/L219d2G1-p171B0.m",[-108133167,51706554]]], ["TOC",["perm","lin/L219/mtx/L219d2G1-p190B0.m",[-88414015,-96889267]]], ["TOC",["perm","lin/L219/mtx/L219d2G1-p20B0.m",[32900850,28964096]]], ["TOC",["perm","lin/L219/mtx/L219d2G1-p285B0.m",[-19098413,-73672204]]], ["TOC",["check","lin/L219/words/L219G1-check1",[-109615390]]], ["TOC",["cyclic","lin/L219/words/L219G1-cycW1",[72229979]]], ["TOC",["cyc2ccl","lin/L219/words/L219G1cycW1-cclsW1",[28530659]]], ["TOC",["cyclic","lin/L219/words/L219d2G1-cycW1",[-32424274]]], ["TOC",["cyc2ccl","lin/L219/words/L219d2G1cycW1-cclsW1",[98016748]]], ["TOC",["matalg","lin/L2191/gap0/2L2191G1-Ar192aB0.g",[-10297209]]], ["TOC",["matalg","lin/L2191/gap0/L2191G1-Ar192aB0.g",[-102131257]]], ["TOC",["matint","lin/L2191/gap0/L2191G1-Zr191B0.g",[-91342354]]], ["TOC",["out","lin/L2191/words/L2191G1-a2W1",[55431083]]], ["TOC",["maxes","lin/L2191/words/L2191G1-max1W1",[130684941]]], ["TOC",["maxes","lin/L2191/words/L2191G1-max2W1",[36772814]]], ["TOC",["maxes","lin/L2191/words/L2191G1-max3W1",[98771752]]], ["TOC",["maxes","lin/L2191/words/L2191G1-max4W1",[-122498485]]], ["TOC",["maxes","lin/L2191/words/L2191G1-max5W1",[113353462]]], ["TOC",["maxes","lin/L2191/words/L2191G1-max6W1",[4673722]]], ["TOC",["maxes","lin/L2191/words/L2191G1-max7W1",[124194537]]], ["TOC",["matalg","lin/L2193/gap0/2L2193G1-Ar194aB0.g",[73212136]]], ["TOC",["matalg","lin/L2193/gap0/L2193G1-Ar194aB0.g",[121194653]]], ["TOC",["matint","lin/L2193/gap0/L2193G1-Zr193B0.g",[71143513]]], ["TOC",["out","lin/L2193/words/L2193G1-a2W1",[-106805706]]], ["TOC",["maxes","lin/L2193/words/L2193G1-max1W1",[40907293]]], ["TOC",["maxes","lin/L2193/words/L2193G1-max2W1",[98771752]]], ["TOC",["maxes","lin/L2193/words/L2193G1-max3W1",[-67796260]]], ["TOC",["maxes","lin/L2193/words/L2193G1-max4W1",[-127210880]]], ["TOC",["maxes","lin/L2193/words/L2193G1-max5W1",[-118162825]]], ["TOC",["matalg","lin/L2197/gap0/2L2197G1-Ar198aB0.g",[73927374]]], ["TOC",["matalg","lin/L2197/gap0/L2197G1-Ar198aB0.g",[39544976]]], ["TOC",["matint","lin/L2197/gap0/L2197G1-Zr197B0.g",[45557225]]], ["TOC",["out","lin/L2197/words/L2197G1-a2W1",[130181147]]], ["TOC",["maxes","lin/L2197/words/L2197G1-max1W1",[-130931367]]], ["TOC",["maxes","lin/L2197/words/L2197G1-max2W1",[98771752]]], ["TOC",["maxes","lin/L2197/words/L2197G1-max3W1",[-67796260]]], ["TOC",["maxes","lin/L2197/words/L2197G1-max4W1",[14286554]]], ["TOC",["matalg","lin/L2199/gap0/2L2199G1-Ar200aB0.g",[-53439677]]], ["TOC",["matalg","lin/L2199/gap0/L2199G1-Ar200aB0.g",[47081617]]], ["TOC",["matint","lin/L2199/gap0/L2199G1-Zr199B0.g",[-87031562]]], ["TOC",["out","lin/L2199/words/L2199G1-a2W1",[76695252]]], ["TOC",["maxes","lin/L2199/words/L2199G1-max1W1",[-93257757]]], ["TOC",["maxes","lin/L2199/words/L2199G1-max2W1",[-67796260]]], ["TOC",["maxes","lin/L2199/words/L2199G1-max3W1",[117428427]]], ["TOC",["maxes","lin/L2199/words/L2199G1-max4W1",[62034043]]], ["TOC",["maxes","lin/L2199/words/L2199G1-max5W1",[-116874112]]], ["TOC",["maxes","lin/L2199/words/L2199G1-max6W1",[-119648840]]], ["TOC",["maxes","lin/L2199/words/L2199G1-max7W1",[-48148985]]], ["TOC",["matalg","lin/L2211/gap0/2L2211G1-Ar212aB0.g",[18814386]]], ["TOC",["matalg","lin/L2211/gap0/L2211G1-Ar212aB0.g",[29682330]]], ["TOC",["matint","lin/L2211/gap0/L2211G1-Zr211B0.g",[-45535114]]], ["TOC",["out","lin/L2211/words/L2211G1-a2W1",[120263037]]], ["TOC",["maxes","lin/L2211/words/L2211G1-max1W1",[-108408867]]], ["TOC",["maxes","lin/L2211/words/L2211G1-max2W1",[-52742966]]], ["TOC",["maxes","lin/L2211/words/L2211G1-max3W1",[116070154]]], ["TOC",["maxes","lin/L2211/words/L2211G1-max4W1",[23166390]]], ["TOC",["maxes","lin/L2211/words/L2211G1-max5W1",[122228493]]], ["TOC",["matalg","lin/L2223/gap0/2L2223G1-Ar224aB0.g",[-116181226]]], ["TOC",["matalg","lin/L2223/gap0/L2223G1-Ar224aB0.g",[41299812]]], ["TOC",["matint","lin/L2223/gap0/L2223G1-Zr223B0.g",[-55905370]]], ["TOC",["out","lin/L2223/words/L2223G1-a2W1",[52038676]]], ["TOC",["maxes","lin/L2223/words/L2223G1-max1W1",[113347374]]], ["TOC",["maxes","lin/L2223/words/L2223G1-max2W1",[98771752]]], ["TOC",["maxes","lin/L2223/words/L2223G1-max3W1",[-69257965]]], ["TOC",["maxes","lin/L2223/words/L2223G1-max4W1",[-117428229]]], ["TOC",["maxes","lin/L2223/words/L2223G1-max5W1",[-132949589]]], ["TOC",["matalg","lin/L2227/gap0/2L2227G1-Ar228aB0.g",[-75199876]]], ["TOC",["matalg","lin/L2227/gap0/L2227G1-Ar228aB0.g",[91148488]]], ["TOC",["matint","lin/L2227/gap0/L2227G1-Zr227B0.g",[-105151178]]], ["TOC",["out","lin/L2227/words/L2227G1-a2W1",[-17717185]]], ["TOC",["maxes","lin/L2227/words/L2227G1-max1W1",[-105429437]]], ["TOC",["maxes","lin/L2227/words/L2227G1-max2W1",[98771752]]], ["TOC",["maxes","lin/L2227/words/L2227G1-max3W1",[56925867]]], ["TOC",["maxes","lin/L2227/words/L2227G1-max4W1",[114147158]]], ["TOC",["matalg","lin/L2229/gap0/2L2229G1-Ar230aB0.g",[-18137049]]], ["TOC",["matalg","lin/L2229/gap0/L2229G1-Ar230aB0.g",[21643362]]], ["TOC",["matint","lin/L2229/gap0/L2229G1-Zr229B0.g",[69447815]]], ["TOC",["out","lin/L2229/words/L2229G1-a2W1",[-29606974]]], ["TOC",["maxes","lin/L2229/words/L2229G1-max1W1",[54102063]]], ["TOC",["maxes","lin/L2229/words/L2229G1-max2W1",[117428427]]], ["TOC",["maxes","lin/L2229/words/L2229G1-max3W1",[-116933033]]], ["TOC",["maxes","lin/L2229/words/L2229G1-max4W1",[-125460422]]], ["TOC",["maxes","lin/L2229/words/L2229G1-max5W1",[67274427]]], ["TOC",["matalg","lin/L223/gap0/L223G1-Ar24aB0.g",[-94070094]]], ["TOC",["matalg","lin/L223/gap0/L223G1-Ar24bB0.g",[-86537748]]], ["TOC",["matalg","lin/L223/gap0/L223G1-Ar24cB0.g",[-109907336]]], ["TOC",["matalg","lin/L223/gap0/L223G1-Ar24dB0.g",[1617625]]], ["TOC",["matalg","lin/L223/gap0/L223G1-Ar24eB0.g",[86827308]]], ["TOC",["matint","lin/L223/gap0/L223G1-Zr22aB0.g",[5829416]]], ["TOC",["matint","lin/L223/gap0/L223G1-Zr22bB0.g",[39581756]]], ["TOC",["matint","lin/L223/gap0/L223G1-Zr22cB0.g",[-5464384]]], ["TOC",["matint","lin/L223/gap0/L223G1-Zr23B0.g",[-71592096]]], ["TOC",["matff","lin/L223/mtx/2L223G1-f23r2B0.m",[20525409,47643517]]], ["TOC",["matff","lin/L223/mtx/2L223d2iG1-f23r2B0.m",[-88491394,61181965]]], ["TOC",["matff","lin/L223/mtx/L223G1-f11r23B0.m",[42514454,-134050268]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r11B0.m",[-59046279,16148792]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r13B0.m",[-32965346,-4509189]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r15B0.m",[54984976,-41337166]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r17B0.m",[61549106,35129088]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r19B0.m",[-83435925,-110939099]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r21B0.m",[52870456,24920826]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r23B0.m",[-9561815,-92041134]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r3B0.m",[42791262,95823127]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r5B0.m",[54370750,-24744185]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r7B0.m",[-132549125,-25900974]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r9B0.m",[92736657,-6223120]]], ["TOC",["matff","lin/L223/mtx/L223G1-f2r11aB0.m",[127094156,70571462]]], ["TOC",["matff","lin/L223/mtx/L223G1-f2r11bB0.m",[5360375,129551938]]], ["TOC",["matff","lin/L223/mtx/L223G1-f2r22B0.m",[-50133270,-13738710]]], ["TOC",["matff","lin/L223/mtx/L223G1-f32r24aB0.m",[21647014,14511678]]], ["TOC",["matff","lin/L223/mtx/L223G1-f32r24bB0.m",[-87307691,-46855468]]], ["TOC",["matff","lin/L223/mtx/L223G1-f32r24cB0.m",[-5789075,107108233]]], ["TOC",["matff","lin/L223/mtx/L223G1-f32r24dB0.m",[-9505617,76119520]]], ["TOC",["matff","lin/L223/mtx/L223G1-f32r24eB0.m",[-121899485,-39499865]]], ["TOC",["matff","lin/L223/mtx/L223G1-f3r22aB0.m",[-77636210,64274321]]], ["TOC",["perm","lin/L223/mtx/L223G1-p24B0.m",[76120275,68802602]]], ["TOC",["matff","lin/L223/mtx/L223d2G1-f23r3aB0.m",[-9004677,95823127]]], ["TOC",["matff","lin/L223/mtx/L223d2G1-f2r22aB0.m",[36563733,98146872]]], ["TOC",["out","lin/L223/words/L223G1-a2W1",[-11046668]]], ["TOC",["check","lin/L223/words/L223G1-check1",[117306255]]], ["TOC",["cyclic","lin/L223/words/L223G1-cycW1",[-23018766]]], ["TOC",["cyc2ccl","lin/L223/words/L223G1cycW1-cclsW1",[79564962]]], ["TOC",["cyclic","lin/L223/words/L223d2G1-cycW1",[-117792659]]], ["TOC",["cyc2ccl","lin/L223/words/L223d2G1cycW1-cclsW1",[-132898044]]], ["TOC",["matalg","lin/L2233/gap0/2L2233G1-Ar234aB0.g",[12717719]]], ["TOC",["matalg","lin/L2233/gap0/L2233G1-Ar234aB0.g",[-98686418]]], ["TOC",["matint","lin/L2233/gap0/L2233G1-Zr233B0.g",[23663299]]], ["TOC",["out","lin/L2233/words/L2233G1-a2W1",[-76737931]]], ["TOC",["maxes","lin/L2233/words/L2233G1-max1W1",[-18098890]]], ["TOC",["maxes","lin/L2233/words/L2233G1-max2W1",[-67796260]]], ["TOC",["maxes","lin/L2233/words/L2233G1-max3W1",[75295270]]], ["TOC",["maxes","lin/L2233/words/L2233G1-max4W1",[19437309]]], ["TOC",["maxes","lin/L2233/words/L2233G1-max5W1",[102198882]]], ["TOC",["matalg","lin/L2239/gap0/2L2239G1-Ar240aB0.g",[53428341]]], ["TOC",["matalg","lin/L2239/gap0/L2239G1-Ar240aB0.g",[-35140575]]], ["TOC",["matint","lin/L2239/gap0/L2239G1-Zr239B0.g",[-49774087]]], ["TOC",["out","lin/L2239/words/L2239G1-a2W1",[-31181278]]], ["TOC",["maxes","lin/L2239/words/L2239G1-max1W1",[68942726]]], ["TOC",["maxes","lin/L2239/words/L2239G1-max2W1",[-15392302]]], ["TOC",["maxes","lin/L2239/words/L2239G1-max3W1",[98771752]]], ["TOC",["maxes","lin/L2239/words/L2239G1-max4W1",[-16533216]]], ["TOC",["maxes","lin/L2239/words/L2239G1-max5W1",[26047827]]], ["TOC",["maxes","lin/L2239/words/L2239G1-max6W1",[-98880500]]], ["TOC",["maxes","lin/L2239/words/L2239G1-max7W1",[-87747962]]], ["TOC",["matalg","lin/L2241/gap0/2L2241G1-Ar242aB0.g",[22113801]]], ["TOC",["matalg","lin/L2241/gap0/L2241G1-Ar242aB0.g",[365622]]], ["TOC",["matint","lin/L2241/gap0/L2241G1-Zr241B0.g",[6537985]]], ["TOC",["out","lin/L2241/words/L2241G1-a2W1",[-35280200]]], ["TOC",["maxes","lin/L2241/words/L2241G1-max1W1",[127178033]]], ["TOC",["maxes","lin/L2241/words/L2241G1-max2W1",[117428427]]], ["TOC",["maxes","lin/L2241/words/L2241G1-max3W1",[-94813412]]], ["TOC",["maxes","lin/L2241/words/L2241G1-max4W1",[-116097452]]], ["TOC",["maxes","lin/L2241/words/L2241G1-max5W1",[-118162825]]], ["TOC",["maxes","lin/L2241/words/L2241G1-max6W1",[41454643]]], ["TOC",["maxes","lin/L2241/words/L2241G1-max7W1",[-46947725]]], ["TOC",["check","lin/L225/words/L225G1-check1",[-20561499]]], ["TOC",["matalg","lin/L227/gap0/L227G1-Ar13aB0.g",[-42975513]]], ["TOC",["matalg","lin/L227/gap0/L227G1-Ar13bB0.g",[4935682]]], ["TOC",["matalg","lin/L227/gap0/L227G1-Ar28aB0.g",[86924695]]], ["TOC",["matalg","lin/L227/gap0/L227G1-Ar28bB0.g",[123708070]]], ["TOC",["matalg","lin/L227/gap0/L227G1-Ar28cB0.g",[44486067]]], ["TOC",["matalg","lin/L227/gap0/L227G1-Ar28dB0.g",[-1314465]]], ["TOC",["matalg","lin/L227/gap0/L227G1-Ar28eB0.g",[97815284]]], ["TOC",["matalg","lin/L227/gap0/L227G1-Ar28fB0.g",[32000090]]], ["TOC",["matint","lin/L227/gap0/L227G1-Zr26gB0.g",[-108736083]]], ["TOC",["matint","lin/L227/gap0/L227G1-Zr27B0.g",[81578255]]], ["TOC",["matint","lin/L227/gap0/L227G1-Zr78aB0.g",[-94962840]]], ["TOC",["matff","lin/L227/mtx/2L227G1-f27r2aB0.m",[75706202,42063428]]], ["TOC",["matff","lin/L227/mtx/2L227G1-f27r2bB0.m",[75706202,-32514381]]], ["TOC",["matff","lin/L227/mtx/2L227G1-f27r2cB0.m",[75706202,-90015011]]], ["TOC",["matff","lin/L227/mtx/L227G1-f13r27B0.m",[102008149,20812941]]], ["TOC",["matff","lin/L227/mtx/L227G1-f27r3aB0.m",[-27948298,-12834033]]], ["TOC",["matff","lin/L227/mtx/L227G1-f3r27B0.m",[-64273145,112755293]]], ["TOC",["matff","lin/L227/mtx/L227G1-f4r13aB0.m",[-121151895,113499759]]], ["TOC",["matff","lin/L227/mtx/L227G1-f4r13bB0.m",[-12358225,-97200516]]], ["TOC",["matff","lin/L227/mtx/L227G1-f7r26B0.m",[81983579,-62100947]]], ["TOC",["perm","lin/L227/mtx/L227G1-p28B0.m",[80361327,10779391]]], ["TOC",["check","lin/L227/words/L227G1-check1",[80991801]]], ["TOC",["cyclic","lin/L227/words/L227G1-cycW1",[67164295]]], ["TOC",["cyc2ccl","lin/L227/words/L227G1cycW1-cclsW1",[-63635297]]], ["TOC",["matalg","lin/L229/gap0/L229G1-Ar30aB0.g",[36512456]]], ["TOC",["matalg","lin/L229/gap0/L229G1-Ar30bB0.g",[80372223]]], ["TOC",["matalg","lin/L229/gap0/L229G1-Ar30cB0.g",[-10466386]]], ["TOC",["matalg","lin/L229/gap0/L229G1-Ar30dB0.g",[-19659925]]], ["TOC",["matalg","lin/L229/gap0/L229G1-Ar30eB0.g",[-97848110]]], ["TOC",["matalg","lin/L229/gap0/L229G1-Ar30fB0.g",[-52616644]]], ["TOC",["matint","lin/L229/gap0/L229G1-Zr112B0.g",[-21499082]]], ["TOC",["matint","lin/L229/gap0/L229G1-Zr28aB0.g",[-14464513]]], ["TOC",["matint","lin/L229/gap0/L229G1-Zr29B0.g",[108424046]]], ["TOC",["matint","lin/L229/gap0/L229G1-Zr30gB0.g",[89059266]]], ["TOC",["matint","lin/L229/gap0/L229G1-Zr56B0.g",[47191282]]], ["TOC",["matff","lin/L229/mtx/2L229G1-f29r2B0.m",[-125331227,-113293998]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r11B0.m",[88346290,35523613]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r13B0.m",[-57278166,-40446496]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r15B0.m",[-13769556,-20566652]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r17B0.m",[-26087738,-36837746]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r19B0.m",[-71985042,-103709323]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r21B0.m",[-53552726,-52380600]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r23B0.m",[-119150534,38421866]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r25B0.m",[-36299723,132251793]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r27B0.m",[100195319,74359202]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r29B0.m",[25221275,-121973737]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r3B0.m",[112522078,-128962994]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r5B0.m",[52274017,2980410]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r7B0.m",[-3967008,40635278]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r9B0.m",[6327751,-26682292]]], ["TOC",["matff","lin/L229/mtx/L229G1-f3r28aB0.m",[-27683415,120560509]]], ["TOC",["matff","lin/L229/mtx/L229G1-f4r14aB0.m",[24400041,93494808]]], ["TOC",["matff","lin/L229/mtx/L229G1-f4r14bB0.m",[-8336532,-128257369]]], ["TOC",["matff","lin/L229/mtx/L229G1-f5r28bB0.m",[11970703,117973494]]], ["TOC",["matff","lin/L229/mtx/L229G1-f7r29B0.m",[7912619,-57977568]]], ["TOC",["perm","lin/L229/mtx/L229G1-p30B0.m",[-59680209,-19128626]]], ["TOC",["check","lin/L229/words/L229G1-check1",[-111997689]]], ["TOC",["cyclic","lin/L229/words/L229G1-cycW1",[82677982]]], ["TOC",["cyc2ccl","lin/L229/words/L229G1cycW1-cclsW1",[21083482]]], ["TOC",["matalg","lin/L231/gap0/2L231G1-Ar32aB0.g",[-28048748]]], ["TOC",["matalg","lin/L231/gap0/L231G1-Ar32aB0.g",[-62988969]]], ["TOC",["matalg","lin/L231/gap0/L231G1-Ar32bB0.g",[-26331784]]], ["TOC",["matalg","lin/L231/gap0/L231G1-Ar32cB0.g",[-60422937]]], ["TOC",["matalg","lin/L231/gap0/L231G1-Ar32dB0.g",[19214858]]], ["TOC",["matalg","lin/L231/gap0/L231G1-Ar32eB0.g",[69092363]]], ["TOC",["matalg","lin/L231/gap0/L231G1-Ar32fB0.g",[-82047763]]], ["TOC",["matalg","lin/L231/gap0/L231G1-Ar32gB0.g",[-119324733]]], ["TOC",["matint","lin/L231/gap0/L231G1-Zr120B0.g",[82286628]]], ["TOC",["matint","lin/L231/gap0/L231G1-Zr30aB0.g",[93007295]]], ["TOC",["matint","lin/L231/gap0/L231G1-Zr30hB0.g",[-59663303]]], ["TOC",["matint","lin/L231/gap0/L231G1-Zr31B0.g",[13607483]]], ["TOC",["matint","lin/L231/gap0/L231G1-Zr32aB0.g",[-34239155]]], ["TOC",["matint","lin/L231/gap0/L231G1-Zr60B0.g",[-27228077]]], ["TOC",["matff","lin/L231/mtx/2L231G1-f31r2B0.m",[-80955541,-50941493]]], ["TOC",["matff","lin/L231/mtx/2L231G1-f5r16aB0.m",[-81178967,94350757]]], ["TOC",["matff","lin/L231/mtx/L231G1-f16r32dB0.m",[78688671,-97781633]]], ["TOC",["matff","lin/L231/mtx/L231G1-f16r32eB0.m",[-70334799,-32855008]]], ["TOC",["matff","lin/L231/mtx/L231G1-f16r32fB0.m",[115548558,62487969]]], ["TOC",["matff","lin/L231/mtx/L231G1-f16r32gB0.m",[64981303,26938370]]], ["TOC",["matff","lin/L231/mtx/L231G1-f2r15aB0.m",[-97111509,129903836]]], ["TOC",["matff","lin/L231/mtx/L231G1-f2r15bB0.m",[-69292298,-50625580]]], ["TOC",["matff","lin/L231/mtx/L231G1-f2r32B0.m",[-35052800,908728]]], ["TOC",["matff","lin/L231/mtx/L231G1-f31r31B0.m",[-120420305,-62570553]]], ["TOC",["matff","lin/L231/mtx/L231G1-f31r3B0.m",[-22989219,-87408481]]], ["TOC",["matff","lin/L231/mtx/L231G1-f3r31B0.m",[-96095478,-95643115]]], ["TOC",["matff","lin/L231/mtx/L231G1-f4r32bB0.m",[-104132881,74423793]]], ["TOC",["matff","lin/L231/mtx/L231G1-f4r32cB0.m",[128095051,-12635082]]], ["TOC",["matff","lin/L231/mtx/L231G1-f5r31B0.m",[-14484728,-112300853]]], ["TOC",["perm","lin/L231/mtx/L231G1-p32B0.m",[-106514309,-46309048]]], ["TOC",["matff","lin/L231/mtx/L231d2G1-f2r30B0.m",[51861420,36234284]]], ["TOC",["check","lin/L231/words/L231G1-check1",[96645892]]], ["TOC",["cyclic","lin/L231/words/L231G1-cycW1",[90904383]]], ["TOC",["cyc2ccl","lin/L231/words/L231G1cycW1-cclsW1",[-82679199]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33aB0.g",[-111213769]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33bB0.g",[22767814]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33cB0.g",[-85912419]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33dB0.g",[-44472014]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33eB0.g",[-15557684]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33fB0.g",[-20780673]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33gB0.g",[42896350]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33hB0.g",[-81704627]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33iB0.g",[41774250]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33jB0.g",[-56211343]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33kB0.g",[-26257869]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33lB0.g",[18695087]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33mB0.g",[111516653]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33nB0.g",[85174962]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33oB0.g",[89580754]]], ["TOC",["matint","lin/L232/gap0/L232G1-Zr155B0.g",[65682418]]], ["TOC",["matint","lin/L232/gap0/L232G1-Zr310B0.g",[63940929]]], ["TOC",["matint","lin/L232/gap0/L232G1-Zr31aB0.g",[27710295]]], ["TOC",["matint","lin/L232/gap0/L232G1-Zr32B0.g",[111975507]]], ["TOC",["matff","lin/L232/mtx/L232G1-f11r31bB0.m",[-52046501,89586769]]], ["TOC",["matff","lin/L232/mtx/L232G1-f31r32B0.m",[-74620170,83684745]]], ["TOC",["matff","lin/L232/mtx/L232G1-f32r2aB0.m",[-109179637,120506087]]], ["TOC",["matff","lin/L232/mtx/L232G1-f3r31aB0.m",[-31088571,40473858]]], ["TOC",["perm","lin/L232/mtx/L232G1-p33B0.m",[-70610589,-23599884]]], ["TOC",["perm","lin/L232/mtx/L232G1-p496B0.m",[45274093,56723380]]], ["TOC",["perm","lin/L232/mtx/L232G1-p528B0.m",[-127338279,-48095320]]], ["TOC",["matff","lin/L232/mtx/L232d5G1-f2r10B0.m",[-123808131,-66336957]]], ["TOC",["matff","lin/L232/mtx/L232d5G1-f2r20aB0.m",[-15600981,-113963396]]], ["TOC",["matff","lin/L232/mtx/L232d5G1-f2r20bB0.m",[47088464,101469067]]], ["TOC",["matff","lin/L232/mtx/L232d5G1-f2r32B0.m",[16902110,85940192]]], ["TOC",["matff","lin/L232/mtx/L232d5G1-f2r40aB0.m",[-23723692,52369402]]], ["TOC",["matff","lin/L232/mtx/L232d5G1-f2r40bB0.m",[37826496,-71703658]]], ["TOC",["matff","lin/L232/mtx/L232d5G1-f2r80B0.m",[-114768504,120819740]]], ["TOC",["perm","lin/L232/mtx/L232d5G1-p33B0.m",[-68814625,-109729061]]], ["TOC",["perm","lin/L232/mtx/L232d5G1-p496B0.m",[-105897021,66623301]]], ["TOC",["perm","lin/L232/mtx/L232d5G1-p528B0.m",[-63593694,-4668264]]], ["TOC",["pres","lin/L232/words/L232G1-P1",[16857565]]], ["TOC",["out","lin/L232/words/L232G1-a5W1",[4839686]]], ["TOC",["check","lin/L232/words/L232G1-check1",[96645892]]], ["TOC",["cyclic","lin/L232/words/L232G1-cycW1",[-108617330]]], ["TOC",["maxes","lin/L232/words/L232G1-max1W1",[-56055657]]], ["TOC",["maxes","lin/L232/words/L232G1-max1W2",[-39704409]]], ["TOC",["maxes","lin/L232/words/L232G1-max2W1",[-74379041]]], ["TOC",["maxes","lin/L232/words/L232G1-max3W1",[42337161]]], ["TOC",["cyc2ccl","lin/L232/words/L232G1cycW1-cclsW1",[-13687969]]], ["TOC",["pres","lin/L232/words/L232d5G1-P1",[496753]]], ["TOC",["cyclic","lin/L232/words/L232d5G1-cycW1",[-32484246]]], ["TOC",["maxes","lin/L232/words/L232d5G1-max1W1",[-52518619]]], ["TOC",["maxes","lin/L232/words/L232d5G1-max2W1",[-127703617]]], ["TOC",["maxes","lin/L232/words/L232d5G1-max2W2",[-57343816]]], ["TOC",["maxes","lin/L232/words/L232d5G1-max3W1",[-101607447]]], ["TOC",["maxes","lin/L232/words/L232d5G1-max3W2",[86690101]]], ["TOC",["maxes","lin/L232/words/L232d5G1-max4W1",[108007369]]], ["TOC",["maxes","lin/L232/words/L232d5G1-max4W2",[-106959951]]], ["TOC",["cyc2ccl","lin/L232/words/L232d5G1cycW1-cclsW1",[-12705239]]], ["TOC",["matalg","lin/L237/gap0/2L237G1-Ar38aB0.g",[33468955]]], ["TOC",["matalg","lin/L237/gap0/L237G1-Ar38aB0.g",[116545177]]], ["TOC",["matint","lin/L237/gap0/L237G1-Zr37B0.g",[100462660]]], ["TOC",["out","lin/L237/words/L237G1-a2W1",[86831153]]], ["TOC",["maxes","lin/L237/words/L237G1-max1W1",[-112251965]]], ["TOC",["maxes","lin/L237/words/L237G1-max2W1",[10136136]]], ["TOC",["maxes","lin/L237/words/L237G1-max3W1",[116070154]]], ["TOC",["maxes","lin/L237/words/L237G1-max4W1",[-119731353]]], ["TOC",["matalg","lin/L241/gap0/2L241G1-Ar42aB0.g",[104729683]]], ["TOC",["matalg","lin/L241/gap0/L241G1-Ar42aB0.g",[24947099]]], ["TOC",["matint","lin/L241/gap0/L241G1-Zr41B0.g",[-99645838]]], ["TOC",["out","lin/L241/words/L241G1-a2W1",[-56097386]]], ["TOC",["maxes","lin/L241/words/L241G1-max1W1",[125471130]]], ["TOC",["maxes","lin/L241/words/L241G1-max2W1",[123151682]]], ["TOC",["maxes","lin/L241/words/L241G1-max3W1",[-122498485]]], ["TOC",["maxes","lin/L241/words/L241G1-max4W1",[1635502]]], ["TOC",["maxes","lin/L241/words/L241G1-max5W1",[-67796260]]], ["TOC",["maxes","lin/L241/words/L241G1-max6W1",[27978879]]], ["TOC",["maxes","lin/L241/words/L241G1-max7W1",[57715274]]], ["TOC",["matalg","lin/L243/gap0/2L243G1-Ar44aB0.g",[128833873]]], ["TOC",["matalg","lin/L243/gap0/L243G1-Ar44aB0.g",[-95515231]]], ["TOC",["matint","lin/L243/gap0/L243G1-Zr43B0.g",[44941007]]], ["TOC",["out","lin/L243/words/L243G1-a2W1",[-10085270]]], ["TOC",["maxes","lin/L243/words/L243G1-max1W1",[13335009]]], ["TOC",["maxes","lin/L243/words/L243G1-max2W1",[98771752]]], ["TOC",["maxes","lin/L243/words/L243G1-max3W1",[117428427]]], ["TOC",["maxes","lin/L243/words/L243G1-max4W1",[-9461404]]], ["TOC",["matalg","lin/L247/gap0/2L247G1-Ar48aB0.g",[-133856404]]], ["TOC",["matalg","lin/L247/gap0/L247G1-Ar48aB0.g",[31045833]]], ["TOC",["matint","lin/L247/gap0/L247G1-Zr47B0.g",[-93776649]]], ["TOC",["out","lin/L247/words/L247G1-a2W1",[-106932889]]], ["TOC",["maxes","lin/L247/words/L247G1-max1W1",[-21036514]]], ["TOC",["maxes","lin/L247/words/L247G1-max2W1",[-24594494]]], ["TOC",["maxes","lin/L247/words/L247G1-max3W1",[78402499]]], ["TOC",["maxes","lin/L247/words/L247G1-max4W1",[-69820517]]], ["TOC",["maxes","lin/L247/words/L247G1-max5W1",[-64733339]]], ["TOC",["matff","lin/L249/mtx/2L249G1-f49r2aB0.m",[-77738721,120171565]]], ["TOC",["matff","lin/L249/mtx/2L249G1-f49r2bB0.m",[24508966,120171565]]], ["TOC",["matff","lin/L249/mtx/L249G1-f49r3aB0.m",[91372809,-5684836]]], ["TOC",["matff","lin/L249/mtx/L249G1-f49r3bB0.m",[-94098923,-5684836]]], ["TOC",["matff","lin/L249/mtx/L249G1-f7r4B0.m",[-122976295,97785542]]], ["TOC",["perm","lin/L249/mtx/L249G1-p1176B0.m",[63754546,24318233]]], ["TOC",["perm","lin/L249/mtx/L249G1-p1225B0.m",[43354204,-52302880]]], ["TOC",["perm","lin/L249/mtx/L249G1-p175aB0.m",[82820976,-52998298]]], ["TOC",["perm","lin/L249/mtx/L249G1-p175bB0.m",[-3702127,92475894]]], ["TOC",["perm","lin/L249/mtx/L249G1-p50B0.m",[-91986412,-11622404]]], ["TOC",["perm","lin/L249/mtx/L249G1-p980aB0.m",[-111963204,92359707]]], ["TOC",["perm","lin/L249/mtx/L249G1-p980bB0.m",[-38368951,18194715]]], ["TOC",["matalg","lin/L253/gap0/2L253G1-Ar54aB0.g",[-8928569]]], ["TOC",["matalg","lin/L253/gap0/L253G1-Ar54aB0.g",[115889911]]], ["TOC",["matint","lin/L253/gap0/L253G1-Zr53B0.g",[-57528958]]], ["TOC",["out","lin/L253/words/L253G1-a2W1",[94828721]]], ["TOC",["maxes","lin/L253/words/L253G1-max1W1",[-7949675]]], ["TOC",["maxes","lin/L253/words/L253G1-max2W1",[98771752]]], ["TOC",["maxes","lin/L253/words/L253G1-max3W1",[-24016757]]], ["TOC",["maxes","lin/L253/words/L253G1-max4W1",[-116097452]]], ["TOC",["matalg","lin/L259/gap0/2L259G1-Ar60aB0.g",[-38231059]]], ["TOC",["matalg","lin/L259/gap0/L259G1-Ar60aB0.g",[-119040621]]], ["TOC",["matint","lin/L259/gap0/L259G1-Zr59B0.g",[96414974]]], ["TOC",["out","lin/L259/words/L259G1-a2W1",[5441557]]], ["TOC",["maxes","lin/L259/words/L259G1-max1W1",[-34200159]]], ["TOC",["maxes","lin/L259/words/L259G1-max2W1",[-39026047]]], ["TOC",["maxes","lin/L259/words/L259G1-max3W1",[125670029]]], ["TOC",["maxes","lin/L259/words/L259G1-max4W1",[42071166]]], ["TOC",["maxes","lin/L259/words/L259G1-max5W1",[98771752]]], ["TOC",["matalg","lin/L261/gap0/2L261G1-Ar62aB0.g",[-65154804]]], ["TOC",["matalg","lin/L261/gap0/L261G1-Ar62aB0.g",[13639090]]], ["TOC",["matint","lin/L261/gap0/L261G1-Zr61B0.g",[-28535708]]], ["TOC",["out","lin/L261/words/L261G1-a2W1",[-73494788]]], ["TOC",["maxes","lin/L261/words/L261G1-max1W1",[-113761705]]], ["TOC",["maxes","lin/L261/words/L261G1-max2W1",[-29424071]]], ["TOC",["maxes","lin/L261/words/L261G1-max3W1",[-55103260]]], ["TOC",["maxes","lin/L261/words/L261G1-max4W1",[5504545]]], ["TOC",["maxes","lin/L261/words/L261G1-max5W1",[61663348]]], ["TOC",["matalg","lin/L264/gap0/L264G1-Ar65aB0.g",[-74990346]]], ["TOC",["matint","lin/L264/gap0/L264G1-Zr64B0.g",[3637152]]], ["TOC",["matalg","lin/L267/gap0/2L267G1-Ar68aB0.g",[-119110097]]], ["TOC",["matalg","lin/L267/gap0/L267G1-Ar68aB0.g",[50464254]]], ["TOC",["matint","lin/L267/gap0/L267G1-Zr67B0.g",[-31103119]]], ["TOC",["out","lin/L267/words/L267G1-a2W1",[-61305413]]], ["TOC",["maxes","lin/L267/words/L267G1-max1W1",[13301311]]], ["TOC",["maxes","lin/L267/words/L267G1-max2W1",[98771752]]], ["TOC",["maxes","lin/L267/words/L267G1-max3W1",[-69257965]]], ["TOC",["maxes","lin/L267/words/L267G1-max4W1",[94646780]]], ["TOC",["matalg","lin/L27/gap0/L27G1-Ar3aB0.g",[-66771044]]], ["TOC",["matalg","lin/L27/gap0/L27G1-Ar3bB0.g",[-49583138]]], ["TOC",["matint","lin/L27/gap0/L27G1-Zr6aB0.g",[-113349301]]], ["TOC",["matint","lin/L27/gap0/L27G1-Zr6bB0.g",[107121157]]], ["TOC",["matint","lin/L27/gap0/L27G1-Zr7B0.g",[-123920082]]], ["TOC",["matint","lin/L27/gap0/L27G1-Zr8B0.g",[-31448454]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f3r12B0.m",[-56959780,82402903]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f3r8B0.m",[-85360600,-64362510]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f7r2B0.m",[-72031738,-39354210]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f7r4B0.m",[21980736,12031682]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f7r6B0.m",[91729598,73771373]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f9r4aB0.m",[-69280753,99960906]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f9r4bB0.m",[-69280753,29931299]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f9r6aB0.m",[-117080397,-39431188]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f9r6bB0.m",[-117080397,-27343019]]], ["TOC",["perm","lin/L27/mtx/2L27G1-p112B0.m",[23813295,-74617714]]], ["TOC",["perm","lin/L27/mtx/2L27G1-p16B0.m",[18937788,101534527]]], ["TOC",["perm","lin/L27/mtx/2L27G1-p336B0.m",[101513021,-12129824]]], ["TOC",["perm","lin/L27/mtx/2L27G1-p48B0.m",[50784854,-62607311]]], ["TOC",["perm","lin/L27/mtx/2L27d2G1-p224B0.m",[52859140,-112075309]]], ["TOC",["perm","lin/L27/mtx/2L27d2G1-p32B0.m",[59442930,-77912855]]], ["TOC",["perm","lin/L27/mtx/2L27d2G1-p672B0.m",[32144421,-129823791]]], ["TOC",["perm","lin/L27/mtx/2L27d2G1-p96B0.m",[-118100123,122469431]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p112aB0.m",[32537100,87239194]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p112bB0.m",[121272550,43905256]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p16aB0.m",[96723553,17491636]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p16bB0.m",[-130035598,-86840059]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p224B0.m",[27253918,-71331726]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p32B0.m",[67977434,-131909209]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p336B0.m",[38024782,-77639069]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p48aB0.m",[3733480,-129643461]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p48bB0.m",[81498658,81743050]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p672B0.m",[46016725,81318152]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p96B0.m",[107847702,7110135]]], ["TOC",["matff","lin/L27/mtx/L27G1-f2r3aB0.m",[57914838,26346105]]], ["TOC",["matff","lin/L27/mtx/L27G1-f2r3bB0.m",[-119253757,26346105]]], ["TOC",["matff","lin/L27/mtx/L27G1-f2r8B0.m",[126279998,17700283]]], ["TOC",["matff","lin/L27/mtx/L27G1-f3r6aB0.m",[121874030,-17226445]]], ["TOC",["matff","lin/L27/mtx/L27G1-f3r6bB0.m",[100466148,3567420]]], ["TOC",["matff","lin/L27/mtx/L27G1-f3r7B0.m",[15516596,-73787096]]], ["TOC",["matff","lin/L27/mtx/L27G1-f7r3B0.m",[29749878,-61433424]]], ["TOC",["matff","lin/L27/mtx/L27G1-f7r5B0.m",[-62739065,-104202378]]], ["TOC",["matff","lin/L27/mtx/L27G1-f7r7B0.m",[-133836350,7636822]]], ["TOC",["matff","lin/L27/mtx/L27G1-f9r3aB0.m",[44653245,-122746370]]], ["TOC",["matff","lin/L27/mtx/L27G1-f9r3bB0.m",[44653245,-64615968]]], ["TOC",["perm","lin/L27/mtx/L27G1-p14aB0.m",[88769167,-127152366]]], ["TOC",["perm","lin/L27/mtx/L27G1-p14bB0.m",[106114946,-82319708]]], ["TOC",["perm","lin/L27/mtx/L27G1-p168B0.m",[-48007814,133832626]]], ["TOC",["perm","lin/L27/mtx/L27G1-p21B0.m",[-34366470,119619994]]], ["TOC",["perm","lin/L27/mtx/L27G1-p24B0.m",[21098421,64062395]]], ["TOC",["perm","lin/L27/mtx/L27G1-p28B0.m",[13997879,-1537989]]], ["TOC",["perm","lin/L27/mtx/L27G1-p42aB0.m",[95380373,-13080864]]], ["TOC",["perm","lin/L27/mtx/L27G1-p42bB0.m",[-47718257,-110106684]]], ["TOC",["perm","lin/L27/mtx/L27G1-p42cB0.m",[-89859222,78718510]]], ["TOC",["perm","lin/L27/mtx/L27G1-p56B0.m",[-36452036,97078584]]], ["TOC",["perm","lin/L27/mtx/L27G1-p7aB0.m",[49217095,41912584]]], ["TOC",["perm","lin/L27/mtx/L27G1-p7bB0.m",[80135519,-49134850]]], ["TOC",["perm","lin/L27/mtx/L27G1-p84B0.m",[-105372602,132791931]]], ["TOC",["perm","lin/L27/mtx/L27G1-p8B0.m",[-23286895,26136506]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p112B0.m",[-35409806,-128129373]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p14B0.m",[90997888,-132691774]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p168aB0.m",[-74183466,-76560744]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p168bB0.m",[-11485800,8931352]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p16B0.m",[5407018,102638737]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p21B0.m",[56049192,65425389]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p24B0.m",[103365845,-91778750]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p28B0.m",[-44303605,-10360032]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p28bB0.m",[106513626,107773132]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p336B0.m",[-50384223,-36708116]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p42aB0.m",[-59490654,-121061376]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p42bB0.m",[-68642179,-62328167]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p42cB0.m",[11888379,95168154]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p48B0.m",[71422658,-129643461]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p56aB0.m",[-122228810,-64038626]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p56bB0.m",[32936262,-47352246]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p56cB0.m",[-99171114,-70888439]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p84aB0.m",[-87023985,-19484267]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p84bB0.m",[103075831,77267518]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p84cB0.m",[131447996,-129413916]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p8B0.m",[-5510263,21540190]]], ["TOC",["pres","lin/L27/words/2L27G1-P1",[-134105252]]], ["TOC",["pres","lin/L27/words/L27G1-P1",[59758955]]], ["TOC",["check","lin/L27/words/L27G1-check1",[80991801]]], ["TOC",["maxes","lin/L27/words/L27G1-max1W1",[-112559531]]], ["TOC",["maxes","lin/L27/words/L27G1-max1W2",[4811487]]], ["TOC",["maxes","lin/L27/words/L27G1-max1W3",[22686636]]], ["TOC",["maxes","lin/L27/words/L27G1-max2W1",[38083598]]], ["TOC",["maxes","lin/L27/words/L27G1-max2W2",[-79295356]]], ["TOC",["maxes","lin/L27/words/L27G1-max2W3",[109910985]]], ["TOC",["maxes","lin/L27/words/L27G1-max3W1",[16690830]]], ["TOC",["maxes","lin/L27/words/L27G1-max3W2",[37289573]]], ["TOC",["maxes","lin/L27/words/L27G1-max3W3",[-129158900]]], ["TOC",["pres","lin/L27/words/L27d2G1-P1",[122585497]]], ["TOC",["maxes","lin/L27/words/L27d2G1-max1W1",[12326768]]], ["TOC",["maxes","lin/L27/words/L27d2G1-max1W2",[-60147278]]], ["TOC",["maxes","lin/L27/words/L27d2G1-max2W1",[-77560180]]], ["TOC",["maxes","lin/L27/words/L27d2G1-max3W1",[-122443526]]], ["TOC",["maxes","lin/L27/words/L27d2G1-max4W1",[-92766075]]], ["TOC",["switch","lin/L27/words/L27d2G2-G1W1",[126156494]]], ["TOC",["switch","lin/L27/words/L27d2G2-G1W2",[-227752]]], ["TOC",["matalg","lin/L271/gap0/2L271G1-Ar72aB0.g",[97573070]]], ["TOC",["matalg","lin/L271/gap0/L271G1-Ar72aB0.g",[-132705831]]], ["TOC",["matint","lin/L271/gap0/L271G1-Zr71B0.g",[-29765968]]], ["TOC",["out","lin/L271/words/L271G1-a2W1",[-41215106]]], ["TOC",["maxes","lin/L271/words/L271G1-max1W1",[-107506999]]], ["TOC",["maxes","lin/L271/words/L271G1-max2W1",[-120005548]]], ["TOC",["maxes","lin/L271/words/L271G1-max3W1",[98771752]]], ["TOC",["maxes","lin/L271/words/L271G1-max4W1",[-115302759]]], ["TOC",["maxes","lin/L271/words/L271G1-max5W1",[19142927]]], ["TOC",["maxes","lin/L271/words/L271G1-max6W1",[-46171502]]], ["TOC",["maxes","lin/L271/words/L271G1-max7W1",[-69705092]]], ["TOC",["matalg","lin/L273/gap0/2L273G1-Ar74aB0.g",[128545564]]], ["TOC",["matalg","lin/L273/gap0/L273G1-Ar74aB0.g",[14924052]]], ["TOC",["matint","lin/L273/gap0/L273G1-Zr73B0.g",[-105856654]]], ["TOC",["out","lin/L273/words/L273G1-a2W1",[105324938]]], ["TOC",["maxes","lin/L273/words/L273G1-max1W1",[-6680566]]], ["TOC",["maxes","lin/L273/words/L273G1-max2W1",[98771752]]], ["TOC",["maxes","lin/L273/words/L273G1-max3W1",[-67796260]]], ["TOC",["maxes","lin/L273/words/L273G1-max4W1",[23166390]]], ["TOC",["maxes","lin/L273/words/L273G1-max5W1",[-34569730]]], ["TOC",["matalg","lin/L279/gap0/2L279G1-Ar80aB0.g",[95725530]]], ["TOC",["matalg","lin/L279/gap0/L279G1-Ar80aB0.g",[14169819]]], ["TOC",["matint","lin/L279/gap0/L279G1-Zr79B0.g",[41641260]]], ["TOC",["out","lin/L279/words/L279G1-a2W1",[24283469]]], ["TOC",["maxes","lin/L279/words/L279G1-max1W1",[61294765]]], ["TOC",["maxes","lin/L279/words/L279G1-max2W1",[-67796260]]], ["TOC",["maxes","lin/L279/words/L279G1-max3W1",[98771752]]], ["TOC",["maxes","lin/L279/words/L279G1-max4W1",[33653711]]], ["TOC",["maxes","lin/L279/words/L279G1-max5W1",[-11273025]]], ["TOC",["maxes","lin/L279/words/L279G1-max6W1",[-122498485]]], ["TOC",["maxes","lin/L279/words/L279G1-max7W1",[113353462]]], ["TOC",["matalg","lin/L28/gap0/L28G1-Ar7bB0.g",[20710480]]], ["TOC",["matalg","lin/L28/gap0/L28G1-Ar7cB0.g",[106609871]]], ["TOC",["matalg","lin/L28/gap0/L28G1-Ar7dB0.g",[101983880]]], ["TOC",["matalg","lin/L28/gap0/L28G1-Ar9aB0.g",[-93920251]]], ["TOC",["matalg","lin/L28/gap0/L28G1-Ar9bB0.g",[64986437]]], ["TOC",["matalg","lin/L28/gap0/L28G1-Ar9cB0.g",[87023092]]], ["TOC",["matint","lin/L28/gap0/L28G1-Zr27B0.g",[-114310636]]], ["TOC",["matint","lin/L28/gap0/L28G1-Zr7aB0.g",[110656383]]], ["TOC",["matint","lin/L28/gap0/L28G1-Zr8B0.g",[-51612611]]], ["TOC",["matint","lin/L28/gap0/L28d3G1-Zr21B0.g",[-3741690]]], ["TOC",["matint","lin/L28/gap0/L28d3G1-Zr27B0.g",[-20687523]]], ["TOC",["matint","lin/L28/gap0/L28d3G1-Zr7B0.g",[32732428]]], ["TOC",["matint","lin/L28/gap0/L28d3G1-Zr8B0.g",[76066356]]], ["TOC",["matff","lin/L28/mtx/L28G1-f27r9aB0.m",[84356960,99001269]]], ["TOC",["matff","lin/L28/mtx/L28G1-f27r9bB0.m",[-48094539,-37326664]]], ["TOC",["matff","lin/L28/mtx/L28G1-f27r9cB0.m",[-87327260,-86458705]]], ["TOC",["matff","lin/L28/mtx/L28G1-f2r12B0.m",[106294607,108107010]]], ["TOC",["matff","lin/L28/mtx/L28G1-f2r6B0.m",[-60926122,-98268904]]], ["TOC",["matff","lin/L28/mtx/L28G1-f2r8B0.m",[126279998,68611850]]], ["TOC",["matff","lin/L28/mtx/L28G1-f3r27B0.m",[-107460493,-64525869]]], ["TOC",["matff","lin/L28/mtx/L28G1-f3r7B0.m",[27407714,7853667]]], ["TOC",["matff","lin/L28/mtx/L28G1-f7r21B0.m",[47260477,-109705151]]], ["TOC",["matff","lin/L28/mtx/L28G1-f7r7aB0.m",[40749817,-128421700]]], ["TOC",["matff","lin/L28/mtx/L28G1-f7r8B0.m",[83678633,-26931561]]], ["TOC",["matff","lin/L28/mtx/L28G1-f8r2aB0.m",[-131892916,-38250632]]], ["TOC",["matff","lin/L28/mtx/L28G1-f8r2bB0.m",[45556983,-38250632]]], ["TOC",["matff","lin/L28/mtx/L28G1-f8r2cB0.m",[50328380,-38250632]]], ["TOC",["matff","lin/L28/mtx/L28G1-f8r4aB0.m",[-123386786,-87209001]]], ["TOC",["matff","lin/L28/mtx/L28G1-f8r4bB0.m",[-123386786,-55301343]]], ["TOC",["matff","lin/L28/mtx/L28G1-f8r4cB0.m",[-123386786,-80612404]]], ["TOC",["perm","lin/L28/mtx/L28G1-p28B0.m",[35669448,-782094]]], ["TOC",["perm","lin/L28/mtx/L28G1-p36B0.m",[25709402,47214261]]], ["TOC",["perm","lin/L28/mtx/L28G1-p9B0.m",[-85991161,61165666]]], ["TOC",["matff","lin/L28/mtx/L28d3G1-f2r12B0.m",[-88309005,-97581577]]], ["TOC",["matff","lin/L28/mtx/L28d3G1-f2r6B0.m",[117978225,97958503]]], ["TOC",["matff","lin/L28/mtx/L28d3G1-f2r8B0.m",[126279998,-16426250]]], ["TOC",["matff","lin/L28/mtx/L28d3G1-f3r27B0.m",[24644973,-94767526]]], ["TOC",["matff","lin/L28/mtx/L28d3G1-f3r7B0.m",[-76107375,95107976]]], ["TOC",["matff","lin/L28/mtx/L28d3G1-f7r21B0.m",[131726451,47314828]]], ["TOC",["matff","lin/L28/mtx/L28d3G1-f7r7B0.m",[134048538,-25835967]]], ["TOC",["matff","lin/L28/mtx/L28d3G1-f7r8B0.m",[-27681234,-117458693]]], ["TOC",["perm","lin/L28/mtx/L28d3G1-p28B0.m",[-11347864,-3092846]]], ["TOC",["perm","lin/L28/mtx/L28d3G1-p36B0.m",[-57133671,18170332]]], ["TOC",["perm","lin/L28/mtx/L28d3G1-p9B0.m",[-124930224,95862760]]], ["TOC",["classes","lin/L28/words/L28G1-cclsW1",[-56266870]]], ["TOC",["check","lin/L28/words/L28G1-check1",[80991801]]], ["TOC",["cyclic","lin/L28/words/L28G1-cycW1",[-65903386]]], ["TOC",["maxes","lin/L28/words/L28G1-max1W1",[21105475]]], ["TOC",["maxes","lin/L28/words/L28G1-max2W1",[98771752]]], ["TOC",["maxes","lin/L28/words/L28G1-max3W1",[-22453665]]], ["TOC",["cyc2ccl","lin/L28/words/L28G1cycW1-cclsW1",[-15352628]]], ["TOC",["classes","lin/L28/words/L28d3G1-cclsW1",[-104837138]]], ["TOC",["cyclic","lin/L28/words/L28d3G1-cycW1",[-60225110]]], ["TOC",["cyc2ccl","lin/L28/words/L28d3G1cycW1-cclsW1",[68710271]]], ["TOC",["matalg","lin/L283/gap0/2L283G1-Ar84aB0.g",[-96591429]]], ["TOC",["matalg","lin/L283/gap0/L283G1-Ar84aB0.g",[-70217405]]], ["TOC",["matint","lin/L283/gap0/L283G1-Zr83B0.g",[133196235]]], ["TOC",["out","lin/L283/words/L283G1-a2W1",[6146545]]], ["TOC",["maxes","lin/L283/words/L283G1-max1W1",[-49666001]]], ["TOC",["maxes","lin/L283/words/L283G1-max2W1",[98771752]]], ["TOC",["maxes","lin/L283/words/L283G1-max3W1",[-69257965]]], ["TOC",["maxes","lin/L283/words/L283G1-max4W1",[75963915]]], ["TOC",["matalg","lin/L289/gap0/2L289G1-Ar90aB0.g",[32588927]]], ["TOC",["matalg","lin/L289/gap0/L289G1-Ar90aB0.g",[35540176]]], ["TOC",["matint","lin/L289/gap0/L289G1-Zr89B0.g",[-34493501]]], ["TOC",["out","lin/L289/words/L289G1-a2W1",[-13827601]]], ["TOC",["maxes","lin/L289/words/L289G1-max1W1",[103741336]]], ["TOC",["maxes","lin/L289/words/L289G1-max2W1",[117428427]]], ["TOC",["maxes","lin/L289/words/L289G1-max3W1",[21738060]]], ["TOC",["maxes","lin/L289/words/L289G1-max4W1",[-33392236]]], ["TOC",["maxes","lin/L289/words/L289G1-max5W1",[41806923]]], ["TOC",["maxes","lin/L289/words/L289G1-max6W1",[90241214]]], ["TOC",["maxes","lin/L289/words/L289G1-max7W1",[-73311858]]], ["TOC",["matalg","lin/L297/gap0/2L297G1-Ar98aB0.g",[-34210]]], ["TOC",["matalg","lin/L297/gap0/L297G1-Ar98aB0.g",[-119272150]]], ["TOC",["matint","lin/L297/gap0/L297G1-Zr97B0.g",[58929255]]], ["TOC",["out","lin/L297/words/L297G1-a2W1",[20248882]]], ["TOC",["maxes","lin/L297/words/L297G1-max1W1",[57251414]]], ["TOC",["maxes","lin/L297/words/L297G1-max2W1",[-109559907]]], ["TOC",["maxes","lin/L297/words/L297G1-max3W1",[-67796260]]], ["TOC",["maxes","lin/L297/words/L297G1-max4W1",[50625176]]], ["TOC",["maxes","lin/L297/words/L297G1-max5W1",[49198845]]], ["TOC",["matalg","lin/L311/gap0/L311G1-Ar133bB0.g",[29634126]]], ["TOC",["matalg","lin/L311/gap0/L311G1-Ar133cB0.g",[-4007399]]], ["TOC",["matalg","lin/L311/gap0/L311G1-Ar133dB0.g",[-22194624]]], ["TOC",["matalg","lin/L311/gap0/L311G1-Ar133eB0.g",[103312800]]], ["TOC",["matalg","lin/L311/gap0/L311G1-Ar133fB0.g",[65719361]]], ["TOC",["matalg","lin/L311/gap0/L311G1-Ar133gB0.g",[-101751351]]], ["TOC",["matalg","lin/L311/gap0/L311G1-Ar133hB0.g",[-114688021]]], ["TOC",["matalg","lin/L311/gap0/L311G1-Ar133iB0.g",[130526841]]], ["TOC",["matint","lin/L311/gap0/L311G1-Zr132B0.g",[17593353]]], ["TOC",["matint","lin/L311/gap0/L311G1-Zr133aB0.g",[-47865131]]], ["TOC",["matint","lin/L311/gap0/L311G1-Zr532aB0.g",[106335786]]], ["TOC",["matint","lin/L311/gap0/L311G1-Zr532bB0.g",[-78067212]]], ["TOC",["matff","lin/L311/mtx/L311G1-f11r3aB0.m",[51353074,-84399793]]], ["TOC",["matff","lin/L311/mtx/L311G1-f19r131B0.m",[-109101582,-13175777]]], ["TOC",["matff","lin/L311/mtx/L311G1-f2r132B0.m",[15127738,-75727431]]], ["TOC",["matff","lin/L311/mtx/L311G1-f3r132B0.m",[-92319162,76425779]]], ["TOC",["matff","lin/L311/mtx/L311G1-f5r132B0.m",[-60819095,100091130]]], ["TOC",["matff","lin/L311/mtx/L311G1-f7r131B0.m",[72618050,62147603]]], ["TOC",["perm","lin/L311/mtx/L311G1-p133B0.m",[-48892957,-54007987]]], ["TOC",["check","lin/L311/words/L311G1-check1",[-61231635]]], ["TOC",["matalg","lin/L313/gap0/L313G1-Ar183bB0.g",[33423423]]], ["TOC",["matalg","lin/L313/gap0/L313G1-Ar183cB0.g",[-83074833]]], ["TOC",["matint","lin/L313/gap0/L313G1-Zr182B0.g",[-111175614]]], ["TOC",["matint","lin/L313/gap0/L313G1-Zr183aB0.g",[-132862379]]], ["TOC",["matint","lin/L313/gap0/L313G1-Zr366B0.g",[93062962]]], ["TOC",["perm","lin/L313/mtx/L313G1-p183aB0.m",[-579457,21211168]]], ["TOC",["perm","lin/L313/mtx/L313G1-p183bB0.m",[-60482435,-35517122]]], ["TOC",["check","lin/L313/words/L313G1-check1",[97550448]]], ["TOC",["matalg","lin/L33/gap0/L33G1-Ar26bB0.g",[-84589093]]], ["TOC",["matalg","lin/L33/gap0/L33G1-Ar26cB0.g",[59595839]]], ["TOC",["matint","lin/L33/gap0/L33G1-Zr12B0.g",[61457421]]], ["TOC",["matint","lin/L33/gap0/L33G1-Zr13B0.g",[-92468055]]], ["TOC",["matint","lin/L33/gap0/L33G1-Zr26aB0.g",[84455157]]], ["TOC",["matint","lin/L33/gap0/L33G1-Zr27B0.g",[-29774170]]], ["TOC",["matint","lin/L33/gap0/L33G1-Zr39B0.g",[27098987]]], ["TOC",["matint","lin/L33/gap0/L33G1-Zr52B0.g",[-133915197]]], ["TOC",["matint","lin/L33/gap0/L33G1-Zr64B0.g",[123632852]]], ["TOC",["matff","lin/L33/mtx/L33G1-f13r11B0.m",[-23612432,-121029381]]], ["TOC",["matff","lin/L33/mtx/L33G1-f13r13B0.m",[54078889,-94309608]]], ["TOC",["matff","lin/L33/mtx/L33G1-f13r16B0.m",[-124556057,-43232758]]], ["TOC",["matff","lin/L33/mtx/L33G1-f13r26aB0.m",[-45703789,51535145]]], ["TOC",["matff","lin/L33/mtx/L33G1-f13r39B0.m",[52819509,-116280565]]], ["TOC",["matff","lin/L33/mtx/L33G1-f169r26bB0.m",[15772447,10196970]]], ["TOC",["matff","lin/L33/mtx/L33G1-f169r26cB0.m",[86757413,-11766465]]], ["TOC",["matff","lin/L33/mtx/L33G1-f16r16aB0.m",[86287709,-95936991]]], ["TOC",["matff","lin/L33/mtx/L33G1-f2r12B0.m",[-68369210,-99704100]]], ["TOC",["matff","lin/L33/mtx/L33G1-f2r26B0.m",[-6487394,-93166295]]], ["TOC",["matff","lin/L33/mtx/L33G1-f3r15aB0.m",[47943582,73867703]]], ["TOC",["matff","lin/L33/mtx/L33G1-f3r15bB0.m",[125984071,123092749]]], ["TOC",["matff","lin/L33/mtx/L33G1-f3r27B0.m",[42310481,17373410]]], ["TOC",["matff","lin/L33/mtx/L33G1-f3r3aB0.m",[-125015203,-1845232]]], ["TOC",["matff","lin/L33/mtx/L33G1-f3r3bB0.m",[22004189,-1845232]]], ["TOC",["matff","lin/L33/mtx/L33G1-f3r6aB0.m",[87395281,20238276]]], ["TOC",["matff","lin/L33/mtx/L33G1-f3r6bB0.m",[48358129,-10098283]]], ["TOC",["matff","lin/L33/mtx/L33G1-f3r7B0.m",[14693066,22845843]]], ["TOC",["perm","lin/L33/mtx/L33G1-p13aB0.m",[-116463163,121751560]]], ["TOC",["perm","lin/L33/mtx/L33G1-p13bB0.m",[122362027,96305341]]], ["TOC",["perm","lin/L33/mtx/L33G1-p144B0.m",[132953030,-79314437]]], ["TOC",["perm","lin/L33/mtx/L33G1-p234B0.m",[46906834,-97222146]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f13r11a1B0.m",[-133399472,104386340]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f13r13a1B0.m",[127185765,-13976792]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f13r16a1B0.m",[39120435,7620644]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f13r26a1B0.m",[58994423,-71875203]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f13r39a1B0.m",[-117604088,17820792]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f13r52B0.m",[75404613,-112415009]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f2r12B0.m",[19003538,118353708]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f2r26B0.m",[-56283482,-35124799]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f3r12B0.m",[-53009047,-14672641]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f3r27aB0.m",[-2091504,-37614992]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f3r30B0.m",[13802191,-64168086]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f3r6B0.m",[-88688062,-45156628]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f3r7aB0.m",[-60557545,-118441876]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f4r32aB0.m",[-27072300,-22301723]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f4r32bB0.m",[9376398,-83334069]]], ["TOC",["perm","lin/L33/mtx/L33d2G1-p117B0.m",[83812796,-69780241]]], ["TOC",["perm","lin/L33/mtx/L33d2G1-p144B0.m",[86756571,98651988]]], ["TOC",["perm","lin/L33/mtx/L33d2G1-p234B0.m",[37009871,-49456502]]], ["TOC",["perm","lin/L33/mtx/L33d2G1-p26B0.m",[5090655,58529217]]], ["TOC",["perm","lin/L33/mtx/L33d2G1-p52B0.m",[-99210540,91863820]]], ["TOC",["check","lin/L33/words/L33G1-check1",[128356795]]], ["TOC",["matalg","lin/L34/gap0/6L34G1-Ar6aB0.g",[85836385]]], ["TOC",["matalg","lin/L34/gap0/L34G1-Ar63aB0.g",[118391189]]], ["TOC",["matalg","lin/L34/gap0/L34G1-Ar63bB0.g",[125483016]]], ["TOC",["matint","lin/L34/gap0/L34G1-Zr20B0.g",[-122023731]]], ["TOC",["matint","lin/L34/gap0/L34G1-Zr35aB0.g",[-113551123]]], ["TOC",["matint","lin/L34/gap0/L34G1-Zr35bB0.g",[-828219]]], ["TOC",["matint","lin/L34/gap0/L34G1-Zr35cB0.g",[-25424988]]], ["TOC",["matint","lin/L34/gap0/L34G1-Zr64B0.g",[13550568]]], ["TOC",["perm","lin/L34/mtx/12aL34G1-p1440B0.m",[-93057487,34381739]]], ["TOC",["matff","lin/L34/mtx/12aL34d2aG1-f25r240aB0.m",[121261647,72933608]]], ["TOC",["matff","lin/L34/mtx/12aL34d2aG1-f25r48aB0.m",[-79141338,44899819]]], ["TOC",["matff","lin/L34/mtx/12aL34d2aG1-f25r48bB0.m",[14928352,18052982]]], ["TOC",["matff","lin/L34/mtx/12aL34d2aG1-f7r48aB0.m",[26622177,109214358]]], ["TOC",["matff","lin/L34/mtx/12aL34d2aG1-f7r96aB0.m",[92172142,115704419]]], ["TOC",["matff","lin/L34/mtx/12aL34d2aG1-f7r96bB0.m",[-127705810,4045644]]], ["TOC",["matff","lin/L34/mtx/12bL34G1-f49r12aB0.m",[120731387,-43948989]]], ["TOC",["matff","lin/L34/mtx/12bL34G1-f49r36aB0.m",[6624692,-72871409]]], ["TOC",["matff","lin/L34/mtx/12bL34G1-f49r48aB0.m",[103614293,42100855]]], ["TOC",["matff","lin/L34/mtx/12bL34G1-f49r84aB0.m",[3517396,-122669699]]], ["TOC",["perm","lin/L34/mtx/12bL34G1-p1440B0.m",[6654670,-47327527]]], ["TOC",["matff","lin/L34/mtx/12bL34d2aG1-f25r120aB0.m",[73397176,-75291982]]], ["TOC",["matff","lin/L34/mtx/12bL34d2aG1-f25r120bB0.m",[-68375584,53552761]]], ["TOC",["matff","lin/L34/mtx/12bL34d2aG1-f25r72aB0.m",[14083533,70706734]]], ["TOC",["matff","lin/L34/mtx/12bL34d2aG1-f25r96aB0.m",[-127862077,-102790773]]], ["TOC",["matff","lin/L34/mtx/12bL34d2aG1-f7r168aB0.m",[-69235645,73296186]]], ["TOC",["matff","lin/L34/mtx/12bL34d2aG1-f7r24aB0.m",[-90380968,87401413]]], ["TOC",["matff","lin/L34/mtx/12bL34d2aG1-f7r72aB0.m",[56903652,-2055551]]], ["TOC",["matff","lin/L34/mtx/12bL34d2aG1-f7r96aB0.m",[35078056,-127832242]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f25r10aB0.m",[-88992821,67489201]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f25r10bB0.m",[-105440074,96200235]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f3r20B0.m",[-93569944,-87382685]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f3r36B0.m",[-80756428,41508285]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f3r44B0.m",[41478190,-18743104]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f3r6B0.m",[-103893736,-86081679]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f3r90B0.m",[88287177,-81736530]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f49r28aB0.m",[1310270,-62148044]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f49r28bB0.m",[124811287,-54950694]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f5r20B0.m",[-89299589,-58349063]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f5r28B0.m",[-399631,116739406]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f5r36B0.m",[115657892,-23166152]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f5r70B0.m",[-101817162,124450490]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f5r90B0.m",[105022990,-88409173]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f7r10B0.m",[84112006,27474894]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f7r26B0.m",[-116585591,116151908]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f7r56B0.m",[79622507,-86309451]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f7r64B0.m",[-24493087,-33578946]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f7r70B0.m",[127847176,83424766]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f9r10aB0.m",[-25247569,128716654]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f9r10bB0.m",[-103159260,-97045998]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f9r22aB0.m",[22903972,116243796]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f9r22bB0.m",[-58222286,54549056]]], ["TOC",["perm","lin/L34/mtx/2L34G1-p112aB0.m",[-68974259,-52791464]]], ["TOC",["perm","lin/L34/mtx/2L34G1-p112bB0.m",[-41101872,-125401681]]], ["TOC",["perm","lin/L34/mtx/2L34G1-p112cB0.m",[-5706690,-120729682]]], ["TOC",["perm","lin/L34/mtx/2L34G1-p240aB0.m",[-41074538,22004999]]], ["TOC",["perm","lin/L34/mtx/2L34G1-p240bB0.m",[81289321,77816372]]], ["TOC",["perm","lin/L34/mtx/2L34G1-p240cB0.m",[15130538,96479366]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f25r70aB0.m",[-115392312,-50364781]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f25r90aB0.m",[-104079389,-35438474]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f3r20aB0.m",[116117247,-57691655]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f3r36aB0.m",[-77445395,-24387511]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f3r44aB0.m",[45409821,121155019]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f5r20aB0.m",[110311293,-1882364]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f5r28aB0.m",[47061633,-116857533]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f5r36aB0.m",[-67885411,-67746345]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f7r10aB0.m",[100312708,4134229]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f7r26aB0.m",[80948327,-21554207]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f7r56aB0.m",[-120340992,-42176093]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f7r64aB0.m",[106918930,34999708]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f7r70aB0.m",[19892965,88403861]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f9r6aB0.m",[-45904163,-91173218]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f9r90aB0.m",[-48863604,-36608392]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f25r21aB0.m",[-17385074,112933939]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f2r18B0.m",[22226930,-25662078]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f2r48aB0.m",[-66044074,33257764]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f2r48bB0.m",[-116513251,2548963]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f2r6aB0.m",[-65706201,-101302677]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f2r6bB0.m",[16308329,63335887]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f49r63aB0.m",[67855398,47781720]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f49r63bB0.m",[21904644,126831464]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f4r24aB0.m",[128439733,-19119772]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f4r24bB0.m",[36344684,-59800273]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f4r3aB0.m",[-97328602,65174037]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f4r3bB0.m",[11933003,65174037]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f4r9aB0.m",[-123373201,86769374]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f5r42B0.m",[85695935,-130342706]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f7r126aB0.m",[-36594705,-111037250]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f7r15aB0.m",[79081745,514114]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f7r15bB0.m",[8581692,126454307]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f7r15cB0.m",[-114513189,114145279]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f7r21aB0.m",[24467152,23770871]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f7r84aB0.m",[75155492,99817923]]], ["TOC",["perm","lin/L34/mtx/3L34G1-p360aB0.m",[-56841669,-51949901]]], ["TOC",["perm","lin/L34/mtx/3L34G1-p360bB0.m",[87942575,15177202]]], ["TOC",["perm","lin/L34/mtx/3L34G1-p360cB0.m",[-99761475,53988323]]], ["TOC",["perm","lin/L34/mtx/3L34G1-p63aB0.m",[-84404742,-70798544]]], ["TOC",["perm","lin/L34/mtx/3L34G1-p63bB0.m",[-112558804,-13333446]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f25r15aB0.m",[-46743145,94716397]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f25r15bB0.m",[-36577252,58600418]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f25r15cB0.m",[62050075,-79592725]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f25r21aB0.m",[-96589924,-38419168]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f25r63aB0.m",[-35259848,-68482160]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f25r90aB0.m",[-112263163,40609361]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f4r48aB0.m",[-71828641,-87874767]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f4r6aB0.m",[101016393,-133212309]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f4r9aB0.m",[-95539509,-73330707]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f7r126aB0.m",[56179507,132628587]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f7r15aB0.m",[11348637,127771694]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f7r15bB0.m",[26041056,-109115907]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f7r15cB0.m",[43912746,-17513682]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f7r21aB0.m",[58637017,-5764544]]], ["TOC",["perm","lin/L34/mtx/4aL34G1-p224B0.m",[-29322817,-112140598]]], ["TOC",["perm","lin/L34/mtx/4aL34G1-p480B0.m",[107820567,38862527]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f25r160aB0.m",[94975212,-18542833]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f3r16aB0.m",[46427716,16766612]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f3r16bB0.m",[-95213894,-53996788]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f3r48aB0.m",[-125471684,-15470402]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f3r48bB0.m",[-125471684,-15470402]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f3r80aB0.m",[117868899,-114418461]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f5r112aB0.m",[-44260037,57153121]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f5r16aB0.m",[-77788676,52337679]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f7r112aB0.m",[120149916,-29136110]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f7r128aB0.m",[28457933,-84063692]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f7r16aB0.m",[105949035,-27886191]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f7r16bB0.m",[15027655,123470029]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f25r80aB0.m",[-35370227,-56481398]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f25r80bB0.m",[125494459,26057263]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f3r120B0.m",[-16253618,-91930404]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f3r32B0.m",[-18133199,-18991413]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f3r56aB0.m",[17247428,-133536447]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f3r56bB0.m",[88017518,-102653945]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f3r72B0.m",[51891685,-72809012]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f3r8B0.m",[-54825854,-94825055]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f49r20aB0.m",[-451666,-97316739]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f49r28aB0.m",[-50186719,-44902445]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f49r28bB0.m",[97249965,131233241]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f49r36aB0.m",[61905462,-6951638]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f49r44aB0.m",[27974262,-88322029]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f5r160aB0.m",[-119862924,-26192627]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f5r20aB0.m",[130948648,76660542]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f5r28aB0.m",[-9788569,-60703200]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f5r36aB0.m",[119489141,-132304597]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f7r40B0.m",[70560512,60215626]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f7r56aB0.m",[97013262,-79743414]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f7r56bB0.m",[36361797,86437892]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f7r72B0.m",[40325760,11787007]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f7r88B0.m",[131279819,90124935]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f9r16aB0.m",[40512013,-9608413]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f9r28aB0.m",[49153070,-61801576]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f9r28bB0.m",[127076227,-35727580]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f9r36aB0.m",[-129263542,775946]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f9r4aB0.m",[25816187,-57490078]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f9r60aB0.m",[16520345,64352643]]], ["TOC",["perm","lin/L34/mtx/4bL34G1-p224B0.m",[4075530,-126540461]]], ["TOC",["perm","lin/L34/mtx/4bL34G1-p480B0.m",[993474,-12612935]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f25r160aB0.m",[59696593,-11162019]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f3r120aB0.m",[-111067857,12708432]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f3r32aB0.m",[132207655,24814268]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f3r56aB0.m",[116001063,-114911263]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f3r56bB0.m",[78698101,-19003998]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f3r72aB0.m",[-23570692,-970393]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f3r8aB0.m",[102848125,-122573398]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f5r40aB0.m",[131962590,61002952]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f5r56aB0.m",[93085107,-85515727]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f5r72aB0.m",[-54606187,-117119289]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f7r40aB0.m",[-82490410,64417307]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f7r56aB0.m",[-119575217,-97663691]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f7r56bB0.m",[-82308316,-113181878]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f7r72aB0.m",[33321922,-46364155]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f7r88aB0.m",[24921739,-87479774]]], ["TOC",["perm","lin/L34/mtx/6L34G1-p720aB0.m",[-28192485,26893988]]], ["TOC",["perm","lin/L34/mtx/6L34G1-p720bB0.m",[-125662981,-3873538]]], ["TOC",["perm","lin/L34/mtx/6L34G1-p720cB0.m",[1794908,123135054]]], ["TOC",["matff","lin/L34/mtx/6L34d2aG1-f25r120aB0.m",[-64557383,-50608452]]], ["TOC",["matff","lin/L34/mtx/6L34d2aG1-f25r36aB0.m",[104612967,-64413333]]], ["TOC",["matff","lin/L34/mtx/6L34d2aG1-f25r6aB0.m",[61179572,-78383424]]], ["TOC",["matff","lin/L34/mtx/6L34d2aG1-f25r90aB0.m",[15442327,41972559]]], ["TOC",["matff","lin/L34/mtx/6L34d2aG1-f7r36aB0.m",[-4007073,-17197499]]], ["TOC",["matff","lin/L34/mtx/6L34d2aG1-f7r54aB0.m",[-67804259,-129518022]]], ["TOC",["matff","lin/L34/mtx/6L34d2aG1-f7r6aB0.m",[79827435,-76787641]]], ["TOC",["matff","lin/L34/mtx/6L34d2aG1-f7r84aB0.m",[30627110,77959264]]], ["TOC",["matff","lin/L34/mtx/L34G1-f25r45aB0.m",[-44775022,120011673]]], ["TOC",["matff","lin/L34/mtx/L34G1-f25r45bB0.m",[-29632890,103603502]]], ["TOC",["matff","lin/L34/mtx/L34G1-f2r16B0.m",[46169480,-95413981]]], ["TOC",["matff","lin/L34/mtx/L34G1-f2r64B0.m",[51000356,-26817579]]], ["TOC",["matff","lin/L34/mtx/L34G1-f2r9aB0.m",[-98758327,-117475382]]], ["TOC",["matff","lin/L34/mtx/L34G1-f2r9bB0.m",[-63412790,110073486]]], ["TOC",["matff","lin/L34/mtx/L34G1-f3r126B0.m",[3481951,64876651]]], ["TOC",["matff","lin/L34/mtx/L34G1-f3r15aB0.m",[-39614754,-121811673]]], ["TOC",["matff","lin/L34/mtx/L34G1-f3r15bB0.m",[-112371543,-1531556]]], ["TOC",["matff","lin/L34/mtx/L34G1-f3r15cB0.m",[113919011,67993071]]], ["TOC",["matff","lin/L34/mtx/L34G1-f3r19B0.m",[102198987,105678252]]], ["TOC",["matff","lin/L34/mtx/L34G1-f3r90B0.m",[51410400,84508933]]], ["TOC",["matff","lin/L34/mtx/L34G1-f49r63aB0.m",[124259526,30413281]]], ["TOC",["matff","lin/L34/mtx/L34G1-f49r63bB0.m",[21372363,-97700157]]], ["TOC",["matff","lin/L34/mtx/L34G1-f4r8aB0.m",[-75135557,38900111]]], ["TOC",["matff","lin/L34/mtx/L34G1-f4r8bB0.m",[-75135557,2656064]]], ["TOC",["matff","lin/L34/mtx/L34G1-f5r20B0.m",[-43817290,-113432271]]], ["TOC",["matff","lin/L34/mtx/L34G1-f5r35aB0.m",[-89364701,74136444]]], ["TOC",["matff","lin/L34/mtx/L34G1-f5r35bB0.m",[-52643649,7141410]]], ["TOC",["matff","lin/L34/mtx/L34G1-f5r35cB0.m",[-128692603,52387688]]], ["TOC",["matff","lin/L34/mtx/L34G1-f5r63B0.m",[-105250897,-19347820]]], ["TOC",["matff","lin/L34/mtx/L34G1-f5r90B0.m",[-47031751,107440221]]], ["TOC",["matff","lin/L34/mtx/L34G1-f7r126B0.m",[41002667,32973004]]], ["TOC",["matff","lin/L34/mtx/L34G1-f7r19B0.m",[124793693,83774943]]], ["TOC",["matff","lin/L34/mtx/L34G1-f7r35aB0.m",[60130429,-22094752]]], ["TOC",["matff","lin/L34/mtx/L34G1-f7r35bB0.m",[105679957,97686809]]], ["TOC",["matff","lin/L34/mtx/L34G1-f7r35cB0.m",[-60559294,79512400]]], ["TOC",["matff","lin/L34/mtx/L34G1-f7r45B0.m",[47592897,30522697]]], ["TOC",["matff","lin/L34/mtx/L34G1-f9r45aB0.m",[93201630,-127294177]]], ["TOC",["matff","lin/L34/mtx/L34G1-f9r45bB0.m",[49557081,53141546]]], ["TOC",["matff","lin/L34/mtx/L34G1-f9r63aB0.m",[112292721,2777151]]], ["TOC",["matff","lin/L34/mtx/L34G1-f9r63bB0.m",[-89774031,103770877]]], ["TOC",["perm","lin/L34/mtx/L34G1-p120aB0.m",[-72559214,27979987]]], ["TOC",["perm","lin/L34/mtx/L34G1-p120bB0.m",[-55561320,-1516803]]], ["TOC",["perm","lin/L34/mtx/L34G1-p120cB0.m",[-57007187,101354069]]], ["TOC",["perm","lin/L34/mtx/L34G1-p21aB0.m",[-19004952,5499543]]], ["TOC",["perm","lin/L34/mtx/L34G1-p21bB0.m",[91845683,-54944712]]], ["TOC",["perm","lin/L34/mtx/L34G1-p280B0.m",[98810647,-94695118]]], ["TOC",["perm","lin/L34/mtx/L34G1-p56aB0.m",[-8900666,-118975031]]], ["TOC",["perm","lin/L34/mtx/L34G1-p56bB0.m",[50383895,-34790052]]], ["TOC",["perm","lin/L34/mtx/L34G1-p56cB0.m",[-86656563,-100194267]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f2r16aB0.m",[83547602,116479864]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f2r18aB0.m",[-25080438,-59240269]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f2r64aB0.m",[69288851,95225700]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f3r126aB0.m",[81734399,-58995213]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f3r15aB0.m",[-61111317,101842957]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f3r15bB0.m",[-128709375,-54183738]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f3r15cB0.m",[76310770,-121510502]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f3r19aB0.m",[-51740278,41392306]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f3r90aB0.m",[56189202,55127644]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f5r20aB0.m",[31455135,131197524]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f5r35aB0.m",[-43784368,119001465]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f5r35bB0.m",[-111004812,29887541]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f5r35cB0.m",[-51473521,23444213]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f5r63aB0.m",[-112065891,-65873907]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f5r90aB0.m",[-119791052,16467379]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f7r126aB0.m",[82279213,126072812]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f7r19aB0.m",[-101848977,23107928]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f7r35aB0.m",[-527302,56621053]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f7r35bB0.m",[-95054765,35790184]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f7r35cB0.m",[-95865379,23720152]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f7r45aB0.m",[110810312,-98005062]]], ["TOC",["pres","lin/L34/words/L34G1-P1",[-49235946]]], ["TOC",["check","lin/L34/words/L34G1-check1",[27117774]]], ["TOC",["maxes","lin/L34/words/L34G1-max1W1",[68080085]]], ["TOC",["maxes","lin/L34/words/L34G1-max2W1",[5685288]]], ["TOC",["maxes","lin/L34/words/L34G1-max3W1",[118140116]]], ["TOC",["maxes","lin/L34/words/L34G1-max6W1",[130740388]]], ["TOC",["maxes","lin/L34/words/L34G1-max7W1",[-9220339]]], ["TOC",["maxes","lin/L34/words/L34G1-max8W1",[125238819]]], ["TOC",["maxes","lin/L34/words/L34G1-max9W1",[-108213754]]], ["TOC",["maxstd","lin/L34/words/L34G1max6W1-L27G1W1",[74292380]]], ["TOC",["maxstd","lin/L34/words/L34G1max7W1-L27G1W1",[74292380]]], ["TOC",["maxstd","lin/L34/words/L34G1max8W1-L27G1W1",[74292380]]], ["TOC",["cyclic","lin/L34/words/L34d2aG1-cycW1",[-96567863]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar124cB0.g",[-124331976]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar124dB0.g",[-114482122]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar124eB0.g",[-115304669]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar124fB0.g",[2324575]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar124gB0.g",[62362134]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar124hB0.g",[88306887]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar124iB0.g",[-83924311]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar124jB0.g",[-35732927]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar155bB0.g",[96893498]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar155cB0.g",[49785947]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar31bB0.g",[8369273]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar31cB0.g",[-71316675]]], ["TOC",["matint","lin/L35/gap0/L35G1-Zr124aB0.g",[-115205541]]], ["TOC",["matint","lin/L35/gap0/L35G1-Zr124bB0.g",[30557051]]], ["TOC",["matint","lin/L35/gap0/L35G1-Zr125B0.g",[100061240]]], ["TOC",["matint","lin/L35/gap0/L35G1-Zr155aB0.g",[39857228]]], ["TOC",["matint","lin/L35/gap0/L35G1-Zr186B0.g",[50412205]]], ["TOC",["matint","lin/L35/gap0/L35G1-Zr30B0.g",[-27425429]]], ["TOC",["matint","lin/L35/gap0/L35G1-Zr31aB0.g",[99159689]]], ["TOC",["matff","lin/L35/mtx/L35G1-f5r3aB0.m",[-65129013,15896462]]], ["TOC",["matff","lin/L35/mtx/L35G1-f5r3bB0.m",[-65129013,-40061844]]], ["TOC",["matff","lin/L35/mtx/L35G1-f5r8B0.m",[32399140,85142332]]], ["TOC",["perm","lin/L35/mtx/L35G1-p31aB0.m",[-54392845,-57877261]]], ["TOC",["perm","lin/L35/mtx/L35G1-p31bB0.m",[-87497619,-74211641]]], ["TOC",["matff","lin/L35/mtx/L35d2G1-f5r6B0.m",[-104077410,-32872059]]], ["TOC",["matff","lin/L35/mtx/L35d2G1-f5r8B0.m",[-98916020,-122589078]]], ["TOC",["perm","lin/L35/mtx/L35d2G1-p186B0.m",[65566167,-13349652]]], ["TOC",["perm","lin/L35/mtx/L35d2G1-p3100B0.m",[-88459429,-121823863]]], ["TOC",["perm","lin/L35/mtx/L35d2G1-p3875B0.m",[-128735761,1363702]]], ["TOC",["perm","lin/L35/mtx/L35d2G1-p4000B0.m",[27219291,109028642]]], ["TOC",["perm","lin/L35/mtx/L35d2G1-p62B0.m",[-29681502,-49152859]]], ["TOC",["perm","lin/L35/mtx/L35d2G1-p775B0.m",[-2342518,-86305942]]], ["TOC",["switch","lin/L35/words/L35G1-G2W1",[4135392]]], ["TOC",["pres","lin/L35/words/L35G1-P1",[90517883]]], ["TOC",["check","lin/L35/words/L35G1-check1",[-74963282]]], ["TOC",["switch","lin/L35/words/L35G2-G1W1",[-116206338]]], ["TOC",["pres","lin/L35/words/L35G2-P1",[97980954]]], ["TOC",["pres","lin/L35/words/L35d2G1-P1",[111773918]]], ["TOC",["maxes","lin/L35/words/L35d2G1-max1W1",[94732269]]], ["TOC",["maxes","lin/L35/words/L35d2G1-max2W1",[53483340]]], ["TOC",["maxes","lin/L35/words/L35d2G1-max3W1",[-77535957]]], ["TOC",["maxes","lin/L35/words/L35d2G1-max4W1",[-19947795]]], ["TOC",["maxes","lin/L35/words/L35d2G1-max5W1",[131867145]]], ["TOC",["maxes","lin/L35/words/L35d2G1-max6W1",[-53044737]]], ["TOC",["matint","lin/L37/gap0/L37G1-Zr152aB0.g",[11399823]]], ["TOC",["matint","lin/L37/gap0/L37G1-Zr152bB0.g",[102789999]]], ["TOC",["matint","lin/L37/gap0/L37G1-Zr152cB0.g",[16428520]]], ["TOC",["matint","lin/L37/gap0/L37G1-Zr56B0.g",[-46471591]]], ["TOC",["matint","lin/L37/gap0/L37G1-Zr57B0.g",[113079095]]], ["TOC",["matff","lin/L37/mtx/3L37G1-f7r3B0.m",[-100717365,-108175928]]], ["TOC",["matff","lin/L37/mtx/L37G1-f2r152aB0.m",[-72199675,67264246]]], ["TOC",["matff","lin/L37/mtx/L37G1-f3r342aB0.m",[52549423,-121195267]]], ["TOC",["matff","lin/L37/mtx/L37G1-f3r399B0.m",[132962784,32272895]]], ["TOC",["matff","lin/L37/mtx/L37G1-f3r55B0.m",[-74161474,-22493683]]], ["TOC",["matff","lin/L37/mtx/L37G1-f3r57B0.m",[-47437722,-74326569]]], ["TOC",["matff","lin/L37/mtx/L37G1-f3r96aB0.m",[26591279,71358592]]], ["TOC",["matff","lin/L37/mtx/L37G1-f3r96bB0.m",[-32809021,70784477]]], ["TOC",["matff","lin/L37/mtx/L37G1-f3r96cB0.m",[95784301,-41545820]]], ["TOC",["matff","lin/L37/mtx/L37G1-f7r10aB0.m",[131217716,6719232]]], ["TOC",["matff","lin/L37/mtx/L37G1-f7r10bB0.m",[-80359230,-77685974]]], ["TOC",["matff","lin/L37/mtx/L37G1-f7r27B0.m",[21222778,570050]]], ["TOC",["matff","lin/L37/mtx/L37G1-f7r8B0.m",[58422518,-51802315]]], ["TOC",["perm","lin/L37/mtx/L37G1-p57B0.m",[-53038011,-87729305]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f2r152B0.m",[-32632257,-100690645]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f2r342B0.m",[56091536,-12504703]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f2r56B0.m",[33892259,-118271238]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f3r192B0.m",[-93380539,-87395286]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f3r399B0.m",[-95030787,104673177]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f3r55B0.m",[-71443487,-95752462]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f3r57B0.m",[39141964,-36264033]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f3r96B0.m",[-131123640,-26072740]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f7r20B0.m",[-30006785,-54694979]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f7r27B0.m",[-10239772,42092568]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f7r308B0.m",[-75186577,82686741]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f7r343B0.m",[96956716,-59783385]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f7r37B0.m",[110185839,-101415274]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f7r56B0.m",[86717133,99591761]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f7r70B0.m",[62370012,-82953269]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f7r8B0.m",[-122290111,-122282756]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f9r342bB0.m",[-95252590,17365417]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f9r342cB0.m",[11273536,-73143313]]], ["TOC",["check","lin/L37/words/L37G1-check1",[-77065997]]], ["TOC",["cyclic","lin/L37/words/L37G1-cycW1",[5762964]]], ["TOC",["cyc2ccl","lin/L37/words/L37G1cycW1-cclsW1",[22298259]]], ["TOC",["cyclic","lin/L37/words/L37d2G1-cycW1",[-76969531]]], ["TOC",["maxes","lin/L37/words/L37d2G1-max1W1",[18648327]]], ["TOC",["maxes","lin/L37/words/L37d2G1-max2W1",[72713883]]], ["TOC",["cyc2ccl","lin/L37/words/L37d2G1cycW1-cclsW1",[-12399487]]], ["TOC",["matalg","lin/L38/gap0/L38G1-Ar73aB0.g",[-94769407]]], ["TOC",["matalg","lin/L38/gap0/L38G1-Ar73bB0.g",[50723992]]], ["TOC",["matalg","lin/L38/gap0/L38G1-Ar73cB0.g",[118152385]]], ["TOC",["matalg","lin/L38/gap0/L38G1-Ar73dB0.g",[18131412]]], ["TOC",["matalg","lin/L38/gap0/L38G1-Ar73eB0.g",[126115624]]], ["TOC",["matalg","lin/L38/gap0/L38G1-Ar73fB0.g",[179255]]], ["TOC",["matint","lin/L38/gap0/L38G1-Zr72B0.g",[128827179]]], ["TOC",["matff","lin/L38/mtx/L38G1-f27r657B0.m",[-9549407,-43676573]]], ["TOC",["matff","lin/L38/mtx/L38G1-f2r27B0.m",[53570555,130909346]]], ["TOC",["matff","lin/L38/mtx/L38G1-f2r512B0.m",[107224380,37094558]]], ["TOC",["matff","lin/L38/mtx/L38G1-f343r511B0.m",[-100123551,19487879]]], ["TOC",["matff","lin/L38/mtx/L38G1-f3r511B0.m",[35926319,-15545178]]], ["TOC",["matff","lin/L38/mtx/L38G1-f3r72B0.m",[73721626,53952558]]], ["TOC",["matff","lin/L38/mtx/L38G1-f73r441B0.m",[-47921267,127739676]]], ["TOC",["matff","lin/L38/mtx/L38G1-f73r511aB0.m",[31065741,56807328]]], ["TOC",["matff","lin/L38/mtx/L38G1-f73r511bB0.m",[-134145805,-122352988]]], ["TOC",["matff","lin/L38/mtx/L38G1-f73r71B0.m",[126111976,36033445]]], ["TOC",["matff","lin/L38/mtx/L38G1-f7r511B0.m",[89673906,76603171]]], ["TOC",["matff","lin/L38/mtx/L38G1-f7r512B0.m",[-87765186,104110734]]], ["TOC",["matff","lin/L38/mtx/L38G1-f7r72B0.m",[-11825976,-66298402]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r192B0.m",[-35474945,-62548250]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r24aB0.m",[1402273,110477717]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r24bB0.m",[131799401,-76136676]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r27B0.m",[7847816,-72778508]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r3B0.m",[-37144176,93598740]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r64B0.m",[-39084705,27917098]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r72aB0.m",[-49992500,-101821875]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r72bB0.m",[48760267,-126905198]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r8B0.m",[108810880,41630410]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r9aB0.m",[34239993,52256508]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r9bB0.m",[-93705188,52256508]]], ["TOC",["perm","lin/L38/mtx/L38G1-p56064B0.m",[-66463656,-89599168]]], ["TOC",["perm","lin/L38/mtx/L38G1-p73aB0.m",[7367191,-115753490]]], ["TOC",["perm","lin/L38/mtx/L38G1-p73bB0.m",[16360602,76307498]]], ["TOC",["perm","lin/L38/mtx/L38G1-p75264B0.m",[-4020599,-20343939]]], ["TOC",["perm","lin/L38/mtx/L38G1-p98112B0.m",[35089548,56301880]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f2r54B0.m",[98557351,-23750355]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f3r511B0.m",[-98897088,-98980956]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f73r441B0.m",[124710465,-85261250]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f73r511aB0.m",[74045684,6998139]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f73r511bB0.m",[-127060099,127704476]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f73r71B0.m",[-119484075,-61189104]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f7r512B0.m",[-79802053,102557660]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f7r72B0.m",[9067370,-7943961]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r144aB0.m",[78652322,-42452376]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r144bB0.m",[43008911,-91466156]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r18aB0.m",[-90517385,-90105844]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r18bB0.m",[39866721,-33916835]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r384B0.m",[-36200915,86527981]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r48aB0.m",[-91069851,-114504242]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r48bB0.m",[-81874300,60040123]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r54B0.m",[-4260607,124828731]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r64B0.m",[-122276359,116666796]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r6B0.m",[-128895817,52766612]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r8B0.m",[76285973,-92596710]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f9r72B0.m",[109248692,109968207]]], ["TOC",["perm","lin/L38/mtx/L38d2G1-p146B0.m",[-94955132,-112292624]]], ["TOC",["perm","lin/L38/mtx/L38d2G1-p4672B0.m",[66223655,-50929470]]], ["TOC",["perm","lin/L38/mtx/L38d2G1-p56064B0.m",[104547485,-129071911]]], ["TOC",["perm","lin/L38/mtx/L38d2G1-p657B0.m",[30435745,-34395041]]], ["TOC",["perm","lin/L38/mtx/L38d2G1-p75264B0.m",[40691055,-35873055]]], ["TOC",["perm","lin/L38/mtx/L38d2G1-p98112B0.m",[-81730120,-26656673]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r192B0.m",[6107990,106607000]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r216aB0.m",[-26503866,49500718]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r216bB0.m",[47670388,86661620]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r24B0.m",[-55806868,80681738]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r27aB0.m",[-51526903,45097681]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r27bB0.m",[-15053373,-48460799]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r27cB0.m",[37582657,38692959]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r576B0.m",[85301581,132157423]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r72aB0.m",[63869636,-19582455]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r72bB0.m",[-3653919,117200050]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r81B0.m",[-30896926,-28846440]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r9B0.m",[-20084484,101484140]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f3r511B0.m",[-33656045,-21320385]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f3r72B0.m",[-58390532,-42192185]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f73r441B0.m",[61959137,-38741676]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f73r511aB0.m",[-72104415,5739869]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f73r71B0.m",[22143677,126112509]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f7r511B0.m",[126996729,-76266671]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f7r512B0.m",[95227596,-108324848]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f7r72B0.m",[32023300,38080482]]], ["TOC",["perm","lin/L38/mtx/L38d3G1-p219aB0.m",[-52379589,-131711006]]], ["TOC",["perm","lin/L38/mtx/L38d3G1-p219bB0.m",[-33738630,22308821]]], ["TOC",["perm","lin/L38/mtx/L38d3G1-p56064B0.m",[38408933,43181430]]], ["TOC",["perm","lin/L38/mtx/L38d3G1-p73aB0.m",[60158583,41378416]]], ["TOC",["perm","lin/L38/mtx/L38d3G1-p73bB0.m",[64492430,73623080]]], ["TOC",["perm","lin/L38/mtx/L38d3G1-p75264B0.m",[-28778762,-122715979]]], ["TOC",["perm","lin/L38/mtx/L38d3G1-p98112B0.m",[109114039,4300594]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r1152B0.m",[-117654589,10646833]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r144aB0.m",[103814136,3817046]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r144bB0.m",[69562980,-50032280]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r162B0.m",[113830665,-112260504]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r18B0.m",[-97825654,112002520]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r192B0.m",[62204946,36556265]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r24B0.m",[18149513,-94429235]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r432aB0.m",[73951256,-67106930]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r432bB0.m",[115376089,-96173383]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r512B0.m",[65776895,66541066]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r54aB0.m",[37299043,43647713]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r54bB0.m",[35348036,-30831590]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f3r511B0.m",[-49219385,-46592666]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f73r441B0.m",[36170806,-132016127]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f73r511aB0.m",[-54022418,-24968416]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f73r71B0.m",[18945244,-94167432]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f7r511B0.m",[73478384,22560211]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f7r512B0.m",[-77529684,10596156]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f7r72B0.m",[-73502741,-62173098]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f9r72B0.m",[-39098903,81571638]]], ["TOC",["perm","lin/L38/mtx/L38d6G1-p438B0.m",[36979974,-129349004]]], ["TOC",["perm","lin/L38/mtx/L38d6G1-p4672B0.m",[-16396462,-121176168]]], ["TOC",["perm","lin/L38/mtx/L38d6G1-p56064B0.m",[-11875828,-89403590]]], ["TOC",["perm","lin/L38/mtx/L38d6G1-p657B0.m",[-121018827,89574532]]], ["TOC",["perm","lin/L38/mtx/L38d6G1-p75264B0.m",[-55307927,28998015]]], ["TOC",["perm","lin/L38/mtx/L38d6G1-p98112B0.m",[-84935205,-27579668]]], ["TOC",["out","lin/L38/words/L38G1-a3W1",[-4207554]]], ["TOC",["out","lin/L38/words/L38G1-a6W1",[-85703423]]], ["TOC",["check","lin/L38/words/L38G1-check1",[98473383]]], ["TOC",["cyclic","lin/L38/words/L38G1-cycW1",[23058888]]], ["TOC",["maxes","lin/L38/words/L38G1-max1W1",[105383583]]], ["TOC",["maxes","lin/L38/words/L38G1-max2W1",[-121773189]]], ["TOC",["maxes","lin/L38/words/L38G1-max3W1",[-85409155]]], ["TOC",["maxes","lin/L38/words/L38G1-max4W1",[-111328178]]], ["TOC",["maxes","lin/L38/words/L38G1-max5W1",[101665901]]], ["TOC",["cyclic","lin/L38/words/L38d2G1-cycW1",[-127124674]]], ["TOC",["maxes","lin/L38/words/L38d2G1-max1W1",[-104229436]]], ["TOC",["cyclic","lin/L38/words/L38d3G1-cycW1",[132160406]]], ["TOC",["maxes","lin/L38/words/L38d3G1-max1W1",[-90168709]]], ["TOC",["maxes","lin/L38/words/L38d3G1-max2W1",[115911000]]], ["TOC",["maxes","lin/L38/words/L38d3G1-max3W1",[-40477011]]], ["TOC",["maxes","lin/L38/words/L38d3G1-max4W1",[-87098269]]], ["TOC",["maxes","lin/L38/words/L38d3G1-max5W1",[122880442]]], ["TOC",["maxes","lin/L38/words/L38d3G1-max6W1",[-32492270]]], ["TOC",["cyclic","lin/L38/words/L38d6G1-cycW1",[-57509535]]], ["TOC",["maxes","lin/L38/words/L38d6G1-max1W1",[71490578]]], ["TOC",["maxes","lin/L38/words/L38d6G1-max2W1",[-72072915]]], ["TOC",["maxes","lin/L38/words/L38d6G1-max3W1",[117563145]]], ["TOC",["maxes","lin/L38/words/L38d6G1-max4W1",[119177432]]], ["TOC",["maxes","lin/L38/words/L38d6G1-max5W1",[26193617]]], ["TOC",["maxes","lin/L38/words/L38d6G1-max6W1",[-85632843]]], ["TOC",["maxes","lin/L38/words/L38d6G1-max7W1",[-20516977]]], ["TOC",["check","lin/L39/words/L39G1-check1",[-106025308]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr234aB0.g",[115038350]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr234bB0.g",[98732953]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr26aB0.g",[-105586726]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr26bB0.g",[14322428]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr39B0.g",[-70747561]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr52B0.g",[-117944432]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr65aB0.g",[-43462609]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr65bB0.g",[-79044824]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr90B0.g",[-18794102]]], ["TOC",["check","lin/L43/words/L43G1-check1",[-9877145]]], ["TOC",["matalg","lin/L44/gap0/L44G1-Ar85aB0.g",[65051230]]], ["TOC",["matalg","lin/L44/gap0/L44G1-Ar85bB0.g",[-113492586]]], ["TOC",["matint","lin/L44/gap0/L44G1-Zr378B0.g",[9827047]]], ["TOC",["matint","lin/L44/gap0/L44G1-Zr84B0.g",[-41981437]]], ["TOC",["perm","lin/L44/mtx/L44G1-p85aB0.m",[-78273433,-83054224]]], ["TOC",["perm","lin/L44/mtx/L44G1-p85bB0.m",[75764047,62341714]]], ["TOC",["check","lin/L44/words/L44G1-check1",[22160128]]], ["TOC",["matint","lin/L45/gap0/L45G1-Zr155B0.g",[-91636964]]], ["TOC",["perm","lin/L45/mtx/L45G1-p156aB0.m",[-52631321,-95640334]]], ["TOC",["perm","lin/L45/mtx/L45G1-p156bB0.m",[87402899,82141888]]], ["TOC",["check","lin/L45/words/L45G1-check1",[-37437899]]], ["TOC",["matint","lin/L52/gap0/L52G1-Zr124B0.g",[-78209188]]], ["TOC",["matint","lin/L52/gap0/L52G1-Zr155B0.g",[95433535]]], ["TOC",["matint","lin/L52/gap0/L52G1-Zr217B0.g",[26459850]]], ["TOC",["matint","lin/L52/gap0/L52G1-Zr30B0.g",[-5567868]]], ["TOC",["matalg","lin/L52/gap0/L52d2G1-Ar30B0.g",[-37178541]]], ["TOC",["matff","lin/L52/mtx/L52G1-f2r10aB0.m",[3800244,26474245]]], ["TOC",["matff","lin/L52/mtx/L52G1-f2r10bB0.m",[-88519981,-80446320]]], ["TOC",["matff","lin/L52/mtx/L52G1-f2r24B0.m",[96000672,88562428]]], ["TOC",["matff","lin/L52/mtx/L52G1-f2r5aB0.m",[117659138,34509354]]], ["TOC",["matff","lin/L52/mtx/L52G1-f2r5bB0.m",[-7972919,68408550]]], ["TOC",["matff","lin/L52/mtx/L52G1-f31r251B0.m",[110733005,-84251252]]], ["TOC",["matff","lin/L52/mtx/L52G1-f31r29B0.m",[121603472,75143693]]], ["TOC",["matff","lin/L52/mtx/L52G1-f3r124B0.m",[25519913,59619982]]], ["TOC",["matff","lin/L52/mtx/L52G1-f3r155B0.m",[-29387753,6992274]]], ["TOC",["matff","lin/L52/mtx/L52G1-f3r30B0.m",[54484155,64998207]]], ["TOC",["matff","lin/L52/mtx/L52G1-f5r123B0.m",[-67781272,-58943096]]], ["TOC",["matff","lin/L52/mtx/L52G1-f5r155B0.m",[97509981,46816609]]], ["TOC",["matff","lin/L52/mtx/L52G1-f5r280B0.m",[-72093412,35289805]]], ["TOC",["matff","lin/L52/mtx/L52G1-f5r30B0.m",[-114958227,27900155]]], ["TOC",["matff","lin/L52/mtx/L52G1-f7r280B0.m",[-20429654,41591762]]], ["TOC",["matff","lin/L52/mtx/L52G1-f7r30B0.m",[-122678498,-14639435]]], ["TOC",["matff","lin/L52/mtx/L52G1-f7r94B0.m",[-8976263,-117502687]]], ["TOC",["perm","lin/L52/mtx/L52G1-p155aB0.m",[20058840,906581]]], ["TOC",["perm","lin/L52/mtx/L52G1-p31aB0.m",[44238159,-87456268]]], ["TOC",["matff","lin/L52/mtx/L52d2G1-f25r30aB0.m",[129061717,-92741289]]], ["TOC",["matff","lin/L52/mtx/L52d2G1-f2r10B0.m",[-126659050,118473857]]], ["TOC",["matff","lin/L52/mtx/L52d2G1-f2r20B0.m",[3041509,-90924842]]], ["TOC",["matff","lin/L52/mtx/L52d2G1-f2r24B0.m",[-92098935,2494118]]], ["TOC",["matff","lin/L52/mtx/L52d2G1-f31r29aB0.m",[-113552599,2445580]]], ["TOC",["matff","lin/L52/mtx/L52d2G1-f7r30aB0.m",[-119049059,87841622]]], ["TOC",["matff","lin/L52/mtx/L52d2G1-f9r30aB0.m",[-35934743,-122816189]]], ["TOC",["perm","lin/L52/mtx/L52d2G1-p62B0.m",[-110495248,24684736]]], ["TOC",["check","lin/L52/words/L52G1-check1",[-5009189]]], ["TOC",["cyclic","lin/L52/words/L52G1-cycW1",[-15004991]]], ["TOC",["cyc2ccl","lin/L52/words/L52G1cycW1-cclsW1",[101753667]]], ["TOC",["maxes","lin/L52/words/L52d2G1-max1W1",[64292511]]], ["TOC",["check","lin/L53/words/L53G1-check1",[50844511]]], ["TOC",["matint","lin/L62/gap0/L62G1-Zr217B0.g",[-120280005]]], ["TOC",["matint","lin/L62/gap0/L62G1-Zr62B0.g",[-43664004]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r154B0.m",[82795165,47912135]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r15aB0.m",[-11382353,16344018]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r15bB0.m",[36753227,-42154093]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r204aB0.m",[-84134028,-22417203]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r20B0.m",[101082495,77405590]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r34B0.m",[17695666,128732707]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r384aB0.m",[-112402423,-120497343]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r400B0.m",[79892765,-66409544]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r6aB0.m",[-18349149,132247211]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r6bB0.m",[-127940522,-133387572]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r70aB0.m",[-115887284,96029470]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r720aB0.m",[-40159375,17120413]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r84aB0.m",[36055239,21517382]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r896aB0.m",[-33608139,61740883]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r90aB0.m",[49552181,33888329]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r924aB0.m",[-51063019,-3036]]], ["TOC",["matff","lin/L62/mtx/L62G1-f31r62B0.m",[-18369723,-76443513]]], ["TOC",["matff","lin/L62/mtx/L62G1-f3r527aB0.m",[-123708430,116705172]]], ["TOC",["matff","lin/L62/mtx/L62G1-f3r61B0.m",[113049745,113592053]]], ["TOC",["matff","lin/L62/mtx/L62G1-f3r651aB0.m",[37700750,12005168]]], ["TOC",["matff","lin/L62/mtx/L62G1-f5r62B0.m",[-32477555,-29104907]]], ["TOC",["matff","lin/L62/mtx/L62G1-f7r61B0.m",[-49899997,-21319927]]], ["TOC",["perm","lin/L62/mtx/L62G1-p63aB0.m",[88896673,60670713]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r12B0.m",[132741796,-10840949]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r140B0.m",[-54481917,129496710]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r154B0.m",[104291628,106847649]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r168B0.m",[87080003,30041208]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r180B0.m",[68264575,-43768955]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r20B0.m",[63412771,120657148]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r30B0.m",[129967205,29144201]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r34B0.m",[42781856,39923097]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r400B0.m",[120328526,56733634]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r408B0.m",[72093766,-74055339]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r768B0.m",[33911161,67412604]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f3r61B0.m",[-52454721,76464843]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f7r61B0.m",[73505777,58322991]]], ["TOC",["perm","lin/L62/mtx/L62d2G1-p126B0.m",[126561460,38194790]]], ["TOC",["check","lin/L62/words/L62G1-check1",[-128056177]]], ["TOC",["matint","lin/L72/gap0/L72G1-Zr126B0.g",[-48092626]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r112aB0.m",[-18523005,113454681]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r112bB0.m",[-2928804,34502407]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r133aB0.m",[22712273,91837444]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r133bB0.m",[-47371223,-82210044]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r175aB0.m",[7545761,100567812]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r175bB0.m",[124609280,35504851]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r21aB0.m",[-110457920,-16494750]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r21bB0.m",[-68616319,-16494750]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r224aB0.m",[-4018295,36839543]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r224bB0.m",[110699823,34836376]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r35aB0.m",[9604646,-31340289]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r35bB0.m",[-1733234,-31340289]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r392aB0.m",[-91126508,-60396410]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r448aB0.m",[-102435570,-55158398]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r448bB0.m",[-53014318,76675874]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r469aB0.m",[106152181,33246968]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r469bB0.m",[-64785497,116098298]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r48B0.m",[128664083,90971411]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r707aB0.m",[-121664307,-108999944]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r707bB0.m",[-43898171,-1112464]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r736aB0.m",[-100708947,24441535]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r7aB0.m",[-21330232,42560205]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r7bB0.m",[-97306786,42560205]]], ["TOC",["perm","lin/L72/mtx/L72G1-p127aB0.m",[-81383982,38034596]]], ["TOC",["perm","lin/L72/mtx/L72G1-p127bB0.m",[7090850,-108392131]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r14B0.m",[-14888879,30789301]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r224B0.m",[40466252,79118537]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r266B0.m",[-82984030,41079968]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r350B0.m",[25363888,6300827]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r392B0.m",[67965109,46704526]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r42B0.m",[-118494604,35019580]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r448B0.m",[104723254,-42979047]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r48B0.m",[71599376,48686250]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r70B0.m",[-110150944,90502739]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r736B0.m",[-30023214,-90205025]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r896B0.m",[-65268227,80724372]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r938B0.m",[26957333,91326988]]], ["TOC",["perm","lin/L72/mtx/L72d2G2-p254B0.m",[82273786,126367704]]], ["TOC",["out","lin/L72/words/L72G1-aW1",[-14956717]]], ["TOC",["check","lin/L72/words/L72G1-check1",[-44571660]]], ["TOC",["maxes","lin/L72/words/L72d2G2-max1W1",[91749811]]], ["TOC",["perm","misc/214U72/mtx/214U72G1-p10836B0.m",[101662355,-20448920]]], ["TOC",["pres","misc/214U72/words/214U72G1-P1",[-44795026]]], ["TOC",["matint","misc/24A8/gap0/24A8G1-Zr15B0.g",[79329566]]], ["TOC",["matff","misc/24A8/mtx/24A8G1-f2r11aB0.m",[99167621,26151815]]], ["TOC",["matff","misc/24A8/mtx/24A8G1-f2r11bB0.m",[-12820998,-93726766]]], ["TOC",["matff","misc/24A8/mtx/24A8G1-f3r15B0.m",[26869337,-133096812]]], ["TOC",["matff","misc/24A8/mtx/24A8G1-f5r15B0.m",[-27766627,-32279966]]], ["TOC",["matff","misc/24A8/mtx/24A8G1-f7r15B0.m",[7718146,-65885648]]], ["TOC",["perm","misc/24A8/mtx/24A8G1-p128B0.m",[103142313,-97409976]]], ["TOC",["perm","misc/24A8/mtx/24A8G1-p30B0.m",[71903128,37028289]]], ["TOC",["pres","misc/24A8/words/24A8G1-P1",[-4293007]]], ["TOC",["matint","misc/25L52/gap0/25L52G1-Zr248B0.g",[32894565]]], ["TOC",["matff","misc/25L52/mtx/25L52G1-f2r69aB0.m",[-100207434,-56556235]]], ["TOC",["matff","misc/25L52/mtx/25L52G1-f31r248B0.m",[112307036,-133345712]]], ["TOC",["matff","misc/25L52/mtx/25L52G1-f3r248B0.m",[39814315,-98948311]]], ["TOC",["matff","misc/25L52/mtx/25L52G1-f5r248B0.m",[48991917,-40151386]]], ["TOC",["matff","misc/25L52/mtx/25L52G1-f7r248B0.m",[123338324,-14974429]]], ["TOC",["perm","misc/25L52/mtx/25L52G1-p7440aB0.m",[-111345195,36618894]]], ["TOC",["perm","misc/25L52/mtx/25L52G1-p7440bB0.m",[74024818,130615649]]], ["TOC",["perm","misc/25L52/mtx/25L52G1-p7440cB0.m",[-31888628,114305088]]], ["TOC",["pres","misc/25L52/words/25L52G1-P1",[108336715]]], ["TOC",["matff","misc/53L35/mtx/53L35G2-f2r620B0.m",[117097329,-9236051]]], ["TOC",["matff","misc/53L35/mtx/53L35G2-f5r16aB0.m",[10221874,-86572601]]], ["TOC",["perm","misc/53L35/mtx/53L35G2-p3875aB0.m",[98472640,-119922207]]], ["TOC",["perm","misc/53L35/mtx/53L35G2-p3875bB0.m",[111738352,7685159]]], ["TOC",["perm","misc/53L35/mtx/53L35G2-p4650B0.m",[116192969,-34288265]]], ["TOC",["switch","misc/53L35/words/53L35G2-G1W1",[46907032]]], ["TOC",["pres","misc/53L35/words/53L35G2-P1",[101915599]]], ["TOC",["matalg","misc/M20/gap0/2aM20G1-Ar12aB0.g",[-21550680]]], ["TOC",["matalg","misc/M20/gap0/2aM20G1-Ar12bB0.g",[-8721855]]], ["TOC",["matalg","misc/M20/gap0/2aM20G1-Ar12bB1.g",[-74282503]]], ["TOC",["matint","misc/M20/gap0/2aM20G1-Zr10aB0.g",[101100456]]], ["TOC",["matint","misc/M20/gap0/2aM20G1-Zr10bB0.g",[73269269]]], ["TOC",["matint","misc/M20/gap0/2aM20G1-Zr20B0.g",[49785939]]], ["TOC",["matint","misc/M20/gap0/2aM20G1-Zr24B0.g",[87943307]]], ["TOC",["matint","misc/M20/gap0/2aM20G1-Zr6aB0.g",[-21861718]]], ["TOC",["matint","misc/M20/gap0/2aM20G1-Zr6bB0.g",[95627447]]], ["TOC",["matalg","misc/M20/gap0/4bM20G1-Ar20aB0.g",[116840853]]], ["TOC",["matalg","misc/M20/gap0/4bM20G1-Ar4aB0.g",[67976289]]], ["TOC",["matalg","misc/M20/gap0/4bM20G1-Ar4aB1.g",[-45128870]]], ["TOC",["perm","misc/M20/mtx/2aM20G1-p12aB0.m",[62651319,-781632]]], ["TOC",["perm","misc/M20/mtx/2aM20G1-p12bB0.m",[-88792816,-83421660]]], ["TOC",["perm","misc/M20/mtx/2aM20G1-p20aB0.m",[11182399,-103525736]]], ["TOC",["perm","misc/M20/mtx/2aM20G1-p20bB0.m",[37746633,-55981603]]], ["TOC",["perm","misc/M20/mtx/2bM20G1-p120aB0.m",[79963263,51514372]]], ["TOC",["perm","misc/M20/mtx/2cM20G1-p24B0.m",[69804398,100937538]]], ["TOC",["perm","misc/M20/mtx/M20G1-p20aB0.m",[93460434,46892430]]], ["TOC",["perm","misc/M20/mtx/M20G1-p20bB0.m",[35523536,22123653]]], ["TOC",["perm","misc/M20/mtx/M20G1-p20cB0.m",[-90558672,-105944800]]], ["TOC",["perm","misc/M20/mtx/M20G1-p20dB0.m",[55711193,78780772]]], ["TOC",["switch","misc/WF4/words/WF4G1-G2W1",[-19840031]]], ["TOC",["switch","misc/WF4/words/WF4G2-G1W1",[-41178304]]], ["TOC",["matff","spor/B/mtx/BG1-f2r4370B0.m",[22338679,9574104]]], ["TOC",["matff","spor/B/mtx/BG1-f3r4371B0.m",[-126623526,56117614]]], ["TOC",["matff","spor/B/mtx/BG1-f5r4371B0.m",[24387158,97293413]]], ["TOC",["check","spor/B/words/BG1-check1",[-68324730]]], ["TOC",["cyclic","spor/B/words/BG1-cycW1",[-35716530]]], ["TOC",["find","spor/B/words/BG1-find1",[-3578940]]], ["TOC",["maxes","spor/B/words/BG1-max11W1",[-127479522]]], ["TOC",["maxes","spor/B/words/BG1-max13W1",[-65568147]]], ["TOC",["maxes","spor/B/words/BG1-max15W1",[105462971]]], ["TOC",["maxes","spor/B/words/BG1-max16W1",[8946418]]], ["TOC",["maxes","spor/B/words/BG1-max1W1",[-23309410]]], ["TOC",["maxes","spor/B/words/BG1-max21W1",[82234366]]], ["TOC",["maxes","spor/B/words/BG1-max2W1",[130363232]]], ["TOC",["maxes","spor/B/words/BG1-max30W1",[110825337]]], ["TOC",["maxes","spor/B/words/BG1-max3W1",[65186353]]], ["TOC",["maxes","spor/B/words/BG1-max4W1",[112679756]]], ["TOC",["maxes","spor/B/words/BG1-max5W1",[70078050]]], ["TOC",["maxes","spor/B/words/BG1-max6W1",[-10240842]]], ["TOC",["maxes","spor/B/words/BG1-max7W1",[-95778125]]], ["TOC",["maxes","spor/B/words/BG1-max8W1",[-114561485]]], ["TOC",["maxes","spor/B/words/BG1-max9W1",[-64713162]]], ["TOC",["matff","spor/Co1/mtx/2Co1G1-f11r24B0.m",[19082682,66033957]]], ["TOC",["matff","spor/Co1/mtx/2Co1G1-f13r24B0.m",[-111666123,108123541]]], ["TOC",["matff","spor/Co1/mtx/2Co1G1-f23r24B0.m",[88456885,65617027]]], ["TOC",["matff","spor/Co1/mtx/2Co1G1-f3r24B0.m",[-119030063,-130928121]]], ["TOC",["matff","spor/Co1/mtx/2Co1G1-f5r24B0.m",[-83812180,42833524]]], ["TOC",["matff","spor/Co1/mtx/2Co1G1-f7r24B0.m",[115296415,56216790]]], ["TOC",["perm","spor/Co1/mtx/2Co1G1-p196560B0.m",[96415798,-69323281]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f11r276B0.m",[-44418337,5438777]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f11r299B0.m",[36501426,-57769629]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f13r276B0.m",[-118172147,-25718111]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f13r299B0.m",[44995352,111058082]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f23r276B0.m",[-89714154,-2462119]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f23r299B0.m",[-42410101,-35172656]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f2r24B0.m",[16454603,-78294134]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f2r274B0.m",[-107262491,33000833]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f3r276B0.m",[-57677093,-99619174]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f3r298B0.m",[-76486186,64745408]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f5r276B0.m",[-105083684,37119347]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f5r299B0.m",[53433007,20960457]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f7r276B0.m",[-88453631,-96574878]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f7r299B0.m",[34613385,36463682]]], ["TOC",["perm","spor/Co1/mtx/Co1G1-p98280B0.m",[24079381,103472469]]], ["TOC",["check","spor/Co1/words/Co1G1-check1",[34503407]]], ["TOC",["cyclic","spor/Co1/words/Co1G1-cycW1",[-31434513]]], ["TOC",["find","spor/Co1/words/Co1G1-find1",[-106430356]]], ["TOC",["maxes","spor/Co1/words/Co1G1-max1W1",[-69842982]]], ["TOC",["maxes","spor/Co1/words/Co1G1-max2W1",[-42577851]]], ["TOC",["maxes","spor/Co1/words/Co1G1-max3W1",[29824571]]], ["TOC",["maxes","spor/Co1/words/Co1G1-max4W1",[60576186]]], ["TOC",["maxes","spor/Co1/words/Co1G1-max5W1",[114366811]]], ["TOC",["maxes","spor/Co1/words/Co1G1-max6W1",[-59185387]]], ["TOC",["matint","spor/Co2/gap0/Co2G1-Zr23B0.g",[-130083053]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f11r23B0.m",[-14178919,-32787383]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f11r253B0.m",[-70822799,30995569]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f11r275B0.m",[-41272403,-123816874]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f23r23B0.m",[-15909867,113781741]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f23r253B0.m",[17672728,-82152779]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f23r274B0.m",[6001910,70254650]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f2r22B0.m",[-54309341,-74421533]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f2r230B0.m",[-75568974,26428654]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f2r24B0.m",[73783853,29191204]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f2r748aB0.m",[29333647,96025108]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f2r748bB0.m",[-49568317,-76673767]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f3r23B0.m",[-119021965,-88874426]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f3r253B0.m",[-97217736,48922294]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f3r275B0.m",[-83554978,-71118237]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f5r23B0.m",[-103186525,3819505]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f5r253B0.m",[111518393,-29520466]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f5r275B0.m",[8519041,125012307]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f7r23B0.m",[-25660649,-107582364]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f7r253B0.m",[-13423944,-36779946]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f7r275B0.m",[116483568,6268174]]], ["TOC",["perm","spor/Co2/mtx/Co2G1-p2300B0.m",[-68977590,58232971]]], ["TOC",["perm","spor/Co2/mtx/Co2G1-p4600B0.m",[-96460373,-98916563]]], ["TOC",["pres","spor/Co2/words/Co2G1-P1",[128912454]]], ["TOC",["check","spor/Co2/words/Co2G1-check1",[-66751243]]], ["TOC",["cyclic","spor/Co2/words/Co2G1-cycW1",[88608625]]], ["TOC",["find","spor/Co2/words/Co2G1-find1",[-84924881]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max10W1",[6064278]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max11W1",[-41695303]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max1W1",[93481466]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max1W2",[27705387]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max2W1",[-45537986]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max3W1",[18205426]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max4W1",[-36718201]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max5W1",[56120055]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max6W1",[-104533060]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max7W1",[1295619]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max8W1",[123959784]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max9W1",[-34639062]]], ["TOC",["cyc2ccl","spor/Co2/words/Co2G1cycW1-cclsW1",[-19670829]]], ["TOC",["matint","spor/Co3/gap0/Co3G1-Zr23B0.g",[-117550955]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f11r23B0.m",[-72428323,-12096837]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f11r253aB0.m",[31289485,-69770237]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f11r253bB0.m",[-103946322,33707076]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f11r275B0.m",[-29543137,102931089]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f11r896B0.m",[102751052,-107518067]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f23r23B0.m",[4706214,-31841620]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f23r253aB0.m",[-96285288,86032464]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f23r253bB0.m",[-110052111,111491396]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f23r274B0.m",[126519047,-81971889]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f23r896bB0.m",[-27578092,109234992]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f2r22B0.m",[-99639671,-25341638]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f2r230B0.m",[57395912,27550237]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f3r126aB0.m",[33697170,-7230725]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f3r126bB0.m",[89222635,-133975717]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f3r22B0.m",[7767996,-98496962]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f3r231aB0.m",[-85181500,33307552]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f3r231bB0.m",[-128218667,53213596]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f3r770aB0.m",[3916846,23268085]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f3r770bB0.m",[29336149,-5986270]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f49r896aB0.m",[18940849,-48431705]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f4r896aB0.m",[121896551,-127775391]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f5r230B0.m",[-123551581,-97913685]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f5r23B0.m",[-123447962,35769919]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f5r253B0.m",[-83370110,-18097492]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f5r275B0.m",[-109041971,52099922]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f5r896bB0.m",[92235095,-1699054]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f7r23B0.m",[-111077282,118209855]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f7r253aB0.m",[-70514219,85872691]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f7r253bB0.m",[123245056,-95958002]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f7r275B0.m",[-112894711,-9483951]]], ["TOC",["perm","spor/Co3/mtx/Co3G1-p11178B0.m",[61831036,-5901219]]], ["TOC",["perm","spor/Co3/mtx/Co3G1-p128800B0.m",[96644160,-97082857]]], ["TOC",["perm","spor/Co3/mtx/Co3G1-p276B0.m",[14582085,-90782896]]], ["TOC",["perm","spor/Co3/mtx/Co3G1-p37950B0.m",[107359696,-31625813]]], ["TOC",["perm","spor/Co3/mtx/Co3G1-p48600B0.m",[67942847,24481707]]], ["TOC",["perm","spor/Co3/mtx/Co3G1-p552B0.m",[-2683827,-15482699]]], ["TOC",["check","spor/Co3/words/Co3G1-check1",[78322190]]], ["TOC",["cyclic","spor/Co3/words/Co3G1-cycW1",[54960889]]], ["TOC",["find","spor/Co3/words/Co3G1-find1",[-51775057]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max10W1",[-75692053]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max11W1",[58775119]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max12W1",[-37663486]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max12W2",[-2138577]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max13W1",[-17315091]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max14W1",[-28030005]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max14W2",[73664607]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max1W1",[34723362]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max2W1",[56133327]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max3W1",[53815989]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max4W1",[-30650499]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max5W1",[128309913]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max6W1",[-128645195]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max7W1",[-60889528]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max8W1",[77677694]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max9W1",[-118689150]]], ["TOC",["cyc2ccl","spor/Co3/words/Co3G1cycW1-cclsW1",[-89036463]]], ["TOC",["matint","spor/F22/gap0/F22G1-Zr78B0.g",[3581979]]], ["TOC",["matint","spor/F22/gap0/F22d2G1-Zr78B0.g",[-5867682]]], ["TOC",["matff","spor/F22/mtx/2F22G1-f11r352B0.m",[-105641125,80175210]]], ["TOC",["matff","spor/F22/mtx/2F22G1-f13r352B0.m",[-19356946,58859946]]], ["TOC",["matff","spor/F22/mtx/2F22G1-f3r176aB0.m",[-67510771,17530026]]], ["TOC",["matff","spor/F22/mtx/2F22G1-f5r352B0.m",[130371429,35452046]]], ["TOC",["matff","spor/F22/mtx/2F22G1-f7r352B0.m",[-108835620,89735486]]], ["TOC",["perm","spor/F22/mtx/2F22G1-p123552B0.m",[-38471060,6945723]]], ["TOC",["perm","spor/F22/mtx/2F22G1-p28160B0.m",[-88132950,-90185326]]], ["TOC",["matff","spor/F22/mtx/2F22d2G1-f3r352B0.m",[130547494,120956446]]], ["TOC",["perm","spor/F22/mtx/2F22d2G1-p56320B0.m",[76652605,2337280]]], ["TOC",["matff","spor/F22/mtx/3F22G1-f4r27aB0.m",[54271746,25048988]]], ["TOC",["matff","spor/F22/mtx/3F22G1-f7r351aB0.m",[-107454340,-29445358]]], ["TOC",["perm","spor/F22/mtx/3F22G1-p185328B0.m",[16928294,88751270]]], ["TOC",["matff","spor/F22/mtx/3F22d2G1-f2r54B0.m",[-44189973,-132306928]]], ["TOC",["matff","spor/F22/mtx/3F22d2G1-f7r702B0.m",[91703397,-29428399]]], ["TOC",["perm","spor/F22/mtx/3F22d2G1-p185328B0.m",[-17081867,-43586215]]], ["TOC",["matff","spor/F22/mtx/F22G1-f11r429B0.m",[80858669,-90269841]]], ["TOC",["matff","spor/F22/mtx/F22G1-f11r78B0.m",[-66379967,-31535389]]], ["TOC",["matff","spor/F22/mtx/F22G1-f13r429B0.m",[-86809294,105048163]]], ["TOC",["matff","spor/F22/mtx/F22G1-f13r78B0.m",[-59693717,-34590081]]], ["TOC",["matff","spor/F22/mtx/F22G1-f2r350B0.m",[53992322,44682214]]], ["TOC",["matff","spor/F22/mtx/F22G1-f2r572B0.m",[-56558559,-83410488]]], ["TOC",["matff","spor/F22/mtx/F22G1-f2r78B0.m",[-109087521,86079833]]], ["TOC",["matff","spor/F22/mtx/F22G1-f3r351B0.m",[112711273,-97010383]]], ["TOC",["matff","spor/F22/mtx/F22G1-f3r77B0.m",[58601014,-70924339]]], ["TOC",["matff","spor/F22/mtx/F22G1-f3r924B0.m",[20017076,62757725]]], ["TOC",["matff","spor/F22/mtx/F22G1-f5r428B0.m",[132955030,41517148]]], ["TOC",["matff","spor/F22/mtx/F22G1-f5r78B0.m",[51985420,2099863]]], ["TOC",["matff","spor/F22/mtx/F22G1-f7r429B0.m",[36025548,-23873812]]], ["TOC",["matff","spor/F22/mtx/F22G1-f7r78B0.m",[-46420014,73444335]]], ["TOC",["perm","spor/F22/mtx/F22G1-p14080bB0.m",[-9736640,43017714]]], ["TOC",["perm","spor/F22/mtx/F22G1-p142155B0.m",[-64459092,-100815434]]], ["TOC",["perm","spor/F22/mtx/F22G1-p3510B0.m",[88013596,112000128]]], ["TOC",["perm","spor/F22/mtx/F22G1-p61776B0.m",[-69687014,28989532]]], ["TOC",["perm","spor/F22/mtx/F22G1-p694980B0.m",[-12910822,6552950]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f11r429aB0.m",[49800099,6814782]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f11r78aB0.m",[-89871349,83293156]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f13r429aB0.m",[127523643,-99866267]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f13r78aB0.m",[32289635,7349185]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f2r1352B0.m",[20201205,74325336]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f2r350B0.m",[47684515,44646509]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f2r572B0.m",[14778819,85403442]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f2r78B0.m",[95541956,-2293655]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f3r351B0.m",[-26721206,113304381]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f3r77aB0.m",[-76901730,61376488]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f3r924B0.m",[-20939834,-50311868]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f5r428aB0.m",[-39131120,27681453]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f5r78aB0.m",[128701136,-12166168]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f7r429aB0.m",[115701320,-42249272]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f7r78aB0.m",[-103001035,83371722]]], ["TOC",["perm","spor/F22/mtx/F22d2G1-p3510B0.m",[122813462,7896709]]], ["TOC",["pres","spor/F22/words/2F22G1-P1",[-11319988]]], ["TOC",["pres","spor/F22/words/3F22d2G1-P1",[65265659]]], ["TOC",["pres","spor/F22/words/F22G1-P1",[-130721090]]], ["TOC",["check","spor/F22/words/F22G1-check1",[-84596773]]], ["TOC",["cyclic","spor/F22/words/F22G1-cycW1",[38092830]]], ["TOC",["find","spor/F22/words/F22G1-find1",[-119041567]]], ["TOC",["maxes","spor/F22/words/F22G1-max10W1",[2329153]]], ["TOC",["maxes","spor/F22/words/F22G1-max11W1",[-54590247]]], ["TOC",["maxes","spor/F22/words/F22G1-max12W1",[132206444]]], ["TOC",["maxes","spor/F22/words/F22G1-max13W1",[-32889192]]], ["TOC",["maxes","spor/F22/words/F22G1-max13W2",[-30231311]]], ["TOC",["maxes","spor/F22/words/F22G1-max14W1",[-59341090]]], ["TOC",["maxes","spor/F22/words/F22G1-max1W1",[49457212]]], ["TOC",["maxes","spor/F22/words/F22G1-max2W1",[-133744913]]], ["TOC",["maxes","spor/F22/words/F22G1-max3W1",[-127391878]]], ["TOC",["maxes","spor/F22/words/F22G1-max3W2",[-17534642]]], ["TOC",["maxes","spor/F22/words/F22G1-max4W1",[-97469408]]], ["TOC",["maxes","spor/F22/words/F22G1-max5W1",[-72007604]]], ["TOC",["maxes","spor/F22/words/F22G1-max6W1",[-69093545]]], ["TOC",["maxes","spor/F22/words/F22G1-max7W1",[71881397]]], ["TOC",["maxes","spor/F22/words/F22G1-max8W1",[40347112]]], ["TOC",["maxes","spor/F22/words/F22G1-max9W1",[98121755]]], ["TOC",["pres","spor/F22/words/F22d2G1-P1",[56631505]]], ["TOC",["check","spor/F22/words/F22d2G1-check1",[-21731301]]], ["TOC",["find","spor/F22/words/F22d2G1-find1",[-29977100]]], ["TOC",["maxes","spor/F22/words/F22d2G1-max13W1",[63356964]]], ["TOC",["maxes","spor/F22/words/F22d2G1-max1W1",[47591772]]], ["TOC",["maxes","spor/F22/words/F22d2G1-max2W1",[-75205594]]], ["TOC",["maxes","spor/F22/words/F22d2G1-max2W2",[-25527906]]], ["TOC",["matff","spor/F23/mtx/F23G1-f11r782B0.m",[113804675,14847872]]], ["TOC",["matff","spor/F23/mtx/F23G1-f13r782B0.m",[-105224962,-31673757]]], ["TOC",["matff","spor/F23/mtx/F23G1-f17r782B0.m",[-114471874,84914826]]], ["TOC",["matff","spor/F23/mtx/F23G1-f23r782B0.m",[-134202733,-5142396]]], ["TOC",["matff","spor/F23/mtx/F23G1-f2r1494B0.m",[-110910446,97103140]]], ["TOC",["matff","spor/F23/mtx/F23G1-f2r782B0.m",[-45195278,-43838607]]], ["TOC",["matff","spor/F23/mtx/F23G1-f3r253B0.m",[-29528849,99728135]]], ["TOC",["matff","spor/F23/mtx/F23G1-f3r528B0.m",[-66608829,21448579]]], ["TOC",["matff","spor/F23/mtx/F23G1-f5r782B0.m",[51442495,-35280106]]], ["TOC",["matff","spor/F23/mtx/F23G1-f7r782B0.m",[94890358,97085917]]], ["TOC",["perm","spor/F23/mtx/F23G1-p137632B0.m",[-58299166,-108210543]]], ["TOC",["perm","spor/F23/mtx/F23G1-p275264B0.m",[22664129,111673749]]], ["TOC",["perm","spor/F23/mtx/F23G1-p31671B0.m",[-109867621,-116920938]]], ["TOC",["check","spor/F23/words/F23G1-check1",[-28390111]]], ["TOC",["cyclic","spor/F23/words/F23G1-cycW1",[-11430007]]], ["TOC",["find","spor/F23/words/F23G1-find1",[49638304]]], ["TOC",["maxes","spor/F23/words/F23G1-max10W1",[100950719]]], ["TOC",["maxes","spor/F23/words/F23G1-max13W1",[21543454]]], ["TOC",["maxes","spor/F23/words/F23G1-max14W1",[-6392675]]], ["TOC",["maxes","spor/F23/words/F23G1-max1W1",[-33074811]]], ["TOC",["maxes","spor/F23/words/F23G1-max1W2",[63247261]]], ["TOC",["maxes","spor/F23/words/F23G1-max2W1",[53548333]]], ["TOC",["maxes","spor/F23/words/F23G1-max3W1",[92061685]]], ["TOC",["maxes","spor/F23/words/F23G1-max4W1",[37397470]]], ["TOC",["maxes","spor/F23/words/F23G1-max5W1",[-60568749]]], ["TOC",["maxes","spor/F23/words/F23G1-max6W1",[64555088]]], ["TOC",["maxes","spor/F23/words/F23G1-max9W1",[-54739683]]], ["TOC",["matff","spor/F24/mtx/3F24G1-f4r783B0.m",[124251776,-55444228]]], ["TOC",["perm","spor/F24/mtx/3F24G1-p920808B0.m",[98989796,-62509770]]], ["TOC",["matff","spor/F24/mtx/3F24d2G1-f2r1566B0.m",[-51370379,-95716454]]], ["TOC",["perm","spor/F24/mtx/3F24d2G1-p920808B0.m",[-125621829,-90081066]]], ["TOC",["matff","spor/F24/mtx/F24G1-f2r3774B0.m",[66627348,120763364]]], ["TOC",["matff","spor/F24/mtx/F24G1-f3r781B0.m",[-48772183,52620792]]], ["TOC",["perm","spor/F24/mtx/F24G1-p306936B0.m",[54361344,-1810691]]], ["TOC",["matff","spor/F24/mtx/F24d2G1-f3r781B0.m",[121745779,-36600171]]], ["TOC",["perm","spor/F24/mtx/F24d2G1-p306936B0.m",[72541106,80284157]]], ["TOC",["check","spor/F24/words/F24G1-check1",[-118382915]]], ["TOC",["cyclic","spor/F24/words/F24G1-cycW1",[117407279]]], ["TOC",["find","spor/F24/words/F24G1-find1",[36442676]]], ["TOC",["check","spor/F24/words/F24d2G1-check1",[118274771]]], ["TOC",["find","spor/F24/words/F24d2G1-find1",[61593130]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max10W1",[-107781352]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max11W1",[-84235325]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max12W1",[-112949748]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max13W1",[112375260]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max14W1",[107469716]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max15W1",[-48530803]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max16W1",[-121777928]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max17W1",[-111665551]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max18W1",[91832835]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max19W1",[-22571481]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max1W1",[105412985]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max20W1",[2941626]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max21W1",[93208374]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max2W1",[-79295356]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max3W1",[93793339]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max4W1",[37390223]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max5W1",[-59017189]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max6W1",[-29653284]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max7W1",[54933709]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max8W1",[-76471747]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max9W1",[-115734141]]], ["TOC",["matff","spor/HN/mtx/HNG1-f11r133aB0.m",[84956559,-14832941]]], ["TOC",["matff","spor/HN/mtx/HNG1-f11r133bB0.m",[84956559,-119008248]]], ["TOC",["matff","spor/HN/mtx/HNG1-f11r760B0.m",[-112060195,-121414820]]], ["TOC",["matff","spor/HN/mtx/HNG1-f19r133aB0.m",[-25046747,-122833758]]], ["TOC",["matff","spor/HN/mtx/HNG1-f19r133bB0.m",[-25046747,-8020480]]], ["TOC",["matff","spor/HN/mtx/HNG1-f19r760B0.m",[30072934,-6664215]]], ["TOC",["matff","spor/HN/mtx/HNG1-f2r760B0.m",[89062086,-16714142]]], ["TOC",["matff","spor/HN/mtx/HNG1-f3r760B0.m",[-61491120,-129545822]]], ["TOC",["matff","spor/HN/mtx/HNG1-f49r133aB0.m",[-80497250,40264194]]], ["TOC",["matff","spor/HN/mtx/HNG1-f49r133bB0.m",[-80497250,-130083872]]], ["TOC",["matff","spor/HN/mtx/HNG1-f4r132aB0.m",[5151139,78849289]]], ["TOC",["matff","spor/HN/mtx/HNG1-f4r132bB0.m",[41933222,-63692317]]], ["TOC",["matff","spor/HN/mtx/HNG1-f4r133B0.m",[13138870,13634501]]], ["TOC",["matff","spor/HN/mtx/HNG1-f4r2650aB0.m",[64027517,-54387001]]], ["TOC",["matff","spor/HN/mtx/HNG1-f5r133B0.m",[-115607691,-38092195]]], ["TOC",["matff","spor/HN/mtx/HNG1-f5r626B0.m",[70397839,113456339]]], ["TOC",["matff","spor/HN/mtx/HNG1-f5r627B0.m",[-115025766,118011978]]], ["TOC",["matff","spor/HN/mtx/HNG1-f7r760B0.m",[-123533355,79509308]]], ["TOC",["matff","spor/HN/mtx/HNG1-f9r133aB0.m",[106063587,-109722313]]], ["TOC",["matff","spor/HN/mtx/HNG1-f9r133bB0.m",[-86995469,110203185]]], ["TOC",["perm","spor/HN/mtx/HNG1-p1140000B0.m",[32853933,21005903]]], ["TOC",["matff","spor/HN/mtx/HNd2G1-f2r264B0.m",[-86337838,-74967666]]], ["TOC",["matff","spor/HN/mtx/HNd2G1-f5r133B0.m",[107967366,114052582]]], ["TOC",["out","spor/HN/words/HNG1-a2W1",[127399345]]], ["TOC",["check","spor/HN/words/HNG1-check1",[107996829]]], ["TOC",["cyclic","spor/HN/words/HNG1-cycW1",[41419292]]], ["TOC",["find","spor/HN/words/HNG1-find1",[114642738]]], ["TOC",["maxes","spor/HN/words/HNG1-max10W1",[86039496]]], ["TOC",["maxes","spor/HN/words/HNG1-max11W1",[-130398866]]], ["TOC",["maxes","spor/HN/words/HNG1-max12W1",[22691996]]], ["TOC",["maxes","spor/HN/words/HNG1-max14W1",[106083458]]], ["TOC",["maxes","spor/HN/words/HNG1-max1W1",[-79453819]]], ["TOC",["maxes","spor/HN/words/HNG1-max2W1",[-48664089]]], ["TOC",["maxes","spor/HN/words/HNG1-max3W1",[-108500642]]], ["TOC",["maxes","spor/HN/words/HNG1-max4W1",[33191023]]], ["TOC",["maxes","spor/HN/words/HNG1-max5W1",[-124464431]]], ["TOC",["maxes","spor/HN/words/HNG1-max6W1",[125139500]]], ["TOC",["maxes","spor/HN/words/HNG1-max7W1",[34088059]]], ["TOC",["cyc2ccl","spor/HN/words/HNG1cycW1-cclsW1",[-75748754]]], ["TOC",["check","spor/HN/words/HNd2G1-check1",[-133434122]]], ["TOC",["find","spor/HN/words/HNd2G1-find1",[12123121]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max10W1",[-126901570]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max11W1",[-84047681]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max12W1",[-109478497]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max13W1",[-131778850]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max1W1",[-59380275]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max2W1",[72220095]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max3W1",[19789101]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max4W1",[-120415217]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max5W1",[16567717]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max6W1",[27118928]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max7W1",[-1853532]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max8W1",[-113484495]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max9W1",[-36214413]]], ["TOC",["matint","spor/HS/gap0/HSG1-Zr154aB0.g",[128622008]]], ["TOC",["matint","spor/HS/gap0/HSG1-Zr154bB0.g",[100889216]]], ["TOC",["matint","spor/HS/gap0/HSG1-Zr154cB0.g",[52141046]]], ["TOC",["matint","spor/HS/gap0/HSG1-Zr175B0.g",[-51974944]]], ["TOC",["matint","spor/HS/gap0/HSG1-Zr22B0.g",[2134773]]], ["TOC",["matint","spor/HS/gap0/HSG1-Zr231B0.g",[-799773]]], ["TOC",["matint","spor/HS/gap0/HSG1-Zr77B0.g",[-33461269]]], ["TOC",["matff","spor/HS/mtx/2HSG1-f11r56B0.m",[-55817406,-9356149]]], ["TOC",["matff","spor/HS/mtx/2HSG1-f3r440B0.m",[8458115,7091735]]], ["TOC",["matff","spor/HS/mtx/2HSG1-f3r56B0.m",[29617857,-84040410]]], ["TOC",["matff","spor/HS/mtx/2HSG1-f5r120bB0.m",[-102064132,-17454221]]], ["TOC",["matff","spor/HS/mtx/2HSG1-f5r28bB0.m",[49997548,-8152916]]], ["TOC",["matff","spor/HS/mtx/2HSG1-f5r440bB0.m",[21530211,33485463]]], ["TOC",["matff","spor/HS/mtx/2HSG1-f7r56B0.m",[-16827217,-94324586]]], ["TOC",["matff","spor/HS/mtx/2HSG1-f9r176bB0.m",[53472414,7717663]]], ["TOC",["perm","spor/HS/mtx/2HSG1-p11200aB0.m",[-25662951,-72671730]]], ["TOC",["perm","spor/HS/mtx/2HSG1-p4400B0.m",[14211745,-21341170]]], ["TOC",["perm","spor/HS/mtx/2HSG1-p704B0.m",[-109395951,117522876]]], ["TOC",["matff","spor/HS/mtx/2HSd2G1-f3r112B0.m",[66532271,-45075769]]], ["TOC",["matff","spor/HS/mtx/2HSd2G1-f5r56B0.m",[-37364297,11008849]]], ["TOC",["matff","spor/HS/mtx/2HSd2G1-f9r56B0.m",[6322774,-130822293]]], ["TOC",["perm","spor/HS/mtx/2HSd2G1-p1408B0.m",[55485644,-85765607]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r154aB0.m",[-94042976,1152264]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r154bB0.m",[-63804252,-112522132]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r154cB0.m",[-52658718,117648488]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r174B0.m",[-79918725,-36530971]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r22B0.m",[-103902786,131567279]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r231B0.m",[74378860,133955725]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r693B0.m",[-53293843,-114165050]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r770aB0.m",[-120037254,-54798718]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r77B0.m",[105194963,34738593]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r825B0.m",[-100355329,70421451]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r854B0.m",[18463814,49643143]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r896B0.m",[-25794072,-94267541]]], ["TOC",["matff","spor/HS/mtx/HSG1-f121r770bB0.m",[97874222,96924629]]], ["TOC",["matff","spor/HS/mtx/HSG1-f121r770cB0.m",[-117482532,46080873]]], ["TOC",["matff","spor/HS/mtx/HSG1-f2r1000B0.m",[66717808,-9856755]]], ["TOC",["matff","spor/HS/mtx/HSG1-f2r132B0.m",[115944678,64036296]]], ["TOC",["matff","spor/HS/mtx/HSG1-f2r20B0.m",[-110839928,73283444]]], ["TOC",["matff","spor/HS/mtx/HSG1-f2r518B0.m",[-97262203,110789378]]], ["TOC",["matff","spor/HS/mtx/HSG1-f2r56B0.m",[3192799,69839091]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r154aB0.m",[-14900053,-100838819]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r154bB0.m",[68524548,101006348]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r154cB0.m",[-51597134,73553996]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r22B0.m",[93991114,-14968607]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r231B0.m",[-95965145,-14427037]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r321B0.m",[-110835348,10032473]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r49aB0.m",[70877444,68387699]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r49bB0.m",[22097890,-38965013]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r693B0.m",[40448458,-133341140]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r748B0.m",[-96691003,-131491770]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r770aB0.m",[47339280,-117561384]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r77B0.m",[76092415,-11040903]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r825B0.m",[68382465,104127473]]], ["TOC",["matff","spor/HS/mtx/HSG1-f49r896aB0.m",[-14346934,-87503340]]], ["TOC",["matff","spor/HS/mtx/HSG1-f49r896bB0.m",[58422987,37738098]]], ["TOC",["matff","spor/HS/mtx/HSG1-f4r896aB0.m",[-30617770,103602086]]], ["TOC",["matff","spor/HS/mtx/HSG1-f4r896bB0.m",[-95673772,4228568]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r133aB0.m",[18544119,-110577111]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r133bB0.m",[-124542697,97466202]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r175B0.m",[32636695,9681624]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r210B0.m",[-3911328,97387527]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r21B0.m",[-18043664,7995456]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r280aB0.m",[131594969,76134971]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r518B0.m",[66778477,79548322]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r55B0.m",[-32048849,-47336091]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r650B0.m",[-89578289,50539996]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r98B0.m",[6191487,99758067]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r154aB0.m",[-7838882,101761107]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r154bB0.m",[18760360,-66895717]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r154cB0.m",[89744760,-126726394]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r175B0.m",[-127648497,-10424629]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r22B0.m",[-53162324,69175635]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r231B0.m",[98380256,-72328589]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r605B0.m",[78865187,56877599]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r693B0.m",[-74626881,-14425913]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r770aB0.m",[-100706960,50439108]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r770bB0.m",[112584500,111883459]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r770cB0.m",[54727166,107839077]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r77B0.m",[99238916,-36447346]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r803B0.m",[48999068,62525531]]], ["TOC",["perm","spor/HS/mtx/HSG1-p100B0.m",[-124787112,8830718]]], ["TOC",["perm","spor/HS/mtx/HSG1-p1100aB0.m",[62778996,-3021590]]], ["TOC",["perm","spor/HS/mtx/HSG1-p1100bB0.m",[-58500379,-71383282]]], ["TOC",["perm","spor/HS/mtx/HSG1-p15400B0.m",[99971444,-24579578]]], ["TOC",["perm","spor/HS/mtx/HSG1-p176bB0.m",[-42157961,-64664893]]], ["TOC",["perm","spor/HS/mtx/HSG1-p3850B0.m",[46018718,-78720855]]], ["TOC",["perm","spor/HS/mtx/HSG1-p4125B0.m",[5512571,-33882361]]], ["TOC",["perm","spor/HS/mtx/HSG1-p5600aB0.m",[120562511,41623182]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r154aB0.m",[-42206112,-121821089]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r174aB0.m",[63123284,121047128]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r22aB0.m",[-8259291,43508426]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r231aB0.m",[33514654,103434208]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r308aB0.m",[-62014948,80454524]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r693aB0.m",[22869622,-81673636]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r770aB0.m",[16456349,8338033]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r77aB0.m",[-114093728,-53560645]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r825aB0.m",[-54693786,-2601188]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r854aB0.m",[89627605,-71298439]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r896aB0.m",[-30365885,-116863938]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f2r1000B0.m",[55224993,-20500465]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f2r132B0.m",[-79665966,38128389]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f2r1408B0.m",[20027516,71784186]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f2r1792B0.m",[47687018,-54149205]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f2r20B0.m",[50037167,62072647]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f2r22B0.m",[-9022325,-84815465]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f2r518B0.m",[27012098,-78258800]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f2r56B0.m",[-21312538,119898817]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r154aB0.m",[58277522,47474792]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r22aB0.m",[98820765,4908381]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r231aB0.m",[99163037,86674182]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r308aB0.m",[-117803754,7897029]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r321aB0.m",[-37439220,-119136134]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r693aB0.m",[-125727427,42412744]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r748aB0.m",[-66305284,-54277114]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r77aB0.m",[-25698705,17484980]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r825aB0.m",[-26332833,123665127]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r98aB0.m",[111392664,-61530638]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r175aB0.m",[70650798,-55617375]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r210aB0.m",[5604664,-82291763]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r21aB0.m",[134122114,-39570726]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r266aB0.m",[-121107292,-6080807]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r518aB0.m",[-18803550,83470924]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r55aB0.m",[126444372,-71029769]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r560aB0.m",[-58629522,36792176]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r650aB0.m",[-68196296,90913941]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r98aB0.m",[-19242410,46975984]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r154aB0.m",[-66777681,-132469520]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r175aB0.m",[104627848,-59932879]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r22aB0.m",[48179117,73635985]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r231aB0.m",[18774316,91260845]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r308aB0.m",[96893028,-32303931]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r605aB0.m",[26180019,71343374]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r693B0.m",[-27097572,-17105054]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r693aB0.m",[-89214575,-97072913]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r770aB0.m",[96355805,-74428817]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r77aB0.m",[47363847,72878837]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r803B0.m",[-46471106,18374938]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r803aB0.m",[-39679207,-81368234]]], ["TOC",["perm","spor/HS/mtx/HSd2G1-p100B0.m",[-70324210,128569599]]], ["TOC",["perm","spor/HS/mtx/HSd2G1-p1100bB0.m",[-36595103,-2164206]]], ["TOC",["perm","spor/HS/mtx/HSd2G1-p15400B0.m",[-14950196,-23862648]]], ["TOC",["perm","spor/HS/mtx/HSd2G1-p352B0.m",[20999653,-109343943]]], ["TOC",["pres","spor/HS/words/HSG1-P1",[89705474]]], ["TOC",["check","spor/HS/words/HSG1-check1",[18230266]]], ["TOC",["cyclic","spor/HS/words/HSG1-cycW1",[27005916]]], ["TOC",["find","spor/HS/words/HSG1-find1",[-117818194]]], ["TOC",["maxes","spor/HS/words/HSG1-max10W1",[-105738670]]], ["TOC",["maxes","spor/HS/words/HSG1-max11W1",[-60962218]]], ["TOC",["maxes","spor/HS/words/HSG1-max12W1",[129901534]]], ["TOC",["maxes","spor/HS/words/HSG1-max1W1",[-109670816]]], ["TOC",["maxes","spor/HS/words/HSG1-max2W1",[77618700]]], ["TOC",["maxes","spor/HS/words/HSG1-max3W1",[-131481863]]], ["TOC",["maxes","spor/HS/words/HSG1-max4W1",[90334987]]], ["TOC",["maxes","spor/HS/words/HSG1-max5W1",[125851852]]], ["TOC",["maxes","spor/HS/words/HSG1-max6W1",[24989805]]], ["TOC",["maxes","spor/HS/words/HSG1-max7W1",[60122846]]], ["TOC",["maxes","spor/HS/words/HSG1-max8W1",[-80926385]]], ["TOC",["maxes","spor/HS/words/HSG1-max9W1",[23183641]]], ["TOC",["cyc2ccl","spor/HS/words/HSG1cycW1-cclsW1",[-101829552]]], ["TOC",["pres","spor/HS/words/HSd2G1-P1",[66598625]]], ["TOC",["check","spor/HS/words/HSd2G1-check1",[-127212098]]], ["TOC",["find","spor/HS/words/HSd2G1-find1",[89130556]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max10W1",[98808984]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max1W1",[53167711]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max2W1",[-43880811]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max2W2",[-79295356]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max3W1",[-70581250]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max4W1",[82720027]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max4W2",[52422575]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max5W1",[-33881454]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max6W1",[-10734996]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max6W2",[87024687]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max7W1",[-124919375]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max8W1",[103553007]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max9W1",[-89255059]]], ["TOC",["matint","spor/He/gap0/HeG1-Zr102B0.g",[-111893033]]], ["TOC",["matff","spor/He/mtx/HeG1-f17r102B0.m",[3315927,-127149239]]], ["TOC",["matff","spor/He/mtx/HeG1-f17r306B0.m",[128990050,-87629342]]], ["TOC",["matff","spor/He/mtx/HeG1-f17r680B0.m",[51071750,-66766558]]], ["TOC",["matff","spor/He/mtx/HeG1-f25r153aB0.m",[-97341369,46064468]]], ["TOC",["matff","spor/He/mtx/HeG1-f25r153bB0.m",[123601479,-2193912]]], ["TOC",["matff","spor/He/mtx/HeG1-f25r51B0.m",[-17775458,-18096052]]], ["TOC",["matff","spor/He/mtx/HeG1-f25r925aB0.m",[-104334496,73025631]]], ["TOC",["matff","spor/He/mtx/HeG1-f25r925bB0.m",[-57226886,45741919]]], ["TOC",["matff","spor/He/mtx/HeG1-f2r101B0.m",[128079215,-86715223]]], ["TOC",["matff","spor/He/mtx/HeG1-f2r246B0.m",[120635934,-89233606]]], ["TOC",["matff","spor/He/mtx/HeG1-f2r51B0.m",[54261715,93379919]]], ["TOC",["matff","spor/He/mtx/HeG1-f2r680B0.m",[-22851184,-61142644]]], ["TOC",["matff","spor/He/mtx/HeG1-f3r679B0.m",[-78652892,27940980]]], ["TOC",["matff","spor/He/mtx/HeG1-f5r104B0.m",[-5533390,-130515768]]], ["TOC",["matff","spor/He/mtx/HeG1-f5r680B0.m",[105609709,34895690]]], ["TOC",["matff","spor/He/mtx/HeG1-f7r153B0.m",[112176717,103563499]]], ["TOC",["matff","spor/He/mtx/HeG1-f7r426B0.m",[-51572347,-60147689]]], ["TOC",["matff","spor/He/mtx/HeG1-f7r50B0.m",[44448945,47371851]]], ["TOC",["matff","spor/He/mtx/HeG1-f7r798B0.m",[-65040027,-82579779]]], ["TOC",["matff","spor/He/mtx/HeG1-f9r153aB0.m",[-116818601,115738898]]], ["TOC",["matff","spor/He/mtx/HeG1-f9r153bB0.m",[77633223,-70400496]]], ["TOC",["matff","spor/He/mtx/HeG1-f9r51B0.m",[-87086101,3088062]]], ["TOC",["perm","spor/He/mtx/HeG1-p2058B0.m",[41643635,18077559]]], ["TOC",["perm","spor/He/mtx/HeG1-p244800B0.m",[33926117,19883176]]], ["TOC",["perm","spor/He/mtx/HeG1-p29155B0.m",[-118796776,34096499]]], ["TOC",["perm","spor/He/mtx/HeG1-p8330B0.m",[-105415688,105842469]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f17r102B0.m",[-98678332,-10960323]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f17r306aB0.m",[98194188,68830057]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f17r680B0.m",[-80846352,5233036]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f2r102B0.m",[128491948,-90059244]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f2r202B0.m",[96817739,120850527]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f2r492B0.m",[-4221368,-75050619]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f2r680B0.m",[33151751,40011930]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f3r102B0.m",[5013999,-47374312]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f3r306aB0.m",[114920766,99957318]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f3r679B0.m",[104816038,-29811480]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f5r102B0.m",[-84552456,-42830816]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f5r104aB0.m",[125317819,-23224809]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f5r306aB0.m",[-59677416,-115950200]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f5r680B0.m",[-27232831,-56698730]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f7r153B0.m",[3483208,-66947991]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f7r426B0.m",[-112614285,-41923149]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f7r50B0.m",[119854620,47601686]]], ["TOC",["perm","spor/He/mtx/Hed2G1-p2058B0.m",[39787965,55630042]]], ["TOC",["perm","spor/He/mtx/Hed2G1-p8330B0.m",[-12875628,-124069945]]], ["TOC",["pres","spor/He/words/HeG1-P1",[-56250110]]], ["TOC",["out","spor/He/words/HeG1-a2W1",[-124692776]]], ["TOC",["check","spor/He/words/HeG1-check1",[9512126]]], ["TOC",["cyclic","spor/He/words/HeG1-cycW1",[104054059]]], ["TOC",["find","spor/He/words/HeG1-find1",[69669390]]], ["TOC",["maxes","spor/He/words/HeG1-max10W1",[14033334]]], ["TOC",["maxes","spor/He/words/HeG1-max11W1",[4509856]]], ["TOC",["maxes","spor/He/words/HeG1-max1W1",[-43737733]]], ["TOC",["maxes","spor/He/words/HeG1-max2W1",[108117526]]], ["TOC",["maxes","spor/He/words/HeG1-max3W1",[-49949164]]], ["TOC",["maxes","spor/He/words/HeG1-max4W1",[-59289512]]], ["TOC",["maxes","spor/He/words/HeG1-max5W1",[-114225225]]], ["TOC",["maxes","spor/He/words/HeG1-max6W1",[78467075]]], ["TOC",["maxes","spor/He/words/HeG1-max7W1",[75076758]]], ["TOC",["maxes","spor/He/words/HeG1-max8W1",[14747238]]], ["TOC",["maxes","spor/He/words/HeG1-max9W1",[-90393776]]], ["TOC",["check","spor/He/words/Hed2G1-check1",[-9689119]]], ["TOC",["find","spor/He/words/Hed2G1-find1",[-5635868]]], ["TOC",["maxes","spor/He/words/Hed2G1-max10W1",[-128311249]]], ["TOC",["maxes","spor/He/words/Hed2G1-max10W2",[131303494]]], ["TOC",["maxes","spor/He/words/Hed2G1-max11W1",[15765194]]], ["TOC",["maxes","spor/He/words/Hed2G1-max12W1",[126119732]]], ["TOC",["maxes","spor/He/words/Hed2G1-max1W1",[39571088]]], ["TOC",["maxes","spor/He/words/Hed2G1-max2W1",[86602080]]], ["TOC",["maxes","spor/He/words/Hed2G1-max2W2",[10926996]]], ["TOC",["maxes","spor/He/words/Hed2G1-max3W1",[-77901070]]], ["TOC",["maxes","spor/He/words/Hed2G1-max3W2",[-5889445]]], ["TOC",["maxes","spor/He/words/Hed2G1-max4W1",[46137349]]], ["TOC",["maxes","spor/He/words/Hed2G1-max4W2",[1777236]]], ["TOC",["maxes","spor/He/words/Hed2G1-max5W1",[78201159]]], ["TOC",["maxes","spor/He/words/Hed2G1-max6W1",[82572966]]], ["TOC",["maxes","spor/He/words/Hed2G1-max6W2",[-66410105]]], ["TOC",["maxes","spor/He/words/Hed2G1-max7W1",[-105158792]]], ["TOC",["maxes","spor/He/words/Hed2G1-max8W1",[43276992]]], ["TOC",["maxes","spor/He/words/Hed2G1-max9W1",[9241607]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr112B0.g",[-31077060]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr133aB0.g",[21656545]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr154aB0.g",[83842088]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr209B0.g",[-94084326]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr266B0.g",[133600103]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr360B0.g",[-130775594]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr76aB0.g",[-132150391]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr76bB0.g",[-56968292]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr77aB0.g",[73320684]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r106B0.m",[-103391839,124188868]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r119B0.m",[-114730701,-131377448]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r14B0.m",[-117124269,92507682]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r209B0.m",[30432323,-115220214]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r27B0.m",[-89301207,46608694]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r49B0.m",[123525147,5925104]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r56B0.m",[134047400,-58386021]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r64B0.m",[-131656409,-132788035]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r69B0.m",[106677382,-85852958]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r77aB0.m",[-36509359,-117909918]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r77bB0.m",[-41736705,-16867885]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r77cB0.m",[16146661,80770849]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r7B0.m",[-9911341,-80003292]]], ["TOC",["matff","spor/J1/mtx/J1G1-f125r120aB0.m",[37110054,-12669843]]], ["TOC",["matff","spor/J1/mtx/J1G1-f125r120bB0.m",[27805098,64057217]]], ["TOC",["matff","spor/J1/mtx/J1G1-f125r120cB0.m",[36753518,132921276]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r133aB0.m",[-116071157,79659262]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r133bB0.m",[67214512,21683644]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r133cB0.m",[30382290,71973032]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r209B0.m",[-98745830,-14654175]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r22B0.m",[-8458095,123758142]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r34B0.m",[57580925,-123237802]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r43B0.m",[1561333,66803302]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r55B0.m",[-109172623,14442210]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r76aB0.m",[96251301,22067576]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r76bB0.m",[-75763271,-90052991]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r77B0.m",[5871029,48525857]]], ["TOC",["matff","spor/J1/mtx/J1G1-f27r120aB0.m",[88849715,5601993]]], ["TOC",["matff","spor/J1/mtx/J1G1-f27r120bB0.m",[95234762,128060063]]], ["TOC",["matff","spor/J1/mtx/J1G1-f27r120cB0.m",[21394050,-47984428]]], ["TOC",["matff","spor/J1/mtx/J1G1-f2r112aB0.m",[-27762922,-39231978]]], ["TOC",["matff","spor/J1/mtx/J1G1-f2r112bB0.m",[103022738,-30663498]]], ["TOC",["matff","spor/J1/mtx/J1G1-f2r20B0.m",[-61004905,-87815118]]], ["TOC",["matff","spor/J1/mtx/J1G1-f2r360B0.m",[71735870,-78934514]]], ["TOC",["matff","spor/J1/mtx/J1G1-f2r76aB0.m",[-101133014,5768976]]], ["TOC",["matff","spor/J1/mtx/J1G1-f2r76bB0.m",[38608532,58707824]]], ["TOC",["matff","spor/J1/mtx/J1G1-f3r112B0.m",[85516695,-115922964]]], ["TOC",["matff","spor/J1/mtx/J1G1-f3r133B0.m",[55526379,109722479]]], ["TOC",["matff","spor/J1/mtx/J1G1-f3r154B0.m",[-84775452,-97075575]]], ["TOC",["matff","spor/J1/mtx/J1G1-f3r360B0.m",[-87211897,-121913277]]], ["TOC",["matff","spor/J1/mtx/J1G1-f3r76aB0.m",[47213066,109189926]]], ["TOC",["matff","spor/J1/mtx/J1G1-f3r76bB0.m",[-13438726,-63081483]]], ["TOC",["matff","spor/J1/mtx/J1G1-f49r133bB0.m",[-76280495,25191611]]], ["TOC",["matff","spor/J1/mtx/J1G1-f49r133cB0.m",[-31063626,-88798497]]], ["TOC",["matff","spor/J1/mtx/J1G1-f49r56aB0.m",[-82790943,55874968]]], ["TOC",["matff","spor/J1/mtx/J1G1-f49r56bB0.m",[77714597,-126420712]]], ["TOC",["matff","spor/J1/mtx/J1G1-f49r77bB0.m",[133603429,-13804032]]], ["TOC",["matff","spor/J1/mtx/J1G1-f49r77cB0.m",[108616408,79439704]]], ["TOC",["matff","spor/J1/mtx/J1G1-f4r56aB0.m",[-5126658,50178985]]], ["TOC",["matff","spor/J1/mtx/J1G1-f4r56bB0.m",[-106154690,-67274114]]], ["TOC",["matff","spor/J1/mtx/J1G1-f4r56cB0.m",[-130903651,-12932254]]], ["TOC",["matff","spor/J1/mtx/J1G1-f4r56dB0.m",[52608449,-5497505]]], ["TOC",["matff","spor/J1/mtx/J1G1-f5r133B0.m",[-101139042,115099859]]], ["TOC",["matff","spor/J1/mtx/J1G1-f5r360B0.m",[79519794,34617868]]], ["TOC",["matff","spor/J1/mtx/J1G1-f5r56B0.m",[120075672,-81860207]]], ["TOC",["matff","spor/J1/mtx/J1G1-f5r76aB0.m",[-93215905,90094060]]], ["TOC",["matff","spor/J1/mtx/J1G1-f5r76bB0.m",[98338005,-111548749]]], ["TOC",["matff","spor/J1/mtx/J1G1-f5r77B0.m",[111788951,-2181113]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r112B0.m",[-49729601,126089261]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r120B0.m",[-134146223,-74849221]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r133aB0.m",[100942778,-34392406]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r154B0.m",[105431024,132068788]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r266B0.m",[26589642,-35226900]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r31B0.m",[107812230,81267576]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r45B0.m",[55047694,92422382]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r75B0.m",[46773029,13337192]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r77aB0.m",[88926029,-52130458]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r89B0.m",[-47541426,46151913]]], ["TOC",["matff","spor/J1/mtx/J1G1-f8r120aB0.m",[364715,124623442]]], ["TOC",["matff","spor/J1/mtx/J1G1-f8r120bB0.m",[-133644121,-80473656]]], ["TOC",["matff","spor/J1/mtx/J1G1-f8r120cB0.m",[-49808271,88217072]]], ["TOC",["matff","spor/J1/mtx/J1G1-f9r56aB0.m",[127228489,51925005]]], ["TOC",["matff","spor/J1/mtx/J1G1-f9r56bB0.m",[-68571042,-29047888]]], ["TOC",["matff","spor/J1/mtx/J1G1-f9r77aB0.m",[-56987250,131399361]]], ["TOC",["matff","spor/J1/mtx/J1G1-f9r77bB0.m",[37261836,-33773054]]], ["TOC",["perm","spor/J1/mtx/J1G1-p1045B0.m",[-120206893,102168794]]], ["TOC",["perm","spor/J1/mtx/J1G1-p1463B0.m",[-133715393,113823357]]], ["TOC",["perm","spor/J1/mtx/J1G1-p1540B0.m",[75810120,-100787024]]], ["TOC",["perm","spor/J1/mtx/J1G1-p1596B0.m",[101588624,-117563900]]], ["TOC",["perm","spor/J1/mtx/J1G1-p266B0.m",[22177126,-62974675]]], ["TOC",["perm","spor/J1/mtx/J1G1-p2926B0.m",[81845562,-20014759]]], ["TOC",["perm","spor/J1/mtx/J1G1-p4180B0.m",[-15995841,-28833662]]], ["TOC",["pres","spor/J1/words/J1G1-P1",[62438344]]], ["TOC",["check","spor/J1/words/J1G1-check1",[123542188]]], ["TOC",["cyclic","spor/J1/words/J1G1-cycW1",[17461109]]], ["TOC",["find","spor/J1/words/J1G1-find1",[-31682906]]], ["TOC",["maxes","spor/J1/words/J1G1-max1W1",[51538739]]], ["TOC",["maxes","spor/J1/words/J1G1-max2W1",[-6041435]]], ["TOC",["maxes","spor/J1/words/J1G1-max3W1",[-79963239]]], ["TOC",["maxes","spor/J1/words/J1G1-max4W1",[-89881442]]], ["TOC",["maxes","spor/J1/words/J1G1-max5W1",[15588260]]], ["TOC",["maxes","spor/J1/words/J1G1-max6W1",[134073476]]], ["TOC",["maxes","spor/J1/words/J1G1-max7W1",[74139840]]], ["TOC",["cyc2ccl","spor/J1/words/J1G1cycW1-cclsW1",[122928561]]], ["TOC",["maxstd","spor/J1/words/J1G1max1W1-L211G1W1",[-69103036]]], ["TOC",["matalg","spor/J2/gap0/J2G1-Ar14aB0.g",[-119892054]]], ["TOC",["matalg","spor/J2/gap0/J2G1-Ar14bB0.g",[116541793]]], ["TOC",["matalg","spor/J2/gap0/J2G1-Ar21aB0.g",[66352371]]], ["TOC",["matalg","spor/J2/gap0/J2G1-Ar21bB0.g",[-106545175]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr126B0.g",[-110181652]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr140B0.g",[-100307717]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr160B0.g",[-7897565]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr175B0.g",[-95385399]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr225B0.g",[-74398693]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr28B0.g",[-130022761]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr36B0.g",[-20614194]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr378B0.g",[85432049]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr42B0.g",[31145687]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr448B0.g",[111047571]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr63B0.g",[-89620674]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr90B0.g",[60260154]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f3r14B0.m",[-113897243,-32814486]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f3r216B0.m",[14072415,-110234086]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f3r236B0.m",[20660607,10073248]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f49r50bB0.m",[109335687,-28211937]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f49r58aB0.m",[87250507,56426501]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f49r6aB0.m",[-120102143,36160691]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f5r14B0.m",[83051864,126204854]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f5r50aB0.m",[-50527262,-97192412]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f5r50bB0.m",[129810320,104344437]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f5r56B0.m",[109189996,-127833587]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f5r64B0.m",[75626446,87298219]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f5r6B0.m",[99799920,91333344]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f7r14B0.m",[-10597658,-86610093]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f9r126bB0.m",[-118127278,69519271]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f9r36aB0.m",[73184048,-23355679]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f9r50bB0.m",[-69229760,100172887]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f9r6aB0.m",[67698531,-117556776]]], ["TOC",["perm","spor/J2/mtx/2J2G1-p1120B0.m",[-25117804,-26395146]]], ["TOC",["perm","spor/J2/mtx/2J2G1-p200B0.m",[123577781,41593846]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f25r14aB0.m",[6732991,29876443]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f25r190aB0.m",[62791918,105317228]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f25r202aB0.m",[97700598,-22294908]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f25r350aB0.m",[-111317796,-69843330]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f25r56aB0.m",[-59725962,-5563607]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f25r64aB0.m",[99815101,24146284]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f25r6aB0.m",[-132439171,1975945]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f3r100B0.m",[-28016138,85900205]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f3r12B0.m",[97169803,118884350]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f3r216aB0.m",[99016969,6068394]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f3r252B0.m",[-17267583,51118333]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f3r72B0.m",[-54956834,74771712]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f49r252bB0.m",[-32776114,-74356372]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f49r84aB0.m",[77278470,5597725]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f5r100aB0.m",[-54001130,34060243]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f7r100aB0.m",[-815702,10811702]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f7r112aB0.m",[-112067511,-87122879]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f7r116aB0.m",[-104312720,-1307904]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f7r12B0.m",[54206582,91013231]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f7r14aB0.m",[111764479,82142631]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f7r252aB0.m",[3333699,33300818]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f7r336bB0.m",[-105320077,-76943839]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f7r350aB0.m",[63381314,-68247947]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f9r14bB0.m",[36762831,-132406626]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f9r236aB0.m",[-31790249,74937544]]], ["TOC",["matff","spor/J2/mtx/J2G1-f2r160B0.m",[28629833,126740221]]], ["TOC",["matff","spor/J2/mtx/J2G1-f2r36B0.m",[79421504,-69325762]]], ["TOC",["matff","spor/J2/mtx/J2G1-f2r84B0.m",[75413503,-102216560]]], ["TOC",["matff","spor/J2/mtx/J2G1-f3r133B0.m",[-119378602,44663767]]], ["TOC",["matff","spor/J2/mtx/J2G1-f3r225B0.m",[80778398,-129737568]]], ["TOC",["matff","spor/J2/mtx/J2G1-f3r36B0.m",[-73894682,-94149424]]], ["TOC",["matff","spor/J2/mtx/J2G1-f3r63B0.m",[-21093812,-56023244]]], ["TOC",["matff","spor/J2/mtx/J2G1-f3r90B0.m",[-40992173,51864398]]], ["TOC",["matff","spor/J2/mtx/J2G1-f49r14aB0.m",[-83144889,-132137217]]], ["TOC",["matff","spor/J2/mtx/J2G1-f49r189aB0.m",[133245420,25430127]]], ["TOC",["matff","spor/J2/mtx/J2G1-f49r21aB0.m",[-93151165,8425597]]], ["TOC",["matff","spor/J2/mtx/J2G1-f49r224bB0.m",[81013272,1711563]]], ["TOC",["matff","spor/J2/mtx/J2G1-f49r70aB0.m",[35895714,-122041372]]], ["TOC",["matff","spor/J2/mtx/J2G1-f4r14aB0.m",[-78197249,-86246293]]], ["TOC",["matff","spor/J2/mtx/J2G1-f4r64aB0.m",[-100350507,-91732982]]], ["TOC",["matff","spor/J2/mtx/J2G1-f4r6aB0.m",[-48659567,19296333]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r14B0.m",[-24495182,62143285]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r175B0.m",[93698590,-86300113]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r189B0.m",[64786394,-55336423]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r21B0.m",[-101700739,129331869]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r225B0.m",[51793378,-25188973]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r300B0.m",[97176457,125598365]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r41B0.m",[46482597,55653243]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r70B0.m",[-24973080,126135372]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r85B0.m",[60126257,36436769]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r90B0.m",[108529232,-1189698]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r101B0.m",[-43267214,-43718865]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r124B0.m",[-31655958,29964592]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r126B0.m",[-69882593,52764208]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r175B0.m",[-7612451,56568397]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r199B0.m",[130106760,72724572]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r336B0.m",[-66986634,-12666334]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r36B0.m",[94807847,-43954787]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r63B0.m",[113327264,-89095941]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r89B0.m",[93098055,-64430197]]], ["TOC",["matff","spor/J2/mtx/J2G1-f9r13aB0.m",[-82599678,19475396]]], ["TOC",["matff","spor/J2/mtx/J2G1-f9r189aB0.m",[-80903080,-38830383]]], ["TOC",["matff","spor/J2/mtx/J2G1-f9r21aB0.m",[40398440,-105932054]]], ["TOC",["matff","spor/J2/mtx/J2G1-f9r57aB0.m",[72550823,-123729265]]], ["TOC",["perm","spor/J2/mtx/J2G1-p1008B0.m",[107917219,44185964]]], ["TOC",["perm","spor/J2/mtx/J2G1-p100B0.m",[-10604214,76926874]]], ["TOC",["perm","spor/J2/mtx/J2G1-p1800B0.m",[88439984,-83344771]]], ["TOC",["perm","spor/J2/mtx/J2G1-p280B0.m",[103019629,129543628]]], ["TOC",["perm","spor/J2/mtx/J2G1-p315B0.m",[-98296456,116940015]]], ["TOC",["perm","spor/J2/mtx/J2G1-p525B0.m",[39161370,50068086]]], ["TOC",["perm","spor/J2/mtx/J2G1-p840B0.m",[-2392939,-63559507]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f2r128B0.m",[-65498530,-20810824]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f2r12B0.m",[50254151,-133240252]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f2r160B0.m",[13476252,-37245155]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f2r28B0.m",[-96028902,102432156]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f2r36B0.m",[-70271936,10793456]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f2r84B0.m",[-2485093,65970594]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r114B0.m",[59108908,-9938196]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r133aB0.m",[84075448,37730824]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r225aB0.m",[-39220154,-130617020]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r26B0.m",[76485463,98100511]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r36aB0.m",[46652214,98816800]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r378B0.m",[90745239,100731880]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r42B0.m",[80885786,-102033025]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r63aB0.m",[-133703228,114272230]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r90aB0.m",[131811586,30969873]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f49r336aB0.m",[-23714968,-84309371]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r14aB0.m",[119575197,78985578]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r175aB0.m",[-27628356,38889573]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r189aB0.m",[-4423560,-30106510]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r21aB0.m",[-95090773,18994822]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r225aB0.m",[-120959546,27919126]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r300aB0.m",[-70109772,-101527760]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r41aB0.m",[104699912,115133213]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r70aB0.m",[17740820,-79331532]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r85aB0.m",[128785100,44563005]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r90aB0.m",[-44848211,29854069]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r101aB0.m",[132601761,33448972]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r124aB0.m",[25830938,-104474321]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r126aB0.m",[39401259,-63972050]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r140aB0.m",[-89259952,98564683]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r175aB0.m",[64538401,-130093289]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r199aB0.m",[-110342124,4074968]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r28B0.m",[-68684266,-47870332]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r28aB0.m",[-78979492,-41376050]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r36aB0.m",[126296679,-7392050]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r378aB0.m",[-116455614,-21324846]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r42aB0.m",[78130173,41747469]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r448aB0.m",[118611765,-72803788]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r63aB0.m",[-55496811,-113221109]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r89aB0.m",[18923317,107278480]]], ["TOC",["perm","spor/J2/mtx/J2d2G1-p100B0.m",[79614429,-121551062]]], ["TOC",["pres","spor/J2/words/2J2G1-P1",[50736212]]], ["TOC",["pres","spor/J2/words/2J2G1-P2",[95313741]]], ["TOC",["pres","spor/J2/words/2J2d2G1-P1",[-81649202]]], ["TOC",["pres","spor/J2/words/2J2d2iG1-P1",[-124109267]]], ["TOC",["pres","spor/J2/words/J2G1-P1",[75328306]]], ["TOC",["pres","spor/J2/words/J2G1-P2",[89317847]]], ["TOC",["check","spor/J2/words/J2G1-check1",[79820866]]], ["TOC",["cyclic","spor/J2/words/J2G1-cycW1",[115291828]]], ["TOC",["find","spor/J2/words/J2G1-find1",[-113443300]]], ["TOC",["maxes","spor/J2/words/J2G1-max1W1",[71503277]]], ["TOC",["maxes","spor/J2/words/J2G1-max2W1",[-28428383]]], ["TOC",["maxes","spor/J2/words/J2G1-max3W1",[63333853]]], ["TOC",["maxes","spor/J2/words/J2G1-max4W1",[100660452]]], ["TOC",["maxes","spor/J2/words/J2G1-max5W1",[-58932873]]], ["TOC",["maxes","spor/J2/words/J2G1-max6W1",[-63852235]]], ["TOC",["maxes","spor/J2/words/J2G1-max7W1",[-19546984]]], ["TOC",["maxes","spor/J2/words/J2G1-max8W1",[15473541]]], ["TOC",["maxes","spor/J2/words/J2G1-max9W1",[43284530]]], ["TOC",["cyc2ccl","spor/J2/words/J2G1cycW1-cclsW1",[-131927518]]], ["TOC",["check","spor/J2/words/J2d2G1-check1",[113278913]]], ["TOC",["cyclic","spor/J2/words/J2d2G1-cycW1",[-77809268]]], ["TOC",["find","spor/J2/words/J2d2G1-find1",[63922423]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max10W1",[50336895]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max10W2",[-115145540]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max1W1",[-51694456]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max2W1",[23063257]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max2W2",[-30559536]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max3W1",[111958377]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max3W2",[-21586291]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max4W1",[132837173]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max5W1",[78799086]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max6W1",[-73379527]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max7W1",[19473530]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max8W1",[-83304134]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max8W2",[-30055709]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max9W1",[-26512083]]], ["TOC",["matint","spor/J3/gap0/J3G1-Zr170B0.g",[5010871]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f17r342aB0.m",[-5781739,-45542491]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f17r36aB0.m",[-51234880,68470238]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f17r36bB0.m",[51033368,12468464]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f17r648aB0.m",[-133504337,-14109488]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f19r18aB0.m",[-13218369,-54533917]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f19r18bB0.m",[71768792,-33082416]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f25r153B0.m",[-46297630,-38642240]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f25r171aB0.m",[819518,-42644410]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f25r18B0.m",[-22348714,74615936]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r1008aB0.m",[-64314065,-67617738]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r126aB0.m",[17655829,10977322]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r153aB0.m",[-86667489,69354272]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r153bB0.m",[105863765,-99696278]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r18aB0.m",[43277515,4750208]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r18bB0.m",[-130770368,71718454]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r324aB0.m",[120672405,22266670]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r720aB0.m",[28389114,90385026]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r9aB0.m",[5706396,-35558374]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f5r36B0.m",[102625935,-11945867]]], ["TOC",["matff","spor/J3/mtx/3J3d2G1-f2r18B0.m",[-71834125,97014104]]], ["TOC",["matff","spor/J3/mtx/J3G1-f17r1292B0.m",[-25034150,-70852400]]], ["TOC",["matff","spor/J3/mtx/J3G1-f17r324B0.m",[1501502,47098677]]], ["TOC",["matff","spor/J3/mtx/J3G1-f17r379B0.m",[-18078186,-100804918]]], ["TOC",["matff","spor/J3/mtx/J3G1-f17r646cB0.m",[33779740,-35096697]]], ["TOC",["matff","spor/J3/mtx/J3G1-f17r761B0.m",[-24827989,-30157498]]], ["TOC",["matff","spor/J3/mtx/J3G1-f17r816B0.m",[49783141,-44417889]]], ["TOC",["matff","spor/J3/mtx/J3G1-f17r836B0.m",[67110042,-103596482]]], ["TOC",["matff","spor/J3/mtx/J3G1-f17r85bB0.m",[69355264,79827344]]], ["TOC",["matff","spor/J3/mtx/J3G1-f19r1001B0.m",[-71775894,32124539]]], ["TOC",["matff","spor/J3/mtx/J3G1-f19r110B0.m",[-14149257,-72994069]]], ["TOC",["matff","spor/J3/mtx/J3G1-f19r214B0.m",[112808376,63056856]]], ["TOC",["matff","spor/J3/mtx/J3G1-f19r323aB0.m",[-56308585,122734075]]], ["TOC",["matff","spor/J3/mtx/J3G1-f19r646aB0.m",[32723177,57321757]]], ["TOC",["matff","spor/J3/mtx/J3G1-f19r706B0.m",[124798330,-118385496]]], ["TOC",["matff","spor/J3/mtx/J3G1-f19r85B0.m",[-116269633,124397448]]], ["TOC",["matff","spor/J3/mtx/J3G1-f19r919B0.m",[117468015,76233284]]], ["TOC",["matff","spor/J3/mtx/J3G1-f2r244B0.m",[96929110,40003984]]], ["TOC",["matff","spor/J3/mtx/J3G1-f2r248B0.m",[-5581136,-102087980]]], ["TOC",["matff","spor/J3/mtx/J3G1-f2r80B0.m",[-114855153,-63500987]]], ["TOC",["matff","spor/J3/mtx/J3G1-f2r966B0.m",[-21628489,-81419317]]], ["TOC",["matff","spor/J3/mtx/J3G1-f3r324B0.m",[-121653249,-48968634]]], ["TOC",["matff","spor/J3/mtx/J3G1-f3r934B0.m",[21180256,9353944]]], ["TOC",["matff","spor/J3/mtx/J3G1-f4r322aB0.m",[-94596495,-83869187]]], ["TOC",["matff","spor/J3/mtx/J3G1-f4r78bB0.m",[130683410,-49146325]]], ["TOC",["matff","spor/J3/mtx/J3G1-f4r84aB0.m",[97268024,90323773]]], ["TOC",["matff","spor/J3/mtx/J3G1-f5r323B0.m",[20586886,-63936535]]], ["TOC",["matff","spor/J3/mtx/J3G1-f5r646B0.m",[38468934,-19638553]]], ["TOC",["matff","spor/J3/mtx/J3G1-f5r816B0.m",[-38226666,33164345]]], ["TOC",["matff","spor/J3/mtx/J3G1-f5r85aB0.m",[-29570850,-22625474]]], ["TOC",["matff","spor/J3/mtx/J3G1-f9r153bB0.m",[74571268,-72197498]]], ["TOC",["matff","spor/J3/mtx/J3G1-f9r18bB0.m",[-114161524,3130286]]], ["TOC",["matff","spor/J3/mtx/J3G1-f9r84bB0.m",[131054028,43504610]]], ["TOC",["perm","spor/J3/mtx/J3G1-p14688aB0.m",[83603351,101939310]]], ["TOC",["perm","spor/J3/mtx/J3G1-p14688bB0.m",[108341248,2451612]]], ["TOC",["perm","spor/J3/mtx/J3G1-p17442B0.m",[130030449,-27264281]]], ["TOC",["perm","spor/J3/mtx/J3G1-p20520B0.m",[-108660079,-106583523]]], ["TOC",["perm","spor/J3/mtx/J3G1-p23256B0.m",[107077962,125529650]]], ["TOC",["perm","spor/J3/mtx/J3G1-p25840B0.m",[93937982,27658851]]], ["TOC",["perm","spor/J3/mtx/J3G1-p26163B0.m",[-76971561,46022270]]], ["TOC",["perm","spor/J3/mtx/J3G1-p43605B0.m",[-25523132,90042139]]], ["TOC",["perm","spor/J3/mtx/J3G1-p6156B0.m",[-6997746,114293647]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f17r170aB0.m",[-20712877,15840937]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f17r324aB0.m",[-121994210,13113504]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f17r379aB0.m",[8150753,-6344132]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f17r646aB0.m",[1825660,100643838]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f17r836aB0.m",[-6609325,64870910]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r1001aB0.m",[-93762295,55734533]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r110aB0.m",[33474962,61327975]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r1214aB0.m",[91332265,-83777443]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r214aB0.m",[86168827,45997897]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r214bB0.m",[-14898486,-70381615]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r646aB0.m",[-75020622,36753805]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r706aB0.m",[39748629,-88787685]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r85aB0.m",[42726302,-85827259]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r919aB0.m",[69365981,-131623696]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f2r156aB0.m",[-35325545,7697295]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f2r168aB0.m",[-69077590,124597600]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f2r244aB0.m",[100974568,111207289]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f2r644aB0.m",[31198995,-77464786]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f2r80aB0.m",[-129818312,-84930763]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f2r966aB0.m",[-36421548,-25821412]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f3r168aB0.m",[-615510,-7899195]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f3r306aB0.m",[-65318316,-88972481]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f3r324aB0.m",[-91579146,-112188732]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f3r36B0.m",[31764118,43883456]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f3r36aB0.m",[99684431,109585689]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f3r934aB0.m",[103410483,111489511]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f5r170aB0.m",[126235142,-44861301]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f5r323bB0.m",[11663668,-31895383]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f5r646aB0.m",[83386032,-54626814]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f5r816aB0.m",[-54694986,110817765]]], ["TOC",["perm","spor/J3/mtx/J3d2G1-p6156B0.m",[11729589,-119672344]]], ["TOC",["pres","spor/J3/words/3J3G1-P1",[94181161]]], ["TOC",["pres","spor/J3/words/3J3G1-P2",[97697866]]], ["TOC",["pres","spor/J3/words/J3G1-P1",[6588741]]], ["TOC",["check","spor/J3/words/J3G1-check1",[131719718]]], ["TOC",["cyclic","spor/J3/words/J3G1-cycW1",[59511997]]], ["TOC",["find","spor/J3/words/J3G1-find1",[84468241]]], ["TOC",["maxes","spor/J3/words/J3G1-max1W1",[101439354]]], ["TOC",["maxes","spor/J3/words/J3G1-max2W1",[78445967]]], ["TOC",["maxes","spor/J3/words/J3G1-max3W1",[-59984060]]], ["TOC",["maxes","spor/J3/words/J3G1-max4W1",[1926870]]], ["TOC",["maxes","spor/J3/words/J3G1-max5W1",[126899098]]], ["TOC",["maxes","spor/J3/words/J3G1-max6W1",[62944102]]], ["TOC",["maxes","spor/J3/words/J3G1-max7W1",[115657958]]], ["TOC",["maxes","spor/J3/words/J3G1-max8W1",[49123027]]], ["TOC",["maxes","spor/J3/words/J3G1-max9W1",[-44554009]]], ["TOC",["cyc2ccl","spor/J3/words/J3G1cycW1-cclsW1",[3912495]]], ["TOC",["pres","spor/J3/words/J3d2G1-P1",[79692095]]], ["TOC",["check","spor/J3/words/J3d2G1-check1",[-29141963]]], ["TOC",["cyclic","spor/J3/words/J3d2G1-cycW1",[-22222726]]], ["TOC",["find","spor/J3/words/J3d2G1-find1",[-62481230]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max1W1",[43765696]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max1W2",[51647767]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max2W1",[12604146]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max2W2",[-47456261]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max3W1",[-83635088]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max3W2",[-56061537]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max4W1",[42497159]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max4W2",[13243978]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max4W3",[122658637]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max5W1",[44354392]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max5W2",[100303569]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max6W1",[34236532]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max6W2",[-13239779]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max7W1",[-63149480]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max7W2",[110046694]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max8W1",[52645162]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max8W2",[-23404220]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max9W1",[-61130598]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max9W2",[-84682738]]], ["TOC",["matff","spor/J4/mtx/J4G1-f11r1333B0.m",[89088292,102950801]]], ["TOC",["matff","spor/J4/mtx/J4G1-f2r112B0.m",[-65652010,73342411]]], ["TOC",["matff","spor/J4/mtx/J4G1-f2r1220aB0.m",[6701669,71684102]]], ["TOC",["switch","spor/J4/words/J4G1-G2W1",[1835111]]], ["TOC",["check","spor/J4/words/J4G1-check1",[94551580]]], ["TOC",["cyclic","spor/J4/words/J4G1-cycW1",[11528942]]], ["TOC",["find","spor/J4/words/J4G1-find1",[47331454]]], ["TOC",["maxes","spor/J4/words/J4G1-max10W1",[-61874604]]], ["TOC",["maxes","spor/J4/words/J4G1-max11W1",[93074183]]], ["TOC",["maxes","spor/J4/words/J4G1-max12W1",[109847687]]], ["TOC",["maxes","spor/J4/words/J4G1-max13W1",[69852070]]], ["TOC",["maxes","spor/J4/words/J4G1-max1W1",[46104539]]], ["TOC",["maxes","spor/J4/words/J4G1-max2W1",[2832080]]], ["TOC",["maxes","spor/J4/words/J4G1-max3W1",[-125358074]]], ["TOC",["maxes","spor/J4/words/J4G1-max4W1",[-107364696]]], ["TOC",["maxes","spor/J4/words/J4G1-max5W1",[-29842207]]], ["TOC",["maxes","spor/J4/words/J4G1-max6W1",[-34916600]]], ["TOC",["maxes","spor/J4/words/J4G1-max7W1",[-25028404]]], ["TOC",["maxes","spor/J4/words/J4G1-max8W1",[-34180489]]], ["TOC",["maxes","spor/J4/words/J4G1-max9W1",[-27356525]]], ["TOC",["matff","spor/Ly/mtx/LyG1-f3r651B0.m",[10566154,103166968]]], ["TOC",["matff","spor/Ly/mtx/LyG1-f4r2480B0.m",[34218313,18008839]]], ["TOC",["matff","spor/Ly/mtx/LyG1-f5r111B0.m",[88507392,25634025]]], ["TOC",["matff","spor/Ly/mtx/LyG1-f5r2480aB0.m",[80368824,-54706907]]], ["TOC",["matff","spor/Ly/mtx/LyG1-f5r2480bB0.m",[-29935409,-96272542]]], ["TOC",["matff","spor/Ly/mtx/LyG1-f5r517B0.m",[-5960997,-106607566]]], ["TOC",["check","spor/Ly/words/LyG1-check1",[53141382]]], ["TOC",["cyclic","spor/Ly/words/LyG1-cycW1",[-35173790]]], ["TOC",["find","spor/Ly/words/LyG1-find1",[-93251550]]], ["TOC",["maxes","spor/Ly/words/LyG1-max1W1",[84121637]]], ["TOC",["maxes","spor/Ly/words/LyG1-max2W1",[-65521363]]], ["TOC",["maxes","spor/Ly/words/LyG1-max3W1",[-14876375]]], ["TOC",["maxes","spor/Ly/words/LyG1-max4W1",[36673662]]], ["TOC",["maxes","spor/Ly/words/LyG1-max5W1",[123699800]]], ["TOC",["maxes","spor/Ly/words/LyG1-max6W1",[-67283536]]], ["TOC",["maxes","spor/Ly/words/LyG1-max7W1",[-98954415]]], ["TOC",["maxes","spor/Ly/words/LyG1-max8W1",[-13258558]]], ["TOC",["maxes","spor/Ly/words/LyG1-max9W1",[33311056]]], ["TOC",["cyc2ccl","spor/Ly/words/LyG1cycW1-cclsW1",[-40764659]]], ["TOC",["matff","spor/M/mtx/M3max7G0-f3r38B0.m",[-97335535,130920706,-68939516,63018560]]], ["TOC",["perm","spor/M/mtx/Mmax10G0-p1032192B0.m",[18677102,-120278726]]], ["TOC",["matff","spor/M/mtx/Mmax11G0-f3r204B0.m",[-68979527,97267981]]], ["TOC",["perm","spor/M/mtx/Mmax11G0-p805896B0.m",[80835450,17005428]]], ["TOC",["matff","spor/M/mtx/Mmax12G0-f5r135B0.m",[-41923899,-68468649]]], ["TOC",["perm","spor/M/mtx/Mmax13G0-p3369B0.m",[-124454153,-118539307]]], ["TOC",["perm","spor/M/mtx/Mmax14G0-p34992B0.m",[36007341,16238952]]], ["TOC",["perm","spor/M/mtx/Mmax14G0-p69984B0.m",[-19023274,21953817]]], ["TOC",["perm","spor/M/mtx/Mmax15G0-p113724B0.m",[8153441,-11541249]]], ["TOC",["perm","spor/M/mtx/Mmax15G0-p227448B0.m",[-117512269,18905903]]], ["TOC",["perm","spor/M/mtx/Mmax15G0-p85293B0.m",[45592030,24658568]]], ["TOC",["perm","spor/M/mtx/Mmax15q1G0-p6561B0.m",[55971037,-89489113]]], ["TOC",["perm","spor/M/mtx/Mmax15q2G0-p1404B0.m",[4489106,-73235772]]], ["TOC",["perm","spor/M/mtx/Mmax15q3G0-p108B0.m",[94046920,-133086079]]], ["TOC",["matff","spor/M/mtx/Mmax16G0-f5r8B0.m",[-129008619,-80013105]]], ["TOC",["perm","spor/M/mtx/Mmax16G0-p78125B0.m",[-123466697,-18135321]]], ["TOC",["perm","spor/M/mtx/Mmax17G0-p2065B0.m",[-24577210,3845541]]], ["TOC",["perm","spor/M/mtx/Mmax18G0-p17B0.m",[-96374399,84665195]]], ["TOC",["matff","spor/M/mtx/Mmax19G0-f5r46B0.m",[-128678362,85752621]]], ["TOC",["perm","spor/M/mtx/Mmax19G0-p46500B0.m",[32384318,25040051]]], ["TOC",["perm","spor/M/mtx/Mmax19G0-p7750B0.m",[9717373,-57055253]]], ["TOC",["perm","spor/M/mtx/Mmax19G0-p96875B0.m",[-78036431,91495778]]], ["TOC",["perm","spor/M/mtx/Mmax20G0-p30B0.m",[20272089,-84261147]]], ["TOC",["matff","spor/M/mtx/Mmax21G0-f2r28B0.m",[-26612517,-65459450]]], ["TOC",["perm","spor/M/mtx/Mmax21G0-p3653B0.m",[64063784,113703956]]], ["TOC",["perm","spor/M/mtx/Mmax21G0-p518B0.m",[26532979,-91226104]]], ["TOC",["perm","spor/M/mtx/Mmax22G0-p15625B0.m",[-116581289,-57343609]]], ["TOC",["perm","spor/M/mtx/Mmax22G0-p750B0.m",[57129072,7477813]]], ["TOC",["matff","spor/M/mtx/Mmax23G0-f2r22B0.m",[77850203,-95111381]]], ["TOC",["perm","spor/M/mtx/Mmax23G0-p184B0.m",[-13866898,-55917792]]], ["TOC",["perm","spor/M/mtx/Mmax23G0-p524B0.m",[127804996,-76894010]]], ["TOC",["matff","spor/M/mtx/Mmax24G0-f7r6B0.m",[-61000562,23163086]]], ["TOC",["perm","spor/M/mtx/Mmax24G0-p16807B0.m",[-96132444,56610806]]], ["TOC",["perm","spor/M/mtx/Mmax25G0-p151B0.m",[4610688,-7957974]]], ["TOC",["perm","spor/M/mtx/Mmax26G0-p36B0.m",[-78507803,6093542]]], ["TOC",["perm","spor/M/mtx/Mmax27G0-p17B0.m",[14263291,22525490]]], ["TOC",["matff","spor/M/mtx/Mmax28G0-f5r5B0.m",[89882878,77104098]]], ["TOC",["perm","spor/M/mtx/Mmax28G0-p625B0.m",[-127973830,34552176]]], ["TOC",["matff","spor/M/mtx/Mmax29G0-f7r7B0.m",[112461751,-115478207]]], ["TOC",["perm","spor/M/mtx/Mmax29G0-p2401B0.m",[-78383939,123860282]]], ["TOC",["perm","spor/M/mtx/Mmax29G0-p392B0.m",[-17293048,74987613]]], ["TOC",["perm","spor/M/mtx/Mmax30G0-p21B0.m",[-97695841,20991856]]], ["TOC",["perm","spor/M/mtx/Mmax31G0-p15B0.m",[-40663314,111091613]]], ["TOC",["perm","spor/M/mtx/Mmax32G0-p24B0.m",[60571607,112921406]]], ["TOC",["matff","spor/M/mtx/Mmax33G0-f13r3B0.m",[27954821,-122983683]]], ["TOC",["perm","spor/M/mtx/Mmax33G0-p169B0.m",[93753111,15633434]]], ["TOC",["perm","spor/M/mtx/Mmax34G0-p57B0.m",[-43311648,73396022]]], ["TOC",["perm","spor/M/mtx/Mmax35G0-p39B0.m",[-9590504,97350065]]], ["TOC",["matff","spor/M/mtx/Mmax36G0-f13r4B0.m",[-99724456,-47703948]]], ["TOC",["perm","spor/M/mtx/Mmax36G0-p2197B0.m",[83587471,-26703514]]], ["TOC",["matff","spor/M/mtx/Mmax39G0-f11r3B0.m",[-39573731,-15426602]]], ["TOC",["perm","spor/M/mtx/Mmax39G0-p121B0.m",[-18318182,-28117149]]], ["TOC",["matff","spor/M/mtx/Mmax41G0-f7r3B0.m",[-60576044,65702456]]], ["TOC",["perm","spor/M/mtx/Mmax41G0-p49B0.m",[110691146,79808877]]], ["TOC",["perm","spor/M/mtx/Mmax43G0-p41B0.m",[-31842605,-77703055]]], ["TOC",["matff","spor/M/mtx/Mmax4G0-f2r1708B0.m",[-90172041,-56342351]]], ["TOC",["perm","spor/M/mtx/Mmax6G0-p294912B0.m",[88770226,29440698]]], ["TOC",["matff","spor/M/mtx/Mmax7G0-f3r78B0.m",[-60481712,-11921347,-87256435]]], ["TOC",["matff","spor/M/mtx/Mmax9G0-f2r250B0.m",[119882445,-110292395]]], ["TOC",["check","spor/M/words/MG1-check1",[-44568560]]], ["TOC",["find","spor/M/words/MG1-find1",[-31705853]]], ["TOC",["matalg","spor/M11/gap0/M11G1-Ar10bB0.g",[-69763370]]], ["TOC",["matalg","spor/M11/gap0/M11G1-Ar10cB0.g",[55047378]]], ["TOC",["matint","spor/M11/gap0/M11G1-Zr10aB0.g",[42919820]]], ["TOC",["matint","spor/M11/gap0/M11G1-Zr11B0.g",[63654078]]], ["TOC",["matint","spor/M11/gap0/M11G1-Zr20B0.g",[41705437]]], ["TOC",["matint","spor/M11/gap0/M11G1-Zr32B0.g",[-61588475]]], ["TOC",["matint","spor/M11/gap0/M11G1-Zr44B0.g",[12272531]]], ["TOC",["matint","spor/M11/gap0/M11G1-Zr45B0.g",[85806096]]], ["TOC",["matint","spor/M11/gap0/M11G1-Zr55B0.g",[2315188]]], ["TOC",["matff","spor/M11/mtx/M11G1-f11r10aB0.m",[114488862,-54564471]]], ["TOC",["matff","spor/M11/mtx/M11G1-f11r10bB0.m",[78585948,-35885917]]], ["TOC",["matff","spor/M11/mtx/M11G1-f11r11B0.m",[-47486067,25146697]]], ["TOC",["matff","spor/M11/mtx/M11G1-f11r16B0.m",[96969304,64712245]]], ["TOC",["matff","spor/M11/mtx/M11G1-f11r44B0.m",[102913891,-120563489]]], ["TOC",["matff","spor/M11/mtx/M11G1-f11r55B0.m",[24089776,-77958630]]], ["TOC",["matff","spor/M11/mtx/M11G1-f11r9B0.m",[-12680777,119649168]]], ["TOC",["matff","spor/M11/mtx/M11G1-f25r10bB0.m",[-128941494,-19184706]]], ["TOC",["matff","spor/M11/mtx/M11G1-f25r10cB0.m",[87488062,-91620163]]], ["TOC",["matff","spor/M11/mtx/M11G1-f2r10B0.m",[127264365,-86026089]]], ["TOC",["matff","spor/M11/mtx/M11G1-f2r32B0.m",[-102853569,-48330032]]], ["TOC",["matff","spor/M11/mtx/M11G1-f2r44B0.m",[-119533246,-45775323]]], ["TOC",["matff","spor/M11/mtx/M11G1-f3r10aB0.m",[83366269,67157210]]], ["TOC",["matff","spor/M11/mtx/M11G1-f3r10bB0.m",[128973873,33625375]]], ["TOC",["matff","spor/M11/mtx/M11G1-f3r10cB0.m",[10369459,45060681]]], ["TOC",["matff","spor/M11/mtx/M11G1-f3r24B0.m",[24068442,-125977934]]], ["TOC",["matff","spor/M11/mtx/M11G1-f3r45B0.m",[1493310,-100498939]]], ["TOC",["matff","spor/M11/mtx/M11G1-f3r5aB0.m",[68650191,57900817]]], ["TOC",["matff","spor/M11/mtx/M11G1-f3r5bB0.m",[74015297,130147793]]], ["TOC",["matff","spor/M11/mtx/M11G1-f4r16aB0.m",[125550197,-50883640]]], ["TOC",["matff","spor/M11/mtx/M11G1-f4r16bB0.m",[21425449,53740060]]], ["TOC",["matff","spor/M11/mtx/M11G1-f5r10aB0.m",[8511433,126827892]]], ["TOC",["matff","spor/M11/mtx/M11G1-f5r11B0.m",[-133249663,83948554]]], ["TOC",["matff","spor/M11/mtx/M11G1-f5r16aB0.m",[-51162984,129285556]]], ["TOC",["matff","spor/M11/mtx/M11G1-f5r16bB0.m",[125703736,129424194]]], ["TOC",["matff","spor/M11/mtx/M11G1-f5r20B0.m",[107484105,25865804]]], ["TOC",["matff","spor/M11/mtx/M11G1-f5r45B0.m",[-39522961,130380806]]], ["TOC",["matff","spor/M11/mtx/M11G1-f5r55B0.m",[-88501284,-77523996]]], ["TOC",["perm","spor/M11/mtx/M11G1-p11B0.m",[-23242334,84686582]]], ["TOC",["perm","spor/M11/mtx/M11G1-p12B0.m",[97614119,-100540349]]], ["TOC",["perm","spor/M11/mtx/M11G1-p165B0.m",[110061815,-44393461]]], ["TOC",["perm","spor/M11/mtx/M11G1-p55B0.m",[-96772320,-36474778]]], ["TOC",["perm","spor/M11/mtx/M11G1-p66B0.m",[9740518,133760186]]], ["TOC",["pres","spor/M11/words/M11G1-P1",[-11084023]]], ["TOC",["classes","spor/M11/words/M11G1-cclsW1",[44035324]]], ["TOC",["check","spor/M11/words/M11G1-check1",[-12040319]]], ["TOC",["cyclic","spor/M11/words/M11G1-cycW1",[-119662999]]], ["TOC",["find","spor/M11/words/M11G1-find1",[-66199957]]], ["TOC",["maxes","spor/M11/words/M11G1-max1W1",[-87639153]]], ["TOC",["maxes","spor/M11/words/M11G1-max2W1",[31931707]]], ["TOC",["maxes","spor/M11/words/M11G1-max3W1",[-22285271]]], ["TOC",["maxes","spor/M11/words/M11G1-max4W1",[-53275818]]], ["TOC",["maxes","spor/M11/words/M11G1-max5W1",[81859818]]], ["TOC",["cyc2ccl","spor/M11/words/M11G1cycW1-cclsW1",[-92464422]]], ["TOC",["maxstd","spor/M11/words/M11G1max1W1-M10G1W1",[-93789632]]], ["TOC",["maxstd","spor/M11/words/M11G1max2W1-L211G1W1",[-93789632]]], ["TOC",["maxstd","spor/M11/words/M11G1max4W1-S5G1W1",[-93789632]]], ["TOC",["matint","spor/M12/gap0/2M12G1-Zr120B0.g",[-79235244]]], ["TOC",["matint","spor/M12/gap0/2M12G1-Zr12B0.g",[68025268]]], ["TOC",["matint","spor/M12/gap0/2M12G1-Zr220B0.g",[-49629620]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr11aB0.g",[-19460267]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr11bB0.g",[-78777004]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr120B0.g",[-88353220]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr144B0.g",[55976025]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr176B0.g",[37102922]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr32B0.g",[-78965106]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr45B0.g",[-45893207]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr54B0.g",[18721185]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr55aB0.g",[-132387311]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr55bB0.g",[22269619]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr55cB0.g",[49013808]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr66B0.g",[-49745577]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr99B0.g",[127931032]]], ["TOC",["matff","spor/M12/mtx/2M12G1-f3r6bB0.m",[121578910,129273462]]], ["TOC",["matff","spor/M12/mtx/2M12G1-f5r12B0.m",[-101075401,-1460971]]], ["TOC",["perm","spor/M12/mtx/2M12G1-p24aB0.m",[-1273465,65254220]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f11r108aB0.m",[-53667847,82216193]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f11r10aB0.m",[112952395,32411565]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f11r10bB0.m",[-64596746,-67029675]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f11r12aB0.m",[-127522320,-35727857]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f11r220aB0.m",[-8950103,-128269568]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f11r32aB0.m",[-105789088,-97647879]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f11r88aB0.m",[54914992,-126426826]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f25r10aB0.m",[57623869,-87407490]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f25r10bB0.m",[57623869,15898170]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f25r12aB0.m",[125938463,123350688]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f25r32bB0.m",[63923528,-60675183]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f3r10aB0.m",[-34996601,-118846721]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f3r10bB0.m",[-76717690,118738579]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f3r10cB0.m",[-35597745,-118495992]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f3r12B0.m",[60451266,-32378584]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f3r12aB0.m",[103057523,-62320936]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f3r168aB0.m",[-67470713,-127337236]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f3r88aB0.m",[-41083111,2706141]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f5r120bB0.m",[-82693885,-32740698]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f5r220aB0.m",[25416081,-95738572]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f5r320aB0.m",[-134190359,104982855]]], ["TOC",["perm","spor/M12/mtx/2M12d2G1-p48B0.m",[-30364446,-627565]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r11aB0.m",[117263727,-65625522]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r16B0.m",[7038217,126342649]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r176B0.m",[122185646,-46090498]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r29B0.m",[46845011,75944568]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r53B0.m",[-22816443,-99210671]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r55aB0.m",[78596492,112224851]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r55cB0.m",[109913466,-103557516]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r66B0.m",[-124182891,-60073630]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r91B0.m",[-51340364,-33111912]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r99B0.m",[-97513304,-119552486]]], ["TOC",["matff","spor/M12/mtx/M12G1-f2r10B0.m",[-86054196,-117728977]]], ["TOC",["matff","spor/M12/mtx/M12G1-f2r144B0.m",[101904902,53296002]]], ["TOC",["matff","spor/M12/mtx/M12G1-f2r44B0.m",[5391720,-62166224]]], ["TOC",["matff","spor/M12/mtx/M12G1-f3r10aB0.m",[30472542,-78417955]]], ["TOC",["matff","spor/M12/mtx/M12G1-f3r15bB0.m",[47152398,-27722653]]], ["TOC",["matff","spor/M12/mtx/M12G1-f3r34B0.m",[117253362,13257774]]], ["TOC",["matff","spor/M12/mtx/M12G1-f3r45aB0.m",[76737617,86109308]]], ["TOC",["matff","spor/M12/mtx/M12G1-f3r45bB0.m",[47791811,116448062]]], ["TOC",["matff","spor/M12/mtx/M12G1-f3r54B0.m",[19871925,-54650667]]], ["TOC",["matff","spor/M12/mtx/M12G1-f3r99B0.m",[39128640,48059071]]], ["TOC",["matff","spor/M12/mtx/M12G1-f4r16aB0.m",[-32139946,-84977167]]], ["TOC",["matff","spor/M12/mtx/M12G1-f4r16bB0.m",[1105818,-114535987]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r11aB0.m",[-671395,131486522]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r120B0.m",[9595464,80432835]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r16bB0.m",[-119459442,21159535]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r45B0.m",[-9586441,100658622]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r55aB0.m",[50494097,-122759986]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r55cB0.m",[21533278,-123660069]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r66B0.m",[98010649,-114174962]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r78B0.m",[-130685797,93378717]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r98B0.m",[126662635,-35501250]]], ["TOC",["perm","spor/M12/mtx/M12G1-p12aB0.m",[-55292532,-11034135]]], ["TOC",["perm","spor/M12/mtx/M12G1-p12bB0.m",[70136775,-42596378]]], ["TOC",["perm","spor/M12/mtx/M12G1-p66aB0.m",[16716104,85280492]]], ["TOC",["perm","spor/M12/mtx/M12G1-p66bB0.m",[16716104,-119705959]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r110aB0.m",[114279619,38742074]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r16aB0.m",[-36796290,-43495409]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r176aB0.m",[-54368026,126683633]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r22aB0.m",[-105783911,98859320]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r29aB0.m",[11546275,96104565]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r53aB0.m",[-103408143,55355629]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r55aB0.m",[-78072260,-3025683]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r66aB0.m",[-100452523,75555621]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r91aB0.m",[22098706,56302525]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r99aB0.m",[47013209,-19879758]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f25r120aB0.m",[-106674804,-45635490]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f2r10B0.m",[-39183640,98958554]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f2r144B0.m",[119502516,-18771909]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f2r32B0.m",[69559674,55891503]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f2r44B0.m",[-114562868,54725308]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f3r20aB0.m",[-46752782,-108429068]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f3r30aB0.m",[24169138,-130765309]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f3r34aB0.m",[-130589788,-129061493]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f3r45aB0.m",[-70607796,-57393951]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f3r90aB0.m",[-55377240,-61327165]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f3r99aB0.m",[-109489496,3522822]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f5r110aB0.m",[-30352804,81435913]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f5r22aB0.m",[-126221984,-74607577]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f5r32aB0.m",[36044101,23981739]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f5r45aB0.m",[-30491799,115673903]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f5r55aB0.m",[-35236987,-31452685]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f5r66aB0.m",[-33014102,-99933291]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f5r78aB0.m",[-18026437,34364040]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f5r98aB0.m",[22041299,-66452079]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f9r54aB0.m",[32626589,25634529]]], ["TOC",["perm","spor/M12/mtx/M12d2G1-p24B0.m",[85361421,36218677]]], ["TOC",["pres","spor/M12/words/2M12G1-P1",[-20608944]]], ["TOC",["pres","spor/M12/words/M12G1-P1",[-104566534]]], ["TOC",["check","spor/M12/words/M12G1-check1",[10112000]]], ["TOC",["cyclic","spor/M12/words/M12G1-cycW1",[-43136937]]], ["TOC",["find","spor/M12/words/M12G1-find1",[114877484]]], ["TOC",["maxes","spor/M12/words/M12G1-max10W1",[21615072]]], ["TOC",["maxes","spor/M12/words/M12G1-max11W1",[31496255]]], ["TOC",["maxes","spor/M12/words/M12G1-max1W1",[-74887234]]], ["TOC",["maxes","spor/M12/words/M12G1-max2W1",[-103508023]]], ["TOC",["maxes","spor/M12/words/M12G1-max3W1",[-46947109]]], ["TOC",["maxes","spor/M12/words/M12G1-max4W1",[122531757]]], ["TOC",["maxes","spor/M12/words/M12G1-max5W1",[-72442915]]], ["TOC",["maxes","spor/M12/words/M12G1-max6W1",[-115977755]]], ["TOC",["maxes","spor/M12/words/M12G1-max7W1",[-7727314]]], ["TOC",["maxes","spor/M12/words/M12G1-max8W1",[-25167283]]], ["TOC",["maxes","spor/M12/words/M12G1-max9W1",[-119063057]]], ["TOC",["maxes","spor/M12/words/M12G1-max9W2",[103098466]]], ["TOC",["cyc2ccl","spor/M12/words/M12G1cycW1-cclsW1",[-83580916]]], ["TOC",["pres","spor/M12/words/M12d2G1-P1",[-133855910]]], ["TOC",["pres","spor/M12/words/M12d2G1-P2",[-72708144]]], ["TOC",["check","spor/M12/words/M12d2G1-check1",[-27876306]]], ["TOC",["cyclic","spor/M12/words/M12d2G1-cycW1",[132557223]]], ["TOC",["find","spor/M12/words/M12d2G1-find1",[-122825568]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max2W1",[80704822]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max2W2",[-15618703]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max3W1",[-67457384]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max3W2",[-5625195]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max4W1",[52870876]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max5W1",[61547913]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max6W1",[77063171]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max7W1",[-81985076]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max8W1",[92948753]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max9W1",[-76208250]]], ["TOC",["matmodn","spor/M22/gap0/2M22G1-Z4r10aB0.g",[-20114809]]], ["TOC",["matint","spor/M22/gap0/2M22G1-Zr120B0.g",[-37007248]]], ["TOC",["matint","spor/M22/gap0/2M22G1-Zr20B0.g",[-63673770]]], ["TOC",["matint","spor/M22/gap0/2M22G1-Zr210B0.g",[114162666]]], ["TOC",["matint","spor/M22/gap0/2M22G1-Zr56B0.g",[-103613096]]], ["TOC",["matint","spor/M22/gap0/M22G1-Zr154B0.g",[-78499440]]], ["TOC",["matint","spor/M22/gap0/M22G1-Zr210B0.g",[-49657556]]], ["TOC",["matint","spor/M22/gap0/M22G1-Zr21B0.g",[68782527]]], ["TOC",["matint","spor/M22/gap0/M22G1-Zr231B0.g",[-75863010]]], ["TOC",["matint","spor/M22/gap0/M22G1-Zr55B0.g",[-98762146]]], ["TOC",["matint","spor/M22/gap0/M22G1-Zr99B0.g",[-64451966]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r120aB0.m",[-115277169,-72547597]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r120bB0.m",[8658388,-133539247]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r120cB0.m",[96485657,79917231]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r120dB0.m",[-30849462,-51073305]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r144aB0.m",[17917213,-112666056]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r144bB0.m",[-53370978,103893560]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r24aB0.m",[-40536384,104596703]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r24bB0.m",[23328519,-48149838]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r336aB0.m",[-42702128,-13658617]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r96aB0.m",[-48948579,-80134011]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f25r120aB0.m",[-125088758,-2506418]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f25r120bB0.m",[-78561283,-105812013]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f25r144aB0.m",[-29975526,-65673389]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f25r144bB0.m",[127272957,-130662528]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f25r336aB0.m",[-37713301,-105379825]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f25r48aB0.m",[-46557856,81641584]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f49r120aB0.m",[-63290246,52705833]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f49r120bB0.m",[-79132900,108295515]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f49r144aB0.m",[-94406601,15940801]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f49r336aB0.m",[-51155111,-121195002]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f49r336bB0.m",[106595095,-123597501]]], ["TOC",["perm","spor/M22/mtx/12M22G1-p31680aB0.m",[9906127,-59852062]]], ["TOC",["matff","spor/M22/mtx/12M22d2G1-f11r48B0.m",[69671352,-16302678]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f11r10aB0.m",[-134098178,-53384331]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f11r10bB0.m",[-10782644,82512695]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f11r126B0.m",[-7631317,-11671494]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f11r308B0.m",[-54648878,128686514]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f11r330B0.m",[102617152,65024357]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f11r440B0.m",[28399241,-2102835]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f11r56B0.m",[106482032,-121137932]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f11r64B0.m",[22318679,-70253560]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f121r154aB0.m",[-133974502,-84368600]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f121r154bB0.m",[-45934554,119466995]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f25r10aB0.m",[-98977995,-27415385]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f25r10bB0.m",[-99451378,5112945]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f25r126aB0.m",[-57218262,15084879]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f3r120B0.m",[-121061359,115873279]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f3r126bB0.m",[121656924,94851182]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f3r210B0.m",[-115777653,74358765]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f3r56B0.m",[-61287125,109003991]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f49r126aB0.m",[13107552,-131187163]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f49r126bB0.m",[131551529,-4166631]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f49r154aB0.m",[-121191028,-107331814]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f49r154bB0.m",[73554621,-61424212]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f5r120B0.m",[-56121636,101087527]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f5r210B0.m",[128119568,45453382]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f5r28aB0.m",[125168210,-91335665]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f5r28bB0.m",[69803757,-17568613]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f5r330B0.m",[16155567,122563512]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f5r440B0.m",[-33733768,-627019]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f7r10B0.m",[-22029031,84566230]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f7r120B0.m",[-22293731,15728191]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f7r210B0.m",[-50099914,-99706141]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f7r252B0.m",[-129684483,12894509]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f7r308B0.m",[-24314328,-42732558]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f7r320B0.m",[-101701630,-30746747]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f7r56B0.m",[-91585793,-91433509]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f9r10aB0.m",[17201638,-128074961]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f9r10bB0.m",[-95892414,102336354]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f9r154B0.m",[-116228794,83263333]]], ["TOC",["perm","spor/M22/mtx/2M22G1-p352aB0.m",[56143277,128925707]]], ["TOC",["perm","spor/M22/mtx/2M22G1-p660B0.m",[95495599,37777135]]], ["TOC",["matff","spor/M22/mtx/2M22d2G1-f11r10bB0.m",[66479975,-36612750]]], ["TOC",["matff","spor/M22/mtx/2M22d2G1-f25r10bB0.m",[26926212,123375069]]], ["TOC",["matff","spor/M22/mtx/2M22d2G1-f7r10aB0.m",[-89057001,-348588]]], ["TOC",["matff","spor/M22/mtx/2M22d2G1-f9r10bB0.m",[-1432588,-125687051]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r210aB0.m",[-93910269,55722704]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r21a1B0.m",[17337245,-117197209]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r21aB0.m",[-39874224,-34796923]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r231aB0.m",[56839442,115186698]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r231bB0.m",[-24203685,23469173]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r330aB0.m",[124278958,96479011]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r45aB0.m",[-76674299,2389962]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r45bB0.m",[-74576484,82056758]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r84aB0.m",[-25406504,-66805706]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r99aB0.m",[127801704,-93344375]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r105aB0.m",[107285554,-73950486]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r105bB0.m",[-6246678,-49079695]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r153aB0.m",[85663391,-121210049]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r210aB0.m",[-105966657,10593901]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r21aB0.m",[60937788,3361834]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r231aB0.m",[8691771,-46254777]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r330aB0.m",[-131760822,-83048131]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r45aB0.m",[-43147185,-103043419]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r45bB0.m",[-9112148,70548030]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r78aB0.m",[118019622,-68687596]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f49r105aB0.m",[93962384,-67672397]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f49r105bB0.m",[-59095893,109124393]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f4r15aB0.m",[132279547,39475398]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f4r384aB0.m",[53704323,89379282]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f4r45aB0.m",[23089284,-41495564]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f4r45bB0.m",[-92557253,-77110222]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f4r6aB0.m",[71234966,-87182868]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f4r84aB0.m",[3098833,69483187]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f7r210aB0.m",[-103908876,-11419203]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f7r210bB0.m",[7176595,94287278]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f7r21aB0.m",[-29699237,-14040638]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f7r231aB0.m",[93436445,35648684]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f7r231bB0.m",[133208162,52368388]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f7r285aB0.m",[-91260757,105658476]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f7r45aB0.m",[7805648,52649302]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f7r99aB0.m",[26796142,-65889647]]], ["TOC",["perm","spor/M22/mtx/3M22G1-p2016B0.m",[42690420,-31772423]]], ["TOC",["perm","spor/M22/mtx/3M22G1-p693B0.m",[-90950774,-36534057]]], ["TOC",["perm","spor/M22/mtx/3M22G1-p990B0.m",[88405894,15556203]]], ["TOC",["matff","spor/M22/mtx/3M22d2G1-f2r12B0.m",[6840548,-26232830]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f121r144aB0.m",[-116885944,-57532000]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f121r144bB0.m",[32299598,-87521745]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f121r160aB0.m",[-112598365,-69807599]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f121r176aB0.m",[-77732242,38321848]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f121r56aB0.m",[102752874,81508189]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f121r56bB0.m",[-50141594,117960335]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f25r56aB0.m",[-64919639,110217711]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f25r56bB0.m",[-66086722,-42618990]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f25r88aB0.m",[-7028213,-55102756]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f25r88bB0.m",[-89593330,-14296138]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f49r144aB0.m",[32202062,110809734]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f49r160aB0.m",[10828994,61470740]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f49r16aB0.m",[-83990831,-17954821]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f49r560aB0.m",[-118236950,123907225]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f49r56aB0.m",[104359104,-130972437]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f49r56bB0.m",[64863017,-25151610]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f5r160aB0.m",[-24431069,5648069]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f5r160bB0.m",[-91637796,108820756]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f5r560aB0.m",[49697557,42774244]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f9r144aB0.m",[12095402,83939207]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f9r144bB0.m",[16268112,21905840]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f9r160aB0.m",[8089512,-50786849]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f9r160bB0.m",[-110141442,84589679]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f9r56aB0.m",[-4511476,-85229496]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f9r56bB0.m",[-85284070,-63400015]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f9r64aB0.m",[11491563,-57962702]]], ["TOC",["perm","spor/M22/mtx/4M22G1-p4928aB0.m",[11585037,105129294]]], ["TOC",["perm","spor/M22/mtx/4M22G1-p4928bB0.m",[61651366,86992085]]], ["TOC",["matff","spor/M22/mtx/4M22d2G1-f7r32B0.m",[95409404,100722998]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r120aB0.m",[-78977570,80520063]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r174aB0.m",[-26250212,-67037255]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r210aB0.m",[69887357,-53414700]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r330aB0.m",[-102575627,10806500]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r36a1B0.m",[-94823834,-17650354]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r36aB0.m",[18342608,125425919]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r66aB0.m",[7571032,-98520871]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r66bB0.m",[110495588,61939331]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r90aB0.m",[47082380,-107831827]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r120aB0.m",[-85156605,94909756]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r126aB0.m",[-7401864,65424553]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r126bB0.m",[62266197,-96560539]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r210aB0.m",[-13142946,4729517]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r210bB0.m",[84479748,23802815]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r210cB0.m",[121914827,-17204842]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r330aB0.m",[24086159,-70084100]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r66aB0.m",[-75232219,-102853624]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r66bB0.m",[-97605414,66327552]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f49r126aB0.m",[-66544000,36901116]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f49r126bB0.m",[-36437176,-11649204]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f49r210bB0.m",[36277584,101781842]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f49r210cB0.m",[-104731780,-40717739]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f7r210aB0.m",[21913981,-30012010]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f7r252aB0.m",[-55729871,46346398]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f7r330aB0.m",[-100871511,-28803112]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f7r420aB0.m",[-45585257,67096229]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f7r54aB0.m",[9967088,-85473402]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f7r66aB0.m",[28289005,20396332]]], ["TOC",["perm","spor/M22/mtx/6M22G1-p1980B0.m",[-34361411,-22911521]]], ["TOC",["matff","spor/M22/mtx/6M22d2G1-f11r72B0.m",[50152179,29673410]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r154B0.m",[91700642,-11598460]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r190B0.m",[-78747459,428544]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r20B0.m",[-55748559,-113866179]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r231B0.m",[-92735279,82232581]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r385B0.m",[-4174418,39852578]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r45aB0.m",[61322426,-118021428]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r45bB0.m",[117900991,130808780]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r55B0.m",[131181739,-110452977]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r99B0.m",[-69355157,66661936]]], ["TOC",["matff","spor/M22/mtx/M22G1-f25r45aB0.m",[-32298545,-100748534]]], ["TOC",["matff","spor/M22/mtx/M22G1-f2r10aB0.m",[93955492,72279513]]], ["TOC",["matff","spor/M22/mtx/M22G1-f2r10bB0.m",[-64432252,-10720956]]], ["TOC",["matff","spor/M22/mtx/M22G1-f2r34B0.m",[109181802,69819591]]], ["TOC",["matff","spor/M22/mtx/M22G1-f2r98B0.m",[20614323,-91349386]]], ["TOC",["matff","spor/M22/mtx/M22G1-f3r210B0.m",[12080907,20988418]]], ["TOC",["matff","spor/M22/mtx/M22G1-f3r21B0.m",[2319237,-40869995]]], ["TOC",["matff","spor/M22/mtx/M22G1-f3r231B0.m",[-122316352,101359885]]], ["TOC",["matff","spor/M22/mtx/M22G1-f3r49aB0.m",[48294192,10182642]]], ["TOC",["matff","spor/M22/mtx/M22G1-f3r49bB0.m",[123534207,114086963]]], ["TOC",["matff","spor/M22/mtx/M22G1-f3r55B0.m",[6858684,37531924]]], ["TOC",["matff","spor/M22/mtx/M22G1-f3r99B0.m",[108404973,-18754208]]], ["TOC",["matff","spor/M22/mtx/M22G1-f49r280aB0.m",[63765143,54000780]]], ["TOC",["matff","spor/M22/mtx/M22G1-f49r280bB0.m",[-110919489,-95232644]]], ["TOC",["matff","spor/M22/mtx/M22G1-f4r70aB0.m",[-61080913,5645990]]], ["TOC",["matff","spor/M22/mtx/M22G1-f4r70bB0.m",[119680241,-57957631]]], ["TOC",["matff","spor/M22/mtx/M22G1-f5r133B0.m",[-129991529,120806590]]], ["TOC",["matff","spor/M22/mtx/M22G1-f5r210B0.m",[103633115,125473720]]], ["TOC",["matff","spor/M22/mtx/M22G1-f5r21B0.m",[95454839,98341706]]], ["TOC",["matff","spor/M22/mtx/M22G1-f5r280aB0.m",[-132987247,24183680]]], ["TOC",["matff","spor/M22/mtx/M22G1-f5r385B0.m",[57398607,13638594]]], ["TOC",["matff","spor/M22/mtx/M22G1-f5r55B0.m",[86944414,-106029713]]], ["TOC",["matff","spor/M22/mtx/M22G1-f5r98B0.m",[27831268,-45715352]]], ["TOC",["matff","spor/M22/mtx/M22G1-f7r154B0.m",[-43277479,76833098]]], ["TOC",["matff","spor/M22/mtx/M22G1-f7r210B0.m",[-115679524,-44095420]]], ["TOC",["matff","spor/M22/mtx/M22G1-f7r21B0.m",[35391543,72293264]]], ["TOC",["matff","spor/M22/mtx/M22G1-f7r231B0.m",[74317215,19149303]]], ["TOC",["matff","spor/M22/mtx/M22G1-f7r385B0.m",[-22401150,-21936165]]], ["TOC",["matff","spor/M22/mtx/M22G1-f7r45B0.m",[-109057607,114091080]]], ["TOC",["matff","spor/M22/mtx/M22G1-f7r54B0.m",[40209085,53790651]]], ["TOC",["matff","spor/M22/mtx/M22G1-f9r45aB0.m",[-101961334,-50630745]]], ["TOC",["perm","spor/M22/mtx/M22G1-p176aB0.m",[-117058973,-13255017]]], ["TOC",["perm","spor/M22/mtx/M22G1-p176bB0.m",[-71876488,64385171]]], ["TOC",["perm","spor/M22/mtx/M22G1-p22B0.m",[120088212,-117893933]]], ["TOC",["perm","spor/M22/mtx/M22G1-p231B0.m",[-100923681,-20737374]]], ["TOC",["perm","spor/M22/mtx/M22G1-p330B0.m",[-67557036,23142407]]], ["TOC",["perm","spor/M22/mtx/M22G1-p462aB0.m",[-65976175,23533673]]], ["TOC",["perm","spor/M22/mtx/M22G1-p462bB0.m",[-59778880,95539211]]], ["TOC",["perm","spor/M22/mtx/M22G1-p462cB0.m",[-49482222,52549893]]], ["TOC",["perm","spor/M22/mtx/M22G1-p616B0.m",[-3074412,-115809031]]], ["TOC",["perm","spor/M22/mtx/M22G1-p672B0.m",[7640483,-115001890]]], ["TOC",["perm","spor/M22/mtx/M22G1-p770B0.m",[120630396,-32668057]]], ["TOC",["perm","spor/M22/mtx/M22G1-p77B0.m",[-60412592,-39004054]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r154aB0.m",[-125684610,59549727]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r190aB0.m",[130351633,-99707873]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r20aB0.m",[-10228550,-28363284]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r231aB0.m",[-21953425,88673416]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r385aB0.m",[14676131,-85493410]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r45aB0.m",[-115303832,7271263]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r45bB0.m",[65584681,76308413]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r55aB0.m",[-42280703,56446882]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r99aB0.m",[78828095,-95138735]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f25r45aB0.m",[23900540,-8771718]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f25r45bB0.m",[29914508,120865664]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f2r10aB0.m",[-90630307,-128468476]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f2r10bB0.m",[17206676,63639932]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f2r140B0.m",[67560328,41049421]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f2r34B0.m",[-89926694,-127454121]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f2r98B0.m",[84593793,107508647]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f3r210aB0.m",[-80001338,-131679871]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f3r21aB0.m",[-92501974,-107109745]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f3r231aB0.m",[-133826445,-23325070]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f3r55aB0.m",[-76213947,-10156798]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f3r98B0.m",[59603673,6484183]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f3r99aB0.m",[22980,-10081575]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f5r133aB0.m",[6631388,111796983]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f5r210aB0.m",[-100109991,39935080]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f5r21aB0.m",[-35842635,-17579168]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f5r385aB0.m",[19370917,75584038]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f5r55aB0.m",[104666460,-133136627]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f5r560B0.m",[-5741100,22721739]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f5r98aB0.m",[-15665933,10768741]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f7r154aB0.m",[-106850501,-56652481]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f7r210aB0.m",[-7605737,-77888289]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f7r21aB0.m",[-67112680,43045281]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f7r231aB0.m",[94268020,20313882]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f7r385aB0.m",[79734490,-27768815]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f7r45aB0.m",[2846321,-6133671]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f7r54aB0.m",[-1166393,-37567711]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f7r560B0.m",[-92302801,42190990]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f9r45aB0.m",[-32652339,-115868824]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f9r45bB0.m",[-4373288,37153914]]], ["TOC",["perm","spor/M22/mtx/M22d2G1-p22B0.m",[86602657,-110180846]]], ["TOC",["perm","spor/M22/mtx/M22d2G1-p231B0.m",[-1462911,-41392807]]], ["TOC",["perm","spor/M22/mtx/M22d2G1-p330B0.m",[-59463654,-62454811]]], ["TOC",["perm","spor/M22/mtx/M22d2G1-p352B0.m",[-11066693,124793148]]], ["TOC",["perm","spor/M22/mtx/M22d2G1-p616B0.m",[-16850080,-113061237]]], ["TOC",["perm","spor/M22/mtx/M22d2G1-p672B0.m",[-9473389,-30463793]]], ["TOC",["perm","spor/M22/mtx/M22d2G1-p77B0.m",[11661714,-65509390]]], ["TOC",["pres","spor/M22/words/M22G1-P1",[104320198]]], ["TOC",["check","spor/M22/words/M22G1-check1",[-117375842]]], ["TOC",["cyclic","spor/M22/words/M22G1-cycW1",[75634248]]], ["TOC",["cyclic","spor/M22/words/M22G1-cycW2",[79365136]]], ["TOC",["find","spor/M22/words/M22G1-find1",[-22929670]]], ["TOC",["maxes","spor/M22/words/M22G1-max1W1",[-108162340]]], ["TOC",["maxes","spor/M22/words/M22G1-max2W1",[86468072]]], ["TOC",["maxes","spor/M22/words/M22G1-max3W1",[66738939]]], ["TOC",["maxes","spor/M22/words/M22G1-max4W1",[-72501701]]], ["TOC",["maxes","spor/M22/words/M22G1-max5W1",[32962252]]], ["TOC",["maxes","spor/M22/words/M22G1-max6W1",[-12409309]]], ["TOC",["maxes","spor/M22/words/M22G1-max7W1",[122295071]]], ["TOC",["maxes","spor/M22/words/M22G1-max7W2",[-54548400]]], ["TOC",["maxes","spor/M22/words/M22G1-max8W1",[-43185300]]], ["TOC",["cyc2ccl","spor/M22/words/M22G1cycW1-cclsW1",[-73021974]]], ["TOC",["pres","spor/M22/words/M22d2G1-P1",[-7009976]]], ["TOC",["check","spor/M22/words/M22d2G1-check1",[32836613]]], ["TOC",["cyclic","spor/M22/words/M22d2G1-cycW1",[-73012825]]], ["TOC",["find","spor/M22/words/M22d2G1-find1",[-64593058]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max1W1",[-28226023]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max1W2",[-24429373]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max2W1",[41701063]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max2W2",[96835542]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max3W1",[94478419]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max4W1",[56584143]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max5W1",[-47328183]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max5W2",[-33392236]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max6W1",[-134200980]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max7W1",[36093093]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max7W2",[42318604]]], ["TOC",["cyc2ccl","spor/M22/words/M22d2G1cycW1-cclsW1",[46889110]]], ["TOC",["matint","spor/M23/gap0/M23G1-Zr22B0.g",[-121440039]]], ["TOC",["matint","spor/M23/gap0/M23G1-Zr230B0.g",[47145869]]], ["TOC",["matint","spor/M23/gap0/M23G1-Zr231aB0.g",[-94915198]]], ["TOC",["matff","spor/M23/mtx/M23G1-f11r229B0.m",[1224283,102271717]]], ["TOC",["matff","spor/M23/mtx/M23G1-f11r22B0.m",[54637034,6489040]]], ["TOC",["matff","spor/M23/mtx/M23G1-f11r231aB0.m",[75699015,37254489]]], ["TOC",["matff","spor/M23/mtx/M23G1-f11r253B0.m",[-134189740,83294965]]], ["TOC",["matff","spor/M23/mtx/M23G1-f11r45bB0.m",[-51057705,-86906861]]], ["TOC",["matff","spor/M23/mtx/M23G1-f11r806B0.m",[-102453078,96809740]]], ["TOC",["matff","spor/M23/mtx/M23G1-f11r990aB0.m",[91508789,76517999]]], ["TOC",["matff","spor/M23/mtx/M23G1-f121r231bB0.m",[31844564,-73487081]]], ["TOC",["matff","spor/M23/mtx/M23G1-f121r231cB0.m",[6220520,-118565449]]], ["TOC",["matff","spor/M23/mtx/M23G1-f121r770aB0.m",[73486127,-76866322]]], ["TOC",["matff","spor/M23/mtx/M23G1-f121r770bB0.m",[83161076,-16561573]]], ["TOC",["matff","spor/M23/mtx/M23G1-f23r210B0.m",[98875790,-43341672]]], ["TOC",["matff","spor/M23/mtx/M23G1-f23r21B0.m",[123156478,48784163]]], ["TOC",["matff","spor/M23/mtx/M23G1-f23r230B0.m",[128932608,47573421]]], ["TOC",["matff","spor/M23/mtx/M23G1-f23r231aB0.m",[13816289,11783324]]], ["TOC",["matff","spor/M23/mtx/M23G1-f23r253B0.m",[70082102,86222539]]], ["TOC",["matff","spor/M23/mtx/M23G1-f23r280B0.m",[-100486126,105888104]]], ["TOC",["matff","spor/M23/mtx/M23G1-f23r45bB0.m",[54480828,15262719]]], ["TOC",["matff","spor/M23/mtx/M23G1-f23r665bB0.m",[-86565912,75506669]]], ["TOC",["matff","spor/M23/mtx/M23G1-f25r45aB0.m",[-63651988,16529557]]], ["TOC",["matff","spor/M23/mtx/M23G1-f25r770B0.m",[25945094,-121739652]]], ["TOC",["matff","spor/M23/mtx/M23G1-f25r990aB0.m",[14490712,5435057]]], ["TOC",["matff","spor/M23/mtx/M23G1-f2r11aB0.m",[92412226,99097621]]], ["TOC",["matff","spor/M23/mtx/M23G1-f2r11bB0.m",[-75650132,-64182966]]], ["TOC",["matff","spor/M23/mtx/M23G1-f2r120B0.m",[-113866580,-63331011]]], ["TOC",["matff","spor/M23/mtx/M23G1-f2r220aB0.m",[-86962328,-81382235]]], ["TOC",["matff","spor/M23/mtx/M23G1-f2r220bB0.m",[-115044176,-101407103]]], ["TOC",["matff","spor/M23/mtx/M23G1-f2r252B0.m",[-110016101,-60073054]]], ["TOC",["matff","spor/M23/mtx/M23G1-f2r44aB0.m",[-31974611,68547307]]], ["TOC",["matff","spor/M23/mtx/M23G1-f2r44bB0.m",[39718097,-124066485]]], ["TOC",["matff","spor/M23/mtx/M23G1-f3r104aB0.m",[-120194361,-100341681]]], ["TOC",["matff","spor/M23/mtx/M23G1-f3r104bB0.m",[-100112989,-67853695]]], ["TOC",["matff","spor/M23/mtx/M23G1-f3r22B0.m",[-36385545,-15448429]]], ["TOC",["matff","spor/M23/mtx/M23G1-f3r231B0.m",[-59421394,66873842]]], ["TOC",["matff","spor/M23/mtx/M23G1-f3r253B0.m",[115197826,-75226257]]], ["TOC",["matff","spor/M23/mtx/M23G1-f3r770aB0.m",[-50745745,-127476955]]], ["TOC",["matff","spor/M23/mtx/M23G1-f49r231bB0.m",[112713982,62428033]]], ["TOC",["matff","spor/M23/mtx/M23G1-f49r231cB0.m",[-46596743,-111079908]]], ["TOC",["matff","spor/M23/mtx/M23G1-f49r770aB0.m",[48434943,101609634]]], ["TOC",["matff","spor/M23/mtx/M23G1-f49r770bB0.m",[-7613774,-115624564]]], ["TOC",["matff","spor/M23/mtx/M23G1-f49r896aB0.m",[-34287057,102026322]]], ["TOC",["matff","spor/M23/mtx/M23G1-f49r896bB0.m",[38639819,109523786]]], ["TOC",["matff","spor/M23/mtx/M23G1-f4r896aB0.m",[79604086,129778838]]], ["TOC",["matff","spor/M23/mtx/M23G1-f4r896bB0.m",[1564561,-132647208]]], ["TOC",["matff","spor/M23/mtx/M23G1-f5r22B0.m",[110977893,65082343]]], ["TOC",["matff","spor/M23/mtx/M23G1-f5r230B0.m",[-17598208,-107309542]]], ["TOC",["matff","spor/M23/mtx/M23G1-f5r231aB0.m",[66242910,-26415424]]], ["TOC",["matff","spor/M23/mtx/M23G1-f5r231bB0.m",[-36703530,74201785]]], ["TOC",["matff","spor/M23/mtx/M23G1-f5r896aB0.m",[-10230930,126936296]]], ["TOC",["matff","spor/M23/mtx/M23G1-f7r208B0.m",[-131498870,103553188]]], ["TOC",["matff","spor/M23/mtx/M23G1-f7r22B0.m",[83749274,-81701398]]], ["TOC",["matff","spor/M23/mtx/M23G1-f7r231aB0.m",[73195829,-54497879]]], ["TOC",["matff","spor/M23/mtx/M23G1-f7r45B0.m",[119901626,31746262]]], ["TOC",["matff","spor/M23/mtx/M23G1-f7r990B0.m",[-132653617,119679425]]], ["TOC",["matff","spor/M23/mtx/M23G1-f9r45bB0.m",[-127901148,-108530718]]], ["TOC",["matff","spor/M23/mtx/M23G1-f9r990bB0.m",[116336332,122680284]]], ["TOC",["perm","spor/M23/mtx/M23G1-p1288B0.m",[-84395714,94531011]]], ["TOC",["perm","spor/M23/mtx/M23G1-p1771B0.m",[-2600980,60172805]]], ["TOC",["perm","spor/M23/mtx/M23G1-p23B0.m",[-100860468,134035545]]], ["TOC",["perm","spor/M23/mtx/M23G1-p253aB0.m",[112730578,127077447]]], ["TOC",["perm","spor/M23/mtx/M23G1-p253bB0.m",[24187844,-99879066]]], ["TOC",["perm","spor/M23/mtx/M23G1-p40320B0.m",[-134072939,97361009]]], ["TOC",["perm","spor/M23/mtx/M23G1-p506B0.m",[133932382,72600534]]], ["TOC",["pres","spor/M23/words/M23G1-P1",[-101588990]]], ["TOC",["pres","spor/M23/words/M23G1-P2",[-27167702]]], ["TOC",["check","spor/M23/words/M23G1-check1",[-12184050]]], ["TOC",["cyclic","spor/M23/words/M23G1-cycW1",[50189716]]], ["TOC",["find","spor/M23/words/M23G1-find1",[114090014]]], ["TOC",["maxes","spor/M23/words/M23G1-max1W1",[-24165601]]], ["TOC",["maxes","spor/M23/words/M23G1-max2W1",[-128505273]]], ["TOC",["maxes","spor/M23/words/M23G1-max3W1",[103287015]]], ["TOC",["maxes","spor/M23/words/M23G1-max4W1",[-125187000]]], ["TOC",["maxes","spor/M23/words/M23G1-max5W1",[-28960133]]], ["TOC",["maxes","spor/M23/words/M23G1-max6W1",[3238391]]], ["TOC",["maxes","spor/M23/words/M23G1-max7W1",[-63572583]]], ["TOC",["cyc2ccl","spor/M23/words/M23G1cycW1-cclsW1",[-116022309]]], ["TOC",["matint","spor/M24/gap0/M24G1-Zr23B0.g",[-82579400]]], ["TOC",["matff","spor/M24/mtx/M24G1-f11r229B0.m",[-39363252,118511511]]], ["TOC",["matff","spor/M24/mtx/M24G1-f11r23B0.m",[-73893830,44738184]]], ["TOC",["matff","spor/M24/mtx/M24G1-f11r253B0.m",[-2745752,86312317]]], ["TOC",["matff","spor/M24/mtx/M24G1-f11r45B0.m",[32491674,-78186603]]], ["TOC",["matff","spor/M24/mtx/M24G1-f11r482B0.m",[-24340279,-1698726]]], ["TOC",["matff","spor/M24/mtx/M24G1-f11r806B0.m",[-38662066,116782016]]], ["TOC",["matff","spor/M24/mtx/M24G1-f11r990bB0.m",[71542649,-129337380]]], ["TOC",["matff","spor/M24/mtx/M24G1-f121r231bB0.m",[-115996360,66090690]]], ["TOC",["matff","spor/M24/mtx/M24G1-f121r770aB0.m",[-11753116,-9832376]]], ["TOC",["matff","spor/M24/mtx/M24G1-f23r231bB0.m",[74937308,-79336049]]], ["TOC",["matff","spor/M24/mtx/M24G1-f23r23B0.m",[-80084667,88290511]]], ["TOC",["matff","spor/M24/mtx/M24G1-f23r251B0.m",[124453838,-82707878]]], ["TOC",["matff","spor/M24/mtx/M24G1-f23r253B0.m",[-31154580,-5562077]]], ["TOC",["matff","spor/M24/mtx/M24G1-f23r45B0.m",[-101350989,56417532]]], ["TOC",["matff","spor/M24/mtx/M24G1-f23r483B0.m",[80083472,-133029888]]], ["TOC",["matff","spor/M24/mtx/M24G1-f23r770B0.m",[-71064977,68359404]]], ["TOC",["matff","spor/M24/mtx/M24G1-f23r990bB0.m",[-100049652,-132065010]]], ["TOC",["matff","spor/M24/mtx/M24G1-f25r45aB0.m",[93156266,17678669]]], ["TOC",["matff","spor/M24/mtx/M24G1-f25r45bB0.m",[84076873,-99614928]]], ["TOC",["matff","spor/M24/mtx/M24G1-f25r770aB0.m",[-77238967,27371362]]], ["TOC",["matff","spor/M24/mtx/M24G1-f25r990aB0.m",[58142147,10133728]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r11aB0.m",[40272001,-97238947]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r11bB0.m",[50964937,49863534]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r120B0.m",[-50819863,-33106966]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r1242B0.m",[61922408,56953676]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r1792B0.m",[-120675264,-7134767]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r220aB0.m",[120862636,-82730718]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r220bB0.m",[81903649,26327048]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r252B0.m",[-71570037,-123764407]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r320aB0.m",[-3286786,-9382849]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r320bB0.m",[107335357,-56091905]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r44aB0.m",[22851199,6817130]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r44bB0.m",[-95012821,82979184]]], ["TOC",["matff","spor/M24/mtx/M24G1-f3r22B0.m",[121921842,107251646]]], ["TOC",["matff","spor/M24/mtx/M24G1-f3r231B0.m",[-67248893,-41750420]]], ["TOC",["matff","spor/M24/mtx/M24G1-f3r252B0.m",[36773800,10058429]]], ["TOC",["matff","spor/M24/mtx/M24G1-f3r483B0.m",[129663509,42481818]]], ["TOC",["matff","spor/M24/mtx/M24G1-f3r770aB0.m",[76706933,58962005]]], ["TOC",["matff","spor/M24/mtx/M24G1-f3r770bB0.m",[-18902817,-1386993]]], ["TOC",["matff","spor/M24/mtx/M24G1-f49r231bB0.m",[26086794,-37182197]]], ["TOC",["matff","spor/M24/mtx/M24G1-f49r770aB0.m",[118037837,-12074292]]], ["TOC",["matff","spor/M24/mtx/M24G1-f5r231B0.m",[-3104293,34489521]]], ["TOC",["matff","spor/M24/mtx/M24G1-f5r23B0.m",[-31286155,-100615534]]], ["TOC",["matff","spor/M24/mtx/M24G1-f5r252B0.m",[12668770,78103862]]], ["TOC",["matff","spor/M24/mtx/M24G1-f5r253B0.m",[-61030374,68486059]]], ["TOC",["matff","spor/M24/mtx/M24G1-f7r23B0.m",[-133527112,-110941087]]], ["TOC",["matff","spor/M24/mtx/M24G1-f7r252B0.m",[-89436205,-88594841]]], ["TOC",["matff","spor/M24/mtx/M24G1-f7r253B0.m",[69344442,-54398731]]], ["TOC",["matff","spor/M24/mtx/M24G1-f7r45B0.m",[89821164,-52784035]]], ["TOC",["matff","spor/M24/mtx/M24G1-f7r483B0.m",[32062896,-12902574]]], ["TOC",["matff","spor/M24/mtx/M24G1-f7r990B0.m",[78507865,27503768]]], ["TOC",["matff","spor/M24/mtx/M24G1-f9r45aB0.m",[-51030313,-121660802]]], ["TOC",["matff","spor/M24/mtx/M24G1-f9r45bB0.m",[-26747836,74052103]]], ["TOC",["matff","spor/M24/mtx/M24G1-f9r990bB0.m",[69846870,-53594523]]], ["TOC",["perm","spor/M24/mtx/M24G1-p1288B0.m",[-105109803,60825843]]], ["TOC",["perm","spor/M24/mtx/M24G1-p1771B0.m",[-53290348,-40522722]]], ["TOC",["perm","spor/M24/mtx/M24G1-p2024B0.m",[70785156,119340263]]], ["TOC",["perm","spor/M24/mtx/M24G1-p24B0.m",[69729679,-50094784]]], ["TOC",["perm","spor/M24/mtx/M24G1-p276B0.m",[-48137797,-71357401]]], ["TOC",["perm","spor/M24/mtx/M24G1-p3795B0.m",[-60516233,-49941219]]], ["TOC",["perm","spor/M24/mtx/M24G1-p759B0.m",[-32835247,100541381]]], ["TOC",["pres","spor/M24/words/M24G1-P1",[-19892668]]], ["TOC",["check","spor/M24/words/M24G1-check1",[-117805797]]], ["TOC",["cyclic","spor/M24/words/M24G1-cycW1",[-56796942]]], ["TOC",["find","spor/M24/words/M24G1-find1",[99762564]]], ["TOC",["maxes","spor/M24/words/M24G1-max1W1",[-60251604]]], ["TOC",["maxes","spor/M24/words/M24G1-max1W2",[111703741]]], ["TOC",["maxes","spor/M24/words/M24G1-max2W1",[-74459771]]], ["TOC",["maxes","spor/M24/words/M24G1-max3W1",[-108401652]]], ["TOC",["maxes","spor/M24/words/M24G1-max4W1",[3804826]]], ["TOC",["maxes","spor/M24/words/M24G1-max5W1",[2323602]]], ["TOC",["maxes","spor/M24/words/M24G1-max6W1",[132682569]]], ["TOC",["maxes","spor/M24/words/M24G1-max7W1",[76506186]]], ["TOC",["maxes","spor/M24/words/M24G1-max8W1",[-102663899]]], ["TOC",["maxes","spor/M24/words/M24G1-max9W1",[115203509]]], ["TOC",["cyc2ccl","spor/M24/words/M24G1cycW1-cclsW1",[9885207]]], ["TOC",["matint","spor/McL/gap0/McLG1-Zr231B0.g",[-49278506]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f121r126aB0.m",[-65773772,110797052]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f25r126aB0.m",[-62486368,-132035306]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f25r126bB0.m",[-63371139,69148948]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f25r153aB0.m",[68472864,47273268]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f25r45aB0.m",[-93885213,44318729]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f25r639aB0.m",[-96966834,33763078]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f25r846aB0.m",[971973,-40293260]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f3r42B0.m",[99498753,-89665574]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f49r126a1B0.m",[50224140,-62359271]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f49r126aB0.m",[6910296,-99809787]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f49r126b1B0.m",[-121596870,-78979904]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f49r126bB0.m",[81138596,82194185]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f4r126aB0.m",[9748162,-38721246]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f4r396dB0.m",[85171231,126701593]]], ["TOC",["perm","spor/McL/mtx/3McLG1-p103950B0.m",[-50980231,-108548578]]], ["TOC",["perm","spor/McL/mtx/3McLG1-p340200B0.m",[-67945854,-95815728]]], ["TOC",["perm","spor/McL/mtx/3McLG1-p66825B0.m",[60936654,67493678]]], ["TOC",["matff","spor/McL/mtx/3McLd2G1-f4r252aB0.m",[-69343368,40600993]]], ["TOC",["matff","spor/McL/mtx/3McLd2G1-f5r1278B0.m",[110647295,-72472577]]], ["TOC",["matff","spor/McL/mtx/3McLd2G1-f5r306B0.m",[-100747,12674032]]], ["TOC",["matff","spor/McL/mtx/3McLd2G1-f5r90B0.m",[-394219,73863340]]], ["TOC",["matff","spor/McL/mtx/McLG1-f11r22B0.m",[37807153,-51356397]]], ["TOC",["matff","spor/McL/mtx/McLG1-f11r231B0.m",[111051229,-24393693]]], ["TOC",["matff","spor/McL/mtx/McLG1-f11r251B0.m",[-37005776,10578858]]], ["TOC",["matff","spor/McL/mtx/McLG1-f11r896B0.m",[-85250757,106637974]]], ["TOC",["matff","spor/McL/mtx/McLG1-f121r770aB0.m",[114719663,11727585]]], ["TOC",["matff","spor/McL/mtx/McLG1-f121r770bB0.m",[-8445975,-26028394]]], ["TOC",["matff","spor/McL/mtx/McLG1-f23r896bB0.m",[-23000891,-94948674]]], ["TOC",["matff","spor/McL/mtx/McLG1-f25r1200aB0.m",[-28171956,83963976]]], ["TOC",["matff","spor/McL/mtx/McLG1-f2r22B0.m",[-29801617,93282897]]], ["TOC",["matff","spor/McL/mtx/McLG1-f2r230B0.m",[-90515213,123236950]]], ["TOC",["matff","spor/McL/mtx/McLG1-f2r748aB0.m",[61620232,41476658]]], ["TOC",["matff","spor/McL/mtx/McLG1-f2r748bB0.m",[11594131,-63342175]]], ["TOC",["matff","spor/McL/mtx/McLG1-f3r104aB0.m",[-10460225,35627935]]], ["TOC",["matff","spor/McL/mtx/McLG1-f3r104bB0.m",[88537943,-74642905]]], ["TOC",["matff","spor/McL/mtx/McLG1-f3r210B0.m",[-18678164,-77048027]]], ["TOC",["matff","spor/McL/mtx/McLG1-f3r21B0.m",[114054470,-28069582]]], ["TOC",["matff","spor/McL/mtx/McLG1-f3r560B0.m",[-106270647,50354264]]], ["TOC",["matff","spor/McL/mtx/McLG1-f49r770aB0.m",[-123750876,103165319]]], ["TOC",["matff","spor/McL/mtx/McLG1-f49r770bB0.m",[17458306,-14741153]]], ["TOC",["matff","spor/McL/mtx/McLG1-f49r896aB0.m",[-10611582,-125807855]]], ["TOC",["matff","spor/McL/mtx/McLG1-f49r896bB0.m",[80950651,88285278]]], ["TOC",["matff","spor/McL/mtx/McLG1-f4r896aB0.m",[-90586135,-115047387]]], ["TOC",["matff","spor/McL/mtx/McLG1-f4r896bB0.m",[-68251794,-120220088]]], ["TOC",["matff","spor/McL/mtx/McLG1-f5r210B0.m",[-101587046,-93777169]]], ["TOC",["matff","spor/McL/mtx/McLG1-f5r21B0.m",[88783977,-75974823]]], ["TOC",["matff","spor/McL/mtx/McLG1-f5r230B0.m",[7379395,60865678]]], ["TOC",["matff","spor/McL/mtx/McLG1-f5r560B0.m",[4995570,-57381940]]], ["TOC",["matff","spor/McL/mtx/McLG1-f5r896bB0.m",[-77830754,76324619]]], ["TOC",["matff","spor/McL/mtx/McLG1-f7r22B0.m",[93285753,24448482]]], ["TOC",["matff","spor/McL/mtx/McLG1-f7r231B0.m",[-73334366,-75104676]]], ["TOC",["matff","spor/McL/mtx/McLG1-f7r252B0.m",[-133408383,-64954954]]], ["TOC",["matff","spor/McL/mtx/McLG1-f9r605aB0.m",[15419571,-41576184]]], ["TOC",["matff","spor/McL/mtx/McLG1-f9r605bB0.m",[-101100999,-12569507]]], ["TOC",["perm","spor/McL/mtx/McLG1-p113400B0.m",[6999341,13472873]]], ["TOC",["perm","spor/McL/mtx/McLG1-p15400aB0.m",[-80528616,79619470]]], ["TOC",["perm","spor/McL/mtx/McLG1-p15400bB0.m",[-20237023,-70709260]]], ["TOC",["perm","spor/McL/mtx/McLG1-p2025aB0.m",[-92438755,-89387202]]], ["TOC",["perm","spor/McL/mtx/McLG1-p2025bB0.m",[-33910713,-67453834]]], ["TOC",["perm","spor/McL/mtx/McLG1-p22275aB0.m",[122489538,83932768]]], ["TOC",["perm","spor/McL/mtx/McLG1-p22275bB0.m",[36151766,64738375]]], ["TOC",["perm","spor/McL/mtx/McLG1-p22275cB0.m",[-79442166,331736]]], ["TOC",["perm","spor/McL/mtx/McLG1-p22275dB0.m",[-75632286,66456356]]], ["TOC",["perm","spor/McL/mtx/McLG1-p275B0.m",[47898348,-128992295]]], ["TOC",["perm","spor/McL/mtx/McLG1-p299376B0.m",[-9479493,-2888638]]], ["TOC",["perm","spor/McL/mtx/McLG1-p7128B0.m",[-108415507,128829357]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f11r22aB0.m",[-78162929,-67763669]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f11r231aB0.m",[118374016,6657957]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f11r251aB0.m",[53146173,-131950397]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f11r896aB0.m",[58009627,-112706307]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f2r1496aB0.m",[-30759426,104911468]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f2r22B0.m",[8539527,3564557]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f2r230aB0.m",[2931937,101506955]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f3r104aB0.m",[77300657,-53847227]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f3r104bB0.m",[45648377,98839103]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f3r210aB0.m",[114674039,52866468]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f3r21aB0.m",[-49446994,51853136]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f3r560aB0.m",[-109490635,-99608112]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f49r896aB0.m",[73951333,70246501]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f5r210aB0.m",[696431,-23094537]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f5r21aB0.m",[80298400,-114334962]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f5r230aB0.m",[97104592,105161756]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f5r560aB0.m",[-49219297,-39031070]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f5r896aB0.m",[45641947,-75634287]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f5r896bB0.m",[75500104,64305836]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f7r22aB0.m",[-73156626,-131881739]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f7r231aB0.m",[11393104,-63500764]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f7r252aB0.m",[-22097052,-5180212]]], ["TOC",["perm","spor/McL/mtx/McLd2G1-p22275aB0.m",[84478906,-92915846]]], ["TOC",["perm","spor/McL/mtx/McLd2G1-p275B0.m",[14870816,-60035920]]], ["TOC",["perm","spor/McL/mtx/McLd2G1-p4050B0.m",[2540135,39919988]]], ["TOC",["perm","spor/McL/mtx/McLd2G1-p44550B0.m",[30228915,66372087]]], ["TOC",["perm","spor/McL/mtx/McLd2G1-p7128B0.m",[26124040,60946723]]], ["TOC",["pres","spor/McL/words/McLG1-P1",[-26372773]]], ["TOC",["check","spor/McL/words/McLG1-check1",[90702923]]], ["TOC",["cyclic","spor/McL/words/McLG1-cycW1",[80099064]]], ["TOC",["find","spor/McL/words/McLG1-find1",[-42473073]]], ["TOC",["maxes","spor/McL/words/McLG1-max10W1",[75761973]]], ["TOC",["maxes","spor/McL/words/McLG1-max11W1",[-31107947]]], ["TOC",["maxes","spor/McL/words/McLG1-max12W1",[25223287]]], ["TOC",["maxes","spor/McL/words/McLG1-max1W1",[19059882]]], ["TOC",["maxes","spor/McL/words/McLG1-max2W1",[-62642271]]], ["TOC",["maxes","spor/McL/words/McLG1-max3W1",[110409269]]], ["TOC",["maxes","spor/McL/words/McLG1-max4W1",[35098666]]], ["TOC",["maxes","spor/McL/words/McLG1-max5W1",[-55696958]]], ["TOC",["maxes","spor/McL/words/McLG1-max6W1",[89156344]]], ["TOC",["maxes","spor/McL/words/McLG1-max7W1",[-86705876]]], ["TOC",["maxes","spor/McL/words/McLG1-max8W1",[73280981]]], ["TOC",["maxes","spor/McL/words/McLG1-max9W1",[66232232]]], ["TOC",["cyc2ccl","spor/McL/words/McLG1cycW1-cclsW1",[37704454]]], ["TOC",["pres","spor/McL/words/McLd2G1-P1",[99955646]]], ["TOC",["check","spor/McL/words/McLd2G1-check1",[-134019723]]], ["TOC",["cyclic","spor/McL/words/McLd2G1-cycW1",[-91022863]]], ["TOC",["find","spor/McL/words/McLd2G1-find1",[-49966785]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max10W1",[48370239]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max1W1",[61006147]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max2W1",[84224117]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max3W1",[-82005936]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max4W1",[-17845375]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max5W1",[21634646]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max6W1",[-22213112]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max7W1",[73842512]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max7W2",[86102852]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max8W1",[128685854]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max8W2",[-96338819]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max9W1",[110274093]]], ["TOC",["matff","spor/ON/mtx/3ONG1-f4r153B0.m",[-16268827,-103124065]]], ["TOC",["matff","spor/ON/mtx/3ONG1-f7r45aB0.m",[29014787,31368259]]], ["TOC",["matff","spor/ON/mtx/3ONG1-f7r45bB0.m",[-42391612,78013723]]], ["TOC",["perm","spor/ON/mtx/3ONG1-p368280B0.m",[99436862,-91608028]]], ["TOC",["matff","spor/ON/mtx/3ONd2G1-f2r306B0.m",[-113541223,-48646281]]], ["TOC",["matff","spor/ON/mtx/3ONd2G1-f7r90B0.m",[-8350529,94350551]]], ["TOC",["perm","spor/ON/mtx/3ONd2G1-p736560B0.m",[-68689630,47782023]]], ["TOC",["matff","spor/ON/mtx/ONG1-f31r1869B0.m",[-52500805,27983940]]], ["TOC",["matff","spor/ON/mtx/ONG1-f3r154B0.m",[38543454,103909362]]], ["TOC",["matff","spor/ON/mtx/ONG1-f3r495B0.m",[-109943698,72387173]]], ["TOC",["matff","spor/ON/mtx/ONG1-f3r684B0.m",[33722778,-62341476]]], ["TOC",["matff","spor/ON/mtx/ONG1-f7r1618B0.m",[21602186,-42693064]]], ["TOC",["matff","spor/ON/mtx/ONG1-f7r406B0.m",[-21559565,-81416063]]], ["TOC",["matff","spor/ON/mtx/ONG1-f9r342aB0.m",[98458763,64167879]]], ["TOC",["matff","spor/ON/mtx/ONG1-f9r342bB0.m",[-68492253,-107208061]]], ["TOC",["perm","spor/ON/mtx/ONG1-p122760aB0.m",[130879699,5548962]]], ["TOC",["matff","spor/ON/mtx/ONd2G1-f31r1869B0.m",[-15179195,-20224881]]], ["TOC",["matff","spor/ON/mtx/ONd2G1-f3r684B0.m",[59153414,-77686939]]], ["TOC",["matff","spor/ON/mtx/ONd2G1-f3r990B0.m",[20383107,-30244925]]], ["TOC",["matff","spor/ON/mtx/ONd2G1-f7r1618B0.m",[94353914,92795391]]], ["TOC",["matff","spor/ON/mtx/ONd2G1-f7r406B0.m",[-104236411,79672753]]], ["TOC",["matff","spor/ON/mtx/ONd2G1-f9r154B0.m",[-52358288,-121686221]]], ["TOC",["perm","spor/ON/mtx/ONd2G1-p245520B0.m",[-42709158,30093434]]], ["TOC",["matff","spor/ON/mtx/ONd4G1-f3r154B0.m",[6087572,-92368074]]], ["TOC",["check","spor/ON/words/ONG1-check1",[67315863]]], ["TOC",["cyclic","spor/ON/words/ONG1-cycW1",[126303448]]], ["TOC",["find","spor/ON/words/ONG1-find1",[-88306264]]], ["TOC",["maxes","spor/ON/words/ONG1-max10W1",[-6113101]]], ["TOC",["maxes","spor/ON/words/ONG1-max11W1",[55632949]]], ["TOC",["maxes","spor/ON/words/ONG1-max12W1",[114468286]]], ["TOC",["maxes","spor/ON/words/ONG1-max13W1",[-19450717]]], ["TOC",["maxes","spor/ON/words/ONG1-max1W1",[62944102]]], ["TOC",["maxes","spor/ON/words/ONG1-max2W1",[43828776]]], ["TOC",["maxes","spor/ON/words/ONG1-max3W1",[13338363]]], ["TOC",["maxes","spor/ON/words/ONG1-max4W1",[8525863]]], ["TOC",["maxes","spor/ON/words/ONG1-max5W1",[90069876]]], ["TOC",["maxes","spor/ON/words/ONG1-max6W1",[34462054]]], ["TOC",["maxes","spor/ON/words/ONG1-max7W1",[-90805441]]], ["TOC",["maxes","spor/ON/words/ONG1-max8W1",[12382008]]], ["TOC",["maxes","spor/ON/words/ONG1-max9W1",[-45861662]]], ["TOC",["check","spor/ON/words/ONd2G1-check1",[101930093]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max10W1",[91475306]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max1W1",[87423786]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max2W1",[-132443113]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max3W1",[-63240888]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max4W1",[-67521683]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max5W1",[-120270312]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max6W1",[-124644877]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max7W1",[-105999166]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max8W1",[73256546]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max9W1",[-109711177]]], ["TOC",["matff","spor/Ru/mtx/2RuG1-f13r28B0.m",[52986574,97176965]]], ["TOC",["matff","spor/Ru/mtx/2RuG1-f29r28B0.m",[-86811570,-19732864]]], ["TOC",["matff","spor/Ru/mtx/2RuG1-f3r56B0.m",[-10365513,-78441559]]], ["TOC",["matff","spor/Ru/mtx/2RuG1-f49r28B0.m",[-64130671,74771777]]], ["TOC",["matff","spor/Ru/mtx/2RuG1-f5r28B0.m",[-75745528,51862955]]], ["TOC",["matff","spor/Ru/mtx/2RuG1-f5r912B0.m",[113987106,92551439]]], ["TOC",["matff","spor/Ru/mtx/2RuG1-f7r56B0.m",[60360641,-75246280]]], ["TOC",["matff","spor/Ru/mtx/2RuG1-f9r28B0.m",[92102602,-26481667]]], ["TOC",["perm","spor/Ru/mtx/2RuG1-p16240B0.m",[-41672100,8217618]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f13r378B0.m",[93152021,121995687]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f13r406B0.m",[-132506753,9597583]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f13r783B0.m",[-7052092,127225028]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f29r378B0.m",[44132576,74752841]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f29r406B0.m",[-38870625,-18279730]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f29r783B0.m",[25821631,-2668956]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f2r1246B0.m",[-10088876,103662524]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f2r28B0.m",[8731502,77315986]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f2r376B0.m",[98838040,-77528473]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f3r406B0.m",[-121033876,100514665]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f3r783B0.m",[96110003,111822503]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f49r378B0.m",[-32894027,-9333064]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f5r133B0.m",[89406776,-26001685]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f5r273B0.m",[115408136,-86832564]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f5r378B0.m",[-51204044,111676142]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f5r783B0.m",[31677180,96341162]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f7r406B0.m",[124785085,102458493]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f7r782B0.m",[19079994,25060169]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f9r378B0.m",[131439757,-82258119]]], ["TOC",["perm","spor/Ru/mtx/RuG1-p4060B0.m",[-53954577,-28356413]]], ["TOC",["classes","spor/Ru/words/RuG1-cclsW1",[127501587]]], ["TOC",["check","spor/Ru/words/RuG1-check1",[-30550431]]], ["TOC",["cyclic","spor/Ru/words/RuG1-cycW1",[-126643575]]], ["TOC",["find","spor/Ru/words/RuG1-find1",[52057267]]], ["TOC",["maxes","spor/Ru/words/RuG1-max10W1",[-64639884]]], ["TOC",["maxes","spor/Ru/words/RuG1-max10W2",[26896137]]], ["TOC",["maxes","spor/Ru/words/RuG1-max11W1",[-75133302]]], ["TOC",["maxes","spor/Ru/words/RuG1-max11W2",[105886580]]], ["TOC",["maxes","spor/Ru/words/RuG1-max12W1",[-131392469]]], ["TOC",["maxes","spor/Ru/words/RuG1-max12W2",[-27483953]]], ["TOC",["maxes","spor/Ru/words/RuG1-max13W1",[127833708]]], ["TOC",["maxes","spor/Ru/words/RuG1-max13W2",[101693928]]], ["TOC",["maxes","spor/Ru/words/RuG1-max14W1",[53460971]]], ["TOC",["maxes","spor/Ru/words/RuG1-max14W2",[-112917650]]], ["TOC",["maxes","spor/Ru/words/RuG1-max15W1",[59301912]]], ["TOC",["maxes","spor/Ru/words/RuG1-max15W2",[-17090852]]], ["TOC",["maxes","spor/Ru/words/RuG1-max15W3",[-68154847]]], ["TOC",["maxes","spor/Ru/words/RuG1-max1W1",[-75578155]]], ["TOC",["maxes","spor/Ru/words/RuG1-max1W2",[-129092743]]], ["TOC",["maxes","spor/Ru/words/RuG1-max2W1",[-52387943]]], ["TOC",["maxes","spor/Ru/words/RuG1-max2W2",[108886564]]], ["TOC",["maxes","spor/Ru/words/RuG1-max3W1",[-70042632]]], ["TOC",["maxes","spor/Ru/words/RuG1-max3W2",[127581494]]], ["TOC",["maxes","spor/Ru/words/RuG1-max4W1",[5060269]]], ["TOC",["maxes","spor/Ru/words/RuG1-max4W2",[7612106]]], ["TOC",["maxes","spor/Ru/words/RuG1-max5W1",[50048439]]], ["TOC",["maxes","spor/Ru/words/RuG1-max5W2",[-43399221]]], ["TOC",["maxes","spor/Ru/words/RuG1-max6W1",[-59823619]]], ["TOC",["maxes","spor/Ru/words/RuG1-max6W2",[-123299778]]], ["TOC",["maxes","spor/Ru/words/RuG1-max7W1",[67169891]]], ["TOC",["maxes","spor/Ru/words/RuG1-max7W2",[43762211]]], ["TOC",["maxes","spor/Ru/words/RuG1-max8W1",[118175684]]], ["TOC",["maxes","spor/Ru/words/RuG1-max8W2",[51544408]]], ["TOC",["maxes","spor/Ru/words/RuG1-max9W1",[-77505058]]], ["TOC",["maxes","spor/Ru/words/RuG1-max9W2",[-95757028]]], ["TOC",["maxes","spor/Ru/words/RuG1-max9W3",[70927804]]], ["TOC",["maxstd","spor/Ru/words/RuG1max9W2-L229G1W1",[-43443220]]], ["TOC",["matint","spor/Suz/gap0/SuzG1-Zr143B0.g",[89311105]]], ["TOC",["matff","spor/Suz/mtx/2SuzG1-f3r12B0.m",[-27396965,-130567168]]], ["TOC",["matff","spor/Suz/mtx/2SuzG1-f3r208B0.m",[-10246112,71400972]]], ["TOC",["matff","spor/Suz/mtx/2SuzG1-f3r352B0.m",[-88992129,72842831]]], ["TOC",["perm","spor/Suz/mtx/2SuzG1-p65520B0.m",[100499361,-17563632]]], ["TOC",["matff","spor/Suz/mtx/2Suzd2G1-f3r12aB0.m",[-3895471,-130567168]]], ["TOC",["matff","spor/Suz/mtx/3SuzG1-f25r66aB0.m",[69419571,40407784]]], ["TOC",["matff","spor/Suz/mtx/3SuzG1-f4r12aB0.m",[104289404,-97338178]]], ["TOC",["matff","spor/Suz/mtx/3SuzG1-f4r429aB0.m",[-61260387,-55759488]]], ["TOC",["matff","spor/Suz/mtx/3SuzG1-f4r66aB0.m",[82458020,39793555]]], ["TOC",["matff","spor/Suz/mtx/3SuzG1-f4r825aB0.m",[67351605,15291413]]], ["TOC",["matff","spor/Suz/mtx/3SuzG1-f4r825bB0.m",[125193684,-42083462]]], ["TOC",["perm","spor/Suz/mtx/3SuzG1-p405405B0.m",[45794222,-32826998]]], ["TOC",["perm","spor/Suz/mtx/3SuzG1-p5346B0.m",[-76176506,86470514]]], ["TOC",["perm","spor/Suz/mtx/3SuzG1-p98280B0.m",[53377107,9551332]]], ["TOC",["matff","spor/Suz/mtx/3Suzd2G1-f11r132B0.m",[-58076262,-47418246]]], ["TOC",["matff","spor/Suz/mtx/3Suzd2G1-f2r24B0.m",[44158235,-91947292]]], ["TOC",["matff","spor/Suz/mtx/3Suzd2G1-f5r132B0.m",[24890922,74028927]]], ["TOC",["matff","spor/Suz/mtx/3Suzd2G1-f7r132B0.m",[117434516,-37228764]]], ["TOC",["perm","spor/Suz/mtx/3Suzd2G1-p5346B0.m",[-19010047,86470514]]], ["TOC",["matff","spor/Suz/mtx/6SuzG1-f13r12aB0.m",[12391134,-67351534]]], ["TOC",["matff","spor/Suz/mtx/6SuzG1-f25r12aB0.m",[-91997322,132100624]]], ["TOC",["matff","spor/Suz/mtx/6SuzG1-f7r12aB0.m",[-82762128,-47015058]]], ["TOC",["perm","spor/Suz/mtx/6SuzG1-p196560B0.m",[-95904469,-67046241]]], ["TOC",["matff","spor/Suz/mtx/6Suzd2G1-f11r24B0.m",[46107370,85173164]]], ["TOC",["matff","spor/Suz/mtx/6Suzd2G1-f3r24B0.m",[-67857734,-58600215]]], ["TOC",["matff","spor/Suz/mtx/6Suzd2G1-f5r24B0.m",[-112852769,-18855249]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f11r143B0.m",[-18320833,-74534883]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f11r364B0.m",[53490611,108496215]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f11r779B0.m",[-65750084,-98455485]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f13r143B0.m",[66190938,96991043]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f13r364B0.m",[74414593,-31777157]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f13r780B0.m",[-81127443,54737132]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f2r142B0.m",[8357366,6920144]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f2r638B0.m",[4074312,106364657]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f3r286B0.m",[60274666,-70924388]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f3r429B0.m",[-49101968,-91628171]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f3r649B0.m",[-19946195,30163779]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f3r64B0.m",[50365357,-54063209]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f3r78B0.m",[-92014561,35230543]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f4r110aB0.m",[-109919096,-62082606]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f4r572aB0.m",[-95643378,32758517]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f4r572bB0.m",[-104417257,-95066640]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f5r143B0.m",[74394469,-38271034]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f5r363B0.m",[89885945,39063479]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f5r780B0.m",[132266614,-19359649]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f7r143B0.m",[105634339,28653126]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f7r364B0.m",[-74055301,-21058343]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f7r780B0.m",[112681667,-113939536]]], ["TOC",["perm","spor/Suz/mtx/SuzG1-p135135B0.m",[-65616209,-86572635]]], ["TOC",["perm","spor/Suz/mtx/SuzG1-p1782B0.m",[82893022,51463088]]], ["TOC",["perm","spor/Suz/mtx/SuzG1-p22880B0.m",[-45414207,72022853]]], ["TOC",["perm","spor/Suz/mtx/SuzG1-p232960B0.m",[11347220,105131424]]], ["TOC",["perm","spor/Suz/mtx/SuzG1-p32760B0.m",[-36637758,68776003]]], ["TOC",["perm","spor/Suz/mtx/SuzG1-p370656B0.m",[2182352,-118767183]]], ["TOC",["perm","spor/Suz/mtx/SuzG1-p405405B0.m",[105067735,100713240]]], ["TOC",["matff","spor/Suz/mtx/Suzd2G1-f11r143aB0.m",[62231233,-74534883]]], ["TOC",["matff","spor/Suz/mtx/Suzd2G1-f3r64aB0.m",[-90913076,-54063209]]], ["TOC",["matff","spor/Suz/mtx/Suzd2G1-f5r143aB0.m",[11496573,83112486]]], ["TOC",["matff","spor/Suz/mtx/Suzd2G1-f7r143aB0.m",[-107656145,-91209592]]], ["TOC",["perm","spor/Suz/mtx/Suzd2G1-p1782B0.m",[-71919329,51463088]]], ["TOC",["out","spor/Suz/words/SuzG1-a2W1",[16469656]]], ["TOC",["out","spor/Suz/words/SuzG1-a2W2",[-107369804]]], ["TOC",["check","spor/Suz/words/SuzG1-check1",[81413483]]], ["TOC",["cyclic","spor/Suz/words/SuzG1-cycW1",[107929098]]], ["TOC",["find","spor/Suz/words/SuzG1-find1",[14760334]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max10W1",[76923768]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max11W1",[-37002406]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max12W1",[-5356944]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max13W1",[111038819]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max14W1",[129646128]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max15W1",[-85715848]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max16W1",[-51955785]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max17W1",[40310031]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max1W1",[-68768193]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max2W1",[-108601749]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max3W1",[-77948579]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max4W1",[-36690020]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max5W1",[40680439]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max6W1",[24938473]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max7W1",[-4080847]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max8W1",[-133098394]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max9W1",[-28786936]]], ["TOC",["check","spor/Suz/words/Suzd2G1-check1",[54766116]]], ["TOC",["find","spor/Suz/words/Suzd2G1-find1",[-3302032]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max10W1",[-22801521]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max11W1",[-106160515]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max11W2",[-26338511]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max12W1",[123474922]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max13W1",[-88908553]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max13W2",[17072729]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max14W1",[118227933]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max15W1",[-82644616]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max16W1",[-129217850]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max16W2",[62477926]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max1W1",[43070058]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max2W1",[-95676410]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max2W2",[36172803]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max3W1",[94233840]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max4W1",[2475767]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max5W1",[26815149]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max5W2",[-129129167]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max6W1",[22464709]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max7W1",[131499830]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max7W2",[103360853]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max8W1",[-92936899]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max8W2",[-104913286]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max9W1",[33878153]]], ["TOC",["matff","spor/Th/mtx/ThG1-f13r248B0.m",[-64490935,-8767165]]], ["TOC",["matff","spor/Th/mtx/ThG1-f19r248B0.m",[12847805,-68708149]]], ["TOC",["matff","spor/Th/mtx/ThG1-f2r248B0.m",[37434506,-68904843]]], ["TOC",["matff","spor/Th/mtx/ThG1-f31r248B0.m",[112307036,-111237321]]], ["TOC",["matff","spor/Th/mtx/ThG1-f3r248B0.m",[-60944342,46058358]]], ["TOC",["matff","spor/Th/mtx/ThG1-f3r3875B0.m",[13659990,-72730650]]], ["TOC",["matff","spor/Th/mtx/ThG1-f5r248B0.m",[48991917,-128748049]]], ["TOC",["matff","spor/Th/mtx/ThG1-f7r248B0.m",[123338324,34822469]]], ["TOC",["check","spor/Th/words/ThG1-check1",[69410453]]], ["TOC",["cyclic","spor/Th/words/ThG1-cycW1",[-112362289]]], ["TOC",["find","spor/Th/words/ThG1-find1",[-54609116]]], ["TOC",["maxes","spor/Th/words/ThG1-max10W1",[3060244]]], ["TOC",["maxes","spor/Th/words/ThG1-max11W1",[-58445008]]], ["TOC",["maxes","spor/Th/words/ThG1-max12W1",[-92730481]]], ["TOC",["maxes","spor/Th/words/ThG1-max13W1",[61196644]]], ["TOC",["maxes","spor/Th/words/ThG1-max14W1",[11298405]]], ["TOC",["maxes","spor/Th/words/ThG1-max14W2",[-74495271]]], ["TOC",["maxes","spor/Th/words/ThG1-max15W1",[43001311]]], ["TOC",["maxes","spor/Th/words/ThG1-max15W2",[-97506952]]], ["TOC",["maxes","spor/Th/words/ThG1-max16W1",[7045374]]], ["TOC",["maxes","spor/Th/words/ThG1-max1W1",[-15425179]]], ["TOC",["maxes","spor/Th/words/ThG1-max2W1",[93806918]]], ["TOC",["maxes","spor/Th/words/ThG1-max3W1",[-55978438]]], ["TOC",["maxes","spor/Th/words/ThG1-max4W1",[110343436]]], ["TOC",["maxes","spor/Th/words/ThG1-max4W2",[133062282]]], ["TOC",["maxes","spor/Th/words/ThG1-max5W1",[2816244]]], ["TOC",["maxes","spor/Th/words/ThG1-max6W1",[69845358]]], ["TOC",["maxes","spor/Th/words/ThG1-max7W1",[73444571]]], ["TOC",["maxes","spor/Th/words/ThG1-max8W1",[-104649732]]], ["TOC",["maxes","spor/Th/words/ThG1-max9W1",[24676676]]], ["TOC",["maxstd","spor/Th/words/ThG1max14W1-M10G1W1",[-67607570]]], ["STDCOMP",["(13:6xL3(3)).2",[0,"L3(3).2",1,true]]], ["STDCOMP",["(2^2x3).U6(2)",[1,"U6(2)",1,true]]], ["STDCOMP",["(7:3xHe):2",[0,"He.2",1,true]]], ["STDCOMP",["(7^2:(3x2A4)xL2(7)).2",[0,"L3(2).2",1,false]]], ["STDCOMP",["(A5xA12):2",[0,"A12.2",1,false]]], ["STDCOMP",["(A5xA12):2",[0,"A5.2",1,true]]], ["STDCOMP",["(A5xU3(8):3):2",[0,"A5.2",1,false]]], ["STDCOMP",["(A5xU3(8):3):2",[0,"U3(8).6",1,true]]], ["STDCOMP",["(D10xHN).2",[0,"HN.2",1,true]]], ["STDCOMP",["(L2(11)xM12):2",[0,"L2(11).2",1,true]]], ["STDCOMP",["(L2(11)xM12):2",[0,"M12.2",1,true]]], ["STDCOMP",["(L3(2)xS4(4):2).2",[0,"L3(2).2",1,false]]], ["STDCOMP",["(L3(2)xS4(4):2).2",[0,"S4(4).4",1,true]]], ["STDCOMP",["12.M22",[1,"M22",1,true]]], ["STDCOMP",["12.M22.2",[1,"M22.2",1,true]]], ["STDCOMP",["12_1.L3(4)",[1,"L3(4)",1,true]]], ["STDCOMP",["12_2.L3(4)",[1,"L3(4)",1,true]]], ["STDCOMP",["2.A11",[1,"A11",1,true]]], ["STDCOMP",["2.A12",[1,"A12",1,true]]], ["STDCOMP",["2.A14.2",[1,"A14.2",1,true]]], ["STDCOMP",["2.A5",[1,"A5",1,true]]], ["STDCOMP",["2.A5.2",[1,"A5.2",1,true]]], ["STDCOMP",["2.A6",[1,"A6",1,true]]], ["STDCOMP",["2.A6.2_1",[1,"A6.2_1",1,true]]], ["STDCOMP",["2.A7",[1,"A7",1,true]]], ["STDCOMP",["2.A8",[1,"A8",1,true]]], ["STDCOMP",["2.Co1",[1,"Co1",1,true]]], ["STDCOMP",["2.Fi22",[1,"Fi22",1,true]]], ["STDCOMP",["2.Fi22.2",[1,"Fi22.2",1,true]]], ["STDCOMP",["2.G2(4)",[1,"G2(4)",1,true]]], ["STDCOMP",["2.HS",[1,"HS",1,true]]], ["STDCOMP",["2.HS.2",[1,"HS.2",1,true]]], ["STDCOMP",["2.J2",[1,"J2",1,true]]], ["STDCOMP",["2.J2.2",[1,"J2.2",1,true]]], ["STDCOMP",["2.L2(11)",[1,"L2(11)",1,true]]], ["STDCOMP",["2.L2(19)",[1,"L2(19)",1,true]]], ["STDCOMP",["2.L3(2)",[1,"L3(2)",1,true]]], ["STDCOMP",["2.L3(2).2",[1,"L3(2).2",1,true]]], ["STDCOMP",["2.L3(4)",[1,"L3(4)",1,true]]], ["STDCOMP",["2.M12",[1,"M12",1,true]]], ["STDCOMP",["2.M12.2",[1,"M12.2",1,true]]], ["STDCOMP",["2.M22",[1,"M22",1,true]]], ["STDCOMP",["2.M22.2",[1,"M22.2",1,true]]], ["STDCOMP",["2.O7(3)",[1,"O7(3)",1,true]]], ["STDCOMP",["2.O8+(3)",[1,"O8+(3)",1,true]]], ["STDCOMP",["2.Ru",[1,"Ru",1,true]]], ["STDCOMP",["2.S4(5)",[1,"S4(5)",1,true]]], ["STDCOMP",["2.S6(2)",[1,"S6(2)",1,true]]], ["STDCOMP",["2.S6(3).2",[1,"S6(3).2",1,true]]], ["STDCOMP",["2.Suz",[1,"Suz",1,true]]], ["STDCOMP",["2.Suz.2",[1,"Suz.2",1,true]]], ["STDCOMP",["2.Sz(8)",[1,"Sz(8)",1,true]]], ["STDCOMP",["2.U4(2)",[1,"U4(2)",1,true]]], ["STDCOMP",["2.U4(2).2",[1,"U4(2).2",1,true]]], ["STDCOMP",["2.U6(2)",[1,"U6(2)",1,true]]], ["STDCOMP",["2^2.2E6(2).S3",[0,"2E6(2).3.2",0,false]]], ["STDCOMP",["2^2.Sz(8).3",[1,"Sz(8).3",1,true]]], ["STDCOMP",["2^2.U6(2)",[1,"U6(2)",1,true]]], ["STDCOMP",["3.A6",[1,"A6",1,true]]], ["STDCOMP",["3.A6.2_1",[1,"A6.2_1",1,true]]], ["STDCOMP",["3.A7",[1,"A7",1,true]]], ["STDCOMP",["3.Fi22",[1,"Fi22",1,true]]], ["STDCOMP",["3.Fi22.2",[1,"Fi22.2",1,true]]], ["STDCOMP",["3.G2(3)",[1,"G2(3)",1,true]]], ["STDCOMP",["3.J3",[1,"J3",1,true]]], ["STDCOMP",["3.J3.2",[1,"J3.2",1,true]]], ["STDCOMP",["3.L3(4)",[1,"L3(4)",1,true]]], ["STDCOMP",["3.M22",[1,"M22",1,true]]], ["STDCOMP",["3.M22.2",[1,"M22.2",1,true]]], ["STDCOMP",["3.McL",[1,"McL",1,true]]], ["STDCOMP",["3.McL.2",[1,"McL.2",1,true]]], ["STDCOMP",["3.O7(3)",[1,"O7(3)",1,true]]], ["STDCOMP",["3.ON",[1,"ON",1,true]]], ["STDCOMP",["3.ON.2",[1,"ON.2",1,true]]], ["STDCOMP",["3.Suz",[1,"Suz",1,true]]], ["STDCOMP",["3.Suz.2",[1,"Suz.2",1,true]]], ["STDCOMP",["3.U3(8)",[1,"U3(8)",1,true]]], ["STDCOMP",["3.U6(2)",[1,"U6(2)",1,true]]], ["STDCOMP",["4.M22",[1,"M22",1,true]]], ["STDCOMP",["4.M22.2",[1,"M22.2",1,true]]], ["STDCOMP",["4_1.L3(4)",[1,"L3(4)",1,true]]], ["STDCOMP",["4_2.L3(4)",[1,"L3(4)",1,true]]], ["STDCOMP",["5^3.L3(5)",[2,"L3(5)",1,false]]], ["STDCOMP",["5^3.L3(5)",[2,"L3(5)",2,false]]], ["STDCOMP",["6.A6",[1,"A6",1,true]]], ["STDCOMP",["6.A6.2_1",[1,"A6.2_1",1,true]]], ["STDCOMP",["6.A7",[1,"A7",1,true]]], ["STDCOMP",["6.Fi22",[1,"2.Fi22",1,true]]], ["STDCOMP",["6.Fi22",[1,"Fi22",1,true]]], ["STDCOMP",["6.Fi22.2",[1,"3.Fi22.2",1,true]]], ["STDCOMP",["6.Fi22.2",[1,"Fi22.2",1,true]]], ["STDCOMP",["6.L3(4)",[1,"L3(4)",1,true]]], ["STDCOMP",["6.M22",[1,"M22",1,true]]], ["STDCOMP",["6.M22.2",[1,"M22.2",1,true]]], ["STDCOMP",["6.O7(3)",[1,"O7(3)",1,true]]], ["STDCOMP",["6.Suz",[1,"Suz",1,true]]], ["STDCOMP",["6.Suz.2",[1,"Suz.2",1,true]]], ["STDCOMP",["6.U6(2)",[1,"U6(2)",1,true]]], ["STDCOMP",["7^(2+1+2):GL2(7)",[0,"Isoclinic(2.L3(2).2)",1,false]]], ["STDCOMP",["Isoclinic(2.A14.2)",[1,"A14.2",1,true]]], ["STDCOMP",["Isoclinic(2.A5.2)",[1,"A5.2",1,true]]], ["STDCOMP",["Isoclinic(2.L3(2).2)",[1,"L3(2).2",1,true]]], ["STDCOMP",["Isoclinic(2.M12.2)",[1,"M12.2",1,true]]], ["RNG",["2A5G1-Ar2aB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["2A5G1-Ar4aB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["2A5G1-Ar4aB2","Field([Sqrt(-6)])",["QuadraticField",-6],[6,0,1]]], ["RNG",["2A5G1-Ar6B0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["2A5G1-Ar6B1","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2A5G1-Hr1aB0","QuaternionAlgebra([Sqrt(5)])"]], ["RNG",["2A6G1-Ar4B0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2A6G1-Ar4aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2A6G1-Hr2aB0","QuaternionAlgebra([Sqrt(3)])"]], ["RNG",["2A7G1-Ar20aB0","Field([Sqrt(-7)])",["QuadraticField",-7],[2,1,1]]], ["RNG",["2A7G1-Ar4aB0","Field([Sqrt(-7)])",["QuadraticField",-7],[2,1,1]]], ["RNG",["2A7G1-Ar4bB0","Field([Sqrt(-7)])",["QuadraticField",-7],[2,1,1]]], ["RNG",["2A9G1-Ar8aB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["2G24G1-Ar12B0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["2L2101G1-Ar102aB0","Field([E(100)])",["CyclotomicField",100],[1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["2L2103G1-Ar104aB0","Field([E(51)])",["CyclotomicField",51],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["2L2107G1-Ar108aB0","Field([E(53)])",["CyclotomicField",53],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["2L2109G1-Ar110aB0","Field([E(108)])",["CyclotomicField",108],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["2L2113G1-Ar114aB0","Field([E(112)])",["CyclotomicField",112],[1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1]]], ["RNG",["2L2127G1-Ar128aB0","Field([E(63)])",["CyclotomicField",63],[1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1]]], ["RNG",["2L2131G1-Ar132aB0","Field([E(65)])",["CyclotomicField",65],[1,-1,0,0,0,1,-1,0,0,0,1,-1,0,1,-1,1,-1,0,1,-1,1,-1,0,1,-1,1,0,-1,1,-1,1,0,-1,1,-1,1,0,-1,1,0,0,0,-1,1,0,0,0,-1,1]]], ["RNG",["2L2137G1-Ar138aB0","Field([E(136)])",["CyclotomicField",136],[1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1]]], ["RNG",["2L2139G1-Ar140aB0","Field([E(69)])",["CyclotomicField",69],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["2L2149G1-Ar150aB0","Field([E(148)])",["CyclotomicField",148],[1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1]]], ["RNG",["2L2151G1-Ar152aB0","Field([E(75)])",["CyclotomicField",75],[1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1]]], ["RNG",["2L2157G1-Ar158aB0","Field([E(156)])",["CyclotomicField",156],[1,0,1,0,0,0,-1,0,-1,0,0,0,1,0,1,0,0,0,-1,0,-1,0,0,0,1,0,0,0,-1,0,-1,0,0,0,1,0,1,0,0,0,-1,0,-1,0,0,0,1,0,1]]], ["RNG",["2L2163G1-Ar164aB0","Field([E(81)])",["CyclotomicField",81],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["2L2167G1-Ar168aB0","Field([E(83)])",["CyclotomicField",83],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["2L2173G1-Ar174aB0","Field([E(172)])",["CyclotomicField",172],[1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1]]], ["RNG",["2L2179G1-Ar180aB0","Field([E(89)])",["CyclotomicField",89],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["2L2181G1-Ar182aB0","Field([E(180)])",["CyclotomicField",180],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1]]], ["RNG",["2L2191G1-Ar192aB0","Field([E(95)])",["CyclotomicField",95],[1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,1,0,-1,0,0,1,0,-1,0,0,1,0,-1,0,0,1,0,-1,0,1,0,0,-1,0,1,0,0,-1,0,1,0,0,-1,0,1,0,0,-1,1,0,0,0,-1,1,0,0,0,-1,1,0,0,0,-1,1]]], ["RNG",["2L2193G1-Ar194aB0","Field([E(192)])",["CyclotomicField",192],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["2L2197G1-Ar198aB0","Field([E(196)])",["CyclotomicField",196],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["2L2199G1-Ar200aB0","Field([E(99)])",["CyclotomicField",99],[1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1]]], ["RNG",["2L2211G1-Ar212aB0","Field([E(105)])",["CyclotomicField",105],[1,1,1,0,0,-1,-1,-2,-1,-1,0,0,1,1,1,1,1,1,0,0,-1,0,-1,0,-1,0,-1,0,-1,0,0,1,1,1,1,1,1,0,0,-1,-1,-2,-1,-1,0,0,1,1,1]]], ["RNG",["2L2223G1-Ar224aB0","Field([E(111)])",["CyclotomicField",111],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["2L2227G1-Ar228aB0","Field([E(113)])",["CyclotomicField",113],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["2L2229G1-Ar230aB0","Field([E(228)])",["CyclotomicField",228],[1,0,1,0,0,0,-1,0,-1,0,0,0,1,0,1,0,0,0,-1,0,-1,0,0,0,1,0,1,0,0,0,-1,0,-1,0,0,0,1,0,0,0,-1,0,-1,0,0,0,1,0,1,0,0,0,-1,0,-1,0,0,0,1,0,1,0,0,0,-1,0,-1,0,0,0,1,0,1]]], ["RNG",["2L2233G1-Ar234aB0","Field([E(232)])",["CyclotomicField",232],[1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1]]], ["RNG",["2L2239G1-Ar240aB0","Field([E(119)])",["CyclotomicField",119],[1,-1,0,0,0,0,0,1,-1,0,0,0,0,0,1,-1,0,1,-1,0,0,1,-1,0,1,-1,0,0,1,-1,0,1,-1,0,1,0,-1,0,1,-1,0,1,0,-1,0,1,-1,0,1,0,-1,1,0,-1,0,1,0,-1,1,0,-1,0,1,0,-1,1,0,-1,1,0,0,-1,1,0,-1,1,0,0,-1,1,0,-1,1,0,0,0,0,0,-1,1,0,0,0,0,0,-1,1]]], ["RNG",["2L2241G1-Ar242aB0","Field([E(240)])",["CyclotomicField",240],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1]]], ["RNG",["2L231G1-Ar32aB0","Field([E(15)])",["CyclotomicField",15],[1,-1,0,1,-1,1,0,-1,1]]], ["RNG",["2L237G1-Ar38aB0","Field([E(36)])",["CyclotomicField",36],[1,0,0,0,0,0,-1,0,0,0,0,0,1]]], ["RNG",["2L241G1-Ar42aB0","Field([E(40)])",["CyclotomicField",40],[1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1]]], ["RNG",["2L243G1-Ar44aB0","Field([E(21)])",["CyclotomicField",21],[1,-1,0,1,-1,0,1,0,-1,1,0,-1,1]]], ["RNG",["2L247G1-Ar48aB0","Field([E(23)])",["CyclotomicField",23],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["2L253G1-Ar54aB0","Field([E(52)])",["CyclotomicField",52],[1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1]]], ["RNG",["2L259G1-Ar60aB0","Field([E(29)])",["CyclotomicField",29],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["2L261G1-Ar62aB0","Field([E(60)])",["CyclotomicField",60],[1,0,1,0,0,0,-1,0,-1,0,-1,0,0,0,1,0,1]]], ["RNG",["2L267G1-Ar68aB0","Field([E(33)])",["CyclotomicField",33],[1,-1,0,1,-1,0,1,-1,0,1,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["2L271G1-Ar72aB0","Field([E(35)])",["CyclotomicField",35],[1,-1,0,0,0,1,-1,1,-1,0,1,-1,1,-1,1,0,-1,1,-1,1,0,0,0,-1,1]]], ["RNG",["2L273G1-Ar74aB0","Field([E(72)])",["CyclotomicField",72],[1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["2L279G1-Ar80aB0","Field([E(39)])",["CyclotomicField",39],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["2L283G1-Ar84aB0","Field([E(41)])",["CyclotomicField",41],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["2L289G1-Ar90aB0","Field([E(88)])",["CyclotomicField",88],[1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1]]], ["RNG",["2L297G1-Ar98aB0","Field([E(96)])",["CyclotomicField",96],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["2S5G1-Ar4bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2S5iG1-Ar4aB1","Field([Sqrt(-2)])",["QuadraticField",-2],[2,0,1]]], ["RNG",["2S5iG1-Ar4aB2","Field([Sqrt(-5)])",["QuadraticField",-5],[5,0,1]]], ["RNG",["2U42G1-Ar20aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2U42G1-Ar20bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2U42G1-Ar20cB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2U42G1-Ar36aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2U42G1-Ar36bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2U42G1-Ar4aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2U42G1-Ar4bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2U42G1-Ar60bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2aM20G1-Ar12aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["2aM20G1-Ar12bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["2aM20G1-Ar12bB1","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["3A6G1-Ar15B0","Field([EY(15,1)])",["AbelianNumberField",15],[1,1,2,-1,1]]], ["RNG",["3A6G1-Ar3aB0","Field([EY(15,1)])",["AbelianNumberField",15],[1,1,2,-1,1]]], ["RNG",["3A6G1-Ar6B0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["3A6G1-Ar9B0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["3A7G1-Ar15aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["3A7G1-Ar15bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["3A7G1-Ar21aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["3A7G1-Ar21bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["3A7G1-Ar6B0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["4bM20G1-Ar20aB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["4bM20G1-Ar4aB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["4bM20G1-Ar4aB1","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["6A6G1-Ar12B0","Field([EY(15,1)])",["AbelianNumberField",15],[1,1,2,-1,1]]], ["RNG",["6L34G1-Ar6aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["A5G1-Ar3aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["A5G1-Ar3bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["A6G1-Ar8aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["A6G1-Ar8bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["G23d2G1-Ar14B0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["J2G1-Ar14aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["J2G1-Ar14bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["J2G1-Ar21aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["J2G1-Ar21bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["L2101G1-Ar102aB0","Field([E(25)])",["CyclotomicField",25],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1]]], ["RNG",["L2103G1-Ar104aB0","Field([E(51)])",["CyclotomicField",51],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["L2107G1-Ar108aB0","Field([E(53)])",["CyclotomicField",53],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L2109G1-Ar110aB0","Field([E(27)])",["CyclotomicField",27],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1]]], ["RNG",["L2113G1-Ar114aB0","Field([E(56)])",["CyclotomicField",56],[1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1]]], ["RNG",["L211G1-Ar12aB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L211G1-Ar12bB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L211G1-Ar5aB0","Field([Sqrt(-11)])",["QuadraticField",-11],[3,1,1]]], ["RNG",["L211G1-Ar5bB0","Field([Sqrt(-11)])",["QuadraticField",-11],[3,1,1]]], ["RNG",["L2127G1-Ar128aB0","Field([E(63)])",["CyclotomicField",63],[1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1]]], ["RNG",["L2128G1-Ar129aB0","Field([E(127)])",["CyclotomicField",127],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L2131G1-Ar132aB0","Field([E(65)])",["CyclotomicField",65],[1,-1,0,0,0,1,-1,0,0,0,1,-1,0,1,-1,1,-1,0,1,-1,1,-1,0,1,-1,1,0,-1,1,-1,1,0,-1,1,-1,1,0,-1,1,0,0,0,-1,1,0,0,0,-1,1]]], ["RNG",["L2137G1-Ar138aB0","Field([E(68)])",["CyclotomicField",68],[1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1]]], ["RNG",["L2139G1-Ar140aB0","Field([E(69)])",["CyclotomicField",69],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["L213G1-Ar12aB0","Field([EY(7)])",["AbelianNumberField",7],[-1,-2,1,1]]], ["RNG",["L213G1-Ar12bB0","Field([EY(7)])",["AbelianNumberField",7],[-1,-2,1,1]]], ["RNG",["L213G1-Ar12cB0","Field([EY(7)])",["AbelianNumberField",7],[-1,-2,1,1]]], ["RNG",["L2149G1-Ar150aB0","Field([E(37)])",["CyclotomicField",37],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L2151G1-Ar152aB0","Field([E(75)])",["CyclotomicField",75],[1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1]]], ["RNG",["L2157G1-Ar158aB0","Field([E(39)])",["CyclotomicField",39],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["L2163G1-Ar164aB0","Field([E(81)])",["CyclotomicField",81],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["L2167G1-Ar168aB0","Field([E(83)])",["CyclotomicField",83],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L2173G1-Ar174aB0","Field([E(43)])",["CyclotomicField",43],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L2179G1-Ar180aB0","Field([E(89)])",["CyclotomicField",89],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L217G1-Ar9aB0","Field([Sqrt(17)])",["QuadraticField",17],[-4,1,1]]], ["RNG",["L217G1-Ar9bB0","Field([Sqrt(17)])",["QuadraticField",17],[-4,1,1]]], ["RNG",["L2181G1-Ar182aB0","Field([E(45)])",["CyclotomicField",45],[1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1]]], ["RNG",["L2191G1-Ar192aB0","Field([E(95)])",["CyclotomicField",95],[1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,1,0,-1,0,0,1,0,-1,0,0,1,0,-1,0,0,1,0,-1,0,1,0,0,-1,0,1,0,0,-1,0,1,0,0,-1,0,1,0,0,-1,1,0,0,0,-1,1,0,0,0,-1,1,0,0,0,-1,1]]], ["RNG",["L2193G1-Ar194aB0","Field([E(96)])",["CyclotomicField",96],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["L2197G1-Ar198aB0","Field([E(49)])",["CyclotomicField",49],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1]]], ["RNG",["L2199G1-Ar200aB0","Field([E(99)])",["CyclotomicField",99],[1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1]]], ["RNG",["L2211G1-Ar212aB0","Field([E(105)])",["CyclotomicField",105],[1,1,1,0,0,-1,-1,-2,-1,-1,0,0,1,1,1,1,1,1,0,0,-1,0,-1,0,-1,0,-1,0,-1,0,0,1,1,1,1,1,1,0,0,-1,-1,-2,-1,-1,0,0,1,1,1]]], ["RNG",["L2223G1-Ar224aB0","Field([E(111)])",["CyclotomicField",111],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["L2227G1-Ar228aB0","Field([E(113)])",["CyclotomicField",113],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L2229G1-Ar230aB0","Field([E(57)])",["CyclotomicField",57],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["L2233G1-Ar234aB0","Field([E(116)])",["CyclotomicField",116],[1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1]]], ["RNG",["L2239G1-Ar240aB0","Field([E(119)])",["CyclotomicField",119],[1,-1,0,0,0,0,0,1,-1,0,0,0,0,0,1,-1,0,1,-1,0,0,1,-1,0,1,-1,0,0,1,-1,0,1,-1,0,1,0,-1,0,1,-1,0,1,0,-1,0,1,-1,0,1,0,-1,1,0,-1,0,1,0,-1,1,0,-1,0,1,0,-1,1,0,-1,1,0,0,-1,1,0,-1,1,0,0,-1,1,0,-1,1,0,0,0,0,0,-1,1,0,0,0,0,0,-1,1]]], ["RNG",["L223G1-Ar24aB0","Field([E(11)])",["CyclotomicField",11],[1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L223G1-Ar24bB0","Field([E(11)])",["CyclotomicField",11],[1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L223G1-Ar24cB0","Field([E(11)])",["CyclotomicField",11],[1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L223G1-Ar24dB0","Field([E(11)])",["CyclotomicField",11],[1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L223G1-Ar24eB0","Field([E(11)])",["CyclotomicField",11],[1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L2241G1-Ar242aB0","Field([E(120)])",["CyclotomicField",120],[1,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,1]]], ["RNG",["L227G1-Ar13aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["L227G1-Ar13bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["L227G1-Ar28aB0","Field([E(13)])",["CyclotomicField",13],[1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L227G1-Ar28bB0","Field([E(13)])",["CyclotomicField",13],[1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L227G1-Ar28cB0","Field([E(13)])",["CyclotomicField",13],[1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L227G1-Ar28dB0","Field([E(13)])",["CyclotomicField",13],[1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L227G1-Ar28eB0","Field([E(13)])",["CyclotomicField",13],[1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L227G1-Ar28fB0","Field([E(13)])",["CyclotomicField",13],[1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L229G1-Ar30aB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L229G1-Ar30bB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L229G1-Ar30cB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L229G1-Ar30dB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L229G1-Ar30eB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L229G1-Ar30fB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L231G1-Ar32aB0","Field([E(15)])",["CyclotomicField",15],[1,-1,0,1,-1,1,0,-1,1]]], ["RNG",["L231G1-Ar32bB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L231G1-Ar32cB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L231G1-Ar32dB0","Field([E(15)])",["CyclotomicField",15],[1,-1,0,1,-1,1,0,-1,1]]], ["RNG",["L231G1-Ar32eB0","Field([E(15)])",["CyclotomicField",15],[1,-1,0,1,-1,1,0,-1,1]]], ["RNG",["L231G1-Ar32fB0","Field([E(15)])",["CyclotomicField",15],[1,-1,0,1,-1,1,0,-1,1]]], ["RNG",["L231G1-Ar32gB0","Field([E(15)])",["CyclotomicField",15],[1,-1,0,1,-1,1,0,-1,1]]], ["RNG",["L232G1-Ar33aB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33bB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33cB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33dB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33eB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33fB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33gB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33hB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33iB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33jB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33kB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33lB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33mB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33nB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33oB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L237G1-Ar38aB0","Field([E(9)])",["CyclotomicField",9],[1,0,0,1,0,0,1]]], ["RNG",["L241G1-Ar42aB0","Field([E(20)])",["CyclotomicField",20],[1,0,-1,0,1,0,-1,0,1]]], ["RNG",["L243G1-Ar44aB0","Field([E(21)])",["CyclotomicField",21],[1,-1,0,1,-1,0,1,0,-1,1,0,-1,1]]], ["RNG",["L247G1-Ar48aB0","Field([E(23)])",["CyclotomicField",23],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L253G1-Ar54aB0","Field([E(13)])",["CyclotomicField",13],[1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L259G1-Ar60aB0","Field([E(29)])",["CyclotomicField",29],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L261G1-Ar62aB0","Field([E(15)])",["CyclotomicField",15],[1,-1,0,1,-1,1,0,-1,1]]], ["RNG",["L264G1-Ar65aB0","Field([E(63)])",["CyclotomicField",63],[1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1]]], ["RNG",["L267G1-Ar68aB0","Field([E(33)])",["CyclotomicField",33],[1,-1,0,1,-1,0,1,-1,0,1,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["L271G1-Ar72aB0","Field([E(35)])",["CyclotomicField",35],[1,-1,0,0,0,1,-1,1,-1,0,1,-1,1,-1,1,0,-1,1,-1,1,0,0,0,-1,1]]], ["RNG",["L273G1-Ar74aB0","Field([E(36)])",["CyclotomicField",36],[1,0,0,0,0,0,-1,0,0,0,0,0,1]]], ["RNG",["L279G1-Ar80aB0","Field([E(39)])",["CyclotomicField",39],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["L27G1-Ar3aB0","Field([Sqrt(-7)])",["QuadraticField",-7],[2,1,1]]], ["RNG",["L27G1-Ar3bB0","Field([Sqrt(-7)])",["QuadraticField",-7],[2,1,1]]], ["RNG",["L283G1-Ar84aB0","Field([E(41)])",["CyclotomicField",41],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L289G1-Ar90aB0","Field([E(44)])",["CyclotomicField",44],[1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1]]], ["RNG",["L28G1-Ar7bB0","Field([EY(9)])",["AbelianNumberField",9],[1,-3,0,1]]], ["RNG",["L28G1-Ar7cB0","Field([EY(9)])",["AbelianNumberField",9],[1,-3,0,1]]], ["RNG",["L28G1-Ar7dB0","Field([EY(9)])",["AbelianNumberField",9],[1,-3,0,1]]], ["RNG",["L28G1-Ar9aB0","Field([EY(7)])",["AbelianNumberField",7],[-1,-2,1,1]]], ["RNG",["L28G1-Ar9bB0","Field([EY(7)])",["AbelianNumberField",7],[-1,-2,1,1]]], ["RNG",["L28G1-Ar9cB0","Field([EY(7)])",["AbelianNumberField",7],[-1,-2,1,1]]], ["RNG",["L297G1-Ar98aB0","Field([E(48)])",["CyclotomicField",48],[1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1]]], ["RNG",["L311G1-Ar133bB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L311G1-Ar133cB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L311G1-Ar133dB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L311G1-Ar133eB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L311G1-Ar133fB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L311G1-Ar133gB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L311G1-Ar133hB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L311G1-Ar133iB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L313G1-Ar183bB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L313G1-Ar183cB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L33G1-Ar26bB0","Field([Sqrt(-2)])",["QuadraticField",-2],[2,0,1]]], ["RNG",["L33G1-Ar26cB0","Field([Sqrt(-2)])",["QuadraticField",-2],[2,0,1]]], ["RNG",["L34G1-Ar63aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["L34G1-Ar63bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["L35G1-Ar124cB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L35G1-Ar124dB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L35G1-Ar124eB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L35G1-Ar124fB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L35G1-Ar124gB0","Field([E(24)])",["CyclotomicField",24],[1,0,0,0,-1,0,0,0,1]]], ["RNG",["L35G1-Ar124hB0","Field([E(24)])",["CyclotomicField",24],[1,0,0,0,-1,0,0,0,1]]], ["RNG",["L35G1-Ar124iB0","Field([E(24)])",["CyclotomicField",24],[1,0,0,0,-1,0,0,0,1]]], ["RNG",["L35G1-Ar124jB0","Field([E(24)])",["CyclotomicField",24],[1,0,0,0,-1,0,0,0,1]]], ["RNG",["L35G1-Ar155bB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L35G1-Ar155cB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L35G1-Ar31bB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L35G1-Ar31cB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L38G1-Ar73aB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L38G1-Ar73bB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L38G1-Ar73cB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L38G1-Ar73dB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L38G1-Ar73eB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L38G1-Ar73fB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L44G1-Ar85aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["L44G1-Ar85bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["L52d2G1-Ar30B0","Field([Sqrt(2)])",["QuadraticField",2],[-2,0,1]]], ["RNG",["M11G1-Ar10bB0","Field([Sqrt(-2)])",["QuadraticField",-2],[2,0,1]]], ["RNG",["M11G1-Ar10cB0","Field([Sqrt(-2)])",["QuadraticField",-2],[2,0,1]]], ["RNG",["S44G1-Ar204aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["S44G1-Ar204bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["S44G1-Ar51aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["S44G1-Ar51bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["S45G1-Ar13aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["S45G1-Ar13bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["S47G1-Ar25aB0","Field([Sqrt(-7)])",["QuadraticField",-7],[2,1,1]]], ["RNG",["S47G1-Ar25bB0","Field([Sqrt(-7)])",["QuadraticField",-7],[2,1,1]]], ["RNG",["S63G1-Ar13aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["S63G1-Ar13bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["S63G1-Ar78B0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["S63G1-Ar91aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["S63G1-Ar91bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["Sz8G1-Ar14aB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["Sz8G1-Ar14bB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["Sz8G1-Ar65aB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["Sz8G1-Ar65bB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["Sz8G1-Ar65cB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["U33G1-Ar21bB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["U33G1-Ar21cB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["U33G1-Ar28aB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["U33G1-Ar28bB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["U33G1-Ar6B0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["U33G1-Ar7bB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["U33G1-Ar7cB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["U34G1-Ar12B0","Field([E(13)])",["CyclotomicField",13],[1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["U34G1-Ar13aB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["U34G1-Ar13bB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["U34G1-Ar13cB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["U34G1-Ar13dB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["U34G1-Ar52aB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["U34G1-Ar52bB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["U34G1-Ar52cB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["U34G1-Ar52dB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["U42G1-Ar10B0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar10aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar10bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar30bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar30cB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar40aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar40bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar45aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar45bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar5aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar5bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U52G1-Ar66aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U52G1-Ar66bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["API",["12M22G1-p31680aB0",[1,256,"imprim","L3(2) < 3x2.(2^3:L3(2)x2)"]]], ["API",["12U62G1-p4704B0",[0,[2016,2688]]]], ["API",["12U62G1-p8064B0",[1,19,"imprim","U5(2) < 2^2x3xU5(2)"]]], ["API",["12aL34G1-p1440B0",[1,28,"imprim","L2(7) < 12xL2(7)"]]], ["API",["12bL34G1-p1440B0",[1,34,"imprim","L2(7) < 12xL2(7)"]]], ["API",["214U72G1-p10836B0",[1,4,"imprim","???"]]], ["API",["24A8G1-p128B0",[1,4,"imprim","A7 < 2^4:A7"]]], ["API",["24A8G1-p30B0",[1,3,"imprim","4^3:L3(2) < 2^4.2^3.L3(2)"]]], ["API",["25L52G1-p7440aB0",[1,12,"imprim","???"]]], ["API",["25L52G1-p7440bB0",[1,30,"imprim","???"]]], ["API",["25L52G1-p7440cB0",[1,28,"imprim","???"]]], ["API",["2A11G1-p5040B0",[1,8,"imprim","M11 < 2xM11"]]], ["API",["2A5G1-p24B0",[1,8,"imprim","5 < 2.D10"]]], ["API",["2A5G1-p40B0",[1,16,"imprim","3 < 2.S3"]]], ["API",["2A6G1-p144B0",[1,32,"imprim","5 < 2.A5"]]], ["API",["2A6G1-p240aB0",[1,88,"imprim","3 < 3^2:8"]]], ["API",["2A6G1-p240bB0",[1,88,"imprim","3 < 3^2:8"]]], ["API",["2A6G1-p80B0",[1,16,"imprim","3^2 < 3^2:8"]]], ["API",["2A7G1-p240B0",[1,20,"imprim","7:3 < 2.L3(2)"]]], ["API",["2A8G1-p240aB0",[1,10,"imprim","L3(2) < 2^(1+3):L3(2)"]]], ["API",["2A8G1-p240bB0",[1,7,"imprim","2^3:7:3 < 2^(1+3):L3(2)"]]], ["API",["2A8G1-p240cB0",[1,7,"imprim","2^3:7:3 < 2^(1+3):L3(2)"]]], ["API",["2Co1G1-p196560B0",[1,7,"imprim","Co2 < 2xCo2"]]], ["API",["2F22G1-p123552B0",[1,6,"imprim","O8+(2):S3 < O8+(2):S3x2"]]], ["API",["2F22G1-p28160B0",[1,5,"imprim","O7(3) < 2xO7(3)"]]], ["API",["2F22d2G1-p56320B0",[1,9,"imprim","O7(3) < 2xO7(3)"]]], ["API",["2F42G1-p139776B0",[1,9,"imprim","S8(2) < 2xS8(2)"]]], ["API",["2HSG1-p11200aB0",[1,16,"imprim","M11 < 2xM11"]]], ["API",["2HSG1-p4400B0",[1,13,"imprim","A8 < Isoclinic(S8x2)"]]], ["API",["2HSG1-p704B0",[1,6,"imprim","U3(5) < Isoclinic(U3(5).2x2)"]]], ["API",["2HSd2G1-p1408B0",[1,11,"imprim","U3(5) < U3(5).2"]]], ["API",["2J2G1-p1120B0",[1,20,"imprim","3.A6 < (2x3.A6).2"]]], ["API",["2J2G1-p200B0",[1,5,"imprim","U3(3) < 2xU3(3)"]]], ["API",["2L219G1-p40B0",[1,4,"imprim","19:9 < 2x19:9"]]], ["API",["2L27G1-p112B0",[1,40,"imprim","3 < 2x7:3"]]], ["API",["2L27G1-p16B0",[1,4,"imprim","7:3 < 2x7:3"]]], ["API",["2L27G1-p336B0",[1,336,"imprim","1 < 2x7:3"]]], ["API",["2L27G1-p48B0",[1,12,"imprim","7 < 2x7:3"]]], ["API",["2L27d2G1-p224B0",[1,80,"imprim","3 < 2.L2(7)"]]], ["API",["2L27d2G1-p32B0",[1,8,"imprim","7:3 < 2.L2(7)"]]], ["API",["2L27d2G1-p672B0",[1,672,"imprim","1 < 2.L2(7)"]]], ["API",["2L27d2G1-p96B0",[1,24,"imprim","7 < 2.L2(7)"]]], ["API",["2L27d2iG1-p112aB0",[1,23,"imprim","S3 < 2.D12"]]], ["API",["2L27d2iG1-p112bB0",[1,21,"imprim","6 < 2x7:6"]]], ["API",["2L27d2iG1-p16aB0",[1,3,"imprim","7:6 < 2x7:6"]]], ["API",["2L27d2iG1-p16bB0",[1,3,"imprim","7:6 < 2x7:6"]]], ["API",["2L27d2iG1-p224B0",[1,80,"imprim","3 < 2.L2(7)"]]], ["API",["2L27d2iG1-p32B0",[1,8,"imprim","7:3 < 2.L2(7)"]]], ["API",["2L27d2iG1-p336B0",[1,171,"imprim","2 < 2.D12"]]], ["API",["2L27d2iG1-p48aB0",[1,9,"imprim","D14 < 2x7:6"]]], ["API",["2L27d2iG1-p48bB0",[1,9,"imprim","D14 < 2x7:6"]]], ["API",["2L27d2iG1-p672B0",[1,672,"imprim","1 < 2.L2(7)"]]], ["API",["2L27d2iG1-p96B0",[1,24,"imprim","7 < 2.L2(7)"]]], ["API",["2L34G1-p112aB0",[1,6,"imprim","A6 < 2xA6"]]], ["API",["2L34G1-p112bB0",[1,5,"imprim","A6 < 2xA6"]]], ["API",["2L34G1-p112cB0",[1,5,"imprim","A6 < 2xA6"]]], ["API",["2L34G1-p240aB0",[1,8,"imprim","L2(7) < 2xL2(7)"]]], ["API",["2L34G1-p240bB0",[1,7,"imprim","L2(7) < 2xL2(7)"]]], ["API",["2L34G1-p240cB0",[1,7,"imprim","L2(7) < 2xL2(7)"]]], ["API",["2M12G1-p24aB0",[1,3,"imprim","M11 < 2xM11"]]], ["API",["2M12d2G1-p48B0",[1,5,"imprim","M11 < 2.M12"]]], ["API",["2M22G1-p352aB0",[1,5,"imprim","A7 < 2xA7"]]], ["API",["2M22G1-p660B0",[1,7,"imprim","2^3:L3(2) < 2x2^3:L3(2)"]]], ["API",["2O73G1-p2160B0",[1,5,"imprim","G2(3) < 2xG2(3)"]]], ["API",["2O8p3G1-p2160aB0",[1,5,"imprim","O7(3) < 2xO7(3)"]]], ["API",["2O8p3G1-p2160bB0",[1,5,"imprim","O7(3) < 2xO7(3)"]]], ["API",["2O8p3G1-p2240B0",[1,5,"imprim","3^6:L4(3) < 2x3^6:L4(3)"]]], ["API",["2RuG1-p16240B0",[1,9,"imprim","2F4(2)' < Isoclinic(2F4(2)'.2x2)"]]], ["API",["2S45G1-p624B0",[1,9,"imprim","5^(1+2)_+:2A5 < 5^(1+2)_+:(4x2.A5)"]]], ["API",["2S5G1-p40aB0",[1,11,"imprim","S3 < 2.S4"]]], ["API",["2S5G1-p40bB0",[1,9,"imprim","6 < 2.(2xS3)"]]], ["API",["2S5G1-p48B0",[1,16,"imprim","5 < 2.A5"]]], ["API",["2S5iG1-p48B0",[1,16,"imprim","5 < 2.A5"]]], ["API",["2S5iG1-p80B0",[1,32,"imprim","3 < 2.A5"]]], ["API",["2S62G1-p1920B0",[1,10,"imprim","L2(8).3 < 2xL2(8).3"]]], ["API",["2S62G1-p2160B0",[1,13,"imprim","2^3.L3(2) < 2^7.L3(2)"]]], ["API",["2S62G1-p240aB0",[1,4,"imprim","U3(3).2 < 2xU3(3).2"]]], ["API",["2S62G1-p240bB0",[1,5,"imprim","U3(3).2 < 2xU3(3).2"]]], ["API",["2S62G1-p480B0",[1,8,"imprim","U3(3) < 2xU3(3).2"]]], ["API",["2S63d2G1-p728B0",[1,4,"imprim","3^(1+4)_+:2U4(2) < 2x3^(1+4)_+:2U4(2)"]]], ["API",["2S6G1-p240aB0",[1,56,"imprim","S3 < 2.S5"]]], ["API",["2S6G1-p288B0",[1,64,"imprim","5 < 2.S5"]]], ["API",["2S6G1-p80B0",[1,10,"imprim","3xS3 < 3^2:QD16"]]], ["API",["2SuzG1-p65520B0",[1,10,"imprim","U5(2) < 2xU5(2)"]]], ["API",["2Sz8G1-p1040B0",[1,23,"imprim","2^3:7 < 2^(4+3):7"]]], ["API",["2U42G1-p240B0",[1,9,"imprim","3^(1+2)_+:Q8 < 2x3^(1+2)_+:2A4"]]], ["API",["2U42G1-p80B0",[1,5,"imprim","3^(1+2)_+:2A4 < 2x3^(1+2)_+:2A4"]]], ["API",["2U42d2G1-p240B0",[1,6,"imprim","3^(1+2)_+:QD16 < 2x3^(1+2)_+:2S4"]]], ["API",["2U62G1-p12672aB0",[1,7,"imprim","S6(2) < 2xS6(2)"]]], ["API",["2U62G1-p12672bB0",[1,6,"imprim","S6(2) < 2xS6(2)"]]], ["API",["2U62G1-p12672cB0",[1,6,"imprim","S6(2) < 2xS6(2)"]]], ["API",["2U62G1-p1344B0",[1,5,"imprim","U5(2) < 2xU5(2)"]]], ["API",["2U62G1-p2816aB0",[1,5,"imprim","U4(3).2_2 < 2xU4(3).2_2"]]], ["API",["2U62G1-p2816bB0",[1,5,"imprim","U4(3).2_2 < 2xU4(3).2_2"]]], ["API",["2U62G1-p41472B0",[1,15,"imprim","M22 < 2xM22"]]], ["API",["2U62G1-p5632B0",[1,9,"imprim","U4(3) < 2xU4(3).2_2"]]], ["API",["2aM20G1-p12aB0",[1,3,"imprim","2^4:D10 < 2x2^4:D10"]]], ["API",["2aM20G1-p12bB0",[1,3,"imprim","2^4:D10 < 2x2^4:D10"]]], ["API",["2aM20G1-p20aB0",[1,4,"imprim","2^4:S3 < 2x2^4:S3"]]], ["API",["2aM20G1-p20bB0",[1,4,"imprim","2^4:S3 < 2x2^4:S3"]]], ["API",["2bM20G1-p120aB0",[1,64,"imprim","2^4 < 2^5.A4"]]], ["API",["2cM20G1-p24B0",[1,6,"imprim","2^4:5 < 2x2^4:5"]]], ["API",["3A6G1-p18aB0",[1,4,"imprim","A5 < 3xA5"]]], ["API",["3A6G1-p18bB0",[1,4,"imprim","A5 < 3xA5"]]], ["API",["3A6G1-p45aB0",[1,7,"imprim","S4 < 3xS4"]]], ["API",["3A6G1-p45bB0",[1,7,"imprim","S4 < 3xS4"]]], ["API",["3A7G1-p315B0",[1,28,"imprim","S4 < 3.A6"]]], ["API",["3A7G1-p45aB0",[1,4,"imprim","L2(7) < 3xL2(7)"]]], ["API",["3A7G1-p45bB0",[1,4,"imprim","L2(7) < 3xL2(7)"]]], ["API",["3A7G1-p63B0",[1,7,"imprim","S5 < 3xS5"]]], ["API",["3F22G1-p185328B0",[1,10,"imprim","O8+(2):S3 < 3xO8+(2):S3"]]], ["API",["3F22d2G1-p185328B0",[1,7,"imprim","O8+(2):S3x2 < S3xO8+(2):S3"]]], ["API",["3F24G1-p920808B0",[1,7,"imprim","Fi23 < 3xFi23"]]], ["API",["3F24d2G1-p920808B0",[1,5,"imprim","Fi23x2 < Fi23xS3"]]], ["API",["3G23G1-p1134B0",[1,8,"imprim","L3(3).2 < 3xL3(3).2"]]], ["API",["3L34G1-p360aB0",[1,10,"imprim","L2(7) < 3xL2(7)"]]], ["API",["3L34G1-p360bB0",[1,10,"imprim","L2(7) < 3xL2(7)"]]], ["API",["3L34G1-p360cB0",[1,10,"imprim","L2(7) < 3xL2(7)"]]], ["API",["3L34G1-p63aB0",[1,4,"imprim","2^4:A5 < 3x2^4:A5"]]], ["API",["3L34G1-p63bB0",[1,4,"imprim","2^4:A5 < 3x2^4:A5"]]], ["API",["3M22G1-p2016B0",[1,16,"imprim","L2(11) < 3xL2(11)"]]], ["API",["3M22G1-p693B0",[1,10,"imprim","2^4:S5 < 3x2^4:S5"]]], ["API",["3M22G1-p990B0",[1,13,"imprim","2^3:L3(2) < 3x2^3:L3(2)"]]], ["API",["3McLG1-p103950B0",[1,36,"imprim","U4(2) < 3_2.U4(3)"]]], ["API",["3McLG1-p340200B0",[1,111,"imprim","M11 < 3xM11"]]], ["API",["3McLG1-p66825B0",[1,14,"imprim","2.A8 < 3x2.A8"]]], ["API",["3ONG1-p368280B0",[1,11,"imprim","L3(7).2 < 3xL3(7).2"]]], ["API",["3ONd2G1-p736560B0",[1,19,"imprim","L3(7).2 < 3.ON"]]], ["API",["3S6G1-p18aB0",[1,3,"imprim","S5 < (3xA5):2"]]], ["API",["3S6G1-p18bB0",[1,3,"imprim","S5 < (3xA5):2"]]], ["API",["3S6G1-p45aB0",[1,5,"imprim","S4x2 < S4xS3"]]], ["API",["3S6G1-p45bB0",[1,5,"imprim","S4x2 < S4xS3"]]], ["API",["3S7G1-p63B0",[1,5,"imprim","S5x2 < S5xS3"]]], ["API",["3S7G1-p90B0",[1,8,"imprim","L2(7) < 3.A7"]]], ["API",["3SuzG1-p405405B0",[1,23,"imprim","2^(1+6)_-.U4(2) < 3x2^(1+6)_-.U4(2)"]]], ["API",["3SuzG1-p5346B0",[1,7,"imprim","G2(4) < 3xG2(4)"]]], ["API",["3SuzG1-p98280B0",[1,14,"imprim","U5(2) < 3xU5(2)"]]], ["API",["3Suzd2G1-p5346B0",[1,5,"imprim","G2(4).2 < (3xG2(4)).2"]]], ["API",["3U38G1-p32832B0",[1,145,"imprim","L2(8) < 9xL2(8)"]]], ["API",["3U38G1-p4617B0",[1,18,"imprim","2^(3+6):7 < 2^(3+6):63"]]], ["API",["3U62G1-p18711B0",[1,11,"imprim","2^(4+8):(S3xA5) < 3x2^(4+8):(S3xA5)"]]], ["API",["3U62G1-p19008aB0",[1,10,"imprim","S6(2) < 3xS6(2)"]]], ["API",["3U62G1-p19008bB0",[1,10,"imprim","S6(2) < 3xS6(2)"]]], ["API",["3U62G1-p19008cB0",[1,10,"imprim","S6(2) < 3xS6(2)"]]], ["API",["3U62G1-p2016B0",[1,7,"imprim","U5(2) < 3xU5(2)"]]], ["API",["3U62G1-p2079B0",[1,7,"imprim","2^(1+8)_+:U4(2) < 3x2^(1+8)_+:U4(2)"]]], ["API",["4M22G1-p4928aB0",[1,40,"imprim","A6 < 4_1.L3(4)"]]], ["API",["4M22G1-p4928bB0",[1,40,"imprim","A6 < (4xA6).2_3"]]], ["API",["4Sz8d3G1-p2080B0",[1,19,"imprim","2^3:7:3 < 2^2.2^(3+3):7:3"]]], ["API",["4U62G1-p2688B0",[1,9,"imprim","U5(2) < 2^2xU5(2)"]]], ["API",["4aL34G1-p224B0",[1,8,"imprim","A6 < 4xA6"]]], ["API",["4aL34G1-p480B0",[1,12,"imprim","L2(7) < 4xL2(7)"]]], ["API",["4bL34G1-p224B0",[1,10,"imprim","A6 < 4xA6"]]], ["API",["4bL34G1-p480B0",[1,14,"imprim","L2(7) < 4xL2(7)"]]], ["API",["53L35G2-p3875aB0",[1,12,"imprim","???"]]], ["API",["53L35G2-p3875bB0",[1,5,"imprim","???"]]], ["API",["53L35G2-p4650B0",[1,20,"imprim","???"]]], ["API",["6A6G1-p432B0",[1,96,"imprim","5 < 3x2.A5"]]], ["API",["6A6G1-p720aB0",[1,248,"imprim","3 < 3x2.A5"]]], ["API",["6A7G1-p720B0",[1,44,"imprim","7:3 < 3x2.L3(2)"]]], ["API",["6L34G1-p720aB0",[1,20,"imprim","L2(7) < 6xL2(7)"]]], ["API",["6L34G1-p720bB0",[1,17,"imprim","L2(7) < 6xL2(7)"]]], ["API",["6L34G1-p720cB0",[1,17,"imprim","L2(7) < 6xL2(7)"]]], ["API",["6M22G1-p1980B0",[1,17,"imprim","2^3:L3(2) < 6x2^3:L3(2)"]]], ["API",["6S6G1-p720aB0",[1,136,"imprim","S3 < (3x2.A5):2"]]], ["API",["6SuzG1-p196560B0",[1,26,"imprim","U5(2) < 6xU5(2)"]]], ["API",["6U62G1-p38016aB0",[1,17,"imprim","S6(2) < 6xS6(2)"]]], ["API",["6U62G1-p38016bB0",[1,14,"imprim","S6(2) < 6xS6(2)"]]], ["API",["6U62G1-p38016cB0",[1,14,"imprim","S6(2) < 6xS6(2)"]]], ["API",["6U62G1-p4032B0",[1,11,"imprim","U5(2) < 6xU5(2)"]]], ["API",["9U43D8G1-p756aB0",[1,7,"imprim","???"]]], ["API",["9U43D8G1-p756bB0",[1,7,"imprim","???"]]], ["API",["9U43D8G1-p972B0",[1,7,"imprim","???"]]], ["API",["A10G1-p10B0",[8,2,"prim","A9",1]]], ["API",["A10G1-p120B0",[1,4,"prim","(A7x3):2",3]]], ["API",["A10G1-p126B0",[1,3,"prim","(A5xA5):4",4]]], ["API",["A10G1-p210B0",[1,5,"prim","(A6xA4):2",5]]], ["API",["A10G1-p2520B0",[1,12,"prim","A6.2_3",7]]], ["API",["A10G1-p45B0",[1,3,"prim","S8",2]]], ["API",["A10G1-p945B0",[1,7,"prim","2^4:S5",6]]], ["API",["A11G1-p11B0",[9,2,"prim","A10",1]]], ["API",["A11G1-p165B0",[1,4,"prim","(A8x3):2",3]]], ["API",["A11G1-p2520aB0",[1,5,"prim","M11",6]]], ["API",["A11G1-p2520bB0",[1,5,"prim","M11",7]]], ["API",["A11G1-p330B0",[1,5,"prim","(A7xA4):2",4]]], ["API",["A11G1-p462B0",[1,6,"prim","(A6xA5):2",5]]], ["API",["A11G1-p55B0",[1,3,"prim","S9",2]]], ["API",["A12G1-p12B0",[10,2,"prim","A11",1]]], ["API",["A12G1-p220B0",[1,4,"prim","(A9x3):2",3]]], ["API",["A12G1-p2520B0",[1,4,"prim","M12",7]]], ["API",["A12G1-p462B0",[1,4,"prim","(A6xA6):2^2",4]]], ["API",["A12G1-p495B0",[1,5,"prim","(A8xA4):2",5]]], ["API",["A12G1-p66B0",[1,3,"prim","S10",2]]], ["API",["A12G1-p792B0",[1,6,"prim","(A7xA5):2",6]]], ["API",["A13G1-p13B0",[11,2,"prim","A12",1]]], ["API",["A13G1-p78B0",[1,3,"prim","S11",2]]], ["API",["A14G1-p1001B0",[1,5,"prim","(A10xA4):2",4]]], ["API",["A14G1-p14B0",[12,2,"prim","A13",1]]], ["API",["A14G1-p1716B0",[1,4,"prim","(A7xA7):2^2",5]]], ["API",["A14G1-p2002B0",[1,6,"prim","(A9xA5):2",6]]], ["API",["A14G1-p3003B0",[1,7,"prim","(A8xA6):2",7]]], ["API",["A14G1-p364B0",[1,4,"prim","(A11x3):2",3]]], ["API",["A14G1-p91B0",[1,3,"prim","S12",2]]], ["API",["A15G1-p105B0",[1,3,"prim","S13",2]]], ["API",["A15G1-p1365B0",[1,5,"prim","(A11xA4):2",4]]], ["API",["A15G1-p15B0",[13,2,"prim","A14",1]]], ["API",["A15G1-p455B0",[1,4,"prim","(A12x3):2",3]]], ["API",["A16G1-p120B0",[1,3,"prim","S14",2]]], ["API",["A16G1-p16B0",[14,2,"prim","A15",1]]], ["API",["A16G1-p1820B0",[1,5,"prim","(A12xA4):2",4]]], ["API",["A16G1-p560B0",[1,4,"prim","(A13x3):2",3]]], ["API",["A17G1-p136B0",[1,3,"prim","S15",2]]], ["API",["A17G1-p17B0",[15,2,"prim","A16",1]]], ["API",["A17G1-p2380B0",[1,5,"prim","(A13xA4):2",4]]], ["API",["A17G1-p680B0",[1,4,"prim","(A14x3):2",3]]], ["API",["A18G1-p153B0",[1,3,"prim","S16",2]]], ["API",["A18G1-p18B0",[16,2,"prim","A17",1]]], ["API",["A18G1-p3060B0",[1,5,"prim","(A14xA4):2",4]]], ["API",["A18G1-p816B0",[1,4,"prim","(A15x3):2",3]]], ["API",["A19G1-p171B0",[1,3,"prim","S17",2]]], ["API",["A19G1-p19B0",[17,2,"prim","A18",1]]], ["API",["A19G1-p969B0",[1,4,"prim","(A16x3):2",3]]], ["API",["A20G1-p190B0",[1,3,"prim","S18",2]]], ["API",["A20G1-p20B0",[18,2,"prim","A19",1]]], ["API",["A21G1-p210B0",[1,3,"prim","S19",2]]], ["API",["A21G1-p21B0",[19,2,"prim","A20",1]]], ["API",["A22G1-p22B0",[20,2,"prim","A21",1]]], ["API",["A22G1-p231B0",[1,3,"prim","S20",2]]], ["API",["A23G1-p23B0",[21,2,"prim","A22",1]]], ["API",["A23G1-p253B0",[1,3,"prim","S21",2]]], ["API",["A5G1-p10B0",[1,3,"prim","S3",3]]], ["API",["A5G1-p5B0",[3,2,"prim","A4",1]]], ["API",["A5G1-p6B0",[2,2,"prim","D10",2]]], ["API",["A6G1-p10B0",[2,2,"prim","3^2:4",3]]], ["API",["A6G1-p15aB0",[1,3,"prim","S4",4]]], ["API",["A6G1-p15bB0",[1,3,"prim","S4",5]]], ["API",["A6G1-p6aB0",[4,2,"prim","A5",1]]], ["API",["A6G1-p6bB0",[4,2,"prim","A5",2]]], ["API",["A6V4G1-p10B0",[3,2,"prim","3^2:Q8.2",4]]], ["API",["A7G1-p7B0",[5,2,"prim","A6",1]]], ["API",["A8G1-p15aB0",[2,2,"prim","2^3:L3(2)",2]]], ["API",["A8G1-p15bB0",[2,2,"prim","2^3:L3(2)",3]]], ["API",["A8G1-p8B0",[6,2,"prim","A7",1]]], ["API",["A9G1-p120aB0",[1,3,"prim","L2(8):3",4]]], ["API",["A9G1-p120bB0",[1,3,"prim","L2(8):3",5]]], ["API",["A9G1-p126B0",[1,5,"prim","(A5xA4):2",6]]], ["API",["A9G1-p280B0",[1,5,"prim","3^3:S4",7]]], ["API",["A9G1-p36B0",[1,3,"prim","S7",2]]], ["API",["A9G1-p840B0",[1,12,"prim","3^2:2A4",8]]], ["API",["A9G1-p84B0",[1,4,"prim","(A6x3):2_1",3]]], ["API",["A9G1-p9B0",[7,2,"prim","A8",1]]], ["API",["Co1G1-p98280B0",[1,4,"prim","Co2",1]]], ["API",["Co2G1-p2300B0",[1,3,"prim","U6(2).2",1]]], ["API",["Co2G1-p4600B0",[1,5,"imprim","U6(2) < U6(2).2"]]], ["API",["Co3G1-p11178B0",[1,5,"prim","HS",2]]], ["API",["Co3G1-p128800B0",[1,6,"prim","3^5:(2xM11)",5]]], ["API",["Co3G1-p276B0",[2,2,"prim","McL.2",1]]], ["API",["Co3G1-p37950B0",[1,8,"prim","U4(3).(2^2)_{133}",3]]], ["API",["Co3G1-p48600B0",[1,8,"prim","M23",4]]], ["API",["Co3G1-p552B0",[1,4,"imprim","McL < McL.2"]]], ["API",["F22G1-p14080bB0",[1,3,"prim","O7(3)",3]]], ["API",["F22G1-p142155B0",[1,8,"prim","2^10:M22",5]]], ["API",["F22G1-p3510B0",[1,3,"prim","2.U6(2)",1]]], ["API",["F22G1-p61776B0",[1,4,"prim","O8+(2):S3",4]]], ["API",["F22G1-p694980B0",[1,10,"prim","2^6:S6(2)",6]]], ["API",["F22d2G1-p3510B0",[1,3,"prim","2.U6(2).2",2]]], ["API",["F23G1-p137632B0",[1,3,"prim","O8+(3):S3",2]]], ["API",["F23G1-p275264B0",[1,5,"imprim","O8+(3).3 < O8+(3):S3"]]], ["API",["F23G1-p31671B0",[1,3,"prim","2.Fi22",1]]], ["API",["F24G1-p306936B0",[1,3,"prim","Fi23",1]]], ["API",["F24d2G1-p306936B0",[1,3,"prim","Fi23x2",2]]], ["API",["F42G1-p69888aB0",[1,5,"prim","S8(2)",3]]], ["API",["G23d2G1-p756B0",[1,6,"imprim","L3(3) < L3(3):2"]]], ["API",["G24G1-p1365aB0",[1,4,"prim","2^(2+8):(3xA5)",2]]], ["API",["G24G1-p1365bB0",[1,4,"prim","2^(4+6):(A5x3)",3]]], ["API",["G24G1-p2016B0",[1,3,"prim","U3(4).2",4]]], ["API",["G24G1-p20800B0",[1,14,"prim","U3(3).2",6]]], ["API",["G24G1-p2080B0",[1,4,"prim","3.L3(4).2_3",5]]], ["API",["G24G1-p416B0",[1,3,"prim","J2",1]]], ["API",["G25G1-p3906aB0",[1,4,"prim","5^(1+4)_+:GL(2,5)",1]]], ["API",["G25G1-p3906bB0",[1,4,"prim","5^(2+3):GL2(5)",2]]], ["API",["G25G1-p7750B0",[1,4,"prim","3.U3(5).2",3]]], ["API",["G25G1-p7875B0",[1,5,"prim","L3(5).2",4]]], ["API",["HNG1-p1140000B0",[1,12,"prim","A12",1]]], ["API",["HSG1-p100B0",[1,3,"prim","M22",1]]], ["API",["HSG1-p1100aB0",[1,5,"prim","L3(4).2_1",4]]], ["API",["HSG1-p1100bB0",[1,5,"prim","S8",5]]], ["API",["HSG1-p15400B0",[1,27,"prim","2xA6.2^2",11]]], ["API",["HSG1-p176bB0",[2,2,"prim","U3(5).2",3]]], ["API",["HSG1-p3850B0",[1,12,"prim","2^4.S6",6]]], ["API",["HSG1-p4125B0",[1,9,"prim","4^3:L3(2)",7]]], ["API",["HSG1-p5600aB0",[1,9,"prim","M11",8]]], ["API",["HSd2G1-p100B0",[1,3,"prim","M22.2",2]]], ["API",["HSd2G1-p1100bB0",[1,5,"prim","S8x2",4]]], ["API",["HSd2G1-p15400B0",[1,20,"prim","(2xA6.2^2).2",8]]], ["API",["HSd2G1-p352B0",[1,4,"imprim","U3(5).2 < HS"]]], ["API",["HeG1-p2058B0",[1,5,"prim","S4(4):2",1]]], ["API",["HeG1-p244800B0",[1,36,"prim","7^2:2L2(7)",6]]], ["API",["HeG1-p29155B0",[1,12,"prim","2^6:3.S6",3]]], ["API",["HeG1-p8330B0",[1,7,"prim","2^2.L3(4).S3",2]]], ["API",["Hed2G1-p2058B0",[1,4,"prim","S4(4):4",2]]], ["API",["Hed2G1-p8330B0",[1,6,"prim","2^2.L3(4).D12",3]]], ["API",["J1G1-p1045B0",[1,11,"prim","2^3:7:3",2]]], ["API",["J1G1-p1463B0",[1,22,"prim","2xA5",3]]], ["API",["J1G1-p1540B0",[1,21,"prim","19:6",4]]], ["API",["J1G1-p1596B0",[1,19,"prim","11:10",5]]], ["API",["J1G1-p266B0",[1,5,"prim","L2(11)",1]]], ["API",["J1G1-p2926B0",[1,67,"prim","D6xD10",6]]], ["API",["J1G1-p4180B0",[1,107,"prim","7:6",7]]], ["API",["J2G1-p1008B0",[1,11,"prim","A5xD10",6]]], ["API",["J2G1-p100B0",[1,3,"prim","U3(3)",1]]], ["API",["J2G1-p1800B0",[1,18,"prim","L3(2).2",7]]], ["API",["J2G1-p280B0",[1,4,"prim","3.A6.2_2",2]]], ["API",["J2G1-p315B0",[1,6,"prim","2^(1+4)_-:A5",3]]], ["API",["J2G1-p525B0",[1,6,"prim","2^(2+4):(3xS3)",4]]], ["API",["J2G1-p840B0",[1,7,"prim","A4xA5",5]]], ["API",["J2d2G1-p100B0",[1,3,"prim","U3(3).2",2]]], ["API",["J3G1-p14688aB0",[1,14,"prim","L2(19)",2]]], ["API",["J3G1-p14688bB0",[1,14,"prim","L2(19)",3]]], ["API",["J3G1-p17442B0",[1,19,"prim","2^4:(3xA5)",4]]], ["API",["J3G1-p20520B0",[1,22,"prim","L2(17)",5]]], ["API",["J3G1-p23256B0",[1,28,"prim","(3xA6):2_2",6]]], ["API",["J3G1-p25840B0",[1,20,"prim","3^2.3^(1+2)_+:8",7]]], ["API",["J3G1-p26163B0",[1,27,"prim","2^(1+4)_-:A5",8]]], ["API",["J3G1-p43605B0",[1,57,"prim","2^(2+4).(3xS3)",9]]], ["API",["J3G1-p6156B0",[1,8,"prim","L2(16).2",1]]], ["API",["J3d2G1-p6156B0",[1,7,"prim","L2(16).4",2]]], ["API",["L211G1-p11aB0",[2,2,"prim","A5",1]]], ["API",["L211G1-p11bB0",[2,2,"prim","A5",2]]], ["API",["L211G1-p12B0",[2,2,"prim","11:5",3]]], ["API",["L211G1-p55B0",[1,9,"prim","S3x2",4]]], ["API",["L211d2G1-p12B0",[3,2,"prim","11:10",2]]], ["API",["L211d2G1-p22B0",[1,4,"imprim","A5 < L2(11)"]]], ["API",["L211d2G1-p55aB0",[1,6,"prim","D24",3]]], ["API",["L211d2G1-p55bB0",[1,6,"prim","S4",4]]], ["API",["L211d2G1-p66B0",[1,7,"prim","D20",5]]], ["API",["L213G1-p14B0",[2,2,"prim","13:6",1]]], ["API",["L213d2G1-p14B0",[3,2,"prim","13:12",2]]], ["API",["L213d2G1-p78B0",[1,7,"prim","D28",3]]], ["API",["L213d2G1-p91aB0",[1,8,"prim","D24",4]]], ["API",["L216G1-p17B0",[3,2,"prim","2^4:15",1]]], ["API",["L217G1-p18B0",[2,2,"prim","17:8",1]]], ["API",["L217d2G1-p18B0",[3,2,"prim","17:16",2]]], ["API",["L219G1-p171B0",[1,15,"prim","D20",4]]], ["API",["L219G1-p190B0",[1,16,"prim","D18",5]]], ["API",["L219G1-p20B0",[2,2,"prim","19:9",1]]], ["API",["L219G1-p57aB0",[1,4,"prim","A5",2]]], ["API",["L219G1-p57bB0",[1,4,"prim","A5",3]]], ["API",["L219d2G1-p114B0",[1,8,"imprim","A5 < L2(19)"]]], ["API",["L219d2G1-p171B0",[1,10,"prim","D40",3]]], ["API",["L219d2G1-p190B0",[1,11,"prim","D36",4]]], ["API",["L219d2G1-p20B0",[3,2,"prim","19:18",2]]], ["API",["L219d2G1-p285B0",[1,18,"prim","S4",5]]], ["API",["L223G1-p24B0",[2,2,"prim","23:11",1]]], ["API",["L227G1-p28B0",[2,2,"prim","3^3:13",1]]], ["API",["L229G1-p30B0",[2,2,"prim","29:14",1]]], ["API",["L231G1-p32B0",[2,2,"prim","31:15",1]]], ["API",["L232G1-p33B0",[3,2,"prim","2^5:31",1]]], ["API",["L232G1-p496B0",[1,16,"prim","D66",2]]], ["API",["L232G1-p528B0",[1,17,"prim","D62",3]]], ["API",["L232d5G1-p33B0",[3,2,"prim","2^5:31:5",2]]], ["API",["L232d5G1-p496B0",[1,4,"prim","33:10",3]]], ["API",["L232d5G1-p528B0",[1,5,"prim","31:10",4]]], ["API",["L249G1-p1176B0",[1,36,"prim","D50",6]]], ["API",["L249G1-p1225B0",[1,39,"prim","D48",7]]], ["API",["L249G1-p175aB0",[1,5,"prim","L3(2).2",2]]], ["API",["L249G1-p175bB0",[1,5,"prim","L3(2).2",3]]], ["API",["L249G1-p50B0",[2,2,"prim","7^2:24",1]]], ["API",["L249G1-p980aB0",[1,24,"prim","A5",4]]], ["API",["L249G1-p980bB0",[1,24,"prim","A5",5]]], ["API",["L27G1-p14aB0",[1,3,"imprim","A4 < S4"]]], ["API",["L27G1-p14bB0",[1,3,"imprim","A4 < S4"]]], ["API",["L27G1-p168B0",[1,168,"imprim","1 < S4"]]], ["API",["L27G1-p21B0",[1,6,"imprim","D8 < S4"]]], ["API",["L27G1-p24B0",[1,6,"imprim","7 < 7:3"]]], ["API",["L27G1-p28B0",[1,7,"imprim","S3 < S4"]]], ["API",["L27G1-p42aB0",[1,15,"imprim","2^2 < S4"]]], ["API",["L27G1-p42bB0",[1,15,"imprim","2^2 < S4"]]], ["API",["L27G1-p42cB0",[1,12,"imprim","4 < S4"]]], ["API",["L27G1-p56B0",[1,20,"imprim","3 < S4"]]], ["API",["L27G1-p7aB0",[2,2,"prim","S4",1]]], ["API",["L27G1-p7bB0",[2,2,"prim","S4",2]]], ["API",["L27G1-p84B0",[1,44,"imprim","2 < S4"]]], ["API",["L27G1-p8B0",[2,2,"prim","7:3",3]]], ["API",["L27d2G1-p112B0",[1,40,"imprim","3 < 7:3"]]], ["API",["L27d2G1-p14B0",[1,4,"imprim","S4 < L2(7)"]]], ["API",["L27d2G1-p168aB0",[1,88,"imprim","2 < S4"]]], ["API",["L27d2G1-p168bB0",[1,87,"imprim","2 < D12"]]], ["API",["L27d2G1-p16B0",[1,4,"imprim","7:3 < 7:6"]]], ["API",["L27d2G1-p21B0",[1,4,"prim","D16",3]]], ["API",["L27d2G1-p24B0",[1,6,"imprim","D14 < 7:6"]]], ["API",["L27d2G1-p28B0",[1,5,"prim","D12",4]]], ["API",["L27d2G1-p28bB0",[1,6,"imprim","A4 < S4"]]], ["API",["L27d2G1-p336B0",[1,336,"imprim","1 < L2(7)"]]], ["API",["L27d2G1-p42aB0",[1,12,"imprim","D8 < S4"]]], ["API",["L27d2G1-p42bB0",[1,9,"imprim","D8 < D16"]]], ["API",["L27d2G1-p42cB0",[1,7,"imprim","8 < D16"]]], ["API",["L27d2G1-p48B0",[1,12,"imprim","7 < 7:6"]]], ["API",["L27d2G1-p56aB0",[1,14,"imprim","S3 < S4"]]], ["API",["L27d2G1-p56bB0",[1,13,"imprim","S3 < D12"]]], ["API",["L27d2G1-p56cB0",[1,11,"imprim","6 < D12"]]], ["API",["L27d2G1-p84aB0",[1,30,"imprim","2^2 < S4"]]], ["API",["L27d2G1-p84bB0",[1,25,"imprim","2^2 < D12"]]], ["API",["L27d2G1-p84cB0",[1,24,"imprim","4 < S4"]]], ["API",["L27d2G1-p8B0",[3,2,"prim","7:6",2]]], ["API",["L28G1-p28B0",[1,4,"prim","D18",2]]], ["API",["L28G1-p36B0",[1,5,"prim","D14",3]]], ["API",["L28G1-p9B0",[3,2,"prim","2^3:7",1]]], ["API",["L28d3G1-p28B0",[2,2,"prim","9:6",3]]], ["API",["L28d3G1-p36B0",[1,3,"prim","7:6",4]]], ["API",["L28d3G1-p9B0",[3,2,"prim","2^3:7:3",2]]], ["API",["L311G1-p133B0",[2,2,"prim","11^2:(5x2L2(11).2)",1]]], ["API",["L313G1-p183aB0",[2,2,"prim","13^2:GL(2,13)",1]]], ["API",["L313G1-p183bB0",[2,2,"prim","13^2:GL(2,13)",2]]], ["API",["L33G1-p13aB0",[2,2,"prim","3^2:2S4",1]]], ["API",["L33G1-p13bB0",[2,2,"prim","3^2:2S4",2]]], ["API",["L33G1-p144B0",[1,8,"prim","13:3",3]]], ["API",["L33G1-p234B0",[1,18,"prim","S4",4]]], ["API",["L33d2G1-p117B0",[1,6,"prim","2S4:2",3]]], ["API",["L33d2G1-p144B0",[1,6,"prim","13:6",4]]], ["API",["L33d2G1-p234B0",[1,12,"prim","S4x2",5]]], ["API",["L33d2G1-p26B0",[1,4,"imprim","3^2:2S4 < L3(3)"]]], ["API",["L33d2G1-p52B0",[1,4,"prim","3^(1+2)_+:D8",2]]], ["API",["L34G1-p120aB0",[1,4,"prim","L3(2)",6]]], ["API",["L34G1-p120bB0",[1,4,"prim","L3(2)",7]]], ["API",["L34G1-p120cB0",[1,4,"prim","L3(2)",8]]], ["API",["L34G1-p21aB0",[2,2,"prim","2^4:A5",1]]], ["API",["L34G1-p21bB0",[2,2,"prim","2^4:A5",2]]], ["API",["L34G1-p280B0",[1,8,"prim","3^2:Q8",9]]], ["API",["L34G1-p56aB0",[1,3,"prim","A6",3]]], ["API",["L34G1-p56bB0",[1,3,"prim","A6",4]]], ["API",["L34G1-p56cB0",[1,3,"prim","A6",5]]], ["API",["L35G1-p31aB0",[2,2,"prim","5^2:GL2(5)",1]]], ["API",["L35G1-p31bB0",[2,2,"prim","5^2:GL2(5)",2]]], ["API",["L35d2G1-p186B0",[1,4,"prim","5^(1+2)_+:[2^5]",2]]], ["API",["L35d2G1-p3100B0",[1,32,"prim","S5x2",4]]], ["API",["L35d2G1-p3875B0",[1,35,"prim","4^2:D12",5]]], ["API",["L35d2G1-p4000B0",[1,35,"prim","31:6",6]]], ["API",["L35d2G1-p62B0",[1,4,"imprim","5^2:GL2(5) < L3(5)"]]], ["API",["L35d2G1-p775B0",[1,8,"prim","4S5.2",3]]], ["API",["L37G1-p57B0",[2,2,"prim","7^2:2.L2(7).2",1]]], ["API",["L38G1-p56064B0",[1,220,"prim","7^2:S3",3]]], ["API",["L38G1-p73aB0",[2,2,"prim","2^6:(7xL2(8))",1]]], ["API",["L38G1-p73bB0",[2,2,"prim","2^6:(7xL2(8))",2]]], ["API",["L38G1-p75264B0",[1,372,"prim","73:3",4]]], ["API",["L38G1-p98112B0",[1,653,"prim","L3(2)",5]]], ["API",["L38d2G1-p146B0",[1,4,"imprim","2^6:(7xL2(8)) < L3(8)"]]], ["API",["L38d2G1-p4672B0",[1,11,"prim","D14xL2(8)",3]]], ["API",["L38d2G1-p56064B0",[1,125,"prim","7^2:D12",4]]], ["API",["L38d2G1-p657B0",[1,4,"prim","2^(3+6):7^2:2",2]]], ["API",["L38d2G1-p75264B0",[1,216,"prim","73:6",5]]], ["API",["L38d2G1-p98112B0",[1,335,"prim","L2(7).2",6]]], ["API",["L38d3G1-p219aB0",[1,6,"imprim","2^6:(7xL2(8)) < 2^6:(7xL2(8)):3"]]], ["API",["L38d3G1-p219bB0",[1,6,"imprim","2^6:(7xL2(8)) < 2^6:(7xL2(8)):3"]]], ["API",["L38d3G1-p56064B0",[1,80,"prim","7^2:(3xS3)",4]]], ["API",["L38d3G1-p73aB0",[2,2,"prim","2^6:(7xL2(8)):3",2]]], ["API",["L38d3G1-p73bB0",[2,2,"prim","2^6:(7xL2(8)):3",3]]], ["API",["L38d3G1-p75264B0",[1,126,"prim","73:9",5]]], ["API",["L38d3G1-p98112B0",[1,381,"imprim","L2(8) < 2^6:(7xL2(8)):3"]]], ["API",["L38d6G1-p438B0",[1,12,"imprim","2^6:(7xL2(8)) < L3(8)"]]], ["API",["L38d6G1-p4672B0",[1,7,"prim","(D14xL2(8)):3",3]]], ["API",["L38d6G1-p56064B0",[1,47,"prim","7^2:(6xS3)",4]]], ["API",["L38d6G1-p657B0",[1,4,"prim","2^(3+6):7^2:6",2]]], ["API",["L38d6G1-p75264B0",[1,74,"prim","73:18",5]]], ["API",["L38d6G1-p98112B0",[1,119,"prim","L2(7).2x3",6]]], ["API",["L44G1-p85aB0",[2,2,"prim","2^6:GL(3,4)",1]]], ["API",["L44G1-p85bB0",[2,2,"prim","2^6:GL(3,4)",2]]], ["API",["L45G1-p156aB0",[2,2,"prim","5^3:L3(5)",1]]], ["API",["L45G1-p156bB0",[2,2,"prim","5^3:L3(5)",2]]], ["API",["L52G1-p155aB0",[1,3,"prim","2^6:(S3xL3(2))",3]]], ["API",["L52G1-p31aB0",[2,2,"prim","2^4:L4(2)",1]]], ["API",["L52d2G1-p62B0",[1,4,"imprim","2^4:L4(2) < L5(2)"]]], ["API",["L62G1-p63aB0",[2,2,"prim","2^5:L5(2)",1]]], ["API",["L62d2G1-p126B0",[1,4,"imprim","2^5:L5(2) < L6(2)"]]], ["API",["L72G1-p127aB0",[2,2,"prim","2^6:L6(2)",1]]], ["API",["L72G1-p127bB0",[2,2,"prim","2^6:L6(2)",2]]], ["API",["L72d2G2-p254B0",[1,4,"imprim","2^6:L6(2) < L7(2)"]]], ["API",["M10G1-p10B0",[3,2,"prim","3^2:Q8",2]]], ["API",["M11G1-p11B0",[4,2,"prim","A6.2_3",1]]], ["API",["M11G1-p12B0",[3,2,"prim","L2(11)",2]]], ["API",["M11G1-p165B0",[1,8,"prim","2.S4",5]]], ["API",["M11G1-p55B0",[1,3,"prim","3^2:Q8.2",3]]], ["API",["M11G1-p66B0",[1,4,"prim","S5",4]]], ["API",["M12G1-p12aB0",[5,2,"prim","M11",1]]], ["API",["M12G1-p12bB0",[5,2,"prim","M11",2]]], ["API",["M12G1-p66aB0",[1,3,"prim","A6.2^2",3]]], ["API",["M12G1-p66bB0",[1,3,"prim","A6.2^2",4]]], ["API",["M12d2G1-p24B0",[1,3,"imprim","M11 < M12"]]], ["API",["M20G1-p20aB0",[1,3,"imprim","2^4:3 < 2^4:A4"]]], ["API",["M20G1-p20bB0",[1,3,"imprim","4^2:3 < 2^4:A4"]]], ["API",["M20G1-p20cB0",[1,3,"imprim","4^2:3 < 2^4:A4"]]], ["API",["M20G1-p20dB0",[1,3,"imprim","4^2:3 < 2^4:A4"]]], ["API",["M22G1-p176aB0",[1,3,"prim","A7",3]]], ["API",["M22G1-p176bB0",[1,3,"prim","A7",4]]], ["API",["M22G1-p22B0",[3,2,"prim","L3(4)",1]]], ["API",["M22G1-p231B0",[1,4,"prim","2^4:S5",5]]], ["API",["M22G1-p330B0",[1,5,"prim","2^3:L3(2)",6]]], ["API",["M22G1-p462aB0",[1,5,"imprim","2^4:A5 < 2^4:A6"]]], ["API",["M22G1-p462bB0",[1,8,"imprim","2^4:A5 < L3(4), 2^4:S5"]]], ["API",["M22G1-p462cB0",[1,8,"imprim","2^4:A5 < L3(4), 2^4:A6"]]], ["API",["M22G1-p616B0",[1,5,"prim","A6.2_3",7]]], ["API",["M22G1-p672B0",[1,6,"prim","L2(11)",8]]], ["API",["M22G1-p770B0",[1,9,"imprim","(A4xA4):4 < 2^4:A6"]]], ["API",["M22G1-p77B0",[1,3,"prim","2^4:A6",2]]], ["API",["M22d2G1-p22B0",[3,2,"prim","L3(4).2_2",2]]], ["API",["M22d2G1-p231B0",[1,4,"prim","2^5:S5",4]]], ["API",["M22d2G1-p330B0",[1,5,"prim","2x2^3:L3(2)",5]]], ["API",["M22d2G1-p352B0",[1,6,"imprim","A7 < M22"]]], ["API",["M22d2G1-p616B0",[1,5,"prim","A6.2^2",6]]], ["API",["M22d2G1-p672B0",[1,6,"prim","L2(11).2",7]]], ["API",["M22d2G1-p77B0",[1,3,"prim","2^4:S6",3]]], ["API",["M23G1-p1288B0",[1,4,"prim","M11",5]]], ["API",["M23G1-p1771B0",[1,8,"prim","2^4:(3xA5):2",6]]], ["API",["M23G1-p23B0",[4,2,"prim","M22",1]]], ["API",["M23G1-p253aB0",[1,3,"prim","L3(4).2_2",2]]], ["API",["M23G1-p253bB0",[1,3,"prim","2^4:A7",3]]], ["API",["M23G1-p40320B0",[1,164,"prim","23:11",7]]], ["API",["M23G1-p506B0",[1,4,"prim","A8",4]]], ["API",["M24G1-p1288B0",[1,3,"prim","M12.2",4]]], ["API",["M24G1-p1771B0",[1,4,"prim","2^6:3.S6",5]]], ["API",["M24G1-p2024B0",[1,5,"prim","L3(4).S3",6]]], ["API",["M24G1-p24B0",[5,2,"prim","M23",1]]], ["API",["M24G1-p276B0",[1,3,"prim","M22.2",2]]], ["API",["M24G1-p3795B0",[1,5,"prim","2^6:(L3(2)xS3)",7]]], ["API",["M24G1-p759B0",[1,4,"prim","2^4:A8",3]]], ["API",["McLG1-p113400B0",[1,39,"prim","M11",11]]], ["API",["McLG1-p15400aB0",[1,5,"prim","3^(1+4)_+:2S5",5]]], ["API",["McLG1-p15400bB0",[1,10,"prim","3^4:M10",6]]], ["API",["McLG1-p2025aB0",[1,4,"prim","M22",2]]], ["API",["McLG1-p2025bB0",[1,4,"prim","M22",3]]], ["API",["McLG1-p22275aB0",[1,13,"prim","L3(4).2_2",7]]], ["API",["McLG1-p22275bB0",[1,6,"prim","2.A8",8]]], ["API",["McLG1-p22275cB0",[1,13,"prim","2^4:A7",10]]], ["API",["McLG1-p22275dB0",[1,13,"prim","2^4:A7",9]]], ["API",["McLG1-p275B0",[1,3,"prim","U4(3)",1]]], ["API",["McLG1-p299376B0",[1,114,"prim","5^(1+2)_+:3:8",12]]], ["API",["McLG1-p7128B0",[1,5,"prim","U3(5)",4]]], ["API",["McLd2G1-p22275aB0",[1,11,"prim","L3(4).2^2",6]]], ["API",["McLd2G1-p275B0",[1,3,"prim","U4(3).2_3",2]]], ["API",["McLd2G1-p4050B0",[1,8,"imprim","M22 < McL"]]], ["API",["McLd2G1-p44550B0",[1,26,"imprim","2^4:A7 < McL"]]], ["API",["McLd2G1-p7128B0",[1,5,"prim","U3(5).2",3]]], ["API",["Mmax10G0-p1032192B0",[1,94,"imprim","???"]]], ["API",["Mmax11G0-p805896B0",[1,23,"imprim","???"]]], ["API",["Mmax13G0-p3369B0",[0,[9,3360]]]], ["API",["Mmax14G0-p34992B0",[1,16,"imprim","???"]]], ["API",["Mmax14G0-p69984B0",[1,45,"imprim","???"]]], ["API",["Mmax15G0-p113724B0",[1,59,"imprim","???"]]], ["API",["Mmax15G0-p227448B0",[1,215,"imprim","???"]]], ["API",["Mmax15G0-p85293B0",[1,14,"imprim","???"]]], ["API",["Mmax15q1G0-p6561B0",[1,4,"imprim","3^6:(L3(3)xSD16) < 3^(2+6):(L3(3)xSD16)"]]], ["API",["Mmax15q2G0-p1404B0",[1,10,"imprim","3^(5+4):(3^2.2.S4x2^2) < 3^(6+6):(3^2.2.S4xSD16)"]]], ["API",["Mmax15q3G0-p108B0",[1,4,"imprim","2x3^3.(L3(3)x2) < 3^6:(L3(3)xD8)"]]], ["API",["Mmax16G0-p78125B0",[1,6,"imprim","2.J2.4 < (5x2.J2).4"]]], ["API",["Mmax17G0-p2065B0",[0,[7,2058]]]], ["API",["Mmax18G0-p17B0",[0,[5,12]]]], ["API",["Mmax19G0-p46500B0",[1,115,"imprim","5^(2+2).(2x5^2:(4x2)) < 5^(3+3).(2x5^2:GL2(5))"]]], ["API",["Mmax19G0-p7750B0",[1,7,"imprim","5^(2+3).GL2(5) < 5^(3+3).(2x5^2:GL2(5))"]]], ["API",["Mmax19G0-p96875B0",[1,28,"imprim","5^3.(2xGL2(5)) < 5^(3+3).(2x5^2:GL2(5))"]]], ["API",["Mmax20G0-p30B0",[1,3,"imprim","(A6xA6x3^2:4).(2xD8) < (A6xA6xA6).(2xD8)"]]], ["API",["Mmax21G0-p3653B0",[0,[5,3648]]]], ["API",["Mmax21G0-p518B0",[0,[5,513]]]], ["API",["Mmax22G0-p15625B0",[1,9,"imprim","5^2:(S3xGL2(5)) < 5^4:(S3xGL2(5))"]]], ["API",["Mmax22G0-p750B0",[1,5,"imprim","5^(3+2):(S3x4x5:4) < 5^(2+2+4):(S3x4x5:4)"]]], ["API",["Mmax23G0-p184B0",[0,[14,170]]]], ["API",["Mmax23G0-p524B0",[0,[14,510]]]], ["API",["Mmax24G0-p16807B0",[1,8,"imprim","3x2.S7 < (7:3x2.A7).2"]]], ["API",["Mmax25G0-p151B0",[0,[25,126]]]], ["API",["Mmax26G0-p36B0",[0,[12,24]]]], ["API",["Mmax27G0-p17B0",[0,[7,10]]]], ["API",["Mmax28G0-p625B0",[2,2,"prim","(3x2.L2(25)).2","???"]]], ["API",["Mmax29G0-p2401B0",[1,5,"imprim","(7:3xSL2(7)):2 < 7^3:GL2(7)"]]], ["API",["Mmax29G0-p392B0",[1,4,"imprim","7^(1+2)_+:(6x7:6) < 7^(2+1+2):(6x7:6)"]]], ["API",["Mmax30G0-p21B0",[0,[10,11]]]], ["API",["Mmax31G0-p15B0",[1,3,"imprim","S4x(S5xS5):2 < S5x(S5xS5):2"]]], ["API",["Mmax32G0-p24B0",[1,3,"imprim","(L2(11)x11:5):2 < (L2(11)xL2(11)):2"]]], ["API",["Mmax33G0-p169B0",[2,2,"prim","2.L2(13).4","???"]]], ["API",["Mmax34G0-p57B0",[0,[8,49]]]], ["API",["Mmax35G0-p39B0",[0,[13,26]]]], ["API",["Mmax36G0-p2197B0",[1,11,"imprim","3x4S4 < (13x4S4):3"]]], ["API",["Mmax39G0-p121B0",[2,2,"prim","5x2A5",5]]], ["API",["Mmax41G0-p49B0",[2,2,"prim","2.L2(7)",4]]], ["API",["Mmax43G0-p41B0",[2,2,"prim","40",3]]], ["API",["Mmax6G0-p294912B0",[1,14,"imprim","???"]]], ["API",["O10m2G1-p495B0",[1,3,"prim","2^8:O8-(2)",1]]], ["API",["O10m2G1-p528B0",[1,3,"prim","S8(2)",2]]], ["API",["O10m2d2G1-p104448B0",[1,6,"prim","S12",8]]], ["API",["O10m2d2G1-p495B0",[1,3,"prim","2^8:O8-(2):2",2]]], ["API",["O10m2d2G1-p528B0",[1,3,"prim","S8(2)x2",3]]], ["API",["O10p2G1-p19840B0",[1,5,"prim","(3xO8-(2)):2",5]]], ["API",["O10p2G1-p2295aB0",[1,3,"prim","2^10:L5(2)",3]]], ["API",["O10p2G1-p2295bB0",[1,3,"prim","2^10:L5(2)",4]]], ["API",["O10p2G1-p23715B0",[1,6,"prim","2^(1+12)_+:(S3xA8)",6]]], ["API",["O10p2G1-p39680B0",[1,8,"imprim","3xO8-(2)"]]], ["API",["O10p2G1-p496B0",[1,3,"prim","S8(2)",1]]], ["API",["O10p2G1-p527B0",[1,3,"prim","2^8:O8+(2)",2]]], ["API",["O10p2d2G1-p4590B0",[1,6,"imprim","2^10:L5(2) < O10+(2)"]]], ["API",["O10p2d2G1-p496B0",[1,3,"prim","S8(2)x2",2]]], ["API",["O10p2d2G1-p527B0",[1,3,"prim","2^8:O8+(2):2",3]]], ["API",["O73G1-p1080aB0",[1,3,"prim","G2(3)",4]]], ["API",["O73G1-p1080bB0",[1,3,"prim","G2(3)",5]]], ["API",["O73G1-p1120B0",[1,4,"prim","3^(3+3):L3(3)",6]]], ["API",["O73G1-p351B0",[1,3,"prim","2.U4(3).2_2",1]]], ["API",["O73G1-p3640B0",[1,5,"prim","3^(1+6)_+:(2A4xA4).2",9]]], ["API",["O73G1-p364B0",[1,3,"prim","3^5:U4(2):2",2]]], ["API",["O73G1-p378B0",[1,3,"prim","L4(3).2_2",3]]], ["API",["O73d2G1-p351B0",[1,3,"prim","2.U4(3).(2^2)_{122}",2]]], ["API",["O8m2G1-p1071B0",[1,5,"prim","2^(1+8)_+:(S3xA5)",4]]], ["API",["O8m2G1-p119B0",[1,3,"prim","2^6:U4(2)",1]]], ["API",["O8m2G1-p136B0",[1,3,"prim","S6(2)",2]]], ["API",["O8m2G1-p1632B0",[1,5,"prim","(3xA8):2",5]]], ["API",["O8m2G1-p24192B0",[1,16,"prim","L2(16):2",6]]], ["API",["O8m2G1-p45696B0",[1,47,"prim","(S3xS3xA5):2",7]]], ["API",["O8m2G1-p765B0",[1,4,"prim","2^(3+6):(L3(2)x3)",3]]], ["API",["O8m2d2G1-p119B0",[1,3,"prim","2^6:U4(2):2",2]]], ["API",["O8m3G1-p1066B0",[1,3,"prim","3^6:2.U4(3).2",1]]], ["API",["O8m3V4G1-p1066B0",[1,3,"prim","3^6:2.U4(3).D8",4]]], ["API",["O8m3d2aG1-p1066B0",[1,3,"prim","3^6:2.U4(3).(2^2)_{122}",2]]], ["API",["O8m3d2cG1-p1066B0",[1,3,"prim","3^6:2.U4(3).(2^2)_{133}",2]]], ["API",["O8m3d2cG2-p1066B0",[1,3,"prim","3^6:2.U4(3).(2^2)_{133}",2]]], ["API",["O8p3G1-p1080aB0",[1,3,"prim","O7(3)",1]]], ["API",["O8p3G1-p1080bB0",[1,3,"prim","O7(3)",2]]], ["API",["O8p3G1-p1080cB0",[1,3,"prim","O7(3)",3]]], ["API",["O8p3G1-p1080dB0",[1,3,"prim","O7(3)",4]]], ["API",["O8p3G1-p1080eB0",[1,3,"prim","O7(3)",5]]], ["API",["O8p3G1-p1080fB0",[1,3,"prim","O7(3)",6]]], ["API",["O8p3G1-p1120aB0",[1,3,"prim","3^6:L4(3)",7]]], ["API",["O8p3G1-p1120bB0",[1,3,"prim","3^6:L4(3)",8]]], ["API",["O8p3G1-p1120cB0",[1,3,"prim","3^6:L4(3)",9]]], ["API",["O8p3G1-p28431aB0",[1,6,"prim","O8+(2)",10]]], ["API",["O8p3G1-p28431bB0",[1,6,"prim","O8+(2)",11]]], ["API",["O8p3G1-p28431cB0",[1,6,"prim","O8+(2)",12]]], ["API",["O8p3G1-p28431dB0",[1,6,"prim","O8+(2)",13]]], ["API",["O8p3G1-p36400B0",[1,7,"prim","3^(1+8)_+:2(A4xA4xA4).2",14]]], ["API",["O8p3S4G2-p3360B0",[1,5,"imprim","3^6:L4(3).D8 < O8+(3).D8"]]], ["API",["O8p3S4G2-p6480B0",[1,6,"imprim","O7(3).2x2 < O8+(3).(2^2)_{122}"]]], ["API",["ONG1-p122760aB0",[1,5,"prim","L3(7).2",1]]], ["API",["ONd2G1-p245520B0",[1,9,"imprim","L3(7).2 < ON"]]], ["API",["PGL29G1-p10B0",[3,2,"prim","3^2:8",2]]], ["API",["R27G1-p19684B0",[2,2,"prim","3^(3+6):26",1]]], ["API",["R27d3G1-p19684B0",[2,2,"prim","3^(3+6):26:3",2]]], ["API",["RuG1-p4060B0",[1,3,"prim","2F4(2)'.2",1]]], ["API",["S102G1-p1023B0",[1,3,"prim","2^9.S8(2)",3]]], ["API",["S102G1-p1056B0",[1,4,"imprim","O10+(2) < O10+(2).2"]]], ["API",["S102G1-p496B0",[2,2,"prim","O10-(2).2",1]]], ["API",["S102G1-p528B0",[2,2,"prim","O10+(2).2",2]]], ["API",["S102G1-p992B0",[1,4,"imprim","O10-(2) < O10-(2).2"]]], ["API",["S10G1-p10B0",[10,2,"prim","S9",2]]], ["API",["S11G1-p11B0",[11,2,"prim","S10",2]]], ["API",["S12G1-p10395B0",[1,11,"prim","2^6:S6",9]]], ["API",["S12G1-p12B0",[12,2,"prim","S11",2]]], ["API",["S12G1-p15400B0",[1,12,"prim","S4wrS3",10]]], ["API",["S12G1-p220B0",[1,4,"prim","S9xS3",4]]], ["API",["S12G1-p462B0",[1,4,"prim","(S6xS6):2",5]]], ["API",["S12G1-p495B0",[1,5,"prim","S8xS4",6]]], ["API",["S12G1-p5040B0",[1,8,"imprim","M12 < A12"]]], ["API",["S12G1-p5775B0",[1,9,"prim","S4wrS3",8]]], ["API",["S12G1-p66B0",[1,3,"prim","S10x2",3]]], ["API",["S12G1-p792B0",[1,6,"prim","S7xS5",7]]], ["API",["S13G1-p13B0",[13,2,"prim","S12",2]]], ["API",["S13G1-p78B0",[1,3,"prim","S11x2",3]]], ["API",["S14G1-p1001B0",[1,5,"prim","S10xS4",5]]], ["API",["S14G1-p14B0",[14,2,"prim","S13",2]]], ["API",["S14G1-p1716B0",[1,4,"prim","(S7xS7):2",6]]], ["API",["S14G1-p2002B0",[1,6,"prim","S9xS5",7]]], ["API",["S14G1-p3003B0",[1,7,"prim","S8xS6",8]]], ["API",["S14G1-p364B0",[1,4,"prim","S11xS3",4]]], ["API",["S14G1-p91B0",[1,3,"prim","S12x2",3]]], ["API",["S15G1-p105B0",[1,3,"prim","S13x2",3]]], ["API",["S15G1-p1365B0",[1,5,"prim","S11xS4",5]]], ["API",["S15G1-p15B0",[15,2,"prim","S14",2]]], ["API",["S15G1-p455B0",[1,4,"prim","S12xS3",4]]], ["API",["S16G1-p120B0",[1,3,"prim","S14x2",3]]], ["API",["S16G1-p16B0",[16,2,"prim","S15",2]]], ["API",["S16G1-p1820B0",[1,5,"prim","S12xS4",5]]], ["API",["S16G1-p560B0",[1,4,"prim","S13xS3",4]]], ["API",["S17G1-p136B0",[1,3,"prim","S15x2",3]]], ["API",["S17G1-p17B0",[17,2,"prim","S16",2]]], ["API",["S17G1-p2380B0",[1,5,"prim","S13xS4",5]]], ["API",["S17G1-p680B0",[1,4,"prim","S14xS3",4]]], ["API",["S18G1-p153B0",[1,3,"prim","S16x2",3]]], ["API",["S18G1-p18B0",[18,2,"prim","S17",2]]], ["API",["S18G1-p3060B0",[1,5,"prim","S14xS4",5]]], ["API",["S18G1-p816B0",[1,4,"prim","S15xS3",4]]], ["API",["S19G1-p171B0",[1,3,"prim","S17x2",3]]], ["API",["S19G1-p19B0",[19,2,"prim","S18",2]]], ["API",["S19G1-p969B0",[1,4,"prim","S16xS3",4]]], ["API",["S20G1-p190B0",[1,3,"prim","S18x2",3]]], ["API",["S20G1-p20B0",[20,2,"prim","S19",2]]], ["API",["S21G1-p210B0",[1,3,"prim","S19x2",3]]], ["API",["S21G1-p21B0",[21,2,"prim","S20",2]]], ["API",["S22G1-p22B0",[22,2,"prim","S21",2]]], ["API",["S22G1-p231B0",[1,3,"prim","S20x2",3]]], ["API",["S23G1-p23B0",[23,2,"prim","S22",2]]], ["API",["S23G1-p253B0",[1,3,"prim","S21x2",3]]], ["API",["S44G1-p120bB0",[1,3,"prim","L2(16):2",4]]], ["API",["S44G1-p85aB0",[1,3,"prim","2^6:(3xA5)",1]]], ["API",["S44d4G1-p170B0",[1,5,"imprim","2^6:(3xA5):2 < S4(4).2"]]], ["API",["S45G1-p156aB0",[1,3,"prim","5^(1+2)_+:4A5",1]]], ["API",["S45G1-p156bB0",[1,3,"prim","5^3:(2xA5).2",2]]], ["API",["S45G1-p300B0",[1,4,"prim","L2(25):2_2",3]]], ["API",["S45G1-p325B0",[1,4,"prim","2.(A5xA5).2",4]]], ["API",["S47G1-p1176B0",[1,5,"prim","L2(49).2_2",3]]], ["API",["S47G1-p1225B0",[1,5,"prim","2.(L2(7)xL2(7)).2",4]]], ["API",["S47G1-p400aB0",[1,3,"prim","7^(1+2)_+.(3xSL(2,7))",1]]], ["API",["S47G1-p400bB0",[1,3,"prim","7^3:(3xPGL(2,7))",2]]], ["API",["S47d2G1-p400aB0",[1,3,"prim","7^(1+2)_+:GL(2,7)",1]]], ["API",["S47d2G1-p400bB0",[1,3,"prim","7^3:(6xPGL(2,7))",2]]], ["API",["S5G1-p10B0",[1,3,"prim","S3x2",4]]], ["API",["S5G1-p5B0",[5,2,"prim","S4",2]]], ["API",["S5G1-p6B0",[3,2,"prim","5:4",3]]], ["API",["S62G1-p120B0",[1,3,"prim","U3(3):2",4]]], ["API",["S62G1-p126B0",[1,5,"imprim","2^5:A6 < 2^5:S6"]]], ["API",["S62G1-p135B0",[1,4,"prim","2^6:L3(2)",5]]], ["API",["S62G1-p240B0",[1,5,"imprim","U3(3) < U3(3):2"]]], ["API",["S62G1-p288B0",[1,5,"imprim","S7 < S8"]]], ["API",["S62G1-p28B0",[2,2,"prim","U4(2).2",1]]], ["API",["S62G1-p315B0",[1,5,"prim","2.[2^6]:(S3xS3)",6]]], ["API",["S62G1-p336B0",[1,5,"prim","S3xS6",7]]], ["API",["S62G1-p36B0",[2,2,"prim","S8",2]]], ["API",["S62G1-p378aB0",[1,8,"imprim","2x2^4:S5 < 2^5:S6"]]], ["API",["S62G1-p378bB0",[1,6,"imprim","2^5:S5 < 2^5:S6"]]], ["API",["S62G1-p56B0",[1,4,"imprim","U4(2) < U4(2).2"]]], ["API",["S62G1-p63B0",[1,3,"prim","2^5:S6",3]]], ["API",["S62G1-p72B0",[1,4,"imprim","A8 < S8"]]], ["API",["S62G1-p960B0",[1,6,"prim","L2(8).3",8]]], ["API",["S63G1-p1120B0",[1,4,"prim","3^6:L3(3)",2]]], ["API",["S63G1-p3640B0",[1,5,"prim","3^(3+4):2(S4xA4)",3]]], ["API",["S63G1-p364B0",[1,3,"prim","3^(1+4)_+.2U4(2)",1]]], ["API",["S63G1-p7371B0",[1,6,"prim","2.(A4xU4(2))",4]]], ["API",["S63d2G1-p1120B0",[1,4,"prim","3^6:(L3(3)x2)",3]]], ["API",["S63d2G1-p3640B0",[1,5,"prim","3^(3+4):2(S4xS4)",4]]], ["API",["S63d2G1-p364B0",[1,3,"prim","3^(1+4)_+:2.U4(2).2",2]]], ["API",["S63d2G1-p7371B0",[1,6,"prim","2(A4xU4(2)).2",5]]], ["API",["S65G1-p3906B0",[1,3,"prim","???","???"]]], ["API",["S6G1-p10B0",[2,2,"prim","3^2:D8",4]]], ["API",["S6G1-p15aB0",[1,3,"prim","S4x2",5]]], ["API",["S6G1-p15bB0",[1,3,"prim","S4x2",6]]], ["API",["S6G1-p6aB0",[6,2,"prim","S5",2]]], ["API",["S6G1-p6bB0",[6,2,"prim","S5",3]]], ["API",["S7G1-p120B0",[1,7,"prim","7:6",5]]], ["API",["S7G1-p21B0",[1,3,"prim","S5x2",3]]], ["API",["S7G1-p30B0",[1,4,"imprim","L2(7) < A7"]]], ["API",["S7G1-p35B0",[1,4,"prim","S4xS3",4]]], ["API",["S7G1-p7B0",[7,2,"prim","S6",2]]], ["API",["S82G1-p120B0",[2,2,"prim","O8-(2).2",1]]], ["API",["S82G1-p136B0",[2,2,"prim","O8+(2).2",2]]], ["API",["S82G1-p2295B0",[1,5,"prim","2^10:A8",4]]], ["API",["S82G1-p240B0",[1,4,"imprim","O8-(2) < O8-(2).2"]]], ["API",["S82G1-p255B0",[1,3,"prim","2^7:S6(2)",3]]], ["API",["S82G1-p272B0",[1,4,"imprim","O8+(2) < O8+(2).2"]]], ["API",["S82G1-p5355B0",[1,6,"prim","2^(3+8):(S3xS6)",5]]], ["API",["S83G1-p3280B0",[1,3,"prim","???","???"]]], ["API",["S8G1-p8B0",[8,2,"prim","S7",2]]], ["API",["S9G1-p9B0",[9,2,"prim","S8",2]]], ["API",["SuzG1-p135135B0",[1,9,"prim","2^(1+6)_-.U4(2)",4]]], ["API",["SuzG1-p1782B0",[1,3,"prim","G2(4)",1]]], ["API",["SuzG1-p22880B0",[1,5,"prim","3_2.U4(3).2_3'",2]]], ["API",["SuzG1-p232960B0",[1,13,"prim","3^5:M11",5]]], ["API",["SuzG1-p32760B0",[1,6,"prim","U5(2)",3]]], ["API",["SuzG1-p370656B0",[1,15,"prim","J2:2",6]]], ["API",["SuzG1-p405405B0",[1,13,"prim","2^(4+6):3A6",7]]], ["API",["Suzd2G1-p1782B0",[1,3,"prim","G2(4):2",2]]], ["API",["Sz32G1-p1025B0",[2,2,"prim","2^(5+5):31",1]]], ["API",["Sz32G1-p198400B0",[1,1282,"prim","41:4",2]]], ["API",["Sz32d5G1-p1025B0",[2,2,"prim","2^(5+5):31:5",2]]], ["API",["Sz8G1-p1456B0",[1,79,"prim","5:4",3]]], ["API",["Sz8G1-p2080B0",[1,165,"prim","D14",4]]], ["API",["Sz8G1-p520B0",[1,12,"imprim","2^3:7 < 2^(3+3):7"]]], ["API",["Sz8G1-p560B0",[1,17,"prim","13:4",2]]], ["API",["Sz8G1-p65B0",[2,2,"prim","2^(3+3):7",1]]], ["API",["Sz8d3G1-p1456B0",[1,27,"prim","5:4x3",4]]], ["API",["Sz8d3G1-p2080B0",[1,59,"prim","7:6",5]]], ["API",["Sz8d3G1-p520B0",[1,8,"imprim","2^3:7:3 < 2^(3+3):7:3"]]], ["API",["Sz8d3G1-p560B0",[1,7,"prim","13:12",3]]], ["API",["Sz8d3G1-p65B0",[2,2,"prim","2^(3+3):7:3",2]]], ["API",["TD42G1-p819B0",[1,4,"prim","2^(1+8)_+:L2(8)",1]]], ["API",["TD43G1-p26572B0",[1,4,"prim","???","???"]]], ["API",["TF42G1-p12480B0",[1,24,"prim","A6.2^2",7]]], ["API",["TF42G1-p14976B0",[1,25,"prim","5^2:4A4",8]]], ["API",["TF42G1-p1600B0",[1,4,"prim","L3(3).2",1]]], ["API",["TF42G1-p1755B0",[1,5,"prim","2.[2^8]:5:4",3]]], ["API",["TF42G1-p2304B0",[1,7,"prim","L2(25)",4]]], ["API",["TF42G1-p2925B0",[1,6,"prim","2^2.[2^8]:S3",5]]], ["API",["TF42d2G1-p1755B0",[1,5,"prim","2.[2^9]:5:4",2]]], ["API",["TF42d2G1-p2304B0",[1,6,"prim","L2(25).2_3",3]]], ["API",["U311G1-p1332B0",[2,2,"prim","11^(1+2)_+:40",1]]], ["API",["U311d2G1-p1332B0",[2,2,"prim","11^(1+2)_+:(5x8:2)",2]]], ["API",["U313G1-p2198B0",[2,2,"prim","13^(1+2)_+:168",1]]], ["API",["U316G1-p4097B0",[2,2,"prim","2^(4+8):255",1]]], ["API",["U33G1-p28B0",[2,2,"prim","3^(1+2)_+:8",1]]], ["API",["U33G1-p36B0",[1,4,"prim","L2(7)",2]]], ["API",["U33G1-p63aB0",[1,4,"prim","4.S4",3]]], ["API",["U33G1-p63bB0",[1,5,"prim","4^2:S3",4]]], ["API",["U33d2G1-p63bB0",[1,4,"prim","4^2:D12",5]]], ["API",["U34G1-p1600B0",[1,48,"prim","13:3",4]]], ["API",["U34G1-p208B0",[1,5,"prim","5xA5",2]]], ["API",["U34G1-p416B0",[1,9,"prim","5^2:S3",3]]], ["API",["U34G1-p65B0",[2,2,"prim","2^(2+4):15",1]]], ["API",["U34d2G1-p1600B0",[1,28,"prim","13:6",5]]], ["API",["U34d2G1-p208B0",[1,5,"prim","A5xD10",3]]], ["API",["U34d2G1-p416B0",[1,7,"prim","5^2:D12",4]]], ["API",["U34d2G1-p65B0",[2,2,"prim","2^(2+4):(3xD10)",2]]], ["API",["U34d4G1-p1600B0",[1,15,"prim","13:12",5]]], ["API",["U34d4G1-p208B0",[1,4,"prim","(D10xA5).2",3]]], ["API",["U34d4G1-p416B0",[1,5,"prim","5^2:(4xS3)",4]]], ["API",["U34d4G1-p65B0",[2,2,"prim","2^(2+4):(3xD10).2",2]]], ["API",["U35G1-p50B0",[1,3,"prim","A7",1]]], ["API",["U35d2G1-p126B0",[2,2,"prim","5^(1+2)_+:8:2",3]]], ["API",["U35d2G1-p175B0",[1,4,"prim","A6.2^2",4]]], ["API",["U35d2G1-p50B0",[1,3,"prim","S7",2]]], ["API",["U35d2G1-p525B0",[1,7,"prim","2S5.2",5]]], ["API",["U35d2G1-p750B0",[1,9,"prim","L2(7).2",6]]], ["API",["U37G1-p1032B0",[1,6,"imprim","7^(1+2):16 < 7^(1+2):48"]]], ["API",["U37G1-p1376B0",[1,8,"imprim","7^(1+2):12 < 7^(1+2):48"]]], ["API",["U37G1-p14749B0",[1,60,"prim","8^2:S3",3]]], ["API",["U37G1-p16856B0",[1,114,"prim","L2(7):2",4]]], ["API",["U37G1-p2064B0",[1,12,"imprim","7^(1+2):8 < 7^(1+2):48"]]], ["API",["U37G1-p2107B0",[1,8,"prim","2(L2(7)x4).2",2]]], ["API",["U37G1-p344B0",[2,2,"prim","7^(1+2):48",1]]], ["API",["U37G1-p43904B0",[1,362,"prim","43:3",5]]], ["API",["U37G1-p688B0",[1,4,"imprim","7^(1+2):24 < 7^(1+2):48"]]], ["API",["U38E9G1-p3648B0",[1,5,"prim","(9xL2(8)):3",3]]], ["API",["U38E9G1-p513B0",[2,2,"prim","2^(3+6):63:3",2]]], ["API",["U38G1-p3648B0",[1,11,"prim","3xL2(8)",2]]], ["API",["U38G1-p513B0",[2,2,"prim","2^(3+6):21",1]]], ["API",["U38S3G1-p3648B0",[1,9,"prim","D18xL2(8)",4]]], ["API",["U38S3G1-p513B0",[2,2,"prim","2^(3+6):(7xD18)",3]]], ["API",["U38S3x3G1-p3648B0",[1,5,"prim","(D18xL2(8)):3",5]]], ["API",["U38S3x3G1-p513B0",[2,2,"prim","2^(3+6):(7xD18):3",4]]], ["API",["U38d2G1-p3648B0",[1,10,"prim","S3xL2(8)",3]]], ["API",["U38d2G1-p513B0",[2,2,"prim","2^(3+6):(7xS3)",2]]], ["API",["U38d3aG1-p3648B0",[1,7,"prim","3xL2(8):3",3]]], ["API",["U38d3aG1-p513B0",[2,2,"prim","2^(3+6):(7:3x3)",2]]], ["API",["U38d3bG1-p3648B0",[1,9,"prim","9xL2(8)",3]]], ["API",["U38d3bG1-p513B0",[2,2,"prim","2^(3+6):63",2]]], ["API",["U38d3cG1-p3648B0",[1,5,"prim","L2(8):9",3]]], ["API",["U38d3cG1-p513B0",[2,2,"prim","2^(3+6):7:9",2]]], ["API",["U38d6G1-p3648B0",[1,6,"prim","S3xL2(8):3",4]]], ["API",["U38d6G1-p513B0",[2,2,"prim","2^(3+6):(7:3xS3)",3]]], ["API",["U39G1-p730B0",[2,2,"prim","3^(2+4):80",1]]], ["API",["U42G1-p27B0",[1,3,"prim","2^4:A5",1]]], ["API",["U42G1-p36B0",[1,3,"prim","S6",2]]], ["API",["U42G1-p40aB0",[1,3,"prim","3^(1+2)+:2A4",3]]], ["API",["U42G1-p40bB0",[1,3,"prim","3^3:S4",4]]], ["API",["U42G1-p45B0",[1,3,"prim","2.(A4xA4).2",5]]], ["API",["U42d2G1-p27B0",[1,3,"prim","2^4:S5",2]]], ["API",["U42d2G1-p36B0",[1,3,"prim","S6x2",3]]], ["API",["U42d2G1-p40aB0",[1,3,"prim","3^(1+2)_+:2S4",4]]], ["API",["U42d2G1-p40bB0",[1,3,"prim","3^3:(S4x2)",5]]], ["API",["U42d2G1-p45B0",[1,3,"prim","2.(A4xA4).2^2",6]]], ["API",["U43D8G1-p112B0",[1,3,"prim","3^4:(2xA6.2^2)",4]]], ["API",["U43D8G1-p1134B0",[1,8,"imprim","2^5:S6 < U4(3).(2^2)_{122}"]]], ["API",["U43D8G1-p252B0",[1,5,"imprim","U4(2).2x2 < U4(3).(2^2)_{122}"]]], ["API",["U43D8G1-p280B0",[1,3,"prim","3^(1+4)_+.2^(1+4)_-.D12",5]]], ["API",["U43D8G1-p2835B0",[1,9,"prim","4(S4xS4).2^2",7]]], ["API",["U43D8G1-p324B0",[1,5,"imprim","L3(4):2^2 < U4(3).(2^2)_{133}"]]], ["API",["U43D8G1-p4536B0",[1,15,"prim","(A6.2^2x2).2",8]]], ["API",["U43D8G1-p5184B0",[1,17,"imprim","S7 < U4(3).(2^2)_{122}"]]], ["API",["U43D8G1-p540B0",[1,4,"prim","(U3(3)x4):2",6]]], ["API",["U43D8G1-p8505B0",[1,22,"prim","4^3.(2xS4)",9]]], ["API",["U43D8G1-p9072B0",[1,24,"imprim","A6.2^2x2 < (A6.2^2x2).2"]]], ["API",["U44G1-p1040B0",[1,5,"prim","S4(4)",2]]], ["API",["U44G1-p1105B0",[1,3,"prim","2^(2+8):(15xA5)",3]]], ["API",["U44G1-p325B0",[1,3,"prim","2^8:(3xL2(16))",1]]], ["API",["U44G1-p3264B0",[1,5,"prim","5xU3(4)",4]]], ["API",["U45G1-p1575B0",[1,4,"prim","S4(5).2",2]]], ["API",["U45G1-p756B0",[1,3,"prim","5^4:(L2(25)x4)",1]]], ["API",["U52G1-p1408B0",[1,7,"prim","3^4:S5",4]]], ["API",["U52G1-p165B0",[1,3,"prim","2^(1+6):3^(1+2):2A4",1]]], ["API",["U52G1-p176B0",[1,3,"prim","3xU4(2)",2]]], ["API",["U52G1-p20736B0",[1,76,"prim","L2(11)",6]]], ["API",["U52G1-p297B0",[1,3,"prim","2^(4+4):(3xA5)",3]]], ["API",["U52G1-p3520B0",[1,12,"prim","S3x3^(1+2)+:2A4",5]]], ["API",["U52d2G1-p1408B0",[1,6,"prim","3^4:(2xS5)",5]]], ["API",["U52d2G1-p165B0",[1,3,"prim","2^(1+6)_-:3^(1+2)_+:2S4",2]]], ["API",["U52d2G1-p176B0",[1,3,"prim","(3xU4(2)):2",3]]], ["API",["U52d2G1-p20736B0",[1,43,"prim","L2(11).2",7]]], ["API",["U52d2G1-p297B0",[1,3,"prim","2^(4+4):(3xA5):2",4]]], ["API",["U52d2G1-p3520B0",[1,12,"prim","S3x3^(1+2)_+:2S4",6]]], ["API",["U54G1-p17425B0",[1,3,"prim","???","???"]]], ["API",["U54G1-p52480B0",[1,5,"prim","???","???"]]], ["API",["U62G1-p12474B0",[1,8,"imprim","2^(4+8):(3xA5) < 2^(4+8):(S3xA5)"]]], ["API",["U62G1-p1408aB0",[1,3,"prim","U4(3).2_2",4]]], ["API",["U62G1-p1408bB0",[1,3,"prim","U4(3).2_2",5]]], ["API",["U62G1-p1408cB0",[1,3,"prim","U4(3).2_2",6]]], ["API",["U62G1-p20736aB0",[1,8,"prim","M22",11]]], ["API",["U62G1-p20736bB0",[1,8,"prim","M22",12]]], ["API",["U62G1-p20736cB0",[1,8,"prim","M22",13]]], ["API",["U62G1-p2816aB0",[1,5,"imprim","U4(3) < U4(3).2_2"]]], ["API",["U62G1-p2816bB0",[1,5,"imprim","U4(3) < U4(3).2_2"]]], ["API",["U62G1-p2816cB0",[1,5,"imprim","U4(3) < U4(3).2_2"]]], ["API",["U62G1-p59136B0",[1,15,"prim","S3xU4(2)",14]]], ["API",["U62G1-p6237B0",[1,5,"prim","2^(4+8):(S3xA5)",7]]], ["API",["U62G1-p6336aB0",[1,4,"prim","S6(2)",8]]], ["API",["U62G1-p6336bB0",[1,4,"prim","S6(2)",9]]], ["API",["U62G1-p6336cB0",[1,4,"prim","S6(2)",10]]], ["API",["U62G1-p672B0",[1,3,"prim","U5(2)",1]]], ["API",["U62G1-p693B0",[1,3,"prim","2^(1+8)_+:U4(2)",2]]], ["API",["U62G1-p891B0",[1,4,"prim","2^9.L3(4)",3]]], ["API",["U62S3G1-p693B0",[1,3,"prim","2^(1+8)_+:(U4(2)x3):2",4]]], ["API",["U62S3G1-p891B0",[1,4,"prim","2^9.L3(4).S3",5]]], ["API",["U62d2G1-p1408B0",[1,3,"prim","U4(3).(2^2)_{122}",5]]], ["API",["U62d2G1-p20736B0",[1,8,"prim","M22.2",8]]], ["API",["U62d2G1-p6237B0",[1,5,"prim","2^(4+8).(S3xS5)",6]]], ["API",["U62d2G1-p6336B0",[1,4,"prim","S6(2)x2",7]]], ["API",["U62d2G1-p672B0",[1,3,"prim","U5(2).2",2]]], ["API",["U62d2G1-p693B0",[1,3,"prim","2^(1+8)_+:U4(2).2",3]]], ["API",["U62d2G1-p891B0",[1,4,"prim","2^9.L3(4).2",4]]], ["API",["U63G1-p22204B0",[1,3,"prim","???","???"]]], ["API",["U63G1-p44226B0",[1,4,"prim","???","???"]]], ["API",["U72G1-p2709B0",[1,3,"prim","???",1]]], ["API",["U72G1-p2752B0",[1,3,"prim","???",2]]], ["API",["U82G1-p10880B0",[1,3,"prim","???","???"]]], ["API",["U82G1-p10965B0",[1,3,"prim","???","???"]]], ["CHAR",["(13:6xL3(3)).2","Mmax35G0-p39B0",0,[[1,2],2,3,4,91],"1a^2b+12abm"]], ["CHAR",["2.Co1","2Co1G1-p196560B0",0,[1,3,6,10,102,104,107],"1a+24a+299a+2576a+17250a+80730a+95680a"]], ["CHAR",["2.Fi22","2F22G1-p123552B0",0,[1,7,9,13,73,76],"1a+3080a+13650a+13728a+45045a+48048b"]], ["CHAR",["2.Fi22","2F22G1-p28160B0",0,[1,3,9,66,73],"1a+352a+429a+13650a+13728a"]], ["CHAR",["2.Fi22.2","2F22d2G1-p56320B0",0,[1,2,5,6,17,18,113,114,118]]], ["CHAR",["2.HS","2HSG1-f11r56B0",11,23,"56a"]], ["CHAR",["2.HS","2HSG1-f3r440B0",3,23,"440a"]], ["CHAR",["2.HS","2HSG1-f3r56B0",3,20,"56a"]], ["CHAR",["2.HS","2HSG1-f5r120bB0",5,20,"120b"]], ["CHAR",["2.HS","2HSG1-f5r28bB0",5,18,"28b"]], ["CHAR",["2.HS","2HSG1-f5r440bB0",5,22,"440b"]], ["CHAR",["2.HS","2HSG1-f7r56B0",7,24,"56a"]], ["CHAR",["2.HS","2HSG1-f9r176bB0",3,22,"176b"]], ["CHAR",["2.HS","2HSG1-p11200aB0",0,[1,2,3,5,7,10,13,16,22,25,26,27,28,29,37,38],"1a+22a+56a+77a+154b+175a+176ab+616ab+770a+825a+1056a+1980ab+2520a"]], ["CHAR",["2.HS","2HSG1-p4400B0",0,[1,2,3,4,5,6,7,9,10,26,27,30,31],"1a+22a+77a+154abc+175a+176ab+693a+770a+924ab"]], ["CHAR",["2.HS","2HSG1-p704B0",0,[1,2,5,7,26,27],"1a+22a+154b+175a+176ab"]], ["CHAR",["2.HS.2","2HSd2G1-p1408B0",0,[1,2,3,4,9,10,11,[42,2]]]], ["CHAR",["2.J2","2J2G1-p1120B0",0,[1,4,5,[7,2],10,11,13,[24,2],25,26,[34,2]],"1a+14c^2+21ab+50ab+63a^2+90a+126a+175a+216a^2"]], ["CHAR",["2.J2","2J2G1-p200B0",0,[1,6,7,25,26],"1a+36a+50ab+63a"]], ["CHAR",["2.M12","2M12G1-Zr120B0",0,24,"120b"]], ["CHAR",["2.M12","2M12G1-Zr12B0",0,18,"12a"]], ["CHAR",["2.M12","2M12G1-Zr220B0",0,[22,23],"110ab"]], ["CHAR",["2.M12","2M12G1-f3r6bB0",3,13,"6b"]], ["CHAR",["2.M12","2M12G1-f5r12B0",5,16,"12a"]], ["CHAR",["2.M12","2M12G1-p24aB0",0,[1,2,18],"1a+11a+12a"]], ["CHAR",["2.M12.2","2M12d2G1-p48B0",0,[1,2,3,26,27]]], ["CHAR",["2.M22","2M22G1-Zr120B0",0,16,"120a"]], ["CHAR",["2.M22","2M22G1-Zr20B0",0,[13,14],"10ab"]], ["CHAR",["2.M22","2M22G1-Zr210B0",0,21,"210b"]], ["CHAR",["2.M22","2M22G1-Zr56B0",0,15,"56a"]], ["CHAR",["2.M22","2M22G1-f11r10aB0",11,11,"10a"]], ["CHAR",["2.M22","2M22G1-f11r10bB0",11,12,"10b"]], ["CHAR",["2.M22","2M22G1-f11r126B0",11,15,"126a"]], ["CHAR",["2.M22","2M22G1-f11r308B0",11,[16,17],"154bc"]], ["CHAR",["2.M22","2M22G1-f11r330B0",11,18,"330a"]], ["CHAR",["2.M22","2M22G1-f11r440B0",11,19,"440a"]], ["CHAR",["2.M22","2M22G1-f11r56B0",11,13,"56a"]], ["CHAR",["2.M22","2M22G1-f11r64B0",11,14,"64a"]], ["CHAR",["2.M22","2M22G1-f121r154aB0",11,16,"154b"]], ["CHAR",["2.M22","2M22G1-f121r154bB0",11,17,"154c"]], ["CHAR",["2.M22","2M22G1-f25r10aB0",5,12,"10a"]], ["CHAR",["2.M22","2M22G1-f25r10bB0",5,13,"10b"]], ["CHAR",["2.M22","2M22G1-f25r126aB0",5,17,"126a"]], ["CHAR",["2.M22","2M22G1-f3r120B0",3,14,"120a"]], ["CHAR",["2.M22","2M22G1-f3r126bB0",3,16,"126b"]], ["CHAR",["2.M22","2M22G1-f3r210B0",3,19,"210b"]], ["CHAR",["2.M22","2M22G1-f3r56B0",3,13,"56a"]], ["CHAR",["2.M22","2M22G1-f49r126aB0",7,14,"126a"]], ["CHAR",["2.M22","2M22G1-f49r126bB0",7,15,"126b"]], ["CHAR",["2.M22","2M22G1-f49r154aB0",7,16,"154b"]], ["CHAR",["2.M22","2M22G1-f49r154bB0",7,17,"154c"]], ["CHAR",["2.M22","2M22G1-f5r120B0",5,16,"120a"]], ["CHAR",["2.M22","2M22G1-f5r210B0",5,19,"210b"]], ["CHAR",["2.M22","2M22G1-f5r28aB0",5,14,"28a"]], ["CHAR",["2.M22","2M22G1-f5r28bB0",5,15,"28b"]], ["CHAR",["2.M22","2M22G1-f5r330B0",5,20,"330a"]], ["CHAR",["2.M22","2M22G1-f5r440B0",5,21,"440a"]], ["CHAR",["2.M22","2M22G1-f7r10B0",7,11,"10a"]], ["CHAR",["2.M22","2M22G1-f7r120B0",7,13,"120a"]], ["CHAR",["2.M22","2M22G1-f7r210B0",7,18,"210b"]], ["CHAR",["2.M22","2M22G1-f7r252B0",7,[14,15],"126ab"]], ["CHAR",["2.M22","2M22G1-f7r308B0",7,[16,17],"154bc"]], ["CHAR",["2.M22","2M22G1-f7r320B0",7,19,"320a"]], ["CHAR",["2.M22","2M22G1-f7r56B0",7,12,"56a"]], ["CHAR",["2.M22","2M22G1-f9r10aB0",3,11,"10a"]], ["CHAR",["2.M22","2M22G1-f9r10bB0",3,12,"10b"]], ["CHAR",["2.M22","2M22G1-f9r154B0",3,18,"154b"]], ["CHAR",["2.M22","2M22G1-p352aB0",0,[1,2,7,15,16],"1a+21a+56a+120a+154a"]], ["CHAR",["2.M22","2M22G1-p660B0",0,[1,2,5,6,7,16,21],"1a+21a+55a+99a+120a+154a+210b"]], ["CHAR",["2.Ru","2RuG1-p16240B0",0,[1,4,5,6,7,37,38,43,44],"1a+28ab+406a+783a+3276a+3654a+4032ab"]], ["CHAR",["2.Suz","2SuzG1-p65520B0",0,[1,2,3,9,11,12,45,46,50,51],"1a+143a+364abc+5940a+12012a+14300a+16016ab"]], ["CHAR",["2F4(2)'","TF42G1-Zr52B0",0,[2,3],"26ab"]], ["CHAR",["2F4(2)'","TF42G1-Zr78B0",0,6,"78a"]], ["CHAR",["2F4(2)'","TF42G1-f13r27aB0",13,4,"27a"]], ["CHAR",["2F4(2)'","TF42G1-f13r27bB0",13,5,"27b"]], ["CHAR",["2F4(2)'","TF42G1-f13r52B0",13,[2,3],"26ab"]], ["CHAR",["2F4(2)'","TF42G1-f13r78B0",13,6,"78a"]], ["CHAR",["2F4(2)'","TF42G1-f169r26B0",13,2,"26a"]], ["CHAR",["2F4(2)'","TF42G1-f25r109aB0",5,7,"109a"]], ["CHAR",["2F4(2)'","TF42G1-f25r109bB0",5,8,"109b"]], ["CHAR",["2F4(2)'","TF42G1-f25r26aB0",5,2,"26a"]], ["CHAR",["2F4(2)'","TF42G1-f25r26bB0",5,3,"26b"]], ["CHAR",["2F4(2)'","TF42G1-f2r246B0",2,3,"246a"]], ["CHAR",["2F4(2)'","TF42G1-f2r26B0",2,2,"26a"]], ["CHAR",["2F4(2)'","TF42G1-f3r124aB0",3,7,"124a"]], ["CHAR",["2F4(2)'","TF42G1-f3r124bB0",3,8,"124b"]], ["CHAR",["2F4(2)'","TF42G1-f3r26aB0",3,2,"26a"]], ["CHAR",["2F4(2)'","TF42G1-f3r26bB0",3,3,"26b"]], ["CHAR",["2F4(2)'","TF42G1-f3r54B0",3,[4,5],"27ab"]], ["CHAR",["2F4(2)'","TF42G1-f3r77B0",3,6,"77a"]], ["CHAR",["2F4(2)'","TF42G1-f4r2048aB0",2,4,"2048a"]], ["CHAR",["2F4(2)'","TF42G1-f5r218B0",5,[7,8],"109ab"]], ["CHAR",["2F4(2)'","TF42G1-f5r27aB0",5,4,"27a"]], ["CHAR",["2F4(2)'","TF42G1-f5r27bB0",5,5,"27b"]], ["CHAR",["2F4(2)'","TF42G1-f5r52B0",5,[2,3],"26ab"]], ["CHAR",["2F4(2)'","TF42G1-f5r78B0",5,6,"78a"]], ["CHAR",["2F4(2)'","TF42G1-f9r27aB0",3,4,"27a"]], ["CHAR",["2F4(2)'","TF42G1-f9r27bB0",3,5,"27b"]], ["CHAR",["2F4(2)'","TF42G1-p12480B0",0,[1,6,[9,3],12,13,14,[15,2],16,17,18,19,21,22],"1a+78a+351a^3+624ab+650a+675a^2+702ab+1300ab+2048ab"]], ["CHAR",["2F4(2)'","TF42G1-p14976B0",0,[1,8,[9,2],12,13,14,[15,2],16,17,[18,2],[19,2],21,22],"1a+325a+351a^2+624ab+650a+675a^2+702ab+1300a^2b^2+2048ab"]], ["CHAR",["2F4(2)'","TF42G1-p1600B0",0,[1,9,12,13],"1a+351a+624ab"]], ["CHAR",["2F4(2)'","TF42G1-p1755B0",0,[1,6,9,14,15],"1a+78a+351a+650a+675a"]], ["CHAR",["2F4(2)'","TF42G1-p2304B0",0,[1,4,5,9,12,13,14],"1a+27ab+351a+624ab+650a"]], ["CHAR",["2F4(2)'","TF42G1-p2925B0",0,[1,9,12,13,14,15],"1a+351a+624ab+650a+675a"]], ["CHAR",["2F4(2)'.2","TF42d2G1-p1755B0",0,[1,8,14,21,23]]], ["CHAR",["2F4(2)'.2","TF42d2G1-p2304B0",0,[1,5,7,15,20,21]]], ["CHAR",["3.Fi22","3F22G1-p185328B0",0,[1,7,9,13,66,67,74,75,80,81],"1a+351ab+3080a+13650a+19305ab+42120ab+45045a"]], ["CHAR",["3.Fi22.2","3F22d2G1-p185328B0",0,[1,13,17,25,113,117,120]]], ["CHAR",["3.Fi24'","3F24G1-p920808B0",0,[1,3,4,109,110,113,114],"1a+783ab+57477a+249458a+306153ab"]], ["CHAR",["3.Fi24'.2","3F24d2G1-p920808B0",0,[1,5,7,184,186]]], ["CHAR",["3.M22","3M22G1-p2016B0",0,[1,2,5,7,8,9,13,14,21,22,23,24,25,26,27,28],"1a+21abc+55a+105abcd+154a+210abc+231abc"]], ["CHAR",["3.M22","3M22G1-p693B0",0,[1,2,5,7,13,14,21,22,23,24],"1a+21abc+55a+105abcd+154a"]], ["CHAR",["3.M22","3M22G1-p990B0",0,[1,2,5,6,7,13,14,19,20,21,22,23,24],"1a+21abc+55a+99abc+105abcd+154a"]], ["CHAR",["3.McL","3McLG1-p103950B0",0,[1,2,[4,2],9,10,12,14,[20,2],25,26,27,28,37,38,39,40,[41,2],[42,2],45,46,47,48,65,66],"1a+22a+126abcd+252a^2+1750a+2520abcd+2772a^2b^2+3520a+4500a+5103abc+6336ab+9625a^2+12375ab"]], ["CHAR",["3.McL","3McLG1-p66825B0",0,[1,4,9,14,15,20,41,42,45,46,47,48,57,58],"1a+252a+1750a+2772ab+5103abc+5544a+6336ab+8064ab+9625a"]], ["CHAR",["3.ON","3ONG1-p368280B0",0,[1,2,7,8,11,37,38,51,52,53,54],"1a+495cd+10944a+26752a+32395a+52668a+58653bc+63612ab"]], ["CHAR",["3.Suz","3SuzG1-p405405B0",0,[1,2,4,6,9,12,16,17,27,44,45,48,49,52,53,68,69,70,71,82,83,88,89],"1a+66ab+143a+429ab+780a+1716ab+3432a+5940a+6720ab+14300a+18954abc+25025a+42900ab+64350cd+66560a"]], ["CHAR",["3.Suz","3SuzG1-p5346B0",0,[1,4,5,44,45,52,53],"1a+66ab+780a+1001a+1716ab"]], ["CHAR",["3.Suz","3SuzG1-p98280B0",0,[1,2,3,9,11,12,46,47,50,51,62,63,78,79],"1a+78ab+143a+364a+1365ab+4290ab+5940a+12012a+14300a+27027ab"]], ["CHAR",["3.Suz.2","3Suzd2G1-p5346B0",0,[1,7,9,69,73]]], ["CHAR",["3D4(2)","TD42G1-Zr196B0",0,4,"196a"]], ["CHAR",["3D4(2)","TD42G1-Zr26B0",0,2,"26a"]], ["CHAR",["3D4(2)","TD42G1-Zr52B0",0,3,"52a"]], ["CHAR",["3D4(2)","TD42G1-f13r26B0",13,2,"26a"]], ["CHAR",["3D4(2)","TD42G1-f27r351aB0",3,6,"351a"]], ["CHAR",["3D4(2)","TD42G1-f27r351bB0",3,7,"351b"]], ["CHAR",["3D4(2)","TD42G1-f27r351cB0",3,8,"351c"]], ["CHAR",["3D4(2)","TD42G1-f2r26B0",2,5,"26a"]], ["CHAR",["3D4(2)","TD42G1-f3r1053B0",3,10,"1053a"]], ["CHAR",["3D4(2)","TD42G1-f3r196B0",3,4,"196a"]], ["CHAR",["3D4(2)","TD42G1-f3r25B0",3,2,"25a"]], ["CHAR",["3D4(2)","TD42G1-f3r324B0",3,5,"324a"]], ["CHAR",["3D4(2)","TD42G1-f3r441B0",3,9,"441a"]], ["CHAR",["3D4(2)","TD42G1-f3r52B0",3,3,"52a"]], ["CHAR",["3D4(2)","TD42G1-f7r26B0",7,2,"26a"]], ["CHAR",["3D4(2)","TD42G1-f7r298B0",7,6,"298a"]], ["CHAR",["3D4(2)","TD42G1-f8r8aB0",2,2,"8a"]], ["CHAR",["3D4(2)","TD42G1-p819B0",0,[1,2,6,10],"1a+26a+324a+468a"]], ["CHAR",["3D4(2).3","TD42d3G1-f13r26aB0",13,4]], ["CHAR",["3D4(2).3","TD42d3G1-f2r144B0",2,8]], ["CHAR",["3D4(2).3","TD42d3G1-f2r246aB0",2,10]], ["CHAR",["3D4(2).3","TD42d3G1-f2r24B0",2,4]], ["CHAR",["3D4(2).3","TD42d3G1-f2r26B0",2,5]], ["CHAR",["3D4(2).3","TD42d3G1-f2r480B0",2,9]], ["CHAR",["3D4(2).3","TD42d3G1-f3r196B0",3,4]], ["CHAR",["3D4(2).3","TD42d3G1-f3r52B0",3,3]], ["CHAR",["3D4(2).3","TD42d3G1-f7r26aB0",7,4]], ["CHAR",["3D4(2).3","TD42d3G1-f7r273aB0",7,13]], ["CHAR",["3D4(2).3","TD42d3G1-f7r298aB0",7,16]], ["CHAR",["3D4(2).3","TD42d3G1-f7r467aB0",7,19]], ["CHAR",["3D4(2).3","TD42d3G1-f7r52aB0",7,7]], ["CHAR",["6.M22","6M22G1-p1980B0",0,[1,2,5,6,7,16,21,24,25,30,31,32,33,34,35,62,63],"1a+21abc+55a+99abc+105abcd+120a+154a+210b+330de"]], ["CHAR",["6.Suz","6SuzG1-p196560B0",0,[1,2,3,9,11,12,45,46,50,51,79,80,83,84,95,96,111,112,153,154,157,158,159,160,177,178],"1a+12ab+78ab+143a+364abc+924ab+1365ab+4290ab+4368ab+5940a+12012a+14300a+16016ab+27027ab+27456ab"]], ["CHAR",["A10","A10G1-Zr126B0",0,9,"126a"]], ["CHAR",["A10","A10G1-Zr160B0",0,10,"160a"]], ["CHAR",["A10","A10G1-Zr210B0",0,11,"210a"]], ["CHAR",["A10","A10G1-Zr225B0",0,14,"225a"]], ["CHAR",["A10","A10G1-Zr35B0",0,3,"35a"]], ["CHAR",["A10","A10G1-Zr36B0",0,4,"36a"]], ["CHAR",["A10","A10G1-Zr42B0",0,5,"42a"]], ["CHAR",["A10","A10G1-Zr75B0",0,6,"75a"]], ["CHAR",["A10","A10G1-Zr84B0",0,7,"84a"]], ["CHAR",["A10","A10G1-Zr90B0",0,8,"90a"]], ["CHAR",["A10","A10G1-Zr9B0",0,2,"9a"]], ["CHAR",["A10","A10G1-f2r160B0",2,8,"160a"]], ["CHAR",["A10","A10G1-f2r16B0",2,3,"16a"]], ["CHAR",["A10","A10G1-f2r198B0",2,9,"198a"]], ["CHAR",["A10","A10G1-f2r200B0",2,10,"200a"]], ["CHAR",["A10","A10G1-f2r26B0",2,4,"26a"]], ["CHAR",["A10","A10G1-f2r48B0",2,5,"48a"]], ["CHAR",["A10","A10G1-f2r8B0",2,2,"8a"]], ["CHAR",["A10","A10G1-f3r126B0",3,8,"126a"]], ["CHAR",["A10","A10G1-f3r224B0",3,9,"224a"]], ["CHAR",["A10","A10G1-f3r279B0",3,10,"279a"]], ["CHAR",["A10","A10G1-f3r34B0",3,3,"34a"]], ["CHAR",["A10","A10G1-f3r36B0",3,4,"36a"]], ["CHAR",["A10","A10G1-f3r41B0",3,5,"41a"]], ["CHAR",["A10","A10G1-f3r567B0",3,11,"567a"]], ["CHAR",["A10","A10G1-f3r84B0",3,6,"84a"]], ["CHAR",["A10","A10G1-f3r90B0",3,7,"90a"]], ["CHAR",["A10","A10G1-f3r9B0",3,2,"9a"]], ["CHAR",["A10","A10G1-f5r155B0",5,13,"155a"]], ["CHAR",["A10","A10G1-f5r160B0",5,14,"160a"]], ["CHAR",["A10","A10G1-f5r217B0",5,15,"217a"]], ["CHAR",["A10","A10G1-f5r225B0",5,16,"225a"]], ["CHAR",["A10","A10G1-f5r28B0",5,3,"28a"]], ["CHAR",["A10","A10G1-f5r300B0",5,17,"300a"]], ["CHAR",["A10","A10G1-f5r34B0",5,4,"34a"]], ["CHAR",["A10","A10G1-f5r350B0",5,18,"350a"]], ["CHAR",["A10","A10G1-f5r35aB0",5,5,"35a"]], ["CHAR",["A10","A10G1-f5r450B0",5,19,"450a"]], ["CHAR",["A10","A10G1-f5r525B0",5,20,"525a"]], ["CHAR",["A10","A10G1-f5r55B0",5,8,"55a"]], ["CHAR",["A10","A10G1-f5r56B0",5,9,"56a"]], ["CHAR",["A10","A10G1-f5r75B0",5,10,"75a"]], ["CHAR",["A10","A10G1-f5r8B0",5,2,"8a"]], ["CHAR",["A10","A10G1-f7r124B0",7,10,"124a"]], ["CHAR",["A10","A10G1-f7r126B0",7,11,"126a"]], ["CHAR",["A10","A10G1-f7r315B0",7,17,"315a"]], ["CHAR",["A10","A10G1-f7r35B0",7,3,"35a"]], ["CHAR",["A10","A10G1-f7r36B0",7,4,"36a"]], ["CHAR",["A10","A10G1-f7r66B0",7,6,"66a"]], ["CHAR",["A10","A10G1-f7r84B0",7,7,"84a"]], ["CHAR",["A10","A10G1-f7r89B0",7,8,"89a"]], ["CHAR",["A10","A10G1-f7r9B0",7,2,"9a"]], ["CHAR",["A11","A11G1-Zr10B0",0,2,"10a"]], ["CHAR",["A11","A11G1-Zr110B0",0,5,"110a"]], ["CHAR",["A11","A11G1-Zr120B0",0,6,"120a"]], ["CHAR",["A11","A11G1-Zr132B0",0,9,"132a"]], ["CHAR",["A11","A11G1-Zr165B0",0,10,"165a"]], ["CHAR",["A11","A11G1-Zr210B0",0,11,"210a"]], ["CHAR",["A11","A11G1-Zr231B0",0,12,"231a"]], ["CHAR",["A11","A11G1-Zr44B0",0,3,"44a"]], ["CHAR",["A11","A11G1-Zr45B0",0,4,"45a"]], ["CHAR",["A11","A11G1-f11r36B0",11,3,"36a"]], ["CHAR",["A11","A11G1-f11r44B0",11,4,"44a"]], ["CHAR",["A11","A11G1-f11r84B0",11,5,"84a"]], ["CHAR",["A11","A11G1-f11r9B0",11,2,"9a"]], ["CHAR",["A11","A11G1-f2r100B0",2,6,"100a"]], ["CHAR",["A11","A11G1-f2r10B0",2,2,"10a"]], ["CHAR",["A11","A11G1-f2r144B0",2,7,"144a"]], ["CHAR",["A11","A11G1-f2r164B0",2,8,"164a"]], ["CHAR",["A11","A11G1-f2r186B0",2,9,"186a"]], ["CHAR",["A11","A11G1-f2r198B0",2,10,"198a"]], ["CHAR",["A11","A11G1-f2r32B0",2,[3,4],"16ab"]], ["CHAR",["A11","A11G1-f2r416B0",2,11,"416a"]], ["CHAR",["A11","A11G1-f2r44B0",2,5,"44a"]], ["CHAR",["A11","A11G1-f2r848B0",2,14,"848a"]], ["CHAR",["A11","A11G1-f3r109B0",3,5,"109a"]], ["CHAR",["A11","A11G1-f3r10B0",3,2,"10a"]], ["CHAR",["A11","A11G1-f3r120B0",3,6,"120a"]], ["CHAR",["A11","A11G1-f3r131B0",3,9,"131a"]], ["CHAR",["A11","A11G1-f3r34B0",3,3,"34a"]], ["CHAR",["A11","A11G1-f3r45B0",3,4,"45a"]], ["CHAR",["A11","A11G1-f5r10B0",5,2,"10a"]], ["CHAR",["A11","A11G1-f5r110B0",5,7,"110a"]], ["CHAR",["A11","A11G1-f5r120B0",5,8,"120a"]], ["CHAR",["A11","A11G1-f5r43B0",5,3,"43a"]], ["CHAR",["A11","A11G1-f5r45B0",5,4,"45a"]], ["CHAR",["A11","A11G1-f5r55B0",5,5,"55a"]], ["CHAR",["A11","A11G1-f5r89B0",5,6,"89a"]], ["CHAR",["A11","A11G1-f7r10B0",7,2,"10a"]], ["CHAR",["A11","A11G1-f7r44B0",7,3,"44a"]], ["CHAR",["A11","A11G1-f7r45B0",7,4,"45a"]], ["CHAR",["A11","A11G1-f7r66B0",7,5,"66a"]], ["CHAR",["A5","A5G1-Ar3aB0",0,2,"3a"]], ["CHAR",["A5","A5G1-Ar3bB0",0,3,"3b"]], ["CHAR",["A5","A5G1-Zr4B0",0,4,"4a"]], ["CHAR",["A5","A5G1-Zr5B0",0,5,"5a"]], ["CHAR",["A5","A5G1-Zr6B0",0,[2,3],"3ab"]], ["CHAR",["A5","A5G1-f2r4aB0",2,4,"4a"]], ["CHAR",["A5","A5G1-f2r4bB0",2,[2,3],"2ab"]], ["CHAR",["A5","A5G1-f3r4B0",3,4,"4a"]], ["CHAR",["A5","A5G1-f3r6B0",3,[2,3],"3ab"]], ["CHAR",["A5","A5G1-f4r2aB0",2,2,"2a"]], ["CHAR",["A5","A5G1-f4r2bB0",2,3,"2b"]], ["CHAR",["A5","A5G1-f5r3B0",5,2,"3a"]], ["CHAR",["A5","A5G1-f5r5B0",5,3,"5a"]], ["CHAR",["A5","A5G1-f9r3aB0",3,2,"3a"]], ["CHAR",["A5","A5G1-f9r3bB0",3,3,"3b"]], ["CHAR",["A5","A5G1-p10B0",0,[1,4,5],"1a+4a+5a"]], ["CHAR",["A5","A5G1-p5B0",0,[1,4],"1a+4a"]], ["CHAR",["A5","A5G1-p6B0",0,[1,5],"1a+5a"]], ["CHAR",["A6","A6G1-Zr10B0",0,7,"10a"]], ["CHAR",["A6","A6G1-Zr9B0",0,6,"9a"]], ["CHAR",["A6","A6G1-f2r16B0",2,[4,5],"8ab"]], ["CHAR",["A6","A6G1-f3r4B0",3,4,"4a"]], ["CHAR",["A6","A6G1-f3r6B0",3,[2,3],"3ab"]], ["CHAR",["A6","A6G1-f3r9B0",3,5,"9a"]], ["CHAR",["A6","A6G1-f5r10B0",5,5,"10a"]], ["CHAR",["A6","A6G1-f5r8B0",5,4,"8a"]], ["CHAR",["A7","A7G1-Zr14aB0",0,5,"14a"]], ["CHAR",["A7","A7G1-Zr14bB0",0,6,"14b"]], ["CHAR",["A7","A7G1-Zr15B0",0,7,"15a"]], ["CHAR",["A7","A7G1-Zr21B0",0,8,"21a"]], ["CHAR",["A7","A7G1-Zr35B0",0,9,"35a"]], ["CHAR",["A7","A7G1-Zr6B0",0,2,"6a"]], ["CHAR",["A7","A7G1-f2r14B0",2,5,"14a"]], ["CHAR",["A7","A7G1-f2r20B0",2,6,"20a"]], ["CHAR",["A7","A7G1-f2r6B0",2,4,"6a"]], ["CHAR",["A7","A7G1-f3r13B0",3,5,"13a"]], ["CHAR",["A7","A7G1-f3r15B0",3,6,"15a"]], ["CHAR",["A7","A7G1-f3r20B0",3,[3,4],"10ab"]], ["CHAR",["A7","A7G1-f3r6B0",3,2,"6a"]], ["CHAR",["A7","A7G1-f5r13B0",5,6,"13a"]], ["CHAR",["A7","A7G1-f5r15B0",5,7,"15a"]], ["CHAR",["A7","A7G1-f5r20B0",5,[4,5],"10ab"]], ["CHAR",["A7","A7G1-f5r35B0",5,8,"35a"]], ["CHAR",["A7","A7G1-f5r6B0",5,2,"6a"]], ["CHAR",["A7","A7G1-f5r8B0",5,3,"8a"]], ["CHAR",["A7","A7G1-f7r10B0",7,3,"10a"]], ["CHAR",["A7","A7G1-f7r14aB0",7,4,"14a"]], ["CHAR",["A7","A7G1-f7r14bB0",7,5,"14b"]], ["CHAR",["A7","A7G1-f7r21B0",7,6,"21a"]], ["CHAR",["A7","A7G1-f7r35B0",7,7,"35a"]], ["CHAR",["A7","A7G1-f7r5B0",7,2,"5a"]], ["CHAR",["A8","A8G1-Zr14B0",0,3,"14a"]], ["CHAR",["A8","A8G1-Zr20B0",0,4,"20a"]], ["CHAR",["A8","A8G1-Zr21aB0",0,5,"21a"]], ["CHAR",["A8","A8G1-Zr28B0",0,8,"28a"]], ["CHAR",["A8","A8G1-Zr35B0",0,9,"35a"]], ["CHAR",["A8","A8G1-Zr56B0",0,12,"56a"]], ["CHAR",["A8","A8G1-Zr64B0",0,13,"64a"]], ["CHAR",["A8","A8G1-Zr70B0",0,14,"70a"]], ["CHAR",["A8","A8G1-Zr7B0",0,2,"7a"]], ["CHAR",["A8","A8G1-f2r14B0",2,5,"14a"]], ["CHAR",["A8","A8G1-f2r64B0",2,8,"64a"]], ["CHAR",["A8","A8G1-f2r6B0",2,4,"6a"]], ["CHAR",["A9","A9G1-Zr105B0",0,13,"105a"]], ["CHAR",["A9","A9G1-Zr120B0",0,14,"120a"]], ["CHAR",["A9","A9G1-Zr162B0",0,15,"162a"]], ["CHAR",["A9","A9G1-Zr168B0",0,16,"168a"]], ["CHAR",["A9","A9G1-Zr189B0",0,17,"189a"]], ["CHAR",["A9","A9G1-Zr216B0",0,18,"216a"]], ["CHAR",["A9","A9G1-Zr27B0",0,5,"27a"]], ["CHAR",["A9","A9G1-Zr28B0",0,6,"28a"]], ["CHAR",["A9","A9G1-Zr42B0",0,9,"42a"]], ["CHAR",["A9","A9G1-Zr48B0",0,10,"48a"]], ["CHAR",["A9","A9G1-Zr56B0",0,11,"56a"]], ["CHAR",["A9","A9G1-Zr84B0",0,12,"84a"]], ["CHAR",["A9","A9G1-Zr8B0",0,2,"8a"]], ["CHAR",["A9","A9G1-f2r160B0",2,10,"160a"]], ["CHAR",["A9","A9G1-f2r26B0",2,7,"26a"]], ["CHAR",["A9","A9G1-f2r48B0",2,8,"48a"]], ["CHAR",["A9","A9G1-f2r78B0",2,9,"78a"]], ["CHAR",["A9","A9G1-f2r8aB0",2,2,"8a"]], ["CHAR",["A9","A9G1-f3r162B0",3,7,"162a"]], ["CHAR",["A9","A9G1-f3r189B0",3,8,"189a"]], ["CHAR",["A9","A9G1-f3r21B0",3,3,"21a"]], ["CHAR",["A9","A9G1-f3r27B0",3,4,"27a"]], ["CHAR",["A9","A9G1-f3r35B0",3,5,"35a"]], ["CHAR",["A9","A9G1-f3r41B0",3,6,"41a"]], ["CHAR",["A9","A9G1-f3r7B0",3,2,"7a"]], ["CHAR",["A9","A9G1-f5r105B0",5,11,"105a"]], ["CHAR",["A9","A9G1-f5r120B0",5,12,"120a"]], ["CHAR",["A9","A9G1-f5r133B0",5,13,"133a"]], ["CHAR",["A9","A9G1-f5r134B0",5,14,"134a"]], ["CHAR",["A9","A9G1-f5r21B0",5,3,"21a"]], ["CHAR",["A9","A9G1-f5r27B0",5,4,"27a"]], ["CHAR",["A9","A9G1-f5r28B0",5,5,"28a"]], ["CHAR",["A9","A9G1-f5r34B0",5,6,"34a"]], ["CHAR",["A9","A9G1-f5r56B0",5,9,"56a"]], ["CHAR",["A9","A9G1-f5r83B0",5,10,"83a"]], ["CHAR",["A9","A9G1-f5r8B0",5,2,"8a"]], ["CHAR",["A9","A9G1-f7r101B0",7,13,"101a"]], ["CHAR",["A9","A9G1-f7r105B0",7,14,"105a"]], ["CHAR",["A9","A9G1-f7r115B0",7,15,"115a"]], ["CHAR",["A9","A9G1-f7r168B0",7,16,"168a"]], ["CHAR",["A9","A9G1-f7r189B0",7,17,"189a"]], ["CHAR",["A9","A9G1-f7r19B0",7,3,"19a"]], ["CHAR",["A9","A9G1-f7r28B0",7,6,"28a"]], ["CHAR",["A9","A9G1-f7r42B0",7,9,"42a"]], ["CHAR",["A9","A9G1-f7r47B0",7,10,"47a"]], ["CHAR",["A9","A9G1-f7r56B0",7,11,"56a"]], ["CHAR",["A9","A9G1-f7r84B0",7,12,"84a"]], ["CHAR",["A9","A9G1-f7r8B0",7,2,"8a"]], ["CHAR",["Co1","Co1G1-f11r276B0",11,2,"276a"]], ["CHAR",["Co1","Co1G1-f11r299B0",11,3,"299a"]], ["CHAR",["Co1","Co1G1-f13r276B0",13,2,"276a"]], ["CHAR",["Co1","Co1G1-f13r299B0",13,3,"299a"]], ["CHAR",["Co1","Co1G1-f23r276B0",23,2,"276a"]], ["CHAR",["Co1","Co1G1-f23r299B0",23,3,"299a"]], ["CHAR",["Co1","Co1G1-f7r276B0",7,2,"276a"]], ["CHAR",["Co1","Co1G1-f7r299B0",7,3,"299a"]], ["CHAR",["Co1","Co1G1-p98280B0",0,[1,3,6,10],"1a+299a+17250a+80730a"]], ["CHAR",["Co2","Co2G1-Zr23B0",0,2,"23a"]], ["CHAR",["Co2","Co2G1-f11r23B0",11,2,"23a"]], ["CHAR",["Co2","Co2G1-f11r253B0",11,3,"253a"]], ["CHAR",["Co2","Co2G1-f11r275B0",11,4,"275a"]], ["CHAR",["Co2","Co2G1-f23r23B0",23,2,"23a"]], ["CHAR",["Co2","Co2G1-f23r253B0",23,3,"253a"]], ["CHAR",["Co2","Co2G1-f23r274B0",23,4,"274a"]], ["CHAR",["Co2","Co2G1-f2r22B0",2,2,"22a"]], ["CHAR",["Co2","Co2G1-f2r230B0",2,3,"230a"]], ["CHAR",["Co2","Co2G1-f2r24B0",2,[[1,2],2],"1a^2+22a"]], ["CHAR",["Co2","Co2G1-f2r748aB0",2,4,"748a"]], ["CHAR",["Co2","Co2G1-f2r748bB0",2,5,"748b"]], ["CHAR",["Co2","Co2G1-f3r23B0",3,2,"23a"]], ["CHAR",["Co2","Co2G1-f3r253B0",3,3,"253a"]], ["CHAR",["Co2","Co2G1-f3r275B0",3,4,"275a"]], ["CHAR",["Co2","Co2G1-f5r23B0",5,2,"23a"]], ["CHAR",["Co2","Co2G1-f5r253B0",5,3,"253a"]], ["CHAR",["Co2","Co2G1-f5r275B0",5,4,"275a"]], ["CHAR",["Co2","Co2G1-f7r23B0",7,2,"23a"]], ["CHAR",["Co2","Co2G1-f7r253B0",7,3,"253a"]], ["CHAR",["Co2","Co2G1-f7r275B0",7,4,"275a"]], ["CHAR",["Co2","Co2G1-p2300B0",0,[1,4,6],"1a+275a+2024a"]], ["CHAR",["Co2","Co2G1-p4600B0",0,[1,2,4,6,7],"1a+23a+275a+2024a+2277a"]], ["CHAR",["Co3","Co3G1-Zr23B0",0,2,"23a"]], ["CHAR",["Co3","Co3G1-f11r23B0",11,2,"23a"]], ["CHAR",["Co3","Co3G1-f11r253aB0",11,3,"253a"]], ["CHAR",["Co3","Co3G1-f11r253bB0",11,4,"253b"]], ["CHAR",["Co3","Co3G1-f11r275B0",11,5,"275a"]], ["CHAR",["Co3","Co3G1-f11r896B0",11,6,"896a"]], ["CHAR",["Co3","Co3G1-f23r23B0",23,2,"23a"]], ["CHAR",["Co3","Co3G1-f23r253aB0",23,3,"253a"]], ["CHAR",["Co3","Co3G1-f23r253bB0",23,4,"253b"]], ["CHAR",["Co3","Co3G1-f23r274B0",23,5,"274a"]], ["CHAR",["Co3","Co3G1-f23r896bB0",23,7,"896b"]], ["CHAR",["Co3","Co3G1-f2r22B0",2,2,"22a"]], ["CHAR",["Co3","Co3G1-f2r230B0",2,3,"230a"]], ["CHAR",["Co3","Co3G1-f3r126aB0",3,3,"126a"]], ["CHAR",["Co3","Co3G1-f3r126bB0",3,4,"126b"]], ["CHAR",["Co3","Co3G1-f3r22B0",3,2,"22a"]], ["CHAR",["Co3","Co3G1-f3r231aB0",3,5,"231a"]], ["CHAR",["Co3","Co3G1-f3r231bB0",3,6,"231b"]], ["CHAR",["Co3","Co3G1-f3r770aB0",3,7,"770a"]], ["CHAR",["Co3","Co3G1-f3r770bB0",3,8,"770b"]], ["CHAR",["Co3","Co3G1-f49r896aB0",7,6,"896a"]], ["CHAR",["Co3","Co3G1-f4r896aB0",2,4,"896a"]], ["CHAR",["Co3","Co3G1-f5r230B0",5,3,"230a"]], ["CHAR",["Co3","Co3G1-f5r23B0",5,2,"23a"]], ["CHAR",["Co3","Co3G1-f5r253B0",5,4,"253a"]], ["CHAR",["Co3","Co3G1-f5r275B0",5,5,"275a"]], ["CHAR",["Co3","Co3G1-f5r896bB0",5,7,"896b"]], ["CHAR",["Co3","Co3G1-f7r23B0",7,2,"23a"]], ["CHAR",["Co3","Co3G1-f7r253aB0",7,3,"253a"]], ["CHAR",["Co3","Co3G1-f7r253bB0",7,4,"253b"]], ["CHAR",["Co3","Co3G1-f7r275B0",7,5,"275a"]], ["CHAR",["Co3","Co3G1-p11178B0",0,[1,2,5,9,15],"1a+23a+275a+2024a+8855a"]], ["CHAR",["Co3","Co3G1-p128800B0",0,[1,5,13,15,20,31],"1a+275a+5544a+8855a+23000a+91125a"]], ["CHAR",["Co3","Co3G1-p276B0",0,[1,5],"1a+275a"]], ["CHAR",["Co3","Co3G1-p37950B0",0,[1,[5,2],13,15,20],"1a+275a^2+5544a+8855a+23000a"]], ["CHAR",["Co3","Co3G1-p48600B0",0,[1,2,4,5,9,13,15,24],"1a+23a+253b+275a+2024a+5544a+8855a+31625c"]], ["CHAR",["Co3","Co3G1-p552B0",0,[1,2,4,5],"1a+23a+253b+275a"]], ["CHAR",["Fi22","F22G1-Zr78B0",0,2,"78a"]], ["CHAR",["Fi22","F22G1-f11r429B0",11,3,"429a"]], ["CHAR",["Fi22","F22G1-f11r78B0",11,2,"78a"]], ["CHAR",["Fi22","F22G1-f13r429B0",13,3,"429a"]], ["CHAR",["Fi22","F22G1-f13r78B0",13,2,"78a"]], ["CHAR",["Fi22","F22G1-f2r350B0",2,3,"350a"]], ["CHAR",["Fi22","F22G1-f2r572B0",2,4,"572a"]], ["CHAR",["Fi22","F22G1-f2r78B0",2,2,"78a"]], ["CHAR",["Fi22","F22G1-f3r351B0",3,3,"351a"]], ["CHAR",["Fi22","F22G1-f3r77B0",3,2,"77a"]], ["CHAR",["Fi22","F22G1-f3r924B0",3,4,"924a"]], ["CHAR",["Fi22","F22G1-f5r428B0",5,3,"428a"]], ["CHAR",["Fi22","F22G1-f5r78B0",5,2,"78a"]], ["CHAR",["Fi22","F22G1-f7r429B0",7,3,"429a"]], ["CHAR",["Fi22","F22G1-f7r78B0",7,2,"78a"]], ["CHAR",["Fi22","F22G1-p14080bB0",0,[1,3,9],"1a+429a+13650a"]], ["CHAR",["Fi22","F22G1-p142155B0",0,[1,2,3,5,7,10,11,17],"1a+78a+429a+1430a+3080a+30030a+32032a+75075a"]], ["CHAR",["Fi22","F22G1-p3510B0",0,[1,3,7],"1a+429a+3080a"]], ["CHAR",["Fi22","F22G1-p61776B0",0,[1,7,9,13],"1a+3080a+13650a+45045a"]], ["CHAR",["Fi22","F22G1-p694980B0",0,[1,3,5,7,9,10,13,17,25,28],"1a+429a+1430a+3080a+13650a+30030a+45045a+75075a+205920a+320320a"]], ["CHAR",["Fi22.2","F22d2G1-p3510B0",0,[1,5,13]]], ["CHAR",["Fi23","F23G1-f11r782B0",11,2,"782a"]], ["CHAR",["Fi23","F23G1-f13r782B0",13,2,"782a"]], ["CHAR",["Fi23","F23G1-f2r1494B0",2,3,"1494a"]], ["CHAR",["Fi23","F23G1-f2r782B0",2,2,"782a"]], ["CHAR",["Fi23","F23G1-f5r782B0",5,2,"782a"]], ["CHAR",["Fi23","F23G1-f7r782B0",7,2,"782a"]], ["CHAR",["Fi23","F23G1-p137632B0",0,[1,6,8],"1a+30888a+106743a"]], ["CHAR",["Fi23","F23G1-p275264B0",0,[1,5,6,8,9],"1a+25806a+30888a+106743a+111826a"]], ["CHAR",["Fi23","F23G1-p31671B0",0,[1,2,6],"1a+782a+30888a"]], ["CHAR",["Fi24'","F24G1-p306936B0",0,[1,3,4],"1a+57477a+249458a"]], ["CHAR",["Fi24'.2","F24d2G1-p306936B0",0,[1,5,7]]], ["CHAR",["G2(3)","G23G1-Zr104B0",0,9,"104a"]], ["CHAR",["G2(3)","G23G1-Zr128B0",0,[3,4],"64ab"]], ["CHAR",["G2(3)","G23G1-Zr14B0",0,2,"14a"]], ["CHAR",["G2(3)","G23G1-Zr168B0",0,10,"168a"]], ["CHAR",["G2(3)","G23G1-Zr182aB0",0,11,"182a"]], ["CHAR",["G2(3)","G23G1-Zr182bB0",0,12,"182b"]], ["CHAR",["G2(3)","G23G1-Zr78B0",0,5,"78a"]], ["CHAR",["G2(3)","G23G1-Zr91aB0",0,6,"91a"]], ["CHAR",["G2(3)","G23G1-Zr91bB0",0,7,"91b"]], ["CHAR",["G2(3)","G23G1-Zr91cB0",0,8,"91c"]], ["CHAR",["G2(3)","G23G1-f2r14B0",2,2,"14a"]], ["CHAR",["G2(3)","G23G1-f2r378B0",2,9,"378a"]], ["CHAR",["G2(3)","G23G1-f2r78B0",2,5,"78a"]], ["CHAR",["G2(3)","G23G1-f2r90aB0",2,6,"90a"]], ["CHAR",["G2(3)","G23G1-f2r90bB0",2,7,"90b"]], ["CHAR",["G2(3)","G23G1-f2r90cB0",2,8,"90c"]], ["CHAR",["G2(3)","G23G1-f3r189aB0",3,7,"189a"]], ["CHAR",["G2(3)","G23G1-f3r189bB0",3,8,"189b"]], ["CHAR",["G2(3)","G23G1-f3r27aB0",3,5,"27b"]], ["CHAR",["G2(3)","G23G1-f3r27bB0",3,4,"27a"]], ["CHAR",["G2(3)","G23G1-f3r49B0",3,6,"49a"]], ["CHAR",["G2(3)","G23G1-f3r729B0",3,9,"729a"]], ["CHAR",["G2(3)","G23G1-f3r7aB0",3,2,"7a"]], ["CHAR",["G2(3)","G23G1-f3r7bB0",3,3,"7b"]], ["CHAR",["G2(3)","G23G1-f4r64aB0",2,3,"64a"]], ["CHAR",["G2(3).2","G23d2G1-Ar14B0",0,3]], ["CHAR",["G2(3).2","G23d2G1-f13r14B0",13,3]], ["CHAR",["G2(3).2","G23d2G1-f13r434aB0",13,21]], ["CHAR",["G2(3).2","G23d2G1-f2r14B0",2,2]], ["CHAR",["G2(3).2","G23d2G1-f3r14B0",3,3]], ["CHAR",["G2(3).2","G23d2G1-f7r14B0",7,3]], ["CHAR",["G2(3).2","G23d2G1-p756B0",0,[1,2,13,14,15,18]]], ["CHAR",["G2(4)","G24G1-Zr350B0",0,6,"350a"]], ["CHAR",["G2(4)","G24G1-Zr65B0",0,2,"65a"]], ["CHAR",["G2(4)","G24G1-Zr78B0",0,3,"78a"]], ["CHAR",["G2(4)","G24G1-f13r65B0",13,2,"65a"]], ["CHAR",["G2(4)","G24G1-f13r78B0",13,3,"78a"]], ["CHAR",["G2(4)","G24G1-f2r196B0",2,11,"196a"]], ["CHAR",["G2(4)","G24G1-f2r36B0",2,6,"36a"]], ["CHAR",["G2(4)","G24G1-f3r286B0",3,4,"286a"]], ["CHAR",["G2(4)","G24G1-f3r64B0",3,2,"64a"]], ["CHAR",["G2(4)","G24G1-f3r78B0",3,3,"78a"]], ["CHAR",["G2(4)","G24G1-f4r14aB0",2,4,"14a"]], ["CHAR",["G2(4)","G24G1-f4r14bB0",2,5,"14b"]], ["CHAR",["G2(4)","G24G1-f4r384aB0",2,12,"384a"]], ["CHAR",["G2(4)","G24G1-f4r64aB0",2,7,"64a"]], ["CHAR",["G2(4)","G24G1-f4r64bB0",2,8,"64b"]], ["CHAR",["G2(4)","G24G1-f4r6aB0",2,2,"6a"]], ["CHAR",["G2(4)","G24G1-f4r6bB0",2,3,"6b"]], ["CHAR",["G2(4)","G24G1-f4r84aB0",2,10,"84b"]], ["CHAR",["G2(4)","G24G1-f4r84bB0",2,9,"84a"]], ["CHAR",["G2(4)","G24G1-f4r896aB0",2,14,"896a"]], ["CHAR",["G2(4)","G24G1-f5r350B0",5,6,"350a"]], ["CHAR",["G2(4)","G24G1-f5r363aB0",5,7,"363a"]], ["CHAR",["G2(4)","G24G1-f5r650B0",5,10,"650a"]], ["CHAR",["G2(4)","G24G1-f5r65B0",5,2,"65a"]], ["CHAR",["G2(4)","G24G1-f5r78B0",5,3,"78a"]], ["CHAR",["G2(4)","G24G1-f7r65B0",7,2,"65a"]], ["CHAR",["G2(4)","G24G1-f7r78B0",7,3,"78a"]], ["CHAR",["G2(4)","G24G1-p1365aB0",0,[1,6,7,10],"1a+350a+364a+650a"]], ["CHAR",["G2(4)","G24G1-p1365bB0",0,[1,6,8,10],"1a+350a+364b+650a"]], ["CHAR",["G2(4)","G24G1-p2016B0",0,[1,10,16],"1a+650a+1365a"]], ["CHAR",["G2(4)","G24G1-p20800B0",0,[1,2,[6,2],7,8,15,16,19,28,29,32],"1a+65a+350a^2+364ab+1300a+1365a+2925c+4096a+4160a+5460a"]], ["CHAR",["G2(4)","G24G1-p2080B0",0,[1,6,8,16],"1a+350a+364b+1365a"]], ["CHAR",["G2(4)","G24G1-p416B0",0,[1,2,6],"1a+65a+350a"]], ["CHAR",["G2(4).2","G24d2G1-f13r65B0",13,4]], ["CHAR",["G2(4).2","G24d2G1-f2r128B0",2,5]], ["CHAR",["G2(4).2","G24d2G1-f2r12B0",2,2]], ["CHAR",["G2(4).2","G24d2G1-f2r168B0",2,6]], ["CHAR",["G2(4).2","G24d2G1-f2r196B0",2,7]], ["CHAR",["G2(4).2","G24d2G1-f2r28B0",2,3]], ["CHAR",["G2(4).2","G24d2G1-f2r36B0",2,4]], ["CHAR",["G2(4).2","G24d2G1-f2r768B0",2,8]], ["CHAR",["G2(4).2","G24d2G1-f3r64B0",3,3]], ["CHAR",["G2(4).2","G24d2G1-f5r65B0",5,4]], ["CHAR",["HN","HNG1-f11r133aB0",11,2,"133a"]], ["CHAR",["HN","HNG1-f11r133bB0",11,3,"133b"]], ["CHAR",["HN","HNG1-f11r760B0",11,4,"760a"]], ["CHAR",["HN","HNG1-f19r133aB0",19,2,"133a"]], ["CHAR",["HN","HNG1-f19r133bB0",19,3,"133b"]], ["CHAR",["HN","HNG1-f19r760B0",19,4,"760a"]], ["CHAR",["HN","HNG1-f2r760B0",2,4,"760a"]], ["CHAR",["HN","HNG1-f3r760B0",3,4,"760a"]], ["CHAR",["HN","HNG1-f49r133aB0",7,2,"133a"]], ["CHAR",["HN","HNG1-f49r133bB0",7,3,"133b"]], ["CHAR",["HN","HNG1-f4r132aB0",2,2,"132a"]], ["CHAR",["HN","HNG1-f4r132bB0",2,3,"132b"]], ["CHAR",["HN","HNG1-f4r133B0",2,[1,2],"1a+132a"]], ["CHAR",["HN","HNG1-f4r2650aB0",2,6,"2650b"]], ["CHAR",["HN","HNG1-f5r133B0",5,2,"133a"]], ["CHAR",["HN","HNG1-f5r626B0",5,3,"626a"]], ["CHAR",["HN","HNG1-f5r627B0",5,[1,3],"1a+626a"]], ["CHAR",["HN","HNG1-f7r760B0",7,4,"760a"]], ["CHAR",["HN","HNG1-f9r133aB0",3,2,"133a"]], ["CHAR",["HN","HNG1-f9r133bB0",3,3,"133b"]], ["CHAR",["HN","HNG1-p1140000B0",0,[1,2,3,4,5,8,10,11,12,18,20,23],"1a+133ab+760a+3344a+8910a+16929a+35112ab+267520a+365750a+406296a"]], ["CHAR",["HS","HSG1-Zr154aB0",0,4,"154a"]], ["CHAR",["HS","HSG1-Zr154bB0",0,5,"154b"]], ["CHAR",["HS","HSG1-Zr154cB0",0,6,"154c"]], ["CHAR",["HS","HSG1-Zr175B0",0,7,"175a"]], ["CHAR",["HS","HSG1-Zr22B0",0,2,"22a"]], ["CHAR",["HS","HSG1-Zr231B0",0,8,"231a"]], ["CHAR",["HS","HSG1-Zr77B0",0,3,"77a"]], ["CHAR",["HS","HSG1-f11r154aB0",11,4,"154a"]], ["CHAR",["HS","HSG1-f11r154bB0",11,5,"154b"]], ["CHAR",["HS","HSG1-f11r154cB0",11,6,"154c"]], ["CHAR",["HS","HSG1-f11r174B0",11,7,"174a"]], ["CHAR",["HS","HSG1-f11r22B0",11,2,"22a"]], ["CHAR",["HS","HSG1-f11r231B0",11,8,"231a"]], ["CHAR",["HS","HSG1-f11r693B0",11,9,"693a"]], ["CHAR",["HS","HSG1-f11r770aB0",11,10,"770a"]], ["CHAR",["HS","HSG1-f11r77B0",11,3,"77a"]], ["CHAR",["HS","HSG1-f11r825B0",11,13,"825a"]], ["CHAR",["HS","HSG1-f11r854B0",11,14,"854a"]], ["CHAR",["HS","HSG1-f11r896B0",11,15,"896a"]], ["CHAR",["HS","HSG1-f121r770bB0",11,11,"770b"]], ["CHAR",["HS","HSG1-f121r770cB0",11,12,"770c"]], ["CHAR",["HS","HSG1-f2r1000B0",2,8,"1000a"]], ["CHAR",["HS","HSG1-f2r132B0",2,4,"132a"]], ["CHAR",["HS","HSG1-f2r20B0",2,2,"20a"]], ["CHAR",["HS","HSG1-f2r518B0",2,5,"518a"]], ["CHAR",["HS","HSG1-f2r56B0",2,3,"56a"]], ["CHAR",["HS","HSG1-f3r154aB0",3,6,"154a"]], ["CHAR",["HS","HSG1-f3r154bB0",3,7,"154b"]], ["CHAR",["HS","HSG1-f3r154cB0",3,8,"154c"]], ["CHAR",["HS","HSG1-f3r22B0",3,2,"22a"]], ["CHAR",["HS","HSG1-f3r231B0",3,9,"231a"]], ["CHAR",["HS","HSG1-f3r321B0",3,10,"321a"]], ["CHAR",["HS","HSG1-f3r49aB0",3,3,"49a"]], ["CHAR",["HS","HSG1-f3r49bB0",3,4,"49b"]], ["CHAR",["HS","HSG1-f3r693B0",3,11,"693a"]], ["CHAR",["HS","HSG1-f3r748B0",3,12,"748a"]], ["CHAR",["HS","HSG1-f3r770aB0",3,13,"770a"]], ["CHAR",["HS","HSG1-f3r77B0",3,5,"77a"]], ["CHAR",["HS","HSG1-f3r825B0",3,15,"825a"]], ["CHAR",["HS","HSG1-f49r896aB0",7,15,"896a"]], ["CHAR",["HS","HSG1-f49r896bB0",7,16,"896b"]], ["CHAR",["HS","HSG1-f4r896aB0",2,6,"896a"]], ["CHAR",["HS","HSG1-f4r896bB0",2,7,"896b"]], ["CHAR",["HS","HSG1-f5r133aB0",5,5,"133a"]], ["CHAR",["HS","HSG1-f5r133bB0",5,6,"133b"]], ["CHAR",["HS","HSG1-f5r175B0",5,7,"175a"]], ["CHAR",["HS","HSG1-f5r210B0",5,8,"210a"]], ["CHAR",["HS","HSG1-f5r21B0",5,2,"21a"]], ["CHAR",["HS","HSG1-f5r280aB0",5,9,"280a"]], ["CHAR",["HS","HSG1-f5r518B0",5,11,"518a"]], ["CHAR",["HS","HSG1-f5r55B0",5,3,"55a"]], ["CHAR",["HS","HSG1-f5r650B0",5,12,"650a"]], ["CHAR",["HS","HSG1-f5r98B0",5,4,"98a"]], ["CHAR",["HS","HSG1-f7r154aB0",7,4,"154a"]], ["CHAR",["HS","HSG1-f7r154bB0",7,5,"154b"]], ["CHAR",["HS","HSG1-f7r154cB0",7,6,"154c"]], ["CHAR",["HS","HSG1-f7r175B0",7,7,"175a"]], ["CHAR",["HS","HSG1-f7r22B0",7,2,"22a"]], ["CHAR",["HS","HSG1-f7r231B0",7,8,"231a"]], ["CHAR",["HS","HSG1-f7r605B0",7,9,"605a"]], ["CHAR",["HS","HSG1-f7r693B0",7,10,"693a"]], ["CHAR",["HS","HSG1-f7r770aB0",7,11,"770a"]], ["CHAR",["HS","HSG1-f7r770bB0",7,12,"770b"]], ["CHAR",["HS","HSG1-f7r770cB0",7,13,"770c"]], ["CHAR",["HS","HSG1-f7r77B0",7,3,"77a"]], ["CHAR",["HS","HSG1-f7r803B0",7,14,"803a"]], ["CHAR",["HS","HSG1-p100B0",0,[1,2,3],"1a+22a+77a"]], ["CHAR",["HS","HSG1-p1100aB0",0,[1,2,3,7,13],"1a+22a+77a+175a+825a"]], ["CHAR",["HS","HSG1-p1100bB0",0,[1,3,4,7,9],"1a+77a+154a+175a+693a"]], ["CHAR",["HS","HSG1-p15400B0",0,[1,3,4,[7,3],[9,2],13,14,15,16,17,18,19,[22,2]],"1a+77a+154a+175a^3+693a^2+825a+896ab+1056a+1386a+1408a+1750a+2520a^2"]], ["CHAR",["HS","HSG1-p176bB0",0,[1,7],"1a+175a"]], ["CHAR",["HS","HSG1-p3850B0",0,[1,2,[3,2],4,7,9,10,13,16],"1a+22a+77a^2+154a+175a+693a+770a+825a+1056a"]], ["CHAR",["HS","HSG1-p4125B0",0,[1,2,3,4,7,9,10,13,18],"1a+22a+77a+154a+175a+693a+770a+825a+1408a"]], ["CHAR",["HS","HSG1-p5600aB0",0,[1,2,3,5,7,10,13,16,22],"1a+22a+77a+154b+175a+770a+825a+1056a+2520a"]], ["CHAR",["HS.2","HSd2G1-p100B0",0,[1,3,5]]], ["CHAR",["HS.2","HSd2G1-p1100bB0",0,[1,5,7,10,14]]], ["CHAR",["HS.2","HSd2G1-p352B0",0,[1,2,10,11]]], ["CHAR",["He","HeG1-Zr102B0",0,[2,3],"51ab"]], ["CHAR",["He","HeG1-f17r102B0",17,[2,3],"51ab"]], ["CHAR",["He","HeG1-f17r306B0",17,[4,5],"153ab"]], ["CHAR",["He","HeG1-f17r680B0",17,6,"680a"]], ["CHAR",["He","HeG1-f2r680B0",2,8,"680a"]], ["CHAR",["He","HeG1-f3r679B0",3,6,"679a"]], ["CHAR",["He","HeG1-f5r680B0",5,7,"680a"]], ["CHAR",["He","HeG1-f7r153B0",7,3,"153a"]], ["CHAR",["He","HeG1-f7r426B0",7,4,"426a"]], ["CHAR",["He","HeG1-f7r50B0",7,2,"50a"]], ["CHAR",["He","HeG1-f7r798B0",7,5,"798a"]], ["CHAR",["He","HeG1-p2058B0",0,[1,2,3,6,9],"1a+51ab+680a+1275a"]], ["CHAR",["He","HeG1-p244800B0",0,[1,4,5,12,13,14,[15,2],16,[19,2],[22,2],23,24,[26,2],[27,2],[28,2],29,30,31],"1a+153ab+1920a+4080a+4352a+6272a^2+6528a+7650a^2+10880a^2+11475ab+13720a^2+14400a^2+17493a^2+20825a+21504ab"]], ["CHAR",["He","HeG1-p29155B0",0,[1,2,3,6,[9,2],12,14,19,25],"1a+51ab+680a+1275a^2+1920a+4352a+7650a+11900a"]], ["CHAR",["He","HeG1-p8330B0",0,[1,2,3,6,9,12,14],"1a+51ab+680a+1275a+1920a+4352a"]], ["CHAR",["He.2","Hed2G1-p2058B0",0,[1,3,5,9]]], ["CHAR",["He.2","Hed2G1-p8330B0",0,[1,3,5,8,11,15]]], ["CHAR",["J1","J1G1-Zr112B0",0,[2,3],"56ab"]], ["CHAR",["J1","J1G1-Zr133aB0",0,12,"133a"]], ["CHAR",["J1","J1G1-Zr154aB0",0,[7,8],"77bc"]], ["CHAR",["J1","J1G1-Zr209B0",0,15,"209a"]], ["CHAR",["J1","J1G1-Zr266B0",0,[13,14],"133bc"]], ["CHAR",["J1","J1G1-Zr360B0",0,[9,10,11],"120abc"]], ["CHAR",["J1","J1G1-Zr76aB0",0,4,"76a"]], ["CHAR",["J1","J1G1-Zr76bB0",0,5,"76b"]], ["CHAR",["J1","J1G1-Zr77aB0",0,6,"77a"]], ["CHAR",["J1","J1G1-f11r106B0",11,12,"106a"]], ["CHAR",["J1","J1G1-f11r119B0",11,13,"119a"]], ["CHAR",["J1","J1G1-f11r14B0",11,3,"14a"]], ["CHAR",["J1","J1G1-f11r209B0",11,14,"209a"]], ["CHAR",["J1","J1G1-f11r27B0",11,4,"27a"]], ["CHAR",["J1","J1G1-f11r49B0",11,5,"49a"]], ["CHAR",["J1","J1G1-f11r56B0",11,6,"56a"]], ["CHAR",["J1","J1G1-f11r64B0",11,7,"64a"]], ["CHAR",["J1","J1G1-f11r69B0",11,8,"69a"]], ["CHAR",["J1","J1G1-f11r77aB0",11,9,"77a"]], ["CHAR",["J1","J1G1-f11r77bB0",11,10,"77b"]], ["CHAR",["J1","J1G1-f11r77cB0",11,11,"77c"]], ["CHAR",["J1","J1G1-f11r7B0",11,2,"7a"]], ["CHAR",["J1","J1G1-f125r120aB0",5,6,"120a"]], ["CHAR",["J1","J1G1-f125r120bB0",5,7,"120b"]], ["CHAR",["J1","J1G1-f125r120cB0",5,8,"120c"]], ["CHAR",["J1","J1G1-f19r133aB0",19,9,"133a"]], ["CHAR",["J1","J1G1-f19r133bB0",19,10,"133b"]], ["CHAR",["J1","J1G1-f19r133cB0",19,11,"133c"]], ["CHAR",["J1","J1G1-f19r209B0",19,12,"209a"]], ["CHAR",["J1","J1G1-f19r22B0",19,2,"22a"]], ["CHAR",["J1","J1G1-f19r34B0",19,3,"34a"]], ["CHAR",["J1","J1G1-f19r43B0",19,4,"43a"]], ["CHAR",["J1","J1G1-f19r55B0",19,5,"55a"]], ["CHAR",["J1","J1G1-f19r76aB0",19,6,"76a"]], ["CHAR",["J1","J1G1-f19r76bB0",19,7,"76b"]], ["CHAR",["J1","J1G1-f19r77B0",19,8,"77a"]], ["CHAR",["J1","J1G1-f27r120aB0",3,8,"120a"]], ["CHAR",["J1","J1G1-f27r120bB0",3,9,"120b"]], ["CHAR",["J1","J1G1-f27r120cB0",3,10,"120c"]], ["CHAR",["J1","J1G1-f2r112aB0",2,[3,4],"56ab"]], ["CHAR",["J1","J1G1-f2r112bB0",2,[5,6],"56cd"]], ["CHAR",["J1","J1G1-f2r20B0",2,2,"20a"]], ["CHAR",["J1","J1G1-f2r360B0",2,[9,10,11],"120abc"]], ["CHAR",["J1","J1G1-f2r76aB0",2,7,"76a"]], ["CHAR",["J1","J1G1-f2r76bB0",2,8,"76b"]], ["CHAR",["J1","J1G1-f3r112B0",3,[2,3],"56ab"]], ["CHAR",["J1","J1G1-f3r133B0",3,11,"133a"]], ["CHAR",["J1","J1G1-f3r154B0",3,[6,7],"77ab"]], ["CHAR",["J1","J1G1-f3r360B0",3,[8,9,10],"120abc"]], ["CHAR",["J1","J1G1-f3r76aB0",3,4,"76a"]], ["CHAR",["J1","J1G1-f3r76bB0",3,5,"76b"]], ["CHAR",["J1","J1G1-f49r133bB0",7,13,"133b"]], ["CHAR",["J1","J1G1-f49r133cB0",7,14,"133c"]], ["CHAR",["J1","J1G1-f49r56aB0",7,4,"56a"]], ["CHAR",["J1","J1G1-f49r56bB0",7,5,"56b"]], ["CHAR",["J1","J1G1-f49r77bB0",7,8,"77b"]], ["CHAR",["J1","J1G1-f49r77cB0",7,9,"77c"]], ["CHAR",["J1","J1G1-f4r56aB0",2,3,"56a"]], ["CHAR",["J1","J1G1-f4r56bB0",2,4,"56b"]], ["CHAR",["J1","J1G1-f4r56cB0",2,5,"56c"]], ["CHAR",["J1","J1G1-f4r56dB0",2,6,"56d"]], ["CHAR",["J1","J1G1-f5r133B0",5,9,"133a"]], ["CHAR",["J1","J1G1-f5r360B0",5,[6,7,8],"120abc"]], ["CHAR",["J1","J1G1-f5r56B0",5,2,"56a"]], ["CHAR",["J1","J1G1-f5r76aB0",5,3,"76a"]], ["CHAR",["J1","J1G1-f5r76bB0",5,4,"76b"]], ["CHAR",["J1","J1G1-f5r77B0",5,5,"77a"]], ["CHAR",["J1","J1G1-f7r112B0",7,[4,5],"56ab"]], ["CHAR",["J1","J1G1-f7r120B0",7,11,"120a"]], ["CHAR",["J1","J1G1-f7r133aB0",7,12,"133a"]], ["CHAR",["J1","J1G1-f7r154B0",7,[8,9],"77bc"]], ["CHAR",["J1","J1G1-f7r266B0",7,[13,14],"133bc"]], ["CHAR",["J1","J1G1-f7r31B0",7,2,"31a"]], ["CHAR",["J1","J1G1-f7r45B0",7,3,"45a"]], ["CHAR",["J1","J1G1-f7r75B0",7,6,"75a"]], ["CHAR",["J1","J1G1-f7r77aB0",7,7,"77a"]], ["CHAR",["J1","J1G1-f7r89B0",7,10,"89a"]], ["CHAR",["J1","J1G1-f8r120aB0",2,9,"120a"]], ["CHAR",["J1","J1G1-f8r120bB0",2,10,"120b"]], ["CHAR",["J1","J1G1-f8r120cB0",2,11,"120c"]], ["CHAR",["J1","J1G1-f9r56aB0",3,2,"56a"]], ["CHAR",["J1","J1G1-f9r56bB0",3,3,"56b"]], ["CHAR",["J1","J1G1-f9r77aB0",3,6,"77a"]], ["CHAR",["J1","J1G1-f9r77bB0",3,7,"77b"]], ["CHAR",["J1","J1G1-p1045B0",0,[1,2,3,4,7,8,9,10,11,12,15],"1a+56ab+76a+77bc+120abc+133a+209a"]], ["CHAR",["J1","J1G1-p1463B0",0,[1,2,3,[4,2],[6,2],9,10,11,[12,2],[15,2]],"1a+56ab+76a^2+77a^2+120abc+133a^2+209a^2"]], ["CHAR",["J1","J1G1-p1540B0",0,[1,2,3,[4,2],6,7,8,9,10,11,[12,2],[15,2]],"1a+56ab+76a^2+77abc+120abc+133a^2+209a^2"]], ["CHAR",["J1","J1G1-p1596B0",0,[1,2,3,4,5,[6,2],9,10,11,12,13,14,[15,2]],"1a+56ab+76ab+77a^2+120abc+133abc+209a^2"]], ["CHAR",["J1","J1G1-p266B0",0,[1,2,3,4,6],"1a+56ab+76a+77a"]], ["CHAR",["J1","J1G1-p2926B0",0,[1,2,3,[4,3],[6,3],[9,2],[10,2],[11,2],[12,4],13,14,[15,4]],"1a+56ab+76a^3+77a^3+120a^2b^2c^2+133a^4bc+209a^4"]], ["CHAR",["J1","J1G1-p4180B0",0,[1,[2,2],[3,2],[4,3],5,[6,2],[7,2],[8,2],[9,3],[10,3],[11,3],[12,4],[13,2],[14,2],[15,5]],"1a+56a^2b^2+76a^3b+77a^2b^2c^2+120a^3b^3c^3+133a^4b^2c^2+209a^5"]], ["CHAR",["J2","J2G1-Ar14aB0",0,2,"14a"]], ["CHAR",["J2","J2G1-Ar14bB0",0,3,"14b"]], ["CHAR",["J2","J2G1-Ar21aB0",0,4,"21a"]], ["CHAR",["J2","J2G1-Ar21bB0",0,5,"21b"]], ["CHAR",["J2","J2G1-Zr126B0",0,11,"126a"]], ["CHAR",["J2","J2G1-Zr140B0",0,[8,9],"70ab"]], ["CHAR",["J2","J2G1-Zr160B0",0,12,"160a"]], ["CHAR",["J2","J2G1-Zr175B0",0,13,"175a"]], ["CHAR",["J2","J2G1-Zr225B0",0,18,"225a"]], ["CHAR",["J2","J2G1-Zr28B0",0,[2,3],"14ab"]], ["CHAR",["J2","J2G1-Zr36B0",0,6,"36a"]], ["CHAR",["J2","J2G1-Zr378B0",0,[14,15],"189ab"]], ["CHAR",["J2","J2G1-Zr42B0",0,[4,5],"21ab"]], ["CHAR",["J2","J2G1-Zr448B0",0,[16,17],"224ab"]], ["CHAR",["J2","J2G1-Zr63B0",0,7,"63a"]], ["CHAR",["J2","J2G1-Zr90B0",0,10,"90a"]], ["CHAR",["J2","J2G1-f2r160B0",2,10,"160a"]], ["CHAR",["J2","J2G1-f2r36B0",2,6,"36a"]], ["CHAR",["J2","J2G1-f2r84B0",2,9,"84a"]], ["CHAR",["J2","J2G1-f3r133B0",3,11,"133a"]], ["CHAR",["J2","J2G1-f3r225B0",3,14,"225a"]], ["CHAR",["J2","J2G1-f3r36B0",3,6,"36a"]], ["CHAR",["J2","J2G1-f3r63B0",3,9,"63a"]], ["CHAR",["J2","J2G1-f3r90B0",3,10,"90a"]], ["CHAR",["J2","J2G1-f49r14aB0",7,2,"14a"]], ["CHAR",["J2","J2G1-f49r189aB0",7,15,"189a"]], ["CHAR",["J2","J2G1-f49r21aB0",7,4,"21a"]], ["CHAR",["J2","J2G1-f49r224bB0",7,19,"224b"]], ["CHAR",["J2","J2G1-f49r70aB0",7,8,"70a"]], ["CHAR",["J2","J2G1-f4r14aB0",2,4,"14a"]], ["CHAR",["J2","J2G1-f4r64aB0",2,7,"64a"]], ["CHAR",["J2","J2G1-f4r6aB0",2,2,"6a"]], ["CHAR",["J2","J2G1-f5r14B0",5,2,"14a"]], ["CHAR",["J2","J2G1-f5r175B0",5,8,"175a"]], ["CHAR",["J2","J2G1-f5r189B0",5,9,"189a"]], ["CHAR",["J2","J2G1-f5r21B0",5,3,"21a"]], ["CHAR",["J2","J2G1-f5r225B0",5,10,"225a"]], ["CHAR",["J2","J2G1-f5r300B0",5,11,"300a"]], ["CHAR",["J2","J2G1-f5r41B0",5,4,"41a"]], ["CHAR",["J2","J2G1-f5r70B0",5,5,"70a"]], ["CHAR",["J2","J2G1-f5r85B0",5,6,"85a"]], ["CHAR",["J2","J2G1-f5r90B0",5,7,"90a"]], ["CHAR",["J2","J2G1-f7r101B0",7,11,"101a"]], ["CHAR",["J2","J2G1-f7r124B0",7,12,"124a"]], ["CHAR",["J2","J2G1-f7r126B0",7,13,"126a"]], ["CHAR",["J2","J2G1-f7r175B0",7,14,"175a"]], ["CHAR",["J2","J2G1-f7r199B0",7,17,"199a"]], ["CHAR",["J2","J2G1-f7r336B0",7,20,"336a"]], ["CHAR",["J2","J2G1-f7r36B0",7,6,"36a"]], ["CHAR",["J2","J2G1-f7r63B0",7,7,"63a"]], ["CHAR",["J2","J2G1-f7r89B0",7,10,"89a"]], ["CHAR",["J2","J2G1-f9r13aB0",3,2,"13a"]], ["CHAR",["J2","J2G1-f9r189aB0",3,12,"189a"]], ["CHAR",["J2","J2G1-f9r21aB0",3,4,"21a"]], ["CHAR",["J2","J2G1-f9r57aB0",3,7,"57a"]], ["CHAR",["J2","J2G1-p1008B0",0,[1,2,3,[10,2],11,12,18,19],"1a+14ab+90a^2+126a+160a+225a+288a"]], ["CHAR",["J2","J2G1-p100B0",0,[1,6,7],"1a+36a+63a"]], ["CHAR",["J2","J2G1-p1800B0",0,[1,6,[7,2],10,[11,2],12,13,19,[21,2]],"1a+36a+63a^2+90a+126a^2+160a+175a+288a+336a^2"]], ["CHAR",["J2","J2G1-p280B0",0,[1,7,10,11],"1a+63a+90a+126a"]], ["CHAR",["J2","J2G1-p315B0",0,[1,2,3,6,10,12],"1a+14ab+36a+90a+160a"]], ["CHAR",["J2","J2G1-p525B0",0,[1,6,7,10,12,13],"1a+36a+63a+90a+160a+175a"]], ["CHAR",["J2","J2G1-p840B0",0,[1,7,10,11,12,13,18],"1a+63a+90a+126a+160a+175a+225a"]], ["CHAR",["J2.2","J2d2G1-f2r128B0",2,5]], ["CHAR",["J2.2","J2d2G1-f2r12B0",2,2]], ["CHAR",["J2.2","J2d2G1-f2r160B0",2,7]], ["CHAR",["J2.2","J2d2G1-f2r28B0",2,3]], ["CHAR",["J2.2","J2d2G1-f2r36B0",2,4]], ["CHAR",["J2.2","J2d2G1-f2r84B0",2,6]], ["CHAR",["J2.2","J2d2G1-f3r114B0",3,7]], ["CHAR",["J2.2","J2d2G1-f3r133aB0",3,12]], ["CHAR",["J2.2","J2d2G1-f3r225aB0",3,15]], ["CHAR",["J2.2","J2d2G1-f3r26B0",3,3]], ["CHAR",["J2.2","J2d2G1-f3r36aB0",3,5]], ["CHAR",["J2.2","J2d2G1-f3r378B0",3,14]], ["CHAR",["J2.2","J2d2G1-f3r42B0",3,4]], ["CHAR",["J2.2","J2d2G1-f3r63aB0",3,8]], ["CHAR",["J2.2","J2d2G1-f3r90aB0",3,10]], ["CHAR",["J2.2","J2d2G1-f49r336aB0",7,24]], ["CHAR",["J2.2","J2d2G1-f5r14aB0",5,3]], ["CHAR",["J2.2","J2d2G1-f5r175aB0",5,15]], ["CHAR",["J2.2","J2d2G1-f5r189aB0",5,17]], ["CHAR",["J2.2","J2d2G1-f5r21aB0",5,5]], ["CHAR",["J2.2","J2d2G1-f5r225aB0",5,19]], ["CHAR",["J2.2","J2d2G1-f5r300aB0",5,21]], ["CHAR",["J2.2","J2d2G1-f5r41aB0",5,7]], ["CHAR",["J2.2","J2d2G1-f5r70aB0",5,9]], ["CHAR",["J2.2","J2d2G1-f5r85aB0",5,11]], ["CHAR",["J2.2","J2d2G1-f5r90aB0",5,13]], ["CHAR",["J2.2","J2d2G1-f7r101aB0",7,12]], ["CHAR",["J2.2","J2d2G1-f7r124aB0",7,14]], ["CHAR",["J2.2","J2d2G1-f7r126aB0",7,16]], ["CHAR",["J2.2","J2d2G1-f7r140aB0",7,9]], ["CHAR",["J2.2","J2d2G1-f7r175aB0",7,18]], ["CHAR",["J2.2","J2d2G1-f7r199aB0",7,21]], ["CHAR",["J2.2","J2d2G1-f7r28B0",7,3]], ["CHAR",["J2.2","J2d2G1-f7r28aB0",7,3]], ["CHAR",["J2.2","J2d2G1-f7r36aB0",7,5]], ["CHAR",["J2.2","J2d2G1-f7r378aB0",7,20]], ["CHAR",["J2.2","J2d2G1-f7r42aB0",7,4]], ["CHAR",["J2.2","J2d2G1-f7r448aB0",7,23]], ["CHAR",["J2.2","J2d2G1-f7r63aB0",7,7]], ["CHAR",["J2.2","J2d2G1-f7r89aB0",7,10]], ["CHAR",["J2.2","J2d2G1-p100B0",0,[1,5,7]]], ["CHAR",["J3","J3G1-Zr170B0",0,[2,3],"85ab"]], ["CHAR",["J3","J3G1-f17r1292B0",17,[8,9],"646ab"]], ["CHAR",["J3","J3G1-f17r324B0",17,6,"324a"]], ["CHAR",["J3","J3G1-f17r379B0",17,7,"379a"]], ["CHAR",["J3","J3G1-f17r646cB0",17,[4,5],"323ab"]], ["CHAR",["J3","J3G1-f17r761B0",17,10,"761a"]], ["CHAR",["J3","J3G1-f17r816B0",17,11,"816a"]], ["CHAR",["J3","J3G1-f17r836B0",17,12,"836a"]], ["CHAR",["J3","J3G1-f17r85bB0",17,3,"85b"]], ["CHAR",["J3","J3G1-f19r1001B0",19,11,"1001a"]], ["CHAR",["J3","J3G1-f19r110B0",19,3,"110a"]], ["CHAR",["J3","J3G1-f19r214B0",19,4,"214a"]], ["CHAR",["J3","J3G1-f19r323aB0",19,5,"323a"]], ["CHAR",["J3","J3G1-f19r646aB0",19,7,"646a"]], ["CHAR",["J3","J3G1-f19r706B0",19,9,"706a"]], ["CHAR",["J3","J3G1-f19r85B0",19,2,"85a"]], ["CHAR",["J3","J3G1-f19r919B0",19,10,"919a"]], ["CHAR",["J3","J3G1-f2r244B0",2,7,"244a"]], ["CHAR",["J3","J3G1-f2r248B0",2,[4,5,6],"80a+84ab"]], ["CHAR",["J3","J3G1-f2r80B0",2,4,"80a"]], ["CHAR",["J3","J3G1-f2r966B0",2,10,"966a"]], ["CHAR",["J3","J3G1-f3r324B0",3,8,"324a"]], ["CHAR",["J3","J3G1-f3r934B0",3,9,"934a"]], ["CHAR",["J3","J3G1-f4r322aB0",2,8,"322a"]], ["CHAR",["J3","J3G1-f4r78bB0",2,3,"78b"]], ["CHAR",["J3","J3G1-f4r84aB0",2,5,"84a"]], ["CHAR",["J3","J3G1-f5r323B0",5,4,"323a"]], ["CHAR",["J3","J3G1-f5r646B0",5,5,"646a"]], ["CHAR",["J3","J3G1-f5r816B0",5,6,"816a"]], ["CHAR",["J3","J3G1-f5r85aB0",5,2,"85a"]], ["CHAR",["J3","J3G1-f9r153bB0",3,7,"153b"]], ["CHAR",["J3","J3G1-f9r18bB0",3,3,"18b"]], ["CHAR",["J3","J3G1-f9r84bB0",3,5,"84b"]], ["CHAR",["J3","J3G1-p14688aB0",0,[1,2,3,[10,2],11,12,13,14,15,16,19],"1a+85ab+1140a^2+1215ab+1615a+1920abc+2432a"]], ["CHAR",["J3","J3G1-p14688bB0",0,[1,2,3,[10,2],11,12,13,14,15,16,19],"1a+85ab+1140a^2+1215ab+1615a+1920abc+2432a"]], ["CHAR",["J3","J3G1-p17442B0",0,[1,4,5,6,[9,2],[10,2],11,12,13,14,15,16,20],"1a+323ab+324a+816a^2+1140a^2+1215ab+1615a+1920abc+2754a"]], ["CHAR",["J3","J3G1-p20520B0",0,[1,2,3,6,[10,2],[11,2],[12,2],13,14,15,16,19,21],"1a+85ab+324a+1140a^2+1215a^2b^2+1615a+1920abc+2432a+3078a"]], ["CHAR",["J3","J3G1-p23256B0",0,[1,4,5,6,[10,3],[11,2],[12,2],13,14,15,16,17,18,20],"1a+323ab+324a+1140a^3+1215a^2b^2+1615a+1920abc+1938ab+2754a"]], ["CHAR",["J3","J3G1-p25840B0",0,[1,6,10,[11,2],[12,2],13,14,15,16,17,18,19,20,21],"1a+324a+1140a+1215a^2b^2+1615a+1920abc+1938ab+2432a+2754a+3078a"]], ["CHAR",["J3","J3G1-p26163B0",0,[1,4,5,6,[10,2],[11,2],[12,2],[13,2],14,15,16,17,18,19,20],"1a+323ab+324a+1140a^2+1215a^2b^2+1615a^2+1920abc+1938ab+2432a+2754a"]], ["CHAR",["J3","J3G1-p43605B0",0,[1,4,5,[6,2],[9,2],[10,3],[11,2],[12,2],[13,2],[14,2],[15,2],[16,2],17,18,19,[20,3],21],"1a+323ab+324a^2+816a^2+1140a^3+1215a^2b^2+1615a^2+1920a^2b^2c^2+1938ab+2432a+2754a^3+3078a"]], ["CHAR",["J3","J3G1-p6156B0",0,[1,4,5,6,10,11,12,13],"1a+323ab+324a+1140a+1215ab+1615a"]], ["CHAR",["J3.2","J3d2G1-f17r170aB0",17,3]], ["CHAR",["J3.2","J3d2G1-f17r324aB0",17,5]], ["CHAR",["J3.2","J3d2G1-f17r379aB0",17,7]], ["CHAR",["J3.2","J3d2G1-f17r646aB0",17,4]], ["CHAR",["J3.2","J3d2G1-f17r836aB0",17,14]], ["CHAR",["J3.2","J3d2G1-f19r1001aB0",19,15]], ["CHAR",["J3.2","J3d2G1-f19r110aB0",19,5]], ["CHAR",["J3.2","J3d2G1-f19r1214aB0",19,19]], ["CHAR",["J3.2","J3d2G1-f19r214aB0",19,7]], ["CHAR",["J3.2","J3d2G1-f19r214bB0",19,8]], ["CHAR",["J3.2","J3d2G1-f19r646aB0",19,9]], ["CHAR",["J3.2","J3d2G1-f19r706aB0",19,11]], ["CHAR",["J3.2","J3d2G1-f19r85aB0",19,3]], ["CHAR",["J3.2","J3d2G1-f19r919aB0",19,13]], ["CHAR",["J3.2","J3d2G1-f2r168aB0",2,4]], ["CHAR",["J3.2","J3d2G1-f2r644aB0",2,6]], ["CHAR",["J3.2","J3d2G1-f3r168aB0",3,4]], ["CHAR",["J3.2","J3d2G1-f3r306aB0",3,5]], ["CHAR",["J3.2","J3d2G1-f3r324aB0",3,6]], ["CHAR",["J3.2","J3d2G1-f3r36B0",3,3]], ["CHAR",["J3.2","J3d2G1-f3r36aB0",3,3]], ["CHAR",["J3.2","J3d2G1-f3r934aB0",3,8]], ["CHAR",["J3.2","J3d2G1-f5r170aB0",5,3]], ["CHAR",["J3.2","J3d2G1-f5r323bB0",5,5]], ["CHAR",["J3.2","J3d2G1-f5r646aB0",5,6]], ["CHAR",["J3.2","J3d2G1-f5r816aB0",5,8]], ["CHAR",["J3.2","J3d2G1-p6156B0",0,[1,4,6,10,13,15,16]]], ["CHAR",["L2(101)","L2101G1-Zr101B0",0,27,"101a"]], ["CHAR",["L2(103)","L2103G1-Zr103B0",0,27,"103a"]], ["CHAR",["L2(107)","L2107G1-Zr107B0",0,28,"107a"]], ["CHAR",["L2(109)","L2109G1-Zr109B0",0,29,"109a"]], ["CHAR",["L2(11)","L211G1-Ar12aB0",0,7,"12a"]], ["CHAR",["L2(11)","L211G1-Ar12bB0",0,8,"12b"]], ["CHAR",["L2(11)","L211G1-Ar5aB0",0,2,"5a"]], ["CHAR",["L2(11)","L211G1-Ar5bB0",0,3,"5b"]], ["CHAR",["L2(11)","L211G1-Zr10aB0",0,4,"10a"]], ["CHAR",["L2(11)","L211G1-Zr10bB0",0,5,"10b"]], ["CHAR",["L2(11)","L211G1-Zr10cB0",0,[2,3],"5ab"]], ["CHAR",["L2(11)","L211G1-Zr11B0",0,6,"11a"]], ["CHAR",["L2(11)","L211G1-f11r11B0",11,6,"11a"]], ["CHAR",["L2(11)","L211G1-f11r3B0",11,2,"3a"]], ["CHAR",["L2(11)","L211G1-f11r5B0",11,3,"5a"]], ["CHAR",["L2(11)","L211G1-f11r7B0",11,4,"7a"]], ["CHAR",["L2(11)","L211G1-f11r9B0",11,5,"9a"]], ["CHAR",["L2(11)","L211G1-f2r10B0",2,4,"10a"]], ["CHAR",["L2(11)","L211G1-f2r10bB0",2,[2,3],"5ab"]], ["CHAR",["L2(11)","L211G1-f2r24B0",2,[5,6],"12ab"]], ["CHAR",["L2(11)","L211G1-f3r10B0",3,4,"10a"]], ["CHAR",["L2(11)","L211G1-f3r24B0",3,[5,6],"12ab"]], ["CHAR",["L2(11)","L211G1-f3r5aB0",3,2,"5a"]], ["CHAR",["L2(11)","L211G1-f3r5bB0",3,3,"5b"]], ["CHAR",["L2(11)","L211G1-f4r12aB0",2,5,"12a"]], ["CHAR",["L2(11)","L211G1-f4r12bB0",2,6,"12b"]], ["CHAR",["L2(11)","L211G1-f4r5aB0",2,2,"5a"]], ["CHAR",["L2(11)","L211G1-f4r5bB0",2,3,"5b"]], ["CHAR",["L2(11)","L211G1-f5r10aB0",5,4,"10a"]], ["CHAR",["L2(11)","L211G1-f5r10bB0",5,5,"10b"]], ["CHAR",["L2(11)","L211G1-f5r11B0",5,6,"11a"]], ["CHAR",["L2(11)","L211G1-f5r5aB0",5,2,"5a"]], ["CHAR",["L2(11)","L211G1-f5r5bB0",5,3,"5b"]], ["CHAR",["L2(11)","L211G1-f9r12aB0",3,5,"12a"]], ["CHAR",["L2(11)","L211G1-f9r12bB0",3,6,"12b"]], ["CHAR",["L2(11)","L211G1-p11aB0",0,[1,5],"1a+10b"]], ["CHAR",["L2(11)","L211G1-p11bB0",0,[1,5],"1a+10b"]], ["CHAR",["L2(11)","L211G1-p12B0",0,[1,6],"1a+11a"]], ["CHAR",["L2(11)","L211G1-p55B0",0,[1,2,3,[5,2],7,8],"1a+5ab+10b^2+12ab"]], ["CHAR",["L2(11).2","L211d2G1-f11r11B0",11,11]], ["CHAR",["L2(11).2","L211d2G1-f11r3B0",11,3]], ["CHAR",["L2(11).2","L211d2G1-f11r5B0",11,5]], ["CHAR",["L2(11).2","L211d2G1-f11r7B0",11,7]], ["CHAR",["L2(11).2","L211d2G1-f11r9B0",11,9]], ["CHAR",["L2(11).2","L211d2G1-f2r10aB0",2,2]], ["CHAR",["L2(11).2","L211d2G1-f2r10bB0",2,3]], ["CHAR",["L2(11).2","L211d2G1-f4r12aB0",2,4]], ["CHAR",["L2(11).2","L211d2G1-f4r12bB0",2,5]], ["CHAR",["L2(11).2","L211d2G1-p12B0",0,[1,8]]], ["CHAR",["L2(11).2","L211d2G1-p22B0",0,[1,2,6,7]]], ["CHAR",["L2(11).2","L211d2G1-p55aB0",0,[1,4,6,7,10,12]]], ["CHAR",["L2(11).2","L211d2G1-p55bB0",0,[1,3,6,7,10,12]]], ["CHAR",["L2(11).2","L211d2G1-p66B0",0,[1,3,6,7,8,10,12]]], ["CHAR",["L2(113)","L2113G1-Zr113B0",0,30,"113a"]], ["CHAR",["L2(13)","L213G1-Ar12aB0",0,4,"12a"]], ["CHAR",["L2(13)","L213G1-Ar12bB0",0,5,"12b"]], ["CHAR",["L2(13)","L213G1-Ar12cB0",0,6,"12c"]], ["CHAR",["L2(13)","L213G1-Zr13B0",0,7,"13a"]], ["CHAR",["L2(13)","L213G1-Zr14aB0",0,8,"14a"]], ["CHAR",["L2(13)","L213G1-Zr14bB0",0,9,"14b"]], ["CHAR",["L2(13)","L213G1-Zr14cB0",0,[2,3],"7ab"]], ["CHAR",["L2(13)","L213G1-Zr36B0",0,[4,5,6],"12abc"]], ["CHAR",["L2(13)","L213G1-f13r11B0",13,6,"11a"]], ["CHAR",["L2(13)","L213G1-f13r13B0",13,7,"13a"]], ["CHAR",["L2(13)","L213G1-f13r3B0",13,2,"3a"]], ["CHAR",["L2(13)","L213G1-f13r5B0",13,3,"5a"]], ["CHAR",["L2(13)","L213G1-f13r7B0",13,4,"7a"]], ["CHAR",["L2(13)","L213G1-f13r9B0",13,5,"9a"]], ["CHAR",["L2(13)","L213G1-f2r14B0",2,7,"14a"]], ["CHAR",["L2(13)","L213G1-f3r13B0",3,7,"13a"]], ["CHAR",["L2(13)","L213G1-f4r6aB0",2,3,"6b"]], ["CHAR",["L2(13)","L213G1-f4r6bB0",2,2,"6a"]], ["CHAR",["L2(13)","L213G1-f7r12B0",7,4,"12a"]], ["CHAR",["L2(13)","L213G1-f8r12aB0",2,4,"12a"]], ["CHAR",["L2(13)","L213G1-f8r12bB0",2,5,"12b"]], ["CHAR",["L2(13)","L213G1-f8r12cB0",2,6,"12c"]], ["CHAR",["L2(13)","L213G1-p14B0",0,[1,7],"1a+13a"]], ["CHAR",["L2(13).2","L213d2G1-f13r3aB0",13,3]], ["CHAR",["L2(13).2","L213d2G1-f2r12aB0",2,2]], ["CHAR",["L2(13).2","L213d2G1-f2r14B0",2,6]], ["CHAR",["L2(13).2","L213d2G1-p14B0",0,[1,11]]], ["CHAR",["L2(13).2","L213d2G1-p78B0",0,[1,4,6,8,10,12,13]]], ["CHAR",["L2(13).2","L213d2G1-p91aB0",0,[1,4,6,8,10,11,12,13]]], ["CHAR",["L2(16)","L216G1-Zr120B0",0,[2,3,4,5,6,7,8,9],"15abcdefgh"]], ["CHAR",["L2(16)","L216G1-Zr16B0",0,10,"16a"]], ["CHAR",["L2(16)","L216G1-Zr17aB0",0,11,"17a"]], ["CHAR",["L2(16)","L216G1-Zr34B0",0,[12,13],"17bc"]], ["CHAR",["L2(16)","L216G1-Zr68B0",0,[14,15,16,17],"17defg"]], ["CHAR",["L2(16)","L216G1-f16r2aB0",2,2,"2a"]], ["CHAR",["L2(16)","L216G1-f17r15B0",17,2,"15a"]], ["CHAR",["L2(16)","L216G1-f17r17B0",17,3,"17a"]], ["CHAR",["L2(16)","L216G1-f17r34B0",17,[4,5],"17bc"]], ["CHAR",["L2(16)","L216G1-f17r68B0",17,[6,7,8,9],"17defg"]], ["CHAR",["L2(16)","L216G1-f3r16B0",3,10,"16a"]], ["CHAR",["L2(16)","L216G1-f5r16B0",5,10,"16a"]], ["CHAR",["L2(16)","L216G1-f9r17aB0",3,11,"17a"]], ["CHAR",["L2(16)","L216G1-f9r17bB0",3,12,"17b"]], ["CHAR",["L2(16)","L216G1-p17B0",0,[1,10],"1a+16a"]], ["CHAR",["L2(16).2","L216d2G1-f4r4aB0",2,2]], ["CHAR",["L2(16).4","L216d4G1-f17r15aB0",17,5]], ["CHAR",["L2(16).4","L216d4G1-f17r17aB0",17,9]], ["CHAR",["L2(16).4","L216d4G1-f17r34aB0",17,13]], ["CHAR",["L2(16).4","L216d4G1-f17r68B0",17,15]], ["CHAR",["L2(16).4","L216d4G1-f25r60aB0",5,5]], ["CHAR",["L2(16).4","L216d4G1-f25r60bB0",5,6]], ["CHAR",["L2(16).4","L216d4G1-f2r16aB0",2,4]], ["CHAR",["L2(16).4","L216d4G1-f2r16bB0",2,6]], ["CHAR",["L2(16).4","L216d4G1-f2r32B0",2,5]], ["CHAR",["L2(16).4","L216d4G1-f2r8aB0",2,2]], ["CHAR",["L2(16).4","L216d4G1-f2r8bB0",2,3]], ["CHAR",["L2(16).4","L216d4G1-f3r16aB0",3,7]], ["CHAR",["L2(16).4","L216d4G1-f5r16aB0",5,7]], ["CHAR",["L2(16).4","L216d4G1-f5r17aB0",5,11]], ["CHAR",["L2(16).4","L216d4G1-f9r60aB0",3,5]], ["CHAR",["L2(16).4","L216d4G1-f9r60bB0",3,6]], ["CHAR",["L2(17)","L217G1-Ar9aB0",0,2,"9a"]], ["CHAR",["L2(17)","L217G1-Ar9bB0",0,3,"9b"]], ["CHAR",["L2(17)","L217G1-Zr16aB0",0,4,"16a"]], ["CHAR",["L2(17)","L217G1-Zr17B0",0,8,"17a"]], ["CHAR",["L2(17)","L217G1-Zr18aB0",0,9,"18a"]], ["CHAR",["L2(17)","L217G1-Zr18dB0",0,[2,3],"9ab"]], ["CHAR",["L2(17)","L217G1-Zr48B0",0,[5,6,7],"16bcd"]], ["CHAR",["L2(17)","L217G1-f17r11B0",17,6,"11a"]], ["CHAR",["L2(17)","L217G1-f17r13B0",17,7,"13a"]], ["CHAR",["L2(17)","L217G1-f17r15B0",17,8,"15a"]], ["CHAR",["L2(17)","L217G1-f17r17B0",17,9,"17a"]], ["CHAR",["L2(17)","L217G1-f17r3B0",17,2,"3a"]], ["CHAR",["L2(17)","L217G1-f17r5B0",17,3,"5a"]], ["CHAR",["L2(17)","L217G1-f17r7B0",17,4,"7a"]], ["CHAR",["L2(17)","L217G1-f17r9B0",17,5,"9a"]], ["CHAR",["L2(17)","L217G1-f2r16aB0",2,4,"16a"]], ["CHAR",["L2(17)","L217G1-f2r48B0",2,[5,6,7],"16bcd"]], ["CHAR",["L2(17)","L217G1-f2r8aB0",2,2,"8a"]], ["CHAR",["L2(17)","L217G1-f2r8bB0",2,3,"8b"]], ["CHAR",["L2(17)","L217G1-f3r16B0",3,4,"16a"]], ["CHAR",["L2(17)","L217G1-f3r18aB0",3,5,"18a"]], ["CHAR",["L2(17)","L217G1-f8r16bB0",2,5,"16b"]], ["CHAR",["L2(17)","L217G1-f8r16cB0",2,6,"16c"]], ["CHAR",["L2(17)","L217G1-f8r16dB0",2,7,"16d"]], ["CHAR",["L2(17)","L217G1-f9r18bB0",3,6,"18b"]], ["CHAR",["L2(17)","L217G1-f9r18cB0",3,7,"18c"]], ["CHAR",["L2(17)","L217G1-f9r9aB0",3,2,"9a"]], ["CHAR",["L2(17)","L217G1-f9r9bB0",3,3,"9b"]], ["CHAR",["L2(17)","L217G1-p18B0",0,[1,8],"1a+17a"]], ["CHAR",["L2(19)","L219G1-Zr18eB0",0,[2,3],"9ab"]], ["CHAR",["L2(19)","L219G1-Zr19B0",0,8,"19a"]], ["CHAR",["L2(19)","L219G1-Zr20aB0",0,9,"20a"]], ["CHAR",["L2(19)","L219G1-Zr36aB0",0,[4,5],"18ab"]], ["CHAR",["L2(19)","L219G1-f125r20bB0",5,6,"20b"]], ["CHAR",["L2(19)","L219G1-f125r20cB0",5,7,"20c"]], ["CHAR",["L2(19)","L219G1-f125r20dB0",5,8,"20d"]], ["CHAR",["L2(19)","L219G1-f19r11B0",19,6,"11a"]], ["CHAR",["L2(19)","L219G1-f19r13B0",19,7,"13a"]], ["CHAR",["L2(19)","L219G1-f19r15B0",19,8,"15a"]], ["CHAR",["L2(19)","L219G1-f19r17B0",19,9,"17a"]], ["CHAR",["L2(19)","L219G1-f19r19B0",19,10,"19a"]], ["CHAR",["L2(19)","L219G1-f19r3B0",19,2,"3a"]], ["CHAR",["L2(19)","L219G1-f19r5B0",19,3,"5a"]], ["CHAR",["L2(19)","L219G1-f19r7B0",19,4,"7a"]], ["CHAR",["L2(19)","L219G1-f19r9B0",19,5,"9a"]], ["CHAR",["L2(19)","L219G1-f2r20aB0",2,6,"20a"]], ["CHAR",["L2(19)","L219G1-f3r19B0",3,8,"19a"]], ["CHAR",["L2(19)","L219G1-f4r18aB0",2,4,"18a"]], ["CHAR",["L2(19)","L219G1-f4r18bB0",2,5,"18b"]], ["CHAR",["L2(19)","L219G1-f4r9aB0",2,2,"9a"]], ["CHAR",["L2(19)","L219G1-f4r9bB0",2,3,"9b"]], ["CHAR",["L2(19)","L219G1-f5r18B0",5,4,"18a"]], ["CHAR",["L2(19)","L219G1-f5r20aB0",5,5,"20a"]], ["CHAR",["L2(19)","L219G1-f5r9aB0",5,2,"9a"]], ["CHAR",["L2(19)","L219G1-f5r9bB0",5,3,"9b"]], ["CHAR",["L2(19)","L219G1-f8r20bB0",2,7,"20b"]], ["CHAR",["L2(19)","L219G1-f8r20cB0",2,8,"20c"]], ["CHAR",["L2(19)","L219G1-f8r20dB0",2,9,"20d"]], ["CHAR",["L2(19)","L219G1-f9r18aB0",3,4,"18a"]], ["CHAR",["L2(19)","L219G1-f9r18bB0",3,5,"18b"]], ["CHAR",["L2(19)","L219G1-f9r18cB0",3,6,"18c"]], ["CHAR",["L2(19)","L219G1-f9r18dB0",3,7,"18d"]], ["CHAR",["L2(19)","L219G1-f9r9aB0",3,2,"9a"]], ["CHAR",["L2(19)","L219G1-f9r9bB0",3,3,"9b"]], ["CHAR",["L2(19)","L219G1-p171B0",0,[1,2,3,[6,2],[7,2],9,10,11,12],"1a+9ab+18c^2d^2+20abcd"]], ["CHAR",["L2(19)","L219G1-p190B0",0,[1,2,3,[6,2],[7,2],8,9,10,11,12],"1a+9ab+18c^2d^2+19a+20abcd"]], ["CHAR",["L2(19)","L219G1-p20B0",0,[1,8],"1a+19a"]], ["CHAR",["L2(19)","L219G1-p57aB0",0,[1,6,7,9],"1a+18cd+20a"]], ["CHAR",["L2(19)","L219G1-p57bB0",0,[1,6,7,9],"1a+18cd+20a"]], ["CHAR",["L2(19).2","L219d2G1-f19r3B0",19,3]], ["CHAR",["L2(19).2","L219d2G1-p114B0",0,[1,2,8,9,10,11,14,15]]], ["CHAR",["L2(19).2","L219d2G1-p171B0",0,[1,3,8,9,10,11,14,16,18,20]]], ["CHAR",["L2(19).2","L219d2G1-p190B0",0,[1,3,8,9,10,11,12,14,16,18,20]]], ["CHAR",["L2(19).2","L219d2G1-p20B0",0,[1,12]]], ["CHAR",["L2(19).2","L219d2G1-p285B0",0,[1,3,4,6,8,9,10,11,12,13,[14,2],15,16,18,20]]], ["CHAR",["L2(23)","L223G1-Ar24aB0",0,10,"24a"]], ["CHAR",["L2(23)","L223G1-Ar24bB0",0,11,"24b"]], ["CHAR",["L2(23)","L223G1-Ar24cB0",0,12,"24c"]], ["CHAR",["L2(23)","L223G1-Ar24dB0",0,13,"24d"]], ["CHAR",["L2(23)","L223G1-Ar24eB0",0,14,"24e"]], ["CHAR",["L2(23)","L223G1-Zr22aB0",0,4,"22a"]], ["CHAR",["L2(23)","L223G1-Zr22bB0",0,5,"22b"]], ["CHAR",["L2(23)","L223G1-Zr22cB0",0,6,"22c"]], ["CHAR",["L2(23)","L223G1-Zr23B0",0,9,"23a"]], ["CHAR",["L2(23)","L223G1-f11r23B0",11,9,"23a"]], ["CHAR",["L2(23)","L223G1-f23r11B0",23,6,"11a"]], ["CHAR",["L2(23)","L223G1-f23r13B0",23,7,"13a"]], ["CHAR",["L2(23)","L223G1-f23r15B0",23,8,"15a"]], ["CHAR",["L2(23)","L223G1-f23r17B0",23,9,"17a"]], ["CHAR",["L2(23)","L223G1-f23r19B0",23,10,"19a"]], ["CHAR",["L2(23)","L223G1-f23r21B0",23,11,"21a"]], ["CHAR",["L2(23)","L223G1-f23r23B0",23,12,"23a"]], ["CHAR",["L2(23)","L223G1-f23r3B0",23,2,"3a"]], ["CHAR",["L2(23)","L223G1-f23r5B0",23,3,"5a"]], ["CHAR",["L2(23)","L223G1-f23r7B0",23,4,"7a"]], ["CHAR",["L2(23)","L223G1-f23r9B0",23,5,"9a"]], ["CHAR",["L2(23)","L223G1-f2r11aB0",2,2,"11a"]], ["CHAR",["L2(23)","L223G1-f2r11bB0",2,3,"11b"]], ["CHAR",["L2(23)","L223G1-f2r22B0",2,4,"22a"]], ["CHAR",["L2(23)","L223G1-f32r24aB0",2,5,"24a"]], ["CHAR",["L2(23)","L223G1-f32r24bB0",2,6,"24b"]], ["CHAR",["L2(23)","L223G1-f32r24cB0",2,7,"24c"]], ["CHAR",["L2(23)","L223G1-f32r24dB0",2,8,"24d"]], ["CHAR",["L2(23)","L223G1-f32r24eB0",2,9,"24e"]], ["CHAR",["L2(23)","L223G1-f3r22aB0",3,4,"22a"]], ["CHAR",["L2(23)","L223G1-p24B0",0,[1,9],"1a+23a"]], ["CHAR",["L2(23).2","L223d2G1-f23r3aB0",23,3]], ["CHAR",["L2(23).2","L223d2G1-f2r22aB0",2,2]], ["CHAR",["L2(27)","L227G1-Ar13aB0",0,2,"13a"]], ["CHAR",["L2(27)","L227G1-Ar13bB0",0,3,"13b"]], ["CHAR",["L2(27)","L227G1-Ar28aB0",0,11,"28a"]], ["CHAR",["L2(27)","L227G1-Ar28bB0",0,12,"28b"]], ["CHAR",["L2(27)","L227G1-Ar28cB0",0,13,"28c"]], ["CHAR",["L2(27)","L227G1-Ar28dB0",0,14,"28d"]], ["CHAR",["L2(27)","L227G1-Ar28eB0",0,15,"28e"]], ["CHAR",["L2(27)","L227G1-Ar28fB0",0,16,"28f"]], ["CHAR",["L2(27)","L227G1-Zr26gB0",0,[2,3],"13ab"]], ["CHAR",["L2(27)","L227G1-Zr27B0",0,10,"27a"]], ["CHAR",["L2(27)","L227G1-Zr78aB0",0,[4,5,6],"26abc"]], ["CHAR",["L2(27)","L227G1-f13r27B0",13,10,"27a"]], ["CHAR",["L2(27)","L227G1-f27r3aB0",3,2,"3a"]], ["CHAR",["L2(27)","L227G1-f3r27B0",3,14,"27a"]], ["CHAR",["L2(27)","L227G1-f4r13aB0",2,2,"13a"]], ["CHAR",["L2(27)","L227G1-f4r13bB0",2,3,"13b"]], ["CHAR",["L2(27)","L227G1-f7r26B0",7,4,"26a"]], ["CHAR",["L2(27)","L227G1-p28B0",0,[1,10],"1a+27a"]], ["CHAR",["L2(29)","L229G1-Ar30aB0",0,12,"30a"]], ["CHAR",["L2(29)","L229G1-Ar30bB0",0,13,"30b"]], ["CHAR",["L2(29)","L229G1-Ar30cB0",0,14,"30c"]], ["CHAR",["L2(29)","L229G1-Ar30dB0",0,15,"30d"]], ["CHAR",["L2(29)","L229G1-Ar30eB0",0,16,"30e"]], ["CHAR",["L2(29)","L229G1-Ar30fB0",0,17,"30f"]], ["CHAR",["L2(29)","L229G1-Zr112B0",0,[7,8,9,10],"28defg"]], ["CHAR",["L2(29)","L229G1-Zr28aB0",0,4,"28a"]], ["CHAR",["L2(29)","L229G1-Zr29B0",0,11,"29a"]], ["CHAR",["L2(29)","L229G1-Zr30gB0",0,[2,3],"15ab"]], ["CHAR",["L2(29)","L229G1-Zr56B0",0,[5,6],"28bc"]], ["CHAR",["L2(29)","L229G1-f29r11B0",29,6,"11a"]], ["CHAR",["L2(29)","L229G1-f29r13B0",29,7,"13a"]], ["CHAR",["L2(29)","L229G1-f29r15B0",29,8,"15a"]], ["CHAR",["L2(29)","L229G1-f29r17B0",29,9,"17a"]], ["CHAR",["L2(29)","L229G1-f29r19B0",29,10,"19a"]], ["CHAR",["L2(29)","L229G1-f29r21B0",29,11,"21a"]], ["CHAR",["L2(29)","L229G1-f29r23B0",29,12,"23a"]], ["CHAR",["L2(29)","L229G1-f29r25B0",29,13,"25a"]], ["CHAR",["L2(29)","L229G1-f29r27B0",29,14,"27a"]], ["CHAR",["L2(29)","L229G1-f29r29B0",29,15,"29a"]], ["CHAR",["L2(29)","L229G1-f29r3B0",29,2,"3a"]], ["CHAR",["L2(29)","L229G1-f29r5B0",29,3,"5a"]], ["CHAR",["L2(29)","L229G1-f29r7B0",29,4,"7a"]], ["CHAR",["L2(29)","L229G1-f29r9B0",29,5,"9a"]], ["CHAR",["L2(29)","L229G1-f3r28aB0",3,4,"28a"]], ["CHAR",["L2(29)","L229G1-f4r14aB0",2,2,"14a"]], ["CHAR",["L2(29)","L229G1-f4r14bB0",2,3,"14b"]], ["CHAR",["L2(29)","L229G1-f5r28bB0",5,5,"28b"]], ["CHAR",["L2(29)","L229G1-f7r29B0",7,11,"29a"]], ["CHAR",["L2(29)","L229G1-p30B0",0,[1,11],"1a+29a"]], ["CHAR",["L2(31)","L231G1-Ar32aB0",0,16,"32e"]], ["CHAR",["L2(31)","L231G1-Ar32bB0",0,13,"32b"]], ["CHAR",["L2(31)","L231G1-Ar32cB0",0,14,"32c"]], ["CHAR",["L2(31)","L231G1-Ar32dB0",0,15,"32d"]], ["CHAR",["L2(31)","L231G1-Ar32eB0",0,16,"32e"]], ["CHAR",["L2(31)","L231G1-Ar32fB0",0,17,"32f"]], ["CHAR",["L2(31)","L231G1-Ar32gB0",0,18,"32g"]], ["CHAR",["L2(31)","L231G1-Zr120B0",0,[7,8,9,10],"30defg"]], ["CHAR",["L2(31)","L231G1-Zr30aB0",0,4,"30a"]], ["CHAR",["L2(31)","L231G1-Zr30hB0",0,[2,3],"15ab"]], ["CHAR",["L2(31)","L231G1-Zr31B0",0,11,"31a"]], ["CHAR",["L2(31)","L231G1-Zr32aB0",0,12,"32a"]], ["CHAR",["L2(31)","L231G1-Zr60B0",0,[5,6],"30bc"]], ["CHAR",["L2(31)","L231G1-f16r32dB0",2,7,"32d"]], ["CHAR",["L2(31)","L231G1-f16r32eB0",2,8,"32e"]], ["CHAR",["L2(31)","L231G1-f16r32fB0",2,9,"32f"]], ["CHAR",["L2(31)","L231G1-f16r32gB0",2,10,"32g"]], ["CHAR",["L2(31)","L231G1-f2r15aB0",2,2,"15a"]], ["CHAR",["L2(31)","L231G1-f2r15bB0",2,3,"15b"]], ["CHAR",["L2(31)","L231G1-f2r32B0",2,4,"32a"]], ["CHAR",["L2(31)","L231G1-f31r31B0",31,16,"31a"]], ["CHAR",["L2(31)","L231G1-f31r3B0",31,2,"3a"]], ["CHAR",["L2(31)","L231G1-f3r31B0",3,11,"31a"]], ["CHAR",["L2(31)","L231G1-f4r32bB0",2,5,"32b"]], ["CHAR",["L2(31)","L231G1-f4r32cB0",2,6,"32c"]], ["CHAR",["L2(31)","L231G1-f5r31B0",5,11,"31a"]], ["CHAR",["L2(31)","L231G1-p32B0",0,[1,11],"1a+31a"]], ["CHAR",["L2(32)","L232G1-Ar33aB0",0,19,"33a"]], ["CHAR",["L2(32)","L232G1-Ar33bB0",0,20,"33b"]], ["CHAR",["L2(32)","L232G1-Ar33cB0",0,21,"33c"]], ["CHAR",["L2(32)","L232G1-Ar33dB0",0,22,"33d"]], ["CHAR",["L2(32)","L232G1-Ar33eB0",0,23,"33e"]], ["CHAR",["L2(32)","L232G1-Ar33fB0",0,24,"33f"]], ["CHAR",["L2(32)","L232G1-Ar33gB0",0,25,"33g"]], ["CHAR",["L2(32)","L232G1-Ar33hB0",0,26,"33h"]], ["CHAR",["L2(32)","L232G1-Ar33iB0",0,27,"33i"]], ["CHAR",["L2(32)","L232G1-Ar33jB0",0,28,"33j"]], ["CHAR",["L2(32)","L232G1-Ar33kB0",0,29,"33k"]], ["CHAR",["L2(32)","L232G1-Ar33lB0",0,30,"33l"]], ["CHAR",["L2(32)","L232G1-Ar33mB0",0,31,"33m"]], ["CHAR",["L2(32)","L232G1-Ar33nB0",0,32,"33n"]], ["CHAR",["L2(32)","L232G1-Ar33oB0",0,33,"33o"]], ["CHAR",["L2(32)","L232G1-Zr155B0",0,[3,4,5,6,7],"31bcdef"]], ["CHAR",["L2(32)","L232G1-Zr310B0",0,[8,9,10,11,12,13,14,15,16,17],"31ghijklmnop"]], ["CHAR",["L2(32)","L232G1-Zr31aB0",0,2,"31a"]], ["CHAR",["L2(32)","L232G1-Zr32B0",0,18,"32a"]], ["CHAR",["L2(32)","L232G1-f11r31bB0",11,3,"31b"]], ["CHAR",["L2(32)","L232G1-f31r32B0",31,18,"32a"]], ["CHAR",["L2(32)","L232G1-f32r2aB0",2,2,"2a"]], ["CHAR",["L2(32)","L232G1-f3r31aB0",3,2,"31a"]], ["CHAR",["L2(32)","L232G1-p33B0",0,[1,18],"1a+32a"]], ["CHAR",["L2(32)","L232G1-p496B0",0,[1,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33],"1a+33abcdefghijklmno"]], ["CHAR",["L2(32)","L232G1-p528B0",0,[1,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33],"1a+32a+33abcdefghijklmno"]], ["CHAR",["L2(32).5","L232d5G1-f2r10B0",2,6]], ["CHAR",["L2(32).5","L232d5G1-f2r20aB0",2,7]], ["CHAR",["L2(32).5","L232d5G1-f2r20bB0",2,8]], ["CHAR",["L2(32).5","L232d5G1-f2r32B0",2,12]], ["CHAR",["L2(32).5","L232d5G1-f2r40aB0",2,9]], ["CHAR",["L2(32).5","L232d5G1-f2r40bB0",2,10]], ["CHAR",["L2(32).5","L232d5G1-f2r80B0",2,11]], ["CHAR",["L2(32).5","L232d5G1-p33B0",0,[1,14]]], ["CHAR",["L2(32).5","L232d5G1-p496B0",0,[1,19,20,21]]], ["CHAR",["L2(32).5","L232d5G1-p528B0",0,[1,14,19,20,21]]], ["CHAR",["L2(37)","L237G1-Zr37B0",0,11,"37a"]], ["CHAR",["L2(41)","L241G1-Zr41B0",0,12,"41a"]], ["CHAR",["L2(43)","L243G1-Zr43B0",0,12,"43a"]], ["CHAR",["L2(47)","L247G1-Zr47B0",0,13,"47a"]], ["CHAR",["L2(49)","L249G1-f7r4B0",7,4,"4a"]], ["CHAR",["L2(53)","L253G1-Zr53B0",0,15,"53a"]], ["CHAR",["L2(59)","L259G1-Zr59B0",0,16,"59a"]], ["CHAR",["L2(61)","L261G1-Zr61B0",0,17,"61a"]], ["CHAR",["L2(64)","L264G1-Zr64B0",0,34,"64a"]], ["CHAR",["L2(67)","L267G1-Zr67B0",0,18,"67a"]], ["CHAR",["L2(71)","L271G1-Zr71B0",0,19,"71a"]], ["CHAR",["L2(73)","L273G1-Zr73B0",0,20,"73a"]], ["CHAR",["L2(79)","L279G1-Zr79B0",0,21,"79a"]], ["CHAR",["L2(8)","L28G1-Ar7bB0",0,3,"7b"]], ["CHAR",["L2(8)","L28G1-Ar7cB0",0,4,"7c"]], ["CHAR",["L2(8)","L28G1-Ar7dB0",0,5,"7d"]], ["CHAR",["L2(8)","L28G1-Ar9aB0",0,7,"9a"]], ["CHAR",["L2(8)","L28G1-Ar9bB0",0,8,"9b"]], ["CHAR",["L2(8)","L28G1-Ar9cB0",0,9,"9c"]], ["CHAR",["L2(8)","L28G1-Zr27B0",0,[7,8,9],"9abc"]], ["CHAR",["L2(8)","L28G1-Zr7aB0",0,2,"7a"]], ["CHAR",["L2(8)","L28G1-Zr8B0",0,6,"8a"]], ["CHAR",["L2(8)","L28G1-f27r9aB0",3,3,"9a"]], ["CHAR",["L2(8)","L28G1-f27r9bB0",3,4,"9b"]], ["CHAR",["L2(8)","L28G1-f27r9cB0",3,5,"9c"]], ["CHAR",["L2(8)","L28G1-f2r12B0",2,[5,6,7],"4abc"]], ["CHAR",["L2(8)","L28G1-f2r6B0",2,[2,3,4],"2abc"]], ["CHAR",["L2(8)","L28G1-f2r8B0",2,8,"8a"]], ["CHAR",["L2(8)","L28G1-f3r27B0",3,[3,4,5],"9abc"]], ["CHAR",["L2(8)","L28G1-f3r7B0",3,2,"7a"]], ["CHAR",["L2(8)","L28G1-f7r21B0",7,[3,4,5],"7bcd"]], ["CHAR",["L2(8)","L28G1-f7r7aB0",7,2,"7a"]], ["CHAR",["L2(8)","L28G1-f7r8B0",7,6,"8a"]], ["CHAR",["L2(8)","L28G1-f8r2aB0",2,2,"2a"]], ["CHAR",["L2(8)","L28G1-f8r2bB0",2,3,"2b"]], ["CHAR",["L2(8)","L28G1-f8r2cB0",2,4,"2c"]], ["CHAR",["L2(8)","L28G1-f8r4aB0",2,5,"4a"]], ["CHAR",["L2(8)","L28G1-f8r4bB0",2,6,"4b"]], ["CHAR",["L2(8)","L28G1-f8r4cB0",2,7,"4c"]], ["CHAR",["L2(8)","L28G1-p28B0",0,[1,7,8,9],"1a+9abc"]], ["CHAR",["L2(8)","L28G1-p36B0",0,[1,6,7,8,9],"1a+8a+9abc"]], ["CHAR",["L2(8)","L28G1-p9B0",0,[1,6],"1a+8a"]], ["CHAR",["L2(8).3","L28d3G1-Zr21B0",0,7]], ["CHAR",["L2(8).3","L28d3G1-Zr27B0",0,11]], ["CHAR",["L2(8).3","L28d3G1-Zr7B0",0,4]], ["CHAR",["L2(8).3","L28d3G1-Zr8B0",0,8]], ["CHAR",["L2(8).3","L28d3G1-f2r12B0",2,5]], ["CHAR",["L2(8).3","L28d3G1-f2r6B0",2,4]], ["CHAR",["L2(8).3","L28d3G1-f2r8B0",2,6]], ["CHAR",["L2(8).3","L28d3G1-f3r27B0",3,3]], ["CHAR",["L2(8).3","L28d3G1-f3r7B0",3,2]], ["CHAR",["L2(8).3","L28d3G1-f7r21B0",7,7]], ["CHAR",["L2(8).3","L28d3G1-f7r7B0",7,4]], ["CHAR",["L2(8).3","L28d3G1-f7r8B0",7,8]], ["CHAR",["L2(8).3","L28d3G1-p28B0",0,[1,11]]], ["CHAR",["L2(8).3","L28d3G1-p36B0",0,[1,8,11]]], ["CHAR",["L2(8).3","L28d3G1-p9B0",0,[1,8]]], ["CHAR",["L2(83)","L283G1-Zr83B0",0,22,"83a"]], ["CHAR",["L2(89)","L289G1-Zr89B0",0,24,"89a"]], ["CHAR",["L2(97)","L297G1-Zr97B0",0,26,"97a"]], ["CHAR",["L3(2)","L27G1-Zr6bB0",0,4,"6a"]], ["CHAR",["L3(2)","L27G1-Zr7B0",0,5,"7a"]], ["CHAR",["L3(2)","L27G1-Zr8B0",0,6,"8a"]], ["CHAR",["L3(2)","L27G1-f2r8B0",2,4,"8a"]], ["CHAR",["L3(2)","L27G1-f3r6aB0",3,4,"6a"]], ["CHAR",["L3(2)","L27G1-f3r6bB0",3,[2,3],"3ab"]], ["CHAR",["L3(2)","L27G1-f3r7B0",3,5,"7a"]], ["CHAR",["L3(2)","L27G1-f7r3B0",7,2,"3a"]], ["CHAR",["L3(2)","L27G1-f7r5B0",7,3,"5a"]], ["CHAR",["L3(2)","L27G1-f7r7B0",7,4,"7a"]], ["CHAR",["L3(3)","L33G1-Zr12B0",0,2,"12a"]], ["CHAR",["L3(3)","L33G1-Zr13B0",0,3,"13a"]], ["CHAR",["L3(3)","L33G1-Zr26aB0",0,8,"26a"]], ["CHAR",["L3(3)","L33G1-Zr27B0",0,11,"27a"]], ["CHAR",["L3(3)","L33G1-Zr39B0",0,12,"39a"]], ["CHAR",["L3(3)","L33G1-f13r11B0",13,2,"11a"]], ["CHAR",["L3(3)","L33G1-f13r13B0",13,3,"13a"]], ["CHAR",["L3(3)","L33G1-f13r16B0",13,4,"16a"]], ["CHAR",["L3(3)","L33G1-f13r26aB0",13,5,"26a"]], ["CHAR",["L3(3)","L33G1-f13r39B0",13,8,"39a"]], ["CHAR",["L3(3)","L33G1-f2r12B0",2,2,"12a"]], ["CHAR",["L3(3)","L33G1-f2r26B0",2,7,"26a"]], ["CHAR",["L3(3)","L33G1-f3r27B0",3,9,"27a"]], ["CHAR",["L3(3)","L33G1-f3r7B0",3,6,"7a"]], ["CHAR",["L3(4)","L34G1-Zr20B0",0,2,"20a"]], ["CHAR",["L3(4)","L34G1-Zr64B0",0,10,"64a"]], ["CHAR",["L3(4)","L34G1-f2r16B0",2,[2,3],"8ab"]], ["CHAR",["L3(4)","L34G1-f2r64B0",2,6,"64a"]], ["CHAR",["L3(4)","L34G1-f3r126B0",3,[8,9],"63ab"]], ["CHAR",["L3(4)","L34G1-f3r19B0",3,5,"19a"]], ["CHAR",["L3(4)","L34G1-f3r90B0",3,[6,7],"45ab"]], ["CHAR",["L3(4)","L34G1-f5r20B0",5,2,"20a"]], ["CHAR",["L3(4)","L34G1-f5r63B0",5,8,"63a"]], ["CHAR",["L3(4)","L34G1-f5r90B0",5,[6,7],"45ab"]], ["CHAR",["L3(4)","L34G1-f7r126B0",7,[7,8],"63ab"]], ["CHAR",["L3(4)","L34G1-f7r19B0",7,2,"19a"]], ["CHAR",["L3(4)","L34G1-f7r45B0",7,6,"45a"]], ["CHAR",["L3(4).2_1","L34d2aG1-f2r16aB0",2,2]], ["CHAR",["L3(4).2_1","L34d2aG1-f2r18aB0",2,3]], ["CHAR",["L3(4).2_1","L34d2aG1-f2r64aB0",2,4]], ["CHAR",["L3(4).2_1","L34d2aG1-f3r126aB0",3,12]], ["CHAR",["L3(4).2_1","L34d2aG1-f3r15aB0",3,3]], ["CHAR",["L3(4).2_1","L34d2aG1-f3r15bB0",3,5]], ["CHAR",["L3(4).2_1","L34d2aG1-f3r15cB0",3,7]], ["CHAR",["L3(4).2_1","L34d2aG1-f3r19aB0",3,9]], ["CHAR",["L3(4).2_1","L34d2aG1-f3r90aB0",3,11]], ["CHAR",["L3(4).2_1","L34d2aG1-f5r20aB0",5,3]], ["CHAR",["L3(4).2_1","L34d2aG1-f5r35aB0",5,5]], ["CHAR",["L3(4).2_1","L34d2aG1-f5r35bB0",5,7]], ["CHAR",["L3(4).2_1","L34d2aG1-f5r35cB0",5,9]], ["CHAR",["L3(4).2_1","L34d2aG1-f5r63aB0",5,12]], ["CHAR",["L3(4).2_1","L34d2aG1-f5r90aB0",5,11]], ["CHAR",["L3(4).2_1","L34d2aG1-f7r126aB0",7,13]], ["CHAR",["L3(4).2_1","L34d2aG1-f7r19aB0",7,3]], ["CHAR",["L3(4).2_1","L34d2aG1-f7r35aB0",7,5]], ["CHAR",["L3(4).2_1","L34d2aG1-f7r35bB0",7,7]], ["CHAR",["L3(4).2_1","L34d2aG1-f7r35cB0",7,9]], ["CHAR",["L3(4).2_1","L34d2aG1-f7r45aB0",7,11]], ["CHAR",["L3(5)","L35G1-Zr124aB0",0,16,"124a"]], ["CHAR",["L3(5)","L35G1-Zr124bB0",0,17,"124b"]], ["CHAR",["L3(5)","L35G1-Zr125B0",0,26,"125a"]], ["CHAR",["L3(5)","L35G1-Zr155aB0",0,27,"155a"]], ["CHAR",["L3(5)","L35G1-Zr186B0",0,30,"186a"]], ["CHAR",["L3(5)","L35G1-Zr30B0",0,2,"30a"]], ["CHAR",["L3(5)","L35G1-Zr31aB0",0,3,"31a"]], ["CHAR",["L3(5)","L35G1-f5r8B0",5,6,"8a"]], ["CHAR",["L3(7)","L37G1-Zr152aB0",0,4,"152a"]], ["CHAR",["L3(7)","L37G1-Zr152bB0",0,5,"152b"]], ["CHAR",["L3(7)","L37G1-Zr152cB0",0,6,"152c"]], ["CHAR",["L3(7)","L37G1-Zr56B0",0,2,"56a"]], ["CHAR",["L3(7)","L37G1-Zr57B0",0,3,"57a"]], ["CHAR",["L3(7)","L37G1-f2r152aB0",2,3,"152a"]], ["CHAR",["L3(7)","L37G1-f3r342aB0",3,13,"342a"]], ["CHAR",["L3(7)","L37G1-f3r399B0",3,20,"399a"]], ["CHAR",["L3(7)","L37G1-f3r55B0",3,2,"55a"]], ["CHAR",["L3(7)","L37G1-f3r57B0",3,3,"57a"]], ["CHAR",["L3(7)","L37G1-f3r96aB0",3,4,"96a"]], ["CHAR",["L3(7)","L37G1-f3r96bB0",3,5,"96b"]], ["CHAR",["L3(7)","L37G1-f3r96cB0",3,6,"96c"]], ["CHAR",["L3(7)","L37G1-f7r10aB0",7,3,"10a"]], ["CHAR",["L3(7)","L37G1-f7r10bB0",7,4,"10b"]], ["CHAR",["L3(7)","L37G1-f7r27B0",7,5,"27a"]], ["CHAR",["L3(7)","L37G1-f7r8B0",7,2,"8a"]], ["CHAR",["L3(7)","L37G1-p57B0",0,[1,2],"1a+56a"]], ["CHAR",["L3(7).2","L37d2G1-f2r152B0",2,3]], ["CHAR",["L3(7).2","L37d2G1-f2r342B0",2,8]], ["CHAR",["L3(7).2","L37d2G1-f2r56B0",2,2]], ["CHAR",["L3(7).2","L37d2G1-f3r192B0",3,9]], ["CHAR",["L3(7).2","L37d2G1-f3r399B0",3,21]], ["CHAR",["L3(7).2","L37d2G1-f3r55B0",3,3]], ["CHAR",["L3(7).2","L37d2G1-f3r57B0",3,5]], ["CHAR",["L3(7).2","L37d2G1-f3r96B0",3,7]], ["CHAR",["L3(7).2","L37d2G1-f7r343B0",7,18]], ["CHAR",["L3(7).2","L37d2G1-f7r56B0",7,8]], ["CHAR",["L3(8)","L38G1-Ar73aB0",0,3,"73a"]], ["CHAR",["L3(8)","L38G1-Ar73bB0",0,4,"73b"]], ["CHAR",["L3(8)","L38G1-Ar73cB0",0,5,"73c"]], ["CHAR",["L3(8)","L38G1-Ar73dB0",0,6,"73d"]], ["CHAR",["L3(8)","L38G1-Ar73eB0",0,7,"73e"]], ["CHAR",["L3(8)","L38G1-Ar73fB0",0,8,"73f"]], ["CHAR",["L3(8)","L38G1-Zr72B0",0,2,"72a"]], ["CHAR",["L3(8)","L38G1-f27r657B0",3,43,"657d"]], ["CHAR",["L3(8)","L38G1-f2r27B0",2,35,"27a"]], ["CHAR",["L3(8)","L38G1-f2r512B0",2,64,"512a"]], ["CHAR",["L3(8)","L38G1-f343r511B0",7,28,"511b"]], ["CHAR",["L3(8)","L38G1-f3r511B0",3,33,"511a"]], ["CHAR",["L3(8)","L38G1-f3r72B0",3,2,"72a"]], ["CHAR",["L3(8)","L38G1-f73r441B0",73,9,"441a"]], ["CHAR",["L3(8)","L38G1-f73r511aB0",73,10,"511a"]], ["CHAR",["L3(8)","L38G1-f73r511bB0",73,11,"511b"]], ["CHAR",["L3(8)","L38G1-f73r71B0",73,2,"71a"]], ["CHAR",["L3(8)","L38G1-f7r511B0",7,27,"511a"]], ["CHAR",["L3(8)","L38G1-f7r512B0",7,31,"512a"]], ["CHAR",["L3(8)","L38G1-f7r72B0",7,2,"72a"]], ["CHAR",["L3(8)","L38G1-f8r192B0",2,58,"192a"]], ["CHAR",["L3(8)","L38G1-f8r24aB0",2,23,"24a"]], ["CHAR",["L3(8)","L38G1-f8r24bB0",2,29,"24g"]], ["CHAR",["L3(8)","L38G1-f8r27B0",2,37,"27c"]], ["CHAR",["L3(8)","L38G1-f8r3B0",2,2,"3a"]], ["CHAR",["L3(8)","L38G1-f8r64B0",2,43,"64a"]], ["CHAR",["L3(8)","L38G1-f8r72aB0",2,46,"72a"]], ["CHAR",["L3(8)","L38G1-f8r72bB0",2,52,"72g"]], ["CHAR",["L3(8)","L38G1-f8r8B0",2,8,"8a"]], ["CHAR",["L3(8)","L38G1-f8r9aB0",2,11,"9a"]], ["CHAR",["L3(8)","L38G1-f8r9bB0",2,17,"9g"]], ["CHAR",["L3(8)","L38G1-p56064B0",0,[1,[2,2],3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,[34,2],[35,2],[36,2],37,38,39,40,41,42,[43,2],[44,2],[45,2],[46,2],[47,2],[48,2],[49,2],[50,2],[51,2],[52,2],[53,2],[54,2],[55,2],[56,2],[57,2],[58,2],[59,2],[60,2],[61,2],[62,2],[63,2],[64,2],[65,2],[66,2],[67,2],[68,3],[69,3],[70,4],[71,4],[72,4]],"1a+72a^2+73abcdef+441abcdefghijklmnopqrstuvwx+511ab^2c^2d^2efghijk^2l^2m^2n^2o^2p^2q^2r^2s^2t^2u^2v^2w^2x^2y^2z^2(a')^2(b')^2+512a^2+584a^2b^2c^2d^2e^2f^2+657a^3b^3c^4d^4e^4"]], ["CHAR",["L3(8)","L38G1-p73aB0",0,[1,2],"1a+72a"]], ["CHAR",["L3(8)","L38G1-p73bB0",0,[1,2],"1a+72a"]], ["CHAR",["L3(8)","L38G1-p75264B0",0,[1,3,4,5,6,7,8,[9,2],[10,2],[11,2],[12,2],[13,2],[14,2],[15,2],[16,2],[17,2],[18,2],[19,2],[20,2],[21,2],[22,2],[23,2],[24,2],[25,2],[26,2],[27,2],[28,2],[29,2],[30,2],[31,2],[32,2],33,[34,3],[35,3],[36,3],37,38,39,40,41,42,[43,3],[44,3],[45,3],[46,3],[47,3],[48,3],[49,3],[50,3],[51,3],[52,3],[53,3],[54,3],[55,3],[56,3],[57,3],[58,3],[59,3],[60,3],[61,2],[62,2],[63,2],[64,2],[65,2],[66,2],[67,2],[68,3],[69,3],[70,3],[71,3],[72,3]],"1a+73abcdef+441a^2b^2c^2d^2e^2f^2g^2h^2i^2j^2k^2l^2m^2n^2o^2p^2q^2r^2s^2t^2u^2v^2w^2x^2+511ab^3c^3d^3efghijk^3l^3m^3n^3o^3p^3q^3r^3s^3t^3u^3v^3w^3x^3y^3z^3(a')^3(b')^3+512a^2+584a^2b^2c^2d^2e^2f^2+657a^3b^3c^3d^3e^3"]], ["CHAR",["L3(8)","L38G1-p98112B0",0,[1,[2,2],[3,2],[4,2],[5,2],[6,2],[7,2],[8,2],[9,2],[10,2],[11,2],[12,2],[13,2],[14,2],[15,2],[16,2],[17,2],[18,2],[19,2],[20,2],[21,2],[22,2],[23,2],[24,2],[25,2],[26,2],[27,2],[28,2],[29,2],[30,2],[31,2],[32,2],[33,2],[34,3],[35,3],[36,3],[37,2],[38,2],[39,2],[40,2],[41,2],[42,2],[43,3],[44,3],[45,3],[46,3],[47,3],[48,3],[49,3],[50,3],[51,3],[52,3],[53,3],[54,3],[55,3],[56,3],[57,3],[58,3],[59,3],[60,3],[61,3],[62,4],[63,4],[64,4],[65,4],[66,4],[67,4],[68,7],[69,7],[70,6],[71,6],[72,6]],"1a+72a^2+73a^2b^2c^2d^2e^2f^2+441a^2b^2c^2d^2e^2f^2g^2h^2i^2j^2k^2l^2m^2n^2o^2p^2q^2r^2s^2t^2u^2v^2w^2x^2+511a^2b^3c^3d^3e^2f^2g^2h^2i^2j^2k^3l^3m^3n^3o^3p^3q^3r^3s^3t^3u^3v^3w^3x^3y^3z^3(a')^3(b')^3+512a^3+584a^4b^4c^4d^4e^4f^4+657a^7b^7c^6d^6e^6"]], ["CHAR",["L3(8).2","L38d2G1-f2r54B0",2,20]], ["CHAR",["L3(8).2","L38d2G1-f3r511B0",3,20]], ["CHAR",["L3(8).2","L38d2G1-f73r511aB0",73,10]], ["CHAR",["L3(8).2","L38d2G1-f7r512B0",7,25]], ["CHAR",["L3(8).2","L38d2G1-p146B0",0,[1,2,3,4]]], ["CHAR",["L3(8).2","L38d2G1-p4672B0",0,[1,3,4,20,22,24,26,40,46,48,50]]], ["CHAR",["L3(8).2","L38d2G1-p56064B0",0,[1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,[22,2],[24,2],[26,2],28,29,30,[31,2],[32,2],[33,2],[34,2],[35,2],[36,2],[37,2],[38,2],[39,2],[40,2],[42,2],[43,2],[44,2],[45,3],[46,3],47,[48,3],49,[50,3],51]]], ["CHAR",["L3(8).2","L38d2G1-p657B0",0,[1,3,4,40]]], ["CHAR",["L3(8).2","L38d2G1-p75264B0",0,[1,5,6,7,[8,2],[9,2],[10,2],[11,2],[12,2],[13,2],[14,2],[15,2],[16,2],[17,2],[18,2],[19,2],20,[22,3],[24,3],[26,3],28,29,30,[31,3],[32,3],[33,3],[34,3],[35,3],[36,3],[37,3],[38,3],[39,3],[40,2],[42,2],[43,2],[44,2],[45,3],[46,3],[48,3],[50,3]]]], ["CHAR",["L3(8).2","L38d2G1-p98112B0",0,[1,3,4,[5,2],[6,2],[7,2],[8,2],[9,2],[10,2],[11,2],[12,2],[13,2],[14,2],[15,2],[16,2],[17,2],[18,2],[19,2],20,21,[22,2],23,[24,2],25,[26,2],27,[28,2],[29,2],[30,2],[31,3],[32,3],[33,3],[34,3],[35,3],[36,3],[37,3],[38,3],[39,3],[40,2],41,[42,4],[43,4],[44,4],[45,7],[46,4],[47,2],[48,4],[49,2],[50,4],[51,2]]]], ["CHAR",["L3(8).3","L38d3G1-f2r192B0",2,23]], ["CHAR",["L3(8).3","L38d3G1-f2r216aB0",2,24]], ["CHAR",["L3(8).3","L38d3G1-f2r216bB0",2,26]], ["CHAR",["L3(8).3","L38d3G1-f2r24B0",2,6]], ["CHAR",["L3(8).3","L38d3G1-f2r27aB0",2,7]], ["CHAR",["L3(8).3","L38d3G1-f2r27bB0",2,10]], ["CHAR",["L3(8).3","L38d3G1-f2r27cB0",2,15]], ["CHAR",["L3(8).3","L38d3G1-f2r576B0",2,28]], ["CHAR",["L3(8).3","L38d3G1-f2r72aB0",2,11]], ["CHAR",["L3(8).3","L38d3G1-f2r72bB0",2,13]], ["CHAR",["L3(8).3","L38d3G1-f2r81B0",2,21]], ["CHAR",["L3(8).3","L38d3G1-f2r9B0",2,4]], ["CHAR",["L3(8).3","L38d3G1-f3r511B0",3,13]], ["CHAR",["L3(8).3","L38d3G1-f3r72B0",3,2]], ["CHAR",["L3(8).3","L38d3G1-f73r441B0",73,9]], ["CHAR",["L3(8).3","L38d3G1-f73r511aB0",73,12]], ["CHAR",["L3(8).3","L38d3G1-f73r71B0",73,4]], ["CHAR",["L3(8).3","L38d3G1-f7r511B0",7,15]], ["CHAR",["L3(8).3","L38d3G1-f7r512B0",7,19]], ["CHAR",["L3(8).3","L38d3G1-f7r72B0",7,4]], ["CHAR",["L3(8).3","L38d3G1-p219aB0",0,[1,2,3,4,5,6]]], ["CHAR",["L3(8).3","L38d3G1-p219bB0",0,[1,2,3,4,5,6]]], ["CHAR",["L3(8).3","L38d3G1-p56064B0",0,[1,[4,2],7,8,9,10,11,12,13,14,15,16,17,[20,2],21,22,[23,2],[24,2],[25,2],[26,2],[27,2],[28,2],[29,2],[32,2],[33,2],34,35,36,37,38,39,[40,4]]]], ["CHAR",["L3(8).3","L38d3G1-p73aB0",0,[1,4]]], ["CHAR",["L3(8).3","L38d3G1-p73bB0",0,[1,4]]], ["CHAR",["L3(8).3","L38d3G1-p75264B0",0,[1,7,8,[9,2],[10,2],[11,2],[12,2],[13,2],[14,2],[15,2],[16,2],17,[20,3],21,22,[23,3],[24,3],[25,3],[26,3],[27,3],[28,3],30,31,[32,2],[33,2],34,35,36,37,38,39,[40,3]]]], ["CHAR",["L3(8).3","L38d3G1-p98112B0",0,[1,2,3,[4,2],[5,2],[6,2],[7,6],[8,6],17,18,19,[20,3],[21,3],[22,3],[23,3],[24,3],[25,3],[26,3],[27,3],[28,3],29,30,31,[32,6],[33,6],[34,3],[35,3],[36,3],[37,3],[38,3],[39,3],[40,9]]]], ["CHAR",["L3(8).6","L38d6G1-f2r1152B0",2,17]], ["CHAR",["L3(8).6","L38d6G1-f2r144aB0",2,8]], ["CHAR",["L3(8).6","L38d6G1-f2r144bB0",2,9]], ["CHAR",["L3(8).6","L38d6G1-f2r162B0",2,13]], ["CHAR",["L3(8).6","L38d6G1-f2r18B0",2,4]], ["CHAR",["L3(8).6","L38d6G1-f2r192B0",2,14]], ["CHAR",["L3(8).6","L38d6G1-f2r24B0",2,5]], ["CHAR",["L3(8).6","L38d6G1-f2r432aB0",2,15]], ["CHAR",["L3(8).6","L38d6G1-f2r432bB0",2,16]], ["CHAR",["L3(8).6","L38d6G1-f2r512B0",2,18]], ["CHAR",["L3(8).6","L38d6G1-f2r54aB0",2,6]], ["CHAR",["L3(8).6","L38d6G1-f2r54bB0",2,7]], ["CHAR",["L3(8).6","L38d6G1-f3r511B0",3,10]], ["CHAR",["L3(8).6","L38d6G1-f73r511aB0",73,20]], ["CHAR",["L3(8).6","L38d6G1-f7r511B0",7,17]], ["CHAR",["L3(8).6","L38d6G1-f7r512B0",7,25]], ["CHAR",["L3(8).6","L38d6G1-p438B0",0,[1,2,3,4,5,6,7,8,9,10,11,12]]], ["CHAR",["L3(8).6","L38d6G1-p4672B0",0,[1,7,10,18,24,30,40]]], ["CHAR",["L3(8).6","L38d6G1-p56064B0",0,[1,7,10,13,14,15,16,17,18,[24,2],26,[27,2],[28,2],[29,2],[30,2],[36,2],37,38,39,[40,3],41]]], ["CHAR",["L3(8).6","L38d6G1-p657B0",0,[1,7,10,30]]], ["CHAR",["L3(8).6","L38d6G1-p75264B0",0,[1,13,[14,2],[15,2],[16,2],[17,2],18,[24,3],26,[27,3],[28,3],[29,3],32,34,[36,2],37,38,39,[40,3]]]], ["CHAR",["L3(8).6","L38d6G1-p98112B0",0,[1,7,10,[13,2],[14,2],[15,2],[16,2],[17,2],18,21,[24,2],25,[26,2],[27,3],[28,3],[29,3],[30,2],33,[36,4],[37,3],[38,2],[39,2],[40,4],[41,2]]]], ["CHAR",["L4(3)","L43G1-Zr39B0",0,4,"39a"]], ["CHAR",["L4(3)","L43G1-Zr52B0",0,5,"52a"]], ["CHAR",["L4(3)","L43G1-Zr90B0",0,8,"90a"]], ["CHAR",["L5(2)","L52G1-Zr124B0",0,3,"124a"]], ["CHAR",["L5(2)","L52G1-Zr155B0",0,4,"155a"]], ["CHAR",["L5(2)","L52G1-Zr217B0",0,5,"217a"]], ["CHAR",["L5(2)","L52G1-Zr30B0",0,2,"30a"]], ["CHAR",["L5(2)","L52G1-f2r10aB0",2,4,"10a"]], ["CHAR",["L5(2)","L52G1-f2r10bB0",2,5,"10b"]], ["CHAR",["L5(2)","L52G1-f2r24B0",2,6,"24a"]], ["CHAR",["L5(2)","L52G1-f2r5aB0",2,2,"5a"]], ["CHAR",["L5(2)","L52G1-f2r5bB0",2,3,"5b"]], ["CHAR",["L5(2)","L52G1-f31r251B0",31,6,"251a"]], ["CHAR",["L5(2)","L52G1-f31r29B0",31,2,"29a"]], ["CHAR",["L5(2)","L52G1-f3r124B0",3,3,"124a"]], ["CHAR",["L5(2)","L52G1-f3r155B0",3,4,"155a"]], ["CHAR",["L5(2)","L52G1-f3r30B0",3,2,"30a"]], ["CHAR",["L5(2)","L52G1-f5r123B0",5,3,"123a"]], ["CHAR",["L5(2)","L52G1-f5r155B0",5,4,"155a"]], ["CHAR",["L5(2)","L52G1-f5r280B0",5,6,"280a"]], ["CHAR",["L5(2)","L52G1-f5r30B0",5,2,"30a"]], ["CHAR",["L5(2)","L52G1-f7r280B0",7,6,"280a"]], ["CHAR",["L5(2)","L52G1-f7r30B0",7,2,"30a"]], ["CHAR",["L5(2)","L52G1-f7r94B0",7,3,"94a"]], ["CHAR",["L5(2)","L52G1-p155aB0",0,[1,2,3],"1a+30a+124a"]], ["CHAR",["L5(2)","L52G1-p31aB0",0,[1,2],"1a+30a"]], ["CHAR",["M11","M11G1-Ar10bB0",0,3,"10b"]], ["CHAR",["M11","M11G1-Ar10cB0",0,4,"10c"]], ["CHAR",["M11","M11G1-Zr10aB0",0,2,"10a"]], ["CHAR",["M11","M11G1-Zr11B0",0,5,"11a"]], ["CHAR",["M11","M11G1-Zr20B0",0,[3,4],"10bc"]], ["CHAR",["M11","M11G1-Zr32B0",0,[6,7],"16ab"]], ["CHAR",["M11","M11G1-Zr44B0",0,8,"44a"]], ["CHAR",["M11","M11G1-Zr45B0",0,9,"45a"]], ["CHAR",["M11","M11G1-Zr55B0",0,10,"55a"]], ["CHAR",["M11","M11G1-f11r10aB0",11,3,"10a"]], ["CHAR",["M11","M11G1-f11r10bB0",11,4,"10b"]], ["CHAR",["M11","M11G1-f11r11B0",11,5,"11a"]], ["CHAR",["M11","M11G1-f11r16B0",11,6,"16a"]], ["CHAR",["M11","M11G1-f11r44B0",11,7,"44a"]], ["CHAR",["M11","M11G1-f11r55B0",11,8,"55a"]], ["CHAR",["M11","M11G1-f11r9B0",11,2,"9a"]], ["CHAR",["M11","M11G1-f25r10bB0",5,3,"10b"]], ["CHAR",["M11","M11G1-f25r10cB0",5,4,"10c"]], ["CHAR",["M11","M11G1-f2r10B0",2,2,"10a"]], ["CHAR",["M11","M11G1-f2r32B0",2,[3,4],"16ab"]], ["CHAR",["M11","M11G1-f2r44B0",2,5,"44a"]], ["CHAR",["M11","M11G1-f3r10aB0",3,4,"10a"]], ["CHAR",["M11","M11G1-f3r10bB0",3,5,"10b"]], ["CHAR",["M11","M11G1-f3r10cB0",3,6,"10c"]], ["CHAR",["M11","M11G1-f3r24B0",3,7,"24a"]], ["CHAR",["M11","M11G1-f3r45B0",3,8,"45a"]], ["CHAR",["M11","M11G1-f3r5aB0",3,2,"5a"]], ["CHAR",["M11","M11G1-f3r5bB0",3,3,"5b"]], ["CHAR",["M11","M11G1-f4r16aB0",2,3,"16a"]], ["CHAR",["M11","M11G1-f4r16bB0",2,4,"16b"]], ["CHAR",["M11","M11G1-f5r10aB0",5,2,"10a"]], ["CHAR",["M11","M11G1-f5r11B0",5,5,"11a"]], ["CHAR",["M11","M11G1-f5r16aB0",5,6,"16a"]], ["CHAR",["M11","M11G1-f5r16bB0",5,7,"16b"]], ["CHAR",["M11","M11G1-f5r20B0",5,[3,4],"10bc"]], ["CHAR",["M11","M11G1-f5r45B0",5,8,"45a"]], ["CHAR",["M11","M11G1-f5r55B0",5,9,"55a"]], ["CHAR",["M11","M11G1-p11B0",0,[1,2],"1a+10a"]], ["CHAR",["M11","M11G1-p12B0",0,[1,5],"1a+11a"]], ["CHAR",["M11","M11G1-p165B0",0,[1,2,5,[8,2],10],"1a+10a+11a+44a^2+55a"]], ["CHAR",["M11","M11G1-p55B0",0,[1,2,8],"1a+10a+44a"]], ["CHAR",["M11","M11G1-p66B0",0,[1,2,5,8],"1a+10a+11a+44a"]], ["CHAR",["M12","M12G1-Zr11aB0",0,2,"11a"]], ["CHAR",["M12","M12G1-Zr11bB0",0,3,"11b"]], ["CHAR",["M12","M12G1-Zr120B0",0,13,"120a"]], ["CHAR",["M12","M12G1-Zr144B0",0,14,"144a"]], ["CHAR",["M12","M12G1-Zr176B0",0,15,"176a"]], ["CHAR",["M12","M12G1-Zr32B0",0,[4,5],"16ab"]], ["CHAR",["M12","M12G1-Zr45B0",0,6,"45a"]], ["CHAR",["M12","M12G1-Zr54B0",0,7,"54a"]], ["CHAR",["M12","M12G1-Zr55aB0",0,8,"55a"]], ["CHAR",["M12","M12G1-Zr55bB0",0,9,"55b"]], ["CHAR",["M12","M12G1-Zr55cB0",0,10,"55c"]], ["CHAR",["M12","M12G1-Zr66B0",0,11,"66a"]], ["CHAR",["M12","M12G1-Zr99B0",0,12,"99a"]], ["CHAR",["M12","M12G1-f11r11aB0",11,2,"11a"]], ["CHAR",["M12","M12G1-f11r16B0",11,4,"16a"]], ["CHAR",["M12","M12G1-f11r176B0",11,13,"176a"]], ["CHAR",["M12","M12G1-f11r29B0",11,5,"29a"]], ["CHAR",["M12","M12G1-f11r53B0",11,6,"53a"]], ["CHAR",["M12","M12G1-f11r55aB0",11,7,"55a"]], ["CHAR",["M12","M12G1-f11r55cB0",11,9,"55c"]], ["CHAR",["M12","M12G1-f11r66B0",11,10,"66a"]], ["CHAR",["M12","M12G1-f11r91B0",11,11,"91a"]], ["CHAR",["M12","M12G1-f11r99B0",11,12,"99a"]], ["CHAR",["M12","M12G1-f2r10B0",2,2,"10a"]], ["CHAR",["M12","M12G1-f2r144B0",2,6,"144a"]], ["CHAR",["M12","M12G1-f2r44B0",2,5,"44a"]], ["CHAR",["M12","M12G1-f3r10aB0",3,2,"10a"]], ["CHAR",["M12","M12G1-f3r15bB0",3,5,"15b"]], ["CHAR",["M12","M12G1-f3r34B0",3,6,"34a"]], ["CHAR",["M12","M12G1-f3r45aB0",3,7,"45a"]], ["CHAR",["M12","M12G1-f3r45bB0",3,8,"45b"]], ["CHAR",["M12","M12G1-f3r54B0",3,10,"54a"]], ["CHAR",["M12","M12G1-f3r99B0",3,11,"99a"]], ["CHAR",["M12","M12G1-f4r16aB0",2,3,"16a"]], ["CHAR",["M12","M12G1-f4r16bB0",2,4,"16b"]], ["CHAR",["M12","M12G1-f5r11aB0",5,2,"11a"]], ["CHAR",["M12","M12G1-f5r120B0",5,13,"120a"]], ["CHAR",["M12","M12G1-f5r16bB0",5,5,"16b"]], ["CHAR",["M12","M12G1-f5r45B0",5,6,"45a"]], ["CHAR",["M12","M12G1-f5r55aB0",5,7,"55a"]], ["CHAR",["M12","M12G1-f5r55cB0",5,9,"55c"]], ["CHAR",["M12","M12G1-f5r66B0",5,10,"66a"]], ["CHAR",["M12","M12G1-f5r78B0",5,11,"78a"]], ["CHAR",["M12","M12G1-f5r98B0",5,12,"98a"]], ["CHAR",["M12","M12G1-p12aB0",0,[1,2],"1a+11a"]], ["CHAR",["M12","M12G1-p12bB0",0,[1,3],"1a+11b"]], ["CHAR",["M12","M12G1-p66aB0",0,[1,2,7],"1a+11a+54a"]], ["CHAR",["M12","M12G1-p66bB0",0,[1,3,7],"1a+11b+54a"]], ["CHAR",["M12.2","M12d2G1-f11r110aB0",11,12]], ["CHAR",["M12.2","M12d2G1-f11r16aB0",11,4]], ["CHAR",["M12.2","M12d2G1-f11r176aB0",11,19]], ["CHAR",["M12.2","M12d2G1-f11r22aB0",11,3]], ["CHAR",["M12.2","M12d2G1-f11r29aB0",11,6]], ["CHAR",["M12.2","M12d2G1-f11r53aB0",11,8]], ["CHAR",["M12.2","M12d2G1-f11r55aB0",11,10]], ["CHAR",["M12.2","M12d2G1-f11r66aB0",11,13]], ["CHAR",["M12.2","M12d2G1-f11r91aB0",11,15]], ["CHAR",["M12.2","M12d2G1-f11r99aB0",11,17]], ["CHAR",["M12.2","M12d2G1-f25r120aB0",5,16]], ["CHAR",["M12.2","M12d2G1-f2r10B0",2,2]], ["CHAR",["M12.2","M12d2G1-f2r144B0",2,5]], ["CHAR",["M12.2","M12d2G1-f2r32B0",2,3]], ["CHAR",["M12.2","M12d2G1-f2r44B0",2,4]], ["CHAR",["M12.2","M12d2G1-f3r20aB0",3,3]], ["CHAR",["M12.2","M12d2G1-f3r30aB0",3,4]], ["CHAR",["M12.2","M12d2G1-f3r34aB0",3,5]], ["CHAR",["M12.2","M12d2G1-f3r45aB0",3,7]], ["CHAR",["M12.2","M12d2G1-f3r90aB0",3,9]], ["CHAR",["M12.2","M12d2G1-f3r99aB0",3,12]], ["CHAR",["M12.2","M12d2G1-f5r110aB0",5,9]], ["CHAR",["M12.2","M12d2G1-f5r22aB0",5,3]], ["CHAR",["M12.2","M12d2G1-f5r32aB0",5,4]], ["CHAR",["M12.2","M12d2G1-f5r45aB0",5,5]], ["CHAR",["M12.2","M12d2G1-f5r55aB0",5,7]], ["CHAR",["M12.2","M12d2G1-f5r66aB0",5,10]], ["CHAR",["M12.2","M12d2G1-f5r78aB0",5,12]], ["CHAR",["M12.2","M12d2G1-f5r98aB0",5,14]], ["CHAR",["M12.2","M12d2G1-f9r54aB0",3,10]], ["CHAR",["M12.2","M12d2G1-p24B0",0,[1,2,3]]], ["CHAR",["M22","M22G1-Zr154B0",0,7,"154a"]], ["CHAR",["M22","M22G1-Zr210B0",0,8,"210a"]], ["CHAR",["M22","M22G1-Zr21B0",0,2,"21a"]], ["CHAR",["M22","M22G1-Zr231B0",0,9,"231a"]], ["CHAR",["M22","M22G1-Zr55B0",0,5,"55a"]], ["CHAR",["M22","M22G1-Zr99B0",0,6,"99a"]], ["CHAR",["M22","M22G1-f11r154B0",11,7,"154a"]], ["CHAR",["M22","M22G1-f11r190B0",11,8,"190a"]], ["CHAR",["M22","M22G1-f11r20B0",11,2,"20a"]], ["CHAR",["M22","M22G1-f11r231B0",11,9,"231a"]], ["CHAR",["M22","M22G1-f11r385B0",11,10,"385a"]], ["CHAR",["M22","M22G1-f11r45aB0",11,3,"45a"]], ["CHAR",["M22","M22G1-f11r45bB0",11,4,"45b"]], ["CHAR",["M22","M22G1-f11r55B0",11,5,"55a"]], ["CHAR",["M22","M22G1-f11r99B0",11,6,"99a"]], ["CHAR",["M22","M22G1-f25r45aB0",5,3,"45a"]], ["CHAR",["M22","M22G1-f2r10aB0",2,2,"10a"]], ["CHAR",["M22","M22G1-f2r10bB0",2,3,"10b"]], ["CHAR",["M22","M22G1-f2r34B0",2,4,"34a"]], ["CHAR",["M22","M22G1-f2r98B0",2,7,"98a"]], ["CHAR",["M22","M22G1-f3r210B0",3,9,"210a"]], ["CHAR",["M22","M22G1-f3r21B0",3,2,"21a"]], ["CHAR",["M22","M22G1-f3r231B0",3,10,"231a"]], ["CHAR",["M22","M22G1-f3r49aB0",3,5,"49a"]], ["CHAR",["M22","M22G1-f3r49bB0",3,6,"49b"]], ["CHAR",["M22","M22G1-f3r55B0",3,7,"55a"]], ["CHAR",["M22","M22G1-f3r99B0",3,8,"99a"]], ["CHAR",["M22","M22G1-f49r280aB0",7,8,"280a"]], ["CHAR",["M22","M22G1-f49r280bB0",7,9,"280b"]], ["CHAR",["M22","M22G1-f4r70aB0",2,5,"70a"]], ["CHAR",["M22","M22G1-f4r70bB0",2,6,"70b"]], ["CHAR",["M22","M22G1-f5r133B0",5,7,"133a"]], ["CHAR",["M22","M22G1-f5r210B0",5,8,"210a"]], ["CHAR",["M22","M22G1-f5r21B0",5,2,"21a"]], ["CHAR",["M22","M22G1-f5r280aB0",5,9,"280a"]], ["CHAR",["M22","M22G1-f5r385B0",5,11,"385a"]], ["CHAR",["M22","M22G1-f5r55B0",5,5,"55a"]], ["CHAR",["M22","M22G1-f5r98B0",5,6,"98a"]], ["CHAR",["M22","M22G1-f7r154B0",7,5,"154a"]], ["CHAR",["M22","M22G1-f7r210B0",7,6,"210a"]], ["CHAR",["M22","M22G1-f7r21B0",7,2,"21a"]], ["CHAR",["M22","M22G1-f7r231B0",7,7,"231a"]], ["CHAR",["M22","M22G1-f7r385B0",7,10,"385a"]], ["CHAR",["M22","M22G1-f7r45B0",7,3,"45a"]], ["CHAR",["M22","M22G1-f7r54B0",7,4,"54a"]], ["CHAR",["M22","M22G1-f9r45aB0",3,3,"45a"]], ["CHAR",["M22","M22G1-p176aB0",0,[1,2,7],"1a+21a+154a"]], ["CHAR",["M22","M22G1-p176bB0",0,[1,2,7],"1a+21a+154a"]], ["CHAR",["M22","M22G1-p22B0",0,[1,2],"1a+21a"]], ["CHAR",["M22","M22G1-p231B0",0,[1,2,5,7],"1a+21a+55a+154a"]], ["CHAR",["M22","M22G1-p330B0",0,[1,2,5,6,7],"1a+21a+55a+99a+154a"]], ["CHAR",["M22","M22G1-p462aB0",0,[1,2,5,7,9],"1a+21a+55a+154a+231a"]], ["CHAR",["M22","M22G1-p462bB0",0,[1,[2,2],5,7,8],"1a+21a^2+55a+154a+210a"]], ["CHAR",["M22","M22G1-p462cB0",0,[1,[2,2],5,7,8],"1a+21a^2+55a+154a+210a"]], ["CHAR",["M22","M22G1-p616B0",0,[1,2,5,7,12],"1a+21a+55a+154a+385a"]], ["CHAR",["M22","M22G1-p672B0",0,[1,2,5,7,8,9],"1a+21a+55a+154a+210a+231a"]], ["CHAR",["M22","M22G1-p770B0",0,[1,2,[5,2],6,7,12],"1a+21a+55a^2+99a+154a+385a"]], ["CHAR",["M22","M22G1-p77B0",0,[1,2,5],"1a+21a+55a"]], ["CHAR",["M22.2","M22d2G1-f11r154aB0",11,13]], ["CHAR",["M22.2","M22d2G1-f11r190aB0",11,15]], ["CHAR",["M22.2","M22d2G1-f11r20aB0",11,3]], ["CHAR",["M22.2","M22d2G1-f11r231aB0",11,17]], ["CHAR",["M22.2","M22d2G1-f11r385aB0",11,19]], ["CHAR",["M22.2","M22d2G1-f11r45aB0",11,5]], ["CHAR",["M22.2","M22d2G1-f11r45bB0",11,7]], ["CHAR",["M22.2","M22d2G1-f11r55aB0",11,9]], ["CHAR",["M22.2","M22d2G1-f11r99aB0",11,11]], ["CHAR",["M22.2","M22d2G1-f25r45aB0",5,5]], ["CHAR",["M22.2","M22d2G1-f25r45bB0",5,7]], ["CHAR",["M22.2","M22d2G1-f2r10aB0",2,2]], ["CHAR",["M22.2","M22d2G1-f2r10bB0",2,3]], ["CHAR",["M22.2","M22d2G1-f2r140B0",2,5]], ["CHAR",["M22.2","M22d2G1-f2r34B0",2,4]], ["CHAR",["M22.2","M22d2G1-f2r98B0",2,6]], ["CHAR",["M22.2","M22d2G1-f3r210aB0",3,14]], ["CHAR",["M22.2","M22d2G1-f3r21aB0",3,3]], ["CHAR",["M22.2","M22d2G1-f3r231aB0",3,16]], ["CHAR",["M22.2","M22d2G1-f3r55aB0",3,10]], ["CHAR",["M22.2","M22d2G1-f3r98B0",3,9]], ["CHAR",["M22.2","M22d2G1-f3r99aB0",3,12]], ["CHAR",["M22.2","M22d2G1-f5r133aB0",5,13]], ["CHAR",["M22.2","M22d2G1-f5r210aB0",5,15]], ["CHAR",["M22.2","M22d2G1-f5r21aB0",5,3]], ["CHAR",["M22.2","M22d2G1-f5r385aB0",5,18]], ["CHAR",["M22.2","M22d2G1-f5r55aB0",5,9]], ["CHAR",["M22.2","M22d2G1-f5r560B0",5,17]], ["CHAR",["M22.2","M22d2G1-f5r98aB0",5,11]], ["CHAR",["M22.2","M22d2G1-f7r154aB0",7,9]], ["CHAR",["M22.2","M22d2G1-f7r210aB0",7,11]], ["CHAR",["M22.2","M22d2G1-f7r21aB0",7,3]], ["CHAR",["M22.2","M22d2G1-f7r231aB0",7,13]], ["CHAR",["M22.2","M22d2G1-f7r385aB0",7,16]], ["CHAR",["M22.2","M22d2G1-f7r45aB0",7,5]], ["CHAR",["M22.2","M22d2G1-f7r54aB0",7,7]], ["CHAR",["M22.2","M22d2G1-f7r560B0",7,15]], ["CHAR",["M22.2","M22d2G1-f9r45aB0",3,5]], ["CHAR",["M22.2","M22d2G1-f9r45bB0",3,7]], ["CHAR",["M22.2","M22d2G1-p22B0",0,[1,3]]], ["CHAR",["M22.2","M22d2G1-p231B0",0,[1,3,9,13]]], ["CHAR",["M22.2","M22d2G1-p330B0",0,[1,3,9,11,13]]], ["CHAR",["M22.2","M22d2G1-p352B0",0,[1,2,3,4,13,14]]], ["CHAR",["M22.2","M22d2G1-p616B0",0,[1,3,9,13,20]]], ["CHAR",["M22.2","M22d2G1-p672B0",0,[1,4,9,13,16,18]]], ["CHAR",["M22.2","M22d2G1-p77B0",0,[1,3,9]]], ["CHAR",["M23","M23G1-Zr22B0",0,2,"22a"]], ["CHAR",["M23","M23G1-Zr230B0",0,5,"230a"]], ["CHAR",["M23","M23G1-Zr231aB0",0,6,"231a"]], ["CHAR",["M23","M23G1-f11r229B0",11,5,"229a"]], ["CHAR",["M23","M23G1-f11r22B0",11,2,"22a"]], ["CHAR",["M23","M23G1-f11r231aB0",11,6,"231a"]], ["CHAR",["M23","M23G1-f11r253B0",11,9,"253a"]], ["CHAR",["M23","M23G1-f11r45bB0",11,4,"45b"]], ["CHAR",["M23","M23G1-f11r806B0",11,12,"806a"]], ["CHAR",["M23","M23G1-f11r990aB0",11,13,"990a"]], ["CHAR",["M23","M23G1-f121r231bB0",11,7,"231b"]], ["CHAR",["M23","M23G1-f121r231cB0",11,8,"231c"]], ["CHAR",["M23","M23G1-f121r770aB0",11,10,"770a"]], ["CHAR",["M23","M23G1-f121r770bB0",11,11,"770b"]], ["CHAR",["M23","M23G1-f23r210B0",23,5,"210a"]], ["CHAR",["M23","M23G1-f23r21B0",23,2,"21a"]], ["CHAR",["M23","M23G1-f23r230B0",23,6,"230a"]], ["CHAR",["M23","M23G1-f23r231aB0",23,7,"231a"]], ["CHAR",["M23","M23G1-f23r253B0",23,9,"253a"]], ["CHAR",["M23","M23G1-f23r280B0",23,10,"280a"]], ["CHAR",["M23","M23G1-f23r45bB0",23,4,"45b"]], ["CHAR",["M23","M23G1-f23r665bB0",23,13,"665b"]], ["CHAR",["M23","M23G1-f25r45aB0",5,4,"45b"]], ["CHAR",["M23","M23G1-f25r770B0",5,8,"770a"]], ["CHAR",["M23","M23G1-f25r990aB0",5,13,"990b"]], ["CHAR",["M23","M23G1-f2r11aB0",2,2,"11a"]], ["CHAR",["M23","M23G1-f2r11bB0",2,3,"11b"]], ["CHAR",["M23","M23G1-f2r120B0",2,6,"120a"]], ["CHAR",["M23","M23G1-f2r220aB0",2,7,"220a"]], ["CHAR",["M23","M23G1-f2r220bB0",2,8,"220b"]], ["CHAR",["M23","M23G1-f2r252B0",2,9,"252a"]], ["CHAR",["M23","M23G1-f2r44aB0",2,4,"44a"]], ["CHAR",["M23","M23G1-f2r44bB0",2,5,"44b"]], ["CHAR",["M23","M23G1-f3r104aB0",3,5,"104a"]], ["CHAR",["M23","M23G1-f3r104bB0",3,6,"104b"]], ["CHAR",["M23","M23G1-f3r22B0",3,2,"22a"]], ["CHAR",["M23","M23G1-f3r231B0",3,7,"231a"]], ["CHAR",["M23","M23G1-f3r253B0",3,8,"253a"]], ["CHAR",["M23","M23G1-f3r770aB0",3,9,"770a"]], ["CHAR",["M23","M23G1-f49r231bB0",7,6,"231b"]], ["CHAR",["M23","M23G1-f49r231cB0",7,7,"231c"]], ["CHAR",["M23","M23G1-f49r770aB0",7,8,"770a"]], ["CHAR",["M23","M23G1-f49r770bB0",7,9,"770b"]], ["CHAR",["M23","M23G1-f49r896aB0",7,10,"896a"]], ["CHAR",["M23","M23G1-f49r896bB0",7,11,"896b"]], ["CHAR",["M23","M23G1-f4r896aB0",2,10,"896a"]], ["CHAR",["M23","M23G1-f4r896bB0",2,11,"896b"]], ["CHAR",["M23","M23G1-f5r22B0",5,2,"22a"]], ["CHAR",["M23","M23G1-f5r230B0",5,5,"230a"]], ["CHAR",["M23","M23G1-f5r231aB0",5,6,"231a"]], ["CHAR",["M23","M23G1-f5r231bB0",5,7,"231b"]], ["CHAR",["M23","M23G1-f5r896aB0",5,10,"896a"]], ["CHAR",["M23","M23G1-f7r208B0",7,4,"208a"]], ["CHAR",["M23","M23G1-f7r22B0",7,2,"22a"]], ["CHAR",["M23","M23G1-f7r231aB0",7,5,"231a"]], ["CHAR",["M23","M23G1-f7r45B0",7,3,"45a"]], ["CHAR",["M23","M23G1-f7r990B0",7,12,"990a"]], ["CHAR",["M23","M23G1-f9r45bB0",3,4,"45b"]], ["CHAR",["M23","M23G1-f9r990bB0",3,12,"990b"]], ["CHAR",["M23","M23G1-p1288B0",0,[1,2,5,16],"1a+22a+230a+1035a"]], ["CHAR",["M23","M23G1-p1771B0",0,[1,2,[5,2],9,16],"1a+22a+230a^2+253a+1035a"]], ["CHAR",["M23","M23G1-p23B0",0,[1,2],"1a+22a"]], ["CHAR",["M23","M23G1-p253aB0",0,[1,2,5],"1a+22a+230a"]], ["CHAR",["M23","M23G1-p253bB0",0,[1,2,5],"1a+22a+230a"]], ["CHAR",["M23","M23G1-p40320B0",0,[1,3,4,6,7,8,9,[10,3],[11,3],[12,3],[13,3],[14,4],[15,4],[16,5],[17,8]],"1a+45ab+231abc+253a+770a^3b^3+896a^3b^3+990a^4b^4+1035a^5+2024a^8"]], ["CHAR",["M23","M23G1-p506B0",0,[1,2,5,9],"1a+22a+230a+253a"]], ["CHAR",["M24","M24G1-Zr23B0",0,2,"23a"]], ["CHAR",["M24","M24G1-f11r229B0",11,5,"229a"]], ["CHAR",["M24","M24G1-f11r23B0",11,2,"23a"]], ["CHAR",["M24","M24G1-f11r253B0",11,8,"253a"]], ["CHAR",["M24","M24G1-f11r45B0",11,3,"45a"]], ["CHAR",["M24","M24G1-f11r482B0",11,9,"482a"]], ["CHAR",["M24","M24G1-f11r806B0",11,12,"806a"]], ["CHAR",["M24","M24G1-f11r990bB0",11,14,"990b"]], ["CHAR",["M24","M24G1-f121r231bB0",11,7,"231b"]], ["CHAR",["M24","M24G1-f121r770aB0",11,10,"770a"]], ["CHAR",["M24","M24G1-f23r231bB0",23,6,"231b"]], ["CHAR",["M24","M24G1-f23r23B0",23,2,"23a"]], ["CHAR",["M24","M24G1-f23r251B0",23,7,"251a"]], ["CHAR",["M24","M24G1-f23r253B0",23,8,"253a"]], ["CHAR",["M24","M24G1-f23r45B0",23,3,"45a"]], ["CHAR",["M24","M24G1-f23r483B0",23,9,"483a"]], ["CHAR",["M24","M24G1-f23r770B0",23,10,"770a"]], ["CHAR",["M24","M24G1-f23r990bB0",23,12,"990b"]], ["CHAR",["M24","M24G1-f25r45aB0",5,3,"45a"]], ["CHAR",["M24","M24G1-f25r45bB0",5,4,"45b"]], ["CHAR",["M24","M24G1-f25r770aB0",5,8,"770a"]], ["CHAR",["M24","M24G1-f25r990aB0",5,10,"990a"]], ["CHAR",["M24","M24G1-f2r11aB0",2,2,"11a"]], ["CHAR",["M24","M24G1-f2r11bB0",2,3,"11b"]], ["CHAR",["M24","M24G1-f2r120B0",2,6,"120a"]], ["CHAR",["M24","M24G1-f2r1242B0",2,12,"1242a"]], ["CHAR",["M24","M24G1-f2r1792B0",2,13,"1792a"]], ["CHAR",["M24","M24G1-f2r220aB0",2,7,"220a"]], ["CHAR",["M24","M24G1-f2r220bB0",2,8,"220b"]], ["CHAR",["M24","M24G1-f2r252B0",2,9,"252a"]], ["CHAR",["M24","M24G1-f2r320aB0",2,10,"320a"]], ["CHAR",["M24","M24G1-f2r320bB0",2,11,"320b"]], ["CHAR",["M24","M24G1-f2r44aB0",2,4,"44a"]], ["CHAR",["M24","M24G1-f2r44bB0",2,5,"44b"]], ["CHAR",["M24","M24G1-f3r22B0",3,2,"22a"]], ["CHAR",["M24","M24G1-f3r231B0",3,5,"231a"]], ["CHAR",["M24","M24G1-f3r252B0",3,6,"252a"]], ["CHAR",["M24","M24G1-f3r483B0",3,7,"483a"]], ["CHAR",["M24","M24G1-f3r770aB0",3,8,"770a"]], ["CHAR",["M24","M24G1-f3r770bB0",3,9,"770b"]], ["CHAR",["M24","M24G1-f49r231bB0",7,5,"231b"]], ["CHAR",["M24","M24G1-f49r770aB0",7,9,"770a"]], ["CHAR",["M24","M24G1-f5r231B0",5,5,"231a"]], ["CHAR",["M24","M24G1-f5r23B0",5,2,"23a"]], ["CHAR",["M24","M24G1-f5r252B0",5,6,"252a"]], ["CHAR",["M24","M24G1-f5r253B0",5,7,"253a"]], ["CHAR",["M24","M24G1-f7r23B0",7,2,"23a"]], ["CHAR",["M24","M24G1-f7r252B0",7,6,"252a"]], ["CHAR",["M24","M24G1-f7r253B0",7,7,"253a"]], ["CHAR",["M24","M24G1-f7r45B0",7,3,"45a"]], ["CHAR",["M24","M24G1-f7r483B0",7,8,"483a"]], ["CHAR",["M24","M24G1-f7r990B0",7,11,"990a"]], ["CHAR",["M24","M24G1-f9r45aB0",3,3,"45a"]], ["CHAR",["M24","M24G1-f9r45bB0",3,4,"45b"]], ["CHAR",["M24","M24G1-f9r990bB0",3,11,"990b"]], ["CHAR",["M24","M24G1-p1288B0",0,[1,7,14],"1a+252a+1035a"]], ["CHAR",["M24","M24G1-p1771B0",0,[1,7,9,14],"1a+252a+483a+1035a"]], ["CHAR",["M24","M24G1-p2024B0",0,[1,2,7,9,17],"1a+23a+252a+483a+1265a"]], ["CHAR",["M24","M24G1-p24B0",0,[1,2],"1a+23a"]], ["CHAR",["M24","M24G1-p276B0",0,[1,2,7],"1a+23a+252a"]], ["CHAR",["M24","M24G1-p3795B0",0,[1,7,9,14,19],"1a+252a+483a+1035a+2024a"]], ["CHAR",["M24","M24G1-p759B0",0,[1,2,7,9],"1a+23a+252a+483a"]], ["CHAR",["McL","McLG1-Zr231B0",0,3,"231a"]], ["CHAR",["McL","McLG1-f11r22B0",11,2,"22a"]], ["CHAR",["McL","McLG1-f11r231B0",11,3,"231a"]], ["CHAR",["McL","McLG1-f11r251B0",11,4,"251a"]], ["CHAR",["McL","McLG1-f11r896B0",11,7,"896a"]], ["CHAR",["McL","McLG1-f121r770aB0",11,5,"770a"]], ["CHAR",["McL","McLG1-f121r770bB0",11,6,"770b"]], ["CHAR",["McL","McLG1-f23r896bB0",23,8,"896b"]], ["CHAR",["McL","McLG1-f25r1200aB0",5,8,"1200a"]], ["CHAR",["McL","McLG1-f2r22B0",2,2,"22a"]], ["CHAR",["McL","McLG1-f2r230B0",2,3,"230a"]], ["CHAR",["McL","McLG1-f2r748aB0",2,4,"748a"]], ["CHAR",["McL","McLG1-f2r748bB0",2,5,"748b"]], ["CHAR",["McL","McLG1-f3r104aB0",3,3,"104a"]], ["CHAR",["McL","McLG1-f3r104bB0",3,4,"104b"]], ["CHAR",["McL","McLG1-f3r210B0",3,5,"210a"]], ["CHAR",["McL","McLG1-f3r21B0",3,2,"21a"]], ["CHAR",["McL","McLG1-f3r560B0",3,6,"560a"]], ["CHAR",["McL","McLG1-f49r770aB0",7,5,"770a"]], ["CHAR",["McL","McLG1-f49r770bB0",7,6,"770b"]], ["CHAR",["McL","McLG1-f49r896aB0",7,7,"896a"]], ["CHAR",["McL","McLG1-f49r896bB0",7,8,"896b"]], ["CHAR",["McL","McLG1-f4r896aB0",2,6,"896a"]], ["CHAR",["McL","McLG1-f4r896bB0",2,7,"896b"]], ["CHAR",["McL","McLG1-f5r210B0",5,3,"210a"]], ["CHAR",["McL","McLG1-f5r21B0",5,2,"21a"]], ["CHAR",["McL","McLG1-f5r230B0",5,4,"230a"]], ["CHAR",["McL","McLG1-f5r560B0",5,5,"560a"]], ["CHAR",["McL","McLG1-f5r896bB0",5,7,"896b"]], ["CHAR",["McL","McLG1-f7r22B0",7,2,"22a"]], ["CHAR",["McL","McLG1-f7r231B0",7,3,"231a"]], ["CHAR",["McL","McLG1-f7r252B0",7,4,"252a"]], ["CHAR",["McL","McLG1-f9r605aB0",3,7,"605a"]], ["CHAR",["McL","McLG1-f9r605bB0",3,8,"605b"]], ["CHAR",["McL","McLG1-p113400B0",0,[1,2,[4,2],[9,3],[10,2],12,[14,2],18,19,[20,3],21,22,23,24],"1a+22a+252a^2+1750a^3+3520a^2+4500a+5103a^2+8250ab+9625a^3+9856ab+10395ab"]], ["CHAR",["McL","McLG1-p15400aB0",0,[1,4,12,14,15],"1a+252a+4500a+5103a+5544a"]], ["CHAR",["McL","McLG1-p15400bB0",0,[1,2,[4,2],9,10,12,14],"1a+22a+252a^2+1750a+3520a+4500a+5103a"]], ["CHAR",["McL","McLG1-p2025aB0",0,[1,2,4,9],"1a+22a+252a+1750a"]], ["CHAR",["McL","McLG1-p2025bB0",0,[1,2,4,9],"1a+22a+252a+1750a"]], ["CHAR",["McL","McLG1-p22275aB0",0,[1,2,[4,2],[9,2],10,14,20],"1a+22a+252a^2+1750a^2+3520a+5103a+9625a"]], ["CHAR",["McL","McLG1-p22275bB0",0,[1,4,9,14,15,20],"1a+252a+1750a+5103a+5544a+9625a"]], ["CHAR",["McL","McLG1-p22275cB0",0,[1,2,[4,2],[9,2],10,14,20],"1a+22a+252a^2+1750a^2+3520a+5103a+9625a"]], ["CHAR",["McL","McLG1-p22275dB0",0,[1,2,[4,2],[9,2],10,14,20],"1a+22a+252a^2+1750a^2+3520a+5103a+9625a"]], ["CHAR",["McL","McLG1-p275B0",0,[1,2,4],"1a+22a+252a"]], ["CHAR",["McL","McLG1-p299376B0",0,[1,4,7,8,9,10,[12,3],[13,2],[14,3],[15,2],[16,2],[17,2],[18,3],[19,3],[20,4],[21,2],[22,2],[23,4],[24,4]],"1a+252a+896ab+1750a+3520a+4500a^3+4752a^2+5103a^3+5544a^2+8019a^2b^2+8250a^3b^3+9625a^4+9856a^2b^2+10395a^4b^4"]], ["CHAR",["McL","McLG1-p7128B0",0,[1,2,4,9,14],"1a+22a+252a+1750a+5103a"]], ["CHAR",["McL.2","McLd2G1-f11r22aB0",11,3]], ["CHAR",["McL.2","McLd2G1-f11r231aB0",11,5]], ["CHAR",["McL.2","McLd2G1-f11r251aB0",11,7]], ["CHAR",["McL.2","McLd2G1-f11r896aB0",11,10]], ["CHAR",["McL.2","McLd2G1-f2r1496aB0",2,4]], ["CHAR",["McL.2","McLd2G1-f2r22B0",2,2]], ["CHAR",["McL.2","McLd2G1-f2r230aB0",2,3]], ["CHAR",["McL.2","McLd2G1-f3r104aB0",3,5]], ["CHAR",["McL.2","McLd2G1-f3r104bB0",3,7]], ["CHAR",["McL.2","McLd2G1-f3r210aB0",3,9]], ["CHAR",["McL.2","McLd2G1-f3r21aB0",3,3]], ["CHAR",["McL.2","McLd2G1-f3r560aB0",3,11]], ["CHAR",["McL.2","McLd2G1-f49r896aB0",7,10]], ["CHAR",["McL.2","McLd2G1-f5r210aB0",5,5]], ["CHAR",["McL.2","McLd2G1-f5r21aB0",5,3]], ["CHAR",["McL.2","McLd2G1-f5r230aB0",5,7]], ["CHAR",["McL.2","McLd2G1-f5r560aB0",5,9]], ["CHAR",["McL.2","McLd2G1-f5r896aB0",5,11]], ["CHAR",["McL.2","McLd2G1-f5r896bB0",5,13]], ["CHAR",["McL.2","McLd2G1-f7r22aB0",7,3]], ["CHAR",["McL.2","McLd2G1-f7r231aB0",7,5]], ["CHAR",["McL.2","McLd2G1-f7r252aB0",7,7]], ["CHAR",["McL.2","McLd2G1-p22275aB0",0,[1,3,[7,2],14,15,16,24,30]]], ["CHAR",["McL.2","McLd2G1-p275B0",0,[1,3,7]]], ["CHAR",["McL.2","McLd2G1-p4050B0",0,[1,2,3,4,7,8,14,15]]], ["CHAR",["McL.2","McLd2G1-p44550B0",0,[1,2,3,4,[7,2],[8,2],[14,2],[15,2],16,17,24,25,30,31]]], ["CHAR",["McL.2","McLd2G1-p7128B0",0,[1,4,7,14,24]]], ["CHAR",["O8-(2)","O8m2G1-Zr204aB0",0,5,"204a"]], ["CHAR",["O8-(2)","O8m2G1-Zr204bB0",0,6,"204b"]], ["CHAR",["O8-(2)","O8m2G1-Zr34B0",0,2,"34a"]], ["CHAR",["O8-(2)","O8m2G1-Zr51B0",0,3,"51a"]], ["CHAR",["O8-(2)","O8m2G1-Zr84B0",0,4,"84a"]], ["CHAR",["O8-(2)","O8m2G1-f17r34B0",17,2,"34a"]], ["CHAR",["O8-(2)","O8m2G1-f17r51B0",17,3,"51a"]], ["CHAR",["O8-(2)","O8m2G1-f17r83B0",17,4,"83a"]], ["CHAR",["O8-(2)","O8m2G1-f2r26B0",2,5,"26a"]], ["CHAR",["O8-(2)","O8m2G1-f2r48B0",2,6,"48a"]], ["CHAR",["O8-(2)","O8m2G1-f2r8B0",2,2,"8a"]], ["CHAR",["O8-(2)","O8m2G1-f3r34B0",3,2,"34a"]], ["CHAR",["O8-(2)","O8m2G1-f3r50B0",3,3,"50a"]], ["CHAR",["O8-(2)","O8m2G1-f4r48bB0",2,7,"48b"]], ["CHAR",["O8-(2)","O8m2G1-f4r48cB0",2,8,"48c"]], ["CHAR",["O8-(2)","O8m2G1-f4r8bB0",2,3,"8b"]], ["CHAR",["O8-(2)","O8m2G1-f4r8cB0",2,4,"8c"]], ["CHAR",["O8-(2)","O8m2G1-f5r34B0",5,2,"34a"]], ["CHAR",["O8-(2)","O8m2G1-f5r51B0",5,3,"51a"]], ["CHAR",["O8-(2)","O8m2G1-f5r84B0",5,4,"84a"]], ["CHAR",["O8-(2)","O8m2G1-f7r33B0",7,2,"33a"]], ["CHAR",["O8-(2)","O8m2G1-f7r51B0",7,3,"51a"]], ["CHAR",["O8-(2)","O8m2G1-f7r84B0",7,4,"84a"]], ["CHAR",["O8-(2)","O8m2G1-p1071B0",0,[1,2,4,8,9],"1a+34a+84a+476ab"]], ["CHAR",["O8-(2)","O8m2G1-p119B0",0,[1,2,4],"1a+34a+84a"]], ["CHAR",["O8-(2)","O8m2G1-p136B0",0,[1,3,4],"1a+51a+84a"]], ["CHAR",["O8-(2)","O8m2G1-p1632B0",0,[1,3,4,8,13],"1a+51a+84a+476a+1020a"]], ["CHAR",["O8-(2)","O8m2G1-p24192B0",0,[1,2,3,8,9,10,11,12,13,14,23,24,33,34,37,38],"1a+34a+51a+476ab+595a+714ab+1020a+1071a+2142cd+2856ab+4284a+4760a"]], ["CHAR",["O8-(2)","O8m2G1-p45696B0",0,[1,2,3,[4,2],[8,2],[9,2],10,11,12,[13,3],14,[19,2],23,24,25,[33,2],34,[35,2],36,37,38],"1a+34a+51a+84a^2+476a^2b^2+595a+714ab+1020a^3+1071a+1344a^2+2142cd+2176a+2856a^2b+3264a^2+4096a+4284a+4760a"]], ["CHAR",["O8-(2)","O8m2G1-p765B0",0,[1,4,6,8],"1a+84a+204b+476a"]], ["CHAR",["O8-(2).2","O8m2d2G1-f3r34B0",3,3]], ["CHAR",["O8-(2).2","O8m2d2G1-f3r50B0",3,5]], ["CHAR",["O8-(2).2","O8m2d2G1-p119B0",0,[1,3,7]]], ["CHAR",["ON","ONG1-f3r495B0",3,6,"495b"]], ["CHAR",["ON","ONG1-f3r684B0",3,[3,4],"342ab"]], ["CHAR",["ON","ONG1-p122760aB0",0,[1,2,7,9,11],"1a+10944a+26752a+32395b+52668a"]], ["CHAR",["ON.2","ONd2G1-p245520B0",0,[1,2,3,4,7,8,9,12,13]]], ["CHAR",["R(27)","R27G1-f27r7aB0",3,2,"7a"]], ["CHAR",["R(27)","R27G1-f2r702B0",2,2,"702a"]], ["CHAR",["R(27)","R27G1-p19684B0",0,[1,20],"1a+19683a"]], ["CHAR",["R(27).3","R27d3G1-f2r702B0",2,4]], ["CHAR",["R(27).3","R27d3G1-f3r21B0",3,2]], ["CHAR",["R(27).3","R27d3G1-f4r741B0",2,12]], ["CHAR",["R(27).3","R27d3G1-p19684B0",0,[1,34]]], ["CHAR",["Ru","RuG1-f13r378B0",13,2,"378a"]], ["CHAR",["Ru","RuG1-f13r406B0",13,4,"406a"]], ["CHAR",["Ru","RuG1-f13r783B0",13,5,"783a"]], ["CHAR",["Ru","RuG1-f29r378B0",29,3,"378b"]], ["CHAR",["Ru","RuG1-f29r406B0",29,4,"406a"]], ["CHAR",["Ru","RuG1-f29r783B0",29,5,"783a"]], ["CHAR",["Ru","RuG1-f2r1246B0",2,4,"1246a"]], ["CHAR",["Ru","RuG1-f2r28B0",2,2,"28a"]], ["CHAR",["Ru","RuG1-f2r376B0",2,3,"376a"]], ["CHAR",["Ru","RuG1-f3r406B0",3,4,"406a"]], ["CHAR",["Ru","RuG1-f3r783B0",3,5,"783a"]], ["CHAR",["Ru","RuG1-f49r378B0",7,2,"378a"]], ["CHAR",["Ru","RuG1-f5r133B0",5,2,"133a"]], ["CHAR",["Ru","RuG1-f5r273B0",5,3,"273a"]], ["CHAR",["Ru","RuG1-f5r378B0",5,4,"378a"]], ["CHAR",["Ru","RuG1-f5r783B0",5,6,"783a"]], ["CHAR",["Ru","RuG1-f7r406B0",7,4,"406a"]], ["CHAR",["Ru","RuG1-f7r782B0",7,5,"782a"]], ["CHAR",["Ru","RuG1-f9r378B0",3,3,"378b"]], ["CHAR",["Ru","RuG1-p4060B0",0,[1,5,6],"1a+783a+3276a"]], ["CHAR",["S4(4)","S44G1-Zr153B0",0,12,"153a"]], ["CHAR",["S4(4)","S44G1-Zr18B0",0,2,"18a"]], ["CHAR",["S4(4)","S44G1-Zr50B0",0,5,"50a"]], ["CHAR",["S4(4)","S44G1-Zr50aB0",0,5,"50a"]], ["CHAR",["S4(4)","S44G1-f17r18B0",17,2,"18a"]], ["CHAR",["S4(4)","S44G1-f3r18B0",3,2,"18a"]], ["CHAR",["S4(4)","S44G1-f5r18B0",5,2,"18a"]], ["CHAR",["S4(5)","S45G1-Zr104aB0",0,10,"104a"]], ["CHAR",["S4(5)","S45G1-Zr104bB0",0,11,"104b"]], ["CHAR",["S4(5)","S45G1-Zr104cB0",0,12,"104c"]], ["CHAR",["S4(5)","S45G1-Zr130B0",0,13,"130a"]], ["CHAR",["S4(5)","S45G1-Zr156B0",0,14,"156a"]], ["CHAR",["S4(5)","S45G1-Zr40B0",0,4,"40a"]], ["CHAR",["S4(5)","S45G1-Zr65aB0",0,5,"65a"]], ["CHAR",["S4(5)","S45G1-Zr65bB0",0,6,"65b"]], ["CHAR",["S4(5)","S45G1-Zr90B0",0,9,"90a"]], ["CHAR",["S4(5)","S45G1-f5r5B0",5,2,"5a"]], ["CHAR",["S6(2)","S62G1-Zr105aB0",0,12,"105a"]], ["CHAR",["S6(2)","S62G1-Zr105bB0",0,13,"105b"]], ["CHAR",["S6(2)","S62G1-Zr105cB0",0,14,"105c"]], ["CHAR",["S6(2)","S62G1-Zr120B0",0,15,"120a"]], ["CHAR",["S6(2)","S62G1-Zr15B0",0,3,"15a"]], ["CHAR",["S6(2)","S62G1-Zr168B0",0,16,"168a"]], ["CHAR",["S6(2)","S62G1-Zr189aB0",0,17,"189a"]], ["CHAR",["S6(2)","S62G1-Zr189bB0",0,18,"189b"]], ["CHAR",["S6(2)","S62G1-Zr189cB0",0,19,"189c"]], ["CHAR",["S6(2)","S62G1-Zr210aB0",0,20,"210a"]], ["CHAR",["S6(2)","S62G1-Zr210bB0",0,21,"210b"]], ["CHAR",["S6(2)","S62G1-Zr216B0",0,22,"216a"]], ["CHAR",["S6(2)","S62G1-Zr21aB0",0,4,"21a"]], ["CHAR",["S6(2)","S62G1-Zr21bB0",0,5,"21b"]], ["CHAR",["S6(2)","S62G1-Zr27B0",0,6,"27a"]], ["CHAR",["S6(2)","S62G1-Zr35aB0",0,7,"35a"]], ["CHAR",["S6(2)","S62G1-Zr35bB0",0,8,"35b"]], ["CHAR",["S6(2)","S62G1-Zr56B0",0,9,"56a"]], ["CHAR",["S6(2)","S62G1-Zr70B0",0,10,"70a"]], ["CHAR",["S6(2)","S62G1-Zr7B0",0,2,"7a"]], ["CHAR",["S6(2)","S62G1-Zr84B0",0,11,"84a"]], ["CHAR",["S6(2)","S62G1-f2r112B0",2,7,"112a"]], ["CHAR",["S6(2)","S62G1-f2r14B0",2,4,"14a"]], ["CHAR",["S6(2)","S62G1-f2r48B0",2,5,"48a"]], ["CHAR",["S6(2)","S62G1-f2r512B0",2,8,"512a"]], ["CHAR",["S6(2)","S62G1-f2r64B0",2,6,"64a"]], ["CHAR",["S6(2)","S62G1-f2r6B0",2,2,"6a"]], ["CHAR",["S6(2)","S62G1-f2r8B0",2,3,"8a"]], ["CHAR",["S6(2)","S62G1-f3r14B0",3,3,"14a"]], ["CHAR",["S6(2)","S62G1-f3r189aB0",3,11,"189a"]], ["CHAR",["S6(2)","S62G1-f3r189bB0",3,12,"189b"]], ["CHAR",["S6(2)","S62G1-f3r189cB0",3,13,"189c"]], ["CHAR",["S6(2)","S62G1-f3r196B0",3,14,"196a"]], ["CHAR",["S6(2)","S62G1-f3r21B0",3,4,"21a"]], ["CHAR",["S6(2)","S62G1-f3r27B0",3,5,"27a"]], ["CHAR",["S6(2)","S62G1-f3r34B0",3,6,"34a"]], ["CHAR",["S6(2)","S62G1-f3r35B0",3,7,"35a"]], ["CHAR",["S6(2)","S62G1-f3r405B0",3,15,"405a"]], ["CHAR",["S6(2)","S62G1-f3r49B0",3,8,"49a"]], ["CHAR",["S6(2)","S62G1-f3r7B0",3,2,"7a"]], ["CHAR",["S6(2)","S62G1-f3r91B0",3,9,"91a"]], ["CHAR",["S6(2)","S62G1-f3r98B0",3,10,"98a"]], ["CHAR",["S6(2)","S62G1-p120B0",0,[1,7,11],"1a+35a+84a"]], ["CHAR",["S6(2)","S62G1-p126B0",0,[1,2,6,8,9],"1a+7a+27a+35b+56a"]], ["CHAR",["S6(2)","S62G1-p135B0",0,[1,3,8,11],"1a+15a+35b+84a"]], ["CHAR",["S6(2)","S62G1-p240B0",0,[1,3,7,11,14],"1a+15a+35a+84a+105c"]], ["CHAR",["S6(2)","S62G1-p288B0",0,[1,6,8,13,15],"1a+27a+35b+105b+120a"]], ["CHAR",["S6(2)","S62G1-p28B0",0,[1,6],"1a+27a"]], ["CHAR",["S6(2)","S62G1-p315B0",0,[1,6,8,11,16],"1a+27a+35b+84a+168a"]], ["CHAR",["S6(2)","S62G1-p336B0",0,[1,6,8,13,16],"1a+27a+35b+105b+168a"]], ["CHAR",["S6(2)","S62G1-p36B0",0,[1,8],"1a+35b"]], ["CHAR",["S6(2)","S62G1-p378aB0",0,[1,[6,2],8,15,16],"1a+27a^2+35b+120a+168a"]], ["CHAR",["S6(2)","S62G1-p378bB0",0,[1,3,6,8,11,22],"1a+15a+27a+35b+84a+216a"]], ["CHAR",["S6(2)","S62G1-p56B0",0,[1,2,5,6],"1a+7a+21b+27a"]], ["CHAR",["S6(2)","S62G1-p63B0",0,[1,6,8],"1a+27a+35b"]], ["CHAR",["S6(2)","S62G1-p72B0",0,[1,3,5,8],"1a+15a+21b+35b"]], ["CHAR",["S6(2)","S62G1-p960B0",0,[1,10,11,13,23,29],"1a+70a+84a+105b+280a+420a"]], ["CHAR",["Suz","SuzG1-Zr143B0",0,2,"143a"]], ["CHAR",["Suz","SuzG1-f11r143B0",11,2,"143a"]], ["CHAR",["Suz","SuzG1-f11r364B0",11,3,"364a"]], ["CHAR",["Suz","SuzG1-f11r779B0",11,4,"779a"]], ["CHAR",["Suz","SuzG1-f13r143B0",13,2,"143a"]], ["CHAR",["Suz","SuzG1-f13r364B0",13,3,"364a"]], ["CHAR",["Suz","SuzG1-f13r780B0",13,4,"780a"]], ["CHAR",["Suz","SuzG1-f2r142B0",2,4,"142a"]], ["CHAR",["Suz","SuzG1-f2r638B0",2,7,"638a"]], ["CHAR",["Suz","SuzG1-f3r286B0",3,4,"286a"]], ["CHAR",["Suz","SuzG1-f3r429B0",3,5,"429a"]], ["CHAR",["Suz","SuzG1-f3r649B0",3,6,"649a"]], ["CHAR",["Suz","SuzG1-f3r64B0",3,2,"64a"]], ["CHAR",["Suz","SuzG1-f3r78B0",3,3,"78a"]], ["CHAR",["Suz","SuzG1-f5r143B0",5,2,"143a"]], ["CHAR",["Suz","SuzG1-f5r363B0",5,3,"363a"]], ["CHAR",["Suz","SuzG1-f5r780B0",5,4,"780a"]], ["CHAR",["Suz","SuzG1-f7r143B0",7,2,"143a"]], ["CHAR",["Suz","SuzG1-f7r364B0",7,3,"364a"]], ["CHAR",["Suz","SuzG1-f7r780B0",7,4,"780a"]], ["CHAR",["Suz","SuzG1-p135135B0",0,[1,2,4,6,9,12,16,17,27],"1a+143a+780a+3432a+5940a+14300a+18954a+25025a+66560a"]], ["CHAR",["Suz","SuzG1-p1782B0",0,[1,4,5],"1a+780a+1001a"]], ["CHAR",["Suz","SuzG1-p22880B0",0,[1,3,4,9,15],"1a+364a+780a+5940a+15795a"]], ["CHAR",["Suz","SuzG1-p232960B0",0,[1,[3,2],9,11,12,13,14,15,23,33],"1a+364a^2+5940a+12012a+14300a+15015ab+15795a+54054a+100100a"]], ["CHAR",["Suz","SuzG1-p32760B0",0,[1,2,3,9,11,12],"1a+143a+364a+5940a+12012a+14300a"]], ["CHAR",["Suz","SuzG1-p370656B0",0,[1,[4,2],5,6,9,15,16,17,24,27,29,30],"1a+780a^2+1001a+3432a+5940a+15795a+18954a+25025a+64064a+66560a+79872a+88452a"]], ["CHAR",["Suz","SuzG1-p405405B0",0,[1,3,4,5,9,11,12,15,17,27,28,30,33],"1a+364a+780a+1001a+5940a+12012a+14300a+15795a+25025a+66560a+75075a+88452a+100100a"]], ["CHAR",["Suz.2","Suzd2G1-p1782B0",0,[1,7,9]]], ["CHAR",["Sz(32)","Sz32G1-f41r124bB0",41,3,"124b"]], ["CHAR",["Sz(32)","Sz32G1-f5r124aB0",5,2,"124a"]], ["CHAR",["Sz(32)","Sz32G1-p1025B0",0,[1,14],"1a+1024a"]], ["CHAR",["Sz(32)","Sz32G1-p198400B0",0,[1,[4,6],[5,6],[6,6],[7,6],[8,6],[9,6],[10,6],[11,6],[12,6],[13,6],[14,6],[15,7],[16,7],[17,7],[18,7],[19,7],[20,7],[21,7],[22,7],[23,7],[24,7],[25,7],[26,7],[27,7],[28,7],[29,7],[30,5],[31,5],[32,5],[33,5],[34,5],[35,5]],"1a+775a^6b^6c^6d^6e^6f^6g^6h^6i^6j^6+1024a^6+1025a^7b^7c^7d^7e^7f^7g^7h^7i^7j^7k^7l^7m^7n^7o^7+1271a^5b^5c^5d^5e^5f^5"]], ["CHAR",["Sz(8)","Sz8G1-Ar14aB0",0,2,"14a"]], ["CHAR",["Sz(8)","Sz8G1-Ar14bB0",0,3,"14b"]], ["CHAR",["Sz(8)","Sz8G1-Ar65aB0",0,8,"65a"]], ["CHAR",["Sz(8)","Sz8G1-Ar65bB0",0,9,"65b"]], ["CHAR",["Sz(8)","Sz8G1-Ar65cB0",0,10,"65c"]], ["CHAR",["Sz(8)","Sz8G1-Zr64B0",0,7,"64a"]], ["CHAR",["Sz(8)","Sz8G1-Zr91B0",0,11,"91a"]], ["CHAR",["Sz(8)","Sz8G1-f125r65aB0",5,8,"65a"]], ["CHAR",["Sz(8)","Sz8G1-f125r65bB0",5,10,"65c"]], ["CHAR",["Sz(8)","Sz8G1-f125r65cB0",5,9,"65b"]], ["CHAR",["Sz(8)","Sz8G1-f13r14aB0",13,2,"14a"]], ["CHAR",["Sz(8)","Sz8G1-f13r14bB0",13,3,"14b"]], ["CHAR",["Sz(8)","Sz8G1-f13r35B0",13,4,"35a"]], ["CHAR",["Sz(8)","Sz8G1-f13r65aB0",13,5,"65a"]], ["CHAR",["Sz(8)","Sz8G1-f13r65bB0",13,6,"65b"]], ["CHAR",["Sz(8)","Sz8G1-f13r65cB0",13,7,"65c"]], ["CHAR",["Sz(8)","Sz8G1-f13r91B0",13,8,"91a"]], ["CHAR",["Sz(8)","Sz8G1-f2r64B0",2,8,"64a"]], ["CHAR",["Sz(8)","Sz8G1-f49r14aB0",7,2,"14a"]], ["CHAR",["Sz(8)","Sz8G1-f5r14aB0",5,2,"14a"]], ["CHAR",["Sz(8)","Sz8G1-f5r14bB0",5,3,"14b"]], ["CHAR",["Sz(8)","Sz8G1-f5r195B0",5,[8,9,10],"65abc"]], ["CHAR",["Sz(8)","Sz8G1-f5r35aB0",5,4,"35a"]], ["CHAR",["Sz(8)","Sz8G1-f5r35bB0",5,5,"35b"]], ["CHAR",["Sz(8)","Sz8G1-f5r35cB0",5,6,"35c"]], ["CHAR",["Sz(8)","Sz8G1-f5r63B0",5,7,"63a"]], ["CHAR",["Sz(8)","Sz8G1-f7r105B0",7,[4,5,6],"35abc"]], ["CHAR",["Sz(8)","Sz8G1-f7r64B0",7,7,"64a"]], ["CHAR",["Sz(8)","Sz8G1-f7r91B0",7,8,"91a"]], ["CHAR",["Sz(8)","Sz8G1-f8r16aB0",2,5,"16a"]], ["CHAR",["Sz(8)","Sz8G1-f8r4aB0",2,2,"4a"]], ["CHAR",["Sz(8)","Sz8G1-p1456B0",0,[1,[4,2],[5,2],[6,2],[7,3],[8,4],[9,4],[10,4],[11,3]],"1a+35a^2b^2c^2+64a^3+65a^4b^4c^4+91a^3"]], ["CHAR",["Sz(8)","Sz8G1-p2080B0",0,[1,[4,4],[5,4],[6,4],[7,5],[8,5],[9,5],[10,5],[11,4]],"1a+35a^4b^4c^4+64a^5+65a^5b^5c^5+91a^4"]], ["CHAR",["Sz(8)","Sz8G1-p520B0",0,[1,4,5,6,[7,2],8,9,10,11],"1a+35abc+64a^2+65abc+91a"]], ["CHAR",["Sz(8)","Sz8G1-p560B0",0,[1,4,5,6,7,[8,2],[9,2],[10,2]],"1a+35abc+64a+65a^2b^2c^2"]], ["CHAR",["Sz(8)","Sz8G1-p65B0",0,[1,7],"1a+64a"]], ["CHAR",["Sz(8).3","Sz8d3G1-f13r14B0",13,4]], ["CHAR",["Sz(8).3","Sz8d3G1-f2r12B0",2,4]], ["CHAR",["Sz(8).3","Sz8d3G1-f2r48B0",2,5]], ["CHAR",["Sz(8).3","Sz8d3G1-f2r64B0",2,6]], ["CHAR",["Sz(8).3","Sz8d3G1-f49r14B0",7,4]], ["CHAR",["Sz(8).3","Sz8d3G1-f5r105B0",5,10]], ["CHAR",["Sz(8).3","Sz8d3G1-f5r14B0",5,4]], ["CHAR",["Sz(8).3","Sz8d3G1-f5r195B0",5,14]], ["CHAR",["Sz(8).3","Sz8d3G1-f5r63B0",5,11]], ["CHAR",["Sz(8).3","Sz8d3G1-p1456B0",0,[1,[10,2],11,12,13,[14,4],15,16,17]]], ["CHAR",["Sz(8).3","Sz8d3G1-p2080B0",0,[1,[10,4],[11,3],12,13,[14,5],[15,2],16,17]]], ["CHAR",["Sz(8).3","Sz8d3G1-p520B0",0,[1,10,[11,2],14,15]]], ["CHAR",["Sz(8).3","Sz8d3G1-p560B0",0,[1,10,11,[14,2]]]], ["CHAR",["Sz(8).3","Sz8d3G1-p65B0",0,[1,11]]], ["CHAR",["Th","ThG1-f13r248B0",13,2,"248a"]], ["CHAR",["U3(11)","U311G1-Zr111aB0",0,3,"111a"]], ["CHAR",["U3(11)","U311G1-f11r8B0",11,2,"8a"]], ["CHAR",["U3(11)","U311G1-f2r110B0",2,2,"110a"]], ["CHAR",["U3(11)","U311G1-p1332B0",0,[1,18],"1a+1331a"]], ["CHAR",["U3(3)","U33G1-Zr14aB0",0,6,"14a"]], ["CHAR",["U3(3)","U33G1-Zr21aB0",0,7,"21a"]], ["CHAR",["U3(3)","U33G1-Zr27B0",0,10,"27a"]], ["CHAR",["U3(3)","U33G1-Zr7aB0",0,3,"7a"]], ["CHAR",["U3(3)","U33G1-f2r14B0",2,3,"14a"]], ["CHAR",["U3(3)","U33G1-f2r6B0",2,2,"6a"]], ["CHAR",["U3(3)","U33G1-f3r27B0",3,9,"27a"]], ["CHAR",["U3(3)","U33G1-f3r7B0",3,6,"7a"]], ["CHAR",["U3(3)","U33G1-f7r14B0",7,6,"14a"]], ["CHAR",["U3(3)","U33G1-f7r21aB0",7,7,"21a"]], ["CHAR",["U3(3)","U33G1-f7r26B0",7,10,"26a"]], ["CHAR",["U3(3)","U33G1-f7r6B0",7,2,"6a"]], ["CHAR",["U3(3)","U33G1-f7r7aB0",7,3,"7a"]], ["CHAR",["U3(4)","U34G1-Zr64B0",0,13,"64a"]], ["CHAR",["U3(4)","U34G1-Zr65aB0",0,14,"65a"]], ["CHAR",["U3(4)","U34G1-f13r12B0",13,2,"12a"]], ["CHAR",["U3(4)","U34G1-f13r208B0",13,[9,10,11,12],"52abcd"]], ["CHAR",["U3(4)","U34G1-f13r260B0",13,[15,16,17,18],"65bcde"]], ["CHAR",["U3(4)","U34G1-f13r52eB0",13,[3,4,5,6],"13abcd"]], ["CHAR",["U3(4)","U34G1-f13r63B0",13,13,"63a"]], ["CHAR",["U3(4)","U34G1-f13r65aB0",13,14,"65a"]], ["CHAR",["U3(4)","U34G1-f13r78B0",13,[7,8],"39ab"]], ["CHAR",["U3(4)","U34G1-f2r12B0",2,[2,3,4,5],"3abcd"]], ["CHAR",["U3(4)","U34G1-f2r16B0",2,[6,7],"8ab"]], ["CHAR",["U3(4)","U34G1-f2r36B0",2,[8,9,10,11],"9abcd"]], ["CHAR",["U3(4)","U34G1-f2r64B0",2,16,"64a"]], ["CHAR",["U3(4)","U34G1-f2r96B0",2,[12,13,14,15],"24abcd"]], ["CHAR",["U3(4)","U34G1-f3r12B0",3,2,"12a"]], ["CHAR",["U3(4)","U34G1-f3r208B0",3,[9,10,11,12],"52abcd"]], ["CHAR",["U3(4)","U34G1-f3r52eB0",3,[3,4,5,6],"13abcd"]], ["CHAR",["U3(4)","U34G1-f3r64B0",3,13,"64a"]], ["CHAR",["U3(4)","U34G1-f3r78B0",3,[7,8],"39ab"]], ["CHAR",["U3(4)","U34G1-f5r12B0",5,2,"12a"]], ["CHAR",["U3(4)","U34G1-f5r300B0",5,[5,6,7,8],"75abcd"]], ["CHAR",["U3(4)","U34G1-f5r39B0",5,3,"39a"]], ["CHAR",["U3(4)","U34G1-f5r65B0",5,4,"65a"]], ["CHAR",["U3(4).4","U34d4G1-f13r78aB0",13,10,"78a"]], ["CHAR",["U3(4).4","U34d4G1-f3r78aB0",3,10,"78a"]], ["CHAR",["U3(5)","U35G1-Zr105B0",0,8,"105a"]], ["CHAR",["U3(5)","U35G1-Zr125B0",0,9,"125a"]], ["CHAR",["U3(5)","U35G1-Zr126aB0",0,10,"126a"]], ["CHAR",["U3(5)","U35G1-Zr21B0",0,3,"21a"]], ["CHAR",["U3(5)","U35G1-Zr84B0",0,7,"84a"]], ["CHAR",["U3(7)","U37G1-Zr43aB0",0,3,"43a"]], ["CHAR",["U3(7)","U37G1-f2r258B0",2,3,"258a"]], ["CHAR",["U3(7)","U37G1-f2r344B0",2,4,"344a"]], ["CHAR",["U3(7)","U37G1-f2r42B0",2,2,"42a"]], ["CHAR",["U3(7)","U37G1-f3r42B0",3,2,"42a"]], ["CHAR",["U3(7)","U37G1-f3r43aB0",3,3,"43a"]], ["CHAR",["U3(7)","U37G1-f43r42B0",43,2,"42a"]], ["CHAR",["U3(7)","U37G1-f43r43aB0",43,3,"43a"]], ["CHAR",["U3(7)","U37G1-f7r12B0",7,[4,5],"6ab"]], ["CHAR",["U3(7)","U37G1-f7r20B0",7,[7,8],"10ab"]], ["CHAR",["U3(7)","U37G1-f7r27B0",7,17,"27a"]], ["CHAR",["U3(7)","U37G1-f7r30aB0",7,[9,10],"15ab"]], ["CHAR",["U3(7)","U37G1-f7r30bB0",7,[11,12],"15cd"]], ["CHAR",["U3(7)","U37G1-f7r37B0",7,26,"37a"]], ["CHAR",["U3(7)","U37G1-f7r42cB0",7,[13,14],"21ab"]], ["CHAR",["U3(7)","U37G1-f7r48B0",7,[15,16],"24ab"]], ["CHAR",["U3(7)","U37G1-f7r6cB0",7,[2,3],"3ab"]], ["CHAR",["U3(7)","U37G1-f7r8B0",7,6,"8a"]], ["CHAR",["U3(8)","U38G1-f3r56B0",3,2,"56a"]], ["CHAR",["U3(9)","U39G1-Zr73aB0",0,3,"73a"]], ["CHAR",["U4(2)","U42G1-Ar10B0",0,5,"10a"]], ["CHAR",["U4(2)","U42G1-Ar10aB0",0,5,"10a"]], ["CHAR",["U4(2)","U42G1-Ar10bB0",0,6,"10b"]], ["CHAR",["U4(2)","U42G1-Ar30bB0",0,12,"30b"]], ["CHAR",["U4(2)","U42G1-Ar30cB0",0,13,"30c"]], ["CHAR",["U4(2)","U42G1-Ar40aB0",0,14,"40a"]], ["CHAR",["U4(2)","U42G1-Ar40bB0",0,15,"40b"]], ["CHAR",["U4(2)","U42G1-Ar45aB0",0,16,"45a"]], ["CHAR",["U4(2)","U42G1-Ar45bB0",0,17,"45b"]], ["CHAR",["U4(2)","U42G1-Ar5aB0",0,2,"5a"]], ["CHAR",["U4(2)","U42G1-Ar5bB0",0,3,"5b"]], ["CHAR",["U4(2)","U42G1-Zr15aB0",0,7,"15a"]], ["CHAR",["U4(2)","U42G1-Zr15bB0",0,8,"15b"]], ["CHAR",["U4(2)","U42G1-Zr20B0",0,9,"20a"]], ["CHAR",["U4(2)","U42G1-Zr24B0",0,10,"24a"]], ["CHAR",["U4(2)","U42G1-Zr30aB0",0,11,"30a"]], ["CHAR",["U4(2)","U42G1-Zr60B0",0,18,"60a"]], ["CHAR",["U4(2)","U42G1-Zr64B0",0,19,"64a"]], ["CHAR",["U4(2)","U42G1-Zr6B0",0,4,"6a"]], ["CHAR",["U4(2)","U42G1-Zr80B0",0,[14,15],"40ab"]], ["CHAR",["U4(2)","U42G1-Zr81B0",0,20,"81a"]], ["CHAR",["U4(2)","U42G1-f25r10bB0",5,6,"10b"]], ["CHAR",["U4(2)","U42G1-f25r5aB0",5,2,"5a"]], ["CHAR",["U4(2)","U42G1-f3r10B0",3,3,"10a"]], ["CHAR",["U4(2)","U42G1-f3r14B0",3,4,"14a"]], ["CHAR",["U4(2)","U42G1-f3r25B0",3,5,"25a"]], ["CHAR",["U4(2)","U42G1-f3r5B0",3,2,"5a"]], ["CHAR",["U4(2)","U42G1-f3r81B0",3,6,"81a"]], ["CHAR",["U4(2)","U42G1-f4r4aB0",2,2,"4a"]], ["CHAR",["U4(2)","U42G1-f5r6B0",5,4,"6a"]], ["CHAR",["U4(2)","U42G1-p27B0",0,[1,4,9],"1a+6a+20a"]], ["CHAR",["U4(2)","U42G1-p36B0",0,[1,8,9],"1a+15b+20a"]], ["CHAR",["U4(2)","U42G1-p40aB0",0,[1,7,10],"1a+15a+24a"]], ["CHAR",["U4(2)","U42G1-p40bB0",0,[1,8,10],"1a+15b+24a"]], ["CHAR",["U4(2)","U42G1-p45B0",0,[1,9,10],"1a+20a+24a"]], ["CHAR",["U4(2).2","U42d2G1-f2r14B0",2,4]], ["CHAR",["U4(2).2","U42d2G1-f2r40B0",2,5]], ["CHAR",["U4(2).2","U42d2G1-f2r64B0",2,6]], ["CHAR",["U4(2).2","U42d2G1-f2r6B0",2,3]], ["CHAR",["U4(2).2","U42d2G1-f2r8B0",2,2]], ["CHAR",["U4(2).2","U42d2G1-f3r5B0",3,3]], ["CHAR",["U4(2).2","U42d2G1-p27B0",0,[1,4,11]]], ["CHAR",["U4(2).2","U42d2G1-p36B0",0,[1,9,11]]], ["CHAR",["U4(2).2","U42d2G1-p40aB0",0,[1,8,13]]], ["CHAR",["U4(2).2","U42d2G1-p40bB0",0,[1,9,13]]], ["CHAR",["U4(2).2","U42d2G1-p45B0",0,[1,11,13]]], ["CHAR",["U4(3)","U43G1-Zr140B0",0,6,"140a"]], ["CHAR",["U4(3)","U43G1-Zr189B0",0,7,"189a"]], ["CHAR",["U4(3)","U43G1-Zr210B0",0,8,"210a"]], ["CHAR",["U4(3)","U43G1-Zr21B0",0,2,"21a"]], ["CHAR",["U4(3)","U43G1-Zr90B0",0,5,"90a"]], ["CHAR",["U5(2)","U52G1-Ar66aB0",0,9,"66a"]], ["CHAR",["U5(2)","U52G1-Ar66bB0",0,10,"66b"]], ["CHAR",["U5(2)","U52G1-Zr120B0",0,16,"120a"]], ["CHAR",["U5(2)","U52G1-Zr165B0",0,17,"165a"]], ["CHAR",["U5(2)","U52G1-Zr176B0",0,18,"176a"]], ["CHAR",["U5(2)","U52G1-Zr55B0",0,6,"55a"]], ["CHAR",["U5(2)","U52G1-f11r119B0",11,16,"119a"]], ["CHAR",["U5(2)","U52G1-f11r176B0",11,18,"176a"]], ["CHAR",["U5(2)","U52G1-f11r44B0",11,5,"44a"]], ["CHAR",["U5(2)","U52G1-f2r24B0",2,6,"24a"]], ["CHAR",["U5(2)","U52G1-f2r74B0",2,11,"74a"]], ["CHAR",["U5(2)","U52G1-f3r100B0",3,5,"100a"]], ["CHAR",["U5(2)","U52G1-f3r10B0",3,2,"10a"]], ["CHAR",["U5(2)","U52G1-f3r110B0",3,6,"110a"]], ["CHAR",["U5(2)","U52G1-f3r44B0",3,3,"44a"]], ["CHAR",["U5(2)","U52G1-f3r55B0",3,4,"55a"]], ["CHAR",["U5(2)","U52G1-f4r10aB0",2,4,"10a"]], ["CHAR",["U5(2)","U52G1-f4r10bB0",2,5,"10b"]], ["CHAR",["U5(2)","U52G1-f4r5aB0",2,2,"5a"]], ["CHAR",["U5(2)","U52G1-f4r5bB0",2,3,"5b"]], ["CHAR",["U5(2)","U52G1-f5r120B0",5,16,"120a"]], ["CHAR",["U5(2)","U52G1-f5r176B0",5,18,"176a"]], ["CHAR",["U5(2)","U52G1-f5r43B0",5,5,"43a"]], ["CHAR",["U5(2)","U52G1-f5r55aB0",5,6,"55a"]], ["CHAR",["U5(2)","U52G1-p1408B0",0,[1,6,9,10,16,28,35],"1a+55a+66ab+120a+440a+660a"]], ["CHAR",["U5(2)","U52G1-p165B0",0,[1,5,16],"1a+44a+120a"]], ["CHAR",["U5(2)","U52G1-p176B0",0,[1,6,16],"1a+55a+120a"]], ["CHAR",["U5(2)","U52G1-p20736B0",0,[1,3,4,6,[9,2],[10,2],14,15,16,[18,3],[21,2],[22,2],28,29,30,[31,2],[32,2],[35,3],36,37,[38,2],[39,2],[43,2],[44,2],[45,2],46,47],"1a+11ab+55a+66a^2b^2+110de+120a+176a^3+220c^2d^2+440abc+495a^2b^2+660a^3+704ab+880a^2b^2+990a^2b^2+1024a^2+1215ab"]], ["CHAR",["U5(2)","U52G1-p297B0",0,[1,16,18],"1a+120a+176a"]], ["CHAR",["U5(2)","U52G1-p3520B0",0,[1,5,6,[16,2],17,28,35,40,45],"1a+44a+55a+120a^2+165a+440a+660a+891a+1024a"]], ["CHAR",["U5(2).2","U52d2G1-f2r1024B0",2,10]], ["CHAR",["U5(2).2","U52d2G1-f2r10B0",2,2]], ["CHAR",["U5(2).2","U52d2G1-f2r20B0",2,3]], ["CHAR",["U5(2).2","U52d2G1-f2r24B0",2,4]], ["CHAR",["U5(2).2","U52d2G1-f2r320B0",2,8]], ["CHAR",["U5(2).2","U52d2G1-f2r560B0",2,9]], ["CHAR",["U5(2).2","U52d2G1-f2r74B0",2,7]], ["CHAR",["U5(2).2","U52d2G1-f2r80aB0",2,5]], ["CHAR",["U5(2).2","U52d2G1-f2r80bB0",2,6]], ["CHAR",["U5(2).2","U52d2G1-f3r10aB0",3,4]], ["CHAR",["U5(2).2","U52d2G1-p1408B0",0,[1,8,11,16,28,33]]], ["CHAR",["U5(2).2","U52d2G1-p165B0",0,[1,6,16]]], ["CHAR",["U5(2).2","U52d2G1-p176B0",0,[1,8,16]]], ["CHAR",["U5(2).2","U52d2G1-p20736B0",0,[1,5,8,[11,2],15,16,[20,2],21,[23,2],28,30,[31,2],[33,2],34,35,[36,2],[40,2],[41,2],43]]], ["CHAR",["U5(2).2","U52d2G1-p297B0",0,[1,16,20]]], ["CHAR",["U5(2).2","U52d2G1-p3520B0",0,[1,6,8,[16,2],18,28,33,37,41]]] ] } atlasrep-2.1.8/atlasprm_SHA.json0000644000175000017500000512677614545506176014735 0ustar samsam{ "ID":"core", "Version":"2023-12-22", "DataURL":"http://atlas.math.rwth-aachen.de/Atlas/", "SelfURL":"https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/atlasprm_SHA.json", "Data":[ ["GNAN",["(13:6xL3(3)).2","Mmax35"]], ["GNAN",["(2^2x3).U6(2)","12U62"]], ["GNAN",["(3^2:2xO8+(3)).S4","Mmax13"]], ["GNAN",["(5^2:[2^4]xU3(5)).S3","Mmax25"]], ["GNAN",["(7:3xHe):2","Mmax17"]], ["GNAN",["(7^2:(3x2A4)xL2(7)).2","Mmax34"]], ["GNAN",["(A5xA12):2","Mmax18"]], ["GNAN",["(A5xU3(8):3):2","Mmax21"]], ["GNAN",["(A6xA6xA6).(2xS4)","Mmax20"]], ["GNAN",["(A7x(A5xA5).4).2","Mmax27"]], ["GNAN",["(D10xHN).2","Mmax12"]], ["GNAN",["(L2(11)xL2(11)):4","Mmax32"]], ["GNAN",["(L2(11)xM12):2","Mmax26"]], ["GNAN",["(L3(2)xS4(4):2).2","Mmax23"]], ["GNAN",["(S5xS5xS5):S3","Mmax31"]], ["GNAN",["11^2:(5x2A5)","Mmax39"]], ["GNAN",["12.M22","12M22"]], ["GNAN",["12.M22.2","12M22d2"]], ["GNAN",["12_1.L3(4)","12aL34"]], ["GNAN",["12_1.L3(4).2_1","12aL34d2a"]], ["GNAN",["12_2.L3(4)","12bL34"]], ["GNAN",["12_2.L3(4).2_1","12bL34d2a"]], ["GNAN",["13^(1+2):(3x4S4)","Mmax36"]], ["GNAN",["13^2:2.L2(13).4","Mmax33"]], ["GNAN",["2.(2xF4(2)).2","2F42d4i"]], ["GNAN",["2.2E6(2)","2TE62"]], ["GNAN",["2.2E6(2).2","2TE62d2"]], ["GNAN",["2.A10","2A10"]], ["GNAN",["2.A10.2","2S10"]], ["GNAN",["2.A11","2A11"]], ["GNAN",["2.A11.2","2S11"]], ["GNAN",["2.A12","2A12"]], ["GNAN",["2.A12.2","2S12"]], ["GNAN",["2.A13","2A13"]], ["GNAN",["2.A13.2","2S13"]], ["GNAN",["2.A14","2A14"]], ["GNAN",["2.A14.2","2S14"]], ["GNAN",["2.A5","2A5"]], ["GNAN",["2.A5.2","2S5"]], ["GNAN",["2.A6","2A6"]], ["GNAN",["2.A6.2_1","2S6"]], ["GNAN",["2.A7","2A7"]], ["GNAN",["2.A7.2","2S7"]], ["GNAN",["2.A8","2A8"]], ["GNAN",["2.A8.2","2S8"]], ["GNAN",["2.A9","2A9"]], ["GNAN",["2.A9.2","2S9"]], ["GNAN",["2.B","2B"]], ["GNAN",["2.Co1","2Co1"]], ["GNAN",["2.F4(2)","2F42"]], ["GNAN",["2.F4(2).2","2F42d2"]], ["GNAN",["2.Fi22","2F22"]], ["GNAN",["2.Fi22.2","2F22d2"]], ["GNAN",["2.G2(4)","2G24"]], ["GNAN",["2.G2(4).2","2G24d2"]], ["GNAN",["2.HS","2HS"]], ["GNAN",["2.HS.2","2HSd2"]], ["GNAN",["2.J2","2J2"]], ["GNAN",["2.J2.2","2J2d2"]], ["GNAN",["2.L2(101)","2L2101"]], ["GNAN",["2.L2(103)","2L2103"]], ["GNAN",["2.L2(107)","2L2107"]], ["GNAN",["2.L2(109)","2L2109"]], ["GNAN",["2.L2(11)","2L211"]], ["GNAN",["2.L2(113)","2L2113"]], ["GNAN",["2.L2(127)","2L2127"]], ["GNAN",["2.L2(13)","2L213"]], ["GNAN",["2.L2(13).2","2L213d2"]], ["GNAN",["2.L2(131)","2L2131"]], ["GNAN",["2.L2(137)","2L2137"]], ["GNAN",["2.L2(139)","2L2139"]], ["GNAN",["2.L2(149)","2L2149"]], ["GNAN",["2.L2(151)","2L2151"]], ["GNAN",["2.L2(157)","2L2157"]], ["GNAN",["2.L2(163)","2L2163"]], ["GNAN",["2.L2(167)","2L2167"]], ["GNAN",["2.L2(17)","2L217"]], ["GNAN",["2.L2(17).2","2L217d2"]], ["GNAN",["2.L2(173)","2L2173"]], ["GNAN",["2.L2(179)","2L2179"]], ["GNAN",["2.L2(181)","2L2181"]], ["GNAN",["2.L2(19)","2L219"]], ["GNAN",["2.L2(191)","2L2191"]], ["GNAN",["2.L2(193)","2L2193"]], ["GNAN",["2.L2(197)","2L2197"]], ["GNAN",["2.L2(199)","2L2199"]], ["GNAN",["2.L2(211)","2L2211"]], ["GNAN",["2.L2(223)","2L2223"]], ["GNAN",["2.L2(227)","2L2227"]], ["GNAN",["2.L2(229)","2L2229"]], ["GNAN",["2.L2(23)","2L223"]], ["GNAN",["2.L2(233)","2L2233"]], ["GNAN",["2.L2(239)","2L2239"]], ["GNAN",["2.L2(241)","2L2241"]], ["GNAN",["2.L2(25)","2L225"]], ["GNAN",["2.L2(27)","2L227"]], ["GNAN",["2.L2(29)","2L229"]], ["GNAN",["2.L2(31)","2L231"]], ["GNAN",["2.L2(37)","2L237"]], ["GNAN",["2.L2(41)","2L241"]], ["GNAN",["2.L2(43)","2L243"]], ["GNAN",["2.L2(47)","2L247"]], ["GNAN",["2.L2(49)","2L249"]], ["GNAN",["2.L2(53)","2L253"]], ["GNAN",["2.L2(59)","2L259"]], ["GNAN",["2.L2(61)","2L261"]], ["GNAN",["2.L2(67)","2L267"]], ["GNAN",["2.L2(71)","2L271"]], ["GNAN",["2.L2(73)","2L273"]], ["GNAN",["2.L2(79)","2L279"]], ["GNAN",["2.L2(83)","2L283"]], ["GNAN",["2.L2(89)","2L289"]], ["GNAN",["2.L2(97)","2L297"]], ["GNAN",["2.L3(2)","2L27"]], ["GNAN",["2.L3(2).2","2L27d2"]], ["GNAN",["2.L3(4)","2L34"]], ["GNAN",["2.L3(4).2_1","2L34d2a"]], ["GNAN",["2.M12","2M12"]], ["GNAN",["2.M12.2","2M12d2"]], ["GNAN",["2.M22","2M22"]], ["GNAN",["2.M22.2","2M22d2"]], ["GNAN",["2.O7(3)","2O73"]], ["GNAN",["2.O7(3).2","2O73d2"]], ["GNAN",["2.O8+(2)","2O8p2"]], ["GNAN",["2.O8+(2).2","2O8p2d2"]], ["GNAN",["2.O8+(3)","2O8p3"]], ["GNAN",["2.O8-(3)","2O8m3"]], ["GNAN",["2.O8-(3).2_1","2O8m3d2a"]], ["GNAN",["2.O9(3)","2O93"]], ["GNAN",["2.O9(3).2","2O93d2"]], ["GNAN",["2.Ru","2Ru"]], ["GNAN",["2.S4(11)","2S411"]], ["GNAN",["2.S4(13)","2S413"]], ["GNAN",["2.S4(17)","2S417"]], ["GNAN",["2.S4(19)","2S419"]], ["GNAN",["2.S4(5)","2S45"]], ["GNAN",["2.S4(7)","2S47"]], ["GNAN",["2.S4(7).2","2S47d2"]], ["GNAN",["2.S4(9)","2S49"]], ["GNAN",["2.S6(2)","2S62"]], ["GNAN",["2.S6(3)","2S63"]], ["GNAN",["2.S6(3).2","2S63d2"]], ["GNAN",["2.Suz","2Suz"]], ["GNAN",["2.Suz.2","2Suzd2"]], ["GNAN",["2.Sz(8)","2Sz8"]], ["GNAN",["2.U4(2)","2U42"]], ["GNAN",["2.U4(2).2","2U42d2"]], ["GNAN",["2.U4(3).D8","2U43D8"]], ["GNAN",["2.U6(2)","2U62"]], ["GNAN",["2.U6(2).2","2U62d2"]], ["GNAN",["2E6(2)","TE62"]], ["GNAN",["2E6(2).2","TE62d2"]], ["GNAN",["2E6(2).3","TE62d3"]], ["GNAN",["2E6(2).S3","TE62S3"]], ["GNAN",["2F4(2)'","TF42"]], ["GNAN",["2F4(2)'.2","TF42d2"]], ["GNAN",["2^(1+24).Co1","Mmax2"]], ["GNAN",["2^(10+16).O10+(2)","Mmax5"]], ["GNAN",["2^(2+11+22).(M24xS3)","Mmax6"]], ["GNAN",["2^(5+10+20).(S3xL5(2))","Mmax8"]], ["GNAN",["2^14.U7(2)","214U72"]], ["GNAN",["2^2.2E6(2)","4TE62"]], ["GNAN",["2^2.2E6(2).S3","Mmax4"]], ["GNAN",["2^2.L3(4)","4L34"]], ["GNAN",["2^2.L3(4).2_2","4L34d2b"]], ["GNAN",["2^2.O8+(3).S4","4O8p3S4"]], ["GNAN",["2^2.Sz(8)","4Sz8"]], ["GNAN",["2^2.Sz(8).3","4Sz8d3"]], ["GNAN",["2^2.U6(2)","4U62"]], ["GNAN",["2^4.A8","24A8"]], ["GNAN",["2^5.L5(2)","25L52"]], ["GNAN",["2^[39].(L3(2)x3.S6)","Mmax10"]], ["GNAN",["2aM20","2aM20"]], ["GNAN",["2bM20","2bM20"]], ["GNAN",["2cM20","2cM20"]], ["GNAN",["3.2E6(2)","3TE62"]], ["GNAN",["3.2E6(2).2","3TE62d2"]], ["GNAN",["3.2E6(2).3","3TE62d3"]], ["GNAN",["3.2E6(2).S3","3TE62S3"]], ["GNAN",["3.A6","3A6"]], ["GNAN",["3.A6.2_1","3S6"]], ["GNAN",["3.A7","3A7"]], ["GNAN",["3.A7.2","3S7"]], ["GNAN",["3.E6(4)","3E64"]], ["GNAN",["3.E6(4).2","3E64d2"]], ["GNAN",["3.Fi22","3F22"]], ["GNAN",["3.Fi22.2","3F22d2"]], ["GNAN",["3.Fi24'","3F24"]], ["GNAN",["3.Fi24'.2","3F24d2"]], ["GNAN",["3.G2(3)","3G23"]], ["GNAN",["3.G2(3).2","3G23d2"]], ["GNAN",["3.J3","3J3"]], ["GNAN",["3.J3.2","3J3d2"]], ["GNAN",["3.L3(4)","3L34"]], ["GNAN",["3.L3(4).2_1","3L34d2a"]], ["GNAN",["3.L3(7)","3L37"]], ["GNAN",["3.L3(7).2","3L37d2"]], ["GNAN",["3.M22","3M22"]], ["GNAN",["3.M22.2","3M22d2"]], ["GNAN",["3.McL","3McL"]], ["GNAN",["3.McL.2","3McLd2"]], ["GNAN",["3.O7(3)","3O73"]], ["GNAN",["3.O7(3).2","3O73d2"]], ["GNAN",["3.ON","3ON"]], ["GNAN",["3.ON.2","3ONd2"]], ["GNAN",["3.Suz","3Suz"]], ["GNAN",["3.Suz.2","3Suzd2"]], ["GNAN",["3.U3(11)","3U311"]], ["GNAN",["3.U3(11).2","3U311d2"]], ["GNAN",["3.U3(8)","3U38"]], ["GNAN",["3.U6(2)","3U62"]], ["GNAN",["3D4(2)","TD42"]], ["GNAN",["3D4(2).3","TD42d3"]], ["GNAN",["3D4(3)","TD43"]], ["GNAN",["3^(1+12):2.Suz.2","Mmax7"]], ["GNAN",["3^(1+12):6.Suz.2","M3max7"]], ["GNAN",["3^(2+5+10).(M11x2S4)","Mmax14"]], ["GNAN",["3^(2+6+6):(L3(3)xSD16)","Mmax15q1"]], ["GNAN",["3^(3+2+6+6):(L3(3)xSD16)","Mmax15"]], ["GNAN",["3^(6+6):(L3(3)xSD16)","Mmax15q2"]], ["GNAN",["3^2.U4(3).D8","9U43D8"]], ["GNAN",["3^6:(L3(3)xSD16)","Mmax15q3"]], ["GNAN",["3^8.O8-(3).2_3","Mmax11"]], ["GNAN",["4.M22","4M22"]], ["GNAN",["4.M22.2","4M22d2"]], ["GNAN",["41:40","Mmax43"]], ["GNAN",["4_1.L3(4)","4aL34"]], ["GNAN",["4_1.L3(4).2_1","4aL34d2a"]], ["GNAN",["4_2.2^4:A5","4bM20"]], ["GNAN",["4_2.L3(4)","4bL34"]], ["GNAN",["4_2.L3(4).2_1","4bL34d2a"]], ["GNAN",["5^(1+6):2.J2.4","Mmax16"]], ["GNAN",["5^(2+2+4):(S3xGL2(5))","Mmax22"]], ["GNAN",["5^(3+3).(2xL3(5))","Mmax19"]], ["GNAN",["5^3.L3(5)","53L35"]], ["GNAN",["5^4:(3x2.L2(25)).2","Mmax28"]], ["GNAN",["6.A6","6A6"]], ["GNAN",["6.A6.2_1","6S6"]], ["GNAN",["6.A7","6A7"]], ["GNAN",["6.A7.2","6S7"]], ["GNAN",["6.Fi22","6F22"]], ["GNAN",["6.Fi22.2","6F22d2"]], ["GNAN",["6.L3(4)","6L34"]], ["GNAN",["6.L3(4).2_1","6L34d2a"]], ["GNAN",["6.M22","6M22"]], ["GNAN",["6.M22.2","6M22d2"]], ["GNAN",["6.O7(3)","6O73"]], ["GNAN",["6.O7(3).2","6O73d2"]], ["GNAN",["6.Suz","6Suz"]], ["GNAN",["6.Suz.2","6Suzd2"]], ["GNAN",["6.U6(2)","6U62"]], ["GNAN",["7^(1+4):(3x2.S7)","Mmax24"]], ["GNAN",["7^(2+1+2):GL2(7)","Mmax29"]], ["GNAN",["7^2:2.L2(7)","Mmax41"]], ["GNAN",["A10","A10"]], ["GNAN",["A10.2","S10"]], ["GNAN",["A11","A11"]], ["GNAN",["A11.2","S11"]], ["GNAN",["A12","A12"]], ["GNAN",["A12.2","S12"]], ["GNAN",["A13","A13"]], ["GNAN",["A13.2","S13"]], ["GNAN",["A14","A14"]], ["GNAN",["A14.2","S14"]], ["GNAN",["A15","A15"]], ["GNAN",["A15.2","S15"]], ["GNAN",["A16","A16"]], ["GNAN",["A16.2","S16"]], ["GNAN",["A17","A17"]], ["GNAN",["A17.2","S17"]], ["GNAN",["A18","A18"]], ["GNAN",["A18.2","S18"]], ["GNAN",["A19","A19"]], ["GNAN",["A19.2","S19"]], ["GNAN",["A20","A20"]], ["GNAN",["A20.2","S20"]], ["GNAN",["A21","A21"]], ["GNAN",["A21.2","S21"]], ["GNAN",["A22","A22"]], ["GNAN",["A22.2","S22"]], ["GNAN",["A23","A23"]], ["GNAN",["A23.2","S23"]], ["GNAN",["A5","A5"]], ["GNAN",["A5.2","S5"]], ["GNAN",["A6","A6"]], ["GNAN",["A6.2^2","A6V4"]], ["GNAN",["A6.2_1","S6"]], ["GNAN",["A6.2_2","PGL29"]], ["GNAN",["A6.2_3","M10"]], ["GNAN",["A7","A7"]], ["GNAN",["A7.2","S7"]], ["GNAN",["A8","A8"]], ["GNAN",["A8.2","S8"]], ["GNAN",["A9","A9"]], ["GNAN",["A9.2","S9"]], ["GNAN",["B","B"]], ["GNAN",["Co1","Co1"]], ["GNAN",["Co2","Co2"]], ["GNAN",["Co3","Co3"]], ["GNAN",["E6(2)","E62"]], ["GNAN",["E6(4)","E64"]], ["GNAN",["E6(4).2","E64d2"]], ["GNAN",["E7(2)","E72"]], ["GNAN",["E7(4)","E74"]], ["GNAN",["E8(2)","E82"]], ["GNAN",["E8(5)","E85"]], ["GNAN",["F4(2)","F42"]], ["GNAN",["F4(2).2","F42d2"]], ["GNAN",["Fi22","F22"]], ["GNAN",["Fi22.2","F22d2"]], ["GNAN",["Fi23","F23"]], ["GNAN",["Fi24'","F24"]], ["GNAN",["Fi24'.2","F24d2"]], ["GNAN",["G2(3)","G23"]], ["GNAN",["G2(3).2","G23d2"]], ["GNAN",["G2(4)","G24"]], ["GNAN",["G2(4).2","G24d2"]], ["GNAN",["G2(5)","G25"]], ["GNAN",["HN","HN"]], ["GNAN",["HN.2","HNd2"]], ["GNAN",["HS","HS"]], ["GNAN",["HS.2","HSd2"]], ["GNAN",["He","He"]], ["GNAN",["He.2","Hed2"]], ["GNAN",["Isoclinic(12.M22.2)","12M22d2i"]], ["GNAN",["Isoclinic(2.A14.2)","2S14i"]], ["GNAN",["Isoclinic(2.A5.2)","2S5i"]], ["GNAN",["Isoclinic(2.A7.2)","2S7i"]], ["GNAN",["Isoclinic(2.A8.2)","2S8i"]], ["GNAN",["Isoclinic(2.Fi22.2)","2F22d2i"]], ["GNAN",["Isoclinic(2.G2(4).2)","2G24d2i"]], ["GNAN",["Isoclinic(2.HS.2)","2HSd2i"]], ["GNAN",["Isoclinic(2.J2.2)","2J2d2i"]], ["GNAN",["Isoclinic(2.L2(19).2)","2L219d2i"]], ["GNAN",["Isoclinic(2.L2(23).2)","2L223d2i"]], ["GNAN",["Isoclinic(2.L3(2).2)","2L27d2i"]], ["GNAN",["Isoclinic(2.M12.2)","2M12d2i"]], ["GNAN",["Isoclinic(2.M22.2)","2M22d2i"]], ["GNAN",["Isoclinic(2.O7(3).2)","2O73d2i"]], ["GNAN",["Isoclinic(2.Suz.2)","2Suzd2i"]], ["GNAN",["Isoclinic(4.M22.2)","4M22d2i"]], ["GNAN",["Isoclinic(6.Fi22.2)","6F22d2i"]], ["GNAN",["Isoclinic(6.M22.2)","6M22d2i"]], ["GNAN",["Isoclinic(6.Suz.2)","6Suzd2i"]], ["GNAN",["J1","J1"]], ["GNAN",["J2","J2"]], ["GNAN",["J2.2","J2d2"]], ["GNAN",["J3","J3"]], ["GNAN",["J3.2","J3d2"]], ["GNAN",["J4","J4"]], ["GNAN",["L2(101)","L2101"]], ["GNAN",["L2(103)","L2103"]], ["GNAN",["L2(107)","L2107"]], ["GNAN",["L2(109)","L2109"]], ["GNAN",["L2(11)","L211"]], ["GNAN",["L2(11).2","L211d2"]], ["GNAN",["L2(113)","L2113"]], ["GNAN",["L2(127)","L2127"]], ["GNAN",["L2(128)","L2128"]], ["GNAN",["L2(13)","L213"]], ["GNAN",["L2(13).2","L213d2"]], ["GNAN",["L2(131)","L2131"]], ["GNAN",["L2(137)","L2137"]], ["GNAN",["L2(139)","L2139"]], ["GNAN",["L2(149)","L2149"]], ["GNAN",["L2(151)","L2151"]], ["GNAN",["L2(157)","L2157"]], ["GNAN",["L2(16)","L216"]], ["GNAN",["L2(16).2","L216d2"]], ["GNAN",["L2(16).4","L216d4"]], ["GNAN",["L2(163)","L2163"]], ["GNAN",["L2(167)","L2167"]], ["GNAN",["L2(17)","L217"]], ["GNAN",["L2(17).2","L217d2"]], ["GNAN",["L2(173)","L2173"]], ["GNAN",["L2(179)","L2179"]], ["GNAN",["L2(181)","L2181"]], ["GNAN",["L2(19)","L219"]], ["GNAN",["L2(19).2","L219d2"]], ["GNAN",["L2(191)","L2191"]], ["GNAN",["L2(193)","L2193"]], ["GNAN",["L2(197)","L2197"]], ["GNAN",["L2(199)","L2199"]], ["GNAN",["L2(211)","L2211"]], ["GNAN",["L2(223)","L2223"]], ["GNAN",["L2(227)","L2227"]], ["GNAN",["L2(229)","L2229"]], ["GNAN",["L2(23)","L223"]], ["GNAN",["L2(23).2","L223d2"]], ["GNAN",["L2(233)","L2233"]], ["GNAN",["L2(239)","L2239"]], ["GNAN",["L2(241)","L2241"]], ["GNAN",["L2(25)","L225"]], ["GNAN",["L2(25).2_1","L225d21"]], ["GNAN",["L2(25).2_2","L225d22"]], ["GNAN",["L2(25).2_3","L225d23"]], ["GNAN",["L2(27)","L227"]], ["GNAN",["L2(27).2","L227d2"]], ["GNAN",["L2(27).3","L227d3"]], ["GNAN",["L2(27).6","L227d6"]], ["GNAN",["L2(29)","L229"]], ["GNAN",["L2(29).2","L229d2"]], ["GNAN",["L2(31)","L231"]], ["GNAN",["L2(31).2","L231d2"]], ["GNAN",["L2(32)","L232"]], ["GNAN",["L2(32).5","L232d5"]], ["GNAN",["L2(37)","L237"]], ["GNAN",["L2(41)","L241"]], ["GNAN",["L2(43)","L243"]], ["GNAN",["L2(47)","L247"]], ["GNAN",["L2(49)","L249"]], ["GNAN",["L2(53)","L253"]], ["GNAN",["L2(59)","L259"]], ["GNAN",["L2(61)","L261"]], ["GNAN",["L2(64)","L264"]], ["GNAN",["L2(67)","L267"]], ["GNAN",["L2(71)","L271"]], ["GNAN",["L2(73)","L273"]], ["GNAN",["L2(79)","L279"]], ["GNAN",["L2(8)","L28"]], ["GNAN",["L2(8).3","L28d3"]], ["GNAN",["L2(81)","L281"]], ["GNAN",["L2(83)","L283"]], ["GNAN",["L2(89)","L289"]], ["GNAN",["L2(97)","L297"]], ["GNAN",["L3(11)","L311"]], ["GNAN",["L3(13)","L313"]], ["GNAN",["L3(2)","L27"]], ["GNAN",["L3(2).2","L27d2"]], ["GNAN",["L3(3)","L33"]], ["GNAN",["L3(3).2","L33d2"]], ["GNAN",["L3(4)","L34"]], ["GNAN",["L3(4).2^2","L34V4"]], ["GNAN",["L3(4).2_1","L34d2a"]], ["GNAN",["L3(4).2_2","L34d2b"]], ["GNAN",["L3(4).2_3","L34d2c"]], ["GNAN",["L3(4).3","L34d3"]], ["GNAN",["L3(4).6","L34d6"]], ["GNAN",["L3(4).D12","L34D12"]], ["GNAN",["L3(5)","L35"]], ["GNAN",["L3(5).2","L35d2"]], ["GNAN",["L3(7)","L37"]], ["GNAN",["L3(7).2","L37d2"]], ["GNAN",["L3(7).3","L37d3"]], ["GNAN",["L3(8)","L38"]], ["GNAN",["L3(8).2","L38d2"]], ["GNAN",["L3(8).3","L38d3"]], ["GNAN",["L3(8).6","L38d6"]], ["GNAN",["L3(9)","L39"]], ["GNAN",["L3(9).2_1","L39d21"]], ["GNAN",["L3(9).2_2","L39d22"]], ["GNAN",["L3(9).2_3","L39d23"]], ["GNAN",["L4(3)","L43"]], ["GNAN",["L4(3).2_1","L43d21"]], ["GNAN",["L4(3).2_2","L43d22"]], ["GNAN",["L4(3).2_3","L43d23"]], ["GNAN",["L4(4)","L44"]], ["GNAN",["L4(5)","L45"]], ["GNAN",["L5(2)","L52"]], ["GNAN",["L5(2).2","L52d2"]], ["GNAN",["L5(3)","L53"]], ["GNAN",["L6(2)","L62"]], ["GNAN",["L6(2).2","L62d2"]], ["GNAN",["L7(2)","L72"]], ["GNAN",["L7(2).2","L72d2"]], ["GNAN",["Ly","Ly"]], ["GNAN",["M","M"]], ["GNAN",["M11","M11"]], ["GNAN",["M11xA6.2^2","Mmax30"]], ["GNAN",["M12","M12"]], ["GNAN",["M12.2","M12d2"]], ["GNAN",["M20","M20"]], ["GNAN",["M22","M22"]], ["GNAN",["M22.2","M22d2"]], ["GNAN",["M23","M23"]], ["GNAN",["M24","M24"]], ["GNAN",["McL","McL"]], ["GNAN",["McL.2","McLd2"]], ["GNAN",["O10+(2)","O10p2"]], ["GNAN",["O10+(2).2","O10p2d2"]], ["GNAN",["O10-(2)","O10m2"]], ["GNAN",["O10-(2).2","O10m2d2"]], ["GNAN",["O7(3)","O73"]], ["GNAN",["O7(3).2","O73d2"]], ["GNAN",["O8+(2)","O8p2"]], ["GNAN",["O8+(2).2","O8p2d2"]], ["GNAN",["O8+(2).3","O8p2d3"]], ["GNAN",["O8+(3)","O8p3"]], ["GNAN",["O8+(3).S4","O8p3S4"]], ["GNAN",["O8-(2)","O8m2"]], ["GNAN",["O8-(2).2","O8m2d2"]], ["GNAN",["O8-(3)","O8m3"]], ["GNAN",["O8-(3).2^2","O8m3V4"]], ["GNAN",["O8-(3).2_1","O8m3d2a"]], ["GNAN",["O8-(3).2_2","O8m3d2b"]], ["GNAN",["O8-(3).2_3","O8m3d2c"]], ["GNAN",["O8-(3).D8","O8m3D8"]], ["GNAN",["O9(3)","O93"]], ["GNAN",["O9(3).2","O93d2"]], ["GNAN",["ON","ON"]], ["GNAN",["ON.2","ONd2"]], ["GNAN",["ON.4","ONd4"]], ["GNAN",["R(27)","R27"]], ["GNAN",["R(27).3","R27d3"]], ["GNAN",["Ru","Ru"]], ["GNAN",["S10(2)","S102"]], ["GNAN",["S3xTh","Mmax9"]], ["GNAN",["S4(11)","S411"]], ["GNAN",["S4(13)","S413"]], ["GNAN",["S4(17)","S417"]], ["GNAN",["S4(19)","S419"]], ["GNAN",["S4(4)","S44"]], ["GNAN",["S4(4).2","S44d2"]], ["GNAN",["S4(4).4","S44d4"]], ["GNAN",["S4(5)","S45"]], ["GNAN",["S4(5).2","S45d2"]], ["GNAN",["S4(7)","S47"]], ["GNAN",["S4(7).2","S47d2"]], ["GNAN",["S4(9)","S49"]], ["GNAN",["S6(2)","S62"]], ["GNAN",["S6(3)","S63"]], ["GNAN",["S6(3).2","S63d2"]], ["GNAN",["S6(5)","S65"]], ["GNAN",["S8(2)","S82"]], ["GNAN",["S8(3)","S83"]], ["GNAN",["Suz","Suz"]], ["GNAN",["Suz.2","Suzd2"]], ["GNAN",["Sz(32)","Sz32"]], ["GNAN",["Sz(32).5","Sz32d5"]], ["GNAN",["Sz(8)","Sz8"]], ["GNAN",["Sz(8).3","Sz8d3"]], ["GNAN",["Th","Th"]], ["GNAN",["U3(11)","U311"]], ["GNAN",["U3(11).2","U311d2"]], ["GNAN",["U3(13)","U313"]], ["GNAN",["U3(16)","U316"]], ["GNAN",["U3(3)","U33"]], ["GNAN",["U3(3).2","U33d2"]], ["GNAN",["U3(4)","U34"]], ["GNAN",["U3(4).2","U34d2"]], ["GNAN",["U3(4).4","U34d4"]], ["GNAN",["U3(5)","U35"]], ["GNAN",["U3(5).2","U35d2"]], ["GNAN",["U3(5).3","U35d3"]], ["GNAN",["U3(7)","U37"]], ["GNAN",["U3(8)","U38"]], ["GNAN",["U3(8).(S3x3)","U38S3x3"]], ["GNAN",["U3(8).2","U38d2"]], ["GNAN",["U3(8).3^2","U38E9"]], ["GNAN",["U3(8).3_1","U38d3a"]], ["GNAN",["U3(8).3_2","U38d3b"]], ["GNAN",["U3(8).3_3","U38d3c"]], ["GNAN",["U3(8).6","U38d6"]], ["GNAN",["U3(8).S3","U38S3"]], ["GNAN",["U3(9)","U39"]], ["GNAN",["U4(2)","U42"]], ["GNAN",["U4(2).2","U42d2"]], ["GNAN",["U4(3)","U43"]], ["GNAN",["U4(3).2_1","U43d21"]], ["GNAN",["U4(3).2_2","U43d22"]], ["GNAN",["U4(3).2_3","U43d23"]], ["GNAN",["U4(3).4","U43d4"]], ["GNAN",["U4(3).D8","U43D8"]], ["GNAN",["U4(4)","U44"]], ["GNAN",["U4(5)","U45"]], ["GNAN",["U5(2)","U52"]], ["GNAN",["U5(2).2","U52d2"]], ["GNAN",["U5(3)","U53"]], ["GNAN",["U5(4)","U54"]], ["GNAN",["U6(2)","U62"]], ["GNAN",["U6(2).2","U62d2"]], ["GNAN",["U6(2).3","U62d3"]], ["GNAN",["U6(2).S3","U62S3"]], ["GNAN",["U6(3)","U63"]], ["GNAN",["U7(2)","U72"]], ["GNAN",["U8(2)","U82"]], ["GNAN",["W(F4)","WF4"]], ["GRS",["(13:6xL3(3)).2",876096]], ["GRS",["(2^2x3).U6(2)",110361968640]], ["GRS",["(3^2:2xO8+(3)).S4",2139341679820800]], ["GRS",["(5^2:[2^4]xU3(5)).S3",302400000]], ["GRS",["(7:3xHe):2",169276262400]], ["GRS",["(7^2:(3x2A4)xL2(7)).2",1185408]], ["GRS",["(A5xA12):2",28740096000]], ["GRS",["(A5xU3(8):3):2",1985679360]], ["GRS",["(A6xA6xA6).(2xS4)",2239488000]], ["GRS",["(A7x(A5xA5).4).2",72576000]], ["GRS",["(D10xHN).2",5460618240000000]], ["GRS",["(L2(11)xL2(11)):4",1742400]], ["GRS",["(L2(11)xM12):2",125452800]], ["GRS",["(L3(2)xS4(4):2).2",658022400]], ["GRS",["(S5xS5xS5):S3",10368000]], ["GRS",["11^2:(5x2A5)",72600]], ["GRS",["12.M22",5322240]], ["GRS",["12.M22.2",10644480]], ["GRS",["12_1.L3(4)",241920]], ["GRS",["12_1.L3(4).2_1",483840]], ["GRS",["12_2.L3(4)",241920]], ["GRS",["12_2.L3(4).2_1",483840]], ["GRS",["13^(1+2):(3x4S4)",632736]], ["GRS",["13^2:2.L2(13).4",1476384]], ["GRS",["2.(2xF4(2)).2",26489012826931200]], ["GRS",["2.2E6(2)",153064959367549707878400]], ["GRS",["2.2E6(2).2",306129918735099415756800]], ["GRS",["2.A10",3628800]], ["GRS",["2.A10.2",7257600]], ["GRS",["2.A11",39916800]], ["GRS",["2.A11.2",79833600]], ["GRS",["2.A12",479001600]], ["GRS",["2.A12.2",958003200]], ["GRS",["2.A13",6227020800]], ["GRS",["2.A13.2",12454041600]], ["GRS",["2.A14",87178291200]], ["GRS",["2.A14.2",174356582400]], ["GRS",["2.A5",120]], ["GRS",["2.A5.2",240]], ["GRS",["2.A6",720]], ["GRS",["2.A6.2_1",1440]], ["GRS",["2.A7",5040]], ["GRS",["2.A7.2",10080]], ["GRS",["2.A8",40320]], ["GRS",["2.A8.2",80640]], ["GRS",["2.A9",362880]], ["GRS",["2.A9.2",725760]], ["GRS",["2.B",8309562962452852382355161088000000]], ["GRS",["2.Co1",8315553613086720000]], ["GRS",["2.F4(2)",6622253206732800]], ["GRS",["2.F4(2).2",13244506413465600]], ["GRS",["2.Fi22",129123503308800]], ["GRS",["2.Fi22.2",258247006617600]], ["GRS",["2.G2(4)",503193600]], ["GRS",["2.G2(4).2",1006387200]], ["GRS",["2.HS",88704000]], ["GRS",["2.HS.2",177408000]], ["GRS",["2.J2",1209600]], ["GRS",["2.J2.2",2419200]], ["GRS",["2.L2(101)",1030200]], ["GRS",["2.L2(103)",1092624]], ["GRS",["2.L2(107)",1224936]], ["GRS",["2.L2(109)",1294920]], ["GRS",["2.L2(11)",1320]], ["GRS",["2.L2(113)",1442784]], ["GRS",["2.L2(127)",2048256]], ["GRS",["2.L2(13)",2184]], ["GRS",["2.L2(13).2",4368]], ["GRS",["2.L2(131)",2247960]], ["GRS",["2.L2(137)",2571216]], ["GRS",["2.L2(139)",2685480]], ["GRS",["2.L2(149)",3307800]], ["GRS",["2.L2(151)",3442800]], ["GRS",["2.L2(157)",3869736]], ["GRS",["2.L2(163)",4330584]], ["GRS",["2.L2(167)",4657296]], ["GRS",["2.L2(17)",4896]], ["GRS",["2.L2(17).2",9792]], ["GRS",["2.L2(173)",5177544]], ["GRS",["2.L2(179)",5735160]], ["GRS",["2.L2(181)",5929560]], ["GRS",["2.L2(19)",6840]], ["GRS",["2.L2(191)",6967680]], ["GRS",["2.L2(193)",7188864]], ["GRS",["2.L2(197)",7645176]], ["GRS",["2.L2(199)",7880400]], ["GRS",["2.L2(211)",9393720]], ["GRS",["2.L2(223)",11089344]], ["GRS",["2.L2(227)",11696856]], ["GRS",["2.L2(229)",12008760]], ["GRS",["2.L2(23)",12144]], ["GRS",["2.L2(233)",12649104]], ["GRS",["2.L2(239)",13651680]], ["GRS",["2.L2(241)",13997280]], ["GRS",["2.L2(25)",15600]], ["GRS",["2.L2(27)",19656]], ["GRS",["2.L2(29)",24360]], ["GRS",["2.L2(31)",29760]], ["GRS",["2.L2(37)",50616]], ["GRS",["2.L2(41)",68880]], ["GRS",["2.L2(43)",79464]], ["GRS",["2.L2(47)",103776]], ["GRS",["2.L2(49)",117600]], ["GRS",["2.L2(53)",148824]], ["GRS",["2.L2(59)",205320]], ["GRS",["2.L2(61)",226920]], ["GRS",["2.L2(67)",300696]], ["GRS",["2.L2(71)",357840]], ["GRS",["2.L2(73)",388944]], ["GRS",["2.L2(79)",492960]], ["GRS",["2.L2(83)",571704]], ["GRS",["2.L2(89)",704880]], ["GRS",["2.L2(97)",912576]], ["GRS",["2.L3(2)",336]], ["GRS",["2.L3(2).2",672]], ["GRS",["2.L3(4)",40320]], ["GRS",["2.L3(4).2_1",80640]], ["GRS",["2.M12",190080]], ["GRS",["2.M12.2",380160]], ["GRS",["2.M22",887040]], ["GRS",["2.M22.2",1774080]], ["GRS",["2.O7(3)",9170703360]], ["GRS",["2.O7(3).2",18341406720]], ["GRS",["2.O8+(2)",348364800]], ["GRS",["2.O8+(2).2",696729600]], ["GRS",["2.O8+(3)",9904359628800]], ["GRS",["2.O8-(3)",20303937239040]], ["GRS",["2.O8-(3).2_1",40607874478080]], ["GRS",["2.O9(3)",131569513308979200]], ["GRS",["2.O9(3).2",263139026617958400]], ["GRS",["2.Ru",291852288000]], ["GRS",["2.S4(11)",25721308800]], ["GRS",["2.S4(13)",137037962880]], ["GRS",["2.S4(17)",2008994088960]], ["GRS",["2.S4(19)",6114035779200]], ["GRS",["2.S4(5)",9360000]], ["GRS",["2.S4(7)",276595200]], ["GRS",["2.S4(7).2",553190400]], ["GRS",["2.S4(9)",3443212800]], ["GRS",["2.S6(2)",2903040]], ["GRS",["2.S6(3)",9170703360]], ["GRS",["2.S6(3).2",18341406720]], ["GRS",["2.Suz",896690995200]], ["GRS",["2.Suz.2",1793381990400]], ["GRS",["2.Sz(8)",58240]], ["GRS",["2.U4(2)",51840]], ["GRS",["2.U4(2).2",103680]], ["GRS",["2.U4(3).D8",52254720]], ["GRS",["2.U6(2)",18393661440]], ["GRS",["2.U6(2).2",36787322880]], ["GRS",["2E6(2)",76532479683774853939200]], ["GRS",["2E6(2).2",153064959367549707878400]], ["GRS",["2E6(2).3",229597439051324561817600]], ["GRS",["2E6(2).S3",459194878102649123635200]], ["GRS",["2F4(2)'",17971200]], ["GRS",["2F4(2)'.2",35942400]], ["GRS",["2^(1+24).Co1",139511839126336328171520000]], ["GRS",["2^(10+16).O10+(2)",1577011055923770163200]], ["GRS",["2^(2+11+22).(M24xS3)",50472333605150392320]], ["GRS",["2^(5+10+20).(S3xL5(2))",2061452360684666880]], ["GRS",["2^14.U7(2)",3732063900024176640]], ["GRS",["2^2.2E6(2)",306129918735099415756800]], ["GRS",["2^2.2E6(2).S3",1836779512410596494540800]], ["GRS",["2^2.L3(4)",80640]], ["GRS",["2^2.L3(4).2_2",161280]], ["GRS",["2^2.O8+(3).S4",475409262182400]], ["GRS",["2^2.Sz(8)",116480]], ["GRS",["2^2.Sz(8).3",349440]], ["GRS",["2^2.U6(2)",36787322880]], ["GRS",["2^4.A8",322560]], ["GRS",["2^5.L5(2)",319979520]], ["GRS",["2^[39].(L3(2)x3.S6)",199495389743677440]], ["GRS",["2aM20",1920]], ["GRS",["2bM20",1920]], ["GRS",["2cM20",1920]], ["GRS",["3.2E6(2)",229597439051324561817600]], ["GRS",["3.2E6(2).2",459194878102649123635200]], ["GRS",["3.2E6(2).3",688792317153973685452800]], ["GRS",["3.2E6(2).S3",1377584634307947370905600]], ["GRS",["3.A6",1080]], ["GRS",["3.A6.2_1",2160]], ["GRS",["3.A7",7560]], ["GRS",["3.A7.2",15120]], ["GRS",["3.E6(4)",85528710781342640103833619055142765466746880000]], ["GRS",["3.E6(4).2",171057421562685280207667238110285530933493760000]], ["GRS",["3.Fi22",193685254963200]], ["GRS",["3.Fi22.2",387370509926400]], ["GRS",["3.Fi24'",3765617127571985163878400]], ["GRS",["3.Fi24'.2",7531234255143970327756800]], ["GRS",["3.G2(3)",12737088]], ["GRS",["3.G2(3).2",25474176]], ["GRS",["3.J3",150698880]], ["GRS",["3.J3.2",301397760]], ["GRS",["3.L3(4)",60480]], ["GRS",["3.L3(4).2_1",120960]], ["GRS",["3.L3(7)",5630688]], ["GRS",["3.L3(7).2",11261376]], ["GRS",["3.M22",1330560]], ["GRS",["3.M22.2",2661120]], ["GRS",["3.McL",2694384000]], ["GRS",["3.McL.2",5388768000]], ["GRS",["3.O7(3)",13756055040]], ["GRS",["3.O7(3).2",27512110080]], ["GRS",["3.ON",1382446517760]], ["GRS",["3.ON.2",2764893035520]], ["GRS",["3.Suz",1345036492800]], ["GRS",["3.Suz.2",2690072985600]], ["GRS",["3.U3(11)",212747040]], ["GRS",["3.U3(11).2",425494080]], ["GRS",["3.U3(8)",16547328]], ["GRS",["3.U6(2)",27590492160]], ["GRS",["3D4(2)",211341312]], ["GRS",["3D4(2).3",634023936]], ["GRS",["3D4(3)",20560831566912]], ["GRS",["3^(1+12):2.Suz.2",2859230155080499200]], ["GRS",["3^(1+12):6.Suz.2",8577690465241497600]], ["GRS",["3^(2+5+10).(M11x2S4)",49093924366080]], ["GRS",["3^(2+6+6):(L3(3)xSD16)",429778462464]], ["GRS",["3^(3+2+6+6):(L3(3)xSD16)",11604018486528]], ["GRS",["3^(6+6):(L3(3)xSD16)",47753162496]], ["GRS",["3^2.U4(3).D8",235146240]], ["GRS",["3^6:(L3(3)xSD16)",65505024]], ["GRS",["3^8.O8-(3).2_3",133214132225341440]], ["GRS",["4.M22",1774080]], ["GRS",["4.M22.2",3548160]], ["GRS",["41:40",1640]], ["GRS",["4_1.L3(4)",80640]], ["GRS",["4_1.L3(4).2_1",161280]], ["GRS",["4_2.2^4:A5",3840]], ["GRS",["4_2.L3(4)",80640]], ["GRS",["4_2.L3(4).2_1",161280]], ["GRS",["5^(1+6):2.J2.4",378000000000]], ["GRS",["5^(2+2+4):(S3xGL2(5))",1125000000]], ["GRS",["5^(3+3).(2xL3(5))",11625000000]], ["GRS",["5^3.L3(5)",46500000]], ["GRS",["5^4:(3x2.L2(25)).2",58500000]], ["GRS",["6.A6",2160]], ["GRS",["6.A6.2_1",4320]], ["GRS",["6.A7",15120]], ["GRS",["6.A7.2",30240]], ["GRS",["6.Fi22",387370509926400]], ["GRS",["6.Fi22.2",774741019852800]], ["GRS",["6.L3(4)",120960]], ["GRS",["6.L3(4).2_1",241920]], ["GRS",["6.M22",2661120]], ["GRS",["6.M22.2",5322240]], ["GRS",["6.O7(3)",27512110080]], ["GRS",["6.O7(3).2",55024220160]], ["GRS",["6.Suz",2690072985600]], ["GRS",["6.Suz.2",5380145971200]], ["GRS",["6.U6(2)",55180984320]], ["GRS",["7^(1+4):(3x2.S7)",508243680]], ["GRS",["7^(2+1+2):GL2(7)",33882912]], ["GRS",["7^2:2.L2(7)",16464]], ["GRS",["A10",1814400]], ["GRS",["A10.2",3628800]], ["GRS",["A11",19958400]], ["GRS",["A11.2",39916800]], ["GRS",["A12",239500800]], ["GRS",["A12.2",479001600]], ["GRS",["A13",3113510400]], ["GRS",["A13.2",6227020800]], ["GRS",["A14",43589145600]], ["GRS",["A14.2",87178291200]], ["GRS",["A15",653837184000]], ["GRS",["A15.2",1307674368000]], ["GRS",["A16",10461394944000]], ["GRS",["A16.2",20922789888000]], ["GRS",["A17",177843714048000]], ["GRS",["A17.2",355687428096000]], ["GRS",["A18",3201186852864000]], ["GRS",["A18.2",6402373705728000]], ["GRS",["A19",60822550204416000]], ["GRS",["A19.2",121645100408832000]], ["GRS",["A20",1216451004088320000]], ["GRS",["A20.2",2432902008176640000]], ["GRS",["A21",25545471085854720000]], ["GRS",["A21.2",51090942171709440000]], ["GRS",["A22",562000363888803840000]], ["GRS",["A22.2",1124000727777607680000]], ["GRS",["A23",12926008369442488320000]], ["GRS",["A23.2",25852016738884976640000]], ["GRS",["A5",60]], ["GRS",["A5.2",120]], ["GRS",["A6",360]], ["GRS",["A6.2^2",1440]], ["GRS",["A6.2_1",720]], ["GRS",["A6.2_2",720]], ["GRS",["A6.2_3",720]], ["GRS",["A7",2520]], ["GRS",["A7.2",5040]], ["GRS",["A8",20160]], ["GRS",["A8.2",40320]], ["GRS",["A9",181440]], ["GRS",["A9.2",362880]], ["GRS",["B",4154781481226426191177580544000000]], ["GRS",["Co1",4157776806543360000]], ["GRS",["Co2",42305421312000]], ["GRS",["Co3",495766656000]], ["GRS",["E6(2)",214841575522005575270400]], ["GRS",["E6(4)",28509570260447546701277873018380921822248960000]], ["GRS",["E6(4).2",57019140520895093402555746036761843644497920000]], ["GRS",["E7(2)",7997476042075799759100487262680802918400]], ["GRS",["E7(4)",111131458114940385379597233477884941280664199527155056307251745263504588800000000]], ["GRS",["E8(2)",337804753143634806261388190614085595079991692242467651576160959909068800000]], ["GRS",["E8(5)",212241934165081789939135106539938909320143178249948373703932419194549992287718687106371625640393677463164945340423628294956870377063751220703125000000000000000000000000000000]], ["GRS",["F4(2)",3311126603366400]], ["GRS",["F4(2).2",6622253206732800]], ["GRS",["Fi22",64561751654400]], ["GRS",["Fi22.2",129123503308800]], ["GRS",["Fi23",4089470473293004800]], ["GRS",["Fi24'",1255205709190661721292800]], ["GRS",["Fi24'.2",2510411418381323442585600]], ["GRS",["G2(3)",4245696]], ["GRS",["G2(3).2",8491392]], ["GRS",["G2(4)",251596800]], ["GRS",["G2(4).2",503193600]], ["GRS",["G2(5)",5859000000]], ["GRS",["HN",273030912000000]], ["GRS",["HN.2",546061824000000]], ["GRS",["HS",44352000]], ["GRS",["HS.2",88704000]], ["GRS",["He",4030387200]], ["GRS",["He.2",8060774400]], ["GRS",["Isoclinic(12.M22.2)",10644480]], ["GRS",["Isoclinic(2.A14.2)",174356582400]], ["GRS",["Isoclinic(2.A5.2)",240]], ["GRS",["Isoclinic(2.A7.2)",10080]], ["GRS",["Isoclinic(2.A8.2)",80640]], ["GRS",["Isoclinic(2.Fi22.2)",258247006617600]], ["GRS",["Isoclinic(2.G2(4).2)",1006387200]], ["GRS",["Isoclinic(2.HS.2)",177408000]], ["GRS",["Isoclinic(2.J2.2)",2419200]], ["GRS",["Isoclinic(2.L2(19).2)",13680]], ["GRS",["Isoclinic(2.L2(23).2)",24288]], ["GRS",["Isoclinic(2.L3(2).2)",672]], ["GRS",["Isoclinic(2.M12.2)",380160]], ["GRS",["Isoclinic(2.M22.2)",1774080]], ["GRS",["Isoclinic(2.O7(3).2)",18341406720]], ["GRS",["Isoclinic(2.Suz.2)",1793381990400]], ["GRS",["Isoclinic(4.M22.2)",3548160]], ["GRS",["Isoclinic(6.Fi22.2)",774741019852800]], ["GRS",["Isoclinic(6.M22.2)",5322240]], ["GRS",["Isoclinic(6.Suz.2)",5380145971200]], ["GRS",["J1",175560]], ["GRS",["J2",604800]], ["GRS",["J2.2",1209600]], ["GRS",["J3",50232960]], ["GRS",["J3.2",100465920]], ["GRS",["J4",86775571046077562880]], ["GRS",["L2(101)",515100]], ["GRS",["L2(103)",546312]], ["GRS",["L2(107)",612468]], ["GRS",["L2(109)",647460]], ["GRS",["L2(11)",660]], ["GRS",["L2(11).2",1320]], ["GRS",["L2(113)",721392]], ["GRS",["L2(127)",1024128]], ["GRS",["L2(128)",2097024]], ["GRS",["L2(13)",1092]], ["GRS",["L2(13).2",2184]], ["GRS",["L2(131)",1123980]], ["GRS",["L2(137)",1285608]], ["GRS",["L2(139)",1342740]], ["GRS",["L2(149)",1653900]], ["GRS",["L2(151)",1721400]], ["GRS",["L2(157)",1934868]], ["GRS",["L2(16)",4080]], ["GRS",["L2(16).2",8160]], ["GRS",["L2(16).4",16320]], ["GRS",["L2(163)",2165292]], ["GRS",["L2(167)",2328648]], ["GRS",["L2(17)",2448]], ["GRS",["L2(17).2",4896]], ["GRS",["L2(173)",2588772]], ["GRS",["L2(179)",2867580]], ["GRS",["L2(181)",2964780]], ["GRS",["L2(19)",3420]], ["GRS",["L2(19).2",6840]], ["GRS",["L2(191)",3483840]], ["GRS",["L2(193)",3594432]], ["GRS",["L2(197)",3822588]], ["GRS",["L2(199)",3940200]], ["GRS",["L2(211)",4696860]], ["GRS",["L2(223)",5544672]], ["GRS",["L2(227)",5848428]], ["GRS",["L2(229)",6004380]], ["GRS",["L2(23)",6072]], ["GRS",["L2(23).2",12144]], ["GRS",["L2(233)",6324552]], ["GRS",["L2(239)",6825840]], ["GRS",["L2(241)",6998640]], ["GRS",["L2(25)",7800]], ["GRS",["L2(25).2_1",15600]], ["GRS",["L2(25).2_2",15600]], ["GRS",["L2(25).2_3",15600]], ["GRS",["L2(27)",9828]], ["GRS",["L2(27).2",19656]], ["GRS",["L2(27).3",29484]], ["GRS",["L2(27).6",58968]], ["GRS",["L2(29)",12180]], ["GRS",["L2(29).2",24360]], ["GRS",["L2(31)",14880]], ["GRS",["L2(31).2",29760]], ["GRS",["L2(32)",32736]], ["GRS",["L2(32).5",163680]], ["GRS",["L2(37)",25308]], ["GRS",["L2(41)",34440]], ["GRS",["L2(43)",39732]], ["GRS",["L2(47)",51888]], ["GRS",["L2(49)",58800]], ["GRS",["L2(53)",74412]], ["GRS",["L2(59)",102660]], ["GRS",["L2(61)",113460]], ["GRS",["L2(64)",262080]], ["GRS",["L2(67)",150348]], ["GRS",["L2(71)",178920]], ["GRS",["L2(73)",194472]], ["GRS",["L2(79)",246480]], ["GRS",["L2(8)",504]], ["GRS",["L2(8).3",1512]], ["GRS",["L2(81)",265680]], ["GRS",["L2(83)",285852]], ["GRS",["L2(89)",352440]], ["GRS",["L2(97)",456288]], ["GRS",["L3(11)",212427600]], ["GRS",["L3(13)",270178272]], ["GRS",["L3(2)",168]], ["GRS",["L3(2).2",336]], ["GRS",["L3(3)",5616]], ["GRS",["L3(3).2",11232]], ["GRS",["L3(4)",20160]], ["GRS",["L3(4).2^2",80640]], ["GRS",["L3(4).2_1",40320]], ["GRS",["L3(4).2_2",40320]], ["GRS",["L3(4).2_3",40320]], ["GRS",["L3(4).3",60480]], ["GRS",["L3(4).6",120960]], ["GRS",["L3(4).D12",241920]], ["GRS",["L3(5)",372000]], ["GRS",["L3(5).2",744000]], ["GRS",["L3(7)",1876896]], ["GRS",["L3(7).2",3753792]], ["GRS",["L3(7).3",5630688]], ["GRS",["L3(8)",16482816]], ["GRS",["L3(8).2",32965632]], ["GRS",["L3(8).3",49448448]], ["GRS",["L3(8).6",98896896]], ["GRS",["L3(9)",42456960]], ["GRS",["L3(9).2_1",84913920]], ["GRS",["L3(9).2_2",84913920]], ["GRS",["L3(9).2_3",84913920]], ["GRS",["L4(3)",6065280]], ["GRS",["L4(3).2_1",12130560]], ["GRS",["L4(3).2_2",12130560]], ["GRS",["L4(3).2_3",12130560]], ["GRS",["L4(4)",987033600]], ["GRS",["L4(5)",7254000000]], ["GRS",["L5(2)",9999360]], ["GRS",["L5(2).2",19998720]], ["GRS",["L5(3)",237783237120]], ["GRS",["L6(2)",20158709760]], ["GRS",["L6(2).2",40317419520]], ["GRS",["L7(2)",163849992929280]], ["GRS",["L7(2).2",327699985858560]], ["GRS",["Ly",51765179004000000]], ["GRS",["M",808017424794512875886459904961710757005754368000000000]], ["GRS",["M11",7920]], ["GRS",["M11xA6.2^2",11404800]], ["GRS",["M12",95040]], ["GRS",["M12.2",190080]], ["GRS",["M20",960]], ["GRS",["M22",443520]], ["GRS",["M22.2",887040]], ["GRS",["M23",10200960]], ["GRS",["M24",244823040]], ["GRS",["McL",898128000]], ["GRS",["McL.2",1796256000]], ["GRS",["O10+(2)",23499295948800]], ["GRS",["O10+(2).2",46998591897600]], ["GRS",["O10-(2)",25015379558400]], ["GRS",["O10-(2).2",50030759116800]], ["GRS",["O7(3)",4585351680]], ["GRS",["O7(3).2",9170703360]], ["GRS",["O8+(2)",174182400]], ["GRS",["O8+(2).2",348364800]], ["GRS",["O8+(2).3",522547200]], ["GRS",["O8+(3)",4952179814400]], ["GRS",["O8+(3).S4",118852315545600]], ["GRS",["O8-(2)",197406720]], ["GRS",["O8-(2).2",394813440]], ["GRS",["O8-(3)",10151968619520]], ["GRS",["O8-(3).2^2",40607874478080]], ["GRS",["O8-(3).2_1",20303937239040]], ["GRS",["O8-(3).2_2",20303937239040]], ["GRS",["O8-(3).2_3",20303937239040]], ["GRS",["O8-(3).D8",81215748956160]], ["GRS",["O9(3)",65784756654489600]], ["GRS",["O9(3).2",131569513308979200]], ["GRS",["ON",460815505920]], ["GRS",["ON.2",921631011840]], ["GRS",["ON.4",1843262023680]], ["GRS",["R(27)",10073444472]], ["GRS",["R(27).3",30220333416]], ["GRS",["Ru",145926144000]], ["GRS",["S10(2)",24815256521932800]], ["GRS",["S3xTh",544475663327232000]], ["GRS",["S4(11)",12860654400]], ["GRS",["S4(13)",68518981440]], ["GRS",["S4(17)",1004497044480]], ["GRS",["S4(19)",3057017889600]], ["GRS",["S4(4)",979200]], ["GRS",["S4(4).2",1958400]], ["GRS",["S4(4).4",3916800]], ["GRS",["S4(5)",4680000]], ["GRS",["S4(5).2",9360000]], ["GRS",["S4(7)",138297600]], ["GRS",["S4(7).2",276595200]], ["GRS",["S4(9)",1721606400]], ["GRS",["S6(2)",1451520]], ["GRS",["S6(3)",4585351680]], ["GRS",["S6(3).2",9170703360]], ["GRS",["S6(5)",228501000000000]], ["GRS",["S8(2)",47377612800]], ["GRS",["S8(3)",65784756654489600]], ["GRS",["Suz",448345497600]], ["GRS",["Suz.2",896690995200]], ["GRS",["Sz(32)",32537600]], ["GRS",["Sz(32).5",162688000]], ["GRS",["Sz(8)",29120]], ["GRS",["Sz(8).3",87360]], ["GRS",["Th",90745943887872000]], ["GRS",["U3(11)",70915680]], ["GRS",["U3(11).2",141831360]], ["GRS",["U3(13)",811273008]], ["GRS",["U3(16)",4279234560]], ["GRS",["U3(3)",6048]], ["GRS",["U3(3).2",12096]], ["GRS",["U3(4)",62400]], ["GRS",["U3(4).2",124800]], ["GRS",["U3(4).4",249600]], ["GRS",["U3(5)",126000]], ["GRS",["U3(5).2",252000]], ["GRS",["U3(5).3",378000]], ["GRS",["U3(7)",5663616]], ["GRS",["U3(8)",5515776]], ["GRS",["U3(8).(S3x3)",99283968]], ["GRS",["U3(8).2",11031552]], ["GRS",["U3(8).3^2",49641984]], ["GRS",["U3(8).3_1",16547328]], ["GRS",["U3(8).3_2",16547328]], ["GRS",["U3(8).3_3",16547328]], ["GRS",["U3(8).6",33094656]], ["GRS",["U3(8).S3",33094656]], ["GRS",["U3(9)",42573600]], ["GRS",["U4(2)",25920]], ["GRS",["U4(2).2",51840]], ["GRS",["U4(3)",3265920]], ["GRS",["U4(3).2_1",6531840]], ["GRS",["U4(3).2_2",6531840]], ["GRS",["U4(3).2_3",6531840]], ["GRS",["U4(3).4",13063680]], ["GRS",["U4(3).D8",26127360]], ["GRS",["U4(4)",1018368000]], ["GRS",["U4(5)",14742000000]], ["GRS",["U5(2)",13685760]], ["GRS",["U5(2).2",27371520]], ["GRS",["U5(3)",258190571520]], ["GRS",["U5(4)",53443952640000]], ["GRS",["U6(2)",9196830720]], ["GRS",["U6(2).2",18393661440]], ["GRS",["U6(2).3",27590492160]], ["GRS",["U6(2).S3",55180984320]], ["GRS",["U6(3)",22837472432087040]], ["GRS",["U7(2)",227787103272960]], ["GRS",["U8(2)",7434971050829414400]], ["GRS",["W(F4)",1152]], ["MXN",["(2^2x3).U6(2)",16]], ["MXN",["12.M22",8]], ["MXN",["12.M22.2",7]], ["MXN",["12_1.L3(4)",9]], ["MXN",["12_1.L3(4).2_1",10]], ["MXN",["12_2.L3(4)",9]], ["MXN",["12_2.L3(4).2_1",10]], ["MXN",["2.A10",7]], ["MXN",["2.A10.2",8]], ["MXN",["2.A11",7]], ["MXN",["2.A11.2",7]], ["MXN",["2.A12",11]], ["MXN",["2.A12.2",11]], ["MXN",["2.A13",9]], ["MXN",["2.A13.2",8]], ["MXN",["2.A5",3]], ["MXN",["2.A5.2",4]], ["MXN",["2.A6",5]], ["MXN",["2.A6.2_1",6]], ["MXN",["2.A7",5]], ["MXN",["2.A7.2",5]], ["MXN",["2.A8",6]], ["MXN",["2.A8.2",7]], ["MXN",["2.A9",8]], ["MXN",["2.A9.2",7]], ["MXN",["2.B",30]], ["MXN",["2.Co1",22]], ["MXN",["2.Fi22",14]], ["MXN",["2.Fi22.2",13]], ["MXN",["2.G2(4)",8]], ["MXN",["2.G2(4).2",9]], ["MXN",["2.HS",12]], ["MXN",["2.HS.2",10]], ["MXN",["2.J2",9]], ["MXN",["2.J2.2",10]], ["MXN",["2.L2(11)",4]], ["MXN",["2.L2(13)",4]], ["MXN",["2.L2(13).2",5]], ["MXN",["2.L2(17)",5]], ["MXN",["2.L2(19)",5]], ["MXN",["2.L2(23)",5]], ["MXN",["2.L2(25)",5]], ["MXN",["2.L2(27)",4]], ["MXN",["2.L2(29)",5]], ["MXN",["2.L2(31)",7]], ["MXN",["2.L2(49)",7]], ["MXN",["2.L3(2)",3]], ["MXN",["2.L3(2).2",4]], ["MXN",["2.L3(4)",9]], ["MXN",["2.L3(4).2_1",10]], ["MXN",["2.M12",11]], ["MXN",["2.M12.2",9]], ["MXN",["2.M22",8]], ["MXN",["2.M22.2",7]], ["MXN",["2.O7(3)",15]], ["MXN",["2.O8+(2)",17]], ["MXN",["2.O8+(3)",27]], ["MXN",["2.Ru",15]], ["MXN",["2.S4(5)",8]], ["MXN",["2.S6(2)",8]], ["MXN",["2.S6(3)",11]], ["MXN",["2.Suz",17]], ["MXN",["2.Suz.2",16]], ["MXN",["2.Sz(8)",4]], ["MXN",["2.U4(2)",5]], ["MXN",["2.U4(2).2",6]], ["MXN",["2.U6(2)",16]], ["MXN",["2F4(2)'",8]], ["MXN",["2F4(2)'.2",7]], ["MXN",["2^2.L3(4)",9]], ["MXN",["2^2.L3(4).2_2",6]], ["MXN",["2^2.Sz(8)",4]], ["MXN",["2^2.Sz(8).3",5]], ["MXN",["2^2.U6(2)",16]], ["MXN",["3.A6",5]], ["MXN",["3.A6.2_1",6]], ["MXN",["3.A7",5]], ["MXN",["3.A7.2",5]], ["MXN",["3.Fi22",14]], ["MXN",["3.Fi22.2",13]], ["MXN",["3.Fi24'",25]], ["MXN",["3.Fi24'.2",21]], ["MXN",["3.G2(3)",10]], ["MXN",["3.G2(3).2",6]], ["MXN",["3.J3",9]], ["MXN",["3.J3.2",9]], ["MXN",["3.L3(4)",9]], ["MXN",["3.L3(4).2_1",10]], ["MXN",["3.L3(7)",8]], ["MXN",["3.M22",8]], ["MXN",["3.M22.2",7]], ["MXN",["3.McL",12]], ["MXN",["3.McL.2",10]], ["MXN",["3.O7(3)",15]], ["MXN",["3.ON",13]], ["MXN",["3.ON.2",10]], ["MXN",["3.Suz",17]], ["MXN",["3.Suz.2",16]], ["MXN",["3.U3(11)",11]], ["MXN",["3.U3(8)",7]], ["MXN",["3.U6(2)",16]], ["MXN",["3D4(2)",9]], ["MXN",["3D4(2).3",10]], ["MXN",["4.M22",8]], ["MXN",["4.M22.2",7]], ["MXN",["4_1.L3(4)",9]], ["MXN",["4_1.L3(4).2_1",10]], ["MXN",["4_2.L3(4)",9]], ["MXN",["4_2.L3(4).2_1",10]], ["MXN",["6.A6",5]], ["MXN",["6.A6.2_1",6]], ["MXN",["6.A7",5]], ["MXN",["6.A7.2",5]], ["MXN",["6.Fi22",14]], ["MXN",["6.Fi22.2",13]], ["MXN",["6.L3(4)",9]], ["MXN",["6.L3(4).2_1",10]], ["MXN",["6.M22",8]], ["MXN",["6.M22.2",7]], ["MXN",["6.O7(3)",15]], ["MXN",["6.Suz",17]], ["MXN",["6.Suz.2",16]], ["MXN",["6.U6(2)",16]], ["MXN",["A10",7]], ["MXN",["A10.2",8]], ["MXN",["A11",7]], ["MXN",["A11.2",7]], ["MXN",["A12",11]], ["MXN",["A12.2",11]], ["MXN",["A13",9]], ["MXN",["A13.2",8]], ["MXN",["A5",3]], ["MXN",["A5.2",4]], ["MXN",["A6",5]], ["MXN",["A6.2^2",6]], ["MXN",["A6.2_1",6]], ["MXN",["A6.2_2",4]], ["MXN",["A6.2_3",4]], ["MXN",["A7",5]], ["MXN",["A7.2",5]], ["MXN",["A8",6]], ["MXN",["A8.2",7]], ["MXN",["A9",8]], ["MXN",["A9.2",7]], ["MXN",["B",30]], ["MXN",["Co1",22]], ["MXN",["Co2",11]], ["MXN",["Co3",14]], ["MXN",["Fi22",14]], ["MXN",["Fi22.2",13]], ["MXN",["Fi23",14]], ["MXN",["Fi24'",25]], ["MXN",["Fi24'.2",21]], ["MXN",["G2(3)",10]], ["MXN",["G2(3).2",6]], ["MXN",["G2(4)",8]], ["MXN",["G2(4).2",9]], ["MXN",["G2(5)",7]], ["MXN",["HN",14]], ["MXN",["HN.2",13]], ["MXN",["HS",12]], ["MXN",["HS.2",10]], ["MXN",["He",11]], ["MXN",["He.2",12]], ["MXN",["Isoclinic(12.M22.2)",7]], ["MXN",["Isoclinic(2.A5.2)",4]], ["MXN",["Isoclinic(2.A7.2)",5]], ["MXN",["Isoclinic(2.A8.2)",7]], ["MXN",["Isoclinic(2.Fi22.2)",13]], ["MXN",["Isoclinic(2.G2(4).2)",9]], ["MXN",["Isoclinic(2.HS.2)",10]], ["MXN",["Isoclinic(2.J2.2)",10]], ["MXN",["Isoclinic(2.L3(2).2)",4]], ["MXN",["Isoclinic(2.M12.2)",9]], ["MXN",["Isoclinic(2.M22.2)",7]], ["MXN",["Isoclinic(2.Suz.2)",16]], ["MXN",["Isoclinic(4.M22.2)",7]], ["MXN",["Isoclinic(6.Fi22.2)",13]], ["MXN",["Isoclinic(6.M22.2)",7]], ["MXN",["Isoclinic(6.Suz.2)",16]], ["MXN",["J1",7]], ["MXN",["J2",9]], ["MXN",["J2.2",10]], ["MXN",["J3",9]], ["MXN",["J3.2",9]], ["MXN",["J4",13]], ["MXN",["L2(101)",5]], ["MXN",["L2(103)",5]], ["MXN",["L2(107)",4]], ["MXN",["L2(109)",5]], ["MXN",["L2(11)",4]], ["MXN",["L2(11).2",5]], ["MXN",["L2(113)",5]], ["MXN",["L2(127)",5]], ["MXN",["L2(13)",4]], ["MXN",["L2(13).2",5]], ["MXN",["L2(131)",5]], ["MXN",["L2(137)",5]], ["MXN",["L2(139)",5]], ["MXN",["L2(149)",5]], ["MXN",["L2(151)",7]], ["MXN",["L2(157)",4]], ["MXN",["L2(16)",4]], ["MXN",["L2(16).2",5]], ["MXN",["L2(16).4",5]], ["MXN",["L2(163)",4]], ["MXN",["L2(167)",5]], ["MXN",["L2(17)",5]], ["MXN",["L2(173)",4]], ["MXN",["L2(179)",5]], ["MXN",["L2(181)",5]], ["MXN",["L2(19)",5]], ["MXN",["L2(191)",7]], ["MXN",["L2(193)",5]], ["MXN",["L2(197)",4]], ["MXN",["L2(199)",7]], ["MXN",["L2(211)",5]], ["MXN",["L2(223)",5]], ["MXN",["L2(227)",4]], ["MXN",["L2(229)",5]], ["MXN",["L2(23)",5]], ["MXN",["L2(233)",5]], ["MXN",["L2(239)",7]], ["MXN",["L2(241)",7]], ["MXN",["L2(25)",5]], ["MXN",["L2(25).2_2",6]], ["MXN",["L2(27)",4]], ["MXN",["L2(29)",5]], ["MXN",["L2(31)",7]], ["MXN",["L2(32)",3]], ["MXN",["L2(32).5",4]], ["MXN",["L2(37)",4]], ["MXN",["L2(41)",7]], ["MXN",["L2(43)",4]], ["MXN",["L2(47)",5]], ["MXN",["L2(49)",7]], ["MXN",["L2(53)",4]], ["MXN",["L2(59)",5]], ["MXN",["L2(61)",5]], ["MXN",["L2(64)",5]], ["MXN",["L2(67)",4]], ["MXN",["L2(71)",7]], ["MXN",["L2(73)",5]], ["MXN",["L2(79)",7]], ["MXN",["L2(8)",3]], ["MXN",["L2(8).3",4]], ["MXN",["L2(81)",5]], ["MXN",["L2(83)",4]], ["MXN",["L2(89)",7]], ["MXN",["L2(97)",5]], ["MXN",["L3(11)",6]], ["MXN",["L3(2)",3]], ["MXN",["L3(2).2",4]], ["MXN",["L3(3)",4]], ["MXN",["L3(3).2",5]], ["MXN",["L3(4)",9]], ["MXN",["L3(4).2^2",8]], ["MXN",["L3(4).2_1",10]], ["MXN",["L3(4).2_2",6]], ["MXN",["L3(4).2_3",6]], ["MXN",["L3(4).3",5]], ["MXN",["L3(4).6",6]], ["MXN",["L3(4).D12",8]], ["MXN",["L3(5)",5]], ["MXN",["L3(7)",8]], ["MXN",["L3(8)",5]], ["MXN",["L3(9)",7]], ["MXN",["L4(3)",8]], ["MXN",["L5(2)",5]], ["MXN",["L6(2)",9]], ["MXN",["L7(2)",4]], ["MXN",["Ly",9]], ["MXN",["M",46]], ["MXN",["M11",5]], ["MXN",["M12",11]], ["MXN",["M12.2",9]], ["MXN",["M22",8]], ["MXN",["M22.2",7]], ["MXN",["M23",7]], ["MXN",["M24",9]], ["MXN",["McL",12]], ["MXN",["McL.2",10]], ["MXN",["O7(3)",15]], ["MXN",["O8+(2)",17]], ["MXN",["O8+(3)",27]], ["MXN",["O8-(2)",8]], ["MXN",["ON",13]], ["MXN",["ON.2",10]], ["MXN",["Ru",15]], ["MXN",["S4(4)",7]], ["MXN",["S4(4).2",8]], ["MXN",["S4(5)",8]], ["MXN",["S6(2)",8]], ["MXN",["S6(3)",11]], ["MXN",["S8(2)",11]], ["MXN",["Suz",17]], ["MXN",["Suz.2",16]], ["MXN",["Sz(32)",4]], ["MXN",["Sz(8)",4]], ["MXN",["Sz(8).3",5]], ["MXN",["Th",16]], ["MXN",["U3(11)",11]], ["MXN",["U3(3)",4]], ["MXN",["U3(3).2",5]], ["MXN",["U3(4)",4]], ["MXN",["U3(4).2",5]], ["MXN",["U3(5)",8]], ["MXN",["U3(5).2",6]], ["MXN",["U3(5).3",6]], ["MXN",["U3(7)",5]], ["MXN",["U3(8)",7]], ["MXN",["U3(9)",5]], ["MXN",["U4(2)",5]], ["MXN",["U4(2).2",6]], ["MXN",["U4(3)",16]], ["MXN",["U4(3).2_1",13]], ["MXN",["U4(3).2_3",11]], ["MXN",["U5(2)",6]], ["MXN",["U6(2)",16]], ["MXO",["(2^2x3).U6(2)",[164229120,159252480,123863040,78382080,78382080,78382080,17694720,17418240,17418240,17418240,5322240,5322240,5322240,1866240,1119744,483840]]], ["MXO",["12.M22",[241920,69120,30240,30240,23040,16128,8640,7920]]], ["MXO",["12.M22.2",[5322240,483840,138240,46080,32256,17280,15840]]], ["MXO",["12_1.L3(4)",[11520,11520,4320,4320,4320,2016,2016,2016,864]]], ["MXO",["12_1.L3(4).2_1",[241920,8640,8640,8640,4608,4032,4032,4032,1728,1440]]], ["MXO",["12_2.L3(4)",[11520,11520,4320,4320,4320,2016,2016,2016,864]]], ["MXO",["12_2.L3(4).2_1",[241920,8640,8640,8640,4608,4032,4032,4032,1728,1440]]], ["MXO",["2.2E6(2)",[0,0,6622253206732800,6622253206732800,6622253206732800,0,129123503308800,129123503308800,129123503308800,50030759116800,0,0,0,40310784,33094656]]], ["MXO",["2.A10",[362880,80640,30240,28800,17280,3840,1440]]], ["MXO",["2.A10.2",[3628800,725760,161280,60480,57600,34560,7680,2880]]], ["MXO",["2.A11",[3628800,725760,241920,120960,86400,15840,15840]]], ["MXO",["2.A11.2",[39916800,7257600,1451520,483840,241920,172800,220]]], ["MXO",["2.A12",[39916800,7257600,2177280,1036800,967680,604800,190080,190080,82944,46080,31104]]], ["MXO",["2.A12.2",[479001600,79833600,14515200,4354560,2073600,1935360,1209600,165888,92160,62208,2640]]], ["MXO",["2.A13",[479001600,79833600,21772800,8709120,4838400,3628800,11232,11232,156]]], ["MXO",["2.A13.2",[6227020800,958003200,159667200,43545600,17418240,9676800,7257600,312]]], ["MXO",["2.A14.2",[87178291200,12454041600]]], ["MXO",["2.A5",[24,20,12]]], ["MXO",["2.A5.2",[120,48,40,24]]], ["MXO",["2.A6",[120,120,72,48,48]]], ["MXO",["2.A6.2_1",[720,240,240,144,96,96]]], ["MXO",["2.A7",[720,336,336,240,144]]], ["MXO",["2.A7.2",[5040,1440,480,288,84]]], ["MXO",["2.A8",[5040,2688,2688,1440,1152,720]]], ["MXO",["2.A8.2",[40320,10080,2880,2304,1440,768,672]]], ["MXO",["2.A9",[40320,10080,4320,3024,3024,2880,1296,432]]], ["MXO",["2.A9.2",[362880,80640,20160,8640,5760,2592,864]]], ["MXO",["2.B",[612259837470198831513600,709767191322427392000,8178940946586009600,3179457774039859200,181491887775744000,52978025653862400,45717693482926080,21473462090465280,1549482039705600,1385384650997760,1092123648000000,237704631091200,261213880320,3762339840,3548160000,1725235200,408146688,212889600,116121600,93000000,48000000,4147200,576000,235200,29760,15840,11232,9792,2640,2162]]], ["MXO",["2.Co1",[84610842624000,5380145971200,1002795171840,991533312000,178362777600,110361968640,12076646400,3963617280,1698693120,470292480,277136640,145152000,50388480,8709120,5038848,2177280,1693440,288000,120000,120000,7056,6000]]], ["MXO",["2.F4(2)",[95126814720,95126814720,94755225600,94755225600,2113929216,2113929216,2090188800,0,1268047872,0,71884800,24261120]]], ["MXO",["2.Fi22",[36787322880,9170703360,9170703360,2090188800,908328960,185794560,106168320,78382080,35942400,35389440,10077696,7257600,7257600,190080]]], ["MXO",["2.Fi22.2",[129123503308800,73574645760,4180377600,1816657920,371589120,212336640,156764160,71884800,70778880,50388480,20155392,16982784,380160]]], ["MXO",["2.G2(4)",[1209600,368640,368640,249600,241920,24192,7200,2184]]], ["MXO",["2.G2(4).2",[503193600,2419200,737280,737280,499200,483840,48384,14400,4368]]], ["MXO",["2.HS",[887040,504000,504000,80640,80640,23040,21504,15840,15840,15360,5760,2400]]], ["MXO",["2.HS.2",[88704000,1774080,161280,161280,46080,43008,30720,11520,8000,4800]]], ["MXO",["2.J2",[12096,4320,3840,2304,1440,1200,672,600,120]]], ["MXO",["2.J2.2",[1209600,24192,8640,7680,4608,2880,2400,1344,1200,240]]], ["MXO",["2.L2(11)",[120,120,110,24]]], ["MXO",["2.L2(13)",[156,28,24,24]]], ["MXO",["2.L2(13).2",[2184,312,56,48,48]]], ["MXO",["2.L2(17)",[272,48,48,36,32]]], ["MXO",["2.L2(17).2",[4896,544]]], ["MXO",["2.L2(19)",[342,120,120,40,36]]], ["MXO",["2.L2(23)",[506,48,48,48,44]]], ["MXO",["2.L2(25)",[600,240,240,52,48]]], ["MXO",["2.L2(27)",[702,56,52,24]]], ["MXO",["2.L2(29)",[812,120,120,60,56]]], ["MXO",["2.L2(31)",[930,120,120,64,60,48,48]]], ["MXO",["2.L2(49)",[2352,672,672,120,120,100,96]]], ["MXO",["2.L3(2)",[48,48,42]]], ["MXO",["2.L3(2).2",[336,84,32,24]]], ["MXO",["2.L3(4)",[1920,1920,720,720,720,336,336,336,144]]], ["MXO",["2.L3(4).2_1",[40320,1440,1440,1440,768,672,672,672,288,240]]], ["MXO",["2.M12",[15840,15840,2880,2880,1320,864,864,480,384,384,144]]], ["MXO",["2.M12.2",[190080,2640,2640,960,768,768,432,288,240]]], ["MXO",["2.M22",[40320,11520,5040,5040,3840,2688,1440,1320]]], ["MXO",["2.M22.2",[887040,80640,23040,7680,5376,2880,2640]]], ["MXO",["2.O7(3)",[26127360,25194240,24261120,8491392,8491392,8188128,2903040,2903040,2519424,725760,725760,414720,322560,34560,27648]]], ["MXO",["2.O7(3).2",[9170703360,0,0,0,0,0,0,645120]]], ["MXO",["2.O8+(2)",[2903040,2903040,2903040,2580480,2580480,2580480,362880,362880,362880,311040,311040,311040,221184,31104,28800,28800,28800]]], ["MXO",["2.O8+(2).2",[348364800,5806080]]], ["MXO",["2.O8+(3)",[9170703360,9170703360,9170703360,9170703360,9170703360,9170703360,8843178240,8843178240,8843178240,348364800,348364800,348364800,348364800,272097792,52254720,52254720,52254720,1244160,1244160,1244160,1244160,1244160,1244160,1036800,1036800,1036800,663552]]], ["MXO",["2.O8-(3)",[19046845440,18341406720,18341406720,0,0,0,2488320,2488320,1062720]]], ["MXO",["2.Ru",[71884800,1548288,698880,688128,504000,491520,62400,40320,24360,24000,8640,8000,4368,2880,2400]]], ["MXO",["2.S4(5)",[60000,60000,31200,28800,1920,1440,960,720]]], ["MXO",["2.S6(2)",[103680,80640,46080,24192,21504,9216,8640,3024]]], ["MXO",["2.S6(3)",[25194240,8188128,2519424,1244160,82944,58968,48384,22464,2184,2184,120]]], ["MXO",["2.S6(3).2",[50388480]]], ["MXO",["2.Suz",[503193600,39191040,27371520,6635520,3849120,2419200,2211840,967680,737280,380160,279936,86400,51840,22464,22464,15600,5040]]], ["MXO",["2.Suz.2",[896690995200,1006387200,78382080,54743040,13271040,7698240,4838400,4423680,1935360,1474560,760320,559872,172800,103680,31200,10080]]], ["MXO",["2.Sz(8)",[896,104,40,28]]], ["MXO",["2.U4(2)",[1920,1440,1296,1296,1152]]], ["MXO",["2.U4(2).2",[51840,3840,2880,2592,2592,2304]]], ["MXO",["2.U6(2)",[27371520,26542080,20643840,13063680,13063680,13063680,2949120,2903040,2903040,2903040,887040,887040,887040,311040,186624,80640]]], ["MXO",["2.U6(2).2",[18393661440,54743040,0,0,0,0,5806080,1774080,622080]]], ["MXO",["2E6(2)",[0,0,3311126603366400,3311126603366400,3311126603366400,0,64561751654400,64561751654400,64561751654400,25015379558400,0,0,0,20155392,16547328]]], ["MXO",["2F4(2)'",[11232,11232,10240,7800,6144,1440,1440,1200]]], ["MXO",["2F4(2)'.2",[17971200,20480,15600,12288,2400,432,156]]], ["MXO",["2^2.2E6(2)",[0,0,13244506413465600,13244506413465600,13244506413465600,0,258247006617600,258247006617600,258247006617600,100061518233600,0,0,0,80621568,66189312]]], ["MXO",["2^2.L3(4)",[3840,3840,1440,1440,1440,672,672,672,288]]], ["MXO",["2^2.L3(4).2_2",[80640,7680,7680,2880,1344,576]]], ["MXO",["2^2.Sz(8)",[1792,208,80,56]]], ["MXO",["2^2.Sz(8).3",[116480,5376,624,240,168]]], ["MXO",["2^2.U6(2)",[54743040,53084160,41287680,26127360,26127360,26127360,5898240,5806080,5806080,5806080,1774080,1774080,1774080,622080,373248,161280]]], ["MXO",["3.2E6(2)",[0,0,9933379810099200,9933379810099200,9933379810099200,0,193685254963200,193685254963200,193685254963200,75046138675200,0,0,0,60466176,49641984]]], ["MXO",["3.A6",[180,180,108,72,72]]], ["MXO",["3.A6.2_1",[1080,360,360,216,144,144]]], ["MXO",["3.A7",[1080,504,504,360,216]]], ["MXO",["3.A7.2",[7560,2160,720,432,126]]], ["MXO",["3.Fi22",[55180984320,13756055040,13756055040,3135283200,1362493440,278691840,159252480,117573120,53913600,53084160,15116544,10886400,10886400,285120]]], ["MXO",["3.Fi22.2",[193685254963200,110361968640,6270566400,2724986880,557383680,318504960,235146240,107827200,106168320,75582720,30233088,25474176,570240]]], ["MXO",["3.Fi24'",[12268411419879014400,774741019852800,267417709977600,75046138675200,30084492372480,14546347960320,1504192757760,662171811840,481579499520,53722307808,41324852160,37623398400,24182323200,24182323200,5945425920,5945425920,458535168,65318400,1632960,317520,36288,36288,6552,6552,1218]]], ["MXO",["3.Fi24'.2",[3765617127571985163878400,24536822839758028800,1549482039705600,534835419955200,150092277350400,60168984744960,29092695920640,3008385515520,1324343623680,963158999040,107444615616,82649704320,75246796800,11890851840,11890851840,917070336,130636800,3265920,635040,74088,2436]]], ["MXO",["3.G2(3)",[36288,36288,34992,34992,33696,33696,4536,4032,3276,1728]]], ["MXO",["3.G2(3).2",[12737088,17496,9072,8064,6552,3456]]], ["MXO",["3.J3",[24480,10260,10260,8640,7344,6480,5832,5760,3456]]], ["MXO",["3.J3.2",[150698880,48960,17280,14688,12960,11664,11520,6912,1026]]], ["MXO",["3.L3(4)",[2880,2880,1080,1080,1080,504,504,504,216]]], ["MXO",["3.L3(4).2_1",[60480,2160,2160,2160,1152,1008,1008,1008,432,360]]], ["MXO",["3.L3(7)",[98784,98784,1008,1008,1008,216,216,171]]], ["MXO",["3.L3(7).2",[5630688,24696]]], ["MXO",["3.M22",[60480,17280,7560,7560,5760,4032,2160,1980]]], ["MXO",["3.M22.2",[1330560,120960,34560,11520,8064,4320,3960]]], ["MXO",["3.McL",[9797760,1330560,1330560,378000,174960,174960,120960,120960,120960,120960,23760,9000]]], ["MXO",["3.McL.2",[2694384000,19595520,756000,349920,349920,241920,241920,47520,18000,6912]]], ["MXO",["3.O7(3)",[39191040,37791360,36391680,12737088,12737088,12282192,4354560,4354560,3779136,1088640,1088640,622080,483840,51840,41472]]], ["MXO",["3.O7(3).2",[13756055040,0,0,0,0,0,0,967680]]], ["MXO",["3.ON",[11261376,11261376,526680,483840,77760,77760,44640,44640,32256,23760,23760,7560,7560]]], ["MXO",["3.ON.2",[1382446517760,1053360,967680,155520,155520,64512,49392,2790,2160,1008]]], ["MXO",["3.Suz",[754790400,58786560,41057280,9953280,5773680,3628800,3317760,1451520,1105920,570240,419904,129600,77760,33696,33696,23400,7560]]], ["MXO",["3.Suz.2",[1345036492800,1509580800,117573120,82114560,19906560,11547360,7257600,6635520,2903040,2211840,1140480,839808,259200,155520,46800,15120]]], ["MXO",["3.U3(11)",[159720,15840,3960,3960,3960,1080,1080,1080,864,333,216]]], ["MXO",["3.U3(8)",[32256,4536,648,648,648,486,171]]], ["MXO",["3.U6(2)",[41057280,39813120,30965760,19595520,19595520,19595520,4423680,4354560,4354560,4354560,1330560,1330560,1330560,466560,279936,120960]]], ["MXO",["3D4(2)",[258048,86016,12096,3024,2352,1296,1176,216,52]]], ["MXO",["3D4(2).3",[211341312,774144,258048,36288,9072,7056,3888,3528,648,156]]], ["MXO",["3^2.U4(3).D8",[0,0,0,2099520]]], ["MXO",["4.M22",[80640,23040,10080,10080,7680,5376,2880,2640]]], ["MXO",["4.M22.2",[1774080,161280,46080,15360,10752,5760,5280]]], ["MXO",["4_1.L3(4)",[3840,3840,1440,1440,1440,672,672,672,288]]], ["MXO",["4_1.L3(4).2_1",[80640,2880,2880,2880,1536,1344,1344,1344,576,480]]], ["MXO",["4_2.L3(4)",[3840,3840,1440,1440,1440,672,672,672,288]]], ["MXO",["4_2.L3(4).2_1",[80640,2880,2880,2880,1536,1344,1344,1344,576,480]]], ["MXO",["5^3.L3(5)",[]]], ["MXO",["6.A6",[360,360,216,144,144]]], ["MXO",["6.A6.2_1",[2160,720,720,432,288,288]]], ["MXO",["6.A7",[2160,1008,1008,720,432]]], ["MXO",["6.A7.2",[15120,4320,1440,864,252]]], ["MXO",["6.Fi22",[110361968640,27512110080,27512110080,6270566400,2724986880,557383680,318504960,235146240,107827200,106168320,30233088,21772800,21772800,570240]]], ["MXO",["6.Fi22.2",[387370509926400,220723937280,12541132800,5449973760,1114767360,637009920,470292480,215654400,212336640,151165440,60466176,50948352,1140480]]], ["MXO",["6.L3(4)",[5760,5760,2160,2160,2160,1008,1008,1008,432]]], ["MXO",["6.L3(4).2_1",[120960,4320,4320,4320,2304,2016,2016,2016,864,720]]], ["MXO",["6.M22",[120960,34560,15120,15120,11520,8064,4320,3960]]], ["MXO",["6.M22.2",[2661120,241920,69120,23040,16128,8640,7920]]], ["MXO",["6.O7(3)",[78382080,75582720,72783360,25474176,25474176,24564384,8709120,8709120,7558272,2177280,2177280,1244160,967680,103680,82944]]], ["MXO",["6.O7(3).2",[27512110080,0,0,0,0,0,0,1935360]]], ["MXO",["6.Suz",[1509580800,117573120,82114560,19906560,11547360,7257600,6635520,2903040,2211840,1140480,839808,259200,155520,67392,67392,46800,15120]]], ["MXO",["6.Suz.2",[2690072985600,3019161600,235146240,164229120,39813120,23094720,14515200,13271040,5806080,4423680,2280960,1679616,518400,311040,93600,30240]]], ["MXO",["6.U6(2)",[82114560,79626240,61931520,39191040,39191040,39191040,8847360,8709120,8709120,8709120,2661120,2661120,2661120,933120,559872,241920]]], ["MXO",["A10",[181440,40320,15120,14400,8640,1920,720]]], ["MXO",["A10.2",[1814400,362880,80640,30240,28800,17280,3840,1440]]], ["MXO",["A11",[1814400,362880,120960,60480,43200,7920,7920]]], ["MXO",["A11.2",[19958400,3628800,725760,241920,120960,86400,110]]], ["MXO",["A12",[19958400,3628800,1088640,518400,483840,302400,95040,95040,41472,23040,15552]]], ["MXO",["A12.2",[239500800,39916800,7257600,2177280,1036800,967680,604800,82944,46080,31104,1320]]], ["MXO",["A13",[239500800,39916800,10886400,4354560,2419200,1814400,5616,5616,78]]], ["MXO",["A13.2",[3113510400,479001600,79833600,21772800,8709120,4838400,3628800,156]]], ["MXO",["A14",[3113510400,479001600,0,0,0,21772800,0,322560,1092]]], ["MXO",["A14.2",[43589145600,6227020800]]], ["MXO",["A5",[12,10,6]]], ["MXO",["A5.2",[60,24,20,12]]], ["MXO",["A6",[60,60,36,24,24]]], ["MXO",["A6.2^2",[720,720,720,144,40,32]]], ["MXO",["A6.2_1",[360,120,120,72,48,48]]], ["MXO",["A6.2_2",[360,72,20,16]]], ["MXO",["A6.2_3",[360,72,20,16]]], ["MXO",["A7",[360,168,168,120,72]]], ["MXO",["A7.2",[2520,720,240,144,42]]], ["MXO",["A8",[2520,1344,1344,720,576,360]]], ["MXO",["A8.2",[20160,5040,1440,1152,720,384,336]]], ["MXO",["A9",[20160,5040,2160,1512,1512,1440,648,216]]], ["MXO",["A9.2",[181440,40320,10080,4320,2880,1296,432]]], ["MXO",["B",[306129918735099415756800,354883595661213696000,4089470473293004800,1589728887019929600,90745943887872000,26489012826931200,22858846741463040,10736731045232640,774741019852800,692692325498880,546061824000000,118852315545600,130606940160,1881169920,1774080000,862617600,204073344,106444800,58060800,46500000,24000000,2073600,288000,117600,14880,7920,5616,4896,1320,1081]]], ["MXO",["Co1",[42305421312000,2690072985600,501397585920,495766656000,89181388800,55180984320,6038323200,1981808640,849346560,235146240,138568320,72576000,25194240,4354560,2519424,1088640,846720,144000,60000,60000,3528,3000]]], ["MXO",["Co2",[18393661440,908328960,898128000,743178240,88704000,41287680,26127360,11796480,10200960,933120,12000]]], ["MXO",["Co3",[1796256000,44352000,13063680,10200960,3849120,2903040,756000,699840,322560,241920,190080,27648,9072,1440]]], ["MXO",["F4(2)",[47563407360,47563407360,47377612800,47377612800,1056964608,1056964608,1045094400,0,634023936,0,35942400,12130560]]], ["MXO",["Fi22",[18393661440,4585351680,4585351680,1045094400,454164480,92897280,53084160,39191040,17971200,17694720,5038848,3628800,3628800,95040]]], ["MXO",["Fi22.2",[64561751654400,36787322880,2090188800,908328960,185794560,106168320,78382080,35942400,35389440,25194240,10077696,8491392,190080]]], ["MXO",["Fi23",[129123503308800,29713078886400,73574645760,47377612800,27512110080,20891566080,3265173504,663238368,479001600,318504960,247726080,34836480,3916800,6072]]], ["MXO",["Fi24'",[4089470473293004800,258247006617600,89139236659200,25015379558400,10028164124160,4848782653440,501397585920,220723937280,160526499840,17907435936,13774950720,12541132800,8060774400,8060774400,1981808640,1981808640,152845056,21772800,544320,105840,12096,12096,2184,2184,406]]], ["MXO",["Fi24'.2",[1255205709190661721292800,8178940946586009600,516494013235200,178278473318400,50030759116800,20056328248320,9697565306880,1002795171840,441447874560,321052999680,35814871872,27549901440,25082265600,3963617280,3963617280,305690112,43545600,1088640,211680,24696,812]]], ["MXO",["G2(3)",[12096,12096,11664,11664,11232,11232,1512,1344,1092,576]]], ["MXO",["G2(3).2",[4245696,5832,3024,2688,2184,1152]]], ["MXO",["G2(4)",[604800,184320,184320,124800,120960,12096,3600,1092]]], ["MXO",["G2(4).2",[251596800,1209600,368640,368640,249600,241920,24192,7200,2184]]], ["MXO",["G2(5)",[1500000,1500000,756000,744000,14400,12096,1344]]], ["MXO",["HN",[239500800,177408000,16547328,3686400,2520000,2000000,1658880,1036800,1032192,750000,190080,190080,93312,58320]]], ["MXO",["HN.2",[273030912000000,479001600,354816000,33094656,7372800,5040000,4000000,3317760,2073600,2064384,1500000,186624,116640]]], ["MXO",["HS",[443520,252000,252000,40320,40320,11520,10752,7920,7920,7680,2880,1200]]], ["MXO",["HS.2",[44352000,887040,80640,80640,23040,21504,15360,5760,4000,2400]]], ["MXO",["He",[1958400,483840,138240,138240,21504,16464,15120,6174,4032,3528,1200]]], ["MXO",["He.2",[4030387200,3916800,967680,43008,32928,30240,28800,18432,12348,8064,7056,2400]]], ["MXO",["Isoclinic(12.M22.2)",[5322240,483840,138240,46080,32256,17280,15840]]], ["MXO",["Isoclinic(2.A14.2)",[87178291200,12454041600]]], ["MXO",["Isoclinic(2.A5.2)",[120,48,40,24]]], ["MXO",["Isoclinic(2.A7.2)",[5040,1440,480,288,84]]], ["MXO",["Isoclinic(2.A8.2)",[40320,10080,2880,2304,1440,768,672]]], ["MXO",["Isoclinic(2.Fi22.2)",[129123503308800,73574645760,4180377600,1816657920,371589120,212336640,156764160,71884800,70778880,50388480,20155392,16982784,380160]]], ["MXO",["Isoclinic(2.G2(4).2)",[503193600,2419200,737280,737280,499200,483840,48384,14400,4368]]], ["MXO",["Isoclinic(2.HS.2)",[88704000,1774080,161280,161280,46080,43008,30720,11520,8000,4800]]], ["MXO",["Isoclinic(2.J2.2)",[1209600,24192,8640,7680,4608,2880,2400,1344,1200,240]]], ["MXO",["Isoclinic(2.L2(19).2)",[6840,684]]], ["MXO",["Isoclinic(2.L2(23).2)",[0,1012]]], ["MXO",["Isoclinic(2.L3(2).2)",[336,84,32,24]]], ["MXO",["Isoclinic(2.M12.2)",[190080,2640,2640,960,768,768,432,288,240]]], ["MXO",["Isoclinic(2.M22.2)",[887040,80640,23040,7680,5376,2880,2640]]], ["MXO",["Isoclinic(2.O7(3).2)",[9170703360,0,0,0,0,0,0,645120]]], ["MXO",["Isoclinic(2.Suz.2)",[896690995200,1006387200,78382080,54743040,13271040,7698240,4838400,4423680,1935360,1474560,760320,559872,172800,103680,31200,10080]]], ["MXO",["Isoclinic(4.M22.2)",[1774080,161280,46080,15360,10752,5760,5280]]], ["MXO",["Isoclinic(6.Fi22.2)",[387370509926400,220723937280,12541132800,5449973760,1114767360,637009920,470292480,215654400,212336640,151165440,60466176,50948352,1140480]]], ["MXO",["Isoclinic(6.M22.2)",[2661120,241920,69120,23040,16128,8640,7920]]], ["MXO",["Isoclinic(6.Suz.2)",[2690072985600,3019161600,235146240,164229120,39813120,23094720,14515200,13271040,5806080,4423680,2280960,1679616,518400,311040,93600,30240]]], ["MXO",["J1",[660,168,120,114,110,60,42]]], ["MXO",["J2",[6048,2160,1920,1152,720,600,336,300,60]]], ["MXO",["J2.2",[604800,12096,4320,3840,2304,1440,1200,672,600,120]]], ["MXO",["J3",[8160,3420,3420,2880,2448,2160,1944,1920,1152]]], ["MXO",["J3.2",[50232960,16320,5760,4896,4320,3888,3840,2304,342]]], ["MXO",["J4",[501397585920,21799895040,10239344640,660602880,141831360,887040,319440,163680,12144,6048,812,602,444]]], ["MXO",["L2(101)",[5050,102,100,60,60]]], ["MXO",["L2(103)",[5253,104,102,24,24]]], ["MXO",["L2(107)",[5671,108,106,12]]], ["MXO",["L2(109)",[5886,110,108,60,60]]], ["MXO",["L2(11)",[60,60,55,12]]], ["MXO",["L2(11).2",[660,110,24,24,20]]], ["MXO",["L2(113)",[6328,114,112,24,24]]], ["MXO",["L2(127)",[8001,128,126,24,24]]], ["MXO",["L2(13)",[78,14,12,12]]], ["MXO",["L2(13).2",[1092,156,28,24,24]]], ["MXO",["L2(131)",[8515,132,130,60,60]]], ["MXO",["L2(137)",[9316,138,136,24,24]]], ["MXO",["L2(139)",[9591,140,138,60,60]]], ["MXO",["L2(149)",[11026,150,148,60,60]]], ["MXO",["L2(151)",[11325,152,150,60,60,24,24]]], ["MXO",["L2(157)",[12246,158,156,12]]], ["MXO",["L2(16)",[240,60,34,30]]], ["MXO",["L2(16).2",[4080,480,120,68,60]]], ["MXO",["L2(16).4",[8160,960,240,136,120]]], ["MXO",["L2(163)",[13203,164,162,12]]], ["MXO",["L2(167)",[13861,168,166,24,24]]], ["MXO",["L2(17)",[136,24,24,18,16]]], ["MXO",["L2(17).2",[2448,272]]], ["MXO",["L2(173)",[14878,174,172,12]]], ["MXO",["L2(179)",[15931,180,178,60,60]]], ["MXO",["L2(181)",[16290,182,180,60,60]]], ["MXO",["L2(19)",[171,60,60,20,18]]], ["MXO",["L2(19).2",[3420,342]]], ["MXO",["L2(191)",[18145,192,190,60,60,24,24]]], ["MXO",["L2(193)",[18528,194,192,24,24]]], ["MXO",["L2(197)",[19306,198,196,12]]], ["MXO",["L2(199)",[19701,200,198,60,60,24,24]]], ["MXO",["L2(211)",[22155,212,210,60,60]]], ["MXO",["L2(223)",[24753,224,222,24,24]]], ["MXO",["L2(227)",[25651,228,226,12]]], ["MXO",["L2(229)",[26106,230,228,60,60]]], ["MXO",["L2(23)",[253,24,24,24,22]]], ["MXO",["L2(23).2",[0,506]]], ["MXO",["L2(233)",[27028,234,232,24,24]]], ["MXO",["L2(239)",[28441,240,238,60,60,24,24]]], ["MXO",["L2(241)",[28920,242,240,60,60,24,24]]], ["MXO",["L2(25)",[300,120,120,26,24]]], ["MXO",["L2(25).2_2",[7800,600,240,240,52,48]]], ["MXO",["L2(27)",[351,28,26,12]]], ["MXO",["L2(29)",[406,60,60,30,28]]], ["MXO",["L2(29).2",[12180,812]]], ["MXO",["L2(31)",[465,60,60,32,30,24,24]]], ["MXO",["L2(32)",[992,66,62]]], ["MXO",["L2(32).5",[32736,4960,330,310]]], ["MXO",["L2(37)",[666,38,36,12]]], ["MXO",["L2(41)",[820,60,60,42,40,24,24]]], ["MXO",["L2(43)",[903,44,42,12]]], ["MXO",["L2(47)",[1081,48,46,24,24]]], ["MXO",["L2(49)",[1176,336,336,60,60,50,48]]], ["MXO",["L2(53)",[1378,54,52,12]]], ["MXO",["L2(59)",[1711,60,60,60,58]]], ["MXO",["L2(61)",[1830,62,60,60,60]]], ["MXO",["L2(64)",[4032,504,130,126,60]]], ["MXO",["L2(67)",[2211,68,66,12]]], ["MXO",["L2(71)",[2485,72,70,60,60,24,24]]], ["MXO",["L2(73)",[2628,74,72,24,24]]], ["MXO",["L2(79)",[3081,80,78,60,60,24,24]]], ["MXO",["L2(8)",[56,18,14]]], ["MXO",["L2(8).3",[504,168,54,42]]], ["MXO",["L2(81)",[3240,720,720,82,80]]], ["MXO",["L2(83)",[3403,84,82,12]]], ["MXO",["L2(89)",[3916,90,88,60,60,24,24]]], ["MXO",["L2(97)",[4656,98,96,24,24]]], ["MXO",["L3(11)",[1597200,1597200,1320,600,399,168]]], ["MXO",["L3(2)",[24,24,21]]], ["MXO",["L3(2).2",[168,42,16,12]]], ["MXO",["L3(3)",[432,432,39,24]]], ["MXO",["L3(3).2",[5616,216,96,78,48]]], ["MXO",["L3(4)",[960,960,360,360,360,168,168,168,72]]], ["MXO",["L3(4).2^2",[40320,40320,40320,1440,768,672,288,240]]], ["MXO",["L3(4).2_1",[20160,720,720,720,384,336,336,336,144,120]]], ["MXO",["L3(4).2_2",[20160,1920,1920,720,336,144]]], ["MXO",["L3(4).2_3",[20160,720,384,336,144,120]]], ["MXO",["L3(4).3",[20160,2880,2880,216,63]]], ["MXO",["L3(4).6",[60480,40320,1152,432,360,126]]], ["MXO",["L3(4).D12",[120960,120960,120960,80640,2304,864,720,252]]], ["MXO",["L3(5)",[12000,12000,120,96,93]]], ["MXO",["L3(5).2",[372000,4000,960,240,192,186]]], ["MXO",["L3(7)",[32928,32928,336,336,336,72,72,57]]], ["MXO",["L3(7).2",[1876896,8232]]], ["MXO",["L3(8)",[225792,225792,294,219,168]]], ["MXO",["L3(8).2",[16482816,0,0,0,0,336]]], ["MXO",["L3(8).3",[16482816,677376,677376,882,657,504]]], ["MXO",["L3(8).6",[49448448,32965632,150528,21168,1764,1314,1008]]], ["MXO",["L3(9)",[466560,466560,6048,5616,720,384,273]]], ["MXO",["L4(3)",[151632,151632,51840,51840,46656,2880,720,576]]], ["MXO",["L5(2)",[322560,322560,64512,64512,155]]], ["MXO",["L5(2).2",[9999360]]], ["MXO",["L6(2)",[319979520,319979520,30965760,30965760,14450688,1451520,362880,56448,10584]]], ["MXO",["L7(2)",[1290157424640,61436067840,13872660480,889]]], ["MXO",["L7(2).2",[163849992929280]]], ["MXO",["Ly",[5859000000,5388768000,46500000,39916800,9000000,3849120,699840,1474,666]]], ["MXO",["M",[8309562962452852382355161088000000,139511839126336328171520000,7531234255143970327756800,1836779512410596494540800,0,0,2859230155080499200,0,544475663327232000,0,0,5460618240000000,0,0,0,378000000000,169276262400,28740096000,11625000000,2239488000,1985679360,1125000000,658022400,508243680,302400000,125452800,72576000,58500000,33882912,11404800,10368000,1742400,1476384,1185408,876096,632736,178920,102660,72600,34440,24360,16464,6840,1640]]], ["MXO",["M11",[720,660,144,120,48]]], ["MXO",["M12",[7920,7920,1440,1440,660,432,432,240,192,192,72]]], ["MXO",["M12.2",[95040,1320,1320,480,384,384,216,144,120]]], ["MXO",["M22",[20160,5760,2520,2520,1920,1344,720,660]]], ["MXO",["M22.2",[443520,40320,11520,3840,2688,1440,1320]]], ["MXO",["M23",[443520,40320,40320,20160,7920,5760,253]]], ["MXO",["M24",[10200960,887040,322560,190080,138240,120960,64512,6072,168]]], ["MXO",["McL",[3265920,443520,443520,126000,58320,58320,40320,40320,40320,40320,7920,3000]]], ["MXO",["McL.2",[898128000,6531840,252000,116640,116640,80640,80640,15840,6000,2304]]], ["MXO",["O10+(2)",[47377612800,44590694400,10239344640,10239344640,1184440320,0,0,3110400]]], ["MXO",["O10+(2).2",[23499295948800,0,89181388800]]], ["MXO",["O10-(2)",[50536120320]]], ["MXO",["O10-(2).2",[25015379558400,101072240640]]], ["MXO",["O7(3)",[13063680,12597120,12130560,4245696,4245696,4094064,1451520,1451520,1259712,362880,362880,207360,161280,17280,13824]]], ["MXO",["O7(3).2",[4585351680,0,0,0,0,0,0,322560]]], ["MXO",["O8+(2)",[1451520,1451520,1451520,1290240,1290240,1290240,181440,181440,181440,155520,155520,155520,110592,15552,14400,14400,14400]]], ["MXO",["O8+(2).2",[174182400,2903040]]], ["MXO",["O8+(2).3",[174182400]]], ["MXO",["O8+(3)",[4585351680,4585351680,4585351680,4585351680,4585351680,4585351680,4421589120,4421589120,4421589120,174182400,174182400,174182400,174182400,136048896,26127360,26127360,26127360,622080,622080,622080,622080,622080,622080,518400,518400,518400,331776]]], ["MXO",["O8-(2)",[1658880,1451520,258048,184320,120960,8160,4320,168]]], ["MXO",["O8-(2).2",[197406720,3317760,2903040,0,0,241920,16320,8640,336]]], ["MXO",["O8-(3)",[9523422720,9170703360,9170703360,0,0,0,1244160,1244160,531360]]], ["MXO",["O8-(3).2_1",[10151968619520,0,18341406720,18341406720,0,0,97044480,0,0,1062720]]], ["MXO",["O8-(3).2_2",[10151968619520]]], ["MXO",["O8-(3).2_3",[10151968619520]]], ["MXO",["ON",[3753792,3753792,175560,161280,25920,25920,14880,14880,10752,7920,7920,2520,2520]]], ["MXO",["ON.2",[460815505920,351120,322560,51840,51840,21504,16464,930,720,336]]], ["MXO",["R(27)",[511758,19656,1512,222,168,114]]], ["MXO",["R(27).3",[10073444472,1535274,0,0,666,504,342]]], ["MXO",["Ru",[35942400,774144,349440,344064,252000,245760,31200,20160,12180,12000,4320,4000,2184,1440,1200]]], ["MXO",["S10(2)",[50030759116800,46998591897600,0,0,0,0,0,0,0,163680]]], ["MXO",["S4(4)",[11520,11520,8160,8160,7200,7200,720]]], ["MXO",["S4(4).2",[979200,23040,23040,16320,16320,14400,14400,1440]]], ["MXO",["S4(4).4",[0,0,0,0,272]]], ["MXO",["S4(5)",[30000,30000,15600,14400,960,720,480,360]]], ["MXO",["S6(2)",[51840,40320,23040,12096,10752,4608,4320,1512]]], ["MXO",["S6(3)",[12597120,4094064,1259712,622080,41472,29484,24192,11232,1092,1092,60]]], ["MXO",["S6(3).2",[25194240]]], ["MXO",["S8(2)",[394813440,348364800,185794560,20643840,8847360,8709120,4128768,3628800,1958400,1036800,2448]]], ["MXO",["Suz",[251596800,19595520,13685760,3317760,1924560,1209600,1105920,483840,368640,190080,139968,43200,25920,11232,11232,7800,2520]]], ["MXO",["Suz.2",[448345497600,503193600,39191040,27371520,6635520,3849120,2419200,2211840,967680,737280,380160,279936,86400,51840,15600,5040]]], ["MXO",["Sz(32)",[31744,164,100,62]]], ["MXO",["Sz(8)",[448,52,20,14]]], ["MXO",["Sz(8).3",[29120,1344,156,60,42]]], ["MXO",["Th",[634023936,319979520,92897280,33094656,25474176,944784,944784,349920,12000,12000,7056,6840,5616,720,465,120]]], ["MXO",["U3(11)",[53240,5280,1320,1320,1320,360,360,360,288,111,72]]], ["MXO",["U3(3)",[216,168,96,96]]], ["MXO",["U3(3).2",[6048,432,336,192,192]]], ["MXO",["U3(4)",[960,300,150,39]]], ["MXO",["U3(4).2",[62400,1920,600,300,78]]], ["MXO",["U3(4).4",[124800,3840,1200,600,156]]], ["MXO",["U3(5)",[2520,2520,2520,1000,720,720,720,240]]], ["MXO",["U3(5).2",[126000,5040,2000,1440,480,336]]], ["MXO",["U3(5).3",[126000,3000,720,216,216,63]]], ["MXO",["U3(7)",[16464,2688,384,336,129]]], ["MXO",["U3(8)",[10752,1512,216,216,216,162,57]]], ["MXO",["U3(8).3_1",[0,0,0,0,0,0,0,171]]], ["MXO",["U3(9)",[58320,7200,720,600,219]]], ["MXO",["U4(2)",[960,720,648,648,576]]], ["MXO",["U4(2).2",[25920,1920,1440,1296,1296,1152]]], ["MXO",["U4(3)",[29160,25920,25920,20160,20160,11664,6048,5760,5760,2520,2520,2520,2520,1152,720,720]]], ["MXO",["U4(3).2_1",[3265920,58320,51840,51840,40320,40320,23328,12096,11520,11520,2304,1440,1440]]], ["MXO",["U4(3).2_3",[3265920,58320,40320,40320,23328,12096,2304,1440,1440,1440,768]]], ["MXO",["U4(3).D8",[0,0,0,233280]]], ["MXO",["U5(2)",[82944,77760,46080,9720,3888,660]]], ["MXO",["U5(2).2",[13685760,165888,155520,92160,19440,0,1320]]], ["MXO",["U5(3)",[0,52254720,0,0,51840]]], ["MXO",["U6(2)",[13685760,13271040,10321920,6531840,6531840,6531840,1474560,1451520,1451520,1451520,443520,443520,443520,155520,93312,40320]]], ["MXO",["U6(2).2",[9196830720,27371520,0,0,0,0,2903040,887040,311040]]], ["MXO",["U6(2).3",[9196830720]]], ["MXO",["U7(2)",[84085309440,82771476480,0,0,0,0,3674160]]], ["MXS",["(2^2x3).U6(2)",["2^2x3xU5(2)","3x2^2.2^(1+8)_+:U4(2)","2^10:6.L3(4)","2x6_1.U4(3).2_2","2x6_1.U4(3).2_2","2x6_1.U4(3).2_2","3x2^2.2^(4+8):(S3xA5)","2^2x3xS6(2)","2^2x3xS6(2)","2^2x3xS6(2)","2x6.M22","2x6.M22","2x6.M22","2^2x3xS3xU4(2)","(2^2x3).(3^(1+4).[2^7.3])"]]], ["MXS",["12.M22",["12_1.L3(4)","2.2^5:3A6","2.(2x3.A7)","2.(2x3.A7)","3x2.(2^5:S5)","3x2.(2x2^3:L3(2))","(4x3.A6).2_3","3x2.(2xL2(11))"]]], ["MXS",["12_1.L3(4)",["3x4_1.2^4:A5"]]], ["MXS",["12_2.L3(4)",["3x4_2.2^4:A5"]]], ["MXS",["2.2E6(2)",["","","2xF4(2)","2.F4(2)","2.F4(2)","","2xFi22","2.Fi22","2.Fi22"]]], ["MXS",["2.A10",["2.A9","Isoclinic(2.A8.2)","(2.A7x3).2","2.(A5xA5).4","2.(A6xA4).2","2^(1+4).S5","M10x2"]]], ["MXS",["2.A11",["2.A10","Isoclinic(2.A9.2)","(2.A8x3).2","2.(A7xA4).2","2.(A6xA5).2","2xM11","2xM11"]]], ["MXS",["2.A12",["2.A11","Isoclinic(2.A10.2)","(2.A9x3).2","2.(A6xA6).2^2","2.(A8xA4).2","2.(A7xA5).2","2.M12","2.M12","2^(1+6)_-.3^3.S4","2.2^5.S6","2.3^4.2^3.S4"]]], ["MXS",["2.A5",["2.L2(3)","2.D10","2.S3"]]], ["MXS",["2.A5.2",["2.A5","2.S4","5:8","(2^2x3).2"]]], ["MXS",["2.A6",["2.A5","2.A5","3^2:8","2.S4","2.S4"]]], ["MXS",["2.A7",["2.A6","2.L3(2)","2.L3(2)","Isoclinic(2.A5.2)","(2.A4x3).2"]]], ["MXS",["2.A8",["2.A7","2^(1+3):L3(2)","2^(1+3):L3(2)","2.A6.2_1","2(A4xA4).2^2","(2.A5x3).2"]]], ["MXS",["2.A9",["2.A8","Isoclinic(2.A7.2)","(2.A6x3).2_1","L2(8):3x2","L2(8):3x2","2.(A5xA4).2","(2x3^3).S4","2x3^2:2A4"]]], ["MXS",["2.B",["2^2.2E6(2).2","","2xFi23","","2xTh","","","","(S3x2.Fi22).2","","","","","2.(3^2:D8xU4(3).2^2).2","","(GL(2,3)x2F4(2)').2","","","","","","","(5^2:4S4x2.A5):2","","","2xM11","","","","2x47:23"]]], ["MXS",["2.Co1",["2xCo2","6.Suz.2","2.2^11:M24","2xCo3","(2x2^(1+8)_+).O8+(2)","2xU6(2).3.2","2.(A4xG2(4)).2","2.2^(2+12):(A8xS3)","2.2^(4+12).(S3x3S6)","(3^2x2).U4(3).D8","2x3^6:2.M12","2.(A5xJ2).2","2x3^(1+4).2U4(2).2","(2.A6xU3(3)).2","3^(3+4):(2.S4)^2","2.A9xS3","(2.A7xL2(7)).2","(D10x2.(A5xA5).2).2","2x5^(1+2):GL2(5)","5^3:(4x(2xA5).2)","2x7^2:(3x2A4)","2x5^2:2A5"]]], ["MXS",["2.Fi22",["2^2.U6(2)","2xO7(3)","2xO7(3)","O8+(2):S3x2","2^11.M22","2^7:S6(2)","2.(2x2^(1+8)):U4(2):2","S3x2.U4(3).2_2","2x2F4(2)'","2^(1+5+8).(S3xA6)","2.(3^(1+6):2^(3+4):3^2:2)","S10x2","S10x2","2xM12"]]], ["MXS",["2.G2(4)",["2.J2","2.2^(2+8).(3xA5)","2.2^(4+6).(A5x3)","Isoclinic(2xU3(4).2)","Isoclinic(6.L3(4).2_3)","Isoclinic(2xU3(3).2)","2.A5xA5","2.L2(13)"]]], ["MXS",["2.HS",["2.M22","Isoclinic(U3(5).2x2)","Isoclinic(U3(5).2x2)","Isoclinic(2.L3(4).2_1)","Isoclinic(S8x2)","2.2^4.S6","2.4^3.L3(2)","2xM11","2xM11","2.4.2^4.S5","2.(2xA6.2^2)","5:4x2.A5"]]], ["MXS",["2.HS.2",["2.HS","2.M22.2","2.L3(4).(2^2)_(1*23)","","","","","","5^(1+2)_+:[2^6]"]]], ["MXS",["2.J2",["2xU3(3)","(2x3.A6).2","2^(1+4)_-:2A5","2^(3+4):(3xS3)","2A4xA5","2A5xD10","(2xL3(2)).2","2.(5^2:D12)","2.A5"]]], ["MXS",["2.J2.2",["2.J2","Isoclinic(2xU3(3).2)","","","","","(2.A5xD10).2"]]], ["MXS",["2.L2(11)",["2.A5","2.A5","2x11:5","2.D12"]]], ["MXS",["2.L2(13)",["(2x13).6","2.D14","2.D12","2.L2(3)"]]], ["MXS",["2.L2(17)",["(2x17).8","2.S4","2.S4","2.D18","2.D16"]]], ["MXS",["2.L2(19)",["2x19:9","2.A5","2.A5","2.D20","2.D18"]]], ["MXS",["2.L2(23)",["2x23:11","2.S4","2.S4","2.D24","2.D22"]]], ["MXS",["2.L2(25)",["(2x5^2).12","Isoclinic(2.A5.2)","Isoclinic(2.A5.2)","2.D26","2.D24"]]], ["MXS",["2.L2(27)",["2x3^3:13","2.D28","2.D26","2.L2(3)"]]], ["MXS",["2.L2(29)",["(2x29).14","2.A5","2.A5","2.D30","2.D28"]]], ["MXS",["2.L2(31)",["2x31:15","2.A5","2.A5","2.D32","2.D30","2.S4","2.S4"]]], ["MXS",["2.L3(2)",["2.S4","2.S4","2x7:3"]]], ["MXS",["2.L3(2).2",["2.L3(2)","7:12","2.D16","2.D12"]]], ["MXS",["2.L3(4)",["2^5:A5","2^5:A5","2xA6","2xA6","2xA6","2xL3(2)","2xL3(2)","2xL3(2)","Isoclinic(2x3^2:Q8)"]]], ["MXS",["2.M12",["2xM11","2xM11","A6.D8","A6.D8","2.L2(11)","2x3^2.2.S4","2x3^2.2.S4","4Y(2xA5):2","(2xQ8).S4","2.(4^2:D12)","2.A4xS3"]]], ["MXS",["2.M12.2",["2.M12","2xL2(11).2"]]], ["MXS",["2.M22",["2.L3(4)","2^5:A6","2xA7","2xA7","2^5:S5","2x2^3:L3(2)","(2xA6).2_3","2xL2(11)"]]], ["MXS",["2.M22.2",["2.M22","2.L3(4).2_2","2^5:S6","2^6:S5","2x2^3:L3(2)x2","(2xA6).2^2","2xL2(11).2"]]], ["MXS",["2.O7(3)",["4.U4(3).2_2","(2x3^5).U4(2).2","2.L4(3).2_2","2xG2(3)","2xG2(3)","2x3^(3+3):L3(3)","2.S6(2)","2.S6(2)","2.3^(1+6)_+.(2A4xA4).2","Isoclinic(2.A9.2)","Isoclinic(2.A9.2)","2.(2^2xU4(2)).2","2^(1+6)_+:A7","2.(S6xS4)","2.(A4x2(A4xA4).2).2"]]], ["MXS",["2.O8+(2)",["2xS6(2)","2.S6(2)","2.S6(2)","2^7.A8","2^(1+6)_+.A8","2^(1+6)_+.A8","2xA9","2.A9","2.A9","2x(3xU4(2)):2","(3x2.U4(2)):2","(3x2.U4(2)):2","2.2^(1+8)_+:(S3xS3xS3)","(2x3^4:2^3).S4","(A5xA5).(2x4)","2.(A5xA5).2^2","2.(A5xA5).2^2"]]], ["MXS",["2.Ru",["(2x2F4(2)').2","2.2^6:u3(3):2","2.(2^2xSz(8)):3","2.2^3+8:L3(2)","2xU3(5).2","2.2.2^4+6:S5","L2(25).(2x4)","2xA8","2.L2(29)","2x5^2:4S5","3.A6.(2x4)","5^(1+2):(4x4):4","Isoclinic(L2(13).2x2)","A6.D8","5:4x2.A5"]]], ["MXS",["2.S6(2)",["2.U4(2).2","Isoclinic(2.A8.2)","2.(2^5:S6)","2xU3(3).2","2.2^6.L3(2)","2^2.[2^6].(S3xS3)","2.(S3xS6)","L2(8):3x2"]]], ["MXS",["2.Suz",["2.G2(4)","Isoclinic(6_2.U4(3).2_3')","2xU5(2)","2.2^(1+6)_-.U4(2)","2x3^5:M11","2.J2.2","(2.2^4.2^6):3A6","2.(A4xL3(4)).2","2.(2^(2+8):(A5xS3))","Isoclinic(2.M12.2)","2.(3^(2+4):2(A4x2^2).2)","(A6x2.A5).2","(3^2:4x2.A6).2","(2xL3(3)).2","(2xL3(3)).2","2.L2(25)","2.A7"]]], ["MXS",["2.Suz.2",["2.Suz","Isoclinic(2.G2(4).2)","","","","","","","","","","","","","","2.A7.2"]]], ["MXS",["2.Sz(8)",["2.2^(3+3):7","2x13:4","2x5:4","D28"]]], ["MXS",["2.U4(2)",["2.(2^4:A5)","2.A6.2_1","2x3^(1+2)+:2A4","(2x3^3).S4","2.(2.(A4xA4).2)"]]], ["MXS",["2.U4(2).2",["2.U4(2)","2.(2^4:S5)","2.(S6x2)","2.(3^3:(S4x2))","2x3^(1+2)_+:2S4","2.(2.(A4xA4).2.2)"]]], ["MXS",["2.U6(2)",["2xU5(2)","2.2^(1+8)_+:U4(2)","2^10:L3(4)","2xU4(3).2_2","2.U4(3).2_2","2.U4(3).2_2","2.2^(4+8):(S3xA5)","2xS6(2)","2xS6(2)","2xS6(2)","2xM22","2.M22","2.M22","2xS3xU4(2)","2.(3^(1+4).[2^7.3])","2.L3(4).2_1"]]], ["MXS",["2.U6(2).2",["2.U6(2)"]]], ["MXS",["2E6(2)",["","","F4(2)","F4(2)","F4(2)","","Fi22","Fi22","Fi22","O10-(2)","","","","2E6(2)N3C","U3(8).3_1"]]], ["MXS",["2F4(2)'",["L3(3).2","L3(3).2","2.[2^8]:5:4","L2(25)","2^2.[2^8]:S3","A6.2^2","A6.2^2","5^2:4A4"]]], ["MXS",["2F4(2)'.2",["2F4(2)'","2.[2^9]:5:4","L2(25).2_3","2^2.[2^9]:S3","5^2:4S4","3^(1+2):SD16","13:12"]]], ["MXS",["2^2.2E6(2)",["","","2x2.F4(2)","2x2.F4(2)","2x2.F4(2)","","2x2.Fi22","2x2.Fi22","2x2.Fi22"]]], ["MXS",["2^2.L3(4)",["2^6.A5","2^6.A5","2^2xA6","2^2xA6","2^2xA6","2^2xL2(7)","2^2xL2(7)","2^2xL2(7)","2^2.(3^2:Q8)"]]], ["MXS",["2^2.L3(4).2_2",["2^2.L3(4)","2^2.2^4.S5","2^2.2^4.S5","2^2.S6","D8xL3(2)","2^2.(3^2:Q8.2)"]]], ["MXS",["2^2.Sz(8)",["2^2.2^(3+3):7","2^2x13:4","5:4x2^2","2^2xD14"]]], ["MXS",["2^2.Sz(8).3",["2^2.Sz(8)"]]], ["MXS",["2^2.U6(2)",["2^2xU5(2)","2^2.2^(1+8)_+:U4(2)","2^10:2.L3(4)","2x2.U4(3).2_2","2x2.U4(3).2_2","2x2.U4(3).2_2","2^2.2^(4+8):(S3xA5)","2^2xS6(2)","2^2xS6(2)","2^2xS6(2)","2x2.M22","2x2.M22","2x2.M22","2^2xS3xU4(2)"]]], ["MXS",["3.2E6(2)",["","","3xF4(2)","3xF4(2)","3xF4(2)","","3.Fi22","3.Fi22","3.Fi22"]]], ["MXS",["3.A6",["3xA5","3xA5","3^(1+2):4","3xS4","3xS4"]]], ["MXS",["3.A6.2_1",["3.A6"]]], ["MXS",["3.A7",["3.A6","3xL3(2)","3xL3(2)","3xA5.2","3.(A4x3):2"]]], ["MXS",["3.Fi22",["6.U6(2)","3.O7(3)","3.O7(3)","3xO8+(2):S3","2^10:3.M22","3x2^6:S6(2)","3x(2x2^(1+8)):U4(2):2","S3x3_1.U4(3).2_2","3x2F4(2)'","2^(5+8):(S3x3.A6)","3.3^(1+6):2^(3+4):3^2:2","3xA10.2","3xA10.2","3xM12"]]], ["MXS",["3.Fi22.2",["3.Fi22","6.U6(2).2"]]], ["MXS",["3.Fi24'",["3xFi23"]]], ["MXS",["3.Fi24'.2",["","","(S3x2.Fi22).2","","","","","","","","","","","","","(3^(1+2):2^2xG2(3)):2"]]], ["MXS",["3.G2(3)",["3xU3(3).2","3xU3(3).2","3.(3^(1+2)+x3^2):2S4","3.(3^(1+2)+x3^2):2S4","3xL3(3).2","3xL3(3).2","3xL2(8).3","3x2^3.L3(2)","3xL2(13)","3.2^(1+4)+:3^2.2"]]], ["MXS",["3.J3",["3xL2(16).2","3xL2(19)","3xL2(19)","3x2^4:(3xA5)","3xL2(17)","3x(3xA6):2_2","3^3.3^(1+2):8","3x2^(1+4)_-:A5","3x2^(2+4):(3xS3)"]]], ["MXS",["3.J3.2",["3.J3","(3xL2(16):2).2","","","3.(3xM10):2","3^3.3^(1+2):8.2"]]], ["MXS",["3.L3(4)",["3x2^4:A5","3x2^4:A5","3.A6","3.A6","3.A6","3xL3(2)","3xL3(2)","3xL3(2)","3^(1+2)_+:Q8"]]], ["MXS",["3.L3(7)",["3x7^2:2.L2(7).2","3x7^2:2.L2(7).2","3xL3(2).2","3xL3(2).2","3xL3(2).2","3.(A4x3):2","3^(1+2)_+:Q8","3x19:3"]]], ["MXS",["3.M22",["3.L3(4)","2^4:3A6","3.A7","3.A7","3x2^4:S5","3x2^3:L3(2)","3.A6.2_3","3xL2(11)"]]], ["MXS",["3.M22.2",["3.M22","3.L3(4).2_2","2^4:3.S6","(2^4:S5x3).2","2^3:L3(2)xS3","3.A6.2^2","(L2(11)x3).2"]]], ["MXS",["3.McL",["3_2.U4(3)","3.M22","3.M22","3.U3(5)","3.3^(1+4):2S5","3^5:M10","3xL3(4).2_2","3x2.A8","3.2^4:A7","3.2^4:A7","3xM11","3x5^(1+2):3:8"]]], ["MXS",["3.McL.2",["3.McL","3_2.U4(3).2_3'","3.U3(5).2","3.3^(1+4):4S5","3^5:(M10x2)","(3xL3(4).2_2).2","(2.A8x3).2","M11xS3","3.McL.2N5","3.2^(2+4):(S3xS3)"]]], ["MXS",["3.O7(3)",["6_1.U4(3).2_2","3.3^5:U4(2):2","3xL4(3).2_2","3.G2(3)","3.G2(3)","3.(3^(3+3):L3(3))","3xS6(2)","3xS6(2)","3.3^(1+6)_+.(2A4xA4).2","3xS9","3xS9","3x(2^2xU4(2)):2","2^6:3A7","3xS6xS4","3.(A4x2(A4xA4).2).2"]]], ["MXS",["3.ON",["3xL3(7).2","3xL3(7).2","3xJ1","12_2.L3(4).2_1","3.(3^2:4xA6).2","3^(1+4)_+:2^(1+4)_-D10","3xL2(31)","3xL2(31)","3x4^3.L3(2)","3xM11","3xM11","3.A7","3.A7"]]], ["MXS",["3.ON.2",["3.ON","","","3.(3^2:4xA6).2^2"]]], ["MXS",["3.Suz",["3xG2(4)","3^2.U4(3).2_3'","3xU5(2)","3x2^(1+6)_-.U4(2)","3^6.M11","3xJ2.2","3x2^(4+6).3A6","(A4x3.L3(4)).2","3x2^(2+8):(A5xS3)","3xM12.2","3.3^(2+4):2(A4x2^2).2","(3.A6xA5):2","(3^(1+2):4xA6).2","3xL3(3).2","3xL3(3).2","3xL2(25)","3.A7"]]], ["MXS",["3.Suz.2",["3.Suz","(3xG2(4)).2","3^2.U4(3).(2^2)_(133)","(3xU5(2)).2","(3x2^(1+6)_-.U4(2)).2","3^6:(M11x2)","S3xJ2.2","(3x2^(4+6):3A6).2","(A4x3.L3(4).2_3).2","(3x2^(2+8):(A5xS3)).2","S3xM12.2","3.3^(2+4):2(S4xD8)","(3.A6.2_2xA5):2","(3^(1+2):8xA6).2","(3xL2(25)).2_2","3.A7.2"]]], ["MXS",["3.U6(2)",["3xU5(2)","3x2^(1+8)_+:U4(2)","2^9:3.L3(4)","3_1.U4(3).2_2","3_1.U4(3).2_2","3_1.U4(3).2_2","3x2^(4+8):(S3xA5)","3xS6(2)","3xS6(2)","3xS6(2)","3.M22","3.M22","3.M22","3xS3xU4(2)","3.(3^(1+4).[2^7.3])","3.L3(4).2_1"]]], ["MXS",["3D4(2)",["2^(1+8)_+:L2(8)","2^2.[2^9]:(7xS3)","U3(3).2","S3xL2(8)","(7xL2(7)):2","3^(1+2)+.2S4","7^2:2A4","3^2:2A4","13:4"]]], ["MXS",["3D4(2).3",["3D4(2)","2^(1+8)_+:L2(8):3","2^2.[2^9]:(7:3xS3)","3xU3(3).2","S3xL2(8).3","(7:3xL2(7)):2","3^(1+2)_+.(2S4x3)","7^2:(3x2A4)","3^2:2A4x3","13:12"]]], ["MXS",["4.M22",["4_1.L3(4)","2.2^5:A6","2.(2xA7)","2.(2xA7)","2.(2^5:S5)","2.(2x2^3:L3(2))","(4xA6).2_3","2.(2xL2(11))"]]], ["MXS",["4_1.L3(4)",["4_1.2^4:A5"]]], ["MXS",["4_2.L3(4)",["4_2.2^4:A5"]]], ["MXS",["6.A6",["3x2.A5","3x2.A5","3^(1+2)_+:8","3x2.S4","3x2.S4"]]], ["MXS",["6.A6.2_1",["6.A6"]]], ["MXS",["6.A7",["6.A6","3x2.L3(2)","3x2.L3(2)","3xIsoclinic(2.A5.2)","6.(A4x3).2"]]], ["MXS",["6.Fi22",["(2^2x3).U6(2)","2x3.O7(3)","2x3.O7(3)","6xO8+(2):S3","2^11.3.M22","","","S3x6_1.U4(3).2_2"]]], ["MXS",["6.Fi22.2",["6.Fi22","(2^2x3).U6(2).2"]]], ["MXS",["6.L3(4)",["3x2^5.A5","","","","","6xL3(2)","6xL3(2)","6xL3(2)","Isoclinic(2x3^(1+2)_+:Q8)"]]], ["MXS",["6.M22",["6.L3(4)","2^5:3A6","2x(3.A7)","2x(3.A7)","3x2^5:S5","6x2^3:L3(2)","Isoclinic(3.A6.2_3x2)","6xL2(11)"]]], ["MXS",["6.M22.2",["6.M22","6.L3(4).2_2"]]], ["MXS",["6.O7(3)",["12_1.U4(3).2_2","6.(3^5:U4(2):2)","3x2.L4(3).2_2","2x3.G2(3)","2x3.G2(3)","2x3.(3^(3+3):L3(3))","3x2.S6(2)","3x2.S6(2)","6.3^(1+6)_+.(2A4xA4).2","3xIsoclinic(2.A9.2)","3xIsoclinic(2.A9.2)","3x2.(2^2xU4(2)).2","2^(1+6)_+:3A7","3x2.(S6xS4)","6.(A4x2(A4xA4).2).2"]]], ["MXS",["6.Suz",["3x2.G2(4)","Isoclinic((3^2x2).U4(3).2_3')","6xU5(2)","3x2.2^(1+6)_-.U4(2)","2x3^6.M11","3x2.J2.2","3x(2.2^4.2^6):3A6","2.(A4x3.L3(4)).2","3x2.(2^(2+8):(A5xS3))","3xIsoclinic(2.M12.2)","6.(3^(2+4):2(A4x2^2).2)","(3.A6x2.A5).2","(3^(1+2):4x2.A6).2","3x(2xL3(3)).2","3x(2xL3(3)).2","3x2.L2(25)","6.A7"]]], ["MXS",["6.Suz.2",["6.Suz","","","","","","","","","","","","","(3^(1+2):8x2.A6).2"]]], ["MXS",["6.U6(2)",["6xU5(2)","3x2.2^(1+8)_+:U4(2)","2^10:3.L3(4)","2x3_1.U4(3).2_2","6_1.U4(3).2_2","6_1.U4(3).2_2","3x2.2^(4+8):(S3xA5)","6xS6(2)","6xS6(2)","6xS6(2)","2x3.M22","6.M22","6.M22","6xS3xU4(2)","6.(3^(1+4).[2^7.3])","6.L3(4).2_1"]]], ["MXS",["A10",["A9","S8","(A7x3):2","(A5xA5):4","(A6xA4):2","2^4:S5","A6.2_3"]]], ["MXS",["A10.2",["A10","S9","S8x2","S7xS3","(S5xS5):2","S6xS4","2^5:S5","A6.2^2"]]], ["MXS",["A11",["A10","S9","(A8x3):2","(A7xA4):2","(A6xA5):2","M11","M11"]]], ["MXS",["A11.2",["A11","S10","S9x2","S8xS3","S7xS4","S6xS5","11:10"]]], ["MXS",["A12",["A11","S10","(A9x3):2","(A6xA6):2^2","(A8xA4):2","(A7xA5):2","M12","M12","2^6:3^3:S4","2^5:S6","3^4:2^3.S4"]]], ["MXS",["A12.2",["A12","S11","S10x2","S9xS3","(S6xS6):2","S8xS4","S7xS5","S4wrS3","2^6:S6","S3wrS4","L2(11).2"]]], ["MXS",["A13",["A12","S11","(A10x3):2","(A9xA4):2","(A8xA5):2","(A7xA6):2","L3(3)","L3(3)","13:6"]]], ["MXS",["A13.2",["A13","S12","S11x2","S10xS3","S9xS4","S8xS5","S7xS6","13:12"]]], ["MXS",["A14",["A13","S12","","","","(A5xA9):2","","2^6:S7","L2(13)"]]], ["MXS",["A14.2",["A14","A13.2"]]], ["MXS",["A5",["A4","D10","S3"]]], ["MXS",["A5.2",["A5","S4","5:4","S3x2"]]], ["MXS",["A6",["A5","A5","3^2:4","S4","S4"]]], ["MXS",["A6.2_1",["A6","S5","S5","3^2:D8","2xS4","S4x2"]]], ["MXS",["A6.2_3",["A6","3^2:Q8","5:4","M11N2"]]], ["MXS",["A7",["A6","L3(2)","L3(2)","S5","(A4x3):2"]]], ["MXS",["A7.2",["A7","S6","2xS5","S4xS3","7:6"]]], ["MXS",["A8",["A7","2^3:L3(2)","2^3:L3(2)","S6","2^4:(S3xS3)","(A5x3):2"]]], ["MXS",["A8.2",["A8","S7","S6x2","(S4xS4):2","S5xS3","2^4:S4","L3(2).2"]]], ["MXS",["A9",["A8","S7","(3xA6).2_1","L2(8).3","L2(8).3","(A4xA5):2","3^3.S4","3^2:2A4"]]], ["MXS",["A9.2",["A9","S8","S7x2","S3xS6","S5xS4","3^3:(S4x2)","3^2.2.S4"]]], ["MXS",["B",["2.2E6(2).2","2^(1+22).Co2","Fi23","2^(9+16).S8(2)","Th","(2^2xF4(2)):2","2^(2+10+20).(M22.2xS3)","[2^30].L5(2)","S3xFi22.2","[2^35].(S5xL3(2))","HN.2","O8+(3).S4","3^(1+8).2^(1+6).U4(2).2","(3^2:D8xU4(3).2^2).2","5:4xHS.2","S4x2F4(2)'.2","3^2.3^3.3^6.(S4x2S4)","A5.2xM22.2","(S6xL3(4).2).2","5^3.L3(5)","5^(1+4).2^(1+4).A5.4","(S6xS6).4","5^2:4S4xS5","L2(49).2_3","L2(31)","M11","L3(3)","L2(17).2","L2(11).2","47:23"]]], ["MXS",["Co1",["Co2","3.Suz.2","2^11:M24","Co3","2^(1+8)+.O8+(2)","U6(2).3.2","(A4xG2(4)):2","2^(2+12):(A8xS3)","2^(4+12).(S3x3S6)","3^2.U4(3).D8","3^6:2M12","(A5xJ2):2","3^(1+4).2U4(2).2","(A6xU3(3)):2","3^(3+4):2(S4xS4)","A9xS3","(A7xL2(7)):2","(D10x(A5xA5).2).2","5^(1+2):GL2(5)","5^3:(4xS5)","7^2:(3x2A4)","5^2:2A5"]]], ["MXS",["Co2",["U6(2).2","2^10:M22:2","McL","2^(1+8)_+:S6(2)","HS.2","(2^(1+6)_+x2^4).A8","U4(3).D8","2^(4+10)(S5xS3)","M23","3^(1+4)_+:2^(1+4)_-.S5","5^(1+2):4S4"]]], ["MXS",["Co3",["McL.2","HS","U4(3).(2^2)_(133)","M23","3^5:(2xM11)","2.S6(2)","U3(5).3.2","3^(1+4)_+:4S6","2^4.A8","L3(4).D12","2xM12","2^2.[2^7*3^2].S3","S3xL2(8).3","A4xS5"]]], ["MXS",["F4(2)",["(2^(1+8)x2^6):S6(2)","(2^(1+8)x2^6):S6(2)","S8(2)","S8(2)","[2^20]:(S3xL3(2))","[2^20]:(S3xL3(2))","O8+(2).3.2","","3D4(2).3","","2F4(2)'.2","L4(3).2_2"]]], ["MXS",["Fi22",["2.U6(2)","O7(3)","O7(3)","O8+(2).3.2","2^10:M22","2^6:S6(2)","(2x2^(1+8)):U4(2):2","S3xU4(3).2_2","2F4(2)'","2^(5+8):(S3xA6)","3^(1+6):2^(3+4):3^2:2","S10","S10","M12"]]], ["MXS",["Fi22.2",["Fi22","2.U6(2).2","O8+(2):S3x2","2^10:M22:2","2^7:S6(2)","(2x2^(1+8)):(U4(2):2x2)","S3xU4(3).(2^2)_(122)","2F4(2)'.2","2^(5+8):(S3xS6)","3^5:(2xU4(2).2)","3^(1+6)_+:2^(3+4):(S3xS3)","G2(3).2","M12.2"]]], ["MXS",["Fi23",["2.Fi22","O8+(3).3.2","2^2.U6(2).2","S8(2)","S3xO7(3)","2^11.M23","3^(1+8).2^(1+6).3^(1+2).2S4","3^3.[3^7].(2xL3(3))","S12","(2^2x2^(1+8)).(3xU4(2)).2","2^(6+8):(A7xS3)","S4xS6(2)","S4(4).4","L2(23)"]]], ["MXS",["Fi24'",["Fi23","2.Fi22.2","(3xO8+(3):3):2","O10-(2)","3^7.O7(3)","3^(1+10):U5(2):2","2^11.M24","2^2.U6(2).3.2","2^(1+12).3_1.U4(3).2_2'","3^3.[3^10].GL3(3)","3^2.3^4.3^8.(A5x2A4).2","(A4xO8+(2).3).2","He.2","He.2","2^(3+12).(L3(2)xA6)","2^(6+8).(S3xA8)","(3^2:2xG2(3)).2","(A5xA9):2","A6xL2(8):3","7:6xA7","U3(3).2","U3(3).2","L2(13).2","L2(13).2","29:14"]]], ["MXS",["Fi24'.2",["F3+","2xFi23","2^2.Fi22.2","S3xO8+(3):S3","O10-(2).2","3^7.O7(3):2","3^(1+10):(2xU5(2):2)","2^12.M24","2^2.U6(2):S3x2","2^(1+12)_+.3_1.U4(3).2^2_(122)","3^3.[3^10].(L3(3)x2^2)","3^2.3^4.3^8.(S5x2S4)","S4xO8+(2):S3","2^(3+12).(L3(2)xS6)","2^(7+8).(S3xA8)","(S3xS3xG2(3)):2","S5xS9","S6xL2(8):3","7:6xS7","7^(1+2)_+:(6xS3).2","29:28"]]], ["MXS",["G2(3)",["U3(3).2","U3(3).2","(3^(1+2)+x3^2):2S4","(3^(1+2)+x3^2):2S4","L3(3).2","L3(3).2","L2(8).3","2^3.L3(2)","L2(13)","2^(1+4)+:3^2.2"]]], ["MXS",["G2(3).2",["G2(3)","3^2.(3x3^(1+2)+):D8","L2(8):3x2","2^3.L3(2):2","L2(13).2","2^(1+4)+.(S3xS3)"]]], ["MXS",["G2(4)",["J2","2^(2+8):(3xA5)","2^(4+6):(A5x3)","U3(4).2","3.L3(4).2_3","U3(3).2","A5xA5","L2(13)"]]], ["MXS",["G2(4).2",["G2(4)","J2.2","2^(2+8):(3xA5):2","2^(4+6):(A5x3):2","U3(4).4","3.L3(4).2^2","2xU3(3).2","(A5xA5):2","L2(13).2"]]], ["MXS",["G2(5)",["5^(1+4)_+:GL(2,5)","5^2.5.5^2.4S5","3.U3(5).2","L3(5).2","2.(A5xA5).2","U3(3).2","2^3.L3(2)"]]], ["MXS",["HN",["A12","2.HS.2","U3(8).3_1","2^(1+8).(A5xA5).2","(D10xU3(5)).2","5^(1+4):2^(1+4).5.4","2^6.U4(2)","(A6xA6).D8","2^3.2^2.2^6.(3xL3(2))","5^2.5.5^2.4A5","M12.2","M12.2","3^4:2(A4xA4).4","3^(1+4):4A5"]]], ["MXS",["HN.2",["HN","S12","4.HS.2","U3(8).6","2^(1+8)_+.(A5xA5).2^2","5:4xU3(5):2","5^(1+4)_+:(4Y2^(1+4)_-.5.4)","2^6.U4(2).2","(S6xS6).2^2","2^3.2^2.2^6.(S3xL3(2))","5^2.5.5^2.4S5","3^4:2(S4xS4).2","3^(1+4)_+:4S5"]]], ["MXS",["HS",["M22","U3(5).2","U3(5).2","L3(4).2_1","S8","2^4.S6","4^3:L3(2)","M11","M11","4.2^4.S5","2xA6.2^2","5:4xA5"]]], ["MXS",["HS.2",["HS","M22.2","L3(4).2^2","S8x2","2^5.S6","4^3:(L3(2)x2)","2^(1+6)_+:S5","(2xA6.2^2).2","5^(1+2)_+:[2^5]","5:4xS5"]]], ["MXS",["He",["S4(4).2","2^2.L3(4).S3","2^6:3.S6","2^6:3.S6","2^(1+6)_+.L3(2)","7^2:2L2(7)","3.A7.2","7^(1+2):(S3x3)","S4xL3(2)","7:3xL3(2)","5^2:4A4"]]], ["MXS",["He.2",["He","S4(4).4","2^2.L3(4).D12","2^(1+6)_+.L3(2).2","7^2:2.L2(7).2","3.S7x2","(S5xS5):2","2^(4+4).(S3xS3).2","7^(1+2):(S3x6)","S4xL3(2).2","7:6xL3(2)","5^2:4S4"]]], ["MXS",["Isoclinic(2.A5.2)",["2.A5"]]], ["MXS",["Isoclinic(2.L3(2).2)",["2.L3(2)"]]], ["MXS",["J1",["L2(11)","2^3:7:3","2xA5","19:6","11:10","D6xD10","7:6"]]], ["MXS",["J2",["U3(3)","3.A6.2_2","2^(1+4)_-:A5","2^(2+4):(3xS3)","A4xA5","A5xD10","L3(2).2","5^2:D12","A5"]]], ["MXS",["J2.2",["J2","U3(3).2","3.A6.2^2","2^(1+4).S5","2^(2+4):(S3xS3)","(A4xA5):2","(A5xD10).2","L3(2).2x2","5^2:(4xS3)","S5"]]], ["MXS",["J3",["L2(16).2","L2(19)","L2(19)","2^4:(3xA5)","L2(17)","(3xA6):2_2","3^2.3^(1+2)_+:8","2^(1+4)_-:A5","2^(2+4):(3xS3)"]]], ["MXS",["J3.2",["J3","L2(16).4","2^4:(3xA5):2","L2(17)x2","(3xM10):2","3^2.3^(1+2):8.2","2^(1+4).S5","2^(2+4):(S3xS3)","19:18"]]], ["MXS",["J4",["2^11:M24","2^(1+12)_+.3.M22.2","2^10:L5(2)","2^(3+12).(S5xL3(2))","U3(11).2","M22.2","11+^(1+2):(5x2S4)","L2(32).5","L2(23).2","U3(3)","29:28","43:14","37:12"]]], ["MXS",["L2(109)",["109:54","D110","D108","A5","A5"]]], ["MXS",["L2(11)",["A5","A5","11:5","S3x2"]]], ["MXS",["L2(11).2",["L2(11)","11:10","S4","D24","D20"]]], ["MXS",["L2(113)",["113:56","D114","D112","S4","S4"]]], ["MXS",["L2(127)",["127:63","D128","D126","S4","S4"]]], ["MXS",["L2(13)",["13:6","D14","S3x2","A4"]]], ["MXS",["L2(131)",["131:65","D132","D130","A5","A5"]]], ["MXS",["L2(137)",["137:68","D138","D136","S4","S4"]]], ["MXS",["L2(139)",["139:69","D140","D138","A5","A5"]]], ["MXS",["L2(149)",["149:74","D150","D148","A5","A5"]]], ["MXS",["L2(151)",["151:75","D152","D150","A5","A5","S4","S4"]]], ["MXS",["L2(157)",["157:78","D158","D156","A4"]]], ["MXS",["L2(16).2",["L2(16)","","","","D6xD10"]]], ["MXS",["L2(163)",["163:81","D164","D162","A4"]]], ["MXS",["L2(167)",["167:83","D168","D166","S4","S4"]]], ["MXS",["L2(17)",["17:8","S4","S4","D18","D16"]]], ["MXS",["L2(17).2",["L2(17)","17:16"]]], ["MXS",["L2(173)",["173:86","D174","D172","A4"]]], ["MXS",["L2(179)",["179:89","D180","D178","A5","A5"]]], ["MXS",["L2(181)",["181:90","D182","D180","A5","A5"]]], ["MXS",["L2(19)",["19:9","A5","A5","D20","D18"]]], ["MXS",["L2(19).2",["L2(19)","19:18"]]], ["MXS",["L2(191)",["191:95","D192","D190","A5","A5","S4","S4"]]], ["MXS",["L2(193)",["193:96","D194","D192","S4","S4"]]], ["MXS",["L2(197)",["197:98","D198","D196","A4"]]], ["MXS",["L2(199)",["199:99","D200","D198","A5","A5","S4","S4"]]], ["MXS",["L2(211)",["211:105","D212","D210","A5","A5"]]], ["MXS",["L2(223)",["223:111","D224","D222","S4","S4"]]], ["MXS",["L2(227)",["227:113","D228","D226","A4"]]], ["MXS",["L2(229)",["229:114","D230","D228","A5","A5"]]], ["MXS",["L2(23)",["23:11","S4","S4","D24","D22"]]], ["MXS",["L2(233)",["233:116","D234","D232","S4","S4"]]], ["MXS",["L2(239)",["239:119","D240","D238","A5","A5","S4","S4"]]], ["MXS",["L2(241)",["241:120","D242","D240","A5","A5","S4","S4"]]], ["MXS",["L2(25)",["5^2:12","S5","S5","D26","D24"]]], ["MXS",["L2(27)",["3^3:13","D28","D26","A4"]]], ["MXS",["L2(29)",["29:14","A5","A5","D30","D28"]]], ["MXS",["L2(29).2",["L2(29)","29:28"]]], ["MXS",["L2(31)",["31:15","A5","A5","D32","D30","S4","S4"]]], ["MXS",["L2(32)",["","","D62"]]], ["MXS",["L2(32).5",["L2(32)"]]], ["MXS",["L2(8)",["2^3:7","D18","D14"]]], ["MXS",["L2(8).3",["L2(8)","2^3:7:3","9:6","7:6"]]], ["MXS",["L3(11)",["11^2:(5x2L2(11).2)","11^2:(5x2L2(11).2)","L2(11).2","10^2:S3","133:3","L3(2)"]]], ["MXS",["L3(2)",["S4","S4","7:3"]]], ["MXS",["L3(2).2",["L3(2)","7:6","D16","S3x2"]]], ["MXS",["L3(3)",["3^2.2.S4","3^2.2.S4","13:3","S4"]]], ["MXS",["L3(3).2",["L3(3)","3^(1+2):D8","group6","13:6","2xS4"]]], ["MXS",["L3(4)",["2^4:A5","2^4:A5","A6","A6","A6","L3(2)","L3(2)","L3(2)","3^2:Q8"]]], ["MXS",["L3(4).D12",["L3(4).3.2_3","L3(4).6","L3(4).3.2_2","L3(4).2^2","2^(2+4):(S3xS3)","2x3^2.2.S4","S5xS3","S3x7:6"]]], ["MXS",["L3(5)",["5^2:4S5","5^2:4S5","S5","4^2:S3","31:3"]]], ["MXS",["L3(5).2",["L3(5)","","","","","31:6"]]], ["MXS",["L3(7)",["7^2:2.L2(7).2","7^2:2.L2(7).2","L3(2).2","L3(2).2","L3(2).2","(A4x3):2","3^2:Q8","19:3"]]], ["MXS",["L3(7).2",["L3(7)","7^(1+2):(D8x3)"]]], ["MXS",["L3(8)",["2^6:(7xL2(8))","2^6:(7xL2(8))","7^2:S3","73:3","L3(2)"]]], ["MXS",["L3(8).2",["L3(8)","","","","","L3(2).2"]]], ["MXS",["L3(8).3",["L3(8)"]]], ["MXS",["L3(9)",["3^4:GL2(9)","3^4:GL2(9)","U3(3)","L3(3)","A6.2_2","8^2:S3","91:3"]]], ["MXS",["L4(3)",["3^3:L3(3)","3^3:L3(3)","U4(2).2","U4(2).2","3^4:2(A4xA4).2","(4xA6):2","A6.2_2","S4xS4"]]], ["MXS",["L5(2)",["2^4:A8","2^4:A8","2^6:(L3(2)xS3)","2^6:(L3(2)xS3)","31:5"]]], ["MXS",["L5(2).2",["L5(2)"]]], ["MXS",["L6(2)",["2^5:L5(2)","2^5:L5(2)","P2L62","P2L62","P3L62","S6(2)","3.L3(4).3.2_2","L3(2)wr2","(7xL2(8)).3"]]], ["MXS",["L7(2)",["2^6:L6(2)","2^10:(L5(2)xS3)","2^12:(L4(2)xL3(2))","127:7"]]], ["MXS",["L7(2).2",["L7(2)"]]], ["MXS",["Ly",["G2(5)","3.McL.2","5^3.L3(5)","2.A11","5^(1+4):4S6","3^5:(M11x2)","3^(2+4):2A5.D8","67:22","37:18"]]], ["MXS",["M",["2.B","2^(1+24).Co1","3.F3+.2","2^2.2E6(2).3.2","","","3^(1+12).2.Suz.2","","S3xTh","","","(D10xHN).2","","","","5^(1+6):2.J2.4","(7:3xHe):2","(A5xA12):2","5^(3+3).(2xL3(5))","(A6xA6xA6).(2xS4)","(A5xU3(8):3):2","5^(2+2+4):(S3xGL2(5))","(L3(2)xS4(4):2).2","7^(1+4):(3x2.S7)","(5^2:[2^4]xU3(5)).S3","(L2(11)xM12):2","(A7x(A5xA5):2^2):2","5^4:(3x2.L2(25)).2","7^(2+1+2):GL2(7)","M11xA6.2^2","(S5xS5xS5):S3","(L2(11)xL2(11)):4","13^2:2.L2(13).4","(7^2:(3x2A4)xL2(7)).2","(13:6xL3(3)).2","13^(1+2):(3x4S4)","L2(71)","L2(59)","11^2:(5x2.A5)","L2(41)","L2(29).2","7^2:2L2(7)","L2(19).2","41:40"]]], ["MXS",["M11",["A6.2_3","L2(11)","3^2:Q8.2","S5","2.S4"]]], ["MXS",["M12",["M11","M11","A6.2^2","A6.2^2","L2(11)","3^2.2.S4","3^2.2.S4","2xS5","M8.S4","4^2:D12","A4xS3"]]], ["MXS",["M12.2",["M12","L2(11).2","L2(11).2","(2^2xA5):2","2^3.(S4x2)","4^2:D12.2","3^(1+2):D8","S4xS3","S5"]]], ["MXS",["M22",["L3(4)","2^4:A6","A7","A7","2^4:S5","2^3:L3(2)","A6.2_3","L2(11)"]]], ["MXS",["M22.2",["M22","L3(4).2_2","2^4:S6","2^5:S5","2x2^3:L3(2)","A6.2^2","L2(11).2"]]], ["MXS",["M23",["M22","L3(4).2_2","2^4:A7","A8","M11","2^4:(3xA5):2","23:11"]]], ["MXS",["M24",["M23","M22.2","2^4:A8","M12.2","2^6:3.S6","L3(4).3.2_2","2^6:(L3(2)xS3)","L2(23)","L3(2)"]]], ["MXS",["McL",["U4(3)","M22","M22","U3(5)","3^(1+4)_+:2S5","3^4:M10","L3(4).2_2","2.A8","2^4:A7","2^4:A7","M11","5^(1+2)_+:3:8"]]], ["MXS",["McL.2",["McL","U4(3).2_3","U3(5).2","3^(1+4):4S5","3^4:(M10x2)","L3(4).2^2","Isoclinic(2.A8.2)","2xM11","5^(1+2):(24:2)","2^(2+4):(S3xS3)"]]], ["MXS",["O10+(2)",["S8(2)","2^8:O8+(2)","2^10:L5(2)","2^10:L5(2)","(3xO8-(2)):2","","","(A5xU4(2)):2"]]], ["MXS",["O10+(2).2",["O10+(2)","","2^8:O8+(2):2"]]], ["MXS",["O10-(2)",["2^8:O8-(2)"]]], ["MXS",["O10-(2).2",["O10-(2)","2^8:O8-(2):2"]]], ["MXS",["O7(3)",["2.U4(3).2_2","3^5:U4(2):2","L4(3).2_2","G2(3)","G2(3)","3^(3+3):L3(3)","S6(2)","S6(2)","3^(1+6)_+:(2A4xA4).2","S9","S9","(2^2xU4(2)):2","2^6:A7","S6xS4","(A4x2(A4xA4).2).2"]]], ["MXS",["O7(3).2",["O7(3)","","","","","","","2^6:S7"]]], ["MXS",["O8+(2)",["S6(2)","S6(2)","S6(2)","2^6:A8","2^6:A8","2^6:A8","A9","A9","A9","(3xU4(2)):2","(3xU4(2)):2","(3xU4(2)):2","2^(1+8)_+:(S3xS3xS3)","3^4:2^3.S4","(A5xA5):2^2","(A5xA5):2^2","(A5xA5):2^2"]]], ["MXS",["O8+(2).2",["O8+(2)","2xS6(2)"]]], ["MXS",["O8+(2).3",["O8+(2)"]]], ["MXS",["O8+(3)",["O7(3)","O7(3)","O7(3)","O7(3)","O7(3)","O7(3)","3^6:L4(3)","3^6:L4(3)","3^6:L4(3)","O8+(2)","O8+(2)","O8+(2)","O8+(2)","3^(1+8)_+:2(A4xA4xA4).2","2.U4(3).(2^2)_(122)","2.U4(3).(2^2)_(122)","2.U4(3).(2^2)_(122)","(A4xU4(2)):2","(A4xU4(2)):2","(A4xU4(2)):2","(A4xU4(2)):2","(A4xU4(2)):2","(A4xU4(2)):2","(A6xA6):2^2","(A6xA6):2^2","(A6xA6):2^2","2((A4wr2^2):2)"]]], ["MXS",["O8-(2)",["2^6:U4(2)","S6(2)","2^(3+6):(L3(2)x3)","2^(1+8)_+:(S3xA5)","(A8x3):2","L2(16).2","(S3xS3xA5):2","L3(2)"]]], ["MXS",["O8-(2).2",["O8-(2)","2^6:U4(2).2","2xS6(2)","","","S8xS3","L2(16).4","(S3xS3):2xS5","L3(2).2"]]], ["MXS",["O8-(3)",["3^6:2U4(3).2_1","O7(3).2","O7(3).2","","","","S4xU4(2).2","S4xU4(2).2","L2(81).2_1"]]], ["MXS",["O8-(3).2_1",["O8-(3)","","O7(3).2x2","O7(3).2x2","","","D8xL4(3).2_2","","","L2(81).4_1"]]], ["MXS",["O8-(3).2_2",["O8-(3)"]]], ["MXS",["O8-(3).2_3",["O8-(3)"]]], ["MXS",["ON",["L3(7).2","L3(7).2","J1","4_2.L3(4).2_1","(3^2:4xA6).2","3^4:2^(1+4)D10","L2(31)","L2(31)","4^3.L3(2)","M11","M11","A7","A7"]]], ["MXS",["ON.2",["ON","J1x2","4_2.L3(4).(2^2)_(12*3)","(3^2:4xA6).2^2","3^4:2^(1+4).(5:4)","4^3.(L3(2)x2)","7^(1+2)_+:(3xD16)","31:30","A6.2_2","L3(2).2"]]], ["MXS",["R(27)",["","","L2(8).3","","(2^2xD14):3","19:6"]]], ["MXS",["R(27).3",["R(27)","","","","37:18","","19:18"]]], ["MXS",["Ru",["2F4(2)'.2","(2^6:U3(3)):2","(2^2xSz(8)):3","2^3+8:L3(2)","U3(5).2","2.2^(4+6):S5","L2(25).2^2","A8","L2(29)","5^2:4S5","3.A6.2^2","5^1+2:(2^5)","L2(13).2","A6.2^2","5:4xA5"]]], ["MXS",["S10(2)",["O10-(2).2","O10+(2).2","","","","","","","","L2(32).5"]]], ["MXS",["S4(4)",["2^6:(3xA5)","2^6:(3xA5)","L2(16).2","L2(16).2","(A5xA5):2","(A5xA5):2","S6"]]], ["MXS",["S4(4).2",["S4(4)","2^6:(3xA5):2","2^6:(3xA5):2","L2(16).4","L2(16).4","(A5xA5):2^2","(A5xA5):2^2","S6x2"]]], ["MXS",["S4(5)",["5^(1+2)_+:4A5","5^3:(2xA5).2","L2(25).2_2","2.(A5xA5).2","2^4:A5","S5xS3","(2^2xA5):2","A6"]]], ["MXS",["S6(2)",["U4(2).2","S8","2^5:S6","U3(3).2","2^6:L3(2)","2.[2^6]:(S3xS3)","S3xS6","L2(8).3"]]], ["MXS",["S6(3)",["3^(1+4)_+.2U4(2)","3^6:L3(3)","3^(3+4):2(S4xA4)","2.(A4xU4(2))","2^(2+6):3^3:S3","L2(27).3","2xU3(3).2","L3(3).2","L2(13)","L2(13)","A5"]]], ["MXS",["S6(3).2",["3^(1+4).2U4(2).2"]]], ["MXS",["S8(2)",["O8-(2).2","O8+(2).2","2^7:S6(2)","2^10.A8","2^(3+8):(S3xS6)","S3xS6(2)","2^(6+6):(S3xL3(2))","S10","S4(4).2","(S6xS6):2","L2(17)"]]], ["MXS",["Suz",["G2(4)","3_2.U4(3).2_3'","U5(2)","2^(1+6)_-.U4(2)","3^5:M11","J2.2","2^(4+6):3A6","(A4xL3(4)):2_1","2^(2+8):(A5xS3)","M12.2","3^(2+4):2(A4x2^2).2","(A6xA5).2","(3^2:4xA6).2","L3(3).2","L3(3).2","L2(25)","A7"]]], ["MXS",["Suz.2",["Suz","G2(4).2","3_2.U4(3).(2^2)_(133)","U5(2).2","2^(1+6)_-.U4(2).2","3^5:(M11x2)","J2.2x2","2^(4+6):3S6","(A4xL3(4):2_3):2","2^(2+8):(S5xS3)","M12.2x2","3^(2+4):2(S4xD8)","(A6:2_2xA5).2","(3^2:8xA6).2","L2(25).2_2","S7"]]], ["MXS",["Sz(32)",["2^(5+5):31","41:4","25:4","D62"]]], ["MXS",["Sz(8)",["2^(3+3):7","13:4","5:4","D14"]]], ["MXS",["Sz(8).3",["Sz(8)","2^(3+3):7:3","13:12","5:4x3","7:6"]]], ["MXS",["Th",["3D4(2).3","2^5.L5(2)","2^(1+8)_+.A9","U3(8).6","(3xG2(3)):2","[3^9].2S4","3^2.[3^7].2S4","3^5:2S6","5^(1+2):4S4","5^2:4S5","7^2:(3x2S4)","L2(19).2","L3(3)","A6.2_3","31:15","S5"]]], ["MXS",["U3(11)",["11^(1+2)_+:40","2(L2(11)x2).2","L2(11).2","L2(11).2","L2(11).2","A6","A6","A6","(4^2x3):S3","37:3","3^2:Q8"]]], ["MXS",["U3(3)",["3^(1+2):8","L3(2)","4.s4","4^2:S3"]]], ["MXS",["U3(3).2",["U3(3)","3^(1+2):SD16","L3(2).2","2^(1+4).S3","4^2:D12"]]], ["MXS",["U3(4)",["2^(2+4):15","5xA5","5^2:S3","13:3"]]], ["MXS",["U3(4).2",["U3(4)","2^(2+4):(3xD10)","A5xD10","5^2:D12","13:6"]]], ["MXS",["U3(4).4",["U3(4).2"]]], ["MXS",["U3(5)",["A7","A7","A7","5^(1+2)+:8","A6.2_3","A6.2_3","A6.2_3","2.A5.2"]]], ["MXS",["U3(5).2",["U3(5)","S7","5^(1+2)_+:8:2","A6.2^2","2S5.2","L3(2).2"]]], ["MXS",["U3(5).3",["U3(5)","5^(1+2)+:24","3x2S5","3^2:2A4","6^2:S3","7:3x3"]]], ["MXS",["U3(7)",["7^(1+2):48","2(L2(7)x4).2","8^2:S3","L3(2).2","43:3"]]], ["MXS",["U3(8)",["2^(3+6):21","3xL2(8)","3^2:2A4","3^2:2A4","3^2:2A4","(9x3).S3","19:3"]]], ["MXS",["U3(9)",["3^(2+4):80","5xIsoclinic(2.A6.2_2)","A6.2_2","10^2:S3","73:3"]]], ["MXS",["U4(2)",["2^4:A5","S6","3^(1+2)+:2A4","3^3:S4","2.(A4xA4).2"]]], ["MXS",["U4(2).2",["U4(2)","2^4:S5","S6x2","3^(1+2)+:2S4","3^3:(S4x2)","W(F4)"]]], ["MXS",["U4(3)",["3^4:A6","U4(2)","U4(2)","L3(4)","L3(4)","3^(1+4)_+.2S4","U3(3)","2^4:A6","2^4:A6","A7","A7","A7","A7","2(A4xA4).2^2","A6.2_3","A6.2_3"]]], ["MXS",["U4(3).2_1",["U4(3)","3^4:(2xA6)","U4(2).2","U4(2).2","L3(4).2_2","L3(4).2_2","3^(1+4)+.4S4","2xU3(3)","2^4.S6","2^4.S6","4(A4xA4).4","A6.2^2","A6.2^2"]]], ["MXS",["U4(3).2_3",["U4(3)","3^4:M10","L3(4).2_3","L3(4).2_1","3^(1+4):4S4","U3(3).2","2(A4xA4).4.2","M10x2","A6.2^2","A6.2^2","(4^2x2)S4"]]], ["MXS",["U4(3).D8",["","","","3^4.A6.D8"]]], ["MXS",["U5(2)",["2^(1+6):3^(1+2):2A4","3xU4(2)","2^(4+4):(3xA5)","3^4:S5","S3x3^(1+2)+:2A4","L2(11)"]]], ["MXS",["U5(2).2",["U5(2)","","","","","","L2(11).2"]]], ["MXS",["U5(3)",["","4.U4(3).4","","","U4(2).2"]]], ["MXS",["U6(2)",["U5(2)","2^(1+8)_+:U4(2)","2^9.L3(4)","U4(3).2_2","U4(3).2_2","U4(3).2_2","2^(4+8):(S3xA5)","S6(2)","S6(2)","S6(2)","M22","M22","M22","S3xU4(2)","3^(1+4).2^(1+1+2+2).S3","L3(4).2_1"]]], ["MXS",["U6(2).2",["U6(2)","U5(2).2","","","","","","M22.2"]]], ["MXS",["U6(2).3",["U6(2)"]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr126B0.g",["a19c821dff8a64bea006201a5d26ca88b6089611c9037f21d187bb696894295b"]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr160B0.g",["f24c944ef796d9dd631f0cf85e530777f506441018e0db540a286b6e40fa4c2b"]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr210B0.g",["fb72e671bccd8863aed37872827c496721d4d1a14860e0c16dcd05dd60a783dd"]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr224aB0.g",["a1f6e6adb3b44a3ace7b8a64f7ec926f77433c3f460c9bd8adb76c4467d956cb"]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr224bB0.g",["65d6dfabf93134f9074ad3e283b715c258ff7d9dcdd35a5305c833b7985a1a77"]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr225B0.g",["22bbded4af863bb181091a241c37b2e595f55dfb15f859bbd34ebc1e1fa73046"]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr35B0.g",["90a5f9a47a6126b70c39e187c0d0b164881a0a7bfd69e0de84abef33209c5787"]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr36B0.g",["3e0b002eb93329e29a7bf468c604203825fd43fb10a79c21df28c169dc9793f4"]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr42B0.g",["14a37d662fe81ef0cd09da7ff20514cd8a230ae91b211f4424558fc53d998166"]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr75B0.g",["68d9e40b10bf6fc2ebc7b1386dc5c04e54cbfc90ed302d091a481383b220b945"]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr84B0.g",["4d01cbe16eac4a63b805d166164c47c6e902022bff84e249fcd65ece5c3ec3c6"]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr90B0.g",["c84956a23d8be4e536e50534c83f2e3d65c357bd78b55e7786c27d46a9846800"]]], ["TOC",["matint","alt/A10/gap0/A10G1-Zr9B0.g",["3abc6144625c49eb44d707d60cc4ec6d74cc3332819dc50cbf612d28cf0b6f40"]]], ["TOC",["matff","alt/A10/mtx/2A10G1-f3r16B0.m",["5244b1548e91f8ae3515f6cd644790a2362828f7b1768315cfd1e6de29d1818b","31be7f3c302b85e08610eb0c1f66126694de353cd14fe816569166e3433c5ab3"]]], ["TOC",["matff","alt/A10/mtx/2A10G1-f5r56B0.m",["7ca19074b7cdf8525ee7a250698e1daf4c1bbf5be68bf21c2b9bb44b7b77f6f4","294a862fd0c6ffc6cb9f6db174fa972b18a6ceed9e430ed7e1902baed9fd7472"]]], ["TOC",["matff","alt/A10/mtx/2A10G1-f5r8B0.m",["29226f36ef64bb8c77fb1bd49aacde067b0b8963536f06d745e12f0d63c76c61","9c4196639e50c1d4ca4d3439479ba0f6471039cbdbc8ed3141bf0d572d0cf17c"]]], ["TOC",["matff","alt/A10/mtx/2A10G1-f7r16B0.m",["795654d459f1536aa27d35b984568104c23c676b3e216ba04ccaa7b6e1abae45","acf5d6831320790239350e7213812eaf9146fb40d885080549620b226a32681a"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r160B0.m",["c858844088fd6e5c36c70b420b54d28aa8347a23d9fd6759294fd46aaff99ea","5a5f1b2598b3f517123de054d59167ec2542856c5a02eff981e5dbc0e14ddc26"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r16B0.m",["70944e5a10889041fba190d60f635fb839976ed50fa6f14286fdde371ef2e3d2","448901f75480b7f43a8f760d2fc81657ce4a744475969eb57d2b656f8c58aee8"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r198B0.m",["1425ec7f2bacfd8f9947d6f170b90649564647c70807d3cb814a3b03135f4d1d","458ed7062f2a68d340b4ac7265fdab020eef6237e60a9006c77ed329e5684de8"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r200B0.m",["25e39ff239edfdc4dabddd843e263c707fea41de07ce14e13ddc4eb5403254b9","279d06e6a0441608d4b948f0f82b83159493bdac1fbcc9a715d7a69fafe6a848"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r26B0.m",["87aebefc0a5c43ea298bd84be2c395c59c4903e9f3e9003a02463d93f6af147a","b76c57eb819dec5faffc560b94a0e34da236d6a5339aaca1cd87b65e5299b2d6"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r48B0.m",["faaf8a765282327e26b1e81070ae8502396d66ef65ff1b4e4b49a75314f20c52","bc947db0672ffa961ca8538ad79d34e16510948a510fbdc1e1f5549e05fc5eb6"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r64aB0.m",["8d47bfc50a473d05d3c3f0bceead09d11ed6dbdb5dfb4e303b2d6a9d2490333a","b2732197aa2709ddbdb381bae1df210996fedb76821591222ba26ed5e176106c"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r64bB0.m",["d7c188e1fb0716d970596d0c5dbb24424673dbd96ae719697492f57fff89611b","9552f867fbddd9687cf4622a0bdf2b13f3ae7d694738860ff8eaac42627bfabf"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f2r8B0.m",["622cf18ad42e56d63f092cfbb2a325dad1ad71070834b9a235fce8c11317976e","1e22e3e9d2f2207c39bae19977ff1c9c9be015f36e68f6c38f0256959e8f3d0c"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r126B0.m",["deef0ad8580c5e769ba60097f9be9ff96939a464e97b98a8b1d420206abd14f2","725625aa800bab9369930cd4033a38a32ed3f003c126d59bab0507f4bf9d4be8"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r224B0.m",["78fd0f5772c381912a6203b2bfbc168cbbc2275e8f23c71ac9b218ebd6c5d7c5","ebc7e8c4dcc7ba0a9a06ab8f5010149097d7c968aa44406a2ad9dc62e401cca7"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r279B0.m",["aa3bf201a949b7c84ba4c09f1c981eca1487d638fb483e7f9259dad532f1396e","d1467fa362b388b31c42830efa69fffac3234ef5c5206c7f84058d64cc63df2c"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r34B0.m",["60b65cb9b314b3ba0c63a1d18b7a6f103aaa901430a774e514962857df44a08e","af6bde302a249acbfdfa517dfd6ae4d10cb84c9d112d922ddf084de8942e304c"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r36B0.m",["9560cfe0a825c77980383aeb14e3129ebff9796665c121c444b23f4b0f471df7","603226e9baf246acb98f208ee9262766c5a3a82ec4af58c3357e225e5e246da8"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r41B0.m",["cf60433c6ac8dda8d4fe3b949e149b05e3c5055af5369f24f07febe16f845b88","b467e0460f14d7442eed8abdae176beb8dce3e613516a6d28fbcc833fe625f40"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r567B0.m",["fe612fcdf9901f34a4fb7e2649ee4eb9a768c4361d44e24b48c82b8ce905e2e1","78b420d37f463069b8056ee75ebe29a53c57424e7d9a714f23ff5e8e5c90710c"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r84B0.m",["8a832278fee48c16e6dcce4b1b08f11fcbb6cfc4a58b0280b2e7863086dc6404","7802b53dd0edab7e5b33b3f9f83dc1bd0317cc4102f6683aca280dd21b12d11c"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r90B0.m",["f753e0bd5712ade333c2de9b6423f004ec9d6f8f9780c803f85c52fe75f0df45","40993973d9741ddf3435d88ebaf1d6386291a0f33086fa17efdfe7172b7da17e"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f3r9B0.m",["dc57ede920d15c4a2c2aa8592b2c0ea133b11c3dac17cc76ce0484d05ce73657","bfccc3e3bb0f7e33c3e1f2b1e8dd2f476c48e2dccee887ec3abe705ac2c1445e"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f4r384aB0.m",["76f23f325b3d095ba3a4c8d1296e8c5d7f3ee8691e248c991e5f4a920ae7a768","5d56d424a0e987050f4c9dd5de540a2853a5f6e260438d1ee8aea1a03dd6238c"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r133aB0.m",["cf0647e342d739759befd5361e89b91f2b3f28ff6b2c99ff3c174cbe173d816","6708356b0ac1412551252360b467e219f87d91eaee035091d49f47c1f0a9b640"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r133bB0.m",["31a9909d6dbd074f71c0ff92d4eb32267ca947d90464c143a6c6764d6f24a669","4d8de1affb55c2af9b22565a5be1d7686035f8ebcea4b9fafd06a2fd167431db"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r155B0.m",["8f1fc36e419883bc5d8566043070efd21ce920fc0a496898b198bf65b911abc1","40a4b84485217d5f18aa8efe120b32a46b7d9e1a97b0fa818f144956ff672c1c"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r160B0.m",["8bf4bcabea45a7561dbb24bf596964c671f0b211034f4272f9ff064a80a0b95f","18a96306f6a1b9d720429ba2ff96471096b66f559bea0f8db8a34a2ae56dab82"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r217B0.m",["a8f58f30b2b6545316f075e6b6eab50cf4d19a6b99c6bc2a45786c62d12ea610","ccc9c2e90f3e358ab80c1446a03e1ec71e788344414c3619ea097a75d9b71323"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r225B0.m",["c9b26b93f70a57dc7f948a79ba7f00f6d24a3209a0865ea29682c9483d0cbb59","387b647728bc9597a66c018e9d1069a5a55bb2d66c76e8092fb923755ca82c99"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r28B0.m",["1c2e310ec50ee3972b908b1be3409133e034ff471f29785112d5af3a2f1f62b6","8c72a5d90e76d5137a025861eb97462a311098d43a9b4ca1e0c621b3bf50bdd3"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r300B0.m",["5e120726f71786a80ae1369cf25207b01791b7b5d9c2252f559e66ddd582e533","23b545764022f3948ea7442824dd3009cac87f8a7161a45c6d8d85b5c004799a"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r34B0.m",["abeeff54f7bcebe714c46a73d72aa22f7650fa0a0fe9dcd86818a5aba1da8b57","5d2c5ddc1a0aa724137080c703d3bf9bbc91b8254469c41f0203d6f8a0a4ecb7"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r350B0.m",["28e26cdef35df67b68cabe2ddd3f56fb05e23af2942e9747094a2e988b9fb0a4","6f7cbbf1910b03cd7fcd7074f2438f59c24e3f7a556856e99b4565784caa14ce"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r35aB0.m",["86c995887b6924481ebc458225e67240305ec28a0eb45fca01eb51cdaf560909","8affd4e1e51415de40ba3f97122351eab6b0972216df1cfa86f386dc3e48fd0c"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r35bB0.m",["255ca1986a992c86fb9cfc3239ca7eab9a70a5a54ab0842773ece302bbf72a07","12dbaaf631ed22f94e9a862ca0d18243551e15c6dccb8e257b8baf05ca69523e"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r35cB0.m",["9cbebafb7ba3a145752f7b53b150c9a9a1ff8d0acd1dff0510fd606b80db5c20","26d3e8b302445f74449d119e8ae79556b46fd9ae2a994b7eefdc6f200267b7ea"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r450B0.m",["1d6cd0691928f2c14c77712b4ff2ab7ec49913b038dd46d8694118d056c5634d","c46ce5588223bc0ef31b8258f56ce473d0f8f037ba283cde30eba0a9e30a4585"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r525B0.m",["4bccc0d52f6bb144e3f708f2ccb1a0353125ff082201082ead969c169f5cda86","3c052cd622490a3a6d9579cec9dcb30eb828c767864c33f06f4ea083c6ecef8f"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r55B0.m",["8ea05680fe6ce3544b135c3089d3284a0bbd59977851a1fced5581057ceea2d4","9b8f23c8edc7fe23d57128f2613bf7277603bfa219bc5ad92272355245ea0c90"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r56B0.m",["f7efde924e3198edb8f04ba8e09e2883ef87149d318c90db4ee787e56a9a6f05","2206cc5124479a5b62fe48b128eadc8e6ea5d03b06019213a354cc1aa754b617"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r75B0.m",["4606e309a86f6c88600a074f7540a51c1ad81f17bc92ecf214748c7db9d36fce","4ea7f75ca3845dcfbf5a95328c0da87e083e5a520bd0e1811b1eb8aea704d3d9"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f5r8B0.m",["786af04e965c680830e6009a9b7fbb166d3b26ca6a0af8ad5515a8a79257861b","937aaed4361445c24f04a6e205c248a2ad2037794b6960e1be426f691c577a5d"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r124B0.m",["e702ff58957faa3adaf54bc37d77c057399b32062446edf3f06c457fedc18ee4","f9ce77287d8f4a59513ba84708d3ec86b092c82644c90f1f0b0b211678c85331"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r126B0.m",["6c70b5c2d3a016e48c0d809517ac6db772380fa2ef9b1e7dc546437fd1bc2116","93429e29d4dc90ec3c10c3b7688651e22b630239bae26d719c67c116eeb2a67"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r315B0.m",["f687328fed99cecc6f9b0d5f9c374800a1ad253d7cd545f732c0b06b4fd00443","fcd4651eac16c6e6e7dc21dcf372a8f2764f69b7da955eb9f5ff295e103601d7"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r35B0.m",["c3bc0074743be38b9980b28298e6b1da7a2de788c2b5cf9da1ac14518c05d1d8","b0654a986812cffe5c4c36a343214c6f022660935a8a6b116d41a7b65471eb6d"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r36B0.m",["91cd9975f83bdcf58fe1a604d73e5cc418005e6cb178e1ded40c1b5ef13878a0","8c6a6a643d2baeb9b0a2ccb43c597471a9e9ff3619ea24345095baac09a38154"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r66B0.m",["c3da013ec4ad2807975d52d99c30dd431a82c11d646b96e610ff1fb44370a7bf","4cadc400bf132d8384c2ec2e502f0bbe469ce631128f7c39ef9f2688a1e1e705"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r84B0.m",["23d68ad48898bf44710f6482c89e365b4d389bf8fa75276c704a1bab8eaecf0e","b7b5e7802deda056c55d4f9ab199600bc88b79ec92337b7a39fb87b48a750667"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r89B0.m",["35c2224c3d3b16002ec794a20cdf4d893eea8b84cba29d6adc730028f093c252","e36259bd19e1d58c0d035876bc12c82d95f16859aec1de7c5f7d6fd2825a4473"]]], ["TOC",["matff","alt/A10/mtx/A10G1-f7r9B0.m",["e4f3150a6253ccf254200e0c3455d41df87ce292fa69912f54dbd527553d7c0e","6a5f772e0c6f72673997295d0287e6dd1b535a5850560588b8d3936ae9c2f29"]]], ["TOC",["perm","alt/A10/mtx/A10G1-p10B0.m",["1e9fd1278dde845c4db15571e02e2b5c7e7e556375416e2790899fcf2a49c18","f073ffe759bd6b78de6aa43230362c32ef3635a6709a487530820ca1b7827516"]]], ["TOC",["perm","alt/A10/mtx/A10G1-p120B0.m",["217d1edffc388a9d13237661ed4cdda987e9911b099dfbab86bd933fa5de7735","a763cb2d7ad2359fd6b0b68c6915b8a0c7244fc3f707e55eaf061ad7bf794764"]]], ["TOC",["perm","alt/A10/mtx/A10G1-p126B0.m",["1390183651020986e29218f8de9edaa50ba69145b9e8d0405f76bfc879087dde","656a49732ef5ee60a7cde80ffc1f33785039313512c8db2c453b6596da2e359e"]]], ["TOC",["perm","alt/A10/mtx/A10G1-p210B0.m",["6f6aa7e987ea736dd0cd4f4ebec7672a738242762d02bb0432c9b42761d3685b","1cad1ff59535b1fe1830fd058c6f2667d92efc78517bc24f4637e830a051e9f9"]]], ["TOC",["perm","alt/A10/mtx/A10G1-p2520B0.m",["adf59a59b364d494185d24d0450aac04634f80e697cc6f9d1163d93cd2041d9c","8ae0805f244497cc1489b7372b6d2ec552c7ecd4b40a1c646fc08d3bae532e07"]]], ["TOC",["perm","alt/A10/mtx/A10G1-p45B0.m",["699e705907153627204160fff2d84d254e10d95aa566e15bb709df7a504a2908","2dacf3fc4d524ba4f6e38eaef96ae4c8a64fa630578573d542a496a1d1b56d4d"]]], ["TOC",["perm","alt/A10/mtx/A10G1-p945B0.m",["17f4a1e147423fbc151f2af010bec01544b35d5e2bff49685bf08226fe1c3cb1","4669e8a53110bb6046fe18d5975515d0274541016a13359bcc34b1de1934c9a1"]]], ["TOC",["perm","alt/A10/mtx/S10G1-p10B0.m",["f18544e0c16727fbc6f488cc9ca11366f506a02d1ccf3ff78cbacdee0a822bbc","f416c00859a2d968f766fb0991c1b9e50b7e9486593ac2ac57e346b76c7fc0fe"]]], ["TOC",["check","alt/A10/words/A10G1-check1",["4e461df1c1fc000d45e3aa5de79570472be4ae1c768383d8e92044bbd248754b"]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr10B0.g",["841e2726d304ddc61c2bd0dd8c98c9d1dd65e0e05e0b7e063f08978223e2b8ea"]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr110B0.g",["70fabf3f2281f997d23b149539234904eab4844e10b60725bfc4dbf225f54832"]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr120B0.g",["409afba3e60c70afa89404e91eb07b8b9772d7addd5928c18887a2822041c7e9"]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr132B0.g",["b5a277fafa633f8a80bbcc9414f4890f8fdab9894182bbaff12fd287a53b404b"]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr165B0.g",["956a20a33b601d877d03297f5876c47a72cba0088f36e745311ecc10641dfa7c"]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr210B0.g",["ad0ed1a2c98384389392c3b0506a314b6358a243bfabd3df75b94e40fe50445"]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr231B0.g",["c3df64e8d9499b9624b6e1cf5363736dcdd25f6c0f4bccdc84988a3de31b7b48"]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr252B0.g",["bf7ad9627db656d9edc96ffd4fc2f8957ee7a57838cefc2095189cac462752f2"]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr44B0.g",["d45625d2a0773c6587cf8e2a9ab6210f768ece20045508ae50235d6d26950864"]]], ["TOC",["matint","alt/A11/gap0/A11G1-Zr45B0.g",["7c6f82d73c46abb5949e2afd05aa6ebe458344e538733f8255e3a909196e500a"]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f11r128B0.m",["c83737c3f145a2375876012f4e6b32a94fe3a512a3cc7010af647dc46c35777a","eb2ce33fc3155445528df87ea7072270dbe734b64908b78921bd2602cbaf3f74"]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f11r16B0.m",["597ebde81ee2916d8d93b8aab4dbe3e57b87431b522142a1e17c0cc3bd5d686c","484ce2e7b02d9c0eea289fdffca43dfa7f917cf637be4b2712b8a327b7c1eef9"]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f3r144B0.m",["139873b8edcc12045785972df14978b03e0283b6e46c2568c0b11ca83e497f23","f6905045d157a3dd7a7e60d53fe62d31324a1d6b16b481fd558e8022af252853"]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f3r16aB0.m",["137482c2abf489883773eb84f22d07d476374a73b594afc4f879c96277e3a914","d51ca718d3bf238eea7381c49ea78dba19e720cdfc56470e15ee867439bcb163"]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f3r16bB0.m",["137482c2abf489883773eb84f22d07d476374a73b594afc4f879c96277e3a914","b3e79d7ef0a201d0d9f6e700e55e7d024eb51b3d4a0d6da2a575e84a1cf8c2e7"]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f49r16aB0.m",["2c5812ca4cf4b3f58f9045466a1e5706abfef6b62f0540e66ff7717734bb508c","61e1fc92bd699f07e9d693d2eb0da7caaf8cf7c6886e8e6632519a25f8f9a56e"]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f49r16bB0.m",["2c5812ca4cf4b3f58f9045466a1e5706abfef6b62f0540e66ff7717734bb508c","f5abf3eba57b007b0103b78a4be6802d94c67fae2486e3c602a974fb5bbab5c3"]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f5r16aB0.m",["a3219ef7a9cb31b32c0fa9abdd855790edd9cfba5fa8ae4a5f34cb65b0b548","9daac5914242bfe145b67461717a3f2e8ca49bd873c4e572599699d1351fefa3"]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f5r16bB0.m",["a3219ef7a9cb31b32c0fa9abdd855790edd9cfba5fa8ae4a5f34cb65b0b548","6d469a89a973af69e54aa5c3bb0ee91a8bfad5a81cc6c2aafcd03fd5483458ef"]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f5r56aB0.m",["a258e31447edba4c7195f978d9fe3318afda569abd17253de6a23d87e351c22c","294a862fd0c6ffc6cb9f6db174fa972b18a6ceed9e430ed7e1902baed9fd7472"]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f5r56bB0.m",["4e77f683cff2630bc5c87cae2ddb35c43dfeb8402178caaf1bc1146c01399c0f","294a862fd0c6ffc6cb9f6db174fa972b18a6ceed9e430ed7e1902baed9fd7472"]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f7r144B0.m",["e31a0afd47fb60ae7dd137682cac65c187ce9c6a59962e77bbb9fa5dad148781","fe3278e3a73ad833940f403327e35ca3e024040029e3aab37907106d95992348"]]], ["TOC",["matff","alt/A11/mtx/2A11G1-f7r32B0.m",["c0e395917376e134a5717c630b98f7540d617fb041f70f69f97e0c442d2485b8","3075652bd2d80ba26d90ed0874d7e190b9f180918f05a937e3cbcb89ff9a8cd0"]]], ["TOC",["perm","alt/A11/mtx/2A11G1-p5040B0.m",["467f53b916f9d7e4ac58eeef1285b5fca8892f231856c248af61e3157ec8c8e3","6e48de7a61fc508c6cb8cb190c9159cad6562cb8c17aedb8457834867b4ed901"]]], ["TOC",["matff","alt/A11/mtx/2S11G1-f11r16B0.m",["427bdc9f0b88588de19cdda8e6f0405aa124797215013f3518e77886cd8d535f","19ed492286b9fd9f6a220b1cff9f1304c6b0122bf04a046db2a3e231ee5b5626"]]], ["TOC",["matff","alt/A11/mtx/2S11G1-f3r32B0.m",["c568f8f473371ce91ffb02520ecc7bde16089e00090b5b71f34007a6ad9e8b5d","3d78235a8588cd80d14860b46c7876db1e9d1cf4cff5932a5136150408ea478c"]]], ["TOC",["matff","alt/A11/mtx/2S11G1-f5r32B0.m",["e572b60eb725223e51ecd427a3de9486d719acc8b25e3244b64851e52dedf6f3","4affb9d7633c897be63db8a427a10daad134863137143240d3c6654b930755d6"]]], ["TOC",["matff","alt/A11/mtx/2S11G1-f7r32B0.m",["b55b97c1f920a95771e7a2e276d0098d7e8a9bc60e927b50748c3d0add64283c","1dda9f12e794ccabd48d6d978dc224b2ef12fc3e68d03200e38e9dadb80efce5"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f11r36B0.m",["1677e0fa6abf74cb7c01f9ec8da8be75f2e0911ec768e10eb8e7a455c24564cf","af20a76b6037a31cf54a5025917330ceb80b5ec86fcff8bdf55df31e9008fea5"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f11r44B0.m",["f3af15fde16784655eef374fa36617656e2b4b469df15608b929116cccd964d5","353c6078c12266e777dff48f92de221a6ba72cdd1d4d5e89850c2fc65a071bf3"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f11r84B0.m",["75a67500b545ed1424dfae2844cd2fbfdecc64a57b6fb5d279dd849d6f3aa561","2c702c8757d9ae7992b061d0bc924e54d6728c79a0962985ad7b9e408f41c930"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f11r9B0.m",["e6e9c131978c0d46dc1cd0abbc56ee5df1617b937208b1de4e5ad4c202392d22","e848e67d6b87bd435a84d20bc7c1e635402de3570fdd6c22bdf15415239af5bc"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r100B0.m",["751b2289f49ab1a6801e6453e01f6521ec038c980f7afa06d9c53fc0b4d438ed","31a27fb563ef7a4a0d33ebedbe3433e2170b230894e9625772387b9d791b7e97"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r10B0.m",["b1a77db3bc46a00971d5918f6264a1d7de887d420e6d3a6e3d916bda5761605a","60366d73bee56b64861fca6cf6b6b80e68253238e7889682375b4b82a45e09a1"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r144B0.m",["7c22c641784e41e7cb3ebc7c7cf821d2bd3b3e0c359b21c63f98b01e86abea37","338da50ee73badc160dba1aca3d0046cedccdad9d6822ac7732d7fb11d4d20b8"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r164B0.m",["6c18ac9a9b5409a5c0a374bf0481e7ac361ccc77b5a056114ea0ab6eb931255f","d28f333174a7fdea66796b272a8cace977f56b04ab69bd49d1c8787d6ba09dbc"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r186B0.m",["6fe88eea2c9b99a6df016f02f3df90b445e282a03357f3aaaea9e5497ccb8f75","c7b135a879ca552fa7552811501e2bea2874c07afb2f2df8ec5bfb1d216313cb"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r198B0.m",["ed819f3dfff734e1f88699649e217e143fd8788823eeb7681b24e60f7025d4aa","8e4a5b1820dd68db7c200d4cbea4c1a71530bc21e0cd61416072c8ea8a2fcaf9"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r32B0.m",["2da5652914ec903dd8263dc22660f36bce2b31dc5a29240523a5c83774cccf37","afd36290478ccaefdb70a5aca3b8bbaaab22d4e2559a56617e525327eede3288"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r416B0.m",["8fdf54aaf4689d98984a834a2ffa15d74ef1ba0543f9b525ff781cc11bd600f","b452b55ecf4615cddc41af9c4c5a1e37c64989265c579f519b21e91d09489028"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r44B0.m",["c4bff27c226dda62359773580e63ca3d083d90bb1e7bf401a6c5e4719d280423","3bd6bce58e67764dfe06292b75ca9362df981548add7735cea32aba8a2163cf"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f2r848B0.m",["3063e0a2024e9947131de1093ae7eef250e0fb665afcf8cbb9649e9defb86f1f","eef220294d4ef6f12c70a4a2ce67986d7a845e95d696ea2ddbcb3ae27c9fba59"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f3r109B0.m",["472d6b50cc20a6f135363e8e5fbd7a58a81c087cf3271b8e6bd36ddd14a59864","bf026e5636687d6e07c513be987d25cf0e0dd15543b96fc98cef5344fed3bda0"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f3r10B0.m",["d6a7c55f7cff37904361ba1f8619045dc717ac44fe48a4cc4261cf4a8edd8df2","ed027c6f65c34f2d0a28616a6b21586c57db4288f7b389a414afab4ddf2d45ab"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f3r120B0.m",["58cae54810f79e7dce5723ec796221b82a699b386115af5d99cf1795f4ee27e9","ca4b5c90cb7de9661e5f7b08c00186a09a21f628b552acc11828240d4d9c29e2"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f3r126aB0.m",["4bb8e3a8f73b728e731decb6fb650e27057ad2e2e104ab612c2e880e88ddf43d","6a0cf6f5965837c0cf7528bf5e8312280ddd5ebceb9f156d6adae68a038eb5c9"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f3r126bB0.m",["c056fb91f8dae3284a2f94d048ef1a90c86e0a6233f06d2017b8699b43fa2fc1","9b2bdd590621bd80509adf30971ee843812c1606adb5a8d214e7fd74acd8d1d8"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f3r131B0.m",["69b19c64ede28489d7d8614391c2f48ea93385028dc39d4bb2b49529b60e4e51","e82adb9e5c427f31eea0a27adaf1c382aff5b39ef64ba380f9d268c2fcc7d989"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f3r34B0.m",["6aacb2341c8231e9b4c69ad91aecf05802a3e88e5fd118f72e7779c91d385ce6","b0e1c65bfa1c1d60332137f7f310feba2eda7184a5778d6d40a7ec99e7bd0a01"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f3r45B0.m",["2e69c1a229f3a7cd6f14da011aeb7413cdad02399694152ffd42ab4744ab23fa","f99e704f6476d6e8761d2069742e4535456b555b29a8902746b2268f0ced7752"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f4r16aB0.m",["fec22a42d3d2eff80cb6b046e23b0ca476e68bc7ab5c6d4fa9814b801f02ba1d","ea5d9ce7f1ed0c9d00cfbfe2971199a090672b71aa0e2ef711e027a3b218b548"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f4r16bB0.m",["fec22a42d3d2eff80cb6b046e23b0ca476e68bc7ab5c6d4fa9814b801f02ba1d","3d1279785fedffe78d8e1ff2fd30a1e9428643de36986507dab6b28f26869b39"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f4r584aB0.m",["ab7899554c2c94b68b58b00af9626f28bb1a4ed2ff5fb81a6c3dcf5c3a9c86e9","7dc1e7ca9be5bd6042209dec5a4892957591b6c2d6852506fb72971ede2d5891"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f5r10B0.m",["696006348f14e1f781be49b90205d0b98366aa9f33e63aa508720c3d10b056e4","2f89ab646caae25a840e83e3fa416ed3f39472b66ffa52241bbf703522bebc02"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f5r110B0.m",["9bb7eb38d7e5147b7877f6498b618329eae6c735de8435e99f9d95c936f8ca0e","a140965c3245dc891b48c234e01c5d308c89628a576892c5521321400724a6d0"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f5r120B0.m",["868467b073345003ce1c5ccd8d1096d4aef6119192fc880dcdfd98388fe4aa90","309d7be6af05be4356493dc559f4cc16c81dd10a952fc6d030b98a454112a6b0"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f5r43B0.m",["fcb2d7fb146fe51371d58939c980c089e164c41c082fd116a5e38d8c4a95f57f","35cb28eb9f866b010d4d781e8fec0fada82f5030cb5e6c05396aa222603d215e"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f5r45B0.m",["14ca8c5afc7ad40d8c7a166238f1ca4dd5c6d50d47ad23023742c1cab4e33725","b83154e186daf2d2bf148b0a00710fc394d62194f5da8944595dd1238073bfc2"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f5r55B0.m",["c243669a7266c48ca4e97a0ea13f90d15e7c308aace3b72e0fe37aab824abaac","2dfa344b3890ae82494191bfb78f434abba5ba599cafa696be28bbe183795dc6"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f5r89B0.m",["aa32f47830a7480e9fb478cf5aaf37c307c47b410f59326569d53cfe1307b8c6","ee27c717d2b93ccdce712b232c8477be2824f1c0e7b8473203f7ab0087568c07"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f7r10B0.m",["626e64504ea7a0b0a9e1c8241ac77d8220c25b09645614b9aa0886dcfa293f4f","448551d02ef4ddae789dea4d6ca78cf0992169da20bf2c4031ce51cff576dfe5"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f7r44B0.m",["4a78920e23cc163e203a6586076ebb9f99f786f393181ad63dca0ed7dfef47f2","dd26e2a8d68a8570e4bafb378ff866fe5ee24c46c15f268ad76e9463b3a12d05"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f7r45B0.m",["6c31f508522227a5fda4a923d8738cc5d29240fcc95fed7974ef768f802c3b3d","ed7087123047486d9bb984c9430723f255b08053de0f0840771407edb337aa2"]]], ["TOC",["matff","alt/A11/mtx/A11G1-f7r66B0.m",["a3e6d788d144c23c08865cad7803247e8b357b4df3228025d06e8f5d06935e31","30330d63a614caf87c5fb4fc73bb47eec46e67f7c45c911fcf4cfb40d8a31758"]]], ["TOC",["perm","alt/A11/mtx/A11G1-p11B0.m",["2d395a4b9db470faef7b08dc021b9437c5e83238522c3ec4987540b34b02b71b","7d9033a0fd171090cd0878f965921ee6baa2885d297b618c39577a8f8c9de985"]]], ["TOC",["perm","alt/A11/mtx/A11G1-p165B0.m",["14b41f8e70b1d4d992a06009c37e2529774b058c7b0f4100160741093d638ca7","3a0ed01bfce71497c6fd34220415a7fee074955929ce03f23761cb45188c67e3"]]], ["TOC",["perm","alt/A11/mtx/A11G1-p2520aB0.m",["5c439deb5c875bf88ccccc5fe5300cb6c71c21d9b8bda3c29fb06001feca2093","5d3e91d89da3dbc113297cbc8363305d5c9af7c9792b871a2a9f2ae49ce372"]]], ["TOC",["perm","alt/A11/mtx/A11G1-p2520bB0.m",["6356414ab9bffb3292da37c4a0dfc1754b8681d29d1f426674615aee1721b79d","61a5d95e6a31aa676c071ccde8ecfaffd41f7b2a2ef4bb0e0a85ca8bc642ecf8"]]], ["TOC",["perm","alt/A11/mtx/A11G1-p330B0.m",["392e1c9bf2ec679b280cca85f8d37e3e04cd91804717b1e0f7aa7aa62fc6cd3","d551fa0c3fd6005e55f366e752bdadeba080d91a93d0a744f1ef8fc0419deaa5"]]], ["TOC",["perm","alt/A11/mtx/A11G1-p462B0.m",["873f707fa1494891631bac43f6abad96d13e6cc7a4514911e5e5bd876f608d74","7abcb6a938651a1310d17dfc13e276f0f69b454a7537c86d212b0c0fae0ceef6"]]], ["TOC",["perm","alt/A11/mtx/A11G1-p55B0.m",["ca39cdc1ab3697185ee78d00d76d86120aeffdcd240492c864e3df0ea4f7b864","f8b432e782b127fe867dfdace45d1ecca14e85746ea5e0a02d5cdb0bd805602"]]], ["TOC",["matff","alt/A11/mtx/S11G1-f2r32B0.m",["3595807c6596e3a63cd205925d27f434b16d3838e02deb97d17752bf126f87f0","b21bf20c1258b58ce1f4a791c6857bd5050fef6f2ccd62a19c33964a9982bd5d"]]], ["TOC",["perm","alt/A11/mtx/S11G1-p11B0.m",["b3216152971d2793bf3db9c91c07bac5e76ed0a509ab2d208842cfbae81155a9","6e2f460e67b962af7c356a7d6cc0b52964aa2ceddc176a029e0b798e05431c8d"]]], ["TOC",["check","alt/A11/words/A11G1-check1",["95cd2c0443e519ec9c7aaad788dbfce02f3c5926de969e0ef33ab4c7631a16c0"]]], ["TOC",["matint","alt/A12/gap0/A12G1-Zr11B0.g",["449485ae4d4879475bb1c03885573bd5f013a8020b8a0d5c3e432cbb5103b20a"]]], ["TOC",["matint","alt/A12/gap0/A12G1-Zr132B0.g",["e12e95ebdc5662e2138f6fa99ee5c1bff8356bd74462e937a3f6c6c6cff3b876"]]], ["TOC",["matint","alt/A12/gap0/A12G1-Zr154B0.g",["881bb7946945966de71e856d16ec1b7986820a7db3e1cbab3c388e2a6ba3b4a2"]]], ["TOC",["matint","alt/A12/gap0/A12G1-Zr165B0.g",["51239cd54563f253352ffed0b0ef687dce1fd5cae38da7b53baf18cc3d445a1b"]]], ["TOC",["matint","alt/A12/gap0/A12G1-Zr54B0.g",["3157f454c1beebf800a0b00bc576e19235f5dbb027776c631d12d2814dcb9517"]]], ["TOC",["matint","alt/A12/gap0/A12G1-Zr55B0.g",["41fab9a7e84039c99e9901830407394c124e3b2c7c251c8700117ffa361e1c88"]]], ["TOC",["matff","alt/A12/mtx/2A12G1-f11r32B0.m",["9e5a583ca9430b2ec486936c034a65d5d1b472965dd50f2f5e5bef4c54dad35d","167b13a82445ac3d3abb28a5799d8d63ab76ba2d254ab3db0d7e533c7c91b437"]]], ["TOC",["matff","alt/A12/mtx/2A12G1-f3r16aB0.m",["e23c4ed6a8b7f877c7d3d2d1492d9bdfbd24f16cc1a498189695bd9f0b07b2ee","ae69707399f4bdd210d38c827cf5a92a03ad89f648575bddb5690ff04082f32f"]]], ["TOC",["matff","alt/A12/mtx/2A12G1-f3r16bB0.m",["424b70acef80db0be235240981bc5c30b5e5afffae4dc33d4528c570c9751a31","762f1c914f09b39ea9a7d0e5080e4a7a924265df49e39774899089a7761283c5"]]], ["TOC",["matff","alt/A12/mtx/2A12G1-f5r32B0.m",["850fbab466baf2b0e245df30c7b9f143f5975161104bf8a73b13016c96e9ecfe","32886aae0d60a01dd08c5a2fa0748e3bc748eeef8aa0c305a2237f59db88e28"]]], ["TOC",["matff","alt/A12/mtx/2A12G1-f7r32B0.m",["d0a6050a38fd200d929836cc83dd0321fc1ff43dc5470a183ea0f42079280c45","cb85377789bee58f08e5f1fbee078ba752f31f0ebcdddb0702ee5ea2e7debe3b"]]], ["TOC",["matff","alt/A12/mtx/A12G1-f2r100B0.m",["5123abefb3f1be900e6e9a7d9618afcaffba4386d2be3685601ec2f1a4d99ce3","d9ce7345a06d490bff68b9a5f0caa11c6a89fc6be11f990531fd7469679e250"]]], ["TOC",["matff","alt/A12/mtx/A12G1-f2r10B0.m",["e6ace5f36b4b718e6db780402e028a3ed29489867215aeb14a894b4811ba98b2","70c4b25930bd208ff3c2b8150c12974fd0fa10f1f982ecb14a17db4977fa46b9"]]], ["TOC",["matff","alt/A12/mtx/A12G1-f2r44B0.m",["6b91a7e0f74b1eca732171fa2b6347380c6d207fc23dbc359035ada1901dcf0c","6187d33460386a5ce6f16b4ec23dbff6feb4606f24c1e02d4036aad61c8abf9d"]]], ["TOC",["matff","alt/A12/mtx/A12G1-f3r10B0.m",["2eb5dbc52699c11e23c1bb2dc56a69d573c94badbf1f5ffda11d2b6cfbf4445f","ebf531f09339574f7f9adc192deb4a8ea6123b8004e940231d696a5899321dec"]]], ["TOC",["matff","alt/A12/mtx/A12G1-f3r45B0.m",["16ddd1a2f346bc7522853b84b51f11647de94eed64420c99f6b3f952e3e0ae8f","8ac7a3b031c1d6c2d03e70c1a978633a9bb537c7345322e84b3cdf24f77252d1"]]], ["TOC",["matff","alt/A12/mtx/A12G1-f3r54B0.m",["a7a58b44deff9d1f0e46761db57d35e84c1953a41a09b8d3adf8ccac93733432","537e96ac5ff23b5a2618fc08311103c304db0dfab2a0e42124c72a23f57b14b3"]]], ["TOC",["matff","alt/A12/mtx/A12G1-f4r16aB0.m",["dd666a428b7781affdb5a45fa9773348ffca110fa62a306cd24dc9d757660a0a","2a5293961d0a8c2cead9d896bea86753f3289e218dd16ffebda5462b4a67a791"]]], ["TOC",["matff","alt/A12/mtx/A12G1-f4r16bB0.m",["3f296496f307175d23891bd3d23f39be025ee1b8cd12c9ab4674bb035db715ab","b9056d9ccc0787f977ad062404993080310faf1e0332e1088704dd46e93a3160"]]], ["TOC",["matff","alt/A12/mtx/A12G1-f5r11B0.m",["791e2b49db02ae52d60c6e3484796ee830fde8b34dd2c6c8f6ebdcf20ff711c1","2cde14b6f3d003a6d2e9ec5cf79d176e0111fec4d072d1b57567dd41f903287e"]]], ["TOC",["matff","alt/A12/mtx/A12G1-f5r43B0.m",["e58b444303570bd9ef5174ba5235328fcd15913591238f29d76b662c18282b34","6f13e381f806a331d1e7e98971f02b966bd6c4f7bb505608d7a319b8e62b254e"]]], ["TOC",["matff","alt/A12/mtx/A12G1-f5r55B0.m",["edd547e43f801342421d875acecedcf9b3e895c31ea5488155ff756909525a0d","520b43040521e04004d37c6466c2e03f36cf73830c27e471b1d1a531b7f764a6"]]], ["TOC",["matff","alt/A12/mtx/A12G1-f5r89B0.m",["ad309fe61d35c338ba1850e9b02197642efc1dc19117337abe69a4906dd29c4c","880eb8ea694acd471b1e428d9f8af20c876ece74c52fb5f5a97133519d24dc7d"]]], ["TOC",["perm","alt/A12/mtx/A12G1-p12B0.m",["52d8aa3686959736ab7bea631930a951ca2522ab192bdd1b85089731463b3634","3bd5e81d176e43845fa8610dc5d7167cc50158d395ea4ebf41e7003a484dbf59"]]], ["TOC",["perm","alt/A12/mtx/A12G1-p220B0.m",["afc6d7588f0fd9cb7ddc014f20ba86c2e9f49a92c85a351e072d67b5cd607f61","7d04457974b433b2cee57dbaac2ef4f3908a614b6c2959e56319bd207b0e7ebd"]]], ["TOC",["perm","alt/A12/mtx/A12G1-p2520B0.m",["5415226cb86a13cfd37e3890880f0f4012622af4f252c9881b4bdb66ab59f86e","77394424723c5b4a9a96d2b68b40c184d7f496f301909d824fda681634418072"]]], ["TOC",["perm","alt/A12/mtx/A12G1-p462B0.m",["a66f8e27cd2e17124c6aa8acee359ee348f72309d57ebed3553def591fc9b45f","54a3bae5b014446b3ad5ee9b08cfd577b41cef374cfbb59d796fad8d54f665f3"]]], ["TOC",["perm","alt/A12/mtx/A12G1-p495B0.m",["9618402e8b8741042d93299b1d1847b09720e28da3a8f2b24ed776461e149fed","755e4381406a590b046ad58ec29beb94bf4af9d9c64eb10139739d1773240647"]]], ["TOC",["perm","alt/A12/mtx/A12G1-p66B0.m",["d9be4729fe6bb9b9b672416d900ffe08a0e6097b0fba24ad88db993ec315ff55","c49502160a805f85185550e9e0fd62f57d87bc06a46bc23d501c5425fecc65e7"]]], ["TOC",["perm","alt/A12/mtx/A12G1-p792B0.m",["7842c6a28d115cd6f764a709fd83542070eba5e50d7e358f66078cab538d5b33","872b13e90e129cfdaf9b5693c8da61880c3604629ec7b50de3d8bea0a88bf949"]]], ["TOC",["perm","alt/A12/mtx/S12G1-p10395B0.m",["5e2e419233608ef403ab238598e07381ba490899a4b57e4efb78ca20be0bb8fa","11ffc2f0e13b7014533b505a1b415e72ca01f7c629da10bdeef99f92d4fbc7e9"]]], ["TOC",["perm","alt/A12/mtx/S12G1-p12B0.m",["dffc34b8cdde31b1a4200528ce434bf43bae1652ac5747539ef31dad423f0ce2","d70271b9eb3b4565eb5b1ec8608d1c572eb06ae6ce32329d0e5d7a86d60b779c"]]], ["TOC",["perm","alt/A12/mtx/S12G1-p15400B0.m",["b85c76fb6b13bea809679b8e23162fbd31126b816e76caa2f7052a4fe6e23673","8daa49daa557def5cce3626af710a9fbd5cdd8510c22e02a2fd704bf01a3e415"]]], ["TOC",["perm","alt/A12/mtx/S12G1-p220B0.m",["40e04e4cc60e1f2ca6fc1cb122e5075fd91885fcab56aed4e2e44e8d52a31803","f3551b51a47e11daa8c919159f4e3d1e76384015c3a47caca1acc4bc5b506623"]]], ["TOC",["perm","alt/A12/mtx/S12G1-p462B0.m",["31fc2b1f9b1b5645b2f3b28df715a98a5d2c8a23108566690cddf6aca8a1ee69","5d3833bd88f6e90807219f826bae08da9c13172ddfce150b49eaeb09dbb19c47"]]], ["TOC",["perm","alt/A12/mtx/S12G1-p495B0.m",["5554cf97f7648d3f5cc20809466f545a906faa6fd693425993b9e519e31b3010","c6286cb315f64dbb0ad8214dbe637aaadd13c51c46560bb270c0c6af7ad6cc15"]]], ["TOC",["perm","alt/A12/mtx/S12G1-p5040B0.m",["12f55c23e8b0ddeb53ec4625243ca9df9705ecf7c67d756ddaa671e9a651ba27","9f20bf134fb9576b7c7627bc31518515af3d57f2d951e84b6cd09c34ed9a464b"]]], ["TOC",["perm","alt/A12/mtx/S12G1-p5775B0.m",["70724b271d77cb2a6b9ac2a26ed3bfebe91799d63ead385cd1397489003269b","e138d9423dfbcf7d5be932adbec0a28bafe33d915eae249dff19f8515fab490e"]]], ["TOC",["perm","alt/A12/mtx/S12G1-p66B0.m",["bd3f46805b95f6ec21232fd5d3876a9363993a106d13321524322f7ac7bf4283","e121ca0a46e6314110ff522ba4707f5ac476e516a7c6cf238603654b245e698"]]], ["TOC",["perm","alt/A12/mtx/S12G1-p792B0.m",["212c6a05124644b4696f3107ee19880b3f0bd768c722ab1015b459737169c922","b14848cdbebdc8649e9f85727311a43c711668f65f9917aa2eef73ff299917b7"]]], ["TOC",["check","alt/A12/words/A12G1-check1",["872ccd655a1eda7fda1467f21774f0cba4080958c523ae0acbe5eeda98696ac1"]]], ["TOC",["matint","alt/A13/gap0/A13G1-Zr12B0.g",["72b2d1f6fcb45c132cf79c23e1402c5a58b34b326ca9504a7261c02362896a73"]]], ["TOC",["matint","alt/A13/gap0/A13G1-Zr208B0.g",["d876caf18cc8f5dee8ce9663829de7f80b50000d2ec25b00b4b4487c1f695f84"]]], ["TOC",["matint","alt/A13/gap0/A13G1-Zr220B0.g",["2f2c90f8e45bad43d5fc69268f3df856c395443e35bdca50fa3d6a33815d4582"]]], ["TOC",["matint","alt/A13/gap0/A13G1-Zr65B0.g",["34028aa17664b4766d3e26d077f2a4d02d5744363c0162fa3184b2f54b8cb68c"]]], ["TOC",["matint","alt/A13/gap0/A13G1-Zr66B0.g",["9b1b7c5521ae8cc9d7505a607cff2523b8a4d8a07b9f8c764c4dc4a0953e606b"]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f11r64B0.m",["7a69f85febd559d815d0b6db7b22848eff69cdf6f1f32912b931956cb8920edc","de0a0a38c84e574930fa4131aebd3e4276dfeed1326553f7b84b254473d3c456"]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f121r32aB0.m",["fea83cecf03939c07bf3244205effc15b347f88f26403fbbc968d2ce6ad8e305","16226557b5e245652c00a26d77bce75f430da927ac6517490bed49c511902d5b"]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f121r32bB0.m",["fea83cecf03939c07bf3244205effc15b347f88f26403fbbc968d2ce6ad8e305","e7d54f7882881022a8f547cd6adc45db78ab0cf1c289b852cc0fa6054d39436b"]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f13r32B0.m",["ca15100caa6819760ee6402bfbd03f4320256898f768b045d121f166bd662937","154da7cf7d1e5c8547e22eb9716117064c51c02e54db7033001ce40db3b04a21"]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f25r32aB0.m",["8b987cba53747808f97e372df650530f6da5adac94d535faba2bdd375ca65511","f306b945f383b096004caa1a5a21c39433dd8f74b9a47e62b4ac56a8a1e5201c"]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f25r32bB0.m",["b41f053f4e1d40eded249b5f8f07beade5ebbe056a64847e2420f1cc9a411bf1","23f59536e9f8c8fe56a888cfbbd8f7be2b27e7a4d84b0890c9fc68d5ac3e4e38"]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f3r32aB0.m",["3840a35be9483e645028dfa8f965043ce965798d0fb69576c28902d21120db01","db4850316fac948b923de4abfbe92dfb82cad7a30b848c9e7111a8b88d198cb5"]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f3r32bB0.m",["2d43f6961b46b2da9feb486be9b55b4d3994c03723470b46020a45fcc5cf4f7c","db4850316fac948b923de4abfbe92dfb82cad7a30b848c9e7111a8b88d198cb5"]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f49r32aB0.m",["fb7650330ce0d2633f733803c9bc827c28be5fc67a119567b2c1ced78e36d3c5","9de37ac4f74ab8fa38fc3722ed94ecce7e79dbbc7d960d8e40f43ad26aa26f63"]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f49r32bB0.m",["945185867de860b2e4cdb5641654ff2527756a7ba1a8419ea351c4bbe938d8df","6c39430dcde2e33dc2a87f61c747f054b3b213bcca0af1618675c9a47f2e0f48"]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f5r64B0.m",["4a7a09a21819e9a45b3010631d7b7e32e3c2a31ac0508638bea9303835850de1","daee65b8a3dfee54f453086dcfa7fddd78834dbc7c61c2c0d4333cb34946b586"]]], ["TOC",["matff","alt/A13/mtx/2A13G1-f7r64B0.m",["87a514b3fb02cecf3829015e22ccc910f39f0407e7d00cb87f11abce1cc5d357","e5c7515dbb9d92abb2c184a8c5db9e4c0bdd77a3ac15bc4463d8bce7c9c2cba1"]]], ["TOC",["matff","alt/A13/mtx/A13G1-f2r64B0.m",["effab44775792f4538fa92d9f3086bcd0e5b1e765668c22d0824aaf0c60befbb","5805fc56e61ef6c791fe0c5c110cc8c5bc78c4a43b15002edffa17bb75d2f0e2"]]], ["TOC",["matff","alt/A13/mtx/A13G1-f4r32aB0.m",["bd1118df5e642df16ca2a0e942effb8f8c597da13d2585f98ebe5f699461bad9","c51d696d1659ded26f186d42a2d30332e7dec756dc1bb440039486223dd25b0d"]]], ["TOC",["matff","alt/A13/mtx/A13G1-f4r32bB0.m",["dd86adfbc67b61ea2fe892118383dc75c5f171617273d1381e4abce495a64721","8a360a2ce71a4037216bd8483ef980cf990feb770db4c6505013e8f2e255eda"]]], ["TOC",["perm","alt/A13/mtx/A13G1-p13B0.m",["e86dfa9d6fb2eb77ee2b126624d746c7ed0cce287a398293388360dc042f8619","e9ead56db4c2429a52790eda02838dc0e8d064306de82242477eda888c70be9d"]]], ["TOC",["perm","alt/A13/mtx/A13G1-p78B0.m",["b8384a4afe84b414fde993b0f7a8138ad08e89c1f0b7abe4ea662730e36ba283","8a02e971e5dbace97afb7b2bfc0e32c0a2aae54dc9bb1a53b9174494d192e77c"]]], ["TOC",["perm","alt/A13/mtx/S13G1-p13B0.m",["afcb6c83935fb6dbf81dd64d155ad409d8500e15e422ab083f43a321dc12c40f","fa9fbb122d4fee2d0199a3c51cc68eb60d6241507eeefb01ece978529602043d"]]], ["TOC",["perm","alt/A13/mtx/S13G1-p78B0.m",["3aa02680d03abd9600b3d7cf5ab009179030fcefe59b8f5d1ac392050477624c","edc291f4f5f289a258d2ca8d8990fb97d079404ac95922d7e47dd5f4cac56a3"]]], ["TOC",["check","alt/A13/words/A13G1-check1",["711ce59963cb57570c3d134a4a756a500def1099d27ae8c41a433a4ddfd1c10"]]], ["TOC",["matint","alt/A14/gap0/A14G1-Zr13B0.g",["65575dfd298345b01c00c54b3ad4071d9e7729f289c8cc3df7e8b717fb082eb3"]]], ["TOC",["matint","alt/A14/gap0/A14G1-Zr77B0.g",["a52b243bb949935ee037bbcb3647f744a816b875038a0757c042fcf1f64424e1"]]], ["TOC",["matint","alt/A14/gap0/A14G1-Zr78B0.g",["c237ac4b87ed8f8b6641fa1fe0ba765f79db64c1472e1556f5bef86cae74c5f3"]]], ["TOC",["matff","alt/A14/mtx/2A14G1-f11r64B0.m",["9b6d30fdee36617aeef421ffea3722f284a6b0b1478e503a3c205d6c74d134cc","30b29ad4d0af894deb1010c16adb9da7207165e543baafbea4fa71d11dc3acfc"]]], ["TOC",["matff","alt/A14/mtx/2A14G1-f13r64B0.m",["6a00eceb19bfb536044362b38b59efcec726010e5a5b889f02cdc3a746c7e3a9","b275ccc5cc2e3d0540a826048856b72f64ce29776851c9e0824c6b936b07a67"]]], ["TOC",["matff","alt/A14/mtx/2A14G1-f3r64B0.m",["5e44cb39ae0364b103d6f0e9ce3ee665f2a5c6f23ba6b1d77aa26aba68249615","f2afc0c2437f4b24249aae98d779283de742b017c8ef3d0d157677581b571720"]]], ["TOC",["matff","alt/A14/mtx/2A14G1-f49r32aB0.m",["c31858d8531b42ac32d26c9693a9135614211850a9251bd6566f91308cc1732b","b99aa830e2b7577488cebcbf215dffb8abd5e870ae9343e5944d9bb652b4b284"]]], ["TOC",["matff","alt/A14/mtx/2A14G1-f49r32bB0.m",["73f8367437f889cf9030c9dcc3edb6fa7138950050604cebe2da2095a7c525d1","a71a382d64ae82fa67891dbf557e398ee626c84ea2d7a2a817dea97205ab65c1"]]], ["TOC",["matff","alt/A14/mtx/2A14G1-f5r64B0.m",["9420f802ed2b4e2dea55f4a145f561c98da5fb9598aa8e1d6be1680a4d3f533a","c802f15d8badf762feab354f9c6cf06e0ab3963526c0429745934a09d749aadb"]]], ["TOC",["matff","alt/A14/mtx/2A14G1-f7r64B0.m",["49c0fa836e781fea63171f362c0dd5b67e7e7ba325b21079741a41cc657a81b1","fe35d626233aca30147a85a213fef2252706fcc50e8b4d1fbad7404a59639eaf"]]], ["TOC",["matff","alt/A14/mtx/2S14G1-f7r64B0.m",["4208dc8745b61c97b967b4dc81b0fa18d339abeb1df4b9b444eefc2cc83bf4ec","adec919019773cef5b49b4a343086e21ef69020287fd7b0c1cf85800bdfcca0e"]]], ["TOC",["matff","alt/A14/mtx/2S14iG1-f7r64B0.m",["ef05787aae4c0f974c70fea19fbf19ed36150c6adb78f6ff26b2188c27cd3701","cbb6ab71d35808eb652fab90cb74ee2a51fb60c1490592d1f98b9d6823a919cb"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f11r13B0.m",["4aee12b552df5ddb3d7b130e35ea73c4e6633a0f835d88d9060adcb9c085e67d","de70a3d0b3f83e7c7748ee699a5e9f155b5f08316869e7bdb9d89a3489022e07"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f11r77B0.m",["b52c088c2c52a84de930a9098d019461d920b9d4cf0e513294720069471bf8b8","9ff72d5065734ce3493f4e0f231ac4bdf15db3942a96449252465c6d98cb0c18"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f11r78B0.m",["36e0a237471e68e4e59f3fe5bc458e7416f9f6f101c4e43768f1b3b11cd99d56","8b5deef23cce2069dd9906c3972e6811f426378eeb7820365a9a55475f5a963a"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f13r13B0.m",["254a4a1d35c9eb128e41dba7aaa518a3e47ba78162db9871fdf7cf768d29c9c4","3bb219fe5d112ad8f5b873188cf7017692504e43488ae81c821bc7e28868dd43"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f13r76B0.m",["34f3efb8d0fce7b6790dba24a72830f00ebd3c2ca4b1363d66cfc2676153d152","e46e92450e3f79be7332e703aeb3a9934df1afe5c76e9ea0d5ea4e74c98ba88"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f13r78B0.m",["1a6b1f5b1b71b1236e572f2e450e6919fda85dc72c3cf3cf615dcee8df416dce","f1ae3efdb7c429d850a2687e657209338b874108aeffb378d14382ab6b7d8969"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f2r12B0.m",["36cba16a9a4bfdf65b1fb8a6e0fc0096ba71266927e257aedfe4efa39ae2e372","85f98d2d67521a518e5a1037c5054748898b6402931478940623565cb29aa51a"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f2r64aB0.m",["43f665b74447ff641ecfd37712f18dc10f8d491cd6c0f7bb3e662250ccc665e9","e1c9a36f4ec494cc8428ea6431df89c22b0fc80b4132e4e219d77418b37560d8"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f2r64bB0.m",["8bb69ee39727470f5ec61d0490314f2d53b5cc09e1c8e8b9953aca1893744bc5","858617cc473d28c08f799be1767b42052475f26420add0f44f79810f86d26d07"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f3r13B0.m",["9b27cbc3caa88f17537dba5aec563ee6c0f1329de91ac67bfb8170bb4f5d75b7","c4a60f6038a626f168945aba3615fbecb6a9150a49c825c1e79608d5aab7f882"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f3r64B0.m",["fc9eb41921656576e1cc788803bf0d165dae5f6b09d0de1c25519f3fcc20b3fe","6e001a5767d15c23537a338da0e5d1f350828604f9d49699054fd3ba5e4e8fed"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f3r78B0.m",["dc5760ec57f2422d4d1c1f0af35a3814277b1594821e2e8d34123de841ac975d","8a5b43967a544eaecf97f01393dad7bb354fe4c7fcd31c55c2bd9110830db1f4"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f5r13B0.m",["c485c3b79474a3179600fac85a03eddec40ac8e13fbb08a5819d26688e14bdc9","963de1cb67e13c4dd14c2299d0c49333ff5664496ce98b326b14cac02eaf172"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f5r77B0.m",["9d80bec936aea8f37530d711db10cb6ccbbe2447290820861897398610881573","aeb51d416a3e02f7e1aaff9bbeb313a368e246a939be87739b8d4b89b373b55e"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f5r78B0.m",["364a03f0ab6a4c554a0f1402d64f73467d77097811b0484872e688e39ce698ef","deb9e31d767d60a3f3807dafcd1ad226c1f68894a453de028e9a057c03963cc5"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f7r12B0.m",["bbcc27f58eb8dfb4117b8a827b14467ffa1010edd11e06d1350dae75bf4dfd1f","ff38113b3c796e2a131f17a33d71cba36f2f16343a22796edfe51b4a64d6dbc7"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f7r66B0.m",["929bd4ec6ec6feffecb855c818630fd363ca45f1b931375ad0acfdd642ad36ba","8fa1bb1cd6ec147cdbd66da3aa66251a86474552c0a6f2154a9bf78b744d74f5"]]], ["TOC",["matff","alt/A14/mtx/A14G1-f7r77B0.m",["bf1143fa52623f8817b49dd933f1232202be41745f32f7182d22408033ee205f","ede5adaa3c9cf91b34e2ba8d237b4441c0595a0216b0a9418d66401d660ce9a6"]]], ["TOC",["perm","alt/A14/mtx/A14G1-p1001B0.m",["ca11aa96037f5b81f8df8424a84dd902358315c24dbddfbe2d7877e2744864ca","95ca981a7039ea74c97c0357cbf3bade0f4ad611c5d347d3c667fa012f31a3c9"]]], ["TOC",["perm","alt/A14/mtx/A14G1-p14B0.m",["c8b8185ce8fd16100c3c4ede51ea8343314bc895d40828c14277b957bc2ec498","f84bb0bf5b21de91e9979f913fa6372043916ba48cbd2d5ed3fc25a09a0d3819"]]], ["TOC",["perm","alt/A14/mtx/A14G1-p1716B0.m",["d3989309b4fdad18934586d2054eff9bc57deaec440ab6414daa67f4b924321f","60c4c1d3c67447e4eefec973bf36ec0993948888b6eebf0ee039d0f9d421cf2a"]]], ["TOC",["perm","alt/A14/mtx/A14G1-p2002B0.m",["1888ab6cc735692f6a938f85720124d32b8db113a70236dad01c29050c833ae7","e1d94bc01aa74a985043b37a6298d4a7342d6da75821587e75c21396a0f3b81a"]]], ["TOC",["perm","alt/A14/mtx/A14G1-p3003B0.m",["92bbd6c593f2ffe1b46d384ab639ca96e1e0b50f7772f7211ec49d0c22c36623","3f230c6bcc7bc3dbd123a5e178e2d259c6fa965f162940d4c980354c1fd7d74c"]]], ["TOC",["perm","alt/A14/mtx/A14G1-p364B0.m",["6f441617f1d7c6e4a1d0d9e5c75d157f1d001b841f8611cb1a00bd72b74cc244","7180663dd1a68812c090d57f4d05367be968e6770d9a6bbf57ed4c34090766e5"]]], ["TOC",["perm","alt/A14/mtx/A14G1-p91B0.m",["ee7b91bb800eb3fe4e3905e3fcc633121ba27eccac18e828e6e51417d3dfd4fa","5ceaeccd321298e3f1a84e82f8653080b6c1a1c60178a81bdd4907ccc79abc1f"]]], ["TOC",["matff","alt/A14/mtx/S14G1-f2r12B0.m",["ec27fca711bb2b1861dee77976e8e7798a4b0a84af6d955f3f5776682dac5f01","20d519aaf7e7f85fbf48fb0a3f125771df33afa8bcf60d03d994394fd562661f"]]], ["TOC",["matff","alt/A14/mtx/S14G1-f2r64aB0.m",["950c3713291f590750019242e2a548414fe6a4fbaba389a4ad998e638367452a","989b0a7d6d2491812c38eb890f4e256f38533c0cf1fccbc5206802f970fa8476"]]], ["TOC",["matff","alt/A14/mtx/S14G1-f2r64bB0.m",["4b736f87c7d39d27172a46069f9febd8c3984ac247176a7d596e485a841382c9","f889862653a8c418bc7b69f8d414e04b662d338d3c5e37a4a981a7b0a8fadfbe"]]], ["TOC",["matff","alt/A14/mtx/S14G1-f7r12B0.m",["40ea71e2ad020a020bb5dff2188fa2900ca8a9266ac6d794934cc15bee708345","f2a2d68a4afba90fc19df2b83164c21b4ac24645f8ecca4ef032add8bd7d47ca"]]], ["TOC",["perm","alt/A14/mtx/S14G1-p1001B0.m",["3172a247d79179e437fb2aed43322e92dc659cd3e9c5034fbb36b31732745361","8cb2cf651bc2008a01d451bece3e856855f5823043483e5a1bf47f411cc0333"]]], ["TOC",["perm","alt/A14/mtx/S14G1-p14B0.m",["bbedab4c1fddd4f81c54228067e9ded483aaa73f51042272d9da0b6135f426dc","f84bb0bf5b21de91e9979f913fa6372043916ba48cbd2d5ed3fc25a09a0d3819"]]], ["TOC",["perm","alt/A14/mtx/S14G1-p1716B0.m",["75ce0d56e06800c7c49d6f3c2292c00bb6e724c96dcf7598e80aa2ed6b1f7442","b1009f09635165f58c828e113fc2b20951eb2b6228ef40548f3de31afccef24b"]]], ["TOC",["perm","alt/A14/mtx/S14G1-p2002B0.m",["e6ae4a90dc0137583208af28fac4a6c01e5ffc13eab779407ad9229c3ee60491","26eaffb90023a47fbf58c7ab13fe01cf0e91290ee4fbde692bbec41adab87d59"]]], ["TOC",["perm","alt/A14/mtx/S14G1-p3003B0.m",["f12e9dd20229753fab3a7980b123a4a600c3f648c7626596011a7136b8607d4d","dffef3dced24eac009b9f91730e1abea9722ce914a43710e68c838054123a939"]]], ["TOC",["perm","alt/A14/mtx/S14G1-p364B0.m",["61fc804cf574dbe19a3d124a046619122b549adf79ac8665cc8688064b193c","cc412f97b6b9a162c1c5407713875ebf10199840c19186e9e1839c04731b436b"]]], ["TOC",["perm","alt/A14/mtx/S14G1-p91B0.m",["3ebb7f41f2a092a72c8261ad3271654b34c4802575d8ffc4d35feecdff2c7ea2","5522233f38616fc5771e82909e63cd93b6f70bc199d60121a85216eea3215eb3"]]], ["TOC",["pres","alt/A14/words/2A14G1-P1",["8fe6d9eede53950b838ad333f42580bd69b8a00183bc8729c45e854bb62ee809"]]], ["TOC",["pres","alt/A14/words/2S14G1-P1",["60dedaf245c0ad9cabe04e519b1798ce2cc85f47a87f3c432241d0bee5b7568a"]]], ["TOC",["pres","alt/A14/words/2S14iG1-P1",["3df11e54bef2de9f1ac6872030972c0d366bdf21f7d2a89d05dca33778b44f45"]]], ["TOC",["pres","alt/A14/words/A14G1-P1",["4d6afa80d9e03bc2085a623677a3e77504ab0a2cf9f07075a879d3533a703c68"]]], ["TOC",["check","alt/A14/words/A14G1-check1",["6cb8bd9da4d5e64b6a034cf842d4a2d7ec5852bd54769c7f12f527b9ac6a0dc9"]]], ["TOC",["pres","alt/A14/words/S14G1-P1",["bbdad3d6190b8bf9c6861fd4ee0e4cfa093c5ad38c0668235b4c7bd316e47b3f"]]], ["TOC",["matint","alt/A15/gap0/A15G1-Zr14B0.g",["e41bfdefe35ebe4cd81ae444f73ab1db682387db1ea07c333967695bedd31e05"]]], ["TOC",["matint","alt/A15/gap0/A15G1-Zr350B0.g",["14c1e248a09bc44452dc16b84b044cf735b26f2f48a47a06568c479e8195cb44"]]], ["TOC",["matint","alt/A15/gap0/A15G1-Zr364B0.g",["4295c24e8552fac39f567f4c8a510652c6ad8de1795a01d03b32cc5d8386fc20"]]], ["TOC",["matint","alt/A15/gap0/A15G1-Zr90B0.g",["3315b91289e7a35c17258af173e87b8b77bdb891e945c6147de545bc82ba5f86"]]], ["TOC",["matint","alt/A15/gap0/A15G1-Zr91B0.g",["a9a10fc8608648843a8a2e93089b0d655c138e9bb05ffe197dad2c51e1f3fdbe"]]], ["TOC",["matint","alt/A15/gap0/S15G1-Zr14B0.g",["1d61957f7849874650258695f148ecb4ed7a69f9bb24a88b2c54a40c97b32357"]]], ["TOC",["matint","alt/A15/gap0/S15G1-Zr350B0.g",["4be89f00cfbf0ab7099120a794481104e0ef551aaa16fe9771e43ebd6587d9bd"]]], ["TOC",["matint","alt/A15/gap0/S15G1-Zr364B0.g",["2706947306c3d2728ec73e5bdca408eafa2a3d563d044d2426869b3f9c91e5fb"]]], ["TOC",["matint","alt/A15/gap0/S15G1-Zr90B0.g",["76dd210a65ac5a56bdae86e48585eff4aa15f84084dc107b0ecee18d312e54d"]]], ["TOC",["matint","alt/A15/gap0/S15G1-Zr91B0.g",["995b19ff0b804ed9ee0fab818c276fff7eb1558e0335f3fcd85ed76dc3ab7367"]]], ["TOC",["perm","alt/A15/mtx/A15G1-p105B0.m",["9b29ad2aee96139a7242fa37bafa7c7b3cf11e55ff41ba8891ef8cc172024a61","e8ca78eea584bb2466162b0afeb4e707d9ce37ebec99036d56a6fe9929ca38d8"]]], ["TOC",["perm","alt/A15/mtx/A15G1-p1365B0.m",["b3ad0ec2b3ffa4ac4ec5c653d220e2eb64272d4fbe0e60fc7a82b1c9154de7e3","bee3dbe36528e3df2ddd2d79ba200326d3b5c270e02105a2f4c2f63277cf95d4"]]], ["TOC",["perm","alt/A15/mtx/A15G1-p15B0.m",["1298bb05d26b570ae0cb4586d97f9919002997c95945b676272ab6d3ad760770","80699544ab959364aca93a174c7b3dc6b4d9d67bbd704ef5dcc035cdb62df8e9"]]], ["TOC",["perm","alt/A15/mtx/A15G1-p455B0.m",["ead365ff43f35e3bec06aba6466ee2ddd2a7d83430fdb6babbba11d8d579c657","7b4af9db77210fc4ab4cf3fefa121efed77b1fd98755a989e56975fee0f1b115"]]], ["TOC",["perm","alt/A15/mtx/S15G1-p105B0.m",["8d13f3100fa82e4ba6fa062941c567dc05f5c1b2c130b4a270933287832b481","c2ba659aca6e9821fa7ffe56eb091d92e4ea94bc5f978fdf3020a2d264c112b9"]]], ["TOC",["perm","alt/A15/mtx/S15G1-p1365B0.m",["1dd73d5d7b6df00fa1db0a74d771b65cfa8499acba04daef256b8193990f3af3","b5bcd16e5febf25cb94da05c245f767416a1e48c163bdb900e71800fb3c01df0"]]], ["TOC",["perm","alt/A15/mtx/S15G1-p15B0.m",["bbbec8a6d977c42d6b40e32a53745c0ffb911199dca6a0feb37ead0212fa3d67","56c30e8fdc70bef3a89103b675559f8924474d008b9a36ee1db63a888c19a65f"]]], ["TOC",["perm","alt/A15/mtx/S15G1-p455B0.m",["69d1a03f9c8a309aecf33b2eb864800c022a8c682cbabc9e92c1cda11b276f4c","a2382e1e2c920c08abb572b6beff7fe5331e534eb5254f3173d92b85aa58c9b4"]]], ["TOC",["check","alt/A15/words/A15G1-check1",["72741cf2034ed9d3054ae766aa6c2b146d9ee71309ac7ba1f0041ee5663fd7a7"]]], ["TOC",["matint","alt/A16/gap0/A16G1-Zr104B0.g",["90243d3567dae64fca65f7866f339ab90583d2f815c259d65852dd5bd182db43"]]], ["TOC",["matint","alt/A16/gap0/A16G1-Zr105B0.g",["fab533d9189f2f0f1f40551b2ba9844c45f43664c6f1de7a8e3d5ba1f6d5cbe"]]], ["TOC",["matint","alt/A16/gap0/A16G1-Zr15B0.g",["cb41c7fa5efd8d2f24387512eb9ad9219d914b3b914b7910962da8388cd90ef7"]]], ["TOC",["matint","alt/A16/gap0/A16G1-Zr440B0.g",["496af6cebe8d3eb7d756e229c6b6c268557595a47f99f716be29202a725502e0"]]], ["TOC",["matint","alt/A16/gap0/A16G1-Zr455B0.g",["9804b604479bd371578ae73c02ac6513ee8141a3ff045f49fc903cef469a1d63"]]], ["TOC",["matint","alt/A16/gap0/S16G1-Zr104B0.g",["5f33e5dae9579c964ab4bbdfc1f715d8bb903d99ca499eb12486be2bac57a9b2"]]], ["TOC",["matint","alt/A16/gap0/S16G1-Zr105B0.g",["b49135a7086f0cf752afe567b22f2b88f663a2705e94df4dc7796ba9c9e9c0cb"]]], ["TOC",["matint","alt/A16/gap0/S16G1-Zr15B0.g",["34f90664ea95259b1f8f43fab5663e880ac2a492d28b76bbee53524ab161169d"]]], ["TOC",["matint","alt/A16/gap0/S16G1-Zr440B0.g",["df1067e14e4476c22c09f9083db0383b30637d96a0b87d60b57659f11e4ea5bb"]]], ["TOC",["matint","alt/A16/gap0/S16G1-Zr455B0.g",["d7f285e0303c6a047d7c36a956a5492e43b9e984eb08899c655d15e4c088b011"]]], ["TOC",["perm","alt/A16/mtx/A16G1-p120B0.m",["80585a47b0fba99647e6df1e5d03ef5f178ce84b59c441f16f1695996169fdc2","c4d26e9fae613afb66c65ad9fd85cf16fe8d99c5e8f1f5edce2391e99df00216"]]], ["TOC",["perm","alt/A16/mtx/A16G1-p16B0.m",["b8bf53e9f7ce3d457549bbbe7fa3b9f576e9b8a0ac96f4bbdf049abe7c3ecbfe","838f8ff7add0a22d30ed2fb303f43e678b2e55b650d29b520e498710519d3e6"]]], ["TOC",["perm","alt/A16/mtx/A16G1-p1820B0.m",["1527e44ba0ab386d596ba1da5c6e4d23b36cc3f900e9468399226440fe85d4c2","882e4039ff01f006a1ca30dfe06e0530687cf43c5f79a5e0f95f9cb40b102d9f"]]], ["TOC",["perm","alt/A16/mtx/A16G1-p560B0.m",["467576c94608cfaf1a64fd2333f9538b9c1f91c4943fbef8580eba8e63268f41","454adb725266481dc33b95acd19f0e99f5a99dd941aedd2f207494ecc4495bb8"]]], ["TOC",["perm","alt/A16/mtx/S16G1-p120B0.m",["ee1d13978e68623078db0a96dbc04e3682054ee91a31d3327a747655e1e0620a","c4d26e9fae613afb66c65ad9fd85cf16fe8d99c5e8f1f5edce2391e99df00216"]]], ["TOC",["perm","alt/A16/mtx/S16G1-p16B0.m",["31a43d3e350446fedc0cb50177d1dac20f3a7a607b86a9b40f71d2ac71cfaccf","838f8ff7add0a22d30ed2fb303f43e678b2e55b650d29b520e498710519d3e6"]]], ["TOC",["perm","alt/A16/mtx/S16G1-p1820B0.m",["8601e30f0a2cc1fdd38b28171192ab25c9f3b3262e4975ee4eb9cbd95ce3c083","882e4039ff01f006a1ca30dfe06e0530687cf43c5f79a5e0f95f9cb40b102d9f"]]], ["TOC",["perm","alt/A16/mtx/S16G1-p560B0.m",["270eb5b806f8de33eb2b3629f156c9d2b8704b16fe82ab8c900b697a93ad34a0","454adb725266481dc33b95acd19f0e99f5a99dd941aedd2f207494ecc4495bb8"]]], ["TOC",["check","alt/A16/words/A16G1-check1",["c3faf2e85674b4a2ddce9606ac930d10c9a335b1808ca5747c54f127f9a1fec8"]]], ["TOC",["matint","alt/A17/gap0/A17G1-Zr119B0.g",["1331771e8ab61b8b678b271bcb5950d302d1ffc643d437c4f7c6590d2306306c"]]], ["TOC",["matint","alt/A17/gap0/A17G1-Zr120B0.g",["bcaa3d0c544a5b0f28d26c1385f60909c6e7dc92499553888b7db63740bbf186"]]], ["TOC",["matint","alt/A17/gap0/A17G1-Zr16B0.g",["1f0d590527a2859e4339687bbf4fa4f303253a3b66d7495dcf0f7c1f2cc18eae"]]], ["TOC",["matint","alt/A17/gap0/A17G1-Zr544B0.g",["cc83f3a3490b4a052437be9deecd2cf9fc51ba71c3f2c45bd4164c75dd3edafe"]]], ["TOC",["matint","alt/A17/gap0/A17G1-Zr560B0.g",["b94f47d4cf3a440b7cd06e59c30c5327feda9516cc4cd9a55bf339e20e302d14"]]], ["TOC",["matint","alt/A17/gap0/S17G1-Zr119B0.g",["9fb02c009692ef0628d3f8a0281750ee287a63f0ca5b3f2516ae316a2f4f65f1"]]], ["TOC",["matint","alt/A17/gap0/S17G1-Zr120B0.g",["77ea4a465ca841997773d23106824b33052f888ed83c24e305688130502bf412"]]], ["TOC",["matint","alt/A17/gap0/S17G1-Zr16B0.g",["fc9ade2892e4bf4ff6f11f5a1467cbc0bc249bd594a162a67bdb41c14b52547b"]]], ["TOC",["matint","alt/A17/gap0/S17G1-Zr544B0.g",["61799cf1da4a71daf04797f19a57dcf83c0edc81e698a04926b68e199f81bc94"]]], ["TOC",["matint","alt/A17/gap0/S17G1-Zr560B0.g",["74bae64e099988a5bde098bebf9f522e054c12c9a5b467f265cd28425cc85813"]]], ["TOC",["perm","alt/A17/mtx/A17G1-p136B0.m",["fbce2f3370d9ae851353f2440120ab33f4979b66d2e56c7df2206aedfabf4c68","af1b5a4c9fa11b1c0f8ede348dcdc000ec6c98965c979541338f002f6db236aa"]]], ["TOC",["perm","alt/A17/mtx/A17G1-p17B0.m",["d729d45e3827756913b21b4116516fe3741bf2e07c3ab3b984c26dbd4ffb5ac","a1954b6d9181784189c042417b26ac68311440451d4d21c2ca18ba407dd4461f"]]], ["TOC",["perm","alt/A17/mtx/A17G1-p2380B0.m",["4ff5c4c7d1a1f22d18a97d0d329c5eec9cd79acd9148b8381ef4324888a661ec","6e2d9a6da240e9995c8f950653057f3569299eaaf642048fb61ca6346a37f739"]]], ["TOC",["perm","alt/A17/mtx/A17G1-p680B0.m",["6ad4dcccfbcc47b06b55a62b502a43b1bca2cd629e28d10ddce969d9aef90b95","3c9fb968f3bc689e370e33b3b5d8ed3f77f72352ba39ca456d6f652a5cfa8b1"]]], ["TOC",["perm","alt/A17/mtx/S17G1-p136B0.m",["8c3d27d0b8e1518bd1d0a2775b6d9480f23e99842045a368441437b70790c8ec","a7bb37d6ca2325d5535baaafa66f078af43c271eb8ab773381c3b981c73c8c4e"]]], ["TOC",["perm","alt/A17/mtx/S17G1-p17B0.m",["1b28a02b812b98dc31fd81d16c912ea6465edb6b4471809cca155b69ad4aba7c","a9a76dae16537a3d1122419d1bb539f615cc7318c340391f299b625f4d909a78"]]], ["TOC",["perm","alt/A17/mtx/S17G1-p2380B0.m",["c7c291a3815c16972cb00ba969bbb9424a51a22b326dd30103ad605de73fe989","b3b0915fe5de360336158c2bc6e1619289cfd0b6c08cd93d4bc746d2654092cf"]]], ["TOC",["perm","alt/A17/mtx/S17G1-p680B0.m",["dd012a253f01af4c6dc739e9f4ecee3df4b462508687ce1b6f16bd4c4065f4f0","10c61d5ecf0c00b2530ee39e3b0093e35cc57983d283ec058f3156c4576de6f"]]], ["TOC",["check","alt/A17/words/A17G1-check1",["90f2b97bac1255aba11aee3793da3dbc41c4465f63b9da0e9b120f51a612e728"]]], ["TOC",["matint","alt/A18/gap0/A18G1-Zr135B0.g",["2b0ab9eb603b9c8156d67d3262827e7082db421844dfc8b672366d105e525857"]]], ["TOC",["matint","alt/A18/gap0/A18G1-Zr136B0.g",["c11239f4ddf9e054b74cd38c89b3760eba1df25a73df6fe284d8b467398c9f80"]]], ["TOC",["matint","alt/A18/gap0/A18G1-Zr17B0.g",["16ec53a9f014a8a835281b5d2e456fbdbb8ca156af7645037ff078b73909d5e6"]]], ["TOC",["matint","alt/A18/gap0/S18G1-Zr135B0.g",["87bb7598630d32efa419c113204b9644d4822a7919f8221ed68afe5b9ff08421"]]], ["TOC",["matint","alt/A18/gap0/S18G1-Zr136B0.g",["31fd03f9680eaa8ca149244195b5e1c0bf35291d8a429dc13de984fede4b037b"]]], ["TOC",["matint","alt/A18/gap0/S18G1-Zr17B0.g",["feeef6397eeab880992bcbc984fcc942ed507730d5ec4220f49976e640e1ce3b"]]], ["TOC",["perm","alt/A18/mtx/A18G1-p153B0.m",["e46a1e7451cf4652f7de2e649cd2bfc1a38aa0469bdbea798e61d6a0ed282910","69ad2a17226eee131d6a704b290269b9439159d0cc13d45e92d1b13d6b4c56ee"]]], ["TOC",["perm","alt/A18/mtx/A18G1-p18B0.m",["59a4a720bfb114aff67376870ead654f056a222159d6f2a235efdba94d1758fc","85e0654864b2fc96147ab9ca7ccb78a6772c4fc302c1549a11dc54d3c2c209d3"]]], ["TOC",["perm","alt/A18/mtx/A18G1-p3060B0.m",["6da4b2457abc09d0395439cb4a2db67245093a4c731992369010a27523aa67d3","57f65397caf7abf345fa649ee338365122c9d37744b052f7b16c4999f5f94c4f"]]], ["TOC",["perm","alt/A18/mtx/A18G1-p816B0.m",["8f37af4cfc2d9202ce29342bfa0ff159381d32a5bfbbe38869c61586ce2d86f8","ed654a6f3dd450a97f96eeed36709a6ddc606eb2c8cdc4387ec158a9ffaf227e"]]], ["TOC",["perm","alt/A18/mtx/S18G1-p153B0.m",["8ee6a42e3b9116cf5996a26f079ce1162789f2412013987f94335645c5e1d70c","69ad2a17226eee131d6a704b290269b9439159d0cc13d45e92d1b13d6b4c56ee"]]], ["TOC",["perm","alt/A18/mtx/S18G1-p18B0.m",["bbaf031898fca8fe993960371cea00429b49718503dee6367f5251bf424b01c8","85e0654864b2fc96147ab9ca7ccb78a6772c4fc302c1549a11dc54d3c2c209d3"]]], ["TOC",["perm","alt/A18/mtx/S18G1-p3060B0.m",["4b8305e45920f9cdc6d74c62b9acfec616558854c5b8107b6ed5bf25a9160d6","57f65397caf7abf345fa649ee338365122c9d37744b052f7b16c4999f5f94c4f"]]], ["TOC",["perm","alt/A18/mtx/S18G1-p816B0.m",["180ecad90a224c680f9f82380ea8b5f7ca882f0ed9f08083ef06c662a2a5f6ff","ed654a6f3dd450a97f96eeed36709a6ddc606eb2c8cdc4387ec158a9ffaf227e"]]], ["TOC",["check","alt/A18/words/A18G1-check1",["a823207629f1ad3c370b3a3b5cbf4b8e322d31d5a27380cd44e733c69372b459"]]], ["TOC",["matint","alt/A19/gap0/A19G1-Zr152B0.g",["3d0b7884623c309d5fca267a28af36a6f99688f9d49f06deeddf7fe1935cf010"]]], ["TOC",["matint","alt/A19/gap0/A19G1-Zr153B0.g",["56fde32dba5ec3ec932729b540365512c640f3a4f0a9854b89555ee564bdff9d"]]], ["TOC",["matint","alt/A19/gap0/A19G1-Zr18B0.g",["5ae64acf5148364f2ba47fc10be5433086d3e9256f9af45f2b870901c1e178de"]]], ["TOC",["matint","alt/A19/gap0/S19G1-Zr152B0.g",["bd0df889b890903c94a9e140c896476869cc7f59a4d705fefff596c7f13efdd9"]]], ["TOC",["matint","alt/A19/gap0/S19G1-Zr153B0.g",["80a749eb5ea096a649193747a7570c27356611fcf281809e45e6f4524b534e4e"]]], ["TOC",["matint","alt/A19/gap0/S19G1-Zr18B0.g",["79c9150a65b1c70f4a63a033f9e86bb18c4194c16cb970a5c7b18afd1c72387a"]]], ["TOC",["perm","alt/A19/mtx/A19G1-p171B0.m",["eb100098b51c3b373f9033e9d29add40e1fc23548f57b31810d414fd23f4853c","2294db04dd5f20909708d03040eb5835ce18e233bc2f9bbbf1cb0e15a4c56ad"]]], ["TOC",["perm","alt/A19/mtx/A19G1-p19B0.m",["ff7398839b1fb164a852920f2916fe6ec2227a1af139a43bbb41289a976a0fdc","edf1e6ce9b53ab6aa6f8559c5c1c325ce21abb699ab432954814b65f192afc3"]]], ["TOC",["perm","alt/A19/mtx/A19G1-p969B0.m",["b16820518653e0766ed4c6582578e2baeec9329c74d4b40f759b2baa437689a6","9c542cee13ac33809413717d4f686d9b1ed6ea5730073725b35d2a86228cb65d"]]], ["TOC",["perm","alt/A19/mtx/S19G1-p171B0.m",["ff4c44dc39bd35014eadfdbf38561ca76ade902caf6c79c8e07cd31e31aeb5c7","d9fc7cfbfc055d81ca860ee40743cfbd99448ffc6f3455e1229754ab810de9f2"]]], ["TOC",["perm","alt/A19/mtx/S19G1-p19B0.m",["daa87651384e4f0d28bc99141a4275bc9a346a2d19786d24cb0b0af75dbb6d7f","134a480c697de412cec64a6d0a51af41301afd8a207547839c670155d05bcc23"]]], ["TOC",["perm","alt/A19/mtx/S19G1-p969B0.m",["dae0fc339dba56a0a2203c7b4076fc21491e7cde3f4e3ecb05d738f2dfeb9937","c0768ae0f157bf43667042453f8324503ba4fecf1243ed6b48d97b4e1efdd043"]]], ["TOC",["check","alt/A19/words/A19G1-check1",["c0e157b9e01fe87a9eb0640501166ffd71a2e38e5c6408bbcb13f3dc92263b37"]]], ["TOC",["matint","alt/A20/gap0/A20G1-Zr170B0.g",["6a3c4d36393207a600d35518c89d98002ab74ceb6eeec59912b84642445d4ffa"]]], ["TOC",["matint","alt/A20/gap0/A20G1-Zr171B0.g",["3268a40b753df829b40222571fa61e4be2a9bcfdb055b86b703a62099ac1b78f"]]], ["TOC",["matint","alt/A20/gap0/A20G1-Zr19B0.g",["5cf34f81cf578717e36dfdfac98dcf7d533e5eb488a94498ab25ecc2ab65336d"]]], ["TOC",["matint","alt/A20/gap0/S20G1-Zr170B0.g",["c7ec1df38d3485d8da58c247940c38ca1793d5c8377f58da83c77df8b81620e1"]]], ["TOC",["matint","alt/A20/gap0/S20G1-Zr171B0.g",["f54a00aa843ed5d03fe5b1b8a38221bcda5c934dbbf8e9667bb569d76e68aab3"]]], ["TOC",["matint","alt/A20/gap0/S20G1-Zr19B0.g",["12829b27888315a2f9b203180ee6ea609524cefe035a5684a27a530535b7ccb9"]]], ["TOC",["perm","alt/A20/mtx/A20G1-p190B0.m",["f792966af734aedb2b632ac9462a7c21d010c73f6a19035835d53893647bac24","bafc7445b7b830100c488b700c5d70688fce0e3ca1d9c17eb1faef92e0aeed86"]]], ["TOC",["perm","alt/A20/mtx/A20G1-p20B0.m",["c0d4ca6338a2bb7e01ebaf5f8fefc1f6e96952beda3fcf36c30d0a30c015a352","19ae5a6b76b0e7478f564db3cbf1f54dac2bf54aede4f33def8a9868d320280d"]]], ["TOC",["perm","alt/A20/mtx/S20G1-p190B0.m",["4f76197a12ffd8d510fda24bd0241a65b7b1419facd7c167648565ffbaf512a0","bafc7445b7b830100c488b700c5d70688fce0e3ca1d9c17eb1faef92e0aeed86"]]], ["TOC",["perm","alt/A20/mtx/S20G1-p20B0.m",["a7b39c4d4f4cff006a0dc44a9b84b44bdfa9f5426dc3f4ab419ddf61014a5289","19ae5a6b76b0e7478f564db3cbf1f54dac2bf54aede4f33def8a9868d320280d"]]], ["TOC",["check","alt/A20/words/A20G1-check1",["3b5c1e00692b50f990a952a559b193312c2416b302d57745364e0282891b121f"]]], ["TOC",["matint","alt/A21/gap0/A21G1-Zr189B0.g",["1041b7066bf1e4d8735aa9fcfe8c2007acafa57f85046dcf05c292c8643397d9"]]], ["TOC",["matint","alt/A21/gap0/A21G1-Zr190B0.g",["e9b51f51e0c966d1ba7ef3f9b65ba851ea96b351b3551ee41e29779f905bab6e"]]], ["TOC",["matint","alt/A21/gap0/A21G1-Zr20B0.g",["82a0946332102696825bae4289be4db80f19e41774f0f5e434744b06ec2a381c"]]], ["TOC",["matint","alt/A21/gap0/S21G1-Zr189B0.g",["1c690c65f7f1c33b24741685ddd44b7b3b18e886cad8a745c6c32499beebd091"]]], ["TOC",["matint","alt/A21/gap0/S21G1-Zr190B0.g",["402f2b582997146aed748421e15fc2ce563b3d8766056302642a2ece94d8a81f"]]], ["TOC",["matint","alt/A21/gap0/S21G1-Zr20B0.g",["de2f3f986005af50e69dca37ccf0531d24e54ff313ef443222c113d4c3210414"]]], ["TOC",["perm","alt/A21/mtx/A21G1-p210B0.m",["5c95f3a33178fcfe7950cfd5f81710a2388a086349d3464248b8387c51ce879f","ac0a76ce27420e48e9a531c046ce070bc5b0e3a5df58bd570f4ede1a3ca621cd"]]], ["TOC",["perm","alt/A21/mtx/A21G1-p21B0.m",["aab41cc59d40eb5010d555c3a123fa616ee6b31a387d8f25b9bbf800f9b156ed","2f16a4e92a1d0950fb8e9f8c8d86537059c95ab82d9716e52c939c06ad2075e8"]]], ["TOC",["perm","alt/A21/mtx/S21G1-p210B0.m",["6fa5ef76d6e0f6ba95816d809740849519d45fb4e24f428c797c8d60598ca20f","17a14c1183ad10b3fd11e2ba5fd1bc8df32671e8d7d514d01765ee6f0b3b74f4"]]], ["TOC",["perm","alt/A21/mtx/S21G1-p21B0.m",["21891fb6649c285a3f125670206bf9487b2ba7ee9d026e20f7c3767cab13420c","1f5493cb79116e35c0039f3ab88d3adc0a55e36d0220044f3199546354f0cc95"]]], ["TOC",["check","alt/A21/words/A21G1-check1",["24befb8d858794a24249e0b59cbe022d271bafae7cad83394a26ae9d2c971687"]]], ["TOC",["matint","alt/A22/gap0/A22G1-Zr209B0.g",["a14965709723b49f67c6be32b55f5cbf4a31216d16e9c5273e014079cd08842b"]]], ["TOC",["matint","alt/A22/gap0/A22G1-Zr210B0.g",["54cb9038f9bbd621c982bf8f9caf2bb2301a63bc8da584a034eeaffabc2f6ee2"]]], ["TOC",["matint","alt/A22/gap0/A22G1-Zr21B0.g",["e5ca76db3359aa9c6e46a8d71890f356f734bf0aef5749ed44ddb42936499a52"]]], ["TOC",["matint","alt/A22/gap0/S22G1-Zr209B0.g",["43492c62496f8a22600a77d8921c3bec4bdccc74497de15a3c2031b178b63201"]]], ["TOC",["matint","alt/A22/gap0/S22G1-Zr210B0.g",["fca5ff862e0c456e6a7e0c7e550a744febfcc9397acb5de2afbe48583f253d0"]]], ["TOC",["matint","alt/A22/gap0/S22G1-Zr21B0.g",["7dc1a89eb3d9eaebb07e1dab3db07ea796be982f9c0240d39a360fdf15e56599"]]], ["TOC",["perm","alt/A22/mtx/A22G1-p22B0.m",["a8a67ee153021fa2d6516137e0c558f38eef6280321425b2d5d0567d9af3fe3","a1d1b9daae44a77109e40dc930bb5e45267d99ed8a082e084f65356f83b902a5"]]], ["TOC",["perm","alt/A22/mtx/A22G1-p231B0.m",["9bba8c0a556d48c3efbf7442df48c371a6fd6744ae90b0e84e8eebbd24202acc","f65e33d75f5ba1d5ab838e9c83e9f0c754993aacef7d21488ecb14f6dd78d3a4"]]], ["TOC",["perm","alt/A22/mtx/S22G1-p22B0.m",["1e4404438d4bae92674ac745f24dabcb531d1dab3df8f70c442a2e98d1bd16db","a1d1b9daae44a77109e40dc930bb5e45267d99ed8a082e084f65356f83b902a5"]]], ["TOC",["perm","alt/A22/mtx/S22G1-p231B0.m",["409690a4ba83bb3673c2562958fb962085d0e7b96f6901699d967ef6295a2bd2","f65e33d75f5ba1d5ab838e9c83e9f0c754993aacef7d21488ecb14f6dd78d3a4"]]], ["TOC",["check","alt/A22/words/A22G1-check1",["b94085023447876b666a901d216f9ec06b08f781d4b269a77098da65d1c52c8c"]]], ["TOC",["matint","alt/A23/gap0/A23G1-Zr22B0.g",["85c195f52fb54f8eb2d65856137a372883e37851701e9430d3b17ba9ebd72d1e"]]], ["TOC",["matint","alt/A23/gap0/A23G1-Zr230B0.g",["318984a28e36787642508765c27d9425dbbb0d3e0814a15c5a21049d674d2c0c"]]], ["TOC",["matint","alt/A23/gap0/A23G1-Zr231B0.g",["8f10c93cd24b273756c5ea7afe3bb0d3319dc150b4672d2051187e5fcf7b8624"]]], ["TOC",["matint","alt/A23/gap0/S23G1-Zr22B0.g",["1a590d81266c28dd8d130cb06ef57db374080d9f6b00b88a290982fc08b66073"]]], ["TOC",["matint","alt/A23/gap0/S23G1-Zr230B0.g",["12dee09e06528aa3bcbda745ca898bafbe06d7db0d63a6607d60e99138fb7288"]]], ["TOC",["matint","alt/A23/gap0/S23G1-Zr231B0.g",["ae7f5bb2967831c23fd147955ba31701d42c11178744dd9528992e13cbe9667a"]]], ["TOC",["perm","alt/A23/mtx/A23G1-p23B0.m",["8a27caf0c52b312cc4a3811d4082768951c6e8c58a66edc9384ffd3583e741f","d409ae5385b00ea4aac154bc75b0ddba22be5eacb990daf0131c05f62aa36439"]]], ["TOC",["perm","alt/A23/mtx/A23G1-p253B0.m",["7d60e4e03e2847cbc842fee9fb2e641899b02146f4bd035d1ca9f16e6c7bb932","a942b6c3e880b2291aff1d9fcfc01cee767247016c204d9178420536c756d5f"]]], ["TOC",["perm","alt/A23/mtx/S23G1-p23B0.m",["4a89160f3073b03512f66eaf511f53fd628f64d1f2a1494ca56477a4375c04d0","2f2f2cae19235566583a604f6ecf7fb023146eb0e1cd3db838f8693020f132f6"]]], ["TOC",["perm","alt/A23/mtx/S23G1-p253B0.m",["61ca6e6cf47d5cdf70201e67704acbaee7ea92a1bbac1236e9ebbd7b1934bb52","a6a4dfbd4a5deadb0ed2b936a8fdeb5c4208d61f2ce7fdee28784b732e2ccf50"]]], ["TOC",["check","alt/A23/words/A23G1-check1",["8e9d38ba2527869e6d6edfd66f5151fded8f8179b9cd9a676b963765600a907f"]]], ["TOC",["matalg","alt/A5/gap0/2A5G1-Ar2aB0.g",["6da2c1ca82840ce1f50efdac8565c4e095e8e965757b07e8d77f73995811688"]]], ["TOC",["matalg","alt/A5/gap0/2A5G1-Ar4aB0.g",["75e57b3d0f2652ff1acf56511229da8fb13f46f9e071f87c86c1800f6cf8774e"]]], ["TOC",["matalg","alt/A5/gap0/2A5G1-Ar4aB2.g",["454a0c3532bef6df4117416294fbbc1d6c381f9242120d2a38b87d8ee75b4ee8"]]], ["TOC",["matalg","alt/A5/gap0/2A5G1-Ar6B0.g",["58cd14a16eb54e17ecea3749a0842b569bde20fc5019c0fd58dfc14dc0ba6fbf"]]], ["TOC",["matalg","alt/A5/gap0/2A5G1-Ar6B1.g",["4e85f5f59012d4b99f8b3339264b4c4d574deafdca1934f29ccf6c72d734af70"]]], ["TOC",["quat","alt/A5/gap0/2A5G1-Hr1aB0.g",["6acf049b55e37ffed9a7acce95cdb29e7b8c49d1d14588cffe363e116a36a036"]]], ["TOC",["matint","alt/A5/gap0/2A5G1-Zr12B0.g",["373ab720d524ac09a7425830f96d1a336209ee1a8215b7b5af05502cb0425041"]]], ["TOC",["matint","alt/A5/gap0/2A5G1-Zr8bB0.g",["5b017d9dbf755e1888cffe8a65aed57ebf7bca1bee15b36e83bd86f29e5e8932"]]], ["TOC",["matalg","alt/A5/gap0/2S5G1-Ar4bB0.g",["1eab21181aca9e0c50a1ee652c15d270c2b50a17d807e32b800c491a575b1047"]]], ["TOC",["matint","alt/A5/gap0/2S5G1-Zr8aB0.g",["237f5968e9dcf4921c6aaa4e374f23a18c3be1f9858220583538d298687b7498"]]], ["TOC",["matalg","alt/A5/gap0/2S5iG1-Ar4aB1.g",["54fffc4d862ebb072ad584f698575d88fafd18bb1458d97fee8abb005028b7a0"]]], ["TOC",["matalg","alt/A5/gap0/2S5iG1-Ar4aB2.g",["d09b314c61ba8b3cd6dcf3b806cc2b7380514f96fe310013b5c1a346a86a3684"]]], ["TOC",["matalg","alt/A5/gap0/A5G1-Ar3aB0.g",["b36d94dc27bd33e621572cfa08eb9d0b21e4a6d6c97b087bd767a6b4c9df50fb"]]], ["TOC",["matalg","alt/A5/gap0/A5G1-Ar3bB0.g",["7824bb5e39926fd1ffe9292e4b09816b1c856f54006cde435e6133df9fa7e0b4"]]], ["TOC",["matint","alt/A5/gap0/A5G1-Zr4B0.g",["9556a04bddd432e11dddbb2069d95e452bfa62e49ac3ba102cc3acd9936cdd42"]]], ["TOC",["matint","alt/A5/gap0/A5G1-Zr5B0.g",["c6e12d312e26548da88f224824c5e8fcac12ad96c01874d401a871268617e1c7"]]], ["TOC",["matint","alt/A5/gap0/A5G1-Zr6B0.g",["4721ac17405a0a62e636404bddbb3f0ea53752fa18eb3e11f5365d6099a66956"]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f2r10B0.m",["a5ceecff448ee0d9fed3da5293f906c3f03b16ba48148f86c79ed7fdc6fea3f8","dab1c5932a597e7733b569d50d2c9473ba9607fc12991c62688c8e5f07b6980f"]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f2r8B0.m",["3155d3731493c2c622899b0f5d8b349751ec06584c9fb1f084e6d8a9a6e4efba","497ef8ea9ee2d15903e27afc8b10098ac54964a340f9952dd3872aeb3cb21bda"]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f2r9B0.m",["e320332532121df041a99b76bb952325e3a89f830b358e061a45807d82062a87","2744c97ff92a369e04fdc2e7a284a71805f1273d4a4f465ba9316ee6e3137f1f"]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f3r4B0.m",["5a5e82ca50df27187d498fa21b30d667723066d13be1e4171510ce03a4d6f4b7","fd42e533cbc2fa4c5268da304f4f912d4ffc2ac3573d6e3b8831a12561821bac"]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f3r6B0.m",["7591a4deda1fb0a0aed13d193f8a1c75d51125163eaeb5c38bca0b7f3e2973f8","1b5225b530abc3a61f93663494c85613cd9be96da137993ec1ccbfc673e5a149"]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f49r2aB0.m",["5f8e7aca1f9c770f85bd913bc1495e2b47b8d783d0d12bc35483e3cce3bd471b","fdf998054b5c4acb79320a15f67baa8bd092f14fc7ac84840dba42a6f0b6d866"]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f49r2bB0.m",["8e7a3c75f17c520100ac9f2a23b20c7724bf903a8975f7bd7ee27ded155376cb","44c031e12bb0ec78a06520bca7a7ebad7b49b4582d60ee5fe260fe2cc02a1f38"]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f4r5aB0.m",["1ab39ea75af3b33125fd54176181243d4b02d4d042e09bb13820796d1b336e43","95edfef89c4d8ca17c656d3fd069e6a228d93cf9742e8258aad7dbf12840d96f"]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f4r5bB0.m",["5e3d04bc334f639e9387f17ecccc65f3d149b54fbdfd7b79457eee4e8620a156","95edfef89c4d8ca17c656d3fd069e6a228d93cf9742e8258aad7dbf12840d96f"]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f5r2B0.m",["bbe64b31797c0bc08b71ab24700acc4048fa545a695a42b3595e41742a3eaa27","d6d69204d382f73fde6d8d9743f9eb38d751aae1e12a268ca69fabd014289fc3"]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f5r4B0.m",["896ca93aa353abd1cf2a5c37496b8f47020222746a7290217e460082c5bf8fae","e4d68c47347d203fd90a88ec9dfd362c79b34904e9b545b49ff0d728c2fd33d2"]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f7r4aB0.m",["ac8cf752ba4acc0c117b31cf7377ae825ec977efc5b064401fb1f6edf6d4f23e","fae16e22b472f70e815ac42396eb611a1808fb3d923d62e0569340d193a4d7b2"]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f7r4bB0.m",["ac8cf752ba4acc0c117b31cf7377ae825ec977efc5b064401fb1f6edf6d4f23e","4da4b25b81563ce3e1d68f40c7c8355026d7fe5e9260acd4158732d37444cf64"]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f7r6B0.m",["1441e6956167d208b5d593c6244493c17a72630dcbc31620b79e972893d82f3a","5cb89cbce5b3b91e5757e252d3ccc99e2857c75f9afc35c32728388f1a6ced33"]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f9r2aB0.m",["fb7b173bce5cc84f235d67f23d109287bfcc28818bab91c2777c745eb8a5a0d4","999c481ae2b87baa44f663ce7761f21374cbbcea72f350212d57944951caf9a"]]], ["TOC",["matff","alt/A5/mtx/2A5G1-f9r2bB0.m",["34c21197bdf6b31c372b079061f14a45208d9dfabe4dcaa3a6293fb8bbf8acad","999c481ae2b87baa44f663ce7761f21374cbbcea72f350212d57944951caf9a"]]], ["TOC",["perm","alt/A5/mtx/2A5G1-p24B0.m",["6d40753027580b9c91616f7850ac49bf88f76889cd5f2fbe55b88dd48f7f7a6","173f895485a0a0b435d487a5a6a001c1622bbb5ea665633cd13479b0bf9a64e3"]]], ["TOC",["perm","alt/A5/mtx/2A5G1-p40B0.m",["93ab89384174ea1b1fdb6f52ae7c190130a75f1876aa1c168ba30307413fdb22","d1525d02607433dbe9471fe3b8eaa77b51e4c5d894723d4dcb1a2f89ef61d96f"]]], ["TOC",["matff","alt/A5/mtx/2S5G1-f25r2B0.m",["8565a84da529bc2b77ed04b8975c950f028a5fdc85c6ba1624dfd95267830cd2","7c85cb305f36e58aa5bcab8cd799c602bf36d5dc8d7ed9e7ce4b31e02cce04a5"]]], ["TOC",["matff","alt/A5/mtx/2S5G1-f25r4aB0.m",["31563c83695692218d6024bd87994dc0db428453d2745498f21275df6192bcc2","9cc791b01eaf40f436972eaa8aa430c8ccc28ba9ade102ad9f49967a30228806"]]], ["TOC",["matff","alt/A5/mtx/2S5G1-f3r4B0.m",["ecb75965d4c29aa8dc848a0cf9d288703518dd4f39f3b7115a7badc98d070f82","aef2ef8dc76771a29b285c5ae4275e4183d935d5bf7b189968dcf10e3b84e9c3"]]], ["TOC",["matff","alt/A5/mtx/2S5G1-f3r6B0.m",["1f984e936ae78da129c791ee61fae52dc795e37715151ac19b05c809a95a95b","cbb186ff2991cff636f443eade1299e9ab2e6c64151bb2d8c39bab9e8e763562"]]], ["TOC",["matff","alt/A5/mtx/2S5G1-f5r4bB0.m",["ba03b20f82c073bc503ae97542e6ecd3f51ddaf5188b16b3756c88e9103ef6cb","a59d83d91ba4da761e2ea5aa58d20fb41e7d99a284b870995722906c7c60fd61"]]], ["TOC",["matff","alt/A5/mtx/2S5G1-f5r8B0.m",["244aadd49c942febb10ebdef2e050eb884c704686b38ec3f2576a0723ba28873","d5d016351c791a41d971641a982f3398c0bfd84b8b416674c665d4b756873b6e"]]], ["TOC",["perm","alt/A5/mtx/2S5G1-p40aB0.m",["a5de9681e06365b5cdb617d7f704a6797a319b12bbb9efcfe28b04b10ee47a38","71e71d2f5cf81d140539d59b6ea4ecb35900e59ece6a99194cdabdcc41c06a42"]]], ["TOC",["perm","alt/A5/mtx/2S5G1-p40bB0.m",["286cecf9a3cd49d164fa7a3f1a6e05babee510f04dd826741f937595e26639dd","3335e63109a7435b6fbeb0109561815ff2dc60ac166bbf2d560fde9445c860d9"]]], ["TOC",["perm","alt/A5/mtx/2S5G1-p48B0.m",["c91ffb3141994f2a885901cc7f404996f5b3499e6951700cbfadda128b6b9f05","e5c0adf27274e129f33c28fa7be76d1a952e64a4d478b3786dcafedcfe16678b"]]], ["TOC",["matff","alt/A5/mtx/2S5iG1-f25r2B0.m",["ebf700cabccf3654b8503b55cba46357a534157a09602ec705f224a16b13f08d","90b70272547f0103ae81ef54a8ce1e52d6b463424d05ca91f69d7d4f0ad6aec5"]]], ["TOC",["matff","alt/A5/mtx/2S5iG1-f25r4aB0.m",["78f651601cf602f89850170f299868f3c4f34c11359cf589d14c5a8b37ad41a9","4ce0386508f23e4348f998b6ff2c59da69fce712a6838f783d161daeb6207cfb"]]], ["TOC",["matff","alt/A5/mtx/2S5iG1-f3r12B0.m",["6278337f39ea8eb7147facd54c22fd5f39aac4a9d528899e6da164c855799e5e","8881e98713119908ced2828355f3874be8ddf3057a9a11c79aaabf81ea001c01"]]], ["TOC",["matff","alt/A5/mtx/2S5iG1-f3r4B0.m",["5a5e82ca50df27187d498fa21b30d667723066d13be1e4171510ce03a4d6f4b7","c385acaf892b7c0273fe9c77d7ece7c897ffcc2eee03491a6cafda5b7b0cd88f"]]], ["TOC",["matff","alt/A5/mtx/2S5iG1-f5r4bB0.m",["6286f063328d6e1e7392499a48f8eacaa16ec1202ec28c8614a2145178a294a9","6a495f27ca4141f0060b73bbbb299b595217861248e54b90585bf4151f7588e1"]]], ["TOC",["matff","alt/A5/mtx/2S5iG1-f5r8B0.m",["9b47474312e1fa0307700be2f93cf986799e716ef41526a885746a9a213df1f6","1956793b653eee2ceb83d972bf0d35f97e7bdf7fc70eb7b4c0f9269a000acd2b"]]], ["TOC",["matff","alt/A5/mtx/2S5iG1-f9r6B0.m",["21b6ebf5d86c7588305da863fd337970c80cadba2b4f231a31c8c53100c78d62","3fd78fc688b25901a8079417467b641ca43d0c7d0b04136bb56ad4ebb802b0fe"]]], ["TOC",["perm","alt/A5/mtx/2S5iG1-p48B0.m",["fc0acde3455c3897b37ff505daa6be2821a2fb18a2bba96575bbc8f31ab3c885","3c28938d6bca5205e6ee33dff133d144e4babdcc9ee8011515bbb4bf2c7c3d7b"]]], ["TOC",["perm","alt/A5/mtx/2S5iG1-p80B0.m",["337b07c8427c8f0e98b87d52a34f048394bc76031bf7a85d039ee7b2d434c0f9","83833f280668c84c242e005587db483e9ad0f90d7cf4a63f0ba7644275927468"]]], ["TOC",["matff","alt/A5/mtx/A5G1-f2r4aB0.m",["6193e2e31ac19f35caccf34cc035f82801d13ee01602bcfc07389b613cdec9ff","5a019ebacbde3ec01852e45250060f4239b23b445298fca6d27258b9d684e786"]]], ["TOC",["matff","alt/A5/mtx/A5G1-f2r4bB0.m",["7d83e18578c842b9dcf0e88b7d1e74d840b80721ef81e73f114f6da39881ccd7","1c423ae042fd9e86020ec4fbefff2125191247e409af5773babce7edd7f757d9"]]], ["TOC",["matff","alt/A5/mtx/A5G1-f3r4B0.m",["2c8b7ffccb1364f9d4da07707750b6a3a3ee6c2d0505e8c2983f363983aa9e90","878f5dc11090641cf2f8e34a352c69a34ff1947b88c3e9c876b5525e3e00be3f"]]], ["TOC",["matff","alt/A5/mtx/A5G1-f3r6B0.m",["bf808e1a7dccfa59c6459cf90d3ba85f6ce1eee9e27d960b8f99470395744790","ff4fa93d5f374f0b9aaf7e49b5e034898127d1aa789f51e4cd2abc49187acc82"]]], ["TOC",["matff","alt/A5/mtx/A5G1-f4r2aB0.m",["417f5ece4934fb7a6651c346d7c9aa8e9202bfd4bc308caa6d52fb621b402fa9","69df68bfb0049b2e0c68e035d8d3870b1ae5053874a03b9525e06fcdd222da55"]]], ["TOC",["matff","alt/A5/mtx/A5G1-f4r2bB0.m",["f149ee1e01cddaf8f8d0cf1ea85b46487cb88589947a5d69b4ba1c29d35a982f","69df68bfb0049b2e0c68e035d8d3870b1ae5053874a03b9525e06fcdd222da55"]]], ["TOC",["matff","alt/A5/mtx/A5G1-f5r3B0.m",["711ff041ef4589a97e4a98c530acde02a05ca4789d942739122b0a2dff891bbe","584462b6d06e7180fb77665a3c06190f3697d2a97fc7e98f9726fb3e92712741"]]], ["TOC",["matff","alt/A5/mtx/A5G1-f5r5B0.m",["444bda36fb76c85d56fcf4ae6f27d95a0c123eab4ed70a809c7d19b519631435","1bad3f2303208287fe0d2dbdc37d509326a13eb24f2d02f86f076617a3683abb"]]], ["TOC",["matff","alt/A5/mtx/A5G1-f9r3aB0.m",["716bf050fb82436688f484ea9aa9d6aefe70c203a93f168f7ca7131e60c54878","7135d9570b7560256213b3a865a5f66666efe30219ec30374f47901ba5167b3b"]]], ["TOC",["matff","alt/A5/mtx/A5G1-f9r3bB0.m",["d459e6bc91102afd522b9d5923a2a58e2991006022ded995d63e6ab2d39cc5ab","7135d9570b7560256213b3a865a5f66666efe30219ec30374f47901ba5167b3b"]]], ["TOC",["perm","alt/A5/mtx/A5G1-p10B0.m",["29ea64c9db1ac9de39678846fe01204703dd5a9d8a0284d1101529da9501291f","4bf5675b8263752df57d0f2cc96f38ff9ef88bfa2113a93e10b40bfa53a05e8a"]]], ["TOC",["perm","alt/A5/mtx/A5G1-p5B0.m",["9bd5b2ee6fee8530d3f1e47004d94d994104aa63688567d1edb0c4ba66599905","61950033f7579e0e0fa2b10cbf941bf2a4b51d2e2f0e628abf4a5c5125ba28a2"]]], ["TOC",["perm","alt/A5/mtx/A5G1-p6B0.m",["77e9f5eccdd6ec3378ca6d34551439e6e6a910f6d498ea73c5329ad3998646d4","c89a847c27c6aa77b2d51adac438c4b49f94599a81920097f78580e7c202e221"]]], ["TOC",["matff","alt/A5/mtx/S5G1-f2r4aB0.m",["bbee54ccc14c1ad46086176c748bcd11644ad0ac7062ae129debf0b1003b1883","d69a93387187e86f2c2bd2bc659048c728554893279f0453e53f684ea40c3dca"]]], ["TOC",["matff","alt/A5/mtx/S5G1-f2r4bB0.m",["70c2f06b8982d4c3a409b9b6c24a84d295d74c77071c4893bdab5f9b5ae64714","b5997e6538c883685bd5ea47ec1a00edad7c75860b9c563c03e4bfacf922a126"]]], ["TOC",["matff","alt/A5/mtx/S5G1-f3r4B0.m",["7838436d10bfb72fe0524c08e76505cb387f9a4af8e12cc532ab2f1313e2ed71","1b8fe542acaa56bb06e218a5dd0134c24bfc9633e657f2f5f5d7cbe5ae2af8e9"]]], ["TOC",["matff","alt/A5/mtx/S5G1-f3r6B0.m",["bc3b882cb56bf4e08354bed2f8a16bbfa3f741d8e80b0538f333cd2d667b4c2d","9d0deaff4f28e5ecb73dd2d8ae0e1f1c078ed27788ab75e7b209a244345a717b"]]], ["TOC",["matff","alt/A5/mtx/S5G1-f5r3B0.m",["8528c826804b4b4614753da358de07149ed624cabe6a9b3d80ceb5cee8d55d54","f2edec4b7359dda74c6df355c0f5e411da6c0cdcc4f4f1dea1a9338f9ab4826c"]]], ["TOC",["matff","alt/A5/mtx/S5G1-f5r5B0.m",["5d61897d097dd15cf0b024a0e9d76da9af435a5759d30b71bd280f42d74d7141","131f56493a62b432d0ef9da558c1111c0a249855deecefcc4409f2811031049b"]]], ["TOC",["perm","alt/A5/mtx/S5G1-p10B0.m",["b541cfcd9d5532b752fdd8487773c47a40b3daf6c415d615f9b7e2d6f629814","fc8a9f06cad292fa60c3bf1a5f3483ce6d8ea92739b3c2b7255305cb15f91519"]]], ["TOC",["perm","alt/A5/mtx/S5G1-p5B0.m",["385276020af7849622d0a70300d55f9e9259dd0ac07680552a2ce18947e7355c","b7f50f2594961f86f86fe385ae98f5b18fac573446245d7cd9bbdcee4e70f747"]]], ["TOC",["perm","alt/A5/mtx/S5G1-p6B0.m",["be3cf8fe0115d3f397cf2ef7b5610f9c62c8f4299155ac655f1ee07ea3691388","370db4cf41b8ac56c99f0e0e7c9d2a5a303def3175f18a446cf1a335d9788c8e"]]], ["TOC",["pres","alt/A5/words/2A5G1-P1",["3d8e3b1b1bc1cb4a059a1280925ed9ce212018df3d15a7086fac7755c443ff06"]]], ["TOC",["pres","alt/A5/words/2S5G1-P1",["f9b3faa32ea05a2bbe60b623778d8677d7181ee3b633bded797101a5743bdbb9"]]], ["TOC",["pres","alt/A5/words/2S5iG1-P1",["e6dbdc439b8a9723a316827689e70ea84e136b5039d6a32243e08e659052ae62"]]], ["TOC",["pres","alt/A5/words/A5G1-P1",["fa08c5f778f540ef302d2b4b40684d142c19453a3aa5dfc0ddf71ec640cf45a7"]]], ["TOC",["check","alt/A5/words/A5G1-check1",["fa08c5f778f540ef302d2b4b40684d142c19453a3aa5dfc0ddf71ec640cf45a7"]]], ["TOC",["maxes","alt/A5/words/A5G1-max1W1",["add7022dd4cae01ced6cc8fab6574b0c1f0121ca88ca671320277e7dad34ae70"]]], ["TOC",["maxes","alt/A5/words/A5G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","alt/A5/words/A5G1-max3W1",["9a13da74ffb7627dc82354c228eb3df3227ee8232d674fa43ff89bfa262b9a78"]]], ["TOC",["pres","alt/A5/words/S5G1-P1",["b0a1d35551d37d08c1c65008baf927ac5e4e71be59a1654b804ddc6f984ce890"]]], ["TOC",["maxes","alt/A5/words/S5G1-max1W1",["906649f0e32cf88618f3b3898d11f981077059aac2438bfa068cb9c4b70e3d18"]]], ["TOC",["maxes","alt/A5/words/S5G1-max2W1",["80d7ae59901945caea710cd3982418f8ffb6e25132fd1dfea7805ba1fa10049e"]]], ["TOC",["maxes","alt/A5/words/S5G1-max3W1",["a92029b44c33b515948ce1fef0569a022ae1e029246312e560172e11aadfcbc7"]]], ["TOC",["maxes","alt/A5/words/S5G1-max4W1",["2b75a8eeca556b13fdee6d46f8fa7bd58ccb89077f89d387cae679e1ce8feee1"]]], ["TOC",["matalg","alt/A6/gap0/2A6G1-Ar4B0.g",["946f083727344a118e6b9987974f0ef0342f17c2631a765f0ade1fe867c88d3"]]], ["TOC",["matalg","alt/A6/gap0/2A6G1-Ar4aB0.g",["92e55d7f0f0f2c5ea0d0ee86954bb460aca6a22a9997b8ae95eb95ea2a13234c"]]], ["TOC",["quat","alt/A6/gap0/2A6G1-Hr2aB0.g",["3f969cb6bef83840371adcda806be7b4653b66a1d5b526f3a670f884381af377"]]], ["TOC",["matalg","alt/A6/gap0/3A6G1-Ar15B0.g",["e16525506ac3c492087eb8d46d6a0172e1779fcdd35b44e67a10445b42901af8"]]], ["TOC",["matalg","alt/A6/gap0/3A6G1-Ar3aB0.g",["3a6e93e7bd1560a125541768106a9c6a0beeab29ddee43a4dd7c882d61c0e669"]]], ["TOC",["matalg","alt/A6/gap0/3A6G1-Ar6B0.g",["fc50041c24f73d061c53182c44f1f0c06622dda0d191ae3b72cf2c7a4a7768b9"]]], ["TOC",["matalg","alt/A6/gap0/3A6G1-Ar9B0.g",["682ad1d531dadf8c007f3351348f83d90e4a1f76e017c6cce80dc5f46887c05c"]]], ["TOC",["matalg","alt/A6/gap0/6A6G1-Ar12B0.g",["50d57bc45faa2adc47a44147dcbbd7040b6b51328a3a4ea3c93dc2b6e6f895bd"]]], ["TOC",["matalg","alt/A6/gap0/A6G1-Ar8aB0.g",["c8e3fa57e898c665a8ec9862b9fd7d2026e2b1b351a9ba6b10cc69766b8696dc"]]], ["TOC",["matalg","alt/A6/gap0/A6G1-Ar8bB0.g",["82237709cbca7bbad77ba8632e0951da62fa805bf9b8056787be949395daf7c0"]]], ["TOC",["matint","alt/A6/gap0/A6G1-Zr10B0.g",["684d9e74a9032cae5e315abc5cbca6f340fe6e01ea7d759fe201422f6eea6e41"]]], ["TOC",["matint","alt/A6/gap0/A6G1-Zr16B0.g",["549ce12a678f1e7e14e72afdadbf4344338835d9384aa658cdeb7c72745c0a5d"]]], ["TOC",["matint","alt/A6/gap0/A6G1-Zr5aB0.g",["5df62eeeb29e4e9f961cd67408098f0c592cbb167635f668b5be7aad991b9d4f"]]], ["TOC",["matint","alt/A6/gap0/A6G1-Zr5bB0.g",["c5d1fe0c4bc1423dd7b765698dcc8f4c842475cc18bc31349badb38c367a5aa1"]]], ["TOC",["matint","alt/A6/gap0/A6G1-Zr9B0.g",["9118d4169f02782503bdae2a1f1be823b095e58808e06eaf626f295cc2447b8f"]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f25r10aB0.m",["ba08ec75eb24f55c5ef9ba87f046dace892b61e6fbb81484b3e1960be877f438","4cdc70a4262e07bfd0309affd62340f05e33a1673a1c1bade9e4f659bd0db5e"]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f25r10bB0.m",["b722c606b0f57871aa750f7c93804d110c2f310d0e0e3af6a1b76bd65958f02b","709392c1296485d9ecd565b373f7aebdbf27baac2e894b06827fa6c72ebbccb2"]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f3r12B0.m",["b54ec414e2c48af7bed943ab4871f08be8df2389b696ae10defe356e159ea835","b80510aa56ec163b48de66996b8cbd6a4854fe314474814731a98d4c15f7d941"]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f3r4B0.m",["7dfd8df6277a7d1151b8248bdc710fc357748ddcd867729b71464151a1323a77","fa13ffa5a77c753c89d3b0dd97fd3482216973e0c6c42526cae44b54e5182d7c"]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f5r20B0.m",["f21b04daed4c6deee73bbcc793beea49865c3198cad6094990b15412c49be51","5d6c2885a631a43dbbc7432810e3850df3d188142372ac5c079efee57cc52a3b"]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f5r4aB0.m",["e0d67c8919a3b0e91c5849d832c1239b0ffb7b74c460989b3efc053994a607b4","d8bdaafa027af598ca2e91bfbb6d885e41e28ff0c7e2f7cf386cd089da40e7ae"]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f5r4bB0.m",["59aac9678a4403d2151790fec52ca861fe615f1b8b5698b3616d0d6b7dfac7d5","d8bdaafa027af598ca2e91bfbb6d885e41e28ff0c7e2f7cf386cd089da40e7ae"]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f9r2aB0.m",["7a89f4ead86b2172af8deeff5fc73fc4312443dfb53d1738cb1cb1c3cd4a2e6d","5107bb8e178762c48ce6105450dbbcbae95ccaf2d6932795cb995b987a6d979f"]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f9r2bB0.m",["d1f9fb686e217ca2b92c6181553a311b039cc2986fb91226bc36e72863fa2a11","266cf4166bcae67f6fa7d66e329f479836d9334289c85335d69d1d9acc7d4bc7"]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f9r6aB0.m",["21b6ebf5d86c7588305da863fd337970c80cadba2b4f231a31c8c53100c78d62","d2e338a7e4dec31aed746855fba132d91f55fe14438c66331308267d9b0f6dfc"]]], ["TOC",["matff","alt/A6/mtx/2A6G1-f9r6bB0.m",["21b6ebf5d86c7588305da863fd337970c80cadba2b4f231a31c8c53100c78d62","8304d3719dd1b6c675c4227bc257b0f0face557d3ad2f4ff587d2bbc342692b5"]]], ["TOC",["perm","alt/A6/mtx/2A6G1-p144B0.m",["f00fca19291286de5fdc6c9468be774ff108f31707ad3482371bd5d939433333","820cffd739e5fb558db8baa41aaa698ddc464c1fea0009008fe39d9da09ae2b3"]]], ["TOC",["perm","alt/A6/mtx/2A6G1-p240aB0.m",["36fa4bbe3464249af295f4859f98d09ab8abc389aa25912f7d9c18588acfabaa","928366c945e7bd745e8d833e9a84a1e92e30c7367c4aaaa47a3a0f68a23ea32b"]]], ["TOC",["perm","alt/A6/mtx/2A6G1-p240bB0.m",["77cac2d5a667447960185201d44d7ee42397b2354d6d5ace3f49db5f5c102cc8","b03bbc1469ae672369b7894355e38975101f02e125cc12a27d22fc4f9bd3256f"]]], ["TOC",["perm","alt/A6/mtx/2A6G1-p80B0.m",["d979294cc386e0e3ef29cf6dd9f522060d6796a7198354a6fee9bfdd3e125d45","5730abb323cb9614abe74331d161ef9629c534f242c939e8099191dc7d8e567"]]], ["TOC",["perm","alt/A6/mtx/2S6G1-p240aB0.m",["21a69fc34fc043381bf02c39c00ead18e99583a10803093a2d50107a24521427","508cd91bea1400b9957522cc4a7c33b2ba2052bdc3efbbd7a32be9302b662576"]]], ["TOC",["perm","alt/A6/mtx/2S6G1-p288B0.m",["6f6efe5c22661bf1fb6480325f9fa11c236809522c0f3b4ffd5024d2ffd5f428","c49eadfd05747383c63c564de74068ea903ab1da23da36667bd77d04b710e474"]]], ["TOC",["perm","alt/A6/mtx/2S6G1-p80B0.m",["e7797c18e5950f7b60efc907cf06ce96e6d59892aed7f9eb95190c22366b2a98","5a7c953136457703417503a6b1c75e4d5794e667b5a45cbdaf3af2567b03ce1a"]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f25r15aB0.m",["9363d52e7adeadbc27ffb0654e265d1e0141cb6fb0d55f40cab6dc60f2830d40","266c159d972a33c53226174ef3cc145ce5c64ee1a1d76a3256005d1f9aab6352"]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f25r3aB0.m",["86765fd5c3e1d412d6936cd06059dd3f6512de5a6bfae3539f205c910ff2bcad","a8dd70d5801a54bfeaffd3a5bb502ddbdf6834bd265cdbb478e5de79894c5ae"]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f25r6aB0.m",["dcb8231c5ee4028c8d1ac487659528c1fc63de544a0761a9058e4e856f3d878f","8790431c71baac399d4517d18d3fd15ec352e70591586bc5f5615d70ff07c5ff"]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f2r18B0.m",["5f08e96611558b5662b3d45d1b9bd9cd35adf9bdc3ab71ab539f6948afecc5b6","9bf127c6ff2189a121f268dd20f47f0d6a13f3ef04287d08c9cf1b48e12540c1"]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f2r6aB0.m",["89e7295edde32e27c0ed35f8a83edcc69118a10e786742a38ba61a4ba9aa06d","852b63f991c3d5c65764c005e9c311dd73ccae50270a96702087e111473f9714"]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f2r6bB0.m",["2ea79f5fcbe9e6f560388cd3ec4cf49b998510a0fe2c86db0d7a28481c8b155e","1e3f9154ebffba87c7214f69d980e95af9367000411d4a8602ffd8b50dad208a"]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f4r3aB0.m",["a4efc97b55bdeeece958920d5fd3a2b2578bb4bb726c7a3b617fe245386199e1","718795cd2fdd8a3f98bdd755802c01a325a830d5f90dacec400bcc296a07911a"]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f4r3bB0.m",["a4efc97b55bdeeece958920d5fd3a2b2578bb4bb726c7a3b617fe245386199e1","3e4abb6d0d3794c50ec5e06d6114efdaf0333c0ed6e8c32b4194bb5540bf81b9"]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f4r9aB0.m",["e019cc04328b44a1f37a010f7f7b58cf6447d05190e891a21a5596704b7f0d75","cccea451e46a6f1fa4b4c8e2b2e2de02df57d7fb484f8f5c3dba2b75bb25d850"]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f5r12B0.m",["84bad6e211d63a2cf4921a461bc75e6d7d1b4546c8cf5c44dc6263242288b689","bcd9556043a7ff76f7867109b86201ca9301a97fc17217ac8ef2f88517f7cbca"]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f5r30B0.m",["38e561246e7c87fcf4fab9bb8ab44c4a157319685bece07f5cc99611bc89839c","a9b24b6fcd7e87da1de015cdd1bdee9bb270b118586e9e7f86aa3022e0253cf6"]]], ["TOC",["matff","alt/A6/mtx/3A6G1-f5r6bB0.m",["b67b5acd13705c1b70905fa66244b7c86ae56ba0d1b231c99b535423c1d2b71","ad05ea3af37b16f918a0ff21e3cf1539486162a2ff6ed8437dd7835dd090a909"]]], ["TOC",["perm","alt/A6/mtx/3A6G1-p18aB0.m",["2022f70511709795aa96fce78e6d879b511311ef01996df3a0678ff58e9b0a20","be4d67b215684129176cedd80bfea5959779d447365960953e9238fda17e730b"]]], ["TOC",["perm","alt/A6/mtx/3A6G1-p18bB0.m",["37d77ec090343d1bb1db86d65990ad39250acd644711cb86d86f5a2765384f6c","d963fed62d307134f578d8e954f7be06cea5bbf88d55a5d70c1b8fac258f1c36"]]], ["TOC",["perm","alt/A6/mtx/3A6G1-p45aB0.m",["17627b2818ac22d9d552f60aa13a64462d61106f8b8a3b3f8403bb8ac2b90c18","1bdae045fe4b0139dd2b04cf19a83fc11e8fd1da25efc3902d96c3f459363874"]]], ["TOC",["perm","alt/A6/mtx/3A6G1-p45bB0.m",["c8001d8ecb95aae8da98a5d9a68d8dc01dbf016436d039489ed3f996f457a782","134ebe3be8f758c30cb6e88e15b87d3e8b72c7bb61c4a9fb7b981c9c69f35ae3"]]], ["TOC",["perm","alt/A6/mtx/3S6G1-p18aB0.m",["dca3e913074fd5a65aa7b3db5cad0707509ee2bc28d5f53e83ecb62c9233bcc3","4638234be38b0e485e7a525e72de390835bceaff39cbbae2d256a6962c6890b1"]]], ["TOC",["perm","alt/A6/mtx/3S6G1-p18bB0.m",["b5d1fca0e6545c58eac572c967b2b043b666117f530b5481efd67a294692b665","9aa0cecf0f8f2cfae6288fd8a69d146f524b57575e3d997cd29891d420a4eb19"]]], ["TOC",["perm","alt/A6/mtx/3S6G1-p45aB0.m",["bbeeb0b7677b504e689c19102cb893bba3da45d278f2d32b03e6bf886855be72","75836b4ae230901a07028b0db93a574da3ec4f3dcd9c247d4260d8a220643acf"]]], ["TOC",["perm","alt/A6/mtx/3S6G1-p45bB0.m",["6cf0435e2dc96d589e92a01171983ec5f0d642a2151bdf8ff37943fc0ae419bb","fba60f356af3fdabefaccdeed72f828a1b7050c0670fc3a25c0e40aeddc4203f"]]], ["TOC",["matff","alt/A6/mtx/6A6G1-f25r6aB0.m",["152fce97ffce8fe00b89661315603a8883c88ff95421bd8b56668467efdc362d","92a293d75d0c56574a4041713cb9aa69499afa0f090ab2e25a79271f9963dd4"]]], ["TOC",["matff","alt/A6/mtx/6A6G1-f25r6bB0.m",["1d42f1d1c45668c79c7c65dd41ac1a48176543d4dc6138035006837a14b23d79","aa34499e76de5e650bea30195ce87b8f6e35cf8e027808fdc11acc6528a5d020"]]], ["TOC",["matff","alt/A6/mtx/6A6G1-f5r12aB0.m",["1285d1cda2c3a4c1e6b91d44d0364b5561868418c443baa6c7802651554dde17","eeea89a27251111b75e4e06249c3efa35305454e27e01434229c57c84acbd424"]]], ["TOC",["matff","alt/A6/mtx/6A6G1-f5r12bB0.m",["3d30273a5a3f27f5051c4269d86dfca43eb21a340e9fc58da12be81f8f957aa8","89f23357728b31123b538dc919d14187041fa89b0a24c3590d119e4244852849"]]], ["TOC",["matff","alt/A6/mtx/6A6G1-f9r6aB0.m",["21b6ebf5d86c7588305da863fd337970c80cadba2b4f231a31c8c53100c78d62","6200a6ac2d1eca0555cf4d7ed8898e0ff7e3fa453553f6290e11e301f4093735"]]], ["TOC",["perm","alt/A6/mtx/6A6G1-p432B0.m",["d86e36bb7f8a91de6d8c4980d168b92f7f5f718ee00f931cf50351ccc0171163","3ecf75ca526baf6e3963f3ca3297484868f03237875421af4ce248b3b05e7793"]]], ["TOC",["perm","alt/A6/mtx/6A6G1-p720aB0.m",["1ef92d238a2bf59813346d3f9e1cf2e56b82a9dafdeb7ed896463e295e406ad4","9a8659f10483461b8349397e129b2e50832ddebdaca92c35a519efa9c6fb19fd"]]], ["TOC",["perm","alt/A6/mtx/6S6G1-p720aB0.m",["57ba83e6948545bc632ea76f3329a035e87696f3b07cc0c2471d9bb47b95a0c5","50c45283abcab78f4359db688d641eef93adfe851c4643af2ecb3f5a5a778c4d"]]], ["TOC",["matff","alt/A6/mtx/A6G1-f2r16B0.m",["8032e7f9e7ed2e35aa712edf1ae631ce3d005cdf5486336dc3aaab052a781f7b","440d5e0daafe634b4b3de74b595e3d489c9dcb81c85510430cd79f0c7fffebf1"]]], ["TOC",["matff","alt/A6/mtx/A6G1-f2r4aB0.m",["bc4f7130482725bc02326461f0002c9d8a18ba01d7913bf0baafe79057ef69a0","15bddcb43c1d1be4f4d86857732a61ec2b6da45772aa9264fa1d2430009207b0"]]], ["TOC",["matff","alt/A6/mtx/A6G1-f2r4bB0.m",["bc4f7130482725bc02326461f0002c9d8a18ba01d7913bf0baafe79057ef69a0","83fab7b7389475dc2d5e8a3101636ddb2c08c8cfa2f87c96cab48ac05eb76422"]]], ["TOC",["matff","alt/A6/mtx/A6G1-f3r4B0.m",["ba6f83bd2ac2e91b00cdb677d30489815c33455f13a80123d6407f01d9043b03","822505a24bb0e28bdd3a9ebf3c4b3ffc25aa640c8574564c7570de37fbbdf1bc"]]], ["TOC",["matff","alt/A6/mtx/A6G1-f3r6B0.m",["d87583f1c7ca703035dfa7f43acffd55607f35ff3e6b0a0097174649a2a8654b","564ba5fffec5eac8f557d744a6bf43b73ec14b918a148a79caddeb91b522802b"]]], ["TOC",["matff","alt/A6/mtx/A6G1-f3r9B0.m",["2e5f36f5582198640417a74689a5ba72d1f54de14aabb19cb26c8c7043bc6614","1c696e3e18847ab6606576e820e9094a2b21efe732dabee41b28e9792f43c344"]]], ["TOC",["matff","alt/A6/mtx/A6G1-f4r8aB0.m",["f9907f0c64076603b6a8718ebe10f462d34938c1ce6705e6e63a469c6d8772d3","72d6a8a58d369f610fd4d95b006b08bc37252959a0dec4d511680bb2955cde4d"]]], ["TOC",["matff","alt/A6/mtx/A6G1-f4r8bB0.m",["d60c45f7e2f544a591939b78c7e4282b8b12309827c7de63a9a5018a193487a4","212420c1b1a77f8d1a3ce59cb8f07123939ae29e3f3343491343705185308563"]]], ["TOC",["matff","alt/A6/mtx/A6G1-f5r10B0.m",["690f1ce770011fc377b9e17f8dec0a678ad16236c2033c80dcd4c183cba1ffa4","3ede5c024892e185d848452e049da91b6798b1079994546c84479ff971212e6d"]]], ["TOC",["matff","alt/A6/mtx/A6G1-f5r5aB0.m",["a0d23008e8c088f249aaa30a9c25838ff029afd307e4920e3224ae01af6122b2","3c3c904835e525e381cfd99fe75d2c6ebc76de22f4d2eaaba67fb8e4117bc048"]]], ["TOC",["matff","alt/A6/mtx/A6G1-f5r5bB0.m",["e3f27a23cc676ad554edccf6c0bf60a0dcb75b4c6be27f723ffa6097e7d7e756","b524f7d302ad6901a812753cb60c570b81d48d0ba4b48d18f3dd31a9d69a7513"]]], ["TOC",["matff","alt/A6/mtx/A6G1-f5r8B0.m",["a9a8e93542df9228d6684521e475b2ee3f533068317465fb6e2b2b814c1abffb","b17645ae6fd0083d416c3a65d49d4bab7d769e094dacf4caa001a5f8b4acefc2"]]], ["TOC",["matff","alt/A6/mtx/A6G1-f9r3aB0.m",["455cdc7db2073faaabd3101e2b6ba75b49e26aa216e06cb7e02624ae044eac0f","5e56c58c2f17b646eec1b239f0b3243d562e04edd1bd3a79b8a3784e9acc7901"]]], ["TOC",["matff","alt/A6/mtx/A6G1-f9r3bB0.m",["455cdc7db2073faaabd3101e2b6ba75b49e26aa216e06cb7e02624ae044eac0f","119711ba319f378d78ae9618fc0da92d5af6e3ff33e2f7bca0275d19573d3057"]]], ["TOC",["perm","alt/A6/mtx/A6G1-p10B0.m",["5c699aa9d9534883540be7a24cfe2b6e0c01e743f005b76b1e6365f3b5e99d5f","feefe7fea76f9ff60a18d3d679cb64d2183248b4fcad7b7f48d716e8074c028"]]], ["TOC",["perm","alt/A6/mtx/A6G1-p15aB0.m",["6f9d6a282a5d03a5deaa389f93080e0c0efdf4637ad44976f7a1b4999b0b201c","eb9962b650a4eb8129eaa74a03ad50422c70339f7c4b98e784e6ce41d93dd5aa"]]], ["TOC",["perm","alt/A6/mtx/A6G1-p15bB0.m",["f9116018bb0184ce9aa709eaf971c56696c59def3031d6b35af1941928178dda","e2ac652c53453eb7f5343064d47efe7d5ec76e5f41a443705b9588fc6ed14623"]]], ["TOC",["perm","alt/A6/mtx/A6G1-p6aB0.m",["ba592f19309fd528333a88aa22e4a6c6175bf35503764437e180f7ee3f15689c","8966c242daf2657d585ca80ad98fcfade4f475357e5dffd7242c4ab8c539223"]]], ["TOC",["perm","alt/A6/mtx/A6G1-p6bB0.m",["ba592f19309fd528333a88aa22e4a6c6175bf35503764437e180f7ee3f15689c","c3a57603cb533f8f443dc60d64acef2acaf35cfda7e7d5f312c4f3508b68cef0"]]], ["TOC",["perm","alt/A6/mtx/A6V4G1-p10B0.m",["1785025dbfcf62ca8ec0cff5d82693b57157a5698bd82dde902a2dd4bbaa3596","318926523179c2ac43d04aa4963e8bade9cc22e86872bd76463290feab7d25e0"]]], ["TOC",["perm","alt/A6/mtx/M10G1-p10B0.m",["828c3e973a462727910f06f7f484f35128b34f9d4961b00a54f90d000fa78d30","3ffdca19252a04c37bce38616d7012c8bf9f8bd3fd669e54da5a39461e8aacb9"]]], ["TOC",["perm","alt/A6/mtx/PGL29G1-p10B0.m",["549db4b81fdf560e51cbbc472d572a3477a0357724244ce898cb7cd05a88488","4d5bd3f47d056b393e98ae4a93805c49d3567b809a5c41845c317c70a0a86b8b"]]], ["TOC",["perm","alt/A6/mtx/S6G1-p10B0.m",["6613d929e9e60bd70364b65fdb21698762936cee5da562452712d82ab8dd1638","6093e04465ee21e1c8c5cd0ad90b9dde39f8278fd42d74cb967f62c641f1d43d"]]], ["TOC",["perm","alt/A6/mtx/S6G1-p15aB0.m",["c3e101155d9bf2f99065b4ff47b31a13d56fb8af3c937e82a0756ea78c476f82","fadc26c415b3e300824c76b876858bc9fa4559ec424f0bd2f44e40e05350ffc2"]]], ["TOC",["perm","alt/A6/mtx/S6G1-p15bB0.m",["13657c452e9fb3e8febc3b6a52762ec6dab94488b1b2d60d260f7914d577f36f","3bdf5868b5d7f029e0a75257a46e1da833f3f8c6e85c0639cb5a550f24ba1c6e"]]], ["TOC",["perm","alt/A6/mtx/S6G1-p6aB0.m",["b1f9d1807eb7bdd3710356934df85878db222a1b3f478383b49cce31d7de892a","dbc14e2f908f495bc30f4df24b45436885b1c78910c2d301e6dda55a3b25b5e5"]]], ["TOC",["perm","alt/A6/mtx/S6G1-p6bB0.m",["9486f658c54f326fae7eca9201596cb1a31f97db74fe5433a685ec9f587789f3","dbc14e2f908f495bc30f4df24b45436885b1c78910c2d301e6dda55a3b25b5e5"]]], ["TOC",["pres","alt/A6/words/A6G1-P1",["f4b46c087bfdf2f6e97a37f716f3bea5cb10ba5f38b0050c7b1f5a707a296c81"]]], ["TOC",["check","alt/A6/words/A6G1-check1",["1d6cedd0e2614ad8744fe684ff359f6d087a4fd6f5ddc9f3f03423e252e86197"]]], ["TOC",["maxes","alt/A6/words/A6G1-max1W1",["cd20aa74e6ca49650e4e560cb3ba0aa9c0f66963938730f2d9b3b64a0a5dbc18"]]], ["TOC",["maxes","alt/A6/words/A6G1-max2W1",["bc9072c5f5deaa4c28f01fc7fedbca47525f07101c48ec5e75826390ebca618e"]]], ["TOC",["maxes","alt/A6/words/A6G1-max3W1",["445398af2ad6a0891073eee16b98048593c6240b50297277852c65a36caefb02"]]], ["TOC",["maxes","alt/A6/words/A6G1-max4W1",["bd8ea3ac99965a9546c44874f2002a8b63e8fb1b010419058c28812e36b016c8"]]], ["TOC",["maxes","alt/A6/words/A6G1-max5W1",["8df76edf0255530f6a91a424a6e1c29ec2dc35411ad4423fa39609d556931796"]]], ["TOC",["pres","alt/A6/words/A6V4G1-P1",["4bd439b3f098d20453fc4a9edb129709abd49d15effe69442425799e838d9765"]]], ["TOC",["pres","alt/A6/words/M10G1-P1",["77e70e09b11486b53695049d7787585654ec02a005e7edfaa317e10a2938ae77"]]], ["TOC",["pres","alt/A6/words/PGL29G1-P1",["108c36ea4a2bf696bfcf0eadec971136c4f435d2c1e630cb3cb228ab13b3ba1e"]]], ["TOC",["pres","alt/A6/words/S6G1-P1",["cc2e07862027e133ae56f20e2aee2505010214c55c7a9e348592c783c0d9b4d3"]]], ["TOC",["maxes","alt/A6/words/S6G1-max1W1",["2b45203ecc4aa8855da21d5c5da683920dbd21343a30aa472624df2811af387d"]]], ["TOC",["maxes","alt/A6/words/S6G1-max2W1",["495d1c129a693734c369ea4dfc080345a2c54c796b027e5a5eaaeaba8561684b"]]], ["TOC",["maxes","alt/A6/words/S6G1-max3W1",["ba38c35a07ca737525a3654cc1e04b0ba7d8e9a1787fc80710d4dc35313af8b1"]]], ["TOC",["maxes","alt/A6/words/S6G1-max4W1",["cd20aa74e6ca49650e4e560cb3ba0aa9c0f66963938730f2d9b3b64a0a5dbc18"]]], ["TOC",["maxes","alt/A6/words/S6G1-max5W1",["becdcdd236bdac794675fcb5e29d3a03cbae8a0f85796c88d83213d3f8788571"]]], ["TOC",["maxes","alt/A6/words/S6G1-max6W1",["f0d0b9bc14cceeb36ea578a396a410c6e2612812e295b0b0d9dd7c6eaee09487"]]], ["TOC",["matalg","alt/A7/gap0/2A7G1-Ar20aB0.g",["dea2332add03d60f4c45327c1cb3743fcfa5df543c310a1001b3ca3bc2194656"]]], ["TOC",["matalg","alt/A7/gap0/2A7G1-Ar4aB0.g",["1f50abbc80761fc71e2eafa2ce832aac5bcee480d03db78c89acc7d4c069cd80"]]], ["TOC",["matalg","alt/A7/gap0/2A7G1-Ar4bB0.g",["22eaa4a729cdcae556da46418eaff14ada6ae6283c2e397c840db772f588daa5"]]], ["TOC",["matalg","alt/A7/gap0/3A7G1-Ar15aB0.g",["19c73aa87942cd97ea5618d1bbc629c9f7ce5066decb71c71b743e4c154cda21"]]], ["TOC",["matalg","alt/A7/gap0/3A7G1-Ar15bB0.g",["ae396529b8883c7bf84300d157caf0525106b3dab4f18f067db88551e6cd1bb5"]]], ["TOC",["matalg","alt/A7/gap0/3A7G1-Ar21aB0.g",["1e77a8e3e732a8ba90dd97ed4cf7a0cee1d8892b53e2f839bbcd57d72886134c"]]], ["TOC",["matalg","alt/A7/gap0/3A7G1-Ar21bB0.g",["37b45a2ef88e5168a5c9ec3df84042e8a8bdce140dd9deea7f05f3fb3339ee03"]]], ["TOC",["matalg","alt/A7/gap0/3A7G1-Ar6B0.g",["eada293659908c64e6e0e52b0a9594f40d5fd6bea65959a1a675a32071443690"]]], ["TOC",["matint","alt/A7/gap0/A7G1-Zr14aB0.g",["56657d182ab06c11e7c4797c94060c79db584ae6dc0879763b27769d923bec47"]]], ["TOC",["matint","alt/A7/gap0/A7G1-Zr14bB0.g",["a4548f054d28ccef42c6fc63458eda40f18e34519f913672ef6f2283953fd6fb"]]], ["TOC",["matint","alt/A7/gap0/A7G1-Zr15B0.g",["197890936c2e2488381b8f8a9c3edf923ba062211b7da9c4b623e6c2a7c9536e"]]], ["TOC",["matint","alt/A7/gap0/A7G1-Zr20B0.g",["9c9d18413fb9ee16f8a123a991f3719b58e0861604fa737438b5fe1ab497b23"]]], ["TOC",["matint","alt/A7/gap0/A7G1-Zr21B0.g",["80eecb13cf608a63203b9358311245b3356398e726411428223e012b5a67f53"]]], ["TOC",["matint","alt/A7/gap0/A7G1-Zr35B0.g",["969bee94172cfc0359f49600126a959b3e585df0196c512568ed27f106ea4b78"]]], ["TOC",["matint","alt/A7/gap0/A7G1-Zr6B0.g",["d90d6be2c3c0d5c29efdbef2f57870c16e16fdf9a5826ee19f1afb23cff08bad"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f25r14aB0.m",["453541f3b096f711b1df4e7d89ba51f627d2044c80b72ee9c9f77aceffee3013","bfa5b22042e97b388d388fbf87a0c669b55dd027cd078e7223f8fedd33028188"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f25r14bB0.m",["9ceec9735d558dc669a55ec3aef4b1abd0b20eaa5a15c9deef06992c8547faad","37b9382dc2238830492ca29f12c3fc15b49b0ba5999961ea048a79eb2eb5ce62"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f25r4aB0.m",["4b2ad74ebc5f7c9e9d23c1fa73de5d6d74c308f492fd31a827be1edb7c996683","71fab6c66697c0470153a521923b82ae9fb5377624879d3f6f7805aa20828dae"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f25r4bB0.m",["4b2ad74ebc5f7c9e9d23c1fa73de5d6d74c308f492fd31a827be1edb7c996683","7a8765adbe86061f0d53ef400da1b50e8ed212cca5bff76e95e82802f9e7ef55"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f3r12B0.m",["424ee318255ed41ca7b5f691012f74d866e8bd9a77b868b7bc1709d58f87bcf2","e0a51de1fe934793ae6524d5b616753db0e2e10721c1c16c118c876f5cdd5457"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f3r36B0.m",["1c3b322973b410fd06339d17ad9f3b281288d71cae5b666b9ba7dc2dbfddb4ae","cc7d0a164188e73c7c4c7cd879eb57501820494eac0155c1c6bcdd2eca56b38"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f3r8B0.m",["f4dc8f0df2afb534a0cb07f33e70c390f706c2d2d1b60c295c2456de69f8faac","b42cc364af2d9a84e232d9cdc89f2cc0dbf7be4acf50bd8f7773dca734df8f38"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f5r20aB0.m",["6d931c91ee463eb3ef6f65e5183f78c941a15f89293dd923b931fca42fef999d","e8190fdeeab128bf4873953f2b6bc5ba7cfcb08f36dc4084165c0e966fa49a5e"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f5r20bB0.m",["1dad4914bc983a39aade338944a68089f1474d6462c09fc934337d322e4689c4","aff93f2f5cc3959af6a5e4be116fd3f9dc1bb0a794ac58274de933d4329d5a91"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f5r28B0.m",["e283a0cb869f1e57615a7ce38fba169428ca791067f2bf18129d23e48608dc8e","f03ec1a6994a2f1a20b23c05620cd90cead2a125e05851132c222b46a5a469f9"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f5r8B0.m",["ef523ed3878f599828b0fdbd0c54cf2bcfe4d2b72796b55620e72f7e50755b4e","60d4b9d4777f8603b60289eb95544ce2d16fd77b913173fb9b7ca9ebf235fc85"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f7r14aB0.m",["8688d7962b17cc53bdabdcbdfbc2d8fcabc004c69fe527565152e73e9f8669b","50990689ad8a6fec96a29d4679cbb8eaf3d335895f05a8c0469a70c622a8a5b"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f7r14bB0.m",["ac99330e39d12b487da2e330f4cf3ad97999f2d46a916ca7dae9715342b598ae","702061e66c25eb0a787caeb61d3119cac597de765b6c7d9f2f4a517d2cb7859f"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f7r16B0.m",["c004e9b26804f4c7bc2fab08ac4b5fbc131a8fdaf18bd01f97e9e9ed74f39738","af487a440808e9743da18bbd93d3a4f087b910063bf1617ffb335b0a73c3a7b2"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f7r20B0.m",["897ef384057372724d08e1e7dcbfba9e1c2995646f75f5b5d5c05a6920d63f9f","2bb99a3c59aba36da92e4ae87149ed00c33f3ca75b8dc4d613f910b15dbef5f8"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f7r4B0.m",["d4ad3d3029aacdfc5f1a95d8a603d20eefde26e91ef560c23f7bc6db38e84e7b","b55e7c41e34e4604dc59d35de5122d1907433950f983d25b0b5c2b686bd88bc3"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f9r4aB0.m",["2528631de00922691deb72ef3ad043bbdedf510ab057b96a2c24aea02ca7c54","c943dd1f0cbb0dfab44c805701d64ffe61749b7b13a05e26d15f7ea68b454649"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f9r4bB0.m",["2528631de00922691deb72ef3ad043bbdedf510ab057b96a2c24aea02ca7c54","cd49d5ad7756ba9b71caaa093a2cedb8a9697978a64fa012a90005c4f7893976"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f9r6aB0.m",["3eccd9055d614d5c62bd2db47da5435976c49bc72a33d95ec2fb6cd8741f52b7","1df3021830eaffa270a8d0cd75430722c80376e40c3e62531cb0852f8c68ec2e"]]], ["TOC",["matff","alt/A7/mtx/2A7G1-f9r6bB0.m",["ca273ddaefa8102988a5359fb5c16d31bd0dfd3cf2f2908c6b3cedd650454046","9fa47ad88bba14ee961240c01fe9c66635efbae0fd8947bf654315b94d461e52"]]], ["TOC",["perm","alt/A7/mtx/2A7G1-p240B0.m",["ea91e082796e38d34a2d9c9f7e34fdb02d61653324d7a6f80758d9a48c9a7a5d","8cb4d9f86b4a61363826f4603995ca0c55b5bc3b9818a752db45f9bf36daa16"]]], ["TOC",["matff","alt/A7/mtx/2S7G1-f49r16aB0.m",["cb908591dc9a8a96cfc56ee68aa98a5b3f9a19821fc626b8a6e09b7cc2508166","99ee166c3316de12150562fe4b1d4c916943ec59eb5bfaebb76c72952ae90c57"]]], ["TOC",["matff","alt/A7/mtx/2S7G1-f49r20aB0.m",["d11e79b538f998b0bde2e2b28d8e336cb0d855862ee3c52b95758fcca7bf7089","7d472cfde5c3b87c0b8264fea847a976397dbfcc918f84324e0084761b3606ec"]]], ["TOC",["matff","alt/A7/mtx/2S7G1-f49r4aB0.m",["df2083ea5b293ccaa82b8af143cc3d960ee0d014f5b12059993ca2955df59178","c0be911fb6b1473a820fbb18fd711634331755548cb64f23ca12df62e4562a52"]]], ["TOC",["matff","alt/A7/mtx/2S7G1-f7r28B0.m",["1bf63e1474682c7dac6f0226edc7d614046125521a0dc7b4ec8874619fea0c67","761fe939d2145f34086076cbcdae5745d680ae8ca5fb081c4151be973feea3ae"]]], ["TOC",["matff","alt/A7/mtx/2S7G1-f7r32B0.m",["8eafc2c2a44d92cf5428ac686fcd5e782b33985af37d6581484f40c33047c81d","cb8f5b98d8dc812c8bb91fe7eca44798d085c4071342cfdd5880f72e25062ab4"]]], ["TOC",["matff","alt/A7/mtx/2S7G1-f7r40B0.m",["f461f3c1e2767115ec8c586ad7b0f9cb637160b02892a6278c8a90c6b5d91268","da88ab57f08b2919d2ada81542df5d321bd775322ceecf60189888391d22b456"]]], ["TOC",["matff","alt/A7/mtx/2S7G1-f7r8B0.m",["efc5628f7fa7924ae8819a7bf2b0c63882ad1159a9e0b8961553b62b8f0c0614","b69bf67c02f361cb6fa435e95182c88e0000ce5a8133481e5e3fafe31e8f0194"]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f25r20aB0.m",["355283be73f5ec06680fb243c5a12a085cdb0c1d7130e10ab0940f32decc83c9","1943c816bf8fe800334a3793bd1657ffaf53e958cef65fe28322a266eb3da941"]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f3r12B0.m",["78c505737aa0f2c9335ead02332346e4e5ec58608549603a9681bcdd9202eab8","4cab4ec08aaada4c46109d0d6195610caa451aa7e3dcb96865d4540139bb52ab"]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f3r36aB0.m",["22b3807fd8ceb70baa98990bab64ec7e9f9389196beff5c1d7ea4bc3703991ea","44c0f26f11f60cb326a6aea75d0cb22d236451e7614cb318e8fda1e53ecbdf3e"]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f3r8B0.m",["c7b4cc3ec3a63a110593269282752ca6b9ef0c76cf2c416998c94708bd9125cf","71616450c681931ad871507054155786983dc5211414a25dc7f1080ce3df3f40"]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f5r20B0.m",["116d0a68a1d4fbc4e8ad469db071fc767f6df28c05e67dca354f5675916c501e","ec614fe77103fe76a4edd221fffbc35e7d7b7fc0b7b76646af0ac2d5834df3c6"]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f5r28B0.m",["fad77c28cd9cc005e24405eea904112e89fb3f07f00397400d36f2f1592e6838","b157c050e6a48e0cce454ca7e967db347e75ac1909ca982c2688084179a55002"]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f5r40B0.m",["e4047891754a821cca50c2b62f0b079014c65fb15dbaaa421233410f2b709ab","5781ba241b07356b885c3043fae73ae868d3448061fd8818b32df7b5bd688764"]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f5r8B0.m",["9b47474312e1fa0307700be2f93cf986799e716ef41526a885746a9a213df1f6","1e813f130ce662a53d8d271fa8a4a15aa94acbb6b590d576846ef8ff94c0a697"]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f7r16aB0.m",["4088c0eda4079c2ed5d7d7c041803614bd0bf72d72027639500fb5b2f3dd730e","5db9cdf18a9477e8d36fc3f6b04b176af51bffb26d06bb759eb4d24686c9ed83"]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f7r20aB0.m",["6b70933bc126c02755f5829f90a9f70c6c6edd2c0034f0a95b268818bfb27b59","20b0fae3e192da1505ba60acb3368704ee8142c4db00e5818f4c384f994501c0"]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f7r28B0.m",["48a413999e17e2d591cf229d5730479ea76f5ad0b849a7ed3633a0c91733c335","9c77624eb89f13b4d2aa209f9bb303f07b499d5b6cbfaddae69a6eb6e4f0211a"]]], ["TOC",["matff","alt/A7/mtx/2S7iG1-f7r4aB0.m",["159553da12c7d7306f41d1ce9e3c933bfc1c9a3d5ca275c673f9a4ccc225152e","3f9d6c633252c89d8f8ede348c086860a25abbdd2c9b439ea53fa906c784d093"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f25r15aB0.m",["7478520c4369398a3aad0a8f41b19ddb41884e82abe484207efe6416bafeb740","e6b16276eb8d0a2796d52120ec03532bb3b18719b906d5820d7a64a73a10dab4"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f25r15bB0.m",["16596edb0a38a1c2a080f42409a09a29615d48d0232f2c050054452ce25eb194","f4de9ebdfb6abde06a82855da6ba431b191c7dc81d036c36fa4e84c174421ad"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f25r18B0.m",["137e317c0f6baa33dd8fc802d6ab29d474904c9cdbacbeed13e3f1a8afcd2009","3e815ae238f2fddf0fb65cfb8314b59f7fe8d6d0eb0ebea59503e160948775f2"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f25r21B0.m",["6a4965f5337d7720e795594c1b513abf05d6b7e2543b0691616c7572ce4abc8e","a4720922c531d17a9c9c722392bffecafac436d60f92edcfeac41f9176f7c699"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f25r3B0.m",["91f0761d085ff47bfbc764f58c3dfbad1fe9473809686233023bdbaa5b38488a","e1ce178453dbc547fcc7e90fae9d40021cf2dc70a0450526bf3f7bf69422ab03"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f25r6B0.m",["fcd69b3ba6ff81bf5d8af79f1552a66cbecaae458d701e8bdaf4a858a8d650b6","62155b99f1b1dab31d017fb31b69fe0c41d7c6e8ebd2fbe11f58f54c7d47c0a3"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f2r12B0.m",["4631022cf1edccdf46e2acb64303b338a8b93acc5555c53939c1f207ac9e204d","efe01595fc8b3eb04940df2f7d8dfd465595ad0ed61a790a048e4b6ae79fe21e"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f2r30B0.m",["a84f1b348c533ac8ec97e49c5cf932ffc9f14783175878919d45aee99fff2dfa","f6a7892ca7206a5ffe3bfb3b4b1d2925da079d7b5288ada7a2ed3c717fa33ea4"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f2r48aB0.m",["9d3aa5c1fcfe888fc103640cf846df7d6b6eef2eee73c3318a69790bad2a86c8","607a580174c5219cae0c66941200c875a1d2f8a2492be47966894dadb3c495d2"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f2r48bB0.m",["490be71b7040cba6ccf82a3859e0166980f52fa9b1274fcd2e4faf1807736f54","3835a9e436788361234a8552ef34a0115df9b74cf0fff9126d7ddb658c101f8d"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f4r15B0.m",["fd1f5b517d75558bc6cc2b7212b28707839deee9615c00bf72000b50489d658b","2c7d0e33d26c1140ec732d0853dbecfdf01512a7573aa9700d451bbc54f367bd"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f4r24aB0.m",["8430e799d01c7ac3fc7b1b3b1408b260a2aff4e22c978cef9709d17d25192141","da222c4f6da3cb6e5adf3df792d8f1e4cf363dccce39aa034795aff85a7d9461"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f4r24bB0.m",["6390ad79169e2ac5db10a3e5c51d9573111fbe6522bead73cc1588d8fbe30cd6","99d5cdf69062b3428836b50920eddcd22666227d4cf922ea9551af259c721cc0"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f4r6B0.m",["d43ded81aa8b3d8ec1d820825dd758dc2a35bf765f6fb9ffa40351c633b2a892","420506be1cee3c57af6c8edc4bde73b91173ed0635af04014a2096ca81bd7375"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f5r12B0.m",["4b7b53cc165db2834b0c387500b504eef886fdd9555b8622be505d7925892436","28b4afbac11735c485669dd92e8e6b65ddcc32323c17d90ee89d78eacd430024"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f5r30aB0.m",["fe0893caaea2deca17d0f32db1c67a8e1c11d0691599a475cc20267197022e47","9ed2ad10ef6a8055408ee6486c66fd43efdc8d58b7573c482007dfcd1ad7f795"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f5r30bB0.m",["b396cd901c3271d50508aba5accd7b932bdb63c14f4e8c23a44a5d3fb6ce56a3","bce215f7c53b8f01e8e31b35b9fb9757108bc52c1eaaa0426cb6d4642aded00"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f5r36B0.m",["26cb5b306fcf04003e1159c4b9afc3769b8fa93f940718192bfa4029e597754","f7faafbe594039289c1cbf01e69914cd768ad02a1c0f2445a7ca56e170604193"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f5r42B0.m",["f36e1c78a4f7e9f8b3f3091e0d56f628abc986a2881c7f069769553b12298bf","bff0e984fc2bdbfee1396d3f8cd13dd071caef24bc4d195f70045dbd1234bf45"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f5r6B0.m",["a1a038457f3f1686568bafa56fe4af3589f916e9195fd29d1c2e61cc27617700","d61cd045757271624190367dc56338eccd1af278838f3df7697e03c2e4130d65"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f7r15B0.m",["fb4c2ca16bd9b040c0debed54b3505014051846d223df8f9a816d083c7aa80d1","615cc6418ed625665dcc45d653c364b56de9bf5469cdb8a7fd244477df0dabc2"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f7r21aB0.m",["ab0ee5dc7531b96a5d1d642e2bb16fc42b706d4ebc8039cb4347a3559749c65a","5d9785b868e6f16abb6199264b7f6cb03a40b43fd7e1468c64d360b9116daf72"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f7r21bB0.m",["6c816d40d89e1bca0140316bb665128a4ca6c01a67b729f97bacf65239fc2414","13167828e9bc55e1a6615aeb3b9fd823598dc9944bd0b2582ba59c0bd7d74abe"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f7r6B0.m",["2e56f39c224b1a9ec903a4e2019455a36870dacdbbeafa8fd8b34b3f1b8efba8","7b8abd37823f2779ce6de203d88f6b3ac17912bea3e7b953a4103b57fba6d109"]]], ["TOC",["matff","alt/A7/mtx/3A7G1-f7r9B0.m",["cfcdd8c0dc8d02ea257fc96f6cb68f8add4c0ec614bc5fa9149faa9b82be652e","e7e43a01a97694c237a8ad70d93a30c63b544348cfa5f9b7d71381ab906b32c5"]]], ["TOC",["perm","alt/A7/mtx/3A7G1-p315B0.m",["b48f5f256b00f7f25fc768271c5fad5d801853253f5635a3f5c165fa141e61bf","6de289cf9d1dc2fbfba32f033613e822a88e4f71195abf9f1c90eafbc3340b4d"]]], ["TOC",["perm","alt/A7/mtx/3A7G1-p45aB0.m",["6f72eac1ffeaca92893e7a2eee58b4dddb8ca5edf4194253bdfc2275a519b6fa","e9a5b77c580bd61cb40ed14efd35777813210b841217fe2fbd6ec86826ae4eb1"]]], ["TOC",["perm","alt/A7/mtx/3A7G1-p45bB0.m",["921004607f868a34fca106c3da05b3e24bf0bdd6e8517986b0a306bf124e6818","54dbabceb479634c3646e9d03c740e80183a72675ba36cdee59e5fe559d4703c"]]], ["TOC",["perm","alt/A7/mtx/3A7G1-p63B0.m",["2f686ff532e3a36d9c2741bea48ee31a02590a330324f0564a99f8cfe8a81cdf","bd2e3259ec3e9ec718561fd5f111065554dd932cdbed43dd5ce500f4ce042bd1"]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f2r12B0.m",["362c6750d6d43cd6e3509c79ffd74105dc72274cd07438af7ba1e575d2c5769f","1399da4fec252ecc71973767ef0f69c08d696bce19a9c896e79f23e2856f28c7"]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f2r30B0.m",["1ab20237cf0264c2d02540a761a40bcee48ca304fd5a0516fbc91cdb9680fbd3","74e5c681e120436cc13ab8a671afd6b5834d0228ee1883b3b3e14728938bc0c7"]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f2r96B0.m",["4c09482a92cd14da4b82ebf9266209bcc7003dd3d5b4182bb2f983e26fb658df","4db926773437aa89c58ce440bc370da03299bafbbadcde023caba200b61f658f"]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f5r12B0.m",["19cad9666cc09cb0ed70a858ed218de4cd675fa7d68929f13d6d192e59c70aa9","9dd84baed3ffeef1ea5b979461df1e609e02bbd57529a10c52c421bbe9e7e308"]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f5r30aB0.m",["ca2872b441c20d681602388d7828a017cafff21bba4918b4e26279119ca95134","b0b6aea0c1674aa9739be63a85d78564d36cdd8dc39dd1060e87dbd34b70fd5d"]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f5r30bB0.m",["7ecb9d4d002e5b82e983baee9095d37799f09c6bfc1a7876cd044ee0134c600d","311dff4599b66c2011e43933cc5368c4c39199a97d298259e642581a57108502"]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f5r36B0.m",["cdda17123b3d40f6c1f7708b658ca049e86149148bf8e155cd0b0fec8ad712be","22da9853ca831e0d8c8b1bddb745e173275e1aad2198c38cd406212310e0efb4"]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f5r42B0.m",["93193e1e9484d852c5b18c28f82f507de95554c14d677ef21a2afad2feefe43c","819c3e9a640872de8fb2b8a76b02cca7e8339035eaf990cae41e815a5059aa72"]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f5r6B0.m",["597c93b27d2c05f98c2e7f2cf9f8b2d7c08a9506fab0dfd9665ed72ab98439ed","4003a7b9efaa2885439ea9550d7fc7ac8ee7d17cce68663d9bd449e63fae1dc9"]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f7r12B0.m",["36e0cf38b108600c5febb641417f3601a279f032ed26a3ccf1e2155ab5d60918","87d1e2719ed3b9e28bb8895e53e718740e8227430aa462f064c8cf9481dcc627"]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f7r18B0.m",["a461c6f040a81ae0c16669219aa78086d8d7d9b61ab8cab22036857a85f6d307","c35d7db0c22a675e301532274d643d00f22b1e039dcca3a8c562fb7b7eb8776e"]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f7r30B0.m",["6de4ffd2bb1caf5979656f53c7b970c617bba7627227c79132a640ed973afd4b","f256f8d11bed5748378fdbd7080fd28459fe95aa82983e794812f390b5f5cc2c"]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f7r42aB0.m",["329bf32ac74b54f72b9232ec0d88f027edeef09ef70bcb2c8a6c78637ed4695a","f9969fb27995a15901e7f64d7a052a65da000bcc5d09ac1631c3cc22f89c46d7"]]], ["TOC",["matff","alt/A7/mtx/3S7G1-f7r42bB0.m",["d48cb645576f9818676c4349246dfb7373e596a13e6298e6d72f1f110a41da29","32b21810a1e2eb81f8a1e5d090e61f383ee5a8b0405eb03c4795bb1e41dd15d7"]]], ["TOC",["perm","alt/A7/mtx/3S7G1-p63B0.m",["99db5f9ef8dd9b97440f7db50b50b696f1adde0a19f1a28c6441b5b87d41d1fb","8be592284b7a0c41c6f345165074ac2aad977e3adeb372a47d5d97b7c8b4509f"]]], ["TOC",["perm","alt/A7/mtx/3S7G1-p90B0.m",["ca96fde4146cfef6bc651a6a31ffe5f5165cd1c28e11cb8a8242a893b45bf529","6e24e066d4b335df0af5c852e5dbdd347d86aa6a8226aef7d23b94e158de9f1e"]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f25r12B0.m",["a4df4b4f6ef34d6f90548e907258c3dffc3bf4c15b948f05c2960a3aba46e2d","f7a33a472daa5e3730fec23cb64956cf45167fe910f25d0f6c59e245ae58a038"]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f25r24B0.m",["1e8f94f5ac8ec86e59db4ddc759df0307bdf98435a46536235a2d0c84cc69599","9ad6e7c345953c23f6d2389cfd2e59434f94f9db8ae85b4afd9001853b53ebec"]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f25r6aB0.m",["2e1f551a47ee923b726ff4802a5803e01cecedf24f5841bf2372b5c2e70bf058","1415aff958f1259705f9b378a2be7925de6bc20d763211936710a461f695ef9c"]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f25r6bB0.m",["9dd3e86159827092466273c89738cb1be7ae97fe4bd7179b0d614f9760899fd3","7e059333be23ad44a1d6dc64903332d252fb4059e6d93126233fbb4b13bb8971"]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f5r12aB0.m",["88bd80818c60044509a1e92c0d0e5967508237048ac389e564ad64cb58fbc608","fa93f94186f983c5a80f46ed904d0677bce08651964aef0f7570a2dc70fbace7"]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f5r12bB0.m",["4a491566627a0dde72e7dff347a2f886b131907fd5c0b02e05530b4709ab0843","dcc4b076dc529dc0b4f695a1a58ce2931fd3c051db201faebb193fd3e38f3c9f"]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f5r24B0.m",["60be0eb80d5736eab86abff8cddb91e70efd45fe4153ef65ef0479eabce51e9f","fa342a9c125d7a69d8546f052a98835772b1e026ac7de225d96e00f8a576c742"]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f5r48B0.m",["70ab89459cae2f7357c6b494b65b6824d436d8a7419388338ce7b8885b59f863","51ce97e346dedbc460ab3c521da5b89648bbc85107adbc5112a9c1ee6e83077b"]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f7r24B0.m",["c6b48bea13811d4b3dabde0ae552fa0c71765faa92baf4a748c7b227fdd6730b","ab4ccb6a4304a6fefd1cc97a4365a41a998db24d4795000ffe4726e253201b23"]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f7r6aB0.m",["c3344bc450fdd21f4e2a44a0aebf9345c5a54e6d1b360ea577c6a01472035d68","9501a43013dbafe4f339c585d815df40dfc0f0798d0235cc2f4966547b375913"]]], ["TOC",["matff","alt/A7/mtx/6A7G1-f7r6bB0.m",["a0fb751952e00149fff3cae85295c68ca8265ea7b964ddb278ce53a513b46289","aba615e816bf0c74f1c700900ce94b2906d8e225b54081ff140f920ebad8de66"]]], ["TOC",["perm","alt/A7/mtx/6A7G1-p720B0.m",["1b6c499a98cdb73fd8b3819b41469c2943386bb99516e19596bc176ea4cfaaca","8504ead022975158a505c954b99658a6ff963dee67ca14cc81e2bc8db17574fc"]]], ["TOC",["matff","alt/A7/mtx/6S7G1-f7r12B0.m",["d2095f311708a06c355d71c1d877c04f8164913a5831de55491df09cbeaa7165","38746c39d96d5d7083d35c4657297b57f1891ac3ebbf9045c957aafca3f08535"]]], ["TOC",["matff","alt/A7/mtx/6S7G1-f7r48B0.m",["b7ac0c064daaf3248b365f93a07fe3e8cee87cd0ad1da94a887e038c9121df7e","ed28e960d17b3afc2fe5f7b8e03f9003663fbf408eca3fbb0ca6863208c32c8c"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f25r10aB0.m",["8ff268147bc9c74bf3409e401043cc8b8a0e4169c01900899086e6d2e9e732fb","c82431415ee834c4e189a7e31ac758028cba902cbfcb3c96c0e018c0d1227d75"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f25r10bB0.m",["519fc778d0af6f1098f8b74eab7e73bcdfa67770531844372ae1eca7f11862a7","80b905ca18e612de6653dd5bd4b488253453ac6ba42782fa79b4d92d07ed477b"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f2r14B0.m",["14c7b434daac1761b6ba2eb15e0c5691d265ceccd3a6fa2b8fed2d5aac1ebba3","4bd6954079c75766f9d937910bee980c79eb824752c3dd785d7f215d2bd42664"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f2r20B0.m",["7fac379d648bc1331cb2cc9c5c43c863bd39306e06bd8d65f81885871dcf0c77","88c0ea0745d14dac833d109897285024d6fd3e7ec810955bb95341d0f5715c3b"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f2r4aB0.m",["1c423ae042fd9e86020ec4fbefff2125191247e409af5773babce7edd7f757d9","ad1ed96caf5f2bcd27135d3e311e3c1740642a3eddb34da3db147423d335bd9"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f2r4bB0.m",["1c423ae042fd9e86020ec4fbefff2125191247e409af5773babce7edd7f757d9","8a7b95013769abf5e8e618803238c207ccffbb78174644e9d24040eebbc4fda0"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f2r6B0.m",["a95ce727a147681155ef15ea491aaf53defef126d5e904585161bcd498fd4242","2f258ddc63525a2d08029d05fc4975e0085a9c57e57b1ecefea4ba5e06dc0a7d"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f3r13B0.m",["b5050b4a8844488c0c273605cebcfa8982e42c2f06605c8c92dd52412dd73cf3","1e038ddfce2b577de49592d6e4dfb3576e89d802ef2b88da44029ee67a562455"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f3r15B0.m",["8de2a83f34ffd1cec8e96c2ee497ef4a35f4bb111522b4c95413cfd089fd4eb0","8b11a6ce5f289f4b17032b0f4c0c1881f6ef8a580a80516578ad34e6fef792a7"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f3r20B0.m",["4f00ceda5b6187cab9a9155f24af54bcc1f17e467ca9f40648b09f8217e579f8","dd69a1d5476599361bc9f8e72e72ed2f74c9259f2dbc85ab04533b0d7723bb1e"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f3r6B0.m",["eb463b37ccb5864873e78b2a2749df31f1d192f70806d6b99a82c6b7389b7e7e","6c3f662a0c06ada35118658eab6c60530332b4c5cf86b73c6014e74129a3deae"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f5r13B0.m",["460163beb26ca074298448ce4be57da371609c5afbaaeca8d363f6caa85ad81e","c3a8ece8a93e312799cd09e718fa12579a407455244050132212f266a882ab91"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f5r15B0.m",["65a1cf4caf66a908ddc64ede13b804f3df9d201050ec9fa3ebafd6939b4d3760","108c438c6b33580e72de5b9e2c6efd0f6c2497a2520fdcdf65d27c26563454a2"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f5r20B0.m",["82f404a59140d77b8496e9f1cbaba1f821a7ef85c2894c4a5bf965e912c02b4b","fe766e847c29e567838bbbbb01d68bf40c19c32f86664a363c9caf600974b925"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f5r35B0.m",["b3516f7e81cae0a0865270722552868aa3afe9d8f329d836debe7503931a74c9","bcbfc9b25ef2ef7a1f7468953774762c08d84face4e55bffe4c35ddf419050a7"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f5r6B0.m",["1761d00e1b158a3d01ef3c3ee39dac6ebaf3a0a9248e005aa26c36e5a3d78101","bd72b93f41c2421ff056973d63a830e09467bb6821296bef5288b4138bd6d319"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f5r8B0.m",["7fdfd076195f5565689eb7baac615b86aaf2d323306a9f6d803ac6051c5d6260","b5881e9c9f8a309441d90c82c4c9910335390d564245a5efb0fbe467792fa71a"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f7r10B0.m",["467cd1367c023a91318051648cd532ef2e96c8e50a343120b3b29d638dbb0e4","537c1996c0fadac91436a061ad1a71f6c18f228e9f68dd3cf20ad7cf0346f88c"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f7r14aB0.m",["555ade23e483c6e5ae0b41bab5ee5cab427becac0084b992be6728b22b9c8651","51ad632ff803acf2c3baaa1360301f24ef4b2bf15bcffd9eeb5ee8391ea4c5db"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f7r14bB0.m",["ba9780fe79719c6b69228a2a4c92b364981a7cafc82acbb8951846cf79d178ae","af5f65cbffacac397608360e517887e33bdbe5324d729ab4ab1183dbc75b338"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f7r21B0.m",["abb72da5773f86945d8cffcc38bdfe731bc80d955b24e166944918d5f69199bf","93f543912d173a573169678b12becf4703c216bb4cba98ddb15a38f7d3eb2fe3"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f7r35B0.m",["4860ec44be3518c7dd19c08e0bc3e690dc557c00a2d9494233c8cc7895be9e47","698e1cbc09871c2bf5836cdb70254976ac4ac7259c995a296b221616c5fb072d"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f7r5B0.m",["78b0bb07684e5c4806821e91bd2319363f79cc0831380beeb52e326c400e13c4","92e33e09ea89400f060fd233f822d3f6250b317a1a818b484d3fc1d323bc8fbb"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f9r10aB0.m",["3eaa186bb080dc3b9c5464721de444b95ac5c9ab7b361b59a09eb602741716e0","82cac451f3b19e5a8354815c7a06dd646dc608de8f70e83eff314a73dccdcd44"]]], ["TOC",["matff","alt/A7/mtx/A7G1-f9r10bB0.m",["ee5913b7c6010ec5c7b4fa9b80af9855120549e502154acec6865057261dfbda","1573068efe44679a046146e1f15455322d2bcc2f3a28959c8da9b3426b4cacd7"]]], ["TOC",["perm","alt/A7/mtx/A7G1-p7B0.m",["9ba6a4f891bb53cf749b7b806d862f1e42b752eec5daf7e13ed745742a722c3a","efa19de1d6ef7d28ae331cb9a075836330f11e3dff176b6f657b6f96d6e40f74"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f2r14B0.m",["53095de61dbadbe11b1683badb1547502c55d71b2171c8cb3f30ed746a7f1373","9c69025a81fe45a7aa7cd29a7241cb34928e41f5aa1d32b4fa578e302ca39759"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f2r20B0.m",["82eea77f3f0725566ee68c9c99c6810ce052c0b72b7d3c0a061a68403e62263b","cb5d544f8fbf70f03fab85e19b9430a228b0f7e5d1f1b1174c070836babbd26"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f2r6B0.m",["4c0cbd7bb501bf64eca804413917e6dd3ef5501f749029057c3c4ffa1442c10a","88d5717ed6cbdc9993ab0ddeed6bc17366c842ee1fc7b47d311e6c2b5fdb10df"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f2r8B0.m",["7d7cf0234cc6bbec2bf047d9305bdb5f3b1261b36545a79a4107293d206ec0e4","3e2c222f7bfdad6dc920907268fc358f4542387cb459c9184fb987a46369d1fd"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f3r13aB0.m",["d75aa928e7700599ca0d27e7e576b3c9b76eb3c3eab17ae9fddc06ad1e645dfb","2795e5e32c698fab7d8c7c0de2db9a5ac766969dad28b670ab27c5024e66fe07"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f3r15aB0.m",["dcac94ed91825a7e93161b121b2d0de8a7af041fc7ca25454124051c79e3d91c","3f094bcf366547dd772073e3eba234e5d8301c3d5fe8153d0fe1168b830a1e92"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f3r20B0.m",["545d03da4c70ed72907fa524176d567384e7c570ac39e97c73ea70a1f893c09","d47506bc25317b387a27384f708a88b4da16182cb3837ca357141545085e7690"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f3r6aB0.m",["2410e1b70523032ecc048e0d2c42c07d0ec09a9c3e0a4f545a5335128d0fb184","bddc18baa2d8dd337f0bb7537ddb32e2e6bc13dd5122d2da3cb959fb1d8a6164"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f5r13aB0.m",["516b416fdda4cfadbf9003e6c0b846b604659799a75b287830d021009abf8034","aa7e5d512a5361e6db612ce220f262f241c9d6d7627a08045367962487515165"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f5r15aB0.m",["fe0015772d7f396ac6dc9d9aa6a147e658f219ee532fb2c14acc172c3715e0aa","66e8aae6b56c0ea73c82d22e498809ccc830fea5b702373a23e0ce12f2e37e24"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f5r20B0.m",["fc4c91855a25a2492f4e27306ef0a67699690f3d18d23e6bd6ced21b057ebd7e","dc346f7334ddec64a4f9c787bac3ba97f55d46112972c11d71ee4c35928e463a"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f5r35aB0.m",["9f011fabeefd25e0c6d4043f14031158d7b6e52f78c063597d860facfb6ada6c","11afd6e3f02fe9509b023712c81f224c8bed31cec5c4c86e0ab5271586b62871"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f5r6aB0.m",["969372a81ebe1de20a0c8233f04127b116f7a5d5ed323a783129a0faa0194f2d","142e93c1ede4d9a4252d666a2fb410ab2129dca38b79a82eef128e4d8abfd16c"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f5r8aB0.m",["10f9a04873ab9d45ff2d3ab9e53fb1bba32173d727b9b152d3c3cdf0679c5d06","debe59dd0ee41394b23bc1f6cd9ddf7b28ce38f914506ff1bb9aca355a2e2393"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f7r10aB0.m",["9345739f5be77a754f5fa1c8d9d8158b8be4c27a7f28fa827d6eb90c9e15027f","9d129b0ab59f2e36cdd8cec5cb7887d7425b6eb16df1da2281c15dbb019501f4"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f7r14aB0.m",["bff4e635b15363b889a3248072739792c505efa39f1f12f7160ee74f8086052f","c1ce41f9478c6f1dad1f7973a71827881f011dcf55cb55d8afc71a55e9cfbb8d"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f7r14bB0.m",["b42821cbdf4736b102958c3e375e846b6fe9a57ff3bcbd97320e2ef97775a4b0","288a3fc12f7e631858e5a8f1d64d00ef1e1af27500d93daba2d6833989b35e34"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f7r21aB0.m",["c6aeb288d898371d6e4c8748ac2dea74c3c3e56298f1e1fc0088523de0ae8931","29f9271e2405a9cf41c77a3921dc74170035ec26879853baba8d6791c778a393"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f7r35aB0.m",["cbf0284afeebe5809d31c06fd0237451cdff91bedd2e0f043469ab4f6ddd5e29","9611ef6f7e6226c628a43a9cce1d0ce6996cd26af5a0afa34f74fa18bccda5b0"]]], ["TOC",["matff","alt/A7/mtx/S7G1-f7r5aB0.m",["bfdfae6dc84daf173e3d381a078f6c7dca1b58004298ef3d3f6d5577acafc9b3","f63901ec425f35ccab67de46b3aac2284b9376cfabf3fc49d5084ef10172b910"]]], ["TOC",["perm","alt/A7/mtx/S7G1-p120B0.m",["4047b9a19f9a6b36b16735f01f7d1d8ec1e9bb0c1cf5c3af104eae6037412f0f","97b5199c3fbee4dbd31488a7048a42d0f9d6b6d930403a1f76e2533a1a666bb8"]]], ["TOC",["perm","alt/A7/mtx/S7G1-p21B0.m",["48da5eaca41e7280df75e9e87f124613ecad0774ec7a725d1288a08b3732f5f","e732eca4556a68768c406176955fe80d6eb596ec301f7a5f36941afb0d21b84"]]], ["TOC",["perm","alt/A7/mtx/S7G1-p30B0.m",["8827a08c327940a08c65374b67c2846be273dacb3b301bbbc87d0c72e4e88aee","78ff22f1b5f4dee83495ac1c050de3d22f59d1c37015c460fa42862ac326aa8b"]]], ["TOC",["perm","alt/A7/mtx/S7G1-p35B0.m",["a2c7ff006a02241a30c6684c7b742706bd4cc207d75ff1fc0cc9f855a4d0e681","e8d57c1ca1566d6dc5f82a53bf12d9b1da0e9b16ce365cf301f7627467094cfb"]]], ["TOC",["perm","alt/A7/mtx/S7G1-p7B0.m",["5e3de36c2c42e445dd5ce671f6f1d23a56157f626b97bad9801754cbf7adc0f","b2b85924ec170843eb3085a93845f3a97405c35fcb9297ec999e03b6685f704d"]]], ["TOC",["check","alt/A7/words/A7G1-check1",["c47fb0ee5d68156e524c0008861a7ea78122b69cfb82400f90aab5f8a7100c3f"]]], ["TOC",["maxes","alt/A7/words/A7G1-max1W1",["8fc6630bee7ff389412031cc0e81c62fd08182c59df7a6449b31c38e2c323994"]]], ["TOC",["maxes","alt/A7/words/A7G1-max2W1",["87c5cdd3c367f4332ca6f824a0dc05e0e268b4b0d26ded1b1a1a38a2522b3c5c"]]], ["TOC",["maxes","alt/A7/words/S7G1-max1W1",["d605f394f02c9d27e2e323c3d180a10881217c698e5462231f9e2f798bb92fbf"]]], ["TOC",["maxes","alt/A7/words/S7G1-max2W1",["70422ac450ba10bf0f6930eb6ae3c3ca75e6d11e3866d86c53a076b8e517273c"]]], ["TOC",["maxes","alt/A7/words/S7G1-max3W1",["992a52d739292972afea184cdc430010b0ee0a4ab13a6ab7a284af0bb38d000d"]]], ["TOC",["maxes","alt/A7/words/S7G1-max4W1",["9280f0f52166d19e9eaa92198b2df547d8442af861c6c4f8fd4b1c5aafef9d0d"]]], ["TOC",["maxes","alt/A7/words/S7G1-max5W1",["dcf609130cd14537c6bc421bf7e6526a05342ab9d2a1697393157344047c29fd"]]], ["TOC",["matmodn","alt/A8/gap0/2A8G1-Z4r4aB0.g",["bc0518833edc1250ee5ba84e64a5832843fb23ff484f31a8581602194c8166ce"]]], ["TOC",["matint","alt/A8/gap0/2A8G1-Zr8B0.g",["223a4d789de21d4c6cf0bbbe5b0b0d91cf0f272fd692cb3a939c081f77215779"]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr14B0.g",["f71725f363c60b264f06bb047125daf85635998fee03565308493cff17774061"]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr20B0.g",["cd40835da56b8098b6406b1166295b0abe8f814ffdac01da7bcfb18a248f8c19"]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr21aB0.g",["c6b1d14bfeea3a0b47b6843050cded0bde53e0e2736871c277757c083311fc98"]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr28B0.g",["5db50a4d40f51ae65c397a7f6c7e661730f398825d0348dd9efd69531a457e07"]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr35B0.g",["a826cc4af1c73c957909b34cd5f9f896fe611aecb63184935d6d63ddb97c23c7"]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr42B0.g",["e148dae2156bf9fc0104e800868972ffff2c85325954936b6a0455b77ff8501"]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr56B0.g",["c117b8337e92d46bd47850dff592d78f8d2682731f7531f1de3d3d67f2ceb75f"]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr64B0.g",["b22121953c9bd41ee62b0ecea866c88af33f504800e2930d18f86d8460981a21"]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr70B0.g",["513d47bd0d79068f8686096b154c1ceb6ee9c87776c44dd387fe4ea18a6bf50d"]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr7B0.g",["e433d81441cb6b5eb2625ee8bb38738dd74259d60ee7bcec6fa478c593b92129"]]], ["TOC",["matint","alt/A8/gap0/A8G1-Zr90B0.g",["95ace6a8b1fe13c330b7db3ca31636b95aa184e90cadab019b01a5d8b6c107b1"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f25r24aB0.m",["c8ff6bec70562106202df9764e710a181d6d2b39f2ca0023b105c427ef9965a0","9abf947e7dca8825a7f592c1e23ddc6a91387d2cbf98b3d03fba64148c546e82"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f25r24bB0.m",["b2d04687e44f9f3314dafad432517ebcbd964bef4b1d01ba43e1872d1c216496","4ed760f4c17846ae204cdcedb7fd7aad3225172428be8cd86f36f83f16f0a97c"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f25r32aB0.m",["c0a5d476d4f7225dc7289939b3827d37f087c1bc11b0bcfbb911292ec20a26e0","d8fdbf13fd48413fcb81ae95cf82cf9cf83bcc9ffbe366d8580f12d2228e85b6"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f25r32bB0.m",["de96d89a5132bc1253838ac6cb57faad35191dc5827f1c4d725096eda22eb32b","b5c45d39ba1059649cd650cd411603a16c9b5d70b086312c3a29147025b27fbd"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f3r48aB0.m",["94b07d7766c98d37786fa8aca848eec64d09c757d1ecdba5bd2e16d5556037fa","ddc4720e56505e97f647d16bb9f02b594cdf0e6eb741aa777f9adc656e2c0bb9"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f3r48bB0.m",["1eb6dcafa15ec39f019598e3fb7671f0337e83f5309a98944dc16d723a0ef301","38cb4475285bfc3a861c96944ea9faeba43a0658f5c7c1cd69882e67b1543b53"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f3r8B0.m",["9ff180849333c5beac273f24df5c57780d6e1db84380d4c20d6a7f4449aae14a","e6be930f3deb30c25c56a67e2d28917af7e67b537e8eb1507dbd0352856ee9b5"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f49r56cB0.m",["a139a9e206558f83ae9a3cc68ec1e90f0deb2d89f06c78889e1df5d1e65dac89","f68dded50e29b8bc5dac1b175afd47958cc8ead1ba2dfe79ce6dac5d1e58fe93"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f49r56dB0.m",["6b5daf10ee3dc1970ab28dece68bcca6de179702cff3c01ccd9827d8f15c939d","cc5bc8c2bfb64abe9f4e977b664e379f7dfb37be4b36f55bddefd710908f67f1"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f5r48aB0.m",["6f029a7f9fd2eee058dfc33f66ecb503c3760f84985265ce1dcb2feaa0ea8d40","b8e827228b87d3fd7d866a951ba44f521337e838155836bdf3eb9157741acd9a"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f5r48bB0.m",["9cf41547324ca744fe0fbc95609101c22c9c7f924eafda187da9a6eafa0d20d9","97ab65faa1e4a00bf1b313e6b548aed50fcc996a3055a2b7b356cb112dfb551b"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f5r64B0.m",["2517fcfa6ebc9d8e6cfe360ee237c75f53cd3ab2a17a56b35e80d52df6db9187","3efb738d7c2572fdcb970f6914825db18cffaafef1985c5ab43c0f48eb918753"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f5r8B0.m",["a3518cb76a483ff91af3eff7f0a121627a9aaf92e51ba8f16f93792ecd906bce","9d670be5d06f78f6f7abc33eee061e2fce70407b7cddde62a576d366e52adba3"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f7r112B0.m",["ff35b35be5df1578f1a0891c7cf3e4d704a6e9e374db0969b882d8b86dc0168e","f0b82885a3f7aa28b5714f85b1115040bcc288ce026cda5eb061dc076208267d"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f7r16B0.m",["6cb0ecb63fec7ac29e1e4926d6019087dc109d20552ee3406c96a141ac804eeb","ea446e9fa56e135e04ce284d5b2006a9139beaa8271868e9bf4a60a5f4e9f471"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f7r48B0.m",["daada46694463b1010d654097a172adde99c9ce3963af0fb019b55ae3652c9cd","bfcfc09df8bf92782880a39f122aba3b24ae81180325e99c9a8f8548ec303109"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f7r56aB0.m",["9a74ef5706f4d1a4f1d9968fbe41ba6a7d97ced62f475e5fcafb4d9b11a18e7d","31ee0f9a83e6746b919bccac32645d2f6b6684bebcd62b6e3b02e1d3a4076bfd"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f7r56bB0.m",["b5c96fa8093d85e9b4340bb2833b6d28bb2f3b6a05bf6b1ae3128f937fa85113","123e3d39f3043c5083c54f06d7900a42ba1b5fcf64aac9f3d93d9f92b7224e53"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f7r8B0.m",["51fbe327ce1f3c63cb1b32f2a205730fc1d8e924595fc110c5c785079bcfd991","fc0651a845892b758a153ccc6682bb09dad5087c903b689ea5c1eb01d95c1240"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f9r24aB0.m",["ab2bf3bfca344e432ffa110055dfb26f05ccc6694b16ac7c55d6c90321cb8fe7","b6c44d1af490d2a99b16434e54f6cc2ba0cf15eb910c1e9cbe88b858869299fe"]]], ["TOC",["matff","alt/A8/mtx/2A8G1-f9r24bB0.m",["bdd49f330483d0c7cd179bd18a6dd35d87a9c4e5d43a6ecca91cfe05d0592c02","50d486ed2116b5fe06470a1cf8323deb629861c3f84162b59b17aa9873167942"]]], ["TOC",["perm","alt/A8/mtx/2A8G1-p240aB0.m",["2145e84a075efa2b6afd090800974b032f05e301f3b8643b76a15add62e6b430","c5484043fd7101d4bb67b5324d4a66da30d6b4ea797467e2599938ea4c78de6d"]]], ["TOC",["perm","alt/A8/mtx/2A8G1-p240bB0.m",["57ef1b265b8d9ce13e403f2f5ab38925be7741e89ad700c2553fac82e8f0cece","394f30fd19b8aacd1730f32830ca53fc3e0e6e7d1b4c73c9d9b08e5299275317"]]], ["TOC",["perm","alt/A8/mtx/2A8G1-p240cB0.m",["e335f4ee1250bfe4659acd36c4f0b59f7b07c07d0090b03f1e6c1230631ac22","b6cb4f20a17a0af9c430e6b8830fc7b4c067c10f0acbbc70f65a4869ac2acbf4"]]], ["TOC",["matff","alt/A8/mtx/A8G1-f2r14B0.m",["1168db1326947244778b54815735477bc71008ae4bef6238ddc5583f63d41be9","2f6c61d5d294f9afe016ef583c3853399b30c1926477ca6c6e6a172fd01d1c0d"]]], ["TOC",["matff","alt/A8/mtx/A8G1-f2r20aB0.m",["f4f6150f44ca435c695d933e5e6a6e70021613dd03b90291e09c12684cbe8716","6a296195ecd7708d8975687adc9a03156310785eb43829c43c8d85b0719fe09f"]]], ["TOC",["matff","alt/A8/mtx/A8G1-f2r20bB0.m",["604ec196466a8d39d4e6bea00ed4e425ca6b4ed55bcb4236318ff1a99d145cb4","7ba898bb65c16eaeb1cdc8f6a8768ca125a36cd7b0b97b4ac0f3219176585cc6"]]], ["TOC",["matff","alt/A8/mtx/A8G1-f2r4aB0.m",["1c423ae042fd9e86020ec4fbefff2125191247e409af5773babce7edd7f757d9","8c8c2c9428bdd9c89f81fc9a1559a4cc594c00d8dcaa45402f8797971741483a"]]], ["TOC",["matff","alt/A8/mtx/A8G1-f2r4bB0.m",["1c423ae042fd9e86020ec4fbefff2125191247e409af5773babce7edd7f757d9","348ab2cfad155c3ebd72dca98714e3d1533b3f0e4278bf763768deddf396782f"]]], ["TOC",["matff","alt/A8/mtx/A8G1-f2r64B0.m",["7b270eddaa07a8904516b9a9527118e90dfd30aeaec31e630a9f831134f57383","bb30b5dfd4b4dd95ac36b5b03a273fba2f972bb4813550abe282e41997777499"]]], ["TOC",["matff","alt/A8/mtx/A8G1-f2r6B0.m",["26f218711f56b4ba024b2470319ff625bbee13cb2603a118f5190105aff3e9c8","e97465ec3bb060556884fe5b6825543592990ea9144051779cf4303400a27520"]]], ["TOC",["perm","alt/A8/mtx/A8G1-p15aB0.m",["ce365bcfc86e9e50db1c8899ca2cc4ad299c9d669b39ea18983e48f9a2943cc7","a26673a61fd31a686a9676fdb7a0dd33fee8a99a2393bb07becca397a9eb7aaf"]]], ["TOC",["perm","alt/A8/mtx/A8G1-p15bB0.m",["560d090d7a5f371cea2d0fe668cac1498698293f5387c0732195c8aa2048d70c","c3ab66a5bd9f82e5a45efaae9beefd1d9f5a2a2b5cc4c23aff87c52b0f551e55"]]], ["TOC",["perm","alt/A8/mtx/A8G1-p8B0.m",["9293cea89091c65f9768ff377daab43c2aaa079aca84d4ebb56961595a6569a5","782809956525a433d63f7420b7cbd4f434a2739b4887f4879f324dcf9596e96a"]]], ["TOC",["matff","alt/A8/mtx/S8G1-f2r14B0.m",["fbf0ce230437d26e6d01e881265e16cce11c3e075471aef01fc5497310e49005","6ef1b70426d9af02828fb7ab82b414e87acd797004d3db3c88da6dff60110407"]]], ["TOC",["matff","alt/A8/mtx/S8G1-f2r40B0.m",["9446b1d41b33b1d8fce22e91c68b19e325a297c7b8bc12d94b704921b913b0bb","da04c33e7d8304c9ae6ddea4421b3cd40c86ce4cbe731704a5d3521bedc15792"]]], ["TOC",["matff","alt/A8/mtx/S8G1-f2r64B0.m",["57042a8b967d1be05adcea89506196a3e174438760e90fb1d6fc1bc5c89e80b9","6b264a90541e311ff4ae6b71ca2db844990327d5f4c85e4359062e2799ee40b4"]]], ["TOC",["matff","alt/A8/mtx/S8G1-f2r6B0.m",["4c0cbd7bb501bf64eca804413917e6dd3ef5501f749029057c3c4ffa1442c10a","eaff7066e5d4617682e106c466c5595e9f873a7f071041900fcfe35d91c4faec"]]], ["TOC",["matff","alt/A8/mtx/S8G1-f2r8B0.m",["242d9f558ac0fcbc1a55cf3ec7a98ae9c2e8d0a0a946298538cc7d43c6c5f09f","c76fa24633080240ec24a0ba5be5c9c3d7165a4269b4e763cc3e0ff73993b3d8"]]], ["TOC",["perm","alt/A8/mtx/S8G1-p8B0.m",["e69a845e4637a5965981a8736e203aabcf8ed02749ace51bd7c497822962f0ec","d6e9e125a7c08153044ef9c856e2204359445c34b5235b34ac2031048603f3ba"]]], ["TOC",["check","alt/A8/words/A8G1-check1",["8083a2489a5b071bb093581792c1d38f132e57c33ce483398861f1122f99cacd"]]], ["TOC",["matalg","alt/A9/gap0/2A9G1-Ar8aB0.g",["1796dfc5f6413f5d78007c9ad087bf49063b16a1581fc5427d0a7c2902331ffd"]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr105B0.g",["322cbff621c114423bd6014d7db19baa201385cd7a791eaa4cd93dc5b0361d41"]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr120B0.g",["b13d6e09776d9f2f932a886cba2540baea1bd2591295512deb6ab42f3c2cadd2"]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr162B0.g",["af805ddc6d8df902b76472584f94650105538c57d9d27d429fc7f0386e1573c8"]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr168B0.g",["ee6ce250178b31fdf7c6e6e60eb68386dfe76c766434f187e7c245026c5c715c"]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr189B0.g",["ea4c66eb87453a9ae59ac588667af831dc37266950584ed53229ffc9107c9ff5"]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr216B0.g",["8b2e28ea9b0917eddb0d60da76ed70272e7d9d2761b969a3a7cfa89347eecd89"]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr27B0.g",["f98596c5469970e8ad30c6fb7c5e32b09192d7f2ca1640b7f6497e0610b002fd"]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr28B0.g",["5faf0ccfe3adbf18dff0861bfa664f202b9effc807c2ea7531d2d86851330820"]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr35aB0.g",["93556c273d724c74708b478b08339fbef90b7b9ee5f1fe1cdf03ea96d4660ea6"]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr35bB0.g",["fc6d65c5d9da136a4a82691ebbce66da765748f4d27e6473e02f8493bf5203a"]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr42B0.g",["637306ac3a1f93d417c41a582175244d23cc3de7bdbf9c9bb796714c12dacdb6"]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr48B0.g",["a0dea6379d026c09840988d336650a399669525b45c686d3938acd735757535f"]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr56B0.g",["78c479cf2d43df42e12dad32c533f577cc274e9f50721d167272215b0341d1a6"]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr84B0.g",["27a8a29fac16372d2871ceaa0510345dcf7b2c027880c01802d06e84b2830816"]]], ["TOC",["matint","alt/A9/gap0/A9G1-Zr8B0.g",["3fbc0919d95c41cbd9a0f6158eb0bd157011bc9fea6736b63d6976983345b0fb"]]], ["TOC",["matff","alt/A9/mtx/2A9G1-f3r104B0.m",["b1b75c4b1eae2d2d372e583bd4514899651a79084335522c59e4080ec38b0fb1","9cdd1f5b4403b4f3f83c46fc53036a217c24e2b42565b7c4456cb98463065129"]]], ["TOC",["matff","alt/A9/mtx/2A9G1-f3r48B0.m",["a241b6aa98b00afa6551dd881747457d224fc5716920fe42cd509a3921fd19e9","2915df9b01174df9790a23381a57ea9e86b106f520ed98cfb19d3106ed5d50f1"]]], ["TOC",["matff","alt/A9/mtx/2A9G1-f3r8B0.m",["795ee26f5e4f0fc40c8a1c43f4e8fc5cbb1083a6799cc2233a4ffb4d79d0affa","8f8c9f3232cdb933a0b48b806a7445e51ae159caa0f2295f2e109699d0cf24ee"]]], ["TOC",["matff","alt/A9/mtx/2A9G1-f5r8aB0.m",["3b9d5fb06f9732664da2aac08d6443e1469fd4515e0fcefa5060e70d9a87d7df","e32c97fcd9071f600ffe0dd8a174dd396bb3091ec93f8f52ef610374fbbe557"]]], ["TOC",["matff","alt/A9/mtx/2A9G1-f5r8bB0.m",["3b9d5fb06f9732664da2aac08d6443e1469fd4515e0fcefa5060e70d9a87d7df","893b37c30f8d85c20edc1abd3e2bd18c24995af5a527d34a764d138ea13de40d"]]], ["TOC",["matff","alt/A9/mtx/2A9G1-f7r8aB0.m",["b4382faa0f761887ab3152f964cc99bd6b9c1a7169f68895db2406fe70f4080f","94bf586893b73f92c737f78b79f966b24d436027d17a57c8408f1d8d50d3b410"]]], ["TOC",["matff","alt/A9/mtx/2A9G1-f7r8bB0.m",["b4382faa0f761887ab3152f964cc99bd6b9c1a7169f68895db2406fe70f4080f","906365010c65549803e57b51ec00366f7c87bc1e8651a5deb319cfdbb92634b4"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r160B0.m",["d76914d66a11544a385e2ea1c3aca807c47a76012d8d0dbb64a5a7a8ac3a19c1","79b52a72b16c6c711484d72eece3e42e7291fc40778d5434ad846a9cad25f3ad"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r20aB0.m",["7afcc2d2564e7363f920f67743d7de93d9508791d321d3c181976a6754c7930d","a046dfe96ca390ec69a8015a894a6ac954b8cf383a21e35406c552237d7baee4"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r20bB0.m",["b7b8a87589e4cf689c87f22fc362550078129258b9479f4f0ba0cb3e2f985232","c4bc4922403f9ed34387cd159cef92cd65135064acc2d6c37bc3a99d078217a2"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r26B0.m",["6d3a6a00737f51d4d4771c5c01897657cab87a0f895e63b9d18c4ec87f3169b3","b9181e4c7a986c1af3a51c1040494ff526b758f15d788268f22b71118b66866b"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r48B0.m",["b336ce8dc693a3ea29993a90de122db8b8a703229a6167ad0dee036461445874","2d077f9346ff48512c28a59436bfdbf577feba513b17cf11d1884fdec76b6b06"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r78B0.m",["96b963d69edbeb634dfb7fee1a432e1b2b2e8082560bce3d47d2d5cb5187b21d","afcac2c28fdf8b60e49468e87b814c35b7f5e5d66dc673b673619c642050cbc3"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r8aB0.m",["63117eae349e7006ab1b7c331eaf140317c27bf6fc3d363107823af17865e6ac","988454134b04673b3eac149fdc158a6a4dff3b5ed9126f9a9625f4316d6b53d5"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r8bB0.m",["24279bebebbfe798f46c8059b641b83efe1b88ebe319ab757a63b2919605232f","46babb09b74a61536f15f4a32216e054723f737006fee75b25f6b0179ac5a9d8"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f2r8cB0.m",["24279bebebbfe798f46c8059b641b83efe1b88ebe319ab757a63b2919605232f","313d27324a681b9ecc3298f79db7d5168050269799b5f2a3f09652fc043daf30"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f3r162B0.m",["cc3abdc34d5b6d5c88a16747e6f15a99d0cd3dd771cee1bd1ffb25619420a647","c6c5f8d3a1bcc8d43de1baa490a75d9badb91b77dd8d36cb38a915c3bec2d548"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f3r189B0.m",["208ffa6fb5028ad7099ccc15ee3a51d4c21c841f1ac8323a7fb098000af6e9aa","d8afa77cd20a1e1842e4609535703fcfa96518de0224c356a1b629ca39ee76fc"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f3r21B0.m",["e91c26e318e073305e92d90a0662b4741b9a39ddf2634f0fb4aa6fe010a2cac9","b79e193a22a600254e4026dd61541813ae44427f4fb89f9ac45d17d15e8a16a5"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f3r27B0.m",["40f471dabffc2cd9b28bd2fe82a8f491e5def36f5ce74a5e33377b83ce72e4d4","7e1cecdb51ababcf18b07a8fd13aa97d2434f51592fb72d2adf1d4d013751fd7"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f3r35B0.m",["6f90aaacb94f28b5fff8a99d2d99cd5acacac117b01293b48160d08c5b9f3e85","a8d2709479abcf3d6423d6da12932012595c4e5ca363e9c12007159cdd0f16e7"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f3r41B0.m",["d5bec68fe9b87a2445fcd16cb57b924c42336c343494e5412c9f0c2c776a2ae5","837680aa6d160c6544a967d98e7cd524f44141d8bc8bbdac94609672e17ff4a7"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f3r7B0.m",["60d0c3efb20141c30cd9ef999e4df1131e00aa2350204803cf97ed726c0a2711","d2fdf9f66c0289d331dcd001506c30b4d06ee2905558a9af63463b031fb8b030"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f49r21aB0.m",["4df403320c27e6d066e240cc1d8a791ed49e8d453a44162d307ef9caeb207943","54ae2cd9b3e2bfc3e7d883bd434a85cb7ddccb38af55c1ce855c1010a92bc01d"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f49r21bB0.m",["d725355a23d236b665f86b8b82bbf7be1c95ef604083e73adba155f03732a3ea","16105330e8f0913550bbc2a6b98eca7e3ef7053495e80e78c4c40ab2a46e0c4f"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r105B0.m",["fb8478fb4723d38ddce1af7e022c3160bde1a692d4d537841fd5946bdd36389b","c416e12c9783aa0c7f8abb1206224b7ad750b5cdc617d37173f94a241a0352ee"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r120B0.m",["74d134d74c03e9a6c41fd0c8a0cf8ddc97095ebafcb0a63c7ee82a3eae2d703","3d3c2b7e3677cba8dee2fbe7704abf62f0231991687b5f0834c5dc0b4a0c6b23"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r133B0.m",["6ec86b198c6345a0ce1d4cc287e71eaf944bbe5a213e4b2536a1bf7751403526","743f070f64d30f0de19f267dcbafd1e22e85718826e1c1493f3732be871e5937"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r134B0.m",["42732790cc898d4c085b61f302040886a24876f66702f84f99afbcc1929da2be","6e0d7d3c9396d16d50b1933018e28f09be8565f577da07bd21220c933e48817f"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r21B0.m",["d6c0e462f4d6340d318efc1ad5a27d4e577c17f8df13016dd4e1bddb643592a2","2159719c7aa0bfbe2bfab86a5b5963e243c6bf0d0da774e689267434c7a58712"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r27B0.m",["dddb260e919af736d169e8af2dab755464c99ad0f63d806f4b8c165d31cd043e","3b096f6fca2ea97467f1a5c34f6ebe56d814d384c04f0ee7e80e1990a7369765"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r28B0.m",["fd1bacfe97212cfeb726e61d80b7f0fb9781c1c9fd6168db5204b24894fe512c","3bfe00c9189665a727c72ec62c1aedeb8727b0d4e924c2f51ea1f2d8603ae68e"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r34B0.m",["4708ea5b43e2cf5d2f91297a31648b5026f2c6a5031e03c36950b2a9068bd0f","b3ddc0b0ef7281c7e0eac440ead835cd273a1c856ca96e086067b5a62ce87012"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r35aB0.m",["9bafde99a504eb75f34787399c47563927cc36981684084c0a3edf1a6c531f43","97bb3613ee2a83d736f846af9c2f0fd645cd91bb3ed75ccf3b1d6d839d2fc8f0"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r35bB0.m",["d16de2fddc01c93c7f24b8f84af7c84a5c017c24b92dedf48be32a47e90dd8f","7b5cc5195cd8fb150f1d184ee2c04b66ad121cf4e939205d553714a413cf7e8f"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r56B0.m",["7766efd3d772840aa51b3fc1ed29d7e1a621ba7f2b7bac653db0e0d254994996","b8f869f10f2f8bd0650f33d2b3b2497874bd34831d2e75b2f70e052e9fdd1497"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r83B0.m",["5c85e842d8469597d38e20c73ff6622b3d13fcac658dd167ab2ade25b49a7182","8580a3a914404f4363df5c868d51f9d368def95f2ff90d97830ef4e15b691389"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f5r8B0.m",["c4ef25ff1a0a6b8763c750748cb0e04ae6ba48ab1662626ad07378af05f09e8b","944471bfd29ca69e72139c07d0bfcfb556a3feb3ddee3157a5d42803c2718692"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r101B0.m",["389150cce8dcc44a19a82ad74d85e8e4d2ce634bda2c6f235e6afa5e3388c389","aed94f88ca4bcd15ee5a88b37452db731d48630e76a26154da06eda7323bafeb"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r105B0.m",["c5158893280c912c8d77d586397ce9bc875443e66238a097d1249dfbdabf191e","4c96f798266c9ef42f817dc76d8a81ea6129df703078c984919cda81e9483913"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r115B0.m",["716c04e9871046b4cd5d58ff94564d20091b60e958d4ecc1729b7501cfd4242c","4c38fbe13f62239cd9e7c91a38ce556d1a0ee3dc9a9111ac4bbd1f6c3d6d4e30"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r168B0.m",["1c38ddb1c596168802b191c4908cef57270804934bd83df256c48b6346ce25a9","8164515c3523d3a9806992f468bf03da398fc2d0db03151c5621082d8813a79e"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r189B0.m",["58d89b1818c5dcf9bd6690cbd7539a545ec473b9f5629a5498db30fccdbb20a7","9a390055c11cc2b9b62ff349f033429bc61d3def9c2d174db05b29b18274d01d"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r19B0.m",["e36df3d2823277eda69088ce65fb56b08cb0fce32c2d94d102a4f67a8e57e24b","d0de686c0a89aa641eb03bbb4ed7f8bcefec7d57c65512e2b95fe4140d582585"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r28B0.m",["38841381a98ada701ee2693f56398c9f9cef7b954a217c498ebe857912a79fe7","2abecf4a504d43437350bd07788abc3a376aeede8028f9dd42e80a7d034a7885"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r35aB0.m",["1d99131cb48c8e1503d32ea337335b31233f6454b53c2750540414e3772ad4b","c6933dc8534b88bbe1d06d94c677c4008c4a3275bb6a55c36e1ecc520513a0ab"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r35bB0.m",["f7595f5d9df8ca4313d46115968b387da6fac0cf0177f59ab0258013467701d7","177ce806bd2778329f75cb732ddaf547cece639bc20063a761b2efe4fec6de8c"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r42B0.m",["9e78b45c618cf4a859662721dfbdbd367be93f03279087ce98cc2328e92a526b","50f1563851fb7295cb22d95eca0fc06e66d80659006fdbfa2119f53b605aa02e"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r47B0.m",["f7210ad6677a2ab325367a93068f21d8de07c0b5bb6a41559099032c42a07771","64e1bc620729935d56aa08aefb8e23cca8ea15f4ac5bdaf83b7686de7d67edf3"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r56B0.m",["287478b5435a1588e94db2b0108e71f4503693072e88f952f0266c573f154ba1","182d8fa82338a3e41e41c4bea8b6e4c622acd1ad0ef000321ca4819b8d61b13f"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r84B0.m",["2193472bd44053be1843e90bd32a409967c56445a089c55610144374bd74c2c3","abaddcd4cc84bc2450b33324888eed1875e0e30db5cb1ef8d95c8d6319d60b34"]]], ["TOC",["matff","alt/A9/mtx/A9G1-f7r8B0.m",["e5029c6551acde6982411dc16b4fb8c65495bc445a68ebba7eb3c0d3b6a4e723","17548c8c59ba25fbb7733c8b145932e34092d918150cc0d295726bbf0ef54c55"]]], ["TOC",["perm","alt/A9/mtx/A9G1-p120aB0.m",["8f2b3b2653e8b620cc0b71483341f9fa2dc843a198e9b449d9442524b9430def","8b9516ceab3aadfc8ac205216d31dec28a84a9e971600ca183047271b25c7163"]]], ["TOC",["perm","alt/A9/mtx/A9G1-p120bB0.m",["4de8991fed76d2264407aedb9de5d235f247ffcd6864d73fe884df3259350c74","209646ed6898cbdb66786a2365d39c9ba1284c2e7bcc179d3a90b2e57a573f2e"]]], ["TOC",["perm","alt/A9/mtx/A9G1-p126B0.m",["808b7b0916ba599aa705f3acf356c5c2bdd5517562a889da40313d999ad49b39","a9ee713ec3b721e78cee7f962089c37f30b7a69e9011b8c43b22c0622330a76a"]]], ["TOC",["perm","alt/A9/mtx/A9G1-p280B0.m",["7e842368e402e5754fcee908ef95d3b5902f381497bef6b6e63f9c6db937ed27","6f37d54cf555f73dd5ce6a34d6449becb068e41b42f9bfda10350e1331c111f2"]]], ["TOC",["perm","alt/A9/mtx/A9G1-p36B0.m",["254f0c32023ff96a33b51fbfaa11a5ddb47a834e570916b3c798f1997b2ea912","365750bd96f0018ed280bca343698219d06803683b8e25ff374706b218484012"]]], ["TOC",["perm","alt/A9/mtx/A9G1-p840B0.m",["797a2da6b2bbc0da5a21f971aaa0891b1791864c2895d1ca48221e1b79b4a9ab","bf09c17f783fb4ccc3d51ffca6b2d1c1b597493fd370b8ac8ca0e9d9eae46a7c"]]], ["TOC",["perm","alt/A9/mtx/A9G1-p84B0.m",["cd1010fb83dc81241553f8e4bdb5a4196c7e0004d60a28f1774534b1f9bcaeb","1dfdbeddce7f7439ba8f44befa2fe5f9242704184cd3f07f49c9a32b70513386"]]], ["TOC",["perm","alt/A9/mtx/A9G1-p9B0.m",["2fb58e0fb7f7f49c9fb238b7454a95efd3730a899957cc36527b893f8480024e","6f2f4ce09bc7962513ff5d59bffb4863d1ddb9a05ad80ee7743b0f424612ee19"]]], ["TOC",["perm","alt/A9/mtx/S9G1-p9B0.m",["ccb4ffdddfade8cfbccf9a59836176882d71ff7f80ddbfb5288dfdf51b546b17","c3ae86225429b31a8a05e1ccecb704625c136737344d3e0d9989054f143c5e8f"]]], ["TOC",["check","alt/A9/words/A9G1-check1",["8d9fb75199e138414d5830b2786d7fa34bfa89262dfe799ae7aee3c7b02c8be1"]]], ["TOC",["matint","clas/O10m2/gap0/O10m2G1-Zr154B0.g",["10d7fa6ee8856b5572fb6a3c307f08d3206d397e8ceda15c023ad8938a48e24b"]]], ["TOC",["matint","clas/O10m2/gap0/O10m2G1-Zr187B0.g",["20cb2aa0a72964d5842f15b7f4a016c1af0fcd8428602ca0b2e50671f120c650"]]], ["TOC",["matff","clas/O10m2/mtx/O10m2G1-f2r100B0.m",["c41a06da04a3743da0c530c905eb36d99aa868a6ed1ed5850455364b722ab3d","43f021cd197314f1de64da8ffd40223596e40c805c075954674a4110c2880149"]]], ["TOC",["matff","clas/O10m2/mtx/O10m2G1-f2r10B0.m",["c3f7ca811a7a5eee74345aadfcd7b62c85be84013ee76c08bf8a99669a2398d","9294c994e9e7cb076cf8e47b26acd76890e8a8e65b3ef9462a1b3cb6e564051"]]], ["TOC",["matff","clas/O10m2/mtx/O10m2G1-f2r164B0.m",["f1ad3d24564c6e7e9c2e762e17cf2a93936fa24f3c5e359ad87049eae8d2c94f","c985db06a15a9874c787d5d1c474660db5f5889a92da1a332dc29f2f9080fc1e"]]], ["TOC",["matff","clas/O10m2/mtx/O10m2G1-f2r44B0.m",["a8a51fe0a0c2e25c5cb2cf85fe8cc44fbb85eabbf76c9e82c254ee9cc14c6ed0","2d091f44ad55016a1c63baa6bbbe14caa67669ce79db7d7a7b6d5454cda5b9f8"]]], ["TOC",["matff","clas/O10m2/mtx/O10m2G1-f2r670B0.m",["a8fb7a892e493438ae0f31caa0fdbbad7ab009078afaf818d9506009232239b4","561d14a7d2c1568ad997d451f3126ef1767be6ec11fb3ac9f18876b112b91bc4"]]], ["TOC",["matff","clas/O10m2/mtx/O10m2G1-f4r16aB0.m",["ed47695571de9bfe16564e6e7edf50217c02e188144c3a782320eff6caa76d73","44ce32c2f63485d58c7b94247b018da46f39a9d9f6a495e5e99ede80a10dae7a"]]], ["TOC",["matff","clas/O10m2/mtx/O10m2G1-f4r16bB0.m",["61024c587f940d216a45f2cda33fb54712c1b796aba7f3ba94525e0dc68f33ee","8d2abf41a29c76900eb0a36f5df1e98e6b9993689381b93f9d26d803ab8c65d"]]], ["TOC",["perm","clas/O10m2/mtx/O10m2G1-p495B0.m",["a00d6af06e81d31280a6a3a42c806add4c60aab20ca497a93557833f099dac9c","d480e1b8ad1ccf5ef9cc0440db6b3c2737299fa028845d58e5b9c9f52935dff6"]]], ["TOC",["perm","clas/O10m2/mtx/O10m2G1-p528B0.m",["563bbda0105c6a5349f5d4177e06fb3620caa96c33b624d8573384178b26fa16","4cee06c464d90a48c791e47bef04bd99aa2298232f49e56ec63ae82a3d28e5cb"]]], ["TOC",["matff","clas/O10m2/mtx/O10m2d2G1-f2r100B0.m",["6ec806eb0de4957c0fc78fd4f8592212f4ac8e3fc9a6dd9f6868671c810e54d2","e0218b8f049c03cf087a5ce271f8cadae84edaf7bcb5a1d73784922c750b6576"]]], ["TOC",["matff","clas/O10m2/mtx/O10m2d2G1-f2r10B0.m",["c1ac11c9c47672fa708404f77babc86060453a514113ff0e7c7eab82bb93eb5c","1c9fca213a858e94e45832ef51cfc673546b4272f31f339f8f7c15649eae6f34"]]], ["TOC",["matff","clas/O10m2/mtx/O10m2d2G1-f2r164B0.m",["54fc375830567cd1e5f5ef9276fd3e1c865073234ab5ef4432c9982786bc5fae","6fd50ff66b202c40721b1205bc0680cc1762b017979764bf6975139c1a9d9081"]]], ["TOC",["matff","clas/O10m2/mtx/O10m2d2G1-f2r32B0.m",["9e9eea8001abed009060f217fefbfa69731bb05e819cea7fd80a9956c4be1f75","4b7e25042e9aadcee6fde9fc4c8aae91ef0dd22829ff911b691aae8bf12d4157"]]], ["TOC",["matff","clas/O10m2/mtx/O10m2d2G1-f2r44B0.m",["956f4c941b03814830700c5d3cdd6734674877cbbf0b65c3d47653f8eb516885","44e1a7c24e432d67456bf63d786aa9d7ab9b2ed83da96077f581f069ff071b51"]]], ["TOC",["matff","clas/O10m2/mtx/O10m2d2G1-f2r670B0.m",["c0772f77c8202de01b14a34647ed97014e65d8043714b69efe67682c6fb6bbd0","3517c34c2505ecda89161f97d8075441aba3e0bfdb6346584628a0bf0936e95c"]]], ["TOC",["perm","clas/O10m2/mtx/O10m2d2G1-p104448B0.m",["d24c8d2a66ca495df81d5ff20f2a434fbd1d9ff6b5ba99c0ac1d842fc2668976","63ba0793ffc18fc7c371d0e2ec538816ba8b599a3da270869da3c42285f47982"]]], ["TOC",["perm","clas/O10m2/mtx/O10m2d2G1-p495B0.m",["9976ba3bac3b895d56cc6124be3cffe38b60f1f1b64bc307a5c122fbe14888aa","50fb8437eaca7b75b0ad7f9aaf4aa330a0536bf394e17384a9a01139d702bd40"]]], ["TOC",["perm","clas/O10m2/mtx/O10m2d2G1-p528B0.m",["d6c0e4ff4e3fc66dca2f05a5dcfff56229eb4111674a3971aee10eeb5189f8e","e66ebe8efca8465650bdd4776d1ad84a17604e6711700aadb35461e8c033c44c"]]], ["TOC",["matint","clas/O10p2/gap0/O10p2G1-Zr155B0.g",["652883449f369b804a7418e737803508a086de488fed60fd590f182c69b0df2d"]]], ["TOC",["matint","clas/O10p2/gap0/O10p2G1-Zr186B0.g",["a37d141b314429c55ead72f888442c798d7adf9135323dc576a4548ad9a2a703"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r100B0.m",["8f1c1776462735298d37549460dfc4b8a30c7c678a1c5cdb32909e11484509c1","38ef2112c8b1ab119267f0b095d27e53088373d891afa2ccd3f9ee82e1eb7119"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r10B0.m",["a05f1dc2c57660b3e19c2527e52185bb7a6aaca85c4e4101128cad6d6bfa9d4d","c2c841ef77792ed8263649b65b3130a4bb24fd4e610d068910cd8df0baef1692"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r144aB0.m",["d11310431ebb041457de5231cfd99b7986eea6c62d8016806a86fbb1398890da","832147ca1d8d42683bee5c59275a06932a504b7c49556709b89680ae75c81bcd"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r144bB0.m",["2d4413a35f34880b9b42d28bce81df669dddb74d36b66889bdcb9700ae8414b9","c0227ebcd5ea58f50a7b262f69e0a5144e9426f856a4982cf469cdbc02785536"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r164B0.m",["4d46ba9b1b725ae82e55f9129a45ad684fbc29ffbaf95d07b2d6ab9c773b5fed","76caee08ce0b7b3e5c17a9c08ab759b0397970f571bfd222945fecada828ecc7"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r16aB0.m",["767c738eedc24b902da06c377d7a7f95191d5c25290f3343debf79b5ee87015d","28afacec6a74c1938f3ac62c3c612598333bcb3155c80ec2681d56c842d38849"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r16bB0.m",["1b6ca599addf24c420ec31f9be5a2c45c7862aa32a4dd4cbb4668ef5d007994f","4e6866aeffe11a6373bad4e13304fd7ae69645f63fd80dd3c0b2399fde6832bc"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r320B0.m",["823012f2f8679f680909e5e81068fd3c8e4713c011ee5b9133dedc4ece8a5fe2","3ea234aa53eb8b9444d6d63268fc8b3da8f90ae12f03484379fe3c72351f1b85"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r416aB0.m",["4d36c0106fbc14b5d052487349854d173251458304356b1fd0ce84dfa0a1a355","ab1d50183e2c397fa1c25c62590b4f612a5907be1c2aacd719fd778124a580e4"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r416bB0.m",["e11ccc2a60406d9b05438c9b100bf1983f794d41414031456827ad87ca1f1053","99bc709f15a8fe1d9f576af5123b4048349c07a2744ed7a08330bc16aa6a6097"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r44B0.m",["1292c2c131dde1a1e21d202f9ed04e4c2f56c216d4ae1f5377b71b30c81fd533","43d991873ee2f80ddb3c959c026ac7a40f7bad9cf7f7155b1f26c822d8eebfe8"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f2r670B0.m",["da0ccf67a6b5878f2340f3ba4a74bb410af14b5b69f53a468e6a3c8b1e373655","7a7c34633dadc158f1f5c7f99a85131d6453f618a2a0f2d026a50cd8779e43a3"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f3r155B0.m",["6689b10eb1702d694352945c2719a793f405b7940933731d9aff9bffecd23ceb","8ba694832d5af72e9a3b3906bac8074fd940400710688eafcd99ba61bab3d4d9"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f3r185B0.m",["c46e47af6be30cca271fb3c7293ebaf3bf3ed29c07d3ecd5613a94321952bb60","2885eb408ddb2e65ff64103fae6dfd3e084251757832882df46606c1aea14828"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2G1-f3r868B0.m",["c471d6b777c17fa2f2ba24e7ebd02f3b4c5eb36db04a77805f4ed214756948ac","e15baa6c0d56ed96bd03d8eb4142bd24c7399270f238e5b8357f4d66b01318a3"]]], ["TOC",["perm","clas/O10p2/mtx/O10p2G1-p19840B0.m",["4c630e0a14b7f23b7db1cc34d0476efdadaa4ae21ea1e23c182ab30bb8a17428","5710e39dfba479b33f5bd77f5abcf175479155ddec998e1394a6175d618b68fb"]]], ["TOC",["perm","clas/O10p2/mtx/O10p2G1-p2295aB0.m",["9387b32d5e5a27987d70723f2a7369773f2ee0ae64ccb9944c7e9114ff04076b","3260f46ab5f3e662aff7dfd26128e7ae04b5b22d8879489baadda76a673f7219"]]], ["TOC",["perm","clas/O10p2/mtx/O10p2G1-p2295bB0.m",["37527b85a898254322c5060ef6e273c9b3f26871decd14e0ca6fda1dbdca362d","9c62ba29fc8be024e4a7ebf17ebe2c612124052ea439f9b50bb42b9138fee6ff"]]], ["TOC",["perm","clas/O10p2/mtx/O10p2G1-p23715B0.m",["ba6f23c787c0b22bc02f40dfc54ea333af4edec5a19067273a124e6218ddef7b","42779d490a9025b403ae6858864619439e3b66c2c1283e51bac00590ad41c957"]]], ["TOC",["perm","clas/O10p2/mtx/O10p2G1-p39680B0.m",["a0c68e2ae8521b903c779ef4b92cea3ac29575da7033706d273a08f075aabad9","122a2d3d289e2a11ea710a622952151ed8825c1fc24ebce96d5fb7e7ed5e3e5"]]], ["TOC",["perm","clas/O10p2/mtx/O10p2G1-p496B0.m",["3dc2d2f86e79c93a4c0ffdbeaa850d9775c34e0d23c0dfc6cdab7894ba41d053","9832f947ae78a72c1fa804c075a378e2a1cfecafb7db3e03780e611099112954"]]], ["TOC",["perm","clas/O10p2/mtx/O10p2G1-p527B0.m",["a322a13b3243421d26da41f68ac02c2313fe29d21407cb58396a15697086e8ee","ee847a1c80992eef2b93874b752957ab31a457067cfe7ce44219611621a14ca4"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r100B0.m",["60b6189bc4c2f4b5f4ef895da85d576f86139e24846b6faaaca8c2382f16f9a6","3951299212d0d21022a59c2a859cc06310e2a653dfa4e589d788364ea96879d"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r10B0.m",["73b601fe423ed99e46cbc9f7e0a01ad9355ed71e65745d3d5cbd22e8ea1cd493","ba969c78d02b04c3f0554cfdfa61ebacee944fb2d4aba1a8ab216dba334b9916"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r164B0.m",["572033e64a43ccfb6a8c3f14e5d31f53c74f32c41aa697d40358669da49af282","84dde115006f45b3fa4e7f831c3421e101a351dfe2ff95c9a3df913e6816116"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r288B0.m",["9e6f3b7b9cbf059560f5dffa66b36dfe37debcc2a56a215081ed41a00ecc4b90","fd37bc81e273263ac92e3d55b0d1aacfcbde448ece3dfc41a2c132784d3519e6"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r320B0.m",["b7c48b65203a6c1cf76d7597d802298bb3ed33be73bba677c64f01e4c63fe288","58a9885c02351419c1f63de1d21b8ca97eb6d15d4dbedc513c71946b35f439b"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r32B0.m",["fc85648a9e329fd84b46d928b6072927b198494d6be2f247dea0d7e52d15aa1b","2b59c12194d9d5bd9fc888e391289a836579c57a37f8071e6ebd62794dc130c1"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r44B0.m",["98a6c4d91b6912b77e4c4276ddebb92510a21d7cf9da0a68688adf9e4f38c79f","5f18958aff71143a625257980a1a6e8bfb9416ee42e4afbf14fbb760afe0e822"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r670B0.m",["f29b489b23cc8156c548c073fb15f2bb82ea5148569a578b5d7b3403f2695779","2501d70f9a8cde3ad5adfadf1dc7ebb947997e5ce78a4b361fe3aefd6b4633b"]]], ["TOC",["matff","clas/O10p2/mtx/O10p2d2G1-f2r832B0.m",["ccd699a33381fb23b809303f283876fb9194c6ca0de8250146804134398940ca","8f19baa7840b19965a7e7c9e0ebed6612ff0a4328b0eedae5f716829badf9c33"]]], ["TOC",["perm","clas/O10p2/mtx/O10p2d2G1-p4590B0.m",["5cbab80f07043616105516be66d9eff1610215097190b9767b7780986775231","7ed7ac317e0392e3b27629cdc488a07f60ab7d41eebefd927d50f1b2af1c08d6"]]], ["TOC",["perm","clas/O10p2/mtx/O10p2d2G1-p496B0.m",["327904d9b8495e865748f8ac1e6105b48abd7bcd6540e5526109b64c04d6b638","9872cfd88bef3c0dd14d4601e72933e274f7f2b50475e605c77dcb28422cc686"]]], ["TOC",["perm","clas/O10p2/mtx/O10p2d2G1-p527B0.m",["122824bfbd00a8ed24ab24175610101a6509dd139ee2bc05ebc4fc972f0f9fd9","a8cd62eaf718666eadb37ee0a2597d28bd805da618908876afa93353b78b283f"]]], ["TOC",["out","clas/O10p2/words/O10p2G1-aW1",["5391693d792c80df7ab084100f9fe318ce738d6766ceda5e24b9cdd9adf6bf40"]]], ["TOC",["maxes","clas/O10p2/words/O10p2G1-max1W1",["f61dea5a639cbb40dac5f81950193c4de80448e9400b1d31c3d347aefa53e273"]]], ["TOC",["maxes","clas/O10p2/words/O10p2G1-max2W1",["2e83df1469812525b31214103a894cfafc2ed91a01d005705b1dca80a479f569"]]], ["TOC",["maxes","clas/O10p2/words/O10p2G1-max3W1",["82dd896e216568e2bd2054d065762e94aa342dee7ce85d156c22d73578b44efc"]]], ["TOC",["maxes","clas/O10p2/words/O10p2G1-max4W1",["6401d4f5f551b0942b820319e8661d0a4d9e1383104ae60d24b320b69782774"]]], ["TOC",["pres","clas/O10p2/words/O10p2d2G1-P1",["fc6cda39be869c8f9e834dee131fa6802d30602a23028941ed4a2e649a768da5"]]], ["TOC",["matint","clas/O73/gap0/O73G1-Zr105B0.g",["eaa2257c8f78de5279fcd8846aba201c2eb2df62589a1b76ab747e4ede3a6a62"]]], ["TOC",["matint","clas/O73/gap0/O73G1-Zr168B0.g",["1653311fdb80c087e5acc069c9109a64074a812acb1fd31b65db1f6ecad8b659"]]], ["TOC",["matint","clas/O73/gap0/O73G1-Zr182B0.g",["5be672e9a520b83111650a5e8cb5917fafcc4d82a801160a14df70c44e996fa2"]]], ["TOC",["matint","clas/O73/gap0/O73G1-Zr195B0.g",["c891914f46b8c70dd5fa7b06ff392a746f64b351531ef18c7aa3d12db0ea2d51"]]], ["TOC",["matint","clas/O73/gap0/O73G1-Zr78B0.g",["7d2fa7aa430ff4300888b1eb535f417a215c9174ea4aa09ae62c41c9a20774b7"]]], ["TOC",["matint","clas/O73/gap0/O73G1-Zr91B0.g",["7ad0674c3c61ae479ec4257169a54bb8399432161286e4ce04b4386c3a634c93"]]], ["TOC",["matff","clas/O73/mtx/2O73G1-f3r8B0.m",["b8550b4eb1d4112efb1d12e39ea384b32c8be5412e1985da634f9a77cdab327a","98735b1f851d457d0f56f39c049cecadee0e3889d79240ea740e3e7687414b4d"]]], ["TOC",["perm","clas/O73/mtx/2O73G1-p2160B0.m",["47c331afee80600fcd1ce8d96f6ec6c09ff4924f778c74ebfc6f0a2ef1a860c","2c8976af77fc68829779117fba05ba288083e515e7f768b8adc369dcf00ddad1"]]], ["TOC",["matff","clas/O73/mtx/3O73G1-f4r27aB0.m",["2f4329aa6904780f8b010d6a0bcd3f5947bcfb7f2e818b45cd5d387f4a6b10b4","55247ed455f86643fcb7ba67c914c24de8c0cb13af866095cee57d51178b6aa5"]]], ["TOC",["matff","clas/O73/mtx/3O73d2G1-f2r54B0.m",["173317136f169d33b0fe1f9a09bfe6dc335479001c90513f4022c0fa22c17319","65db75587d8027687f7b90e750eeb6cbfda93060947e7979df7b56965831feca"]]], ["TOC",["matff","clas/O73/mtx/O73G1-f13r78B0.m",["cbff3a1eb55e2dfd4019ee5973f4999ed219820659f7529372240666ce203e78","9e9112b303d0106a0d8399fc7a1d30381388c6eea42aa29316a9e2d996587d99"]]], ["TOC",["matff","clas/O73/mtx/O73G1-f2r104B0.m",["ba7e457aae1dbfc35d78eef7d14a4c98dcd7476ce0f794bfd8bf231add0e0c4d","6ed22797a8172da49f5538b0c567c53da34b1117c80c10a13fe3c11fa79c75ef"]]], ["TOC",["matff","clas/O73/mtx/O73G1-f2r260aB0.m",["c5f2fe4d9c47b84a0f55e22b28966b845f017e4693d02893b8b602b2ae6836f4","202e5bcc18b2377b98492a56ddc1a9cbe39c04cb28376f7122794250c4134407"]]], ["TOC",["matff","clas/O73/mtx/O73G1-f2r260bB0.m",["c5f2fe4d9c47b84a0f55e22b28966b845f017e4693d02893b8b602b2ae6836f4","c167320c0bdd1fdc451ef65bafde596a244ef2acced244deed9c473e0666940"]]], ["TOC",["matff","clas/O73/mtx/O73G1-f2r78B0.m",["26be8376cd85d9b4b35e0f41f67fefdad0019fbece19aa05b8a638b433724b88","454627bdac08b9c92f8caa6acdee09a320a89df7155d3d024346ef1865a7d69b"]]], ["TOC",["matff","clas/O73/mtx/O73G1-f2r90B0.m",["fc321e4d8c313aa8431682a47bbace1974838246d1736704261e67a40e85fc8e","284786ec2196dfc0cef6c47714a68b2c2fd4efe7e8aa4f7ca875d2941c4e85ae"]]], ["TOC",["matff","clas/O73/mtx/O73G1-f3r189aB0.m",["c7c29f487d576a0fb1366ef3327149be6adaebbde03da4fe58cd2150a25231ce","7adab9d73fe1dc02d883e3dfe85dafddce67c1baf2af4e1a8a3b55e3f6af93c8"]]], ["TOC",["matff","clas/O73/mtx/O73G1-f3r21B0.m",["143a3f46d98f51389c4cb757ecb75ddf14a80f68d29586aa04d1ef8216b2d0dc","c8d9232d619988cf76bb2c79d8cdcd4926e4e769c29190e8a58fad5024f32ff4"]]], ["TOC",["matff","clas/O73/mtx/O73G1-f3r27B0.m",["3b68869dba765c5889860f8cf9d75bd4078d7152b744b58169a0f68c4cf8b3a6","1a15ec9623d6642a8593f4ed32d48dab60ceea0abc566ebfaceadb3fa5c8cf37"]]], ["TOC",["matff","clas/O73/mtx/O73G1-f3r309B0.m",["7646ccb3b8ca0be96385d5edf471ccc906efe81b36471e10014fed03061618d8","a0b121ad97523ad96f4d2eef4e3decc89038375975400799429640af75974f0a"]]], ["TOC",["matff","clas/O73/mtx/O73G1-f3r35B0.m",["b61914b86f2ca3f28a43565e5db71680483cdb9abc0d2c1d18bcfb3b88fffaa8","92c723e0f3d559abb627c0f10d2fd0936d1d461573a785127f82c14d212d2fdd"]]], ["TOC",["matff","clas/O73/mtx/O73G1-f3r63B0.m",["e87a070c353c3b2b9d60a001f28835483ec7a85db44bd14d6d0e1bb7ad70a817","fe6bddfdf91e3a73f752ca5ebf51a3eeaac44d2af172131757e46d9f8f65bf6e"]]], ["TOC",["matff","clas/O73/mtx/O73G1-f3r7B0.m",["f25e8d1f03323c365236e141007848dd2ddec8663fc36601d4f75c033f73b719","51ae92493b988e2b38e2cbedc7d60f5cd07326edd01396b76b26ec6adeb44c23"]]], ["TOC",["matff","clas/O73/mtx/O73G1-f5r78B0.m",["38f661b4f332318eab35620bb379c8935bd063aaafcaab2412541dadbede8c8a","5ff745fcb7e9bdd0922170f36280d4d52cc3f21e9b60a8adb45a2d2088cfd47d"]]], ["TOC",["matff","clas/O73/mtx/O73G1-f7r78B0.m",["88794de1751e199b247c28d93360374a824205856628d140df50e9fee6641304","36383150a0c8cacf98eb68bec9faa7f3ce36fe08b4f5a4ddef102bbffd5cf99d"]]], ["TOC",["perm","clas/O73/mtx/O73G1-p1080aB0.m",["c7f46278aecdd038574a2281f316bce03d799a0bea636ee9553d54767f4b25cf","e852716f860040850d4b8ac1eb68027af5fac574ceb52fb23b36070ff649c6c6"]]], ["TOC",["perm","clas/O73/mtx/O73G1-p1080bB0.m",["bd31fc386609c35cd921765d0c3a88c9b0b5e9eee30bbba7a1c475968f20b134","f75ca1543417c73028c4caef2e1064b11b9ab19332dc3d8045d75cf53df92537"]]], ["TOC",["perm","clas/O73/mtx/O73G1-p1120B0.m",["f2ca4935427990cc51fc46c45ed13498e107483ec5f5e8959cc2ea15324ee21a","ece70b682bacaf754eeb0b807356f0d4fea39315732b8e69b76f3ecfde636d93"]]], ["TOC",["perm","clas/O73/mtx/O73G1-p351B0.m",["9e8f46e7cc84c1be91be3c7383ee39119dbcfb99deb38f31487e57ee70adfd45","d6e7f6e183f9596f8ff33c92aa9a8a8d78d4ad687b4805c0aa705225929a5371"]]], ["TOC",["perm","clas/O73/mtx/O73G1-p3640B0.m",["916f825914abd250c68eb805c377377e6341b90125ef76afc385ecfb727aab82","3c9651ec0314ef518563ff045cc72bb013bcd1fc667f4979ccff352d9eee0ae0"]]], ["TOC",["perm","clas/O73/mtx/O73G1-p364B0.m",["5bb08857a4f5b20c5b5cf17d1158d11ac9728c6755b8b1f04d2dfedcb656e66a","d5814b0983994cdbb7dffa0dcdffa65bbbfe4f97f793fbdc8ad12b765f2698e6"]]], ["TOC",["perm","clas/O73/mtx/O73G1-p378B0.m",["f5a52ccf4b6991934f68dba4d391f57bb32180d088edf05a071ba7ea09bfe999","fa53d7c1b49bdb2d64057aa69c99252b99c8d649cb81ef93da1387a8cd754b"]]], ["TOC",["matff","clas/O73/mtx/O73d2G1-f2r78B0.m",["5ff3c2f7db876d84783a76da9bacb801e302b66cd7cb19f8e7c38368950cd701","b8957da8ea14f8ab13166d763bf1a07b2ade29aeebf5ca5c601f609be15a9479"]]], ["TOC",["matff","clas/O73/mtx/O73d2G1-f3r7B0.m",["85c869a6ef033b950fb39920f8e02b39811869a2ea6b773c930c430d02603295","abecaa87375d33352516f4a276af4e38b41c38d576eda3526205d44973727e6f"]]], ["TOC",["perm","clas/O73/mtx/O73d2G1-p351B0.m",["355f69be9cd09522f65edbb7477fca19afb6d525f55029acb78460d4ef11b2d4","eff19515a983c0c7d8f3b31d1e033549a8c40bf3257d4a87d2972952429cef14"]]], ["TOC",["matint","clas/O8m2/gap0/O8m2G1-Zr204aB0.g",["178dd0bf3da2da3af8c0540c198289a698dc1315c9df09145cf57010407ee11f"]]], ["TOC",["matint","clas/O8m2/gap0/O8m2G1-Zr204bB0.g",["e6b3279f15ce569d84d4c5177d66402b44560d89777a8f8700f2375b755d500e"]]], ["TOC",["matint","clas/O8m2/gap0/O8m2G1-Zr34B0.g",["aa8152dcbccacf78956a3dc59e76ddd5d23d56cae0e9f57c0445046ad0e508c5"]]], ["TOC",["matint","clas/O8m2/gap0/O8m2G1-Zr51B0.g",["485fcb0c9eb425647b686878e550121dc2f6aaec96bbf0b6c97e353dd3ad6cdf"]]], ["TOC",["matint","clas/O8m2/gap0/O8m2G1-Zr84B0.g",["e0009898471c09c3b8d82cd619b0c9f8a49a52f0ce611e19773cd20756f5201"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f17r34B0.m",["e51b0187140ae7b285c43aa360511ad7e35f7fda81a80c5af7a0e23648fad0ee","f521a84a0bd57ad5f10ee0d6adf07a5d03d3d3ade6071404ec042d95ac9d79bc"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f17r51B0.m",["bcf5de7d4be5966ca74b3e66e21aedf59772e0db25fb845a556449173f53415b","8eefb41cfd19caf73746aa56a343d46652b8ae75dc648e8625984b6e8faf3345"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f17r83B0.m",["a7e129e3516db0b3108bbf8d0eb0314d9fe41e1886af70dac9b6a28f9d41a082","3aa1c45fd5b50848398377a2b776e8d222cd242a744e5a446e1df7f91d08ac74"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f2r26B0.m",["1374c3d4642e724697f6bd57fa4aa7cc9c8bff0c559a70b654ac3f77206399f","7acf128c7a4ac0b1bd758e426bbd8c60f3cd13af4bc41c194c77c21ac3562ed7"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f2r48B0.m",["2a5a5d704db0aa798cab7e344765ca9547d2745027a5a4884b051574cacbb90e","d68c0f88996ae0a6347f30e277f5c67d1f4b80582cfb4a48f8305a114f79bc2b"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f2r8B0.m",["96fb0900cc4e4db70ac75fbb299ccf05d033684658e8e29968a8a8464b1af664","30dbcfacd4126bf7a0d2d3b80d6c40821920d3086859b5dbd3db0d3b77b10f65"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f3r34B0.m",["b3a1f693d48dcf90caca555f782bc24e3ea09c60728761bd64b01a2c3e996ab0","efcdf852df470b5d13c30dda34bacc197f4b7a03df79cc7ded28b4f36b747927"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f3r50B0.m",["da1a94324cf445f60ce01c1cdac543388a77c01df8b310dac6103abd0a7da3ca","d9d22fc2d28c500fb161628727b9fe2a9948495f26d15ffb64709e98f1b1b885"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f4r48bB0.m",["c4f341b148043e27be66854b30ea4d533c3f883690de98e2bf254146b7b913b","c94c5e5fe837906d24fe534fafe23ef57d986a6c81e95a9294dedb92666640c6"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f4r48cB0.m",["be724363a1e6710f862454e8f2fb607a387cb7ed5faa1adfd6a758fb57f43c49","fde05cceec0784f1b772cb9fc562cc0723529b1218e44179a3943faba8abfed3"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f4r8bB0.m",["a93fb98e0f758699cd496c19d2ac0f07be2e06270dfeed2959320af337e9fd6a","d84c5425190f983f0a94469430bf95bc8a8930bb3b984b5eaf0b24496f51dbe0"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f4r8cB0.m",["475c75cf04ffbd8b2bf833834174823d96ee44307ec6c40effd325132b8e35d3","4aadeff4258543c7457cee3d7efd4ed8722bc5948938bae198a08ab086219bb3"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f5r34B0.m",["e8bac5929eab3260a5eb4e0116c3b6514f2cfb570063e72f4caf6766d8c82be4","bff3202e977576889a59aa344f02dc3d87dc00b0cf7201dbfa762d61b77c20af"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f5r51B0.m",["1af28acc215514275141c185e08d2ad8d1343481b9fcd5b33370218bfc069479","111dad34c51fe00b85772cd38f48736115f582e9417155960565d60f691eaece"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f5r84B0.m",["599e892472307bde48eb8a82cac2af93f544a4c441ce4fe431da5add137aee24","c258b77a2a70eb881311d87a2994763463e406ed73c9480b4ab4c063aa4e6174"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f7r33B0.m",["e94e2c639f6f5605bf539bb0e23c9910b92faa042e9437a8276d2e619df264db","23d9f28761f8749384b3fde4be31b99cd6f3408b2ac924afffab91215ed1500b"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f7r51B0.m",["c9fc59f6478fd3d841b93e04ca0614be7d2b191545f590e53f46ede60617ae6a","a7c960c0bb67cdd50da86f2be72d49d6c872cb8c1ad463048d5650be506c4fd9"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2G1-f7r84B0.m",["cb812567202b0ad5a9b673110e65c7073119bdc73a8a2b1c74be96834f698e52","55ae0b40084a0cf71ec1f2ee7500db5b93ea9833053410c22d676335765a794c"]]], ["TOC",["perm","clas/O8m2/mtx/O8m2G1-p1071B0.m",["34ec7c380ad4f04ee152c515549f25da989b7a9432a0f2769c0285ea3456bec","6556ce2996a22c308b0223bfe872adeeccc4c1002846e8260af94a06cedd58c3"]]], ["TOC",["perm","clas/O8m2/mtx/O8m2G1-p119B0.m",["23e64d003678333d3da26bda79247a00b30706fb43879ce84b88fd9ed002018a","2a2b18d808caa81df131992996329f9ea1fee0e63063b238fd24bc2cfe3b26e6"]]], ["TOC",["perm","clas/O8m2/mtx/O8m2G1-p136B0.m",["175cc444dcda601fd2b7a1cbc37a7364935fa9358ceabca720ff853801ff2105","c9b818f3f7f1a24a833115a007e65ec27c0aed3d628b5f0088d9f615ca5fb0a7"]]], ["TOC",["perm","clas/O8m2/mtx/O8m2G1-p1632B0.m",["dd74499295ebe84e2e7eac5563ea98affba33431b4b7e612e955e008d6eea441","126e9094d0d2d6cf0de35e72bbe7840b50c719c9908724bc0399f0e6c1fe0fdd"]]], ["TOC",["perm","clas/O8m2/mtx/O8m2G1-p24192B0.m",["d68ff77f83a3799f02ec7580aca9989959eb3aead125c4bb32b6ac8d08334569","bc3b5a774e0f9f9be4ab236f8cd62103dfdfbd05a8fdebdbabcb0f8621f43a6d"]]], ["TOC",["perm","clas/O8m2/mtx/O8m2G1-p45696B0.m",["9d96d068a765703cfbdf69d6fa31121e357e43b101684c1d0b1915b43b0b69f1","86404001482d51e7f52433b27a3c0e91d4b7bb986716ce0e654ace5a7671b0c1"]]], ["TOC",["perm","clas/O8m2/mtx/O8m2G1-p765B0.m",["8623b20726da03cef62d1d302cdb4783a34214a2b1c9b490caf56631090fde37","d523159a848f4b5810bbacd060826c5fb9166785fc0a7bfa308c14c97caa6522"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2d2G1-f2r8B0.m",["922d29c7282e1f444d86e53e905aafb3ed96a5b1efb7124106910b875e353086","d57e4491279504021cfcfbc0cc4e5aec6ad2bc8d4be7ee0e1c0d08ebb89dad9a"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2d2G1-f3r34B0.m",["2c1d21b4b58644c55243b04b6332d26b4fe7fa9089e5edc9fd726f182ab415ed","9213f30a02ab33f116183c1e22d78e1defc9cbcf34f8e54318ec7dc968e24125"]]], ["TOC",["matff","clas/O8m2/mtx/O8m2d2G1-f3r50B0.m",["37d0a891308d92087cd96deb851052ad6398944a6934b2a275871df717fe5401","c86ec26481a8a734b54b2a97d682bf77f6d8067ff3d74ffb21efb3a3e8cea6a3"]]], ["TOC",["perm","clas/O8m2/mtx/O8m2d2G1-p119B0.m",["7a68579447a7c6dfe94b8124a377eb7ea39cb37c7648a00c5119c5313dd9e5f0","7b5fd20f9d0fff79debfcf043da91ef83300a1b353c23fd45f689d07f895e392"]]], ["TOC",["cyclic","clas/O8m2/words/O8m2G1-cycW1",["eeb365d0492ca1540063fc2e1029c79a3124d07ff5b6d46a8631f5ab78f6bf34"]]], ["TOC",["cyc2ccl","clas/O8m2/words/O8m2G1cycW1-cclsW1",["cef78eccefff18b22b28323fc27e00f5e0baed210dd878ef8f923ce9aa931744"]]], ["TOC",["cyclic","clas/O8m2/words/O8m2d2G1-cycW1",["55fcef4591cde8b4366f0573e0d7e903fbbfcaae13b9083d6964c192ce31178e"]]], ["TOC",["cyc2ccl","clas/O8m2/words/O8m2d2G1cycW1-cclsW1",["9ddfa3174121896f2b3f09c97d3a74f766418c250e0e82f1e4809c34e9ef89c3"]]], ["TOC",["matint","clas/O8m3/gap0/O8m3G1-Zr246B0.g",["ea917330af64cefbf6b6d050244dd566c3009635b09872be07fe3464aac2aa77"]]], ["TOC",["matff","clas/O8m3/mtx/2O8m3G1-f3r16B0.m",["824c54bca4f43a09738a4034d440ad891d59efa657ae57a22b7eca4132454f9","d87dd2c74685a7a0156d53a15578a4558dd70cdcca6175c5a46c445a42b6c7fa"]]], ["TOC",["matff","clas/O8m3/mtx/2O8m3G1-f9r8aB0.m",["2f5d06c49514b7fda879bfc41d0f45b56fbe1482247b4c3e51851def26b94e49","46fd9ff222a7a5f50442859f8a642e59e7726d37b5216d2d3c5b8de5f66d9d55"]]], ["TOC",["matff","clas/O8m3/mtx/2O8m3G1-f9r8bB0.m",["dade5f3cee7611424b30d697cb3a7e8c4d87ceceeae4f89f509912f450f518ac","3f11423f269e7ca9760bb5bd1ffb2466417374d20b1a28af47d1771e12b264e0"]]], ["TOC",["matff","clas/O8m3/mtx/2O8m3d2aG1-f3r16B0.m",["5709bfc8a1a2549bb32b195441cfe76d665306369f1145ef4f101ce379a77dd5","2130ffa215d56374d59970b66312eae367653d1e8612da7c73717c444f3b4036"]]], ["TOC",["matff","clas/O8m3/mtx/O8m3D8G1-f3r8B0.m",["e724e6ea7f34fb58f8979b3ec3d27f10bb7be76b1d34003e818b2c7c599d2974","9559537dbd5f56afd53bbadde174459df2ba83743816631fe8b7cbd081b26b77"]]], ["TOC",["matff","clas/O8m3/mtx/O8m3G1-f3r8B0.m",["ce48c027ab37184b2ea772ab2dce11022619ec5a1c47efcf1f24c62b7336968d","654265f47f6add75fc6e129c35bd7056f9402478ec158bc850e7fde8c56400e8"]]], ["TOC",["perm","clas/O8m3/mtx/O8m3G1-p1066B0.m",["45d577b348d6f6724aa01dc8196ebdc371e2ba128319796ccff86d309bdea35","8264581df993708c0fd61a5ee575cf2b5a72777eb7c54b78381df8338216b5e5"]]], ["TOC",["matff","clas/O8m3/mtx/O8m3V4G1-f3r16B0.m",["178cb57186ae8696d8494156e8ed32fd35f5fb55e71a6f4282f1d0523639e3fe","1a1e823ef0a19b146a2adcf8cd93741b9f9e5c36bb787b8aca5830cd8683f564"]]], ["TOC",["perm","clas/O8m3/mtx/O8m3V4G1-p1066B0.m",["eb9da91f8b6b2efa37f459d465c0c25d9d9bb219fb7c3295e7292ff898ada13c","2482581aeb3156da9688d025a239be75dbf20a70c60a3dd9dfd7eef71b551406"]]], ["TOC",["matff","clas/O8m3/mtx/O8m3d2aG1-f3r8B0.m",["a98190de3e54d9918d301a6da7e4ed3b712f470ea8313ee7387e51de4215749b","eb41a06ccb97766a8f0de050e9fd44fa8ae62f006513717aa8ac43b00f55c7bc"]]], ["TOC",["perm","clas/O8m3/mtx/O8m3d2aG1-p1066B0.m",["6ba65762e7a72a8563d6da6c29ecd5a436242a0857ede5ea4adc0ce0b0f91480","c5015c6023b1b0e872b66a96293c07e8e4fa697c60b227abba5c12dc1014e88d"]]], ["TOC",["matff","clas/O8m3/mtx/O8m3d2cG1-f3r8aB0.m",["bc1fb13a4f1ddce2e19f4a752c1105b5e43a2ea52aa5f5386f00c0efc717c874","f3e9e9ad21b941b59ac83429b632100a3376dfb65809adf9551b94ca9638eaab"]]], ["TOC",["perm","clas/O8m3/mtx/O8m3d2cG1-p1066B0.m",["a82c9535a2892018ff92bd2b46430c964ab6c6f1d005f609c128b85074ca0573","6d8aca52fc444d990b6b3c35a0ec85ccabaa9c4fcb5a16113828b9970ec6e995"]]], ["TOC",["perm","clas/O8m3/mtx/O8m3d2cG2-p1066B0.m",["680d282279db3044626f45f378354f574d9d630a954e72b0d23f8fafb6370bd3","eb4a89c2e409960bae972f69decee0d8ef8da7d15a2d8ffd0256ac63a19dfeb5"]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr175B0.g",["c639bba84be047c9ab46478dd6417860bbb9338edb0e78a83d8099fe3ea9a18f"]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr210B0.g",["75988011524d6ac21a9b3e75076cb9780c249bf101ed532fb1bb4a268f299810"]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr210aB0.g",["4b181b9d4bbb532488d297cb225c4e11bdcd38ce31ed6a73159227ab170d563c"]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr210bB0.g",["53d1176d5dee4d8188aa2db4ec6f8c8de307eac0f3e635f1731918b46f9681d2"]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr210cB0.g",["effdf5f12ebc7214cbf2fd0da351c59d627ee52abe4dcc5eb33e505195e838ca"]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr28B0.g",["b0c226b0e565a40fb44972ed2cd0d90fd12786f009972d4c6d24d9fdaf53f354"]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr35aB0.g",["2312ffe7a294f5528e1067c0203f27fa47090225b8337b82261b632b60eb7c4b"]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr35bB0.g",["b8a44dd97585f17b1156fc002d23b1bc4fa0fad41e285c94ee7813f50dbd74dc"]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr35cB0.g",["4280397ed1bdb404e785354a5d8a476935bc85c1c9484c9c8c917f3cba01cc21"]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr50B0.g",["3434b6e6396a9ed0a99d87065e491499a3a948967b213476156ad5a4ee676e5d"]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr84aB0.g",["1ddff0d6859fb401c820e801925406bd26224564b730cbc0cd918be002e007d5"]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr84bB0.g",["454d6427f1d123d949fed04eeaedca053e47a1ba049db12f9178975ecfb57c17"]]], ["TOC",["matint","clas/O8p2/gap0/O8p2G1-Zr84cB0.g",["56abe3b5ff6dd0fad918b45e5a79cc6dea95feac75816624455d66d70a0ad395"]]], ["TOC",["pres","clas/O8p2/words/O8p2d2G1-P1",["b1339465ba4812723520314884c362856dbcb1df2efde6f4bcee03d43066af61"]]], ["TOC",["matff","clas/O8p3/mtx/2O8p3G1-f3r104B0.m",["1731712f4acd713b145c3d8fd43cdcfbeabc995f94eb571f98598c8cb78fbd2a","c1b031a2d64d960892716642195971882f1ab78c2dd0cf4afc706ca78391c29c"]]], ["TOC",["matff","clas/O8p3/mtx/2O8p3G1-f3r224aB0.m",["b8353be0591637410970355df3a4bca94165f2a43880e7e63c36ca3fd552cf6e","a963f3aabdf35dd036e5bdfc6a1645a0d893c8794637894ded017f057e98b033"]]], ["TOC",["matff","clas/O8p3/mtx/2O8p3G1-f3r224bB0.m",["5b8075c1a18fb70ce8e575c238869557cfcc594705a17bfde96fce7fc4a22f64","c59d204347fee57a8bc60c61a2082b22d2540f4b7a35b124843ae9c3dd529a83"]]], ["TOC",["matff","clas/O8p3/mtx/2O8p3G1-f3r384B0.m",["ea2b7d8a3ba23b9c60a029ec245241f29b016dc411d7b8f01aab0572a65270b1","51f290447cbb70ad66e9ef2c8702d5c1fe70c6ce78fd2917ad5027edc2678f28"]]], ["TOC",["matff","clas/O8p3/mtx/2O8p3G1-f3r56B0.m",["81242525b6203567086620c0faffb29036ebb95295b895bedea7456c5a88b754","4cf541de8d0721e51a1dc6f3ee245fb9a0f8a61161bac20f3e43aa3c7538a467"]]], ["TOC",["matff","clas/O8p3/mtx/2O8p3G1-f3r8B0.m",["6c25b6856d96877867bac7ed6563ad9dfbf13132737bec3e1d021fb073e5ae8f","6b6185fec95b762184f841e05b3b33c0fa827dd3093dcfc95f88f0e66dced14c"]]], ["TOC",["perm","clas/O8p3/mtx/2O8p3G1-p2160aB0.m",["ec7fb88b7ce61d3e4c8ba90cb31f5ffedee58f085c4c569b2728a230d9429086","5fa4279fd64477dd5f94af7c9d075bd7e3b2cfa6267d7569f855caba39a411ff"]]], ["TOC",["perm","clas/O8p3/mtx/2O8p3G1-p2160bB0.m",["fbacef1013d3277fb5ba38fc8aa2b25ab698d95ef7c29c95fc9a7f87713bfcbe","238f9f9d2b67e610c098b1bd11e498bdab3999a61c0273dbcfbcd099572507ae"]]], ["TOC",["perm","clas/O8p3/mtx/2O8p3G1-p2240B0.m",["99ae73fe2a26b8632fdf3d67ce429e664a9472292cba8d93db1649a11f48da6f","b17f2c1ee5d2ed454a14e13d9d42cd154ce842f927ef32027e509ef27ffb083a"]]], ["TOC",["matff","clas/O8p3/mtx/4O8p3S4G2-f3r24B0.m",["ed2b28ddd4a5cee3008906bd394c0bfa172e972432896b892703166097a91864","2540d21e5c0d29a867f277766b0ca91f2da3f3bbb4226ed50797f1005a2c6ee7"]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f13r300B0.m",["5b8e681f0f41f30d80c4deaeb57eb339d51b5d06a83b6005686abe5e0db4687d","548b177bed2f03262b8944c0c9b31ce75a8f9ec189a5d3a13ec4f61206ff40cc"]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f2r298B0.m",["73db37d843514deeab5e60cb831b6797d49af0ea39e47279f0cc28f31b860a3","7eb161f536139f58a3e7dc53732f3bb2ff73ab13bac3dc6bba9a4ba1cca26fc4"]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r195B0.m",["57ade00203d91b04c3077db0e5a0682a3f3942ac7d8814099c5982ca6003eb1d","ecf02269fd2103960bc060ae021603bc50516b17a81ca7fbe823a5230e3b64ba"]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r28B0.m",["83b82287c4ab4c8fa86812887bb9040b9de8c1ad2cd6f61c6fe9b2e9d9b68716","4d13fc151da8ed32ea23829b44de828965de9d699593b1e7d6f4e95a46e2eef2"]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r322B0.m",["66a57084a34091c80e32eb30cd8bc73110c118d22897e0439e8cee1b8a6f2d57","779c6230214d91547d27d3b8140f203318251fcbec0cd7bbb461f0a46dca4eb3"]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r35aB0.m",["485c1abe3899d04f16fdcd460a9dfa83b5323797b307cebc3bb1700fb9da8476","1b88b6b5cc526ace004f063e13601e16d259cb15fee8ec1d39653f9dfe78d99d"]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r35bB0.m",["1b21d553ef4dda190126e8a84780e5e31677af5835bad5bcaa6fc3060a3b496d","8e8df1c9047916385d889f10c4a6f2770fe40ddf86cf4b3b6328e114c0b720ca"]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r35cB0.m",["2080d1bf0411f08511500003f67d259a58afab54333bf9fef357aff9bf36a0ae","9b6c49d944506eb1244ea29cb07848c297973350d75187257adedfe8725fa15d"]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r518aB0.m",["d8bd1afb1b672009c3a89e4103e91a52bcba22561015d2fbd771ac8f7b911152","a2414549a4884b75ac29cd79ef0f17929147469bd0787ae38f75a4852f538bf7"]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r518bB0.m",["ff874015fb8ac2381cfc6a5d0e6b7b6f75c1954e0c95ca74de7151977d3281ec","4bb0344703b5262883b532296341bd7d166290d8ef962325e829bc52f353aeee"]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r518cB0.m",["b79260a7b6c6e15a649c194f482c8d0a1748d385663bc0bc2c117b50907c30ee","1e34353fdb4deb13e3fdeb17f419455cc9b0d973cf1a72e1c29ac83c0242781a"]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r567aB0.m",["29ec4ba4b323fc73a57bbfc2976714dce808c0f4a4e0392b9f6ec01402222ac9","1aea22947b86517361d36bfa026446f3e4cff2ab00c85c8a272d3b63941569e6"]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r567bB0.m",["27b6d8520a13de17a1186d5f0f3d64083220a65b4047b5424e5aedc051c955f3","1846060ded2b05e978133d533bb51adbb5ebce4ad6ff1acf2bb0565de7d8a660"]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f3r567cB0.m",["e0e7085277b22d410fc91b9c969753ab6d08f0d92e945391bdfd54cf11e761b2","7ece4600ff458795980a5b0c6e1554eca23c62740b3351eba9fa8731173497b5"]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f5r300B0.m",["52b19a8cae9c038f4621315d2883827ef6ab371a8144c3ddca0697722b13617f","3a0d5be04dc51585db4db79d2d931f57af816e8dd7d83b18d2cf056d21857f86"]]], ["TOC",["matff","clas/O8p3/mtx/O8p3G1-f7r299B0.m",["f62d1091a3ee4fd409786d7619f10d988166f3fa505d05676e05dfbe00c23998","82ec9e5f9aa0b0c384c874a9e913cd881983cd23868c566f009888de41dd8502"]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1080aB0.m",["d7d6176bbe965988293655ef71080287b0518e6503eb8bc6b899dca453c9ee61","658cf50ae041de5991b9f74fe2dc69a572f6a415d3bb6e593f7be861859b5ffe"]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1080bB0.m",["9359f9ff255b61b242f062d27aaaa4c682f6766ec8f7c85e7beba2a7caf52493","aad5e30bd5a63bb5517966183938b580512bb732dbe2cebc9f8eb7eeb778fba3"]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1080cB0.m",["fc6d02f9e6ce2e2def3c2760525923c99ce72b7ecd1bd80f5e3226d282483590","22f067b2a56ed40e77da419388cd03596a745794ace196df4c4d01c04ae2d702"]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1080dB0.m",["70fb0a512c110c1668b72916c37319dce24722d46445245cc42d0c3c7d98c385","3fffbc041bf229631485e3ed697f6fd3bb481dd4d994ce9e95b40c2193790aac"]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1080eB0.m",["ed95cba0a088710c73314186996b496d6691e09b9eed3e93ef8f720b2e6f719c","c553cf7bc885339f6a3f69ea77aa658bb18284b31492388f545635466f88aa57"]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1080fB0.m",["63a712fbba5efee0bbb21508f70a5f59ebd1b54e9d6b81c6d81a8e3378ed5e8","20e65dfe07e68507fb8a109c303d5becd785f29074c674a6e621dd3a51b652bd"]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1120aB0.m",["1c17cb403aa075452511eb42e34819de0f5693eb91073f0d4e9bee6ab27f998e","fea1d2c604bee51c0b125630f232ffdc05f502b91eca16500a15367188f9e1bc"]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1120bB0.m",["2bb64a23b6739e0ff0974a8f9c49e82b3c0e8af829b10f69c94fe70a7503f5e8","508c961aa44f017a0b5b4dbfe67f3fd8d15f3281df2583ac40e73bb65e09a992"]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p1120cB0.m",["6cfd61173dff2f7dc23c2b72aaad58d0c62f68860420817fbfce555ee742d628","f66d099de2445d2ad0d59645873ac16cc5d25681a1248f7f87dd02409d3ae9aa"]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p28431aB0.m",["86ac7ec2614d1e622362927261a59439e4e8c7df36beaf7dea283db22e8c243c","afba4b8b678b4ff86e21e487823e00c3307a28c99be15da9f48cb3f06d0f6875"]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p28431bB0.m",["ff6f264e9c56545285e376b90a91b9eada6520a2d0c72dcc9a06fbf6160639b8","8156f8c4a9bee35020addd1c15984da01c6e142f43eb8988f6839cef60b819cb"]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p28431cB0.m",["3eead7544ca7ac8d27451cd89ee0a1927d51a1d6ba14c6d2c29cc65867e5d634","f91886aab46b0c936826914641b88f83450d64e72414fbb12dde938946bf5fd2"]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p28431dB0.m",["4ab4e7fb1d6bad809d83bad7e732a9e61bb099bc617afd595b63f84be310e113","627c52735a289fe4537a0bc5def021e7d8d254e89131f4270fe9583f2e632d53"]]], ["TOC",["perm","clas/O8p3/mtx/O8p3G1-p36400B0.m",["759128249e7b73aa2bbc3dc5b268c871b097cc1eb34678715146da586a0563cb","9db4ded77880fd9c8a6d58038a02e73179d0ddaa24fbf2df51075e0a706d6cc1"]]], ["TOC",["perm","clas/O8p3/mtx/O8p3S4G2-p3360B0.m",["aee5b0f5493c84cb2d340f7fd093b254f5ca2653dd71efad066baaddbdfc2501","eccf71d718481eeeab2eb9779cf851e1facf8c06e430d2ea78912b4aa7e78de4"]]], ["TOC",["perm","clas/O8p3/mtx/O8p3S4G2-p6480B0.m",["bc4a3d7e8fab2cb1b7a15cfa28935210f772f1ae91c628f355033573c81ae7c5","d91850c5c99f5faff842a5d4399f52b31b18188b6961872bbafe8dfc1b47240d"]]], ["TOC",["maxes","clas/O8p3/words/O8p3G1-max10W1",["7d48ad887a308a11db35d625acd4650db159ca54076f09fe0d8f27e2ca5f3788"]]], ["TOC",["maxes","clas/O8p3/words/O8p3G1-max11W1",["642366d023925523c5f598c940bac86746f9f2815a5de52430a1a4427c33aa40"]]], ["TOC",["maxes","clas/O8p3/words/O8p3G1-max12W1",["cf3e05a7a377c97fac3477cca8e75626b091caf098037d6529387a4ed3c0c585"]]], ["TOC",["maxes","clas/O8p3/words/O8p3G1-max13W1",["988d16ac117fd60f27c69ca7800b7b6f78181ac3c0d06f4218dd916d82fa9788"]]], ["TOC",["maxes","clas/O8p3/words/O8p3G1-max1W1",["4f93e793e8dc4cb785024f66cfd8cad052b3b7d8ce792b23dc8d57f0af2b8a2f"]]], ["TOC",["maxes","clas/O8p3/words/O8p3G1-max2W1",["9c3989d95c3b00b3218529d7e40203eab19375144ca7b7d4c2ead1694b5f465a"]]], ["TOC",["maxes","clas/O8p3/words/O8p3G1-max7W1",["5bddf8e491c062080004ecd12e7950b76273937fa7005ed96ff4accc29469c24"]]], ["TOC",["matff","clas/O93/mtx/2O93G1-f3r16B0.m",["cb4c2e4bd5aef0aec13be65a17de5e6ee08a724a2a36279f4eeebbb82eb7c445","9af8e56594591c7760d030e86300c87e98ddb5896aadb89dfa168cc89b21e60d"]]], ["TOC",["matff","clas/O93/mtx/2O93d2G1-f3r16B0.m",["b7aa5e8021ca50ca7a4c447113d4479a136a5458afa9a4f51e7d270f166c0c6","e198aad4ad1371a809d402ce5c274125ea7e1234f39bf669c9c82f1f0c0ec186"]]], ["TOC",["matff","clas/O93/mtx/O93G1-f3r9B0.m",["ee72560cc1e605a9537e053a2ec52de68b9da62499ebf7d53d59f70bfeef0a03","f6fe4cac5d9c22d3f8db7491101e30eab4ac966b3b46150c531086d7e45cc519"]]], ["TOC",["matff","clas/O93/mtx/O93d2G1-f3r9B0.m",["670465e49c4e878577fafc1b59f3fad1b3f12d61d6cd7ebdb969faf09e6eaa36","f6fe4cac5d9c22d3f8db7491101e30eab4ac966b3b46150c531086d7e45cc519"]]], ["TOC",["matint","clas/S102/gap0/S102G1-Zr155B0.g",["e9f61e607ebbbabe41e7945b635b2509c4eceda5b163a874f487325f34a19e58"]]], ["TOC",["matint","clas/S102/gap0/S102G1-Zr187B0.g",["2d25d599b61023d547ee7bf7ad536d2073002fa5322aa0331a65cff48191e05c"]]], ["TOC",["matint","clas/S102/gap0/S102G1-Zr341B0.g",["2e4b2a7ec9bc939e3428bd0e2c95a58e67e627c4c3c50e6cb6bb0dd9f2288a4b"]]], ["TOC",["matff","clas/S102/mtx/S102G1-f11r155B0.m",["311859db91d8be19a40014aa1e105d8aa5ba9554181e738b7d476fa404ff0ead","aac56ee11704cb5dc4c969776555db40218505673d29f93a59584d150c162325"]]], ["TOC",["matff","clas/S102/mtx/S102G1-f17r155B0.m",["f3c7db5f2ce60d297fed52c2983e9acdedcf49a30266b4d053fbee1f53061bef","f9fb1ca233908c471941c71c6ac58686ad90d33bdc421be7b704ba63e0f877d"]]], ["TOC",["matff","clas/S102/mtx/S102G1-f2r100B0.m",["7e06e689bc60c948d548ed70c670fb0fd2cf2fa0e8e6d0a64a9be1177174c44e","e167a696dc79a3852b96ee64fb2ca6efe8c674f529c46a7434b164477119f125"]]], ["TOC",["matff","clas/S102/mtx/S102G1-f2r10B0.m",["b255ca58502b38eecb6be30b6dcb6006357ec5b52aff224aec38bf776e54a10","1c9fca213a858e94e45832ef51cfc673546b4272f31f339f8f7c15649eae6f34"]]], ["TOC",["matff","clas/S102/mtx/S102G1-f2r164B0.m",["cfdbfbab516df75eff0ec38c2c82734a72febb5643e1e82766eeea58cf2b535d","9b9cb647cafb39fd4b6935279c4d8c722023283c8734fc7827e2e77cbf612c66"]]], ["TOC",["matff","clas/S102/mtx/S102G1-f2r32B0.m",["501086a8678d7fe975f60c30b473b3c112fcb71919564df6e7042fc2caa08483","c03debd07926a3e3560cbc166350694bc1fbbe17e64591b2e583067e9a2fc98c"]]], ["TOC",["matff","clas/S102/mtx/S102G1-f2r44B0.m",["ca9377ac3a0a5d27dc8ce64b0c67b300c7e5db1a9e95dc2b3042eb9549cbb3c2","5df37972a4155ac7ea45ece83df6131cf496cb295599aeca6fe56ec60eac86a"]]], ["TOC",["matff","clas/S102/mtx/S102G1-f31r155B0.m",["54f291c55e8af2fe8ce3bf33bc408266270d3115c623253d2419f7221361bd9f","8aadfaeaf214a971d155683f8af930b24387acaf8ca864bba6989297f032e92"]]], ["TOC",["matff","clas/S102/mtx/S102G1-f3r155B0.m",["41dbf419e0df4fbe58849766aa5790bb5e61cd46d8a4b73359b5378078486b20","856110ac115395e7722c555260e267e18865c5ee0fa9e87ba0587b10a0309ff1"]]], ["TOC",["matff","clas/S102/mtx/S102G1-f5r155B0.m",["d171b5a88c64e90da7d6f284c9a59ede0479b022e5554f516e2b629caf5ffe5b","e9db18a110b55b7fbbfcce380989020f6dfc346b4945fb8b6eaa79361898faa9"]]], ["TOC",["matff","clas/S102/mtx/S102G1-f7r155B0.m",["c5683ebfc43dbdadce63525c2dce597c5443509a39f7442554dcc1db9afe59de","e42b8e704c0ce875cc5b68f9bd8b241ac9d6a5abcdd4094151d5ec10b5f6b3a7"]]], ["TOC",["perm","clas/S102/mtx/S102G1-p1023B0.m",["cebd16c5b8d64f6d1a3556bdd8b869175e0e41d3af225927f64e00c4d4aa3240","328b37764518b970e1ac7944d77d75cf945db197790a00ce4175045208cb0b6a"]]], ["TOC",["perm","clas/S102/mtx/S102G1-p1056B0.m",["3891292ec2552261ba57598bfd706677c209b6911cc574905dc3acc915bdd8d","8ef7e88df509532cef104b9e33787d98cbb833b5907940f53148a59ec74d7951"]]], ["TOC",["perm","clas/S102/mtx/S102G1-p496B0.m",["e75d8cd90896954d7ff4324d1f79bdcd87a708a354b9d42789a97880368e1c19","3fc5da650bd95e8a35a9b3e938750f69a061b13cb13f08e084c90ae98c655552"]]], ["TOC",["perm","clas/S102/mtx/S102G1-p528B0.m",["7c0b26edb8db463d663ae28f457e6356cc39f92c896f314036f9b05b9fec19a4","40c5dc7a128c4828d5fe4ab964f1ea252e907d83162f7c3935d9c0b09b95e7ad"]]], ["TOC",["perm","clas/S102/mtx/S102G1-p992B0.m",["27d5d1f954ced54c7d2403c23eacf34d2a477ddb5694b98954bd08240a6132c9","fba295ae2b049e8323aa31c579be7f6760c0301f866aff6f7a5081776f0a8f6b"]]], ["TOC",["pres","clas/S102/words/S102G1-P1",["6d73ebe2c7d3f8d1b841984314003974863b90e8de28491cf176ced8fcdf7e0c"]]], ["TOC",["check","clas/S102/words/S102G1-check1",["742e45127779653970287f2bae6973f6b0a89e7cef3d5665b85bce096e2a6d39"]]], ["TOC",["find","clas/S102/words/S102G1-find1",["40bc55babbbb085777f06ade394aee23c5d79362251f2067585611d2d119f379"]]], ["TOC",["matint","clas/S411/gap0/S411G1-Zr122B0.g",["a3b8310d8f3b8efe5447355265f39fbf8227ca7559731678c17f41d5573bbf9d"]]], ["TOC",["matff","clas/S411/mtx/2S411G1-f11r4B0.m",["c3dc43ccf01bddbcc421d710a75111dab64352b96dee28686cf4282cc044c091","3b2e751b67a4cf1e62d6c8c9a5fe45ca73dd02b1c792baf675ab5cb6fae55680"]]], ["TOC",["matint","clas/S413/gap0/S413G1-Zr170B0.g",["cca6cf622b686b63a9ca54b3f405f9d1c4f194d8db36f2db9b9571ca656de44e"]]], ["TOC",["matff","clas/S413/mtx/2S413G1-f13r4B0.m",["2c7ceef4bbf36017601c0a590560d748b0e89038a2a22deebbff6baaf974e83d","fbda2b852c7e548785f1f09f81976be445bced78dc0d15e24efd7950379bff04"]]], ["TOC",["matint","clas/S417/gap0/S417G1-Zr290B0.g",["97883a9c621a530bb938ccf193a2b77cd89789331710506708b163c09f624385"]]], ["TOC",["matff","clas/S417/mtx/2S417G1-f17r4B0.m",["ccf14aa2735570cbff79ebae97bc9f372c72a603eccc0efb98f1b6e055309b17","1e22318c91c666786daf7a30317db3a02cff8feaef777e5777b0d7552d7affe2"]]], ["TOC",["check","clas/S417/words/S417G1-check1",["22d427ff936fd61008588e5b908e8bcb4cfb4722fa34f2c41519fdf6710fba2"]]], ["TOC",["find","clas/S417/words/S417G1-find1",["f71c0ccfddd1fe8c185ec35bfac81124d86a08f53e5c9e3773848ffc8bd888f4"]]], ["TOC",["matint","clas/S419/gap0/S419G1-Zr362B0.g",["dfa4b4c454ea4d237ecb1aa252129fad5cdbfd46ece841e4e3864d26d705a1d0"]]], ["TOC",["matff","clas/S419/mtx/2S419G1-f19r4B0.m",["1225da83adffb9528c2dfcc054de92fa6db6526926aa146f1a6debb4fde59e1","88de0405c86455e8289e33853d102152c70f9a692870c2f5e741231c8100f347"]]], ["TOC",["matalg","clas/S44/gap0/S44G1-Ar204aB0.g",["7ae6b63b9bea56c6b7dfde11810ffedec95d0dab2064e4a82ef2ef4f5d6f7de5"]]], ["TOC",["matalg","clas/S44/gap0/S44G1-Ar204bB0.g",["465f5c8b50e7615e82eac050629276b0716cd6c0fffa9fc3510cb260a0402e88"]]], ["TOC",["matalg","clas/S44/gap0/S44G1-Ar51aB0.g",["d3991ee040a35ce09d6b69edb91df1c4d25a6a2f87a7c62b2ea9e2ce90200159"]]], ["TOC",["matalg","clas/S44/gap0/S44G1-Ar51bB0.g",["48beecaba24e4310a96af00e876af22768d348205e3c1f872c917e9864237321"]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr102B0.g",["80d0d456611bfa533d089d9d09a4f2a32bdc70b9d52b88969f06af7bb7539a5"]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr102aB0.g",["7748eeda90499ac76948bbbc539fc87d7c4e53853ea0e40fd317661e864b7bf7"]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr102bB0.g",["cc1afb372904d274a11455752e09cee4648bc5a16307277a49070888edb7824d"]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr153B0.g",["81c2e590039d2bfdfcf00bb99d0cbe2bb17164c2fa8dfcd1ff4bb7fbabe3d4c9"]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr18B0.g",["8ff9fcc6fa3a400640c1ca00d20dcc369ea23e889aaab71ddb5fee3b4f86fd40"]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr34aB0.g",["a675eb7d2fecce011d19837c7e3c0179081547cc97acb4232541946cc6275c5a"]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr34bB0.g",["abd43750bf0ce665c46901d86ab4504fe61481a27597cb3641bb611fe17c13c"]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr408aB0.g",["1a26f238579c8c469a516ffd68cacf96f2a132656e7e27d4b7ec189a685a59ed"]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr408bB0.g",["1911c6901ffe142f2129544fe589ce5651d0b1d11f274a40c464c1b746d7a0d4"]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr50B0.g",["121395c122ab07bdec6275402a05e2dce195eb700e34f3e2b02b8aca71a8e65"]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr50aB0.g",["5e1fa9f4d89b5f3d872c83f882cdb93e15e481a76a2da57e854a627ab592fa43"]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr85B0.g",["f6332390900a2867561645b989737a5924ae525240faf32760bb1cad5a7431f3"]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr85aB0.g",["b0f9968d1bf8856a96cad35229a5f3f7292d4850b0e88c56d0086fa84d233f9b"]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr85bB0.g",["fb9ebe574e58a76d1da48f917b634f0d91fe121aeb9c12d5e029633976f42f2c"]]], ["TOC",["matint","clas/S44/gap0/S44G1-Zr900B0.g",["6e57d95aea5544df2deaeda5e1fefa877f41d14d77e4d6170250c4e58e2bc6c2"]]], ["TOC",["matff","clas/S44/mtx/S44G1-f17r18B0.m",["68a79aefb5736e2937c9e83cc9ad44dd1801751d70d897625abc31e4b5c61c26","8fcf89ff7b7496c94c8b0bb92b1bee236e2e628b5200e63b72569776f0a38e1b"]]], ["TOC",["matff","clas/S44/mtx/S44G1-f3r18B0.m",["1da50554cba1d4a39c8157cbbfc06b38625f33c65b214f0be9ae9df5efab350d","115f96cb1aedf85d7376d6fb69d0c12ec5a05329029711c01672d0d66d73aabf"]]], ["TOC",["matff","clas/S44/mtx/S44G1-f4r4cB0.m",["f0046be9dac19a2f13e7129c5dafd904ac68925ddda372e1d020d88dfe472302","8b1515397433c03e75080784bea662de193a26c10a9ec170383ee9036cb93bc0"]]], ["TOC",["matff","clas/S44/mtx/S44G1-f5r18B0.m",["f5bae6df7f6436267bbca3acd4536d82e202b01794eb0ddc711dedccebfd699c","e99897e6738ecd8f32f89ed5097a17000eaf515ee5ecb0aa504f9cb6203c1591"]]], ["TOC",["matff","clas/S44/mtx/S44G1-f5r33bB0.m",["44d1e546d919fa748284b9eb31cf99f08f045aa2770c9993e3a1dcf5fea395a5","e3787da27a575736caea383f6d5bfdac5d3ad236589148e1b17eb4024062cdea"]]], ["TOC",["perm","clas/S44/mtx/S44G1-p120bB0.m",["efc2d9c33786b92b459173b52cc2afdd82b6962b8280ce87ad539aca96d4b610","4b3ba2e37e554bd312e031f33843d0a6515296d971d87d938d02f568db3fe2ca"]]], ["TOC",["perm","clas/S44/mtx/S44G1-p85aB0.m",["bc0c507e848fc2231fe46ff6beb9027399ea5488f2819bfc6885df785d2305a7","8e499ac6baeac9bc539465a475c6305ca045833b4d1798b048b5c6660f7b134f"]]], ["TOC",["matff","clas/S44/mtx/S44d2G1-f2r8aB0.m",["242d9f558ac0fcbc1a55cf3ec7a98ae9c2e8d0a0a946298538cc7d43c6c5f09f","f2768d6d990a14250faf3c6414a932afd18368c91f9d226efaf5e746dec9ae56"]]], ["TOC",["matff","clas/S44/mtx/S44d4G1-f2r16B0.m",["e176992fe0753c01e2985185db342bb6bcae898656c2d8a075b673b9f502f170","651a16d5389f17862d35d34db6db883e584651ec728e9dd4a688d22577352a98"]]], ["TOC",["perm","clas/S44/mtx/S44d4G1-p170B0.m",["4c7285e1736de3e0aed7bf6b893b171d518ae5465a53e620f745254bc14a8116","aa1bb85acd2cf17dae11a776c681fd73d94f89ff0c4099fa122d55668e3bcebe"]]], ["TOC",["check","clas/S44/words/S44G1-check1",["aba46a97ca98c1865fa12c6f7f7d6025647a35996bd5ab1bc2043f5207c97ba6"]]], ["TOC",["maxes","clas/S44/words/S44G1-max1W1",["c434203b83c1721973d1452cd1c1ab111d0c92cabe9750223b8c6aad0ca8cc66"]]], ["TOC",["maxes","clas/S44/words/S44G1-max2W1",["dd103e5fee1db3c51059a196e77937e4c608d3878127c870cc7f2cb347e550a7"]]], ["TOC",["maxes","clas/S44/words/S44G1-max3W1",["a03e68d2bfaeaddf80308a9dd99088f5d0e836eb550d65d9f915f02c8bc4bd4"]]], ["TOC",["maxes","clas/S44/words/S44G1-max4W1",["eb46dd1694821a6d64104da673a9b3ec84a29bc75afad219222f0f65cdecd157"]]], ["TOC",["maxes","clas/S44/words/S44G1-max5W1",["a87844cfafda53033a80721aaf2ade66f458f364d3308de2b3a14c8d305bd82c"]]], ["TOC",["maxes","clas/S44/words/S44G1-max6W1",["e8844e8838789f6a1ff467f746d8608464737515377027f3866c72705aa1c531"]]], ["TOC",["maxes","clas/S44/words/S44G1-max7W1",["d57a5274c91ddd299811a6053a6d65324517400fc8b8be181f7d76dd0fdd2419"]]], ["TOC",["matalg","clas/S45/gap0/S45G1-Ar13aB0.g",["fbca68e979a3b1cf035fd3b4121f7e28d820631662f8d12fc3c7a61dedfcb6f4"]]], ["TOC",["matalg","clas/S45/gap0/S45G1-Ar13bB0.g",["7053e33037d5e150f40824d55afa589d52b7915eb1a0fab9d783d84ffacaffc0"]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr104aB0.g",["191b5d30c41b1c604adaa43c2305cede4b7444912d300ccd1c0b41b55c1336e3"]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr104bB0.g",["6f79a669458336393839d32f35c6ec19b695be2f28bb635d2def2ea9480922c2"]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr104cB0.g",["45e4dcbfa3d4977fbd5746bab31dfba47aa4b30032c302be237b7f78e8a336ff"]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr130B0.g",["878f4c5c1a4c6f11471ee768e5620ced2cfee11a8ec5ab7bcb4988be159a9cf7"]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr156B0.g",["e18f782497e797bd5b5a4214c36c5b2ab16eed0b6eaae1eb65f15e2f538c1dd"]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr40B0.g",["24b3fed4d97e6f76bd7e029c452498ba81ad28ae90cf41edc0efb583eaec1f98"]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr416B0.g",["5926333bf108dfd5bb98d5af22402cc7806689b07ccb5ecc1c1602e57bff132f"]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr65aB0.g",["215659bf34ef7f16ec85174ed7516f85e7dbff8eccde3383b5bd82b9673aec6c"]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr65bB0.g",["468f178e0a6e65806e27698d60257fa6e289740923162dbb6d7702ed6c628455"]]], ["TOC",["matint","clas/S45/gap0/S45G1-Zr90B0.g",["3a812afbd2b2ec3ed2b1bf4ff1a6ce53ec3c4182d64ed43bd15667012e3bbed6"]]], ["TOC",["matff","clas/S45/mtx/2S45G1-f5r4B0.m",["663b244ec8045346b2e1d73fa6700fdba450a2b22a9259e21e9bdf3960510243","23518a77133eaeb13aae62f17f74784d6cfed2ed60e557a6b4a901eb1925ca67"]]], ["TOC",["perm","clas/S45/mtx/2S45G1-p624B0.m",["46df938b82982fe7761517db1174b0c24f8d0378bbfc912a6a709d9407144c68","e07c84cc01c47dee88fcc4749a1da5914c54085a87c37c5960db8a45adf4dd6b"]]], ["TOC",["matff","clas/S45/mtx/S45G1-f4r12aB0.m",["ec4cbab50253d40d1ee31459edbbc1d3fa8c66f6347a5cdf07c62029b9154b44","7cb5928deca95b07838043446420a093b78cfbc61cd669d832efe519f11a1a52"]]], ["TOC",["matff","clas/S45/mtx/S45G1-f5r5B0.m",["7f8fc2edc405edf02976ece685b47432b0455fbf95d9b00a87abcd70641ea53d","5fb7ba771a0ab22956cf7968337d18d077adc51bfdc6063c988664bcd463ab"]]], ["TOC",["matff","clas/S45/mtx/S45G1-f9r13B0.m",["82b438eb7c523bb278f7d0af2e2b2820df08d8788b6c3d5ede95572dc5517dce","383ed4399c043960f2631ebf44e086e1c4fc3d638ca8ddb29142363e8bab44a"]]], ["TOC",["perm","clas/S45/mtx/S45G1-p156aB0.m",["98ec134f054281c11649bbaa3e86af77dfa57bf685d0055cc284688431915d7","f5a2e48101428737b176464d8d306285718d491636d42807791e4e686fa2e374"]]], ["TOC",["perm","clas/S45/mtx/S45G1-p156bB0.m",["14a6e0135bbe7b6e403149ace0b267887bb3dd9648da16d6517a8615e9160a77","260500ab348f696c2d030d8b3bb85b664d589c25195fa9f18447a6e5bb6c5110"]]], ["TOC",["perm","clas/S45/mtx/S45G1-p300B0.m",["78e5a1db77d0d426ff428b15ca91c42ea0c2476e0731f434545ffe3fc451e993","bc759c5b1bd210a1e14cedc84b98a29c43622358f363957d21556602b8adc8c5"]]], ["TOC",["perm","clas/S45/mtx/S45G1-p325B0.m",["28929d23257a5e91df9501f8c7fcf3a6495f7d7bed133680bd6d8dae7a206f1","f46c3a0b12df2db6835a823dc9fc0e18ddaa79d13a61732547d13bae455dd262"]]], ["TOC",["matff","clas/S45/mtx/S45d2G1-f2r104aB0.m",["4cb7830a35d2772b455d46da2d760e87e52b42aae977b03c33cbc2fe56b31e8b","63ef610af52a1bb8e334baf97051195045f8d054c64242d23a9cfc94e8e1a613"]]], ["TOC",["matff","clas/S45/mtx/S45d2G1-f2r104bB0.m",["db95b0d3d65738142eb0dc8faa36fa07a81e8d7464fa2c9ab5b11c14a5d92c14","e805910fba26115b5553d31244f6fe8f8c9d8a367c9cf2fdb67708fd7ec1f916"]]], ["TOC",["matff","clas/S45/mtx/S45d2G1-f2r24B0.m",["f7d7aec21927846d480f23bb6d8c9ff58183526174027fc97e93e881e2dfa36d","3df3d975372525469b63c41a35c1b2a22467791ad7481af27d005c07a33740bc"]]], ["TOC",["matff","clas/S45/mtx/S45d2G1-f2r40B0.m",["3a9ee61c169f8fbe45aa273872814c60615fcf5462505049159ca64d73bb58d2","d64cc6033e856c764991879f88916b1cde7598be98b468b79db2cc6e8f14d2fd"]]], ["TOC",["matff","clas/S45/mtx/S45d2G1-f2r64B0.m",["f1f8599403c2666eadd174f7b6ae573058fad394c1644b0bb2af71269e4dfe2a","968597fc96df3f90e763198132a812df7c33bd7b870d00a43c09465c87e49300"]]], ["TOC",["matff","clas/S45/mtx/S45d2G1-f3r26B0.m",["71f0430fe808fa683d83955d784cd5cadc464b141825539d58af4d9c98475eec","bf41dd167ddb0472cf0582c9c6ebf71a8c5718202e131cb0d46f977b5f85b31c"]]], ["TOC",["matff","clas/S45/mtx/S45d2G1-f5r5B0.m",["7e509a28e3dcd6c788cfa1626bd291712342092f276e2fa8b13cce0de8e2e274","8835a7ac262b7efdfb0daff24ad3be74575c73b3c202b5d7e3feb6f86d7113f5"]]], ["TOC",["check","clas/S45/words/S45G1-check1",["9f162fec7d2def1f851469bb2becdc71cb5428f4a3993ec24d0dac6cd8071603"]]], ["TOC",["maxes","clas/S45/words/S45G1-max1W1",["d43e0963a12c2c7f4ae9075ef40b0d0eed55e4b3b872f3fef783a2be5962f27"]]], ["TOC",["maxes","clas/S45/words/S45G1-max2W1",["59e746d404e3b4db2aada60c459f4e529ea5d1417d34b61e7819092d79d1bcb5"]]], ["TOC",["maxes","clas/S45/words/S45G1-max3W1",["c2bcfaf0b0b231e697b58d7c5683d831f00e4d145eb9063803946f0aa482d8b0"]]], ["TOC",["maxes","clas/S45/words/S45G1-max4W1",["7ad7b042a4d5b5eb91e6e582d6405104988bda84b98697196f61050acd419b20"]]], ["TOC",["maxes","clas/S45/words/S45G1-max5W1",["61a2677903e5044786ee1f92ed875801994fc45616429766a9a8547a20649ade"]]], ["TOC",["maxes","clas/S45/words/S45G1-max6W1",["60b19bc12fb9e473ce5ed85868b08412a5b286143cdfdd538e6b27fc28ad8c33"]]], ["TOC",["maxes","clas/S45/words/S45G1-max7W1",["358631f1dbd7d9248bfe56fb207373d17a25bdf6b4d09b43f548bf90f2427e47"]]], ["TOC",["maxes","clas/S45/words/S45G1-max8W1",["47e5903ed064cbe5c600e7c36751ca78949b083b0a07b85cb9679ef2603805ee"]]], ["TOC",["matalg","clas/S47/gap0/S47G1-Ar25aB0.g",["9b73da024187082929fb127ae29b71b0a41b357395ed639dd74724819524d523"]]], ["TOC",["matalg","clas/S47/gap0/S47G1-Ar25bB0.g",["b602f8d5bdd17c54f172c225dcb0006889ff317fb484dc5a1d98e3f9ea253edb"]]], ["TOC",["matint","clas/S47/gap0/S47G1-Zr126B0.g",["20debef86903931138e86b69febdb8d46607646b70a2b3428b2a1c5e10724e4a"]]], ["TOC",["matint","clas/S47/gap0/S47G1-Zr175aB0.g",["173742a304e9da66c29fbbb52b0a28a45bf9737c814a0228a24ae1b1a29d49cd"]]], ["TOC",["matint","clas/S47/gap0/S47G1-Zr175bB0.g",["2c254acc5564768131db788327d84885b94d73d4dd31128c4d2e4a5865aea71d"]]], ["TOC",["matint","clas/S47/gap0/S47G1-Zr224B0.g",["e11fe681e4247f8bd371895a532f0c864bc2e232d99f8285231c1997ddb7e22f"]]], ["TOC",["matff","clas/S47/mtx/2S47G1-f7r4B0.m",["5f39b7767a3ac4260906963f1373957f68d2241150f422f4cce8e2ce11caea8","6e6fcafe48e498efd70feb0865a9b5ece0c4e88887095b5470f024611f8d90cb"]]], ["TOC",["matff","clas/S47/mtx/2S47d2G1-f7r4B0.m",["58f18ae7831b8aff65d8b8a02c721851d69654af4af22b4afb82c1161c6cffa9","6e6fcafe48e498efd70feb0865a9b5ece0c4e88887095b5470f024611f8d90cb"]]], ["TOC",["matff","clas/S47/mtx/S47G1-f7r5B0.m",["1838bd65d776e501db62f02f8dedfab4ea4695f4e2ac778fe1f77affc1d5e5d","40169e699c58a1b0374eabd77429b7710f42e1fad0c61544f2e4f97d6dc8abff"]]], ["TOC",["perm","clas/S47/mtx/S47G1-p1176B0.m",["5dba9907ef8aced3da2b1f21081f2ed3d47ba03ce18ef9f8dac9bff95e2b3138","fa3cad35e03af679f0226cb2b25187784964d16e160fe037e20be2a3167425e"]]], ["TOC",["perm","clas/S47/mtx/S47G1-p1225B0.m",["5d223b9eade47623ac905b3a8f17a629588cff6a9b90b4c6e067e7051f082f2f","ba4879704372f6d16d41e0800960d99c4fe08d83c42dd3d8aba63572d11705fe"]]], ["TOC",["perm","clas/S47/mtx/S47G1-p400aB0.m",["52426eea235c820ed8af1181e1684a4dba2ea3ca005b38c523211418802b1f2d","877bffcecf36361962422ccdf31731948a44d0ffe57e8828ba57f0422a8acdd8"]]], ["TOC",["perm","clas/S47/mtx/S47G1-p400bB0.m",["8cbf77caea4be907505f1d1f260136ad78b9f9beaec6a872590407363a116eaa","d2f8c97f683cc6f701f8bb1cfa19a0d2960158ad6d31c45de1456db6d06cc072"]]], ["TOC",["matff","clas/S47/mtx/S47d2G1-f7r5B0.m",["11340229ad05935f7d673eab1cf3e1f4a922b2637407de097be308fd18ac963b","40169e699c58a1b0374eabd77429b7710f42e1fad0c61544f2e4f97d6dc8abff"]]], ["TOC",["perm","clas/S47/mtx/S47d2G1-p400aB0.m",["f6f8b06124e2267809050b148c371869b45d95523d8bf4e68fd44a86127ad65b","2cec54ccc506fde0b72822a96a1c78446bbca9980dc7407ec58df5d49b73e6fb"]]], ["TOC",["perm","clas/S47/mtx/S47d2G1-p400bB0.m",["716a0b81db0a5bda7605166e650fddec3cbb2c0c9e6504fa68b22f105fe67d43","5d29e21aa5fc049c1f355d722fa014d79aba862be8f0fd2b51ea70065b4a96e9"]]], ["TOC",["check","clas/S47/words/S47G1-check1",["705bfe2aa1f5325011192b8b077ed083de825751298bf1041b228c46da98bf04"]]], ["TOC",["matint","clas/S49/gap0/S49G1-Zr41aB0.g",["9bbf8b7a0fb59800aabfb529c3f544a7b2337bf612e199b8f780a5a045e4e06f"]]], ["TOC",["matint","clas/S49/gap0/S49G1-Zr41bB0.g",["7d24e7d3340b167f41f4f97a4e27dd60d116866249992135791694ab8f7c8d8c"]]], ["TOC",["matff","clas/S49/mtx/2S49G1-f9r4B0.m",["5c8e38b275166167ae31d13c79a36ec98723846aa326ae94050d43141ef678ba","52daea2df02a717e955a032fa0e9cb179e5a93c6bf7a2f3aadc022dae5854af4"]]], ["TOC",["check","clas/S49/words/S49G1-check1",["9918337fc651b41dbcd63a3ee43dfe146cdfc7544f0960fc9792cb9cf0b7363a"]]], ["TOC",["matint","clas/S62/gap0/2S62G1-Zr8B0.g",["c11a8e72070a5422cc4ba96db5e23bd7f73b7612e94dfc53f4aa5a41cdc01803"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr105aB0.g",["f22f07cde551770ad88acc814b8373026751ca9e2e93203ec740008448374ba"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr105bB0.g",["5bfc9c42f19353f85664a9c9d5b449bc76353b2973c5512fd3ac1957e1687a1c"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr105cB0.g",["32afaef0d334371e34624d835d4e3cc6f4b42b435f670d0e7ea5ec4da4af983f"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr120B0.g",["9912770f5ee0fdec293b14e7efc27b273a32a5471cac3d4d625f51633d60b4cf"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr15B0.g",["4b9ad8e7ce10c5d122eca4a4c13e5f18788803682418698f551cf118f127ac16"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr168B0.g",["48b862c87cc846a5561eb3ba389555e10c83c12f7c61b5332fcae24cae46a6ec"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr189aB0.g",["39e2a92e35f7da7dd85375a0ce4176764f14411024ac9859c0aeb9ed49d02090"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr189bB0.g",["c38a43dd4d3784ea732f424710ed1848275d0aa4bf3c859d3a5041f503cbd0e1"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr189cB0.g",["5ba498cff95ed655b461efc59d9d7923d6b6263e2db01362331693d0c9ee776a"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr210aB0.g",["7cef569bc15c1690a7db7e6795ee19d10a839b3ed156a653a46ba94580e8abcd"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr210bB0.g",["f21df0ee0caa4ad26c1b3c7b750fcfd8ac11949a484e09c7a951aaf374ed7470"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr216B0.g",["b46545b8ec9cd35dab99b92236f28b289ea60b40386b0d37c26bb0d5a56f1d8d"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr21aB0.g",["423e30bedbb63c899b6c1c4f8fd296b7653a7ac54c4646116e93e4dfd8126187"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr21bB0.g",["c4e5908c51fd5eff65ca9e182612df15cd57497b10e27ec574c647faa9181e56"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr27B0.g",["dd55880462af046184be3e8f0bf67fca11ae174bd65c80497e1e1a57161a4216"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr35aB0.g",["d995e16437f434dff78bf6317a8c318f31d37d61f1d78eb2965a34ec87806b4d"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr35bB0.g",["7eaea99b718b7c46f3a474f85d13e0ce9fa5c83c735e192ef476ef6c0f6cb0f2"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr56B0.g",["f1ee62b869dc6be90743456a06f76c52cbc730ee9d49e726a365351ba4f84733"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr70B0.g",["6d90416e29b39f918bf3cd6b365ef0036552edd50f86d8b1b3f56b307e08aab0"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr7B0.g",["f74f62f3df7e2a81ee137f7012a7b09195f09caaddb8627f7e2d571252b26a31"]]], ["TOC",["matint","clas/S62/gap0/S62G1-Zr84B0.g",["494faa454912a086c356a432a3d8888533740dbc95fe98b228b3489dbf12f595"]]], ["TOC",["matff","clas/S62/mtx/2S62G1-f3r104B0.m",["2bc034a5ad8af7c71764a238a3b2afa0029de19d9793daf406f18fa62a307936","f59a07977eab5c623767876af9897eea710785ac71610c7261f9bc710078e092"]]], ["TOC",["matff","clas/S62/mtx/2S62G1-f3r272B0.m",["1f128fd8399066d9590e044b363c8db7acc7aed0f0212f8bd43dfadb16dad4ce","a5ecfefe8804cef830b6a034cb49fd15bd62f3700a81ecdc8d823df14d38a361"]]], ["TOC",["matff","clas/S62/mtx/2S62G1-f3r48B0.m",["9b7fb4d675a99ea04754b71d7d59592c2f45a2575a184d156bfc8aae893f5c5e","4e151a59d3a9851cd33192d3841de65eaed04f555bd84cc7bf43054021d49e25"]]], ["TOC",["matff","clas/S62/mtx/2S62G1-f3r56aB0.m",["5f7ce5c623c68caa0b38a4512489cb7eea7d4a4b98d66df1263928c5ac122a2a","e798830a0a78b3a040c58649cb3d9f70d00e3eb2ee0679c8e1417cebd6e32438"]]], ["TOC",["matff","clas/S62/mtx/2S62G1-f3r56bB0.m",["e864aa8ba775624c94a13cb7161bd4f90a40b9fc29612e340520ebad3e3bb037","73efb6727b5878e5cc5cdabf06ea29fcba1bebce913a7fdb10e58396b6e88d1f"]]], ["TOC",["matff","clas/S62/mtx/2S62G1-f3r8B0.m",["e6e92a780856945ea2b91f5a29aa2a111297df20d9e318287e66589aa3cb31cb","d02ac780070919b493a7ebccffbf29ec210bbb860fa585a156647c4301289d4a"]]], ["TOC",["perm","clas/S62/mtx/2S62G1-p1920B0.m",["fc5a86791d1ae1023dabbc312a00b5e8520b6428d5202b7fc6afb432c2d070a4","85613aa5fcfce6e09a37651f5939c767c2c333a598a481fb1dcdeeb931a53593"]]], ["TOC",["perm","clas/S62/mtx/2S62G1-p2160B0.m",["ce58fd5ca7b48c3a951fa2c73da130b3fd86ca0403c8e270beaeea855f309532","129172ed6b65b12b403c6ba846b0592adadd194021352a3a500fe411f9a0340"]]], ["TOC",["perm","clas/S62/mtx/2S62G1-p240aB0.m",["16866f14571d8e2f4271cad52a7d41ff5d37685f0a4be6d2b42979da0b8a45","3c826f6dcffe81a5f9421073602c19a997315e75aa54dceb1516e31f0c029d18"]]], ["TOC",["perm","clas/S62/mtx/2S62G1-p240bB0.m",["6df643aa432d25467b9be75ab75a2cda9c068cbe68969f14b713ee5157b4c5f7","ef82edc7335f7828951b48705e0ec62901993476831c9dbd974f2f77d32d6e26"]]], ["TOC",["perm","clas/S62/mtx/2S62G1-p480B0.m",["2e575202a33f04a4869bf87c9ec603fe2c8065feda34e0a99cbc16935fecaf59","95ea46fe4afa7fef4f72b74ae927ed0bde56d5239af0abc73d94c7e9b8d76a18"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f2r112B0.m",["e6c4a2ee61ac7de8fc388dddb0c809a849b7b7f8b0c671a4359d2bcddb892be1","7fb20a9945108ae7d1566afd7f8c9fd05ff44efbbbca432b85baeae46d47234d"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f2r14B0.m",["8051c943c1a9be63a6c0c8a7d533ec72e709b36444e4de17e11293c8943e7ab8","5d3b37b356aaadce6f0def789a61dddb75cfb11cbfa61064cd50afb15d86655a"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f2r48B0.m",["e7f4aa16713a85778460d482af5531cc01cbd04edc372628b33678bf2c259be8","cfc8c035cf07b8e69bb8c8615e7a8250ac596b4a52e5dfd5f41488d8092d8741"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f2r512B0.m",["8b8da134eebe14b81fd3f8c2c3988e196169d74201ef2b800435a2963af133be","ddee06ec775a906e244f2c8531b84425c0e313decc0ad2c58bf6a1d93e208cbb"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f2r64B0.m",["1ef2839e4b0c24de3fbc0338bcda6119226a4bdb62cdec85781af23372da3545","bc33eadc4a8e413de426cb737d25dc85c6d3295852c3bd125763bf590c1eed1b"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f2r6B0.m",["49b9ab394f76f6779abb4864f0f9c9ed84f4f7ab0a48cecced4b693e4b94afb8","eaff7066e5d4617682e106c466c5595e9f873a7f071041900fcfe35d91c4faec"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f2r8B0.m",["129c500b00bd7110cc5878a005bfa8cd3d0a19faa2c54af018464c55484aec85","a89a867f609d0f83bb8d0e869e4f0577b925bfd98d0806bf7826f4ca16cc018b"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r14B0.m",["d245cf6cf546ac4b993564a02c9738331b2145101ad4e8af2e6ce98ebda365c","4e47694d29b99966e95b7a08cb7c2b59fb82c0b7ee18292ae8bb56f38e067da4"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r189aB0.m",["6c98bc378fa80fee8d676b4b3cda191bebe23b2369b0bd16448a63a315ed9337","390fe5f455ba7ed938759cfca33db1230a5368b791ecd28a3573dd903a9939fb"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r189bB0.m",["3ed44d02b4d925dcfa0906f58ac515bed94f133efcc304aa0bf842968c15d050","c6a7cb508bee4376ddaa6b5cfb2c53b6d4732f464c1320780819391a9dfaad69"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r189cB0.m",["f92879be7a60d536667a72790ec65fdd6502bb2d77ac4cb426e3d2aceded65c3","8ab37a7b22f45be10fd6618f539cc6b217345b93438606cb8337f8f9c33d9ed1"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r196B0.m",["dd1a87f4fba54b336b0d54f47b12d3907829e9fb80bf1357328aa51034138c09","c35e7e4f06eefa2dd61b9aeb8b8c41e79fd31bfd5d9dcd2e8f30e3896206e3a4"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r21B0.m",["27afd7680014d5d208fddceec794182ad9af665c525075ef6209271806360cfd","eeaeb654bb907afa349f707982480ab5e67b493534a2a05cb00906e2e7ea1725"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r27B0.m",["fedae8d08d46abb3270a71cbcdd328070839ec39b9af61ce8f39666aa9d6c23a","c1d12aa6886e04692da39c5c34ce2a57c425172ca7ee4562b29b196e06b342d5"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r34B0.m",["e535f3e5a4e2be4ceae73de8fadf0d9fed600cf6770a8eab0656117e7fc28394","265a9e12d99b8e315ffddfa56d54f0167601d099b7d1850cddc7e8249f7f6199"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r35B0.m",["37dd8365b8e4992ad99674c939b17480c15ec0ec88c7954903a462e4a9d31cb4","1509c36fe543f17cfda7f9916daa34a0550ea2bba567261a1a942a2230081d5c"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r405B0.m",["31eec29e3a1bcc1fa61bbd9d1bcabbd08815ede54fc785a94ead2cce84eb20a6","f590f3be2e93beb9a85cdc098b25b49f15c123bd67451cb57ceae16502403732"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r49B0.m",["17cfb55cb023166289ffc0112c33952824e67e238b0d0e06ee2dab057f08f6d9","1e92b491cb5c01084e023b39b57b32e925a9363d04e167797a81414f98a70ff2"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r7B0.m",["b5267754103611e5645a252f9b04e87ffa6862808d52177e58a8badfdd1613c","f7e54c602e91141d65b413ffb1def4da11c4be2cfc72fbae94e86dd1387dce83"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r91B0.m",["850f6bb9d07dedb7f926b595086474d9ea5be9337af00addda730b5f3920bb0d","6295e678d803ba69c003e429bf2308f708cefa00fcca9bac507c5bbc838bc872"]]], ["TOC",["matff","clas/S62/mtx/S62G1-f3r98B0.m",["fa59ecc20570d29ae349c3c43983ab5e762caba4669c417747982bca34e8ee3d","e349c1192caca59e39cb357f21a7d5b825b2035bd3ab16965b42db73e01eb912"]]], ["TOC",["perm","clas/S62/mtx/S62G1-p120B0.m",["5de786f7b82ad4d8f0ed378571c674e2232b82b501eecd8ee929773bc2fb6c5a","751eeb66e39d8975309781879b56877eae319861b3205b1650659043621cdb1d"]]], ["TOC",["perm","clas/S62/mtx/S62G1-p126B0.m",["60c7bebfc6ef49b270ae999d2bddfef6f2bdeceed1740c330ed60d9d7bb35a66","47feb5d35c8e1d73145380c9a495ac521c6d3359f7d006d25adddbe4c3b7e732"]]], ["TOC",["perm","clas/S62/mtx/S62G1-p135B0.m",["9950bc11e57617d76e0866cfd2db7f5874f017a2fc9942895ec973c70db176a2","b5c45f7d67037a3cbf008094ed0d3e22fb1504d1f8f636a448f347cd7eeebc77"]]], ["TOC",["perm","clas/S62/mtx/S62G1-p240B0.m",["9bfe64ce7afee101295bda4bd85ea12883f2e879baf6f016d35f5f312fbbfbfc","6328d026fde68e1c28e8b67538994a88ba9bcabf6ff4100a84f27048b80aeaf1"]]], ["TOC",["perm","clas/S62/mtx/S62G1-p288B0.m",["e3ba8dabbd9012c6c29e2e0685ef56996aacf9a9866fe2c5099c972ddc3ab0a0","2684b7a2f572c5f08254b1bf30e1444cff8a3e8be05fbc1792307e7f88c98e29"]]], ["TOC",["perm","clas/S62/mtx/S62G1-p28B0.m",["7da33089a270b79c8ecde93ec2e00d2cac4bf40d64541e121e2e8cb2e58a1bcc","3ecbdb5b4c38df8061ab473f9d60babf06c59fb6ce68ea2d26c1ec2ea3d425b"]]], ["TOC",["perm","clas/S62/mtx/S62G1-p315B0.m",["e116ebad60e5f5fe5ff68157beff4c4258fa4c7a151a59e4039bfb92a433c37b","6d9de65c8cdf54c897fb4cbc1f78f92eb6283d71a66a5640c78064b7bb0d9910"]]], ["TOC",["perm","clas/S62/mtx/S62G1-p336B0.m",["444fd8b4de79b428a3d92621d52296cd2c11af084b9b6e8e98f93b9bd13949ae","f6e913c86d036f5d37da8dafe47623e41dc030db16bea8b6a91b5db685aa4800"]]], ["TOC",["perm","clas/S62/mtx/S62G1-p36B0.m",["f4d5d9bbcb6be368e03a31dd93148963481f74d688bcc4b360cae54bf74a8b51","4c90aaee6634208a101dba18c79c11c1babec2c616faa796f9f6059cd507d5f3"]]], ["TOC",["perm","clas/S62/mtx/S62G1-p378aB0.m",["3dc67ba4c7d953ff90d323de3d13775a825ff9118c2c1a31ab2160f3c57c8453","ea93465998f5400676bc058f02e32fcf7d3e6886629da8d6a6af8a42531a977c"]]], ["TOC",["perm","clas/S62/mtx/S62G1-p378bB0.m",["4c3f040b2c2cc1f695ea194083d13d1286d559e4a7e761ccb54315cc11e042ee","fb28b519e90a37152aa0ddccbd8f55074759141d4bea9e0592b2e2463bb3c3c5"]]], ["TOC",["perm","clas/S62/mtx/S62G1-p56B0.m",["e28b27dd0a3b76a22d85ab66b18ed4566d20c73967775df9c76623dca409fd81","84ff0646c35ba3ec0f5c070dce437fb6e999187475498dfb5a89414dac6a9d95"]]], ["TOC",["perm","clas/S62/mtx/S62G1-p63B0.m",["844041e5967e595ae3780a1d00177f0f8920f4c86d38ec243481c7a3fc032439","103b6936c686e23d21dd7020ecc7f90189752c3d90d1a9fed692ffe7a7e65943"]]], ["TOC",["perm","clas/S62/mtx/S62G1-p72B0.m",["2549a66c9619fdf7ccbfb464bd535ed2f7fb2722c53b7ba8955aed50b2b4bf55","d1feb302c7b1e91e95434249521d0529d1cc87ab9c7b558590581a2fd598545e"]]], ["TOC",["perm","clas/S62/mtx/S62G1-p960B0.m",["f49aecdb2ec08db06c276014e6d400ea30204d2330ecbd3c42ff278148d52abf","a800a06176d6901232c465b7905554230b7fe700d89e18316b1dc4bf7784f096"]]], ["TOC",["pres","clas/S62/words/2S62G1-P1",["b60bc4acb798ee0d02ef38b2a83bdf3815677fd6dccb905e6979b56677195baa"]]], ["TOC",["pres","clas/S62/words/S62G1-P1",["f8db8254eec31f2a5df82517d7908ac89e2caf72211a84364cca7ee1b91f20c6"]]], ["TOC",["classes","clas/S62/words/S62G1-cclsW1",["9b371f10ad74119c0b79505808f3fa8236477f4653946f05f8e86821915275c8"]]], ["TOC",["check","clas/S62/words/S62G1-check1",["8c26aafc89b11ce0683f377da13cab38dae4c1c08d62e9933c2b86c31a882b24"]]], ["TOC",["cyclic","clas/S62/words/S62G1-cycW1",["7f8202b91d041223d0ec4e65804f61546b9994f780ca300dc1a6d6e83bb64863"]]], ["TOC",["maxes","clas/S62/words/S62G1-max1W1",["d02e554bc5efc238a2d0af8069284867c7689e03de22358a73fd1accd4f95a63"]]], ["TOC",["maxes","clas/S62/words/S62G1-max2W1",["e3cd448682176164915a4b27e7a9442c51b249f59268e18c31c5313e3a5e34c"]]], ["TOC",["maxes","clas/S62/words/S62G1-max3W1",["5ea360686521fddcd617a8db88de44ec3e6196568a08df77b72b6a3cd7a75a23"]]], ["TOC",["maxes","clas/S62/words/S62G1-max4W1",["a29ef3fd8dd654e6d7c195887f29976943497aa6d996045757c579b9255defdc"]]], ["TOC",["maxes","clas/S62/words/S62G1-max5W1",["f1bc8478f415ac5e3dbe94ddbbde273129ca083138d51e2e77d052e65e7619a1"]]], ["TOC",["maxes","clas/S62/words/S62G1-max6W1",["f9dd86ca3fb4f0570c1872da45f48754b24ff6736fb7e8802451dcd325bab131"]]], ["TOC",["maxes","clas/S62/words/S62G1-max7W1",["3aecb69415d5203b5bcbf1e88b8e278dccb39b81d53ca0219ce7b10e6b53c796"]]], ["TOC",["maxes","clas/S62/words/S62G1-max8W1",["af6cf26b5374698f7f1dc3ae085db11b3eb94e1d632c9c9a3130dc79c4d627fe"]]], ["TOC",["cyc2ccl","clas/S62/words/S62G1cycW1-cclsW1",["4187706db3168b6392f6a5713e9a29a985a66cb8d45e203f5a03d9d434f6993e"]]], ["TOC",["matalg","clas/S63/gap0/S63G1-Ar13aB0.g",["a81f5755657c59cd0b514f0ebfcf68b4b7d119448a473ef4cd19835e4633b6dd"]]], ["TOC",["matalg","clas/S63/gap0/S63G1-Ar13bB0.g",["a1c5c8b9524191b68fa8e61ed2ec53d8ecc8e9147437145238dd098110585f01"]]], ["TOC",["matalg","clas/S63/gap0/S63G1-Ar78B0.g",["b93f3519bd72ce522e49fb8cd8d2bb050ee8ba260b7a3a185bf675de51530e81"]]], ["TOC",["matalg","clas/S63/gap0/S63G1-Ar91aB0.g",["846da2f7381c980546c627585f5f21daf0508c2c91bfed4a223c89a9f445d15d"]]], ["TOC",["matalg","clas/S63/gap0/S63G1-Ar91bB0.g",["3f501d98e0cf25f1e5016873729165b9151b7176762086d572d3f7ca73c5e72d"]]], ["TOC",["matint","clas/S63/gap0/S63G1-Zr105B0.g",["23fcb985f0c44642b8bc2aa07d9febb858d111c02c83b7191e9e0794b1a06970"]]], ["TOC",["matint","clas/S63/gap0/S63G1-Zr168B0.g",["53266e15c95714c064729ceaa29e5abc7c883b87820a3f8dec1d49e2b399ada2"]]], ["TOC",["matint","clas/S63/gap0/S63G1-Zr195B0.g",["b448cc8a2306da91e475f2897ba528b11c36f3396f274bce03f82b17b98a21ec"]]], ["TOC",["matff","clas/S63/mtx/2S63G1-f3r6B0.m",["c4571640318ce915f8502d12afc3e879f1fd1bc8472b4d3f75b067d72847e360","6e44311f8a7a8d71bb969c4df07b8ac5edb03527c58132b0f8d803c37a96b04"]]], ["TOC",["matff","clas/S63/mtx/2S63d2G1-f3r6B0.m",["cf1f51d8ea50db5f1914e7b8f2983ee3fd6a476963f1a0e04416c66b9ab38f68","52963087b5cc1000960ddf8a2be634ea04802516d20d60e58ba9a68d0a85a58e"]]], ["TOC",["perm","clas/S63/mtx/2S63d2G1-p728B0.m",["ecf64a0eb44a7d645623ad505c5ef8a61b3e44c614b09b1d5d9c512373be03a6","3eeb34edc911ef4fc2971e4fd32b1cb8dc81a435758c9515b74cf46b106f5937"]]], ["TOC",["matff","clas/S63/mtx/S63G1-f25r13aB0.m",["e06b059203b5b5143979fea62646ebf1fd66b39bcbe085a6522d3aa23b27a74a","8abdd9233c90957167f31d98e6d33602726e861b0ed658c8f242ae1570302ff4"]]], ["TOC",["matff","clas/S63/mtx/S63G1-f2r78B0.m",["3634415a3477933957b7d86266f74db1942de7d98617a8712aed33ecfbdeb220","d8d6503b5c525a9e0fb04823b740c7e4089865356879cceabc6a17805043e1cd"]]], ["TOC",["matff","clas/S63/mtx/S63G1-f4r13aB0.m",["a0c06f01247edd7ae5568e91e1d88e5da49646a28d7fc1cd3ae4a62ce818d950","fa32ac6176ebbdd739938dd7c047b2e458c2cc916371a35ccc89bcd1a1ac6a54"]]], ["TOC",["matff","clas/S63/mtx/S63G1-f7r13aB0.m",["fe0a762ec647abf146bd5a1d81011461e0e2aad63550f40be1340bfd99098e69","c22581f16e5e4cf078c80acef0c1837b4df179969dc9c5716ee92fffbede574f"]]], ["TOC",["perm","clas/S63/mtx/S63G1-p1120B0.m",["6e01f78c35a58c69308ca301ad96840aba5bf89fa3050caab8a26556f8fce3f4","31cae40b2eeff120f2b5c88dbf689ddfb108e7e7e2f6f2a8b8eeb1076e1b78ec"]]], ["TOC",["perm","clas/S63/mtx/S63G1-p3640B0.m",["e64d50f6a05208a73fd86c7e29c9672424d353b0b82a176cc4fbdc080ddc034b","533a78a9246ee7160c9e2af17a476ae76b5450da48a43f6cac8ac21ac239dfc5"]]], ["TOC",["perm","clas/S63/mtx/S63G1-p364B0.m",["6cbd07fec995b63cfdd107bd21925f2841f86fb9832fa2735af24bf802580057","eb475a517034dfc91f40ebad3fb142d386040aa9e936877a9718e630bc326e30"]]], ["TOC",["perm","clas/S63/mtx/S63G1-p7371B0.m",["a66716211466736491424e635bbf4f4e5749d2536fd9b47981ed04948f1ae30c","a7a37167a06b073474eb144f00b889fe9c40b75f222f4345dd8943e42256a98f"]]], ["TOC",["matff","clas/S63/mtx/S63d2G1-f2r26B0.m",["c01bef172e08b5e71243ee726590399c51e030f8955f189ef4c874a878f837b3","4973de5062f95c423cf500e5ba174edeacf5cea245fa1c692dc16beba9ea73d3"]]], ["TOC",["matff","clas/S63/mtx/S63d2G1-f3r13B0.m",["f53f8a29108f54bfed8b7945f88f74b58fb3d8e0fed24950a7eb523bf5deec33","a37836b07d51b77509f3811df019516aecd4206e2468d7ef46723f73af60b553"]]], ["TOC",["perm","clas/S63/mtx/S63d2G1-p1120B0.m",["fc588cf96137f3cc786a105fdf94e71b10cc01db38cda2bbff900e635ea775c5","74b17683aa8f9f26d45f98db20db5e018c7c4019ff4a4e94409cd91e883f6d10"]]], ["TOC",["perm","clas/S63/mtx/S63d2G1-p3640B0.m",["a6ca081174bda33d187952b89fbb922856b46b29413dc6083e439e9bc8ad647e","b49be205acae1a44c46b0475251cfd0c83e29291813b4d6954b9d8af5e8a440f"]]], ["TOC",["perm","clas/S63/mtx/S63d2G1-p364B0.m",["f9e4ef492c79254cf3636a43237031cd7d03f7947bc8f3af022f16e3d2ce49eb","b10fb9fc73f312982ec5de1c334369b875170958248835a8219cfc577d232245"]]], ["TOC",["perm","clas/S63/mtx/S63d2G1-p7371B0.m",["e1f31ac66058cbee40577f43d6605603cff4bd36324801acaba8429822787189","ea1ee6e9532f97f6556a4179bb88de2211d38df034e9a41ef82cd5786bb660d9"]]], ["TOC",["maxes","clas/S63/words/S63G1-max10W1",["eb5e81f4705ca37385a70056850ca446e19a22e1caa7dae2246608f68f937c1f"]]], ["TOC",["maxes","clas/S63/words/S63G1-max11W1",["cfb42412909a7334ea170d65ca07026f5639923ac4deee797fef63bc14b2f493"]]], ["TOC",["maxes","clas/S63/words/S63G1-max1W1",["9195312ec931e6bc069793d3c55640cd155e03fd5d90096cae9b234423a46da4"]]], ["TOC",["maxes","clas/S63/words/S63G1-max2W1",["cf56d62564ca68c4eee9ff4c2d2135c983364b522da22f3485a8bc90cbf894c6"]]], ["TOC",["maxes","clas/S63/words/S63G1-max4W1",["7662876ab27d7f2c88e73c31d87a404a762a70efdad34759df766ca687334926"]]], ["TOC",["maxes","clas/S63/words/S63G1-max5W1",["436fcf6ffcd3eaba911a8cf751baea322184396c131d35f79e4f5c02b26bb55d"]]], ["TOC",["maxes","clas/S63/words/S63G1-max6W1",["df69b36d8fb60e66c74792ce3ee845d12f3f07f8b5b1e55cccbb75d95bc1a7f7"]]], ["TOC",["maxes","clas/S63/words/S63G1-max7W1",["74eb8f2ff1e5542e5a76baf84a9828b8f15793a018849adacacbf912f893fb06"]]], ["TOC",["maxes","clas/S63/words/S63G1-max8W1",["8eaa9fa6cac63b31a59fd751427dab0e79d0253207191f0c9dc3c98f82974349"]]], ["TOC",["maxes","clas/S63/words/S63G1-max9W1",["28552ee32be43837a4e319184816f11183d5c8101b829bad31257a088d368dc1"]]], ["TOC",["perm","clas/S65/mtx/S65G1-p3906B0.m",["8978ace1177c4d4ac84711b5b45db637a901c569bfe45d137438ffb60eee0ef4","60d047aa3b706b61e4a47964a78d41646fddede42471092a62679d9a0962f507"]]], ["TOC",["matint","clas/S82/gap0/S82G1-Zr119B0.g",["dc97ec39c54368857a3285cef9f25133e1ff781e1166946be6e320f7c7025da4"]]], ["TOC",["matint","clas/S82/gap0/S82G1-Zr135B0.g",["e53986f4f9300d2ba0bf131fa3a343a2696c739887c5ef5eaf993571e35d0086"]]], ["TOC",["matint","clas/S82/gap0/S82G1-Zr35B0.g",["8c2ac2bfa1880d85d2e206ebdc2cd31467478eafde67670441703d04d875d948"]]], ["TOC",["matint","clas/S82/gap0/S82G1-Zr51B0.g",["240ee3ccc719b270c3311a106dd967ab79c6531daa614056f01853b521daa041"]]], ["TOC",["matint","clas/S82/gap0/S82G1-Zr85B0.g",["ded8165ab279a666b7bce6fbbb2a0491548cd828b9848479b6e104ccd7c1b1e5"]]], ["TOC",["matff","clas/S82/mtx/S82G1-f17r35B0.m",["d8d3ba00a7544efa6494928bd55fa0ea59db36c32dca2bdaaa78bc70e0195c1d","df450e206377e46f8796d3ee140382d74e7e7cfdcfba2d5f8b9efabc08617ea0"]]], ["TOC",["matff","clas/S82/mtx/S82G1-f17r51B0.m",["158669430e2c9f2a70ae3eb20b17c1f8823375505d2e1940b38260cc13fe70d8","fea1e7d39b1b0b3392fc2c0da21640f2f05bd8b80d4cb6dea90cee4dfcdadf5b"]]], ["TOC",["matff","clas/S82/mtx/S82G1-f2r16B0.m",["2eedc3227c3a58f560a697e25c057a62bc6e5a8a7c3731317b0916ef5cbd700d","b689c45f3b9e05d4f3396feecb8de8f9cd048bd8d1060167e4fa3d377aa5e67d"]]], ["TOC",["matff","clas/S82/mtx/S82G1-f2r26B0.m",["7cbc43fe88ec11b10ff8dbf4f199f80209d227ad99ee065ef272e91e905010a9","b5b8d77846e52fb98e7e63570f07dcefd4e8f32ef3ccf7d648f255a00f6f24f1"]]], ["TOC",["matff","clas/S82/mtx/S82G1-f2r48B0.m",["335143a13ae40f12a8e7f3a2ac866e9ce5c2537a741db95de763e6045dd7130","3960052f4dade2132e9b6c89b07daaee9af7c35dd55414f9d431cf37a30f3d3d"]]], ["TOC",["matff","clas/S82/mtx/S82G1-f2r8B0.m",["e98d37018fe7d1657191e47a8e73c9b645dd46deb6451f0c4473831d034f6ad","d01e8ad9ab135783bc0395846bea1f44b3ff73a135962b204fcc5e629e759774"]]], ["TOC",["matff","clas/S82/mtx/S82G1-f3r35B0.m",["3de54a53a2a5cad19b7c686dc128ca88171de390e98307c7e327ad4c4d916e65","a609a8ab2bf26f4e640dac8a36cc0098ae1ad451e4867fbdfa5f06d45bc46734"]]], ["TOC",["matff","clas/S82/mtx/S82G1-f3r50B0.m",["fd453924254b0072624efdc60438f611ab7779d7e6afa40a117ed4e52cef43c2","816ad74674cbede24c1bebdcd064323484442a95d76fb123f94b713afea5cae5"]]], ["TOC",["matff","clas/S82/mtx/S82G1-f5r35B0.m",["bd2b97fb9b3d7d5dc21c9b365ae6ece6d5dcbc2fbfb045e30bb7ddb444d48b1","9d78580b25dc42f69ef514bea1acd7fc210ab3b279eb48d1d5b0ff5e53fc953c"]]], ["TOC",["matff","clas/S82/mtx/S82G1-f5r51B0.m",["d18f2226b6c180fd42eb52f5487acbf99bf1b688a88108553f5be7f45e3b852d","2223113730533f06c9e063db9c6ad86375cd34e86a01f2f5a24f2d864cdf6f3"]]], ["TOC",["matff","clas/S82/mtx/S82G1-f7r35B0.m",["41ea76183bd6eac6f2b764da3dd9f1902d00c5dea1bb03dc99334ad32c65d6fc","6efd3c1e02f8b3535360bdaa8be00f346d8ee3dc5ad9d2ba3844e71d8575493c"]]], ["TOC",["matff","clas/S82/mtx/S82G1-f7r51B0.m",["5a39de74c16879ea0b86e5fc4d4f9cb92dceb96f2b8b9ba3f80c25ef114f1685","f7780de2bcc6685a76137ca2b0b2658049fcee03cdab1da5898239c6a96ba061"]]], ["TOC",["perm","clas/S82/mtx/S82G1-p120B0.m",["3680af3162ee19b39438c08eb313d53b3738750677bc581c3dff1d73a21845f","d104e68a835bf50359471ca2ae390e899c80bfe32fe3c158a634731e224df94f"]]], ["TOC",["perm","clas/S82/mtx/S82G1-p136B0.m",["a8c76cf906b15a961a4f5f7a2359f754ee95f6fa4c8e5719257f176765c18fe8","28f69fca6c657e1cdc474b05c67007d05e631ecb593e8190dca6ab8cf3b7e3c5"]]], ["TOC",["perm","clas/S82/mtx/S82G1-p2295B0.m",["c3d9864625f243c532f7486e705bc1df325dfe5f49d05a1695d553826b1cb0be","308c94a46a45a34d03b89c195c7ef8dcc25a505d440b38d2a76152c3d6e04265"]]], ["TOC",["perm","clas/S82/mtx/S82G1-p240B0.m",["8ba8923c7e06b3804c3eaed437d08acd0abe4cebbf9c509637b557874f172a78","88ebd03f5d4376351a39f9ee8c4cafd1ddd963525de2dc6290b567da1b9667e2"]]], ["TOC",["perm","clas/S82/mtx/S82G1-p255B0.m",["b7549de0da99771fc2030b8316f2924c861e6f4ac16206a0443619cf71a78891","1805fa763e739c865237cad299810e07817726df11d21a2852a51d23dc780ec"]]], ["TOC",["perm","clas/S82/mtx/S82G1-p272B0.m",["4e2cf94ebc5019cf643e5b729dcdb90528f33049c0c7705a8afd2e2d3d76e6e8","5e7226ddc2dc577273b6b089a2b27a1bac2120701950763d82ebc072b477a4c6"]]], ["TOC",["perm","clas/S82/mtx/S82G1-p5355B0.m",["219cc1e7848cccb637c2eac0ab2f0b8b23772eec86e5b098097ae612b9a30c97","3a4d2efa61eb392a5ed4fc8f95d9d85f3a117705a14ce2f69856e6a557f56699"]]], ["TOC",["perm","clas/S83/mtx/S83G1-p3280B0.m",["9afe0fc45c8bd747ffd18d84243c2006da3e3a8043388cb87729f8a1174d6fc1","77ae164b46be217607dbeb2efb2e753276232f892c3b37c6c604c9f338e318dc"]]], ["TOC",["matint","clas/U311/gap0/U311G1-Zr111aB0.g",["5503d5a9c605bd141f6ecd2ecf8c2877f35181c1b81ad73bff0229ea1eeccefa"]]], ["TOC",["matff","clas/U311/mtx/3U311G1-f121r3aB0.m",["850720de038f23ea00f9c8bbd998defe8e90b189d95da0390eb7f04e1def711f","e108d756a5aa494f4696ebcd365009b359b2383dd3d98b1143002e3f0293acd8"]]], ["TOC",["matff","clas/U311/mtx/3U311d2G1-f11r6B0.m",["863185c6506cf683ca9b2e70cf5c06e28ffc0c59b7c334d95898dc2f48bc9f2","674107cee985b3ca9732e44c2c057c995c5d3e41e587e95ef547352b2a26d7f2"]]], ["TOC",["matff","clas/U311/mtx/U311G1-f11r8B0.m",["fe6666f30c339fb895cb3374c19e142d1331539bc42147b4395911317f784500","a9146435cfe15838f19cb5be4db9d597899d1cda33f7b0506d6059fcd26913ed"]]], ["TOC",["matff","clas/U311/mtx/U311G1-f121r10aB0.m",["e04b19ee793969a63cf1d4d2292246a8a264f38f38a6ed5581aa8c9710bb4aee","5c2a180c6cc3353ec2b0e47ffb7aa10e6297b82e3d194024a306db17705ced75"]]], ["TOC",["matff","clas/U311/mtx/U311G1-f2r110B0.m",["dda5c8a63a5dfd8a4b37579e4599ad055a305926f0c641a8e0f089b25ed5e033","2ac9c950742c403b67496266d0bf79c94ca9e492c2bf14585940d5e5542f595"]]], ["TOC",["matff","clas/U311/mtx/U311G1-f2r370aB0.m",["cd890786520a8bfebcda5a53bb04ccff3c2efc45746147be1f4a6f1cdb58e81f","68daf487694ed77c8375e92002fa10a8b9f77f6800132372c5371781ac40fae3"]]], ["TOC",["matff","clas/U311/mtx/U311G1-f2r370bB0.m",["738a46a584f98f5f9a8d03df2a08dbabaa64931b3b40346b05bc0b71c9ba7b81","c99b90999780aa0b68e92e4dcf1de3cc900d05153ff2d40fa18263948eaedece"]]], ["TOC",["matff","clas/U311/mtx/U311G1-f2r370cB0.m",["5954b3077145ced9a4d3c994671d863a2dba03d55592d345b114285037f44117","e87d45167574592d8031cb32179d4de11a12a10a076f6c7c981313a81863bbc5"]]], ["TOC",["perm","clas/U311/mtx/U311G1-p1332B0.m",["903ce5d037234c6d239f31c548ced87fda4170dcfbd9696c4273034e42b0016f","575e3c6c21781224984145579c42e9fadcdac86c5b95262e958f4e3e79112b60"]]], ["TOC",["matff","clas/U311/mtx/U311d2G1-f11r8B0.m",["5e393a34e2d08fc8553ff87a2060778c3fcfb726c9e0aa13d6697e0b9a9afbb4","cf096ecd63e74cb25cedded81b7219b216156039f14b31a404847265358a751d"]]], ["TOC",["matff","clas/U311/mtx/U311d2G1-f2r110B0.m",["6b22bbd3bd32fa7bfb3a86e0edc5513bb9a75fab955a5bbd91d73e935406f6b","f7e78b2c5411de563056095579b40465a2cfaddaa17a66c40e4207efcc306e89"]]], ["TOC",["perm","clas/U311/mtx/U311d2G1-p1332B0.m",["3273e1713f720beafca8af60e2036b14f26b0f52409f8b9f06c5f195e6bad5e3","9d72622adc857958e3829766539fc03c68e56820d2c4b5e3968b517bf221c87a"]]], ["TOC",["maxes","clas/U311/words/U311G1-max1W1",["357a851bf1596046f5d3698d6dce7a4dcac5baf27c6c9655080cf83e0a13549"]]], ["TOC",["perm","clas/U313/mtx/U313G1-p2198B0.m",["bef19896de1aecec9c5eb71de07425823ce1cbcb2445cbdd215ed4468639db2b","6dde449c24a437353dca7101dee7fe3921a16729a960f751957a142d38a6f58b"]]], ["TOC",["perm","clas/U316/mtx/U316G1-p4097B0.m",["2c952313a8e3098c0ab6edb95003ea16b5c36fbbb093730dc269e28e4af38ca3","bff722ddf1f2e16f713468347602a0be89dcb9fc9ceac26fcc8e14ed4ab360cf"]]], ["TOC",["matalg","clas/U33/gap0/U33G1-Ar21bB0.g",["65f13b5c40391feefcebadbc417d0d13262fc40f6279abec46fe68086635470e"]]], ["TOC",["matalg","clas/U33/gap0/U33G1-Ar21cB0.g",["13973525b7ec1be02833c5cca403f38c1474431331eb971432c22e05d50a6a49"]]], ["TOC",["matalg","clas/U33/gap0/U33G1-Ar28aB0.g",["9c47023c0d1e772fc2dd5271b1a5f4d4806d56705b317bad3be865f2df4b304b"]]], ["TOC",["matalg","clas/U33/gap0/U33G1-Ar28bB0.g",["818b67d85ee9354f8e86c778385b318fb209dbc6ed31e46944591ac0e9edafe6"]]], ["TOC",["matalg","clas/U33/gap0/U33G1-Ar6B0.g",["76dd800f35721fe80f827104b0d183dec451f6b4be9c4fddc21e323907796f46"]]], ["TOC",["matalg","clas/U33/gap0/U33G1-Ar7bB0.g",["c41b6334bb5ac0b6498502b09b0fc4014c34fced3a8d0bdfb20f5208f0306760"]]], ["TOC",["matalg","clas/U33/gap0/U33G1-Ar7cB0.g",["6c3667d5336691b0a76958d33fcef969877c4a6b4cc6aa8dfb24a9421021c15b"]]], ["TOC",["matint","clas/U33/gap0/U33G1-Zr14aB0.g",["bfd1b3eea0f8231fb9534324feff8e7b2ed029c7ee58a6a4c24a3b1fc55fb497"]]], ["TOC",["matint","clas/U33/gap0/U33G1-Zr14bB0.g",["c6233eb393b5daf9a6eb00c588f62ce5c5a1dfea556caefd6b448defc371f79e"]]], ["TOC",["matint","clas/U33/gap0/U33G1-Zr21aB0.g",["52d00f6c446ae31e42b397e50c1899c0b07c200bc573c824c64118840a9b0a71"]]], ["TOC",["matint","clas/U33/gap0/U33G1-Zr27B0.g",["39591cf3fb75cbac273c8a4eef66cc259447e1f0ea0146f7113e7c68a4a5338e"]]], ["TOC",["matint","clas/U33/gap0/U33G1-Zr42B0.g",["23cd027e3d139584c63d3d6835f3a3c8052a13ba57207d698adf5e3a5cf58f95"]]], ["TOC",["matint","clas/U33/gap0/U33G1-Zr56B0.g",["7b157365a1cb93cfedbb2a2b481b8023d228db9f70f4d2dff80e45e554094188"]]], ["TOC",["matint","clas/U33/gap0/U33G1-Zr64B0.g",["e4eaadde87bb8d6fb10a7074c5522e07150a4cb57d2b7e9ff4946bbf9fc4abeb"]]], ["TOC",["matint","clas/U33/gap0/U33G1-Zr7aB0.g",["9d15cbf825ba5a45a0267037226dbcadfe9736602b7d39f814cacd3dc54cf61b"]]], ["TOC",["matff","clas/U33/mtx/U33G1-f2r14B0.m",["a7b3122b3110cdfb7ea4f4a8f2487e1fa6df81600c0aa87ba05a4152886a393a","3dd0fc67a0349bbe1c20627b3e1cdeacd92470427e9138326bc12f727a5a63a0"]]], ["TOC",["matff","clas/U33/mtx/U33G1-f2r32aB0.m",["8b82febfe2f778ac5fc0d8766bc224f7979f9fa82561f42135539b1bab2cb84e","8da1a7db1bf50ac4c19bd8c9ae52a32cb9cee5f2d351bce94fc762c3644bb828"]]], ["TOC",["matff","clas/U33/mtx/U33G1-f2r32bB0.m",["96050d2f592c4f31696b4a6628fbc472a832bd34f833c32d105e7664d90666b4","57edcc8c2781f7c85daa38b8be8a4f55a3bd66fc70a5517b02929e2ebcdaec9a"]]], ["TOC",["matff","clas/U33/mtx/U33G1-f2r6B0.m",["acbee7ddf9b262ea9be898c14aee1462dec3fe26e2b349431a75de25c1bd4869","87716d043358888d8e83d513e85474339bf8d1df6ca9c305c1c62fc62719599c"]]], ["TOC",["matff","clas/U33/mtx/U33G1-f3r27B0.m",["a73da7765f0948946ad311aed755b875ef33c8f377679186742fdbfebe2b4ce6","749d2842b4ae6af766873a0c59825bf98fe79856b87a833613b27feae68d2b77"]]], ["TOC",["matff","clas/U33/mtx/U33G1-f3r7B0.m",["684b92ed96eaad02d727cd9d9cc6beafe998a1408549f1525ea1cd055cf7543a","839e69ce042c925e2530683f46a3fdfc7c33e305003ab5515ed5cefa0351ebc3"]]], ["TOC",["matff","clas/U33/mtx/U33G1-f49r21bB0.m",["1f1a791cb588c2b922ce5d6089a05579f83118dd60a1c858012ab1c25a9ea669","3959b9603debd99217b8e84e5ce3d720042b04b390033ac0c65a272bfc2ae423"]]], ["TOC",["matff","clas/U33/mtx/U33G1-f49r28aB0.m",["d4ca39a286a3aac05d590947e8a048ce819ca8d6ea9b6b39056167109662d6a","ad0a247e0b44570d46d34d8bbbc542c9483092ac15ddfbb9fb424c0ba482798e"]]], ["TOC",["matff","clas/U33/mtx/U33G1-f49r7bB0.m",["ef44858a0d55bfce46bd0c09634d748e7f319fa1a0cd402e4fc211510ef2c178","28bb93399c91cea74c487a2e9f52da892912b99fc45d5b6f43181b89b4be05db"]]], ["TOC",["matff","clas/U33/mtx/U33G1-f7r14B0.m",["1280a3448f214012bc0d5de17199fb7061a5c48b2c716ea960b3bc2f6ea97a5d","3291ba854119565c1d5db3480a46ab667d2760bcf159ce6045a819eaf549b179"]]], ["TOC",["matff","clas/U33/mtx/U33G1-f7r21aB0.m",["19520d1615806b05981075875c2a4d9ede1a9b929fa3b1107eeea64928daa802","475008dc4e535d6403b7eb030b6bcfd40c5f4a30879a46418df6b040d648bb43"]]], ["TOC",["matff","clas/U33/mtx/U33G1-f7r26B0.m",["97fa5ec33f830fdc8552e49bf2a7073c3ef3e39dfeeb771484304d6fbb4ca84b","62de49d7bd87e97794b9e615f07c596314a8e54b22d13b3e6a13f83ba38e5096"]]], ["TOC",["matff","clas/U33/mtx/U33G1-f7r6B0.m",["2e1eb62fbccb804e87b6995a877bd5d71e687ea7a978535a46af4d95c4e8ebe8","1b7a4b480e634b506052482ee6d3145e07bda87430f4b8d3dda065b27f4f3d3d"]]], ["TOC",["matff","clas/U33/mtx/U33G1-f7r7aB0.m",["1e80238cf47905293d383a710031dfb001c9231f0fb60ecf244a21bbe8d16086","42f80d0a66ea8aff85c58f3c4e4d3b0bdd50b480dcdd1689d9a956a572e9f107"]]], ["TOC",["matff","clas/U33/mtx/U33G1-f9r15bB0.m",["43627849157ce54f3051865047923277f19c87b22d7d3a58b89c8e8c545ba15b","91e5eebef9305c7cb3a56a9cbcfeeba494b006741e4263c186b1084fae2e65ac"]]], ["TOC",["matff","clas/U33/mtx/U33G1-f9r3bB0.m",["cb3339cf2ad9224570b118b1deae9e9102f6c063fa647afc806fa2fc4d77e995","33234007ff2b8da45a8965a6977da1f2edceac749df5798cda758748459af30b"]]], ["TOC",["matff","clas/U33/mtx/U33G1-f9r6bB0.m",["4b0bbd7c39686d7961bd7bad267d8c9acb49c17fe11bf1c1e4a99426c044ee54","3c046e22eb92d901eeef7e407465583a1c0ee51397cd40d1c394c6fb9c2079a9"]]], ["TOC",["perm","clas/U33/mtx/U33G1-p28B0.m",["c8690445088dce62f88d53da77df7abd99620586d785b8048164b3a44f64dd49","82cd5bd040714a34b330d72011cdba6ce5b96acc620c78aebb8fb93787266bff"]]], ["TOC",["perm","clas/U33/mtx/U33G1-p36B0.m",["810dc44b31d707b1dc67f044943a371932d7e0ec524a6f218ba5b3b0181c6ad6","d48643ca0de5494e6a343e0b917e20f5b71f282b26b61fdc744e1ec851805a0"]]], ["TOC",["perm","clas/U33/mtx/U33G1-p63aB0.m",["9aa331fbd18531dd6105899515aa137e7356033884af745f7fab29108704716","b2fe8d5761c89fff247815e64f571c750214370402b82593ddf64b0fbedfad12"]]], ["TOC",["perm","clas/U33/mtx/U33G1-p63bB0.m",["852f8f6ec55f1fded6a1b69df49d79e52b1a7a31efe2b44c9960ad49d9f8da94","3806f80abb0a2a713b61425ed1ec580d7a6f2c24c80ea63421dd5746eab5376"]]], ["TOC",["matff","clas/U33/mtx/U33d2G1-f2r14B0.m",["5b51f2064ef7884db688ade78857fb30cb62b9b52d1bf7cbe80064f1684d261c","ce656c12ad1823b3657b05bdfbd373feb91207f7883e2f1b167b227c8626c54a"]]], ["TOC",["matff","clas/U33/mtx/U33d2G1-f2r64B0.m",["9a4c446d0a33c4b8251a297f5e0b87902f021ed4408476a85ba9c3cc7e55d4be","c60c87ccee09ab3cc0fe224d197bcc06a0f4609e4b3b901bfec79309cdd108a"]]], ["TOC",["matff","clas/U33/mtx/U33d2G1-f2r6B0.m",["1cd2c89d0a6205eb65f661be72c2565f6c318559c51c3f7dce73fdd96bdb9f30","32ae0895a9c7048504d9d4a0e5a5533c61b4c0d354fde6c5f71f2528f40bf7ed"]]], ["TOC",["matff","clas/U33/mtx/U33d2G1-f3r12B0.m",["b97e06378809b577bef93b58e00a13d52fb6d4559036f2849f3f279b47442eec","41328243de7ae3583a0c19ca532aaaee35bb6cf582dae078a1a557f86edcc07d"]]], ["TOC",["matff","clas/U33/mtx/U33d2G1-f3r27B0.m",["e6abe1a9d280197eef794b6286786e27361969dfe8a0542b61cfea85d0210d24","22e5cc3764978fe1c43d29f04dbbf911d5e268f219f9202af6895d0df3eb0cef"]]], ["TOC",["matff","clas/U33/mtx/U33d2G1-f3r30B0.m",["7001951c378a09133da862b58b6a2eb078e497b0a725889846a2d31c9f608bf","86305cce067609741118e8867faf8eeb5f9a7447ae9a156c806fc021cb07278c"]]], ["TOC",["matff","clas/U33/mtx/U33d2G1-f3r6B0.m",["6df3ec5e06e61651e7d94097ac803af0b9c16b93d538142478e7e7d7d5028a1f","654aeaf82febbb3f4ea9bf6bb2ecdaa8ca8c2442fe464049a331b735a2f220d6"]]], ["TOC",["matff","clas/U33/mtx/U33d2G1-f3r7B0.m",["321776050cfc79713dd52ee82c1b629ff3947c88c34dcc7ab23e980bd2c18dab","f7e1a2d1c56cc9ef9dfcc02744da6d81ad78da5545624268cc5ec218aacbd54b"]]], ["TOC",["perm","clas/U33/mtx/U33d2G1-p63bB0.m",["1fc0548c196a3ec8bc1e1e1ae6bd6de67b216df5c08713b0c317537224a6dd16","13908ff08b762fb6360a4f41e9621aab61fc64a14880dbed8b72bfc96e2d8f2c"]]], ["TOC",["maxes","clas/U33/words/U33G1-max1W1",["e76a4d9f1471205de18d3cda70574c7dc6193df9d9d28f2f9f4871c9f51b87bf"]]], ["TOC",["maxes","clas/U33/words/U33G1-max2W1",["bb8b1542964eb61d71e7b15c73e35bf5032c5b86bd37f5e0e136832d91525b56"]]], ["TOC",["maxes","clas/U33/words/U33G1-max4W1",["131001a91db55d0959d30cb37f2248193d66a6a72f4540e8cb7038323428467b"]]], ["TOC",["maxes","clas/U33/words/U33d2G1-max1W1",["13b3cebc0a32c5d4c6cc4f8f2cf659eb28b6435dc75b01203f4212736da5562f"]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar12B0.g",["935a6109100597dc7f7724564f6562975e759891408a9525d41e54197307017f"]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar13aB0.g",["fa5ec50d091546ae6f5127a8c3cdff8fa6938a35fb0f4ce5dd73596d25dea2e1"]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar13bB0.g",["9942829fa505be549e473124816fdc2d882fa71f32c392fb9d30e5fe408967f4"]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar13cB0.g",["8927b338f00759185798c64d13955142df29a7fc4d9fdf847286b50af874595e"]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar13dB0.g",["352d8ca10ff713eaa307455251562a0afb4d59da03d7e8da57cf0dbb6004feed"]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar52aB0.g",["fddcfcc6263ef2cf1a6d906a7c40fb2d4618eb86d151021d02dd3817acf295f7"]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar52bB0.g",["736d85436d15f21668866325423d123651395f521fc641590a2b37fe639d6f82"]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar52cB0.g",["b7054ff770bd58be31850310b2bd979be19ce1c0f6dc4b34b779c89ae7e6c64b"]]], ["TOC",["matalg","clas/U34/gap0/U34G1-Ar52dB0.g",["18f45e8ef5cc501771e18b7b1a6a9b36f6c8e5ff12d3584ddfb86ef278d3d91e"]]], ["TOC",["matint","clas/U34/gap0/U34G1-Zr260B0.g",["89f8aaf6366a6239ab281614b820c43b8e9dcacb7c3f238c62947471993b8f94"]]], ["TOC",["matint","clas/U34/gap0/U34G1-Zr300B0.g",["f92c9c37c7bf13135ecfb509e3572b43321b796a8e390fbb69341d1e293460aa"]]], ["TOC",["matint","clas/U34/gap0/U34G1-Zr64B0.g",["f3d8e0bd9ce02019c5b47a5fb0e3bdfaf46067af8d5c6e634a993cedf9417414"]]], ["TOC",["matint","clas/U34/gap0/U34G1-Zr65aB0.g",["fb187356f420b765f77746aa640a3c27b1121b76eef8f5ac3b544cbd7cfeeade"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f13r12B0.m",["b8eeddab89b912e6f012283428bbe31764be0a83912fc18660e425e8fab8a0c6","73b6abe7916fac37393d32ee4184de4875b0f52f7a0c3c484c4ec1626cbba1e0"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f13r208B0.m",["6093cd006f646cc10513bcdb32e7912f1c1377762b6ff5aa2f4d62a1850c5643","5158a890475704a420f623699000bb4059bda84fd76094b94a3a93de1f3adec0"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f13r260B0.m",["97ab9dafea58cd43fe81f20413825b76274dcf71d41bb313e072ec2b36412f91","6cc40eab9d5924a7aaa093870b743ed6cece50b495723e856c05cef29d9786c3"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f13r52eB0.m",["c7e214003625c1496250d05455df3d0eded8829c989b01e221f5f07a822e434f","4a2d05f70b7c5ce02d6892a990c296a214e4b4c86ec51d074084cc86e806fc7e"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f13r63B0.m",["fb87fe7a6c0f666b43424d8a894c0d2a98e3cb25e1a912ee9bbb99da3d4defde","cbe8cfe64193621846354824979f7fc6d83f887c4b390c052477650b291b301d"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f13r65aB0.m",["2e739ef2054383a3fce3a530ee9254848f1c329673f2c15738c1961ce288eee1","7ce1caac92d0316df1dabef0c5bf65c28c07546febb477fcfa1dcd617b3bff23"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f13r78B0.m",["2e647b30550fd3f4f6af031f1f8366ce442ffffbafeab160036d5baf598d46a7","3ca16f2c53df57212abbfd388088cdd85fa6b4759c2f0881e6cd40a77ab579b9"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r24aB0.m",["8c82b85502d6eb4d429ba2a510cf048b26aac44c6f4772ddeb8cd6b554620a39","6f3e146f8ef7c80126fc7e932bd6f58a4e78051f6c8f41973d72ddbc850b63f4"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r24bB0.m",["fa4dc879ef346f1f3e5b66b2f1a43134aa7672e55c5179d6d04db648ddd4cf57","de6991b313f1e774326b619d303583c2a815eb20ac1f2aac625d226f1cbf622a"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r24cB0.m",["27796e021c1d74044f48f8e021efa0fc2b8946ba4451f5bb691434596273a28f","292ece6c6c8e2428c3eabc19626acdb7e4e4b96f8615196ce3479de1449878a1"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r24dB0.m",["c2286ca98cf3ec5dcacbac3a03d75bef56bd45bbfa90d9724408635f1758c6c2","bd2be2e2aac30f17e46baf5808230c5548b56850b44f4ebd914c47efffb3eda5"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r3aB0.m",["81cbc24ce4cf074390a5ee2bd18c84bf57bd36f3d53045be8be9f7b2dddf31b6","48ae3f8f83c7c7b87decd6b023eb34541a54257c725575bd905b115be64890dd"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r3bB0.m",["ea3bba01b00c42eb724fe652edb401d87a79ba2ef146ad147ae9db44c9efd9a0","48ae3f8f83c7c7b87decd6b023eb34541a54257c725575bd905b115be64890dd"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r3cB0.m",["6f7e510aa3806f6dd02c986617f7b5ef7a94beeb35bef29ddd15677dcf32039a","48ae3f8f83c7c7b87decd6b023eb34541a54257c725575bd905b115be64890dd"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r3dB0.m",["f5a1c0688771a6927ff9213b7cb6157483a982fd4f934571401db98abf6ca2f1","48ae3f8f83c7c7b87decd6b023eb34541a54257c725575bd905b115be64890dd"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r9aB0.m",["7ee57c247739676ec3af89d185a93b221781224509790cc13be8c8b0d4f866b0","46ccd1db28cb3cfa8aad16a5d306d3d4c10155be0584f1f540512239fbe46033"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r9bB0.m",["1d51791e3e8bf888010ceb2423dfab93c1461899ccfef373c92ee9855db31a73","9856df9c3c3c4011f62f3442c7c883578114d9fa97db1685d5acddb3ead3c3e5"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r9cB0.m",["548d3b1b7d67fa64651aba3fec258f49e0f3a37ceda19903c1bc01f346909b11","96ef6ac930a6b06ed00fd987502462c6238ea706916476ccb8b6d52d41620c71"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f16r9dB0.m",["bd7b102aa82c2b674ed9ed0b0853b034f50179eb53768824a3025c401d2ddbb","9b4a0bb572f6e052dab62825085455abeabe1ed9cba29648268ccc0b27f85d3c"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f25r150aB0.m",["8624141042a26d665aabdf55bf2178055a6db180d36488ba757c4cdd10a4b5a9","4ad41cb12ebef144f93b25c2040276e3a08be6b33b81f645c37f63199fd8af46"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f25r150bB0.m",["d440642ea07f3745800f8fe553dacf7a9b121697637317ba7f8ef31d378e0889","ec3000dc19d5da4bc12e20021c9190fcf3273bf9674105251480d92b5360d1a4"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f2r12B0.m",["843094b5de2e42a550ac948cddc956efc5d05dd1dfd2d48d16ed98e8f3bf7f1f","787c650f24e73761397510a4b3d60b14d08c2ae6e134720f08586191ca87bfc6"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f2r16B0.m",["cc33e867593edbc0f86530c19b67928cc0d44c50be85d1bbfa4dd19688e1cb6a","c03abe5d3290be27d38aa81b05e8a7863ed55d287fd8cf8bccd4fef9d2a1ea46"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f2r36B0.m",["c50b568fb810adf2e666ce3fc0396b6193d409753a69cfdc17cffef6c4a3b89d","642e710de9530de0b933d59f127ff2201ba24cfad602b6dae9ccb93503482a97"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f2r64B0.m",["23258fb47b6e5992aaa0a696e742c7a3b5f32468f7949797c32bdd9c44611bb6","aa7a81cf732c7a49b10623a3652bb0dc2a358701198c839633d4316adbb1eac7"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f2r96B0.m",["6d12da5e8627d3312e4ae90b0232a8dd3fa18c1eadec2b8c2abb2612719b2261","8f7809b4c505df33da8f37a28d5b02133841eb03047a731bf7346da1c615843e"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r12B0.m",["3740063f28a763528e94a5b365ea11690a0df2b24dc341c3379c5f095d1e0c83","4f08fbd79ddc6c9fd3715773b0c65b715be73598cb6d3676b681560ed3e00b6d"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r208B0.m",["3dbf9ce0b2c9faf8da9c3cefd7b02dd5a75db2462bce2e9a00dc2eacce2b9ec6","6479e6de39a02685157eda9875bee3a679303567770cacd5e2f8b131eaef9f18"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r52eB0.m",["ba7d3ad9d7fe70292575f8112b772b9c2bbeb2ec07623f3e424ad02917a706e0","57a5ab320009a4ceef47606e55eb9695f139f93898b764521a5e8808095f6c52"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r64B0.m",["5f58dadb116a0fb86ff2fcadb3ee4a82b424c15f1bdd6e3015b1bcf9eba8bb84","a3554a94534e33a067482fa2b7a3b3f08d8db5ed661aa47f36e933580e5c2057"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r75aB0.m",["ec0c9a0460ba78541f593bde991dcd7d1ff5e5e2f04b0636bb9f36a24acec646","c8459c3f025fcbac651126e29fa671aa81f12cd1a640664754f6d6eaaf4f970a"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r75bB0.m",["9246f8f0b4a4eb400c024425122dbe4dd069d1f90a052a3c62b6d707371559f","f9fb44772f0ae04ab406c55987e11e1e4796e19b0b2c3431b8cead91b5b5bbc2"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r75cB0.m",["267b35e154bbf19f84f8a8e280c7147bdb275f36d97545ed10d6fcbc4aa252bc","7c1d9816e53b8045ce184b824218e340943ff431337cfc74c830ac45ee2ca143"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r75dB0.m",["155ed5ee54ca440832eba742e0015aee364a595801335ca51e20a4f7d690dd61","f245f69f9d2824a4d5c30be903c71dd91e5e30577f7fc6a1f8fbec112dd16473"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f3r78B0.m",["25f4843e9a7304d56de7ebfbc124c1cfdfd5a3ac5b5753c999e1121171db007e","e3686e1660f35c59e3cd69eb1db0845cc6f4cf9221caba1c169f14ad180087eb"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f4r18aB0.m",["55f25bedfbc21d20af43c63b82595926b241e1787ff699593566164fc78431ef","8b3d78eb8f0b04cf313141d6b2bf502d5e908f5902b69e70eb482dd4916de86a"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f4r18bB0.m",["71f794429f8100b67377d10b12d35dc9a69be2cf441576293b78caafee528b38","df1bed728d8bb6e7940d601caaa10598c9c24a0412af2523aca65ac2c4c70f4b"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f4r48aB0.m",["33ba6c3dd45eb98f8e2205ffc914038858d479b46c801de1c624829cf93f7dbf","1f7cc7a99823e4b9b9d7163c9569d6b42b0ea343c04ea27aea534f879d429fe"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f4r48bB0.m",["b445cfd741959001d3ce7011b2dd5e8980654292c0bbf0c2b4be728430a863eb","92a7bc120d4199f71b8f0a54c6a60d1e014c9567b424023c00302a298de4eedf"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f4r6aB0.m",["87904688856c13bcf5288ad70fcc0a6437bbe7d08498418b9e28439ab3457e9e","399ed326885fa0ad40658b1f98714126e2a12dccf7013ff4497204f7a267e57e"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f4r6bB0.m",["e555904d952913515a37e524f47161ca601bdd94ebc4379acfe6f8be11579a21","e7b225faf2a2c4dbbbafc145d29f515ca6945da9e222b29554dc0317ce07c663"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f4r8aB0.m",["7dd8848e0c135406436825f670eb0ff09a0cb290fb53658aceba50b1d9eaddda","fb2eb8c2cf05f0496cfc87001b1b6f952dcbc749417f40d2b5ea9441885e54b0"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f4r8bB0.m",["7dd8848e0c135406436825f670eb0ff09a0cb290fb53658aceba50b1d9eaddda","125d4219848a822a3d6ce00ae16e92a0883968bbfc3bc311b95f17911ec53de3"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f5r12B0.m",["ad6a35f96d8bbaeb0101e9247dc9d755266d1b1922c1bbb277c228ff6821d6b","e72205737b6dbd0284725bd241dc679db0c6a9a0c330223cc10d020a8e76e124"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f5r300B0.m",["6049c45266ce9bc4dda1f43b7479b72b412036b022494e75bb20233c1fab4ed0","ef586f49d3080cb3935b7a67bf79af3e5c1c8262040e433ec1883804dfb3129c"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f5r39B0.m",["70775a911ae83c2a9f89538a9b6f452e29dd40e4fc44ebacf163ef2069653be2","3f63129b5840e461c351e7ae49f485b13f2a25875cf4fc9beece3baac5ef02fd"]]], ["TOC",["matff","clas/U34/mtx/U34G1-f5r65B0.m",["e19291ae390b17f80b11085bf7c7c38da192939f8dc14f9f1407c8c13a3631fa","75370acb8ed5dc87c086cb16fd6ef8697af7bed67066fe04aca0f74df811a50a"]]], ["TOC",["perm","clas/U34/mtx/U34G1-p1600B0.m",["5b6e75e932729c9b6fac3139f29a540eceb39d3020014720c702b93b2da6620f","9761e1e110fd3be8e2e65002989f237654d3287c31104ef3af10f0b1ba6ab166"]]], ["TOC",["perm","clas/U34/mtx/U34G1-p208B0.m",["26f1c9c597a49dc58274829d1d49b332945a10cb4d8dca2993f9be263aea8eb3","e91f254ec90e5843e3cfe927165599ecee6a01c0f4a224547c82c0721b662d3"]]], ["TOC",["perm","clas/U34/mtx/U34G1-p416B0.m",["d32ae307227eb643f11f968c460f434c8cc51ddbaedbf7e63d63de27e73b5f92","ad403cfb4b9c9dbc055ba51adfcd14d49bd025386c1a6a75f495cf6973d24c5b"]]], ["TOC",["perm","clas/U34/mtx/U34G1-p65B0.m",["de19c7e5cb50c601a23b7f82853234993f1b59beded3952b8ccc5f9c1c695a8a","bf443a7ad40832b7b5a64075c1e58929fd3d7aae08eb0b304215c53ca4fe831e"]]], ["TOC",["perm","clas/U34/mtx/U34d2G1-p1600B0.m",["9318d9a615ede34ce68afbde3e1e6f1a68d0854cd517c29903337b447c48dede","b40e1a9d191936d5d63b2e89a97444b48181bdea0bed8e1adc8b34e9ea6feec6"]]], ["TOC",["perm","clas/U34/mtx/U34d2G1-p208B0.m",["fc76c21ae0b8e269712e8cf5ca1bbfc04ee19a533acb9f6e77c3d51dfd18a47f","941a8ad6974c52a24a4573ab5a0fafa36f1f1b7feb4b581e28deec412571fef4"]]], ["TOC",["perm","clas/U34/mtx/U34d2G1-p416B0.m",["b51fc6c1fbcfcfa3ef7d41be2cd6af3e584fa1ad9321c1003e7677724a67596c","52b73f2dce2d74cb918b6c67178a3154dfbc747e0c55bb8383cf9f6ebe5fc8bf"]]], ["TOC",["perm","clas/U34/mtx/U34d2G1-p65B0.m",["4344f9bdaf8847482939db1f94fc594a4b929b5a5623ebdb7926f25ec2a2d46e","9aa304679ea58d2c2fc399f4c10eec6ba07f1bcb371dc259319ed8a757dd90d2"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f13r12aB0.m",["905458a549b52d92d38bf3ed1f335d4e8330748dcdce3cfc9610fe48001ea91a","c69ae4945e74d34f530bb1325b3b39b6451c9d8623b2d77e11f4651449c0f8cb"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f13r208B0.m",["30f99686dfa1107d87a17734d728219e669b36dab741209e2210950e4a366484","d3d4524d233aed26cf52931a2327e9b825c83aaca3a59870385c4d05cfb00436"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f13r260B0.m",["d25d76231988aa3ef18e3c29f5e8396d5e9c7f4dd965469ad92d8d9949e32ae2","77e30b0c89b0a4d942eecd5e8934187b8ce26fbd8f2384c7f23ec5c513ae6996"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f13r52B0.m",["dd4179136911c8bbd94514c663f178bd44397b46daa99ed0a8210bf22e53cc3b","de474e9b50a7548667f59ef8ed6e91ddd32f643af08edb82c65cfa70fa977b39"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f13r63aB0.m",["b3741c8f6ae9314ad67f28f8ecfa180020357dd81bdd786599e4b156eb46e26a","b1042ac1dacbc1ce555c44fac7f4a451d5b7141423fcda30b6a2edf00aad2069"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f13r65aB0.m",["708d2cb78dbc3fe3bdcfe8381f627aff7d028c778f5eef9320b860dcca566664","7d920cda01653a3ac7c000c6415de9d6360936fe6a1746503d99a524c666555c"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f13r78aB0.m",["161a57eb63a351212d3ee69bb961195cd387c7720027caceabf0405b49731a82","17cd66ebcad4563a04be80e0c099b33e746de352504b966dce5c6159f1d067d7"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f2r12B0.m",["55906fc17cc88c32f319751a33ce612ace0fcb41ca8806941ae8eb7207becba2","755e98f0d401902c995d032d40bc66061afa46b8259b30d9b3e6e299f14a6fc4"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f2r16B0.m",["152a907e9ac2dec16d18a201ca420bbb825d42c3e3f947ca506bf3943a0a90d7","1b8daabc1d99142215325a08078fed6b478472c05b732c7c4b8617b72fa38c3a"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f2r36B0.m",["69831e878e731b98e182f8a6d3f309b2cca4e2f483c2e1fb1e243988e2b2b71a","6ab60a76cf002df5cc0022669fe961272cddd75be4b157178da56d7a387f247"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f2r64B0.m",["52a13b71248f28daca24bd7ddea7fe9094c6064b62cc5bafa0538921fb1f46dd","5c7e439b05e28805d57211fcc456bac22d18c39cde301d70c4dc6924ae5d83be"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f2r96B0.m",["6d234f57d71a8a27aedea517ec6010cec51a668fafc7f36022cd6973881882c0","6109c8da31f878942750693d3923ce1e8ab60cb88681c7e9c203993a3fc38643"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f3r208B0.m",["66ba5097963c95abf3d03e19f853dbba93b0acdbe32f35d445475f6f47c738da","630acc53c94abb2d2ce4b7bf052bfed3bbf8dd6e3429e4e1b452d3aac907d423"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f3r24aB0.m",["96d619c9971daba7a3305aad16224ff8158f11c4d6b4f8c4734822cbc92e1864","454ad5edf805923f9abf2c1aded3c48eff9ae55af2736f0925112097a3aae57d"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f3r300B0.m",["651dad3b2dde0b3417797d692f238c70285b22b714fbce652d219281e4d46b88","f48c3332763d7799645d5f8506e77cba02d6f031a8c5e899004dfe66a5bf7246"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f3r52B0.m",["6413e233d0f40c098bde57a199a311ec9ee898fabbd3350386a07d68270ea920","b0471024cea29880acbc9b2f76fe89203926804c358c3dafbef2bf85b4c17626"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f3r64aB0.m",["28e2f30f4bc6f51923a2f5e18a6c681525afa7f2a5e214d3700eb70329395a4e","15db7206ebdc771218a520826ca3386d80f528848c257975f1ef7e801cea660b"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f3r78aB0.m",["2c75cf75f7e9d66db25f2d8bbf4456e0b1ff6264c26a2ae139fe9d29274c56bf","e53e12700b683c0acc638847d3af8cd72526ab7e3520c871b0d32d81437a6dec"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f5r12aB0.m",["a1d5f3bf4a18458ca3ba0e08c65a1f88b19588c368ee6c4762a394bea2c16e12","995039fd5fca32e41a39a3241e7406f759626e88c21de593497654e2754c982b"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f5r300B0.m",["189d0eca417edfb6655bdb19d9a8bbb0521ddb8f04f28630506325aff400acb5","9b6a100f2b31ecb5ffd40cd292751d36027e05c7e3853168bfb46d2dc3db1d89"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f5r39aB0.m",["3b24ab15c54088c21d061f9e35fc7cf27aceb05b7b836db7c2a139892171429d","add2a5cb63ead23c8a346158f690b8bff8391569312cb494d83676024e1de709"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f5r65aB0.m",["dd94e3c17de10359cf562c1a34b07b7f57efdabaf2b40df2d8cba858e93239dc","50d1667ceb6dc8d77618b7b66e30ece0996f2bc1bb7f51e480cda450e0169a57"]]], ["TOC",["matff","clas/U34/mtx/U34d4G1-f9r12aB0.m",["7cd573efdc74d593dde38dcd70d9074d443e549c7afcd32bcd101fef78e3f5e4","6d5c9480888cafdfb4ba6275ebc38fbe036bcb36621a91d04dad122add790c16"]]], ["TOC",["perm","clas/U34/mtx/U34d4G1-p1600B0.m",["38e467114f3b85cc2f32246ce2848d1f29d179af9c9506270ade53a4d99735f4","48dcc426868a4a3c4ca1fee3c024ce5f9cd71f838e60b9f1f03ab64ead77fe86"]]], ["TOC",["perm","clas/U34/mtx/U34d4G1-p208B0.m",["1a3abc8fe0ea92f42adc677cb96f6ac258b81c4faa10370bf8e81d9e8b43a986","be61c4b0daae5108de0e7cd39890bcdf75e6f35584280d1de95c17641848cfcc"]]], ["TOC",["perm","clas/U34/mtx/U34d4G1-p416B0.m",["a9ab5b4b590f7b9b06f0693dede232dd0de5830f25355ab034bb1312cdd079fd","1d1f920ad1310bbb8414b8a0ff0a1aa1d0aef8d2f847afd7fa113edad94e3c44"]]], ["TOC",["perm","clas/U34/mtx/U34d4G1-p65B0.m",["7ac98f3a3ff88675b54445ecf0759be0e02d92a344795db53b2db490f88e691e","fe0a07adee31bec8e4436b3d280a519cbc54e0225f632162a5eff91b8e9c4a5b"]]], ["TOC",["pres","clas/U34/words/U34G1-P1",["3c6514a76760f4b5f9090846ce9aff986fb9fe629d92b0420d6f00b1613799a"]]], ["TOC",["out","clas/U34/words/U34G1-a4W1",["f6723d0e012349876e31808453910b9cb28c078362555d1fc229e0e0798492de"]]], ["TOC",["maxes","clas/U34/words/U34G1-max1W1",["75f51b376d6b03e1900734d3da659e097d155eee74ba4c3f8a820aaa8beb5b06"]]], ["TOC",["maxes","clas/U34/words/U34G1-max2W1",["ebaf2145806b6342d43e097d18e2bf270a276172a392c69fc5db16b0684417f0"]]], ["TOC",["maxes","clas/U34/words/U34G1-max3W1",["5d862151b8c6aa9c50d7e3b4526d3520c80ce4a6351ea98bca8766e851c7a6e3"]]], ["TOC",["maxes","clas/U34/words/U34G1-max4W1",["2847810293889e704910a82b6153b7e612d7257d2d91095a5e4c4a4e3ba2675b"]]], ["TOC",["pres","clas/U34/words/U34d2G1-P1",["6fcddb7bbdb23990e6563bdb12404869129761edebddc094030e0809ad844271"]]], ["TOC",["maxes","clas/U34/words/U34d2G1-max1W1",["afcb2cb354fa2f5ff97920362fe247388d3f6ec57708bad5bf725914480c6c29"]]], ["TOC",["maxes","clas/U34/words/U34d2G1-max2W1",["37552cf876043525ac75aa44d73f9b313ac38bc101c403bee2b7e6284c84deeb"]]], ["TOC",["maxes","clas/U34/words/U34d2G1-max3W1",["eace94a0ae880f5ce6f6335d6583832e7c6ba36479a84892267603416f9cec9d"]]], ["TOC",["maxes","clas/U34/words/U34d2G1-max4W1",["4402b05555244b0abe50cf586997450a6beaf4638d157526974c43d32b1eac16"]]], ["TOC",["maxes","clas/U34/words/U34d2G1-max5W1",["1ea9cd6d551702a61a0df88963ee13f0e642aefaa17490d167e50526ca78bb39"]]], ["TOC",["pres","clas/U34/words/U34d4G1-P1",["d3c739f0444769c429674b02075415881bfddfc33dc33a1fd4a319bb044a0bb8"]]], ["TOC",["maxes","clas/U34/words/U34d4G1-max1W1",["6914c739627e537c7715d9dd1117d5b7ee2d87bf67f94ec54dcfcf4f2cff0ba9"]]], ["TOC",["maxes","clas/U34/words/U34d4G1-max2W1",["35926122e136186df3d07b669927d691303a0a3dbef40b7d268d4e59bdb85aa"]]], ["TOC",["maxes","clas/U34/words/U34d4G1-max3W1",["50249e24b2e49105d5f23771bdea2d0af20da5bd55b744a9191b5ca6461879ea"]]], ["TOC",["maxes","clas/U34/words/U34d4G1-max4W1",["73c62e50cfd7f2693e88be1d778330c0453deceabaf00268797dd1001351118e"]]], ["TOC",["maxes","clas/U34/words/U34d4G1-max5W1",["5a3d6059ec634cf1d4a3f9c15e656620e8e5937ef529bcc364c0926496a34198"]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr105B0.g",["bfb3734c9a8763dbe2a191c88e9c97fbfbb64e6af9776ddb74ef807c867af57b"]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr125B0.g",["ec923091fef103571022e44fad96fe91db839d19453c8298c525b510386262f4"]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr126aB0.g",["df0f0dfd862b7e9b5acbd7bf42394d959ee284bba4b5d62d0c7739394cb43a0c"]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr21B0.g",["ce454448f9b246c3ffce862a2da6b3301c12960e01d9c861e1377ec04da457a8"]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr252B0.g",["d053d1d34e778d4fc65ee9722d36837aabe0448d7a8147010db24334ce8d4817"]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr288B0.g",["a0fe915646e25d3a5a4ce2018219707dc49cf92fb12a5163976dcf6b0baa0031"]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr28aB0.g",["2c28e13c77dc6705f264ad43b2d41ecdc1d9bba9bc0b9a4ceed8ed8fd4f99a36"]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr28bB0.g",["7d180cd72112138a4402ec929e4350791ac6f43e016b2cf949e1542c8dd3ef7"]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr28cB0.g",["3759dfc0902a816b5038b03bcbd5f81a28f10c45d1819893d15a7a92c0896685"]]], ["TOC",["matint","clas/U35/gap0/U35G1-Zr84B0.g",["2822ed381c9055d2c653a97d158b89e6d38aade6b2c484137dd060a54d411137"]]], ["TOC",["perm","clas/U35/mtx/U35G1-p50B0.m",["7a9dd27a75cb40bd8aaac81ab213fced6dde7dfc0213c54ede1f2c72495e4d33","e2312f9e45ec8f1e0748240e172eff394b01eb97d3a5855039dec8a1458615a0"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f2r104B0.m",["933a0024488bc26aadb1dfa329105e31dcb52d7dc0a3244295d857a00b0eeed7","c84411b21ba3b36c550df0a01eb4cb011d09eeb71fe241c5c27fa2bbe4b9d393"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f2r20B0.m",["be82667d620d55e95723f5cb1ec53a9e8c13f221cb382ea8b3c6ac22387a8dc5","5a4c8a775832eebdc9a03dbbc2a40ffe7d7d239ae115534fdd1433584be14b0"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f2r288B0.m",["fe1c8bf5dfc22263592742a1ecdf682a34f44f3ad81b0a097a3a6132c459afa2","6aedcd465237362b644cc05bcb93e164bae6a9e452a242dbfd2a6343d9e58d71"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f2r28B0.m",["1754f0e6b486de3ca9b9c5799f93ccb103bc915b7db6e5449a01a05c5433a39e","59c062a89641445321fb074cf83c455e00ababe7f967b2ea7fbda4f4b8e3a7ca"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f2r56B0.m",["6bd1a99bb9405d538f9c14b8b59c0be34c77a5c952a6290e5c571d8e5a83c8e3","f093c8099be3222ec8a98a8cac937443216dda1a29448444824fd938c3a0498d"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f3r126aB0.m",["312d405728588a74a132a264847adb082eb2c77ad3d79de20493fb4bc151c32b","812cceee9fb4cfb0bf87fd495eb8aa5f4f9ec3aefba4eaa6abe194ca12cd5c3d"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f3r20aB0.m",["eebec21ba8035f84b6f55ec29d1428a3e6d23a334eddb38443d27f4fc3b1a3ce","43de58f33779f94518ee1f43dfba36596ce4873581c8a1a957606aada60f0151"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f3r21aB0.m",["3d40fcad47d8e78606c300c293a2d3eddd170c2b32829c897cf5b59184ab5665","6d0e54b16fcf9b9679edf54fa0ac778fb90a49c737228ba8304204042adf998a"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f3r252B0.m",["f0a0a901dfa11aad241004caaabcd06d963940ad1ee0c75601d9e1e740629dfc","9dc78e6383e1414518cc2e91fda01d32a070adae5c7caf79d3ecc7063f91f39b"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f3r288B0.m",["cf82a328547f6174d5c5e8d628fa730a27a70bb5e96f20b068807336af78cbe","6b08c3101b5e9e9a51427e84205c23a1fcd3fcefc61bb63bce9bce2d7cd0351a"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f3r28aB0.m",["cf35b802c2fb63ffd988f19948251dff39a0e43d921d1e381e9e0e3322d71ce5","319e09cf0f9f9fc70260b5b4180f5335aa8ca372f625a9fbcfc4369b194f7bfc"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f3r56B0.m",["ac8c71d827618964683857afe88c0cc9acda89e819b074da383a24509b61537e","edf1006145916516858bbbe7c261029fd2dfadf728fe2a7be87b4d066477c3dd"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f3r84aB0.m",["fc36680b68cfa91641ba124b9a53830a93777eff83d7e224752653679412addd","4a702202327bbc1dcf84dde8fdf2101e96e790799c17f4d6178b04986e6e8cfe"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f5r125aB0.m",["16290b34178474bb3c905a10729a562fcc8828127d455708a34839f59572f18a","20e8402d23a2ae6bd5b479d50e0587b97c2166642fd38face63438f83b3b8a85"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f5r19aB0.m",["4757fd0b7e143a4a0e330a56a5cc882b3e7584b0c4d480251aebcf3000b60725","548502eb99b70770530e687e0c021911eb3c31cb304dc376cebeb5017258a3f5"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f5r20B0.m",["15577321850cb2e84c50f44fafd61294405ab29273b2a0f9e239d9e33273bc8e","f047a2f8060eb30c7f8d1809ad0be63f08d8c2f8a7075d8f0e8b8f32b0a778f4"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f5r63aB0.m",["ec3651879ade84cd4b5e009dfba00b41718c31ffc91cd25fc52bd432ccc51770","c82a526fc587eced265cabb16d87d291bc8bb164332d3c8a62824fcf27a04ca0"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f5r70B0.m",["7e4f4142448de29ce702462e7035713ceda30f211b0311e0e7ad19b479b0dad9","c53f653ba659eaad4a5a6535c9b04870868f7520a15cc76dfba4212da1252f9e"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f5r8aB0.m",["124ae00247921cb8650ef8c4d5a6e609588224b13cd27207d2c4f52b20eec852","3abe6a649025297522643e1992a8279477b9b3043a4c95707c9789e27fa4fe2f"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r105aB0.m",["b3cc3f5dbac80e2b3afdec6596b27764176d42b535a961b0d69ea702769b7d41","9945f3629f0daa6120b3d2ff839b8efdbece8d0e58a563374e538ebffe7caa87"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r124aB0.m",["de7dc40f2fca65ca69d264d1f606d09f22c825a5528f0a023f1d3d318b6d3aad","f06f352cb7476b6c485ab2f4b583750f3744fae16d88328f4ffaad50f37f8101"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r126aB0.m",["5b38733182b3a3997f61d01014670f71a27ff1f33e90887a226f886c0d740759","e634d3926f4988b5217704b72c61a89523d2bd4a3fd7e8884a8dcd59e8b2c28f"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r20aB0.m",["e4380dfcb78b1da69db2ac1d8b642aa439bc79f52c9c2abe6c243ff67fd253fd","3cb4142026b18c56ce1c06bd60c18e7552160dcc3ad0f833abd01f344e1a5158"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r21aB0.m",["77b9af978a94184f87c6e0e7e4b0983fd4573bec9d70f232f0ec0d6e0d6500c1","f1edda752a8850756ff4decda85ebffe602b765cfdcfc55605f5b5189a04076a"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r252B0.m",["15752253a0fa1f61b0d07bd539c8614a28f7a43aa690ab21228339b0c0f270a8","5a65e2dc21f36eb1549ea54a190e6bde36add382a5b573a8cb87befb49bd4514"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r28aB0.m",["532d9b191f302cec5f9570beb0f703979c1a14259e51d5cfa4b8e6e0cc615201","b95f3cb2cf665d8b5b7cdf3cac5d3c5fd66b716595e91eaefdc624c9e518a60d"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r56B0.m",["429acb91fd380bb9e5ebfe31c35b7fddfcb1ccf09d2239090776e9eff7124e79","97f851f484cbe6a96479e002afb46f92af8f8bb78b37c94effe45dc9c5d57a8e"]]], ["TOC",["matff","clas/U35/mtx/U35d2G1-f7r84aB0.m",["26336d12e3ff5d563b04f83c27d7cd31dfd34a790cc2b0003d3e458c4c2de384","450723ddc934b74c9bd1b3617affdacb1216e26b3b1205fad42643d6e9f6083e"]]], ["TOC",["perm","clas/U35/mtx/U35d2G1-p126B0.m",["ca32d6daa239d12d548b9a202af879f8d1b31093352c9b7992f98bd51aab3dcb","21ebc6d903f29da5ba4712dae142930525be035b27883ec950b9ef434b37216c"]]], ["TOC",["perm","clas/U35/mtx/U35d2G1-p175B0.m",["32250ea4227ccb77a095455d87849ede5890400c3b4801fe4da4f5af9bb9bfe1","34339ab625d75be12d4e0c95342b15e36609ef14977bcab0944238c1721efa68"]]], ["TOC",["perm","clas/U35/mtx/U35d2G1-p50B0.m",["89b38dd9a6c80b9a4817e6ec92d188ab76164657e653fa74abe5083644231497","5fb85262f31df8d7b1c37746f723fa818a1cc7fdada6a632ab45f107100f0452"]]], ["TOC",["perm","clas/U35/mtx/U35d2G1-p525B0.m",["c88690ef55ea064f58a33417620a1525391b9dd37f5d4a9521829e9ef28af015","d63899048a4b6b84815799d8f80d5a965416e89583e9b21a9a4ad4638ebbd7ce"]]], ["TOC",["perm","clas/U35/mtx/U35d2G1-p750B0.m",["170e421c8ed6c1db7d43594b1666fdf077c0e1e68337767ce3fd192e9fdcc7e3","b120b8d2837a5ed9b5491a2acc89c38a7ddb2ba1e32b4508ea85931611327849"]]], ["TOC",["pres","clas/U35/words/U35G1-P1",["7a2c7f4ef2277af83422dc15ab1da805df281382949cd26e4231d1be47ef7dd5"]]], ["TOC",["pres","clas/U35/words/U35d2G1-P1",["f4ba1927c9d5b00ef72582a3ce43fdd8ecd688274e0b321a7afb538aa6518ee7"]]], ["TOC",["maxes","clas/U35/words/U35d2G1-max2W1",["5650af505cfa4801ebdb44caf29b3e08958c1b7a21b602c5fa8ad2a5faefecff"]]], ["TOC",["maxes","clas/U35/words/U35d2G1-max2W2",["758bb9e0480a5359f4a34c989b0a07722bdb81ee7199ecc250cd473b63e1f1e7"]]], ["TOC",["maxes","clas/U35/words/U35d2G1-max3W1",["417a575ce90ed4a96525df4bb1a15d273ecbfaaed7bc3912852cdef9383fb21f"]]], ["TOC",["maxes","clas/U35/words/U35d2G1-max4W1",["38b18c71295bb292969a1a5da47b4aafc2848c0057ad4b0eac03729ca8729290"]]], ["TOC",["maxes","clas/U35/words/U35d2G1-max5W1",["ebaf2145806b6342d43e097d18e2bf270a276172a392c69fc5db16b0684417f0"]]], ["TOC",["maxes","clas/U35/words/U35d2G1-max6W1",["554e51b29a83d2881ff7ccbf6944b02d8edc9a15e2510867f67b312f6cd771c4"]]], ["TOC",["matint","clas/U37/gap0/U37G1-Zr43aB0.g",["77598517dfc632aac3d24f04843532fd15d60fb9ff6d26852a47c21ef4ba4a6c"]]], ["TOC",["matff","clas/U37/mtx/U37G1-f2r258B0.m",["3621d6bacfde8f39e69922fa4d7a077f72f473d6d43b4dad95cdab52bd3dbd0","d0dc94b0d814f439a0e4726e6996d95334f78392670d9a659ac0e7a18d483b6f"]]], ["TOC",["matff","clas/U37/mtx/U37G1-f2r344B0.m",["9697e7f74562ec82aca42f1917f572cc2c9b3780925e6d7a285b2ea782bc35de","22b09df907336042d05b42c364ce0fc811fe7fb3224c784998d0d4ad70122b9e"]]], ["TOC",["matff","clas/U37/mtx/U37G1-f2r42B0.m",["8e01b0a943b593f726d822ff2fdeac5657bb5cfd792b0a9c9257bb89ed75e961","72820b07b139772305f6d9f5d76e141820241f5db41e9a536f8f38334fd850fe"]]], ["TOC",["matff","clas/U37/mtx/U37G1-f3r42B0.m",["fa611dd642e4e3e2121d3edc2d9f4f179ef25cb0b89aee13a5fca2f1734a3e72","2da47b4032d0bcdb34e7d298910eb40d3bda027073c82165ec92967d0fd602f"]]], ["TOC",["matff","clas/U37/mtx/U37G1-f3r43aB0.m",["62c4734fbf9435594b608aff5a0f090b543cf221e32f31da96748ae5499b3830","e33385b4549deca3bbf37b0c58bf1a9e0ebff415a9a949ae765b77280a520547"]]], ["TOC",["matff","clas/U37/mtx/U37G1-f43r42B0.m",["79b90b6216a4c9a18af9b208d6806f9bb1dbac5c263a9e817c07f915353f710","afb87c7c538c9725851830479d62455c11d911f965623d371a5f5b5e6109aee7"]]], ["TOC",["matff","clas/U37/mtx/U37G1-f43r43aB0.m",["c504f31648b11b4bff7792c09f7bc63a1cb94cfc71306dae522b6dce8c64e1be","3b9e01733680d9cbe384a91dc6ba9dc2654a11c905ac5611d94c4e5ccc7d60a6"]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r12B0.m",["c2db3aa7e01ffbed81be5fa8ed1685953ca196ec51e20cf262bc83ecb4350636","2e9ab369e5b6e4fff35ec17eca62507682d6355a11ce7c8005a1a73b3bf28055"]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r20B0.m",["ce74d07a0c1bf2b4e95c1fcdf2a51343ed1d20f2b21111ee198b6acb100e799b","61a98842c47b8cced1a7f5eea776f3637bf5930f766af30d0673bf53b0b9aae8"]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r27B0.m",["2ce9a88caa4d61b023096d2e36c921f4e58b7c1a68d48b3d16ff38dd25432a36","bbf7b9d3d7256d348da95f422667a8af2b256f88d3eee75a1bf9fdbc04271736"]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r30aB0.m",["7b3e15dbc15da7e726e4150ba1ced2bbedf29af0aa8532c1b564c4594f7011a2","ac16124bab7f75160b08eb51ff0739a99ae333fd5fff696c39f3518b8ad9f50d"]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r30bB0.m",["8032e7083677bc4284fd433414c6e81ffb94cffebc9d458822f1f8dafcfbbad4","178f6e820a312f1ce43b447b0cc49b79798e2d53128731f85cda69ab67a3c205"]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r37B0.m",["b2aa5b84f5a135c1790e8a0ba57d4d768230e5f18b85f7ae7a6fe91a6e4d1576","c96f9a3d8501bc226b4941dedbd9dce19e8c96c69c0833c7a6cce844e9674e68"]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r42cB0.m",["25142ce3946db03792a7a217074c9ca16d59e4b93f3764d0b4237e6239b1bec0","e819735ceee70f672aab85d0e27fe46d5469bd1cf93e70f1f25d2941eb029eb0"]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r48B0.m",["69541d747e0e2c6deadebce394d6e09acb77a2fec7ebb6fec00c2a0f95999d0d","c166b1197b11ae2c02a8a0e322f3fb98cec311f3a9420c51981695408c251c3c"]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r6cB0.m",["d8158a9fc20f61b9774c14e4004c0fada3b4ce25dc6c576525750e5fccb2ecb7","225d0034a55afba11888a719d8d764678e56fe3ddeb42f589dd270b6eaa8336a"]]], ["TOC",["matff","clas/U37/mtx/U37G1-f7r8B0.m",["1b4143b4962c459cc800eac75fbbe4e760b037e342ef69de83cdb3a2a3aaaf26","b1422b31b076c44240131d7791616774028f0b99f80a32887a5cba9295c07f59"]]], ["TOC",["perm","clas/U37/mtx/U37G1-p1032B0.m",["ddda6c89200b44c0b41ce74c416c5cac5fe1fd6a745e7012742c74450df15d64","44994737e0b897e3de1dcddde70b71437e11db70f836e517947f3b9f4f6832df"]]], ["TOC",["perm","clas/U37/mtx/U37G1-p1376B0.m",["6ad9d5a0011bc146212d626c65cd9a1d71e5013d0d111da7426de0ffa8a3629f","d4e9a7ca68f50ee68d169e483573fa0740190bdbcb8e5dbf1b3f4dca327420db"]]], ["TOC",["perm","clas/U37/mtx/U37G1-p14749B0.m",["f22cd1ff43ff24d78babe03fc62df8e04ff24ee3593ff34edcd0da98b390197a","da93b643d2f2f551ba90057642fbd2ea061f48f6d5241348da6084dfb0d3e316"]]], ["TOC",["perm","clas/U37/mtx/U37G1-p16856B0.m",["47f5f0d0dc08fe9c174ebbbf82f6cd1f593d477dcca24e5e74cb6aca638cd4b2","d739864e6b5bae91c03b3eab4dcf713f2ed65d26db4d149701fe5444b2d3e5aa"]]], ["TOC",["perm","clas/U37/mtx/U37G1-p2064B0.m",["336d61a481f865cf8cadcb753dfcd5eded8832e24fcead5e6fc7472f9feada0b","3b6ff4585d269f2495e705b6418a7cb54aa5fe6d602fc8fed945b15153336c81"]]], ["TOC",["perm","clas/U37/mtx/U37G1-p2107B0.m",["350092d0bcf2dd63e17a4a3bcda82965f48513484ed473075080ff23a78c07c0","df027ea75b6f2c0467a32b9ac517e9da27b92c0fdcd00ca24ee8722499654f59"]]], ["TOC",["perm","clas/U37/mtx/U37G1-p344B0.m",["7539976c2ece1f7762c9709d4137b7113a45502eb8eb75ea3b6581a63109781b","839191e696be701261a224c3cce42501bc8cbbcabb16319f1701dd14d39ac50b"]]], ["TOC",["perm","clas/U37/mtx/U37G1-p43904B0.m",["1f04f1a7da87449f06b40cca1ef5da1e48cf98449e0a7ac61de2fb482b4b12d3","aaa25ab4c9266e15d0eb048e82768171f340094547826aee2779241ebd8ff7ce"]]], ["TOC",["perm","clas/U37/mtx/U37G1-p688B0.m",["d1b3899db7775ec2121628b7a1cb4ee52a2564d57f45276372b83bdb45f2cf12","4398ca90f32a4c67e6a577fe0ce5f918a729ae08a740ab78472a63c559896772"]]], ["TOC",["pres","clas/U37/words/U37G1-P1",["1dcb0c64310871bac5a8aa29ede21d8812b7d4aad7c756cef968796c3bfecd6b"]]], ["TOC",["out","clas/U37/words/U37G1-aW1",["3e7f787bdf89f449fcc9cb759ccfd87c3b499d4e16766fee338ff43060ba9f1c"]]], ["TOC",["maxes","clas/U37/words/U37G1-max1W1",["1b31ccffb73ed23ee10cdae1e328e6215f479eedeaca94e970a3265e9cc2761d"]]], ["TOC",["maxes","clas/U37/words/U37G1-max2W1",["606516149ab2f8205eb45b0694fab00e8b593a1ccc6c6c07cdf87b4406c61453"]]], ["TOC",["maxes","clas/U37/words/U37G1-max3W1",["5f5679391c5ae5aa09f9cd55c097e8d976a2d54abfb32437c553ee214679b766"]]], ["TOC",["maxes","clas/U37/words/U37G1-max4W1",["299a652ad19fcfa875ed583d4d3350e1a4a29e4329aaccc8a6ec077b502473c3"]]], ["TOC",["maxes","clas/U37/words/U37G1-max5W1",["2cd0f6a7adc573d07e35f7675c764f3fdfb94978ac7d1f10350bd002c09bab08"]]], ["TOC",["matint","clas/U38/gap0/U38G1-Zr114B0.g",["62efeebabe35b30dcf68538cbc99d64ef788eaad714e4d9df54f6047bc97706"]]], ["TOC",["matint","clas/U38/gap0/U38G1-Zr133aB0.g",["d2d1a26147423f10fe520f188ab5a3814670f8abbe120458777896de52960018"]]], ["TOC",["matint","clas/U38/gap0/U38G1-Zr133bB0.g",["9bcd225374f987ac613511280d2bf958cb23b492de3d7ed116d54be8c77e2f1b"]]], ["TOC",["matint","clas/U38/gap0/U38G1-Zr133cB0.g",["bf18f33b02a77f6a53923326d746ff924e1fbfd2cca2c269982021f55a63eb3a"]]], ["TOC",["matff","clas/U38/mtx/3U38G1-f64r3aB0.m",["61e10a86b1973e2e89fc7f198da8423c333edf67bdae6bcc5f9267d0e7a2021c","f19ecb651a0a9fdcaf08fb82e39a92898571ecb64c4e2e9abc8dbe2386bfcce6"]]], ["TOC",["perm","clas/U38/mtx/3U38G1-p32832B0.m",["57ea26f0cdd0b4b3b0d5c99bdd6fe6ff3b3864ccd8417af02f34040a5efeb464","2ccd9cbc609cc212b8d7880a413682914030579648587538023b9ee6706a5f35"]]], ["TOC",["perm","clas/U38/mtx/3U38G1-p4617B0.m",["d493960e5cb9347cecbdfaefec368024808d830a436eab9bfe1a4e9cb5535e22","7edc5359ec7903fc7c9cc07fb05b0a3fd2fe92a44151580d306c078aafa8b718"]]], ["TOC",["perm","clas/U38/mtx/U38E9G1-p3648B0.m",["8159350bb26a1263a1808c618faf4169775bb60080737d3abfcde90029cbc1b3","f74c1e40e10fbee89fa4aea671ded566960d00ce8ca867c8d3ce5e6cd6800c79"]]], ["TOC",["perm","clas/U38/mtx/U38E9G1-p513B0.m",["e4e2428b754c0a0a37a03321419743fddfab858cbe80c98a50397be3731c5458","fca992feed3cb7043b0c0838222a69b5549cc01e7962feb0f62f6a02c3af234"]]], ["TOC",["matff","clas/U38/mtx/U38G1-f3r56B0.m",["7fdbeb84f618e35f0578bce092b80ee7055de4934b7feea22f34bd40df2494d7","d729cb0ea0c4c29aef970904a53ecf5995add8dff1442f91845711ad0adb7604"]]], ["TOC",["perm","clas/U38/mtx/U38G1-p3648B0.m",["b91c869d1bf9ad152a735f27d1f1aa017a7e62c35c5b1e23c222b41b90a5ae9d","9443065020c2f000f896b4e4dc7aa7d1fa9dcb0287d8bd8c2b4b5945f411ad10"]]], ["TOC",["perm","clas/U38/mtx/U38G1-p513B0.m",["2086017f880e4372bf66ce063edbb63bebb70ab67e63f9bce505cfb91801dc6c","83f305168ebdada66b6762bff98bd38aea1fa0dd69330a0a25f764d99911e981"]]], ["TOC",["perm","clas/U38/mtx/U38S3G1-p3648B0.m",["2c7736a9e549765af7594824e46062387a22187c45ad6c0d7ec8091ce45285b4","16a32061d862951af26d16d235f48a0cd2473003e8625784842fa35715a2aac"]]], ["TOC",["perm","clas/U38/mtx/U38S3G1-p513B0.m",["138d7925e30a3d56e3eda8a18661ba868952a7b4e5874b7825d274659c1c27cf","5f999b17c8a2eb5e820e88bf5e7beceda51cee8dddeaa8c6ab36959f76fb8f5"]]], ["TOC",["perm","clas/U38/mtx/U38S3x3G1-p3648B0.m",["464819bf45f9f6283bc63b76afaf7c4c23e5bb90a9b5d307f538aa3f314a0a40","fa943473ed400d36bbfcd4eeda7d6848c5de8a19058c19f14244d4abc6ae347e"]]], ["TOC",["perm","clas/U38/mtx/U38S3x3G1-p513B0.m",["2bd69d4e91577d3e92660158767468a7c051891ceb800fac5912a55c32077171","216b933ae7d29c0d7688273cd8a21dfb48eebfc4dbf263c22c223945b3ec764"]]], ["TOC",["perm","clas/U38/mtx/U38d2G1-p3648B0.m",["57212663a224d029db94692d72f667ff82ac9c150722f23ddd073c71fe8488c9","8ab19720c3716548720320c8eac5b5664c0754480b06f97be40212e439892c20"]]], ["TOC",["perm","clas/U38/mtx/U38d2G1-p513B0.m",["38af2c6d774391fead742e0d7b35f30807a239e6f1b92eb91afa8c9adcb7682f","47a7a975bd9c1280b6ba600b1573679f7da4e45dd57b00adad8618340b874c58"]]], ["TOC",["perm","clas/U38/mtx/U38d3aG1-p3648B0.m",["cb5ceb2157ccca2347af36d9439ef073b8a51bd547a129e5b0f50bf4d96677ae","f54916b9a00378101e3917d4bf6d2f30c3fc5f136a3178acc05f31f63c735bd9"]]], ["TOC",["perm","clas/U38/mtx/U38d3aG1-p513B0.m",["9a36c2ef90bd32cdd3d953f0e288b8fc3ab714551765f3e70cab4f166b9d95c5","5abfdc550cd0f9924d72fb140859cd05c66b55f634552878500dfce0a64f10df"]]], ["TOC",["perm","clas/U38/mtx/U38d3bG1-p3648B0.m",["e14ab6567dfbec95ec0b59e8083e493d8562a6877daa553617e5d0b93722ddb0","8301b5e4004ea26c973e116dc46333747c5d88237a435d513fd0350aa9e1e462"]]], ["TOC",["perm","clas/U38/mtx/U38d3bG1-p513B0.m",["940da6c3ceaea9137a2df81e69aad6023daeaca08431fe5940da80372365f8df","5f8f5f9b4f4c1e9f5ef8b4789c6f9f7669d51974010069c8532bb7eb81f034f7"]]], ["TOC",["perm","clas/U38/mtx/U38d3cG1-p3648B0.m",["ea13ee97230c8338c2fa8d7a1722d7fc89bb646338194ea0e81da5e7eaa71f21","27857472f0854cb6fd72e1faf37cc1c17fe2db85f3d0dad2211861849fedd4e4"]]], ["TOC",["perm","clas/U38/mtx/U38d3cG1-p513B0.m",["83b07c44cc75cecfc1e3e80d92691940f89ab3cc0b039c0fb6b353ab942bf7a2","6cc96876c055d217717e34179eb8ae71c2c5e857e808b127f6d613dd203f2073"]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f2r192B0.m",["85e0d05128ecb91febfd3e55b08423f5376b538d7d29b6aa0df33fcaee4c8ce","10c5a2d8dc204253201d6725b915d2d2f3e6e4ebe475b3e7a26cdfa87f3618c4"]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f2r24B0.m",["bbad88fdf38219fc59c5cab6f5a9b30366f7043acf8a64520c254940550f8eb0","43588dc03895260913f2fb6f26a389543da69246240a0ae1d6780d9ac7f5b52f"]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f2r432B0.m",["6c8973a512d8b3a8a95806024b30611cbc822c7732ecee4f1fab2aa960c86ae6","a92ec4f4734e9f7b64d9fafdb16008915a2b5bfaf835984dd39d440f4430f081"]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f2r512B0.m",["f4c2db45084c556093f2df2881f521e1011ef4ef006c0dda7e5faddedda96f3a","58d6d251e5111049ca79a67fb6643931e1b3e9907a15c92b8148867a7709b385"]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f2r54aB0.m",["fa2c0d0585ae110d1ea371b3c084e6f73d7ca74e7d2a6ff79163a5b4e4b58a6","20b33c00df652113378dd6a65b4467e306b890ae7dd6178db924cb1d4bd018fe"]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f2r54bB0.m",["18741202b510564671f8b87b741cf0efc60b3501779105a0f62875729b2d7add","50e22554f9474947a964cc9ee7f1279c0940e87b4acb9cbab995fdacfd290a07"]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f3r133aB0.m",["792832d3c6d10d6f7298c1b02b582b51464d6158c4fcf0189e3c279f634fc89e","41d6f90705c0baab264605730c421821947b57f4932797408476b3a2ae3d3f81"]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f3r266B0.m",["3f946bf414294ed45ca9a282578144bf15472bf1ba5ce8205ad9a40dc9211b09","7a3ba1355f3dc6da8c7227a0b78a30a850fbb520abe305ef22efb139f37e57e8"]]], ["TOC",["matff","clas/U38/mtx/U38d6G1-f3r56aB0.m",["af10e70b06eec14261deaba9f9a99f91b64ccf0fe91737018278da28e7854c74","f32f3288b4e847c63c2cb0c07327b86605394b556768729ec577ef681059ea19"]]], ["TOC",["perm","clas/U38/mtx/U38d6G1-p3648B0.m",["11824feb96b16cbcb87e3307e3a0341d3b87186523175bbe04dfdf9f7726e765","87e5eaa68586c5cbf7f2e9045d1eff9133a40fa6cacb6536f6b295bcefe6ca6f"]]], ["TOC",["perm","clas/U38/mtx/U38d6G1-p513B0.m",["c4800ae874202afcdf1244431ea0a70716b99c4c9ffe110867a8007a4f948705","4d12ad02b658f4ca427f6e89e0e3d68fdabd3399ede0ab1e70ca54c090a8d6b4"]]], ["TOC",["pres","clas/U38/words/U38G1-P1",["7d64e49dd423b933ab7cd149fe2a17fac3b5a8e547f702a84e7d119570b72d7f"]]], ["TOC",["matint","clas/U39/gap0/U39G1-Zr73aB0.g",["4ceac94d5dcc5ef6857baf1a2bf25db362921d840df71cf9ae4e04230e03c2d8"]]], ["TOC",["perm","clas/U39/mtx/U39G1-p730B0.m",["803ea431049134f5d119856efa6dce81b938dc9b37522e11d47a280b3ac06f2b","18cea0a305d63cfe7ec4837101f948e096f128ed3528f0b2a218307483157fc6"]]], ["TOC",["matalg","clas/U42/gap0/2U42G1-Ar20aB0.g",["8ec0bc41df6eb1cf899cacd4ac7bb408b2ca23d2298955e2947c420d6fb74a66"]]], ["TOC",["matalg","clas/U42/gap0/2U42G1-Ar20bB0.g",["930374bfdd00dbdb8f975960d8accb96184a185258e2b09b9700921fb70d3bd8"]]], ["TOC",["matalg","clas/U42/gap0/2U42G1-Ar20cB0.g",["c263f9bb16ef8e3b8512ed99bb804ef2219b5fc1fbfef02c5aad34621d10797f"]]], ["TOC",["matalg","clas/U42/gap0/2U42G1-Ar36aB0.g",["fde510591550e0d849592fbca058e371a457a6910f9a345f48421d8963aa24f7"]]], ["TOC",["matalg","clas/U42/gap0/2U42G1-Ar36bB0.g",["83def7d641e940bfb275f76a3b7814bde6c3ac4d79e54307f1f1ab212e00a8f7"]]], ["TOC",["matalg","clas/U42/gap0/2U42G1-Ar4aB0.g",["4cbf29cdbc7053989488d56a447ad4b121510427d04e288b366e5f3a8d6b1d37"]]], ["TOC",["matalg","clas/U42/gap0/2U42G1-Ar4bB0.g",["ae15b2d53f511c3be7a10dedc0a2f0fbdc586d182e07a4beab392638f1a0b793"]]], ["TOC",["matalg","clas/U42/gap0/2U42G1-Ar60bB0.g",["15ddd0356edd04ce1eb374823f6b038c727a78d54b899ec9f99cd8f3198b79d5"]]], ["TOC",["matint","clas/U42/gap0/2U42G1-Zr8B0.g",["d714889c732186a6eab0e040c345a954fe406422576c8a7a3794050513188aa"]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar10B0.g",["9db90bd262c137a9a0297ee5d7aeed571cdcf19a1b572e0990fd6e25070b8ea6"]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar10aB0.g",["3ff008d5c783c531a17b62823b55099031b9cddf111a9fac72d46972f5c08af1"]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar10bB0.g",["9214a9bc2be5907abb34b2181a78d89e377e2fcf93c6fce9762fdee5b4ed80a2"]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar30bB0.g",["e628271a6fcac9dabc874c1d19bcbc03a19d3c08474dd8b2512033ae11178ee0"]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar30cB0.g",["7942a4b8ac30ba5e4151dea714cf5c64818c701e8a5792ee5382d0bd38faf68f"]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar40aB0.g",["563ccf43ad003096966a8af6f1b0c615c1f204b3816268b08b5c557848d01e0"]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar40bB0.g",["36073a8c3f962b27f54ba0c9cd295ae9614361f851e2d379ab0400ace68768c"]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar45aB0.g",["25eb14ce2e2401720e49550ffbe70621d0e97fb2e974640c11113128b81c70e0"]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar45bB0.g",["a495b3d7f4b154e78a1e7de82247902e6ef1a55effe6b6c7eb330092e394b4df"]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar5aB0.g",["70c14587cb329264533fc0703c6cebae36e18f5e9bf2c4c57ba259bb4739fc17"]]], ["TOC",["matalg","clas/U42/gap0/U42G1-Ar5bB0.g",["2840d1b85fd2be4078c7a7f9285ed967a090f26d9694fcff7098272fc9073a12"]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr15aB0.g",["76b039c0eb86d7da70debcb6670ece4f4bb8d1151215be00738fd17ee0f04844"]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr15bB0.g",["e7b910aec1abe95041c117cc9b10ed80d5374f912654d396bdb8f7fe66821a0d"]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr20B0.g",["889569bb24cf8c8113ac76de47578d4f208e5008f1be267b8384157d261e23bc"]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr24B0.g",["7dabcb22b5c94f281423d24194005ec1e2e4dc7bba9696d4caa76b7f8fc3b36b"]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr30aB0.g",["c0d0052b784183d3cb74171cd1085c684a4db6cfb9484cf00a792ef852140dc8"]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr60B0.g",["9eb4c5a20739ceda59a4e6d2ba01db8dff50cb4de02e60569a804440aecf2fb1"]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr64B0.g",["4b82badec684aec082769a632e4ce607f5c27bd97ba4e0375b8fdca05ca10786"]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr6B0.g",["1f3f3fbfe4fb040b8ecfea50c2c25f62d84fe81fed8786a0e9f2d3b5c3cc9873"]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr80B0.g",["b479fa03886aee84277d76e17c7937615de8f1a76d3ae2a65c160c8fda816538"]]], ["TOC",["matint","clas/U42/gap0/U42G1-Zr81B0.g",["9cf36b89cee7428402cf4fa79bcf471b102ef1e99224129ac05afd66e7953085"]]], ["TOC",["matff","clas/U42/mtx/2U42G1-f3r16B0.m",["871e3418f002bbfed433132b4b2624e8f07ebf8e5c446e1ce7cc886471ddcff4","7137ac9c3df23361592d346224afd277e8d40a6273b7832414ee3d746054a357"]]], ["TOC",["matff","clas/U42/mtx/2U42G1-f3r40B0.m",["fc3ec1f8560f1bb299bf08a8cb8f13af6388d7f637b7ae480faadeef41658898","3a8c5b14750afe4cf49c6bf9fbd414c1b9ca2aa6da9ce807a2cf39798b5edd91"]]], ["TOC",["matff","clas/U42/mtx/2U42G1-f3r4B0.m",["c5133ee1f0a3e165a45de0687e84d5e13d0001354775f00670f1f3fe601f855","d13d22f988f0250b575987199449f763e92236c88b9a2692367a77c8dab05cab"]]], ["TOC",["perm","clas/U42/mtx/2U42G1-p240B0.m",["3f5889b474893ae5e29b2ca032d7cb48793f3145e878848e1000407ee7aca058","b1139aa690bd85463840c261f2c4c243da424361fd7e9721b4ead731c3b54138"]]], ["TOC",["perm","clas/U42/mtx/2U42G1-p80B0.m",["9c124a59f77f8e583cd22073536f56fdf8c23bf974d6d22c806a137cd91f5666","dbafe268d151421c41f9fa372addce0e035586b6ca305b5aff2c0699282762c5"]]], ["TOC",["matff","clas/U42/mtx/2U42d2G1-f3r4B0.m",["5a5e82ca50df27187d498fa21b30d667723066d13be1e4171510ce03a4d6f4b7","4e4d7d5910ab6f15ba1db5bacc02628d2e1c2e616313287268cfaacd8a63daa9"]]], ["TOC",["perm","clas/U42/mtx/2U42d2G1-p240B0.m",["16866f14571d8e2f4271cad52a7d41ff5d37685f0a4be6d2b42979da0b8a45","d2878124099e49f7da41db19b1803a00e9b063daea881dcf0d17e4a1313ccc97"]]], ["TOC",["matff","clas/U42/mtx/U42G1-f25r10bB0.m",["c3ea22fe3b15a88bfc103c292cfbed74b7f87defd32a2b3e180e8ed1cfa70bdc","8a9d14e6f87962a9be43cb6c1a906ae2e225f3c6dbd18af66601cf6a6ee0b1d3"]]], ["TOC",["matff","clas/U42/mtx/U42G1-f25r5aB0.m",["6a71b832bcaca8f9d7b9582c23f00e4851d53f0a637c04ee099f686183e9f2d2","55a9c3186b43109a7e07d78161155d16826316b7478ed9cf265ebf8b0872e64f"]]], ["TOC",["matff","clas/U42/mtx/U42G1-f3r10B0.m",["3fc5bec9709e7c45fdaa849885f2429ae9d7f0d348089ab35724ff8d878586c9","807bd91ec894cc634a9a3a23bb5b899eb2084c430858cc4b5be31f87ad5b65bd"]]], ["TOC",["matff","clas/U42/mtx/U42G1-f3r14B0.m",["8657dee2b9abc9b083fb753dc3aad55f92505a0e11e2723cd34cafc1f72b297f","ac3de33970177170fe1fb33d7fc1b5ff8b45803a6acfc23f1978fe491c407500"]]], ["TOC",["matff","clas/U42/mtx/U42G1-f3r25B0.m",["16d38c5b6686b79f207dea73e5bc51e5cf90ba0322882d855a06b75a466c9933","114ffac4b3d49d2a9b5cbccbcd032d0f7061cf15ec84b708bfe14682746be847"]]], ["TOC",["matff","clas/U42/mtx/U42G1-f3r5B0.m",["abd0b8565d248874730bb7785f40f272dc22215e626f3e15678e5d1f1e09e47a","e3231a0ad17464175002a60555f60850a567605db98ed57e7544d55152045869"]]], ["TOC",["matff","clas/U42/mtx/U42G1-f3r81B0.m",["b00daff90b57b006db589914073614b6dfb0719a518226d1cf6fa1c425d62664","6f49a02a6380a65ac829fc2ac0fb8d968874ae1890205e2c50db80f745a3f70c"]]], ["TOC",["matff","clas/U42/mtx/U42G1-f4r4aB0.m",["6137d454bac5c7cbc61705fc446218a6a1f87f97d1ab88bcb3e12ea54c8ddabf","a7a21cbb48f3f608c4ea9a2933180f7a68f343fcf33e05339cffafc49b8c7c4a"]]], ["TOC",["matff","clas/U42/mtx/U42G1-f5r6B0.m",["833c919601fb1661678e458e1317079a12a763b0e0bc9df4d2363e81f9968108","3af75dcd3904ce92a7690bd556e77e56ea624e6135ba43742638595155e76898"]]], ["TOC",["perm","clas/U42/mtx/U42G1-p27B0.m",["cdc384b7b05f64232fb7494951c62cd5536c48e001fad552b90e85632865f61d","943f2a017e662d537d3fa7c4e55b6d33ac1e3563132ceefb09967c0d568132d0"]]], ["TOC",["perm","clas/U42/mtx/U42G1-p36B0.m",["3e3827e0a8350fd1727275047265d1ab2e6fc0b206750a23468a22f1dfb385dc","aceeb13b9817ba4ee02506031562cdac668fd61a7166bdcedf86ccef361c6093"]]], ["TOC",["perm","clas/U42/mtx/U42G1-p40aB0.m",["ab0c2b053314dbc241c77565e53fcdcfb64be23fe8d65f1f49d7261d08d7e642","a0c55ea1b7114299f33bb8afcbbfbf4f67a5a2cad06e46a6c711364f625dbcac"]]], ["TOC",["perm","clas/U42/mtx/U42G1-p40bB0.m",["c0adfac7b6ce29888536f5e94ecdb21cd88153e2a5da7d6fc7a59d14851b222a","33daea93ba0354cc0290518d87707bd43155466b6cc49a1018bc7360108ca492"]]], ["TOC",["perm","clas/U42/mtx/U42G1-p45B0.m",["83ec6cdc8e471fe35f5dc01fe065f79b56c938a7140cef4110c964ec71dfc78f","e2f70e77daf591c906fb93f1a0971f2dfdc369e8f8f6f8b9df5cd678143c8f42"]]], ["TOC",["matff","clas/U42/mtx/U42d2G1-f2r14B0.m",["ccd9ffa28165c044419345ab237faae3259d8793e10cbc636b6bc2a313bbdbeb","156db036d8b5e0762e1f9ccefe890cdf782397de4406314b1c2e43dcc0925a40"]]], ["TOC",["matff","clas/U42/mtx/U42d2G1-f2r40B0.m",["343f2dc41e17c1a928d352bc649d6552877205eac9485da8255f144b6abf4c57","e256e933b4dd3bcd8ca30e5313d91607c6fb4bc9ca12381db61332b6534a809e"]]], ["TOC",["matff","clas/U42/mtx/U42d2G1-f2r64B0.m",["47608e4cac7631794c3a6ce51a104b1f5398c302afa68554efc9df484db1fc98","8d4b21322e220c4b306903cd333bd002e0cddd3cb74450de08f9becafd602fc5"]]], ["TOC",["matff","clas/U42/mtx/U42d2G1-f2r6B0.m",["f01fd8d24208931732fcc65072c61fe7dca6c000a86f9b9203cd2052cec13f76","f2dc2df5e20b89eb600f97bbd96a3e103788c8655f68cb044a92625807ad3354"]]], ["TOC",["matff","clas/U42/mtx/U42d2G1-f2r8B0.m",["242d9f558ac0fcbc1a55cf3ec7a98ae9c2e8d0a0a946298538cc7d43c6c5f09f","ea1a8e33a36c1174fcb83673a1a76dac6bf527ca634dabfa76a107db05a8aab"]]], ["TOC",["matff","clas/U42/mtx/U42d2G1-f3r5B0.m",["16f008aacc351d22db4c222f205b6dc39957e4b48bc492b153bd3f0979bfce6e","243be4608d126e64e66bd0d4abf94ebd8cd1103510106db3e205d5c0f9fc0786"]]], ["TOC",["perm","clas/U42/mtx/U42d2G1-p27B0.m",["2665ba093dc5ee98331f7c02d084597dd5a927bd02da6ca635baeaab748d400f","9c621f5f644a796bf79f59761b8290088161261ed993baf9d0d5fcca51a802c9"]]], ["TOC",["perm","clas/U42/mtx/U42d2G1-p36B0.m",["4078fed0d6344044d5a5b11199d37b8ba0c1ca7a4c01fcdc1f83e75e026f3c68","e5e53da48ea3ce0810af99800240aa33eb107696d7b2ef8f710c3f47eaef39e5"]]], ["TOC",["perm","clas/U42/mtx/U42d2G1-p40aB0.m",["33423aa8157a3b1e53df55cf77c70820bd303b0598a961054858a36bce4785bf","83e702a7664a7123d9cf34b8f6d2f289e3a26e8e51e80112556ccc9b623159ae"]]], ["TOC",["perm","clas/U42/mtx/U42d2G1-p40bB0.m",["961d7b3e78617f0aa87a8d9a421e16928ccd77088c9cd978b6d062cd2428e932","2557b29078b35f8c7cfcade29aa465dd2cb42f4483337230e467d038d51ea72e"]]], ["TOC",["perm","clas/U42/mtx/U42d2G1-p45B0.m",["74c5a6ecfc547fce36094572a4f1253fa290aeb2a87a17ebe338c7f8e7c4a49c","2528c9dd59aa179a32a51140e2d614d153a19547a5fb4ae3adb5bff61dd1392c"]]], ["TOC",["pres","clas/U42/words/U42G1-P1",["a2fc0249950e738a669d3d1957ee73477daa3b3d7fcafb7dc34237cf276f4ba6"]]], ["TOC",["check","clas/U42/words/U42G1-check1",["9653afb07d55cacf990b7648563a64e9191afb29db26b67c67b9f0e41e80d4a1"]]], ["TOC",["cyclic","clas/U42/words/U42G1-cycW1",["4cd73549f020a3e38ab8c5ecb1ee6b6ba8e02f110aef18ea64accc1b8af53cd3"]]], ["TOC",["cyc2ccl","clas/U42/words/U42G1cycW1-cclsW1",["a3df75c0972ece911475499a43643dc70aa2ed6243e5924b576392c511b458fc"]]], ["TOC",["cyclic","clas/U42/words/U42d2G1-cycW1",["8c0770f0a9a7914615b8d6083628ba68099327f4ade73491bfba8539a743c7b7"]]], ["TOC",["cyc2ccl","clas/U42/words/U42d2G1cycW1-cclsW1",["2649189458d7062f19f4a6c50d6108d3d7630069ba17cf9b6b76ea9377da247d"]]], ["TOC",["matint","clas/U43/gap0/U43G1-Zr140B0.g",["bd5e488965043f41bc3095802af910927b2262bbe14f3df877376d17e2c71ca3"]]], ["TOC",["matint","clas/U43/gap0/U43G1-Zr189B0.g",["d79be64924612f3df30ae9ca88465655eecdcfc851f9fcd6357783e79e8b9fb0"]]], ["TOC",["matint","clas/U43/gap0/U43G1-Zr210B0.g",["69faf0094315b76f02e13b3c4783d0cef53e5d8ab22e8d021312160e0111d483"]]], ["TOC",["matint","clas/U43/gap0/U43G1-Zr21B0.g",["632a0ff3886c51b51d456582fd0deea9be3a253cb26e21daa3db96ecd7161553"]]], ["TOC",["matint","clas/U43/gap0/U43G1-Zr35aB0.g",["8483ed2f75dc01975c163cba3c2e005408ef249dfd8cd9419dbff7c9e4e3eb8f"]]], ["TOC",["matint","clas/U43/gap0/U43G1-Zr35bB0.g",["4f37c5e2795f27d3f4ab135d99ac2298bce6008dc7ca28eed293c057adc05cb4"]]], ["TOC",["matint","clas/U43/gap0/U43G1-Zr90B0.g",["f8efb7acea0012b6cc75b4ba79e6e378174b43baf8e15cc0c243457a35d2d873"]]], ["TOC",["matff","clas/U43/mtx/2U43D8G1-f3r6B0.m",["d2f9a14a20b5d4559afb06548b39b9a613b096e3fd265d74fba9885e8319c091","483ca86919b30c9022f4882ffd492b00137ccd4e9005eec67ad124fb2ea64b05"]]], ["TOC",["perm","clas/U43/mtx/9U43D8G1-p756aB0.m",["f73aff497a5b0943f58fee11150ea0ad9cd3f8890c564747bcc84978b5f5672d","fe953922352c51c025f0608782701bc759133d0e70ffcc532caf7b9c5b5b27ff"]]], ["TOC",["perm","clas/U43/mtx/9U43D8G1-p756bB0.m",["121242b530678ea0bcfcdb7b63c040becd38e8bce5bc947c75460bb90c910d5b","cfb4a899a4f6110257a8be794052d60fd81db3f8c0b0fe0f811d92e92ac41efd"]]], ["TOC",["perm","clas/U43/mtx/9U43D8G1-p972B0.m",["8f5d7109755ca07a8d112674c0b84f6c7a8755753ec0ce0fcf07e5632953f64d","dd3864c7357521483738277c878a98c67c02b071fe2f1b7ff4192b006f1d3a73"]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p112B0.m",["478f172f2dacadbe371273aea657d4381427a68ff0d3e795cc585d63f6165140","78e81fe02e6055b9c46bdd1c2f42484c7dc516bb58f57649ec51b8a1299c334d"]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p1134B0.m",["a2395b3242211bb69fedb4daf197c628abfa61f896d3e97c9133be59329e4e6b","8b1e3192f0b4b53690538085951ac6d05ed364718fad08224192bc17cd903022"]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p252B0.m",["7ab76bbe71d3bbbc24db1841a82e2b205442d3f12c6825a4f2f132e778c083b6","660a652b9709aa865063dbb763770ca46aace3f01c3870a1a57b15c3c5b78094"]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p280B0.m",["4f9cdc0df1993860ecb61342d9cf3ce02614521a0834d3a669bb2bb3902b6da8","b81ccadd180ea6f3df408a5033ca087e17cbf603416027f4d76b94f6a73e7259"]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p2835B0.m",["96c75d9e37f818738fab6f476ccfff0f980653f467a18e81808d41a1df2ff19f","250087fd8a90e438c85626bcbdd138efe9e62cd634705b348e85dea9418f1552"]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p324B0.m",["dc02f7b9ffbeb62132b5af6b551a0eee2406e2c41f4e6af15d927c9f64b140","f7be3ea60489b3ef8e8393089da05626a5080a4583aad4f02af12727f5e7d798"]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p4536B0.m",["e2f5e267fcdac1ddbeffd864ade41b9746e240af11cb5abb648ffcf795f24f62","5315d2f3235661f499575419979b8cc0533767d36110f785457ed2a759a28fca"]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p5184B0.m",["f64efc15f69091a0ffb1b14b9dc5751a821525bee91b6ea03ef47d2b666b336a","1e75d3c6f8ec4bfaf5adac79fc992a8efb8c900e9277ceb3f0564b80130a298a"]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p540B0.m",["846cc933acb602947b9c85510ef736f1d392c5747be1ce287878a37bcd1187a8","4d1e6d7f97666fad90f33f989d398bba54fa433093db3be1a9dbee313c8a78e4"]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p8505B0.m",["b057d9452b244e42ebc8349e09fac92d48b45d4103b298481f6a0cdc77899d4b","60bcd43ea10f2b1aae504e7b4c525d2ed11522df8718864b78af320842c796af"]]], ["TOC",["perm","clas/U43/mtx/U43D8G1-p9072B0.m",["3535839519581ecec589d5ae2eb296c94ce59644a8c5539e9bf3fba12a00d0d0","b87d060bd83841f915f6aedd9a2f85871978aef400543560e7c188934ad9b39e"]]], ["TOC",["matint","clas/U44/gap0/U44G1-Zr442B0.g",["8e47e7fa8a2861ae4a362aa0cbd3163b25939ee04dc2454f005c56de0c23fbd9"]]], ["TOC",["matint","clas/U44/gap0/U44G1-Zr52B0.g",["1a5b0cb42c9b23f2b85ef5e25fcd3cc1df74f43132eb1730ddac4980e90e7ab5"]]], ["TOC",["perm","clas/U44/mtx/U44G1-p1040B0.m",["9d2daec1b89f03abb6b514001a9bb2738b89f249d0f95278a1163c1b09ee2ae3","889c025a1fee32e1e94c16ac70df95e75d2d7ccef328989eae5cb74dec427a7e"]]], ["TOC",["perm","clas/U44/mtx/U44G1-p1105B0.m",["327863e7d835ede18f2aec0a7f9d7cb3abcc49501e3a6b0ecf78e2e751f1a5d4","5ab54ead547f17db876385acf5c919a44a336cc7752b5d5c4e76bfb953637f0e"]]], ["TOC",["perm","clas/U44/mtx/U44G1-p325B0.m",["c270a64f22f8beb7cdd47b283345d4ed37851785e09582f9cf21506d1ca27669","9510cac2c1829ae28a0ef1c0774ac0e162765ef21896907621af605a1b17fc0a"]]], ["TOC",["perm","clas/U44/mtx/U44G1-p3264B0.m",["8a7664f11ae9d0b8b5856515d29d13cb1c67c92013d7daea1a969ee54fcdbe7a","b2b9e0d7c90a8340d169a6d8403224d2a01639ef689217304f6ddcd95c5c2b9e"]]], ["TOC",["check","clas/U44/words/U44G1-check1",["83a0abed3f588578bd18af1d6690c444deaa2e8daa3940bca6decea1a9567dbe"]]], ["TOC",["find","clas/U44/words/U44G1-find1",["deba108db164b9198588f5b1596df0ca3ee79785fde72ce39e5178f84716827a"]]], ["TOC",["matint","clas/U45/gap0/U45G1-Zr105B0.g",["6c528f525c12e7617bc18bc905aac6f1795d9015dfa357cabe7381c97964b25f"]]], ["TOC",["perm","clas/U45/mtx/U45G1-p1575B0.m",["f5fb36ee1bfd30920561299cc9db297499b3ebab7b347657110986a130c5e503","3a382b500f3ff5df19000e38d40655fc6faf74cc130c2d19a556d5805c2380bb"]]], ["TOC",["perm","clas/U45/mtx/U45G1-p756B0.m",["42d580c42c978d1a605e38c46b1afc72144f1e32a11bc19ec15ae313cd2bb75b","3ca3ce401fcc70e1e5f310f8fe1c124e40f3ae28e3d3e9c8f9dd99ba54e307c3"]]], ["TOC",["matalg","clas/U52/gap0/U52G1-Ar66aB0.g",["e85c6de95aa419ff413ac94cb3eb9e314e8fd5dfe65adae0097ce7a87a82eb45"]]], ["TOC",["matalg","clas/U52/gap0/U52G1-Ar66bB0.g",["4523cb036a326718a1bc4b6343d4849f64933971a19b21d6a37e966a960969c0"]]], ["TOC",["matint","clas/U52/gap0/U52G1-Zr120B0.g",["1e4aaff214124717492101036358ee9ff6f66c6cfe586edfdb4b615ec7d87823"]]], ["TOC",["matint","clas/U52/gap0/U52G1-Zr165B0.g",["9d016f7b253d85ca9eb783b2882d9198ac48ded846412b4cb1ad8bec68e1c9cf"]]], ["TOC",["matint","clas/U52/gap0/U52G1-Zr176B0.g",["5030c09add4510ef29df02723550ea8c2890e32d6190899c7db35033d71f6932"]]], ["TOC",["matint","clas/U52/gap0/U52G1-Zr55B0.g",["2e2205e053b7b3c062aba18df7b4ff7c3f6232609401ccb3d9f3836069aebdcf"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f11r119B0.m",["ecb11b57057a98bef98cbc9cabc5e113ddb3e007b5274b1ecf98ba4ac9275212","9e2565e71fb956466be79bceff532623ab303addbda4d5b92603cb5f9440aa33"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f11r176B0.m",["f567ddd9218702068af2ada8a17d8ef8c41aefd6abfa578c15b99974aa30b4b5","448cb50f8e98e52c396924a45236df28407445dd5baca3735a1544614687a672"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f11r44B0.m",["c11f2708da6719cf0c27dab6adf2d98a31e324a9b49a731922cb90f31ce0404d","fca67fea86ef5226883a501cf0ef1f0736113161973fb194fb6ee8296e76b502"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f2r24B0.m",["28d7c0172427212d1ba8b6c5dbe9cb4aa83483c441de118c6c87e3856f9ec13e","2fa9d7f771a5df998e6c250cc3618c213dc24bbf533d81cad85098b4f7ae0966"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f2r74B0.m",["6fe7f680f6dd776d1c67d613d42cdbaecc49a39391985bf2f35e1cd8cc86e54b","2c3e9dd65aec50ade978dcf01050e12797754ac24b6a878725f77e089628d584"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f3r100B0.m",["9bdbd709c703042c5135e8c98bd59faceb763cbbdcf1252bd799e3af6dae967f","4b92e234b567b27fe08137d6e54e3c11d7eea3a5f8c9fdb481f217486c90a62e"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f3r10B0.m",["7738af7a47ce6f861cfda5a6ab41bb7326ae7320ae835ee79d8fc9a2c171923","320ac3905d875ff9dd2ccb7ca94d70f0a3861e5b1b99a184ce11994acf154123"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f3r110B0.m",["28e04871f6f253b54de0f40dbf256dab381b4c4c4f023e9536d451919206bf51","24e4cb795d85ee57d3be8d77bce68592e15f6ecbbc1bb217297b26713bd33aad"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f3r44B0.m",["9e312f38c38cf3f9c6e41613a63af89cc0cea7838ea0cb4518007d8ce64f73e","414da86fd78eeb128c871ea844d901e6a01d56e456a83308d78021bd93e2f0b6"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f3r55B0.m",["4d6ba785fb7f7bed0d9c9e98f2f6f5ce5a3f663db71cb55cb88858fbfa883151","1f1c7ba4b66fa7e970dd8c65aca0d5cd2d082301f943a41609342c529ba2765c"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f4r10aB0.m",["55737261ea3c431dae483c74171b3d8ff604bdb93f420f8e578b40fbda0cb950","dc5e7c5cb46d2386878e116860522c9bdfcac51455d87af7d4769506139deea"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f4r10bB0.m",["4bc0f863c5317de7f93fb860e4c4de87643a83f95e26de29e8f1796564dbeb5d","fbdca10335063ba24d089de2fcccc3c799573357eac969afcb85ad55aa4d3cdf"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f4r5aB0.m",["2c5efa4551c743eaba43d3e03a1285f3882ae65cf0eaed36485b2fd1d6db6429","7f48875885d2862ef9379a1bc4b5745384a463df038e03a639e12de4f1a713a4"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f4r5bB0.m",["193f9a9eabc0a21593b5610080fc3a01b7e6151e9fc3897e33c6758996e71f24","7f48875885d2862ef9379a1bc4b5745384a463df038e03a639e12de4f1a713a4"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f5r120B0.m",["37f9dbfb3e5c4702c99ce14bb77dbb8813f29d22e07684629e51dc7344574682","77327df677e49fb8cb5125b6e5aee2ccccee8a3a0e31e002db4c190eeed6f4e3"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f5r176B0.m",["67726510339fb4dab4009da02326fbce0867be3d0fb4ddc7d885e774f4a1912d","fee3676f7c95b87bf60daf07f50cc614a3f582dd5a2ae5e88804045388a71904"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f5r43B0.m",["569042f1e5ac107c4fb6f48df791b03112ec25f7ca426f7a980f743208c7a5d2","ea54a2ed7216d946259e63b1243800965a752546bdd1ec194fe11863ec361c57"]]], ["TOC",["matff","clas/U52/mtx/U52G1-f5r55aB0.m",["5cfe336948c25decd7c50070ed0e262e2ddca3c1d5de5cd74be3714a2b6638b6","ba332688d931b9e6fd31c8a53899311183b4807bb2f7f1645b3f5d7548c5d519"]]], ["TOC",["perm","clas/U52/mtx/U52G1-p1408B0.m",["d0fa288e411f3e5a6a9c15877239aa28b421a556f7e864edd8964992d742e541","525d648b494db292dfefe928718717a35f41f33f5549f3a08624aa58e60283b8"]]], ["TOC",["perm","clas/U52/mtx/U52G1-p165B0.m",["5df656facd583c0e8b4c50b8294ba7dd976bb73cb2e89d5e67b3fd224af11664","983639fcd72a17e123383c811c1f67c5e1f82d87ce9b0d510e93a346b9beb26b"]]], ["TOC",["perm","clas/U52/mtx/U52G1-p176B0.m",["ef3776f76d59c5b7e73eb0d0ddb7a00761ceb75cfae5c0dd6f133a5295d1f45a","eae3c10800c05f1b2259b2444ee4dea8f90d77c169082a139510374290e0386a"]]], ["TOC",["perm","clas/U52/mtx/U52G1-p20736B0.m",["942da829457a5ee7a248b30f6bf06c02f8a24e3d615207bec8a31c5b47ab5d59","e518d3a47139aad7687f0e7889e88b1e60993fafc575ace4e934f8e340e184cd"]]], ["TOC",["perm","clas/U52/mtx/U52G1-p297B0.m",["1dbd9a09cb9a582de6d845ad6c4711a203bcf3a37eb23de4de3a3bcf16cea811","b5a1733155f951ddbb842a8cc0561ae1ef2e1b4759fe5b08e8dd81b086fcef2b"]]], ["TOC",["perm","clas/U52/mtx/U52G1-p3520B0.m",["f1db9a3e2fcc0e758c9bc7918b84196a8ff9e6d9a56497587d150a88463db453","102525803b1c4c992d080f7fa065855c1fbb48f0fb4f1132ceb86011644f2b93"]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r1024B0.m",["102a6946b266624b5d52edc80d9ddd013ed94b65e4bb5cbf9df3d7727afc9f13","d582e36d5d25bf2d965b05413fad75ab4546c5f3b312d10369406849b968ff32"]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r10B0.m",["60fbb6549aa6029f784a76d670223c4f9676d1a6e0dea7844c08950aaf7c04b8","a24ad149275a0eafb033d2e2d2d050d63a5b0db0d039f4bd1ae85a02c22db4e4"]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r20B0.m",["1212e08487be13d27b6f685be41a0843151d49ac7bad046bc9b5761c752c1f29","f110ee883de7053962986f5a2adbd00e4ddc790fe4329998f6495ad33069afff"]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r24B0.m",["40292083f6c1809bf8a5a3fa488d0c3f130f719a7cb299ed17a226ee7a979ebd","34c59fee443a93531e6899c7f79490f5e9eeeb6182600a7561bd8f26e14f69d6"]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r320B0.m",["2e5e14eb4f0a1e6c2ec1c9c016a0ec584b6d84d9996d1719e8596df644f133a2","af23c16e7be5a4247ef4f9b24317cf175b1cd39ff4b224de7beb5228aa674cdf"]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r560B0.m",["6bd31fda8fbfc7de9b827b9f021be367e5550b807916ed4298f5a6c32cdd0d4e","35a15aaae855154cd521685a349bdbd593a3f0fd44a607eaf578d9fa200e7c23"]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r74B0.m",["5fc980a781e05ca3b06521aba0e726d0568811ff57f6e716f62349ec594463a5","14aec6792c77d96c841715148cc6f2a883f597eaf8dc1565663f5e4cc1cf07e4"]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r80aB0.m",["45398b139808f626940170285f48aabeecb4ae8755a62d3adfc3f26df68291a0","39f5ae8522599403ea0f52732010a186dc62526fba8aab8993aba27f3361bf32"]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f2r80bB0.m",["fff30eb408a941bb6d6e4ac58623d908acc4281218cf6a1f5ed73dce4aca4707","b01f169fceff2cd383e0cc8e01325f028d1846c5f45554c744e4a16c14a6a90a"]]], ["TOC",["matff","clas/U52/mtx/U52d2G1-f3r10aB0.m",["e77640850808309eff368046f7363752fb338a03dc8a0cbf8360d8e6c646f324","e3f33c62b5497f5db2eb5feeea5512d99571184b8638021dee4f28efdac03d74"]]], ["TOC",["perm","clas/U52/mtx/U52d2G1-p1408B0.m",["6b67e3183f8136543445da6c8fbcc37859ea72ea1311edab822fc94fef7c85da","72fb568b19ba81e25c4e326db02d755af6c7fc85ba4ad553ee3fe152150ec555"]]], ["TOC",["perm","clas/U52/mtx/U52d2G1-p165B0.m",["82f66a7f6e9f867908b5e53290ad9d310d8be0610be470bb5d0c1efd6fdc0bbb","2ff796dc71a0b43748bc46d546d73f3d1158b0d87c988b80a3fda2e263da1782"]]], ["TOC",["perm","clas/U52/mtx/U52d2G1-p176B0.m",["65f95256d8c6974a69acce346e24fa4213462fe75ce77cf98ab392b9b4f59ea3","4d82a2efb3a14b7c1e435f51ba2339c1ee6e6300d81229ac547d9372d71c15da"]]], ["TOC",["perm","clas/U52/mtx/U52d2G1-p20736B0.m",["afbb8f7d4906e76a1b4bd5d4ed451344ccdfe880595060fbb23f5ae28171d6a","8eeaebc160e73ed59ebc672de2404edf172b01c32fc4344bd4ac2fc08c12ede7"]]], ["TOC",["perm","clas/U52/mtx/U52d2G1-p297B0.m",["6a090ed97f33c943a45a87692403baf28a60482f1b41cd11fa64453b8dcb0812","37a12b035b407c20c74c0cc39707a30b4e67445e3ca9abf6862c95dd9cdac3b8"]]], ["TOC",["perm","clas/U52/mtx/U52d2G1-p3520B0.m",["333c075c979119f1cf7139ccdc375de3b66fe9655398523f43454f8cc37abdf1","af559fa777b9b4f05a87bbd479efd4c769bb7868d49ab84a72abc532285bcb97"]]], ["TOC",["pres","clas/U52/words/U52G1-P1",["17f35afbd106a0190385e2f76903d9dc4b5bad285cf1446fd4540f1e50983bf2"]]], ["TOC",["out","clas/U52/words/U52G1-aW1",["6a1b891d4cb249d791a4a65946fbcb9d29a753a615f082b260f1bfe15f8460be"]]], ["TOC",["out","clas/U52/words/U52G1-aW2",["26ef03c62c7b5f37b16839c175f07756bf4f1b2e93b96b9fe5389f46d4cbd04b"]]], ["TOC",["cyclic","clas/U52/words/U52G1-cycW1",["8bd1d2e162311cb4326c83ee2d7304b646a67641a2a28836b2385144bffe5c85"]]], ["TOC",["maxes","clas/U52/words/U52G1-max1W1",["a8625e95b582bfbb9c4e0f8ffd2a092655ecaa5ff8dd7adc2830fee5c6299221"]]], ["TOC",["maxes","clas/U52/words/U52G1-max2W1",["a7a5def21e3e67fcd7c3044d5605e84dd276dd1c5a312c6ac98721d28a73eaa5"]]], ["TOC",["maxes","clas/U52/words/U52G1-max2W2",["c4b2de93b584c2ec4b02242632c4f405a956794a258ae4563ac69a076d1470b3"]]], ["TOC",["maxes","clas/U52/words/U52G1-max3W1",["f2c3b7c531edf06a65519ee6177dcb56ee3100c03b4a97867675c8338078b6c4"]]], ["TOC",["maxes","clas/U52/words/U52G1-max4W1",["5d862151b8c6aa9c50d7e3b4526d3520c80ce4a6351ea98bca8766e851c7a6e3"]]], ["TOC",["maxes","clas/U52/words/U52G1-max6W1",["8841eebb9dee75b50d83b0dd01eafe4269d35e5ed5f227bcb86d6f113eb52a62"]]], ["TOC",["cyc2ccl","clas/U52/words/U52G1cycW1-cclsW1",["285f8755c119213d5aa5f730e68cea949c1fdc7a2919749777443743f8f966b0"]]], ["TOC",["pres","clas/U52/words/U52d2G1-P1",["7d4cf9872747112d3047331a8d0b765785ed8de0e827a8120d7961739393c79b"]]], ["TOC",["cyclic","clas/U52/words/U52d2G1-cycW1",["68b80a52bde2b295acaaef311d330ef98607f14a6e8dd34d8a7ced37c4265c10"]]], ["TOC",["maxes","clas/U52/words/U52d2G1-max1W1",["7723707afcfa264e12cc1980adbdf93f0df9aae4e621383916e3b7046a395793"]]], ["TOC",["maxes","clas/U52/words/U52d2G1-max1W2",["4654295f8d7a82f5c0ace6fc58ea103869504af217b90895e7c2359defb46f47"]]], ["TOC",["maxes","clas/U52/words/U52d2G1-max2W1",["c5b517b63f315c3b58d8cd5b0abf89894b4c2afc1073ce721e60e87080fdc48b"]]], ["TOC",["maxes","clas/U52/words/U52d2G1-max3W1",["2fb0a0a8e47ef9f682c57dc0ab7cc727a06812ea1f1831e248ddb3b960e3f133"]]], ["TOC",["maxes","clas/U52/words/U52d2G1-max4W1",["a391b18ca643c03624b4e86596222f0cc5c04bcaae225352dfc740c9a3c7daaa"]]], ["TOC",["maxes","clas/U52/words/U52d2G1-max5W1",["1a486afd3fc674380e9a20d6946f5eabf6fe457d7e2e5284a1af4faae79fdf42"]]], ["TOC",["maxes","clas/U52/words/U52d2G1-max7W1",["2ed8a25f33addaf7fc7e353160a67d4ffb356f030362e454287eac1d0abef639"]]], ["TOC",["cyc2ccl","clas/U52/words/U52d2G1cycW1-cclsW1",["58a7cd1bc4950cd2d0193276770734edd682154c861275c107b6256fcdc6794f"]]], ["TOC",["switch","clas/U52/words/U52d2G2-G1W1",["818f0293a9a1b7b91149e386be0a5830bd3eb4fa69eb0d69d9d47aff756801c8"]]], ["TOC",["matff","clas/U53/mtx/U53G1-f3r10cB0.m",["7e7de978f79682b5700404c301df18fe6ea27632d3633d7a518d65d78a101c32","eef8151760a5db38b379440d17f7096311224e771a2a05b35b7c85bf2cc1b769"]]], ["TOC",["matff","clas/U53/mtx/U53G1-f3r20B0.m",["cc900deff2094fb99e2a7255827f3a3be69f242db5758d44477371edcbbed4f8","3dd5d7499c484af95fe9ab0f2f81782e017a21460533770c8b5a4cce1c79a0a3"]]], ["TOC",["matff","clas/U53/mtx/U53G1-f3r24B0.m",["40f9f032931544004ed0a7c6f4404dc2c078b8a7771b6f58d6a674acab95ac9e","55f548640f172ba8a7f0088581cc6c29f4aae23e6b623631931a509126efb87a"]]], ["TOC",["matff","clas/U53/mtx/U53G1-f3r30cB0.m",["25499b6926a92b3e5e62a6c4a15ee1927b7629252d02c5e7e6c56c8b7e976ebb","35c3d26d04f44d53161fef3aba07d62f410916696e2baa789310e6f7700ef3fa"]]], ["TOC",["matff","clas/U53/mtx/U53G1-f3r51B0.m",["d703fbe0011f25e0c8cc2ea6e9d60d530d1b2d561b651673b8e633c8e6298c74","80deb34a9716a2a32d261f7b82e685b2352a38eb72997f3ced76007c77edc500"]]], ["TOC",["matff","clas/U53/mtx/U53G1-f9r10aB0.m",["ccb2df25a315df30dd403b00ecee0cb5649bacc21df88be5bb7310632d7e96f3","ec2c8be422c95ba89d786f14b9a71a487d49acb126b3db25df99507f3f7d7116"]]], ["TOC",["matff","clas/U53/mtx/U53G1-f9r10bB0.m",["48b792bf210cdd7313ba0a8e972ee34e82949425e7b3dcb9dd722a4ce3911966","ec2c8be422c95ba89d786f14b9a71a487d49acb126b3db25df99507f3f7d7116"]]], ["TOC",["matff","clas/U53/mtx/U53G1-f9r15aB0.m",["b0160a520fd44f766c67717ffeaa77f49f4d7437ca8d5b6ab08902fdae3c847f","32ffdc58829e8e20db5defbca7c35e67df70d29955783c1e58751bb02aff64a0"]]], ["TOC",["matff","clas/U53/mtx/U53G1-f9r15bB0.m",["d87b006e005c609cbbf601b91024edfb372dece491180ec056da2f3852fb8e5e","32ffdc58829e8e20db5defbca7c35e67df70d29955783c1e58751bb02aff64a0"]]], ["TOC",["matff","clas/U53/mtx/U53G1-f9r30aB0.m",["3542adf822e9c0556704853b36d66bfbb04b1370cd851fe1b6c1e8b8d7ea2003","e6ae6692891e1ed703047c1e4d4a70dd52a75dcfece95061ed759c36df3ec8fc"]]], ["TOC",["matff","clas/U53/mtx/U53G1-f9r30bB0.m",["a2aee791a590b871451cc6dc516a9409ad065c4aed1ae3ad4818c83a4c5f1a23","37147d689668bac200fff08d90bcb1432d96899a15783de29e48fe64e1de24c4"]]], ["TOC",["matff","clas/U53/mtx/U53G1-f9r5aB0.m",["622bd07eff6133d629a7a88c77ab008eded76c4bfcff5da1781ebf8fd5fe3037","41deedc8c425098d6f2f4f45a4addefcdfa14cce8594bc8a7cf6a4d3c9f5abb8"]]], ["TOC",["matff","clas/U53/mtx/U53G1-f9r5bB0.m",["75290dfb937a0c63926b33c301cb62d4f65993ee779081684f848d711dff8d69","41deedc8c425098d6f2f4f45a4addefcdfa14cce8594bc8a7cf6a4d3c9f5abb8"]]], ["TOC",["out","clas/U53/words/U53G1-a2W1",["8711f574093c066e687f6dcf75600d17cde910c668405fa9f12c33fd4d422e5a"]]], ["TOC",["maxes","clas/U53/words/U53G1-max2W1",["e3cd448682176164915a4b27e7a9442c51b249f59268e18c31c5313e3a5e34c"]]], ["TOC",["perm","clas/U54/mtx/U54G1-p17425B0.m",["3159e6fa14d02653c4fd9db6511a36b5047fa1096b82f8d6e13884650f473538","38e65c84ce36a4a0532fc7e4777bb6cb28d9845639395127d61d8e07c8e17351"]]], ["TOC",["perm","clas/U54/mtx/U54G1-p52480B0.m",["c6bc77184fea17e8c616d7361dc19397cc1aa07ba34f24788ba5736264e0376","8c155ff91ef53f7dff07aba472c6160291ba49b6e8588e8ce7cf854db92a3828"]]], ["TOC",["matint","clas/U62/gap0/U62G1-Zr22B0.g",["a7959f9edafc5e7388fb171f8fd59f85b72ebe719f76e80102e1729d55a46b51"]]], ["TOC",["matint","clas/U62/gap0/U62G1-Zr231B0.g",["a9160888d907df94c95dc30ba904686be71164e3d4271c1f7b9e02e50a814a50"]]], ["TOC",["matff","clas/U62/mtx/12U62G1-f4r27aB0.m",["58a398e4ed20943b246c07ffd51237031fb1c1b65155a2d713f569ca43be441c","fccb8b4ebd8c4cffc5d4b5b5636995b157ec82aa0b01c74e62e9fccb7a76812d"]]], ["TOC",["perm","clas/U62/mtx/12U62G1-p4704B0.m",["50f6362cf3eae781c8af04000cf6b12952d63921b427163335133f112a9d842d","b4bf533119c192c9efc3df629674207d77a9877dfcade4e526d666a8670f9831"]]], ["TOC",["perm","clas/U62/mtx/12U62G1-p8064B0.m",["a2b80a9acc86442e9c40114d2db60ae09a361ae744f0468a1b718db1e2be6b81","5d030812999085282f72f883a49dc1d329f3c2ec29d557e6fcaf0bca31ce482d"]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f11r176B0.m",["6b3f21dcaf51d2b7822e44a413caa1628a446e82eb2054f5ec5b4a2ce92197f4","e03ed1f526c167d2b4a0b1ad3f05387a57067baa8e8c8efb96ca52e94105f9b3"]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f11r56B0.m",["78180404f2b724aecf45c217679968eaf128a1d18432085c7417bf069fe68f5e","8fbc0558bbb4017fb4a57841fb9e9310c37a675cf9765106068212282c93032d"]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f11r616B0.m",["e1db378eb32b980f9481b5a7eb1e77395e51e4b8c56061472859285ffc4cfdba","110b3b7a72a50365ef7f93a7abd8c2bee0b049abd46c52033fff2febb8c484d0"]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f3r120B0.m",["f652c9f650aa956972587846f80707524db74dc73b43ee670d4731d1b02d5dbd","8684ae4b04ecf7e0a2fce048ec34416492e069bdc121cf4bd7dc6606512b7d62"]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f3r560B0.m",["39d8d6f7a14a53bc2db72a9dcf3493fbd64388411019f8f0c3e76581e97a7fe6","948105f074b6d5a6522d74db6b59ab2a04e5933dd4de99ac646243d3561a1643"]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f3r56B0.m",["b926cf4cc75060f16f9ed6b55b2f03e59264165482cc4d318bb12c7749aa0d92","1d4087c5c8562b2d1c059b85da3d6b2fbd71ab26b6782e7858ade5c1bdc0d759"]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f5r176B0.m",["c6c8cac0e00be8346aa79ae6479642fb5f3518c3ebbfbaf154b8066f964c8d3f","181498e2852f93ab23b99a42446ad23f24327720f745f0aeb62e1653a992ac59"]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f5r56B0.m",["61c436db818eb3c0a022fbc3d8e1beb1c81d0ecb7bd2c502357e40ffe86cd0c4","25e2bd0f74de68f567b7dee60420f5f1db381c5848166ff91bd5b8a1607142af"]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f5r616B0.m",["874c233102d82a16938ca7160ff3b03b646847c9cd79f8380eef7e801d9423a8","e079246f62d6bf289a097855fa268f272289e0b729be95ab973cc46a5ad60cec"]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f7r176B0.m",["9414b7df56f5d8e6a32a47c9f5494ca00c7e445841d500bde71f36834ff27797","ed02e7c57d9b5a8a7f7c361445d2ead647328c2166bff2eebdee7006e9834c0a"]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f7r56B0.m",["2c1ed8e2449dc002b326e7edff6a1fa9aa6e3206653e92e3440bb516bc68c665","805c3860d93e8b2984e47fe17b618803a78719ba4176a9d1827a8e3b9c46dfb4"]]], ["TOC",["matff","clas/U62/mtx/2U62G1-f7r616B0.m",["cbf4064ea117510a5a916ac4e7caa6acdff9961ec82dc69e935298c7722fed17","99a61a2ddaba2a40cfcc2aa56ad27daed758ebc7d01eb5135f4e1fda939df8d8"]]], ["TOC",["perm","clas/U62/mtx/2U62G1-p12672aB0.m",["67a7bd687125bbb079eb64d731468273d028eb35ea0bef8bf70c0cbbb99165","955c3619a09f3d3ba8e2c500d96f70baf968edb332dfa6f1670d8596e54d0e3c"]]], ["TOC",["perm","clas/U62/mtx/2U62G1-p12672bB0.m",["4c483d1aa72b2e652836e05a0fb5ab2e962f923547346a8ace0c673c6a6327f","efbd666829f2dcec41bb69505df302ae6645060a9108ce85ad9fb54310956c2f"]]], ["TOC",["perm","clas/U62/mtx/2U62G1-p12672cB0.m",["25864b88fa4f65c33d7e4b0ff4fcefb9506f306869389e45d3da82a304dccb92","26226c949cdf5404866cc07d2540ffbb379fd673462cea9b059167298e1ac8e2"]]], ["TOC",["perm","clas/U62/mtx/2U62G1-p1344B0.m",["d88459b6e812ebfb638bf91de54cc7dc27eef6d9bcf7e983e51398b49eb4ddec","abc25f34163f0e56a4791fcde88ee77abf1b4d8328a01a1af9f9b7afe60933e7"]]], ["TOC",["perm","clas/U62/mtx/2U62G1-p2816aB0.m",["63fb506e6f0b29c0b925541386cc233ea3ce1ab6b2a8dc355eac7d12be2031aa","cc36db6a9ed1c25d0244d73211304216069a07afb66d476b83cac8d31e87431"]]], ["TOC",["perm","clas/U62/mtx/2U62G1-p2816bB0.m",["72f0e667ea6b1f70d9b9413f110ddb23c8a82875798af371b5f0abbb16c1330e","f90cff806fa1ea0a062e9193aa3a0498ba22d5c24b90e71807b8cdfe50e7fb7a"]]], ["TOC",["perm","clas/U62/mtx/2U62G1-p41472B0.m",["25d32cc04fbb0a2de084562ab10a96e35a13722f7a9d7d693f31842b183e26c2","fd3d965bd778d7fc9fed33928317d946755d93fa865eb7eed989c2ed14ea5fef"]]], ["TOC",["perm","clas/U62/mtx/2U62G1-p5632B0.m",["f84cb548d039ea489dd01b2016f6080f73b8303c60a12924fbca67dd6f7550e7","23882e154c43707d916c6f0c4d3396ca2ebcf69a6e8fc35da50dd5abb92f9571"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f121r210aB0.m",["cd0a945266959598fb9a01105e8c4749535f01ca467dbffc6ec40a4316da49aa","3dc87702aa3afb2061ebaf5cbcac3357ad520715836ae481cac3bbad63f6e6bd"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f121r21aB0.m",["53d1f9556beab8270db991df40fce0c175b2c28445aa1df6d00f570102cd3fa3","e26ad8118327d7ff4205761a59c20242caed3149aa97d23af1d65d964fc33d23"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f121r231aB0.m",["321568c4f2502cea16e5908cbd486f64af6fdbb3a89f698d9293ec49c198ccf3","926d44d5c509da998c0513d22442efa873b96bd641e5f949d94b7ce5d1d26428"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f121r462aB0.m",["f1983cdd0a0efcabda2cc0ab2439fa032b641bd5d3efa611cb2cc0674b441f85","82249d0cea6a1071771c4ed4cc29a2d754d81031dcd17448a1a0c70771b0e4e5"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f25r210aB0.m",["984616fc3b8f90d3f21b07c819cd9f298b5c42e0db783f5650c64c121219bc4e","49f45fcba3d4cbcd7297c9a4226502952a7fc0d574e5c94bdc853dd9cd25c1a2"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f25r21aB0.m",["915c1c6ae1774eefb7a4c69857784a4c46b24960e5e6370d1ee76fce0f05aef3","45448c4c810ef1ffac0bfb164851cc11eef8939cc0eaeb73970394459696d251"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f25r231aB0.m",["802fdbe681256c7e44925d18d0a1e652feb004188349f01598e3123f91410fe1","15e68943a91a3cb8b92ccc6060d4329bee194474fa051a87e90fd0e684059279"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f25r462aB0.m",["861f07379fcc01e5e2c0b9ff9727a8b1c5685ef9d115e12bbaf8e7a86bea0f4d","17895fed4c122ffa01aa310421757add4a1a3992152f6e97b0c13b37196d5c85"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f4r15aB0.m",["6fa46153670e0a4f34d8806a41a3080ce706233e511f0e7570db5c5931e31bc9","67657c708f25c905fde6097408286b98ed6976a41b90965d7951af9b46290eda"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f4r204aB0.m",["37edd69b5318063b3cb5f5cf2ed05774eb14af3ab62e09a18782852a5f2aefc9","9a632c18841c177a07e0f88ecdb37c1dcf27602b32240cffe3032210281be614"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f4r384aB0.m",["ca03c6665b64967ea7cfd936fb5f44dcaf1a59da2050b032d900c61eed701161","2abb0b2019aac7f22d35d9ee4837e0faae47fb438bbb8472cca881caa2361dc8"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f4r6aB0.m",["5f75fbe3658352cdf4c5c7726751fd2e8c1348ae87e6fcc3cc89fb48571d2b3f","3edb77002ca1845e02c76762818648a04a34c8da93433759481f8d4a6423d2f9"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f4r720aB0.m",["dcbc78cc031b498db4198e98363e86bc12c20fb937c26da55001a7c013081655","b8f8fbb418f089fe317f0042c74f35559d08d3259273ca7bf15941ccbbf23fd2"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f4r84aB0.m",["7d2a462c062d952f03f883ee375afa6fb053f253a14c94800a9aa30803defe0c","91e0aded768f9ce3cb9070504bb0139b80465f3b9f9a524495010a8bbfb65736"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f4r90aB0.m",["e47386050a4561f64db217f2a174ced367fa9eb0d7b9e0beb58f5f713ef36fba","43d8c31c4ef965aff9a3281e399129d678b8c8c60bc5f4c536680d5bdf94f47b"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f4r924aB0.m",["990d844c4e78a1b81bc6b4052dd2710b7d54a3188fdd671ec5dee470cd46ae0","2852ad8f23c6c89b1ba2a09d11923d8e9bfb8f5c880da33726ee3cf6fcf4425d"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f7r210aB0.m",["5aba3f842fa7a0e88cf131e753b42802fa18c76bbfe0f2a1d57484f34eb54569","28d1245aaafa774714cb789a278d69fc63d19fe6de4dae4de0bb773ee7e995a5"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f7r21aB0.m",["9b4515e95aa262010431cc5cacbd403d5dfbf59fca0ab9e2c20c2a0195be2ab3","33cd620240a8c9be40305533134a922402c504aacb45d29a76b9faf069aa0254"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f7r231aB0.m",["aab38b19f6849a7c9e5b47b8b25e9301896077aef9ebc6f6f00e2cde602679d6","9d5d82571ae463dd0ea5f92831946ebd0ec6266712bbcd051758926b59285ade"]]], ["TOC",["matff","clas/U62/mtx/3U62G1-f7r462aB0.m",["9741843f5425508f6e17611696d5ddb9711874e16b0c6790555e0324d80d7ca8","6b9f8d50ff692a56d123bf19fd35f3485581166586034ff3a1ed7bce98c02395"]]], ["TOC",["perm","clas/U62/mtx/3U62G1-p18711B0.m",["78c756d3689d82cbfcb775cf986a2897bddadea6819992bd6130e051b32467be","9c4fa61877822ed3c1cf1957b45a6ed2ceaba22874e329608f6c28b2a5e90178"]]], ["TOC",["perm","clas/U62/mtx/3U62G1-p19008aB0.m",["4b0dd651c591b3ae5011d71e8bfe86f2654110fb4b3edd06b48196daa0e2f3c2","d1b3e3b42bc575502b71d3ce8a4bf045cd44278c10f7896cec1491b912fdc572"]]], ["TOC",["perm","clas/U62/mtx/3U62G1-p19008bB0.m",["406ee3681ac992c0b135453a5b7c043e6fccecb9020d73a9ccab4e4e37b20fda","3a31efaf434e557aeb63bdb23856dcbf05dcc029ca944d6385575a6f6a8900e7"]]], ["TOC",["perm","clas/U62/mtx/3U62G1-p19008cB0.m",["806d12a07d145614b60a54190b7b7cb2b1cf6702a236e8c64195bd52681cd606","b9039077d430e122d4340155231d6d474ab8d2800fba5eacad268ca13936e39b"]]], ["TOC",["perm","clas/U62/mtx/3U62G1-p2016B0.m",["f70c98a0e671329264071c336c7588bb0203e001e19f144aac47bd0351c5ff0b","7f511ef7087698e7c7badff9b99a0f4b23eaf7bdffa392520c8dfec014b0b7a9"]]], ["TOC",["perm","clas/U62/mtx/3U62G1-p2079B0.m",["bc24b2e7609ba6e540ff7f2a74cab04de41a76a1788576dfcec318690b206e2d","cb0efb2073f3813caedf290d088bafcb8e358c8901506522d8421690cb90584e"]]], ["TOC",["perm","clas/U62/mtx/4U62G1-p2688B0.m",["c032cc42cd1e8a30aaaaae693ef61e2ceac2dedf8c454a8b7b17c78b0da0fe3e","3df9f8008052f9cf717984c6b87662ec9524f60e0d9c3b86f0036b4215bf0059"]]], ["TOC",["matff","clas/U62/mtx/6U62G1-f121r120aB0.m",["8026af5c5db94d87c24751c4275b34ccf87a2913b329767f2fb1008af010159e","c219f8e34f7ca2a635159a42b0c0887c7e043ff98d5a12cde663c408a7e1b3f5"]]], ["TOC",["matff","clas/U62/mtx/6U62G1-f25r120aB0.m",["6719610d1013a2b9f9c6697c11640b53aa2071f21f2379275a807d11949d151d","282d2fd58d0ac8ca6055da721cf99e365f43f3631a924a01741f6a5b06e37217"]]], ["TOC",["matff","clas/U62/mtx/6U62G1-f4r27aB0.m",["a84adfb5c658ddf6db0073b590fc544863612a4834a08a8cf81ef78eea778a16","fccb8b4ebd8c4cffc5d4b5b5636995b157ec82aa0b01c74e62e9fccb7a76812d"]]], ["TOC",["matff","clas/U62/mtx/6U62G1-f7r120aB0.m",["6f5f85c8b21881283279ad0f47b015b2fd07f95326863cd49fba6266f7a26255","6f6eec4927746590c6e03df3e6f07afb4ab9bf3c74b46bdd8767f93be120030d"]]], ["TOC",["perm","clas/U62/mtx/6U62G1-p38016aB0.m",["27b43b8e3c63bf0fb48894738b2682942151be07045f10d1de7a280af9e57cbc","9fff65da59466dd31fbdf403d6dbae7122eeda45311e210078d8374aceff6274"]]], ["TOC",["perm","clas/U62/mtx/6U62G1-p38016bB0.m",["5244f9bd8d1d17017f2f160f46d0d01e2ae37004793e1c1a7e1c24dda66cd11b","4761e3de744f475507ebf6603df0104fdf224357050f8911abaf7c896b90cd4c"]]], ["TOC",["perm","clas/U62/mtx/6U62G1-p38016cB0.m",["e7c108ca57381c19fb0e8df55f5f511ee3625682e3211420a8dbebab06aa8188","e9ba247b8840e14417f58580461173bc8859ec12dbaa7e1f8e7e9b3a9034f2db"]]], ["TOC",["perm","clas/U62/mtx/6U62G1-p4032B0.m",["589ed8ccf89c2b5452df8667370a2c1bd94906ac7dde92a13e1c7560be5c5f6f","c7ad4bdfe55e0b19fc7f8eb015af9d6aa50630cbd107b4a4d21ba910c250a576"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f11r22B0.m",["71e47281e2bf44eb3899c31059b10ea3d0ccaa050871cb9d11f00b03d140f208","4ab37cfefdc7b68b56fc8651559a6b5daee7f27e22dbfae15b8f00a757db6ce9"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f11r231B0.m",["d0d1c3427734407ec4e0500a012e2f99bf6d3f86dcd6476ef0d0607da86b6f25","4b03322baa299df201eec06ef8b9288ce478b72f7777c53de3247e78dbab73a7"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f11r251B0.m",["8b6decd2145af8147a21beb69228159d7daf5a4724fc4338443ceee8f4d0ceb6","7a1d0adcd8092a0dc9977b4210cad9541d11761c8caa34d1ee87fd7eb133578f"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f11r440B0.m",["57c11762afaa16bbcc48d67273f6748e92d2ac655f83e29fdbd702ac50286cd1","4aa8ec6f633b68dc1268bc27fc82f33e1013dad863c875c5e342056f233a39b2"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f11r616B0.m",["1dfeea2b6d1768ca62dca2e921f6ec15e01540932dab53712480826608ee420a","ebfe3afc3ee1e68a552cfb31864f52139416afc7a1b627626ec4dc0414af2391"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f2r140B0.m",["1d569e54c4765efa4c2769c38c450a3f2d147842c2b2b96f40459bb13990fd2f","6d6530d078a52b2249f394c3db56b93e376fdd79dd845cf1130dfb75d917eed3"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f2r154B0.m",["506bf0b1956725476c7ba10ff789eb9c82bc266d20838cfc461617b095e9bde6","a7dedd8db71186c3ac83805390fe8a1fe4d30f12b6100cd2e50ceb42fec55b88"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f2r20B0.m",["ff64c4d533da3f1b37c1e21ef31aadcd28d69284977f4baae4c5f2f4678884c1","a76dfa458e1a540be6ba38ce1f7936781d5930ef761b7c725fcd97dad80194cc"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f2r34B0.m",["b334d2667bd51534cccfb8027c5aaee6f52cbf4786cf2732d40c89b2bdf34cec","d17dd5110aedb390deaff0b338f958c0d46399c2ae32da7bd28f11f5c1cb7c08"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f2r400B0.m",["d963344c306d76d655f771fd4293cac91ee1505343b8b2a46e8d882683fd5ceb","5a2102e607f00ee47223e700beaaa67393d99d19d766f2842b7a4221ab373aa9"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f3r210B0.m",["6e13a21512e481fd0a4e70dbfaba350fd48fec29604f1c73fd8fac534579de1","99995f9ad8df822e94b7cb02234565c7b25c6a6719a8e7153e8fdf6446c374a5"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f3r21B0.m",["91145e096c5859a01d095afa1334c8d9081703548935b990f086458bf9db9ea6","c135f919f469d57d9bd386e481342079044bf54604340b888b627f5404aababd"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f3r229B0.m",["b4bfa67d5554fb61132eeb5e10f01258bd1327ec2c8f01a5b3c64bf613df9349","15a2748f44155ff8cd51b0cd675268ca9423a30b4893c7807f112ef4ee7fb1aa"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f3r364B0.m",["d7f2ce43af1eea09b9eaa069f6798b200a0eda26c5b1ad378c5437c9adfbdd61","a41ba1f14857e7c4a4358f5e27806915447e7b2d34299735cc5b50fdf488fff5"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f4r70aB0.m",["b532611b683d8ea321c0e35e37b99842b16063ee27236f1bffe5abf7c6e8c7cb","463200ddd1cf888d8cdb4d6e1b8edfc22e5c086c6e372e42293fb4ded6370802"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f4r70bB0.m",["db612329ab1244cac4d433b7c14949f171247a6b3f44f342a81df8b792934aa9","e6f341f2fbe1c27ea90f9814f6dc18b31fdccca6f7833c2c1d81ef1550176394"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f4r896aB0.m",["f81935055443ec9bd08fdbcc6dff7892452b466d5b5bc64c077fcdab73469d45","b127bd4c49db3a6f78e151c1bcf7b08a2b89dc2215429681167e95075ebfd3b1"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f5r22B0.m",["3d4950b690866584cb953224e10c5a8b23071734cd641c5ae685fdb6ec35f512","e168f85ea535b87768b9bf2542a10ce0cd905df01a709cc37fcb2d557f101a95"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f5r231B0.m",["10f1a4178e9ef7031ad647e0c7d1057147bac435bd2716aee56ea3addc6ad462","82dc7d8ecd235ef11458c1b3267e341511ab1911f14ab0a56ad705692a37a96c"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f5r252B0.m",["c1b3f4611327cfcfcdd91fec803a8fee49e95a0cbb33c2c4742b583dc12918db","ce5cd0b1f91554a6253da5b80b56d8269e8d71a01c78d70e09f90ebafc2bbd52"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f5r440B0.m",["2e825b8632d306c9b101890336c0372cb74cd8fa8fc05516b0c0c49d6d8717b0","2c2ae9e868e67f148c48a512b24455ce7681b77292d2667f4140c5ea21ab9bfa"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f5r616B0.m",["59dd1ac3bd79aca11a8a760851536c8dc7819bc55e2009016b2e46b43e840dbe","67e8bc2c1e79ad8e8b2e55ae541057398af90d47537d0b361cf26be2d25e7728"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f7r22B0.m",["322691fcc2cb002e831cc509f04170dba4f5df87411572683ccd8c6e63b52cc2","e879a60530b0f03f60bb9fa93c03125d0463482ae21e9ebb8fce00b22e48981a"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f7r231B0.m",["936faf6b430de4fc189e21692424e901dd7649feb0f2038eebf7b3b7650b046d","5c74eae43678306dff057ce85c6e25727baaa352760ea7775443d2a8fdfabda2"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f7r252B0.m",["ed2a71e64500fc3a48b365a049ebdbf84aab058dc41f092f8b5f76586d9437aa","3462a9953851fee557cf57647b5d860913a83cc3cc8d0a78dd13392a166f040"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f7r439B0.m",["c06768f08dd10ef86bc71e377480f4bf3f138bf28a8d314dfcea68e02e0b959b","558d831a4b07c4f43af1632b885215c80602f9dfb1d9b5edd70188078a79a7d9"]]], ["TOC",["matff","clas/U62/mtx/U62G1-f7r616B0.m",["35fdb2e79ef7eef46522a332ceef6cfd4be00d8e5037943c137d67e07f4db378","e8facb9dada1a9638d9f3274cd99f3d184a1ab29e95fd0a62ee2e8f26b94cb8a"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p12474B0.m",["ae69d3227e8b648c3b52edbd7f9eb308d1586f4a15fd83d29eecfb12c71e5322","78132a863b64771c9c9a3ccf90b9ca19f48e81de07d2ff1e820abe46ae8e3a0b"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p1408aB0.m",["b1a910ffedbdbef598ed9e13bb9809d863c136a64be25cd01c79b11e05764ef3","da9a179555dd227abfb0d559f7919dce9cd98bf81a53bc40b49346040fc18139"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p1408bB0.m",["ea1f36d5af841129002ce2947ab6e605a58f15f776cbadcc5cd895dd798f4fa7","de577faae724b6b8ccb9df91681df2965796d3a0013ee84fc9ac7bd4dec83fc8"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p1408cB0.m",["80e1ff30898fb90b3fa32c63845fae4ee63d760a60f77d326485089e264f8b45","317fef2accee2933dda5185aefef03fed48da4e01e4fe23b15febb91c4e33fbc"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p20736aB0.m",["3b9fe2deb12c2bf15d8009bf93a8718b5e9d288e902204dd52519333ffeb33ed","6df5cd24f490fa21f90c7b529dfc5e58adf9888caea12a7b44db79d294dddff4"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p20736bB0.m",["add12b7069fa64a3112a57e84687673c056e1d2fd67903dbf46eb8c707a96e93","4045ee6ec51fee6faaea638128a794bcf948b63533effae2619f3bf14599b500"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p20736cB0.m",["69afaea5015207dc8267d085d648fb9d8f12d2308071b76d79fb1460a281c230","554ae5d39478a58dd74bae409d134c8c141a0ff8f0f57a30e4c32fa866f96441"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p2816aB0.m",["e2d6925b585be27c6e979bc329aab6558ea7248dc8105a1f79c60de68a9dc17e","963f55c75319afa00ee3eef7337b398b317636029c888b6d21120783a64c8650"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p2816bB0.m",["4bb03bbf9fea25ecfe9d6cf968258c5fe0a00292d423eb0d13362c7775740f12","c9faad16dbeef980578de637de93340b5e558dc7a9b90f57e618bbb500f2ef0d"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p2816cB0.m",["420cdf20af4b27ec7072d7908c439345d99a1fc66ab760ee84f1fbe030d1ee03","7c14877259530848951c164ed342a56c688a761486e1ae77aed4daeabdef0e06"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p59136B0.m",["f45d6ee5185c393f0727752f6a3f7abcb50260a4a9da25ada160b56bf375651f","be2633c2d5f91215c19759426e2d9a648daff0ecb74b568f7b92e8bd99a3c9ac"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p6237B0.m",["db4f555a8b155cdd3026bb9dddf47d62dcf79471f111d013d5097c1b84f97173","8a96f2df721a404792d369cf1ce434e7dda096c1ae64745a25baf4cac02dd488"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p6336aB0.m",["98370e8251372089d548fa9d336fb038f52352097c4d637b0271b51133d53700","7159287263113be48f1be92c8d6d5cd7d2d0cde354aee5103a0f2059ca49b146"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p6336bB0.m",["93e2bc110dc5b6380f42b37d6ce0a8d998fff6b9a25147d3356792de009a5fb9","c86e5bb672f3a81ed04ac6db054c68884715e3a34fb0f232d43f95e3cadffde3"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p6336cB0.m",["2d9998ab1f2776003050c6d6832fcfbab9eff2ff7574583f24d7825bae95099e","a31dd1642e5b472a308a6075fa36555f7375e6bbcf717aefaeba88861651f59b"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p672B0.m",["e65bbab0231dd28e5edfa697bb56b66615b1504d9c9f0da10d89d87523e4a0be","57866acfc93390978d85a1af1a3abf67573d78bff27f9d7d3045482f76f7a891"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p693B0.m",["8933637829cff5e64a46bb0267590b2f826ebf7109e05a6fe62ed7d1fe1b1bf","226da624fdd831718c16b85d4f9d31e60fe95c81638491239bd485b991d521d"]]], ["TOC",["perm","clas/U62/mtx/U62G1-p891B0.m",["58f5e8ff4590d1f12a95a3ac5786fdba9dd472994b73a7604a93d8cfec751148","511eb0dedb035263a96c1b84c59119c170367874b35851ab8618fd92f9112ac2"]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f11r22aB0.m",["2755f04c5227c539f5aa1c898ec43abe0dc4c33a13b6af567aa9cfadbde2fd90","10e1925ccb54ecc0656252323c8318d0780e205ac5ef8a76e169396be57d1f37"]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f2r140a0B0.m",["d33452c2db57d252cb567ca243260e8ff1b23033abbf959f187183747a4db5e2","780f8662c8870da677620f10dc76834b12e0b4b406423f2e88e645eb3550978"]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f2r140a1B0.m",["1277134978dc9edbfa04296e3cc510d84aa9220b89e316ffd0f3aed935b2ab6e","632cdd901dd81db45493386c4f04a5bfdff665690bcb599e67ea357f236bfe9e"]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f2r140a2B0.m",["576dae16d2f2751d4191c43dc6005527b3552fe177618a3836782ac24ab2d884","a75b28fecd017b013692c48112db0c84459692eaca314046d6d0f4b67154e752"]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f2r154B0.m",["4422dc533cfedc174ceb7017336a78f1c54c45e9ad9316192bfaa99051e9dde8","83681fe4ce158306840c6b3a1eb551eeeacb68ce5b840a30742f506f2eb9bbe"]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f2r20B0.m",["16bac157c99b6c0b7d9153077c7e5e408a6903e272906240a2b146503c4d84e1","107b68a903ae755b6cd81b89facc51b6db681ca47646df705397b32886236b4d"]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f2r34B0.m",["3f6c61f5356d5b7822b9f5f19510b4e3e9c4da64836bad8ca96bc57d319aedfa","33bda6966b529ea34f7e536ea9762efc5a3e21574944b1631a6023020982d0cf"]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f2r400B0.m",["b0224c0ca33844048f16e63e31d826752877fb882b4e0052291d23a7b4684cee","59d5e35a572ea9051a7b78f525f0ed33657cc6404883d33f8e53ab3fc51b86c5"]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f3r210aB0.m",["f45be334dd8588265dbfba4b5878885ce3c80b26ff6ccd48ab6f2f3ca3ba9f84","90021d5a4084c8d6c30279aa0e2aa50bebc06d83557348a0120d9387caf7b51d"]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f3r21aB0.m",["aecfbb5b18d589e61d660cbcb35195a5505e2cc57063a18646e514c215792400","ba08eb83c95d641a380329cb11694cd5bbbaa7bb60b928adb428a9359ef9a885"]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f3r229aB0.m",["27f0d61cfe91709eca89e87b17e26f1c779120f51064b614e526faf2897b1981","7c8ec8c65318049d75e2a89214e38ffbb6fd9ccce59141aa347d73f427b3571d"]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f3r364aB0.m",["aacfe4c8dd467f5dd794c659d8f931a232e88269d3da0e63710c6e2e39357e72","5694da73c150ff0fb67eb22c8a95f67dc537a52ba6dcc4b29dca0b0314fd08f9"]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f5r22aB0.m",["a6c60a2335a629565fad53d9e86cb1a015510e508036016b12a2938f5fd783dd","c08e788244465e1c17465f22ed8f8891e3339703867fb5080750455eddb23627"]]], ["TOC",["matff","clas/U62/mtx/U62S3G1-f7r22aB0.m",["4c64e9eb271bef59c809909c01690bc30c1ffb2f4a2408456a35107e61c3da9f","800755e9e70d0daac93f704ace59a00b57f8ca38d97d91a54099e2e5956b7584"]]], ["TOC",["perm","clas/U62/mtx/U62S3G1-p693B0.m",["c01334b15185b89b809b230826d6f5e46a809f9768687c5fe0bb24388245bb8c","2c445f3d324652d4ce7908a66b16e5de28500919892767778f1024e8c9264efd"]]], ["TOC",["perm","clas/U62/mtx/U62S3G1-p891B0.m",["2baa5aa707896dd52808e3729a98db40acbdf8158212b4bc98862b680895df81","bbf6100b7d1b1b4d6ad50de805dea51fc04d13f74339f51dd8376f0f407c176"]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f11r22aB0.m",["4d1f6a719846bab27246f787517413c4077de6fd0e7ab9e2c3f472213806063a","e93fd5735e9e09f17753d1089423d952db00d85a76a0939f42240fdc2d4609f8"]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f2r140B0.m",["bd8589b402f0f0544bae2d2924be69a58f1a47a00b12c86dfb0f7aa5ffaeab69","6c9fe8913937780bdebf4bed74bb59d19d070359442508c4aeaff29b3d0ed56c"]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f2r154B0.m",["5c58626c0f92cac3783b427dd126d316f29feda7ebb02973f4a562504ab1135d","d1fe15d3f28dcfca1d2fae4804f6bc697b5863bfc9ab3f9233dbe8c67ac28d44"]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f2r20B0.m",["4899b4ca022c7680e60b382c0d4dbc4e560137bfb8d244bb457a3b14f6860f4d","1af383a750a5ff0539cba4fcf553d22733caf06cc18bd0dcb7a5d582ddcd1e9f"]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f2r34B0.m",["8b5828c5495e67741703327c6af72d36e870d6ec4e014fb97fcfe4e97048ea88","ab5302a10305082fc6129bde83b65fc9156d67e2a865fc7d7c072477b648f961"]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f2r400B0.m",["bf6844dc7fc97d62d39237cbbb14d7829b1f18c0249bf6eaed3ff5aab638f695","c962f903ad1f29e92d50bfb93b93b34dcd5819243b847b70163da972cdd3254f"]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f3r210aB0.m",["a3472f6cfa6a413db0c651ba874be0a921d38b1ac9ae7429b9e4d1480c1a44eb","536a6e032dd58d998d07bb7171cf4c2adf45fe784d1eb473d21de471f66a6276"]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f3r21aB0.m",["55e4ecbd8e9fb759262dbbf65069c8803fde391c34dfe2c24b48b45614663845","3def002e15cd8e8b7176532abab86a0155cc56862a21f1e956465f82c0a515b1"]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f3r229aB0.m",["19bba2b9512146cf94e8815b29252b897cdb1f68e02f7c5c32e91fb814feb98e","2a6576838bc968aa2576c26cb3e05a83d584e49ea0cf0bde1e934522a3da1f36"]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f3r364aB0.m",["bbb4fd2a881b378ed5c957f9335f93456ddb0600820f17ea1d3c1bfde619e330","98583c816a3649100df51539143f3e2a5ef70362350f0acc8f1721f576e25ebb"]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f5r22aB0.m",["848fb39c628a5f769f43da243f7e8b94028ecf038b3b03b8784461bb2f31a6a9","779d10f1cdab45fcf76c4eb701affc03f83ad5687480aa9441bfce609a4f25fc"]]], ["TOC",["matff","clas/U62/mtx/U62d2G1-f7r22aB0.m",["d4a51b80963b3261cd67f342216f61dec393433c6dd46c4a28cb90fde6fd60fa","3e652c3e402e1ccb87ae3e16d803a34b7c0ddd2e19de81a438e0911e3d6f34b"]]], ["TOC",["perm","clas/U62/mtx/U62d2G1-p1408B0.m",["c419811e34e8fe57faa81433ef5674b1df3d13422e50e3803803c2fce66cf6b","293e11f5ff4f0d2b313b061d51bb4544ad751ed8b63246cf390f5db458e71d35"]]], ["TOC",["perm","clas/U62/mtx/U62d2G1-p20736B0.m",["cb069cc78fa28087d9f265334018a9ddf6d7c6512e4efaeafcf6b8065aa4dee8","5fcb002c2f3186c9b5a4a88046c6e8ed4411775f3787ea74088c849ae0f40705"]]], ["TOC",["perm","clas/U62/mtx/U62d2G1-p6237B0.m",["507e81475d818d580a10e43b59447f3c4a41f0694af2f9e38508bf61f1b6a1b4","ce34b605966ec0337d98de4558401310f5f35cdfb9db547731a7b0e17fadee60"]]], ["TOC",["perm","clas/U62/mtx/U62d2G1-p6336B0.m",["4a2d48e29565839933fa8e04ffc0795aafae541ae564b703aa6eac06755e6143","aff0eb00ce1a144882e3924c265cbabd1aa3aab88ebe1836fc552f9d145c4619"]]], ["TOC",["perm","clas/U62/mtx/U62d2G1-p672B0.m",["d4cf29da4dd4ab4af6b5346e60077ecd6e2cf79259fe9c7c813207d76a874897","c77d4d42c1b71678de0aded52c1b615a9449aa948f08a2a70640d3dfc19f6f3b"]]], ["TOC",["perm","clas/U62/mtx/U62d2G1-p693B0.m",["aabfb1d89dfb1217c3f0355889efa44c657c6477d21a72d5e741e011898431e8","47f12747b1e3ee79d4900f9880d8898a8ff40430f8ecf3f6ff6cb902a2e48d2"]]], ["TOC",["perm","clas/U62/mtx/U62d2G1-p891B0.m",["72adb7e47aead30161e27ac04a457b48374c814c4a7ae353b537fe13526b261b","502ac00a59435925eb26b10a66eb6f63013ecf3a6e467aaf704e31b4381d1124"]]], ["TOC",["out","clas/U62/words/U62G1-a2W1",["b15c9e413cebfafdf19c3d2829129c95c5e90fa5ae60e3ea2e35f5f9fe17a5dc"]]], ["TOC",["out","clas/U62/words/U62G1-a3W1",["a87a55570bb2e76fef4211dc1da94431ef55858f744f95908e0df939c502c9a1"]]], ["TOC",["maxes","clas/U62/words/U62G1-max10W1",["872a0163881706f6b1566cdfe8b10390820dc19ff5d7e0f059db6322cf6bcded"]]], ["TOC",["maxes","clas/U62/words/U62G1-max11W1",["dbc3f3cf33df23892d7ed1339e54a68a0d39e9347e344a971b5755d9f3c4eca5"]]], ["TOC",["maxes","clas/U62/words/U62G1-max11W2",["38ff5ea7f2e05a7d9c8208bcae0b7026ae1ab0e39e5e1a7bc82261494d9bc68"]]], ["TOC",["maxes","clas/U62/words/U62G1-max12W1",["4eeb6f5d0e1ba3b14bfdb970630f80f6cfd8bc1e7771cc018eea13043a7d832c"]]], ["TOC",["maxes","clas/U62/words/U62G1-max13W1",["b8ea85dc671067e890731372d8c19fc001ca7f0c26ad800ed749babdeb98af00"]]], ["TOC",["maxes","clas/U62/words/U62G1-max14W1",["5540b75e42a906c7d57c349f9ac5119bfffb6ddc06d648a3acc981bbeed2952d"]]], ["TOC",["maxes","clas/U62/words/U62G1-max15W1",["768649fbdc54f7de6f7c967a4c241a3a4d773274c58062f9580c2e6a2bb13824"]]], ["TOC",["maxes","clas/U62/words/U62G1-max16W1",["9a49866a05eb0664479b635b2cd5a05c1de8c9d9698b5f068eb02a4cd5115005"]]], ["TOC",["maxes","clas/U62/words/U62G1-max1W1",["a8f6611ff530b27fd5889b2c048d3ef11bc2af28991b5b58a61f3901d91fe40e"]]], ["TOC",["maxes","clas/U62/words/U62G1-max1W2",["90da7d601172c6cd97028c96bd15af0b4c7880cc911fedc62f441d38e5ff485d"]]], ["TOC",["maxes","clas/U62/words/U62G1-max2W1",["d2fc22afeb8f1cae0b9b1f0b59b5d6a9bca3493f2dfd4100fc9f35acd3b092e7"]]], ["TOC",["maxes","clas/U62/words/U62G1-max3W1",["74f7d5ad110d6ee0d45c9995f1ad4c6cfa935af251d2c97cb834a88e53bbc1e7"]]], ["TOC",["maxes","clas/U62/words/U62G1-max4W1",["c233275b27596c91968b4e56273051ff206e1ee09ef49b60688bcc68d6b45f4"]]], ["TOC",["maxes","clas/U62/words/U62G1-max4W2",["1f5d7ac1dfa77b6afdaa203cc3ec5acc93a3722f6eccb86ec5ad9218aaaed849"]]], ["TOC",["maxes","clas/U62/words/U62G1-max5W1",["e70308d9c2124f5e82969a024d02cdef3c06525f22889a0aa7752467231c04e0"]]], ["TOC",["maxes","clas/U62/words/U62G1-max6W1",["c0cfd2dad7fc1fcec36a376bb5ccb35458ceaad5b48370b4d565fc8484c88513"]]], ["TOC",["maxes","clas/U62/words/U62G1-max7W1",["ba7c328e837b73b2796c1919271bc24ce9a4287bc417ab3fbd562f89defb129f"]]], ["TOC",["maxes","clas/U62/words/U62G1-max8W1",["e4af8386a6d11aa23f72f615e722bed53663d5b9eab04c33063bae2e9a4c11e9"]]], ["TOC",["maxes","clas/U62/words/U62G1-max8W2",["54b72b6f413610e73fe1017c55130a28e9d84e185a22f240e20a40e40152c71f"]]], ["TOC",["maxes","clas/U62/words/U62G1-max9W1",["74b74c7a65d347720b9521d53739be0ad45dcce405185e1c7c7bd634d2ad9040"]]], ["TOC",["perm","clas/U63/mtx/U63G1-p22204B0.m",["562b0475923160423162342e4ccd578b122fdbe28aad0b10d7b50924eddb222e","ba5994fd4254d855ccaf5ed445782135b65dd7f5374c9c99e2434271c3ee6f5"]]], ["TOC",["perm","clas/U63/mtx/U63G1-p44226B0.m",["593f83bd1050a211dad003d1c823f246b437bda509a06c31adc85762124c516","a16f4b39f249b44131a6b9a05bcced6582bfbb4756f4bcf7d67cea5a8587a429"]]], ["TOC",["matff","clas/U72/mtx/U72G1-f4r7aB0.m",["9563d32a55518909679ae5b6732d8746a5e64b4672311df1ab8e3d2aefeff8fa","6df08e1e5effc04d39f1208232f5eabe0261661835934200543616ce583c2b82"]]], ["TOC",["matff","clas/U72/mtx/U72G1-f4r7bB0.m",["459a2d9c500806e16295c752789511901df3dfc5d698a6b9f29f136e6c9b1ff2","3d37f0e390d697e32fd7ad79f4ea6d59767b6e589f75933d3843319a834d4fa3"]]], ["TOC",["perm","clas/U72/mtx/U72G1-p2709B0.m",["7cc0702e5cbe5d25eb08c694e0a73cd7be751470fc115c947541c631db35c7d8","b743ff958aa906f88a56c9b76422d9068738d75164bbae90273e7f4eee2e4a02"]]], ["TOC",["perm","clas/U72/mtx/U72G1-p2752B0.m",["ff56e38822e401a311b8e76233942a8e0c2a14893924b432a1c79d47965f30c6","a5f8d8a143e44d6897bcf80e9b9f1dcc992731641e9b2e034f6d604010361665"]]], ["TOC",["pres","clas/U72/words/U72G1-P1",["d0633176b87665bd723a69301bd4334d7a2dc837dbbfe5edbbc35a4d9a6df6a9"]]], ["TOC",["out","clas/U72/words/U72G1-a2W1",["5391693d792c80df7ab084100f9fe318ce738d6766ceda5e24b9cdd9adf6bf40"]]], ["TOC",["maxes","clas/U72/words/U72G1-max1W1",["116f2597cea7ff2d7779871b7376061059bd98cf8ef1e69ccf3adca9fb4eb5e3"]]], ["TOC",["maxes","clas/U72/words/U72G1-max2W1",["dca74b111ec4bca941e9b9f38e3a50d2c71d7ddf8b2b9bcb56c158e8221b0861"]]], ["TOC",["maxes","clas/U72/words/U72G1-max7W1",["d34990b86e2f2a9e7ccce6673248c7efe3cde9b7edbd6e9a53aebfbc896c47fe"]]], ["TOC",["perm","clas/U82/mtx/U82G1-p10880B0.m",["1a21808bdd33749c5fb1f22ef36b2e937dcfd6fe47287913b0a9c0ef6d73b4fa","3c1a57ce24da7a38540100432c7aaf9ea05f10fc1ceaacf58bfae444efbe43b7"]]], ["TOC",["perm","clas/U82/mtx/U82G1-p10965B0.m",["24b999ae494c4488765b2c77de3912f5e3da7af3951b32208636bf70e8cce5e","c224c3d7ca062a0509144a9def49c826b541170ba907f0581b618bf14be46069"]]], ["TOC",["matff","exc/E62/mtx/E62G0-f2r27aB0.m",["d5e05b58a056b8d67ab632dddcc03c1ede0a1a5a4960cfefde0bc98a7bcc6c95","8f4fc29137dade242a208c8cb787f6378bef30a20124aca80d77e701ab7dc90b"]]], ["TOC",["matff","exc/E62/mtx/E62G0-f2r27bB0.m",["2accda8f4f6ccdc66432a142ee056cce4641e2bbdb34cadb796efe186ce5664d","558b7b511a5a2a8042384de5ff85a0e0b288e2c19f4b5bc920d59fbab915f206"]]], ["TOC",["matff","exc/E62/mtx/E62G0-f2r78B0.m",["752769803e1fcaf23fc1ba170a5327b76ba0de678a2139fe6b4aff33a2ffc2bd","750129b0a03782bd9a854aab6858884a679807999bd64fd6e78959786dbdfbc2"]]], ["TOC",["matff","exc/E62/mtx/E62G1-f2r27aB0.m",["b64b95fbe2324c88109c5ff0624382f082caefd7c90ffa75e15be63aa9846086","d5e05b58a056b8d67ab632dddcc03c1ede0a1a5a4960cfefde0bc98a7bcc6c95"]]], ["TOC",["matff","exc/E62/mtx/E62G1-f2r27bB0.m",["caa6783e5e4049aeb89bb20e71decf47974ca020018af89ed915dae86ac805f2","2accda8f4f6ccdc66432a142ee056cce4641e2bbdb34cadb796efe186ce5664d"]]], ["TOC",["matff","exc/E62/mtx/E62G1-f2r78B0.m",["1d8bbd3369f9ca772489da47893619dcc703f800a317d6fb520bee5f1c9e8304","3c2d8f20cc25928e3354e49082672191779b362ff97050284f796792a725b745"]]], ["TOC",["switch","exc/E62/words/E62G0-G1W1",["255bd15de72c283bc1a314a3e6c31c917337486b01a7eb475dc2f4204de7a1a7"]]], ["TOC",["matff","exc/E64/mtx/3E64G0-f4r27B0.m",["a6535a542833ee3aa9ffc0145dcfe8b5c662e69bd4ec7f83c7f8186f48366f12","f66d39d3253795386f451a7e56b258f1d61f7479ea5fc95cf50e9d1b8c6df23d"]]], ["TOC",["matff","exc/E64/mtx/3E64d2G0-f4r54B0.m",["93288dcc4a4425e2a66ee81820f99b142fe9e6a828439c531bc6bd20cb586e9b","304a3e6dbe4dd465edaf044d54a845fc6d55dffd1cad079e5d1d5b5568011798"]]], ["TOC",["matff","exc/E64/mtx/E64G0-f4r78B0.m",["22916969c1fb6d5d987c7bc4ce4c3f39d61ca4b3cc0f9ac9c36ef181e379fe32","f7fbd4ac939f04cbb0f48dc6eb30803799c3ad991094ccbb14e3cea257a1f6a4"]]], ["TOC",["matff","exc/E72/mtx/E72G0-f2r132B0.m",["f1219f5087bbe0eba9b20383e2b2cf0827e0404da5e9fdc453b7be7a733d6aa9","a335f4c47ed81261c4a42f983f1f85c17e16a7e98dd7b01e4eee916e26b802be"]]], ["TOC",["matff","exc/E72/mtx/E72G0-f2r56B0.m",["187b77763f6e064f6ff2792f6794408b6aba8a3e7b1afd4c9604be96410ffb7f","148955790cc37b2c0f640a7d9b6b0ab837f20cf33661b0f1a8cacb5cde48f816"]]], ["TOC",["matff","exc/E74/mtx/E74G0-f4r132aB0.m",["7774ad1bd13c381d540baf021ff08a5b8599e1891553461ed69b87c73ddf0787","a6acbe73ac86f6118b8f635db5eb8a1eaf10b05520179fb717f57e4f972d8a30"]]], ["TOC",["matff","exc/E74/mtx/E74G0-f4r248aB0.m",["8ca9ff5b00c76453779a02f7cd4bc09d771f19e7fbe3a6884474abed97a1589d","a3511f4d3e4e29e2532c20831cb055240504b83a56c8ff42ce438aa0cca2048c"]]], ["TOC",["matff","exc/E74/mtx/E74G0-f4r56aB0.m",["64fdfbec32c1ea2580f8b5f6d12bbe91fcc3b62e191e4867301ae6719fbe78d6","6a53b593b5f6df852eb3a70e9480e3919d3183f6905e3839c04c0aae25542f"]]], ["TOC",["matff","exc/E82/mtx/E82G0-f2r248B0.m",["e870fac2923727f6de61377a3253248878c4c2a843a94161b00e10c4499b148f","f8bba81aeded2f0b148af06dff1c3a9db4ede68a0b563ce0b2491da0518bcc86"]]], ["TOC",["matff","exc/E82/mtx/E82G1-f2r248B0.m",["b4d10e1d45b59531135d7b9de81fa09008f9148a1398e64c01ac5368eec45e70","b36d4ce0185c120598124cb5725881d9fef2ea704182dea3360e0ff801086a75","3ddf64f077d548f79bf5e3c0a3e7f63867f0bde36f5dc1bec6cc6edb90455d0","31f1175b6108539ba4bdaf9050a22e4165ea672240ec2237ce96a637898083f4","a32d6299bae3827b16298484d7121bc58fe691bb6c0e39c36d199a226fa13b9c","e8748309e2ba5deaf9116226ea38229175af78d2ef409906c857e266f4ba6b7","f9f878b27e1766abdb6baf889ce84c04469659f700fbea57b391db805c182898","b0406b58d88e1a86c83c44983ad9853891429be807abd400f0230dcfb30838e0","c82e85828f0c76481b43a227fdc254a45d07e647db954ff21d4a5e0599885bfa"]]], ["TOC",["matff","exc/E85/mtx/E85G0-f5r248B0.m",["2d7d4779a15ea95871b808c01bf3e1bb98cd53aefd92b9f84e55c628d91a9b6e","5486da87fc7eb8b50e8258e6921d4ae629364ea819308bec9f09a132d283fa3"]]], ["TOC",["matint","exc/F42/gap0/2F42G1-Zr52B0.g",["f60474cba44119a441ae4a3615875c1e5bd0ee8b31b61a768d7bc095491faaa9"]]], ["TOC",["matff","exc/F42/mtx/2F42G1-f37r52B0.m",["e4793e0c7523e4460cec760df172017bba03e45d1f067e120c67c5a691a1cccd","d56c653c8bc5d62bb1274a74362f69ad1a0bb13f4f6b4653e207c27b0ffa692b"]]], ["TOC",["matff","exc/F42/mtx/2F42G1-f3r2380B0.m",["f056c3e30fb1faf9e733e2db80fcf1cb4558971dea4e93c6b6e65591b38dbcd8","a97bac0f837afeca7fba02b31c58b3536123b4475829a34e8221a21e2e84ff42"]]], ["TOC",["matff","exc/F42/mtx/2F42G1-f3r52B0.m",["4834632fad331b071fc947e948aa306058c8d319cd217aa0e9c090e24d609a0d","c381ce1cbc1961c22c214bb6cd328a9c2b49c579529f2f415381268a8a659527"]]], ["TOC",["matff","exc/F42/mtx/2F42G1-f5r52B0.m",["5e70afbd3bf05d39b74739b1d0f127e6dd646a62f0ca6d90f14a7820f2c96b37","de680ca8768eaf4a56f39a7f98ffaa479bfc95ce4b05073a70752a8c14a4a1b6"]]], ["TOC",["perm","exc/F42/mtx/2F42G1-p139776B0.m",["354b8214b1c0cd9e1804f572d159b8639d28f9c3de40c816c17419fad420390e","836653f39b9661c183601874fd02de7b25066263fee523358ee000ce13a858d0"]]], ["TOC",["matff","exc/F42/mtx/2F42d2G1-f25r52B0.m",["4706a73b67fb4c686f7abf902d25d67355f22d82e6c90bde0730f6c154cac45c","4db70752e8311a339198e240b95d016a76922a288bb88efa8e708ef8625ea0d9"]]], ["TOC",["matff","exc/F42/mtx/2F42d4iG1-f5r52B0.m",["7bf8bb0c187a5d8b31ba842ce0bdd0a65b6e79fe445f6194e8e3e3c85f9af604","b7e8af9c114cb24a5fef52bca83c3fe9b5ed862d44c59b704985352b8947ccb8"]]], ["TOC",["matff","exc/F42/mtx/F42G1-f2r26aB0.m",["e66db5c2e358055d55f147876473b819fd0b8400e3bac70aeba2074b0a874960","5ac3aa57d34f9ccc09d87c0f1c61dac1bbe9fdcf414f85b60012d1b2ba442d2b"]]], ["TOC",["perm","exc/F42/mtx/F42G1-p69888aB0.m",["775139e691ffd481ca92aeb95d441c2b864c276de783c0d30312aab80e098787","f0f351d4164df8b31d200a3bd99e295634ec83f8a9b06f1cc985b1f5ce19ec46"]]], ["TOC",["matff","exc/F42/mtx/F42d2G1-f2r52B0.m",["de2acd70290f014fdb5f651098756de6d0079671689393f31a11dc4c16872151","eb2f571e7cc41f83a630e072e3b95e6b3ad22811c15df2ed503a31ef37e92c"]]], ["TOC",["out","exc/F42/words/F42G1-aW1",["3f534eee0fc5685d56de236786e207ccb06ae6addddb8c2ac6868af7d3c9e865"]]], ["TOC",["maxes","exc/F42/words/F42G1-max3W1",["729e43691db7abe7e3e4b2cb4015432dbe59b0b269519b0e678ef5c0b61d6208"]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr104B0.g",["8b517a163af3f403802fb8f2480630877a4dee718753aa97f41c0738ca464ce6"]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr128B0.g",["5dce9a6d9c38e26554ea3b8e5f7e097e5c2ad125874501600e6388364ed46d0f"]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr14B0.g",["5a168d0fdb19ca1ec3ca57ff349a643c7ee29c6dd1664986fac6879bafe1ec6d"]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr168B0.g",["490bdee6ad720ea124896042b9847ccd2b9693acd64aa83a5d2fddc38a73a18"]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr182aB0.g",["de5a2c55bb8082c1cebbae017510f17762ce13597f7993e0f166ce3625256bb2"]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr182bB0.g",["1587b207737a42397d30aea6b3ea18c14fc61f0f059855e8fae25e6347f86398"]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr78B0.g",["96f13e52f27f22fe3267a543a3bb71a4ebf84ac9fd162b8ad59456b3d8ec1842"]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr91aB0.g",["eb2f807d6f749664cf0a382d6795c8e0ed6be05cecb179a5583b4cb9bd568099"]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr91bB0.g",["f92e8a844dcc8cfe72fa5a274ac0a1e7d5724f8f68405e867061c6acaad8c45c"]]], ["TOC",["matint","exc/G23/gap0/G23G1-Zr91cB0.g",["dad0d2168090119175e5e3a98b4fd91abbb02a293b7814d8c697db179877c308"]]], ["TOC",["matalg","exc/G23/gap0/G23d2G1-Ar14B0.g",["ce59bd2eabffae02ce25884d97ce6a091ddd2acf701152ce6ce61966461b37d3"]]], ["TOC",["matff","exc/G23/mtx/3G23G1-f13r27B0.m",["865ea7a90728dd71e975c111d608402ecb0d76f64b7423b8d893bd59a2897b3e","6bf5addf928646e57408d3ebdb74532f0fbf3dd6d5008c0f6f05c5961663bfa9"]]], ["TOC",["matff","exc/G23/mtx/3G23G1-f4r27B0.m",["c18d80f3f97ceab4b0132b571a32cbc9fa27c656422a25858a0e4afd85aadd69","a77af22f0717d227e8e6514d171324567a72e127265612562486b1b0d5246454"]]], ["TOC",["matff","exc/G23/mtx/3G23G1-f7r27B0.m",["646e14ecad8cf8ce81993c5c7263094f057ca647570fdeaac17829eff0ca8d05","9a513e974b9be2157489d8966d87a7e026460b363751b373e52a5c9e800d80c6"]]], ["TOC",["perm","exc/G23/mtx/3G23G1-p1134B0.m",["4385ce78fd524e6bfaab25a557007bd047bd9063561df763ee06c871d4958e1c","187d8bae008604bf6aa349bd82b2926f7e99dc860f14fba8b68f963aa9ba8074"]]], ["TOC",["matff","exc/G23/mtx/3G23d2G1-f2r54B0.m",["2aaa6e3080fc5b1116a7a052623145e494cb2a0365bc585dc4d207d1597da11","cb0c7452edece71d3d159fc22a5f80ebd241036121d3771aaba23e3e6b99cdd6"]]], ["TOC",["matff","exc/G23/mtx/G23G1-f2r14B0.m",["40710e1a5f3b9edd98bcbeccfede2665b162357bbcf1f28cb6b408339451e90b","e872e35f5f02b3b1f9a58176d99ce026c21c7e5ecf1c762494794dbb33f47d0"]]], ["TOC",["matff","exc/G23/mtx/G23G1-f2r378B0.m",["fee62ed73c89173d337d965927ba7c40500a3838a67b16ad8e35e7f3b516c709","44eca90fd8286a25ada196671efe8c67ac773a676ced365ee86509921ded75d7"]]], ["TOC",["matff","exc/G23/mtx/G23G1-f2r78B0.m",["d1e9e6224c940881467e0c8c0bcdd250f4fea8cfd4435c17f5cc7306eb3e355c","c8730da64ecc735424d1aeb9903b7c942ceefca4eb4be43cf07baaa2e4dac2fd"]]], ["TOC",["matff","exc/G23/mtx/G23G1-f2r90aB0.m",["ead45d210fe5564b7b2c48e230c4d5005e2728383ed1b7ccc3b5c8544f863f6f","370b2ec8e0b23c44c53e494ec9bd85bf85181a286dc091bace0fa32dd5744de1"]]], ["TOC",["matff","exc/G23/mtx/G23G1-f2r90bB0.m",["14dda98d983b9bfc102a03589a0a2dabc5a69de14d139735a09fa48ff2962b3f","e03a5d29e15502d86f8e03d6130428c9b851a21d9a9d18bfa8ebf3ad7151c6d8"]]], ["TOC",["matff","exc/G23/mtx/G23G1-f2r90cB0.m",["47c620c24ffe65d71236fca8618d7160ba2434b391b7230f988dcddc658b497d","2b47edab6435db42ddefd2a80d5c1c0fab954c40825091e2ea9f56cbc0bf700d"]]], ["TOC",["matff","exc/G23/mtx/G23G1-f3r189aB0.m",["8795c4d947207a7429b8c549c72a531974f9a1401be59abd56c683a886b49713","6fa3268c961d204aa7c3c5b90e53aeda9deb655094403a6d520e7282c55ccf86"]]], ["TOC",["matff","exc/G23/mtx/G23G1-f3r189bB0.m",["582a234bbd72a87685db20ad963e46c3e33b366c1cba60850475f541587b5724","b5dc4466f38d3885df01b122527cee2f8f2dec1292b00706f30d4d7492ee4c91"]]], ["TOC",["matff","exc/G23/mtx/G23G1-f3r27aB0.m",["3da888502f4098652bd226f44a0579109760f4c4f8fda089419bb89b50083bdd","1c40dea24da1f6b7c84d293d462ad791e0b401a35c19f1d043c9571cdbdb756d"]]], ["TOC",["matff","exc/G23/mtx/G23G1-f3r27bB0.m",["82bea344e9bf70b60597c8001126c54ebb0b1ce411ef97b040ff2314a8a570a5","6088354b0ba2e221ea675839de3a294c25ec93d6c0b12fe51a4f6f59a8f0f0fe"]]], ["TOC",["matff","exc/G23/mtx/G23G1-f3r49B0.m",["7495cbc51579aaa5d3178004b71e58832485e8ff79508eb39490451db2e5b285","bc5c5dc4aa1daa3659d9735027f1e22fd2997bbad795e97198ba726b5503f120"]]], ["TOC",["matff","exc/G23/mtx/G23G1-f3r729B0.m",["2aa6d975cadd6830e384c80568349961aa65b8a3670bea4b756b9903bb658774","123e421675bc4062dd0f58041e0cbd487cc5af33e7ca262ad3457d9892b778dd"]]], ["TOC",["matff","exc/G23/mtx/G23G1-f3r7aB0.m",["2082afd78d0d9a5cfa16e8aa726bd1f8dc9ab55044feaac68b83ba14254fa894","4e2d304db3759cf31ff9779b608ea5375deee04f64ea9b4fe69ffe6749994bd"]]], ["TOC",["matff","exc/G23/mtx/G23G1-f3r7bB0.m",["321776050cfc79713dd52ee82c1b629ff3947c88c34dcc7ab23e980bd2c18dab","b9dd349214ef54aafd27743688234f96c40e50ffef6e1b7c5aa72c817ccf8192"]]], ["TOC",["matff","exc/G23/mtx/G23G1-f4r64aB0.m",["b231725662250d86918e997e50a246dc31c94d465a3b83e1f89ab45ef15291a3","a67dc015786b6410a49aeaa3f2c54d7a58998fbdb547e6f2e229f741e63c033e"]]], ["TOC",["matff","exc/G23/mtx/G23d2G1-f13r14B0.m",["158b6d8419d73d3d457437eef9a1414c2e89a7be2c37590844856e7607cd575a","967b2fcc2b8db1d57ab20042c4461c1fb59e30af5fa2d1673a9c3b0a68bcd611"]]], ["TOC",["matff","exc/G23/mtx/G23d2G1-f13r434aB0.m",["88e1193c8f8b9be92670db3b762a13fa1747f9680c06c18b3808eb8c5d36085f","ae97b554cccacf9378cc48252318db2c8567d1bb56fb8b14b98a00de22d08cab"]]], ["TOC",["matff","exc/G23/mtx/G23d2G1-f2r14B0.m",["1803a23acd4321cc3dceace3d5f6138071b5589780ecb661925b73a51a6ff264","8e51203c421e8226e5286a463f29d457dab74f47a9857a6350d42b40583ee290"]]], ["TOC",["matff","exc/G23/mtx/G23d2G1-f3r14B0.m",["933c4bcb55d95d9cbec7da7dfea70a26be2a5d7859b0c8bfc7cdc1f1a6a74f1e","d90b96ef48d87989904407eeebda26af2e797c29e1c9260bf229eb570998b82d"]]], ["TOC",["matff","exc/G23/mtx/G23d2G1-f7r14B0.m",["fd54e817a62bb106a4bd3feda9e6aed63f530432d0d39a3412b8cc87fe689e89","957f83c9db0e2a459f40d17c96e5d25f0c5e82b18d3bfb9cd7e90603d6fb777c"]]], ["TOC",["perm","exc/G23/mtx/G23d2G1-p756B0.m",["f16685ffd361da250789f3ec380593a2cb08bf694c3e8f2083672fac8d938753","f4fa498a62eaa35151785ec34ca6abdffd7c3870ef89167dbdbb40d89ef4017d"]]], ["TOC",["pres","exc/G23/words/G23G1-P1",["5eed3c0919e48a55e387c23d00230f49ced8a2809d53bdcdcc053be4c0de5c78"]]], ["TOC",["out","exc/G23/words/G23G1-aW1",["676306bfcd300303d2eeec4f86219263a9cd38a208046e9d90ed20d2403e50a8"]]], ["TOC",["cyclic","exc/G23/words/G23G1-cycW1",["22b269fd3bfb1c2313cf6f9331e2f0567d7aecf72da7ef642a0ca3aaa5358f99"]]], ["TOC",["maxes","exc/G23/words/G23G1-max10W1",["774a347ed0cc1fe4ed199122c1f7001729a423f8f07dba23739d99ec435f2c30"]]], ["TOC",["maxes","exc/G23/words/G23G1-max1W1",["5554114e62b9c5cfaa1f71ce5b05f6433f75d646cbc01378a71bd641bcba81a9"]]], ["TOC",["maxes","exc/G23/words/G23G1-max2W1",["74a851193c9c973d12aebe6a2593d0f254e2271cf551fae383ef02930baa1d3a"]]], ["TOC",["maxes","exc/G23/words/G23G1-max3W1",["a5c3143a792aa67c6571286af76ec6fcd8e61902bfde76c084462f697c7b2a39"]]], ["TOC",["maxes","exc/G23/words/G23G1-max4W1",["4183c37c24709a39967d7887c773fcd2d72c42ffc652e23d0f3d837892533940"]]], ["TOC",["maxes","exc/G23/words/G23G1-max5W1",["baa7eef4aa6b0703332d945291a400e91987fc1047e8340b975990fec6cd7981"]]], ["TOC",["maxes","exc/G23/words/G23G1-max6W1",["d6a514369134730a40e5e766a2dfb58c96e06cc14aefb6cec93f0005e40ec368"]]], ["TOC",["maxes","exc/G23/words/G23G1-max7W1",["1b8707b16f427a112190d04e3532ebd52f42ee6b243e37ac4efdd4aec5cd5a4e"]]], ["TOC",["maxes","exc/G23/words/G23G1-max8W1",["13e3f5f3242cddb4c4264d4bcc61859cf22a148eb29939feb94459b86ea198b5"]]], ["TOC",["maxes","exc/G23/words/G23G1-max9W1",["c5dcf10d680ae86367c76ed94a97e7797898df16094f070fb52ea806ffc13117"]]], ["TOC",["cyc2ccl","exc/G23/words/G23G1cycW1-cclsW1",["7e74b064270d46f12b65e2f6ed8bc6a6a586d160a603b3ce5021a5bcacd298e1"]]], ["TOC",["cyclic","exc/G23/words/G23d2G1-cycW1",["b969338555c80032309b07fec5297bffd37866c38f732604fb66b809a0a81efc"]]], ["TOC",["cyc2ccl","exc/G23/words/G23d2G1cycW1-cclsW1",["a8b2fa077de2db82f03a613ce330d5e6b3dc7b35f210e721665b07aaad70e859"]]], ["TOC",["matalg","exc/G24/gap0/2G24G1-Ar12B0.g",["621d9882c26651b228906e00d94b1b74b64dd40e92d6a0fe1fb20884798381cb"]]], ["TOC",["matint","exc/G24/gap0/G24G1-Zr350B0.g",["82d772bc43c2cd250ca391766542866924612053be974902c8288a4a9ac2232b"]]], ["TOC",["matint","exc/G24/gap0/G24G1-Zr65B0.g",["c1a618df68fa1c1e1a66dbd5271314a7e3f299f7ebc38b983dec045eaa4c47b2"]]], ["TOC",["matint","exc/G24/gap0/G24G1-Zr78B0.g",["35b830a593c844703deb4258ff2f68ad33270b5f479f08340e4cdc41a2288395"]]], ["TOC",["matff","exc/G24/mtx/2G24G1-f13r12B0.m",["73b0b9846f96866e2c073c64ec1475069169a035b21306e235d97bc7dcb6dc0b","61f885d1a21a60eb3346ebe29d9b1886d311d135c39ea568379d4d7c94f4b590"]]], ["TOC",["matff","exc/G24/mtx/2G24G1-f3r12B0.m",["377575e5070a367fe659bf07e3c659af13b7247509d53ce61cd4e397a7af4908","73334a934f51d9f414470ac1873377a0479d7459ce99b95bd97e9c894b63ae2d"]]], ["TOC",["matff","exc/G24/mtx/2G24G1-f5r12B0.m",["19f9645469db9532e87a0deb149b7447831c85eac41a033aecef1b1ce1708aec","d3fb7d2113bd2911bed7809e33520798b461d28f29c6681f1a200a2f9fb02f18"]]], ["TOC",["matff","exc/G24/mtx/2G24G1-f5r92B0.m",["f37ebccfeef10c9983364a31741d63142d1253a785f3b2ff730beb51c1f8315e","2f4398a86059925715d9c4ab88b1b1d021c693f141398469c09e2090983bad34"]]], ["TOC",["matff","exc/G24/mtx/2G24G1-f7r12B0.m",["b2ee34af535c223335d02a525298562e6d88bc329097d9a031542e14e8e03c52","9dc722a2904a15ed492fb2fa09085244362b832d41a19f19c5d8b2e0b5cc4df9"]]], ["TOC",["matff","exc/G24/mtx/2G24d2G1-f169r12B0.m",["5806cacf4457e576c3749ca3621bb36f7302aebe6a839359eb116276c3d0d8bc","fa7e6bf693adddf39069c1e7540d4ee6235f03854cc9c3daf213940b5060df8d"]]], ["TOC",["matff","exc/G24/mtx/2G24d2G1-f25r12B0.m",["843a9925eca3edee057405b129201492f069efa0c3518e60a571c2beb3a798c4","f95b472374021b50974c55c68d571e078200a181f7867cc814c91f2de14aba2f"]]], ["TOC",["matff","exc/G24/mtx/2G24d2G1-f7r12B0.m",["87db2997970619dd067cab2cef5c02e076aa36ad6477a8f0473be9362b4d7f5c","884bd709ab39e13e4cb702d35d78bd38546b880db671bca73f67b864d61fc84b"]]], ["TOC",["matff","exc/G24/mtx/2G24d2G1-f9r12B0.m",["de0d4c963efb44fddd573dfc1d323014e5be207de0dca4186c1f0d1acafaebf7","e45415c088b8698b7c3c046fe7f3167f224943d32223ccc41eda30a71a993f23"]]], ["TOC",["matff","exc/G24/mtx/2G24d2iG1-f3r12B0.m",["3334d4901b81747d130ff66037027648062665e942f5f57a0dbe2f6465fc0053","4d51c316364fda2deab2e849c69c1007c15373b6ed566e9891c79c4f698e5956"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f13r65B0.m",["3556fd89c24ed9e1e1096bf29b028ba963b922f755b3689061b5ca874900dfd0","71e1739b2d159346413030ddd346c7f88bbda889935c48daca59b505596eed8d"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f13r78B0.m",["a5426d8c9e7205006ca96495ff928fe5d8fd1af20ee88c872f7f612de6a7e5e7","19fc2b93d92952e34c7e4ec383264f22dd093130404cded922b32ed2f517a79d"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f2r196B0.m",["bb5414b59b43c1c0db1bfcf7f16ff92f643c4c31537ad94340eed2587a2556b5","6833d5974563dc7938235a31277b497406882f13b15db77b37d2a1ba956b0965"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f2r36B0.m",["b8fa018c0fa309927e256f00a93e730edb4cc951fabe26ee1d6ae9e6d1b7aa3","12734499bd7f6b79fd3d83ec0377812baf2e70f37f5f642405e871fd0e371270"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f3r286B0.m",["91923d493fd702ecf5775d3fa6d271d33ce54b0a518fe018acc54af0963ef719","b658eda362ee87ddc0520863514bdc0ca3d96ddaed3818cf174adc5bd23ca12"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f3r64B0.m",["2624da7f0aa40a4c8b19e718718c145cb9244c275776afee0a016b12c14f8b2b","f0e508fbf9d26090b11c7b55b9268ac09efb41a5290675e1b809dfb5d01069e4"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f3r78B0.m",["270628f77183459fbd0ceb408fb4c251c7df8fd492869f033ad801b4f7e744e3","366d69be6c1ebba4bda85a3c7c12fdddd340dec3b75cb9999a7ec0205a090368"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r14aB0.m",["9f3447a2b3549bd474123648f6811b68f1483698c5f5b341d8e38320fab56093","44fb5d95b5c778fd1d0a4a38820c8d0a088f168afb2c723d4132f9037a994c03"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r14bB0.m",["b18c2a3769ac2a365e620fd651352b6b45387847629614ce0692e18f9fb24cfe","b354e40c0df64a0d084fb3943a2c080c2cff69d39fb92f6c26b1b9c042d67e79"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r384aB0.m",["81cc35e734844e136fe565629b964d0caff19db17b77a827d8490f73917f71b0","6c3fdf3dbbcb0bc23ef5a7015755163c0ae59a65c4acc6aa18935e691f298871"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r64aB0.m",["2842cd1c20e45463d213c0387a6582a9fbaebb764e184b06dc82b0c96d064e9b","2deb1d14dd12e40d86ee8a9be76dc6a90cf8269b08232c27b3e37fff9f82e35c"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r64bB0.m",["8686c18abdfaa6cbd1d5010d474af6723e66fe0c8633d8f234881330cb70be6b","b5f80abeeb5209f2d17f00ba6538ee70bdc81c3886ec7f58acbda9ee7de8c517"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r6aB0.m",["9a176ad4e0a50d0c310a14195dbd6a7520702fa2d2105a5edce52cbaf4f606dc","39120799caa694b6c0458eb6f673b81dbe74ec9d61a105acb46970719eb7804e"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r6bB0.m",["17ed93678369658375eaa113b87a56a9459ed4b906a38e66e749082ffa4311b7","17ded82059c3c5b8dbc9613cc4978b45cbddae69d87cc89c193a683231a530f6"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r84aB0.m",["983b02659b9bc71d7d4d33c98429bca8ab24b01cb76cb27c73c55247f20ea9d9","4c0ba53ca589b02a064b3c1cbf1c71cdcfad4a8f139f3550096b5120f7d92e96"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r84bB0.m",["7f5481033877cf96eb623dccc69106e2ddc77d86f22e1cdbbd9bf6a160388dde","f2159873cb54bcb9e684b576659ee3fbb015ff837165cc6f754d48fed429f0b0"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f4r896aB0.m",["d22c4ff0a1de5f9aa06e925b32967779c9908e46d50ee3dd6cc4310d0f5d88a9","518226436a0f635249ab338e1604a2d987f38d099e294114057e2133a35e0c93"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f5r350B0.m",["ac6eeefb59bcaca7c708718e23e9f94ab65b67f5a2b7fd7d76497ca25775eb67","2a44c4d76f72d2dbec006709055c1b67224ff42094d8ef65b39b75e85224e341"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f5r363aB0.m",["b9bfeb499a7adb70de2fa2a712d634e69756c449a2d8d14af7de7d4cab6910e9","e2e04b3ca4d5905c2e59a22a4d32619b0d2284074afd527ead767b6548c4b3ff"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f5r650B0.m",["ebfd93180d8109e97ff01394c03657f2c089658829fa97e932c0fecaeeb0e3c2","5ed8998c4c51d031f874547475369bc0fb7a4753d97263578bb1783c4521a264"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f5r65B0.m",["34900bde8c018eded9ac2106d2ba24c580f4cf886f44caf854e528cea7b30dab","ae94abbd27fa44d24ef0e8d406436289d18d2651fd004f6c80632debd66251e0"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f5r78B0.m",["a8c4f42d44899824383c3b0caa5b953674d85f8fb4be129322e4093ab2f6031c","a2da6b3cb3b8f5a50189952c1d54504f28258e359d58ed70a24108ad29d614e3"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f7r65B0.m",["dfc87d793e5c0d6823f66e12baa0af87f11cb46b2ad8a6cfa114782532a9bad1","7f80bf982837ed9e36c13072fa5d61a426111c92e722bd7944e47123f4c9f2c7"]]], ["TOC",["matff","exc/G24/mtx/G24G1-f7r78B0.m",["711933de03784071f46246fde3155cadd0050ec58bc9ac361e332365b154e17f","6cd8e0f7eb9363095a701e59c811235e1554aaa592c9da189f04074fcae2f16f"]]], ["TOC",["perm","exc/G24/mtx/G24G1-p1365aB0.m",["a9abdfa0655f769411ced572c6d1f45d7d62609e6e6e26712e3af55b59260621","ebbe5a65b10c2ad42e8d5af568b454ebb6e8f76e93b2b0d399684639ee880138"]]], ["TOC",["perm","exc/G24/mtx/G24G1-p1365bB0.m",["b46ec28899510993319a66d1059f6dde291cd0ddbd17cdb2e60ebaa0958560af","ee70889e3e95cdd787000f66469520fd861d35f44f1fbc884b14b9357f09ee36"]]], ["TOC",["perm","exc/G24/mtx/G24G1-p2016B0.m",["ba375e53832e3bca7afc696bb0f977f29edeb8ab7fe22a09fcf6f967561d3109","66a04b9fcc5b6954e69e941c4d7ef5752385a0f4b664b74c5460b5d9079a07dc"]]], ["TOC",["perm","exc/G24/mtx/G24G1-p20800B0.m",["74da93c5a72b81d29d12e8254a668f3a065303492bb2d909ac8e86ede4882093","28db081625a57497fc11cf528d67db72105ef665197d745c239a60624a182161"]]], ["TOC",["perm","exc/G24/mtx/G24G1-p2080B0.m",["daa0683728e77ef7cbade101de0126b0d9f61217f3f60130f5e9cac95a658391","3dd7238cea6d8478ad1d9111503e2ea5d308b1ec3446e4102854ed5e49b8438c"]]], ["TOC",["perm","exc/G24/mtx/G24G1-p416B0.m",["d3dfd83209bca3643fc087a70c78057171b9979001bd16546a35d733780fc953","4e0366b670f01fe36149c028b75db8cdb024a7dd39ce586d13e5ca1169fa6567"]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f13r65B0.m",["42b93f63632fdec31d40c5bc60f2164225d90b676610e27e9146c1123cb2a5a7","69b74d4052075f93667ed02e4277bbfbdf0bd71f203ad7ac6fb26f35dcfbf8f3"]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f2r128B0.m",["9ad2d0ec76b3b71b30b85f5d1cbe012876fe353ce9ebc270ed297879c752a987","11ab6312d40ded47e5aa9666453ed4528852c1b775d5b7cd022985e957e21d96"]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f2r12B0.m",["c1c267992f05c18525e2457fe7bb0e74c6d2ea7d00844d446fac5b55f4ac7c75","31a478186abd16042b0036a339baa2328f7e3907b3f978cf85e86a76e6f4d447"]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f2r168B0.m",["febcd4b6a5570d8827eaeac2540a0bb4d590e876b00d6d7818883bbca0c1dbf","6c587ec57c5d98a35e276c334d79e099fedb500203f7dd1a411c8d56c953edfe"]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f2r196B0.m",["547e0cfd421ad937cc5bc1f0c0df68b031fa78dd3666b0159300daf9552a0770","43589763026bf5726f625acd1f55f37de893041ae923808aa2cf8634d6f8e404"]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f2r28B0.m",["6230c1854188a9b38ad92473a59f51d70f4033494495f8fe7f23e4779a870a6a","cfb44a82ec4eb4a929df2ae40902baf9cba9eb1370c4d1ad9236bac8ffff8a55"]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f2r36B0.m",["7015150f8184e12e57e0d9a937f2fb5ab390054bad247f34370f287a9760776f","f3d5eb01d3f2a6743250c8939c78567f46b0870fa08c8ce043531ae977288f1e"]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f2r768B0.m",["899ea3e11192bbcac89121c88b7afc351dc4f12a221890c983ea414969969ba","5a9d6db59d007b807d893fdd0fd4ac0f28c3b40dd4bcc43dfaa59cb54ab6aff7"]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f3r64B0.m",["ffb90e2484766123ec5ab43a1c0cf9c34ad18ca59b6e20c90343d6042d998cd4","2c460db165bf7ce68350fe3b3eb44ba82534d5420e45f5867661b17f07e33a8f"]]], ["TOC",["matff","exc/G24/mtx/G24d2G1-f5r65B0.m",["ebeed62202025de6b704a909e0489f19b84e515d3e2bb79989e2575477ae1c4e","d6bcd9d758b5310248f7284bf2d2233cbb6a2bd2cbd9da4aebb1209b9568f5f7"]]], ["TOC",["out","exc/G24/words/G24G1-aW1",["5c3b9192a7aae30f107e56c411f0d760977602ce661c69c12152687392eda4d"]]], ["TOC",["cyclic","exc/G24/words/G24G1-cycW1",["a1d92194614d189e4180050ade77cd5c2e2983f1c2187bf0fdab4083bceca7e7"]]], ["TOC",["maxes","exc/G24/words/G24G1-max1W1",["5be838f24938794f397fee4a3c5484f8f670a049b85e97e4d0a0f4d6393e3220"]]], ["TOC",["maxes","exc/G24/words/G24G1-max2W1",["50f12930f3b90ecbcb428fc832787b101683b7535bc1b8f17a1f4d8c8f0cfbe4"]]], ["TOC",["maxes","exc/G24/words/G24G1-max3W1",["d9ab929f451b89f7c4d677760b9cfab77c1f2edf3e76dea4a25ef4cb457cb98e"]]], ["TOC",["maxes","exc/G24/words/G24G1-max4W1",["1b616ad97fd6d77175058fa84aa7620df37b5c0ad782cf728316ed8768dcd08e"]]], ["TOC",["maxes","exc/G24/words/G24G1-max5W1",["1ca9cdad254b2a1f0548dac7b9dcf32e38b06effd3a4c5b6322c1f5fa454a163"]]], ["TOC",["maxes","exc/G24/words/G24G1-max6W1",["68c404ea34e47728ce6ebef41c5688d2e8a9e64d1e65b3e8c3e2fc5a2b173cda"]]], ["TOC",["maxes","exc/G24/words/G24G1-max7W1",["d1a4f117d28b8f40deb776afce2230b6894e7b8e9467602a1fc75f52c4e070f4"]]], ["TOC",["maxes","exc/G24/words/G24G1-max8W1",["cb4a10c3976111fd2136413a66ea36aa20d44cca9e136d5677c220cf485967b6"]]], ["TOC",["cyc2ccl","exc/G24/words/G24G1cycW1-cclsW1",["dd74d6d3624e85481118c327bf4100b405243a069f7152ba4b06612418bf9c9f"]]], ["TOC",["cyclic","exc/G24/words/G24d2G1-cycW1",["902d7108631b12e6ac81b2b7930c03a0a83e0d561b665458adfbacca7c5eeb12"]]], ["TOC",["maxes","exc/G24/words/G24d2G1-max1W1",["e35ae55d4e9ae8a97a821a32274744baac252edb38ea1cbbf9018abac9e7eefb"]]], ["TOC",["cyc2ccl","exc/G24/words/G24d2G1cycW1-cclsW1",["fe8f8858efbd705c1ba8cb8524c68d913d3cad3a083ffcb9e1817bd8884e04a"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f2r124B0.m",["c233ee94235b0332cda3a3242d791c1eb5e1fc82a6075568d288a9a699517583","a11a3e6696ee121af2934b2fc9736e3565831007d25cabfcd7db7bc740367f1e"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f3r124B0.m",["d08c3f966d28609a175efbb7ea4591fc9124d8d086d59d0bb9133474d05c2db3","f1336001c26fe9f0a6dec716f2e4b3665913f7f2686c75c0a938f18707bd9522"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f3r651B0.m",["9a6018882db46725ab8793df94959219734b0becb736e29db81b272b4ce6c70","a0b04a1b4820b8e648a30937afa6be95221e73d89b53f280caf87eda7e4e320d"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r14B0.m",["babc8f08d94fe5bb1584fb4e6cdb1d37b707b4be9b2456ed28cec0ffab31d8b5","7ba6917c4cd321b2bd3239878c8c6668367a9220c1994a6f31d62f271829cc59"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r182B0.m",["15aff8feb3901d44b7ad22407f2300e29cdd9332a8c7ecdd456f52537a2238b4","e46a38cb293bd20c3aaec91fde25ce9d9e4b4e1763f9a233c8527c210970cee2"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r189B0.m",["1661c627c62b979d0fa862d3960551acf7f1eb68423125fd9c4c3472142300ae","a271d1a22727bf6cbadecc79f5ae13ec9ed69ef7e7d4735d936453a5a8542686"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r196B0.m",["6f00affd4e91a164d6ef24ae385a65aabc7bbd28495a28af906b232467f1e9d","9cfc08c771e5d5c1e04f28c668f633d5103992975d0f31ca572b15cc8105cd13"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r27B0.m",["107776ae004e8e1f6193d77d15e2150e9b6da74dd043feafe69249cb2fa020a","e100a821206b4b7003e5deafbf1b1af7924986f20f6336b7228faf71647af17d"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r371B0.m",["31be9d9e905c0abb4b93aea7a201f39bd2201cd88bd7dfe78d77a61c1eb37173","c3980dc3231426ea24df7bf64c6c92d398cfefd2702184aca2d69f95c4ab5d9"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r469B0.m",["f05080b38e787a2575b60f6d4a945b0dd28a58f9176eaa84c2a18829186944df","eb2c2e810b5bef070334f96a6f6ea11945d895cfa967f34c38bd4a590621c14f"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r483B0.m",["49d4793dc1e65fdd2a5c73a7fc1493193420d08f935ebb68ca1a5192fd759332","bd33317200805888ec62c580c8df92c4c3cb7ca1fca5b8fb17169a16c404034c"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r64B0.m",["103b065fa6538c73a6c77d9a1392a7e35f93fd3e9e2a0c7bf148b8c22295c2a3","d416dddefe7c0f9197aaf471946835f5501f15e57160f0ed95f6cceedd61e7aa"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r721B0.m",["7cb874f6cfe1a6400f1fab132c4501ee998618de1cb79a2e70fbb91ccfff17c","6262423fb635c340dfef7fcc31cf3c21bd332215aafc2c3a78ab0f3a3015af9d"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r77aB0.m",["179661e5dbfd24ef318b5188d4bff90f22b15eda9908cabadd08bc442eeafde4","83f0af5a2c1bbd2e8a1748989bd374095aa026efc5ba0ed71ece74f4a6d152ac"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r77bB0.m",["a1603ea87ee02d861bfabf5c671710d5da87818f2fa0b3ecf758b2fb85452aab","6eb94c7aa78ed60103660a5e93f59d400b27eb42d1ad1500694011a95968c2b4"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r792B0.m",["ecb52d30092d7d8b4a46fc2fddeb6ba4b469078dd6ecd4d44a1024f17985aa0a","8e4f6f10bd9988473474b826638af6211dba556cd65b5ce7a85cec13a1f49b25"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r7B0.m",["a533f1cf7e08c11d748fa43a9fa89f71e2366afffef7c603e4b708d542c3720d","a30237d1882556e79b0fd93372991aed994112d6e355eaed196faa33c6c91a0a"]]], ["TOC",["matff","exc/G25/mtx/G25G1-f5r97B0.m",["a205d7054d96fdbc38a6eeb30f13340d98f9fc222c22895966e8cb5d998c6beb","8f9aedf79ab50d0045e3d0b51dfc064d7ffc30c3b9e2f357036f4f2f53b8ca"]]], ["TOC",["perm","exc/G25/mtx/G25G1-p3906aB0.m",["355e55382385ecabdbfbc7708ea7fe6deb58f0128ca8cfdc5b8f164c76b0f33d","4a00d12291b8fb7c27f249b6923bd6775cdbdca76d947f2eaa7c23ad95fd8268"]]], ["TOC",["perm","exc/G25/mtx/G25G1-p3906bB0.m",["b922808f064c52bdcab0953f5d7e6ba000c9d4a744af56b793b5bf1a977ce0a0","8530d4d541045a806713f41bcea5d77e2fd7d4082b0dafbaf7d6bfa411936cbe"]]], ["TOC",["perm","exc/G25/mtx/G25G1-p7750B0.m",["835821829fecbc99ba9340344c9ad4e93f61d006c9f133b7e4b0411c33d41819","1c1318763d2f15bb46a2b3b56cde03ffd65401af65eae837f6e60bfeed7eb928"]]], ["TOC",["perm","exc/G25/mtx/G25G1-p7875B0.m",["8931797da036037d8fea9304283689758d5fe67778afbd58c7f5e05bd03ddca5","c9155aacaf8b4ac88264d308005009cfc7f57ea471c0fcb051581ad7d9c7f38b"]]], ["TOC",["maxes","exc/G25/words/G25G1-max1W1",["6f0795ace8f144739cd7ee09b92ba2c3f5a638020c7e440c031e684ac551987f"]]], ["TOC",["maxes","exc/G25/words/G25G1-max2W1",["e2a9023ac74efb678a44a40c63f7f10e0c4629345386ca46f680ab7f96b145c5"]]], ["TOC",["maxes","exc/G25/words/G25G1-max3W1",["18e9d8eec71d2cfc6bad24db71ab0705d0bcaa82520e64121abae80d75e3d67e"]]], ["TOC",["maxes","exc/G25/words/G25G1-max4W1",["ad564c1b9db3e86d4e75743c6345d7735b9938504d1247e75f0dea2bd224d44c"]]], ["TOC",["maxes","exc/G25/words/G25G1-max5W1",["1fe4d2145128ed392b0db41dbbf056ab805dd00f19e64e98060d84e62ae20841"]]], ["TOC",["maxes","exc/G25/words/G25G1-max6W1",["ab9680a8ce3f067a4a70e6ac704af5f3bb695ed2958cd170f8dc23b21bf606b2"]]], ["TOC",["maxes","exc/G25/words/G25G1-max7W1",["48fcafea6ad11042f5b13c66c7037eb429c3e803354df9b22b2a0d12cf9e9f6c"]]], ["TOC",["matff","exc/R27/mtx/R27G1-f27r7aB0.m",["b4437f289a37cd6f1cb4e0531f517ca6f94cf64676436a9d03e54f8452927386","df7fe54b0970362f582ff8a06b8be76ddfef6efc2deec0de01632903de2d4196"]]], ["TOC",["matff","exc/R27/mtx/R27G1-f2r702B0.m",["73d80c53dd9ada0054434f1fe5eb85a1cc5c72e2e0a149c2c97659fd44d1fed6","bb4189cf0eb59ad4b4fa977317858092f6ab5b41a4e0ba62f5a5c4fb25decddb"]]], ["TOC",["perm","exc/R27/mtx/R27G1-p19684B0.m",["3fff5adaefbc129d685a5c48ad7dc1976004258a6cbb68c357bf47a8f284220d","125c3c815f3f6996abd234345dadb2230d63b7524a408e38aca2cc2f2b99a2df"]]], ["TOC",["matff","exc/R27/mtx/R27d3G1-f2r702B0.m",["b8f45ad7a3e085e86f9d35a8328ff13318e2f0f0e0ae6f1813ffc1a287de00da","f7e7a906a10962074cb53de7786125bd9c7dd34bc8109ed2d89922fc794c859e"]]], ["TOC",["matff","exc/R27/mtx/R27d3G1-f3r21B0.m",["ac05305e68ac3f279a3757a5a5bba4cb3a731c1aa6a9b1aff72aea6f434fe316","aa0b6903bc0e2e623614fd2b66fcd85eedbd3a25c27ea80f9b9d5caadbc6ca58"]]], ["TOC",["matff","exc/R27/mtx/R27d3G1-f4r741B0.m",["6f34aa98d1741b4cf378e5368dbf6376dd5ff7a4ef306c1487a7051819f3c9ae","4d706e27e3c9975ee3d653af834253853f7ef453b0ea9c334d44ba217cb3b426"]]], ["TOC",["perm","exc/R27/mtx/R27d3G1-p19684B0.m",["d566bd99dd477c0f83701faa1e991bca9e133408313d8452b7f74522901d8e75","a0702ff9f0c8bf309daf3580699f69d9a2541ca7de580c77ba23a6e255edf042"]]], ["TOC",["out","exc/R27/words/R27G1-a3W1",["a0e9891e93b43d95ac99c53de426d1e6b378f7a3ae6b367d287764d15e0431fc"]]], ["TOC",["cyclic","exc/R27/words/R27G1-cycW1",["f580bce9c2a2f33e5b3591c5ad7c8e96b78b7f9699b4a5c45c9016b235d6da9c"]]], ["TOC",["maxes","exc/R27/words/R27G1-max1W1",["a7b58a505e61197402e0fe21fc6796dd84373ac8fee840e4a015cf2b99410656"]]], ["TOC",["maxes","exc/R27/words/R27G1-max2W1",["cec67c3ae715891f2fd6817c12dd1ba66719c59afa73c5da012ecc89b05bf225"]]], ["TOC",["maxes","exc/R27/words/R27G1-max3W1",["72e1d2ad60248e70ab63ab95d5b538dae179ae627b520a8ab29a07f2a2bbb073"]]], ["TOC",["maxes","exc/R27/words/R27G1-max4W1",["d979d774638ff6026edc29355e046b250f2e6915818119f73447b3e19e774edf"]]], ["TOC",["maxes","exc/R27/words/R27G1-max5W1",["a5ce84091d3cf391f79801a176f96f0f196b859d632149c399a413d48c34a928"]]], ["TOC",["maxes","exc/R27/words/R27G1-max6W1",["8b1ed102b85ac6e657139f84eda10233ef9466c38aa6b0f4af64873e671ef9f7"]]], ["TOC",["cyc2ccl","exc/R27/words/R27G1cycW1-cclsW1",["38664ba6645d1745f9d768eaa661cc077914746012ae08d61cef7d993212bd3b"]]], ["TOC",["cyclic","exc/R27/words/R27d3G1-cycW1",["d2c9013b3b54e69ac8e5a1a9091e872d46f75b603ca2d8cf4b2d243b89b6cb1d"]]], ["TOC",["maxes","exc/R27/words/R27d3G1-max1W1",["edfcab01e7cd246605371eea6edef84dcff6f3f92bc8e1233fe9d73769791ca5"]]], ["TOC",["maxes","exc/R27/words/R27d3G1-max2W1",["23e39be86e4824b9018ded28dfbc313e810192df1869f9c2a79cac248a4e19d5"]]], ["TOC",["maxes","exc/R27/words/R27d3G1-max5W1",["53e66c59491821a22a6b44bbb24a51c95bcfefd21038738de492088753a55fe3"]]], ["TOC",["switch","exc/R27/words/R27d3G2-G1W1",["895e9f02f768b917658dbd0a74ee8611d1e8eef446e57b2031e92246441003e7"]]], ["TOC",["matff","exc/Sz32/mtx/Sz32G1-f32r4aB0.m",["a63f1c71f3557e49459e8837a807ea230dbace4e27dfde1af9b4b8c3a8feb3f4","585603ed3fc439451df280b7850b370fa9b7397a1f607d6a40f2ccf48751c4a5"]]], ["TOC",["matff","exc/Sz32/mtx/Sz32G1-f41r124bB0.m",["72cee6f504ee0d74a566bc2a4915fa85f290970be07b5568a4f669dec81ec195","39b71265e2d9f1486284d46ac2bc7e559b94772665e2d114a4096f63af8ab0ea"]]], ["TOC",["matff","exc/Sz32/mtx/Sz32G1-f5r124aB0.m",["a3f52c91dc76c49cf5257df1da82d53ec8a74fde0675098616fc3093a759a665","d419fd7d8caacb8dd5ab918a3a293d94b3d28a8d70b4542f6cf4c0c6581a2f37"]]], ["TOC",["perm","exc/Sz32/mtx/Sz32G1-p1025B0.m",["d47efbfdd47a001fecf5e2ee2a5e469c4068dcad294b7af384a24b6f93d46433","48fb94a8495425c28a3c6df41047c2c930f171e1e513a47678bd90eef9290e34"]]], ["TOC",["perm","exc/Sz32/mtx/Sz32G1-p198400B0.m",["e501927146750da84e2664d155de2a9e8241f7d619379ed7bf6244bbde58231c","dd3edb2938bbaa74f55877d35f9b6f420817a61bc83df70b49ca6fe437d43b82"]]], ["TOC",["matff","exc/Sz32/mtx/Sz32d5G1-f2r20B0.m",["ef4fae9a0ae7dad2840babd3153b2a4b71ce3fc6b15d00fb0a8cc05daeb3bcb9","8f9c9469c497de4abdf60327d651b14ebddc9fd099c9c013eb86c900ff864c9d"]]], ["TOC",["matff","exc/Sz32/mtx/Sz32d5G1-f41r124B0.m",["cbf1078041e89a763ee3291a2ea1d4cd6bb3ffabdd730a9001a583c38bd38a2f","2a0a5d6f89c98293aeca6a778b7d158e8cafb049972c0f32bf7bc738353d49f1"]]], ["TOC",["matff","exc/Sz32/mtx/Sz32d5G1-f5r124B0.m",["480c5fd4619b486af0f8e74925f4e37f533836e3a7370461fa9c94a92a65742d","8d612386886b1155b06c3dfe09a0ad0fdb3a9417d4d7edbf65aa20aa5dea154c"]]], ["TOC",["matff","exc/Sz32/mtx/Sz32d5G1-f5r248B0.m",["7888a6c463a162f4decb951c5ba47cb844055f5036e498c2302c2d5a0cc08812","2c7dc83b0f7f2769944a4032df9234bb11efe77973b7953a209a73ed887c3f6a"]]], ["TOC",["perm","exc/Sz32/mtx/Sz32d5G1-p1025B0.m",["4f98b7c3eac2899bf8d5011f7c3ac6042439b0ba57efd00d9608031e9426fc6e","1bffb5993e662c71740eb27962433504f59141b37b0b28ef00bd4f5afbacb99a"]]], ["TOC",["cyclic","exc/Sz32/words/Sz32G1-cycW1",["1feb21ad6cb9babe561100e96ab0c8e948f269b5567c5d898191d23e2e98523"]]], ["TOC",["maxes","exc/Sz32/words/Sz32G1-max1W1",["770ce7d208be652d3c7c0db54d18ceae4034d30cb11724890bd84c7e8aa1dc0f"]]], ["TOC",["maxes","exc/Sz32/words/Sz32G1-max2W1",["c6baae4aebcc1b40b5e7e1a0689d072575fee46b84fdcc131bf6e867ad6282bf"]]], ["TOC",["maxes","exc/Sz32/words/Sz32G1-max3W1",["25a12039583ec6c83b99bdb86f4bde8d450b06f818e3b727028ea861a3104f40"]]], ["TOC",["maxes","exc/Sz32/words/Sz32G1-max4W1",["5d1b780f8abd4153715f561d2c5f76915daa4c384589d928caf656b91cd12596"]]], ["TOC",["cyc2ccl","exc/Sz32/words/Sz32G1cycW1-cclsW1",["6f905feaf9fa669ed807c60e9404426d0e6ce404de3a7a72ef5ab9cc78640bb2"]]], ["TOC",["cyclic","exc/Sz32/words/Sz32d5G1-cycW1",["c961ac025aea7c20291f58f5f2c7accb3607eecbc901d4d7264f091be9e9c44a"]]], ["TOC",["matalg","exc/Sz8/gap0/Sz8G1-Ar14aB0.g",["71d0952f0ee72eba6fa91ac40c655ca10cc9e15bfc78bd4895220f5b578abfcc"]]], ["TOC",["matalg","exc/Sz8/gap0/Sz8G1-Ar14bB0.g",["3faeb584db56f5ec61975edf659f3f590284a83537b48d8a8b7bb28ef3a96b9"]]], ["TOC",["matalg","exc/Sz8/gap0/Sz8G1-Ar65aB0.g",["8ce10d0d9f454d70f6cb515736e2ea0fafad44a0126aa8b69026ec0fc478fdf2"]]], ["TOC",["matalg","exc/Sz8/gap0/Sz8G1-Ar65bB0.g",["13bd5a4d94fea742296a0fbffa6e5cc585e54ae337470d94bbe3268d56fed71f"]]], ["TOC",["matalg","exc/Sz8/gap0/Sz8G1-Ar65cB0.g",["a62ae983422e51b14f178639c3150f5c44ac91f6cdf0dcd209f318b7513a9af8"]]], ["TOC",["matint","exc/Sz8/gap0/Sz8G1-Zr64B0.g",["5f1c2185ea9d5c42c4b7e5d0bc0f86187c11243875f8ac7086e9859bcd41f3d1"]]], ["TOC",["matint","exc/Sz8/gap0/Sz8G1-Zr91B0.g",["d40be08e037da6a3cde09663310b2fa7ae1718167038d1c2413011acba3ea3a2"]]], ["TOC",["matff","exc/Sz8/mtx/2Sz8G1-f13r16B0.m",["1d045cf25c60309c0598b81c13fe78828f06f071a8ec571dbb22e27e8a660f80","45abac6eb1cdde5ef1948d44be161f6b2968c9aed63ed63035ba5d208455a42f"]]], ["TOC",["matff","exc/Sz8/mtx/2Sz8G1-f13r24B0.m",["5dad2a9d04364698a70038d099fb746bc3db5836a07fbdda6a170a410131a46e","30e457b558a7def57181345f5ce816e147b29af28df8b47ce16229d3897c55f0"]]], ["TOC",["matff","exc/Sz8/mtx/2Sz8G1-f2r128B0.m",["d1ae0bb4309cbef4e1001dbe840b9d7905ca56438d607fc059741ca0d36baea2","49f888f1024c9b0911b184043513c18a95e6ac12df70349edd96dcf405455cca"]]], ["TOC",["matff","exc/Sz8/mtx/2Sz8G1-f5r8B0.m",["901cfddefc5cd040fab6c67478da65388e59869ab39e3d32489040ea171176cb","688e962e9040f894b17ed380830ccb1f52ce2ada8ffac00c21c28fea2e8155f8"]]], ["TOC",["matff","exc/Sz8/mtx/2Sz8G1-f7r40B0.m",["bfdf22d626f8867fd64c0c0835c0ef4a60dd82844e80b6a4a047996c9519a9f1","a8e2993cdaf36181a4686dd7e97b4eb24c7414fac1f30e6ea8def0b7858913b1"]]], ["TOC",["perm","exc/Sz8/mtx/2Sz8G1-p1040B0.m",["4fa7d950f035d0e348eed7bfc40db4c6b6a476f49ed2c3e53e92ecf84f32207f","f220020b6037c91519fa2c59fd88464152c8117664800e27440249db49071df"]]], ["TOC",["matff","exc/Sz8/mtx/4Sz8d3G1-f13r48B0.m",["6a06a77fb78bf59837b927905bdf4bce490bbd9884ba56f0cf183a6b7df7dc55","6ba5f94429124f5281fd30a9066cf498b17e96981cfc8f78fa9b01b74241f7e6"]]], ["TOC",["matff","exc/Sz8/mtx/4Sz8d3G1-f7r120B0.m",["7dd0619ed2989194cc79ee14c5805290e5ee92c3bd53d86a2342fc277b1ed498","1fd7724ad031de47b9a046bb2151ab79ba58d4da347def009e63668fbe7dc6a7"]]], ["TOC",["perm","exc/Sz8/mtx/4Sz8d3G1-p2080B0.m",["2c26aae1de27b215a88f91b50cbce86ccaaec0f116cf4220d28fa1d112fac891","c47d1b356fc984358846c8ac754fba9cf2181d7fd985c6c681ea55dd321b8057"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f125r65aB0.m",["2c57bbb4bab6f205490af4b02d4f7a7c712dd74834a9e82eab65129df9487e7","527868c7d9cd60b92a66a2b3ea08150bf456dfb202937f3af1ca45cb24a1ee15"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f125r65bB0.m",["f0526534c586325e220519a961ea7c9a7723180906ee7ab695359cf94530fe8","224bf5085dfbfb19a0a13d1bb37de445ae9b8fa1ba76383c47bcb23cc05b6b73"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f125r65cB0.m",["eeaaa64bc5ca8d747c14ff32dd5904423aba7d805126907195a5e25ba27987ec","9fdc231fd5868ec426275c2f0124383b0a3991a8da4bdc6ae0239ac5f83c57b8"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f13r14aB0.m",["835545cb7ec87d90528c0e7c92f0f44e7cdbe5f39bb8f6e9e024357cde608388","13c3e6efe5f87ae4f65b04e377503fe8d9681cf19f6e3311e1e300a3c94197"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f13r14bB0.m",["4d4257c20fd780c84be2560b28ce5a1e23638647ad07c7fd6829bdfdeb24921","39d2c7c8294d9b5f47fac375b71f01f21413b1f22cf0065f93614cfeadcc7155"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f13r35B0.m",["b1b60d3ed694c9de131623ff72a4e5a60e9e4b226c4c6a6a001ccfa25c65d474","142d999945d01e3b151ad91a7c6d1d0b67f29ed7d193d2bd2fc920d189be6430"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f13r65aB0.m",["27ee31bfad72dc9803c92d0132ce0b46ff5f5abe7f149b8a6d278a99fd21bfe2","810ae4f05210ad7d4674fce997bbcf4df70b7be90a4c7616fd2e2ae8e2684024"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f13r65bB0.m",["246a3041704555b5736c6eaea0b7f35ebf01eda1e96395431cb4e258b8663d7c","180bfb5ae988336b67761e8b2935fc562817a24908a3acb8f9b47ca93f73029c"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f13r65cB0.m",["315812ee2c06dfcf3ac1adc58e7a03ed21af56b53d3416cc453d2a92c10622dc","10f24e3c5c4fae3266c5451ae9cd0d2806859dee571ad208387ccf0e51ba4b4a"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f13r91B0.m",["1ff39776cc6f0270b57ae4a2584010b4f02cf011fcc77900d3b525a3a68b8e25","d6460e4d3559eebd76632891c83fcad3902b1e770056701ae4e0af99b34d7c18"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f2r64B0.m",["987bcbc186abcc6017d674c6a0523349fcd4c08bec2d7185ba87f68da1e65047","8e65367773eb7febb104f6f558ae809d70219a1f0f173a148ab83f67abbcb2da"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f49r14aB0.m",["57ea4b53867be78238ac12fec2271d4beab910f0ad4814061e6c0f3554d8e980","a4d87860f81a119891710f8d5fa42420519fa120179b49cb762eeb157181dc9e"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f5r14aB0.m",["76dff10fe30a01d5b979d4a988e9acb35f787ac2298f96e2832b75ffa47ac80a","a4e150f84f1bed296129e644d31b28aa95c701208b09d64e9561bfa567325805"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f5r14bB0.m",["7ed7a698c0ff2efe23da051f48db2a938e030324f937ac5c390737b7369626eb","c4f0be48cb2b6e06b51d5dd3ff831fc8c6bfff71bf389623f63999087b37677"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f5r195B0.m",["38bdfaadd6433a32f7ac96e19d06849bbd0227bc1c35c5ea1470801e34aa8205","5ff4e0f54960e7c624c9651b17da639e550f52bf84780064e4918e7ce0adbe54"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f5r35aB0.m",["c2a77e854150a3def393e2856e3e62e479494be60b11d08bd3a9fded5058e3fe","a97443da376172ff3bef546c0e993152766de61927f50064d749dad9f13ea97a"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f5r35bB0.m",["f7bd8487d81e152bf257c2b11f2e48550887ccb7db0f8dd087bb0663b54479de","aa808dd53f17c96275624485070cdf7db054dfa275aa2ac8f8c0be4bc7c80ea7"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f5r35cB0.m",["46ded4bee95ef1c40d0febe986aceb9e65c6297022593dfb9a44eab1502ddb95","53b66aed2134a872ae42d9a71d95f186a777b6ec90b41d01a60655104e8aed23"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f5r63B0.m",["e11280aa45adfc1ce4cd5e3977dd582df2b7bd81dd6671389395d38742bd2723","48b7057c7560ae0b59de8c47238830619b60ec4ee6b1ab3656b53cc0456caef4"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f7r105B0.m",["2b9eddd18ae65a40096b75dd9b20208970b1e1486787327bdf84aca54f61c01d","1b8fa73e3d50828a8948fd29e45c5c09759f286e6a20430095e1f4cdc5e9c908"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f7r64B0.m",["f59ba6b42ffab51e9ec4f8b67d21e5e578fba1c1ae1b6010f27dee729e9fc508","f8ab14919cfc7b86dac9a6b2800d61bb9e97737be9edc6b7360511937629bd8f"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f7r91B0.m",["bd78634b4c8304b9e96dd2b66f5e6ac06a900c1618be197b79a4a106ea72c764","64f3fa67e6ca130702ddf24e90b308b1c440ef681b0cc18b0edc47765e617000"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f8r16aB0.m",["3fd919ab9cc2c676047b6a572ef5549998ad08c9ec3e1b2a07de106470bc0799","bfc20f8da41dd75bcc7fbe68cadaa1b09908489cdef0e0dad112d5efa837d803"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8G1-f8r4aB0.m",["d340de36f97b5d7308d8765bc29284c8174b3dea3fca3aa05b2537724ab9baa4","c21e55ee9273fad643f1e1ff894ec4ddbfd498203340371075f5c293e03d8bd9"]]], ["TOC",["perm","exc/Sz8/mtx/Sz8G1-p1456B0.m",["18743e0913d3e5172e2d71173758a2fc536e33c71737e8712a72a3dc85b7eb14","b4d4a890aacc3ba68905b7e5eb1826e45c563052e9048aa1cf189373dc4c0ef4"]]], ["TOC",["perm","exc/Sz8/mtx/Sz8G1-p2080B0.m",["b40194c621175d66a06055a7d0312bbda30883297324e50d7a8ca867ff838da5","3e77db4514c05c6c9210c73abb7897f07668509470e681399b9ea6fbda984d7b"]]], ["TOC",["perm","exc/Sz8/mtx/Sz8G1-p520B0.m",["43cd3a18ccc95f938edab058d9f1d9fc0c5de27cb8ebfa2a48c01cebf12a7dfa","a875a4fcc3902916b69cebc0a8040d9cb92ab8bfbdf0c38d14a1821e99651f28"]]], ["TOC",["perm","exc/Sz8/mtx/Sz8G1-p560B0.m",["45bc7cfd805607bd3e766d5118cf9e0faaa526be2194061b2082010ceaf53fe0","9698a3586e0907762f54b9d7b97522a92e26b92351dc30308c8a2d6ed7dc6518"]]], ["TOC",["perm","exc/Sz8/mtx/Sz8G1-p65B0.m",["b68494a857eae007a95766ec37d53a85582f2dbe6188051cb0ee6fd18145a0bf","5f6cc48c11546eb1dcc95b39e0dccf0155cb3c3aee062803a2e7ee90450d67ef"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f13r14B0.m",["4229ef6157973dcfd92002742b460d77e263b73f0723c1458775297df965bce1","5ee6a934cdd1354facf82ba1954ce7da8cbf5030b3764b384b187dcda75ccbd1"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f2r12B0.m",["87b8db1fbb6c8cd89dcca62440e797ee78afc53fdfb3506b1071ad1bf0316765","61bb927c80ba3f301bf9ade78fd330906c7011251ecb8630ebf3a1f5c0c3bf04"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f2r48B0.m",["c892462c06cc3f04c65fe57fa750007bcadb0d590c22faf80fb62e5fec18cad0","9e80e72c0965ad3bc84a6e20f8b02bd5bec0b7d5dbcf96fc3fa4c17a9bcf2731"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f2r64B0.m",["ebddb53695f8b17829af26c447c153ce9df9d77f532cc302dbf6e3bfc293d6da","b56bed7225a204dd224ebfcaf5f670669444e4e81bfdaba1e319257df937609c"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f49r14B0.m",["a66bb01b34a9a24c3f19cabd7d7b42f469a39579dde5944e428b16fa2166062d","4fbecf24d2712ff4d72043f9d0f74f5d2bc9157aeab4e1cc7a21ae38eaef36c1"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f5r105B0.m",["b45f96aa4a8aadafcc22ede26d23be6df8242bf92f99b614b82749ffd441edf4","35ca578e13f02c51670728cf0953fc3f3329b3dacc5489780b5d09f29dd8cc9d"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f5r14B0.m",["5ffd9b0dd3eba2e869a0e22d824d31446db4473cff1c8d8aeb677e735bae6204","a755641ed60f653ddd8ed785add21f1ff54223e003f33f9570e980aecc9ad5f6"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f5r195B0.m",["2b675755dee2537a3274fbd59f4931c2f991d8765f12ea3734f68fd9bc9f3a7a","81e5513ea7d985ca2bee0078b239c5f173f6c2325cd152eb8fc9d46546f58501"]]], ["TOC",["matff","exc/Sz8/mtx/Sz8d3G1-f5r63B0.m",["baa90e1fe48a5dbe0a31a8b747a1fd0f27c835f0200ae057023f5c577051a28e","d2b7c7a3f0fa14b6cb23497d80d9d5facf0b7872c22a45773e3846b782453616"]]], ["TOC",["perm","exc/Sz8/mtx/Sz8d3G1-p1456B0.m",["ea5f725b8671a6d5c86fe70c01e66f9e1a000dd18fa565a0a691cab953043c46","ab3a0198b9060ef3eb4dbadafde81fe3dde91ba3c585d386935b17b00b6bebda"]]], ["TOC",["perm","exc/Sz8/mtx/Sz8d3G1-p2080B0.m",["a3d32c41cbd69fb2dd56707bb99403cdc424d84352dc8c69b36f38990ebd7869","836632042cf58f69f6ce16094c7058a5ec16cd413af6a470a2291de912d60a4c"]]], ["TOC",["perm","exc/Sz8/mtx/Sz8d3G1-p520B0.m",["dd01e39c9edaa3befb8c38bdf2ee4c9b2d3632b0bfef5f2d41b58a08fa9e67d1","fcd7f4d4790778ae47ee8015af70e34e01a7c3f330e3de8658d1ddb8f626aa78"]]], ["TOC",["perm","exc/Sz8/mtx/Sz8d3G1-p560B0.m",["f014853c68d5d856a3d868664262d84c964ee4b27f9c9a4aa9c8e8677321e111","a2443767869f0c7e62ae3b12e5f957464d44d6dc91c36c6c31cd34dbc86c5e30"]]], ["TOC",["perm","exc/Sz8/mtx/Sz8d3G1-p65B0.m",["5a4d1881f4f4426f1531311dc3d574ef71ae1f54cb5961a05d576a91d5ef9a15","95e92164306b5da5b08c666bec36a5c751ddb7da22bca613257044652fc30085"]]], ["TOC",["pres","exc/Sz8/words/2Sz8G1-P1",["fa4775338d8e953f966950b523e0cf80f61e19db83f781d78de3e084f824bd82"]]], ["TOC",["pres","exc/Sz8/words/4Sz8d3G1-P1",["d133600c439e0e73507d3d89c2d0d5301e8bea27534ddc75db6b09c0441e3d31"]]], ["TOC",["pres","exc/Sz8/words/Sz8G1-P1",["dbb450b07e78a30638fb56995c6c63e2172ff21ef70c14aa9919019a09d365d1"]]], ["TOC",["pres","exc/Sz8/words/Sz8G1-P2",["efc7c21eb0df10d80523281f0354980d5f7741414aa6e8a53722326279627810"]]], ["TOC",["out","exc/Sz8/words/Sz8G1-a3W1",["e52a8926cac80074ac9749628879d3ca5505508d2e8345ff05696b01ac0ed6da"]]], ["TOC",["classes","exc/Sz8/words/Sz8G1-cclsW1",["9e32b2153ec4d537d5787e746a26631df5091de5e8976e6f5b29dd9a1eb7518a"]]], ["TOC",["cyclic","exc/Sz8/words/Sz8G1-cycW1",["1728097c80a34a24a790b3b8ea544c2b4dd42363ec700ddfbf4f40357ecf30b8"]]], ["TOC",["maxes","exc/Sz8/words/Sz8G1-max1W1",["52d2fd21a99112296e714d4339da76912a1addb4934e54ab3bdbb1a5655b2266"]]], ["TOC",["maxes","exc/Sz8/words/Sz8G1-max2W1",["9ef156a627b8689a6ec8125f3109d9b4c185f3f8917317cba9b9cc5ccf95b903"]]], ["TOC",["maxes","exc/Sz8/words/Sz8G1-max3W1",["766226251c8a3238a1b22eded775f6c2e534589ce75370f70d4a001a95b96265"]]], ["TOC",["maxes","exc/Sz8/words/Sz8G1-max4W1",["7ecf8959bdd800397c1cb532b3e4b598aaa931c2387160d43261ee5dce0666ab"]]], ["TOC",["pres","exc/Sz8/words/Sz8d3G1-P1",["ba0a6bb16693f2e7e4d68f9105606b356b59482ba6acfcbe2607fbd060ab2964"]]], ["TOC",["classes","exc/Sz8/words/Sz8d3G1-cclsW1",["e97ce895c88266641daa4555136173d7e4d2de30d343c5fa106eb5a11a91ab4b"]]], ["TOC",["cyclic","exc/Sz8/words/Sz8d3G1-cycW1",["28a8bcc636d10e22ff3040151ad2f67c29518add6769cca13031c3f91ebdaf3f"]]], ["TOC",["maxes","exc/Sz8/words/Sz8d3G1-max1W1",["ec9cb0ffbd26517cd33936c1ac65aadfb2782d342acbb3e14aedddba5acf9ea8"]]], ["TOC",["maxes","exc/Sz8/words/Sz8d3G1-max1W2",["72d874417673a8789791cee0e39f64d3ebefab7c699f23ed306d613bb620bc99"]]], ["TOC",["maxes","exc/Sz8/words/Sz8d3G1-max2W1",["9b29ebf49b6cca0a4373aad5a36e54b8263303641f4a6151c160885dc07af83e"]]], ["TOC",["maxes","exc/Sz8/words/Sz8d3G1-max3W1",["8775ceff577b4b5fd6ada7f6bb471b8b8a61fff762f2f3e0b7df9cb90ddf4186"]]], ["TOC",["maxes","exc/Sz8/words/Sz8d3G1-max4W1",["34a2eba6aa221e1900bae5b4ce559f61b0197a1f6e5b57974507c5bab61894dc"]]], ["TOC",["maxes","exc/Sz8/words/Sz8d3G1-max5W1",["e3318952aa99ec02e8bc7eb04857798c809eefb8c47fe8624dd7543207475426"]]], ["TOC",["switch","exc/Sz8/words/Sz8d3G2-G1W1",["d061125f3b46b051c0756525243b717816338cf56eb67fda35e3cc29e0bfdd5b"]]], ["TOC",["matint","exc/TD42/gap0/TD42G1-Zr196B0.g",["c3e1197570f76b2896efdc9faaa73126f2099bb6a9ef4bc3137c20d0ea172e60"]]], ["TOC",["matint","exc/TD42/gap0/TD42G1-Zr26B0.g",["3438ebb0c63dd67f112d3f904a6e7c7991a814c05908e17b0c30def38c8562d0"]]], ["TOC",["matint","exc/TD42/gap0/TD42G1-Zr52B0.g",["4270a39f0842cbd308c9c028eaf048957c152069ee0d3488a2eaa6684405e762"]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f13r26B0.m",["f4353229bd1b4de2e90b80c0103aa77e794f18f98ac8b6a0ede40784449e13a6","d663245c339c4e8dada3b55b976c1a8b69eaa2d6bfe274c40dcab0b5c7954a92"]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f27r351aB0.m",["d253f59f88114e50719a97c4000a309214a78f6a65b8753e89ef2cb9e9327dfd","ef23ff0a1ef91d97eb7fcdd57609f86ef622f8b2b8f5b8451d40df2773bc8bed"]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f27r351bB0.m",["f0101e7ea3014f9dc64cfe115463de3fffbdb367046559d0fcf7fef677e15a30","df28ad6e2174365a351ac429f98fe0ba33fd5f64245a23c1cfce9ce65f83faba"]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f27r351cB0.m",["f87efcb0cfeca3663f075517310e3a61e1b1eb1c1a3001c7ecd6132f86fa63ec","f7cd89893ac63ef0d0c2310658bb7b80b411d184c28c18b47edf6c8041217be1"]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f2r26B0.m",["66729db5f84cfbd88daebf2110a428aa54010bf4ffdf6440562a2d06da3bdc6f","9dca5ca000a3b335fa421a46191c6a9a30bdb84facdc6e4b8c6197d7385b8b02"]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f3r1053B0.m",["8946993526c07a776f811185c99ee3e8888388e4982bc14d12fee2f5341c0595","469827a86c177c2b8efc8d7927761cc97e7f62cd078297d915222bbef886706d"]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f3r196B0.m",["fc8b95398ba2b18b455b1144139cace53a296b022be447d6bc6d8f76a9b3be3c","e837ca431f04ae16b71e0c544d897871024c16f79539d47e9d1dda6ad136b85c"]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f3r25B0.m",["a394e8d56958ee8cbf7b0ebd79b42c945c9410a472b1466f8f620dd071d80bd2","33225c62a4f3c7e49b31c9d9d077a261061ef4296fc37e6bb012d925ca56a7db"]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f3r324B0.m",["460a3322461def17f2243697f34fe8525d6dd13250be82972b00d6d15cce4180","ff199ae5d2587515102bc6313fd1239c799e2f245193637a983a045506c6618c"]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f3r441B0.m",["2ea57abadad704fdbf7e0933790689811e49df8565093b5f90d79aa5e8fb25ad","15c4d9081650ebff91244e9c929bf6fc7212ce3b2838aca0e2bddc3c886a6dad"]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f3r52B0.m",["f561b26bce242f60d8a16ca3edf559f70b5dd6866fc5234ed3e57eb39530fa52","8112fcf5ddc547d2fe7652704b160d7638626cb9a5c6f3879a2e9f9721edf3e"]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f7r26B0.m",["35f9542bea8e6bf35c820ee5c71b4b6f97ebf582e9730718d1f74e4864b65a1a","28098aae3fbdf97e47514701851039014496b459f0bd1ceeeb2f705e933612de"]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f7r298B0.m",["4b2cf46ae9b73491dac9cfccdf2243e2830c5e9d82b4f53581ffbe788cdb2e0","8e315f9dd0f9dbe88dd1573581205e59503669a8e5733958062e5f2699cadfb7"]]], ["TOC",["matff","exc/TD42/mtx/TD42G1-f8r8aB0.m",["ccde2c003f4c9f946e9c6a9787b3738ddeb4c34ed4037d6f2ea19062e3f84928","b66112c95f5fe0ce71555f22890968656c9c818ba7f8b87416192cf66c27ead4"]]], ["TOC",["perm","exc/TD42/mtx/TD42G1-p819B0.m",["e087d686eb2fa26d447704b923dfe921f5c5f136ea8f4931d9b3866563fce139","d086e3b3be70471e1e3ca8140b4d32728c1f8f2756b5e7da324b55c26f83886a"]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f13r26aB0.m",["e370f8d5c398514af9af1a98f8d4981f8132b9e47b89942ce29e54f5ea3e8681","5bea4a790cf96ff877f43a7fa20d7c2286e23f30b8e398ab5cfe2f82586d62c0"]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f2r144B0.m",["2adf2cb6d827e2d44b3246ee6fce636fb14d072149f32b40dae71193e33acf24","a2a1b8ac85f2121cbd7f26ae2249cb28165c81511468b1e99ef49be7195d300f"]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f2r246aB0.m",["da2da3543563d7f9dac9883e7906466b4317ef959c8bf1523556d292ee87336c","2afbdd51aeba715790cd15bf035f0b810c46cac2ae425d1c90ba1a6462d2fd5a"]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f2r24B0.m",["9ff831cbcb64e10e45a1548a4bf2835edfccbd38e628efbb0b95422da32684d4","6519e9f79c53fd014c739c5102f8dfc516be2d789f4b2f9eb1aae649e4953c04"]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f2r26B0.m",["7ec661b97fce0f61ad8204e77aedc83fa3390313cfe17ff6ffabacc592062d73","c836233d2520ca667a9d3cf4f05698f1b7635a03e683801e1c8d9c6df1bc8411"]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f2r480B0.m",["6a05e718e4f6549cc0c0b51b622c3a01d89cc7e9ef1a30d11f751b2f505b44e4","72d65983ab5cc79458b82cf7ebd792c0cbadf65e2005ebc8e42ce538414a56f5"]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f3r196B0.m",["e2b31cfbd7652f086c449fee4161cf5c3f4f76fced5158151b2ecb5a619b2683","1bca9d7981dfe9661e200b5c0267d7a7f987cf56c31ab9adc482b214a86a950a"]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f3r52B0.m",["c15cf4910fd63087cab287b6a701e9b53354c31562d028229e8bb230608d0459","a8c1da908eb0768549023495befdff427dde9dfbca78e65d7320dc00f862cc1b"]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f7r26aB0.m",["bfd1c8d16b386558548baf571de352ff4564383c0d2d3cb82a882e4010cbd5fe","a6df5a72eb041d50d574c11049d717fde2cc6a6f3e768c066cd9b6c7652be3f1"]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f7r273aB0.m",["fb144ce374f8ea1ae30c8fdd44852453d7f6cfdd44e0851fac8801d8359e36f5","58b9833512c62e762ad9f1a94cce419b1456f57b786247a1fb7cef9074ba850d"]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f7r298aB0.m",["3ca654808cba6f2ed6b233f6ec498d29b6d9c02bc0f678e98aedd61cbbdd107a","d8fa7c2b1bd0ba7e4de4d8fa8533f8204108a45b3126ee9fe1904efbaa3cab98"]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f7r467aB0.m",["58a7fb36a9f06471f688af5eac1005b91d6c0fa1918375ed0d7e926b527a711d","f039c6f5a89669d63e42655b297d7bf12b416d9eb31ac8acf93e5353bf791f9e"]]], ["TOC",["matff","exc/TD42/mtx/TD42d3G1-f7r52aB0.m",["a1b0e69c19fa215ab2330b6afa718837644fb4d5b5c9e639739ec1b12e88bb38","e3750ae41fdcb0b969f1718c9c5b5f7072f6237988c52dd1052144c71733c3c0"]]], ["TOC",["out","exc/TD42/words/TD42G1-a3W1",["cd548f80e1b1ecca0aadced7863e06fceed87f264f145177d61b2c1f3963d35e"]]], ["TOC",["cyclic","exc/TD42/words/TD42G1-cycW1",["b47908187475dfbb180c8ee538b2a69a332fad29f07bbd2abab5e0c748b4a501"]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max1W1",["ddc9fe835408153e63ac9120fa4c69607ad4151f21ce496c2dfc1ca870b741c4"]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max2W1",["48493dd4ef90d26e84ec02b29375a3c8559e966fbe8dcc011ffd6b47aa019eaa"]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max3W1",["1b473f8da8733c74d52f6b0dc46096898a28fa3fe1c972a26a6b45b92ca6c08a"]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max4W1",["1ec766da87872952f3e1d1ed3e8c12be9eff71d6e90520ba766959ba52e18b2f"]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max5W1",["89cc4d8db09a612155710e5afd531ce79fa4b9459baa15982c9ba5e39efcab23"]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max6W1",["c28820de861075f29dc9946aa5732bc823dc35fe791bc7d00644f4f396f60b5f"]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max7W1",["4c41dc747fd581404eb7463de04fc4e479d9b6e1d4ff9df207912f05b1bc9f4a"]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max8W1",["2665202aea7d7e9012f93ca773e451d909bdbca1781b206fe746010c201a7921"]]], ["TOC",["maxes","exc/TD42/words/TD42G1-max9W1",["ea21f45a9e4226060c0f8949c1a1dc1ed129322177b0bc3e6a101db4c526ff2e"]]], ["TOC",["cyc2ccl","exc/TD42/words/TD42G1cycW1-cclsW1",["20304aedc86411443c339496856c2a9441332b1d101226db6f555360e78620ee"]]], ["TOC",["cyclic","exc/TD42/words/TD42d3G1-cycW1",["11c66039ffef1b741e9f60fbbedfb669c2637fc9bd6e8dc01d96d344d8e04360"]]], ["TOC",["maxes","exc/TD42/words/TD42d3G1-max4W1",["eb6eed9a2ebe5a8d269a315a3d49a2e09c43d34ab803ceef9eed544342b4f99c"]]], ["TOC",["cyc2ccl","exc/TD42/words/TD42d3G1cycW1-cclsW1",["e6313c41ae0c17fb6fa63a0641e2e97a42144122b973ec73eb0456955dbe36e6"]]], ["TOC",["matff","exc/TD43/mtx/TD43G1-f27r8aB0.m",["215d0c0aebae1b1a406a0704eddc64b460dbc343c55102e209b118dc6e1a4c54","65121bc26e38cfd13edbcffadb11a5a3654a9308291eb6cf7e7ba697bfbdac27"]]], ["TOC",["matff","exc/TD43/mtx/TD43G1-f2r218B0.m",["1604146589b45607768b65f5bc2df6ad0ddc982bf6b2abf7faf5f5c2db0bbed","2af645cede5b43a5eeecbdcb6fa092ec04c3730472d9264637d270b2169a6c73"]]], ["TOC",["perm","exc/TD43/mtx/TD43G1-p26572B0.m",["18b62ab4541021a52e4d969815e22a1f8da44259a03e07d6bb123c5a3749c115","e3040c9cd4dc3a206090312d1d15b77acdd0c8a2079a60eb598d9ac18345a429"]]], ["TOC",["matff","exc/TE62/mtx/2TE62G1-f2r1704B0.m",["7db856e52d50c56119870793080c1f335acfd0abd144095b3a1579604b7af54","63446481a580f4a4c5c43ba8fb9e8ba32cd9e6224348b18390e4a510903a85cd"]]], ["TOC",["matff","exc/TE62/mtx/2TE62d2G1-f2r1705B0.m",["b111be8e5e17f1890ee2d971ca80a809c40b72e5bf76a501cbf97243161fe2cd","caf1667c933bcfcd249d576fa584da9d8e870451c959ffa455498db9c6ae2252"]]], ["TOC",["matff","exc/TE62/mtx/2TE62d2G1-f3r2432B0.m",["fc158cf6c26af70d8c2bfe1d46968ca3b3d7d47c10d438cbf77b717703c89d64","3910fedd05f0227273ae796623ce43928c38de33c5c4d517e7ea713f2c7704df"]]], ["TOC",["matff","exc/TE62/mtx/3TE62G1-f4r27B0.m",["2f9b5d35fc3cd69f30a05abb4bb927dedd96bab7a020f0eb740b1d1f67181df2","c734d342a099f3f7bc6e68e3b5dcd764abd82adf7a31d21f3099a5d611484365"]]], ["TOC",["matff","exc/TE62/mtx/3TE62S3G0-f2r54B0.m",["fad237078811519b7ca99300e10401b27fde8dc60e08534e5efe3a19482974ef","30592590d0648a13bd970df012ab557e6187f3297095f806a64a483c2d9a4e2e"]]], ["TOC",["matff","exc/TE62/mtx/3TE62d2G1-f2r54B0.m",["683b2822d887ab10e83071d46d768f85adb872f366600fb31fe5ca67cd54b298","5264acf3758a0d2d4cdffb04e3f67f4ad35ad8395ac6b14a40da2c5cc7505f3"]]], ["TOC",["matff","exc/TE62/mtx/3TE62d3G0-f4r27B0.m",["68cb6474c4cb31cc432a3c1d8c502195498c02304675b3ad606bbf4e9dc2aaa1","fcccf07553eed3543ccdb7b1137536783fb090e569634a156d3cccac376ac6d8"]]], ["TOC",["matff","exc/TE62/mtx/4TE62G1-f2r1706B0.m",["34723d56cae073bec310f6232b7f532f124fe8193b89580a40df5087d847c1a1","2fa1662565e860e3e81e35a7d30fbdefd1e982987b4d4c855eb517aad421f8e9"]]], ["TOC",["matff","exc/TE62/mtx/TE62G1-f2r1705aB0.m",["5060400ebf794a1eb02f7d6779cdf0d62b9a8655eccdb48c7abc3f7c7fad072a","26f8b62fdeba439f9ab9b96617c18148ef899dc76bd8d2618a0e4e52c0a7967d"]]], ["TOC",["matff","exc/TE62/mtx/TE62G1-f2r78B0.m",["4412066d86380e19aa9c6c08b4e0d65ce24966caae1bd1f0c346ebb4534ce304","6c22954a6c7b7b6815b5cd87d92c7549fa2e8c535728f80632efafd97b2edfdd"]]], ["TOC",["matff","exc/TE62/mtx/TE62S3G0-f2r78B0.m",["7339890eb7b7c7ba1c4bd41324928ebd4cfb735b9fbc7d4766ecb7d8d958ae20","98421c88cbd93bce2dffee0ed03c361c87c73da41f7137593f46e1f861c199d4"]]], ["TOC",["matff","exc/TE62/mtx/TE62d2G1-f2r78B0.m",["a468de22d13fe8190be6138891195c00e45ed338a6b89c095f36096360e1839e","96c0ba7032639cf4ca53b1396a69cb49d8ac098467ec7ec7c75775a1e7bea7eb"]]], ["TOC",["matff","exc/TE62/mtx/TE62d2G1-f3r1938B0.m",["426ebd22b9a391e538fa304d8ab3370d8c0184fbe28a662b3ec9b7b1e6e637b4","34f7cb03eb166cc5306eb3b0b796dae0fd7bc1c0b450d973fff7e6e28b96cbdf"]]], ["TOC",["matff","exc/TE62/mtx/TE62d3G0-f2r78B0.m",["7339890eb7b7c7ba1c4bd41324928ebd4cfb735b9fbc7d4766ecb7d8d958ae20","1fa04cfe2893b5e3bcd44b65be0ad13e6912692f83143d5e174f8f42f9dfb2b4"]]], ["TOC",["out","exc/TE62/words/TE62G1-a2W1",["5211fff08307d44870ee9466a432c925b5483d2fa9205ac7c68ff7c4ddc2ac19"]]], ["TOC",["out","exc/TE62/words/TE62G1-a3W1",["6fca6ffc03f3e5655cffc181a189357eef038546579fce2605f06762081af987"]]], ["TOC",["matint","exc/TF42/gap0/TF42G1-Zr52B0.g",["31e6ec44421ba480e9af0954870744db1360a5962d39d3daa060c64d849dd"]]], ["TOC",["matint","exc/TF42/gap0/TF42G1-Zr78B0.g",["c2b1720c415b32a9f84baf144938810f767d6d347022ea94a4cfb88227004102"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f13r27aB0.m",["a82b29832eefa5d8d8607935ba89e6e7fe1225faffebe0de7d1a2a1bcd16fc6","917a21ca5b84a5d1fd20d7596a509a6574f5892a57026f3c9faf7e30d80cf182"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f13r27bB0.m",["515cc9d3f5ec5ceae2471f16857c6d1f5b25e39c1f86e719aa3753933efbad8e","98bab32714c4e4c9e26e5c5b150709f7e7e1185d848ef04f76bd999b00f2c181"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f13r52B0.m",["b767c50f8ec62c531f46d3dc45890dfeb1d6635107588c06b9cc83a7afb044f5","4f9e8d2596d0f1e77f02a05d5ff3fb7f76919e18a18e81f82b1cb866ae261d76"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f13r78B0.m",["ed39fc08f8c49d74a6b2ecb829d68a731e40ce4651e55e4482f6c9ae1b491b25","d0e0d8037ac00dd82c8fa10827f11e5c97e7bb06e381b8857fb7dc1d20a93f30"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f169r26B0.m",["b46f4d0d1df6214d59459162ddb495d3e4fdc121a1b20356bb1430a44f6fdebd","9ec14d9918d45448691cea09402407887373d292141d515814afe718e168ca33"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f25r109aB0.m",["cf91b47a73580393e01e1195a2af0044b15ec7203d08ac1ad3a1a91395005824","e439e621aac2287ebc7f5d59ebefdcf010b9f7f14938016fe4f704f3f31ccb1a"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f25r109bB0.m",["53f5f55749e7d76a7172fcefb7de29523933562b7973e1d312d32c29a8c309e9","699963b4da10af7c8cd022e538021c8a029294a2583bfdaaed64a4c9bf2376fb"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f25r26aB0.m",["3ded02b45b119f5f62e4904083f57e8f3e6ae63e3a97927b974d40ce91dc19de","115cee9b5c8305ab6ff12f2b43a75d5f0bbc8c736a4c3e4aeb7a2938afa5708f"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f25r26bB0.m",["9d43117aa4aca4ae26527abc0b03fd2227ad388e1ff282aa4746954e095462e4","322f3f95c9cacdf0de697766b344973e061f70714830b8e8c6f373d55d28f028"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f2r246B0.m",["724a7836dd3cf19c17bec3927b58e3d836a02e6158a1a8fbde9cdc6ca49d2d88","e64966482bb6e52850106654859cc5bb7d9182769049f928dd18a29482a9fa88"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f2r26B0.m",["bf44b0536726181be5fa302bb0df1d826fb94c0c19c9f85b12737733cbc5bcc2","ba20b0e94efed7bffbff894df5ed5a94c48ace7146ef008a777b9f0c883b48c2"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f3r124aB0.m",["638dba596f017c4c98fe73629c1f7e33e4fe43ca3893b9c495ff657a36a5ed40","fd09d7518d2c6594c78d7093cec386073b0d0d22688b350c640960739dd5b372"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f3r124bB0.m",["277a7335f5a3f5eab59f3e1956dd7a8bf0762d9f424508be0f7ce62dcbc44ef1","53f18dfddd414702302c00524feffa4eff71796ccdb90d892eb8fd2aebff7305"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f3r26aB0.m",["b7d136ae18db4460b62d53697e50ad049e484fc9d4bded1689ea1da8c1050db3","550eafbfd3b329aa6dee7b8a46a7ee03e8b01370fc8a899e88c999efee9427d5"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f3r26bB0.m",["5f142594367abb56f7ac171c08ea522bde6f9396d18602e1d40fd2c065f2896d","68a295b6e980b36b3f77aec7a8f5341a332b7daa4f06fec0b609fa409612da78"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f3r54B0.m",["5bd299943e1d13d11d153b4a1041cbae2bea3473d30cee6786a488477d5f949e","e069606fd63878616f5af747079d2b0bee98377db63015bec01821c2c0034028"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f3r77B0.m",["32bf7989901925c38931fd5e2cc920cbc14737874ffe34e68dad845c2830168d","b9e257132681efa7b164e0f175ca920633fd0d4ccd4a643d923c8e3749d3ba0c"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f4r2048aB0.m",["5913fd512bf8f36dc4b6c363771e2c3d05676a879e73d0ccd187e46ac4e8336c","3ec22f81af4d4dcd178a743ae3ebedba27c4dee4522a2a570fb037bbf24ce964"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f5r218B0.m",["4e53c6ff612f36b2851c3a8b29a0b1d62b217b667a10f35fd6f155eb00b7ef0","e041dbcc97fd771be19cbe639535f54abe22b3b42717ae3b8c62c0c55a5ab877"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f5r27aB0.m",["c2713e5b79a16bd8c2476d6bcda356189d49429b6445156f52cf5bd0ad0806d3","49e5d82ff4cbcc1784ef80fec59ac2f4fac13f94c653a7f922f4a32da8ab4476"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f5r27bB0.m",["f37993fd854db79cdd4b94f047b80ba5f9a873e3353433e0924bf948871a4ea7","3026a6d309a81920ff5ee347096bf2e034e64d99cab3f17cc70d194a4fcc25aa"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f5r52B0.m",["551bbfc7962b64207966fba2352c197ac18723a0c51f65411902dce2667d3f32","e474bf16bfda89b4ed83191fa97c72a112938acfbd1bafe2b2ab34547b5cdd40"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f5r78B0.m",["852de5327028b9d363c4548e51f73183e40a9c8ed34abcd246c8b1fb96667dce","93d9aad3c8a0855de4ede2d2d5e378c32a498ad34184a0d994de9f9af2916af1"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f9r27aB0.m",["fc9fac825dbe256127254c0f18d49f13ce3f816ec3232480b2e1b0814cb48849","210390b6b8318fe5e333ee717a77b3b1e944c197b9294de605b505715745a01"]]], ["TOC",["matff","exc/TF42/mtx/TF42G1-f9r27bB0.m",["3a56d6a6c957cb43725a59facdb9f34f7600708e8c8fe8ce87be7b4100aa471f","b59a3080fafcb3c722fd22a6ec6cd631502831ab443683610f41347b5562d58b"]]], ["TOC",["perm","exc/TF42/mtx/TF42G1-p12480B0.m",["befb62bed3fbd463e612b5c24fbdd36b332c20be73f74de9ab7da4ba863a3093","c7f9ee85a501e743fb6f48e72bb6a56cccade11fb120f36c6b7de7f74233374a"]]], ["TOC",["perm","exc/TF42/mtx/TF42G1-p14976B0.m",["1da4a8a659f15cc150658beec55366f5341b91fb2a6b05fb67d515f58895dd4f","4a8312f764c78c7944c3f24a0314cfabf29acc38f8c3a7c3ca0bd04b2dabd257"]]], ["TOC",["perm","exc/TF42/mtx/TF42G1-p1600B0.m",["69bc8b66eb935383d0b05fc384a46138ad52b31b14dfd4fa8978734c6fd6d35c","2acc14ac76d3cc48e9de69294e496f3115e812fc10b251037262257cf3dc4f0f"]]], ["TOC",["perm","exc/TF42/mtx/TF42G1-p1755B0.m",["f51324f6710094ba88af863c1df1212eb096a28142531ecec12cae7d878f3a45","1ed9bcd63ef4ffb9be69df3f924ae941305f743d5cff48043a94ae1cff76efaa"]]], ["TOC",["perm","exc/TF42/mtx/TF42G1-p2304B0.m",["69999537559a273367279940a677ad285e68e4a363f6a765eac121c41248def5","692ceec610b70ac9106d02bba251c88da7d38f8b0f610eaa3424b04277822032"]]], ["TOC",["perm","exc/TF42/mtx/TF42G1-p2925B0.m",["e2f87b303d19505441e811a0d0d5db38b35c168e979c70ce656c6f53b696a296","3c85ca7ee99bf977e158a8244e7006b570f6874b9510b4aea8a079757f6705d9"]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f13r1374B0.m",["602c751dc77e113364c3bd26234cfcdf8ecf270047b3a2f273144bb2f926e2f8","bcab956f91685ddc430de1b8e6e85638e1758031efe2e304c6baa1f8649c6e1f"]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f13r27aB0.m",["63734e164541df0bec6f5ee4df1c0c38f1df3f9806ae1f22902033033e6b927f","b37a67dfaf37ad95db9ac1d232b1fc86f6b330348673a2f7f21a7091f48fbb5c"]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f13r27bB0.m",["efbb74873498915b0940730922ce6d8ecc149141db4d3dcab6b4f70484470762","452bb4c692b877d5c7e5ddf1490a0d8a6d968b68e45e7480f2b39e424a863fef"]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f13r78B0.m",["d2008c59ee531d1d65c8baa338594c9902212a116bf74f7cab1c2016257623a0","de71e9c02500ccdfb905ca6e9b6a285379477a99668e5b3ce6f50d2599ea6bfe"]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f2r246B0.m",["367f12c4724977478b4dacff00470b3af42b6c9a085ec1dff9e91e780be92a18","7d850e2d9468c2d872b3eaa800fc05468f35ea05b8aec393943490045e1cc12f"]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f2r26B0.m",["58595d6640d56e481a3f48a238a5e81b3468559e160fb5ff98dc5f67fd99ce2c","c92db7c777777de23cc62ea840b004d8875d213826afe015f4d9592cbd079428"]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f3r52B0.m",["564293ec71a70914595e20d4200faf09d1408f73c3721980f969c4963f33f1ea","4125abfdf5f26a7734c895a0c4b7502a7fef5cd37407cde4c3504c82ecec831f"]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f3r77B0.m",["170116cf717c415828f5f4fe1713f05eef2d8e8121b5de82979caee347dec326","a6650722ce70e46dc2801edda072947ad1f33f7bc7301d5a409d07885563fa54"]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f5r218B0.m",["fd4397313391c4dd1a918455d7621a407bd4da524ee0330f445ed4e67dc38ae5","3ba76b34ae635dcd64118521ef06324877eea9c597756dcd6fd5b0a02a61b8c2"]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f5r27B0.m",["8ca5ca003bec31fedd6923b7efa82a6341d9d0a827bceae1e8369b4c7404eb20","b07f4310a5fa7fbe8348782600598350ec1cc5f257a402ead2ff5601d84e55be"]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f5r52B0.m",["afddaf09a2e080dbfb6a2e3b615f5429c05dd98946826b02d343ad1761707ab4","9e710f807eab1291f8e9ba0c08147f470a817a3cbd6ec222a4d647a9c66155d3"]]], ["TOC",["matff","exc/TF42/mtx/TF42d2G1-f5r78B0.m",["1c844c7a8d50c17158a3acf4eddea1461e38c3b50894b9910c37fa0e651355b0","7e4a813573ccb4af0b3d43bcc82284ca5018094a7168eb3fb9fb6392cf526994"]]], ["TOC",["perm","exc/TF42/mtx/TF42d2G1-p1755B0.m",["d565d10e430b1344e610e971b67d7e3a6e7e2f0dda48483a157ca06139975827","d0b17727dbd79a84aef3a0eae3485cfffdb418cf3e16649869e1f60374357e48"]]], ["TOC",["perm","exc/TF42/mtx/TF42d2G1-p2304B0.m",["b63528eda86ea150a2f2558613fd01f2fa44e7fdd909a0f04d00f8aa0e279f78","3b41e98c7b479ed2553e66d81b404a044376d4c2c74df15510af8b7673616974"]]], ["TOC",["pres","exc/TF42/words/TF42G1-P1",["e44753c9f5ee7b19cc1c725096c4f103ebe34400516fcf7cd83127aa0dc8fe40"]]], ["TOC",["cyclic","exc/TF42/words/TF42G1-cycW1",["742dbc7c415b53545f203928236dc38212858c76f7f55adfe9b1248a87d41d7d"]]], ["TOC",["maxes","exc/TF42/words/TF42G1-max1W1",["4379afb43a03a16afcacd8a1ca0f3100a3df12df796a600da0c1b4b3959223f7"]]], ["TOC",["maxes","exc/TF42/words/TF42G1-max2W1",["4ea9a89e19d69229ba4017712a8bebd5906bca0cf21acaf426756a8933d05ae7"]]], ["TOC",["maxes","exc/TF42/words/TF42G1-max3W1",["3b13efc27daef6d283b33c2b10aa1e9ea89c6b0d42a48ef183e828e03acf59d9"]]], ["TOC",["maxes","exc/TF42/words/TF42G1-max4W1",["ca0e83999723470baf3ff73b999cf8ff819b7f9ef34e8aca81796b1b40fb7de1"]]], ["TOC",["maxes","exc/TF42/words/TF42G1-max5W1",["9181b8e49b001dc45bdc437f1cbd5714993bfadfe928fbd42769509ce7f5b18c"]]], ["TOC",["maxes","exc/TF42/words/TF42G1-max6W1",["1147f1121ae0bd8d8951df031c6dbc64b177f66c04e8eef13e724d88821011d0"]]], ["TOC",["maxes","exc/TF42/words/TF42G1-max7W1",["9f01b563d2ec9de8205801e057b02671fa3d01fe4d7d66755d8422357d2c339b"]]], ["TOC",["maxes","exc/TF42/words/TF42G1-max8W1",["130fda1c162afa6d4c8394fe0a8395dc1138243494b7f4a1dcc4f34f3e2ff312"]]], ["TOC",["cyc2ccl","exc/TF42/words/TF42G1cycW1-cclsW1",["b05c6eb2213fbb6b7b642928cf928fa1b6b73fdbfa8d7feaecb9b868f656fd26"]]], ["TOC",["pres","exc/TF42/words/TF42d2G1-P1",["8603f65e8befceb9c7ea0e424d7afabe2cd1e82fcb0f6213bc85b148f7f1c2d2"]]], ["TOC",["maxes","exc/TF42/words/TF42d2G1-max1W1",["85c190e480b1392a3c3b50ef647f4207c89c170c383894e077f4b5e0ca91ff9c"]]], ["TOC",["matalg","lin/L2101/gap0/2L2101G1-Ar102aB0.g",["45ce7dcc22f93863861d8e07e8c85d9f1a05a265c8a60b3e4147d1903b07b303"]]], ["TOC",["matalg","lin/L2101/gap0/L2101G1-Ar102aB0.g",["cdb76597f44cfe1d2ce1fd7d59fceffd3e7042a5ec2b11b2358770284e6d4a31"]]], ["TOC",["matint","lin/L2101/gap0/L2101G1-Zr101B0.g",["9e1530d652a7b098a99aa32aa0ec0ca11d555bab06be5c68cf28f57d080d06"]]], ["TOC",["out","lin/L2101/words/L2101G1-a2W1",["61d086771479891612d8ed483f6a90ac63740558fd8c012a482508a77d964c0c"]]], ["TOC",["maxes","lin/L2101/words/L2101G1-max1W1",["d1c32bc523097fa86c8086863304d2bd1bdb8875e75eddc39cac1f449bd83c10"]]], ["TOC",["maxes","lin/L2101/words/L2101G1-max2W1",["647739ab3f3679ea972b4f55981a4038f3f24f00acca22d53417b4058ff9dafd"]]], ["TOC",["maxes","lin/L2101/words/L2101G1-max3W1",["71f59cf34b9d8fd5fd62606542f685ae48d4ab0acd09081b1cc75e98127f3c8b"]]], ["TOC",["maxes","lin/L2101/words/L2101G1-max4W1",["8552c03c5ad702299c616d13b63803f2b8f107e68d02bec966c3a76c411f2592"]]], ["TOC",["maxes","lin/L2101/words/L2101G1-max5W1",["d79a5e8f24c40c421653ee77cd7fe6209596b4b40087c8073fca19e6b6b45ce7"]]], ["TOC",["matalg","lin/L2103/gap0/2L2103G1-Ar104aB0.g",["dc681a456d08fe5c8c4747b8414b09f150684e3f2e11312d20e8be15c6b8e4f4"]]], ["TOC",["matalg","lin/L2103/gap0/L2103G1-Ar104aB0.g",["23ddb226ea259f76e2d7289c62a833a1470a648b38a35f61e41237003f1a4654"]]], ["TOC",["matint","lin/L2103/gap0/L2103G1-Zr103B0.g",["ef9040cb24016261480311e39903744a8ef24c06c89f9f02187a14b8cb2b9b5f"]]], ["TOC",["out","lin/L2103/words/L2103G1-a2W1",["a7d321750c892bc295035f2e8ed937753766c3e475a326eba11be0024bbaea0e"]]], ["TOC",["maxes","lin/L2103/words/L2103G1-max1W1",["dd1cd061f52cafd5db0052f1caaf92d0c4c9318e662c7a30bed48dc9883921f4"]]], ["TOC",["maxes","lin/L2103/words/L2103G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L2103/words/L2103G1-max3W1",["1b9432236122ea1360e0733216e9a8093bf2b775f7b18d83adb678e58fa2a875"]]], ["TOC",["maxes","lin/L2103/words/L2103G1-max4W1",["6c30780d61cf34829726cd00df83e61a0e9ac432b408cc2c659380014e34e843"]]], ["TOC",["maxes","lin/L2103/words/L2103G1-max5W1",["77b76e6370e355794f391173b462eb10594423f60c8290540b3a2a232eceb38"]]], ["TOC",["matalg","lin/L2107/gap0/2L2107G1-Ar108aB0.g",["df83e4a4370d3063ca95a655d3515483f5d5c893faacb1ac7c7e49979350802"]]], ["TOC",["matalg","lin/L2107/gap0/L2107G1-Ar108aB0.g",["d875da320be967a77eb7b72e0c1fc7405a40d7e6a6dc567c1bb8f876d1fa73e1"]]], ["TOC",["matint","lin/L2107/gap0/L2107G1-Zr107B0.g",["794cfe371afda745140c7f941e6cd73efb66818702c73c82062e77c83c09868a"]]], ["TOC",["out","lin/L2107/words/L2107G1-a2W1",["e41ace5070680605967a534e88caeb0c2a75ecee3c058f5578d509ae81419437"]]], ["TOC",["maxes","lin/L2107/words/L2107G1-max1W1",["fec849b7e475e21555b1b0eaf937c3afc772bfcdeffd55122d6a56865e99480a"]]], ["TOC",["maxes","lin/L2107/words/L2107G1-max2W1",["647739ab3f3679ea972b4f55981a4038f3f24f00acca22d53417b4058ff9dafd"]]], ["TOC",["maxes","lin/L2107/words/L2107G1-max3W1",["1b9432236122ea1360e0733216e9a8093bf2b775f7b18d83adb678e58fa2a875"]]], ["TOC",["maxes","lin/L2107/words/L2107G1-max4W1",["4b0c1ea6eb5d1c2334c1480a6df0c391e479242a9753980bf5b74e3f401c6cb"]]], ["TOC",["matalg","lin/L2109/gap0/2L2109G1-Ar110aB0.g",["bf9aca5cc11344551dabbd424be4919ead1bdf7e2176a10e8b9649667e0a5653"]]], ["TOC",["matalg","lin/L2109/gap0/L2109G1-Ar110aB0.g",["80707bb1cef53fc820f3c2b91c134f90a5af8e08a048e718807d3a55308212e0"]]], ["TOC",["matint","lin/L2109/gap0/L2109G1-Zr109B0.g",["e631dddf8c417b7e813404c41ef1db33022e8e15dbd9d7868f19583606733f92"]]], ["TOC",["out","lin/L2109/words/L2109G1-a2W1",["c04f4168c9a4e1faa9b398080604fcfe4ac0c5ef658595e743f570fba641da1b"]]], ["TOC",["maxes","lin/L2109/words/L2109G1-max1W1",["bb803f31f758d64905ca6d976ecaf6e03c99198ddc07b8c0f24225066e3cd1f1"]]], ["TOC",["maxes","lin/L2109/words/L2109G1-max2W1",["ac4f381ff659d9dd1b276f20904bb1709b80cfc65fc3fb89064bdf75e23c7f85"]]], ["TOC",["maxes","lin/L2109/words/L2109G1-max3W1",["effb4a30e53a4ed3f400c840d98f2dd0aa6b046c6da3b2bfb1d3b7e8104c8cbb"]]], ["TOC",["maxes","lin/L2109/words/L2109G1-max4W1",["f6ebf96e6c12c0a8d50c1722c6ae48045a283206729dccf190b84226631a3e85"]]], ["TOC",["maxes","lin/L2109/words/L2109G1-max5W1",["75bbd56f28c999564b6b3093ca80ddfd71b6d8b827c365710f4ad90bec7033a2"]]], ["TOC",["matalg","lin/L211/gap0/L211G1-Ar12aB0.g",["dddc7c5c5889b2691afcf4f40db4aa34e93451b8374e3e355296e99428df7001"]]], ["TOC",["matalg","lin/L211/gap0/L211G1-Ar12bB0.g",["4fd4dc85746cc994ed325ec1220875cd4ef31ae8b25a66678f05050b50fd44e"]]], ["TOC",["matalg","lin/L211/gap0/L211G1-Ar5aB0.g",["a7bc34d368bc76fa9ea6cfd9ef39311012ea3d21c6d635ddda53642784fd7c53"]]], ["TOC",["matalg","lin/L211/gap0/L211G1-Ar5bB0.g",["5cf8229b281ad4787396643c3a1c71c4178f0262a4e25166b1bf8c1f0e59fcc4"]]], ["TOC",["matint","lin/L211/gap0/L211G1-Zr10aB0.g",["b1f70337d7665ff3c62969e436016bb3b6ca8a1c3d4bad7b6e1292d091fe5a34"]]], ["TOC",["matint","lin/L211/gap0/L211G1-Zr10bB0.g",["6f0d6bb3a272ca7ca5f520fd68545d4a103ae7f51cab49c1efaad41b26a2efe4"]]], ["TOC",["matint","lin/L211/gap0/L211G1-Zr10cB0.g",["d6168cc082fa3a21e47013242f3ebb257fd39169537380c71ac29dbe16173bbd"]]], ["TOC",["matint","lin/L211/gap0/L211G1-Zr11B0.g",["5391509a6df780a2e219372291b9024e9601da4801541581fd04b0850fcf1cac"]]], ["TOC",["matff","lin/L211/mtx/2L211G1-f11r10B0.m",["6467e6a52ac70fae24c9f8ee601d03c3ad2e83d49d5498f81ca82efc906b09e9","fb55b042e208a32fcfb3be103ee1b4bcbd8919fa2da60e09dd8afbfcf0505080"]]], ["TOC",["matff","lin/L211/mtx/2L211G1-f11r2B0.m",["a01f69c12d5ce63feb193171c8264d76522b17ddb07292f9fc3427008b53d5f7","ed19d65a14dd2e258d44115b54aed4f694848fd21b59c96e7d70eecd857f4c64"]]], ["TOC",["matff","lin/L211/mtx/2L211G1-f11r4B0.m",["4c17d18a2cdb955c06bc04afbb89faee2e8d3d922d0da2f4df1df3572c3805bb","5d14fc0bca4a58e31e06deead96a176e6f936d0aa6d49d7b90095c6e268556e5"]]], ["TOC",["matff","lin/L211/mtx/2L211G1-f11r6B0.m",["1822b46621ad83446cb605ef889c0b11fa644e89db79af3d489ff0a8d925f123","241b2d60391c8141733a71ec24f5815cded22fee1ed078a745deb3a506da08f8"]]], ["TOC",["matff","lin/L211/mtx/2L211G1-f11r8B0.m",["770be875139ebf925c48b7720fd603e2e0027cbd9601fe2b89936db7c8c5c2cf","c20ce15ca93bd8cc05295c764b84900fdf9ae37c8d9c20deaccdcb90f067256a"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f11r11B0.m",["134d60d5dba577ba38e73d7c941ddd660574e2be26febf20743b867200da2e5","c30ce4513b02b38dcd8385f44e2c85039149342f6d7f6a45f26d9633b40617f5"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f11r3B0.m",["1e1395ce70ec262fedb13774b1d4be9c56297815486728ae615c3206439c627d","9b1a8f189f6886121efbbbcd49e8124221d63e2a36604ff4b2ab7a69700600d5"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f11r5B0.m",["f6d568a769323a7707b737ce74873fe0e9ed97117b53966a6fabc67084e1e575","f47c67ea1f907a6245366a939b0efab51e9c84fe640684ed58733d550091c878"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f11r7B0.m",["279e0a3a78ec1f36c04c07b8bf8f28048bb4b70baa4090bb1027e01de82db373","d202de8a9eb5822a112ecad8107b7ff3c2277b7122cf72d860774271433becc"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f11r9B0.m",["25f612b86a62977ee1694f3ffd1baf52956e4677156cc0f33c5945d9d7c78481","ead3d66be1eccb1f1bafda5607f7218ed73553a8acd0e3b163d73b1ef57391fe"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f2r10B0.m",["3f4686f9824cb4e64e8ee34e5099ea713460684dca80e929a7b43eb016f53fb2","b4206c8d9b154c1353b5e7470a018d41d7155247a4eb1977ff9e6f858f3c8053"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f2r10bB0.m",["6ab4feb9d2b5e1cb5dc0027bb5c14d45c33befbfca85227855f134ffa20dd0c7","a4786fe8ab1ac97de5718af49b2254f6efc7fc70d83ad0dd06e987e173ae3cb8"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f2r24B0.m",["890371b2f477e0af5b4572db66afd06c6f39d007ddeed3f5e0d84b1f9f9be505","e0179dcff93853ad5f87f832e901e4288a8307c2e45ce8ba976a2c759d02d363"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f3r10B0.m",["f67faa3cea497174409422cd1ba952ff8135c078f581ae3b0a95e6cacd0f978d","b73d068a5f412093391d9223e6cbb91f138d52233ab41c0c9bf90435a70c18a0"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f3r24B0.m",["98f32d8100ddbb6b308547809faeeb71a018f3e9356c9ec59d8fb0f3826b20e2","b5b9b6b771c198cdc33cddb9aeff91f3985a7fb71827cb82864d6a0e228a628a"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f3r5aB0.m",["b3169179e3bda1088c66eaa69aad4fda07f7e064dbc020019b8c86b27156a025","c11cd38d14ec6f8bb7613e4767b126fe79e899b7be38535d32780f7fa0ac8264"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f3r5bB0.m",["4d04581af1f0292f5d4c9dce4282ad4b118fd41a294bf405c100be5c7e2f5d61","2fcae1bcd3d738997bff090ab8e2c5ba23d7c4ad31749085935a3d533c94d5c6"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f4r12aB0.m",["ad136a1652547b996cea70854358279f4ac2ee79ed81d8607d68bb805cd1514","489d68f215e16e2a0fbc4ba72acf16c8aa580380e11cca4d1ea90f423a9e4e90"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f4r12bB0.m",["ad136a1652547b996cea70854358279f4ac2ee79ed81d8607d68bb805cd1514","fd064f38c1a23cb09a40ba508b461716346462a5e3f93aa8437ecad4122914b7"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f4r5aB0.m",["1ddd92b30acd711dfd4fd052520a5f8010be067131e7b4c6e657342c59c3f6ed","5d546df83b5519db2c7596f6d309e3141d58ba626ff62c3d014ce673dc9f5b6a"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f4r5bB0.m",["7deea098927bb961a047502e923a932e3672db0ecdeb7f1fbfb356c977bcf9f7","bbc9d37900886153bb4c15c88421165e1fda1f4b94d21016e03a79c886fa3108"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f5r10aB0.m",["df8b36d0b95fe2cc55dea322a798b1a5fb50aa0f6f85ace94c5736c7a3ed7cc9","69ca6e6bdac5cf8a7982d22534db34524921ffed1fcfb566e8a6c4365f0ae2fb"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f5r10bB0.m",["aabb399b20267dfc8559e3dbb60a9df944ee57bcda40422f9975e78878d5cf65","121f263e08799af3837de6712e3554754e142b5a9522a6765a3858d350dfc87e"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f5r11B0.m",["3cf4f38ccab0fc45d59ce654bf94c78e15bdddd9f9478d3e0b7d42a2d0b75d34","ddc14c8f7c154c47c58fe2a119ccdf07f0d1c6ad0c611be600918ca589c95f8"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f5r5aB0.m",["de5848fc752b9cee7127c3870467c8576c035bcb2c329ade3a9effe7e682558b","e0bb23d3e4011faadf51254a99751226cd9da167ad168bf3b8df2cee83a25284"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f5r5bB0.m",["5d61897d097dd15cf0b024a0e9d76da9af435a5759d30b71bd280f42d74d7141","238f7a3a544dd363f36005a26050c5131f8dc064e3b07e884af11d4558b763fe"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f9r12aB0.m",["3fdee28fabc3be1338fdb773871f390652f473208b3111ded0b3bf5a765e4f30","681d8bbb53df451dcf9f1f0e6c0710c980984b315963247983f1f7901de4a0e5"]]], ["TOC",["matff","lin/L211/mtx/L211G1-f9r12bB0.m",["650bb8e8b8dc2fccdc52cfeeb32ac71c112ef7610645caf5d1f61cd1a718c720","d67727fa0696254646d6c096c23c09322528e971d7bd607ba2996d1dabbd1790"]]], ["TOC",["perm","lin/L211/mtx/L211G1-p11aB0.m",["9b202931fd306277d4d945cab9202d76a209c216da6f935bebdbd1de6d043aa5","c1149c2a07f2afe939cc53f4510d3e29f257c92179c78aefd9ce4433e6718c36"]]], ["TOC",["perm","lin/L211/mtx/L211G1-p11bB0.m",["9b202931fd306277d4d945cab9202d76a209c216da6f935bebdbd1de6d043aa5","b8638e32111afa217e000c5b582d2248f46cf071b9c98ac7768d2c69092f1e63"]]], ["TOC",["perm","lin/L211/mtx/L211G1-p12B0.m",["5534cca5834876979ff15e6610c3a14873a6838b27e43ec0d8f7f89d1d8eabf5","adce93a842d9eb338424ae05e2b0a8afc3497ce5dc2b1460b2c6b246bf37c992"]]], ["TOC",["perm","lin/L211/mtx/L211G1-p55B0.m",["37cdcbd349183797a90cdf3ef8cc347bccfd1aad8715d68149cf392c24c5d52e","cb2b6352adc53f8810df144e04402594f80d4d4acd8875991353ebc9d9a63592"]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f11r11B0.m",["43cf79f148cdb1df1889d883e19b963ad7913232e766c27513d920939ff48bc1","74805dab532ecd839b22f7fa408477feca9b03b94872b5f6b774c84930bd5e60"]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f11r3B0.m",["c576d345fc41053dccf67c6edd4f65b2e760b00738a7a17980909b694d607daa","62178b7289f6cba8507942488437ea9d6f4d5946308a0494550d2ce06de6231b"]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f11r5B0.m",["1bc1f0852e26dc37c0c26e071f2abbfe035706be9345d5964ece5888afd77994","f47c67ea1f907a6245366a939b0efab51e9c84fe640684ed58733d550091c878"]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f11r7B0.m",["b307030a22a1e21256570f9e2d2f2351b08ceac3e08c5850e672a2bd5ead3eb6","5cbf03e347b74528cc0fb7702761da4d0fd51c2804e7ebced29b83135e21f1d9"]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f11r9B0.m",["9c5673cb186fc860d353c64d4562b56bd393f22f1f8aa2b0c0722c990ccf6170","48c8daa3094288ac3aa04a5ed48acf57a17833cd044a31e42cb52d48a9fb5d0d"]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f2r10aB0.m",["da5e49fbc6ba070bd256326277fa42f78166ceb4248a8f4de95777d317b8acfc","d7863bea49f4a6b600e0af811d1cc2064b655a963a6ff2a8271a782807bcdcc0"]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f2r10bB0.m",["78de0d94ef58bc97b6b388a741d089f179bdb247021a995a15c9dccf50bb6b24","b98393a81177f8e0de02988b14b8d1e091ae43240434aaaa324edd5317df0238"]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f4r12aB0.m",["af11b336875bed00fc656ebd34ea9543cdc5cf044e1981820f489c85ee2272cd","ee0200c37090a9d396d4bb53f1a9089b075a702e3826a2098f415a2521747087"]]], ["TOC",["matff","lin/L211/mtx/L211d2G1-f4r12bB0.m",["fd255deaa69b4382038548f93260f89fef1214d1fa68a9567e7bf5b174eb879a","f74f28c8d8b92c2bde0cdf19881897354c595a488a768e7d5ce74babd7d13615"]]], ["TOC",["perm","lin/L211/mtx/L211d2G1-p12B0.m",["9e93b88d6f468a8760d5454226a5c3c45b2a3452797d1edba823fc4649685992","424eefc589ddc7ba7d594ce337f1244bd579d113c834ff71da9db2466b568591"]]], ["TOC",["perm","lin/L211/mtx/L211d2G1-p22B0.m",["413b867c6d13ce15f0bfa60c7dd0a9d8b137edb18965a469b34dfa496d26fa2f","3cedfec8cc5dab892990159051ef30bcb081520f49b063bf6fdc8f773f93cb05"]]], ["TOC",["perm","lin/L211/mtx/L211d2G1-p55aB0.m",["d638df81582be23a51c35d1b4117fed817eaf95c97a104f2cf7dd55f69d926b6","23b3ad2771b38815a8b0f5d4f14f8fa5a1ffdce2fdc3fc7b1c1a79e323959c8b"]]], ["TOC",["perm","lin/L211/mtx/L211d2G1-p55bB0.m",["5fcaf4c5deffef60c542e6b30ef803bb6cfbcf1d88e106394e8a5b26e6bdf1c9","90820d8e422a194fe1d3a01a6784b84d80b4e8bcd32b74aebb8eac20581ea8de"]]], ["TOC",["perm","lin/L211/mtx/L211d2G1-p66B0.m",["27dd3b0d1303701139823033e8e6422413e3a5dbf0ae7a57087126a6398fbca2","a34c556d964f6c10cc4c0254e67ee17967517dcd3fc5e34697ac73e391c9cf07"]]], ["TOC",["pres","lin/L211/words/L211G1-P1",["d349c9d08072a44005adea97a56837e6fa41ab6c2b669821949fe1a9e5133a3a"]]], ["TOC",["check","lin/L211/words/L211G1-check1",["31c1c9a405bf4a50dbe7d9b193b40d11adb979555e549654d1a6f0f37e5160e5"]]], ["TOC",["cyclic","lin/L211/words/L211G1-cycW1",["5b01adff05d97a13447ff888176ff971eed0a22e43bbaab4cc38f8e21b37c32e"]]], ["TOC",["maxes","lin/L211/words/L211G1-max1W1",["7556d15c7362749a608a11cc907f4accd007d5c280128a6f5b44961f7bc9ddb5"]]], ["TOC",["maxes","lin/L211/words/L211G1-max2W1",["445398af2ad6a0891073eee16b98048593c6240b50297277852c65a36caefb02"]]], ["TOC",["maxes","lin/L211/words/L211G1-max3W1",["91b60875053d4da9be9c28836e03993410a0dfa411d66204df9c4428f61e7458"]]], ["TOC",["maxes","lin/L211/words/L211G1-max4W1",["350875a3b22c93c4e6bc2ea4cce7cb3b3ad88458483df33f371d19a012eb9f06"]]], ["TOC",["cyc2ccl","lin/L211/words/L211G1cycW1-cclsW1",["93cc17fe568574b9570da75a8b27ff37991b9dd02f189ffa4c9c1e17c34f04d8"]]], ["TOC",["pres","lin/L211/words/L211d2G1-P1",["27ef39aeb51cf76a5ff40990d0cd7c785ab7e8e7be040608df56954c7d2b9cc2"]]], ["TOC",["check","lin/L211/words/L211d2G1-check1",["b6824deb30a108d1fc1965e286fb497efb30d44250efa888f5e9dc88d45f90c5"]]], ["TOC",["cyclic","lin/L211/words/L211d2G1-cycW1",["86a81433fa4961d3306fabb2e2f984266c33e7bcfc4f19640d45a3db6b013f5"]]], ["TOC",["maxes","lin/L211/words/L211d2G1-max1W1",["a8b9fc3d4737b974a7041153ccddadf980026b36241a1de1bf9ed7d8799e9209"]]], ["TOC",["maxes","lin/L211/words/L211d2G1-max2W1",["10bcd09faeb44f68858ff1394f6a58e909c1ba2bbda2589050ead2b05870c82b"]]], ["TOC",["maxes","lin/L211/words/L211d2G1-max3W1",["7556d15c7362749a608a11cc907f4accd007d5c280128a6f5b44961f7bc9ddb5"]]], ["TOC",["maxes","lin/L211/words/L211d2G1-max4W1",["51fe179567bb59418ba7d35dae8b44e11e191fd51cf11ae299a29b7d7a2ad4f3"]]], ["TOC",["maxes","lin/L211/words/L211d2G1-max5W1",["25a080c412d5cee2f9d26efa23a77e415f61da1ab277fe6c26fabf9400a8e56a"]]], ["TOC",["cyc2ccl","lin/L211/words/L211d2G1cycW1-cclsW1",["7c6200395d65a0e18d8438bd75c1ae34a506631d0e0389b3fcdb624b880796d0"]]], ["TOC",["matalg","lin/L2113/gap0/2L2113G1-Ar114aB0.g",["4e23344d7445584406e39b351376b619279ec046141766afa3b1b4601df4a055"]]], ["TOC",["matalg","lin/L2113/gap0/L2113G1-Ar114aB0.g",["fe70f05fc1c7f6f6dc241db190d955301d0485aa033cefa47245da77200e75ef"]]], ["TOC",["matint","lin/L2113/gap0/L2113G1-Zr113B0.g",["f8ea25c1ff6e02faab69e94f897c028b7ed4770f529686bc575b45f17a2bc176"]]], ["TOC",["out","lin/L2113/words/L2113G1-a2W1",["d6322ea99b6071074a426cdfd5f5049a3c5794098310db49fb75d75980bdd95a"]]], ["TOC",["maxes","lin/L2113/words/L2113G1-max1W1",["ea8c27415b2220d7e7a1c67615effa7915ab23ad2c125dad05b9ac2e221e363b"]]], ["TOC",["maxes","lin/L2113/words/L2113G1-max2W1",["ef84fc82bfa075f27b5b41cd30a93744609dcf944e3e0dbdb8974e53ab5ef791"]]], ["TOC",["maxes","lin/L2113/words/L2113G1-max3W1",["94e19e356b906b8acc31d96bcb46250c391e3e0eab520ae34501faf100bc67ed"]]], ["TOC",["maxes","lin/L2113/words/L2113G1-max4W1",["3365b3e0aa777ae4619f8d21f78fad54e69e36f9706d5c5b6a8b99c4b2edef9a"]]], ["TOC",["maxes","lin/L2113/words/L2113G1-max5W1",["b7fb9eb5a31914ad567e4a42f917f4ee884991f3248a186b74dcaa3bb2d087b"]]], ["TOC",["matalg","lin/L2127/gap0/2L2127G1-Ar128aB0.g",["85104c3b35f8a192bec8280f589c101d74db074cdb52705a7e9d0dac0ad9755f"]]], ["TOC",["matalg","lin/L2127/gap0/L2127G1-Ar128aB0.g",["602f43a3d5123f703df258461c24731b3944686c6c300f2df843154a2122df8e"]]], ["TOC",["matint","lin/L2127/gap0/L2127G1-Zr127B0.g",["f81c6374c54e219d393781574bd5cab43d4974c91dfaed3ff82e782675936c0b"]]], ["TOC",["out","lin/L2127/words/L2127G1-a2W1",["b6f993c5570c5197ee4c35ba741b8f69670fa009037bc78ce60aefe15200598f"]]], ["TOC",["maxes","lin/L2127/words/L2127G1-max1W1",["dccd8926bc3fe6dd7149ee6b08acbb2bb74c32bc7a4dc919fb84a02f03902043"]]], ["TOC",["maxes","lin/L2127/words/L2127G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L2127/words/L2127G1-max3W1",["ac4f381ff659d9dd1b276f20904bb1709b80cfc65fc3fb89064bdf75e23c7f85"]]], ["TOC",["maxes","lin/L2127/words/L2127G1-max4W1",["389720191c586d859b7d02cffdd6913eae9ab7fc85f35d0f43d0306b6f663343"]]], ["TOC",["maxes","lin/L2127/words/L2127G1-max5W1",["423a322841e030aa576ca084c82eb51f41c338754fd9fe6f301289d85a0f8b0e"]]], ["TOC",["matalg","lin/L2128/gap0/L2128G1-Ar129aB0.g",["12db4bd928def9a83b2eb8d937f403549643d40fddf2ad1e743718bebc01367a"]]], ["TOC",["matint","lin/L2128/gap0/L2128G1-Zr128B0.g",["306ab1a67825455396bff6cd3f9f0c58b038fda4cd2cee3d7fe151869c183b80"]]], ["TOC",["matalg","lin/L213/gap0/L213G1-Ar12aB0.g",["21d7aaaf34fbe738f21a6d2f81f086981a19b2b1ae09727533cd7194d4f60b9f"]]], ["TOC",["matalg","lin/L213/gap0/L213G1-Ar12bB0.g",["29c75fae2deb4ee9d432fb5c1ceeee391a5c85717f0633d3d77f1ed6f7e92b9a"]]], ["TOC",["matalg","lin/L213/gap0/L213G1-Ar12cB0.g",["5d0bee73c0fd51134eb1979ad3b4d798354504ae9fab54448be7c8f3a1a6ca4b"]]], ["TOC",["matint","lin/L213/gap0/L213G1-Zr13B0.g",["d3d54b0c5cf716d7ddf3e09661977dc14bff513c5538b08a63c68c030c983276"]]], ["TOC",["matint","lin/L213/gap0/L213G1-Zr14aB0.g",["f20219844dbefdfbcb0b367c4e14c34a2a529308a15592040b35f661d44207f1"]]], ["TOC",["matint","lin/L213/gap0/L213G1-Zr14bB0.g",["ee95725b1128f9096da8e6019a1334ae1396dd284e1b5af49aff033765c942fa"]]], ["TOC",["matint","lin/L213/gap0/L213G1-Zr14cB0.g",["746423a52955d4c7c16f78d41b86fd67ee0b7227d22f1b18008edb9562656f61"]]], ["TOC",["matint","lin/L213/gap0/L213G1-Zr36B0.g",["6e9737e417ec07a33b230c755d53570353c8042b2b5fe70cf44a378f3867e50f"]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f13r10B0.m",["57f6772b584ca2bee5f5c4e9d61c777c6e8628db8d57f8330a0eba292f42fdb3","2fb295fea9872ace046ab137aa2439721d0a4f94fa94aa3036bcb5acb83a4709"]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f13r12B0.m",["42156d6e35a770eeb754b82fa570a1b519035c3109caacbea5c51b5c7dc89724","e7100b3202857e500dedfa579921c88830241c8cd46cd100a1e7c5ad2996232d"]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f13r2B0.m",["601d2f280e4990070d95601eac0a40d94370b3901f1daa9d9a58f2e2133f13d4","56038fa50ed965720d901daecb5c9399d98d9d6620055615c92cd66af2d4d36f"]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f13r4B0.m",["5b33dccd72d692c4da2b352940bfb3c7956e872e701655a2d5e04cd067a80f6d","2b0602324800f01b767bef90e0d036eb8f815b93a5798a46168f21a776ec070b"]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f13r6B0.m",["428f8872aa22c9fe4db15509c3a87e44355a0543fa915127b1c167573c20b935","8690006035447c62560dfe6baddcd7948cc1fe0a81a45afa251370aa5a046e0"]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f13r8B0.m",["463ba5d1cb709d70204abe2da7a0ac3b14b5cd4e58a7980f1da3eb1373b627fc","3240d7830189c9290493e0c70677e9da1d66b4b6046880e87910ae506b1d8ecc"]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f27r12aB0.m",["61f4b85b5e09c9cd08addd22812f0086d4b805286de484c7cd44070748216b2f","cca307e21342d3afdb6b8ff69ffc233f89217569723dd3110989410f2931dc3b"]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f27r12bB0.m",["e279ecf50026308a4634c8f90154d4e923687160673d57238c4bc978d793c37f","30738135a9a64b49e1ad0252cdf8b13d4f98808bdadbe35ddc6bca0e723e4265"]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f27r12cB0.m",["a850eaaac58146f8493bc5e863c544fdac85fe477c11b036bdf98aca88afefbe","e4b3902370c62072b461a8492af9d3ed2ed35d9cd27b527902d6958368053825"]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f3r14B0.m",["1aa2f5b7541568447a58f683fc13b5cf54efca85ff19be8f6276451a615b9c7e","bc1ca5501f8701b18a8de4e1f55ce4158fa77ff2d3214716f1d5a4555de9a2bc"]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f3r6aB0.m",["7591a4deda1fb0a0aed13d193f8a1c75d51125163eaeb5c38bca0b7f3e2973f8","d52968c797fcaf5cf6e782195bf0594f890d29c744d7cb6c6e75f5974edc58c5"]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f3r6bB0.m",["acf7a7c4f726323ec219d57a50b4ce564fee68d7c6fbe9d39e54c3c4280d6bbf","ac42038df54880c579564a6bbe1e60740931ea7df58678abe13dabb0fc2a623b"]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f49r14bB0.m",["f071c9f24c5d5ea2d73499abd142d506c5d9f96c7fcdbd46b26a20f7f2205a24","a35815a7c0710a6c730d5059c65957ee2b559f3b6763e2c48e1839373201073c"]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f49r14cB0.m",["6b453d7b1dae8b3bf7fabffa8e3d99af0187f6afe53b87af64bad2cc6ed12a88","84a740909f525c92a1783a0dd8bb99e7eac14b25cee2e743e31b160e88f4c335"]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f49r6aB0.m",["8aa6b7e297d496f1088aeca2ec491284259a829cea5fb486baac31f84b1b223b","7473870f4e7b5546136142d07fc85038dda2cf99036d72ce2c7968f24caab4e4"]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f49r6bB0.m",["8aa6b7e297d496f1088aeca2ec491284259a829cea5fb486baac31f84b1b223b","3dd69903ca39f6da40f328939e998a095ee73dd250a091c5576b5429fbadae4b"]]], ["TOC",["matff","lin/L213/mtx/2L213G1-f7r14aB0.m",["fb66b84b35fb824ee5e60dbe3de2ff7bd70c40eee887bc84a31d9dba1eb5d7b5","4656ccd2186ffcd9c1da6cdf391bf14b4141fcb36a7c0c1b1b6300da9fcd204a"]]], ["TOC",["matff","lin/L213/mtx/2L213d2G1-f3r12aB0.m",["265bbb5806d0c4df837e65925fbb7c2d7a69541325afc2708193201784a46049","54d6199ee19f0a312eefd1bdb5a7362bdc84faaf1c36ddcb89c05ead92e1e83a"]]], ["TOC",["matff","lin/L213/mtx/L213G1-f13r11B0.m",["e25df8957e3d5b38e869efb774b18b171890b587ddc5a6e04d3ed89b264cca8","b2c40d7488c36feb64ed37eb8d900d5751867aebfd865b2c64b00a0f2fc81105"]]], ["TOC",["matff","lin/L213/mtx/L213G1-f13r13B0.m",["556c82903d393ef0e360899317908eeed9e79ba0e989fd6f1624015bf73d8bd1","704f08634d3e1e83caad66e2daa71a1d56cfbe7ae1d63adeec4f4ac6f96f6baa"]]], ["TOC",["matff","lin/L213/mtx/L213G1-f13r3B0.m",["c28a6c881064db05fdb855c7a8fb3d66641c08edaba8aa11a245fc3f34a093d9","6b8bbc88f27f95f7958bfd5e5b5401890b440423ada8f427dc98680a2a425ca4"]]], ["TOC",["matff","lin/L213/mtx/L213G1-f13r5B0.m",["e34b42b42461054198a2e1bc6925b785973f4a8c19f58723ef4a69412adfcfe4","eb573bf8245b78acc46fc08bc68c85589720af188acc83dc2b03573177100ad4"]]], ["TOC",["matff","lin/L213/mtx/L213G1-f13r7B0.m",["84d74b4fc3a5d5d79c7da00a42fc515885475d9a459e253c751f035f96d7be3e","e8f05b5e1576fc24b3c6331e53a21904bed1d02cb07c7b60359bdfed51ea84e8"]]], ["TOC",["matff","lin/L213/mtx/L213G1-f13r9B0.m",["191faa2b4966e458a4ee0df9724d4b28c16791dcebe789ab1a4be13a9da2ab89","44e7e5c2147b07cfe1113dd1f7265d294e7a42243cf5b963e1a4d9825db66e43"]]], ["TOC",["matff","lin/L213/mtx/L213G1-f2r14B0.m",["c45afcdcadc3f47d3cf48832b2c53a0759bddb20b6e19e672d445ad5b8241d8c","12a35d04a46c0555a0028bc2b17d883a8bb517bc064e8cc38383d53a4350b623"]]], ["TOC",["matff","lin/L213/mtx/L213G1-f3r13B0.m",["66381a821688ad694a6e0cbbd2ea54a4566f5d00def74465639b3b0d49e3c2ba","edcf3c40909cf08348eac6ac054ccddce780cfa9fbeb64378e5ab54a725c849"]]], ["TOC",["matff","lin/L213/mtx/L213G1-f4r6aB0.m",["499803ef3297bb91f9e0f31026f6eaa93cf9ec55146d9e82bdce7a4cdf8e2e76","13fa1bdf4ef9b904f603f7517320b90eee69a3c1c02ca05ebd6eef105e0fbe20"]]], ["TOC",["matff","lin/L213/mtx/L213G1-f4r6bB0.m",["499803ef3297bb91f9e0f31026f6eaa93cf9ec55146d9e82bdce7a4cdf8e2e76","22653a272b87aaf1299567479c86cfc6c48b9bb72be29c3d005fd15db9dac165"]]], ["TOC",["matff","lin/L213/mtx/L213G1-f7r12B0.m",["11146b1d4e77ec8915992eb5d52f044b1eebdf345f55ac8bde2cd48a0c3bdc9f","890d949e13e1382e8fed01c98bae40f7a6ed841d68131867186d0469e646ae9"]]], ["TOC",["matff","lin/L213/mtx/L213G1-f8r12aB0.m",["74d60ebe88c248e80d0b97daca4dd38a5b9f75e26eae39341c425fe95528d461","2bf1872f00f1353d8471d55a463faab8d45aadf36e18b8948e6aa0ffbe4068ff"]]], ["TOC",["matff","lin/L213/mtx/L213G1-f8r12bB0.m",["1180eb9ed6dc8e0721dba5fdf8ac712928a86beecb50ff46ba94baccbb10a597","afeb19b84a67a6b33fdd6192cad94413ad8b0cdba22d47f29279d473eafce983"]]], ["TOC",["matff","lin/L213/mtx/L213G1-f8r12cB0.m",["b45e78424118d1b793ae640df30e1e2ffaea6c30aa2bc1d40ce01566dda92706","c7fd880af7162698c4925aead259bad691446f92e88b5eb8fdc9bc78bfb16a80"]]], ["TOC",["perm","lin/L213/mtx/L213G1-p14B0.m",["e0f1e31446c5521fe121a99129f791712df203aef3bf0b68bcff185d894ff5df","26c4c6f74e6cb039336412f5bec30de73a1291890327696260b43da747194a58"]]], ["TOC",["matff","lin/L213/mtx/L213d2G1-f13r3aB0.m",["2550b5182efcfceef80b857ae996ad298e16cc310c86dd3aaffb6b88825380b7","a2e97a3972323bd7ece7ec0609947eba43b5a3543abe6faa7bce78b09bd84079"]]], ["TOC",["matff","lin/L213/mtx/L213d2G1-f2r12aB0.m",["5098c674cd47f5c102acc9b0039958d35e29a22f85ff625cccf1502e9e143da1","c8c5178e1b279380736c50371171e08c90fd05023fb881bb9e80819b8d0f80cc"]]], ["TOC",["matff","lin/L213/mtx/L213d2G1-f2r14B0.m",["c01e96016d15d7a4e28dff18b4f342be9e59a61a880a2c2810d9a2f661000818","8079c1ec771c644068c193595fc4402c464d3b3515e080e37420616eea308711"]]], ["TOC",["perm","lin/L213/mtx/L213d2G1-p14B0.m",["2aba355288214bf2c4e2ba1bff5970f4046032eea8668a5dca4993acc4d74f4e","f24980ec9cbfab27a6ee3de8650cacb731217652c88f586e251ecc4392fdb797"]]], ["TOC",["perm","lin/L213/mtx/L213d2G1-p78B0.m",["8eaa30711a33d56d19bff64838893b2ca589c0e227ff95f5c6eb86065530f207","353ac21e379714cecda7e8406783e46fd1fa2adc38ae7403ea357b5a0d5f3682"]]], ["TOC",["perm","lin/L213/mtx/L213d2G1-p91aB0.m",["345f0827039dc9148814556f32672ff1fa599b81d92281c90d930f25edd901e8","5589b15534d92c9b14c3d53d3f46ad5a7b5c26ee3df2f7a7b00eda87137199f9"]]], ["TOC",["out","lin/L213/words/L213G1-a2W1",["c2ab04780f7cba1d9b49e64f284d62d4534d2857b66553d469a8143c857e3c7c"]]], ["TOC",["check","lin/L213/words/L213G1-check1",["b23ec5a9391f1c23249b88eea7e2db199b860a546bd7bcbf19d5680e0ee9469c"]]], ["TOC",["cyclic","lin/L213/words/L213G1-cycW1",["4928cbb9a9a636a8ad12b6095488ad9a7441c58ddacc9cf8c76564f46340a0c4"]]], ["TOC",["cyc2ccl","lin/L213/words/L213G1cycW1-cclsW1",["94f2de9d18df85cd90b71f273c9af2adfeb0e176793f5c3d9199bc73d2a832ff"]]], ["TOC",["cyclic","lin/L213/words/L213d2G1-cycW1",["43e7411164dec949f375b67e1feaefdc6c12e821aa7faec68a17d09830ebdc98"]]], ["TOC",["cyc2ccl","lin/L213/words/L213d2G1cycW1-cclsW1",["6d31b0a8f181e3f6c5d3eadde4d3cf31b1abf09840b3728bed2422b8f6b6753c"]]], ["TOC",["matalg","lin/L2131/gap0/2L2131G1-Ar132aB0.g",["b6204340b7e2dbd8a0ed44324626e25d85e291b1d4685f6d5d10e7907cc75c63"]]], ["TOC",["matalg","lin/L2131/gap0/L2131G1-Ar132aB0.g",["dc9c0c8115f98a29741e7c8ed660cf48dbf68515fd424d1236f9416ec69f2bd1"]]], ["TOC",["matint","lin/L2131/gap0/L2131G1-Zr131B0.g",["34805f512e38e30fa108446406609e0f499690da3e9c1870b50dee9b311a7a86"]]], ["TOC",["out","lin/L2131/words/L2131G1-a2W1",["83adb0a2a4c0b323392c97f3441a150c717819d28e811217cd79e51da3465239"]]], ["TOC",["maxes","lin/L2131/words/L2131G1-max1W1",["f806b5a961662222d1468c46649abfcfe83d7ec2a2a11eb6e37ecc35b2849e5d"]]], ["TOC",["maxes","lin/L2131/words/L2131G1-max2W1",["ac4f381ff659d9dd1b276f20904bb1709b80cfc65fc3fb89064bdf75e23c7f85"]]], ["TOC",["maxes","lin/L2131/words/L2131G1-max3W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L2131/words/L2131G1-max4W1",["bfcea4e71d9cd317cdd75d216e08642e7184cebd8d365d34cac44d40d258fa5a"]]], ["TOC",["maxes","lin/L2131/words/L2131G1-max5W1",["cab4c196c7162066908405e68a4ddc3568fc2e355ba5d2ae96245d22c6cc6550"]]], ["TOC",["matalg","lin/L2137/gap0/2L2137G1-Ar138aB0.g",["288518b8c9fb7febab24f4e6ecabca43a7f2bc5cd6c36882568c964e14440222"]]], ["TOC",["matalg","lin/L2137/gap0/L2137G1-Ar138aB0.g",["b801a13b69520528c0df6fcf82f448f5c51480eea19c5d0b5c202eeecb7ed28e"]]], ["TOC",["matint","lin/L2137/gap0/L2137G1-Zr137B0.g",["60381342578fad3704949e1544243d0f369aa8734ceb75175a7ffc4d129df7ee"]]], ["TOC",["out","lin/L2137/words/L2137G1-a2W1",["1f7ad9b74dc34c43a8b72b27b92729fee46ce042401e2833ce0fc914226d0aee"]]], ["TOC",["maxes","lin/L2137/words/L2137G1-max1W1",["cc0a7ccb99cebf5842c46dd1394388d6f7f04237899c6a1c5dfb567e92db2243"]]], ["TOC",["maxes","lin/L2137/words/L2137G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L2137/words/L2137G1-max3W1",["843e770c4b7e16d60c7734833480b1230ba6d5d1a0dda9a0a93f9e0cb6deb49c"]]], ["TOC",["maxes","lin/L2137/words/L2137G1-max4W1",["b7d8704727c549d14d6f6b0fca776a4bd1f8f0d35db9ad9235a06594f3a8dd74"]]], ["TOC",["maxes","lin/L2137/words/L2137G1-max5W1",["7addff9f74cbc95ddc4b43d6fcf0147e29d8846a6e3e54cdbd3d3ffec5a56924"]]], ["TOC",["matalg","lin/L2139/gap0/2L2139G1-Ar140aB0.g",["7e219b9146d87b22ccf38c38070caca9455ec8dbc62e17807aad42b2662b0e01"]]], ["TOC",["matalg","lin/L2139/gap0/L2139G1-Ar140aB0.g",["72fd2238c953ef72a7fc516c9a71884d7c07a44d39ce392a6ee7b5ffcdb6bf8"]]], ["TOC",["matint","lin/L2139/gap0/L2139G1-Zr139B0.g",["ee1349e8ca791a27ad2238d2933f5a0251afa786606552997710debb0dc1815c"]]], ["TOC",["out","lin/L2139/words/L2139G1-a2W1",["1e9c0ea8447e50bc88df953af34b928361a9bbdc79e2e717cc2a9a09f7ee9246"]]], ["TOC",["maxes","lin/L2139/words/L2139G1-max1W1",["dcd543d043e5a4ef4635ee41b4cfd927769a9adf7c19dfb05613704cba4cb42f"]]], ["TOC",["maxes","lin/L2139/words/L2139G1-max2W1",["ac4f381ff659d9dd1b276f20904bb1709b80cfc65fc3fb89064bdf75e23c7f85"]]], ["TOC",["maxes","lin/L2139/words/L2139G1-max3W1",["7c2bc0c2aec45e5d153d2f71ced6f4c51c611435b2303cb2fead6dc72d4978f4"]]], ["TOC",["maxes","lin/L2139/words/L2139G1-max4W1",["931e1cc1684cc499d2ffc4c09f2e7f04a4a21eb16d644da2cd7ab5edbaa40a8e"]]], ["TOC",["maxes","lin/L2139/words/L2139G1-max5W1",["161dc922cbff6c5d42378f174285644e7185385666ce12f76c205220f5c8eb2e"]]], ["TOC",["matalg","lin/L2149/gap0/2L2149G1-Ar150aB0.g",["234a6198c2892ec9bcd2871797e336c970ec49fd7b3f9b5006d47c8bc8ad5b3f"]]], ["TOC",["matalg","lin/L2149/gap0/L2149G1-Ar150aB0.g",["2375cb09d9612807b16c75208097cd95a3e0a488dcc284297dd22f1d5f5a71c9"]]], ["TOC",["matint","lin/L2149/gap0/L2149G1-Zr149B0.g",["71c858c347e92dfd6c8fe39fcf3d866d0735d539514f9827d19c918d227ec38"]]], ["TOC",["out","lin/L2149/words/L2149G1-a2W1",["c276962361a224a89d2fe6ecfa2cef2fbf86807af834d3a417a86683ad7a1645"]]], ["TOC",["maxes","lin/L2149/words/L2149G1-max1W1",["d587caef8c7513da76abe010df16d334a9eea91004d0b028f882a50b4957ea1"]]], ["TOC",["maxes","lin/L2149/words/L2149G1-max2W1",["ac4f381ff659d9dd1b276f20904bb1709b80cfc65fc3fb89064bdf75e23c7f85"]]], ["TOC",["maxes","lin/L2149/words/L2149G1-max3W1",["1a02a9908ffb61f772c042b86b85d9e7e98216f4aab7dce21b1d8ec890320171"]]], ["TOC",["maxes","lin/L2149/words/L2149G1-max4W1",["d8b5590448dfdae91d531561b0dfdb7b278810bf374dc9d515269a308b4b074"]]], ["TOC",["maxes","lin/L2149/words/L2149G1-max5W1",["585265ff5514f4ab6866cea09446d4a2d9c65baa9350735c91923935d71b1fd9"]]], ["TOC",["matalg","lin/L2151/gap0/2L2151G1-Ar152aB0.g",["4804f9e8e7765ac9e344d82c16de63463b5ea1ac7ae1e851965fd8b81e1b33ce"]]], ["TOC",["matalg","lin/L2151/gap0/L2151G1-Ar152aB0.g",["b20d2ecec7eba1a756c7cec51d69fe4951aa9433322dbb7fbff23ae1c5f45cc2"]]], ["TOC",["matint","lin/L2151/gap0/L2151G1-Zr151B0.g",["1945f0f966c538e51a9dbdf03886f7a344ab79ad5b9dfcb926194f2a191b92eb"]]], ["TOC",["out","lin/L2151/words/L2151G1-a2W1",["952c55048a9f8e71ebe56aef4b9bb970020f8a0d940e24ebf902f363ff4214bd"]]], ["TOC",["maxes","lin/L2151/words/L2151G1-max1W1",["1f664a04d9f21d770269e6e4e7e936c54e84f50bb809c080c14161c1972cbaee"]]], ["TOC",["maxes","lin/L2151/words/L2151G1-max2W1",["1b9432236122ea1360e0733216e9a8093bf2b775f7b18d83adb678e58fa2a875"]]], ["TOC",["maxes","lin/L2151/words/L2151G1-max3W1",["ac4f381ff659d9dd1b276f20904bb1709b80cfc65fc3fb89064bdf75e23c7f85"]]], ["TOC",["maxes","lin/L2151/words/L2151G1-max4W1",["a8335686889818d9c5e607131cf773161971623d8d32b9c5792e86874364d969"]]], ["TOC",["maxes","lin/L2151/words/L2151G1-max5W1",["38b5d810f04bddd7a2924fbb6e032b84cde15bbe73ac6f46129334b233babb95"]]], ["TOC",["maxes","lin/L2151/words/L2151G1-max6W1",["38c5fc307d14e5d5baa8e62b6ea17a5c71d80b139cbdbb3404bb530a7cb63edc"]]], ["TOC",["maxes","lin/L2151/words/L2151G1-max7W1",["59fbe5b339c02e9e4f4a594c81153bfaad283a733807563dd1b455804e16be3d"]]], ["TOC",["matalg","lin/L2157/gap0/2L2157G1-Ar158aB0.g",["5673f29f8d4457a5b80722f0501146c72322786c5d97df1c7bfcde020991e869"]]], ["TOC",["matalg","lin/L2157/gap0/L2157G1-Ar158aB0.g",["87ca5ae647e23b0d0fe15ea8fe31e0effc718ff9f79130a1a05cc08db7fad75a"]]], ["TOC",["matint","lin/L2157/gap0/L2157G1-Zr157B0.g",["e5a6fa21c635482513e01f343d7ed9ee05e09cb6c74c090170b7014af3023a4a"]]], ["TOC",["out","lin/L2157/words/L2157G1-a2W1",["757ef4472e68741439fb7fe558c11bbe8add38ed03a0afe2a32158ae8d711366"]]], ["TOC",["maxes","lin/L2157/words/L2157G1-max1W1",["63ef951997752f10bfac1d5a3d44ee5886483d4f903f129d57c50c271549f935"]]], ["TOC",["maxes","lin/L2157/words/L2157G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L2157/words/L2157G1-max3W1",["757a3c23c83ffb3d355223040b7416d8f2b9460d918b801abcc7d68603ff175d"]]], ["TOC",["maxes","lin/L2157/words/L2157G1-max4W1",["9a3fba6fb5350bcf2e83092916e64ec11b92b4a93ed4779559206882a1944f3a"]]], ["TOC",["matint","lin/L216/gap0/L216G1-Zr120B0.g",["e65fc0677702e45f147ca7b1a4b98a864acf606ce677c0f763ffb9833ecea7b3"]]], ["TOC",["matint","lin/L216/gap0/L216G1-Zr16B0.g",["5d63cfa636df5c70aea0af31e08675db6432be8de52c78e2cc4469fc514c1174"]]], ["TOC",["matint","lin/L216/gap0/L216G1-Zr17aB0.g",["fb893a926885109f0e86c120a245a169265b1d0fa780f454ded86045a7c1d94"]]], ["TOC",["matint","lin/L216/gap0/L216G1-Zr34B0.g",["650aa090f6fe91b182c3505b3248b8f00e822ae833afb007375ed25dbf12729f"]]], ["TOC",["matint","lin/L216/gap0/L216G1-Zr68B0.g",["6552f49669d2008057ad7491f93f8b3ceeb481679e1c7b7e7f0c36f547edce94"]]], ["TOC",["matff","lin/L216/mtx/L216G1-f16r2aB0.m",["3731b50955b4389d47fb1bd4e6cd87b2d4818b8d724a723371304cc761c740de","7387106902d127fed457f42b43158730358795a62f4a42c66c1a0087ec1060c6"]]], ["TOC",["matff","lin/L216/mtx/L216G1-f17r15B0.m",["9bb1475e2572204456d0d9de191d3636145b36a4c7f1c12a0b372fb32cfa6a53","400ec5079d5987b07eb771806d0f0d06e92524e168dea65a68b65814eb29dd49"]]], ["TOC",["matff","lin/L216/mtx/L216G1-f17r17B0.m",["9ce48342707d847d63a7434e7bb1f3b0d442506f83123a98f6f9999e859527d5","74a301a046eafd75ec575b1dcdede43bf86b002e322afed29125d35b806569d"]]], ["TOC",["matff","lin/L216/mtx/L216G1-f17r34B0.m",["c6f19f6cb1f735ee5620e2b3650f872354860ef0cd88e0cdd849162fc26d71e1","a402b5bb45067bf377c65f5881f8af1c96656866fb1d448047bb51fbe939679b"]]], ["TOC",["matff","lin/L216/mtx/L216G1-f17r68B0.m",["6b2d93051c6f66bd776fe6fd3b12c715a5d32f3cabf8a8f2dfcd7f5d55f099cf","b361c18e0fe4a185b18f6bd44a8e97ff02f876b94bfe7dfa5f072e94ac21dd64"]]], ["TOC",["matff","lin/L216/mtx/L216G1-f3r16B0.m",["b28fc7f4164ef8afe406858c811f04530b0b8445ff8b60e33800d5784312ed95","b40e64958e3faa60bdd14e819360a17749e8e14558c5ea7eff8b43d8b8510e9a"]]], ["TOC",["matff","lin/L216/mtx/L216G1-f5r16B0.m",["70d6f42f683e7c7cfffd7bbc16816394abba47db2ee64414115d13f0e00c3f75","c6099f611ef5f26dfb553593094674535d4b75d970d4900ef8192233f883a152"]]], ["TOC",["matff","lin/L216/mtx/L216G1-f9r17aB0.m",["c3cfe2d883e3979f9a79e2815416d59db0244c71c84a84544d45eb4c7d0ed3a7","13d4e707e103bdb746a7bc39dd2786485f7eb4849953c4b9e530e499e1ab12e1"]]], ["TOC",["matff","lin/L216/mtx/L216G1-f9r17bB0.m",["c95b4bd0f4b291bd03ae3e2f3b9cdbced7cde83b15d1d9f8833f0da720756b76","30007fb36104e45144a8b9b9b8494c1541f1cde95553582c57be70a7e2010471"]]], ["TOC",["perm","lin/L216/mtx/L216G1-p17B0.m",["1f933a13606f0ff78674cac07d58cff33e452a599658521aa8df44564ff322d6","6ca3fcf736375c303fc036d5bef9a7c295c1ce2780e74da28452d7dd0467d10e"]]], ["TOC",["matff","lin/L216/mtx/L216d2G1-f4r4aB0.m",["89211339aafb3eb06dcde280af8d45aad04e0bdeeba7c2cbf9f35bf57c42d23d","96df6b799d396c82cc9c1beaa3bc94c08f55e2eb0987959a6d1ed24ef789981e"]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f17r15aB0.m",["19ead621da7f3a8768e59e79e1866addde9a879aeee376de369431db3dcd631d","2a36aa456f10240708fc5ea6ffefecad66e6fa7bedd2c685739e40c7034d432b"]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f17r17aB0.m",["1fd6c92826f073785e053378b437d1d5c700f93632b435c220bc3472951c8148","8bd230e167e6acf9443bf4057bc7d1fd48c43f09a15339b70a646c1b408d2b98"]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f17r34aB0.m",["986425ed71a7635a6db1bce3fc01a79b79c8e699cb5becc515b16167d009e0d7","b816cf4f6f9f6663067411dafda1e4841199b1f87525c786b99fc20d83acafa0"]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f17r68B0.m",["7f7e2424b3da25c74466a01697926b69ce4bcd1150787d815c09b02c9f4dca85","e438f52298464c5c9ff6d2f7ed75ab899fa3ef6bf74c09adac7d0bfea65846c9"]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f25r60aB0.m",["b39a5436018a3ebe7615c9c605cd2aa3ba7542e9f627d0733a8ee5a8bb9c5e3f","5aa0440c68cac614a88c1e9a45913c922f500ae354bb69f02d97b585568339ce"]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f25r60bB0.m",["5b40d02f48efdddd00d1625fe5a32361d40998b18bad42bea427d8be0ab7468e","81ff84d0383ff5032c1ea1d64fff8635a8a8e4ac63635c97968b859f259bb39a"]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f2r16aB0.m",["4d0bb118ce6377396a97c0fef214a2b9328d40e85ae9577f82fe4b2f6507e072","a10b932f12ab72addd3cc31c6b554ac69a832b0a3cb954cfdbf41de4ff0fa2e6"]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f2r16bB0.m",["c73346f3453837fd1715e64b0547733389902084d6f68ff1a1538b7770b48a7d","1d6bd8c493545fa2f9e6d9f1afc6378619bd5c8c801bc202b08c460e86e949b"]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f2r32B0.m",["daa4059565c39fadae8112d3eeba725a09ab4efa585b4bd9416e2ed1c0eab468","93b3095e59eac04baa0c765d7efe092d569e3cbae8d532becc6e186ab8068e26"]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f2r8aB0.m",["242d9f558ac0fcbc1a55cf3ec7a98ae9c2e8d0a0a946298538cc7d43c6c5f09f","7fe7defc0a34ed5a43db833c7ab1d9a45709cd6bc868389986b81a0e48e06c87"]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f2r8bB0.m",["650a03a87a28a0cbe8d47b8a278612bd8a28b6acf24b91e55c10088cea1b7451","20f1b98eaffd208f313eac2da9b559e27bc29241451ca754a32361c8b5456697"]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f3r16aB0.m",["6b5c621e62f9c6158635efe3f0ed177ad6d12e33f65afc9715c48a71d6e11836","1659b921c6548f6f06b64d72f8f9e5cd3e8e38b6709fe6199e9c0c1dbbfeafc6"]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f5r16aB0.m",["7ed9818cced904977f3ee55d2fcf32e10378d6badabbcb9ca9910cada37622a9","e68a23a809ddd3fbfaf8967df15c254329f9d17290d5edae9d84999940ee8384"]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f5r17aB0.m",["c9a45eb29d96b9529f24c47c2de0f47c95ebbb059addda2b72e02a63cbe6fab0","62ceea7dd2d567461d8c3090544bed9954a6e9169ccf1bfe158a5a59b184d03f"]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f9r60aB0.m",["1e575903d79e439d3762725398ec454d7d86f77c50773a19418a6e687fd75ad5","72d7530539cb98238ed54972655f7a124850bf3ba7f450ee7ef9b8111cadd7cd"]]], ["TOC",["matff","lin/L216/mtx/L216d4G1-f9r60bB0.m",["4705325019e11c0e113657a958bffb0aae2dab6c75586858b9d2442053929688","8ed374e84b244ba755fc0caa10b638e9b00558e94bac1b5c310e50d03c71b2ff"]]], ["TOC",["out","lin/L216/words/L216G1-a2W1",["cfb9868e84d3446d0be01e365ce3eff27d7f1e6af08a01c7fbd04fd6a47b1796"]]], ["TOC",["out","lin/L216/words/L216G1-a4W1",["2ea9c6b52c09f2b29b3e6481440fa3786dc89c476da0add415e74509f2c1c436"]]], ["TOC",["check","lin/L216/words/L216G1-check1",["814979aed68042f3ffc8a6924c83a5e67d1f2b9c3351f321445c3a7ca0bfd885"]]], ["TOC",["cyclic","lin/L216/words/L216G1-cycW1",["dbb709e17336d2e7d6902b97ea5cfd11020b28a3df8d16a1604f4bc6a8314d0a"]]], ["TOC",["cyc2ccl","lin/L216/words/L216G1cycW1-cclsW1",["ed57d55b413b8a5eb59ad79b20a2a75010b4444a4531110b020d1ea693ce1e06"]]], ["TOC",["cyclic","lin/L216/words/L216d2G1-cycW1",["a01c683c5108da8aa7706c895ec82d9dc4920258de193c6f2615c7de7cf4ffbe"]]], ["TOC",["cyc2ccl","lin/L216/words/L216d2G1cycW1-cclsW1",["8ecd3a9bab02344fd898125cdad97cfb00e6e0f84b3d7766c34c03431be91d2b"]]], ["TOC",["cyclic","lin/L216/words/L216d4G1-cycW1",["b57707c8b1dee704deb8d47d949257f31e8676662b34e1414839a17b23139947"]]], ["TOC",["cyc2ccl","lin/L216/words/L216d4G1cycW1-cclsW1",["15247a26daae042ebbda8e523ac6fd49ad979f00f21cb8e6c092808ed16af070"]]], ["TOC",["matalg","lin/L2163/gap0/2L2163G1-Ar164aB0.g",["fc5266c410c0349ff4e3c96c25205e8f5f57bc8d82fb3963b2013dd444740a93"]]], ["TOC",["matalg","lin/L2163/gap0/L2163G1-Ar164aB0.g",["4a46f7c9f53c42caa4874a803f24e243f716e553008d06ab5ee8922a20417506"]]], ["TOC",["matint","lin/L2163/gap0/L2163G1-Zr163B0.g",["9b43eba9bd3a5e7a0644984217db326bb62799157237044251f9febd6c3913fe"]]], ["TOC",["out","lin/L2163/words/L2163G1-a2W1",["b86bf77c65637cd562a539ac5c884005564461332b1c8c08c3b8d5d35cdb0cf3"]]], ["TOC",["maxes","lin/L2163/words/L2163G1-max1W1",["e0c094607d4d79c7ccc337e4d6d4a2b5ef66782631fc4907acc8156789651bf3"]]], ["TOC",["maxes","lin/L2163/words/L2163G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L2163/words/L2163G1-max3W1",["c8102555531ff59897075e7730f266f481b0a83ca560f4b074a6f2eae7937ac9"]]], ["TOC",["maxes","lin/L2163/words/L2163G1-max4W1",["48d282dfcdb016b539007b7e3acfedb0ac8ba48de45e08a4ffbbb92858c00979"]]], ["TOC",["matalg","lin/L2167/gap0/2L2167G1-Ar168aB0.g",["2ea83ddab06d94777c324ed22fe60ae2f652e0cfb52e923034b73684bb0afc29"]]], ["TOC",["matalg","lin/L2167/gap0/L2167G1-Ar168aB0.g",["cfba7de9a5d763a0a611de255a09398003ce2b92325415a44cb039760fb2ba3c"]]], ["TOC",["matint","lin/L2167/gap0/L2167G1-Zr167B0.g",["ed7f0c964b78af6d00f40108442e0eb82da3d3570947c352045671f37af982a0"]]], ["TOC",["out","lin/L2167/words/L2167G1-a2W1",["3cc4719861dd323efdd6628bacbf4c2a8a86c1cf0982b5af1387acf4fa6eb93b"]]], ["TOC",["maxes","lin/L2167/words/L2167G1-max1W1",["311ffae4353628e104c0bd2fad3d0a964da73f9a4475b92d90e42d0338174ba0"]]], ["TOC",["maxes","lin/L2167/words/L2167G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L2167/words/L2167G1-max3W1",["647739ab3f3679ea972b4f55981a4038f3f24f00acca22d53417b4058ff9dafd"]]], ["TOC",["maxes","lin/L2167/words/L2167G1-max4W1",["fd08cdf7c70918d52b72b4f6a0288f63b3127df6a4aec355673e7dddcfadaef0"]]], ["TOC",["maxes","lin/L2167/words/L2167G1-max5W1",["8e4c1ef9208eee7909fff9ceea0d20c1b32a0ac98c81200b803c2e11ba49880c"]]], ["TOC",["matalg","lin/L217/gap0/L217G1-Ar9aB0.g",["6a4a93ad31630d7bde25cd7ae0c938d8d04f7ee267195f0803abadac912a95cd"]]], ["TOC",["matalg","lin/L217/gap0/L217G1-Ar9bB0.g",["5824d0ef2718d8a770fb99fbf8f9aad58141900f1c008b49859c15bf673411b9"]]], ["TOC",["matint","lin/L217/gap0/L217G1-Zr16aB0.g",["4443783f9647273fd18f7665f2b2db0c54edba70cd446fb1b50475d4a335e57a"]]], ["TOC",["matint","lin/L217/gap0/L217G1-Zr17B0.g",["901cc9af09f7e25d1b94f1df9d52a5300e3f16e24a53ea2405c17cd57ef65d5f"]]], ["TOC",["matint","lin/L217/gap0/L217G1-Zr18aB0.g",["d8b7027dff28eafd58ed3606728d4ac3d6b86e8b4c71a72d0d9325392932518"]]], ["TOC",["matint","lin/L217/gap0/L217G1-Zr18dB0.g",["c401c8a8bda5b31cb28cfb9d1a397ef4f42539212a10e8411e25e05c8f24b831"]]], ["TOC",["matint","lin/L217/gap0/L217G1-Zr48B0.g",["afffbd06f171edc9b44f209049c7db9df37c4f6c08489da656a2d77ab27ed7ed"]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f17r10B0.m",["d2c8d7ff998c41bd2b258bcc61c7b866a690c638d8d4130fffa4cad6f91b2496","3ae9243df32b0539abcfc4163407ce08674b3a12f914b3496b67ec626e14682a"]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f17r12B0.m",["2e271917c94fd73c5b66e84aec0c8763dd37ba5453944d7cb1e833536d6ac3c","10302a17da82e54e0ea77e63a9e96d645d8a57754467f2e1cf5a836389c63b13"]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f17r14B0.m",["72e07269ab21fe1d94e6c70a4376bfdf1afa446c9548049e256439a94c09188b","a62346ee2b055b893109e005e5806e2c6892d9e56452d6fe034a5ea1a29bd9b6"]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f17r16B0.m",["37e6629ce0391ad036c2717fcd6f9834e18e53a96ad2a4688ffbc17fc9addb9d","dafde25e1bd8f54c61d648c351c0f7f9776c73267783c9d99f136d5586d9c43c"]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f17r2B0.m",["18c5cced16b3c5139ad9691d52afca1ff659a02e9bb77552056a465cca605ed7","4448f2b42181ebbdaec9e0e86a2a5554c223c5c8d6d11196d980ab087c124d2c"]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f17r4B0.m",["c6ef231284de399937e1d5397bb568f265203bd5eaee15ca282dee31dc9ac1b1","99471f2b9483ed6b5ea6d21d48ec0698ddca49097f02d16ff5b5165c594888ec"]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f17r6B0.m",["9cf34a959acce25924860b1eb3f159ba9ce8e45ccb2f7176504b623c3ee21e2a","5addc4be6281cd430e43a422eae461cb68bab8e7ef6bbcbc035dfe4d90e1d7fc"]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f17r8B0.m",["f9a0ae6e8291ed4f1269b402b4302401524be1926cd97e1a31ab036d4472b520","fed8facbdf731bee7f5b3c1e8f787b9f900e8c7a7d3dcdae1e5af151ee293b89"]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f9r8aB0.m",["cfb11d2e6a4e27d93e002bd6183c731477b1812a9e3956025db9c0c65f3087d7","ef37731e941ba79f6b9640bf5be9e668e69b8ed608352042a5d9ed69d0b349ce"]]], ["TOC",["matff","lin/L217/mtx/2L217G1-f9r8bB0.m",["d0a82d08c99d3965a18c0f860ad806394bf5b6f73197395948617bfb561c3e4a","4f6864d220a85f7caa46f2b28a396a48f7374ec294f6e915541fb5ba8d609f3f"]]], ["TOC",["matff","lin/L217/mtx/2L217d2G1-f3r16B0.m",["5fef0b9158d428f9852c7a513b45806b0c7dbe41442153f6fc4399b621a80fce","2cb7270e1609203591e924e9a12720ce65e3dfb3b9a6248faf46410e1020d0e1"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f17r11B0.m",["7d7723cd0822cb40ecb9961fa4677e861385cf5f85e7b4890b4007f93efa1508","d8d73b1652bf7ed19721de5f1d29c1afb983b659ccff76bbdd5f1a8d2a5ea5e4"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f17r13B0.m",["e11ef6a89b0f179e4de7d0348af91d0b2a5a4a511ceb8d5464b8fdf61d3e1a5","9a8593fa5fabff9a3bd9653854ba82195ea18c8c5292ad7fedd0e5b749738161"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f17r15B0.m",["53b926a71671436c57a4e87583168bc1ee72baf279163056666086a216139ff9","f3ceab4daadf6fcc1b2eb8dbf5d69b8cee1bd2e6eea7460beaa0eb2ffe0dd3fb"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f17r17B0.m",["d029820ed27dd270e1eb0941a0e46c74a6c6f2aecaa17dc91b0ba28975da30a8","62a8e63a33ca789c0195aae3d853e001d9fdfd58c0c2bf11e5b33c2a821a7b15"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f17r3B0.m",["9350fdbb3fa37a2a07716643de98f17c63000ce87c40a58c55d1e58cfd1fca76","8b86be7c2f54429439fd4c46037cad3fa58a7ee1402168a34b9e809c787cfe6a"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f17r5B0.m",["7378d3c7a6ebfd13ed473dee967cef44901a5e888113eaf26a1277775a963b92","20f143ae4d770276e771a80e3e96b79aa6874b186dca3e760d6ecde5a7ef1d6d"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f17r7B0.m",["69cc26fe8c9a95c3eb70e9c7dfcffe7157cf5b6c324b4afde3151ea27d239690","d8c9634b84222a0b5698d33c222ecfa23298378eb6011c0f6779e27992a97484"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f17r9B0.m",["259ce321374a4e054c2b8124c9b2fadda92d0b5e33e4bc7049e061d42cd631d4","e14df2ef246000af85d047f681126a477393f115a3fd97b727ff498bdc036b7d"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f2r16aB0.m",["650c73bd67cc0d7bd3aaddc41c75af794fd6333ddf8844e2eed21aa4f4c92a7a","c57ef10c21e3ea682139b035f03ad341c16df2d544ce4dc1ed8408311305e285"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f2r48B0.m",["783b37467f1e10e89146155452fb26c73a815eda5417310b95a67e6ba649ea87","5919c5c19079f2868f1d72c0d26aa55f42b7f9403265f2138e17b7adbcc5199f"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f2r8aB0.m",["8d6e23d435739dd5af9a13ba45d44650dbe8461a50a2f1a76e1fd6bad83f60f9","1954d13ff4264f9579016c523c84f25484e0497bfc5aae1a5fd50b9f6281da30"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f2r8bB0.m",["68e07cff8b98eeb74a0b087dd0256704cfb14faf1b183896a6c961c8f6013167","e9250c427b8be7cc0db81ef07db7d71f0a7bb8123aad00d85204642a88a4bee9"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f3r16B0.m",["22967f4a9577b587ac81c5e435d5c16e72ae2e51e113ce71509eb349cb1abfa8","6e256b58788e7effcbcdf6902ac0672fa29df7117abbd0e3ab859506c9dd5cc0"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f3r18aB0.m",["db5a749c17ac92cdf9c1182a3dc1255abc8d7c9f61c1bedac7fd58953aaefe61","d795e8cbde4c47763105765b0b5686c1b98a5e6e73bb80888ca2bc2b83bc31b7"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f8r16bB0.m",["2b0e76a9854c226632332db9085748cb54c0e0cbe91a8ab7c746651d98085313","88bb5128a23f973eb752686b920191e54c28c8477776edbd4a967d8b69523445"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f8r16cB0.m",["7a9f303ed292a5a0a64c7f04f340143ba4d1365715fe6869193d504859de0f5c","d2374eabe6d86c52f8742665afbf8fddf1f918d86d0f322fb7d6755bc92fa6d4"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f8r16dB0.m",["1d8442c3c37057bf935017c936cd9e66b327030f9478ff50881c95b376c3e694","f09c1667a6c5e8f59f88eb89665470acc40899685ee917fcf8b05ba5ff545076"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f9r18bB0.m",["734b25887613de6f6110e212d13f1434be005d512ba527bb05d962a06ca091a4","7b823403e2949dc0b85a566abc3e52a8f5b584821e72ed5e8448c4b84ba56a6c"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f9r18cB0.m",["22f74df73b6e1ebc6dc588c855c500bbf2df5e284949e64ec3719954a4032839","177d76ba87fc32db14bd97df58c75d037c6e0d89afe73bac497021b3e021e983"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f9r9aB0.m",["d2047d7548753350197dc36d3e64c335a159d959e3e364fed53de05c3b223fbe","1538b3a0bf81d47770ddd085f48551a1a3c98057d70638e98f78004d96dae180"]]], ["TOC",["matff","lin/L217/mtx/L217G1-f9r9bB0.m",["cac27d7fabc6f66643ca9fd02a8301898154202faf1be69310b3c780449818b1","2ca2cb783301c525c13c13ac204e0ed8acabfe52e948cd1210cf1a6386914820"]]], ["TOC",["perm","lin/L217/mtx/L217G1-p18B0.m",["b6f6972fd38fb11359e387afce9eaf9911fbd862fc4c8cbbb70a3b0a59a87fb5","45b48ec44e40e9f1932f799e46e67f1cc5eca137a03ae23d59dc0f82b2817c62"]]], ["TOC",["matff","lin/L217/mtx/L217d2G1-f17r3B0.m",["d5b0307b2a226ad9800bc596bfcf4592024e8735b56389308d15aefb9bd9a799","8b86be7c2f54429439fd4c46037cad3fa58a7ee1402168a34b9e809c787cfe6a"]]], ["TOC",["perm","lin/L217/mtx/L217d2G1-p18B0.m",["7b729f3e5097a74a920dd566b1ae33fa6c16aae3b3945a882e53c3d575f7a43c","3aa564f39618d35dc92f147d9796f0f2a0c473d495feb763721828ec71af78b"]]], ["TOC",["check","lin/L217/words/L217G1-check1",["d7898aa1f9878de82d487d8c29aa719ed31928862c140753a1ee91068303339c"]]], ["TOC",["cyclic","lin/L217/words/L217G1-cycW1",["989acd533f3d90a56dff9502dc84cb899bc7b1468d5ad1a193c2fb8e52f541af"]]], ["TOC",["cyc2ccl","lin/L217/words/L217G1cycW1-cclsW1",["a563bf9229242e7b0a193c578707a94ca7be0bcc6eee49ce32726f01b4d7bd4f"]]], ["TOC",["matalg","lin/L2173/gap0/2L2173G1-Ar174aB0.g",["3785d85fe628bbd3d9ea40d1a77ecf3d56e5c84942c9ff1da924775cfa27a49f"]]], ["TOC",["matalg","lin/L2173/gap0/L2173G1-Ar174aB0.g",["1f303bbd15e8fec234fa8abb6ff365aab4a15b5d9921a864d3d69f826f42d8b9"]]], ["TOC",["matint","lin/L2173/gap0/L2173G1-Zr173B0.g",["9bdde846386bb949a73b8cdead11f22c0998dfdf7c27243aabf5a50794589f3"]]], ["TOC",["out","lin/L2173/words/L2173G1-a2W1",["b2822af119001914e82560ecb990d9c6a520f7b84b82afce780f25e64520bf26"]]], ["TOC",["maxes","lin/L2173/words/L2173G1-max1W1",["7b4ef9e4b847e250cbed2af81d087caa3e1b324df8ebe6a1847324a5171939c"]]], ["TOC",["maxes","lin/L2173/words/L2173G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L2173/words/L2173G1-max3W1",["8e370c3d562a791f1fa063282a5245980906912b7ac5b104422c8fd6cbdff7b"]]], ["TOC",["maxes","lin/L2173/words/L2173G1-max4W1",["1168642f93f9807a46f66d7a3d95d29c089557f49da737e9cfb889e7cd286b72"]]], ["TOC",["matalg","lin/L2179/gap0/2L2179G1-Ar180aB0.g",["572a8b6780f2de2bf704bc28397ae269d97254d5588dbef96bf9418cacdab7a"]]], ["TOC",["matalg","lin/L2179/gap0/L2179G1-Ar180aB0.g",["9fdbd18b1dd42c3b7286d290e55f61487ec707edfece489d25d090c3579345c2"]]], ["TOC",["matint","lin/L2179/gap0/L2179G1-Zr179B0.g",["364f25096b771af84616336a56008c9ba0513097bd86ec548abe9852e5765545"]]], ["TOC",["out","lin/L2179/words/L2179G1-a2W1",["32c5a9ab0bfbff0fa8ab1da9162bdd445d5e561705ed0aa92aec0034f2a52c08"]]], ["TOC",["maxes","lin/L2179/words/L2179G1-max1W1",["25f8d91c12f728a9eb0b060e620ceeff0a913b285642da1bb502577d28b508d6"]]], ["TOC",["maxes","lin/L2179/words/L2179G1-max2W1",["776b4602b7e0389974223247bb90e49d40745077bc2f06206d39db49a74bee0d"]]], ["TOC",["maxes","lin/L2179/words/L2179G1-max3W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L2179/words/L2179G1-max4W1",["b9cc7020afe2952ce760d7aa0b53fb2a864e0b3aba44c6c2a181c0fc1cd80a43"]]], ["TOC",["maxes","lin/L2179/words/L2179G1-max5W1",["f01e502d15a0726a8bbf697ef13e0f16de985ac8b83f115bcbdee3d8b402ccb2"]]], ["TOC",["matalg","lin/L2181/gap0/2L2181G1-Ar182aB0.g",["367701c50c1256d828caf6109c9fc25f8e697e18622eb75e3d88a57c31701101"]]], ["TOC",["matalg","lin/L2181/gap0/L2181G1-Ar182aB0.g",["5fba799e4c52762ff28680b2b0c298d28db7393698c5bd1821fc0bb391c835cf"]]], ["TOC",["matint","lin/L2181/gap0/L2181G1-Zr181B0.g",["2ce6e93b7bd1a5d6cad67cbfb88dd083b8e23b3306c90252b26c88a91b83d8d8"]]], ["TOC",["out","lin/L2181/words/L2181G1-a2W1",["21457be2c3acec7819f983327a61cdfb1b77a1c279fb68d590d514b2684c91a4"]]], ["TOC",["maxes","lin/L2181/words/L2181G1-max1W1",["a21d8accc160852cd0f73a8d4af0a755e6fd2f981a09cbe1d9c1bfcf763347d9"]]], ["TOC",["maxes","lin/L2181/words/L2181G1-max2W1",["ac4f381ff659d9dd1b276f20904bb1709b80cfc65fc3fb89064bdf75e23c7f85"]]], ["TOC",["maxes","lin/L2181/words/L2181G1-max3W1",["776b4602b7e0389974223247bb90e49d40745077bc2f06206d39db49a74bee0d"]]], ["TOC",["maxes","lin/L2181/words/L2181G1-max4W1",["5f7d4829fa3189dda97b1e3cbf81bc834f2ab8626145ff9bffbfbbbee0aa0cbd"]]], ["TOC",["maxes","lin/L2181/words/L2181G1-max5W1",["f21bc406380319de6db40236313982be47b931fceda289a8967b148e1033cafe"]]], ["TOC",["matint","lin/L219/gap0/L219G1-Zr18eB0.g",["860bfeb3aae0fbaf790fd8dc6a7bd70021e0b04c9de286be708e2fe00e541033"]]], ["TOC",["matint","lin/L219/gap0/L219G1-Zr19B0.g",["d2e727e2207fa4a590c04f1ae5afe6df6538d108ce87a7fcc0ab69da8f08ea59"]]], ["TOC",["matint","lin/L219/gap0/L219G1-Zr20aB0.g",["bed3c4d8748fad75053771d1a84c96a539df02ebe14383a59c2c4612826248f4"]]], ["TOC",["matint","lin/L219/gap0/L219G1-Zr36aB0.g",["334314d8da6821895121519a6fe4b43cd560215805f15df2edf8551d9ae74d46"]]], ["TOC",["matff","lin/L219/mtx/2L219G1-f19r2B0.m",["9ae81173e8afe3ed842c4f86c142b131f2c2a1932b85de769b3679f6d56ea328","19b1b51d6f345757fe2cf3ffcb1f4b68645285cb326f820ffbc9a0d563fcb1d9"]]], ["TOC",["perm","lin/L219/mtx/2L219G1-p40B0.m",["cbbe08776d3fe460880385ee2a6b4d47e76aff48b977c6f67005b44be34d4533","3fa7c5e03f86f34a8d50775cba1a59cb9d833ac2e280f4fb34741ef6985ec095"]]], ["TOC",["matff","lin/L219/mtx/2L219d2iG1-f19r2aB0.m",["9ae81173e8afe3ed842c4f86c142b131f2c2a1932b85de769b3679f6d56ea328","19b1b51d6f345757fe2cf3ffcb1f4b68645285cb326f820ffbc9a0d563fcb1d9"]]], ["TOC",["matff","lin/L219/mtx/2L219d2iG1-f3r20B0.m",["782801b9601b2790649af7e83a254089aeb4e72f6f6bd0e1c94f8a5fccc1b42","5b905664164f66efc1b2186ec9053a46ab63d7ae6c1ea0a76de5d517563240a1"]]], ["TOC",["matff","lin/L219/mtx/2L219d2iG1-f5r20B0.m",["1a7976f9ab2a04c643ab057257cae003732b65415e7aaf1b7eb2835a71181190","d3f6b2705887cf1f71e0b69697acd7ab0a9bc05fffc2858971752871f6aefa84"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f125r20bB0.m",["7e660ba2bd2903ae8170cf713603c4b8f185c0ecf6427847eeee1a8f998a1fde","6ee632cb7fa9a8a42aac9a4a708553beb3727b3dfb284c2deddd09c15999b635"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f125r20cB0.m",["190bdffdac74673541bd60a9743f245f3aee177de3c54abd2950950604810e26","ce8810ac3a65a88cd780a2dc35248b4d31d81ebec84b53728d4abe814f8060f"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f125r20dB0.m",["a9236067a7c2d8e3c52680615fd4e8f0dc30ff3ab4af13a974973ecb6e6f1eac","d1e252b8cef0e55efffd2d0b5dc997a3f6fc9147f1060801342b800ab52a71e"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r11B0.m",["8166aaf78a1f0fd84c440d9bc54c1d362aa55df588b6a75985f5160ff8075000","3bf27c2f13ebbb996900cd9a87391793218d1f0750d93c67bac5a1d644e1a595"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r13B0.m",["7e0a2d37d86f187046d955c57a124776613674c5b4152bc5156b18e0367b5cea","9bdd1420ef8d23482523205c50022a4153b2524711860d81a67b6d5dfb53f516"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r15B0.m",["24c78b48e84753eb8195f7557bac87881b79ac4acede9d9ed53949c7d8a627a","3ddb319a1568410e46a73a6137e65446351cedbe259bf74cd9945f8c63358033"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r17B0.m",["c8017b4c6d7fa95a47dd4ee47a9feb0cd99c6e94e9b8b1c9687e99d3fbd3961e","59c571c2f0ec740831b39d6f3f6994ec258f05ee78d70c3ad59c114038d93348"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r19B0.m",["8bb96c4af91e5c7bf13a54c289599c1a78b84e7699585cf855619c6acb01e359","64ee1f56dc21bc32099c32d0e061ef61337b094968326281ab55c96c3330ccec"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r3B0.m",["f79aabba6efab7d7e873883efc3211b063366c23faf4c0c8d784c8e7e5c72ed2","59438d04818bb99befdcd6eea636adcd2ba661bbbdb1f0002ae5a77b9446bea2"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r5B0.m",["a64276aa97562b985835a9c9ffdd9268c83d9c06f28609a5bbdede5f5e5e94f3","509a36f955fcba78ea9afa8d37a0ad90986da46ad079c1b706c94bfde95b84b8"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r7B0.m",["cf588d2ad5556f15bb351a9de5660ce0063e35a684f41368da85f72eafd3db58","be0e2a2e698695359c13be195f0e336b02df56b7ccc9dbcae842817ad42e3153"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f19r9B0.m",["9e87736a07a2f096f00d4e0ee91b2a6aa9e2ab7a3719451afc01875a52715e25","84a2ea9bb907c51f378117fe983864314d3566ed5bd1084878c1b1c7cbfb569a"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f2r20aB0.m",["9c029e2f4ccc205754db661debc965fabfaefa840bbe1bbe637a869bb51d3ad0","52df5650c99b7c8687813f407b932c36f7c32e9208c0ce9f4f3d3082805b7806"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f3r19B0.m",["b544499beb4f70dbfcb419faca9a6d4f9cac02d22b3a2297f1af1ecceefa5b49","b208063df9dd2449fc32994bfe40a9e29732cdfba63518834605d950e6013ff8"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f4r18aB0.m",["b4b695c73014bdb27cfc865de49786bf638b7c0491c8d9cd303da9c2027cb9ea","c82a0582024c601001841869fa4c33faf4b977a00b4c387a974bec27c00325"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f4r18bB0.m",["9e969e65de44e9a66941b5f15e6244fee22800c7cfec40c02818a733b48324cc","329187f46dbff44d4324c78f29f34fd3c262deed9b6dae3660f3efebad553759"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f4r9aB0.m",["761b6ab24c1a6ac23a200c31770d22e133518e82b8fc52f759735d286f1ef1f4","1c92c77d9e0ad9fba2b1640c53fed44b8a51c28182eb2b1e62b6ff04e810a84c"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f4r9bB0.m",["d1a089991a2b0ab17e73b8ef20622f126cde99194e4d801728b38a92ee59d273","7d0c5218109c77208ff4f00cb6d86a42ee2ee4f78f461ffae5a2550edcaa53c9"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f5r18B0.m",["9216e825cc3703562bf9b747ab7753506fc3498a5d2688bf9981909c3f4f4ccb","f21ada0e604332dbc0154b37c2ded39a441dc57252d593a25cbd4f6bbe0b467b"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f5r20aB0.m",["4d06e67f2310baf6b9f5cf20da95efcfd2869b89d39ce94b50d28890e2e70c3e","e6fb6d50ebfdfcb0b89984ef160bea091829e9cdd033ada57ca5fac4fa40e8c6"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f5r9aB0.m",["fc243ae62f4d10b0e541bb347906598a487f7f801e621f97e996cf544073735a","457898983cced297b2bc723d4b5046f9b8ff5c352a10d87696caaa63fc6b655d"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f5r9bB0.m",["9c4ff9ea8da04bd187d19380e5f4c625e663b5a8d2c571c87c039dcc0398f72","1ed728bcd6121c44acaa466d659d8194e397823699d89d821a25cb4d6918fd42"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f8r20bB0.m",["fec1092cac972ca106319d299f263f33af37f270f2d5cf25528c29b9ab790b08","284c1197fa851e21f684418dae8d0fc5000d7ccf510b75e0ea27f954a279b87f"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f8r20cB0.m",["9e92c9b546252b2f9ba4b88f0b9b5c5f8d6e44a035babd3ed27b4925bff6521","60540fea598d11e0691e23911f682c787efd7324a77e6d47efe5dc55ee732775"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f8r20dB0.m",["73b7ac8a32d25e844dcc976ff832c2c81003ec68fb81a3784564b0f44674d8","d2d7cae390e48e2dd9309cad14e42aa8faad6df7d50ff6755fa95b942cb83a69"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f9r18aB0.m",["1aa676af455bd3c65e72333379b8066100ae5dbe1e1291101011accd6237fe8f","f05fab70fe4e390013386a59dbde2aa478b4a1933bc0422e4c2bc3a93d7c77e3"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f9r18bB0.m",["da15ff7b027e1e35fec6398d04dbad7372002192091bdb4268f0982f301fc2ae","f18cfcc02a4781cddbfcfe1d389cf24b27e5cc077f73c2c4e28b4fddf7e4caa2"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f9r18cB0.m",["cb22598a085f41821081fcbd74958d334c9d6cf65cf279f0e8e9924a87ee3e32","e0368cd2186efc4f6a03e8d137f67e81803af422afc26ef2d6564aaae5fe47ea"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f9r18dB0.m",["4c938da1c4adbb9d53e633c59bce857d268c34d58bf2a219fe584022dd8ff77","969a33b02a2be71d81151da64cd395956e30de1ea0911b97e0f02e2cc4170d06"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f9r9aB0.m",["628025a4d21c80996793061bb21a919b4bb38bad876575640d469cfc0356a8be","1a2b790952eb116554f7e2591931d9e7e272c77beb975d08a3567a19a394254e"]]], ["TOC",["matff","lin/L219/mtx/L219G1-f9r9bB0.m",["b214b450223497bcf3a0f2bd82220f104b3e5d0e6fc4da8787600717801157ae","4d3dcd1c0988b3258ba7c71b52c5d943654c699d4eb474aadc613a11e0a25ca2"]]], ["TOC",["perm","lin/L219/mtx/L219G1-p171B0.m",["bf4c1aa8cc174f2ce324df86d75c67487199d8c3804ba8f82394ffb6e3bc6db2","41f6834bf325f3b4626983f71c82ecff6bfcf64bbf55e69fcaf37c2600a3364e"]]], ["TOC",["perm","lin/L219/mtx/L219G1-p190B0.m",["718b9a0eb0d7fbcf5f79e815cfb3751f172152eb280c6bda3b26c3bd3ce128fd","c488e7ee170e5cee3a5a8c2ba36e24df4735d96def483be6f4b03d8e55425a1c"]]], ["TOC",["perm","lin/L219/mtx/L219G1-p20B0.m",["95a46b05008ceb7837311b927773a366a4fdb9a48393af4d67235005ce1d19fd","dba812ce42f02abff0dc62275adac501819f861e4120d985ce82ccbe18ec2ad4"]]], ["TOC",["perm","lin/L219/mtx/L219G1-p57aB0.m",["95af1eae9a0bd54772ed647b229c157578dbd7c1bbd10d8ef5c26ad5c2c6dbbb","9c6ad8b6a63303bf42600c2a668a0bebe3aad84d55b912cc8a1b7cafcdb98034"]]], ["TOC",["perm","lin/L219/mtx/L219G1-p57bB0.m",["b7212edb3b451806fea31de3e88d364a99cdc4be6f10b3eb5fa550bd414c6c67","e03c99e90fd831f17c90954d66da916db3373ec441edafabe885986ae7d41109"]]], ["TOC",["matff","lin/L219/mtx/L219d2G1-f19r3B0.m",["9f81cbb5c5f055106c835c118cf2d0ef46956c4ddd4f19e2634ee52b3a710eec","cddb5cf0de2c2bc0b328443b71ac1e1e0548fcf2da8f67760bf252685f6cba59"]]], ["TOC",["perm","lin/L219/mtx/L219d2G1-p114B0.m",["8a89eabf7a1b3bf8a396b0b196cde5dab3b2e61db03746c4c2ae75ce074e5b08","c7364c1853847ded716df2221e7135316d4561b8da8a5529d2d47e7ad0bc4fa9"]]], ["TOC",["perm","lin/L219/mtx/L219d2G1-p171B0.m",["5bcf053487d7fe1adf0cf8a70ce5e633d8c86b16b96491b3bfb72690d2751bfa","8c39c65297d649d5e15e759a3d268ade6754706c83402d8a2e8cbb0f89398c02"]]], ["TOC",["perm","lin/L219/mtx/L219d2G1-p190B0.m",["d6ca52b70d782ab11787dbab392a6e27d4b822ab62afe6f7a46b3c278fd92dac","1c48c2e5d939b3faffd3524b6339eb6507aa66fd14a9d0f2a641fe832d3f0935"]]], ["TOC",["perm","lin/L219/mtx/L219d2G1-p20B0.m",["fc691f360eb4debd363a55d1715ef9390d0ae839891e066056546e6990f1de80","93c8ef538a0957bc4d7f2b25615b0607c0fc89bf040fda0bd59bb7278d7755f9"]]], ["TOC",["perm","lin/L219/mtx/L219d2G1-p285B0.m",["b6b1df6cb53e6bc40da486cc21b382227481a36738e585d893be6eb6b6c0fa55","f04fff41614ab8c70bae2874ad8d985172d012cea57bd573989144fc17ed6d55"]]], ["TOC",["check","lin/L219/words/L219G1-check1",["d427686298c31a6d193b3e00690833607a162e7e9251cc9be5246708035511c6"]]], ["TOC",["cyclic","lin/L219/words/L219G1-cycW1",["7891d9a04a203319636b774c3704d5a75c93d58cfbbbcfcd3af730b4848b1b61"]]], ["TOC",["cyc2ccl","lin/L219/words/L219G1cycW1-cclsW1",["5af1d281cb86f7f2e1920563d339ffec908bded6e7b3864682db86fc157578b2"]]], ["TOC",["cyclic","lin/L219/words/L219d2G1-cycW1",["9cd0b91eee6111fcdd2ede77e88b386bd4cd43cd705ed5945a4c1326e6f189e0"]]], ["TOC",["cyc2ccl","lin/L219/words/L219d2G1cycW1-cclsW1",["1e105fc497d2a4b1fcf838ddffa5a38d8d9ac3eda7adaba602390da35feac977"]]], ["TOC",["matalg","lin/L2191/gap0/2L2191G1-Ar192aB0.g",["6050d374b0441e00b5858c422272a81aacd60af9091391b32db5756b6be334b5"]]], ["TOC",["matalg","lin/L2191/gap0/L2191G1-Ar192aB0.g",["f2dcb509763a53d85f968526cba68e39a311fe4c083cef3c13bbb287930c5cac"]]], ["TOC",["matint","lin/L2191/gap0/L2191G1-Zr191B0.g",["4672cfbca60386b544746c8939b8030c4b43ca785c5c10aad110d81e77d8b501"]]], ["TOC",["out","lin/L2191/words/L2191G1-a2W1",["59bc651a19667b7550cf647a069f2afc4f38f77e1e067d314694c8bcfe18fda3"]]], ["TOC",["maxes","lin/L2191/words/L2191G1-max1W1",["c928e6881f615eabf4a07745f44c1f46fa6dff9e49ab6a9e0be26c655401878c"]]], ["TOC",["maxes","lin/L2191/words/L2191G1-max2W1",["e137d5d5e6340b80e55c99f258e33adbdb1bbad0aad67dac261e75af2130eb8a"]]], ["TOC",["maxes","lin/L2191/words/L2191G1-max3W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L2191/words/L2191G1-max4W1",["29221491a240d80cdf57bdd1e86e9ea2f50d705627c0e4e3e90a5eacc663ec6c"]]], ["TOC",["maxes","lin/L2191/words/L2191G1-max5W1",["a58e23c84b1d51a51362ccbc89f344ea181fea8f153e7cebab4e89e9951e1c46"]]], ["TOC",["maxes","lin/L2191/words/L2191G1-max6W1",["6bec061e907edb8002f6d58126eb9c89722834448c200c38c5dc2a1353b9999b"]]], ["TOC",["maxes","lin/L2191/words/L2191G1-max7W1",["cb7bde4b8b4573dbab128c0068dfa5e2862c19db9901fe9fe261705b469d6661"]]], ["TOC",["matalg","lin/L2193/gap0/2L2193G1-Ar194aB0.g",["1cae07ddcb6aaabd3d405851bbc2b48c71e133117c72a57b41c4b02b5ee2f116"]]], ["TOC",["matalg","lin/L2193/gap0/L2193G1-Ar194aB0.g",["de66226caf376c728900a09a525254364de629296801585b4703d279654e065d"]]], ["TOC",["matint","lin/L2193/gap0/L2193G1-Zr193B0.g",["284c191180a6306adc8e3928e42519de4eb27a37d04c4212a5979de55add94bb"]]], ["TOC",["out","lin/L2193/words/L2193G1-a2W1",["c83c2cba5112e5ba25dab34b86622887dc87f800bd8401a88f790902d4fd2569"]]], ["TOC",["maxes","lin/L2193/words/L2193G1-max1W1",["a9bf82fc9b1aac84aa61aa042204fb15c39a576e6122f85f1f501f6c3601aa4"]]], ["TOC",["maxes","lin/L2193/words/L2193G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L2193/words/L2193G1-max3W1",["1797d1241237a335b9421627953de34b80ce49056638e12ca786597d788ac077"]]], ["TOC",["maxes","lin/L2193/words/L2193G1-max4W1",["70157e7acfa5847363795021ce744e5a89b6c3d24d219af941f53ce8566cba1c"]]], ["TOC",["maxes","lin/L2193/words/L2193G1-max5W1",["40becb70a81581f6c4d3d24af5bfe647eb424bd4ba138f512f74c175b2d8014f"]]], ["TOC",["matalg","lin/L2197/gap0/2L2197G1-Ar198aB0.g",["3e7c55950312cfa9e4cedc4d3da0cf4c109466c46d95e4316d6068d13ad72b99"]]], ["TOC",["matalg","lin/L2197/gap0/L2197G1-Ar198aB0.g",["5045c7d53429d34eebf3bb2f56923e67f10b6dd546467bf2389ba8eaacc68fdb"]]], ["TOC",["matint","lin/L2197/gap0/L2197G1-Zr197B0.g",["9970e1cacd4a5fb2d9ef14d66a151d03aaedaaacd23d1e4385688d5c4e4f45a0"]]], ["TOC",["out","lin/L2197/words/L2197G1-a2W1",["5f2c8f1436918e405773db635469adba81c4480c81caf47078cee719b3d43653"]]], ["TOC",["maxes","lin/L2197/words/L2197G1-max1W1",["ae5027b72809e5ab3bd2c8187d1264cdf1cf3479bf4c286bbcec519a56431a81"]]], ["TOC",["maxes","lin/L2197/words/L2197G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L2197/words/L2197G1-max3W1",["1797d1241237a335b9421627953de34b80ce49056638e12ca786597d788ac077"]]], ["TOC",["maxes","lin/L2197/words/L2197G1-max4W1",["6ffc508f6cad59ee4766369307058006e599cca21105848857c852bb7ff8e889"]]], ["TOC",["matalg","lin/L2199/gap0/2L2199G1-Ar200aB0.g",["ec9a2bf8bb8bce8b99030bd484d8f92bfba9b769692c6e56a593fee61cc091ff"]]], ["TOC",["matalg","lin/L2199/gap0/L2199G1-Ar200aB0.g",["502bf97dc821bc3aefcb3108a237a77c1efc2a4dfbad8afebcb7f4e12a89bcd7"]]], ["TOC",["matint","lin/L2199/gap0/L2199G1-Zr199B0.g",["e5a31388c7181afdafa8522a03069419c1f02204309b50708072efb8cf52f2c3"]]], ["TOC",["out","lin/L2199/words/L2199G1-a2W1",["9236959d19fbd3f0dcef2ce96ae429550740596b284e1e6b6b2b9ca66b5dcfd6"]]], ["TOC",["maxes","lin/L2199/words/L2199G1-max1W1",["de8afd2f7c5f7ca5b8e16eaefe54de18f9a132e755748a47a1ea08b03f2efc"]]], ["TOC",["maxes","lin/L2199/words/L2199G1-max2W1",["1797d1241237a335b9421627953de34b80ce49056638e12ca786597d788ac077"]]], ["TOC",["maxes","lin/L2199/words/L2199G1-max3W1",["1b9432236122ea1360e0733216e9a8093bf2b775f7b18d83adb678e58fa2a875"]]], ["TOC",["maxes","lin/L2199/words/L2199G1-max4W1",["965809fcb2b36cb914e70286566010c591cdafc7395160b8ad2130417c312366"]]], ["TOC",["maxes","lin/L2199/words/L2199G1-max5W1",["2875331968652cd418119569e5fa703c84563683fd1048ca819bcf6c1a4afee3"]]], ["TOC",["maxes","lin/L2199/words/L2199G1-max6W1",["c860fedd06f722f0db58b293005bae35e68868d6272ba995b4c10ddfd4bbd01b"]]], ["TOC",["maxes","lin/L2199/words/L2199G1-max7W1",["844b5bdde01d3b6bead588f8996fa4f054199ceea85f9c438689491c5743ba5e"]]], ["TOC",["matalg","lin/L2211/gap0/2L2211G1-Ar212aB0.g",["b38e1f3e7067079ac8577f2e7a3c5d26f6fad0c84550c69eedc583b9dcb81667"]]], ["TOC",["matalg","lin/L2211/gap0/L2211G1-Ar212aB0.g",["2bf70f562d0e0351288045c099adbf5cd9977ff6242a2cd5ccaf9ae4595a5fd4"]]], ["TOC",["matint","lin/L2211/gap0/L2211G1-Zr211B0.g",["1c78e8b0db30328a002598b2d55378cb07c838287cea60ecf77747696f1d430f"]]], ["TOC",["out","lin/L2211/words/L2211G1-a2W1",["f526e0cdce868e29386bc600525de289e2ab802807a2085f26d2830146f8e65d"]]], ["TOC",["maxes","lin/L2211/words/L2211G1-max1W1",["3337387755347ef24e7045a989f4c126ba45f2e6aae9bfd1eb270e076f93283a"]]], ["TOC",["maxes","lin/L2211/words/L2211G1-max2W1",["ac4f381ff659d9dd1b276f20904bb1709b80cfc65fc3fb89064bdf75e23c7f85"]]], ["TOC",["maxes","lin/L2211/words/L2211G1-max3W1",["caf28927a0797487ef6153cd385050be195153363777c27f5d8143cb18cde85d"]]], ["TOC",["maxes","lin/L2211/words/L2211G1-max4W1",["493a6bc6e292ad6f331637b59c8c1614d4f39e3b9f707ea1e0b15be4aa691f7d"]]], ["TOC",["maxes","lin/L2211/words/L2211G1-max5W1",["a8335686889818d9c5e607131cf773161971623d8d32b9c5792e86874364d969"]]], ["TOC",["matalg","lin/L2223/gap0/2L2223G1-Ar224aB0.g",["1ccc5dae6ab9a71cbcd02e3f9c014ce9c743caf826a95dcad721331cb4d5434"]]], ["TOC",["matalg","lin/L2223/gap0/L2223G1-Ar224aB0.g",["b4945881e8e4ac98762fb567ca75deeffa70cd357014b85de0f0f2c566e2a1cf"]]], ["TOC",["matint","lin/L2223/gap0/L2223G1-Zr223B0.g",["b02aa7b9813bf3e5733a4f78e9dda06c1192ccb619238f006c34b51f82af4bcd"]]], ["TOC",["out","lin/L2223/words/L2223G1-a2W1",["baec6b98cfb2eb219617dd4b9deb86b026bcbd6ac1fcf9ae134af41e5591b043"]]], ["TOC",["maxes","lin/L2223/words/L2223G1-max1W1",["ff12625564203304e9df6beb61fad41e7ee3bad4e7d80fe268dcf4d328d55cf5"]]], ["TOC",["maxes","lin/L2223/words/L2223G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L2223/words/L2223G1-max3W1",["81697c33ec360171b443eb71991605f59f206ec4b8d867679934125279954bc4"]]], ["TOC",["maxes","lin/L2223/words/L2223G1-max4W1",["c5c25b6ca3f6f52b2cd3e1ac6ab29990ca9513296e77bbad2a9661ba99ba4e62"]]], ["TOC",["maxes","lin/L2223/words/L2223G1-max5W1",["3463e199a2a8f7d778b55b7f3125927821b4ef64d947256479f61fa174d58b99"]]], ["TOC",["matalg","lin/L2227/gap0/2L2227G1-Ar228aB0.g",["f8790cfe749a6629554644ae9bd244e14e0230b714b329ade603c139263e800f"]]], ["TOC",["matalg","lin/L2227/gap0/L2227G1-Ar228aB0.g",["c4ab95c59e52fc69f9f6710e795493162e7a0cb02b3ef85f5374fce0e0d877b5"]]], ["TOC",["matint","lin/L2227/gap0/L2227G1-Zr227B0.g",["49d149c4416c95cf0c270cdd0c1c90b6ae98f9e2233e1f76120484421cd4ebf5"]]], ["TOC",["out","lin/L2227/words/L2227G1-a2W1",["2befa5bcc834564279c4f586c554fc15586920b6baf39091a7410d9be2e164f9"]]], ["TOC",["maxes","lin/L2227/words/L2227G1-max1W1",["b0e5aad5a14c68a7df15cb71ef35f0eb435b052bcd293c32503ff91b5fbe5ca5"]]], ["TOC",["maxes","lin/L2227/words/L2227G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L2227/words/L2227G1-max3W1",["4e81c73282f5a5cd9512350be532232b1c7f8778d446a8b8666846f60d9e948a"]]], ["TOC",["maxes","lin/L2227/words/L2227G1-max4W1",["6e86884838e6afc77c55ee77731dfe6bd74c263e91dd6ebe380de308897d1574"]]], ["TOC",["matalg","lin/L2229/gap0/2L2229G1-Ar230aB0.g",["6b864df4a66dc68c58a32905d9cbc0d3e02bf76bbe127269306be430f9f3bcac"]]], ["TOC",["matalg","lin/L2229/gap0/L2229G1-Ar230aB0.g",["716991b745121fd50197fe67a6bd0bc2b64ea84ce59c3adbd5a42e82280f2f86"]]], ["TOC",["matint","lin/L2229/gap0/L2229G1-Zr229B0.g",["fd2c202c898f754e5de55c700037382c2eae1307c9c2d7e9cc54e12cac2ffa48"]]], ["TOC",["out","lin/L2229/words/L2229G1-a2W1",["b5b8f542a1473a1a835b54fb00f29204d2d923d51ac7e4e506185d9d02823b74"]]], ["TOC",["maxes","lin/L2229/words/L2229G1-max1W1",["778f8beb896e4717821db42a50350b6cfa230d668098aabd509acafe58475c9c"]]], ["TOC",["maxes","lin/L2229/words/L2229G1-max2W1",["1b9432236122ea1360e0733216e9a8093bf2b775f7b18d83adb678e58fa2a875"]]], ["TOC",["maxes","lin/L2229/words/L2229G1-max3W1",["3b41f344409aac20c3d3ceff9cced451c455146ba428b67c99e649c905402fe0"]]], ["TOC",["maxes","lin/L2229/words/L2229G1-max4W1",["6b736fa3c642f7642b1f34dc18fd606c1a76d84e5c80a0168344a1bfea197d1c"]]], ["TOC",["maxes","lin/L2229/words/L2229G1-max5W1",["f5ebb30a976c216e8ad62f6e61d7d6425b331050eb47346b2ed40b7129ac9bb4"]]], ["TOC",["matalg","lin/L223/gap0/L223G1-Ar24aB0.g",["691532ffcc78aea0f563b1d7f685ecc7ef8a72a0cfe8e3f130f2806ed4622063"]]], ["TOC",["matalg","lin/L223/gap0/L223G1-Ar24bB0.g",["230279a1a38872190a36b5745a63cbab1ebca3803119dcb3a26389ededc91b33"]]], ["TOC",["matalg","lin/L223/gap0/L223G1-Ar24cB0.g",["8cb5910ca6d37d16a0af30e31f9acd9df237592f3280cbbe07b07b296a1627cd"]]], ["TOC",["matalg","lin/L223/gap0/L223G1-Ar24dB0.g",["ea216ee518172c60fb9af3b0a18858265c387da3fee38804574929b435ef0c3f"]]], ["TOC",["matalg","lin/L223/gap0/L223G1-Ar24eB0.g",["82ad65e25f664fe7e5b2cdaed64da8d8efec7fc3b88862e5534cf3258b9b7baa"]]], ["TOC",["matint","lin/L223/gap0/L223G1-Zr22aB0.g",["85138f5bdbb1f08367a2d5241c1d25a49f0b15cd3b8c638af77b79b7cac2ea8e"]]], ["TOC",["matint","lin/L223/gap0/L223G1-Zr22bB0.g",["cb07d5c9e3e8d3d862eb5c6be771d51c2a97c8f5641bdb767293a66f99dd3db2"]]], ["TOC",["matint","lin/L223/gap0/L223G1-Zr22cB0.g",["c880dbbeda5c49e3f176790ac3fac16ba7428ec1ed4ff4e41e6508735f48d54c"]]], ["TOC",["matint","lin/L223/gap0/L223G1-Zr23B0.g",["963b9e76a95faae2c34a93d3f357af9666d6303ffb72db1b278aadd3ac0c06b6"]]], ["TOC",["matff","lin/L223/mtx/2L223G1-f23r2B0.m",["379a81759cbfa3fa710e82a9f4fccab3090e2e552f881a9cc8bf1d415950880e","6ce8c4afa2309b18a097d152b4c204d4ee08a3282d3d806c182c4ad40e0160a9"]]], ["TOC",["matff","lin/L223/mtx/2L223d2iG1-f23r2B0.m",["cb1ee3ec7847bf14a655b86e10220e833761cb9f7c17a0ac71674b5f04703013","716d8ab76a86c3e8ef97de9999407b189b03d8c052c759cb2ed4aa815bcfb5d"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f11r23B0.m",["6c23f063c8a93a930589e59ecf236cca12eb6b7538a52197b3198e1b81cadbbd","455c9da369bff95639c3087935716c2ebc0b55f626f11e51bb11261b7970d995"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r11B0.m",["2f88065f43c8ed427372c5de0f74321c62c680a807414ad8856e36c392ce620a","cfaf45b1abd308f8f29c90eb4e4ab98b1b32535faf3e3074a7c00c8f7215485a"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r13B0.m",["3e60e13dd7eae85495b75d38b955daa61921b7b70def1dac347de690a7954bad","f4984256792d5bbbac2e0443ddd40d7d62d289538a7ec8029670e9ac2f2a8bd5"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r15B0.m",["2a9187e690cfbac4f6405df867be71a7d4cf86772e63a107d2e0d00adfdc74f3","2d4c01b3bbc4601dc64f8417f068db4c6575fe1afa840209487d6bf8ce461c1a"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r17B0.m",["eb22a887ab8a42303b15a9da80311cc3ffc2207580572b75a02dd8137cca6549","77b3b001e6a011cfc76dc6997a84c8b59a3b1df9b803ba573407480518a4163e"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r19B0.m",["a579e3aae870f6d464978210ea5471bad2e78838d4bb19534bfd677c169102de","e71d5fd5467bea01d74cd6e5c21ddc0f2a3055b0f4e5f7d5ef253004b3322036"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r21B0.m",["997a2f5c3bd5c9ce26cd11be49550eb77befe71645a7f70486d2f4156315b114","96b8c11eb27b7c2b1668a72bcb9e3d8a1116af9453d21fe0ed735555f743eba9"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r23B0.m",["7eb2cac8e0061ca524792dc71f983cb0e87a7002668e8a7eaedad81d1d5d61b5","1bdfd9ff323b716489e11da9682c87bf5ba93f491636c084586df4c422774185"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r3B0.m",["427657f285ae8fb2017592ac7ae6d3a05b6f78598134ce6b90d76ba7c7a2e40c","8ad0fc8bda553414b808a6a86a794dcd396ca782ca2ec236fd2262cef8870018"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r5B0.m",["a385774c35cc4ac4906951c3030895c25c11bd33b138744f10ad40cf812d7ba6","d1efea9389380ffb50b872cce5df395d278eb783e43185e7e6171ebf54c6e3e8"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r7B0.m",["6d5193c884bc3ab5f7b4d2976aed3f99543fcf588e307a7c2646b782576ce877","3f84dbc54ae047bb77969a6efec4a0a0c1d8b22696013b431c6aa563408bcd9e"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f23r9B0.m",["4e12270b66d2eb07829409a9c51d23a8a5fa7796361795d46e530214f9ea5a47","2c2869619af6e0e0fb7931889bb70ca441c6f2a3cc20c4bdad93a0b911f2b89"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f2r11aB0.m",["498f1374c9bb090441d41ed0e8b1f75eccbb6f4283b9c2800c20a34ff5bbb941","56f0bbb0351c19de15b3d395da3a953a1635ed9e6b5a0953719671e573f9e26d"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f2r11bB0.m",["9b54268ef394b5851103a468d9741313971a97a53007ee9785d8b2b74fe3aca1","eeffae9c3b130e528c778d3fff825b31cbb5e9c0ba7cfd7b87e0d42f4058ed2a"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f2r22B0.m",["1480c5da812822ae330c616abac8ac98223cb068702da286de33ef9294813cb2","aa5b82c59f02ddb68bc7b72bb50dbfc7875279042605de55e540131b5d566bd7"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f32r24aB0.m",["4feaff40a835f963f30c2ee58de2827e4d6c416cc803e18c432f6b99830661a6","3284491e75b628e9a91c2e8ee047baf35bf5e098a083fd9044226666ab4d533e"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f32r24bB0.m",["abca1cd2ec428dda3859c1bc0ca964e9969718bfd628c0f7422c8560bc9118a5","aaea1e07fb6e5819ec4450315f67f8dbc0b5be716deb470a55c8467e93239cb9"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f32r24cB0.m",["a4496dc2ad3af64bc0abdefcaa6edd6162dfd771bf648420a6066991f96220a0","effb8cfd84878a35c70ad99fc1d79797bcf4a8ac758b82fe986e54677e7703e"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f32r24dB0.m",["a98eaf777ca5d45e1bf2e96dcf7c844d8c79dae2de1ff41ddc39001cd59352e4","4241645cc4d3e5eca6a400383ccfd2da927b8f7e5ba58002df1241b701d61030"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f32r24eB0.m",["fc2d29a61578b38a27ff849c9ccfe313ceaf0378956555b9b9c7e77b0fbd1466","bb6e64292855362fb32eadd303f0f7f15331c3fbad6899ae650890b8cbd4310f"]]], ["TOC",["matff","lin/L223/mtx/L223G1-f3r22aB0.m",["2cf116c05811ea100658a0883255fb3a6456883cee934acaa77af5ed263adc62","74fbb3b4b589c1ae4fcccc5b6bbc99fdcbc5cccd53e5c6718618b65ed8533ed1"]]], ["TOC",["perm","lin/L223/mtx/L223G1-p24B0.m",["4d9d545671022a4cd2dd50231e9b3cf5402c8252cfea4d9867e8b6a1d0242f2a","d9a7ee179f707527eafd21cc4c51d26140bab6aa52c4969e0cb080cf4bcbabcb"]]], ["TOC",["matff","lin/L223/mtx/L223d2G1-f23r3aB0.m",["5a9cd11227e2231f0b4a3d6b78d6726462353e08ce77587a619dc86ed430ea63","8ad0fc8bda553414b808a6a86a794dcd396ca782ca2ec236fd2262cef8870018"]]], ["TOC",["matff","lin/L223/mtx/L223d2G1-f2r22aB0.m",["ff702bdd3f9ce33b7ac5e3a6a588ffcdee3701b39d6bb89f1e37405d385d8011","827376c26b7305c6421495348853f710846f8a915cc35e6a7e80c9b3e23995e"]]], ["TOC",["out","lin/L223/words/L223G1-a2W1",["443d13dc7909d4eadabe7de6f0102b636f10ef1aa3d379e076e3f9a3280fa349"]]], ["TOC",["check","lin/L223/words/L223G1-check1",["f145aecee5adbb88676f0ed1be50890c19b8f3eb13352ea35b7c3532a4a9e34"]]], ["TOC",["cyclic","lin/L223/words/L223G1-cycW1",["d4ea734a40d3ddb2c50d93774e6abc9960d84c088be327f43ba46c5b6a13db8a"]]], ["TOC",["cyc2ccl","lin/L223/words/L223G1cycW1-cclsW1",["d1561e57e33c71f40e2280aedecf30137d4da8bffd6f5fd939c926a17343275"]]], ["TOC",["cyclic","lin/L223/words/L223d2G1-cycW1",["85dc82df2c672dc3dca0a51b4f081ee64e219fb81bc0dd6b98f6e11e9a286946"]]], ["TOC",["cyc2ccl","lin/L223/words/L223d2G1cycW1-cclsW1",["b028d8eefa653af7e65db7d649eb9deb1ef8f466bf90a6e174e58c36a38d57b3"]]], ["TOC",["matalg","lin/L2233/gap0/2L2233G1-Ar234aB0.g",["2a33e84949818b382795c559873deae37b54db597c4d011b0a7fdb9abe15025d"]]], ["TOC",["matalg","lin/L2233/gap0/L2233G1-Ar234aB0.g",["f5d6880c932afcca91df6e0599afed20cc94ec5c7d01617927d25a1418953d63"]]], ["TOC",["matint","lin/L2233/gap0/L2233G1-Zr233B0.g",["c6b88dd4393cac948f7f728a559ea847075e46f807cda4a00a705fd525ae8a5b"]]], ["TOC",["out","lin/L2233/words/L2233G1-a2W1",["678d1526c05d348a26417593d4fbd605cb2fbb408234f4c4d8b48db4d9d55025"]]], ["TOC",["maxes","lin/L2233/words/L2233G1-max1W1",["127fc8e31d03941640695570bf056c38ea3cf7516d8de3e480172015782cc828"]]], ["TOC",["maxes","lin/L2233/words/L2233G1-max2W1",["1797d1241237a335b9421627953de34b80ce49056638e12ca786597d788ac077"]]], ["TOC",["maxes","lin/L2233/words/L2233G1-max3W1",["843e770c4b7e16d60c7734833480b1230ba6d5d1a0dda9a0a93f9e0cb6deb49c"]]], ["TOC",["maxes","lin/L2233/words/L2233G1-max4W1",["cb768eed922b1b7adf2906913c6b2c7f0d33b15e50aef35655bf9f146cfb0149"]]], ["TOC",["maxes","lin/L2233/words/L2233G1-max5W1",["1ff0206e65b85a153ce975f09d3601205f89fed21afd92b7fe4aa26f258e0060"]]], ["TOC",["matalg","lin/L2239/gap0/2L2239G1-Ar240aB0.g",["7d4026c6759cde4567ba13c919eb538100313d5af9855b3472db41fbb9f4e719"]]], ["TOC",["matalg","lin/L2239/gap0/L2239G1-Ar240aB0.g",["756adc3f14300dc3ff2f618c5e0a0df39d7fd3ef5425e01393f176bef1a7f37a"]]], ["TOC",["matint","lin/L2239/gap0/L2239G1-Zr239B0.g",["bb9ed9d477a7fb2df644d26b12ec6a14af5be8d2755b1d8f259e757a5e479bbb"]]], ["TOC",["out","lin/L2239/words/L2239G1-a2W1",["71b00701ea0ededb75c620feb06befb5f49db6d920c9aa757d04ca297818ffbd"]]], ["TOC",["maxes","lin/L2239/words/L2239G1-max1W1",["dca45dcb9bdba0794888f8a0b7a86c7e09eacef5d8eeb6b5e9cd6f7391e41647"]]], ["TOC",["maxes","lin/L2239/words/L2239G1-max2W1",["4b94c3c6aba7d2ad04fb6c4c3d361886e9300b47e226291c40027caa41be0702"]]], ["TOC",["maxes","lin/L2239/words/L2239G1-max3W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L2239/words/L2239G1-max4W1",["28acdd41fe4487b727d38bd65dfefd5249aa5ee0be6cf1792eb1ec827a95a808"]]], ["TOC",["maxes","lin/L2239/words/L2239G1-max5W1",["807a8060f4495acb99f0437d53bdd59335ed26138f502a3ea4205b10601f5a70"]]], ["TOC",["maxes","lin/L2239/words/L2239G1-max6W1",["efec6b19e949e14b827bd6386e08de8e8ad8b8c8aa39154b653d26ecde5b8ae0"]]], ["TOC",["maxes","lin/L2239/words/L2239G1-max7W1",["e5709e7a8b82b166d06cb764944fb9fa7dd7346d3d01a47c91bccee4bb809488"]]], ["TOC",["matalg","lin/L2241/gap0/2L2241G1-Ar242aB0.g",["5ad522618a4f8b1f673d56c973f0639d0ddcf6835bc4c429d7cece70c685b699"]]], ["TOC",["matalg","lin/L2241/gap0/L2241G1-Ar242aB0.g",["e2609e9ffd38468d033378da53d7e19b65cd986a53639a149be6eca645885352"]]], ["TOC",["matint","lin/L2241/gap0/L2241G1-Zr241B0.g",["17a9a3f60e841d055f2d4557d3054cb650e979ffa2829fd8527e520fb328159e"]]], ["TOC",["out","lin/L2241/words/L2241G1-a2W1",["490c1c998c05424b5ec591f73f1636eb173aa78cc3b6cfc034ee48932b91a49f"]]], ["TOC",["maxes","lin/L2241/words/L2241G1-max1W1",["90032c543878921b5069065bba586a3c805f15ad825da5de28470539e0bc6f86"]]], ["TOC",["maxes","lin/L2241/words/L2241G1-max2W1",["1b9432236122ea1360e0733216e9a8093bf2b775f7b18d83adb678e58fa2a875"]]], ["TOC",["maxes","lin/L2241/words/L2241G1-max3W1",["2e16f50655768d7a9562d9667d026d7e90cbc45173319c8d1fa5b417542c6e16"]]], ["TOC",["maxes","lin/L2241/words/L2241G1-max4W1",["daae613765e4e89d2a5f11caffbe994127fa57ea9b9bc61b87e2edc31189ceed"]]], ["TOC",["maxes","lin/L2241/words/L2241G1-max5W1",["40becb70a81581f6c4d3d24af5bfe647eb424bd4ba138f512f74c175b2d8014f"]]], ["TOC",["maxes","lin/L2241/words/L2241G1-max6W1",["efdb978ceb82f4ae45b242c8c6cfc8fcd9ee6e7613922813c03fb755844f6d96"]]], ["TOC",["maxes","lin/L2241/words/L2241G1-max7W1",["fa67ff7a1ea95e13d37309b3a43ede38f117ad4d57327162475c4c389efa67c7"]]], ["TOC",["check","lin/L225/words/L225G1-check1",["9d265a7976cb05e245a0ab8b9886cc6dcddc5d1058f00ac252a74adfd3bfb3b7"]]], ["TOC",["matalg","lin/L227/gap0/L227G1-Ar13aB0.g",["999b4a0dbdddff5c815720a8dd327c3adf7c6dbef4854fc579f1302fe66a967a"]]], ["TOC",["matalg","lin/L227/gap0/L227G1-Ar13bB0.g",["8b46da01dca8c70299353969db8afa561e3d310c62e04024864f14838b95cc20"]]], ["TOC",["matalg","lin/L227/gap0/L227G1-Ar28aB0.g",["9a563fe80d9879815b39b4fdd55ab17bc77e7fcf2167c24f200434e2b7fe4e10"]]], ["TOC",["matalg","lin/L227/gap0/L227G1-Ar28bB0.g",["4961d51c52173da4148451751b0388b177457abd9d8ee7aa60d08ffdd5b086b6"]]], ["TOC",["matalg","lin/L227/gap0/L227G1-Ar28cB0.g",["e59ebaf85c5c5ee3d8fe3ca480fab5bc20affe41741c3587b689a434c77044e9"]]], ["TOC",["matalg","lin/L227/gap0/L227G1-Ar28dB0.g",["68fe6ce19a1abb4c3b005fc02b7b06ace75b58c4eac33930edfd0048a5e47fb9"]]], ["TOC",["matalg","lin/L227/gap0/L227G1-Ar28eB0.g",["818732108d2dd1a491f4efb2ba7c9431db4729826f542377d0ff8060d84b7a9c"]]], ["TOC",["matalg","lin/L227/gap0/L227G1-Ar28fB0.g",["1deefff5f64a9fb27e5d3102618148e0b20c0a9f6bf0642b402fff33a9554ce5"]]], ["TOC",["matint","lin/L227/gap0/L227G1-Zr26gB0.g",["65fc63f4acb38735a601796079cc5d59c7a29a2a291d443a17d063b64da1e258"]]], ["TOC",["matint","lin/L227/gap0/L227G1-Zr27B0.g",["5e20497f083f99899fe950fffba01698c47f2485c507778e557893ee5cd4e081"]]], ["TOC",["matint","lin/L227/gap0/L227G1-Zr78aB0.g",["8172cb7f65602d1bd7926754a02fe68d99176c7e94524ea766ad65bcb5f57324"]]], ["TOC",["matff","lin/L227/mtx/2L227G1-f27r2aB0.m",["bb7de9ac080a75daebb822232425d42f010b60edaeb8f2cdbf7e0af9204511c0","988af0df12f55450eea0e954d9cef5166d1ab72de99276b2d1670e25eb2bda5f"]]], ["TOC",["matff","lin/L227/mtx/2L227G1-f27r2bB0.m",["bb7de9ac080a75daebb822232425d42f010b60edaeb8f2cdbf7e0af9204511c0","770161040d03d3baa595f2ba9069467242c949427f64977e6ba3defcfcbbdeaf"]]], ["TOC",["matff","lin/L227/mtx/2L227G1-f27r2cB0.m",["bb7de9ac080a75daebb822232425d42f010b60edaeb8f2cdbf7e0af9204511c0","85cfa701f932ac79202da9e73d3ff1853fc84c10df55ece68f111c72367141c7"]]], ["TOC",["matff","lin/L227/mtx/L227G1-f13r27B0.m",["341f01a065ff3023605541071290270ce38409780e025076c1250ab036c9b0a3","ac8876cb9ebb2c0ad35d7a673c59a4107a3537f0eecb0960b887b1482f1127c"]]], ["TOC",["matff","lin/L227/mtx/L227G1-f27r3aB0.m",["1450b4e98c779b95e62c2bf62183e5712531f35b4b3325ec82b87aadc02f99b9","b094bfb904ce1979ff8228bd9aef35772224dbde6c86aca1253c0a93691675ae"]]], ["TOC",["matff","lin/L227/mtx/L227G1-f3r27B0.m",["ce1f819c6e39b87f3859b18f2136c504a8b2aa7709b4cc0fdfe82a01238722cf","b0a9647f7ac66e9eb961587caf4899626f71e5500b0970c45620c5e29d95246d"]]], ["TOC",["matff","lin/L227/mtx/L227G1-f4r13aB0.m",["a43be70e03d8523705341343cd75df41e99d9798302513203e8869c88a01947a","3016d35754f0b18cc203849c420e17cdbdc1d9620bc4268270bc9fa376c63cc6"]]], ["TOC",["matff","lin/L227/mtx/L227G1-f4r13bB0.m",["ace0d42b566f0bf6fb7d17f75f3fab2ee93c23c0825f4f0eb2b12ef28df75c67","4f818245dc7bc5bfbe95de150209dfbac63fbaca143bd2f67171f85ac7a406af"]]], ["TOC",["matff","lin/L227/mtx/L227G1-f7r26B0.m",["3d68ce08cf8291113af9bfba2168239681193237c889130e6749f201f67e1bd2","5458e45b1a0744e7d542a9fa15cd27bf67844866732f7ef6581f27d93b58e093"]]], ["TOC",["perm","lin/L227/mtx/L227G1-p28B0.m",["8dc3ebd8b230c5e5c2bcef51894d93a343b37edc16f8b5ae1bc05711917c1ba8","53879d27df1271207b4d4b89bbe868ff3cbcf1b268af3cc70dbe8de5b085cff5"]]], ["TOC",["check","lin/L227/words/L227G1-check1",["445f23e6065783ccf7753d7bc778ea650df76e3cca67c26a36da3dac25c95441"]]], ["TOC",["cyclic","lin/L227/words/L227G1-cycW1",["312eafb17fbc830a5a83183bc707dd60e2783b9efa373ac77c84b6aef48f5fdd"]]], ["TOC",["cyc2ccl","lin/L227/words/L227G1cycW1-cclsW1",["be2fa27e7aae8f59973d96952830dd2b60d56da7efc679854e5af3c963610ef3"]]], ["TOC",["matalg","lin/L229/gap0/L229G1-Ar30aB0.g",["3136d9914c6674e9956077e39708b580b2ce9419024f521d7d00859a07c6786"]]], ["TOC",["matalg","lin/L229/gap0/L229G1-Ar30bB0.g",["d099a2803431654071cfa0686d832debafba203ce8fd38a7dce7446eddc64b50"]]], ["TOC",["matalg","lin/L229/gap0/L229G1-Ar30cB0.g",["426873e5e27611b695429b46df6bf213674c764f05ef3bfadbb26519b710db51"]]], ["TOC",["matalg","lin/L229/gap0/L229G1-Ar30dB0.g",["3a38b6110d68585d97d9bf0cd4a3603a5187f06d5e6f5b6f228d78caeab1dc24"]]], ["TOC",["matalg","lin/L229/gap0/L229G1-Ar30eB0.g",["d8829dc6d75657402b512e358fa6e8b058aa39afae7e43ecec5626cd9a257420"]]], ["TOC",["matalg","lin/L229/gap0/L229G1-Ar30fB0.g",["624b5b661360f88fc41b535de0d6a1d4a3e9e2e74b4e80fffa8e327a926ca811"]]], ["TOC",["matint","lin/L229/gap0/L229G1-Zr112B0.g",["6869294d13bcfa3d623d28326546fb37ac451b5b83f0a1c227a7313a120cef12"]]], ["TOC",["matint","lin/L229/gap0/L229G1-Zr28aB0.g",["4fd5e1fcd4c1d9d4fe144d9a360987b5c6f00ebc3d9443c535125f0ffd30c605"]]], ["TOC",["matint","lin/L229/gap0/L229G1-Zr29B0.g",["64eefac89e4d821b2a197519b3bb29df06476411f7de9a55198b3db92aa8b71d"]]], ["TOC",["matint","lin/L229/gap0/L229G1-Zr30gB0.g",["7c5d7f0ed605d03bff891f77047a80ceebfb8edfa29ed3faf50a3d926439c887"]]], ["TOC",["matint","lin/L229/gap0/L229G1-Zr56B0.g",["8bcf27759fb42aebb61cdc1cb724ab1d1a42f1cb1d220528f40b9452e82ca3b4"]]], ["TOC",["matff","lin/L229/mtx/2L229G1-f29r2B0.m",["aeae4c60fe165efbde48c610c3eaf0233059a17ce343d9b4cd96cbd9e3bf5791","a66b2051c91c9e41a386c821d858fc92180a4edc6aaa18314441f25eb8bd5e12"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r11B0.m",["4df28ea2bdfe41f800a1bb05246885d5f60962db40c26c55db74fb004c877813","dc8c2569b2989134407bd2b94d20181ab2fb93c97584b36dbf34ab8b343783ce"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r13B0.m",["651faeea775090528354e02d0dbb2fb9060bdabd64f820b58a43940a25872634","372428be9c065247aa6c9050ab8d15b069f84c0bba2015eabf3c0b72223a9a18"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r15B0.m",["25af84a79d3ac5d483f9796144386380a9d19d504cf02a6faab7d849031c3572","dd95f58d00b9b71f74796323ecc1b450dec680d503bb52de6c574a691b9d3a27"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r17B0.m",["feb139103b678ad45d5ee015792d2c8a36a611c99ff76e0a3a12b8f9684a66ca","15cc28406ca38a10fe85f3f7602f11b99bcf93ab59b57bdca88f492e678f0fb0"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r19B0.m",["dbdc2f1435ef030bbb5c16310e93c481b10612db3300b47a0b30ac6b758b9b97","eaad747220a8ea7e4720ff488a29d38eda83cc09f5458b849d4d45ddc4db71b"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r21B0.m",["ac1e11545249ecd48cc6ee8a0e2f09c5b781784ba27d2b448ac47a918dc75078","37b2f8dbf06b06edba28853b0f33a571444b602b1ec0fba566788dff6af7e0d3"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r23B0.m",["c490a308af0469806bd5657a0a250b7163671b50e5072c755e5ef9aa786c6e3","659048e98544de21bd596d84609d80bad7048b2a20bd36e2c6c73de2741019f"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r25B0.m",["a9b2013aadfdb309b857aa5993a95a990df670e2495380333f19f5f742e4ba81","c435a65f6ebb861a425b07042fd4ccb6c87e702cac7f756631b07fb815a7e50d"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r27B0.m",["ade62055a9ff1a2850bdc3d1dc397ff30c98c4ce273d73b4b805015fdb329fe2","6e010e01ffefef824d4a5276b867e7faf95e7911683f2261fdb9da696437ce88"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r29B0.m",["429caf189f752cdb65a9bf55f2fd95ef032bac676b796070db56c96ebed3886e","fc44f745df0727b817e9739b274520ad78805fef0a3127e3b607ce9c0007714a"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r3B0.m",["9aad1a601d46d83d65c06faed2e50aa9387f611754049a2add50a7b96d16e7fe","cad48cfe45814b884c3b3b1b0a39ddb9829b7a35b159cca019b4aa6d74f026fe"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r5B0.m",["989619df4b846bd5559dbc66f9eb5be85598d0edf6ccde8b498599fd77b0655e","1ce7df22ac2f9cfb910f5f07e0a5a028d27ab1fc12736fe838687d14f7fee84f"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r7B0.m",["c38e46f0813d651f7da8ec6ef6052491e62e70393c3366bc70fda17c88e1c448","41f57e2704a9ef9bed2423695491ffaac0e4c9149ef071851257cae9430ea54b"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f29r9B0.m",["ecf92a89428a14dfc9c4896059f15212f5ea7ad186e9adaff9daf53321c8ae19","ecf0621e7412bcc7ae6661908aade2d7c6520d00e84fa34fdcb4339929f6cad5"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f3r28aB0.m",["47795d434aa4c4518b5c66214c654936ef5399edc026c06c0e382fb90c70ad79","2c4611f67188439e3943f7ffe9f75257af1b0fef8bfaa01934db1488339562e6"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f4r14aB0.m",["7e502d813446cc79d0d995f639da78b372b1f2bfb4ed33a16b6e5fcaf59a61e9","3f1c89402839118ff1878a298c843f2b07d04a43260b021399361bbcba75ae8c"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f4r14bB0.m",["edff8efa60c85c3783232007ee898bb579e7f50b58f731f347925e567af5c1aa","57888ad6749fd0f60e33827a26f37afc6edc281f2e5eab776d82810eb04962d3"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f5r28bB0.m",["fe040b7790408bda94d1f19b57f0cffe7389e5cb54358af6735dced5d4fbcbf2","13d4e7bfdd4b40d8f38a8128eb42ac7770f3d4de030f81cb9d17ef4a0c7e2c6d"]]], ["TOC",["matff","lin/L229/mtx/L229G1-f7r29B0.m",["f0c2290e391380e5304c6a06f75fdc9fe8bcdaa4799d38be8ac8a2eba5eb965c","dcd03c0f2e538cf392890c7deb02764dfac8207854439eb4864a05ff37649a65"]]], ["TOC",["perm","lin/L229/mtx/L229G1-p30B0.m",["66f461568c2858db1034ce4e6bb2db5a2597c5736c6a5e3577e9394475c423da","f0bde093dd88da799f6095d5d65c5c2b7c8ef0dcd988a1438e6bab006b6c6bb8"]]], ["TOC",["check","lin/L229/words/L229G1-check1",["436feb9efdfe480c6dd851332562f7221972341eb90e20f29456ee706eb7cc33"]]], ["TOC",["cyclic","lin/L229/words/L229G1-cycW1",["c186c89dacd27d0282d97085e49a039a7d953d6dc78b0e6bf263ca0f99c5a19b"]]], ["TOC",["cyc2ccl","lin/L229/words/L229G1cycW1-cclsW1",["a77ed9b4c719c274f8fcffea7474c6608cf6f5e9c362358d42bf58d8efcc73a5"]]], ["TOC",["matalg","lin/L231/gap0/2L231G1-Ar32aB0.g",["6937e059fe0960b2191ec96d020ec7dc801a17f9a03cd53edced6e54e3d28e95"]]], ["TOC",["matalg","lin/L231/gap0/L231G1-Ar32aB0.g",["58835d8f95f2b0b3d7046606a92013bcb62e72b9c6ac1eaebf152b8bddd4feb5"]]], ["TOC",["matalg","lin/L231/gap0/L231G1-Ar32bB0.g",["93b789aec3c0a41672db021394327a124951a86cf93c8e8830c542c0ab76dd90"]]], ["TOC",["matalg","lin/L231/gap0/L231G1-Ar32cB0.g",["be5ef47d0355b7d153eb7b01a25dba520fe73fde38eeba41640556600ba67615"]]], ["TOC",["matalg","lin/L231/gap0/L231G1-Ar32dB0.g",["925866bdc85b1d8577a811c035be93ce98636b8395b40b7c667c7d6c460b5f43"]]], ["TOC",["matalg","lin/L231/gap0/L231G1-Ar32eB0.g",["602a435a55f54da9b16fce14ecd0f942d8075da6544427fbe4101467506a04f4"]]], ["TOC",["matalg","lin/L231/gap0/L231G1-Ar32fB0.g",["c465ccc9c0cba6c6d2e98eeb807067eed474f6415e9aaebe28a8f31bbd5e0574"]]], ["TOC",["matalg","lin/L231/gap0/L231G1-Ar32gB0.g",["3c0db2fc284df6b232f8cd390946eb837a990fd28581851c0eab5fc2d9d086c6"]]], ["TOC",["matint","lin/L231/gap0/L231G1-Zr120B0.g",["f2b1f776b0d09c629f374cbaff9d8e5602c36a4e331f570f6781ba0a81ead09d"]]], ["TOC",["matint","lin/L231/gap0/L231G1-Zr30aB0.g",["19d661b393448978df47a8ca1d8f896ea8c3b147302c51bb35e6d8b8f16d036c"]]], ["TOC",["matint","lin/L231/gap0/L231G1-Zr30hB0.g",["8bb722918ede77f9a71c40237490a871c2dd35727c72352bd013803ea5c8a698"]]], ["TOC",["matint","lin/L231/gap0/L231G1-Zr31B0.g",["4df1a02cdf7ed0e5bb740e7880c86591634667fe90bd2fff5c710e58ee0ae26b"]]], ["TOC",["matint","lin/L231/gap0/L231G1-Zr32aB0.g",["7f5bd0395ecc1a201798003c95f61cbd107eb16b408fc6add82f4ac55bf667e8"]]], ["TOC",["matint","lin/L231/gap0/L231G1-Zr60B0.g",["41c3df505d9fe7fddbbad5aeec763843f17a0a3d451e440e1dc9c73d9f4c7561"]]], ["TOC",["matff","lin/L231/mtx/2L231G1-f31r2B0.m",["dab7cfe302182db002742c5b929019274316b2b3424560348c55748c10744ac0","73fa9d459ad76b585d13ebd32c4629013d518345b7110a356ab2c6503a4d4a0d"]]], ["TOC",["matff","lin/L231/mtx/2L231G1-f5r16aB0.m",["5d4187d8b83a3a89bb7d9db6a4b92e2d7df45983b16a828e842f49c48f0a32e7","262ded585079ad0818f7ec51390415fafd5c6237d4c2de1b449938dce581cd90"]]], ["TOC",["matff","lin/L231/mtx/L231G1-f16r32dB0.m",["c5aa400b4efe6f9e8935009b9151e5d83035092fda886dfe0ab27f62262f9e23","bd7bf3c222db28d756af8a52ee3c715636deeff30e82ad401d18290443ed1f4"]]], ["TOC",["matff","lin/L231/mtx/L231G1-f16r32eB0.m",["f511a32f972d4bb2e5042e9a39b31a1e3cf937b8987672e73caa2523ecea7077","581ca57cf5fd1a5a0150a84868df0317ced43138e18b13cc177c43c6253971bd"]]], ["TOC",["matff","lin/L231/mtx/L231G1-f16r32fB0.m",["b5905612db067dde5ec651271e97c760fbb88d807f915d108a7d816a86549f36","562699aabdb16df497b0a28016d368ef4e74d37857df5ca64d9aaecf46e1264"]]], ["TOC",["matff","lin/L231/mtx/L231G1-f16r32gB0.m",["e9226e06ead3e2a68cf592521154b534715dfdef3fa1be4d363b7db9fd942cca","4c60166f96bd276de0754ca5d28483235cf6d0d3d7f7530917303a707c8affc7"]]], ["TOC",["matff","lin/L231/mtx/L231G1-f2r15aB0.m",["3c41dc5a5a946c3c541c9879486e764cb2ac531ef84e763be15a7f37772a1f6a","45108c3450263c093c2eb657254bcc3da515a5e73d6eb576195ea5902e66f252"]]], ["TOC",["matff","lin/L231/mtx/L231G1-f2r15bB0.m",["633d53e78f8b8b0ab728c757c8289adc6c305da541dbb16345ba9ca09659b4c5","87fa0413643356cf5a33335da46df0c56fcb76e50bbacb458b03dcc26a55cde2"]]], ["TOC",["matff","lin/L231/mtx/L231G1-f2r32B0.m",["940c4e3411f5840d136a41a9d737c0474072b69f71745fa2022c6da05c51401a","f796ca5813d2af2c829f7f3a4b0c10d5f4692aa83c8e4e4c28f60bc71dc18f30"]]], ["TOC",["matff","lin/L231/mtx/L231G1-f31r31B0.m",["907e648d2ea11e16af0c0e91ae8f3bbfca2f350e25bc2bcf71bc2fdc6239d7e2","1ddb7f1d4f884cfd1b43c6f2b32a3da38a5ae6fc6c752e4fe9a20a621c9b7dba"]]], ["TOC",["matff","lin/L231/mtx/L231G1-f31r3B0.m",["fe6b9d22396e939a2a808c72ce231663ee9bd03c29f7845c23b8cff72e3df7cb","90b11394e34e949a47fb379832fecb52c7cb909cb58ba08016e67d650c097ea6"]]], ["TOC",["matff","lin/L231/mtx/L231G1-f3r31B0.m",["1c47f45f97580315bfcc1a4bcd22c03fcaaf09168412f3e89d17e9259010fd0e","966149609dc08a897bf55b69f4d57a5b8511ad663e4e0c401482eeb915ec19c8"]]], ["TOC",["matff","lin/L231/mtx/L231G1-f4r32bB0.m",["4e4c1b3d12208279b7cab9853920269eac19476616ac38a38cc9ea474641f12f","1b8e12090143b5bf8c55efb10b267477949a1ee60973adad908303d4097d9a3b"]]], ["TOC",["matff","lin/L231/mtx/L231G1-f4r32cB0.m",["89b76585e28b659fac6f253a25bf1a76f85bc7fc6e94adb31bffd705080e377c","6b4be0530ed0acd829ad185a99a0dc0a7236a8c80c3f862d18e0a5f48f247937"]]], ["TOC",["matff","lin/L231/mtx/L231G1-f5r31B0.m",["62f67b64b712d3cd10968acbc1fdf99f4064223e01173a2436036d8cf57b03f9","b9f43a2013a770bcd404f1f146c602d6b54d390e01052dd1fd1fa5356f9edbf0"]]], ["TOC",["perm","lin/L231/mtx/L231G1-p32B0.m",["6340b6ff6b5fa18ade1ea08d32e1d3d7341c13cb134be39ca5a682e85f091da7","24f9b2c368cbd81a64c1e7fab85953708f144571649a749fbe9898175d3855f4"]]], ["TOC",["matff","lin/L231/mtx/L231d2G1-f2r30B0.m",["c3b0903da51b5c47a35b76dc4b8f0e782d14f19b0c13035225e7c95cfaf874a6","952899bc1bf4f570566a61dc604267223fd77a37da8c52b2832771a9989bbe3f"]]], ["TOC",["check","lin/L231/words/L231G1-check1",["1fe33a249e274140942ba41d89cd801443246b519b66a8eb550d952ff29bdbfe"]]], ["TOC",["cyclic","lin/L231/words/L231G1-cycW1",["bd296ceb8890615257e37a6b2d5db32aeb5ab666b782ae65cb055eb1c833bfc8"]]], ["TOC",["cyc2ccl","lin/L231/words/L231G1cycW1-cclsW1",["3ea002755d8dc4f945741736b9f0b061415e04ce4fb41c98df319d9d18ff9b6"]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33aB0.g",["fdb356260d6651eae14bbfa430da8ef78b3d19cb378fbba4fe41dd4b2e1b0a73"]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33bB0.g",["4f80a9b1f8670df5e72cefc7c524603c63a0c21b10738d3e14473eb037c1eebf"]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33cB0.g",["aff911ca908f6ccad28644c60712caf390b0e965ead0b9b02d8e1f498502235b"]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33dB0.g",["1c8e94062f6c2ee010bc4d60cf9c4e8889ef3c2e28a67a3751590b86f858511c"]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33eB0.g",["a083464447b4d43c61b5cdf86659c208a7374d0de5c9478544ab71c6225f3fb7"]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33fB0.g",["3bd9a39c0d5f5b517d2c7b970da1623ea45695226081cf8e4ad67a9d3db6c440"]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33gB0.g",["ed69281c0e2cce135795d4067fe2918a08d948ea0d71ac31338923cc08cf06e9"]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33hB0.g",["fa8e9a04e46ac3156d363d28657e3bc620f720134af8082d17384ca8afa470e8"]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33iB0.g",["7dcc1dc096aaab2a7a9af360dc28614e26f3c3156052c99218758bc344d784f5"]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33jB0.g",["11408393c2782a2bdd3d7f3e519b3d015b5d4c63d4bb18a575fae304f86a8d5f"]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33kB0.g",["75ba89b6818cfda4c1a946413d65e9b778f3db51787350c57698f948262822e5"]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33lB0.g",["bef3aedb41dd99743837684eb18c0e23899e77ed3e692b573efee0653bf9ef06"]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33mB0.g",["8e97d8a38e4f784946f625183dce870b601d27e53b9e303cf075e883bdce09ed"]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33nB0.g",["336f5ad0efde5daa8e50b811b7cd71397ffb811646277b6fd78aa4a5c5016c1e"]]], ["TOC",["matalg","lin/L232/gap0/L232G1-Ar33oB0.g",["a433363c0844e707219ed062260da8b77bdaf981056ae0b4246e7fa090c0318b"]]], ["TOC",["matint","lin/L232/gap0/L232G1-Zr155B0.g",["5a0d4faeb8cbf9d1dc38d6324e4cc7849892c798e6a1ff8345c3b13e07340dbf"]]], ["TOC",["matint","lin/L232/gap0/L232G1-Zr310B0.g",["2e1bfe4d1886f1a23046ab0159cf93dfc90491b73307e24e9837bafdec65bda4"]]], ["TOC",["matint","lin/L232/gap0/L232G1-Zr31aB0.g",["1b11935598070b94073653e161c7487be945fa46f2d895c384bd12af197799b5"]]], ["TOC",["matint","lin/L232/gap0/L232G1-Zr32B0.g",["33cc31f0130c12865a2251aff2a011b740c29b80e97a4c7382d53b634711630a"]]], ["TOC",["matff","lin/L232/mtx/L232G1-f11r31bB0.m",["f92f7df7a381e8d93e5d0f8bc959f865a7666ba249e6b9c5e0c707ff789e0540","5d92a8abcbaadd277bb6ae56f24ae1ed8ad1dff16dbc15c6685d57fa113b5bf"]]], ["TOC",["matff","lin/L232/mtx/L232G1-f31r32B0.m",["d9ca24e71da9a2b9a7c6692975aee5e46639d603f22fc2f8dde1e09559d3d28b","42a48a7dc7383e0b550ba1bca708e1005e87a53f4aea0fa807c7043ae6258947"]]], ["TOC",["matff","lin/L232/mtx/L232G1-f32r2aB0.m",["9d14ccdb54d4e0075cbe6e76efec2e6fa45938701f9edee29160999f9fe30a95","df260d1161774f26c8a7b1a2419f7c126505660a514e3ebc52fdd9abe680e4b8"]]], ["TOC",["matff","lin/L232/mtx/L232G1-f3r31aB0.m",["1f2b63f8a4fac0dcd8ed8f10d5ec87695a56190ec6058ad00fa29726703403ef","3865df5d18920f40dd0078cc0542ea7df2be538ba8be283f875641ecb72a8f90"]]], ["TOC",["perm","lin/L232/mtx/L232G1-p33B0.m",["12fe9464b337cd9e7dce3f0eec11f347d1b07714b82ed56ba6013eb0e78f2b18","290c44a9e9fa0efb8de1958068c78a1953c5b3a6313f787da8bd376e87afdf2e"]]], ["TOC",["perm","lin/L232/mtx/L232G1-p496B0.m",["657f8beb3dc99de5525e0d9cf2a0d070788f5108f9248a8d21dc4cfb4b05034e","e8e5dc850aee65c7a01d6cea241da87dd761160cd29d62fd3787d70d5c77680a"]]], ["TOC",["perm","lin/L232/mtx/L232G1-p528B0.m",["343bd0a4aa468fb0b90464854e700eaed80220ee0587bde9baa77f593092f30","deb6f700dc6dcda123ada64bd022f7a7bc1fa5c4fa8a43f6281060db2e1a4007"]]], ["TOC",["matff","lin/L232/mtx/L232d5G1-f2r10B0.m",["f5907faf33077dc01e21be3eca85b5ffc84bd14db46d7030c0b181ff0746a860","3475197fadad16f64da1ef3731b859000c6599044d5dfa2efaea6ebd0cc5b77c"]]], ["TOC",["matff","lin/L232/mtx/L232d5G1-f2r20aB0.m",["366c18a3f21c81f77e8a231b60a73b2c9f609e56319b7d935b3b1f50e642c827","4277701c9a9209667880916afb71aae02741b33e3f2b1475b1089fbf0aad95da"]]], ["TOC",["matff","lin/L232/mtx/L232d5G1-f2r20bB0.m",["bb31d914a19904f8757db4dc698bec6c4a34eec1bff954092b2c82359fe70849","1f8cb4a6aa340acf704048d3f5688cde79219c7825f0deb5344056bb98902466"]]], ["TOC",["matff","lin/L232/mtx/L232d5G1-f2r32B0.m",["1bb7eba1266281609542311e967932fcb6e57a3102523bef3c39c28a4215d407","38d07f222b4ac9189773c2727acf49c8618c946ef7a3a6224741e436516d5ef7"]]], ["TOC",["matff","lin/L232/mtx/L232d5G1-f2r40aB0.m",["8a0cc8bda6c6ae26ca0dbaaa2960884980219011cb5b2395e0fe1d4a53ee078f","96bd295eae4f40707effde2e842726f70f985fbc3915732db3727e649a77683b"]]], ["TOC",["matff","lin/L232/mtx/L232d5G1-f2r40bB0.m",["44ef4e6c6bfdb7f1bfde20eee562bffe4fa042e605f8693fe5a96775763fd928","c7dd1259276ab32f44b1dadc16d83389debe3276683e2d8d02d4929361012dcb"]]], ["TOC",["matff","lin/L232/mtx/L232d5G1-f2r80B0.m",["1c4967bb23e3bd9adf302efaa86fd7245b665ae9c72725cd94ee79027b9b24a4","7317b12d7338f7c8c399608096a7a36d8caf9cc0c3530819aa5869422c46f628"]]], ["TOC",["perm","lin/L232/mtx/L232d5G1-p33B0.m",["c53f312b84823f4701db3f97639bc6be0f810462ee35b3f9050cb1fc395d5a0f","9663bf60f7c30d1ef3b1366fd6c64e5e3af1f317c286ccf3982546362819c60e"]]], ["TOC",["perm","lin/L232/mtx/L232d5G1-p496B0.m",["864f6269f3905f1edab2a06092274b93bbe0945afa0f01cc48ea3bd90de04e90","4e2f5dd3eb3392e082338c4e6c36458dfb435aecbbbb441d947657845bcf62df"]]], ["TOC",["perm","lin/L232/mtx/L232d5G1-p528B0.m",["7eb2a8ff4db9e3bdd409cd75e2a86ad7e6772b78b169fe97635f3c403a2749c1","4172428b227e5145f4e2914ac021e864b447124e77b4f75f649074f6b6d9e703"]]], ["TOC",["pres","lin/L232/words/L232G1-P1",["c509ef6ca77e10ebef87cf42b417444787d1a359f8894ca85d71fb150eac202a"]]], ["TOC",["out","lin/L232/words/L232G1-a5W1",["f62fbde243b325e1d597c98eac3b2def9bbf45c4b96008e9c7983bad94978458"]]], ["TOC",["check","lin/L232/words/L232G1-check1",["1fe33a249e274140942ba41d89cd801443246b519b66a8eb550d952ff29bdbfe"]]], ["TOC",["cyclic","lin/L232/words/L232G1-cycW1",["6295a6ebcc902c60ee3f3bb3f537fa0268c2a02fa80ebb09368a79ffe27f67d5"]]], ["TOC",["maxes","lin/L232/words/L232G1-max1W1",["b9da469f23fea1cf6b65d9c5e7e145cdc3c2d28a8eda0eca5a1f280e7d35640"]]], ["TOC",["maxes","lin/L232/words/L232G1-max1W2",["9ed331f71c34aeaf6045caff8c691f5d3cc5d85604499082258baeb9214913b3"]]], ["TOC",["maxes","lin/L232/words/L232G1-max2W1",["9eb04359192617d94b5afe37edc239d2db80c41c821ba2d89e6831b035f8c5c1"]]], ["TOC",["maxes","lin/L232/words/L232G1-max3W1",["1db4e7ae4427f289837639d367c7c16e8823d26bfec8d0b41dbb52a06e5e900f"]]], ["TOC",["cyc2ccl","lin/L232/words/L232G1cycW1-cclsW1",["ad2cd10b8071c246b8e5ab491bc2babeee05a7b04381ba2c263e4209bba7d23"]]], ["TOC",["pres","lin/L232/words/L232d5G1-P1",["93858b021b299b6f9914bb10ad84424bcdcc26e99cc2a279d11bbe6be1499764"]]], ["TOC",["cyclic","lin/L232/words/L232d5G1-cycW1",["b7d2ae719b30b425bee01d97a07527f59599daa2fd4fb2923979b45c4f2c24db"]]], ["TOC",["maxes","lin/L232/words/L232d5G1-max1W1",["8be9bfc4fb6399d89f9dcbfcb67b1172b3665b20c6870e6c604eeecb1ff771b2"]]], ["TOC",["maxes","lin/L232/words/L232d5G1-max2W1",["8bdc7c01ef7d88bb0628a3ae12ade25ba95ffd2f5baa2cb201673e0a5b3361ff"]]], ["TOC",["maxes","lin/L232/words/L232d5G1-max2W2",["e9985eda7c424999458cf4fd23a5c37aacfc7376c28acfd89d2bb1658cb82a03"]]], ["TOC",["maxes","lin/L232/words/L232d5G1-max3W1",["65688f5b821e98e5063fff78030fa091fd788ca20c976ada62d1d75b71ff7f3e"]]], ["TOC",["maxes","lin/L232/words/L232d5G1-max3W2",["ab4bdc094a730ffdfe7ebd0fd95e52be5fea9e1b4e89cc88971111cf555d3ab"]]], ["TOC",["maxes","lin/L232/words/L232d5G1-max4W1",["651eb79fbae1418665809c015f383d4ba00abbb6e734c8dfbe823863cd63abd0"]]], ["TOC",["maxes","lin/L232/words/L232d5G1-max4W2",["a0d71563b70f3b6c239ac7be3c77b20d30d965ca3bb7f5a48d9c7c384b342630"]]], ["TOC",["cyc2ccl","lin/L232/words/L232d5G1cycW1-cclsW1",["7712c84d9f82a6ad5fe894fb0810c777ce1cb0964dc2d01070844a9a7840aebb"]]], ["TOC",["matalg","lin/L237/gap0/2L237G1-Ar38aB0.g",["39982d81e0248598ef52cfbb49c0af82cdca969520e846db09d43b5e26a98135"]]], ["TOC",["matalg","lin/L237/gap0/L237G1-Ar38aB0.g",["351568c861d94b35b26d89162ef9acc7d73f9ed37e507dca175bb9d2a71c70b0"]]], ["TOC",["matint","lin/L237/gap0/L237G1-Zr37B0.g",["2d348d577321b3e2f4a6fe595c69827b443239713f55348f26546a2ace7ef51"]]], ["TOC",["out","lin/L237/words/L237G1-a2W1",["1d6a5319aa680f1fbc3fdaef1f3c6322c7799195cd12d5cff32903d244586e4a"]]], ["TOC",["maxes","lin/L237/words/L237G1-max1W1",["7e6614b89e7babaaa965073e7d9bc08c77b4125e302fcddbed2c54cbafd17bb8"]]], ["TOC",["maxes","lin/L237/words/L237G1-max2W1",["2ad83c29e4955465e5fc3797604a73777c279abfd7c55a30f234ec9f2549e32f"]]], ["TOC",["maxes","lin/L237/words/L237G1-max3W1",["caf28927a0797487ef6153cd385050be195153363777c27f5d8143cb18cde85d"]]], ["TOC",["maxes","lin/L237/words/L237G1-max4W1",["2e22044e261bcc569b6817b3e84c46b3478da0973b4a20706286dd9ffdf56ce1"]]], ["TOC",["matalg","lin/L241/gap0/2L241G1-Ar42aB0.g",["3738835ade2d73f2eda2d5c7449404ca28ab456b35c8dc03c731e229b4fb8810"]]], ["TOC",["matalg","lin/L241/gap0/L241G1-Ar42aB0.g",["4ad4c08e5f3bda8a242af7b856b37860c5b80cb0db930dbe97c990bbb9ba305c"]]], ["TOC",["matint","lin/L241/gap0/L241G1-Zr41B0.g",["12a48c98e6047f0b308b48f05c7d6c1a276f3f02896fad7eba5340572cc259a1"]]], ["TOC",["out","lin/L241/words/L241G1-a2W1",["ded8c5fa51407ef1dc76932e99b38337283cae17f635964e5e7a02bb9e377ea0"]]], ["TOC",["maxes","lin/L241/words/L241G1-max1W1",["c35bba80e271a25521d536686c5df4f546223f6a2a73f027f7f2dda0931a746a"]]], ["TOC",["maxes","lin/L241/words/L241G1-max2W1",["3a47bce5c3ab2d9f788ffaa39b76400ede7e98b34afb79dd03a8793dbd9b935d"]]], ["TOC",["maxes","lin/L241/words/L241G1-max3W1",["29221491a240d80cdf57bdd1e86e9ea2f50d705627c0e4e3e90a5eacc663ec6c"]]], ["TOC",["maxes","lin/L241/words/L241G1-max4W1",["29df1aa456eebcf5836b047acc8a149ed65f8781fd706c796941920e7501afa8"]]], ["TOC",["maxes","lin/L241/words/L241G1-max5W1",["1797d1241237a335b9421627953de34b80ce49056638e12ca786597d788ac077"]]], ["TOC",["maxes","lin/L241/words/L241G1-max6W1",["8310c0d65ddca68130837c11bea0a446da25be8373a07a78f2f1c2a387f0d444"]]], ["TOC",["maxes","lin/L241/words/L241G1-max7W1",["cf91d6e9a7fa1b7049a7f50957822e9a786c1c373c944f45153aa209e0f2a7fa"]]], ["TOC",["matalg","lin/L243/gap0/2L243G1-Ar44aB0.g",["ce280d01904305b62806631a9afe57ee74201a8ae8fa5636843bc98959913593"]]], ["TOC",["matalg","lin/L243/gap0/L243G1-Ar44aB0.g",["669567041619024b86477ca03d443b1db9b2ca252541b1447b3e860c0b119f1d"]]], ["TOC",["matint","lin/L243/gap0/L243G1-Zr43B0.g",["fddffe5adc6391cd5554a57ee3806dca6ebf3cba963581904f74deef2f1f113a"]]], ["TOC",["out","lin/L243/words/L243G1-a2W1",["de2b9626065ab64572657f6e8165907178ebc88e42d61b3c65d26058b2165a9b"]]], ["TOC",["maxes","lin/L243/words/L243G1-max1W1",["f1be24b977015beaa0c8684697fac784aa8d1df7e42e34612f83bcb2f468c5e0"]]], ["TOC",["maxes","lin/L243/words/L243G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L243/words/L243G1-max3W1",["1b9432236122ea1360e0733216e9a8093bf2b775f7b18d83adb678e58fa2a875"]]], ["TOC",["maxes","lin/L243/words/L243G1-max4W1",["c57f9da680fba71478c828108c4c08cee7d2ff58f0a66e4446be17562595899d"]]], ["TOC",["matalg","lin/L247/gap0/2L247G1-Ar48aB0.g",["9e97b29c4763f4011db1298dd60e4254f39fb2f8ed644a3fb564162ae7a9b2b7"]]], ["TOC",["matalg","lin/L247/gap0/L247G1-Ar48aB0.g",["97966c4e252f80995d19f8cc88a147be7407557c728177aace436172def69097"]]], ["TOC",["matint","lin/L247/gap0/L247G1-Zr47B0.g",["e8942d384936f74f13816783294776a9c93d98d93ecdb2ad0b0a7842fca6a65b"]]], ["TOC",["out","lin/L247/words/L247G1-a2W1",["67942b553318aea692c3f1fb7093c406d470ef3cd1866c83aebb0f204bf1b6ed"]]], ["TOC",["maxes","lin/L247/words/L247G1-max1W1",["c71cd7d1d9060a0e7dd6d96dd1297cb99e6b817a33020c6336f634e9f6268788"]]], ["TOC",["maxes","lin/L247/words/L247G1-max2W1",["e8ea1aad0c66c015b790b865194a04ed7346134adb238d28bfc02859385cccca"]]], ["TOC",["maxes","lin/L247/words/L247G1-max3W1",["5c8a6c5622a68fe41d3a140ae60af4e23c7316b8a02a350f7056392870e93635"]]], ["TOC",["maxes","lin/L247/words/L247G1-max4W1",["6530d7c823d292fcbe3e97e412c91ebd65080df182f43411c2b952f79b93f07d"]]], ["TOC",["maxes","lin/L247/words/L247G1-max5W1",["5ba734e9984ba10d39b5b03107933239293fe45435139b5948349dd5ddf0b345"]]], ["TOC",["matff","lin/L249/mtx/2L249G1-f49r2aB0.m",["98b6a54d744c02937ebe30d29838db5b541d5416b2648a484d66e46e8946cbe","44c031e12bb0ec78a06520bca7a7ebad7b49b4582d60ee5fe260fe2cc02a1f38"]]], ["TOC",["matff","lin/L249/mtx/2L249G1-f49r2bB0.m",["c92692b2a65d3dc60e888e03bb46b698859c2d4a76a0448e97ba3ecbb3867c8b","44c031e12bb0ec78a06520bca7a7ebad7b49b4582d60ee5fe260fe2cc02a1f38"]]], ["TOC",["matff","lin/L249/mtx/L249G1-f49r3aB0.m",["5347b4ffdb8e74e80bbc5105d5429a945d94b69b1796d8999d0a803f7e90ccb2","87db43c91f5b8a9b8b1b32b75219f62be1f0966c29615b7eb85da8203b5118b"]]], ["TOC",["matff","lin/L249/mtx/L249G1-f49r3bB0.m",["22e8fc23be0524863e1b22289ac847fd81b91db54808883ed20dceed290f3214","87db43c91f5b8a9b8b1b32b75219f62be1f0966c29615b7eb85da8203b5118b"]]], ["TOC",["matff","lin/L249/mtx/L249G1-f7r4B0.m",["b79f4c8a0dfcf336d01f844906816acf074b6378cec9b55994dd80bed22ff0e7","58d80075d36a4004a2d31165ea050a74fbfebd7873412f4797fbe95124bd14a5"]]], ["TOC",["perm","lin/L249/mtx/L249G1-p1176B0.m",["9aaec8e8dfa9d2450550b3bdcc1e857f45bbc9e26ad7f6b6d674f35cb42eb0cb","73f025b3ac5ae03d74f1fc61e2164329f387f6c858b03a291c88bab4a87fb4d4"]]], ["TOC",["perm","lin/L249/mtx/L249G1-p1225B0.m",["455977b638989a87f86ccaf0d172f6393bfa19c795285fc9e8cb067f9b7dce75","c874ec099e7d254d5769cf76cd8a00581e88092dcf7bc2f2b0ec2853be4e1b10"]]], ["TOC",["perm","lin/L249/mtx/L249G1-p175aB0.m",["83288262083c60503231a57b43366e6f34cf93ac365abb7394d5aad1db4ddc2b","bdec4482350efe6fc87e1579a30086503a11599a5e53121d7c567cca7fbaa6e7"]]], ["TOC",["perm","lin/L249/mtx/L249G1-p175bB0.m",["e5d0eabeb58f0af9418cbbdeb64724075988da300937b019d038a4d62508afb0","5479e5b7c5676bab2485aa345b1e5731902f21d47e890da24332591eaf59ba68"]]], ["TOC",["perm","lin/L249/mtx/L249G1-p50B0.m",["30311b1a9bfb356ff9cffaee687bba559c30d2df9b91de4519d19702987bfbd3","6ddc5b01f013b2eb055ddb26ce99f6387c33f72785d6f7641f24bad5ab92b79"]]], ["TOC",["perm","lin/L249/mtx/L249G1-p980aB0.m",["4946e96e32fac5488b6a032cd1992d9e187bc367b5db7ed1b907273c7a4492e3","bd890f8b37c960c1963a43035970ab62ad230c97cf7daffa43f6f718ea1b98d2"]]], ["TOC",["perm","lin/L249/mtx/L249G1-p980bB0.m",["cbad1b2215f75c20f2c22ec5dd3574708d448e866ec39551d002e61834d3dfbc","6575acf77db3965cb256489c83afe3edd490112f8f10010671b6c6dc2e896c45"]]], ["TOC",["matalg","lin/L253/gap0/2L253G1-Ar54aB0.g",["1e4fc2a517b08478ba276b0b80617e16ad0dfb2eb710c83aaf7459d214112588"]]], ["TOC",["matalg","lin/L253/gap0/L253G1-Ar54aB0.g",["c0e0a9cf2bdfc2bf293cbb3da9f17c419b62ad8b52e5ac5a0d47778e0003a3bd"]]], ["TOC",["matint","lin/L253/gap0/L253G1-Zr53B0.g",["1b4b3c2ac9b5383c2814f377d320bc0d4c0e4994fbdc0eef435e18e5524ff059"]]], ["TOC",["out","lin/L253/words/L253G1-a2W1",["41b0584cb99b94e7551bc8a5a13fb566e0ab489df5dcd29e8d277615dda0e0dc"]]], ["TOC",["maxes","lin/L253/words/L253G1-max1W1",["10f8281c713de072822fc0911f5f2a997184c324dda93f134f98dca262aa51db"]]], ["TOC",["maxes","lin/L253/words/L253G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L253/words/L253G1-max3W1",["8ceccf9db6a62eb9e7481a85e8448ba9953caf049a09c30f4dafd76a76326e12"]]], ["TOC",["maxes","lin/L253/words/L253G1-max4W1",["daae613765e4e89d2a5f11caffbe994127fa57ea9b9bc61b87e2edc31189ceed"]]], ["TOC",["matalg","lin/L259/gap0/2L259G1-Ar60aB0.g",["1c0fc137b9b4a1befb7cfe901f7e25c69b5b7fd2b3aad2170d1c0fdce6a7c432"]]], ["TOC",["matalg","lin/L259/gap0/L259G1-Ar60aB0.g",["96f1edc0c93e080ee706c2d25d7db1405ff2ddb575ea501a017964d6dc1cdc41"]]], ["TOC",["matint","lin/L259/gap0/L259G1-Zr59B0.g",["550099fa34e9027be11ba7649093b7b3d3728c40eeb86403488bda923f5de95d"]]], ["TOC",["out","lin/L259/words/L259G1-a2W1",["8801ead51775433449346af81a068d40c51712d83c154732cb9f6d416676acae"]]], ["TOC",["maxes","lin/L259/words/L259G1-max1W1",["73a16e910e0d2ad77c330e2d649fb1e2b79a273d7a8bc73970431a11648fb155"]]], ["TOC",["maxes","lin/L259/words/L259G1-max2W1",["7eacb5aa29a91709b499c56dbd6f4c5c50a24f7049675b3e638a9770e25787f4"]]], ["TOC",["maxes","lin/L259/words/L259G1-max3W1",["3e9178f36521a47966ef1cec67936b7566aacde63f983c99a770978ae8e100da"]]], ["TOC",["maxes","lin/L259/words/L259G1-max4W1",["3fdf0c3a958dd09cb354a315a65027c6e70e334896d72f30b975a74017dc993"]]], ["TOC",["maxes","lin/L259/words/L259G1-max5W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["matalg","lin/L261/gap0/2L261G1-Ar62aB0.g",["1201285aafaf57fb11038bd17db2cda4411ee53a1b0bc8dc3f0a3f269e1a0817"]]], ["TOC",["matalg","lin/L261/gap0/L261G1-Ar62aB0.g",["821a4ef795ddce4ec899371bd8f81befc20905a7e04af9676e8ed3f9f48a9289"]]], ["TOC",["matint","lin/L261/gap0/L261G1-Zr61B0.g",["62a1fb72cb843f3332fbfd4370101a71512f7a470651af2e9d415e58600b2fc1"]]], ["TOC",["out","lin/L261/words/L261G1-a2W1",["3cc686654106e7e2dcaa5a82b18b82de5f6aabd0f751eff70b29d1e3a2e46ff4"]]], ["TOC",["maxes","lin/L261/words/L261G1-max1W1",["4505a5c9a8e79afc175ca3cce99c95a0eb5517422be43abd715eeda38595b10d"]]], ["TOC",["maxes","lin/L261/words/L261G1-max2W1",["f125d19a8c05fd9a5f5cd104881158c274ada3e6b634d914d04be685eb3781b3"]]], ["TOC",["maxes","lin/L261/words/L261G1-max3W1",["73b3221f6650b13d5a0ecc9a137259f2cf4bfe3e869176bb0ecedfc32509d75f"]]], ["TOC",["maxes","lin/L261/words/L261G1-max4W1",["35f4038c4b310640f44d58505bdfde322e2667cece1640ae41879e1e64ad47e9"]]], ["TOC",["maxes","lin/L261/words/L261G1-max5W1",["fb3de1ab3d5703913aa38a3c53f2c1818aa032a1a5ffb114b43d4f1cf675a10"]]], ["TOC",["matalg","lin/L264/gap0/L264G1-Ar65aB0.g",["514bd97e06e32382c7ce7a610510338bb0c817a6551c03336a417a265d7622a9"]]], ["TOC",["matint","lin/L264/gap0/L264G1-Zr64B0.g",["d2361a5465cf1fefab0646632abd22ee6f045ec92e921907b688e15a34deb42e"]]], ["TOC",["matalg","lin/L267/gap0/2L267G1-Ar68aB0.g",["deef273a9a2848c7e8a5808224000ad2093bac9928126d594ba0a8cc1d2023dd"]]], ["TOC",["matalg","lin/L267/gap0/L267G1-Ar68aB0.g",["2a275656f5fe15a497778b77db372d4f9475ec2448360b652d608263082a5d09"]]], ["TOC",["matint","lin/L267/gap0/L267G1-Zr67B0.g",["5302af739880a416f65d8c96272c90433fd376f84e506d1750c66a59bab8e28"]]], ["TOC",["out","lin/L267/words/L267G1-a2W1",["11f7de5c5b74b7aba7e8f92cb006b69da5b0b55c7cdd3f80e99c8a59d15faa68"]]], ["TOC",["maxes","lin/L267/words/L267G1-max1W1",["15ac690833bf88de701f2a1d55adf765badfef58aefb977c76127fd84278bba8"]]], ["TOC",["maxes","lin/L267/words/L267G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L267/words/L267G1-max3W1",["81697c33ec360171b443eb71991605f59f206ec4b8d867679934125279954bc4"]]], ["TOC",["maxes","lin/L267/words/L267G1-max4W1",["9cfac56c8fbf21306f8ab2766d809b9e42faeb846b453ab93c95af4b76dc8f09"]]], ["TOC",["matalg","lin/L27/gap0/L27G1-Ar3aB0.g",["4de64240d8e39af1994779e9c6df2b954ec261a6c0ac898eeaf79facb51ddc68"]]], ["TOC",["matalg","lin/L27/gap0/L27G1-Ar3bB0.g",["4512d9726b27a5dcb414363c4d48a4e5d3874fd718d27657f290aacd322055ba"]]], ["TOC",["matint","lin/L27/gap0/L27G1-Zr6aB0.g",["beb69f3607a0163b904d682d6e1547d93f4c704924a64b1cfb8ce85cf0b38736"]]], ["TOC",["matint","lin/L27/gap0/L27G1-Zr6bB0.g",["9ceff02e1f249d57fbb7695b73947c7c48e4bbe615dfea7a7989891b2a5d63e3"]]], ["TOC",["matint","lin/L27/gap0/L27G1-Zr7B0.g",["e032074cb164a7abade80c7a9e05553e7356fa4c1de06e36b2d19861bee1dd93"]]], ["TOC",["matint","lin/L27/gap0/L27G1-Zr8B0.g",["ba222b47851cec8dda87345b1735c23f57eea435e102d0171a7081d2af7d6bba"]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f3r12B0.m",["8d47004f5d6240ad5e233343fb0ad3df6ec426edf537b1d7289e18bc179fe22b","2be481e07151a33e5c0080c4cb7a5467c830f5b82a9db124050e630250be273e"]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f3r8B0.m",["2127dd0fb7d6a849430b934c11f91bcaf3365566e4406dec74d213f75bbb0801","1034d13d263a6a67d715614d211e69cd9186e111a3cb69adf1077bdf3c268fbd"]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f7r2B0.m",["ca844fce8351870db16495d13f9058405e08ccddb1e444c13fdc7786ebc057e","bf21965592aa075bf6a6284e02bfea8124036e3b0975a58e5c42cc73f2e388b0"]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f7r4B0.m",["ac8cf752ba4acc0c117b31cf7377ae825ec977efc5b064401fb1f6edf6d4f23e","6cecfd7cf81e176469633bba7600dad29df809b1bd26be0b81bab29a61da742b"]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f7r6B0.m",["1441e6956167d208b5d593c6244493c17a72630dcbc31620b79e972893d82f3a","faf11e8498f7587169574251826c975ed4f76a07311a172857fd1c90cb4e67c8"]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f9r4aB0.m",["1d64cc6cd7e05d635f349242ece0885a842cfebfaad2c58a9f86326b0f75fcfd","a45780baba8b59293525f68adf1f6e3839cfb2e34ff26fa40e91796e4dddf49c"]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f9r4bB0.m",["1d64cc6cd7e05d635f349242ece0885a842cfebfaad2c58a9f86326b0f75fcfd","9133baaedefc4c313694c9dc4ea771068cc6af2aa957d9268cc6401e0ad9bf46"]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f9r6aB0.m",["21b6ebf5d86c7588305da863fd337970c80cadba2b4f231a31c8c53100c78d62","3b36c346aad64109b912d990c5f6498cad0bd15dd057b492b508a61640390d13"]]], ["TOC",["matff","lin/L27/mtx/2L27G1-f9r6bB0.m",["21b6ebf5d86c7588305da863fd337970c80cadba2b4f231a31c8c53100c78d62","c70516e412b4b5b8d85400dc24012ee803167d644884791bfd70e0cd7387c2f3"]]], ["TOC",["perm","lin/L27/mtx/2L27G1-p112B0.m",["9ade9fbd832b79d3edfd4c6426986434c69e6f0b9cb50b3bd0a6a4951bd641f","a16a2bd0322f4dd9b1cf51f5badcd8c8fe0994cd1d29c12d4aabb03131b7fc39"]]], ["TOC",["perm","lin/L27/mtx/2L27G1-p16B0.m",["f702c171bef76946fd0e99c0d61c1bd56dbea907ad3f8a9e472cbbe489444676","104636e6485470ad8b6c604580810e0ad0fe3271ecdc8b9937930cff5c916db9"]]], ["TOC",["perm","lin/L27/mtx/2L27G1-p336B0.m",["6e9a7ebdf26836c5e92c48ef130dfa8b77211caa43c3a0d8dd0f1e2c66a460c3","482c05e9c14c4e2a7d446c877acd96e2efceda8e701caa4645b88fdf4f3c9641"]]], ["TOC",["perm","lin/L27/mtx/2L27G1-p48B0.m",["e338e6c75af557422de26b84046011ddc80680c3d019f9682871060296c8dc99","8cd7ea2c21158902527910b7b08810692a4511b6d80b08cef51c292fa15d12f4"]]], ["TOC",["perm","lin/L27/mtx/2L27d2G1-p224B0.m",["e9e4cce4bdaf9126392618d5a278df1ee87a94e429340b196eeb3132ff51d15c","1748700222b7cef2e464765b4da66105c7191b0cb22db6897282b09482cbbf60"]]], ["TOC",["perm","lin/L27/mtx/2L27d2G1-p32B0.m",["d32f27ed3467876b61a34c87ea370084c8129e883100b14b7fc152a9ff8c00b5","de14970965fb95263586945c3057fb0319cf7625ddc3b80ec8c427c013edd1e9"]]], ["TOC",["perm","lin/L27/mtx/2L27d2G1-p672B0.m",["b6f39a4042a01414a049f3e3206a0408aa719b7ed1916f649ffc51a23827ae73","60b411a4e16b02aae50bf5812e28e5ebf7045a1a2092e8bbbaad79adb2bf94db"]]], ["TOC",["perm","lin/L27/mtx/2L27d2G1-p96B0.m",["b6ec9cccfaf9bc3d2b788a8b248f49ee3a682ce41e7211864c5bea9ed1abfd22","efb634af76270c3db1d571160a8676e84267d68c40ffbf9887e13a43c2ee9d18"]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p112aB0.m",["2f0ef0e335ace4ae28bdd190a81a4f86a224598b382a4febdd13cc9d90838bc3","b4d7143e7b182b6ffea1e5413ebe533b30a88c7390cee790092a67a2ce2d77cd"]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p112bB0.m",["cab0a32e43e5b7e2b3672b7594ff64de06b9f4efe065657067398786e1bebf82","6e739abc557e5c134e952e345ac32258970b7518df824c5233c33e06f4c2023f"]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p16aB0.m",["a972b691a629c95256bd1223e971d1316917282bad999049bce8759c1ea923a","7cf38c32947add8c86537966db48bf58e2c94a55e08c873839cd31ba16ff25cb"]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p16bB0.m",["5debf975a8d9e631fbc874f04c06b61425b37ac9c93e706209915b0a757d1a1a","3da9deca1851bbc9124b29055e02e63eb4405c69e8af88b55488098a36fd537a"]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p224B0.m",["9ec462282c6c2b824f1470efe36ab363e003c621bf8341c0740c01ebf19afaaf","b93b43040e9655847197a7c399865532c26eaf0c8e618205cc9b06071d8b7268"]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p32B0.m",["db94c141b8a0b8d19e346a4a6b67c35236d50a5822f4a9cdda3a619625abaf4e","dceb5b53c27d9576b819b536477b30886aaa446e562428afd4e76b59aa0d75d4"]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p336B0.m",["1c18214482e63c799e7af711e4065c7fca92d90efcca3e4ca1b72dd213277b32","fc9773a7fcdca4d341a0c74b47eaedb7f0a7645c35532835a26ab19d662d42ad"]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p48aB0.m",["8211ff109e04c3283eeed50ae3e5dbfdf3b36ec66e3ad11ad318051db94d963a","b383b70725ba0dd0b7b2b1c43728b9a514a89a5ba6a9e28f8221d6d4e7ca39f4"]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p48bB0.m",["82b71b7a968d8fc224f34a1548af55a00f891be851ead87fcc5a1ee63c3cb9f1","b318f8ceb6cafa24f322c66972500e1ec95c0386bd876e199cb77024172d6628"]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p672B0.m",["df6e3bb0665775fe614b582f3d8de34bcffd6960a264180f10311370e60345fd","9b649263e25f1006388a51fcd1aa935783dfc7f1004a67abdc710b3438b6cfbc"]]], ["TOC",["perm","lin/L27/mtx/2L27d2iG1-p96B0.m",["509550c25891e03113bbd8fd196c8ef9732f118071547c0371de29de14fedd73","cd3fa57c14619f2f28fcab1f68544e4d8d27aee2704dfc9c9f98386d779d5b29"]]], ["TOC",["matff","lin/L27/mtx/L27G1-f2r3aB0.m",["ed1b31f78b3ea89d9be79ab6053e6b22145b7653f8963804849e7aaacf8bd7b8","14f52f7a5d927097cb3460e89768ff288ff1bf190d9d6534d3598384850e664b"]]], ["TOC",["matff","lin/L27/mtx/L27G1-f2r3bB0.m",["e0272a4cb23f14cb37dc3b36e9bb1ccd867989cf457a36a38b4acb4811cf9772","14f52f7a5d927097cb3460e89768ff288ff1bf190d9d6534d3598384850e664b"]]], ["TOC",["matff","lin/L27/mtx/L27G1-f2r8B0.m",["fdd9eb441d4f0373403605683074d26ea90e381d08a492afcc5903251442c27b","e7246eb395246d415134a1aeaad7755ba52af96c6c580926e843cac634d61ba8"]]], ["TOC",["matff","lin/L27/mtx/L27G1-f3r6aB0.m",["92327e4f3f7fb13c4b20e500214907ad9012414dfb4a19a1efd600c8435f7059","7d51f0cbb5526520c8597cc3ecc6afe102c9b7ca5787f75eac7abdceae18d3b9"]]], ["TOC",["matff","lin/L27/mtx/L27G1-f3r6bB0.m",["474dbf47374931590d3dd9c0d3758045b4bb0533fac04b4c788487cec28e9bd5","ff4fa93d5f374f0b9aaf7e49b5e034898127d1aa789f51e4cd2abc49187acc82"]]], ["TOC",["matff","lin/L27/mtx/L27G1-f3r7B0.m",["9a01a9af16eaf192ba0365de1ac712d3a9a6cbeeaec754f08a9b74c1c7e03464","120142dabfdf6908ddac2bda829130228e351d239af6fc399a6cedee81a3d9dd"]]], ["TOC",["matff","lin/L27/mtx/L27G1-f7r3B0.m",["90353c42e4c30e8700aed39e2c617017f11e661d6133a797439f1e3206cc127f","f9ad0568de6b8aef3773597191c62038aee00001e1a6a7c9560ca92dcd442abc"]]], ["TOC",["matff","lin/L27/mtx/L27G1-f7r5B0.m",["866fb856d5b74e9fdc9dc0443e6d6f1244ad23aabe2da2b82f6f7870244d9621","43e4f8afd0f64488184c50fff329579e2437b7f4753ace8f40d9a18265b80af3"]]], ["TOC",["matff","lin/L27/mtx/L27G1-f7r7B0.m",["2c0a1acd82bc89c2b80bde8fbb40cf9a404676d6daed47cc7e2562c7dfa8e708","1cdfc77436d82adc4925550ad9cf908a20f5cb09ae76b37aa542b5a96ac2a737"]]], ["TOC",["matff","lin/L27/mtx/L27G1-f9r3aB0.m",["455cdc7db2073faaabd3101e2b6ba75b49e26aa216e06cb7e02624ae044eac0f","14a09c53b6bb5663d6253e84941f4e98ba139513e99537bf1e833800c9374ae4"]]], ["TOC",["matff","lin/L27/mtx/L27G1-f9r3bB0.m",["455cdc7db2073faaabd3101e2b6ba75b49e26aa216e06cb7e02624ae044eac0f","6daa23dc049b7685131cb386e85fcb8c5f559e4bcb3d8f4652b9c65de4b6892e"]]], ["TOC",["perm","lin/L27/mtx/L27G1-p14aB0.m",["dddc69e2563391c4d89f640a126753f797ed61bf0dd1a8a0232db9e0fc5d1673","2182e1fed065755d883c1dfe4a3ef70598aa64c6ceb0cc5b7f2d43ef37e15564"]]], ["TOC",["perm","lin/L27/mtx/L27G1-p14bB0.m",["1bd9014bb1dbf065c57e20bc8ec92224d249fc997fda4a98011420fd30debee0","f7a9c7722d13e115c08159d7e4c12ff9282318021d131d4b3326c9de7dba6b5b"]]], ["TOC",["perm","lin/L27/mtx/L27G1-p168B0.m",["37020fc2a7ba17c4459494b2023080ca1bab6c6996be819c3348b6851dd62ffc","dcb9dd7bd4a20c5aefa0fa1b25a2fb944c4f1fc22358542e5f1941d9e0ded846"]]], ["TOC",["perm","lin/L27/mtx/L27G1-p21B0.m",["62db9c4549b9944f6a33e426e6f398ed84610d18fe80bf45b61e871aaf7e8b8e","5fe872581714a18086a028f297f3b4e4b0f4c9248849dc80964063b51e5c31d4"]]], ["TOC",["perm","lin/L27/mtx/L27G1-p24B0.m",["299017438d318c03293326476b1ed253a62e7673f399ee65673a5336db90d7d2","11e42e4aa343cb64dc5a60aa157623b96d0ab0a55dd37f5fa2761796862b632c"]]], ["TOC",["perm","lin/L27/mtx/L27G1-p28B0.m",["55dba5634c9fe407d33b302647b32bf5612f4a8708f5c6940cc6aece5d0fa854","3251d420bf644fba6d3180be04d486c015558b5a1cfcd0bd6cd538245156e8a2"]]], ["TOC",["perm","lin/L27/mtx/L27G1-p42aB0.m",["93f51c5a4ae118e7089ff7561b5be5bbfd5ba2826e902134c6a6f49b7a634e0f","fb37b362c8cde1b2653044405fc026a148e4c68464a9adfb1195bdb12d42f82c"]]], ["TOC",["perm","lin/L27/mtx/L27G1-p42bB0.m",["389a0ed67362d37a146503856ab2efa517b14f077bbc2d5cef98ce0f1185bd","f1780ffef1ea89e670f1bcbb5a04f351f6f2e7b4780063c44aa0ec7e9acd1b5d"]]], ["TOC",["perm","lin/L27/mtx/L27G1-p42cB0.m",["253608f4a9a63c47e9981564efc6f9cdb4262c09ddd1da182ce2169748f4d721","aa95a78ae01e77c37dbe31ab5d197b638caff3b00630cbcfd8cd1d3cb0edf068"]]], ["TOC",["perm","lin/L27/mtx/L27G1-p56B0.m",["d68e901676b9d9901c63747eca00b15289629d44ae5ea5d92bfb0c006b83b3e7","e82c219dda29dcf8f0423c5058a141d6e9b00f79ecf10df09050381dfb9e27f0"]]], ["TOC",["perm","lin/L27/mtx/L27G1-p7aB0.m",["6a547993c0e743a9567c2da5ca82ef94b04a549800789651daea7c33fcdfd087","ada729d52d9309ad9220dc38dc28a14640084682e1a7418d956510b1bceca3dc"]]], ["TOC",["perm","lin/L27/mtx/L27G1-p7bB0.m",["9acd806f0b30e74cb67c0327206696921bca79bff312268ebddc94efbcfa06cf","b57692f4fc8ab8f254d874c359d47ae261f398eb30d1f39c7273b2c34d954f4c"]]], ["TOC",["perm","lin/L27/mtx/L27G1-p84B0.m",["770da1422a8ddfc83a122da23f5b860e4af90568e519c9c786af663769cab2d1","ca12a6c5f0992ad70a102f850a1d2cb516f6a63b896a4dbce7032aa720b6a8ff"]]], ["TOC",["perm","lin/L27/mtx/L27G1-p8B0.m",["7b20b910b6849584de06a79c8f7182c05a0296f7bbd7f05bb5929b6447e3e8db","564dbf719388d3044d1b7ac37e0cc5b08e70bce8c4deda20c6c19b584387209c"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p112B0.m",["d7e1733ec1d7edb9ecdcff67586e1f30d75d7c4e223fa5ead90a9b674e60016c","3618b4bef1892c670317aeff15df52b7aedecedd92dd004dae86d032b81d5286"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p14B0.m",["7c838c8a5ab95a72c7c7dfba936ce5874930ee7c65e229d0af6b05960945d3be","81803fd62a813e7136cb6cfe16ed1de073b66547a66b93fbb3c7638a343b4010"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p168aB0.m",["8aa59e5874029f4158f2ff756ed8d6c4fb5689dd371be0cf6e577616ad394a17","b100887cbe222ae813fc70bd51f2b957978ddc732c40a4b4de63221f70753cc4"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p168bB0.m",["fcadd81cbb67ae92aac118eed9373bc4076d805dbe17a122481054f34b212df9","de478388103553e7c62a65f643a5f02bc8d6ede45196081162d4e88fb35febd1"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p16B0.m",["5ed286d8ae47a2b97aa85f466c8193cca943126e21c94e1bfe7adcf343ce3188","a43382d30d34354fa3c2434a94575beb41548b2b6f4010bcd7805589a03176e5"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p21B0.m",["a656469eed96cfd9d61980d299f8513df6c134fbd330b7bba2b0215169542597","745c499b366fc4229ef9c8cf492c7abebc8ffddc21245c4c5d73904b93e870b4"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p24B0.m",["a0f81b62dcd179616c76f6dabcedc477281a068b8779c20b7d3fdb79e65aa2da","171c113aea6e579838de57c8a4e8e33a269fef2e235ec51473da99068edbbf03"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p28B0.m",["9bf98662855393a89b4d94f57ed2615230ef9299d045d3b818bc658f02598550","ba699b4fef7e0c8f433c745597125703433b376b4014dbb9d2c328462cab60a7"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p28bB0.m",["c08ef78a5fd0797a2eff0839585cab58e10d30928ae4cea4558acf1cdbc45840","69143d4a111c9e4c09e74052a2642264bd961dc324082b8081db4cfe7707d210"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p336B0.m",["dedc84b0657e5ab56c746712fb0426f1472800173dc5720b2cd93496e8996353","f5173c55b21708e8e8e527cbde0415398051c05a42cb4c2132d237be537fe735"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p42aB0.m",["bd82836426c7990221c668c3d8e3a6e0bb281b5f87a9fed27425464ccaef272b","4fc8de91a71cc055892e39719f800abb66d1cdc1524212a296f980b0f7f04b4f"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p42bB0.m",["cd131d13277364fb28f6aec98f6af1d4d054750a575bf4949065a0080c3ded73","add82ffff3297826bc9c808341d6107f826073ca690a2fb81bd07676b0bcb444"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p42cB0.m",["d549a67a7682587a060ed32e2c54c95e983d1efe48a10025ef97f42626502c00","2f35fc91c8176aee851ac1c48f1ac563d5b700fdec8dd1e031f3a556da9a9e3e"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p48B0.m",["fd8ef693d2c934758a31f7bb02af2b0d45d28680c53c7ebfd5f0748168fd9b58","b383b70725ba0dd0b7b2b1c43728b9a514a89a5ba6a9e28f8221d6d4e7ca39f4"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p56aB0.m",["aac5145872291be530aec95195615c495cdef0ae5be4320b6dd1272917584bed","f0c0baff150f4d4b72f175b60f2f3e665228fc0dc84aac9a936f5d1739b48af9"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p56bB0.m",["75b87fc42921b860dddb70d53b08eb00f0aea70018d42adacb7f136b316ef73e","9a729675a8c4d5f97861e56ac47eb698a0be561bc6aa51c3f6b0629506678402"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p56cB0.m",["e24c1fc5b4a073c5e6fc2c61fc3d3c448a06911b089be1ce65ae37b20d058ded","6233acb81c55895e4bce25400733c21a1baaa8776dd1fe74f0dcf42b3c78c127"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p84aB0.m",["2427bf35d00b01a94ada63366cdd79f2c528ebac4b81d7dc2f8bbee95acf8470","300bb4b0fda78b75ea8ab34d04ea1db456f95442b249d14381be9205813df245"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p84bB0.m",["f12bb99c58a4e9375d79b8c37b00f8ef53e0ad4e7dfd3bfa1da0ef988357499a","7b8709cd489fcf5f6c66553d540f676155f073e558e9c3605f182e7f83648732"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p84cB0.m",["4730acc93fcdc5b622e476b0963120798ec20082d13ec60b3a3132c2cce91661","e682aa6a19dea592e4d3adce5d2b80b61af8fb6499dc906c1ed16a5ab7360b71"]]], ["TOC",["perm","lin/L27/mtx/L27d2G1-p8B0.m",["56c8308f210965dd682a48221bbbf294e16c2db113d9d99d1d49fd650bed4e57","f475a574d9c8688dd0e17dd8b6afd0df89a6b10440d63b6da2d6d0d55b11c192"]]], ["TOC",["pres","lin/L27/words/2L27G1-P1",["6685d1f2ec3c3640a0060501c05bcc57e3c0ab8216c4bbbb5fbf7187c1785435"]]], ["TOC",["pres","lin/L27/words/L27G1-P1",["149c4bd74860c54cc3e4a730c22c79bc6fc33b6469b64d8e791dd3ab25212538"]]], ["TOC",["check","lin/L27/words/L27G1-check1",["445f23e6065783ccf7753d7bc778ea650df76e3cca67c26a36da3dac25c95441"]]], ["TOC",["maxes","lin/L27/words/L27G1-max1W1",["57d10a584073fe881ed9e36be2c21ab377b9692c4dd4e9064eebdd96d1d5be14"]]], ["TOC",["maxes","lin/L27/words/L27G1-max1W2",["7c3e177fe6df28e2af37f7da0baace9feb2f16820d74dc319170273d69c0a322"]]], ["TOC",["maxes","lin/L27/words/L27G1-max1W3",["24e5b49b6bc71685d2bd7919860f486a30a35a1e7ae44b5ebea3abecefbe0642"]]], ["TOC",["maxes","lin/L27/words/L27G1-max2W1",["6158b0fd293f4ebe7ce568572cab094911081059815f88609887c5e7a3898ce5"]]], ["TOC",["maxes","lin/L27/words/L27G1-max2W2",["6563549eb47b75d382f97bfe2b1fe77a94c420299a08f86a00aa0ae9efb1b458"]]], ["TOC",["maxes","lin/L27/words/L27G1-max2W3",["add7022dd4cae01ced6cc8fab6574b0c1f0121ca88ca671320277e7dad34ae70"]]], ["TOC",["maxes","lin/L27/words/L27G1-max3W1",["8d87ae5909f04346893278e1d370eddd7bbd70e3eb0e05ab07f0166a896f3b9"]]], ["TOC",["maxes","lin/L27/words/L27G1-max3W2",["c087546c0bf63394ed10f151dac38550eac591d91f622b220f1f29aa06a5130d"]]], ["TOC",["maxes","lin/L27/words/L27G1-max3W3",["4af81e41928b58cf4cd41ac9007c680355dc43edc039dd8e1a6a38cc47948539"]]], ["TOC",["pres","lin/L27/words/L27d2G1-P1",["e5f38e0feae66a8666bc3e9efa275a25d4aceb7cea289e002fc2ce0222c4c812"]]], ["TOC",["maxes","lin/L27/words/L27d2G1-max1W1",["1fabd443e3e03dff41fdf1f51cec5551c64a4a49a0974336ef4dc5c4adf4af9c"]]], ["TOC",["maxes","lin/L27/words/L27d2G1-max1W2",["46bacf09cb1264051bbd0875a7a3733a7b4877b5dc42dceec1d0bfbdffdc7560"]]], ["TOC",["maxes","lin/L27/words/L27d2G1-max2W1",["1b5457533c4f235dfeda85cb932d9092f926e233dfa5038377ff3e46d5f71da2"]]], ["TOC",["maxes","lin/L27/words/L27d2G1-max3W1",["836e2d461a29b359fa7812221ce6db4a94623fec49d3fd7d43707679af1e30d0"]]], ["TOC",["maxes","lin/L27/words/L27d2G1-max4W1",["990abde3a127241585eecfe01dd2458e58f4cfb0156f450b4e50a61c2542bc8b"]]], ["TOC",["switch","lin/L27/words/L27d2G2-G1W1",["687e64eb1f144c4d2a479a080f11d498e1b3a27b7302b115cdc22296a49dfcf9"]]], ["TOC",["switch","lin/L27/words/L27d2G2-G1W2",["c3471b67412594efd1d17ae49757c4e9993422d9e654625cd07f5363c5a80be1"]]], ["TOC",["matalg","lin/L271/gap0/2L271G1-Ar72aB0.g",["3bb9ccd12cdf266aae57ed769e5417d489c9ffa892581afac2731d5ad9536a9b"]]], ["TOC",["matalg","lin/L271/gap0/L271G1-Ar72aB0.g",["dc83bf4203f1489a3a827f4169159a933b87d9f51624ab5b56e54ed37c9d0285"]]], ["TOC",["matint","lin/L271/gap0/L271G1-Zr71B0.g",["44c36f33684897cdcbd9f84cfcadc0d41e55f84449a6809898c68d6378448ce3"]]], ["TOC",["out","lin/L271/words/L271G1-a2W1",["c46e010590f7fd64edfc104e4ac683debd27c0f31298dbe840e4d24e77c88d67"]]], ["TOC",["maxes","lin/L271/words/L271G1-max1W1",["2e2c1790be8cf61e3fd3a69e197d40b92325a017201b4fb664a89f6d5cc49d55"]]], ["TOC",["maxes","lin/L271/words/L271G1-max2W1",["7c2bc0c2aec45e5d153d2f71ced6f4c51c611435b2303cb2fead6dc72d4978f4"]]], ["TOC",["maxes","lin/L271/words/L271G1-max3W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L271/words/L271G1-max4W1",["d7a5db322fe488b68091f63383d23fe3fbfcc95b6ca8bf1438e8c47ee3baf0fa"]]], ["TOC",["maxes","lin/L271/words/L271G1-max5W1",["dfd41025c31ef85464592f000c5b0ef8f07d08ed768b3a9adc1c353824536564"]]], ["TOC",["maxes","lin/L271/words/L271G1-max6W1",["9fbcd53911a86a76f376f59aeafbe0e393f0c8314e12f0716d137155e6579ae"]]], ["TOC",["maxes","lin/L271/words/L271G1-max7W1",["c5ce39d30ba605e5c313658362c0bbc2315d2c32d1f39ce35a6428f8a93b636f"]]], ["TOC",["matalg","lin/L273/gap0/2L273G1-Ar74aB0.g",["75094a1cf180e6102da6fd94f9201f814ec2f786080973f100c3d9b6caedbc7d"]]], ["TOC",["matalg","lin/L273/gap0/L273G1-Ar74aB0.g",["94426ae63b5f0095c872835e1cddcbbf43a92235d9e8e82857956ecb79ade8d9"]]], ["TOC",["matint","lin/L273/gap0/L273G1-Zr73B0.g",["c58fd7edef173fe2685ffa9650fc75d935be7beaeaf1381f651308d7ec7af0a1"]]], ["TOC",["out","lin/L273/words/L273G1-a2W1",["c882610b62403aa3293106d14f4e84cb56e9c02b1acee5de8c154b1d02a0024f"]]], ["TOC",["maxes","lin/L273/words/L273G1-max1W1",["1cce2db151c26ee46908d6a1b63f68969c10938db8f6827a4e238780d6f67c12"]]], ["TOC",["maxes","lin/L273/words/L273G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L273/words/L273G1-max3W1",["1797d1241237a335b9421627953de34b80ce49056638e12ca786597d788ac077"]]], ["TOC",["maxes","lin/L273/words/L273G1-max4W1",["493a6bc6e292ad6f331637b59c8c1614d4f39e3b9f707ea1e0b15be4aa691f7d"]]], ["TOC",["maxes","lin/L273/words/L273G1-max5W1",["e5c69ad3a4da07240aacc9a9c1f864e5698a74dbca94476a0b1955527784270"]]], ["TOC",["matalg","lin/L279/gap0/2L279G1-Ar80aB0.g",["929888f5a3c5e3a4efaa93efd3e4f86dd61b550d5a6a8d83c6034b93f2c656fd"]]], ["TOC",["matalg","lin/L279/gap0/L279G1-Ar80aB0.g",["1310d8b94e8637a50f5ba4d26a65adcc5d1cabdedc2d739a60e0a8134701f92b"]]], ["TOC",["matint","lin/L279/gap0/L279G1-Zr79B0.g",["8dc5f8eea096bef8d3930a95aad71f87680da3ed509f75fae09c7ec175c5f129"]]], ["TOC",["out","lin/L279/words/L279G1-a2W1",["3eb496bd0077ace0946646e506907835028cefff9f2768a660227675cf2e1005"]]], ["TOC",["maxes","lin/L279/words/L279G1-max1W1",["4c271d6055182bf9bf39ac88e7b043e3e1e943d075c7c7033bda816416c6694d"]]], ["TOC",["maxes","lin/L279/words/L279G1-max2W1",["1797d1241237a335b9421627953de34b80ce49056638e12ca786597d788ac077"]]], ["TOC",["maxes","lin/L279/words/L279G1-max3W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L279/words/L279G1-max4W1",["c919bd27a2da63299460312193cc2c96e7efd0d252fe3fde42c030560ef7a384"]]], ["TOC",["maxes","lin/L279/words/L279G1-max5W1",["2426274ca216bdf755504835a282b667d7bd96475472457027d02e39a3c5cca8"]]], ["TOC",["maxes","lin/L279/words/L279G1-max6W1",["29221491a240d80cdf57bdd1e86e9ea2f50d705627c0e4e3e90a5eacc663ec6c"]]], ["TOC",["maxes","lin/L279/words/L279G1-max7W1",["a58e23c84b1d51a51362ccbc89f344ea181fea8f153e7cebab4e89e9951e1c46"]]], ["TOC",["matalg","lin/L28/gap0/L28G1-Ar7bB0.g",["b0e8bccfea314ae96f44095529538fe4f582ad5df15e64b0edd2f4a3dc160f93"]]], ["TOC",["matalg","lin/L28/gap0/L28G1-Ar7cB0.g",["5f7f272ecf1bd0f02c6da648c4de510643588567e186ce5c3ae90c060797c52b"]]], ["TOC",["matalg","lin/L28/gap0/L28G1-Ar7dB0.g",["5139ca6906e3eacdf1168b1bcd89676470b25ae19cd494469ed6cd89c84c4958"]]], ["TOC",["matalg","lin/L28/gap0/L28G1-Ar9aB0.g",["482b5ba25ac4450597418a0dbcf13395a7d7b7e75885849d8c5ba840a5b30fd5"]]], ["TOC",["matalg","lin/L28/gap0/L28G1-Ar9bB0.g",["8aa4cf32425a10deef5ff82b8ba570b46cbc95001d8feb111ebf2fe2db26dba"]]], ["TOC",["matalg","lin/L28/gap0/L28G1-Ar9cB0.g",["b6b6b0c13f19f41aa29787dd513f2d689dd12f50443fc615e8a9b81027145126"]]], ["TOC",["matint","lin/L28/gap0/L28G1-Zr27B0.g",["d8cddc0e4d4a1eb5360dbefb599a070db2022d7a28fdfc8b47c996fe38ff6fb6"]]], ["TOC",["matint","lin/L28/gap0/L28G1-Zr7aB0.g",["4e7e1e7f11efb0cb7dc5b67cf8a56fa619d4391de30a16055ee3fe18c72d0495"]]], ["TOC",["matint","lin/L28/gap0/L28G1-Zr8B0.g",["d50c9cb64e091362e3de2a6ed8b7bfcd811d5727592c45e97b836766c6f97bfe"]]], ["TOC",["matint","lin/L28/gap0/L28d3G1-Zr21B0.g",["2c04ae0b7f2f8c4b089289dba4fea1f6efe626e1b4b95b3440ea59cb496ddd1d"]]], ["TOC",["matint","lin/L28/gap0/L28d3G1-Zr27B0.g",["6eca53de2d18649546b46b7868744638b62b61f2a42aa2f1507c7ecaad792b90"]]], ["TOC",["matint","lin/L28/gap0/L28d3G1-Zr7B0.g",["5d7fd7eacaa6d434577f357d74bc0b077c4c750ed03f5f991dac480f9c0571e7"]]], ["TOC",["matint","lin/L28/gap0/L28d3G1-Zr8B0.g",["dfc3925e175874a08f1a5e67b9f6296ef83659c71d77e3aec0a4c5ec3f7445ff"]]], ["TOC",["matff","lin/L28/mtx/L28G1-f27r9aB0.m",["bae819462fe00f3101b25bde06ed84fd16e6e5c9ac378fac30b491863d184203","f6c0f0b50e3ccf355995164479720ee8f1b3fdb07614f97602d7fc31be93cb9f"]]], ["TOC",["matff","lin/L28/mtx/L28G1-f27r9bB0.m",["2bb0316edf9fe51b04b0f033d2f2754fe82b61873203151d35f8f33c35d2f371","4f5dafd356fc2ac836aa1e4b0dcc422ed437d949f016cd1878c90582ecd0bd4d"]]], ["TOC",["matff","lin/L28/mtx/L28G1-f27r9cB0.m",["1d60cde40c3ead83f71e679628171cbd318fa52d1a5b20ab7ac31bad25743250","7e56591929489a4cc39d654e104e5d55342d826aa25d0ab037306e0c5afaf359"]]], ["TOC",["matff","lin/L28/mtx/L28G1-f2r12B0.m",["d2d03a449e10797552b9c52474868ae162cf4d2a6dc5b8834d71706b1c261a84","d6b735389290c595b9d413ab3ba87a0e426cdc8115e29a8d0e5216c1bc487c65"]]], ["TOC",["matff","lin/L28/mtx/L28G1-f2r6B0.m",["1cd2c89d0a6205eb65f661be72c2565f6c318559c51c3f7dce73fdd96bdb9f30","6fe5f4b7e241b7099f00402b4ac4fcb42df6528a3c825554fd01b59b7fe9ff2f"]]], ["TOC",["matff","lin/L28/mtx/L28G1-f2r8B0.m",["fdd9eb441d4f0373403605683074d26ea90e381d08a492afcc5903251442c27b","b28dd7fd0f8f25f66b39d1fd5101ce26c6c99086c23b47feb554f1e1e2b3ec20"]]], ["TOC",["matff","lin/L28/mtx/L28G1-f3r27B0.m",["8f61e4d870b3702393bcbf8596ae2d2616848bd39e257d9d5334a6d50a9f8af8","14e3f9a85f665cdab8135c7e7e7bc6b69274fb8e8cc848b22c77209eee829a02"]]], ["TOC",["matff","lin/L28/mtx/L28G1-f3r7B0.m",["cd247e54d1895cc074c314236db4842d8b3f66305a3c559289669cead1f58f63","5487680ed03a0643e157ce0f2030d4bf553d7865ef4990549b8d11c53abf8b50"]]], ["TOC",["matff","lin/L28/mtx/L28G1-f7r21B0.m",["57d1518ef962cc2088f0e0a2ae60923c72a80e7451fc446ca88daa6a115deebf","7c276026da73a2c4f14adce93347187a0c66a323b74e405996d8997326461c7d"]]], ["TOC",["matff","lin/L28/mtx/L28G1-f7r7aB0.m",["62327e576e6284f071dce0dce7bc3277900ee897963095b4190b0ed4b5cc1d0e","6290f9576db0326565a7a490e71e536009dc9d6e4a472b70e0021507458a2306"]]], ["TOC",["matff","lin/L28/mtx/L28G1-f7r8B0.m",["50a1d86b22eb5a957985bb61b8dbb0aa9018c8030f1373a2bf450c7548903824","f72bf4367f8e0ca5517895842d98f3c9eb7737140e71aa521d75e317a8262967"]]], ["TOC",["matff","lin/L28/mtx/L28G1-f8r2aB0.m",["481c2c934050e5d4d7e059396016e13d8dd6829b5a385c6afa5318ca22902aab","a71cb57f4e80f23912e6ac6a69623775b656527365ddecb7f15a811c1b8e4db7"]]], ["TOC",["matff","lin/L28/mtx/L28G1-f8r2bB0.m",["e78ff494d579bc7dad74761ce5af4e145726c75f26f246528b43b5ddf9288654","a71cb57f4e80f23912e6ac6a69623775b656527365ddecb7f15a811c1b8e4db7"]]], ["TOC",["matff","lin/L28/mtx/L28G1-f8r2cB0.m",["67ccf207990ba770ce94402544325472b8a0bf3d926b3e39a2a6fa33203bf9da","a71cb57f4e80f23912e6ac6a69623775b656527365ddecb7f15a811c1b8e4db7"]]], ["TOC",["matff","lin/L28/mtx/L28G1-f8r4aB0.m",["d340de36f97b5d7308d8765bc29284c8174b3dea3fca3aa05b2537724ab9baa4","5d4c20dc6a1c5eb3631c6cd4801592cc23fed96d8c5a9508cb975657edca772e"]]], ["TOC",["matff","lin/L28/mtx/L28G1-f8r4bB0.m",["d340de36f97b5d7308d8765bc29284c8174b3dea3fca3aa05b2537724ab9baa4","342f41e9b4353150f57acec5be92b908f96d304c876b0ad1396ac1ffee50ed0b"]]], ["TOC",["matff","lin/L28/mtx/L28G1-f8r4cB0.m",["d340de36f97b5d7308d8765bc29284c8174b3dea3fca3aa05b2537724ab9baa4","60fba22870bce6254fe393f7affb1c7507d55bb14c9eb32d960796aa6595852"]]], ["TOC",["perm","lin/L28/mtx/L28G1-p28B0.m",["1c1115cfc994d0cc2973313f8cc724527eacfb4ffb343d12e85354bfece7479c","a2dda3ae9918a606df3a6a2753fd3aaa875e384cd09746aa11f6e39013069752"]]], ["TOC",["perm","lin/L28/mtx/L28G1-p36B0.m",["34e90e46800f1d2d8ab3226f2adad1a662e30b4d5dcd0aa6744ed01106c5faf6","f2c619d5d336eb01a4e8985d3bb598f5cd1e1a16981aee7185e343e4b91b75cd"]]], ["TOC",["perm","lin/L28/mtx/L28G1-p9B0.m",["61fe3be0f3c9c1d2242719622e96980b562136d459ff56d324cf1ed838f8940d","65806336e8484cf0984034d05958376b435bc09c9820c39cddecf9b3877e214b"]]], ["TOC",["matff","lin/L28/mtx/L28d3G1-f2r12B0.m",["fed577e3831f9a2c4802e9a06af51811a820904300187e281bbf44899365c660","898d75ef78e327f46b6ad70cedd667e1fbdcf13738eecd1ab0da475c0c6048b1"]]], ["TOC",["matff","lin/L28/mtx/L28d3G1-f2r6B0.m",["4e8ba48f7ec47c3e2cf5fb9b9e484a80cb41a2080b81f866b9ccefe6d033ac58","95254c1a5bce5d44989c0582924d77c5caf018e9f8ab1eda27698948f86f22e3"]]], ["TOC",["matff","lin/L28/mtx/L28d3G1-f2r8B0.m",["fdd9eb441d4f0373403605683074d26ea90e381d08a492afcc5903251442c27b","376ac554775d4c918aceca28475e82d65be388c38849cd1c6e1f57787e8391cd"]]], ["TOC",["matff","lin/L28/mtx/L28d3G1-f3r27B0.m",["8374244cbc8123a6294218d0396a14c3592d6d35944a806c4f0333c26064498f","4e87d7306939f1941963e483ebe7814e08d6b4948be2f95e8f2d3ec58bb28e87"]]], ["TOC",["matff","lin/L28/mtx/L28d3G1-f3r7B0.m",["8bd07e8f25bc7b33de2f893f98a36ff249f6275e602b8faa695715260e6950e1","e2f014249bf6a3d8e09946ce7c9f2aa2cf998b27a76948abe5b790fb13fb0707"]]], ["TOC",["matff","lin/L28/mtx/L28d3G1-f7r21B0.m",["7f274f692607a15e8b035bb5a51fa8b7f5d1592f07a8eafa078456312decf2f3","7dea0088ee3e9fe4b3279fc60ef02c9c65c324a93366966a48ff73239b0318bc"]]], ["TOC",["matff","lin/L28/mtx/L28d3G1-f7r7B0.m",["5079983d7308b9f306df58baa6c284dcd756ffca57f576d9c001f35114fe1883","829587604083db0bf511bc8eb37bb231b7e0884098bb0e78ad211d975206287c"]]], ["TOC",["matff","lin/L28/mtx/L28d3G1-f7r8B0.m",["c00ae6adfa98354731511b30782f5f65def627184d83b37292cdf12424918c54","bab6fef86b0d687b592ea344005029c9ec68c32b7cac0f2e05df5adee815dcef"]]], ["TOC",["perm","lin/L28/mtx/L28d3G1-p28B0.m",["1e91cb21157e86dd37f5a034b159e7bd737b16290371a02e023c95630deffc53","6cbb85c7719079f28a9751ad8e35a64a80acf7e3fd2fe8fd74c962cd5b95eb25"]]], ["TOC",["perm","lin/L28/mtx/L28d3G1-p36B0.m",["35e7a77eeb4f085740fab3dfb78ccf33aea790a0c4b8853607256a450a9db09e","27fbe582603af327f4695705fbe08de70c42bdc5cc24298d92ed760f34a329ca"]]], ["TOC",["perm","lin/L28/mtx/L28d3G1-p9B0.m",["28a0b7724467751b85b1b6cef5ef0b66844e5da66047f9f678697a4dc7479041","c093ab63dafb0d99f375b5da7c55c6bc6d11c29dd6f087a50061eda3c1edd867"]]], ["TOC",["classes","lin/L28/words/L28G1-cclsW1",["84022f44ce0e6149591a5903a3d98942a06def9e0ac64cd6e396b4f4aa00e6ce"]]], ["TOC",["check","lin/L28/words/L28G1-check1",["445f23e6065783ccf7753d7bc778ea650df76e3cca67c26a36da3dac25c95441"]]], ["TOC",["cyclic","lin/L28/words/L28G1-cycW1",["2c94b276b2c6ad2db9690adb0ed14fdd2e9f4614d617df5b2eb6dafd80b0e5ed"]]], ["TOC",["maxes","lin/L28/words/L28G1-max1W1",["9099e36c6da7e53eb45f9c0294d4073bdc2cfaa6a217793cad82fa703d42a2f6"]]], ["TOC",["maxes","lin/L28/words/L28G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L28/words/L28G1-max3W1",["2fedcc2b875820f544959e6715a4371cbf492dcd86acc558b4da010b80d4339a"]]], ["TOC",["cyc2ccl","lin/L28/words/L28G1cycW1-cclsW1",["34fb29c858fcbcb16019add669ae28ee9e39c5744412b367fe6ee358fc060fc8"]]], ["TOC",["classes","lin/L28/words/L28d3G1-cclsW1",["55a01c00796ec5443d771174450c55a3604f28137a5182cd916cc0474b750290"]]], ["TOC",["cyclic","lin/L28/words/L28d3G1-cycW1",["7f937d00633475b073032fd51a0ce582e66808409fc90cc563ffdd0416cf603b"]]], ["TOC",["cyc2ccl","lin/L28/words/L28d3G1cycW1-cclsW1",["ead24ce3114928277e73a45b86ececa2b68551b5d0448e1c7f3bec4fc911809e"]]], ["TOC",["matalg","lin/L283/gap0/2L283G1-Ar84aB0.g",["72a8cca2c7a97c00e8a23a8698dc0a6b01a6737c673b09583c2c149e577646be"]]], ["TOC",["matalg","lin/L283/gap0/L283G1-Ar84aB0.g",["10f6bdbf1b1f6f300fcf2f0aef14ce17da3877c6fd7a03c7e7ecc4ac3046c7e8"]]], ["TOC",["matint","lin/L283/gap0/L283G1-Zr83B0.g",["abe54013ce0c7a32f8238587a04cbd68d2d143ee92631473ca4ce63f7814e919"]]], ["TOC",["out","lin/L283/words/L283G1-a2W1",["56dbb5ae27ddde458740b07451a72d64c31cb43988362f089bc063c6c4279b96"]]], ["TOC",["maxes","lin/L283/words/L283G1-max1W1",["cc584e0a0cb328fe44e5ec129bb5f710740e389eceda36653fa7460aae21b831"]]], ["TOC",["maxes","lin/L283/words/L283G1-max2W1",["c3d7994644ce47bad9be98029d3790e5250ffb92fcd66955ae3e3bde6909d464"]]], ["TOC",["maxes","lin/L283/words/L283G1-max3W1",["81697c33ec360171b443eb71991605f59f206ec4b8d867679934125279954bc4"]]], ["TOC",["maxes","lin/L283/words/L283G1-max4W1",["f5f6d40cde6477e7f992d4bea00bc34d67aa1ed1c5d15263c40385022db36f21"]]], ["TOC",["matalg","lin/L289/gap0/2L289G1-Ar90aB0.g",["8a1986be05e715c3a2618c65032b33fc76f55cbadd5fce2bbba7777b9ca95da3"]]], ["TOC",["matalg","lin/L289/gap0/L289G1-Ar90aB0.g",["8af2f02f993d23d0974a4f2af67edd3281879a7a1b3e81c8d87122a0b73aa61d"]]], ["TOC",["matint","lin/L289/gap0/L289G1-Zr89B0.g",["f4e6d94cc06a1bdefb54fd70c873678e4bb814ab816d94c746f81bf5c4fd7108"]]], ["TOC",["out","lin/L289/words/L289G1-a2W1",["1039d1ed4260e191a6087ef9753e5b5731c40f406c1dae8f9b067be56322037e"]]], ["TOC",["maxes","lin/L289/words/L289G1-max1W1",["ad9d6c1b6bfee7bf9f896e1d2ddd35ddad883d8a8fca0ca4090c416c4778cb3d"]]], ["TOC",["maxes","lin/L289/words/L289G1-max2W1",["1b9432236122ea1360e0733216e9a8093bf2b775f7b18d83adb678e58fa2a875"]]], ["TOC",["maxes","lin/L289/words/L289G1-max3W1",["4c4e0479a4971252c26089544f24804462603356b94136f2019784ddbe0a596e"]]], ["TOC",["maxes","lin/L289/words/L289G1-max4W1",["f6ebf96e6c12c0a8d50c1722c6ae48045a283206729dccf190b84226631a3e85"]]], ["TOC",["maxes","lin/L289/words/L289G1-max5W1",["7f8051d6ffe74eab86dd6a7f1f1676ed06b5ce51b834b21161ab9b09918a9c19"]]], ["TOC",["maxes","lin/L289/words/L289G1-max6W1",["931e1cc1684cc499d2ffc4c09f2e7f04a4a21eb16d644da2cd7ab5edbaa40a8e"]]], ["TOC",["maxes","lin/L289/words/L289G1-max7W1",["a131d5f2cbc4eef5149a279e4a8af910fa54ee30db0904ec6e07832c13477237"]]], ["TOC",["matalg","lin/L297/gap0/2L297G1-Ar98aB0.g",["1283c18b974bbcfe18d91f70cf07c708fe0d942038876788fb51b35e45d811c5"]]], ["TOC",["matalg","lin/L297/gap0/L297G1-Ar98aB0.g",["50712207044ffd6b14af9e73fd1d81205e9bb55c870d9f6147977fb1cd713d19"]]], ["TOC",["matint","lin/L297/gap0/L297G1-Zr97B0.g",["bc1710daf9a7266857e0103c63100d3cfb5205a746b628066466346d91f7fb4c"]]], ["TOC",["out","lin/L297/words/L297G1-a2W1",["19d3321a8bbd1dbdea71238d4f168b8bd34d87ed47f6ee8cef796663c75d92e6"]]], ["TOC",["maxes","lin/L297/words/L297G1-max1W1",["64b76f620cb2407abd6b66308d0dc45b1d710521a4303c8305a3426bbad1efc5"]]], ["TOC",["maxes","lin/L297/words/L297G1-max2W1",["f19192901e97cb46ff0619bb1cf5605d3a3611bb7444f3d579a9b32cc0d6c8bd"]]], ["TOC",["maxes","lin/L297/words/L297G1-max3W1",["1797d1241237a335b9421627953de34b80ce49056638e12ca786597d788ac077"]]], ["TOC",["maxes","lin/L297/words/L297G1-max4W1",["5f7d4829fa3189dda97b1e3cbf81bc834f2ab8626145ff9bffbfbbbee0aa0cbd"]]], ["TOC",["maxes","lin/L297/words/L297G1-max5W1",["566faed929d838330200e69005d904e10b7690043634f53b1b123f5a5753d1de"]]], ["TOC",["matalg","lin/L311/gap0/L311G1-Ar133bB0.g",["ebed9c7b34faec1632bb9826f35ff7861520c85db0543a44ace5ed81dcfb7ba9"]]], ["TOC",["matalg","lin/L311/gap0/L311G1-Ar133cB0.g",["4168df5e68fa6bd8def7b865ae500de6308d8c116d606a01ff65ded7d0498c1a"]]], ["TOC",["matalg","lin/L311/gap0/L311G1-Ar133dB0.g",["4f762d6076895548e828d2549bbfa36e23f5f424a9e44f517bf8800dc7f44250"]]], ["TOC",["matalg","lin/L311/gap0/L311G1-Ar133eB0.g",["cb494c983551403213ea32e0c5357646237d8cb4df719bc494059642b2343a21"]]], ["TOC",["matalg","lin/L311/gap0/L311G1-Ar133fB0.g",["d07465d2268ccc69e8a9e968995a47a391157669551ec0070c1debd1ccaad5d2"]]], ["TOC",["matalg","lin/L311/gap0/L311G1-Ar133gB0.g",["8e53bfc57e9396d0fb365d56374faa7e5807a2290a6ff858f1a68f2f678839ee"]]], ["TOC",["matalg","lin/L311/gap0/L311G1-Ar133hB0.g",["36648201d7e9748576c8cb561f913ea0caf1a9c3edb0273349f0091febbc2572"]]], ["TOC",["matalg","lin/L311/gap0/L311G1-Ar133iB0.g",["c359db84e9ea1498e37cde6d0d88fe36dc1740a6f4d97ffa24f37362adcf4032"]]], ["TOC",["matint","lin/L311/gap0/L311G1-Zr132B0.g",["eca2a6d634db09d339e4587ece310deb021e47f1ba13ef40e23472c1b4a8e521"]]], ["TOC",["matint","lin/L311/gap0/L311G1-Zr133aB0.g",["c9ac24adc385d073e729b9b51379a0ef3a3a122067cd9ec1cfae45acc4e03fd"]]], ["TOC",["matint","lin/L311/gap0/L311G1-Zr532aB0.g",["f40727207578a93122dbdd24f3dffcbdf5e64f030bffbdb56ea4f1491e1e6a9a"]]], ["TOC",["matint","lin/L311/gap0/L311G1-Zr532bB0.g",["1c223a887828d4ead432dc0966774951571eb2e41e9ec743846530ac37d82e16"]]], ["TOC",["matff","lin/L311/mtx/L311G1-f11r3aB0.m",["62178b7289f6cba8507942488437ea9d6f4d5946308a0494550d2ce06de6231b","c056e4a9fbb778c959edbc89603004d905791e0b262dfd29a843914ed55ffb7"]]], ["TOC",["matff","lin/L311/mtx/L311G1-f19r131B0.m",["9246b01da56a64c22adc31f4ccd90a3ed38ff9b619ed0f5bcd5cb57d281648f6","2b61d3c486384b58af467828435b240c864f018b9baad57bab590164724e9753"]]], ["TOC",["matff","lin/L311/mtx/L311G1-f2r132B0.m",["98e4cc3a1f333a880be2da52e2f15ecd043df3d76782f5b2ee5c03fb19050085","4f81b2b6b4440d6661a1fc988decedcfef3acef72eff5dad2e7b43ce3895960d"]]], ["TOC",["matff","lin/L311/mtx/L311G1-f3r132B0.m",["bdb1b51b0c3054d5bcae5749aecd8c8587285c3e2a20c547d1e4df83ed54f84b","104fdc06344c9aa0c31dd8ce69b32eb4e103de015ac0170d42dc8a5aa822d9b8"]]], ["TOC",["matff","lin/L311/mtx/L311G1-f5r132B0.m",["46a9e57cdf0888a06015d1fdd866b42eb96ecdc3d69412c1566ea3f400538283","e340d79770bc62ec0a4943b2f8f2a964db24096af6f9d2a59ddcd836cd76537"]]], ["TOC",["matff","lin/L311/mtx/L311G1-f7r131B0.m",["c4444019b8ad9b12326f7373fe3049372fd14d19ad2322e42f7b2156e6b1c5a1","f78be6dca07fcff5a6d01d806b9aa9288c628d54ab3b5af7f6a967a5a1fe1c45"]]], ["TOC",["perm","lin/L311/mtx/L311G1-p133B0.m",["eff394bbc01d3b7984029494ff2341356b1d5c5731ffe5e0967046dae59416f2","41a6387746e102c43e884564a6611d23513b4f0b4fc0ba9383d2967a075c9677"]]], ["TOC",["check","lin/L311/words/L311G1-check1",["2f47e4973bd75b10aee44eaac91fd9ce9a1b7f4006c78a8ed0c814cec1e1593e"]]], ["TOC",["matalg","lin/L313/gap0/L313G1-Ar183bB0.g",["762377e1709b208b05ae08eeaf6b8b5c01165d00baef33fce9cc5a5cc19b81d0"]]], ["TOC",["matalg","lin/L313/gap0/L313G1-Ar183cB0.g",["24f2332bf56da28407290bf9547fb1c4d673d0c299177bd94e363e726d7a1724"]]], ["TOC",["matint","lin/L313/gap0/L313G1-Zr182B0.g",["152fc91a51a936fff5f9fc34791b4b3c42d83d90bd81e1ac3632cae3758ae5f2"]]], ["TOC",["matint","lin/L313/gap0/L313G1-Zr183aB0.g",["1f2133c3e439136aa6df828284e2feabde19cbe2125afeec1253ba80c4719712"]]], ["TOC",["matint","lin/L313/gap0/L313G1-Zr366B0.g",["e14e4dfec36448fa3ba653cdb3ce7dc79dfcd5da30bb20991329feae11e64e50"]]], ["TOC",["perm","lin/L313/mtx/L313G1-p183aB0.m",["4b3359d22a6d7842bc13545dd9889e4aeb1ccb402cae39f42305c9f827797595","b840fbc27a7d6470b9aaa450b69846107a209f4683783cb0d29d44c58f2e3d56"]]], ["TOC",["perm","lin/L313/mtx/L313G1-p183bB0.m",["16ad4808c0f0d2c8ff1360eb48793f357c59a1549179d2bf21965b30cccef683","20b51a65587d52d35efe3a03344495936ea789f17f05c4313d01305d9ac3b036"]]], ["TOC",["check","lin/L313/words/L313G1-check1",["fa1b29852f23c9f05a96710720e673da09a4ec7944450e31dff2e82da40aaab6"]]], ["TOC",["matalg","lin/L33/gap0/L33G1-Ar26bB0.g",["106cb153320f39f368aebd4ef3975b2df06792760b51cecf8ff48825f8baa880"]]], ["TOC",["matalg","lin/L33/gap0/L33G1-Ar26cB0.g",["5914674891cbff27cba0c20cafc9f0027900b8f23fe81261dee27ed8ca5ab8dc"]]], ["TOC",["matint","lin/L33/gap0/L33G1-Zr12B0.g",["4e21d1fc1867d0a905d601b530340733e2c91908d64b1690699d00977fd55760"]]], ["TOC",["matint","lin/L33/gap0/L33G1-Zr13B0.g",["270535ce6b2f39d8f2471634aa928d7ef3b21e28ba9faba8f9709bd813b6a435"]]], ["TOC",["matint","lin/L33/gap0/L33G1-Zr26aB0.g",["3765885afd761dbb81f9e3096809a83d9e024c0300024133644b811ff4c4cb95"]]], ["TOC",["matint","lin/L33/gap0/L33G1-Zr27B0.g",["afa054c7ff5c60d9c7b875d084e15a499e149f549acdeab711b8ce8639700b9"]]], ["TOC",["matint","lin/L33/gap0/L33G1-Zr39B0.g",["c3fe4447e6ad5f284850e48034c546f28219f3203f16b2cf18d9625c90eec8a1"]]], ["TOC",["matint","lin/L33/gap0/L33G1-Zr52B0.g",["c955183a5690a4da1913cba2a932e65fdbf4e5007c7df2cf58e120614fa96115"]]], ["TOC",["matint","lin/L33/gap0/L33G1-Zr64B0.g",["56cc4f2ae31144e0b32a42fe97fe7729abaf28276bce04b826b22a9783982d14"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f13r11B0.m",["f3653cc6bd17e8eff4aa7be919b5c6f6dcdd38fa8cfeb66cbe4eba32ca90d1af","d30248a9f6b8889c44df88d78453e3a748cff144c58bce3048de450e67fe6cbb"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f13r13B0.m",["53ee57499904c4a06f095298ed757e95f5a5a34ce1dd8355af9cd7eee1542ad1","a0b93228bc5722ed4604d11ccd363749e1a49c66bea14d394086757cf6abc152"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f13r16B0.m",["2f49bfcd3d583a130871ac19ef0109717f868a3397d2bea250eca1be46bb8dbf","2e0f0430bc1b73da97321f1a7af76864ddb559d4de23fc7c77ad2963c1654159"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f13r26aB0.m",["474deeb78b0b4a2f8f1d8ad6e266e1ab6f76adcc6848734e8d1ed012d4527232","5e4d14b4d728770d74767ceb883ec70ae9a58b240af0622376693b3f83362f58"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f13r39B0.m",["25c36214cef55160192e1355dd9ec5ecc8c607b7ab437d77b0148c8afafac4","cd2dea01bb0b60b891b502658e2999d42e23f188ea133590f17eab41b9381c97"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f169r26bB0.m",["189f05048f76f2674809e69e18e08b76eccede2851f4f707a73f71d17e804940","4bf72e506e3f97b7347d968e7997289f7e9dca796a7c17021f4fecdfc88e9f79"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f169r26cB0.m",["2f1c987ba321a86995a6d0000aa5ffb636aeffbdd928f0b76b6ca75bb4c45d8","c08444e67175378a7e7e242f6f11b5c7edeb2274f85b489f72bdaae7b0dfe136"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f16r16aB0.m",["3f999b797a28cf50a5f5daa2f524d09ba065577de39dcde2b5c803e4061e1868","f3a1f9024e96b7fa2b7ea5422b8e06eb1e4d489c5f06f017993d171118f8dfb3"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f2r12B0.m",["160f898f7be723fe9acfcf6e98eccd933ec2fb585c78feda0025df8acf5447bb","23ddcb02bb86293f0e9dc9eaa02200efa891ee2670941cf648c0f20c6d2c5525"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f2r26B0.m",["d2716779fa67416775be05e1ad7ebdfe19e335e88b02631b08b608b08fb3531","a33e99a232236c3c42a5336070d0d2d4e47ee43b1d7475dc121cfd435f0d82c3"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f3r15aB0.m",["34eeb91205b198f4a5ffcaa48f12caea9b62c32f58a0f09578403c77d2d3eb2b","3b356224554c0bc0a40ef0c2e5dbd1a98719b659f001f0ec8104261caaa66dd"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f3r15bB0.m",["10c7dfec1e8d129c268d372e16e335ca686b68fed2e64ae202ded016bcd0e551","85030831d07be4e020969af407699a0c4a4ecf1642b65221c2d96bba30f502cd"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f3r27B0.m",["6efe1c1f100d99ce5cf7d3a58dadde03881ada62fc310dc437deef47cbaea17e","5e7b1add4b4f807fc320d0d3353a16be427fffbd965dccfa31949f989bb471c7"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f3r3aB0.m",["3e121f1ed447d63c175092c8bc976c9986650378f2c7b0802bdcca6e373a3393","d71c835a9d09e7f7e4463d74cfb99e30fb0e6e72ad1cd626e81f8c7ac044b904"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f3r3bB0.m",["4f6fe29521f7ed1f3d84c63ad1d6d50d3a270fc2707ff3bec41babeb2922727b","d71c835a9d09e7f7e4463d74cfb99e30fb0e6e72ad1cd626e81f8c7ac044b904"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f3r6aB0.m",["9d1714a255a274686f5ba5b4192a467b966b79fedb14c3cba097eb50d678969","8d8f129353ae190638f5c1eaa9caa3f53cb77fe99f2ff89cf7205a16f18c21a0"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f3r6bB0.m",["267791f991e104fcc622574abdf9faf87aeabedf191eb392bb2313b0fa590583","6388dfe13860b7400b1209ce0ed57dea2696ce950d122286b777495ec1ede729"]]], ["TOC",["matff","lin/L33/mtx/L33G1-f3r7B0.m",["cbc7e46aba1dbc50fde5ce328be26ff68722bea4d73f12495ceaeca6716acc39","63dc847b26261f8ad34cf77b19acaa133abf55dd089ba0475dead6e937e3ed3b"]]], ["TOC",["perm","lin/L33/mtx/L33G1-p13aB0.m",["a2a31883e680e21a520cf82c861eeea0dfd39c5648793f5ac47479e0f0eb3fdf","df612de81aadfd7101c9a422d5fde741e8dd2bedc29cb628a27c1864ac208e0c"]]], ["TOC",["perm","lin/L33/mtx/L33G1-p13bB0.m",["869ac44de2be69adfe53cb26c7feec659c4de3098704162ca1eebab6c8893ff7","9894c5b9e1b3faff67b353b04a16dab9764624c2a0bf755c6fa81da27bec0dbc"]]], ["TOC",["perm","lin/L33/mtx/L33G1-p144B0.m",["9bbe0beb1897e933f8d4cdfb405a70d630b059fc583f72ff2380374becb2b155","cb094a2658a149c752987f20cd9abb0025f6ef418bafabf30f402508cb33e2df"]]], ["TOC",["perm","lin/L33/mtx/L33G1-p234B0.m",["a0b6435e834ef097cf1d33f4d8082c738345b368d3ab172b56fc3478ffc672a0","548b89af9b9494ff4e38b3ae9c74c63f055e273089a397f920b876e88420e4e4"]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f13r11a1B0.m",["1a46fb010ec9650a71572b699248080841f40776125c7d323f77ca89fc210826","83747b4a7fc253d7716972df85c6cbadca47f4ea1424b134033764511bf358cb"]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f13r13a1B0.m",["5a05910432da160fcfda8dcaa7009f046da527a06b97766ed97cdb2d512b5c8e","fd062a17d0f0d082d7322ad23b7fb9bd97d8c8a1da1eacd496f707d33d276957"]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f13r16a1B0.m",["a3a41cd1c22b162b287f2779a9cec7415ed11bb7837461a487b514c49ff58bb5","3e9cbd88635e6a6976f709efba8e6ed027091d4f52d243acac6575c83d0f06eb"]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f13r26a1B0.m",["27f7fb04ad5bcaea2d88ea753cad55728fcbcb4b5acb3f2a98ce103db482ebe0","b76aff2c36f524142794f311a695c70d73102407ee554f854840f81c3d42ddf2"]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f13r39a1B0.m",["33c34fd6d14c9ad0dd1bf027e7a4a08d94595745df87946779a93515068d9aba","5d95cf1294dd90d8b5e9318c1b43f6e179cfd57f89aec78a58e5ea3e9424550b"]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f13r52B0.m",["707d722186b76ab4d6e18b3ae833045c2e0629846b65c6684f974a9aed2490a7","cc331974ca77c27ea3e534e9fcfd7692a3f2571d6b8921af652acaca612c456d"]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f2r12B0.m",["76ec6ecd487c7497129f34c8828bff0b58a9643a0c7178d0e9bafec9d8149034","f443ee23cbebecf772527466c9981aa0a06cb63f758dfb66785e27770ba4b998"]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f2r26B0.m",["57aac3a66cbd3c2b5fc36925afd8111694eb65b4e0344032912ff8a6f01d270a","b68abcdf535f676be5286265e6b629a69b2d92f09dc5cf68e64d6d605bdb88c2"]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f3r12B0.m",["3a7c82cfaa3e29904aa2cbeba721bf8574708be031cdf545a97babc133421652","41e1120b8b875b0ea389eda7a9124f97c02f5a16b62536a9fc509171b42300e8"]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f3r27aB0.m",["94f06fb54ba63ef1d575bc5a82cb7a69e0df39eacaeeb6ff0d0c92e00ec1be0e","1b0c1d04ead249c3324af68936d55765bee037ac6653af364edfa1bf0d0df0d8"]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f3r30B0.m",["22a8a3afdfe54639254cdc32ebaee0b43008f74c5ce17f0aaaf2c731aecbc853","35ec4082ed6cac81dc3adb265f252f2544dc6d5faa7482ca740af4710c9e2a81"]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f3r6B0.m",["c1b728c64a64cd26fbd004f0492c8e55250dd9bae87593ab9b3099a0661c91a7","a26465c6d46741d5eb1429112f93035e89cf05fbf941e7a28d152d0b800a7de6"]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f3r7aB0.m",["1af46eadd7a53e6eef1eb64a99630563198acc194c6e1a4895bf64dfd76feccf","ff7ab9be971a4c5779f88633625ef6f934949db619a2f2d3814c445449e1819"]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f4r32aB0.m",["fb0364b06ef96f1965496bdba6cffddf364a0c0d814eb19428e4ac77a563b834","a9f2a67c318930ff350193d1e3b3a5373b9e906ed8fc12ffe8e5fa9fde499028"]]], ["TOC",["matff","lin/L33/mtx/L33d2G1-f4r32bB0.m",["22bd5cd9c4acac77f795da831a3a6a3445c9f1569be38b2179d69ff78cfd4f6e","a47e78d56d8f90e6cc88745cce0648f3b8c66e6c5b9e32337f5252bb219b3ce0"]]], ["TOC",["perm","lin/L33/mtx/L33d2G1-p117B0.m",["2f907af72fb852292f6b2ec80c222ed64a1ae5150f3877a1e129f697851bd8e7","d1bab0a31e95e32dac5fb973d358a66abba03cd1e831fa7dec94264ef52663e7"]]], ["TOC",["perm","lin/L33/mtx/L33d2G1-p144B0.m",["14d6be267394021422fc5cf02636ad3610fb21fc073fcc8c9ecadeb2221b4a0d","9d1ac9521d40454c1f75659d72b48266cba65c1d9ddc3448a3b55c6a7ebe54cd"]]], ["TOC",["perm","lin/L33/mtx/L33d2G1-p234B0.m",["c63581ac0a066240655852f4351a307623ac2fce76861ba54661f424db745830","8a19aed32c200e14435b5ef02227aee0b17a0eb17dd901b7782fb5e6a63b6e4e"]]], ["TOC",["perm","lin/L33/mtx/L33d2G1-p26B0.m",["b82c928b75c22af462fdb14d92964281051c2a1597a4f6276f7f17754c2ad132","43115a72ab1374ed7fdeebc49edccc3f9015df7887b54e9589e8163be65a36a5"]]], ["TOC",["perm","lin/L33/mtx/L33d2G1-p52B0.m",["cddca84ef0c001367282a739c772456dfee829786736e96a8140a8543bed6da9","60481d2c74071f338736ba27b8ac611e3f428563afe30b68347b896b40a6c705"]]], ["TOC",["check","lin/L33/words/L33G1-check1",["6dd37b297d5fb3c1ed99000587cd5481a3f1ad906b13b1e0850c366c3fd956ff"]]], ["TOC",["matalg","lin/L34/gap0/6L34G1-Ar6aB0.g",["d813c78f0894d385623d2c16bd0bf7743481d537bc18473a580f5163c92e5d0a"]]], ["TOC",["matalg","lin/L34/gap0/L34G1-Ar63aB0.g",["5675e065e88cc7c7c9a9316a17e9207197c316d9fb0e178f0be2e4fd37318c3b"]]], ["TOC",["matalg","lin/L34/gap0/L34G1-Ar63bB0.g",["d92750ae37c470389008aaf291d300c371f9b395bb05559828db1a1e8a62c28a"]]], ["TOC",["matint","lin/L34/gap0/L34G1-Zr20B0.g",["12cff36f5e81912b491c15bab95d2b98ac859e1fd169f0bc319863b3f9b5de9c"]]], ["TOC",["matint","lin/L34/gap0/L34G1-Zr35aB0.g",["b9b0181eb8f0cb919920698dcc55574b8d8d023ecc3efcb6f769db8d795e58a0"]]], ["TOC",["matint","lin/L34/gap0/L34G1-Zr35bB0.g",["f7f05cf91a84622d63fb8f9b440e5d6b57837ad5662bb1348d0f3eb3b27fa000"]]], ["TOC",["matint","lin/L34/gap0/L34G1-Zr35cB0.g",["27cd08ce63c097792fdb54beb912677a3c8e4e283e347496fa5fc6675dc04aab"]]], ["TOC",["matint","lin/L34/gap0/L34G1-Zr64B0.g",["ef81bb3ce6b4e072b8058d11192b2b15c79a24d34608fe759d92b741063a2586"]]], ["TOC",["perm","lin/L34/mtx/12aL34G1-p1440B0.m",["c15ecaea6a121869e4ef75b4870ce7cc7b21ba692930a8faa5ca57a65ace1145","35020773e5ac7b20ba352275158f1ce2d928eec1a17bfcabebf473b23944862"]]], ["TOC",["matff","lin/L34/mtx/12aL34d2aG1-f25r240aB0.m",["beaf2800f25b541a2c2dd97a258a23c5cc8aad542d2f363723b70ce83327385e","4238ca56fc0e1082fa631ba995406aa41738d2282ef7c782ef18265bd81341c4"]]], ["TOC",["matff","lin/L34/mtx/12aL34d2aG1-f25r48aB0.m",["a024f20121fa4609e692ef5a3204127a7b8c2509e8bfe925992a8e16aecdf34a","361662500378f4bd30804ef3953ae4d48a3e7ed13cdc00f9b4dc9272814bc04c"]]], ["TOC",["matff","lin/L34/mtx/12aL34d2aG1-f25r48bB0.m",["788ab00a75df89c54f875b7a3e7653c92f000113e59dd472ec232491d2467a5c","acd65ce6fd9445f8f08d76b98fa0c6a349e983eb4d6ebb5ed777887514206114"]]], ["TOC",["matff","lin/L34/mtx/12aL34d2aG1-f7r48aB0.m",["a4acd4be487696c670cbe68f11a28d485b23baa051dee5da0d531064bd9f7535","9d177823187019aaad17225881a18e5a8562b3884c3f897fc642516808579bdb"]]], ["TOC",["matff","lin/L34/mtx/12aL34d2aG1-f7r96aB0.m",["8c14f8353f76a68ceec2b170c23605719869cb0302e1f021835915bacdd33433","4fa31505f646b7869bec8f35ac0e4a166bc0243e614e2e2f7eb00245e8de55a9"]]], ["TOC",["matff","lin/L34/mtx/12aL34d2aG1-f7r96bB0.m",["4175dec43e944912535fc8fa12d43914000c8a0be7b14d2cbac758ee0ab2f102","1eda8f84a98e484c1d0c126c56532552b79399058881e31136a1fc05d47ae320"]]], ["TOC",["matff","lin/L34/mtx/12bL34G1-f49r12aB0.m",["18dfbc8591bfb42794d235a53ef1d3e1a31548bbb385399c56c0cdc80457c08a","27fbc20b174992e0fcb35e91bd6395dc4d4912d68ac39d0135319419778aa1ed"]]], ["TOC",["matff","lin/L34/mtx/12bL34G1-f49r36aB0.m",["ea76e8e8576f69037b42afa36841e06622cab028e201b4ac9bafb00a867206a1","63aa27407f92f054e72958100693115c6f12e9554d288f49e6462073259533f3"]]], ["TOC",["matff","lin/L34/mtx/12bL34G1-f49r48aB0.m",["d12b884c60b5926ec58304083c3edc93432654e703b4459424b4f145300041db","6e3cb3b2d815d24b9308c7c3b2bf2b63f9643cb8a2bf62fa4dbc549d45ae6578"]]], ["TOC",["matff","lin/L34/mtx/12bL34G1-f49r84aB0.m",["c2df63ef03e68c3deac3fe72b8616dd2ee06846f46f475be9c244189d0b9c2cc","d01aee0bb61f17077ac8ebcd1f66ec0952a8b7eb66538705f2ef97e4e5b99332"]]], ["TOC",["perm","lin/L34/mtx/12bL34G1-p1440B0.m",["ad70feb8c46ad3f7e45b5c6cc9b5245ca4f2acb389bd7883cc80cf3ae431c26b","ab47bc384bdbf1dd5ef35728e9915fc4ddad7678c8304368ecb7b83f624bacdc"]]], ["TOC",["matff","lin/L34/mtx/12bL34d2aG1-f25r120aB0.m",["2c3f81ab8f30332b3bb92bf5ebeb892801bcf0fef4a8f5721085e0d443c1aa95","df4bcea392240840b6bf385d0788b7bfff099db17a2a0bcfc3d546525be56dbb"]]], ["TOC",["matff","lin/L34/mtx/12bL34d2aG1-f25r120bB0.m",["ca217b165144da86674e9e609eeef655f80cc9648792cd2328ff4df9eb8efcef","2317152a10027643d384344f69d6ab5f96124bad6c1d16e70f727557406af0e"]]], ["TOC",["matff","lin/L34/mtx/12bL34d2aG1-f25r72aB0.m",["491075d2e0b1a87371bb7e0c05c33eef547c369af0dd9ee86e85dcf5f5d9988d","b1c18d5769ffae316e924c096080d2044274ba9b2bc26f935a57bd8ffe34f4d2"]]], ["TOC",["matff","lin/L34/mtx/12bL34d2aG1-f25r96aB0.m",["5e5c752dac626830f353a4fa74c84532dc1d4e1b2471c9525022375b53ade26c","359ca00d691e1811573c5405c08ab34e88f659cb2e396e9a4570ba61cd8704e6"]]], ["TOC",["matff","lin/L34/mtx/12bL34d2aG1-f7r168aB0.m",["1f5e75c1db0358b8076decf8cf528c04edd5227dad22071ae95ab62a0858436b","18adf6c6f2d2486d9d51a64d74cdfdd4192de402045316405431af66e34d5170"]]], ["TOC",["matff","lin/L34/mtx/12bL34d2aG1-f7r24aB0.m",["8bc5e0b84d3985001c079dccf1456e191c84f9c382649743073ca4966e5e6519","ffdc128383ee2c8039e1c9f063ec790d0b1d402a139d34e08cb3a1e9e690e314"]]], ["TOC",["matff","lin/L34/mtx/12bL34d2aG1-f7r72aB0.m",["e5e942a66cdfbae0c51d26b7d608bd92b57ed1c90053341a30747a6882f0aa28","741a829f4c42139022ec8b39404b5fc0476c9add2e25c4a0ba781cc57b4c3644"]]], ["TOC",["matff","lin/L34/mtx/12bL34d2aG1-f7r96aB0.m",["5dacba330736b404311f8edacb1797784c84be2589c6bc7e587711df07935458","c0963d76fa504993f0dc0d7d007697f3b59d28579f36435e9b7b0aef8b7b9853"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f25r10aB0.m",["cad9fd33cebc1474bac640b7804d7bbd285d9564ca4c31f8a723001f64fc5adb","778e5814eab0c42c613b01ce7c753f025e35c8912554dbefed1dce85d19dee27"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f25r10bB0.m",["e1c5fdc7b04b5fd62a31da524720ea2be1f9caa24b7ba1d00e7954a4980141fc","101e7458348f749ea6ddc19aba813e6a35b39d91479156a9de879f653cf5bc59"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f3r20B0.m",["7a4f44e4554a847e5d90f4152f652c46fe46675d872f6419a500292266b96660","2b7021606047298b5b9fe1ca0e3f4013e7e310126c76ababb524af19deb153df"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f3r36B0.m",["405c16b4211f4ed7217e2377a692072b4c98dc0a721d547e077b4b3335dc8cbe","5f89c41e7ab6eb6ccecf558a578daacf43c2c12342e20cf4aa3d7b8369311e9a"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f3r44B0.m",["5f8e6e182bf1278d71de6e105ea0aa480b301cc015a41ec649be9d467384abeb","81b6a97136f9a3ddc25068cc8fead85dcd279cf554a06f648b34814c1a8629b5"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f3r6B0.m",["9f9ba38de3a02fd5f3f027930247c946029dac987a7fc5ac03b5720af9f2f319","fa2b53b590dec1cb46b8f832980f71387576bd1241b8ccae305488fa271aaf4e"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f3r90B0.m",["c55eece6f0d074285bb1f000445864bcfd2ce4fd7428a64488cd962c0f5ae491","8c2f4dbd74e7dc3206baf52b5ab62984138236daf66129a6dde22fb382cda1ff"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f49r28aB0.m",["a239edecf44aa425837f272738fde49935c7881aaeaa73a6e61e955618fd210a","8dfef93282a722c1b50dfe25cc684a6cf0b5075be733b188ee7a52eb158e1e8e"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f49r28bB0.m",["f7db8b539a374fd0481b6c27d02fd6018b2b51da3e5ef86439658258d19b8810","e4d87fff16b488fb1da93712194b579001a2c3157fcceb70d8bc0b27d849db56"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f5r20B0.m",["7bf30e303b555205c54d45216ba9bab0b6ad464eaffa369d5a1070c26c73fdd5","cb1cfa732bb4ef9aee56060898bb1bbb563e8dde3e5776427b893c95f341162d"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f5r28B0.m",["2178e686df9c1c124e5f9070de6a616042bb1aa1ab6e2d89eb57b7cc4d6ade2a","9d63154386955139c338c2918e7bda1e41c5f685e8b326c9ec1e71f3c03e41e5"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f5r36B0.m",["3fc24a296727221760b43f62182378d3b44a800bfed53f314c8ba07c00be0f30","217889c776945c94e7100ec8f8a9a22f7eedd10a6485bc2821dd641a776439c5"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f5r70B0.m",["269cee1de773470373646f51a988e61f68704199c4d2f8da84c4e4081ef8e9ca","e456f29f56c4e25529fdd454866a445b4fb5bca667182700894b657e04eafd96"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f5r90B0.m",["1713f0c534bfdfdebd39b4f891ed0894b5706efb62d0be5a8564a698b2746fb3","4e81416619a9ed925fa9b673200a471079f4c06678a3b25e333849d82a4617f7"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f7r10B0.m",["ada4b828e4d41ce72eb5bd64c12953e4d354f5aee05e9b28404372200692c288","402064df97e23e8403013fa80a04f7ed2e69dc2b9083dd588083f3d8e201e2c1"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f7r26B0.m",["9e86dc9062a6918ee97299fb0eef0a5d0cc70296784a3e73ee2c27509b054d9f","93bd7a978e92323e265058344689935776c25e467157de555fcdb940ecfe222d"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f7r56B0.m",["2e260987065052e668ec02259f60cd23b2ba7e706a28f4f1ab733d707a93a98d","3e8b98409eb86ba51cf415bb6d15cbf1bbc7e9f864615e9411ed349d0aceff8d"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f7r64B0.m",["8d6e8cb31fea6f90a60ccd009c572456e2116fbb84adaeeb023d4cf07db72eb0","3abf86ac207042b0de49f65c43d0c0f835ea2413fbdaa3e52ef909d58a644652"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f7r70B0.m",["7311dcf006057ee24f35fa31231038af649a15e10fa5ff350ecae637168cc54f","155b60abe399086629bc28e350f94ef2c8bc2965268c312460137cc5ca0aa891"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f9r10aB0.m",["6c58ec6d361b439e182fa01f75f67ba6bd916831ae40f61bd63fc4eb5c5a7c21","c98922137df234987e3073fcf7bd175751e10809f7a514cc03496aa336dd14e7"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f9r10bB0.m",["ff99a6d58294405d30038624974902d107597026cf91a05248763f06e7581f67","37b0e7bcc4676dac84cf07db068edd97b17b6766babbc8680be8ead7951c7af2"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f9r22aB0.m",["44ad3d81f9a700e495322698a9dc6d1998d4f9f24e8336b40f455bea12575f49","796fae8a72bba4425e6b8f0d3f8875c29305032a3ffe1684aff3b11a9f226bc7"]]], ["TOC",["matff","lin/L34/mtx/2L34G1-f9r22bB0.m",["d58c86a917baa3ec601841fd3ace3c2a454324f0dfc6be6edbcaf1f47d6aaec0","d44f82f3c2a20653a42932d25b46f43c6f18cb8f531057e12bffa9a713a95620"]]], ["TOC",["perm","lin/L34/mtx/2L34G1-p112aB0.m",["405cc541bd8af890c2d234c9065273316d1a98ed0cfd52edcb1e1735ee6043ad","a23f7ae61f9c1cad230d864eff30a5faa1ff13da8df5f56b14ce643aa2c406b6"]]], ["TOC",["perm","lin/L34/mtx/2L34G1-p112bB0.m",["763366139dac25a1d65c30058abf4272f9b5a6e5448ac0a8b7f2da18def132b3","af885715dc20f680585663ff8826e3dba707b10179bf26bd10e57cc431f8449f"]]], ["TOC",["perm","lin/L34/mtx/2L34G1-p112cB0.m",["dd3cad8a219ca4e4df351df3f63bb3ec547fd381ad052dd8a1fe88bd1cdd916b","5076354b116b5b98ed381ba4029f9ba54efbf41576731f51135d939d3af3e179"]]], ["TOC",["perm","lin/L34/mtx/2L34G1-p240aB0.m",["3995d6149e39b06ef5cc5abbba7b10dc8e0df29d3ad69ecb4eead1e95996c042","a7945ddf949d524e1b434897c7a48a68ccc8a1b727f707f944757e2a855a859c"]]], ["TOC",["perm","lin/L34/mtx/2L34G1-p240bB0.m",["812e97a96f242fd8e999fb0a89dfabd5af78332f4de3a4d021746fe0e87d05d3","c1a961e1ed81fe04b5dd09bc56e7b511250cbfc8dccee2ce49c59da111122df1"]]], ["TOC",["perm","lin/L34/mtx/2L34G1-p240cB0.m",["d8f3f0c52820a255a255b3440cc68b37777309a141b17e36079464dbcbb1ad8a","228ffdd3df2bea6a73562622bb7b1e0f90c3ff9972d7a35c79f712e2cda195f6"]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f25r70aB0.m",["1fb79a8a90c0bb06a59e3adc7a89e3e5d7150dedd1dc2dfa1bd2a8b1a6a09a66","12d3f813badb000573e24f5c454f0736f28ada377c7b74f6bbe1ddb84e9aa02f"]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f25r90aB0.m",["fe5d1b7a40e41195d002ccd21603c752aad2d3ec399c4975400ddf33cb1bcfa7","33d507b084c2dd3ac2b4e8fd00001426416b88df58cdc63df29e37333b3a66e1"]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f3r20aB0.m",["80f70424875e03527f1c887bc9ce2732dbbd5eeb3f2a1e68fcd5ea202759a236","1d08b3eca14ee2007bca9d8e80742530b0b6fd01860dff01430ee0cdf344d52d"]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f3r36aB0.m",["7314c71f0425a55f78062fd42ca4488fbb78c363e0a9cfb3de9f55bf985573a2","77f0c7aa93cc0a330de4818bfcfca9cfb0161643419d2293f53b83061d7b9cfb"]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f3r44aB0.m",["4d2cff3cce4ad33686dd08ef82c84bdada82bd3744b4382cc4da3f3647af0e1a","34301f85b1889c5cb30adab4b9271ba4f1f4bb762c91d50916cc768d3f266119"]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f5r20aB0.m",["20bf1ad67be3733a86fe85547ad02d423792aebc9bcd6d6f17aab7f4f044e3f1","c44c0b887e78f924cf9aa64b211855ee5712b6ce3664369f79f1e386287c841b"]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f5r28aB0.m",["569166c93945563cb28463d3fb60217198bfb1423ca6c4c4fc4c2cb883c0c7f7","9cb21a14251e7ac8692868751d541dd401adaa888c47f06fa6f25d64e43c2c89"]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f5r36aB0.m",["112312dddcac0553bcbbb2d899927c34ad8e20695a815c10090a018ccafc88ca","564fd3f8bd531f378ddb83fd855126aa31ae654ff9703e7910f2e2f5227f4276"]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f7r10aB0.m",["d1377822ca2122b3c46a87ae0b258bc868a21ea4639f305ebba831241111d36a","5018b888eeb587e90c5d7d0ed0f7129c1fc20c4f6fd8ac9e91e8ac96907897fa"]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f7r26aB0.m",["a8d6ac5e1f79bb73f9d7beeb94f92d3ec316059e363c4ca2436c9e5baeaaa7ca","50b55fc64f7b6644804518593b5c388713b70aeb7d1e74b576289057ccb4040e"]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f7r56aB0.m",["c12a364ff0e7cabc8b0f48fb374f1794e7c4b77e79bf1645ce25936117aa43cf","3b32803e622cc77a7be9f75770841356cf325c234c61dd45a6337330c06a56c7"]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f7r64aB0.m",["beb824a04b13023c3d9d94cb395584c25dea66345c47a1fb9a23660f0af5e68c","ddb5bb454d1f6d6293fd14d931bd07466081316220a3dd4b2328ff715e759fcc"]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f7r70aB0.m",["3988db92d5379c058854007c6a7c46ee1d136f46d5a338b90f49c6e0a5b01a79","991299af4b4d54baa4c46e0cb4691032299ca7002d8e4505e80b6552440d625e"]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f9r6aB0.m",["5fbc96a50c49e23da541308cb9d54779bcb332fac2a4f9c1b5163a5ba820481a","82bcb86f46f622beb92da69fa36b630675a71475484208cfe511ba20857d1001"]]], ["TOC",["matff","lin/L34/mtx/2L34d2aG1-f9r90aB0.m",["612ef3a6a19ddd139e05d04a42b7ec6a237fadfc2c4262af9eb6bde2c82af784","99bbbf328a1f7813f94ddad94c6a854586b5951bda1ee79ac00819d456f73675"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f25r21aB0.m",["5f33a1d04ca347988e3cc18bf4ed245880daae11cd80cd9fb506edbb497c361f","6dff447256eb81d04a789943654cc0b9dd5a807c9a013f07232bea1690424ca2"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f2r18B0.m",["86a0e98f9b7667ba1a0c045ae86afaf067b41a755473ae3b01256e3985d8fb8e","ee1f773884864b3505d6f2b2fafc7a1af2d8bf3ab7807584d94eab09a8c74c03"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f2r48aB0.m",["53a785c5b988c6a4b2c96cf682ec2ef01c3fa64723982c18bb2457b2b70364d9","c15011c9ac364d954d600c6ba1cfffc15342e2a9d7cdcfa009b115ccd5cd19c"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f2r48bB0.m",["4a80ff690e162cd1cfb9f8a642988c1bd980004ddce5fbceda9f0e25b72e829","12b6512c15121f96b9855a892668bf0a627f921c37eda48b106216c5b501f04d"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f2r6aB0.m",["51ddb637c7401f733c369d831c0029d2cd98880a71bec12e7b92633a6d434a8e","1e3f9154ebffba87c7214f69d980e95af9367000411d4a8602ffd8b50dad208a"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f2r6bB0.m",["ce74c50705c80191e17346b345bbb91e39a7e56f3c0bbf1494688dd61459967","4c634e0b62b35481e49056e2d7fff9adf29126f6b96578d3a0d4a75e6d260a9"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f49r63aB0.m",["154bb324b4dc4d48ff42357272fddb572d0da9814894e6240b68682b78507039","f1b05a2903bcc69c5412e257a55e37df0270764c0a7a7126d6ce990126ceb13b"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f49r63bB0.m",["7150f9856e08783a5e1608e50deb10af071bf57ef07b450102e7c2049b34bf52","fa0233dcac9190651eae24ae33e01fed6ec8437938aab1f24d5f4d19884438"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f4r24aB0.m",["1c2373ece65d755a70be15858b4bc0e8a0bb4084ef8516c9dc28ea885a2b9191","37037127d2d4bfdc68d28c2f40649b8bcb85e656375f77b9c6ce7feb518c9563"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f4r24bB0.m",["c71123a3badca827dda356ea10a754a1fde9ab0dc3739f02b6a5db448406c791","88ab88283d6c03a946257367f02830a960f5ea61dc95dae22b33a1ab89850ec3"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f4r3aB0.m",["407e642f3e7494bdf82ccf003f1565352963c091e816004ca506ad02a80c81ab","9b90ecadc4484d15bb0c8c7d166287a5e6d47f767470acb1c430c649abd5041e"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f4r3bB0.m",["6864448deaa5b32c92b59e522dff6025a5291b099be984ace16304a205f57d2f","9b90ecadc4484d15bb0c8c7d166287a5e6d47f767470acb1c430c649abd5041e"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f4r9aB0.m",["dfa1b233b9822a148e5843d45650b35c25031e9ae90aa70536e7f25193d92995","8da9151e5ca21be5f76de2012554dd6746ffa03ae708c5c53dfee72d3c7477bc"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f5r42B0.m",["b647290dd6171d696e966913b4e2992b84a1a5091ca276f7d3a24509aa7c7901","1a14bbc8be2e42fe3d59bec8c3e94a885108e27bde00ebdf9863ba92a6e065a3"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f7r126aB0.m",["99938083a130cc09593ec04ec1302c8570a0919e650ac0aa9f427a8f31558c6","e29cc2911b85e77af115c797ad2fc4d7a5babda10d25080d33a538f1cdebf66f"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f7r15aB0.m",["c71aac624bb05ccc75b313ffd0c766a21cd93e80630b48302cb6f6f32706d73c","4812ffeceb33c93fcf95a879aef41fe48a8106a5233bb718c85d5f3ceac146ac"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f7r15bB0.m",["dcd0b5ed65a24df71f99dbf12ca8489b4d82c1901b464bd04133d294b49d036","23355ad1db6e11faf155239e8c36d43f58e0ac81130c3ee18600c444a71a5fa"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f7r15cB0.m",["9c35fb50c011fdb028a678b28b61e2b7f070970006c9fa7a7b2423796d793398","b0ac37c77e1b97087998443ef37801edecd8e8a2cae307f16e7f48ef669c436c"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f7r21aB0.m",["c1e2d1884bf824a615ae8571ef704098feec857b89a0731fd3e166242bd15260","3124dd6f3e0806592c9fb56f6fd9dc134943749b89593764af5a7c9df8b2a537"]]], ["TOC",["matff","lin/L34/mtx/3L34G1-f7r84aB0.m",["d5b1faa986665b2313c4f99b8b3b97fc73c906102a8a604a443ad5bc0efb7828","8c4ae9ea1652a409873442c690249102fa284f1e1d4d9c8576ce42aa92e80ac9"]]], ["TOC",["perm","lin/L34/mtx/3L34G1-p360aB0.m",["62f65db135194b8b3fc67920ef0bc98b641799f3d78334a7bb3680eef66ee880","ba4b132875ae2a234bfd996e487a127c7b234f1628f6ee246b050f0d8b413d10"]]], ["TOC",["perm","lin/L34/mtx/3L34G1-p360bB0.m",["de02d9821bbef23cf94601df3837321a0823cb5f33376dc522fd17ea8eefba9","4e5fda369cf75efaf123d60f22c1ab516874a20610a0e4a117773046d2434f0a"]]], ["TOC",["perm","lin/L34/mtx/3L34G1-p360cB0.m",["c9455aabd40c6c88e904151d553d5b04dd619e4d99608735045828838e666390","ef20120b988648711bde8fe95a17ede0a246611e0c1ab745ef111d01f52bd126"]]], ["TOC",["perm","lin/L34/mtx/3L34G1-p63aB0.m",["c2365eab172b364d294dacb0e18c6bc2051d92863dfc08c74ad590d88485231e","106a60f7abf39785dfb94a8aab98855a338fe8cca7876e9185e7826e2bc24531"]]], ["TOC",["perm","lin/L34/mtx/3L34G1-p63bB0.m",["bb456b071d522cb5079f0afd274df4802ac54b9fe41fa72e3539195dcf104431","9656c40a35ce0d24df66139897f697eff3cc38667661d10955f94ba40d2f3b4b"]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f25r15aB0.m",["26d0596e7e6e6d319b2fdffe2b9454d81879bdfdae3a3f8940eea9d1cc9e975f","aa027b10ccc22de344a6ce07929c0a6c079decb1d15cabde945747b89f5f0cad"]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f25r15bB0.m",["71d54015c231359bdc816ad2c3bf2d1b678e89f6cfaab1d4d071c0fb5220112d","f334f969e39175baa45adcef1c87f228cca35d92219dbc8def8f4321cee5743c"]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f25r15cB0.m",["7b025141897647090431639781727f8860d32e29e6b7dd375205b8133f45720e","7baf0b1d22f7f0d687e71f584a8f2196469ecd048b9108b6e4103102d37d3f77"]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f25r21aB0.m",["60598a33733b7567887bc1800add5dfb239cbfe34cea9242035a25d7a5b498a9","2b554e2d78c3ca7806d67b331c3c27552e8ba764e7d3b9937a034ce72fb7d08"]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f25r63aB0.m",["b3c0f175017263b6d4eb20ca091ef255a4b0c53db68e6ca03eef497c7a7b0fd0","85f245dafa303c5898a96fe48266b47ef4f606171661ebfa5fbe078fdcf8f714"]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f25r90aB0.m",["3b177eba453bf54469ed2ede10398781b6085aaa459ffc84e90324756f8295f9","ee8badcafe0612da7b6cc90a4a03868ebfabff306995da0e24f7acfdc356a626"]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f4r48aB0.m",["a6cc3905f61409f5b698f6c7ed9c7220841285e5879ae4c40962efe398a3d5eb","d2c0c0ab23cd5b48469f2b7560a0651af1b1184ebe2d7ff558a7093a8e625877"]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f4r6aB0.m",["fe63827e056eb64c52d66f9718dd8c4fe33174fcabf496b52bf0601df6a11b95","b1b99fc5fa77da78ed60ac2a6f3f52372f2420359a27988191c010aa8c6f2676"]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f4r9aB0.m",["8cc9259e850e320e259ffef073c6a200f883295ca9f683b16541d681db281c03","1cf00a845dbe21fe8365a354eb81a544d57241806291f05689399a074f2a544d"]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f7r126aB0.m",["6604a6252bdcc7b45261758ddf2dcad3263cdb84494208b40ed038346e6a100","1bf61d6236dc625f91db8000e133b5100414eae843501be361f179ea55d4a335"]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f7r15aB0.m",["64e6a5fd7f68067d3371a81dae03d208f672721e35bc0173727fcf31253297c","f4b4680210de4370b0854a2e6cffca2194966286f0995ab3fc18ad51f7b77bc"]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f7r15bB0.m",["e98b6e683fa875b187600eab761b4637592d6575d838f54af1a8de44a31e0536","d8d1f4a4f12c27b1cb68d55528bbf49fbc9a7ac64cba9f9c65c8598831cd4e40"]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f7r15cB0.m",["9ac76b1440b50f58818bec6b2118ca21487934e1c1b3ef5b1f04570efc5698b3","16f80daed0537a1dadfa77ad8935d1f24a7909c9559e950582efa19c50f56d1a"]]], ["TOC",["matff","lin/L34/mtx/3L34d2aG1-f7r21aB0.m",["7bfb827473b88e0e2ed14edcfd47440957931016331bc3dfea2e1bfe28aaf383","ecee9e413a22ccbe5c3709cb53832c14130a99c260e49102a852c1df71e31937"]]], ["TOC",["perm","lin/L34/mtx/4aL34G1-p224B0.m",["68256cefbc1396b61eb042a00c7546410fb10eb1d6860f3523341adbcae7e8eb","9d043be596bf16b203482bbe2fd78b41b51781a1ecdf5a66d2dba2b6017ef084"]]], ["TOC",["perm","lin/L34/mtx/4aL34G1-p480B0.m",["9684c3300f86e2e9269736ca3eb8f81ab4a600af2f1bdbad7d2c99b18a2d93db","1d4754daa38cfd675a47f4e837430b9bdfa1353a2e0f1bdc4bc2e7fca579dc73"]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f25r160aB0.m",["b72b2faa0b387011f6766e44c3eb288ffc8be723944e1cf69c21cab9cc121761","c0b326cfc671f5e518d6ef854da8042a307425d10e328d24c2e2e69e97802bb8"]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f3r16aB0.m",["3437d94e2a07fbfe274513375045b039145ce2400ab78da6ef6a54c8645f2e10","a4e9277d079513cebd48f4fe23805808b64ace4cb51ec02807c3ce70618dc798"]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f3r16bB0.m",["8eac103df86841c8f16b68015a1edcd7c96237a58826bd8251877b1e56889355","b60bd45920ca6f14f808b6fadcb0b48fb653f75dd1d5f0271587ade8c8cad981"]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f3r48aB0.m",["3f5ae33a0d3f3887699364f218a62966b91b96b2dc4b448edb6c369fa0b2336c","4177de905f2b63a9be50d77a4cb1927fd27df0a3768d640c6d51887178d9da31"]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f3r48bB0.m",["3f5ae33a0d3f3887699364f218a62966b91b96b2dc4b448edb6c369fa0b2336c","4177de905f2b63a9be50d77a4cb1927fd27df0a3768d640c6d51887178d9da31"]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f3r80aB0.m",["4c14a2d401f9466099b5e933b7d7797ec58d57472b2f72eb033d1c36ef8aab98","34ebe1317522b708add52cc8fdedd92124618e86751d1d7496c32062abce8095"]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f5r112aB0.m",["e28e4e3820bcacc8abbb73919a6590235f8ea732f3fdbc053f84f81fe117301a","8dad421f32f35119344e68bd71a9615fc9d8ff3d48159dd7bc7780dcfe7b6e7"]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f5r16aB0.m",["dc3d9077d28505dd9149230c9be980de41239326c50b2a8a69833c57219c75a1","4841a1f99621ac583cc3404933c8a70336946ce90ae26fe44e4388732286fe1d"]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f7r112aB0.m",["ae15d94ba9d7d1f8aa4916fb5306dbe9e6ad8cc1f43c009bda8bff507abd2a87","c30a1d5554f0a2aeabd8f1eaec168474012f29674f13137d5f98a5fcdf57af61"]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f7r128aB0.m",["32ce3c7804aaa9e05aa94cdb647e54a2464a62eea1d99da9abbffcd5b2de9ee","4faee8eb17340c07079b58e2390f465e4713bb20da69c153852c5c4ca1337313"]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f7r16aB0.m",["d23ae412a8122373717dfd6b460ca5b598053583b248f0db4703de37bd187785","ffcb1fb568adbb3e37219498bbc2014b82f70f423c454f6c071dfbecad109069"]]], ["TOC",["matff","lin/L34/mtx/4aL34d2aG1-f7r16bB0.m",["2365614e421bdb9448d49094ce0d26e1f84ae16809caef2acef37583dfd1ca05","51fde456da4926bbe3b97002c99667bfb0b218f93fe5755a674e9a8412497a4d"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f25r80aB0.m",["400ff8ac51f0d5df3f66929a454dda71fc821020f596069536492ea6efaf5bdf","30a8621c1134d67bf1a4296ea5e015285938518c29cb4abc7584b987d81ba9a5"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f25r80bB0.m",["e1e5bb1a60d5e6b4a13b0b32956c1545730611121667944b6503b3abc608bdd4","babac3db7b042d5aabef335594b87308317a0e6f368104fbf18a89fedff4ba55"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f3r120B0.m",["48df2a96abbd5fbbdb177357b5d3234a7c5a8ff1b235ac8f472236a90fe1f052","d6468f0c526f16907760ae6996e81259647449c5243b813970ac3ce39a9c16e3"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f3r32B0.m",["ed4e42d9dd7c158c3f05047efdbd0614a86714a85ebf773edc32e970e35d6c4f","82b33cee88016d663a32d5722e0cc5674b6ebb72988198e0086dc7f4d3ed4c0a"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f3r56aB0.m",["ac57600ef3e0d941645f45cca058b31b75942c38a9fe8a25b48e1db43c261d7","faaa46fcaefa68102b6bc64573f1bdeb45f8bcfe69bae935d934b69a69779f7c"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f3r56bB0.m",["3d4bb171252205d0f338fcdcc7c03936dca7f385944eda3e833def373a7b77e4","31f4ea5b43a2d06241d9b4d375d8a12bd68a7865306753ac270a0ffaa1dd3208"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f3r72B0.m",["db73acd31857e96cd0dccb5dcac212b92494c605d129a8932f9e077704c18c08","83098e1658e4ad31742119bbdf156f15e936b33e6ec74b5fb5844dbea54c874d"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f3r8B0.m",["c7dd263d4f4fe7d1b63f86bf6d085d250a4324df7b95b7245991a708cb65b348","da13216bd1718622c157afbd175fbad3843d451f11b0041b715193997c309749"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f49r20aB0.m",["16b0038e2789b3cbd9ca3e6251d5e2a0c87769ad5b0b31a713a9ed8807192211","a129fc21ea01c569bc609cbe9ef6a53dd0b8966b60194abbae3deddf701b7c96"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f49r28aB0.m",["2dd00cb5133f1db7a8c157c46a04db972a94f0c5bf7dea93bb4d5dd5765a67f7","b3ada56818d87b0fceacfae171f05befbe08ba4800c3007df121e973abcde13c"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f49r28bB0.m",["6686e284898878e4a50b5823b914831bc38d7953d871b5a102a40ebf4e457f1d","f91b579c8d1720c8e07114ef99df496b538874ef77acd9897f552d0d04b82660"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f49r36aB0.m",["f98a2269e93c4cf6f414caf7fddc34459c91117a18fce8fd9380eaa0c430d6c","93401f7bfc6361c4395cb7b1c4e3fb87a30e650df70ba5f48d3d1fcab8016067"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f49r44aB0.m",["5e3cb95a7cfa3470fc612db6adb39d2bff79685b31587dd84f57dcfcee915ca7","6510b8e1816f79e73f338c0bf1798b3bfb2b44861c0bba0d24cb1a4e74c6ede"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f5r160aB0.m",["763629b4971c99acf8b14ab9bb9e057be983f0047edf73bc5dbec1034d841d58","182cb948c3afd7a3feacc201dc856101bda9abf3fc10cbc22434f882cc932164"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f5r20aB0.m",["7983c47d16851c960aba6b4ac4668f49cf1728354eb8184b26ad3e2f1a608ed9","699e97af42118a75225aa0bcffdc7f737b3d9185e6b4dbbba8bd4a3e1d5e82d1"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f5r28aB0.m",["889b83ee06342b5f6e3fcff61e5d1d7b311eaa5894b00234151c82e4243fc5e5","f2ad56b9b24970d86992f5e44ced97235862eb1f864b431f22f29bc5ad6fef34"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f5r36aB0.m",["4f4963cb550044a90b15c43adcd7df03f8bdcf02fbcf24b70bc0ea8cd16edaa6","1237ec9501e6e45ad34593a09b51c5973067ae0c026b0582016688d15219ab9c"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f7r40B0.m",["585f24aa80ad5d352ed7d4360667f7d7286179b81a4e49172f5f76cbf49e47f","865a03985a1cd56155dad8078f0ce7fdf7682d3cbc2cf731ad167a44549f03c"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f7r56aB0.m",["9668c77a5b636acfdb007618b3e03c26ce9fa47ae423100b98f22bb176a30470","1d5b162fbea3773095ecd7a3797dfec2e3aa6eb7db1a0c1ad28c156fef1eed0c"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f7r56bB0.m",["f47a571928ad97cdcd9d8e8cabf2a3e78ff64c94e6b407ccbc8b9b60038acf7","9a46198673f04f040fb836841585c6053f8be337b2d5da6716158094aefa30f4"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f7r72B0.m",["4ab37b8efb7660db3b1ee9c0c6170b94de4a731d5677938b98afe96d9c22d32e","d2e594f806a4a886c78d37e1bb259dbece398a1fcad38d84effe21f546d4b3e5"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f7r88B0.m",["3ca5053d87e93f9762243b37673482ba3e269ed44d653e7c21f3ab62b4911839","729b4fd079eb217e2d7e33b1fbd5efc080325e66d44b5aefc43b531d5e3e1fa2"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f9r16aB0.m",["b50451fdacf3dfae5b9bde7c52a0de5c37a1d18fa2b6f25391beebe4d00712c6","1c773068fe3f83aea758bda4e77d72bed54bdc5b0d361bc47b6cc40446137d17"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f9r28aB0.m",["c26227445eaa56367ff18ba8126ffeb9c325902dbc2ad6cbb3c838e26fc0db36","e86d84c610d1d595e93f459caa7c3f4312f03113937ab3cccf5124d1cb2fe492"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f9r28bB0.m",["f8fd2f01b8f194a886c0802a85b739f90626e4d055a89c8196d0b517e1980b11","b3710b88547a3d6198e1c9493368872334a8e64806bf45f921d53ec063300753"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f9r36aB0.m",["7610ff57648bf14b14a780e48408727c4a72211fd6556a2c15efb77a06b45bd7","9373f68165c00aa5b9eba96c58d778235e28acc019284438e041fed5a6cc7cb5"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f9r4aB0.m",["3f08a51541474696f39fd3d446edf3bb70af0907e62f27c306487eab298c6b0e","245cbbc151ea0f289387b175f614643f1c077f94bbf5f1065a89ed543f77dab3"]]], ["TOC",["matff","lin/L34/mtx/4bL34G1-f9r60aB0.m",["6b286e8fbd325691d06af3feca29d5a17588b6241607714cbe6f35b81c26a2b8","f76443e33c3cb4803764b8319d010b570ec6fa34b614ff8b88e1d3cf1b5aabac"]]], ["TOC",["perm","lin/L34/mtx/4bL34G1-p224B0.m",["517c7bbd9187a472a012d4942a3bda26e126ba13cf51e364fe7952f8a3b88c4d","4c5d59fcd4aa09932e6dc11251486d73d2da8de201ec617396a133e171642328"]]], ["TOC",["perm","lin/L34/mtx/4bL34G1-p480B0.m",["667ffbe914d0cdcb04e07f181ea13d567d9d05d0c88f1d6f7d4a569e0175ba7","44f3aab7f159df2da43a5e715b5e26fc04a258cd3f86c121178179e4c6c61925"]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f25r160aB0.m",["3cab768cea789cef6615953a4e13fc46e1ee083c3c69c163ceb6a73c47abfea3","498675cf114cb3c8c4c1a5694237055029ef486f93b800398a5ec1c3e0811b71"]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f3r120aB0.m",["433f1fd815e2f75a708f24917ea01b05668d75e87789eefb873a47dadcb029b2","4a4aca447b2bceb4bccd689747558dc8e3794e6ffe3cdd7abb26e92fc6780927"]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f3r32aB0.m",["5c09af7b45016e7e460482933fafacd8a327043ebadba8d61b38b039443f17fa","6122000c223109afed336f2637320c54ec349e8b3168dff82ae9343be454d16b"]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f3r56aB0.m",["5cd6e9d4e798621bd4f4cf9b6934ff33a2e8278416805d940d146e4c7d829a35","952640c7bce91ba4826767ccf94046705ed2136931a9684246aaf8958e8d3092"]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f3r56bB0.m",["74b1e44fa392aabbf0ee0151d864297a2598c8d0fe52ac601e2a2d95c4247db4","f7ae979aab5855f27b8f3a52b820ad293d611e126415dd5a2b7723f4f179ffc5"]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f3r72aB0.m",["b40ce65f3b360cfc531ff077744fc364c3a6060fc5599c9dcfb81e1cc4792348","28feba226ecb9368bb724210f16eed47388f7e9d2c1c9034d7c2a350063aecad"]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f3r8aB0.m",["f8d1a27336c2196910aaf3bcf4faf5ba502cb4a666abd895a3a3eb2274c639ef","26b09d28c27e9697c556f80d21ccdbe3dbaaa09090124ec9a85de065c58608f9"]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f5r40aB0.m",["a70f62a4488507387964dfa2ca37c7582ba29f67457917f4e65960ab91eda312","974847d50f10fde3bc517b2a492fec7c59e0455d3adc7d0e8cb356aff4c8515d"]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f5r56aB0.m",["d365a27fe8b5d8c5ee4de842320457f063ab81f4f36625faa8400dd333a935e0","b68f13bc578b1f69beaa43796fe2da589c85fd97bd8d1d695d854a01d9ca9e2d"]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f5r72aB0.m",["ec014ee87c1b89bbfec7a0b853738c1de7f501b739b086f5c4b924e1011f64d2","ed6e74d58fcd8165d3af9316ff4a24c31452a39a75056930037eb287d20667b1"]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f7r40aB0.m",["efde02fc16221e7b4969f184ab051f1942578de9f6c4c11580d2373f3098c14a","e56349d36da235a96d29bf8fab05d9e96ac8933004d1f7e7fd41c6fb9ed151a4"]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f7r56aB0.m",["9996fce7ffc5c5bfd4dab1984fc4eea4981c1892fbcb5a36ff4e635dd1ee7512","e978eb347db9dcf9ef34d9067fb57743a5381b2bbc9d32229c744d60f1e46d99"]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f7r56bB0.m",["d43227ca42e34284f1882e8d217e0b3e90a107ac623a6b5fd9fe03dd3f655cc9","bf5d4a1dce7e691ee0c86535818c8cfeb250597d60a0923a3ceeb2451198495e"]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f7r72aB0.m",["2c53cde6ceea87cb97ef0e7531c117f71823c381f680b12c268e5988752506d1","ab34e046b59342ab16d967e6116c24a7364666d7a1626f5029f5e5cf9ab12659"]]], ["TOC",["matff","lin/L34/mtx/4bL34d2aG1-f7r88aB0.m",["630f439968f4ca2c363e5d17990ed55f7b87e3928c7e1375703a96be70b667b6","5df1775e6e3f01aa16da9dd3fc5924d9b7bbe59f78a5112859eeb191f9561357"]]], ["TOC",["perm","lin/L34/mtx/6L34G1-p720aB0.m",["43529807bede8d8814e6bf7c53564011d86f15669b3f6acb1563720afc853897","e91e8c553ed5d2946ebd6e47abc7a596de3083e3e929d566105d95c8d1b5957e"]]], ["TOC",["perm","lin/L34/mtx/6L34G1-p720bB0.m",["e8305fb41b1d51c8793e6ae18489d0ecbca77216b77d89347a2080a00f6f54cf","24ef821582e11f5f1f9d76fa8a3340bf223c8ebe24381dab84f9c950798ddd81"]]], ["TOC",["perm","lin/L34/mtx/6L34G1-p720cB0.m",["c85f6f34e43e50469b4dab009032fec741a8f3af8fe8124506a36a0d7b52d971","e14dea6d6a9e95487282cb570aa6c55c6b46f7c3adddb0ffba7ae8ea53d24c1d"]]], ["TOC",["matff","lin/L34/mtx/6L34d2aG1-f25r120aB0.m",["7d3ec11ba9ce4ec0a6d4f9bb40083184dc6b0e97e5ed0c973a6efc59f080dad1","7d96639cf7be0642cbaf1ac015701cc556edd83e12557b2b460012718c4760b9"]]], ["TOC",["matff","lin/L34/mtx/6L34d2aG1-f25r36aB0.m",["c77bb8cc8cbd4672ae9a099758e3be81b09ed52ceaf9b92d01867ee5106e7981","1509335db46acceff27d111b3f181a240f103a47c13f190aefebacdcd542db2a"]]], ["TOC",["matff","lin/L34/mtx/6L34d2aG1-f25r6aB0.m",["e752449f82238d37c9c3782d2b0ece89813ae096d7e672f2c9bf0d596f2995db","55b0e2655f0db62d37dde0b32d31b9df1b8fdca61ab8f781d90b5b9ef95c697c"]]], ["TOC",["matff","lin/L34/mtx/6L34d2aG1-f25r90aB0.m",["50543488d79bc8a2202d2dc809d36fb33434ce3fac66289ed3a64ecdc6c114c4","243f37acdfe6ea3c4a58c83b1f1782bea45bc4c92a8f62be08072471d1c9e5a1"]]], ["TOC",["matff","lin/L34/mtx/6L34d2aG1-f7r36aB0.m",["a62bfa80faab50591e3a99193c1d424b66e2b998ddda4260ecd51dc4164bd603","27223966fda29b115e075619d873a9656976e250a89d796f23841f706b236237"]]], ["TOC",["matff","lin/L34/mtx/6L34d2aG1-f7r54aB0.m",["f9b986c98f75f976e56e048b2edc270817508a6c0ec7f87352fa6439499eab74","bd59fc6973e6e019ee59812a48528c68af2558d27935af5e759cfc4cd6695279"]]], ["TOC",["matff","lin/L34/mtx/6L34d2aG1-f7r6aB0.m",["a9910a6ff4e23b02543a260d253746d8fdfbe3f9aa31664bbb2865d126a6f4f1","c843c2121f11d67dc18565398369bdd5438f4c9a0440687c2e8957c5104e6cf9"]]], ["TOC",["matff","lin/L34/mtx/6L34d2aG1-f7r84aB0.m",["eed196d546c3dfd6f4e968468ba741cff97645353f259404bc1aa439c65031da","42ef28e7630a7cc595687fdfe8135c657feb6f8f012094d8fe9c7a3ca85d46c8"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f25r45aB0.m",["568dfe702b0766e1386a2dc750922786a8a116098d2a3065264f1ed0318469d9","9d9f74f553489ae470f21d256c49879f56f17c1c39fb64275d80f5ab7a41bb9a"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f25r45bB0.m",["4f9461af7a610e234ce65acb06ca7568822923be908df3e0e7442bfffe526178","662fd6ed45088ba171ba4cf88c9f4a284c131227491e7375386caa9821ba8e4b"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f2r16B0.m",["95740d8c8929537c1b6e01718fb7521dca3856a91e6f93c6ba53c067e5a4e8c7","ca69c5a155e7a34d3e51c632dac6ae0070430f1d6df787956173a5a5e0eef6a2"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f2r64B0.m",["30296a9335b420d9f430e2fa76b634c7c55195e3a4438acc39c55c1529c10c21","58806a550f819467f041fe617109fe1c7e22aa8b4a1129b2089e8c63e3373c89"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f2r9aB0.m",["91963181e92e91e5cda6035b784191cae006d53ac38c276355794bd502436be4","9ceb927186ee4e700ec737acf333f87464489eddd7e97914f537cc1ca3f2771e"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f2r9bB0.m",["c2c01829d163cbb2a53a0fea6f077be5436a4756ba13c0124c9cd03ff536854c","cd891289e79c2a1d420224eeb2967e31466be7489328836c62fce4390c8cd695"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f3r126B0.m",["827fbdaf4b6c93136a4a7b8e0f348276027532e59a1ccf2ab53f33dc01bded46","b90a83825e74e9ed2c5dc4aff7bd5d307dd8a4b1bf5703a691511ba991f4de58"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f3r15aB0.m",["164ef07a64d8978beb4679e049f87c4f505f4b70b848e28b0f80b6fba3d79532","d0e9869585747add3a3b3363381aa42c43fb6ca1139ef2a1e60b1ba91c1271c3"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f3r15bB0.m",["af704bab1d9b1a5ed798eec5ce5c7abf141aa29bcb5765e5d6cf0308d875bdf","749f77fccc52855c41a0ea0f45fe66af18eb8be2095493043ac5e83561e1e6b0"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f3r15cB0.m",["a352e7ee83b98ded72cff027ee675c228d2368dd93c9afdd1ca4cb78253444a6","e07a1fb7d370af99dc8eb3ae65f3369c9b636e98ed3bf5c436e5a443ded4c58"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f3r19B0.m",["5b42fe7869b4c418be880300886814697ac52296921e6cc8efbded384d9b570e","c11a9e1ad9bc884590edd22a5838b0680b601f0afdadf9f277851652008641c6"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f3r90B0.m",["cdd23c8be9fedc38c51726f768426e12a885dd707a213601a866b66e20547f0b","22720023941eafa928071ea44e4f530a464c663102a0684c3191a0c15fe90931"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f49r63aB0.m",["61776b2140068552990736adf2c09fb233c7e419fdae9b305bb6c405de9c7e8b","eeacca275cf0082366cb14bc76346f77975e5a79a1e348e648b415b3f445da03"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f49r63bB0.m",["c800433908d61995bc2002ef1b97bebec787b58892642725758952d4255af14b","196437f99a9a0bae6fe53f90ee656741cbeca83c554a319c2ca0c61a78ee1251"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f4r8aB0.m",["4d0552bcfbe4d3a389206d84418106b3e2045fbec2b15744c54e9f72a388f277","eec3e2bf0c5eb6d0d84abc9674ba8dad1498c4272ff0dc078406118cb25b33c9"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f4r8bB0.m",["4d0552bcfbe4d3a389206d84418106b3e2045fbec2b15744c54e9f72a388f277","e68ea9e770c140ce55ac2984dfb7eba1e6318772ca215f87412c1feaa7043e18"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f5r20B0.m",["c56b07a339ecbdda55943ac97eb5eb8ba179a84f3834c6c0882b6aac4727f017","503100d5524aa520eff8afc16e1f4eb84125242240d4b642c56db11123844cfa"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f5r35aB0.m",["f9926febbbb908028c80c5c81eb69cb4b7e34aaab5ac92257dd025193c4e8753","efc9be0dd78bee9ff80e50cf351b55d7905e38e72d0563a2d72925654593e56a"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f5r35bB0.m",["6c2f8ebab2f990ac9737712f03f8d9e6f4e48325b1fd31c4af0eb4cc08c28d04","6360ae46509ffdbbf827943216b375ed153f3d8c9a38bfa4783f1a9d5d46055b"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f5r35cB0.m",["af2c30614f110cad52616e636a85721364fee2d3b4c10d6ef71f881b6820d91d","66a1aafcb67a14c2e7edfe0c3fed1894b8faf8d1290f3f9d997c4b96da547622"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f5r63B0.m",["f980876be08290a3bcfc40c92be205a28d4a9509d369c066d52e8cc3efce8e8f","b8190f77919799980edcbc5462975fdd6dcc31c2546b8a4370ee1b5a1ef1e6f6"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f5r90B0.m",["c346bf21425d05962471896f26f24caec7d8e59ce1204ca0ad3a74e80a39401b","9bcd8c034ebed01495881006a94dada0436787b881a3e70903c011dd2e1d6bbb"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f7r126B0.m",["2a0d54a6ab5261bf87d23c393e0edc39f42683298e7fecf4430bd433aa30d982","ba4341a83de6fd0c42b603a2bbd8b345fb28c83c3a0aa3d58e687b77ec28dc3b"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f7r19B0.m",["98a6da5dff98002374412c2274a46aff161103b76cc9e18581bf3607cb5f5b78","7d74a6224dc3d6a834d842c66fc8394ea1b328222e5c37cf79ea457939254ee4"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f7r35aB0.m",["75b1b38dfab7b087db20c25aedcdbc088226dc240c6c1c0d67f4a7afb7f1e0c1","cf88edbfd587ef167d6724806831d119214e7294a2142b45b958857bf24e3ba7"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f7r35bB0.m",["6ecfda0e553ca417ddeffc05b44c7a1e832c465bdd08a1aa3b0eb43506baab20","faea1af0eea3f85e21c0b15de38c829c25f381c068e8734a38d5426c8a4640d7"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f7r35cB0.m",["1f3c97c23fc669e320947c4678e3b871d08bcb834ac5a1eefc77e2e91ca88915","4cf507b7b89868064b857c61451d2a6cd06772e37f9b8fa56c8347bdb6f74223"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f7r45B0.m",["a4eeb8c8957efe7cdeb64a0dc3c1e9a7a30cc6f0151a3ca014816fd12f2f1225","512e946e44106a0c3b38b01566eba746dbdbad4f49c91d1c8daa99ebfeaaa7f1"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f9r45aB0.m",["f395992544d5c1d5bdb23257d2a200747d4f98eee177ae95bed0b52eec07f188","f245fc625a7fc916f659831ab63c941e012f0d80c82b062c67e203aeb79293d6"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f9r45bB0.m",["f8875aa2265a9b384dfa01a5887a6aee32403f72383af2bddfcc91ebceabf835","e9edad5b0e65ad26ff4d1c36dbaafd26e61ac854cd82973542269cd7b88fe9ff"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f9r63aB0.m",["88eb38fbaa2d175a082524666021baae98c23e29050a987ea0b00c9ad4fb32f9","a83aacfe667be3b907efd056d94bbc417a5ac74fa5c616b1c1fbc348cdb6229d"]]], ["TOC",["matff","lin/L34/mtx/L34G1-f9r63bB0.m",["4a8753953beae4f2c1945af6ded70a67f0931cffb1571a152ecc492ca83dfdb6","da634edef88a6b3bb37421762e9228b666dede6e6d03a117f6aaf554e9fa4235"]]], ["TOC",["perm","lin/L34/mtx/L34G1-p120aB0.m",["c68f9fba92fd6ab0bea24b987da0495553fa13a9b695d9b25f71806a4d80158d","7d0a2eb94dfe2d11c7af89e90b17c70c983dac3916b3f5216456ebd3f5ac4b3e"]]], ["TOC",["perm","lin/L34/mtx/L34G1-p120bB0.m",["35a7a50fd8203b659f3f62f0188fa48e2df19c143c8147f49673c6d460c957ef","43870ad55499f34b2fa7b5be685e4f6389fff9c9f1b0a0a2ebca109d00c87cb1"]]], ["TOC",["perm","lin/L34/mtx/L34G1-p120cB0.m",["94ce2fc69e4a31ffd83cd4864041918444ced407b035fa138b1dbc46d528b6e9","64120507372e1ccc7475b649482707f957e6ed5622ce087e70bc0c0abe20e27d"]]], ["TOC",["perm","lin/L34/mtx/L34G1-p21aB0.m",["9000b920a2288ccbe9245ec0897ed2ac917b9cb5fff2ffc5251e08368c7c6b50","e791d9c4894874a223cae7874108b336770bdaa9d78462c63393d5eb7a888e9"]]], ["TOC",["perm","lin/L34/mtx/L34G1-p21bB0.m",["938e65420028ab3395189bd4f605beb75539fde5cba7f8e2a6faca06462bac99","bf6234846012056bbd7773e9ea01b89428c544df90fc763818337bf635e5bcae"]]], ["TOC",["perm","lin/L34/mtx/L34G1-p280B0.m",["aa31f15cd12fc4cbc2b8135110744fc05b5443589af6617eb9de7749fc65d79b","7e1d40082cf9fea9dee213788e467514672b228a9a3bba987dcf809dd87b4eb4"]]], ["TOC",["perm","lin/L34/mtx/L34G1-p56aB0.m",["69bb68f5604aac9830b42653ce680c4d63fd8924313976cc0d7fee1feffc26e6","5cdee2457094a8ed802db460ede35daa4258c6e53de07d584329171f79d17c2b"]]], ["TOC",["perm","lin/L34/mtx/L34G1-p56bB0.m",["4c7a82ef93dbd4a8f6c27ed94302a9e5bcac9915fe85a7c36a489114fd46bb08","2c68045699b6ac5ab4f4fded54ccc66a4e1b62a25d4a6f6e910d4083f3ca9abb"]]], ["TOC",["perm","lin/L34/mtx/L34G1-p56cB0.m",["c1037eb74f7d3f0951ccca33072e162869163a8e5253dc1fd698cd349dc9560b","2bd5649505099d7aa1e8e500ac5fe28b3949da0fd1c3afc1c9967d8c5ba1fd5e"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f2r16aB0.m",["98352370a7cb73faf4935759970df14e8bf65ab6288e3030380904d8f531660","effa5d31d58d22521bc594a185470b03bd62f2cb8d1cfec788470f30fb32f44d"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f2r18aB0.m",["2891a476ffcf1a02e900b73a7b77333710e0309e7fb8538ea09edd5cec3242a7","ce0fbe136880ebffd34ff133282c4e14c1972d9293d6e83e562b06bca34359e3"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f2r64aB0.m",["b9cbb65a8d2307adca7ada6d4138ec1055d7a9c9b0123aace2fe086bdf8e6244","1e6a80ea632a631334b7e0be9125f5c2202ca17e3d96bc4c48424d04a5a8610c"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f3r126aB0.m",["61647b328126a7293d7eec6b5c0f06c738154a00a37aebcc68dce75b96fa5b1a","37d8607a92424cc650066a5dbc84714d7dfa6b8f9f87be2091a69ea9aef7961e"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f3r15aB0.m",["bd90a585f3fea49821960e44fbbad15aef953bc5c59c3442952ecbad04f8e093","f2cb18ce300c29e51c44c72a858f518e42ecf6d376c69192ef682b807452cfcb"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f3r15bB0.m",["7c2cc83c85603ce65058da78caa014bcde14843fa34edb5f2bf73030d50ca5a0","246f8c50dbf0e6475706289335dc59685d6733639962474128c7a42243add71"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f3r15cB0.m",["d55d7dfbb9e3248e6d77201275f5650fd6cc075a0026001cedf3d485bce22f45","43b0d23f55787ff84c1e4f0a0aa78f8b623b0e9d43baf33eba2b44afae70ff76"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f3r19aB0.m",["714d8937c30e92cbc57c5cf1c883f2f5edae790d62cfa2713ae8f26a3ef35ce6","55fb035e7b95a3604c233ffad976f55322f8aa6125785fc737863c17a78f87fb"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f3r90aB0.m",["6abe624d36eb56eb24762eada95ddac9151a80a746d4d4b02b560cdf9890f9d9","20b4287da2e1f48bc50526085545db3b48b52bb1c2cb39864fb618e592f1f0a7"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f5r20aB0.m",["a107e4e3f6220131d4963ded0116af95a1bb26f4326dbcd5e97722e4eab3a78f","3be560a92ef2f97095b65e764972690993f225447e293d72833ff39631e3f75e"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f5r35aB0.m",["78bbe57c86abb42a8e5e7fed537a9c09e1b773130ec822214831d9295bed1ebf","5b49a8bc73e0955bf9ef59aeb4140a67a014c08bf2b56074ad734556f57b9b8a"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f5r35bB0.m",["1e278784318fbc9eb3482ede64a3220290f087a251a270eadfb6da6a3ff0cf3c","608b0332eed76a43bf549f628cf7bcf7bf2d72faacf6aeeeea17c43b2a8ae1e1"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f5r35cB0.m",["9c9f04c8e9914e414c00b42e1163b753ddaebf3acf9c3986c471f4e185ef8266","cce03b864496b8af60e0ea958f310f9e7f391d1348ad5e4b6fc05f61787f29aa"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f5r63aB0.m",["faaec92cb95295884b0912a29597bcb86d5652d0f16cbdc2dd9182f6a3f17240","6c2cb6176792eeb96968373572dcea68e965750e4a13337a42106d09bc6ed9eb"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f5r90aB0.m",["b59497807463cf716a16e5eb9ce71335222ce41a48c3695322aea93330feb3fc","e42188af7d163aabb8c1464d5787913cf4ced16200300ce1e35224ed49ccf0d5"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f7r126aB0.m",["1c908c6c99855c3d9caca3d4f62c2bbdb96d6df302623d190fd69a6bee78e808","572ff1f2f372dfa156374378533077a42ecf5bdd22ed919fc2899b2af010e3a6"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f7r19aB0.m",["c077cc9b4eae26ce0bea9364fc0c69bbdd3558e41e98cd1389f3ce367e91603c","5f60396d4cbafce7f2650c2ec9068d4ca090ae6b3c7f1c0c43d8b1e14a7a0908"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f7r35aB0.m",["c8f452bfe3c8e15b21c92f01748dbd179a4177f8b2bd40ada3ca1d47970c12c2","c29602b7adb2cd28e9e808de8ccc3bc7a60d4e87a42a4b162d066064955cf0c9"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f7r35bB0.m",["d19ebe7965fec778d86536c319d3d4a35c50bd56fe16ab7075223c80b4565a49","2ece962b873a52cc0bb91da279ecd46107400d2195862b52c87440b5ae7c6b65"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f7r35cB0.m",["e5063e7b3d19060e6c5308ec18b341228d764c00bcd1c65720aa3f9e28c88843","ddeb6d40193292cef894cf9fb973055694c7399dd07d74977776b81c5734c078"]]], ["TOC",["matff","lin/L34/mtx/L34d2aG1-f7r45aB0.m",["fd039fc86944001336382d4a5e30522efff9ee6c6b02ef904584d97caf2bd71e","c6ff3dca9d3e96935897d5dee16b2c5432edccd0cd398adcf3b41deff7ff5d8c"]]], ["TOC",["pres","lin/L34/words/L34G1-P1",["69ea8c7e07a3bed796b75b0ca6073fe0e0ae5b4e7d6e1bed5fe5c4329c56792"]]], ["TOC",["check","lin/L34/words/L34G1-check1",["341f2e36a72adddc71f3d9c54dfbb7082f8516f5f280bdf01adb64b3b59c60f6"]]], ["TOC",["maxes","lin/L34/words/L34G1-max1W1",["1ecc1bd144a389a89fa6ec116cf1eb9ef7e55c014f6407dd27d4f807e81c3bd3"]]], ["TOC",["maxes","lin/L34/words/L34G1-max2W1",["c6a55fcd1b2151f4e684ce4b4138a5cda2bed5499a44ce50b9afc513b1d65853"]]], ["TOC",["maxes","lin/L34/words/L34G1-max3W1",["377bcb286cd374c7440b946f780efa37e993328711bceb404f82597af4d82fae"]]], ["TOC",["maxes","lin/L34/words/L34G1-max6W1",["4d2eaa530826b68731e997e04b6dfa8a4ac2e270a0feb1b5b9191007faafe289"]]], ["TOC",["maxes","lin/L34/words/L34G1-max7W1",["3bb97105893224559c1665c0724c4dca8e298d4526f3ca7deb600d5703bad84"]]], ["TOC",["maxes","lin/L34/words/L34G1-max8W1",["29b72d0af9456030eeb92c5e2f46084ce002ea8f1df454fad3e52bc641be972c"]]], ["TOC",["maxes","lin/L34/words/L34G1-max9W1",["df5c7bf40c180c0d0b02e8845cb5e11d508ec60c1a4c9434825bf8e1314ab965"]]], ["TOC",["maxstd","lin/L34/words/L34G1max6W1-L27G1W1",["e5c319757ad29c6533633e9431e1b6a9623008bcadd5a121733a5078fabb7fa4"]]], ["TOC",["maxstd","lin/L34/words/L34G1max7W1-L27G1W1",["e5c319757ad29c6533633e9431e1b6a9623008bcadd5a121733a5078fabb7fa4"]]], ["TOC",["maxstd","lin/L34/words/L34G1max8W1-L27G1W1",["e5c319757ad29c6533633e9431e1b6a9623008bcadd5a121733a5078fabb7fa4"]]], ["TOC",["cyclic","lin/L34/words/L34d2aG1-cycW1",["7d378869485cd01205a5ca12632cae754751163f3a33e0a8fffeb1a608cd7c2"]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar124cB0.g",["99978e6e8f51dd1e0f95e6618d67cb6c1c6448f6298f76b8ca8984702fcf3798"]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar124dB0.g",["2232db0fe4037703281d69245f0c06996dc42219c8d8aebca5270f39c48c4033"]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar124eB0.g",["26c3e64daf2a5e6ffcaab918f920b4a1c0c0dcd79224816b76389efddddf8546"]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar124fB0.g",["4eb3546429c2553b6afb52622b17254b954a4f46f596d9fe4c9a716d62cc3928"]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar124gB0.g",["556edb1dfef0f4575cc30545a83ff1d36f40db8e3ebaadf5c419e6a0f4cbb409"]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar124hB0.g",["3c6a8029aa1634cbb1d3cf17529cf4bfec5c74545e8193e28f33de4b02c63b6f"]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar124iB0.g",["fa4e597c0d6de4662331aa147f5fdb67053f3a7498ac87be4124f2520b832ecc"]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar124jB0.g",["29436ec85dfbf0eaee81bf572675595ce8950b57c9c3be4145efaee71053e3b0"]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar155bB0.g",["7a8066e0649ec9926254b72791f0cbee607924cb6ea6b026e39ab2c7cad1869a"]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar155cB0.g",["5c6eabccf80d49f184dadde922eea6267ca93e5ec8ea0e1947e4e5e7b5b74980"]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar31bB0.g",["2a6e4c8b72a9d147e3b3014e1385dc6d5e0538eb51f365445ff6c936abd5108a"]]], ["TOC",["matalg","lin/L35/gap0/L35G1-Ar31cB0.g",["820aa4ed07dd816fbc900a42962a3546658f82a3eacc663598502d41e0fced25"]]], ["TOC",["matint","lin/L35/gap0/L35G1-Zr124aB0.g",["4cb02a18fdfe585c2107073f6883ae1f1da4cd67c730b0b737580773aff7aa88"]]], ["TOC",["matint","lin/L35/gap0/L35G1-Zr124bB0.g",["7f639154e3799cce7867edef751949e5d13a77c9a8df301579c489dcb1cff2d3"]]], ["TOC",["matint","lin/L35/gap0/L35G1-Zr125B0.g",["4eff112a6f41efa35f64a8b38e90f5a7ecab2babeb128a5661c1e87aca8ad3d2"]]], ["TOC",["matint","lin/L35/gap0/L35G1-Zr155aB0.g",["1f1470321067ad2a03d3e6d717174bd8fd3b4c627c9372c59126fff0661086e9"]]], ["TOC",["matint","lin/L35/gap0/L35G1-Zr186B0.g",["692cafd01ed852a6db51ab98f9692a37f73e5a77dc475a21a572fc7e49267869"]]], ["TOC",["matint","lin/L35/gap0/L35G1-Zr30B0.g",["25c0d203f31bb7e7b14781e6423b0ec11af0be8af32f1c88ceaea6be2fcf460c"]]], ["TOC",["matint","lin/L35/gap0/L35G1-Zr31aB0.g",["753be7fe0c12856931c396d5799f4fb6ef86a5308c2cd7c01ccdee78376af963"]]], ["TOC",["matff","lin/L35/mtx/L35G1-f5r3aB0.m",["584462b6d06e7180fb77665a3c06190f3697d2a97fc7e98f9726fb3e92712741","3023b605728cb331325fbc7d01c432e4aa3503e97b0c13c5e4468ad5283e409c"]]], ["TOC",["matff","lin/L35/mtx/L35G1-f5r3bB0.m",["584462b6d06e7180fb77665a3c06190f3697d2a97fc7e98f9726fb3e92712741","1acb51814fd3cdae2b23c6bc1ca0b574cc8b2e11f32214e6630f6d8dfb1820e3"]]], ["TOC",["matff","lin/L35/mtx/L35G1-f5r8B0.m",["b7a75c7aaf8aca549d2922377da31e35ecf2d452cde933c0604671cec48e6856","c6a35bcb602c42a5ec9292d7af0d000a29a18feb33735b252d5e7c44f157aa69"]]], ["TOC",["perm","lin/L35/mtx/L35G1-p31aB0.m",["e836c0f9ca6a4e00bc297a7fa9c42f9b73dd61c2dbe485e72d3ac697990e88bd","913c3c174ce50552f9bda14ec224e2bb6d824d54999a33e820b27426a158de71"]]], ["TOC",["perm","lin/L35/mtx/L35G1-p31bB0.m",["224f185fa748e456728a8337cb5d364f348138efb6a88295def59faa4dc7184b","51044baa380286dfabdb23fddf7586358eb09001f33cee102882f2b7ab51aee0"]]], ["TOC",["matff","lin/L35/mtx/L35d2G1-f5r6B0.m",["9d5cd50b29921284afb99d5ff985f713e120eb98353cb37b2e7a04bb7a15eb73","d6b331a14eed40a8ae8b82c9a710379fc53dff86f0ecec67b2d29547cd3685e5"]]], ["TOC",["matff","lin/L35/mtx/L35d2G1-f5r8B0.m",["fdc3ed1de46dfb75a5e52fa3d0001b10e5e5bbeb3a159469de96b795b46835a3","e52944c437554fd4a9f331462b05166649431c9acfd2664fd1aa3e67844af31"]]], ["TOC",["perm","lin/L35/mtx/L35d2G1-p186B0.m",["6b3bcc10929ec515c551e3eb8223b9a375e355b681337b1500c1b6888cb861fd","57e8b646a5885ccbed1d4d806cc7fe788d3e6aa07c01afa859935713b54bed4e"]]], ["TOC",["perm","lin/L35/mtx/L35d2G1-p3100B0.m",["4928c3982f7160107dd3f4b6f2589a38305380a05b864fed2e477f0f46ee878d","c117b1e72847e654390a99cbb29197c3b3bb9e54084afc4d1b81da6e1d35ae3d"]]], ["TOC",["perm","lin/L35/mtx/L35d2G1-p3875B0.m",["bab82754d9fa724ece1b3c678880b351887515266ba86bdd424a8f5d90bb7166","a02bd663cac41c236f0c136fbfe2c506642b5339d411537c6217c7d88573fcd8"]]], ["TOC",["perm","lin/L35/mtx/L35d2G1-p4000B0.m",["6a3717fa76d5606937f7effbc7c8b0138e3b1a5e86e8bbf6e18ef79d64c2878a","1fdd54d557acef2238e304d5c8cfd6cd14e372ec69c59c715501cb45e25b17e7"]]], ["TOC",["perm","lin/L35/mtx/L35d2G1-p62B0.m",["1531224e32ce674cfcdf57644c825c27c49ce5d0cdd3e8ec84d7d432054a05a2","548822c8723e781b7ba40462b28624a60a02b6b2e572118122abac791fda20b5"]]], ["TOC",["perm","lin/L35/mtx/L35d2G1-p775B0.m",["e8d6f5992ee53a68472ffd950f5db2f56d8a33dd00f1d33016a5980cb18ff4e5","5f499c13818e5408c1e1db873e3e5621d2b2489c2c8dc961eafddad124aa48c6"]]], ["TOC",["switch","lin/L35/words/L35G1-G2W1",["944049add66f2aa0cc749bc0defb24091e6d2b915f4a8832197cf74493f6d972"]]], ["TOC",["pres","lin/L35/words/L35G1-P1",["719a1fc6fc0471133802f9d10820d74f4093697d3ae95dec21bd01ceb985207a"]]], ["TOC",["check","lin/L35/words/L35G1-check1",["3b3955d8d862296b4879c67c211a1143e996f09f34086299923ef58ff972a31e"]]], ["TOC",["switch","lin/L35/words/L35G2-G1W1",["2c63ef79ec9c196bcb8b985b4e0bdab66d87f4315efe28ff41d8e150023a4189"]]], ["TOC",["pres","lin/L35/words/L35G2-P1",["dd4566a2d2f499ae8f4990b68e692597e8eed1cf43cbc246f4cc82e6c9338d88"]]], ["TOC",["pres","lin/L35/words/L35d2G1-P1",["82cb9ece35064a273d053dd67dde4550685f3a7135eb177dd914a0394e5c1d8e"]]], ["TOC",["maxes","lin/L35/words/L35d2G1-max1W1",["2547e6d4f4d20fc233047e5b01eda39f7872629927068f7a2054d744330ee8a5"]]], ["TOC",["maxes","lin/L35/words/L35d2G1-max2W1",["666edb98adb49372a08e1f4d0bfa54f86eb42e0ec9b17f54c1a0427cc27dd7b"]]], ["TOC",["maxes","lin/L35/words/L35d2G1-max3W1",["7d93e2b2731b19ae2c68f48bc0fdbd219943a2fefcfff7a2ceda86d4753b391c"]]], ["TOC",["maxes","lin/L35/words/L35d2G1-max4W1",["e961a9c2be1767c0d004fa6d55b25f35b69c2567837869f08d8858a101b31cb1"]]], ["TOC",["maxes","lin/L35/words/L35d2G1-max5W1",["c68475e0f630fd529684573506bd7f8b253e3d4e234abfabce6b7d88324d756a"]]], ["TOC",["maxes","lin/L35/words/L35d2G1-max6W1",["f99a9c3ead453280ed3a8b79a6b66d7c907baada45b60fcce094dbfeb19f1ad1"]]], ["TOC",["matint","lin/L37/gap0/L37G1-Zr152aB0.g",["c4dc30e32e277337003f3138dcc3652d06fbe2988b5fc8c776766654e3be5bc8"]]], ["TOC",["matint","lin/L37/gap0/L37G1-Zr152bB0.g",["1b244d33712efc949661848d182b25072197b01dd9b2d7bc49bc3419893764c2"]]], ["TOC",["matint","lin/L37/gap0/L37G1-Zr152cB0.g",["4df3c822db7c9236cd1a3061a8856e945d993195f279c96e55a661ea71078924"]]], ["TOC",["matint","lin/L37/gap0/L37G1-Zr56B0.g",["503c73bce88be8df272f571d21ae64aa6eebdc56b1200e7b885d7acb832802cd"]]], ["TOC",["matint","lin/L37/gap0/L37G1-Zr57B0.g",["4a29eb85ab2765e2c2c26aca6689050c2978fa7b2a8f4d844ddb56570853e037"]]], ["TOC",["matff","lin/L37/mtx/3L37G1-f7r3B0.m",["261137ba06643597b20aa7d418e77b6c2de601e1b760c4a7b08b5afe5577916","5710d1f0311363315b73eef5e6ed09dceec47c5dad86a6d295c8d113b17d0491"]]], ["TOC",["matff","lin/L37/mtx/L37G1-f2r152aB0.m",["c5b30bdf335452e8a662f7cdf9cc6016b3d6f90c740059947f785e03a6a391a8","3da7a115a1b0ad8125dd4266e2472d39eda3fe81f05008b6e96065b2c72a5269"]]], ["TOC",["matff","lin/L37/mtx/L37G1-f3r342aB0.m",["f8436fbcae5d483df7b44120fa9dca929cb1c37d47860ac5704b1509718bcff4","1174854a82af84321710a762f03b98d647aaee8565b0ab20310854b6edf8c62d"]]], ["TOC",["matff","lin/L37/mtx/L37G1-f3r399B0.m",["c341d99be7a2f757581395337306b2ac7b7c5a72de1fba597ab4ee9b69c42074","e2f89c514c08b9cccef2efabc682d7bb4e8845ae8aa68ba825914052fd635939"]]], ["TOC",["matff","lin/L37/mtx/L37G1-f3r55B0.m",["5feb143a1cf33706bfafd671efb44dda5407121a6859b49c76edf2a86ad83a6","fa1423084dd456b330f89e841f5ce54c40486034a3c84f9bf3f8dafe8cdd770d"]]], ["TOC",["matff","lin/L37/mtx/L37G1-f3r57B0.m",["87568c334a2a365f58da1389807e95718964cb959a9762c21b6fc77f6ec8cf38","e2fc45787f2c3476788a43a6869e358cc75a728e405050214eb051b09d34d645"]]], ["TOC",["matff","lin/L37/mtx/L37G1-f3r96aB0.m",["4d241ddec86d6f7760d0a7a52d38b4466164cc447467e0d75aebec8294d9ed3c","6a91f75c79414eb7b8cb96313bca41a0881c78ffa04fdc06fb138b7965171a32"]]], ["TOC",["matff","lin/L37/mtx/L37G1-f3r96bB0.m",["e8dacd822748539ff3e979092ce255d88cfccc866b4055499dfdce33aaa479eb","3b0aaedc739cdc68a66b865bbf0817eb05174c60bc6c006ee1df44a22c6c03df"]]], ["TOC",["matff","lin/L37/mtx/L37G1-f3r96cB0.m",["20757b247a6f147788f611df05466bad1a9e7c205273ae1bc40ce213934ddbfd","5512916a176bf4ccf9a040fa6821f4fd5d28e9ce4efcebdc0d04fe09cb1abd23"]]], ["TOC",["matff","lin/L37/mtx/L37G1-f7r10aB0.m",["78cc3749acb42b1a781b333de5104eb5b3c179ef483bb1fdbfadd8ed7c43eb2","2a6247d465ff0fdd0b45ac48fb06554e944a92f78f9a2249c7204f58b87864a"]]], ["TOC",["matff","lin/L37/mtx/L37G1-f7r10bB0.m",["c0e54f4aa63e2aa4e7026b9ee18a49fc5790931a008772ae7695c7bf4a098df8","311cce52cb00d95a1a03c51ba63312f681cf88b9127548ff2961fd1d9734824c"]]], ["TOC",["matff","lin/L37/mtx/L37G1-f7r27B0.m",["94c14008f7d0801cece3638600a263d3401d67a8957824e7f0bfb0210e67037a","b492c41a84898ff3a9e832268d48859451034522ef66a0435d5c5d59efe24f14"]]], ["TOC",["matff","lin/L37/mtx/L37G1-f7r8B0.m",["1be3294f6bf97006991090b33345a8bf07a19f2609bdb2b44f2e8073fd3add6b","68ae106967fea5822ce09cac6e1ca5c112191cae09211fe9ccb864741dd8be28"]]], ["TOC",["perm","lin/L37/mtx/L37G1-p57B0.m",["ea36a350757ec6100be1f87c20afa72c319a518d209d6dd58e3452f0170451f9","86b6245ae9eac651f6a056e2ea899f8ccbd22a9f49261bcc0b59f35aa7d2fb4e"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f2r152B0.m",["6aaaf79cde20e3ccd91c0acdb2fbc4b79e2147b91a2c219629d206a0b9cd1fc1","c832343e5b1de78308160a4d4b004d6ba50d280aa5902e3a0f91a4a9559f2480"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f2r342B0.m",["814b0452e880415c0a50124f2b6236bcc8071ffa43ca5fd7bceda3cd15145a8f","71b7aff3e48205ff8c1d5d328107146c85dd4ce2eb7e4b3a88b1b8dfb6f6ae2e"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f2r56B0.m",["aadebf5bb55fadc05bccb2fdb9cc084a97c80b75ba2ccf3c0a34fd12bfe092cc","b4e0e4e1b438816291a9d51779f530e2e2baa304f19fcd8afb7bdf956fb3da43"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f3r192B0.m",["903fd3fe3ff1abd3013dcdd9c9ba33e44f6f18d2ed7306bec24f50cc88e5f14a","bc6fde0c65e909245949364e6567d98e30180bfc577596c4ca0654fc23141be6"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f3r399B0.m",["a8049268247c38460444279d943e30cd98d62f523944ec3dedb232c41cec2afb","28fc78a3aac03099ebbe8f32956822ee7d233539789d87271c0db1e93bc0c1c"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f3r55B0.m",["1c1a94c82f33263bf81899c88549200fc5a7737a710edb9a8867fe15a9034acf","8a7c41f88d825649cf428710fafe7e1f7fc49a77b4e1a8cb82963dc34604ca00"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f3r57B0.m",["941c222533b9b59c3686213b87a3848972df5670bfdbfdd5a866844349104ec0","77e2eef9a28cec55a732ac6375b7c373a7ba9f5ebdb4d3ade7a25b97805f8685"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f3r96B0.m",["602b392373698a8d049ec9d681a17ac3288d042eeeee7be3d3964199d32aa42c","215088fbb483cc9d5de04b6acff9c6d8c5703434fd7403346fa601df774dedaa"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f7r20B0.m",["ccc53498c56c328d515df7d58bd5be5f982c071cc682a3cbb9c7b5a955c0b4aa","99e6c6c6465c74cdde8c84484c5fdec04f6468f2e05a32f038d524dc25617faf"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f7r27B0.m",["d4b361f581973d7795d3eb599f5985202af2d3a87a108ff133e1ef5d21db96a","4b43fbb50e64d86e21427e0968be5bbfc60f6068206508ed7fec9573c66714f1"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f7r308B0.m",["6678d711f12fc751adeb117b92f0e75a7477ec0828f4bcc3a0f6f28c24329ff6","a38cdc10dcf6a8abe302d3f9198d1613b1c4615ae832e9c8b2b9f77762b7f4b0"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f7r343B0.m",["73368143aaac1def153187a8c60d45a0bf6707f182181640dcd67536b0c3c71d","c39a03c9a341ddb75b9745ed5fd8ac9ff8d24c349feabafea1bcc45ac4921b30"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f7r37B0.m",["4153b5cb2377f57573afd21a5a8ac02357d3669d5ff15b5d8b6fc8b469b2525a","203932b88af432ebfb3dfb9bc5a166d2ec6e0d295cfda76bc29ef847246bcc69"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f7r56B0.m",["e9781fe9563425ccede20bb8c967fe4447fde95d3601a91be7fa2329ee563a17","a76e75636770ad819b67e15827a4ff5f1e38ebfd0c45f15933d072aad4ef732e"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f7r70B0.m",["703fad34c2282688ecfa6dd16c6f007c4fa5cbe3a2b2a8596972908463e960a8","46f72f41e749546b8f589d858ad31571dd2a832896c97815e72af00c0dc4f65d"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f7r8B0.m",["754824d6ee93762c13bafdd276a3077030b7e0c96e88de796440b66ca993904e","e5d5cc4ca3be46a43cfc8f677e9f607dc1c2ec77db802d8db35d72c565f81e54"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f9r342bB0.m",["925811c81b8e3473cdb4324dc66c8e91e3aee01b829610fc8f9f76a3206a7988","599f584f9909a189832b3eb17bbaebd79d6527bd161e3797f36e3720aaa72e36"]]], ["TOC",["matff","lin/L37/mtx/L37d2G1-f9r342cB0.m",["8ea7ad2b24187d7978ef0bfd5991a778a4cd1ea6a838dbc86b54e871ed9d6cc3","fc341b83a2c5da843b35e0826a9bf94e05352370dbdbb502517a3ac844a6f4e2"]]], ["TOC",["check","lin/L37/words/L37G1-check1",["8fea080c1f40886f82df35cb41ee62d69b69234fa16adb70677f70bb45a3e8b2"]]], ["TOC",["cyclic","lin/L37/words/L37G1-cycW1",["65eb1c592e5ecbe6dcc6aec1b2577eb3b0a38624cf190292323a191ce2c1a9c1"]]], ["TOC",["cyc2ccl","lin/L37/words/L37G1cycW1-cclsW1",["e47c3c572dc0c19050dec0c77f796904891194135b95b0c7eeef08c0e4b2c065"]]], ["TOC",["cyclic","lin/L37/words/L37d2G1-cycW1",["f785373983a58b24b1c40df00906c6b40396955f1a4674548ee618ea30b5d77d"]]], ["TOC",["maxes","lin/L37/words/L37d2G1-max1W1",["8157e6cedbaf07baef4960411153ef3bcbbe0f5860f858fb06814dbbdba910a7"]]], ["TOC",["maxes","lin/L37/words/L37d2G1-max2W1",["f4c569f9b74171e405ce5a0c1e1ba987dc50314f3a3b883be73de6c0d4f74019"]]], ["TOC",["cyc2ccl","lin/L37/words/L37d2G1cycW1-cclsW1",["e5cc97189f3d574e077c65358e6a67eb1ba2bb48612e3f501e5fdaa0ff90a068"]]], ["TOC",["matalg","lin/L38/gap0/L38G1-Ar73aB0.g",["64e65afe8df1c091b5b6fa05a1560921e1d30dcfbc6fc0ab6f39391845b87852"]]], ["TOC",["matalg","lin/L38/gap0/L38G1-Ar73bB0.g",["9c969bb91879ef50c2654d64953940bce6a8c87e6cc33149c6b6c7aa4e920641"]]], ["TOC",["matalg","lin/L38/gap0/L38G1-Ar73cB0.g",["9a6beadb8db3c000bcc918785c91f4b7598611cb5c44e79b8537e9b2e4035ae7"]]], ["TOC",["matalg","lin/L38/gap0/L38G1-Ar73dB0.g",["96bad5204c2a3b1bd1cd67fd38f33ac8b3f55f00a11252a828805a03c3574464"]]], ["TOC",["matalg","lin/L38/gap0/L38G1-Ar73eB0.g",["cd3556b28a54b36257af71f4f8ecbe9378fad4447622b3567458a458f892956a"]]], ["TOC",["matalg","lin/L38/gap0/L38G1-Ar73fB0.g",["c28b8d2fb85cb7fe14a246ece1b2034b570c576a84054cd7a4fa84050077482"]]], ["TOC",["matint","lin/L38/gap0/L38G1-Zr72B0.g",["6ef0db01dc33f92a3253dedc1ed58a825c18153b6c1a6ff23f9ea039335c6866"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f27r657B0.m",["a3362e59f953ff305fe61f5a9ff1ee7bb76b186f8f983e5c591e4ea2d66c3142","44287b262711946b5ee67649085ededafdb67c53ca3463f7b61cf7b49218d4f2"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f2r27B0.m",["2e04d71c2d8dcc091770a4e1f50f56f3eb5dd3b29c2f507cd0f9b5b218dab520","17e9f4cd837d6c10d85f2b108d09bab2513588939a78086a2af4fa651a39500a"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f2r512B0.m",["29884570dfae2c99db80c84d2e8657159d3173df8497a00fb8006f1810ac75cd","4fe79b7a5c6e08770e38edd368ce7d370a1b0fbf66fd0c960b7a01fc8fd358cc"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f343r511B0.m",["645b31c75f52801a260f75eefb30edc1d9ad70e20ae02f31970d9a9425b2c0e8","917844211b5a4abdcdcad154d4de004de829c69fd60c50abcbd25b8b2740e044"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f3r511B0.m",["8c797caa0adf768d1b1e4a2196c882527680b93e56c765ea7a75b06b9ccc9b5","b501799e002a4a2303d5da9ee494823140aacdf50560b4c0f1cf90d9c782bfba"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f3r72B0.m",["f5854c7108e2bc9a7c373868072f685dd55d3a2dafadfa5255180ecea79c8c50","c20d8f7e36a1ce4322717ea5883a110935882e7209a8b4c176bedf165d9b5006"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f73r441B0.m",["c005fb156d645b0cd5c0c5223c6b9f051a23a516284e2a393ae840e519a70d03","6b5d1768a8b03d5d6282cb153473f2e6baf11a48cddde65b5784aff8d585ea9e"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f73r511aB0.m",["ce08bd9d74502be7c9e1f8f16463fcd33e0cf1721ea4d00ff2e35000619fbf0a","a00561ca971c205a234a0075300606af0a74a26167e6f0e2b271eb52723c9650"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f73r511bB0.m",["fd62e9925746771f4c0abe68f06b220e02a539ffbfd9a2a7b79a3b0a8ef4652d","3307d529e7b3dabd3d3498824ed70309af6e052a94b5fe5be1c448213c74f0d8"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f73r71B0.m",["ec12efe83d3b55e1f28a91c3d74181e2ebc24809787c98fe47c7f93a31f9e62f","219b02fc0c429d4c730f6e9b69e3cc574ceebcdef70b490d4ed7844c98e178ef"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f7r511B0.m",["89eac775a48bc6d3183e93863ab949518fb0139e42496ef694aa37d893406b63","6d68a60f5464ce913497a57e0fea20f17ffa4dfd8e8e557ce5b8ed906aec8f97"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f7r512B0.m",["46a17f8b7cfd5159f274aa6d878a139b618120d5dda0803f8e14998e94473499","facb5d7bf538876dcbe8f71030772e222f6da8980475217bf0a66acee9d96076"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f7r72B0.m",["4b8fccbfed9e39f227d31fd8183db95a252f204b5ac57664704483eb8c529015","799094324b7a86c05fd68a2aa68ecc1df695225bbca41bc9ca4e56fc13f982c"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r192B0.m",["5c068e9cad956822817be2e65c9ce0e3dae2407736d13c119b05be496e262f72","13a392ac25547d883cfd56030bc3869ef29e9b8edbfd7fda62790066d7e8c65c"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r24aB0.m",["f36b7e11b35c67cad93faf694c50850c336fb5444db39decf7df6edf333f086c","5daa69e8517b1fae1398d833d715a4fbb45c15728c561cb0f74db6bdfe53172"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r24bB0.m",["f740eed762fdd154cfd99c4b3eba6be095040b166edf6bc1ccd9852f629da97a","98f87d6de275a52ab27dc3e0d855bb2f9ada9bde7d4afaa563b7fa78795f285c"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r27B0.m",["8e0f6a37a610ced5d129b7f280c6ab9216e12eb6c4ca7c9af95dc804684ac136","c2941b2a50558adbc4edf28096ff9044902868bb22dbd81a5a958869aab59fa8"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r3B0.m",["a5ef9da7cc92be4211388726103b3103370c25d109676d7afa6e5aba8c71ea6d","1fa4681735eb3624bdd799d521c193edfa3775c05f3a842feba34e943fd9a636"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r64B0.m",["41411cd92cf453544217d851af0b216b3f7ad208ac08e4fb4a228db66637cd37","e9e65ce1342e23d79e4d540031f764fb818de993fd0631358d3c1debcae2dfd2"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r72aB0.m",["92d3f68beada50bcb826d6f6967ba939d6ab025f3d77439ad4c5d445674b0bc6","d130dfbc873dbf5c2e5b65a84ac8f4c1699822077631a0eba9a7f09e33fafbd6"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r72bB0.m",["d06b52d895779c141c8cb64edfbfd1ae6dfe961af5b8f729aa409ac638e0a1da","43f02997408be1d2c4856a732a1bdfc8fc4765e8b3a4bf3dec862cc5242ec6af"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r8B0.m",["6844843876e6a84fa179dd16a3160f6c665cbb3a727e004b1f894cb1b3ffff10","5cddf3e5334d91b456588a164522ee4265cee409f12051de45d29e07c8d1f971"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r9aB0.m",["d2099436a67e3a8d8073a3580be80b69a556efbea68d5f3b0b3c6540d34ec0ad","497b515e04539b651aa672219b0d7d78f67a27f55beff4fc75f60c288f0d1aee"]]], ["TOC",["matff","lin/L38/mtx/L38G1-f8r9bB0.m",["22de3745f935fef807fbc999cd76e3583f16772201088bab3bdb664d27e0aec5","497b515e04539b651aa672219b0d7d78f67a27f55beff4fc75f60c288f0d1aee"]]], ["TOC",["perm","lin/L38/mtx/L38G1-p56064B0.m",["4042068483927cab3378944a2d20a4ed9ef8364aa32d2f7f440a0313a20b701","2ebc464cc65c8070c57f25119bf727b40cec5f6a37a77fb1a443d223d6bfefd7"]]], ["TOC",["perm","lin/L38/mtx/L38G1-p73aB0.m",["edf0b9b2afa2696124bbf38b182b311f82bae25ea4d90f2dac7ba2c38b8e2933","5ca9b6870572156be79bc5c6596144ba02aa9fdedc260c3a58b1ed8becfb4937"]]], ["TOC",["perm","lin/L38/mtx/L38G1-p73bB0.m",["a58f99eaaffaada078552e3b836abfb9f11d9ffb9005487b11fc2e52bd68d312","d5ea96389379e11b25da7db269a84a7230668c1ea87a5e2762255cc4bd1ee15a"]]], ["TOC",["perm","lin/L38/mtx/L38G1-p75264B0.m",["d834739763e40ffe490646bddcdc704be7f3cc45815e332f90979d5f461fe7ec","ecd192622e813df7ea89594c426735f73205a9c0004961a42707f0e96f0d43f8"]]], ["TOC",["perm","lin/L38/mtx/L38G1-p98112B0.m",["e5e96a7192555167223ad970cc4e323d82ea933822b85a8adbbb892b6e9dae49","e6bb8a298fd6143e59c3a9aa9ee2459677484c63caf5ffae0d082391f5cfa15"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f2r54B0.m",["ab7002f99a1cc8f0db8cc88e2596c0cf6d00962e633621fc126bbf4b8a42509f","5c2c1a8c867b7d9e2fa003b14bbaaa1c0649a3d33ee4836c832563e77d53ecae"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f3r511B0.m",["9c0cd02c4c265241d12d0e17c8dec79c17c8cdd2e22033e31a38e5b4d5b155d1","5467c3baad348124e8903438cd59e85b1e6e36f5b6876243915138cbf51ce44"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f73r441B0.m",["14c180bd7e48655567a4c07a0675dd16822972c8e599f1378b2616030159fa43","301fadfdbc6eafad23e90fce9d833cf3ac0bf4d677e8dc2eca716b53349b1cff"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f73r511aB0.m",["a3c19582429aeeebbc2a09ded594f7fdea5e8922c632d6d29bf41aa3dfd9855e","105fc183536fa3e9e8738135c4b2c7159a3c1b4672b3c9c21e5313fd901d0067"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f73r511bB0.m",["5cb09c5a6bae09df2f932b534366195a5bf196198d548c0668fe8f9cbf043fff","9fc44494eae49cc43e54accfeab1311f6d97ad863067ea8d1aca1bdeb654ca4a"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f73r71B0.m",["9a805f5a60160aaf4d6995fff669d38cb55b215cad319f33a095c1932fc17828","40bcfcf7da3de22c1031755dece3eb672cc402ee2c4cba80d613fdbe1c873153"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f7r512B0.m",["1f62b100addc4e556788dd698ed0fee2f82a09c0d836397916d60704077fd48a","9758df116358c45d4f4832c4ced5bf039fad25afbdf86988fa2e1aa38146e8d6"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f7r72B0.m",["83a202d5d562aded05ec5ba87626f9456595b042e865f8eba5dcd915b73b2dfe","cd7d0661972d10c4767ce58582193fdc56b48a2f7cf0698c3522115b1fbbd188"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r144aB0.m",["909d55d6c541db5af660b5d58a9b29eec3f8d7bdd9c9bb554c2d2407fb11c83e","f554c67c101eba9de7dca3a7f431a9b03b383e16e403d113adf8087f95fd858d"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r144bB0.m",["aa3ec80e41ddc3c6c6ccc6bc460cddd49b7aeb669fe95174e8f613c327f95a25","b07f99b898eeac8ff2bb8e969a311daf5a40dff721867bf013993fa3c4edbcbf"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r18aB0.m",["f8da0d9242a909ae316f7142d793a4e55fb8bba82f9cb3944ad5a95a74ad7717","6bc2d9cb5a9aaa09bd1043d072bb1047c6e7c5f0f879c58f597979b8bbe3d8c4"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r18bB0.m",["4852785cfaad499362e64ff02803ed25cf68636a558f3530c235107b08dedaee","e68ba3b5f0a08ad436941559904015f72af7cc6d620a00bf20b54058ef9b14a3"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r384B0.m",["1665468b3ae7a677e15fa7bccadf0ad4fd23c75247f53b0d770b8fabb2cd6db0","4b77e3e9720c1f59fbe98d8112bb7c32604dd8880fbcdebc1646663ef2b439ae"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r48aB0.m",["577a0613bfabe8e6f9ea6342f55504427ed60e314cc6c342f020780f508fbf4e","429bc02986ef8e6b08f0c579dcfaae22b88db560406e11e5c1419f05af42161d"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r48bB0.m",["c8c399f291298256707806339996e777744960a170ec002463b7460d992928a0","3c200acb1b4ad9a9162fb6f471d61b7555b9cb50ed6de654150e15cefdc2b8a0"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r54B0.m",["ed8dd788aa692332baff61d45320e1f7f4d6496b15f802d3df51e821ec47c1d9","b10b85256c70e803b35011a16c74a5871266a81023389970713a4d0d22778241"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r64B0.m",["fb8336a17bc1d14e3c63acc29e4006de514e6efed6e37877ab28de4e12d0264e","b08b1274eac9427ef0f437f3cf1e4d067c209f74fd9026e9f72a326acb16e629"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r6B0.m",["cb63629c4c1877fc1f076b0d15456fb7199ee3f0dd644d00e019ca59a25ce9ce","a240cc4d0703b79c01d7c3ef17a6913bc54aaa218134ead9fc63bd3c7390c990"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f8r8B0.m",["4268ef65324f31fcb496101c28fd45f14b1566553946c6ac70c92654d7cf6df1","ec1c8db0a38b4db64401e537686edf77f9e8d8fe504863923b74ff94b22152cc"]]], ["TOC",["matff","lin/L38/mtx/L38d2G1-f9r72B0.m",["65687f33b173c64cff6329825fd3eec20d200925464525361490013e21678d74","bc883189a4778d7a75233b8c000c0fee3165576932c3da5788504211b5191135"]]], ["TOC",["perm","lin/L38/mtx/L38d2G1-p146B0.m",["908e1aa7c0012f9d272c5b305f7e1625da4815bd464b79afba24608e0425755d","40288114875d1fa46e1db9b3a1a21f385e84fb330cf8c2dd31c6e59960a838ce"]]], ["TOC",["perm","lin/L38/mtx/L38d2G1-p4672B0.m",["d3aee6585fceabaa335ac8dcd98f0fdba4b01c980b464be8eb5b6c1485769be4","627ff68c61325391d4ef09e29d4fcdd68501cb8c6685d1495d687e7f72c55b76"]]], ["TOC",["perm","lin/L38/mtx/L38d2G1-p56064B0.m",["ce1763d54621335e84ca80e98e577f9917b6cf8c91870069fb96210609647a0a","abbd0851a60c99501cdbb9c2ddc275b543c07b8d42ed0255496904a6a0785b22"]]], ["TOC",["perm","lin/L38/mtx/L38d2G1-p657B0.m",["c430468271f89ca9a9e07141360cea8f2fbc4fe9ca8cc8f5e9128e5a33d1207b","a5f528d97eed0ccdfc3e828dd51ede0549149184dcd86a3ff4a82f145cd6fb67"]]], ["TOC",["perm","lin/L38/mtx/L38d2G1-p75264B0.m",["6491e09fbc178b6b1b076f28fe1fb15d95f058c943e909fcab92b9e70523c7fe","37efe84a9e6ab087c77d8dcfba0123ab3a5c0231e239e25b2b2132d3f50876e0"]]], ["TOC",["perm","lin/L38/mtx/L38d2G1-p98112B0.m",["64720188550a43058047caab3fcb1e9d21922b1465cfa7e3746049fbb9cf43fd","961dae8aefcddd598c6af4ddc9568749b487b70aa4a38ba0b07531948424a2c6"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r192B0.m",["9d80da4906dce0dd638045fd709bebcf64b231513cb71ee82254f150e2d0fa34","f8911c80652066f6aac310e07dbb9e0ec0657d6438e07bcaacefb956f215032e"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r216aB0.m",["9365c37bf99cd346371706a0986cf394d8a96ef579a683d53bbead52ae216a22","2487eeba46138c790587ace177cce2fb0d88284d8237cdca3bfce4845d70bd88"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r216bB0.m",["bd6c1ae78a0ec982a8b9ebeb411176a5fa9feb19073700cf6b6e61ca0b3701c4","6a0047c2f7da760d3b85b92261d21afe9754582db8f730bdb8b8675862d8ca24"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r24B0.m",["2957e24f8e47c73af39555575c82c2054959bd3b312fcc0acf13ac7c5f60e97c","1159ab7cffb6529ebfdd72750bc20389d464d3ba5d258b1155d9d8d14bee8322"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r27aB0.m",["125cf37d768326acba4cb8f30bf9e46f8b8b95efad89eec03a8782bb8a3daf5d","11282def1019170c5effbcb49a12c487a4c6dff404f5010edb0acabf57adf45"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r27bB0.m",["e1291ccc7ac1448a253416ad5660c060b891361e64322b08222d117de64f092d","4a933150138a8832f478774a8b50971a1e8e945eea66b245b04368b91230ab55"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r27cB0.m",["19f14a7ab871b3c0abd8c18a7623215f1062a7911a02348d8c7f7b43a04f6248","2bf8957fcf1590d1116d15cc8d034d906b9fe77209bfd54099259ebd80590beb"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r576B0.m",["37063fb990c4eea34140559d3d1da67216dfd7ae4046f778a518ced3c830b6e3","8a964ff418921389644d6c98f5530d25deb4818e5391898cf0dd8bfd9cf8a027"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r72aB0.m",["b9bea796645c875a9533573a04fe5b1e95c17f3dc9c4852fdcf50a92c750c780","ebd47da4e234aee8c4e430a13a53e4dba151b0bf959e4711e6f35f8969e1d990"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r72bB0.m",["5880fc92971788c892b97acccfca654035d8e3dbd95c93cff27915a6c29adccd","25f2c76a3ec4676dd7c60c485cea1908d1d3fd9bc7904dd05d76747b76035076"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r81B0.m",["b31aea73fdf7da5e02bc074f5926c6c7463f0c6f7d9181aaaf27c510a37b1dd4","4465b582784a15500f3db49d1263a55efd6b80f8e84498cec2d32e6856986da6"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f2r9B0.m",["4de273d9201c087fe36c54947541c40987bc9d98e2a47ddd2f57807df1e5d289","3e055decbc9f54aa0e83ac3a90edd67238e4cbe7858ebc2eea512866008f8c1c"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f3r511B0.m",["864ffe2e1b737b616a491569ddbbb6328ba4b7f3f56fefe40f3bf8f058d77c21","db116b352c0b06bd98316d8d63a0e3b047d9bae25fd7acb8f62c200c1e6c4a1f"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f3r72B0.m",["c87ad9c898e0c2fe5c351bc511ec29d219499d098ef1e4018a2be125bb88d088","8d3720fe0f4d8c2d91de72ccb5a6b548c8267f7d494906ad1003a750428acbb4"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f73r441B0.m",["3277d24ae78ad34dc054be0dccf4087109317bc3376ae2103265514df292d4b7","2a2efb43d8c743ccc5a8f2c2d9db215fd78bfbc601f2cfe66434c2080f0f6ede"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f73r511aB0.m",["eaa19188311d56e1dad423cc2feff34cbee4c298bd564f48c4ecf0b497ea2342","2c3cbc1d8909e1a579a70a9a2c01de9bb9ce119acf0a3ee4fb2ebef4661c67e7"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f73r71B0.m",["997e6ce90c8d7ff8df34573d9e1efe63a0805e7d8bbd49eec7cb6b705555a98e","58ac47aa54f5c93f31985abb96c26badb0d9a5418ac3f6307f7d9641d8ee3335"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f7r511B0.m",["31b5c8bd613714d07f26ffe3366b7310d0ba51be5697f9c8292812149f703e7","fe4c024813f660ba1df8516cf817b8bbde3731c1c19f083bf266b51ced060e7f"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f7r512B0.m",["2a748bc9beb160ecd0a67a1bb8e7415cffc60bb6ee96f35913511cb6b19366e0","135b20aa0df1dceab9866f4e3314f2efc7cba9476d54ec973b49942abd0dc50b"]]], ["TOC",["matff","lin/L38/mtx/L38d3G1-f7r72B0.m",["acea2e7aef03a8e531d61c3cd963c6b35fd91eeacf06780d8cf09a879d49fd62","94b58d443e7308ab43a6b0a34795e237dc37a45b037a7fc29450ce3949c62dae"]]], ["TOC",["perm","lin/L38/mtx/L38d3G1-p219aB0.m",["cb5e5960c7d042ce8847eb60800e5f60fe2d483e443eec081c532998ef2ef588","f3f2802c4745bf9f7f549a38e1d4da08dab768ae5f5c5caa17768286c1b4bae2"]]], ["TOC",["perm","lin/L38/mtx/L38d3G1-p219bB0.m",["2f0323c12828e29186aff95024bb7c531ad1ebbf2a3f016b65652567b391c9a0","8d83c5e9934829dd84ec8203f9a79836b8f7d4ef7a254aedfa6c06d4f97b538"]]], ["TOC",["perm","lin/L38/mtx/L38d3G1-p56064B0.m",["9c5384f6d0e918a09fa6ea3d1c1b54e4b36e5cfb714d58f8bc9452dc38298c8c","1d4130399d0af5e1b2f77a71e47f43fdafbaa3975bee860defc0b571f6d455b7"]]], ["TOC",["perm","lin/L38/mtx/L38d3G1-p73aB0.m",["287880646ab2fc758a5df45b8460d8d0b2a6dd2f235e94599048211123b54f0","1f107e847acf90395ee97a5b3d3de335f4519e91cb09ac198efea0eff09a06fd"]]], ["TOC",["perm","lin/L38/mtx/L38d3G1-p73bB0.m",["b1b2cabf60456f105ff2925c758c7cf09913b0a68355432fa6091f7a072fee22","abd223e24371e39fc52ab9f8a3e1a07bcf62cfff5b7733f2ce225e4fe0ae5d32"]]], ["TOC",["perm","lin/L38/mtx/L38d3G1-p75264B0.m",["d682571cc2642ccbb46cb3844c912a51244e16e5ba987ed6bdc11d3a4f8c05a3","d86e0304bc2807fe2ae06a154b189c04dead844236feaeba805a116cef318c84"]]], ["TOC",["perm","lin/L38/mtx/L38d3G1-p98112B0.m",["b2598c5861e1f4f6ae33ad09e5012c7371d4cd385a845b3de7ae52b31d90ec1e","c2af0950333e1c6c5427b95e3bed8a9c20b393c397ab2c87df36e6e022ea3b69"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r1152B0.m",["f16daa9a6873a8d7686c15d1f4d238714de2b19de5db332f028cab0a1c89d38","fe20ef4d9ff133596079584ad9b1951e5ffeab9d80e0549a647ffda22b6be052"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r144aB0.m",["c7d8be86a905bfe02a95432f4b6439f3c72ab90c65d2beaea2af0612b6b387bc","2a89e6bf9df55d50a2b56a1a5ce871cd18d4af3d6dc51157c403058325d12232"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r144bB0.m",["6dcc35dca4708976d3a01b505c56fec2f9fb849b8b9529ddefb2f82091d0765a","10877599085fefc4563202e3b71dce054184f863f8c3720b11012be2f4f70572"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r162B0.m",["721cccdfcaff7425d2dd951948f717563448d98435f071ea79e47ccc146bfc53","a7485bad76fa002b0bbae43427bc4eaea44b700ec0263e8bfaf71c7eafd554ac"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r18B0.m",["86f97a21b924b31139c7d1f80ce6bed2395e876f3942baf21f95da78ac408bf7","8115873cb73d1f7d0ba4561bb660ee758bb7e07552b36040c7775e7a305bfcff"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r192B0.m",["be906383a1b7218a2ea3175607ea39f08373b675d449bf98c993fbeaff4b1356","17d0379486f671e91a48184f3e143b8e5807489ab11c3e718339af6bb7e9259a"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r24B0.m",["998d6a5c0ccd4d19caecc55461c8860b18fc3d19c068ad875fccf5eac969c8a8","cf4708f83b8a6315cb7cdaf2508628f15da8c9ba75419332334009ced5beeaf3"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r432aB0.m",["d85bdeb0480308976d188e029304ab7dae63d9e4574acac2af7964f6a834b229","599f90ba8bb9ebb609f5c0cf05ce1b85a5ac5bba20ede3e15adc66326707fb6e"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r432bB0.m",["1af4830fe1741d484b746894fa141e643ca9a6ca3ef516132af4dffaad063c63","dc20a8654d7faa8ebed67ef2b6d2d4705f12f99558d720e5938607773dba0bce"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r512B0.m",["c2a7c431863602dbf4dc9a2cddafd783a84af04c7eedb40a2dfcf7e2ee46e444","3a52a13a984e00c3fb12da584c60d06bcefbe33372cbbf2c987a543e3b74300b"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r54aB0.m",["1b9a8b1150579a968a5a22b11ebf963f7a4b92639b0a980b1a69a3a623eeb2da","b53e4142e937a2336bad06b23c283fbd3688f2ee1ead1d4f6983f86626c1e2f8"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f2r54bB0.m",["690463ddcc04966a1af31ce30de0e8d430f98e9a94ef811d874f91c337db5d","eeb66885369fc734b67f53b908c6cc02bd64a5fd84f9bcaa7dad7359c9b33531"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f3r511B0.m",["14741b9543300a1d864562d511cd9dba2fb7706359f23046416517479dff8d35","46d18eb6299de7aa0c6dcaeeca3ffb7129355db26b95155949d73feecebe84cb"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f73r441B0.m",["a1731f31b2f8ac201cf1927bdbd369b1476982adcf1edb50ebd62fcbafb3bc6e","5650331d431ba340f1dcb095121d8b16b6827f7dd9448a33c7b14f80adc8be0e"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f73r511aB0.m",["4ceba05a9c739912c3c529c439f916de57c3e37b750eed532bb9d92b1b9a8e6d","2cea0eb4aca88514adebed6ae48c1bf856fc638ff1abe26a9bfd06d82497fb62"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f73r71B0.m",["11a507ac29e4e9995406c3ef56658316011b176534a12472d8346ac82d92a4a2","cb296ac90b8c8c187348530d515b57230bca6615b37320f8bdfc990ee0583b3b"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f7r511B0.m",["71eb33059864e5ba4d801aabdc121c2ca70085ae0c99de3391c10df20414df1e","fbd0be3ac26ef241ae680412d70c208900a83cb39507c6d923ab538566ac424f"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f7r512B0.m",["a658413bb69a4f5a8f1059a00367542f6828fb9711bb3f14b1d72b07f68f7f8c","8bf36803009b78bdb6635a8c7375ea9d31777d3035010dc973ae2c6a13eb8ac3"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f7r72B0.m",["3f1a61ab916a07356cb407949f700c3d704cc6d4aabb3388d6e1970da4d69da6","3fa5370b0556ffe9da6f21f31f2cfc13a19abb06c4616b2e420223400562f245"]]], ["TOC",["matff","lin/L38/mtx/L38d6G1-f9r72B0.m",["abaea3e6622f6a71c30f6a6283840a28cc08f6e8df2e38ea3bbcc7069c2811dd","326294e14ac11c109c152afcbc21dcfffa236232b112625615233f20ea31a810"]]], ["TOC",["perm","lin/L38/mtx/L38d6G1-p438B0.m",["e75ab4b1ff24e2a48f52f60f1e569926cd12efcc506bca54b423ff2d503a2fd8","d5dc658417d528b8d0d3c353a4ab91c65b10ca4a85c45abf2f1f8cca1e48ce10"]]], ["TOC",["perm","lin/L38/mtx/L38d6G1-p4672B0.m",["bccee76c20581707fc43d6a3e0726c37202e0e2d613312c225607d03cb9c740d","14f36dbded84ab68ece4f2b6cefbcfa8217eaff7027b20981af37e35858257c5"]]], ["TOC",["perm","lin/L38/mtx/L38d6G1-p56064B0.m",["367957ee1ac2f9b04a960d60c99419ef26ec8efd3f6c25c38e4d0af1deeaa468","1bae502a80d520bdd36d772422de6890aa1dea7eb5a721e4d6cb2063d552e71"]]], ["TOC",["perm","lin/L38/mtx/L38d6G1-p657B0.m",["8a89ce670be11d688b5475fc2c1e1bbe13f549261376dfa3098195f845a3d41c","9145a1fbb3abbd3035aa6e9ee4bc1c13340dcb6aa70a9655de53a5cec7e858d"]]], ["TOC",["perm","lin/L38/mtx/L38d6G1-p75264B0.m",["1cecb8704a4742c607ae16a131b360e69539f5e2074addab80fdde07f81b87ee","ba9501952001d04d31bd594e09d80ea0f877f948ff592f5af10b9217f58c6cf6"]]], ["TOC",["perm","lin/L38/mtx/L38d6G1-p98112B0.m",["63521b4ec9901721935c7feb6a44e729513880439dd50da75b83accb97cb272f","94a14c2be5e6e3f25b73531137d9ab54bf70bbed883809f8a0c176b89b1d0783"]]], ["TOC",["out","lin/L38/words/L38G1-a3W1",["b489d5ae18e32b088176889bce846eb33acd62f2ae402624fd41f6bf3938158d"]]], ["TOC",["out","lin/L38/words/L38G1-a6W1",["df6394e317958f915393a84f2cd43cb2685b281fa9fc55681c44f53584da7bbb"]]], ["TOC",["check","lin/L38/words/L38G1-check1",["ddb6731e07ce5b8a285f117756215de414e4a1eb15d89ba69a30f5de57708a60"]]], ["TOC",["cyclic","lin/L38/words/L38G1-cycW1",["f660dec83f5933d62750fa73f9f1d009a5b61f4c097fb5b969504543f78aec53"]]], ["TOC",["maxes","lin/L38/words/L38G1-max1W1",["893606dd815c66610e488a46c7b1fce42e54cf8b12e9e53a2737e65c4bfce8e7"]]], ["TOC",["maxes","lin/L38/words/L38G1-max2W1",["d945507a4ab2c4f325b89138e311df3748cb3c5d9fe86950a64651e4f20a4989"]]], ["TOC",["maxes","lin/L38/words/L38G1-max3W1",["8e3292588b0eb132101f992cdcbf01bb89d43d7320a4590374f80941fdca57f8"]]], ["TOC",["maxes","lin/L38/words/L38G1-max4W1",["1b3cbc796e0bb9f5e2ebd8bf7665b8aab4c6e5bb16e0d4534d1ab0a9aecae0ef"]]], ["TOC",["maxes","lin/L38/words/L38G1-max5W1",["3f25c2f825a3da2eb4b4a83a436794a6ce8dbf94c7f6e04dcf79148a75545f50"]]], ["TOC",["cyclic","lin/L38/words/L38d2G1-cycW1",["55a827a3d6d0dbc8257e8ad98db85f64e7d5eaec41c250f45fbb58d51d5dcbe"]]], ["TOC",["maxes","lin/L38/words/L38d2G1-max1W1",["86a65e77587974ea68bae4771490b7539c8e60f596182df0f279d701b60491f4"]]], ["TOC",["cyclic","lin/L38/words/L38d3G1-cycW1",["7daa7ddacea0085c753f32fa2212b408ed3cb811000f8e252282a5ff71b650cd"]]], ["TOC",["maxes","lin/L38/words/L38d3G1-max1W1",["a809d7e7200228487369a6a05c08dec8382fa1e7cf9941c4ae7cced1a74582e3"]]], ["TOC",["maxes","lin/L38/words/L38d3G1-max2W1",["7ddf5380ce141b5755e24235210d55418330286deac5dd15053617f56d4b0f6f"]]], ["TOC",["maxes","lin/L38/words/L38d3G1-max3W1",["cc022ffc52a571532505b9c52a2aa46c630eedddfbd690f94a9621c18aa905e9"]]], ["TOC",["maxes","lin/L38/words/L38d3G1-max4W1",["4c3d6c74d6a000c41c42427fefc4e6f0fbe42a3f9cde8ee8e6e5a67de6321649"]]], ["TOC",["maxes","lin/L38/words/L38d3G1-max5W1",["4d53966aaed37707e00e9942a0ce9ef5155bd94e6eb662da0ec9a8ce26322a38"]]], ["TOC",["maxes","lin/L38/words/L38d3G1-max6W1",["b281768d029f27853946406d8f9893dfd33af4b743df95b066fad28324ab0415"]]], ["TOC",["cyclic","lin/L38/words/L38d6G1-cycW1",["98f0613859a34db945c5eb8b225edf6366e8c6b5d146cde9b1231599591f5d0f"]]], ["TOC",["maxes","lin/L38/words/L38d6G1-max1W1",["f281dea3617c7d5534b20658e5a1e11203bbbd3f8c4e99b771585b5a8b968d98"]]], ["TOC",["maxes","lin/L38/words/L38d6G1-max2W1",["258a4756ab2c593463a86ccec2d1ea638da06f85fb57e6ca90a7eb26f262f0cf"]]], ["TOC",["maxes","lin/L38/words/L38d6G1-max3W1",["be4f051ab117ac6e435200b934a7945aa4c72ab2e514eaf5b0143f15423868ae"]]], ["TOC",["maxes","lin/L38/words/L38d6G1-max4W1",["9731ef8c09a3c3d2ddeb788de95f3b29a10977cad70b6711f87965d56f646d47"]]], ["TOC",["maxes","lin/L38/words/L38d6G1-max5W1",["4089ec6a25f91f9b5307279b4dd53dbc563337754afa96d7e82583bcabc9f7b"]]], ["TOC",["maxes","lin/L38/words/L38d6G1-max6W1",["c44f34004775fe478f059517938301bb2bbd95ae0d76ec58686af67f71c5f827"]]], ["TOC",["maxes","lin/L38/words/L38d6G1-max7W1",["ec3b4ce19cdb811d4a46e763981458b807d2161e555894da94f9f38ce0e02e1a"]]], ["TOC",["check","lin/L39/words/L39G1-check1",["e84902c8c7165fcf5e9f7ed19f0651cd726e4d85a7d53ed9c3c25f6cf52f84e6"]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr234aB0.g",["c95390f394d1ec8db1675ac43a993eaf94606770f8cb6dd1e04c874fa1c9007f"]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr234bB0.g",["68b23f92511ff143c0e03c0d06076bd93cc82f47ee2f1369a52718088b2f6d01"]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr26aB0.g",["907cf7e37b74b0390c5e785b876a1efa357fc9fd8bd10818e1b3c9d79544d72e"]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr26bB0.g",["253202130285b03f59798fd36d809408c47bd5c447f624e2569d4961c6c93fa2"]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr39B0.g",["c492e9e83a8c405b3e6bd86c4d43a0cfcd041dc3dc6ae9331b4984c8e9e39a38"]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr52B0.g",["a157f12b18a1030df837cd5a3b5d84d437676a6734fc648fbd3d778e9b50ffe1"]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr65aB0.g",["efb5916a33238ea82cdc7765370d4309db277c691fd96839294d5cef0e4943dd"]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr65bB0.g",["c45662ea310d9fdc2a2cb4aeed10bff3bf0c56b156a1640dc344cf71bb2a266f"]]], ["TOC",["matint","lin/L43/gap0/L43G1-Zr90B0.g",["d0df84193fc7373a094e9330f25d5663f0ccb92a503d8ec88b2c9544b6b858af"]]], ["TOC",["check","lin/L43/words/L43G1-check1",["cded45057eac631a4426c15b1aece8be679392d7fe1b00b0cd462c2dd3e148c"]]], ["TOC",["matalg","lin/L44/gap0/L44G1-Ar85aB0.g",["f961c927228645fe344746d3ebf9ca5844c55994880e1a93b847e1bf59de79f1"]]], ["TOC",["matalg","lin/L44/gap0/L44G1-Ar85bB0.g",["e22817c15755386cd40b87292089d002f9af2f452ef98b517794e136152599b5"]]], ["TOC",["matint","lin/L44/gap0/L44G1-Zr378B0.g",["e906aedb01c7d6ec18e3edb3fd8848a0cc020b869c07f9d92b685c12050ec806"]]], ["TOC",["matint","lin/L44/gap0/L44G1-Zr84B0.g",["b62f8a7b24fd986bfd543b84df5d9f7b2cb0319426114de590f4d31a2d04b6da"]]], ["TOC",["perm","lin/L44/mtx/L44G1-p85aB0.m",["bfca0ae8459dfaea23973fe9c84a96f1d20cf3601f2ea5617f8f3a677b8d55fd","b5c540c19e4295067cb2f68ef63a78c8638a4582183a9298bfa9d5c68135e16d"]]], ["TOC",["perm","lin/L44/mtx/L44G1-p85bB0.m",["bcadf487fb23d6cadb13ece78cd55268d690f186ba88baf87d9a0950873fd70e","116aaf1f6ee29459eb7f678f8d4944859bddde8272cccab1e167c5257baf499c"]]], ["TOC",["check","lin/L44/words/L44G1-check1",["d63ba0c5463afb116744292273f1d60e08243b7c237cf9e192c0d1bb9175ad47"]]], ["TOC",["matint","lin/L45/gap0/L45G1-Zr155B0.g",["b5a524199f93ab18e95deac48c032ac3802511b884c05e380fc91f3e06e40133"]]], ["TOC",["perm","lin/L45/mtx/L45G1-p156aB0.m",["43d513423e666ef175f5f42c1fc92826f88943a2edb125983f6d125e2bdd2ae0","25b91aaa90bf76151c651998fe9a087471ef3e4c5b744ebb9f12863e53dcd4f7"]]], ["TOC",["perm","lin/L45/mtx/L45G1-p156bB0.m",["fad3500e6ff055122d3f53c9545211dbe79dcaa866cad5ab43461f00eb8f004b","a343e8be75c7221e0aa72ffd6ca2b32041cfe105531fb02b5276fb5c5d3a5b23"]]], ["TOC",["check","lin/L45/words/L45G1-check1",["8eea47404998281e549ca2b18072b09c1737772087d597edb8e51ec0bb8aff65"]]], ["TOC",["matint","lin/L52/gap0/L52G1-Zr124B0.g",["97af961b07516be276e7b52353e7efcba537154285c42cf30ee44a5c278621ba"]]], ["TOC",["matint","lin/L52/gap0/L52G1-Zr155B0.g",["57e4f88a57877bbbb8250e25ffb9a6e78b6c2d1e26d0371419038c70a620fdf7"]]], ["TOC",["matint","lin/L52/gap0/L52G1-Zr217B0.g",["e45c80e9f3836b8e7e410a19cef39e854eb826df3ad8b81272fcf12c61968e84"]]], ["TOC",["matint","lin/L52/gap0/L52G1-Zr30B0.g",["9c664f23eee7df97a7efc7e87fef0e47272824e1e4cc7f9354f47340d4c78303"]]], ["TOC",["matalg","lin/L52/gap0/L52d2G1-Ar30B0.g",["92d5a564816174825d97d3cf880df415219f22b5d790d41e8c1162a39b783bd8"]]], ["TOC",["matff","lin/L52/mtx/L52G1-f2r10aB0.m",["71a97576213ee09de903fe07ca9a08a849ec660214ec8606e49874cd8190c73e","3f376cf67ac733d36e5e023fbc14072c079b50d57d19bc6eb055e822753b564b"]]], ["TOC",["matff","lin/L52/mtx/L52G1-f2r10bB0.m",["bd723f145e239d7f41b37402d1d501c3054436ce1df0b7fcb342511770ff86a8","46ddb0fcd26d67095580882e66cd0225d6315b5e0d2dcc36a2dd147260f7d9d6"]]], ["TOC",["matff","lin/L52/mtx/L52G1-f2r24B0.m",["672aea4d8414c54da2701fc9272fde6692478c0be7d6bcdfbadec8d79a652931","fa85d9d26da7c5187c9d69ce2613849ada249f5551db26dc4387f53ab1eeecfc"]]], ["TOC",["matff","lin/L52/mtx/L52G1-f2r5aB0.m",["cb646dc18ec4948853464950205ac6d5a8a87167f68f831974ec1ab50e3dbe0f","6bb52523797c6d21b98250d94f6d0ae7486eb58db1e18d1502b614706592939b"]]], ["TOC",["matff","lin/L52/mtx/L52G1-f2r5bB0.m",["6360a307f13246f3dbdd9e325d8d038a3694810b43a328b65d42639c154c1367","5e9e2d765e4c0b8a800e1fd915b3294e733dac62e02d5988357485a791ea10c8"]]], ["TOC",["matff","lin/L52/mtx/L52G1-f31r251B0.m",["7a609eb80c741adccd445fda953f29f31dedabdc7e7c4a64eb7457175e8056f2","2352546aecf0ab26ad3e61fb9413be1b8838171b47b25db52462ae4780b2666b"]]], ["TOC",["matff","lin/L52/mtx/L52G1-f31r29B0.m",["2808b143e4cdb1c7fa5b79407aca63a08db90148f87296d12c13ee70bfd0e4","5e77f6c3474033f340fe6a4f4f2e4be0814f455164ec0fa3b71dcb1243251c7b"]]], ["TOC",["matff","lin/L52/mtx/L52G1-f3r124B0.m",["5cafad25524090ee051bb0e76301df6ebcc736a51038c46434d30809832ed731","3b0607b915cdf45cdffe6f20afe12168616f46ef80eff0c2e85fae1862df74f4"]]], ["TOC",["matff","lin/L52/mtx/L52G1-f3r155B0.m",["822ff739f4b2da10a8532614666de27c134702931463044b3850cee8d380a186","53e4910a8b888ec9210d3ba3cba6930a8b631a9779198025f40e47fb6bb3c95f"]]], ["TOC",["matff","lin/L52/mtx/L52G1-f3r30B0.m",["e84ddba697ab11f33e338ccd5f23fd443086ca4df48b7455c7daf26e76ebcfdb","f60b7b1166b307ce0fd3454543f0aa78e02db0cb63b6ebb78bd3443c1e45430f"]]], ["TOC",["matff","lin/L52/mtx/L52G1-f5r123B0.m",["8181c4aefe76352332422f12372e0f060a2f4e34189df5c0ee1b0f47f3c7d924","21ca2de0a33df5fde0a62585f0fc4990cd1d49a91ce19d43a552d3589dd159e2"]]], ["TOC",["matff","lin/L52/mtx/L52G1-f5r155B0.m",["4450df203eec9a429f01463f5d88be7354d84747fe7ae8b1970afe8b5e0036f9","627bd65516ee3bae92e5822d2eeea10106dd277fe32c9e2eaedd6d605a771190"]]], ["TOC",["matff","lin/L52/mtx/L52G1-f5r280B0.m",["4f53673ee49c07f93f6c40e6d0d829027af1ba7714251c67d3744f2e02eda9af","3b9e5dea9d33efece88947ab4f4feecde7b7a158a15769acee39da1184658d99"]]], ["TOC",["matff","lin/L52/mtx/L52G1-f5r30B0.m",["6d4d74a12549d57c5786ee20ac79053d4b7ac32f45cffa184d1e4a31e4d5cec9","dd02bee78787574fd842ceca07c30c750dbfc8168f2e5697739a88952e948cfd"]]], ["TOC",["matff","lin/L52/mtx/L52G1-f7r280B0.m",["2c1ceb1ba7694c504f9ed9e47ae9af626ae1fee4dcda767891972a6f602f10b1","1af249c364a88e9004189dcd68429d9692614a41a53e8144694fd290440aa3d6"]]], ["TOC",["matff","lin/L52/mtx/L52G1-f7r30B0.m",["93a6e279827398cc766f5a12217c785864088996d83c2fb6fdfa500424dbf0ad","870d69b25a9621fe7dbb62e3e9ac251ac28fe4e763ff36b860e6ba18fe0cce9a"]]], ["TOC",["matff","lin/L52/mtx/L52G1-f7r94B0.m",["b740dcb494b4dbef8c8eecb29071048e77617b55869667ed9643962f319479fb","e9ac484c66e90d6c6bfb9c4a0e4f7a96753fe2bb2063d22b21e138864695136f"]]], ["TOC",["perm","lin/L52/mtx/L52G1-p155aB0.m",["f0ef0d869e37c9a143fce7a55a4d38d88a7faf627321816c468eba3c05f79082","f6a6ce524c44fded04053a4befbbd85607d327b15470bcfc9ad76d984cfc097"]]], ["TOC",["perm","lin/L52/mtx/L52G1-p31aB0.m",["3e366adc60eeaffa92f52fb1f15e9bc5657d0b99b7257072346d463b71742898","593f4b58f89ebda8b0839395b23437bb2353cef35467b2d58f36d459a3255d03"]]], ["TOC",["matff","lin/L52/mtx/L52d2G1-f25r30aB0.m",["e1e37bab2f12bfecd6930b2405de102ccc46d7beef5e3c69566148dc66ad342d","b2d7a265b97b9b059f3b1733e4422f498181bab626ea208a6a655ed59017b102"]]], ["TOC",["matff","lin/L52/mtx/L52d2G1-f2r10B0.m",["31a564e8d4e6f80c6c0e15500bbd5807d503abc228828d00e05a78308dc27bc5","cdef6fe6218ae58094fc8b9bf623983e6c3cdae85361df29e727f696bfd01da4"]]], ["TOC",["matff","lin/L52/mtx/L52d2G1-f2r20B0.m",["1e211485e7d3876181788bf61acb4c9e790b7fe592082593f855432d391b178e","3abd721bf02d3c472c613bf09e5f27ac109c6daf75b1787e761492e1f0122534"]]], ["TOC",["matff","lin/L52/mtx/L52d2G1-f2r24B0.m",["d9755e54ae8b58fcd4c012c1c82089c19a90aefb7d8631f5992e107f4b09a176","f281c17b92eca81340ee4ce704c8822603506436241b79a2cde24e123546ae77"]]], ["TOC",["matff","lin/L52/mtx/L52d2G1-f31r29aB0.m",["b30572718155f5258000c33fd79ea4824e8de612dfd268efbffcb79426fd4773","4aa66fc0a0091b8ef8cf57ca51e03bc55113bb05ca5f4b673f0825c96abc5566"]]], ["TOC",["matff","lin/L52/mtx/L52d2G1-f7r30aB0.m",["521f351b32ae10ea576370666a253e565514d893cd97625e4f33ef2e1b27f5d2","521aaafd4a10a8490e28c5d7b8efaab0d72b1647e449ae19765b9c4587748a09"]]], ["TOC",["matff","lin/L52/mtx/L52d2G1-f9r30aB0.m",["37794e8206b16e47f383282559b4dadffde14faa5b8268b14c7b61a02ac9b8f9","dc095f794e8fd40095823b915e1123a7e45b8cd2243253c225f3e13d779fbae7"]]], ["TOC",["perm","lin/L52/mtx/L52d2G1-p62B0.m",["ab0406918e454882119bd11233c724ec9ff8e07cd17ecbdedfb3d50c15734581","17a6b7db981e7c75f8ae75b01046ef61a5a565c2b5a38e379db2db47c0d081b"]]], ["TOC",["check","lin/L52/words/L52G1-check1",["1a0477b03709b0ec3b48f3ea62006de9fac8f82136d17b9b832def2c7fd99621"]]], ["TOC",["cyclic","lin/L52/words/L52G1-cycW1",["e67a3add7ea9cdd59e576f054637e009ea3faa7ca51583c694eccc9715a1a3c1"]]], ["TOC",["cyc2ccl","lin/L52/words/L52G1cycW1-cclsW1",["6b50af0fb8ea1ae8b6d3bd8193a59049461a961327e5ec57066169b1426f847e"]]], ["TOC",["maxes","lin/L52/words/L52d2G1-max1W1",["508d3672991c8eacbf12037744fe26c1e81d5a9777d8730b9da69ad683bf391"]]], ["TOC",["check","lin/L53/words/L53G1-check1",["b56c77f55008a2eec67195cdac428769d6915dcc63b45fde66137b68c967ad31"]]], ["TOC",["matint","lin/L62/gap0/L62G1-Zr217B0.g",["af405d5c2a39fbf3e886b26127dcd064cf7dcf1c04d9f2522f682159fb1ade3c"]]], ["TOC",["matint","lin/L62/gap0/L62G1-Zr62B0.g",["8722fd436dcdac51b29b1b16c25c43f5355c903e4e43eac3de2a0fe55ead264"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r154B0.m",["ff4db24b8f7e313894214d2de8f9dcf3d7e2bf7f7f55f4d196c255d784cb8cfc","d0f8c9a39172d4b4cd3226ad27b9bd8c7cb19e2abff3ff428e8c4c37b6826b89"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r15aB0.m",["5c49a675b3f93b35d9c9b3f4bd74930d31b111f422e8a2779d407b39872bc65b","347f8970bde81af8851bd71f20ff8294bd897001cf6209f091ea64d2a296f2fd"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r15bB0.m",["a9e1376670054dad7c99caadb8ef73f8d3f5949f42f1ba26a2e4ed6b201e102f","8e5d5696a02772ce452780639d8938c16216f6d576d27a909f38051112695b0b"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r204aB0.m",["6d7892b9f5e1e8faf94261d869ab0d610d56113c760ee96979eee7100c4e2e92","a7564b986f8a926710471aade6331c7d91532a8472cc2113dafe1a3f1832e672"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r20B0.m",["a886bff58f96f7603457a41e438f3b8c06e664098cf39e3bda640f5592b4847c","1afa27acce0387af3aca25e9d3cf39ee374c634e09b4e083ba3596c2f773d621"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r34B0.m",["d811dbdc9b109ed6ef86d6ae06fad9533952e1bc21bbb6945b828a967df6af06","a77914faee84d6687c39db2c45f2b07aa6c0e4107f14817523aafc3d38a80714"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r384aB0.m",["4629ce1231bdde38b4e7e4791584198949eba1201e30cba212d738892e626247","31a2494a8b39020886a4bdf0c7ed529aca7a65127780b9de10c0cfba7bc8544b"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r400B0.m",["f2c2e5bd35571aa039a861f65a2e48256e24666270298f04f2b5bf3e091673ff","65b3e7e329736cc1b80eaa0cfd0a82dcf00c5579d8889731ac560021e99cc538"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r6aB0.m",["27c91eee240772ed3535bbfa68290a6df37cec87f23fc1f85746a3a15086bf68","5913c59b7cf6cbb45130d009642c4b4ad253fef0160a5bd6d3f64c404513a932"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r6bB0.m",["a26713c387d5c905c3a70b8ba35cfabc82cd364d3ce6fc41f10871c314b1003a","88d5717ed6cbdc9993ab0ddeed6bc17366c842ee1fc7b47d311e6c2b5fdb10df"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r70aB0.m",["f92101e9a2a1f228a28c212fd3469170806ebda6854db384b3eed2e61c2669cd","a106d0e8fa0883311ac6c62e3c20983c48493c7ab518abd535605176d2ee37d9"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r720aB0.m",["f104f0c7a692325d37e30cc599102f9c3c36382d74134fec280c0d0764bef813","e3b14826f82d9c1fdb50f292b8d513d115f74fbc631030928f6c54c08b612574"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r84aB0.m",["efcd19b405016b4218870c3c71a212c716a47eb7936d007d01b2b50ec46e3dc8","fb70f6eda075d83ae002383a59e4b9f3eb219d3861bd845165b1c3142bd1521e"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r896aB0.m",["18a9fcceb31b1aec18c588a6b5308b4646687786b18926e0f342e0479553773f","bd7f9828449ff04c55865cf302f0005673d818938f23e60a3dd01279a29e0771"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r90aB0.m",["db3044854811a4b94b5adb9e75a06197311b088326c7ff2ae5e334513ddf3ee3","a7b221ee4e576911d91718f139836845505fdc3fa563a1e61b488e338807ef48"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f2r924aB0.m",["2126717916c7761ce7d552a5c2832bc237d765a2bfff819aa3a5e8f642db4616","326065552152d1dc16e559b10a1517e2bf0a7492a31747e750a0c2802e092417"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f31r62B0.m",["ee6293e42f533ae6cfaf767e87e246c0b6e738b1e7134fbd677f45358ba82f7a","912de91b73905d123cf44dab0284ca6473ecca09bdc944dd9120c811ef08f8de"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f3r527aB0.m",["bd55ba2c3680c4a8fff1f7550d75b044a973bb99e25e1fa3d1d7ff588bed24c1","ffae93618155f0246dbf095515a63e173054db9ee8e8768f0ad23d4b90e56efd"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f3r61B0.m",["9d87989bf4c0744572087082057cd9997ef09ccb166264bfa7bbe9a6bbde3c92","12a9afd974976ddcae891efcbc5768d322053abfe1b517e231663db1168eb320"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f3r651aB0.m",["4fdf3a17c351c1e2318521cc17b64c43e5694ed6fe3d7ab1fc936de7fafa95d8","a64844dd0e121d7800ad55e69a524d421a18b0cec49095e8f2acad020a4caf2a"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f5r62B0.m",["5b9e431bc2f3e1c86e3e158270e1970e57fe955155308b3836ec67e2eb943474","bf22fae58c92648d059f648efcd7678e473e8416d38b7ab39f61b9faf66ea950"]]], ["TOC",["matff","lin/L62/mtx/L62G1-f7r61B0.m",["84343ba4f8a21720181cb2b83cfbc086dce09852fe782f27ac769adc56c172db","6a2e62f827eabe9de61e2081a3d95deea26742ff2bf1d734d5311e1877bae080"]]], ["TOC",["perm","lin/L62/mtx/L62G1-p63aB0.m",["1f0f0b290e81c89205ae1bca29ba19372b2c3b12f5952095ff337026adcb6533","13b9cfca98dac8906f6bdf6e3a06be84eef0426091ce7d2d8e445de2b055d01d"]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r12B0.m",["d9c0560944312e6b3544ac20255c32cc6aea828f812f7721efa68567bc9b9de4","15f40ad820b73f2d3c19e0a934dad867df208fbc6c002d4a5a47bc803e2578d1"]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r140B0.m",["647159ec3378a1d56dea7adc39979055e203fd71f8e869ea5a5354bf75d28c7","7551ac1865ac337b5aa41687817a2855a1756663149ec378aaadce33958d4fe3"]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r154B0.m",["aeb1521e11b13153c1830fbd2a057affaa7ed4fe86c10c18e06ea898ddbeba57","87964d21588a805023f14c0016f528b6cad5b643d28a05cc60791470477a45e1"]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r168B0.m",["457bb93756b8f84ff2cb3e340b20aa39574eb17ec2cacc7488af60e4bfb5db08","f1bdf480059abce62824daf7296e5ee47815c1a85d43f57f60fcb51a0df85c99"]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r180B0.m",["190d890ab42fb3d89f36e030f9d77b3aa15d3cf1ff97a79694adb2003a6b3dcf","db9691df1564fa818e88914466093d3d5f003cabe0e67f0dc330fb38e49f56c8"]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r20B0.m",["39026d720a5f541632dca29d81499b48f7d501c972b5fe3f5761db434c2ca1f9","bf70bb7416d06c2fe3399a1de68281b44782a4be8b1f3d999acb8a97942a640e"]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r30B0.m",["fb4bdc113a62f6fede14d4afabbf854f4f298bc672236c11fce001a787bcd467","57c81c188010c2626ae0f7b080d4a4a409361b383110f171497f03729353baa4"]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r34B0.m",["2a2bf8845af3dc94d7e95cb93b4fc1339de05832842a54a3d9f21681dd6476c2","56887a5e49a22d899530d0e8c1889ea5a07d8835693f4425cc6adfd1d2f7c321"]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r400B0.m",["648444635cf64df730f1affb0d043865da039930dfa3cfa6f19ca8703ef2dc70","a453187e00586f3d368b3325ae6b7185a93b4b17e2f01f39a2488f3a33ce31fa"]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r408B0.m",["74427fa8f5a43fca86317d1e555643a27f1e17924357d30d69e8e1b7668c553b","7ca62c415e595bfd7776473039ff82257d9ecccb8b193b6d08b6234b9ce0e0e0"]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f2r768B0.m",["27672abb0c28dd8d2ec098a5d2a897face17f549c5c0dbd86223285dfb5a416f","e79595cbf14f7825f2471bb7e172da1e0f8dc11e047773ca5b2a1d5bae7e0a11"]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f3r61B0.m",["e83b3721020ff5f0bd23bcb9bbd92efa54a99ba838471964a17c45cbf8adc2f3","b7bd737f56497a335dfba2ac993bbc986c5ad633a75d45018c6dfc5058ad6a7"]]], ["TOC",["matff","lin/L62/mtx/L62d2G1-f7r61B0.m",["11746b23a8f8ae0b0dc97d746f2adfd53f71f6e3d818ac671054c7488c87d36f","49c7859a9171f32efa8d2148b0ad7ee538763d38df1dbe7940aedae04d716ac8"]]], ["TOC",["perm","lin/L62/mtx/L62d2G1-p126B0.m",["ac0f009271e43e71c0e6e6a4bb2e18660b066f040aa807e95b032b0ed6e6f3e1","f390baee6fe532fd682422fb3b44c0c33b07e80e5b6f2368a156c6907613185f"]]], ["TOC",["check","lin/L62/words/L62G1-check1",["b6ad0cfd02e54c2148213c5121a3020e02794da22fd7e9ebdb37ef0e91510595"]]], ["TOC",["matint","lin/L72/gap0/L72G1-Zr126B0.g",["56109614810bd5a61acac20aef71512c25694a6b3efe7fa4fecfedc8144841a2"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r112aB0.m",["7dbfd6a9e23be60f1d3af852d351f087fb605d4c77bd7267f4c373696ed3fa41","88f49ffb4055cb4b843f86304fe2f69bf414020c8d57becbf97ca2ffd4ff899e"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r112bB0.m",["7493954c06beb79c8da19a74869cbccc348735aa9208f44b3075b14604360c64","9130530edd64bb0a42518c3b1fbb5f04be4b4b5e2216288480b637f0cc263f2d"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r133aB0.m",["6142ed0505e0399a5005327e79fed76b3c1e1837d6a06f18a8ec0633adbf41b7","a7b2bb6bc13b72eedd7a7b3aae6a208e32e073f2702448a0cee13ecf8b306a02"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r133bB0.m",["723ee6560d2ff04905914beb0652d91a76a7a83ec983fd5fdae8d76f75279793","d80a06f6b6e599a0a259e808e9314973d1d0884cd93093ae4091aad4cab05431"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r175aB0.m",["a452ec627ebfe52e774f21e8f5c7b31ecbcb9c34ba3b1c25bc8eb12fe5038437","db776cd5992a6a88c156666aede1eaf3fcbb96a9d72727f00841ed589efd265f"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r175bB0.m",["a0cb35a598be3c40b09ddb51ec221c79409e5428811f3f0c2f05e338425d9dd1","e6f9f9a733aa2ec3e9c7a10dd8ac5e6bdee3cfb78ad53648ff65dc58fc521a6c"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r21aB0.m",["c4abde896b9ec1a09b737ef83dc3add045e634987d912823012bda74ca1ee49d","38ac72326b07f20c300c460fdfc2b01a4aa21106cb36f3a9b82eeab821873aa2"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r21bB0.m",["d38a3012e9560e59b0fd02b6576b9b1d03bde330681694f43a62bb2951e354ee","38ac72326b07f20c300c460fdfc2b01a4aa21106cb36f3a9b82eeab821873aa2"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r224aB0.m",["545f2e69cca229772ecc023b59917dd77ad08e1e81639ba9037a6b1ab8cd81b","8a1e1e66e99b2601b211594297789714fb583d403481e5376e28a5b8ef30b71a"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r224bB0.m",["379e230a3a5237250ac9faf6c1df2d6fa76fc73ae6cb65660850c4fbf3467e44","8dd365f14a8ccd4e325f50c5d7f2632a8a7a74c76cf41a108205eb25b359c8c1"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r35aB0.m",["978ed9323956a5fb58c386d6e46e878cf3ae48e4fbce62f58924823f153cf9d6","204df5900f050e3954d9202f0d54d61a350dedf46402b8560ea7d6f9da9b4202"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r35bB0.m",["4261ac63ebea87cf1963920f6b1d71b5a94da12d4d44b40e6e967052c528f5d2","204df5900f050e3954d9202f0d54d61a350dedf46402b8560ea7d6f9da9b4202"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r392aB0.m",["122d822faeaf7d382b5a7c1e20ff900e7ce92a54630cbcb96e51a8a6c62dc3f0","f622dd10692a5102b869ddb2a41e7e597f21d4dc721f1f848a570a037d9fb73c"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r448aB0.m",["96496dea9b853da0a1263f504cc0189553604f1783cb730a24a541321317912d","161895c2524fb55ee57c23dc2e50e14d20846ce24b42cfad233868eb3ddf9e69"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r448bB0.m",["4456e4aefc5aeb38900b6b4c4b1bb85e072b437cadaec3674ed1767265ddb90b","cd5e7ecca799e291dd1db20934eef754afdec5cbcd8d097cf2841e81aba8fc5d"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r469aB0.m",["e5a598c156c2d6f6f4daba7e01b8e7fbd37cef29c43561cd7acb1fb63dda1ae2","b45e84322e06cd4722502fb8d6e719e986c76d25f46c3201e5f448e739d53790"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r469bB0.m",["4bf7ccb8395790e803d112e1427b267165b12ee7f83347741012fff5cfa5375f","56d917d93ae0528e5300ae89cb17ba98c7af5e7b93a7b8bb3263bfe9769b8656"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r48B0.m",["481a048c5b5c41709fac651694d4aa5bfab6cfcdfff8982989d860494e3bc78e","c20494ed05052af55ec4ee35170a52e4fa42513ac604d80ca493de94024889be"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r707aB0.m",["5c6b74143eed8fe6d010800415d4c3adb3a72ad5b6a0151c04d4b2e3d02b5c79","50b3eb7cfa058133b5c6969b76619d3023a3f419abb95d9286357af8c50c29c5"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r707bB0.m",["f2f12e4ea5b8ac46e0a2e272be3f626de203b0027ec4c2597ec840b5d0d23066","4aa653a5b78729fa8e8997e789c10c036f9e5c29a1cfb46d47b0dcf7e24d9b89"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r736aB0.m",["2f45f7b47f4f65eb5d9b70975a9fa52b816812ac35b52a02c901d2ef17156930","e88ccc0cfe00904a412737ad29bddf4e2a557eeddb445d70eaeb9871b71f1c80"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r7aB0.m",["66754961a6c43f36787893a038a3d0cf1117f0024f603295aff17ef7a239a61a","4be76e05e1e70d92a5c17435f3200dc7195dfc04ffec891fcca701c7822932e8"]]], ["TOC",["matff","lin/L72/mtx/L72G1-f2r7bB0.m",["513a48ac6eef7a35bb9603c2a19ededada93b1cb45a5effce7ae5572aa685f4c","4be76e05e1e70d92a5c17435f3200dc7195dfc04ffec891fcca701c7822932e8"]]], ["TOC",["perm","lin/L72/mtx/L72G1-p127aB0.m",["9cada12a511b2c3688aef38673a0196c73db2584d161f8ccfa5803649f64a82d","8ab2f9974754cfe92eae07f584aaeeb1886e30961e2e6c1dd8f0a2e6f42d3b7b"]]], ["TOC",["perm","lin/L72/mtx/L72G1-p127bB0.m",["c45bdc47d74f9f5ed24b63f170019486a41eb59891eaeb0e643ce228512460e9","4609322e6ee560ff66a3729f28271d34b40d19fa25a4d1ad0362471f492da89a"]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r14B0.m",["735b1edfa67399518bc2e320e6d82372fb12c4ce458726fd53f7904b6860d048","67fad48a7c1f16a520c32a1580df28c79e85197ec8a58f3b639d3cd44416e039"]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r224B0.m",["7c607721086505f198087b82b4c6bef8fdbe6914f941e7478c7d11c9ea5910c5","a2888d4e1e72d0068a5fd6941b0f7e09770c552cee0b29d7886d92179ca0adb3"]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r266B0.m",["1c308bef8861b1ca5b55531d5bd9e78ae548fa5242016e9e078220cc61aedec5","160d196ae6e394ee56b04ff877011156137284522423ddcf5ab48af0bdf2f4ee"]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r350B0.m",["28a8e8c8e766f442dee7618e0e597960a9aba173b2fe0f895fd6e7c1c8bfc7e6","ade3baac1cedf8d2ff8de64da58c929fb986a4a40f5a600a335547df81a96945"]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r392B0.m",["983421b3cc497376cc96877789c52c352cfa87b73e804f2e3a9a5e51d40dd5b6","693b75b35108c9962b4a9f4901ffa7353714bb42cc4861a10a15939ba544b8f9"]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r42B0.m",["bd783dc8edbb6ef863bf132e4c9fd1eac985c7dd48efbef5cae40b8e6b1de337","a0a49a3a4cf27467f03689df56362030bc25728c77e0cab11c4b8d91252f4e3a"]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r448B0.m",["38ecf517b14364f9356f6f047932e51793c67c21c6e22764c04d7b87d118ba62","206e7f6063ce13c0f48e20d7904b699a886cdafb1fcbb6f3b921fb2e2f824313"]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r48B0.m",["8ee81b9b3093a1c907f321fbad0a51327869a123dec69cb446987f153a182c2e","3d7a08fab16ae80a212a3349bc63208d479cc8f3365d6413d1dce697fbdb5d62"]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r70B0.m",["46fb33287cc1dec3f6780ee0fb9afe0d54c58daae6c4d2b687d47c01a5ae095e","4f89f0ce3b661eea65534f309e17af9fd5b0ef08bf0f92adfe4fb3fce716aee4"]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r736B0.m",["869fab574244f2241bf29c8e4f6bf52537a40930d732c223619818027d2d18d5","21fae942768511da7914ee1cb64e658968ff0f77f37cebf66d9b160cb258e47d"]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r896B0.m",["19c529c7437f2e782f7453b62ab97dcc1b0c76443893f10d8255dc8b420d9699","f53ecb278d5af9909023b399b001a4fee6fc2620eb3d7ee3591de26ff845decd"]]], ["TOC",["matff","lin/L72/mtx/L72d2G2-f2r938B0.m",["ff8588c051bbd827b074fec69d461a2c4b2adb6b5efb6211e6955388fce5b3f3","37c8c333060b15e30cc04042809cadad236b194cdd42bba1257e16e3a00d89cd"]]], ["TOC",["perm","lin/L72/mtx/L72d2G2-p254B0.m",["8a552d1f62b016fa480546dfad1e1dce9aece617af20ba458aa193b193e71441","cc2f9e0eae652912f4c7f28cfefd09f91802845984181b61b31a56726ef26338"]]], ["TOC",["out","lin/L72/words/L72G1-aW1",["5391693d792c80df7ab084100f9fe318ce738d6766ceda5e24b9cdd9adf6bf40"]]], ["TOC",["check","lin/L72/words/L72G1-check1",["258f00e45e005a6b3df2ddadb9946d0c11d5b3ea41488d07cc35c3878cab85d9"]]], ["TOC",["maxes","lin/L72/words/L72d2G2-max1W1",["80e1d15ba8796ee0873f7bcddb00567cd4d62006274f424d7338d2b01499546a"]]], ["TOC",["perm","misc/214U72/mtx/214U72G1-p10836B0.m",["a47143ae77487fc4ef221aca5af21be82b22c6c482823234a002d6973bb37e9f","8885c0e0752e7ef7ffa217280d931dfe54d969fb7330d294430460f4d4df5fe8"]]], ["TOC",["pres","misc/214U72/words/214U72G1-P1",["293940cc432210e6a71d3e6d29d46daafb26bc0db0301fc95290a5b547664976"]]], ["TOC",["matint","misc/24A8/gap0/24A8G1-Zr15B0.g",["609faffe434121d2e45d179a0921679c42808dbbe0721e4127adbfc0b3dde11a"]]], ["TOC",["matff","misc/24A8/mtx/24A8G1-f2r11aB0.m",["b87a1a655d80da80525de3537c4fb0015882bab5f6de0ea17c748586e9320f8c","dd7ab7f4e13bdc43149fa5451e6566368ee8da12b237245ac66e26d40f049cb7"]]], ["TOC",["matff","misc/24A8/mtx/24A8G1-f2r11bB0.m",["b583fff1d082440fd808ebf61ddc9363fff7f756841c1b279cd9f2bc6d70051","8c67a2f7a8f9c7efd0577adfd4c1d5b8401ad06e7e441a316c04a885e359a203"]]], ["TOC",["matff","misc/24A8/mtx/24A8G1-f3r15B0.m",["a94162367a680da266f59b72ffb3d2a968cc4974e2533f15a7ebbbbecba91d54","1680e9d2d0fd863a96d60de6bb3bd1c02fa08ae5340b201831f6d9141a5ad459"]]], ["TOC",["matff","misc/24A8/mtx/24A8G1-f5r15B0.m",["d30c973f20f1bfcbcc43618776e8167000dc7d09be82b99f58942030352e496b","c3914b4011e3fd9a66ff3c4fcaa84cecd53ca047bdf7b573f483ed80eed228c8"]]], ["TOC",["matff","misc/24A8/mtx/24A8G1-f7r15B0.m",["34bc8321e5b16d0fd0ad2e226f14dfec6235c85be87fed8f797da593fb968078","933e56806f2ca9a716f984995398dc9b38826a1c612ef29d57ca3ac7cbcfbfcf"]]], ["TOC",["perm","misc/24A8/mtx/24A8G1-p128B0.m",["a7d740df9c8f41c30eb1b1d47d7fe2b32ab43ac22ce72086ded27323060fa69b","4894c2a0ecabd842602d1c553b8e17f10f504c8c03bdc0fc0114b5c8b0fc3e8a"]]], ["TOC",["perm","misc/24A8/mtx/24A8G1-p30B0.m",["8fa33450991683840b1c8bd2434db79d8bc9e54201cb7d1e96b8fb689110b0de","7e16ec1b5ab6f2a0699fc946b5157bdb100f87de2a45fabefd9dc12c6204b70e"]]], ["TOC",["pres","misc/24A8/words/24A8G1-P1",["10710f68201ce6b9b85f033687eb0eea0cb3b9386ceed83629b0ec64a0a60bd7"]]], ["TOC",["matint","misc/25L52/gap0/25L52G1-Zr248B0.g",["7a31a8636cecab84669190cc16739f573b4ab32f9ddce43389e48c8cf1fbfd94"]]], ["TOC",["matff","misc/25L52/mtx/25L52G1-f2r69aB0.m",["f945c79cffe627d7b762f9f16fd958bc18c6e619321f545dec6526524eede39b","6a60e47ed6a86d9f90af5b2cd2d18e9331bbbdb41ee4e94fa32ad3a5a1a7205b"]]], ["TOC",["matff","misc/25L52/mtx/25L52G1-f31r248B0.m",["64c081a8eb7b772634e23538597a60ee83cc5e3cfb8644c67143a66bc90a4b06","72745aed27059720598201f17c04f9dfb468a27730d04d2b00909b08ebe52c43"]]], ["TOC",["matff","misc/25L52/mtx/25L52G1-f3r248B0.m",["5e9f29a72086f0d428094a39252541aec518f3a36dc8c9e2f8b4ae1d36b466a5","2c97990fc90ad226a6bf7a7a359a7bdf8fd1e73cb9beea0fa62f7373bafc018"]]], ["TOC",["matff","misc/25L52/mtx/25L52G1-f5r248B0.m",["6ba957a45628f17e5cf0fcb10ecbab91be814afc8e631583da8d68cd6d8ee80","e4abbbffaad641756ddaac7f81f90229a061b3d5cb73d4652e0c4bcac4963113"]]], ["TOC",["matff","misc/25L52/mtx/25L52G1-f7r248B0.m",["4bf0f6d33c8a70376e94d40ae6513b54d17a6f5eaaa2022975e9aa9cf846bf7d","7211d5e17ea6667ac52f405aa3c3b694d6acaf53524db6ee1d9608a955ac9d78"]]], ["TOC",["perm","misc/25L52/mtx/25L52G1-p7440aB0.m",["1ff900ccee4ebb16331513e0250c1e2706324661db031c4bc69964d939a96664","f8dc514e5bc26fd04816592e23925e4c74366e1d04cb9a3e03dd6355378cc7b1"]]], ["TOC",["perm","misc/25L52/mtx/25L52G1-p7440bB0.m",["810cae1e8f1ebf3db50b9bdcabab1a62b604eecdb0fcc1c471bf3f42f50a495c","5f8e04b45c4ba44a243289f60a9994d8c0177bc66eeb4fd8da1270f1fc0c590b"]]], ["TOC",["perm","misc/25L52/mtx/25L52G1-p7440cB0.m",["185e7316acc42766f53844cab8bb6ef0f776a256cee74f9766719728d1bc781f","c9dd001bb3eaa44ed35d2477ed2ffacc11572d995415c49702fb6014fde9b2a3"]]], ["TOC",["pres","misc/25L52/words/25L52G1-P1",["a7cbada0c2e24a83ec050b7cfb1c0ad2bf51c42c0fd821b2c48b0f600499c57c"]]], ["TOC",["matff","misc/53L35/mtx/53L35G2-f2r620B0.m",["ec42ecd405045d41100b5f6713c3c1d65b7684d11fb4e363203f243283bb22a5","7b9d19265b1a7d648c1e3a35d27c1c65ffbfed96e51a30629cd96fe7ca19269b"]]], ["TOC",["matff","misc/53L35/mtx/53L35G2-f5r16aB0.m",["d9d4d4603117ef829f234b9b27753ef91e50dad3070658cdf4d82d6e33798774","b60b4c7f69e41c670c24bb0888bbdef399e2ab4e7364b675bf8a5be60ae8ece0"]]], ["TOC",["perm","misc/53L35/mtx/53L35G2-p3875aB0.m",["fe28cc48ddf021e79b2fb0b11d6bd40f6ce20b15820b6d9176fa002fff2d67d0","713f67698a88a4ed804d5e488569e16b045797b18bcccfce1751c417d768e956"]]], ["TOC",["perm","misc/53L35/mtx/53L35G2-p3875bB0.m",["be14ccc7088a4338e8fdbf0a1ed27e00cc7ae83e0ce9fd9bccf9be699b8666aa","5d82bf9a9350b140702dfd87eb7f7376dfb0bbc513fcf169070a63dd742a357e"]]], ["TOC",["perm","misc/53L35/mtx/53L35G2-p4650B0.m",["69e9cbd1498cae1590ad3de3752daad8604bed55247421093229a3d68c9b6041","5c9738385d6d4b20098acd5d892995f924ea3065e40e01656889c9f601f67194"]]], ["TOC",["switch","misc/53L35/words/53L35G2-G1W1",["415425527c28d9c503a33883ca52ec8e75f820362547fa9e45a49160709d4d74"]]], ["TOC",["pres","misc/53L35/words/53L35G2-P1",["8ab2b715fc2ac1b3463945454078287823b2703b89a81a0ff8ac2ab96a9d8f01"]]], ["TOC",["matalg","misc/M20/gap0/2aM20G1-Ar12aB0.g",["88a7afc061f544f4e518bd340d43958cde8517f6c73eb1201424da89982d08d6"]]], ["TOC",["matalg","misc/M20/gap0/2aM20G1-Ar12bB0.g",["941620ddd5d28e996cb631a3e77914b2be542ef8a59be60d3c47d788a298880"]]], ["TOC",["matalg","misc/M20/gap0/2aM20G1-Ar12bB1.g",["b338be85f92cbd45b94f4a6170b030893d65c127c21e7dfb7009097062d44d05"]]], ["TOC",["matint","misc/M20/gap0/2aM20G1-Zr10aB0.g",["963aff7ef5dd699f1d678069ad9a78293dc977d277695cfb36cb30a15345c07a"]]], ["TOC",["matint","misc/M20/gap0/2aM20G1-Zr10bB0.g",["5831ae317f7da8bfe7253635599bcb217fed10e26fa70bc2584a025222cb6f19"]]], ["TOC",["matint","misc/M20/gap0/2aM20G1-Zr20B0.g",["27abdfbd7041e516a48e8106ea680cc150460319a0bdfde9f8d196cd14f3164"]]], ["TOC",["matint","misc/M20/gap0/2aM20G1-Zr24B0.g",["5ac5e5d4c528c1e6320343dbd297b96f649a7f170aaf1a63ed9fbdb3cddf029a"]]], ["TOC",["matint","misc/M20/gap0/2aM20G1-Zr6aB0.g",["372f41721bc3c797ebb40d989cf750f46475e7e976e534e15de892f086e93db2"]]], ["TOC",["matint","misc/M20/gap0/2aM20G1-Zr6bB0.g",["38422c5f180f388646cb87781fe3dd943d117a26b9acc21355990474dd63018"]]], ["TOC",["matalg","misc/M20/gap0/4bM20G1-Ar20aB0.g",["fcf877bd8ce73042c1b81c01e853a1cf1d66f7bdaeff34cb41cf52048aa087e0"]]], ["TOC",["matalg","misc/M20/gap0/4bM20G1-Ar4aB0.g",["698644c9f38ea0652efc04881f34972e068455a3612be8a4be181595e1032797"]]], ["TOC",["matalg","misc/M20/gap0/4bM20G1-Ar4aB1.g",["b7bb2ad7002cbe76ebc8bdd592d452db438870648aa5639dda617a59c465af14"]]], ["TOC",["perm","misc/M20/mtx/2aM20G1-p12aB0.m",["41a7aea64291e943030e34846f3fe3d8e9c01efc0d1786e71a0f8a6129e930f8","8cf02b46b116f472711d6c06ee5bd4226d8b2d7b671931689f368f158e258d5"]]], ["TOC",["perm","misc/M20/mtx/2aM20G1-p12bB0.m",["438a2f130ea8a17371c715f2cac2925c370c69d69a6df7781356b3e4981c6260","34149da678660a83cd64c78d69187fe64444a6b98fabf17880baec62491199c3"]]], ["TOC",["perm","misc/M20/mtx/2aM20G1-p20aB0.m",["cc8e955d2be4188301d661c6661a706cff8810f0010d7f5dcd4b05fa474a0833","a711dce2870de6b9aba5ed3c9887941e5c0a3c7a87397d3e06c121ebb931757f"]]], ["TOC",["perm","misc/M20/mtx/2aM20G1-p20bB0.m",["2be756c0a4ab8be30f72348100d5f34a2d9a643af5bd64251ef57d8a574a94d","e459bfc59bd64e347bc95e55fb00790a514a3b545d01f65a29e82be3a7b6c197"]]], ["TOC",["perm","misc/M20/mtx/2bM20G1-p120aB0.m",["8e2a195991d0f94afb6d28cd22883ef81fe18b54da4c45979996740d0b380573","6447f48baa1334ce9422590d5a8c6f57e0851b7e29c3caf5fa64d386ca32661b"]]], ["TOC",["perm","misc/M20/mtx/2cM20G1-p24B0.m",["d2f2b9777038b544e20ada3f2f115252a16c2176278e7f1bdb0398b1ff190086","cee649cf98a786f1bb259601ef110f66d522b79f072466d0291b2686aa8cf754"]]], ["TOC",["perm","misc/M20/mtx/M20G1-p20aB0.m",["b762f1862ea6804269cd6918c2d8907e3bae3c58753203dca35155222bd1b555","624d4da9c6dde3801079577054093d9f28270d6b798c4bd0b28284c17b0df8df"]]], ["TOC",["perm","misc/M20/mtx/M20G1-p20bB0.m",["4b4ce0a1a3b8526dab811f0c2600d739e0524aad2f869ed397a3574329fca8b0","d28655fbc50eeba8b5847cb88ace7d290079b4136e3c2a04f191998bbeb7b015"]]], ["TOC",["perm","misc/M20/mtx/M20G1-p20cB0.m",["2e19b7db5ff5c634dfa40abab8cf890e621b3ba8fa38b90f784133ab6bd952bc","af41de6c78dedf8ba9e357585734b4bf81b2d165b8c893fbd81336d54bf7665"]]], ["TOC",["perm","misc/M20/mtx/M20G1-p20dB0.m",["78b9b1ffbe26012de372608056b13d685cc27c29b5298ef784263b13dff80066","e426d2ffa6ffeb65c156736d8f416a6bfa685384b1cd4bb1b28f0a24d3128695"]]], ["TOC",["switch","misc/WF4/words/WF4G1-G2W1",["5d8f6d097aed1514e51a9674411d0c402f9221d8d16a50ac024aad517a71e75a"]]], ["TOC",["switch","misc/WF4/words/WF4G2-G1W1",["aafcc0af8bbe19b566e89baa973da7659aa735961760d1a07ce93b2718ad4f26"]]], ["TOC",["matff","spor/B/mtx/BG1-f2r4370B0.m",["ec144ec6e65b63031fa9146521b7fc6c813cd9103fea60bed842359811f41061","29045b85f2c55f6c582bf90ef99438bea4d0308316a0e51c1d9cd93ddde26bc3"]]], ["TOC",["matff","spor/B/mtx/BG1-f3r4371B0.m",["f5148dea12e1f18fbb63a243754127e5e241f876a1077e8da2949f388a605b9d","dd3afbeb324f5f3092af887c82e173f7061230dff29a09d408f754e1b15bdd5f"]]], ["TOC",["matff","spor/B/mtx/BG1-f5r4371B0.m",["74e8f7e4d37d036c7f72490616a03c62acd5ca82d34483d102b19603e76fa8f8","a074df7257d759232ced50913f0c9ce8850a012fa113492618f49eb94093d246"]]], ["TOC",["check","spor/B/words/BG1-check1",["4e2ad94cf5029d457e83ff4b32074707f5253c9d3f14abecb7ab1051076e721d"]]], ["TOC",["cyclic","spor/B/words/BG1-cycW1",["dd4be043267d2e18bd0deaad73450c04c8f6f5b5a51776dbb04024bb9b5d4315"]]], ["TOC",["find","spor/B/words/BG1-find1",["65b24693a8296993dae1e093b6d09cbf8d69bfac0e44397be48a4b4ffbb19b45"]]], ["TOC",["maxes","spor/B/words/BG1-max11W1",["3596c645260ce62eaf78b278d9d66037edbb2b62f4f56c3cb02f097f4974dea0"]]], ["TOC",["maxes","spor/B/words/BG1-max13W1",["554e24d4aeeab8910810c73b653ae05f1b26160910e7e3ca1edff698bccb4a2e"]]], ["TOC",["maxes","spor/B/words/BG1-max15W1",["1a6c9bd991cd9a475772567ede0f8270a2cb69ae0a7592edb0d8961b688fe63d"]]], ["TOC",["maxes","spor/B/words/BG1-max16W1",["1a8afc929f4c2a66c0f476951385ca9a863fa1394aea7da13b74adfb4c92b0fa"]]], ["TOC",["maxes","spor/B/words/BG1-max1W1",["284aa130becc258cf48425f07df9a770d9e0765786e98a864d8f04fc7cabfcac"]]], ["TOC",["maxes","spor/B/words/BG1-max21W1",["829153f6e323b650a885dd347bd96e1e511c38c9ac7a69e53f05da5635131bd9"]]], ["TOC",["maxes","spor/B/words/BG1-max2W1",["cbdc4e28e0a038843b96a11ea09299d59f5ce32366203adeb29059caaec27933"]]], ["TOC",["maxes","spor/B/words/BG1-max30W1",["ae33c983844cd3360d3c88c47961d388f709b333ef04d9a6268ead6433897d9f"]]], ["TOC",["maxes","spor/B/words/BG1-max3W1",["746519710b6697ba9bb5b6f3d38e42ab6b26d8ea5ce5ae4b5ec213d71bc713"]]], ["TOC",["maxes","spor/B/words/BG1-max4W1",["a0f13528ad13cac118974958dfc4b9e4f590fd1f269c5c3fb47b36e1dcd6544f"]]], ["TOC",["maxes","spor/B/words/BG1-max5W1",["510a7f5db886366a89dfbdfa8cfb808027fe024ef40f21530237a6ccf24a0480"]]], ["TOC",["maxes","spor/B/words/BG1-max6W1",["e5002aed8f2bb80b7c4faf799fb7ad4f7caf001e8ff085b6c390b2b94654b12c"]]], ["TOC",["maxes","spor/B/words/BG1-max7W1",["f9328c6179d12608b0b1124e05a73830ba2649e33138b7971c60f12c2b4901b0"]]], ["TOC",["maxes","spor/B/words/BG1-max8W1",["eeb3af25bfb7e2a9a7055be25b41bfe5f8fb5378aca646152d3dded610a75c60"]]], ["TOC",["maxes","spor/B/words/BG1-max9W1",["79dcde29ebb35b0579c44bdbefd88806e981b7f085c12660bb079b30e65def27"]]], ["TOC",["matff","spor/Co1/mtx/2Co1G1-f11r24B0.m",["ba69dea0dba614b2ee0592fcee652ebc14ceb9489ebf7ac36014009325661bf0","f6da72a4ab2495413bf044a09adc77a0d8c8dd5781eec687c0657afba3a72579"]]], ["TOC",["matff","spor/Co1/mtx/2Co1G1-f13r24B0.m",["73510163fd1ca8d25c3336c05a059bd60416111ef615579b9667b18887a8d48b","d9aa144b144e2ea5bc77ed8629e51b12debc07a9c8fd0090439145df8e49b0c4"]]], ["TOC",["matff","spor/Co1/mtx/2Co1G1-f23r24B0.m",["3f6e887b1cd4d127b838b7ec53a48cd7c4c47d9e7bde5e1a754de26f3b186d03","f44357bf69173d556db8e094dddf521570864c11990cc54dfc0a0065a62c4b6c"]]], ["TOC",["matff","spor/Co1/mtx/2Co1G1-f3r24B0.m",["384888ecc0395d51e1cc2979ed6461816c802bbdc9aa2f1b655b966b3a213f5d","7796847c9fb131a87e43adaa75c012d7161b2acc36c41cbd283fccd8f9c5b809"]]], ["TOC",["matff","spor/Co1/mtx/2Co1G1-f5r24B0.m",["c4f98bbe653a68a99ba2dfce9b19dc00ad0bb1e20a63ae679f392e98699e0979","bfdbfed98d1e14fb328e54c474a0adffeaf58e9f4c6bb7f223ee6ab5dc2e4c9d"]]], ["TOC",["matff","spor/Co1/mtx/2Co1G1-f7r24B0.m",["9e328388d0e07b145b9397897858bff887349140391f609e1712a94aa9d1ee8","b3d49cc98ee9297edf2113da7b8ed41928ddebe19027f489be3916a55b6c4dae"]]], ["TOC",["perm","spor/Co1/mtx/2Co1G1-p196560B0.m",["a0d270968db1e21cb74571455083ba30853fe1abe5edf7e3543ea1a38af5c3c2","632cc49265eb0c57d26435ceb1d2e3b0f158a428ee21f4fa18f156419649847f"]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f11r276B0.m",["e09474f7fd283de3b33cda0428cb7e8cdb582622e57f8e1a39993c622d1b1f87","4fda150dfc073d4d433c9d2f0ee3a3eca66b4fd7a843aae83109202240508037"]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f11r299B0.m",["83b7ecb44e17593386b8d7bffd69663aa4c2ba1650775da6f4bfc41ce8d74d62","3a95e44c7e936ce94e0d5b3554a49705c66e955e10b56fe9477b2a4cfe4fa27c"]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f13r276B0.m",["80ed8c9b6881c01f634c78389a88cf6849360040979af247f09a0ea32d103b5c","a9e5a56408033aac67c49a871bdeeccef81f80009bcc8afc232bd720decb3910"]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f13r299B0.m",["18436368e5d0a81cbbc4880dae13a1f281df26f148d7d4ed47b58e6b952fef79","d8a693692e495ffeca173e7eb8afa2ed336807cffcfdbf9a135ae586e91ff089"]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f23r276B0.m",["2f5a87af4e3465e63c67bc25a07c99692bd6c0cbc0606c77f83826b9df298046","e61be24628ba25993bd804fb1864bb73f05bad04f9fc13c0132c3a1fedec0efa"]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f23r299B0.m",["67d66c64a71773a24b43e87a54f7cf8dea167de9e862e8c0984249364aa1060b","4ea43cc2e55a74935375c5803155aa7fd991a1b53da92c600e4525c1cf1b9bac"]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f2r24B0.m",["6e8bf98081b3935875e99553a45c0b7349b4a0f15b9e591c1c723836d260dc64","8d2b1281690e1823a43d32916e7076b128516a3aa464e433632cc3f34e3eefd7"]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f2r274B0.m",["b9faed4c61c0e8089f8ed73d60a7282613ec71c3d5f20aeec92944a1d313b9f1","5d979df2609c7c5d4bab843db27bbea5cdf9779c7e466a2530918d946ca0e812"]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f3r276B0.m",["57ca3566cd090fce6567fbee41b1ce3819b203caed31e636f769cadc39b71ddd","41fb8d882be8270a0cf0ff98a2978646aa5e260a1921ef8232cab0ef19643254"]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f3r298B0.m",["fd4ed9670f9fbc70cb351c5f8d70ea4877fa72b864129f2f684439131e9ca344","4a270b76148fe44a6e873d32e7f861745f9398ffc55a36cf56dec465cb9b59c2"]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f5r276B0.m",["337f83c21bea3efb985a2cad72c345d4ad8d6024c9abb462e793fa9218beb2e","8756b9fc25324b6a51ad8b123d5419048e21d1802a2e20a4a479910ae60c0414"]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f5r299B0.m",["efac5c7b1711bedc88c9523a1c8cc8fd187f5381d7d16d31585f21f9c2fc4a42","3aa0a3df532ae84aa88c48e4b82be1042c9cc609add1ab81daabd04eb043a050"]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f7r276B0.m",["435eed884838c395f3dd9efb2a5d26b2df5161ef0e51ef9ddbd6fe16876da5d7","a663e4052ac7612be8787c6f92d134845ca33700e7215e9fc431c265d9b4b849"]]], ["TOC",["matff","spor/Co1/mtx/Co1G1-f7r299B0.m",["b1275b9e72550f22dd00567d107192378f40573e47b07b86dce2cbd7a32d03a1","7677e0756bf8302389809f370be9fcd1d3eb97b348cca6046c8f482df9a40ac"]]], ["TOC",["perm","spor/Co1/mtx/Co1G1-p98280B0.m",["cf7a4ad9ec8d6fb491062014b4b9c5c6193f509e09c145f90d207e63f4ba3c9","27c5c50d3f818195b88c54e717f75012a0bdbcbea271616a9ac5b036c22bd550"]]], ["TOC",["check","spor/Co1/words/Co1G1-check1",["c5ae51d81544b603bcbcd7b09f3e2809055bbfb493445916ec9a7385cb5c667e"]]], ["TOC",["cyclic","spor/Co1/words/Co1G1-cycW1",["4d37b02d89099e79604d394f89a6e4a2233c67d6fe2974a034e925996ac6dbeb"]]], ["TOC",["find","spor/Co1/words/Co1G1-find1",["633d3848e178f2e47dbbc955498c3a748b406eb91ca2c2457a2ef041b8e3ba8"]]], ["TOC",["maxes","spor/Co1/words/Co1G1-max1W1",["cd31c10b0c0fbd8f21dfeb245e070beca2c1c8f80cdea60881eab55a9949e7cc"]]], ["TOC",["maxes","spor/Co1/words/Co1G1-max2W1",["ec03dc040f502ef2e75682f748de35d68a3c363d01d1e9b051d429c2ce09cda"]]], ["TOC",["maxes","spor/Co1/words/Co1G1-max3W1",["44149de30601a21d015d44908cf944a7bc9d841b43d78df3f89c7799d3ab4299"]]], ["TOC",["maxes","spor/Co1/words/Co1G1-max4W1",["9ab0944f8f7853a693c1991c022e2bf79c522dc2a62bd3ceb24c4b7893449f9b"]]], ["TOC",["maxes","spor/Co1/words/Co1G1-max5W1",["9e521a08177445fde21d6a9fcf53f4884941584ac3182bd15897fb2103a48211"]]], ["TOC",["maxes","spor/Co1/words/Co1G1-max6W1",["18292f40eaadceb2a521354732943289cd0d7523f0d893a7f3350c0146ab164f"]]], ["TOC",["matint","spor/Co2/gap0/Co2G1-Zr23B0.g",["460fce4a6ef22a925d73a3303020406d4603124f995547568a68120d9009774b"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f11r23B0.m",["3887c1a2ffe9a2475642f854260400b3af9387d13be0bae10cccc3bb9358b0b9","1cb886ddf7522db18073f50dbd150253f38fd609a3cbeb1910174a91b4ad23be"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f11r253B0.m",["97321b85f6b0fcafdd08bfb9ab31988aac3788b5441d4335e1a00a6b459962f7","76fe3599158a42a53d729fcff061478d5544889e5177a1d53c1438c5e607f175"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f11r275B0.m",["2bfd1fa74a5f9d5bb38654acec4883cd86bde8b824233e4a1b1202ee69ec0d21","657610a4a2f4f5646bb25b7f0657a320e5dc8ad5437224c518da420fc4fbdfa8"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f23r23B0.m",["95e0107a7267f52c8f541c3135d15dc2f81e204f40568047be4162dfc26f55ec","4bb44a76ada9229ac3a801d4506ae0e54f10cce186276f698530570fc1fc5200"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f23r253B0.m",["c54b09107afcedf3f09b7848b96cd87b6e19fe3eaffd05e7d1d7c1195559af3a","20fafaaf3ad29e8d766f6d363cb393a1d41d5be2274254a9901f90d21952ee29"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f23r274B0.m",["377826fc884fc34ac50888df756100bdb4cbefb90bc7be136b8a601bb949fabf","c22b785ae5dd1afd04b5b043008245a1a97e10267e26744e1bc058265dea139e"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f2r22B0.m",["ca1c62a020cef6f6142b5eeecbf186d9b552684f973d5a47cec4390e9626096f","7302cfadbe3b9b899431d7ed2bce06f194ed9e0ffe11c95fa094254a190c9bba"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f2r230B0.m",["c37b8d6fe455a046277a32e4b25e2eb4c6c98d563c350d7203382cd8779093f9","e3797f07d952f153289b466b0d1052f510ea9803e846a427c5bb810b71d203e4"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f2r24B0.m",["3b0e8826fdcc93001918109b6726046c42efb508491ac9803d5da7d2de1754b1","8178f22e14ecf20a7cff635298150a215f230fb52845d90d34c1755f5a805506"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f2r748aB0.m",["51cce6ac942d334b7be39d1223dbcceaf7f340fcb01bc648ac29bceac0947ce4","3792b6a1a5a0b3c5063088b7f340ecc6877f98c840c1abaeb8709e3083d902f4"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f2r748bB0.m",["54c6d13de0c1e2d715c281220306d8c695a1a2b1faf7734b00c94bf25f42f116","3e31a6da6ae90613cf85518391d990efc5c48b81517c1289a959c6143f12fddc"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f3r23B0.m",["f717cfd1696c0dffe24833de5c56396d48a18521311d4ddd3b26b1c1d247482c","c7b692a2a29b554aa802688369fc919bd18dd4ce6bad93ff7f54424c04dce38f"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f3r253B0.m",["d53366d759591a37fde7c56c5d60a6d22813b5f9725fc7be65704708593bf928","41c070d8aaaa2a82745e87388fe72f454aabc670e1de2a56055e5929b2331a70"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f3r275B0.m",["753a802673cfe670149a64c1fea6b0960378a32d46204ff332abbbb67005d076","16a91b752e0aad2d0ebdbaa8936f15f2b180bb3b149e9ac6be833c20db562f03"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f5r23B0.m",["9048d4a30c353237fd96ecb8325b5a77fdb1a3de182d66b36ba77a4f7798a651","32e6aa16ab92ea230e2c455b3d2a89dbfea54d797ba6bb027d89abe1bc248cfd"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f5r253B0.m",["2f6d3769fef1b5a47083e035e24fe9a758cb822672251672ce22f4dbd624c9cf","4a1cc88e13ecc7515a44d589f0afbeca62dcaeb4b7eada015bdfa666d8e700c3"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f5r275B0.m",["b17e2a382af71f559fe26bab344e8499b89bb57c270ad5b2d7d7a20cab6e1d2d","8ee928fce23753156e4de7b19cd7830fe4874a5ed6f77ac3c5d699800b323b0"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f7r23B0.m",["b8ae8365c73ec97eaebeebe28edc555ca104edade715a3cb4ecc15b9e0e6e644","8865d0d95bab0f16e4e2916839ea9695ab587bf59ee1a2fabba025c7fefc9420"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f7r253B0.m",["539edd7dbc6d3ce0ec7aed5a97a9095f7e3398821ff8bb4d651372fae288d2ed","fe28bffe4b4168a54f403091eb90fad07a5d96326ebb42ad2f7ae72b32444cbf"]]], ["TOC",["matff","spor/Co2/mtx/Co2G1-f7r275B0.m",["d289abe346a9d42bca150fc8525ed21f0878ec89497504cb1affc0c09d10834e","30683095340647267ae2cc1ebc52c662ca76d573c08e41ccb0c827b0551ec32c"]]], ["TOC",["perm","spor/Co2/mtx/Co2G1-p2300B0.m",["4eb464134d609dc0fd4b42ab899e2b12e0de1bde1adf103b6bdc06af07c2c5d1","5d9a84d5618fa0c98c9c5a1d65c2792cf8098b8b88d27b39cefddd5423136289"]]], ["TOC",["perm","spor/Co2/mtx/Co2G1-p4600B0.m",["4c56f25a6941d2df59f87e56ca5d81bafd927315f094e161a0720763e9f5891b","7bd5221a0d2a24cb8737d6bd846a5966ab2c32dc80edd561570d42a68161adc9"]]], ["TOC",["pres","spor/Co2/words/Co2G1-P1",["a7735b6506a29aea53e124612bb9a15918a5a0805bd8b955ce5c12e2efebbddb"]]], ["TOC",["check","spor/Co2/words/Co2G1-check1",["345cff609340215c2b6ef8c7db23a4a360df81e300970a6a733247c9a10b3d1d"]]], ["TOC",["cyclic","spor/Co2/words/Co2G1-cycW1",["91fddc9b775981b1e5002ea7cb6771fca4d35db40374f197333eb82f96b92f8f"]]], ["TOC",["find","spor/Co2/words/Co2G1-find1",["1f3866fd6a694a59f26e3a879f7436e4cb5cb817019c8da77b1640c0067e813c"]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max10W1",["70dd73f504f92259b98ced4b892ce79cf45c9bc4fb6ea617873b8d868bdd9657"]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max11W1",["65643fc20f2be1ba761de60b502e9cad9ad69a6a78968c75983e336cd08569d"]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max1W1",["68cf7de53404c246f81a0e535f30dea78e03303b49e3b6032f68dad6b09c8c53"]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max1W2",["363605011b0461ad4fb06829692ad0a45850f3bd8e7fee43c141ec9d13a0af21"]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max2W1",["62c3e50adbbfeba381c73c9404f0c6a1ff0afbe5a7284070ca67ebd45b0b25da"]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max3W1",["671857afe50579852f44ddb532fae12145f1099f41c5885e1450b55b04fd5519"]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max4W1",["a0fbbd07f2bcc11be15b9eac05d2b268f32be76dd4e01e7f5f7adf563a21795e"]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max5W1",["50ccc55803860e143c9ae29319296f28c589fcb39c8fb4405004ef263a0feaa3"]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max6W1",["c8aac86faae682652192a9d0b7e35eaf6389c6142dbdffcc464e21a9dee086cc"]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max7W1",["8a7465cc50e19ba8e2233c1012a31440c04d65f3afeffe498d50cc734b36754f"]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max8W1",["3705d6dc6edc737e8340995a390acfda4b0fc5939957f9388fca1386770e2d19"]]], ["TOC",["maxes","spor/Co2/words/Co2G1-max9W1",["ad4ca6908a75986dd1b961a8dd08a752b80300995174cc1f1721e5b4e9b832a3"]]], ["TOC",["cyc2ccl","spor/Co2/words/Co2G1cycW1-cclsW1",["c71de4c57fcd8794322db31df0f9266e5ef0e375c1010cb0fcf041db4400cc0b"]]], ["TOC",["matint","spor/Co3/gap0/Co3G1-Zr23B0.g",["6b97730878d6461310c158e62e037bf99376c021287acef5245c361c824be29c"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f11r23B0.m",["c9b8a9b67b74e30b63343eeea1612adb9ac8acb3a5173474d7533f5a10d221ed","61cf63134c54a3dc95524768871bec6894fe6401a564ac8d7680d3ad8a950ff"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f11r253aB0.m",["8ffc3b769c45e946cc2fcae6259a09cb6b51d5d2f1832e116d895be9d5bf552f","55a453a237124ba8814e50d62a68d157546241118c6c560c4aa40ebc56523a76"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f11r253bB0.m",["2db236a11bf1c3aa6aad5797f23cdf9ee25b3e62dfab56c695215a472f0a1fd1","580f4cf36c766a8c5cde503a0d1cbb8492f8e7c1aaade98de960ba372420a685"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f11r275B0.m",["8c53ff342f0e5151678546d18f82e11eff35ee42e2e0e7104bb23218974c8213","5bcfbbb7a7ce4a67d10b1210f6aa374e2e2fb8ec17df2ed8548d1bc01987a47a"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f11r896B0.m",["862383bce387a075f7a9a1cb90790024dcc177309fdbfb200e8b43e6414a87ad","5336a4d36df64739b28047748f628d2597ac51d7eb7d5a8328d7e2abe4a478c"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f23r23B0.m",["7595d2e449076b8c9166402681df6e20e791e38fc900c89b5246a1e0b7a2d41f","d2410b259f6fc5918f4cb32122f4bdaa6a9cbb59e335edfc5fe0c4d0cb3ec526"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f23r253aB0.m",["b2ae512aa4d768de228ae335d896ca7b7f3072c47b0e868af94f9424769bd56a","f0c45009ece4281552bf733956e7443cf58e59ea395acf7d3619a037fcc8e5bb"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f23r253bB0.m",["70ad12c03bc8c75b8687ac49c46435c879eef6339da60686be60f88a1a9ffb4e","ce38e166ec841dd53c41441d538dc0df6189ea3107b36069ae38599ea36db7f2"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f23r274B0.m",["5d6cfa27323a30f36dd3cac7a94e111360ad79c8d5923df4cf20bdf841a51993","ad20d31fab18ef9c6a246d0e269449e117a6c77a6c8cf09ecdf00a54bd6c81a7"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f23r896bB0.m",["25d2a507d5331587aeb805812da3adb4a8a26168ff274cd3072f8e782b2ce528","b3f47d50a03f25c884305859f2fb7e68c392bc7274e74f71267a3c60a53b553c"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f2r22B0.m",["dd8ebb98003ed5f05f326041bc4a2e30f99965fcf78977fab0e2f1b7dd43fd6d","76e444857a17ada74e62b42dee191de52554a6e80aff98a0b819effbe6972823"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f2r230B0.m",["fd55de0e62251f5c15a2d6348dbed229454960a93d08d10d8752dd6d8b7e14b2","a69b24c573b52ea5f96535fa8ada8560cdb0f8646b8b717d5efc4cbfe414b96"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f3r126aB0.m",["59ca0ae275b9b82e7d643fd787c4e22299618f0104b89c9f0b159d382ddae5db","db856496da59fe2b3e597277007408701d5b271a84e070fddc2d8c3f7020f5c1"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f3r126bB0.m",["b127fbc257e47a8e923735f4c3a7c7e9836e47ab21ad811f845a9752af9c0f39","412c01486767f4a7be985b275f292836bdddae5a88c9cc40a1f18171c7bb1ee8"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f3r22B0.m",["37e2a3c93b12f2b359d409c526ffe82a44950cafe5fda9b2eca3002ac9ecd62d","f5124b1802c5f4c03da193bfa2a57de75f725b8d6ef54cd5317922a4be1013f7"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f3r231aB0.m",["98f68c2d637ece4e95e892408e3480aa71b11208b912b630d3bb6b619c48b1b6","cdefaa4532b0631daaf63016e3f7836b0b3d8d52ea2c5b8c649afa2d1324867b"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f3r231bB0.m",["9db24b5a69a2b9c01e7b0b04973945b3861654aec07a831a3bdfd480abbbb0f8","81fc63bbea02f259383ced550155fba0faf6ca8eb5453ef12452bd85293deada"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f3r770aB0.m",["731f2090a15a10131beb51de1fa0d76ab2907b7bfd5e3d4eaa0caae6f2809180","d3b3fd7d44c14cc49bd70d2d5df252ce0dd2a7ed1b6c7b3bd228a8b33dd27b36"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f3r770bB0.m",["2a4f220ee66eb4e267bf475ee4494f0c999cea030f6c75dc3abd628d49202d48","115fabbf888572efe68e4e8b43b9c07aed09f17045f4999ee07464dc4ff47d2b"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f49r896aB0.m",["68e4089cffee693472017a36ed76824c8c64450dfafef61ab4998eb5075e36f0","e3ff1bfe855a31f5d41aa7467cfeb658178ec3d4a79f19b37262f8e0073b8de0"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f4r896aB0.m",["dd2a8f6dbdf55ff84772c029f590d2864343fbb84b2b2782aa1bc3091ee5a76d","d830a13915ed4a3ce5cdfd9b5adcc9472b53884e2b598d305a528e2757e8f3e7"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f5r230B0.m",["7355263798236e9ebac97a4c4cb4fd2cbb7cff04d789ecace5ab0840feb3ea10","a4b80d8537eab087bc55cc813d74636d5de050314da70e37197b70fcb59e8437"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f5r23B0.m",["bdba95e692614f69d711e43b1a86c4a4ba60b994db809026f2df7c8ed52585c5","bfb5aee51e14614321fe4a12fe1f0c5046690208ee1fbc54415bed2b2ad378c4"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f5r253B0.m",["88585d784af10f34814a85623626d05f0bcc9122e4c04c9fb7b4627764253bcd","a6436567eaa6681f6cec6c1bc53bbce7461456da469e529a0d5ca3c6daa83e64"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f5r275B0.m",["5eebc05b364eebd9bebb798a932e725149e097dcd07505055d1335ce522bb01d","9da1de5e37f5acb178c5e801d3f55d424e14dabba59ac5d23b957078811f51ed"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f5r896bB0.m",["a6f8e7a6719e08ea79abf96135de48cb5bd77a62e4e5156650ac179336fe909d","2d74168988ecbd0c253f38c79da6bfa05d0eda95b45c7037d842e7fd074b6580"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f7r23B0.m",["c514e0876246999843d176493e06ce7192573b9cee2a95fd9581a083bbe8e0cf","9e8ed0ebbfed7e237a10eb9e041fe55c9dc705d8ee2880b5a1c68a20faf20d2c"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f7r253aB0.m",["f1dc847edc68d9e4610047233ef0190c260f9c6731f3e19fe1d320d13978d86b","8ad0a8b61634e9c3c00ccebfba4826db919058e055d7f9dc1e94cbb67187a95a"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f7r253bB0.m",["17b3b8d026377071b5bd248dad5a15b365e27f89d1e992df19b7d2f5c0c8aec9","530d43d0013a66b92b5d6a074877f260e44a433e47b78e02501c331db5c429f9"]]], ["TOC",["matff","spor/Co3/mtx/Co3G1-f7r275B0.m",["c01dc6d556f135e711528928d3fe82e453ca7df09044076c8eb387bfa0e00fa","f8f8fb2cba6325b5afa4caca15774b58c29eacb3f714397524a8b32c5bf88882"]]], ["TOC",["perm","spor/Co3/mtx/Co3G1-p11178B0.m",["b8bab24a280b08f7e81268539cbef074a88f30968840c70c6c03013458d719c8","926ef94f156917b1a6c517f20d8a1ea6ab8a0f591e267107ff0415790ab279bd"]]], ["TOC",["perm","spor/Co3/mtx/Co3G1-p128800B0.m",["4db788dbf57ec960163e8b592df7e5eb8261cb3bbcc3f62e2e59b10825670118","a40f23ea59541360aa7f0baa643c1192c119f75bb97e3608bdc222a65875319a"]]], ["TOC",["perm","spor/Co3/mtx/Co3G1-p276B0.m",["380c224e97534f56bf8c68a9d23e92153ad852c141a0ef860ba91d64ad15a8bf","f5d4f46f43e7c1e3beaffc817729dafadc21f7532da3274ca8049f938ee62c33"]]], ["TOC",["perm","spor/Co3/mtx/Co3G1-p37950B0.m",["b0847abea7361eec7d77c1a98fb6ebb4b91dc66fc397f69b6e7a28a6f44f15f5","fa21e3fe4fca829b858d6519bc6ce914e4241f0c460295930deb3ffac13f76a6"]]], ["TOC",["perm","spor/Co3/mtx/Co3G1-p48600B0.m",["66c5c81f820c695fd61ebe26676afcdc72dcc65bb7b094b485590466142e0b65","67b1580ba33291b5126b963608edb0732062e623f071c5f75f2b8781cf36dd61"]]], ["TOC",["perm","spor/Co3/mtx/Co3G1-p552B0.m",["a28033e62c56c4b2e28a1a2aff449c36e5938aa0b0eb869f4a876b2919934c9c","626914a8bbe29d5d6ab8112d95e4693edc647ccf33250d635394611293d854a5"]]], ["TOC",["check","spor/Co3/words/Co3G1-check1",["b4ae472a728182f53a9d7f3a085c0dd702025479dbb0179f9551ed1586d6cd57"]]], ["TOC",["cyclic","spor/Co3/words/Co3G1-cycW1",["c2eb2974c08ba4ddcb7be20aadb8f8a37a23945b11497c3745c73151719c9364"]]], ["TOC",["find","spor/Co3/words/Co3G1-find1",["3dce19dfc9eb089acc142cf6b969e0ba98ce01b8b640326db887f9a36dcd99c7"]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max10W1",["6d307a3ec2f18e6dbe163de3603553dfdd4bd2d3de4407ca265641cb432770b4"]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max11W1",["57e8e1cdce92bc81dbd72c0c6cea69c939936b9318018ac5a57c8ff9329ffc8e"]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max12W1",["1c959c54bc9b9309b5f2220ed838ac47348a4463ba78e4ddbc1577e612b455b4"]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max12W2",["4b1e1ef137679d9b7a6493c83357a54682b61bf110cfa9e2ca6f62bccfaf5750"]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max13W1",["188d3bd0c83300960def316d83751bbdfd489773c127225808c7f0a3b9166470"]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max14W1",["e5efaaa3e0b35566db39584be88dcce08c6920749bc9645ecaa3e993987b5b3f"]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max14W2",["aa311aba92e54c19f4ea83a03d9dab4bbd71271e3a906a56c5f8d1a151f9a39c"]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max1W1",["891108b48b21831e94c6b0dede7c9e7333900d3b77ee29e18ccd472e2844e979"]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max2W1",["ff57e5d70026ce715d2989275a1db32d6a1ca9d7ab13d09a3c9786d1dad8fc5e"]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max3W1",["f88bd8b4f5ddc39779db253b619cd4cabcb664c52cb8ebfeff85d328b0090699"]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max4W1",["ae4a1d7f801419a05530d5f1f530e40226b59fc42c93867a42adc42888f3e614"]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max5W1",["94a4be4e71dd4bbe730b2f0a36b737b48971d5e5f7eb191f4b97ea0489a1ad0a"]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max6W1",["308a2c230fb2c79d0227771a7dc2fb8ecfdc098d65dc102c936fd05103709c5c"]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max7W1",["48640ba3a5b4c8e9bc00d50c4db9c461d7aea3ebb08f450353e429095cf2d4ab"]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max8W1",["a1896e4de14bbfa847e74e7ef1aeefc0249959b44ddcac2645af6f5cbea6ac46"]]], ["TOC",["maxes","spor/Co3/words/Co3G1-max9W1",["db217aa8af2a7983a99eeea87c068ed7eef40fddb6b6db12605465d5e6341035"]]], ["TOC",["cyc2ccl","spor/Co3/words/Co3G1cycW1-cclsW1",["9c8025a75c6eb1fa4fc90e71a8ae2307d639cfd3883600c811783ff3d1548e0d"]]], ["TOC",["matint","spor/F22/gap0/F22G1-Zr78B0.g",["689e0c272c916f92ee19ca8674d85731d92769094250ddaf7eecc72c512427d6"]]], ["TOC",["matint","spor/F22/gap0/F22d2G1-Zr78B0.g",["4c52c4271755a75e608bfe433965fdffd3d9a3233de917afa581220a54932b29"]]], ["TOC",["matff","spor/F22/mtx/2F22G1-f11r352B0.m",["1aa145799bce90f8cb6815586f7b1831271556c3b14b59b0009634a6466d36f7","d379f5343da23fa6569a7ece54989e813420a947512a1fd64f2522e62e540fba"]]], ["TOC",["matff","spor/F22/mtx/2F22G1-f13r352B0.m",["fcd045dd32c7be03240dbe43ff4a7dfc2bc6a4c5dc557c130836a269a10390ea","95f82bc865d761bad759eac683c0aca4c76b2951994edbe6722afe4a098ec7d4"]]], ["TOC",["matff","spor/F22/mtx/2F22G1-f3r176aB0.m",["a7c2f2fb1d3c2a4b32fdc5f8b9f4bb5390110a78c43edc78b71c50d96c8983fb","b824961b7ebbeb782df6e6584f05ce7979849224d38d914c9bd0d4b19d59a701"]]], ["TOC",["matff","spor/F22/mtx/2F22G1-f5r352B0.m",["16288d1373b698a22e6512c7c29acc7275c007b2f1f1632acc549992b57faace","84aa06e27f40b7ac9e32cf0764d398d32a6e430a0ad020c1e286575f5ecbf781"]]], ["TOC",["matff","spor/F22/mtx/2F22G1-f7r352B0.m",["9638007a15bfe3f00de46daa669d7795383671d31f6ef76c183dcfc896c068b0","b4ac47833fa901b8e8265e85958c1909d7636e8375b130107a76c80f4b9c2631"]]], ["TOC",["perm","spor/F22/mtx/2F22G1-p123552B0.m",["27958a34bfc895db3c09f8ca92a3604478391ee9ec65dabd6e27842c97c2190f","1f7187abc7e9dcf9240eb49512477c16878b677575e112cafee5ab971c31defa"]]], ["TOC",["perm","spor/F22/mtx/2F22G1-p28160B0.m",["4183d8e566f3a6688796256fab377796c3956933f07108fdbc705ae7c773788f","efa37097f191b3ad1497af0a63a99370a46a92a449e3a7495105bc3a23792c27"]]], ["TOC",["matff","spor/F22/mtx/2F22d2G1-f3r352B0.m",["da6abdcaf7ddb8de58bf6d19431bfd6b197236f51b94ba3d94355c01f2938d97","e5fbe565bbe3fd9d37c46485bf3b82c31f70e7536184bdb61f5828ef52513baa"]]], ["TOC",["perm","spor/F22/mtx/2F22d2G1-p56320B0.m",["6f04a1e6c210595f66092acba4183025dac5e42c3b99560a16e81ad89286719","e8403d234429ddb8ad3b4e5348561720d46c4f425eefc4e54d6ece946fc55207"]]], ["TOC",["matff","spor/F22/mtx/3F22G1-f4r27aB0.m",["5cd8cbd69aee4c1917068875424483d139e96dfa09c66108f32832c2ae5532c1","9fd73a0bd53d75b1093f825726d07b5a1fede3519778130f9f76e67f9fa18fa0"]]], ["TOC",["matff","spor/F22/mtx/3F22G1-f7r351aB0.m",["101c87998d176e9b5adc66c7c91764f3ced69841a406f1227360c9b7e9c3bad9","51f11279e4bec4b438aed68df61dbc87704eb1036747b34205694d1b2a8dd95f"]]], ["TOC",["perm","spor/F22/mtx/3F22G1-p185328B0.m",["5dc7b93fc60e4567dff0abef6cfc7427ce30783458a2b217f5923e7b1c8dd08d","12322b0e60770ee125ff9ddf46d373bd20eebd9a266f2917be4e0f807828b6fd"]]], ["TOC",["matff","spor/F22/mtx/3F22d2G1-f2r54B0.m",["8319dec56cb2d7cb06a2edc0f685d94b6ad0052aefb2c348b287d1439cde634c","8e11fc8b70fbabe92b893f3e2061ca37212a385a7c0fc4495b75baf458e45236"]]], ["TOC",["matff","spor/F22/mtx/3F22d2G1-f7r702B0.m",["eb9fe58d27b702ea4b0c7d90fda079df3ade251489a4335494760b52e47b2f2c","11de6d4ae7f484da0e217a4c61eab758168db4d2b64da885a0829b4227cc1d89"]]], ["TOC",["perm","spor/F22/mtx/3F22d2G1-p185328B0.m",["fbfe72c41005511612e62801b0eec43b19994a36359033eb6370023d1019ce44","886b913561583592b7b4453a85f6cd2bd39a31a200477d5a9d5375d7cc0d8a47"]]], ["TOC",["matff","spor/F22/mtx/F22G1-f11r429B0.m",["12b3658bd61b05bedfb4a12372d95314bff2e6df08cce06097dcd7a22462b661","55a18b109e9edf14d595c782c33cbe09ab1a35aebed51326483ab3bda646c3ad"]]], ["TOC",["matff","spor/F22/mtx/F22G1-f11r78B0.m",["26fd336c7321dcc63e079a07b501dd60e41e843b04bebc8016f6c10fc6f29691","26e5fb452be3a2f6c1f3cc73427ae54bf0f575b24b08a4bf37665d5f74127f9"]]], ["TOC",["matff","spor/F22/mtx/F22G1-f13r429B0.m",["97ec88a6db6e2bc4b4f5ff5bcb3cb6535872057d0a56aa6ce9ad07ee4fc05552","df9021b6edb7b82f5545ba42bfac0bf3d9e1b207d81810892f3f5d2edbde25ce"]]], ["TOC",["matff","spor/F22/mtx/F22G1-f13r78B0.m",["cbff3a1eb55e2dfd4019ee5973f4999ed219820659f7529372240666ce203e78","9ba60403998878563013140a97a0014d0a59186d1c958e3181197891aef35566"]]], ["TOC",["matff","spor/F22/mtx/F22G1-f2r350B0.m",["c8d7c37c00b12e09adbe1e1fd6e1ba54262e9612217d706542f561614f444966","950752beae5961b79da15f3e3c6e322b95b411163dad5a98804e5d9c7d53c896"]]], ["TOC",["matff","spor/F22/mtx/F22G1-f2r572B0.m",["3865f4e07032b70e546029eda156ec4970c025dc5faad480dc7e305d443aeae8","f1877acc6caee1f19fbec26a665febde6cf1c7adf6220bde4b53c167137e4bc3"]]], ["TOC",["matff","spor/F22/mtx/F22G1-f2r78B0.m",["79b6967d90489ed2a1a896f88af9171ce2b644d778e5d5e1cda9ef875c721ab7","b6647f45d973b64ccffd29fc78275c531c37901394545d321e27d897e4a7091f"]]], ["TOC",["matff","spor/F22/mtx/F22G1-f3r351B0.m",["379e7d78ccd31b6eec635e7fd7188d73af2a521206ae9274aa9018a87d0af37a","4073b0de0f3f955d7dccd8129558ff9ab7654306ba384ae5c5bc000cba6cdaeb"]]], ["TOC",["matff","spor/F22/mtx/F22G1-f3r77B0.m",["6d1debcf05d25600bbdfa3bd7f38cfc3a2b55261835a319a5e4405f321cfcc80","a8932541b73e88619b4df1e20b2f584c97eeca787db42b75223ff2af58f523b9"]]], ["TOC",["matff","spor/F22/mtx/F22G1-f3r924B0.m",["6ce6c630c605d5025b562822f876dcfed19fca0304d6dbc4b2b52fd81e3e0f8a","c3af4456110c38f2c6ce2af752b7e18b2b7a89ece7adabf32a56148543889d40"]]], ["TOC",["matff","spor/F22/mtx/F22G1-f5r428B0.m",["acd91497475bc5f242f1fcced3c8d5f53581c5024a6b1daf779e7af115bb582e","c0bc8e89ba5a983b01519794aa283ccce9430292e2dadaaea33f013247628c1a"]]], ["TOC",["matff","spor/F22/mtx/F22G1-f5r78B0.m",["38f661b4f332318eab35620bb379c8935bd063aaafcaab2412541dadbede8c8a","a2e00c475244996e8a2f0825be6cd3ac9d92c098885d91d5fcf5e47e5e898b6b"]]], ["TOC",["matff","spor/F22/mtx/F22G1-f7r429B0.m",["8b1399ecf0d7441b7d291c4fba7e9d65d5344e79e7ad86cb22685c074cbf5467","c18235b27a4642134f7a04540aafa2fc6e7ea034dfc6485ed8c6b7fa7fb62839"]]], ["TOC",["matff","spor/F22/mtx/F22G1-f7r78B0.m",["88794de1751e199b247c28d93360374a824205856628d140df50e9fee6641304","e75dccbad72cfe8afcedc130f741350a41796a60ab0605bf076cee16c1f9cfe8"]]], ["TOC",["perm","spor/F22/mtx/F22G1-p14080bB0.m",["b15a84bb0e5b7bf8d6de61789d4ae2ebf8d9d081fdc8ee5b6e7fe0981b5b1153","c2012242d57863fba4a5d47a40e2f6b29d44c66bf0e96d1681754938d732011e"]]], ["TOC",["perm","spor/F22/mtx/F22G1-p142155B0.m",["dc07c5a01ef6368e5631d9e4dbe6b95383f17b4f397a5f3b6d7e060b6af5d811","84ef0554a70d05e2b9aa10f8713567b0afd844044616d36af443e4e5c5412647"]]], ["TOC",["perm","spor/F22/mtx/F22G1-p3510B0.m",["4b5a0a2689a933cdbe6945cc37af6820fbbea8a0807548af559881a7173123d6","84515308c82eb2047617cfb85bfe5b8d206d59310d842c16d101850fea9dff65"]]], ["TOC",["perm","spor/F22/mtx/F22G1-p61776B0.m",["845953cd2868392239a1b54baffa8bf0389161bdad920d664a0ec3d828efbf17","77d4f59b5759ca49209986df2852c440e33cdf1f66ac25696ddc023b168e93e7"]]], ["TOC",["perm","spor/F22/mtx/F22G1-p694980B0.m",["5eceb935173f4957bd294290df575696f470120e8945d7b29241cf6820a4a0f4","8744ee260c84dddc6974d1ab9603cdf11480b337111f202e8daa1f1000a2361a"]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f11r429aB0.m",["1dbc6150d39bb4d9778e78db41c48a27981cee7ea1562bf0fa14e5552113bd07","a80b3dca52993f9682e9ac5834e4e10fab6a7c0cfabe03ad2ab945d925148356"]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f11r78aB0.m",["7940c4df7c0c73ce3723b7bee5458b36c91b8e1e6ff40c46409440079895520b","39047e5360e8109f8c7532374136038f2301ba564fe2306247279a9a5cdc987c"]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f13r429aB0.m",["8f032e84b79b3533abc2df5bc10ecc6e0dfc778c0e113bdafb8bcc9552596c91","f96a84eb0e70f1cf2702d0cbf99363c150203647c7e2c16a9a95f2f8887b0050"]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f13r78aB0.m",["e4b706d3fb8fc132ff51d27f0244b387a1223120731ea1f1630a93fe177840a9","7876c5ccf6193cdf2907e5f4251fa61b9c02e55ce5cd6ad4da48fc94d5a1db72"]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f2r1352B0.m",["58496c6c12025e1f99cd90c408d0d6391a8bcdf08f2f2e69cb05d174bd86a6ae","415df8ed32926ec24358b690679fca4d4e98f28623ceda69b32ca9ac3dc2cd0c"]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f2r350B0.m",["e4a7ad7aeacc18120ba9f1bd0fd5cb23ccccd33192ac721ae9b45a7684a6dacd","e3325308dfb0a96ec007e82d51d2b8cef083c0360ab102eb139a857742ee19f9"]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f2r572B0.m",["8fe0d542ace60e173469484a2fe0f5b66ffb5b9cf3ba30dcd72337e2f70a0d94","5d921cb1aa86d25ada73dd398ad01c55aaec8022727c70431fc11b8e8b2bb9a2"]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f2r78B0.m",["a3f1f48781e843b0610e78ace54f0d1f1991942441998c9655ef2c6bbc9c151b","75f0f5f057b14a25b3c6ca1d10bc63bc3368d696ec6eca3ad62174f186e5857e"]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f3r351B0.m",["77f6c8bdc8d5406ec1bf7fbfbdf8aaa7edffaf22149c88faf78b05e56f8d08b0","9fb2329ac35e42513959fd58f14b44e12d311cfca55ff870fa05805c5411e527"]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f3r77aB0.m",["e98528ff7815b06fc699210d933d5bafb4c3710d2677aedb325adf9d1a7b9464","1996f0a77e537b3f685ed179e9df0dd87f1630b2e46af579b38eeac80bf469c2"]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f3r924B0.m",["1ef4b234145115e1f01759cdce8f6664ce15ae0b6d09013846eca26bca0263e0","f5de3439f0829ad3b09f2ca3b85b81a7688c5ffe99dfc206cefc2edee16f746f"]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f5r428aB0.m",["2979f4b2072f730d02947b15c7f1542360da1e5eb375968cf73662164af6f7bd","19d6e6900471776c5eec13a860e89fad4995cd0c6df13d0df80fea0b84e08622"]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f5r78aB0.m",["78626a62f57ea528c6912349dcd8ec3e0b9a1784763aa75f199b487950b1b417","f684ef0653e162a361f0ac0ffb42d6140c580d8a5d6ab72f9b6ec411de3352b7"]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f7r429aB0.m",["52e3040f6d3ae26e0f185fc06f1ef83fa0f6e5326dcbd28237d652fbfcd8580d","9260228736c8ef8f700369dd93aa8d2e63ee6957b7576cd67e0ab7f874a29740"]]], ["TOC",["matff","spor/F22/mtx/F22d2G1-f7r78aB0.m",["5b626edf6109f41998a3a931084d3d9be4ebc239c7aead0e3a92c850944f1c41","be4a27e2137db49af7b25d6fb75489d0ee2c44b7b4265b67b5d457b4a514edcf"]]], ["TOC",["perm","spor/F22/mtx/F22d2G1-p3510B0.m",["3d9f4938351631e3711b00a9ed15c6ba2bd5a13ee004ef0f6aecdf2e3c1b8136","905b4cb0cc0d14c85756cd5d4895ee15db058a5f9195242b35204290f5d02bf1"]]], ["TOC",["pres","spor/F22/words/2F22G1-P1",["fc27a646754b8acc32738b9dae436b471668a2a18db1dff510c7f532ab1d9106"]]], ["TOC",["pres","spor/F22/words/3F22d2G1-P1",["21dc32bd8d35cf0554c524d634ceac371aa7362dea638e8575f58130deed8978"]]], ["TOC",["pres","spor/F22/words/F22G1-P1",["8979ac472974d935694491aef75df1f0af2c04b95a4c02250f4b7bcc22c11091"]]], ["TOC",["check","spor/F22/words/F22G1-check1",["86ae7b9c06c8d575c91cd3dc09d53450c7e66a7a83ba14c719dda7b9ff4ed34d"]]], ["TOC",["cyclic","spor/F22/words/F22G1-cycW1",["13ddc27f3a8eee85d8c0b6905e94db5ca9784463f1e7ee2b8fef1a21bfbd1c01"]]], ["TOC",["find","spor/F22/words/F22G1-find1",["fea9ff38e3b44e6e8da0c3c5eb9019dd7688379ed4f48c85b26b9f402d1ac856"]]], ["TOC",["maxes","spor/F22/words/F22G1-max10W1",["5efec96299e33573f2faac2a35883b3ae2ed79051ab80fb1e94bc9937d011587"]]], ["TOC",["maxes","spor/F22/words/F22G1-max11W1",["801e9b16611229b9b81e0a614666156709ee39ead190814df7ef69762d822991"]]], ["TOC",["maxes","spor/F22/words/F22G1-max12W1",["c772a2dda9178c60db2c8f40036f348e55f67c1d03e5a33ca14c21727d1e6434"]]], ["TOC",["maxes","spor/F22/words/F22G1-max13W1",["b5dc5e0a16353f5dbb1c6e00cbe2fdf0bd19c1f0b40198f17d4e25615aa0799"]]], ["TOC",["maxes","spor/F22/words/F22G1-max13W2",["7404abcce8984f41aca3a1f12d8d210da733fd1f171926bbbb23fbeadee2014c"]]], ["TOC",["maxes","spor/F22/words/F22G1-max14W1",["b60bdef8a6a4c67816f0b27cd083fd99dc6b89c66eb70414e88dce1559a507b8"]]], ["TOC",["maxes","spor/F22/words/F22G1-max1W1",["d4b546ae0d76e3fa063e7157c9357bec94d0247cb4b7b8b5fd26d79b2e48ae8d"]]], ["TOC",["maxes","spor/F22/words/F22G1-max2W1",["bd5772ae3b438a0f6c095ab132c33a6cec0a72126aa8577f187778a59ba763eb"]]], ["TOC",["maxes","spor/F22/words/F22G1-max3W1",["b428aeece907ae73d7be96c347480c0af9fede039095a3b0bae9dbb723428135"]]], ["TOC",["maxes","spor/F22/words/F22G1-max3W2",["a0331e8bcb28d9bced0c748c87c7e3b726f2182b874804ac636cdfdf36a77606"]]], ["TOC",["maxes","spor/F22/words/F22G1-max4W1",["fbe77c977623268a1000b71d57ead269f9f7fd6ef39b2279a63ed5345102a364"]]], ["TOC",["maxes","spor/F22/words/F22G1-max5W1",["e1df46456b34ab5ad9410cec01e66cb06a53a5a9a80e138097696a58cd58f227"]]], ["TOC",["maxes","spor/F22/words/F22G1-max6W1",["780a61958d9b02d71609cee2b06bc8b1c4c8411c6615a9418dea10939dc94970"]]], ["TOC",["maxes","spor/F22/words/F22G1-max7W1",["446dbda756cb4f861540d854196b4df44b138befb309059317d43b16076d77f4"]]], ["TOC",["maxes","spor/F22/words/F22G1-max8W1",["cd342c91bdb8754fba7bb69c8a8bd3bf058b9d7aeed11201354c605431fe032e"]]], ["TOC",["maxes","spor/F22/words/F22G1-max9W1",["a80f30ac8c45c297e1862d455ed4dc68d5f019704ad183d62f8c62c6128f5c63"]]], ["TOC",["pres","spor/F22/words/F22d2G1-P1",["71c73a9215989f9ad2a03f566ee3761f5eb494b3b832981905fcf9cc08dc2eca"]]], ["TOC",["check","spor/F22/words/F22d2G1-check1",["a06fea51131316b6d33202a63ac0dcba98306d3692f98587b5fafbd0aa70d106"]]], ["TOC",["find","spor/F22/words/F22d2G1-find1",["97e7e8682cf38a4d4a185333b8a556fdad3908b84fe7343c1b8afa423a66955"]]], ["TOC",["maxes","spor/F22/words/F22d2G1-max13W1",["d3733901b4eb0859997e01edce75de80637ecdf8e704328c20d09bef3ce8d8dd"]]], ["TOC",["maxes","spor/F22/words/F22d2G1-max1W1",["8eac208cb09114d30ee3f20f434f0d3cd52721f2706d35b4040e64852d508726"]]], ["TOC",["maxes","spor/F22/words/F22d2G1-max2W1",["d34ab7d7a796ef1cb7135e19ea1de03fb74b8e706b00d9d155cfbee0b6ecb1c5"]]], ["TOC",["maxes","spor/F22/words/F22d2G1-max2W2",["e662df96ba98a8e536af517c6cc6e82f2d34688d905c61e390a11877c614e5f5"]]], ["TOC",["matff","spor/F23/mtx/F23G1-f11r782B0.m",["ce4f5e504c66f952303de1c0d230824e3a7220220f1b5f665e7ea75025b9df54","7355c5de6e25dc0df0b1cb6ebbfc0d4a65bf6d9ab5d56c450041e6f5bd44d07f"]]], ["TOC",["matff","spor/F23/mtx/F23G1-f13r782B0.m",["4da1f362c5bbdbcfe77fd97a51213e74e69169d5d1cc5657f8c4f40016620748","a0c8ab853f380d84c6c31e075f47b5f70da8adabcf07d61eec72b95b939a4ceb"]]], ["TOC",["matff","spor/F23/mtx/F23G1-f17r782B0.m",["30e0e63a1ed3a5f75661daa45b254d255d20ed1dec96a55e471cab8b6e3ce96","70efaed63507c3ac26ab18cb180a00bf19927f7e479a0b13ed80c745516c272e"]]], ["TOC",["matff","spor/F23/mtx/F23G1-f23r782B0.m",["bfa0496237174489addf705c470809e944e912e582ef48923cc58261e43b927d","c457f3d8aa1f5364906cecf6da3af73a8866616dc31b9cd607f75ce87a3eca2"]]], ["TOC",["matff","spor/F23/mtx/F23G1-f2r1494B0.m",["cec6bfe7d0e0b685f9ccd1c15d57d43205af73df54b55392786ae17f7de25efa","486fe28128e0d38d45ec2fe8a5715336986365d931a6ed547a82c32bb94fa0a8"]]], ["TOC",["matff","spor/F23/mtx/F23G1-f2r782B0.m",["5aa8ca096b5e8114dd3f515c1a5ea9ece4626f380b762e2cd2ac5399ee8986b","15a2ec576e2c696eaa3394159007f59019e14446723667afc20a399015584612"]]], ["TOC",["matff","spor/F23/mtx/F23G1-f3r253B0.m",["ef54233606dd1a04e4d0e5a607bdf1f106bfa0a8fd074b54f4c2f956954bbacc","5a348011641b24f3222b8754dfb0bdaf834c7dc99c6001881c9663c80364b452"]]], ["TOC",["matff","spor/F23/mtx/F23G1-f3r528B0.m",["6f86da81488bebd2bb60ab45b31458872be0aba4a67fefab661edd0aeaa34cdb","15ea289749e2cb2b1d6bd57615233a2a45deaa712a548d701626e2ea578a222c"]]], ["TOC",["matff","spor/F23/mtx/F23G1-f5r782B0.m",["c6db8a0238208e0849307bffdc7231da8456009a6028b0c8abc9aafcefb48509","2cae5985fcf26bb5e01130cbe780ffdb53ba5a748da5440d139735dc1a3cbc0a"]]], ["TOC",["matff","spor/F23/mtx/F23G1-f7r782B0.m",["1986cb0ff61cd24e0bd778548d218287ff1ad03464dc7d0b89e4fdcf181d7274","f250ec105228fe5b316fc09e64b16ec3e02bf5e7404df0d59331442c5d1f04f3"]]], ["TOC",["perm","spor/F23/mtx/F23G1-p137632B0.m",["85c76ecdfd9719b5e5d9bd3a4767660ad426b7c8fd52ac525c5a9b73bc61004a","71c0b2a3a16f5a4a645e1c89d40d6f7ce7212cc2eae6a3b913e5e29acdf91080"]]], ["TOC",["perm","spor/F23/mtx/F23G1-p275264B0.m",["8a10123afce17abd95fda306b2606f227ec70c83e5c7e461ece5b6a2c077ef35","ed524c8d260622a0348a7d944d174728790a1fc9fe71b7b0a39bab89b55ca509"]]], ["TOC",["perm","spor/F23/mtx/F23G1-p31671B0.m",["87e58f34f18ed0f947af20ed683be45750fe253803b0ef0d941dd3deca0b50ad","7245ff12fddc52a05a839210360237040a6d79a91048ad0913d0ce2b4da652e1"]]], ["TOC",["check","spor/F23/words/F23G1-check1",["79220f52cbc3df855c90f55afc4250ee238537f8119b4ae77b4afc29b20a26de"]]], ["TOC",["cyclic","spor/F23/words/F23G1-cycW1",["3a188e1a0e9cd6190212327a2654d61dde714cc0d9618f74b3d5525e6fef2f4f"]]], ["TOC",["find","spor/F23/words/F23G1-find1",["f39be14af5f7d899e9714cc2115e1f690a07f32cce402f2401156e0a74be9c5c"]]], ["TOC",["maxes","spor/F23/words/F23G1-max10W1",["b631d5acfb27c9f5ff1f1127c4b66ba0f955b0a244b39ee59ce39bc47149bde0"]]], ["TOC",["maxes","spor/F23/words/F23G1-max13W1",["344f5099ed83918b798ad7f1cd5c5a2986ed9780806114494dbb9cb4e1fb8d8e"]]], ["TOC",["maxes","spor/F23/words/F23G1-max14W1",["a22678d35e73f6274d7f002f11214b031bececb25bb57747f6878bde3edfd8f7"]]], ["TOC",["maxes","spor/F23/words/F23G1-max1W1",["da3cf728cdb889056081ab3f57f6087c035f010a6155b1079321637e1d506c7b"]]], ["TOC",["maxes","spor/F23/words/F23G1-max1W2",["d411833f33f1e0329702b3917ae715cb560bc4856b63eac669b19af3fd323589"]]], ["TOC",["maxes","spor/F23/words/F23G1-max2W1",["df4b22a61e6773b7db0156cbc1e6085e64c199d76186f7ad891261b0f0d61004"]]], ["TOC",["maxes","spor/F23/words/F23G1-max3W1",["5370048f5dca687d25e2a97011abdbcad18e173ad878b28a50e7e7402f10c1f2"]]], ["TOC",["maxes","spor/F23/words/F23G1-max4W1",["407b9506101e6e6891146a9cf3e703ac9f6707f24ef64a8d0ba63d5aadc90be2"]]], ["TOC",["maxes","spor/F23/words/F23G1-max5W1",["abd2c41015094313424eadc6c3afe955aca3a65051cfb62ff0cfd30a63627f43"]]], ["TOC",["maxes","spor/F23/words/F23G1-max6W1",["eac047362484c2ee5e957ce30377bbacafbff3f014f673022d66925ed7f94062"]]], ["TOC",["maxes","spor/F23/words/F23G1-max9W1",["4840db7c44810b5a7d41a9ba092e852d43b32e40be3029bb67ac02d331460f23"]]], ["TOC",["matff","spor/F24/mtx/3F24G1-f4r783B0.m",["4c06a231e329e0700831852e82f7c96ef59c839e44c8eeaefd1ed342083780a","8445c4e823e85b6074d0173a311d9bdf91f4ec1794dc7b80469cb4a1aae1676b"]]], ["TOC",["perm","spor/F24/mtx/3F24G1-p920808B0.m",["829268d6996ab11aa012b92f8263484ea5b0fddc06bbae229e368b470a95777f","12a438c0a37c7f2cdd45efa4e73d1f1d09e9899da2f63b270f2df805606b0e3b"]]], ["TOC",["matff","spor/F24/mtx/3F24d2G1-f2r1566B0.m",["723a39c6050783d8f02ce3489888e420a53d22a1e9b810bc2a039bffaa65cfc8","f3b494067091a8c082eeed53b51c132bf0662dc9739a9a7ded280a1a3a37cdd2"]]], ["TOC",["perm","spor/F24/mtx/3F24d2G1-p920808B0.m",["fd088d26818ae9d3536f7b0ab2828f8f128a84a2d5a01c132a9229411d310665","bb68665244beeaabcabd9e1b4f08747ac9a3e6de219f9e5e4def38814e04cadc"]]], ["TOC",["matff","spor/F24/mtx/F24G1-f2r3774B0.m",["3e3e5bc6a22474deaeb80992538cefa392608ef1cde45d0654406bc7fcbe7bce","a259472fd6e1648511508b3e6b71969e790f4b8db763cdb0dd210952c648129a"]]], ["TOC",["matff","spor/F24/mtx/F24G1-f3r781B0.m",["e08394c82cd0eb3077aad9eca544b2a401694bb40e678adb9d79ec6a5d73fca5","e6909e9566cfff9ff8d0cdf358e972a974b6c95e75213dd7b12377d0d7c2e1a0"]]], ["TOC",["perm","spor/F24/mtx/F24G1-p306936B0.m",["2964a87cee8bf435d741654246b189ef3cabe8b5c63830112a403d092c476f42","d209285a44cbac2eae8a07fea25046c0e716aeaeb178061d27c86a9fe57052dd"]]], ["TOC",["matff","spor/F24/mtx/F24d2G1-f3r781B0.m",["ae918162242744b102efc9690b77513fceb7cb844117efbb6727350ee0c8879c","7ee7e3df0c14ec0362d125c8a26ae79077de7316d55edd3be93d481012d07ec7"]]], ["TOC",["perm","spor/F24/mtx/F24d2G1-p306936B0.m",["ff7f1f33e53330564900f8546d45f35ed174b93ecadc92fc89031921018514c3","b3b24f5f18bb1e827fa7bae3f1d051c20622b7833bcdae32a1e14a1dcd062834"]]], ["TOC",["check","spor/F24/words/F24G1-check1",["f918dc9924e45c03d74bb5cd9183111d04e69b5fca9ec66360610194242919c0"]]], ["TOC",["cyclic","spor/F24/words/F24G1-cycW1",["a11d0386c6cfe8c471ea0c68175f65d55b638b52d1a13fda576b0d3272587576"]]], ["TOC",["find","spor/F24/words/F24G1-find1",["e3d8432e9633e36713432d3afbd9858cc6a98d2976d5b8eea034972827013ed8"]]], ["TOC",["check","spor/F24/words/F24d2G1-check1",["be0704c200bd362f9c21bb848fb4297a9d5bf2a951fd2edadfbcff6cfbb8818c"]]], ["TOC",["find","spor/F24/words/F24d2G1-find1",["6e6c5cc7dba3db2a065ca7c890d13c465d303496345fbf3bfa31a675bce918cb"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max10W1",["f26fbef5f7a51ef9574652ea5f85e2e4798ad3c9fd36012897f09e4d609d6066"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max11W1",["4058f6b76aae23101e89c346e642bde1031d22d833034e0856684bd1ed9f386a"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max12W1",["8305eb239a8d7c3b51e604b783508298f42aaa67a30fab34fb8d9889d5228ecb"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max13W1",["f52e79df384fcb92de2e162e9f6e5e910465711707ebba5c15ffc2b4009e2bc8"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max14W1",["8541c36d80793285085754cc9a50552ce7a10df8280fd3dae3240b48aaa9b2ba"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max15W1",["9f0011e74a22898dd771b8cfbb6054c7b67d6cfd3cef3fb36c87d9521ae401bf"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max16W1",["ade07ced859c9975ba18c9f04399e2c227bfc08b5e2c68cee55b9bf52035fbf1"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max17W1",["195328bd9937a9b52cda95d0b394e585f9693c43997d83e59f4f576f0eebc372"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max18W1",["a8ea1912a0f57fd7bdfe3c836b86edf51c3f06be876674349dc1df2d70d3bd31"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max19W1",["a9d7ef7326e4a7d20f27d2ee120f1a25b4b42f6957aed9519fab18a837f22efa"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max1W1",["cbfb79b61dda856b50b7446eed22075f473342ddc5ffc3101bb43802627d837c"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max20W1",["cc7e323880c32513c243d79516020ebff0bc39b673b3614c9cf35561f955d180"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max21W1",["e37783b41a6216eddfd2e2b0a893033a5e3fa55aa470d7ecf8f2d0853acaa31d"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max2W1",["6563549eb47b75d382f97bfe2b1fe77a94c420299a08f86a00aa0ae9efb1b458"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max3W1",["243c4c8c8a4ad3fcabf92e250264dbb4a3becb1bfba24b8618362670f3c15ce0"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max4W1",["e52c32036421fc37362fd4cf5c4a8eb5e20a048496918a61a8f9cb2fdcd7d9e4"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max5W1",["21f2513f4cb9137bd455064cd661f9101a7c7dc6443fdff7bd5bcf3d51625d75"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max6W1",["538cb43d0f7cea2d0f9bdc36c127e35f6fdb4a2247adb5a1912a03177048ea79"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max7W1",["4145cbd1dccc655d8c52ab97bd0a8adee112f934de99d29822638ae1d30e1e4d"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max8W1",["79852a982b3d1470ddbe1a492fc84f1f1392d223195586ca2a9db50531bf2515"]]], ["TOC",["maxes","spor/F24/words/F24d2G1-max9W1",["fce481a8aeb1157bfb2ad855b75397082580058ea73f2a9abcac6b9751e7204d"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f11r133aB0.m",["fe33e6b803ed2e82a05bfd3edf7c05a2de68923d6e45da3d19b74111a7f3eabf","adebfdb11767eaee2683ff9d8c7a5bfbb7e04bf997bc827dff4bc02b2982f4a4"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f11r133bB0.m",["fe33e6b803ed2e82a05bfd3edf7c05a2de68923d6e45da3d19b74111a7f3eabf","a559492376dbe694732b92ff79342bd785f88443449f1888dbb67ae9e1495ada"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f11r760B0.m",["6f3c6f31bdeffb68d3a14c5150ff39570d248fcae8ee8fb31dd890ddb04f9542","d485ffc8292db3a163a956952ec0a92d7ad8ffe73002211998fc0f5a3b3dd5f0"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f19r133aB0.m",["4191bbfd2eb69f18ba8362cd02d07b90bbe01c3530456dff308fff4cba84aa8c","ee10fbae84cec485d4df1ea35a86c454909f70e9edad33ea0291dd00354276d5"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f19r133bB0.m",["4191bbfd2eb69f18ba8362cd02d07b90bbe01c3530456dff308fff4cba84aa8c","195fb1e9a1714d52cea0adeb24fbc84d9fc8be2ceb056bc658f1b6fe9490aabb"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f19r760B0.m",["681400e0841e8ee060d6aea16d1c97f98513ca02584fa044b7057fbe32a150e8","c5b2572135a18d1a9efd6ea24d1abc2cfba6b2e14f66e91b4bd567c682be68c3"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f2r760B0.m",["aea8082de46210957e754c8f9ceb07a113e44fe4d3a72db4d28081c1b3d6cdb3","472d917908945c624a855de78f73448ff21a91d3970930926085619fb6bcb0ca"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f3r760B0.m",["c4fb68e43320a7e3f0e94cd458c87b54b5e1f7c3a7e5318ac1347268d61462cb","dd4ce2068ac54f1c0e8bb5c8ea117fd7cc0d99eb4d59606a04ed504c3c1885a0"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f49r133aB0.m",["9c50c862b061effc023ee8ee80f6f9316f767f461f33875b323fa58174ae9238","39bd00fb6ca9730ca9d56707725da813027c92f0941812b247316f97fd290eab"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f49r133bB0.m",["9c50c862b061effc023ee8ee80f6f9316f767f461f33875b323fa58174ae9238","4f4321e0761f3c7da675d9f8fec6f3269bce85df7018db2f853cb2c0b5c3514c"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f4r132aB0.m",["e6f67b94811f16eaef0f1f808c61d78341ccad0205bd5411c97c9550a7f2ef","1eb3250634323e79cc499fb897149acf9e03ab3f5d62fc7d0b54e0ee4eedb994"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f4r132bB0.m",["ab5e84e1f5b59816b69a782405613496d1f69ada471ac639eb14a57fc4fd84b0","8e934b8634705449f7a300f401935211a8e6fdcfd55e07be482b6d47665eea10"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f4r133B0.m",["c0980a01cd5f8e667a5b8f53f13f600830d7315acf2580922f973b0c2f87f9df","bac6b6f6e4e000e168699ea6c894584a6d243e9f158656ad9ae189ced33daf0b"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f4r2650aB0.m",["4337bb05f2e4daa795e2109b8ac094312099e5d3b8cfe3a839582b70a56de1b8","ef05badddb889e45a441e640926f8437650b8e6412c192719ece1a5aae89dbc0"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f5r133B0.m",["a771e96ffbc69b01e4cb8c89b3be9189e6cd9bf46f410c5b417177cadffbca35","8c61afada719e9bfb27d9ce276ac5948f2f5b38cda4bc1e968fc75cd91c58525"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f5r626B0.m",["33a7e437821b3706e3f4662895f35b2e2884c27d7ff4f1642e2eb8aeb6930ead","9926c83a768d81be1fb3d0090ed6493175f55fc1c75edb0b58c14716a77fda28"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f5r627B0.m",["8013c0393ead4cb65bf5ee99547f941d628e6d1c11c53265a39eca7c84f6cd15","43f1f8e589bba0560c19f52637b634b41464b717a2c829427e8c4af378c9813e"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f7r760B0.m",["6cc287d336f159955b05ab53061dd8916f2e8848c76fb813be614940b5bc38af","2c57639c6c162520539e816371a0f3265ba651ef1bef4e3d6256fe16f3bde3ff"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f9r133aB0.m",["70a3fbd7c8d85ddf13405ba6f62cc9dd2190e841bc997a01b6c0224e16994c25","86f9b45d58ae41e1747deadc1e4e1e7ec079aa0bbf2223db77dd305dab4cea04"]]], ["TOC",["matff","spor/HN/mtx/HNG1-f9r133bB0.m",["d6561cac0eb80cff5c4ac88497cee13f4567cef020884e36af930fde278db7f4","dc418c6c3410083f40b527b49cb170cd2018880aaf252bf8124595269abcdb54"]]], ["TOC",["perm","spor/HN/mtx/HNG1-p1140000B0.m",["101597e00acf71627ea3c568486afca45df032b568b4f4d4c2514ff1c19c3369","bbef8d66160908e8af50e8782c1ca25a2dbf22f13d490de1df989766579b873b"]]], ["TOC",["matff","spor/HN/mtx/HNd2G1-f2r264B0.m",["d173769528035dabc4224129f0d103dc3b7a118aaed7a77e9d2891456e680d5d","4e3c1556f0a7aad6f1aa231da0ad05d083435ccbb100f6b41a3bfc318d75842a"]]], ["TOC",["matff","spor/HN/mtx/HNd2G1-f5r133B0.m",["8ee6281c3efd8671f62ff192d8c7bfbca68c4d66173f25e041046d617c9de9ad","9773043cfbdf7ed0ecfcf651c1a8f6d01c0c5a2db6a8d326e9e2a7693df57117"]]], ["TOC",["out","spor/HN/words/HNG1-a2W1",["e41d9f653474d927da050ff96bb36315ba1623ed0e36038f5626cf2c34687f3f"]]], ["TOC",["check","spor/HN/words/HNG1-check1",["d02c7dba74efbe3893362d4ebe3f1de7ca1f03cccbb7bc09adc8b1be407c910b"]]], ["TOC",["cyclic","spor/HN/words/HNG1-cycW1",["eb2c5bb51489de8b7edc50b2f4d55ef4eaafcfe2fccda74ec054fc7141672018"]]], ["TOC",["find","spor/HN/words/HNG1-find1",["8b520c6f30d21bd31c2005801e68a4e49faf369c037cae923f7be549a0f46ec0"]]], ["TOC",["maxes","spor/HN/words/HNG1-max10W1",["964cb5f1107a2c76b95cfb72af5bc9586a0f410b63bceb1386cbef6de4e9bde3"]]], ["TOC",["maxes","spor/HN/words/HNG1-max11W1",["a7515e035475662a6cce47d43e54b21b0007d4b223adbe0f9b45f839ff745bde"]]], ["TOC",["maxes","spor/HN/words/HNG1-max12W1",["de81df8c7accbfb330a0034b4f00bcec97809d1892ea9c6924397f2b9b947a8e"]]], ["TOC",["maxes","spor/HN/words/HNG1-max14W1",["319222394c24913d05b02abb36432bd98ae319901b2f6aeefe00102190f07fc7"]]], ["TOC",["maxes","spor/HN/words/HNG1-max1W1",["83fde781982903319b3590798cb1bb3f9f435c236831e804adf579d16e982b27"]]], ["TOC",["maxes","spor/HN/words/HNG1-max2W1",["2bd6219c8b3d74f7ed261bbff9a195ff896d1e26e084deec0c3516fbae04ba60"]]], ["TOC",["maxes","spor/HN/words/HNG1-max3W1",["b90bae2a1cafa8680a238483bb05665dbac3ace4671cf5fd62534b5ff200566a"]]], ["TOC",["maxes","spor/HN/words/HNG1-max4W1",["96cd7364077c587ce90cde5d56a1b94ab1052092df545801a50d088a41d3ee6"]]], ["TOC",["maxes","spor/HN/words/HNG1-max5W1",["74f1aafd23801209a0e43ffa4974fe995e190916b6171bc82aad8b279cc1401f"]]], ["TOC",["maxes","spor/HN/words/HNG1-max6W1",["c8c709e21e6a20ca3e427db40e54863cdd01d942caf7926ee0fb8ce0dc8aeeee"]]], ["TOC",["maxes","spor/HN/words/HNG1-max7W1",["a81830af67b0f841a88abb476542a210cf94ac43767db51bd7e8f8879395140c"]]], ["TOC",["cyc2ccl","spor/HN/words/HNG1cycW1-cclsW1",["9e18ea6ad86d337ee42006991db4d1012be4d48b11a106a353c1b0e56632eacc"]]], ["TOC",["check","spor/HN/words/HNd2G1-check1",["bb57e70211d114c6f3a65e5e05aeb3980700bee979e6ecfcd367f9ad3988aedf"]]], ["TOC",["find","spor/HN/words/HNd2G1-find1",["d099e5d6c2cbef1bacf7d45f573d1ddec542ed916c82464d44bf93f101aff76f"]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max10W1",["3a762c7de5a3eb3a4814be3d8c249caf76981fcdfe3535a1c2f182dada2472f6"]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max11W1",["18af955a9e59fb8397590b6f4dc2ba7eef7ecd9019c3c3c1ec4e00fb66059c6e"]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max12W1",["98e81720015a7bdfa2a6f891ee1f010649a385d570d18851db45e4828821559d"]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max13W1",["ba782674ac9d9035fb1a3cd73d36d916816c1d53c35b9c5af4d449c970fb45e2"]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max1W1",["c5172c31cf2710130dccefbe4f36acf207c3ccc4daf7c5c710c8340484fbb843"]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max2W1",["286a206634159c24703290ae6d69393faad23658048d93da0d799775f1f4ce8f"]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max3W1",["ca8de2f2a5cffad9943b20afbdab950fdefb284f4c4006d70971cf73fabfaaf"]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max4W1",["8861dd6170774c71895e107a0c6803be7c582806eeb9521f82b98e4f63771c87"]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max5W1",["97f9068ea4f3ad929761200cc7458a821da20d49f63655522af83d1954af22b5"]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max6W1",["b45664ba6e52c459f25b64ef4015ddd20e7c6b23ccaca2fd5a9455939ae30fe3"]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max7W1",["fe5c1ffb392cc10dc589b1eff0eb6ee1e8a204f5eda3f1fba69c0937bdece35a"]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max8W1",["fdae5f3fa29e68688991e3c92dd7585e3599e046fc15dcc6829ff3240138503e"]]], ["TOC",["maxes","spor/HN/words/HNd2G1-max9W1",["23e52ab0d25b35109426c86afb4dbe9cf0d99f075a6ce2bc2d8528d4fca4bb47"]]], ["TOC",["matint","spor/HS/gap0/HSG1-Zr154aB0.g",["509c9e46e6a8bcaddb382a863324f9fadb5fd7e747370788f0ca146fa8e683b9"]]], ["TOC",["matint","spor/HS/gap0/HSG1-Zr154bB0.g",["ac5f50636ccd7c5417ee9a29c44fc3e7a93aef463981b9b32fa0ee567588a755"]]], ["TOC",["matint","spor/HS/gap0/HSG1-Zr154cB0.g",["c3a1b8bb4e9ffbfc12a82ea3c7fdf1caf75b48a9eea64697f64dab1aab02e196"]]], ["TOC",["matint","spor/HS/gap0/HSG1-Zr175B0.g",["28bde7b6800bf650cccdc2095d75039725dd9a6779ed21c272a3cbe7e11f6b0b"]]], ["TOC",["matint","spor/HS/gap0/HSG1-Zr22B0.g",["2b61837aa6943ed0e0b57e727b7ab910a58fc3df7b92922f6413d4a9f555e868"]]], ["TOC",["matint","spor/HS/gap0/HSG1-Zr231B0.g",["ee49d0f462a1d593737feb26bdf9360155534daa57edcedc057f57dfa4a9158e"]]], ["TOC",["matint","spor/HS/gap0/HSG1-Zr77B0.g",["afa8303773b09e7ba3ed71e4c396e12a826adfae4a7d9b11c75a7870042c510c"]]], ["TOC",["matff","spor/HS/mtx/2HSG1-f11r56B0.m",["f563f9cf37332d825bb5dbc6d740959846e552f72c6b7c7951e782415771d0a8","100e235de80aabcb3b24aa657b95c0b2ce2638c65849442dba7c5830e2256fc6"]]], ["TOC",["matff","spor/HS/mtx/2HSG1-f3r440B0.m",["4615492a4e5ad81cda049cccce9e6717ccb89840bbceeabb414aa9489e80f239","723c262804ecb4f57efdd41e9450b640efe2715c5e42aa16972cadd2cf7b9866"]]], ["TOC",["matff","spor/HS/mtx/2HSG1-f3r56B0.m",["e4df5b3502a827b697352a15e5d6f42165be9ffc5057838c218c892a0c55342a","4860b1f736eaba6f1cb1e8ad226bb59cae438965cd7a1a92397d8660bec8d361"]]], ["TOC",["matff","spor/HS/mtx/2HSG1-f5r120bB0.m",["494689df59898846ffe1b3cc434dab5cf660112623ceaa8a0b606a9b14c46bf6","a8fa8745bba9e702d3b0963d33168e1cafa79657f5803c1f00f8abe996a4fcd6"]]], ["TOC",["matff","spor/HS/mtx/2HSG1-f5r28bB0.m",["4c108ea04e71643566f235f7af9d0011a0a02eb629e94ff6c74c3e79184cf193","528da85db8d784217a7075713b7e2b9f5c9da541beba20e7b92d5ae680854166"]]], ["TOC",["matff","spor/HS/mtx/2HSG1-f5r440bB0.m",["1f83e845149969aacdf406a1911743e25404f8136691bec2644be573231ca29","7eef734f8ba39aaefbd7886c965ea68a52ec8a9be45d7c8996a691ecb36c9bb6"]]], ["TOC",["matff","spor/HS/mtx/2HSG1-f7r56B0.m",["170632b603de89b603846c1e4d0a88ee63de8dcef665242082a49b0873c98e30","7cd3f81c52869c97a52ee025d29f5d8c560b5e30f1cc08cccf326253d76936c1"]]], ["TOC",["matff","spor/HS/mtx/2HSG1-f9r176bB0.m",["9e0e25809ea00461592a0a5e9f5c76454f72c5c15d2fa0b3db5fcf44b20e1c5b","a6c795209f7aeef9c9260a4691f4a6979f38b1259f6368a0693fc1c12242f369"]]], ["TOC",["perm","spor/HS/mtx/2HSG1-p11200aB0.m",["4bd98adf175673046249c8afa81ddf8245ae757a3e8e9edb4813d5e90ae5f06","f7baf22d20516ea7cad7732bcfcb514ccafdb0e8748059ae814a864ec85b6d4d"]]], ["TOC",["perm","spor/HS/mtx/2HSG1-p4400B0.m",["8f0aeac458e8e1bfbe367c8b3e50cec3066142204460e1ae5fb3ade547295e56","672b5690b6cc8b2f5e9f63465444462dedb33353b3c094a600e057b4ad7c5dc3"]]], ["TOC",["perm","spor/HS/mtx/2HSG1-p704B0.m",["edac93cdcee824ab228c479abc4ee1f5df8c56376f330dc292cbfd00179f9c7f","1f4005b38ccf0a52b595d2c21ce1206d6931656dfb24f204b3441bf9cd9f42f8"]]], ["TOC",["matff","spor/HS/mtx/2HSd2G1-f3r112B0.m",["7b35402569e9a726aa020569307c11cb295066d533a0dc1c864c4047be2cfdd3","f31c0c17c10a9ad99a72e0b0e590e683f8c573b5b1aad33865b62ef49e8a1480"]]], ["TOC",["matff","spor/HS/mtx/2HSd2G1-f5r56B0.m",["bdf5a06b8b8f9714c78f76638ff213093be8e5149895c64af4b33202239fc3e","22b5733f6807a7d1fe1537c1bac229a7606b30a3439b4e7edc431a5aba748827"]]], ["TOC",["matff","spor/HS/mtx/2HSd2G1-f9r56B0.m",["c99c391a8991430f52b217db3bdee243888db57d7204c5079035cdfb483f752e","d870dbc011c11e90fac6fb955ad4297023442a8aee1317d5d9a62fa86a359171"]]], ["TOC",["perm","spor/HS/mtx/2HSd2G1-p1408B0.m",["52469f6c03e8776b4eaa06aa1f8bf5a5eea4ebf09788089b4b11a658168a3bfb","b50c1be5a3c3f3e7fbe775308a120bc0d448805f4ff41d97ad68bfe62aed2ca0"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r154aB0.m",["b86628415416c95cc0834c726c37064f7f9f93177ed513e729792030c13c14aa","ced118d3cf4b9a88805e2a558608743e3d723f0729d82ca7623c83460ebb86b0"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r154bB0.m",["939d3fb1a212a059211b1ef113900105006bde0033c04ef8b6ac35bccf216ca2","b0d9ab6102d3fe16e8315ff8f89a04aa3ebbecb74524b45bd7ae3051ec584658"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r154cB0.m",["84c4fe26ced8bb92b017459eedaa9784eacac3f9528f92fc7dfda0b45d606ced","9ef87b72af315f38aa8a2b744cf81b1872816199921abeca5c5553eccc277f5f"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r174B0.m",["83f34d0a82c296e9136454af12f80c302aaac6595c48a1c9c1946c32194268b7","b6a625ad4d566c98121a5952797fca362e8f65f8d51dcad4c1d1109c6f364921"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r22B0.m",["874f9d6856acfa09a4d9044a705497845934e6bc0f8ec9fc641b02f5cb16b537","d7152540904e66993d40b6343a02b946bced56e65fd9e1e3a6744d7cd8ef6b1c"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r231B0.m",["c2d568a43d0e18bbf4b0e588c8c84bad0ea6d618797df52ef9dc3d1ef6327f2d","1b3d450b075985bd976d9d1599b28cf18b93e21d2916baddfde0662248f0b49c"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r693B0.m",["3dde4ea3b10ff7690a50b3f8d26d866aef2e07b0d375c1fb739a7ee112171727","39c5e230bde6714e26c71a8f790b7dc01ded7bccfcfdc572ed75ba61473f6d89"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r770aB0.m",["2bab5c78b3a876a92b8aa9f73ae8acf11f9ee42b6ee5b3eef04b94d2081762b9","aaebb798c2dd3cc57f83daddfe9cfb3b6a7e4e1e60ba17b0c0da9595a83a0c09"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r77B0.m",["1c368875a4d1062bea1d4041052a05eb3cf7ee98558e727f41e70136e0f5a95c","d6272e000b59eaef824dae9ffc2d7180012f17809de1f2bd19b967dffc6684e9"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r825B0.m",["c1654c05884a2989fde3ac97ea72696a56f8ae532c22213d8d3906f948a8915a","79532022183b49ca5014dc883db812062ac73492094d686985c7d935f00a4f3b"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r854B0.m",["bd3524b239e096a77e4651defac51e859e21ef5dfb334f64105ce666fc0207ba","be0198f064c9bd982db7fce787e81b32f2ab8299e4e39ef2c24fc7e0effad5c"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f11r896B0.m",["7f6fe46b75d8b54fb2798e1f2a2d156cff31a3feaec5234f4f6f51ae1a742a8f","ff22e3ddd8fedb7e433e4467a37b46ca62c2440f4635a5e48a46c1b88dd39293"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f121r770bB0.m",["bce1c1a1c5a5c655eee641bef688d216f7677287556f8e734a93e46838df6618","e335dffe43b8e51a5d0b3d69f91f7915f1e118bcb3c61575310f1da142e7ac81"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f121r770cB0.m",["72e361f4a93db70e19d2c0caf68f11f2283e05edf4ce3155239c215c88f664bf","bc21eadfe50e8e67acd6af7a611d244e1d410d8a7706aad1eae77cebef43a2fb"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f2r1000B0.m",["c28ffd273f8759ee4f2ce5a981ac6ec37faf14cea530d212b44189ea3310302b","a83ce34ce8bc124d2223a4a4821000743a64c319d9c33819142e961d58562d79"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f2r132B0.m",["9a6ede6eefa1cd7c433a32a223fb2d578980800f981d277e2bf67ae9a31f8026","443b5867a051d8e4f0ceed68854ff5dcef631cff9327f3738f5e92e67695b39f"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f2r20B0.m",["57f18594f38a209694f7fae29ef04eb80ebf1babef968632db70b7b5f926a31b","9f128148f88960d39f92a18c137639ebbb920476d75091061b03dae994f17ba3"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f2r518B0.m",["9932e115060f484853eb89bd3d2e363f88524e87eca62ee21d10e5559dd4e0d1","a4c276693b81d357750c283563d5221b0eb80372e69b1e79b04725654a8f25b0"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f2r56B0.m",["e7b403f1a5fe752e587671335a7f53e91167bc0f1617a803de4b988cd0063714","d60359502da5c20d893a9078621d6c8d9fdae3d5c23347928e8b25227d266b69"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r154aB0.m",["7036073da5e50b0bb4632fa125f2d88fdde5bbfa7b44b453ca2f4ae90d91947b","cf5f52719f5bd0a71b4b50eda284f4b28445993adab86c139915dba0cd16b978"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r154bB0.m",["299af754a37126f79cf38409d700bdeaf78a33e1c97b11beea9bf8f1b844beaa","ca40d366fc83b7cc3c867698471d0ef304f622c51b69d04d5c7c9d70567e1e7"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r154cB0.m",["2cb3a5e2540fc949c2c15d786f691796965f781eb6f5c9b1e9773fd77902ba7f","2c917116c29fcf69ead9d640b86d44d7b6212226bd4ad75ae21baf4d08877165"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r22B0.m",["4a7dd6dedf79893c4d28aeb869f98897ccc181ff84684408d5ce600e843ffd15","e144efa0178e532b9d944d2b7a3daa9d4c6d8f5d5a7814fd770beceb1245cc63"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r231B0.m",["527035c5aeb47cdf3446bb89c88e68ff9e4636a390b39a5c1612ff1d7b04e80c","7424d50b162ba450ee115e07d6acce6400ce1c7ce00ed42d863765b05ed7a9cb"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r321B0.m",["21f99a5e066d7cabd98e0f02f329f5286f7e7b3c4715c3e58e91aae79c4fb186","6e58629fe64895157a9d03f8885aa308fc3ef35944351dcb579cb4556ce83c20"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r49aB0.m",["2e014dbaae74e92beb4006da161afb3bc11cf133027ea32c815b4ecf9d435d48","b3103353ce8dcb5fba91a4c8c0ac41193cec21e353379eba8e8ab6cf5e6ba47a"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r49bB0.m",["62245beb0521f522dde634fe9f373e5b0f820d33e56625d4f677347f4411e4e7","98953f74d89dacddd83813e4eaa716963d250c24dfdb1da37618684d1c0e0cee"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r693B0.m",["c7a98f2fac3efe3015bb9f98c3235346545dd7e33dd2c85ac11d188299e4ce79","b09d51466e29f4be2134d45872c72585ee674a81aaa4820e0ad61dac2be1daeb"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r748B0.m",["6282944d957247e2368f6ebf5f3e4d9bb58aa629efba7b0c5712ac19b6d52271","2b092b1839946580d2f532349718b96b67d4e67a279de6c4c98fce4a9ebb2347"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r770aB0.m",["10f9eac2f4811a2c52ad45f9195cd575659d4654587281b4030db2e2f0cbde4e","f6bd7d490b49b2a9fe4e4774b9047617ca463ea3ccce4e82b5c298a75ab046c"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r77B0.m",["6690a73e36bc8701ea11f9d94744a994169671d5d66226840ea992fa0d9a3336","13e3dc3d06ec2b5b430e874ca0ba5a7dea9e4cd72acc0ec417300fde817bdecc"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f3r825B0.m",["c463528577bedd641ad311b09a14616c78904e0d6c93cfc03a060ba608ce5426","b773272f6e9e8956cd473e116efb283b39e6d2120f6a0120f7cfe5672d085dce"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f49r896aB0.m",["390eaf664f974bef580f5f916f2cff4da622d40ae2eb1583f018fe8d59f26718","129aa3866edb1d6fed625a5155fe526bda6b6b2c5b523e46861c9f64e16547a1"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f49r896bB0.m",["4ccf2c8fcb0cd6f823ff8615bd84cdfe6a33d86e2e4cc0e647c56cf6e3052ca6","45812b2da3c6cc8b80c0b3eba306e5060ad1a1df8ff46881c78a12526749a96d"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f4r896aB0.m",["484e49183ad7deec96bda206c7ad367698ec95b350a6fe40c09229458e3aef8e","53b4f44963f4ea65fa2fcd4450975c484bcc3f38a8d98ac961c7f700ce8c8cf3"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f4r896bB0.m",["b9142dbab87f7f755f111877e2a7799d97ab7d42709610e3cfc4db8dc7295039","18f61723754dcf912ad09a6d4288363055f926e199f0b820e3d78cc9f45a6c17"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r133aB0.m",["b359a0774159d9ab06a9f051b57ec1c5efeef94295feb494dac1b8f9009e6a76","2d0526e87faf50d954d9630daa25f7fb4ffc31ceccb215460b3978d6b2f543ef"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r133bB0.m",["3b1ed8472df3fe367e2021ec346dc005585328e0fe0b1bd38b4e6c89a440b22e","8bf77f65002576473558dbf7bcc06c33acbc7c451e92047a5ee076e2e844a559"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r175B0.m",["a3613027062c84ed83c73b9a0212073a6d5578c01c9ff318b4ca8c255ed23962","679b45ef6830ec6fa3be42dcd6d5f1c280436b40e7f7344cb23004355f91bffd"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r210B0.m",["6bb8dd81a139879aacb0579c1629993e370eb99a6f29abdbe045ca6e301d8c0","2a55f80e90116931107143dc8aaf2feada522836854b959760a681e9d447d166"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r21B0.m",["a45a4cd043f8050051c88d0cef873cbcc6aeafaf3249607af02c342a2e34cc8a","a954a52723ee6cec14682a0949f43a7747119f4ad63cd8eeb3e55aa5b6a424ce"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r280aB0.m",["c97a51126a089fb94a571a454813a99dd33a34ff9928aae74e4d03cf3e93b1","7dff3a96c9e00c5e252b1397c9bc54280d29a9e24af7770c7d329f2e5a46396e"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r518B0.m",["e3a7d2b93e7e06f959d8c2205e5c544b4f56d143b771ff414fc40b205d455360","471f5e3081e5ddaf251ae879bc96724e6e25c4f50f6bd1d14846a8882a898058"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r55B0.m",["1e0bb5ccc989072aea6dd290ddc3ba81e8ac157960e9190ea14eca6fb24c8d34","aab1436b92456335c65187a82cd4491f6c69e94d0a57a0aaa93ef2a61dcee9ef"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r650B0.m",["961d47d0aa0721727d370daf8ef4e04e724726e58f1b444b392e3a0b4c77e79","2551ee437b41ab217071916e8a6a27483e28e52d2b19df57fc85a19b8606d68b"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f5r98B0.m",["daf6945eae9ae4da0dbc622c9a257e7afe89447d2d98f6c1ec5c5e27812987db","4d15268ec09f65c4459317b661955c557ecb4c5c7f97cef1bd46594814c0f85e"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r154aB0.m",["fd53ac992eee5de38b74a1e79f407bb80dd16897690e9b80889cf025220c6e94","ff6d614fdc93f2ee925131d9ecf304be8c097de7da5f0aa8713a431ff552fae4"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r154bB0.m",["97949b2565e2ea6110147d70a18efc1fd9868c6fa5b70cbe2ccc44ba5812c5e7","965044ddde5b7013d6ece23eaca8745ab8dcf6d2197090bce1065e18bdefc89e"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r154cB0.m",["6c05165ca575dc7399ab3d43634bfbe81577c48f0e642d017bbcba3fe5baee26","e5696fa411a99f1a1e3151a057debbf167ee7a6b1be2cee23530d1cd6373b7d9"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r175B0.m",["7b2484b2c2b84e804c13241d96a948650dd42f0bde49ae1cf70d5393a0b6ca7d","ba9d34cc6ad296315690046433e5ed9af54051a0d601f2efd8ccfab1158b3e92"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r22B0.m",["f80cc91d2cdebb777a2f739f292d499cb4837ed3e6f2de741a6ae1281c822a5f","269dced2d4b673c99de2b0a72c8446d74c40b2858cc22c5aaa86e566c032715c"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r231B0.m",["bc4f3e598bb2af3ee157724929ff049708dc1f579f630e7a535036bfc6bb559d","d1aacf4e993a39a681872d6aad9f9f35d08045f47f67eadc1175820a0a5cd3e1"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r605B0.m",["71dfb959b8d7a74801228dc2db16aaa8fb5376f87ca77742c43c5bf9c8cb2223","c3d430bd9d4250770cadf6dcf428151fb67c7c0ef5238627730e32c8b91e69c9"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r693B0.m",["63d00b9bdd6efea2909049c32f63082195e2c4f1d8ece809e4b97e068092dff9","2f546904e36b05832b1f8b32f2756f376370969ce7a7f37a915dcdd4d54647fa"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r770aB0.m",["87125a9e4d3342db84276ffc0d89e9e906f3f592041708e8d59eace8ce5065d0","67495b80e13b0c47425fb2390b88984505ebb70c5d5994a888986b2e63051ad5"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r770bB0.m",["6b353e6be65ab38053bcd6bff745990468bbbac37d1c7014bb1051df23e27067","5aac43d19e6c6498f46331638e58385ac4e6458fc3d6f1aab95058047e27776b"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r770cB0.m",["7e16892688bd413ed22e71169d6e9e3b0752b745d5683133b15a77ca11883c10","4597fbf3da8b8ea09e6220b41bc2d3f237a8e0ff8840aa6ac1a9d662382df57a"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r77B0.m",["8ddbee3b38b0fd62daab28d3f0381507a16b1cb442c0644448006a308836602f","752d6af1b949ef86cf4c422011628c24fbcb6704b12bbf9393c9e57b5838ba86"]]], ["TOC",["matff","spor/HS/mtx/HSG1-f7r803B0.m",["b14d978619e7a5baa92c9ad46b7a496d02e8c38e9223ba19065c8575bd0ff1ee","7979bb044eb2d5da7d4a174062e554a1bc81f15b07c4b8eedfb71ba30ed83878"]]], ["TOC",["perm","spor/HS/mtx/HSG1-p100B0.m",["1e2e0cf4ae601059af80b93ab3e74e305414fdc43e4a7f94b54a86998a753a2a","a1de5af80e3a3bec0ced1858774d4ae1169df9d327aff90580936675c994d310"]]], ["TOC",["perm","spor/HS/mtx/HSG1-p1100aB0.m",["6da947bb31b11c40feb5012f6fae151556844d2b74c49ead6120a7f8966af37c","7a9bc615dcddd6ead510ae761a29128d178cab2e2b96992b2927673f5f3827f9"]]], ["TOC",["perm","spor/HS/mtx/HSG1-p1100bB0.m",["8142d5cb7a5b399f9e6f53988dca5ab981ed785db629270f7faaac2172a30a06","f91be77d110263e8a2bc49bb2a60ef4c866f599a6bdad54b479cbaa10bd0d0f1"]]], ["TOC",["perm","spor/HS/mtx/HSG1-p15400B0.m",["14f196b71c4659f40ebf88284c1c2d62084ac10ebf6c34546bd25fd7ff3abc90","4558d3d28a307d06bdd6804ca80f90fbc9e7189e8af1ba4e2c14e4f40d5e50c6"]]], ["TOC",["perm","spor/HS/mtx/HSG1-p176bB0.m",["9dd34042b3ec38d39b0f362773f9a522817f412112e474f1d740622080e44d46","438f1bb69eddfabc536376ceaf36281a9e2a3b518b6eda429e2aa40dc627ed86"]]], ["TOC",["perm","spor/HS/mtx/HSG1-p3850B0.m",["db5297e579eb03c2e271386eacd4e5237288bf1a5c1603325a8e6b18011e468b","8734b92d765f7f12e6b3114a2b21c72b652158ca6290202d9674b2b267e429d6"]]], ["TOC",["perm","spor/HS/mtx/HSG1-p4125B0.m",["553235f283df64954f86047090eddcaae3104346976facfe0ae1b25a63af79e2","5a500665f09f5a450c3c54b76a51ed5cf6b08a932ff817d773ad053110ac2834"]]], ["TOC",["perm","spor/HS/mtx/HSG1-p5600aB0.m",["cec736d0abc4d7ee11523f985e3a16d1c712acd27d652c098177d1b387f7cb64","ac9c542a693cb68abe1526f919e6f6dca044c59fffb7a70268c0f3c25d12a98"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r154aB0.m",["6845cfb1fee9115338f804c2773835dc626f178e5c8ee90dfb6e6e921d289ab9","6f1b7041cbc0fd0469151875311d784541122f04f3ebb08ad07d03ae2434ade9"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r174aB0.m",["5ec95fb4dc3cdce94b9e43a88f33136a1e367ff49cddce04064b94972cfc5498","2c65b316382b9a3a3304c0fdc15352b9b23248f1f4b09fc1d49f6ee1cb12b0f8"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r22aB0.m",["703143d9cfc97621dbd0cb802f5ebf031cf7e3c3a674312f050d705b04352235","f9fbb20b94a83e4492bf7729b0a5354cb43cfe6136e5d3653df98fe2715da127"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r231aB0.m",["e2b98ddc4f9de943a4665a3c7d6ac0a053d90dcbe716bb5866f51eb0756233f8","f5b85849797107b33bf66a80f347ec71200447c936a6e2b960c844f43ed85a40"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r308aB0.m",["ce57d611b2ca6a0b35b55480a96335680729297d4e38d4c3e25de45eb2d8a3a7","4161fc8608629a899f1d9f8cf023e35c64387b6c2410ade30ce2d6c853b53fe6"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r693aB0.m",["925096f28b458a6b222750adad744e8f1f479a4150b98a1019793a173fcaf2ac","3e47227fdbea690c3ce778e519baab342a9015310a2659d3136f469abe909aee"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r770aB0.m",["afb07d3d52c1ba34c54209008d308df3a7644ce6106fcfc6f506a9ebdabaf0de","de991e388f62385268b667f6aa3f63fd06ff1c63e715647708d49c6905b47cb3"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r77aB0.m",["a41f1280ccbbae20ddf566b36b26259d52a6cbbb7b55af509ac3e6ca228fd5d3","a4b4da0443eddf75b30c5894473d6bad80bd66caa729e257953339f3a13a1fc0"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r825aB0.m",["c3f51575ee499fa7bc1561ef11ca7715e832ec2837fbaa2a791df3139496bf67","dea10bfd11dd46de394e13e388d7796d26bd7458e886400cc4fc27246cfa5f41"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r854aB0.m",["b9bec715e261a297ed448651446e3e7ab0cf123fc8641353eb5429f50c89196a","1161d99ac15177b6cb64f07d791be42a9d97b3c6707df54afc1702b9afe11290"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f11r896aB0.m",["73d502e03a5896fc7b3a9afb61fa3a2c58b5890bdd1c4761a1ea9a573162bf89","9b7b7a1821ff7add7427f2d6945adb5d9c659cc8f39eba95b85a3b24599c24f2"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f2r1000B0.m",["4db45071d8911c4cccc9156fbadbc6186f21b8af0ac52c2440d86a9f12cc27d8","8c5ca90f554b26f18c38182f11264ebf1f5ad5de2491a036434e13ee945e11ae"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f2r132B0.m",["d7e8484c7f8d0b6b32b5960562adb915880eff2e108a731fbbbab2f377efc911","12df5cc2ca4e57501713af22b5c388362ff45e51f38ee34b0eb9c4db0a3faed"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f2r1408B0.m",["67e3c9a34a9f436b4717da1a21c7ebab3593c5e2a9338ff1e72a2dc1ffdc9948","1de98defd7651d791154a755f6e28f9513e068bf93438146bd3ae9dca67750f5"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f2r1792B0.m",["772283e8e6dbcafc589d45e68fcb750e0997b69d2b0f080bc1ba834f5d478267","3f258aa6a38478332ea8828dcb25a1bfb18c2a2ab090d5756e7f4a2e9bb56d14"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f2r20B0.m",["bfbeb979aa733a0c4fe7bc0a0582bd4e2ce14262f02ec9312a37027e28a6205d","7ee6952f77bbb97e226a0a9ff7643dc92b9419ee660576fa086a3ad10b3f1ed7"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f2r22B0.m",["c0fd3ad7a0c60c8ed4d5c1645d2648f96da886b2408313434b563a7e398e81d4","7de995391f304625a5331d9261e617210cb0a299493c706cd717296cb161e40f"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f2r518B0.m",["fe8e6217e046253a82bcd4db83b0e2ca2145988e6269c115cbb24c8ad1cd507b","e4a5ded437fe26293cc8055d7fafa2dc72416f174d35ee8051b82f267b4ef2dd"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f2r56B0.m",["e3772e0094041507b809761808f68e1d44f0d40c4689bf42a73b16ab1520d3e3","25c89724f673193971e0098461af7d8616c73213625034fa86bdd338bf5ec0c7"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r154aB0.m",["22c13730463193fea777044da9de0a1a71e324cb1cf9095b372f06125d0df890","51d703fcf32b537b7570b635f7681e79ca253dbdd17ca04cbda2d0e4a44e5344"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r22aB0.m",["1e66f74761f8ceddf4400b1b7a894e645a6f3345238348ea8b3aae2f219b620e","1062c20479d1abc0e4be5a2b8e9f5b34166b2d8b87f308ffef13c2a242e46e7a"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r231aB0.m",["3578b4bdc91c1bb7a71dc5577f3a7a2e0ac227c4aa955f745dcd09b1c25e89bc","1ee2e17b864273c3e880b960bae4273be422e0931d16f3561578a420dfa60659"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r308aB0.m",["180c1a3c790107f50f291fd36d85cb088ba983ed2b69e18d22ab7ba59c334ed4","ec99ae07ffa462020503f5703f50b2d5b20fa4190176cfbba197a923f73ad0a6"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r321aB0.m",["8effe13db476795c706e47b21f36454b305e4b3d0731eab8ab9317804895e1b6","61fab8e060f1dc9c36d9f9d7a31d2390b79e606eb93d7442d4fe08d89e3940d3"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r693aB0.m",["4fb3f97a4bced1ee37e38b698fbf1fb0ddc22454b397e917c46b6a03d9b30e54","34b75b4526e62a6315592738e7ee5de14e087eb6e029fcbd3010a85d0f94812e"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r748aB0.m",["c4d29576bb0915347b5ab89e4ae93789f94d2e0050010585672820a318d2caa0","6564cd9002813ddb1c1c1da0f462017128618c506ea5d9f6438d1a4c15612445"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r77aB0.m",["31daa78bed34f28f5079da27046bb1645ac27df2b61a70a27b1520a52b826c9b","b01caa8f99968a6638cf8adbdebe9e7e0414b94beacce856b8a91c18cd26bcfe"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r825aB0.m",["6e805374b9340740034ba22e57fadea12e75aef42d4061c11de86ee9785d2455","11253faa7dbe44fcdcf13df2ad82b19c8eecc8fbfe6e914f4f8c77258bfed131"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f3r98aB0.m",["850782cf7961772a8ff1fb9bf2249073632267af5c937d90282fa856d2c08bbb","66d036521a23471526b8abc49ee69bea43b7f4c177a2f67eff673173c6bb6035"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r175aB0.m",["895b1af9836d9f5ffcfc5d2eb55479e4a3973e69b6966893c271f0a20aa315fc","5814d4edb8637dbf90bb6f5195ccce74de37c91ead3c5ba8b2a0980d667c368f"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r210aB0.m",["bfbf83d1222e66a44bdd6d5794315d95b275e17dfe9a47e27e0943b56f8f1a36","823b31c0bcda4ad059784a2f35899806c49fccd2bb31f71a17271dc75c272760"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r21aB0.m",["9b4e0b929915e16693e72fdf7d7d87fdc22bed555644741b496ca413aa6f8378","30af22f5e560cddca3fda57fb29db9d5889179cd810610f410e11463decfb9fe"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r266aB0.m",["95fe88d9659f4dc1ab14e123c2aad6cee8b5372b075048423bafa194c55c42be","77ff7ac4d386ae150af1cc0342d5c2ad8b4ddeda3d1d46eb3be68f812e1d333c"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r518aB0.m",["b18296b2bd29e4b087268da8f3e2884efc49d4027e3d7ec61dd873fbd79070c9","4b035ddaaedecbb2843245bcc50005b76d56a412302a6a8689789b5d27e2f54b"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r55aB0.m",["c93068cfa1931fd2bb3feed55e3f7945d9d09c22babd23ab55e284f75828a0f7","540f18f476632a1ad7381f1376bded6399fa6889423948161c4de96773d1bd7a"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r560aB0.m",["d1cb5cf29357d33268e89c565c2cba74d784bb7b11b8f7926ecb87da6bc6d6a2","7ac5e218f8841fa9584d0c973ebae2862b819fd5f2d029e630ff1fb710594af"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r650aB0.m",["7c0c85551c9e40a1dc8c7ba2634cc823514246b72bf97580765afef6d7ddaab1","c6a5093f4e4de8faa8edc6a6ce7f31604c5c73040f796a2a7845cef7c3f0a16f"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f5r98aB0.m",["a38ffc303d0ba4d6bc7760084cc2158852a8b4960c7a34e4febad48862652d1a","ac51ae07335e5a12f55c6896765995df37e72761b5cc1e870bbd594cabeb936b"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r154aB0.m",["1d72dd182ef63caa638cb4dff95fa888241b2a6abfc8582b9ea04084f627c9e","ea4412617941548293f9a04afb6e5fc32ad4a69928e7fc15e745f53a5adb68ec"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r175aB0.m",["92ca5e84fc045e0b049167e9983442da104d6a1e62c4e57e69b50e08526d5cde","dd30d510ac981dbf3de6468ad5b15d27ac8e7e99a299f53557915517167a4e18"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r22aB0.m",["1171e5d19a4a2cc04ad2d68391bca021fb24d82482d3e607fe2dfe59b57bf88","bc54ac8af49b2e7e50e1d209173bd2607544b30f88e1796a6bfa72588a2889a7"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r231aB0.m",["636555c9d61277560e7afe8200fa699f7044212ca039caa03e0034a31321a6b0","f57de1dfba2862b209138f53493a6325a49493cd177dca550f9451cfbc21a90f"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r308aB0.m",["f80b97481a3f46f6790f6984ee5edb58c00c910527d5772b00abf898cc4b7b6c","ea14efeeb44c87cbf27816727bfbc1957bb9684108bf712132b518dc15945e19"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r605aB0.m",["691aa4542f67acce636d1cb361fb985f7c73b202efd4d366d8707eed15844603","224d1221e1f1741c7c169959b7f090f57579bfd48716df12ded73ea62f60de95"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r693B0.m",["f897ac0f193ec9f9992ad6aab3f30ff735346189e36dcf17a888c73b09b1a43e","f79a3802150960c8ef4d5ef6d388aed7a391c56b3e34fc6c7449f73cda0ba7d2"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r693aB0.m",["10bc9807cfc4a344b3fdd970c3bf8aac9e9bcf812d69389fcd24757314b8e6ae","d5a47ad46dfac0ac44bdd898cc9ea963e9fc6435dd1131424d49aa7e7ea9c744"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r770aB0.m",["b4086a0c47d7df69d89a5e126f4e1339e673ee51f3d7bf382502e8c24840bb81","a2049c0e850a076e98b11b68008d22fadceef2bb4e9a8ba2bde24ad94acdcc09"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r77aB0.m",["d3239a91bb9fa040b5a64365b1e01a4d2790cc832d0bd2bdea4b1f230ec82f06","a07bc057feb7cce2c2efaa059147c06f35446fa5b769513dbbb62e161f73eff8"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r803B0.m",["3012e371b20c51daf4b201399681c21ec32a76c84ee43b3588093e665960a021","903c526c43df0ede1e6d6fbf3b057aa7e444325c636163a4e0ec6606989119f7"]]], ["TOC",["matff","spor/HS/mtx/HSd2G1-f7r803aB0.m",["4a16d522b6292bf1426d77b2aec23aaa15bd971f3b8ad4eb10b5945ebfcd5d7a","aee311637306f15df70c4ec8694141c4c4539187bcdf9d46a73c1331950af14d"]]], ["TOC",["perm","spor/HS/mtx/HSd2G1-p100B0.m",["6afdfa4a3e028fbfcbea8fa44866a85689aea339689b347c832f7b20ff22988d","56c8aa626c243d31cdf1c88b2e73bd3597dfbbcd87abfb7501fab830eed81215"]]], ["TOC",["perm","spor/HS/mtx/HSd2G1-p1100bB0.m",["7e821fc7f66b60550c5f407a4bf6a0007071ba8116f4eab4769862a1d1e5e245","ff101f3cf932eb40ab9ed6895f141b2121685e442b845937e07eff995bc38dd6"]]], ["TOC",["perm","spor/HS/mtx/HSd2G1-p15400B0.m",["99162378bf022d4521d6d1e5b275930c392d2d7191f48b2a8210a8a80068564d","39b5bcb7fb791039dc9400950e576d7f96be4f3e76ec0e044850d648254d40c0"]]], ["TOC",["perm","spor/HS/mtx/HSd2G1-p352B0.m",["452e9d5b10cd949cee884cc84bfbeec3b2dfe7708cb757621e27cc247d54f618","4729189aedaeaf9d651a1488e519329ab9dcd36ce6f1aa98802099c79dc15f3d"]]], ["TOC",["pres","spor/HS/words/HSG1-P1",["ed676bc254f10969ae4bb37a77bf6ab127ba4cedbcfd9c7abf4e99d5f32cc74d"]]], ["TOC",["check","spor/HS/words/HSG1-check1",["a14bf52fc0038f378b120a8be7719f4c923384f13f07388ba02512091ba64511"]]], ["TOC",["cyclic","spor/HS/words/HSG1-cycW1",["786bc7678e5f266b33ab696de573d8bdcd6dd37cdb0360b759e39baadc211bc0"]]], ["TOC",["find","spor/HS/words/HSG1-find1",["dc88a95a03c9de965693d3df1594020ebaa09dada201daae533f52de78bd360e"]]], ["TOC",["maxes","spor/HS/words/HSG1-max10W1",["6e4b22e72e1fa70e1521afef3324efa7259dc98109f49ca7bee95e658f151349"]]], ["TOC",["maxes","spor/HS/words/HSG1-max11W1",["346f977c72ce2734d7ba5c91cfa9094e057f339e5924c762911bd8d9c4e5fca9"]]], ["TOC",["maxes","spor/HS/words/HSG1-max12W1",["c668e576e65fce8907f3fae0a73a6344a80ee9ace6bd3f602bbac281ec8c34f8"]]], ["TOC",["maxes","spor/HS/words/HSG1-max1W1",["d180d331c39617c9c71d5aeae0f8d0cf8916bd8df551cf1633f0daee841e3a73"]]], ["TOC",["maxes","spor/HS/words/HSG1-max2W1",["580b469ca7085e9bb7e6e4a30ded890aafe78862b5d308d16efdc53426ee7355"]]], ["TOC",["maxes","spor/HS/words/HSG1-max3W1",["4c8b705ca22ce9ac13333c27daa02570cffa7db625dc7985bae9be62ec20c318"]]], ["TOC",["maxes","spor/HS/words/HSG1-max4W1",["3df876f278218c5bc46bda18329892281fcfd625977ffab34cbf17fe30fd990e"]]], ["TOC",["maxes","spor/HS/words/HSG1-max5W1",["20d60a542a45cc38aa2bcf410449d32a097a9d8f065faf59020f2772cab97ee2"]]], ["TOC",["maxes","spor/HS/words/HSG1-max6W1",["3554bf1c57ab9a3cbceb01a0917f59ae154935568ec88c20f53dac1bbcbba165"]]], ["TOC",["maxes","spor/HS/words/HSG1-max7W1",["4341edac68279d89bef830576e158b2d0600a86ebf7147a2f1adf6d29b52dc4a"]]], ["TOC",["maxes","spor/HS/words/HSG1-max8W1",["ccb856bee1d3f8dec32e36ac45d67fad86f369bde37c87d9f641d2dec2279c70"]]], ["TOC",["maxes","spor/HS/words/HSG1-max9W1",["e906886f842e939972784683c659bdef6c59522f7686b3fdfc532f2eaa8c1e2e"]]], ["TOC",["cyc2ccl","spor/HS/words/HSG1cycW1-cclsW1",["40f84dd6e6f6cf747f03cd9030ff7837027c8ce634e5819d6b26151e83a0cea9"]]], ["TOC",["pres","spor/HS/words/HSd2G1-P1",["97dac50bbeea115afc95a3774e8b862782fffd2bf4bee0e2c20575c0185864ce"]]], ["TOC",["check","spor/HS/words/HSd2G1-check1",["2d9fa93481be2a717938b42acbb624669425bedbeb0246f6dd299b56f2c4fbb3"]]], ["TOC",["find","spor/HS/words/HSd2G1-find1",["7ffcfc077d31528985b88ad84827554883d6ae358abe0da24ef09d2b45fcd063"]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max10W1",["54087f6401b8b3ce969b6f2f7100c953b31faf53f352e9e54ab0ce82cf588c85"]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max1W1",["2b5bb56b9905c7dbc0b785e55236fe46f479bf878f70bc4db87f21d0d8fb68fb"]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max2W1",["78c78ed6419ba6b4eb114b6213c09b74ff3ea8e13b72850322fc4ddbcda691f5"]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max2W2",["6563549eb47b75d382f97bfe2b1fe77a94c420299a08f86a00aa0ae9efb1b458"]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max3W1",["1013a2297161035329d770d48e46c9d3eded2f8af9ef810517ddc648e58a818d"]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max4W1",["157b9f1816b6246d1fa3d60973e7276184a3ccc9f1e81afffcfb58c084c2cce5"]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max4W2",["c3224f0af47db4725b099e36e9eeaea1dfd336f2c116c908f49b382c5e16c2e8"]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max5W1",["5e4a2b4d7552c331a6733e4d3dea186f5604d2216bc6f5c5ff4b52310ff0d7ab"]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max6W1",["2cb6e208997192faa198a6b632b35e536c56eef899079d10a76b3c510a5ef9ba"]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max6W2",["198fe5bdba85fb1e9b19d197f40b800510ecb4d6ba5db6993f4585e30b52403f"]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max7W1",["11e7362993b23d737645c3704cf8faa731684a742c6fadfcd679bc396da5b047"]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max8W1",["22792ba62257e4c5ff2c157439f9464e3f3b5634d9267f8871f5add8a93ade01"]]], ["TOC",["maxes","spor/HS/words/HSd2G1-max9W1",["db3032917afc638bccf9c3dc595676405e2e905189d0aeac2063c07e1172438a"]]], ["TOC",["matint","spor/He/gap0/HeG1-Zr102B0.g",["cef758ac235621d134c21d72f86681f07f4de907cd64e7199c6a7a6adefb644c"]]], ["TOC",["matff","spor/He/mtx/HeG1-f17r102B0.m",["d9885c01030d92139b58aab5db1f0994a7fbd24b84d4a6b7c07d0c370b6764b0","d771ea2d9dd4ea95eb4405f949f50107a3bf97832a98bb29423e93eebd47782d"]]], ["TOC",["matff","spor/He/mtx/HeG1-f17r306B0.m",["b338b8b3eb5046110ee43e342a8df89951a38c86350a0de08a9748f228044555","cab771ece134f993842779b69084c2300f7ef9f4aa2d0499822affd3bff88096"]]], ["TOC",["matff","spor/He/mtx/HeG1-f17r680B0.m",["c89fa4653ea8e9f040b2bd550a68be637cca5d5665ba21b377db59ebbf9475fd","35a57c1d6f5f285f684a2f89683eb5881a3da102a6b1b0060ab253259031244a"]]], ["TOC",["matff","spor/He/mtx/HeG1-f25r153aB0.m",["9ae3155577ba6ac54a7d48ac7a524b1918df2266dc349d0ba136004edccea343","6537e89bd5887a088088fb1e32ca9b091de09eb4db7a35ac84175758567cb615"]]], ["TOC",["matff","spor/He/mtx/HeG1-f25r153bB0.m",["d9db41ac2e303fe6ec32deccb6029c865208c1b5f472087087069232199d2b91","24b714bd24bc212f2c11297227151bc1923281df322bf32cdc7e0f7a7a6b7894"]]], ["TOC",["matff","spor/He/mtx/HeG1-f25r51B0.m",["c3d1ef652687b8d36e1f341215f4a81b567034ac5462d3f41ba696127245d2b9","b84650775215f6befd8bf0c4d710fc29e2b988132084453c102f1e87b407aa83"]]], ["TOC",["matff","spor/He/mtx/HeG1-f25r925aB0.m",["56928898b0fc2ce4265473e44966a67dcdf8ba3e2c329210737270c5843e45fb","47a04d48c3643b25d4d2e63f916560df6bbce2f341228c851630d6623199a3b3"]]], ["TOC",["matff","spor/He/mtx/HeG1-f25r925bB0.m",["4dc7e26143a56d7e34504fcba3459cfb015c4e1eb833b23ee71701d1189e8912","25d9adc1ae6380eab0c7509b36d34827b1ada4cc3d646ef6cf44ec4a26b2d847"]]], ["TOC",["matff","spor/He/mtx/HeG1-f2r101B0.m",["f7a21d0cb11fa1eeafd5bab9b9479dafa2eb74d14a5ff7ea5ed93e2ee5d7b56f","29b55877542e0943e23b28ad702c1a122e3b22c98650a9ad99a704522f4a4d2f"]]], ["TOC",["matff","spor/He/mtx/HeG1-f2r246B0.m",["1ab4952553f9a3b8d4558320307df227423018dd6b52126175d406e7e46bdb41","2d969a479a5574d6efae5a7db44ea98754125b6170e2ed98fde9077baff7babc"]]], ["TOC",["matff","spor/He/mtx/HeG1-f2r51B0.m",["aa50f55524a57cc11b1edd33e9aa999ffe30373c7798407797fe2cdeaa1cde99","d01f07ae51c63f63553cb3ca94f6f7be638225d76e1071371823b07888321b25"]]], ["TOC",["matff","spor/He/mtx/HeG1-f2r680B0.m",["43d5901dc5159af93e279a1aa1a1f141c40250a13bdfb1c1643728f35ecb576b","faaffee8f142c3c70d66a1f8103e96de87b24643997dc0123d7c4bf5fec4f020"]]], ["TOC",["matff","spor/He/mtx/HeG1-f3r679B0.m",["5091b5de8e05178b704f103c25ba6f8d5a77224a973908c8f2e8a71458b66b10","de6e500a9e9aa592870b766fc47c600346395e1cc0aa995cc30be5d6f5cac43d"]]], ["TOC",["matff","spor/He/mtx/HeG1-f5r104B0.m",["64d939b05bfc67dc9acba33748f1fd2e17722d50342ebd18558c5faf89027f7c","efa38dac53cf67d0c493bec8f4254f57b030882b0fd293b1c14163caf90aa2e4"]]], ["TOC",["matff","spor/He/mtx/HeG1-f5r680B0.m",["f6b2365a8567048b06e0ac234a065ddb10e1a316d6cfc5981df82c7d77902ae2","4446f41d60ce3a6d29c894c18f1b931dff979f6251e849147822a2bd642c2c75"]]], ["TOC",["matff","spor/He/mtx/HeG1-f7r153B0.m",["4b731c40d614b6bc79f328abed3edaf09eabc64a643e1459e6070d3f4f7d0b02","a5e12fd1d6d6367dc5593a27fa8ea1413c16d69fb9434cf28fb9431cca777a8f"]]], ["TOC",["matff","spor/He/mtx/HeG1-f7r426B0.m",["7f8762061f955f0c145f1c6a6d39983a6e6440d897bf72f1c8bcf93011a8a7b7","ac34ba19cb960f0ab5e8be6b53dd06a3f916f2aee40d77ad4643bfbd2aef6bfb"]]], ["TOC",["matff","spor/He/mtx/HeG1-f7r50B0.m",["75ca0a16b3ef654eed263efb30b03c98883d9e5a0ac62bab3743dfb071e42779","e1662a0eb929b85f1356bbb8057ec97aa2f9a568636d9dd5e811369c475ed6cf"]]], ["TOC",["matff","spor/He/mtx/HeG1-f7r798B0.m",["95a79880dd8882ee5fb7c51f97b5fa4339803728d3c1728a774147d96202c139","ee408e56f09785d03bc1ef6ed2213ff5bc5e9eed896172c0b659abe9f4d42cde"]]], ["TOC",["matff","spor/He/mtx/HeG1-f9r153aB0.m",["f60cefd2f56e2e6fa07de883de909e9da63bab4646035c6da0b82aee547026df","c7d7e83dfb905c84f2ef158c57e63b0104b1a827c889e50692e41362de6b2766"]]], ["TOC",["matff","spor/He/mtx/HeG1-f9r153bB0.m",["34ff5b34e9418c8dabef81bb4373fb3d19abef28affe9bcfebe25a1f379620c5","8dab34c5493cc99a2148c4775ac4df9766becdbbafbe9f272e4b9c9256f24e7d"]]], ["TOC",["matff","spor/He/mtx/HeG1-f9r51B0.m",["4a740426bd121b882089d7f86c45c5af8ea8bf2ecca70cf0a2fd83bf985d5319","4ecebfe8e3c729f2cedc918a4edad60d5b360e5caad59a5d15f549fe29960f52"]]], ["TOC",["perm","spor/He/mtx/HeG1-p2058B0.m",["d55a1451cd552d3caf571893754bf25ffa73c934107d820f9e0b7af1de29ccf5","4790eac0de182c3b0ab5d4243ab28e31e3b768398d5e7a8a3c2f243fc95db66d"]]], ["TOC",["perm","spor/He/mtx/HeG1-p244800B0.m",["1533a83d9514e134406a676da3b1507fce4f81511220d6eb43cd36334a42cb7b","bb50602d33bc283b17fc3fa6d6ab8f966f743b02fd781ab69db10fda0da3f0b0"]]], ["TOC",["perm","spor/He/mtx/HeG1-p29155B0.m",["4984ed07869bf137dca44ed7eaf1f29f09f1a53015e264a76cd632cf60692c6e","ad9922678bcdd4d62a63f14228aa578980cdd6b0c63739675f619c2e9806bf5a"]]], ["TOC",["perm","spor/He/mtx/HeG1-p8330B0.m",["a26a0fbbcf02743b6bfc327283712bda019f11520b4faa5199061c72e2a8741d","9b7bcbe8eeca55a3d56e48b318b0d3d3639195578f08875676a3aaccb6a21de1"]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f17r102B0.m",["de939b40ff87644fba99d29a68bd7f495d95980fa9cdb56c43fe547147702619","91da8839e0dbdf19e575bbd210f625f26fd20de0657064624293063bff206603"]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f17r306aB0.m",["3ad03d47135d71206d63b564a8969259c4665081000c034f4ceed751a7366685","64447952cdb4cf7fcbb328297c9bce6d4f9323f1695cd6a65c9862c66824534d"]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f17r680B0.m",["331c27151c97251f88b1e3a76725381d1e168ae06859585cc3e0462c42dcb3fc","c9b275ec92dded1d9783fa632a269fe9ceb2ffc1a712cc153321a601ee454171"]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f2r102B0.m",["1ce29dd2fcbb764b3e300de03cf5b4f90c3e19946548830362f1d8e52810fe44","dd710879b281d79a245304185d67d25e46e5d3c06fbb3c443884fc4d77d38989"]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f2r202B0.m",["4d1f3f061371aef6e1f4f20ca6b455a98e277fa811cf495d0e2ec525dae0095f","3a7ff36defc2994fc7bc0dcbeddb8ee37ec09d448ab8855cec57e9031fcfb01c"]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f2r492B0.m",["5504b570c83796844528fce541ebf50e86851307eb84ad685d782260fba04025","a402e4fa3f35057826718b6ae82ca44d4fc2d9190e8a9ef67d035d402b26d88f"]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f2r680B0.m",["33626673981cb64db6087df62fe592b4530376cbb36c8886d1480c545e8ff199","be85364ad411782217d3462ad849495384802fd2a9ed8414853903a92a1f323c"]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f3r102B0.m",["5da42e5db8218d0e6543ffb1b6cde7c36ae5d16deb46917b43f5e2836b88425a","41566284bb15bc5a0a0c4444f53c3dc496589eb90b49dae7ab030ffc340635fc"]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f3r306aB0.m",["aa365555d6fe508c0768bb69585c8c4300908d8108eceb8432b3f401da0c83fc","26f2baf2b1a88edf2922281ec4fb00f8f94e3c9d82d13d54f6133b521eda0957"]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f3r679B0.m",["f1a8e78a36d7b98aa5dbb198c68c4794c58ae97af268b56a4ed7596f32e89700","cc4c01034faf5ce71eced8969e2bf649d607cb33547c7977fed1fce110ed1320"]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f5r102B0.m",["abd7440bbe4155c7006491359c3c1fcbfd4a1103b4e6ed6cc34f5b601274f20","ae531702ebbfb7860ede437ad652c284da65a4ea17418ea147dc59f7f7187f8f"]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f5r104aB0.m",["7cb84d798bb9f160fa74c150108f97512792ae3e181febfdb2dfa7fe3ae413ee","431d5cc9d75aa26a2239e494e82e51c9cbf9fd6ec9353baefafb0c1b6f8754c"]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f5r306aB0.m",["906684472308a4b5eb84c05610e56b8f77ca323ca9edde750c141702d8982064","70be619b420864badcecfc40ffbd15981c60ab3beb22368856aac7418ba3b81e"]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f5r680B0.m",["d9fc459f3167f69c93a189d6b42b1225e6ffc1bcf316e3ae4a5c31ec9859d8a8","e8a13523cb0aa4663178136d28b008c258c917ff9fd5e10e515916809c077b8"]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f7r153B0.m",["f4afc73b3a75db4be5fbb1fb7f9623803fede3c6635ac9a4237c65be5c0e524f","a03ffece11ff8667b14da8b1bd173903a523a6746c505bb14371dce8a5e89ed0"]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f7r426B0.m",["c9b56c68516ebc423fd57a284e8c0350515c81dc7d7d128d341071eefbec6245","ef91a81d3866f6a8ccaaeb1cbd3221ae1ca9e3170c2b8f2daac728dcd9d13a2f"]]], ["TOC",["matff","spor/He/mtx/Hed2G1-f7r50B0.m",["5a821b43fea4138e98ee6a6b9874acf7251f74417869f60b9208606a092b6ebc","264d0c4075046adec4a94b79acaf61958cecbbe4f0c210886ba84d1ac83e6700"]]], ["TOC",["perm","spor/He/mtx/Hed2G1-p2058B0.m",["75f0ca3da3b7c160f66eff04307b2f61e77ee49f83f8bdfb75767e51a9e76d69","aa7cba790483d9915753671c4657b3bc644d77a829c8dfd9624aa0af02cf1429"]]], ["TOC",["perm","spor/He/mtx/Hed2G1-p8330B0.m",["81041fdc1e4999e9bb4855780ed38b18c3473779b8889c1f104b288393ce611d","e33d9941ecc1d5a5fc8fe573106310f3c6b713a6ac6de5d57d5b128a610c2faa"]]], ["TOC",["pres","spor/He/words/HeG1-P1",["430bb8ac2788fc81a6e0184a18ece033d2bde2098f8b288f9e71ae5c09772c1c"]]], ["TOC",["out","spor/He/words/HeG1-a2W1",["a4bf4743d3bb02ca7cf09e9e4762eac3438dc9b6a2ae2eb686381585271d1c74"]]], ["TOC",["check","spor/He/words/HeG1-check1",["11bcd7d874737c094ca28c54801d4912a9b02500866b5fed5d82d060d3c9d576"]]], ["TOC",["cyclic","spor/He/words/HeG1-cycW1",["64d876abff49c08c26f5bc046c607fcc5fd789a7469de4eb8a765856e2de0aaf"]]], ["TOC",["find","spor/He/words/HeG1-find1",["581b8656b32a8f0e926263eba1e3256dfc4c470bc3f350b99fa60233ae0c5bc3"]]], ["TOC",["maxes","spor/He/words/HeG1-max10W1",["c27b2b7b22222e78900d2939a115bc800d921d681f8f0adc25313743ea3fbe40"]]], ["TOC",["maxes","spor/He/words/HeG1-max11W1",["a9af78899dadf6ba8bda36e9a29d5dadd1acb42e7d698fbe59baacf3007d4310"]]], ["TOC",["maxes","spor/He/words/HeG1-max1W1",["6eb3b055020dc5c367aae0fdc4b38601257b162ee230e3c049c94769562bdaaf"]]], ["TOC",["maxes","spor/He/words/HeG1-max2W1",["6efc761952a4264424ba7dcd91acf17911ebe67ee00fc9f863ce72dec069b28e"]]], ["TOC",["maxes","spor/He/words/HeG1-max3W1",["a90fbc917322d1430b9d5825d9b404edb8888697c4a390597ff13c75b153903"]]], ["TOC",["maxes","spor/He/words/HeG1-max4W1",["4533ac11162708d9ee6cf15a42fbf17c95765beeb297f5089112596eda086619"]]], ["TOC",["maxes","spor/He/words/HeG1-max5W1",["b20828b567d6c7c90da0e7c86fd7b9d2b5a124533bc052a2761b553d6043676e"]]], ["TOC",["maxes","spor/He/words/HeG1-max6W1",["4bf6aa948323f4a56083c467aa1442a684b7ac70bc103764d34162eb6da8e03a"]]], ["TOC",["maxes","spor/He/words/HeG1-max7W1",["b0cfdef605a6bd244c2ac45f26e45ee291d16cf17d7c43706e688f458fb0e934"]]], ["TOC",["maxes","spor/He/words/HeG1-max8W1",["2f58836c6988864d634533eaa5e5305910b6ae9d0da3792fc00c286bef6716b"]]], ["TOC",["maxes","spor/He/words/HeG1-max9W1",["9c2597eed32fcac86d0fb87431d08425b26b2eeb23ea240b4e38f085f906c42"]]], ["TOC",["check","spor/He/words/Hed2G1-check1",["542c7c114ac93a73c676f503ac07cc3e2b83be681ae93d5b7c7938a838f5d747"]]], ["TOC",["find","spor/He/words/Hed2G1-find1",["d04292b3c223e5f1843a21f883b9164166fc3984d39913c2cdb66434d0e76512"]]], ["TOC",["maxes","spor/He/words/Hed2G1-max10W1",["956cdb092daab598dfd93fcb27fa85c83bd250a68a3386f6ec90b60d16eb06ca"]]], ["TOC",["maxes","spor/He/words/Hed2G1-max10W2",["41ffe81a53c3f85e39b12baad5b5efdb05e44add92c4d9facd1dd9946b4f98d5"]]], ["TOC",["maxes","spor/He/words/Hed2G1-max11W1",["ea088fce67a6bb4ac35ea4425ef1d3152b055f21ad6bd765d616e409ea9e1546"]]], ["TOC",["maxes","spor/He/words/Hed2G1-max12W1",["545ab4b3be91babb0569a126092826ae91eec958ecf9e6134b94ba509bc74924"]]], ["TOC",["maxes","spor/He/words/Hed2G1-max1W1",["3ddc2e01a28ce476e4fa5a612deaf628b1d09fe6b9598e28c315041a0e2d2824"]]], ["TOC",["maxes","spor/He/words/Hed2G1-max2W1",["a0f1c5b97e80e28262e890ca7c3f314380338b7fa5ae42839862db24cf180154"]]], ["TOC",["maxes","spor/He/words/Hed2G1-max2W2",["50a6c613c1239b3beb1fc5ad6c7dec2c29e559057bbc8c3f9ca2f98a4a5f9828"]]], ["TOC",["maxes","spor/He/words/Hed2G1-max3W1",["f386d8afa8eb9726782f6559e8757e1dd6499881ea8d9cad06759dcdf986b0fc"]]], ["TOC",["maxes","spor/He/words/Hed2G1-max3W2",["1e80d19e888a999ced8ea910d60f9712e1850c3b561fc5beeee9192cc62eb194"]]], ["TOC",["maxes","spor/He/words/Hed2G1-max4W1",["8288dd94a5f09e3a2eae12f1b9247d61ae852babdf61ed06ddfce245092b9c57"]]], ["TOC",["maxes","spor/He/words/Hed2G1-max4W2",["9c44b03c8b68cfe9723939a44870ec3755486e0196b1065b4faa6ce72c607cf9"]]], ["TOC",["maxes","spor/He/words/Hed2G1-max5W1",["b3a3a79e953ea8950d9e38af4c69cdbcf72a5b63a262aef9f7fb117cad185a7e"]]], ["TOC",["maxes","spor/He/words/Hed2G1-max6W1",["29ee9c169efbe67e1aed360ea75323a86ea61c190dc9ea7132a1e66bf266d371"]]], ["TOC",["maxes","spor/He/words/Hed2G1-max6W2",["b7b46be70f57c17a831b7d627410c1d6972819d8442d1ec7805e30e7a882a97e"]]], ["TOC",["maxes","spor/He/words/Hed2G1-max7W1",["b19f122dfdacc1789e3fc78745ab60f8acad4344af53d4e282b6990e7652a584"]]], ["TOC",["maxes","spor/He/words/Hed2G1-max8W1",["9be1e7f286666449105b09483abdf752f729d79329116a636043b552fefb8329"]]], ["TOC",["maxes","spor/He/words/Hed2G1-max9W1",["1a5babd4ab7683ec48613eb8862b25ae16f060e9ea1f35682cdc73f93224759b"]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr112B0.g",["268c8e5f8bca8ff4ff3681be3825dc542a06c661917363ea293738c3bd6e498f"]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr133aB0.g",["55f265e89593333b5bcf7d74af71c1ca5cba0199c8430a0fd6a4df40f8f29d8c"]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr154aB0.g",["f85dad2b9f342692df74a620dfdb4674e1ff052e6766e922a0498bcd6bfc38b2"]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr209B0.g",["d518b620ba4544a73f987fa8c4aacb52af2477c81cf6a6a9d33bae9ecd06a494"]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr266B0.g",["c74aa529d0ab81ad0eafea01ec02fa799a8d4dda036853e6684c4f79c9d5c84"]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr360B0.g",["f09d9fbc69e6882171ab63d06a5526f28c79d1863f4a0d1e60744bebe053b5d6"]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr76aB0.g",["4e25d0e4f942fd4866b4dce1eed891673d4833b12f0cdf5bbdb99c94a0f50a86"]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr76bB0.g",["799a624e33881f2a82575556c47a737a34015032a4000705960cd15ead3749cf"]]], ["TOC",["matint","spor/J1/gap0/J1G1-Zr77aB0.g",["3c053b85b4c583322867b8fd209084ce0ae5fb437c56f6fbbbb83adfb09c090b"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r106B0.m",["1a11ed3ef7bb0027cb42ea8e322fe25ad795cbde97248c1c9e673cebb26704fd","783af073db959703cae36b9709a7dc20da7a0f7dc8bbd196399217734db79082"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r119B0.m",["43a691b7192fe96c82fb12ffb3f1c2f4984cc500588e6638f391ffb859a8c51c","6edb3146fa0b7ebf9027da06f4c0727e3b876e1d991f7fbd33218acc37642970"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r14B0.m",["5db98e9ae66dc255a86f11e2ebdd7fb0ad2086cc9d4f6b956305d93c8398bb00","934ef6b92ef1a76c57051706e2ff3066f7aca4b3d1c6f338bb5c5cd6ca8a2ce1"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r209B0.m",["2d23bc8e77d9353007c4d52fa16ca597e5fff7eec6e73485d80b2ef0e161f8f7","62ca4614e160bda038828035059cc996362f83cdf6b0edbc9c1935ed82ac88c"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r27B0.m",["d730b608e47420d43568e5729ad5144447113ffca1f6f823e71ce28ad1594e2f","12a0979b0f272ac7616e794eb88b070ba626038f31bc157dcba1d1c24a28d3d9"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r49B0.m",["a59961a45cccd6f29c17201939b52ca3026a8782a053358d990dd01144a7afe9","32bb78a2b51efd15c29faeefaa878a4bfa4b0c00e99028315e262af3c5775bf"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r56B0.m",["29fdd232b99f47a8e9c418acf288aa496b0cc53af9ca16cf1d7de6dad0a20ba0","d26240814f1dfde769e65974b6e5b34cf7fa93b898995e2aecc14e424915b62e"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r64B0.m",["78359cdbab7ed629a1aa102de59a1f411037c2c2e09886c41a3e351bf29ff37d","9dfc0c0283f01079f9ee07e766131c28e015f71c93569763f5f3a79dca57044"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r69B0.m",["67ae332d00d55d8821b5f5c66f0bda8166cde0adc1b014c2c65e00668eb8d7aa","b0df04dd9aebce0d3cd76c4df66713dda7773b4dcaf5b0d66a4a76eaf61bc9bc"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r77aB0.m",["40d9225f85b2d8b809b1627227552ac23efa31b640397f5f250b1c3318817273","51326fde8ce09409652d2acf8ff29e64f275bbffd39dca0ee275e5f06619989"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r77bB0.m",["10297e6a8e08088d3b25f84c67e4bc473a7c7ff92d314b042f5f96cf48dc319f","aae22b4cede8d5967a3a08e0381201d90c9d2e6db94809d6bfe6eca6183e6e50"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r77cB0.m",["178138b5ea2864ddf94305e638da757bdd61f82fb4a2f5a01232728dc00a5b1a","b451083f32545ae9817f9bfb61a325042d138a7ac0013f6a253d0bb9ca11bd6b"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f11r7B0.m",["e15683beeb164a0434c5be661e347910f54292b8a0bb06642cb1d1325bcb73c9","5215b266b1eb1ea791210d41a943a91329225aa3badd54bf5f74962b6dfbb807"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f125r120aB0.m",["c5e3a695bd37cc34fe6a3cbed69fbc39ad59054e9290f6653f35dded4a3cd53d","cafd051b0a1835f589a31bbd4f93faae8653b2ce543f46ce8ff66b2703f3ce72"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f125r120bB0.m",["12db7992d5a0a062217ae864dfddce02b74e17099c86661d357f4c425f708cc6","e7f1e52f4f365aa9391da70216f067d9792621a80d80bd6efe9195bc6a397ea2"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f125r120cB0.m",["e288bf32e2c2d6e34db79bade8fe9d45770b418142d2f2c610ea5e0bd5bebc0","90be336ace175e4cca30003264442dad774da47e8fec5dd0523bb82c345a8234"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r133aB0.m",["c09d3453d12df0656a1ba270b7a664b30d09251cf2f1b6e2b592b114e718b455","5942617290f56e916e6ca5ee111fb00cd164223014162c027742bd2f1fc753a"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r133bB0.m",["c21f3f1b9fabd709c8d07e8b9c5f73cdb95645a644bb585f4b2fe6402f570f19","7d4697d6ea8b380682907a3392a55961e303439f4952ff8fc14a68b588c105c8"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r133cB0.m",["b34596b8365c9635b4f4d89a7f4f66d2e87e350a1cb235e37e5b185828f41333","f6814c26be35195c4649c520b88792a04ae4cf158c0a098e6c63415088afc001"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r209B0.m",["d5cac46d9185df2eb5961cc96e4a3a8bc5b32ba7b50e4f0a96428b9764e224e0","761e4139e49ff7ed1f1618d0afaa06cffc96263fe85d657c2cf5bb9e2dd7bf04"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r22B0.m",["c8609e36cf894a8afd200a1ddbc645ea601644727b23a77e7cb8f1644e4a53d6","1e19251bdfdd78d2c39c5bf72df3d23fccbac64b19b759cbbbcd8a2fad37bc4f"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r34B0.m",["e23412f30479f53198857347f349f7431b4d7ebd255d912db38851b204bcd041","65cf564e2eedeb19ccc6f95757301d208a783f1c4ca153c4bd848f5b60b9bb33"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r43B0.m",["a2ff8c79a5a916bd8245f6cb95d3635740980c490451677332882f55b15cdce2","1c22a51ef16375e404a4dda1b3af90cda1192ee84dfad880372d12f0307ffab8"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r55B0.m",["b2b0ddff1cb539fbbc1ac3fbc1bc1e616417999b96fb0091be6a73a35f0dbe85","73dc604ed3866aa3cb762d67b75eadaa24dbd9950228e35457f1a55636d05c6b"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r76aB0.m",["8db5a4b13b9ab1099148255f09bf84bc49116ad381825d2a39ebc8341c408eda","42f9ee98ac43ba8da54de65e48d8a1d34dbcff7a34f4902f069ee885ca5341a2"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r76bB0.m",["49420d8a9cb65af737d431df0e264602819e80811e849d83495c5ed958962383","90eee523df782e8b9205e34ba157642f6d04bf91f9a4243d1f65acdc76de9de"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f19r77B0.m",["531ac310d8b60a09bad70a3167f070eaef0accd1bd0f2e81bacab6dc4c7d18f5","672e8373c968725c9cacf636acb27180fc495a5ecdc7ccd421e99d81fa5eea24"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f27r120aB0.m",["aaed8ef2917080fbdc0a87ac96111fe76e62a7266a6b0fef2c27dda34a011b10","5b0b2c57bf7bc4165578f297670f956a209ca260ffcd1ceccfe11a46f652ae3d"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f27r120bB0.m",["3977f5e31777b582334d85fbcf8b850288f3e1bae15ed03df22decc8e490f4cf","3117bd271094ef5777e2bf64067c2d270b9cdf953dbea5c51140f297345ac57c"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f27r120cB0.m",["e47aae236cd9a86717fd90431295d33106b2688736a9d966291ae7a04e52654b","aac9fad5c3d10eb1edbff522515601f250e56a06b6f7a862b401f2cadbaac69"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f2r112aB0.m",["19d2b9e848b374046850558c7967143d900e5d7a055ce32bc4af169b00c2a83c","48546513c30c9235e5d0738304023fe1db15bbfd8f87d5fd076bf6733851a17"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f2r112bB0.m",["dccd4c47160a3cdd6f17bd767565bed76de5c05c06148f88a7b2d8a62e0260fc","73ec24d1e899ef1912d7477453e9bfaabf12776d3cfc1cf46ea83953bad6727c"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f2r20B0.m",["78695d651323e6bc31293b2d83cfff37c2227b4593e97e6dcad6fa1aa201183a","bce711de180b11f8f9116e6c63d0f02510ff6b0107a200efc646158ba77a9d35"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f2r360B0.m",["edd846a3e3864c8b3d112e36ef6b14260d4a9e12552349823b015420899e78d1","3e26e8a7553f487ad9361c1d1a15fad88829dc4b9be7329a1788e1e99982325"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f2r76aB0.m",["cf66420683e22edc879e0999199cbdbc476112580ed15a01f82920cde5db2868","30c69f2d4979304587554577cc2aefa6d76d93cd5089e476e58ef2928902c6a3"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f2r76bB0.m",["ca08ec51d5af02617b444a7748ee1f455e5e92d3e5626c794779a7a39a3414d2","f07081d8b70e039fc43fc476b976802340dd9d74ce0bc997e5d6d8dd2459f704"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f3r112B0.m",["fa1afbd3563aa0e0a785d79cae4861bc6ef2b42a9fadebac42fcbcf8f8a5c57f","b3725d8559db27ce9020b5ea62c16930d324e8341a42a1a69f013eba88ba90c7"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f3r133B0.m",["c92ad290be96ccea9b76aeb065efd60b156e1f18e7a2a449ba1661c27d50fd85","1165241034d0d57cba642203ec87ea5e3cf59bb5e3f0e93885da6a50bda93c8c"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f3r154B0.m",["3e8de59a05007290903b11f60722e02bf02c9c6cca5c1f1122ffbf28286ccd27","d99ead5c0bed8e79cbc99d025ecbd194673b7f3f4bf0c73afcde2c76d400ca05"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f3r360B0.m",["1340134da893acb86a9960c2836662ca3d8e6843de5bb07de6e4b5272f94371c","72f6fc80769dbe892c5807cbef823b80aeb262d5a41190ff4b193b7ea299e863"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f3r76aB0.m",["c3393aabaed07f60096e6273ea7635ff4ed1d31e1ee8e41a2a6c50602db23495","7bff6503901ae9eaa7850ea51bb026d84f1e3e0ac7c0a6e171c6de9d8dc0e294"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f3r76bB0.m",["d81c688f9f2db882603f5974dabc92a1b5d52075e5f7f309051b023d09c02774","b67396f24a6994d672cb81fe0c94cceb42b5f1895a09eaa2dc321656900e82c7"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f49r133bB0.m",["8790a84207cbab277263f60b4f37b495998953ac429b536dc8d3fa432bd3f208","4e71519c109fdc3460dcd87af39c846df8cb7cb0dfb4bcc0a68efb817f39be3"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f49r133cB0.m",["c4d90665fd8932e875bef627581a1c5e1f3639351e9bf2c49d741f4f751a37cf","6c0e3e4a06cc803c985671a4547f639990965e6e7a268242130ccb28dbcb0618"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f49r56aB0.m",["27c32249d7b2271dfefe46723fdd76f74758eddfc7e4f77e7e61e879010d7c54","10373e70e19010909d98ab87bf3a9cfeb109a60b465c3bed405d9094a2e2a3cb"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f49r56bB0.m",["71038a97a752b6b4d362220983db7214a1c8409dc74d38f510211a1d399c9e92","2b6c7208e1736663603f86f5da061e9863f26505260f24c94b56d0c60d4de1e"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f49r77bB0.m",["f0d766161bb690c29fea88fad23ccdcf75fa6e372c8747f8d7f9dcdf1039283e","81dcf6727007bd07d528c0b15254c7e51c61417c9dcdfcb1457281bd3f740279"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f49r77cB0.m",["59fc1a966b99015f01672c878f36b734b85c545fe2a0ecc8c5801531a1f02c24","a7c88a3118af4c5f3f6fdd6da02b72c3397556613b12f7f233995ad11af93741"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f4r56aB0.m",["e270bfdb7110ece67c1ee608ff9b9834bbde2a604ff3b13ad613b5c7c3527cf7","53f702a4cf96fa5983dab95e162225903880b85297cab7687b928dd4f6396ebc"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f4r56bB0.m",["1a4c827bfe9084c64f3b76761d10ba5e7f9e042f723af8e31d0136e86ac42f48","b6c69d5694774f26a3dc32733ee15ca7be223a737920c9097f5f95d2ce918198"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f4r56cB0.m",["ca792eb0885fbff42c15514a36c46bf1f2f9cd3ec264e9c4d95463a610563cb5","c9a0898be7b9fac0975ad71a6438df4360ad945e97839ba7cb8c7f90d462770a"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f4r56dB0.m",["9603846c8d08dc2a69994ee099e26a4a51336d3d6b8d1987d16f82d6de7136c","7de207f9837cc719141e2bba3d726d31b9e9beaa2d13d622834aae9bfa6425de"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f5r133B0.m",["2dc98749bfc45a15117bc4975b6149b9cc7ce41a6b666962eb553e863b59c5a0","41e5efa3d8ba2b911a9f2a3f7de023f130f6ac4beeec5e304a61430a4d7a69d2"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f5r360B0.m",["4454d650455965895ad099054f54c108df9c48355a9ab8047f900d8fd021e8c6","57145a53acbd5df949117afc32b158c02f7db66a11c47df62d3a6191e062cef1"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f5r56B0.m",["4f3c8cca5920e566bfb79fdc7520d8e8d56fdf22ed9a83c27726181cf0cc6424","3b1532b7d9ddd8bd03d010b82f7c0d510867f6ee6ad0182f91d5a3856f96141c"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f5r76aB0.m",["f93ff92151bffe09a507f6bb76f6b179db17fd0d94efb1e117c427b439b8ceda","ba6c0e88fb423d73ef596aaa4abdebdc62aaa3948be4dd3b0790b2c9f6e08518"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f5r76bB0.m",["a77be35ec75e331529c88fb31f1b73c6472decb78bf71a63cef7b9d5e03b98f7","a857f47938cd68d75ee7b2eb5463eaaf375df32aa3387930fe89d9d0d6d49274"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f5r77B0.m",["a665f720326ddc84afed117fb5e2b2f9113416e6ab9a45a18fbcf555272c62c5","9268ef2d568364bc3e2387bb46c9a882c602692eb31aebbf179cabced3f7e8b0"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r112B0.m",["d3f807244425ba163bc216603536feef01de4acab83a9ec326d8138a042449df","3647db37bdff39955be53152ffee28ad5b6e80df62746163a4c36a5ea12a8fd4"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r120B0.m",["f66e0d5f14fab73678650f6393ff81eabc8fc4a5c33b805ad7be7c023cf57a71","562d8204307d595b8c2acfbd1758233423e860493511e35257c5b17f3f4e91b5"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r133aB0.m",["ee00443c6253a40cac1ec59a6a17cb221b4e583acc84adda7f87ab1bfba11368","aff79e25bb3da3f8a578eab98c2cf9cb5b3ffa29c31bf996747d20ae5d78ed9e"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r154B0.m",["7abaea576c90997bc7f2a49c423569216ae71d27e7bb018a8121e26123a6f7bb","9d7532bb5c484ccb47cdbb9be7cf5c9eb8506f1ae248b5d9d5ee38ea1d8db3d2"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r266B0.m",["5e469323146d7ad0e203d83be34f2256cf48b03aac308224b7617e7a8c4a5362","2c628ecfae0e849c6c3baadeb1348e12787de4b7c0421e667e9a5d1b5b262216"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r31B0.m",["55f59604efc3d4df731bb9243f0ba9db30cc48dcfe9dd890a3c5cae023645632","52bcfb49bb0263cb81179daaca8e0fc4943441d1fdfd943bc4d0c2bb5cb1fca2"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r45B0.m",["a98dcb5ff82bb6e1d5b4de99c4dba947b659a78a14ad411afab0896eb2c7ca0d","6c14d7cb30333ddec2c7dc65efbc46eaf06b00707d8a20aaac0f14e072852c68"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r75B0.m",["a8034d15f101bc3dec7e33437b35c2c2467fca194a5f64cc3187f7bbcaee92f6","c1e2ccd354b2f64775fef1c15e53a2d9a8125fb658559bc44dfdf98edfea8881"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r77aB0.m",["c6c23b32739312db473880be40c3ed147a6884869f849871db387c90e3a4b2db","d0fb668ef65f5015ca0626501e6e735ea03a1905d35db0aa86cd13de69f2aa6a"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f7r89B0.m",["d00018fe5a43c21749247a0bd16dc7cf1911ede0cf7222d6acba3afc6ae695d","97f3a525a0c7661e7e98bfb01c092b89b8b61da42e20344dac1b28ff9b432f6f"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f8r120aB0.m",["9847edf3054090ce9ca20b5522851e96309f145231c4c8d85d050397a18e35fa","c9898d4f3b4ef30b8c454cfe163c7d7ede6a8e06866894275fef513ebd8c7bed"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f8r120bB0.m",["81b855127d2ee60dfd7cc71932b931a9538768f98d37ccc630c8a71e1fd81f3e","e3ef0144f611918071e6304ebc95037708a68892bca53c8abd0ec64481482861"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f8r120cB0.m",["ec6a0dabfa13ff4f70293dfb6e0703a3b3407d7c017952d7b3244856a5cf1b13","b5339c5aba257c5ec6f8a75d45ad70dd2f9cc3804dc31d06ba3cdfce0c4939c2"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f9r56aB0.m",["65abc03fc9b5d5acf626ca3f879d1f9ebad5daba2b9cd4ee8dc167109c88499a","e7b24f507b21eae00405b6b95ba8afdd9aabe999e4529179258428e952ca5d55"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f9r56bB0.m",["da61305c502ec959d8142fb7f1692acc006649a80fb98598a24a285e95eb22cc","ddc609231442950f289c0ea648d3e0e06f6519de06dfbe61afd989e3849a95a4"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f9r77aB0.m",["18e722b306b6a61fe5e6a4561112a85389fa06590defee7aa6c65991bcf29053","f6329c16a1fa34bfafb06ce9e9cad418f3f30ddf6c8ace160d660549901541bf"]]], ["TOC",["matff","spor/J1/mtx/J1G1-f9r77bB0.m",["7f8f69cdee4c1edb4f9cd2453adfa667d9adbf13a5bebdac5e82c31e79ddc20d","10ca7ad2fcc4345bc4a52517c3f46ec1d03c9f0cf433ce02b1dbb1d1be1a4275"]]], ["TOC",["perm","spor/J1/mtx/J1G1-p1045B0.m",["2851828596d9e9d36c5a263f960870ee2e524904d3747d10d8d1eb0aae368a1e","f17292d08ea606aebed0d2c5c2ca8b5d24b30c41419a4af79fd39991c17aa285"]]], ["TOC",["perm","spor/J1/mtx/J1G1-p1463B0.m",["4f62cbeb9734971a8926624a88d459ad07c44c32d77ebee6631c469119ba5ff","b087110240cf8bf4ebbb8f34a71bf93e7b0588db9204a0a9d285b70e42090cb0"]]], ["TOC",["perm","spor/J1/mtx/J1G1-p1540B0.m",["b8781ad9a1d328fb4a4b1d39d008c380817c9dd359d31a4e0252e303b40da74","473c25f7f77a3dca3243f91f9074bef06a5286d70408a1e487e8ec20a4bea8e5"]]], ["TOC",["perm","spor/J1/mtx/J1G1-p1596B0.m",["ce7fed3d875c43e5854829c56285f6e4e54117b6d076a6438af565c8f9fe8d58","8fee988cc4be6f5b99e5ab29077ee2baa39a312659d891c6bbfbdba4318ca993"]]], ["TOC",["perm","spor/J1/mtx/J1G1-p266B0.m",["8e204985765dacf74e947d3142a83a40ba8b0705c828bdd1b418bb44ce199b8c","572e2e272e54affbe31595c88c9283eb5b7f26b9d7a38cf6bc1ccfe84ae96a39"]]], ["TOC",["perm","spor/J1/mtx/J1G1-p2926B0.m",["3ca8cb66244f4e13cd473504195150d8f3accad6c9481d4087a94e50e1b804ee","426acc7f4dc25dcff27fbff29022e396d8e4544329886219d53eed2f7d31ccb7"]]], ["TOC",["perm","spor/J1/mtx/J1G1-p4180B0.m",["ec35f2a1207ca3c9efb0234eb408e26e032c221c28ac642dd9b71319766506d9","5332d94f577b5db8dc13d6055e4b51d38a913dcffbcff97931f90c4446018a02"]]], ["TOC",["pres","spor/J1/words/J1G1-P1",["6be746f735c4a3160f5023a0dc0bac226dde6b0154c53379713cc3d61fa3127"]]], ["TOC",["check","spor/J1/words/J1G1-check1",["72af0d8bc7339ea3d2d14f1b290aedecfba39835405965159e5c4e31614d8e83"]]], ["TOC",["cyclic","spor/J1/words/J1G1-cycW1",["cfffe8a86243e0cc6d90aebf26acf786658610afa906e5b9445f13da6d4dacdf"]]], ["TOC",["find","spor/J1/words/J1G1-find1",["f05f36bd936acc1f360d5058e1e0ff0a798377a9483752858bfa23488b9386b9"]]], ["TOC",["maxes","spor/J1/words/J1G1-max1W1",["a062c7a2d407eca741412e0363613c4c5c55aaee685a8c89e21ab2cea105da1"]]], ["TOC",["maxes","spor/J1/words/J1G1-max2W1",["e2b49f095dc609359bee52227f88d417fd58339b74a446707dbb50f0ed045329"]]], ["TOC",["maxes","spor/J1/words/J1G1-max3W1",["b3315265e06961e825c791c4f12458366f061d3ef73f0525e75101b4d8bfb6f"]]], ["TOC",["maxes","spor/J1/words/J1G1-max4W1",["8244c1eb5e368b361431747cccf9001c0a7fb3149f84c2b2569987fe5c716cc8"]]], ["TOC",["maxes","spor/J1/words/J1G1-max5W1",["e4957faa30a74c71fcbc6245b9c3f510d6112672b69f893d4f6560252f6b1d34"]]], ["TOC",["maxes","spor/J1/words/J1G1-max6W1",["3491c5b21268c9b1ff73abcb93747da7f0fe8d8f03d106b417d7b1bceabba7ce"]]], ["TOC",["maxes","spor/J1/words/J1G1-max7W1",["ffacb384ba8f0d1f5ac02afa50ac2de7ece5e181c749e09b8ceb8a48c85775bf"]]], ["TOC",["cyc2ccl","spor/J1/words/J1G1cycW1-cclsW1",["f2ad6b8840abe0e15e3c676049be9a1c680edb2657a4d22210598a65faa5c182"]]], ["TOC",["maxstd","spor/J1/words/J1G1max1W1-L211G1W1",["1ba4719c80b6fe911b091a7c05124b64eeece964e09c058ef8f9805daca546b"]]], ["TOC",["matalg","spor/J2/gap0/J2G1-Ar14aB0.g",["42dc959f7be3c5f583e81e9db4c8cc034b819867865aed375567657dcd4609e9"]]], ["TOC",["matalg","spor/J2/gap0/J2G1-Ar14bB0.g",["3ec0141862606eab1a5e950ba0eab29929a4a3ce653e9df768b19f87ac3523b7"]]], ["TOC",["matalg","spor/J2/gap0/J2G1-Ar21aB0.g",["5a0894325f9952aa75ad080ba6d078f9b02b00c1fbb3f8654a30005335e0c970"]]], ["TOC",["matalg","spor/J2/gap0/J2G1-Ar21bB0.g",["94801e4791e7ab84e96c3b3e9e5fdebf9b62e74a690d7472fd9c080aed775618"]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr126B0.g",["babf4e52ffe32b58dccbd244bbc2203d1f251359bb0370ddccb14a0dcf0c64d6"]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr140B0.g",["4f461c63232f55f2e3d87f0414e4b1f95ece28b6e1431a73e006046e6a110c99"]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr160B0.g",["ce23d79b73878e3f72460f6eddb6db01f414defb4a379a0df78584aa65558334"]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr175B0.g",["7e057ee730820b83f86f52a3225e4617dba310136591fda9fe1a78ee045675e5"]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr225B0.g",["ee7905205d98e62dab158112f853266859b1ca5a77eb2afe1c66ef101cd5c284"]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr28B0.g",["56276e654821f73cd33f945832b728ae0056486c6a036c0148eeae7388983a64"]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr36B0.g",["dc4ca5e15253cf1d9ae1c6ef3a2a5d2c575250e3bf338a64951453c7acacfcf7"]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr378B0.g",["8a31c7e4759e54508b8bb09e324a49ed71ebaa53ffbeeccacf00331d74b266e4"]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr42B0.g",["69588833ef6dc44812193e9c66019f981c9be36b369510ea85b5a1bf4c203ef6"]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr448B0.g",["b064c6e8a53ed6c19a826d2514da1f72fb7cd60ce9d41391f6eeeb47dbda611f"]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr63B0.g",["85c780dc7e2008f952030af5040f6b5f0116a0e2d5be32e448e228535d3e6db9"]]], ["TOC",["matint","spor/J2/gap0/J2G1-Zr90B0.g",["626afa246c29c27640b7c98f12ef6c7574053d8bbb38ab03582ce68e9c074db9"]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f3r14B0.m",["6d7983749924317c1b68474fae5bb186dfd5b2af3508bebba5116610dfaf494","76ef1cdcd1ec6d0d400e01007c06a6212975b3eb416321f4b974437c358b8a41"]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f3r216B0.m",["787262beb1741a425fc644dd7f8b4e4a4b7b8a8c16d5a813728b92df625838cf","c77c8d28179210709bdd48ef12f1f785a75f9c3cac68adde3e3605ddb6cf91fb"]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f3r236B0.m",["dd06ad47d254ef5f94eac76d9f5a540ab1b98e18ba2f7cc058553d1344e040cd","cc721002da83ee76a3d730914a130030765fb10cf97141e6c52b6313cfedb352"]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f49r50bB0.m",["78529d6db42056da6fae18d2848d21df15461500fd62f051d6b2e2b36d0396b0","52c77ee9c83268108a6e92a598d0a7143f3f520995b4f3ebac5ba5d3ad7cb03d"]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f49r58aB0.m",["1a281e10dd122306bc16df1e6938128c87de39ac12501139808be6a4d7895fb5","58d010687f8abc2f2c277f89e8921b8bac7f082286672d26574ea7512a8d0ae8"]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f49r6aB0.m",["d02d9a5ce5f4a01cdcc56d9b5012c169a170f4c93b137e6c9d680ff499523715","9b7497a7c9c13462411f1e36012d5b8140954e77076dd57a3229c9e1a96ee567"]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f5r14B0.m",["71915ff5f28fa8957f7534ab33a4f05481aafa3fc0db90b36deea1f4004db4d9","767d6857b290e97d8f416545a649b508b7ce8ecd8823f62d91102e6c7e5408db"]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f5r50aB0.m",["269b58dd70918fe5394711f94a98de8ec1a9f766822ffc7cd2dab44190a925b3","6cdb67f5efc104236b5dd55fa63e81952b94e3165d4548cc8c07373dd497db0d"]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f5r50bB0.m",["a63ea862edf46fbc209eb2c7ebb84fd4a3d61b25f67aff86a13c901bfd339b45","9fe7c5e764dfa08198f4e719a2112866839c8fa912baa6167f8911f416d5d64b"]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f5r56B0.m",["87ad881477adf83964f1c409a5ba8cf197cac7d407c088e391d09b081dac0506","ab1efab91e6fe07256429d9d195ff682e88f3656172d68c0d823267f077db7eb"]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f5r64B0.m",["e6809e15fb249fb412ff188b06777c7a00cc54bfacfa89ea7f77a9df92d40139","357ff24a6596845c063a8f40cb5fca4eca9c7668f96a4c4dbea0065a6e5b7f11"]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f5r6B0.m",["f5ca23d7ec106a8f87eae60f6210ba502fe72a8568d8b74e980a46a8d83a2f9c","193bc70772ba9654f7db26f41e1bb2cd249b4e3a68241d217dde07299e847872"]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f7r14B0.m",["59817049b990ab7cf2563a3223d424f4643f22f76629f55d9a7693150c75c793","18c88961af51ff06e5887970dec8dbab1e660214adb35ba49f7d808ee073c4c5"]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f9r126bB0.m",["6cc63a44cf104733a27ae0798e9e9c23623a77cb70e56fa97deb867627a22d0d","aca729f6751cc7f351ef2139641ef422fe17f3dfea31ccf35b7da69e4f4468ce"]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f9r36aB0.m",["3d948895dd307b459d4b331157aefd8442833cf3431778ce85800a8b54e47f0a","c7b00dbdb7009dbf02bff73cf41861bc3e5a22fd1a9cf9a5bab14be45a9fadde"]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f9r50bB0.m",["837327acce0011448064e32005655c786a264b4b612f64f6cde7f3ca26b95eb5","6049f024c8250970ec543e73c80ddde77d0ad24da70f9674a340083b16583033"]]], ["TOC",["matff","spor/J2/mtx/2J2G1-f9r6aB0.m",["ea3e24cc42375f18adb035817857f592cd503811bf0c6b94b772befeac1ea212","c4dd24eb967b113e3b61e8d54b7fe6271f4e5048ac7775c7d6e8b914feed1fb9"]]], ["TOC",["perm","spor/J2/mtx/2J2G1-p1120B0.m",["e8ccebbdef003671a16e60999a658d9370ed0c6a715d213c2d0001b10fa7161f","c5fb7b81a5a956e5c21a2fee9dfe6986305da23dbaed9965f25f8eb243554fb"]]], ["TOC",["perm","spor/J2/mtx/2J2G1-p200B0.m",["b6d32c7e2995f57918549e61f3af4509065c2566fc730b28d9ba5f8ac5b2e96b","bb6422611c58b6adcd189d050a0ca8b7de51403edeba154177fdf456b62150f5"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f25r14aB0.m",["911a96fca855e2641a9a8965e690f86db6c4eedcf448cd58b9e9f9c9eb3a25b7","3e5866d5f33f5990e0defad91c9cad54dc37ed139cc6fbb2f0a08027f07bd83e"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f25r190aB0.m",["b702867bd2b98e8e5087eb3bbb3175d1ca03b70813d50d10ab82f79fba9db200","2de9970aa4d2fff99c7bfd12b181e7331a2ea2c22ce62ab84c25890a08786ed4"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f25r202aB0.m",["65b174b271634bf1dc22dad8950ab627f2ddcf070077bca71fd94667ea267a2b","650f749097b79ff44f5b876c19fcd03da599aa348f6f88073b5e6e9097855759"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f25r350aB0.m",["3bccc5580e98be9633937555a74eaa4efa318b9a45c1f166cf38e2a558ab99c9","a1d38be3501c782d517dbc8792590a98108e6fe8399205b17f80ba1fc7e8a4b6"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f25r56aB0.m",["b8513d03eb4d851d389b6001afaf2bb82f77450d3e0b813e5be5a68c7b6f3ff0","b42d55652bbc72fc8f5ab8deb864f06424985abc819a0500694aab8f2b96d507"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f25r64aB0.m",["659fa8177e5b807b1ed355a5b61cad609625d1edfd3d0e8f283b7f8374db89ee","1874b6e6a84361c92dea8cb292c7fc121d7eb877055a9e2cde53707fbf3b78b2"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f25r6aB0.m",["414afe419644c996407d52dfdfdcccef145c285910f981524d17b2e3d93204eb","cea084b5ff6918b65efe8303b8a8e250e122dc4f28fe39778aa031d4d172be7"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f3r100B0.m",["58c9ec708ed9cbd0d4b8d088f35a4a332af67b903dd5534e4058a9589fa3b407","bb599a489bbd6c65d1c473c871b579969abb217bd2b143be362059ae3d8daaf1"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f3r12B0.m",["2c06d44c0c23889c6f076429b934e4e07b240085e45cf4b0070f9091a6c03fa9","186c893d4bc2c3b603c996be82e21935ce4c42afb59c5131d583006ac4abfc97"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f3r216aB0.m",["f3ab6ec98c313a961ab43b63fbb796463adf1183c7c8c37d0f04add739471c7d","645714660ab050448c76dd8d44e3453d5b01507a40040168b9d1791f39ddac9c"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f3r252B0.m",["3eb5d79a6cb03a03096a3440d8eadabab8b242eaf4d8f00708569445f52210d8","b5a6b38045dad1a65dd4b35c24d5f0bf8918480dfd20bbe4c7eb7db93b67ec11"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f3r72B0.m",["d3ffae33b3868f45d559e551c1f00c2256e6ce29aa6ad1c4c76ee96a787f844b","e5f15c90917b9e37b691a8909ef14e1d71307832e2332088882ab7357dc2fd21"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f49r252bB0.m",["28abaccab2a7d605c192414deb15c3e848972c589c28f94dcc7167ab5c33451","29c5aca0783f225fbe62b9b43b1f7c4babd183e0b7daad8840c4333237333be9"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f49r84aB0.m",["ea31748dbd530f9cb0df839c0f46d29e9c79336f4b8b6e568904a3773bfb893a","af5e2d82d376f9a2a83119be2bad7f4659d084a8260ac7629ceed63f80461f13"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f5r100aB0.m",["a8ca4b61823422f5507c87cbb15860336e61ff59ad9a8cfdedfa124002f61afe","70e798d368341a1f6e3e6357948d4ef9206baa98f69f4426249bd56ee6bc8633"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f7r100aB0.m",["23a38850170d5143a45661c05212401890b36f10d69539fbcfb24ee4be063695","b3c1be220b48828e820e0cc4165000d34965a988a63c4fe002557ee1502aaaaf"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f7r112aB0.m",["28ffc849de81372ac4058475d5d93fb43ab215923e1dbb9c343a9d8f278412c9","690fd4aaaed084787aeea6180d42b0252206ac7d4c4ba7b1d112a53fc5760be9"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f7r116aB0.m",["411391d2c93dd1fc90c603da80b59837092fdae8abc45001c90d5a7282b315c","90d69d9fc8e42406afb985c38d41e8df4051881767ab88fee1f742a09aa9005"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f7r12B0.m",["1b3001d271e841e79c583aca09028e1612fec403a12613ff5a17fd649e6b5fe1","62af1201ca64138556583b1616b34f43bebf6c9a2d62c15ced0b62df32555bf1"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f7r14aB0.m",["573c66bf56fff923d218aa2341e725daa00b856f772179b804658d8791c41261","4b9a86ebcf5052eb4b7f5ff0224ed20da8e1b8d22cbe0a4e8618185bfcc918df"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f7r252aB0.m",["bfca4fda253d0ce37231d18d87bca4f14ef388a90470b102f0b4c8d6cf0c30d5","129039d509b32f33c19ce3ce7d90530b5d820958eb4d5f84369b4c757808f7c0"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f7r336bB0.m",["bb8b40134cab29a0e9e3287457bece0c0668e2e1914cd10dc1969ff6f1906d8","8191852c330291d495eec9711ba0afb1941ac24179c4fe0a1cadbfe088084a41"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f7r350aB0.m",["d966c82aa383884dde18d3aadff6192dd1762288618a30c13c60452110b44089","3e47b6e9fa8d8c906a5226387d1b1a230aa428b8dd818068838ae0ef0b060708"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f9r14bB0.m",["5775dfcbbd7a40c2774019c3bf585d9a8df317ce6b69e9b8a51b0bfefa616179","b026c5a74d991026babe352da4ffa766c3eefeced8b470a3aaeb450833347062"]]], ["TOC",["matff","spor/J2/mtx/2J2d2G1-f9r236aB0.m",["b165d95cdc11e861129248b9880d80a941f6691b84b68b152eb6a07d66f8054","c155ea23da2a9bba021bafe74c66152911b8cf3d629e0ec9ba77d652acec9b9b"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f2r160B0.m",["f3f1131750a6cfa6e1787e323264a4f4df2c7107bdb10f23c87bdf1b5e2f30d5","7ae31eb9030231cb146c029b51485072364a342e5e0578cd8bbbd47b4d77c235"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f2r36B0.m",["b3cb43ab5b7e1901e3ab10ef273a5dc5d4a3b7a464b2356578d54912233980f1","5cb65380786ce139455fac1e118438526cfe39c2af03b3c8d42090d97c6c9526"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f2r84B0.m",["780456223072bcf9cda93dfd272044d075858ddda897e50a349c117519ca744a","1e2924e303d8690407e56bbf7f224f77d81e1f9352cbc7a5e7e1e4482cff3f30"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f3r133B0.m",["efdcba2c9740f38a15337e69fb30989e7559ae117845a58dfa9d0462000f6f4e","2ce9e3a97ac494176ea8fe3ec7f82864198696c5e78b6d8fa3b3055443c67953"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f3r225B0.m",["4fe01554be824cf9115ecac0d4c24aa58f9253a4e63412c801187113e4e4f101","37c16ca62d7897df96c67dbffb72e8816852bed12e11809e9a3a3d67650235af"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f3r36B0.m",["5d4f9d0bb32cf33a2d54dc318629ede76762902633069d93ad5a68276cdce915","218e7bbffa6a9a0d9023bd4a0c34d4e87722ae5b8ba936d06866a09df575d2df"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f3r63B0.m",["c13f03d4dff5225872271b4f0e76d716daa85102345640568e88714bc169909b","8280ee50f7ca0824a76d0753e9ded1dd20a33468f77f097972a0e55899f39738"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f3r90B0.m",["be09f3e7f2f5c235e0918c6905e64f335b8b41920226234e57a7a1765559d468","7291e3e372fa59e237a8f9b020b5a72255658676314c96ec91c1cfcc501c43ca"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f49r14aB0.m",["f9ad17ece2fe99e905a8d1fcc0d24b58d91cb908c278340cd7069ce54db27bf9","e6d09086283871ca783542a6c46dc63a88dc6594c82177cf461a67b774315220"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f49r189aB0.m",["5a28b0f7e3153ad8dd04f19a22ea937b8eb91b5876638f57315762e0ec73a904","9aba867ca72d5cf8adad92aaea5af7a681e9258e2688eec87336a5e1c88f0c6b"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f49r21aB0.m",["fc76a913810782652c3c358dc2e9f6293747cf6b3b0bf4ed8558323aa75fd75d","d6cad15b50f946770ad43de5b6945e5da29fe2eaf6b9028a8068ba4c07cb2167"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f49r224bB0.m",["e3bbab8e563d185435ef24e8b7bb4bb0c4e7370c8a30658125aa55966249317","b043a7edd8c35712fa57766928fe1c845ac226cc90d475babb6897c3fb322788"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f49r70aB0.m",["86962338b88dd3e07fa28f3d02ab0194b3a164218ff28218cf37817bf90341a4","bba7a8c9f6e407e0ceff001b9d08551ce8cde568cf3521433e9a3934a2890318"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f4r14aB0.m",["b283031508b7e95ad33833279a71778fe2ed6571e17bec49e3d91bcdf28e160c","2ca5f87489ee996f1afed00c8e25bb2e40c331fd928ea94c6c6e72b9e244eaf4"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f4r64aB0.m",["66456391338a845f1991f9a273669e6c6bc8ac058c50026d6bd8d5a76a0eccbd","ec1c400c58457537027beeefadf79020dcfe808475db0d6e34e0eba6c22f41a1"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f4r6aB0.m",["fd2a5cabe8a8111cb75d21555490526d60aadaa86554b2da786f7b0a3abdb760","248afcfa1a418a03e5e5d8b1894bb7555c3f5cad7eb475ad270e9ef862c1009f"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r14B0.m",["8e86537cff6ec079f8bff37d83bfd4af453463e087c9b17a4e2153fae2711cda","a0c726b4f9fe88da669e4bfa768c0b6a892d9f258974877d9d3aa293587d1ade"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r175B0.m",["44f150629cdf7ec63fef23af1c6cef6eee0a121760b964a9b206c8a5ea808dcf","c96ec1d8cba784c645721189a46efc22b2a6a7e14fa29955f6fcca1747d9384"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r189B0.m",["520d39f505637dae1bb5b92d5690575e767e63fbccd3f91f74b80271364795dd","99dd768aa195fbae02a21ba3acd761f8de07a8b93dca37a17cf213e0d7cb703b"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r21B0.m",["d6de9370a85c961b05feb33f36e95fd2d6e54414d0179680364cd6c5a8d0bd0e","591c46b03aa964b0aea60c05ad446a7967eddc480f39d6ed5ee6d34766d37db3"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r225B0.m",["abc7c397ddce4e0bf0ac48821c54b1f7b264b70c027414982630a2b4e84bcee2","4272c5ecde0f3bd142c698f768d15cfd2e0ee3ce6bb4a1a3bcfae49c7839fb6"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r300B0.m",["a0f63daacf70753f111c1522fe84d091bcbf051d9fcfb5ae2a9cda30d7ecde70","53df5fad24ade36d7799d7c992546034588af4f8fe3142225252451fec42d4f4"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r41B0.m",["5ced9381fd73458ddb96e0b4543985588132b2a8d3466f4ac9b3644ddddcd1e7","469fc955612f798f10d68cee06d0ce77639dea491613626679729ff9c8f60c1b"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r70B0.m",["c3c6f190716149713b86eb3ad95ed5fae35f2c00a3fce20a0da7f9065abe4268","51eb94e668cd296f5adc39fac2e5abc6bbb3897995b59640cf775d8bd0ef59f0"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r85B0.m",["88044dd8e8d9d40e69e7dea4323c5acc14d9bc7d80dee84b6f50343788a3dca","ab87d3c53e08a41b07529fa473f043254d2b05c01f6938067c628dd22c7ac1f9"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f5r90B0.m",["668080b4669ac17291c5d904a4cedcdb401ef4d5a6da31de40732cea144732ae","693467d517d2793c243fb60217429f045882c90fc3363dd5d8b5b86a208c098c"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r101B0.m",["bf1b8d039b09fab8ababd4a0c71f353adcff85878887b771b20b94fdd71bf29e","833eac2eef873409ae354b5ec10a255c7653b564a4ca1953b20c31329c5cb268"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r124B0.m",["426fcddff09529e6a5c7d40d99f5d109474fa4c662c043785631808e9c1f9e2a","2822d6cb72be65740902fb55e349287ed5f1431ceec1438c3472f069274c4ab6"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r126B0.m",["ec4223c18bee75b2c7e58c3a6094caa998085d0673fe33a0a5d449c29ab20a88","488a8daacc2523cc040217afaf1cde11e97b6a7df5ce14e5db020d80e8452c36"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r175B0.m",["81ec4cb8b90614a579be5bb19659d017c1afdf1a8f554fce6635d197ba5ed5e7","63c44e9406e7d9893301f6405fcd605334a15fa498b0d99a97c4c52391e652c8"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r199B0.m",["5c3151eaf6d657e9822edd2b2e8430f78088e4d2ce3ad5422aa00522512c3e4e","a1e7f9a89ec833e9c81fde840dcf0a5a55da8ca804081ef46440086cc46a5281"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r336B0.m",["78deef4e18bc56a5917ebf04acab23996898c5fb3c90a4cd9f9ac2bfc9006338","f6809aabd5600c76e186d598c5a47b0a32fdf1a0ce3767e286e67358adff9bb0"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r36B0.m",["fd6372388fb5321fb8a334e3357666a6b23d15194793b57d569e8968b84f00db","71de3e53a2f53fbd57e00f90bdcdac11775cefbbb8fbea93e5434a3205c6a571"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r63B0.m",["61872558267991c4780c33eb6f2564c621ff5c3ab684ed813f63908ae0a11f48","5870dd289a55a6e61e19471d7cb7c3bef16bb207e50485f2b6ccb086762d284b"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f7r89B0.m",["9caaaed05c0f6ddc754f8b7decca771a705c263888b4f8c0c21664548af6db75","34d10ddbc4fe61b2a9d798267da76ffb5f81fd752e17151ead4c89022f212e58"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f9r13aB0.m",["158e6e5d9799bb4cdbc89628cf7c0e769b22d363fb47821bf1575927d52143ef","7966ebe67adab34d3a45fdc7454402b94dce01cd0cd1dd31e5a2c2b73b7c45"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f9r189aB0.m",["3cb9bf98b35e7d39d09c1e09900fc570203d3e0cbf46f0b289985aeb8a4eae32","df569d816499cf5079afd4e3a725f65faafb4d9d090a8263d8643eeec0bc1458"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f9r21aB0.m",["ff4f703193f9c11689450a31cbcb3952a0987c810dfe28d991cc6a90b0d3cc01","954db9d9d001d5b8f5756fc28f17e28cf7928e0b54789fda4d1897769bd512ca"]]], ["TOC",["matff","spor/J2/mtx/J2G1-f9r57aB0.m",["77cd1c07122bb709155740d1c52496e10bf9333da0d298f281f068d518a1a0fc","3e644aa6ba0ee15b53e1ae62cf1bff9b5e461cbef15407de02707bcc029dbb63"]]], ["TOC",["perm","spor/J2/mtx/J2G1-p1008B0.m",["ae3ac6bbe0102eb39f5ba2994ab0b5a8956eeb8f1d822f91b5e67dc612940f72","f284992602e6b6d8f2fedc925b8545978f66ce42cc628919ea1055d9f1225f66"]]], ["TOC",["perm","spor/J2/mtx/J2G1-p100B0.m",["206d8f66efe00e2f3012f0b07e58b864801c1580abcd20e0ab624990003f29fc","d3ba71482c223b8ef86658ee659e60a90af0b80f90f0024e5425b73cbfac4b7a"]]], ["TOC",["perm","spor/J2/mtx/J2G1-p1800B0.m",["cbd4ebcee6a3282c224a519bab9bee83ba880d1de2cf061c613187678aa6a761","449d722fa4a3c91c242fd0b6a7c8573c92ff914947564799a51e313a35121b07"]]], ["TOC",["perm","spor/J2/mtx/J2G1-p280B0.m",["42491d4050ae0e3d481b6579c26a5423b602e506570ceb0a152673dac9eac4d5","520660e18943d2cd74545aef7abe2776417678e43480762d884f010552459413"]]], ["TOC",["perm","spor/J2/mtx/J2G1-p315B0.m",["50db2819a8413b9a1b8801868ed28bae6d9fff4d801a51e3e668046032a1564c","7b67cd3ff03c3cb8c7252248795394ac084f817b4cbcbb30bd4161939e7b90b4"]]], ["TOC",["perm","spor/J2/mtx/J2G1-p525B0.m",["64c039dbcd2e8c16aed201228414e543d6ca3cb1c5b3ed607b496d5545faa3bd","ba342a0e5ab2cbde782adf1bb56b463507c050d41da65d2ebd1db88a7dd0cfe7"]]], ["TOC",["perm","spor/J2/mtx/J2G1-p840B0.m",["8b5282c977c79e41d7eaf178b0e86b78ef1046c57559b345c3999778f2b2545b","d021f3917e3a91ec81c9b6f9c3a9546a59a39793ef29f9ad9e1f92296bfb5458"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f2r128B0.m",["f9e56c7646463649d749c4d2db44914795844d8166edb99d6924f4282cdb39be","f1b9db6b6d19667e685f40218692d3d456d7c2d1220c74950425d111a049dff2"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f2r12B0.m",["a7471a4d2cb2c99bbb2518a047ec8dd0fd34b603e7257bf601a0e0582eb7e4fb","21c28220416fd769a55757273e3d85aa1a1b7b88b2d90ce881ba0e5ea392b2bb"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f2r160B0.m",["97fa366ecc384312134872b47b905fdae232e5cd3562ee287228242a71c6e74d","4080af842f96735d8dc0cb30374e6509db7ad10a64cdef17c8924ce94bf8f27b"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f2r28B0.m",["53c4bbdd4fe5c140dbdf4377e83c0ab2c27f26001148a6c9172a400768945578","f4a94630c022719f2cb5d4f46ecfc229cd18ae8532428f06d4357991fddd0c89"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f2r36B0.m",["96347a9689078c86bb38a1d11bb41243a8f1ba21e2fc566d802e25c797346203","28b4745c0d0343b02030c3af79d564dc50ca7a89e17b1493817ea5ad4482a07e"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f2r84B0.m",["a8d516da8560e3332f25829dc7662094d0caa4012046d12360558f50d63a0d09","4c50d25af27da910ed9aeecbb6a34d08ebb6e81cf79ed1be4aa557ca96f1be6e"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r114B0.m",["8aaba304609d09c8cc26ed30b6efee743851c5f6fc1bfbf592861681d282ea4a","186443d1626c704f795e134ecde9b3cc7b4a71432c09239c5e3b474ebe1e7892"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r133aB0.m",["c0fd56cf00c151e27987831842d2441fdfbac00dcb623961bffbf62d04c610d6","6ec529988e6bbecfaf8b07470961fef874f8f3c5b6665f9e826d6a2c3b4c87de"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r225aB0.m",["4ca7f905d1bd2a9f467ac1d15437dca0939079984a17303603f507656c384afd","b5703c5f32fbb3de4e0ac66e25e16e9ab79c9c0134d74e829d974064b94e1ccd"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r26B0.m",["ce0863d96c7a6b3bd5442905f786a3dce7e07e7a9f569c27931c540bcf728b94","af7977f7dc3480daf75bf19d910b026efdd6cfaef6057694c2a700b2438d894b"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r36aB0.m",["3d082d40bdf4e340e5f164f1f75ecb1e6498e46a8c05c7f85dff1a4b17d9fc5b","696aabba1f61b8e6ef738054ef9c76b9791366ba91e2dbcd520836e07813a5b4"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r378B0.m",["bacc8c44b61cbf3668effe4019b8ef539bd154618bc2baf58885c9455731603a","95155fe494f70ae2fc6cd40e19c6a9646ca797d7936f9f2f96da96743dcf5752"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r42B0.m",["94ef1280839e37fb6728f5eb855e2c6fc4368cbba956f47cf5c7e86c20981140","96bc5cfa8ec88ae3bbaee452a50709cc40a7b241832c81311a87812ca63306f6"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r63aB0.m",["dd63d27987099feffd427a3e6d2b52cfa175e1096684149ef0a54c7272b643d","5d67ed43cad44d1ca2765065c023115dc2dbbe964fa0b7418d43154178ab1028"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f3r90aB0.m",["3f24829df3aa7bcd5b92dda8f244cc3426e27b4a2bdc07d265f42a1325a22cc8","42fb589e8353b6de79388e377b75afbde60f22d2f1e1bff5785fefee9f45205"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f49r336aB0.m",["97a5f32d3f5dae85c4445df323ec2ae89f7029debce550fa51f02c367224e785","c297f49efe21c8e372a77440fb59c5e802480342c6222b1aeb5e33ab8cfa469f"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r14aB0.m",["c1fa3298425c731aece0f1025cad803bc4bec18c74927f81c2717f837f390bef","c9cbb58e5e3384cbd4f2404ba3f0575b8d95dbb557fafcec2d303aa646d90034"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r175aB0.m",["d9824fa4d1088e497e842846fcaf643d24f78bbd27e3e32a46d266fab29a54cc","ef409715b78bd866284cbda59745bc4a836e1e1b2a868a975ed5e7c8882e9d8e"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r189aB0.m",["a02bb8477060b3c94728e009bf9593771f7ac7fa2a72b96876ab82e557aa17f9","1f4eba4dc1a46cfb7c333ff6853d26afca88278efd8dc702318c1e65800530b6"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r21aB0.m",["8073680da0ae9424ecbec51d07f77f3464e05f212c489c9185cddc671322f92b","a7846405fefbcf9e68eea679021a88039284def78d20af918be3ee39be914513"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r225aB0.m",["20cca0cd5f1b708058690354b6cce96cf73d04ef4ef4561c6a41cb313ff613a5","68b33a2b1cb04b67ac007af2ac41acf9a3d3f44395674e3ebb81d72c178b7d98"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r300aB0.m",["b9a6b49ab171e2628b6449c52c48ee336f694b7bddcb80ec2ba85bdb361df924","7e1cbb7cae3bfecc00ecba660ed3f4d63e19a679d99ad8f6cacb3672f07eb983"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r41aB0.m",["bfc2c4537fdc4f1186bd0aea3de4ca28fbf03790079645762d6691ce1812e64b","e3a6fbfd3c6ddd921950677e8e1e26646ae1ef9b73adf3e69d1d5877776bc1c0"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r70aB0.m",["277f13b759074c5a8624b992bf4256b03fd458d77172c43b24e6cdbf06acaf45","6158b8328d49ae4b74e730029b020bd157648d9efdcd245080524d163336b7ae"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r85aB0.m",["2fd40241ee0d67b2514b74c5beb0d0ba829c8fb258f29c10c42f6ee763acd06f","91b2f76dccbc60b3d91bb653dd4024cc3cc4f52c416a3c49e73447e4f490f792"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f5r90aB0.m",["c9181103a479c464f29a2355414051d966a33a09264566fe8259b00f370c06ff","d57400fe3e462c1379fa9da7596485971cdbdaa4e0fbb53a0259404435fb5e14"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r101aB0.m",["459d6cb45cb70a963b7f98b7bdc92c7505aab8857d01104930fcb53e90fec71","30afabf10502ba5bfe8a9399879bd9dc8168498f70c06b477977fb5d5129eba4"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r124aB0.m",["7a3f478eb7c645e2f3ea4ab62f81398d697f6ff9a5d3c0b04ec2e7293284a9b3","26f9105383af6314be3e11f02b5f82d0fed95769d30886672fd805544b482384"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r126aB0.m",["8a13b6dc11ed767216f4b471cd043589417c3bcda640ff4dc3e552f300340a7","f6688d4720e556dd43f0a5e31efc3fe16393dffe66253d2fc7897c92b9ed68f0"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r140aB0.m",["3d3ceee8ee36666bf83a4676d34a603bf39b81a637c39c20248a5e132de3b642","71bee96534e08efc28d5aa9dfcab7669eb5bc081523f8e677f5f9394ce3d8ba4"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r175aB0.m",["ee9cb9f131458155e625274569f4094b39792cd19d30a2c43beaed4a92424ee9","673ec56eb60383260472eb1891a2339f1898519619b25e3143a0753221d66cf7"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r199aB0.m",["fed067fe2c34b0f8be1988f2a8ef556a1453cc618ec545e5fccc2fbc61ec06f2","2984839872e429e9c1f995623172cb6e850fb47d068f3ac25612909306e6a54f"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r28B0.m",["df17536871fdf184d7e4a5ed1a34f6bbb620cb657af7e6998b90bf5138514fa8","f83a0b28a629256975b4c990955f604e74bfad2e75c85df36fabef2404c8479"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r28aB0.m",["f7c24dc0456099b44b548efe6052b3c0425d82442dbe69ca4ba9b3b8cbcddc5c","7770e12904116c75d9968bdbdf4e16c200e9ba15b89562e5a74935a8a7b413d2"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r36aB0.m",["35c4f85b007ea8f624de6d5fb13f598ed100770d23459beb23f695f7a8edcc38","ed2ef30352dc095f8fe4ef1fe8d03428c484070f2f5078c001294f35c4c89171"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r378aB0.m",["de75c4e47279d8fdbb12add7a1e44c27fdcddd4981bc15ead17435ec8aee715","571b228aebc64a57323739b7545196318f144f70c99bada62a457bd5a3e9bb93"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r42aB0.m",["4c99768b8f27304269a48947d6caa987ecb6ae028cab743ed391ef996d9eb3c5","4d26f0aa24960f6d344b4610da2d491e87192226fafde2e4184d978ec821dfb9"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r448aB0.m",["74147d56d4da8689765f9a5a9f0e76364b0593483cee77783ab80d8a6c718051","cb970b41bf2920ba27f51e3e2aa464f7c9d7afdf63a04ea078e19981a7dc227a"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r63aB0.m",["ec677beca0757916497148343f6a5b64147a93ee367e3079b38dfcc050d0a2f","ae1cce2085ef6dc5f5ab577a5c86513bbbab0a65eb4729ae54fa83bdcd19b725"]]], ["TOC",["matff","spor/J2/mtx/J2d2G1-f7r89aB0.m",["bd88413fcb8f1282b2486c31edb2d8b7bc63e465d755961ac29aa320b26d8b05","edc8fd8f0c00a31c67b7a624694138ba0495794bd6ab5edcc6a9ae5f449326c3"]]], ["TOC",["perm","spor/J2/mtx/J2d2G1-p100B0.m",["98420343e21185e630008eff2268c696b04f0f7ed44f0ca5f3c0f5f29ad3d324","c70694887b679d2b954802251229c08a3aa01040a05f61441ec39cb844d6541a"]]], ["TOC",["pres","spor/J2/words/2J2G1-P1",["274f3efb4f636cf8b84aa6c8edb048a08cd0ba58596e3c966460ae3514b2dc2f"]]], ["TOC",["pres","spor/J2/words/2J2G1-P2",["c279204d65de8c59256460a8218a2ccde7ea5ba918c51103ff233c0de70ced6"]]], ["TOC",["pres","spor/J2/words/2J2d2G1-P1",["1a615704c4d2914e02da578ce1241bc3011b696e219c8daea57a9c996cd1b469"]]], ["TOC",["pres","spor/J2/words/2J2d2iG1-P1",["94db34ee3b1f78d4416b949e355289baa717de9b8ecf7535321e68e0cea740a7"]]], ["TOC",["pres","spor/J2/words/J2G1-P1",["96f5cde93c710238befcfa4dea2ba03f777fc1212a1ec923dfd2cdd3f0b134d"]]], ["TOC",["pres","spor/J2/words/J2G1-P2",["3f1e3c9e26d5a3f3dd11114df6355626578fd3fc181bdd2a2ca5cc01ee2dded0"]]], ["TOC",["check","spor/J2/words/J2G1-check1",["dfc51176b34bb4863f1db3b750ef0997e1042b1202ffc3b3f213549a321bd180"]]], ["TOC",["cyclic","spor/J2/words/J2G1-cycW1",["124c26bc4b09c1678c2bfbd91e5485b55580aa8b906e22860cfaa4dbc75438ff"]]], ["TOC",["find","spor/J2/words/J2G1-find1",["80d014e082ddf38e1c213cb538758e3ccb427456af42cabd70596b4a209f2c20"]]], ["TOC",["maxes","spor/J2/words/J2G1-max1W1",["6682a9ad71bc8910b84acdc01c707811480694b5b691dc606cd8c12ca176d91e"]]], ["TOC",["maxes","spor/J2/words/J2G1-max2W1",["47d381c083c108b6a11ad8e47d7cc35348dd4a5f1428beaab5467081fcaf58d3"]]], ["TOC",["maxes","spor/J2/words/J2G1-max3W1",["d9cd1155e67793639bd394974173ae15bbcbc7c13595c67e392b21c797ca085"]]], ["TOC",["maxes","spor/J2/words/J2G1-max4W1",["5d1e0421ab6121b16289d562df726a08a3923d95248f7a02516aeb76a52a15a2"]]], ["TOC",["maxes","spor/J2/words/J2G1-max5W1",["10cd0c4558a9771cd0676eaddd70c55d7e9ec415e2e5b59bb4ab94d4bce5fa9f"]]], ["TOC",["maxes","spor/J2/words/J2G1-max6W1",["4dccfc0bcc95102de7b2b6a7504dd0de622e63bdbab9c7cea67f3f6983c0b479"]]], ["TOC",["maxes","spor/J2/words/J2G1-max7W1",["4982d91782c4448d661a33295513f9d3a8019f164b963a50984c9a7e3c159d79"]]], ["TOC",["maxes","spor/J2/words/J2G1-max8W1",["40d126372a376777895c0f95b16f53c2044385f33df5e7336a9990b6959f79a4"]]], ["TOC",["maxes","spor/J2/words/J2G1-max9W1",["88b6df6735f35db86d4d17e694cc1ee8ddfebb5e87e92fa391f532308dbe5df1"]]], ["TOC",["cyc2ccl","spor/J2/words/J2G1cycW1-cclsW1",["ea53fc8baab9193fadeaa46552c8c8200001a8c41c218a0db591f5ca3fb29a0"]]], ["TOC",["check","spor/J2/words/J2d2G1-check1",["733fa24867edf7072235b51bd7f46940a1563539f5a0c0d08034130055762af0"]]], ["TOC",["cyclic","spor/J2/words/J2d2G1-cycW1",["392262ae44e5a7d24ce53ff80fbf511eaeed9a4b84125bbebc887da8007810d0"]]], ["TOC",["find","spor/J2/words/J2d2G1-find1",["c1c1d4eb545f894f1f28f37791a46f289b2ec7f5a9a526d3a11ada41fb296231"]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max10W1",["fcc4313274eb0cd42f7f826572b26c3f5f947f3e61b790ffe111f3b29681442d"]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max10W2",["8e2ab288db4323a9a8f9b0cb2fa389c7d1cd252d6188a4dc1e591e1df5392c6c"]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max1W1",["215520d553013265ce1e1f6a9a49ef72a9058ba587e9acf500a9590a2be13feb"]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max2W1",["fb9191af7710b60416a288d463ebf2d113f6f48af79d51baac32f35c7bc8ebcb"]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max2W2",["ca13b019c4597c1ae8008f1a084ea6e30e7c630ca43abc7da7592b1bac12be23"]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max3W1",["cd9f1104f9eb9374006f84681d4b1b0dc533fca40266f2ebb5465bbc4497ea17"]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max3W2",["aa878681bfa1e9dfce023e8d21ead0cafe3a4f78d418e96a62c20f20152989c9"]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max4W1",["3978af3c2c5d9b66793ff33086e62f2d48a30c5193f0c60ac3454491ad7f8309"]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max5W1",["291fa1826c297739f7e620ae9677f7170f1cc50c66bb0984daac4cf2866990ae"]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max6W1",["dd29b9a56ef1786b1c6ef40aeeb497c24e1d20eca11aac104bd7349c4d6dce63"]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max7W1",["18c4dc834b4ae85b633d78f44c39b624c7280a3e552e31b7b3f7f884b6159a7c"]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max8W1",["3308ff871e5ce8b72947bc1ec04e7c06c29198c81a8f054f2ceba1917b685a2f"]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max8W2",["98ba058b46162e06d4330032f511132b24e2f821c3594d708d9700d41fc5639c"]]], ["TOC",["maxes","spor/J2/words/J2d2G1-max9W1",["bfbdfd8603d9073614e479956e2c62ea17fe1838da6a698e114588b909fb7f71"]]], ["TOC",["matint","spor/J3/gap0/J3G1-Zr170B0.g",["61a3257d9d7a0105e3d225c9da42b524fde1713e92022e753e56479d46bb8df3"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f17r342aB0.m",["184888397e556fbf7734c172eeeaee1a5dc4bca4eaeac1234c82ff68477e8ca8","6c434f856cb3da423d635b528620e60d29f61d5ba7f395ad780b376c62ec70c3"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f17r36aB0.m",["ea8815bfaa0d3a4b5edbe9e20dc25108cc5f7048b00c461862caef9477c0e7f","3d8e10deb8101699e8bc5d37a43f95f62b01f26f5564bbf4dd49494f3250d27e"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f17r36bB0.m",["83f5002a17e8104a6c171d474c1a3abdfd2c2c0f0f7146d9073ee82faae230de","5415686085e331de38ba91972545a8cc661466fcc64ec78aff93489a60c34f54"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f17r648aB0.m",["c868e285fc17460de67049dbe7e2c9eb2c7fb58acc968092fe75b2b48a75e8a3","a51a8073dbe44517335d97ef8a235608e306936bfb3822d33a17f3d8761df9b7"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f19r18aB0.m",["628d8ab895a672aab0e6b6c64668636b450798a8af38185ff672342f94f8a238","38d1e058620c1ca255f3c980ad96eae2d100a9f0bfcfec4ba9387228889f85b4"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f19r18bB0.m",["97b1050d68304477a34ea3e8aefd026ddc56d0e60851d390d32c8ef90f7b626e","9da8b2bef5c617257468c17d1206cd7c3108dfb5a5feb0dd23e25786439e9fc7"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f25r153B0.m",["d8a4862238085a6ca15b579c412b356581d0d7335330cfce6d803210b2f3ff52","8cd80c6916c06610fd3d043843b9d9e80be14c6bc4e8839640084a2ef834e354"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f25r171aB0.m",["4d243d9a2a6ec0ea47f2252507e48f1040685f322def55b672a0edbaff39fd0b","28303f3021e36addbbe9004b8e16d234a16c35a3d276056aa5be80c31de8673e"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f25r18B0.m",["3790c3e17cc0d306ce86765422f3ca5f18c5dc17d39264ae9acd54e91bd11a3d","5466e7d4e2419406da80c382f3ca86b8d77e13192e6a3e5b3e263d438f982f98"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r1008aB0.m",["508deded757c459f3921bb00fec5ccee208cc4042cd220f03d8e8eb0deb0634e","bd2007e72d5e2488a4a14a2b60122051e0a982401232bd21539859a3291143ec"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r126aB0.m",["853934ef6d2b6c060d273903a56436fb9522da2258a601c37ca36310eca92be","6d97bc24a979e6a6a081d667f6309a4cc263a452cc31688ba729ab37c18a07ae"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r153aB0.m",["290ccbe8d9dc755f14322f9428b3bc74f979e763d0272359a492a1482c279ae4","9ebaa5f545fc6282348f3eb143ee18efd68bba908143dd3770224244f367c02f"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r153bB0.m",["fa631593b22cc99c7e16e7773585845a898f5d2cf35892a04970bec36e1c44b0","868171b1396cae661ebe1d6f1edc9ff0261d606d12beb7181dda17a0d7515df1"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r18aB0.m",["3f061a4ee86c2588116dfe20024f3cc96c603ae6672632b9104fefebb274d749","ffb79af2e10b1abdb21677af7d3310362813ab59a4384b4611f1152c8b4391cc"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r18bB0.m",["a0217dee2996b5dd5cd6cf1c632bf5ca9e0469a0fd18019fd303612ae718b16d","626c69daa3e52c2af6489361386465d7422087e1462406046c73a301b4bcb910"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r324aB0.m",["90a198292129b90bdc131e6f9f0a73752a19409078ec8aaed1f754e31fcf2e33","79baa5e83a53679d062057137c6f533898cca1a5f987bc97e5957a1567a07bda"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r720aB0.m",["34fd5724994eba852ce2b991c77299253d566c3705c5344380b9ceec46a04167","babc10c3674468f9ea4888a2efb1d2168ffc65b97a96b6afa00bcc3bfec3b761"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f4r9aB0.m",["37ce6bc8276c94e606efa531b03d53aaa5ff8766010b2aa7c3a3b70d20ee23af","465f5a47efd7bb1ad644e8604d9c2402d9480ca5dd45bd263256f18e3331aaa1"]]], ["TOC",["matff","spor/J3/mtx/3J3G1-f5r36B0.m",["a2e49d0c3cc11d95bf75b871f30da3035cb7f4e1b25968c04b31dd7f1cb22996","cf1ac496fe96d53bf373f31fbc58757992d2bc0ee8ffb40da4306ed2f87ab70a"]]], ["TOC",["matff","spor/J3/mtx/3J3d2G1-f2r18B0.m",["fdd75bb0006266b22d53273af36bd52f9a252fcf89ce364ebfa2c4c8d35d1323","4fdb404b183cf0cd84fb1cff6db70cc947b79f2fe4aa7b2c65ab861188cb0c80"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f17r1292B0.m",["f0ef1a713386cdab859019f00735eff2f80fd5ecae21bb678565e68e5ec903e9","5db6193dc5d57bc721260fd881c9c9e548a5452bded4ae78a8611259f0e443d7"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f17r324B0.m",["9310bd0b6faee9b6e50a16f8e376238080baaf04752190bd09577387e4ef5bff","1d60f8534598a16f56da4b2cc6682ce1ebd722f459dd4a51b8d41ef968a5ef78"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f17r379B0.m",["c3372035e087db92509f77f42448abc7568ee853f5a5bd15fd157266f23918b4","4f7ff6589b165f899629654150b189c5abf5682399d17d0ff500b4d5f50cd28f"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f17r646cB0.m",["e77ddff3852de0b019cbe4a56d02763fcb394fdaa3a560a1264ad85daee38c4f","49130d2a485a33014b1475b944bff30761cbf13a1e32aa5e143e5c27d153c5a4"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f17r761B0.m",["df8dcf5b4c5a8e84303bc4087f7a57f9a4a16541d03b6f09ffbb76da12ad6179","f1318e7dd858e7f745dae199bf61da8d3fe2a635e8fbbed67c0647d17523aeb3"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f17r816B0.m",["520c1c5f9da286fe641a3ac73a308e1df45379db96f3056215d607541441d899","992d0ca080478880c1657495cd91fbbf4a371ec4dc5ca542c5308bb7a32ce750"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f17r836B0.m",["65e8c0099c722e9841e94e7950601cbb7edabc25a7bc41b16039a0514db97354","22df3ff0a0e3f1057a321ffb4265fda2f4eed97c5f2ca5bcd0542a8237207737"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f17r85bB0.m",["1cc392c8a77ff02f3a736c0b871df7696b3254a5f52d0579b3dd37fec9e1c795","dfd7fcb69c38d83cb681065866a99d577d5212e85968ff6df2b0206a225d918c"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f19r1001B0.m",["b4e23d2c95a74da2a4c96d0bd4770cf7093d22f7fb014bec6bae3442a39ce07a","76eb5a75c7ef490c8c1e6a20ee42daa9806071fa42f7e36774ef6683ab067867"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f19r110B0.m",["9d502174ae28e27208fa4f161376079b031144caabf37a23e96727ec4ddc4444","fc819c66c099e0c04a94856038beb1f352aa52c7a0ffb06b4a2a9f9bafc40032"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f19r214B0.m",["415a6407dcb2540df2fc5055f0ae8ead44d26ee461142b8bfb3310296274dd5d","f70d82f8abfd519243d0195114f25e78ea30f3bce7150c2e46235eef595c3f07"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f19r323aB0.m",["e335c1400f26c189040168c5fe7e9f2b50497dd182c1748c0c40aba01108f216","c772a9bd0b3ea169ec5bce3303082933bf253a923e4e4e374dd60122f7a43b93"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f19r646aB0.m",["7d091e59c13e2a830002673fa549fd840f6d8ca5b8561e050da047799a16aa3c","c61db14c112dbd2b931d3575254c5313d0356cd5cd8ea67ca753a8ec777f84a9"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f19r706B0.m",["13b8642b033cafbdfed68b495cf4dc5daab5676f1af8063d381c48cb5b696dcd","1736f5cb7432d0b1ffa51ac599e115e168a1c2fcf1f983830eade45e3cbaafa0"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f19r85B0.m",["d01eacfc8e8c45e1dd7d991f7c6bb1119cdad2701875b5981b54ea971e7a0685","b339226366dafc844251fa67d707c2344386dc0ad89a99898b5caea5f589d19e"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f19r919B0.m",["d068b3297fdb9157ac5b872de8024cfa1b1933ece8ce9d304411b8b6c35431a","39799b2c2a36164040593637d5fb36214a663c1c8a1644fd6fb1a8415576247"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f2r244B0.m",["6e77b10bec660d0bb54878a9964ffc806e8641b5758875550c54074b4621bdb6","55f3b9d165f049ff0823f10ec06937f6d17e42d5e76d6f5d5e339ab72e8d4c12"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f2r248B0.m",["860d829d6a90e179fb6b6edd3544bfdc9e45dc05802048f82e561d3ecc8da997","173e1c0583c2af8642e5979a0bdd7dade01d61e6a5fcbb09f59f3771f4f36e2d"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f2r80B0.m",["d76c901b460250877724b15e6bc24acabbd93e8a84ae53946174bbf6d3ff4df4","10075c8742ff5a3d388b215c741c204029b374b2eb15b712045ae2296fa42077"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f2r966B0.m",["e1f96669d57a3626884be4db3b2f5cfa28ad5552767b3bed0f1df55eae85b4b2","7af91b979d9ee013f6c684ae452f042c8cc926e0027eb7fd7b9b88881681cbae"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f3r324B0.m",["348375da8f135308f4c4eebf890b50b4781b1f5dc83441b900d4891d0bacf362","5d3590814fd157daee4f32ea781039c849abc1eaf087d57b65bfa582e7ecc935"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f3r934B0.m",["d35a7a8238f8fcc0629f949efa8b2c63fa8cab45d440c29ce7ba104c7dfb0e3","b616c726bc6e768f363ac4013ffe5e37ac691aca5adc8acf6e36c28aec1648d6"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f4r322aB0.m",["21e2b95189dbd35651a2912fb1a3f84c956fabd6c7314e9013acda0942cef3eb","c71d845cba534a8e5db5f08c96a21e3d9897b73059c13d0faa1337e3412eb094"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f4r78bB0.m",["1f5cbf1be3afe5cca756e10ed01cdaae6883fbf896213fd31e4ed57c8e62cdcd","f625bed0ce80419fbbbc43e0c4ec9274ed6bb13466ddc284fa4b3a5d0d117aa1"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f4r84aB0.m",["37685677985a069db783a6b169b96ff990b0eb59695835e2a210922c03a1d9c3","93343c4198f53b99fd498a253c254d5910878581cdc02bdd8eafa91bb909c5f7"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f5r323B0.m",["4ad50aced9039ea96e531aa76988be1206d641708499257b26413c5d485e637d","2b5683c519bb45ad1835d2763d9bda4b24b169e4ad8c3d0b32f6c82f9f49b38"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f5r646B0.m",["9fd771388898d911d9f2a22e1131fdbd0f36f36ddf5ac3f2450933770edfc64c","96b70156738439a6ff5dbec0cef14c658bf8bf7dbb915fc26091ecf3a34fe23a"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f5r816B0.m",["fc097387725bbf3fd4e6a6cd89d1616261ecc250ed91813785ee982824e3143f","d9d8fd536d2c20c958f8318438298ed27b28a01df3704e837218d4dfb206496c"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f5r85aB0.m",["7216c57e0d21a4ec3414456d88e74cae4db7daf68eb648c6aaef3d0fa9e70488","534fe21358b9a4187df591469c70652bfccaf9298970c85f2a6ddc9545c94049"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f9r153bB0.m",["f8fc6b3ae91c715a484df70cc5c3639bfec66418d4cf00b39de328f6922ee9c4","8575314b2c76e6ea68209da7970fa9c8da0cd011a672cdfb0e8cae828950f7c5"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f9r18bB0.m",["b7dabe4e44c2497d77eea25f5cf84229a3fbecc4861b82412447f1a328f65a75","54db4fe156865543351f4fcb2be9a1edc028fa15de0532c3f653887443e6d2d3"]]], ["TOC",["matff","spor/J3/mtx/J3G1-f9r84bB0.m",["f16402dbffc9d3b15d271a0b41d02027bd0e4698f83c810d0dac0c2a3638fb19","6da1a4376589bd5a0a7c94f83aa5f2c7d44f29edf0c98015808b95059d8841c7"]]], ["TOC",["perm","spor/J3/mtx/J3G1-p14688aB0.m",["559b71b685ff9d62921fb3322da1febbe02409d66264cb4ff684cb9b9372825b","4ad2762014c00d55d360e9110c369a568ab92e9f0fcca94f4116ec1d6ec0210f"]]], ["TOC",["perm","spor/J3/mtx/J3G1-p14688bB0.m",["75f6a66ac38416f105076ee0f0d23f6a53a719be1a0cd301ce396c68b1f6eba9","a004396ffffdbf63ca802634fef7564925c6c24d2d5a10f06e4c47f4d85709a"]]], ["TOC",["perm","spor/J3/mtx/J3G1-p17442B0.m",["36fd7cc58866a41a61c8691bb99ed377fc2d2b23cd6cebed4964036db45739be","3a714bef5da4bf541efb6e28008362e50dc493bba7c3c2d6bed0f1523afa9a5e"]]], ["TOC",["perm","spor/J3/mtx/J3G1-p20520B0.m",["f9d4509083918e640b824c1b7ced2c0705fa4f5d14519386dda4d7c0313b0d78","1e5d82ffa9ee1d89f77baea2dc234958d0c695006459af2727b9d9c5e9e0407a"]]], ["TOC",["perm","spor/J3/mtx/J3G1-p23256B0.m",["dbf49767fc770061a756e0cdccf8fb3c88fa6494d590031c91ca7ca43b8d92f8","10048b18b36d196d9916c0567df4d467b68c516828621c5a15296a91d55cb69a"]]], ["TOC",["perm","spor/J3/mtx/J3G1-p25840B0.m",["7006303495e1dd7e54490026fb80c2c61fc7f53781f190655465c2a1af67ecae","ecf20216f51149dc5a9b5545d22a269c1290b431b0423e5b9eb4fe8854bd17cd"]]], ["TOC",["perm","spor/J3/mtx/J3G1-p26163B0.m",["42b4c6721bc7748b6a3b6c5277d1872a2a0cb9c7635c1f21d62fb7a6880f84d9","de474ef0ee4c66fbafaee720e7aac63710d62404d4c86ae8d0780a051982d3fb"]]], ["TOC",["perm","spor/J3/mtx/J3G1-p43605B0.m",["2088dd985794da95ec0635317282363ff0d7937627beef4ac7f0aba4b29645d7","2c78d6bb89a26c1608018d81ab1cf9745939e9643e51d731afeaf8c14152d93"]]], ["TOC",["perm","spor/J3/mtx/J3G1-p6156B0.m",["4b33d5823431a30b9916f63fc6b914388fdaac908352e442d2328bda85034bcb","e2963d6257e73fda2d33fd2c9e5ca8875230f93a8aea0ecfe4e7f43f229e65ea"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f17r170aB0.m",["4cd2a46896bb3ba7c69777c6dedc66b58daad814e0b9930726deb6c5364ba4d1","13eb0f9e7e5b2e0ffd0fa75dd86f7a0cb589b46f031f352b45ed8cdfe0320824"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f17r324aB0.m",["1e9083d5e78de8bd3f81f44eacb634b772bf18f15af86fd38c31b8d2a2ba1980","6537a15efb44d9d5e0baae1b17a3d8674d8622697a58837f7aef6599c70c5594"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f17r379aB0.m",["951d98a381329579b5517d76c37d4affc8c5cb571894234bda637bd235674461","11ab599f8f7ebb3e866ab7d3060b26c2c7f5efc05c67ef3cbe17c106dd2e00c9"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f17r646aB0.m",["10c9418b2249a75730ff2f82959e15780ddcd61e5d75c937b85ba19ff33bb524","133e05566e4cf3e27144fca9197f1d20a844250be9d1b1e9fc0bae65ec1d9537"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f17r836aB0.m",["1a2dd17f35963e1a04e0d7159160a10cc4aeedfbe516d513cb0eccca7ce7951f","cd029bbde38c466d462b52719f0ff268df8520970e6d804496fd1e063c4f9e8e"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r1001aB0.m",["bda6c97f49c1e79ca07873faad28768b72dbb87489bb7e2bfa7dc60ed803bf43","3ad48bd48a398e9ead75b05cfe629e4360295907656f529ea5e82625e5c0d409"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r110aB0.m",["34ae35454c0a74d4ed1cd5e1338454081740f1b5311a52899142cf73357575e8","a26bda1a474d6380ba584d8ff48f1783de11f2c4d4ebd0f51ebdebb57ae87030"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r1214aB0.m",["a4294d5861efbc241b45bc1062a68ddf18a43019d23b764ebe9cf880290b9c4d","14c0dc16da18f40c3282e88de7bf32f8946a201ac338551c69a16f46b68f00a7"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r214aB0.m",["f630827d02193edddd1f169dbc2abfad76fb9a25de1537db6cce5405d9f2b2d9","6cf331a32313c8d3ca6707e098f3655fa4cf0fedc499feff9d5df78a4806090e"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r214bB0.m",["92f94daa0cb0a2c0349ddf6dcce5aca5a00c2365211a596faea7279ec24482b0","10aef50559194a9f526d94ca6fa36828457895c05b919826d124020b5588b123"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r646aB0.m",["cbb62cfc85a5966326564d8c46f517111314a94fb68fab8b7e753d90a3418733","a607884d3b7f6489cdcc5ab0529bc0d54190550cdd3ab1de094f2b37add40f71"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r706aB0.m",["e047b9e87d6cd0c529861718014e71ca56936608f707c052d829dbc60c9a2661","d08f7fd40c6ec6369484c9914a9dd0142ba257ce8eb7726f4e364a6bd9b4fab0"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r85aB0.m",["bf2be94aa5c81dc35e4318e25ff4c8cfcc364156b9cb6db833135478e09d091c","16dca4955b6478313bdc23de9488bd5390d65461eb936be07d9cb87d71d298f6"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f19r919aB0.m",["74aec6acd9b75bc2cf136ff73141288111b2d8b999787a91d01f40e5cd3dafb3","25bd70039bd6b478792ca27866f752240b4919e1523cb9ea108b39a86561cc59"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f2r156aB0.m",["8ce04ac1047579dacc5c07e7fc96356a7728d5c13fcd323be77e3283f6e94bff","b481081f87fbf7e75b73abd64e6a29a082c185e8b92fdd2f44ce875d82488b1b"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f2r168aB0.m",["d339671d1f919e7a160242f87ad226cf32c41ad7b2a335c82e63e68cdbfff1bf","e54f1686fe2d692d19623b48b19b9546999d109a1d8bcef3df592f278415b9b1"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f2r244aB0.m",["1dd0e75c8fdd9afd691bc5c1872496c9ccedc42cd3869627681d83a8ded90207","7641503576d5ad0e6d058fd6671ddd4a493cb45902d327e2af0d79cede4f666a"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f2r644aB0.m",["f90837927a0ca58cf139888d70ca8c4df16a757f7b5645112266b2941b1f96f","4e80ab85e3ec0a2620a9fcf10fb189470e720bd169faf28981a35bb748d9d8c2"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f2r80aB0.m",["23010f7ac6af2f0d397980f53a999cc9f6dbbb10886565445a858fde179d6edc","b7cbebc9fc4e732da95c35570607a08cec0c912693e4c7cb140fad17e257546d"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f2r966aB0.m",["a8b3e5762d392c0851baa7dd1d55bf945fc16322d22e32943e3a314607e91f61","9bbcb5c66c9d3feeae80f0834eff531156b119586f306a340aa08ca2d523b6f5"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f3r168aB0.m",["74ac00d85fc8afdeafc778b8bdda4bc486ee305c51445b108f50839389049cf1","399100f7d16d3b40622432c6f4a9c0a59494cfdf720141e68273ad3b0564bdab"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f3r306aB0.m",["3cc9b67df4d2c1127b3ab4a4a13bfcbe65688cb5808f25fc4711dcac2e0406cc","28197201a6403d89ad518de92cd207883a983572da2d1413b4dacdded76046a4"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f3r324aB0.m",["459d9ceeff091883c9f3f0ea8556bcbfbd933b23e36bd38b4df7fb0a7ef9abe","28e5651831a24e83526183bb25886e9a50faf20946ef66d8c58a55e41ebd02d5"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f3r36B0.m",["d6434d5599416c946c7626c27037436f470c2a096128de05eacb1db0d31bba64","324ae33ffa0f8d41b42a88c08a220c94d1d6778b66e42d408f1d9b4b296e11b7"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f3r36aB0.m",["87a46c29baf370718b5dd05a29163aa20df5608adf46ac527dd1d7e5b11a36c3","dfd33d503ad83ea52663629e44bc48bb9174562f8d27ea217c7a0929bbfbb2bf"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f3r934aB0.m",["a549b8eaf8c2d87a563cbd90fa8a3eaf3e80af40373a0fde47f679d59fd16281","82aedfb7a42f4864ae6e0d87728fceebf5f7eda3ad8ce01afbb534fd9d52cf55"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f5r170aB0.m",["3c6b1f80e7f7f3eabcd398fe0dcc02ad60be4e72215362f1526b09abb4743673","8513776ac5ea37235cb9847b2ec183344a6a89c265f56a232f13555a3cb9fd75"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f5r323bB0.m",["cec186e925e68f784885782fcafd8ce2a0d363fb09918adca06eba2ca8ecc27a","8bfea7dc884b57a8e9ae73a77619ed443f49374897f6a24d0c257ce51578161c"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f5r646aB0.m",["868538c039bc649465b75343c24aa89c71f5243da26ca405f402e68f5ef285fc","eb4ca2bf80d61a1491bcdf2a42538b9bd30d6309f71db8d9f3a2bcf786e4bf66"]]], ["TOC",["matff","spor/J3/mtx/J3d2G1-f5r816aB0.m",["53b06583ec2dbcd33b6d053ff5901b9fc03bdbf96b2197ea6bef9e6c341b4972","6ac6f37f7d142c7c1632a72135dddddad4d0c937ecfb2f6931c6a8cd81c899b2"]]], ["TOC",["perm","spor/J3/mtx/J3d2G1-p6156B0.m",["60a4e78df85467fecb449291ea9fefadfe6a74842ada5b77768e6ed71f03a23b","dc38f9db99da5e26c4a2f808c543ecfd0e02259f3a1e4dad9ae2c9589dddc794"]]], ["TOC",["pres","spor/J3/words/3J3G1-P1",["8ab66062511564f8e2db2762ac40096e7d862749a073cc71ebd5d87e62a43a71"]]], ["TOC",["pres","spor/J3/words/3J3G1-P2",["990b32adbd7bb9783afdd1cb9b7b60378f04a95695f742e8462dc0f6e0852cdf"]]], ["TOC",["pres","spor/J3/words/J3G1-P1",["b1e988ed21a81ad9f2b62007c0ab03f31b22390eca7fd22092470eb318d59a2"]]], ["TOC",["check","spor/J3/words/J3G1-check1",["2d0bfcdf8883819db01fd14ea0d6e41fd3d2b56368d21d054856cbfc295ae80c"]]], ["TOC",["cyclic","spor/J3/words/J3G1-cycW1",["a8c564aa30636df03e04ee79d0f45be31a480755d17e4a453c8514497c391b62"]]], ["TOC",["find","spor/J3/words/J3G1-find1",["eafbb736f96f5ec976ac85614d3b6fdc567073151356dc6ea8f9b48909e88f89"]]], ["TOC",["maxes","spor/J3/words/J3G1-max1W1",["45a2518e095b71561545252356de8053d9042eecc62b196728fe7a0353e49437"]]], ["TOC",["maxes","spor/J3/words/J3G1-max2W1",["b56c022d031014f2de64ff483afe96e8766eb7e08f9b550d92995aef5919e98a"]]], ["TOC",["maxes","spor/J3/words/J3G1-max3W1",["2c08eb180c70955beb277e6003eb4436b0d8717ceea7a4bae54dbe08f9450af6"]]], ["TOC",["maxes","spor/J3/words/J3G1-max4W1",["955f93405f79f6cb1bbe73c97c9c92bf25f38236f83b7b9fb1fdec0781bec105"]]], ["TOC",["maxes","spor/J3/words/J3G1-max5W1",["15d0c5f7fb088a177ca88fda469763ed6afab87af9ec0ec0b21d6e90f48ed405"]]], ["TOC",["maxes","spor/J3/words/J3G1-max6W1",["aea1f488db9dd96870678d979c7bc1cfa6d3ed458fe27954f4d82b7b6c83e6a1"]]], ["TOC",["maxes","spor/J3/words/J3G1-max7W1",["fb699dded667cf7a6e9c815ba9bc3b6b5558dd70fcf322c28246590656d6154"]]], ["TOC",["maxes","spor/J3/words/J3G1-max8W1",["30686f4e6391b44ff9dd93335b0731e41cdcedb6fa927f5edbd3bc318a86deb8"]]], ["TOC",["maxes","spor/J3/words/J3G1-max9W1",["efe0189fd8d99cc5dc291c7622c815b2a4294221ef5cf006a6ed8e1c5edbad10"]]], ["TOC",["cyc2ccl","spor/J3/words/J3G1cycW1-cclsW1",["443d445855bb93535cfdc82bd5057d2d1e96ee299438b9dce247b1de1cb3dd5c"]]], ["TOC",["pres","spor/J3/words/J3d2G1-P1",["e3c07fe6ed9a7bf879d9a1941bd05089089b1847ede32494b3808342074f0b32"]]], ["TOC",["check","spor/J3/words/J3d2G1-check1",["f4a4a5bc2cda0f335a63fd6677a3c21c3fcd056909c5733e5e36799703574404"]]], ["TOC",["cyclic","spor/J3/words/J3d2G1-cycW1",["8de0400328a65771380a1f8eccfa1c81e00849707ef81dc242ff9c47b3ad3ac7"]]], ["TOC",["find","spor/J3/words/J3d2G1-find1",["bdc4f1e3ffc3c169f8aec5eb344e5b2b8d574dd7b889fea3ef7f6aaba033b7a"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max1W1",["78a3485daca1f88cca65dac1d4d501412602cd6899a2ffbadeb9439b8976e06d"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max1W2",["4ce5fcc1c31a3c616aea0747a8e619bf6127983b25b9a8a30594adb3071f42e2"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max2W1",["21587a0c3df3f54488ac03f21ff208561151e867f8a6ea372192d83b1905fb36"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max2W2",["5d23603932780dc155c42fc36631c4024f3422d8f9a2b42fdf5d9f2ec567a2d6"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max3W1",["948c936822464f75f01aaffa152a94345686eafe967d63fbb4cc95394815a0c8"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max3W2",["17b868a8b058e67289a7fd68fab6304ff394238667961564f340857c484a5eab"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max4W1",["acbf2467963616b95fb26ce8e8a8bcfc18bbd9e3f064a09271c836aae6b34646"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max4W2",["161ca9fe08478bac5da59fb0d4992f06f3b858987bcd11b4ca06550892e4aa26"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max4W3",["5140ae7bf99cc8c9a62b446ad19a9a0e1e98c3709386945936c776cfaf0e700a"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max5W1",["8d34d0a8d8effb989edff7cddcc06185167eb65ee96204394d54beaa61d89784"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max5W2",["53b87d84d1b3ee0dad419418644048dee6cb93e470e5eb352aaad6d2a29e7f09"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max6W1",["eb3d517d900ff4b5874a831cb003b6bdb1370b37eab352b4beb43c4e3c76d6de"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max6W2",["acab28cc935611a45e6bb0f99013aaa747266b5eb8562b2db0713e74f3e821c0"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max7W1",["557e407347d038b4fe67dbdddc87bbd03fcfda16452c6660660ced2b1f9cb4db"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max7W2",["6e24ccb99aa6a9d32c8892a2dd8713e81e5ca272189b80cbc0f690e1c437e909"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max8W1",["f9e31da93d898a3856f72ac5dc552e92aa191c6b8c483a4c869de5da3cc7fc45"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max8W2",["9c55e425e00b178eadaa3a1e0f34c8adce69576ae7cf44a5ab6980d39c1261fe"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max9W1",["e3d5c2c3c6d68e31a3be39dc204cf4d4141840fc103ba731d9dad31ef78c6def"]]], ["TOC",["maxes","spor/J3/words/J3d2G1-max9W2",["8b9b4e2f605dba26386e1f4a464998e75761a4ad0fab7afdcb423b93c41a8537"]]], ["TOC",["matff","spor/J4/mtx/J4G1-f11r1333B0.m",["55f3b712cd4bcda98af150b9b68c2738f50afab8f636b76ab04fe1dee8a6996f","34f7cca0bde375638a99901f41fe6845ce5d24cabd5e5ee3938c2d311057756e"]]], ["TOC",["matff","spor/J4/mtx/J4G1-f2r112B0.m",["6320ac1b9801abc409f5ca77ad417da980131003be2cb07d39b2453de3e2c87b","4988c24906fabbe00a58a914cfe2d739df26264021d19d9fec168529d64d03f2"]]], ["TOC",["matff","spor/J4/mtx/J4G1-f2r1220aB0.m",["758e9358e0baf660967374da806fd808b0ad0f23a154712a50cde35003e7ae1f","85a538b284b357a70e92ddd6960ef6e189e8d923f7b04aee1008a0d331799c09"]]], ["TOC",["switch","spor/J4/words/J4G1-G2W1",["b3db55791b28bd0d0af085d82762b25976c2cab3af8922650997cf221a435de3"]]], ["TOC",["check","spor/J4/words/J4G1-check1",["d92545d1481df39b85933ef30b18a8b57d11b9e2d64c687c5bd391e29072935"]]], ["TOC",["cyclic","spor/J4/words/J4G1-cycW1",["e9262211d56e13859c7c8a9468af4cb6e82c14d697b865c15ddaadead3ee875b"]]], ["TOC",["find","spor/J4/words/J4G1-find1",["cada02901ba9a0d6031ee17743aca1245a8ebf4e25ba70e4e64122f8aa0672f2"]]], ["TOC",["maxes","spor/J4/words/J4G1-max10W1",["71925b54678667acc2c18e37197da0321d9b5f8e09b97a98876f9f0b694f9684"]]], ["TOC",["maxes","spor/J4/words/J4G1-max11W1",["16cad3b301e9a3a1bef92ebdb2f1e0be6d1de38b1d7cbe5ca606005419bac1f4"]]], ["TOC",["maxes","spor/J4/words/J4G1-max12W1",["1f36d029573436734a81580172e60d1174b6bf93223c8efe7125bd0b4441800d"]]], ["TOC",["maxes","spor/J4/words/J4G1-max13W1",["8935b1d4599c6549a122f20d808949b5826b81eb6ea249364b8137281aae1ada"]]], ["TOC",["maxes","spor/J4/words/J4G1-max1W1",["fbad445106c5b19c1227f776cd4f007b3a80d516d5a30263d062627ac09eb275"]]], ["TOC",["maxes","spor/J4/words/J4G1-max2W1",["42a9102771c4c8a36361ec115cfb4303a49a50e78bdea429ad9b63ec4c6a8d63"]]], ["TOC",["maxes","spor/J4/words/J4G1-max3W1",["e63332fa69c9b6bb5473cbe522b116516a641c968a8ffef3a652549e32f788fc"]]], ["TOC",["maxes","spor/J4/words/J4G1-max4W1",["bcd21ddbe0f93dba41734f929dbdffbd8852a033d1a96f959439af48d5149529"]]], ["TOC",["maxes","spor/J4/words/J4G1-max5W1",["cde11653a284ef1a71077f86ff8143b901cda51519f057cd499d5fdf5bc55866"]]], ["TOC",["maxes","spor/J4/words/J4G1-max6W1",["770aa4f1895c6a33b75e0e7032079fd4bab82ea1c2fcf2ea99178c13f2d8231a"]]], ["TOC",["maxes","spor/J4/words/J4G1-max7W1",["ce71b65dec7b02b2b52fdbf53fc7856efc12f1cce0777c3f0939c3f906659e53"]]], ["TOC",["maxes","spor/J4/words/J4G1-max8W1",["620b45d7de79a7748e714b82fc5fd533d188d69e030312d785eecd29887ca1ce"]]], ["TOC",["maxes","spor/J4/words/J4G1-max9W1",["12bfb2ddabe5c170a2f71949e90ac40599f9bbabfa6d6d5cececaccfd4546935"]]], ["TOC",["matff","spor/Ly/mtx/LyG1-f3r651B0.m",["396f81b7fb15138e7bb444ef1aff5547b8876e5fb7e5db6d7d78a9625bbc4799","a5c597d414e6dd1d5d2fd4a49a33bfa9ccbd2aea91a29c6479c739e2848fa558"]]], ["TOC",["matff","spor/Ly/mtx/LyG1-f4r2480B0.m",["d74b84bd251ee7da94007703d651fd7f4c61095078fcfdf7b5e4bff8ce30d168","61a51bfdb424d313dc94e4cfc11b32efbe2b92cefa7cd9102f9961bb24a92686"]]], ["TOC",["matff","spor/Ly/mtx/LyG1-f5r111B0.m",["103c658ca3b39d9eb1eabca3675dc4edb1db216a2299f3f30d638a018770abbd","e287afb8f3dc46d0737273911cc425909240301b10a53661fa0362b580105464"]]], ["TOC",["matff","spor/Ly/mtx/LyG1-f5r2480aB0.m",["514e09374e18874e529118370fad51cf2d5259a657772f9cbf24457fcffc15cd","b9644df7b1f8739375b6c9a4b3311009b4e2be5d4ca4a9bd60bac0e1e441c01"]]], ["TOC",["matff","spor/Ly/mtx/LyG1-f5r2480bB0.m",["f84b4184b84c907e61ede597f44cbe7bedf72f5b7e68d5481da34891886f6995","df6244395f2a1e633a9c0290329d759fcfdb69ba14ce5b9f7b11518ca2bee650"]]], ["TOC",["matff","spor/Ly/mtx/LyG1-f5r517B0.m",["6f3dd3a93302bda7c6a3d5073efab142a35419b3e329fe0a10a75a45ee665bfb","22a4d137ed28d2cce60eb9b8eb44116737c0f5cd057cb473724bf2db3cbf8ace"]]], ["TOC",["check","spor/Ly/words/LyG1-check1",["10ca73fc967a815646da49405e46a5ad6b4e41375b90bbe71ca0ece1eee3af77"]]], ["TOC",["cyclic","spor/Ly/words/LyG1-cycW1",["e481d81628dcf335b6aa0bc50bd37a7ffdcfa07503d8aef9eab254e7288adf2e"]]], ["TOC",["find","spor/Ly/words/LyG1-find1",["d3901aa77d04125a8b54b79586bb677462bce24395f2fc6940ff04b048b8882c"]]], ["TOC",["maxes","spor/Ly/words/LyG1-max1W1",["da9b24c360152d11a95a57ad604310e0dcb074e10b6e5e2b537dddb0f8c889e3"]]], ["TOC",["maxes","spor/Ly/words/LyG1-max2W1",["d2534b53ce365a2bbcf19f24d702e859d55c97c432a860c59ea8e97caf550049"]]], ["TOC",["maxes","spor/Ly/words/LyG1-max3W1",["f5873bce1a0410c4ef4ba73c40b675dc29e4a987f8e4483f66f7474689623416"]]], ["TOC",["maxes","spor/Ly/words/LyG1-max4W1",["b7ea624daa84d2331600fe99b2c94ff813df570244fd2ebf3977e49b62f8cab8"]]], ["TOC",["maxes","spor/Ly/words/LyG1-max5W1",["e7619498e5cb9cb5f1ea4cd54682af94883197723d37bed393db04622c55fc19"]]], ["TOC",["maxes","spor/Ly/words/LyG1-max6W1",["f57011a76c4ed79688f4a1b60c005fb41e4e1ff54c17a72b4a1375e7833ae8d8"]]], ["TOC",["maxes","spor/Ly/words/LyG1-max7W1",["5c30eb6ad0570e013bf479495201866f3872b2b62c8a0da3a18a9e278ca1f3be"]]], ["TOC",["maxes","spor/Ly/words/LyG1-max8W1",["ef3549243be081a0469a57cd4f099118cefaab2d958012f07743043f5f908a37"]]], ["TOC",["maxes","spor/Ly/words/LyG1-max9W1",["8eec849dbd3af7d278917f269013fd3366401f639915f890c53a705ce8575d8e"]]], ["TOC",["cyc2ccl","spor/Ly/words/LyG1cycW1-cclsW1",["cc8ffa8c0af877521427bba6ff1e5c4ed6e27e1c7c374bc0d25573fd516b86c6"]]], ["TOC",["matff","spor/M/mtx/M3max7G0-f3r38B0.m",["38f1dafb8ec380d566e71eb8ef8e2338f1286e9b2ce0d16a23ce7e831765b828","ea506b361ef02f20b8786bdd890197c15c5187d9ae93e98924f9cfbc759a4a55","65d03c71a29f767acba0e85c3b703da92fe3d2ac89bd672762f521cae0261202","8f745ad0225be6fce4b95ce55626d2d54a9d1779049fb6183d24767c4cc9e2b3"]]], ["TOC",["perm","spor/M/mtx/Mmax10G0-p1032192B0.m",["99eb12dca28aeb9f5b5d161d958d8e57379c1d975e122d5ced38efdc49ac74fe","b7b30ac381fdc305b40e994b8aec1c44ce4bf97cae89d988e1891b867bacbb84"]]], ["TOC",["matff","spor/M/mtx/Mmax11G0-f3r204B0.m",["81b5ecec128faf2ef8afd9ed416461459fcc68e4a27d72f191a4872a323259ed","db222935cd68c5e48e0eab5eebbc1188c382a6e8c99fc83ef29848061d2ed476"]]], ["TOC",["perm","spor/M/mtx/Mmax11G0-p805896B0.m",["3942f887ef641cbb255ab0a844c54141eeb83a523a806243cc6259eb9edf83bf","c21d595207d0de45fcff19ee6eaa0c02c4232ae0d3560bbca02d41894a409ac0"]]], ["TOC",["matff","spor/M/mtx/Mmax12G0-f5r135B0.m",["1c9f800363d4bc4bfb6b4d68ed0c4ead8b2dd60c5044916be883b60e5686f6f9","9319e75e9bc0391a10728c37ac75cedaa09ea59d87d236d7ebe2fe3930dba5e2"]]], ["TOC",["perm","spor/M/mtx/Mmax13G0-p3369B0.m",["efaa2bfa2a253958b0305f6aabeb329402652fafcfd6d1930ab1152fe6b388ff","62ee7c60104788d043f1ffd17a0c8f52941fae6b621ce5945f46c56ef5ffcbac"]]], ["TOC",["perm","spor/M/mtx/Mmax14G0-p34992B0.m",["77a68e45a5073cb4bd17d2b7c68852513c5c763bd41d5c4f75847f9e0d10dc1d","9fb96c95879a496c43fe13e431f2c2dd03fc633d995945aa3b8deb671e69f4d2"]]], ["TOC",["perm","spor/M/mtx/Mmax14G0-p69984B0.m",["680df23c4b491979e3ef20df76a0127505585b564adc90659989d5adfdf4162","366200e231051abc8a6d355741e7e971211e47264efd990c01122050ef3df160"]]], ["TOC",["perm","spor/M/mtx/Mmax15G0-p113724B0.m",["2dfbc8626cea0705f2b79816cbb7fdb681b31e25d1cbd72f53fe135670226bea","53ec807b8b35ca79889ec2200f1ecc312744e528a2416f53a6d54544cb6fce6b"]]], ["TOC",["perm","spor/M/mtx/Mmax15G0-p227448B0.m",["5c818e23fa6eee611652f53648ad8661a256d0d56d09b30db23fa991f81a93c6","45c85e302035eb5a21e0991407244bb29c7d3b68a5596c4112c7b9545c0c8794"]]], ["TOC",["perm","spor/M/mtx/Mmax15G0-p85293B0.m",["8f67780665be23cecc539e4c091f124c36c925a34a3b5f89d426594a28e0a492","43df6c86db49725b701da56e56f737da52c03bb570ef9b315a1734a874468c32"]]], ["TOC",["perm","spor/M/mtx/Mmax15q1G0-p6561B0.m",["b2bc834aa73491cc0b3e68f81f0a5a4b3242403361b5a1c2ea90c1975b0ac3bf","f592cd1b899778adb1b13e9d6c2287e1531eeb6568d836116d0a5d320cdef69c"]]], ["TOC",["perm","spor/M/mtx/Mmax15q2G0-p1404B0.m",["302e8630282aa5187428b6aedb0f4473fa6b5cc96a4577e56893125ed9f0b27b","18fa81149d489067c8287415be200f5699efe5c8e7d9fd12cd1f1ea1457dfb23"]]], ["TOC",["perm","spor/M/mtx/Mmax15q3G0-p108B0.m",["2c13b93c584d79cd9d0300dd2295d7e2bb3d5063a4c3a83eb750c9f15f680f2d","84f94d446f95a347700156bb5477d741780328e3b2e0fee7adcc79699875fc0e"]]], ["TOC",["matff","spor/M/mtx/Mmax16G0-f5r8B0.m",["8acd8a3e1c44256b857f16d20e4f389857b15cf5591a767b60880c6bb8749074","e1a748f67610e2f27b6c597bce2e69d7890ae93bc909ec38114c79c8da7f8082"]]], ["TOC",["perm","spor/M/mtx/Mmax16G0-p78125B0.m",["8ae725d7c2e504e45602b28fcd90ae9faebde76bdc9054afc1743cdfa54e1ebd","4fd572f2f1f3ded8ea8043cfc9351978450b7e4041dd3e4caf306eea27f97529"]]], ["TOC",["perm","spor/M/mtx/Mmax17G0-p2065B0.m",["cf845cbcf0c898ad0b0a396324ccf42f6c6dca07ae0663374204c53ee2a5e180","11c41d700882742e58136c33dc366057f848786adbd5f92e64c5d5675f286bd5"]]], ["TOC",["perm","spor/M/mtx/Mmax18G0-p17B0.m",["fcaaf4841e3fcbf3194fa2e27472f0d687c80c1b41c16a2a75f2e5d778d43d45","35a4b509cae82b8797f4f8b818745cdab9d915faef129ba3a83db75efda1db99"]]], ["TOC",["matff","spor/M/mtx/Mmax19G0-f5r46B0.m",["2c72972d7c8e5e2c17586f33c4f9a3d312707dbd7f46be3da54296abad826262","9e020ee3a63856c0306a66751d8a0bf443d695d25eb2ff8623e46c65e2b02da9"]]], ["TOC",["perm","spor/M/mtx/Mmax19G0-p46500B0.m",["686768da55b5de555c62959583fd976694cbbed7205ca53506cf971144c14ee0","e5a3f6f09bacd7cc3b158a77bd95a07e2c3e6b155f8e95d9fcdcdce300911ab9"]]], ["TOC",["perm","spor/M/mtx/Mmax19G0-p7750B0.m",["f640119ae8439c43bf1fc238eb17ae09c806b1644c12fcc3c00b1187421d2799","3b8b85e9fb115e13f27d4ae364b15f6d74e06a9860e55a78b5534e490157e892"]]], ["TOC",["perm","spor/M/mtx/Mmax19G0-p96875B0.m",["92559907f07fc8e9c3d1f7cfa40ef442d844c66a252d1ac649d6496a04256f28","ab3513d82ba2f7c4fbde4af9e603935586797139bfff3cf47fed5d7c26bf774e"]]], ["TOC",["perm","spor/M/mtx/Mmax20G0-p30B0.m",["4ea6303fffebb071eba359b55a7a5f62822182a0e68b34013c26b731a0ed5abf","d5ff212117a1097e323dc6282dc7e54d0a402cc0afc9ffce47be8aee9a28fb33"]]], ["TOC",["matff","spor/M/mtx/Mmax21G0-f2r28B0.m",["e958f66441bc998044b5888a0decdf38bb29afa15561a227d3cc8ec39d0ecf6a","717513e58f2f785c470b9c8c64952f31e6eab8de86780a090f21bd09ab439de8"]]], ["TOC",["perm","spor/M/mtx/Mmax21G0-p3653B0.m",["a22f78958a72297f40d0525c9c73e70eb4ecf468374e72bd19eafe9e502d3385","48d8f2554c6d85bf162752f555a4945e684a4291ee95246c0c2156af14e70729"]]], ["TOC",["perm","spor/M/mtx/Mmax21G0-p518B0.m",["5b1235cbdf1b54e27710e749ea782f7f95d4d95715a8d615a2aeeea324c28e70","f58456b2abc763ca6a6aa76ee8bd8ce9607157e9d1c055de2ac36b1af2080974"]]], ["TOC",["perm","spor/M/mtx/Mmax22G0-p15625B0.m",["ba09ab45a11c65d68697abf1ff50a8c490a8a231f810ffb8dee57601a376b163","50e5a4cd0b0e4ec58e44bfd6d637c1da158ab7a0646d081b8401e06834370f60"]]], ["TOC",["perm","spor/M/mtx/Mmax22G0-p750B0.m",["b37e4780c28185378cd2c3e37fa44d514bf83a2b95e833843321ce1b84e84202","3a9a7e0f8517b7bcc943e8de8fda324e5384af05455631ca09b107103f242dff"]]], ["TOC",["matff","spor/M/mtx/Mmax23G0-f2r22B0.m",["751747bb495aba6b19e8b670310b9b38468a7ccb91d80f7b406e6c0743420e57","b3315ba67972b282ebbe051d083c709d42311b67cfdd06c1f2f58de639830e7a"]]], ["TOC",["perm","spor/M/mtx/Mmax23G0-p184B0.m",["75d9463497cb8b88ba1bf74166440aa0007fa83c1fcb88adc5fb36c454dacc98","df253639d9ca93f2f1692165f25d4e39e34529eaf194b0e6089e03aeea2428af"]]], ["TOC",["perm","spor/M/mtx/Mmax23G0-p524B0.m",["61b1cff92250eefd661e78702cdc0eef773fc36ee497f6fbd94812da62378d35","9cc6f1401e527f6039e7e28367f6bdfe84e6ccebaeddde004c8ede844175bf8"]]], ["TOC",["matff","spor/M/mtx/Mmax24G0-f7r6B0.m",["c1295dfe221da64303a18eeb443b377328ddbfb8bb03c1f927ebd74aa62fed13","276b72e5edf381ce77e789ff56d13f8dc45453353bc73a4c87192b08bb50aaff"]]], ["TOC",["perm","spor/M/mtx/Mmax24G0-p16807B0.m",["529038be0da377e48c065abf8f9efa3d8e6a17bf9b3b264ea2630e2b96d7a391","6f2e5df559e144a9e669f47475cce7a05351214ee61ffd3cad080041437b6fe3"]]], ["TOC",["perm","spor/M/mtx/Mmax25G0-p151B0.m",["8b721e51b9e6996bd34c95718e6844499c2501eebd9bbcae35af26f69393c7ee","3298f13bbe45c8ce770d39fd2dee2d656c8fa0194cb9352f5695301358b2e7c2"]]], ["TOC",["perm","spor/M/mtx/Mmax26G0-p36B0.m",["409dbb547e79ce1559caf5d2dab05dea06e384f45d32f20097d0d63f9829aaaf","738fcb52508e8e5571623c15deed0db8cbcbacacaa6f7af6c22efa354a44b9e8"]]], ["TOC",["perm","spor/M/mtx/Mmax27G0-p17B0.m",["f21b17aff36a28800358c054dc1b29655f13afb1a9c0ccf703355ea8f0409649","20531d4d8632b5263df4dfd52fa14c641b75c9949db16a3396e76cf22a2a5e7f"]]], ["TOC",["matff","spor/M/mtx/Mmax28G0-f5r5B0.m",["a19fa6ec1818c3556688a5f777f16e1a8fd5a6be441edbc97fe724e1b6971edd","df39ee0efec44c104c248b297ddb6a18f29ff9eb790245af051afa30ed0fac2f"]]], ["TOC",["perm","spor/M/mtx/Mmax28G0-p625B0.m",["9f0ec31703677cc404bfb939e3b6870274c11d71cb2f4fb9e265321c8989038b","c56a1510718db7606e8e574761b9b693368b2b25b394faa749819ed0c1edbdb9"]]], ["TOC",["matff","spor/M/mtx/Mmax29G0-f7r7B0.m",["9a4d6fe37f7bd3c51310fa1440c08e8807a3d9a00fb82c43d4269db23a33b982","c0ff9ed1caecf31b719af6b3a770c6e385137e3d26699c833571bdd4f224203c"]]], ["TOC",["perm","spor/M/mtx/Mmax29G0-p2401B0.m",["c23786a0e18905f615bac0b98e7024cbedfc90d178114aa6949622059ffa8954","7ac046833b3d0ca3d19534b0d3bb33e652e3627b0ed8eeaa97b454c2a56d2c3c"]]], ["TOC",["perm","spor/M/mtx/Mmax29G0-p392B0.m",["723c280fcaa5df04cce5200bceddb4c0a5a04e88ab9fe91a142f2d305561e322","3aaa67ad5afcf4a86931b8a6fd2e1f64aef6356425aa65251967050fe5e2f376"]]], ["TOC",["perm","spor/M/mtx/Mmax30G0-p21B0.m",["1aaff3ac8846f64982c9be147b8de48dff51ced5b631d4e3915382aedeecad95","229e6a7469384e090adfebef0e12457b2f25420ebf0481bc48f387bd4b632e23"]]], ["TOC",["perm","spor/M/mtx/Mmax31G0-p15B0.m",["223e4091d914025ec215aa81e01fb0b924a72e6f158926092623381cdbf9099d","5c6dda24738aca80b70ddc11f3fe127e41dfcc5dc0796855f4d34dddc7c634b8"]]], ["TOC",["perm","spor/M/mtx/Mmax32G0-p24B0.m",["eb8d7ac2f2f1d2c77654cf15476987832727c139e8aee3aa04089338711ec463","7a170dd255036e57c0bb36cb30960954e5444f1950921290549ea4ff2c014763"]]], ["TOC",["matff","spor/M/mtx/Mmax33G0-f13r3B0.m",["887560a9c57928134f4da8ad2cba2c70b5e29cfac939c0984d03ba80ef54f6ce","bcaa47c8b22b56a8ff9ab06d799af6a725707260b9f73c4302d8330518b053fe"]]], ["TOC",["perm","spor/M/mtx/Mmax33G0-p169B0.m",["c5fe1a4af01cab325abb14a1ed8cf6c7468fea4e3544680848423676ca9b5601","9eb5c073c9e2f8b902a6763da91ca3d8eda90dc9808372eccc4cc8313f388962"]]], ["TOC",["perm","spor/M/mtx/Mmax34G0-p57B0.m",["9a98c838e8ae0a5a2ac69d4a72f33f7f60fc2f743ef29d817a2c6accd3224e19","f209df9b65b7023eb72de2c2f4a63a3dc11cc29f11db3b689a80a27c6d07c339"]]], ["TOC",["perm","spor/M/mtx/Mmax35G0-p39B0.m",["d092620147bfc9c150575e97f85c2405a0bf2bbf38bce38f41225c97c9936d84","68068f793affcc0c453867fda9c4591af166f306dfeb77e7790da1f604ed68b4"]]], ["TOC",["matff","spor/M/mtx/Mmax36G0-f13r4B0.m",["3c38a1bf5dfb5b9d281f1bbf16d55105f48c00c3319b491be1b725a0f49ff15d","ebdf94fb93872032e1401bdb654ccba883f1a8226c2d89043b5ee93e15b7f4b6"]]], ["TOC",["perm","spor/M/mtx/Mmax36G0-p2197B0.m",["c3da8c2fa833f79d217342fae51b71c87564d4b6c6aced8838637d6292055e88","9617cb76a7dcfbd7a27cd6ed04a7ed216bb84c48f48a6b788b38af75a99002f8"]]], ["TOC",["matff","spor/M/mtx/Mmax39G0-f11r3B0.m",["591a2f160bfb9aa2c3386dab49d234ea7c4613a3a187756a7832d34a87b3062f","fab9ff7180faaf0e1a650d31a29a120227fa63be0141b5cb63c4de35245816a9"]]], ["TOC",["perm","spor/M/mtx/Mmax39G0-p121B0.m",["5eac7d5ced2eb59364a5ebb09858c4a539c1f7743f4cd702dd039503346d6283","2549c817bc950567e9a68f6b6fe65b5dd2989d1fa8bf2f22476a57851caaf6bd"]]], ["TOC",["matff","spor/M/mtx/Mmax41G0-f7r3B0.m",["f9ebdd6f2ecc875d53acd72ee8d9ab1681a148ed70f0ad36fd3ad7296123371b","d6eae85b319a85fd62922fe2c1ea786d7d8fd2237889679008b91368b6e1d108"]]], ["TOC",["perm","spor/M/mtx/Mmax41G0-p49B0.m",["e952ca71d9b6f645183fc06b7dddb4548b1428fa1c0503f2c22cd0aa0f48f414","5519bffcd524c425d6a9183c1d02922ab89551829e57598a555d1780649e26b"]]], ["TOC",["perm","spor/M/mtx/Mmax43G0-p41B0.m",["cbfbf0412ffdd14f2726f6dc73e3cd805add3e83f92d89d1eb29ce9e16343dd","bf94ab7ced692f17f5bfc6b52730fe39d02c4c16201cb257637b08da09c8c21d"]]], ["TOC",["matff","spor/M/mtx/Mmax4G0-f2r1708B0.m",["8afc14fc5fb56b79f5f54a1f244b8c043c2c6423c8b47d89a3fbc72f20501b9","2dce38e12e8d5c9a78ff476d4b734a76d8ff0947c8e1c2fdd60d0a87ef04b41"]]], ["TOC",["perm","spor/M/mtx/Mmax6G0-p294912B0.m",["93fd492d5d575ce7f9f9c3673c5de6ee87737ae2d57283ec336b2c5664352fad","2be3b8b7178c8abfc24fee90be68eac21f5da435795d27fd10e37113d8091fde"]]], ["TOC",["matff","spor/M/mtx/Mmax7G0-f3r78B0.m",["72d563809d4ea37ce4615363722dca082e2c069ec28b16c21627f8b51609a476","c6b55fca581fb36ec7799eb400858e29ba1d43f4230df50c5dcaea4cb8cafefc","1e75d711171de3fabf8305aedad22b2371b8d634fd89de8368fe4b7400a75f82"]]], ["TOC",["matff","spor/M/mtx/Mmax9G0-f2r250B0.m",["459953d2f28d49ac0cbf3eadc29e3bd6b8a9175ab4524dd4cadff181d5d2321b","7b938b6595df45aa48f4d77843958dfdd8bc8f112a4c65d07c1f32b62c62bd13"]]], ["TOC",["check","spor/M/words/MG1-check1",["eb48ac0920f71124523628d251f877a1f1569f3644bfceedc9d34d4c2d02637a"]]], ["TOC",["find","spor/M/words/MG1-find1",["30248588e8e9a5949117929a538c763caa554af78a4e46946ddfe95e0c2e9185"]]], ["TOC",["matalg","spor/M11/gap0/M11G1-Ar10bB0.g",["850d3f0f7fb91c6fa87b5d8abae06abcfc6d316184e323afcda37ebbcdf78b36"]]], ["TOC",["matalg","spor/M11/gap0/M11G1-Ar10cB0.g",["b59e0a7ceb22fecd0fbb5cd1bc4ea6d97ca6d2fce97da426ebbecb2f5ff8346"]]], ["TOC",["matint","spor/M11/gap0/M11G1-Zr10aB0.g",["5ae0ff237f00f987dcaa93618ae2416fd5107d074bf6ebb86a268578c61abcd2"]]], ["TOC",["matint","spor/M11/gap0/M11G1-Zr11B0.g",["fcdd646c0c44f3dc10203b6e9892d215551f8a696157f7461c2c9ed1a9269e8"]]], ["TOC",["matint","spor/M11/gap0/M11G1-Zr20B0.g",["e2e1ccb3722f75911ab1c17683223db0087c89ceaa3c64dc13c1bc7ebcac0b12"]]], ["TOC",["matint","spor/M11/gap0/M11G1-Zr32B0.g",["a4f6c7b39f08d03a5dc07b031eacdffcbece79b89b8a00b31aba9eeb06f75cd6"]]], ["TOC",["matint","spor/M11/gap0/M11G1-Zr44B0.g",["808c16039b6eae5af60d8916ae3d9f136b164e8fc298a6ff7d9d9ab2fc393a15"]]], ["TOC",["matint","spor/M11/gap0/M11G1-Zr45B0.g",["b4d78aea526bac279a1a4a8bf2bb11e885220277798a4daad66967d218c5f447"]]], ["TOC",["matint","spor/M11/gap0/M11G1-Zr55B0.g",["f43d7b0f84edae3ebd6af460aaa1823f1fb04fd9d9fed95d6fa1dccfe6c15f84"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f11r10aB0.m",["431180920e84e7c2e7847268e47eed5c58bb8025e99ce31ee19b290eff92449f","bcdc435fad0706553c1b4a435143d811e57249ff5bfb45d96777b3d773d29bbe"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f11r10bB0.m",["e8b156725e307d12c58e1ff0d8119adffb2f1d36fa43bae463316b24f13488ab","46df2554a41b9c7b1c400614904178510cfce9ad441962ecff746987c1c7c306"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f11r11B0.m",["5593bef0d5e3c750b85edcff38ece57061ac75daa657d971ed9bace8b5aae1c6","803c0125eb4b68e6f4e5c0644765c6beffaae151f28cbd28456276ccb6236640"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f11r16B0.m",["e6bc0b3418a3473a14315fdc03dd87c051567777e858234bd6a4656db89761d7","bc7bab3bfc57bd1626a89bfec7d1770f06baec97ae8a1c4990bc032928e4dc2b"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f11r44B0.m",["64e1560d58a680e4ad6172eb5f505407f8e01bbbd39b7b8ba75686eea58e4083","1ca69e0f6846618ff0a545bf1d744d4df21b396e94677ed6227ec5744517dfa7"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f11r55B0.m",["de81f8cb962cae9f8825aa22ab19502373821ed936130210ff9a42f5bd2753e2","5da5c868f214530d6be2f35556b51c40c9500e128b551429e10c7161b88ceea9"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f11r9B0.m",["5ebd5e50e3ba19a8bd41ac6f64bd02be9c1ca17f153a0fb7807535de8c0917b3","daf4374726bb5a2a596d4aa17e25b75f0bbb8017f98ebbab95330cfe39c7b506"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f25r10bB0.m",["b0299b248811cf6f452ed127ef9e6ee7d1c5700ab176d1c9f6f6c1c2355ee301","3933eeeda0358d469ccb195b66d52130547e99a519f36650d89ea0e51266510b"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f25r10cB0.m",["43b9e8b23e4e715ce127cf6df64bf2a4ebc1c1f9fac490dc86ce78aa98e60390","1ee894f2550ec4f0e79aeb4fd7fb7dc3b138857c135440f130780c362fa15dd"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f2r10B0.m",["f7710b3042c868a41acb34aa4173a3385f6820b8252852767fd10e0bc118074","dbac4697d65393c57e6142c32b78db4cf95ba11a704eae4687aad0304ede4d0"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f2r32B0.m",["2661c11141112009acacc0d6219c9c72767c0c93a05dbb7ed05b590eaf936631","ec01ae51beb23d94dd0b88649446420b1620332b80c5456358f3ce3d34399bab"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f2r44B0.m",["1994c02232440f9ea56c7f76a1b31d41ee00e70aa3640c70d8279485f3ee7958","5b5d4a8a15bfe17792176c8450c7e41e89a50013d059f7146e014e7bd7f48145"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f3r10aB0.m",["4912ad09a14ca5d1e0c07d86dac20c4963f650bcc7c86e05c3080e67df8d7367","fe77b1285291b3d5676aa964bc41e0e8a17bfcd5ee07f31c0659faa3e82c9edb"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f3r10bB0.m",["264504e82988144f33b29569bc4276f444bd3ec83b4ea4fcbe9a00bccd67adb7","fdcba8552113268c8843b9ce91c27cc1aad9519a75b3d6225948e70e3a1186f2"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f3r10cB0.m",["508b39aee7ec8b86d207fcc74749c6385c369f4e2df963bef801ab3104a959c5","1ffab11f233b5b8216be5fb18d358784183e71f60abe547b937e8b0e9b3eb016"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f3r24B0.m",["1b3d662cc1179b18a7a8274e23792357e9840c9e22b2aac070beb417f9aad429","58d54b62ab7f9c959bdae7e11d2adf1e423236d5e7632fd21b89a368bb6a6699"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f3r45B0.m",["fc52852f92a8fdce3515f3b31266e3fba0cc69865c0362811e14186022d91349","aa64b000384ba1f6737c832f032b9c22e995b37dc8053373cfd09f937fa544d6"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f3r5aB0.m",["2288014733652edda50a0d3dba89093b069fc93d872442d6e74e8f048c417c66","1b7fbaf8a19dfa2a730afbf7702683974e7705b51906625ba451e3e9ddd2c397"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f3r5bB0.m",["a101c23099566242784d58d61664bd580d53b4eede708566e26bc1edc336a11d","35f687b065dcd9b5b036665486f207f087f149a52fe9b559755e977d5d2040ff"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f4r16aB0.m",["c437e9f267a24aa6b779fb7eef5deaa3d77a80f3311cd1f8276f46fc98f4f26d","d098b88dbe20e5a0e4222fdfbf8332810083d7ced14c89551c56b9f207f737fd"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f4r16bB0.m",["e0d61d20ad8e01f4d30e28a7cf5e90e25ed6799f2bff4d535500a8a3d9d87d15","7e897a34d33f403b81cdabdc2bacda0f253063c2bf68fcd1d1e6ac8914f29834"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f5r10aB0.m",["199a00749fc4fa52848649db2f1a872c58a63d69511dde51f1407a82f755069d","f8c71a7480ccfd906eb3008558d7b1dbfb5d330a8e0ece1feb86e71dbc179078"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f5r11B0.m",["11d105bdf7af7782ccd0aa393fb29d73c5bcd8a1d83c0fd32484a5dacea8ddb9","81faf572d374fb3fa24318ab9389e62bafc246b171b6b894ec5cb7e66163e864"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f5r16aB0.m",["fd97607f4167e27f8aea22b0684307b4b5900f85d499a3cbb15e6cadd6a35385","68ae3634d64b1ace767817762a1ec1610097249a85379eb58e5edb573e7fe7bf"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f5r16bB0.m",["57f202ccabd81c2ff5421d76057b5646e7ed76d8c8584f95c7ff7cdadbb1e45a","7de9de07a916c116b48eca60a6422a2e29e2bda69fe8341bbf2de500d50af26d"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f5r20B0.m",["677d70c9f26a4d36938fe327b1b839b209d53889fe07f3b192bccdc45cda2799","4b90e7b48b23e7049bfbaed37f0e4dcbcfc3040adab9b56d46e0750d5fda24fc"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f5r45B0.m",["bda24adfb1ac6dcc6e6d7aee0be530e782dde61719d159eb25e10c2e89703b0f","de24264619bc426608d01c6aa9f006b6e8cd57da351d71ebc7b31bdb0ee55cf4"]]], ["TOC",["matff","spor/M11/mtx/M11G1-f5r55B0.m",["8c9c7fcba9ed14beca07b9c4dc7966f88860010ee844cf5d9db6198b1ca43991","250f62d4f6320f67ec6e65112e8bcfa58b0e69d6a7733247d4653d0f3e9ec085"]]], ["TOC",["perm","spor/M11/mtx/M11G1-p11B0.m",["5d717eb57bd57e9388123bac9f6a50c16c4ed5d5bc89f51712b3d662c3e6f0bf","269df4fe84fa82d534a07e094cb140ee350fddf028ee72de839c7bfa7c685ae5"]]], ["TOC",["perm","spor/M11/mtx/M11G1-p12B0.m",["729650cbaa899fe64c07919d71136a854f75eae925bbf9d3378d9bb52218e93f","8fd0a992e0f44bc875f748af9bb0d90ee64451a00ec97835d63b5264f9fa13b7"]]], ["TOC",["perm","spor/M11/mtx/M11G1-p165B0.m",["bae034c7f70a3d86433148da7ee5a90d183c69990ded4b2ad0821142d27667cf","484ca25b1ddf37ca3d9ef5551942eba6ee473ecb55dc7253c9122c21da27c8a8"]]], ["TOC",["perm","spor/M11/mtx/M11G1-p55B0.m",["a6dd6198639880b0afb76662940338c80ad569f952a4e6bf0601d467960b622","6430468a4a7395afa62ffec38d9fcdbdb8667246e7b43bcecfd171e4ae44eb87"]]], ["TOC",["perm","spor/M11/mtx/M11G1-p66B0.m",["11e91d956dde422cbac6c9858b37e6368c0d9fd6be2c26ff467dd55ebd7567f7","ebaedc48c601f1771ca8039062444a101aeddde13abebc25cbc2d8a7f701e93"]]], ["TOC",["pres","spor/M11/words/M11G1-P1",["3c39d7ec7f0d3bfc16dda037bd247df77725028c1d9e5e42a4265e8bde787aa5"]]], ["TOC",["classes","spor/M11/words/M11G1-cclsW1",["e30b224db4308e08c3059680b912806463534b78a54025086a0a5b54b88b4cc8"]]], ["TOC",["check","spor/M11/words/M11G1-check1",["7ad16b220e42702fc95c07307f59814b263aadd6f4d487d8f85c8eb8d2a840f3"]]], ["TOC",["cyclic","spor/M11/words/M11G1-cycW1",["5096f9b4629d32d1780eda558bbbc595991794465b82366273f8b3cb172ba8c7"]]], ["TOC",["find","spor/M11/words/M11G1-find1",["764486a6e0b7d53c6f6703475a1a4f3dff39a838f7f13fb93c46dbefe22d2d9a"]]], ["TOC",["maxes","spor/M11/words/M11G1-max1W1",["818dbaa9553588941ed9d021ae005642041e2ead97e92beffa2976a15ae0aea5"]]], ["TOC",["maxes","spor/M11/words/M11G1-max2W1",["80d7ae59901945caea710cd3982418f8ffb6e25132fd1dfea7805ba1fa10049e"]]], ["TOC",["maxes","spor/M11/words/M11G1-max3W1",["d6b3b2140728668dff92ea888552298bc325014f82a44c4d55cd5d01f4b74653"]]], ["TOC",["maxes","spor/M11/words/M11G1-max4W1",["c5db88d6d681d5595cb68be5b304fdf1c048fca91764881509698ecda2656bd4"]]], ["TOC",["maxes","spor/M11/words/M11G1-max5W1",["b31360319aa3d7f4a56144af5f13f99d38d64473fcfb49fc76265e002498d8a7"]]], ["TOC",["cyc2ccl","spor/M11/words/M11G1cycW1-cclsW1",["dc8f4582e1542ed680cf966d4ed5fcc017b881cb1753e7c720af2cb354c3a1f7"]]], ["TOC",["maxstd","spor/M11/words/M11G1max1W1-M10G1W1",["e0229045ffaa5ef7353f8928d57019c8766f25c0aaf2d8162d882510a6973a52"]]], ["TOC",["maxstd","spor/M11/words/M11G1max2W1-L211G1W1",["e0229045ffaa5ef7353f8928d57019c8766f25c0aaf2d8162d882510a6973a52"]]], ["TOC",["maxstd","spor/M11/words/M11G1max4W1-S5G1W1",["e0229045ffaa5ef7353f8928d57019c8766f25c0aaf2d8162d882510a6973a52"]]], ["TOC",["matint","spor/M12/gap0/2M12G1-Zr120B0.g",["da13d5988d93c1fd4fd3f29eff0e8fba3f0c39fc2d145275bde9897f7414eef3"]]], ["TOC",["matint","spor/M12/gap0/2M12G1-Zr12B0.g",["1a7dbb05817b5b8eef82328f38df42a8eb5895d538a6e168e3ce68d05700cc5e"]]], ["TOC",["matint","spor/M12/gap0/2M12G1-Zr220B0.g",["bc0544cbdc57baedc1689d80e0260f8d1f1f2bf9b49ba340236818c11d4af6b2"]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr11aB0.g",["3003b2b5bedb66dc8059da9039f47d13ebffdb441f92ba9d99adc6b25b6b853d"]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr11bB0.g",["36b4b4efecd164da55d031b1833e42e2f96f230765508d611857981f3e64e63c"]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr120B0.g",["1599e3798025ec316201448f4fdc0263e23d75da2e48b21c5e827daa2a5ae216"]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr144B0.g",["f103b1a476681bd1fb517f81e246c3ab17f44d8107de173cc581e50f76a03e94"]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr176B0.g",["d20812f885daa66a6db3caec6003eda9711333b02e346f25d25c448013523214"]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr32B0.g",["e6f6e133ad20e823a94514de35cdff52f14f78af5c0fdbbe1077238af6770457"]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr45B0.g",["f6f08e407e90518a6374eafaae1db0f8e99e7bc3a5279f71a6ca5f4695cc2824"]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr54B0.g",["5cf4474052555c5f6aa167c58a0ae2cfe1cbe76685512cd86a0df746910567cb"]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr55aB0.g",["39cb1fbb3f9eb9854f2a531cec5b7d1b13054b33fd8a48493c0540bb31a47a04"]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr55bB0.g",["45916976b56781167c440c8a8cb36de9661ac9d96d15e6985d46f7b222e97559"]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr55cB0.g",["19b05717e8e28efe62eec428cec832bc0b7de616e8e138028da03324d16ce3ce"]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr66B0.g",["3f3a3a4939e844f88962dc3d392d766518e85ff511336a6096dbd418f7c70ece"]]], ["TOC",["matint","spor/M12/gap0/M12G1-Zr99B0.g",["1429e237d68343e17e518f358a6f6140b53c7adae0ac03d141b9112c5b754b3"]]], ["TOC",["matff","spor/M12/mtx/2M12G1-f3r6bB0.m",["b3adf83251165851673c4a55ae6bdb0ad3de7ab2f5ad4c2615abb2f1c6713c75","917819ca074c0cd1aba5868baf7a445c0151220993c557345fe8f1652ae34aec"]]], ["TOC",["matff","spor/M12/mtx/2M12G1-f5r12B0.m",["5f217dd4bb3b80634a4c4e95b417419e04798f9fa45633308d65b0b5d6b74406","30bd576f3e6f8063e3338dac4365dbcca69d5071bf4523ce1c3fb31b7fd5051d"]]], ["TOC",["perm","spor/M12/mtx/2M12G1-p24aB0.m",["fc024a1789266f22eee9b69be2f036bb505ca51be6a77569a731748068516277","337fb0958ed42f340f9e1c91d54267a50dcbeeef277bb5211602fc0270a7015b"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f11r108aB0.m",["d6188ad98824f67f559b4b56d03ea93e4b893ce8a57d370d05a3137e14756227","b086feebf44bb8f0abd77eb9b792f4d6e8ba6c138f58ee56eb32e181c96ebca3"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f11r10aB0.m",["469003bb597c394548d2fd63ca133d09f5f979a8c506d969d41126da85224c6d","b6bb85c9d13ce35e0df38177864bf7be2e3f074b1ffd0744168a475832cd5a75"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f11r10bB0.m",["fea81860b3c136d9b4d39f628746ba7ce20d25d005e413d9c610fb9c4c7f6b1a","5eabf2b24481ee9846bb6125cb0faf1e6cb7fefffda36b4936908e1f15c9d4cd"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f11r12aB0.m",["501781e2ce8f7d60cf8207e7b60dd3877e8fb089de51e5d8d397bf18615d7287","13b9894bc7e694a81bffa2ad253b231a4221b6d81c746f0fa15d22585f4220a3"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f11r220aB0.m",["c1c42c1f5632b4746882309c0161d44493d48a6316283893a0933f5c9c4ac64c","519fff764385f3270e1609f926cf7389f4ed0991e29559ca9f8a35f547908919"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f11r32aB0.m",["ae63f839ba19cd48b16089d4ea655efcf1fadb2912140ee75c5408b242346191","6c3518e641ca4a826b8ac9dae205cb06e6d116cf64188d41d37dc487019266d4"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f11r88aB0.m",["2248cb16982e5e7c783dcfa2eb0367221f41b3070df3eaa8d7f148a7ce947356","d355164b705f4ebb894a7e7734e57a535637824faa02b04fc0a5fa6eeb19118d"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f25r10aB0.m",["fab9b146ec8ae32dbb690796768ad0c7e6d55bd58efa532c0d2036dc617d9350","748e02db8d9a81330ce8a774420aa82b26a4ff375149509fadf9cc1f4569364e"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f25r10bB0.m",["fab9b146ec8ae32dbb690796768ad0c7e6d55bd58efa532c0d2036dc617d9350","b7ba1b8071952a939dccc2306614848d5dd0936465f9fefe1b41f08115d67e4a"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f25r12aB0.m",["f9e4169fa07c699a5a5fa83dd0614105ce865ed6ba7ef3eee8086aea741a5318","c631bde9c266df5c46e218ee7d121c5c46bd9c5298f7be76e1c0d2d0c1828747"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f25r32bB0.m",["f4c5d42606a053402afd6d4cb9809c72c37927c368770baaf5c1d1f8d50ff3a7","fec49debec534c5fa2da5c38032a7b60847a40ac3a5dde8f94e16194ff583111"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f3r10aB0.m",["fa042364e3acdfcccb4a4cfde7d452ab0d1dd7336f1bda9166038578ccdd7f23","55bb53ac75cf26cc8d0c254f382cbbb4ec82fae2d61a9a3f9a68e8dc32b2c93e"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f3r10bB0.m",["5329ed3bf4e20a32e12f42357867edf02772bca79f4a28ab6b170b9b93de875","a6af42cea2c60bba50455350290cb93a7dde9f314a29c6ad92347f3d4104868d"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f3r10cB0.m",["ecc1cea5bbca95b927432993e85f38b90fe28bc0f805b36672683177a98a5e49","345cd8604da7d7fc09c7982bbc4db57dc29ffa757036517d788c5909a2dc911a"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f3r12B0.m",["e48e667ee59a8551b649b77c6a1e8de880f29c5de036e1fe4f8457218e6d20a5","4252e0cfda6cfd0c94ab889614ac667c7068bf58dee641cff02c4f3616533fa2"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f3r12aB0.m",["adca1edf9584eb574803a0801167aaf944a76f16979e1e5ea3232cd9ba394d08","6a994464c70c0a1a0ea9e7c4847bd6e96427c1dd1d8853578476d1f9cdf85150"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f3r168aB0.m",["9c84e753028a614029d4f9d15e2f6e0851e0b5f5a210df9c1972ccc775677279","e3b830712fac09d4b74d5bdeb89f3bab391fdf3dfae8f35bb9f179387c054add"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f3r88aB0.m",["74d061bc98cc2bdc6135304cd69ca340848ead4a08cb0b6eb3a955b65810144b","1da4ccff9ebaac5329613394ccc7b9275d30c4bae176d68965dfd274e715fef8"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f5r120bB0.m",["efa270f0d933b0101461f44b7219a37867b94be743f74db1272fc8bfb28bae8e","983acb348366bc6b6f344c189c8b38157c14fdccfe56bfefb939a81f7de02a5d"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f5r220aB0.m",["a25bd8a8528de5af95aafe0a349558be1061037a78a715e76e8e543b5e476d33","6ec4ddd8da0d1b0f8071a1e56a69235aa4a567a2142172758d4951b8bec28902"]]], ["TOC",["matff","spor/M12/mtx/2M12d2G1-f5r320aB0.m",["23e436e9752524cb91786806bbb3f3e3fced864375e18ffcfff17eb767cdc4a9","6b3f5dcfbd26d65b375d26cd26ddbebfb1a1b24434af39ac525b92c050a103ea"]]], ["TOC",["perm","spor/M12/mtx/2M12d2G1-p48B0.m",["af333c534d6c7299ce5fd67a314c0b1f036ea92764a08d3f5c94c3590ffb4d0c","3b2c1b06110e34349d1f38f1ee93fff790f1f2241d746dca0b31ec0d6e4ccc7b"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r11aB0.m",["b7964d4633bc1bb218d8c1230004bd14e34e050909c9bbe7b8a79eeefef4be8b","98bc9e5eba76ea3d8a11ff4d060dfa8990cfb93ffb20021e89cc380b999037b9"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r16B0.m",["e6f81bbddb21b0287a7ef6878e2660a12f75466c9d97f758e08c4d8de991e118","9175afb765ecc2d5e9e6f6eadd904d58fb7f43bf7fc8bc6028d39e430c282eaf"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r176B0.m",["c97554910cda7234df04cb2c15b7a14d7a5df8f93022af1cd12c49c715f9da4c","fbd643d210d740a9d746637e0893368ea16660d10d5887eb2eae14890ecbf69f"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r29B0.m",["3a45ba563034f910f4bcad3ae6774f4a53e258346c7e1ea6243e7d3a9735e206","95c542ffe5f1e7df95e92321d409f35164b6057cafb2ad720a35bf20f1bbffcf"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r53B0.m",["58f84b395a8bef8aef5078ba033129a6f2b056dc1039b53e3d23e8de90ecfc08","2eba0d4b2eea8fbb5ef700bca737cb93ed57f460c5e57e12db8993570ea70092"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r55aB0.m",["bd221a01db82999fcbdfa23ce98dadf6b21c5d5c29c96b6de61f7bf4139ffb93","a7a662342a7e4ca9aed248c376d83cccad387ee2b39b22244fe0295d70ccd281"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r55cB0.m",["bd13be13cdd635fb15f765fbb71badaca3900e0b83614735ebf90958b3b02102","840e6866c68f405213cf8c8bfe885bc527a5461e26c55224939daa823104656e"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r66B0.m",["425e942d82d3b13e16da73b5c44fe5ec21a7c1f7d8a3afc48cd042d5e0afc6e5","a54a0db570a369a0ee499d39e66422827ca57f5b068d2edb70715b7bb8b79bab"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r91B0.m",["dbfa58ae4f60037f76fd43decded16b1027e161c4e70423bf58934e1d58e4e32","6499b9c4ad0580baa54dbcb7f070aca6f9d443d22f2db659587de389cd50066c"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f11r99B0.m",["e9ded562ecdd88e48862de9da8d097b35a99cd575609839c130cab9a19d6f369","c60e12fe64e9e457ec26886ca9f24023b5fd6eb6265eeec64647c1ea54c52b8f"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f2r10B0.m",["a45bc0c1ffab321df28cf05a2839542438fa42f7a1d70ccae30f1dcb2f60b8d8","8b07169279368dae95d520aab741bb7b73c4978aee85f0e5410e503fa51d9976"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f2r144B0.m",["c38a6c94168f2038ff307eb13daab60f90b2294b87cddb865c8d890de85adbb5","263057179bb27cd99086cad83c44529eb2bd9f364a60d5ffb4073697c6ce998"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f2r44B0.m",["118b7410252b0a4858830bdf7ef3eb45675c366f100eb91a8a79f7742dd5b0a3","994ba0c5c9acf96a6436f43419cf021de77e2c3bfb1c811e050918f103030ab2"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f3r10aB0.m",["2e8846afe65513c1e739fcbedcfd5cbc489fa71a8e65fce8dfef18f06b5d0e44","74e4af19b08ff59589df81774ab5ea9989544de4deaf8ed4a2bf1912d6bd78d6"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f3r15bB0.m",["24cca70eac2012f4c56a91cd2fb37e4951297991454fb316bf71715d8036d9e0","203b1ed4ea1e344b45469fc7c352ce5375d99e4aab1af3aed4fdd42d77a5cfe1"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f3r34B0.m",["fd4878f7e7aead7877fb5017b1bbb006682e09a68272f64254b93ad5fd4555b4","14229cd4a1bf1426fd7e867844551b92249da511b344caa25e8208845abf8a55"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f3r45aB0.m",["74abf60c5bb33cacdaf73baf27771e51460ee1a754f0dfe5ccac86f4c8815481","7f06aa71b582ae4190723a96132c564e23b88e1579c690fe4f94382e92af5504"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f3r45bB0.m",["c74650efd6bda027119395e2bb12f307c2ee1b10f4a4514f2f734bb7a4512402","a9587e74edb0fface8ebb901af48d93cec487823bb4296febaa23b255222dc29"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f3r54B0.m",["cd26308832635987260bb81e8b20d00a327651f934ffd749679449ad4ba1e659","3e436ac4a3495f565f882c794e61e3f17802a4650e1776b4c3c2b13deef2bc65"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f3r99B0.m",["3aeb98dc67deecd02ea6e9ce01d573dcc6437277ace7e4a9b029e99cb08b85ee","a925fdcbd3716db5f81f83a4b47215d4d0bdc7a4354755a3d1671c603e137081"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f4r16aB0.m",["74e98331f9ab41c84265e90c01d501e72b6c0aacb6ec0bc5ecc8191ae920bfbf","4beaf73c1adfa392edd4d68479b5097799ce3972c82258bc943e25bf9ec3cb81"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f4r16bB0.m",["7a2b2e563d8ded7098075c25d4e0f8f89db5662adc165950554f3b3cd2d2d79f","febcde62be48507420b214d08da242a44da7bdeae1fef8edcfbe6249aa4a57fc"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r11aB0.m",["a16c09a890963f180f639d5ea037700ff48aed480ba867d6c83a7a49f98ef287","28eebe3f8d4b0680f9c2e15eaf5f669b10c26d5b3e18ba7381e941ca911f4a1b"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r120B0.m",["5d13f75b71faaed27938b9b917fb1fc3f5b333f2f76505214ff875c514fcd98f","66d68bf2c97637120aa9b8a9a0613f902f24a433d3e2defe475d6124d7c3a9ec"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r16bB0.m",["6aa3d012d4ebee52546691f914c626a887f22fdd4b239c118a77894471f23863","78aa7284b5c387b07d76647df1718607bb05e5cb7ba1c0e3366e57b25a7eb8d8"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r45B0.m",["2a89a92c31a69feaf91796a31bf4546ed79b7f14990af0d12b3c1a3a25ba6173","b3cb83c8d79a90985d4b0c48ed281e8df5e1d73b871d5304628749795cbc3e61"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r55aB0.m",["b1cf53cafe967e9475dfda72830c7a97d86c77333e578ea5d1f7a28d1b4fb20e","3f3390b0837e55a137e234b6548eef5012f10c820f1afd2a10a95a32112b8fda"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r55cB0.m",["361c8dee824be0262b440c0ca3ee4c536bf070baceeaa51ceb608aca06120d47","15f296f19690a4cf2a9db1896dd7b508c4ff2cd4f543edd5b863d78fba552c71"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r66B0.m",["8e293c23b55af3875531faaae7b6b1276013bf5250e5028aec08bb998c8ec2e","f942bfa703e1dc718b848b2a27fab05ac3b53a9fa62a5610ae1022bd2ba22a1b"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r78B0.m",["5a30306ddcbe2d6172c0b4bb625a25da0f6a5f2cd1de6269d6710307b542881d","1112f1cacd48065bd6b593f45bca6cc45f9324aaeb32ab9d0e492d09c5770b2c"]]], ["TOC",["matff","spor/M12/mtx/M12G1-f5r98B0.m",["49a335a5af8b6b926550ec6c58a4360488899ea9dd60091def1bc2a1b8aa808e","623bb202388b549e88dd717d9127adb21f973d7b3521d7398a20a7040a3db204"]]], ["TOC",["perm","spor/M12/mtx/M12G1-p12aB0.m",["4abf570a782110a07fe7730d696268c97d899948a53d3e2abd527d66f294aeb6","a68ccd67de1365438e51bc9e1381606639d2cbcfcf16023fd7a163699c9a0bf9"]]], ["TOC",["perm","spor/M12/mtx/M12G1-p12bB0.m",["5aa0442cbd315c8f600c10c53fd46da129277d58200b64f803741c7c123f3a1c","bd1e5af49d6cbe327da96e8e9632ce53c267b9a6f1fdeaa20cd3a160a12a6b4c"]]], ["TOC",["perm","spor/M12/mtx/M12G1-p66aB0.m",["63469c09d8fbe948d337c06d5f80c948089c4b80e2164c91c9265b5b8495efe0","bdb7ec21009f7f2b744857a05a36e840338e239cc5560d88f1b5125f53620021"]]], ["TOC",["perm","spor/M12/mtx/M12G1-p66bB0.m",["63469c09d8fbe948d337c06d5f80c948089c4b80e2164c91c9265b5b8495efe0","67a99802f8193510c9b4072ae2cb76635c1f624b62a2607659d159dffe70d878"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r110aB0.m",["db87ee2959062f18c2f4b2a2f5b656a43821431d57b4cb52b6e471ddd0d32c62","eba4a8830ce7693ed4dc0a2870f6951ab4db5e56201b9a7444ef59e117d89f1a"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r16aB0.m",["25b57bea3f958d262080cfefa53229b354daf8d3175f09aa81b2f01199715a5e","629c4884218f96edafb0a51a61e35d7b8c815d567005ccddd848889cdd518f92"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r176aB0.m",["64cafdef01b2ee7e498d93519a116999ca85c41c6a3ee59cfabd2e8487b7ed44","efeb1f03849111a838e9abad5c4243691f7dacda4ee1f5911d18afa732d00df2"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r22aB0.m",["32916fbac7e5317f81f5b44f5e78270704e99c09bd223793b1d979a2be26e926","9019929940803d4612984cfa0a82643af7626af0e36cda020706874fdee9b2ad"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r29aB0.m",["eab33fa4de25db4018d0d9687bee4781afcf87fe3401986fbda008737ea72c68","ec4d26f8fbfff744252bb7fd2eb77a5beea022adba80af29908e87f7e4e0621c"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r53aB0.m",["af8edf5cb16547271ea37d017f523e76fb8eef478c3f53ab1da0aede0368e7c7","6fcc69cd07b069d17789f85eb1dfa4f44bae5ed51c31a94a63933bb5fae5229a"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r55aB0.m",["a84bab9bf1237629fe305464ac42423dc5017fa35313329777d6e79077c9ca0c","1f651c070ff3ef6fe480a54ec17bf54ec4b4510acf524020d15dd7f97b2223e3"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r66aB0.m",["2ed34a2e28e27ffce79ee0e31fab48edd1481635d74b3aec1c2838566fe10e65","c43563fb692c31177e4b5747ebea3cf5c0f4deab5c0c9171d5f0aac3c9e16258"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r91aB0.m",["a6d72d2b34351177baab9a0c293a483340bb6af83dfb5fa765cc5c509a499e4e","d6787964e7f22211133ee19ca29b400cea2dcbc5ed8deb7ced43a491db143cc9"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f11r99aB0.m",["60c8c27651236c91e8d33655e28e1259aa358fe0a49fe885ec18e976db03463f","f91e72ee1b3e5ac8fa670d52e8e07a95be2a2ca0d0631754574d5bbddc5f7871"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f25r120aB0.m",["386fdc2a4388098c84b649f5f334ed9ba28ee68a27ea392bc660a78bc5d45992","819cd77695ad19fd55066b8a6c3544b3c419278585980093f0f28b18c404f501"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f2r10B0.m",["c1f0bd11ab09455d243872f47a1494d1131459b07f502e743979495078c0c87e","7e464c491d9bb3f54a72e5d852239c9a8f588272d1149a3cae679ccc4ceb36a7"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f2r144B0.m",["f5ff05a410b7653c1dbf85764b1b00e42dca8a5993fdd388b08aec363f353f05","38bc259abcb5ffcb887415bcd97ad6f5027b1939cf698222a7c884b7c2a110aa"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f2r32B0.m",["f2ece540f0ffa645d9e24ed6f80d678c527a188e55963ebbf79a2427175e69c1","86714455d70cf347c75d19e6c607ec1a1731fb8a695f91a9cd1f5d74e5f3a03a"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f2r44B0.m",["f6d1f5687c0da68a4f488aff7f91ff14a5d0bb5c952b9b0e2414ae2b02aa6fd3","cab51d6049d889e32c174bb8488cee973b17df1108b96408f7f7aa884dacfba"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f3r20aB0.m",["c513aeb45a37749c1d42ad2e66eb13eba38e270611246049ba251b461d5df6ac","3a62b12e7557ef574dfdb0cef9b7b3c2c0cdacae3b73b924d00f840d75b82e6e"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f3r30aB0.m",["c071a7747cae207510b4621bc97ea5ad94afd6f310fda9ed6057c9b85c0ca76f","9c5aca2948541c767837cfd95ded7da85e8322baec282bae622ab477391bdfb8"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f3r34aB0.m",["f8997b3fc4b44a9e2c45fffff49f9b2fac10afefc5f8052baccf54d71cca7589","2bf6599fb14fde55bacb714f72957483a5aa99b68d4d336ad784dae34207b123"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f3r45aB0.m",["34ee8fd12f021f789e91a0878e5bcb467aa27017d59892bd87b228319e9e593f","701854cd22e724efb8e381aa021fb2355821f239d3bb2e388f04adb7a93465d4"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f3r90aB0.m",["95c7db8b6b8fa95b67fa4a51bbbc6ce98138fc5a224135a1c56ab25edf0abea0","38fc870af2a99b0368ec50c2378d28612c9f271f5d2b8c6d364a41bbe243c25b"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f3r99aB0.m",["948cc7da30e067905d136e223573f039408342260030fae9cc45cc7f0ce3707e","1ab77fd7d017a3b2b57689013310a694976988474799b8b2d3c7b55736e9497a"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f5r110aB0.m",["dbaf857f62428a1bda1a41ab30561022b1a51bea4afc7256b5d126db0f5d11ed","249bfc95f63ec5e60d6d387817c58c9134d84ecc9db1ab973fd0d0e74c95138e"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f5r22aB0.m",["e376020b16219387e51e8df11072e74e3f721549b50b8db507f406bec5d7f3ee","d1cc4f5017515cfd2372fb74fd704e17eb38079cde75bf202c69fc36633f6665"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f5r32aB0.m",["2f9e80535a4d66fb8824ff4a9f5cbfb86b7b82d871f0df3e2535ae86725a10b3","447945441fe9d85baa1f0f8958d025f1f914b7576da863056a910d449281107f"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f5r45aB0.m",["e3ef9b10b2032438a22dd84706773888d5f80c3c986bf90a4954b94bef85e006","71c88bab919a35455048967ca9cd8405296c955bd385093f783755d475fd2745"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f5r55aB0.m",["b5e452d5dcbeccf5b90e866a34b132c3aa461751b41506e7a9f992607618437a","3ad7d9341e6bf0a2df580fb438b9aa917c406c9f0006a27d18c39d83c2430529"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f5r66aB0.m",["723573f663a135fdfd8bc774d084b6db80f7210d62de0f9acd4837bcf96428ac","b1b86d79f7115f7c80c77869b4147426ac056da4b6cb0f6c94c5f3293a8292d7"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f5r78aB0.m",["eac5a70adca80ca1ad9ec2d050f1648618b558ea42053adfe588583ca201a9e6","6c9954bfd9c4fe859cf9d6f58d07423fd2dfa2bc8431e32fb6d64f78a024a92e"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f5r98aB0.m",["f00d991b6c442ebb0a3a8baf6601994e0aab405d3c8732eae458fa63a43be8bf","923ad556538a7bbd920d1db3f7afd12c5812265fcbcbd70400257c4275eb42f1"]]], ["TOC",["matff","spor/M12/mtx/M12d2G1-f9r54aB0.m",["175b874c4786cda058ef17ad35316add7f03f5c1b10c2b2926577336ef73f5d8","fce503bdb21f0d4215d5e65387c7ca4c6ba603c33417441a57e2c43843bec13"]]], ["TOC",["perm","spor/M12/mtx/M12d2G1-p24B0.m",["2fab5cad6e5d56c4f4dc73134eab8dd6d503b32464fe72bb5811e30c89fd2a65","37714a4f5c2083c46b1bb582380cd41367cd72c625579722490a477fdbdac6ad"]]], ["TOC",["pres","spor/M12/words/2M12G1-P1",["5e4da11bc950d4ebf48880972d147a3a4dd4c727ef32b74ed77b5d0aec34e1ee"]]], ["TOC",["pres","spor/M12/words/M12G1-P1",["f2508805dd21a67ebcbd3174afdbcec34585ae6aa728d99b2d7d15083af85bcf"]]], ["TOC",["check","spor/M12/words/M12G1-check1",["f0f90e0de2a3a096eb653e6f7a62f528e5f7f0acab13a0d26e8e1e05ceb4b069"]]], ["TOC",["cyclic","spor/M12/words/M12G1-cycW1",["b20218a3f0e883fbbdfc0ac71af2fc1f9f02d095b48da99f615d79f1246bed70"]]], ["TOC",["find","spor/M12/words/M12G1-find1",["ba330e530a33904797a16df55cce14b3705f2b431469bcdab3e45ab4ad6b3f9f"]]], ["TOC",["maxes","spor/M12/words/M12G1-max10W1",["fe86350c43d115cc15cefb29d2338ae7860bf62534b3a224facfc88961d3f5e"]]], ["TOC",["maxes","spor/M12/words/M12G1-max11W1",["86d5bef99aa64eb3199cba30f36a57727e79e320e2fb8bbdfc1c99154da58a82"]]], ["TOC",["maxes","spor/M12/words/M12G1-max1W1",["723ba6188b20325bf7ad5f7320b009daf8e1f7dc645e6592eade252db9f42e93"]]], ["TOC",["maxes","spor/M12/words/M12G1-max2W1",["f6ad64a0144a6a89c2e347439345c3b4060feb37d2b8f672f7ef92208febe8bb"]]], ["TOC",["maxes","spor/M12/words/M12G1-max3W1",["ef86754b7e91cc3fcd451ef9a7e26ba41b656662b9e5f32533a204096faff7ba"]]], ["TOC",["maxes","spor/M12/words/M12G1-max4W1",["6a9633f2ffb321d054f110f8c704352169e71e5cb5c0aa08b6b5ff11ec77e08"]]], ["TOC",["maxes","spor/M12/words/M12G1-max5W1",["8a83ad943d90f5ef04b1d15a080cc18fd73d112d5e36c646e96f4025efa6db29"]]], ["TOC",["maxes","spor/M12/words/M12G1-max6W1",["bca2a0d46f9285ec225af0abf867b5c947f251714a7caf48324047be5fd35e07"]]], ["TOC",["maxes","spor/M12/words/M12G1-max7W1",["1a34a20c78c397ade8a0acc3b9961ccd462567babf636b2df6841b8e05e80b3c"]]], ["TOC",["maxes","spor/M12/words/M12G1-max8W1",["a18b674109e738a8760c24c088f8569debe71485026a9139506c2b4357d85348"]]], ["TOC",["maxes","spor/M12/words/M12G1-max9W1",["f74a350a5b42a982a7a97f55851fe29fbd1f93adfcc2ac80c946c396e053b2f9"]]], ["TOC",["maxes","spor/M12/words/M12G1-max9W2",["b54b6ac71a38fd34214a7a7dffc16a18095f08ff7dcffe890d527799796aab19"]]], ["TOC",["cyc2ccl","spor/M12/words/M12G1cycW1-cclsW1",["1e260aac5f3e5b99237bb697cf9922c2e5caefbf81aa955f3c6bd1affcc65f4a"]]], ["TOC",["pres","spor/M12/words/M12d2G1-P1",["bc483aa51572335f97f5ffd728bf9a328e2cf4d10482975983bcc6b7ad1ffa8a"]]], ["TOC",["pres","spor/M12/words/M12d2G1-P2",["c9fe7e7519f5a6e7804e798d9bd729b4dec7ee5267d8171e3e11154137f9d3bf"]]], ["TOC",["check","spor/M12/words/M12d2G1-check1",["ae0d6d5c3807eda82ed9abe69977899d23ef181003149f7116f4ec7d5549a331"]]], ["TOC",["cyclic","spor/M12/words/M12d2G1-cycW1",["7332309fd5e7170e8e263fffba30a37aa3c42b291ef9258137798eeb5003e40c"]]], ["TOC",["find","spor/M12/words/M12d2G1-find1",["a4ebe920d11c3e322dc91016d4a9c54903f387004153cbccb701b31cc465a741"]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max2W1",["481c2d4781f89eeb51188e964ee22f7001116e92babcf085d23d94115412e0f9"]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max2W2",["f4d1b66b6d2047b34c14cfc6ce5b52ed37e48558b6c2cff6bdbfea62955b26b5"]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max3W1",["fb917bac80e315e365631098c55ecee79b350b9047105fef11a92b8e249f2dcf"]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max3W2",["a9e3ca241a92ee0ab73283e956b9bd57ac1751f3bff6347d41c81710d61b112c"]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max4W1",["2063d8a6540916cd779e4e2b7765eaa6b540207fdca31d8d112afc3b7fa0a5d"]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max5W1",["5822d57200f6a6f97a850e2f7452b09f72ce00f356b155f0f8efdb8bad7ee048"]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max6W1",["27e94d05bac0b1c956f39f48ae696ff3b9f4f7229e4c0a58f61e6c462127852e"]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max7W1",["6371fb6bc353c74a3ed6e38980eed7ede64134642f860950288e31810529b627"]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max8W1",["dcea07a95485f4f65e232ce4744a8b7e304760801caba0237d7dde7be80c1478"]]], ["TOC",["maxes","spor/M12/words/M12d2G1-max9W1",["63b3b2d94b0f2a9547cb2ed369174963913344f0915f3bbe2fae2a6f6745f8f9"]]], ["TOC",["matmodn","spor/M22/gap0/2M22G1-Z4r10aB0.g",["442380ccad1fab3c3faa53cabf5d7ac5ccd7f2a6e681436fd40dcd568390fd40"]]], ["TOC",["matint","spor/M22/gap0/2M22G1-Zr120B0.g",["cb1f1decdddc58aeda006d1f8bf57165bd69b64bffb24e7ce12ac1e1a18c8c60"]]], ["TOC",["matint","spor/M22/gap0/2M22G1-Zr20B0.g",["d8bfa7bb2b6efeaeac67ce3a359a0bc8c36825ccc8b1a6dc99396e7b38e6b7f2"]]], ["TOC",["matint","spor/M22/gap0/2M22G1-Zr210B0.g",["6ccfaed6ae9bae025e01de0bda7192129f0b15ff9e01d664ceb1c184289b78f"]]], ["TOC",["matint","spor/M22/gap0/2M22G1-Zr56B0.g",["b27834c18bd04521c2848c691c7b73455ba77eb09af3a2707fc2572a46cf5c94"]]], ["TOC",["matint","spor/M22/gap0/M22G1-Zr154B0.g",["3952bc8bec54a1407362622e1f16337f55e38ffeb68ed2833b4739b93a4e4b4c"]]], ["TOC",["matint","spor/M22/gap0/M22G1-Zr210B0.g",["fd55dd5facc892071bcd2532e39e4de9eec40dd094ce0c2d7e73fe593b2eacee"]]], ["TOC",["matint","spor/M22/gap0/M22G1-Zr21B0.g",["90e5a653ec4e720b5f184df82d82b78c99ac8c69f5b38e6a07c2c44f5fa7e815"]]], ["TOC",["matint","spor/M22/gap0/M22G1-Zr231B0.g",["41998d227be0c81a34a414ad67d9b1a391891ec3b7ea108f8838b34ab8fd3953"]]], ["TOC",["matint","spor/M22/gap0/M22G1-Zr55B0.g",["3feea58dbfa069c548681674fb6b8c64a14dbae1a1b1b5a9ba70fc2d321a5f25"]]], ["TOC",["matint","spor/M22/gap0/M22G1-Zr99B0.g",["ff6c458aa42778d3de7fedb6e4731e5e266a42d1368e34d2b7ad54194e8b9bed"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r120aB0.m",["f795899f7e12cd8ece40ae4b25e37b00ff9cec67775d38be348ee322843cd5de","82a4457ef12fa6e5be2244cfa185b92a8e5f191f08bbe197b1789757bee8745"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r120bB0.m",["bb7d6d440feb43d4ba6075639689bc83a80887a42178c8677ea903955e215fe1","6e9f018111be3529e53bf31c5a2021d62b950c6910edf34735cb95b083aa7e87"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r120cB0.m",["9fb119292cc2ff6d804742492faee482283d59ff8386ddc9c3dae7f22a488216","77545850c2709f7ca5210b73494be285d2aeab74adf7005f89e2ec86bf0e7861"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r120dB0.m",["eca657fcdd6af13ea9a9993f6dbca6f881a07dc43b3fa6b057e7c1c087b81c6a","9c3eb80ab7c1428dd5816021dbe00c2cdd162e1e9f706821b8b08db85131dc4f"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r144aB0.m",["b1db9f40120faea7e48504da36cab4cbd99fd88d5eb9871c2ce0b41db7b65a14","ecb137597e538b0d2118d2a96fb67da484f943e967dabfebdea87e2a5ba369e3"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r144bB0.m",["fed704ed6642f1b2382aa4e4313668f3b882ea0ffb52694a35ef42f76026c340","5aa9629446002f6ff184fd12dde34740f1292f4601ea0135317375790cdd81b8"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r24aB0.m",["a76f8e950bd3f5fc9c53bb2c16a19f73dd4d278deacd40cdba54158a729b91a2","54834b9d2a795163b1852128a816408d7264060c2e4d8eec5fd5f1ca8fce4a8a"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r24bB0.m",["898c08991ea27a74c60d8f9a31b3efa189363badd43a4b473bbce70abdf5892d","c180d9e5ea2f748f138f2c6706883878d3f612bbc6f6c02d939302c75773fd04"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r336aB0.m",["a93dad59489cd369d02ebd89a1944cb6f53ecfae69b1e0f5fcb7d619a35a8e46","a6e3abce1f46d74ca30112f5cd9972c26a33327138235fac33e51b3bf3ffa6c6"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f121r96aB0.m",["10afb9f052799114f5674e318fda69cf31284bc6f032f5c6fee3b6e848c9cc58","ad4337edad9ebf76308a284a9b363c103b721e49d960fd81d96c5457a69bba05"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f25r120aB0.m",["3cf288790cc52f65736d398db5cc99222014a5c221449c0381b91c026e2369f1","f335982ff1da85e12d8e5dbb68c3f44c733aec2a5da45959006dfb1b6c42d8c"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f25r120bB0.m",["aae1a36acdcf990b6c849f3dfdd6ddbd0d5d0bcb7956047cebf5f706865887dd","1bedd65404fd18e547e55a48b668139d267a84d73f65de51ec330b84379f2d3a"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f25r144aB0.m",["9901adc7ae03793d8601a1ac2575341ffb59d3894a37a7ce3bffef944a567d63","b030a8b6e5ed8ddd712418b19401e44bcf2b9c3fbd66f3f8aadb5aa5eaf29f27"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f25r144bB0.m",["dc59ed8bcc482e983057bcbc11866729a0627e08bba3723e737d58545da6ee7f","6abf2d903d4de2c4e79f8711d61ff352b6a524c88e2428fe76161a7a14551c38"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f25r336aB0.m",["94cc1102c1eebede9f2eeea328c233a342f2fe1f3f587a8489004f7b0e6cb937","6cdea36325e6d9e4eede4bbe659c56c0e52f8826262755234c361aa9ebbee9bb"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f25r48aB0.m",["2cf0985e4a3a918bb1baf92153407f306db9041cc377f61bced26fcce2b5d0c6","b738d123678f9e44dc033736cf53c745e06d2d8fbf2cbfad77c8eaec632c6622"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f49r120aB0.m",["d00a0f0237356b22389b38a371ca918821b083e3cd74bf9a1ee70c05e0042656","8265f10987f53bc55491fc323ab37f3382852abd3819f95389e2ae84cf51a3e4"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f49r120bB0.m",["d043a6e50b6c42d156d00ad32356cbed7effcf15b092cab98be4847cff80fbf2","24eeb7fce65aed418b593b6561dc7f649aeafb9d70cae506cec0aab3105dee26"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f49r144aB0.m",["60633d63a4ad7aa13ce066db6ec4775c2ed409dd9e04c8c21fd478b621e02efb","868e77d3fc8b68346c9870aafd7631d577da34eef81a316c2bd9b98ff87d82"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f49r336aB0.m",["4f5ce80eeb4c947a30119df998e491c40efcf75816c219aca989c4e963f94b4b","75cd83ca941399c15008844973b028ac0d8ed080021fea1c2e23f455c39b121"]]], ["TOC",["matff","spor/M22/mtx/12M22G1-f49r336bB0.m",["54f4c0ae52a9af3f57db847cf2ecbc03e47faa1fa6f6e5b691ff5a053aaccb1e","54b2968a0600497d6881def146e616e39bec0a42e4abc4dcf13610c0debb3c29"]]], ["TOC",["perm","spor/M22/mtx/12M22G1-p31680aB0.m",["f45270f43b7fb2596ce107a3c5dc2d05654e6512e8fd3b612939669a4d4de1d7","2226126a19eb4b21fc5681ffc74760c3ef39858654c415458be676100bb5af01"]]], ["TOC",["matff","spor/M22/mtx/12M22d2G1-f11r48B0.m",["3e7a97456fee5a75882834ba552c32e7497e942f7d547105c70d10b8356e0f71","9eea44350abb54b22c13018ca26a316ff591487f92a9c9cdc3b111a3551644a6"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f11r10aB0.m",["50ed0057e65e07e345d1f2d9ba1111b9abd31708de42a0a0a03e2dcc39d296ac","c5f553d7145b40df546a383fe51cdd7364474f49bfa257db918bb11d6344c9dc"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f11r10bB0.m",["2bd7f9bafcedd8dd7d7a09d67bcaaa464ae540cecf13efccea25a9157c450c01","39fea97de7bf92ede60a5145f8a8c33e385fe3b0fe45c7d3b90410772e3cd4f2"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f11r126B0.m",["1abfcab6c013b5129b7abc9c195cd12f0aa5e66a23299a2e4b7d4bf9f6c1b890","eb5e681858f30c24ec2b3cf1c14d1d397f46a0bb9c8f7dbb37bc23c110edbe45"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f11r308B0.m",["f734823596062ba1c8a1dcac0ed8376a3d2f0216b9a7f33106ec0105991b6ed3","6e85bf6670b542370f78536d147c6cbc01586a64541585c106c7a51b8dd905f"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f11r330B0.m",["f71131932440f84b72825702c01aa2b86ad536c0eede0803989dd88194b0fc3c","abeddd983f9e3f891c36d66df4f3d7dbb79adda134ecbf596f698ff84b7f9ed7"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f11r440B0.m",["5ebd84a0e5192351d68003ff435f30805fdbc945c52cac42df2d83af20e52fab","5d50caec5771d5fea5b737e3b5b5eb9957450600f3eb4098dc58bfd1499e08f3"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f11r56B0.m",["4e6bda688d9d3d8e6cf15298d5a777896c899ac28fb33b11530c50bb6349c18d","2a726717682b94027cb25d0d0b7d9b0db3de379869584189f69b7c9926f98bd1"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f11r64B0.m",["e04ff3c6cf8e92795ee2c928f361e0aa98903d021a3aae3ea813209adc260bbf","2d4359131bb0f27e4e447e57c6bddaf627e825e33d0a07e91689445979350ac2"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f121r154aB0.m",["464a7bf1b3d44dd649fec1c6ef2887680ac1bb2b551371ffa6ffed56d9b11867","d478ac9f6a4a2489e3240700b5936ea480334b8e60669987ed1ea33e1c21635a"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f121r154bB0.m",["eb59f6875ea27ac3f95122ba4d8e50b905a0dc87ad38c1074983932c98cdc2de","55563d3c116f56c6c06a642f5368233d903b0628bde56ebef2ed2bce4192a7af"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f25r10aB0.m",["6dafb30ea174cc571a7d9f594e95515e777455dec08fd9980ede2d6188322981","f9c3da6983679a26270829625c3a966d395ae4a4923680cb36e39f0640cc2e8d"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f25r10bB0.m",["7664d8b3109a9c86a18aec28eb4613f0ddb5d67617dd82e10ce7fd39ac7a9d6d","26a4fe09c308b48fcbc65532a7d38b1e78560068a1c8e3152f90e4d596b291f9"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f25r126aB0.m",["f923ba6b2a7da628b249fb7e5c52b4d413b4544f4e3833db7856cbfa64234ace","3275a8e7a2915bdb684a2710dceb59a66ddcbf38eedf64a19fe71beaf6ba0124"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f3r120B0.m",["7ad4615ac8828d1c733e3362760ba5d9bd1d56947aa3142261fb140abbc8b76f","f9b46bada088c1b81a7d295415ee05cf0ff06f4c674894cc0d3a66a72173d71f"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f3r126bB0.m",["12bad85ac735d85790edb279cf26b2d0dbf47bc54713c3b93d94c23b74b51879","4905006a57a0b5dbbb8c6510421ec65ee91f8999757d36347ca00a5508092fbf"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f3r210B0.m",["1900dc44dd5065cdcda7d8ebf0b9aaf005d6d3a4f1f3123827f4944758e086f","91811f4955f59104230ae7379dfa5e8278c64c2a8c940fa3db37b6587f668cd6"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f3r56B0.m",["ae389a85130e78426684af2566aff8c22c2dda912935966a79f32dce108d5c47","49e49d31748e880b021253cb369e0324ef51596eef3fd02a4a263da03b6b9653"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f49r126aB0.m",["151cc960f2b8d4c98a2b8b8583588d0e5dff85ef44ec8390b0e26a0e06b8f9cf","8747fafac21d3f18e7f7a937e23c21ecb3e140cbf65baa452a7273b4ba99328d"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f49r126bB0.m",["249618ddad25cc05916da6c1727a2e05c32ce90e1f5718fda5c33e77102e9aec","9d1d03b61e451fd7c630c0a10a5f7afd2f263275b978120d975dbf172c727ff0"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f49r154aB0.m",["5af6240f84e3dc8eb2dde0af3deca37d55a4fa3f996f0462f0ac985d0d78190","18a6eb6b5abb2a32d0e87ff2cc14cc76057990f3d2aedb408fd90004a1f681a6"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f49r154bB0.m",["2daa6ed583fb78a01ee08df32be269b5b6f9fde4f0fbf8b6941d7c3dc19e824b","4b52e346b65d66c0c45f22a237179b3abe20fb950b4e719ae418c9a225625df7"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f5r120B0.m",["3cde051d04a2c0938eef498635056dc3613f23ce011814c542db3c87f75ec6d9","898b0ec0e2aa3cb1d6cc28cba7d2728e8bf499613acc40d850a02d87432997b4"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f5r210B0.m",["4ec2b50bc0a64140e648e5f475e0fb9de2a72025726b2b2175c1c41eb2438b5f","849f90c874445b5b295c2cf22a4442b5d0c25f8d3dce496d6d5c513dbbd5cc7f"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f5r28aB0.m",["aac6b05e0b85cd28d54f38c8473faae5986ed0da474116f1c4d23d36898204c1","2eedd9b2550b8feb81397ee9027def58ab1f162dcf4a6bbe3deaad013b0070b"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f5r28bB0.m",["dc07d71157161e2188265fb4acaec0d9d96266527fc18f2db769870967b543e7","ae626ea9bd1d3e95bcdeac1eefb7c47f48b98f2c9b0bfd821aa76ebeb619e8fa"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f5r330B0.m",["e619c6c72e12dd1f63958193f62af07314d8164f54cedf2a58e2a90ae0f8523f","b9c7ddba49ca767c14d8b1a410dd998e09d8d29efb7d29a4c6e511805a16e6e2"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f5r440B0.m",["1eb084dafb069246c36cb5862a67fd4e41b13ce7144a0b123a1b73395e7c8b0c","d06a2406723be5293c23f6194a275d931c3f731e82e220ff6eebf36042fff978"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f7r10B0.m",["c9708d06160b3e0dcad530f402d43c6a3d561aa9246622c5f1fae967adcdf8b1","d919389ead51d149151b7e6a9ccc6e81fb36afb9e4f46fb0bfb77ed7e19695b"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f7r120B0.m",["b25677577813acffe644380d5fbcf4d9b701953b9e4a3b85dfb171de65a5972a","18313a7c37b61d0bc6d4971b36aa99f44bc2a5f3b18feb5bf9e9ce0edcf1f276"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f7r210B0.m",["e3266d88c4088328a0bd4fbc4057cf9a0bc8e28a89d2351edeb38265e044cae4","dc2c8bc4d245aef7e5361af2aacc4ea9dcd5cacea5c046217a4debf03e15a79c"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f7r252B0.m",["37d6451ae6d45196345cb8c3df98c13c4c4bac8d2dab4aa067be06b86c5173ae","879411438947a07bca9b66e4eddefa06b6f784f7c5b07df2c2c4ff9bbbe14014"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f7r308B0.m",["cb650d2ae44bf3cca2df655cd33c8e1344dac6a68e17d8f74d19e04dfa859980","4c689bae5ede57d2a906d805e7819f62b78c96b846c9f14819a7b1ec2ff1dd9"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f7r320B0.m",["89626505e1ac6b6f00905353e408c8c26e29533406481dc74ccfbd0e93fe606a","b2edb52e5973bb9c45de876df4469cd588ecc665cd2af58e5b142ecb129521a"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f7r56B0.m",["61013d8ecb1aba6e25163773e014873b1b5b0b3f4be25226aa979f3fb716bef6","4646f8031a3968090cc9807cb341c21667cbf2f987c5c1c43c9ff3821ea66aa7"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f9r10aB0.m",["de23f5d0018c9c9a98e973c3352137bccc6c654586fed761290ff60a4d6ac896","9104f0034e919dd000445e7cfb1b34a4a9bff063394f74601df5e9dbebf648ff"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f9r10bB0.m",["a26d8d4e073a24d49825c957212aa6d6c3cd278bd5d13bbec7b5c095e470b4f6","bd3bc0475b3a17d14f5051efa3a29b16374eaab0a49f59de6509a2ca5ed60c99"]]], ["TOC",["matff","spor/M22/mtx/2M22G1-f9r154B0.m",["ff1da2bcbcff211febe8523a33ac03a85b3ec96b6a821769d6d942f8d610392c","758e77cdde1b9a6633082a13079eb8d5a5e5ea67f961e0053d73da4fb9b513fd"]]], ["TOC",["perm","spor/M22/mtx/2M22G1-p352aB0.m",["77816eb98f4331534edd68e930bb9ae539e16cd124026205d93c62676c85eea9","4ddde5029ea6b4e3c758650d29e3e154309ee38ef60dff76ad9def6e46be41c9"]]], ["TOC",["perm","spor/M22/mtx/2M22G1-p660B0.m",["836cd940c8b3a9f3877149f73f29eb393acbfd987d906169fef8771be8494d22","76590352ff61b6bd96eec43d762bc9da835aad74c8cb6b2a028c29faf86ff240"]]], ["TOC",["matff","spor/M22/mtx/2M22d2G1-f11r10bB0.m",["f99a55839e0d0e4a8480a1506e6ef8a4a3c98b7821fd381aaf52ba4187b6cc44","4d8da313cb756fd00915bd642c965e6c372304efd18f986523337d7999c754c6"]]], ["TOC",["matff","spor/M22/mtx/2M22d2G1-f25r10bB0.m",["c6b43b45bd9177d8e4ba026352cd160f47b62ffc997b9ec3fa9c7bbf80126f70","505a6c36b724e3d57c7ae5537e886f9fce145542ba20a6600145615b06d823cf"]]], ["TOC",["matff","spor/M22/mtx/2M22d2G1-f7r10aB0.m",["1f564c6b3021cd209003bca4e78809a31e4818d5357ea0d6d3b9601f3eef3ee6","240b152d1726514e9c56b49cb64d19f91542c865e518906346685122dd0e5016"]]], ["TOC",["matff","spor/M22/mtx/2M22d2G1-f9r10bB0.m",["ccac393c1864c62436aa7f461ee8eeb1a24855caf143db476e3ebfd5218e1c06","ea2d129857e11dd3a58ab53321896b1cc96020a48ba1e3384774e7db8623d310"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r210aB0.m",["69e62327c88a9d4b7a3596b46c8d177b4bd8c7cf77541ae388234cf45504a33a","5d9bdc6cda234d25061670c049b51f043f0fbec5bf34a11d608ff231a6ecb29"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r21a1B0.m",["26594e098cf18f665cdf6ba99b464b27e99c8a03dd562c19ea7996c4982677d3","8ce4760a7a297b3fb2c587b53211c5384ee103b1c9d8a95e35fcad9496f2823"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r21aB0.m",["93f3fae4eafa7b4065813451b452df3cf002efdd01777823f8e906c8fe9a4eac","8dbc5705fc99f27b24dbc7a4de39974be29046615521c86b7f11ae8ba262dc65"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r231aB0.m",["118ab655ffcaf270ed9238bb297d4106b27093b598105cdae669a8e1cc55b132","63ef86067825c634b765f49fa8d6858304e90c6f4ee95b869b3360b0fe92d1f6"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r231bB0.m",["5a20765bc6684a7fe5f3f7f6745a1f745e98ff7723a9422545c16a6fb095f269","af3525fb88cd118f477280e975b706f32e7309bb283394e0b6d4bd2c0bdedbe0"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r330aB0.m",["2f0e1743e15d2753b3676e3421fad09e71505db0161108248631fe315f602dac","aff386822bd704889d50b491f94f3b6d57c6dc25e94c61c5032c4761b45d55b1"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r45aB0.m",["190403eb2c46ba358ad647f9b9ae18b1943d100ec64201dd7adb12819ce9e7e","e52d2d1c3ac82a81ab07d9a0760ba878dfc03989cceeb8d400ce1bc4faa65f23"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r45bB0.m",["d43c00b59b3f4ecbe0524f12ba4a27e5d2a9c0c4857c4296ee1f646982121c0f","37494d9fdb667d3f1571baf51d3a9a0c5276ccef344d9c1573c51f5e4954ec98"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r84aB0.m",["9e2ac6c6457f99767a5fde2b632ca244b3f862794add0f49f63a34cd317c58a1","bbd55964205d465259737d56173d3d5baa04cab0ec358ecd45b4660d7ba79dc7"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f121r99aB0.m",["9261ba798a8696f4cfaf17b03d292fee9ecbbe432afebb226e2ce4d9b1c05d08","b8d948684a0aa05e222ae5f31bb86df8df013d6f0744f5a25a530f692879570f"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r105aB0.m",["395c4c35f1327ca517b7197cf7524456183d78d6dcc43c121d2d7fffb535bf34","4cb0957011ad6d4d07acbee6f85e062c341ebd509c3bf6e0866dbf30c19f308f"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r105bB0.m",["6cdd610db0e482c2ea6b7b776fb260cbc21b6eed50ed24d19b0a1d7014933778","a2891e60da0f2f55c00862b9e353b051daa57efe3eae084e6278028b2ce57601"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r153aB0.m",["117c608bbe4f447958f0811b5b695287c30ed9417efd5ec6065015501ea9eee8","61e7c03b42f32afc090bd571fc73b6a2447bb4d49e377b1e95e08d670fc16059"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r210aB0.m",["ebd9e144b07b244e4ba48724f2a1ca0feb7e45c3c46aa4dcc85f804c92086c15","2217def86db2291ff37c357ceb7b70bbf5dcbfa7b20c259e39340551ab5929d"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r21aB0.m",["22a02b88dddcd9bb0979c8810a96a563cca6feaf05e98958af8e8d3de0035d53","cae25ffb28444a4c9f3177a8d42c9890744e2b4e5290a59cf71e7933c5cb5194"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r231aB0.m",["25a74f93073d2602529ee115550851460bfd6991666ddb6500fe88d32932122c","14a89f7c28e5faad948dc4de2cf5b9bab2fc3f1724a8b35a8ee51480c90e5053"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r330aB0.m",["5305b20018944dcd6207bcabc0d6effd413ca86e51a71565bae7d27c2fcabcc6","a2f429b2fbecbb2e6e7c44d8f03f1f4b569fa4e2c6447e1590670d90de4d9ebb"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r45aB0.m",["8a39610bee09ab2d6162cd79dadc3b571c73883c5c275c06a6b6b99a57ed789c","558953ed36021871565b292496ded5fcd66d2b80f4ec21be57d8b84ce2fbe819"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r45bB0.m",["bb370e57fa58d1533f467a6d18161c2a64fe7df759b8e416b44d541981fb2add","f013dddb5b1a386d1702dc57bc8f2e734f3974e0bffcd2721f23e9f69cc69e90"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f25r78aB0.m",["e5064c0b89998f5b4163146326628ca67f8c044424afdc01d9c8a470c850b153","d6ac9029040d5e9ff4050245a16b3cc214c0948cb9af7bb0fe2078a76e8d6559"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f49r105aB0.m",["54e91e66ad065ea2d0fea8a280ab2754660f66064387e3b43fca28f3580f73a1","69f7515da16827e4cf30e805e79c6b782890d73549af256a65bb2a6e5d94f183"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f49r105bB0.m",["f20e5a262d7890f75eb6bc4d44cd368b5568cddc97fb66655c8c71b3ac715f93","dfafb1cde7ec16e62200acf5f9b75354bbff21959cc4932dc4f7dddc6e13ca7"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f4r15aB0.m",["1bdc34f1ad319712768d15d5fee4767ffec14d412bb41aa55341851893d2b255","8c8a5dd3d769230f3972c072c4b6636eba6df0ec7e3909c6b6cdaeed141432db"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f4r384aB0.m",["9f42d0fc44d95e9ff073043107c9a8dae1db12ae196ffe8c7c820fcab0f360c5","456233c4d4d7c85b39e156bac5b5f5b5c28ec66cffb44da6f60539000db6d85c"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f4r45aB0.m",["cbc3955450f1bea8eb225978329eec6a3eb2cb794b5e07709f6d2178439edfcc","35284256215d777fca4947a7109c9ace8a324eeaa3f74e64859c1fcf6ac69095"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f4r45bB0.m",["85196ddf5355dc2db1021313badb49c3897165034c5ca2d60d663f330ae341e5","c5f405cd706f50cbf3a272724fb34a625d2a4482334a3f01343b8f16aa065bd"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f4r6aB0.m",["b3110402c81f8c2b5abdddfd2316500c7e7cf9a3811afde83a4c446f6d39c895","cd60b2601b63e215792e02925c026821bf16004025041b123eed57ec06dbb91"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f4r84aB0.m",["1a759e541ccba0cd192bb3c3b1caebc3e2a9e9b822edce220729ef4591db8c5b","7075cefa012151d75df0cbdef33ebb59e2f684c9d47339108991f4484255406f"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f7r210aB0.m",["fca7fc9876fb93338de811e967643c52ae4f66b84a9b1feb7c4dfdb7669d5a40","6228809c09370776aa7671ff535f57d03a683c3c91b1e10fb001428587a02cb6"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f7r210bB0.m",["a13d16afcccf29811b582743fd941200cd029216dfff4aab04c7df74e84a73f0","9336ed82668292f8e414f5733207563b6018521ba2785d443bed01a479770a6c"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f7r21aB0.m",["e06d88c75777641cf08a6bd11c7420595b3de151254873350d43a2509a35106f","a9fac047a608c0d4fdf7ede74c4ff9d3970805e94570a9993c8a9d3d041c763f"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f7r231aB0.m",["2b22e371daab607e27fcc473fe6caf71255aefb742e6ef9fb4524159422f01a7","51d41d699608fa90b858c99a010c5dad813cc96f6b8240613f46cf7f63fac02"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f7r231bB0.m",["9a6aa0d4ebd8de6906348daa586b2d09820a6beac3c9947386b2d7b611d01fd7","4e1c8e4dfdd766470083f975f408f1978f5f779f344cb5532693f6bdce05f17e"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f7r285aB0.m",["55754a30d5cacd85505d495bbd59693a84d68aa763e6c697d35a7ab7f2b16a8d","961e2e9d8b00f928067ee1bca8e7d64b97ee12265a72f990600a1c3c81757efc"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f7r45aB0.m",["a951161f80080274e5f9b22f3111b5643a0aac590f7d8e6c6fc589e017062abb","2687d52882bad8de6bfef6c53f02b7b0f4a735d9485a91f8ecb58e58f44c2fbf"]]], ["TOC",["matff","spor/M22/mtx/3M22G1-f7r99aB0.m",["d728e38f667e2e82dfc3c02d4b184db52816115e02dd3a18d5d43622dc496d73","27f6c1619d93b8045643ef6bf2dda2bd3593d4ec527648d144e0facff4004c0"]]], ["TOC",["perm","spor/M22/mtx/3M22G1-p2016B0.m",["c03b372ada4d972ba2753682f823ca49f729f71fdd2f8c791a41799aa665c9d4","31ee4e074afe66fd693aceebbb8abde4fca03e4a4eab28e9a2236a127c775eea"]]], ["TOC",["perm","spor/M22/mtx/3M22G1-p693B0.m",["e5bb4d809929f2f5a174077e8dfaf7f7780f43b6a960ce3f705de0ea2625baa9","b68abeb51ed0cddbaf4a40b377f59f2264cffb2a8c297c01a5f83641ed6e33c6"]]], ["TOC",["perm","spor/M22/mtx/3M22G1-p990B0.m",["876d824d8b2f6f1d7e29bc00f79aaa1ba3b601a368df199f938b42123e9ddaaf","bb892b49aa21665a5110849f9351846c23aa81c28879632f618e55d4d37107d4"]]], ["TOC",["matff","spor/M22/mtx/3M22d2G1-f2r12B0.m",["b99ee3ee8336ff1817e2025e6c1e1a87d18fea5ae2ecf028e37261ad00d25d83","17ff885f9c76f0254799939ddc8c2644bb6cb4c28834d2f2cf9afcd89f458e5e"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f121r144aB0.m",["24063e463ba0d7391bf92b083ca1d94f4569cdbc4d6dda7cd044338f16c82afc","6c1eb77c1efd18587e87a9b7647927ed6c710e5a4501fd17c575fc0b80979dca"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f121r144bB0.m",["a39131bc632d625795a166bbab8ab6e5c6ec33e59fcc99d56edc9751118337f6","85546f9a4fed0e7e8996c02e2ba993d20839d98194697669a1d45905452830bc"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f121r160aB0.m",["23f8bc4d3d35ce520c1b513ed33e3229c36b18a8314ddaf875848a6847f9d1a7","2a38ac90f926f6bc0899977cbb27943e432cdded7def239e18153eb544b05501"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f121r176aB0.m",["d956466e7cdec1a562660d9583acf5616a89f213502f7d4401df1a978924a596","8197028ce5d2b7b3e59b8f71dcb066589949d543c499c0f00c095b95732a5df9"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f121r56aB0.m",["46c4a8fde73f6aedb291679968fd82b4ccafc25c2bdd4c51f94827244fad1a44","4fc46ac256d117265b8ba01ee33f119d66f45f3823d5622621831bc3965aef5d"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f121r56bB0.m",["3c449431c42a1e32ee854941a661e2899b26d8dea89d196c38aff3b1923fa476","1baf1fbb1041c9ab705a543c515e920aa92bc7b26d037aeb9aa167430034ff94"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f25r56aB0.m",["2014cf9289b6113ea561117cd18e0cdd7060d41fe8767b37145050a12d7dea0a","b1d9c4c3dcfdcc3f0b1559fa4ec743bdaafb9e18b38c068d3f8e8b08df643d08"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f25r56bB0.m",["be8e553abbe35bdd659199b538814146e0deb58e0ec34cbe20245803d836c460","2f68b6cbae78b4cac8adebddb393b142a7f9c98e1e058b692d61899dde84e928"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f25r88aB0.m",["309bd7737c4695002a898cba5eac5db532617709734bb21cb9d07fa7c3f5ff5f","9ce8c414984819617738c917bdb599affbab15b38817e68e1caf5c91feab9d0e"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f25r88bB0.m",["4e964f100551855ee4188e80fd0491d30f3402b7865da2a5df6c519d966d3ab3","b409565d35e163483bfa817606a419ab6c61f386ec34a4225282e335844eb907"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f49r144aB0.m",["e4b639943992c46bee3db3053db8452bc7f7c7f67dd11c02f7794b1dad1b09b0","da6ce3aa089cba731fbc20c093201c1a840fb36a610a1b365b4ad3c5ee519234"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f49r160aB0.m",["7f552fc86c661d27bda537b08d059701e06e70f24a503c5ab06867072ec606e5","e5c94fcef44897bc20a008a760f6dfca39cada01ab1fc4b014db9dc14973984e"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f49r16aB0.m",["5d6d468389d97ff4e2db1b917006916e74c4113e3fe0f06d2062ddd6dd639b7d","2d0baa2d6daa451da158659c6f85f5aed70247279c54a9b599eee182ffd1dcc6"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f49r560aB0.m",["c47865ea5b24d6f54187ddb761b54d67fa31990a04c81d6f2988deeb310cd2ca","f6311aed6d8befff189c3bcd63ae47fc4c03bbeb3ef9eb24c725bd4858766061"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f49r56aB0.m",["f9e4fd6db74bdf525890cbf40a8d74d93a33b9f6aca7af3a6f0b6c317aad7b92","4884bb37aaa2e67e475476be20c36acc8a99881216b97420048e051758b87ad1"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f49r56bB0.m",["767004f88feeb6fb6d39e3a0a5360b90d6f7b2446a42e958c3c3e88434384f8a","852e1243362371243e23abfa245a0015bae536f4e485328eeb980057d9b814c6"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f5r160aB0.m",["39f10e67035cda9606cc47d87c6db481b6becf69de94c5027bd244154e0d08a","a8fee0f3d139766f16e09d958216b8d7f559f0b3b94b0c6a0f9f7a4bed78abca"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f5r160bB0.m",["1b2d6babd7def7ef3062d3867d14e373e5ada047a0645f49f2b8f236e8600300","bf491ca50d0a232d8ede95d2309ebdac41a69738c65736a744398dfe18b76a53"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f5r560aB0.m",["f2652ed798113678b773f731010b489012076d9e6d340cc8bbe9c0d98bf041bf","e9c7e61bbcb8f34fe706740509b40554156a68299fdabd71ff171aba3ffcda36"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f9r144aB0.m",["c055c9afc0be3c65c189d274827c7507fae7a4ed9f1b54819ef20a53a69784e8","e47f6aaa2ed86f5d0801b6103ebe9146bbd7a4fac5057f92c58cfd3d1310289b"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f9r144bB0.m",["e3dc9318cbe8d973158ee416d4bdc0b2f258d14e67fcc07d95926cf072bb25f1","db8f8cdbfd84a8f361de1c3a4ed05e16c6f12d391782deb92d330bd2c63dac68"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f9r160aB0.m",["79c6855a9144818da8827bf325e8f6ed9323bb74d923e6c7c1d4487b862996ca","f0c4364eb3c7abc2f5d2bdd2a6a35885796e21874fbf1d7cf1c7347d2b1ce06b"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f9r160bB0.m",["cb19ba9b7e5f0bd18734a41db83f4411915933c1284b2937cc2d2fc396f52e28","404ca8b97f9e25dedc1e35565811cb2829f89c0f023c2fcbda07ffeb84644b88"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f9r56aB0.m",["ec30386fa970fe22332ad4e3cf7c25653fe0ca29c4d97091c0aa30e6a48ac3d2","af9bda3f3d345592f97330ef496f417f52f679f2b9b9b72878b784e5f296b963"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f9r56bB0.m",["7485c235616c89a227a7a707958281a7b3a18cdb52cf7a2d4021a11de1b36b9e","3eab8e65e45f9a2c2aed101624440f34c9cbc71d65c7bafb20c9dc9754b8e2fc"]]], ["TOC",["matff","spor/M22/mtx/4M22G1-f9r64aB0.m",["9b1721a74be63620fd7f8f62c2f5f1314d3ca2be450ede318f4ca7c0c7683af9","e75f77fc8cd67c665cd8ac167752cdfe453860e7280521961875c82cb93e1a48"]]], ["TOC",["perm","spor/M22/mtx/4M22G1-p4928aB0.m",["49c95403d8e0a11332fcc3edbed1f1103c8d5777c005313d2acda3b7098d7617","bf1d94081494ca647a3ef15d1542defab6fccd8b319403a123b06d8849ae8293"]]], ["TOC",["perm","spor/M22/mtx/4M22G1-p4928bB0.m",["926eb45f60155846c188bce7a85d0664ac8a4a550c5ac5d73a365a63a93497ff","5ca0aac6a6ca85dc29c5074113321820a9d73593ab9839acb7c207f0ac9ce911"]]], ["TOC",["matff","spor/M22/mtx/4M22d2G1-f7r32B0.m",["89697fca5350298adf2773cad67e0f09978df290536868d9856773d8d1935c33","49c9018ca56c92e1d6942e277307c88ebd6e0fa3387c1c30910486bf29d5a70e"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r120aB0.m",["2f08ed3bf2152d995ade16078316acb685bd19ca8aaf9a8631792850ff3ddb5c","268b43f815935c60cee7891b3a700158404d5d1732d5557f77cb5b3a926dd790"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r174aB0.m",["4159070d99069984058210a4be741535a98455b743cfd46494a826388d3b5160","90734f42e3c7fc80c7c12db90b30529361b59857df8fdb59c2904ff2f9a37293"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r210aB0.m",["ff3747c478c5b924c5392e98fc78bbab5a5a08806e7748a4c1ffc06263e5ed42","32b3401450a7afc4f4a5ccf7856d65e3fc0060b2bdd0076e36579f1bad660f59"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r330aB0.m",["66f57bf433b358cf16794749b7ac4531e66df27364e46100ce624302c34fe676","3a132c049de28cb082bb6cc9f24d19fa7337f340ea9f6280da062b02a5f82e2c"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r36a1B0.m",["f375e29638412fe3f4b5a150e29fa4bd0c3219b29499be3adf220b5be0b51292","fdcd253031efca27b59ddf53ffa970c048672c33ae6b7f13aef1c0e910e1ae47"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r36aB0.m",["7a28ed54b5af1038bc91942e034db2ecfebc64940069680156b9ab71984a9e3b","50fdbf966b91a4c819a00649a8c2a839d8f5758804457fe5fc725c17a79512ac"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r66aB0.m",["c951d4ae8df33584b1c1afa5fec4e9aa0bae89d88ce2309ad40543f5ccd189a4","e47fdf7a936023df9205d6bba41b4ff5666e123e07a02e55a1df84bfe3821c71"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r66bB0.m",["e714d12e924e52d357c5070a09762a7ba6dbbbeb2ec39c66279a32b230825529","7f086ca0534f5a5aa5b93bcb86d7d41ad0c9f657058cc2a56402e33b239d47aa"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f121r90aB0.m",["de5e9b5a7adde80366b46c1a35d0a270b02d54934e7c5fa100da920974818cce","578fb950e54b8fb41c65a9d300b5f8662d74bd3e0b2dbaa877648194fa1b7675"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r120aB0.m",["c8ef31e144568101acae52b364e14150fe65bd936400389ab67090d401b73ff2","af654236766b59e495bde7238e079ef74aa925791cb974327b805004e98dc6e5"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r126aB0.m",["c8197eb323b6f78b1f196e312c2d5c132840fe27d62d94250303b2104a7737f4","c39aa529d9d4dc90ce5701179da2633a22a957d2cdfe0bb714f19f925bd5d837"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r126bB0.m",["d10f7460da3b32dfbcae755e020eacfdbadbdd7763729938a04eb755927a388e","af651edc127e978bc6994f8a4ebc8071bf98c27e42bd87f8084c4e3d68ff47ec"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r210aB0.m",["6e442d1bd7978432c6a8e76273f546de90be18b29619893c6720562035c38414","766b0e909a68c7664c8624d0eb002c7a6e8adb126a6bcb3a873e0ea7613b46a7"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r210bB0.m",["e21f3bd8e667d70da7e76418d8fa4266d6ddf65c7ca19d5f763b7fd97189f167","3ca411b29ce06dfda0c9b3d6925208cdcc2844a1a58f5efee3c9096dabae2813"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r210cB0.m",["fbd0a5ffd1127ae3d1b60e385b739d6b9ca5dc8ddbb759fd71328d051767d4c2","3e138a35ed4f5e53c2cc442e5faf694fcaa5042ef644221a8c1c5408c689361a"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r330aB0.m",["a8e5024b3eb5c134ee390d0e1a4306b66d4bfc438cc75991019c19e4e138f78e","f70950bea6c3d6ef1f940cbbc065a6454db61c19eedbbb62fc0c3a37085a975b"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r66aB0.m",["a1098525997d3c7e2d80744128d5dd8c6f2c3a965f521d4faa3efa8465857ee8","3936ef118a2ac9a7e026dadcd0a5b9fd8db612e13da1303b6ae3106395dc31a1"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f25r66bB0.m",["aa5927ce48f5fb1c04ea2dfb7ea8355c320e9cea6e355aff4845d39d4686af06","416ed092e019d1176a522f9567c5ccba7dcb1b2be3fb314a252e5355ea2cd8"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f49r126aB0.m",["b311a02fb1966250fd74371f947fe22920efa391b62952745696e2dde9bfd200","be3297aa7e19e6b95895be417cb53ff5dd0556e8d380383f1695194998d85571"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f49r126bB0.m",["d547ea33a9bb6d69bbfe5b5b0da724c5e3a2da9163ecb6495dd88adb99a07971","f21da0609e0c6a82820dd7fba226ffe3a1af9fd963e62ca56c90443375bae30d"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f49r210bB0.m",["b5c6d49a9638ae34562a9475058d93c81843b3548681efa74aedc3dc20916939","2290a4438fa6e4b16d73140e2476fcb47ef339b0ee627fc6160102d3c3d09fcf"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f49r210cB0.m",["c23c46d16433d7c6005a6e7c1f5c3149f2efa0c351a88f3a3e80e242bdc8204","29fc317fddb215a1a923b47031fcb08042dfa5d430e83893982f0d803199ae83"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f7r210aB0.m",["e6ecef28a353715a25f8bb048feaf676d3ee89441ef7e78b502e0494024c9d34","5853e98613f430344821fc6417f27f3fcbb29f59dc89aabdda0178419f75bd54"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f7r252aB0.m",["55a67796ba71b58925a0924434690e7c314e0f121a3e79c0fbc8ad70bc8d9be","98163a55052c36638c45d319c45a21bd8ebd2e84a4766ad12a1d8c8a808ab34f"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f7r330aB0.m",["8a2227bf31e8d7da3a3d956080641ae7185785f42d9ac2faf33bff881188a573","248bf9ee9be66ad86b0c71da40cc1845eeed95e1e0e313be2fb544a67ee0c47c"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f7r420aB0.m",["c9546661a2657bbeaca256486947951ccbf00cbcd0699d8c62f667cd36bb40a6","9cfbbe21e936e7bd8db43bd4de7fda24e2524b01c3401a3c9cd25ea0bc79ee1e"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f7r54aB0.m",["39a07639586303f9fce2cb93cbbd74649a91850dfd2d3e4c09be4a0d04f43a56","af819447e1f841ac66eeffb15e955938fbc0f726c42c611af2e242244fbc3824"]]], ["TOC",["matff","spor/M22/mtx/6M22G1-f7r66aB0.m",["bd7866d78c02dcffda8966c11ac9e4ea72bb52000eb723df178f44a00206111a","6537702e616949375496c98de9a131187a217ca5a9b5aa101b1be98c1b460794"]]], ["TOC",["perm","spor/M22/mtx/6M22G1-p1980B0.m",["1f5351aef0861b66e7dac1332e9618c6183f25803869dc1fcec85594de231960","5d954d101157b827eaf3090b427c6ad0f03f49e4c7e8282da0b2e625a1673518"]]], ["TOC",["matff","spor/M22/mtx/6M22d2G1-f11r72B0.m",["6a147765005f30b91b5a8a4d437b09313c3793cf3997a6d357b899f95da78d1c","39518a0fb847f554a71238f5871d47f6f2ac66047d218b9bfb34cb0ee36b00f9"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r154B0.m",["2e4965e3c1c1c9323e5577e9f63222ceab68fce05d269a6e035875043f753bd9","19e4678740d0715979ca09a0a4591c8417eadb19b631f8bd56c0f8054ae02a1"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r190B0.m",["17599b28e35e802c04cace69d8b836529c274e4fe5bf84d4108e2716c5110de1","f9d9d25d11df19b03027b1b3dda06b293b5c40c80bdaf5f18f23b4420eeff9e0"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r20B0.m",["4409094de1f59514f37e0a1867be2e667960a95ec042f95c6c8d58c38b85e178","770f4938ded4b653ef49f4751753af93a79f792761d10038867e8347f6840738"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r231B0.m",["b40878371cabbc45e4a57361586a495e799626a5f5632ed3fa2c4b1aaafed260","1620621771c41cbcc4b2d46b04940c1bbf2b15d0a30abba7fb051aedd08c2ad0"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r385B0.m",["2769c9b79ba4752112e2adbe92a5edd606d561358c8d0889f55a85160bed4e35","94a7a71261a9548bc1a7a45da3be9ca23d475c9671c10d6d6b8caed9726f4130"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r45aB0.m",["ff0692fea6563172d8bbc8ea26e5f118cc8a3f9110fb1c657203e2f9c8bd0cc7","a325c4acbb553816b424b0fc8976832a461c3fefcc3d4ded883b4184d8669d70"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r45bB0.m",["f60080382fe9ef05319328da79b10558a7f014f3ae3fc706a7218bd4dca9066a","3f7d6eee045469ff21e8be1335ce7b48aa2f9f35a0534702cc406efe659aab13"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r55B0.m",["45827a917986c902dfd3ce4b00256ad9ada882227a60e0cf5b6180349e0e2a32","e33d53f48b130da7004c8adf10ebf667bfcbef584fe838c40f23d4c9ce8d09f9"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f11r99B0.m",["e3a208799689af67e8a0da4ba49a2fbfc723d119bcc659ea1dc3b76f1aef5851","a8cefa690109282411c70bf2d8312315a9acff208d5ae3de7825e3eec6a07634"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f25r45aB0.m",["5a5809c0e9b6e9cbaa1c4843b7df043137668521359cd27eeb44a8510c54feef","8353a321ef09aa7b798f3ca9d43b1c2b819c079ebf2ab5ac2a29916268699ce3"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f2r10aB0.m",["5f15bc061ae591e0def590c4ea74faa4d11045b5298248bacc847919f7d875f6","c3bd19170917025755bf8f3fdd3ca83131cc4f2f3a1bbd31e2b9dd7b4b17d21f"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f2r10bB0.m",["d6361ad90f942c4d4e947994126217f71060e6517318e891ebb3fe965dc9ccd3","8828cd7578ea5473e4db0976bca7fd91f4943e1e4cd4261d9d6602477d4d5e9d"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f2r34B0.m",["14b7a42c7354b2b35fab5c5488fee1d70466d7e4217fc9cbc186a0c45fd65b98","f3dad4c7e01eb1ac3632167269c0230070472ec2162eebc54b70f250649a742d"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f2r98B0.m",["af028a7a33b24f982ab9dd600c8bef650522f3fc68e7ac2fa4a19718cabeae1","21c22f73131c5a85d903a5fbab749ba10d1f77a594b84da19a821ae5b92bdfe4"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f3r210B0.m",["3d6b42c29cda4836ff0ede70652ac9101787ac7338e5c4fbe2ccbb0d2d341baa","74c84178d176ded7ee498bbeb394e43569cbb3ca35d825449d2992ee0e7cb040"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f3r21B0.m",["b0d2f11e2760f04b1c68208b227fe95c32cbf6fbe13293100451a1f7618a0a41","dbf6be8d7ec29bf5f8c8cb5cfdc080902f09a07ebab0d33795a86aba2462876e"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f3r231B0.m",["566b5daf57033d2e8ef3300b67514a66633a0733b8dea7f6f2ae08170b853266","48856c45fb188807300935ac547fd1b7c957fa9795a7251ce665736bb074417e"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f3r49aB0.m",["ed22f9b1ceb02018c5c64eb81ce89514745a3797cca7017e3778daf14525ebf7","85818678769184997bd68f02ed8427c8bdd74e6459dfc3cb80e8bfad009ca998"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f3r49bB0.m",["1ca6082c181373ac7c4b401ac03d0094479d4102a447f602bd5d856a3c521f88","1cf4b8f1222b688db571426dc0bfff75d71ed6cdcb361eb106b90416eb371774"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f3r55B0.m",["37785275460b3c357202f069afe4623803ce2a9497da75dd3bf3ba098fb00848","837a9d762e1fe39fd6a0ee004fcf8bfadef125e4a39e537c13157f832fb488b8"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f3r99B0.m",["154cd2ca4b8616123b822fa48bcf62da5b2b93add66e1b11b1a35b3f27c337a5","a818cd6d9b6483ca970f869021263ca687ac4dfc11bef495c00ca5b61c23245e"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f49r280aB0.m",["6c180bb232c54c17685ab606cf5b827bb9827320b9e7a5d2d7bf213f23069153","a40109bc73b27c334c9de543db09185be192b943b2753bf888f0f1b960170b8d"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f49r280bB0.m",["1d4481b7df21e320dd468372ac26f1bdda52171c60f103203a4775e4fc9bea8","d3c504aa35a42e00a9f653bc9a45f05330e0c81ddf727ed7cf92c7d79779ee04"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f4r70aB0.m",["c32171b972a6d7aaf3154db16612445b3d63e3a7bd71e77ba9efe847daf10a4","5a553ef524e59fca84955e7defca78512d6fb4e3f800af608cce0a6e6aa41d4f"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f4r70bB0.m",["ed65de79db852fa5b4378e9687bb833c92297d9db7030cdc80d3e3f5b0405e4a","3033ec344fde3a04f3e457aff70fc4ec0890ee3b0046afdfa60e5be16032e8aa"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f5r133B0.m",["e2b1297f27a7c177f66f3937c1490faf13fad2745b53d322a963ade864673a1a","1cc068d819e6909153079d159911f0a7f018dae8ab30e9850bee750eadc765fe"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f5r210B0.m",["acc8a1d75305221ab86deff0728b3b21a6cb78ef8dd4413db7dac4303a1bbef","6eb8d1ee9fbfff7e2a66e821d698ee8ee21692ad8b46c59a80a02fe547c6585b"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f5r21B0.m",["a2e5e83b5ff7595d75d5c1c69e80d3b49145be60c6682c2d13e43a9329a39763","3837f80fa516c69ab865d1ef458e14057e2c37c394f3008383d8940253e826cf"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f5r280aB0.m",["af532f3788ba5697eed073e36f45033d1c0d270c87d52794eadb1b379e582346","83c39a2d731284163d858edd7e108ce3bedc19e49f258e726298f09d90af60e4"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f5r385B0.m",["45f0696e48ef097774c9abb1d67abac2c8a83a178ed40c8e7843d45990053dde","3e5b097199bf8fae9028707c9ef5732d9889e3d5d8d821b6e39fb1288f8bbfa8"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f5r55B0.m",["3b0807ed7c0ef39e5d4f967ceaf9d503e45fa5acfb317f0cf12fd208823a75b5","6d36c21a7a4a3a82450bcc45a074c6a6d8f3795e893cf69af88df2379f7178f1"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f5r98B0.m",["3649d6c4359a8c11a63bef3daa7f2031576d03b5376062b3e43641077ccca80a","ee329e41e28a78d8a05f2c3fcaa222fd50954527ce89cbeebbee288de7b147ae"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f7r154B0.m",["54f5a21256dc20f49abfd9fa4c46e120b7c7ce333eca756224e7b944399bebd5","d31648f1b2cc47e789425b317dbd0db1d31759f0ec2be59102b1a13382693fe1"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f7r210B0.m",["f93afbbacd1d5e36eedfdf4ab17e738da35c6263aca9af2fee0c3abc0546701d","4998e55eaf37f9474fcaa1aaf091f73bc2eaa2f6ae0169e6171a48af5903e9c1"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f7r21B0.m",["46c61209d1cc81b3b1818f888862d9c8c26e0dde11e33721f388b27563ad3e5c","2bc7e1e7662a722c095e1b5407a0781648cde2f798793c6a1de1b73f68b62e01"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f7r231B0.m",["92a6b4bb310419f1aea831cb92c141d1f820dc68fd0534c3ef3b8c2c5bbc903b","de9397a088000e011a42eeaa60b782a78a4a021a11bdb96c68bda1d807dfda2f"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f7r385B0.m",["4784cd2431597dd51d21081d23a0ef4f309829cbecf23c2eca7fea895d8e85ba","988cff9e7fef1047f2c9b1695b0c967fbb89f07cbdb468ed6cc653dbf871484"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f7r45B0.m",["f649e26f743066d64975c2a06bab1b42a3abccf4e8d5b13e66fa1ac248b8e8f5","5b7b7acf215c25f1c9f58e71ad28d904fd98efa795930d7c15c2a498161672c9"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f7r54B0.m",["d69c1c3cfdd85629f0a67c356d706663717fc19fe47bf07cde29f0c0a703a9c8","dd115aae1e0ee351e36142b090ed83eb74e22467067386cf6005f07101d75444"]]], ["TOC",["matff","spor/M22/mtx/M22G1-f9r45aB0.m",["e43c0cdcb64d203bc6d56d3f6d412277a9108046136052e3e9595d3ac45e326","f874587f209575f9112ec4c9c789fe73085dfd34f235899a23680d3cbac5dc8"]]], ["TOC",["perm","spor/M22/mtx/M22G1-p176aB0.m",["1a0bb826774174fc8ec78d0f163dd05c687ef99db32029100ae63c596a108f39","9b3457f3dcb11e3dca260f7ab84a135c92df223ceb5db7d55abbc8e1c5e30be9"]]], ["TOC",["perm","spor/M22/mtx/M22G1-p176bB0.m",["7c8999b8c413b37ec12883a59c2e70f82dea2226eb976b59358164caa64682","e88bbbb094915d23a33b42d5adadb56eea9faf563f1ba39533381b8f28f17351"]]], ["TOC",["perm","spor/M22/mtx/M22G1-p22B0.m",["a3074aafcd8b5ccf18f2601837ebe6dc6e271aa478921457c96e9c7dc5493883","b161b9c259dcd62c3788ab234d1dbd8ceaf51406d87d0222a09048c4aa5ff94e"]]], ["TOC",["perm","spor/M22/mtx/M22G1-p231B0.m",["9417e0f36d412e93e0d03d4a835aadbd4c486de38f6d3931e93bb0da460bc66f","e2ba4a87de797276e0cc4e5382227611a9ebc3c4f665afce069eafcc040fa081"]]], ["TOC",["perm","spor/M22/mtx/M22G1-p330B0.m",["fbe07d189b926f6d288732a7b20fce3566cb557e30e2aba8b62532ae4549d5ee","f8061777f2fb272041dcc1d93126e158500aabc6de913833ba38b80bded6ee96"]]], ["TOC",["perm","spor/M22/mtx/M22G1-p462aB0.m",["6da7c1a80848396f0aee32cc881ffc338c924f524a3be7ea55f8b8f141ccd67d","dd8abcb3f48a6d89a2e411e854ea0c5e3bc937d3e7c2c319f8d6cb46507994a1"]]], ["TOC",["perm","spor/M22/mtx/M22G1-p462bB0.m",["eb0f6287a4c611726d63dc7a4b3f88cd516292005944826d256d107d06ffd882","8a8220657abcc7d3f7538437e17fe6f8fd281089009a80719b122a17b4dde8e9"]]], ["TOC",["perm","spor/M22/mtx/M22G1-p462cB0.m",["da62f3be251018f0e8d5bddc6bf25adda1eb8ce7fe04cd452e4df3a6160acdec","27f0fd7792ff4a6dec878de38c8988fb6c135d9cfc11d43ca0846fd3d18aceb1"]]], ["TOC",["perm","spor/M22/mtx/M22G1-p616B0.m",["332725e4081875e4cff16cc3dc7acab88b9005e7cab72db61367981d876497e","f4fd784705753270a28beb5f4fa11e901730918ee6d32edeee17d60e0cf7970b"]]], ["TOC",["perm","spor/M22/mtx/M22G1-p672B0.m",["6802fe84853aac9ffd46526656f7baa143e79d35d5d68f1e3b4f86b5855d2bd7","195e9b4a50f295e017bf95e2ee6f1648ff50952ff47c5cfe755c4c11779e9285"]]], ["TOC",["perm","spor/M22/mtx/M22G1-p770B0.m",["4106b09e89f1d7543cd68125976541b6ca439c1872151879dab4bed45f2f57e7","2d3d7e0f69656925b1f88aade13739e329bde071d2bbf96ea13b273e4ecafc11"]]], ["TOC",["perm","spor/M22/mtx/M22G1-p77B0.m",["5367266770c1a76ef83b1b1ade0dc8211c3e160c7cb09c7405739ec6547d3956","49b8f1de1bd0f8f08f8f588e54dc2352dd31a60889c364c090fc3e84fc9e706e"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r154aB0.m",["e356317d6b1d0a1ef8a1e1a3753db6e27fdaeb40e179b5286f829767b3d47ef3","aeaebf907dc88198f554dc273d510c2b9b40e53812d3e875dfc7e46452f06164"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r190aB0.m",["6e5d8f74e22c971496110e4cab87cff5a77ac2d47765f42bd11bc33c5222f541","c3f9f37d6b23d1c1872bdb421c3d05946f1a305ec2d7597aee891c8781bfbeec"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r20aB0.m",["5c7ecf5582c8fc082b6983bea4e695bbd619c5f5c98bfaed769efdfb4f67ebfd","60fab9988ae33c89df49e7c6dfbdbb098aa5d5f5dc81edb5cddcc792fe317ac0"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r231aB0.m",["c52dea00d7f3a9f27f0422db18d99f0bad7c5a001ec51e02ff4add8907f1c314","867b64d5fe8afefa3b199173226d09f070abcfb4a384319c39cc88cbddfd64cc"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r385aB0.m",["f52e1961853104e38348769c3ee9f662ae1f9328cf63274ebf669167d1d55239","9e579271b6c9882d6fd719ca65796a663bafbe8c223999945d117eb824cd9783"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r45aB0.m",["6a625839170029ab6c5896c8470efc7440f4cf0b033a360bfe9dae269fe3e1fc","78ce3ff1fecc245a3fe219251e86406f9ffdfc2bc4c0d78d2e7c85d9ad5175d3"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r45bB0.m",["1ef6e9703ae79eab47619a4f81d78c0f78444f3b2ba3710cb2bde167b69ec0e5","bd0d702f479d47c7b2417e537727455733af850b23d14ef8bb9f9599b0b32729"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r55aB0.m",["6462762512acdaabead8868f978e75f022b2886b14bf2de12ef57e4b76eea37a","cf68b85e7de3a6cecd36b240edea3cd0e8d3612e3f440cf792b404ae726b1f86"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f11r99aB0.m",["a27edd2d009a77ff346e538ec9be28e96e57013b4602fe5a45846458562ad753","1222d289b6a4b65accbd2ea55f44a395c3ab7cbedb07a4ca864202d1940179d2"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f25r45aB0.m",["984c1d88998a83e18ef5f28b8798393abe37aa8ab51684e846c933f83a02f530","db59101e3ad370e5fb8b60dd3751523a1afaed439cd02aa4ff5d22bec8fec3d1"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f25r45bB0.m",["285f40cc65745dca1c5501121c78583a69984511d9aff94635b953ad9a140f85","391064f34f86a2730308bebbbe43b68cb774727e03f6a7464bedebe91da17cdc"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f2r10aB0.m",["5ef2daf3e55ce3fd7bffd65ea676605988a6c729df531a6dc19a68381a28d8af","dc861773197135db2c0e3cb4f74e10ef2b65ad8282aa99ee85d9ed2d12ccbfb1"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f2r10bB0.m",["e2d65765204f106e6db6551234ef16018c00dd18ab2f34cff63d6685f573b975","c8bfb0aabe04c63180a9fc83056f22dd64102e85eefede3aba93fa367d5040aa"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f2r140B0.m",["72b4ca9315aff6dc7ef6912bef64be81796da90b6e493d28708e896c2b36868a","b78489604315aa75180aa99a9843bb489d642bcd21e8847e4d28629a44ca6006"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f2r34B0.m",["115cc4d15902be286f4655508575f69da7624487eb439f6e7c96a727a6a05217","1a368a4eb1277eac1b4cce412b9909e88af70acb1b7a9a75dfa21e54627ff9bb"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f2r98B0.m",["a218b18629cff99a6cd5370ddbc25ca44b1b0c672d178abc8696602bea3a18b1","eb0edf29e08963d12bc62a29e39fd0da2a05e1e805f3557172497bcb60ae6018"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f3r210aB0.m",["f8e62f350c290e0e8ba3a808ccc785ce178be2c5b1e0b33fbef99feba940256b","d74e1f1912cf04c9a547bbdaa0874595dfef761189048cf0ea80e9daa41d5139"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f3r21aB0.m",["cca41df917ccbaa6805808909639ae2b0bafd42c516d951da1eaf3381b765ba5","346a768d1bfc61558878009d916ec7f73b5ff35f16f4dd9f1753e724063d8821"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f3r231aB0.m",["a0172866e8cb7fc4c903a5d3c35e6d0d04e0f8e34b491cfdcb4275e809958c05","4c8fbd79cc94610169eef490a0b0ccae024920eb0561c9d85460e35c9a7904ed"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f3r55aB0.m",["c9708c8a0f923b3c2dd58af0c82457d5ec49a02125192a02601a8db4a9f776f9","8a23864129b24659a8344a1282ff54b8bd00a1261510ec0d9edf8bf83b808a73"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f3r98B0.m",["58eee59baf3b9c3c725f17918feff40e61605bad960f6d04680b226b0cc21de6","13ba1da065c0185ee767535aed790821c5e76fa5626fb425be0117a4bb30dbe6"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f3r99aB0.m",["e63e9f62d311fdb3433f927862771389df2cbd82cadaf31adcece294192ff2bb","364d7946ff521d108f2d516cd66945f935ff534ed1f7e7be41af6c4dcdcc4d88"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f5r133aB0.m",["713a6f86d4015c3f1b1efddc720a198c3c80266bc1b4a0f6f224764969bd09b4","17fe4eae83f808fad5b0e9423c3691dfbfa4e65857151ba23d498a3ba25cab8"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f5r210aB0.m",["5db5c300345892a95158fe573fb12083d9900891cf29eb6247ee618132a8221","c4cdf8d8930e238ef079396ad5fa21aab1302565c528b3b11f34198aeb993683"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f5r21aB0.m",["7ebbdd9028d61a3b06f873cee9fba85920efedd51dfd8ac5ac660d13b7ad93f4","d923a95a721a1a77fa436b19d624c9d02dd3ec7ca10c50132086c9f0af340b48"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f5r385aB0.m",["9f300057027250118e8e3809976bbd6ec2cf74f26cd53b8e4f3f1e7e1cf54ec9","36dd39888e6bc6807f9189a05544df9a2e3900e5d8f54a1884a7ea531ea4191e"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f5r55aB0.m",["eb3cc67e7b351a72c18732f9f60d4aded2b9e3468802792e9db16ca53e270ca4","2dc65e267bc4b6fdec5ee028acf2295e24e24812799936875f4179534d378485"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f5r560B0.m",["555d1204b5801235d89dc65115064a1ec9e542f7be26c392cc14d40242a1ac5c","ce3607bcd52df08133272f16831affad0cd8ec20628a0074acb22750c2562632"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f5r98aB0.m",["3992bc9d1c6ec9b0640dc07668fcae17ccdd295d3ecfb0e3bc8e1e051c70318e","2ea89221c705456fce9f6533408f56113bf7bee671eec4844d6bcaafbd057ead"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f7r154aB0.m",["d7163af2889d29c1ce1304e5dfe9164c387fee1cf5b5e1bd5243d918411b6c14","a1baab15722512ab983f90a1535510da465ef9e52403a2a049c9d1030b81ee3a"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f7r210aB0.m",["6e2a4f81424c7ba5c8f3d2ffda642244572e7602931a6c0adddcd9935c7dccac","ce96056ce2a4bcbdd3c86de6b25ca601a1baa34f478e990786febd93e93ed2c5"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f7r21aB0.m",["703a9cebcc68c23219811c1fccd863a904e91444e24541676b786543f3662a4","2fff71492b05e0b0db6c5328239762d129dd4608dc14eab06d4be2fddae3ce3e"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f7r231aB0.m",["aa4701edc4f084774e22823ce01f340188115bdbeb59925afade16d4e9455067","e4539a89a1c9fac8e425f5dc1bad660af330498f889c259c813c4576f2b2a0f0"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f7r385aB0.m",["f47a10df950140fa241c527c2630b0a36f089aadccf3ee53e99577ad3e638fc5","daa365c428138cac0004cd00a9547a0938e58483630fb43e23f3492b8d77ef58"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f7r45aB0.m",["a71567edf6f79612bc6e6787f63e652aefbb9086969fb5db2d91308cf6327dff","ad2c326c19a98860de934be6ea1ebea12f1802882229bc13c22eecf4e0170633"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f7r54aB0.m",["410cfbb0683e867c2323458d3610680d21031a17e1dd36317b12907f71d94455","84a7ddbc99c08005ddf392ea58e741dd25ef9be3a0edd610beda0e66e484ebe8"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f7r560B0.m",["f6643c346e6183a35441b53ad2451923d40280a17f2b8f53cf822b1b8e1a36ba","f9bc131216e686b50bf750f1b68ded136a9c558f13ffdb4496f7d3b9cdb8bbc5"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f9r45aB0.m",["799d27a35a0fc76705e0394256682c06e6da8f202ecc6d0c796e12c251e1b7e4","7633d31ed2ec13fee03036f7344fa7e932d63091e5c041ab4a35ab2a1b50c13c"]]], ["TOC",["matff","spor/M22/mtx/M22d2G1-f9r45bB0.m",["7d8207f8fe50c26f98186def1696156dfc81f47a6bb3046dcf7964af7707642","91bb9e5160364a8ec2ebdbd70b4ccb04563eaccd36f2b4988467a9acd5c3f3a8"]]], ["TOC",["perm","spor/M22/mtx/M22d2G1-p22B0.m",["3d6fe089bcba725bba94fc0699f87da5f6aee7ccf80bc9ffc9064dff01b0837e","7fdaf4d549e000d853f060dba1df259f6c71fc787b0612156386636409efed40"]]], ["TOC",["perm","spor/M22/mtx/M22d2G1-p231B0.m",["24d30cd32f3d05c087c7f07e5d07e2d0fb2320e2eb7f2a90e7bff8db92793477","3b92264b8d58cac8df4b7e3ffb902082d6e99604e0fd32a911a73906d423cbc6"]]], ["TOC",["perm","spor/M22/mtx/M22d2G1-p330B0.m",["49b988fb81c0c3f7c4cb5b33c2bc8b9c27f4cc4e2002e2cebb216ef43637f74e","cb47f852d357bb9cbee2396f26ac2ee19038f092a8bb00684b34e3821518150c"]]], ["TOC",["perm","spor/M22/mtx/M22d2G1-p352B0.m",["c918222661dce36923f33ea008bcba991819eed170080f5a0e90fe7c927119bc","207f38807e3d4fcaf4df31219ce0e5fd39206a25b857b731db687b09eb2fda9d"]]], ["TOC",["perm","spor/M22/mtx/M22d2G1-p616B0.m",["d25aab94e21f95adfb30de2e3b570c4f83e8b4e242c08e3410dce3b162920161","c4dafa6fda48922f4e19292821901c52a355981c42a111b5cca4baba2583bd77"]]], ["TOC",["perm","spor/M22/mtx/M22d2G1-p672B0.m",["a7bca6bb002cbfbdfb2b97fe9eea37a31da0db4b8da05094544eb2d800cb0842","b56aa943acf05239cd338d5356a0d8e787e52ea63272be896dd3bf88e18dbc59"]]], ["TOC",["perm","spor/M22/mtx/M22d2G1-p77B0.m",["2bc936459c15ffa3925ed0956bbb2ff5c8e4dbb73468355c3601925c516ee32d","3b3ba8ac07f5a1ab882a21e519c2afd23cc81b08e297eea8394b1f8361b6dd80"]]], ["TOC",["pres","spor/M22/words/M22G1-P1",["e3be3a02385337f839f7438ca93bd6e3749c9c2b8b3a1d2aab8ff073f9a54136"]]], ["TOC",["check","spor/M22/words/M22G1-check1",["aee59041b71df01caf60beeade4af9a58a1d26198ccb27d5bbc11a01b792ed8a"]]], ["TOC",["cyclic","spor/M22/words/M22G1-cycW1",["149ed61c9eff4c507dfe49c99e85006baa9ca2aec7051ed583baec0c1f319057"]]], ["TOC",["cyclic","spor/M22/words/M22G1-cycW2",["ffcd70eb5bdf76623d3d59060f284fc58ca7cfa4a914d394f8c13edbaf9eeab2"]]], ["TOC",["find","spor/M22/words/M22G1-find1",["9292e22258cc9b574fd866de53f4a96a48a562f76a67c1b40b68eafe04655941"]]], ["TOC",["maxes","spor/M22/words/M22G1-max1W1",["692dccd80ac0a4b059d5acd78558d955e9f0a7f40212a7eb3e5b0ecfd0a8a7eb"]]], ["TOC",["maxes","spor/M22/words/M22G1-max2W1",["33eecd4be92f33a161912bb9bcb4b5328f9cd1d35ed74ca0006cc9d59f43fefa"]]], ["TOC",["maxes","spor/M22/words/M22G1-max3W1",["e8ad02985e54434573f38a6c7cd1f80304f45efe8cb8c0bba02d6ce80d3b74c9"]]], ["TOC",["maxes","spor/M22/words/M22G1-max4W1",["c176ac19e44a512d5c089aeed0de843657bb94da9a179b20127fd59068680194"]]], ["TOC",["maxes","spor/M22/words/M22G1-max5W1",["4c0171acdae43bda2221c526e7c38c75cc12b3832373d62a0e48eea0864555f9"]]], ["TOC",["maxes","spor/M22/words/M22G1-max6W1",["ea0f6a7e1c10d8214b0b579d0cb810cf49a857f475461bbf12299d694daa0821"]]], ["TOC",["maxes","spor/M22/words/M22G1-max7W1",["60131db7d4a2b3d21768e7e17083f66f952be8703446e63eaa33f01207254d7b"]]], ["TOC",["maxes","spor/M22/words/M22G1-max7W2",["b637b65b649e47b085f60363cf80c0d03b424894a0fbe88fec4692c670850274"]]], ["TOC",["maxes","spor/M22/words/M22G1-max8W1",["9dd20c707b686b7adbb6d32ae980da97bc012e39f442c96f183c09e7e188f471"]]], ["TOC",["cyc2ccl","spor/M22/words/M22G1cycW1-cclsW1",["b02e32fc9a92bbaa2860b1578045b7e946a3c7323b9cb5fb4ae2c872c6fb82f9"]]], ["TOC",["pres","spor/M22/words/M22d2G1-P1",["b0cba1626f517a90af0d381451b5b0a88b753b01d48362ab0ac02fb68b5eedae"]]], ["TOC",["check","spor/M22/words/M22d2G1-check1",["d8041d9e607a076703574d81c39491bdead43404ac3b6b6b0c06441a8808f8b4"]]], ["TOC",["cyclic","spor/M22/words/M22d2G1-cycW1",["7e557a16158fba84cbce704cfd93885842ca53e29a1b769b8ff5bb9436aa3e89"]]], ["TOC",["find","spor/M22/words/M22d2G1-find1",["dd465727ddaba9b513dbeeb94c3496c38c6b4bb0b496aa9cbe5b5a805bf8fe2a"]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max1W1",["18a6971deabcd4de9cc8d394960acb1ce8db574c056225360a4e601325a7a182"]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max1W2",["8c7394b0b0e309110e909c2977d66c58c8f0720a4063274571510726767cfcd0"]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max2W1",["954c23ef2248455176ca7d41b8f79e177f13c342922db6df10b6040be7a9406b"]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max2W2",["d8a70bd680604c5b7177e2ac15b5e5cf4196bbee73860348b4da880a9b752721"]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max3W1",["562ea4cbecf4070411c3315b32b68fd78d2361b5781bf7e9557d5563988778f7"]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max4W1",["44d027e229f4351acc1aaa2f3e8f5f7da944f219c6de73525f72cb2a6a9dc957"]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max5W1",["f566d0b6a5e27b244f81607ace6a2b0da2dc793fb1a9d8529ed9310b4e76df3d"]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max5W2",["f6ebf96e6c12c0a8d50c1722c6ae48045a283206729dccf190b84226631a3e85"]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max6W1",["8a9b801d835ef3f146f1c019ee46a2b20510c6764d7839be12c8aae95b63a55d"]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max7W1",["42cc4f0d2ce1d25c8acbb718fcd20ed5fe814909cdeea4d5ee5631d9d58dba46"]]], ["TOC",["maxes","spor/M22/words/M22d2G1-max7W2",["d3348fa2fcc07c632c9984d71f44193f1a35ee6d5393a407a974eda56dae939b"]]], ["TOC",["cyc2ccl","spor/M22/words/M22d2G1cycW1-cclsW1",["9b1c6856e9cd62dc6305d3cd1ca2cfc2a7c65febc8cd345e23d79242a422bbec"]]], ["TOC",["matint","spor/M23/gap0/M23G1-Zr22B0.g",["a68895104da40c14e26b3c51703afb194ac4c2cdcd2464fe42d01aa5fc910d47"]]], ["TOC",["matint","spor/M23/gap0/M23G1-Zr230B0.g",["b0f1bdad1465386b84b48a4fa39e0cff949e883d048853d528faae53c32d32b9"]]], ["TOC",["matint","spor/M23/gap0/M23G1-Zr231aB0.g",["6a36875e287d8ff8662f2b7e4a917f97e8dee190428f48d81e0b2b4f87c6d48b"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f11r229B0.m",["6c52e75343a25cf8e1ba29319f0d0ff3e6ea8c90140109aa02c14839c7dfce8b","3dd4d76b7fb409d1d2dcee08c02a0b59df63558abb008afc8e30db7427604cc8"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f11r22B0.m",["c1ed48937547089562e9f2bec99e6c21c89e2498d8e3a74a65b90169c3345d92","99fa890a82981773bec40ebfa69f4ebceaff52699c9ce8d3f065d006bf93373"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f11r231aB0.m",["4521644f842c446a267b5299f866b973e9e54ab0e99af1b4f214f24a5804a379","4c8c169b14e5d15f0f5bb9825b629364c19bf9a04519ab8273a1f91f814f980c"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f11r253B0.m",["ef4748484da16116e48c7d68fb23e9c70f2652b6b7be4ef0051bb1f99fb0191c","eecb4151200e8c6a52507bb220e3db0ab1056b8daeef3e053d4058c11fd60556"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f11r45bB0.m",["2390e8116438f44ea81cf1784bc9b6dcefaed10fedbfc4a6a375d8dff228a78e","df38d93a421544569511daa519258e159d6ade67623a6b3b80a4a3ec3b7770f9"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f11r806B0.m",["34e4d698ba85f3ab2cbc6113b72f123cfb8b7e00d5adb0b0b1bd9976397671cc","256d0ddd47849444a2dfdaaa5cbb39f8887794041aa776ca8647c542b83db161"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f11r990aB0.m",["f9561a7fb3c56d8560ee407b1c2949d94de153dd2f945ea204ea26ba1a40a17","2787f626798df6076ef7f85ea125dccaecb9ec5fc70de61d77195fac6c770251"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f121r231bB0.m",["925bec967388cc5f1a02873d13dcdffa71c11a75e4757fa9dc19e146f5fcadbf","9373e7c0298ae176f79cb7e51689ae01eb8e454e6fc1ca8459fc404dd2c520b0"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f121r231cB0.m",["de82839d36f00f402fe57ce35eb3c9a8ccbdda4651866c92b0a8a56b816b7454","270943c539a330b2d573e7abe806fa4136bf1baa33ab8811f27055c820932bbb"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f121r770aB0.m",["98d8c9a9423f4111e97ac66b59d1a4edb94571f078d32b0d07648ce4efef8c32","f5afd5978643eea0b5ab23dbd993260bc30655541fdcec514af59445aa5cf180"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f121r770bB0.m",["e2726bce8db203f3400cff9932d202015824ac292c1b9dcfac067574e86b2b6c","b03ff8d7ba5d569d4cdd62f27c074f636a20704a31233807b1f832ef89feccb0"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f23r210B0.m",["78200c772eda61b7974ea0622960ab6ed4fbd40968cc8fe439b0d4f35eeff343","e2f4e5acce8d5245cb6dad1aeef15daafc94c086ebf0f357f83e216066e2c814"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f23r21B0.m",["703204a1638aba64465c92a6be68907ef2831f682496ae32204e823765ef7a48","94ca121a18e0693a2b8de0f10c7f7197bf91915011d43d7508d3dcf451f67bdc"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f23r230B0.m",["b5a3f6bbc869eeeed5c81d231ef7122acf5f12f3e4169640a7300832165e844","a3da63e7df3125d3fb1855fe7d6e9d103d1e8909be204001e770bbac1b6614af"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f23r231aB0.m",["bf38add1f1d7bb2745b12b47ecea3f9f7980ceb93c46a3f046c13fb04d14b346","2c9bcf1ccfd0840fbd81934aa8a34aa2da92c9ff2adbeee517504552d5aae198"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f23r253B0.m",["e5b3f5bd4c1631bd647392a2383a12031eee88ce8ce7d605c28479d06723e738","89645292225d7a63abe0e8aeb614c6280b25b1e9f05470cce9bd0d1975dd9de0"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f23r280B0.m",["8b8390a0c7d69d9b3cddac0c4425fce86bb3c050e4b1a0cb078932cf50696115","3b98ba379820c43fae360605495834359f25d3c94dba14def3cc016a5b69aef4"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f23r45bB0.m",["b0a7dd7a2770bf39795a80cabae6ab9318a18bc51677d718f9b233deed21386b","6bd55efb23acd57726f1f27bd7595c16b947c1df6a4ede583058bd4198f10421"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f23r665bB0.m",["700bb22d5e5b61c0911f4632820ea78eff4b926604c8a1199777d01e866df923","ac8bf9d8329742a18e90b729058788edce19c028c309747117cab96f15e976f2"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f25r45aB0.m",["1dfd9d3de5d4d20b930baf5d7802929eaf9ffba8236fb6329a14ba4092a15116","d7461d5aad03e2ec0a2fc8c1abfd16e1a703c1b73db2dce125366fa05fd11428"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f25r770B0.m",["8252d7b7bd7dbf22e4433b81028a8e6d03d76ef09e14ef9b105406be6233a52f","21a0d32c0bea0e41aa37fc6dec5dfeea32cecc42ba3c9421469d2950e32b3b58"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f25r990aB0.m",["55280a8b7c2a450217f668b825df8369a51f5418176e5efc9f0d9c5ecc9f811a","a2942d5b754e42875fcebeff8f1ccbdb55c885ab73d64e899485a953beb16d2"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f2r11aB0.m",["5836afb18d700faafa59f52a9c04c90cadd03c63e913f607be8840c7d6e6bb12","db7f3887bc0ddca090339f4592d64dec27766397fd944a32638ce7648c94bc17"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f2r11bB0.m",["a65cab94b9b180e4c71771d681957490e9fef431748ff976f664647926553651","b99f0e7bd58fd04323d5db86824a9f2f361672dd0ca6ee87bbd21e9b7205f4f4"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f2r120B0.m",["d402c9b02e9ce24feddd5ed1fcf0bdc74ad1bc192d0c6b7222cbd20c7f2f9a88","ce244838d98f82dcada83c142f4f7cb771ec00d6b5e9c644b1d5ab5f65f3a01e"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f2r220aB0.m",["d2b5d6934326c26b33431443885c493f425b445a24e8be1597425e5f2c20af08","ece50ebfa06a4ebceeae739c9bc718035a5ac60e21f8a04dbf287c61ad21fad8"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f2r220bB0.m",["ba4e755cc0c004abe8db7bfb29feffff2d3ff0824b9179a2c6d0a87a82a40347","5fa2041d374efb77d0945055dc9e124b223ddda734452aa6957a80bcabc5bf47"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f2r252B0.m",["63b21c3f75d4a9639ffaba3ce8c3506ee349dc270942cce0e36ba21ce49161be","4d86b214d634f37fd660cd9157538475ec5f5fc39c86aa285898ab39ee526727"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f2r44aB0.m",["cb818d340a0742a64aadd42dafd6e207b74812c04012fb898213b8fedc8458b8","2b40faa37ceaf2ada08bb1ec08090fb8b7ab97f57bae9b29bbbce2d89327663f"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f2r44bB0.m",["8e521f991ad5647005f7b1941ed8d2cb306cb08652e29deef6b5c2994c481163","4fe3a66ee2f60868b36a11cc55c5918dc7f7f5e77bd7359f97a2365cfeab97d2"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f3r104aB0.m",["57d704bd02724d02c31a86484a660950f55b012a1b2c71adc2ba91e75c7b792c","5e580f375164d523b400294f3eb04d9d2d401b4d934865d38064d3d3535cd5ee"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f3r104bB0.m",["21c3c9ede79740deb5c52b1751dda31ac35b5a451f402852712d2e830599b92a","7d95ee38f663725ddb21fb1cf23e0f1f146e5a8da44cd1c047de47d906898d1e"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f3r22B0.m",["8a8af94ded8472a1c413a5ac9f48bf13857b937dd7d4167832ac6fee6f772655","da30a43014eb9f55829df2200d74a540c0760c5a713aa0f5c35977d7bc476adc"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f3r231B0.m",["64235cb00ea970f792c6ebf135f9a65ce473731f7c94f3d5eef26a550b9ff6a3","ba096067dad3d77b0f121b4a483748b366e7defa804f8604b9332a3f4d85ffbb"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f3r253B0.m",["9c29953530221380eea11ce25128aa0507b06b86ae41286b3f326c550d8c6941","4887791fc14af01388016d3f08ce840b3e82598387960a529ba16e982ec922f7"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f3r770aB0.m",["4d9b43ec4cfe183ec9c2236343b79d82a290ce2ce26b9a49093e2121c1658809","336d2a51a53d69b3da8602a577420400554125b18682864003322a583b07ae8e"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f49r231bB0.m",["4843bbaea91fc4738a64d482e5b28e198361668551c48d996508a01b19e00b07","ebecfd9938738f2ef1d7e7ec112db6e9c12a12785b58a176c577c70528794d8"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f49r231cB0.m",["cb4ddcdd2f707a72e7ea0a964e922eca24e4d3be7cecf1c18a0571f9bed61cd7","222d9a36a14d6e0caea82710e2c92a3b46fd2c8ec487307f57266497824d024a"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f49r770aB0.m",["1d298004aa7d44388cf1105871abf4d0cafbba552f5bd9fc8aee467fb76fcab0","bc824ac3ce935b78b5b1aa053e0bd0dd345cba06118eff1ac86589961a04dd40"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f49r770bB0.m",["3e764340f59a351a27b7087bdf25fd2f81e99780d6cd949f125cc8bcbcc30277","e695af4e63dde36ecc36644d9a112418fb71461bd78bea661e1e1837d86f2a57"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f49r896aB0.m",["883ea51955bd9b30c4b7af63696cbe6e57453419e9c38f372c241acd69aaad49","a6b0d51d63cef3a869bd336f482beb06c9ac80cfbea7daeb225dc63a96afc7aa"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f49r896bB0.m",["b4877e6968a2c4e8c86c5cd05fb666f481d1da777607aa68cfac8de0145fdaa1","7964f223abf3a5d580273d2ef7c9716e509456f2d779d0070f671b4205e44dae"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f4r896aB0.m",["d07a158cfc72f3dbeb685f644cd47c57c75557d5a3e337c686f80b357c779c88","f07cf4c09f84f59c3e7aa84f290338ae337f915c4d67c200f5f7c1cf6ab02348"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f4r896bB0.m",["ac0818f53eb63cc3647ed60b311b094b05778f354b10fe5a40bffbdb1d8a515c","3d3f78ba86febff98737ac2fe97d1e65f41173d19bfccf1ad94498b8d191cfd3"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f5r22B0.m",["57e6a8c6c54cbed81cc48297459784359eb73526fa74bc603ae426e33e832408","b1db290b6f53cbe81e0e7571ffe6d20081b77f620c5021a0d531ea67adefb8e6"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f5r230B0.m",["499ac37ebeb706fae2ddde7be40e3f7cd738aa4fd96eea1766661872584e3cdc","1ef2078ca7c0a0380c103ae1aff85546738dd75f04f19c0ddefe58fee55f6d22"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f5r231aB0.m",["33166468587c9b55f7f0fef492aed7cbbdf1bc81e84f3c3fa55fe07a263a76c2","b70e673117879872af64a4cb9bec500669ce90ece6089adf664e9a9425a1dc23"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f5r231bB0.m",["848a06f8795c56d036033cf46953a66e4a4c9737c1fdeee321d63db089fa6a35","e650ee4812817d797096decad2d596b7b38015f819563e51410ef7760d3c48b4"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f5r896aB0.m",["869d698fef68f8ef3bdf01c5c228842a7cfac3125ad5773b5847a0fa63a69fa4","d1e5b19fafce0c496bcc15c42b2f5840b1a0e058f1f5c57dae152edcfb099be0"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f7r208B0.m",["b03eb6d7930cb9a918004256d6da112357b1f3f49c984272b6892b5da46bb6d3","1440b219a5964f53c69b825028c8a478a42738adc989b48dc39eb275f66435f4"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f7r22B0.m",["24beadbc78edab55ef02412c5caeeeb5f0fdfe94a24de528c0365d1bc0565ac7","514742f9dacdca314a49d2ee8d06dc288454a17eaf6be598154926c235712f09"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f7r231aB0.m",["acc85f3dab4c7139994021a8cc1d7e4d1dc994a81e5f5ac30e34c18f10e305de","ad160b1a8a8027aad0e01963e441b0b2e9fd8235ffbe8985ad1006543d5a308a"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f7r45B0.m",["7e36c122048b448a21c6a4c7b284e94598bee38a875c6f36df221ebc5e97b292","a4bf6b24dbf83353e9599d3c12e13956b7f0ae5f98808c84d8949280c7cd7120"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f7r990B0.m",["28b4970da0a36e0992fa1662b135ad838ac118c9d5881432c37e976c736bd43","7325e17c10dc656645d1dc1aae90e1b6ced7f9a3ff180c4263d12e4d46935988"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f9r45bB0.m",["81fb44151a25bdd005034c86eb4c3955cd973dec4860a52d7acbcb570dd71663","53f3c2b85c646a7b6d119e464ac86b14f220ba0d6bbc8e9b1c8f48897eab38b3"]]], ["TOC",["matff","spor/M23/mtx/M23G1-f9r990bB0.m",["b91292dcc26fbf5ee6a8d01358416390a02e14469ef2de0724e277c62e52eb54","c7a57e2020b02b64a10306db78a4e049a345d1d3341a3949aad08b38e44e4719"]]], ["TOC",["perm","spor/M23/mtx/M23G1-p1288B0.m",["16f9f5eac67f3f708f101995b2d4b7f72683761ccc30afcfac7db684b2fbd0c5","862590b1f72a60efdd3b924a4e26c2d4ead616b6488a8116c3b67ae67ba1eb56"]]], ["TOC",["perm","spor/M23/mtx/M23G1-p1771B0.m",["e9681db973dc890ff7443a28765100d9470306958ec8ef962b6c8e5a6b4652b3","ffbb9c9ada98a91ea82819623945b3e15d62c25f0ccabc9b8b0dc6addc5ce72a"]]], ["TOC",["perm","spor/M23/mtx/M23G1-p23B0.m",["4cb28792b26c5737c8c61d5838cd8b400b93315c91bfddb16c38d991a9575b31","622bc0f097eb01a5a6ab39d93150b9559de1045d203908994455b4bd71b78a5f"]]], ["TOC",["perm","spor/M23/mtx/M23G1-p253aB0.m",["729eb7ef94fb3a9acc03911ae1616c12a47478f2d56233c0be47996a1e48505a","1fb853b3002b9f1ea9a671456fc0d3d88a7187238a6ad1baa17c6f3b4d5ac164"]]], ["TOC",["perm","spor/M23/mtx/M23G1-p253bB0.m",["e5280fbeb394223527310c9251201af16dc09f51460ae5a2cc7020d23a9b1e1f","5ec7a83ba915900e81e2808aaf32cff419fbd35c3e0c84822e596444db22c479"]]], ["TOC",["perm","spor/M23/mtx/M23G1-p40320B0.m",["8d47846b8043d5dec51022aed7f183030e6ada397fa537a869a532d8255c49f2","343f72ba7e76288e7b570c1c0a4e75ed94c792d7cf0e0f2c0a683f18ea2a086d"]]], ["TOC",["perm","spor/M23/mtx/M23G1-p506B0.m",["932411eaa6a71d578a4db64a40804ad1ac38c7ae5d9920851f682daf57415550","a84bdac8407934d56426f8494839edce211fcbec8b1fa49bb52bd128726e9cbc"]]], ["TOC",["pres","spor/M23/words/M23G1-P1",["991de53a16a937a4e466720ef16529d7b46a5caaccec32b0e24f7ab8a837908d"]]], ["TOC",["pres","spor/M23/words/M23G1-P2",["18089d2dd7c770ac41df42f79231e952e9655fe41e5519639ea484dd6854b957"]]], ["TOC",["check","spor/M23/words/M23G1-check1",["85b56dee92c792884b7736153a5a629bb53d35673a648c0469958b8084202754"]]], ["TOC",["cyclic","spor/M23/words/M23G1-cycW1",["8e217b69e7c70b2bc48176a3e691c2584eaf3dfb517f9bea3880c8e8660ee1d2"]]], ["TOC",["find","spor/M23/words/M23G1-find1",["c4479197d943ff3689ee56172f46a43fa283bdde917794714081ad9e0146fcc9"]]], ["TOC",["maxes","spor/M23/words/M23G1-max1W1",["c96ce4db88db9b40148b03004721ceda6f6d579091b2827e2e979c11ada62c4a"]]], ["TOC",["maxes","spor/M23/words/M23G1-max2W1",["108417914234d6a209005ba14a5d0e20efb2cbb9faca6e35d7a4e43b24b032a"]]], ["TOC",["maxes","spor/M23/words/M23G1-max3W1",["f08913779ea65a13819394791dfc7e7201ae48dd2bfa0a9a37820d1d0f22e52c"]]], ["TOC",["maxes","spor/M23/words/M23G1-max4W1",["c4b1d1d0d849066c18d9b5156c41d6b697303fe58e85631bbb3f045761de1318"]]], ["TOC",["maxes","spor/M23/words/M23G1-max5W1",["1b45253d1cd41fa22aeb8ee8677d91fb81679b2b7573467abd09579232d78909"]]], ["TOC",["maxes","spor/M23/words/M23G1-max6W1",["6715bcfa2d216821d5aab54b11f26850318f15990aa05885ecbfeb3dc4698cca"]]], ["TOC",["maxes","spor/M23/words/M23G1-max7W1",["f95af53a93e6b65bd648e3b9cd54a076d2305e1e6eeffc4e1f937932e46e49b1"]]], ["TOC",["cyc2ccl","spor/M23/words/M23G1cycW1-cclsW1",["574c32754ef8f4135c27f08c85eb97892eaf6dfd288f673c3c7d51bade937170"]]], ["TOC",["matint","spor/M24/gap0/M24G1-Zr23B0.g",["7d499242a5dc3db0f8c2767e3d7cdddef51a8edce8cc7a57e32f350bb1447b21"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f11r229B0.m",["74028c5bd4bdea9a153a03744cdf42a8464b20d2fa6a92538dbe9eb90cd0e68b","8af56d86f8d1380fddea9380c2f8ec02322c51954232b457c57e5cf7406951f4"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f11r23B0.m",["57623bb7ef354bc77be21bf299662743a78c1929805f04102c2eaf0960172e33","1d89f16702ead7fcb5f51d0761fc603aa35bdbcc896588979cdbffdc8a50f3"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f11r253B0.m",["11621b24c5e4147181fd2c2ca2cedf2aa279bcbb304c3af6c4043e2427c8a364","c954758cf5aa53a524f2dc40fa45e6908e5fa7599d0f4c5ac151631cb8c64b94"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f11r45B0.m",["b3e682b63719dbad6c574b7262fb1ed8dd8990993f9905df73f7b9a189474e16","346138cc84d0caaa6b947a681fc59a85465ea1f60fa3fe2ff10528b5b78df0b9"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f11r482B0.m",["e60bdeb07ebe1469ae7f1f8c6df815981ab7eca4973624c5ca9110961c0f73ad","d1fb3611458d0915420ec5450ce354e02e8e5143443764b641c08dd5087383e3"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f11r806B0.m",["1c230c63f34528f70b900e89d01961f7bf47036b787f54767fff640b717de986","9089668ce5b11ac416c409232e69e04879bd61215001c3ffef34c80d799a0688"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f11r990bB0.m",["5294ec01eb4f56bd5df5e632876aa3c797f19c407c92a3b76dc1abf62ae9fde0","2865fa7b8555df9517c1644d196a548a04d62298719fef5688d931537e999c21"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f121r231bB0.m",["a107efde69755b513ecf9650892adf40e666d1f7b1944b267fc58d52fecf64c2","d80686a560f506c2d9e72c0adf3da5976be28296a3478569f3eb45cf826cb68e"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f121r770aB0.m",["1375cb319eb4ec6b1805ed43146dbfd06bf898803da6cc5e22f46432c948183a","33fb0bf85990ecc052c0060b8f02cf1c7161ba69d0a50520358ebb1614766358"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f23r231bB0.m",["d3cd7b0f384288f067195244278293ee53d825a8eba79c6f729489f6e0e42a46","bf0b49c402d76428738e72da2b0b731bfe419d93e4b53cef8892578be47138a0"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f23r23B0.m",["25f118342a238879162d52a596520d392ec58dc08d5824b2160b43ceee4b1a8e","8e5cdf80c049cfac595c9c16eefb7400f43ee81ef64596eb7563322f45289b67"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f23r251B0.m",["601834c3cd2c0635937df3b178d39a5f831ef5588c829ccc472d77285085e128","925ed077952c8605cdc3b0d5578d5c38cca93ea2c55f71c3971151c3c9bbf17f"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f23r253B0.m",["a5488f04a09111f3c210b47555ee0eb1cfb85412ba9cf9edb98706e739bc4e64","eef56620a34bdfefc32517a4c91ca5581fcff6d24df21fe22c79a221be57d6a9"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f23r45B0.m",["6cf5360e4aac9769e5334eba6075cfb46c16c8896f193db87e45568934e7c7a7","11e7eb1dee87d882761529ae3688b97f4408c5ba85d947235ea20a1cde1d3f2c"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f23r483B0.m",["ceb2679377e9d68c374f29dd5dcc0373889505e30d026bee0bc7d596da2404e1","3b34a46546f6789718b4d13032cec88be8c4120c521198afcf3db448b09425ad"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f23r770B0.m",["abe95f4925f612686bfd63075cee6061d7b4659b7981c732c575ea4068744d77","7d7c943fdd2bfe29f299d1b1c30c920d46af7d1e2b68a672d8cb3b426001525c"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f23r990bB0.m",["7878aa10f7847ee197b2499ba35e26f10ed3a378d53363aac2af42979ee2f6bd","3febe8b0ec3c48347e09d18843d20edce9aafa4dbc00ff30d9cdbfdc3cfbecdc"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f25r45aB0.m",["48623a4f54125a728e1b34adfa0adc82be5fce59c6086e5525744c7c7dff271c","1632ba26d5cecc526785fcbbb26e7de49db1ab01cd9d40d8da16b4e333cbea47"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f25r45bB0.m",["385381c9f365d236f2bf3f8e676fb02152fe933412a1ebc4e0e467e4d64e290c","7882aac6d0c159b53d3a2cf7b3a842c8fcf63268bd2644cf8cc56c9306741c59"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f25r770aB0.m",["6310c023b19ff89be740892d793a4e1ab5e419c8856a0ea5208c4b700550d459","842eeb01a84d04479c341039faa63f226f7182e0e5fb224535b80d7441b0c4d"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f25r990aB0.m",["b0391f26f12fe0abee585d5dfb0d36ae9b1db518825347816afeb8dcb6b082de","7d811bc7060e6d0304d28bdb5ac651a497c0c7e1eb9987754b615ffa89cee472"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r11aB0.m",["19e6cb94de1a345a44c27d0b7698329a8f7ae7a66e31055d7ff02439c248fdb7","354aa0143aff661836e24513c9d87cf5ff99cd5b9037ed5c7183844c6cae185e"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r11bB0.m",["8ca16f240add9b84398cad4cc06a47ae963b0c6715ec901a41d3d051d4f9edb8","90aeb9939a0b1af9558e92faa12ce3cc645e0a5fea6dc27c06f890d13b5a3184"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r120B0.m",["e1778d6d9ad2ac4bc04b2880855437f2a578a46ad824ba84b662faa13b3c5b9f","49607d669f26f6e0a4b98d3e0f7f0722d1640f43a2727bc650ee39eb173a4efc"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r1242B0.m",["ffe70175a750ef1273f3444a798e6d90dfbf99e656964ca3ed90792dd488c3c7","cf0f896c7d7283221c014920a0821f5f3b53e679b8abd13538f48bc6e4c978e8"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r1792B0.m",["6cc2bc9a172b9bc20e38e8e8a9086ab54b0d82e435a29fed91b2120ea9d57b4a","939335cec31becac6131ce11cf6ff4bfef3ef684d220fe1066f96cc0ef9c0e8"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r220aB0.m",["86676b4ec0dee7ee5f5e2908dc4a27f2891c6872324be331608f8dc906bd2d53","577d67e457df3febdbee28e61fe69ebca55f4d130a493ad1db7d2f25a122c2a2"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r220bB0.m",["5c2dc6fc43924e553ec7fb111384e46035a9d29294a7556db4bfbc80740e4133","bc243d2407683521ad6e808feb7e4a7c12e3ca1245c59ca528d5ed54a73f573e"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r252B0.m",["5ac94ee434aa4f58cc163efc7af2974dd26ace84443e6ff8b13b595a413adf30","13aee3b717832c76799ff5bbbc5d376c425b6e9ce13c3b0181d07438b4f0229d"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r320aB0.m",["dfa7cc1178c99bcad4fc64b9cd03e1ab7a3a9f23a343cd920ed16b222d4b9666","6337c3fadc067a2b5186a862820a0779bf5561448f141960ee5b9a5a4382877"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r320bB0.m",["26340550edb845945f770f62cd807d6c84e5aa4dfb3fc29eddce1fd572a7dd1f","3517ccc1d2212fa336c28baab1f559d67d6c9eec19b3ea5c5cc8018ca7df0d8a"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r44aB0.m",["719ceead8f5a239f333db9ee38a5e99c2c5f8b67fe7a32f7a248e30b37a91490","d1f5d1c61af4918a4260e13a25cb09de8cf62e1795134026956a4ea0ccadc1a9"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f2r44bB0.m",["ed9b91eb0d8aaa1de2be2c265e0c4f2a32dc88ea15eab112a6d11af6265fd57","709f8396df16e161b3afce348f92dc76b74e806a30ec976db5857abed212224c"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f3r22B0.m",["660badc5d09bd71b9087290655f2f7220baac089a7eb633bcb17ef26fffe2f99","42acc92be3b5a31b257a0f28d9b6369f5d41aa000c5f8ba8234ce7b214e8c437"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f3r231B0.m",["8ffe38ad141a0e3d76c1f69f0ae326b691763cda6d365666f67e79767b3d7a37","9e7f3d5654abe7438866d8266522a3a78957cc1998149215b516cd2cabd7735"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f3r252B0.m",["7acb9a7ff07549a2fe7a8607f095e1c9da39963aaececf3b11d2ec17c174214","5e1745c28c6fa8f8c92a22112eecd3f81ccd9977f6d89bc87028b3d12f064ed"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f3r483B0.m",["831f3d9d2892d64083a644581494febcc1bf04265f9043aa45b5d8475df4027e","32eedef1cb5e6c6274e5dfb88a4de3ab2d3a0348f983fefcfb616621e3d8a0c4"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f3r770aB0.m",["a20c5a4654466259135e7115e09d3d50903cc14cc912f797cde6b836b4b92599","9f426fc4ee909bce49ef9e4dabe5495ffa1c0f216e90a137f2e1e652d4150244"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f3r770bB0.m",["a7ed4bdf0fd9ce22d511e54abd1100483bd5cc2f1bb802d08f372c137a5e0d0b","1df8d7f2fa633b266d797532028e9f8d79a89831516cd9d146d98da8bb07901a"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f49r231bB0.m",["b61f959c391064df91c235c8cf878cb720dc15bb1c2b0cbde94f34557c6c4a1d","5be02ae69a75626ed3cb853cd5bb05a002d2286a379cc2f326328ab25da7a3e9"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f49r770aB0.m",["517088703e102e222b0126b1b1546ca8b1db8ae776a7a244a514b7b655dc669c","c6d47ca6f44b0537c6eee056460d8f8dbcb27440d4c238cc6d6279cbbfaea020"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f5r231B0.m",["b092809573292f382f001bb4efac317d1f5297ee6ba85af18b8644b8feb31643","a44c63d8059d09741719232870f23d92174e73bd9313a6509a5fe78e34262d5a"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f5r23B0.m",["574f71b0a5fa8752dd69459d41046c813e9b2670060158bdc8ad6758bb2a8b47","c5cd905a49c3219eae5f9dcfca48f0a70b0da7a22a1a349700fed029ac5825ff"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f5r252B0.m",["460927409a189e48675e100e7b2c7bcac0c0f6fd7473f10fe2bf6887547686dd","4fef5a7f2b9d4880697d6cffa1d5a55e017189b33891ae8726ed1f9956a9be7c"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f5r253B0.m",["42b79db93afc182291e016a092658db2fb766fc57251d9b26ee935fe71420dc","5c76ad27e25d5a883b2a20542b270c2ce8597e85aa8dc0f629231abc723f3196"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f7r23B0.m",["786e01ac789d076aa6191890e616ed818abe92a1fadef96575cd1d2d045c6f3d","c5932efcfe221bd3d5545ef08b961f7dfd62a0056c58fd004a086b5d62b55fed"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f7r252B0.m",["ea86a5f8ae49638b35101332c0644bff7217255365edb6b74bab932ae475c87c","f4a768446831fa2fac8f8900c07ba245ed50a0eb98901aedb421b9e473193f67"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f7r253B0.m",["93061e98c473ca74df9065641605194797eb0a0dad9724cd893b3442ad36c7f2","32667f7de3dcd7b4f8f17ead5138ce80c198bd740b4c9b9f29fbd0eb0ec2400a"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f7r45B0.m",["4d09b77cafc9e756ea1a7f0d9df126b50562854c4f8f52ebebe6353f24060a6d","81f11705acac1b95831c3a7b6e7818bd93c7d9fca37064586b4a4f5eb84ce6c"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f7r483B0.m",["2a18ce460609e6afb450df569087926b101c6d7c13f74066ab426452705bd0cf","b1dcbb856bd0aadacc73a6f53457e5e758b5dfe7b6290f17fd158a17b28009b4"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f7r990B0.m",["f9a806fae51de8fffaec587ac33b9b63b52805679cd203f6d7dfec7ffc801937","dce3c875c5fa13c6969cfe480fbd3660f83807ac23713563720acf84e30c1bdc"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f9r45aB0.m",["e2620a88b98674f66fde5d219a49cdafe524d5ce67b73f7358b29998debe1db3","c0159104871f6a00c1b9bfdf08aba5babcb12f23001815d5987aa4529ebeecdb"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f9r45bB0.m",["299e7b3be0ebe606cf924ce4b040adc0ec84461b0917931840844a988e956747","b2924e74d916c67baaf5467616b1b084f6eb17ef9e7f65a8634d9ca242880650"]]], ["TOC",["matff","spor/M24/mtx/M24G1-f9r990bB0.m",["9b72db348e0ee84470c66a656b48eb1905665671c525cdf951b3069aaaf92d25","de054e11a5e8d0e6bfc08bc060b4b4193691d6e05be7b020494bd38d276ec125"]]], ["TOC",["perm","spor/M24/mtx/M24G1-p1288B0.m",["f8705952ca8074f7cbe3afd74fd28076a51da8f1a83817f1391d0c10c16dd8ba","d54a1cf0d541a86e446d1e05ed2c75e65c8a2d7153a9b4e03e6b540e799c900d"]]], ["TOC",["perm","spor/M24/mtx/M24G1-p1771B0.m",["c202b95132c96370120fcbb33032807913fad8591dc4cc11c7d6d1964abf1f9d","644f69b50670b24bfe77e11acdb26ff76776e4fa5f192d94041ba22771439697"]]], ["TOC",["perm","spor/M24/mtx/M24G1-p2024B0.m",["c8ea81259b40895e13182a0d8c143632f7d48e4ad97acacc8d907535a7a5b032","8d5e0d3b1fb54e3cffd2137b71152c6ce71a1c2ff9fca2d13750e0dd178808aa"]]], ["TOC",["perm","spor/M24/mtx/M24G1-p24B0.m",["c4b9e78540166b3c4c50198f06635db12244a82b7b916ffd687c1f14260fe97d","81da581cbcae7a2106da2f1a935eaaec19a06e3a59952d8751f85a3bb04ac099"]]], ["TOC",["perm","spor/M24/mtx/M24G1-p276B0.m",["460af9276ed57714fcd9ec7d33d6788996512bc985f484c7ad9554c27662feff","792001a53acdeeffabc9dc8f6051e0aa1ef3bcaf1bea9107cf1fb00e9f2bc1db"]]], ["TOC",["perm","spor/M24/mtx/M24G1-p3795B0.m",["7d4d32822f16ccc81671a56044c034614cae762b37622e654acf6f0541dc71e8","902341591c8b5ad7e6f785d91305f51829f0fb96655d867f44ca29051d379b07"]]], ["TOC",["perm","spor/M24/mtx/M24G1-p759B0.m",["6f54f6d9513786b093574628bdebd615594e083dd78b0856e95281e79dde3b3","3094a4c1a75b4d3b1a89402cb7eac0a3c267eb6058ebcebedd4674cf82a5c23a"]]], ["TOC",["pres","spor/M24/words/M24G1-P1",["e73e43c53dc7810efd4c26d549e7eb4b5d400a42bf46f297c26f93273931edc"]]], ["TOC",["check","spor/M24/words/M24G1-check1",["be2d989281550c87f72c2195290a54bff2e582f835f59a452ec80ce47083f96e"]]], ["TOC",["cyclic","spor/M24/words/M24G1-cycW1",["43e744472b7d26d48846ba51c96a376dac44a3c61c1febd60cfad209704273e0"]]], ["TOC",["find","spor/M24/words/M24G1-find1",["e6f29e5ff6161bbe872d208f5763ff7ffbf70d8bfdfa4aaef35fd017f52e8937"]]], ["TOC",["maxes","spor/M24/words/M24G1-max1W1",["1fdb0c26c85a5b5280f0fed68d115b65585a03eec812ce2ca082802ac7428599"]]], ["TOC",["maxes","spor/M24/words/M24G1-max1W2",["2f181e177d0d175d260eaf4b8daefdebc7e2d731941684886e998805abcacc98"]]], ["TOC",["maxes","spor/M24/words/M24G1-max2W1",["63725d036050dd05ea0ab864da24b0e7c537cd0033d9c788136df32b30b46cde"]]], ["TOC",["maxes","spor/M24/words/M24G1-max3W1",["9fd6f2abf4c31d13bc250ba66e15ecc4c40a4c4b4bfc68cb7ee2d6406c50f33e"]]], ["TOC",["maxes","spor/M24/words/M24G1-max4W1",["2531dca5f0bc40217a772058c4ff982527d6af2d01ecef0ba1f2fda68666e997"]]], ["TOC",["maxes","spor/M24/words/M24G1-max5W1",["ba8e846c2133fa760113d1b688fcd8ae06f451162a0fc791fc97c6718559d482"]]], ["TOC",["maxes","spor/M24/words/M24G1-max6W1",["4b6ed80d2740f62d2638e3d5965be2a13f55bf58344b7411ace3e2e01468830a"]]], ["TOC",["maxes","spor/M24/words/M24G1-max7W1",["7f151ee55abf06d85c9070a6d6f1e04aadd18cbbb85c8b8f3cbeccee8f6a4e5"]]], ["TOC",["maxes","spor/M24/words/M24G1-max8W1",["fb8744bf51aa0e7bb5acbc5c9f8a9c85b1bc59db37ceb0e7b5ce57ed082a282b"]]], ["TOC",["maxes","spor/M24/words/M24G1-max9W1",["34d5e724c8521dcc463955cbb7c21f2f04b6a97ec07c42aad828a1c220b50d56"]]], ["TOC",["cyc2ccl","spor/M24/words/M24G1cycW1-cclsW1",["cf4aad7d98b16d675331b05b1737375300ae0ba51f4451fff977315f8ff591af"]]], ["TOC",["matint","spor/McL/gap0/McLG1-Zr231B0.g",["4059141cf753c5f3c0eb80727797430b890d03908cf948aae8ded73eef1f7c41"]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f121r126aB0.m",["4155ebd8df9f7b00bd9d22952182d97d555ef25f500c4f8b1cc2186c553b374a","813ff634c3d7c308056b2eac39f7db9e8ff52f93702901ded11335569a8a4433"]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f25r126aB0.m",["2a5f02a258269a3709516db4e26b6b21c9e25d95159b64336a2fa055ba31633e","1b3f148df18a8ef6434f2a3a9f30d94454c5412f5f083dc11b668510a218989f"]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f25r126bB0.m",["eb5eac6d03bc197a9fc547839a11e86018f91948b605bab3f25e7b7f52679f0b","9543fb31da262b1fee68de1e5559a43777f80d747c6e1a98b7c70504618089ef"]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f25r153aB0.m",["4c55077e9d8cdc0c90ace37b9f5b9adf61eec66aba37b9af597a3fb6a5abc9a6","56ab2324c371171834c073967cc6894ca42681105e3a88373125fee6c4fd7d91"]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f25r45aB0.m",["1fff650c08c7634abda534bd0972394908dba8d6b5940045ef687efa825c4295","bc75e729f0ceeaaaf42e856062bd14c771344bc119b3719a4917852c1143ec3f"]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f25r639aB0.m",["293b8e3e532df3ae599c7ab23bc7a2e559ddc01b5ecd4a5dee9ac209d6056df","cf57d4646efedc22d4b7eb6c6a9c8e8516b6bc72ce8da1138fbbd43e3a255d33"]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f25r846aB0.m",["a7fe2f27dc6b4f9ffb7d915169f8fde7406ad2597537620f5149bb47ab7ee3cc","11f47c36951b8a841c67d7c3e34b1b4c3147b50692185a76fb08d9a39edde047"]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f3r42B0.m",["98b98e5e891ed50f0bf1dce234c4512ed989291967dc4f0e589aad9fcf94e1ea","171199901ceb96c908a22208ec2d2e79c50ebb0b6120dd7a2a0477f47cdbfc24"]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f49r126a1B0.m",["f0d98f259c1180fb8c99ad8d5cc58f98ee340bdc0c3aecb5932f009467744228","95c039f0f2c1e81c78506897050cdef07a6d1903e2f456507c2cb7588386417"]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f49r126aB0.m",["f2a0e2be5b039e2c5c62b9aefd872ab93a5f2870ce157026dc57914ab850d29b","9bee7478d477658c4f30d9e14c3c310a980b9e957e247e4a96468a37988ba558"]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f49r126b1B0.m",["440b47991228ac240d1dce36d539f5be0923167aaddefa2f5a217db90679e93","4b4edc933a28ce4b9451db3e1527ad4345fd92ae2ffaf21e411924c1723d0938"]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f49r126bB0.m",["7597c983f47a36b3f734323889978dc4a71b5945ef68a9dbe86a7cb742c03fd9","d55eac22af878288a2960e38f2f0eb88934f4d8f6008b8104085d3894e4dc188"]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f4r126aB0.m",["f096c599338777609b132528bc8f4ba94bdf88430bb103649b9851fd988c00dc","af145a7732ee41a348752e5924e93eba366f1ee76765c592c5753b48e2872153"]]], ["TOC",["matff","spor/McL/mtx/3McLG1-f4r396dB0.m",["cba3e6d961e5d95953c4e70d53dbeecb0ab56460db4e5251343c74ac4f186614","a7877ca81f5f61841d80400894017047aeabb51bcf5e49aca788b8bc09b53e5"]]], ["TOC",["perm","spor/McL/mtx/3McLG1-p103950B0.m",["2c8b224382643cbad669251cc9df37f506c46731a723632ef4b2e54faafca379","4fd9afae939332541911fb5df8c6f9e04ded5e9edfc0758af3f5ff63403171a8"]]], ["TOC",["perm","spor/McL/mtx/3McLG1-p340200B0.m",["2a88df7380e35b504720895210b6d54243cced536a5500ec7be370f067214379","4b8a215a5c5af13916e8cb21aa469bb7a533ee4f1b217baf51b7205b5ebdb1a1"]]], ["TOC",["perm","spor/McL/mtx/3McLG1-p66825B0.m",["2f34cbc38f0429bdfe4a392a223ff9fbedb13f4a8f7e4305971792e71cecd9ea","9924dd776a424237f1c748b9e605d9840330fe67eb970b2b8743ad053f1579d8"]]], ["TOC",["matff","spor/McL/mtx/3McLd2G1-f4r252aB0.m",["a210b2b1512fde6a8f79573df758808776a5034bb7ed2aba11d22b5426d0503e","db615c39b1f61109dfd8eca03b34de2d2cc9ff84403c3482e600ff1eea61732d"]]], ["TOC",["matff","spor/McL/mtx/3McLd2G1-f5r1278B0.m",["15814753184eed47df20ea3182bf3cc0c0d6af40b7af6facade75f71a5510331","a045f125bcf8bca1680421785b99a9945b167c25eb982ef375ebdb03908f4f5b"]]], ["TOC",["matff","spor/McL/mtx/3McLd2G1-f5r306B0.m",["48a3b357113e9cdadefc5a6986aefd10995d73b8dff7a23fcd41f3227bbe174c","cf3925309cd62c83da8ca201ebeaa86da5634389c46d65e2dc9ad79684ae257"]]], ["TOC",["matff","spor/McL/mtx/3McLd2G1-f5r90B0.m",["2956af7a1a138f6db704341d48d7eda82207b2c5c0ded566c5cd1cdfb885fd11","59b68b21f09c87496ea05a85180ad57b7f19c1aa672ee1af03b03e0576ffcdc5"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f11r22B0.m",["c6a53daa1870eb191926c97357cd096c162f5430e6c635f80743530d39948127","e320756b60b3c9148b315c341f205369a3a6b79a870da62a2d0cc76dce4fc1db"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f11r231B0.m",["af068cef27e5c2dec54b88be611e79ffdd0134142fc520dc86ae338effe72f3f","7fd7ab23cb21740d729b43df86f2d3f5b4373883f4513acf213c5f4f212f2ff"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f11r251B0.m",["82fe4bf6adec6549e9d432d25c52844ca0acf196eeb2c1dcdbf2b21099aeb21","b07bf46d1d0e717b96cea119e1f02122dd77834dfa7af9a8d78f42ad9e6b73f4"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f11r896B0.m",["570dd1bd842cff3e1c7935751f290f79ac0e0b70c1fb83700061f9e558a93c94","7b4047224bb4a72e8a06b8c878701b1e4a68cfc1a8ef0e9f31641cb33a45d902"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f121r770aB0.m",["ef1a691d4876b6e3802f63b25223c98346c3df594b291787a5053c47ea4cdba9","7122f05ebbed1517079146a08f079ea9d3aab46bf8ad861f8801d8cf693c0b37"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f121r770bB0.m",["ea3b21030eea686a48024c90ee269f396896bcc21e3683bd9d17bf2e9e1e69e8","bd64d49a8c350b9bc0286eb98bd9a2991f19f6aaedce8bc7c6e2f2dc34821cb4"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f23r896bB0.m",["d6df34b15a0b8452c9b56bd87dddf40924b394d97b4d127ad706f02e27a19fbf","970343c3294e1f39bde214d470552a0e137d1f6a26aa456e945bed10e9b28e0e"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f25r1200aB0.m",["250c7846b43e569f3ed7545818d9e7afbfad192347ebf0e31270bdafd640a348","bfe0ce7d34e209f2d4426246a0adf33733cd7972aec8a101e74d7d284437db26"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f2r22B0.m",["6d28972439e03f4e1fca78a006cc180f1d6bf373b283fc87c2b661f8851a8261","5c8524a7f5a0622721c86be86df446df545255f18ba0528b6a29c93e66500587"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f2r230B0.m",["64779637e93b2dc3cc4c83e2896d0635896a73c4f0def19238bce57709b9ed9d","b98d05ed4ce1a286e270585f33d856510a45a654160b3b6b1671bf3374c5772d"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f2r748aB0.m",["e32c423bf57fa3f94a731251967a12a865f3882ae4c9f8c7795f8131dae30577","4ef777f8f34fd9807a192b00ab05472682b29821056b72b8bbc3bf4ce89ae286"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f2r748bB0.m",["ff3849d252cc77235826e90a4b0b159de57664e6b614133d8b061230cf7c3939","407624ba61ed38ce5f1f99165f9d08ce04319022d618caded8e77be75f2719b6"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f3r104aB0.m",["38c61ebfb76cf87a20f58a620ce283952d2770fb5d3e9d595c7e0114e6b21092","502f923c82a8a0f077f7c05a8323820dd3183dbeb26db878f698654dff676ff7"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f3r104bB0.m",["465cf974be859b99d9ceefa1d18335db9f19916f8431a57c162f69311356a007","2d37b3cdbdc917143534959fd2bb6e294ffaf6a13deea490862c31d0a4018cd"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f3r210B0.m",["591788ade4915a020ed5eca99ff8393d46557bfa3c0cf949a6ceeb3f0cd60d66","e40727b1018ae91a142c05611589b7d7a122afd3ab1a4c8646171e0f6d2867ab"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f3r21B0.m",["b057e7436d850a7a6d5ed9d519bb3bc9562d3bfbf9e9ac088aa768360b5d19ee","754d88544d436c066e77735b76e2aa6390fde2c327e62c76e1e0cbed3056c684"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f3r560B0.m",["10ced9e68d3b03c538652351b27c2c5f3dc306519537a90f59d1f629b82a5bc5","90ece7b8b668bad895fd9fc1d7e08fb5876618d3acb96ead72db90c0baf2beaa"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f49r770aB0.m",["81c474301f71b93c6c6288d5a48e75ece7a1b83ba62de565dea1d5faeefdc8b1","9c6ad8baec818daf35b63847caefe8513e69806dfddc7416fbdbcf75521dc9c3"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f49r770bB0.m",["c121a6d1c6aa56df071c0b7dcbb5df35d1be046fd28b72e694450167e1c9a833","5c616f47719c2344568ad299f6006d1a9b61fcf583244071423f1644643906c3"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f49r896aB0.m",["93283db9eff0f85af055dda2b4f747f43cc721f0b7c1cf5c4c47409a09595b80","8c78fb109ab31e542fe68c482d5c471c691139818b666fe2c16258877e5130af"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f49r896bB0.m",["334a1da374423ddd55e1bd5183161516d3bf3db6d1a5feae5a00acf74297d941","1bbf901b49f980397c6dd8dae1c675de8355decb19e59ef9279654e4698a9be7"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f4r896aB0.m",["5d1b8beae5a153c175d9aad87c8bd84305eb3aba87607e83694503d9540b55a2","56da135cc3302bc543933739afedb6122881a9f4ef9ef4ce5c71ddea558ec95a"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f4r896bB0.m",["fbca1e57ef5dbdea614b186dd1822f8edfffb9a0fa68d3b50a26b4ed62c7dce1","cafadb2d04ade29ed01c7016af23761ffbfa522264a77c2f30a380564d8eefb5"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f5r210B0.m",["629e26eb9c301742df173cca655a7f8b2a832a50f001f4b163671386feaac471","16e27ccba55159dd5ab4f3b42c736923bddd17fa5bc22c74162fe1aae33637f5"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f5r21B0.m",["7acbc47db50736073671954f8a7a804072b6334a829db15d61bea2d640724c80","aa6b0a3d605239a8c329fe82c628d7f49ee63cdaa19088be2378e84d1b623562"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f5r230B0.m",["a8c7216b088d7fba719632e076827164f6b3d7067e4421065f49e1d80d81ec22","ad154811bfddd83744b3aaa8aa9a9a6cc8b9b248504dbaea7e117598c98b8a3f"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f5r560B0.m",["786add9f050047e3757f642f9bfeaf114686a080a4c48a03f3cb0220e034b97c","39bb58c4d1d4a8026c8ba2e01071ede19b27aab397ccb7dc06d814c50d92062b"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f5r896bB0.m",["17d989b9e4d33b7f06c66e78623f1d6b44629219955ed6603c2bc5ae64a8159c","f288c6be63862429e0674ac4b66754d2583cad1611fc0947c77b153f0d1850e4"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f7r22B0.m",["c3d1a9294a56ab793a3a1f7c00327c3d90db9941dbb9a15860a603571437448f","ad47f4ea19129484d019225e9a353ccead9711da5b5f289478b2e70b94e364e8"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f7r231B0.m",["dd060db70578343689467dc421adab5b784db0cb955a241f3c0e23997445810b","fac800dbd70ad730bc24ab8607998c7754fb4538f5aa00910eb895c49a10473d"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f7r252B0.m",["e39c35467f11b13806edbe4fe35b549094b3bd0d823efce305400ccb0d860122","771904125e321e5857ceae937e85042101366af0473c0773395d15ab8c0e8959"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f9r605aB0.m",["d92bde60bef4c7fbd786a405f0b614bf9188f508bc1310a413c09c21d0bccbe0","6ff799b344395adea28d996c43853413b7e66a00fb491d43c6f95280740696c"]]], ["TOC",["matff","spor/McL/mtx/McLG1-f9r605bB0.m",["14c3b5a2d85bbf5e1ac0c322e4139bc4de143a1687d4fd78a11685b77ee280e7","92cb4011d23086c91b82ec261a494d4af1152f2db9f865efdb27176a4071def6"]]], ["TOC",["perm","spor/McL/mtx/McLG1-p113400B0.m",["1aad2e619ac10f8f0f1a90084a65c92f6e6ed407f3cec532027ec20756d7cfbb","9ced00f16049f1a6c7d5c9143091b9f2854a138c78aa87f29ff4fcc263a9136b"]]], ["TOC",["perm","spor/McL/mtx/McLG1-p15400aB0.m",["4f5624f3518c99078a06eb7853464c60e8d0a0643f1ee1b252779861229e3234","3bd701e3fa6900c214dc7fa6f6255e327cce8256aa200d98e1b75a3ad7f536bc"]]], ["TOC",["perm","spor/McL/mtx/McLG1-p15400bB0.m",["cf0e04980991eab3d7eadf1dcbae4db8e553767093335f9aa26f50bede33647a","e0a55aa0334fbc5b4e06200bc3575bb477894ce76eae8adeda27df51ded39d52"]]], ["TOC",["perm","spor/McL/mtx/McLG1-p2025aB0.m",["e5dbce06e4fa8e68bb4913a51f6255733d637060e336870dcd2d317000dacccd","ae877e1135ceb454e3c854c895499d6aa71940d42330a8a9f217692b76852ca4"]]], ["TOC",["perm","spor/McL/mtx/McLG1-p2025bB0.m",["5679a9e71fae8fe73c89baadfae98368b2fcb5b252654cd1171462977f6d3179","c587f5baf03aa9ff8e773278686d8b48362787b185aae19de296503d5b9697ed"]]], ["TOC",["perm","spor/McL/mtx/McLG1-p22275aB0.m",["f7bcf7286aa8ef5513b9ea1c0143f2c8a5b793b548441035655181a882647a98","d14f53fb50c139a46aab9b0db0ca05808fd90d39e4b04a835a31320d4d404fdb"]]], ["TOC",["perm","spor/McL/mtx/McLG1-p22275bB0.m",["c00e219b848e6d8bbeeedb302c9600edfe6202df6f715d58710a47dea0168869","8791f5df39045e0b887556236999bea6f553bd6cf6292fc649101bd98bb3ef8b"]]], ["TOC",["perm","spor/McL/mtx/McLG1-p22275cB0.m",["f59cb1ab614b38cb467437b3d8d67333018881946ef09f23d59d68744d8b0356","e98de0de70f81d483107e8df3387904036f0ab5bef57e09ef96d028e458e5dbc"]]], ["TOC",["perm","spor/McL/mtx/McLG1-p22275dB0.m",["ae445b14fde3121df60760f2820f7f66101bc18eed51633e6727b80046c6f889","ecea4f7dc0498821174cab498050b115cbf1bbe6a63cb4ab34a303ea0dbdeb2c"]]], ["TOC",["perm","spor/McL/mtx/McLG1-p275B0.m",["602db240988395b0dee6ad3ed616c4490cb89df721a964103fbe1d31e4d21cd","c099964dbcee277389bcb0af1e9b7e545f0c29540b710c742562ea806b2c4e74"]]], ["TOC",["perm","spor/McL/mtx/McLG1-p299376B0.m",["47cb059bf3a9f4289eba23cad709d53c7289eaf1159f1607f2b00b04170640cf","ccd74805e7637a1f34da7fb194071d53ee40df5d802a6e17e4ae7ca6a84b5288"]]], ["TOC",["perm","spor/McL/mtx/McLG1-p7128B0.m",["b224062a9606e22f2ef302852416f701f770307c25bbef68a3c9e8581a792c43","cf788a55c5e60e7ea0eb37d75bf6486dbfffc72585dcfe1582f1ae425bf7276e"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f11r22aB0.m",["3cd17c26ea029a79ab42ded061893221e97f9387a1784af1f6cf84393cd255c5","f08ecc557c38a50336edb149f9ccb1b99143a010879911661d884e7dbae75ec0"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f11r231aB0.m",["29e41020e902c90bb2fa19bc3dbe36293aa4100c96c4e2e9fdefe30c4a1157f1","7ddddf77681f87d73d10607b06ff890762ae4a2108b7b3809edd5367f8a05b97"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f11r251aB0.m",["e6cb693cc53a6e130c7b1d01d550d123177887ebf30876c5983ab483e8685b7f","29f36a672f25c8ba4762af66dc3ac212191b1b0bd9cf1eeba7a4c338fac36a7b"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f11r896aB0.m",["300114f23ef4af25e5098a85a1a2a4441c7bbe25ade4eb8e9f4bb9b2ec4aa69f","7855f4f30fc32ac3a50721f5b7b433bfd565d39dda849a1f78afa4517be7ca94"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f2r1496aB0.m",["48d23df5f64973bd1e9120917f43de61b3fbe211eb66ea3179bf1c750ddfa622","342f4d66d987d076909447e4ab96557a5072fa552b03bab4735a7d4370c3ad83"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f2r22B0.m",["9b153abe50bc85f4c9179843b3fb91f7179f41544617a7c73ba2285bb0fac636","522c9e0abfe96af2792a295dd2e4dc7f2ea33ce10b7c5a2feae7b09c035a2e11"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f2r230aB0.m",["3f22e643bf0bcb6fb47cb7a674e8b6eca3e765471630375cbcd4e717e8a5e8e6","66d49e5437da55a523f2c06fe0951bbd8b7f60c7db63b9f46d49859ed28ce25b"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f3r104aB0.m",["1e02b9d7f2f44beba6a6d5ea03dcd96e57e218af6abbb7c6b0b4db565efc5832","9e7c5719ef849c16278ae1e5ee83a2d8bfae9e0f5b6532a35f2e9b05c690db1e"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f3r104bB0.m",["c9e4e35349aa8b031b40a6c63ad35a424c0d93b3916743516895f6b155ebdc3","b8ab1be8e9e2770808fe94ee6ebb56f03460936078694a25a1f19201eb1a5e1d"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f3r210aB0.m",["5315f44cddadcd65659cb0efc9e82ba1bb60aba3cdc674f9bc6c4722b3e8b42","428e89956b3bb94032b599531f21ca01a568101a8d237adcbb4cf047de616d43"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f3r21aB0.m",["416625c53c9f0263e40bc0c20cabe17b1a3975ea0209a1f1433b6172b69e653e","96cbb85e35c0931dc5d48b73f5988457b217a6077b268369e38b6dfe99f7a7d4"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f3r560aB0.m",["83637544debf5b2c71c2fa7cf8a9e3612ab1e4c90acc1b557d8249ee6535bfa3","366d38a374b937d1bdf14936c4dfd8b72c815a5f231666e1780a9690773497f4"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f49r896aB0.m",["8e2b87a2b02196967b901c09eabdf3b5d5e5497feccc467bd55c7cff908a4d20","beae856f4140a7afd5e9e4cfe7cc2557887683c0bd643ab98e838022ed51feb"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f5r210aB0.m",["5284ccee615518260cbe168949b8cf2b67618e2ccf9b5c69433915f09a38d268","2841b952ef4ef5c2d7ca562ecf14e5392dbe1b18c242ab9387ba1f5045c203d2"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f5r21aB0.m",["b5d7eec8a547129fa3f34a59e5639e0c40b54d8b3a8f5e68564a93d55962eb8d","466a3c403db558e791b490b5883c9744472db8e728ee3f42657b2891e693931e"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f5r230aB0.m",["a69740f2a9a33a0fba01690524a3951d5efb5cea3b946517e8cde0aebc5210ad","904f7db587e21e02a79fe7f99ed6a7a070a774bc392cf6b5f33ce311371f4016"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f5r560aB0.m",["c6374e55b462598d20f74df407afb0e7c02f107fe6c2568d2afb0e119ca3041e","6eb8cd8cce1e7e4cc42aa0cf2b313880966f391391c308379782506781788d21"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f5r896aB0.m",["f745538096242c3685d7db389ee2dad80853782df8e99945cafb00b3e11541dd","7f690f53fdf229b3e8e3f08b3f12d6875f843363f2b552f9e409ac371764c06a"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f5r896bB0.m",["47c23f040def7fa6982fda45def29053c3a60f73670c48aa16dc912fff048cdf","ca1fff11be9b15104fdea9ce65ef85d34fb333e359bc07cac1932d6748416725"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f7r22aB0.m",["3165fa81cb898cc83b081faa386819449a226d88d4b520e1d43c0c30e27187e8","2942faffea2eab9ed174a5ca377caedf2efcbdbee5d54d9ff63eadebbca1d565"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f7r231aB0.m",["7344293b7b351238df8c2f7b7d409f8f3a92597bf27595f129705390c3477d25","2a9144604fb15995921ec1f0356ab70d0aec20f8c02edace423719cc9c925d12"]]], ["TOC",["matff","spor/McL/mtx/McLd2G1-f7r252aB0.m",["c6204acaa280599c01603584949e682f13995ae1b6a397f80725bfce79145c9f","9b6374f2ba0f1db87ca00fc6428235946410f361320eed0286d2bf372f311edb"]]], ["TOC",["perm","spor/McL/mtx/McLd2G1-p22275aB0.m",["f97a078da294e3016964d6b7a44a7a2c6eac15332679ea3ea35a91fac74e96c6","fe1ba84a8c202e35d6aa2628fc46c1a0fafcbc12fbac2eac484c7ee4f0b2ec5c"]]], ["TOC",["perm","spor/McL/mtx/McLd2G1-p275B0.m",["576714f9c64aad526c6a165bc00d24d6d127ed336e5470db19994fe76a95536e","acbca90c08fb5cd8e8c374b1a61a17e33fc37e6bd4e08dca00d925058c071662"]]], ["TOC",["perm","spor/McL/mtx/McLd2G1-p4050B0.m",["8a2ba4d8d4c91e9ec55488ad0523a03aef81ec01fc2f865fffd6d0545d6d1ccf","9c2ccd645add7cb9da2da15e4af1992b26fb5c519eaf4bfb9af26408a7775dbf"]]], ["TOC",["perm","spor/McL/mtx/McLd2G1-p44550B0.m",["95cf41f14f5fea316d548bbef613d963d56f3ad1a990b09a8e0d3445b447e8d7","78db44dc3ae3564e829b5c681dd733e942a0429dadb1e16ca8b3e3e45486402d"]]], ["TOC",["perm","spor/McL/mtx/McLd2G1-p7128B0.m",["705222e0e6ce034656e021d6ad868c9a1f8de1c5f5ffa0969ed44e79cfab7938","182651867e4b30249e46b7b4ee3ba265ff25bc8a236c161c1eb7c0259a3fbc8"]]], ["TOC",["pres","spor/McL/words/McLG1-P1",["3719040abedc4027dbad6a1a4798632271dc3a38ae6be22418061a447e58f024"]]], ["TOC",["check","spor/McL/words/McLG1-check1",["2afd85ca76838521b5bc07e681cdaeb6144b686af4466ed278837aa3874c07e9"]]], ["TOC",["cyclic","spor/McL/words/McLG1-cycW1",["f3258d017860e07636c74c0bb0ec33ae2f8bb9165307b02a6806ce83d3592727"]]], ["TOC",["find","spor/McL/words/McLG1-find1",["9b19ca1d112fef8bf2fa50b85616965a28d20f09079599afb8efbe6458778a82"]]], ["TOC",["maxes","spor/McL/words/McLG1-max10W1",["eb3e717ef7df4ef48404c622d0c5f594b0eba638b9b2c990ed796a5ad0e43d45"]]], ["TOC",["maxes","spor/McL/words/McLG1-max11W1",["a7842e43d8d9872556be7a8f4a167fc958daea986cd1f51169113424ce7f30b"]]], ["TOC",["maxes","spor/McL/words/McLG1-max12W1",["99ef96e55cf34883672994517669ed410df20bafcd44cbcc9eacb370b9589a85"]]], ["TOC",["maxes","spor/McL/words/McLG1-max1W1",["2d0b64dca61ff2fe69bac2be4558b72af80d1d64b6dbe945902c45022a9ae533"]]], ["TOC",["maxes","spor/McL/words/McLG1-max2W1",["ac82c217f4b42626f219889b40623dac6466038cfaada3dfe4f073e835b78c1e"]]], ["TOC",["maxes","spor/McL/words/McLG1-max3W1",["2be23c7151b82791f3115c2efc8c453908f4260d3f52b2e3483cec04130691bf"]]], ["TOC",["maxes","spor/McL/words/McLG1-max4W1",["b7259e04099bdbeaefae93ecddc6c5733690987603e7783b41f4a8bf83eb47a8"]]], ["TOC",["maxes","spor/McL/words/McLG1-max5W1",["f280fd7f40dcc8e253371a330c21f8c4f884089bfecf5d4720d0e69246bf53be"]]], ["TOC",["maxes","spor/McL/words/McLG1-max6W1",["499fe2b5bc5f22d1eaf7cbb2c826c41526e833c0bafcf289f0ee4956404800f9"]]], ["TOC",["maxes","spor/McL/words/McLG1-max7W1",["bf1709468646fc53243f6d7acef2422ef312df0c09a598cd33c068c631a0d336"]]], ["TOC",["maxes","spor/McL/words/McLG1-max8W1",["dd6e3da2283507790c4f89819e7d82181e303d57bc2ef25b3105cf4752e2b519"]]], ["TOC",["maxes","spor/McL/words/McLG1-max9W1",["3a51b52aa51aecd39982c307034cabca58ed6616d0acbb36d46cced5bdcc69ce"]]], ["TOC",["cyc2ccl","spor/McL/words/McLG1cycW1-cclsW1",["f7f5d288b637915b19c00c460773f36d702cc5bab7378f4e54a10b45ff02872a"]]], ["TOC",["pres","spor/McL/words/McLd2G1-P1",["304234fea654a0fd48734949ec0684840e17f7ad02b4a1591f4c4c5e859e3462"]]], ["TOC",["check","spor/McL/words/McLd2G1-check1",["5a63a91506909f50446316e3ee91e2972aa96f3d9512853e67432c0c77c89b4f"]]], ["TOC",["cyclic","spor/McL/words/McLd2G1-cycW1",["5b9440471235ed1338f4a2e471dd47964b073a3b39bb4a74715a83cab2d9750d"]]], ["TOC",["find","spor/McL/words/McLd2G1-find1",["6676b260de7d99d7656eba7dbd0138dc4253fdbc93d1c929e3278ce8b8e7479"]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max10W1",["70d40e98c8c97c0abc674d658eb91a315e07605d5f5ac41e681d08f59088ea2c"]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max1W1",["6255b55373f30485a6d9be645df46045ba4b3b8f08a743855b051c3397b6fd7d"]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max2W1",["1eaaaca5c2cf22954b1086ad6c00f10a6f9a3a05656362f39e60720fc21ebb0f"]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max3W1",["c5730255bb248cb93e1745c4a60b2bc8e0a944462ce61fd9fd623e41496dd06"]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max4W1",["b92301bb8fbcc50113aef8eef55eca62d20b2ccd9d203e3bb51ccf5083f3a17"]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max5W1",["f95da796ee8274e6fcde433a88d3f1a2ce4c3bc17d1286b1dad2f7d296d29b3e"]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max6W1",["79515a5b8248df5d391bdeeaf3944ced467f10714911b228860d211e940c2d84"]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max7W1",["9984f92f096be3ecd0437a0a027fef2b05e3f8a2e5bdb72da8da107c122de686"]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max7W2",["ddc761bb4ce0a1f0728b9364f34b8e77fc53e6ffc236e598a9e962c816645f6f"]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max8W1",["29b2856d08cf21678684b6bb83fb9283a4389d05fa147a7efe8800366e665995"]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max8W2",["1d780c6066a8adc0555baaac4da371211d5142be6e86f8dd8ba000261571662a"]]], ["TOC",["maxes","spor/McL/words/McLd2G1-max9W1",["4e3ed8de27b8239ac2ee7336c95e946ec1d6e3b2845d38b52e1758d5fae448a7"]]], ["TOC",["matff","spor/ON/mtx/3ONG1-f4r153B0.m",["b99ac0e11cc667e388a096e77411028b48bead4d984340dc18078dce0f975598","a172f9e514853ff8b0277e96e1d2652cf76f9e203f210e6fea9cf1b75fd155fa"]]], ["TOC",["matff","spor/ON/mtx/3ONG1-f7r45aB0.m",["2a43171c464c5bb065da755e9a5cb96120b5abac5cb58f5b8566dc418bcc0cb5","6775b089adf298c5aaee8fc4c7be479609406b2e0c90687addb2766f9605ad61"]]], ["TOC",["matff","spor/ON/mtx/3ONG1-f7r45bB0.m",["74e5d4a0746dd397ab3926690428d877101c84fc15e47b02e1dca483665615f6","6c36ae31f345e71586e17c5e97d79f7e4e9cac0ae1e7b82b48b8d1ecce339ba6"]]], ["TOC",["perm","spor/ON/mtx/3ONG1-p368280B0.m",["b1852ab281af2c1d1f373a45acbfba27bf849e68b4b2d32daa708be6c14843cb","f5f7318812113aacd519daa2b18617b949dd39f20bf350d54887988f22d640dc"]]], ["TOC",["matff","spor/ON/mtx/3ONd2G1-f2r306B0.m",["24ea7e64ac03d449ab35ff64a5cb177fcb1568116f1c54e627d990484ee3da0a","1a7624ad6e7c8b61141280a1d6028a27ec988033f1a2364b96be8cb2bd6544ca"]]], ["TOC",["matff","spor/ON/mtx/3ONd2G1-f7r90B0.m",["5012a1d06e68a82eacfb4de9f7f157de3a37e82a10b03c7c7fd13622b57e02d4","34f198b9ed1d87d44f359ef972bf62fca80dab37284873043711b90457daa859"]]], ["TOC",["perm","spor/ON/mtx/3ONd2G1-p736560B0.m",["bc28c32112b9c32ac701eeadf7c4069bacedd8e0d30f764212ae717668ee335a","1a0c0811684b9d129202c96c0f4bfea770c8ead9e3d25bc7047e7776f8276a0f"]]], ["TOC",["matff","spor/ON/mtx/ONG1-f31r1869B0.m",["a444078592fc7620c675af6af0108f0eb9addbaf9669a700f44a148cd272aa52","eeaae637fdbcb3e2b059579c533efea01e7cb931477d0a7fc53617f183ecf2b1"]]], ["TOC",["matff","spor/ON/mtx/ONG1-f3r154B0.m",["af214ace93f8d75ea83612a035f2366e821eb2f86b1231317946861dc6792f8d","5461fa1eb1a48a933696e98e3ca7734f2a0fd048c1b5e38a4d38700816280f89"]]], ["TOC",["matff","spor/ON/mtx/ONG1-f3r495B0.m",["fa222583f0a2cc06a77781f06f0dce0004f94d890ef9798a5eecdfe59286faf4","33b2fc4057269d159a8651524560e995d708ed50f2bbe8201d86f99d4b6695cc"]]], ["TOC",["matff","spor/ON/mtx/ONG1-f3r684B0.m",["bde89d097efd9bf732c4d33fe08aa929772d194ba25843a7bc4fb89088e923fb","ae409cdaf30bee195baee099ec272f4d805425ba1a511a132f2c2b5fd62d7939"]]], ["TOC",["matff","spor/ON/mtx/ONG1-f7r1618B0.m",["cd3c93fdd94bfe1cc4de32edf4f71161af4a0d184bf76e2c277c0a16aaf71031","22de649023c756b7d3c8f2fba09efdf41356c07ab2ed60ce7ff949bd2b9fdd6b"]]], ["TOC",["matff","spor/ON/mtx/ONG1-f7r406B0.m",["b04b44bd00a1642c602458529b881d31394ed8d8e0281467c71dabb6f1ad6de0","e883e64f203341574d27a259199ffbb5d0bea1f778c74d6d353fc46a922953f8"]]], ["TOC",["matff","spor/ON/mtx/ONG1-f9r342aB0.m",["9eeb09bb5af39b18c465dfe207b61789f765e5f48e877e7a77493d5d8aed2fd5","4281098b65de4a7613bb6f7e878ff78e977b7fd30cf6ef962910becfcea61220"]]], ["TOC",["matff","spor/ON/mtx/ONG1-f9r342bB0.m",["c348615e5b1eab56d64a8e8e38c089455dbe7ba7a4f8d5cda77a4d5aa751e58e","c16a011c29e3c3a06af7d63b0ee31b98ffee09a4fd88cc93b54da80bd7648354"]]], ["TOC",["perm","spor/ON/mtx/ONG1-p122760aB0.m",["637a74e7b514c9c04f6e4adb139a1f76986d6797e65e624f3396136fff39dd52","461de5ffccf9ead9312131dcd09e888aadb94052ce006186a75bccc46ecac993"]]], ["TOC",["matff","spor/ON/mtx/ONd2G1-f31r1869B0.m",["82e9aff2f01ed8a2d31419941660d95964565b64295d2978c3b34c60ce25dd35","101d03370c079945e83d1849c62b5d1312d5cdafe5a1ff55602dde88baf79d49"]]], ["TOC",["matff","spor/ON/mtx/ONd2G1-f3r684B0.m",["17809cc01162e52fb04346fca687aca29f7a56debc0e80d2867d65345e59190e","98b26f245f5f92eebd87780f0b948285a387867075d313f3f45824557dbcbb11"]]], ["TOC",["matff","spor/ON/mtx/ONd2G1-f3r990B0.m",["87217a478a53cd8b3ae86c0fae1baf9614e8641389c1cc71a745869eebd676a0","8afe2a5c687c610a61ad94871d9580648578cb02193515adc7dc6038c549434c"]]], ["TOC",["matff","spor/ON/mtx/ONd2G1-f7r1618B0.m",["f001539448e97c4e260f5c6bb549c87e07deea2e8e1d6b6edd2f0d6e05598b68","eed854d417a34fae3d838a0926d55fd108b1b43dbaaf13e5b3cba47bf966e964"]]], ["TOC",["matff","spor/ON/mtx/ONd2G1-f7r406B0.m",["626dad4f4c7b071f612c4fb270c19f6f81a42c5f892cb07625f05c3a1ccfd222","38327c35aaee33556206327fa3c58aeb9e4c726f4a0d8baf8b8be09ba23efda5"]]], ["TOC",["matff","spor/ON/mtx/ONd2G1-f9r154B0.m",["e8bd567cf1a72fd91ebfbcdacc71baa8bb2d109688e99a4881664e2bc47243a0","53d117894f3aedeab06a94ff28439ab74ce350511ec86d2a4deea138705abd60"]]], ["TOC",["perm","spor/ON/mtx/ONd2G1-p245520B0.m",["a95011318e71f3ae233895ad181f6c81fc1dda21fc9ff987b7a35021ad0c6180","e79c734dce4c300e98b2175b125e18244b1373e8f5b23d44acd636c92a129dd4"]]], ["TOC",["matff","spor/ON/mtx/ONd4G1-f3r154B0.m",["f3ede5e6be31a6bd5bbdcc5950d1361855217a291252f107e320f25eb72c03c5","79223b0177cae1f3b644085aa0ff809b65b6cd0e1c59ae8366fb7536253897de"]]], ["TOC",["check","spor/ON/words/ONG1-check1",["933fa29bac60aa8638af53d280f8303082c9ba8c7f48323a50e023bd31d7a9a7"]]], ["TOC",["cyclic","spor/ON/words/ONG1-cycW1",["19b3e87ae1eb2eb116cad2c4c25d392a1999d323a4b17dbff6a1f41e821e1e0"]]], ["TOC",["find","spor/ON/words/ONG1-find1",["9b3951a0568252d55546d53e821cba7ae964fae03be7bfca60bbe7eca0f7a96d"]]], ["TOC",["maxes","spor/ON/words/ONG1-max10W1",["d44e43f1b2fc1cbf0690ffc84151158158b4ab1fbda082694c7d9236d8d03925"]]], ["TOC",["maxes","spor/ON/words/ONG1-max11W1",["ce638be52487c6a8c72570429e2ee4df3a1489382b00d509ee9db2292453cf8f"]]], ["TOC",["maxes","spor/ON/words/ONG1-max12W1",["4acd1f545900423d80593c204e0845e6eaa7b91a9edf7aec2f84ec4a2036ee33"]]], ["TOC",["maxes","spor/ON/words/ONG1-max13W1",["41e8d6b62d5af9307b0845ea39e29ccf503fe95f8d5541bb5385234ed28a1257"]]], ["TOC",["maxes","spor/ON/words/ONG1-max1W1",["b920c9523a1fe500c5f8e9e2ce005c455206bd906c8859fe27dccae8a7b480ec"]]], ["TOC",["maxes","spor/ON/words/ONG1-max2W1",["f9a2bb03a5174ccf680776d161dbd9d1dfcbcbe1a331e05113874d18bdf6a0ef"]]], ["TOC",["maxes","spor/ON/words/ONG1-max3W1",["8708ef2c6c2e002f2e7f40ec1d6b589713342120a6501390eb5f911945a1e5e3"]]], ["TOC",["maxes","spor/ON/words/ONG1-max4W1",["72217ec019f073465a76ec6aba0526df6fd6deb3759e86dcac892f5c3403451"]]], ["TOC",["maxes","spor/ON/words/ONG1-max5W1",["94424eab7b7fdb7440175f3f1257ae128beaa7229723a4ae10c3a3e504e1065d"]]], ["TOC",["maxes","spor/ON/words/ONG1-max6W1",["6a6e639e3bb69e76411d142a5d9c638a69b957758e0e47cade2185f9ca85d2ce"]]], ["TOC",["maxes","spor/ON/words/ONG1-max7W1",["7311f5b7ab95eb8146cc541adfe20df72a4e15757660bb97fd1716b4ba93f418"]]], ["TOC",["maxes","spor/ON/words/ONG1-max8W1",["baf69ea58c076112a7995c5b0e53c905a5f92abdcb4c9acff532f414e56ae495"]]], ["TOC",["maxes","spor/ON/words/ONG1-max9W1",["8a2b3ca07e8e1002e4722dd3b3a031d04796abbfe5b0e71ee5381832187afd58"]]], ["TOC",["check","spor/ON/words/ONd2G1-check1",["d0b59410cec42bfc0f64521a18e6ff96abf40921e4dfd360be78caa784e7731b"]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max10W1",["f768bfb918f5b24d47e7f1554aaa4800d83894d059a9d36378b824ce30c4e93f"]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max1W1",["667df798444a872bc1dd29206f640da125a87f8d1645723fa1bc51396f0a8a9b"]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max2W1",["89a050131f3d98130e18ff10ae0624a5344327dcc06cf81eb30f44e1e9ac0004"]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max3W1",["c5d846c6dd46ff5ae0c4204ba10babfe855ed74bb97ccbecea7429ac2afda942"]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max4W1",["24bdd21eb150b4b98a4bf886347554b5412b8ed1db04fb9f53b166b6490b986f"]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max5W1",["43331b57fcedc2e529fd081b0f7531cf1803d4c6554d761e563ad29a9819352c"]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max6W1",["f2e8078f066215256c572b25269a141bb32829b848c290f3421cc6b5ba47ad63"]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max7W1",["157063a3bb7ac8aa0ea3d24ee364ad3475e0eddaf90c894f2c982a89bd0b5f2a"]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max8W1",["e751d6b36d5c625e7515307b66909cfb7a64bb33116856f7f69d266d9e2294d7"]]], ["TOC",["maxes","spor/ON/words/ONd2G1-max9W1",["b25c73591aa9cdfc9a6181c2b78f1fdbcef2582dee161e9803459bf0b422ba18"]]], ["TOC",["matff","spor/Ru/mtx/2RuG1-f13r28B0.m",["fedea33e806819f53f9a66f514842705c244885e17d3b1939862f8ee6e07a8c1","a392d902979966ba900a4e1e65145a6c53ea905fec56349cab1d4b7316f489c7"]]], ["TOC",["matff","spor/Ru/mtx/2RuG1-f29r28B0.m",["d1b50d12c5e53f53b24251e778ae6c83c0650e8927da85238884e4779f802eaf","bcdf932ed8411306641c097b0100b8ace1ed85b1dbcce7df6a201a3fc579185c"]]], ["TOC",["matff","spor/Ru/mtx/2RuG1-f3r56B0.m",["53d1679bda247d714900f310b80e36a25dfc8de8b2b361cd5dda197fae2b10d5","2da3558137e3473e46e33a4c743b0de75071b084441df70897cab4268d24ea61"]]], ["TOC",["matff","spor/Ru/mtx/2RuG1-f49r28B0.m",["7c4c8a0da5452a0a65d7889864774635d84f507ae22fb4f9b02a354f360858e2","2877f19673c3b787f85454e1469a921b4bd8025eec606d65c09d1fa4eef9efa7"]]], ["TOC",["matff","spor/Ru/mtx/2RuG1-f5r28B0.m",["df2b2a8150ba1675e12d6755a96e3eab9c4540cf73f69be415f597066b9e6850","145cddc1613255d03418151a73c8a1f308cebf86b0e41ef90d1b4c4e0cbd2f73"]]], ["TOC",["matff","spor/Ru/mtx/2RuG1-f5r912B0.m",["8ed1ffa01166aa0381d7e4aabf00fecac8b26563e71cfc3dfd269d4d1969cb33","e77fd8060b70e45aed548b4c0c4c38cce65b762119b4f23c199b8e445e313f78"]]], ["TOC",["matff","spor/Ru/mtx/2RuG1-f7r56B0.m",["59fc4f488cd784e327773cb5acd56f50736bfed638ee6c4102d01074ff56d8ce","4949f1ca71ac758813a7c8c53892a0b8bbb05e2b1adf69edaf8358fe61096ea8"]]], ["TOC",["matff","spor/Ru/mtx/2RuG1-f9r28B0.m",["fd680b80e2c21330c1d0572509bba3f38461b3367bae4db1375f9b7aa03db5c6","eccbbcf4b273ad7724f80c1699c7b3a7b84a5e89ef147112367aa2281d0b9d2d"]]], ["TOC",["perm","spor/Ru/mtx/2RuG1-p16240B0.m",["1c3f3cbb38ed22995fd34ba5937172c586560ef44b76f48477f1c07c481fda1a","4fbcd73fd0909527f4bd6ed992205c09e8518a8f60dd8e038fa37f7e1088424f"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f13r378B0.m",["3dbbb40dc2adea65bc94e711827e6b76afe24915a5e567296dfc9c0b3213e600","d4421808f1569a84572fc572e6d6105b73c915f2474b089cd6d7850a00b47076"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f13r406B0.m",["774696864c22449438e89f588cc6f55b89784c1f5f9f90722ff635a1276087c","a948149a057426bf3112992a242600bf3a762ca3d82c8de7fb6d434355888944"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f13r783B0.m",["fb188f4c02da78a02f0aa577a49b85e6fd818dcd26ba94fce815041dd0c015a7","a09c80e3260a21e238269beaa83d7ead9eb3076bb13c789db2ca68d307db440a"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f29r378B0.m",["c0484efef4fc51e16af5cb226e7b0720f66ad8b9cd156933fb7e2a9f60cc6a52","1b730742ba486ab4e9eac2a4f8507a9264c10e840030aaecace1238f339ba9d9"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f29r406B0.m",["abe4698c2f4edb69c96007584d249cf73dbceef703a93f9fd8b183c5c289b524","5b499fe2d0e82c4438d9e521a529b159cc9af0b384617a9ca6263fe58c25bf77"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f29r783B0.m",["7f821a383c998fcccdf8df7e122ac20a10cc66a4ac83f8e0e4c899a90e2a8e96","3ec01e20e527439e62c682b1a39b846d9c5f87cc95f68e9894c2069547102849"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f2r1246B0.m",["ad51324315d1e1f0fa0363a64d447859a1fcb7622b93149fc70c07096f5664d1","b04b0bfc4baf1488d1c52d18ea24e7242dd9ae8521137e66d453d84be7e242d8"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f2r28B0.m",["90fdc2cc19d14f86aa9e222441ca0d5da4ea6dd6bd21338f218d51d908643c15","2066fe9ad569fb4a4b7df0d7cd755df613265d71fce73059021159dc4b81193d"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f2r376B0.m",["67c8566dd3a9234404f282203009332725eb9f27e5d07c3630002e245d260dd2","3bfa4ad0a4258ef47146fd3040de5bdcabcc7941ec90eea4b5a82bda0a722786"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f3r406B0.m",["9e9be900a68fbeec3f5a7fec1f563a970435b65c82407da99b2261fc03b0a2c","b3e21365843650aa2e57d0e64346641014c0609992114302ee8efc05ad70fd1b"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f3r783B0.m",["f98f0e56d9df7c3fe10bc5bd3afd95cc40be8d361e5278f3f3567b0879b51621","6942cc447fa5febe68b580f6eeb1c9c01ec302a764f38b489daa80492af2b6b9"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f49r378B0.m",["54c04b57fc5e7e7e26dfe35738468ec9c91848960bb919c79b40707836b1e139","d9d46dc30c2408f3758cd5fc0098f0a129514b24532557bc500de175acedcb5e"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f5r133B0.m",["d3dce4930d33bda1c6bb385477757ecbd8df770d6a0d336efa618e6bbb9aae98","7167d6d6815470f20163f4ac21e16b7fb0c9a933eb4b47f85b6c71da46a0184e"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f5r273B0.m",["5cb073e4c78a806225211dd0882c2a01735f3d590cbf80b3a93a5e984072c8e5","f8c54b240e380f2a9e44f5c9865ac53d6b3a1823d604cb790932993aa5a68868"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f5r378B0.m",["9cbdab7db515954fd23f76e00eb13af73700bdc0d12f76cefbaea4b3bfbd160c","c6354928a9545da3da5d9b0d2d7bd5dd2cb7b36b764c07904f7a04dc5160339"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f5r783B0.m",["7106fdd8bc434cda01f3069e112d5affc942ec42b1ed816dc05842ffa6da3066","16c567c300abe6280f50155d5cd4cc5371c82f9135dae93ffe4fafb7e684568b"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f7r406B0.m",["5ec1a112236ea80b014ebf79824071ea94c77332729689d9052ab9a5da862e4f","5ebf492fcc86e674ee75522aabd96fa0d8cecd640b3e6a5d8ad49deae381f3c1"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f7r782B0.m",["1a4b65c970b015450a402d56e64acf18c8c59fa53e3fdf36dfd356eb13e049dd","ab3aa0199b83c1fc5e363a504de9d360085188894a7277219cc87d19a02110b"]]], ["TOC",["matff","spor/Ru/mtx/RuG1-f9r378B0.m",["d7a1d1f4cab26530d4f8312963e7021fe1c58b5c2bf2ee5ccf8e0c6c8793c988","7434e1749eb10ea7a4e9956a45be9aeef590c8614d7af5c5f19bdeb1de2d6e3d"]]], ["TOC",["perm","spor/Ru/mtx/RuG1-p4060B0.m",["1c60df2cdd1207bdaa1c563ba96cb9423645d15e6cac85e26762d078820f6c55","e05e50192b822500c5a0d8c27e63404ef7cb5577521db3d50049e826a254ff83"]]], ["TOC",["classes","spor/Ru/words/RuG1-cclsW1",["5a5e359a6235c10a31100de56eb37098b68dec9a2bc92d0347dc598182775e96"]]], ["TOC",["check","spor/Ru/words/RuG1-check1",["e3fae4c9dbf53126b818389b5dc662df8a153b4ba3d97610e745819431ecf4c2"]]], ["TOC",["cyclic","spor/Ru/words/RuG1-cycW1",["4da408e88114ee3e5f8e5431cad01f2211448904656bee1cf2c90da151a9951e"]]], ["TOC",["find","spor/Ru/words/RuG1-find1",["a3ce2b53f0bf4791e5f8a75f4397ea5b90334a0be3bfc19f13bc3dc3e1d95b6e"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max10W1",["5137e169cb00330f2094ec6e1be33979e4d4bac22d9c47ea2c595a986c0b1539"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max10W2",["86d50292f0d45d352b5a495697a40d7c8ab7c48becc90d35a32d5966845b0ee3"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max11W1",["4ef2f3dc7fe89bc6a9a507a53f96f07c4900c0d7bc71f9e63853b6527e518c19"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max11W2",["3e6fce9b4692a994dc7f3cde201ec34accf09af3baff6f9f90c9ee4d43469537"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max12W1",["b29d62d5eee9df0e4e6f9a8147a4e9eb53464466d14de8962e69fa0cf2e134a5"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max12W2",["e18e7d4b7dd397701201fd8b9fa8eab5166ff8ed21e95d3c57b715f04dc66db5"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max13W1",["b16d797906bde7b6e0fa730f093d457ff2846079492557a5381dc327bb6bd4bd"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max13W2",["367624d17a63f9a5e5a89788073380bd8718315f3d175b579e19782272a00113"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max14W1",["7c48ba72711df34a51409c9727840b36799746454a5b8ea5bbe1d98a16a5299f"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max14W2",["223f410e28248a7df124dc2d666728b0261dc6b0bb0da867053560ae4db6819f"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max15W1",["6d02cbdd56704742b8e095d5221c2bf463adfba42dbc6683524cea42d354a892"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max15W2",["fe98c66e190b5966ef68d0902779a3b7574238c74c685e3d47cdd5874e4f73ee"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max15W3",["dacd7996f149a04d1fe556dbc4a3077f79a470435a0b8ef477f29e4446086076"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max1W1",["3a3f443aa8e990b9a93906b50bd00b954243ab9f7bda984aafbca13688e318bc"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max1W2",["40461445d5fbc6b7cd30f7f2275570c9ecb4847595d4843db92d14cc3a3cc5c5"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max2W1",["54bef3ff8f4fecce7f672d741beaa1c8eb362fcbf513cbfec1874e74048a15d4"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max2W2",["d481a697be2db833452c05beeb7a5afed8d5534ed9d1cd2ca28cf86fb6c9d58f"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max3W1",["4388348ac714d1bf64672e29a201ae8e612e317c4f167ae42a94b68621676581"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max3W2",["ce00917b1cf4d89ee117f30fc974061d4ffd1c5006c98f186bdf5645ae0b0133"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max4W1",["f84442e058bd52854d2fad336fb77acd717adba9a404666bdb6a38175b5f1d7c"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max4W2",["776793ccfac6f575106817345747bf320904abf72b695246e223959bd569cce8"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max5W1",["7aa3175b6a6c0810d7d7c7feabcff51b24620b180114de709cef7dc7610e82dd"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max5W2",["a51eac6de1e093e318f18a754440ca7d2e22fa391ec3f9ad0d956bd1fa3584d1"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max6W1",["207a54c186ca07121666837f1067b75eaf627ad273f4d3e953bb9737313a3493"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max6W2",["cb25da59b89dac515ddb6eabce132dc558384c5f0cbe7bb1523ddd4d2e22713d"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max7W1",["77716882b598fe3b0c807b29ba2ce8d434340913edc516bc61c20b7d10ef7816"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max7W2",["3a5e6819be1c85c9020a7ab68d072dab99e237e6cc892869170a79585c23bbf7"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max8W1",["b76e2fd22f931a1fc8e453126530aafa18d8d99003480f900e861263d6afd3c4"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max8W2",["94f6a39e9615d2758c79a362a889f7fd92bb2fbed28abf44cba62137df9eda56"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max9W1",["16696bc4b6f2ae5cd3abbd062a7939782cb71401808e45113d25c9ae27500159"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max9W2",["9e4a0be5ebc96b33dc7a37f9d5cff0c2ea63ec46a67a2a08a7d6edd5fe6bd9c0"]]], ["TOC",["maxes","spor/Ru/words/RuG1-max9W3",["52a0a769e896425062dfe7cdc232ef9468ff9bfd024ce3e319454002109e97b"]]], ["TOC",["maxstd","spor/Ru/words/RuG1max9W2-L229G1W1",["70c3ba9a32f9366a27843801552d6816ac527cc45e2323a227c22c60401be93"]]], ["TOC",["matint","spor/Suz/gap0/SuzG1-Zr143B0.g",["9e1f1b8260d7a735062bd13c96e6c9d0c3a9996949fceef20b7780e21ea65423"]]], ["TOC",["matff","spor/Suz/mtx/2SuzG1-f3r12B0.m",["b071e5ad818fc200d6dfe647a36003afbfd8880fb7e44cdedd28b42c17dee612","48829ef05453a80a056dc01a80beb4a811d24bf783d181c3494b1a0b6f23f6bd"]]], ["TOC",["matff","spor/Suz/mtx/2SuzG1-f3r208B0.m",["4770dd9c3bc61e6fab5c8212bab752fdb387473c22cdab3cbd9e47ef0067a5b1","8bd3729e008008de78da931b22f8e458347b2c336a40bdca91d2b2607965fc7"]]], ["TOC",["matff","spor/Suz/mtx/2SuzG1-f3r352B0.m",["2c2f8fd7efaca7eafc0f60f98874d52dfced155718c64a361109caaf35206719","19775611836b3b985a55f62c20972cf2c42034ebb5bdf53497a2b9a6210583e6"]]], ["TOC",["perm","spor/Suz/mtx/2SuzG1-p65520B0.m",["8d10a6787d43da214e357d285e37e1cff1ebc90385a8deed9410ada863fcb20c","e4e9adac78092ae50e4907471f9e823c586afc03fb24da9ca777a6e72e2f082e"]]], ["TOC",["matff","spor/Suz/mtx/2Suzd2G1-f3r12aB0.m",["1ffae2a2205e2233d3460c20b546f7d2dafd4bb38d5be7f3a8d120824f0beb2c","48829ef05453a80a056dc01a80beb4a811d24bf783d181c3494b1a0b6f23f6bd"]]], ["TOC",["matff","spor/Suz/mtx/3SuzG1-f25r66aB0.m",["4b6a3e16dcbf42b593a136ba90c9d3e8f5e7d1b2e1662b6d9e20c46bdad54f77","d2f4f7cdbb9709ac27a02420c085aca59b593a9c1b0d7db471b2fcce8946739e"]]], ["TOC",["matff","spor/Suz/mtx/3SuzG1-f4r12aB0.m",["ad136a1652547b996cea70854358279f4ac2ee79ed81d8607d68bb805cd1514","176fb59272d0e3ec6199ccb05eb4a95254aaa0ea258b32a5a01a9041873d4665"]]], ["TOC",["matff","spor/Suz/mtx/3SuzG1-f4r429aB0.m",["eaa883b6fcd349501129a77cb3be8b265cfb4e441f11224d7de6ef51e6882b8d","c0f4b8974d9e3906082f4fea4f605d7119c0eec7e97937cc398fe7eeab0982ad"]]], ["TOC",["matff","spor/Suz/mtx/3SuzG1-f4r66aB0.m",["d2e5a25fbef09c10b2b3792bea53d772c5fa0aedb0a0edc9b02e85aed1912c89","521d630992646aea291c3860db293582693f5dfd758cb0add78af35ff7a658f5"]]], ["TOC",["matff","spor/Suz/mtx/3SuzG1-f4r825aB0.m",["2e9e0a315ad18a5bdd1cda05638e97d9409c421e652c1fc05449ba2bc91cb06f","d112239ca48159e6f39690242f24a7d32f94473526e60a4ebef8a64617671dd3"]]], ["TOC",["matff","spor/Suz/mtx/3SuzG1-f4r825bB0.m",["5568b32f823dd0af96a069341620bcd6454e91205ab2358fe2c2b2335172d5cc","41ec663a1337fd0491ab718deabeacf974958dbe8b5ed7dc6d2ba804aaf7aa4c"]]], ["TOC",["perm","spor/Suz/mtx/3SuzG1-p405405B0.m",["53575748352668d90d505b42cde5ff5b2a11fb27a89f7c30d7cf4baf4320a628","95f22ce889dbd3aa3b1ce385c1b9a057002cfe16be409c3580beb9e2c7fdd2c5"]]], ["TOC",["perm","spor/Suz/mtx/3SuzG1-p5346B0.m",["4e682335a424e6f37ad5259b90dbe143c47a744baf6b83369e59d23d7aec1d8c","b99d61ec6bda01afa6d46dc1979bf3abcc0e0339bab2eba08d895b6910cb31ee"]]], ["TOC",["perm","spor/Suz/mtx/3SuzG1-p98280B0.m",["8aed1dcb20fc86b4f49710d307d4e1a9a675a98199998b635c9b15d0576d182d","bb56cb50162aa138711b908a565b6c7bfa27b4f507cc386601424f05e837964c"]]], ["TOC",["matff","spor/Suz/mtx/3Suzd2G1-f11r132B0.m",["8e35aa61b97f3de88199f57dfb6785482b948f17dcaa128ccdfc5263436262d","e12f89c67a0c063de7a8f7b80f63bead6665c47bf11d60c1a380c95f1c66947"]]], ["TOC",["matff","spor/Suz/mtx/3Suzd2G1-f2r24B0.m",["e6d03c5aa22bbe8186e916c528281bda79cd6cf57760d4669df3da97b11e7f78","64a79eee0455e7a85c5f0cab875d80cd4d628c71700e14396d23293edf1ea91c"]]], ["TOC",["matff","spor/Suz/mtx/3Suzd2G1-f5r132B0.m",["683467a187c696540db5a0e31bbf3aa0315786f71339e47b338e0e6144863776","76e46348f2a15c5ee878e51cc31b83253427b24d10f5c9b811f3e9a95d227bd8"]]], ["TOC",["matff","spor/Suz/mtx/3Suzd2G1-f7r132B0.m",["808deb2f9418cc585a3c86b2aeb2b91f44ef2eb7a16bd0aa77fb1f87fc921a5d","b814ee2f9a48cdbf57faf29c4cfc59491e129d86f539d83ec708d19fbce5bd16"]]], ["TOC",["perm","spor/Suz/mtx/3Suzd2G1-p5346B0.m",["4d3d63ee3607c911b8af6f774679ea6edc2b54d8ff7cdc63f1d59a80b1e3c84c","b99d61ec6bda01afa6d46dc1979bf3abcc0e0339bab2eba08d895b6910cb31ee"]]], ["TOC",["matff","spor/Suz/mtx/6SuzG1-f13r12aB0.m",["e8f879475b8b4c29f90c36053bd6313e17e8e5c0b2e616525c82c194fda23094","29276374de1bbc6baede7395afba1512a3eb0bd1ec34824b8bc9ea209bcb2eaa"]]], ["TOC",["matff","spor/Suz/mtx/6SuzG1-f25r12aB0.m",["8160ec3aeee36f183aec51f8db8b88f1fa2ac5ea626c56f54527c92d1866a93","80e9e3d1be4b1be25b441a9596074db25b41d28958602cea5aa93f9a68f4aad4"]]], ["TOC",["matff","spor/Suz/mtx/6SuzG1-f7r12aB0.m",["9fff2d0f1a50d574d555f203ed372040bc3efc0de8fb1cd67d7265a9639a4df","23d32e6b0cfc7d0f0a7f689fcecd14656730504ae387b0e6b4b5ef10d16f6cb3"]]], ["TOC",["perm","spor/Suz/mtx/6SuzG1-p196560B0.m",["dbaf65009ddfa27018f486f071b42fd74e17c4fe70446db7f68bd6e1a9ba02b4","bcfc1d5c5ea7445c4941fbd46202ff1928a9d3ba38ee54b0cd44ed0f6e78bc9d"]]], ["TOC",["matff","spor/Suz/mtx/6Suzd2G1-f11r24B0.m",["125b63982cd39f896e7ff9d808a0ebeebb0d9bcfc58e9692a5e5b5e58ae459ee","834417b2c8badcef53b9186e2c84de22283ccd8622a8a3ae55731b32d2d983c9"]]], ["TOC",["matff","spor/Suz/mtx/6Suzd2G1-f3r24B0.m",["381d85b05c37c1178267af473601117413a3bc847269b065e88c777ffd6d9bd4","b03774ac62af8be63211b98bfc8720a2dafe5e28d6473b7a32811a6849316b48"]]], ["TOC",["matff","spor/Suz/mtx/6Suzd2G1-f5r24B0.m",["ee6c2df70cb30be680fbc2eef3ecce2f511841a2e25fb86861e39189451bb06f","681ec5790ac71aa816f5fe77041263ec4ce145f28670bbaedf0d73125a7e26a7"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f11r143B0.m",["97ba7f9c2343f163a0ea8d36bf56d42ceb5b36a31b9f665939612593c8136acf","28feab9458df2209ca124ce5bcd6ea2e5eb86aee144323ddf057896c67eb6f3e"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f11r364B0.m",["d600ba495be279aeb89ac230e851c5fddcf7d12ce0604983f92d1ab4df13ec4c","7df644e617b932008010f7371e3f80ec1e1503013a606543623039e03e1891a6"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f11r779B0.m",["bf08c4baf612c1896076caa0a516d4769d15b208a3db8752dd6137a436b223ff","e276e88f831bcfc8162ee5ad082fbdfd0b4f9a63fb93df678a91e2b035e79d22"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f13r143B0.m",["75720b10b8dcf692981227744020f0d1dcc7c5c4a3ea9606bead16379ed8101e","bcc54303e41e51832921cb2f9e9ead84eee92fc267549ab356c74730c5ab9538"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f13r364B0.m",["adf7dc5f9ef2877bdbaf070c827056885b5cd639371fa78efe32ee48f8e37b5e","c65de01c53379e49de8cdf525891006bb74b3ff7f0ecd900f5a41d2cbd3f3412"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f13r780B0.m",["51560428a7d6195346399b0fe7b27484a5a366ed74d1484546ee66b909bf2","9b7b48636c308efde54ef689746ca8d40222a6c59fe9ca5fe15ef2ebcc615294"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f2r142B0.m",["e75bb62621e4c1cb2729fa86fbe47d72beb0868798f1fe63ffefe1f48e53818d","9a98a08f0dc60719190a7480ec825e94be13dc2f3cb341885f93f8d5036fd34b"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f2r638B0.m",["232cc09560363a59eefa196714b62cc7a4015528d893e9a0b6a7ee2218cfb24c","794b2c598e17701fdd294ba71a4dfa74ad8034586799400735e763e751de53f6"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f3r286B0.m",["8b6eba8c4d22a3417e7fdd8e120b53e4c9698aeb1bc093a07c8e6815e4d38148","edecfd98fc71b1b082cb179e88d35ebdf60381f395198cbd12f7a965ecd1a6ca"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f3r429B0.m",["77a9ea4d37b12d6c8ec7b254f040168dab8848796d4164fc3596846a3884c89d","a76059ea4b5db63512ec21392a70c9b3344e18108871a08c6ed442da677d0ecf"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f3r649B0.m",["c61c7cb70d10e8f2531047bb0f86909bc6d68603cb76c0d90611ab6eeb67e12b","642486d3242086207912199682257b71e8cb853bc29105ef3074011d6a6d2a89"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f3r64B0.m",["c8bab5ec5d182b8e05f39dffe3f9013aa42b9b4c52b573e08d93956099ac3bbe","aee050036595c66a8caf0bbc125f8b91a66abece37f8dde0fc96dd9c78fab46c"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f3r78B0.m",["b24e6ce614c0cbbcfbeac50592ebd9b0ecb3b51e7ba6002adab1b22fcaf1a9d5","8de3afc1ca44fd6bb1e76bd6a602a1e5f269622fac736fef609e7642134e54d4"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f4r110aB0.m",["b91f702edbe70dff867694b2d49e4e846903d2ef3412eeb785a4251f4486f54f","47bbc8d51b38b72749abd412888ea250fa721ad72be077b0466d883426cd7fd2"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f4r572aB0.m",["89af9cb60095ad72032300b8c83ae781eb2c271a861c3a7a0c3e0508fda82e4e","373d0d732235f87dbf6273ee6af586246feed0bd4ce5bcaaa8bcb1beba1523fb"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f4r572bB0.m",["7afc62fbbeddf9fed42adf47978aeda30be95d36bddf1dfa3d1d1cd6f4e704f0","c2ccc91687b5b925e7245f0dbf6086743adebc229dd1cfcfed72cf6c87664675"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f5r143B0.m",["362e67af1fffa5c9917736cf5720ce2202f6b93d90d3b8dd14eeaedfd5038b55","96f71d4102974ab9a36c06f4f21ad7900ccbc6d068a308fbef1e132eff4cdc6a"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f5r363B0.m",["94ab7d4fe1f5bd2afc15e7dcc6182a6c1635b0f8bd2c8f62650a3a85c07edc65","ab93661d735f0a83c96daafaadb251653bb7715c3a8dfc59fe0ed236f7d737f7"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f5r780B0.m",["a73b07be686154cd2473f756f1bb5642396d63961992cb138346ecc52a234003","c286e21ba1002cffa63f4bb76004971d3a1a85498239d8ac3c67e487e21a7d53"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f7r143B0.m",["8894bf3d8ff9050f357297851424d0be6749beeff1e0bef4676b36ae9e95e903","bdef63a4108b21b483e1c55326d36da17e9eb0d584ef8c87d5a5ff27b01905bb"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f7r364B0.m",["6e8579d567a0e418054df243e1ee6eee5e2c6c32ca0ffa13c088ecc1c28b9d61","5e1e2e640b14250f270ced91b666487089697da8ef5cc8be7a7b0bdc4b1922d2"]]], ["TOC",["matff","spor/Suz/mtx/SuzG1-f7r780B0.m",["9afeedc051bac19833291def876aaaabeb4c35c99e2f35a7bbc04387b14110e3","2981235b2074cb05ebb7efc5d94de9cf3febdc786ca82ba778a7d80c0e89128"]]], ["TOC",["perm","spor/Suz/mtx/SuzG1-p135135B0.m",["6b2009f4a4870b092cd9998fdd5fa5e363092b83e3729a0cdf866961c783fd62","f6a17ea31e8998ced3d9a0f2141e5032f9ed75829bcefb3ddaecfa2c52cd6fe9"]]], ["TOC",["perm","spor/Suz/mtx/SuzG1-p1782B0.m",["147e0340d7cc6e33dcc7df8367f7e9b74485b058724315d4f3fb17811688ab5a","16283965f3db638806a02117f5452565576bf8db6619e30782f0642f969820d8"]]], ["TOC",["perm","spor/Suz/mtx/SuzG1-p22880B0.m",["12e6859c3a41762b376d03fbf599cb3e7d1cdf2201ea3a8b7f2e6d114efcb545","d47b9c67ac4cd79e82a5dcf72c686425ee616b2e2e5c77b324f9d12043c69d8e"]]], ["TOC",["perm","spor/Suz/mtx/SuzG1-p232960B0.m",["fc43790fc6864678de5117bd06d1eaf2becb9ef94a8e79ccbef9a2d0f84c4169","31fa65fb66e30aa35435e2bdd3d311f506605f9b0ef804f6ed2142096b054b16"]]], ["TOC",["perm","spor/Suz/mtx/SuzG1-p32760B0.m",["37a81c16c2f1ba82739146f932b80319ac50ddf5324782f12226bbcaeabeefe2","4377f49e3242d8a013db3c6c81a18b1e20adf418f8447bfe123c09a6f31054d4"]]], ["TOC",["perm","spor/Suz/mtx/SuzG1-p370656B0.m",["b84892c426105da9dbf72e9f71a4b5b2d48bb1e54f459855b796207fa5c44458","4e1130d83d8a67319d9d019fa2238dba967bdbec9ed240aa5e77dbf6541639f8"]]], ["TOC",["perm","spor/Suz/mtx/SuzG1-p405405B0.m",["1b518a6aa7a6f92fd925767509cf74a92900b4c44974ace176f921de22d6e8b8","999427ca0f2740befd974af4db23d0aa49e579e791dd12b9d64cb8d41a713a82"]]], ["TOC",["matff","spor/Suz/mtx/Suzd2G1-f11r143aB0.m",["8dbb44aa83f13f29d6c7420e22cf399a94b22ef2a619c6d50913af76322ba694","28feab9458df2209ca124ce5bcd6ea2e5eb86aee144323ddf057896c67eb6f3e"]]], ["TOC",["matff","spor/Suz/mtx/Suzd2G1-f3r64aB0.m",["7c5b167b3cb7e618b9bec1664efd1c4490f69c8bf88414024c8ed655f0723070","aee050036595c66a8caf0bbc125f8b91a66abece37f8dde0fc96dd9c78fab46c"]]], ["TOC",["matff","spor/Suz/mtx/Suzd2G1-f5r143aB0.m",["9e939a51fd4b987277b95ef13033489e93048c3906ecf7a997dc97ab1bfbc557","678f27b33539a20e372ae9e05e0ac3ad63bd61d75e4f650a83925f7fcb65e22e"]]], ["TOC",["matff","spor/Suz/mtx/Suzd2G1-f7r143aB0.m",["5d9c9e4b724f744865d376d3742465bbf8fa820df6130ac8d99a4dc683574918","a6b07fbdef3238980b37806af464fa6391e3dd2d880f13a0f8b6f13712068b4a"]]], ["TOC",["perm","spor/Suz/mtx/Suzd2G1-p1782B0.m",["5ab565c842bb754e3e3f59f507acc9651b95fd8fc51b6cce6908d5e49191d94c","16283965f3db638806a02117f5452565576bf8db6619e30782f0642f969820d8"]]], ["TOC",["out","spor/Suz/words/SuzG1-a2W1",["60b898bb7b2c83da614ccac4284560df2cffcc2901b354c86008ec36172e2c04"]]], ["TOC",["out","spor/Suz/words/SuzG1-a2W2",["d7514b942edb4b7fc7bc3d920517a30d8e0122125e7ff63a3036750cadebfd2d"]]], ["TOC",["check","spor/Suz/words/SuzG1-check1",["ac9a0d54149857d65133e2e0c927658c3369a0251fc4a92a8ba0acdd8a180c1e"]]], ["TOC",["cyclic","spor/Suz/words/SuzG1-cycW1",["424e4ba26775005dd4aa6ff7108ee9879918163c413fc69861ba3f73f2f82560"]]], ["TOC",["find","spor/Suz/words/SuzG1-find1",["cf5d2e19d89793b3bccdb305421d444a4c873d5f118428c9aa230c4fd21eba74"]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max10W1",["c4308311de42cf96eaf17599115e9e4308ae4b66a12af36ad1a8e011f2a60a3c"]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max11W1",["c0d841746324dc5b2954665136ad77d89d24e68b54563335d764fd65d25811fb"]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max12W1",["7e165121586dc13307d1d2077c12df22251cba9b087e754eb087b83dde902614"]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max13W1",["2898bc845173d89d87c06f13d373e92f67fac209d9c90cde99ae94c02a35a3ba"]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max14W1",["713937b1b6aa7c8345663c52f2717c9af3d2d31b0ac0fdbb376b11dbd75a46fb"]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max15W1",["dd5b0e843ddd8e2e0227d206b5b1b8f8c536a10ce866c18bdab9b03ae78139bd"]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max16W1",["5e8169ba73eddd02982da876c51e2b3ef49436362b0aeb4048fde2d9a0ca4bda"]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max17W1",["1931a7525e594f9b3827cf9e4854245ba5010488a1eff4373aba78075b2c07ab"]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max1W1",["ac19c3a7585ac5f6ce38cf0aa93dd3d85a776369e90134e437aa21bf3d824a7e"]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max2W1",["931d69bb0bea8e40d5e143ed9426002fdd106e1381f5cef43a94102e68669923"]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max3W1",["572aaada7a02d960b910a4f4bac95cf3d065fbdec47a29d1b60972f92e5395a0"]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max4W1",["73fb1614e5ac27e30ed9e8f4c830695643f92a7d6d46e767fbc0fbf28b21e8c9"]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max5W1",["6699f87dde9c559b30bdf9e79d84c548f54825ebb9fc8dde994b49868d331601"]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max6W1",["12452b033b0dcf5476ec6d5fd186637be6c4474ffec8d9c8f363e7d46b54f42e"]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max7W1",["53090184aab511b4910a2d1c41932ac70e821d62f55119cef8fe4b5999184a87"]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max8W1",["72d63e38b4dbc2b3d6911ba441f5b4e957b9a59c6fdc0a8099a9382108a21d55"]]], ["TOC",["maxes","spor/Suz/words/SuzG1-max9W1",["5064666bf2b479cb6e2ac61fd415a3e479ca12f4e77dcdee1f441c790174b3cd"]]], ["TOC",["check","spor/Suz/words/Suzd2G1-check1",["a84799ad14b7b70737736dc8d4b898b2c3fc08787941aad98b2d3d20794e96ea"]]], ["TOC",["find","spor/Suz/words/Suzd2G1-find1",["cd841c879686fbcf5dbede2ca9816226cb8fdb43a01ce02e46e0f05d9407249a"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max10W1",["b8fa67a6bc15b03b3de8e03fd5a2520cf135bbae48a53a1fec79f0ea00c3286c"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max11W1",["b6faa9c5aa7a13a8d1213d8cffff00903831ee8123e3e0b431632fc5f50964bc"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max11W2",["bd7ee01b7238118868011c5534506221cc7380cdc4ffc48ef5bec5c29512f6b4"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max12W1",["bf5db43b4029f6cfb15a24a6c87f817d8ce260f2f4ed9e63c2d03da96c269db6"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max13W1",["ea4aae1a28c6719d54e637694f162ec6ba327ecd0d62a5e4d900d24e89e4dd11"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max13W2",["81decfb2eeae5085f8800be08e0c4607ba40cb50e53eedcb87b0308c414fb276"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max14W1",["56aef2290cd0a49088e5d2acb5b57099b0dba16895a7227872185957d37d32a0"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max15W1",["ba772aa0945b548b84960fa5680381483b0cefeb2316272384139e847269c893"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max16W1",["5a20cb029b65e891c697d6144e6583541a428e420e60de5ccb07517c7f07b3f2"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max16W2",["1dfb49fe569543bd898d2ee6807e5c0b552f42a211946772ed1b65d5abde72ae"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max1W1",["18ec018971d7b4d7dc83fef1b3ae17cb09a56a6237734d69f19c3a03c7eea592"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max2W1",["6639b3f1ce9c4cb735622ada0575c902284ed73018d3cc732fbc2a97523b4919"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max2W2",["6cab63c8781d3b9d16aebceab6538a529f914e2493d5c75fa40720262fb8f0ec"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max3W1",["97af2549e2eb0019070989966f6745f6e463a614d4040b742a8bdc5719e61e51"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max4W1",["4ce74e704ea79d6d8bf0101a51c7e75eee77cb4b19810bbac5d1474b7018fac2"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max5W1",["1ae3a59557ecaad90303d1e7df672b229664a927c617f12ffd039792d6de996d"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max5W2",["bf7bb081be2871de0d285d37eaced3bc3c117b1ca602060db4d0510deeed4a48"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max6W1",["40739a3c8ac6970696f4518ed693defce5d3dfd6b1536101652ec5f06f6324e8"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max7W1",["b52201b0a6bbcb83202225dbb072d072c3d6c0983c3d06ad7352e62bbb6901dc"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max7W2",["1634ca844dddd710ee468d3d6519e3fa4a5c0c17192a593d2d252604482df5e6"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max8W1",["ee68043f9ec918322c6870d978efa894c510e255dd1eceba2a4bee33405c33ff"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max8W2",["60f841ae654fbd88fb4b824fc30abf2fd63177eb44b5b56ee9e6a73bf1a98490"]]], ["TOC",["maxes","spor/Suz/words/Suzd2G1-max9W1",["e9e7f119f42203630a60a9b91c8784f5bf60c3126cb3337e6461153dd0d218f1"]]], ["TOC",["matff","spor/Th/mtx/ThG1-f13r248B0.m",["a6c0a2671976d1da6860a2734368ff6befb836f558fcc0b5265a460078c13faf","367cdfcbe8a335bfe6c070fb96007863e70f8d9d05bc8e062c2f85d02cc050ad"]]], ["TOC",["matff","spor/Th/mtx/ThG1-f19r248B0.m",["67c485b7aa8e70af1ffd40e32c13b0557e1df756d537cbd94f0d009ec7c10827","76b4a878e9107f67c055f824a29b3342d6925d2c05e8ab496b1214a9a43ea3d"]]], ["TOC",["matff","spor/Th/mtx/ThG1-f2r248B0.m",["3c3a9b23d1b43bb6ef3ab84edcd37dbed66563d66b738a8fe29563a2538a33cd","a705b8861f254b964a2996c5cc74cc97a16be90f5136dec1ad87943353c2e9f1"]]], ["TOC",["matff","spor/Th/mtx/ThG1-f31r248B0.m",["64c081a8eb7b772634e23538597a60ee83cc5e3cfb8644c67143a66bc90a4b06","181164da9da1ec58aa275044f5a4027b9513cdc0e7015f87eeecd39873408075"]]], ["TOC",["matff","spor/Th/mtx/ThG1-f3r248B0.m",["c26c5bd352c26cd51cb393bdcebc4000294cf8bb4481aa60083ff1e47dde1f6e","dac4e70b409671262a3b61fd9be07756a25c3424e2d49270ff490846e33d7e0d"]]], ["TOC",["matff","spor/Th/mtx/ThG1-f3r3875B0.m",["cf456d1ee1b408d0d3c14c03426515019d141dc08089427af8dd01f8577bd5fb","10fd5ce06ce53d64aabbbc6435ed164bc26722ee6b436b8e0d8eddd1db8466a7"]]], ["TOC",["matff","spor/Th/mtx/ThG1-f5r248B0.m",["6ba957a45628f17e5cf0fcb10ecbab91be814afc8e631583da8d68cd6d8ee80","27a0bae24f488a68b4ff201bb8be7bb7d1533f5f6858195c34e00853ad9c28f0"]]], ["TOC",["matff","spor/Th/mtx/ThG1-f7r248B0.m",["4bf0f6d33c8a70376e94d40ae6513b54d17a6f5eaaa2022975e9aa9cf846bf7d","9e84dbf3f617a6668e72574bb3add7038faf63d3398aae1094bd0484cab2ec2c"]]], ["TOC",["check","spor/Th/words/ThG1-check1",["ec0a34c3661204d0510f3ca64641f62976d3f6373fbfb801e7c57956d6849d03"]]], ["TOC",["cyclic","spor/Th/words/ThG1-cycW1",["9a5bb5f90a4181d1df53bc76243e72238233c8e86415856bfa494a53e8a714d7"]]], ["TOC",["find","spor/Th/words/ThG1-find1",["d97b80563b29a40887c35b3d4cce6887541c9e4a2fdfc6e1282bfaddb0d93745"]]], ["TOC",["maxes","spor/Th/words/ThG1-max10W1",["b64d832848f5462801e47503ddc01dcacbded00e2ba5f7f398947da96caecb6d"]]], ["TOC",["maxes","spor/Th/words/ThG1-max11W1",["13a3621a0c6e3d1b8d31f62b5ac707819056945036b26f03d30549d135a463f8"]]], ["TOC",["maxes","spor/Th/words/ThG1-max12W1",["666fd6a87df0fd3a88187972636d8a14496c430ecc9201974803e8476660a8f3"]]], ["TOC",["maxes","spor/Th/words/ThG1-max13W1",["cd6f064f09c890c855db84a95ba534f48fb7d2d3d150bbd7f52c7d36f701318f"]]], ["TOC",["maxes","spor/Th/words/ThG1-max14W1",["777b059dcd8e35b0cf7058826925c58a3a31ea6eaf2a8294636a5c113024d729"]]], ["TOC",["maxes","spor/Th/words/ThG1-max14W2",["644b9b3c97549da118d6e1885b0e729820110881e6528477712d48716c27af3"]]], ["TOC",["maxes","spor/Th/words/ThG1-max15W1",["b91cef4096e7be7b76c9efb08ae6c60cecde7e4f43eed1a6b1955150a9da0520"]]], ["TOC",["maxes","spor/Th/words/ThG1-max15W2",["747d8d6917ddf313363b2efc90ea15a2ec9e78235834c55160634fc9ab2155c5"]]], ["TOC",["maxes","spor/Th/words/ThG1-max16W1",["90d7de7a85d79921fea752994d296d6681789cf68d8b86720914568f56fc4f60"]]], ["TOC",["maxes","spor/Th/words/ThG1-max1W1",["50f94ab7ea41230620a437da81e0faa95d7793e026aff77ebe4ee0ab208f02af"]]], ["TOC",["maxes","spor/Th/words/ThG1-max2W1",["da415ad776f26e76117d1e04aa1038f5891d46db602c9f7dee8a8b9aabd8c1a0"]]], ["TOC",["maxes","spor/Th/words/ThG1-max3W1",["5d8f14b12f978e8b4c5f0814c3ef1ba94a3f608bb57042f507f63e1e9a084e81"]]], ["TOC",["maxes","spor/Th/words/ThG1-max4W1",["72767e23cc0eeab22ca53612c65fe62fdf4d832aebee111a2ceb36869164a065"]]], ["TOC",["maxes","spor/Th/words/ThG1-max4W2",["3af2e8608fa84bb34ab8f4aa7a16b55d2b67ea2dd85d097528faaa0b9fa523d5"]]], ["TOC",["maxes","spor/Th/words/ThG1-max5W1",["25b5389bad3b8dd6717c3e5c4b94ac8587277ddc2d6247bc13e48ff9a7b80624"]]], ["TOC",["maxes","spor/Th/words/ThG1-max6W1",["e4e3d2d62ac2b59b4004a525f9ed2ecea8bd39bffb629a16bc36c9a54fa85b51"]]], ["TOC",["maxes","spor/Th/words/ThG1-max7W1",["ef65f9d1cf2eac27228fa631a310a1ebb830ae08131b2840d82145b0fe2b6a2"]]], ["TOC",["maxes","spor/Th/words/ThG1-max8W1",["cb11e34af730e1ddfae2505ed998dc4a5d1619b2ed6bf9ea7498fac9aca184f7"]]], ["TOC",["maxes","spor/Th/words/ThG1-max9W1",["dadb117393ac624af69f02ea3c7f4b8c5adbd02450f55c39c15eea054dbfd402"]]], ["TOC",["maxstd","spor/Th/words/ThG1max14W1-M10G1W1",["c3c08d36ee64cc1d2c1916497dfb34892e9edf774433041728dca577523adbdf"]]], ["STDCOMP",["(13:6xL3(3)).2",[0,"L3(3).2",1,true]]], ["STDCOMP",["(2^2x3).U6(2)",[1,"U6(2)",1,true]]], ["STDCOMP",["(7:3xHe):2",[0,"He.2",1,true]]], ["STDCOMP",["(7^2:(3x2A4)xL2(7)).2",[0,"L3(2).2",1,false]]], ["STDCOMP",["(A5xA12):2",[0,"A12.2",1,false]]], ["STDCOMP",["(A5xA12):2",[0,"A5.2",1,true]]], ["STDCOMP",["(A5xU3(8):3):2",[0,"A5.2",1,false]]], ["STDCOMP",["(A5xU3(8):3):2",[0,"U3(8).6",1,true]]], ["STDCOMP",["(D10xHN).2",[0,"HN.2",1,true]]], ["STDCOMP",["(L2(11)xM12):2",[0,"L2(11).2",1,true]]], ["STDCOMP",["(L2(11)xM12):2",[0,"M12.2",1,true]]], ["STDCOMP",["(L3(2)xS4(4):2).2",[0,"L3(2).2",1,false]]], ["STDCOMP",["(L3(2)xS4(4):2).2",[0,"S4(4).4",1,true]]], ["STDCOMP",["12.M22",[1,"M22",1,true]]], ["STDCOMP",["12.M22.2",[1,"M22.2",1,true]]], ["STDCOMP",["12_1.L3(4)",[1,"L3(4)",1,true]]], ["STDCOMP",["12_2.L3(4)",[1,"L3(4)",1,true]]], ["STDCOMP",["2.A11",[1,"A11",1,true]]], ["STDCOMP",["2.A12",[1,"A12",1,true]]], ["STDCOMP",["2.A14.2",[1,"A14.2",1,true]]], ["STDCOMP",["2.A5",[1,"A5",1,true]]], ["STDCOMP",["2.A5.2",[1,"A5.2",1,true]]], ["STDCOMP",["2.A6",[1,"A6",1,true]]], ["STDCOMP",["2.A6.2_1",[1,"A6.2_1",1,true]]], ["STDCOMP",["2.A7",[1,"A7",1,true]]], ["STDCOMP",["2.A8",[1,"A8",1,true]]], ["STDCOMP",["2.Co1",[1,"Co1",1,true]]], ["STDCOMP",["2.Fi22",[1,"Fi22",1,true]]], ["STDCOMP",["2.Fi22.2",[1,"Fi22.2",1,true]]], ["STDCOMP",["2.G2(4)",[1,"G2(4)",1,true]]], ["STDCOMP",["2.HS",[1,"HS",1,true]]], ["STDCOMP",["2.HS.2",[1,"HS.2",1,true]]], ["STDCOMP",["2.J2",[1,"J2",1,true]]], ["STDCOMP",["2.J2.2",[1,"J2.2",1,true]]], ["STDCOMP",["2.L2(11)",[1,"L2(11)",1,true]]], ["STDCOMP",["2.L2(19)",[1,"L2(19)",1,true]]], ["STDCOMP",["2.L3(2)",[1,"L3(2)",1,true]]], ["STDCOMP",["2.L3(2).2",[1,"L3(2).2",1,true]]], ["STDCOMP",["2.L3(4)",[1,"L3(4)",1,true]]], ["STDCOMP",["2.M12",[1,"M12",1,true]]], ["STDCOMP",["2.M12.2",[1,"M12.2",1,true]]], ["STDCOMP",["2.M22",[1,"M22",1,true]]], ["STDCOMP",["2.M22.2",[1,"M22.2",1,true]]], ["STDCOMP",["2.O7(3)",[1,"O7(3)",1,true]]], ["STDCOMP",["2.O8+(3)",[1,"O8+(3)",1,true]]], ["STDCOMP",["2.Ru",[1,"Ru",1,true]]], ["STDCOMP",["2.S4(5)",[1,"S4(5)",1,true]]], ["STDCOMP",["2.S6(2)",[1,"S6(2)",1,true]]], ["STDCOMP",["2.S6(3).2",[1,"S6(3).2",1,true]]], ["STDCOMP",["2.Suz",[1,"Suz",1,true]]], ["STDCOMP",["2.Suz.2",[1,"Suz.2",1,true]]], ["STDCOMP",["2.Sz(8)",[1,"Sz(8)",1,true]]], ["STDCOMP",["2.U4(2)",[1,"U4(2)",1,true]]], ["STDCOMP",["2.U4(2).2",[1,"U4(2).2",1,true]]], ["STDCOMP",["2.U6(2)",[1,"U6(2)",1,true]]], ["STDCOMP",["2^2.2E6(2).S3",[0,"2E6(2).3.2",0,false]]], ["STDCOMP",["2^2.Sz(8).3",[1,"Sz(8).3",1,true]]], ["STDCOMP",["2^2.U6(2)",[1,"U6(2)",1,true]]], ["STDCOMP",["3.A6",[1,"A6",1,true]]], ["STDCOMP",["3.A6.2_1",[1,"A6.2_1",1,true]]], ["STDCOMP",["3.A7",[1,"A7",1,true]]], ["STDCOMP",["3.Fi22",[1,"Fi22",1,true]]], ["STDCOMP",["3.Fi22.2",[1,"Fi22.2",1,true]]], ["STDCOMP",["3.G2(3)",[1,"G2(3)",1,true]]], ["STDCOMP",["3.J3",[1,"J3",1,true]]], ["STDCOMP",["3.J3.2",[1,"J3.2",1,true]]], ["STDCOMP",["3.L3(4)",[1,"L3(4)",1,true]]], ["STDCOMP",["3.M22",[1,"M22",1,true]]], ["STDCOMP",["3.M22.2",[1,"M22.2",1,true]]], ["STDCOMP",["3.McL",[1,"McL",1,true]]], ["STDCOMP",["3.McL.2",[1,"McL.2",1,true]]], ["STDCOMP",["3.O7(3)",[1,"O7(3)",1,true]]], ["STDCOMP",["3.ON",[1,"ON",1,true]]], ["STDCOMP",["3.ON.2",[1,"ON.2",1,true]]], ["STDCOMP",["3.Suz",[1,"Suz",1,true]]], ["STDCOMP",["3.Suz.2",[1,"Suz.2",1,true]]], ["STDCOMP",["3.U3(8)",[1,"U3(8)",1,true]]], ["STDCOMP",["3.U6(2)",[1,"U6(2)",1,true]]], ["STDCOMP",["4.M22",[1,"M22",1,true]]], ["STDCOMP",["4.M22.2",[1,"M22.2",1,true]]], ["STDCOMP",["4_1.L3(4)",[1,"L3(4)",1,true]]], ["STDCOMP",["4_2.L3(4)",[1,"L3(4)",1,true]]], ["STDCOMP",["5^3.L3(5)",[2,"L3(5)",1,false]]], ["STDCOMP",["5^3.L3(5)",[2,"L3(5)",2,false]]], ["STDCOMP",["6.A6",[1,"A6",1,true]]], ["STDCOMP",["6.A6.2_1",[1,"A6.2_1",1,true]]], ["STDCOMP",["6.A7",[1,"A7",1,true]]], ["STDCOMP",["6.Fi22",[1,"2.Fi22",1,true]]], ["STDCOMP",["6.Fi22",[1,"Fi22",1,true]]], ["STDCOMP",["6.Fi22.2",[1,"3.Fi22.2",1,true]]], ["STDCOMP",["6.Fi22.2",[1,"Fi22.2",1,true]]], ["STDCOMP",["6.L3(4)",[1,"L3(4)",1,true]]], ["STDCOMP",["6.M22",[1,"M22",1,true]]], ["STDCOMP",["6.M22.2",[1,"M22.2",1,true]]], ["STDCOMP",["6.O7(3)",[1,"O7(3)",1,true]]], ["STDCOMP",["6.Suz",[1,"Suz",1,true]]], ["STDCOMP",["6.Suz.2",[1,"Suz.2",1,true]]], ["STDCOMP",["6.U6(2)",[1,"U6(2)",1,true]]], ["STDCOMP",["7^(2+1+2):GL2(7)",[0,"Isoclinic(2.L3(2).2)",1,false]]], ["STDCOMP",["Isoclinic(2.A14.2)",[1,"A14.2",1,true]]], ["STDCOMP",["Isoclinic(2.A5.2)",[1,"A5.2",1,true]]], ["STDCOMP",["Isoclinic(2.L3(2).2)",[1,"L3(2).2",1,true]]], ["STDCOMP",["Isoclinic(2.M12.2)",[1,"M12.2",1,true]]], ["RNG",["2A5G1-Ar2aB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["2A5G1-Ar4aB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["2A5G1-Ar4aB2","Field([Sqrt(-6)])",["QuadraticField",-6],[6,0,1]]], ["RNG",["2A5G1-Ar6B0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["2A5G1-Ar6B1","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2A5G1-Hr1aB0","QuaternionAlgebra([Sqrt(5)])"]], ["RNG",["2A6G1-Ar4B0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2A6G1-Ar4aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2A6G1-Hr2aB0","QuaternionAlgebra([Sqrt(3)])"]], ["RNG",["2A7G1-Ar20aB0","Field([Sqrt(-7)])",["QuadraticField",-7],[2,1,1]]], ["RNG",["2A7G1-Ar4aB0","Field([Sqrt(-7)])",["QuadraticField",-7],[2,1,1]]], ["RNG",["2A7G1-Ar4bB0","Field([Sqrt(-7)])",["QuadraticField",-7],[2,1,1]]], ["RNG",["2A9G1-Ar8aB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["2G24G1-Ar12B0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["2L2101G1-Ar102aB0","Field([E(100)])",["CyclotomicField",100],[1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["2L2103G1-Ar104aB0","Field([E(51)])",["CyclotomicField",51],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["2L2107G1-Ar108aB0","Field([E(53)])",["CyclotomicField",53],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["2L2109G1-Ar110aB0","Field([E(108)])",["CyclotomicField",108],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["2L2113G1-Ar114aB0","Field([E(112)])",["CyclotomicField",112],[1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1]]], ["RNG",["2L2127G1-Ar128aB0","Field([E(63)])",["CyclotomicField",63],[1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1]]], ["RNG",["2L2131G1-Ar132aB0","Field([E(65)])",["CyclotomicField",65],[1,-1,0,0,0,1,-1,0,0,0,1,-1,0,1,-1,1,-1,0,1,-1,1,-1,0,1,-1,1,0,-1,1,-1,1,0,-1,1,-1,1,0,-1,1,0,0,0,-1,1,0,0,0,-1,1]]], ["RNG",["2L2137G1-Ar138aB0","Field([E(136)])",["CyclotomicField",136],[1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1]]], ["RNG",["2L2139G1-Ar140aB0","Field([E(69)])",["CyclotomicField",69],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["2L2149G1-Ar150aB0","Field([E(148)])",["CyclotomicField",148],[1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1]]], ["RNG",["2L2151G1-Ar152aB0","Field([E(75)])",["CyclotomicField",75],[1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1]]], ["RNG",["2L2157G1-Ar158aB0","Field([E(156)])",["CyclotomicField",156],[1,0,1,0,0,0,-1,0,-1,0,0,0,1,0,1,0,0,0,-1,0,-1,0,0,0,1,0,0,0,-1,0,-1,0,0,0,1,0,1,0,0,0,-1,0,-1,0,0,0,1,0,1]]], ["RNG",["2L2163G1-Ar164aB0","Field([E(81)])",["CyclotomicField",81],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["2L2167G1-Ar168aB0","Field([E(83)])",["CyclotomicField",83],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["2L2173G1-Ar174aB0","Field([E(172)])",["CyclotomicField",172],[1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1]]], ["RNG",["2L2179G1-Ar180aB0","Field([E(89)])",["CyclotomicField",89],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["2L2181G1-Ar182aB0","Field([E(180)])",["CyclotomicField",180],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1]]], ["RNG",["2L2191G1-Ar192aB0","Field([E(95)])",["CyclotomicField",95],[1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,1,0,-1,0,0,1,0,-1,0,0,1,0,-1,0,0,1,0,-1,0,1,0,0,-1,0,1,0,0,-1,0,1,0,0,-1,0,1,0,0,-1,1,0,0,0,-1,1,0,0,0,-1,1,0,0,0,-1,1]]], ["RNG",["2L2193G1-Ar194aB0","Field([E(192)])",["CyclotomicField",192],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["2L2197G1-Ar198aB0","Field([E(196)])",["CyclotomicField",196],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["2L2199G1-Ar200aB0","Field([E(99)])",["CyclotomicField",99],[1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1]]], ["RNG",["2L2211G1-Ar212aB0","Field([E(105)])",["CyclotomicField",105],[1,1,1,0,0,-1,-1,-2,-1,-1,0,0,1,1,1,1,1,1,0,0,-1,0,-1,0,-1,0,-1,0,-1,0,0,1,1,1,1,1,1,0,0,-1,-1,-2,-1,-1,0,0,1,1,1]]], ["RNG",["2L2223G1-Ar224aB0","Field([E(111)])",["CyclotomicField",111],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["2L2227G1-Ar228aB0","Field([E(113)])",["CyclotomicField",113],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["2L2229G1-Ar230aB0","Field([E(228)])",["CyclotomicField",228],[1,0,1,0,0,0,-1,0,-1,0,0,0,1,0,1,0,0,0,-1,0,-1,0,0,0,1,0,1,0,0,0,-1,0,-1,0,0,0,1,0,0,0,-1,0,-1,0,0,0,1,0,1,0,0,0,-1,0,-1,0,0,0,1,0,1,0,0,0,-1,0,-1,0,0,0,1,0,1]]], ["RNG",["2L2233G1-Ar234aB0","Field([E(232)])",["CyclotomicField",232],[1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1]]], ["RNG",["2L2239G1-Ar240aB0","Field([E(119)])",["CyclotomicField",119],[1,-1,0,0,0,0,0,1,-1,0,0,0,0,0,1,-1,0,1,-1,0,0,1,-1,0,1,-1,0,0,1,-1,0,1,-1,0,1,0,-1,0,1,-1,0,1,0,-1,0,1,-1,0,1,0,-1,1,0,-1,0,1,0,-1,1,0,-1,0,1,0,-1,1,0,-1,1,0,0,-1,1,0,-1,1,0,0,-1,1,0,-1,1,0,0,0,0,0,-1,1,0,0,0,0,0,-1,1]]], ["RNG",["2L2241G1-Ar242aB0","Field([E(240)])",["CyclotomicField",240],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1]]], ["RNG",["2L231G1-Ar32aB0","Field([E(15)])",["CyclotomicField",15],[1,-1,0,1,-1,1,0,-1,1]]], ["RNG",["2L237G1-Ar38aB0","Field([E(36)])",["CyclotomicField",36],[1,0,0,0,0,0,-1,0,0,0,0,0,1]]], ["RNG",["2L241G1-Ar42aB0","Field([E(40)])",["CyclotomicField",40],[1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1]]], ["RNG",["2L243G1-Ar44aB0","Field([E(21)])",["CyclotomicField",21],[1,-1,0,1,-1,0,1,0,-1,1,0,-1,1]]], ["RNG",["2L247G1-Ar48aB0","Field([E(23)])",["CyclotomicField",23],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["2L253G1-Ar54aB0","Field([E(52)])",["CyclotomicField",52],[1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1]]], ["RNG",["2L259G1-Ar60aB0","Field([E(29)])",["CyclotomicField",29],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["2L261G1-Ar62aB0","Field([E(60)])",["CyclotomicField",60],[1,0,1,0,0,0,-1,0,-1,0,-1,0,0,0,1,0,1]]], ["RNG",["2L267G1-Ar68aB0","Field([E(33)])",["CyclotomicField",33],[1,-1,0,1,-1,0,1,-1,0,1,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["2L271G1-Ar72aB0","Field([E(35)])",["CyclotomicField",35],[1,-1,0,0,0,1,-1,1,-1,0,1,-1,1,-1,1,0,-1,1,-1,1,0,0,0,-1,1]]], ["RNG",["2L273G1-Ar74aB0","Field([E(72)])",["CyclotomicField",72],[1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["2L279G1-Ar80aB0","Field([E(39)])",["CyclotomicField",39],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["2L283G1-Ar84aB0","Field([E(41)])",["CyclotomicField",41],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["2L289G1-Ar90aB0","Field([E(88)])",["CyclotomicField",88],[1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1]]], ["RNG",["2L297G1-Ar98aB0","Field([E(96)])",["CyclotomicField",96],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["2S5G1-Ar4bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2S5iG1-Ar4aB1","Field([Sqrt(-2)])",["QuadraticField",-2],[2,0,1]]], ["RNG",["2S5iG1-Ar4aB2","Field([Sqrt(-5)])",["QuadraticField",-5],[5,0,1]]], ["RNG",["2U42G1-Ar20aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2U42G1-Ar20bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2U42G1-Ar20cB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2U42G1-Ar36aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2U42G1-Ar36bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2U42G1-Ar4aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2U42G1-Ar4bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2U42G1-Ar60bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["2aM20G1-Ar12aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["2aM20G1-Ar12bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["2aM20G1-Ar12bB1","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["3A6G1-Ar15B0","Field([EY(15,1)])",["AbelianNumberField",15],[1,1,2,-1,1]]], ["RNG",["3A6G1-Ar3aB0","Field([EY(15,1)])",["AbelianNumberField",15],[1,1,2,-1,1]]], ["RNG",["3A6G1-Ar6B0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["3A6G1-Ar9B0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["3A7G1-Ar15aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["3A7G1-Ar15bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["3A7G1-Ar21aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["3A7G1-Ar21bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["3A7G1-Ar6B0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["4bM20G1-Ar20aB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["4bM20G1-Ar4aB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["4bM20G1-Ar4aB1","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["6A6G1-Ar12B0","Field([EY(15,1)])",["AbelianNumberField",15],[1,1,2,-1,1]]], ["RNG",["6L34G1-Ar6aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["A5G1-Ar3aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["A5G1-Ar3bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["A6G1-Ar8aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["A6G1-Ar8bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["G23d2G1-Ar14B0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["J2G1-Ar14aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["J2G1-Ar14bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["J2G1-Ar21aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["J2G1-Ar21bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["L2101G1-Ar102aB0","Field([E(25)])",["CyclotomicField",25],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1]]], ["RNG",["L2103G1-Ar104aB0","Field([E(51)])",["CyclotomicField",51],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["L2107G1-Ar108aB0","Field([E(53)])",["CyclotomicField",53],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L2109G1-Ar110aB0","Field([E(27)])",["CyclotomicField",27],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1]]], ["RNG",["L2113G1-Ar114aB0","Field([E(56)])",["CyclotomicField",56],[1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1]]], ["RNG",["L211G1-Ar12aB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L211G1-Ar12bB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L211G1-Ar5aB0","Field([Sqrt(-11)])",["QuadraticField",-11],[3,1,1]]], ["RNG",["L211G1-Ar5bB0","Field([Sqrt(-11)])",["QuadraticField",-11],[3,1,1]]], ["RNG",["L2127G1-Ar128aB0","Field([E(63)])",["CyclotomicField",63],[1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1]]], ["RNG",["L2128G1-Ar129aB0","Field([E(127)])",["CyclotomicField",127],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L2131G1-Ar132aB0","Field([E(65)])",["CyclotomicField",65],[1,-1,0,0,0,1,-1,0,0,0,1,-1,0,1,-1,1,-1,0,1,-1,1,-1,0,1,-1,1,0,-1,1,-1,1,0,-1,1,-1,1,0,-1,1,0,0,0,-1,1,0,0,0,-1,1]]], ["RNG",["L2137G1-Ar138aB0","Field([E(68)])",["CyclotomicField",68],[1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1]]], ["RNG",["L2139G1-Ar140aB0","Field([E(69)])",["CyclotomicField",69],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["L213G1-Ar12aB0","Field([EY(7)])",["AbelianNumberField",7],[-1,-2,1,1]]], ["RNG",["L213G1-Ar12bB0","Field([EY(7)])",["AbelianNumberField",7],[-1,-2,1,1]]], ["RNG",["L213G1-Ar12cB0","Field([EY(7)])",["AbelianNumberField",7],[-1,-2,1,1]]], ["RNG",["L2149G1-Ar150aB0","Field([E(37)])",["CyclotomicField",37],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L2151G1-Ar152aB0","Field([E(75)])",["CyclotomicField",75],[1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1]]], ["RNG",["L2157G1-Ar158aB0","Field([E(39)])",["CyclotomicField",39],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["L2163G1-Ar164aB0","Field([E(81)])",["CyclotomicField",81],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["L2167G1-Ar168aB0","Field([E(83)])",["CyclotomicField",83],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L2173G1-Ar174aB0","Field([E(43)])",["CyclotomicField",43],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L2179G1-Ar180aB0","Field([E(89)])",["CyclotomicField",89],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L217G1-Ar9aB0","Field([Sqrt(17)])",["QuadraticField",17],[-4,1,1]]], ["RNG",["L217G1-Ar9bB0","Field([Sqrt(17)])",["QuadraticField",17],[-4,1,1]]], ["RNG",["L2181G1-Ar182aB0","Field([E(45)])",["CyclotomicField",45],[1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1]]], ["RNG",["L2191G1-Ar192aB0","Field([E(95)])",["CyclotomicField",95],[1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,1,0,-1,0,0,1,0,-1,0,0,1,0,-1,0,0,1,0,-1,0,1,0,0,-1,0,1,0,0,-1,0,1,0,0,-1,0,1,0,0,-1,1,0,0,0,-1,1,0,0,0,-1,1,0,0,0,-1,1]]], ["RNG",["L2193G1-Ar194aB0","Field([E(96)])",["CyclotomicField",96],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]], ["RNG",["L2197G1-Ar198aB0","Field([E(49)])",["CyclotomicField",49],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1]]], ["RNG",["L2199G1-Ar200aB0","Field([E(99)])",["CyclotomicField",99],[1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1]]], ["RNG",["L2211G1-Ar212aB0","Field([E(105)])",["CyclotomicField",105],[1,1,1,0,0,-1,-1,-2,-1,-1,0,0,1,1,1,1,1,1,0,0,-1,0,-1,0,-1,0,-1,0,-1,0,0,1,1,1,1,1,1,0,0,-1,-1,-2,-1,-1,0,0,1,1,1]]], ["RNG",["L2223G1-Ar224aB0","Field([E(111)])",["CyclotomicField",111],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["L2227G1-Ar228aB0","Field([E(113)])",["CyclotomicField",113],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L2229G1-Ar230aB0","Field([E(57)])",["CyclotomicField",57],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["L2233G1-Ar234aB0","Field([E(116)])",["CyclotomicField",116],[1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1]]], ["RNG",["L2239G1-Ar240aB0","Field([E(119)])",["CyclotomicField",119],[1,-1,0,0,0,0,0,1,-1,0,0,0,0,0,1,-1,0,1,-1,0,0,1,-1,0,1,-1,0,0,1,-1,0,1,-1,0,1,0,-1,0,1,-1,0,1,0,-1,0,1,-1,0,1,0,-1,1,0,-1,0,1,0,-1,1,0,-1,0,1,0,-1,1,0,-1,1,0,0,-1,1,0,-1,1,0,0,-1,1,0,-1,1,0,0,0,0,0,-1,1,0,0,0,0,0,-1,1]]], ["RNG",["L223G1-Ar24aB0","Field([E(11)])",["CyclotomicField",11],[1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L223G1-Ar24bB0","Field([E(11)])",["CyclotomicField",11],[1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L223G1-Ar24cB0","Field([E(11)])",["CyclotomicField",11],[1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L223G1-Ar24dB0","Field([E(11)])",["CyclotomicField",11],[1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L223G1-Ar24eB0","Field([E(11)])",["CyclotomicField",11],[1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L2241G1-Ar242aB0","Field([E(120)])",["CyclotomicField",120],[1,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,1]]], ["RNG",["L227G1-Ar13aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["L227G1-Ar13bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["L227G1-Ar28aB0","Field([E(13)])",["CyclotomicField",13],[1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L227G1-Ar28bB0","Field([E(13)])",["CyclotomicField",13],[1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L227G1-Ar28cB0","Field([E(13)])",["CyclotomicField",13],[1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L227G1-Ar28dB0","Field([E(13)])",["CyclotomicField",13],[1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L227G1-Ar28eB0","Field([E(13)])",["CyclotomicField",13],[1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L227G1-Ar28fB0","Field([E(13)])",["CyclotomicField",13],[1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L229G1-Ar30aB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L229G1-Ar30bB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L229G1-Ar30cB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L229G1-Ar30dB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L229G1-Ar30eB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L229G1-Ar30fB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L231G1-Ar32aB0","Field([E(15)])",["CyclotomicField",15],[1,-1,0,1,-1,1,0,-1,1]]], ["RNG",["L231G1-Ar32bB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L231G1-Ar32cB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L231G1-Ar32dB0","Field([E(15)])",["CyclotomicField",15],[1,-1,0,1,-1,1,0,-1,1]]], ["RNG",["L231G1-Ar32eB0","Field([E(15)])",["CyclotomicField",15],[1,-1,0,1,-1,1,0,-1,1]]], ["RNG",["L231G1-Ar32fB0","Field([E(15)])",["CyclotomicField",15],[1,-1,0,1,-1,1,0,-1,1]]], ["RNG",["L231G1-Ar32gB0","Field([E(15)])",["CyclotomicField",15],[1,-1,0,1,-1,1,0,-1,1]]], ["RNG",["L232G1-Ar33aB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33bB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33cB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33dB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33eB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33fB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33gB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33hB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33iB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33jB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33kB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33lB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33mB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33nB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L232G1-Ar33oB0","Field([E(31)])",["CyclotomicField",31],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L237G1-Ar38aB0","Field([E(9)])",["CyclotomicField",9],[1,0,0,1,0,0,1]]], ["RNG",["L241G1-Ar42aB0","Field([E(20)])",["CyclotomicField",20],[1,0,-1,0,1,0,-1,0,1]]], ["RNG",["L243G1-Ar44aB0","Field([E(21)])",["CyclotomicField",21],[1,-1,0,1,-1,0,1,0,-1,1,0,-1,1]]], ["RNG",["L247G1-Ar48aB0","Field([E(23)])",["CyclotomicField",23],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L253G1-Ar54aB0","Field([E(13)])",["CyclotomicField",13],[1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L259G1-Ar60aB0","Field([E(29)])",["CyclotomicField",29],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L261G1-Ar62aB0","Field([E(15)])",["CyclotomicField",15],[1,-1,0,1,-1,1,0,-1,1]]], ["RNG",["L264G1-Ar65aB0","Field([E(63)])",["CyclotomicField",63],[1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,1]]], ["RNG",["L267G1-Ar68aB0","Field([E(33)])",["CyclotomicField",33],[1,-1,0,1,-1,0,1,-1,0,1,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["L271G1-Ar72aB0","Field([E(35)])",["CyclotomicField",35],[1,-1,0,0,0,1,-1,1,-1,0,1,-1,1,-1,1,0,-1,1,-1,1,0,0,0,-1,1]]], ["RNG",["L273G1-Ar74aB0","Field([E(36)])",["CyclotomicField",36],[1,0,0,0,0,0,-1,0,0,0,0,0,1]]], ["RNG",["L279G1-Ar80aB0","Field([E(39)])",["CyclotomicField",39],[1,-1,0,1,-1,0,1,-1,0,1,-1,0,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1]]], ["RNG",["L27G1-Ar3aB0","Field([Sqrt(-7)])",["QuadraticField",-7],[2,1,1]]], ["RNG",["L27G1-Ar3bB0","Field([Sqrt(-7)])",["QuadraticField",-7],[2,1,1]]], ["RNG",["L283G1-Ar84aB0","Field([E(41)])",["CyclotomicField",41],[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["L289G1-Ar90aB0","Field([E(44)])",["CyclotomicField",44],[1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,1]]], ["RNG",["L28G1-Ar7bB0","Field([EY(9)])",["AbelianNumberField",9],[1,-3,0,1]]], ["RNG",["L28G1-Ar7cB0","Field([EY(9)])",["AbelianNumberField",9],[1,-3,0,1]]], ["RNG",["L28G1-Ar7dB0","Field([EY(9)])",["AbelianNumberField",9],[1,-3,0,1]]], ["RNG",["L28G1-Ar9aB0","Field([EY(7)])",["AbelianNumberField",7],[-1,-2,1,1]]], ["RNG",["L28G1-Ar9bB0","Field([EY(7)])",["AbelianNumberField",7],[-1,-2,1,1]]], ["RNG",["L28G1-Ar9cB0","Field([EY(7)])",["AbelianNumberField",7],[-1,-2,1,1]]], ["RNG",["L297G1-Ar98aB0","Field([E(48)])",["CyclotomicField",48],[1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1]]], ["RNG",["L311G1-Ar133bB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L311G1-Ar133cB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L311G1-Ar133dB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L311G1-Ar133eB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L311G1-Ar133fB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L311G1-Ar133gB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L311G1-Ar133hB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L311G1-Ar133iB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["L313G1-Ar183bB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L313G1-Ar183cB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L33G1-Ar26bB0","Field([Sqrt(-2)])",["QuadraticField",-2],[2,0,1]]], ["RNG",["L33G1-Ar26cB0","Field([Sqrt(-2)])",["QuadraticField",-2],[2,0,1]]], ["RNG",["L34G1-Ar63aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["L34G1-Ar63bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["L35G1-Ar124cB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L35G1-Ar124dB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L35G1-Ar124eB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L35G1-Ar124fB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L35G1-Ar124gB0","Field([E(24)])",["CyclotomicField",24],[1,0,0,0,-1,0,0,0,1]]], ["RNG",["L35G1-Ar124hB0","Field([E(24)])",["CyclotomicField",24],[1,0,0,0,-1,0,0,0,1]]], ["RNG",["L35G1-Ar124iB0","Field([E(24)])",["CyclotomicField",24],[1,0,0,0,-1,0,0,0,1]]], ["RNG",["L35G1-Ar124jB0","Field([E(24)])",["CyclotomicField",24],[1,0,0,0,-1,0,0,0,1]]], ["RNG",["L35G1-Ar155bB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L35G1-Ar155cB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L35G1-Ar31bB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L35G1-Ar31cB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["L38G1-Ar73aB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L38G1-Ar73bB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L38G1-Ar73cB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L38G1-Ar73dB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L38G1-Ar73eB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L38G1-Ar73fB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["L44G1-Ar85aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["L44G1-Ar85bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["L52d2G1-Ar30B0","Field([Sqrt(2)])",["QuadraticField",2],[-2,0,1]]], ["RNG",["M11G1-Ar10bB0","Field([Sqrt(-2)])",["QuadraticField",-2],[2,0,1]]], ["RNG",["M11G1-Ar10cB0","Field([Sqrt(-2)])",["QuadraticField",-2],[2,0,1]]], ["RNG",["S44G1-Ar204aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["S44G1-Ar204bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["S44G1-Ar51aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["S44G1-Ar51bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["S45G1-Ar13aB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["S45G1-Ar13bB0","Field([Sqrt(5)])",["QuadraticField",5],[-1,1,1]]], ["RNG",["S47G1-Ar25aB0","Field([Sqrt(-7)])",["QuadraticField",-7],[2,1,1]]], ["RNG",["S47G1-Ar25bB0","Field([Sqrt(-7)])",["QuadraticField",-7],[2,1,1]]], ["RNG",["S63G1-Ar13aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["S63G1-Ar13bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["S63G1-Ar78B0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["S63G1-Ar91aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["S63G1-Ar91bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["Sz8G1-Ar14aB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["Sz8G1-Ar14bB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["Sz8G1-Ar65aB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["Sz8G1-Ar65bB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["Sz8G1-Ar65cB0","Field([E(7)])",["CyclotomicField",7],[1,1,1,1,1,1,1]]], ["RNG",["U33G1-Ar21bB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["U33G1-Ar21cB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["U33G1-Ar28aB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["U33G1-Ar28bB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["U33G1-Ar6B0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["U33G1-Ar7bB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["U33G1-Ar7cB0","Field([Sqrt(-1)])",["QuadraticField",-1],[1,0,1]]], ["RNG",["U34G1-Ar12B0","Field([E(13)])",["CyclotomicField",13],[1,1,1,1,1,1,1,1,1,1,1,1,1]]], ["RNG",["U34G1-Ar13aB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["U34G1-Ar13bB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["U34G1-Ar13cB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["U34G1-Ar13dB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["U34G1-Ar52aB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["U34G1-Ar52bB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["U34G1-Ar52cB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["U34G1-Ar52dB0","Field([E(5)])",["CyclotomicField",5],[1,1,1,1,1]]], ["RNG",["U42G1-Ar10B0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar10aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar10bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar30bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar30cB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar40aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar40bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar45aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar45bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar5aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U42G1-Ar5bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U52G1-Ar66aB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["RNG",["U52G1-Ar66bB0","Field([Sqrt(-3)])",["QuadraticField",-3],[1,1,1]]], ["API",["12M22G1-p31680aB0",[1,256,"imprim","L3(2) < 3x2.(2^3:L3(2)x2)"]]], ["API",["12U62G1-p4704B0",[0,[2016,2688]]]], ["API",["12U62G1-p8064B0",[1,19,"imprim","U5(2) < 2^2x3xU5(2)"]]], ["API",["12aL34G1-p1440B0",[1,28,"imprim","L2(7) < 12xL2(7)"]]], ["API",["12bL34G1-p1440B0",[1,34,"imprim","L2(7) < 12xL2(7)"]]], ["API",["214U72G1-p10836B0",[1,4,"imprim","???"]]], ["API",["24A8G1-p128B0",[1,4,"imprim","A7 < 2^4:A7"]]], ["API",["24A8G1-p30B0",[1,3,"imprim","4^3:L3(2) < 2^4.2^3.L3(2)"]]], ["API",["25L52G1-p7440aB0",[1,12,"imprim","???"]]], ["API",["25L52G1-p7440bB0",[1,30,"imprim","???"]]], ["API",["25L52G1-p7440cB0",[1,28,"imprim","???"]]], ["API",["2A11G1-p5040B0",[1,8,"imprim","M11 < 2xM11"]]], ["API",["2A5G1-p24B0",[1,8,"imprim","5 < 2.D10"]]], ["API",["2A5G1-p40B0",[1,16,"imprim","3 < 2.S3"]]], ["API",["2A6G1-p144B0",[1,32,"imprim","5 < 2.A5"]]], ["API",["2A6G1-p240aB0",[1,88,"imprim","3 < 3^2:8"]]], ["API",["2A6G1-p240bB0",[1,88,"imprim","3 < 3^2:8"]]], ["API",["2A6G1-p80B0",[1,16,"imprim","3^2 < 3^2:8"]]], ["API",["2A7G1-p240B0",[1,20,"imprim","7:3 < 2.L3(2)"]]], ["API",["2A8G1-p240aB0",[1,10,"imprim","L3(2) < 2^(1+3):L3(2)"]]], ["API",["2A8G1-p240bB0",[1,7,"imprim","2^3:7:3 < 2^(1+3):L3(2)"]]], ["API",["2A8G1-p240cB0",[1,7,"imprim","2^3:7:3 < 2^(1+3):L3(2)"]]], ["API",["2Co1G1-p196560B0",[1,7,"imprim","Co2 < 2xCo2"]]], ["API",["2F22G1-p123552B0",[1,6,"imprim","O8+(2):S3 < O8+(2):S3x2"]]], ["API",["2F22G1-p28160B0",[1,5,"imprim","O7(3) < 2xO7(3)"]]], ["API",["2F22d2G1-p56320B0",[1,9,"imprim","O7(3) < 2xO7(3)"]]], ["API",["2F42G1-p139776B0",[1,9,"imprim","S8(2) < 2xS8(2)"]]], ["API",["2HSG1-p11200aB0",[1,16,"imprim","M11 < 2xM11"]]], ["API",["2HSG1-p4400B0",[1,13,"imprim","A8 < Isoclinic(S8x2)"]]], ["API",["2HSG1-p704B0",[1,6,"imprim","U3(5) < Isoclinic(U3(5).2x2)"]]], ["API",["2HSd2G1-p1408B0",[1,11,"imprim","U3(5) < U3(5).2"]]], ["API",["2J2G1-p1120B0",[1,20,"imprim","3.A6 < (2x3.A6).2"]]], ["API",["2J2G1-p200B0",[1,5,"imprim","U3(3) < 2xU3(3)"]]], ["API",["2L219G1-p40B0",[1,4,"imprim","19:9 < 2x19:9"]]], ["API",["2L27G1-p112B0",[1,40,"imprim","3 < 2x7:3"]]], ["API",["2L27G1-p16B0",[1,4,"imprim","7:3 < 2x7:3"]]], ["API",["2L27G1-p336B0",[1,336,"imprim","1 < 2x7:3"]]], ["API",["2L27G1-p48B0",[1,12,"imprim","7 < 2x7:3"]]], ["API",["2L27d2G1-p224B0",[1,80,"imprim","3 < 2.L2(7)"]]], ["API",["2L27d2G1-p32B0",[1,8,"imprim","7:3 < 2.L2(7)"]]], ["API",["2L27d2G1-p672B0",[1,672,"imprim","1 < 2.L2(7)"]]], ["API",["2L27d2G1-p96B0",[1,24,"imprim","7 < 2.L2(7)"]]], ["API",["2L27d2iG1-p112aB0",[1,23,"imprim","S3 < 2.D12"]]], ["API",["2L27d2iG1-p112bB0",[1,21,"imprim","6 < 2x7:6"]]], ["API",["2L27d2iG1-p16aB0",[1,3,"imprim","7:6 < 2x7:6"]]], ["API",["2L27d2iG1-p16bB0",[1,3,"imprim","7:6 < 2x7:6"]]], ["API",["2L27d2iG1-p224B0",[1,80,"imprim","3 < 2.L2(7)"]]], ["API",["2L27d2iG1-p32B0",[1,8,"imprim","7:3 < 2.L2(7)"]]], ["API",["2L27d2iG1-p336B0",[1,171,"imprim","2 < 2.D12"]]], ["API",["2L27d2iG1-p48aB0",[1,9,"imprim","D14 < 2x7:6"]]], ["API",["2L27d2iG1-p48bB0",[1,9,"imprim","D14 < 2x7:6"]]], ["API",["2L27d2iG1-p672B0",[1,672,"imprim","1 < 2.L2(7)"]]], ["API",["2L27d2iG1-p96B0",[1,24,"imprim","7 < 2.L2(7)"]]], ["API",["2L34G1-p112aB0",[1,6,"imprim","A6 < 2xA6"]]], ["API",["2L34G1-p112bB0",[1,5,"imprim","A6 < 2xA6"]]], ["API",["2L34G1-p112cB0",[1,5,"imprim","A6 < 2xA6"]]], ["API",["2L34G1-p240aB0",[1,8,"imprim","L2(7) < 2xL2(7)"]]], ["API",["2L34G1-p240bB0",[1,7,"imprim","L2(7) < 2xL2(7)"]]], ["API",["2L34G1-p240cB0",[1,7,"imprim","L2(7) < 2xL2(7)"]]], ["API",["2M12G1-p24aB0",[1,3,"imprim","M11 < 2xM11"]]], ["API",["2M12d2G1-p48B0",[1,5,"imprim","M11 < 2.M12"]]], ["API",["2M22G1-p352aB0",[1,5,"imprim","A7 < 2xA7"]]], ["API",["2M22G1-p660B0",[1,7,"imprim","2^3:L3(2) < 2x2^3:L3(2)"]]], ["API",["2O73G1-p2160B0",[1,5,"imprim","G2(3) < 2xG2(3)"]]], ["API",["2O8p3G1-p2160aB0",[1,5,"imprim","O7(3) < 2xO7(3)"]]], ["API",["2O8p3G1-p2160bB0",[1,5,"imprim","O7(3) < 2xO7(3)"]]], ["API",["2O8p3G1-p2240B0",[1,5,"imprim","3^6:L4(3) < 2x3^6:L4(3)"]]], ["API",["2RuG1-p16240B0",[1,9,"imprim","2F4(2)' < Isoclinic(2F4(2)'.2x2)"]]], ["API",["2S45G1-p624B0",[1,9,"imprim","5^(1+2)_+:2A5 < 5^(1+2)_+:(4x2.A5)"]]], ["API",["2S5G1-p40aB0",[1,11,"imprim","S3 < 2.S4"]]], ["API",["2S5G1-p40bB0",[1,9,"imprim","6 < 2.(2xS3)"]]], ["API",["2S5G1-p48B0",[1,16,"imprim","5 < 2.A5"]]], ["API",["2S5iG1-p48B0",[1,16,"imprim","5 < 2.A5"]]], ["API",["2S5iG1-p80B0",[1,32,"imprim","3 < 2.A5"]]], ["API",["2S62G1-p1920B0",[1,10,"imprim","L2(8).3 < 2xL2(8).3"]]], ["API",["2S62G1-p2160B0",[1,13,"imprim","2^3.L3(2) < 2^7.L3(2)"]]], ["API",["2S62G1-p240aB0",[1,4,"imprim","U3(3).2 < 2xU3(3).2"]]], ["API",["2S62G1-p240bB0",[1,5,"imprim","U3(3).2 < 2xU3(3).2"]]], ["API",["2S62G1-p480B0",[1,8,"imprim","U3(3) < 2xU3(3).2"]]], ["API",["2S63d2G1-p728B0",[1,4,"imprim","3^(1+4)_+:2U4(2) < 2x3^(1+4)_+:2U4(2)"]]], ["API",["2S6G1-p240aB0",[1,56,"imprim","S3 < 2.S5"]]], ["API",["2S6G1-p288B0",[1,64,"imprim","5 < 2.S5"]]], ["API",["2S6G1-p80B0",[1,10,"imprim","3xS3 < 3^2:QD16"]]], ["API",["2SuzG1-p65520B0",[1,10,"imprim","U5(2) < 2xU5(2)"]]], ["API",["2Sz8G1-p1040B0",[1,23,"imprim","2^3:7 < 2^(4+3):7"]]], ["API",["2U42G1-p240B0",[1,9,"imprim","3^(1+2)_+:Q8 < 2x3^(1+2)_+:2A4"]]], ["API",["2U42G1-p80B0",[1,5,"imprim","3^(1+2)_+:2A4 < 2x3^(1+2)_+:2A4"]]], ["API",["2U42d2G1-p240B0",[1,6,"imprim","3^(1+2)_+:QD16 < 2x3^(1+2)_+:2S4"]]], ["API",["2U62G1-p12672aB0",[1,7,"imprim","S6(2) < 2xS6(2)"]]], ["API",["2U62G1-p12672bB0",[1,6,"imprim","S6(2) < 2xS6(2)"]]], ["API",["2U62G1-p12672cB0",[1,6,"imprim","S6(2) < 2xS6(2)"]]], ["API",["2U62G1-p1344B0",[1,5,"imprim","U5(2) < 2xU5(2)"]]], ["API",["2U62G1-p2816aB0",[1,5,"imprim","U4(3).2_2 < 2xU4(3).2_2"]]], ["API",["2U62G1-p2816bB0",[1,5,"imprim","U4(3).2_2 < 2xU4(3).2_2"]]], ["API",["2U62G1-p41472B0",[1,15,"imprim","M22 < 2xM22"]]], ["API",["2U62G1-p5632B0",[1,9,"imprim","U4(3) < 2xU4(3).2_2"]]], ["API",["2aM20G1-p12aB0",[1,3,"imprim","2^4:D10 < 2x2^4:D10"]]], ["API",["2aM20G1-p12bB0",[1,3,"imprim","2^4:D10 < 2x2^4:D10"]]], ["API",["2aM20G1-p20aB0",[1,4,"imprim","2^4:S3 < 2x2^4:S3"]]], ["API",["2aM20G1-p20bB0",[1,4,"imprim","2^4:S3 < 2x2^4:S3"]]], ["API",["2bM20G1-p120aB0",[1,64,"imprim","2^4 < 2^5.A4"]]], ["API",["2cM20G1-p24B0",[1,6,"imprim","2^4:5 < 2x2^4:5"]]], ["API",["3A6G1-p18aB0",[1,4,"imprim","A5 < 3xA5"]]], ["API",["3A6G1-p18bB0",[1,4,"imprim","A5 < 3xA5"]]], ["API",["3A6G1-p45aB0",[1,7,"imprim","S4 < 3xS4"]]], ["API",["3A6G1-p45bB0",[1,7,"imprim","S4 < 3xS4"]]], ["API",["3A7G1-p315B0",[1,28,"imprim","S4 < 3.A6"]]], ["API",["3A7G1-p45aB0",[1,4,"imprim","L2(7) < 3xL2(7)"]]], ["API",["3A7G1-p45bB0",[1,4,"imprim","L2(7) < 3xL2(7)"]]], ["API",["3A7G1-p63B0",[1,7,"imprim","S5 < 3xS5"]]], ["API",["3F22G1-p185328B0",[1,10,"imprim","O8+(2):S3 < 3xO8+(2):S3"]]], ["API",["3F22d2G1-p185328B0",[1,7,"imprim","O8+(2):S3x2 < S3xO8+(2):S3"]]], ["API",["3F24G1-p920808B0",[1,7,"imprim","Fi23 < 3xFi23"]]], ["API",["3F24d2G1-p920808B0",[1,5,"imprim","Fi23x2 < Fi23xS3"]]], ["API",["3G23G1-p1134B0",[1,8,"imprim","L3(3).2 < 3xL3(3).2"]]], ["API",["3L34G1-p360aB0",[1,10,"imprim","L2(7) < 3xL2(7)"]]], ["API",["3L34G1-p360bB0",[1,10,"imprim","L2(7) < 3xL2(7)"]]], ["API",["3L34G1-p360cB0",[1,10,"imprim","L2(7) < 3xL2(7)"]]], ["API",["3L34G1-p63aB0",[1,4,"imprim","2^4:A5 < 3x2^4:A5"]]], ["API",["3L34G1-p63bB0",[1,4,"imprim","2^4:A5 < 3x2^4:A5"]]], ["API",["3M22G1-p2016B0",[1,16,"imprim","L2(11) < 3xL2(11)"]]], ["API",["3M22G1-p693B0",[1,10,"imprim","2^4:S5 < 3x2^4:S5"]]], ["API",["3M22G1-p990B0",[1,13,"imprim","2^3:L3(2) < 3x2^3:L3(2)"]]], ["API",["3McLG1-p103950B0",[1,36,"imprim","U4(2) < 3_2.U4(3)"]]], ["API",["3McLG1-p340200B0",[1,111,"imprim","M11 < 3xM11"]]], ["API",["3McLG1-p66825B0",[1,14,"imprim","2.A8 < 3x2.A8"]]], ["API",["3ONG1-p368280B0",[1,11,"imprim","L3(7).2 < 3xL3(7).2"]]], ["API",["3ONd2G1-p736560B0",[1,19,"imprim","L3(7).2 < 3.ON"]]], ["API",["3S6G1-p18aB0",[1,3,"imprim","S5 < (3xA5):2"]]], ["API",["3S6G1-p18bB0",[1,3,"imprim","S5 < (3xA5):2"]]], ["API",["3S6G1-p45aB0",[1,5,"imprim","S4x2 < S4xS3"]]], ["API",["3S6G1-p45bB0",[1,5,"imprim","S4x2 < S4xS3"]]], ["API",["3S7G1-p63B0",[1,5,"imprim","S5x2 < S5xS3"]]], ["API",["3S7G1-p90B0",[1,8,"imprim","L2(7) < 3.A7"]]], ["API",["3SuzG1-p405405B0",[1,23,"imprim","2^(1+6)_-.U4(2) < 3x2^(1+6)_-.U4(2)"]]], ["API",["3SuzG1-p5346B0",[1,7,"imprim","G2(4) < 3xG2(4)"]]], ["API",["3SuzG1-p98280B0",[1,14,"imprim","U5(2) < 3xU5(2)"]]], ["API",["3Suzd2G1-p5346B0",[1,5,"imprim","G2(4).2 < (3xG2(4)).2"]]], ["API",["3U38G1-p32832B0",[1,145,"imprim","L2(8) < 9xL2(8)"]]], ["API",["3U38G1-p4617B0",[1,18,"imprim","2^(3+6):7 < 2^(3+6):63"]]], ["API",["3U62G1-p18711B0",[1,11,"imprim","2^(4+8):(S3xA5) < 3x2^(4+8):(S3xA5)"]]], ["API",["3U62G1-p19008aB0",[1,10,"imprim","S6(2) < 3xS6(2)"]]], ["API",["3U62G1-p19008bB0",[1,10,"imprim","S6(2) < 3xS6(2)"]]], ["API",["3U62G1-p19008cB0",[1,10,"imprim","S6(2) < 3xS6(2)"]]], ["API",["3U62G1-p2016B0",[1,7,"imprim","U5(2) < 3xU5(2)"]]], ["API",["3U62G1-p2079B0",[1,7,"imprim","2^(1+8)_+:U4(2) < 3x2^(1+8)_+:U4(2)"]]], ["API",["4M22G1-p4928aB0",[1,40,"imprim","A6 < 4_1.L3(4)"]]], ["API",["4M22G1-p4928bB0",[1,40,"imprim","A6 < (4xA6).2_3"]]], ["API",["4Sz8d3G1-p2080B0",[1,19,"imprim","2^3:7:3 < 2^2.2^(3+3):7:3"]]], ["API",["4U62G1-p2688B0",[1,9,"imprim","U5(2) < 2^2xU5(2)"]]], ["API",["4aL34G1-p224B0",[1,8,"imprim","A6 < 4xA6"]]], ["API",["4aL34G1-p480B0",[1,12,"imprim","L2(7) < 4xL2(7)"]]], ["API",["4bL34G1-p224B0",[1,10,"imprim","A6 < 4xA6"]]], ["API",["4bL34G1-p480B0",[1,14,"imprim","L2(7) < 4xL2(7)"]]], ["API",["53L35G2-p3875aB0",[1,12,"imprim","???"]]], ["API",["53L35G2-p3875bB0",[1,5,"imprim","???"]]], ["API",["53L35G2-p4650B0",[1,20,"imprim","???"]]], ["API",["6A6G1-p432B0",[1,96,"imprim","5 < 3x2.A5"]]], ["API",["6A6G1-p720aB0",[1,248,"imprim","3 < 3x2.A5"]]], ["API",["6A7G1-p720B0",[1,44,"imprim","7:3 < 3x2.L3(2)"]]], ["API",["6L34G1-p720aB0",[1,20,"imprim","L2(7) < 6xL2(7)"]]], ["API",["6L34G1-p720bB0",[1,17,"imprim","L2(7) < 6xL2(7)"]]], ["API",["6L34G1-p720cB0",[1,17,"imprim","L2(7) < 6xL2(7)"]]], ["API",["6M22G1-p1980B0",[1,17,"imprim","2^3:L3(2) < 6x2^3:L3(2)"]]], ["API",["6S6G1-p720aB0",[1,136,"imprim","S3 < (3x2.A5):2"]]], ["API",["6SuzG1-p196560B0",[1,26,"imprim","U5(2) < 6xU5(2)"]]], ["API",["6U62G1-p38016aB0",[1,17,"imprim","S6(2) < 6xS6(2)"]]], ["API",["6U62G1-p38016bB0",[1,14,"imprim","S6(2) < 6xS6(2)"]]], ["API",["6U62G1-p38016cB0",[1,14,"imprim","S6(2) < 6xS6(2)"]]], ["API",["6U62G1-p4032B0",[1,11,"imprim","U5(2) < 6xU5(2)"]]], ["API",["9U43D8G1-p756aB0",[1,7,"imprim","???"]]], ["API",["9U43D8G1-p756bB0",[1,7,"imprim","???"]]], ["API",["9U43D8G1-p972B0",[1,7,"imprim","???"]]], ["API",["A10G1-p10B0",[8,2,"prim","A9",1]]], ["API",["A10G1-p120B0",[1,4,"prim","(A7x3):2",3]]], ["API",["A10G1-p126B0",[1,3,"prim","(A5xA5):4",4]]], ["API",["A10G1-p210B0",[1,5,"prim","(A6xA4):2",5]]], ["API",["A10G1-p2520B0",[1,12,"prim","A6.2_3",7]]], ["API",["A10G1-p45B0",[1,3,"prim","S8",2]]], ["API",["A10G1-p945B0",[1,7,"prim","2^4:S5",6]]], ["API",["A11G1-p11B0",[9,2,"prim","A10",1]]], ["API",["A11G1-p165B0",[1,4,"prim","(A8x3):2",3]]], ["API",["A11G1-p2520aB0",[1,5,"prim","M11",6]]], ["API",["A11G1-p2520bB0",[1,5,"prim","M11",7]]], ["API",["A11G1-p330B0",[1,5,"prim","(A7xA4):2",4]]], ["API",["A11G1-p462B0",[1,6,"prim","(A6xA5):2",5]]], ["API",["A11G1-p55B0",[1,3,"prim","S9",2]]], ["API",["A12G1-p12B0",[10,2,"prim","A11",1]]], ["API",["A12G1-p220B0",[1,4,"prim","(A9x3):2",3]]], ["API",["A12G1-p2520B0",[1,4,"prim","M12",7]]], ["API",["A12G1-p462B0",[1,4,"prim","(A6xA6):2^2",4]]], ["API",["A12G1-p495B0",[1,5,"prim","(A8xA4):2",5]]], ["API",["A12G1-p66B0",[1,3,"prim","S10",2]]], ["API",["A12G1-p792B0",[1,6,"prim","(A7xA5):2",6]]], ["API",["A13G1-p13B0",[11,2,"prim","A12",1]]], ["API",["A13G1-p78B0",[1,3,"prim","S11",2]]], ["API",["A14G1-p1001B0",[1,5,"prim","(A10xA4):2",4]]], ["API",["A14G1-p14B0",[12,2,"prim","A13",1]]], ["API",["A14G1-p1716B0",[1,4,"prim","(A7xA7):2^2",5]]], ["API",["A14G1-p2002B0",[1,6,"prim","(A9xA5):2",6]]], ["API",["A14G1-p3003B0",[1,7,"prim","(A8xA6):2",7]]], ["API",["A14G1-p364B0",[1,4,"prim","(A11x3):2",3]]], ["API",["A14G1-p91B0",[1,3,"prim","S12",2]]], ["API",["A15G1-p105B0",[1,3,"prim","S13",2]]], ["API",["A15G1-p1365B0",[1,5,"prim","(A11xA4):2",4]]], ["API",["A15G1-p15B0",[13,2,"prim","A14",1]]], ["API",["A15G1-p455B0",[1,4,"prim","(A12x3):2",3]]], ["API",["A16G1-p120B0",[1,3,"prim","S14",2]]], ["API",["A16G1-p16B0",[14,2,"prim","A15",1]]], ["API",["A16G1-p1820B0",[1,5,"prim","(A12xA4):2",4]]], ["API",["A16G1-p560B0",[1,4,"prim","(A13x3):2",3]]], ["API",["A17G1-p136B0",[1,3,"prim","S15",2]]], ["API",["A17G1-p17B0",[15,2,"prim","A16",1]]], ["API",["A17G1-p2380B0",[1,5,"prim","(A13xA4):2",4]]], ["API",["A17G1-p680B0",[1,4,"prim","(A14x3):2",3]]], ["API",["A18G1-p153B0",[1,3,"prim","S16",2]]], ["API",["A18G1-p18B0",[16,2,"prim","A17",1]]], ["API",["A18G1-p3060B0",[1,5,"prim","(A14xA4):2",4]]], ["API",["A18G1-p816B0",[1,4,"prim","(A15x3):2",3]]], ["API",["A19G1-p171B0",[1,3,"prim","S17",2]]], ["API",["A19G1-p19B0",[17,2,"prim","A18",1]]], ["API",["A19G1-p969B0",[1,4,"prim","(A16x3):2",3]]], ["API",["A20G1-p190B0",[1,3,"prim","S18",2]]], ["API",["A20G1-p20B0",[18,2,"prim","A19",1]]], ["API",["A21G1-p210B0",[1,3,"prim","S19",2]]], ["API",["A21G1-p21B0",[19,2,"prim","A20",1]]], ["API",["A22G1-p22B0",[20,2,"prim","A21",1]]], ["API",["A22G1-p231B0",[1,3,"prim","S20",2]]], ["API",["A23G1-p23B0",[21,2,"prim","A22",1]]], ["API",["A23G1-p253B0",[1,3,"prim","S21",2]]], ["API",["A5G1-p10B0",[1,3,"prim","S3",3]]], ["API",["A5G1-p5B0",[3,2,"prim","A4",1]]], ["API",["A5G1-p6B0",[2,2,"prim","D10",2]]], ["API",["A6G1-p10B0",[2,2,"prim","3^2:4",3]]], ["API",["A6G1-p15aB0",[1,3,"prim","S4",4]]], ["API",["A6G1-p15bB0",[1,3,"prim","S4",5]]], ["API",["A6G1-p6aB0",[4,2,"prim","A5",1]]], ["API",["A6G1-p6bB0",[4,2,"prim","A5",2]]], ["API",["A6V4G1-p10B0",[3,2,"prim","3^2:Q8.2",4]]], ["API",["A7G1-p7B0",[5,2,"prim","A6",1]]], ["API",["A8G1-p15aB0",[2,2,"prim","2^3:L3(2)",2]]], ["API",["A8G1-p15bB0",[2,2,"prim","2^3:L3(2)",3]]], ["API",["A8G1-p8B0",[6,2,"prim","A7",1]]], ["API",["A9G1-p120aB0",[1,3,"prim","L2(8):3",4]]], ["API",["A9G1-p120bB0",[1,3,"prim","L2(8):3",5]]], ["API",["A9G1-p126B0",[1,5,"prim","(A5xA4):2",6]]], ["API",["A9G1-p280B0",[1,5,"prim","3^3:S4",7]]], ["API",["A9G1-p36B0",[1,3,"prim","S7",2]]], ["API",["A9G1-p840B0",[1,12,"prim","3^2:2A4",8]]], ["API",["A9G1-p84B0",[1,4,"prim","(A6x3):2_1",3]]], ["API",["A9G1-p9B0",[7,2,"prim","A8",1]]], ["API",["Co1G1-p98280B0",[1,4,"prim","Co2",1]]], ["API",["Co2G1-p2300B0",[1,3,"prim","U6(2).2",1]]], ["API",["Co2G1-p4600B0",[1,5,"imprim","U6(2) < U6(2).2"]]], ["API",["Co3G1-p11178B0",[1,5,"prim","HS",2]]], ["API",["Co3G1-p128800B0",[1,6,"prim","3^5:(2xM11)",5]]], ["API",["Co3G1-p276B0",[2,2,"prim","McL.2",1]]], ["API",["Co3G1-p37950B0",[1,8,"prim","U4(3).(2^2)_{133}",3]]], ["API",["Co3G1-p48600B0",[1,8,"prim","M23",4]]], ["API",["Co3G1-p552B0",[1,4,"imprim","McL < McL.2"]]], ["API",["F22G1-p14080bB0",[1,3,"prim","O7(3)",3]]], ["API",["F22G1-p142155B0",[1,8,"prim","2^10:M22",5]]], ["API",["F22G1-p3510B0",[1,3,"prim","2.U6(2)",1]]], ["API",["F22G1-p61776B0",[1,4,"prim","O8+(2):S3",4]]], ["API",["F22G1-p694980B0",[1,10,"prim","2^6:S6(2)",6]]], ["API",["F22d2G1-p3510B0",[1,3,"prim","2.U6(2).2",2]]], ["API",["F23G1-p137632B0",[1,3,"prim","O8+(3):S3",2]]], ["API",["F23G1-p275264B0",[1,5,"imprim","O8+(3).3 < O8+(3):S3"]]], ["API",["F23G1-p31671B0",[1,3,"prim","2.Fi22",1]]], ["API",["F24G1-p306936B0",[1,3,"prim","Fi23",1]]], ["API",["F24d2G1-p306936B0",[1,3,"prim","Fi23x2",2]]], ["API",["F42G1-p69888aB0",[1,5,"prim","S8(2)",3]]], ["API",["G23d2G1-p756B0",[1,6,"imprim","L3(3) < L3(3):2"]]], ["API",["G24G1-p1365aB0",[1,4,"prim","2^(2+8):(3xA5)",2]]], ["API",["G24G1-p1365bB0",[1,4,"prim","2^(4+6):(A5x3)",3]]], ["API",["G24G1-p2016B0",[1,3,"prim","U3(4).2",4]]], ["API",["G24G1-p20800B0",[1,14,"prim","U3(3).2",6]]], ["API",["G24G1-p2080B0",[1,4,"prim","3.L3(4).2_3",5]]], ["API",["G24G1-p416B0",[1,3,"prim","J2",1]]], ["API",["G25G1-p3906aB0",[1,4,"prim","5^(1+4)_+:GL(2,5)",1]]], ["API",["G25G1-p3906bB0",[1,4,"prim","5^(2+3):GL2(5)",2]]], ["API",["G25G1-p7750B0",[1,4,"prim","3.U3(5).2",3]]], ["API",["G25G1-p7875B0",[1,5,"prim","L3(5).2",4]]], ["API",["HNG1-p1140000B0",[1,12,"prim","A12",1]]], ["API",["HSG1-p100B0",[1,3,"prim","M22",1]]], ["API",["HSG1-p1100aB0",[1,5,"prim","L3(4).2_1",4]]], ["API",["HSG1-p1100bB0",[1,5,"prim","S8",5]]], ["API",["HSG1-p15400B0",[1,27,"prim","2xA6.2^2",11]]], ["API",["HSG1-p176bB0",[2,2,"prim","U3(5).2",3]]], ["API",["HSG1-p3850B0",[1,12,"prim","2^4.S6",6]]], ["API",["HSG1-p4125B0",[1,9,"prim","4^3:L3(2)",7]]], ["API",["HSG1-p5600aB0",[1,9,"prim","M11",8]]], ["API",["HSd2G1-p100B0",[1,3,"prim","M22.2",2]]], ["API",["HSd2G1-p1100bB0",[1,5,"prim","S8x2",4]]], ["API",["HSd2G1-p15400B0",[1,20,"prim","(2xA6.2^2).2",8]]], ["API",["HSd2G1-p352B0",[1,4,"imprim","U3(5).2 < HS"]]], ["API",["HeG1-p2058B0",[1,5,"prim","S4(4):2",1]]], ["API",["HeG1-p244800B0",[1,36,"prim","7^2:2L2(7)",6]]], ["API",["HeG1-p29155B0",[1,12,"prim","2^6:3.S6",3]]], ["API",["HeG1-p8330B0",[1,7,"prim","2^2.L3(4).S3",2]]], ["API",["Hed2G1-p2058B0",[1,4,"prim","S4(4):4",2]]], ["API",["Hed2G1-p8330B0",[1,6,"prim","2^2.L3(4).D12",3]]], ["API",["J1G1-p1045B0",[1,11,"prim","2^3:7:3",2]]], ["API",["J1G1-p1463B0",[1,22,"prim","2xA5",3]]], ["API",["J1G1-p1540B0",[1,21,"prim","19:6",4]]], ["API",["J1G1-p1596B0",[1,19,"prim","11:10",5]]], ["API",["J1G1-p266B0",[1,5,"prim","L2(11)",1]]], ["API",["J1G1-p2926B0",[1,67,"prim","D6xD10",6]]], ["API",["J1G1-p4180B0",[1,107,"prim","7:6",7]]], ["API",["J2G1-p1008B0",[1,11,"prim","A5xD10",6]]], ["API",["J2G1-p100B0",[1,3,"prim","U3(3)",1]]], ["API",["J2G1-p1800B0",[1,18,"prim","L3(2).2",7]]], ["API",["J2G1-p280B0",[1,4,"prim","3.A6.2_2",2]]], ["API",["J2G1-p315B0",[1,6,"prim","2^(1+4)_-:A5",3]]], ["API",["J2G1-p525B0",[1,6,"prim","2^(2+4):(3xS3)",4]]], ["API",["J2G1-p840B0",[1,7,"prim","A4xA5",5]]], ["API",["J2d2G1-p100B0",[1,3,"prim","U3(3).2",2]]], ["API",["J3G1-p14688aB0",[1,14,"prim","L2(19)",2]]], ["API",["J3G1-p14688bB0",[1,14,"prim","L2(19)",3]]], ["API",["J3G1-p17442B0",[1,19,"prim","2^4:(3xA5)",4]]], ["API",["J3G1-p20520B0",[1,22,"prim","L2(17)",5]]], ["API",["J3G1-p23256B0",[1,28,"prim","(3xA6):2_2",6]]], ["API",["J3G1-p25840B0",[1,20,"prim","3^2.3^(1+2)_+:8",7]]], ["API",["J3G1-p26163B0",[1,27,"prim","2^(1+4)_-:A5",8]]], ["API",["J3G1-p43605B0",[1,57,"prim","2^(2+4).(3xS3)",9]]], ["API",["J3G1-p6156B0",[1,8,"prim","L2(16).2",1]]], ["API",["J3d2G1-p6156B0",[1,7,"prim","L2(16).4",2]]], ["API",["L211G1-p11aB0",[2,2,"prim","A5",1]]], ["API",["L211G1-p11bB0",[2,2,"prim","A5",2]]], ["API",["L211G1-p12B0",[2,2,"prim","11:5",3]]], ["API",["L211G1-p55B0",[1,9,"prim","S3x2",4]]], ["API",["L211d2G1-p12B0",[3,2,"prim","11:10",2]]], ["API",["L211d2G1-p22B0",[1,4,"imprim","A5 < L2(11)"]]], ["API",["L211d2G1-p55aB0",[1,6,"prim","D24",3]]], ["API",["L211d2G1-p55bB0",[1,6,"prim","S4",4]]], ["API",["L211d2G1-p66B0",[1,7,"prim","D20",5]]], ["API",["L213G1-p14B0",[2,2,"prim","13:6",1]]], ["API",["L213d2G1-p14B0",[3,2,"prim","13:12",2]]], ["API",["L213d2G1-p78B0",[1,7,"prim","D28",3]]], ["API",["L213d2G1-p91aB0",[1,8,"prim","D24",4]]], ["API",["L216G1-p17B0",[3,2,"prim","2^4:15",1]]], ["API",["L217G1-p18B0",[2,2,"prim","17:8",1]]], ["API",["L217d2G1-p18B0",[3,2,"prim","17:16",2]]], ["API",["L219G1-p171B0",[1,15,"prim","D20",4]]], ["API",["L219G1-p190B0",[1,16,"prim","D18",5]]], ["API",["L219G1-p20B0",[2,2,"prim","19:9",1]]], ["API",["L219G1-p57aB0",[1,4,"prim","A5",2]]], ["API",["L219G1-p57bB0",[1,4,"prim","A5",3]]], ["API",["L219d2G1-p114B0",[1,8,"imprim","A5 < L2(19)"]]], ["API",["L219d2G1-p171B0",[1,10,"prim","D40",3]]], ["API",["L219d2G1-p190B0",[1,11,"prim","D36",4]]], ["API",["L219d2G1-p20B0",[3,2,"prim","19:18",2]]], ["API",["L219d2G1-p285B0",[1,18,"prim","S4",5]]], ["API",["L223G1-p24B0",[2,2,"prim","23:11",1]]], ["API",["L227G1-p28B0",[2,2,"prim","3^3:13",1]]], ["API",["L229G1-p30B0",[2,2,"prim","29:14",1]]], ["API",["L231G1-p32B0",[2,2,"prim","31:15",1]]], ["API",["L232G1-p33B0",[3,2,"prim","2^5:31",1]]], ["API",["L232G1-p496B0",[1,16,"prim","D66",2]]], ["API",["L232G1-p528B0",[1,17,"prim","D62",3]]], ["API",["L232d5G1-p33B0",[3,2,"prim","2^5:31:5",2]]], ["API",["L232d5G1-p496B0",[1,4,"prim","33:10",3]]], ["API",["L232d5G1-p528B0",[1,5,"prim","31:10",4]]], ["API",["L249G1-p1176B0",[1,36,"prim","D50",6]]], ["API",["L249G1-p1225B0",[1,39,"prim","D48",7]]], ["API",["L249G1-p175aB0",[1,5,"prim","L3(2).2",2]]], ["API",["L249G1-p175bB0",[1,5,"prim","L3(2).2",3]]], ["API",["L249G1-p50B0",[2,2,"prim","7^2:24",1]]], ["API",["L249G1-p980aB0",[1,24,"prim","A5",4]]], ["API",["L249G1-p980bB0",[1,24,"prim","A5",5]]], ["API",["L27G1-p14aB0",[1,3,"imprim","A4 < S4"]]], ["API",["L27G1-p14bB0",[1,3,"imprim","A4 < S4"]]], ["API",["L27G1-p168B0",[1,168,"imprim","1 < S4"]]], ["API",["L27G1-p21B0",[1,6,"imprim","D8 < S4"]]], ["API",["L27G1-p24B0",[1,6,"imprim","7 < 7:3"]]], ["API",["L27G1-p28B0",[1,7,"imprim","S3 < S4"]]], ["API",["L27G1-p42aB0",[1,15,"imprim","2^2 < S4"]]], ["API",["L27G1-p42bB0",[1,15,"imprim","2^2 < S4"]]], ["API",["L27G1-p42cB0",[1,12,"imprim","4 < S4"]]], ["API",["L27G1-p56B0",[1,20,"imprim","3 < S4"]]], ["API",["L27G1-p7aB0",[2,2,"prim","S4",1]]], ["API",["L27G1-p7bB0",[2,2,"prim","S4",2]]], ["API",["L27G1-p84B0",[1,44,"imprim","2 < S4"]]], ["API",["L27G1-p8B0",[2,2,"prim","7:3",3]]], ["API",["L27d2G1-p112B0",[1,40,"imprim","3 < 7:3"]]], ["API",["L27d2G1-p14B0",[1,4,"imprim","S4 < L2(7)"]]], ["API",["L27d2G1-p168aB0",[1,88,"imprim","2 < S4"]]], ["API",["L27d2G1-p168bB0",[1,87,"imprim","2 < D12"]]], ["API",["L27d2G1-p16B0",[1,4,"imprim","7:3 < 7:6"]]], ["API",["L27d2G1-p21B0",[1,4,"prim","D16",3]]], ["API",["L27d2G1-p24B0",[1,6,"imprim","D14 < 7:6"]]], ["API",["L27d2G1-p28B0",[1,5,"prim","D12",4]]], ["API",["L27d2G1-p28bB0",[1,6,"imprim","A4 < S4"]]], ["API",["L27d2G1-p336B0",[1,336,"imprim","1 < L2(7)"]]], ["API",["L27d2G1-p42aB0",[1,12,"imprim","D8 < S4"]]], ["API",["L27d2G1-p42bB0",[1,9,"imprim","D8 < D16"]]], ["API",["L27d2G1-p42cB0",[1,7,"imprim","8 < D16"]]], ["API",["L27d2G1-p48B0",[1,12,"imprim","7 < 7:6"]]], ["API",["L27d2G1-p56aB0",[1,14,"imprim","S3 < S4"]]], ["API",["L27d2G1-p56bB0",[1,13,"imprim","S3 < D12"]]], ["API",["L27d2G1-p56cB0",[1,11,"imprim","6 < D12"]]], ["API",["L27d2G1-p84aB0",[1,30,"imprim","2^2 < S4"]]], ["API",["L27d2G1-p84bB0",[1,25,"imprim","2^2 < D12"]]], ["API",["L27d2G1-p84cB0",[1,24,"imprim","4 < S4"]]], ["API",["L27d2G1-p8B0",[3,2,"prim","7:6",2]]], ["API",["L28G1-p28B0",[1,4,"prim","D18",2]]], ["API",["L28G1-p36B0",[1,5,"prim","D14",3]]], ["API",["L28G1-p9B0",[3,2,"prim","2^3:7",1]]], ["API",["L28d3G1-p28B0",[2,2,"prim","9:6",3]]], ["API",["L28d3G1-p36B0",[1,3,"prim","7:6",4]]], ["API",["L28d3G1-p9B0",[3,2,"prim","2^3:7:3",2]]], ["API",["L311G1-p133B0",[2,2,"prim","11^2:(5x2L2(11).2)",1]]], ["API",["L313G1-p183aB0",[2,2,"prim","13^2:GL(2,13)",1]]], ["API",["L313G1-p183bB0",[2,2,"prim","13^2:GL(2,13)",2]]], ["API",["L33G1-p13aB0",[2,2,"prim","3^2:2S4",1]]], ["API",["L33G1-p13bB0",[2,2,"prim","3^2:2S4",2]]], ["API",["L33G1-p144B0",[1,8,"prim","13:3",3]]], ["API",["L33G1-p234B0",[1,18,"prim","S4",4]]], ["API",["L33d2G1-p117B0",[1,6,"prim","2S4:2",3]]], ["API",["L33d2G1-p144B0",[1,6,"prim","13:6",4]]], ["API",["L33d2G1-p234B0",[1,12,"prim","S4x2",5]]], ["API",["L33d2G1-p26B0",[1,4,"imprim","3^2:2S4 < L3(3)"]]], ["API",["L33d2G1-p52B0",[1,4,"prim","3^(1+2)_+:D8",2]]], ["API",["L34G1-p120aB0",[1,4,"prim","L3(2)",6]]], ["API",["L34G1-p120bB0",[1,4,"prim","L3(2)",7]]], ["API",["L34G1-p120cB0",[1,4,"prim","L3(2)",8]]], ["API",["L34G1-p21aB0",[2,2,"prim","2^4:A5",1]]], ["API",["L34G1-p21bB0",[2,2,"prim","2^4:A5",2]]], ["API",["L34G1-p280B0",[1,8,"prim","3^2:Q8",9]]], ["API",["L34G1-p56aB0",[1,3,"prim","A6",3]]], ["API",["L34G1-p56bB0",[1,3,"prim","A6",4]]], ["API",["L34G1-p56cB0",[1,3,"prim","A6",5]]], ["API",["L35G1-p31aB0",[2,2,"prim","5^2:GL2(5)",1]]], ["API",["L35G1-p31bB0",[2,2,"prim","5^2:GL2(5)",2]]], ["API",["L35d2G1-p186B0",[1,4,"prim","5^(1+2)_+:[2^5]",2]]], ["API",["L35d2G1-p3100B0",[1,32,"prim","S5x2",4]]], ["API",["L35d2G1-p3875B0",[1,35,"prim","4^2:D12",5]]], ["API",["L35d2G1-p4000B0",[1,35,"prim","31:6",6]]], ["API",["L35d2G1-p62B0",[1,4,"imprim","5^2:GL2(5) < L3(5)"]]], ["API",["L35d2G1-p775B0",[1,8,"prim","4S5.2",3]]], ["API",["L37G1-p57B0",[2,2,"prim","7^2:2.L2(7).2",1]]], ["API",["L38G1-p56064B0",[1,220,"prim","7^2:S3",3]]], ["API",["L38G1-p73aB0",[2,2,"prim","2^6:(7xL2(8))",1]]], ["API",["L38G1-p73bB0",[2,2,"prim","2^6:(7xL2(8))",2]]], ["API",["L38G1-p75264B0",[1,372,"prim","73:3",4]]], ["API",["L38G1-p98112B0",[1,653,"prim","L3(2)",5]]], ["API",["L38d2G1-p146B0",[1,4,"imprim","2^6:(7xL2(8)) < L3(8)"]]], ["API",["L38d2G1-p4672B0",[1,11,"prim","D14xL2(8)",3]]], ["API",["L38d2G1-p56064B0",[1,125,"prim","7^2:D12",4]]], ["API",["L38d2G1-p657B0",[1,4,"prim","2^(3+6):7^2:2",2]]], ["API",["L38d2G1-p75264B0",[1,216,"prim","73:6",5]]], ["API",["L38d2G1-p98112B0",[1,335,"prim","L2(7).2",6]]], ["API",["L38d3G1-p219aB0",[1,6,"imprim","2^6:(7xL2(8)) < 2^6:(7xL2(8)):3"]]], ["API",["L38d3G1-p219bB0",[1,6,"imprim","2^6:(7xL2(8)) < 2^6:(7xL2(8)):3"]]], ["API",["L38d3G1-p56064B0",[1,80,"prim","7^2:(3xS3)",4]]], ["API",["L38d3G1-p73aB0",[2,2,"prim","2^6:(7xL2(8)):3",2]]], ["API",["L38d3G1-p73bB0",[2,2,"prim","2^6:(7xL2(8)):3",3]]], ["API",["L38d3G1-p75264B0",[1,126,"prim","73:9",5]]], ["API",["L38d3G1-p98112B0",[1,381,"imprim","L2(8) < 2^6:(7xL2(8)):3"]]], ["API",["L38d6G1-p438B0",[1,12,"imprim","2^6:(7xL2(8)) < L3(8)"]]], ["API",["L38d6G1-p4672B0",[1,7,"prim","(D14xL2(8)):3",3]]], ["API",["L38d6G1-p56064B0",[1,47,"prim","7^2:(6xS3)",4]]], ["API",["L38d6G1-p657B0",[1,4,"prim","2^(3+6):7^2:6",2]]], ["API",["L38d6G1-p75264B0",[1,74,"prim","73:18",5]]], ["API",["L38d6G1-p98112B0",[1,119,"prim","L2(7).2x3",6]]], ["API",["L44G1-p85aB0",[2,2,"prim","2^6:GL(3,4)",1]]], ["API",["L44G1-p85bB0",[2,2,"prim","2^6:GL(3,4)",2]]], ["API",["L45G1-p156aB0",[2,2,"prim","5^3:L3(5)",1]]], ["API",["L45G1-p156bB0",[2,2,"prim","5^3:L3(5)",2]]], ["API",["L52G1-p155aB0",[1,3,"prim","2^6:(S3xL3(2))",3]]], ["API",["L52G1-p31aB0",[2,2,"prim","2^4:L4(2)",1]]], ["API",["L52d2G1-p62B0",[1,4,"imprim","2^4:L4(2) < L5(2)"]]], ["API",["L62G1-p63aB0",[2,2,"prim","2^5:L5(2)",1]]], ["API",["L62d2G1-p126B0",[1,4,"imprim","2^5:L5(2) < L6(2)"]]], ["API",["L72G1-p127aB0",[2,2,"prim","2^6:L6(2)",1]]], ["API",["L72G1-p127bB0",[2,2,"prim","2^6:L6(2)",2]]], ["API",["L72d2G2-p254B0",[1,4,"imprim","2^6:L6(2) < L7(2)"]]], ["API",["M10G1-p10B0",[3,2,"prim","3^2:Q8",2]]], ["API",["M11G1-p11B0",[4,2,"prim","A6.2_3",1]]], ["API",["M11G1-p12B0",[3,2,"prim","L2(11)",2]]], ["API",["M11G1-p165B0",[1,8,"prim","2.S4",5]]], ["API",["M11G1-p55B0",[1,3,"prim","3^2:Q8.2",3]]], ["API",["M11G1-p66B0",[1,4,"prim","S5",4]]], ["API",["M12G1-p12aB0",[5,2,"prim","M11",1]]], ["API",["M12G1-p12bB0",[5,2,"prim","M11",2]]], ["API",["M12G1-p66aB0",[1,3,"prim","A6.2^2",3]]], ["API",["M12G1-p66bB0",[1,3,"prim","A6.2^2",4]]], ["API",["M12d2G1-p24B0",[1,3,"imprim","M11 < M12"]]], ["API",["M20G1-p20aB0",[1,3,"imprim","2^4:3 < 2^4:A4"]]], ["API",["M20G1-p20bB0",[1,3,"imprim","4^2:3 < 2^4:A4"]]], ["API",["M20G1-p20cB0",[1,3,"imprim","4^2:3 < 2^4:A4"]]], ["API",["M20G1-p20dB0",[1,3,"imprim","4^2:3 < 2^4:A4"]]], ["API",["M22G1-p176aB0",[1,3,"prim","A7",3]]], ["API",["M22G1-p176bB0",[1,3,"prim","A7",4]]], ["API",["M22G1-p22B0",[3,2,"prim","L3(4)",1]]], ["API",["M22G1-p231B0",[1,4,"prim","2^4:S5",5]]], ["API",["M22G1-p330B0",[1,5,"prim","2^3:L3(2)",6]]], ["API",["M22G1-p462aB0",[1,5,"imprim","2^4:A5 < 2^4:A6"]]], ["API",["M22G1-p462bB0",[1,8,"imprim","2^4:A5 < L3(4), 2^4:S5"]]], ["API",["M22G1-p462cB0",[1,8,"imprim","2^4:A5 < L3(4), 2^4:A6"]]], ["API",["M22G1-p616B0",[1,5,"prim","A6.2_3",7]]], ["API",["M22G1-p672B0",[1,6,"prim","L2(11)",8]]], ["API",["M22G1-p770B0",[1,9,"imprim","(A4xA4):4 < 2^4:A6"]]], ["API",["M22G1-p77B0",[1,3,"prim","2^4:A6",2]]], ["API",["M22d2G1-p22B0",[3,2,"prim","L3(4).2_2",2]]], ["API",["M22d2G1-p231B0",[1,4,"prim","2^5:S5",4]]], ["API",["M22d2G1-p330B0",[1,5,"prim","2x2^3:L3(2)",5]]], ["API",["M22d2G1-p352B0",[1,6,"imprim","A7 < M22"]]], ["API",["M22d2G1-p616B0",[1,5,"prim","A6.2^2",6]]], ["API",["M22d2G1-p672B0",[1,6,"prim","L2(11).2",7]]], ["API",["M22d2G1-p77B0",[1,3,"prim","2^4:S6",3]]], ["API",["M23G1-p1288B0",[1,4,"prim","M11",5]]], ["API",["M23G1-p1771B0",[1,8,"prim","2^4:(3xA5):2",6]]], ["API",["M23G1-p23B0",[4,2,"prim","M22",1]]], ["API",["M23G1-p253aB0",[1,3,"prim","L3(4).2_2",2]]], ["API",["M23G1-p253bB0",[1,3,"prim","2^4:A7",3]]], ["API",["M23G1-p40320B0",[1,164,"prim","23:11",7]]], ["API",["M23G1-p506B0",[1,4,"prim","A8",4]]], ["API",["M24G1-p1288B0",[1,3,"prim","M12.2",4]]], ["API",["M24G1-p1771B0",[1,4,"prim","2^6:3.S6",5]]], ["API",["M24G1-p2024B0",[1,5,"prim","L3(4).S3",6]]], ["API",["M24G1-p24B0",[5,2,"prim","M23",1]]], ["API",["M24G1-p276B0",[1,3,"prim","M22.2",2]]], ["API",["M24G1-p3795B0",[1,5,"prim","2^6:(L3(2)xS3)",7]]], ["API",["M24G1-p759B0",[1,4,"prim","2^4:A8",3]]], ["API",["McLG1-p113400B0",[1,39,"prim","M11",11]]], ["API",["McLG1-p15400aB0",[1,5,"prim","3^(1+4)_+:2S5",5]]], ["API",["McLG1-p15400bB0",[1,10,"prim","3^4:M10",6]]], ["API",["McLG1-p2025aB0",[1,4,"prim","M22",2]]], ["API",["McLG1-p2025bB0",[1,4,"prim","M22",3]]], ["API",["McLG1-p22275aB0",[1,13,"prim","L3(4).2_2",7]]], ["API",["McLG1-p22275bB0",[1,6,"prim","2.A8",8]]], ["API",["McLG1-p22275cB0",[1,13,"prim","2^4:A7",10]]], ["API",["McLG1-p22275dB0",[1,13,"prim","2^4:A7",9]]], ["API",["McLG1-p275B0",[1,3,"prim","U4(3)",1]]], ["API",["McLG1-p299376B0",[1,114,"prim","5^(1+2)_+:3:8",12]]], ["API",["McLG1-p7128B0",[1,5,"prim","U3(5)",4]]], ["API",["McLd2G1-p22275aB0",[1,11,"prim","L3(4).2^2",6]]], ["API",["McLd2G1-p275B0",[1,3,"prim","U4(3).2_3",2]]], ["API",["McLd2G1-p4050B0",[1,8,"imprim","M22 < McL"]]], ["API",["McLd2G1-p44550B0",[1,26,"imprim","2^4:A7 < McL"]]], ["API",["McLd2G1-p7128B0",[1,5,"prim","U3(5).2",3]]], ["API",["Mmax10G0-p1032192B0",[1,94,"imprim","???"]]], ["API",["Mmax11G0-p805896B0",[1,23,"imprim","???"]]], ["API",["Mmax13G0-p3369B0",[0,[9,3360]]]], ["API",["Mmax14G0-p34992B0",[1,16,"imprim","???"]]], ["API",["Mmax14G0-p69984B0",[1,45,"imprim","???"]]], ["API",["Mmax15G0-p113724B0",[1,59,"imprim","???"]]], ["API",["Mmax15G0-p227448B0",[1,215,"imprim","???"]]], ["API",["Mmax15G0-p85293B0",[1,14,"imprim","???"]]], ["API",["Mmax15q1G0-p6561B0",[1,4,"imprim","3^6:(L3(3)xSD16) < 3^(2+6):(L3(3)xSD16)"]]], ["API",["Mmax15q2G0-p1404B0",[1,10,"imprim","3^(5+4):(3^2.2.S4x2^2) < 3^(6+6):(3^2.2.S4xSD16)"]]], ["API",["Mmax15q3G0-p108B0",[1,4,"imprim","2x3^3.(L3(3)x2) < 3^6:(L3(3)xD8)"]]], ["API",["Mmax16G0-p78125B0",[1,6,"imprim","2.J2.4 < (5x2.J2).4"]]], ["API",["Mmax17G0-p2065B0",[0,[7,2058]]]], ["API",["Mmax18G0-p17B0",[0,[5,12]]]], ["API",["Mmax19G0-p46500B0",[1,115,"imprim","5^(2+2).(2x5^2:(4x2)) < 5^(3+3).(2x5^2:GL2(5))"]]], ["API",["Mmax19G0-p7750B0",[1,7,"imprim","5^(2+3).GL2(5) < 5^(3+3).(2x5^2:GL2(5))"]]], ["API",["Mmax19G0-p96875B0",[1,28,"imprim","5^3.(2xGL2(5)) < 5^(3+3).(2x5^2:GL2(5))"]]], ["API",["Mmax20G0-p30B0",[1,3,"imprim","(A6xA6x3^2:4).(2xD8) < (A6xA6xA6).(2xD8)"]]], ["API",["Mmax21G0-p3653B0",[0,[5,3648]]]], ["API",["Mmax21G0-p518B0",[0,[5,513]]]], ["API",["Mmax22G0-p15625B0",[1,9,"imprim","5^2:(S3xGL2(5)) < 5^4:(S3xGL2(5))"]]], ["API",["Mmax22G0-p750B0",[1,5,"imprim","5^(3+2):(S3x4x5:4) < 5^(2+2+4):(S3x4x5:4)"]]], ["API",["Mmax23G0-p184B0",[0,[14,170]]]], ["API",["Mmax23G0-p524B0",[0,[14,510]]]], ["API",["Mmax24G0-p16807B0",[1,8,"imprim","3x2.S7 < (7:3x2.A7).2"]]], ["API",["Mmax25G0-p151B0",[0,[25,126]]]], ["API",["Mmax26G0-p36B0",[0,[12,24]]]], ["API",["Mmax27G0-p17B0",[0,[7,10]]]], ["API",["Mmax28G0-p625B0",[2,2,"prim","(3x2.L2(25)).2","???"]]], ["API",["Mmax29G0-p2401B0",[1,5,"imprim","(7:3xSL2(7)):2 < 7^3:GL2(7)"]]], ["API",["Mmax29G0-p392B0",[1,4,"imprim","7^(1+2)_+:(6x7:6) < 7^(2+1+2):(6x7:6)"]]], ["API",["Mmax30G0-p21B0",[0,[10,11]]]], ["API",["Mmax31G0-p15B0",[1,3,"imprim","S4x(S5xS5):2 < S5x(S5xS5):2"]]], ["API",["Mmax32G0-p24B0",[1,3,"imprim","(L2(11)x11:5):2 < (L2(11)xL2(11)):2"]]], ["API",["Mmax33G0-p169B0",[2,2,"prim","2.L2(13).4","???"]]], ["API",["Mmax34G0-p57B0",[0,[8,49]]]], ["API",["Mmax35G0-p39B0",[0,[13,26]]]], ["API",["Mmax36G0-p2197B0",[1,11,"imprim","3x4S4 < (13x4S4):3"]]], ["API",["Mmax39G0-p121B0",[2,2,"prim","5x2A5",5]]], ["API",["Mmax41G0-p49B0",[2,2,"prim","2.L2(7)",4]]], ["API",["Mmax43G0-p41B0",[2,2,"prim","40",3]]], ["API",["Mmax6G0-p294912B0",[1,14,"imprim","???"]]], ["API",["O10m2G1-p495B0",[1,3,"prim","2^8:O8-(2)",1]]], ["API",["O10m2G1-p528B0",[1,3,"prim","S8(2)",2]]], ["API",["O10m2d2G1-p104448B0",[1,6,"prim","S12",8]]], ["API",["O10m2d2G1-p495B0",[1,3,"prim","2^8:O8-(2):2",2]]], ["API",["O10m2d2G1-p528B0",[1,3,"prim","S8(2)x2",3]]], ["API",["O10p2G1-p19840B0",[1,5,"prim","(3xO8-(2)):2",5]]], ["API",["O10p2G1-p2295aB0",[1,3,"prim","2^10:L5(2)",3]]], ["API",["O10p2G1-p2295bB0",[1,3,"prim","2^10:L5(2)",4]]], ["API",["O10p2G1-p23715B0",[1,6,"prim","2^(1+12)_+:(S3xA8)",6]]], ["API",["O10p2G1-p39680B0",[1,8,"imprim","3xO8-(2)"]]], ["API",["O10p2G1-p496B0",[1,3,"prim","S8(2)",1]]], ["API",["O10p2G1-p527B0",[1,3,"prim","2^8:O8+(2)",2]]], ["API",["O10p2d2G1-p4590B0",[1,6,"imprim","2^10:L5(2) < O10+(2)"]]], ["API",["O10p2d2G1-p496B0",[1,3,"prim","S8(2)x2",2]]], ["API",["O10p2d2G1-p527B0",[1,3,"prim","2^8:O8+(2):2",3]]], ["API",["O73G1-p1080aB0",[1,3,"prim","G2(3)",4]]], ["API",["O73G1-p1080bB0",[1,3,"prim","G2(3)",5]]], ["API",["O73G1-p1120B0",[1,4,"prim","3^(3+3):L3(3)",6]]], ["API",["O73G1-p351B0",[1,3,"prim","2.U4(3).2_2",1]]], ["API",["O73G1-p3640B0",[1,5,"prim","3^(1+6)_+:(2A4xA4).2",9]]], ["API",["O73G1-p364B0",[1,3,"prim","3^5:U4(2):2",2]]], ["API",["O73G1-p378B0",[1,3,"prim","L4(3).2_2",3]]], ["API",["O73d2G1-p351B0",[1,3,"prim","2.U4(3).(2^2)_{122}",2]]], ["API",["O8m2G1-p1071B0",[1,5,"prim","2^(1+8)_+:(S3xA5)",4]]], ["API",["O8m2G1-p119B0",[1,3,"prim","2^6:U4(2)",1]]], ["API",["O8m2G1-p136B0",[1,3,"prim","S6(2)",2]]], ["API",["O8m2G1-p1632B0",[1,5,"prim","(3xA8):2",5]]], ["API",["O8m2G1-p24192B0",[1,16,"prim","L2(16):2",6]]], ["API",["O8m2G1-p45696B0",[1,47,"prim","(S3xS3xA5):2",7]]], ["API",["O8m2G1-p765B0",[1,4,"prim","2^(3+6):(L3(2)x3)",3]]], ["API",["O8m2d2G1-p119B0",[1,3,"prim","2^6:U4(2):2",2]]], ["API",["O8m3G1-p1066B0",[1,3,"prim","3^6:2.U4(3).2",1]]], ["API",["O8m3V4G1-p1066B0",[1,3,"prim","3^6:2.U4(3).D8",4]]], ["API",["O8m3d2aG1-p1066B0",[1,3,"prim","3^6:2.U4(3).(2^2)_{122}",2]]], ["API",["O8m3d2cG1-p1066B0",[1,3,"prim","3^6:2.U4(3).(2^2)_{133}",2]]], ["API",["O8m3d2cG2-p1066B0",[1,3,"prim","3^6:2.U4(3).(2^2)_{133}",2]]], ["API",["O8p3G1-p1080aB0",[1,3,"prim","O7(3)",1]]], ["API",["O8p3G1-p1080bB0",[1,3,"prim","O7(3)",2]]], ["API",["O8p3G1-p1080cB0",[1,3,"prim","O7(3)",3]]], ["API",["O8p3G1-p1080dB0",[1,3,"prim","O7(3)",4]]], ["API",["O8p3G1-p1080eB0",[1,3,"prim","O7(3)",5]]], ["API",["O8p3G1-p1080fB0",[1,3,"prim","O7(3)",6]]], ["API",["O8p3G1-p1120aB0",[1,3,"prim","3^6:L4(3)",7]]], ["API",["O8p3G1-p1120bB0",[1,3,"prim","3^6:L4(3)",8]]], ["API",["O8p3G1-p1120cB0",[1,3,"prim","3^6:L4(3)",9]]], ["API",["O8p3G1-p28431aB0",[1,6,"prim","O8+(2)",10]]], ["API",["O8p3G1-p28431bB0",[1,6,"prim","O8+(2)",11]]], ["API",["O8p3G1-p28431cB0",[1,6,"prim","O8+(2)",12]]], ["API",["O8p3G1-p28431dB0",[1,6,"prim","O8+(2)",13]]], ["API",["O8p3G1-p36400B0",[1,7,"prim","3^(1+8)_+:2(A4xA4xA4).2",14]]], ["API",["O8p3S4G2-p3360B0",[1,5,"imprim","3^6:L4(3).D8 < O8+(3).D8"]]], ["API",["O8p3S4G2-p6480B0",[1,6,"imprim","O7(3).2x2 < O8+(3).(2^2)_{122}"]]], ["API",["ONG1-p122760aB0",[1,5,"prim","L3(7).2",1]]], ["API",["ONd2G1-p245520B0",[1,9,"imprim","L3(7).2 < ON"]]], ["API",["PGL29G1-p10B0",[3,2,"prim","3^2:8",2]]], ["API",["R27G1-p19684B0",[2,2,"prim","3^(3+6):26",1]]], ["API",["R27d3G1-p19684B0",[2,2,"prim","3^(3+6):26:3",2]]], ["API",["RuG1-p4060B0",[1,3,"prim","2F4(2)'.2",1]]], ["API",["S102G1-p1023B0",[1,3,"prim","2^9.S8(2)",3]]], ["API",["S102G1-p1056B0",[1,4,"imprim","O10+(2) < O10+(2).2"]]], ["API",["S102G1-p496B0",[2,2,"prim","O10-(2).2",1]]], ["API",["S102G1-p528B0",[2,2,"prim","O10+(2).2",2]]], ["API",["S102G1-p992B0",[1,4,"imprim","O10-(2) < O10-(2).2"]]], ["API",["S10G1-p10B0",[10,2,"prim","S9",2]]], ["API",["S11G1-p11B0",[11,2,"prim","S10",2]]], ["API",["S12G1-p10395B0",[1,11,"prim","2^6:S6",9]]], ["API",["S12G1-p12B0",[12,2,"prim","S11",2]]], ["API",["S12G1-p15400B0",[1,12,"prim","S4wrS3",10]]], ["API",["S12G1-p220B0",[1,4,"prim","S9xS3",4]]], ["API",["S12G1-p462B0",[1,4,"prim","(S6xS6):2",5]]], ["API",["S12G1-p495B0",[1,5,"prim","S8xS4",6]]], ["API",["S12G1-p5040B0",[1,8,"imprim","M12 < A12"]]], ["API",["S12G1-p5775B0",[1,9,"prim","S4wrS3",8]]], ["API",["S12G1-p66B0",[1,3,"prim","S10x2",3]]], ["API",["S12G1-p792B0",[1,6,"prim","S7xS5",7]]], ["API",["S13G1-p13B0",[13,2,"prim","S12",2]]], ["API",["S13G1-p78B0",[1,3,"prim","S11x2",3]]], ["API",["S14G1-p1001B0",[1,5,"prim","S10xS4",5]]], ["API",["S14G1-p14B0",[14,2,"prim","S13",2]]], ["API",["S14G1-p1716B0",[1,4,"prim","(S7xS7):2",6]]], ["API",["S14G1-p2002B0",[1,6,"prim","S9xS5",7]]], ["API",["S14G1-p3003B0",[1,7,"prim","S8xS6",8]]], ["API",["S14G1-p364B0",[1,4,"prim","S11xS3",4]]], ["API",["S14G1-p91B0",[1,3,"prim","S12x2",3]]], ["API",["S15G1-p105B0",[1,3,"prim","S13x2",3]]], ["API",["S15G1-p1365B0",[1,5,"prim","S11xS4",5]]], ["API",["S15G1-p15B0",[15,2,"prim","S14",2]]], ["API",["S15G1-p455B0",[1,4,"prim","S12xS3",4]]], ["API",["S16G1-p120B0",[1,3,"prim","S14x2",3]]], ["API",["S16G1-p16B0",[16,2,"prim","S15",2]]], ["API",["S16G1-p1820B0",[1,5,"prim","S12xS4",5]]], ["API",["S16G1-p560B0",[1,4,"prim","S13xS3",4]]], ["API",["S17G1-p136B0",[1,3,"prim","S15x2",3]]], ["API",["S17G1-p17B0",[17,2,"prim","S16",2]]], ["API",["S17G1-p2380B0",[1,5,"prim","S13xS4",5]]], ["API",["S17G1-p680B0",[1,4,"prim","S14xS3",4]]], ["API",["S18G1-p153B0",[1,3,"prim","S16x2",3]]], ["API",["S18G1-p18B0",[18,2,"prim","S17",2]]], ["API",["S18G1-p3060B0",[1,5,"prim","S14xS4",5]]], ["API",["S18G1-p816B0",[1,4,"prim","S15xS3",4]]], ["API",["S19G1-p171B0",[1,3,"prim","S17x2",3]]], ["API",["S19G1-p19B0",[19,2,"prim","S18",2]]], ["API",["S19G1-p969B0",[1,4,"prim","S16xS3",4]]], ["API",["S20G1-p190B0",[1,3,"prim","S18x2",3]]], ["API",["S20G1-p20B0",[20,2,"prim","S19",2]]], ["API",["S21G1-p210B0",[1,3,"prim","S19x2",3]]], ["API",["S21G1-p21B0",[21,2,"prim","S20",2]]], ["API",["S22G1-p22B0",[22,2,"prim","S21",2]]], ["API",["S22G1-p231B0",[1,3,"prim","S20x2",3]]], ["API",["S23G1-p23B0",[23,2,"prim","S22",2]]], ["API",["S23G1-p253B0",[1,3,"prim","S21x2",3]]], ["API",["S44G1-p120bB0",[1,3,"prim","L2(16):2",4]]], ["API",["S44G1-p85aB0",[1,3,"prim","2^6:(3xA5)",1]]], ["API",["S44d4G1-p170B0",[1,5,"imprim","2^6:(3xA5):2 < S4(4).2"]]], ["API",["S45G1-p156aB0",[1,3,"prim","5^(1+2)_+:4A5",1]]], ["API",["S45G1-p156bB0",[1,3,"prim","5^3:(2xA5).2",2]]], ["API",["S45G1-p300B0",[1,4,"prim","L2(25):2_2",3]]], ["API",["S45G1-p325B0",[1,4,"prim","2.(A5xA5).2",4]]], ["API",["S47G1-p1176B0",[1,5,"prim","L2(49).2_2",3]]], ["API",["S47G1-p1225B0",[1,5,"prim","2.(L2(7)xL2(7)).2",4]]], ["API",["S47G1-p400aB0",[1,3,"prim","7^(1+2)_+.(3xSL(2,7))",1]]], ["API",["S47G1-p400bB0",[1,3,"prim","7^3:(3xPGL(2,7))",2]]], ["API",["S47d2G1-p400aB0",[1,3,"prim","7^(1+2)_+:GL(2,7)",1]]], ["API",["S47d2G1-p400bB0",[1,3,"prim","7^3:(6xPGL(2,7))",2]]], ["API",["S5G1-p10B0",[1,3,"prim","S3x2",4]]], ["API",["S5G1-p5B0",[5,2,"prim","S4",2]]], ["API",["S5G1-p6B0",[3,2,"prim","5:4",3]]], ["API",["S62G1-p120B0",[1,3,"prim","U3(3):2",4]]], ["API",["S62G1-p126B0",[1,5,"imprim","2^5:A6 < 2^5:S6"]]], ["API",["S62G1-p135B0",[1,4,"prim","2^6:L3(2)",5]]], ["API",["S62G1-p240B0",[1,5,"imprim","U3(3) < U3(3):2"]]], ["API",["S62G1-p288B0",[1,5,"imprim","S7 < S8"]]], ["API",["S62G1-p28B0",[2,2,"prim","U4(2).2",1]]], ["API",["S62G1-p315B0",[1,5,"prim","2.[2^6]:(S3xS3)",6]]], ["API",["S62G1-p336B0",[1,5,"prim","S3xS6",7]]], ["API",["S62G1-p36B0",[2,2,"prim","S8",2]]], ["API",["S62G1-p378aB0",[1,8,"imprim","2x2^4:S5 < 2^5:S6"]]], ["API",["S62G1-p378bB0",[1,6,"imprim","2^5:S5 < 2^5:S6"]]], ["API",["S62G1-p56B0",[1,4,"imprim","U4(2) < U4(2).2"]]], ["API",["S62G1-p63B0",[1,3,"prim","2^5:S6",3]]], ["API",["S62G1-p72B0",[1,4,"imprim","A8 < S8"]]], ["API",["S62G1-p960B0",[1,6,"prim","L2(8).3",8]]], ["API",["S63G1-p1120B0",[1,4,"prim","3^6:L3(3)",2]]], ["API",["S63G1-p3640B0",[1,5,"prim","3^(3+4):2(S4xA4)",3]]], ["API",["S63G1-p364B0",[1,3,"prim","3^(1+4)_+.2U4(2)",1]]], ["API",["S63G1-p7371B0",[1,6,"prim","2.(A4xU4(2))",4]]], ["API",["S63d2G1-p1120B0",[1,4,"prim","3^6:(L3(3)x2)",3]]], ["API",["S63d2G1-p3640B0",[1,5,"prim","3^(3+4):2(S4xS4)",4]]], ["API",["S63d2G1-p364B0",[1,3,"prim","3^(1+4)_+:2.U4(2).2",2]]], ["API",["S63d2G1-p7371B0",[1,6,"prim","2(A4xU4(2)).2",5]]], ["API",["S65G1-p3906B0",[1,3,"prim","???","???"]]], ["API",["S6G1-p10B0",[2,2,"prim","3^2:D8",4]]], ["API",["S6G1-p15aB0",[1,3,"prim","S4x2",5]]], ["API",["S6G1-p15bB0",[1,3,"prim","S4x2",6]]], ["API",["S6G1-p6aB0",[6,2,"prim","S5",2]]], ["API",["S6G1-p6bB0",[6,2,"prim","S5",3]]], ["API",["S7G1-p120B0",[1,7,"prim","7:6",5]]], ["API",["S7G1-p21B0",[1,3,"prim","S5x2",3]]], ["API",["S7G1-p30B0",[1,4,"imprim","L2(7) < A7"]]], ["API",["S7G1-p35B0",[1,4,"prim","S4xS3",4]]], ["API",["S7G1-p7B0",[7,2,"prim","S6",2]]], ["API",["S82G1-p120B0",[2,2,"prim","O8-(2).2",1]]], ["API",["S82G1-p136B0",[2,2,"prim","O8+(2).2",2]]], ["API",["S82G1-p2295B0",[1,5,"prim","2^10:A8",4]]], ["API",["S82G1-p240B0",[1,4,"imprim","O8-(2) < O8-(2).2"]]], ["API",["S82G1-p255B0",[1,3,"prim","2^7:S6(2)",3]]], ["API",["S82G1-p272B0",[1,4,"imprim","O8+(2) < O8+(2).2"]]], ["API",["S82G1-p5355B0",[1,6,"prim","2^(3+8):(S3xS6)",5]]], ["API",["S83G1-p3280B0",[1,3,"prim","???","???"]]], ["API",["S8G1-p8B0",[8,2,"prim","S7",2]]], ["API",["S9G1-p9B0",[9,2,"prim","S8",2]]], ["API",["SuzG1-p135135B0",[1,9,"prim","2^(1+6)_-.U4(2)",4]]], ["API",["SuzG1-p1782B0",[1,3,"prim","G2(4)",1]]], ["API",["SuzG1-p22880B0",[1,5,"prim","3_2.U4(3).2_3'",2]]], ["API",["SuzG1-p232960B0",[1,13,"prim","3^5:M11",5]]], ["API",["SuzG1-p32760B0",[1,6,"prim","U5(2)",3]]], ["API",["SuzG1-p370656B0",[1,15,"prim","J2:2",6]]], ["API",["SuzG1-p405405B0",[1,13,"prim","2^(4+6):3A6",7]]], ["API",["Suzd2G1-p1782B0",[1,3,"prim","G2(4):2",2]]], ["API",["Sz32G1-p1025B0",[2,2,"prim","2^(5+5):31",1]]], ["API",["Sz32G1-p198400B0",[1,1282,"prim","41:4",2]]], ["API",["Sz32d5G1-p1025B0",[2,2,"prim","2^(5+5):31:5",2]]], ["API",["Sz8G1-p1456B0",[1,79,"prim","5:4",3]]], ["API",["Sz8G1-p2080B0",[1,165,"prim","D14",4]]], ["API",["Sz8G1-p520B0",[1,12,"imprim","2^3:7 < 2^(3+3):7"]]], ["API",["Sz8G1-p560B0",[1,17,"prim","13:4",2]]], ["API",["Sz8G1-p65B0",[2,2,"prim","2^(3+3):7",1]]], ["API",["Sz8d3G1-p1456B0",[1,27,"prim","5:4x3",4]]], ["API",["Sz8d3G1-p2080B0",[1,59,"prim","7:6",5]]], ["API",["Sz8d3G1-p520B0",[1,8,"imprim","2^3:7:3 < 2^(3+3):7:3"]]], ["API",["Sz8d3G1-p560B0",[1,7,"prim","13:12",3]]], ["API",["Sz8d3G1-p65B0",[2,2,"prim","2^(3+3):7:3",2]]], ["API",["TD42G1-p819B0",[1,4,"prim","2^(1+8)_+:L2(8)",1]]], ["API",["TD43G1-p26572B0",[1,4,"prim","???","???"]]], ["API",["TF42G1-p12480B0",[1,24,"prim","A6.2^2",7]]], ["API",["TF42G1-p14976B0",[1,25,"prim","5^2:4A4",8]]], ["API",["TF42G1-p1600B0",[1,4,"prim","L3(3).2",1]]], ["API",["TF42G1-p1755B0",[1,5,"prim","2.[2^8]:5:4",3]]], ["API",["TF42G1-p2304B0",[1,7,"prim","L2(25)",4]]], ["API",["TF42G1-p2925B0",[1,6,"prim","2^2.[2^8]:S3",5]]], ["API",["TF42d2G1-p1755B0",[1,5,"prim","2.[2^9]:5:4",2]]], ["API",["TF42d2G1-p2304B0",[1,6,"prim","L2(25).2_3",3]]], ["API",["U311G1-p1332B0",[2,2,"prim","11^(1+2)_+:40",1]]], ["API",["U311d2G1-p1332B0",[2,2,"prim","11^(1+2)_+:(5x8:2)",2]]], ["API",["U313G1-p2198B0",[2,2,"prim","13^(1+2)_+:168",1]]], ["API",["U316G1-p4097B0",[2,2,"prim","2^(4+8):255",1]]], ["API",["U33G1-p28B0",[2,2,"prim","3^(1+2)_+:8",1]]], ["API",["U33G1-p36B0",[1,4,"prim","L2(7)",2]]], ["API",["U33G1-p63aB0",[1,4,"prim","4.S4",3]]], ["API",["U33G1-p63bB0",[1,5,"prim","4^2:S3",4]]], ["API",["U33d2G1-p63bB0",[1,4,"prim","4^2:D12",5]]], ["API",["U34G1-p1600B0",[1,48,"prim","13:3",4]]], ["API",["U34G1-p208B0",[1,5,"prim","5xA5",2]]], ["API",["U34G1-p416B0",[1,9,"prim","5^2:S3",3]]], ["API",["U34G1-p65B0",[2,2,"prim","2^(2+4):15",1]]], ["API",["U34d2G1-p1600B0",[1,28,"prim","13:6",5]]], ["API",["U34d2G1-p208B0",[1,5,"prim","A5xD10",3]]], ["API",["U34d2G1-p416B0",[1,7,"prim","5^2:D12",4]]], ["API",["U34d2G1-p65B0",[2,2,"prim","2^(2+4):(3xD10)",2]]], ["API",["U34d4G1-p1600B0",[1,15,"prim","13:12",5]]], ["API",["U34d4G1-p208B0",[1,4,"prim","(D10xA5).2",3]]], ["API",["U34d4G1-p416B0",[1,5,"prim","5^2:(4xS3)",4]]], ["API",["U34d4G1-p65B0",[2,2,"prim","2^(2+4):(3xD10).2",2]]], ["API",["U35G1-p50B0",[1,3,"prim","A7",1]]], ["API",["U35d2G1-p126B0",[2,2,"prim","5^(1+2)_+:8:2",3]]], ["API",["U35d2G1-p175B0",[1,4,"prim","A6.2^2",4]]], ["API",["U35d2G1-p50B0",[1,3,"prim","S7",2]]], ["API",["U35d2G1-p525B0",[1,7,"prim","2S5.2",5]]], ["API",["U35d2G1-p750B0",[1,9,"prim","L2(7).2",6]]], ["API",["U37G1-p1032B0",[1,6,"imprim","7^(1+2):16 < 7^(1+2):48"]]], ["API",["U37G1-p1376B0",[1,8,"imprim","7^(1+2):12 < 7^(1+2):48"]]], ["API",["U37G1-p14749B0",[1,60,"prim","8^2:S3",3]]], ["API",["U37G1-p16856B0",[1,114,"prim","L2(7):2",4]]], ["API",["U37G1-p2064B0",[1,12,"imprim","7^(1+2):8 < 7^(1+2):48"]]], ["API",["U37G1-p2107B0",[1,8,"prim","2(L2(7)x4).2",2]]], ["API",["U37G1-p344B0",[2,2,"prim","7^(1+2):48",1]]], ["API",["U37G1-p43904B0",[1,362,"prim","43:3",5]]], ["API",["U37G1-p688B0",[1,4,"imprim","7^(1+2):24 < 7^(1+2):48"]]], ["API",["U38E9G1-p3648B0",[1,5,"prim","(9xL2(8)):3",3]]], ["API",["U38E9G1-p513B0",[2,2,"prim","2^(3+6):63:3",2]]], ["API",["U38G1-p3648B0",[1,11,"prim","3xL2(8)",2]]], ["API",["U38G1-p513B0",[2,2,"prim","2^(3+6):21",1]]], ["API",["U38S3G1-p3648B0",[1,9,"prim","D18xL2(8)",4]]], ["API",["U38S3G1-p513B0",[2,2,"prim","2^(3+6):(7xD18)",3]]], ["API",["U38S3x3G1-p3648B0",[1,5,"prim","(D18xL2(8)):3",5]]], ["API",["U38S3x3G1-p513B0",[2,2,"prim","2^(3+6):(7xD18):3",4]]], ["API",["U38d2G1-p3648B0",[1,10,"prim","S3xL2(8)",3]]], ["API",["U38d2G1-p513B0",[2,2,"prim","2^(3+6):(7xS3)",2]]], ["API",["U38d3aG1-p3648B0",[1,7,"prim","3xL2(8):3",3]]], ["API",["U38d3aG1-p513B0",[2,2,"prim","2^(3+6):(7:3x3)",2]]], ["API",["U38d3bG1-p3648B0",[1,9,"prim","9xL2(8)",3]]], ["API",["U38d3bG1-p513B0",[2,2,"prim","2^(3+6):63",2]]], ["API",["U38d3cG1-p3648B0",[1,5,"prim","L2(8):9",3]]], ["API",["U38d3cG1-p513B0",[2,2,"prim","2^(3+6):7:9",2]]], ["API",["U38d6G1-p3648B0",[1,6,"prim","S3xL2(8):3",4]]], ["API",["U38d6G1-p513B0",[2,2,"prim","2^(3+6):(7:3xS3)",3]]], ["API",["U39G1-p730B0",[2,2,"prim","3^(2+4):80",1]]], ["API",["U42G1-p27B0",[1,3,"prim","2^4:A5",1]]], ["API",["U42G1-p36B0",[1,3,"prim","S6",2]]], ["API",["U42G1-p40aB0",[1,3,"prim","3^(1+2)+:2A4",3]]], ["API",["U42G1-p40bB0",[1,3,"prim","3^3:S4",4]]], ["API",["U42G1-p45B0",[1,3,"prim","2.(A4xA4).2",5]]], ["API",["U42d2G1-p27B0",[1,3,"prim","2^4:S5",2]]], ["API",["U42d2G1-p36B0",[1,3,"prim","S6x2",3]]], ["API",["U42d2G1-p40aB0",[1,3,"prim","3^(1+2)_+:2S4",4]]], ["API",["U42d2G1-p40bB0",[1,3,"prim","3^3:(S4x2)",5]]], ["API",["U42d2G1-p45B0",[1,3,"prim","2.(A4xA4).2^2",6]]], ["API",["U43D8G1-p112B0",[1,3,"prim","3^4:(2xA6.2^2)",4]]], ["API",["U43D8G1-p1134B0",[1,8,"imprim","2^5:S6 < U4(3).(2^2)_{122}"]]], ["API",["U43D8G1-p252B0",[1,5,"imprim","U4(2).2x2 < U4(3).(2^2)_{122}"]]], ["API",["U43D8G1-p280B0",[1,3,"prim","3^(1+4)_+.2^(1+4)_-.D12",5]]], ["API",["U43D8G1-p2835B0",[1,9,"prim","4(S4xS4).2^2",7]]], ["API",["U43D8G1-p324B0",[1,5,"imprim","L3(4):2^2 < U4(3).(2^2)_{133}"]]], ["API",["U43D8G1-p4536B0",[1,15,"prim","(A6.2^2x2).2",8]]], ["API",["U43D8G1-p5184B0",[1,17,"imprim","S7 < U4(3).(2^2)_{122}"]]], ["API",["U43D8G1-p540B0",[1,4,"prim","(U3(3)x4):2",6]]], ["API",["U43D8G1-p8505B0",[1,22,"prim","4^3.(2xS4)",9]]], ["API",["U43D8G1-p9072B0",[1,24,"imprim","A6.2^2x2 < (A6.2^2x2).2"]]], ["API",["U44G1-p1040B0",[1,5,"prim","S4(4)",2]]], ["API",["U44G1-p1105B0",[1,3,"prim","2^(2+8):(15xA5)",3]]], ["API",["U44G1-p325B0",[1,3,"prim","2^8:(3xL2(16))",1]]], ["API",["U44G1-p3264B0",[1,5,"prim","5xU3(4)",4]]], ["API",["U45G1-p1575B0",[1,4,"prim","S4(5).2",2]]], ["API",["U45G1-p756B0",[1,3,"prim","5^4:(L2(25)x4)",1]]], ["API",["U52G1-p1408B0",[1,7,"prim","3^4:S5",4]]], ["API",["U52G1-p165B0",[1,3,"prim","2^(1+6):3^(1+2):2A4",1]]], ["API",["U52G1-p176B0",[1,3,"prim","3xU4(2)",2]]], ["API",["U52G1-p20736B0",[1,76,"prim","L2(11)",6]]], ["API",["U52G1-p297B0",[1,3,"prim","2^(4+4):(3xA5)",3]]], ["API",["U52G1-p3520B0",[1,12,"prim","S3x3^(1+2)+:2A4",5]]], ["API",["U52d2G1-p1408B0",[1,6,"prim","3^4:(2xS5)",5]]], ["API",["U52d2G1-p165B0",[1,3,"prim","2^(1+6)_-:3^(1+2)_+:2S4",2]]], ["API",["U52d2G1-p176B0",[1,3,"prim","(3xU4(2)):2",3]]], ["API",["U52d2G1-p20736B0",[1,43,"prim","L2(11).2",7]]], ["API",["U52d2G1-p297B0",[1,3,"prim","2^(4+4):(3xA5):2",4]]], ["API",["U52d2G1-p3520B0",[1,12,"prim","S3x3^(1+2)_+:2S4",6]]], ["API",["U54G1-p17425B0",[1,3,"prim","???","???"]]], ["API",["U54G1-p52480B0",[1,5,"prim","???","???"]]], ["API",["U62G1-p12474B0",[1,8,"imprim","2^(4+8):(3xA5) < 2^(4+8):(S3xA5)"]]], ["API",["U62G1-p1408aB0",[1,3,"prim","U4(3).2_2",4]]], ["API",["U62G1-p1408bB0",[1,3,"prim","U4(3).2_2",5]]], ["API",["U62G1-p1408cB0",[1,3,"prim","U4(3).2_2",6]]], ["API",["U62G1-p20736aB0",[1,8,"prim","M22",11]]], ["API",["U62G1-p20736bB0",[1,8,"prim","M22",12]]], ["API",["U62G1-p20736cB0",[1,8,"prim","M22",13]]], ["API",["U62G1-p2816aB0",[1,5,"imprim","U4(3) < U4(3).2_2"]]], ["API",["U62G1-p2816bB0",[1,5,"imprim","U4(3) < U4(3).2_2"]]], ["API",["U62G1-p2816cB0",[1,5,"imprim","U4(3) < U4(3).2_2"]]], ["API",["U62G1-p59136B0",[1,15,"prim","S3xU4(2)",14]]], ["API",["U62G1-p6237B0",[1,5,"prim","2^(4+8):(S3xA5)",7]]], ["API",["U62G1-p6336aB0",[1,4,"prim","S6(2)",8]]], ["API",["U62G1-p6336bB0",[1,4,"prim","S6(2)",9]]], ["API",["U62G1-p6336cB0",[1,4,"prim","S6(2)",10]]], ["API",["U62G1-p672B0",[1,3,"prim","U5(2)",1]]], ["API",["U62G1-p693B0",[1,3,"prim","2^(1+8)_+:U4(2)",2]]], ["API",["U62G1-p891B0",[1,4,"prim","2^9.L3(4)",3]]], ["API",["U62S3G1-p693B0",[1,3,"prim","2^(1+8)_+:(U4(2)x3):2",4]]], ["API",["U62S3G1-p891B0",[1,4,"prim","2^9.L3(4).S3",5]]], ["API",["U62d2G1-p1408B0",[1,3,"prim","U4(3).(2^2)_{122}",5]]], ["API",["U62d2G1-p20736B0",[1,8,"prim","M22.2",8]]], ["API",["U62d2G1-p6237B0",[1,5,"prim","2^(4+8).(S3xS5)",6]]], ["API",["U62d2G1-p6336B0",[1,4,"prim","S6(2)x2",7]]], ["API",["U62d2G1-p672B0",[1,3,"prim","U5(2).2",2]]], ["API",["U62d2G1-p693B0",[1,3,"prim","2^(1+8)_+:U4(2).2",3]]], ["API",["U62d2G1-p891B0",[1,4,"prim","2^9.L3(4).2",4]]], ["API",["U63G1-p22204B0",[1,3,"prim","???","???"]]], ["API",["U63G1-p44226B0",[1,4,"prim","???","???"]]], ["API",["U72G1-p2709B0",[1,3,"prim","???",1]]], ["API",["U72G1-p2752B0",[1,3,"prim","???",2]]], ["API",["U82G1-p10880B0",[1,3,"prim","???","???"]]], ["API",["U82G1-p10965B0",[1,3,"prim","???","???"]]], ["CHAR",["(13:6xL3(3)).2","Mmax35G0-p39B0",0,[[1,2],2,3,4,91],"1a^2b+12abm"]], ["CHAR",["2.Co1","2Co1G1-p196560B0",0,[1,3,6,10,102,104,107],"1a+24a+299a+2576a+17250a+80730a+95680a"]], ["CHAR",["2.Fi22","2F22G1-p123552B0",0,[1,7,9,13,73,76],"1a+3080a+13650a+13728a+45045a+48048b"]], ["CHAR",["2.Fi22","2F22G1-p28160B0",0,[1,3,9,66,73],"1a+352a+429a+13650a+13728a"]], ["CHAR",["2.Fi22.2","2F22d2G1-p56320B0",0,[1,2,5,6,17,18,113,114,118]]], ["CHAR",["2.HS","2HSG1-f11r56B0",11,23,"56a"]], ["CHAR",["2.HS","2HSG1-f3r440B0",3,23,"440a"]], ["CHAR",["2.HS","2HSG1-f3r56B0",3,20,"56a"]], ["CHAR",["2.HS","2HSG1-f5r120bB0",5,20,"120b"]], ["CHAR",["2.HS","2HSG1-f5r28bB0",5,18,"28b"]], ["CHAR",["2.HS","2HSG1-f5r440bB0",5,22,"440b"]], ["CHAR",["2.HS","2HSG1-f7r56B0",7,24,"56a"]], ["CHAR",["2.HS","2HSG1-f9r176bB0",3,22,"176b"]], ["CHAR",["2.HS","2HSG1-p11200aB0",0,[1,2,3,5,7,10,13,16,22,25,26,27,28,29,37,38],"1a+22a+56a+77a+154b+175a+176ab+616ab+770a+825a+1056a+1980ab+2520a"]], ["CHAR",["2.HS","2HSG1-p4400B0",0,[1,2,3,4,5,6,7,9,10,26,27,30,31],"1a+22a+77a+154abc+175a+176ab+693a+770a+924ab"]], ["CHAR",["2.HS","2HSG1-p704B0",0,[1,2,5,7,26,27],"1a+22a+154b+175a+176ab"]], ["CHAR",["2.HS.2","2HSd2G1-p1408B0",0,[1,2,3,4,9,10,11,[42,2]]]], ["CHAR",["2.J2","2J2G1-p1120B0",0,[1,4,5,[7,2],10,11,13,[24,2],25,26,[34,2]],"1a+14c^2+21ab+50ab+63a^2+90a+126a+175a+216a^2"]], ["CHAR",["2.J2","2J2G1-p200B0",0,[1,6,7,25,26],"1a+36a+50ab+63a"]], ["CHAR",["2.M12","2M12G1-Zr120B0",0,24,"120b"]], ["CHAR",["2.M12","2M12G1-Zr12B0",0,18,"12a"]], ["CHAR",["2.M12","2M12G1-Zr220B0",0,[22,23],"110ab"]], ["CHAR",["2.M12","2M12G1-f3r6bB0",3,13,"6b"]], ["CHAR",["2.M12","2M12G1-f5r12B0",5,16,"12a"]], ["CHAR",["2.M12","2M12G1-p24aB0",0,[1,2,18],"1a+11a+12a"]], ["CHAR",["2.M12.2","2M12d2G1-p48B0",0,[1,2,3,26,27]]], ["CHAR",["2.M22","2M22G1-Zr120B0",0,16,"120a"]], ["CHAR",["2.M22","2M22G1-Zr20B0",0,[13,14],"10ab"]], ["CHAR",["2.M22","2M22G1-Zr210B0",0,21,"210b"]], ["CHAR",["2.M22","2M22G1-Zr56B0",0,15,"56a"]], ["CHAR",["2.M22","2M22G1-f11r10aB0",11,11,"10a"]], ["CHAR",["2.M22","2M22G1-f11r10bB0",11,12,"10b"]], ["CHAR",["2.M22","2M22G1-f11r126B0",11,15,"126a"]], ["CHAR",["2.M22","2M22G1-f11r308B0",11,[16,17],"154bc"]], ["CHAR",["2.M22","2M22G1-f11r330B0",11,18,"330a"]], ["CHAR",["2.M22","2M22G1-f11r440B0",11,19,"440a"]], ["CHAR",["2.M22","2M22G1-f11r56B0",11,13,"56a"]], ["CHAR",["2.M22","2M22G1-f11r64B0",11,14,"64a"]], ["CHAR",["2.M22","2M22G1-f121r154aB0",11,16,"154b"]], ["CHAR",["2.M22","2M22G1-f121r154bB0",11,17,"154c"]], ["CHAR",["2.M22","2M22G1-f25r10aB0",5,12,"10a"]], ["CHAR",["2.M22","2M22G1-f25r10bB0",5,13,"10b"]], ["CHAR",["2.M22","2M22G1-f25r126aB0",5,17,"126a"]], ["CHAR",["2.M22","2M22G1-f3r120B0",3,14,"120a"]], ["CHAR",["2.M22","2M22G1-f3r126bB0",3,16,"126b"]], ["CHAR",["2.M22","2M22G1-f3r210B0",3,19,"210b"]], ["CHAR",["2.M22","2M22G1-f3r56B0",3,13,"56a"]], ["CHAR",["2.M22","2M22G1-f49r126aB0",7,14,"126a"]], ["CHAR",["2.M22","2M22G1-f49r126bB0",7,15,"126b"]], ["CHAR",["2.M22","2M22G1-f49r154aB0",7,16,"154b"]], ["CHAR",["2.M22","2M22G1-f49r154bB0",7,17,"154c"]], ["CHAR",["2.M22","2M22G1-f5r120B0",5,16,"120a"]], ["CHAR",["2.M22","2M22G1-f5r210B0",5,19,"210b"]], ["CHAR",["2.M22","2M22G1-f5r28aB0",5,14,"28a"]], ["CHAR",["2.M22","2M22G1-f5r28bB0",5,15,"28b"]], ["CHAR",["2.M22","2M22G1-f5r330B0",5,20,"330a"]], ["CHAR",["2.M22","2M22G1-f5r440B0",5,21,"440a"]], ["CHAR",["2.M22","2M22G1-f7r10B0",7,11,"10a"]], ["CHAR",["2.M22","2M22G1-f7r120B0",7,13,"120a"]], ["CHAR",["2.M22","2M22G1-f7r210B0",7,18,"210b"]], ["CHAR",["2.M22","2M22G1-f7r252B0",7,[14,15],"126ab"]], ["CHAR",["2.M22","2M22G1-f7r308B0",7,[16,17],"154bc"]], ["CHAR",["2.M22","2M22G1-f7r320B0",7,19,"320a"]], ["CHAR",["2.M22","2M22G1-f7r56B0",7,12,"56a"]], ["CHAR",["2.M22","2M22G1-f9r10aB0",3,11,"10a"]], ["CHAR",["2.M22","2M22G1-f9r10bB0",3,12,"10b"]], ["CHAR",["2.M22","2M22G1-f9r154B0",3,18,"154b"]], ["CHAR",["2.M22","2M22G1-p352aB0",0,[1,2,7,15,16],"1a+21a+56a+120a+154a"]], ["CHAR",["2.M22","2M22G1-p660B0",0,[1,2,5,6,7,16,21],"1a+21a+55a+99a+120a+154a+210b"]], ["CHAR",["2.Ru","2RuG1-p16240B0",0,[1,4,5,6,7,37,38,43,44],"1a+28ab+406a+783a+3276a+3654a+4032ab"]], ["CHAR",["2.Suz","2SuzG1-p65520B0",0,[1,2,3,9,11,12,45,46,50,51],"1a+143a+364abc+5940a+12012a+14300a+16016ab"]], ["CHAR",["2F4(2)'","TF42G1-Zr52B0",0,[2,3],"26ab"]], ["CHAR",["2F4(2)'","TF42G1-Zr78B0",0,6,"78a"]], ["CHAR",["2F4(2)'","TF42G1-f13r27aB0",13,4,"27a"]], ["CHAR",["2F4(2)'","TF42G1-f13r27bB0",13,5,"27b"]], ["CHAR",["2F4(2)'","TF42G1-f13r52B0",13,[2,3],"26ab"]], ["CHAR",["2F4(2)'","TF42G1-f13r78B0",13,6,"78a"]], ["CHAR",["2F4(2)'","TF42G1-f169r26B0",13,2,"26a"]], ["CHAR",["2F4(2)'","TF42G1-f25r109aB0",5,7,"109a"]], ["CHAR",["2F4(2)'","TF42G1-f25r109bB0",5,8,"109b"]], ["CHAR",["2F4(2)'","TF42G1-f25r26aB0",5,2,"26a"]], ["CHAR",["2F4(2)'","TF42G1-f25r26bB0",5,3,"26b"]], ["CHAR",["2F4(2)'","TF42G1-f2r246B0",2,3,"246a"]], ["CHAR",["2F4(2)'","TF42G1-f2r26B0",2,2,"26a"]], ["CHAR",["2F4(2)'","TF42G1-f3r124aB0",3,7,"124a"]], ["CHAR",["2F4(2)'","TF42G1-f3r124bB0",3,8,"124b"]], ["CHAR",["2F4(2)'","TF42G1-f3r26aB0",3,2,"26a"]], ["CHAR",["2F4(2)'","TF42G1-f3r26bB0",3,3,"26b"]], ["CHAR",["2F4(2)'","TF42G1-f3r54B0",3,[4,5],"27ab"]], ["CHAR",["2F4(2)'","TF42G1-f3r77B0",3,6,"77a"]], ["CHAR",["2F4(2)'","TF42G1-f4r2048aB0",2,4,"2048a"]], ["CHAR",["2F4(2)'","TF42G1-f5r218B0",5,[7,8],"109ab"]], ["CHAR",["2F4(2)'","TF42G1-f5r27aB0",5,4,"27a"]], ["CHAR",["2F4(2)'","TF42G1-f5r27bB0",5,5,"27b"]], ["CHAR",["2F4(2)'","TF42G1-f5r52B0",5,[2,3],"26ab"]], ["CHAR",["2F4(2)'","TF42G1-f5r78B0",5,6,"78a"]], ["CHAR",["2F4(2)'","TF42G1-f9r27aB0",3,4,"27a"]], ["CHAR",["2F4(2)'","TF42G1-f9r27bB0",3,5,"27b"]], ["CHAR",["2F4(2)'","TF42G1-p12480B0",0,[1,6,[9,3],12,13,14,[15,2],16,17,18,19,21,22],"1a+78a+351a^3+624ab+650a+675a^2+702ab+1300ab+2048ab"]], ["CHAR",["2F4(2)'","TF42G1-p14976B0",0,[1,8,[9,2],12,13,14,[15,2],16,17,[18,2],[19,2],21,22],"1a+325a+351a^2+624ab+650a+675a^2+702ab+1300a^2b^2+2048ab"]], ["CHAR",["2F4(2)'","TF42G1-p1600B0",0,[1,9,12,13],"1a+351a+624ab"]], ["CHAR",["2F4(2)'","TF42G1-p1755B0",0,[1,6,9,14,15],"1a+78a+351a+650a+675a"]], ["CHAR",["2F4(2)'","TF42G1-p2304B0",0,[1,4,5,9,12,13,14],"1a+27ab+351a+624ab+650a"]], ["CHAR",["2F4(2)'","TF42G1-p2925B0",0,[1,9,12,13,14,15],"1a+351a+624ab+650a+675a"]], ["CHAR",["2F4(2)'.2","TF42d2G1-p1755B0",0,[1,8,14,21,23]]], ["CHAR",["2F4(2)'.2","TF42d2G1-p2304B0",0,[1,5,7,15,20,21]]], ["CHAR",["3.Fi22","3F22G1-p185328B0",0,[1,7,9,13,66,67,74,75,80,81],"1a+351ab+3080a+13650a+19305ab+42120ab+45045a"]], ["CHAR",["3.Fi22.2","3F22d2G1-p185328B0",0,[1,13,17,25,113,117,120]]], ["CHAR",["3.Fi24'","3F24G1-p920808B0",0,[1,3,4,109,110,113,114],"1a+783ab+57477a+249458a+306153ab"]], ["CHAR",["3.Fi24'.2","3F24d2G1-p920808B0",0,[1,5,7,184,186]]], ["CHAR",["3.M22","3M22G1-p2016B0",0,[1,2,5,7,8,9,13,14,21,22,23,24,25,26,27,28],"1a+21abc+55a+105abcd+154a+210abc+231abc"]], ["CHAR",["3.M22","3M22G1-p693B0",0,[1,2,5,7,13,14,21,22,23,24],"1a+21abc+55a+105abcd+154a"]], ["CHAR",["3.M22","3M22G1-p990B0",0,[1,2,5,6,7,13,14,19,20,21,22,23,24],"1a+21abc+55a+99abc+105abcd+154a"]], ["CHAR",["3.McL","3McLG1-p103950B0",0,[1,2,[4,2],9,10,12,14,[20,2],25,26,27,28,37,38,39,40,[41,2],[42,2],45,46,47,48,65,66],"1a+22a+126abcd+252a^2+1750a+2520abcd+2772a^2b^2+3520a+4500a+5103abc+6336ab+9625a^2+12375ab"]], ["CHAR",["3.McL","3McLG1-p66825B0",0,[1,4,9,14,15,20,41,42,45,46,47,48,57,58],"1a+252a+1750a+2772ab+5103abc+5544a+6336ab+8064ab+9625a"]], ["CHAR",["3.ON","3ONG1-p368280B0",0,[1,2,7,8,11,37,38,51,52,53,54],"1a+495cd+10944a+26752a+32395a+52668a+58653bc+63612ab"]], ["CHAR",["3.Suz","3SuzG1-p405405B0",0,[1,2,4,6,9,12,16,17,27,44,45,48,49,52,53,68,69,70,71,82,83,88,89],"1a+66ab+143a+429ab+780a+1716ab+3432a+5940a+6720ab+14300a+18954abc+25025a+42900ab+64350cd+66560a"]], ["CHAR",["3.Suz","3SuzG1-p5346B0",0,[1,4,5,44,45,52,53],"1a+66ab+780a+1001a+1716ab"]], ["CHAR",["3.Suz","3SuzG1-p98280B0",0,[1,2,3,9,11,12,46,47,50,51,62,63,78,79],"1a+78ab+143a+364a+1365ab+4290ab+5940a+12012a+14300a+27027ab"]], ["CHAR",["3.Suz.2","3Suzd2G1-p5346B0",0,[1,7,9,69,73]]], ["CHAR",["3D4(2)","TD42G1-Zr196B0",0,4,"196a"]], ["CHAR",["3D4(2)","TD42G1-Zr26B0",0,2,"26a"]], ["CHAR",["3D4(2)","TD42G1-Zr52B0",0,3,"52a"]], ["CHAR",["3D4(2)","TD42G1-f13r26B0",13,2,"26a"]], ["CHAR",["3D4(2)","TD42G1-f27r351aB0",3,6,"351a"]], ["CHAR",["3D4(2)","TD42G1-f27r351bB0",3,7,"351b"]], ["CHAR",["3D4(2)","TD42G1-f27r351cB0",3,8,"351c"]], ["CHAR",["3D4(2)","TD42G1-f2r26B0",2,5,"26a"]], ["CHAR",["3D4(2)","TD42G1-f3r1053B0",3,10,"1053a"]], ["CHAR",["3D4(2)","TD42G1-f3r196B0",3,4,"196a"]], ["CHAR",["3D4(2)","TD42G1-f3r25B0",3,2,"25a"]], ["CHAR",["3D4(2)","TD42G1-f3r324B0",3,5,"324a"]], ["CHAR",["3D4(2)","TD42G1-f3r441B0",3,9,"441a"]], ["CHAR",["3D4(2)","TD42G1-f3r52B0",3,3,"52a"]], ["CHAR",["3D4(2)","TD42G1-f7r26B0",7,2,"26a"]], ["CHAR",["3D4(2)","TD42G1-f7r298B0",7,6,"298a"]], ["CHAR",["3D4(2)","TD42G1-f8r8aB0",2,2,"8a"]], ["CHAR",["3D4(2)","TD42G1-p819B0",0,[1,2,6,10],"1a+26a+324a+468a"]], ["CHAR",["3D4(2).3","TD42d3G1-f13r26aB0",13,4]], ["CHAR",["3D4(2).3","TD42d3G1-f2r144B0",2,8]], ["CHAR",["3D4(2).3","TD42d3G1-f2r246aB0",2,10]], ["CHAR",["3D4(2).3","TD42d3G1-f2r24B0",2,4]], ["CHAR",["3D4(2).3","TD42d3G1-f2r26B0",2,5]], ["CHAR",["3D4(2).3","TD42d3G1-f2r480B0",2,9]], ["CHAR",["3D4(2).3","TD42d3G1-f3r196B0",3,4]], ["CHAR",["3D4(2).3","TD42d3G1-f3r52B0",3,3]], ["CHAR",["3D4(2).3","TD42d3G1-f7r26aB0",7,4]], ["CHAR",["3D4(2).3","TD42d3G1-f7r273aB0",7,13]], ["CHAR",["3D4(2).3","TD42d3G1-f7r298aB0",7,16]], ["CHAR",["3D4(2).3","TD42d3G1-f7r467aB0",7,19]], ["CHAR",["3D4(2).3","TD42d3G1-f7r52aB0",7,7]], ["CHAR",["6.M22","6M22G1-p1980B0",0,[1,2,5,6,7,16,21,24,25,30,31,32,33,34,35,62,63],"1a+21abc+55a+99abc+105abcd+120a+154a+210b+330de"]], ["CHAR",["6.Suz","6SuzG1-p196560B0",0,[1,2,3,9,11,12,45,46,50,51,79,80,83,84,95,96,111,112,153,154,157,158,159,160,177,178],"1a+12ab+78ab+143a+364abc+924ab+1365ab+4290ab+4368ab+5940a+12012a+14300a+16016ab+27027ab+27456ab"]], ["CHAR",["A10","A10G1-Zr126B0",0,9,"126a"]], ["CHAR",["A10","A10G1-Zr160B0",0,10,"160a"]], ["CHAR",["A10","A10G1-Zr210B0",0,11,"210a"]], ["CHAR",["A10","A10G1-Zr225B0",0,14,"225a"]], ["CHAR",["A10","A10G1-Zr35B0",0,3,"35a"]], ["CHAR",["A10","A10G1-Zr36B0",0,4,"36a"]], ["CHAR",["A10","A10G1-Zr42B0",0,5,"42a"]], ["CHAR",["A10","A10G1-Zr75B0",0,6,"75a"]], ["CHAR",["A10","A10G1-Zr84B0",0,7,"84a"]], ["CHAR",["A10","A10G1-Zr90B0",0,8,"90a"]], ["CHAR",["A10","A10G1-Zr9B0",0,2,"9a"]], ["CHAR",["A10","A10G1-f2r160B0",2,8,"160a"]], ["CHAR",["A10","A10G1-f2r16B0",2,3,"16a"]], ["CHAR",["A10","A10G1-f2r198B0",2,9,"198a"]], ["CHAR",["A10","A10G1-f2r200B0",2,10,"200a"]], ["CHAR",["A10","A10G1-f2r26B0",2,4,"26a"]], ["CHAR",["A10","A10G1-f2r48B0",2,5,"48a"]], ["CHAR",["A10","A10G1-f2r8B0",2,2,"8a"]], ["CHAR",["A10","A10G1-f3r126B0",3,8,"126a"]], ["CHAR",["A10","A10G1-f3r224B0",3,9,"224a"]], ["CHAR",["A10","A10G1-f3r279B0",3,10,"279a"]], ["CHAR",["A10","A10G1-f3r34B0",3,3,"34a"]], ["CHAR",["A10","A10G1-f3r36B0",3,4,"36a"]], ["CHAR",["A10","A10G1-f3r41B0",3,5,"41a"]], ["CHAR",["A10","A10G1-f3r567B0",3,11,"567a"]], ["CHAR",["A10","A10G1-f3r84B0",3,6,"84a"]], ["CHAR",["A10","A10G1-f3r90B0",3,7,"90a"]], ["CHAR",["A10","A10G1-f3r9B0",3,2,"9a"]], ["CHAR",["A10","A10G1-f5r155B0",5,13,"155a"]], ["CHAR",["A10","A10G1-f5r160B0",5,14,"160a"]], ["CHAR",["A10","A10G1-f5r217B0",5,15,"217a"]], ["CHAR",["A10","A10G1-f5r225B0",5,16,"225a"]], ["CHAR",["A10","A10G1-f5r28B0",5,3,"28a"]], ["CHAR",["A10","A10G1-f5r300B0",5,17,"300a"]], ["CHAR",["A10","A10G1-f5r34B0",5,4,"34a"]], ["CHAR",["A10","A10G1-f5r350B0",5,18,"350a"]], ["CHAR",["A10","A10G1-f5r35aB0",5,5,"35a"]], ["CHAR",["A10","A10G1-f5r450B0",5,19,"450a"]], ["CHAR",["A10","A10G1-f5r525B0",5,20,"525a"]], ["CHAR",["A10","A10G1-f5r55B0",5,8,"55a"]], ["CHAR",["A10","A10G1-f5r56B0",5,9,"56a"]], ["CHAR",["A10","A10G1-f5r75B0",5,10,"75a"]], ["CHAR",["A10","A10G1-f5r8B0",5,2,"8a"]], ["CHAR",["A10","A10G1-f7r124B0",7,10,"124a"]], ["CHAR",["A10","A10G1-f7r126B0",7,11,"126a"]], ["CHAR",["A10","A10G1-f7r315B0",7,17,"315a"]], ["CHAR",["A10","A10G1-f7r35B0",7,3,"35a"]], ["CHAR",["A10","A10G1-f7r36B0",7,4,"36a"]], ["CHAR",["A10","A10G1-f7r66B0",7,6,"66a"]], ["CHAR",["A10","A10G1-f7r84B0",7,7,"84a"]], ["CHAR",["A10","A10G1-f7r89B0",7,8,"89a"]], ["CHAR",["A10","A10G1-f7r9B0",7,2,"9a"]], ["CHAR",["A11","A11G1-Zr10B0",0,2,"10a"]], ["CHAR",["A11","A11G1-Zr110B0",0,5,"110a"]], ["CHAR",["A11","A11G1-Zr120B0",0,6,"120a"]], ["CHAR",["A11","A11G1-Zr132B0",0,9,"132a"]], ["CHAR",["A11","A11G1-Zr165B0",0,10,"165a"]], ["CHAR",["A11","A11G1-Zr210B0",0,11,"210a"]], ["CHAR",["A11","A11G1-Zr231B0",0,12,"231a"]], ["CHAR",["A11","A11G1-Zr44B0",0,3,"44a"]], ["CHAR",["A11","A11G1-Zr45B0",0,4,"45a"]], ["CHAR",["A11","A11G1-f11r36B0",11,3,"36a"]], ["CHAR",["A11","A11G1-f11r44B0",11,4,"44a"]], ["CHAR",["A11","A11G1-f11r84B0",11,5,"84a"]], ["CHAR",["A11","A11G1-f11r9B0",11,2,"9a"]], ["CHAR",["A11","A11G1-f2r100B0",2,6,"100a"]], ["CHAR",["A11","A11G1-f2r10B0",2,2,"10a"]], ["CHAR",["A11","A11G1-f2r144B0",2,7,"144a"]], ["CHAR",["A11","A11G1-f2r164B0",2,8,"164a"]], ["CHAR",["A11","A11G1-f2r186B0",2,9,"186a"]], ["CHAR",["A11","A11G1-f2r198B0",2,10,"198a"]], ["CHAR",["A11","A11G1-f2r32B0",2,[3,4],"16ab"]], ["CHAR",["A11","A11G1-f2r416B0",2,11,"416a"]], ["CHAR",["A11","A11G1-f2r44B0",2,5,"44a"]], ["CHAR",["A11","A11G1-f2r848B0",2,14,"848a"]], ["CHAR",["A11","A11G1-f3r109B0",3,5,"109a"]], ["CHAR",["A11","A11G1-f3r10B0",3,2,"10a"]], ["CHAR",["A11","A11G1-f3r120B0",3,6,"120a"]], ["CHAR",["A11","A11G1-f3r131B0",3,9,"131a"]], ["CHAR",["A11","A11G1-f3r34B0",3,3,"34a"]], ["CHAR",["A11","A11G1-f3r45B0",3,4,"45a"]], ["CHAR",["A11","A11G1-f5r10B0",5,2,"10a"]], ["CHAR",["A11","A11G1-f5r110B0",5,7,"110a"]], ["CHAR",["A11","A11G1-f5r120B0",5,8,"120a"]], ["CHAR",["A11","A11G1-f5r43B0",5,3,"43a"]], ["CHAR",["A11","A11G1-f5r45B0",5,4,"45a"]], ["CHAR",["A11","A11G1-f5r55B0",5,5,"55a"]], ["CHAR",["A11","A11G1-f5r89B0",5,6,"89a"]], ["CHAR",["A11","A11G1-f7r10B0",7,2,"10a"]], ["CHAR",["A11","A11G1-f7r44B0",7,3,"44a"]], ["CHAR",["A11","A11G1-f7r45B0",7,4,"45a"]], ["CHAR",["A11","A11G1-f7r66B0",7,5,"66a"]], ["CHAR",["A5","A5G1-Ar3aB0",0,2,"3a"]], ["CHAR",["A5","A5G1-Ar3bB0",0,3,"3b"]], ["CHAR",["A5","A5G1-Zr4B0",0,4,"4a"]], ["CHAR",["A5","A5G1-Zr5B0",0,5,"5a"]], ["CHAR",["A5","A5G1-Zr6B0",0,[2,3],"3ab"]], ["CHAR",["A5","A5G1-f2r4aB0",2,4,"4a"]], ["CHAR",["A5","A5G1-f2r4bB0",2,[2,3],"2ab"]], ["CHAR",["A5","A5G1-f3r4B0",3,4,"4a"]], ["CHAR",["A5","A5G1-f3r6B0",3,[2,3],"3ab"]], ["CHAR",["A5","A5G1-f4r2aB0",2,2,"2a"]], ["CHAR",["A5","A5G1-f4r2bB0",2,3,"2b"]], ["CHAR",["A5","A5G1-f5r3B0",5,2,"3a"]], ["CHAR",["A5","A5G1-f5r5B0",5,3,"5a"]], ["CHAR",["A5","A5G1-f9r3aB0",3,2,"3a"]], ["CHAR",["A5","A5G1-f9r3bB0",3,3,"3b"]], ["CHAR",["A5","A5G1-p10B0",0,[1,4,5],"1a+4a+5a"]], ["CHAR",["A5","A5G1-p5B0",0,[1,4],"1a+4a"]], ["CHAR",["A5","A5G1-p6B0",0,[1,5],"1a+5a"]], ["CHAR",["A6","A6G1-Zr10B0",0,7,"10a"]], ["CHAR",["A6","A6G1-Zr9B0",0,6,"9a"]], ["CHAR",["A6","A6G1-f2r16B0",2,[4,5],"8ab"]], ["CHAR",["A6","A6G1-f3r4B0",3,4,"4a"]], ["CHAR",["A6","A6G1-f3r6B0",3,[2,3],"3ab"]], ["CHAR",["A6","A6G1-f3r9B0",3,5,"9a"]], ["CHAR",["A6","A6G1-f5r10B0",5,5,"10a"]], ["CHAR",["A6","A6G1-f5r8B0",5,4,"8a"]], ["CHAR",["A7","A7G1-Zr14aB0",0,5,"14a"]], ["CHAR",["A7","A7G1-Zr14bB0",0,6,"14b"]], ["CHAR",["A7","A7G1-Zr15B0",0,7,"15a"]], ["CHAR",["A7","A7G1-Zr21B0",0,8,"21a"]], ["CHAR",["A7","A7G1-Zr35B0",0,9,"35a"]], ["CHAR",["A7","A7G1-Zr6B0",0,2,"6a"]], ["CHAR",["A7","A7G1-f2r14B0",2,5,"14a"]], ["CHAR",["A7","A7G1-f2r20B0",2,6,"20a"]], ["CHAR",["A7","A7G1-f2r6B0",2,4,"6a"]], ["CHAR",["A7","A7G1-f3r13B0",3,5,"13a"]], ["CHAR",["A7","A7G1-f3r15B0",3,6,"15a"]], ["CHAR",["A7","A7G1-f3r20B0",3,[3,4],"10ab"]], ["CHAR",["A7","A7G1-f3r6B0",3,2,"6a"]], ["CHAR",["A7","A7G1-f5r13B0",5,6,"13a"]], ["CHAR",["A7","A7G1-f5r15B0",5,7,"15a"]], ["CHAR",["A7","A7G1-f5r20B0",5,[4,5],"10ab"]], ["CHAR",["A7","A7G1-f5r35B0",5,8,"35a"]], ["CHAR",["A7","A7G1-f5r6B0",5,2,"6a"]], ["CHAR",["A7","A7G1-f5r8B0",5,3,"8a"]], ["CHAR",["A7","A7G1-f7r10B0",7,3,"10a"]], ["CHAR",["A7","A7G1-f7r14aB0",7,4,"14a"]], ["CHAR",["A7","A7G1-f7r14bB0",7,5,"14b"]], ["CHAR",["A7","A7G1-f7r21B0",7,6,"21a"]], ["CHAR",["A7","A7G1-f7r35B0",7,7,"35a"]], ["CHAR",["A7","A7G1-f7r5B0",7,2,"5a"]], ["CHAR",["A8","A8G1-Zr14B0",0,3,"14a"]], ["CHAR",["A8","A8G1-Zr20B0",0,4,"20a"]], ["CHAR",["A8","A8G1-Zr21aB0",0,5,"21a"]], ["CHAR",["A8","A8G1-Zr28B0",0,8,"28a"]], ["CHAR",["A8","A8G1-Zr35B0",0,9,"35a"]], ["CHAR",["A8","A8G1-Zr56B0",0,12,"56a"]], ["CHAR",["A8","A8G1-Zr64B0",0,13,"64a"]], ["CHAR",["A8","A8G1-Zr70B0",0,14,"70a"]], ["CHAR",["A8","A8G1-Zr7B0",0,2,"7a"]], ["CHAR",["A8","A8G1-f2r14B0",2,5,"14a"]], ["CHAR",["A8","A8G1-f2r64B0",2,8,"64a"]], ["CHAR",["A8","A8G1-f2r6B0",2,4,"6a"]], ["CHAR",["A9","A9G1-Zr105B0",0,13,"105a"]], ["CHAR",["A9","A9G1-Zr120B0",0,14,"120a"]], ["CHAR",["A9","A9G1-Zr162B0",0,15,"162a"]], ["CHAR",["A9","A9G1-Zr168B0",0,16,"168a"]], ["CHAR",["A9","A9G1-Zr189B0",0,17,"189a"]], ["CHAR",["A9","A9G1-Zr216B0",0,18,"216a"]], ["CHAR",["A9","A9G1-Zr27B0",0,5,"27a"]], ["CHAR",["A9","A9G1-Zr28B0",0,6,"28a"]], ["CHAR",["A9","A9G1-Zr42B0",0,9,"42a"]], ["CHAR",["A9","A9G1-Zr48B0",0,10,"48a"]], ["CHAR",["A9","A9G1-Zr56B0",0,11,"56a"]], ["CHAR",["A9","A9G1-Zr84B0",0,12,"84a"]], ["CHAR",["A9","A9G1-Zr8B0",0,2,"8a"]], ["CHAR",["A9","A9G1-f2r160B0",2,10,"160a"]], ["CHAR",["A9","A9G1-f2r26B0",2,7,"26a"]], ["CHAR",["A9","A9G1-f2r48B0",2,8,"48a"]], ["CHAR",["A9","A9G1-f2r78B0",2,9,"78a"]], ["CHAR",["A9","A9G1-f2r8aB0",2,2,"8a"]], ["CHAR",["A9","A9G1-f3r162B0",3,7,"162a"]], ["CHAR",["A9","A9G1-f3r189B0",3,8,"189a"]], ["CHAR",["A9","A9G1-f3r21B0",3,3,"21a"]], ["CHAR",["A9","A9G1-f3r27B0",3,4,"27a"]], ["CHAR",["A9","A9G1-f3r35B0",3,5,"35a"]], ["CHAR",["A9","A9G1-f3r41B0",3,6,"41a"]], ["CHAR",["A9","A9G1-f3r7B0",3,2,"7a"]], ["CHAR",["A9","A9G1-f5r105B0",5,11,"105a"]], ["CHAR",["A9","A9G1-f5r120B0",5,12,"120a"]], ["CHAR",["A9","A9G1-f5r133B0",5,13,"133a"]], ["CHAR",["A9","A9G1-f5r134B0",5,14,"134a"]], ["CHAR",["A9","A9G1-f5r21B0",5,3,"21a"]], ["CHAR",["A9","A9G1-f5r27B0",5,4,"27a"]], ["CHAR",["A9","A9G1-f5r28B0",5,5,"28a"]], ["CHAR",["A9","A9G1-f5r34B0",5,6,"34a"]], ["CHAR",["A9","A9G1-f5r56B0",5,9,"56a"]], ["CHAR",["A9","A9G1-f5r83B0",5,10,"83a"]], ["CHAR",["A9","A9G1-f5r8B0",5,2,"8a"]], ["CHAR",["A9","A9G1-f7r101B0",7,13,"101a"]], ["CHAR",["A9","A9G1-f7r105B0",7,14,"105a"]], ["CHAR",["A9","A9G1-f7r115B0",7,15,"115a"]], ["CHAR",["A9","A9G1-f7r168B0",7,16,"168a"]], ["CHAR",["A9","A9G1-f7r189B0",7,17,"189a"]], ["CHAR",["A9","A9G1-f7r19B0",7,3,"19a"]], ["CHAR",["A9","A9G1-f7r28B0",7,6,"28a"]], ["CHAR",["A9","A9G1-f7r42B0",7,9,"42a"]], ["CHAR",["A9","A9G1-f7r47B0",7,10,"47a"]], ["CHAR",["A9","A9G1-f7r56B0",7,11,"56a"]], ["CHAR",["A9","A9G1-f7r84B0",7,12,"84a"]], ["CHAR",["A9","A9G1-f7r8B0",7,2,"8a"]], ["CHAR",["Co1","Co1G1-f11r276B0",11,2,"276a"]], ["CHAR",["Co1","Co1G1-f11r299B0",11,3,"299a"]], ["CHAR",["Co1","Co1G1-f13r276B0",13,2,"276a"]], ["CHAR",["Co1","Co1G1-f13r299B0",13,3,"299a"]], ["CHAR",["Co1","Co1G1-f23r276B0",23,2,"276a"]], ["CHAR",["Co1","Co1G1-f23r299B0",23,3,"299a"]], ["CHAR",["Co1","Co1G1-f7r276B0",7,2,"276a"]], ["CHAR",["Co1","Co1G1-f7r299B0",7,3,"299a"]], ["CHAR",["Co1","Co1G1-p98280B0",0,[1,3,6,10],"1a+299a+17250a+80730a"]], ["CHAR",["Co2","Co2G1-Zr23B0",0,2,"23a"]], ["CHAR",["Co2","Co2G1-f11r23B0",11,2,"23a"]], ["CHAR",["Co2","Co2G1-f11r253B0",11,3,"253a"]], ["CHAR",["Co2","Co2G1-f11r275B0",11,4,"275a"]], ["CHAR",["Co2","Co2G1-f23r23B0",23,2,"23a"]], ["CHAR",["Co2","Co2G1-f23r253B0",23,3,"253a"]], ["CHAR",["Co2","Co2G1-f23r274B0",23,4,"274a"]], ["CHAR",["Co2","Co2G1-f2r22B0",2,2,"22a"]], ["CHAR",["Co2","Co2G1-f2r230B0",2,3,"230a"]], ["CHAR",["Co2","Co2G1-f2r24B0",2,[[1,2],2],"1a^2+22a"]], ["CHAR",["Co2","Co2G1-f2r748aB0",2,4,"748a"]], ["CHAR",["Co2","Co2G1-f2r748bB0",2,5,"748b"]], ["CHAR",["Co2","Co2G1-f3r23B0",3,2,"23a"]], ["CHAR",["Co2","Co2G1-f3r253B0",3,3,"253a"]], ["CHAR",["Co2","Co2G1-f3r275B0",3,4,"275a"]], ["CHAR",["Co2","Co2G1-f5r23B0",5,2,"23a"]], ["CHAR",["Co2","Co2G1-f5r253B0",5,3,"253a"]], ["CHAR",["Co2","Co2G1-f5r275B0",5,4,"275a"]], ["CHAR",["Co2","Co2G1-f7r23B0",7,2,"23a"]], ["CHAR",["Co2","Co2G1-f7r253B0",7,3,"253a"]], ["CHAR",["Co2","Co2G1-f7r275B0",7,4,"275a"]], ["CHAR",["Co2","Co2G1-p2300B0",0,[1,4,6],"1a+275a+2024a"]], ["CHAR",["Co2","Co2G1-p4600B0",0,[1,2,4,6,7],"1a+23a+275a+2024a+2277a"]], ["CHAR",["Co3","Co3G1-Zr23B0",0,2,"23a"]], ["CHAR",["Co3","Co3G1-f11r23B0",11,2,"23a"]], ["CHAR",["Co3","Co3G1-f11r253aB0",11,3,"253a"]], ["CHAR",["Co3","Co3G1-f11r253bB0",11,4,"253b"]], ["CHAR",["Co3","Co3G1-f11r275B0",11,5,"275a"]], ["CHAR",["Co3","Co3G1-f11r896B0",11,6,"896a"]], ["CHAR",["Co3","Co3G1-f23r23B0",23,2,"23a"]], ["CHAR",["Co3","Co3G1-f23r253aB0",23,3,"253a"]], ["CHAR",["Co3","Co3G1-f23r253bB0",23,4,"253b"]], ["CHAR",["Co3","Co3G1-f23r274B0",23,5,"274a"]], ["CHAR",["Co3","Co3G1-f23r896bB0",23,7,"896b"]], ["CHAR",["Co3","Co3G1-f2r22B0",2,2,"22a"]], ["CHAR",["Co3","Co3G1-f2r230B0",2,3,"230a"]], ["CHAR",["Co3","Co3G1-f3r126aB0",3,3,"126a"]], ["CHAR",["Co3","Co3G1-f3r126bB0",3,4,"126b"]], ["CHAR",["Co3","Co3G1-f3r22B0",3,2,"22a"]], ["CHAR",["Co3","Co3G1-f3r231aB0",3,5,"231a"]], ["CHAR",["Co3","Co3G1-f3r231bB0",3,6,"231b"]], ["CHAR",["Co3","Co3G1-f3r770aB0",3,7,"770a"]], ["CHAR",["Co3","Co3G1-f3r770bB0",3,8,"770b"]], ["CHAR",["Co3","Co3G1-f49r896aB0",7,6,"896a"]], ["CHAR",["Co3","Co3G1-f4r896aB0",2,4,"896a"]], ["CHAR",["Co3","Co3G1-f5r230B0",5,3,"230a"]], ["CHAR",["Co3","Co3G1-f5r23B0",5,2,"23a"]], ["CHAR",["Co3","Co3G1-f5r253B0",5,4,"253a"]], ["CHAR",["Co3","Co3G1-f5r275B0",5,5,"275a"]], ["CHAR",["Co3","Co3G1-f5r896bB0",5,7,"896b"]], ["CHAR",["Co3","Co3G1-f7r23B0",7,2,"23a"]], ["CHAR",["Co3","Co3G1-f7r253aB0",7,3,"253a"]], ["CHAR",["Co3","Co3G1-f7r253bB0",7,4,"253b"]], ["CHAR",["Co3","Co3G1-f7r275B0",7,5,"275a"]], ["CHAR",["Co3","Co3G1-p11178B0",0,[1,2,5,9,15],"1a+23a+275a+2024a+8855a"]], ["CHAR",["Co3","Co3G1-p128800B0",0,[1,5,13,15,20,31],"1a+275a+5544a+8855a+23000a+91125a"]], ["CHAR",["Co3","Co3G1-p276B0",0,[1,5],"1a+275a"]], ["CHAR",["Co3","Co3G1-p37950B0",0,[1,[5,2],13,15,20],"1a+275a^2+5544a+8855a+23000a"]], ["CHAR",["Co3","Co3G1-p48600B0",0,[1,2,4,5,9,13,15,24],"1a+23a+253b+275a+2024a+5544a+8855a+31625c"]], ["CHAR",["Co3","Co3G1-p552B0",0,[1,2,4,5],"1a+23a+253b+275a"]], ["CHAR",["Fi22","F22G1-Zr78B0",0,2,"78a"]], ["CHAR",["Fi22","F22G1-f11r429B0",11,3,"429a"]], ["CHAR",["Fi22","F22G1-f11r78B0",11,2,"78a"]], ["CHAR",["Fi22","F22G1-f13r429B0",13,3,"429a"]], ["CHAR",["Fi22","F22G1-f13r78B0",13,2,"78a"]], ["CHAR",["Fi22","F22G1-f2r350B0",2,3,"350a"]], ["CHAR",["Fi22","F22G1-f2r572B0",2,4,"572a"]], ["CHAR",["Fi22","F22G1-f2r78B0",2,2,"78a"]], ["CHAR",["Fi22","F22G1-f3r351B0",3,3,"351a"]], ["CHAR",["Fi22","F22G1-f3r77B0",3,2,"77a"]], ["CHAR",["Fi22","F22G1-f3r924B0",3,4,"924a"]], ["CHAR",["Fi22","F22G1-f5r428B0",5,3,"428a"]], ["CHAR",["Fi22","F22G1-f5r78B0",5,2,"78a"]], ["CHAR",["Fi22","F22G1-f7r429B0",7,3,"429a"]], ["CHAR",["Fi22","F22G1-f7r78B0",7,2,"78a"]], ["CHAR",["Fi22","F22G1-p14080bB0",0,[1,3,9],"1a+429a+13650a"]], ["CHAR",["Fi22","F22G1-p142155B0",0,[1,2,3,5,7,10,11,17],"1a+78a+429a+1430a+3080a+30030a+32032a+75075a"]], ["CHAR",["Fi22","F22G1-p3510B0",0,[1,3,7],"1a+429a+3080a"]], ["CHAR",["Fi22","F22G1-p61776B0",0,[1,7,9,13],"1a+3080a+13650a+45045a"]], ["CHAR",["Fi22","F22G1-p694980B0",0,[1,3,5,7,9,10,13,17,25,28],"1a+429a+1430a+3080a+13650a+30030a+45045a+75075a+205920a+320320a"]], ["CHAR",["Fi22.2","F22d2G1-p3510B0",0,[1,5,13]]], ["CHAR",["Fi23","F23G1-f11r782B0",11,2,"782a"]], ["CHAR",["Fi23","F23G1-f13r782B0",13,2,"782a"]], ["CHAR",["Fi23","F23G1-f2r1494B0",2,3,"1494a"]], ["CHAR",["Fi23","F23G1-f2r782B0",2,2,"782a"]], ["CHAR",["Fi23","F23G1-f5r782B0",5,2,"782a"]], ["CHAR",["Fi23","F23G1-f7r782B0",7,2,"782a"]], ["CHAR",["Fi23","F23G1-p137632B0",0,[1,6,8],"1a+30888a+106743a"]], ["CHAR",["Fi23","F23G1-p275264B0",0,[1,5,6,8,9],"1a+25806a+30888a+106743a+111826a"]], ["CHAR",["Fi23","F23G1-p31671B0",0,[1,2,6],"1a+782a+30888a"]], ["CHAR",["Fi24'","F24G1-p306936B0",0,[1,3,4],"1a+57477a+249458a"]], ["CHAR",["Fi24'.2","F24d2G1-p306936B0",0,[1,5,7]]], ["CHAR",["G2(3)","G23G1-Zr104B0",0,9,"104a"]], ["CHAR",["G2(3)","G23G1-Zr128B0",0,[3,4],"64ab"]], ["CHAR",["G2(3)","G23G1-Zr14B0",0,2,"14a"]], ["CHAR",["G2(3)","G23G1-Zr168B0",0,10,"168a"]], ["CHAR",["G2(3)","G23G1-Zr182aB0",0,11,"182a"]], ["CHAR",["G2(3)","G23G1-Zr182bB0",0,12,"182b"]], ["CHAR",["G2(3)","G23G1-Zr78B0",0,5,"78a"]], ["CHAR",["G2(3)","G23G1-Zr91aB0",0,6,"91a"]], ["CHAR",["G2(3)","G23G1-Zr91bB0",0,7,"91b"]], ["CHAR",["G2(3)","G23G1-Zr91cB0",0,8,"91c"]], ["CHAR",["G2(3)","G23G1-f2r14B0",2,2,"14a"]], ["CHAR",["G2(3)","G23G1-f2r378B0",2,9,"378a"]], ["CHAR",["G2(3)","G23G1-f2r78B0",2,5,"78a"]], ["CHAR",["G2(3)","G23G1-f2r90aB0",2,6,"90a"]], ["CHAR",["G2(3)","G23G1-f2r90bB0",2,7,"90b"]], ["CHAR",["G2(3)","G23G1-f2r90cB0",2,8,"90c"]], ["CHAR",["G2(3)","G23G1-f3r189aB0",3,7,"189a"]], ["CHAR",["G2(3)","G23G1-f3r189bB0",3,8,"189b"]], ["CHAR",["G2(3)","G23G1-f3r27aB0",3,5,"27b"]], ["CHAR",["G2(3)","G23G1-f3r27bB0",3,4,"27a"]], ["CHAR",["G2(3)","G23G1-f3r49B0",3,6,"49a"]], ["CHAR",["G2(3)","G23G1-f3r729B0",3,9,"729a"]], ["CHAR",["G2(3)","G23G1-f3r7aB0",3,2,"7a"]], ["CHAR",["G2(3)","G23G1-f3r7bB0",3,3,"7b"]], ["CHAR",["G2(3)","G23G1-f4r64aB0",2,3,"64a"]], ["CHAR",["G2(3).2","G23d2G1-Ar14B0",0,3]], ["CHAR",["G2(3).2","G23d2G1-f13r14B0",13,3]], ["CHAR",["G2(3).2","G23d2G1-f13r434aB0",13,21]], ["CHAR",["G2(3).2","G23d2G1-f2r14B0",2,2]], ["CHAR",["G2(3).2","G23d2G1-f3r14B0",3,3]], ["CHAR",["G2(3).2","G23d2G1-f7r14B0",7,3]], ["CHAR",["G2(3).2","G23d2G1-p756B0",0,[1,2,13,14,15,18]]], ["CHAR",["G2(4)","G24G1-Zr350B0",0,6,"350a"]], ["CHAR",["G2(4)","G24G1-Zr65B0",0,2,"65a"]], ["CHAR",["G2(4)","G24G1-Zr78B0",0,3,"78a"]], ["CHAR",["G2(4)","G24G1-f13r65B0",13,2,"65a"]], ["CHAR",["G2(4)","G24G1-f13r78B0",13,3,"78a"]], ["CHAR",["G2(4)","G24G1-f2r196B0",2,11,"196a"]], ["CHAR",["G2(4)","G24G1-f2r36B0",2,6,"36a"]], ["CHAR",["G2(4)","G24G1-f3r286B0",3,4,"286a"]], ["CHAR",["G2(4)","G24G1-f3r64B0",3,2,"64a"]], ["CHAR",["G2(4)","G24G1-f3r78B0",3,3,"78a"]], ["CHAR",["G2(4)","G24G1-f4r14aB0",2,4,"14a"]], ["CHAR",["G2(4)","G24G1-f4r14bB0",2,5,"14b"]], ["CHAR",["G2(4)","G24G1-f4r384aB0",2,12,"384a"]], ["CHAR",["G2(4)","G24G1-f4r64aB0",2,7,"64a"]], ["CHAR",["G2(4)","G24G1-f4r64bB0",2,8,"64b"]], ["CHAR",["G2(4)","G24G1-f4r6aB0",2,2,"6a"]], ["CHAR",["G2(4)","G24G1-f4r6bB0",2,3,"6b"]], ["CHAR",["G2(4)","G24G1-f4r84aB0",2,10,"84b"]], ["CHAR",["G2(4)","G24G1-f4r84bB0",2,9,"84a"]], ["CHAR",["G2(4)","G24G1-f4r896aB0",2,14,"896a"]], ["CHAR",["G2(4)","G24G1-f5r350B0",5,6,"350a"]], ["CHAR",["G2(4)","G24G1-f5r363aB0",5,7,"363a"]], ["CHAR",["G2(4)","G24G1-f5r650B0",5,10,"650a"]], ["CHAR",["G2(4)","G24G1-f5r65B0",5,2,"65a"]], ["CHAR",["G2(4)","G24G1-f5r78B0",5,3,"78a"]], ["CHAR",["G2(4)","G24G1-f7r65B0",7,2,"65a"]], ["CHAR",["G2(4)","G24G1-f7r78B0",7,3,"78a"]], ["CHAR",["G2(4)","G24G1-p1365aB0",0,[1,6,7,10],"1a+350a+364a+650a"]], ["CHAR",["G2(4)","G24G1-p1365bB0",0,[1,6,8,10],"1a+350a+364b+650a"]], ["CHAR",["G2(4)","G24G1-p2016B0",0,[1,10,16],"1a+650a+1365a"]], ["CHAR",["G2(4)","G24G1-p20800B0",0,[1,2,[6,2],7,8,15,16,19,28,29,32],"1a+65a+350a^2+364ab+1300a+1365a+2925c+4096a+4160a+5460a"]], ["CHAR",["G2(4)","G24G1-p2080B0",0,[1,6,8,16],"1a+350a+364b+1365a"]], ["CHAR",["G2(4)","G24G1-p416B0",0,[1,2,6],"1a+65a+350a"]], ["CHAR",["G2(4).2","G24d2G1-f13r65B0",13,4]], ["CHAR",["G2(4).2","G24d2G1-f2r128B0",2,5]], ["CHAR",["G2(4).2","G24d2G1-f2r12B0",2,2]], ["CHAR",["G2(4).2","G24d2G1-f2r168B0",2,6]], ["CHAR",["G2(4).2","G24d2G1-f2r196B0",2,7]], ["CHAR",["G2(4).2","G24d2G1-f2r28B0",2,3]], ["CHAR",["G2(4).2","G24d2G1-f2r36B0",2,4]], ["CHAR",["G2(4).2","G24d2G1-f2r768B0",2,8]], ["CHAR",["G2(4).2","G24d2G1-f3r64B0",3,3]], ["CHAR",["G2(4).2","G24d2G1-f5r65B0",5,4]], ["CHAR",["HN","HNG1-f11r133aB0",11,2,"133a"]], ["CHAR",["HN","HNG1-f11r133bB0",11,3,"133b"]], ["CHAR",["HN","HNG1-f11r760B0",11,4,"760a"]], ["CHAR",["HN","HNG1-f19r133aB0",19,2,"133a"]], ["CHAR",["HN","HNG1-f19r133bB0",19,3,"133b"]], ["CHAR",["HN","HNG1-f19r760B0",19,4,"760a"]], ["CHAR",["HN","HNG1-f2r760B0",2,4,"760a"]], ["CHAR",["HN","HNG1-f3r760B0",3,4,"760a"]], ["CHAR",["HN","HNG1-f49r133aB0",7,2,"133a"]], ["CHAR",["HN","HNG1-f49r133bB0",7,3,"133b"]], ["CHAR",["HN","HNG1-f4r132aB0",2,2,"132a"]], ["CHAR",["HN","HNG1-f4r132bB0",2,3,"132b"]], ["CHAR",["HN","HNG1-f4r133B0",2,[1,2],"1a+132a"]], ["CHAR",["HN","HNG1-f4r2650aB0",2,6,"2650b"]], ["CHAR",["HN","HNG1-f5r133B0",5,2,"133a"]], ["CHAR",["HN","HNG1-f5r626B0",5,3,"626a"]], ["CHAR",["HN","HNG1-f5r627B0",5,[1,3],"1a+626a"]], ["CHAR",["HN","HNG1-f7r760B0",7,4,"760a"]], ["CHAR",["HN","HNG1-f9r133aB0",3,2,"133a"]], ["CHAR",["HN","HNG1-f9r133bB0",3,3,"133b"]], ["CHAR",["HN","HNG1-p1140000B0",0,[1,2,3,4,5,8,10,11,12,18,20,23],"1a+133ab+760a+3344a+8910a+16929a+35112ab+267520a+365750a+406296a"]], ["CHAR",["HS","HSG1-Zr154aB0",0,4,"154a"]], ["CHAR",["HS","HSG1-Zr154bB0",0,5,"154b"]], ["CHAR",["HS","HSG1-Zr154cB0",0,6,"154c"]], ["CHAR",["HS","HSG1-Zr175B0",0,7,"175a"]], ["CHAR",["HS","HSG1-Zr22B0",0,2,"22a"]], ["CHAR",["HS","HSG1-Zr231B0",0,8,"231a"]], ["CHAR",["HS","HSG1-Zr77B0",0,3,"77a"]], ["CHAR",["HS","HSG1-f11r154aB0",11,4,"154a"]], ["CHAR",["HS","HSG1-f11r154bB0",11,5,"154b"]], ["CHAR",["HS","HSG1-f11r154cB0",11,6,"154c"]], ["CHAR",["HS","HSG1-f11r174B0",11,7,"174a"]], ["CHAR",["HS","HSG1-f11r22B0",11,2,"22a"]], ["CHAR",["HS","HSG1-f11r231B0",11,8,"231a"]], ["CHAR",["HS","HSG1-f11r693B0",11,9,"693a"]], ["CHAR",["HS","HSG1-f11r770aB0",11,10,"770a"]], ["CHAR",["HS","HSG1-f11r77B0",11,3,"77a"]], ["CHAR",["HS","HSG1-f11r825B0",11,13,"825a"]], ["CHAR",["HS","HSG1-f11r854B0",11,14,"854a"]], ["CHAR",["HS","HSG1-f11r896B0",11,15,"896a"]], ["CHAR",["HS","HSG1-f121r770bB0",11,11,"770b"]], ["CHAR",["HS","HSG1-f121r770cB0",11,12,"770c"]], ["CHAR",["HS","HSG1-f2r1000B0",2,8,"1000a"]], ["CHAR",["HS","HSG1-f2r132B0",2,4,"132a"]], ["CHAR",["HS","HSG1-f2r20B0",2,2,"20a"]], ["CHAR",["HS","HSG1-f2r518B0",2,5,"518a"]], ["CHAR",["HS","HSG1-f2r56B0",2,3,"56a"]], ["CHAR",["HS","HSG1-f3r154aB0",3,6,"154a"]], ["CHAR",["HS","HSG1-f3r154bB0",3,7,"154b"]], ["CHAR",["HS","HSG1-f3r154cB0",3,8,"154c"]], ["CHAR",["HS","HSG1-f3r22B0",3,2,"22a"]], ["CHAR",["HS","HSG1-f3r231B0",3,9,"231a"]], ["CHAR",["HS","HSG1-f3r321B0",3,10,"321a"]], ["CHAR",["HS","HSG1-f3r49aB0",3,3,"49a"]], ["CHAR",["HS","HSG1-f3r49bB0",3,4,"49b"]], ["CHAR",["HS","HSG1-f3r693B0",3,11,"693a"]], ["CHAR",["HS","HSG1-f3r748B0",3,12,"748a"]], ["CHAR",["HS","HSG1-f3r770aB0",3,13,"770a"]], ["CHAR",["HS","HSG1-f3r77B0",3,5,"77a"]], ["CHAR",["HS","HSG1-f3r825B0",3,15,"825a"]], ["CHAR",["HS","HSG1-f49r896aB0",7,15,"896a"]], ["CHAR",["HS","HSG1-f49r896bB0",7,16,"896b"]], ["CHAR",["HS","HSG1-f4r896aB0",2,6,"896a"]], ["CHAR",["HS","HSG1-f4r896bB0",2,7,"896b"]], ["CHAR",["HS","HSG1-f5r133aB0",5,5,"133a"]], ["CHAR",["HS","HSG1-f5r133bB0",5,6,"133b"]], ["CHAR",["HS","HSG1-f5r175B0",5,7,"175a"]], ["CHAR",["HS","HSG1-f5r210B0",5,8,"210a"]], ["CHAR",["HS","HSG1-f5r21B0",5,2,"21a"]], ["CHAR",["HS","HSG1-f5r280aB0",5,9,"280a"]], ["CHAR",["HS","HSG1-f5r518B0",5,11,"518a"]], ["CHAR",["HS","HSG1-f5r55B0",5,3,"55a"]], ["CHAR",["HS","HSG1-f5r650B0",5,12,"650a"]], ["CHAR",["HS","HSG1-f5r98B0",5,4,"98a"]], ["CHAR",["HS","HSG1-f7r154aB0",7,4,"154a"]], ["CHAR",["HS","HSG1-f7r154bB0",7,5,"154b"]], ["CHAR",["HS","HSG1-f7r154cB0",7,6,"154c"]], ["CHAR",["HS","HSG1-f7r175B0",7,7,"175a"]], ["CHAR",["HS","HSG1-f7r22B0",7,2,"22a"]], ["CHAR",["HS","HSG1-f7r231B0",7,8,"231a"]], ["CHAR",["HS","HSG1-f7r605B0",7,9,"605a"]], ["CHAR",["HS","HSG1-f7r693B0",7,10,"693a"]], ["CHAR",["HS","HSG1-f7r770aB0",7,11,"770a"]], ["CHAR",["HS","HSG1-f7r770bB0",7,12,"770b"]], ["CHAR",["HS","HSG1-f7r770cB0",7,13,"770c"]], ["CHAR",["HS","HSG1-f7r77B0",7,3,"77a"]], ["CHAR",["HS","HSG1-f7r803B0",7,14,"803a"]], ["CHAR",["HS","HSG1-p100B0",0,[1,2,3],"1a+22a+77a"]], ["CHAR",["HS","HSG1-p1100aB0",0,[1,2,3,7,13],"1a+22a+77a+175a+825a"]], ["CHAR",["HS","HSG1-p1100bB0",0,[1,3,4,7,9],"1a+77a+154a+175a+693a"]], ["CHAR",["HS","HSG1-p15400B0",0,[1,3,4,[7,3],[9,2],13,14,15,16,17,18,19,[22,2]],"1a+77a+154a+175a^3+693a^2+825a+896ab+1056a+1386a+1408a+1750a+2520a^2"]], ["CHAR",["HS","HSG1-p176bB0",0,[1,7],"1a+175a"]], ["CHAR",["HS","HSG1-p3850B0",0,[1,2,[3,2],4,7,9,10,13,16],"1a+22a+77a^2+154a+175a+693a+770a+825a+1056a"]], ["CHAR",["HS","HSG1-p4125B0",0,[1,2,3,4,7,9,10,13,18],"1a+22a+77a+154a+175a+693a+770a+825a+1408a"]], ["CHAR",["HS","HSG1-p5600aB0",0,[1,2,3,5,7,10,13,16,22],"1a+22a+77a+154b+175a+770a+825a+1056a+2520a"]], ["CHAR",["HS.2","HSd2G1-p100B0",0,[1,3,5]]], ["CHAR",["HS.2","HSd2G1-p1100bB0",0,[1,5,7,10,14]]], ["CHAR",["HS.2","HSd2G1-p352B0",0,[1,2,10,11]]], ["CHAR",["He","HeG1-Zr102B0",0,[2,3],"51ab"]], ["CHAR",["He","HeG1-f17r102B0",17,[2,3],"51ab"]], ["CHAR",["He","HeG1-f17r306B0",17,[4,5],"153ab"]], ["CHAR",["He","HeG1-f17r680B0",17,6,"680a"]], ["CHAR",["He","HeG1-f2r680B0",2,8,"680a"]], ["CHAR",["He","HeG1-f3r679B0",3,6,"679a"]], ["CHAR",["He","HeG1-f5r680B0",5,7,"680a"]], ["CHAR",["He","HeG1-f7r153B0",7,3,"153a"]], ["CHAR",["He","HeG1-f7r426B0",7,4,"426a"]], ["CHAR",["He","HeG1-f7r50B0",7,2,"50a"]], ["CHAR",["He","HeG1-f7r798B0",7,5,"798a"]], ["CHAR",["He","HeG1-p2058B0",0,[1,2,3,6,9],"1a+51ab+680a+1275a"]], ["CHAR",["He","HeG1-p244800B0",0,[1,4,5,12,13,14,[15,2],16,[19,2],[22,2],23,24,[26,2],[27,2],[28,2],29,30,31],"1a+153ab+1920a+4080a+4352a+6272a^2+6528a+7650a^2+10880a^2+11475ab+13720a^2+14400a^2+17493a^2+20825a+21504ab"]], ["CHAR",["He","HeG1-p29155B0",0,[1,2,3,6,[9,2],12,14,19,25],"1a+51ab+680a+1275a^2+1920a+4352a+7650a+11900a"]], ["CHAR",["He","HeG1-p8330B0",0,[1,2,3,6,9,12,14],"1a+51ab+680a+1275a+1920a+4352a"]], ["CHAR",["He.2","Hed2G1-p2058B0",0,[1,3,5,9]]], ["CHAR",["He.2","Hed2G1-p8330B0",0,[1,3,5,8,11,15]]], ["CHAR",["J1","J1G1-Zr112B0",0,[2,3],"56ab"]], ["CHAR",["J1","J1G1-Zr133aB0",0,12,"133a"]], ["CHAR",["J1","J1G1-Zr154aB0",0,[7,8],"77bc"]], ["CHAR",["J1","J1G1-Zr209B0",0,15,"209a"]], ["CHAR",["J1","J1G1-Zr266B0",0,[13,14],"133bc"]], ["CHAR",["J1","J1G1-Zr360B0",0,[9,10,11],"120abc"]], ["CHAR",["J1","J1G1-Zr76aB0",0,4,"76a"]], ["CHAR",["J1","J1G1-Zr76bB0",0,5,"76b"]], ["CHAR",["J1","J1G1-Zr77aB0",0,6,"77a"]], ["CHAR",["J1","J1G1-f11r106B0",11,12,"106a"]], ["CHAR",["J1","J1G1-f11r119B0",11,13,"119a"]], ["CHAR",["J1","J1G1-f11r14B0",11,3,"14a"]], ["CHAR",["J1","J1G1-f11r209B0",11,14,"209a"]], ["CHAR",["J1","J1G1-f11r27B0",11,4,"27a"]], ["CHAR",["J1","J1G1-f11r49B0",11,5,"49a"]], ["CHAR",["J1","J1G1-f11r56B0",11,6,"56a"]], ["CHAR",["J1","J1G1-f11r64B0",11,7,"64a"]], ["CHAR",["J1","J1G1-f11r69B0",11,8,"69a"]], ["CHAR",["J1","J1G1-f11r77aB0",11,9,"77a"]], ["CHAR",["J1","J1G1-f11r77bB0",11,10,"77b"]], ["CHAR",["J1","J1G1-f11r77cB0",11,11,"77c"]], ["CHAR",["J1","J1G1-f11r7B0",11,2,"7a"]], ["CHAR",["J1","J1G1-f125r120aB0",5,6,"120a"]], ["CHAR",["J1","J1G1-f125r120bB0",5,7,"120b"]], ["CHAR",["J1","J1G1-f125r120cB0",5,8,"120c"]], ["CHAR",["J1","J1G1-f19r133aB0",19,9,"133a"]], ["CHAR",["J1","J1G1-f19r133bB0",19,10,"133b"]], ["CHAR",["J1","J1G1-f19r133cB0",19,11,"133c"]], ["CHAR",["J1","J1G1-f19r209B0",19,12,"209a"]], ["CHAR",["J1","J1G1-f19r22B0",19,2,"22a"]], ["CHAR",["J1","J1G1-f19r34B0",19,3,"34a"]], ["CHAR",["J1","J1G1-f19r43B0",19,4,"43a"]], ["CHAR",["J1","J1G1-f19r55B0",19,5,"55a"]], ["CHAR",["J1","J1G1-f19r76aB0",19,6,"76a"]], ["CHAR",["J1","J1G1-f19r76bB0",19,7,"76b"]], ["CHAR",["J1","J1G1-f19r77B0",19,8,"77a"]], ["CHAR",["J1","J1G1-f27r120aB0",3,8,"120a"]], ["CHAR",["J1","J1G1-f27r120bB0",3,9,"120b"]], ["CHAR",["J1","J1G1-f27r120cB0",3,10,"120c"]], ["CHAR",["J1","J1G1-f2r112aB0",2,[3,4],"56ab"]], ["CHAR",["J1","J1G1-f2r112bB0",2,[5,6],"56cd"]], ["CHAR",["J1","J1G1-f2r20B0",2,2,"20a"]], ["CHAR",["J1","J1G1-f2r360B0",2,[9,10,11],"120abc"]], ["CHAR",["J1","J1G1-f2r76aB0",2,7,"76a"]], ["CHAR",["J1","J1G1-f2r76bB0",2,8,"76b"]], ["CHAR",["J1","J1G1-f3r112B0",3,[2,3],"56ab"]], ["CHAR",["J1","J1G1-f3r133B0",3,11,"133a"]], ["CHAR",["J1","J1G1-f3r154B0",3,[6,7],"77ab"]], ["CHAR",["J1","J1G1-f3r360B0",3,[8,9,10],"120abc"]], ["CHAR",["J1","J1G1-f3r76aB0",3,4,"76a"]], ["CHAR",["J1","J1G1-f3r76bB0",3,5,"76b"]], ["CHAR",["J1","J1G1-f49r133bB0",7,13,"133b"]], ["CHAR",["J1","J1G1-f49r133cB0",7,14,"133c"]], ["CHAR",["J1","J1G1-f49r56aB0",7,4,"56a"]], ["CHAR",["J1","J1G1-f49r56bB0",7,5,"56b"]], ["CHAR",["J1","J1G1-f49r77bB0",7,8,"77b"]], ["CHAR",["J1","J1G1-f49r77cB0",7,9,"77c"]], ["CHAR",["J1","J1G1-f4r56aB0",2,3,"56a"]], ["CHAR",["J1","J1G1-f4r56bB0",2,4,"56b"]], ["CHAR",["J1","J1G1-f4r56cB0",2,5,"56c"]], ["CHAR",["J1","J1G1-f4r56dB0",2,6,"56d"]], ["CHAR",["J1","J1G1-f5r133B0",5,9,"133a"]], ["CHAR",["J1","J1G1-f5r360B0",5,[6,7,8],"120abc"]], ["CHAR",["J1","J1G1-f5r56B0",5,2,"56a"]], ["CHAR",["J1","J1G1-f5r76aB0",5,3,"76a"]], ["CHAR",["J1","J1G1-f5r76bB0",5,4,"76b"]], ["CHAR",["J1","J1G1-f5r77B0",5,5,"77a"]], ["CHAR",["J1","J1G1-f7r112B0",7,[4,5],"56ab"]], ["CHAR",["J1","J1G1-f7r120B0",7,11,"120a"]], ["CHAR",["J1","J1G1-f7r133aB0",7,12,"133a"]], ["CHAR",["J1","J1G1-f7r154B0",7,[8,9],"77bc"]], ["CHAR",["J1","J1G1-f7r266B0",7,[13,14],"133bc"]], ["CHAR",["J1","J1G1-f7r31B0",7,2,"31a"]], ["CHAR",["J1","J1G1-f7r45B0",7,3,"45a"]], ["CHAR",["J1","J1G1-f7r75B0",7,6,"75a"]], ["CHAR",["J1","J1G1-f7r77aB0",7,7,"77a"]], ["CHAR",["J1","J1G1-f7r89B0",7,10,"89a"]], ["CHAR",["J1","J1G1-f8r120aB0",2,9,"120a"]], ["CHAR",["J1","J1G1-f8r120bB0",2,10,"120b"]], ["CHAR",["J1","J1G1-f8r120cB0",2,11,"120c"]], ["CHAR",["J1","J1G1-f9r56aB0",3,2,"56a"]], ["CHAR",["J1","J1G1-f9r56bB0",3,3,"56b"]], ["CHAR",["J1","J1G1-f9r77aB0",3,6,"77a"]], ["CHAR",["J1","J1G1-f9r77bB0",3,7,"77b"]], ["CHAR",["J1","J1G1-p1045B0",0,[1,2,3,4,7,8,9,10,11,12,15],"1a+56ab+76a+77bc+120abc+133a+209a"]], ["CHAR",["J1","J1G1-p1463B0",0,[1,2,3,[4,2],[6,2],9,10,11,[12,2],[15,2]],"1a+56ab+76a^2+77a^2+120abc+133a^2+209a^2"]], ["CHAR",["J1","J1G1-p1540B0",0,[1,2,3,[4,2],6,7,8,9,10,11,[12,2],[15,2]],"1a+56ab+76a^2+77abc+120abc+133a^2+209a^2"]], ["CHAR",["J1","J1G1-p1596B0",0,[1,2,3,4,5,[6,2],9,10,11,12,13,14,[15,2]],"1a+56ab+76ab+77a^2+120abc+133abc+209a^2"]], ["CHAR",["J1","J1G1-p266B0",0,[1,2,3,4,6],"1a+56ab+76a+77a"]], ["CHAR",["J1","J1G1-p2926B0",0,[1,2,3,[4,3],[6,3],[9,2],[10,2],[11,2],[12,4],13,14,[15,4]],"1a+56ab+76a^3+77a^3+120a^2b^2c^2+133a^4bc+209a^4"]], ["CHAR",["J1","J1G1-p4180B0",0,[1,[2,2],[3,2],[4,3],5,[6,2],[7,2],[8,2],[9,3],[10,3],[11,3],[12,4],[13,2],[14,2],[15,5]],"1a+56a^2b^2+76a^3b+77a^2b^2c^2+120a^3b^3c^3+133a^4b^2c^2+209a^5"]], ["CHAR",["J2","J2G1-Ar14aB0",0,2,"14a"]], ["CHAR",["J2","J2G1-Ar14bB0",0,3,"14b"]], ["CHAR",["J2","J2G1-Ar21aB0",0,4,"21a"]], ["CHAR",["J2","J2G1-Ar21bB0",0,5,"21b"]], ["CHAR",["J2","J2G1-Zr126B0",0,11,"126a"]], ["CHAR",["J2","J2G1-Zr140B0",0,[8,9],"70ab"]], ["CHAR",["J2","J2G1-Zr160B0",0,12,"160a"]], ["CHAR",["J2","J2G1-Zr175B0",0,13,"175a"]], ["CHAR",["J2","J2G1-Zr225B0",0,18,"225a"]], ["CHAR",["J2","J2G1-Zr28B0",0,[2,3],"14ab"]], ["CHAR",["J2","J2G1-Zr36B0",0,6,"36a"]], ["CHAR",["J2","J2G1-Zr378B0",0,[14,15],"189ab"]], ["CHAR",["J2","J2G1-Zr42B0",0,[4,5],"21ab"]], ["CHAR",["J2","J2G1-Zr448B0",0,[16,17],"224ab"]], ["CHAR",["J2","J2G1-Zr63B0",0,7,"63a"]], ["CHAR",["J2","J2G1-Zr90B0",0,10,"90a"]], ["CHAR",["J2","J2G1-f2r160B0",2,10,"160a"]], ["CHAR",["J2","J2G1-f2r36B0",2,6,"36a"]], ["CHAR",["J2","J2G1-f2r84B0",2,9,"84a"]], ["CHAR",["J2","J2G1-f3r133B0",3,11,"133a"]], ["CHAR",["J2","J2G1-f3r225B0",3,14,"225a"]], ["CHAR",["J2","J2G1-f3r36B0",3,6,"36a"]], ["CHAR",["J2","J2G1-f3r63B0",3,9,"63a"]], ["CHAR",["J2","J2G1-f3r90B0",3,10,"90a"]], ["CHAR",["J2","J2G1-f49r14aB0",7,2,"14a"]], ["CHAR",["J2","J2G1-f49r189aB0",7,15,"189a"]], ["CHAR",["J2","J2G1-f49r21aB0",7,4,"21a"]], ["CHAR",["J2","J2G1-f49r224bB0",7,19,"224b"]], ["CHAR",["J2","J2G1-f49r70aB0",7,8,"70a"]], ["CHAR",["J2","J2G1-f4r14aB0",2,4,"14a"]], ["CHAR",["J2","J2G1-f4r64aB0",2,7,"64a"]], ["CHAR",["J2","J2G1-f4r6aB0",2,2,"6a"]], ["CHAR",["J2","J2G1-f5r14B0",5,2,"14a"]], ["CHAR",["J2","J2G1-f5r175B0",5,8,"175a"]], ["CHAR",["J2","J2G1-f5r189B0",5,9,"189a"]], ["CHAR",["J2","J2G1-f5r21B0",5,3,"21a"]], ["CHAR",["J2","J2G1-f5r225B0",5,10,"225a"]], ["CHAR",["J2","J2G1-f5r300B0",5,11,"300a"]], ["CHAR",["J2","J2G1-f5r41B0",5,4,"41a"]], ["CHAR",["J2","J2G1-f5r70B0",5,5,"70a"]], ["CHAR",["J2","J2G1-f5r85B0",5,6,"85a"]], ["CHAR",["J2","J2G1-f5r90B0",5,7,"90a"]], ["CHAR",["J2","J2G1-f7r101B0",7,11,"101a"]], ["CHAR",["J2","J2G1-f7r124B0",7,12,"124a"]], ["CHAR",["J2","J2G1-f7r126B0",7,13,"126a"]], ["CHAR",["J2","J2G1-f7r175B0",7,14,"175a"]], ["CHAR",["J2","J2G1-f7r199B0",7,17,"199a"]], ["CHAR",["J2","J2G1-f7r336B0",7,20,"336a"]], ["CHAR",["J2","J2G1-f7r36B0",7,6,"36a"]], ["CHAR",["J2","J2G1-f7r63B0",7,7,"63a"]], ["CHAR",["J2","J2G1-f7r89B0",7,10,"89a"]], ["CHAR",["J2","J2G1-f9r13aB0",3,2,"13a"]], ["CHAR",["J2","J2G1-f9r189aB0",3,12,"189a"]], ["CHAR",["J2","J2G1-f9r21aB0",3,4,"21a"]], ["CHAR",["J2","J2G1-f9r57aB0",3,7,"57a"]], ["CHAR",["J2","J2G1-p1008B0",0,[1,2,3,[10,2],11,12,18,19],"1a+14ab+90a^2+126a+160a+225a+288a"]], ["CHAR",["J2","J2G1-p100B0",0,[1,6,7],"1a+36a+63a"]], ["CHAR",["J2","J2G1-p1800B0",0,[1,6,[7,2],10,[11,2],12,13,19,[21,2]],"1a+36a+63a^2+90a+126a^2+160a+175a+288a+336a^2"]], ["CHAR",["J2","J2G1-p280B0",0,[1,7,10,11],"1a+63a+90a+126a"]], ["CHAR",["J2","J2G1-p315B0",0,[1,2,3,6,10,12],"1a+14ab+36a+90a+160a"]], ["CHAR",["J2","J2G1-p525B0",0,[1,6,7,10,12,13],"1a+36a+63a+90a+160a+175a"]], ["CHAR",["J2","J2G1-p840B0",0,[1,7,10,11,12,13,18],"1a+63a+90a+126a+160a+175a+225a"]], ["CHAR",["J2.2","J2d2G1-f2r128B0",2,5]], ["CHAR",["J2.2","J2d2G1-f2r12B0",2,2]], ["CHAR",["J2.2","J2d2G1-f2r160B0",2,7]], ["CHAR",["J2.2","J2d2G1-f2r28B0",2,3]], ["CHAR",["J2.2","J2d2G1-f2r36B0",2,4]], ["CHAR",["J2.2","J2d2G1-f2r84B0",2,6]], ["CHAR",["J2.2","J2d2G1-f3r114B0",3,7]], ["CHAR",["J2.2","J2d2G1-f3r133aB0",3,12]], ["CHAR",["J2.2","J2d2G1-f3r225aB0",3,15]], ["CHAR",["J2.2","J2d2G1-f3r26B0",3,3]], ["CHAR",["J2.2","J2d2G1-f3r36aB0",3,5]], ["CHAR",["J2.2","J2d2G1-f3r378B0",3,14]], ["CHAR",["J2.2","J2d2G1-f3r42B0",3,4]], ["CHAR",["J2.2","J2d2G1-f3r63aB0",3,8]], ["CHAR",["J2.2","J2d2G1-f3r90aB0",3,10]], ["CHAR",["J2.2","J2d2G1-f49r336aB0",7,24]], ["CHAR",["J2.2","J2d2G1-f5r14aB0",5,3]], ["CHAR",["J2.2","J2d2G1-f5r175aB0",5,15]], ["CHAR",["J2.2","J2d2G1-f5r189aB0",5,17]], ["CHAR",["J2.2","J2d2G1-f5r21aB0",5,5]], ["CHAR",["J2.2","J2d2G1-f5r225aB0",5,19]], ["CHAR",["J2.2","J2d2G1-f5r300aB0",5,21]], ["CHAR",["J2.2","J2d2G1-f5r41aB0",5,7]], ["CHAR",["J2.2","J2d2G1-f5r70aB0",5,9]], ["CHAR",["J2.2","J2d2G1-f5r85aB0",5,11]], ["CHAR",["J2.2","J2d2G1-f5r90aB0",5,13]], ["CHAR",["J2.2","J2d2G1-f7r101aB0",7,12]], ["CHAR",["J2.2","J2d2G1-f7r124aB0",7,14]], ["CHAR",["J2.2","J2d2G1-f7r126aB0",7,16]], ["CHAR",["J2.2","J2d2G1-f7r140aB0",7,9]], ["CHAR",["J2.2","J2d2G1-f7r175aB0",7,18]], ["CHAR",["J2.2","J2d2G1-f7r199aB0",7,21]], ["CHAR",["J2.2","J2d2G1-f7r28B0",7,3]], ["CHAR",["J2.2","J2d2G1-f7r28aB0",7,3]], ["CHAR",["J2.2","J2d2G1-f7r36aB0",7,5]], ["CHAR",["J2.2","J2d2G1-f7r378aB0",7,20]], ["CHAR",["J2.2","J2d2G1-f7r42aB0",7,4]], ["CHAR",["J2.2","J2d2G1-f7r448aB0",7,23]], ["CHAR",["J2.2","J2d2G1-f7r63aB0",7,7]], ["CHAR",["J2.2","J2d2G1-f7r89aB0",7,10]], ["CHAR",["J2.2","J2d2G1-p100B0",0,[1,5,7]]], ["CHAR",["J3","J3G1-Zr170B0",0,[2,3],"85ab"]], ["CHAR",["J3","J3G1-f17r1292B0",17,[8,9],"646ab"]], ["CHAR",["J3","J3G1-f17r324B0",17,6,"324a"]], ["CHAR",["J3","J3G1-f17r379B0",17,7,"379a"]], ["CHAR",["J3","J3G1-f17r646cB0",17,[4,5],"323ab"]], ["CHAR",["J3","J3G1-f17r761B0",17,10,"761a"]], ["CHAR",["J3","J3G1-f17r816B0",17,11,"816a"]], ["CHAR",["J3","J3G1-f17r836B0",17,12,"836a"]], ["CHAR",["J3","J3G1-f17r85bB0",17,3,"85b"]], ["CHAR",["J3","J3G1-f19r1001B0",19,11,"1001a"]], ["CHAR",["J3","J3G1-f19r110B0",19,3,"110a"]], ["CHAR",["J3","J3G1-f19r214B0",19,4,"214a"]], ["CHAR",["J3","J3G1-f19r323aB0",19,5,"323a"]], ["CHAR",["J3","J3G1-f19r646aB0",19,7,"646a"]], ["CHAR",["J3","J3G1-f19r706B0",19,9,"706a"]], ["CHAR",["J3","J3G1-f19r85B0",19,2,"85a"]], ["CHAR",["J3","J3G1-f19r919B0",19,10,"919a"]], ["CHAR",["J3","J3G1-f2r244B0",2,7,"244a"]], ["CHAR",["J3","J3G1-f2r248B0",2,[4,5,6],"80a+84ab"]], ["CHAR",["J3","J3G1-f2r80B0",2,4,"80a"]], ["CHAR",["J3","J3G1-f2r966B0",2,10,"966a"]], ["CHAR",["J3","J3G1-f3r324B0",3,8,"324a"]], ["CHAR",["J3","J3G1-f3r934B0",3,9,"934a"]], ["CHAR",["J3","J3G1-f4r322aB0",2,8,"322a"]], ["CHAR",["J3","J3G1-f4r78bB0",2,3,"78b"]], ["CHAR",["J3","J3G1-f4r84aB0",2,5,"84a"]], ["CHAR",["J3","J3G1-f5r323B0",5,4,"323a"]], ["CHAR",["J3","J3G1-f5r646B0",5,5,"646a"]], ["CHAR",["J3","J3G1-f5r816B0",5,6,"816a"]], ["CHAR",["J3","J3G1-f5r85aB0",5,2,"85a"]], ["CHAR",["J3","J3G1-f9r153bB0",3,7,"153b"]], ["CHAR",["J3","J3G1-f9r18bB0",3,3,"18b"]], ["CHAR",["J3","J3G1-f9r84bB0",3,5,"84b"]], ["CHAR",["J3","J3G1-p14688aB0",0,[1,2,3,[10,2],11,12,13,14,15,16,19],"1a+85ab+1140a^2+1215ab+1615a+1920abc+2432a"]], ["CHAR",["J3","J3G1-p14688bB0",0,[1,2,3,[10,2],11,12,13,14,15,16,19],"1a+85ab+1140a^2+1215ab+1615a+1920abc+2432a"]], ["CHAR",["J3","J3G1-p17442B0",0,[1,4,5,6,[9,2],[10,2],11,12,13,14,15,16,20],"1a+323ab+324a+816a^2+1140a^2+1215ab+1615a+1920abc+2754a"]], ["CHAR",["J3","J3G1-p20520B0",0,[1,2,3,6,[10,2],[11,2],[12,2],13,14,15,16,19,21],"1a+85ab+324a+1140a^2+1215a^2b^2+1615a+1920abc+2432a+3078a"]], ["CHAR",["J3","J3G1-p23256B0",0,[1,4,5,6,[10,3],[11,2],[12,2],13,14,15,16,17,18,20],"1a+323ab+324a+1140a^3+1215a^2b^2+1615a+1920abc+1938ab+2754a"]], ["CHAR",["J3","J3G1-p25840B0",0,[1,6,10,[11,2],[12,2],13,14,15,16,17,18,19,20,21],"1a+324a+1140a+1215a^2b^2+1615a+1920abc+1938ab+2432a+2754a+3078a"]], ["CHAR",["J3","J3G1-p26163B0",0,[1,4,5,6,[10,2],[11,2],[12,2],[13,2],14,15,16,17,18,19,20],"1a+323ab+324a+1140a^2+1215a^2b^2+1615a^2+1920abc+1938ab+2432a+2754a"]], ["CHAR",["J3","J3G1-p43605B0",0,[1,4,5,[6,2],[9,2],[10,3],[11,2],[12,2],[13,2],[14,2],[15,2],[16,2],17,18,19,[20,3],21],"1a+323ab+324a^2+816a^2+1140a^3+1215a^2b^2+1615a^2+1920a^2b^2c^2+1938ab+2432a+2754a^3+3078a"]], ["CHAR",["J3","J3G1-p6156B0",0,[1,4,5,6,10,11,12,13],"1a+323ab+324a+1140a+1215ab+1615a"]], ["CHAR",["J3.2","J3d2G1-f17r170aB0",17,3]], ["CHAR",["J3.2","J3d2G1-f17r324aB0",17,5]], ["CHAR",["J3.2","J3d2G1-f17r379aB0",17,7]], ["CHAR",["J3.2","J3d2G1-f17r646aB0",17,4]], ["CHAR",["J3.2","J3d2G1-f17r836aB0",17,14]], ["CHAR",["J3.2","J3d2G1-f19r1001aB0",19,15]], ["CHAR",["J3.2","J3d2G1-f19r110aB0",19,5]], ["CHAR",["J3.2","J3d2G1-f19r1214aB0",19,19]], ["CHAR",["J3.2","J3d2G1-f19r214aB0",19,7]], ["CHAR",["J3.2","J3d2G1-f19r214bB0",19,8]], ["CHAR",["J3.2","J3d2G1-f19r646aB0",19,9]], ["CHAR",["J3.2","J3d2G1-f19r706aB0",19,11]], ["CHAR",["J3.2","J3d2G1-f19r85aB0",19,3]], ["CHAR",["J3.2","J3d2G1-f19r919aB0",19,13]], ["CHAR",["J3.2","J3d2G1-f2r168aB0",2,4]], ["CHAR",["J3.2","J3d2G1-f2r644aB0",2,6]], ["CHAR",["J3.2","J3d2G1-f3r168aB0",3,4]], ["CHAR",["J3.2","J3d2G1-f3r306aB0",3,5]], ["CHAR",["J3.2","J3d2G1-f3r324aB0",3,6]], ["CHAR",["J3.2","J3d2G1-f3r36B0",3,3]], ["CHAR",["J3.2","J3d2G1-f3r36aB0",3,3]], ["CHAR",["J3.2","J3d2G1-f3r934aB0",3,8]], ["CHAR",["J3.2","J3d2G1-f5r170aB0",5,3]], ["CHAR",["J3.2","J3d2G1-f5r323bB0",5,5]], ["CHAR",["J3.2","J3d2G1-f5r646aB0",5,6]], ["CHAR",["J3.2","J3d2G1-f5r816aB0",5,8]], ["CHAR",["J3.2","J3d2G1-p6156B0",0,[1,4,6,10,13,15,16]]], ["CHAR",["L2(101)","L2101G1-Zr101B0",0,27,"101a"]], ["CHAR",["L2(103)","L2103G1-Zr103B0",0,27,"103a"]], ["CHAR",["L2(107)","L2107G1-Zr107B0",0,28,"107a"]], ["CHAR",["L2(109)","L2109G1-Zr109B0",0,29,"109a"]], ["CHAR",["L2(11)","L211G1-Ar12aB0",0,7,"12a"]], ["CHAR",["L2(11)","L211G1-Ar12bB0",0,8,"12b"]], ["CHAR",["L2(11)","L211G1-Ar5aB0",0,2,"5a"]], ["CHAR",["L2(11)","L211G1-Ar5bB0",0,3,"5b"]], ["CHAR",["L2(11)","L211G1-Zr10aB0",0,4,"10a"]], ["CHAR",["L2(11)","L211G1-Zr10bB0",0,5,"10b"]], ["CHAR",["L2(11)","L211G1-Zr10cB0",0,[2,3],"5ab"]], ["CHAR",["L2(11)","L211G1-Zr11B0",0,6,"11a"]], ["CHAR",["L2(11)","L211G1-f11r11B0",11,6,"11a"]], ["CHAR",["L2(11)","L211G1-f11r3B0",11,2,"3a"]], ["CHAR",["L2(11)","L211G1-f11r5B0",11,3,"5a"]], ["CHAR",["L2(11)","L211G1-f11r7B0",11,4,"7a"]], ["CHAR",["L2(11)","L211G1-f11r9B0",11,5,"9a"]], ["CHAR",["L2(11)","L211G1-f2r10B0",2,4,"10a"]], ["CHAR",["L2(11)","L211G1-f2r10bB0",2,[2,3],"5ab"]], ["CHAR",["L2(11)","L211G1-f2r24B0",2,[5,6],"12ab"]], ["CHAR",["L2(11)","L211G1-f3r10B0",3,4,"10a"]], ["CHAR",["L2(11)","L211G1-f3r24B0",3,[5,6],"12ab"]], ["CHAR",["L2(11)","L211G1-f3r5aB0",3,2,"5a"]], ["CHAR",["L2(11)","L211G1-f3r5bB0",3,3,"5b"]], ["CHAR",["L2(11)","L211G1-f4r12aB0",2,5,"12a"]], ["CHAR",["L2(11)","L211G1-f4r12bB0",2,6,"12b"]], ["CHAR",["L2(11)","L211G1-f4r5aB0",2,2,"5a"]], ["CHAR",["L2(11)","L211G1-f4r5bB0",2,3,"5b"]], ["CHAR",["L2(11)","L211G1-f5r10aB0",5,4,"10a"]], ["CHAR",["L2(11)","L211G1-f5r10bB0",5,5,"10b"]], ["CHAR",["L2(11)","L211G1-f5r11B0",5,6,"11a"]], ["CHAR",["L2(11)","L211G1-f5r5aB0",5,2,"5a"]], ["CHAR",["L2(11)","L211G1-f5r5bB0",5,3,"5b"]], ["CHAR",["L2(11)","L211G1-f9r12aB0",3,5,"12a"]], ["CHAR",["L2(11)","L211G1-f9r12bB0",3,6,"12b"]], ["CHAR",["L2(11)","L211G1-p11aB0",0,[1,5],"1a+10b"]], ["CHAR",["L2(11)","L211G1-p11bB0",0,[1,5],"1a+10b"]], ["CHAR",["L2(11)","L211G1-p12B0",0,[1,6],"1a+11a"]], ["CHAR",["L2(11)","L211G1-p55B0",0,[1,2,3,[5,2],7,8],"1a+5ab+10b^2+12ab"]], ["CHAR",["L2(11).2","L211d2G1-f11r11B0",11,11]], ["CHAR",["L2(11).2","L211d2G1-f11r3B0",11,3]], ["CHAR",["L2(11).2","L211d2G1-f11r5B0",11,5]], ["CHAR",["L2(11).2","L211d2G1-f11r7B0",11,7]], ["CHAR",["L2(11).2","L211d2G1-f11r9B0",11,9]], ["CHAR",["L2(11).2","L211d2G1-f2r10aB0",2,2]], ["CHAR",["L2(11).2","L211d2G1-f2r10bB0",2,3]], ["CHAR",["L2(11).2","L211d2G1-f4r12aB0",2,4]], ["CHAR",["L2(11).2","L211d2G1-f4r12bB0",2,5]], ["CHAR",["L2(11).2","L211d2G1-p12B0",0,[1,8]]], ["CHAR",["L2(11).2","L211d2G1-p22B0",0,[1,2,6,7]]], ["CHAR",["L2(11).2","L211d2G1-p55aB0",0,[1,4,6,7,10,12]]], ["CHAR",["L2(11).2","L211d2G1-p55bB0",0,[1,3,6,7,10,12]]], ["CHAR",["L2(11).2","L211d2G1-p66B0",0,[1,3,6,7,8,10,12]]], ["CHAR",["L2(113)","L2113G1-Zr113B0",0,30,"113a"]], ["CHAR",["L2(13)","L213G1-Ar12aB0",0,4,"12a"]], ["CHAR",["L2(13)","L213G1-Ar12bB0",0,5,"12b"]], ["CHAR",["L2(13)","L213G1-Ar12cB0",0,6,"12c"]], ["CHAR",["L2(13)","L213G1-Zr13B0",0,7,"13a"]], ["CHAR",["L2(13)","L213G1-Zr14aB0",0,8,"14a"]], ["CHAR",["L2(13)","L213G1-Zr14bB0",0,9,"14b"]], ["CHAR",["L2(13)","L213G1-Zr14cB0",0,[2,3],"7ab"]], ["CHAR",["L2(13)","L213G1-Zr36B0",0,[4,5,6],"12abc"]], ["CHAR",["L2(13)","L213G1-f13r11B0",13,6,"11a"]], ["CHAR",["L2(13)","L213G1-f13r13B0",13,7,"13a"]], ["CHAR",["L2(13)","L213G1-f13r3B0",13,2,"3a"]], ["CHAR",["L2(13)","L213G1-f13r5B0",13,3,"5a"]], ["CHAR",["L2(13)","L213G1-f13r7B0",13,4,"7a"]], ["CHAR",["L2(13)","L213G1-f13r9B0",13,5,"9a"]], ["CHAR",["L2(13)","L213G1-f2r14B0",2,7,"14a"]], ["CHAR",["L2(13)","L213G1-f3r13B0",3,7,"13a"]], ["CHAR",["L2(13)","L213G1-f4r6aB0",2,3,"6b"]], ["CHAR",["L2(13)","L213G1-f4r6bB0",2,2,"6a"]], ["CHAR",["L2(13)","L213G1-f7r12B0",7,4,"12a"]], ["CHAR",["L2(13)","L213G1-f8r12aB0",2,4,"12a"]], ["CHAR",["L2(13)","L213G1-f8r12bB0",2,5,"12b"]], ["CHAR",["L2(13)","L213G1-f8r12cB0",2,6,"12c"]], ["CHAR",["L2(13)","L213G1-p14B0",0,[1,7],"1a+13a"]], ["CHAR",["L2(13).2","L213d2G1-f13r3aB0",13,3]], ["CHAR",["L2(13).2","L213d2G1-f2r12aB0",2,2]], ["CHAR",["L2(13).2","L213d2G1-f2r14B0",2,6]], ["CHAR",["L2(13).2","L213d2G1-p14B0",0,[1,11]]], ["CHAR",["L2(13).2","L213d2G1-p78B0",0,[1,4,6,8,10,12,13]]], ["CHAR",["L2(13).2","L213d2G1-p91aB0",0,[1,4,6,8,10,11,12,13]]], ["CHAR",["L2(16)","L216G1-Zr120B0",0,[2,3,4,5,6,7,8,9],"15abcdefgh"]], ["CHAR",["L2(16)","L216G1-Zr16B0",0,10,"16a"]], ["CHAR",["L2(16)","L216G1-Zr17aB0",0,11,"17a"]], ["CHAR",["L2(16)","L216G1-Zr34B0",0,[12,13],"17bc"]], ["CHAR",["L2(16)","L216G1-Zr68B0",0,[14,15,16,17],"17defg"]], ["CHAR",["L2(16)","L216G1-f16r2aB0",2,2,"2a"]], ["CHAR",["L2(16)","L216G1-f17r15B0",17,2,"15a"]], ["CHAR",["L2(16)","L216G1-f17r17B0",17,3,"17a"]], ["CHAR",["L2(16)","L216G1-f17r34B0",17,[4,5],"17bc"]], ["CHAR",["L2(16)","L216G1-f17r68B0",17,[6,7,8,9],"17defg"]], ["CHAR",["L2(16)","L216G1-f3r16B0",3,10,"16a"]], ["CHAR",["L2(16)","L216G1-f5r16B0",5,10,"16a"]], ["CHAR",["L2(16)","L216G1-f9r17aB0",3,11,"17a"]], ["CHAR",["L2(16)","L216G1-f9r17bB0",3,12,"17b"]], ["CHAR",["L2(16)","L216G1-p17B0",0,[1,10],"1a+16a"]], ["CHAR",["L2(16).2","L216d2G1-f4r4aB0",2,2]], ["CHAR",["L2(16).4","L216d4G1-f17r15aB0",17,5]], ["CHAR",["L2(16).4","L216d4G1-f17r17aB0",17,9]], ["CHAR",["L2(16).4","L216d4G1-f17r34aB0",17,13]], ["CHAR",["L2(16).4","L216d4G1-f17r68B0",17,15]], ["CHAR",["L2(16).4","L216d4G1-f25r60aB0",5,5]], ["CHAR",["L2(16).4","L216d4G1-f25r60bB0",5,6]], ["CHAR",["L2(16).4","L216d4G1-f2r16aB0",2,4]], ["CHAR",["L2(16).4","L216d4G1-f2r16bB0",2,6]], ["CHAR",["L2(16).4","L216d4G1-f2r32B0",2,5]], ["CHAR",["L2(16).4","L216d4G1-f2r8aB0",2,2]], ["CHAR",["L2(16).4","L216d4G1-f2r8bB0",2,3]], ["CHAR",["L2(16).4","L216d4G1-f3r16aB0",3,7]], ["CHAR",["L2(16).4","L216d4G1-f5r16aB0",5,7]], ["CHAR",["L2(16).4","L216d4G1-f5r17aB0",5,11]], ["CHAR",["L2(16).4","L216d4G1-f9r60aB0",3,5]], ["CHAR",["L2(16).4","L216d4G1-f9r60bB0",3,6]], ["CHAR",["L2(17)","L217G1-Ar9aB0",0,2,"9a"]], ["CHAR",["L2(17)","L217G1-Ar9bB0",0,3,"9b"]], ["CHAR",["L2(17)","L217G1-Zr16aB0",0,4,"16a"]], ["CHAR",["L2(17)","L217G1-Zr17B0",0,8,"17a"]], ["CHAR",["L2(17)","L217G1-Zr18aB0",0,9,"18a"]], ["CHAR",["L2(17)","L217G1-Zr18dB0",0,[2,3],"9ab"]], ["CHAR",["L2(17)","L217G1-Zr48B0",0,[5,6,7],"16bcd"]], ["CHAR",["L2(17)","L217G1-f17r11B0",17,6,"11a"]], ["CHAR",["L2(17)","L217G1-f17r13B0",17,7,"13a"]], ["CHAR",["L2(17)","L217G1-f17r15B0",17,8,"15a"]], ["CHAR",["L2(17)","L217G1-f17r17B0",17,9,"17a"]], ["CHAR",["L2(17)","L217G1-f17r3B0",17,2,"3a"]], ["CHAR",["L2(17)","L217G1-f17r5B0",17,3,"5a"]], ["CHAR",["L2(17)","L217G1-f17r7B0",17,4,"7a"]], ["CHAR",["L2(17)","L217G1-f17r9B0",17,5,"9a"]], ["CHAR",["L2(17)","L217G1-f2r16aB0",2,4,"16a"]], ["CHAR",["L2(17)","L217G1-f2r48B0",2,[5,6,7],"16bcd"]], ["CHAR",["L2(17)","L217G1-f2r8aB0",2,2,"8a"]], ["CHAR",["L2(17)","L217G1-f2r8bB0",2,3,"8b"]], ["CHAR",["L2(17)","L217G1-f3r16B0",3,4,"16a"]], ["CHAR",["L2(17)","L217G1-f3r18aB0",3,5,"18a"]], ["CHAR",["L2(17)","L217G1-f8r16bB0",2,5,"16b"]], ["CHAR",["L2(17)","L217G1-f8r16cB0",2,6,"16c"]], ["CHAR",["L2(17)","L217G1-f8r16dB0",2,7,"16d"]], ["CHAR",["L2(17)","L217G1-f9r18bB0",3,6,"18b"]], ["CHAR",["L2(17)","L217G1-f9r18cB0",3,7,"18c"]], ["CHAR",["L2(17)","L217G1-f9r9aB0",3,2,"9a"]], ["CHAR",["L2(17)","L217G1-f9r9bB0",3,3,"9b"]], ["CHAR",["L2(17)","L217G1-p18B0",0,[1,8],"1a+17a"]], ["CHAR",["L2(19)","L219G1-Zr18eB0",0,[2,3],"9ab"]], ["CHAR",["L2(19)","L219G1-Zr19B0",0,8,"19a"]], ["CHAR",["L2(19)","L219G1-Zr20aB0",0,9,"20a"]], ["CHAR",["L2(19)","L219G1-Zr36aB0",0,[4,5],"18ab"]], ["CHAR",["L2(19)","L219G1-f125r20bB0",5,6,"20b"]], ["CHAR",["L2(19)","L219G1-f125r20cB0",5,7,"20c"]], ["CHAR",["L2(19)","L219G1-f125r20dB0",5,8,"20d"]], ["CHAR",["L2(19)","L219G1-f19r11B0",19,6,"11a"]], ["CHAR",["L2(19)","L219G1-f19r13B0",19,7,"13a"]], ["CHAR",["L2(19)","L219G1-f19r15B0",19,8,"15a"]], ["CHAR",["L2(19)","L219G1-f19r17B0",19,9,"17a"]], ["CHAR",["L2(19)","L219G1-f19r19B0",19,10,"19a"]], ["CHAR",["L2(19)","L219G1-f19r3B0",19,2,"3a"]], ["CHAR",["L2(19)","L219G1-f19r5B0",19,3,"5a"]], ["CHAR",["L2(19)","L219G1-f19r7B0",19,4,"7a"]], ["CHAR",["L2(19)","L219G1-f19r9B0",19,5,"9a"]], ["CHAR",["L2(19)","L219G1-f2r20aB0",2,6,"20a"]], ["CHAR",["L2(19)","L219G1-f3r19B0",3,8,"19a"]], ["CHAR",["L2(19)","L219G1-f4r18aB0",2,4,"18a"]], ["CHAR",["L2(19)","L219G1-f4r18bB0",2,5,"18b"]], ["CHAR",["L2(19)","L219G1-f4r9aB0",2,2,"9a"]], ["CHAR",["L2(19)","L219G1-f4r9bB0",2,3,"9b"]], ["CHAR",["L2(19)","L219G1-f5r18B0",5,4,"18a"]], ["CHAR",["L2(19)","L219G1-f5r20aB0",5,5,"20a"]], ["CHAR",["L2(19)","L219G1-f5r9aB0",5,2,"9a"]], ["CHAR",["L2(19)","L219G1-f5r9bB0",5,3,"9b"]], ["CHAR",["L2(19)","L219G1-f8r20bB0",2,7,"20b"]], ["CHAR",["L2(19)","L219G1-f8r20cB0",2,8,"20c"]], ["CHAR",["L2(19)","L219G1-f8r20dB0",2,9,"20d"]], ["CHAR",["L2(19)","L219G1-f9r18aB0",3,4,"18a"]], ["CHAR",["L2(19)","L219G1-f9r18bB0",3,5,"18b"]], ["CHAR",["L2(19)","L219G1-f9r18cB0",3,6,"18c"]], ["CHAR",["L2(19)","L219G1-f9r18dB0",3,7,"18d"]], ["CHAR",["L2(19)","L219G1-f9r9aB0",3,2,"9a"]], ["CHAR",["L2(19)","L219G1-f9r9bB0",3,3,"9b"]], ["CHAR",["L2(19)","L219G1-p171B0",0,[1,2,3,[6,2],[7,2],9,10,11,12],"1a+9ab+18c^2d^2+20abcd"]], ["CHAR",["L2(19)","L219G1-p190B0",0,[1,2,3,[6,2],[7,2],8,9,10,11,12],"1a+9ab+18c^2d^2+19a+20abcd"]], ["CHAR",["L2(19)","L219G1-p20B0",0,[1,8],"1a+19a"]], ["CHAR",["L2(19)","L219G1-p57aB0",0,[1,6,7,9],"1a+18cd+20a"]], ["CHAR",["L2(19)","L219G1-p57bB0",0,[1,6,7,9],"1a+18cd+20a"]], ["CHAR",["L2(19).2","L219d2G1-f19r3B0",19,3]], ["CHAR",["L2(19).2","L219d2G1-p114B0",0,[1,2,8,9,10,11,14,15]]], ["CHAR",["L2(19).2","L219d2G1-p171B0",0,[1,3,8,9,10,11,14,16,18,20]]], ["CHAR",["L2(19).2","L219d2G1-p190B0",0,[1,3,8,9,10,11,12,14,16,18,20]]], ["CHAR",["L2(19).2","L219d2G1-p20B0",0,[1,12]]], ["CHAR",["L2(19).2","L219d2G1-p285B0",0,[1,3,4,6,8,9,10,11,12,13,[14,2],15,16,18,20]]], ["CHAR",["L2(23)","L223G1-Ar24aB0",0,10,"24a"]], ["CHAR",["L2(23)","L223G1-Ar24bB0",0,11,"24b"]], ["CHAR",["L2(23)","L223G1-Ar24cB0",0,12,"24c"]], ["CHAR",["L2(23)","L223G1-Ar24dB0",0,13,"24d"]], ["CHAR",["L2(23)","L223G1-Ar24eB0",0,14,"24e"]], ["CHAR",["L2(23)","L223G1-Zr22aB0",0,4,"22a"]], ["CHAR",["L2(23)","L223G1-Zr22bB0",0,5,"22b"]], ["CHAR",["L2(23)","L223G1-Zr22cB0",0,6,"22c"]], ["CHAR",["L2(23)","L223G1-Zr23B0",0,9,"23a"]], ["CHAR",["L2(23)","L223G1-f11r23B0",11,9,"23a"]], ["CHAR",["L2(23)","L223G1-f23r11B0",23,6,"11a"]], ["CHAR",["L2(23)","L223G1-f23r13B0",23,7,"13a"]], ["CHAR",["L2(23)","L223G1-f23r15B0",23,8,"15a"]], ["CHAR",["L2(23)","L223G1-f23r17B0",23,9,"17a"]], ["CHAR",["L2(23)","L223G1-f23r19B0",23,10,"19a"]], ["CHAR",["L2(23)","L223G1-f23r21B0",23,11,"21a"]], ["CHAR",["L2(23)","L223G1-f23r23B0",23,12,"23a"]], ["CHAR",["L2(23)","L223G1-f23r3B0",23,2,"3a"]], ["CHAR",["L2(23)","L223G1-f23r5B0",23,3,"5a"]], ["CHAR",["L2(23)","L223G1-f23r7B0",23,4,"7a"]], ["CHAR",["L2(23)","L223G1-f23r9B0",23,5,"9a"]], ["CHAR",["L2(23)","L223G1-f2r11aB0",2,2,"11a"]], ["CHAR",["L2(23)","L223G1-f2r11bB0",2,3,"11b"]], ["CHAR",["L2(23)","L223G1-f2r22B0",2,4,"22a"]], ["CHAR",["L2(23)","L223G1-f32r24aB0",2,5,"24a"]], ["CHAR",["L2(23)","L223G1-f32r24bB0",2,6,"24b"]], ["CHAR",["L2(23)","L223G1-f32r24cB0",2,7,"24c"]], ["CHAR",["L2(23)","L223G1-f32r24dB0",2,8,"24d"]], ["CHAR",["L2(23)","L223G1-f32r24eB0",2,9,"24e"]], ["CHAR",["L2(23)","L223G1-f3r22aB0",3,4,"22a"]], ["CHAR",["L2(23)","L223G1-p24B0",0,[1,9],"1a+23a"]], ["CHAR",["L2(23).2","L223d2G1-f23r3aB0",23,3]], ["CHAR",["L2(23).2","L223d2G1-f2r22aB0",2,2]], ["CHAR",["L2(27)","L227G1-Ar13aB0",0,2,"13a"]], ["CHAR",["L2(27)","L227G1-Ar13bB0",0,3,"13b"]], ["CHAR",["L2(27)","L227G1-Ar28aB0",0,11,"28a"]], ["CHAR",["L2(27)","L227G1-Ar28bB0",0,12,"28b"]], ["CHAR",["L2(27)","L227G1-Ar28cB0",0,13,"28c"]], ["CHAR",["L2(27)","L227G1-Ar28dB0",0,14,"28d"]], ["CHAR",["L2(27)","L227G1-Ar28eB0",0,15,"28e"]], ["CHAR",["L2(27)","L227G1-Ar28fB0",0,16,"28f"]], ["CHAR",["L2(27)","L227G1-Zr26gB0",0,[2,3],"13ab"]], ["CHAR",["L2(27)","L227G1-Zr27B0",0,10,"27a"]], ["CHAR",["L2(27)","L227G1-Zr78aB0",0,[4,5,6],"26abc"]], ["CHAR",["L2(27)","L227G1-f13r27B0",13,10,"27a"]], ["CHAR",["L2(27)","L227G1-f27r3aB0",3,2,"3a"]], ["CHAR",["L2(27)","L227G1-f3r27B0",3,14,"27a"]], ["CHAR",["L2(27)","L227G1-f4r13aB0",2,2,"13a"]], ["CHAR",["L2(27)","L227G1-f4r13bB0",2,3,"13b"]], ["CHAR",["L2(27)","L227G1-f7r26B0",7,4,"26a"]], ["CHAR",["L2(27)","L227G1-p28B0",0,[1,10],"1a+27a"]], ["CHAR",["L2(29)","L229G1-Ar30aB0",0,12,"30a"]], ["CHAR",["L2(29)","L229G1-Ar30bB0",0,13,"30b"]], ["CHAR",["L2(29)","L229G1-Ar30cB0",0,14,"30c"]], ["CHAR",["L2(29)","L229G1-Ar30dB0",0,15,"30d"]], ["CHAR",["L2(29)","L229G1-Ar30eB0",0,16,"30e"]], ["CHAR",["L2(29)","L229G1-Ar30fB0",0,17,"30f"]], ["CHAR",["L2(29)","L229G1-Zr112B0",0,[7,8,9,10],"28defg"]], ["CHAR",["L2(29)","L229G1-Zr28aB0",0,4,"28a"]], ["CHAR",["L2(29)","L229G1-Zr29B0",0,11,"29a"]], ["CHAR",["L2(29)","L229G1-Zr30gB0",0,[2,3],"15ab"]], ["CHAR",["L2(29)","L229G1-Zr56B0",0,[5,6],"28bc"]], ["CHAR",["L2(29)","L229G1-f29r11B0",29,6,"11a"]], ["CHAR",["L2(29)","L229G1-f29r13B0",29,7,"13a"]], ["CHAR",["L2(29)","L229G1-f29r15B0",29,8,"15a"]], ["CHAR",["L2(29)","L229G1-f29r17B0",29,9,"17a"]], ["CHAR",["L2(29)","L229G1-f29r19B0",29,10,"19a"]], ["CHAR",["L2(29)","L229G1-f29r21B0",29,11,"21a"]], ["CHAR",["L2(29)","L229G1-f29r23B0",29,12,"23a"]], ["CHAR",["L2(29)","L229G1-f29r25B0",29,13,"25a"]], ["CHAR",["L2(29)","L229G1-f29r27B0",29,14,"27a"]], ["CHAR",["L2(29)","L229G1-f29r29B0",29,15,"29a"]], ["CHAR",["L2(29)","L229G1-f29r3B0",29,2,"3a"]], ["CHAR",["L2(29)","L229G1-f29r5B0",29,3,"5a"]], ["CHAR",["L2(29)","L229G1-f29r7B0",29,4,"7a"]], ["CHAR",["L2(29)","L229G1-f29r9B0",29,5,"9a"]], ["CHAR",["L2(29)","L229G1-f3r28aB0",3,4,"28a"]], ["CHAR",["L2(29)","L229G1-f4r14aB0",2,2,"14a"]], ["CHAR",["L2(29)","L229G1-f4r14bB0",2,3,"14b"]], ["CHAR",["L2(29)","L229G1-f5r28bB0",5,5,"28b"]], ["CHAR",["L2(29)","L229G1-f7r29B0",7,11,"29a"]], ["CHAR",["L2(29)","L229G1-p30B0",0,[1,11],"1a+29a"]], ["CHAR",["L2(31)","L231G1-Ar32aB0",0,16,"32e"]], ["CHAR",["L2(31)","L231G1-Ar32bB0",0,13,"32b"]], ["CHAR",["L2(31)","L231G1-Ar32cB0",0,14,"32c"]], ["CHAR",["L2(31)","L231G1-Ar32dB0",0,15,"32d"]], ["CHAR",["L2(31)","L231G1-Ar32eB0",0,16,"32e"]], ["CHAR",["L2(31)","L231G1-Ar32fB0",0,17,"32f"]], ["CHAR",["L2(31)","L231G1-Ar32gB0",0,18,"32g"]], ["CHAR",["L2(31)","L231G1-Zr120B0",0,[7,8,9,10],"30defg"]], ["CHAR",["L2(31)","L231G1-Zr30aB0",0,4,"30a"]], ["CHAR",["L2(31)","L231G1-Zr30hB0",0,[2,3],"15ab"]], ["CHAR",["L2(31)","L231G1-Zr31B0",0,11,"31a"]], ["CHAR",["L2(31)","L231G1-Zr32aB0",0,12,"32a"]], ["CHAR",["L2(31)","L231G1-Zr60B0",0,[5,6],"30bc"]], ["CHAR",["L2(31)","L231G1-f16r32dB0",2,7,"32d"]], ["CHAR",["L2(31)","L231G1-f16r32eB0",2,8,"32e"]], ["CHAR",["L2(31)","L231G1-f16r32fB0",2,9,"32f"]], ["CHAR",["L2(31)","L231G1-f16r32gB0",2,10,"32g"]], ["CHAR",["L2(31)","L231G1-f2r15aB0",2,2,"15a"]], ["CHAR",["L2(31)","L231G1-f2r15bB0",2,3,"15b"]], ["CHAR",["L2(31)","L231G1-f2r32B0",2,4,"32a"]], ["CHAR",["L2(31)","L231G1-f31r31B0",31,16,"31a"]], ["CHAR",["L2(31)","L231G1-f31r3B0",31,2,"3a"]], ["CHAR",["L2(31)","L231G1-f3r31B0",3,11,"31a"]], ["CHAR",["L2(31)","L231G1-f4r32bB0",2,5,"32b"]], ["CHAR",["L2(31)","L231G1-f4r32cB0",2,6,"32c"]], ["CHAR",["L2(31)","L231G1-f5r31B0",5,11,"31a"]], ["CHAR",["L2(31)","L231G1-p32B0",0,[1,11],"1a+31a"]], ["CHAR",["L2(32)","L232G1-Ar33aB0",0,19,"33a"]], ["CHAR",["L2(32)","L232G1-Ar33bB0",0,20,"33b"]], ["CHAR",["L2(32)","L232G1-Ar33cB0",0,21,"33c"]], ["CHAR",["L2(32)","L232G1-Ar33dB0",0,22,"33d"]], ["CHAR",["L2(32)","L232G1-Ar33eB0",0,23,"33e"]], ["CHAR",["L2(32)","L232G1-Ar33fB0",0,24,"33f"]], ["CHAR",["L2(32)","L232G1-Ar33gB0",0,25,"33g"]], ["CHAR",["L2(32)","L232G1-Ar33hB0",0,26,"33h"]], ["CHAR",["L2(32)","L232G1-Ar33iB0",0,27,"33i"]], ["CHAR",["L2(32)","L232G1-Ar33jB0",0,28,"33j"]], ["CHAR",["L2(32)","L232G1-Ar33kB0",0,29,"33k"]], ["CHAR",["L2(32)","L232G1-Ar33lB0",0,30,"33l"]], ["CHAR",["L2(32)","L232G1-Ar33mB0",0,31,"33m"]], ["CHAR",["L2(32)","L232G1-Ar33nB0",0,32,"33n"]], ["CHAR",["L2(32)","L232G1-Ar33oB0",0,33,"33o"]], ["CHAR",["L2(32)","L232G1-Zr155B0",0,[3,4,5,6,7],"31bcdef"]], ["CHAR",["L2(32)","L232G1-Zr310B0",0,[8,9,10,11,12,13,14,15,16,17],"31ghijklmnop"]], ["CHAR",["L2(32)","L232G1-Zr31aB0",0,2,"31a"]], ["CHAR",["L2(32)","L232G1-Zr32B0",0,18,"32a"]], ["CHAR",["L2(32)","L232G1-f11r31bB0",11,3,"31b"]], ["CHAR",["L2(32)","L232G1-f31r32B0",31,18,"32a"]], ["CHAR",["L2(32)","L232G1-f32r2aB0",2,2,"2a"]], ["CHAR",["L2(32)","L232G1-f3r31aB0",3,2,"31a"]], ["CHAR",["L2(32)","L232G1-p33B0",0,[1,18],"1a+32a"]], ["CHAR",["L2(32)","L232G1-p496B0",0,[1,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33],"1a+33abcdefghijklmno"]], ["CHAR",["L2(32)","L232G1-p528B0",0,[1,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33],"1a+32a+33abcdefghijklmno"]], ["CHAR",["L2(32).5","L232d5G1-f2r10B0",2,6]], ["CHAR",["L2(32).5","L232d5G1-f2r20aB0",2,7]], ["CHAR",["L2(32).5","L232d5G1-f2r20bB0",2,8]], ["CHAR",["L2(32).5","L232d5G1-f2r32B0",2,12]], ["CHAR",["L2(32).5","L232d5G1-f2r40aB0",2,9]], ["CHAR",["L2(32).5","L232d5G1-f2r40bB0",2,10]], ["CHAR",["L2(32).5","L232d5G1-f2r80B0",2,11]], ["CHAR",["L2(32).5","L232d5G1-p33B0",0,[1,14]]], ["CHAR",["L2(32).5","L232d5G1-p496B0",0,[1,19,20,21]]], ["CHAR",["L2(32).5","L232d5G1-p528B0",0,[1,14,19,20,21]]], ["CHAR",["L2(37)","L237G1-Zr37B0",0,11,"37a"]], ["CHAR",["L2(41)","L241G1-Zr41B0",0,12,"41a"]], ["CHAR",["L2(43)","L243G1-Zr43B0",0,12,"43a"]], ["CHAR",["L2(47)","L247G1-Zr47B0",0,13,"47a"]], ["CHAR",["L2(49)","L249G1-f7r4B0",7,4,"4a"]], ["CHAR",["L2(53)","L253G1-Zr53B0",0,15,"53a"]], ["CHAR",["L2(59)","L259G1-Zr59B0",0,16,"59a"]], ["CHAR",["L2(61)","L261G1-Zr61B0",0,17,"61a"]], ["CHAR",["L2(64)","L264G1-Zr64B0",0,34,"64a"]], ["CHAR",["L2(67)","L267G1-Zr67B0",0,18,"67a"]], ["CHAR",["L2(71)","L271G1-Zr71B0",0,19,"71a"]], ["CHAR",["L2(73)","L273G1-Zr73B0",0,20,"73a"]], ["CHAR",["L2(79)","L279G1-Zr79B0",0,21,"79a"]], ["CHAR",["L2(8)","L28G1-Ar7bB0",0,3,"7b"]], ["CHAR",["L2(8)","L28G1-Ar7cB0",0,4,"7c"]], ["CHAR",["L2(8)","L28G1-Ar7dB0",0,5,"7d"]], ["CHAR",["L2(8)","L28G1-Ar9aB0",0,7,"9a"]], ["CHAR",["L2(8)","L28G1-Ar9bB0",0,8,"9b"]], ["CHAR",["L2(8)","L28G1-Ar9cB0",0,9,"9c"]], ["CHAR",["L2(8)","L28G1-Zr27B0",0,[7,8,9],"9abc"]], ["CHAR",["L2(8)","L28G1-Zr7aB0",0,2,"7a"]], ["CHAR",["L2(8)","L28G1-Zr8B0",0,6,"8a"]], ["CHAR",["L2(8)","L28G1-f27r9aB0",3,3,"9a"]], ["CHAR",["L2(8)","L28G1-f27r9bB0",3,4,"9b"]], ["CHAR",["L2(8)","L28G1-f27r9cB0",3,5,"9c"]], ["CHAR",["L2(8)","L28G1-f2r12B0",2,[5,6,7],"4abc"]], ["CHAR",["L2(8)","L28G1-f2r6B0",2,[2,3,4],"2abc"]], ["CHAR",["L2(8)","L28G1-f2r8B0",2,8,"8a"]], ["CHAR",["L2(8)","L28G1-f3r27B0",3,[3,4,5],"9abc"]], ["CHAR",["L2(8)","L28G1-f3r7B0",3,2,"7a"]], ["CHAR",["L2(8)","L28G1-f7r21B0",7,[3,4,5],"7bcd"]], ["CHAR",["L2(8)","L28G1-f7r7aB0",7,2,"7a"]], ["CHAR",["L2(8)","L28G1-f7r8B0",7,6,"8a"]], ["CHAR",["L2(8)","L28G1-f8r2aB0",2,2,"2a"]], ["CHAR",["L2(8)","L28G1-f8r2bB0",2,3,"2b"]], ["CHAR",["L2(8)","L28G1-f8r2cB0",2,4,"2c"]], ["CHAR",["L2(8)","L28G1-f8r4aB0",2,5,"4a"]], ["CHAR",["L2(8)","L28G1-f8r4bB0",2,6,"4b"]], ["CHAR",["L2(8)","L28G1-f8r4cB0",2,7,"4c"]], ["CHAR",["L2(8)","L28G1-p28B0",0,[1,7,8,9],"1a+9abc"]], ["CHAR",["L2(8)","L28G1-p36B0",0,[1,6,7,8,9],"1a+8a+9abc"]], ["CHAR",["L2(8)","L28G1-p9B0",0,[1,6],"1a+8a"]], ["CHAR",["L2(8).3","L28d3G1-Zr21B0",0,7]], ["CHAR",["L2(8).3","L28d3G1-Zr27B0",0,11]], ["CHAR",["L2(8).3","L28d3G1-Zr7B0",0,4]], ["CHAR",["L2(8).3","L28d3G1-Zr8B0",0,8]], ["CHAR",["L2(8).3","L28d3G1-f2r12B0",2,5]], ["CHAR",["L2(8).3","L28d3G1-f2r6B0",2,4]], ["CHAR",["L2(8).3","L28d3G1-f2r8B0",2,6]], ["CHAR",["L2(8).3","L28d3G1-f3r27B0",3,3]], ["CHAR",["L2(8).3","L28d3G1-f3r7B0",3,2]], ["CHAR",["L2(8).3","L28d3G1-f7r21B0",7,7]], ["CHAR",["L2(8).3","L28d3G1-f7r7B0",7,4]], ["CHAR",["L2(8).3","L28d3G1-f7r8B0",7,8]], ["CHAR",["L2(8).3","L28d3G1-p28B0",0,[1,11]]], ["CHAR",["L2(8).3","L28d3G1-p36B0",0,[1,8,11]]], ["CHAR",["L2(8).3","L28d3G1-p9B0",0,[1,8]]], ["CHAR",["L2(83)","L283G1-Zr83B0",0,22,"83a"]], ["CHAR",["L2(89)","L289G1-Zr89B0",0,24,"89a"]], ["CHAR",["L2(97)","L297G1-Zr97B0",0,26,"97a"]], ["CHAR",["L3(2)","L27G1-Zr6bB0",0,4,"6a"]], ["CHAR",["L3(2)","L27G1-Zr7B0",0,5,"7a"]], ["CHAR",["L3(2)","L27G1-Zr8B0",0,6,"8a"]], ["CHAR",["L3(2)","L27G1-f2r8B0",2,4,"8a"]], ["CHAR",["L3(2)","L27G1-f3r6aB0",3,4,"6a"]], ["CHAR",["L3(2)","L27G1-f3r6bB0",3,[2,3],"3ab"]], ["CHAR",["L3(2)","L27G1-f3r7B0",3,5,"7a"]], ["CHAR",["L3(2)","L27G1-f7r3B0",7,2,"3a"]], ["CHAR",["L3(2)","L27G1-f7r5B0",7,3,"5a"]], ["CHAR",["L3(2)","L27G1-f7r7B0",7,4,"7a"]], ["CHAR",["L3(3)","L33G1-Zr12B0",0,2,"12a"]], ["CHAR",["L3(3)","L33G1-Zr13B0",0,3,"13a"]], ["CHAR",["L3(3)","L33G1-Zr26aB0",0,8,"26a"]], ["CHAR",["L3(3)","L33G1-Zr27B0",0,11,"27a"]], ["CHAR",["L3(3)","L33G1-Zr39B0",0,12,"39a"]], ["CHAR",["L3(3)","L33G1-f13r11B0",13,2,"11a"]], ["CHAR",["L3(3)","L33G1-f13r13B0",13,3,"13a"]], ["CHAR",["L3(3)","L33G1-f13r16B0",13,4,"16a"]], ["CHAR",["L3(3)","L33G1-f13r26aB0",13,5,"26a"]], ["CHAR",["L3(3)","L33G1-f13r39B0",13,8,"39a"]], ["CHAR",["L3(3)","L33G1-f2r12B0",2,2,"12a"]], ["CHAR",["L3(3)","L33G1-f2r26B0",2,7,"26a"]], ["CHAR",["L3(3)","L33G1-f3r27B0",3,9,"27a"]], ["CHAR",["L3(3)","L33G1-f3r7B0",3,6,"7a"]], ["CHAR",["L3(4)","L34G1-Zr20B0",0,2,"20a"]], ["CHAR",["L3(4)","L34G1-Zr64B0",0,10,"64a"]], ["CHAR",["L3(4)","L34G1-f2r16B0",2,[2,3],"8ab"]], ["CHAR",["L3(4)","L34G1-f2r64B0",2,6,"64a"]], ["CHAR",["L3(4)","L34G1-f3r126B0",3,[8,9],"63ab"]], ["CHAR",["L3(4)","L34G1-f3r19B0",3,5,"19a"]], ["CHAR",["L3(4)","L34G1-f3r90B0",3,[6,7],"45ab"]], ["CHAR",["L3(4)","L34G1-f5r20B0",5,2,"20a"]], ["CHAR",["L3(4)","L34G1-f5r63B0",5,8,"63a"]], ["CHAR",["L3(4)","L34G1-f5r90B0",5,[6,7],"45ab"]], ["CHAR",["L3(4)","L34G1-f7r126B0",7,[7,8],"63ab"]], ["CHAR",["L3(4)","L34G1-f7r19B0",7,2,"19a"]], ["CHAR",["L3(4)","L34G1-f7r45B0",7,6,"45a"]], ["CHAR",["L3(4).2_1","L34d2aG1-f2r16aB0",2,2]], ["CHAR",["L3(4).2_1","L34d2aG1-f2r18aB0",2,3]], ["CHAR",["L3(4).2_1","L34d2aG1-f2r64aB0",2,4]], ["CHAR",["L3(4).2_1","L34d2aG1-f3r126aB0",3,12]], ["CHAR",["L3(4).2_1","L34d2aG1-f3r15aB0",3,3]], ["CHAR",["L3(4).2_1","L34d2aG1-f3r15bB0",3,5]], ["CHAR",["L3(4).2_1","L34d2aG1-f3r15cB0",3,7]], ["CHAR",["L3(4).2_1","L34d2aG1-f3r19aB0",3,9]], ["CHAR",["L3(4).2_1","L34d2aG1-f3r90aB0",3,11]], ["CHAR",["L3(4).2_1","L34d2aG1-f5r20aB0",5,3]], ["CHAR",["L3(4).2_1","L34d2aG1-f5r35aB0",5,5]], ["CHAR",["L3(4).2_1","L34d2aG1-f5r35bB0",5,7]], ["CHAR",["L3(4).2_1","L34d2aG1-f5r35cB0",5,9]], ["CHAR",["L3(4).2_1","L34d2aG1-f5r63aB0",5,12]], ["CHAR",["L3(4).2_1","L34d2aG1-f5r90aB0",5,11]], ["CHAR",["L3(4).2_1","L34d2aG1-f7r126aB0",7,13]], ["CHAR",["L3(4).2_1","L34d2aG1-f7r19aB0",7,3]], ["CHAR",["L3(4).2_1","L34d2aG1-f7r35aB0",7,5]], ["CHAR",["L3(4).2_1","L34d2aG1-f7r35bB0",7,7]], ["CHAR",["L3(4).2_1","L34d2aG1-f7r35cB0",7,9]], ["CHAR",["L3(4).2_1","L34d2aG1-f7r45aB0",7,11]], ["CHAR",["L3(5)","L35G1-Zr124aB0",0,16,"124a"]], ["CHAR",["L3(5)","L35G1-Zr124bB0",0,17,"124b"]], ["CHAR",["L3(5)","L35G1-Zr125B0",0,26,"125a"]], ["CHAR",["L3(5)","L35G1-Zr155aB0",0,27,"155a"]], ["CHAR",["L3(5)","L35G1-Zr186B0",0,30,"186a"]], ["CHAR",["L3(5)","L35G1-Zr30B0",0,2,"30a"]], ["CHAR",["L3(5)","L35G1-Zr31aB0",0,3,"31a"]], ["CHAR",["L3(5)","L35G1-f5r8B0",5,6,"8a"]], ["CHAR",["L3(7)","L37G1-Zr152aB0",0,4,"152a"]], ["CHAR",["L3(7)","L37G1-Zr152bB0",0,5,"152b"]], ["CHAR",["L3(7)","L37G1-Zr152cB0",0,6,"152c"]], ["CHAR",["L3(7)","L37G1-Zr56B0",0,2,"56a"]], ["CHAR",["L3(7)","L37G1-Zr57B0",0,3,"57a"]], ["CHAR",["L3(7)","L37G1-f2r152aB0",2,3,"152a"]], ["CHAR",["L3(7)","L37G1-f3r342aB0",3,13,"342a"]], ["CHAR",["L3(7)","L37G1-f3r399B0",3,20,"399a"]], ["CHAR",["L3(7)","L37G1-f3r55B0",3,2,"55a"]], ["CHAR",["L3(7)","L37G1-f3r57B0",3,3,"57a"]], ["CHAR",["L3(7)","L37G1-f3r96aB0",3,4,"96a"]], ["CHAR",["L3(7)","L37G1-f3r96bB0",3,5,"96b"]], ["CHAR",["L3(7)","L37G1-f3r96cB0",3,6,"96c"]], ["CHAR",["L3(7)","L37G1-f7r10aB0",7,3,"10a"]], ["CHAR",["L3(7)","L37G1-f7r10bB0",7,4,"10b"]], ["CHAR",["L3(7)","L37G1-f7r27B0",7,5,"27a"]], ["CHAR",["L3(7)","L37G1-f7r8B0",7,2,"8a"]], ["CHAR",["L3(7)","L37G1-p57B0",0,[1,2],"1a+56a"]], ["CHAR",["L3(7).2","L37d2G1-f2r152B0",2,3]], ["CHAR",["L3(7).2","L37d2G1-f2r342B0",2,8]], ["CHAR",["L3(7).2","L37d2G1-f2r56B0",2,2]], ["CHAR",["L3(7).2","L37d2G1-f3r192B0",3,9]], ["CHAR",["L3(7).2","L37d2G1-f3r399B0",3,21]], ["CHAR",["L3(7).2","L37d2G1-f3r55B0",3,3]], ["CHAR",["L3(7).2","L37d2G1-f3r57B0",3,5]], ["CHAR",["L3(7).2","L37d2G1-f3r96B0",3,7]], ["CHAR",["L3(7).2","L37d2G1-f7r343B0",7,18]], ["CHAR",["L3(7).2","L37d2G1-f7r56B0",7,8]], ["CHAR",["L3(8)","L38G1-Ar73aB0",0,3,"73a"]], ["CHAR",["L3(8)","L38G1-Ar73bB0",0,4,"73b"]], ["CHAR",["L3(8)","L38G1-Ar73cB0",0,5,"73c"]], ["CHAR",["L3(8)","L38G1-Ar73dB0",0,6,"73d"]], ["CHAR",["L3(8)","L38G1-Ar73eB0",0,7,"73e"]], ["CHAR",["L3(8)","L38G1-Ar73fB0",0,8,"73f"]], ["CHAR",["L3(8)","L38G1-Zr72B0",0,2,"72a"]], ["CHAR",["L3(8)","L38G1-f27r657B0",3,43,"657d"]], ["CHAR",["L3(8)","L38G1-f2r27B0",2,35,"27a"]], ["CHAR",["L3(8)","L38G1-f2r512B0",2,64,"512a"]], ["CHAR",["L3(8)","L38G1-f343r511B0",7,28,"511b"]], ["CHAR",["L3(8)","L38G1-f3r511B0",3,33,"511a"]], ["CHAR",["L3(8)","L38G1-f3r72B0",3,2,"72a"]], ["CHAR",["L3(8)","L38G1-f73r441B0",73,9,"441a"]], ["CHAR",["L3(8)","L38G1-f73r511aB0",73,10,"511a"]], ["CHAR",["L3(8)","L38G1-f73r511bB0",73,11,"511b"]], ["CHAR",["L3(8)","L38G1-f73r71B0",73,2,"71a"]], ["CHAR",["L3(8)","L38G1-f7r511B0",7,27,"511a"]], ["CHAR",["L3(8)","L38G1-f7r512B0",7,31,"512a"]], ["CHAR",["L3(8)","L38G1-f7r72B0",7,2,"72a"]], ["CHAR",["L3(8)","L38G1-f8r192B0",2,58,"192a"]], ["CHAR",["L3(8)","L38G1-f8r24aB0",2,23,"24a"]], ["CHAR",["L3(8)","L38G1-f8r24bB0",2,29,"24g"]], ["CHAR",["L3(8)","L38G1-f8r27B0",2,37,"27c"]], ["CHAR",["L3(8)","L38G1-f8r3B0",2,2,"3a"]], ["CHAR",["L3(8)","L38G1-f8r64B0",2,43,"64a"]], ["CHAR",["L3(8)","L38G1-f8r72aB0",2,46,"72a"]], ["CHAR",["L3(8)","L38G1-f8r72bB0",2,52,"72g"]], ["CHAR",["L3(8)","L38G1-f8r8B0",2,8,"8a"]], ["CHAR",["L3(8)","L38G1-f8r9aB0",2,11,"9a"]], ["CHAR",["L3(8)","L38G1-f8r9bB0",2,17,"9g"]], ["CHAR",["L3(8)","L38G1-p56064B0",0,[1,[2,2],3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,[34,2],[35,2],[36,2],37,38,39,40,41,42,[43,2],[44,2],[45,2],[46,2],[47,2],[48,2],[49,2],[50,2],[51,2],[52,2],[53,2],[54,2],[55,2],[56,2],[57,2],[58,2],[59,2],[60,2],[61,2],[62,2],[63,2],[64,2],[65,2],[66,2],[67,2],[68,3],[69,3],[70,4],[71,4],[72,4]],"1a+72a^2+73abcdef+441abcdefghijklmnopqrstuvwx+511ab^2c^2d^2efghijk^2l^2m^2n^2o^2p^2q^2r^2s^2t^2u^2v^2w^2x^2y^2z^2(a')^2(b')^2+512a^2+584a^2b^2c^2d^2e^2f^2+657a^3b^3c^4d^4e^4"]], ["CHAR",["L3(8)","L38G1-p73aB0",0,[1,2],"1a+72a"]], ["CHAR",["L3(8)","L38G1-p73bB0",0,[1,2],"1a+72a"]], ["CHAR",["L3(8)","L38G1-p75264B0",0,[1,3,4,5,6,7,8,[9,2],[10,2],[11,2],[12,2],[13,2],[14,2],[15,2],[16,2],[17,2],[18,2],[19,2],[20,2],[21,2],[22,2],[23,2],[24,2],[25,2],[26,2],[27,2],[28,2],[29,2],[30,2],[31,2],[32,2],33,[34,3],[35,3],[36,3],37,38,39,40,41,42,[43,3],[44,3],[45,3],[46,3],[47,3],[48,3],[49,3],[50,3],[51,3],[52,3],[53,3],[54,3],[55,3],[56,3],[57,3],[58,3],[59,3],[60,3],[61,2],[62,2],[63,2],[64,2],[65,2],[66,2],[67,2],[68,3],[69,3],[70,3],[71,3],[72,3]],"1a+73abcdef+441a^2b^2c^2d^2e^2f^2g^2h^2i^2j^2k^2l^2m^2n^2o^2p^2q^2r^2s^2t^2u^2v^2w^2x^2+511ab^3c^3d^3efghijk^3l^3m^3n^3o^3p^3q^3r^3s^3t^3u^3v^3w^3x^3y^3z^3(a')^3(b')^3+512a^2+584a^2b^2c^2d^2e^2f^2+657a^3b^3c^3d^3e^3"]], ["CHAR",["L3(8)","L38G1-p98112B0",0,[1,[2,2],[3,2],[4,2],[5,2],[6,2],[7,2],[8,2],[9,2],[10,2],[11,2],[12,2],[13,2],[14,2],[15,2],[16,2],[17,2],[18,2],[19,2],[20,2],[21,2],[22,2],[23,2],[24,2],[25,2],[26,2],[27,2],[28,2],[29,2],[30,2],[31,2],[32,2],[33,2],[34,3],[35,3],[36,3],[37,2],[38,2],[39,2],[40,2],[41,2],[42,2],[43,3],[44,3],[45,3],[46,3],[47,3],[48,3],[49,3],[50,3],[51,3],[52,3],[53,3],[54,3],[55,3],[56,3],[57,3],[58,3],[59,3],[60,3],[61,3],[62,4],[63,4],[64,4],[65,4],[66,4],[67,4],[68,7],[69,7],[70,6],[71,6],[72,6]],"1a+72a^2+73a^2b^2c^2d^2e^2f^2+441a^2b^2c^2d^2e^2f^2g^2h^2i^2j^2k^2l^2m^2n^2o^2p^2q^2r^2s^2t^2u^2v^2w^2x^2+511a^2b^3c^3d^3e^2f^2g^2h^2i^2j^2k^3l^3m^3n^3o^3p^3q^3r^3s^3t^3u^3v^3w^3x^3y^3z^3(a')^3(b')^3+512a^3+584a^4b^4c^4d^4e^4f^4+657a^7b^7c^6d^6e^6"]], ["CHAR",["L3(8).2","L38d2G1-f2r54B0",2,20]], ["CHAR",["L3(8).2","L38d2G1-f3r511B0",3,20]], ["CHAR",["L3(8).2","L38d2G1-f73r511aB0",73,10]], ["CHAR",["L3(8).2","L38d2G1-f7r512B0",7,25]], ["CHAR",["L3(8).2","L38d2G1-p146B0",0,[1,2,3,4]]], ["CHAR",["L3(8).2","L38d2G1-p4672B0",0,[1,3,4,20,22,24,26,40,46,48,50]]], ["CHAR",["L3(8).2","L38d2G1-p56064B0",0,[1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,[22,2],[24,2],[26,2],28,29,30,[31,2],[32,2],[33,2],[34,2],[35,2],[36,2],[37,2],[38,2],[39,2],[40,2],[42,2],[43,2],[44,2],[45,3],[46,3],47,[48,3],49,[50,3],51]]], ["CHAR",["L3(8).2","L38d2G1-p657B0",0,[1,3,4,40]]], ["CHAR",["L3(8).2","L38d2G1-p75264B0",0,[1,5,6,7,[8,2],[9,2],[10,2],[11,2],[12,2],[13,2],[14,2],[15,2],[16,2],[17,2],[18,2],[19,2],20,[22,3],[24,3],[26,3],28,29,30,[31,3],[32,3],[33,3],[34,3],[35,3],[36,3],[37,3],[38,3],[39,3],[40,2],[42,2],[43,2],[44,2],[45,3],[46,3],[48,3],[50,3]]]], ["CHAR",["L3(8).2","L38d2G1-p98112B0",0,[1,3,4,[5,2],[6,2],[7,2],[8,2],[9,2],[10,2],[11,2],[12,2],[13,2],[14,2],[15,2],[16,2],[17,2],[18,2],[19,2],20,21,[22,2],23,[24,2],25,[26,2],27,[28,2],[29,2],[30,2],[31,3],[32,3],[33,3],[34,3],[35,3],[36,3],[37,3],[38,3],[39,3],[40,2],41,[42,4],[43,4],[44,4],[45,7],[46,4],[47,2],[48,4],[49,2],[50,4],[51,2]]]], ["CHAR",["L3(8).3","L38d3G1-f2r192B0",2,23]], ["CHAR",["L3(8).3","L38d3G1-f2r216aB0",2,24]], ["CHAR",["L3(8).3","L38d3G1-f2r216bB0",2,26]], ["CHAR",["L3(8).3","L38d3G1-f2r24B0",2,6]], ["CHAR",["L3(8).3","L38d3G1-f2r27aB0",2,7]], ["CHAR",["L3(8).3","L38d3G1-f2r27bB0",2,10]], ["CHAR",["L3(8).3","L38d3G1-f2r27cB0",2,15]], ["CHAR",["L3(8).3","L38d3G1-f2r576B0",2,28]], ["CHAR",["L3(8).3","L38d3G1-f2r72aB0",2,11]], ["CHAR",["L3(8).3","L38d3G1-f2r72bB0",2,13]], ["CHAR",["L3(8).3","L38d3G1-f2r81B0",2,21]], ["CHAR",["L3(8).3","L38d3G1-f2r9B0",2,4]], ["CHAR",["L3(8).3","L38d3G1-f3r511B0",3,13]], ["CHAR",["L3(8).3","L38d3G1-f3r72B0",3,2]], ["CHAR",["L3(8).3","L38d3G1-f73r441B0",73,9]], ["CHAR",["L3(8).3","L38d3G1-f73r511aB0",73,12]], ["CHAR",["L3(8).3","L38d3G1-f73r71B0",73,4]], ["CHAR",["L3(8).3","L38d3G1-f7r511B0",7,15]], ["CHAR",["L3(8).3","L38d3G1-f7r512B0",7,19]], ["CHAR",["L3(8).3","L38d3G1-f7r72B0",7,4]], ["CHAR",["L3(8).3","L38d3G1-p219aB0",0,[1,2,3,4,5,6]]], ["CHAR",["L3(8).3","L38d3G1-p219bB0",0,[1,2,3,4,5,6]]], ["CHAR",["L3(8).3","L38d3G1-p56064B0",0,[1,[4,2],7,8,9,10,11,12,13,14,15,16,17,[20,2],21,22,[23,2],[24,2],[25,2],[26,2],[27,2],[28,2],[29,2],[32,2],[33,2],34,35,36,37,38,39,[40,4]]]], ["CHAR",["L3(8).3","L38d3G1-p73aB0",0,[1,4]]], ["CHAR",["L3(8).3","L38d3G1-p73bB0",0,[1,4]]], ["CHAR",["L3(8).3","L38d3G1-p75264B0",0,[1,7,8,[9,2],[10,2],[11,2],[12,2],[13,2],[14,2],[15,2],[16,2],17,[20,3],21,22,[23,3],[24,3],[25,3],[26,3],[27,3],[28,3],30,31,[32,2],[33,2],34,35,36,37,38,39,[40,3]]]], ["CHAR",["L3(8).3","L38d3G1-p98112B0",0,[1,2,3,[4,2],[5,2],[6,2],[7,6],[8,6],17,18,19,[20,3],[21,3],[22,3],[23,3],[24,3],[25,3],[26,3],[27,3],[28,3],29,30,31,[32,6],[33,6],[34,3],[35,3],[36,3],[37,3],[38,3],[39,3],[40,9]]]], ["CHAR",["L3(8).6","L38d6G1-f2r1152B0",2,17]], ["CHAR",["L3(8).6","L38d6G1-f2r144aB0",2,8]], ["CHAR",["L3(8).6","L38d6G1-f2r144bB0",2,9]], ["CHAR",["L3(8).6","L38d6G1-f2r162B0",2,13]], ["CHAR",["L3(8).6","L38d6G1-f2r18B0",2,4]], ["CHAR",["L3(8).6","L38d6G1-f2r192B0",2,14]], ["CHAR",["L3(8).6","L38d6G1-f2r24B0",2,5]], ["CHAR",["L3(8).6","L38d6G1-f2r432aB0",2,15]], ["CHAR",["L3(8).6","L38d6G1-f2r432bB0",2,16]], ["CHAR",["L3(8).6","L38d6G1-f2r512B0",2,18]], ["CHAR",["L3(8).6","L38d6G1-f2r54aB0",2,6]], ["CHAR",["L3(8).6","L38d6G1-f2r54bB0",2,7]], ["CHAR",["L3(8).6","L38d6G1-f3r511B0",3,10]], ["CHAR",["L3(8).6","L38d6G1-f73r511aB0",73,20]], ["CHAR",["L3(8).6","L38d6G1-f7r511B0",7,17]], ["CHAR",["L3(8).6","L38d6G1-f7r512B0",7,25]], ["CHAR",["L3(8).6","L38d6G1-p438B0",0,[1,2,3,4,5,6,7,8,9,10,11,12]]], ["CHAR",["L3(8).6","L38d6G1-p4672B0",0,[1,7,10,18,24,30,40]]], ["CHAR",["L3(8).6","L38d6G1-p56064B0",0,[1,7,10,13,14,15,16,17,18,[24,2],26,[27,2],[28,2],[29,2],[30,2],[36,2],37,38,39,[40,3],41]]], ["CHAR",["L3(8).6","L38d6G1-p657B0",0,[1,7,10,30]]], ["CHAR",["L3(8).6","L38d6G1-p75264B0",0,[1,13,[14,2],[15,2],[16,2],[17,2],18,[24,3],26,[27,3],[28,3],[29,3],32,34,[36,2],37,38,39,[40,3]]]], ["CHAR",["L3(8).6","L38d6G1-p98112B0",0,[1,7,10,[13,2],[14,2],[15,2],[16,2],[17,2],18,21,[24,2],25,[26,2],[27,3],[28,3],[29,3],[30,2],33,[36,4],[37,3],[38,2],[39,2],[40,4],[41,2]]]], ["CHAR",["L4(3)","L43G1-Zr39B0",0,4,"39a"]], ["CHAR",["L4(3)","L43G1-Zr52B0",0,5,"52a"]], ["CHAR",["L4(3)","L43G1-Zr90B0",0,8,"90a"]], ["CHAR",["L5(2)","L52G1-Zr124B0",0,3,"124a"]], ["CHAR",["L5(2)","L52G1-Zr155B0",0,4,"155a"]], ["CHAR",["L5(2)","L52G1-Zr217B0",0,5,"217a"]], ["CHAR",["L5(2)","L52G1-Zr30B0",0,2,"30a"]], ["CHAR",["L5(2)","L52G1-f2r10aB0",2,4,"10a"]], ["CHAR",["L5(2)","L52G1-f2r10bB0",2,5,"10b"]], ["CHAR",["L5(2)","L52G1-f2r24B0",2,6,"24a"]], ["CHAR",["L5(2)","L52G1-f2r5aB0",2,2,"5a"]], ["CHAR",["L5(2)","L52G1-f2r5bB0",2,3,"5b"]], ["CHAR",["L5(2)","L52G1-f31r251B0",31,6,"251a"]], ["CHAR",["L5(2)","L52G1-f31r29B0",31,2,"29a"]], ["CHAR",["L5(2)","L52G1-f3r124B0",3,3,"124a"]], ["CHAR",["L5(2)","L52G1-f3r155B0",3,4,"155a"]], ["CHAR",["L5(2)","L52G1-f3r30B0",3,2,"30a"]], ["CHAR",["L5(2)","L52G1-f5r123B0",5,3,"123a"]], ["CHAR",["L5(2)","L52G1-f5r155B0",5,4,"155a"]], ["CHAR",["L5(2)","L52G1-f5r280B0",5,6,"280a"]], ["CHAR",["L5(2)","L52G1-f5r30B0",5,2,"30a"]], ["CHAR",["L5(2)","L52G1-f7r280B0",7,6,"280a"]], ["CHAR",["L5(2)","L52G1-f7r30B0",7,2,"30a"]], ["CHAR",["L5(2)","L52G1-f7r94B0",7,3,"94a"]], ["CHAR",["L5(2)","L52G1-p155aB0",0,[1,2,3],"1a+30a+124a"]], ["CHAR",["L5(2)","L52G1-p31aB0",0,[1,2],"1a+30a"]], ["CHAR",["M11","M11G1-Ar10bB0",0,3,"10b"]], ["CHAR",["M11","M11G1-Ar10cB0",0,4,"10c"]], ["CHAR",["M11","M11G1-Zr10aB0",0,2,"10a"]], ["CHAR",["M11","M11G1-Zr11B0",0,5,"11a"]], ["CHAR",["M11","M11G1-Zr20B0",0,[3,4],"10bc"]], ["CHAR",["M11","M11G1-Zr32B0",0,[6,7],"16ab"]], ["CHAR",["M11","M11G1-Zr44B0",0,8,"44a"]], ["CHAR",["M11","M11G1-Zr45B0",0,9,"45a"]], ["CHAR",["M11","M11G1-Zr55B0",0,10,"55a"]], ["CHAR",["M11","M11G1-f11r10aB0",11,3,"10a"]], ["CHAR",["M11","M11G1-f11r10bB0",11,4,"10b"]], ["CHAR",["M11","M11G1-f11r11B0",11,5,"11a"]], ["CHAR",["M11","M11G1-f11r16B0",11,6,"16a"]], ["CHAR",["M11","M11G1-f11r44B0",11,7,"44a"]], ["CHAR",["M11","M11G1-f11r55B0",11,8,"55a"]], ["CHAR",["M11","M11G1-f11r9B0",11,2,"9a"]], ["CHAR",["M11","M11G1-f25r10bB0",5,3,"10b"]], ["CHAR",["M11","M11G1-f25r10cB0",5,4,"10c"]], ["CHAR",["M11","M11G1-f2r10B0",2,2,"10a"]], ["CHAR",["M11","M11G1-f2r32B0",2,[3,4],"16ab"]], ["CHAR",["M11","M11G1-f2r44B0",2,5,"44a"]], ["CHAR",["M11","M11G1-f3r10aB0",3,4,"10a"]], ["CHAR",["M11","M11G1-f3r10bB0",3,5,"10b"]], ["CHAR",["M11","M11G1-f3r10cB0",3,6,"10c"]], ["CHAR",["M11","M11G1-f3r24B0",3,7,"24a"]], ["CHAR",["M11","M11G1-f3r45B0",3,8,"45a"]], ["CHAR",["M11","M11G1-f3r5aB0",3,2,"5a"]], ["CHAR",["M11","M11G1-f3r5bB0",3,3,"5b"]], ["CHAR",["M11","M11G1-f4r16aB0",2,3,"16a"]], ["CHAR",["M11","M11G1-f4r16bB0",2,4,"16b"]], ["CHAR",["M11","M11G1-f5r10aB0",5,2,"10a"]], ["CHAR",["M11","M11G1-f5r11B0",5,5,"11a"]], ["CHAR",["M11","M11G1-f5r16aB0",5,6,"16a"]], ["CHAR",["M11","M11G1-f5r16bB0",5,7,"16b"]], ["CHAR",["M11","M11G1-f5r20B0",5,[3,4],"10bc"]], ["CHAR",["M11","M11G1-f5r45B0",5,8,"45a"]], ["CHAR",["M11","M11G1-f5r55B0",5,9,"55a"]], ["CHAR",["M11","M11G1-p11B0",0,[1,2],"1a+10a"]], ["CHAR",["M11","M11G1-p12B0",0,[1,5],"1a+11a"]], ["CHAR",["M11","M11G1-p165B0",0,[1,2,5,[8,2],10],"1a+10a+11a+44a^2+55a"]], ["CHAR",["M11","M11G1-p55B0",0,[1,2,8],"1a+10a+44a"]], ["CHAR",["M11","M11G1-p66B0",0,[1,2,5,8],"1a+10a+11a+44a"]], ["CHAR",["M12","M12G1-Zr11aB0",0,2,"11a"]], ["CHAR",["M12","M12G1-Zr11bB0",0,3,"11b"]], ["CHAR",["M12","M12G1-Zr120B0",0,13,"120a"]], ["CHAR",["M12","M12G1-Zr144B0",0,14,"144a"]], ["CHAR",["M12","M12G1-Zr176B0",0,15,"176a"]], ["CHAR",["M12","M12G1-Zr32B0",0,[4,5],"16ab"]], ["CHAR",["M12","M12G1-Zr45B0",0,6,"45a"]], ["CHAR",["M12","M12G1-Zr54B0",0,7,"54a"]], ["CHAR",["M12","M12G1-Zr55aB0",0,8,"55a"]], ["CHAR",["M12","M12G1-Zr55bB0",0,9,"55b"]], ["CHAR",["M12","M12G1-Zr55cB0",0,10,"55c"]], ["CHAR",["M12","M12G1-Zr66B0",0,11,"66a"]], ["CHAR",["M12","M12G1-Zr99B0",0,12,"99a"]], ["CHAR",["M12","M12G1-f11r11aB0",11,2,"11a"]], ["CHAR",["M12","M12G1-f11r16B0",11,4,"16a"]], ["CHAR",["M12","M12G1-f11r176B0",11,13,"176a"]], ["CHAR",["M12","M12G1-f11r29B0",11,5,"29a"]], ["CHAR",["M12","M12G1-f11r53B0",11,6,"53a"]], ["CHAR",["M12","M12G1-f11r55aB0",11,7,"55a"]], ["CHAR",["M12","M12G1-f11r55cB0",11,9,"55c"]], ["CHAR",["M12","M12G1-f11r66B0",11,10,"66a"]], ["CHAR",["M12","M12G1-f11r91B0",11,11,"91a"]], ["CHAR",["M12","M12G1-f11r99B0",11,12,"99a"]], ["CHAR",["M12","M12G1-f2r10B0",2,2,"10a"]], ["CHAR",["M12","M12G1-f2r144B0",2,6,"144a"]], ["CHAR",["M12","M12G1-f2r44B0",2,5,"44a"]], ["CHAR",["M12","M12G1-f3r10aB0",3,2,"10a"]], ["CHAR",["M12","M12G1-f3r15bB0",3,5,"15b"]], ["CHAR",["M12","M12G1-f3r34B0",3,6,"34a"]], ["CHAR",["M12","M12G1-f3r45aB0",3,7,"45a"]], ["CHAR",["M12","M12G1-f3r45bB0",3,8,"45b"]], ["CHAR",["M12","M12G1-f3r54B0",3,10,"54a"]], ["CHAR",["M12","M12G1-f3r99B0",3,11,"99a"]], ["CHAR",["M12","M12G1-f4r16aB0",2,3,"16a"]], ["CHAR",["M12","M12G1-f4r16bB0",2,4,"16b"]], ["CHAR",["M12","M12G1-f5r11aB0",5,2,"11a"]], ["CHAR",["M12","M12G1-f5r120B0",5,13,"120a"]], ["CHAR",["M12","M12G1-f5r16bB0",5,5,"16b"]], ["CHAR",["M12","M12G1-f5r45B0",5,6,"45a"]], ["CHAR",["M12","M12G1-f5r55aB0",5,7,"55a"]], ["CHAR",["M12","M12G1-f5r55cB0",5,9,"55c"]], ["CHAR",["M12","M12G1-f5r66B0",5,10,"66a"]], ["CHAR",["M12","M12G1-f5r78B0",5,11,"78a"]], ["CHAR",["M12","M12G1-f5r98B0",5,12,"98a"]], ["CHAR",["M12","M12G1-p12aB0",0,[1,2],"1a+11a"]], ["CHAR",["M12","M12G1-p12bB0",0,[1,3],"1a+11b"]], ["CHAR",["M12","M12G1-p66aB0",0,[1,2,7],"1a+11a+54a"]], ["CHAR",["M12","M12G1-p66bB0",0,[1,3,7],"1a+11b+54a"]], ["CHAR",["M12.2","M12d2G1-f11r110aB0",11,12]], ["CHAR",["M12.2","M12d2G1-f11r16aB0",11,4]], ["CHAR",["M12.2","M12d2G1-f11r176aB0",11,19]], ["CHAR",["M12.2","M12d2G1-f11r22aB0",11,3]], ["CHAR",["M12.2","M12d2G1-f11r29aB0",11,6]], ["CHAR",["M12.2","M12d2G1-f11r53aB0",11,8]], ["CHAR",["M12.2","M12d2G1-f11r55aB0",11,10]], ["CHAR",["M12.2","M12d2G1-f11r66aB0",11,13]], ["CHAR",["M12.2","M12d2G1-f11r91aB0",11,15]], ["CHAR",["M12.2","M12d2G1-f11r99aB0",11,17]], ["CHAR",["M12.2","M12d2G1-f25r120aB0",5,16]], ["CHAR",["M12.2","M12d2G1-f2r10B0",2,2]], ["CHAR",["M12.2","M12d2G1-f2r144B0",2,5]], ["CHAR",["M12.2","M12d2G1-f2r32B0",2,3]], ["CHAR",["M12.2","M12d2G1-f2r44B0",2,4]], ["CHAR",["M12.2","M12d2G1-f3r20aB0",3,3]], ["CHAR",["M12.2","M12d2G1-f3r30aB0",3,4]], ["CHAR",["M12.2","M12d2G1-f3r34aB0",3,5]], ["CHAR",["M12.2","M12d2G1-f3r45aB0",3,7]], ["CHAR",["M12.2","M12d2G1-f3r90aB0",3,9]], ["CHAR",["M12.2","M12d2G1-f3r99aB0",3,12]], ["CHAR",["M12.2","M12d2G1-f5r110aB0",5,9]], ["CHAR",["M12.2","M12d2G1-f5r22aB0",5,3]], ["CHAR",["M12.2","M12d2G1-f5r32aB0",5,4]], ["CHAR",["M12.2","M12d2G1-f5r45aB0",5,5]], ["CHAR",["M12.2","M12d2G1-f5r55aB0",5,7]], ["CHAR",["M12.2","M12d2G1-f5r66aB0",5,10]], ["CHAR",["M12.2","M12d2G1-f5r78aB0",5,12]], ["CHAR",["M12.2","M12d2G1-f5r98aB0",5,14]], ["CHAR",["M12.2","M12d2G1-f9r54aB0",3,10]], ["CHAR",["M12.2","M12d2G1-p24B0",0,[1,2,3]]], ["CHAR",["M22","M22G1-Zr154B0",0,7,"154a"]], ["CHAR",["M22","M22G1-Zr210B0",0,8,"210a"]], ["CHAR",["M22","M22G1-Zr21B0",0,2,"21a"]], ["CHAR",["M22","M22G1-Zr231B0",0,9,"231a"]], ["CHAR",["M22","M22G1-Zr55B0",0,5,"55a"]], ["CHAR",["M22","M22G1-Zr99B0",0,6,"99a"]], ["CHAR",["M22","M22G1-f11r154B0",11,7,"154a"]], ["CHAR",["M22","M22G1-f11r190B0",11,8,"190a"]], ["CHAR",["M22","M22G1-f11r20B0",11,2,"20a"]], ["CHAR",["M22","M22G1-f11r231B0",11,9,"231a"]], ["CHAR",["M22","M22G1-f11r385B0",11,10,"385a"]], ["CHAR",["M22","M22G1-f11r45aB0",11,3,"45a"]], ["CHAR",["M22","M22G1-f11r45bB0",11,4,"45b"]], ["CHAR",["M22","M22G1-f11r55B0",11,5,"55a"]], ["CHAR",["M22","M22G1-f11r99B0",11,6,"99a"]], ["CHAR",["M22","M22G1-f25r45aB0",5,3,"45a"]], ["CHAR",["M22","M22G1-f2r10aB0",2,2,"10a"]], ["CHAR",["M22","M22G1-f2r10bB0",2,3,"10b"]], ["CHAR",["M22","M22G1-f2r34B0",2,4,"34a"]], ["CHAR",["M22","M22G1-f2r98B0",2,7,"98a"]], ["CHAR",["M22","M22G1-f3r210B0",3,9,"210a"]], ["CHAR",["M22","M22G1-f3r21B0",3,2,"21a"]], ["CHAR",["M22","M22G1-f3r231B0",3,10,"231a"]], ["CHAR",["M22","M22G1-f3r49aB0",3,5,"49a"]], ["CHAR",["M22","M22G1-f3r49bB0",3,6,"49b"]], ["CHAR",["M22","M22G1-f3r55B0",3,7,"55a"]], ["CHAR",["M22","M22G1-f3r99B0",3,8,"99a"]], ["CHAR",["M22","M22G1-f49r280aB0",7,8,"280a"]], ["CHAR",["M22","M22G1-f49r280bB0",7,9,"280b"]], ["CHAR",["M22","M22G1-f4r70aB0",2,5,"70a"]], ["CHAR",["M22","M22G1-f4r70bB0",2,6,"70b"]], ["CHAR",["M22","M22G1-f5r133B0",5,7,"133a"]], ["CHAR",["M22","M22G1-f5r210B0",5,8,"210a"]], ["CHAR",["M22","M22G1-f5r21B0",5,2,"21a"]], ["CHAR",["M22","M22G1-f5r280aB0",5,9,"280a"]], ["CHAR",["M22","M22G1-f5r385B0",5,11,"385a"]], ["CHAR",["M22","M22G1-f5r55B0",5,5,"55a"]], ["CHAR",["M22","M22G1-f5r98B0",5,6,"98a"]], ["CHAR",["M22","M22G1-f7r154B0",7,5,"154a"]], ["CHAR",["M22","M22G1-f7r210B0",7,6,"210a"]], ["CHAR",["M22","M22G1-f7r21B0",7,2,"21a"]], ["CHAR",["M22","M22G1-f7r231B0",7,7,"231a"]], ["CHAR",["M22","M22G1-f7r385B0",7,10,"385a"]], ["CHAR",["M22","M22G1-f7r45B0",7,3,"45a"]], ["CHAR",["M22","M22G1-f7r54B0",7,4,"54a"]], ["CHAR",["M22","M22G1-f9r45aB0",3,3,"45a"]], ["CHAR",["M22","M22G1-p176aB0",0,[1,2,7],"1a+21a+154a"]], ["CHAR",["M22","M22G1-p176bB0",0,[1,2,7],"1a+21a+154a"]], ["CHAR",["M22","M22G1-p22B0",0,[1,2],"1a+21a"]], ["CHAR",["M22","M22G1-p231B0",0,[1,2,5,7],"1a+21a+55a+154a"]], ["CHAR",["M22","M22G1-p330B0",0,[1,2,5,6,7],"1a+21a+55a+99a+154a"]], ["CHAR",["M22","M22G1-p462aB0",0,[1,2,5,7,9],"1a+21a+55a+154a+231a"]], ["CHAR",["M22","M22G1-p462bB0",0,[1,[2,2],5,7,8],"1a+21a^2+55a+154a+210a"]], ["CHAR",["M22","M22G1-p462cB0",0,[1,[2,2],5,7,8],"1a+21a^2+55a+154a+210a"]], ["CHAR",["M22","M22G1-p616B0",0,[1,2,5,7,12],"1a+21a+55a+154a+385a"]], ["CHAR",["M22","M22G1-p672B0",0,[1,2,5,7,8,9],"1a+21a+55a+154a+210a+231a"]], ["CHAR",["M22","M22G1-p770B0",0,[1,2,[5,2],6,7,12],"1a+21a+55a^2+99a+154a+385a"]], ["CHAR",["M22","M22G1-p77B0",0,[1,2,5],"1a+21a+55a"]], ["CHAR",["M22.2","M22d2G1-f11r154aB0",11,13]], ["CHAR",["M22.2","M22d2G1-f11r190aB0",11,15]], ["CHAR",["M22.2","M22d2G1-f11r20aB0",11,3]], ["CHAR",["M22.2","M22d2G1-f11r231aB0",11,17]], ["CHAR",["M22.2","M22d2G1-f11r385aB0",11,19]], ["CHAR",["M22.2","M22d2G1-f11r45aB0",11,5]], ["CHAR",["M22.2","M22d2G1-f11r45bB0",11,7]], ["CHAR",["M22.2","M22d2G1-f11r55aB0",11,9]], ["CHAR",["M22.2","M22d2G1-f11r99aB0",11,11]], ["CHAR",["M22.2","M22d2G1-f25r45aB0",5,5]], ["CHAR",["M22.2","M22d2G1-f25r45bB0",5,7]], ["CHAR",["M22.2","M22d2G1-f2r10aB0",2,2]], ["CHAR",["M22.2","M22d2G1-f2r10bB0",2,3]], ["CHAR",["M22.2","M22d2G1-f2r140B0",2,5]], ["CHAR",["M22.2","M22d2G1-f2r34B0",2,4]], ["CHAR",["M22.2","M22d2G1-f2r98B0",2,6]], ["CHAR",["M22.2","M22d2G1-f3r210aB0",3,14]], ["CHAR",["M22.2","M22d2G1-f3r21aB0",3,3]], ["CHAR",["M22.2","M22d2G1-f3r231aB0",3,16]], ["CHAR",["M22.2","M22d2G1-f3r55aB0",3,10]], ["CHAR",["M22.2","M22d2G1-f3r98B0",3,9]], ["CHAR",["M22.2","M22d2G1-f3r99aB0",3,12]], ["CHAR",["M22.2","M22d2G1-f5r133aB0",5,13]], ["CHAR",["M22.2","M22d2G1-f5r210aB0",5,15]], ["CHAR",["M22.2","M22d2G1-f5r21aB0",5,3]], ["CHAR",["M22.2","M22d2G1-f5r385aB0",5,18]], ["CHAR",["M22.2","M22d2G1-f5r55aB0",5,9]], ["CHAR",["M22.2","M22d2G1-f5r560B0",5,17]], ["CHAR",["M22.2","M22d2G1-f5r98aB0",5,11]], ["CHAR",["M22.2","M22d2G1-f7r154aB0",7,9]], ["CHAR",["M22.2","M22d2G1-f7r210aB0",7,11]], ["CHAR",["M22.2","M22d2G1-f7r21aB0",7,3]], ["CHAR",["M22.2","M22d2G1-f7r231aB0",7,13]], ["CHAR",["M22.2","M22d2G1-f7r385aB0",7,16]], ["CHAR",["M22.2","M22d2G1-f7r45aB0",7,5]], ["CHAR",["M22.2","M22d2G1-f7r54aB0",7,7]], ["CHAR",["M22.2","M22d2G1-f7r560B0",7,15]], ["CHAR",["M22.2","M22d2G1-f9r45aB0",3,5]], ["CHAR",["M22.2","M22d2G1-f9r45bB0",3,7]], ["CHAR",["M22.2","M22d2G1-p22B0",0,[1,3]]], ["CHAR",["M22.2","M22d2G1-p231B0",0,[1,3,9,13]]], ["CHAR",["M22.2","M22d2G1-p330B0",0,[1,3,9,11,13]]], ["CHAR",["M22.2","M22d2G1-p352B0",0,[1,2,3,4,13,14]]], ["CHAR",["M22.2","M22d2G1-p616B0",0,[1,3,9,13,20]]], ["CHAR",["M22.2","M22d2G1-p672B0",0,[1,4,9,13,16,18]]], ["CHAR",["M22.2","M22d2G1-p77B0",0,[1,3,9]]], ["CHAR",["M23","M23G1-Zr22B0",0,2,"22a"]], ["CHAR",["M23","M23G1-Zr230B0",0,5,"230a"]], ["CHAR",["M23","M23G1-Zr231aB0",0,6,"231a"]], ["CHAR",["M23","M23G1-f11r229B0",11,5,"229a"]], ["CHAR",["M23","M23G1-f11r22B0",11,2,"22a"]], ["CHAR",["M23","M23G1-f11r231aB0",11,6,"231a"]], ["CHAR",["M23","M23G1-f11r253B0",11,9,"253a"]], ["CHAR",["M23","M23G1-f11r45bB0",11,4,"45b"]], ["CHAR",["M23","M23G1-f11r806B0",11,12,"806a"]], ["CHAR",["M23","M23G1-f11r990aB0",11,13,"990a"]], ["CHAR",["M23","M23G1-f121r231bB0",11,7,"231b"]], ["CHAR",["M23","M23G1-f121r231cB0",11,8,"231c"]], ["CHAR",["M23","M23G1-f121r770aB0",11,10,"770a"]], ["CHAR",["M23","M23G1-f121r770bB0",11,11,"770b"]], ["CHAR",["M23","M23G1-f23r210B0",23,5,"210a"]], ["CHAR",["M23","M23G1-f23r21B0",23,2,"21a"]], ["CHAR",["M23","M23G1-f23r230B0",23,6,"230a"]], ["CHAR",["M23","M23G1-f23r231aB0",23,7,"231a"]], ["CHAR",["M23","M23G1-f23r253B0",23,9,"253a"]], ["CHAR",["M23","M23G1-f23r280B0",23,10,"280a"]], ["CHAR",["M23","M23G1-f23r45bB0",23,4,"45b"]], ["CHAR",["M23","M23G1-f23r665bB0",23,13,"665b"]], ["CHAR",["M23","M23G1-f25r45aB0",5,4,"45b"]], ["CHAR",["M23","M23G1-f25r770B0",5,8,"770a"]], ["CHAR",["M23","M23G1-f25r990aB0",5,13,"990b"]], ["CHAR",["M23","M23G1-f2r11aB0",2,2,"11a"]], ["CHAR",["M23","M23G1-f2r11bB0",2,3,"11b"]], ["CHAR",["M23","M23G1-f2r120B0",2,6,"120a"]], ["CHAR",["M23","M23G1-f2r220aB0",2,7,"220a"]], ["CHAR",["M23","M23G1-f2r220bB0",2,8,"220b"]], ["CHAR",["M23","M23G1-f2r252B0",2,9,"252a"]], ["CHAR",["M23","M23G1-f2r44aB0",2,4,"44a"]], ["CHAR",["M23","M23G1-f2r44bB0",2,5,"44b"]], ["CHAR",["M23","M23G1-f3r104aB0",3,5,"104a"]], ["CHAR",["M23","M23G1-f3r104bB0",3,6,"104b"]], ["CHAR",["M23","M23G1-f3r22B0",3,2,"22a"]], ["CHAR",["M23","M23G1-f3r231B0",3,7,"231a"]], ["CHAR",["M23","M23G1-f3r253B0",3,8,"253a"]], ["CHAR",["M23","M23G1-f3r770aB0",3,9,"770a"]], ["CHAR",["M23","M23G1-f49r231bB0",7,6,"231b"]], ["CHAR",["M23","M23G1-f49r231cB0",7,7,"231c"]], ["CHAR",["M23","M23G1-f49r770aB0",7,8,"770a"]], ["CHAR",["M23","M23G1-f49r770bB0",7,9,"770b"]], ["CHAR",["M23","M23G1-f49r896aB0",7,10,"896a"]], ["CHAR",["M23","M23G1-f49r896bB0",7,11,"896b"]], ["CHAR",["M23","M23G1-f4r896aB0",2,10,"896a"]], ["CHAR",["M23","M23G1-f4r896bB0",2,11,"896b"]], ["CHAR",["M23","M23G1-f5r22B0",5,2,"22a"]], ["CHAR",["M23","M23G1-f5r230B0",5,5,"230a"]], ["CHAR",["M23","M23G1-f5r231aB0",5,6,"231a"]], ["CHAR",["M23","M23G1-f5r231bB0",5,7,"231b"]], ["CHAR",["M23","M23G1-f5r896aB0",5,10,"896a"]], ["CHAR",["M23","M23G1-f7r208B0",7,4,"208a"]], ["CHAR",["M23","M23G1-f7r22B0",7,2,"22a"]], ["CHAR",["M23","M23G1-f7r231aB0",7,5,"231a"]], ["CHAR",["M23","M23G1-f7r45B0",7,3,"45a"]], ["CHAR",["M23","M23G1-f7r990B0",7,12,"990a"]], ["CHAR",["M23","M23G1-f9r45bB0",3,4,"45b"]], ["CHAR",["M23","M23G1-f9r990bB0",3,12,"990b"]], ["CHAR",["M23","M23G1-p1288B0",0,[1,2,5,16],"1a+22a+230a+1035a"]], ["CHAR",["M23","M23G1-p1771B0",0,[1,2,[5,2],9,16],"1a+22a+230a^2+253a+1035a"]], ["CHAR",["M23","M23G1-p23B0",0,[1,2],"1a+22a"]], ["CHAR",["M23","M23G1-p253aB0",0,[1,2,5],"1a+22a+230a"]], ["CHAR",["M23","M23G1-p253bB0",0,[1,2,5],"1a+22a+230a"]], ["CHAR",["M23","M23G1-p40320B0",0,[1,3,4,6,7,8,9,[10,3],[11,3],[12,3],[13,3],[14,4],[15,4],[16,5],[17,8]],"1a+45ab+231abc+253a+770a^3b^3+896a^3b^3+990a^4b^4+1035a^5+2024a^8"]], ["CHAR",["M23","M23G1-p506B0",0,[1,2,5,9],"1a+22a+230a+253a"]], ["CHAR",["M24","M24G1-Zr23B0",0,2,"23a"]], ["CHAR",["M24","M24G1-f11r229B0",11,5,"229a"]], ["CHAR",["M24","M24G1-f11r23B0",11,2,"23a"]], ["CHAR",["M24","M24G1-f11r253B0",11,8,"253a"]], ["CHAR",["M24","M24G1-f11r45B0",11,3,"45a"]], ["CHAR",["M24","M24G1-f11r482B0",11,9,"482a"]], ["CHAR",["M24","M24G1-f11r806B0",11,12,"806a"]], ["CHAR",["M24","M24G1-f11r990bB0",11,14,"990b"]], ["CHAR",["M24","M24G1-f121r231bB0",11,7,"231b"]], ["CHAR",["M24","M24G1-f121r770aB0",11,10,"770a"]], ["CHAR",["M24","M24G1-f23r231bB0",23,6,"231b"]], ["CHAR",["M24","M24G1-f23r23B0",23,2,"23a"]], ["CHAR",["M24","M24G1-f23r251B0",23,7,"251a"]], ["CHAR",["M24","M24G1-f23r253B0",23,8,"253a"]], ["CHAR",["M24","M24G1-f23r45B0",23,3,"45a"]], ["CHAR",["M24","M24G1-f23r483B0",23,9,"483a"]], ["CHAR",["M24","M24G1-f23r770B0",23,10,"770a"]], ["CHAR",["M24","M24G1-f23r990bB0",23,12,"990b"]], ["CHAR",["M24","M24G1-f25r45aB0",5,3,"45a"]], ["CHAR",["M24","M24G1-f25r45bB0",5,4,"45b"]], ["CHAR",["M24","M24G1-f25r770aB0",5,8,"770a"]], ["CHAR",["M24","M24G1-f25r990aB0",5,10,"990a"]], ["CHAR",["M24","M24G1-f2r11aB0",2,2,"11a"]], ["CHAR",["M24","M24G1-f2r11bB0",2,3,"11b"]], ["CHAR",["M24","M24G1-f2r120B0",2,6,"120a"]], ["CHAR",["M24","M24G1-f2r1242B0",2,12,"1242a"]], ["CHAR",["M24","M24G1-f2r1792B0",2,13,"1792a"]], ["CHAR",["M24","M24G1-f2r220aB0",2,7,"220a"]], ["CHAR",["M24","M24G1-f2r220bB0",2,8,"220b"]], ["CHAR",["M24","M24G1-f2r252B0",2,9,"252a"]], ["CHAR",["M24","M24G1-f2r320aB0",2,10,"320a"]], ["CHAR",["M24","M24G1-f2r320bB0",2,11,"320b"]], ["CHAR",["M24","M24G1-f2r44aB0",2,4,"44a"]], ["CHAR",["M24","M24G1-f2r44bB0",2,5,"44b"]], ["CHAR",["M24","M24G1-f3r22B0",3,2,"22a"]], ["CHAR",["M24","M24G1-f3r231B0",3,5,"231a"]], ["CHAR",["M24","M24G1-f3r252B0",3,6,"252a"]], ["CHAR",["M24","M24G1-f3r483B0",3,7,"483a"]], ["CHAR",["M24","M24G1-f3r770aB0",3,8,"770a"]], ["CHAR",["M24","M24G1-f3r770bB0",3,9,"770b"]], ["CHAR",["M24","M24G1-f49r231bB0",7,5,"231b"]], ["CHAR",["M24","M24G1-f49r770aB0",7,9,"770a"]], ["CHAR",["M24","M24G1-f5r231B0",5,5,"231a"]], ["CHAR",["M24","M24G1-f5r23B0",5,2,"23a"]], ["CHAR",["M24","M24G1-f5r252B0",5,6,"252a"]], ["CHAR",["M24","M24G1-f5r253B0",5,7,"253a"]], ["CHAR",["M24","M24G1-f7r23B0",7,2,"23a"]], ["CHAR",["M24","M24G1-f7r252B0",7,6,"252a"]], ["CHAR",["M24","M24G1-f7r253B0",7,7,"253a"]], ["CHAR",["M24","M24G1-f7r45B0",7,3,"45a"]], ["CHAR",["M24","M24G1-f7r483B0",7,8,"483a"]], ["CHAR",["M24","M24G1-f7r990B0",7,11,"990a"]], ["CHAR",["M24","M24G1-f9r45aB0",3,3,"45a"]], ["CHAR",["M24","M24G1-f9r45bB0",3,4,"45b"]], ["CHAR",["M24","M24G1-f9r990bB0",3,11,"990b"]], ["CHAR",["M24","M24G1-p1288B0",0,[1,7,14],"1a+252a+1035a"]], ["CHAR",["M24","M24G1-p1771B0",0,[1,7,9,14],"1a+252a+483a+1035a"]], ["CHAR",["M24","M24G1-p2024B0",0,[1,2,7,9,17],"1a+23a+252a+483a+1265a"]], ["CHAR",["M24","M24G1-p24B0",0,[1,2],"1a+23a"]], ["CHAR",["M24","M24G1-p276B0",0,[1,2,7],"1a+23a+252a"]], ["CHAR",["M24","M24G1-p3795B0",0,[1,7,9,14,19],"1a+252a+483a+1035a+2024a"]], ["CHAR",["M24","M24G1-p759B0",0,[1,2,7,9],"1a+23a+252a+483a"]], ["CHAR",["McL","McLG1-Zr231B0",0,3,"231a"]], ["CHAR",["McL","McLG1-f11r22B0",11,2,"22a"]], ["CHAR",["McL","McLG1-f11r231B0",11,3,"231a"]], ["CHAR",["McL","McLG1-f11r251B0",11,4,"251a"]], ["CHAR",["McL","McLG1-f11r896B0",11,7,"896a"]], ["CHAR",["McL","McLG1-f121r770aB0",11,5,"770a"]], ["CHAR",["McL","McLG1-f121r770bB0",11,6,"770b"]], ["CHAR",["McL","McLG1-f23r896bB0",23,8,"896b"]], ["CHAR",["McL","McLG1-f25r1200aB0",5,8,"1200a"]], ["CHAR",["McL","McLG1-f2r22B0",2,2,"22a"]], ["CHAR",["McL","McLG1-f2r230B0",2,3,"230a"]], ["CHAR",["McL","McLG1-f2r748aB0",2,4,"748a"]], ["CHAR",["McL","McLG1-f2r748bB0",2,5,"748b"]], ["CHAR",["McL","McLG1-f3r104aB0",3,3,"104a"]], ["CHAR",["McL","McLG1-f3r104bB0",3,4,"104b"]], ["CHAR",["McL","McLG1-f3r210B0",3,5,"210a"]], ["CHAR",["McL","McLG1-f3r21B0",3,2,"21a"]], ["CHAR",["McL","McLG1-f3r560B0",3,6,"560a"]], ["CHAR",["McL","McLG1-f49r770aB0",7,5,"770a"]], ["CHAR",["McL","McLG1-f49r770bB0",7,6,"770b"]], ["CHAR",["McL","McLG1-f49r896aB0",7,7,"896a"]], ["CHAR",["McL","McLG1-f49r896bB0",7,8,"896b"]], ["CHAR",["McL","McLG1-f4r896aB0",2,6,"896a"]], ["CHAR",["McL","McLG1-f4r896bB0",2,7,"896b"]], ["CHAR",["McL","McLG1-f5r210B0",5,3,"210a"]], ["CHAR",["McL","McLG1-f5r21B0",5,2,"21a"]], ["CHAR",["McL","McLG1-f5r230B0",5,4,"230a"]], ["CHAR",["McL","McLG1-f5r560B0",5,5,"560a"]], ["CHAR",["McL","McLG1-f5r896bB0",5,7,"896b"]], ["CHAR",["McL","McLG1-f7r22B0",7,2,"22a"]], ["CHAR",["McL","McLG1-f7r231B0",7,3,"231a"]], ["CHAR",["McL","McLG1-f7r252B0",7,4,"252a"]], ["CHAR",["McL","McLG1-f9r605aB0",3,7,"605a"]], ["CHAR",["McL","McLG1-f9r605bB0",3,8,"605b"]], ["CHAR",["McL","McLG1-p113400B0",0,[1,2,[4,2],[9,3],[10,2],12,[14,2],18,19,[20,3],21,22,23,24],"1a+22a+252a^2+1750a^3+3520a^2+4500a+5103a^2+8250ab+9625a^3+9856ab+10395ab"]], ["CHAR",["McL","McLG1-p15400aB0",0,[1,4,12,14,15],"1a+252a+4500a+5103a+5544a"]], ["CHAR",["McL","McLG1-p15400bB0",0,[1,2,[4,2],9,10,12,14],"1a+22a+252a^2+1750a+3520a+4500a+5103a"]], ["CHAR",["McL","McLG1-p2025aB0",0,[1,2,4,9],"1a+22a+252a+1750a"]], ["CHAR",["McL","McLG1-p2025bB0",0,[1,2,4,9],"1a+22a+252a+1750a"]], ["CHAR",["McL","McLG1-p22275aB0",0,[1,2,[4,2],[9,2],10,14,20],"1a+22a+252a^2+1750a^2+3520a+5103a+9625a"]], ["CHAR",["McL","McLG1-p22275bB0",0,[1,4,9,14,15,20],"1a+252a+1750a+5103a+5544a+9625a"]], ["CHAR",["McL","McLG1-p22275cB0",0,[1,2,[4,2],[9,2],10,14,20],"1a+22a+252a^2+1750a^2+3520a+5103a+9625a"]], ["CHAR",["McL","McLG1-p22275dB0",0,[1,2,[4,2],[9,2],10,14,20],"1a+22a+252a^2+1750a^2+3520a+5103a+9625a"]], ["CHAR",["McL","McLG1-p275B0",0,[1,2,4],"1a+22a+252a"]], ["CHAR",["McL","McLG1-p299376B0",0,[1,4,7,8,9,10,[12,3],[13,2],[14,3],[15,2],[16,2],[17,2],[18,3],[19,3],[20,4],[21,2],[22,2],[23,4],[24,4]],"1a+252a+896ab+1750a+3520a+4500a^3+4752a^2+5103a^3+5544a^2+8019a^2b^2+8250a^3b^3+9625a^4+9856a^2b^2+10395a^4b^4"]], ["CHAR",["McL","McLG1-p7128B0",0,[1,2,4,9,14],"1a+22a+252a+1750a+5103a"]], ["CHAR",["McL.2","McLd2G1-f11r22aB0",11,3]], ["CHAR",["McL.2","McLd2G1-f11r231aB0",11,5]], ["CHAR",["McL.2","McLd2G1-f11r251aB0",11,7]], ["CHAR",["McL.2","McLd2G1-f11r896aB0",11,10]], ["CHAR",["McL.2","McLd2G1-f2r1496aB0",2,4]], ["CHAR",["McL.2","McLd2G1-f2r22B0",2,2]], ["CHAR",["McL.2","McLd2G1-f2r230aB0",2,3]], ["CHAR",["McL.2","McLd2G1-f3r104aB0",3,5]], ["CHAR",["McL.2","McLd2G1-f3r104bB0",3,7]], ["CHAR",["McL.2","McLd2G1-f3r210aB0",3,9]], ["CHAR",["McL.2","McLd2G1-f3r21aB0",3,3]], ["CHAR",["McL.2","McLd2G1-f3r560aB0",3,11]], ["CHAR",["McL.2","McLd2G1-f49r896aB0",7,10]], ["CHAR",["McL.2","McLd2G1-f5r210aB0",5,5]], ["CHAR",["McL.2","McLd2G1-f5r21aB0",5,3]], ["CHAR",["McL.2","McLd2G1-f5r230aB0",5,7]], ["CHAR",["McL.2","McLd2G1-f5r560aB0",5,9]], ["CHAR",["McL.2","McLd2G1-f5r896aB0",5,11]], ["CHAR",["McL.2","McLd2G1-f5r896bB0",5,13]], ["CHAR",["McL.2","McLd2G1-f7r22aB0",7,3]], ["CHAR",["McL.2","McLd2G1-f7r231aB0",7,5]], ["CHAR",["McL.2","McLd2G1-f7r252aB0",7,7]], ["CHAR",["McL.2","McLd2G1-p22275aB0",0,[1,3,[7,2],14,15,16,24,30]]], ["CHAR",["McL.2","McLd2G1-p275B0",0,[1,3,7]]], ["CHAR",["McL.2","McLd2G1-p4050B0",0,[1,2,3,4,7,8,14,15]]], ["CHAR",["McL.2","McLd2G1-p44550B0",0,[1,2,3,4,[7,2],[8,2],[14,2],[15,2],16,17,24,25,30,31]]], ["CHAR",["McL.2","McLd2G1-p7128B0",0,[1,4,7,14,24]]], ["CHAR",["O8-(2)","O8m2G1-Zr204aB0",0,5,"204a"]], ["CHAR",["O8-(2)","O8m2G1-Zr204bB0",0,6,"204b"]], ["CHAR",["O8-(2)","O8m2G1-Zr34B0",0,2,"34a"]], ["CHAR",["O8-(2)","O8m2G1-Zr51B0",0,3,"51a"]], ["CHAR",["O8-(2)","O8m2G1-Zr84B0",0,4,"84a"]], ["CHAR",["O8-(2)","O8m2G1-f17r34B0",17,2,"34a"]], ["CHAR",["O8-(2)","O8m2G1-f17r51B0",17,3,"51a"]], ["CHAR",["O8-(2)","O8m2G1-f17r83B0",17,4,"83a"]], ["CHAR",["O8-(2)","O8m2G1-f2r26B0",2,5,"26a"]], ["CHAR",["O8-(2)","O8m2G1-f2r48B0",2,6,"48a"]], ["CHAR",["O8-(2)","O8m2G1-f2r8B0",2,2,"8a"]], ["CHAR",["O8-(2)","O8m2G1-f3r34B0",3,2,"34a"]], ["CHAR",["O8-(2)","O8m2G1-f3r50B0",3,3,"50a"]], ["CHAR",["O8-(2)","O8m2G1-f4r48bB0",2,7,"48b"]], ["CHAR",["O8-(2)","O8m2G1-f4r48cB0",2,8,"48c"]], ["CHAR",["O8-(2)","O8m2G1-f4r8bB0",2,3,"8b"]], ["CHAR",["O8-(2)","O8m2G1-f4r8cB0",2,4,"8c"]], ["CHAR",["O8-(2)","O8m2G1-f5r34B0",5,2,"34a"]], ["CHAR",["O8-(2)","O8m2G1-f5r51B0",5,3,"51a"]], ["CHAR",["O8-(2)","O8m2G1-f5r84B0",5,4,"84a"]], ["CHAR",["O8-(2)","O8m2G1-f7r33B0",7,2,"33a"]], ["CHAR",["O8-(2)","O8m2G1-f7r51B0",7,3,"51a"]], ["CHAR",["O8-(2)","O8m2G1-f7r84B0",7,4,"84a"]], ["CHAR",["O8-(2)","O8m2G1-p1071B0",0,[1,2,4,8,9],"1a+34a+84a+476ab"]], ["CHAR",["O8-(2)","O8m2G1-p119B0",0,[1,2,4],"1a+34a+84a"]], ["CHAR",["O8-(2)","O8m2G1-p136B0",0,[1,3,4],"1a+51a+84a"]], ["CHAR",["O8-(2)","O8m2G1-p1632B0",0,[1,3,4,8,13],"1a+51a+84a+476a+1020a"]], ["CHAR",["O8-(2)","O8m2G1-p24192B0",0,[1,2,3,8,9,10,11,12,13,14,23,24,33,34,37,38],"1a+34a+51a+476ab+595a+714ab+1020a+1071a+2142cd+2856ab+4284a+4760a"]], ["CHAR",["O8-(2)","O8m2G1-p45696B0",0,[1,2,3,[4,2],[8,2],[9,2],10,11,12,[13,3],14,[19,2],23,24,25,[33,2],34,[35,2],36,37,38],"1a+34a+51a+84a^2+476a^2b^2+595a+714ab+1020a^3+1071a+1344a^2+2142cd+2176a+2856a^2b+3264a^2+4096a+4284a+4760a"]], ["CHAR",["O8-(2)","O8m2G1-p765B0",0,[1,4,6,8],"1a+84a+204b+476a"]], ["CHAR",["O8-(2).2","O8m2d2G1-f3r34B0",3,3]], ["CHAR",["O8-(2).2","O8m2d2G1-f3r50B0",3,5]], ["CHAR",["O8-(2).2","O8m2d2G1-p119B0",0,[1,3,7]]], ["CHAR",["ON","ONG1-f3r495B0",3,6,"495b"]], ["CHAR",["ON","ONG1-f3r684B0",3,[3,4],"342ab"]], ["CHAR",["ON","ONG1-p122760aB0",0,[1,2,7,9,11],"1a+10944a+26752a+32395b+52668a"]], ["CHAR",["ON.2","ONd2G1-p245520B0",0,[1,2,3,4,7,8,9,12,13]]], ["CHAR",["R(27)","R27G1-f27r7aB0",3,2,"7a"]], ["CHAR",["R(27)","R27G1-f2r702B0",2,2,"702a"]], ["CHAR",["R(27)","R27G1-p19684B0",0,[1,20],"1a+19683a"]], ["CHAR",["R(27).3","R27d3G1-f2r702B0",2,4]], ["CHAR",["R(27).3","R27d3G1-f3r21B0",3,2]], ["CHAR",["R(27).3","R27d3G1-f4r741B0",2,12]], ["CHAR",["R(27).3","R27d3G1-p19684B0",0,[1,34]]], ["CHAR",["Ru","RuG1-f13r378B0",13,2,"378a"]], ["CHAR",["Ru","RuG1-f13r406B0",13,4,"406a"]], ["CHAR",["Ru","RuG1-f13r783B0",13,5,"783a"]], ["CHAR",["Ru","RuG1-f29r378B0",29,3,"378b"]], ["CHAR",["Ru","RuG1-f29r406B0",29,4,"406a"]], ["CHAR",["Ru","RuG1-f29r783B0",29,5,"783a"]], ["CHAR",["Ru","RuG1-f2r1246B0",2,4,"1246a"]], ["CHAR",["Ru","RuG1-f2r28B0",2,2,"28a"]], ["CHAR",["Ru","RuG1-f2r376B0",2,3,"376a"]], ["CHAR",["Ru","RuG1-f3r406B0",3,4,"406a"]], ["CHAR",["Ru","RuG1-f3r783B0",3,5,"783a"]], ["CHAR",["Ru","RuG1-f49r378B0",7,2,"378a"]], ["CHAR",["Ru","RuG1-f5r133B0",5,2,"133a"]], ["CHAR",["Ru","RuG1-f5r273B0",5,3,"273a"]], ["CHAR",["Ru","RuG1-f5r378B0",5,4,"378a"]], ["CHAR",["Ru","RuG1-f5r783B0",5,6,"783a"]], ["CHAR",["Ru","RuG1-f7r406B0",7,4,"406a"]], ["CHAR",["Ru","RuG1-f7r782B0",7,5,"782a"]], ["CHAR",["Ru","RuG1-f9r378B0",3,3,"378b"]], ["CHAR",["Ru","RuG1-p4060B0",0,[1,5,6],"1a+783a+3276a"]], ["CHAR",["S4(4)","S44G1-Zr153B0",0,12,"153a"]], ["CHAR",["S4(4)","S44G1-Zr18B0",0,2,"18a"]], ["CHAR",["S4(4)","S44G1-Zr50B0",0,5,"50a"]], ["CHAR",["S4(4)","S44G1-Zr50aB0",0,5,"50a"]], ["CHAR",["S4(4)","S44G1-f17r18B0",17,2,"18a"]], ["CHAR",["S4(4)","S44G1-f3r18B0",3,2,"18a"]], ["CHAR",["S4(4)","S44G1-f5r18B0",5,2,"18a"]], ["CHAR",["S4(5)","S45G1-Zr104aB0",0,10,"104a"]], ["CHAR",["S4(5)","S45G1-Zr104bB0",0,11,"104b"]], ["CHAR",["S4(5)","S45G1-Zr104cB0",0,12,"104c"]], ["CHAR",["S4(5)","S45G1-Zr130B0",0,13,"130a"]], ["CHAR",["S4(5)","S45G1-Zr156B0",0,14,"156a"]], ["CHAR",["S4(5)","S45G1-Zr40B0",0,4,"40a"]], ["CHAR",["S4(5)","S45G1-Zr65aB0",0,5,"65a"]], ["CHAR",["S4(5)","S45G1-Zr65bB0",0,6,"65b"]], ["CHAR",["S4(5)","S45G1-Zr90B0",0,9,"90a"]], ["CHAR",["S4(5)","S45G1-f5r5B0",5,2,"5a"]], ["CHAR",["S6(2)","S62G1-Zr105aB0",0,12,"105a"]], ["CHAR",["S6(2)","S62G1-Zr105bB0",0,13,"105b"]], ["CHAR",["S6(2)","S62G1-Zr105cB0",0,14,"105c"]], ["CHAR",["S6(2)","S62G1-Zr120B0",0,15,"120a"]], ["CHAR",["S6(2)","S62G1-Zr15B0",0,3,"15a"]], ["CHAR",["S6(2)","S62G1-Zr168B0",0,16,"168a"]], ["CHAR",["S6(2)","S62G1-Zr189aB0",0,17,"189a"]], ["CHAR",["S6(2)","S62G1-Zr189bB0",0,18,"189b"]], ["CHAR",["S6(2)","S62G1-Zr189cB0",0,19,"189c"]], ["CHAR",["S6(2)","S62G1-Zr210aB0",0,20,"210a"]], ["CHAR",["S6(2)","S62G1-Zr210bB0",0,21,"210b"]], ["CHAR",["S6(2)","S62G1-Zr216B0",0,22,"216a"]], ["CHAR",["S6(2)","S62G1-Zr21aB0",0,4,"21a"]], ["CHAR",["S6(2)","S62G1-Zr21bB0",0,5,"21b"]], ["CHAR",["S6(2)","S62G1-Zr27B0",0,6,"27a"]], ["CHAR",["S6(2)","S62G1-Zr35aB0",0,7,"35a"]], ["CHAR",["S6(2)","S62G1-Zr35bB0",0,8,"35b"]], ["CHAR",["S6(2)","S62G1-Zr56B0",0,9,"56a"]], ["CHAR",["S6(2)","S62G1-Zr70B0",0,10,"70a"]], ["CHAR",["S6(2)","S62G1-Zr7B0",0,2,"7a"]], ["CHAR",["S6(2)","S62G1-Zr84B0",0,11,"84a"]], ["CHAR",["S6(2)","S62G1-f2r112B0",2,7,"112a"]], ["CHAR",["S6(2)","S62G1-f2r14B0",2,4,"14a"]], ["CHAR",["S6(2)","S62G1-f2r48B0",2,5,"48a"]], ["CHAR",["S6(2)","S62G1-f2r512B0",2,8,"512a"]], ["CHAR",["S6(2)","S62G1-f2r64B0",2,6,"64a"]], ["CHAR",["S6(2)","S62G1-f2r6B0",2,2,"6a"]], ["CHAR",["S6(2)","S62G1-f2r8B0",2,3,"8a"]], ["CHAR",["S6(2)","S62G1-f3r14B0",3,3,"14a"]], ["CHAR",["S6(2)","S62G1-f3r189aB0",3,11,"189a"]], ["CHAR",["S6(2)","S62G1-f3r189bB0",3,12,"189b"]], ["CHAR",["S6(2)","S62G1-f3r189cB0",3,13,"189c"]], ["CHAR",["S6(2)","S62G1-f3r196B0",3,14,"196a"]], ["CHAR",["S6(2)","S62G1-f3r21B0",3,4,"21a"]], ["CHAR",["S6(2)","S62G1-f3r27B0",3,5,"27a"]], ["CHAR",["S6(2)","S62G1-f3r34B0",3,6,"34a"]], ["CHAR",["S6(2)","S62G1-f3r35B0",3,7,"35a"]], ["CHAR",["S6(2)","S62G1-f3r405B0",3,15,"405a"]], ["CHAR",["S6(2)","S62G1-f3r49B0",3,8,"49a"]], ["CHAR",["S6(2)","S62G1-f3r7B0",3,2,"7a"]], ["CHAR",["S6(2)","S62G1-f3r91B0",3,9,"91a"]], ["CHAR",["S6(2)","S62G1-f3r98B0",3,10,"98a"]], ["CHAR",["S6(2)","S62G1-p120B0",0,[1,7,11],"1a+35a+84a"]], ["CHAR",["S6(2)","S62G1-p126B0",0,[1,2,6,8,9],"1a+7a+27a+35b+56a"]], ["CHAR",["S6(2)","S62G1-p135B0",0,[1,3,8,11],"1a+15a+35b+84a"]], ["CHAR",["S6(2)","S62G1-p240B0",0,[1,3,7,11,14],"1a+15a+35a+84a+105c"]], ["CHAR",["S6(2)","S62G1-p288B0",0,[1,6,8,13,15],"1a+27a+35b+105b+120a"]], ["CHAR",["S6(2)","S62G1-p28B0",0,[1,6],"1a+27a"]], ["CHAR",["S6(2)","S62G1-p315B0",0,[1,6,8,11,16],"1a+27a+35b+84a+168a"]], ["CHAR",["S6(2)","S62G1-p336B0",0,[1,6,8,13,16],"1a+27a+35b+105b+168a"]], ["CHAR",["S6(2)","S62G1-p36B0",0,[1,8],"1a+35b"]], ["CHAR",["S6(2)","S62G1-p378aB0",0,[1,[6,2],8,15,16],"1a+27a^2+35b+120a+168a"]], ["CHAR",["S6(2)","S62G1-p378bB0",0,[1,3,6,8,11,22],"1a+15a+27a+35b+84a+216a"]], ["CHAR",["S6(2)","S62G1-p56B0",0,[1,2,5,6],"1a+7a+21b+27a"]], ["CHAR",["S6(2)","S62G1-p63B0",0,[1,6,8],"1a+27a+35b"]], ["CHAR",["S6(2)","S62G1-p72B0",0,[1,3,5,8],"1a+15a+21b+35b"]], ["CHAR",["S6(2)","S62G1-p960B0",0,[1,10,11,13,23,29],"1a+70a+84a+105b+280a+420a"]], ["CHAR",["Suz","SuzG1-Zr143B0",0,2,"143a"]], ["CHAR",["Suz","SuzG1-f11r143B0",11,2,"143a"]], ["CHAR",["Suz","SuzG1-f11r364B0",11,3,"364a"]], ["CHAR",["Suz","SuzG1-f11r779B0",11,4,"779a"]], ["CHAR",["Suz","SuzG1-f13r143B0",13,2,"143a"]], ["CHAR",["Suz","SuzG1-f13r364B0",13,3,"364a"]], ["CHAR",["Suz","SuzG1-f13r780B0",13,4,"780a"]], ["CHAR",["Suz","SuzG1-f2r142B0",2,4,"142a"]], ["CHAR",["Suz","SuzG1-f2r638B0",2,7,"638a"]], ["CHAR",["Suz","SuzG1-f3r286B0",3,4,"286a"]], ["CHAR",["Suz","SuzG1-f3r429B0",3,5,"429a"]], ["CHAR",["Suz","SuzG1-f3r649B0",3,6,"649a"]], ["CHAR",["Suz","SuzG1-f3r64B0",3,2,"64a"]], ["CHAR",["Suz","SuzG1-f3r78B0",3,3,"78a"]], ["CHAR",["Suz","SuzG1-f5r143B0",5,2,"143a"]], ["CHAR",["Suz","SuzG1-f5r363B0",5,3,"363a"]], ["CHAR",["Suz","SuzG1-f5r780B0",5,4,"780a"]], ["CHAR",["Suz","SuzG1-f7r143B0",7,2,"143a"]], ["CHAR",["Suz","SuzG1-f7r364B0",7,3,"364a"]], ["CHAR",["Suz","SuzG1-f7r780B0",7,4,"780a"]], ["CHAR",["Suz","SuzG1-p135135B0",0,[1,2,4,6,9,12,16,17,27],"1a+143a+780a+3432a+5940a+14300a+18954a+25025a+66560a"]], ["CHAR",["Suz","SuzG1-p1782B0",0,[1,4,5],"1a+780a+1001a"]], ["CHAR",["Suz","SuzG1-p22880B0",0,[1,3,4,9,15],"1a+364a+780a+5940a+15795a"]], ["CHAR",["Suz","SuzG1-p232960B0",0,[1,[3,2],9,11,12,13,14,15,23,33],"1a+364a^2+5940a+12012a+14300a+15015ab+15795a+54054a+100100a"]], ["CHAR",["Suz","SuzG1-p32760B0",0,[1,2,3,9,11,12],"1a+143a+364a+5940a+12012a+14300a"]], ["CHAR",["Suz","SuzG1-p370656B0",0,[1,[4,2],5,6,9,15,16,17,24,27,29,30],"1a+780a^2+1001a+3432a+5940a+15795a+18954a+25025a+64064a+66560a+79872a+88452a"]], ["CHAR",["Suz","SuzG1-p405405B0",0,[1,3,4,5,9,11,12,15,17,27,28,30,33],"1a+364a+780a+1001a+5940a+12012a+14300a+15795a+25025a+66560a+75075a+88452a+100100a"]], ["CHAR",["Suz.2","Suzd2G1-p1782B0",0,[1,7,9]]], ["CHAR",["Sz(32)","Sz32G1-f41r124bB0",41,3,"124b"]], ["CHAR",["Sz(32)","Sz32G1-f5r124aB0",5,2,"124a"]], ["CHAR",["Sz(32)","Sz32G1-p1025B0",0,[1,14],"1a+1024a"]], ["CHAR",["Sz(32)","Sz32G1-p198400B0",0,[1,[4,6],[5,6],[6,6],[7,6],[8,6],[9,6],[10,6],[11,6],[12,6],[13,6],[14,6],[15,7],[16,7],[17,7],[18,7],[19,7],[20,7],[21,7],[22,7],[23,7],[24,7],[25,7],[26,7],[27,7],[28,7],[29,7],[30,5],[31,5],[32,5],[33,5],[34,5],[35,5]],"1a+775a^6b^6c^6d^6e^6f^6g^6h^6i^6j^6+1024a^6+1025a^7b^7c^7d^7e^7f^7g^7h^7i^7j^7k^7l^7m^7n^7o^7+1271a^5b^5c^5d^5e^5f^5"]], ["CHAR",["Sz(8)","Sz8G1-Ar14aB0",0,2,"14a"]], ["CHAR",["Sz(8)","Sz8G1-Ar14bB0",0,3,"14b"]], ["CHAR",["Sz(8)","Sz8G1-Ar65aB0",0,8,"65a"]], ["CHAR",["Sz(8)","Sz8G1-Ar65bB0",0,9,"65b"]], ["CHAR",["Sz(8)","Sz8G1-Ar65cB0",0,10,"65c"]], ["CHAR",["Sz(8)","Sz8G1-Zr64B0",0,7,"64a"]], ["CHAR",["Sz(8)","Sz8G1-Zr91B0",0,11,"91a"]], ["CHAR",["Sz(8)","Sz8G1-f125r65aB0",5,8,"65a"]], ["CHAR",["Sz(8)","Sz8G1-f125r65bB0",5,10,"65c"]], ["CHAR",["Sz(8)","Sz8G1-f125r65cB0",5,9,"65b"]], ["CHAR",["Sz(8)","Sz8G1-f13r14aB0",13,2,"14a"]], ["CHAR",["Sz(8)","Sz8G1-f13r14bB0",13,3,"14b"]], ["CHAR",["Sz(8)","Sz8G1-f13r35B0",13,4,"35a"]], ["CHAR",["Sz(8)","Sz8G1-f13r65aB0",13,5,"65a"]], ["CHAR",["Sz(8)","Sz8G1-f13r65bB0",13,6,"65b"]], ["CHAR",["Sz(8)","Sz8G1-f13r65cB0",13,7,"65c"]], ["CHAR",["Sz(8)","Sz8G1-f13r91B0",13,8,"91a"]], ["CHAR",["Sz(8)","Sz8G1-f2r64B0",2,8,"64a"]], ["CHAR",["Sz(8)","Sz8G1-f49r14aB0",7,2,"14a"]], ["CHAR",["Sz(8)","Sz8G1-f5r14aB0",5,2,"14a"]], ["CHAR",["Sz(8)","Sz8G1-f5r14bB0",5,3,"14b"]], ["CHAR",["Sz(8)","Sz8G1-f5r195B0",5,[8,9,10],"65abc"]], ["CHAR",["Sz(8)","Sz8G1-f5r35aB0",5,4,"35a"]], ["CHAR",["Sz(8)","Sz8G1-f5r35bB0",5,5,"35b"]], ["CHAR",["Sz(8)","Sz8G1-f5r35cB0",5,6,"35c"]], ["CHAR",["Sz(8)","Sz8G1-f5r63B0",5,7,"63a"]], ["CHAR",["Sz(8)","Sz8G1-f7r105B0",7,[4,5,6],"35abc"]], ["CHAR",["Sz(8)","Sz8G1-f7r64B0",7,7,"64a"]], ["CHAR",["Sz(8)","Sz8G1-f7r91B0",7,8,"91a"]], ["CHAR",["Sz(8)","Sz8G1-f8r16aB0",2,5,"16a"]], ["CHAR",["Sz(8)","Sz8G1-f8r4aB0",2,2,"4a"]], ["CHAR",["Sz(8)","Sz8G1-p1456B0",0,[1,[4,2],[5,2],[6,2],[7,3],[8,4],[9,4],[10,4],[11,3]],"1a+35a^2b^2c^2+64a^3+65a^4b^4c^4+91a^3"]], ["CHAR",["Sz(8)","Sz8G1-p2080B0",0,[1,[4,4],[5,4],[6,4],[7,5],[8,5],[9,5],[10,5],[11,4]],"1a+35a^4b^4c^4+64a^5+65a^5b^5c^5+91a^4"]], ["CHAR",["Sz(8)","Sz8G1-p520B0",0,[1,4,5,6,[7,2],8,9,10,11],"1a+35abc+64a^2+65abc+91a"]], ["CHAR",["Sz(8)","Sz8G1-p560B0",0,[1,4,5,6,7,[8,2],[9,2],[10,2]],"1a+35abc+64a+65a^2b^2c^2"]], ["CHAR",["Sz(8)","Sz8G1-p65B0",0,[1,7],"1a+64a"]], ["CHAR",["Sz(8).3","Sz8d3G1-f13r14B0",13,4]], ["CHAR",["Sz(8).3","Sz8d3G1-f2r12B0",2,4]], ["CHAR",["Sz(8).3","Sz8d3G1-f2r48B0",2,5]], ["CHAR",["Sz(8).3","Sz8d3G1-f2r64B0",2,6]], ["CHAR",["Sz(8).3","Sz8d3G1-f49r14B0",7,4]], ["CHAR",["Sz(8).3","Sz8d3G1-f5r105B0",5,10]], ["CHAR",["Sz(8).3","Sz8d3G1-f5r14B0",5,4]], ["CHAR",["Sz(8).3","Sz8d3G1-f5r195B0",5,14]], ["CHAR",["Sz(8).3","Sz8d3G1-f5r63B0",5,11]], ["CHAR",["Sz(8).3","Sz8d3G1-p1456B0",0,[1,[10,2],11,12,13,[14,4],15,16,17]]], ["CHAR",["Sz(8).3","Sz8d3G1-p2080B0",0,[1,[10,4],[11,3],12,13,[14,5],[15,2],16,17]]], ["CHAR",["Sz(8).3","Sz8d3G1-p520B0",0,[1,10,[11,2],14,15]]], ["CHAR",["Sz(8).3","Sz8d3G1-p560B0",0,[1,10,11,[14,2]]]], ["CHAR",["Sz(8).3","Sz8d3G1-p65B0",0,[1,11]]], ["CHAR",["Th","ThG1-f13r248B0",13,2,"248a"]], ["CHAR",["U3(11)","U311G1-Zr111aB0",0,3,"111a"]], ["CHAR",["U3(11)","U311G1-f11r8B0",11,2,"8a"]], ["CHAR",["U3(11)","U311G1-f2r110B0",2,2,"110a"]], ["CHAR",["U3(11)","U311G1-p1332B0",0,[1,18],"1a+1331a"]], ["CHAR",["U3(3)","U33G1-Zr14aB0",0,6,"14a"]], ["CHAR",["U3(3)","U33G1-Zr21aB0",0,7,"21a"]], ["CHAR",["U3(3)","U33G1-Zr27B0",0,10,"27a"]], ["CHAR",["U3(3)","U33G1-Zr7aB0",0,3,"7a"]], ["CHAR",["U3(3)","U33G1-f2r14B0",2,3,"14a"]], ["CHAR",["U3(3)","U33G1-f2r6B0",2,2,"6a"]], ["CHAR",["U3(3)","U33G1-f3r27B0",3,9,"27a"]], ["CHAR",["U3(3)","U33G1-f3r7B0",3,6,"7a"]], ["CHAR",["U3(3)","U33G1-f7r14B0",7,6,"14a"]], ["CHAR",["U3(3)","U33G1-f7r21aB0",7,7,"21a"]], ["CHAR",["U3(3)","U33G1-f7r26B0",7,10,"26a"]], ["CHAR",["U3(3)","U33G1-f7r6B0",7,2,"6a"]], ["CHAR",["U3(3)","U33G1-f7r7aB0",7,3,"7a"]], ["CHAR",["U3(4)","U34G1-Zr64B0",0,13,"64a"]], ["CHAR",["U3(4)","U34G1-Zr65aB0",0,14,"65a"]], ["CHAR",["U3(4)","U34G1-f13r12B0",13,2,"12a"]], ["CHAR",["U3(4)","U34G1-f13r208B0",13,[9,10,11,12],"52abcd"]], ["CHAR",["U3(4)","U34G1-f13r260B0",13,[15,16,17,18],"65bcde"]], ["CHAR",["U3(4)","U34G1-f13r52eB0",13,[3,4,5,6],"13abcd"]], ["CHAR",["U3(4)","U34G1-f13r63B0",13,13,"63a"]], ["CHAR",["U3(4)","U34G1-f13r65aB0",13,14,"65a"]], ["CHAR",["U3(4)","U34G1-f13r78B0",13,[7,8],"39ab"]], ["CHAR",["U3(4)","U34G1-f2r12B0",2,[2,3,4,5],"3abcd"]], ["CHAR",["U3(4)","U34G1-f2r16B0",2,[6,7],"8ab"]], ["CHAR",["U3(4)","U34G1-f2r36B0",2,[8,9,10,11],"9abcd"]], ["CHAR",["U3(4)","U34G1-f2r64B0",2,16,"64a"]], ["CHAR",["U3(4)","U34G1-f2r96B0",2,[12,13,14,15],"24abcd"]], ["CHAR",["U3(4)","U34G1-f3r12B0",3,2,"12a"]], ["CHAR",["U3(4)","U34G1-f3r208B0",3,[9,10,11,12],"52abcd"]], ["CHAR",["U3(4)","U34G1-f3r52eB0",3,[3,4,5,6],"13abcd"]], ["CHAR",["U3(4)","U34G1-f3r64B0",3,13,"64a"]], ["CHAR",["U3(4)","U34G1-f3r78B0",3,[7,8],"39ab"]], ["CHAR",["U3(4)","U34G1-f5r12B0",5,2,"12a"]], ["CHAR",["U3(4)","U34G1-f5r300B0",5,[5,6,7,8],"75abcd"]], ["CHAR",["U3(4)","U34G1-f5r39B0",5,3,"39a"]], ["CHAR",["U3(4)","U34G1-f5r65B0",5,4,"65a"]], ["CHAR",["U3(4).4","U34d4G1-f13r78aB0",13,10,"78a"]], ["CHAR",["U3(4).4","U34d4G1-f3r78aB0",3,10,"78a"]], ["CHAR",["U3(5)","U35G1-Zr105B0",0,8,"105a"]], ["CHAR",["U3(5)","U35G1-Zr125B0",0,9,"125a"]], ["CHAR",["U3(5)","U35G1-Zr126aB0",0,10,"126a"]], ["CHAR",["U3(5)","U35G1-Zr21B0",0,3,"21a"]], ["CHAR",["U3(5)","U35G1-Zr84B0",0,7,"84a"]], ["CHAR",["U3(7)","U37G1-Zr43aB0",0,3,"43a"]], ["CHAR",["U3(7)","U37G1-f2r258B0",2,3,"258a"]], ["CHAR",["U3(7)","U37G1-f2r344B0",2,4,"344a"]], ["CHAR",["U3(7)","U37G1-f2r42B0",2,2,"42a"]], ["CHAR",["U3(7)","U37G1-f3r42B0",3,2,"42a"]], ["CHAR",["U3(7)","U37G1-f3r43aB0",3,3,"43a"]], ["CHAR",["U3(7)","U37G1-f43r42B0",43,2,"42a"]], ["CHAR",["U3(7)","U37G1-f43r43aB0",43,3,"43a"]], ["CHAR",["U3(7)","U37G1-f7r12B0",7,[4,5],"6ab"]], ["CHAR",["U3(7)","U37G1-f7r20B0",7,[7,8],"10ab"]], ["CHAR",["U3(7)","U37G1-f7r27B0",7,17,"27a"]], ["CHAR",["U3(7)","U37G1-f7r30aB0",7,[9,10],"15ab"]], ["CHAR",["U3(7)","U37G1-f7r30bB0",7,[11,12],"15cd"]], ["CHAR",["U3(7)","U37G1-f7r37B0",7,26,"37a"]], ["CHAR",["U3(7)","U37G1-f7r42cB0",7,[13,14],"21ab"]], ["CHAR",["U3(7)","U37G1-f7r48B0",7,[15,16],"24ab"]], ["CHAR",["U3(7)","U37G1-f7r6cB0",7,[2,3],"3ab"]], ["CHAR",["U3(7)","U37G1-f7r8B0",7,6,"8a"]], ["CHAR",["U3(8)","U38G1-f3r56B0",3,2,"56a"]], ["CHAR",["U3(9)","U39G1-Zr73aB0",0,3,"73a"]], ["CHAR",["U4(2)","U42G1-Ar10B0",0,5,"10a"]], ["CHAR",["U4(2)","U42G1-Ar10aB0",0,5,"10a"]], ["CHAR",["U4(2)","U42G1-Ar10bB0",0,6,"10b"]], ["CHAR",["U4(2)","U42G1-Ar30bB0",0,12,"30b"]], ["CHAR",["U4(2)","U42G1-Ar30cB0",0,13,"30c"]], ["CHAR",["U4(2)","U42G1-Ar40aB0",0,14,"40a"]], ["CHAR",["U4(2)","U42G1-Ar40bB0",0,15,"40b"]], ["CHAR",["U4(2)","U42G1-Ar45aB0",0,16,"45a"]], ["CHAR",["U4(2)","U42G1-Ar45bB0",0,17,"45b"]], ["CHAR",["U4(2)","U42G1-Ar5aB0",0,2,"5a"]], ["CHAR",["U4(2)","U42G1-Ar5bB0",0,3,"5b"]], ["CHAR",["U4(2)","U42G1-Zr15aB0",0,7,"15a"]], ["CHAR",["U4(2)","U42G1-Zr15bB0",0,8,"15b"]], ["CHAR",["U4(2)","U42G1-Zr20B0",0,9,"20a"]], ["CHAR",["U4(2)","U42G1-Zr24B0",0,10,"24a"]], ["CHAR",["U4(2)","U42G1-Zr30aB0",0,11,"30a"]], ["CHAR",["U4(2)","U42G1-Zr60B0",0,18,"60a"]], ["CHAR",["U4(2)","U42G1-Zr64B0",0,19,"64a"]], ["CHAR",["U4(2)","U42G1-Zr6B0",0,4,"6a"]], ["CHAR",["U4(2)","U42G1-Zr80B0",0,[14,15],"40ab"]], ["CHAR",["U4(2)","U42G1-Zr81B0",0,20,"81a"]], ["CHAR",["U4(2)","U42G1-f25r10bB0",5,6,"10b"]], ["CHAR",["U4(2)","U42G1-f25r5aB0",5,2,"5a"]], ["CHAR",["U4(2)","U42G1-f3r10B0",3,3,"10a"]], ["CHAR",["U4(2)","U42G1-f3r14B0",3,4,"14a"]], ["CHAR",["U4(2)","U42G1-f3r25B0",3,5,"25a"]], ["CHAR",["U4(2)","U42G1-f3r5B0",3,2,"5a"]], ["CHAR",["U4(2)","U42G1-f3r81B0",3,6,"81a"]], ["CHAR",["U4(2)","U42G1-f4r4aB0",2,2,"4a"]], ["CHAR",["U4(2)","U42G1-f5r6B0",5,4,"6a"]], ["CHAR",["U4(2)","U42G1-p27B0",0,[1,4,9],"1a+6a+20a"]], ["CHAR",["U4(2)","U42G1-p36B0",0,[1,8,9],"1a+15b+20a"]], ["CHAR",["U4(2)","U42G1-p40aB0",0,[1,7,10],"1a+15a+24a"]], ["CHAR",["U4(2)","U42G1-p40bB0",0,[1,8,10],"1a+15b+24a"]], ["CHAR",["U4(2)","U42G1-p45B0",0,[1,9,10],"1a+20a+24a"]], ["CHAR",["U4(2).2","U42d2G1-f2r14B0",2,4]], ["CHAR",["U4(2).2","U42d2G1-f2r40B0",2,5]], ["CHAR",["U4(2).2","U42d2G1-f2r64B0",2,6]], ["CHAR",["U4(2).2","U42d2G1-f2r6B0",2,3]], ["CHAR",["U4(2).2","U42d2G1-f2r8B0",2,2]], ["CHAR",["U4(2).2","U42d2G1-f3r5B0",3,3]], ["CHAR",["U4(2).2","U42d2G1-p27B0",0,[1,4,11]]], ["CHAR",["U4(2).2","U42d2G1-p36B0",0,[1,9,11]]], ["CHAR",["U4(2).2","U42d2G1-p40aB0",0,[1,8,13]]], ["CHAR",["U4(2).2","U42d2G1-p40bB0",0,[1,9,13]]], ["CHAR",["U4(2).2","U42d2G1-p45B0",0,[1,11,13]]], ["CHAR",["U4(3)","U43G1-Zr140B0",0,6,"140a"]], ["CHAR",["U4(3)","U43G1-Zr189B0",0,7,"189a"]], ["CHAR",["U4(3)","U43G1-Zr210B0",0,8,"210a"]], ["CHAR",["U4(3)","U43G1-Zr21B0",0,2,"21a"]], ["CHAR",["U4(3)","U43G1-Zr90B0",0,5,"90a"]], ["CHAR",["U5(2)","U52G1-Ar66aB0",0,9,"66a"]], ["CHAR",["U5(2)","U52G1-Ar66bB0",0,10,"66b"]], ["CHAR",["U5(2)","U52G1-Zr120B0",0,16,"120a"]], ["CHAR",["U5(2)","U52G1-Zr165B0",0,17,"165a"]], ["CHAR",["U5(2)","U52G1-Zr176B0",0,18,"176a"]], ["CHAR",["U5(2)","U52G1-Zr55B0",0,6,"55a"]], ["CHAR",["U5(2)","U52G1-f11r119B0",11,16,"119a"]], ["CHAR",["U5(2)","U52G1-f11r176B0",11,18,"176a"]], ["CHAR",["U5(2)","U52G1-f11r44B0",11,5,"44a"]], ["CHAR",["U5(2)","U52G1-f2r24B0",2,6,"24a"]], ["CHAR",["U5(2)","U52G1-f2r74B0",2,11,"74a"]], ["CHAR",["U5(2)","U52G1-f3r100B0",3,5,"100a"]], ["CHAR",["U5(2)","U52G1-f3r10B0",3,2,"10a"]], ["CHAR",["U5(2)","U52G1-f3r110B0",3,6,"110a"]], ["CHAR",["U5(2)","U52G1-f3r44B0",3,3,"44a"]], ["CHAR",["U5(2)","U52G1-f3r55B0",3,4,"55a"]], ["CHAR",["U5(2)","U52G1-f4r10aB0",2,4,"10a"]], ["CHAR",["U5(2)","U52G1-f4r10bB0",2,5,"10b"]], ["CHAR",["U5(2)","U52G1-f4r5aB0",2,2,"5a"]], ["CHAR",["U5(2)","U52G1-f4r5bB0",2,3,"5b"]], ["CHAR",["U5(2)","U52G1-f5r120B0",5,16,"120a"]], ["CHAR",["U5(2)","U52G1-f5r176B0",5,18,"176a"]], ["CHAR",["U5(2)","U52G1-f5r43B0",5,5,"43a"]], ["CHAR",["U5(2)","U52G1-f5r55aB0",5,6,"55a"]], ["CHAR",["U5(2)","U52G1-p1408B0",0,[1,6,9,10,16,28,35],"1a+55a+66ab+120a+440a+660a"]], ["CHAR",["U5(2)","U52G1-p165B0",0,[1,5,16],"1a+44a+120a"]], ["CHAR",["U5(2)","U52G1-p176B0",0,[1,6,16],"1a+55a+120a"]], ["CHAR",["U5(2)","U52G1-p20736B0",0,[1,3,4,6,[9,2],[10,2],14,15,16,[18,3],[21,2],[22,2],28,29,30,[31,2],[32,2],[35,3],36,37,[38,2],[39,2],[43,2],[44,2],[45,2],46,47],"1a+11ab+55a+66a^2b^2+110de+120a+176a^3+220c^2d^2+440abc+495a^2b^2+660a^3+704ab+880a^2b^2+990a^2b^2+1024a^2+1215ab"]], ["CHAR",["U5(2)","U52G1-p297B0",0,[1,16,18],"1a+120a+176a"]], ["CHAR",["U5(2)","U52G1-p3520B0",0,[1,5,6,[16,2],17,28,35,40,45],"1a+44a+55a+120a^2+165a+440a+660a+891a+1024a"]], ["CHAR",["U5(2).2","U52d2G1-f2r1024B0",2,10]], ["CHAR",["U5(2).2","U52d2G1-f2r10B0",2,2]], ["CHAR",["U5(2).2","U52d2G1-f2r20B0",2,3]], ["CHAR",["U5(2).2","U52d2G1-f2r24B0",2,4]], ["CHAR",["U5(2).2","U52d2G1-f2r320B0",2,8]], ["CHAR",["U5(2).2","U52d2G1-f2r560B0",2,9]], ["CHAR",["U5(2).2","U52d2G1-f2r74B0",2,7]], ["CHAR",["U5(2).2","U52d2G1-f2r80aB0",2,5]], ["CHAR",["U5(2).2","U52d2G1-f2r80bB0",2,6]], ["CHAR",["U5(2).2","U52d2G1-f3r10aB0",3,4]], ["CHAR",["U5(2).2","U52d2G1-p1408B0",0,[1,8,11,16,28,33]]], ["CHAR",["U5(2).2","U52d2G1-p165B0",0,[1,6,16]]], ["CHAR",["U5(2).2","U52d2G1-p176B0",0,[1,8,16]]], ["CHAR",["U5(2).2","U52d2G1-p20736B0",0,[1,5,8,[11,2],15,16,[20,2],21,[23,2],28,30,[31,2],[33,2],34,35,[36,2],[40,2],[41,2],43]]], ["CHAR",["U5(2).2","U52d2G1-p297B0",0,[1,16,20]]], ["CHAR",["U5(2).2","U52d2G1-p3520B0",0,[1,6,8,[16,2],18,28,33,37,41]]] ] } atlasrep-2.1.8/makedocrel.g0000644000175000017500000003030614467506405013752 0ustar samsam## this creates the documentation, needs: GAPDoc package, latex, pdflatex, ## mkindex, dvips ## SetInfoLevel( InfoGAPDoc, 2 ); SetGapDocLaTeXOptions( "nocolor", "utf8" ); pathtodoc:= "doc";; main:= "main.xml";; pkgname:= "AtlasRep";; # Extract the book name from the 'main' file. str:= StringFile( Concatenation( pathtodoc, "/", main ) );; pos:= PositionSublist( str, "", ContentBuildRecBibXMLEntry( entry, r, restype, strings, options ), "" ); end ); # Adjust cross-references to packages: # The name of the subdirectory of 'pkg' in the main GAP root path shall be # the lowercase package name. # (In particular, the names shall not involve version numbers.) # Note that the python script # 'https://github.com/gap-system/PackageDistro/tools/assemble_distro.py' # normalizes the names of package directories in this way # when it creates an archive of all distributed GAP packages. # If the link points to a different book in the same package then # create a relative link inside the package, not only relative to the # GAP root path. GAPInfo.CurrentPackageName:= LowercaseString( pkgname ); GAPDoc2HTMLProcs.AdjustExtURL_Orig:= GAPDoc2HTMLProcs.AdjustExtURL; GAPDoc2HTMLProcs.AdjustExtURL := function( r, url ) local res, pkgpath, self, pos, pos2, prefix, prefixdir, pkgname, suffix; res:= GAPDoc2HTMLProcs.AdjustExtURL_Orig( r, url ); if IsBound( GAPDoc2HTMLProcs.RelPath ) then # We want to replace absolute paths in links to other package manuals # by relative links. pkgpath:= Concatenation( GAPInfo.MainRootPath, "pkg/" ); self:= GAPInfo.PackagesLoaded.( GAPInfo.CurrentPackageName ); if StartsWith( res, self[1] ) then # The link points to a file inside the same package # but in a different book. # In this case, we want to create a link relative to the package # not only relative to the GAP root directory. res:= Concatenation( "..", res{ [ Length( self[1] ) + 1 .. Length( res ) ] } ); elif not StartsWith( res, pkgpath ) then # Perhaps the link points to a package outside the main root path. # Probably this indicates an error. if ForAny( RecNames( GAPInfo.PackagesLoaded ), x -> x <> GAPInfo.CurrentPackageName and StartsWith( res, GAPInfo.PackagesLoaded.( x )[1] ) ) then Error( " points to a package outside the main GAP root path:\n", "res = '", res, "',\npkgpath = '", pkgpath, "'" ); fi; # Otherwise the link is just kept. # Typical examples are links to the GAP Manuals, # they will get replaced via the GAPDoc function. else # The link points to a file in the main GAP root path # that belongs to another package. # Use 'GAPInfo.PackagesLoaded' for deriving the normalized name of # this package from the directory name that occurs in the link. pos:= Length( pkgpath ); pos2:= Position( res, '/', pos ); prefix:= res{ [ 1 .. pos2-1 ] }; prefixdir:= Directory( prefix ); pkgname:= First( RecNames( GAPInfo.PackagesLoaded ), x -> Directory( GAPInfo.PackagesLoaded.( x )[1] ) = prefixdir ); suffix:= res{ [ pos2 .. Length( res ) ] }; res:= Concatenation( prefix{ [ 1 .. pos ] }, pkgname, suffix ); fi; fi; return res; end; # Fetch GAP's current 'manualbib.xml'. # This way, we avoid creating 'xml.bib' files in other paths. bibfile:= Filename( DirectoriesLibrary( "doc" ), "manualbib.xml" ); if bibfile = fail then Error( "cannot access GAP's current 'manualbib.xml'" ); fi; Exec( Concatenation( "cp ", bibfile, " ", pathtodoc, "/gapmanualbib.xml" ) ); MakeGAPDocDoc( pathtodoc, main, files, bookname, pathtoroot, "MathJax" );; # Remove GAP's current 'manualbib.xml', and the automatically generated. # 'manualbib.xml.bib'. Exec( Concatenation( "rm ", pathtodoc, "/", "gapmanualbib.xml" ) ); Exec( Concatenation( "rm ", pathtodoc, "/", "gapmanualbib.xml.bib" ) ); CopyHTMLStyleFiles( pathtodoc ); GAPDocManualLabFromSixFile( bookname, Concatenation( pathtodoc, "/manual.six" ) ); ############################################################################# # Check the consistency of version numbers in 'PackageInfo.g' and the manual. CheckVersionNumber:= function( pkgname, pathtodoc, main ) local str, pos, pos2, version1, version2; # definition in the manual str:= StringFile( Concatenation( pathtodoc, "/", main ) ); pos:= PositionSublist( str, " version2 then Error( "version numbers (from ", main, ") and (from PackageInfo.g) differ" ); fi; end; CheckVersionNumber( pkgname, pathtodoc, main ); ############################################################################# tstfilename:= "docxpl.tst"; tstheadertext_with:= "\ This file contains the GAP code of examples in the package\n\ documentation files.\n\ \n\ In order to run the tests, one starts GAP from the 'tst' subdirectory\n\ of the 'pkg/PKGNAME' directory, and calls 'Test( \"FILENAME\" );'.\n\ "; tstheadertext_without:= "\ This file contains the GAP code of those examples in the package\n\ documentation files that do not involve the visual mode used by the\n\ Browse package.\n\n\ In order to run the tests, one starts GAP from the 'tst' subdirectory\n\ of the 'pkg/PKGNAME' directory, and calls 'Test( \"FILENAME\" );'.\n\ "; ExampleFileHeader:= function( filename, pkgname, authors, text, linelen, pathtodoc, main, withbrowse ) local free1, free2, str, i; free1:= Int( ( linelen - Length( pkgname ) - 14 ) / 2 ); free2:= linelen - free1 - 14 - Length( pkgname ) - Length( authors[1] ); text:= ReplacedString( text, "PKGNAME", LowercaseString( pkgname ) ); text:= ReplacedString( text, "FILENAME", filename ); text:= ReplacedString( text, "\n", "\n## " ); str:= RepeatedString( "#", linelen ); Append( str, "\n##\n#W " ); Append( str, filename ); Append( str, RepeatedString( " ", free1 - Length( filename ) - 4 ) ); Append( str, "GAP 4 package " ); Append( str, pkgname ); Append( str, RepeatedString( " ", free2 ) ); Append( str, authors[1] ); for i in [ 2 .. Length( authors ) ] do Append( str, "\n#W" ); Append( str, RepeatedString( " ", linelen - Length( authors[i] ) - 4 ) ); Append( str, authors[i] ); od; Append( str, "\n##\n## " ); Append( str, text ); Append( str, "\n\ngap> LoadPackage( \"" ); Append( str, pkgname ); Append( str, "\", false );\ntrue" ); Append( str, "\ngap> save:= SizeScreen();;" ); Append( str, "\ngap> SizeScreen( [ 72 ] );;" ); Append( str, "\ngap> START_TEST( \"" ); Append( str, filename ); Append( str, "\" );\n" ); if withbrowse then Append( str, "\n##\ngap> if IsBound( BrowseData ) then\n" ); Append( str, "> data:= BrowseData.defaults.dynamic.replayDefaults;\n" ); Append( str, "> oldinterval:= data.replayInterval;\n" ); Append( str, "> data.replayInterval:= 1;\n" ); Append( str, "> fi;\n" ); fi; return str; end; ExampleFileFooter:= function( filename, linelen, withbrowse ) local str; if withbrowse then str:= "\n##\ngap> if IsBound( BrowseData ) then\n"; Append( str, "> data:= BrowseData.defaults.dynamic.replayDefaults;\n" ); Append( str, "> data.replayInterval:= oldinterval;\n" ); Append( str, "> fi;\n" ); else str:= ""; fi; Append( str, "\n##\ngap> STOP_TEST( \"" ); Append( str, filename ); Append( str, "\" );\n" ); Append( str, "gap> SizeScreen( save );;\n\n" ); Append( str, RepeatedString( "#", linelen ) ); Append( str, "\n##\n#E\n" ); return str; end; ## Create the test file(s) with examples. ## If 'tstfilename' equals "chapter-wise" then one file is created for each ## chapter, with filename '.tst' if the contents of the chapter is ## in '.xml'. ## Otherwise, all examples are collected in the file with name 'tstfilename'. ## CreateManualExamplesFiles:= function( pkgname, authors, text, path, main, files, pathtodoc, tstpath, tstfilename, withbrowse ) local linelen, xpls, str, pos, pos2, tstfilenames, i, r, l, tstfilenameold; linelen:= 77; xpls:= ExtractExamples( path, main, files, "Chapter" ); # Distinguish chapter-wise or book-wise test files. if tstfilename = "chapter-wise" then str:= StringFile( Concatenation( pathtodoc, "/", main ) ); pos:= PositionSublist( str, "" ); pos2:= PositionSublist( str, "", pos ); str:= str{ [ pos .. pos2 ] }; tstfilenames:= []; pos:= PositionSublist( str, "<#Include SYSTEM \"" ); while pos <> fail do pos:= pos + 18; pos2:= PositionSublist( str, "\"", pos ); Add( tstfilenames, ReplacedString( str{ [ pos .. pos2-1 ] }, ".xml", ".tst" ) ); pos:= PositionSublist( str, "<#Include SYSTEM \"", pos2 ); od; if Length( xpls ) <> Length( tstfilenames ) then Error( "wrong number of chapters?" ); fi; else tstfilenames:= [ tstfilename ]; xpls:= [ Concatenation( xpls ) ]; fi; if not withbrowse then xpls:= List( xpls, l -> Filtered( l, x -> PositionSublist( x[1], "Browse" ) = fail ) ); fi; for i in [ 1 .. Length( xpls ) ] do str:= "# This file was created automatically, do not edit!\n"; Append( str, ExampleFileHeader( tstfilenames[i], pkgname, authors, text, linelen, path, main, withbrowse ) ); for l in xpls[i] do Append( str, Concatenation( "\n## ", l[2][1], " (", String( l[2][2] ), "-", String( l[2][3] ), ")" ) ); Append( str, l[1] ); od; Append( str, ExampleFileFooter( tstfilenames[i], linelen, withbrowse ) ); tstfilename:= Concatenation( tstpath, "/", tstfilenames[i] ); tstfilenameold:= Concatenation( tstfilename, "~" ); if IsExistingFile( tstfilename ) then Exec( Concatenation( "rm -f ", tstfilenameold ) ); Exec( Concatenation( "mv ", tstfilename, " ", tstfilenameold ) ); fi; FileString( tstfilename, str ); if IsExistingFile( tstfilenameold ) then Print( "#I differences in `", tstfilename, "':\n" ); Exec( Concatenation( "diff ", tstfilenameold, " ", tstfilename ) ); fi; Exec( Concatenation( "chmod 444 ", tstfilename ) ); od; end; # include examples involving 'Browse' CreateManualExamplesFiles( pkgname, authors, tstheadertext_with, pathtodoc, main, files, pathtodoc, pathtotst, tstfilename, true ); # omit examples involving 'Browse' CreateManualExamplesFiles( pkgname, authors, tstheadertext_without, pathtodoc, main, files, pathtodoc, pathtotst, ReplacedString( tstfilename, ".", "2." ), false ); atlasrep-2.1.8/read.g0000644000175000017500000000254014410313223012534 0ustar samsam############################################################################# ## #W read.g GAP 4 package AtlasRep Thomas Breuer ## # Read the implementation part. ReadPackage( "atlasrep", "gap/bbox.gi" ); ReadPackage( "atlasrep", "gap/access.gi" ); ReadPackage( "atlasrep", "gap/types.gi" ); ReadPackage( "atlasrep", "gap/interfac.gi" ); ReadPackage( "atlasrep", "gap/mindeg.gi" ); ReadPackage( "atlasrep", "gap/utlmrkup.g" ); ReadPackage( "atlasrep", "gap/utils.gi" ); ReadPackage( "atlasrep", "gap/test.g" ); ReadPackage( "atlasrep", "gap/json.g" ); # Read Browse applications only if the Browse package will be loaded. if IsPackageMarkedForLoading( "Browse", ">= 1.8.3" ) and not IsBound( GAPInfo.PackageExtensionsLoaded ) then ReadPackage( "atlasrep", "gap/brmindeg.g" ); if IsPackageMarkedForLoading( "CTblLib", "" ) then ReadPackage( "atlasrep", "gap/brspor.g" ); fi; fi; if IsPackageMarkedForLoading( "CTblLib", "" ) and not IsBound( GAPInfo.PackageExtensionsLoaded ) then ReadPackage( "atlasrep", "gap/ctbllib_only.g" ); fi; # Read obsolete variables iff this happens also in the GAP library. if UserPreference( "gap", "ReadObsolete" ) <> false then ReadPackage( "atlasrep", "gap/obsolete.gi" ); fi; ############################################################################# ## #E atlasrep-2.1.8/PackageInfo.g0000644000175000017500000001213714545261740014012 0ustar samsam############################################################################# ## ## PackageInfo.g for the GAP 4 package AtlasRep Thomas Breuer ## SetPackageInfo( rec( PackageName := "AtlasRep", Dates_all := [ [ "03/04/2001", "1.0" ], [ "23/10/2002", "1.1" ], [ "06/11/2003", "1.2" ], [ "05/04/2004", "1.2.1" ], [ "06/06/2007", "1.3" ], [ "01/10/2007", "1.3.1" ], [ "23/06/2008", "1.4" ], [ "12/07/2011", "1.5.0" ], [ "30/03/2016", "1.5.1" ], [ "02/05/2019", "2.0.0" ], [ "10/05/2019", "2.1.0" ], [ "23/02/2022", "2.1.1" ], [ "30/03/2022", "2.1.2" ], [ "04/08/2022", "2.1.3" ], [ "05/08/2022", "2.1.4" ], [ "22/08/2022", "2.1.5" ], [ "19/10/2022", "2.1.6" ], [ "17/08/2023", "2.1.7" ], [ "03/01/2024", "2.1.8" ], ], Version := Last( ~.Dates_all )[2], Date := Last( ~.Dates_all )[1], MyWWWHome := "https://www.math.rwth-aachen.de/~Thomas.Breuer", Subtitle := "A GAP Interface to the Atlas of Group Representations", License := "GPL-3.0-or-later", PackageWWWHome := Concatenation( ~.MyWWWHome, "/", LowercaseString( ~.PackageName ) ), ArchiveURL := Concatenation( ~.PackageWWWHome, "/", LowercaseString( ~.PackageName ), "-", ~.Version ), ArchiveFormats := ".tar.gz", Persons := [ rec( LastName := "Wilson", FirstNames := "Robert A.", IsAuthor := true, IsMaintainer := false, Email := "R.A.Wilson@qmul.ac.uk", WWWHome := "http://www.maths.qmw.ac.uk/~raw", Place := "London", Institution := Concatenation( [ "School of Mathematical Sciences, ", "Queen Mary, University of London", ] ), ), rec( LastName := "Parker", FirstNames := "Richard A.", IsAuthor := true, IsMaintainer := false, Email := "richpark7920@gmail.com", ), rec( LastName := "Nickerson", FirstNames := "Simon", IsAuthor := true, IsMaintainer := false, WWWHome := "http://nickerson.org.uk/groups", Institution := Concatenation( [ "School of Mathematics, ", "University of Birmingham", ] ), ), rec( LastName := "Bray", FirstNames := "John N.", IsAuthor := true, IsMaintainer := false, Email := "J.N.Bray@qmul.ac.uk", WWWHome := "http://www.maths.qmw.ac.uk/~jnb", Place := "London", Institution := Concatenation( [ "School of Mathematical Sciences, ", "Queen Mary, University of London", ] ), ), rec( LastName := "Breuer", FirstNames := "Thomas", IsAuthor := true, IsMaintainer := true, Email := "sam@math.rwth-aachen.de", WWWHome := ~.MyWWWHome, Place := "Aachen", Institution := "Lehrstuhl für Algebra und Zahlentheorie, RWTH Aachen", PostalAddress := Concatenation( [ "Thomas Breuer\n", "Lehrstuhl für Algebra und Zahlentheorie\n", "Pontdriesch 14/16\n", "52062 Aachen\n", "Germany" ] ), ), ], Status := "accepted", CommunicatedBy := "Herbert Pahlings (Aachen)", AcceptDate := "04/2001", README_URL := Concatenation( ~.PackageWWWHome, "/README.md" ), PackageInfoURL := Concatenation( ~.PackageWWWHome, "/PackageInfo.g" ), AbstractHTML := Concatenation( [ "The package provides a GAP interface ", "to the ", "Atlas of Group Representations" ] ), PackageDoc := rec( BookName := "AtlasRep", ArchiveURLSubset := [ "doc" ], HTMLStart := "doc/chap0.html", PDFFile := "doc/manual.pdf", SixFile := "doc/manual.six", LongTitle := "An Atlas of Group Representations", ), Dependencies := rec( GAP := ">= 4.11.0", # need extended 'IntegratedStraightLineProgram' #T could require 4.12.0, because of IsMatrixOrMatrixObj (and simplify code) NeededOtherPackages := [ [ "gapdoc", ">= 1.6.2" ], # want extended 'InitialSubstringUTF8String' [ "utils", ">= 0.77" ], # want 'Download' ], SuggestedOtherPackages := [ [ "browse", ">= 1.8.3" ], # want extended 'BrowseAtlasInfo' [ "ctbllib", ">= 1.2" ], # want 'StructureDescriptionCharacterTableName' [ "ctblocks", ">= 1.0" ], # yields a data extension [ "io", ">= 3.3" ], # want 'IO_chmod', 'IO_mkdir', 'IO_stat' [ "mfer", ">= 1.0" ], # yields a data extension [ "recog", ">= 1.3.1" ], # because of some functions in 'gap/test.g' [ "standardff", ">= 0.9" ], # support the fields when creating matrices [ "tomlib", ">= 1.0" ], # used in tests and min. degree computations ], ExternalConditions := [] ), Extensions := [ rec( needed:= [ [ "Browse", ">= 1.8.3" ], ], filename:= "gap/browse_only.g" ), rec( needed:= [ [ "CTblLib", ">= 1.2" ], ], filename:= "gap/ctbllib_only.g" ), rec( needed:= [ [ "Browse", ">= 1.8.3" ], [ "CTblLib", ">= 1.2" ], ], filename:= "gap/browsectbllib_only.g" ), ], AvailabilityTest := ReturnTrue, TestFile := "tst/testauto.g", Keywords := [ "group representations", "finite simple groups" ], ) ); ############################################################################# ## #E atlasrep-2.1.8/README.md0000644000175000017500000001020714545505426012750 0ustar samsam The GAP 4 Package **AtlasRep** ============================== Description ----------- This is Version 2.1.8 of the package **AtlasRep** written for GAP 4, whose aim is to provide an interface between GAP and databases such as the [Atlas of Group Representations](http://atlas.math.rwth-aachen.de/Atlas), which is available independent of GAP; it comprises representations of many almost simple groups and information about their maximal subgroups. The **AtlasRep** package consists of this database and a GAP interface. The latter allows the user to get an overview of the database, and to access the data in GAP format. Note that the package archive does *NOT* contain the data part, the GAP interface accesses the data on demand via the internet. To get an impression about the capabilities of the package, look at the manual chapter "Tutorial for the AtlasRep Package". Copyright --------- Copyright 2003-2024 by Thomas Breuer License ------- This package may be distributed under the terms and conditions of the [**GNU Public License**](http://www.gnu.org/licenses) Version 3 or later. See the included file `GPL` for more details. Authors ------- The data files of the ATLAS of Group Representations have been prepared by Robert Wilson, Peter Walsh, Jonathan Tripp, Ibrahim Suleiman, Richard Parker, Simon Norton, Simon Nickerson, Steve Linton, John Bray, and Rachel Abbott (in reverse alphabetical order). The GAP interface was written by Thomas Breuer and Simon Nickerson. Installation ------------ **AtlasRep** is usually contained in the current GAP distribution, see (http://www.gap-system.org/Download/). To fetch another version follow the hints below. Installation of **AtlasRep** means unpacking the archive file in an appropriate directory. No kernel module has to be compiled, but some configuration issues might be of interest before you start to use the package in a GAP session. They are described in the manual sections - "Installing the AtlasRep Package" and - "User Parameters for the AtlasRep Package". After installation you can load **AtlasRep** into your GAP session with: ``` gap> LoadPackage( "atlasrep" ); ``` Fetching **AtlasRep** separately -------------------------------- To get the newest version of the **AtlasRep** package download the archive file (where `x.y` stands for the highest available version number) `atlasrep-x.y.tar.gz` from (http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep) or from (www.gap-system.org) and unpack it using ``` gunzip atlasrep-x.y.tar.gz; tar xvf atlasrep-x.y.tar ``` Note that if you use a web browser for downloading the archive file the `gunzip` step above may already be done by the browser, although the name of your file may still have the misleading `.gz` extension. The unpacking is done preferably (but not necessarily) inside the `pkg` subdirectory of your GAP 4 installation. It creates a subdirectory called `atlasrep-x.y`. Homepage -------- The [**internet homepage** of the **AtlasRep** package](http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep) provides * package archives, * introductory package information, * the table of contents of core data in the file [`atlasprm.json`](http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/atlasprm.json) of the package, * the [list of changes of remote core data files](http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/htm/data/changes.htm), * a [starter archive](http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/atlasrepdata.tar.gz) containing many small representations and programs, and * an [overview of the core data](http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/htm/data/), in a similar format as the information shown by the function `DisplayAtlasInfo` of the package; more details can be found on the [home page of the ATLAS of Group Representations](http://atlas.math.rwth-aachen.de/Atlas). Acknowledgement --------------- Thomas Breuer gratefully acknowledges support by the German Research Foundation (DFG) within the [SFB-TRR 195 *Symbolic Tools in Mathematics and their Applications*](https://www.computeralgebra.de/sfb/). Thomas Breuer (Thomas.Breuer@Math.RWTH-Aachen.De) atlasrep-2.1.8/prerequisites.sh0000755000175000017500000000015314405546050014724 0ustar samsam# The following commands are executed by the BuildPackages.sh script. chmod 1777 dataext datagens dataword atlasrep-2.1.8/tst/testauto.g0000664000175000017500000000333014410313604014306 0ustar samsam############################################################################# ## #W testauto.g GAP 4 package AtlasRep Thomas Breuer ## LoadPackage( "atlasrep", false ); dirs:= DirectoriesPackageLibrary( "atlasrep", "tst" ); optrec:= rec( compareFunction:= "uptowhitespace" ); success:= true; AtlasRepTest:= function( filename ) success:= Test( Filename( dirs, filename ), optrec ) and success; end; oldvalue:= UserPreference( "AtlasRep", "HowToReadMeatAxeTextFiles" ); # Run the standard tests with one value. SetUserPreference( "AtlasRep", "HowToReadMeatAxeTextFiles", "minimizing the space" ); # Test the manual examples but omit the 'Browse' related ones. AtlasRepTest( "docxpl2.tst" ); # Test some variants that do not appear in the manual. AtlasRepTest( "atlasrep.tst" ); # Run the standard tests with the other value. SetUserPreference( "AtlasRep", "HowToReadMeatAxeTextFiles", "fast" ); # Test the manual examples but omit the 'Browse' related ones. AtlasRepTest( "docxpl2.tst" ); # Test some variants that do not appear in the manual. AtlasRepTest( "atlasrep.tst" ); # Reset the value. SetUserPreference( "AtlasRep", "HowToReadMeatAxeTextFiles", oldvalue ); # Test the json interface provided by the package. AtlasRepTest( "json.tst" ); # Test the internal data files. # This can be done just once, afterwards some outputs may look differently, # therefore we do this in the end. AtlasRepTest( "internal.tst" ); # Report overall test results. if success then Print( "#I No errors detected while testing\n\n" ); QUIT_GAP( 0 ); else Print( "#I Errors detected while testing\n\n" ); QUIT_GAP( 1 ); fi; ############################################################################# ## #E atlasrep-2.1.8/tst/testall.g0000644000175000017500000000300014410313577014107 0ustar samsam############################################################################# ## #W testall.g GAP 4 package AtlasRep Thomas Breuer ## LoadPackage( "atlasrep", false ); dirs:= DirectoriesPackageLibrary( "atlasrep", "tst" ); optrec:= rec( compareFunction:= "uptowhitespace" ); oldvalue:= UserPreference( "AtlasRep", "HowToReadMeatAxeTextFiles" ); # Run the standard tests with one value. SetUserPreference( "AtlasRep", "HowToReadMeatAxeTextFiles", "minimizing the space" ); # Test the manual examples, including the 'Browse' related ones. Test( Filename( dirs, "docxpl.tst" ), optrec ); # Test some variants that do not appear in the manual. Test( Filename( dirs, "atlasrep.tst" ), optrec ); # Run the standard tests with the other value. SetUserPreference( "AtlasRep", "HowToReadMeatAxeTextFiles", "fast" ); # Test the manual examples, including the 'Browse' related ones. Test( Filename( dirs, "docxpl.tst" ), optrec ); # Test some variants that do not appear in the manual. Test( Filename( dirs, "atlasrep.tst" ), optrec ); # Reset the value. SetUserPreference( "AtlasRep", "HowToReadMeatAxeTextFiles", oldvalue ); # Test the json interface provided by the package. Test( Filename( dirs, "json.tst" ), optrec ); # Test the internal data files. # This can be done just once, afterwards some outputs may look differently, # therefore we do this in the end. Test( Filename( dirs, "internal.tst" ), optrec ); ############################################################################# ## #E atlasrep-2.1.8/tst/testinst.g0000644000175000017500000001026214471740630014325 0ustar samsam############################################################################# ## #W testinst.g GAP 4 package AtlasRep Thomas Breuer ## ## This file contains those tests for the AtlasRep package that are ## recommended for being executed after the package has been installed. ## Currently just a few file transfers are tried in the case that ## AtlasOfGroupRepresentationsInfo.remote is true, ## and AtlasOfGroupRepresentationsTestTableOfContentsRemoteUpdates is ## called. ## ## <#GAPDoc Label="[1]{testinst.g}"> ## For checking the installation of the package, you should start &GAP; ## and call ##

## ReadPackage( "atlasrep", "tst/testinst.g" ); ## ]]> ##

## If the installation is o.k. then the &GAP; prompt appears without ## anything else being printed; ## otherwise the output lines tell you what should be changed. ## <#/GAPDoc> ## if LoadPackage( "atlasrep" ) <> true then Print( "#I Package `atlasrep' cannot be loaded, no checks are possible.\n", "#I Perhaps look at the output of ", "'DisplayPackageLoadingLog( PACKAGE_DEBUG )'.\n" ); else # Avoid binding global variables. AGR.TestInst:= function() local pref, bad, dir, filename, io, wgetpath, wget, msg, filenames, dirs, id, oldfiles, file, newid, i, upd; if UserPreference( "AtlasRep", "AtlasRepAccessRemoteFiles" ) <> true then Print( "#I Package `atlasrep': ", "Access to remote files is switched off,\n", "#I (see the user preference 'AtlasRepAccessRemoteFiles'),\n", "#I nothing is to check.\n" ); return; fi; pref:= UserPreference( "AtlasRep", "AtlasRepDataDirectory" ); if not IsEmpty( pref ) then # Test whether the data directories are writable. bad:= []; for dir in [ "dataext", "dataword", "datagens" ] do filename:= Concatenation( pref, dir ); if not IsWritableFile( filename ) then Add( bad, dir ); fi; od; if not IsEmpty( bad ) then Print( "#I Package `atlasrep': The subdirectories `", bad, "'\n", "#I of `", pref, "' are not writable.\n" ); return; fi; # Test transferring group generators in MeatAxe text format. # (Remove some files if necessary and access them again.) filenames:= []; dirs:= [ Directory( filename ) ]; id:= OneAtlasGeneratingSet( "A5", Characteristic, 2 ); if id <> fail then Append( filenames, List( id.identifier[2], name -> Filename( dirs, name ) ) ); fi; filenames:= Filtered( filenames, x -> x <> fail ); if IsEmpty( filenames ) then Print( "#I Package `atlasrep': ", "Transferring data files seems not to work.\n", "#I Perhaps call\n", "#I `SetUserPreference( \"AtlasRep\", ", "\"AtlasRepAccessRemoteFiles\", false )'\n" ); else oldfiles:= List( filenames, StringFile ); for file in filenames do RemoveFile( file ); od; newid:= OneAtlasGeneratingSet( "A5", Characteristic, 2 ); if newid = fail or id <> newid then # Restore the files. for i in [ 1 .. Length( filenames ) ] do FileString( filenames[i], oldfiles[i] ); od; Print( "#I Package `atlasrep': ", "Transferring data files does not work.\n", "#I Perhaps call\n", "#I `SetUserPreference( \"AtlasRep\", ", "\"AtlasRepAccessRemoteFiles\", false )'\n" ); else # Print information about data files to be removed/updated. # (This is for those who had installed an earlier package version.) # Note that calling this function requires access to a remote file. upd:= AtlasOfGroupRepresentationsTestTableOfContentsRemoteUpdates(); if upd <> fail and not IsEmpty( upd ) then Print( "#I Remove the following files:\n", upd, "\n" ); fi; fi; fi; fi; end; AGR.TestInst(); fi; ############################################################################# ## #E atlasrep-2.1.8/tst/docxpl2.tst0000444000175000017500000017704414545501245014420 0ustar samsam# This file was created automatically, do not edit! ############################################################################# ## #W docxpl2.tst GAP 4 package AtlasRep Thomas Breuer ## ## This file contains the GAP code of those examples in the package ## documentation files that do not involve the visual mode used by the ## Browse package. ## ## In order to run the tests, one starts GAP from the 'tst' subdirectory ## of the 'pkg/atlasrep' directory, and calls 'Test( "docxpl2.tst" );'. ## gap> LoadPackage( "AtlasRep", false ); true gap> save:= SizeScreen();; gap> SizeScreen( [ 72 ] );; gap> START_TEST( "docxpl2.tst" ); ## doc/tutorial.xml (31-38) gap> LoadPackage( "AtlasRep", false ); true gap> LoadPackage( "CTblLib", false ); true gap> LoadPackage( "TomLib", false ); true ## doc/tutorial.xml (56-59) gap> origpref:= UserPreference( "AtlasRep", "DisplayFunction" );; gap> SetUserPreference( "AtlasRep", "DisplayFunction", "Print" ); ## doc/tutorial.xml (69-74) gap> priv:= Difference( > List( AtlasOfGroupRepresentationsInfo.notified, x -> x.ID ), > [ "core", "internal" ] );; gap> Perform( priv, AtlasOfGroupRepresentationsForgetData ); ## doc/tutorial.xml (81-84) gap> globallevel:= InfoLevel( InfoAtlasRep );; gap> SetInfoLevel( InfoAtlasRep, 0 ); ## doc/tutorial.xml (169-180) gap> g:= AtlasGroup( "M24" ); Group([ (1,4)(2,7)(3,17)(5,13)(6,9)(8,15)(10,19)(11,18)(12,21)(14,16) (20,24)(22,23), (1,4,6)(2,21,14)(3,9,15)(5,18,10)(13,17,16) (19,24,23) ]) gap> IsPermGroup( g ); NrMovedPoints( g ); Size( g ); true 24 244823040 gap> AtlasGroup( "J5" ); fail ## doc/tutorial.xml (197-207) gap> g:= AtlasSubgroup( "M24", 1 ); Group([ (2,10)(3,12)(4,14)(6,9)(8,16)(15,18)(20,22)(21,24), (1,7,2,9) (3,22,10,23)(4,19,8,12)(5,14)(6,18)(13,16,17,24) ]) gap> IsPermGroup( g ); NrMovedPoints( g ); Size( g ); true 23 10200960 gap> AtlasSubgroup( "M24", 100 ); fail ## doc/tutorial.xml (235-244) gap> s:= AtlasSubgroup( "ON", 3 ); gap> NrMovedPoints( s ); Size( s ); 122760 175560 gap> hom:= SmallerDegreePermutationRepresentation( s );; gap> NrMovedPoints( Image( hom ) ) < 2000; true ## doc/tutorial.xml (254-259) gap> j1:= AtlasGroup( "J1" ); gap> NrMovedPoints( j1 ); 266 ## doc/tutorial.xml (268-277) gap> g:= AtlasGroup( "ON" ); gap> s:= AtlasSubgroup( g, 3 ); gap> IsSubset( g, s ); true gap> IsSubset( g, j1 ); false ## doc/tutorial.xml (292-326) gap> DisplayAtlasInfo( "A5" ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.) 2: G <= Sym(6) 2-trans., on cosets of D10 (2nd max.) 3: G <= Sym(10) rank 3, on cosets of S3 (3rd max.) 4: G <= GL(4a,2) character 4a 5: G <= GL(4b,2) character 2ab 6: G <= GL(4,3) character 4a 7: G <= GL(6,3) character 3ab 8: G <= GL(2a,4) character 2a 9: G <= GL(2b,4) character 2b 10: G <= GL(3,5) character 3a 11: G <= GL(5,5) character 5a 12: G <= GL(3a,9) character 3a 13: G <= GL(3b,9) character 3b 14: G <= GL(4,Z) character 4a 15: G <= GL(5,Z) character 5a 16: G <= GL(6,Z) character 3ab 17: G <= GL(3a,Field([Sqrt(5)])) character 3a 18: G <= GL(3b,Field([Sqrt(5)])) character 3b Programs for G = A5: (all refer to std. generators 1) -------------------- - class repres.* - presentation - maxes (all 3): 1: A4 2: D10 3: S3 - std. gen. checker: (check) (pres) ## doc/tutorial.xml (334-337) gap> AtlasGroup( "A5", Position, 1 ); Group([ (1,2)(3,4), (1,3,5) ]) ## doc/tutorial.xml (348-353) gap> AtlasGroup( "A5", NrMovedPoints, 10 ); Group([ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ]) gap> AtlasGroup( "A5", Dimension, 4, Ring, GF(2) ); ## doc/tutorial.xml (368-376) gap> AtlasSubgroup( "A5", Dimension, 4, Ring, GF(2), 1 ); gap> g:= AtlasSubgroup( "A5", NrMovedPoints, 10, 3 ); Group([ (2,4)(3,5)(6,8)(7,10), (1,4)(3,8)(5,7)(6,10) ]) gap> Size( g ); NrMovedPoints( g ); 6 9 ## doc/tutorial.xml (423-442) gap> info:= OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, 10 ); rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ], isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3", standardization := 1, transitivity := 1, type := "perm" ) gap> info2:= AtlasGenerators( info ); rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], contents := "core", generators := [ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ], groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ], isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3", standardization := 1, transitivity := 1, type := "perm" ) gap> info2.generators; [ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ] ## doc/tutorial.xml (453-462) gap> g:= AtlasGroup( "A5", NrMovedPoints, 10 );; gap> AtlasRepInfoRecord( g ); rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ], isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3", standardization := 1, transitivity := 1, type := "perm" ) ## doc/tutorial.xml (495-516) gap> prginfo:= AtlasProgramInfo( "A5", "maxes", 1 ); rec( groupname := "A5", identifier := [ "A5", "A5G1-max1W1", 1 ], size := 12, standardization := 1, subgroupname := "A4", version := "1" ) gap> prg:= AtlasProgram( prginfo.identifier ); rec( groupname := "A5", identifier := [ "A5", "A5G1-max1W1", 1 ], program := , size := 12, standardization := 1, subgroupname := "A4", version := "1" ) gap> Display( prg.program ); # input: r:= [ g1, g2 ]; # program: r[3]:= r[1]*r[2]; r[4]:= r[2]*r[1]; r[5]:= r[3]*r[3]; r[1]:= r[5]*r[4]; # return values: [ r[1], r[2] ] gap> ResultOfStraightLineProgram( prg.program, info2.generators ); [ (1,10)(2,3)(4,9)(7,8), (1,2,3)(4,6,7)(5,8,9) ] ## doc/tutorial.xml (538-543) gap> tbl:= CharacterTable( "M11" );; gap> modtbl:= tbl mod 2;; gap> CharacterDegrees( modtbl ); [ [ 1, 1 ], [ 10, 1 ], [ 16, 2 ], [ 44, 1 ] ] ## doc/tutorial.xml (559-568) gap> DisplayAtlasInfo( "M11", Characteristic, 2 ); Representations for G = M11: (all refer to std. generators 1) ---------------------------- 6: G <= GL(10,2) character 10a 7: G <= GL(32,2) character 16ab 8: G <= GL(44,2) character 44a 16: G <= GL(16a,4) character 16a 17: G <= GL(16b,4) character 16b ## doc/tutorial.xml (582-592) gap> info:= OneAtlasGeneratingSetInfo( "M11", Characteristic, 2, > Dimension, 10 );; gap> gens:= AtlasGenerators( info.identifier );; gap> ccls:= AtlasProgram( "M11", gens.standardization, "classes" ); rec( groupname := "M11", identifier := [ "M11", "M11G1-cclsW1", 1 ], outputs := [ "1A", "2A", "3A", "4A", "5A", "6A", "8A", "8B", "11A", "11B" ], program := , standardization := 1, version := "1" ) gap> reps:= ResultOfStraightLineProgram( ccls.program, gens.generators );; ## doc/tutorial.xml (604-611) gap> ord8prg:= RestrictOutputsOfSLP( ccls.program, > Filtered( [ 1 .. 10 ], i -> ccls.outputs[i][1] = '8' ) ); gap> ord8reps:= ResultOfStraightLineProgram( ord8prg, gens.generators );; gap> List( ord8reps, m -> Position( reps, m ) ); [ 7, 8 ] ## doc/tutorial.xml (619-622) gap> List( reps, Order ) = OrdersClassRepresentatives( tbl ); true ## doc/tutorial.xml (637-641) gap> fus:= GetFusionMap( modtbl, tbl ); [ 1, 3, 5, 9, 10 ] gap> modreps:= reps{ fus };; ## doc/tutorial.xml (651-656) gap> char:= List( modreps, BrauerCharacterValue ); [ 10, 1, 0, -1, -1 ] gap> Position( Irr( modtbl ), char ); 2 ## doc/tutorial.xml (673-679) gap> grp:= Group( gens.generators );; gap> v:= GF(2)^10;; gap> orbs:= Orbits( grp, AsList( v ) );; gap> List( orbs, Length ); [ 1, 396, 55, 330, 66, 165, 11 ] ## doc/tutorial.xml (700-702) gap> gens:= AtlasGenerators( "M11", 6, 1 );; ## doc/tutorial.xml (710-716) gap> id:= IdentityMat( 10, GF(2) );; gap> sub1:= Subspace( v, NullspaceMat( gens.generators[1] - id ) );; gap> sub2:= Subspace( v, NullspaceMat( gens.generators[2] - id ) );; gap> fix:= Intersection( sub1, sub2 ); ## doc/tutorial.xml (725-729) gap> orb:= Orbit( grp, Basis( fix )[1] );; gap> act:= Action( grp, orb );; Print( act, "\n" ); Group( [ ( 1, 2)( 4, 6)( 5, 8)( 7,10), ( 1, 3, 5, 9)( 2, 4, 7,11) ] ) ## doc/tutorial.xml (741-749) gap> permgrp:= Group( AtlasGenerators( "M11", 1 ).generators );; gap> Print( permgrp, "\n" ); Group( [ ( 2,10)( 4,11)( 5, 7)( 8, 9), (1,4,3,8)(2,5,6,9) ] ) gap> permgrp = act; false gap> IsConjugate( SymmetricGroup(11), permgrp, act ); true ## doc/tutorial.xml (764-789) gap> DisplayAtlasInfo( "G2(3)", IsStraightLineProgram ); Programs for G = G2(3): (all refer to std. generators 1) ----------------------- - class repres. - presentation - repr. cyc. subg. - std. gen. checker - automorphisms: 2 - maxes (all 10): 1: U3(3).2 2: U3(3).2 3: (3^(1+2)+x3^2):2S4 4: (3^(1+2)+x3^2):2S4 5: L3(3).2 6: L3(3).2 7: L2(8).3 8: 2^3.L3(2) 9: L2(13) 10: 2^(1+4)+:3^2.2 gap> prog:= AtlasProgram( "G2(3)", "automorphism", "2" ).program;; gap> info:= OneAtlasGeneratingSetInfo( "G2(3)", Dimension, 7 );; gap> gens:= AtlasGenerators( info ).generators;; gap> imgs:= ResultOfStraightLineProgram( prog, gens );; ## doc/tutorial.xml (802-806) gap> g:= Group( gens );; gap> aut:= GroupHomomorphismByImagesNC( g, g, gens, imgs );; gap> SetIsBijective( aut, true ); ## doc/tutorial.xml (815-819) gap> aut:= GroupHomomorphismByImages( g, g, gens, imgs );; gap> IsBijective( aut ); true ## doc/tutorial.xml (842-847) gap> max1:= AtlasProgram( "G2(3)", 1 ).program;; gap> mgens:= ResultOfStraightLineProgram( max1, gens );; gap> comp:= CompositionOfStraightLinePrograms( max1, prog );; gap> mimgs:= ResultOfStraightLineProgram( comp, gens );; ## doc/tutorial.xml (862-865) gap> mimgs = List( mgens, x -> x^aut ); true ## doc/tutorial.xml (896-910) gap> info:= OneAtlasGeneratingSetInfo( "M12", NrMovedPoints, 12 ); rec( charactername := "1a+11a", constituents := [ 1, 2 ], contents := "core", groupname := "M12", id := "a", identifier := [ "M12", [ "M12G1-p12aB0.m1", "M12G1-p12aB0.m2" ], 1, 12 ], isPrimitive := true, maxnr := 1, p := 12, rankAction := 2, repname := "M12G1-p12aB0", repnr := 1, size := 95040, stabilizer := "M11", standardization := 1, transitivity := 5, type := "perm" ) gap> gensM12:= AtlasGenerators( info.identifier );; gap> restM11:= AtlasProgram( "M12", "maxes", 1 );; gap> gensM11:= ResultOfStraightLineProgram( restM11.program, > gensM12.generators ); [ (3,9)(4,12)(5,10)(6,8), (1,4,11,5)(2,10,8,3) ] ## doc/tutorial.xml (922-929) gap> checkM11:= AtlasProgram( "M11", "check" ); rec( groupname := "M11", identifier := [ "M11", "M11G1-check1", 1, 1 ] , program := , standardization := 1, version := "1" ) gap> ResultOfStraightLineDecision( checkM11.program, gensM11 ); true ## doc/tutorial.xml (938-945) gap> restL211:= AtlasProgram( "M11", "maxes", 2 );; gap> gensL211:= ResultOfStraightLineProgram( restL211.program, gensM11 ); [ (3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10) ] gap> G:= Group( gensL211 );; Size( G ); IsSimple( G ); 660 true ## doc/tutorial.xml (951-977) gap> DisplayAtlasInfo( "M11", IsStraightLineProgram ); Programs for G = M11: (all refer to std. generators 1) --------------------- - presentation - repr. cyc. subg. - std. gen. finder - class repres.: (direct) (composed) - maxes (all 5): 1: A6.2_3 1: A6.2_3 (std. 1) 2: L2(11) 2: L2(11) (std. 1) 3: 3^2:Q8.2 4: S5 4: S5 (std. 1) 5: 2.S4 - standardizations of maxes: from 1st max., version 1 to A6.2_3, std. 1 from 2nd max., version 1 to L2(11), std. 1 from 4th max., version 1 to A5.2, std. 1 - std. gen. checker: (check) (pres) ## doc/tutorial.xml (986-990) gap> restL211std:= AtlasProgram( "M11", "maxes", 2, 1 );; gap> ResultOfStraightLineProgram( restL211std.program, gensM11 ); [ (3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10) ] ## doc/tutorial.xml (1007-1013) gap> G:= MathieuGroup( 11 );; gap> gens:= GeneratorsOfGroup( G ); [ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ] gap> ResultOfStraightLineDecision( checkM11.program, gens ); false ## doc/tutorial.xml (1023-1039) gap> find:= AtlasProgram( "M11", "find" ); rec( groupname := "M11", identifier := [ "M11", "M11G1-find1", 1, 1 ], program := , standardization := 1, version := "1" ) gap> stdgens:= ResultOfBBoxProgram( find.program, Group( gens ) );; gap> List( stdgens, Order ); [ 2, 4 ] gap> ResultOfStraightLineDecision( checkM11.program, stdgens ); true gap> gensL211:= ResultOfStraightLineProgram( restL211.program, stdgens );; gap> List( gensL211, Order ); [ 2, 3 ] gap> G:= Group( gensL211 );; Size( G ); IsSimple( G ); 660 true ## doc/tutorial.xml (1070-1078) gap> tom:= TableOfMarks( "A5" ); TableOfMarks( "A5" ) gap> info:= StandardGeneratorsInfo( tom ); [ rec( ATLAS := true, description := "|a|=2, |b|=3, |ab|=5", generators := "a, b", script := [ [ 1, 2 ], [ 2, 3 ], [ 1, 1, 2, 1, 5 ] ], standardization := 1 ) ] ## doc/tutorial.xml (1095-1120) gap> info:= OneAtlasGeneratingSetInfo( "A5", Ring, Integers, Dimension, 4 );; gap> stdgens:= AtlasGenerators( info.identifier ); rec( charactername := "4a", constituents := [ 4 ], contents := "core", dim := 4, generators := [ [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ -1, -1, -1, -1 ] ], [ [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 1, 0, 0, 0 ] ] ], groupname := "A5", id := "", identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60, standardization := 1, type := "matint" ) gap> orders:= OrdersTom( tom ); [ 1, 2, 3, 4, 5, 6, 10, 12, 60 ] gap> pos:= Position( orders, 4 ); 4 gap> sub:= RepresentativeTomByGeneratorsNC( tom, pos, stdgens.generators ); gap> GeneratorsOfGroup( sub ); [ [ [ 1, 0, 0, 0 ], [ -1, -1, -1, -1 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ] ], [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ -1, -1, -1, -1 ] ] ] ## doc/tutorial.xml (1135-1143) gap> tom:= TableOfMarks( "M22" ); TableOfMarks( "M22" ) gap> subord:= Size( UnderlyingGroup( tom ) ) / 770; 576 gap> ord:= OrdersTom( tom );; gap> tomstabs:= Filtered( [ 1 .. Length( ord ) ], i -> ord[i] = subord ); [ 144 ] ## doc/tutorial.xml (1152-1157) gap> DisplayAtlasInfo( "M22", NrMovedPoints, 770 ); Representations for G = M22: (all refer to std. generators 1) ---------------------------- 12: G <= Sym(770) rank 9, on cosets of (A4xA4):4 < 2^4:A6 ## doc/tutorial.xml (1166-1172) gap> maxtom:= MaximalSubgroupsTom( tom ); [ [ 155, 154, 153, 152, 151, 150, 146, 145 ], [ 22, 77, 176, 176, 231, 330, 616, 672 ] ] gap> List( tomstabs, i -> List( maxtom[1], j -> ContainedTom( tom, i, j ) ) ); [ [ 0, 10, 0, 0, 0, 0, 0, 0 ] ] ## doc/tutorial.xml (1191-1197) gap> g:= AtlasGroup( "M22", NrMovedPoints, 770 ); gap> allbl:= AllBlocks( g );; gap> List( allbl, Length ); [ 10 ] ## doc/tutorial.xml (1206-1214) gap> stab:= Stabilizer( g, 1 );; gap> StructureDescription( stab : nice ); "(A4 x A4) : C4" gap> blocks:= Orbit( g, allbl[1], OnSets );; gap> act:= Action( g, blocks, OnSets );; gap> StructureDescription( Stabilizer( act, 1 ) ); "(C2 x C2 x C2 x C2) : A6" ## doc/tutorial.xml (1228-1235) gap> DisplayAtlasInfo( "M22", NrMovedPoints, 462 ); Representations for G = M22: (all refer to std. generators 1) ---------------------------- 7: G <= Sym(462a) rank 5, on cosets of 2^4:A5 < 2^4:A6 8: G <= Sym(462b) rank 8, on cosets of 2^4:A5 < L3(4), 2^4:S5 9: G <= Sym(462c) rank 8, on cosets of 2^4:A5 < L3(4), 2^4:A6 ## doc/tutorial.xml (1250-1260) gap> tom:= TableOfMarks( "M22" ); TableOfMarks( "M22" ) gap> genstom:= GeneratorsOfGroup( UnderlyingGroup( tom ) );; gap> checkM22:= AtlasProgram( "M22", "check" ); rec( groupname := "M22", identifier := [ "M22", "M22G1-check1", 1, 1 ] , program := , standardization := 1, version := "1" ) gap> ResultOfStraightLineDecision( checkM22.program, genstom ); true ## doc/tutorial.xml (1269-1273) gap> ord:= OrdersTom( tom );; gap> tomstabs:= Filtered( [ 1 .. Length( ord ) ], i -> ord[i] = 960 ); [ 147, 148, 149 ] ## doc/tutorial.xml (1284-1318) gap> atlasreps:= AllAtlasGeneratingSetInfos( "M22", NrMovedPoints, 462 ); [ rec( charactername := "1a+21a+55a+154a+231a", constituents := [ 1, 2, 5, 7, 9 ], contents := "core", groupname := "M22", id := "a", identifier := [ "M22", [ "M22G1-p462aB0.m1", "M22G1-p462aB0.m2" ], 1, 462 ], isPrimitive := false, p := 462, rankAction := 5, repname := "M22G1-p462aB0", repnr := 7, size := 443520, stabilizer := "2^4:A5 < 2^4:A6", standardization := 1, transitivity := 1, type := "perm" ), rec( charactername := "1a+21a^2+55a+154a+210a", constituents := [ 1, [ 2, 2 ], 5, 7, 8 ], contents := "core", groupname := "M22", id := "b", identifier := [ "M22", [ "M22G1-p462bB0.m1", "M22G1-p462bB0.m2" ], 1, 462 ], isPrimitive := false, p := 462, rankAction := 8, repname := "M22G1-p462bB0", repnr := 8, size := 443520, stabilizer := "2^4:A5 < L3(4), 2^4:S5", standardization := 1, transitivity := 1, type := "perm" ), rec( charactername := "1a+21a^2+55a+154a+210a", constituents := [ 1, [ 2, 2 ], 5, 7, 8 ], contents := "core", groupname := "M22", id := "c", identifier := [ "M22", [ "M22G1-p462cB0.m1", "M22G1-p462cB0.m2" ], 1, 462 ], isPrimitive := false, p := 462, rankAction := 8, repname := "M22G1-p462cB0", repnr := 9, size := 443520, stabilizer := "2^4:A5 < L3(4), 2^4:A6", standardization := 1, transitivity := 1, type := "perm" ) ] gap> atlasreps:= List( atlasreps, AtlasGroup );; gap> tomstabreps:= List( atlasreps, G -> List( tomstabs, > i -> RepresentativeTomByGenerators( tom, i, GeneratorsOfGroup( G ) ) ) );; gap> List( tomstabreps, x -> List( x, NrMovedPoints ) ); [ [ 462, 462, 461 ], [ 460, 462, 462 ], [ 462, 461, 462 ] ] ## doc/tutorial.xml (1334-1340) gap> stabs:= List( atlasreps, G -> Stabilizer( G, 1 ) );; gap> List( stabs, IdGroup ); [ [ 960, 11358 ], [ 960, 11357 ], [ 960, 11357 ] ] gap> List( stabs, PerfectIdentification ); [ [ 960, 2 ], [ 960, 1 ], [ 960, 1 ] ] ## doc/tutorial.xml (1350-1357) gap> maxtom:= MaximalSubgroupsTom( tom ); [ [ 155, 154, 153, 152, 151, 150, 146, 145 ], [ 22, 77, 176, 176, 231, 330, 616, 672 ] ] gap> List( tomstabs, i -> List( maxtom[1], j -> ContainedTom( tom, i, j ) ) ); [ [ 21, 0, 0, 0, 1, 0, 0, 0 ], [ 21, 6, 0, 0, 0, 0, 0, 0 ], [ 0, 6, 0, 0, 0, 0, 0, 0 ] ] ## doc/tutorial.xml (1388-1394) gap> bl:= List( atlasreps, AllBlocks );; gap> List( bl, Length ); [ 1, 3, 2 ] gap> List( bl, l -> List( l, Length ) ); [ [ 6 ], [ 21, 21, 2 ], [ 21, 6 ] ] ## doc/tutorial.xml (1421-1424) gap> List( atlasreps, RankAction ); [ 5, 8, 8 ] ## doc/tutorial.xml (1437-1447) gap> t:= CharacterTable( "M22" );; gap> perms:= PermChars( t, 462 ); [ Character( CharacterTable( "M22" ), [ 462, 30, 3, 2, 2, 2, 3, 0, 0, 0, 0, 0 ] ), Character( CharacterTable( "M22" ), [ 462, 30, 12, 2, 2, 2, 0, 0, 0, 0, 0, 0 ] ) ] gap> MatScalarProducts( t, Irr( t ), perms ); [ [ 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0 ], [ 1, 2, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0 ] ] ## doc/../gap/utils.gd (183-205) gap> AtlasClassNames( CharacterTable( "L3(4).3" ) ); [ "1A", "2A", "3A", "4ABC", "5A", "5B", "7A", "7B", "3B", "3B'", "3C", "3C'", "6B", "6B'", "15A", "15A'", "15B", "15B'", "21A", "21A'", "21B", "21B'" ] gap> AtlasClassNames( CharacterTable( "U3(5).2" ) ); [ "1A", "2A", "3A", "4A", "5A", "5B", "5CD", "6A", "7AB", "8AB", "10A", "2B", "4B", "6D", "8C", "10B", "12B", "20A", "20B" ] gap> AtlasClassNames( CharacterTable( "L2(27).6" ) ); [ "1A", "2A", "3AB", "7ABC", "13ABC", "13DEF", "14ABC", "2B", "4A", "26ABC", "26DEF", "28ABC", "28DEF", "3C", "3C'", "6A", "6A'", "9AB", "9A'B'", "6B", "6B'", "12A", "12A'" ] gap> AtlasClassNames( CharacterTable( "L3(4).3.2_2" ) ); [ "1A", "2A", "3A", "4ABC", "5AB", "7A", "7B", "3B", "3C", "6B", "15A", "15B", "21A", "21B", "2C", "4E", "6E", "8D", "14A", "14B" ] gap> AtlasClassNames( CharacterTable( "3.A6" ) ); [ "1A_0", "1A_1", "1A_2", "2A_0", "2A_1", "2A_2", "3A_0", "3B_0", "4A_0", "4A_1", "4A_2", "5A_0", "5A_1", "5A_2", "5B_0", "5B_1", "5B_2" ] gap> AtlasClassNames( CharacterTable( "2.A5.2" ) ); [ "1A_0", "1A_1", "2A_0", "3A_0", "3A_1", "5AB_0", "5AB_1", "2B_0", "4A_0", "4A_1", "6A_0", "6A_1" ] ## doc/../gap/utils.gd (251-254) gap> AtlasCharacterNames( CharacterTable( "A5" ) ); [ "1a", "3a", "3b", "4a", "5a" ] ## doc/../gap/interfac.gd (453-459) gap> DisplayAtlasInfo( [ "M11", "A5" ] ); group | # | maxes | cl | cyc | out | fnd | chk | prs ------+----+-------+----+-----+-----+-----+-----+---- M11 | 42 | 5 | + | + | | + | + | + A5* | 18 | 3 | + | | | | + | + ## doc/../gap/interfac.gd (482-487) gap> DisplayAtlasInfo( [ "M11", "A5" ], NrMovedPoints, 11 ); group | # | maxes | cl | cyc | out | fnd | chk | prs ------+---+-------+----+-----+-----+-----+-----+---- M11 | 1 | 5 | + | + | | + | + | + ## doc/../gap/interfac.gd (498-510) gap> DisplayAtlasInfo( "A5", IsPermGroup, true ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.) 2: G <= Sym(6) 2-trans., on cosets of D10 (2nd max.) 3: G <= Sym(10) rank 3, on cosets of S3 (3rd max.) gap> DisplayAtlasInfo( "A5", NrMovedPoints, [ 4 .. 9 ] ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.) 2: G <= Sym(6) 2-trans., on cosets of D10 (2nd max.) ## doc/../gap/interfac.gd (515-534) gap> DisplayAtlasInfo( "A5", Dimension, [ 1 .. 3 ] ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 8: G <= GL(2a,4) character 2a 9: G <= GL(2b,4) character 2b 10: G <= GL(3,5) character 3a 12: G <= GL(3a,9) character 3a 13: G <= GL(3b,9) character 3b 17: G <= GL(3a,Field([Sqrt(5)])) character 3a 18: G <= GL(3b,Field([Sqrt(5)])) character 3b gap> DisplayAtlasInfo( "A5", Characteristic, 0 ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 14: G <= GL(4,Z) character 4a 15: G <= GL(5,Z) character 5a 16: G <= GL(6,Z) character 3ab 17: G <= GL(3a,Field([Sqrt(5)])) character 3a 18: G <= GL(3b,Field([Sqrt(5)])) character 3b ## doc/../gap/interfac.gd (543-551) gap> DisplayAtlasInfo( "A5", Identifier, "a" ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 4: G <= GL(4a,2) character 4a 8: G <= GL(2a,4) character 2a 12: G <= GL(3a,9) character 3a 17: G <= GL(3a,Field([Sqrt(5)])) character 3a ## doc/../gap/interfac.gd (556-591) gap> DisplayAtlasInfo( "A5", NrMovedPoints, IsPrimeInt ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.) gap> DisplayAtlasInfo( "A5", Characteristic, IsOddInt ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 6: G <= GL(4,3) character 4a 7: G <= GL(6,3) character 3ab 10: G <= GL(3,5) character 3a 11: G <= GL(5,5) character 5a 12: G <= GL(3a,9) character 3a 13: G <= GL(3b,9) character 3b gap> DisplayAtlasInfo( "A5", Dimension, IsPrimeInt ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 8: G <= GL(2a,4) character 2a 9: G <= GL(2b,4) character 2b 10: G <= GL(3,5) character 3a 11: G <= GL(5,5) character 5a 12: G <= GL(3a,9) character 3a 13: G <= GL(3b,9) character 3b 15: G <= GL(5,Z) character 5a 17: G <= GL(3a,Field([Sqrt(5)])) character 3a 18: G <= GL(3b,Field([Sqrt(5)])) character 3b gap> DisplayAtlasInfo( "A5", Ring, IsFinite and IsPrimeField ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 4: G <= GL(4a,2) character 4a 5: G <= GL(4b,2) character 2ab 6: G <= GL(4,3) character 4a 7: G <= GL(6,3) character 3ab 10: G <= GL(3,5) character 3a 11: G <= GL(5,5) character 5a ## doc/../gap/interfac.gd (601-614) gap> DisplayAtlasInfo( "A5", IsStraightLineProgram, true ); Programs for G = A5: (all refer to std. generators 1) -------------------- - class repres.* - presentation - maxes (all 3): 1: A4 2: D10 3: S3 - std. gen. checker: (check) (pres) ## doc/../gap/interfac.gd (783-812) gap> gens1:= AtlasGenerators( "A5", 1 ); rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", generators := [ (1,2)(3,4), (1,3,5) ], groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ) gap> gens8:= AtlasGenerators( "A5", 8 ); rec( charactername := "2a", constituents := [ 2 ], contents := "core", dim := 2, generators := [ [ [ Z(2)^0, 0*Z(2) ], [ Z(2^2), Z(2)^0 ] ], [ [ 0*Z(2), Z(2)^0 ], [ Z(2)^0, Z(2)^0 ] ] ], groupname := "A5", id := "a", identifier := [ "A5", [ "A5G1-f4r2aB0.m1", "A5G1-f4r2aB0.m2" ], 1, 4 ], repname := "A5G1-f4r2aB0", repnr := 8, ring := GF(2^2), size := 60, standardization := 1, type := "matff" ) gap> gens17:= AtlasGenerators( "A5", 17 ); rec( charactername := "3a", constituents := [ 2 ], contents := "core", dim := 3, generators := [ [ [ -1, 0, 0 ], [ 0, -1, 0 ], [ -E(5)-E(5)^4, -E(5)-E(5)^4, 1 ] ], [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] ], groupname := "A5", id := "a", identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], polynomial := [ -1, 1, 1 ], repname := "A5G1-Ar3aB0", repnr := 17, ring := NF(5,[ 1, 4 ]), size := 60, standardization := 1, type := "matalg" ) ## doc/../gap/interfac.gd (817-834) gap> gens1max2:= AtlasGenerators( "A5", 1, 2 ); rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", generators := [ (1,2)(3,4), (2,3)(4,5) ], groupname := "D10", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5, 2 ], isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 10, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ) gap> id:= gens1max2.identifier;; gap> gens1max2 = AtlasGenerators( id ); true gap> max2:= Group( gens1max2.generators );; gap> Size( max2 ); 10 gap> IdGroup( max2 ) = IdGroup( DihedralGroup( 10 ) ); true ## doc/../gap/interfac.gd (1150-1170) gap> prog:= AtlasProgram( "A5", 2 ); rec( groupname := "A5", identifier := [ "A5", "A5G1-max2W1", 1 ], program := , size := 10, standardization := 1, subgroupname := "D10", version := "1" ) gap> StringOfResultOfStraightLineProgram( prog.program, [ "a", "b" ] ); "[ a, bbab ]" gap> gens1:= AtlasGenerators( "A5", 1 ); rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", generators := [ (1,2)(3,4), (1,3,5) ], groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ) gap> maxgens:= ResultOfStraightLineProgram( prog.program, > gens1.generators ); [ (1,2)(3,4), (2,3)(4,5) ] gap> maxgens = gens1max2.generators; true ## doc/../gap/interfac.gd (1185-1196) gap> prog:= AtlasProgram( "J1", "cyclic" ); rec( groupname := "J1", identifier := [ "J1", "J1G1-cycW1", 1 ], outputs := [ "6A", "7A", "10B", "11A", "15B", "19A" ], program := , standardization := 1, version := "1" ) gap> gens:= GeneratorsOfGroup( FreeGroup( "x", "y" ) );; gap> ResultOfStraightLineProgram( prog.program, gens ); [ (x*y)^2*((y*x)^2*y^2*x)^2*y^2, x*y, (x*(y*x*y)^2)^2*y, (x*y*x*(y*x*y)^3*x*y^2)^2*x*y*x*(y*x*y)^2*y, x*y*x*(y*x*y)^2*y, (x*y)^2*y ] ## doc/../gap/interfac.gd (887-891) gap> AtlasProgramInfo( "J1", "cyclic" ); rec( groupname := "J1", identifier := [ "J1", "J1G1-cycW1", 1 ], standardization := 1, version := "1" ) ## doc/../gap/interfac.gd (1281-1305) gap> info:= OneAtlasGeneratingSetInfo( "A5" ); rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ) gap> gens:= AtlasGenerators( info.identifier ); rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", generators := [ (1,2)(3,4), (1,3,5) ], groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ) gap> info = OneAtlasGeneratingSetInfo( "A5", IsPermGroup, true ); true gap> info = OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, "minimal" ); true gap> info = OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, [ 1 .. 10 ] ); true gap> OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, 20 ); fail ## doc/../gap/interfac.gd (1315-1399) gap> info:= OneAtlasGeneratingSetInfo( "A5", IsMatrixGroup, true ); rec( charactername := "4a", constituents := [ 4 ], contents := "core", dim := 4, groupname := "A5", id := "a", identifier := [ "A5", [ "A5G1-f2r4aB0.m1", "A5G1-f2r4aB0.m2" ], 1, 2 ], repname := "A5G1-f2r4aB0", repnr := 4, ring := GF(2), size := 60, standardization := 1, type := "matff" ) gap> gens:= AtlasGenerators( info.identifier ); rec( charactername := "4a", constituents := [ 4 ], contents := "core", dim := 4, generators := [ , ], groupname := "A5", id := "a", identifier := [ "A5", [ "A5G1-f2r4aB0.m1", "A5G1-f2r4aB0.m2" ], 1, 2 ], repname := "A5G1-f2r4aB0", repnr := 4, ring := GF(2), size := 60, standardization := 1, type := "matff" ) gap> info = OneAtlasGeneratingSetInfo( "A5", Dimension, 4 ); true gap> info = OneAtlasGeneratingSetInfo( "A5", Characteristic, 2 ); true gap> info2:= OneAtlasGeneratingSetInfo( "A5", Ring, GF(2) );; gap> info.identifier = info2.identifier; true gap> OneAtlasGeneratingSetInfo( "A5", Characteristic, [2,5], Dimension, 2 ); rec( charactername := "2a", constituents := [ 2 ], contents := "core", dim := 2, groupname := "A5", id := "a", identifier := [ "A5", [ "A5G1-f4r2aB0.m1", "A5G1-f4r2aB0.m2" ], 1, 4 ], repname := "A5G1-f4r2aB0", repnr := 8, ring := GF(2^2), size := 60, standardization := 1, type := "matff" ) gap> OneAtlasGeneratingSetInfo( "A5", Characteristic, [2,5], Dimension, 1 ); fail gap> info:= OneAtlasGeneratingSetInfo( "A5", Characteristic, 0, > Dimension, 4 ); rec( charactername := "4a", constituents := [ 4 ], contents := "core", dim := 4, groupname := "A5", id := "", identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60, standardization := 1, type := "matint" ) gap> gens:= AtlasGenerators( info.identifier ); rec( charactername := "4a", constituents := [ 4 ], contents := "core", dim := 4, generators := [ [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ -1, -1, -1, -1 ] ], [ [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 1, 0, 0, 0 ] ] ], groupname := "A5", id := "", identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60, standardization := 1, type := "matint" ) gap> info = OneAtlasGeneratingSetInfo( "A5", Ring, Integers ); true gap> info2:= OneAtlasGeneratingSetInfo( "A5", Ring, CF(37) );; gap> info = info2; false gap> Difference( RecNames( info2 ), RecNames( info ) ); [ "givenRing" ] gap> info2.givenRing; CF(37) gap> OneAtlasGeneratingSetInfo( "A5", Ring, Integers mod 77 ); fail gap> info:= OneAtlasGeneratingSetInfo( "A5", Ring, CF(5), Dimension, 3 ); rec( charactername := "3a", constituents := [ 2 ], contents := "core", dim := 3, givenRing := CF(5), groupname := "A5", id := "a", identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], polynomial := [ -1, 1, 1 ], repname := "A5G1-Ar3aB0", repnr := 17, ring := NF(5,[ 1, 4 ]), size := 60, standardization := 1, type := "matalg" ) gap> gens:= AtlasGenerators( info ); rec( charactername := "3a", constituents := [ 2 ], contents := "core", dim := 3, generators := [ [ [ -1, 0, 0 ], [ 0, -1, 0 ], [ -E(5)-E(5)^4, -E(5)-E(5)^4, 1 ] ], [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] ], givenRing := CF(5), groupname := "A5", id := "a", identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], polynomial := [ -1, 1, 1 ], repname := "A5G1-Ar3aB0", repnr := 17, ring := NF(5,[ 1, 4 ]), size := 60, standardization := 1, type := "matalg" ) gap> gens2:= AtlasGenerators( info.identifier );; gap> Difference( RecNames( gens ), RecNames( gens2 ) ); [ "givenRing" ] gap> OneAtlasGeneratingSetInfo( "A5", Ring, GF(17) ); fail ## doc/../gap/interfac.gd (1435-1458) gap> AllAtlasGeneratingSetInfos( "A5", IsPermGroup, true ); [ rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ] , isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ), rec( charactername := "1a+5a", constituents := [ 1, 5 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p6B0.m1", "A5G1-p6B0.m2" ], 1, 6 ] , isPrimitive := true, maxnr := 2, p := 6, rankAction := 2, repname := "A5G1-p6B0", repnr := 2, size := 60, stabilizer := "D10", standardization := 1, transitivity := 2, type := "perm" ), rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ], isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3", standardization := 1, transitivity := 1, type := "perm" ) ] ## doc/../gap/interfac.gd (1600-1603) gap> g:= AtlasGroup( "A5" ); Group([ (1,2)(3,4), (1,3,5) ]) ## doc/../gap/interfac.gd (1611-1623) gap> info:= OneAtlasGeneratingSetInfo( "A5" ); rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ) gap> AtlasGroup( info ); Group([ (1,2)(3,4), (1,3,5) ]) gap> AtlasGroup( info.identifier ); Group([ (1,2)(3,4), (1,3,5) ]) ## doc/../gap/interfac.gd (1694-1699) gap> g:= AtlasSubgroup( "A5", NrMovedPoints, 5, 1 ); Group([ (1,5)(2,3), (1,3,5) ]) gap> NrMovedPoints( g ); 4 ## doc/../gap/interfac.gd (1709-1723) gap> info:= OneAtlasGeneratingSetInfo( "A5" ); rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ) gap> AtlasSubgroup( info, 1 ); Group([ (1,5)(2,3), (1,3,5) ]) gap> AtlasSubgroup( info.identifier, 1 ); Group([ (1,5)(2,3), (1,3,5) ]) gap> AtlasSubgroup( AtlasGroup( "A5" ), 1 ); Group([ (1,5)(2,3), (1,3,5) ]) ## doc/../gap/interfac.gd (1496-1504) gap> AtlasRepInfoRecord( AtlasGroup( "A5" ) ); rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ) ## doc/../gap/interfac.gd (1550-1558) gap> AtlasRepInfoRecord( "A5" ); rec( name := "A5", nrMaxes := 3, size := 60, sizesMaxes := [ 12, 10, 6 ], slpMaxes := [ [ 1 .. 3 ], [ [ 1 ], [ 1 ], [ 1 ] ] ], structureMaxes := [ "A4", "D10", "S3" ] ) gap> AtlasRepInfoRecord( "J5" ); rec( ) ## doc/../gap/interfac.gd (1779-1801) gap> g:= MathieuGroup( 12 );; gap> gens:= GeneratorsOfGroup( g );; # switch to 2 generators gap> g:= Group( gens[1] * gens[3], gens[2] * gens[3] );; gap> EvaluatePresentation( g, "J0" ); # no pres. for group "J0" fail gap> relimgs:= EvaluatePresentation( g, "M11" );; gap> List( relimgs, Order ); # wrong group [ 3, 1, 5, 4, 10 ] gap> relimgs:= EvaluatePresentation( g, "M12" );; gap> List( relimgs, Order ); # generators are not standard [ 3, 4, 5, 4, 4 ] gap> g:= AtlasGroup( "M12" );; gap> relimgs:= EvaluatePresentation( g, "M12", 1 );; gap> List( relimgs, Order ); # right group, std. generators [ 1, 1, 1, 1, 1 ] gap> g:= AtlasGroup( "2.M12" );; gap> relimgs:= EvaluatePresentation( g, "M12", 1 );; gap> List( relimgs, Order ); # std. generators for extension [ 1, 2, 1, 1, 2 ] gap> Size( NormalClosure( g, SubgroupNC( g, relimgs ) ) ); 2 ## doc/../gap/interfac.gd (1936-1944) gap> StandardGeneratorsData( MathieuGroup( 11 ), "J0" ); fail gap> StandardGeneratorsData( MathieuGroup( 11 ), "M12" ); "timeout" gap> repeat > res:= StandardGeneratorsData( MathieuGroup( 12 ), "M11" ); > until res = fail; ## doc/../gap/interfac.gd (1952-1966) gap> gens:= GeneratorsOfGroup( MathieuGroup( 12 ) );; gap> std:= 1;; gap> res:= StandardGeneratorsData( gens, "M12", std );; gap> Set( RecNames( res ) ); [ "gapname", "givengens", "givengenstostdgens", "std", "stdgens" ] gap> gens = res.givengens; true gap> ResultOfStraightLineProgram( res.givengenstostdgens, gens ) > = res.stdgens; true gap> evl:= EvaluatePresentation( res.stdgens, "M12", std );; gap> ForAll( evl, IsOne ); true ## doc/../gap/interfac.gd (1977-1991) gap> g:= AtlasGroup( "2.M12", IsMatrixGroup, Characteristic, IsPosInt );; gap> gens:= Permuted( GeneratorsOfGroup( g ), (1,2) );; gap> res:= StandardGeneratorsData( gens, "M12", std : projective );; gap> gens = res.givengens; true gap> ResultOfStraightLineProgram( res.givengenstostdgens, gens ) > = res.stdgens; true gap> evl:= EvaluatePresentation( res.stdgens, "M12", std );; gap> ForAll( evl, IsOne ); false gap> ForAll( evl, x -> IsCentral( g, x ) ); true ## doc/extend.xml (126-129) gap> locallevel:= InfoLevel( InfoAtlasRep );; gap> SetInfoLevel( InfoAtlasRep, 1 ); ## doc/extend.xml (174-191) gap> prv:= DirectoryTemporary( "privdir" );; gap> FileString( Filename( prv, "C4G1-p4B0.m1" ), > MeatAxeString( [ (1,2,3,4) ], 4 ) );; gap> FileString( Filename( prv, "C4G1-max1W1" ), > "inp 1\npwr 2 1 2\noup 1 2\n" );; gap> FileString( Filename( prv, "C4G1-XtestW1" ), > "inp 1\npwr 2 1 2\noup 1 2\n" );; gap> FileString( Filename( prv, "C4G1-a2W1" ), > "inp 1\npwr 3 1 2\noup 1 2\n" );; gap> FileString( Filename( prv, "C4G1-Ar1aB0.g" ), > "return rec( generators:= [ [[E(4)]] ] );\n" );; gap> points:= Elements( AlternatingGroup( 5 ) );; gap> FileString( Filename( prv, "A5G1-p60B0.m1" ), > MeatAxeString( [ Permutation( (1,2)(3,4), points, OnRight ) ], 60 ) );; gap> FileString( Filename( prv, "A5G1-p60B0.m2" ), > MeatAxeString( [ Permutation( (1,3,5), points, OnRight ) ], 60 ) );; ## doc/extend.xml (213-228) gap> FileString( Filename( prv, "toc.json" ), Concatenation( [ "{\n", > "\"ID\":\"priv\",\n", > "\"Data\":[\n", > "[\"GNAN\",[\"C4\",\"C4\"]],\n", > "[\"GRS\",[\"C4\",4]],\n", > "[\"MXN\",[\"C4\",1]],\n", > "[\"MXO\",[\"C4\",[2]]],\n", > "[\"MXS\",[\"C4\",[\"C2\"]]],\n", > "[\"RNG\",[\"C4G1-Ar1aB0\",\"CF(4)\",", > "[\"QuadraticField\",-1],[1,0,1]]],\n", > "[\"API\",[\"C4G1-p4B0\",[1,4,\"imprim\",\"1 < C2\"]]],\n", > "[\"API\",[\"A5G1-p60B0\",[1,60,\"imprim\",\"1 < S3\"]]]\n", > "]\n", > "}\n" ] ) );; ## doc/extend.xml (236-239) gap> AtlasOfGroupRepresentationsNotifyData( prv, "priv", true ); true ## doc/extend.xml (247-328) gap> DisplayAtlasInfo( [ "C4" ] ); group | # | maxes | cl | cyc | out | fnd | chk | prs ------+---+-------+----+-----+-----+-----+-----+---- C4* | 2 | 1 | | | 2 | | | gap> DisplayAtlasInfo( "C4" ); Representations for G = C4: (all refer to std. generators 1) --------------------------- 1: G <= Sym(4)* rank 4, on cosets of 1 < C2 2: G <= GL(1a,CF(4))* Programs for G = C4: (all refer to std. generators 1) -------------------- - automorphisms*: 2* - maxes (all 1): 1*: C2 - other scripts*: "test"* gap> DisplayAtlasInfo( "C4", IsPermGroup, true ); Representations for G = C4: (all refer to std. generators 1) --------------------------- 1: G <= Sym(4)* rank 4, on cosets of 1 < C2 gap> DisplayAtlasInfo( "C4", IsMatrixGroup ); Representations for G = C4: (all refer to std. generators 1) --------------------------- 2: G <= GL(1a,CF(4))* gap> DisplayAtlasInfo( "C4", Dimension, 2 ); gap> DisplayAtlasInfo( "A5", NrMovedPoints, 60 ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 4: G <= Sym(60)* rank 60, on cosets of 1 < S3 gap> info:= OneAtlasGeneratingSetInfo( "C4" ); rec( contents := "priv", groupname := "C4", id := "", identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], isPrimitive := false, p := 4, rankAction := 4, repname := "C4G1-p4B0", repnr := 1, size := 4, stabilizer := "1 < C2", standardization := 1, transitivity := 1, type := "perm" ) gap> AtlasGenerators( info.identifier ); rec( contents := "priv", generators := [ (1,2,3,4) ], groupname := "C4", id := "", identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], isPrimitive := false, p := 4, rankAction := 4, repname := "C4G1-p4B0", repnr := 1, size := 4, stabilizer := "1 < C2", standardization := 1, transitivity := 1, type := "perm" ) gap> AtlasProgram( "C4", 1 ); rec( groupname := "C4", identifier := [ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ], program := , size := 2, standardization := 1, subgroupname := "C2", version := "1" ) gap> AtlasProgram( "C4", "maxes", 1 ); rec( groupname := "C4", identifier := [ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ], program := , size := 2, standardization := 1, subgroupname := "C2", version := "1" ) gap> AtlasProgram( "C4", "maxes", 2 ); fail gap> AtlasGenerators( "C4", 1 ); rec( contents := "priv", generators := [ (1,2,3,4) ], groupname := "C4", id := "", identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], isPrimitive := false, p := 4, rankAction := 4, repname := "C4G1-p4B0", repnr := 1, size := 4, stabilizer := "1 < C2", standardization := 1, transitivity := 1, type := "perm" ) gap> AtlasGenerators( "C4", 2 ); rec( contents := "priv", dim := 1, generators := [ [ [ E(4) ] ] ], groupname := "C4", id := "a", identifier := [ "C4", [ [ "priv", "C4G1-Ar1aB0.g" ] ], 1, 1 ], polynomial := [ 1, 0, 1 ], repname := "C4G1-Ar1aB0", repnr := 2, ring := GaussianRationals, size := 4, standardization := 1, type := "matalg" ) gap> AtlasGenerators( "C4", 3 ); fail gap> AtlasProgram( "C4", "other", "test" ); rec( groupname := "C4", identifier := [ "C4", [ [ "priv", "C4G1-XtestW1" ] ], 1 ], program := , standardization := 1, version := "1" ) ## doc/extend.xml (337-343) gap> DisplayAtlasInfo( "contents", "priv" ); group | # | maxes | cl | cyc | out | fnd | chk | prs ------+---+-------+----+-----+-----+-----+-----+---- A5* | 1 | | | | | | | C4* | 2 | 1 | | | 2 | | | ## doc/extend.xml (352-372) gap> AGR.Test.Words( "priv" ); true gap> AGR.Test.FileHeaders( "priv" ); true gap> AGR.Test.Files( "priv" ); true gap> AGR.Test.BinaryFormat( "priv" ); true gap> AGR.Test.Primitivity( "priv" : TryToExtendData ); true gap> AGR.Test.Characters( "priv" : TryToExtendData ); #I AGR.Test.Character: #I add new info ["CHAR",["A5","A5G1-p60B0", 0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4a^4+5a^5"]], #I AGR.Test.Character: #I add new info ["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]], true ## doc/extend.xml (395-409) gap> AGR.CHAR("A5","A5G1-p60B0", > 0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4a^4+5a^5", "priv" ); gap> AGR.CHAR("C4","C4G1-p4B0",0,[1,2,3,4],"1abcd", "priv" ); gap> AGR.Test.Characters( "priv" ); true gap> OneAtlasGeneratingSetInfo( "C4" ); rec( charactername := "1abcd", constituents := [ 1, 2, 3, 4 ], contents := "priv", groupname := "C4", id := "", identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], isPrimitive := false, p := 4, rankAction := 4, repname := "C4G1-p4B0", repnr := 1, size := 4, stabilizer := "1 < C2", standardization := 1, transitivity := 1, type := "perm" ) ## doc/extend.xml (417-442) gap> Print( StringOfAtlasTableOfContents( "priv" ) ); { "ID":"priv", "Data":[ ["GNAN",["C4","C4"]], ["GRS",["C4",4]], ["MXN",["C4",1]], ["MXO",["C4",[2]]], ["MXS",["C4",["C2"]]], ["RNG",["C4G1-Ar1aB0","CF(4)",["QuadraticField",-1],[1,0,1]]], ["API",["A5G1-p60B0",[1,60,"imprim","1 < S3"]]], ["API",["C4G1-p4B0",[1,4,"imprim","1 < C2"]]], ["CHAR",["A5","A5G1-p60B0",0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4\ a^4+5a^5"]], ["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]] ] } ## doc/extend.xml (452-486) gap> Print( StringOfAtlasTableOfContents( > rec( ID:= "priv", DataURL:= "http://someurl" ) ) ); { "ID":"priv", "DataURL":"http://someurl", "Data":[ ["GNAN",["C4","C4"]], ["GRS",["C4",4]], ["MXN",["C4",1]], ["MXO",["C4",[2]]], ["MXS",["C4",["C2"]]], ["TOC",["perm","A5G1-p60B0.m",[118815263,24584221]]], ["TOC",["matalg","C4G1-Ar1aB0.g",[49815028]]], ["TOC",["otherscripts","C4G1-XtestW1",[-27672877]]], ["TOC",["out","C4G1-a2W1",[126435524]]], ["TOC",["maxes","C4G1-max1W1",[-27672877]]], ["TOC",["perm","C4G1-p4B0.m",[102601978]]], ["RNG",["C4G1-Ar1aB0","CF(4)",["QuadraticField",-1],[1,0,1]]], ["API",["A5G1-p60B0",[1,60,"imprim","1 < S3"]]], ["API",["C4G1-p4B0",[1,4,"imprim","1 < C2"]]], ["CHAR",["A5","A5G1-p60B0",0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4\ a^4+5a^5"]], ["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]] ] } ## doc/extend.xml (497-500) gap> AtlasOfGroupRepresentationsForgetData( "priv" ); gap> SetInfoLevel( InfoAtlasRep, locallevel ); ## doc/../gap/bbox.gd (551-558) gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ], > [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] ); gap> LinesOfStraightLineDecision( dec ); [ [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] ## doc/../gap/bbox.gd (581-584) gap> NrInputsOfStraightLineDecision( dec ); 2 ## doc/../gap/scanmtx.gd (670-685) gap> str:= "inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5";; gap> prg:= ScanStraightLineDecision( str ); rec( program := ) gap> prg:= prg.program;; gap> Display( prg ); # input: r:= [ g1, g2 ]; # program: if Order( r[1] ) <> 2 then return false; fi; if Order( r[2] ) <> 3 then return false; fi; r[3]:= r[1]*r[2]; if Order( r[3] ) <> 5 then return false; fi; # return value: true ## doc/../gap/bbox.gd (648-653) gap> dec:= StraightLineDecision( [ ], 1 ); gap> ResultOfStraightLineDecision( dec, [ () ] ); true ## doc/../gap/bbox.gd (658-669) gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ], > [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] ); gap> LinesOfStraightLineDecision( dec ); [ [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] gap> ResultOfStraightLineDecision( dec, [ (), () ] ); false gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,4,5) ] ); true ## doc/../gap/bbox.gd (762-790) gap> check:= AtlasProgram( "L2(8)", "check" ); rec( groupname := "L2(8)", identifier := [ "L2(8)", "L28G1-check1", 1, 1 ], program := , standardization := 1, version := "1" ) gap> gens:= AtlasGenerators( "L2(8)", 1 ); rec( charactername := "1a+8a", constituents := [ 1, 6 ], contents := "core", generators := [ (1,2)(3,4)(6,7)(8,9), (1,3,2)(4,5,6)(7,8,9) ], groupname := "L2(8)", id := "", identifier := [ "L2(8)", [ "L28G1-p9B0.m1", "L28G1-p9B0.m2" ], 1, 9 ], isPrimitive := true, maxnr := 1, p := 9, rankAction := 2, repname := "L28G1-p9B0", repnr := 1, size := 504, stabilizer := "2^3:7", standardization := 1, transitivity := 3, type := "perm" ) gap> ResultOfStraightLineDecision( check.program, gens.generators ); true gap> gens:= AtlasGenerators( "L3(2)", 1 ); rec( contents := "core", generators := [ (2,4)(3,5), (1,2,3)(5,6,7) ], groupname := "L3(2)", id := "a", identifier := [ "L3(2)", [ "L27G1-p7aB0.m1", "L27G1-p7aB0.m2" ], 1, 7 ], isPrimitive := true, maxnr := 1, p := 7, rankAction := 2, repname := "L27G1-p7aB0", repnr := 1, size := 168, stabilizer := "S4", standardization := 1, transitivity := 2, type := "perm" ) gap> ResultOfStraightLineDecision( check.program, gens.generators ); true ## doc/../gap/bbox.gd (978-990) gap> lines:= [ [ "Order", 1, 2 ], [ "Order", 2, 3 ], > [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 3, 5 ] ];; gap> dec:= StraightLineDecision( lines, 2 ); gap> bboxdec:= AsBBoxProgram( dec ); gap> asdec:= AsStraightLineDecision( bboxdec ); gap> LinesOfStraightLineDecision( asdec ); [ [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 3, 5 ] ] ## doc/../gap/bbox.gd (828-850) gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ], > [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] ); gap> prog:= StraightLineProgramFromStraightLineDecision( dec ); gap> Display( prog ); # input: r:= [ g1, g2 ]; # program: r[3]:= r[1]*r[2]; r[4]:= r[1]^2; r[5]:= r[2]^3; r[6]:= r[3]^5; # return values: [ r[4], r[5], r[6] ] gap> StringOfResultOfStraightLineProgram( prog, [ "a", "b" ] ); "[ a^2, b^3, (ab)^5 ]" gap> gens:= GeneratorsOfGroup( FreeGroup( "a", "b" ) ); [ a, b ] gap> ResultOfStraightLineProgram( prog, gens ); [ a^2, b^3, (a*b)^5 ] ## doc/../gap/bbox.gd (188-219) gap> findstr:= "\ > set V 0\n\ > lbl START1\n\ > rand 1\n\ > ord 1 A\n\ > incr V\n\ > if V gt 100 then timeout\n\ > if A notin 1 2 3 5 then fail\n\ > if A noteq 2 then jmp START1\n\ > lbl START2\n\ > rand 2\n\ > ord 2 B\n\ > incr V\n\ > if V gt 100 then timeout\n\ > if B notin 1 2 3 5 then fail\n\ > if B noteq 3 then jmp START2\n\ > # The elements 1 and 2 have the orders 2 and 3, respectively.\n\ > set X 0\n\ > lbl CONJ\n\ > incr X\n\ > if X gt 100 then timeout\n\ > rand 3\n\ > cjr 2 3\n\ > mu 1 2 4 # ab\n\ > ord 4 C\n\ > if C notin 2 3 5 then fail\n\ > if C noteq 5 then jmp CONJ\n\ > oup 2 1 2";; gap> find:= ScanBBoxProgram( findstr ); rec( program := ) ## doc/../gap/bbox.gd (224-232) gap> checkstr:= "\ > chor 1 2\n\ > chor 2 3\n\ > mu 1 2 3\n\ > chor 3 5";; gap> check:= ScanBBoxProgram( checkstr ); rec( program := ) ## doc/../gap/bbox.gd (328-348) gap> g:= AlternatingGroup( 5 );; gap> res:= RunBBoxProgram( find.program, g, [], rec() );; gap> IsBound( res.gens ); IsBound( res.result ); true false gap> List( res.gens, Order ); [ 2, 3 ] gap> Order( Product( res.gens ) ); 5 gap> res:= RunBBoxProgram( check.program, "dummy", res.gens, rec() );; gap> IsBound( res.gens ); IsBound( res.result ); false true gap> res.result; true gap> othergens:= GeneratorsOfGroup( g );; gap> res:= RunBBoxProgram( check.program, "dummy", othergens, rec() );; gap> res.result; false ## doc/../gap/bbox.gd (386-398) gap> g:= AlternatingGroup( 5 );; gap> res:= ResultOfBBoxProgram( find.program, g );; gap> List( res, Order ); [ 2, 3 ] gap> Order( Product( res ) ); 5 gap> res:= ResultOfBBoxProgram( check.program, res ); true gap> othergens:= GeneratorsOfGroup( g );; gap> res:= ResultOfBBoxProgram( check.program, othergens ); false ## doc/../gap/bbox.gd (884-908) gap> f:= FreeGroup( "x", "y" );; gens:= GeneratorsOfGroup( f );; gap> slp:= StraightLineProgram( [ [1,2,2,3], [3,-1] ], 2 ); gap> ResultOfStraightLineProgram( slp, gens ); y^-3*x^-2 gap> bboxslp:= AsBBoxProgram( slp ); gap> ResultOfBBoxProgram( bboxslp, gens ); [ y^-3*x^-2 ] gap> lines:= [ [ "Order", 1, 2 ], [ "Order", 2, 3 ], > [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 3, 5 ] ];; gap> dec:= StraightLineDecision( lines, 2 ); gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,3,5) ] ); true gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,3,4) ] ); false gap> bboxdec:= AsBBoxProgram( dec ); gap> ResultOfBBoxProgram( bboxdec, [ (1,2)(3,4), (1,3,5) ] ); true gap> ResultOfBBoxProgram( bboxdec, [ (1,2)(3,4), (1,3,4) ] ); false ## doc/../gap/bbox.gd (937-950) gap> Display( AsStraightLineProgram( bboxslp ) ); # input: r:= [ g1, g2 ]; # program: r[3]:= r[1]^2; r[4]:= r[2]^3; r[5]:= r[3]*r[4]; r[3]:= r[5]^-1; # return values: [ r[3] ] gap> AsStraightLineProgram( bboxdec ); fail ## doc/../gap/mindeg.gd (192-203) gap> MinimalRepresentationInfo( "A5", NrMovedPoints ); rec( source := [ "computed (alternating group)", "computed (char. table)", "computed (subgroup tables)", "computed (subgroup tables, known repres.)", "computed (table of marks)" ], value := 5 ) gap> MinimalRepresentationInfo( "A5", Characteristic, 2 ); rec( source := [ "computed (char. table)" ], value := 2 ) gap> MinimalRepresentationInfo( "A5", Size, 2 ); rec( source := [ "computed (char. table)" ], value := 4 ) ## doc/../gap/mindeg.gd (336-355) gap> SetMinimalRepresentationInfo( "A5", "NrMovedPoints", 5, > "computed (alternating group)" ); true gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 0 ], 3, > "computed (char. table)" ); true gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 2 ], 2, > "computed (char. table)" ); true gap> SetMinimalRepresentationInfo( "A5", [ "Size", 2 ], 4, > "computed (char. table)" ); true gap> SetMinimalRepresentationInfo( "A5", [ "Size", 4 ], 2, > "computed (char. table)" ); true gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 3 ], 3, > "computed (char. table)" ); true ## doc/../gap/json.g (128-137) gap> l:= [ [ 1 ] ];; l[2]:= l[1];; l; [ [ 1 ], [ 1 ] ] gap> new:= AGR.GapObjectOfJsonText( AGR.JsonText( l ) ).value; [ [ 1 ], [ 1 ] ] gap> Add( l[1], 2 ); l; [ [ 1, 2 ], [ 1, 2 ] ] gap> Add( new[1], 2 ); new; [ [ 1, 2 ], [ 1 ] ] ## doc/../gap/json.g (142-144) gap> l:= [];; l[1]:= l;; ## doc/../gap/json.g (298-314) gap> AGR.JsonText( [] ); "[]" gap> AGR.JsonText( "" ); "\"\"" gap> AGR.JsonText( "abc\ndef\cghi" ); "\"abc\\ndef\\u0003ghi\"" gap> AGR.JsonText( rec() ); "{}" gap> AGR.JsonText( [ , 2 ] ); fail gap> str:= [ '\303', '\266' ];; # umlaut o gap> json:= AGR.JsonText( str );; List( json, IntChar ); [ 34, 195, 182, 34 ] gap> AGR.JsonText( str, "ASCII" ); "\"\\u00F6\"" ## doc/../gap/json.g (422-427) gap> AGR.GapObjectOfJsonText( "{ \"a\": 1 }" ); rec( status := true, value := rec( a := 1 ) ) gap> AGR.GapObjectOfJsonText( "{ \"a\": x }" ); rec( errpos := 8, status := false ) ## doc/../gap/scanmtx.gd (332-351) gap> mat:= [ [ 1, -1 ], [ 0, 1 ] ] * Z(3)^0;; gap> str:= MeatAxeString( mat, 3 ); "1 3 2 2\n12\n01\n" gap> mat = ScanMeatAxeFile( str, "string" ); true gap> str:= MeatAxeString( mat, 9 ); "1 9 2 2\n12\n01\n" gap> mat = ScanMeatAxeFile( str, "string" ); true gap> perms:= [ (1,2,3)(5,6) ];; gap> str:= MeatAxeString( perms, 6 ); "12 1 6 1\n2\n3\n1\n4\n6\n5\n" gap> perms = ScanMeatAxeFile( str, "string" ); true gap> str:= MeatAxeString( perms, 8 ); "12 1 8 1\n2\n3\n1\n4\n6\n5\n7\n8\n" gap> perms = ScanMeatAxeFile( str, "string" ); true ## doc/../gap/scanmtx.gd (357-375) gap> perm:= (1,2,4);; gap> str:= MeatAxeString( perm, 3, [ 5, 6 ] ); "2 3 5 6\n2\n4\n3\n1\n5\n" gap> mat:= ScanMeatAxeFile( str, "string" );; Print( mat, "\n" ); [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ] gap> pref:= UserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2" );; gap> SetUserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2", true ); gap> MeatAxeString( mat, 3 ) = str; true gap> SetUserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2", false ); gap> MeatAxeString( mat, 3 ); "1 3 5 6\n010000\n000100\n001000\n100000\n000010\n" gap> SetUserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2", pref ); ## doc/../gap/scanmtx.gd (113-118) gap> FFList( GF(4) ); [ 0*Z(2), Z(2)^0, Z(2^2), Z(2^2)^2 ] gap> IsBound( FFLists[4] ); true ## doc/../gap/scanmtx.gd (424-438) gap> tmpdir:= DirectoryTemporary();; gap> mat:= Filename( tmpdir, "mat" );; gap> q:= 4;; gap> mats:= GeneratorsOfGroup( GL(10,q) );; gap> CMtxBinaryFFMatOrPerm( mats[1], q, Concatenation( mat, "1" ) ); gap> CMtxBinaryFFMatOrPerm( mats[2], q, Concatenation( mat, "2" ) ); gap> prm:= Filename( tmpdir, "prm" );; gap> n:= 200;; gap> perms:= GeneratorsOfGroup( SymmetricGroup( n ) );; gap> CMtxBinaryFFMatOrPerm( perms[1], n, Concatenation( prm, "1" ) ); gap> CMtxBinaryFFMatOrPerm( perms[2], n, Concatenation( prm, "2" ) ); gap> CMtxBinaryFFMatOrPerm( perms[1], n, Concatenation( prm, "1a" ), 0 ); gap> CMtxBinaryFFMatOrPerm( perms[2], n, Concatenation( prm, "2b" ), 1 ); ## doc/../gap/scanmtx.gd (465-478) gap> FFMatOrPermCMtxBinary( Concatenation( mat, "1" ) ) = mats[1]; true gap> FFMatOrPermCMtxBinary( Concatenation( mat, "2" ) ) = mats[2]; true gap> FFMatOrPermCMtxBinary( Concatenation( prm, "1" ) ) = perms[1]; true gap> FFMatOrPermCMtxBinary( Concatenation( prm, "2" ) ) = perms[2]; true gap> FFMatOrPermCMtxBinary( Concatenation( prm, "1a" ) ) = perms[1]; true gap> FFMatOrPermCMtxBinary( Concatenation( prm, "2b" ) ) = perms[2]; true ## doc/../gap/scanmtx.gd (733-782) gap> str:= "inp 2\nmu 1 2 3\nmu 3 1 2\niv 2 1\noup 2 1 2";; gap> prg:= ScanStraightLineProgram( str, "string" ); rec( program := ) gap> prg:= prg.program;; gap> Display( prg ); # input: r:= [ g1, g2 ]; # program: r[3]:= r[1]*r[2]; r[2]:= r[3]*r[1]; r[1]:= r[2]^-1; # return values: [ r[1], r[2] ] gap> StringOfResultOfStraightLineProgram( prg, [ "a", "b" ] ); "[ (aba)^-1, aba ]" gap> AtlasStringOfProgram( prg ); "inp 2\nmu 1 2 3\nmu 3 1 2\niv 2 1\noup 2\n" gap> prg:= StraightLineProgram( "(a^2b^3)^-1", [ "a", "b" ] ); gap> Print( AtlasStringOfProgram( prg ) ); inp 2 pwr 2 1 4 pwr 3 2 5 mu 4 5 3 iv 3 4 oup 1 4 gap> prg:= StraightLineProgram( [ [2,3], [ [3,1,1,4], [1,2,3,1] ] ], 2 ); gap> Print( AtlasStringOfProgram( prg ) ); inp 2 pwr 3 2 3 pwr 4 1 5 mu 3 5 4 pwr 2 1 6 mu 6 3 5 oup 2 4 5 gap> Print( AtlasStringOfProgram( prg, "mtx" ) ); # inputs are expected in 1 2 zsm pwr3 2 3 zsm pwr4 1 5 zmu 3 5 4 zsm pwr2 1 6 zmu 6 3 5 echo "outputs are in 4 5" gap> str:= "inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5";; gap> prg:= ScanStraightLineDecision( str );; gap> AtlasStringOfProgram( prg.program ); "inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5\n" ## doc/../gap/access.gd (148-159) gap> format:= [ [ [ IsChar, "G", IsDigitChar ], > [ "p", IsDigitChar, AGR.IsLowerAlphaOrDigitChar, > "B", IsDigitChar, ".m", IsDigitChar ] ], > [ ParseBackwards, ParseForwards ] ];; gap> AGR.ParseFilenameFormat( "A6G1-p10B0.m1", format ); [ "A6", "G", 1, "p", 10, "", "B", 0, ".m", 1 ] gap> AGR.ParseFilenameFormat( "A6G1-p15aB0.m1", format ); [ "A6", "G", 1, "p", 15, "a", "B", 0, ".m", 1 ] gap> AGR.ParseFilenameFormat( "A6G1-f2r16B0.m1", format ); fail ## doc/../gap/utils.gd (391-426) gap> id:= [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ];; gap> AtlasRepIdentifier( id ) = id; true gap> id:= [ "L2(8)", "L28G1-check1", 1, 1 ];; gap> AtlasRepIdentifier( id ) = id; true gap> oldid:= [ [ "priv", "C4" ], [ "C4G1-p4B0.m1" ], 1, 4 ];; gap> newid:= AtlasRepIdentifier( oldid ); [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ] gap> oldid = AtlasRepIdentifier( newid, "old" ); true gap> oldid:= [ [ "priv", "C4" ], "C4G1-max1W1", 1 ];; gap> newid:= AtlasRepIdentifier( oldid ); [ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ] gap> oldid = AtlasRepIdentifier( newid, "old" ); true gap> oldid:= [ [ "priv", "C4" ], "C4G1-Ar1aB0.g", 1, 1 ];; gap> newid:= AtlasRepIdentifier( oldid ); [ "C4", [ [ "priv", "C4G1-Ar1aB0.g" ] ], 1, 1 ] gap> oldid = AtlasRepIdentifier( newid, "old" ); true gap> oldid:= [ [ "priv", "C4" ], "C4G1-XtestW1", 1 ];; gap> newid:= AtlasRepIdentifier( oldid ); [ "C4", [ [ "priv", "C4G1-XtestW1" ] ], 1 ] gap> oldid = AtlasRepIdentifier( newid, "old" ); true gap> oldid:= [ [ "mfer", "2.M12" ], > [ "2M12G1-p264aB0.m1", "2M12G1-p264aB0.m2" ], 1, 264 ];; gap> newid:= AtlasRepIdentifier( oldid ); [ "2.M12", [ [ "mfer", "2M12G1-p264aB0.m1" ], [ "mfer", "2M12G1-p264aB0.m2" ] ] , 1, 264 ] gap> oldid = AtlasRepIdentifier( newid, "old" ); true ## doc/technica.xml (284-287) gap> SetUserPreference( "AtlasRep", "DisplayFunction", origpref ); gap> SetInfoLevel( InfoAtlasRep, globallevel ); ## gap> STOP_TEST( "docxpl2.tst" ); gap> SizeScreen( save );; ############################################################################# ## #E atlasrep-2.1.8/tst/json.tst0000644000175000017500000001200214410313562013770 0ustar samsam############################################################################# ## #W json.tst GAP 4 package AtlasRep Thomas Breuer ## ## This file contains a few basic tests for the JSON interface. ## ## In order to run the tests, one starts GAP from the 'tst' subdirectory ## of the 'pkg/atlasrep' directory, and calls 'Test( "json.tst" );'. ## gap> START_TEST( "json.tst" ); # Load the package. gap> LoadPackage( "atlasrep" ); true # The following GAP objects have no JSON equivalent. gap> notconvertible:= [ (1,2), Z(2), E(7), Group( () ), [ , 1 ] ];; gap> ForAll( notconvertible, x -> AGR.JsonText( x ) = fail ); true gap> ForAll( notconvertible, x -> AGR.JsonText( x, "ASCII" ) = fail ); true gap> AGR.JsonText( "\"\200\"", "ASCII" ); fail # The following strings are not valid JSON. gap> invalid:= [ "-", "- 1", "-.", "-.2", "1.", "01", > "e", "1e", "1e+", "1e-", > "\"\n\"", "\"\\uXXXX\"", "\"\\uD800\"", "\"\\uDC00\"", > "\"\\uDC00\\uD800\"", > "]", "[,1]", "[1,]", "[1", > "}", "{[]}", "{,\"a\":0}", "{\"a\":0,}", "{\"a\":0},", "{\"a\":0" ];; gap> ForAll( invalid, x -> AGR.GapObjectOfJsonText( x ).status = false ); true # Convert constants. gap> gapconstants:= [ true, false, fail ];; gap> jsonconstants:= List( gapconstants, AGR.JsonText ); [ "true", "false", "null" ] gap> jsonconstants = List( gapconstants, x -> AGR.JsonText( x, "ASCII" ) ); true gap> gapconstants = List( jsonconstants, > x -> AGR.GapObjectOfJsonText( x ).value ); true # Convert strings. gap> gapstrings:= List( [ 0 .. 1000 ], > i -> Encode( Unicode( [ i ] ), "UTF-8" ) );; gap> jsonstrings:= List( gapstrings, AGR.JsonText );; gap> jsonstringsascii:= List( gapstrings, x -> AGR.JsonText( x, "ASCII" ) );; gap> Filtered( [ 1 .. Length( gapstrings ) ], > i -> jsonstrings[i] = jsonstringsascii[i] ) = [ 1 .. 128 ]; true gap> gapstrings = List( jsonstrings, > x -> AGR.GapObjectOfJsonText( x ).value ); true gap> gapstrings = List( jsonstringsascii, > x -> AGR.GapObjectOfJsonText( x ).value ); true gap> List( [ "\"\"" ], > x -> AGR.GapObjectOfJsonText( x ).value ); [ "" ] gap> AGR.JsonText( "" ); "\"\"" gap> gapstrings:= List( [ "ABCD", "FFFF", "10000", "10ABCD", "10FFFF" ], > x -> Encode( Unicode( Concatenation( "&#x", x, ";" ), > "XML" ), "UTF-8" ) );; gap> jsonstrings:= List( gapstrings, x -> AGR.JsonText( x, "ASCII" ) ); [ "\"\\uABCD\"", "\"\\uFFFF\"", "\"\\uD800\\uDC00\"", "\"\\uDBEA\\uDFCD\"", "\"\\uDBFF\\uDFFF\"" ] gap> gapstrings = List( jsonstrings, > x -> AGR.GapObjectOfJsonText( x ).value ); true # Convert numbers. (Leading zeros in exponents are allowed.) gap> gapnumbers:= [ 0, 1, -1, 1.7, -1.35 ];; gap> jsonnumbers:= List( gapnumbers, AGR.JsonText ); [ "0", "1", "-1", "1.7", "-1.3500000000000001" ] gap> jsonnumbers = List( gapnumbers, x -> AGR.JsonText( x, "ASCII" ) ); true gap> gapnumbers = List( jsonnumbers, > x -> AGR.GapObjectOfJsonText( x ).value ); true gap> List( [ "0", "-0", "10e1", "10E1", "10e+1", "10E+1", "10e-1", "10E-1", > "10.4e1", "10.4e-1", "10e01", "10e0" ], > x -> AGR.GapObjectOfJsonText( x ).value ); [ 0, 0, 100, 100, 100, 100, 1., 1., 104., 1.04, 100, 10 ] gap> AGR.GapObjectOfJsonText( AGR.JsonText( 1/2 ) ).value; 0.5 gap> AGR.GapObjectOfJsonText( AGR.JsonText( 1/2, "ASCII" ) ).value; 0.5 # Convert arrays/lists. gap> AGR.JsonText( [] ); "[]" gap> AGR.JsonText( [], "ASCII" ); "[]" gap> AGR.JsonText( gapnumbers ); "[0,1,-1,1.7,-1.3500000000000001]" gap> AGR.JsonText( gapnumbers, "ASCII" ); "[0,1,-1,1.7,-1.3500000000000001]" # Convert objects/records. gap> AGR.JsonText( rec() ); "{}" gap> AGR.JsonText( rec(), "ASCII" ); "{}" gap> AGR.JsonText( rec( a:= [] ) ); "{\"a\":[]}" gap> AGR.JsonText( rec( a:= [] ), "ASCII" ); "{\"a\":[]}" gap> r:= AGR.GapObjectOfJsonText( "{\"\":0}" ); rec( status := true, value := rec( ("") := 0 ) ) gap> r.value.( "" ); 0 gap> nam:= Encode( Unicode( "ö", "XML"), "UTF-8" );; gap> r:= rec();; r.( nam ):= 0;; r.( "\005" ):= 1;; gap> json:= AGR.JsonText( r );; gap> jsonascii:= AGR.JsonText( r, "ASCII" ); "{\"\\u00F6\":0,\"\\u0005\":1}" gap> AGR.GapObjectOfJsonText( json ).value = r; true gap> AGR.GapObjectOfJsonText( jsonascii ).value = r; true # Convert nested structures. gap> l:= [];; ll:= l;; gap> for i in [ 1 .. 100 ] do > ll[1]:= []; > ll:= ll[1]; > od; gap> json:= AGR.JsonText( l );; gap> json = AGR.JsonText( l, "ASCII" ); true gap> AGR.GapObjectOfJsonText( json ).value = l; true gap> r:= rec();; rr:= r;; gap> for i in [ 1 .. 100 ] do > nam:= Concatenation( "a", String( i ) ); > rr.( nam ):= rec(); > rr:= rr.( nam ); > od; gap> json:= AGR.JsonText( r );; gap> json = AGR.JsonText( r, "ASCII" ); true gap> AGR.GapObjectOfJsonText( json ).value = r; true # Done. gap> STOP_TEST( "json.tst" ); ############################################################################# ## #E atlasrep-2.1.8/tst/docxpl.tst0000444000175000017500000020242214545501244014322 0ustar samsam# This file was created automatically, do not edit! ############################################################################# ## #W docxpl.tst GAP 4 package AtlasRep Thomas Breuer ## ## This file contains the GAP code of examples in the package ## documentation files. ## ## In order to run the tests, one starts GAP from the 'tst' subdirectory ## of the 'pkg/atlasrep' directory, and calls 'Test( "docxpl.tst" );'. ## gap> LoadPackage( "AtlasRep", false ); true gap> save:= SizeScreen();; gap> SizeScreen( [ 72 ] );; gap> START_TEST( "docxpl.tst" ); ## gap> if IsBound( BrowseData ) then > data:= BrowseData.defaults.dynamic.replayDefaults; > oldinterval:= data.replayInterval; > data.replayInterval:= 1; > fi; ## doc/tutorial.xml (31-38) gap> LoadPackage( "AtlasRep", false ); true gap> LoadPackage( "CTblLib", false ); true gap> LoadPackage( "TomLib", false ); true ## doc/tutorial.xml (56-59) gap> origpref:= UserPreference( "AtlasRep", "DisplayFunction" );; gap> SetUserPreference( "AtlasRep", "DisplayFunction", "Print" ); ## doc/tutorial.xml (69-74) gap> priv:= Difference( > List( AtlasOfGroupRepresentationsInfo.notified, x -> x.ID ), > [ "core", "internal" ] );; gap> Perform( priv, AtlasOfGroupRepresentationsForgetData ); ## doc/tutorial.xml (81-84) gap> globallevel:= InfoLevel( InfoAtlasRep );; gap> SetInfoLevel( InfoAtlasRep, 0 ); ## doc/tutorial.xml (169-180) gap> g:= AtlasGroup( "M24" ); Group([ (1,4)(2,7)(3,17)(5,13)(6,9)(8,15)(10,19)(11,18)(12,21)(14,16) (20,24)(22,23), (1,4,6)(2,21,14)(3,9,15)(5,18,10)(13,17,16) (19,24,23) ]) gap> IsPermGroup( g ); NrMovedPoints( g ); Size( g ); true 24 244823040 gap> AtlasGroup( "J5" ); fail ## doc/tutorial.xml (197-207) gap> g:= AtlasSubgroup( "M24", 1 ); Group([ (2,10)(3,12)(4,14)(6,9)(8,16)(15,18)(20,22)(21,24), (1,7,2,9) (3,22,10,23)(4,19,8,12)(5,14)(6,18)(13,16,17,24) ]) gap> IsPermGroup( g ); NrMovedPoints( g ); Size( g ); true 23 10200960 gap> AtlasSubgroup( "M24", 100 ); fail ## doc/tutorial.xml (235-244) gap> s:= AtlasSubgroup( "ON", 3 ); gap> NrMovedPoints( s ); Size( s ); 122760 175560 gap> hom:= SmallerDegreePermutationRepresentation( s );; gap> NrMovedPoints( Image( hom ) ) < 2000; true ## doc/tutorial.xml (254-259) gap> j1:= AtlasGroup( "J1" ); gap> NrMovedPoints( j1 ); 266 ## doc/tutorial.xml (268-277) gap> g:= AtlasGroup( "ON" ); gap> s:= AtlasSubgroup( g, 3 ); gap> IsSubset( g, s ); true gap> IsSubset( g, j1 ); false ## doc/tutorial.xml (292-326) gap> DisplayAtlasInfo( "A5" ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.) 2: G <= Sym(6) 2-trans., on cosets of D10 (2nd max.) 3: G <= Sym(10) rank 3, on cosets of S3 (3rd max.) 4: G <= GL(4a,2) character 4a 5: G <= GL(4b,2) character 2ab 6: G <= GL(4,3) character 4a 7: G <= GL(6,3) character 3ab 8: G <= GL(2a,4) character 2a 9: G <= GL(2b,4) character 2b 10: G <= GL(3,5) character 3a 11: G <= GL(5,5) character 5a 12: G <= GL(3a,9) character 3a 13: G <= GL(3b,9) character 3b 14: G <= GL(4,Z) character 4a 15: G <= GL(5,Z) character 5a 16: G <= GL(6,Z) character 3ab 17: G <= GL(3a,Field([Sqrt(5)])) character 3a 18: G <= GL(3b,Field([Sqrt(5)])) character 3b Programs for G = A5: (all refer to std. generators 1) -------------------- - class repres.* - presentation - maxes (all 3): 1: A4 2: D10 3: S3 - std. gen. checker: (check) (pres) ## doc/tutorial.xml (334-337) gap> AtlasGroup( "A5", Position, 1 ); Group([ (1,2)(3,4), (1,3,5) ]) ## doc/tutorial.xml (348-353) gap> AtlasGroup( "A5", NrMovedPoints, 10 ); Group([ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ]) gap> AtlasGroup( "A5", Dimension, 4, Ring, GF(2) ); ## doc/tutorial.xml (368-376) gap> AtlasSubgroup( "A5", Dimension, 4, Ring, GF(2), 1 ); gap> g:= AtlasSubgroup( "A5", NrMovedPoints, 10, 3 ); Group([ (2,4)(3,5)(6,8)(7,10), (1,4)(3,8)(5,7)(6,10) ]) gap> Size( g ); NrMovedPoints( g ); 6 9 ## doc/tutorial.xml (423-442) gap> info:= OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, 10 ); rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ], isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3", standardization := 1, transitivity := 1, type := "perm" ) gap> info2:= AtlasGenerators( info ); rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], contents := "core", generators := [ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ], groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ], isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3", standardization := 1, transitivity := 1, type := "perm" ) gap> info2.generators; [ (2,4)(3,5)(6,8)(7,10), (1,2,3)(4,6,7)(5,8,9) ] ## doc/tutorial.xml (453-462) gap> g:= AtlasGroup( "A5", NrMovedPoints, 10 );; gap> AtlasRepInfoRecord( g ); rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ], isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3", standardization := 1, transitivity := 1, type := "perm" ) ## doc/tutorial.xml (495-516) gap> prginfo:= AtlasProgramInfo( "A5", "maxes", 1 ); rec( groupname := "A5", identifier := [ "A5", "A5G1-max1W1", 1 ], size := 12, standardization := 1, subgroupname := "A4", version := "1" ) gap> prg:= AtlasProgram( prginfo.identifier ); rec( groupname := "A5", identifier := [ "A5", "A5G1-max1W1", 1 ], program := , size := 12, standardization := 1, subgroupname := "A4", version := "1" ) gap> Display( prg.program ); # input: r:= [ g1, g2 ]; # program: r[3]:= r[1]*r[2]; r[4]:= r[2]*r[1]; r[5]:= r[3]*r[3]; r[1]:= r[5]*r[4]; # return values: [ r[1], r[2] ] gap> ResultOfStraightLineProgram( prg.program, info2.generators ); [ (1,10)(2,3)(4,9)(7,8), (1,2,3)(4,6,7)(5,8,9) ] ## doc/tutorial.xml (538-543) gap> tbl:= CharacterTable( "M11" );; gap> modtbl:= tbl mod 2;; gap> CharacterDegrees( modtbl ); [ [ 1, 1 ], [ 10, 1 ], [ 16, 2 ], [ 44, 1 ] ] ## doc/tutorial.xml (559-568) gap> DisplayAtlasInfo( "M11", Characteristic, 2 ); Representations for G = M11: (all refer to std. generators 1) ---------------------------- 6: G <= GL(10,2) character 10a 7: G <= GL(32,2) character 16ab 8: G <= GL(44,2) character 44a 16: G <= GL(16a,4) character 16a 17: G <= GL(16b,4) character 16b ## doc/tutorial.xml (582-592) gap> info:= OneAtlasGeneratingSetInfo( "M11", Characteristic, 2, > Dimension, 10 );; gap> gens:= AtlasGenerators( info.identifier );; gap> ccls:= AtlasProgram( "M11", gens.standardization, "classes" ); rec( groupname := "M11", identifier := [ "M11", "M11G1-cclsW1", 1 ], outputs := [ "1A", "2A", "3A", "4A", "5A", "6A", "8A", "8B", "11A", "11B" ], program := , standardization := 1, version := "1" ) gap> reps:= ResultOfStraightLineProgram( ccls.program, gens.generators );; ## doc/tutorial.xml (604-611) gap> ord8prg:= RestrictOutputsOfSLP( ccls.program, > Filtered( [ 1 .. 10 ], i -> ccls.outputs[i][1] = '8' ) ); gap> ord8reps:= ResultOfStraightLineProgram( ord8prg, gens.generators );; gap> List( ord8reps, m -> Position( reps, m ) ); [ 7, 8 ] ## doc/tutorial.xml (619-622) gap> List( reps, Order ) = OrdersClassRepresentatives( tbl ); true ## doc/tutorial.xml (637-641) gap> fus:= GetFusionMap( modtbl, tbl ); [ 1, 3, 5, 9, 10 ] gap> modreps:= reps{ fus };; ## doc/tutorial.xml (651-656) gap> char:= List( modreps, BrauerCharacterValue ); [ 10, 1, 0, -1, -1 ] gap> Position( Irr( modtbl ), char ); 2 ## doc/tutorial.xml (673-679) gap> grp:= Group( gens.generators );; gap> v:= GF(2)^10;; gap> orbs:= Orbits( grp, AsList( v ) );; gap> List( orbs, Length ); [ 1, 396, 55, 330, 66, 165, 11 ] ## doc/tutorial.xml (700-702) gap> gens:= AtlasGenerators( "M11", 6, 1 );; ## doc/tutorial.xml (710-716) gap> id:= IdentityMat( 10, GF(2) );; gap> sub1:= Subspace( v, NullspaceMat( gens.generators[1] - id ) );; gap> sub2:= Subspace( v, NullspaceMat( gens.generators[2] - id ) );; gap> fix:= Intersection( sub1, sub2 ); ## doc/tutorial.xml (725-729) gap> orb:= Orbit( grp, Basis( fix )[1] );; gap> act:= Action( grp, orb );; Print( act, "\n" ); Group( [ ( 1, 2)( 4, 6)( 5, 8)( 7,10), ( 1, 3, 5, 9)( 2, 4, 7,11) ] ) ## doc/tutorial.xml (741-749) gap> permgrp:= Group( AtlasGenerators( "M11", 1 ).generators );; gap> Print( permgrp, "\n" ); Group( [ ( 2,10)( 4,11)( 5, 7)( 8, 9), (1,4,3,8)(2,5,6,9) ] ) gap> permgrp = act; false gap> IsConjugate( SymmetricGroup(11), permgrp, act ); true ## doc/tutorial.xml (764-789) gap> DisplayAtlasInfo( "G2(3)", IsStraightLineProgram ); Programs for G = G2(3): (all refer to std. generators 1) ----------------------- - class repres. - presentation - repr. cyc. subg. - std. gen. checker - automorphisms: 2 - maxes (all 10): 1: U3(3).2 2: U3(3).2 3: (3^(1+2)+x3^2):2S4 4: (3^(1+2)+x3^2):2S4 5: L3(3).2 6: L3(3).2 7: L2(8).3 8: 2^3.L3(2) 9: L2(13) 10: 2^(1+4)+:3^2.2 gap> prog:= AtlasProgram( "G2(3)", "automorphism", "2" ).program;; gap> info:= OneAtlasGeneratingSetInfo( "G2(3)", Dimension, 7 );; gap> gens:= AtlasGenerators( info ).generators;; gap> imgs:= ResultOfStraightLineProgram( prog, gens );; ## doc/tutorial.xml (802-806) gap> g:= Group( gens );; gap> aut:= GroupHomomorphismByImagesNC( g, g, gens, imgs );; gap> SetIsBijective( aut, true ); ## doc/tutorial.xml (815-819) gap> aut:= GroupHomomorphismByImages( g, g, gens, imgs );; gap> IsBijective( aut ); true ## doc/tutorial.xml (842-847) gap> max1:= AtlasProgram( "G2(3)", 1 ).program;; gap> mgens:= ResultOfStraightLineProgram( max1, gens );; gap> comp:= CompositionOfStraightLinePrograms( max1, prog );; gap> mimgs:= ResultOfStraightLineProgram( comp, gens );; ## doc/tutorial.xml (862-865) gap> mimgs = List( mgens, x -> x^aut ); true ## doc/tutorial.xml (896-910) gap> info:= OneAtlasGeneratingSetInfo( "M12", NrMovedPoints, 12 ); rec( charactername := "1a+11a", constituents := [ 1, 2 ], contents := "core", groupname := "M12", id := "a", identifier := [ "M12", [ "M12G1-p12aB0.m1", "M12G1-p12aB0.m2" ], 1, 12 ], isPrimitive := true, maxnr := 1, p := 12, rankAction := 2, repname := "M12G1-p12aB0", repnr := 1, size := 95040, stabilizer := "M11", standardization := 1, transitivity := 5, type := "perm" ) gap> gensM12:= AtlasGenerators( info.identifier );; gap> restM11:= AtlasProgram( "M12", "maxes", 1 );; gap> gensM11:= ResultOfStraightLineProgram( restM11.program, > gensM12.generators ); [ (3,9)(4,12)(5,10)(6,8), (1,4,11,5)(2,10,8,3) ] ## doc/tutorial.xml (922-929) gap> checkM11:= AtlasProgram( "M11", "check" ); rec( groupname := "M11", identifier := [ "M11", "M11G1-check1", 1, 1 ] , program := , standardization := 1, version := "1" ) gap> ResultOfStraightLineDecision( checkM11.program, gensM11 ); true ## doc/tutorial.xml (938-945) gap> restL211:= AtlasProgram( "M11", "maxes", 2 );; gap> gensL211:= ResultOfStraightLineProgram( restL211.program, gensM11 ); [ (3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10) ] gap> G:= Group( gensL211 );; Size( G ); IsSimple( G ); 660 true ## doc/tutorial.xml (951-977) gap> DisplayAtlasInfo( "M11", IsStraightLineProgram ); Programs for G = M11: (all refer to std. generators 1) --------------------- - presentation - repr. cyc. subg. - std. gen. finder - class repres.: (direct) (composed) - maxes (all 5): 1: A6.2_3 1: A6.2_3 (std. 1) 2: L2(11) 2: L2(11) (std. 1) 3: 3^2:Q8.2 4: S5 4: S5 (std. 1) 5: 2.S4 - standardizations of maxes: from 1st max., version 1 to A6.2_3, std. 1 from 2nd max., version 1 to L2(11), std. 1 from 4th max., version 1 to A5.2, std. 1 - std. gen. checker: (check) (pres) ## doc/tutorial.xml (986-990) gap> restL211std:= AtlasProgram( "M11", "maxes", 2, 1 );; gap> ResultOfStraightLineProgram( restL211std.program, gensM11 ); [ (3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10) ] ## doc/tutorial.xml (1007-1013) gap> G:= MathieuGroup( 11 );; gap> gens:= GeneratorsOfGroup( G ); [ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ] gap> ResultOfStraightLineDecision( checkM11.program, gens ); false ## doc/tutorial.xml (1023-1039) gap> find:= AtlasProgram( "M11", "find" ); rec( groupname := "M11", identifier := [ "M11", "M11G1-find1", 1, 1 ], program := , standardization := 1, version := "1" ) gap> stdgens:= ResultOfBBoxProgram( find.program, Group( gens ) );; gap> List( stdgens, Order ); [ 2, 4 ] gap> ResultOfStraightLineDecision( checkM11.program, stdgens ); true gap> gensL211:= ResultOfStraightLineProgram( restL211.program, stdgens );; gap> List( gensL211, Order ); [ 2, 3 ] gap> G:= Group( gensL211 );; Size( G ); IsSimple( G ); 660 true ## doc/tutorial.xml (1070-1078) gap> tom:= TableOfMarks( "A5" ); TableOfMarks( "A5" ) gap> info:= StandardGeneratorsInfo( tom ); [ rec( ATLAS := true, description := "|a|=2, |b|=3, |ab|=5", generators := "a, b", script := [ [ 1, 2 ], [ 2, 3 ], [ 1, 1, 2, 1, 5 ] ], standardization := 1 ) ] ## doc/tutorial.xml (1095-1120) gap> info:= OneAtlasGeneratingSetInfo( "A5", Ring, Integers, Dimension, 4 );; gap> stdgens:= AtlasGenerators( info.identifier ); rec( charactername := "4a", constituents := [ 4 ], contents := "core", dim := 4, generators := [ [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ -1, -1, -1, -1 ] ], [ [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 1, 0, 0, 0 ] ] ], groupname := "A5", id := "", identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60, standardization := 1, type := "matint" ) gap> orders:= OrdersTom( tom ); [ 1, 2, 3, 4, 5, 6, 10, 12, 60 ] gap> pos:= Position( orders, 4 ); 4 gap> sub:= RepresentativeTomByGeneratorsNC( tom, pos, stdgens.generators ); gap> GeneratorsOfGroup( sub ); [ [ [ 1, 0, 0, 0 ], [ -1, -1, -1, -1 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ] ], [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ -1, -1, -1, -1 ] ] ] ## doc/tutorial.xml (1135-1143) gap> tom:= TableOfMarks( "M22" ); TableOfMarks( "M22" ) gap> subord:= Size( UnderlyingGroup( tom ) ) / 770; 576 gap> ord:= OrdersTom( tom );; gap> tomstabs:= Filtered( [ 1 .. Length( ord ) ], i -> ord[i] = subord ); [ 144 ] ## doc/tutorial.xml (1152-1157) gap> DisplayAtlasInfo( "M22", NrMovedPoints, 770 ); Representations for G = M22: (all refer to std. generators 1) ---------------------------- 12: G <= Sym(770) rank 9, on cosets of (A4xA4):4 < 2^4:A6 ## doc/tutorial.xml (1166-1172) gap> maxtom:= MaximalSubgroupsTom( tom ); [ [ 155, 154, 153, 152, 151, 150, 146, 145 ], [ 22, 77, 176, 176, 231, 330, 616, 672 ] ] gap> List( tomstabs, i -> List( maxtom[1], j -> ContainedTom( tom, i, j ) ) ); [ [ 0, 10, 0, 0, 0, 0, 0, 0 ] ] ## doc/tutorial.xml (1191-1197) gap> g:= AtlasGroup( "M22", NrMovedPoints, 770 ); gap> allbl:= AllBlocks( g );; gap> List( allbl, Length ); [ 10 ] ## doc/tutorial.xml (1206-1214) gap> stab:= Stabilizer( g, 1 );; gap> StructureDescription( stab : nice ); "(A4 x A4) : C4" gap> blocks:= Orbit( g, allbl[1], OnSets );; gap> act:= Action( g, blocks, OnSets );; gap> StructureDescription( Stabilizer( act, 1 ) ); "(C2 x C2 x C2 x C2) : A6" ## doc/tutorial.xml (1228-1235) gap> DisplayAtlasInfo( "M22", NrMovedPoints, 462 ); Representations for G = M22: (all refer to std. generators 1) ---------------------------- 7: G <= Sym(462a) rank 5, on cosets of 2^4:A5 < 2^4:A6 8: G <= Sym(462b) rank 8, on cosets of 2^4:A5 < L3(4), 2^4:S5 9: G <= Sym(462c) rank 8, on cosets of 2^4:A5 < L3(4), 2^4:A6 ## doc/tutorial.xml (1250-1260) gap> tom:= TableOfMarks( "M22" ); TableOfMarks( "M22" ) gap> genstom:= GeneratorsOfGroup( UnderlyingGroup( tom ) );; gap> checkM22:= AtlasProgram( "M22", "check" ); rec( groupname := "M22", identifier := [ "M22", "M22G1-check1", 1, 1 ] , program := , standardization := 1, version := "1" ) gap> ResultOfStraightLineDecision( checkM22.program, genstom ); true ## doc/tutorial.xml (1269-1273) gap> ord:= OrdersTom( tom );; gap> tomstabs:= Filtered( [ 1 .. Length( ord ) ], i -> ord[i] = 960 ); [ 147, 148, 149 ] ## doc/tutorial.xml (1284-1318) gap> atlasreps:= AllAtlasGeneratingSetInfos( "M22", NrMovedPoints, 462 ); [ rec( charactername := "1a+21a+55a+154a+231a", constituents := [ 1, 2, 5, 7, 9 ], contents := "core", groupname := "M22", id := "a", identifier := [ "M22", [ "M22G1-p462aB0.m1", "M22G1-p462aB0.m2" ], 1, 462 ], isPrimitive := false, p := 462, rankAction := 5, repname := "M22G1-p462aB0", repnr := 7, size := 443520, stabilizer := "2^4:A5 < 2^4:A6", standardization := 1, transitivity := 1, type := "perm" ), rec( charactername := "1a+21a^2+55a+154a+210a", constituents := [ 1, [ 2, 2 ], 5, 7, 8 ], contents := "core", groupname := "M22", id := "b", identifier := [ "M22", [ "M22G1-p462bB0.m1", "M22G1-p462bB0.m2" ], 1, 462 ], isPrimitive := false, p := 462, rankAction := 8, repname := "M22G1-p462bB0", repnr := 8, size := 443520, stabilizer := "2^4:A5 < L3(4), 2^4:S5", standardization := 1, transitivity := 1, type := "perm" ), rec( charactername := "1a+21a^2+55a+154a+210a", constituents := [ 1, [ 2, 2 ], 5, 7, 8 ], contents := "core", groupname := "M22", id := "c", identifier := [ "M22", [ "M22G1-p462cB0.m1", "M22G1-p462cB0.m2" ], 1, 462 ], isPrimitive := false, p := 462, rankAction := 8, repname := "M22G1-p462cB0", repnr := 9, size := 443520, stabilizer := "2^4:A5 < L3(4), 2^4:A6", standardization := 1, transitivity := 1, type := "perm" ) ] gap> atlasreps:= List( atlasreps, AtlasGroup );; gap> tomstabreps:= List( atlasreps, G -> List( tomstabs, > i -> RepresentativeTomByGenerators( tom, i, GeneratorsOfGroup( G ) ) ) );; gap> List( tomstabreps, x -> List( x, NrMovedPoints ) ); [ [ 462, 462, 461 ], [ 460, 462, 462 ], [ 462, 461, 462 ] ] ## doc/tutorial.xml (1334-1340) gap> stabs:= List( atlasreps, G -> Stabilizer( G, 1 ) );; gap> List( stabs, IdGroup ); [ [ 960, 11358 ], [ 960, 11357 ], [ 960, 11357 ] ] gap> List( stabs, PerfectIdentification ); [ [ 960, 2 ], [ 960, 1 ], [ 960, 1 ] ] ## doc/tutorial.xml (1350-1357) gap> maxtom:= MaximalSubgroupsTom( tom ); [ [ 155, 154, 153, 152, 151, 150, 146, 145 ], [ 22, 77, 176, 176, 231, 330, 616, 672 ] ] gap> List( tomstabs, i -> List( maxtom[1], j -> ContainedTom( tom, i, j ) ) ); [ [ 21, 0, 0, 0, 1, 0, 0, 0 ], [ 21, 6, 0, 0, 0, 0, 0, 0 ], [ 0, 6, 0, 0, 0, 0, 0, 0 ] ] ## doc/tutorial.xml (1388-1394) gap> bl:= List( atlasreps, AllBlocks );; gap> List( bl, Length ); [ 1, 3, 2 ] gap> List( bl, l -> List( l, Length ) ); [ [ 6 ], [ 21, 21, 2 ], [ 21, 6 ] ] ## doc/tutorial.xml (1421-1424) gap> List( atlasreps, RankAction ); [ 5, 8, 8 ] ## doc/tutorial.xml (1437-1447) gap> t:= CharacterTable( "M22" );; gap> perms:= PermChars( t, 462 ); [ Character( CharacterTable( "M22" ), [ 462, 30, 3, 2, 2, 2, 3, 0, 0, 0, 0, 0 ] ), Character( CharacterTable( "M22" ), [ 462, 30, 12, 2, 2, 2, 0, 0, 0, 0, 0, 0 ] ) ] gap> MatScalarProducts( t, Irr( t ), perms ); [ [ 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0 ], [ 1, 2, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0 ] ] ## doc/../gap/utils.gd (183-205) gap> AtlasClassNames( CharacterTable( "L3(4).3" ) ); [ "1A", "2A", "3A", "4ABC", "5A", "5B", "7A", "7B", "3B", "3B'", "3C", "3C'", "6B", "6B'", "15A", "15A'", "15B", "15B'", "21A", "21A'", "21B", "21B'" ] gap> AtlasClassNames( CharacterTable( "U3(5).2" ) ); [ "1A", "2A", "3A", "4A", "5A", "5B", "5CD", "6A", "7AB", "8AB", "10A", "2B", "4B", "6D", "8C", "10B", "12B", "20A", "20B" ] gap> AtlasClassNames( CharacterTable( "L2(27).6" ) ); [ "1A", "2A", "3AB", "7ABC", "13ABC", "13DEF", "14ABC", "2B", "4A", "26ABC", "26DEF", "28ABC", "28DEF", "3C", "3C'", "6A", "6A'", "9AB", "9A'B'", "6B", "6B'", "12A", "12A'" ] gap> AtlasClassNames( CharacterTable( "L3(4).3.2_2" ) ); [ "1A", "2A", "3A", "4ABC", "5AB", "7A", "7B", "3B", "3C", "6B", "15A", "15B", "21A", "21B", "2C", "4E", "6E", "8D", "14A", "14B" ] gap> AtlasClassNames( CharacterTable( "3.A6" ) ); [ "1A_0", "1A_1", "1A_2", "2A_0", "2A_1", "2A_2", "3A_0", "3B_0", "4A_0", "4A_1", "4A_2", "5A_0", "5A_1", "5A_2", "5B_0", "5B_1", "5B_2" ] gap> AtlasClassNames( CharacterTable( "2.A5.2" ) ); [ "1A_0", "1A_1", "2A_0", "3A_0", "3A_1", "5AB_0", "5AB_1", "2B_0", "4A_0", "4A_1", "6A_0", "6A_1" ] ## doc/../gap/utils.gd (251-254) gap> AtlasCharacterNames( CharacterTable( "A5" ) ); [ "1a", "3a", "3b", "4a", "5a" ] ## doc/../gap/interfac.gd (453-459) gap> DisplayAtlasInfo( [ "M11", "A5" ] ); group | # | maxes | cl | cyc | out | fnd | chk | prs ------+----+-------+----+-----+-----+-----+-----+---- M11 | 42 | 5 | + | + | | + | + | + A5* | 18 | 3 | + | | | | + | + ## doc/../gap/interfac.gd (482-487) gap> DisplayAtlasInfo( [ "M11", "A5" ], NrMovedPoints, 11 ); group | # | maxes | cl | cyc | out | fnd | chk | prs ------+---+-------+----+-----+-----+-----+-----+---- M11 | 1 | 5 | + | + | | + | + | + ## doc/../gap/interfac.gd (498-510) gap> DisplayAtlasInfo( "A5", IsPermGroup, true ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.) 2: G <= Sym(6) 2-trans., on cosets of D10 (2nd max.) 3: G <= Sym(10) rank 3, on cosets of S3 (3rd max.) gap> DisplayAtlasInfo( "A5", NrMovedPoints, [ 4 .. 9 ] ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.) 2: G <= Sym(6) 2-trans., on cosets of D10 (2nd max.) ## doc/../gap/interfac.gd (515-534) gap> DisplayAtlasInfo( "A5", Dimension, [ 1 .. 3 ] ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 8: G <= GL(2a,4) character 2a 9: G <= GL(2b,4) character 2b 10: G <= GL(3,5) character 3a 12: G <= GL(3a,9) character 3a 13: G <= GL(3b,9) character 3b 17: G <= GL(3a,Field([Sqrt(5)])) character 3a 18: G <= GL(3b,Field([Sqrt(5)])) character 3b gap> DisplayAtlasInfo( "A5", Characteristic, 0 ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 14: G <= GL(4,Z) character 4a 15: G <= GL(5,Z) character 5a 16: G <= GL(6,Z) character 3ab 17: G <= GL(3a,Field([Sqrt(5)])) character 3a 18: G <= GL(3b,Field([Sqrt(5)])) character 3b ## doc/../gap/interfac.gd (543-551) gap> DisplayAtlasInfo( "A5", Identifier, "a" ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 4: G <= GL(4a,2) character 4a 8: G <= GL(2a,4) character 2a 12: G <= GL(3a,9) character 3a 17: G <= GL(3a,Field([Sqrt(5)])) character 3a ## doc/../gap/interfac.gd (556-591) gap> DisplayAtlasInfo( "A5", NrMovedPoints, IsPrimeInt ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.) gap> DisplayAtlasInfo( "A5", Characteristic, IsOddInt ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 6: G <= GL(4,3) character 4a 7: G <= GL(6,3) character 3ab 10: G <= GL(3,5) character 3a 11: G <= GL(5,5) character 5a 12: G <= GL(3a,9) character 3a 13: G <= GL(3b,9) character 3b gap> DisplayAtlasInfo( "A5", Dimension, IsPrimeInt ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 8: G <= GL(2a,4) character 2a 9: G <= GL(2b,4) character 2b 10: G <= GL(3,5) character 3a 11: G <= GL(5,5) character 5a 12: G <= GL(3a,9) character 3a 13: G <= GL(3b,9) character 3b 15: G <= GL(5,Z) character 5a 17: G <= GL(3a,Field([Sqrt(5)])) character 3a 18: G <= GL(3b,Field([Sqrt(5)])) character 3b gap> DisplayAtlasInfo( "A5", Ring, IsFinite and IsPrimeField ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 4: G <= GL(4a,2) character 4a 5: G <= GL(4b,2) character 2ab 6: G <= GL(4,3) character 4a 7: G <= GL(6,3) character 3ab 10: G <= GL(3,5) character 3a 11: G <= GL(5,5) character 5a ## doc/../gap/interfac.gd (601-614) gap> DisplayAtlasInfo( "A5", IsStraightLineProgram, true ); Programs for G = A5: (all refer to std. generators 1) -------------------- - class repres.* - presentation - maxes (all 3): 1: A4 2: D10 3: S3 - std. gen. checker: (check) (pres) ## doc/../gap/interfac.gd (783-812) gap> gens1:= AtlasGenerators( "A5", 1 ); rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", generators := [ (1,2)(3,4), (1,3,5) ], groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ) gap> gens8:= AtlasGenerators( "A5", 8 ); rec( charactername := "2a", constituents := [ 2 ], contents := "core", dim := 2, generators := [ [ [ Z(2)^0, 0*Z(2) ], [ Z(2^2), Z(2)^0 ] ], [ [ 0*Z(2), Z(2)^0 ], [ Z(2)^0, Z(2)^0 ] ] ], groupname := "A5", id := "a", identifier := [ "A5", [ "A5G1-f4r2aB0.m1", "A5G1-f4r2aB0.m2" ], 1, 4 ], repname := "A5G1-f4r2aB0", repnr := 8, ring := GF(2^2), size := 60, standardization := 1, type := "matff" ) gap> gens17:= AtlasGenerators( "A5", 17 ); rec( charactername := "3a", constituents := [ 2 ], contents := "core", dim := 3, generators := [ [ [ -1, 0, 0 ], [ 0, -1, 0 ], [ -E(5)-E(5)^4, -E(5)-E(5)^4, 1 ] ], [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] ], groupname := "A5", id := "a", identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], polynomial := [ -1, 1, 1 ], repname := "A5G1-Ar3aB0", repnr := 17, ring := NF(5,[ 1, 4 ]), size := 60, standardization := 1, type := "matalg" ) ## doc/../gap/interfac.gd (817-834) gap> gens1max2:= AtlasGenerators( "A5", 1, 2 ); rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", generators := [ (1,2)(3,4), (2,3)(4,5) ], groupname := "D10", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5, 2 ], isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 10, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ) gap> id:= gens1max2.identifier;; gap> gens1max2 = AtlasGenerators( id ); true gap> max2:= Group( gens1max2.generators );; gap> Size( max2 ); 10 gap> IdGroup( max2 ) = IdGroup( DihedralGroup( 10 ) ); true ## doc/../gap/interfac.gd (1150-1170) gap> prog:= AtlasProgram( "A5", 2 ); rec( groupname := "A5", identifier := [ "A5", "A5G1-max2W1", 1 ], program := , size := 10, standardization := 1, subgroupname := "D10", version := "1" ) gap> StringOfResultOfStraightLineProgram( prog.program, [ "a", "b" ] ); "[ a, bbab ]" gap> gens1:= AtlasGenerators( "A5", 1 ); rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", generators := [ (1,2)(3,4), (1,3,5) ], groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ) gap> maxgens:= ResultOfStraightLineProgram( prog.program, > gens1.generators ); [ (1,2)(3,4), (2,3)(4,5) ] gap> maxgens = gens1max2.generators; true ## doc/../gap/interfac.gd (1185-1196) gap> prog:= AtlasProgram( "J1", "cyclic" ); rec( groupname := "J1", identifier := [ "J1", "J1G1-cycW1", 1 ], outputs := [ "6A", "7A", "10B", "11A", "15B", "19A" ], program := , standardization := 1, version := "1" ) gap> gens:= GeneratorsOfGroup( FreeGroup( "x", "y" ) );; gap> ResultOfStraightLineProgram( prog.program, gens ); [ (x*y)^2*((y*x)^2*y^2*x)^2*y^2, x*y, (x*(y*x*y)^2)^2*y, (x*y*x*(y*x*y)^3*x*y^2)^2*x*y*x*(y*x*y)^2*y, x*y*x*(y*x*y)^2*y, (x*y)^2*y ] ## doc/../gap/interfac.gd (887-891) gap> AtlasProgramInfo( "J1", "cyclic" ); rec( groupname := "J1", identifier := [ "J1", "J1G1-cycW1", 1 ], standardization := 1, version := "1" ) ## doc/../gap/interfac.gd (1281-1305) gap> info:= OneAtlasGeneratingSetInfo( "A5" ); rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ) gap> gens:= AtlasGenerators( info.identifier ); rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", generators := [ (1,2)(3,4), (1,3,5) ], groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ) gap> info = OneAtlasGeneratingSetInfo( "A5", IsPermGroup, true ); true gap> info = OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, "minimal" ); true gap> info = OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, [ 1 .. 10 ] ); true gap> OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, 20 ); fail ## doc/../gap/interfac.gd (1315-1399) gap> info:= OneAtlasGeneratingSetInfo( "A5", IsMatrixGroup, true ); rec( charactername := "4a", constituents := [ 4 ], contents := "core", dim := 4, groupname := "A5", id := "a", identifier := [ "A5", [ "A5G1-f2r4aB0.m1", "A5G1-f2r4aB0.m2" ], 1, 2 ], repname := "A5G1-f2r4aB0", repnr := 4, ring := GF(2), size := 60, standardization := 1, type := "matff" ) gap> gens:= AtlasGenerators( info.identifier ); rec( charactername := "4a", constituents := [ 4 ], contents := "core", dim := 4, generators := [ , ], groupname := "A5", id := "a", identifier := [ "A5", [ "A5G1-f2r4aB0.m1", "A5G1-f2r4aB0.m2" ], 1, 2 ], repname := "A5G1-f2r4aB0", repnr := 4, ring := GF(2), size := 60, standardization := 1, type := "matff" ) gap> info = OneAtlasGeneratingSetInfo( "A5", Dimension, 4 ); true gap> info = OneAtlasGeneratingSetInfo( "A5", Characteristic, 2 ); true gap> info2:= OneAtlasGeneratingSetInfo( "A5", Ring, GF(2) );; gap> info.identifier = info2.identifier; true gap> OneAtlasGeneratingSetInfo( "A5", Characteristic, [2,5], Dimension, 2 ); rec( charactername := "2a", constituents := [ 2 ], contents := "core", dim := 2, groupname := "A5", id := "a", identifier := [ "A5", [ "A5G1-f4r2aB0.m1", "A5G1-f4r2aB0.m2" ], 1, 4 ], repname := "A5G1-f4r2aB0", repnr := 8, ring := GF(2^2), size := 60, standardization := 1, type := "matff" ) gap> OneAtlasGeneratingSetInfo( "A5", Characteristic, [2,5], Dimension, 1 ); fail gap> info:= OneAtlasGeneratingSetInfo( "A5", Characteristic, 0, > Dimension, 4 ); rec( charactername := "4a", constituents := [ 4 ], contents := "core", dim := 4, groupname := "A5", id := "", identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60, standardization := 1, type := "matint" ) gap> gens:= AtlasGenerators( info.identifier ); rec( charactername := "4a", constituents := [ 4 ], contents := "core", dim := 4, generators := [ [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ -1, -1, -1, -1 ] ], [ [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 1, 0, 0, 0 ] ] ], groupname := "A5", id := "", identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60, standardization := 1, type := "matint" ) gap> info = OneAtlasGeneratingSetInfo( "A5", Ring, Integers ); true gap> info2:= OneAtlasGeneratingSetInfo( "A5", Ring, CF(37) );; gap> info = info2; false gap> Difference( RecNames( info2 ), RecNames( info ) ); [ "givenRing" ] gap> info2.givenRing; CF(37) gap> OneAtlasGeneratingSetInfo( "A5", Ring, Integers mod 77 ); fail gap> info:= OneAtlasGeneratingSetInfo( "A5", Ring, CF(5), Dimension, 3 ); rec( charactername := "3a", constituents := [ 2 ], contents := "core", dim := 3, givenRing := CF(5), groupname := "A5", id := "a", identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], polynomial := [ -1, 1, 1 ], repname := "A5G1-Ar3aB0", repnr := 17, ring := NF(5,[ 1, 4 ]), size := 60, standardization := 1, type := "matalg" ) gap> gens:= AtlasGenerators( info ); rec( charactername := "3a", constituents := [ 2 ], contents := "core", dim := 3, generators := [ [ [ -1, 0, 0 ], [ 0, -1, 0 ], [ -E(5)-E(5)^4, -E(5)-E(5)^4, 1 ] ], [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] ], givenRing := CF(5), groupname := "A5", id := "a", identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], polynomial := [ -1, 1, 1 ], repname := "A5G1-Ar3aB0", repnr := 17, ring := NF(5,[ 1, 4 ]), size := 60, standardization := 1, type := "matalg" ) gap> gens2:= AtlasGenerators( info.identifier );; gap> Difference( RecNames( gens ), RecNames( gens2 ) ); [ "givenRing" ] gap> OneAtlasGeneratingSetInfo( "A5", Ring, GF(17) ); fail ## doc/../gap/interfac.gd (1435-1458) gap> AllAtlasGeneratingSetInfos( "A5", IsPermGroup, true ); [ rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ] , isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ), rec( charactername := "1a+5a", constituents := [ 1, 5 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p6B0.m1", "A5G1-p6B0.m2" ], 1, 6 ] , isPrimitive := true, maxnr := 2, p := 6, rankAction := 2, repname := "A5G1-p6B0", repnr := 2, size := 60, stabilizer := "D10", standardization := 1, transitivity := 2, type := "perm" ), rec( charactername := "1a+4a+5a", constituents := [ 1, 4, 5 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ], isPrimitive := true, maxnr := 3, p := 10, rankAction := 3, repname := "A5G1-p10B0", repnr := 3, size := 60, stabilizer := "S3", standardization := 1, transitivity := 1, type := "perm" ) ] ## doc/../gap/interfac.gd (1600-1603) gap> g:= AtlasGroup( "A5" ); Group([ (1,2)(3,4), (1,3,5) ]) ## doc/../gap/interfac.gd (1611-1623) gap> info:= OneAtlasGeneratingSetInfo( "A5" ); rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ) gap> AtlasGroup( info ); Group([ (1,2)(3,4), (1,3,5) ]) gap> AtlasGroup( info.identifier ); Group([ (1,2)(3,4), (1,3,5) ]) ## doc/../gap/interfac.gd (1694-1699) gap> g:= AtlasSubgroup( "A5", NrMovedPoints, 5, 1 ); Group([ (1,5)(2,3), (1,3,5) ]) gap> NrMovedPoints( g ); 4 ## doc/../gap/interfac.gd (1709-1723) gap> info:= OneAtlasGeneratingSetInfo( "A5" ); rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ) gap> AtlasSubgroup( info, 1 ); Group([ (1,5)(2,3), (1,3,5) ]) gap> AtlasSubgroup( info.identifier, 1 ); Group([ (1,5)(2,3), (1,3,5) ]) gap> AtlasSubgroup( AtlasGroup( "A5" ), 1 ); Group([ (1,5)(2,3), (1,3,5) ]) ## doc/../gap/interfac.gd (1496-1504) gap> AtlasRepInfoRecord( AtlasGroup( "A5" ) ); rec( charactername := "1a+4a", constituents := [ 1, 4 ], contents := "core", groupname := "A5", id := "", identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", standardization := 1, transitivity := 3, type := "perm" ) ## doc/../gap/interfac.gd (1550-1558) gap> AtlasRepInfoRecord( "A5" ); rec( name := "A5", nrMaxes := 3, size := 60, sizesMaxes := [ 12, 10, 6 ], slpMaxes := [ [ 1 .. 3 ], [ [ 1 ], [ 1 ], [ 1 ] ] ], structureMaxes := [ "A4", "D10", "S3" ] ) gap> AtlasRepInfoRecord( "J5" ); rec( ) ## doc/../gap/interfac.gd (1779-1801) gap> g:= MathieuGroup( 12 );; gap> gens:= GeneratorsOfGroup( g );; # switch to 2 generators gap> g:= Group( gens[1] * gens[3], gens[2] * gens[3] );; gap> EvaluatePresentation( g, "J0" ); # no pres. for group "J0" fail gap> relimgs:= EvaluatePresentation( g, "M11" );; gap> List( relimgs, Order ); # wrong group [ 3, 1, 5, 4, 10 ] gap> relimgs:= EvaluatePresentation( g, "M12" );; gap> List( relimgs, Order ); # generators are not standard [ 3, 4, 5, 4, 4 ] gap> g:= AtlasGroup( "M12" );; gap> relimgs:= EvaluatePresentation( g, "M12", 1 );; gap> List( relimgs, Order ); # right group, std. generators [ 1, 1, 1, 1, 1 ] gap> g:= AtlasGroup( "2.M12" );; gap> relimgs:= EvaluatePresentation( g, "M12", 1 );; gap> List( relimgs, Order ); # std. generators for extension [ 1, 2, 1, 1, 2 ] gap> Size( NormalClosure( g, SubgroupNC( g, relimgs ) ) ); 2 ## doc/../gap/interfac.gd (1936-1944) gap> StandardGeneratorsData( MathieuGroup( 11 ), "J0" ); fail gap> StandardGeneratorsData( MathieuGroup( 11 ), "M12" ); "timeout" gap> repeat > res:= StandardGeneratorsData( MathieuGroup( 12 ), "M11" ); > until res = fail; ## doc/../gap/interfac.gd (1952-1966) gap> gens:= GeneratorsOfGroup( MathieuGroup( 12 ) );; gap> std:= 1;; gap> res:= StandardGeneratorsData( gens, "M12", std );; gap> Set( RecNames( res ) ); [ "gapname", "givengens", "givengenstostdgens", "std", "stdgens" ] gap> gens = res.givengens; true gap> ResultOfStraightLineProgram( res.givengenstostdgens, gens ) > = res.stdgens; true gap> evl:= EvaluatePresentation( res.stdgens, "M12", std );; gap> ForAll( evl, IsOne ); true ## doc/../gap/interfac.gd (1977-1991) gap> g:= AtlasGroup( "2.M12", IsMatrixGroup, Characteristic, IsPosInt );; gap> gens:= Permuted( GeneratorsOfGroup( g ), (1,2) );; gap> res:= StandardGeneratorsData( gens, "M12", std : projective );; gap> gens = res.givengens; true gap> ResultOfStraightLineProgram( res.givengenstostdgens, gens ) > = res.stdgens; true gap> evl:= EvaluatePresentation( res.stdgens, "M12", std );; gap> ForAll( evl, IsOne ); false gap> ForAll( evl, x -> IsCentral( g, x ) ); true ## doc/../gap/brmindeg.g (29-44) gap> if IsBound( BrowseMinimalDegrees ) then > down:= NCurses.keys.DOWN;; DOWN:= NCurses.keys.NPAGE;; > right:= NCurses.keys.RIGHT;; END:= NCurses.keys.END;; > enter:= NCurses.keys.ENTER;; nop:= [ 14, 14, 14 ];; > # just scroll in the table > BrowseData.SetReplay( Concatenation( [ DOWN, DOWN, DOWN, > right, right, right ], "sedddrrrddd", nop, nop, "Q" ) ); > BrowseMinimalDegrees();; > # restrict the table to the groups with minimal ordinary degree 6 > BrowseData.SetReplay( Concatenation( "scf6", > [ down, down, right, enter, enter ] , nop, nop, "Q" ) ); > BrowseMinimalDegrees();; > BrowseData.SetReplay( false ); > fi; ## doc/../gap/brmindeg.g (55-62) gap> if IsBound( BrowseMinimalDegrees ) then > # just scroll in the table > BrowseData.SetReplay( Concatenation( [ DOWN, DOWN, DOWN, END ], > "rrrrrrrrrrrrrr", nop, nop, "Q" ) ); > BrowseMinimalDegrees( BibliographySporadicSimple.groupNamesJan05 );; > fi; ## doc/../gap/brspor.g (163-176) gap> if IsBound( BrowseBibliographySporadicSimple ) then > enter:= NCurses.keys.ENTER;; nop:= [ 14, 14, 14 ];; > BrowseData.SetReplay( Concatenation( > # choose the application > "/Bibliography of Sporadic Simple Groups", [ enter, enter ], > # search in the title column for the Atlas of Finite Groups > "scr/Atlas of finite groups", [ enter, > # and quit > nop, nop, nop, nop ], "Q" ) ); > BrowseGapData();; > BrowseData.SetReplay( false ); > fi; ## doc/extend.xml (126-129) gap> locallevel:= InfoLevel( InfoAtlasRep );; gap> SetInfoLevel( InfoAtlasRep, 1 ); ## doc/extend.xml (174-191) gap> prv:= DirectoryTemporary( "privdir" );; gap> FileString( Filename( prv, "C4G1-p4B0.m1" ), > MeatAxeString( [ (1,2,3,4) ], 4 ) );; gap> FileString( Filename( prv, "C4G1-max1W1" ), > "inp 1\npwr 2 1 2\noup 1 2\n" );; gap> FileString( Filename( prv, "C4G1-XtestW1" ), > "inp 1\npwr 2 1 2\noup 1 2\n" );; gap> FileString( Filename( prv, "C4G1-a2W1" ), > "inp 1\npwr 3 1 2\noup 1 2\n" );; gap> FileString( Filename( prv, "C4G1-Ar1aB0.g" ), > "return rec( generators:= [ [[E(4)]] ] );\n" );; gap> points:= Elements( AlternatingGroup( 5 ) );; gap> FileString( Filename( prv, "A5G1-p60B0.m1" ), > MeatAxeString( [ Permutation( (1,2)(3,4), points, OnRight ) ], 60 ) );; gap> FileString( Filename( prv, "A5G1-p60B0.m2" ), > MeatAxeString( [ Permutation( (1,3,5), points, OnRight ) ], 60 ) );; ## doc/extend.xml (213-228) gap> FileString( Filename( prv, "toc.json" ), Concatenation( [ "{\n", > "\"ID\":\"priv\",\n", > "\"Data\":[\n", > "[\"GNAN\",[\"C4\",\"C4\"]],\n", > "[\"GRS\",[\"C4\",4]],\n", > "[\"MXN\",[\"C4\",1]],\n", > "[\"MXO\",[\"C4\",[2]]],\n", > "[\"MXS\",[\"C4\",[\"C2\"]]],\n", > "[\"RNG\",[\"C4G1-Ar1aB0\",\"CF(4)\",", > "[\"QuadraticField\",-1],[1,0,1]]],\n", > "[\"API\",[\"C4G1-p4B0\",[1,4,\"imprim\",\"1 < C2\"]]],\n", > "[\"API\",[\"A5G1-p60B0\",[1,60,\"imprim\",\"1 < S3\"]]]\n", > "]\n", > "}\n" ] ) );; ## doc/extend.xml (236-239) gap> AtlasOfGroupRepresentationsNotifyData( prv, "priv", true ); true ## doc/extend.xml (247-328) gap> DisplayAtlasInfo( [ "C4" ] ); group | # | maxes | cl | cyc | out | fnd | chk | prs ------+---+-------+----+-----+-----+-----+-----+---- C4* | 2 | 1 | | | 2 | | | gap> DisplayAtlasInfo( "C4" ); Representations for G = C4: (all refer to std. generators 1) --------------------------- 1: G <= Sym(4)* rank 4, on cosets of 1 < C2 2: G <= GL(1a,CF(4))* Programs for G = C4: (all refer to std. generators 1) -------------------- - automorphisms*: 2* - maxes (all 1): 1*: C2 - other scripts*: "test"* gap> DisplayAtlasInfo( "C4", IsPermGroup, true ); Representations for G = C4: (all refer to std. generators 1) --------------------------- 1: G <= Sym(4)* rank 4, on cosets of 1 < C2 gap> DisplayAtlasInfo( "C4", IsMatrixGroup ); Representations for G = C4: (all refer to std. generators 1) --------------------------- 2: G <= GL(1a,CF(4))* gap> DisplayAtlasInfo( "C4", Dimension, 2 ); gap> DisplayAtlasInfo( "A5", NrMovedPoints, 60 ); Representations for G = A5: (all refer to std. generators 1) --------------------------- 4: G <= Sym(60)* rank 60, on cosets of 1 < S3 gap> info:= OneAtlasGeneratingSetInfo( "C4" ); rec( contents := "priv", groupname := "C4", id := "", identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], isPrimitive := false, p := 4, rankAction := 4, repname := "C4G1-p4B0", repnr := 1, size := 4, stabilizer := "1 < C2", standardization := 1, transitivity := 1, type := "perm" ) gap> AtlasGenerators( info.identifier ); rec( contents := "priv", generators := [ (1,2,3,4) ], groupname := "C4", id := "", identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], isPrimitive := false, p := 4, rankAction := 4, repname := "C4G1-p4B0", repnr := 1, size := 4, stabilizer := "1 < C2", standardization := 1, transitivity := 1, type := "perm" ) gap> AtlasProgram( "C4", 1 ); rec( groupname := "C4", identifier := [ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ], program := , size := 2, standardization := 1, subgroupname := "C2", version := "1" ) gap> AtlasProgram( "C4", "maxes", 1 ); rec( groupname := "C4", identifier := [ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ], program := , size := 2, standardization := 1, subgroupname := "C2", version := "1" ) gap> AtlasProgram( "C4", "maxes", 2 ); fail gap> AtlasGenerators( "C4", 1 ); rec( contents := "priv", generators := [ (1,2,3,4) ], groupname := "C4", id := "", identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], isPrimitive := false, p := 4, rankAction := 4, repname := "C4G1-p4B0", repnr := 1, size := 4, stabilizer := "1 < C2", standardization := 1, transitivity := 1, type := "perm" ) gap> AtlasGenerators( "C4", 2 ); rec( contents := "priv", dim := 1, generators := [ [ [ E(4) ] ] ], groupname := "C4", id := "a", identifier := [ "C4", [ [ "priv", "C4G1-Ar1aB0.g" ] ], 1, 1 ], polynomial := [ 1, 0, 1 ], repname := "C4G1-Ar1aB0", repnr := 2, ring := GaussianRationals, size := 4, standardization := 1, type := "matalg" ) gap> AtlasGenerators( "C4", 3 ); fail gap> AtlasProgram( "C4", "other", "test" ); rec( groupname := "C4", identifier := [ "C4", [ [ "priv", "C4G1-XtestW1" ] ], 1 ], program := , standardization := 1, version := "1" ) ## doc/extend.xml (337-343) gap> DisplayAtlasInfo( "contents", "priv" ); group | # | maxes | cl | cyc | out | fnd | chk | prs ------+---+-------+----+-----+-----+-----+-----+---- A5* | 1 | | | | | | | C4* | 2 | 1 | | | 2 | | | ## doc/extend.xml (352-372) gap> AGR.Test.Words( "priv" ); true gap> AGR.Test.FileHeaders( "priv" ); true gap> AGR.Test.Files( "priv" ); true gap> AGR.Test.BinaryFormat( "priv" ); true gap> AGR.Test.Primitivity( "priv" : TryToExtendData ); true gap> AGR.Test.Characters( "priv" : TryToExtendData ); #I AGR.Test.Character: #I add new info ["CHAR",["A5","A5G1-p60B0", 0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4a^4+5a^5"]], #I AGR.Test.Character: #I add new info ["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]], true ## doc/extend.xml (395-409) gap> AGR.CHAR("A5","A5G1-p60B0", > 0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4a^4+5a^5", "priv" ); gap> AGR.CHAR("C4","C4G1-p4B0",0,[1,2,3,4],"1abcd", "priv" ); gap> AGR.Test.Characters( "priv" ); true gap> OneAtlasGeneratingSetInfo( "C4" ); rec( charactername := "1abcd", constituents := [ 1, 2, 3, 4 ], contents := "priv", groupname := "C4", id := "", identifier := [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ], isPrimitive := false, p := 4, rankAction := 4, repname := "C4G1-p4B0", repnr := 1, size := 4, stabilizer := "1 < C2", standardization := 1, transitivity := 1, type := "perm" ) ## doc/extend.xml (417-442) gap> Print( StringOfAtlasTableOfContents( "priv" ) ); { "ID":"priv", "Data":[ ["GNAN",["C4","C4"]], ["GRS",["C4",4]], ["MXN",["C4",1]], ["MXO",["C4",[2]]], ["MXS",["C4",["C2"]]], ["RNG",["C4G1-Ar1aB0","CF(4)",["QuadraticField",-1],[1,0,1]]], ["API",["A5G1-p60B0",[1,60,"imprim","1 < S3"]]], ["API",["C4G1-p4B0",[1,4,"imprim","1 < C2"]]], ["CHAR",["A5","A5G1-p60B0",0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4\ a^4+5a^5"]], ["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]] ] } ## doc/extend.xml (452-486) gap> Print( StringOfAtlasTableOfContents( > rec( ID:= "priv", DataURL:= "http://someurl" ) ) ); { "ID":"priv", "DataURL":"http://someurl", "Data":[ ["GNAN",["C4","C4"]], ["GRS",["C4",4]], ["MXN",["C4",1]], ["MXO",["C4",[2]]], ["MXS",["C4",["C2"]]], ["TOC",["perm","A5G1-p60B0.m",[118815263,24584221]]], ["TOC",["matalg","C4G1-Ar1aB0.g",[49815028]]], ["TOC",["otherscripts","C4G1-XtestW1",[-27672877]]], ["TOC",["out","C4G1-a2W1",[126435524]]], ["TOC",["maxes","C4G1-max1W1",[-27672877]]], ["TOC",["perm","C4G1-p4B0.m",[102601978]]], ["RNG",["C4G1-Ar1aB0","CF(4)",["QuadraticField",-1],[1,0,1]]], ["API",["A5G1-p60B0",[1,60,"imprim","1 < S3"]]], ["API",["C4G1-p4B0",[1,4,"imprim","1 < C2"]]], ["CHAR",["A5","A5G1-p60B0",0,[1,[2,3],[3,3],[4,4],[5,5]],"1a+3a^3b^3+4\ a^4+5a^5"]], ["CHAR",["C4","C4G1-p4B0",0,[1,2,3,4],"1abcd"]] ] } ## doc/extend.xml (497-500) gap> AtlasOfGroupRepresentationsForgetData( "priv" ); gap> SetInfoLevel( InfoAtlasRep, locallevel ); ## doc/../gap/bbox.gd (551-558) gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ], > [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] ); gap> LinesOfStraightLineDecision( dec ); [ [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] ## doc/../gap/bbox.gd (581-584) gap> NrInputsOfStraightLineDecision( dec ); 2 ## doc/../gap/scanmtx.gd (670-685) gap> str:= "inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5";; gap> prg:= ScanStraightLineDecision( str ); rec( program := ) gap> prg:= prg.program;; gap> Display( prg ); # input: r:= [ g1, g2 ]; # program: if Order( r[1] ) <> 2 then return false; fi; if Order( r[2] ) <> 3 then return false; fi; r[3]:= r[1]*r[2]; if Order( r[3] ) <> 5 then return false; fi; # return value: true ## doc/../gap/bbox.gd (648-653) gap> dec:= StraightLineDecision( [ ], 1 ); gap> ResultOfStraightLineDecision( dec, [ () ] ); true ## doc/../gap/bbox.gd (658-669) gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ], > [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] ); gap> LinesOfStraightLineDecision( dec ); [ [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] gap> ResultOfStraightLineDecision( dec, [ (), () ] ); false gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,4,5) ] ); true ## doc/../gap/bbox.gd (762-790) gap> check:= AtlasProgram( "L2(8)", "check" ); rec( groupname := "L2(8)", identifier := [ "L2(8)", "L28G1-check1", 1, 1 ], program := , standardization := 1, version := "1" ) gap> gens:= AtlasGenerators( "L2(8)", 1 ); rec( charactername := "1a+8a", constituents := [ 1, 6 ], contents := "core", generators := [ (1,2)(3,4)(6,7)(8,9), (1,3,2)(4,5,6)(7,8,9) ], groupname := "L2(8)", id := "", identifier := [ "L2(8)", [ "L28G1-p9B0.m1", "L28G1-p9B0.m2" ], 1, 9 ], isPrimitive := true, maxnr := 1, p := 9, rankAction := 2, repname := "L28G1-p9B0", repnr := 1, size := 504, stabilizer := "2^3:7", standardization := 1, transitivity := 3, type := "perm" ) gap> ResultOfStraightLineDecision( check.program, gens.generators ); true gap> gens:= AtlasGenerators( "L3(2)", 1 ); rec( contents := "core", generators := [ (2,4)(3,5), (1,2,3)(5,6,7) ], groupname := "L3(2)", id := "a", identifier := [ "L3(2)", [ "L27G1-p7aB0.m1", "L27G1-p7aB0.m2" ], 1, 7 ], isPrimitive := true, maxnr := 1, p := 7, rankAction := 2, repname := "L27G1-p7aB0", repnr := 1, size := 168, stabilizer := "S4", standardization := 1, transitivity := 2, type := "perm" ) gap> ResultOfStraightLineDecision( check.program, gens.generators ); true ## doc/../gap/bbox.gd (978-990) gap> lines:= [ [ "Order", 1, 2 ], [ "Order", 2, 3 ], > [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 3, 5 ] ];; gap> dec:= StraightLineDecision( lines, 2 ); gap> bboxdec:= AsBBoxProgram( dec ); gap> asdec:= AsStraightLineDecision( bboxdec ); gap> LinesOfStraightLineDecision( asdec ); [ [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 3, 5 ] ] ## doc/../gap/bbox.gd (828-850) gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ], > [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] ); gap> prog:= StraightLineProgramFromStraightLineDecision( dec ); gap> Display( prog ); # input: r:= [ g1, g2 ]; # program: r[3]:= r[1]*r[2]; r[4]:= r[1]^2; r[5]:= r[2]^3; r[6]:= r[3]^5; # return values: [ r[4], r[5], r[6] ] gap> StringOfResultOfStraightLineProgram( prog, [ "a", "b" ] ); "[ a^2, b^3, (ab)^5 ]" gap> gens:= GeneratorsOfGroup( FreeGroup( "a", "b" ) ); [ a, b ] gap> ResultOfStraightLineProgram( prog, gens ); [ a^2, b^3, (a*b)^5 ] ## doc/../gap/bbox.gd (188-219) gap> findstr:= "\ > set V 0\n\ > lbl START1\n\ > rand 1\n\ > ord 1 A\n\ > incr V\n\ > if V gt 100 then timeout\n\ > if A notin 1 2 3 5 then fail\n\ > if A noteq 2 then jmp START1\n\ > lbl START2\n\ > rand 2\n\ > ord 2 B\n\ > incr V\n\ > if V gt 100 then timeout\n\ > if B notin 1 2 3 5 then fail\n\ > if B noteq 3 then jmp START2\n\ > # The elements 1 and 2 have the orders 2 and 3, respectively.\n\ > set X 0\n\ > lbl CONJ\n\ > incr X\n\ > if X gt 100 then timeout\n\ > rand 3\n\ > cjr 2 3\n\ > mu 1 2 4 # ab\n\ > ord 4 C\n\ > if C notin 2 3 5 then fail\n\ > if C noteq 5 then jmp CONJ\n\ > oup 2 1 2";; gap> find:= ScanBBoxProgram( findstr ); rec( program := ) ## doc/../gap/bbox.gd (224-232) gap> checkstr:= "\ > chor 1 2\n\ > chor 2 3\n\ > mu 1 2 3\n\ > chor 3 5";; gap> check:= ScanBBoxProgram( checkstr ); rec( program := ) ## doc/../gap/bbox.gd (328-348) gap> g:= AlternatingGroup( 5 );; gap> res:= RunBBoxProgram( find.program, g, [], rec() );; gap> IsBound( res.gens ); IsBound( res.result ); true false gap> List( res.gens, Order ); [ 2, 3 ] gap> Order( Product( res.gens ) ); 5 gap> res:= RunBBoxProgram( check.program, "dummy", res.gens, rec() );; gap> IsBound( res.gens ); IsBound( res.result ); false true gap> res.result; true gap> othergens:= GeneratorsOfGroup( g );; gap> res:= RunBBoxProgram( check.program, "dummy", othergens, rec() );; gap> res.result; false ## doc/../gap/bbox.gd (386-398) gap> g:= AlternatingGroup( 5 );; gap> res:= ResultOfBBoxProgram( find.program, g );; gap> List( res, Order ); [ 2, 3 ] gap> Order( Product( res ) ); 5 gap> res:= ResultOfBBoxProgram( check.program, res ); true gap> othergens:= GeneratorsOfGroup( g );; gap> res:= ResultOfBBoxProgram( check.program, othergens ); false ## doc/../gap/bbox.gd (884-908) gap> f:= FreeGroup( "x", "y" );; gens:= GeneratorsOfGroup( f );; gap> slp:= StraightLineProgram( [ [1,2,2,3], [3,-1] ], 2 ); gap> ResultOfStraightLineProgram( slp, gens ); y^-3*x^-2 gap> bboxslp:= AsBBoxProgram( slp ); gap> ResultOfBBoxProgram( bboxslp, gens ); [ y^-3*x^-2 ] gap> lines:= [ [ "Order", 1, 2 ], [ "Order", 2, 3 ], > [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 3, 5 ] ];; gap> dec:= StraightLineDecision( lines, 2 ); gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,3,5) ] ); true gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,3,4) ] ); false gap> bboxdec:= AsBBoxProgram( dec ); gap> ResultOfBBoxProgram( bboxdec, [ (1,2)(3,4), (1,3,5) ] ); true gap> ResultOfBBoxProgram( bboxdec, [ (1,2)(3,4), (1,3,4) ] ); false ## doc/../gap/bbox.gd (937-950) gap> Display( AsStraightLineProgram( bboxslp ) ); # input: r:= [ g1, g2 ]; # program: r[3]:= r[1]^2; r[4]:= r[2]^3; r[5]:= r[3]*r[4]; r[3]:= r[5]^-1; # return values: [ r[3] ] gap> AsStraightLineProgram( bboxdec ); fail ## doc/../gap/mindeg.gd (192-203) gap> MinimalRepresentationInfo( "A5", NrMovedPoints ); rec( source := [ "computed (alternating group)", "computed (char. table)", "computed (subgroup tables)", "computed (subgroup tables, known repres.)", "computed (table of marks)" ], value := 5 ) gap> MinimalRepresentationInfo( "A5", Characteristic, 2 ); rec( source := [ "computed (char. table)" ], value := 2 ) gap> MinimalRepresentationInfo( "A5", Size, 2 ); rec( source := [ "computed (char. table)" ], value := 4 ) ## doc/../gap/mindeg.gd (336-355) gap> SetMinimalRepresentationInfo( "A5", "NrMovedPoints", 5, > "computed (alternating group)" ); true gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 0 ], 3, > "computed (char. table)" ); true gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 2 ], 2, > "computed (char. table)" ); true gap> SetMinimalRepresentationInfo( "A5", [ "Size", 2 ], 4, > "computed (char. table)" ); true gap> SetMinimalRepresentationInfo( "A5", [ "Size", 4 ], 2, > "computed (char. table)" ); true gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 3 ], 3, > "computed (char. table)" ); true ## doc/../gap/json.g (128-137) gap> l:= [ [ 1 ] ];; l[2]:= l[1];; l; [ [ 1 ], [ 1 ] ] gap> new:= AGR.GapObjectOfJsonText( AGR.JsonText( l ) ).value; [ [ 1 ], [ 1 ] ] gap> Add( l[1], 2 ); l; [ [ 1, 2 ], [ 1, 2 ] ] gap> Add( new[1], 2 ); new; [ [ 1, 2 ], [ 1 ] ] ## doc/../gap/json.g (142-144) gap> l:= [];; l[1]:= l;; ## doc/../gap/json.g (298-314) gap> AGR.JsonText( [] ); "[]" gap> AGR.JsonText( "" ); "\"\"" gap> AGR.JsonText( "abc\ndef\cghi" ); "\"abc\\ndef\\u0003ghi\"" gap> AGR.JsonText( rec() ); "{}" gap> AGR.JsonText( [ , 2 ] ); fail gap> str:= [ '\303', '\266' ];; # umlaut o gap> json:= AGR.JsonText( str );; List( json, IntChar ); [ 34, 195, 182, 34 ] gap> AGR.JsonText( str, "ASCII" ); "\"\\u00F6\"" ## doc/../gap/json.g (422-427) gap> AGR.GapObjectOfJsonText( "{ \"a\": 1 }" ); rec( status := true, value := rec( a := 1 ) ) gap> AGR.GapObjectOfJsonText( "{ \"a\": x }" ); rec( errpos := 8, status := false ) ## doc/../gap/scanmtx.gd (332-351) gap> mat:= [ [ 1, -1 ], [ 0, 1 ] ] * Z(3)^0;; gap> str:= MeatAxeString( mat, 3 ); "1 3 2 2\n12\n01\n" gap> mat = ScanMeatAxeFile( str, "string" ); true gap> str:= MeatAxeString( mat, 9 ); "1 9 2 2\n12\n01\n" gap> mat = ScanMeatAxeFile( str, "string" ); true gap> perms:= [ (1,2,3)(5,6) ];; gap> str:= MeatAxeString( perms, 6 ); "12 1 6 1\n2\n3\n1\n4\n6\n5\n" gap> perms = ScanMeatAxeFile( str, "string" ); true gap> str:= MeatAxeString( perms, 8 ); "12 1 8 1\n2\n3\n1\n4\n6\n5\n7\n8\n" gap> perms = ScanMeatAxeFile( str, "string" ); true ## doc/../gap/scanmtx.gd (357-375) gap> perm:= (1,2,4);; gap> str:= MeatAxeString( perm, 3, [ 5, 6 ] ); "2 3 5 6\n2\n4\n3\n1\n5\n" gap> mat:= ScanMeatAxeFile( str, "string" );; Print( mat, "\n" ); [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ] gap> pref:= UserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2" );; gap> SetUserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2", true ); gap> MeatAxeString( mat, 3 ) = str; true gap> SetUserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2", false ); gap> MeatAxeString( mat, 3 ); "1 3 5 6\n010000\n000100\n001000\n100000\n000010\n" gap> SetUserPreference( "AtlasRep", "WriteMeatAxeFilesOfMode2", pref ); ## doc/../gap/scanmtx.gd (113-118) gap> FFList( GF(4) ); [ 0*Z(2), Z(2)^0, Z(2^2), Z(2^2)^2 ] gap> IsBound( FFLists[4] ); true ## doc/../gap/scanmtx.gd (424-438) gap> tmpdir:= DirectoryTemporary();; gap> mat:= Filename( tmpdir, "mat" );; gap> q:= 4;; gap> mats:= GeneratorsOfGroup( GL(10,q) );; gap> CMtxBinaryFFMatOrPerm( mats[1], q, Concatenation( mat, "1" ) ); gap> CMtxBinaryFFMatOrPerm( mats[2], q, Concatenation( mat, "2" ) ); gap> prm:= Filename( tmpdir, "prm" );; gap> n:= 200;; gap> perms:= GeneratorsOfGroup( SymmetricGroup( n ) );; gap> CMtxBinaryFFMatOrPerm( perms[1], n, Concatenation( prm, "1" ) ); gap> CMtxBinaryFFMatOrPerm( perms[2], n, Concatenation( prm, "2" ) ); gap> CMtxBinaryFFMatOrPerm( perms[1], n, Concatenation( prm, "1a" ), 0 ); gap> CMtxBinaryFFMatOrPerm( perms[2], n, Concatenation( prm, "2b" ), 1 ); ## doc/../gap/scanmtx.gd (465-478) gap> FFMatOrPermCMtxBinary( Concatenation( mat, "1" ) ) = mats[1]; true gap> FFMatOrPermCMtxBinary( Concatenation( mat, "2" ) ) = mats[2]; true gap> FFMatOrPermCMtxBinary( Concatenation( prm, "1" ) ) = perms[1]; true gap> FFMatOrPermCMtxBinary( Concatenation( prm, "2" ) ) = perms[2]; true gap> FFMatOrPermCMtxBinary( Concatenation( prm, "1a" ) ) = perms[1]; true gap> FFMatOrPermCMtxBinary( Concatenation( prm, "2b" ) ) = perms[2]; true ## doc/../gap/scanmtx.gd (733-782) gap> str:= "inp 2\nmu 1 2 3\nmu 3 1 2\niv 2 1\noup 2 1 2";; gap> prg:= ScanStraightLineProgram( str, "string" ); rec( program := ) gap> prg:= prg.program;; gap> Display( prg ); # input: r:= [ g1, g2 ]; # program: r[3]:= r[1]*r[2]; r[2]:= r[3]*r[1]; r[1]:= r[2]^-1; # return values: [ r[1], r[2] ] gap> StringOfResultOfStraightLineProgram( prg, [ "a", "b" ] ); "[ (aba)^-1, aba ]" gap> AtlasStringOfProgram( prg ); "inp 2\nmu 1 2 3\nmu 3 1 2\niv 2 1\noup 2\n" gap> prg:= StraightLineProgram( "(a^2b^3)^-1", [ "a", "b" ] ); gap> Print( AtlasStringOfProgram( prg ) ); inp 2 pwr 2 1 4 pwr 3 2 5 mu 4 5 3 iv 3 4 oup 1 4 gap> prg:= StraightLineProgram( [ [2,3], [ [3,1,1,4], [1,2,3,1] ] ], 2 ); gap> Print( AtlasStringOfProgram( prg ) ); inp 2 pwr 3 2 3 pwr 4 1 5 mu 3 5 4 pwr 2 1 6 mu 6 3 5 oup 2 4 5 gap> Print( AtlasStringOfProgram( prg, "mtx" ) ); # inputs are expected in 1 2 zsm pwr3 2 3 zsm pwr4 1 5 zmu 3 5 4 zsm pwr2 1 6 zmu 6 3 5 echo "outputs are in 4 5" gap> str:= "inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5";; gap> prg:= ScanStraightLineDecision( str );; gap> AtlasStringOfProgram( prg.program ); "inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5\n" ## doc/../gap/access.gd (148-159) gap> format:= [ [ [ IsChar, "G", IsDigitChar ], > [ "p", IsDigitChar, AGR.IsLowerAlphaOrDigitChar, > "B", IsDigitChar, ".m", IsDigitChar ] ], > [ ParseBackwards, ParseForwards ] ];; gap> AGR.ParseFilenameFormat( "A6G1-p10B0.m1", format ); [ "A6", "G", 1, "p", 10, "", "B", 0, ".m", 1 ] gap> AGR.ParseFilenameFormat( "A6G1-p15aB0.m1", format ); [ "A6", "G", 1, "p", 15, "a", "B", 0, ".m", 1 ] gap> AGR.ParseFilenameFormat( "A6G1-f2r16B0.m1", format ); fail ## doc/../gap/utils.gd (391-426) gap> id:= [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ];; gap> AtlasRepIdentifier( id ) = id; true gap> id:= [ "L2(8)", "L28G1-check1", 1, 1 ];; gap> AtlasRepIdentifier( id ) = id; true gap> oldid:= [ [ "priv", "C4" ], [ "C4G1-p4B0.m1" ], 1, 4 ];; gap> newid:= AtlasRepIdentifier( oldid ); [ "C4", [ [ "priv", "C4G1-p4B0.m1" ] ], 1, 4 ] gap> oldid = AtlasRepIdentifier( newid, "old" ); true gap> oldid:= [ [ "priv", "C4" ], "C4G1-max1W1", 1 ];; gap> newid:= AtlasRepIdentifier( oldid ); [ "C4", [ [ "priv", "C4G1-max1W1" ] ], 1 ] gap> oldid = AtlasRepIdentifier( newid, "old" ); true gap> oldid:= [ [ "priv", "C4" ], "C4G1-Ar1aB0.g", 1, 1 ];; gap> newid:= AtlasRepIdentifier( oldid ); [ "C4", [ [ "priv", "C4G1-Ar1aB0.g" ] ], 1, 1 ] gap> oldid = AtlasRepIdentifier( newid, "old" ); true gap> oldid:= [ [ "priv", "C4" ], "C4G1-XtestW1", 1 ];; gap> newid:= AtlasRepIdentifier( oldid ); [ "C4", [ [ "priv", "C4G1-XtestW1" ] ], 1 ] gap> oldid = AtlasRepIdentifier( newid, "old" ); true gap> oldid:= [ [ "mfer", "2.M12" ], > [ "2M12G1-p264aB0.m1", "2M12G1-p264aB0.m2" ], 1, 264 ];; gap> newid:= AtlasRepIdentifier( oldid ); [ "2.M12", [ [ "mfer", "2M12G1-p264aB0.m1" ], [ "mfer", "2M12G1-p264aB0.m2" ] ] , 1, 264 ] gap> oldid = AtlasRepIdentifier( newid, "old" ); true ## doc/technica.xml (284-287) gap> SetUserPreference( "AtlasRep", "DisplayFunction", origpref ); gap> SetInfoLevel( InfoAtlasRep, globallevel ); ## gap> if IsBound( BrowseData ) then > data:= BrowseData.defaults.dynamic.replayDefaults; > data.replayInterval:= oldinterval; > fi; ## gap> STOP_TEST( "docxpl.tst" ); gap> SizeScreen( save );; ############################################################################# ## #E atlasrep-2.1.8/tst/hardtest.tst0000644000175000017500000001044314410313546014646 0ustar samsam############################################################################# ## #W hardtest.tst GAP 4 package AtlasRep Thomas Breuer ## ## This file contains, among others, those checks for the AtlasRep package ## that examine the transfer from a server and the matrices that are ## contained in the local `atlasgens' directory. ## These tests cannot be performed without access to remote files. ## ## In order to run the tests, one starts GAP from the `tst' subdirectory ## of the `pkg/atlasrep' directory, and calls `Test( "hardtest.tst" );'. ## ## If one of the functions `AGR.Test.Words', `AGR.Test.FileHeaders' reports ## an error then detailed information can be obtained by increasing the ## info level of `InfoAtlasRep' to at least 1 and then running the tests ## again. ## gap> START_TEST( "hardtest.tst" ); # Load the package if necessary. gap> LoadPackage( "atlasrep" ); true gap> LoadPackage( "ctbllib" ); true # Test transferring group generators in MeatAxe format. gap> dir:= DirectoriesPackageLibrary( "atlasrep", "datagens" );; gap> id:= OneAtlasGeneratingSet( "A5", Characteristic, 2 ).identifier;; gap> for file in List( id[2], name -> Filename( dir, name ) ) do > RemoveFile( file ); > od; gap> gens:= AtlasGenerators( id );; gap> IsRecord( gens ) and id = gens.identifier; true # Test transferring group generators in GAP format. gap> id:= OneAtlasGeneratingSetInfo( "A5", Characteristic, 0 ).identifier;; gap> RemoveFile( Filename( dir, id[2] ) );; gap> gens:= AtlasGenerators( id );; gap> IsRecord( gens ) and id = gens.identifier; true # Test whether the locally stored straight line programs # can be read and processed. gap> if not AGR.Test.Words() then > Print( "#I Error in `AGR.Test.Words'\n" ); > fi; # Test whether the locally stored generators are consistent # with their filenames. gap> if not AGR.Test.FileHeaders() then > Print( "#I Error in `AGR.Test.FileHeaders'\n" ); > fi; # Read all MeatAxe format files in the local installation. gap> if not AGR.Test.Files() then > Print( "#I Error in `AGR.Test.Files'\n" ); > fi; # Test whether the group names are consistent (with verification test). gap> if not AGR.Test.GroupOrders() then > Print( "#I Error in `AGR.Test.GroupOrders'\n" ); > fi; gap> if not AGR.Test.StdCompatibility() then > Print( "#I Error in `AGR.Test.StdCompatibility'\n" ); > fi; gap> if not AGR.Test.KernelGenerators() then > Print( "#I Error in `AGR.Test.KernelGenerators'\n" ); > fi; # Check the conversion between binary and text format. gap> if not AGR.Test.BinaryFormat() then > Print( "#I Error in `AGR.Test.BinaryFormat'\n" ); > fi; # Download and check some straight line programs. gap> checkprg:= function( id ) > return IsRecord( id ) and LinesOfStraightLineProgram( id.program ) = > LinesOfStraightLineProgram( > AtlasProgram( id.identifier ).program ); > end;; gap> checkprg( AtlasProgram( "M11", 2 ) ); true gap> checkprg( AtlasProgram( "M11", 1, 2 ) ); true gap> checkprg( AtlasProgram( "M11", "maxes", 2 ) ); true gap> checkprg( AtlasProgram( "M11", 1, "maxes", 2 ) ); true gap> checkprg( AtlasProgram( "M11", "classes" ) ); true gap> checkprg( AtlasProgram( "M11", 1, "classes" ) ); true gap> checkprg( AtlasProgram( "M11", "cyclic" ) ); true gap> checkprg( AtlasProgram( "M11", 1, "cyclic" ) ); true gap> checkprg( AtlasProgram( "L2(13)", "automorphism", "2" ) ); true gap> checkprg( AtlasProgram( "L2(13)", 1, "automorphism", "2" ) ); true gap> checkprg( AtlasProgram( "J4", 1, "restandardize", 2 ) ); true # Test the ``minimal degrees feature''. # gap> info:= ComputedMinimalRepresentationInfo();; # gap> infostr:= StringOfMinimalRepresentationInfoData( info );; gap> AGR.Test.MinimalDegrees(); true # Test whether there are new `cyc' scripts for which the `cyc2ccls' script # can be computed by GAP. gap> if not AGR.Test.CycToCcls() then > Print( "#I Error in `AGR.Test.CycToCcls'\n" ); > fi; # Test whether the scripts that return class representatives # are sufficiently consistent. # (This test should be the last one, # because newly added scripts may be too hard for it.) gap> if not AGR.Test.ClassScripts() then > Print( "#I Error in `AGR.Test.ClassScripts'\n" ); > fi; ## gap> STOP_TEST( "hardtest.tst" ); ############################################################################# ## #E atlasrep-2.1.8/tst/internal.tst0000664000175000017500000000317114410313553014644 0ustar samsam############################################################################# ## #W internal.tst GAP 4 package AtlasRep Thomas Breuer ## ## This file contains some tests for the internal data files. ## Note that the output of some package functions may differ after this file ## has been processed, so be careful not to run other package tests ## afterwards. ## ## In order to run the tests, one starts GAP from the `tst' subdirectory ## of the 'pkg/atlasrep' directory, and calls 'Test( "internal.tst" );'. ## gap> START_TEST( "internal.tst" ); # Load the necessary packages. gap> LoadPackage( "atlasrep", false ); true gap> LoadPackage( "ctbllib", false ); true # Test the collection of local internal data files. # For that, first we forget the files and then notify the extension # as a local-only one. gap> AtlasOfGroupRepresentationsForgetData( "internal" ); gap> AtlasOfGroupRepresentationsNotifyData( > DirectoriesPackageLibrary( "atlasrep", "datapkg" )[1], > "internal", true ); true # Reinstall the extension 'internal' as a local or remote one, # in order to get the old behaviour back. # (The ordering of extensions may have changed now, # so from now on, some output of interface functions may differ # from the output shown in testfiles.) gap> AtlasOfGroupRepresentationsForgetData( "internal" ); gap> AtlasOfGroupRepresentationsNotifyData( > Filename( DirectoriesPackageLibrary( "atlasrep", "" ), > "datapkg/toc.json" ), "internal" ); true # Done. gap> STOP_TEST( "internal.tst" ); ############################################################################# ## #E atlasrep-2.1.8/tst/atlasrep.tst0000644000175000017500000005251614410313500014640 0ustar samsam############################################################################# ## #W atlasrep.tst GAP 4 package AtlasRep Thomas Breuer ## ## This file contains among others the function calls needed to perform some ## of the sanity checks mentioned in the corresponding manual section. ## ## In order to run the tests, one starts GAP from the 'tst' subdirectory ## of the 'pkg/atlasrep' directory, and calls 'Test( "atlasrep.tst" );'. ## ## If one of the functions 'AGR.Test.Words', 'AGR.Test.FileHeaders' reports ## an error then detailed information can be obtained by increasing the ## info level of 'InfoAtlasRep' to at least 1 and then running the tests ## again. ## gap> START_TEST( "atlasrep.tst" ); # Load the necessary packages. gap> LoadPackage( "atlasrep", false ); true gap> LoadPackage( "ctbllib", false ); true # Test the internally available class scripts. gap> AGR.Test.ClassScripts( "internal" ); true gap> AGR.Test.CycToCcls( "internal" ); true # Test the availability of peripheral information. gap> AllAtlasGeneratingSetInfos( Ring, fail ); [ ] gap> AllAtlasGeneratingSetInfos( IsTransitive, fail ); [ ] gap> AllAtlasGeneratingSetInfos( IsPrimitive, fail ); [ ] # Test reading and writing straight line programs. gap> str:= "\ > mu 1 2 3\n\ > mu 3 2 4\n\ > mu 3 4 5\n\ > mu 3 5 6\n\ > mu 6 6 5\n\ > mu 6 5 1\n\ > iv 4 5\n\ > mu 5 2 6\n\ > mu 6 4 2\n\ > iv 3 4\n\ > mu 4 1 5\n\ > mu 5 3 1";; gap> prog:= ScanStraightLineProgram( str, "string" ); rec( program := ) gap> Print( AtlasStringOfProgram( prog.program ) ); inp 2 mu 1 2 3 mu 3 2 4 mu 3 4 5 mu 3 5 6 mu 6 6 5 mu 6 5 1 iv 4 5 mu 5 2 6 mu 6 4 2 iv 3 4 mu 4 1 5 mu 5 3 1 oup 2 gap> Print( AtlasStringOfProgram( prog.program, "mtx" ) ); # inputs are expected in 1 2 zmu 1 2 3 zmu 3 2 4 zmu 3 4 5 zmu 3 5 6 zmu 6 6 5 zmu 6 5 1 ziv 4 5 zmu 5 2 6 zmu 6 4 2 ziv 3 4 zmu 4 1 5 zmu 5 3 1 echo "outputs are in 1 2" gap> str:= "\ > mu 1 2 3\n\ > mu 3 2 4\n\ > mu 3 4 5\n\ > mu 5 4 6\n\ > mu 6 2 7\n\ > oup 4 7 4 6 3";; gap> prog:= ScanStraightLineProgram( str, "string" ); rec( program := ) gap> Print( AtlasStringOfProgram( prog.program, > ["5A","6A","8A","11A"] ) ); inp 2 mu 1 2 3 mu 3 2 4 mu 3 4 5 mu 5 4 6 mu 6 2 7 echo "Classes 5A 6A 8A 11A" oup 4 7 4 6 3 gap> prg:= ScanStraightLineProgram( "inp 4 1 2 3 4\noup 3 1 2 4", "string" );; gap> Display( prg.program ); # input: r:= [ g1, g2, g3, g4 ]; # program: # return values: [ r[1], r[2], r[4] ] gap> prg:= ScanStraightLineProgram( "inp 3 1 2 3\noup 3 1 2 3", "string" );; gap> Display( prg.program ); # input: r:= [ g1, g2, g3 ]; # program: # return values: [ r[1], r[2], r[3] ] gap> str:= "\ > inp 2\n\ > mu 1 2 3\n\ > mu 1 1 4\n\ > mu 3 3 5\n\ > echo \"Classes 1A 2A 3A 5A 5B\"\n\ > oup 5 4 1 2 3 5";; gap> prg:= ScanStraightLineProgram( str, "string" ); rec( outputs := [ "1A", "2A", "3A", "5A", "5B" ], program := ) gap> Display( prg.program ); # input: r:= [ g1, g2 ]; # program: r[3]:= r[1]*r[2]; r[4]:= r[1]*r[1]; r[5]:= r[3]*r[3]; # return values: [ r[4], r[1], r[2], r[3], r[5] ] gap> str:= "cj 1 2 3\noup 1 3";; gap> prg:= ScanStraightLineProgram( str, "string" );; gap> AtlasStringOfProgram( prg.program ); "inp 2\ncj 1 2 3\noup 1 3\n" # Test reading group generators in MeatAxe format. gap> dir:= DirectoriesPackageLibrary( "atlasrep", "tst" );; # mode 12 gap> str:= "\ > 12 1 9 1\n\ > 1\n\ > 4\n\ > 5\n\ > 2\n\ > 3\n\ > 8\n\ > 6\n\ > 9\n\ > 7";; gap> perms:= ScanMeatAxeFile( str, "string" ); [ (2,4)(3,5)(6,8,9,7) ] gap> str:= "\ > permutation degree=9\n\ > 1 4 5 2 3 8 6 9 7";; gap> perms = ScanMeatAxeFile( str, "string" ); true gap> ScanMeatAxeFile( Filename( dir, "perm7.txt" ) ); [ (1,2,3)(4,6) ] # mode 1 gap> str:= "\ > 1 9 3 3\n\ > 200\n\ > 020\n\ > 331"; " 1 9 3 3\n200\n020\n331" gap> scan:= ScanMeatAxeFile( str, "string" ); [ [ Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3) ], [ Z(3^2), Z(3^2), Z(3)^0 ] ] gap> str:= "\ > matrix field=9 rows=3 cols=3\n\ > 200\n\ > 020\n\ > 331";; gap> scan = ScanMeatAxeFile( str, "string" ); true gap> scan = ScanMeatAxeFile( Filename( dir, "matf9r3.txt" ) ); true gap> scan = ScanMeatAxeFile( Filename( dir, "matf81r3.txt" ) ); true # mode 3 gap> str:= "\ > 3 11 10 10\n\ > 0 1 0 0 0 0 0 0 0 0\n\ > 1 0 0 0 0 0 0 0 0 0\n\ > 0 0 0 1 0 0 0 0 0 0\n\ > 0 0 1 0 0 0 0 0 0 0\n\ > 0 0 0 0 0 0 1 0 0 0\n\ > 0 0 0 0 0 0 0 1 0 0\n\ > 0 0 0 0 1 0 0 0 0 0\n\ > 0 0 0 0 0 1 0 0 0 0\n\ > 6 6 10 10 9 10 9 10 10 0\n\ > 10 10 9 9 1 6 1 6 0 10";; gap> scan:= ScanMeatAxeFile( str, "string" );; gap> Print( scan, "\n" ); [ [ 0*Z(11), Z(11)^0, 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^0, 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^0, 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^0, 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^0, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^0, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^0, 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^0, 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^9, Z(11)^9, Z(11)^5, Z(11)^5, Z(11)^6, Z(11)^5, Z(11)^6, Z(11)^5, Z(11)^5, 0*Z(11) ], [ Z(11)^5, Z(11)^5, Z(11)^6, Z(11)^6, Z(11)^0, Z(11)^9, Z(11)^0, Z(11)^9, 0*Z(11), Z(11)^5 ] ] gap> str:= "\ > matrix field=11 rows=10 cols=10\n\ > 0 1 0 0 0 0 0 0 0 0\n\ > 1 0 0 0 0 0 0 0 0 0\n\ > 0 0 0 1 0 0 0 0 0 0\n\ > 0 0 1 0 0 0 0 0 0 0\n\ > 0 0 0 0 0 0 1 0 0 0\n\ > 0 0 0 0 0 0 0 1 0 0\n\ > 0 0 0 0 1 0 0 0 0 0\n\ > 0 0 0 0 0 1 0 0 0 0\n\ > 6 6 10 10 9 10 9 10 10 0\n\ > 10 10 9 9 1 6 1 6 0 10";; gap> scan = ScanMeatAxeFile( str, "string" ); true gap> scan = ScanMeatAxeFile( Filename( dir, "matf11r10.txt" ) ); true # mode 4 # mode 5 gap> file:= Filename( dir, "matf7r3.txt" );; gap> scan:= ScanMeatAxeFile( file ); [ [ Z(7)^5, 0*Z(7), Z(7)^0 ], [ 0*Z(7), Z(7), 0*Z(7) ], [ Z(7)^2, Z(7)^2, Z(7) ] ] gap> str:= StringFile( file );; gap> scan = ScanMeatAxeFile( str, "string" ); true # mode 6 # mode 2 gap> str:= "\ > 2 5 3 6\n\ > 4\n\ > 6\n\ > 1";; gap> scan:= ScanMeatAxeFile( str, "string" ); [ [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0 ], [ Z(5)^0, 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5) ] ] gap> str:= "\ > matrix field=5 rows=3 cols=6\n\ > 000100\n\ > 000001\n\ > 100000";; gap> scan = ScanMeatAxeFile( str, "string" ); true gap> scan:= ScanMeatAxeFile( Filename( dir, "permmat7.txt" ) );; gap> scan = PermutationMat( (1,2,3)(4,6), 7, GF(3) ); true # Test writing group generators in MeatAxe format. # (Cover the cases of matrices over small fields, over large prime fields, # and over large nonprime fields.) # 1. Write numeric file headers. gap> pref:= UserPreference( "AtlasRep", "WriteHeaderFormatOfMeatAxeFiles" );; gap> SetUserPreference( "AtlasRep", "WriteHeaderFormatOfMeatAxeFiles", > "numeric" );; gap> mat:= [ [ 1, 0 ], [ 0, 0 ] ] * Z(3)^0;; # (not a permutation matrix) gap> MeatAxeString( mat, 3 ); "1 3 2 2\n10\n00\n" gap> mat:= [ [ 1, 0 ], [ 1, 0 ] ] * Z(3)^0; # (not a permutation matrix) [ [ Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3) ] ] gap> MeatAxeString( mat, 3 ); "1 3 2 2\n10\n10\n" gap> q:= 101;; gap> mat:= RandomMat( 20, 20, GF(q) );; gap> str:= MeatAxeString( mat, q );; gap> ScanMeatAxeFile( str, "string" ) = mat; true gap> q:= 3^7;; gap> mat:= RandomMat( 20, 20, GF(q) );; gap> str:= MeatAxeString( mat, q );; gap> ScanMeatAxeFile( str, "string" ) = mat; true # 2. Write numeric (fixed) file headers. gap> SetUserPreference( "AtlasRep", "WriteHeaderFormatOfMeatAxeFiles", > "numeric (fixed)" );; gap> mat:= [ [ 1, 0 ], [ 0, 0 ] ] * Z(3)^0;; # (not a permutation matrix) gap> MeatAxeString( mat, 3 ); " 1 3 2 2\n10\n00\n" gap> mat:= [ [ 1, 0 ], [ 1, 0 ] ] * Z(3)^0; # (not a permutation matrix) [ [ Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3) ] ] gap> MeatAxeString( mat, 3 ); " 1 3 2 2\n10\n10\n" gap> q:= 101;; gap> mat:= RandomMat( 20, 20, GF(q) );; gap> str:= MeatAxeString( mat, q );; gap> ScanMeatAxeFile( str, "string" ) = mat; true gap> q:= 3^7;; gap> mat:= RandomMat( 20, 20, GF(q) );; gap> str:= MeatAxeString( mat, q );; gap> ScanMeatAxeFile( str, "string" ) = mat; true # 3. Write textual file headers. gap> SetUserPreference( "AtlasRep", "WriteHeaderFormatOfMeatAxeFiles", > "textual" );; gap> mat:= [ [ 1, 0 ], [ 0, 0 ] ] * Z(3)^0;; # (not a permutation matrix) gap> MeatAxeString( mat, 3 ); "matrix field=3 rows=2 cols=2\n10\n00\n" gap> mat:= [ [ 1, 0 ], [ 1, 0 ] ] * Z(3)^0; # (not a permutation matrix) [ [ Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3) ] ] gap> MeatAxeString( mat, 3 ); "matrix field=3 rows=2 cols=2\n10\n10\n" gap> q:= 101;; gap> mat:= RandomMat( 20, 20, GF(q) );; gap> str:= MeatAxeString( mat, q );; gap> ScanMeatAxeFile( str, "string" ) = mat; true gap> q:= 3^7;; gap> mat:= RandomMat( 20, 20, GF(q) );; gap> str:= MeatAxeString( mat, q );; gap> ScanMeatAxeFile( str, "string" ) = mat; true gap> SetUserPreference( "AtlasRep", "WriteHeaderFormatOfMeatAxeFiles", > pref );; gap> Print( MeatAxeString( [ [ 1, 2 ], [ 3, 4 ] ] ) ); integer matrix rows=2 cols=2 1 2 3 4 # Check the interface functions. gap> g:= "A5";; gap> IsRecord( OneAtlasGeneratingSetInfo( g ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, 1 ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, IsPermGroup ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, IsPermGroup, true ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, IsPermGroup, NrMovedPoints, 5 ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, IsPermGroup, true, > NrMovedPoints, 5 ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, 1, IsPermGroup ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, NrMovedPoints, 5 ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, 1, NrMovedPoints, 5 ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, IsMatrixGroup ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, IsMatrixGroup, true ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, IsMatrixGroup, Dimension, 2 ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, IsMatrixGroup, true, > Dimension, 2 ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, 1, IsMatrixGroup ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, Characteristic, 2 ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, 1, Characteristic, 2 ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, Dimension, 2 ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, 1, Dimension, 2 ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, Characteristic, 2, > Dimension, 2 ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, 1, Characteristic, 2, > Dimension, 2 ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, Ring, GF(2) ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, 1, Ring, GF(2) ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, Ring, GF(2), Dimension, 4 ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( g, 1, Ring, GF(2), Dimension, 4 ) ); true # Check access to representations with unusual parameters. gap> OneAtlasGeneratingSetInfo( IsPermGroup, true );; gap> OneAtlasGeneratingSetInfo( [ "A5", "A6" ], IsPermGroup, true );; gap> AllAtlasGeneratingSetInfos( IsPermGroup, true );; gap> AllAtlasGeneratingSetInfos( [ "A5", "A6" ], IsPermGroup, true );; gap> OneAtlasGeneratingSetInfo( Identifier, "a" );; gap> OneAtlasGeneratingSetInfo( Position, 1 );; gap> OneAtlasGeneratingSetInfo( Position, 10^6 ); fail gap> OneAtlasGeneratingSetInfo( Ring, Integers );; gap> AllAtlasGeneratingSetInfos( Ring, Integers );; gap> tbl:= CharacterTable( "M11" );; gap> chi:= PermChars( tbl, [ 11 ] )[1];; gap> IsRecord( OneAtlasGeneratingSetInfo( Character, chi ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( "M11", Character, chi ) ); true gap> phi:= Irr( tbl mod 2 )[2];; gap> IsRecord( OneAtlasGeneratingSetInfo( Character, phi ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( Character, phi, > Characteristic, IsEvenInt ) ); true gap> OneAtlasGeneratingSetInfo( Character, phi, Characteristic, IsOddInt ); fail gap> IsRecord( OneAtlasGeneratingSetInfo( "L2(11)", Character, "10a" ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( Character, "10a" ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( "M11", Character, 2 ) ); true gap> IsRecord( OneAtlasGeneratingSetInfo( Character, 2 ) ); true gap> x:= Indeterminate( Rationals, "x" );; gap> f:= x^2-5;; gap> F:= AlgebraicExtension( Rationals, f );; gap> info:= OneAtlasGeneratingSetInfo( "A5", Dimension, 3, Ring, F );; gap> info.givenRing = F; true gap> AtlasGroup( "A5", Characteristic, 0, Dimension, 3 );; # Check access to straight line programs with unusual parameters. gap> IsRecord( AtlasProgramInfo( "M11", "maxes", 1, "version", 1 ) ); true gap> IsRecord( AtlasProgramInfo( "M11", "maxes", 1, "version", 10^6 ) ); false gap> IsRecord( AtlasProgramInfo( "M11", 1, "maxes", 1, "contents", "core" ) ); true gap> IsRecord( AtlasProgramInfo( "M11", 1, "maxes", 1, "contents", "other" ) ); false gap> IsRecord( AtlasProgramInfo( "J1", 1, "maxstd", 1, 1, 1 ) ); true gap> IsRecord( AtlasProgramInfo( "J1", 1, "maxstd", 1, 1, 10^6 ) ); false gap> IsRecord( AtlasProgramInfo( "2.M12", "kernel", "M12", "version", 1 ) ); true gap> IsRecord( AtlasProgramInfo( "2.M12", "kernel", "M12", "version", 10^6 ) ); false gap> IsRecord( AtlasProgramInfo( "M11", "cyclic", "version", 1 ) ); true gap> IsRecord( AtlasProgramInfo( "M11", "cyclic", "version", 10^6 ) ); false gap> IsRecord( AtlasProgramInfo( "M11", "classes", "version", 1 ) ); true gap> IsRecord( AtlasProgramInfo( "M11", "classes", "version", 10^6 ) ); false gap> IsRecord( AtlasProgramInfo( "M11", "cyc2ccl", "version", 1 ) ); true gap> IsRecord( AtlasProgramInfo( "M11", "cyc2ccl", "version", 10^6 ) ); false gap> IsRecord( AtlasProgramInfo( "M11", "cyc2ccl", 1, "version", 1 ) ); true gap> IsRecord( AtlasProgramInfo( "M11", "cyc2ccl", 1, "version", 10^6 ) ); false gap> IsRecord( AtlasProgramInfo( "Suz", "automorphism", "2", "version", 1 ) ); true gap> IsRecord( AtlasProgramInfo( "Suz", "automorphism", "2", > "version", 10^6 ) ); false gap> IsRecord( AtlasProgramInfo( "M11", "check", "version", 1 ) ); true gap> IsRecord( AtlasProgramInfo( "M11", "check", "version", 10^6 ) ); false gap> IsRecord( AtlasProgramInfo( "M11", "presentation", "version", 1 ) ); true gap> IsRecord( AtlasProgramInfo( "M11", "presentation", "version", 10^6 ) ); false gap> IsRecord( AtlasProgramInfo( "M11", "find", "version", 1 ) ); true gap> IsRecord( AtlasProgramInfo( "M11", "find", "version", 10^6 ) ); false gap> IsRecord( AtlasProgramInfo( "L3(5)", 1, "restandardize", 2, > "version", 1 ) ); true gap> IsRecord( AtlasProgramInfo( "L3(5)", 1, "restandardize", 2, > "version", 10^6 ) ); false # Check the variants of 'StandardGeneratorsData'. gap> StandardGeneratorsData( Group( () ), "M11" ); "timeout" gap> repeat > res:= StandardGeneratorsData( MathieuGroup( 12 ), "M11" ); > until res = fail; gap> StandardGeneratorsData( MathieuGroup( 11 ), "M11", 9 ); fail gap> gens:= List( GeneratorsOfGroup( MathieuGroup( 11 ) ), > x -> PermutationMat( x, 11, GF(2) ) );; gap> g:= Group( gens );; gap> IsRecord( StandardGeneratorsData( gens, "M11" ) ); true gap> IsRecord( StandardGeneratorsData( gens, "M11", 1 ) ); true gap> IsRecord( StandardGeneratorsData( gens, "M11" : projective ) ); true gap> IsRecord( StandardGeneratorsData( gens, "M11", 1 : projective ) ); true gap> IsRecord( StandardGeneratorsData( g, "M11" ) ); true gap> IsRecord( StandardGeneratorsData( g, "M11", 1 ) ); true gap> IsRecord( StandardGeneratorsData( g, "M11" : projective ) ); true gap> IsRecord( StandardGeneratorsData( g, "M11", 1 : projective ) ); true gap> StandardGeneratorsData( g, "M11", 9 ); fail gap> StandardGeneratorsData( g, "M11", 9 : projective ); fail # Check the variants of 'EvaluatePresentation'. gap> EvaluatePresentation( Group( () ), "M11" ); Error, presentation for "M11" has 2 generators but 1 generators were given gap> EvaluatePresentation( Group( () ), "M11", 1 ); Error, presentation for "M11" has 2 generators but 1 generators were given gap> EvaluatePresentation( [], "M11" ); Error, presentation for "M11" has 2 generators but 0 generators were given gap> EvaluatePresentation( [], "M11", 1 ); Error, presentation for "M11" has 2 generators but 0 generators were given gap> EvaluatePresentation( [ (), (), () ], "M11" ); Error, presentation for "M11" has 2 generators but 3 generators were given gap> EvaluatePresentation( gens, "M11", 9 ); fail gap> g:= AtlasGroup( "M11" );; gap> gens:= GeneratorsOfGroup( g );; gap> ForAll( EvaluatePresentation( gens, "M11" ), IsOne ); true gap> ForAll( EvaluatePresentation( gens, "M11", 1 ), IsOne ); true gap> ForAll( EvaluatePresentation( g, "M11" ), IsOne ); true gap> ForAll( EvaluatePresentation( g, "M11", 1 ), IsOne ); true # Call 'AtlasClassNames' for all tables of almost simple and quasisimple # groups that are not simple. # (We do not have direct access to the list of quasisimple groups, # here we use a heuristic argument based on the structure of names.) # We check whether the function runs without error messages, # and that the class names returned are different and are compatible with # the element orders. gap> digitprefix:= function( str ) > local bad; > bad:= First( str, x -> not IsDigitChar( x ) ); > if bad = fail then > return str; > else > return str{ [ 1 .. Position( str, bad ) - 1 ] }; > fi; > end;; gap> simpl:= AllCharacterTableNames( IsSimple, true, > IsDuplicateTable, false );; gap> bad:= [ "A6.D8", "L2(64).6", "L3(4).D12", > "O12-(2).2", "O12+(2).2", > "U3(8).3^2", "U4(4).4", > "U4(5).2^2", > "2.Alt(3)", "2.Sym(2)", > "4.L4(5)" ];; gap> pos:= "dummy";; gap> for name in AllCharacterTableNames() do > pos:= Position( name, '.' ); > if pos <> fail then > for simp in simpl do > if Length( simp ) = pos-1 > and name{ [ 1 .. pos-1 ] } = simp > and ForAll( "xMN", x -> Position( name, x, pos ) = fail ) > and not name in bad then > # upward extension of a simple group > tbl:= CharacterTable( name ); > classnames:= AtlasClassNames( tbl ); > if classnames = fail > or Length( classnames ) <> Length( Set( classnames ) ) > or List( classnames, digitprefix ) > <> List( OrdersClassRepresentatives( tbl ), String ) then > Print( "#I AtlasClassNames: problem for '", name, "'\n" ); > fi; > elif Length( simp ) = Length( name ) - pos > and name{ [ pos+1 .. Length( name ) ] } = simp > and ForAll( name{ [ 1 .. pos-1 ] }, > c -> IsDigitChar( c ) or c = '_' ) > and not name in bad then > tbl:= CharacterTable( name ); > classnames:= AtlasClassNames( tbl ); > if classnames = fail > or Length( classnames ) <> Length( Set( classnames ) ) then > Print( "#I AtlasClassNames: problem for '", name, "'\n" ); > fi; > fi; > od; > fi; > od; # Check that the function 'StringOfAtlasTableOfContents' works. # We do *not* want to recompute checksums, # since this would require all data files to be locally available. # Thus we test only the checksum format that is actually used in # 'AtlasOfGroupRepresentationsInfo.filenames'. # For the 'core' t.o.c. ... gap> dir:= DirectoriesPackageLibrary( "atlasrep", "" );; gap> if IsString( AtlasOfGroupRepresentationsInfo.filenames[1][4] ) then > filename:= Filename( dir, "atlasprm_SHA.json" );; > f:= AGR.GapObjectOfJsonText( AGR.StringFile( filename ) );; > str:= StringOfAtlasTableOfContents( f.value : SHA:= true );; > else > filename:= Filename( dir, "atlasprm.json" );; > f:= AGR.GapObjectOfJsonText( AGR.StringFile( filename ) );; > str:= StringOfAtlasTableOfContents( f.value );; > fi; gap> str = AGR.StringFile( filename ); true # ... and for the 'internal' t.o.c. gap> dir:= DirectoriesPackageLibrary( "atlasrep", "datapkg" );; gap> if IsString( AtlasOfGroupRepresentationsInfo.filenames[1][4] ) then > filename:= Filename( dir, "toc_SHA.json" );; > f:= AGR.GapObjectOfJsonText( AGR.StringFile( filename ) );; > str:= StringOfAtlasTableOfContents( f.value : SHA:= true );; > else > filename:= Filename( dir, "toc.json" );; > f:= AGR.GapObjectOfJsonText( AGR.StringFile( filename ) );; > str:= StringOfAtlasTableOfContents( f.value );; > fi; gap> str = AGR.StringFile( filename ); true # Done. gap> STOP_TEST( "atlasrep.tst" ); ############################################################################# ## #E atlasrep-2.1.8/tst/matf7r3.txt0000644000175000017500000000007211777255330014326 0ustar samsam 5 7 3 3 4 -1 0 # a comment 6 2 -1 1 1 9 atlasrep-2.1.8/tst/matf81r3.txt0000644000175000017500000000007311777255330014411 0ustar samsam6 81 3 3 2 0 0 0 2 0 73 73 1 # a 3 by 3 matrix over GF(81) atlasrep-2.1.8/tst/perm7.txt0000644000175000017500000000012011777255330014067 0ustar samsam12 1 7 1 2 3 1 6 5 4 7 # the list [ (1,2,3)(4,6) ] of permutations on 7 points atlasrep-2.1.8/tst/matf11r10.txt0000644000175000017500000000052711777255330014464 0ustar samsammatrix field=11 rows=10 cols=10 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 6 6 10 10 9 10 9 10 10 0 10 10 9 9 1 6 1 6 0 10 atlasrep-2.1.8/tst/permmat7.txt0000644000175000017500000000013511777255330014577 0ustar samsam 2 3 7 7 2 3 1 6 5 4 7 # 7-dim. permutation matrix over GF(3) corresponding to (1,2,3)(4,6) atlasrep-2.1.8/tst/matf9r3.txt0000644000175000017500000000010111777255330014321 0ustar samsam 1 9 3 3 200 020 331 # a 3 times 3 matrix over GF(9) atlasrep-2.1.8/doc/manual.pdf0000664000175000017500000243361014545501241014210 0ustar samsam%PDF-1.5 % 185 0 obj << /Length 617 /Filter /FlateDecode >> stream xUMO@W>x]r"TRJKp4qDi/v_4N key7ofǜMggyCͤ`wP!2$Wo^ro%D B :Fިf90dTmFWMl+&s7MZÄDXq:2,tp#,_68 }'HH(oe"A3ob*xEIu !((Nҏgwb^IQJlgY'r6i;.DPV.|T^v9-I~5"@'/N̕]`UNiզXZʓ#)Dp'u~D 8lqT 8p=ŔϪS;(‚VCkl7ͼmxOG܀7<ϒM?H9;Iz:-dnpmIS%m3>n/gu 5:m.HɊHO!m5^ }{$bZ4-ͪ|u^~{eiޢ3O(p =PA/@{\=>d_6 m++vKB`|#7I*g Tqc25JW[]2|hLz?$ endstream endobj 196 0 obj << /Length 389 /Filter /FlateDecode >> stream xmn y XZfzKWHjUn/mNLDQ~Ub1' d5/gfFs AL Z3 IYWjx| dU7DXpj:VۿUcXpoГ^Of +@H. PE/kvS0PIPmrBZG@1nAB;7dSP]bI w 9=y[䩭m ]Ijy׵HTiwv[x~*1#V?ܾ n2"'7v4y_4f|~>YӞX7ˀVG{;'`W/*gji endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 815 /Length 1840 /Filter /FlateDecode >> stream xڭX]s6}ׯot$F$i7,T}ϥHKՖ s" (4RDl!apHJ2$5~YX達$R\4XLI1HQSkF,iт%LJ(K&U; $"k ((X*VLY$#!ָ0!RKlĚI\"6Oh`—^[-ZJ! X $[MR i޸a>6e@M ``#)Qkōe3 @R$XRiBRƸl<|"c8'@NxF*̀ޑHH*>I-X kvf),YI%-#c KdrX%S&EvsƑZ#=[V $;Xf 8iIXcO*2D1?IC0lSZġ֠V&= (|]ҋl捯~amTh5yYPSR34l>s:qٍ/Ծ朧<OyָbѦv?ѧ="@wT<[K'U)-P}$-ꦜvOuLJs}'#Cv"2Łp١ubtgS[_]Wޒdz7Y^h(]yM.2v 職\/L_Ԅ4&g:Z*4t/YSzy^t~yYu]IB./;_W~+YOg9t~٤@ z.9cz^O+0š^MdM/r }+s, NYGʇ*o{;᭧ J}j_F?ޚrysS0}f3 L|Vexy+ D%! Tѷv ]!.S]0S*v ߭_]>#`G~DtJQ\Aޥ᝹¶#ᩯE-7w~;#ވ؛X%^TGD*WÇEQcy˳6ꮢ[A@UK% ߄oɣE|@>}C)TYX+1lq2Dr܄ývpJobiS' Oa!eb,XܼI$ E}AҠ?&M3rjLr-rgi(vۨYJIěnX`gln^]n& 5wZ>cP{` .kg:hOt(>6|b@Y|?~>IN~:M ߋg4:|~G .6H(NT;p N?~貉/C 4(|ΨMћROP1{b8_rjx/|Ax#2FPN/:T"#dcY۵*X^D\o@x<B9<6 ֓'}nI7ZU- endstream endobj 236 0 obj << /Length 1579 /Filter /FlateDecode >> stream x]SH-VtUk{I 3 2zaxys3sop0B 䌧pOI:L?OG@gN 3+pI7i!fMxki({,N=3Hdn4(4yJFIe8f\1wklPV4Ά;$?L ~PqsgޢJWUy(QcMR@hRPCb.S/xuǙ3{i Cg7d5erG ŐJ앙8C`IMlwE{E'}xSBO-mF*<+GH$t9ΛBĜZƵ{SͬgyE*HM^zcz[*lNLG芫Bi2bVGi090B_'.|udce^='=$.E&5ڍ ɓ5X.2K{%髬1Yݔ0 Sbt6$J*^w@\w#FlSY( ?& n3> F1dmr:]-O_W2 iۣCBzq jɓivYòOU\12XqD(D"kآ8O:i^X 2`E}yr>xL0b@pGb||J. f7EEֽ~/G|kc:G|[X\Mf#n嚸bubm |@8jpEjmOg }2TcTC BΐQ[`sNG( endstream endobj 253 0 obj << /Length 813 /Filter /FlateDecode >> stream x՘r0<ª%Mt&"B1<;ciҧqd!``$3?:`oa>;S(LhQNS C K_N< ~F_`jg1*!+JURkNg]sƎi`dq3(SM8^za#x~ZB ^REɻ ؏C$gil'i&3|rA'& u-Qx.h[ڼFX-%p-Z<$\ ,$t*!NI~m'Nl߷Ej'^fVxI9!T%2Z;)Q jM'^I*S$B ~*_5ܵGw26w8͖~u+i XpcPL]0aǧq":9O FN`G|5e: 5㪟S[ig*vpp, g$.X]8>Zn.hꨣ<+sj. = Pi:YZ'h75a^bVx9egNdGdqso4'>BG浥y>g+SO1 endstream endobj 282 0 obj << /Length 1852 /Filter /FlateDecode >> stream xڭXK6WH՚ @2{rRk֖ SftF>hF>`+_IAֱ̙ ֻ LIh%` ~ 8SoU+_o=ӄY*)$g?u߮D6sїMM,v6cײm{o%𼫅2׿h!}u4~܃QN@ڙ`5S0cܵџ1`qnYմ̡uf(Z:ES0q/{rtٸ-z"1K%rk:k,Wև5h]=w Oϖ!GA _;>9je>-WIRWɸH |2,從/;ׯ  endstream endobj 310 0 obj << /Length 3222 /Filter /FlateDecode >> stream xڵZK6WT!{7)k<*'ˆLPx}SI*&qnً`8tv#&ݤvȝ.S/tun~z+au՝9nt٪6ʆSe{KNO^-\'˛|̎<`1vb@05t c4jd˝8u/ttWM5Yy:/ϏD}뵺7]i͚9H9Y#QV,z'yQ0/JF?|W7k`6 ?:?4:T(_wq(5"0d@"`r f ";MkGo62uD!>L5F[s_'e') n:nh^^lSޒ5,ŌCȐ,_؍">4KmRwiFVV`*վTUYɺ/|\e;˴mO_xqww g)tKv/wiUu 9Ŀ8j=Yȕgs w$:F?s_uBj?O\`ak؏[W4aRߩ@apvZ5v&,xiMZd]-pr  fW샡!ߢ~+u>4./UGad!2WBL;X`s@=?V퍄 j{|.ZZ.kSjYP[=5/tnV0CĠ}F?!z4p[߱G5lfe v*%p. lqΆP[ TS4:hj„rەI!pw?<^P8I@(u}k(YbO1r8{XHI1g/yUa'P+a-0{7ƉVt\,5@ߏW {" z31sGx4DL9bŴ呃 `'[Rw8L,a--X\C6?m(] -=F%5?Gc}!z\s8 WXPG  1G wA#*qZ'/W:H|ڒ8 L#ϼQ[0xS]IX5rp=Lcϋhς켾 nlXfLhcBcl{LAs`bkYŌ,s̄1c>^Y6ȧ<ﱒESH0q)oO֒|0ﲺiGB'm{:F%`|?@6Z^>b yY4pQuKsTI"MLR|gGn[eK-B~4Lpș% iG]d20f6Oe! KRaǼUNXĹT:rЀtl@ ]O6QRar[5\u8 ʍ,5@A04`CGv:cϝ+r kp0-8e) *6O4-re Y{V-@[",SNJi#UtcK_-4Rn'mgX:* @}65WhKNSTHQo9v4JSrek>iHA՚!YYV0C\X y5ʫR5„ @B>گ Jrh(n=fS12Jp1겻$foUw_fT4%z}.+?#o[:Vo݀k+0  {/P iUs: 1f㛥`O":7Hdy0̒Yqkդ4x!L P+!ǐp!W[, DAȃ#cC,CD** >Q 6G~!i!{:vBpDOu]S_0Re7X eз?0x`Ƽ$GHQOr =ufvEuE3;k:'eХ7yg1tCZ> stream xڽ[]o[7}cS EPInM$YEWh:v֖7=Ɖt@+]ϝ%D!{v1I]҈{\\] Wu"$j:RmSA2H\Q!e [ 6#% Oqxs|0-AbxBͥ'bpI+KNt)v o K@0jsY8嘰El.'ʬJ-a ~Υ`MS j5`Z*NcfRTw1cMMx9 gՙ (̔{g XF|0@J W\鯣#QSsBృp WC]ТA`'Amj!B+V"Ļ@Yz*O ErlbXkFΗP Z>9 Ci&Wx ]5SՃD% JP@B,|*Z yiT]>HAv"Xbb_DJHVׁ T,PLħ & {&{apJIdU|8`7+8<==[,:)Hϋ/_<lh~tVBkϱ'ȥ Gl7XrYD3Ţ9X (;}(s?+\Mp̯Є[%}fWA` `N]#`w݆b{ ьkWo8 5![k(qE ;0n^0Hd#'`|࿾u?1a3åEfԇ]&sLJ>ьbO0[4}Re)N}<4y}G'O}<>y}4S`σ3$kpev,M؃K h }d_>n({B)( *>4c~WalkVx#OU!|5$*Nԍe)R.j6 S8Ow Ɵ\ʠ8GVTӂ:閳ԐOV x&%ԯ!8ΏI9d⡜/:ߐ,( "逢rҟ=~ c ƃ`%n7W<JPSy z(On9"#&ϼ=-w:#.C,A-Û8C[T7 0N'x{O~TWgQF>8_]75˓{|yg@lw"wod}O!7y}yG{{C#yr\=k1/p8-PxU @ !}V' lfN)gΏBEPi5uC`K6e|k )3g0U;xKza5dָRZ|~ѐP/Q8Q2Q LYۀy87qP%䬀ʂKCn^W<&iJ/h<~lĉ IqbdWA:ͬMX-G֛&f}y.fcT/<;la̿jP/4a endstream endobj 334 0 obj << /Length 2812 /Filter /FlateDecode >> stream xڵYے6}WT Ď/[q^jl$f(RKRn4x 6ӧ[|[ի'_=K"D_]mW XU,*[.B7qa}4Z/$AA7]^]BI_־tzwxs.B')H0ūP,-:fkjSNb%ʄ vyn6i[O`1w UI 2~n5}jBOX>ɻ] rm1c{OSM[厭72>oh:iGk`6~dBڗ:Pk;4@Q.ozVt1Kgo UMͻ*c]]fKX&_L66pAȽRܨU.?NʶBϬ9q7_o{';f1Dgp:%Ƣb&CpawKv{9}+^b &p[W%}T1C?w:ע_Ų \IN4p%OM1C`I6ՠy5Xu&էF$ h@ϚngָfoьsOi{ V$Rd";kLI1 dz:,PFa?pW.[4MzjkBtc?ZK<8C1xYlE9 ja7ūw/ E$%vP+gH)\w4nz4Mb15us)}5,wB:B1 (I =/ 3CdTpmѥb;a֔lThgp'w==EA9qc{2d93H,;szۚzs0{j lS]tWKdwzyK~F쨨tF}Mt.A2`!S.60 3_3 w: ;M79Dy[kS? Ȝp,KVufk>~ן>Ux"8%:WaftJN&gZt*HȸmɧY7>^ fpg#]4-qg 3;6//Rf֎v3[1nga4 vty7~%oS$.F.E`3rkY7^3%:ݣ^o'걹7{Cҍ\>C ވgq2$RIG:s0nT؁ޮ-P5n.XxXx%Zf`Ngt8V`tKQW;2!s?eR|<) f񧵀>ٖ?h+q/`@FeP]W@mMԤk zF-dL|ACwID{>y,fC`But^ GMGP$.X-aUHDiwkTYbҋDYi1SƅU(zqL@4⣈`\.kB6PKP5لimUkh4t `jZLg@9}՗yaj]6[-m&ð{Ts(.ڍ; fA舰kO:QgU`I^!`쵀nMS|Q  1 kSHOy$}YGZO&muIUP sNd\`ylꋹ}!& s{^v:^hoqd^ ~\<&HzW^c= E??Pֺm뜲wHX@ o4uVCaR:kky&O: N@ݾ"/ Cn((yZ'*p>ѓ@5:pմvln[l>/6(e&4ЯA1!f4B3v+ƌ@9!F5]C-l }]ĶS%  " fQ9QLussv y񊋵–ѩiZcN ,*dJӐ(I M}8A%, QK2+zQpum08Y>H߻5:jRly+\k? ShӘI Ѯ?U?,[3S Lq% >.ݿE'F1٨i]?oaKao:g'{G\{XST⏎@3qeT(#ugԵ~-tu}U='ɲ,%38 V'x"'F~q25fߜNh7}"P!$C l U$ %ƭ_lhGEg3I *MKD |'~%N/\  xpIؗO<.ːȟlD.ۙ@F!?+NR]6]ZzmZUYnEoi#9|dPJHf1PɈPOHծY`5a+U ^huڎz\t0xX\v*G[V_]GF[7XN/٧\i5 aϥ!kJc5fKӾ)b!UeT8hWO endstream endobj 363 0 obj << /Length 2989 /Filter /FlateDecode >> stream xڵZI6Wr U%v%v9d\v-A!){~f۞-a{x ǫ*^y^'*En%2WY*E!vGtW{N xRXTR&;n$n-Md7b:_XqT(r"l%-cJ`tfJHED j͋W2_,7ʚqk%P__iG&նkGd~vxuKj pJ_I-LR𰛃meԺ1͎) "8#Ϩumo״P[]lk:<2pһ3U9ݖAtϹjpo]/!$˄<@sw~xD$I@\\&bm rpizZ`2~޵5 (UYxJitm9l7w%Peimz*QGKvO%d%7OMY Zkzm6=BYx!\$x_xrx=սtP^ `l"ju)͠&ڝ XU铭ζwZ!_͐`ϒi`R^,Ms<{1}8RyTz"ۑZ qZd"K#P; 2Fp"ĜxUiL%4ϸLeS"5e~vp-IGDoN|Ȱ*67ȍ h 3_{`]8Tq&Ùrȭ}{u= `)UmS%#C,=)O/=X߲GnEޥB+aZ׷4~~MxcM ܷ479978*4pr[Vr7 $"7L!L `#:ׯ%fX3j,CG ^V@͹&N 2AUu`x J L9q|9X["l][˾kCNnE}vB=Wo쇆]0w:'۱X9b=ssc~CF d/bYHR=B9xs?Ncu]vEA$M`n8R9Y0#*BݻCI=w`i!XͬbX¦Mx Ҕp/I&\4)M9WY_$ : 1ҟ;A\w݂M\" Md*NNd$A.8u.5>ߞ^D`ypǪDֶg r Cg&c~23'2 @ǑazOGn t]yKiR|ǝG -1Vfso7'aSrgIB,5,;?,rͦM4l~?S0-_!tol 7nAqA>){Ri [w js<(O^iAl2N+Pl^:NMu_7ǒk0Z1uwG1OEz N:=U_y*%?jIJYנWgkO= u a{ٜaj-M*=+Ǎ7(\Icslz?dJ28q eTʴPIf {Wҵ"swĂNN(܀Bdڮq$Tk[H"'iP85FHJj|߆K"A㘚sIqrCyǼOS_upuO>Rf˚s۹E[_eq:aVT VH5f>惃֓xe?C 2Ÿ/ų*PųjZh)܀ֶܡh1l[6jgpS0@fJ:N {v9 !HMq9=}XpxKI_M]sC p 4 i'L*TrW)6!"l]5i(X p` 6d&{ 5?_ ~Q F%}"*{᪩08܄[ȩ7;ڶEh|`}-78͇ߩ~J&Y"|(@;xDDK^GO~h# ɀD kr4n0@ azH:xG^^oO>< Yg+~Ln.ZCP-hKuu?;Snp%k 2:fD8@h5pf|gP}sRHqV:0@UMX>Gn6 sh@2[G2okN&N*cQ5Rm_~QRId;&Det8 &:<0<E16, hod1Oc-H'\ߖbxߡ"I_xV"=ZOސAïm{|F`RKJKIT~Ҡ !ʧG[y+5+˶"KLlK  0ç .3w1$R x~w2?&DB@ `U`"1"}&2!e:;jZ@̚]]z endstream endobj 388 0 obj << /Length 3358 /Filter /FlateDecode >> stream xڥZߓ۶~_qJ3>Hl.n&[}J:IL)R%ݿ !vo]\tw޼nױKEFnSw"fwꡯ=Ƨ:Z Ut}h@7Z&b`i2HQNk#Nt9ywEBDd&A?{UlK;mp˝DzVm*Y=zۗM]TeimK MU5>PXb ]bţ,Wy:Wd>iw/A{EO,zڬ9Yj-oWOD"ޭ6sїEPεV k`Da_g8MkwԲE[m;ضz==ݮaL-(u&"T2XN2}E N+V>\əN`Dy2lܣ#XԼa|G Lr+v vo[_ =~ "3%pDΑڶ  _$t (hDt{ܸ|$b7s2$"ILwmshSH4q6WEWFl<hPٜAh RsW$Aou =-Zn_Fvg4i*R7uKN88dNo=R\D㫙bs[6գաm.*^ܝh-e+QKQ!8HU=NY*

䓪1gw:3C(nZcZ ,0x_mQ<*k' &j6}=!h9 Q瓭4M.]>\DHC/v!zl _}؈̉IJD^#[bkחhԽGPFHMyA܆8t8 ǺU=+9LKuhh5Vwoq!(d-~|86Ol/(ӓd&Ӹ"bSlnֺ+psP}6Ou#)#s9s*jyWi,E%sUӍva=SoB%Xa^7/F^ endstream endobj 410 0 obj << /Length 2945 /Filter /FlateDecode >> stream xڭZK6W|F|'{[-$Bw(R!)ۓ_h"׍Ê>zwaJXp߯XE$,>_Jޙ?h lf)eȈo[jsQw`h3gE< ^qGj*d6*biѪEqG  5uYk@CH'ϜLյ4sk0llJHW)Y$tNqEet}Ӂ}>/ ݃Li_鷪.=4tػSgݛnw49u>ݑ 2&GҼވ$H6 V)cX8~.Pq\ZǏY48\PKWR0ĞLz0b֍wsjݑkY'"D8cjQDiH)\wn8/{\ԢXxPipXT"p >ʩ+w&<~s5tC=Ϥ؁]'4c 42笛sf%3UKۏ/խU8gm[;4Գek$)J!)* n\HhKӖR=Ds*M'X8MT8%MS+0\+2(6#֓҂yN}* Wؿ~nQ ޭW7>q*vk/se>Y\zt[B0?0X{߳l PBW~gƑyI.'^2wuhe,M{`l ziQ84R-!+?^Bn&Yf,3@Pg$L5Ҏ)Ky'Kx${.B 6̮Iq.0VLrt#gM%9b rṇyJ FQMc."јp8:5{,(NHP7p4~V_Ķ>/x_ ̼/kM&=D<,?'9uh 6 t>X!Ҙe =ll 0~G *lmwV*\"|6e-F<`j,GZB*4wnqu\sڪqN-B,]TO;m)r8E~2 tycȔnngZ #,'$Y̰"1F΀%̀%eøsk졨״ E,DYXLbN3)3H9A{,\DPH&q1>KOSQcV gPsԍ]I/i*0R_u` E󁁀8.LB|8"ڰ֗|ʷ$pB\HUTH@"UU$@XYo(m?44`qyF(T_x`OyA ᠾyĤįd^@lVh@8d-'wCָj"Hr&rRwy][ƠplFA?,=-T|u|\ 5;;['IXU8qDJxr7 Zw5Wp醴o2NnӇ!j}f.;Pݥ#JC=vV (`cJrWiZXsj@_C~]6Ϝ.b$us=ÅO%E p'4:Q0KOfdeo 3̒r#6Y>֗ҥ[{lD&jX@LstRf/s( dU\rGq*?њ4eڹWenW܇ѓlEf*ɔ|.3CH9DA{/!90">_Wq3 $6,V&B<& 2+lTxW1dVUG̿V7} rD0d<{vo[S˻{wskEoRe+oHnCl* 3^B aAJ_0tPWtr+Q,8r,8za2wToϝM1\~A} Cnj7UD endstream endobj 435 0 obj << /Length 3242 /Filter /FlateDecode >> stream xڵZK6WrY{5q.'qCF,S$ $33ۍnPɔsAo4~@vo޼㋿M"ėǍ 2e&dxU޽ɬ@%0IdSP'"B*~ˋɂt#}tRb>z' "wa .DGO%;<$ڭ7T}ők@?BjKd\MֲaݩQ@p6HWClM;wuW'L.k9[u(,;Vׇ(X}"Q]WUn9N].Emw"D( eԂ8>pPW]CihR\ JiҗF/!)jف"w@D#5 5~; `_n bcƌ&VfHF\r0q:>J&.J̇eAaQ $8܎<|]VeJ צ96|EmS$\,xCQB`3ix?&0GӜ eDF#R|XcxW:4 --etnS^k8p DL xrqLV-*c}^P"룶LׅHF ־][%ME* d*A=ʫAw)JF[w.HTjՒmC;_0PajMꂗ?X:U3:? |gnXYҊ4tڪW$=D7hW7 &-Mc ԀѻPƞE&|"`œWX xk:"J8:?3E F {{ij{j@=D[;M3t|IlDh4NJ5^@ۉ}%6ڬ DHCkuD~)H=ʦdsL_ݡMs } 2P7<7 0˟/UfC"0Lɨz~ML4~ 3sMS ~f"_GAY8E0C]8|OP]D/fSvhêZ\S6l=(iB L޶Vjí `̚y/دu$ҍ]r܃p; FU^֚U|We-{@5+*!F8^*Z׵S ~IWF2EW,xQp}.# `Mr}@@SI o 7?vK !c,O4nQpnuKwno+pQfj*IOmzz>s 8ڢiKR1%tL/;CȆ̈l! }@82[j]+`mw5" ZOpP_am;dK`YO$9 ,W"bxo!wB lw PN=t5pE,QFɘx]dea< WE2,H<(&# F'."RvCo\GųX*ň[ejMzhgwu ƕ (x;} M1](D28ȷXlqRD9loϴ֭ CFC,m\C@("ђ@(ηO,BntkEss*@c,ư|y"ƅ#!_=1\9 A'm ;e33qkMsewEE0D;PIv3{tIT+)v+2ӕ4h]&klhS`& ,E"5*9nj! SexI H+( sQ&|/sDOBo;c"Ξ[v x9UٓA%(]T;5 ~7e!k]H:%bǏ1OxmkţK b V欝 ջ޾)7y~ r|e .uٝ83 ʛ.9eȩY:(as|[㑘r"GJpEe"LRooa| trW%}o sk2h)Ol9p.їMtzL_sB8S *I chPADU18X Q mz'mӱ̕NyScG("V+!1Z :cDS[=W[0&%`~- hc` {pñyV%g'd4z^8 -,ݛ_0BL}M&\ ?Chu.ya|20yuBZ`+ IE3W~a.'1aY:!"VrA6{oxU@Rs>IzIr߭L(L&LQ*lg,&eⅦ]#S" W[ĒL~-`'t.x!'@Cge-;*|r4ח̥pSphuНIOhX2D! endstream endobj 466 0 obj << /Length 2857 /Filter /FlateDecode >> stream xڭZK۸W|YG.Ygee+a7fXHȯO7|f_h|_.ճ_~MNje n!UƲ,XLz3yYdLs2Y =^ݼ#BR(/>淖SBp]1ó~9!q3]4׌KX)Ш2Q\)F]J=qȫSG:Z[te]&ԧc]Vl|S٦IwRRR/ 5.n9']LA? 4eyfX РH3\2[.b3fL&Q)`F3pvusQJ tR#QM^tNnAUԳJO0 SqtMcc[[QSK0ďIT |l^q_ SSejgf0L&TNM].Yme|̈6]$aB~ F{ <;Ճ[:UTvlySh@l[ͺ8F{G&]H-/hPk=DT`{IodA jZ7#l9%߷{]NTP]Ijn^P&RJxR(L]\,g!A|;]awx9hX6/2IaT2XT?Z"lUؿ-W 5]Fx uQp$ڗm ^X"g2-w>"`x!4`=u!PdKeutȢevWОiU5GN\0Lf'"W'0I?͏G ukD؜>GL cݶ%Vhu5= ?($lT@8ZTEsC3'17'/rR"f25gS9. ǦD#PRYD1Y*88w)a`A\ʥnpi}t1/o˪$\zzNC@PzK=Z" r:UkNR.dJ) ng9 9p0%FVrńr7Af= CbBNBrHܤ6zԤOS |Oٻpl&iO]nOXv^aD>M\tǺЃKTiq_^{c}|p޼zp@8ap'pWinLK7U,˷ ]ۺp'OPB83Wޢx8KzǠJ'ڗl=chhsJ>$j,ǟM[]2ۆ̶꧝BeA,1\ PMLWUIJ0=vb M˲HV@g/x31i= ETD:{^qJj0/1U VoGVVW%OX|~7CF xȤ,JŽ NɋIm X}@Rg&2w^vJD汗 8#Op.<=TIa n 4TdxݽG$I2G;`*r0owyѿuJD}(嶣boR=fH}.6J.8ì/7An$•㬟MB0/JC>UX6:G~r_<2/4Ӧ/չ 2~ x\C}(N 0|RG<*tⳓ~sg endstream endobj 324 0 obj << /Type /ObjStm /N 100 /First 894 /Length 2726 /Filter /FlateDecode >> stream xڽKo7)xbQ|-NvAV[jFW="#OKӘjvb1zoD}0h|IboɄTDWKjbEѤJ>$S+sXTy?4xaf&8z[ !DhPx] 1."+1KREy N1sQ 9><J.'ܙXu-.$fN\d}xsB'㩰0.b|]w%0GFd"rXI(7)*j0i䷢25T fRzHo3ղ-hYe&*T\T uoju:~.)ׅdSRY"15Y}'T},%^J B(JZ*g5|=DB%jr'X[ҲΌcmZS9Wf炮#b-$bNW'Eգo$9O" jC|mX1Xo}j Ġ >/< YȔoԐL]nD)70vyqj6o//zemn{N/ϰ<_N/r5ѿtżQqwJƻ-_;d Zِ???`7cW4o<~=я=ëwg...X^?_Ft0Z%;F,O+{>j~ VWV|vqn|qx7Y#ɰbBDȳYѸ_߆]ON\~9pr~iO/> Z jɧ#/ONˣɻˣg.O.>{`uOlcMڳڒvYwA[eGJAbNjջQ*z9^qY=(\$,xq*FI!vZRSQQ6 9oUzigW+j6ڠЄ]JѦ :[ Ҡ 7BjM,pXAMMaH@#IhLwHa1:6{Mx7>{hCߔĵ\eB f-MT`QA@SGi#>6cԁG#uݬ@w#&LP<u@\v~ @Qg3P,5"d >3@fm1@zp%DPf9?I8aFdvWd 9:8+j m sjQ^QlepnHM$r(Z qâ)(-z,qt|h[jM(]Fۊ-*~D'4~CV]Kwם\x޿wZ{ViU{\}C{= L=Sz.[z`tV噁OBqqCgutË'\2ӕM03x)V4?vgtW1 bJԉ=ړ1 wpFӔ8PEE2Tϸ Ң^ ҈pћ]c@VdnCgl4'b*Dxlݘ33% PԳǖ?pU;NvgFjҞL߄FRN0Ɠ?4ꌺPPZχ`2IOY'ڟk" wkncSi oо}}'`(FܬȎ-/9T6qm5j̨NFjfm?܆~S^߀,{~NbsAt'IqAt:(L} z zKޠޠޠޠymesi>uV&"f QI73j S)s&TOLST^A1CG͕KRlt^(G{մ endstream endobj 498 0 obj << /Length 3245 /Filter /FlateDecode >> stream xڵZY6~PeK H&[gWKA%-놂"XxrqoϵY"^0i-b#E*j|YV]xBj#_Wk˧{nhz2X^,L2iCi I]uE:Db"R.%W:[r<NDo.Eo`8z'\‰Ӕj۬q}DÞ'|Z++oFNr7l9禽-4 XfJ&˛nK[b@:]%i?*mU ?It,0 [ZߡP<.B],j,wȯZf>vA0hAǯ߶ErgʝXu-_:ad {'l 覮Cڶ]]NA Lvpm`w@> f+8R't>Q(9.s @,aNSqlC"pڦП٥R(8T%e #.jLGg*ZqVUZ ys˪s{Av/8>n?:FŲlRuPcD{^bHc{F$Qekk@8rrr h1[YQl٭C$4zbz~(mNDzág,=a dcɜ;'C P);.NV_;SljK$c rN@;Sƒ wܧ>%(3\27k9h^Ξ#;痕{ֵŅ;X2w 7@B螇=A r32! 9ri'qgFa1uȏltF&t7EzbŀRrgIz,I}%f^?ghDbeN9l?2<ω>{`XR/2P%[ܸH%-b-):D]YmVX7ԫIǃ53h#' t k&DZXB` o@_$W `KHVrL2noLD\]c/0Ƴ5_:q$!,>&IPU1Ol%XS*OO I/Rh :L GE˜Go&%bLx-Z˕؄ZQe;tZ8ƙV/ mKiG=DB&QMހڣdOT&v%} >f8}0PPӵu8jd<r䮨5r( !콛!#  omUtRs8%M+x(10i8">=J~p/Ev a e?[Zgw ouy~,5_W`YZ 24m,s=xQI,57mmXiu\ ]?YK>DJ票=A/m{*5}J}G4п Qd; Q%R||= %HR@$ bi-Б_ q*(w_#Y)MqTA)pc)+|sgC復X]3O —f\PY1M"}⡌Uqo?Tvu R7rX7M΁$]IR@&NiuCwi8 C=nN_V)'K>fxX۽|7rbgڇ'fهYE14"1G{AoJ e]a%']D::d <{~ˬ4wDw9.֒1TU۽B[nb x# 0.¹ҕv9U֯m="63ذlN^mrWDqck ֵLBlG06қR=O-[2Ҋ > Xe8/80Z'WS!oډ5/=ֶv2"|@-ґf?T0%fğxiAnj? ppCgDy{B"5dXךX(90-0 'Hܟ"`Е\aĽKmoܣ)ҟdpƙ2ݢpPz0%P*yH)-c3Z{Q# iǂ_XJ Bɝ Aа'tӿ!B0E%qdJظty=u?Μ*ĩca/>=LOC ceVx_~2q@8<Ȍ"4BԕNjvԸOT&Ճu_PܟcfH5{p_x'3@S endstream endobj 530 0 obj << /Length 2893 /Filter /FlateDecode >> stream xڭZKs8W6RU%l%;;l8kE'"#F7)&~PjV^~u Ezru}U,ج@Xu~=mGa3w7[x7ty# 4]>nY'doi3'b/fJ/j2" @L֯>o筯7Vy:KڄF64LʌiU׶9Ue{b0 xKbBQiӖIﭿ,-im]e]j0n|ٲELc|W[" |tLDy}UvZ9=aٌC ӿ{OpM /$5نFFW3&'X>HUMvѱu<ѩ o=3|]&!9h3B0ߌ7r:opw Ž=tb"M_d}0 0ڮ.mƷ;t7KgG8Aޑ%5,3M-o[)!}95DU0lաym=En)5ȟofkB.+N4 4TiZ53 -L KSp yoh [ɫ`n=Uw_m|vW"ҘME*栓&9?2x-#ɂ4ixd# vyu=lA vHi;Ǽp ހA'G) bmR$mMs<*ostB Q!a8N_ V*>MvU(2/P^yk WN 7y)dcKR8 >`pCr\g|q|fp _s:hNeC8;R\ 9wWxr'?&;4 ƠMҋ 駼9;(D!g⽼!TF8"/V/ca>/G0qc|Re2|5!W d8BabC\8By[uꯛ.=H%!N\<}.)B)3+ '(>^2Z2?l?ܒ$IYL[ .˳^u-3| bD= I9L-S׾? QĂO&&DizIkJBhQhh%gbrI0|71_?j^[J:.0\h )BgDș%*H 8Β#Lm4F_S`G%,a1‹.hsSpI)Ld{!]NE4m8O!w]jDŻ-OؒV`"gl/uB9%8w=!#=Mp]F(R[WM8; N8+q?f-/m^-5tϔB(bӵ{*MY|;]G6ƬyCÚm>{6)_EBk)<ݸ`f•?ѹ`p#HVVP ]iw>R.+7bGb\&a+uQ&(vL|xv9#rb#~$d*}wlR[+a)ncp_^ m\'inoyٴ, Q\U ]UhCɀiɜi-C*]!ӣ*<Gz퉖ɝl,B />!^h`HwS$eZA@Na;AY'<ܯr19 *-?nz@C.@Sv)>*] U/zF*^؀c#q 0h6Fk6+{;8_X$+.dgS1' n oh+jxw ! F&z>r=s=@&b,b`4Ab ) JyC u y)hGi >)b"3#bFI/,ʰnG]]}qFҀ洪I*'CP.6z&rBUu͹ o1vG$@It¹ٍy,YC$DW$\T5 >ebR~o6 endstream endobj 554 0 obj << /Length 3094 /Filter /FlateDecode >> stream xڭZKܸ W-*#R䐚ƎSeO5[eKIp`7ER$>@oO7/*7_nnd"ˢMKps|*o?Ϳ`~2"P ,f'TR]VF^^| ҍEg{ "?s'PvQ "ͺ9-ޜύn+}/ѾջzRqRJD2$Xl*}kW |0NCuGMTeۙ+:hF仲>,^?FwFO8ɽ(6]4+<&*$1Hw Uê=jHrZ;[H$pӡ_..'MD)VguupD|NXhtQWۗ~*XGP7[i{h7Zp9.p= G]|iiBҝV4D1"I?&/:mU&^TFLw}VmykröODo?sL?jVjo3$ņbAwD7E޾ zV*DPtX/:﮿{UV("MS@O>KQx>?LsUU(o;EsB((?~>b'i"t0ڜނE&"URy0+' p>=o O"P&'H+7u&OX |8g$kG^C^ӯ6.իV|2i!"8c6(ƙ8bVם-O/#p0-B2=7gmRyQ趵2B55  )A׺>|ݛz݈߬ 7"^$Ll(ã*0L*9xm; YJLQ:WDZVҮJ*S(Tԥޭ`d몺ZԚU;ZwQfw.pv"W J8N)9jm- FZP/q'fDyUj3;v&Q`ħ3;W kBe{{gJdob5E_+!imTG- _\nTz߲.~$E^U#p R{{ `wyY ~Ʋ=%D""Jȼi)pDA%oD7<2'"Lljo0:7_Z&T#=@$C 8 !AW"o2wĶ)K`9 1hB;cG/}t.EsbBm8ܖJU֫<:3S@ ˢgrV_qΈ$0~ς{ mn{i1)߈&!>+iE"-Ny) 'V3J{ hmo/Q0 F S xw;vZ^x R3'8kߎR`zoXp,(;5qtFJ{cCH B7`v^=UeiGG`xă^@nZ$TFޗf]|ރG͒BHs:@+ U8!Ŏ[ޟ4r Id>e!%p7ɖٍ(B_>zGR'㜱a& 3gO.6 8HMn*c h~B1$W FVpe6RD +21m& MA&/؍I>n|k^rnW>#ekW58=8|@aW|*ͳ,Yωp.Xj5 oiBp!LbLO֬纝yV95r@X(Ԏ麽Ak{Dwa=!欨qtu y򵄗 mx9uh4윦 mKSuUDU2{W(Jzn{)h|@*G%JG kOVtṴ-)EM .K5+KZU0Sd!{8:#HAֲ1|Oi=J~P5H[B14kx[ۿ6MF0ޗ?W*N,M9&Et9U5Rir嚶#=kl ֺ_d ?yF U7-ZLFIRq1BI_֖ m Ch[ jڱj]cVػpb{okƝW}kPϐז1KNh *U& x6SiE<2}psѾlhy7)q|@c_%?ϋZ~OډE<ԍq&1)|$~eTlZ&k/%ĵ~[c%(>x`޹luzGGydŜ|+9f`Eӓ xbSnj"Z3tJ.ۛye Y ~s'Xzgh~ߴG[ʿL- df$Aq:?7qv+4baa[zM2qdSY\?ը5Tqe#PVI(L>Njҥ}M(ّ Z¹>YfN 5E?Eb_512Ӯtlao> stream xڥXKs8 Wh\z-i7nxgmLۜȒFdW< ˀӋn$HYrL sq&" /Uw_>[F,) H'2+DDD"A-5 @pܝ^Hpw4p`H\=Bd0fYM,].ǻۋDpzU=|XRuw~ȂXmobӪw_4=jN{DV_$Ye{gqpӼz쎴NNJ-ēѻ1r"ȁTU4MtalV+:ļZy9UDfNves L^q`SN9z"Fs557"ơ߇x}kuwŦ*z48m&6fh_Ml?v=Q7ނ7JYy<.h]S&E~77;A5 CT|W$wj|[3PcK $z<,r噿3u1d(aXխۢ |}ٱbRB^t$R!]d]G%w buZT\evz" a9F}o N,"礊33+MlU2swYxŦ*<ԛn1l5RDȌnN_[%0;"jn{nKd!L|y,ar(Owy+!fc|^Po(}Sܥ>C}'YaƲ|+AFnə ` \mmXU[]kHܷhc ;Y=~namQYJJ$Ju޷w%[ZXVL12Mݺldsq53/ո835"@uI4%j63SXVHZioNmx.>ㆄxU[c#aGjUľ=N1o'هMʸAJ&%܌?S-k']?N %Z]}&q+Ry0luGNj4K @0u:p}TCb_<{mG4LHc׳4f60,]ew8UҘq}FjNyj{!^ɅSd?F/ endstream endobj 472 0 obj << /Type /ObjStm /N 100 /First 913 /Length 2836 /Filter /FlateDecode >> stream x[ێ}G%;7 EZhA#ͬA^f`f(KΊ99%^X؂ֆW|SȅyBq\ s"4܃4(d\Ԡ ‡9T cHbSJVα] ` td!/aƧ{K.bz`Mh/c2~6F@qo|ۮ1y|;_w Yh.˖ dwC2~ʟ0 .rYqWS) QR.CYC,JN(J|2&Wܑ45$P*T5TX-T2e|[ ܵ6e(=a .6v:jL &biD|>,=DS방]؋ <`!:*2h9 =㓿b-FVLLh(wLrAfQx.G\ eGk 0˃=]i I 1譬B 堍#ʹj_l+aJAѐ@um}J`olȶ50QU>[x09UY|P#j@kuQT Q ْ5\@n7vRf-6^S|6+j 4$]x3,:,[@)OK(JCu]Jt Vv>}„z= ]e Jً7"Xi:> Zz|+yw<>a 7ɛ"Qhs9999.et)O4sb[w кZ 3y}͗+6aY]t&} {vS /Pbi8n^ )|afǭq CʝJWbs2 X"l}Rsv 1e gf7ϊ} O\FLw.ԝG'.ڑyP5䁞;QdkYPOXPֻ<)OP-d1x|j'b|,')ϧ<|S^OlqDg*SYJAШ͏_:#c StcikіFz6jJ Jӭt UC(p" P bm\N.CLeljYgun7F> stream xڽZ[o6~ϯRJ.3" ,0ŦalId^$[c7(:z2&F(\!I7)L:Q~Q9@H-D 0+]Ltv#f݈0~I)ɀ`pCV1$6(Ej4:""Զ&\Wnk͸'3wW@xHtޞiYLg[NT:3?y#.[msBX4# d+=3VI y6E]$FJs6vqRFQJMwӲ^#Yi' n%~`'@1 ?v* bxm6TdYm}DHv _WY7ׅzYv&2wf7U%B1fvDT: %0?NHX7WlM'3Ce\ K8/| W[14zRNK U{(nwwCQ{(=ի VÈpy> "VhdD@\zAG|-*w'o4~K,>󁋟&^:L I,.` Oq0N6Ĕ hLcWD hFAXb;r;5cz[0A<N˜;'hਐ )!qbBb 3A$>,8t rg-D?#q+`Ƥ]F0E:|4:38C[s\hNћeaτ6g`#d0+zm=L $[S v^ۘW D(q`H<4vHu( zBf;ADl _'4mt`_x#I.t6K*Tg+hrf|iR$)TnvIb]2yPS*ɳɊ1ћl14`K+,ޒ8Wɳ_SզsJ$,r1))dOWeyպ(-{mdSb 0f nM2AvC9h;h4z^I?jS̶{ګe`2]&\!],UԅvO++S(fKrM+8Eʵ\)z=L#պ+RBT~L*$fփE)Re\7O@=*J=ץΦz1Da)J"~{@80pdʰa1u[WSt'ٮ\/4/؄f\Gsƚ3{6'\2UZ.}-}kCCˍC O u֝wg 4uOv&817A묙 N7Mi74SeY^ꝳNԷ|=*]gRړ爊Py*V=}sM:yp`W b"bD|BlS s21B~\ ^!t u9!jꖄՇ\г1B9-=^DdAPy͙ٗh>Hn'-PI=h7)Y;0$-Ea}cl1"/Jw*.rDd<.,e.?Kf"tTIQ褬WڈIﰠGĴgهsE;mIXiӡת\oVm"%Tgn=wm= endstream endobj 605 0 obj << /Length 2873 /Filter /FlateDecode >> stream xڽ[moF_AHH/-4)$82m$W菿%E"l\.3>3irg|)ub3% 8qL&WMﲻNj`in`2?f:N˫翆 _LMM&6a8(Ag4Jg 4a pM|q#MO %]$ ℂv7h گ8ha2Eba?˹-U_tS~I(( T& uDIj# ::qJ9(}4o߽1C$Mz`ࣳ%gML"M٤_Szyz}讫Xxƾz=y0J]s})'F ]Ʀ^MfM$EI&n!UDiDxCrN#8x>2_M.(H).H̺) g xj|ߙq`*,3A$_ܭ֛t[1J7jeZfc omhnncİ ($k $ QJU#bSO2x ToZ)try qc:jml&3-8If Bt2[nMZT\boAG!"@"]<=jW @zGRK &WdlnV2%,"h^z(;Fi-7`'_E¯*ՂDBm鵠4O`$-`}<ASSe7YhÜ;5μxsOkݎ3_ /Vw%w}=2J\&C7 ?M|U/EGF]5aXG7/>>$UbBZ"/vS ]bP7:]? :l7 M6?zlOÉu r:- AOuL%EM, g$Zjл:ĕ-w1:=.T&7Viv̎uM'&X#r0'1-aoMHZn{a:J(K!p=e@+Zh^, fXYP f1.nl3ۆ@=`z=m01eXH aTCT~r HUj;+$ExHI iOӂ9n${CD{ZH+ XIM)!UĶI87S5H |U_>,y?{#6b'AG^2dыPїv V^ B30(җ5Ĥ"BgbGdg9VO/`@Vؘ)dݤeov<ÚH|AϟaM_+JYA;T+!No#lߥϣ\LeV ^*LW:4=j` ;T*Y9_YkD,`|WZ O: F$zu Q ]bՇ^^詘 #3mF4rv6 VE4[ SV@:1_yYc p6_s.C!zN8{A/!7 +$ǣ7a5d-G!B*Î}Y0d\/}YPAL ω: }`Hkx`6p_sNxއ (GB,0a4GɱfT Z"Ğy7`0߻~\߭x; QS::ج>?F߅ |qa3{z@v51 Q+/vJyQZw_U3MƽSGpT99X9S>.r.) U (SsrfaQ'0\.P1Pp5vά|BMt=@`1P. YX(w`!݁n& MԊ m( b}J o]T fIu4[}4n+W2b?\.Z(h F(c5ZuHV`u,g8vbH=w1GKK?qk]i0Z{lrvbF-Кi܉Թ v2jQ Քsq‹v2kJkpce"/{D8ˎ WRPQpPpہ'vRڞ44+A  ErCa8 2mgmmwΔQ~94X.JVX>u ChP% CGL?[ (J 8UBu]]; endstream endobj 615 0 obj << /Length 3022 /Filter /FlateDecode >> stream xZK6ϯ`Td*nUvoN a"x_4g_h^^߿:2$5En".R*2*7Y~ ^}!:s\{OHvT-w&Q4.iK F `8F Hl+?S&|,w>˶6||I} eA9iպu^ H(=^LS%*IhuϾ !q͙UGM3) U[0G~*Eyw/q] @Hp_Wv!̈\B< SD a7Y9 IjB$"rgg,.:s vgˬ.˖f (z0[1$1CVY]gab+&Ppg@AT-n|qEEj$E,ץa]Y\$}fu )w~BMPN`4۫h^4]mRCv`$4nL ]g1wƎGӧ =8%.haSK`u3zhD0hC*x|M7>*=`,\l*7K^sO}sFύ,m dLưjJ`4nZj[;t)K5&1MNYVs&M23դcs@gm9k3rδܣB8uceBςQJ{Uq"$+NC #u;X9!;\l,H[luM"iz$ b)@g&4Y$_H$ccNK3BZ0(ߔ?mꪩ)|ivC<ߜMFu0S^Ğ1M V{FMu,8w*E('9Z% ГRpBL~c Q\X%'mtWNt@jEN.:!Z!_9!Q => iH 095} 諁Fy+_,2:뵣~9',7 0brEh uC0[HaQ1S H('; H*wTʥm0K\Kh G²`=lt0:PSf2c Z0 T&| SQyN(Ud[^۲|PAC|_0ߕP-}mUbmkrNإ+mew} b{أt@@uøEFJ' =2RD1.!H` :x4>1RM%v)19&+{vh/Cz``mc$y?auŘ>1B-E/*p0O-U:O0u0a&sy>1"`tʿ劀 Q/ M\dá-88mIO'qX^+["iL+w rBZu([ei3,qJI8] _nR^h+UT 9NwGN4IFJL9Ȗ>k*%pT\?# \A ¬ an 0) 絿mMQb{Es ݭڇ&a\V V!vvh(3ֶ?Vy:|Q?:8o(>]pÈ?MkVIF* < 򓯂%.Li~߉]7t V);Jm\û=vd@ƀ tx)3W峧V`XFU;vt}ncJ"j}*ىo݁:qu*%I"=R/!ќ0סuR̥4A vP3΍Br2_K=[GT0??{* ԓN 觸%$Qi_\ ij`km>+gppOnQ`k7d NL6㳜+:ZQM Aj.ʬR09ǔeqVMtkᧇb:nzu_fO-걏Y66?^2MR yxPe wp7y%\z>Dʟ  ڮV>^ wk:nN81iK5Y/]QUu־F?s.ܱ $Ti Q@SSÈlQ*!D)kv]30~ɺ%w&@Qnni+G@b3u(a<4Qӱt5HE{ؼTDv] B1OTv\S8;q\}wd;p1S 1yKf̜yG\?>FK]D?-Rqӛ&".}`LvD_1*\8|w/ӆQJ> stream x[YsF~ׯ@ g>NDeWZz$ۃȉ1zz@d_D!0In 2F$JdOnɇ)]}}G*R5S+wzގHl;aL'#;CN CP)zRdqNpM3:޹w!"F0Vd+H*NixsejAaɇ"+-I#x^yClOʅ>&F7<,*BqT5(־X!AѦ'a"@ `Ą$pNƻ /Lj>^|9/gtREZe˩0;7y(瓼vK7Yی+"!twW۸^o=k_0-q~VZLaL㤳䴥cf8t+ .UZ~Z=$7ΥFchI@vcZՍՈt^lH 8"\0$a80嬿og} 7pzV?]DHhD;~̶ g}HoU1 BDQOe\bMcQ<7Q(T802*OrtmKwd\iօ4 .5C _SoALS:o:ߪhK)a| v:o+pJ+^0hso5\ @ۊϊ:/kM52,uOTpV 48~oWI^׮w~'sK'Sn&בse)LepO {hL9;ϭz9i ́7=߫y*G[Ƕ>^ޗh85AP1)sI78{p'}h^%m2[M=tV)ţ"- "w[/mMmÜ1F EmWnD(No9dBR6m4k2HLټ\= ӂ;޽1HIBa73+9y W E$JƄ ؝J ٺśoQ"6!ʜ쇕w+*}3;t͇xi8t~qfT4̾00fX kD<{Ӎ#V 1 $ Hhғ{Gb7 muM-k `qM o&t0;rd}E᥏G7HR6y %w E ୥ LKE[Jj$ . ϜXR;SiX<ofo,9!%1ƻ?l_-B]Ro-xO:yȪltygs B k;D]0# K$2C G+kYah8+Bxe/ .p}PC&q!u0.yȥ&$m#A=6AwA׶Jу ZI KrhuCAHIB,BEq}Ē@2K֘84:!sfE B BEr}LA2*s~f\O+ScvK5H~b$GGL &ϓe?D PacXMeS;pglZO3'h$Xwp]ho endstream endobj 633 0 obj << /Length 2547 /Filter /FlateDecode >> stream xڽr6_%cqU&Jj75;Ӈ_O$O&houptv9`1qnip/`,ɠ"`g⍦dFК>I@w8`5gKLX"^;:10Ϧ87KQG1"@VP䎃q}T<"Վ|zBPy$J$0S8"1ppz hekd!\/ y¦SLpNٮa43~,_:-+[SlCt"ܖhTEΓ̃mruL4 WZT@5Rt|5@|W&Wy!)\t( ї2",*<7FG d~ ټ#,6teiaTjRI!{1]&pɜ (,C®2sjJLRvBGz]WKeֲP[F Ⴋ; EvD۫P#$ A))lצ2t߫ӡ_UG1Oxh*\ ]%Nzl6qt|$Hx%MJ=aG|K/`Za,q|dFYf3(}LN2> ?;Z\b^b 17$oyejTu+-}+n<ӾmgxL?rjO?LᜦrA1-YS>BسdeB1k' pntB$!<8 b["y*ECL16]} nhO5G'qDwqYBV a`2B:K:9uF lu->_ZE^]&L-OCS4D8 s}b;c'1B]GQR~.Wp2wyUe8qnzbf@1QN麩fzL/b-8۾4C*&oװ˟jGyxOA*ݾu:v.p`ޝ@h%g;DJg|KbmQ.//_/@ !0]Ud &|M2ٸ$HzQNwd0%hnN/H6SI־|&9TC0!#~DO*@"R ҜPV9%q7_bYə&6I;ÈqFK$uȃf[yJC:nX3Y}({ܻZ M )pc>+cr/lf(-Hиv&aЛBUjMe,BO3u+6UtBeyXCōM|jy d(d0+:EPV_f벛~:}NJ)%8)3qIrb|=L!\1&A;&Sg'&ޙBKOɡK a*(CSB/IQP(419WoOU*uJe 6^_z)1ru]ktj76|ru7 Vk?gY;]U}P_>˩/j@e0P *%TcP vs&zfH_rQMlE@@tA(bm1~Lts噭>BXEs( ^(wj-n[> stream x[_oϧ0$)]bo]>(6kK>IN6;Ԑe(q<$Hqf8d5g?]g'$rEBDMf$arr|.uZ}C_H"qn\/?bA㔩(MWQ.Iszj'R0=Za8J󢾵{IX[,񹲹-Ӻ(+,JloPmmra s`*6Eͪ ^H[[١ҏ;Ok@8\0`]&RU"-D n5e4r60 "@8+kpeuV+W&"|\F]¯Z(eyUt/Y·ع5RrMEezd ,j2.Hhؘ̐^@Q0 xto9o3o-'@WnwO"%} qʕ$\ Itշ82'ߜVn.KOD+~>l٤-/'=|wFs¨Jж,w٢!>B}BuahC}q9-NhuaLF, A)؇Oy~[dyߦMQgK(蘣*0b ? A_.4& eg Px{3O|*t4*yQ6-k,NNoʢ)Hq uPXQW,Ӏlw}t] RO=7 vIc8|FbSeADb_qM ְά*!&nсFc7W/gRqSE'~>s$14Ky@eGs?Z1Bt8b!bed9NA}s3a _ç;Hu39R[ٮmfAyu;䛆|N `tIFpbXH!}OXIOK|FaRZ=t;3,~rwm|MKu>(-463ADPێ 0 H,11q'Rl#&̝ܶUw"K*=ǩzN#;sq}*ˬ5-ZY%Uh1 XRI`=^`NGMO2> s<8P2s~#?2~˱ګy.DɆ8:~틐lUIg)(;耇XfLlY&]iC5LtFO4>Lk%*:أAk%$H:쏃!t#L xRCL x,p#w Hɉg9eC^-7qtև2J$_aȘ|_^'FGV Rpfouj-%iN91ts5>Wp%dlX7834Lšhf qf&B93^,%x8?0>t~D!͠(}Q^x:2I þ~^x>PQE$;TЄPޜ8L"p'I$ު8>d1#Ƨ,V&yã8~( !?0݄W# QI| ?PhFXyV8kBi][Q?Cb#Lԩ(.<;{Z͡x]C"`# |Yes;o DL@Dv#&6p9*R 8!2}ڳGW'HGQ+*3wS*o&i<}d_4\/1Vi+ova<}"4¥ys Y9Q@3CxxQF̉ [@[ZqIS|v#(7~0YD<FW\֟b~rXNY2TN.0šv.VI#aʺ4۲NjWvm7չeYl%+:"Qsd)_w]93Cn,\bΚKJKh'S]x5L6jB<+ Uׇ~5.-Pw?Xa`:|?/I!`pD)\ .m#6*$2o^e' v#~F\F*Y^X\I"t~"-;5 ~9 @۔Eh UîӲn/ '۴_-G2ٽck"w~q8|wܵwxS3AgP æMiic)g$c&)K endstream endobj 653 0 obj << /Length 2775 /Filter /FlateDecode >> stream xZ[s6~d_ ;ۙ4m<4ԝ>8~-Z..I_7%ڔ͌C}88ZD8oJ&}DYDDJ]ͣuLhG*6H̨k|{wI`ďΐI2{i'0HHKZ\Aߔwn3ܖv=Yk>Ճ!+'4."8_ZT1SJ9 c3GNjމ66L;:V 9w1>n!/[\6G& G|-!@J6UgkSp_ى_(p.d`7 G 8+a=#'_V `yOf=ˇI]~vo6a .緕pmpBbBϲݾ]Z=ֽM1A@Uk=6luE 92YL"ʐ62-|J<*KHPoM:>/4Gخ^"f>t]^˸B2y HV0(hPF5ěmq)"K ē|wϱ3o#LMAu6%n+8;B B-o##ںHUKC3.؉^ZS^|{C$Sp @3I"F-ħN|_ f rPk#XBhAd:ۋK^>`6"FJs1(N1J,ѱ?N¹+o"iS )7O̻I4U X6Ml/ e%jIGC%<4Lq )ɕl=e$(].}`ڤs5G>wH3avQFJ> stream xڽ[Ks8W| "I{gd`ҐT<[߷HlJ. `{/)&ei-zJ ]z7y9IOf޿ ƫx _(U8:c(~M'HcfgH`]:_O8!= "ŀOJ7ÈFNhEޤ_^f%)j$a@P]O?'.`9?$h8NdX܏(7kLix,~ikC l2Nt1.*L|d4{Xy|i6YL$29jKIRhl=IX  1^D(KlJ{uyz |fifgyl?.OԻw JDL+&$ԣbکoƩSz , = UaX!Jj`E>b.}nL lrV󗈗~Y-'}+qڌKr7wԶȕ!WN'D4("kB҈ g2OL{^0HmWAXt+؟D`Bh^.m%x*(yHoKN٫?dƅڃ&60nZOrz懿, Xtxгg̽1:`ZXwO 3QL=_p#`k^>1Tq+B`BTRTT\Sj gez@ Q/R!>0U?泇ylK&7IߍՍؚܻPAWU1{?ȕW> t& ڒ Ldt0 !ޭ5tb lQdWB:j6ilMz{CnPGLC^#>*{|2`v-/z B&ޝ֙,|;u, q gUZ mJ& <]gEjC'.\{]Bp(Ljѐcq0;6wgF6B,% bo0?6ƶ?5 ڬY{ ٨P %#:JCы DsS.6Φ~ \힕.Mb]s$i檖˱ۃJ> stream xڽZms6_'j$zwqnZ_;IK=w %_o(THb< \"볿( &:, Dk#z܄*?f럁> I%y< t{ȐHF.ڳQ8cФ%`<"\&l}vs9D$阨| ~;n>F<ƚbHpfeٟYpFX._=ǂD(% l9Vʱjt_?^n $4G.x2 n.WlV}mUtbG69mVYU0]m3_bν֊`i iM!,Qʁc]2dQ^ |~Kn2 ӯU<U:o$ßZt'>H=B.ch $)F?qϚ9`jO|'pps&w7̤r#SDF)Ʌ`IrfzۤF=sӦ >$@1W\pxcyAlVZߙqಜ@}hV7%Hy)n` `{$`b*8bٙ 5p! 5L|~b,[,k|5|o6[43sӗ3(<N oMI?1hdtN,fMYը@sBc["Wy O_M:;V$ -&EuɅ:/"oU$jPKWp}r\*E5kɎp ū8D#īXѣ@]+XYȍ"kXXn2 igő{~Q[-"ڢEiy^[=۶6@PǮxȸM]"LD Cbf$5-5 ,z]Eʲ3/.yqgfj"ih`mY$.aNhe%u./z"œ Q 8*o\/-]=, 3 2ZlV Kt: Y `(#~nGnh2ME@I&m00>誝g2yB Vu}xL4:Kf‡7N}& 1ϕfUԌnJuNṶ(U|2Ӈ|כv00ּ ZR j=YBpI n>pCf튀ok\3"4r`l}'1,qYp̘$1W}>R H:O\&~m:VBc"Ng3CdmL&*QBhmFsO`UkhU6Jez|`rS?_<#&=R %LWQ}t` Ww{xܨa#l/Es/,qp1X=x$a#p<*/2"V3AqZ&_kz,O`h_<"cO47qBܶ43Ki(hRwASM"-4o۩l/u@>M3ްϮt9qg;N)9XZRQj`by2|s2ux2 H w'Qw6h'c٬[{u6i%4rL lpu-mtFLdb3.MyUJΚ WW| g 8 B ye>Y ׎*7x'ϖz 8H"F]fT|m򈩇˓j'g7 E M ޚpXآ\סrHa~T}n%' F?Tȁ# Y.y$1|`X}_ji7օOcj$Ώ:Q/_z{yVv`sqbߞ$'xΧJq<,S IgFlBže[Wgz3{O ѻL=ye;c66i^`.&͚n:=d6& KD_)_eS2M:MkE)h|(qc2ӟߚ> stream xڽZr8}W$X/J2On)*Z%N$RCRI @4dŔ*& B@48G8<{usq)d&]DAƈHI ,z?zY-]V ?PTKw|pwy;&bO? c:"l lqTNgkgnqD@A$I%\G8?"׺*"F!S0TRY b `qA}WefwdF "3tG}UD"M @''HhT `%@#4D29ÆCd<q߯yfW J_He֢_]0D2-DS@9SCS{08 D+4*.MT:jkaܘ"`Ocʋ9#xfS%EØϦWy17EZ}ȖqtNxJuH@*t2|E B맻p7zO{ʽFkR7Uy3Dbd>O (t )ƴVݶ.CܻU,"mq ;sѤ69ٗ6Y<NE⧃OOAR#֧ >e} Q*+뷭e|o Vʫ.oe>0[4Uy⟰!7ya=ľ"lnnNo]BsVf>6H6q5A #qA")4aQءaCS]Xoe4"6wZ0l(4zQE2 Aqz%4jgI:y.X[ HC\ :|@cjch9nU-ٝ6ӝCWh =qUj%1#v%`l CnHh l.00~}mH` EL!~a-%s,O"?}/5ܾʅin0bC[>Ł?4"xkDcߟO m@Qd_[z+"0aLQݢ9G}nW?aLG7O 9ÉOUBk(\0@ƄXW84PZA*E5D jMoB`0p"0 2E>oJu֟>Fy7LtN[EF6O/15,JLn1Hqś,iWl~T;_U7! 1 P*鐦+Xk{" g(SHՅ>n¯[%fY> E6n4!'N T2EN0(P}peFڪH\CWܔt\$բ.\KW-rZk"޵涮Yknl%e]UEY\[,u1뜀Gꔴ*b){t$HM iX3gr53cG_<^ 5Jlyچ1dW-s#K":X'E&:&dX[YvmE6sE:t?MJUW=rW`clk A]]2 zdӦ5{.n7kS[w a?,}Cƹ- Y_2~=PG$SFb機21t,dvJ@:Z@?"j?jWO`o=6.Q QXunֿЫU~% š%X6fB&֧ endstream endobj 579 0 obj << /Type /ObjStm /N 100 /First 886 /Length 2245 /Filter /FlateDecode >> stream xڽZ[o[~ׯ !Y xxhv]r͑Z҉8<ù~ClRV)mA9\VcP( * m X (@L:+q@f;wR CVp-I(-N,cٰLKMԜ,4'*5\)q⌝nA g[ ͉[n"t0f0IKXB`vË-Af B3[ efO̼cA+<ժNx$PN؀Aʘ-3cZQ1זAMgE_A;;#WNðaa]bY1p|uXΆ׷/W ?.ϯ&fz7yyxt~ oEs4xjn-*LAw: ?-,2|ws{~ɗ(1G> 熒EޕKd3?`-&nl:n$X33"]O`|ѐg'5.= iR3CL^ŢL\#ی "Yjk}XI}\ί#d"^l26!z~p#Qm>oep|t4a8e0v}rOӧx[pvY|?nu>|7.+R3{+LexN3W>Ij+R)1! vEO'f E t#n9^]/.^!0zy7ߗݦ^: /jy<Եrߌc|˳QP bOnEήҶG垩%AH%GBg v͎L90~QsEKE^lyJd ٣|V Є찥(n甑ȡw"Fd}iS8h5w#mΫ6CJ*T= Ig#ldxs/`6>{KxcwdxV Uk붬ۺnWga3= L՞%&< <..x' l(Ra/1/]PE@`/")eK^%f/9[BPЮx7Ð :˄"(`^kB2Rx0F'$VԾƛ\Oh+ ?P^kER?N@)+"pĥ2r8@U{27~fә6IW`h!C6NRƅsH.W-%%NJdTHJn*c!Z<)C s-U""zNXs'A~(ZLjwP&XX”D\cu+qG~|$:Z0nԈζRR)-b>Чh x -(% L%9m(G*>ɁN~]٥+܆6e02Yjt$ m]G9Ov%T?lЁeGuݶ)EQr[VSkL/ ͉:Ƅ}W_Y=C:Q\C~WG(ɲq AEG yB_}{n[~w:W]Lgf8( 1KAN`)2mOWJ~W֡ .M]l3TIs#c"V,7@G9jk=L(T?iWCx2>nd,p 9iy.B+7HU'6^ɇ]<0bZYZZ4X6   G oeiC>Z"<=OΏHWo}$)/5ǢÅj tI]F]v8eyq2[ېϞJ՟hl;yG+>v*CAJl'BJG̲ 8 w_}9P endstream endobj 679 0 obj << /Length 3346 /Filter /FlateDecode >> stream xZms6_'i. igNߧ7KŋD$|(۲x<!p`/Ẍ́N.ze2h&W &:a09ZL>L_6k[˶߯~7^H"b~oWt/bC팩7Qb  zF?\=&0`(|pNg~ag?r3aFwgBS4቟V"?|ڳ9YpFXb3}&wNLj(%" ġn 0(HPῺ_]kZ 1INboMrgjͫ۟6QoTQuӛCWٷ>Qld 1|cVUl2XhXby2P0s h%iM1-':¸$%Id*&Q~_5X!bs 314}ژimogroYWhq4 W=/b)|yL+OpA9)/w4phԍ-Zx vLYEKp-c{EB&9}!@sSgk\jcAq3N̮r ZPBr_`E>*$ߌ dp&fd hYlu>olv J͝:{%@U|t3uC*߬|[E *`'780zc Gx%=m:nbS.x`hy̺֛>*8h"5v/.Ik"m'ģ!)#)á] ]ֻezYV`U`Jڄ.`dF}sIZM -LU`5~i0~#&AjysMjjkf3]^74lTLsdTEAUB#(8ëWV:hIoR"Qyx-ch %w/ECʺ@LH@nGa:_I;XJ<8C C5Iz .e0cFvI?1q} ]\u2qY'[HOkrwq,gQwSx1=|$ouRo6dcQ@a.QtDuhqLg# \ HVp,Mx{TTLedI4=+i"a(_bqɆ?E@U/m76V+FZy^ý0m{!!o|ٶaNݮo]Z523dV-SfW>#@Vd˸{gvh4a$T3Swz f;OY ϳoj] ]1G8s`b/@5x3$"; 8aFm!{ nj_q=-ם!ZOP3B>\w#lsx>DBrAT!a){Źj&?l7x_ڗ<4l]:3[{8֮`NEǼ ü@cɐV?t83בkO*@É!T0BN9ҾXoH5iC?.|zoHEwxgFy N~OvZn?9[2]>Auhw Up.hK+fBxVM1CrCֶig36u<Ԗd-|(u_1t>y्$p:5Сt s㛠 м)Kll ]M@rmbM@0(я6zym-Ʊ.i̅E8"1jyU~ ׹]qxc|O}E[}IGe${vzT]T+;Clfc `*{cUãD!]DR]R :QF!EY\Ĭ7TnֱAe#C*<òNx^j}.Έ.7A%CHDq k=A#M@QtcL!iIG炼&2[fM"{F )Q@Ƶ]{BiyHhu>v WPڃ=-+d [./+[e` LҽBV8lޣ*ei_y{g>H'X*!?+8DdBCǓ>e0aUˋe^b ;}z7?Ŏ_7l̋&ǰi.>%H=E: ~HTӥyQCl]Xݽ W?goXqz8C@1 `x}Iw2$uO[`Eb|殠VY[Ӵ|C8$'s`@")2[&_.$q;U]l(xV]d1 a]}d<, G^rrY~ XE{堈[i;_K;YCɧQ1SG4tU Ν9 1Jz(Jt e'J;uc5H` )^` [=pOys;DG݅rEʼ endstream endobj 687 0 obj << /Length 2400 /Filter /FlateDecode >> stream xڽZko6_!,ߏnYL1ӝNtvڊǨ_N_"*ŴDK=pLpr{eQ$ e#% 2'uNP_u3U`3fFv]"&t9cL'#o!Mmj[ {o@'D".i2\}<>|jnlm"DN~tM)flIqmf&^|sC&Xʽ[h$89ï#02p{k#azqK>V$,mPGwrm<-wyaGjCE-W,w-_}BcGa:ii/40syV1>-t| }q=MGV\CY,d]K$ ķ+nXu2OW6 :z Hb VI1.FjTS*,67e3tb)YI.J75OR"|T~l`b65-)uYLrmqھGPLE]N )TNWBjA0+ hXh88!ܘ! SDrz20M$v7@1OxIӈ1Ryc*9j_?:A$;iܯ57Y]wwwʝ7ۡC)sYV{W0V@JfY,ZlE#H 2.57a; ؖvj N's6oc GKmV=L Rr:)o ?ĹlFX[H2jr nզN?Yv %"H4B$ǎǃ":ݹ*c@-:~G ! 3J挖Gh>P~)B4B \OUȶt\,`g[")fn2V_E^P%POH_dx!iz2cD @$aeoRYvY̖|UT§O7d:L4=X @Rx {krNB_!4 (&ZiuVLGH;" /Ǟ_9KEr$R.QUl h[=@'dMԚpNl=!3՝ƔY)W'vMvNsZ !+hoT:ց' .UZ:)HCբRUQ$z_Vse-"Pȼyag B+L, $=L![ S !rfO 5H 2J#Jԉ*A!ek*._ qn{n[V :vk4e!鐚 /:.'n鮷ֿIēf#ǐ pJHH*W]gSNݻn%F )iUwaY2(瓻՟Y]On*)v`Z휕]}uQ"%~: ֲ:mrHjro ,/ix Ymݡ<*ˡcrk#K?ڝ*O NaN Nݤ̉zsQovBOp(:oU_VfZ5̄CPp%K2N$,(-pzcN"nn,+Yc a]Z{0fE@MΪؙ o 9){vD;`l0JS#a>gsq;I:JP!/<>sw,hBTR#)^8VEv)D%JF9v7j6J^ v'D9RBrAFv mʳy9<;bD8g)Ib6]-ABR|C)GG0jߩKR|R}3cn U<{}j6V  䈸#p1#JsI,4w.h2 >-;j9(~PCq8:,ݠW#u 2QW?jD`D2Rg Ɲz\T&kcюبA9RBOb56C!:" QѡOH@m}_6iw F1N!>) j?}jB ]̚m`"GP_9mK endstream endobj 693 0 obj << /Length 2835 /Filter /FlateDecode >> stream x[ߓ8~•'~[mUR;dK]?x!1s?q\ soHn |I&L(ԆQAW4?4i`$NΉ<,>~Q"K (-W:Óge#,҄Jp|_e?柨 z,*b(Ц h Lj! Ex' :kB[. H0 cScī6K'_i/D~6Ẍ: jPmbIձ! "-AhVaXc[v8[,BEH% %'*h7qVHK,=7w)ki^=wߪ,O}WrT3.ev^6kk5 c!0i:0]$߭U4P#HMIH0(cHFP&Fo#2M%XH]tXh, *J1XǧuêVoLV1^JY%4)"L%˥ERτv4J*?lJ-~Sp {ZM6g5I:WjkI~~}tDi!["4(_%"m,8#Lsn 1.|a +ÿb5/_kd+;O?{f裋ל1p^@V#0Y9zaY3ϖ uq~z:z#È 6MxEv*T^km@c: G[U5еg^88[5YrxV#@R6ϱcG9ogGi4?] hi)h @di1Y6#1#3ұYF1WzaH ?qM=TL'wv檺oBUF6 9ɢL0ӶWNcbEY"긍u(SMXK+B]rWQfB2 IeHF{ry?xENė5wٴau56e |H&_|o0k<6ɿD-F ?sB= u|M6M*eՏG`5#O~Ytq4QoS"8 @ ~ ~Staϣc~l¤BmL?-`I{G2@g;jR[OqV\VfV/WZ> ߜ6>Yusw8;bX;b$y[~[Lk_K,IUm b9Px;ןeѧ ib DSuJ}[ߧuŭ"iĤUܷ AX&#`>[ïHnCHlN|⹜OWy g Kb(ܷ1?ʹwƤ +^JƉo]W`uO` HG-*Cb֍|Jr*?d{J'$a?3Ӛ6 /{Y7=&hu!}R"B %p)2䊇J+ *A칲O}w(9bKoOcoNx=-{j}.^4sH uR.%#$zpOB$LjY-nOH@+Z<ԐO] W uG%E8^)O;s䛾cuZoC_gO,qq^p 'rO_Rk7֟hj %epJwpƸ5>NixA"Ú5e_S4Ԕ;]x1M> stream xڽZms۸_'iBJis3N{swIu:S_>%'*EǗ."J(1`>p ppwfz0(E@YH2$("<΃mfq y3R**^nn/Do21"81e@@/!pF`R(H~XaB0ƣכUjqNŏdn9.~ނiBBPB#avWum/.SܨuܩkD~>M MQi/ ֠Q;pHx‰="_~~OTk1#J".)'[7"/,8>TQm&\0īu-A6nѲȟ7z<&(`u\yf%p3˳mYn p)*A8|ׯ^-d9-L־N?0e KY $ec H,.iB]o[ź)N#D4:Z.U-+uwzӅWS:R .D|ԝd,E, 4ߞp!|]l!)۔FaW{W@ t1 jw]eٖsH[2e P^>!vn 3!&Ǻ"iS\ij2)B:ik_;4i PmM@bWz%1nLe<Cc0()u.H~ĐZt *>! j IvVkG(." cAB$V]CRA*HvxG$M}wTU3 p͚x -'jײk(q[s/1GL:_oAQGl#;vkȊIpP>w^]` Ha@-w>*ևp{G&)70Ot@H LHq_5,mkѢ-HC0zh)I2 ۅLQA S4:kOZꓶK#ֽkiRߞP sHK^C*6i[}IU!( !hoாqTutᮡBU=BC6ta!"R~Yεɷ~뽇poS[k߲wrøYop2,l7c)܌Sv{xH v9{]g{qہ峚=uAm~9ЁJ8+B@ G!/c\V7 GkPƲ?)>#OV.| ,]8|e]0aȐI%$ a޻ @DxRwq.~PB7<`j_׮*|`USZy endstream endobj 704 0 obj << /Length 3113 /Filter /FlateDecode >> stream xڽ[ms6_ɗgl rθ/ɴ4Z7!-".I5q}Eqf2@X<>l5ógϾyL!0ogi)I&|6_>W:?ўqĨʆS/}zo >ޟDO*pF0XX1ΰZ%gQ-gLP EI3?[͚?{}6pI0O_uY_j1ʉvZ"FFۛUvN >dc?Ӽ( m5~ܴH< 4ntFD# +T~4A N!͢e0h'mT%Xe y-p=v%5#D!FdZ"J 0nn(Vʸ$l PG6uS0P;jp/cr_l+jeXhte@Z!@%=AVCw[E>8v5if v <٬,!nR$os!'̛&G>|ij%̆ply?#Zv'Oa0_IF TA錭;2R2tK|eć9vz,0AMhɖs +}OY}[_㥣'o^^EϹ6QFl#pGLV^zgIƒφiR}q>zE;`v >IEYCW6o /}ȉe.Cj3i6-&V4&Tdi n".&5O9`H)5 hۑㄑF$08#: /ɞqHO!U*o\مb86]xH5 VpcT!"_:VhU"U ?JJ ԅl,A,FZP?a<.bỤB7 u1&|1TqRM k\b/>@|?pa|o֗j.K$oW  !tWF0<Ǫt )FtAR1 edKQl:%Wn֏TS9FZۦU?S 5\Nr*E6OkY]ҩOaT]tNc=3o4ʐ#k8nc\-i4'vRKPBw IcjMNaJqJ6IQ^}6fvSF]},A2EXm3-l(@H!Ѡ̰Xx`uT# xکÖ}2n*W+ ^e }U]=Y={23j&򸙰L.쨟`jv~&#(OO@OƪOp[/Gދ eu#7 Q^\HHC0`U w2n.YeYeENOd|]S:1!liUǶ0X>m\ )\Ui8/]^;ťB jQkOYtr󃺛udc^loda3Cۯ4_ ~(%/©IqgMC 0;תֱ9Je@boZ[*+AkŎLK (P$1ÙvJ,Ѱ|F G d jLK}J26E3'Ŷ9ԡcMt|I:7kZ/wZWS޵HS!&π)gp|Üq/tAc92dz`=˩Qn.w|zb`6ݧY|ǿDM )^"C#WGL}iZi֭PS RM 4P~DLF?q8؞__8e?$Z 4< "GX4GX.`g_ِ";2֕6E^4|(]Le0π2Fuҙߐ~47`E<Yk%wQc,xYHtzñnq^BOPb,Zwr#žC)JNQ".Ie>zM!`śQDp"O fERz4f;8u)K`}izߩx[:ŞiEm'olq;<gQ׉NSVdHU?'^ endstream endobj 710 0 obj << /Length 2863 /Filter /FlateDecode >> stream xڽ[mo6_!˭,|MmI]']y-d_\IN]i%]%$jy8yfhˣ*udHl(.o".b*2r]yRON>^MDpª87'cs ~ޝ05J&Y 1JbQ4NGz{,#Z""] llt vE,2[- ws,\y4Eתq{'ȻKX4VJk0$IΪɭam 3 Ƽ-L!Z4pFƦVˣp]nRD ic*c,>h ~T= QߛGGu^fnb"`,FajLogx7%9dЈ- YXv0 ͉lݾ p `GjYryEq59+6*~[ެ>PEOo8?~oVU,t+?4ƺ WqE|c f(0my f;K4~ޤr~rJYL\{YC[6T*ɫ*u=N\Y~AdN Kh \aI\n'R~`h wXZ%Ơ/yz-zb0nT]Pٽz-*(;%tv[6x([ogSMx;--T B" Qk#y)"# St;P+6L=o h|{$8zA8YdYWc֙*ٿNZ:O H' rtyb(Wo!KM{XܮN`S}qWmR~.uCIT dRihHaNo.uSEh3XS$QkԓflC>3ۈWTug0!8@Jy^|! <59ϔqUuQ̅dk\z+kLూxhľꍷdrUCc}U=pFw6GQuD`LwN!X-!NhQPe[.C63&Q PWku=ȭ*ʻL[2[*C,L+|*Q?ڬ9!۪/p mɏ;nmxAL2l-IEM_0)t6iי.@zkD5l@auo;ySkSy7a*-$t.jェ l CR h2TGFD:mDAd)KɲDpM;;Wk{m0Acļ|"L-݄/^L jeg0U5z[$Jl'Qx.@QIs띺iT9H endstream endobj 715 0 obj << /Length 2622 /Filter /FlateDecode >> stream x[r6}W4*[X/&UVVTSEQXs Ip!3a6A Ow#}ptyo2R(L2£vvQ>tuW y :TSgryq]Έc:c:"l lBwYg'8"0A̓R%û_"JrnA!?NgTQ %H @Jqcg4?;T^Pͥ5A408=ElGxݺ韾kWx蒜`wo0̪wԽEZb;_$e\ %FM4 yZ 0ڮĊZmnƙxJuqQI>HR]: ]޲_ qbi2^}g2hIwDTy)xQX^#Q~_m*NvGOp%i1ҰH!rkvS)Ls&`Sc$"~A8>|3؝SĤ{\eV>Yt~6 +(m+|&c2'm*a4Y |u@S2 | #|̗O[ݰf*;z]eCh98lwyIt2 X"*UѼjnxlFLcfa8Lyxm(3 "~*T(N5N.RAN$Da$O])x 4 R) @0v]8j c/5o_4LÀ}3^ E-b@xfE&lkkU󸄝 =F-Xhƪ 7#=ڌ#h˹p (\sKw9~}/6X RpxJ&Gy,=mWl7tq̋Ȟg,Կl@—̶a3ѰBTg0P7f[Ƿi_7/Kzl"Gd4p# }Grn42mV䒴w-{du]޾s|~ ]$sHvӊʿa+q )ewӟS B&Y>~?*<oҶ$wX7 '-gJZ^E*fr]U Hx-'~&'G kǬ:90R;qAxJ.ͻH wCyZni,W)rg_ PÒz11mU%Ti͍ ,n-3*2afIzydUR$ ,*s͊|>e ƴݝQ<{*je) K5GB׬ykFff>e,]*+ 1 jm{U1&3\Uc- r.CwWbV䨕.$f Ro*_v9|v]e_9ڵ ߳D+:rt%Ynɟ7FrtbȔ@>hj*H ]׽0ȈJF92!z8^.NQdH}*6O FeoOOa6M㉂ wx"Ӵw&',  1k2NB`|z4i0C(˞obVXBop߲y`[D9v oͻܭ&Y"|>~BrIs;O?|T T c&'AMSYjP= Z.(']iծFҠRUX( h0p R]aQJ3dȤ%@#*-\oI`UӼ>&1' 0?]R&ޒ;%Ń o^Is%4M-#d6vƤ +,N4_+`ˇ0,u2;;C`_h Kg=xJi @ ѹwQ5h xMfUW4;5ﵫVޫa0nܳ*!ҎiJgd'v OD`uszku :Q(q|me[eO=sb#Rz*$RVd`q͢j9){+RE?4'ensEf'FLoD;ZeT:hp\TeIW֞qG!s7wη'ZB=OVy֜5o{}{6{½*E ʺkpdHOH] ^'b8H8V> stream xڽZYF~_Ae)M 09p0^x4%RKRO~V_A 쮮ppe!aܯRJ$H?zT?g10OJٜ w˻aS+HafgH`1;`sNJs&P,E3>c G4Y^۪N&;-+@,Ĥ.'HV,p_bt \k {Gx #}HJ$Ӈm9&+t *+̜ۙVaopa@L)'b:ACy rFⰱՠ_ =аp"v|=OnsUh|nZက"D #G<0L MlLPIYH(dđ>'&(ADs)GE"AbprT@ YD`W*a'%]'l,# 83ww !htWϷ*#LJoOi4B }u]p].z*cY־9{hX&'d0T۽[Ξnsc[t$ 7Ķr7+Ľyk慶\X;mn@ܔp֖p53y1<4 5Lޜc,@R*G:p4Aje6d iT R5TɌbgޥWႶe-cg1} z_']^c4O@\\XƋ.'P5ak<볠7 i:|u A;D7i XZTc<:&E[z>! í[s*Ձ7!$avC C3:.Ki"\ !~ùBuOU= Cˀ^,Яg>vJb)rB6a "=_{UpQK7:Pԟ.뛶k j>2#O{{b_ScR]  v5S[QK,~.μ슪rlP?9= [U*l);>$vq(bnˤt qnP_-zYۺ$q>?lþڷeۓf~' $o\IJd0kCcg׮z-ʤ|I;vn&5&l>cQd+K <2yoLИqx Du{*v[Jlۧ3Ɩ}BĘB">LYYlytDV-c&+^Tؚ0WF#H}6$%oܫÄtf " (TlH̆%K`?=w:1P`%a:Ha"dYt!qsfkRwHg;ǑtǠR3y&dJVWO7e'Mb?1#*58=a$m$2-@NG*9LNd q?; DBDK JG j&Ni(A'e- f{߳Ry1w ;w?#aI_VyQ;V> endstream endobj 732 0 obj << /Length 2678 /Filter /FlateDecode >> stream xڭYKoHW zdnژ$;H!,hHd﷪4e{=lv7UW|u/ovJrf4YfYY#v]=&ix_o3~j&N QBۇh};`nBg;гcz zz!?fuzH ׂG[zqBx%8Kx nӃ؞C{@yJƝ,?qG"&fȄ> Nij[tb>yߗI4W=3/) 눧 1Nr-M#HTݖ6tH#6yYDzWRxc0PR۶:mKhtb%e.mһh:-vatb]in)GZљC|h.:!>e[bt"0:* `q[zSYq`j7 [wYlGyA!;!z<h/@2=d++ZEMGp, l-Lgz<fH!Kzu6?)`"`K!,K LDwiT<@U $a=w&1Rv;O!xtȬܯ LЀ~5H%Q$"lK @0 @d{V1A† c$3г+-UPy&z;3a9G>_{ @])me(10!BQ]xG>AgWMBtKZQVCM)^|PE Շ0w* Uݪ^к>oLyG,x!*-oCZĠݳ^KYt $ 6y"QiC\'.Y˘%?' E`"c-8ӃhXqlAU.WFߊP7:]c\`ƅQ2&=xuScۄj4dAI ۻ*Uٞ43GT7 ?!ź)+ [߭%T 8OV?i<%DSYM>"J |rB9ghi 9^ܨD3#jWrtlDU)0ڢQ!bW%P%GŠ֦zIpk=}ΠUz@%xJ90}{ӄAp)6UIBZtAqAR3Đ|pP9?}V˪wh)-h~wC?P~VvzvҀ&C?C0J1<6 BՔwM`G g梈DzvHܵ (f8xxH0>{Ua/yuc*wDwѶ#]XAv80'r'KTg `̹݇!pg`gx 0l=j s/Pl:Mf/}+QgrRԧli6@KAYP xch Bl]LH RyO r#tuOJ}|; f2ߍQ .cŅn׷) x]'2wxL$PvFm_iߴx2csߐK}Oi%tH6-y- Uvi1CZIry7 &ݚye渺#t> stream xڵZK6W|Tă&Vg+J$JBRL~v)Q3rv4F_7M6h/^5ĊFrr(,'6"fr|޵8>m^oJ\}3OMAt"#EEe~: ы̍l2ױH~̮iNsQN$O -׭}A3 i]~*b4_hYO-u֞w:Zے\gj)r_!fs[|8ԸܦBt2 A> $#wŷ$šݲd w+RR;ZM%Sal'ʗMS7=Li_TmC] EHH)|?q?rTc\dJdJw)&Wo&_@ A1E,P7Ra(}2jwYO@5\+?+PNp-Pp(RI(c즍Hƶ@K 2>vdžҜ9$L[\! ظj{jR#Xag 8ЀaTΔ`UY}K82KgC{݉  )U꩜w]s@|>d%2ks3 VTyޠgW;۶=~UUv+v;A~E%V+p~!ŀГxd{ S%3UA tq%'zgpFX?sDq83MS!/GDD;9'L2K`|.U@+hx{u/zQpjPyvpȦaMI;}:V4]ngSH aίym^N/>8滍 !T*3aXeLRf"J@6 S>c@CM[fҒc}akd+-EHs;c4d֭CQ)`xSyD ŁrzmC##Z-/x<_ms@{-JD$cy@DzTЋ'{jN°E%ܜv],v!ey77ޭdVf!KtO* lyEQDQE-!< kpW[4?wN[htG4N .`vj;Բη,g k#B-BQ4s@GbS{U.ҜQঢ় L&'y T=UcHәuZ,r>Ƕ` \\`'=;'gq\# wF"NCOCW!t0zBš%CRG釲BՋZjpNh^*c_lxRᏘf̡lW=>ѡ؁B.7CϻiŠ.|]LjΈQ {qZ\jZ"#IJ i2I)94NKҝ6LZ _Np7`:$&空x͘w j],(x'&xq-|ȯmPK8q. }xƶ½#Y2{*8BcY˜.>2X jcl3}^j80}jT# ^{}z fr>t5%W&3Juτq[^t#LvQQPݓK`_u L?@}O6?6:T]\9 q_F+:RsN$Cn(fí!#H&JX\R].3.uR/k`lWUS.u^W#☫ees x^?&#%TL6 83$܁ dܗƈSwg_+3^!TӝeCWfFuKġ?95i_x SВ:?ɋzZo)y>U٩{QBd+E%Ƚܚ*~C/~(w -1K*Uhu TxCKvzMTPrgN0)es38g\ѻk0 ]OEݎՕngx=n`M\*91X =#-2mS5!Szunℊ!.f4*lʞI̯M3-H\>@+eן'/. k'>p'+bBY}mB;y˽/c{M**\Fk$!/R+<`gsF[07h鉍y1o02kqZA9:#ta}˵_p$Hv($T|FCjZo9IRNx3$&= _,u Յ/4Lo5Y1M/1qlF6:3 ku_T٫_7ܕ3B:+> y5Rs$WA_-gQ&=.+˵ WӤtd^wu.`!C+%m)9ЦW >?کj ""PWV˺ kA5bo+1N` >838x%LZO&rnZ*_uN~5K}@Ie!^$˸M\dxL:*b endstream endobj 759 0 obj << /Length 4364 /Filter /FlateDecode >> stream x<]q+- oy+)ʻr֕H&O7@ g_Phw7<߰o޿)sc2~FȪ*}c /*nޯn~^/dTwB==D En^&ΊU~vYhV Ao_͝b`BI]FӨ4+VE< 0>$]]n K07Kyqq,?\=7w3zpxd r^2{8Vax\-穴2ۋ[*(1kTO'v(dJox]}p)΄UnUq[ANGyng*1%&}6()ѐD^ghL~"fHU@df %*m!KU,χF79R)/+]i:Y,'x:Twy@Kﰢ_éL@ Nxqpcsxjt"dxjp{԰S~qSW7@A p"+A0v?k<ޞvfAcS: zmD\1~t޺ё/8֋U[\(N?w}yE.sY:,􎟆x~y|ꃇrx~q鈎n^ ('VHrvΨjM}`+S洙saJ=ua>t?Rr fFes؁z9 ]Ƌ! ~+1rcwuWf\kRq>Y/XĵJ6ZYVXxx ܝvֳх5Fk6]'zh"A>{bxLzH#BZ$PU綤 b́:U/7M7IQ#;OF%s"xdQ~iB #^]_?de/`W{r 7_;S`A8yw{W.#媰eJʳHYfvI2tb (j- iLRI+.Ak@~Nd af)zlF8odF;'@ ޭs> 6'  36ԟq)@W:Cm6noLrxT!∜qyy[Fiڑ>2:~RtBFD7ؖBJ_\їh`Y$*P1F ݮ*JtnY!wN\?($ޕL5f2 !?(1;λ"J9cQ4_EFBs?I@]Wag|YUeL+>Zƶrb̕w!WBZgfhU&ϩ :_js-4w =Y@ C]r%3⭾s୉PԢy. ;7"y,1t?G0Gd&13d[)iL%>w+D)"䏷T' ՖI^ -%IZהm ,t[KcCnz 1 [9-XX5&(iA~ %/X1"Md5eHdc׬b.U~C&*v^s)(3YlUu2lacm3uF o̕ '[[ѻmU٤u~%>Y 9pEԉPSPl(`1]Β)GH&I AW>$HI x22X(aZK ? =^-7!gbR9g1P7̲ $<3 4'~OVE%LW ]C7CLXK|~,LX~x4EDuvA{,G؟ۥ`0'<\bs{˗p\\e/풪v{#HQyl Coލ{ >pQ#^ A}d 4+ {biNd4=k[69qM8@ZݥHPt̥8[wCi\ϘefIv{ifu>L"ʓrqel*:3 \l2$Jҳ*0@M/_/*'>/P#d3*I10]KPסCqF̥ung'uЇ(W[WJyr\]I*p٩ l A>YuQLWg DrN>_Ԥtۣ+ q^.ǃQ(&̰dT;h 2_J#ڍ3VHP)43Iȓnd`٢Q&_@`"kջ~tR`ۯQ *5JZ#F]9rG.,IfR `Of)y,iϲ:UHYH2Jnw ݁9uRg+Ov8[ΞA'QhfH9?D+.Mұ=\m6TOѲ  .W\bװ2Z FPɂW ݄$!`)w5_Uem uyK 'AoDwO!(іSґEI2H0ng> stream x[o8_!6PMqw/8쵾([I:rOR)KvC Rp3Z\%8ywX-BZa,/4Z$J Od^oC}e;ЫqĨf3j:OnpwcJ$[}ˮrnj Hc3$nرad1GdJpTo ] R56 wl.$cI #H#ƓC%@"p)íH2JM LXq")JSqwrZŮ +?u)6U^eVJO  6{\;ߦOȷnw6x [M!QXC1ڍ6ʋ̼|jEkK7ȋRfԈ)p+ۀt}qD"4UO?s~Wưna3BР'ac {:#+3ؽHpƈhټY_lKO"l"FdD/oUŃazw>mi~r !Hܖn7UȹJ>D4$i/(-\@p]pBmn2כv:+U:z.Fsܓrw}ͨ 6 -SA(8~Np3T^fWNx1Lpc{fu..ݔɏ\s#J ^k7nWnd? 0&DV$@%伖|J(,?e Io-,w7ޘZ cLTn.iկw1I'i aa7NLó#wTd [q[փA ;( 8E%,XLgq#n9MâlYk̶9$L=c DnA}Oj, )U*6XCUbj  ؝.㴙’ucZk'eSs KvnԌkh*) ٱ>`7)IT̍G(WMQu+=/bW<+?l.TS-nL|YyBmfy3E5_`",EJdus Nwpb䇥kٿܙ^ 5F `Io!/Q8Hѝ+|@8A NâY5LspUgq<Z ٍx^eq?$CZ4c pi8?̄B>Yf=V@_ Z돶]X*5aHҟ'>y+K?s^3c/^X3p!70ELkњŵF 1ƂcdW` GW/ZdPT.^c ƁDqx}8hmc)lõ9pxO2k #^X_7sr'1\m1JXOQm7d(ťB?J,:^I03w0ǵDTqΌoކg$t}+0 cIl55iyjy2?eTMOAFddn6=IZ'M e[݃zu?VGU=넾 J)kL7Zզ 4ukE~vC?ǬvMKO7]W,u3AaW`SvcnNPP Ԑm&))YHucm[ͮ<'hJrݺgb-iHUVy ۼf.;I74g7D PU "8,a"Bֹ;xI<OSY ʧGNACxJܬE(/y@kר|?Eň endstream endobj 780 0 obj << /Length 2553 /Filter /FlateDecode >> stream xڥYKs6ϯPe/RɳI&ڤU{Xwo6 E8S1CCo52QgJev2϶_%dvo߼4ৣ-/s*8z@f@g:V|RYRk /$]cEtt挒}"K"e*KW TB H<_D3WkyMQ|xO[yZdެ{ʴY6Й{pL< |鬶ݒEp` 9~aL0e)4 \3@3 x$unzO<7"wp CMp9 {A 1횞n660k2KJzcaڮ݃ڮA35k2`7{df老 f2/(ԗ3D7LQ$dGGEƿn *_#Z$K lI8ے̔p54\V MIc!t`fZAFfRpef+VO!5oZA.@fX?4 Ӝw~}v2&,uB8SCJS/!{Βw5 RWRiB*pP~|<#}9s]6BHRU-cE>wm|oG enZ7Bc >Fz$&!06DE@,%<9;٪ 4%:(b(E}߭_ u-?|cpUD.=XUFT*g9Lu/tLJ\s\e @8ѓԪD~AC2J+RtGX -Oʲ,d?P^ 448@A ɱ:v݀鋻4X__Du_l-?0N8o*P11*43Dx  yaZa0.aGu9mXoa6#3plN*YŘZcs?8~4&7;kN;6Kbm5'gNySW\s!@W%N>FfK>-Ŷ>9K ,JQ[YI:K^3 t#{;_J҄y -2;`%uaBga^Z6qO 8ΠT1tH0ь637H'7n6hz ziSQxcñM`N-vu1CZPZE`  } \0vcHx[`f1Ma?]ŏC?j,8p!(FVw {rXr[HNenCveTV;/QP}O?ЎH/cRPJ1Νpz0c goۻ3^SEb{feudwp+*ʘJb5UGU endstream endobj 683 0 obj << /Type /ObjStm /N 100 /First 881 /Length 2171 /Filter /FlateDecode >> stream xZMo}HOWWuUw@d(1 \\οϫ咳ܱ4ӳ5=U7jHAk 2H 9PmABfX$.dõU^K0{-yxX0_ CijçnJq,'ߴCqjbA 2 sXҐ n2n_o!g|ˈ$M^,PR IJ0<}7rm2 e Lgs',S\z.%5KP5BPr `\Q}b d}^ B6(̘E}˶ bK`N篡HikK9|Ro`DuaPBIB]}A0 +㥄i F &u/L51|_ [qa=uWqa NfŭB~T~ ;&h3+nC+k*+1nc;lXGn \-[XLB jo\O"1&^M(XQXaV*p>>[i89Yt \.Wz}6C$Yto7}xyrs8KxPZPbmS87_6ioBV]}竫w{E͵FIjH5NNBSz { У JP6Z Jz$*m}}ѽ~ݏע{鿐u^Q?p>`1)2I"!6r/zކU_~~/WQ#Es_)n\|ڜP VPB(X<9f\F*GF @ QT{m7ڱ7,ـ} (%3(r|NN#MF͏ f,J=G~S냞pߕFsϯ#08/^Y5o L |jyCbCAm|&Xꦻie;jd~C";8jd bHtSQ+M\'zb7I FMMu%klEޏ|l'L8~2B9C6s*軳:d)v~M GͭD4A&֟$Fe|9" 92IVDYHyy/nJ $T ^*PSf:*;:=ټߵM$ٌ OuȰmgq (~>8'ƟuwꑞjCfCfCaffE7K*1RØ@fIOs/{wZ K NeҖ%WCWz'|].!/oV?.gl>} X$ϸeKB.ʊ!bVoڣm64bsd ƫdNe6 O5 endstream endobj 791 0 obj << /Length 3072 /Filter /FlateDecode >> stream xZKP$U<0 @Ǝ6]99΁#A3,KBR^ϿO7 A ڷv FLzZewxwJ +MW%+|e4g%Wá M4_*&_0;g#5}~|]m,m&XdyVTewW)ə(N9-nl-Äۮ> utvvԬC{lsYR{sr:Saʾ4>=gOnVoƩkH?j~h;rBX Ɓ04Xn'>CX3nhtLB6|_]V/Ý֨0ͨ'A%H 4hwls'yhCM]h;}_HDt8WYLf2 0Q,\Td=aOB)KŴԁSuBLE)poJ\SȻ QE"'!#F#D]E(ŔKr/g@[Sz sZ /4dpU87ӠTf:Q3bC ml6|Cu|c8[Dq"b?PĹ6lGqAw&q3%˳`0e[5p 1=^CI$@i5=w.]²x7nkGm燢Ì  i0KSj'9]/**_%1EpWoi$SV|qI h>_`99l^̽޹ {.iՃhfPё,4\e20+2yWKuWeu7H[Dނ[+йE<|LA7!4cKa&60 , |Dž"=|yJ4RLþpӪTvUPʄ%3oɄe`W=Pf‘;LlV_,a;)VuȸNF!o#EP{C_; ady9]IWw.pC1.rX>.; 87ze@\6.q}moiŤydٻ`3`BW]HC@hUmf \e;gn)=0x#D ;{Y,'BfWL8AO/rl^Kr*Ǩnf 1 l!{hHzhtƃ)P$D_)Β /"J$ brfߺz~B!j7'I݃Ʀ/M&+8R_{:"1;3oiڟG`@Ag:|SA7&PĖ]{'߫ 8RB=>2DNRB Y|`D_@**9_Ei4mCCI@vHI*. <21vuIwULɗb.t]aAo~to+3TD"|G]pNEr|R.][S^x&OVBXDzJxҐ_Xz+c+<0A{۸Y be)?)Xo ]ZP4Ozn* !Dw7{\PK^RZpu^IX:Gt#:C9fٴJtTSzZ˳xn롷=+9=Xδe HƧ\iD˗$< ~BC4ĦIZD%r5+^W[ЬvGrH Պ r* ٦fvmAѽDہ.+(5f!1zFV^U.h\#$0Ηau4 endstream endobj 797 0 obj << /Length 2236 /Filter /FlateDecode >> stream xZKϯ0dk.c`Aom[ܱ̿OEZL$Add^_=t񴠋p^b e KU L.7-w^W 7B l'~ܬ\{||x_$>>Z˧ 7łQb Q$spᧂ W`[X E p_ߪ}ݬlٵ.5P#$+SQ"IMr1km Ulfd?8w|ݷuWZ9yTn|+I߻QKrWWn҆}rA&9TD*gxPݡ~BG@ؕ]oázUv.dU%-PUDZ+0'CF>ݟE/ !Mfk@f헺yG/,o(n!Z{koq g_Aqw/uS=1 XZKoxYoxV.˺{w%1E7Mdnn371>~ab\uN2 ?+ܴwh4|U)&n7ҟC8xsjZ2LK%>]UkryEHAeS@( KP {'UvaL=S: t ?>\ >9вDv/6g SB(pG8K N]c[Vt?i  <!3|e>n_}zd@dAl z!6.@(`7 Ƭ.R&$̍ˬ1 F>mYOi&  z. %nebBg0pg<#~L >Ϣ,ŵ/ŵ]\1UphM 7r'r9)4^܎e&xtl^P emɩ1C`L1 ƈj NgQ!puњg/,cHrdkO diô (Grj9YGN^E|XH|?Z8$(?+fwSD QYژٛ60 (Cpt;|E;yfX`L mأiԈ@0 _ߕex,a߲8a"+ 42{_4t/iw+ 3k &~~V ކBed&,(Q>P>REPD4QPq=Uz5gPP(h5(MD0r~N UH!R a%9ۧ᠔0yK' M*rD]AX1܎]h{ v3nxNC-Y\,C5 lc<]up–]\uB#F_%k a:S, _3XFCzreK@fm."CAt<Ӽ;;)΂ܣnYSX+)NK.7L}!A>Xd^o3'fc #gzhA Cx&B Abh!Q(zsl0N}ѷ}[ڡZz߮0l@[mp8[./)]L荼 @K߯?Ы51^Wt7Rp'l(8'p1"Dc. e /7". o&67%goAE>D/; x1Qi*pN']wimD} o7Q O ' #6#&/%F}ݦ }ݦDܿ !GH)г3"+ Eܔ2"t9MBP\o Ihr~!WBI%f-IfuYs(<,6f!m_nΊLN5W\龻`nP2 )OJ1~A½-|STI=\5iжB}*sQTE%7`Kd,L:$j_˦Prx= {`>mȍ<"--80L̮6zD_0!LT<&q5OT[w&fB|<3ϤQH ' &\Hy7Y% endstream endobj 806 0 obj << /Length 2946 /Filter /FlateDecode >> stream xZK۸W|xcSNeON( 1H֞F Ha<&f@MUzϷO~z%JJaEeR9KJ&WկcS 柷*/d"bfG͆g=^xG Iw7,[WO՝&bX4).,-9qғr?*Xj#Kx6"KY^&rùlzxDc-AaG?,XR[xi X6zWLSօdevM9Fg,/̥!zϙ{xkD00Z>{XsQ2T3&{Z!HKg h ykBko5b`'QWf#Yv-MfWx " }NFf# i\6;-=֥b3r<@N1Qԯhefařp@ ;iq\(h}-!sVl}aU`!FEp%P EXYAZWQ_e Tbx`r'VɄ?=$͔YXYLD.@:`܈7 =`Zm*bASI612G7GExZ.gIj= 2ʃ'd){7΃:0!m` D{w33D S7WLyUC zE+vA"dlw`cӁ9qfqTOfW Fokʧ`EKWZ&VvY E B$S/_*_6)j#[Q6UQ)ȸi E!72=MOy_ytݧ9*j,4` @,a ]u1EրD|hW4ōt]L21Ld̋VrŇgW_[{fl\Lt&|ز['4 Lmnİ?w| QvΡ'4Zg'n{joݧ[KC2kn qh赫75t*5 %2s:Q(EK3ŞJTܝ<$r1ijuO=U9z ."ĵ8څ̖CdnF#lO7ؙ r1^2uw;L4 ;8 CK Rr5ɰ4< M䍮-pb;t>͝B .a~R2C Ymg:;{GkR l|Qiy3KɡZ/WԺ> 5Aß} O^~{#CX97!T.r"_˰N >Ba&G\VOP༶.h;#;lLA|w/k (& s͊<Ǩv}.N #(d"Xt+ Q8DX0vj̄MlX@I))?)P*؝ ㄨJddrB2p c**Y]x']iod(?zZDY'J'2bڢ |s:phn4P?ԸI8m`TJe׏Pa+U`P3zӾ܀$wI1R ^ү Hnw}YQ(i{H 1,ҁ`=e=Dӄj]}Orvۼ > stream xڵZo_!/r+Pm;45=-H3pޙ%Ebڌ9;Yr'/v{qT1c3`ГZ'۟`|4S2b~RF3i>o~ϗLd1&au krZ D_H=J0L次I@IW.'O39~{ٮ1x)ʹ(.mɣǜ9'3 5ez9|I]PJfmlYDc%k`Z]+N+Yh,`<#)M<ɩp ux mI+Y,v_ jt̂c;˫ܖi.gۋ^OX*3Ll1|s7>Y@O LD1䗋Tx+(fJY f鯬`/Y~W9uHGXא@<r@%XzwY&ۿ>_ S{oJ^PM/Ϡ][yG QH 4t<Ϙ|31UC[w4>YNp#`2*Ǹ^Da4j6e܎է~Tɻ .yU׏zyyt{}\ J_AfK&8s$;8)lbQڗ +p\5%lcjv!hWMi͞K9&Eb'A#ieUUm&aZZpO4g{3f/8WI,TĴV@+f. J1[YHxsr f/]q2p#ك#kRm]`\Ku;ӾZ2QVhƎ:ݾĊ3-qTxp8xI}F 2^9Z_: HN)%xST_.7|<:bȶF(P{RXCjưM;&8ݾNQv,.hus'͇pd'y']ٳs(}#ŚuT_uR3g/8bY);b)zb_HM1loꣃK \ţH wXeZsbGv qz`!hᢪx};\pʹntQH17f/'sI BȮ"VQv8#9/aqαU%+L'[>M L|8d{Q9_9*w.tR m|,xd;7e<C=l~GikaYn֚mu*y7i9| J.%oG4ͩTn jL*ziv2ⵥ@v9ݗC:}&ӄƪhSXtxqFìͨ=H.xd}S*0> stream xZ[s~ׯ/X4QDNql=EDBj`Ў:={@Ni{98wv9N N.quןL2 6 cD$Aj\.EZW1qĨanJxB]⭯p_1Jy1 6 l83M&DL&L -U܂lNFli].J_Vج}5[dlUqM懄NWy*a5Xb^lXѹF/l]fM`c@΋UQ<2ߐ.\ x4SÛŖ#J$ AN!HMQ1(yLb 7B )|~W{%*LYżLgLzAKքHpÙc3gulZf;+W|[T`s߱*€LIw`6`6l/tҭ[nc1.s" Lms+(҉.nPr`: [:Ұ0j;EkeaTc5Ų(wyO8 OͲi^]һliNKޡ=r?rʝhTN氕;9ٯgt oN˳8Ah7rPv"y0Pecq^ct^d73J9Q_9)bKN(2D Q)@hE`ᷜ'w5 M0}\O,Wy^6^nXŋ78 >>Oζ_(Aug5lЛƶ%@\S0d)k,}OJxeI}֧;Mmvo>spvZ;i]om07{~^__2Gv`h 0ܹ aa5"ٚJ(v|H07ѿ痡g\|vGW y}QC'N Q;a+ʥR捴g ˙1gH23 ;O,?% )|妎Izȶc]Bns6Aϲp/bJ B zU|X,f~v|z.6-f(z?f!C17˛e0=d{)RPs8hIT*P-]Z>Q0c`uW{қ}Sf>۱H }:eYC\2مb~Izվٚb887f"t8imy&16TШyysFxxiA<:i ;A L%d Z`=-~ƫ[CÔOa~͵A2.sh0umHC4CJ`F1~6{T>weL!Ɔ b;'cwk/BBۭIUo]fiD)Nf)`bTx|UqQCUXT*=Wqpff- $}޳Xtz#mE8{;_3޵oxR !_p4d Md3=̷ {l1&xCf8O iCR] IS :ߣs秆,I89K #Y0h{YznMp "qJ`~[KlޖANcZhGMg|A0ص|ZBqة,pݎ Ӡ̗y_uk AaH +on/c Ɨe|Q j#aU3W2[onۯ1;bgGIlف&@bdvf) QYק I $93?a.dܻ` M|u44M;ֶ rb &4o:tm PA.> stream x[[o8~ϯ K@v%i;}m9֑RIn?"ڡ1= %>w( gΏ}u\f Iv(3)I!_PlTd}L .\-GujcOrkzvXH0I !jf51 E#617_ۻe_ "sjBz)el"M`A ݍcb(Ҕ[ 0OB;A\g;kP!:FmeNL n46jQۙL8q0EY4>-]iw9[vwBK 0G%dˇ3|%?Lg|tM(|y;qڴ`S7{Bu kOE =u:t?%ㄢф,BGH i`[mϟ\b'ԭny>B8mH 1KA(14?c||A`XN&t2Oh!eL6, ȇTzS aqް?rwF4|}^ 1 SD3 qE30қ|b15.5,*/ηʭUN7e+Xq1DGvEPQK]V:n %1QC.i,eەlo q7Cގ EgcH?נ]a. _qY,@sbk߫Qu8FTʽM u1EڨC ߚ_=qS)owUP;-; bA8!qxC cx'@J&锌 ,; =EF$Axy ɤU'&JFؗR[ e/ tjVGq_uS<TyU&w 41Sӭ6tU endstream endobj 831 0 obj << /Length 2598 /Filter /FlateDecode >> stream xڵZs۸_ɓܱP|M;!M,A2{#]H LF"_tɇ<_RO e儋乚Hq12oK|rۯ?z3X/$f~/Wtz~> ~>25_ʅD6a4 hm'5.ZXmgR0s= E2G]kbSHzjbwaYƆ2b4Vv޺hnglP"`gW(D~'t-˦ ;qc9ry[cvUsB(J%s=QNrT8M~&9P5c`2*i6pcKѓL i\T}va #%16jf[?uC[{A9C~o( >J%a+!~ǛnPGt%Dp97_~EM^er?H4^?&'Bh]oKw|0#'_¯<4h2<=[tDd߁U*nq^a70,i":?ۿ_d3nٴAv'ݫww|nk[XoV8;ZhV?\p~g#e䎅o(\iI(/]nKbАs72J% 3w?Ad۴ Z+WڶzS:GWLIeC700r5njH m(zgn:nO]Cr9 VF1#k \WqAF/SX?\ӻleo3]M1g0Mi=&D3@>mM \1 {o+3<@t|gcdPv 7c濺ݸc b&8zG?f17os;$?ڳ>A߱E$psNA&1N} 9zcH2ʅֶhسuu~ W}*㰇pؘo]F0!ȉ wgQ!xcǂqh@#tĴ=nۄ.6ֵq_DC0cDɪdHP`{eAZyk~- EgÚ@UޟY(5HsK#a6.i>]B*o-2 H" w٢ i_ xlںzע>ϑ73MsrB"Ղuv7o+ȓPZ>r @*@!\1t # |khx! KN=t#QQ}fY ͮa z;pkpX2eFE定!4)F7*bX.YS̔"8O} ?v|xEmdJ3` H1%Pf`~Xnb9`ǝawK)2|c۰tqyy`pXp74 ͗ZIE+AeSzD23s lb1GcE.Bƪ tJ(^$8FU8kn-9 $G8Esf 7.߿bRR^KES@m/*TF&;;ѭ B32oI#@~ױWBҗI/0?_P}4<\yXaqXt̏^pU3Ne/"ZptZ$E=sm[Pܵlw{UC{j ڠg3rOH& b~50E!(+];]_Nt6iS9&{a<۸,}l.7eAEPMi:xr\ъF ?=lفFDē`,b\}(ѭӭo` *8b|r 8rSdDxbMP 4߁ܻd`zk8,?]X[I&TJL;?n#2*'L5`90> stream xXKs6Wprf,/zs=e<5=@"$sB*@U~}4Dj|&H,o}@8E8zyuO &jQVH,% E8>c(Oa}0"̬9(thwd(5[ө1AkJ~z'ZT-@!iR: ¾eeu}ZIl*(u뺱o Qg\G8PX{|ux2JM?4 L2s RbɭZK x+eZ:~~g4+MrWTeHld?1Wi{=LUޞw9RR\xCQO/+cKű2σpqkǾZ@ =ށ$j|>1"yYhiV]ELCֳ!©khћ(p{0t@;ʝeaurv}v],JApyk!jU6HW]Erc )PTji7[a@  r ZIe/ߝC%[ 倞7nEvs}|iv `YBRuY4 ,o pG\\6Z@թ.K9[V0:Cp+j/͟C$ҙ6'h{W ._:`bXDY=l /^Q( iib'<8eg gNN1hǤu`禖/]> stream x[[s~Ij-w3NIlS?u;CK̉D*$]"JkZN >@gd={DXa2_M(QńOzTهajg1`23ٜ )% c+F]q*VNG/T}!d_Ҳ Im6ٸauYwՍ/]!)eUzcJV`姬JoHx2(yg0?i58gHrb<τCZwge\. v*f1v, .˛v3nk":4blo9Az쌻nsZsBQ?d`3+H)=3d&(Ŝڑ?i(x4fCjN]C-B0k C$AHS%p0DaYv3 vOzxEq'1vY'ٜLU'" cOo+W'?ƁY,)3#NgF}YΘ]JJa1$&+:gNhjVH\W e2ᮛM3O vlža2JfK>96w(Ŀ[ݸi,|풩K=ns:}*O2u)*_xYIdf;0h{ &7'ضd>g1FC'<-5&`7%Dn )EyvrdoAq/>U(*V]$]iLf1!NYUZ/@\ >g7kp-@}mc.riߍf}6B#͔l?mov+E/L!,s)zݾSXE 웕Z``8"G`&EZUӓM+U=ŦoEJ;\l*3Y޷N,I@I |fĝ+ `KA~/+Wo~"=GTN۫d }?C6g?[H LsoKS$fQ#$L&Moɯ2 mX#2ٹ9| |)Rgg pаSECc b8w-y. Vi^:?x'}B4u}+o+sP;nPQ3^FLqHb]X<&e0 oZ-pI=ke; @nn`h\Q)u>c1M )E:Oc ԣn;FCLn'n%,ˠKۿ `MC͖͘mXXt=#+[y}Nr!.   ]rG;F[bx^7Cp-C"'x$"q*[cxw"\s.,hOJϡ4X%ɝ"$ȸfxw'ʾ pi8I`Os,P)_&2x?ȧ~Bhv}uݢ[ϟ8 kS4?E03dLO)8QF}9yݭMBZitWD/Էs6s"TxFJCpfP~ >>3?>#mQ4 2`@-qyC6$.Kk,Qj!Mɻe}!kRID" T)O(F!yzzIrVRzG"%M G]=4B !ҿ ;LKmgj2ə?<*2Ls\Cu  H%S$1@˓ *8I+T(7'["x[2Mׇb/0`-B 8EG)4Hs^l3s}sr=$πEe3s 9a8q`ca;WHe辸0N׺8fռs|Ug᪆hT<(E8ŋ}G6K֣0BpS,J(k qE'b"l+`Ƀs5TZ,Z~xIEclT*E{MW_ўvT6e(n9ܯV#0t '%|*DJK^JCkd) d&#)Wg:h=䜋 1"Dqz&"\er!>@Q%1R2۔;KV!(]bz#*\.h+1J$<7[馦1T.o(F sEV2\G" endstream endobj 852 0 obj << /Length 2796 /Filter /FlateDecode >> stream xڽZKs8Wrk# ڭLv\&%9P,s#JDٖE_ fFgW?__3CRCfEJT͌f$erv}jY/?]MoDp97 \z?^25Vd(IivD4.'StAAH99'Rjwo3JD̾; (5_ _kܕQJZP+/\(/^]b>{qf5+9F+0lo}v[HXXBdO2\Q} c4T*Yʚ,zwSeE7B#h~ Vg*v H&dx  :we [eMY9zX1F-EMB8O{ I4IVx B@o ƩvA " $Hmo!贵;Hj߫۵o煯Wb+X?+p0Q0S:~ʗA& TٺOqH)&NOaق % jX2N&H2Z^bw&Z+Xhg) a f5%(-7?Bk*\AVSo˶Snn΄VICj'V%;&PtamNUWHtNFW ,땞-$ °;gycC)G9/+J{`%+؏oSBjҢA1#^zi<h^0 W"0\0=V|/4fH9Z))`Jd ]/EV,* @ _ P^U>,bh)[}0pmy EWHj\1dSfҮh?.TՋ]V-wX62/Uhpcrp`Ak^IśL.`>^ .P֋IF5j^g.ÄaO*Mh gt2x_0x]Qr4emdM럢Q0K[Dc)6k e/@BݿMUl| *Lآ  RoLҜ(k% 2@SvJ+bhGQg9ӉFU|Ba#f: u!l{L{6NaJtw1PTD*QeεT6k9! 29AO& >r|@'\#G޵e2"llGAaa:%l$ o;ty7M9fI;}\َ%d p&5=^Tǣ! u۔^J/'9];=;S|öN\o'8얾aME} Յx6荻 ])1_DzX281E18`m}d]wa@?Q endstream endobj 861 0 obj << /Length 2274 /Filter /FlateDecode >> stream xYKo6W9z=-zAG]r%9wEO=$%j8/ pw?qPR,nUBI*7__`3U LBZ{G{%EZo+ Q+:CW^zv.VrZ@vw bo,}뽽 Ѷ94}=v`vwfv==_phg Np޺vnIEmX*v+fJw0v\8~p%vV vtڿXaŮ4d xc/F)k^=hںkx[p1߼f+ȹ #Ƥ3 3_00]&6>ژ &Gr1P6t%'ʭ_~y sO18Y/X%gpMfhs mkv X6Ivvl_M76[Y^ȁ+VZE@e@ 8`QD00Jhѕj%"Bޮ0!),^NTs8u;'pi<@J`QgV%4;1*I@YrPD)㰹vWzh p|_v^k0MK$7q>:ggt;KZ~t un=>F[y~bwj f-ƚ"7zw3$:\&gzqPy>h-}ף}I A.`%c^Wĥ!-{T0 [7TT$!oh%M%v |@\T8<伧\CIyf\Y΁H`f̞G/K$/$vIqq NkMp€d"9͆r5j}? zg 3A7mѐH*zR#!>eTT RJNh ^a8sag]/-]_?R =*G&ʤKh&r{ $RWE?Nۥ^?:Avf۩*p5_9rFD}GcG¨vrcP ;96XiPÔ0߭t:>6}jc>["vpoZtdraZR(zU/_Kٳ8IF$,gAphZTY.JRPS\~_*ؼa*v߼t2)i` _d\p^vgR2/4K]ܵ or46&Vf gf^ʛ?qzwC?E湪B |DLBj.sDhL03ray 뻁ȣȔN!*O}Goa9c:,WMd=!Ƥq0>TjIȖJy#j(/3)h?\) endstream endobj 866 0 obj << /Length 2805 /Filter /FlateDecode >> stream xڽZKsFWx"kYHvSTW6^[U9>@Ěi,yCR9ؘtPd=&o~oLL$Jd'7B$|"F fvަ{KoKӵx#D۝"%rAW,Z0IdA9덲{Vuc&Ljcl7]>.r:zIʛvHzC툯/0U!=q(PcMa*wB^8KdV/T+[ۗu液C*7pgj_JuZgsg_4fVz]Jw?Vj8TmUr72}ZP/hsV*zWvy-Vdmp.w}Z8oC!Q,ew =lT8CVeniݡvݞ WcAGt-fvFg^T;Ӑ:,F-6J o۝*d0)gISd6j B]ؤXЀ`W"v Pj ؇ FCw~\*Ɠ#ZԦ pҷ zHs5ԥ",;lire[{X m]6  Eޤ=ߵw thdYf߻Zk!ER2,naBh! +@+#l L>QۍsP~{0A`4: 9W7xȵ0z cgc$PLjGΝz2۶g쐛jל=8'`@{L<τD tDH yK$]ߨkb S:lkۣ5~@4[oj;pnZf5J~z[eU_{aBߕ!~ Ft,yAGL8!L0>qUV:%t@Z#q47810|圷Yq{yd߁57*II`zuŒxRY}cڑ xAc$D/JĎS5k^~vDx25.K7]h }Jt]*]P2肯!öqt3à:艰& [X@fAP@A(0ЂlAC}qN#AA!QP0D::~A+&-?8WVh_W, 2KwCҸb02rԥKAѤW'~=䳷30JI0s4gJSoi*۱i`+~W;(=2 QD LT8v!H"psHHzyye6%l>&]b rcfb@t=33\/Yz.!\leC4Bn.?-t Tե6R_"l8Iٸi*N,`ŏqr @|gM?Y?ѵml X퓢d,,*/;F|pb >=4|eYQ b]BꒋKH y /i!@tȎbbt\ޥ'i&y5oS$G| 8Lϡ%Xc~c~U9J <ƅv_Fn˞_)(f8 ljL+u=)9p4Hz .9R~w*qz>y##S޹Z QU%cҘ  jZ}71wA.2,82&{!Q LX"0U˝PؤĹmm|orn܊b~O/;r@P~;rFug p&D.k׭A'.tl,fFuEb$> ]ORb9ǪB"Hh|(G;Co}?G(wԑɴ=~yzyc3E;_NCq<"t$˳:: tQݢQ~-5iͲ+6#t?Ń endstream endobj 875 0 obj << /Length 2868 /Filter /FlateDecode >> stream xZ[o8~ϯ0 wJi0![-$7=nF݇D9M' \>C"Cz>""Q&F319Mnr{hoZ$6ssv .KHxTOLFID#? FpcW_' t`X'Dj>Onndu'(ۖkl (5YM> =AN5(%`,MyBq/=`D|:O QEA6w!8mP`oL^^>cjg&!{XqȳDo&74޸Uū"syRN%˥ eyӸL`v+]yمayF5^4$ }3EiڌԴ%!aVlOs3Fpٖ@)ͶWWj 1L  0C M 2W[_oZVvWcZ9<)wƷg%KUX a 7 :hj&.K# {7CBc,nyF[v͑Qd~Uҕt̝;,S<3E>l '3Whx 7q6 ū]- t]`A%~Y>+\OT N aI[-|UDs0l߇QpG(e{Pi܀ گtg^1u*VxLxU|"!o*e ѢW%Vz{Vq *Ax(3E ;X=ȓi5GpytY.m߳+vXV1v2^>RGZ5FHg^InL4IF6iLVUS-{-X1p ã`##EO|66,@UG:Psh{2^>.`5=΀BXuK=aN*Kꋦ !np_cU}m_=jӻLtp*g;~!hXAC GQ:G2E?갨GMaϹ h2 oW sΓ7kn?,vA z1"zL]Vm"lx'Ql )}Wc.h5i-X6U‚z٥VWsYyP?D[pEN_5X6b5UG}gp"c3<8UWC1$A JNM[X/l˧I4~cֹAa Zx Z|S]{O ,"ݡ?!^ [g JYE̒bw04ZظVEAeH yz ]pf`_87ԋ(o24$ :c*yz%iYlh! r,;,Oʽt:]ŹZ(Āցd)̰q=w=$Gjզo'7,S!_VC\GagoeX?x,3NWkE6vCK(fNN Fͩ|$W`""R7`869 69{^x$\pI a/1'dm"MO#ϠwW+h`;li̪9 UϜRJ Lh jf)|M@fn:HpаkkX$7;^oOԝtƛzJr|yA, aZ1O# 8l'"KV{GAF Q-JGgA8%z,h_;hfpQ`n`}BU%g$ڌI3piޗ݄Fcpޞ2x RT*~${I?S]+} ..V%Hvp] _5huPrUUg*@ǮbYj"Yj7L Ԩ6 '/ endstream endobj 889 0 obj << /Length 3271 /Filter /FlateDecode >> stream x[[s6~Iٝw&yK@S͍D${.c&j'-Aùˡ]\/#$є-m\$$IB+F-ޭ6ߘw?ы%s}.De}Lc&$]IN $U`;,VBXIG/8^3F}&74 '5+E2u΍צ(-ubŘ/~Jʄ(cYRIk_ޚ@"W-oAȐ9nf ]Um&Z :&V &lYJ. 5I"^\g8Wp ͽ]&MkEEnMZ7n,]DtJPP!H .SD ee_G$ZǠ%^/mV~‚3[{:,a-P[@"+ \{e|}4Wx D2mʪ07+سl xʢPD4>gf߸#7i;2nЂ8% њڝpB ^=fF,s ˬ1d+|runӧVHj]o'N:"J yu{囩M&{@1{&UAdZ kyZ5Tʏ m9R;[ 'J^v&z.:jI3w} XP[すmڠM)"(DCpJ8`gvT%'_} [˪֬PLQ{1TU ~)2b!3$;v֓'ξ~WR7.w)t{fQ@p3Ug?}FјU︂b=MoX3Ef~`Bm$%<{^CUEucRhU6WJٮ݋[Gmٔu7/Oaڥa_`[3\riėV|'@!>椓xR~!lMn&c1-Jf2Aѣ.!^z/Z/᣶C,æ\qM񜎻Qws sp(Z'OLݻuf8b-xsS\(G)&07s jmzZSkgz)PyoۭiYM&u> P 1 . ,gY&,SqЏe{n7 )$PsQ޸Pm8{ 8ϊ;`8QVy`Wnɧĉ3Օ'PI ] Gvi J+zɞ}pœW7p[%;Q7d [oL|Ugb:qdo&;.G;  `Ӗ*qYb %O9^cJ^%] h@ԑBR_4OPp* _f`b]=$2nj%92H*cJbXu%1 \퇣mgnEz"&J|CB>(0en@O[csE|7n&3Uc$8i3U Iu·9n6j9 6MGM Ku&kunCZEvqnBnfF=vl8Nlixt a:hۭ ..jo~h#nGy&,MGHoK,noݡ魍gNXt zQR?(iMBS{/ bDgɔD1 w]' BD`T.tAQ⃥܁66~]!>MH ?%p AMcO9Y*PA^&NF$> 7.=́1q,61 p!Qܖ|xfsAmY1|ܭ/ G^o'8UFh 2*f8 #X։ݧUY{i6u(,K͛U{Fjl ->C9HM0JI D0u].Ccdee֩dGW|})@fK3Cѫu@xQc'PYfnj/dIUHG̗r T%y4]])qsQ #HZUZ|)o) "QM<(̓ ArN3XQU76ݩk"z;L yS?'VО՟lGFx̚1y[it6X?>i6T"i3E̫1@5L,')ke9DR% eP8z޷:D*"7OXWU_jc`)JH$2Fʜfs$(KBetI)'*ba4_1P&4I7b%NE%Q'cɾicȔ ,>b)w9͗m dPF|dDb̞ [[xUHo08r0ߜ]Gq|"!\'HXĻ~;qٻ5O AIhKY.s Hˋ|nܛ>A,JiSu韡H(*Acمh$ endstream endobj 894 0 obj << /Length 2148 /Filter /FlateDecode >> stream xZmo8_! $sv6lPm6svȤb9Vr釀D<<#eeG?^ԙg.2S87]q;p37B@C-;h7go!W|[>)`fc..@1dk8Kq2 ;AjFӣ,ӳ3MXnGM©Q7:oiDSI$cpI$|,.SjY\b6䃢r6y_ԯgW_be3u|/T?s^E'ÿ{d"T?NNs7۝&} +PZYb!ZAJdmu'@̴}ou1< 뼦 7njzWgFUVŢuͯ;㢉25״_~,|:/gE{0}9z\B: x[Ӳ.ҟ";0RkC;m9kZ>7{;sJ68iwyi4^:-̎ o}Z%B Z+ACڔ$H+N/FϚ}Ɲe} Shi0Fv3 i;1ux&Aj!Z#Oe5#/vn,[R6M݌t+,݆\.et5PTl(0):Z2Ϋ|T,'1 xZ3ɢ.; b77V+ 5٧ya*S$Olpq9]G4~4#V?!IB2MaF~H $cZ+[/`^9WXGSNnx](_L"E R"\A|)"X?t}Eڪ;f#ch]l%CْɡPhբgy;a}- U@M2A„gK7-'lnWU6hR*pO>L(f;0{ɇ(@p-d1o$\'ݞI""IX{"I)1-6ǛKXi+@jj+a'bNHX{IbSl-![)S+dc=Q b.݌ Eidx1A$(ܡ @qP_K%pѼ %+f%{酜D}?{x6Ҿ},j?)AZ5ҋKg0^4Ї̓\_'ͦ-s`wOJ1Z a- w}xp,{N-j.$v!;z~<k%a ktڙ+N8ɜĴ*Q'wlIce9A pV=q 7K[-(sL E 6j˷ |F$0I5fa崬p[9>J)E CPROupTO{;iz4Re+l̗eTQh% s/Ns-hm>A@%_l=ftRuQ^n<0_RR`y(-)l0ɤżNwz$H|/[cI1YˉD R| 'zAǼȲ=A2q^8VaSIR㓮ҐgB:G[6dV{+hicthGn~ ״i&Eo\t)KSf0gPNc*7M곜+5~1|ͩJ}9\K[> stream x[Ks6W|,oV90;;)SH̍D)$5ɯJ@ɆQe.Z@yyeVD2i£i8I)]<=%8bTAc/1xtg/w 7D<8"i] 0BWi+8" R qI GScqg-4`"f%)4NTڒsm~ *Fcr۹7.%-}C&yRwC;+#qs'ɫa1SDX)]ĸ>YXmy!Ծy^߉k'M>]-%LabIjH,X4ͫlE&ހزnCn(nHr: *F"5N<nXlD "O*E~\fVdI!@đQSVI>MiWRekU3/}P WV,u$ +Q}80X ia#ƢG;䳕Ǎi<- \=H\x7.I~"]'﷯Ф7o#Y,l)IGªؤGܫ8 1F&;njSܑ|#;ңX 8tĵWG/t=ȍ4!=,^3Kܭn߅I~!"'i3`TM!Wa7i;#pGwCHXuy9|R S÷B*(+h0鄢|#'ԩP@P9 tBavTp<!V65K!oreRC"n`AX8R]<Gک6P0^=S2A T?d4/slWO`X}`f^"P ٬ LvXM"Ti'004r*6i^ݪ؅:]rʗ@n\ Y k\HcGi˶Ag]{Veur pk}bK$CؙR쐺4Ûhk%wxfgo'ElWPnD2APҿ*i> 1~6FS9TbUWNq K6D:BDd6gIaFq88lH!Lk-0`pi֞v++,|Z:1ܻz}rKn^ϻ~`x|L0A[ v;H6~}`c0BaTCJ ߮?Z&[F,٦fB ޜlln$@go_'ic9_ndz3h$3g auvVHv UNa|Mp< l6R-l0|F㍾vۓ_e1M!1u}k3 pU|kd%0PeΔK=qy P#ڝ8kP{"#vZ(!8bm(2 ڪL?74krјqwdms~͘ZAp#" PiF)\oMF豬OIF2W)oT>Ŀ7mIҶKuۮ1 \-1oOi)̿ 图 7UϩOEVVn5d7E:Y>LrRdՉ.:tBs+u9ҼvMV4{9v:f55{_S,%†gj1*!K^f0bT|yw?v9Bj cNv\x,L Ɔi69T.V. %6W}rN;pzmaeNhnbk.d -l-힓Gt½/̪罟3φ)պXӢC(C&05)aJh5 KX ŢSzsQI>k/f |FPH̾~h#ѧ䎭}1-JFͺs{]V;A endstream endobj 911 0 obj << /Length 2512 /Filter /FlateDecode >> stream xZKsW|+c6Uƕ=l&3i|%ZfD9$3_RHQĩ=!Vn~y 2 % cD$Aq':>EowOA{Uk8bTAgE/xr];"&k\gL#!Mٝ xE)rRbs3~-|+ZnlkE`|=%vT5H%ܸw3A$_e,(MMj=oI7N}m14wQgͦsrx6D#jVW!E(AJ:bF%t{^|/~Cc*-4 Lap%`Qc~<ٛ me"5᫏C5\6TZ"a4Fw"aT^8ƛ8V .m6$mZH[Z/0zmpM`)$Ǯ҈RJ5)6;Ty$c&m0$ERr*o9Y>k'=ă@@dϰ4}`%8oBVIAFo&ۡ 2I7ޅ> ֍iN7 d8$cĠ_231?4׮ 4 #_Uir4@,lw#L,Xfz@2c8pLLX^ă5m% 0bX4^&1pM`(3" '#p ө Tq`QIFǡႵuQXR10$ah{2#1 ҷ CW#H]t Fs;3T68@Fv@H+ Ho*7pL JWd,"cnI/ V VʑHnC[6@}ipZp# 5㣠F{{ \pʀg'e(//*Q 11p-V:P&tҳf^pP~@[k`/ĥ=‹@ToWQ,\Ɩa7@oa&$ s[bUl<2,4ʀں8{P*@#bB}8c[ɪ!]38X^ BB6uп@VU]MfՃ |'[da?˱M%\>_ì|BWE)t0 \%AX&ݧ-Ytxz9`'aulHxAsuqp_ ꯟnL`5Ⱦ")(;1ZZ+K,*0#)5!V 2;&=/zC~+Թ]]40 XD}A0aV>gRvc*͑8ۯRXY#j}β^6 eҪ#'D&H8c@WX* tDE3b ʰZq &V3x-WE4U]E)1L`@Yny ܸ̿-h32#YMs+Mg\.\pcsX)̎;FMːq)F_<=8zJYõleJ<@Lyyi9׊)?qxiE*QܹHxwbqyvkC8T6`v3ŌHkZ]z:<8-W쌰RLU[+ endstream endobj 794 0 obj << /Type /ObjStm /N 100 /First 900 /Length 2281 /Filter /FlateDecode >> stream xZMoϯ1pX_d0XP +$FBͿϫQktkr.VzUEJj^m[GIR{zMF+ԋ%Ǐ ۪I*.8C8R\ЧS%EOL OypQ-Ċ .LpAX̉VL<\JRY9;aKPsMb 4(ٓ1$j(N p\VKMʝV.T1ǠjqpSJ$[nx]1NB]Kb@n&Ւi+ˮ-٠Cd`^`VڤS1VRP8VIMjY9][_vXf0tx(=VIm$8Uq1iǓ,mfSZkaitTP:Fn>X zHSM+~=qawNc.K4u@#: 2t+tbKRQg+x*6pp}SxDTիۤY\^l.n-sZzys=xo_|z}{l2Z+t!`v#~\OW߶>W}wOj}_.Zes5||\y4܄o҇3|;&r-L<UZ.]?_/Yec$Õ3 &`=.̝$ v )%½XZ=˔4oCe0 mMt_y, cA%Kgzot;\I˜?vAtۮa} n>;ŭE(TG )T1P2޼rY&sg9w旙;J 8g{ k?#L*1{`:ml-+iCP\GDDznLᨂ+J'Phit9iTAs4*-G>dZ䨵{V Wg*P+9*OA`a+vH ?b{vn"a}UNvHxzyGsϤ5y#(>XI  >m2殭vW_`"02۵*he7S00TɦY&խ+i~V"Up}]K.k"&ywc/bU$XGeh0J%M|8] .(s5)Ғ^Q)'\slˈltkYb6-u Fԗ:,)~.0%6]ٗˋuZYɋ6X7y4۠*(4ˁ]!}Rmn>/]2?D=q/6nhqdێc4&,>Xl+/qprOYepȖoÐh ҀSP0J(9P(DRTφDXmLNWoPpt#F$<,N/G+hV`T?bkX&'%(dSJ׎ZL3/* 8dl&"͝QM[0*`t>`ɕLvƃe/nwml$tuF4JRŇ8t}&k㉮=9цY@/<1̲\[V@6v6]ONm.8 *AIhI*.NU^<|Oߞo:mlcUL endstream endobj 925 0 obj << /Length 2844 /Filter /FlateDecode >> stream xڽZ[o6~ϯ$ccw])Nvgg6VJ̤~oX9NQM~<GG.~..L#EH42_f_n~Ig<&4ͩ{=>̈ş*s14~ua:AK_8" JI)F/8Z·_#V7;rcF^ѧ]`\E׏PT4̦`=* Jwv,<T8ޕ, xwۙ }ϘlAI8 S<kŶ\E0G]>Ǟcs^tsJ9NI4'02De\e59O{'#(7io 7(|WFft[gn QPpʧ-eޑУhXg Eg`"]*`*oy}H[,];-gDū|qخ(QkXMQk"?$񞅚!sRBA"nh"wlK`}|~Ѭ+4Q(PseFpoD!M@ <&l8I^~ mܤߋrTWӎ6ZK$KlЬ&DӜ c|LZ2Z PȈWSxptU=G"gᬸc1iׅ&L_\T? OW`L*|ʼ+ױa4_fguW 8T`U+yD5xa*!sw[PQ" 4 9@D#ޞ!-z]/ ܍ÜOD6/=)檱 ܂a74EL6 ^rS4_m ?Xu;.29XQ ;s\Ot&б1XioZ@@C)Mͨ!2uW_ 5gRȵ˙mu\>##JAnh*DZ:XMYi-@` Bz>灱tmB3{K-c|{Iݻf_L @vYYA-EwANoיq\Wi6U>ZG1S<>%xLhlT\z_o͘ցe4qS9AK!/g )&0 3C^RwFUri붝g !jlSLLkLكB h#Ł5J C@6)Փ\ Ƞؠv/In}~FǸ‚Yl23ۃ[C(amXÏnޤqv7&̼iܖ$,`v$ kS) |j{3Cv?-\: e:izո$'ɘ,R5F=ۤ4E?P;f(\l7mܓY=T;oUF3ф#ESFCKZq `Es3cS'ϼuB9#4c%9堜#̓/m/ @lzCJpI4pky UipSܫ 0/‡`l7e@5m<\4K-d!WN0TQ+4&4R{4h(O jR>2cV?Q76> 9I(bD?rMBk2&CT!%8K bK><FlH_APέ]S H0 D\vM|yՋrkm#[~^ u TZGRM|d6!^ݿ` _!13$RN)60 endstream endobj 935 0 obj << /Length 2603 /Filter /FlateDecode >> stream xڽZ[o6~ϯdccW`H-38ڲW'$QowV(w-#]tGG R &SDBJ( RGar[s~'#Ff&~4Ψ[sw>piJ$.3+Ɉ`r3$ԓ-N"3*fL  H@ru|w=ƸiJd9oʅ,-@jf $5XWa(E;Hҝc=&n32yr@C(f:tx!c$i]ɮމÌ\hF?Qll J&@tH,;J3 *9w6qFD,~9FdRzJ9M-x^رfڎ֧q%\1~sVXs^م^̤MQn^rޱ޵; 7!x.cO3wBNFZ2Y~FOrp7>Zl); c鐩}$!~zPAz8QSJ˜к01&![^K49P=}xƂXS$8қ~ڹ?7OV-tb' B&Yɱ4lOMAOc%J<5RU&N|05q[g1xu mF8E@ SkLrmÊNs-@ C&{ [eШ$W4_Ef͊L\I=T>Qk))n7(51T]ᩀE/r*R^ҹU^Yoc:||89`WbqD XHI4__=|!3s VW)6| B ɂvىBH08B럿*.(A$VoY9}bvOQB!8HI5 '7!1Jb~XM9W4 PL8"tSb;v}+퓵%Aypª}7 X" 9"cP΁ `)H3Uwoe .ޫCx-R 0ȟ*7*mO;HvA✭(_8LGS^e!PCgNu(C^x巡M 7\s[tC $ߐb g9T= 1v_Uu}y}! 2 @NM\*\|@Rik sկ>۬\w~xm(9Wv>ĐX&H&q 4@aIV;:vc^]YT1ͷ, ?- in#oICw@~N.?[[nWٺKN_g^mWJCbƆ LքrY6n4o37R? n `:r 0}=Ikφ(,3Af1W76D8"߇rB:>D!N{.Id K'[((ŸtLڞ  m/WdR#j|-]溼&]a޹|㦯 C{e{nU'|-dsnlv44_>U^oͲLv⵿KK]m0yWd73Lg[xpi>8ER+c0GVaᩆa0(ٺxv#7ʐ ]a[|>2;-NuC%yW{5` 쪙Vwmzɝs]n` ʴޔ 懸'xwd&&lϾp|MqKRc ܕoN84UŎ.;Ÿ ] ]jU/=U0^Y35&8:QbH4 ҳ# FrD`(n <旹!PJp%t/WP|^C$&Kr0˻YGd*:Kܳ #,'}7ڵoumԝEژ@wM%=6rHgu-Bb,>8Pg;Zdt% x6 tS endstream endobj 941 0 obj << /Length 2796 /Filter /FlateDecode >> stream x[Ks6W&jkI&o2Y7ZdOKdҨ` Fy^|3$idD&<wed3ec1';riFZſݚIXgD#3+)AV0nȶb%I> *w?O޹7[}޸qw,]Hk($8y "0n̓UD)pyAa_V dMA hr{u0"P# qU†)";VLܲ 7г DH+ݑPkjJ9E h7~uԠY E278/#xs6"*LdUE^永֬\8S"^- l%R)1& %sا nMAL+C7D0\_orb"jvk6'H6&J90YI`J Na'|RP$x#)˰r@) D\'nL~\#j%Eyn\3Y$K+F>Y.z33V *Bf˦`( aY cj^n{$-̏w]n1fWի>5P̉>PѨ)>xDPTYY=ȇ73}0^M W靴ZϚQm*#,|@9]<ƅky9ynN.%JUhYͭDy/nIMϱyڊ2 Mvce zi+8Q>;1a9X`κ1K~;ZQxQ)oz*"wHgY5PZf#HVo]`H$Krجh5qZ3 N ;FZd$',(qӸ 8PF^X`ZWғT@5WS]UUM;U?4$_+"Vb,q%jT'\ty,* jBvpi}Z:& #\x䳚Ve`D[ .-K02 =4c0OD& l}zcj|H3kM,j?[ ͶȫINkS32W)Cϴp\烿VzX0rjפ5}B.Ij`:[ZsX̏]͈~AV5J~V6)ud0į&bg+Bz asIrd.1kji@jzx.05/~MdbcW=q]^7KvzWxF)K%;<17=`lL5ʁ"OF-NiqFBsfX_GHkn ψ{UHJlJmEM~uQxqy.OAx,IjRj jtzYmyT"HOCJVOyR"VxY>1}sHHs<RCGɮ JWEҝYh;gyY"J%@oX!/^sX?wo:DP>ցy=c҅ B1*XZ/!cs}SZL]ЏplֲpA5Z s,`VwĿ[ݿuWwIcc0Sr3Ih;h׫pMa+>V>&̶ُ;e zsi5MSed #IUܼH!Ek|*Kr^Qn}$%)cx8X]r tDd_M_ӼFgon7 ]([sy֫y1 Xs>' Ns0 Ek^{ ` %70(Qc<,q%`>m$" *93qY褰ŬzP]2D$9;fhAoK֜F07ZDHQ} AD- %;UR:\@L"Oht0h])A2:GS8;vHka>A—}7Eٵ6߰9 ω^{x>ϣѼQ0AU?TIJjd~`4@7o6Oǫ{8?iAjLO{|wAyߣi=ZSU#!¿53 DPaiӆһ~S\gQCXSקEB~ӟ5Hlw #_65Vh|BuG endstream endobj 949 0 obj << /Length 2654 /Filter /FlateDecode >> stream xڥYMs6ϯP$WX|m6f/j=Pes#ZۍH,{r xW+IUƊ~%U¬2+X!~mq8t,Z4S2/Rf7G}DMO7¬CE|%8+x+fx}^[XūoX*rkpPL <(on,]mrQU7UOlveXP5UWm矶zEo?tDsuC~{H\ *ə6Me}HJ2GS F%0/V(-nReL6绡>Vy.%p)2QKGH_8]?XpF`jz|~s/w"no!h?SlR] /o. N ?KXoW9?W F1wZݹ@ \bUF]ҷ3MnWbVs\m@aAND_H U(D.1FYN}H@"Cv8D0Q]>m]kɩLګir :[$A]_w r(f1S " L搚5lLZc.HԴx4XMA~#i:͸:,N%ƭx=Hf'n0L)˘'2<2  xYӬwpLFm.l$^ְ,^56ն<^ze,>:*)xpv=wxe3l"cc55LVO1Rs׷`Ng~2#[=޾.b|2ԫ[А6QɅ/(f@ad)/}GE=!wx>Ր=^k`ꀰq]aq \ |zk|:U 0ط'8fO졚[&;!A_ό;.7J1$Jr4uS/¢Z+aRv2hqELh>v5jjq6M5Άl)n빗+n\rj l;e˄۬<^g*^Tvng4s` ã?ǶCMAEXpyE*K;.9ϋRF&ž_dqcŎ1k EBRЌGKr!⸢.Ox19*fchES, 8+2 EVx.Sx±+EEBF*xU0ĥ 2.Lez,`1UWrHp|ΖԢ.w$2Վ[ "u$NSݵjE-t~Slfb#2y <)@u~OqÀgq' )&qs/3'! '@c趯4өj)%!Ip?ϿTsQPϺ P茯B뻂iZ<_UPbD0Y@*J_יsB endstream endobj 957 0 obj << /Length 2728 /Filter /FlateDecode >> stream x[KH "5~Lgv1^{؃Z%vr7*I-$1(JYY_>*34_o~xeQe#% 2SLC}}Uk>QĪPF7T𹻼zpwy?""Fc: l ljrIWs[_xIW7D n@Z 㢜t~[K!XT9$obꞋ2ZL|7*l&IX3Q+o.H4"דɐn ݭeQ1͋>0}4.bS9cqT9:0JU?.@~ZD#/8$KҤ&"*).ٺwz0W-7n<",wWˆFgN*ϲdE9@N"o1 c1Kqg4qY^t3+y0_횭Ǝ4`m7IEV%"ֶ%lOl 8YnjHB1:hMEi->`#5XW2 ,ҍX_L}p/4 ?aqMlӍNJ۔6[qv>9ح$+iX-9k#;0EİHt()]ZL:TZkX8=D)u+W"Gd_ڍYSkVΚAO*WH9?Wv8 p T x~3&M3:xfb??cKR;h9E Y[ms%(XþgN>8hӣ tBf-~ F xG#i~j 2J.^/K+t#L}x1"wȺQ5mTΒxflܺk ]tu@Q5 BX bѵ^8C4wyKYug0~}`9`ulU^QK#/@ SD؈ ;aa+A1J.\"^VVFV5rUB5`jzOS'gv73?}Wǔ=?nH? [#Rnº)8gr9ݑ#)2ݑ"?l[~\8)kSL{TAbHŤG,q[Uw %H* 。)^2 hx)tx)F^MOWE~S 4&ivn0[6-Rn` ^w<.hVakq,?m7- 0IǓ873<]H KDبN*6 LV/1)-8](s`V>RX]dz΢ ǃ R3iv_!<`\4xTZ^UL:an\h*W}ɴצ6.!MBp+`Uܥ.~(Fs0welG&ݨhe]ц %[Ζƕf9"R9rlɝR_,';nfz NӸo]~nlB9/tw JH*-1ԁ5#T2$<> stream x[s6_36LҤ9w6=~$E&uELlZf&#o?]݄Nޞ>2hb5e X&:a29^L>L_nVi.[\ukDp r.ӗ˟}CϘ]'f(ԆQNhF eqpL."&Q#A߹\_UgNK$s)$-g\MU>O7yYa38 ~|2h;h]pv@evv!n'-gXfS^gl^gwUC,bfB>n:!* E>߯Wt#h_VN.ȫ~X Yxw'"yc/-H"Z5+z/[ܢ.8Zx A -m@:6YU4PE2?hSmXx#izJ%/`ׄ?qjX^<%Xϻ`3*ʙ*BwY|+e8C;REF 9Etuv;ӵHfo Y?< Wdf/nI$Jy)PL4ȑ)p({R̒7IRCcfH $$&muDo]+I՞r[!P*8!#r^t; pN/29ZMk߿Yar>]tp/0ԨʽaD7t51)ncژSȓ7'=A1QB P1?pC' x1n=<(߭&O~q| ıT["Vxb/\wea`t|kitAmoH8dHs5uSlp(8^8cs^֯Nyu(/ť7T-_ ca `: 03tQ*鋿yV5&x˷o`xF8xd LnBt۲&% 8awV~_tiרEo_h h+ 1$[i8s|uZgŢA4t:tߝf4}HN8=FHE=D#!pGCGQ@!!B#ԳM6D7=p,w۟ҷ8ǖ"/Z8vr0sF#gL1DJcgOmrzaOb@}7o11cɬ#FG 7Omc>fn{o|aG㐰=ś?@DÉGsaB LmhHjJ>hj H Gi(%H#g<`pW3p{Sjv?+5Ɉ2tsw{0y1lr1+6xoɮe3`V9,R!7ؚe,a6dJI$ś,'?itAmÑKTHbV 7t)}O@G+ݻC^2Xيم5M7 COv0T$ $ifZ4 a:C': 7.IRС& ΟWo2^^9fhweeb@j`3?UԢM eL< YHN(m2U/gVdƒ3Č3Yr q%?`H(\`ԇZBIǥ?99 K%PsJ,g%\X5I{Zxq=V6vNqC8!;L-7 wE\\7?>Bs Ihcu{0?ASg_O^==pe} ֪tڸ1W2Vv+C9+`2XMG2NpE_%iM͂F *m( 1h3!*MO$WV tk-N$M;1c'Rf(ƌ?kN01,ϡ/d宾e^xC2KcXlUhwUƢBO>3dX ukxl`8ŜVg?M Z%nWC܋cspf< 8Z6W("|Ak`.Џ\: #x h<7`'89Q wܝNuνUa_$& WW"Z= U&:CNJ^htʄLX2f 崭ϒfXץ/ aU6luZiTU/z endstream endobj 981 0 obj << /Length 2878 /Filter /FlateDecode >> stream xZo8_a )~I]IEm>(2 %$77CRd)_܃1Iq 9;:<:y+HHS6<"Q$GZ111OE\~60^sAxa2; Гi =ޝ~rpO&q-1n2% N8 TRW܌?~_/Q]P _NX"r7PNyjƑY4YYYǕ_2VfxHoFf~\ G/!VVHuWRk 2T^" 6aו덋 7%[~Вo^g ŵVxuQ߯j9jQ5)~ ƴ.6wuQC&,ضۣ8Q<<#0ɔmL2^GF6,{HEڪhk`'2J:Ki~Sī9ԏU^ij4Hӟx{Q;)ɐ( -Ffl(""mW,g[S+Tw#|FOd!W:*4$/fHuT[MQg=u.ٰ 5jg!u2*8:n8NCHJ8 z si:SoM(%`jlL5P-sC M cEޒ4eqvZ >y-': 9X7`xN9XOU18b8VmL@c~x*黹x)PƲSn k0ǩ[0;|/7GMa_m;r4),c<"deY\z=N` ,; p *?$nqG݆ #dk~9`b=l:C-IX59lƎCpTf'>TiEݎ\yfbI.GBpXW4JG_ >=(ڑˑ=4~18]+5BQπo;O`_[=<0$ IvAH4 xx`6QpW-S Lhfm[{/! t'q~oȃk  3%f ,^BQI%y_~.d0W/qpϯ0=TW$!ϠQ_04o̹ :LraflU%qeЃQdgp)eIqbi]44&7C!>BʣgXĶ<%`^u8NjP<p\`YFwoxۋc94D3u@Zu xX%zSe'$4KAI&)%!{b0 !W"O*?x"D@{KվU\dEjďX+E *N> ﻖf<|8Ե:l?Vw {bݣ:Ɔq0nvma͈T|GK1R6<-E}ܜ |ypC"ퟗR8 \09!9˓[WcNj>dn223'yKrV$Ƽ0+9A ?I#jP[; hAuDu6EXER]##K *o)lUֶ6jf ~ٙ FqXXZVEz.\}Sp /$>-\A[e/B\j^o?( wV6F_ [NJȝ^Up͗Uud"/5{Mr6YZʋ%Lc^72qj hm[sUx_vGi_nyn6ڕnkͺ{i4ƚdv_K3*L~?8+q3<z~iok5jh@w_Nu3f]_Ill~)!-(LI⽏ d5nҳF endstream endobj 987 0 obj << /Length 2189 /Filter /FlateDecode >> stream xڵko8{~/'joIbmE/Ybl!urʲH&"ÙMe@Wԏ?\y/S5Wmi bD$ɃViӛv6犆r?(.$Q1s o_u!~eAcB&%`re]ƃN.cLihfw wwI"\'U~sF) ?V]eQ-ٻ1M(:V@SxFIB'99Q2Xbgof1H*,NDD b~mtDiW3BwJyihMB;ll'D25p-H&̱@;:K=YXHNИ$ RxɇNQA'A*,YV(\UӅ _`ʓb [#,ّ?;v_[מBB$;|ꀢ1$܂aqh|7XNmI-xA&#v`@b,6nk,eT_pw ]"fiTASt}[ᱬpeEe..dune/A8U{uAEQ*~e,v'^7Eݧ[ RM$lc+Ly{^Nooa) ʼAF|zXovlgqi3;dR";d0' ЭMぅV&C͏i२*qҨδ_E}=̡\@4|ÈPa))u@Mگ:Hq-=Ӵ։[n%1,ctb!CpxR('| Gܺ)W֠[tÜ =Cim(d߻4);ٳOGyΥ`>&l뵩A K&u,`|_?ǻ=2{B:rK5 & i7`+KԨYջ^l|P #A r؃&"\C2_ˋi<)> stream xYIׯ03\tRHsAi[(Yr$j_G>RKUSr0Io*:O7,&iL~;"%ifqH~3u~kǃBc8myXrE$}Z05Na"1JRQ4 EnZ\(#nw/`l)I"/I-BgWfof.tskOZ`\o5kB4GC*X%;e5&8R$D Y  eɥ xsKFM^7YJ]QǬ۪ƅ}07vw{Seeqpjʝ_ udk hyŒ!tdw"o3 TiTxJmz3wGB/6UWJ- >,$b3TSP]M,n,Q10WCe47΢\"/Lag9 K-|ҁ.%l@` Rpj=Ӽ1dy pJh8 *^ׁuV a3[m{s~_isde3頨XAT|…6OҘ0[.Ɨ=XV"pT&0mM(O3:=6heQeIL- 3sJl0 9cqzMuvgM74&T"&eiY״p…}v<:pُ?-)Hر߀ 1O۶t:npw~Xs7^v?Ƒ s.h *D|#O,Tu!./wbASDIݺ*MKDB}?ltX*wAَ!(䩂E0loaD:⏃`W ge ['Duyufni\I$I}1Ӊ3֭x.u[zO}`:-\F`ȑ|;-oEv8CT k4\*xʰc - EPà=ZD_uDk)}Ţ,,`̅!vzPIze=0^vd\Y.*ԕ7V]`}8Z>cuq++oНm0>@λ wFjN Y( 8Uٹ0U0qۏ"/u'f_eYj`?+ktU'$gPxg?a9>(WPӗ,bDƝE<=+!I¦K|.CIwͥ!9Drl%]b\NĄ'PF vňmX~r+\qiK.7~5L"n`b l&t J LhϹ@(U* R{]뮷ߣeӧ`=5`  endstream endobj 914 0 obj << /Type /ObjStm /N 100 /First 902 /Length 2555 /Filter /FlateDecode >> stream xڽZMoϯq6Ar!,xM 6,"!ƐưߞW=X-M{^UlC -I 6\5Rp T+5~CXSUqϡ冿Ex1&oX AҊoP T2^N-P5Chɰ&6 iApr`,E^ D=' c%4@;gm1ٵ{D#6y|qxȿ4t׿Q2T$b߼y]R2/WOVw~D()W˫>?mc#zB6L%^CWeuZ04`3A$S,B,V|\~6k يU4.3afPZP۬˺}D&ω LX$(EiN%RRQ +)0^M5Orj9}S6:R$Q`CUXSP8n \$ j}߫Q [5 +,Z[a֦5Ud2/h)4kQ7ikd}@NK3 بeT2F}eʸ]ƕ2k ۧ+ %G"XU7_4HbBlT⤂'pUA~e7G^gfhFylA=o~?͈"bA}W\žFURa_?^$#+}(b61YH?&Z4@pra"@M'(D3I@wYw?u݇ۓY>"^v{~z{rZ_^v'7'WwݫWoˏl͏kY@σ76<^ VLRjõ0UF0Y&=*YJVPciTrq70'P$M:> stream xZݏ6_1y*ɒ?R$&H4AEh3cٞnHk=ٴ((GRruWOʫXm]uYQSé lv)rD]PlzWUevai6EyW%w­VHA'`P7jݛ y#ę`Ds2༬ɉogHO]Ke8U' ż);xC~0/z Ъo=:7 ђloQ Q=2k!E'XtbINB[-sC-7h|1 oƳa?F->7΍qF!H+\XMż/ <>% Oa㹄py|Yhz7iW1HE%z@x@Dq"HOc F*pJ;y>L8Aݦ@L~Z(he"u%grڙCTH h%]s/&Ɨ!igÒ%Fht =>H{HQ Ľ>d>db)9}SAj|w.4;m룯MTY3o nvcXS#!ge|Pȱ(BEP͔uHK}Jzb5P9s &`SdmКfr BnA鑊6Xw,33\`,:5="hF*i %USK$OȎRVS82_!sW8 K<`4#NZ}2msGLH95 Zv+^zڭH^;gq1v|@0P39< )a,?W[v\aϛ=4)4!{ ݸil?@1qFgΛ^m!#XtF]`\R c;(ƕ wNj$ gb sh2}nA wsK'~x3!DCq2ĨuKCԂ 3 @I|vcM"h#Rsm Ǎfa Pcdk7|qjt3N6|zDFuXB ?/ r#3yqn:?}ͯc{@sCẆDlڊаMٌ_\zG)D C8')tɊ?CŰz YыsYHvЇt!&O6EE$X~(Z>z/븟jip*IVQ,Ce=5]c֕ 1qpqp0+ [>kZڿ=PcH>?Bs̀\C ؘg b1)"GU!we?5OaDdz#<&MrG 0ֱn*o E/9aA``'CU各,=AljH7EYt Al3؋H> stream xڽr]_*.9p9eX%1ɃY,2|}{p@b\~ wA^7/^_˥WI%X]VReAE$A&j~Օ`O߮~dtdR&+y= 4߈hm͵%d*]0ŒoWAf] Ћd%(J2W[i! sAj:Vagk"lDKU4 H/ܔh϶yosgn=Ef`o:d]ou3ڙg/ ן7$^fN45CĢT217;ܶ-̸Q)daQq G[n}Ǝ m]j&̑ X5iniCCQPMj^{wlÓ 23$A4d>ЭnoC7 R9  % ni@ZD[$H~~q&Hh}c~ D9 ətL5 ӹP[>XT^o>F?\b1N!=dpp .l6(""K H_}'f۫dw C_+{adic=qq^L-FMI8q/ @:ᠰ-Gi4 (_: T C {Ј)ܑ KUHGCwr*b6`j` 0es 1PP߱SeJ͝+AqMC 2_B1qnh;:Xļ MOUtvrOLxqEEŀ$(ytb(!^ѫ2JL}y!J'K a: FLԾئāLj@.f1jBH8B"\” A{6d~"!Ŭ\4d 8RJ7P1ڙxco9p !ҖVgbCuEvXba%!#L5ti17Lpw>@a).eGNV5_}:,8AB皺m]Ww8*cz,NuelX L'[. hg|^,L~Z !Y1*P'>6r:5 8Cw54aw43ܑfùG XUk pKEXjhXB\1i"Z!2`=Օ{X ,2$TmHzֈ T uU& qr!BH!bu"CNZ;D00(a;/CqH͔Rʻѻ?5O"ئiF%tSXӡ-ʒ/SŒ@Lϊ놞( ︯b:5yJ " ?zw"d(Gxoex=8JvD !FJ?/pa!reFNuaGsMٗ>`2a{xi=2T7z~\bkFu%T94!.ݽ[6ɞhI'˭9>eX\y'n %d5ƽ_pAR"ƷYL^a~GS:_\_aKx^4Cefy{蝐oE!"gYswh:a<ĺMz+١\C,yTJJI;74on/ʶ ARLZên8PU,F8fl1JIIyJJCTc\oD H7Zm\a{\P`IDme-Ի/u3hdfFϭJpqKIp]4lNG C}Sqc;^];?{{Ƌ&k0=#wئ( <\JY?{1V.v熼.c5$L~)wM__KҶ^K2`qg>:uթE2%N:qI^u;.qFW srB}o cܛ -4?_Nt M~祃Sc`uWQE2s/cB =NhN8E\`>eSsh.:i[)wH gtVIM~fB> stream xڽYK۸W|1Ir43.oc=Te7JF%R!)'>h=*h|T^ċO^\=2eIW2H gW={Z7OR1)X1)D\ Gx}\Gs~mi1.x̲8K,,gRdz{i+%9Yf-,fѩjʆ^>{YuE/l6lRDovDx,z8[ZhHܔI) WRn-yC tI\d,:om^|빭ÔíI,^_}~E%L21־Α%B,V*modtmQU혃q #"'BU{~AD.N#I>D2Q [ m͋l;U<=G5Yp0 XE bq}jlMq<ҳxqrY"=nGAU9)V~_*JטGEtM#ǔDs NʍatmEQ%m޾Q9O.Z돃`UnCvECd |Dp5xRdA\t\][a1Zp:mĭ;kg܄x𴢓`_X/8[! / ݠ<@λ1XB%**19}ô@C`$X>rʉSi'9b1)ˌf$mV5jDžSƱ8x:Q5c&={ScxȟNi)#$ \DNrsg.GLVsx!k)h6ft4L Evui3K~@$88*(]A;ҩƲod|@x0A|?/*!Dx\X"=99Aƙ@n7SO ͛rW$,S?'R(gmjmZXTB~!?{C_ ?:Œ--^V\+(98X EAϖZG.љ*@Gna]SM B Ʃ禥3@I>]Dbcs>7JqU0‡|؇L (d Y=}'l^dC7v~g[pc0 r3cIa$~P%0IP^XMAZI/0QYCz3zIwU}tt>}4{3>&|dv._U_0I*6|p3 OdvV&UӋ{8挀3l+P$:.DYYnY0RRl-}޳z55+IN^:6y&)}8׼YLgpy9(^v\<Мl}g]{rBn<&&;n6 71Y4\eewBf綂#zŒڧ?)̊43yLo3d2ʗ33hc^bֳ<1c#6\*ՠS{(Js*e|Տ}<V8p%(@ k{E*߸ϽXOh7}[Ӏ>} ]/[Do_*}=PڹatU>GwpIu p\ۖ*ߺzCU862Sxf}|Baq 95Dδw5`7T~.høufI>/{&g6HVOJ·~REN}0>_ jPxqڋ,.SqOk[[8Nh7Dw :߀m\=Q;2؏TaO5Ҕ lrw0S'Pi(aٻ"מ먥h.v$ߜ;@{x9wSæK&]<_̻sc'= (;(+Ƶ{O?!IeB`PMc?P./϶oQRҋG{W}_`ҷiSP*ߵE0\ T|Q}un.\P345Vj\ȧ:4s /ũ>RTCb 2ͪ`2B_^Cu7pf^01O^P> stream xڕVKs6WHΘ(>1TmRO:=duzHz)H☯d\. K$,}~ .~<}szeH!/K,'*Uq䳅|g ~< BP#1.xʢc*$TLRavZ0f"(!yƓ9L(B6/rhUt=Z\esQzU NrH}WpifP/$,};yzztBŵ x3YW[{3Ȳ) ^ecd_qkYUS]l ٜZ ?*o4Je| 䌫%@6s.벒=nm_cȉzm+npJ[l~Axy!`;f]J B`oq'"fs҄ޔILE)\ga~!'04JPG}R8#"4є̿ltk"%]&$tt;S^ a,R85Cߎd8`&)n0fiLbgA5Cxtiqq&@"]9Pe;'ae)L\V)y%2c9E[wLc7StruE\/nJ8CljԶq;]4'bNҫtAM5(׺ ,FSl@~lZ,9c9r>)68$>"e/5L!յZOี|WNW&_0`|zlRظEF~ݣ,!Y6|}38, CLB  g,mQ:j5~"!޽'ߠ1FQ/֪{ȭ?MHF I9OWٙnH>!0d/bbF endstream endobj 1099 0 obj << /Length 2365 /Filter /FlateDecode >> stream xڥYI۸Wrb>.Z:$٪sJ t[e#{rHL v%W_H}}?LRıV7UD8Rlu[} sgFG2B =o$Mn*W02ۿ;{jҖ~au<^R)`ڞurRFxJyqZ ҕ"[1R &2"5  taۮ<2QSѭU@WE ^ճ8S9DP};q"2fOeuCƞAd{4禾mc6:UF![@w;zap,1YS-Iby=SMJ竏KGY7~ԗ3 ͡d[,ƶmє[sz+ [BCieӧRe2́yyQ9ZW:XV˙t\XW-YksnJ; ow|g)ueWP/^8l;؛}Gm" "[4 fTH1ӎf{+h8ŧmK-*1jlxsp h|NJR*yk=mKLbUڽl:(ʼr*} '.gy9el- H/[7Tfv"SYD)P/ ah :Q ~4#8@ m&_qQ(zNV4g2 Y4!m fH c`EN@9zO{FB/?c/=o<h맒sU:]yͰ9>5@YRu4,#,㹲Dp9TuW8̘!Er*~u!\ 3( +p; /^KEn WGXd\D:*NSrҬA|`tVZYB- Δޡf)c:ٵj2RJs]PCq`W6p/fLޝaɄU8u>`o+e |rAf%T/e{{LNS%K/WLp)^7bRibġ?sP,%@c9dDd9q|~w_:9}SBK$LIJe__N;9,]=uGh}ꌮ]V>=uIO Ӄ\؈$cԛ>awէ"sj H4躬<'uÓD-p VfZ|IBG*t(Go(.|[9R : PRb{:"Ъa=T. TOf~pɨ#SiHJ-4Wy^(l*ˡ" *gHL։5(A 0ɦ0|}@9Q{R8M*̼8Vd`< m9=iL-1'M8'i;h*1Nv>wg΃e!1J4=Xߓ|ƽ[&t2K/xuQQ ľοY8vxb˱.$U骗d%$A:7!=g}O8}Skwo14xk MTGC[{hr`Ƴ$Xzm"[T\P`fe Ҩ,wҾ,q ^׮V8(ǡuE HF>fyM+e~ih}:;~\`ʖ\gS@ [ zkɲZ^7yfwYwF[h~cƠ85Gۈؿ.`B> stream xZ]o\ }桺H}ƢNҴ 4@GYg=xh|W")w.gsx dJ jbxg'WS\MT@PKO$lqK[p`\[EjݤX#b@01bwm.akïAKMF8ICRބܔڴ5!T&F#!MRIҴR@"9x9sjsX`,Rb¨:NEަ8m/m.v("RnFsio8I.QL Ju3*& t(up U0J\.LHP)ŀ4)2R-mFaGQؠ)W¯ѓ_3-aTi^qlYiÀ2Ms04VhN ެ48Z))) #/ lL`.`c'8 wp6/T87aU6+=z  9QMamk3yBioo8ǹ..Ӌ{|Oó7= y# 7ۄUIjF}36G 3<7?.^Ņb~q=miJ"&Lj,X"Դ فkL_&Ɨm hXʑbi0=e̩-w&LǍX](7 J;*P9"aI BDQ=194_wu69C\\6mh%["j6N␢M&"mX\B^b[/^=0 V7>r );}A_?CWAOs^=aymf{37Xf E-gj"WͺVؾ#䪥#Wo1H)b+p8:QXBlbS h't%P-TfguVtytz [ ɖp^mtvF ,u @G!v;yF*dwAedVjGޛ #_YȞ qÔOr8Fv inJΏ͍eBlkJf{9>ϧj#)˂PD$[/-jG-]yy 1>C#lNU=m>bq#J&V`|?z0&_4#ϒL ZPO`1Y[+Gm< u>l=!EuBE_QGDV<""Gn(N%VBg,6m9>67lžmr9 j_-dW .|r:A,oir mm=|p^\v>}dg>lv|2N糕}_Ηl}6[-|3+fcoœ\A4B1G޻oR?Ho^AiA d8&T}9vdYILVx>1tC,QF Ne2U懱%[W3/;~[ʆp~XQfQӍ4y,{c\ӌHq_I7v=pۤշk^|w>ֳdv~(=J5SvzM#Eq (]ϖ"MOYWi'XUEdf20{tӁ6G"%=nu*Y >n~=*@U"x8Nd3w|vz^C{`rzDw<bnɅ)t0̀YMYFT,ר8a:u,f#8m-&ƣ՚l䚲 kf]#lJxxq q 6wSZŘw|M+ZjSL NFͷC#2]֗Mw]"'^X&BKwwo_tlN6=B&}e7ώ-?&{!zb&kRl,]5&ta-Яc U5何["dąڢV]#A\YyY*aS endstream endobj 1114 0 obj << /Length 3042 /Filter /FlateDecode >> stream xZQ6~ϯ0r63(JT^E[{O Z,t_oCR,7Aqwh"3omxXD^ū7IXE|q_"gy.YYΓn~>>`H3XLWgu,kzWj$u~,4-&ԂG,r`2rI/"+bpN拵LfWk^حo9Vk#u_eSw?7}Ñ/f1SH^-ܿa|x܉NyZ}O<W;jl{OÉѪo~mQU&R#,\NZbKy+ƕJF)xovܾ8AY?P-ll|:51/R6aʯ:;SC:,1 } nB ,ƨAlG O:ius`]ѩ.{.ELƊYO&[-ܷ@]%<Z5F4`릵*"J!J!M;~$Yz z8^0%)--J&_ #!73s7[:ɻm[nn*,gHFE+26 pEk/HUУ/P6"yk9dAp]+֥ D O d@;Ds {:&i|܃guі1Pq$M oKKt]bŁc*2-p@+<4J &ם7njG;6uH4J.Zox( ODbv?D,WXu4X~w͖'jf)%r+s;)C-(Ohf~zΜbi\=Rw֨F~gK\WN1>;=χѤ4v¦9PƼ2&M濿>d~{2 Tk5 o=_˾y2v𺠞Sz3zZCvY&I!Sȣb 417nz |IWx6ePgdnXӖz6`K s?LJ&`v'7kڝ(bR)*yShFF!u@G?=~fyuC|d/LDXbtt9@"+bp. I8C fXخ,D2˒lj4InQûLFa+8m֧bHlR|˟}k9A< /;ܘ"*s4C{\^P[ ͍ws5I^&q&ye|6EAj+bHO%an }U ڤR+,\\M dPz 9 s|H=ۄ*e @Fod^7_ M8JgA@r!hAIz}k?v`'krΗCԲ d-U.?\F`!}I a˚Zp ԩܖ}j HAsIۻ+Ib4A $&2R|8'z.AR*aq 046w#BqN<Ɛ6k;gU)=_ͺǸp; 4'̮B֏DiKuqC)TLce+e7Z i."{2Ic` €G# ƙ8ZՆrq N,E\q.=]\Q%u endstream endobj 1122 0 obj << /Length 3252 /Filter /FlateDecode >> stream xڥZɒF+ !Pd-#{N v"ndfe+eˬhśޛx,fP:YfI,E&f|SqZzOZ%0uTZ+-_χ?qW.pt!#E2?]ӋwXȈHZ[ƖwW:3?۞wvEՖ5Wvw<-49 CmQ:jjrW\1LgNᙣZ©MNwDK2\(Z~vR5O 7!?0L3O/Q\n˿%-W_+󆏛RH#A;VӮlܬT@#nNi,H{\mـ֠܉(*#jyY,|O?ҮޞW֗2,nڊZZ[8BAgf6&`)TX("&-Ƥ#% 4 8@=tjUpX9@ptG4x|bH&#b<"RT2-dê(%@Vn Eo>L&q"T2_"8YTq𫛯^WʾҌI #Ye0BKi,3ޑwzLtB%k(mŎ~?{6- "oV2]%Xȑ{/0`1пϾb-@)ȯ-D@&Ho Bt̾TåI:Er??4}ӘH[VJC"q &*tXXE\f? eS ǰ= I)m1+)to}z-@sD3=@mGw yvq1v]לaE*DE^jո}uR`fl_99-v7m3(J\'{*IriBQnbRVBib?x*8ƒW`N'~a!08Pb4 YBh}ۮn(ZpY38UqV6pB jm+^#mNdpW]93'IxxPS7Ί¨01J}z ;H8)]Cztv6+%rv\ƃL&ΰ9I@Js_c>)MX܁ÞB'!C5vsLd?D.#(X!qWg< oeӽŖ /e1_o)~?[7 J$f墉n\7ʈ^;Ѓ8d& bHFʵ1전Lܮ*4[\K\Y3 Jcf`!h2ҩK3м=š\jzx16c,Fy9>?0ӑHݬ;7U;26,PE}ɵb mHI,c;B?ٵY-E#4`F97 Brk\y1dB,>]9{"~ `;&!nes-) UE 5w%nh4gk(C&I88R|]SSɘbdYR(ߌßJG b(8hgŏ)Xb(yB,xej\k6ohT,y:J Ξ5WIWinl4y~XY.\~ @1.?| \A>m  y|*ʆoə?N#1G'?}C@jY8T#gMG.pX1ms)p#Q9F yj|;`WVs,e;Eb>nSBL3٨-/`kF$IQ;Y.SðQV%{jjivU>!0a>D-UWSJeJV,+@W$7!,nX at}$^퓶!:?Q^/xdc } \;g_Χ=$!犠G\}l 'd)Z,$,[KYEOU5r@U5^_9P4ŦpQbF~Ȥ.}.ˆ>,Q20M,Kh abOI nI\WDח1i£V,ﻛ)c endstream endobj 1138 0 obj << /Length 3410 /Filter /FlateDecode >> stream xڽZs۸_31HlqK&7irڇh 5HI]M4ARf-^Wq0"7\\mJ"ϓIeZ/>./h߯~f^B+2*ty} br.e\XLg 2 zrT0Beb/ <ع%<a sEخ(RzR [Bw9mhQ!jA:J[;Kt 8Wyyԇ=)ƶ@OҾ%>aXCz:1@ډhCf鮱ݡQAI#20:'&&ݭ3$\kۮm} ?I.7TG tb˩ȳįts_۲nN:u=.đ0*#N8"P*Nv k̐4w-YZTNHb8KzxUT4楇/+Po2w00 ߽#hF3\"ڌWz1e[,k w%j&Tjyb2qLu}t6YQ4Onj"JE)m"\ln3HհLb[n~,WJ\]8Ue^CiO5X9a%dqA$D% 'wB5.5ѵ{vw.!.]1G#! ړwB?qKӲL{Yn,6R9'NyK)õ-XaW74inmkxq#"JQ`[ h.,$Ӫ=! IWE)JKƂpol I I1}ʇq(}g!Hk jx, guìT4I9C΃'(m2p <)n1)(.}փ[؝Uq,"FWv~_8Qfuh2x3adz\W<0*88Fy[bFF ϯkpYgɄcB!8XT2t2Nj''‰q,z) 9 j 1hw[8d؍eg%h3D6|/K4TJŏ%q=8)tTo@ha|ɧ Dy4|H sL5.۹Mx=u qJd :Vj~ertct'Y!%>lxjmѡ,"yEs?xn<ơWHPJ"r$c+Gb],lޛ}v:[G:F_6ψI[+| ̒S Eb%*Hw=vR??X*Ve:c7)|PF"H[x +OO|\ӜoqjoeٽA+`{ {z1DAi;o} G`Ivx}+§5\Yx7xz1Wᮉs-r_n}YܻF7 sa:{z ^o`IYhEIq9}S4Ŏ79X4msGKW!0Y !59&>/)$47B%fГLq`eJva3ēw 6&{~zW48AKB^SAamhG`xH^w KPv8;ԛBߵz,ShS;Jˆb(VX> 0T k8 FYGÊ 3Lpf0q7O^fiD2nBf,aW1us Pr],{[44Iŗ5Se IwD2(迗 1 !$׳c h#[M;[T7kC b-S?v2G O}Yy\<(F`y}\Atx0yvHMaVϱ? [_ tsۛQ3pwUHչ/ΞCl&7D׈b)$g$X>Ҩ$rqet ,^429 v\[JϋgnD'8Æޅ:Bpb jg;r$+EcWs*uFj"GS[75~Oo9zDqkm-ʲh`";v$dR&yx# o֏śnhYUM"QFMeTv&n30Bq&ϟ?0o#m9?YLǒ/AF {"b3_Oͱp\۷(ME#\E5FfG 5_'.*Ym{p`ϡа7 R-t7/א,Dg(wZdR„t*+w| (bfD5sP~*YlW0f1Vܐfɝ>Db =z9N*4q|6|]'`a8;˾X"5 cҜ~6:}Ww̉Kd^mZ_waibGOJQo&FҤlx8#yT0q5Sn*`c6B*ա_nu1쑾;nw3(wSBfٌ: (+ endstream endobj 1146 0 obj << /Length 2368 /Filter /FlateDecode >> stream xݛ[oF+?I4%E 87c 4&R#2T~\(섒b&93w.33"ٳ'2 6 cD$Aj].e\M㛫_)8bTAeJxJ]͘Q<3^$2#&ΐNq[ '4}kAhRK2]gS2": +DW.ߎ iuwYuR6U\yd]$e~C4 H=[ Q0=A)_C&@)U7H4ɽQG@Ra;V?.͗U?-,|Q+PUMYY'ו|EiJm&dzS}ktȁiJx+ǣKy-1I1xtzuIBXo 1; 6Z6%&68B)F)t^(ȩ4Hׂ]$YRU^^GH$R:Gb_C$)f\i/6˸.l+.r'}Wi`_eֈem)81Ί$NE\z(]^^}:G W0 ;W0Vg78Cޯ++2zwo?K«03J*AĠ0,x^&ݖ%HsHӭ+}:pDѦS SE b5X@_v^l6ml ׿xzz*@_Oc2*Y".~ux!omfޒsoH]Θ#BC@JɻHE,^% d$necwOFޛW97=js#u|'o K#&:aně7KNُ̺5F\3!4-AOquK $:qE(9<30?: B]fYI=?&օ.$,$}J?E9br=zޛX:! d̀zn7 vhIua)Ch8nt! M kN(š 'hqRWX93Uc=D f[, 뗶[7;i]Ih?^LkDA7=m>zLV <7z"+0N#_sRu+$4H4[uiw2I5K(xFٿ#u0on &;X6l#'߳~wUl+ߕH!EPİ'셞^z2gpC ^DLRz##5R"fl B=9E{V@0Vxl,,mQ,s,flbӸJ|:h& 1 CZo(c1 D]fb{hFeu,{0xv{9| nqLbtIyvAxT)!KQ5Xf`[̎v\E[Dž +b afIW-0(x!eyhsgU›f0UĄcPeb; {R3F)ОX YS ,)ӹ4Fv&wNЙmn?& .9)MCY*l!~ pj27܊Q^3?CFY}L _u[)`Op m*(7]#vnjӺ2*63zL >" 6)gEsPr*hÀH֎җ 2fpm;6_HLeHW?3/wNyK އ~[ڰLyv"ܶ'۲9ʾmAumMI>~YRs~l,ζ/oG,0@R=~@D;5҆n9 pnK^1t@ovy65Qvo-+XfGە >>~3:]vv7 R1vѽ,_;4z O(9Et/__矟sw->LN7.\n!ChHav8ܷ\~Bit2S1R\ ?^?ho]T/j =7'DڛG)ک(/dv>d!z:}tb!b>\]߾lý$S ظYC? P/ PR endstream endobj 1150 0 obj << /Length 2176 /Filter /FlateDecode >> stream x[[s۶~ȩ½̸IIMox$T"UNNϒeIx 36HZ~ 8p4>\F iIt5(Hk)I&ЪWMlXTiĘaq?~Iy>Qԇ}Owo\1eXz0VApk+ŽCq\8 O %69}_A|IbJ+봜 6@mQd2I*oD$i֌O~ 8 }<x>B~L.S%g>5"|oj9OMemC/m)D:4mwKZm|>o>޸ӵ{>ӫ.v0 ^6FW\={lVԵkH8! 1l5u6"@ʅTBKVQC ƶo16q*_`e"8'=QE4(Aǰ\j Vjb]Ǧ6s ehT2tTԎ VQiI]H[=3]C9\)ԥR?r_"IP Icc9}E_x /$+EHU: &~tMsсDs +5n!H6z+i2:5j u4eq[& E}Ni8>0?`9J@D!)Hh!Z44DZ@ ['X.+y5ު8ְfZD1 !%_hw]Lh//Rz k> stream x[r6}W9kwpɦʙL\U*g82-F%qj?~$($ 2U6o }I2NHrywh06a܀12ъ"IIV~Ӟ Lcgu?ӧLExfa63&!=$N+8k^.I(P,MO?&M-5b2$vBOrt;F_dA1em2[c 0alccΒsdCe>HrZ_+fs(nٲ-9{ISO.It@qTGFWH `Qg7zEg쌟 \sYMfjqy(]I,j(!rh€ֵbM>ѲQt/!UP Q*tۯަ51|!~"0W.Pok*p>]Zq]l)3v:t(*=JӼ "gb}1zmY۵.Qtc4/uQ-}Lh6oX 0ʛ⯬u Ə.q*r/S0H'*OWmuYf|w@ ˇJ"eEqKw|\KceQsӊ #U*XQh鋕^vNl5Q 0N+c[n̽=$@#D i`Q ~ ̊ݲ93)f.~l3. [ ӥMR2uUܪaWs^V4#aVƁ<~Xw[^#3,%bb)SPZGᚌ+ }8ő^FP>Y8/K1)/- Le2HFXQĈ¤`s۬l|#T # iq\B 0uL@1&w cAN7¹p>[\qT(n8q4PMCˊEr*QvAz쾲s]E6{_vk[Qlrp`>7(dL?^ǝfK$~>28{J.'MytL,3 ReFjŸսK>^q0_hW|]$&iSgMB/N i?\l|P a3.!mk[*ECa1' ônV6!twB0`D~RwX܉?NS2̛#zď,FrscNWO/LJfe=Ƶ0\TI`9V7|h_aq,3 7Sble co]g͹jɤXZP#ꑮ3;1|{5.&d(ysȣ=v-Su~.Z#t Tڨ].$!ҥo;򥝿Yɖ:gu">[mא(sYTh|`wT{G4Ꝛ/{Ƿα>/j{SgW4 uvaQ[;~}$cuXb⸉PXB~1_;7ȕa򯷪Vvo8/.j mozB_Of^k@|.'*>Ͱv.H=ԔNibs ]>Tzm;l&]Z2dn=?ɪ*e N|RQ-VdlN?a endstream endobj 1162 0 obj << /Length 2475 /Filter /FlateDecode >> stream xڽZ[s۶~/DFq'sqM4Lg)L$=,PDY,6!\~]'oF'?2 1 F2A( R8U3]~N惫g1WJ)f/gl˧}=KO+EHaFgH`Ո C;mߎN>!`'(ߞ\^ ge6 *D"4͂/'[U0TRY*@зYȌDzꇵ aO(Rj $B#$4*0‰nb|^"p$Nvr .Oh#~_Qo^{ wɿP+@hA*BGØa Ŭ*;=h[(DD$\Èńw)0a8) ]Aa|dF %NLƣ _N 8ЇQ{Զ%aqBwyq礄7,mdi8 [!8hI%BUOdħަU=v⵽Q,EWKxcֆ9/8DXQ[ E"@MDBMTп{CFr:"O&f0{0j$C$9Ħ ʶLql&dig3&i$Q7$e׳ϽeLL%~{=&y63v3Kz+ٲ.H'sǕBwH?!옢"\]H2 qf]q! 8D N8MCw*/{qƍALV}f[/|Ř\}foʍUh&N|! sGYh`* !Ѿb7򸾦+$Qi9 Vy}mUN9>%z}FIV;64VXw>PՃ9!]TJsHER^ eB9$vsZ!|:it6ک[9ٸ?20p(.hyoׅ,ޱCnE\6?^NfkX%E%Ƶ m%޻ubpZ usH8<[^%z=ݠcna}j~pKv$d0Ɉ~ (@V[@- i<$ϬLf]cCEòG#xlK"e^zt^l1 0"Z"6cT#Mwk1eN3nDIIգH74_~9"n`xL?r+"a"%`$| ̞Z?17N;Eks'GDAh0##-hS[8|*?dmA|윺)`xB= m=pǰӉ9pE]oWoPZRe>c]Ր HɫGm+A_4GAO Zj Q-ymhh\2{WiQGqHfV ^KF5.텸][ʸ8ol/0DJ8qlQg4gVgL4;Bo=W+6 7@nq$ Vhq6jD9Պ&kl:=޶JnbvIO=$N6Y8SvԸN<)m0`#X=;}E=~ ! o[pcLAp$¦u:k> stream xڽZnF}W|i{qchEhViV+S]q9rf78ptr.#$(3)I!9D#]@]`<*^]<ۏ-d8dSb?=j]l0DT•hhzqYK1!,GwH0bJjC]Lo. JF i "&bb]No.X'5(g5 X #'4r6>ix e)o;FC"FUQ/ޝ0#+ ڗӛX`S2͒|6y3KӸ? q?v2" DQ_a$YԪ;ZW8+q?-l AEr{u eKB#E9a˟[LVX]!D`5AD_W~L3P5L7gV|r(#MG`5f/GxK$| ( 3Ӡа$HEܞI]X!*pXUyC \LԾѡɍ@ 49WqjAEb"Hp8W-aB m]D CK=E0 qE#.}z{8`\>{,LMZ~3{ņo-' 2]>K}1[U. 1:OG"km+LLw<;vs;>L85Kj9UwQ P. m5*}e``A R)H(Є?3vH0b*Ct;b9R"ȡ1>xavQÀ%O0B Y#mnAu-]IG͈)n#d&ZЛpX]@ 1+@9qAՈÒkXB/({rߧY*v<ӤURQT;W.W͡ "!B:"!Ft)ЂjGwS a\II_*(`+]vWL!RK bzcJs)r.6jLAIFiWK Dq(tQ 9t@z & ap_lsV_* endstream endobj 1170 0 obj << /Length 1260 /Filter /FlateDecode >> stream xڽXKoFW:Q0 (N6(Ѓlki-IY.)KVЃppGGޛq\F I4(3)I!<ϢI<3[]zՆ>Q+J 2~ O"b;]0tD02شtJ=FnG`#" NJ4&8Fhh{mE(>~0!FW€$VGh'nIOހ#lZ'd~?#r> R7dB Mu2a/O8D\_'}P$v{as 5Gg4`JГ)" ?F!8nZ"aNRE +y/8TU"B }Ng4q7Mő'TQC>nԒ"OS)Umq>.wyEF+L@ sQ,`Vs6 qE# =ZC4Ose_R tx,#=<ͫ{2lg/˫țgUlYYNpAwEen@E Ӳu u.֖""g.niqϑ/s"a V`&6+,04<7xXmn[mC4]}$_5UXGҞu۫ @gHpSy=6=7ί,~ Vk_3D좫)*}yp o[ӬsHPX^̞(6]8]ǽA(4giux_T tPّl7TĘ[No}:f ?NZG_u^a B)1#<ڼ΅Hvbaj]@Xi[꟡^}`$AfvJiFsc&_fNBIDz>8Z8w HEDS[ C+\R` 6/Җ_<ޢlQ[.ATS֨x ^v}_@bM4 "3P_[MV$&NLKg*Xb[&x1SG܁oR<1(@0uJ8S=ͽF !˴ᔄW_!n|](ڪ? @ ʕ'qm endstream endobj 1186 0 obj << /Length 2009 /Filter /FlateDecode >> stream xڭXK6 WhzgbOjO#d:I&ݞ6=hmV+KIζAn6ӃG$E `#y߿Vi$9Ki]&(%F0%f?SZ'?o޽GG7AfM Zg E޻{.#Y7y1l2D_nӵX^miGWE/M^MWU¢p7Z>֒S6W_ bdBʼNK: X"U#olHp/󟭥5,Ml6iPueoHoJ)\KX>eUдaFdz-Fn0?;]80 +ސ~[Mrfș:a)6<!+sPƫRxŌx>CYwk&EvmǼ, I+Jʭq708h&qV[)Z2) o]w!&fAq] M~li> 6z}`rI'L,e6aM]m\SyANJWu3ux8zcƹp}nco,oPC?pGY5R S{@_*ņ%4S:!i+Äg@SgAxo8eR"a Li1,sS," D:w]Ij,I+]^ˢ,vVk-E LfIόfc8N~|_ZAZ[])c`pr Ġz < O6*.򪣩 GptaKKO6xzeq('zN}َh[YA>U+M;?Iċ[6o=7;4y1$'^E8zN}'~ZTD$LgO$=% PA/q(/Xy ?S*Ȋh3DJCk Q$.o d>.BL:wAF+p=pAR*tM MK.Et[U;͌˲=lʎ-_ i:b'ܐiŞ۵򖓐 T:Vc6H.6!!ɕKn0f˞"5˹FӤ Ǖ|[>)/ʲYhl6vq).|C$BhI8E ҟKVhUH[: pO864P۹p245zlj+WvnnR`y| \GCM8HHz ͟29vHCuwh;$G2ҕ zүW!,B߹$CrN[Ґ@.0\|i 5,7pIZ>؞jL%'Y{.;UȯVMm*Z)-qh \6' _ly΅xT\;hH b;p DG!2Iy0KZ1sUYuT S)BjK _ gdAM,f/7C6x߼m%"M3Q#b&f!͌2TKF^0o UDOqzSS FSh{)a_ 1 IGh R Nل"nlϯ7/=m$ endstream endobj 1202 0 obj << /Length 2470 /Filter /FlateDecode >> stream xZYs6~`I#AL5ԎwʋZen$J#RqߧqAE_ߚv-iȜBT9IYDIR ESQ؁Xm[opu/ ɈX 1Fx (`^ 𔹙>j6 %BPKR0 nƍ4VRC&= 4mj |8u!h.Ju<%$$6%IHwcÒ !;p薔w`X`g hdW? @mS?ҝDPu$YV&=W:Gbfd͞Zbq&d LKjCR0 C|#7"q^&z?XXi VzX D#IJ`,ʔpj!n1Zm M jyueQv$U ؓ */ |C)K2sV帟]ֹk5qᦣf+lOu@*-VL{T(4Ы'e|HX:S7Io!" ,M^5TSi?bDëgme䆰УI1)I,\\>m,Ր` ciMӅFH݂3fk'ϰNLɳ!AQ{?n ^0*aj,$"'O@f" -^7|e#'0(P 99GDHtk_CXXy~;.q ^/qv'7c.wwoZ8U9զ%R|ee9aM`Lv]]L;;K4GK]xQ#ѷmx4u%vTCڝTJ_,╓na!"bN̮q!+(y^2U; }tO 4E&)}w=}'[dר""eTP 5)qFzVύ# O^dY z R}87_ W  vNjy_ߡmbQֶ&FmK  jr{궰&rӶ[טgV[J{ŭyW11VE]kڽ*iB 1q! j`=uC3hE~+^""M^z'R.!s" 2 ^KfՅuٵ T5|{Cs*wGM4xXz4_."71_'H'6r,+, L?6sgMvgяD?~hr(O{,rvdB Ni< ڞԻUYg2>%e3i*"ǬXD{,(|ՒiWpcdfu;cߨ?!K=4gchFa{ȉ-v /yv_ P>u<S% n\qX8ɍ;,ݝ> stream xڽr6_;A0Lm2tn7 ˜RJRu{.Hljls?8rFg.su[f3fW3.r,SLήfɛ*fsysF$g]rSqwo~s]4)K6z(i ѓ^B'3xOFiOzQj#/ѦY}’qHb}H_x1O>; kTm˹TRi8Dٖ˺*sGՃfAۃ3vշvu4>s1vvuk<9C2ꝪJin`+gx0l&B}PlVy} ;Jk3]-7bMA\Ȃes%|^ X^,ռt 6؄ Zyʽ(ܺs;әf5C?= zO)2fq1X+Zvdmqָ}򀜗48!5搿C]c>uԟ8h1G$*io˸M;O "E7AYРo^Ij…źnz}>pc袎J2;?1(,8xBVݯQΟA;0q#!3}4"S{chpbZTtjrL照:':)^;^E2pkU],kb x[5U7#{y6hߞj`8 w "Ƒ YL|a4&ne7aaw^rUWٟN KE> stream xZ[o\~ׯc%!` Р4e1$7\ث]u*3<͐M%[MVN4:,qhW%{445.$:,y JMQcJ}+Sx*a6 M?.nJsX"ڎ@+GI#z"c%іO:E: cY3X*B&E Z%hB K&1WǜG&pCF&%T`MBt9K mH|9ZcRCllRX:-im*I7I:c{R5Nj# jmФml{vKa=Yj>OFc3\Xyd:627id}J/7O/`q8KNyM,6l^ΩޒFA݃zD5vkuK)1v@o7 yC4fS/eEKK Z}|Z>EGN9D9@4-}%u V E }c^;ąVh[z0¥={v6]pI/1f dW޿s׃|su=KDk:YݧL mAYD؉72񀏯~\Zߦz61Ƌ\^Mf\F_޽}=]/5ʥfo0k|rPsuG/N-Nmۨg 9[xۻ_V7׿Ǭ꯫V/.xF/Des5,RA&at ~ʚk_Ԗ<l gc Jκ #s Ɣ&"-aLrflx 5Q}ڭX-A| slC<  `x2^g%#\W)>ۃj$НdJN މãSR#,83^A#3G=2#|ȂA#tY,"HyБE Y#` rVdHj;Zles1PA#[F2Urg͂^[Վ( fRGS{Jq 2rsYRo )N <-g6 }H,".[_?[mFv_x١=Vx9@`dW<$FjS &xGw*#z x2nr*@鋦Kh㌣ǵ8h:)V܏Lچo _[?srdÅWI>ghy e&Qo&T:@:/v3ƾ^CP=9[{KJ]Ƣ醄>8a@ā † d@4mm1Ȣ@36:<* !8bO ).~}B!qk~6 ;a W endstream endobj 1224 0 obj << /Length 3388 /Filter /FlateDecode >> stream x[[o~ׯXiHӹ_&@nIm}@RZڻ IV}x^,م!;9s\g> ^]//)d&e#fJd,go?5~. U?Q\wk*'yD̳>Ę 6at6f+o]sF5rvR^G4FT*|YTu9e]@{\"x|JM(S{lj[}oXlw/qE0X(acyYiҲB.5H- `c[$N4RxF}$¬S$DW2@Zxu 3n[1.*OQ(Cʬ]PKn]f'Mp5=oQ2}8zg뼼REeZ\N_R(AXuvuMd$HzN&־wU^e5Ŷ?so`< 7vVXdamOK٦sV X6d;ivA2~Pfoy5۪TqX~ybP.%V v+)!q5Lʬ;{%dTGd]QާM wIH <׹= i!IA&-ځFBΕlI>a+D!1[mEs57eExҢhczaۅ}\u1 ٱ*:oN2Q;Y/ v`5/mJL)Kµ <AwٺNVZ6cؕ U?}9CPꪇa0 *8ݬb|p睽2G{MEd R]]S#YqLi.Im4fc9ݏ=4pLFBNH3ѵ/u`_]@2.'. G-%KC_vB_A~p|׌A^sc!H|BA/q.CLSgΖ̾pz~ 70Z)~ZɖJm~E֧5l 3d|P !c;ܗiizg7Cf$_&]W])ΗbhN:fH:a9oEw:񍵈\Q(#"WJ|%:W#$yJ@q)&g` $Bu>9mwEn C 2.AyUMr>B.ֲNXJdtst9hNlAFalZe$Sbpki0Xamס&*ĪoL(O$ B^N)`NXܖںlw1F(}rNTdb"Ɲn{Č#vy.\|NgfOYh#JKY~u2L%~HRb#oRT>,\ OGrK:.e ŜٛzMA3QG$C8H0U,8uULjb.eǗ̢a0|Ze(B,@lf I?A%2p~UShW=z'a;-af(7&+ endstream endobj 1234 0 obj << /Length 3334 /Filter /FlateDecode >> stream xڽ[[~_!Jӹ0m8Mcp6wD)dg{ʫ-ap.|s.ߙų͟rP0Q43% J ]%/~ƫx T͗T{|kpyND>d[(ũߝ!Ӱf ҆l C4%HK7wK(vwvˆѾ3u^C+d f E (dQxx2î(a l @ aI8c28ӆy4-bT'՜$XI{bPV$!l{L'r§crog c>ݣ;/I}\=:d נ"  tcA`>BZE|))Ia4,فQfWcc|dWŜq|WgJacPn   lE(ǰa;kn{biUyj]({#y;ao2 ud%S|L(mM0ȘC^m蚊(L&o s)_>* yU֎>.0 xe٦ dRdtO;hXhQ0(au:,HA>Ԏ AYi *k`$՟D:/ @vbڠMLaå0Ӻ{ PNNaۦpI:O)NkFpN &L6\#hz)B:,4qƨb*H鈯KrKJt5H]R33?Olx0v;{?Ts.XGOѴ8m&9Xaۦ}1Ț.M7 'fj4FآHv)|=G^'l%dKȀrH$d2|h%d"F2<}BV24cBvQ׼/#Ҧ14^K#_\K#o\qbml僓,dKvB h`*u4FQo'{4_"~7]pt #"}TV\2" =+TYY\cLuF,@KZ~vU50|z|L=+gɳʲ6VN1YNڵh]%o0 A\BS:lێPKG,V0`L~xAX;tjGtW앁F䎗BQ|܇e3īc?K܄` i*Ӕ&5 Wծ4^Įu ;`PP28L+6lD)^SOӞv 7#Zy]+L*=_3ܗI*yku5=FcBKRUzIP/W[fmܾ8,F5a'=H`3 Eܐ)?Ç`H$)H!A' Ov=zPK,|N^ROS i'wO;ƛcis eE!5837Ӷ+lrj>+nxyj7 ЧLDqXW@>+_jW BU>b0 ~rjG󑚣-ۛnLz)P 1$7?|#3Ba̼o`{Ҳ!Zb1 MHmd9[wWV|&V@A_AoNd /Q_BM >8އ3ShJlݳrRPͷsxg}E͋6.y}vޭf>[9txÓJ>aӈj(x=AҒne)DM&PY /L2:xw^Q,5NspLe ~8@}=ӂB$\woZ;>]ln9\&+5ąW2 #ǁ2tuq&5Tj9?VFfW!֝2&\3Ni5-\T 2+1SWYyU}ТP׵CV)}&+7sK:^98|@CPU 3YR4UV':`$ 4ق\ԋp5SB,dxQ ?9LW{HP3a;n,ќuIy%kQQ?В}=F[0>_qmVIzɺ7" p hRM5 JǏ=j~clj@G};3bb1BdmqPױ/<䠁G 1$I3^uGo  2Y!"@K4AI=]zwK˾Q =j$.<854C+ 3o.}Vy}..P5 :_RBWs>ns0j WP"6郚*aͨOBC7@ T} ʺ4.]Haׯn6DRz@ V a FB`IIX*ZWP2x^bڴl!.X tzGC0DQ(Ub8I/a htvGOx4O(-_g V )D2ƤO#5Y!RLAMA 0 ` ~4ɴxnXPL.6+/Αz+H"YlH} !1%eΓ7Ld6\$gebCh0Nql0GZӫpr! % endstream endobj 1244 0 obj << /Length 2502 /Filter /FlateDecode >> stream xZKs8Wf/rU`;UIdj*Y7'ZdHBRo7J|I2%{` `W?:IR."E*5#4/qq |!!r^gב|(GLQȯ.QE(tE=^}bХI(OΉ<,` ( %Y ^Q_>4S 52r/ĂjtEi̯(N_*5EREC2l7Lɪ /2 7>a@/r$;.;E$$72XUӐ$8LԡtL %'* ttX4a<@f0w#Qwd9p׭|}:agj|}뀙+]]gzjqO.BSEkNG2>԰[e,"]Jc&zMRnrym_Uܮ\Lokp_HV{^l0ri0;eS>?~Qw60Z^|@ܪ2hpB+1bW-sn)ת!V!~vc6TDYW\QxXb"wAbfu\lzp:LnrU4$Q9 )ouۃ=lFcyN3CvYàMx? IJB)U* kqeNdM) zCN3zǪ!+p#-ӋWޠqHcZ$\mTš-E0Â/aD@ #^=Y@ +we  !X _>#WPo2;SO4zF̷M\[{f>ɮ24%RHiH߫4-Yw bnWu*?7>: il{y(N>M 4;'Q/mawv.RԅZ@lT{=*Ֆ3pbqI֯`AR3ua2"L;ہk ǥ -da]b QaQe1dc v,"e0G](k CqEZ 9޸.lCAY8ҋ8l [^xVd^x?V6`@*<佭Q+X *le2xX=[4dȰ-ѳAf(`FF&82'SMSp-֨ǒa(hk> {X5*P_NU8r֦ppqJC.^5'ʘ6mWm07,q+YMV_z zݗ1|>Oi1M=Ib, u(-mf3&uz*$Q(YށFCxfۢH童W=cE.}$Eikvv橹oܠXd+(1m s Q#,ҢWU>Y$}Qַl]_m\qچo6C -ЊKQ55F͞&$OOUIxjј&_)+'.|' |k%O_ }k_ Uz4 |'c$ ۑ |璒1Va9fB; .hSTϬ(WNƾ4J}{]S}aW@ jԂJ NC"{N$"!à lcr Ir=.I!B; )Br"$[m&t|B tv wh>^3" bMwV$5IhIkZ %Mc0]1 1 GCLWM ^+ly0$*OȼĘW;һr fj[mr endstream endobj 1261 0 obj << /Length 2808 /Filter /FlateDecode >> stream xڽZo8B}Q5CR-X\{m) ۴-yhoCa+N C+>3Ù޻77oȋYsݬ<,MG"nޭfGǃA1L*ϻÕP~5 OpԞ0SG.pzsׅ&0;-aw M{rA?$39#)OS:W3%u^>F+0`XЀ BS{mmp$Hu+~nݕ_lVR Fd"H4H/3q,G1>˭DIP9ݗg3q,G(|I89uJ8#,J>8yz*-ۂ>s,"fnݥw/\SwZw';cqt `ް Cɂ:IbޭʋG]o+#/\> 5N͗٥ҩ|`xV&[wg+ %y,,./j`%AeseryXH|IwBh c[& wU֔U~*}oco+.8 v o"v*xB}CH˜=_g3r$FR7XJC, `aZEFo4kXqTr`0A/clzؐcnB6(*#jQ9iS&KNS!J=r$XހB@jrȣfsBGpߘk=B3 7Os2ҺGzQ =h쫫P2&=,5h8t檬v6&"6PP,ܪ+Nzۓ0Y7n]~W!r8PK^k}mHCyuc7ukM͞sA^۾(e2H@d Kܠb.!2"0}MV5ڤ|h;4{]j[*$ggkGYŒHW4mpİ vg0#X >2>|{?s.%jlb[-2nnVew϶uzo]Ǟ8x4>l5V7Y-6`K}:/V|mm\쫁,9+)F 3n6]iCϋ}LBm!DU L&; ]NkZo拼 f(]q6hW͢q" F3Ԩp;{_Un<:xB~,U 'З(ՍO<Luô_ @zb]_9 D1$c,ݮmLm8u@"MעD ohBl {$zф42`w+G|nbj BҠcnHB _v䵄PuWW;"P,V*-eØ sB1l(RչWSo )p78~~H2 )r{ou>k]Yx۠33ː,ۨV 8zx.*"X7 w>M2#p٩I,Huqj - XrIiŒƋv7Mk '1a0 R*aΌ w&29f0%} g.`)a} eD.$$!@eVӡ$z{/fJĩpN ƉS%4XzQsc0n~ SxNLcS:Wڤ`%zKXZg[GVBݣD$&g":pXxPY8~R9"&+ǼKw.' 0wrWn0(5eVYdp''-.pISj fwi7z !bn&i>>A(i~Tn P X3!h f5UQ@HJw;(`T!(`dp8:DZ5rW};AƼJ >N"xʒ :vLnþ,QoaÚ CȄ(1|ۼa%*[l*:xqX8F C#(U8-&ce" =ۇGx._N]>j^[aAjQ@OjGbEkgح qkZ*|`29xjw6dLކ>ҍ 4S \iz+u4Lf4lq>KP؂Vh] |CLDC]Ii)݊~Mn)xX&c6^9>bzF.=|uuefZg+0<!> stream xZ[s6~5Dvvg6fcϾ$}%Hf+ I5sp@(r\m!8s' x7:$&\Ln,LX0+f>]5~6_o~IoLL芚QGSn*L~ϖt"8܆3ܶ']ɥKeX}Y4UV 12w:KW*[C7۬>h]VaZlʪvS?ȢPհf u,ldE M.E̬Ju%5Ds7kcMyAPUE qœqyAjv3D>rÃ/hmw USFKz❟ٛ5Í bl ÀCsEYo!Yp@5PYޔ{A#Sg =fp̋PٍgE l[x~Χ"*;("I,uNg|{Q$ ETUh8Մ; 8"UuCl~(0~RX䱜L+[jlft)RTB8uC6lݪL F21[@kaI1lٖSm5qWwzJ1騸>^Cddo}¯Cስ*ˑblL <-:v%S6oͶBZ˱3 d]@ښ0ged9EJqu%]@wJjpj1ըeHyKDW>n!\r=zUҤ$%ճ*E;LBW ;@É[2ߕΨ@ o^'ҵ|5q pjHRanbGR$QhRb.9b{-*;{64÷oڶfU-d|28n/N{'tIx}Vi25eXw{aFQdt~lY{f+F/Y`3̃Dq7Xm}; jW \Yg F܊Ο`D =Q/t3{E&^ӕ^(w4E#|]V6C]xw`F(!4K g/>'sx$J R~暊[M/M72bR1P"!^WF"ఞ`߾5C2D2 Fp[D->, `H" jb6|\lU j%uBG|&;YCL-! B v !Ǒ#pųwiӖӟ`z#?|'~Dʾ?>0u:*<|`;YCo`Jis:p>9u?[sN`:zy1{>NV7R}qOn1ˆZ9u|->Cg`H-Ӊ}:WcQ6y@4XFQchw,:D^8-H~ݧ;p[oh.dq3fb|Dt3LQ,[R%|!p*e<9`ߐ*s~|!|2fBwҲFtև D|މ%:˕Na.%V=W\trC_h endstream endobj 1281 0 obj << /Length 2554 /Filter /FlateDecode >> stream xڽZ[sH~/*{73SLͤ*;ٌ*,!=}C ednAspp?2R(QD%$(!<]F7m6_ag1]Ru}C߸ݛnᚈ8]|Mי#tD0JpwgH$,žn"0b'K-6W0bʍY џW.z~]@ARixJD'__OR>Do[3o7enh;lnퟷo>τ{n 8) .3'|>pg̬6Y6qCZ.݄C֝T2*5f6Ȋ|'5IHKX,Zl͗} H$Pt #l|p[@9l)$Io\.j|ӺRI} QNcf׭F6d=³#,0 H Ycv>fK=ip"&OPo>\ٲჼQKÈnsA >G:1'jy 9qD}>|e[B.X"Y׮nˁI B*͋=HU$x@;TUjQV }>W Jw_,ǸI0Na$uQrӿ}wdoV>պN79YԴˑ ]!s>?Oh$W:[:$<&H_6X[j0M ? )"望='&exOgROG0hM& qE# I|e{Mv4IީqfZͶ7ƍO\b&}ںˋl?x =ɶk +ڰYM eEZ/uVޘnD S027q:m+2UUm8pСC[I)0 JLz9(W& (~IP6DU@ m96f "vO$@%6 ._Z!B).i{[7i|)M-U}Ur 0Ζ͗} HP=%s_>T>TΊl2 22%*| U|Q@S'A.g 3nk,Qp"9v`>cFɌN'rK _(/51l_ID{fcyս&:vGi"~v B8D.=qӐwC5Azsk4Zc^DڶyU6 PBv_x;'[Wrav*@rLR뜏YMV6?M&Pю-S1ilvt)S2ku~kw~<`nY+ZwѾ܅Z͛6_4FO־PPkN c,؀Ő굫MJa .DMurjtؒ93:a=4nWbjj+[|y o9r˃9@&ب 2M–ڴsDuS",Ni$Y NvdmNfa2[; _Ԅm~ d5ULRie) Wt-򬙶&f[^[MK5G#ylAIeqGuvMX߽AVn\T`y]m<. `,'`aLOnpm^;+:A.E"N; C1uClonյr3 cq98EN:7?M213IL[NZ+$F{v `Ԇ Xi|:d5K÷Cxxt^Av z*_d^k,vA_K#>0?Lo1o[@JDUUGUFL€0VM }ZgG*-P{܆68+_185{sWJ/eLDeĨ cCO(hiՌOy-S*hw_s/5PkyRݽԔҋdfr7hgELMP3Ru؟++Z^ؠbo/ NABjp6?XmޙmlRt`oLMV?+-~B^z4=guzO+"[WbkޟfEks1%=P| y7r|Ĺ׌!=8#րҶ?:O8N)Ke[Txy1\[(0&9fk I.I)گ_gK nn[r)C~VC&D*mF(Y;>U}0B۪nw9.i endstream endobj 1291 0 obj << /Length 2458 /Filter /FlateDecode >> stream xZYoH~ $qc@L,6Y2y`L$zx)RV<>lRͪꯎfN Nn]yeQ$w2“eiڤ}| STpy1 x|1Kk1 6;C6n675uA /noWnQͯ,w=b QŒkpHTvSq"l2jNf&-D>ݲJ+ukcnqC-u k#:-YӰSCπ `dPd`ei H}_1lmUɢ. |!/lYkwfLtc\oL#.uP!0]\^"y__ />0ă5W$cT9E\T)|G~-䷫s gIey2a,F""SXW^|e"N EFA4`LCR)O$ڀg 950/@<»NyU\ *f1h(v)o~, XYO-SQ* '3\p:-hoغusp=lD1ڼg>]rA5LqKkFzlN/hmweJTm3Ol: $ #rO:bRi*2#Of;k5K'.}RwVVR`,=p꾠!Od+3z1IY|>n"Esd  b}xh mf2! Hrsa@Rh.aLf9Z%{Ð5Dd$+`nzݷLtn"AU_$/A"]ĉQL:}k4"S]ӹ' N/D'FhϷ" 2iu'sNBȐ'tA,l9|vcwH(?;/iLgR)j ߼:[d`/ao!b!.% aڋ1Y?3H/U'SD8BlĨ+EryVE0Ƴ[oRV}j+ 6޼7\P#=/be3`B($omUE"e|m Wxk&6$߭"ᦙb_f.erkpؾ 5Lvͤ&ʦ/ck6ʦqctX9oT3{=tZI>J esjmKYetVWUy]cثAb*}%5p*hwcn;gN ulPd|̪0 )_/_ )_$}/zi;+8.f]G%l% al 7/ܣnᚆ cc˸nIY[hdg9"-s 995}0 nۿ0lV12 a0:Q.ReYoXDž 0nj ٨%$[KVz?rr5dz8b06xҁ1ڠzݾ=ouCNd>Q5R:~kހlC#b5cuR7Wt~&qB øjH)vSW}?MZ2 e# `p`z04h])1uT'#me*J(baZF&nGLdT6o͈qTDGiPg_˦먝.4(N endstream endobj 1300 0 obj << /Length 2384 /Filter /FlateDecode >> stream x[mo۶_!<,)nRl-6hooYslORْ){E+Y.Dɟi:cYB0XXil]`/m2:12)t%H:^knx?<\iZ<&cnA|qVrZ$-݃rQV]v7!'/#1">OƋo/`fP` I@}D=XxtN4inS(m ه\uad #D"uf'7,j[>%D+$\:*@IU҈1 AK-ؿx%H}-_ ž>pBtЃ `LN"cCL~Ej %32ᝎW?Ċ"~W@XbX>,K.1?p@5Z]J"j~`G\kl<>>ԶvAaG #N{<qa Yq EYYm@-,Ccq HOF4Q`1JٍBy޺iR?s.w]%Zp.szv@h85=x Fxy/y!HT&2U?T ao]b'G 8A"XWSŕ%D4_x}ȋq,ʏ[Rw<8!J )x)ӣAƣ/lR!ylrIF!9X?ЅAMsjsv a,~&`ӫ1q@U>޼TdDNU$pu}]"7n2i]9_uv.au†;uɡQDWU128}5fB3$_b=u^=N^q,e8Og?ys_ncn c@^Vx6}}g< K61"iU'r\XZVyթDWgcJ#nπueȉ1[6X'iF(!g WEopkח}΁P0?^,ߗN~?]a%ci׵mBf-/T#񖵆]*8u KE[U4ЍazP 1x#[ݮu&SCEہ:IRN2`0QF{ep 1tّONBz^ C־+rn ._.}el U\O!P3X*ϠHuqKi F3hJ~K;hvˆ#rd  ›hEˆ>iw}"ZpNL Aΰ,(~5pߐ xSxO܉)9!{${|cľ{cDp$vPvx-98bv Q&\!LҧK%j!Z]'0?zh)29PȞqg &iji˛DxBQQ4o}N/biϞw \ P9"b(5y_u e.~x{fׁLgTbE#*O5϶'۸m,$YZ#64†SZu4zz"k2u3 y@]xXkQmcǹF" &8WFTe9ZpZ\iykJKk}E P_*l}~Ol(6\ң Ճ9¸n!ΜďN4\ "Z ëxlCd0P?''HƐA'' %$ "HQ}lڹ^vТORDB+$"Y?)O;% '9d | eDV><kFUNJ-~Pp 98E=ok-lѸbNf CrN; mjz Jǜ \Q endstream endobj 1312 0 obj << /Length 2903 /Filter /FlateDecode >> stream xڽnF_A`_h:w)v$mi7(i,H{Nɖ\Jlx}u/R!Cʂۀı BHdpgmR~0կ>av'+:{o_wL͒ƸD0JbQ4.ZX RX Hۤ '#4M}"^0JcU$zf}1g,ɮw~%]X8`Т/ȝҘI0[z:j7m(ݱjzB嫕jw$C@"֬z1"cy"L8#B6*P@qHe{BD+{eF-cc0ld\e sk*(^kL2/ rsy΍.pg]ajOfHFdG&pDx_phDC_tX0kZVW$[O4sQWmȁ }Z?_]yԤCSB<-`~KQpoWDo|sװ\DkZf[3X$1?^ǧΠ'qNP,csD @&\8m4CБwB)-Zpuv=J~ݻNpG?>lr) Ϣ#ӔC3NKn׏1@,PUܻt(\džpSx ޝgC)H+~؜Nas6(cl$%RςK)R7"gC1FQy ➪؍$[lp1n&Q4" lN=2"97"!2ԕ~4? be=qwS #qi*JIil..6o<["k~]+j ;d%HUe~֛7,?jbDqȤA=*hi*,zRƗY ЕDua]U8{u# ԥ=aS Iw]?ZvP( `!"qc01=y#Z\1J=ɦKY#MI{zM28D5 v]%~4nš4k7c"]Z5( 3hHtCuZrsi6U| {=hcٰpqhy~M`%l;Y QSwf,;YadLx? J= ":BD&jFMQ4)WHWh)^kl_Rk?i=Je(8(0keYoWT4uwx#]4q#)1?vzZ0I[ !ބ* V|,2Y@2t?BcM~G(MϒZAźVhC&ACf]㚆"Oh6aVw]熑RŦ1q뀜0ٜcMH(C> +r:p`a|gIFHb BNM ;SmeDsמ {ؘ`',iNv4I6b26  m]޶A/sh]umy@~l6ԫAh 2Ƙ5Ja:V \d'r -ܳYw >֞H4D`{ E0FN}CjZ< 9xB4ÏX|\71-k33kMAyۭs.m: 3eĤπ nH3-Q{N{428('kG =>n[-xAY~3yjޱ> stream xZK6ϯP$Վ`<>ڭzSujX# IYq۷ !Q3${P _7j'?^A8Xq1YNJXI `rM>N_6`v7?}ԣWS2fl.5ǗP~&4]ܥ+CT<%j5x<}ꝛH@eQf!TU| N\Oo;cB)#=? _DcZ kK1R<5ݼh*8cT>l6M@ T&ڗX>ڞYl *c>U|$ 0U3ך riX+49UUwB;x|hO ݎfM{p`\LfͪC*Ŏ_=ff|`Hpqվu we^-XvޒF?qE^WAQXwI; 2J=tލ70w{(38i " gf!jxT%ɷW?0{ø5El@b1/E qXYPZic7(7)k|ghf`Ht,ˆI!a*dp8)* Pqd(+xus;|yߎ7'mDcqVof36I+\̇2q5⯧9J&!o74%,6kCUfڼYY3,< b~"SD(y \e/5[hA"Is.,•tD.iB!T Pwy>-y` r?a*֋U VC90ãFkYn6tjCaەo9R]WF[Wftb[gNm ;oG8al@+=3ښw֢Ki/ޖʍ-&5۬hꦬ9;sɴzVЌzsHG?'&Tm؎D }KOHt.2C~9yJoNoO~ZgP2~weα2;*L%ɑۄ7c+DNA2ZY?-=+Sz8@qaC^-j#n"P_L 3KȂ&(=QJd^}'Gvt[HU#r/ eHBM  -+NUR0&OvZ셞!z!6+oM%} KuV.KxN,wEy(J'&˸x!RW>€eaS1xrVwkI7y(#wt* a\| ` fL Ȍ3}X}C~\v' ? r!gT! ۳/h:?uf7xQs)$զtro^$3:7M> stream xڽZKo7WM$BG6 a{5tH<Hc{߾_qmf,hsT&AXS,X\]$1],&#!#Cd/ g#𦦣\ MqUט/TGX#WJ0`k6 +.BuVఞ}%j͢.e0Udi' ;pjXC(-mc^h8dKBv%Q6 vI kI5F6W-QS$[Lձ6iv\2W= %NH%NIJ𫈭Զ.~UkTi_@e,5%9 1bWBl߅`LA_TD!,Q)7|Z ppMޚWXqEW;i'W?d\.Η߼_^r6o]^__z_.^;Wl !8P~BvSOh* ̛ԇ2 yBnR.Fi(XnlFP !Z(i E )\ETvS] ` n(} FFb͹x 3oZY=nkj>}͓ȭ{  ؗNib}:{dRMɈǸ#d58EVEW,oB"DkD[C$+0+҂b1LQJDRL[P/xp̈e`FT78ҼovЖ Vڲ@zAْd%wEXve3֑#I C1[QyJ_ᔾ)}\olҌ? lI58L@bI !P;CLff`!تvh((ӡaĘj(Zyu ug\nzq"ُ/\kk~H$~t^j:3Ҫu@V+nR2[C./ڶRqbdK] -JnX0衚'g\qfٻ((9'Ƀ 6B) |}^IV&''rO(qk *Tode ^t; fjCvdΗ䁎ɯeWuY*[Ti5;z] r98 Xs9.蔧DQI\V 3yBfPE;ot dWA"}{wR6cW >;53<fˑ R")qҒ}GAc7'vmpMĞH=ǨǨǨSqDv7ԋV'ĥS_qム^Q@ꄌ L +K|H5Fӗ|%G Hm D%;- [O`OW7߻. endstream endobj 1339 0 obj << /Length 2820 /Filter /FlateDecode >> stream xZKsܸWL4xޜM֕Tmé$VF,I@<8!i4}n_ꇟeѤ֔mn6\ԤFWLnnm͇f}x_' I0}W Wt}5pԶodl%5(Z/_^ Ku##67BS) _ovNVքka lvlwøwZC8mX`GR}iOŝ z-*~l}s^9ivkF H inn-v]I޾N V"r%b"Ү41Z'bnߗt%1"j]YWQ74]vڍwėܼnrG*fexBVVstE _!{\&)-`i <8eD)W*!YgM¦;?shzhh2l3"l2*؄6aӊld~6H-Ǧ:wS{]u wu$s $xn tɩQ3L,J?Υ"qF^|S{lFH4Rz pTY'Pt"sΎYQO0r~=oe΋1ǂ, s璊<ߖoHQ#'&|DnZYjKcwWةR oaξZ`*^ оDU&ـqJ)o\# >w/9H"Yfy,J83 aș`n?8:)Kb?L$7gIY$^q6 B`dC;]9*56p_Drr;=6H_!c7\>! ,.IWQˤҕjO*>/?/whz+Jf7i+x"gfWk 4n8X)nd ˁ Hw(PC^xvZ1>`H8HlpwVxu|6x G߰o&HB~],m_9~L ZbpZ޲cWXO#RI?XK֤"WˉʹTn*B?v'xH;\i֢L0"Y <6n7ľO zCc h={zc] uՍ\U9Znfm@q/q0w5bx:3lJ'{ͷJmzg6qjrx }8*p(Bz0v%]zQB*ft<lybK # `)pa菲BVd((gf~76囒$XLFȄH*^,(KE*]Js̢ҏ]|Okj] s/Xֵ5&L4"oɤ@ -bT_Թ1|}D5>KS\Nk\gDFa^6km(੃STfo͛C6 nNt C}|3ZB-4=[ pS\V<^ N XԒTjH WT^ c1)J*༉4&Er#^7FXOJu3ο1+, B3xs T%eSV"-R!&\*n0Q`"ݰ*$78?Ҹ/$HRH]",(gysKӗa~#`Kg:pI:ͥYU*謠#ɡt#DXO\;xaNa g^]aEGIJ(`W0+]6A cr ċW q@kj OJ?G]:,%ڼ*X,M| eSPqNOᏊq7g%KʦRw>/Ɯ7g2ye](b f0p^ۥP*6{\dBfgA5$ S7) G9H)ފTڒOv{ D& endstream endobj 1350 0 obj << /Length 2992 /Filter /FlateDecode >> stream x[_o8ϧ0r2Dbע-zmŖ]mɕ&!%Y7}LǙጆ 8$!&lrpa1jČ&'YLzO:$'@Mdzϋg!ݔ(}N3$&QbQrFIgK; )3Xᬗ6*ٍmhϨ2).7lTHnƮyVϪ?˨pSvyڤO]$\7M6P*b83N9ȷdAgM6$,j{fiEUpsP@h7J2֬&,a|(cLPy@by,%/.,Ç)0?-|c/쫋8քԪWmlMpl%fUUV\eum 'K;0~1j`^101Gt?=HlBF~Ț7y)2:+e(Ngoޔ_7|ѐ>:z g MLy/;,ɪP2Fy;=apEf[I=ç8#4fruWp8N韯R??I*|FOQu>pI\)Is|l+؜evr<]h'ژ&Ay4])D51tJl_8y803N(!z<]hDKXѸBKd$I5dGs\A|&&FȿF+N^NhԒ,y<.ƆH:e" zTB.!Q_-]r(bZ X{™FwC}[u{&gqO~6SXgjTR fs`1mg3>;MFew+mQ|_Ui-}Ѿ zpanw0sMWFXb̜`=:^(8[` !HWvxph޳DvΟݳjAt0~Wqoi,I:u7wP/ֱ=ۺ1` 3R 鯺{dY ND뇉[{-XŲpDx24V8آ Bظ NY)olc$l{Sgm=YJ[M˧bQOW1bA݊!؍Q%8"K+lc}6l*+6`$^uA7t78ևsD? ƒd-a"H Ϊ*C)9L5*.h[~W@sk&C;)Rx?xt?pu'Nm@ȺKL~}x[ENhlm p c.2+MX~xLJ˂Pjߦ6"o& jwv ÁKq=:lvp [` y/\Yu.+}e3o#3]Mln5I3c7h`q0P|ɷ;`ZVk^vz $tTkEd!~6!g1Ң }-B7&mBwY-o^f ;/n;3XLkBn(VGѤyQoYwL(C 0i!CNz_ ut:oKz1{Ӹ mM+Ֆ'ՎO]`FcXw2H؟vޕ~4 dlLУY&_$o޾y= `fެZ6Mc:%êGk;RczMmnCx ]{q {D [~pn {-qtYXo8gYUNw[ endstream endobj 1359 0 obj << /Length 3282 /Filter /FlateDecode >> stream xZ[~_a6Ҡ۠ 6h7-Ac3j$GsxH鱷i0Ez.izXׯv_t%EHB'W)wq7> KH`Bdl_ m^CE|YR. 7\+fW*&j+uZ u]5^w_w]_m}Ulp-=/cOqp_-z?45yaO-`N멫R[jJ?2}*p&Ј ĝ)m2Qpxr?Gdj o?6&BmmT 1CVx[4k1VP!6p*!$׬+$@ٚZΒTsS#Rqm fE+g$8E+:O E_P`u.+TV=4T{*~!]9THq_10C1cW\Haaj~H 0-E\l(fI%v~qɳ[? ƻB@b-[͘V)#F_~ڒ*@ V.9T~ [B -CECN!ZwE5ȢȢ1l K46^W5FURqFJ6,Aw3s8k1fC=uv&d%E|1d^FHBp WA rpuPNc9z)ձ@, D(Dx_Ha8sb{O5%57S`BS}=2W(/\!zLQ!J,LLpxZRFFnNZbyT1KxS7N{@t1מcyyȂ%f+ɩJTо@5+0A/[ [a3`)7}K7Z定aR8Im*MfɈE ZV $UB1~[zUɮs672 xlț'l8oV( jo p_>[ӗo;r8 \HxƁnyn퇛kjj?἟k!9(؆ {="7q'#96ʆ|F$ s?I=4ɄJe3>A )|D0aX7*y!;+ci -%25)V`|WeRQFIs%9B&Zлj:=@>#9W!0B |tvBG<&vԜ A}%@▥0;Jl :7mBұ1L)T_ BAeJ$>*\ujGtøz1v`VpTJ{oYa)< 6^^ ?Uo?#g%5gKI%>6;$#e4@›aGtҗ E"9S`r9*͛]y r 9"9y r^H׻)ܚBۍ ̰7lcN@53-!A0LĔsdWgC!qX==;dt&BcݾO ; u_XGßm.:!*$9#Lp"bN o:LOiOe3RjqDŽ t "D+^D<*n!gz 3n e"'w q4]ND _: ¸-]DXND O&@$ 2WV kd5C=X;&{:bmv˒S@^0lĐYpJncc\vߗ}NH#&8,褩],_~tiQi&@0fͯ"4r1K΍:#Nc׏Gu[5!WƞM3 ;%qoL1jwGཐɳ N'Hؐd {:jlSie3^ u$\78%ѧWVݫt endstream endobj 1376 0 obj << /Length 2878 /Filter /FlateDecode >> stream xZKsWVya+I9Ug}r# k䷧{z,&ʁy' x{ˋ?Cebqy*ei/,zqY|޴E|r;XofJZ *]ḍ7x#54=>.Ee/٭#b*YRyڑK .J .N+Ĵ.JH5#mt57rUrbR+ꖾyk\m9 s: W.OpϑaFY/ݔ6}!M`wU$w:+akGyS&xp:jRDe6= oj;Z6.1a? Lڃf({as0{Іo#,l544@rx/e}E1)ScqP:.R}d# R't}CێK CjUɊ~)xff~.ϷtuVR=U^ j`<Wy@m-CY\g9Z)0ȱd_UIzݮ]~Y u5 J8+<`DwTjְInsc+g-D5`z,ZVc8wR8Vc38z/چF3K3[NNxۄ3\``]m*mF ˲jnΕ5 Xk;**5* fK{+k4Lu Ȅ8zv4zr.릝#.yПcb2#k -gUMX|:+g,5rWl9$#}>{CysߠTkw-%վ^Ɲ'ZI0avP 4*9B3Gh&=WܬjG^4 eDDzM?;"lZgyFAĮj BY8F&$*(8"<zOf6Ը@[j``(l ZCSu__h ehyV]L.t6YQ MY%3@J"Me&&oƍ 6nNM:qLF9/FBCGwڲDE$bEEoJ09.ASKrH,>+$#4C܆6Yˑeu|ΆxI@Ԙ 8Cp>6隡0D&[p-av6nIM>6jU%\w٧sdߪFlqJC=w9X:;&&~߇u Gy5< mVvNU9$; czZW҄TT?̧w{>/u'e:+5e) wgHN) :X."ɀ`D`yXIj`n4fPo텃-j+'ء0\#Ipc73T,ZѵF< |J$\ъi~X>oFWK(竤ʲX.pB#ٗ#<̚Š^~@%`Q ܤ_l`edqnA MPB/qЇHo?۷AgCSڣx߳p.0I SH= 'IP!x-E, 7b_"v}Y"D70#5=H*<^FY^4/زC{-sGxBCժ@8CxG32M?^\0ӕW; _ 7~?`=*v-5+d/řH جr{HG;ϙ@fGD`@3] eF+<2y "] bz53 :sǜ*V&@'!VtP-Bb*y@KphPL2;w^,@$ -Xd7m"nDBĠtvGqvfmކdaỄif\gVtfD!|I5W S1D ֧@=†$V%"m|Z1!uSONjbN)Wz1ؐS_b _k_ư( _֐ _8_k/D24\m;1/Eϝh}>> _cH=ԔۼrB }0z7MWp endstream endobj 1384 0 obj << /Length 2204 /Filter /FlateDecode >> stream xZ[o~ |"v-S4A'Z,2CRr7MqlvgffvgG8 p'?2P(Lu@Aƈ@I *0Wjg1@Xjoos"f&r˜F!M%({k %D L -$GC8Ip [K}>ir17tްpDajnnQWʣoX`׋hռ^~y6_f*R$)i& RޚqX4},4:L@#~ CNyƉsdR:b$ќٝ{6ryɍ/6aVQ(DlC56{[N7J#;=Қ kaHKp"Ոazx`Zqa\yqGAʪ!yIZJedn/72Ͳ(ߥɪ=Aj*Hݓ{" wӯHup_K >]*v^Vş_tVQ)JTa?Hn;½ks);RuM֔q7QLWuPJ@F00@.[٪245623FE9́Ѯ(sNlp~Xڑ`4 + 5ftpWlmn]a !j01Y SvD&"sTwW|]c2p@LO &DDeVH€Jp;/fiښ ;oOOpf{q?'3(?\^]=A^ Lih$z` "K$W}&Vf7[3+p@hr`<}0] M%'7¸w i~2H8 b.o6 N_H 0?6oY"6 m^ L_P>)hiqBތ*e.| ح_h}a{kЁ$ɴtt3w2c<:}1(Rtf`0DGkεF nRỲ-.B!yIQ>S)xr{7__v w.!W"+q`ml9&K +V+OǤyf:x31j R!e|~Ĉ3%XŲ=|y IkpM4Yw4)8ݗkPD+ĩyhwP֩'#,eQVrC|9G A(|Z>AF!fy(uY_Ѫ+4ئM1M)"$s@eE1..6 I>Du.GX(|P`j$ZV|[Z!۲H|#ݚXտ- 0s!, "Fu:Rln!O׵*t ʨ131'Z3qƀOƮ#UJ@0O$D}(vƪ>A2z k 9xeD vdX 2CK\쐹 B[6y@;狨800i?kB endstream endobj 1406 0 obj << /Length 2107 /Filter /FlateDecode >> stream xڭXKs8WHUY<[2IVv*%3en(RERq療2grpj~פn>7?z)QF+"(Ɉ|oνm;.i %tfӇ4%:1] wyb,LUus{.jʅ3IrLɞك G29Z>ײ $7;)Hd/t%`M튶۰7ٴ}>~7kL$e* ALy/$vxə"9DLw+X5{SۖĴWܼkZ\éˮo=CkNZl we 5߀qmLlL]5݋{[|uBt"nk yn"ǭ3[6Mˇ[,ֳ29 T#ҋg1 rrwGVv԰ Ui!CM}(!ײ^R"x.!Y6d`nk—y7)oN;ΎPA^ jy|`C`YAPDC "VMrBu찋 xiF$|wXl$̡٠܈[\ݥ.bBrkW-XO˭kюs%s -`^4Mmhv2'&=)xd: ϶whVpim ! 0o\qA%BYISTbBM38hE6k]VJu8_1`V-*n7Աnzro: >OgWt#׵aKYFZjmD;ɔ YAFgXp#tf捸`"zɥu8b@1Q38 X/gB/gH1i)55 }Wb->f>D`>xנ3tc;)A_ɾLL [ox0 =<.,]|ԣx#> stream xXK8W(1Ç(JS'4f0/d|-ӶdH$=~X,nw=WU$_|qͻOq0,3\,ۅT20`Ktוf_LI?4˕,QKWԠ?jx4k2b%q9U9Zeq'׼u??_"3n1 ş6LM D,MQunÖ+E] YM\̈߮0:,M {"_"8Y0YM+ plf}*sao<'Q `ъyh 4t{@+$L7i<_ RƳlT Y]:&.ҫZAdXrFw(P 3CAyDT4ds9@I}K@1slYT;$1RN7C : 0ׁ$L^/,zzxc SK_$x" OyyUVbͿ+@|:\w%vMt+[%BCئF2m3?͆0ǺrU6ۄQ{*Ն6llgi#DbԺnOKQ" _G"ar2p .2߆Z%OU䡆+4p(7{8nB[ -ЋN ֯ bl CMt:B/釮<۾X9b5aME-*<޴v\VCITn*&B3hwѵl7Wo|hČ؄hU/$ ۺ,k4WA~Gp$a)I`*p}؃Ge}`uiԔ& LY`W"M j)f¥*՜i9Hx1+ `ZP2N=Qк!BB9pǒzd³u5ڠ?8 w1LK3+@z}ݫw$`+:=528GTR(m@v@oeU-UCxv ?>*mvzYҗHl[(#'Ҥ>aDV;OC /I,˔+:?bٝ QI\&[E/>bdF "ƧٹWQq}jv/ciCaǎ\Gt3ft9иcQ͓K$29mӺ^!~}fS;|e5e`ɯ5Sb䜻3Xr K)c mj;CCQQ%(H!O]/OLq %^+`F/ 4]WfS+Sѕ9KP>Sit,,d4Y6߶wQ-tza[Sh붣W9fbXGRyЪA_UCsw/uYdDjn'tpm'oW7WEJ΄V CW$)/ 8@yP't.8|iMO,7 ?*I@-X 11J*fibRH̊j2BeHx}tyIP_vs\ehPFq-~7&j56Jyŏ̶u_oyg¬ks׶M wd>d*\K|GM@t h$\8mpDW6=5ᩱ3.hN]Udy^ endstream endobj 1334 0 obj << /Type /ObjStm /N 100 /First 994 /Length 2443 /Filter /FlateDecode >> stream xڽZ[oU~ϯcc{]lKh$Dg*"sԢ%A~!vM[ )d)JSrT$NUlPuXh󈇜J9ȢxNv!HabB Wa"A9j]:gV@ZC.Xr(@5Y02@P WZXPPff75VeePuaVܜސ,N/N`zDznܫb.[BuanP^e8PuJϯ.c*ʡv:ljd!86d4H/.H'3=a UPsuR`yE8ȨIc1Ólr < BH#ֺA<~AqeKS r2AtEWe`;[l[Q]n P HIUk@Wr vK{A&RAڊ`W#+#3j,Tz/ólW$ Lc"u.@ @'T/vjkKxX.ҬS9*_Qvz'id]$'@yt5;[p7;"9-*fE endstream endobj 1436 0 obj << /Length 2938 /Filter /FlateDecode >> stream xڵZKБS39ֱwTRqk)R&('>h 漣.fhkhi7|i)XUpy%Vۏ߁X)Y0VfLCU$&Ƞ 9~8bXVLxW8[/'璉R4z|BhJ3VSN5gYdmV:nQ[CY]ŷ"lتU2 }~rYd}Wܟ0' o. +1YVsAENBT;x!zlgBVL|qp$K>yRP?hKdiM)L6CR N>K_O3xAt#?պ,>hz`#vj!ԆJ^W)"ߤm4^m/nqKM3`=e0^Ȇ7/\j)CVγk|ncAwchoh>ӺⰮNmR)NFj7H Q6?ҙ:z/g3$e_[S3Up״CP}RqxzhΖE d,e א^u/1ۑw˫`DT*z;pZ ,0pJ)r.8ýD=_ˆs*A 7?+^yqNo]()N6Ov-8;+& yp%n 5;uqȱKzWᬤdYaWJn7 6lN .:q4۵aCJ<mLB_cxzu) ^ţtL0,|k0g1ڿ^Ĺ쨪{uĥAnqD V6oe )~iIQf茳NE jD3w]HKh"m`WP6njdͮi@B¿^o} uC# 4(e*@#Ae䒩!{:.mô %'_+f/pѿ ?k}( C#/I &Xʗ4]8/H pvŽȰ1m78;ƛ6SS~[3X k!pOM{A zG\ׄc !g ;|N]9 :CtLYդHM} {y򁋰*8U 0t8r> X"$RoAQ=L4zAbwx ԴdE65tbf,X8x=/ $dѥe6^w(9KW + {}{ $$x ԦL$oR+˫?DŽ*VSK<'QC B.xmUBfL!l*s&i{Ybftk$`6U*&9P#^ >a÷Wb헨_:&ncfp2kvjƊ>1lՅn#Gt#Ȇ65}g]?ė#X^Q~MɘJ[U(-)"mN@ݙڎ<3bG&ށ>2xiܝ O{wo/{JGK|2{"/N1'wD* !;3"{5mzyMS3ݪȈLM9Iy ׍T݇G>tZƴ-%l3]*B;u0DZR`$t; w8$j喅cr_#qsҠwu4BO)Q&9qɡ/ CGbګ+u xmgfc`x@0w2<Ń<^UR}Qn)nrZhos]1mQ[P2A G.R v I]>]N^-^P~ @+fͭz;٢[UtUQ0V*I5i> stream xYKoϯhI Hql2 d1d5[bzm{d94DRXϯ&ݼ7zfF|sPF+ 6ͧz8=m?~1)46,^ÃgnWLJ*4)"ש1DxyZ7ἣNNm?}?9UӡHErȹ=E\naP`Y_.]9sktg:{lO  s<IV/20Tq M\;׹@i FaYz B<-f/u?PtM¶鴨mCm*~2%1]0'^.ċ`K sJ@" b Nz $Pbԁmf,I30Rve&|zSbbYPr͸]N>t4A 8BCi-@;Gxjd $WPkkHU!{?46Fka#DWF/pVܡ   n;FG@.{cUԔ8fV+H= (¹GTK =ܧ<Htv|MYs)d:} ƨ ُ zI;`!XʥdL< ;S9I]1C|Mçir•˒]=p'whmwj9L8<!EH370*Zzu ˀCbQ RgT$tqg=lm}|zW'~郞e!2vy$"VeH2I I7ѹ OhX>ǻqWʞdX?.9p{C]%sR̳?$3ZoQ(F5 (D,8VdgeH'+DD>Q4@ 8=2چ+ը1"~B:ti\scE`GY;.V&ժx "pgI{^zr/OinbBǮ⬷G.l3H_@ǣq PM7(@{ TE 86a7WEa|TKXg1v^T^Ek!_+lٵF?P69.L<9\va 1k!x% WN-G<'my"spCDV}]*OU @Kᱮ'K&gZe---!+hJ<, !Y<0g Ƴ©- = -ԭJRM?yVi$&g@LbΞl䜭o:Uc}l Qkŵǘko[Dzpoqk #x{O70Z7`O`YŲ؉DD" ; N%DG oԩE/tqL)6 0h|OB ,[>I{uÎv#b,^.**î*~0+HPP}u|_rPy +."3^Lʤu>"CD%}R1fW1i+j5?`= B̳uKyRj3bf+j.v.Yx71;f *#rJ @LA`6zXk#ҞMMItݠv4iwߍ>U6l:%KO`z]˵w$[%=&q{̱z`KXlxc@{1l,7=: eG+eHi,N>4@i \C S9J& r\x5"5*O)K0oEza6!N%,h1\jR9K+H;&P @R)>Y [g?SJ|CKe.ԌI_A}`Bfjh.-行MWY prPh?w*%d K0 AY=z?Om endstream endobj 1456 0 obj << /Length 3094 /Filter /FlateDecode >> stream x[mo6_a'Hx|-z@]@{nhmm-zd;J9CLJ3 IftoNF3Mlvaƅ&<231bݮfo:.$Ż3+:ū׾"}z<^%3afKmmx[] .%tVwW0+]I|v%q 6zTqӬXBE%X3 ͷIWio4WuoXb]1A7I+PYrLRjM=b &z^VLדl>n/V Z|̲hh dYۻtw38/yAI%ZnAVdҪ#y^G~\2ěAqƇu1\IJId˨}O#Px}Nb_4>>|yftr wJXmFnQ]=GXz*&92lO(r^lj Vdg li@4>,ϒͶoӲ\)Dk| rYE6gyls 6u,eZu1 ㌣ڶQ _%wE2Jeiڍ: $V1@U9Ps`=(Ш6:m6 rxjp =j"X't /-d7jxnJZՀxطU飄>Хc^:0.pվO;4jTEL1EzE D> |X7h m*E pIhJQ:QL\IvW`]M:PkԀ8J~0B>fFg҃fG D$f{n HhHv<B9bI;jf~2JY@T@gGcNB1a u :'IQ4uVyo/kd=L.1P\f8p(\.}Dnw =i:( ydc ǽr B]LTlj,{S{Z5$셎f. ,_#)roTBBcv!xn^7GV B>FW{1Q^63+F8$COBv9Hg:"Av:0[si7@iMur&@Fe?߻qĂ西V Is/0qpweZs2:xц:^cgmÖC7y;#,,b@է;7|e.ɯ$[^C#"FH64Y׏}p^$mS?/!ܺ8u%Hb0ݯtJILWͤߠX& m]ryri^m8>FSmuj~G೯aY Ix͏34 Mn?%$DS$F @ R%^F~H[yxtMgS3`ivrkbM?*mp:%udi{ XB֏< uĩEۀ.a}Le&ϛp-Vk r"Y6˖A ΍1.rMǺӖnG7aҵlcrUFl_]Gl`lILJը%1isVz} 2~0VB}h뷷]^%,cd;:[f->)g7g'Tf EBgHi~7u2ܞ@}= s=qb z*ɞE-AxTP]K IHd~_~"!zUb!}HX^1_Rs q*ܩ|o@~Ī7{hL2YCRVg @B[GPs'o/POd 5ʟa2\xzuQ 1 \bH/'7"QxN8ƻ2B ­@w/ [XF8 M U0P: Ł" D"&m1]=C G@Cc6l3]?%f-+)CfC#>P0B#*_~K5_</eWV.|z8]1C2 /Z.~7U?C SXYufyoyy4.<_~#NdVH~y`qk >z_I5ԷV> ̸фkv>Pp͠|D` sNhLPÐh}hD d2vM܆dPퟝ&kq-< %RQGĜB-'tHpsSx:Wc845Áo>~ }R6$"YAգ'~e\&͈}Mܡ2)UgnLaW/tfWw-lX9 ˟>>zV>=`T ;cGy > ]B@ϑ^2稹g:+z)(=?OAT>CDd .hU\N|T=rsC|%_8eC٦kwh ,}rퟰ~^zuOS/}D0'x4Ȉ1OR}OpE|J?b۳Z<;C?]n endstream endobj 1463 0 obj << /Length 3455 /Filter /FlateDecode >> stream x[[6~ϯ0ٍY^EEHNA,GJrQJ$CgtwWϾL)]͸ЄGf#F,z/GDp Մ9 zHwy{<^/^'n0afKm3;%v8FR= ?\=[:c!B4DF|>|qFf"5,Ff?ݢᗖ؈G8-aaPi ՜?謁c/Wl>~ۓJ_m  ܼW>Xb(ɾ`ɇR+GjLj@jaavSjg/@j#儉/Ӥ+ˤ_LD=G_ Hhywp!`Z"[LILPbNJ` ܴJ$qSrn7* oN#:%-C%hI"ɟ@ ͗(]R"V@>CSăqq("\74*RlF]ʪxϖѡ [A*@:ڠٳ2. :zHE.ޔgP gO 'ԇl@GLJ8 %B ń(/J-Ň斵oE鞞r(@=шH Gvy,ߓacFhxj\ABTYGEDଵ5DrOiY ? 'd~0DݶE6B:xDoI 4i[ ^9xFOEٲJEb'~ ELƛʯC 0v J5$$JfZ}H:oIo)ZlV%u7j5V eƗz︖HMp΅М( Ɵ:$nTo*ݤgnW"޺p$Nfg6"/J0GP+̶XVyΑ$"]&"6F)#trKZ"Vv 2&qWyhwJUgؕ uё>善sB0:ݐˤ )Ufw8k`ł1YX4p3ړYՆn}@B lee: ]گ<y +;KAmԦ /4O IBe8DsH+E4 A_L7 Y9z}nMxLy1,H];=MIEʀ0 :VwdiO2K%ۤp|6F]=av6t фlAQ,;HcB =[A%дpdKѫ-FC 63dhQ7f[$KFQ=0Ue:\Y!'1tK\-`[Mއ(͋z%#Qx ;oâ!qjXtDŽbeڠL:@L7A$B2e1l`}󅻰`x1`8^\u`u38n7k ,ż4sƁ8 G> hºc$Zd6HCvP}ow*ix;5і'P0~~ϵ%ҲJKOv 4-g*`*0D˄A;|ƺ0X/ixneDf8Lc4RfLh,/؜ٯͫ_P ]>eEP /jɿ.٪7&^˛Ǵ%q(L=eAI3`\MŃܗ& aPLS̠݇*Qf]"Rbd0*Q_tqcZ}!!E~5PAvx 6wg5]Gw$JUd詆+l@`d,+,e^&b (jI.D 5–#ؒM!1xaBK6xdR+jKD!# 4X: ~Ѩ4콬le"; a %6*`s@qOp=`i" L"l-/y5r陂&FmV #A?fhKD30͞X\NtXe DPx1 QQp_DZ@M " VB1_N+S+Mul8oAmpt!{ӁzH:}HofLI@ޓx Fh=?Ha T+mZy;}u畻b/SXNeu|uĹusTpHP5`q1Եacns7 $JGX'LUR%6*!mo#K8H ;@=!g/z' }YMNU)_x^$AWh(Ӳqflԕt#g"fmOg-ymi-k)7HlHg.RMmEt*X]w vֶk,] -oލc8\@.xde]]-I;KyB[>u5X&0D\@J<{㞜  ߷ת9"kJŁ^9rnb!-##{Ã?4 D0)둉̄lpwMZGʱ7;$-/FJ tI?,<,oOAR(>_^$(Oz<8.&O,1.}`޾p,䮹]I۸Ln@&&$`Wy&>䟲)4T$ $KTjdʹA8^.pҫoRKֲB|`"8ܠ$&~\۽'-ݕ8!鉛CÍ9w W^PGdSó+~uњ(xCF`"\Ql$bGxW:)CS>\C+M}Gp44;&P2`w|Zۅ.XOvgPQ؋lb'D}ZM O[0W4kUsEZ<|~ C\/'鄮n(N4Y#M7= hֹ?Iu0);릠eߥ/G$;>,("x|(F<0~[qvP[a%_@ endstream endobj 1475 0 obj << /Length 2560 /Filter /FlateDecode >> stream x[[o۸~ϯ$ e] gѢ=MATX[veCYkَh"|3(8xppu%BFaLRJdn&mxϢէx9 F +:~TΩᅻ\]|t .GD!v1 6~vps {q_]~Ω@U a %{<҄_eYöurř- ! a .DPHK",27bG-8 R\,Hey'/.u/H|ocDM9'@\l"g1$b*9+DsYKXd2$&K`D,Sa81mc +DĴGĵIM=bif~lDti i]1ފgn )Q8K㕛6 O(@Z+S@oEGIjdW64*zA{-殅}E3hhzY'CٍiDT6[#ddܼ3SĈBips!M*^J"J0j\.0UzWr6 7(aWYLtmo-Rǹ=*^Ljߚ(XSx|56HѶ gOhwy D B_n-ݮ[NU(o)S(Ěm6Q(k~ tO_dk›œAI<FY'7ǜ9#ff'+@<$vksV+\7%Zq~5`]#0hIx#78A 5\^x\yC,u!V@To_Kٴ.Krեm.öKd'OF ?a^ 7ҵ ;A~JMP?oξY Z 0D0`< `PYp}?PëIc +aN?D933 4L_Ya{Znm:#0A!CBX#h fpClWd`7%1Cc7*rd/'2ϛxlƚ%0fIZ+<+y@*}p"!6h/6/ݏk u@Jz {ދ_K _o2sRB3DԲ/W_iE`ӫl^zgQs8H]aUԄ8o?5Q!R -.૿ps66j/i8 B7f0]iq!q{>jU 3 \e6gBC܇Sg{q?-G@m𢻸A Fj?f{eۼ9y[y(;.v «'ׅz46O6K ؜csc UCRqjFs)?jB&jSnu4ᮒEX`_J )sU9#U4CsS\BSQ,6Rʯ~1ʓ9HF1/=F^]V~֨vE*W49[ʃXuu= Ոh*Ip|u9]cq-Al vS3[,IWf"UOZI[ɀ(ZP4\i',ʵF%5Y[V̔p2=\#w)?3/ber>(p];EC"]e.ccG*CTo웚ؤInѢ&@q#r/Md:6jJ]sa]#fr%*Hԟ d`Rv /-Ƌ,WE:I҇>eKH]>BRQjxZ6ȎSb\EjU{L +q^x#8U>}`$xm62S-Mǻfu+?{p4ҮV!S'<[|]%>G<tG`H;Z" q:a.l>iWn-4'`+l*m9ns2j8](? (Ĩv)}A<\2QajF`; Ge,ɫ)H*q128ywqijUSYuE$߳,hIr։sJDxj X8JKQOlYRBʧ;[F _P& _J@ :h8$YgKDGY<^d>I[14ZUZ:$_Vɴ!pK 4Yo iXM{* endstream endobj 1483 0 obj << /Length 2043 /Filter /FlateDecode >> stream xێ}@^`͈xQ6@6hA1oe]Yr$y'=I]8Ivy"EQ~qo~|Û'|#P*byx*r#8F)N6Ϳw]Rd?M%?";~|$fyY埲2qjHH]obKf6͎2$93~Rc:99`EěHiv˨;4?GqLaw֙y]uYQfnm&+',*٥Mv6E5 _D82*F v@ٯNnmu@'b׿XdTScryjZvEFձ.K`p H.'Ahpc5:HNpS8BOu#{%xGơ쭾vfIYNxMWh HrWi(:, RBe1;# %?Q/%Vu%7]{.uJV7e%uMwd J+Ç < ۦO έ,<+ "$ad}/V,1^x+gaگ]RKgZUUP޴`!Iy9:%?eMw0O"cڹtF @F˒g>sevΎXF\L_+BF[Ctt:,U՝KHsਚ-cΔ0crfֽ=- \;4@‹M8?!:^ a6h:'m=KxeqԷ]T_c`@Ҩ˖Ⱦ.Z/k[͸WF)4\'5I }>% n'pFL oRG/ã_&XV&|0t |ʮ!Ys?#{zcW !l*S@8k :ӑ8&I0S#J/8Hu7%!е]cFxNR$$^ʵֆ+br@^F]Le8ivI`,T5ͳs-7)d endstream endobj 1493 0 obj << /Length 3456 /Filter /FlateDecode >> stream xڽr6PDUDW6o姛|2W)2 QdGW7hz&׿!SBpYJN.#w<`X)دrnWwz\6Jx d,8]mS#?_|nʮ n)RsEe?tl2i^n-LGCAeU,=M@+(->b8NYzΖ-SՖ=Xnb%3:#~ W(\韈%"tL%ӝyu5yy\[S7.t$;4Ғd 0 M˪HK08'W=/#모lcBw?M6d6tv'#q)ZgF|<+JRVHhឹ@-T(퉴xm7!cƣ{^Etf_8d Xz_RQQo+QsE"Lʍ#HqVBW`򎞤8JKCࡕ;λȹ,ق/G7vyWlhߎLj]J .A Q)mXDbO9T-PUPS3'0]Lu"a2FuW7ZY㚘l92i,aolQ[yÕVzdFpx%鹐>9`ꖦ`aU _E]=0HJ\/8 /?߃%L09u]$qSwy놂 1DpE8 U2O%^CTb[W4*GZV;4-xwnA>9X$jbD[4$:qt>A|CMl1R-hBfVHND6 \ȧwip c ,H'p)JmXcƇ5Vo&PXf abR3`EW[0| QG% ErLJAEeQqNI m@?eZ)fz֝8z֝ έ 5^Y0D# 6:6F6˄MѮ:A@=N8SOrAס# E*^A>p7 <ܢzD#َ@yԇ=FDq Zχd ؉f7[+0v`RAcMX 72\E:(s9Ѹ-[G9yJa lT-fg_miyeܚ!c)CG1MPV)G4^ >??zLDtUH}8b&ހ N= Z'ں-;շby6ְ ӳhN !ta|4Ĵx>XC"|XSy9T*?6Z"w PJG*6>ݥ v_K<:SHR?-.n{‹o.@(,zw_lDLg K@qvq}ҌeM2TlI,?RAxg%q''|p)|!YfG "F/IHi B `N10x Bi-ƴD?$#qE={|{y/&1UN7J{G;;;+=9}82z= !) &jf X.HͮLhbW{lRzG#kgwPX)VəҦKpoO‘k5'RIc3g)bCm *eC- s} \(8Ԥ1f>0|jL9>+nL&w. j֩jP3 %"j?7O鸺У䒐CeCl Zie.wehX2.pF <%řyhSlVn~42Uj K||`q]o_}VrbOjj|R)y+RHruL͸DUM4WI5Ωvh|=l:60eԳ $@ؤd,@OIq6HAq[槫o+kS9әWdf{?JS{ѓx"C3|˛1D/S@i7 gr֭Qq+֝;|oʼ ikQq$d57|3>Eޜ4>ӵBF©O4 SBF' t3T\lkq`naaN&}z ,tceOgU(rL]-|x}y_VsɻXTsꬹJI5|9uok[zmPBҐڋGL֝#d2CѨ>)Ib0 ߾z!^Ѧ&yhG^4U [l9aT,oGM57n%e`uMΘsѧmaTo5Ru O8{)1DCodetҳ~nnX?:O}7чho֏VQ>\O_'$A bВ!㾠(<3~+ +I.`蝦.bߕN;;u0} z[>/e*q U. ye{YpYaXZ}5g'P/f1@H5Za* j=a}<6_x_9 sYe endstream endobj 1499 0 obj << /Length 2031 /Filter /FlateDecode >> stream x[[o8~ϯbk1%7Һl]L/PFRVp溼Yow?oI[4c}pG$rsl PmeK%CY15 q ?.5n= y'UN*)P4wx>L#--,~Q2H"2x2hd09 x_y k9EԫÇdD%FB5C1@t[c΀w౶v:#bB?)&ZaKA@Zs(pT*M(VXL@|Zxq].'Wߗce+{f#=÷Ᲊv߆IoÕEy9 nw~|~AAVpBkys?`DjYWj.[v˵ܱMy[IݥY[KmlDaf.=t1<~n?7ن` / a`ǭS 5(b`>F5[Գr:>U2~ern\#9xͥ'j˪m`S/G!2Q \x.$"zoJ[^'ϳOܷk)سw᎛ FOд-f4>,v endstream endobj 1516 0 obj << /Length 2656 /Filter /FlateDecode >> stream xڵZKs6WL4xY9)[[p!'$'^t|"HnÛwAEKyoM)`Pl~U}<Ǔ&Fǰ[Nr{KO4F,,mf").Eh z#] Xnv&IҲf<F#پ_ؖ˳v~ %dlvZPE|/P-`mTfm'ZwLkT~)KOs4D2LLJȄ^\eO›v}&T򊔡$v~F&FB-82yVUts@)6SWF%du3h4]zTe'vxralnabбaT Q[i4R<|:5f:sāӳf=#q3]siwوz;ֳSщRMeaUJz\B_؝˚P-  nKƏ-@D/Of5R֤z/jdroGԶ>lk#0yu9RVI HxK!,Q[=l'>8? oR}Լy2& UULWa-W8[6})R؂iL4;hZ vnQ':u.|UCcjHx³`1%N6f"ako@ 8g0]õ5b 7rt 4^8); 랆 ݳ]o7sc:iXbm;rkmVG;?}v^*n* Y.~`Ѵ_CtԌ>K*ske],=TVtܵWxlRe9"؝c:gjwcm5 HO{SxIs'*I'\`MC2nkX_ va1ᦃErIl2sQ u=T#,lB5E_@9ο51qowa endstream endobj 1532 0 obj << /Length 3183 /Filter /FlateDecode >> stream xZKs6ϯPI!Afkv7oIDɬPBR3ۍnehq*OF(ZVp+#2~+#ԮL*E&nc_t?aWP\mb?Rq* WRŔ]HdQƻG/' g\_pmMkaxQP~*m[ޗW?6SSufTP6huq$"ifd&RIM]=ªrv%62I H%tѧwe \o\h]`[ 5J|>9 ŶiwTsyOeUQss[<1Ȍ,J R妨6GMۅ.ۦp3~gDa5m~y3/B͘H!6*!c9guDҾz߄k2:j0$R+ɄJӁUu o@5!rn!wTs2b1k_xB KRFjJE6t8֑N#sZi;!A]h2"^B;¥, 'cRūK)bE6qf16lAH( \[fߩmetޚD/<ΔP2k˼:;<oTҽ@%o| Mj A \v ((P ?ݩo挺e er0Δp^nߢ( n:b.udf\~50 }8d\w -C2*9$.ӓ`ȉb(4(@q6 "6xz 9 L)t&@Ԯ&='™31W¢i.=16PjV6"[g;ȠΆ{)駠m9J.@^AdfL ]EJ_BУ탆@~:,ntO$S ۂ,;F53$ sq9&@x3-,9u ;yQtH#J^9_ŭu_O9 ?f>pF߲"#F? sI9ƂUZ)T4g6sP1jTCcNBSEtL 떻RG,BFa,GJ+^ :`},nn8d&=33`e3jd}^uᥬ6(2zGb>>Nc>7q k /S|0e+ʉ |]KU^M`**xؑ4J86G׋PGE<@!&{\Dn?߄ *n2R$6 Mq"׾dxR+;v[F &I+ {\Ȑ1q ͏55אA=9-+p\/b}6:hsKm.o:A[mäobpFCe .⇍ mӰ-P6w7~ڌh(ȴS\ R‹LE<"ĸy;{;I8]hT,ݤ\.;mǃa@,Ȼ|6hɠN)m?e[0>7x #QR]rgnFu㞓u;6ǐ~W6I4 4!ߖZO#=h,tkJp1gvgwV{9-.'elr&]ȼj K?R J~n!N0XH-o>pXi:K׾$z6J!Rf4$񂻩cb0ƥDzN,D&MsON@a,5}>Ib#U7ǔ.ev7xJd]J(SkI=[]3A\8&bMq oq-BIp1K\1ؘJtpyAi>gD #$ `?T#f!J\_bIKT~.;dQo)qѩnN9`3lcE1ND3=p]4:À|:5mO#GݝT2Qo~J}3qje̥k_8[7_mS:w2i*$}j3pYm"p'ɿ†?4\s=7Uո7(8SGŎi<"bKⳤXs$xh_-hN:$:yOU?I$33ʼ<@o:ר~Ü3eRp&r?x*hO4>1\'(⤍E4NÁR+7s8y%ƧZKP"I՛9y))jJ)t=AB/10!t7FB`Qpɝ&%f^瞜\t3b6I64J6dxH#|"CXrO!SA2*< vcqF}YTΟ@$<7c=DZDx;`)=ΧoR;3^>ߧW2wnN҄6Gr+0>@v'sI|CO Z$A'`P>0l|Irg(e SOZˋ-T]vR|2Od-^jnas_y}(\VM<0X]< %9anxr[=egA/]qF > endstream endobj 1546 0 obj << /Length 2763 /Filter /FlateDecode >> stream xZK۸W(UYXDRl5X"yx4vʺ:ұk/Y}PʹƘ5l/` 43&L>g|Q L=!J%KI 3GQKZPߑĶm,Rfmv6Gf7OkBВ\0Lxi.϶.H(ʻވT#iz_wl}bm?W⣫K|l/׶mhx쬞%lj p,WJ&L?cRR7*,(NfҰP0ms`v{ wCF}F|'#E6 fs=?1ԃX1b8 ,g3{Gus̞t( 뎛IN^j7í?u?۟?/'ydd`*IBvLD\n@ ~xk[ A+kaϨ)Cq jXYKSu>.Nn 9v\jHp"iڷxԂr|J"?<^-8s<=n]ώԳo%X1 y~Ɂ|hKzߚoN< 3*+>Yu>?8CqwjJSثCiCȪ:{i =M$_oC8ĀLiˎ"p{?KM ^?l{ۇ?vF8T?D _bܞp"2 l |  ҄6,$"LS]=>^l`()(yqBX 1,tFv"W,E?{\&!9B|3e|nou\Gϓ]OOx03 wg*L }rxwn}c"+^Ҙh`md<8IbZ׃z1 sۜ.ɶ``]1dA'xvNq˭S:y ͨ͟,v-IBS0Y< RӹG6{Qwxۀ?s$qY$qP3$%1(3W|a9^g<Ń^!<Ń^ @O1SGZ`iH$wuCa"6=%n0Lf 7W(3_mLfƔ(~`/jx/~j&5*ԏYɵ64֥3i`&}!QΌ٫A̲W3f7P0.<(ݯ3.iqXx''W}8 g4%AN\6DN"o#A2| h(oT>)b1MQVs\5UL}p /Pm @մlV[dҗa Blܕ0$orf Y|A׊OsL9Q/P8c`&yL:g9Mu{ՎQjؙ~~Ak+̹VQ]AmK:;ofħ-cX?/NoS# Dyeӯ9:KPo+$I\l\#*!ʸ'ת5=-~TDR77R_Ab~۔2fydYb jiԫ)wWKBb0!jJ=Bѹou)fΥ̌1u:%X#)"*NjvGb7|qYNd6Ȃx>֡\X81@5[Wхm,W)ދuuMsȅ!+l!Ҿr5&z{'\R endstream endobj 1439 0 obj << /Type /ObjStm /N 100 /First 990 /Length 2442 /Filter /FlateDecode >> stream xڽZMoW\8d}6 ۇ$Z{0v! 8>Ӳz>MKͩ&YU^R78UoBeL/J)yc%30`6H'.0VF.T j(ق$zdAНfL5F$]LQꟂ%tETidյTw9&'SlI.h2, ^-W`*:n }N]/JAK]'@Rrrj-e+}#u -3fu)(ҠBn+Wak Z_%k ~h0Gop_Z_s0IJfţYkyĊuW}4cW|}Ɋ)jn=M?\{U*TPSj>r |U?c7h3vPj}^(RѨK)4v?S |r gJ+0[MW&wh9iDcNN1f<*>BeWE٫Wg:~}}zs}ulwgwn>~YrpСM#A*9 c`,˿ƠkM{O?ӧrz/W~鳦zs+6\pn1!xBQJrëWa>v:ކ|W*5@H@Cj9xI18qF"- @; B0ۙcˏ/|_"]XAEw-|h@\}Ϗem"ap9\}ys6_ #{q4 $Xzsˋ z{Voy'F%iT2a&<6dx잍@9:f <=0⮕ǝ D _cm W3Ppx@ 8BLKq:9KnPȈN%R[ӗu|`VI"#Hxs점(4 :Lang[3pL˛;a4'&**߶'l3JY?9Ǔapgx_ꏗ2+wO03ѝ$ӂn>9ȌȌ -@Tz/ppr0Oߛ0P k6`#U& Y})6y(ޖ |[Ă Ej GLXd~Od7,K F>aj((< ;S5Ϊ|*/@ƍ) L0_ Wj'IC&uό10l ' o݋ nw99ɍ16uOiV' j(vjͻR~Bxb'D?4dlذQF|'K:)GZ~ ]ov5z4A҉ڠ^y޿o-kؽ/6‹ 2 zڂqC1kmL5GcwO~ C:kmlA#-biOp>EJRsɤ V1T~lX,X-/S*8"&OxF5/ ,T% vTg٥;mDL<͝*M54Φ=\{'lfKRu򼝼''4q:*xu^ryNcc46FeNf̄4fB3!y~LX@МC-4Ϻ=5we8 \%d ~aletmmʂxV߳cXV} & 5Q[APO%`|{amDS T2-D/MEI7 ` (5gZR#mlxj?J$deL兵q.9\N%v> stream x[[6~ϯ𣍭T}]tYhC(4͌+M9LYN;M@4EC]/_?eФԔ-\h #%O˫c}WW~u2^H"9׫5Wtyu ߮ZV}&f()iWDcWԓXK|,9<  +0Պq~{}ne!W,]L)fVORȂr߮8_V}fe.hWn.~v%2j-x~j=Vf\0)_]v Vaײ[EZ{.I^3A,݇Ǯ(a%ls2U~%Ԯ`J5Yq b\Օe dE%˧l[{=>ԭ{xC#u˛ oL(ZYq y(x#fY&S7ϛh! ed$F!fi˖Z[5B-ƳކhmoL~t:3No&֨>[7Exl:zEPtz[av.ܻCOz||v?78ٸ>~L&@HCkb Z:#x,ǎfV,^IDUy-p^~.y* @pqJHS4/Wilyw,|߫4#4r*^Ыt2SilY=t+z_!*{!/uNs0 UUگ5U."7. \J$ M>p}jV١Y:G]vCE̸ .Hɰ0Dp/FӘIoTB6玘cI,3'B3WcX #mH\g∠^^ȮQy$Zg2bBJ6,OAy$!c#?<_ YݚK PJp;HgAJ?Y m1؊AF;dىVSe-Xb0 w:>Ppr[JMIREw|JĔOu`iPG ݨËN8Q0N<.WK ӡ|B5'+/L1@4*z*"^C': pxU *vC VWp& ?< UtHTa`,LzZOgЪdwU3k f PX!O/2.x[!-mCON~- ~*ODW)עE&P]rQD|\Upnq@er&捷#w0!Xaht`jD܅4Ў yA%[T+=$P OT 'J k%xmj,s/7ckkHsj N7uQN òK-C7*0S3R  G*)ϣoF-Ӛ:Nt][oܺ.giOfmkQQV8*F*8QO`0"`aI[Lj9&yT) Zl6a6 ^O՗$@6)sJ͙#yQgcA0t6?o ȴY3/!@XʦDT)& 3BI \צř&@`X^D1X^DXRj@ȭx'1){raQU}^~ZΜrC_D7;J+lqdJ7ON0>eDl5fp]ƫ:pv z!$&Бu(Q/p[owp9Bfoz_QP j_Ҁ[|# Aݦmnl³ IrxXoz#]T>O yzxwLXJKB\+[D;Kt֐hݙ`j%q,Ps,P+}Z|>^6wUԼK5x CL< dw|0eYbp"_S,딟`OcSEILØ褡ÂBYzB^_H&lV&* }rA(tF0mMZu\-<~_amB endstream endobj 1558 0 obj << /Length 2825 /Filter /FlateDecode >> stream xZKoW̑d'`,l΁$zg1IewS|G# VGO[ˋwW}*cyJȌ cW,juu%v&bRd0z#tl:)v;GI)<̊~:Hv}g%4J6M_5k!atrCX:4d>fFG,cHJُ|rMlupe@kn168L솫p9Ci7?Tp]R&}bI%ubzMS]]uEY5]Sw5* >6]S50+>y:\嚢0i};9燄|^0ZYPY![H)KP:s5\A9epsQé6BqUQ ƳЕLz=4^γaTD"h 6Opcy#\m@Pۨʨs頁] b-'1 XDK}LjخH۟!fQ]ĈsP俭hm8͔m !#lGUcfp^;YvYL !ߚ,pgoYd_5"LU Aʞ%$ray$A]PHH$ E0!A"'HPr4&9|$A'A<7 Xܜ%A1%Az fq#!Vٔu΁ =#>%䕦{w피,?[\^E&dA6f<&q(8:^adz9FG}Xમ#& 1JN!\ne(Gw#T#@a] >rmYy8By0< /*ef/s/fO>+tx= ؞@z7۲ł "NrάL/lF9}d=G#z_Ijz?^X֣ 7S .;j> Z޹}ל\aÈ0,O+Ü M0=< ] HڵiLeoK@M'S*{PbTi>4tqU JXR=k4X$:HbvuӸXW7-5tums \vJ~v 4VF9mC@ _6)}`fx:M稓U4(u//Rn5xyOg`Td3Ñ~ifڱg+:^쐖 e8C)m|ԭhij"5r5mѬ9x{ v!oNU>tƨ? {8<18#p Gy hC_YuiE8&H ́9>k^0qkeuG}"ȕtr-Iʨ3&TwDQrIR&i`,hcݶ5 ;}%-F?VIQ4]Kx=Ikp4k޻.&n 1j٠?kXh c|GaKX/5Fesb6#1nGv@TF%O.(4xv/pϙ1v8>as>M>uUy[#+$aeQ7 +M`/t v!%Gu ۠)ᆫP>(N 1U.~Jcfs&.2oz.u8N?!ITۯMscp +|3kځN:CLS^ѭ016gwBF<$lT u @b_sMp)]/;_XFNiiUqze\!1y*JJ`#Mw?|xK0̾ǃn|ƤWcg iBl4ߔr3{R/U7f6Ϯ?ǭhT.Egp^%」 di|!= MXaAc؜b g K,Xb|!4K@9/f-!ֿ(ax3@ c=N R:6wI!.s'Y IsOO"^Ŏ۳΀B,Z~8aŰr㊛d$ mҘS<є]0Te)qY6&>62g\M RuSõk"Cޡ=]BC/}KHF~$~VO9fFR9h(O'$a, usgP[CK/ -$Z-C/'Ag/=~nԻ[IDrWM5N endstream endobj 1574 0 obj << /Length 3484 /Filter /FlateDecode >> stream x[[s6~IPFMM~jZln$J%u\x(Kq}I\>G~MnήoϾ{'IBtrxBX&ILbr|^իm/>N}.g 3`,1MW{# *szYa\MhDt]I(X,ril&$JɌ5fw1Kt[kפoeվ[/^7CCB885f(CRh 6C[\$|Jvjľ!9~r"ߤNjԗ*t Lohs~n>#Ӽȋ{.]ʴޔ}Y :/[Tf22T¾ߠeeC>sYY4}6pBwejv J]ATح|iZ\:K{]묨IeTH)IcTFŌS0:ש {W Ba FVc&hFvJ54H=1F$F{&)aI@ Ug{:9֮53Gu̟7kYKٚf YËY kX'nM F06cB$Ag%hp2 ҍ5gvtY.Joh\O^`߼o(E}=bJ)uJdF Oв#njDWOn&g4!T| @ U._e]0PJywt.2;>> b~ Q |.Q)KLCA8m&%VTw؅官5/Vs¹CzW B\[UWr;GŘaB ux 䊈taHԻlGrk34_8DֶP>UF<`s?gu\ = ApO--vtTDZ?ءƌjX `ICa>^P Dy0zwpf7tA֛Pkv:Zؑ(B%7aGhKmMC/B8uS@X3or:| 1,ך*5bDErЕLwؙ~jcn`-~H>d/vT>zÀkyHuG0&L X˄ Hu@fp6*|奫MMw ^ $ 6.wوڔA&(چUF & E7+9e@))3kZm;?kKl%m^x`̜j5we [=]f G>jZHyez1-Hbm> ꉽN .ՑOu( w(jp}\K .hQ1gX%Zxw;|gai ݳy0.EUy9(omDq, n0y ?d̸g4@{3,.pwYel81WƚFx4*GrgXH-,ZQ %VGmXۑy<ܻ &xQ:&.2t4E+^nV c>mAnp1o8ih9i[ɔ0D$~9{{7O97D(Ŧ :( =YUUWcWUW <&L=JNoMLdO)ĿI`qI]HDı< dxjE%@L/JÁoCWU%+iy2`L _qM8 Dhn͊:ȷ` .zL''if <'yNæ0d3#ہь&Lyk&Ym0W3f$z.UKEB2߆:- 794&Q0mO4̥@-efIH2WV=ET*a>!=O*%7i DS0GX'ۃц0+=G!^쑣d9b6To}o1U\(NE^e ӧ:1CVuԸ[j[  ;9 iClX<;mzB'gM [\C ϢE^Խ/a>P"S[`>7eF nx!+:} nG:Aw%zWw?r1SI<BI.rhyw7~3g*2uSe08Glﳢ: p~xH{ܔb::M:H l3^>p64 ڋU&͵6Ej#`wo~Yޔ:~%W_<;rB8r3%fIٸ6lC^럻rC 搜/_r6n\VqwjQT4(QwA~0m ]saV6%$@um*@~ kn tWok Ys^Ӓs q >F@tti \+'tjk &| ˓26epu ';=fcB ҝ6ؤ03Z}˸ כl,TŦٕj 8(38t#LP}5K.]7fО%w9(1.?e8 endstream endobj 1581 0 obj << /Length 2987 /Filter /FlateDecode >> stream xڵZKPISEOd]{˞T=PGòD*$ק \˓aPh_:o}ʰpXIeLI˅^Wc\oͤLIنJin72{ >nE.vSJpΙɤNp.47+3Tb ˴\m|ӄzf+Vӟ?߽Y}$[]9{RT$j:0 i5аz-+ӤL僑.]>ӷHn*M'HfR[Sި3Fj0#uH|pw}MiWÙ2P˶݈uߴ]lwag'}Z+01TDb>́T;22^,e^[rn ?TWuNT~gQGݾBk&e:mӸQcj'0]>qY.o!_ rn־b 3LNfvpX|oH Jr]gEL E"3 C `<"b_vږuUAܨ]Yw%C%yxǢG5LD]u׷kbcstE?9D]ϒJYF)$ҜpN7 mI:׵;!R0.Thi:34",q^~s0LgKC8o jJ"KoriQ5;.Nlw,ᮂ3*r(5؜X MU+2ptm!ВH!7gb0[S:X5 6A!N4t%uN qLuC|Hf]M[nRG6fl362šE] a1xN+w!Sx,`]Iv8;q (y;~ *7a3rYq9u?6* fyYstjAl(dZ몭1X# #gq {RL>UQSVmF@2qZ&7Ʈ&'ϙZcoe\ O [,'"p/LHy˺_i+ endstream endobj 1592 0 obj << /Length 2555 /Filter /FlateDecode >> stream x[nF}W~Yz3H@Gd"㙿O)(TY]}TUTyoo.#$E)D$N\$ůf-W#FsSFc*p|/W w#"d{2O0#&ҴGpP7s*43J%+/K,‘ MUͲ4Wb$V*Q?/uLJ{/ao,SSy{bz;w87U̕Vd<{XMl|WŎ:ufZSfU& {H D֞0ScﳙYZu."_-}AūfIL@/YZǬHgYuqDH0IcPdyvGSx6ˆ=ˈ=k?M bL,b~>%"(ADgR^9%b{d"MGؘDDS_!D4O>_׀4`a'8WXt7F^x|~)/-¶\F|ђgH}=wSE#j[ Fk E|}cX?NCpy[+] D4#e,jU(y jӟed4x>^7ు2xu!gI,O9Ljڼq0<])GRx#VyQ D" Ԁ\吼JUٟCXw6}rS'c9`HV'0 [ge>npގ:mŦ* ELVoZȺIX*j>Ϩ \5#NԳ@##h~vqp0X]aͥq8(50UVU'6ƐO/S.Oha0t]a}e8#+הŗ9W2 Ua{}DX;,BHr3`c9FR˃RQ;s`}pc;ReNXwfKAAD94GJWWؙc8(Woj:7|9M Q>$Zps{vvr 9$K 7cSI'oH+Ӣ[u6'sʑ1uetq◄!CE0x&0l R`I G*OS e4Ib04]t%A(I( 9ZUHP8Kt=0 c&XVxNY g:uNV.u0 ğWDVp R1E CT15|aCKK+_ "Z pNbBUjg$[[Gl toGEwסzU7wZmӕM}(˺]LV8Jb񚼻c!0S7> s"+\]2zjc|+$ B;Ӻ4)?nfqQtVZ?m{'k;cԳ.ky@œ @F8"~&$@̳*+,- b1\\bH]'MaiIWvmݶLnxh&tWAoWE*iwaxZ?+|͑`&Eu7ɦ_f}q]FcX2 vWpn|e>]D1iGċ2;,Jcatdw gy:N~TzL@Ml猯V'zY@iZLc޲r*/*$$O24/K{Ogo15:RRGA$Ezї7 E'rf,{VqO"u'`9`[at(٦lzVY aURhbX(]ٲgH:ّpzM<Z #B,54́,4Ua̷Zi}1o3Dxa6OR{'ng6 2[ĩ)6T5es @{g1>4*1;lgϫD uZ}Ve :&˞ sWKmUl> stream xZKs8W|"o3'Odk'I%>lU-Q27%~)Ҳg; mftvg/^K=3$6ͮ3. Όf$frv}.mR~H/3_H"Ϝ+]{ߐ~T,&/&Q8PX^/ǘYh`~xmYXg OW˷X,_)M5M2_dXEw`ac J…g$sj6EIYMOc? ((+EƈrN4mvO%Zōhb=a e`4Q2L1esU6g4*p,ߔc[cMiI17nD?Et,jÚIcy'6tlN'jt/`0ܨi| ow(3N]~=2N&&l;M>S 1 7FPїվHKO!RQ.}G|6+16\^Q[_ ΀fWB+|/G 4ZfKPjh~|ubß(vrV4GRtX' 2M-@bllWFCkP{(UȚ0;S-2IkQ.(x)dwئM%%oe.h3x~Q]6$c up'h~rQ"u{lK'ݐ \{=zz!zyp\UDď/bd+UIg@tགGٰ -̀8 {hWXu_em4'slwB}J2J;[Ɇqbh~wc:g < X:s/7Bg_u_?4?E0"$hTF׈PJZ{ j $cC9*7ZUY(0rˀVI4~v@|Yߤ=DVU@}CNc;GNn5<ʝ; zh%qBX3m)NGE7}օB;o6|3_,o Iʼn]~?eG%NIVg? lw"Y^9߹I@ΝN:1 he|mʼn f>:?kYБeb 1I%naݡ @m ϗ\QFTXDorOU6H7}8ie. Uo`WCdlrf N$kԲ~-p$ɩ0N QGd"ߏOKp 1<7W_,HMq`u&$ eChUQ@#HȉzCzp c`nI7޼SiS?$|ENRZkOG\eZX1EnRȃ0o+U2 PGKr<@ mҪԋȳTEk;u>8jR߱@}Ǵ= NqbWq!o&*-\*)VՂ[h8[PM3t@ r ߸U?8r?Z; žM`~h}̗ 1'_i#|OZP}kb"^|*"=S'73Fd{0.N-`; }UHS6Sox.ʴwlR_\xS;fF؜E 2D{9L”OߌIpG1 |S߁Ex2tHNA`m ogS$ztKyd i ONHr۹8x?{b'=TP$Q>)j OwAbeX-hV9غXH Yi, ibd`%e˴,"JTyPif\}e&KCw¾Yl"b񧉽 !°Y " ȳ%O?˶yh1.1VFK$4b=>+&{ȉ4WO.kU8븬'LT6_WFukouG8X{ ZSQl9&4 Asj$St`̜@)2ۃRpPHvdОHњ4T"[Oq䣸9ٿl endstream endobj 1606 0 obj << /Length 2977 /Filter /FlateDecode >> stream xZo8_ab%low@%Vmӿf8a:iWCkߌ,W/~z҅a$|qu0f rfZ\mV6oOWf_*&ƏB~./@ϻ3Wd 'd?s^$VBLZo=՗ٯW{@_}LtBwZ5~H&2_y^|)r[I / [YЫlf9f !Vnˇܞ5_܃&_c&a/#VD2c䈝KqE5eCדvyɛM-ʺv뮩{ISY)!p FG;اg+RYdprf'Y]R8Rrz= h%g'nHヺFrPF%"a81Ɔk,+8;j܂YCTnD񑓸az'mY:R`զ;"}bA.d⤅^ZӢ*,jj@ Cn{gw[]n붠!(.rI2+#nԽa* DT,ؗك\rԂ$  &!dB̷̛`S}>ᬵ}SW.!mTT)#}kP[`ۂPv{ɷ[mJ!DRR ?_҈":ǧ>q洘q&5 m%z D&M'M|}n64ɻFu}hL@b5yywn_o&}wߐo"ʀTf/#{? \:`f6qc&.Ōe'd$e}ݖkPٲMXa#pSANR khzJBjr͒7k[Қ"~-wõku)Sm;,KwyxS= ZH "=r> 3: Yd 7ad!OpQaGJ/s9[ :v8I1{=(6,#ǒ۔Z?*|yא.aOzBα3]4UA'e2비<EDh7#ig3fEyҡ+5z@n5F_ y 0Q/\m M6[\{9kXbHެ f!bh#FC돞 \PF=}Sp KIiwz>j铖V}b<ʧ2O!km().OTkaf uj$u-%vi+୊0/pQbR}[RBnʸ`Mz1g>I}g_ZlM ukL$1:f;U @N>!Sw>^+r;WQPNK9b쳬lXTC\&8:\0+s-zLSt́IIpVxuB$}jF9G@~=d~1уaZ xycW,5;UTR?3|$'0&˨* -Xm?z!l-RLr]v}oUl8Rϐqǘ,*]3qake=SrIn oC3D=ށ&TyfZPLjQ>JgiͫS?w~ #f)툘 0~ N+SЎML:;,M[Fc2@,T`rw,H &gaC,;"xj6NpE>H*o(gW7o Δ%8J_|2,Ű݄;7{1X< QMm2!#&e)3ō/q2ѵ4,hcT3ӎC3q US& pAf zN8 U@Gq;CiͰDՋB endstream endobj 1616 0 obj << /Length 3358 /Filter /FlateDecode >> stream xڽZI6W `:sNS[YH I[C^R9t @{-W+}݋U&L~M&tTBū}t=]} g&FgpmMj[J%QX>X>+%E! wYqJt6E0HD&xt<߯4\~v-U)1Jg"177Don ͵^긾^MV` r\1cqIRyh-;$o([I*Lf D<:f;66^3M˾-lCg\Yɰ8}rvL"T2}j!Do&])\;krxÕ+潽Nqn嫍2" ^Y )yy?Zt}[])RuLǙALe 8(u Na\,eQkOlݗeP:Ke| /eN$B׃mC, QIsGYTY||ցRZu.lI~!.wX=3)4vh^{Y|L]JOZ@"lf;dڿCʌetwUY*d`Q-:M{J~A 8\v͖|&yKvP8A{;@'?P|xE+oUS6qX]_d''BBPSU(O@1cWGWE~ iB 1ɼ0ܑBنx9H|&l S8C=XcyrHID02s\X'tjtx(ɏfi~8ؐ)*\)4`G8`IYQD (KO!3Jc>w1Su(K; ߦx ku vrGsE|e&_4KSrksX%5K5%SZg w=Yŝ9׽[DYKk sJs$q4_HƵmsepn[.7겨;঎gU,)BGb5^n :Tm7y1:l{=XehѾ9]2 J۪xVBCСmc7i@rN%6Eҁj1xe*6?W#kS@<8{:bssnC_nESgf : 7wݦe Nph8/zsk! S9o%:uBM吠vi]XPK%2OCN\4q!_"Icn/46 CjCoO;/ dZ$<>8hʗ8Z;3iهӚHnza=r*v!>3JzVEd ;^z&\_ĻU5e5|ssPj5޴yt<5 062jٮYP{$=E0TDHǷ+em'VLSks{(Ԥ}셂jGKwav{n i5؆Tu6ܡE6iChɜїbh7H{PjLjd!˴kcE`Yg)yď(F `ѽ5mh8=2w3+ y!x:ya3M]=~ߴ1i&tfhu eZ P |m 3o1g-n[9~A+{wV7'3i͒H ZAFcyq惽޼\I.`(ߦLJ3ıKiX3^&)r)?q^ /I ߛOїe~>1~[Rw5R8<9ϱCR' & ]L?ґu\+KA᪘f> stream xYKFϯQV\͞8XX '$%ʯߪTf&N9j_x_ċ7w qBG^'a( XnQ@LDJZ(oʮhͪPj+jwԗ3 8ikӄB)9kJkY鋪^9e]YWlR[sq-G%߼~\B_# *F%2/Y$]y51g\U2nmX$G?7u^mBpvMV=сd9Mֵwz\Q̒[7z.0xL-KҸz9@b,TُYL?T^uUTqYz.x kv HHwN"'zMκ9 :?/ϬViRۡXp G(!k~Xa -`5b39%&'A/ C8G *d@2!f!-16Ev<^\!rYMo׊'jKG> WSɤ^7ٱ!Χ-a,7 4Mw!c}hǢc+ @<S@&@g@@4*T*0 ԛ lP1hT`8%ffjcYs@݂(xp'?9=uOڹFss27-п4gR''ezϨS*V0@4}U$ߖ J dAO|EqRFo0ZUoxROq%M"io{e%j?=@9h}E79)Rg D=OcyيǃKYӇUNUsb5/RO$q7!F<) pNpfӡ>AX>7$}3oD$D.Ls Jb6x)&\Ru{2x)l[,s`\R-B ϬоmQ3"> tZgP-] k7w#P;GELU@t9v4FpUݍ%޻<ʐ;>ښEMj[۾qSK&F`a#V(1ɨt-`IŌmZ>6m.d#@:{imYg!6UA\0vdONRIEhUYs}XwkLMÇk\1Цghyh Vτ6n ihԃ2`h_1Hݗץ4myW4Y aG;Kh` mA#M)3g6Æ>dR՛_^XOm<+-_Xya\4d200E\F},$j-a!\˰pL6(t[):& !J@9XqL(崱DGղn6e9m DX2U7]<~3 7QKyӀFE R5rƭE.M}h\RPp:~j_ѱr秶+rsOx Y'n`[kO0{;^>^#\3\@X7 |K݇ :n漂wt %_f{+Z)z=8c5:5 $Xm2!N2>t+ȟd#@(c\7#g7]`ʇ 6+|_mfK}QM>'ѩDi$`)i@_٢oP"*RKGa* QC>Lz|.Cuw#O endstream endobj 1635 0 obj << /Length 3165 /Filter /FlateDecode >> stream xZ[wܶ~!ӓ׉uvb IwIFV~}g0 R\쓶,.`o.n/ze.rV2g؋pVpuqxzWw~w'bR0z#tzE._BE~Ys*[GI{3VdEX=cq:.2" ~FiS@A3kt"7ms\oo]쫦o͘zJ,ۋ 3DN-UYpM}Q2j"5Q~1vla,lm:0CQi68IdkuiUиcvt9\:d!abu }[h2jVkxGQ󱣹qLz6XB{'5%o6Ll˥ʙM)]X%clQq K+r N;LbzWk [-Gq`CU;jYs@ D=fQ34ͲZ>uT.7Qj{Gbw=(~Юvm {ײuqe`{\5 p9T/g7LMwXKsjGv]ײwÔF4Ad~} 3UFR]6W(eF[K+vyܻTE^n={vt =; ڠpZRk=<c%}WCACkr<EdM‰A"ޱb4V6d [Rlft}S ģ iA*LW⑃s]: OG1ג4 gDL鹦DtdE |}^ݎQ2׊L }wz0hE eU]Cj}t\i?D=B:R}A}'4sF{nJɉ;A]/!3՝meOG*gINc2sY='LH{jV!qyrrP{v8F69ѽ|:,%EE!Bs+r]0ikF|nQ@ 秂B2>w__Ww{li;nzõdJ޹퇎8Ý+m2Ŷnzj{⋥mC{&R4~9B♡(veB*5PoJ'Wbv~ fX Ah[T1[S̍%p:-jFU*c(0.ocPxF\ƹۆ1/ !U$Hʛ"컆J&! rt;1 v#GFLZ>AW Wp*e?='T8 4q6A ijq ~DFG !p62DIhv ;+߷j ׋A@wFԧ1U!+/.2x1Kl;Bl~i*q>0PmE|'Sw Da ߠ;u\)Fb^IiV7z~3g[.O# S-:̘-=:QEK ~5Eo\O5RR*RRP0@i$B}ub%l݂WwՇsgM׏LT֏fS1B<`!H A]n0^ c,d7i"14eJ`?j>g ]Q/bp ڦHtLb lP~,-*Ν~bx@3%ТMisfN9(0!!d0!ҖtLBv"8ۡ1B>_e([@E.DO(~!ŀB%pCR_c~;T1PJ?? y&Tt)HT?&˜C!/Cbٗ2ڎcM'8v9Cuy?`igSR?r*g͗ N4qfC/šCo Y29&$%5 H,9o֌DXDq9G8i\.x>k&Mk4@WDp0-?c!Ts>RZ?RڤCaTTlϡhLK$'=8i9TO~%`VC!# ̙H4yGJv7f9N',}s"ܫj1r'#ɏ8? 3 Nc Ncw֐OvQ1s 0kd$KXoU/}RpC" )=$v(iOy -{,)ƿ]- endstream endobj 1642 0 obj << /Length 1968 /Filter /FlateDecode >> stream xڽXK6ϯ|RD= .lJxoҴzY,U_=<8A Hf>Mz =.`圄u'z\+#jgtsYn"+fb_Vf->]~udË"7[垴mUZQ5_ܹn|{kH6tn +`8ZW0ӣHϣƀFd`*; )|o9tY,^E  M8gRK$^C1,=73z'5nV߹Ӯcp!tG&5mKt;iˣ: >xbtWW^aAYd,IDP6W>5@qMtaZK0Vx("X(O)Z{S:{^9AL'AF9(=EĤDT@m/a/7prp = !;-<棍[}6=6=_LvRgf~|H]8@t ?󨾳>R'x#n93)l;'L<1_Ĕ@$ ?d endstream endobj 1689 0 obj << /Length 2310 /Filter /FlateDecode >> stream xY[SJ~ϯ6* X*'E aKCx9}{.PIms6,'drͻO<0C$ rs&7w[9)U(q5vsՄd&9nɩ>$:$V8؄c89͙@ ')ƾm,=)i(Θ訌ة tƉD׶Cط^xӢmSۦ&]R ND*͟塘Nj~(s^*Ti PIj$ޛc7`TLfc);NGx:)T%Jr׼Jai+.+q!vWɤ+~yCE7OCoE&Vu>,l:h-G˸ˤ^5sOӓ F֢֝zŚs6K9I apU< ʵr2nlLXd(n1{zA3Q߄;N X>!:B2 .>}ugMZ'4Y8vq~WdE^%UZ$_VXܻ&e'_nQmA8CYqפS74֫uQFwuWIN}ϲ,%+.,i;'] YQt;\=5܌bx]p gQCE:[a'xm5+0B4vvN8vA1dKBh@+4:NFC}R>SL؆::ٲ :# B]p32*cYQh{cǣEVjssp0škye&vEYGx᾿WAgເ;⼮܄u4iTR=(r5K?+cy,`ԘwQ6ԭidƧb pGC}\"ŠMթk.Il E-KzN?$.Wiŷo:;@޻R!5xse _L$!.t]QdZ_CtdQ:NbNGZy!@!`/&NP!:Oe<dX,u< W#·ZJh;s\dfe&VT9IzDp%qnB<<,TXC_>6*tE`J:@S MY'6S#DG<O vv du7]БǤ8F~%I</Ń!-Q7@x.UT8Da1_qenk>>*|j%DjB EK%Uú uV3}> ZZ糬Ȩ<)"s%v7+ތUm4Ja{&_ , ܷt[eڎt0ifs%:܆uZaWiX4Um<@^.벸k.ulf3CiXQYF:hE01m#KGw b3Af}9wU(= e ,~fxs~%t8P &$``ZI )JoR$k;Ve;~}?x>RXqr[QeNoQ  Z \鑤8kR:M*|34]yc@ SwآO0TS8:~W@5^s@|>…+9Ө]<&(P2yW/ zSJjb'*%R8B<8(\ͻ[ endstream endobj 1549 0 obj << /Type /ObjStm /N 100 /First 996 /Length 2458 /Filter /FlateDecode >> stream xZߏ ~BV$%I ZH,R]p>ߏڕٳs=Ό∿>R&J&r%*7%+=K%c^M{g>mbZbfF:%.u SM1IbxWKڃRb|Hw}|]7p;{Jc6$=+\;^*$&1N[c^M=KUA9VPCJw`C>cPjeLΩeha~ lIs'R`ʪXEb=}CBc VhC9P׻|GřAE=p 6)Mᙝ{/Fu_:N\YwcYhxоc cg;|ߧukuFkX7ɍsk];f>plEzcՀ E ujGZ wW7!v=)zL?Hnڽ+-z{&/UxF~],}x;1}yFVIUCllH6` ,hdUhi<eD +KY]3}Xr4^بc vl"[~% )׮ 8B&5^2D'HP9O]ȡ{;x{7WA}==)8udVZqUJϭA,8vG]NYqz2ڞ TMf)HQl qςpq$<bHV;k ۾67pz?՝gjڴ$Y[-m6A<5&69:9쟜a/w endstream endobj 1740 0 obj << /Length 2947 /Filter /FlateDecode >> stream xZM[8mͳDѷah;=(c;Mo$Np 3]zV)7w3{!Cz!:ꅚK0l1_o?B^H"xن9\`{>b*H҇dj`"1JbSF|5[~ח\H^_@kO˅Ϣ(NL,LX#YޅC "11ͬ2M.ffIlUyw$iյ)@LS{}&91(O$m1Ѣʊ)|Ӡ,/0UL] da9B{jkܣ^S#1)z(8Ź @`:yVd$w/cVNPN\99Jf6YbSYTk`Gby^U2l}ʹ*jAv{-b*cZ?n=G+[.ϧ|l 鲹8"ҫPsGͤt?SEMnҦ*,7rJKu/t&uoo  W+.~j Za(D,^,Y nġXvn8À·,:mخʫnX^ {Fल\ZåI0:byR"(rn9l)Ŷ$: h.[/R"ifᄎ,J~1kue=ѵq?U e+iɈv5Mjʕ$^? {qጅp#5lC'ĺVV1xS?Oi1ξa0H\IefQnm#WeՔ=p.r Xg⭮ ԇt^OL>XJgD,e%AN(tGEΎEIcVQgt n `-hKgMa0x||aA5If5eEj:ȊI9&XL[aLT3=p jvx,V zEȃ"&}W ̲}ZOP.Ǫn-rxX?iHRIsI=/O1 ib'̅`N֞x"(@ e M[KK뵢i-ۚ#Y?Ivf.)ҠfoiH^BѶ4_ p]0[m"^i5)A*Ə0p.9/QJ׾}sWЄu.RCpSUUQ*Q>p52m,FgJy5o&oq8s;ri@0[ޓ&h֬7j lxuC6rPVw1жHU8![;ʀ0ZƇ˾ I]SW}T]3?fB_(Dv۶}ԺiM&@,a[PEvrRNG 6yd%5Y+ҜVAGkƵ_|Is[8$XG{HPH,'[:Dl2ltf)l6nH̦I|'4%@,d-T6ah#})Fk ɵAWɮFC*}/TC)Cլc8(%;X˦ie`\yxH$iU'UY>@|*%S盯AQ ։l"q*2rC` DgQx |ˆ^vy}LO;2t5/oX.GqWb"uL;1k&-B@3,VeYb~N%6n37ͬ~m…쭄]=&@Ƒg26QN'425_lućD= خ:nI,@Z@ mljX<܏lc{A /H{./*.#b1(M sx'6=" 6phl19fܗwx&y=eX/"?"I<;w,pflA!i=3(>o=2 E{uDlbT0SR Jѿ(QN2;wEYi-/4LE:MMa)ڵ VlYb<:X] $zԺp.b=a՞ Z6"H J"FELݷD_>mZ05 `GH /۷`EzcCwgdž#p{M jRj$ƻ-2v=hK.(> stream x[]o7}cwHu,EYؒ!KK GnQlX Q8<_<2.)YY7*IE`MiXEzi9E<9"g˛FG#YB+ņ@̜bSu#ũ̋k NtT,6E U6)Yf^9sĠ/*s!'ed,$R.eXy2/㩬(9-~^yDV(%@Rc&74#a42-K#2!l$)cN,!jK( wZV(P LLfRP^ZX4Fg"Yy*bq$rR1A10:iJ$EXވxLJޗ7J ZA$fԔs5L,9ؤnVٗ9,v8"_`F#zS_DnHiMȰtt& 1T EDbb&XL+,k({D1+JIV Fވ2%\"H?( n t79$'.}gN{Zzsj̻ݏxxN׋y~ZG3 S)2ٽ1fr{Y{>U7}gOgV/{\w~y}w'?0)T[t|dKX1Fg\*OS w*/2tHG`( 0-b1ňCCجof*Aei^qmngM3A&݁57`6Sln!xlG 1鈽l CC{C sg:`)茝Q8&zğe?o'  ## [#zxH(x H ! =4ZV,vM7_ed-!5aP{݀5 {-t D٬=*)~U^.߷W!v !U.-2 pDj?&Aؖ#eiDnQ8dX#EDLڙ;bCARA2 ALchZ\cw`6 0N/ ,v;ܛ6k76 GƔq1 mn1I-Dep#Mhh`$_NN&1Ė$B4[AS:ppؔA; N2Lb܂Q$O,]NLDltg;=}1ݮ_͚q/%򜵜9bA6h992%-9~+ޜ#:7Brz:Bp9"r ,ˤ"N>ğv}1z_/}_wglNάhu鸡 GpTg:#1#rj\gm#aXPM2G+U:9>=a'tqZly)l48!a~WW/OUv[^ NaR)scm׻|!ٴrb*a4Ra-^6D*~߿󗺗*ej'FKkhPmpmpk#Fad)s )NAu }NAu SPT:2בud#s\G:2בlȶlȶlȶlv?F[a;BpH% Uʝe~=R> ݙdlX$#!5rs&]rcjq!VK6 agPBLqt9OAx&nDDTWLhivA舘Ȥ6E"/h]1G֛ؖFu\}Xw97R@m4T -K&KQ 5ǻC,fؔI{\81b7ټgkwA*xISfIJF,ρ}zwWO!)=bX/>_]Ŧ{߀Iw?̮Z_WO+xNrWLbڄgFk{NQ\AVbOGhd# |fZ1"&mVT)$|[a R֓rW-==H9;e׫$;w dYbkvuy;/Cfm?5si/Ӓ\MK]]W8MwC4V/E!]9_iy#/I&!:<rCݭbRwG`-+n "CƐ[#ZAWLGj9\|EiMSBETK`ΐ`nTB$!,A._;C˛B܈%8̍AUZ! CIIۀ& AsB_J{sE# endstream endobj 1810 0 obj << /Length 1769 /Filter /FlateDecode >> stream xڽZr:+$UG$ ʫF1%؁HrՏ kn! ծ㫯C7[V"Oؽua #;F| Y}n_acGL(6|n?_Y?zq|tǮ{=IF8ހdYR#. Q`dZ#c9 +i^&X88 QiuOϓy`KΜa *Ӓ?pLK ҂?z!e4' :d|Aά4+nʌTL3Z]j(no9|day]GW5VJN[ҜpRyz6qlQpRufan)lZr$Q? W(h6qLǪ"Oe|PZpS bI.\NITBĂ&c'0=gH oG,G8M [5UKv)[QoZ@z^ti!H8sK7&m:( >١V,7twc;q+ >*ֽQԒ۠|be:6t|b%c 4*<L]<KSVR=W,b!>ͦ?Wʶ"D#8]B3R`Yb o5pȗ;1Sӂh_BDRZ0Lhq IlܾL v嬴0BT&(aTX3ۃ܋}Qݹ ^Njz9\7~gM^HҵtrڪnS2 zbBԖ}M+?Ť5Fn%=/AQ B>Xz+V1]d?OTLȪd ƗoihU72KGuN%}Ic\+Urm'>`JTeד$j'ldhRG N:JGL=-2hu?}v]󖳿M'ZmFK4MFb?8EvNeB-r1ӅJ:&i73a}5#B3\3tjqQϨlO,۩S_Oo>֘OVm#Քd~)vr}opGR>s"-0r;T [6&6/ખ4+wȔNX~4F*QzLcdic$%yEV+d5>HCd=g;woih`*Br덴Nhj@E+zEz0ƖIm9V|Z D6r\u{EVoH"%}Qkcb86 P wR.n-y;Z}2G`nZ,]diQ;u]lgnM*pDMJO@8Ѣp1늊ϽDVђ`@"8irD|[O 4Ԓ*ة6y endstream endobj 1877 0 obj << /Length 1496 /Filter /FlateDecode >> stream xZ[s8~ϯўU$$.INԙ32a M`allo6O Ӹ_bpИ/ d9ٮxutY~qOWr07st);yr7d~H05 +7jSZuqUk] t\kT 3̆i@{eD|ڹ17vzԒP$-/$r[O&YIOƞb%#<%֓ +d`?N[C %܄N!C찛㲘R ܞI nԂ0qH]t1 0ǤNuwR> stream xڽ[]\ }_E#"EF$ƶZH,7j8 xw53sE_d)Z:S f!^'./|2LQ;>P*2 2ԋ긑fe¸X@n3 ˙InŹ,2@%a{@]&C u[|$S/$/i'`r5&{5dƗc<<-,=dECcǂTlU12M =dyRlkbCSg ]q̃85X^DZJ֘YB\~rjAW]RxhARhuAWofhc,4 lA񫋭k3NI2w57A,fvZ.\/.7Oܜr͛7?z޾h8鏧?}׋wwߗ<[fuiCWo.OWW7u`^xΥgI%G8t5̙rXxV?s< TzdYŮ,J麹}TkLК[n _sd85˕IFydju+'wɷo/Ӆ]:6\_ nm{&hH$_粷 V:={{;rzH?19} Bwo޿ ֌wz~|/evqp2/?{ S/{믈#h2X2 %%%%%5555555555g"D<y&L3g"DDDDDDDDDDDDDDDDDDDD.`rp6@DVGDθE6hy㾟0Yx7†# 2PK\Mx5ۑp|#*o 'I8 )<;1XK;k2B2Pm&8nD^]z,p$OFMZ՛鎡i&9 wuV"ch;bB_Ys ]:%g}Ahq)jiTrǢ hׁ$>~ͅW4R2ŁT i#Q@v y"cCᩄO '4.Ǩcp%s!Q元b?$1)n6Ǿ0*]%BG,qDF3 Ț8.=FO. |ʺQYmbt!J#bUsq$4"1IhL:9#rD4]I s(.9 9:ƃok{>۱(DV8=;(NEN_-:O[t-:qyiøsDe]rdA~P~P~P~P"S"S"S"S"S"S"s"s"s"s"s"s"s"s"s"s"D<y$r2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2٥德Г8j3jǣO]:i|hQvϚmC8SOcܻ)Vz:jՏsE/cE^hR ?\hFݿkH6HwX6b߳~urǢpa:ȸCA@(]6".t?n+m6Z\\un6/5dr/f(sW FwAÎ!6!hg_D[[5,R endstream endobj 1901 0 obj << /Length1 1460 /Length2 6185 /Length3 0 /Length 7176 /Filter /FlateDecode >> stream xڍwT[5ҤXIP@{Ej! I ^+P(U#E;_P}[Y+yΞ=sf9 ;}}^95L@--50 @pNn`(000)Bpx P`aq8"0E PG!aX v Dr90p( ЂaN@p )iáŁ@WWW>pz0,  І8G0cQ8W8]!m`~w&@ C&k&9w?_(儆 H;-(kp9~( ԇbh G<?f% a)Sc`P4rEz#ml˰y"Ώ`j8xDED0g j< e=(4_n Pxb!.0(` XHa5:dW p@-uU=-?%mGO)7sdC4wUc¹"I1W3啖p |S MPpup7qBxy8 }@d=[k zlr3dV)a AvNnT K_:a@]Au 6;.JBO~J7' :ɁNǛi{=[yriĨᏖi%,^6u nj\tDvSv8HK-R~d|bϾdo 12leH]a1md9>CY^!d?{bmo XX| &e#;;?&3cL|;<,+BnmPj,~jrHQ@}ߎZ=~C`.co)r4nIň0ZZAm͵1[Fd+j =b| b\Q=AQXwю9,"~x7A(-I֮Lu7x&G.\j\W߇Fe(eI~P94e17P}否9\\[PM#D=Lš3UYlY}%ls ~pB{=5.47uGf]!KHæA *@X5ۦzQ#lvm'6sTN S)=]cEFe)OxZh% -3Tsx#AB_Yik9{Q\F)oÚ6(+Lnҹ}k[x|[w0g{N7ӵ72A }}3t l`4QA+9-1ZCq6ϵ׃͡p֙[L  { W̶?^cZ]"@FemaHK-jw 3~o wKJ'E>MGSwi׸kUM"+\h^^]TeKnMYᨨg鹲ؙHM+X6B*x=[3u ǝne7D_eC[Y1*)g8EqAAH Aطfö:d3 b#qB; ԍ}$41z,У:iQjj]1O{b +wZCU^{z'̰(G< `2gT..3z4Mks$2$eb=Cj){$~j!> 90STzW=QUpNZ':WT;Ov˫Bd^Dž!ӜeD)K/#$0ǔcj6ʗ&- {gTu8IxFZWPb1 =6i rzsOJ5WTN8x{tebznh+/k7.OH'^~ti;k+l#^Y a}a )ltꛓ:Lz9?ޤss^nz3vH^RpüWgLHd2d[r]' ^m|BN_$;Mwc@+3DX`c;4*j*z*df'#H<3[D#͓a!wc /ᭅ^6FR& }ZM[NN\rNH%-#|_VRSV+˪=2~SH uiiajtC̖\SF-aTJWq B_*ˆ?Au Qi*mK |ҥ]^ -öm_32zbгO-03dDL4|ݹ_2i)SNrumn@9&!0,x<`| c 0kGYE'=[ĹCڱESVwc [NӲ3rw??li!Ǧ#wU4%*lD(JI`*^DIΗ bVmۋ>7I[ѳ-T kϮh\.L.77ce $A&԰PV|Dd64Co{k.^</W>p< xiXbҜKavqV*Bq~ \JT*u݉k>dhe0bYD7X,[FOOlTlJU#fo f6#BAގ>C_ܯ"iQbq˱" N.j=/rDvu^P ʴS-/cl3MVbmj?9B*d˳ľւ7);oup<=Byi6YɛGz0K|3Z 1UƛIvA[r9,T̵?P_%ݝ+IBL{.Ŵ]l!Gvm~)о |bE61i@E~cE \9Ub悬X8k LV3blzգ.=C ^!x mB m/ZKj9 t̽1Ƽ2ZVhNෘgs2JV&L׌JT}48cgּܠ k(Kkm&g-(\ՉSz]>cobe}arK4?sfPZsZ–3SjHé~9摆e!bxy*yjD[m5f~6+,ordZK%O8xrGT㧛g[XblJ);~2+<.JDZǷ`|U+Bcʎag"*vQM)oůK\ٳ~-A8vsu՟V*wظgO2?HN?# ^/tW=w;XQPF5b}|v,c T&cFᮄΎAEڹTss6sn앤zB 1v՞}K矦/s 8t˔2b,ĽPq(FRX֯-(]3CkN./:q?ӠTU q85Afz⃍TKߪ.dsaVsN'Uos(56|*CX)m&$q+JJ8Tv5~R[:2Ŀ v7M/)DY(̇TJMcb6i3em0LP Wa48i'EdV}X4d59jxB0fll"nhV&OKI r0g{re=]n4e]c,Rgk@B/6..S+5 2Gd%[]2蔠4Rj;E=V?$]t2.g9KrVZ@ ؗ|r/}y$% $lOBwqC n[;<t",u%o]:Mj&DŽm`Tm"KzÒ=(y3\BUzW4}nWt2,LKZ0 v3(V6V2"tHC=2D!?`0\FKSYly"3,I*xg`ns7ťHFםa.}V|W)^PM*Zb>Ԅg A"e*<#f֤ɸ9 DJD}InC$e^R^US.C7.t8DB4lT־J5pD+o&wLP?@ LؔQ)=?}򑴻(f vwlaBJgAZ>]u%nX1 qcssB3jA#}Ni wP 8jۣ@?\Ըg8Yx܀3sAiaڦfGt?,YW~`"'Zf2!n+zZŗ:|OHSVnUo4lwCWY(cw5m;R3xy:){$4ije~19TcZ5N*۝02VEbpj@v.‹ Zn'=-5e^p6E86 )p31ga%wj5u@?4Jx'PGWN'=EQmt\gs@%)N͒@XB.}QFbV7v=r?qvq-;3M/9XރH0r1|~i]ڃZcV%3puOk(,-puEmOu ^ӈ,&>,4I ^ԅh͗m$V>Zzy'z3uPoh`TM>*%cFZj-߽)ZF*;%<]YD> 8>nտc?~lhs/1b1uÙ]nJǜp QDB]>n^lD&5Dgvײ;Vx؋8 {O[ oII{]pyY]bxŬ:lf5Z9j^ekU*w ѵ!!91_gCAŋ;XcYԽj=f? V1Wcbݫ A=@/BnPj clM޿-[e1 =qVCW]d_#8-)7OJnVfZ_~rTuB~: ]/93ѧztb񪲼ݢ)$ endstream endobj 1903 0 obj << /Length1 1478 /Length2 6403 /Length3 0 /Length 7390 /Filter /FlateDecode >> stream xڍtT>H( R3tww30 /!ҭ04ҡtҠt|ck}ߚ~sγgVc~E'D GRe]# B&P &0 =8(#!`S0~8@  @bR q)  J@JTP'@ xs(#PW昿nGHRRW8@ :]09 #?Rp˸PR>>>`7OEE 7 0@L` #Q>`$`PGw ƚ:}wo>@J'g"(W0A.g( W@`OG0{0W`!!#~Rs˪p'e$Y  q\>#|6PON^pDS "7AD@0: Loe1 g H#{C($(? @'# q‰C1GB}V@@߿V6y9!0ꯠ!o))!|"@()2q"i ?eG&]- B5PRS, 5/엙1ݠ0?z0]!Vro& E _TB (Gj21@xB>+~Lkˆ-LJ#_&fry*sĄD`$Gi2f' af KA8 `H`LJi bQ#e c? uyy F_/ q$G8J? o WnW)Iv! 4 l?"͸5#cm]SocXˬ`֯E:jҢq8DN։吴Y+ySŪiƊ.VO]&a +c^z<9KBlu<YKlhoDkbϳ}s %wbWϲX'uh+n_. asxLq;kYf2!e߈@X55_6ūAśZxSZXZ(4g{8S ⻡f-ccwc?TpaS}oX~0XxAB2dL&3XHz-mt2cuo>'|kau۷)4$v}9xVϛ%| dD@cL'XdbuAHm/W4Se, }Z֦%W4SJ0Wb Z7y;k3 kDASKSԠߍn2h =}Egg5`a}aN9ﰜSbG$i0dkYm8{^X1x30Ƃ{ȟ޴mv?U=Jwx=+J_I'[*+i^qw_z %ub9Qղٍdj lٺ/{_CIa5C; Y /C/ޝ)C9=`ު!bDCB/N= 5;/.Wnվf~?oeD⵻A+Y&SdbdgRI/vjxr2vR{\$5P/j4V-vΈt~˷dX7>da+l/NWoηJo],kz|2JRZ=LY>kbSoaZ! civX0;iېp㱁xO(l.Rf-޳­ϑjXH3l"8D|(a$kB滔>s][l)?S|e3 }fm=,Ԅf?~VpdkViaN^[<(u| Y~crX1HZ{SĄ'jD ~6#oJ_$dzO7jbԞ=&[8)V][E?v>1 шȡF`~Q%=T4U&ܘa}RL4~T`ǘȯ09v.A>Ae{@ o2z.MXebjE[U_7lIB']7g/JxͲ#R{;9z=bqf:ATf4>|Dz\4(.UpuTQkJR꫐󇒚ߓ3p?_RNPzrG֖v{Z37[- 7v̐1qO)nhEk .]i`by3te:/E^˧c}::n? Vu2S]~~Uh+X[QՎ{I>pb1"-={CwRAncD^/m3AC1=]&==$t7^'=3Ƌai>;hSsSzv4D:%@ź1רصaKLCi߻OXYnopԢ >_d0!C}m7,fVۄ2OqDͷsդoqqQBc+ [54FțHm+LҮ][+d4.68שԸ&L3ck7 #WJ=Ē$R6z'8lM~}ueE>V]ok|iV`,ERuwT-1Mk# ^3rc$ihF& wM{V2q "~,}Q}-A´0̇lυ2ǨԢӃuѮ$2:$bmue@kUA:cUƔ1R!1m» {$BVj&/2g028nMӅ\B5? u+#bZʮY">?74Eax켌i#yG# mY%cQȓw,w.&_Vl; g+|ߜlP%/GR"K- e #9i/4 F?`[]dh0槟3/4^5/SDsut̞ѾS0o-g޶\1T+mRjYt;&Ui9]W '+wb;#{|UqPv_h6.~/V IRwu:4P4lתjs^&\?u?F,RnѕPKJ Hħ>ÑGj؀ϣ}_O*F!|=]/b:t9M9hN64c'˅i^qKGcJnhT [Q5fB<b]iIM3A9]쁱Â5c{,m_^s[D.7[*\xcܒPrDC3_U/q_j;v4?Ī7|<l佷X=p7m0e_}2)wb\;ǦZ+-iChg@fi/snNN0cl'2*_ wtGrc M.FRF83T7.Ney,Ay RpJR9l0Grԥ +Vv4I@opw:-e.ҝgρʥX{օX6&ǝCZUFe> stream xڍT[6NIIw3twww70 00CK74RtK7% ݒ"7z}}k֚g?{~Y oģ` p^~I?__ ƱYLA`TJ [8S#:0(@ J I%&<$ʶ`{/@yb(cCG\JǨJx$D11@ۂ|50_E[?w,]B _xo?H mgۺ!~zSCfFWdr_1 PGyy`_>tK5& a_7 ‹l! nO4@w^(fkED~؈^#V"Tڃ| .D g uMm5?FQAO?!&LAՂܽzE`h !4>7D=BB!-UOP9xbSҿN၈{-{~|A@9P*]DMzglEuu6FڴJ QSsO9܌>~GRT<vDgr{Ixd@͒-l.RGhjNGW@C:5Bn!3 ucD^&?P_\+S~۴|9ӇBZբQĔ$ #ɃI9MH"WJiQOV % y58*> mleåhNuyɬRmt5qR-E#u.ԙ\[h,5c YLR} cBK:hޑuwԤ!rДSE^5HM 6EoTz$/0ɘ`*oL8oe!2CG򥔶jBtLXLx)QACo350$7& h;Zެ<P[tl42,lktik|0˶4rOnIp"McSn?Z'hF?f0pzH}!z^Q^  d?7)*M@3@ΤaUŧl;5%9FO> {cG wZ$v|x´WhVѻE҈Ar"0z:~au$U_6DsEd".[[cEc.GW \e_ZX[a^626h'՚[G]5Xt.H)֥-b/NX .(8rhC߇{OpZ_k*""U(k8yhouJQGaʤ,d m1J|}֤0Za&ZWľXc7\v5spz5!'PBy6I5tϑ ^|Xh<K賷VJeX 1o`H3>~=+'k8~z)`M;jG46ϻW\8 /cѓĶR*&0M0Ֆ[U a d?^T*c+{8OP~2*uzئCR3} w- o z~}oxfb-S҆+3| KvsV,/Z}7c?>|K8 YM}d.sWv=KslUe9iD2mmi4BcoAVʲi#⣋Q%,藫ukx'EүV{HVMof#318t2;p ~*3> {GD~/gY1݋NlZ.G72OEIJ$W7\!S-j/H欷ơ2p(C^\οhFkj7Cڜ(L ow)ҙ^1J%:`? yPm/"t]qNbVBI9z|)8跉_(>bU\p^n?y2{'qj?' VcGQx02p4|eSu,3XS&CQށso/P]~qY?.CWUe7 \@g2<ӦJ{7?&=µM8(,-8A@4(hXEs7H_6P=GGLe-~A;vGߠcmz*6u'q σ2T ^eHt~둧t~M'JA-"lx(%cVD !sY|EݛH;(.wr; vYEqνgCc.%~B7@EfnFˍDC*ɤÅ|B)3 yIMw9W...V‡դh@j6%4tB^C _dƢ٭] 7\1NqTGU L|Y"_Jz+=|,6:AV挍쇻y12.M=r·)W*Jɑ;2pR}QpľYe)݀.sͷaWbىډ%|jQO2$Ts兀VBeTx4H,:4TRJo3 yuP8S%"Fzӎخ7qUr\gpβf6>hhm1EǍYc)9UUhū|5} zf4a%Sc2i],P'ˆoe9M럘ba,?. !tq(yi &8?^? Z6 љYOx^snMҌRЛ>1 ԃEdbs^u )<1އMdGW&V[U2Sq$wDžxed87CP;q; ƛ Ǘ yC4ڡ()bp8>ʕs:&/:ӻJAur]m|ɪ&5(\+Z33S2g0M2Q;QOrC#"#u\Mwbqu&aYUs~})yJ"wj&}" /Y$4ta}R+Z}y_㽽L/\M@ώƭ PF("b\x߼<2$̀J;3`޳ T/uKF> ~c\%]EFm?ӊqF+{SO,c\ ebdz@+ss/娜X ֐}?v\*]\r8C"E1K}I%ꮤ\e,߹878dI:甇‚c&"BvwgqzVƒc-D')"\Wx%ࡎkR5\˔lnI2艬oELƪ1h N0ZoO}stuP`rcvfy*na};;|B4Y얜мV!JC ϧ+ FʰG*tSJڗId>X;h#UW1FlȎE=mzߏ~8nuBcT{iB|=/;+eoDφ䝱=cJ;zQV jl>盢0(G;d;X9fX ~ۧWiD6n^_Dbtl7<ˌXvyiop?R> Q恟li̖mRN[)K OJ! K?a-wxmV~ ͣEI]Z(-; 7c =s3Y].clP%p-x?:g$m)y.i(Ϲ HIMDKX$?.bnL{d*8M(C# ~~+9Me(8,;$3!uޏSIœz[yr ֻ ℣C1T  "a5ո4Ѹu\+[Oz]{6<8H5~@K#Jo95C^V>fgW:6A&5 8aLlJ=&{ڀ~{.GpXεLo,?ٚEEOO? mRn%BzVdNOQ.L`rx OVU߹ 13#?BZҩ1Fo')29;ywO.sRoÿ? ܟ~S|Bv$d;wl v܎, qα XHFH%flҾ+4u~2ړ~rq)E1Jzw|"׀My6G͸(U"w HRc`}O>."~մ= owAlELNvw[ݹG}tbmnꯨQR-yN߀q+dj20`U!C|\|(Zڜn(HrP"=KLuw1_/+ZA-^q: -ydUT>$ls4(4K2G' ܨȋPe v9q*&Ё͐2~'g곞vn7rca)< G@eLҵ}'շM4W m{ Phg( e=(^>1x _=y]!%z= *AswQs$QoTF0bncTb,;ty,jo}U|~?x\/+:)X%p"٧Wz3'{z$HeF s@Qԙ/;wC=_9yJhW2koUx`hu/ *POpTMVv5r/"KGaO7'&d\cLkhLX2GjYrVdX)\M2y < M@A4}f8cI7̷g|a8;r.탖yvwzҝbQH}ԢeƞZh;[|#8WO1&`yʷ#YOSOl"fn~Y{9UX۫QgHs;Bgi C^^E\Rv4-(=)v~1*jP%~TtA_mz ]΍^E|> stream xڍS 8Ty/h~˿6E\ dcBu9c9g̜1&)PmVٔomUtR"% _ɥ6&,ߙ==,J&@B i^*)12jp). $ %\")O KQHQ>F'Ո`T&/C&:I?^[HqL׬fhXvvx7c9)˜Gq!tO|0,G%1 <:d.?}3M忱\ˊx Xc7b(A!Fd_6"QK7`?0p&=Bs_ 3a-$A* \X8'>!Q1 ]TAD.Wba h\J#Y_#}VdhHV^&!0 Ύҟek4k`nlulC4 k=6+Mm}=9zv}Ε W*.׮0~ykM昆tզt8re='|KVx+Wb mS 3V\uZ*YS*q]rqQx9ٰS_қisyK@%6j-r;x8JLqs!=Y i O}YܺV϶aT?i^W5qLp72t[dj<[4e w[SPQf8wxz "#kK% #m1#7/LZ^(:@:]u2ZS@p۴Z~/:&Q;$6)h Ng&{[`\ubRY~djqYH˴.B+רwf _Ӝ]B6S_۟MLgAuW,q9 `Ԅ2{NszO_nwć}ywNw~F4薚ؕʝom4{;booQ /7 7{,!Pdjo&'RRT Q4 tuuuZ$*zM!3kZM[ ,Ya=\-͛piյe8J CFgM4XfQc{=50iɼܜ9#sΤtR.q bPg[_8d߻miqH?;2:ʨ (֊~ݛ;-c[eА>sR|s endstream endobj 1909 0 obj << /Length1 737 /Length2 23353 /Length3 0 /Length 23917 /Filter /FlateDecode >> stream xlcn.ܶm۶mcym6V۶{նm}yJ2frT9FXELC*N CN.0r3riLTD,D,LL0DN.DT&4lL-m-4m,M,܄ܜ]\ R\,Df6"QE%-iI"*Iu"IȆH҄H` &2w"Bdbogj̜mՄ%ԈEDL sq`\+W2_$ff"SK"c x3'l?r'?"8&2jc`d upu8ۛŽU#*#[Kߠ!b)vHY`d.N]`" `}?O3~*䘨%AoavAs5F0r _Ud ExڊHÑ"|L_eCɼ«jyM|ť =)ܱw/SЂ`}˳ʦLV!#w&**ȕE <`gz/7Vu,^u<mUmb(: rop#}#Bٌu /x)SYA.XgI3 Vzuf}XɷI5w~!nK@ȗ`'ǀ ɔVI};2B%`Jq ]U5UTS9KD^CFL1s/>PV0I8a9 q$9ePܯ썕Tæhwj4/Gq"nPsPL4f "CKyx#e>ȩiO),wzyg%gCFoθ<Á9W0)6nMAYj5ֵxUb/R@z8_u uxal֜o X!nQTpo9hO+cKhRNJ7G02c\KT)L2,#bQ[J ^F#ԶN4e}c玄WH|yDuUav@HPwC~9iI~˞Q7Ʀ<0+:%0dI"F8꫒Vpa#-`K UNd͢߷>崠q%$#\YgLs&$!QݩP XWj.E.p1 F&h=wӡlP[-?2EԚ컶KHI+ uh6d!tLe0h-{%!*fVb~nRB@,WހB1 >"= zviz]299 RCP LE,JWNks1|jq+KeݛG;0 Tb`zĦލw^|W3}}煏Ee*7[Bk>$w|D[P8t3~Ug(jy[K6 mSqCK@'r5J/i@˻rbmzLĺBALW@@$=6S b%yuD.ϾCBpiL57?uU%X'W՜"MKhtU1eԄd9Z渐2s% %~-ղP AkiM_kpac|a5j!ƥ"do`7Qd Vʬu+琾(hNTQmH;ۮry"o!9tnTIf 5GRCw[;DO'&gٹk#yyCX ) +% vk!A P- !9t`Y1r_e^t*yۥLq~pnHSĊ;0)~jf@Jc! 5~a/{NkJѡ.s J~O‘SG{lCj?$D0T|ވeԿ$<6{K'] BNXL/7C7< ,ybT}DB\ +x 8%LgEloUT"uAՊfi~Cxl&=R/HGlrCJx7wI ֮0qs>a3UzfUp1 e#?Q  m-F:{-$S2zuڐ4 `a@3&h;١Y_<LGWkoC4CCнȍB%&Y_'>6x@~AfIV74뮉%RA7bZ3)s z'*DHDf2rqzj}Ơ jiޯxW+Q0nEzsD5KZ;{~0Z -P|g 'x!̏=F-nb#X<i9!Ԉ{c'M_ZHLb:~U6#Dh >bnwU$K5 JTvWsд1wad s0[:ց|!ZAAdcE(/οB]!JӁ2oc/3;u-85;Py0\!"*2HFI >SFoK!" I3<񞴔5fy@=ϳKoj+&&[gtذnObb!:pfU~y/{>|gTF)sU+YCwL%5_7 Ib͹,,+fis:%\SG%$`{epQ=F|Vj7G]T,plViw=(Q z(:RPJ7]T e’lF&K; C1זHtj|V"oG3e 2NUʸ}%o)CsBJ`iU Ar~o=p, ^s$},Dalؠ`&%m((XKջ-f"B0c)©@T]!;+%)HZ9@& (jrn[z6&}DN)p}*ܐv)nd#љ/eok*''A&)Bf\_+L'Q he/Sn\M9ӿRL(,TFkr͞>@;&ZIx7\l swed "}LFf O?^o#=U؁Ze)y2 ~LRlHLRيj$?2Z^+^˚An>1BAkR{&#(Ҭ2ZAWR}!oJS;o6"=:1SbD V1jJvW>ǽuoa'ΠG4i}) 8,U48L~rRVe*ɾvVvq8y"+.+lϡ134q͛UCqr??$L&ɚ|oW|ڱ!XjL bD?W'ȣ[+I M[y_3=W=9ᤥSp->ӭ+&]^{D,׷t m Ö E~ ڞQ]7CΟJLШkz j )h"]̼zv:5#a?0{ Ҍ~fX:以|tI!Wvq]]ѻ;Ui< L.(&;z!v*3-=ٹUlEMU0W aŊI\QBih`z.#7Ι^KRB;^Rg*u[lwJC8l\Μd=gMqJXG!yP%~9S%xpėBmO^;Nud@1 &q=i-B΂w8+B?J|c /A{kA =jKGzO7=D h-:"V}fqQ _ &=^SΩYė¿̡v>z|e)T>}X8=5#GQ5&o۴܇S53$v [`/E"فI,:K=߭mn%wykziVb08@jq"7]#uz3Ԭd%Î]jj Q, v;y}4VX4 Dh~[\:dj澥`l?kbHK䖫WMWu}sr,I\9!KYv+ѭU"M| 0RkIxj&eD0领 2ҍs7e~J֗yw/S>`upV]0/T^rD??T}eForWrؼRCjP9kg5X̝̋Ū>,5 CGݭ[w%dre㸈M╓~>Zݨ,-5cZ y1d>Dk4CBUzeNBJQhQ^͒2IKW~Ւ3 ecseងA:Q:z1[!sϘ9oʅBT9mJd|UK]I`wz!BQ|ǒZxEvlYSBW)9 b0 #A#,EPI$~LjvcʛDqͷՑK@^aPvY.!dj|qrIa s-Zԁš΂BZIӦ x*kND5)4TwQ^avt/h} 'Gk0i̕Ws:4`TߢڹuJ1ַ*?:[0|Z/˝(}f$8xt1Lhv>w.gZyĊ*\HH >tpm@E HY.p/nPߣ, ӢR?Ū#` -Fbt6{*eu0 avG+^'lFMe*KNآiGiCCi57uǦv)oO>M%D|kDN$F1]ʨЮ= C޿E' GΓm3qٖ(n[Wߝ=[Vuzd .&~>o aE %R߱Wp5#3 !؀`r'A[ 9X+U혆FiE"*Yb *'V$ T ܼ B6ƴ"D.[r(qǸZW>JP7h)I*ع9.Vt}-a;M22f0t Apo] {ڮIhoX TjyRsEOh.R1̌AZK)o_ z,qS'7/E[:b͒, na#ҡH<['WvT Fg#&$L`zL %&e# 'O2Ŵ[WyRqe!ZB,]PQ1F)`N#I> l# @B-;$Ak)z1[EQ w`ހM6^pwbZzš_M9hJRx&W>o[idv{U++&b7a!6g=U^Մ1BY=,ZT/1rnxI3s`u=f// 뾺8A}bo͋ʹա>}*HBDj \Rpp'TPG-,шxx^HT2f9i)hbIaWb7=)CC]ܷrۼiE\61ԛ\ԭ> [p1ۧK8/1)Wk1- pIxNp-;nMIsdqb/V >lG|^n-!5_ʷ=D;s7xyi P^奓=X̥A:$ם5BuC !SV?K=>@L?E>T_iꞐ7aN ,PcMcoۥ[O+kjJ\iԨ84m4yĀtǧwbIwF~()c^yƛIH+Ŗ@~]Dn2틎qg_@ d5eO W-~i˒{rʆcYKUח^{.Ìt^X%`Ǖ&㢅 ie$?:rbC:7*z!H{TʷtK;[N`Z>&@| '\Szf&]4^Vvm4Q6͖}6DkQZo KMUl+$RP _g4Z5Ih|,Z[m/ g8 솔?`NYJԷ#!K\FTgM`e_Ȅ-yĥ~9iں[2x|c͂Y-_6ӃBaGDzPb l OLXz^gƜN1}yA:K& h 5(=0Sƪi0mEݲ,%_uHFl}f Ox$4-?g2 Z G$[3̭YETE#ڤgJlm69<\Z[öt%us꥗\ I~ w7.(وNhC`d4ĬtnKH3B&hrM}!>4=(N@qBn^u߫e x{b 8=sϴqc+1L$ӨEapoƍ6ɻeNn1Jt@~j4yT,%-;.β]pfþsl8IUqJrD[AB݁g:t4~Z[̛ ENmۋZ=u~,N,p#\oc_$lI9m7z^ /?%ĔIq6GŲW$zyJrj_jޟ.ܲ)^*Fi@ +}k!FP7g @@e+@5Og_9ϸN1 /Zs=TtPXGkDIzp](;(5lC[ZmC+>'mLFn}٩T=]k=qW&2XsNgD4LuJv_0E = }.!6JK,뢾\q&B~=wk5Md#! [*I>Ue˦`A⸐/(.ń$f*KWe7cW.`8/ezqJ6ɞ/!TAvq=S+M7%xm'֥SUrkL$ nA4[4Bփ:ړ&>6X#f%ם7i>FZ2ڤK?=MB#;pk@Cک>ExM\iE26v(Pߢw,h(n~yX0ͼ>v5I|og䮀l5#;<\@6CCE~Fmi17Ȱ5"ap,M2Z8# %BC8I-Ԝ ][nM^nw >ijhw@Nݬ+(#im0)Q2ݤ1| Xr,^`25b+nJ\t&ohD*ꚗmZȅOyj9?}pF. cU>H,. [?PD 9&CBKN_=_eICUܼp c&m#y87Uwbg#o`}LTORrVU`qQw+0Pö N{$"{[bG MEvZQLᅜ/p4D*.B z5Zם/m :EOTC6,MAVp8eyr\8#Ilc` "hRxB!Q|$+'挨 \P~ 0&ZCCzV(0 FTA$n8<Mx @Kۻ^&I?ͧ(W}1Kh^4X`x[O$z!LpjrTVr vJ :ҵXDž;Th, ?LO9?Sߚ CA?)+le!,*H{#us$`I[]9^0W`+Pp +D5i6bu)n gH.$C,cqw*VD}m">L/B_ J~2Fk2itqHOWSasdj [=s'{/mͱn rum@G5&7Ѱ@*<W1?\%HqpbLMZ;P4;jCP4ROM/H^S+n)$DJt ROzJnB~^ +܆v艄/ 6}#=M¾f\\IԌPrcȠ82υSjWI$,N _M N{Fj Șӈ%Cc=VK-Ѧ2 о̰ɻ=س>+3YBxӝLz mEқcEВH<-z:MdP^YZ~ _hVy2<4-U +q5 ja޶V^ E_ ̎1Rد3K2_gL7-큚\f q #~w2(+r8M+M\wԹ(?zU5y-+TbK,,"s3/-A[*ŒGV~K,*%\M noȯnEŝ ߲cKdKP]K6>4C7F_A^d>pYlieTŏYw^EhʶR"?JuI507o*]f$h"j}i-,// {![4e~)ZTe~ca" ӏE+/@ug8> +X@F@ Z)LC ^S ͭhCv QN794GcTL&AvE8snqf(B4Q9{:Ÿrp1vLMrfW͟Xe"ٛ➚6 R۠p|䜏8$%?RߚSginu KG0 b[ U׾ FC#'+!,G#<ԈoFo@*j |nh?O1:ld\ [s`YA[ޅ*q&FX<`=GZo=TY,g.D7HP@E#V80Hj.7?bµCQ&tK@Z"I&҇~X7p-΋%n6?ͯhWl)؊EʹŤ2p2m.mͿkݺzvޣN3}bHn^ld䟯ud,addׯȽ0LgؚxOYx;H=Zpq맕xUkꌒոnD6U%̩ i95M9$cGL܄sLw~i2/ N-@==xtŠ-,FV5.`x.8Dӣч<%WS'6-'!.ElpmD san+_<{,maDi`;5ǧT=Y괬Յ=Y2@(ÿ&/oo(73`MD]T^Xο^V"^_n'OnH kkνM׌" Ղ<5VpYO{AB"[ #tA>HsEk#mzx]G~r7p!O24-?,wR$Wwi Cj¸m5Q17J> -Dr. ސf0 DdlZQ_k96Zپt7 ^y:):!&t2¦:thxji@3 f`/윤uh­!s8a~R~amTP΄`,7LO8$S§k-  w];^yn8-D葧jNyBlrm'pG9gޜ[9;q:tϻͅ-{h':")pc8| 67CctaVqpi-1]##?ٝ"[i+ŶQWx #{8WlW>^G`_}PE61.[i;fS>85Zw`R>9)Zٚ*dw-H~OvaUI*OPE! #79"1=rћcuOFl@$7m ?7LJ_?M7R&z|Z Ns-B4p{zpWJw5fB9sD>rZ¼ 4^ۢnMEH+p3I-8 td^)x ݟxl4{AU08U>! Q`oPcGVޓp7uXoSÉȚeEksJÄkXdюR2i4A$vX<%TpE85aMGHfzq-D*!WwajFM7Dy׷QE"{_kT#KI{[Mq$Œ|4 :Rܜ]7<\1$Ui=Y|) mxd!S,ʼ$#^:[o sĞF +lVi׆@qJK.Z+Hx:?͌7΅AO/~Ahay`z6L|7I}oQHcYsEp{HW4N"`id{xc8ڹȅv/2V]MV D5w2(D" ;]?v<yWӆSq@+83$,yR⺉]26C栳늲C%e4ȑa<)MRцf.:gZ{p~31VP\/4aE9f'v 35_S>4lkҠÔSҝ ?&(Btj`maSGFȭ"E^iʦrS'JI03/g|8'ttFmW~}7xn[inv;Ꮳj8ݍm*QՎI>IWYP[8d.Bxrm`|՘DE_S^J1=x<+bM )M1e'пBHNnM!oW`yNq@AA@[kJ;7J5er#Y} YVzBծ%< {_ֳSI;![\@D0sUoyTjKug9w@FSbz+ZUH.W; @8>0zMAo'Oy? ;kWZ# =:pKa JSY qo-_Je!Cya訚נfM뤂 )unr<,*p U%䲹I-_ W=ڽsLzߚ]R!E.i t_.$X+")ya+ `ZC"%Ol ĈSw}Lg&a*Rߋ{zZRıQkxK XEn!"+$-vGǍ-NP2{ԬBT$fdzKOk;qNZb{^z8bPB>l)Gk#JP$QcJT!,B@ࡴd(=f‚Ugva o8IY1ד.r躳+oW7 6orC 5a:t͵۩;Xh:jua׽1J  x'/Ȭw07֤Ү~([Pi: rC\}mb>ڰ rr$ٴ'2i-is>ӯ1ِU:5t^4 k}v5Xi{-Z+לk,g'O},7TQ>s5Uu46sn˖vֈ|SHz7p"ȑ5YFq  9)fN*>Mo,?_"$ ~#W%/K7t=b)f7 IlBYhRҢsftEkfSSF1e+Ɯ$a&(\Ta7yhVEdHf*HvDM@*h66bTp%-U'@߃76nχ''n}In?%Lňf-0U\19KUQzj TOɪ &3~w)!y1-90-^DRS 6y{3b*}fqb EWʧmvWzT 'ӔPwFKH|. 6I:{ov $_˗&_!"Sj_e0kZsscG Im qAmqగ InĎ}гϕ}զ&sSv9{tX2Mg2!;8咕 -(Ȁ%Xve[9uXP"gKI,1#KȦo6$n(XywA?P*ݼKrC҄/VAliam@ Q)#"J~S!e84x 3NۚDKJ\ҎWSA4lMM˸2_!'_R lu>]fV4'$7j'Z4"|h:T. hxy[Ug iwn}CD&t!E;] L!{Is (IGɉn#'ўz'w~jtiQ](yzĀk1aŶmZ~_K3b (] (DJXJ#i$Uqvkħ!a)X੒&8H$_\3xCE]d #AfLSABqF?M6nϭ.w4y4oi=02;U:uadNӰ K֞߷?UNIxa2'0--\? Ej QJ>(|_NU@/hBuD#Z$ frd%_AJh J#MAÖDE8w=bOHpo~65)y- 籆&:a5eY#&oU :ES|ԴsjނsCgkmwMV;NKw׊0p~xRߡf.N.a$}ƚ9^/1_K9O9!u;<,1trx>g еO!09/0P SGRU1i h"~e4ne/A&_-Ew+=+jup<{2o[XTg!DgqRoa;]^t@Z~H]}top'ŠTӖ0?gסsa#ߗBbp~P"%5ubkDC1|^xRB%7B}۔Z MɁcp},&iФr7,r&JvuQF#% =cC[㮲ꐽ@Vr"m 6BU&5JCj@?պ='Ij 3"IZxuvFGV6PQ"#yeossɣ^Gbo+i72mB, _[/r)L*f:M}n牳S QH7tAlG->;Wlo_еJ+BWKs 3G:F$rLݵSVٿ$Zzz%s!<% %QƐD\(g\Ov- +zoow\o\?|S$nGm^) >ƥ2b#e ?)%z)G6VH`"L,arf[za=wYtH:YUaׯ9͔:Šo&b HBaĬu!Q'gAhqƽf*NJ]a E~qTUz/0w:j [14-aT&ͣ߾hCyɩB_lb0,|o2<<8 >TApIMiUD®P^NnokkSq45DgkS([)>=8D$2@:3u)sԎsej+-)Oޓ7y.!Z]*) Efit$Mgcs?N7(H4dЂ lFEBhgf$OM&NU=R5AL(d 0'<~8lqb3pu.QwO䁌,4:ssmFXty#*+4S-xٮ~S/!K ߣ\`}'2@ȐjixqnIM8A 1K4cߠSL׬"^mRA*0K?aV#Ԃb֯hN#"UOoD6DYRT&F!xj;8OTh[T)T71q`dҕ \3 O~.~Vrх4GD7D@L%eo&02](tcF\ekbJ6?YD@Ais(-X:7l rgxͣF+g5xmO0fއ?l n*ODgg-R#")h<nڧpoALDKULv3TU_*ai]N-q ܬN^•,j"]P_4+8w8x:@@ܘ$`"%ٵl39'ՂatTPuO)!Ng/{$Wuu=ZFVGY`CKb66s ]YP&QjLki>0G9K0#~%̊u(`6J(WP@mTdc%h??% @eR2%oN1aP85qa/*௉iPf#8[3)u y|G|vyUK(|.ГFfKOA0$XE iЗGjlbejx`U,UA^Ru5N'"|:#l8G\KkiYHS.2cB+ҙIs)Mc L#"va(6gBv}l;3oZaGM-?dh2tofxYD7/̵q)`GIM 8R27OJ_DFI 8y{ n+%9 -={ж6 *^+@iAoj.AB /`|phU:aj?3Pqn^:x*&+O2#fžI}P5O˄ _Jφ jl*_- endstream endobj 1911 0 obj << /Length1 725 /Length2 39339 /Length3 0 /Length 39902 /Filter /FlateDecode >> stream xlcfݲ-\zm۶m۶mFm}߽'9ř2&)#/. #3 )@l`d0100<,-\T6l M,m-j6n7777g_N|IR65X,mL rJq9U @ ciljlJ0wGۙX s3ur-@VTEPL^N *L" 03HnO˿dc?Hu `bi025ovfM\?pH015'F@)lob71u{w', 5 .!hg} 1Y:Yz(X÷9YSKW?jbog+ʿыh-jglobigPvOC'1ۭ`h /N鲆.Nm_}t_7`_p]L\M?W0zìsXUUҬ0Nh#[Y]ܫݕo!67;!]y-%2~W,|kлSö5sXRbλr,Eg1GIX[|ҥ@3=E-6_ /ރ!ַ( t8 *lTg>#q bއr\9y*Y* ŗYQ~e<ڛu{QWסp pݑZ% b=ې^vq_SGƯ ;koJd~z$3fkoxc:~CzJ!>&lɜ[_0yB7/ĥ<rHr-GN2J~?G:ÄgHöQqٚ+L3U[HjΔq.Ƞad|qp@mu3 uVP 7du?:Y}/7r5-9KrN5VJB5͑.'k̗.?r\]Y]w K؜hIr*] c\JjWqBiKqm9KfvK+^iWkrԗVհ!XpeЮimMc% ujֳ-%#Dm4s{uDt8@.]P]0J\QGZw:qۄI9ٲ͇.A+pȘ5"%yۏAm4])X5r{^KDE<\? Q#.b\<l8_>ɽŵ8ddG6 „O\ !a[J[ڷ1qFgo骇^[d ꬛XVϳ?>F-mb$; z56/\eXh9Z% ( 5,U' 愪dqgN׼EOmAKm3HI}9nL@=u?jPv#[́'aR{)9:j4 ,}2j>_9,@(kE攳/?9#!Z(CO3+QDRfF6J D XtM˂Q)f$U:ES(X}H`OgPOTeq}]ʧ]fz[Atc(Z|!,RlT%)=16#)q>]KN&6Jpy,@ZMy=R=AӦV/|Rhs/Fd*VZ^^ⲓd&E $|aSkL|3ȦXmqxB3,ț) VY7ȳG7DsxoFɳ 鷛yКa SkRf#!B̥ ڠ<]|T S$?8TivߜJO(^&T?Y3,vV78;NB+ 3G4&]XxP9W".d8Gi'4.3+)Xez"K:2RUtÚy^ 9+e \y%}.`TꜙfĻ80oZd$ϗB|9Oy )f\ep5x/Zlg~G9{,ɧb3CO@S[9GyR S[G޵TJjPźr<㠤v 媫%p٣bf^8G[f0$|fXBWHjVr< 2W+upbyJ[O3T*~]Ye)ş qsNjE;'g?s*| Ư=pni{+hxZ:Öc8"4xRvj 'h* !;&ZUe׮XfDvQǒ6F(m9EjLmhҨ ЁF[cln2*LO]bܿgF9O(5_wLRVCZd%I`*&# ڶ92{GnxG41@uSc WXbO3}cV\<h8;!VV ~j@*qv2E}9Gb6A`\~-u '89Ń03לIھ 1˶A>!ǭX* ctts ` QGxIm# -)}\B,/[gh=E]ĕMqgvcZ$%xEP_ cغRݥajece˨G,B ,x+Ef۹f{0x(; ?7 |8״ռSŤŵHjrYr!f$ {6?WpPjJb^QC OxwҜ1 Wö́ܓOK1wTiHwcJE"z'MNOɎ4Ȏpge3uLt;D(! 'KsAIһK-6m<mNfנ(D1岘1f4yz`<542XItQnEVcG! %?hn?QdVԂ|xN%(MKF˶01@H<*`ͻU~a)TurBŖF*MLW]eɩ>rcn1Tnji\Ї?,hggOX/Ycrj s]^ YD^?nr EJ 6; Y;G>r,[*mL%DR#4g{`Q-y32,4})nK 4Se݅e>Qa|aɡAK,*2.j8j}Ύ=PbʪTW. LV3?Uj2[crtHWiGL&LtSUawgnV:(q=2IpW"Uvw F)X!BQ"-,Pc W+anI1Mnw{'M+7?#[E9xfJBd٢7 ({-K +8^ 棦B|fndՑRr"J^+{G͞LH-(0s*Sz"\% sCܝ L1\+OlYa,n5&eP-2fmҼX]Io Qp7 -4> dBJ}t6V닅(E#: .O/Z\bZ{̈)lABu](yZF3}σςgE'B@h%(5\ ꍧ_2~ٺ҄ \ %aܬ{/(+E#ٝ<@P?ШqVrۮh4ta,:sF^+ZgyRnMD.dr`"ڸF~г4兿jft.osq)U Q̰-8}TM1` zG@B4$rFS# `; wJ!YdQ!/ėh2*x} GШ]=Vh f-Gm輜c*gvH3uc3?ȸ?2F>9)ҺO7K]~0.;)5=Zsigw9oUQ(Oq ϺTҳAŵ`?kLg\+Ũmu´j."ROEj^kׄ"Ŵ\ :( ]<>ldUG3eԶ翆Xv \R!XM!8:h|r; '6{Z ޸C &cr7TW(iOt 5@Fq[V^ U'g$2L]x0o QJ\f`||'ʍjwo(q<hI,lcBOh Tz`P")C0BBv2o#li4BON2=GvMF³6= 0aMsUreم%z]S]Z[}Ky`>[Oo̘'ݾ#rsɷbܾ9w JƹD7!omǧPfa2N\n"@ R3zմHbV>YZj~h6'YGkZw'g]*P G&sP/;K2`_~4H۾.E!vI. uTELIv-8\1s1Q̯FpF H6R:UD+0C( [͚l#.Pҏug꫁BJ~ JOhh:yS_7Bşc0)nQ\X|&{YE(-|/nox9|@>),S`aAqѩ&!tN"-myvR5ޮ~v7Us׮{Z.}`~8;zz/ F"~ r[ҀQQ7E]~pWjM<>⨣py]$xH{rXaֈJE.a!35#vӐ#ٚ+qfQzA ZIL./cJr3u9"e7;@0?jeo^R>(82^%o)¾YpH F Ys&y7D tf)[)0N~|^|W7mYzg߅*sC?8V2$?(NB.&*wr-(%!+// 2(R&>uPk##㚑[\8}>{At]rU!m>M6Z*|""M5v'.h,:J0њl3'Nqvkga;+&AB򦥗ؽnFGw Kty:TńtnL ˧lnxח|w75z͉,\EJi 8+u8(m,2uiѰڋaz,&1.z<^X>00Ļ9|"bH67&: eI̺^ޣOOVkdGa²;+h UӝvJar彠NRzFJִ%/I\ 3Cf(>_5/?:J.{tƽuhN#@5ܻʦF}}gA:NaT!y6:W*%L0M]RL7y1d~M!3́]MԻ0yB'Q6_%,~ǂ./`Q@ MUy*q] pyY $'FF$962(ãW谒ѵe ջ:~K?4G' KRԜ#cc:( sA1&u\wVue5֌թ@oe ڌmЖ{^}0Wk@s㭒k+B$QOH7T{UIThtg8#1Ƿlx*vFtc%p~S4=Ӄf*8V2jdÐ6N.s[PaC5> RS#*l[E(f<1[urS2JܼD١zYV|LoN}_S'. "oҎMwS*-S5>VotT@k.KMqDU[ARY<눸?{{jw~z ]Ce:z&J 0D%M/T|@>ܡ1>]zsB1"r_\ /Zf{#ח˸%ܮ].h=]~_d.}Xb}Ped? \@r9$>&A$ . J,4h|joJ!W- N9ƀ\-iON7"ua ';経w5]ې12l.QSƌ ! }~'S*H%@$9ݑ1|Traۚw"h-CRΨ4Ιg'Ϲ(ևMts1$(Cyט((\=m~_9.ԥqiLUWeu)T!9JD(~qќn -Q`WYyΕՔ2u﫭-n^ wb\>'{#]?@Y dӑ)k`swG9r>xS 盹w66-['@gڂDYHUg)VIDJ\;@ii^8M&`jz$+:]Fsp^7n`%7Jq3\skJrzi!e=}B!ۏ36:~Db{'zCG)!\.Ȼld@_dn;4C~_nOB2WzD eι6X6'3j^ݿɢٓfC* *nT!i!Oΐ4lvo˸瀏n{ /Alld" &W%MSX|%L̓*갼8Xn6~n_r*BH}b^]wv mAX@h-@SQ光4%uØai$:*üFħD^HS0Д<{@,sa#.dR4qi]ſ~M*Y 4Umͣ|Z?~Ҭjsɽa;WvEkS>=UIB "RsXDX54#I`~9be<p)">nuC'_/k[[GVĨz<"#T1Lu Y6^J1LDs0-! )a$\iiw0QGEw Ԯ` F F&U&_ }MA^c!LJfYš~d<ww{n⿯&qc]$'?]{ODgM]fyÂk#5J܂duV퇚^q)&#Aצ6ځ:>-G;tzsxDew*xg i!3 eS^qHI5=u?kf1Tw8髃M+ @鞡Eɶ&,ݛ*ZĪDLm>sLNCù_8sRwz TCؤ-RN%IW̒W7Ade]P>=0v\nQLƊrsoPBitm.#)E $^r&Tx0KL fVП飍PjKysജ[),m"xf#{sQq  sgj"Ǜ mE) st@yDwa ל%즮<,],|<5$ַF8 3:Y/*`;55P5IF)xgDg+mm#&vy3#$mZW7b(-NaRN;m/G8{XdQ fc|/j'}Ӧq9bR)Y~< l5zYΌP|bx*k+:{Rn} MbJ3Ҝ&{+W/Gn=Kޒ {煶}fIZBaFh%4 -DED$y  6 ѐi *P?j0+;_HIܞgw:Za(ۊP7bH+/Lix,a&pu\Z}v泞 Е9]flFs:H#y8#FS[/ww` z'+W]M(tt&_/$*"S9b "Da`ٿۍy+C ~T& 9M|5 #,I|6  \.Y%7ii*|iӪji`vTNmo!ȯB"W|h;CjM}9rNo} 汇%̞{"YѿGqu@ :w Oi֗DOH6Z 6yؘʩF@kf xȟ ;1yO+!G,Bt=U z5xMOzonGw [+SJn|tUAzPꤋl Z2Omm7b.c;8f |m= Tт/8!de Sd&z$ȠOp7sČYjeQ,V2Q*lW8A1[?10 1)@"ZD]O&-&jaZQ|SPzu0fΫ6bܖ+n4BhzY'  kdiu*D G&vv̦Nd`TkUN=#DŽ"_zo7`qr|T/+؀{wzYB8iUœOu9E9i9VN.!0}9o;dGG҈W-'Sx)&TFrدbۛrgM*+yѡ̂߂SqnS)9j3?H꨾ɯ$3և$3+s( WO z݁"7!"QTU㋁$pfK:/)QhULP-F q.1zJe U"2>tF8(= V9US}:s g4$$`u}sK\.Ϥ`FN'6]*%@2؜iq8Tf&4+g;TïAA(ƽo.sХId?ΦJrPƅ1pL/>Yd`Pt0AR28NlxIX<Jwx.zfn狝J3[kjUfT‚fDC@D"ߥ7".P ~z3&G[1EHlp+ (!nD 98}N,$s-GBe8zP",ГC'#7hxeU ?Q8h`(`b' L PԀ9|qg%:= 3dbN@,w>UEmma*jW@';]J>j&]U{ &|+|_ i:,Jh! M>fJ2-"-BSqb\ixIf#4뻇jtZ'x5xȪ)SDoJM{)wD Lj ='ˆQ7 pD= 6S["aL=)(iA\G'+02pGyzaJjYOAQXTM] ݱ#-&`G_6B*\6ܻ ;NM.p[ u) _rƹa:we6|Bj {D(FVvpJyQ.a'h`*1Q#*j.&#xPO͞v"UHMaKsbz6Ҋ^@'z@#L_]prZa(UqycPS1+*` ! uB6Iy.D&#6hK 4 5Z2 -HĵRdG˛EM9RɕeJ2I^ CBZ r:~,+ԡGΜJK%#+2H%~]m`H`7~SR[v.'̲ZYC I~B‡ssP`, rz2ϋtFՖ&p/O.]l9 m g$jb;gc3䀻LPS f 17d.nGE%?]T2|T&B<|{B@31tUUS8` EoZX!z'uGStQZ'rmݯf?5iwFoV x`Nm- $E0z lQhe MR֬=w`-q]3)#yuϩ L{}{L ؍+PCYXeWcA+sbfM(}˹̱o-#SqBE:6L;љlҟT 7%Ta{Yoܕ)XiDItN$vx' 2 \A5YK[1P_A7[ccoYfx~?y|o@r4OT-zrhokߞ_'ӸDg뒑m$PJwL~/I?ƭ8\y53CsBԻyxF~N3%lt_JlN4ݕd*ZS=_u]) apmNI]rP *qX 扵 lf0q6Kt4,RK[._Jƕ )tMecc֐iyiK+h}:֑hv"!3E bV(4`K10\/f{gM -J:1^L)EVAdhq IDNBĈ;씵񈉓Q.Pln"TwU[mxL1 lX0Al WS:K(il&'ݧ]l 󖥿Н EֆYp^=Fmz}UI CXAY`D"kN2RK&v]*m ̞M Znu_DOǾ3|,5c¤mcJ"׵ucIdpYO䟯:J, 8ӛv _f,7ĩn}D2e0e[k{2!G=%2b{:ZR9G( Sթ~ˬQC?s0a{vj5UtĈQ}WzU$ ,vm۶m۶m۶m۶m{_jECqw ά&[Ӕq[Ɵ{V63~;v_5i|H_&O(ffڟD6Kr xٱS!E;FN%OPE"WS.ʧF7S`/  M7`YcQreѽi`|ۦ"+e1=ѯ$Wj6"5 Hq+yZig.~L@U㊰'@,zW/+g!W";ף#_TSXG!stї.¬(@Wm=' {}`UzDIc|wZZeIVOO/eԅ~Uoez,EeFḿeKÊ>GɚYqys=rDrXmzP&P:f7v"]FZ˘p­ p$a/<bN! `sŕ'"< ϋoϷÄe%ϳFDAF0=6Y#!dBRޟ-E`HzXl. -[4 *%ݯ[ p  ;:9}T1u ̐Ybŵ51z3+QN^5nj5yt"(6&c>h=g#W:qoM9gQ!;4 ?m)'B *) 8O5vπ-bII lkm'g3ʬe_?C)heߥ HYv6(d! R{sy]+瘚߆/IFEov_`]^7}g~/ 3 /R*6:9QyVtXV~Dߥ kUTJO=lV/hoTګ x^ ޏ-oJIZ["=G@Z)襁~c\3;6 2 ؈YԀQ%zT~kAq 7ˀ R'V<QcOs>8R~ \6Q΄O`6l•%̈́i WZ(>Ǿs"0NIu{NU`-Q+?gU(iMIRE [/<В\9%"ԡ-B FSsNo"C]Ք"xn7 8g (lxIH~Kv/+#9GX3F PVA*QjEUöxLo7 :kZR5aJf*ȉ }砰yQ<]wH-'DԱKnGM8t8ʓ|VSe҃%Q8b|PB xZUGƩ3Oyfߕ! a|pSFyɼ.MmN(&P UIJҜ!G۰Y"Fi0˶2M u,2]`m a)뽬k~V-r*QN#=w_>񋳅+ɵ*PoPs-^6 x`-58C0S&ǘs:&0ˁI Y%t16N{f8SP"b ֈ(}(cW EYgrjܞ|1D`gUZzh dikHdn+N(lZM\FJqm%ƥTu*hpC*㦤tEF8י=۵=/\5B҉4jTW?B\<Gq͹W1ū^PzKoB%0+ x6!G-%⍙&Mp> :Н(͗-IeL&Xކ0fE6nr"*ѳ*)6CU@W^1\1;4=p |u NqAlh$f+FT{rn!5Fh#aL*ܯ7>~M)Yum%^{Ҫ|LH->:[.їxNVݕD-#hNtFZE Sk+?aYpmb=ݞe{8@6etݏlP@AHu`/ x*wS[#*Sٲ6G϶;fK>NGr%⤡XkBәehmPĚA=X֌(k5&99HgryN6JEAKׯ uHPnHDnJUb-"4tg#찣>ޜo(D ޔ R¨ nџ6w߯/v̉l5D+8E}ʃy7%iXأuIY$ D@xF%U@H[xdπfk Qj'Xn#T= ڹ.¶yq϶AӦ0ȭk/} 7[X51:2QM+dժR)87-RZpMIh62  HPVW~,zqw(u]>qLQ"fye.{6Iu6ehF(8R3%Ft0wJ E6p7]Lv`טxO>P sT{y,Tr^1n[2'4 5QԁHf2LJyhM];p܄\$452K2)xY|X|ܓK `|̾1tz=Us;Z·,p̅dzi xMIz/ vW&0^D#O~()g:T!@B[S]IYaZѫ*zlZ? SmtƋ^\_ai>HU|\ѻ=e\ k+*_b@^0 4q`+!@0 dh^%u/T By2RL `МD6ܗҔdH;gV.K'C̏@!9AR9>([N"wCd sG%S%x0.y-"wIVqer{_&(tqE4 Ҟf֢C}:Z17/,!#WKq_tǏ aƁ^]K29tC z4R25 D[RTܝgJx% ;HJ*Oi_Z_q8:ڝJS A%r]ƒ2Q1bHr`&^a>a`8 ج5wM%^<wR\ Uj&xҌg5+F֊ CӾC^o2H &1q4d56p Ɏ!J)}DbS?J\U;9ʃT ye+$hsk.D QCSxl7ҙuCE>ƏrU':/ ?Uk.u5||^9B+t PΣ%Zo<6 VkOX|SSd'Ɋ(T3*"kHop_.YWZ#3 /Y3<_&!. Ib"mK" ΍6oFb}_7C81nRh'Ԅu'H=7[G3OSEV>PsHhv{8%,J:OPvsr/ikj #M$2$HT&֏IL ͫi1SV :0BKF-&KGقE%v~67D v 56ωU+QLgmy"*)eid$rކXOؓ#<|`[.)wfZ4{[\Xl0z9ߔ.pA C2f>$|~z9#%n^z\i@/gpR{sCL/?ثn〙OqH+ zEX6O(T[ MGXa5Բ]_(RD^eQǽâU bQNlRmCSƙ~~27{]&T!~MrBFVQR#}YpJ#}P#Fsck&xW-EziZ_z¹+5Zø/R"oI&'@&SUa }Y6KN{cH϶C4 { yqP?[k; #B湀b0kPUG46 mM3͕Ǫ疤G|*i>2ً|nЍ_Wi>[*u14n"ZqwVY|ZdJe3|1QYڭо9Jsu5(`sc|+{Z{6;F|ܿh*kzYGbsė_vS!.#芎N>A4SlGOA^krւ B'h3P02昭%MɄ⡬}A>ICi}7[~6 _`5Bq,ąx[ ^T)LM.Ó1cOx/#SfPȐ &+=*j) 7WCOGAЋk$F; s^"N__DP^fyeJ02y54*؉w9XUT,5]3V ^+%yce _݉ԀY jΒ7{b\R.^>8N$ x)PfD+ qPȶ#foKulXx 䮁jVWc(Ew |[gumI.䨐Cy`<({\u_{_ZO.m>"UggNQL0T3E,S:l-a"}7# c,bT_jM齯O4E Ekwr%nHLa\#G Ѻg%:˄DWJ*e+k!٢? MoEH54.<pUi.0Yf2\ԑwESM, f{GVeT\vVɊܿ3ۛd}V8鄳5_=e"j:mrGVUi5c֊+c~Gj<_?GQ 1&Llx8W؅)wn[o4ͤ )y)Ǩ-ܒ-o24oG>uHx}|Wߝ!e #d،qM:gʿ*_Dx6:,a?Dӌ59HC|+wUh9w"67rk PWՍx*XIh%651릷G$,'dZBdq !,T׹cgx M~_r;&ޭZOL`8Q ~Xݷz|"^6^ 0 E5C4rNc&[t{(Z/xW/B5fDIQ߈$g浾oֳPq&Bk NUUbOXol%N.;plE~干*ǁ>ÈSUOLGyc&]rdDAx[_@?жt:Wf|gdf*f[~d%ڹ!w$8- U08 L 1omyκ7aF [δn63P"b*9yߤ7\F2m:rhR涨\2/M2̏{ PhRL}x?b`WnܳJkwRTdVqFO%~"JWod@* ?/X@mɜ>|7Lz?:GOJM-5Z*3kxXQ >}eKx&Հ_j C;rYE,zRUAFDKllSa Ջ ^ˎ4xQ4:e!N;*YW楟s}o:H.N=6TclxrS]:e5vɵ3' F<>WIk3YQ~(݁A ] 4;ӦGNx/' unnO?HJ9r\KO򍮎ԴڗW7,.$hP'= boT>5#5pV&J Hl)qgqgPu$@<-Mg>xF0+3Č m-0+*[_q"lMq œz+iOvM K$ ` f0vέ7G٪N'IXG=~t]5 c*WC!/"Nږk+T"(2,Kn^Vy(@cJ"x:v60UCF)1YD=4zJ)}yzYԸ~qeR\έ=Nا-sLͼX1~SJ<3tᮎWݤ;y3ϰ׊Z~(LWad擒R?`ү7rGqZ=^"E o#5tt>CTe,(]sF ҏiYz24{~Jmg)zwG̷7/Nv%4y b_ =vO${N\Gt͖DE 3+hZkZЧx,+$~)WΜH(Fr|bDlQ-/JFy6m zm5"k5/5*%IR6+T0z3Z#] bm"S]:!?r^1E-qəW3Y?*FЁU{v+xvNi97 #77IS`F&0'(B, Q/lnkoKM_qP'Qd#!S!g/5M:_(cZJҥ@ rI d'gq:1R=mO6 GBoyN jvr5us.r'o;@cqW];)%CM*CkQޕcۖb=9=j wVF:1H(ЁN] C:(oY*]>e\WlGL]5-B⌇4ӊ;je S amc̍=jElSn P٭ xv{fY;}mZ$$׌:=k d]"wZ;mjȝ4WWb Taw KG؀UR%o$$Gńt _7BIoS2%u,@oY.Aʼ}: +V$nhƕjNG`losC%)fƭmk[*pG4ߑq \Uz48Hr >z*^S+ {*=SQ(.p$ڸQYDLii5EZ6ܼrZIkpbP3ܥuCFɟC,No$D2H}3A͚1?f5=+;昏^fɜaCC:x!`t9TPH1hU\G>5UΟh^1G"cD}'iM7/]e ^vnVK/P`T׸~=T%5nK1=s (7&]誮k@K!$ƙ!&Ɲ%)X?g n#u9NV!JQbs{.h0=gկ>,8%ݱpbWz0s5`!xzU_++TC!F@Z69~e=?M̸Uy1e)ygelbW6RxY[5I14V692aHj80?ϊ:Ԟ)F?ͨqPr'5ʲoڄZ MrD,{U,J";'Tء)KI\jf. eTq _ V3ۥp!_=GM͹4TͣBR] UkqY ׹ϯILH>jmp>z1* qΞ2qmutAKun>keJI8l*%9.Luy629左$.3wJ67ACSFO lxU)RͺIɊ^#@c2b4 #ި#𽗋X& >+]԰}E傱:J P} ҐUp̍[" ⛕R*U,g?Ty@᧧"oc7pv9PAfg`^*+,FUS6l+C, n(7mmŗ35}"޾~R: ȏY\"^$o,%Fy&^;al`iFV?b`FY vqEZ@(@]Sfʷquz#4 <VB&YSf;at(*N yoq\xm#~{ÔX"f*EO"yK}S-1)H{u6Xb)u` qesJZNqU4@`Zզz>dWGVM|ՉY+i/t ؃a)"'s+ٽ?b_ig%lzɺZ1CeaKd%.^DH1hy7&k%{j!| 3S_,3 ` t~/Eri熢dCྭ?3VѫAC}4HL3\=Z,nλau5 NE^aNO2Qk#r']ZpF+g`HnBM0B5STG U&.X,BL=ѭ0Q0#g%(˧F۩'V[U< cv=QIr7vU廊*'Ħ'}MŇ{C1+Vm9ڛ磿_⮾V(ɏ%?uoʁTܳxs҃*WFLMHN*;ZGzUnOŕ$X5 Z,_je>b:N+>tTq#\՝YPr ٫[ʱֵuτI&2z7Ž= rWlE ]a;EIJl9+ܟRRS ߿bu0lHqӇKV{1OX ׯlxɡ~EKMb+sS|P bo~P~W(NH] u,xg:y+7}R@XokV aͫ oy(J+ҔX@U:3T Fd/"IR2Bq aTyL!^wp/Yy8 ^9_vfгz9TPG4ق֏Hg:ǝ8ρ&ƨTL|LioDQ[RY8O;x/u_րN"%s@qM7?o~$߀}sqѡqFfGF78'JypEy)L0F^I7L֋cfqeTDH~ԭ&IŚ*WDuU>glA3Ve}me+ 'OVJ}w&ahӶ E`簥d I9=ʥ͘"xa}u$:WGچA9Qds}e4V@DLʴeﲠTq7^Qd+| L!!xVwf۰SKC3'1jPwi(e~bD~=E'H%Jfg[Ҁs.B<'eSZpNಜEԐZf20&u^>R F\MZ0T;||O=36thp"Z:!>N:'/:",}ZvTɁ}O~ί'1V퓟r[8O&;"Kd7!j /ቛ=kϐILVf  xEhhh D) M]=*j*C'ik8_Rs'R]|yvk&tB=.j5 |IfNz"& =ITZa{*j{A;M\Rҿw-0<.o]sBRXbIaF2tdzǷFmn#(ra&rO7_qw@ A@9}(uxsI6ey+u? ֝ȑY2]Kn:(3XDD/Vun2b}F)0n57/w'v*GZfTP4y`3+؜L5k 3Q_֐^r| dIH,JxGӺuUL ieMש+E!paCK2ebҌ.:p|gg\?K (,wqWBE Q 8XT `3Ir jVz&סDkmf ٲ,bte8*VP}Hb*dnT<]R+MUq>ydH8|Né͋x#_-|%5!ЁWO~tq;lW9snً1#D,T"6@C\6 '!̺|хyܩ;mg97.IimMW"g룧ӢWw_kW3й"Smzq*0ܓNa`*p@J #AW\i}g">ʊ$K:pJ۠%*?K-Ҟ`-#ǖGޢ=4\.'^thtU"a>Fٕe.maBuI3PR?FSK5=xiOxZ) Jіg{T<)=d==rr(zTeEv@[.@}ݜ&قU^@2S.M@Z 킻^AHl 35jF#NbzZJ#/syWJ9׸($1~H XȌHzJn.X;6Έ@P%q l/Ԑ`]A^80Zh e}5U)4T"JhpBu#N^{ 80Ifo^#ջж#7M[Pfx2|)gù,5 M;nRH8^r灱)n vX%9 @'UzUBZ>( vpr XN/_8Sntk_ϔ PlFO֥r}F, ޗ)5A((j`]3C,Gz1ͮJ:ZB:8Ц$sI3XVzma4#tFD~ uz[&Ez[-iܻȚ.zd~)&2&`yo3ĸ<[ #{V/,C;mLM-nI fK߹Zu(1>ٴ;nq09=X;c@?f!ߡsFz+!<a6#sW 1E9{ -v#N+6 7 3= cn׾\@gŵ~ffNfl [/Y:\>UQm7X#Vf4292Oa&Q YXRڣ(fqwFdPy`"= fĿh fu_|q$Z)FP~恱9e h CQn.* yGž³}8/Ȏ+CX@07dU;*9oZ,ѵ?>7h 's>\{9|jy+G].rDseHĵRf]Q,r7F3u"io鿕VOGLj6b5HtlR:mg8/q qea31Gm)/o%v \6LF&y#C)ɡLM4rPI%H{B{k  v1 [V1"L_iO= u4`/5>I֭V*_wb]PZ53͍ 8k/HܹjqUS#LpceԿ3?ǹΖ0݌X]}5q}nFUU#RيkmY@MZiZ& FxٙI[M_8` ? &7l( >b87S6/kh"`3KWq\Eq6}ٖ:9:v aF&f[ܷɧ#-$?y=aX]8atJgҶS(LY>8^f|z^Ò/SK$5 >m~jsIhS1_YǦ =DH 6 %8f*MU.#ڬj/@_!tޒ${ ͆*|''2FdԂ5=5! OL%w"6`VC,)QkqtZʋʠ.[[W=1p3+tjĘC4kO׽b v(3 ; K}`4x*S8<&Q)h^)]j I÷Gg(8(Ò.H"K0xL=zf"i^8CQ?"g`('џ"I/9^pXi8^Y]zBV S>n OK;,F>=6KdDy"7) dhrWY;d.L_k)*Sm,\ctM擒mFo-ȏp宕0z]lK4'ϡb(Q [G( ^]u`NZH9[ԧ[Ru); qpתں?I$maOD;L꾏m;PC8 $g-{Tkv8١Dc^Q q"x ʻn#|&ub-SG=1H8|:bV#` L]rL=9q2x[2& C Sh U=~Rރ$k6T+p?kNG0ɒ0_dL$Ny8FW$"%ײ0=M"8a<@pz+,V̯œo>kc}\#wvfx.v'PK>ѷHzC2? 2ulqA!ߐS`S:H`N!T 3Ka'<1mr.'iI^zqFWMKF˰j Hm%Όˎؗ vج/Jؘ6p]'T8lg}*LļFDU;l:gxTUAoS*ǼՄKXY2}2BG)pWDٺᙟ\;/;c$dr~:=Y :F׻hÝgj5 )!"@:ܛ!1xӣ;,RAlQYzQǻ88XϧJ>4 ]၅ c3&SnD@zonY/|#':ЂNWWZ#ܥ%v/6IG` 7 |}N@K"Qm::UxVтnC0  L=ĥ]bߵ)YUf[-y,-'̰VÏȦc`ɳ*;(V_Wx8xuUrg\^ڵܷ+KϿAmb>FuS"E`W\&]woW{En{Ә 9@=d́!SJt`IbEa Qx KCSQ6r?c,GѠ֙j΋RTv[*,)%Dڋ@2mƪM@Dȥ ?w,Mi7r!Xɣ{/j|IS#ZY JfTN-vt=^7]R/]!]-V<eՖXmskg lv0N _)@B?lP":Qnrb`cJ{ Ps,gJz(QWVNA#X-xH$_Ӳ^S+!S\4Ď GBGUrcBq!Q5毙72/DdQ[CoD^ M+,L{u%ޟ >=4T/$ZĊIw`+Z-P&Ln) ;N]a0_;u|cw{^Q3jDrkB#M;L^H[sCbqUd}/Jʷ@Un{:%#89:YtN)N[y$b*zZ*+7P &hOih;fMj~܍'*WH!R*1|u ,/zNMbyauaBIk_*E=cd5*TY7fc$ԒyQB`ƧNw ̠ٚ+ZhEx$͆Ay|Y6a&DdNd}/"0I6+q9[[YH7.[g֯L/$D"1EЭŸ] ])+m. 2f\LOGMCI=C4'ԑʸk3߄Hkv'IœVM[p3o( G'L=%Ad!LtXQ@Eq4+A*nJ^W:hv KK5f$}2nY |O;r(f,Iao!5pVꕒmW448%B-{*IӘmפvz%X(0e7-f&y[MoQG(WEspY`j2ؼLY;M2 oش6N\;Z5!o4;ۄ~ˤESp.-I:7\,m|,DJ̐Mhr7X:w܃%|>6ơU}-Z׈`oOeOnoiAM!8C 5c$V8'Eͬ7O̤dҤ2`&0TJ;%LiG* XEUM.~~P> stream xlcnͲ-ܶmjj۶m۶m۶ݫ8_|1d5rTFTČ"%uRv7aec()+32paHIL ,lE Lj&%{# lg`af07P60pY۹Xx\\\\Ydbp27ZX4$r*q[k@ф`jO05&G u1qpG @VTYPL^N *L, 05Hɑӿ8Odm?DSupOD00rY7I[S;`cg>?RMLa;[[ؘ(l읝Lv&y`_/2$ 1CY8Y+X8㷓`5?jlgkwG"&@?Cﲨ@? wY?_-(e ,Z t}tKH͓@`dfep03x/F&N6^{LLL`W쌸,S[B}D *fUWW{n-̍qq\g yv% bMN&tVpފ+|j?~ׇހbɁ݆;o(PMd\H)Eg/Gډ[[|!G gr@]4g\pcwKg^Po_m)0%u-BR3 pͼ*rG?Q~#//%]ɣR~73M'i\gGjA&Msf+gCzIϦ ~\Qed[Dy#6.bӦ%[-ئq)YY[T\9/1]XXsx[׃(fGփdr1a 挦AOAV~U e0RKo5dKyxp󊣑$Kjf;6Yi^P"踞A53A]莓ݯS`}+s,FOˑ+ A81u^o]-kәFX[ͬueG.2 )n}b\=Eagjž@zc/I+hZ=*zˮd YE'!s}mgR5S v Ǿ=祻I#GQͦ1nCC*ikYW1YWϘ4E1@ZЖ}XRZ=NԱ~Wn'0W1l+7͌}_,_$h4)OuȥU?5 7`s z6|S}분q. gg2I9ꬨCx!ف`ƃl{#$g7uG^:-wGnB,%)FI:D_ڜSMQ$(ŽptK6P}YՐ%Qxy˷V#n^[NlF| 2⥙%',QDcǴG//OC$;U)St<%>z=-]EGyGKk w33!o0r˰Yh~XH|ibN6_LUF=z S2i,îQXD01iėY=%M@nVn^JNufWӯj|'RCg\nь#:9Y_ev؛r;?Y~?|Ʀ;3~q.5vJhVt}mjV셀ˢW~ v>nQu`G)Txj`'@ꕄ?=9>8:R;/5fq3y4o:0$ 0U*H r*H@9K8k=9l0DŚ,AuMrTu}`:4,ɻaxTXIZY/IsZb/ɩU?`KK lhUjX-B[j+z`EzUZ&L_;7Z ZIN&@&HɇPPڙF%!:+u91-Xk~{AQ,h؇Dt$c=q^  N"՚_NOTGٔxu~"WpNfCnp~EO=D/w0"u?!YNJӎTGOG)T*D u_.ēP?xYz;䕦%hϛ3 d iĝgX#a5X<ƕ=:5˷섹)Su2v5yӷ?Qz5kwnLޘ".=in7)_B1(zlNfފXf˸7/4ܞeJ=D-~3}$XSlä\No!i\5_v(UZѿDç ډG+fy gCv%1gwA67;0aI)ĒFۂdH6NqOWx#` '-ofJ]3ZV6:hBĴ=|j_,}hvpoݦá R$b0ϔK< u*r 07[,@Ҫ0$vH?'UB ހvLԌ?u$4( &;nRqK kG^H*[v ]nH_^<^lEO AݛoAM<:a~ )i<ԧCڱV3N{Fս! SWR:#ÇqC"hə'%#5C1 ^^HeF.' =9FRZbys멻+ɀ[ k+j?^T:'#8^o`Tk$G)-}„w p )QPMӝEEȻ%[ ul PbjX2ZWfAIcЊ,2PNH4D7e щ,~C,K6|lz |'2K`5@r$2gUi{Z0H#% ·WyoҸjϕSbu*URKк83f'jSqۙ?AkK-TJŋ ;jURoaeNO\u^֩MݭZ-Pg[gzbyfT1|#_xG6}G k1x{摇'xr c47}Ybaje^FCi<Фz~ǛC"U \;ԮxٵLWk ws"0[9ɫca]߭2ΞSu$}V@r_*)*Y(}} 뢥 ];l-ߟ|L .nnXԯG&-n{o'z@P(c5DcCtE?h,i}sE%%ل<.a(܃ u;&7ͳҋP:9}IcD: Ș8=.b%~tD-NaK̦9N|5M8}ŏ+h-@ fZ+'ܶ6\^P4D..7h LU%E$QD(D?zK?+!!Ir64l]pTaހ|SI (BsN:oS@_ٮSjcv*߹SIt䘆^`%6մ RD/ncI4zWuaWD335GZ(GKH XիVU@a윅%л0?ur;{…=R ,J/5KMҿ9$Â7K4hdwv2N d0une;g!=kXk0ҩk3\b w+@R+vzhD-ZʪjQнYs̜L˵3Wn8@+5[2.OdSMJRBAX_20}o8!݅E[X}K_4#B%k1/[=;yudAk%z6R('щ9O *f6@|g TgʒVX D9Nf~K$Rq *|{M}f K0ƶ,$ ִA9nKXv\CxMl=ͤs[$#!dn)y |sFpT4b Q3}.UՌ2P}jH!!^,*뾃2-_TQ0ؾGUא&U7XbP J~Z&o0KjhIh&9pbVZA.L_ 6cke 0D&lwg,!#(}笄ՉM%lݵ@d䈋fAEQ$%zzڧˎ֣?St)DAeb@hDÉWW b^j =>ϿVmX{r,~\P`>92R^d|a& ZsгS%+Ti nwn [b˫OsWݗk[DLJ2Z"i-ѶſNDmPީ4Cҏxs{MHJї/_a޶.fY r:ʫ&i 6[ji&70!LУƛ #9Z!  4~H+`8|ir" #X$[ĕ "-7x9WCzNQQ,FAC" j?ކMy9Ԛc^2mρrCbG?l/]:{*)[Nlq@d5ǁHӪW@*a;xdcI bhҮ^8iK#r8we6hnSc:Pߕ}D)B*p)E;7  K@.+pP;~*HcH$IkEnWɝp b|dUpl4[IDÛS B}X4ܪކr!- LӉ xc[Qf1 G 4v Ioj"环~=Iv$_4`XpG_P?Kexe?v9[݉ c `k3 "Ѵ45c] 7]昁HL>bHW0@L3MYjXt\g*[s!$ΓBd X}/s]"cgZť _jHVK6λJ}Elt'GU(#i=}.L!:PT5KUs&,$n TݯB9hK]-40S{5.L+=,I[#^#1M=ëf[R}a2~P ه*д#ә*e-7e;mSr`KXU0IA?K6,K'ǥpIOP?jQ%yvSuE0. b@ֻa,YbKO}FdžY抚6BpИЧͮWrW 4.cq/B}~]Ei%TCfۋö-G ﮡ~3%&e9 .k!ŒAٴbm}?䴛OV4Y9e~6;DR?U_qYQ{zWuFZZ4JN`d/k樺V,wzx9qqփxyr{B?cIL56&xyl} Tf)rFɞGZ>uԡp{#JoZϚ@pQ x~A>4u4ЗP)ƫmeV|.՚09l[2lf/ʢhJ|l\]:&wG=&EgJ[޳ZR#ΫR4vg5L*;҉Un00zVB6v c`bű%"`pzQk&w[m? %8'dHy)ݣOR,X&^҆UރE[K/vP@Lnw^0Y'#|#X@ %q~[%=iMBz= e|MR`$OG0}*Fpċo&oN_=J?i"bgO. $[ljE)X%OzM=E|(67FĢ!@ rUH\n*䣼J.aF P|%=[ʭOqPd;>:ޯȃ#`R; IR"0>#U9+fLwڰ m +7~Qg@I8:uCfiwzybnlgCFClJ9^k(ŕX0cA+]1k۵IB$a;ߖu4W9:%,.Z 88ap"JFc0q޽,<9B ާf k4D1y?l%)bsxsx rl[RD?$ 5\P+5MJNʎlX߹>쵂~l1B /Ez@k%&Ƃ!,8u_[fz5&ƅS+6_9 < [rp73Kn"شtuwG"fhV$VoSӴ-'y0 IPm$M(6 5cڏ O`QmsզBίׁ&ևO+Bi#㮣60g|k.@ {b!P!4սzj2r$hokb*^'G%I=x;o#nj.kK.@y.^ ՖIV=d[ ,93ݠ[Nj>FNIÖc،F&& UvqD뢀;g.I Kcם{FGIQW ̯߽4n7^?6B+wRE+MU<\_4* +~(%ͧ^8ryZk|v̞PB!B\gwq)om>A{iLx>5oaG$<.WH$X8B;O }$2O~PnnQ/ZJ·Y+gW׋/cM{E5uE!R+PpXMA.}_e'*ޝlF$1# ̮wQIt&׹2goQs,k?T 6qn6DbA_̊uyq'U}d{ AڡR~kl;w(%~);eH0ӄykbۈe 1#=Fk_+-ErO`uOuB}!r0,w)4N1b ΓiCpeiMZi9k;I }O5!. 4REyƊMu"!r3!)ϺHD M8t/ naV򍺝h.#'||A9kG5 L{رП7 z-zYY=ap‚q ѣ$봷͘o_VZbPWўn;O [|W7܄6NT]a:CĬ2%_]cx$/|/zcm@ o}(`Wóaͷd>1 jHs?{h")1AzL[1;z.HkR,p/uЬOUII kIfEEMf7zu m(@.(. oRG}xExnXM`G5I#/ q1bPkFL $wrM(ojrTy6]:G6odw&|cam͒L<ƍO|M>AXPZM]f#F9W ޱv( 3 ](gϢG+ sNPTn;4TXL!~uV2[[6 ijFAY91v~WtJ yy6)(T ǩĺ^:;]qሏ($B f|}{Hx ZzW,>ǜb#|:q/ԠǙi!)p=q<<⥧SV,!ti'W+xhY^'2+RtJU[7y "hNyvv9VO=e~C@p`V ta4U[rJ^="FkہLi_"搗kT!OQ:D16$f&7+:Ӹ`P9liܽgQkW|I~}T3/ /d;(kQ}ҽ&;i8z@!,$QPb7[NhJLACK! 5(sb1yWYB f[^>h0%o$ fSG|sKLk|1@_zpUaFCnMiƽt*yqT,SW LpQ"c CY];6@i{v?ᷪ-|ЕW+D$FJMG>?r- lo}  PNnK?[fժʠCGk.E3`׉Sؔ. OמaA{y4P>O V6Aj"49Y!ĠG:J 9<JQ&E0ΧF/!̓EST_aiΰwKY'yu)*3+QXuJv`t  ϢS} nBixKAK9mJeqP fk(w Wϵ>M3V.qu't1g]fZo67HK"h Z.C!Юtg9ұp;voYDWuu0#4_gM+cN[7.1fp*H=Zߓ$_]JmQ7bs ,P1*89"~ӧqK.{~CgZ` #$ވ.ˋx')T礛wrĚ-yN&[rc?Eo(s#)Co!//赦!d~ۧǓ#AG nDCѾoF/1Zܫj&yo59 WJ|:k8]T/Mm[蒞ɇ+MZR@!hI(19f>J;.¢}6(mB,峴?Prt 'jJHor15yN}}"w[ v[FzXF6Թ;%jL@31^xJƱ~ߴ0qB6Jc*{fq g)]ezgB ߼R!nАXF_ }#sA TɄy`*ɖ^)/i[K*]W.g%ems>ɍnz"0Oؿh7!PNcoslV _sxP'/p}>=0nQ*usT7EM%ZČ8)',8,dY"=yq*] 8}Njcԍ2ӃCRHe[Q5՟5D3ݩR^ wma8 $-Of3FX0s"ǽ-mѪ'gAםzcl$Ĕj;AE"kP[~#tt&@WVX$- ޹vѯ? OP0wRRSӫOo㕀pjG*t_Z_+#[kXo.)k~`c> ƻB:7 zY<2LU TIO3R<\I<ضR*vݚs-摃 3;I &vR^Qȯ״re(w1|w:$iN*;v*[{OߡvyP&(Ykacҷ//_'J_2)RAlg.rQE̤#*R\2Gp~'@d׳ᚏҼywhc̐6~@Rg- 羮6Vƅ^PvqfW 7u}\hş|mهʹӀbtmQpq0\2_=d=1r4pX}6&6-yu8-6Iog eVt~Wz?nG)$tZmbʢg0-]WXlB}MVe!:J5^7%Q፛^-iЂ|Gh0D< Om RH&([QKy=8 iZů\YUӼ!IEM `{2-м"u"Ô4!},SFlU ~=@NRh \ҙBIOo,7aΕj{Op8)Q ?ק$\Y#MI[KVm\/c^W˜42 h¤D]"<%'/Tr7wjZZ'.\NX莦*=&L0 W+N,`Cx:92g@i3ZcaM=hCD'Lr[MDg[|K5DoYX*tmZN)mv|f%򦇝wSǔW#T-tUn<>;$ 4M*lk9 }iH1xX y_cQ+l#UlQr|X;9d1g\ C6]λѰN__c5<3'<:Y(|f_#6Ti3L< tD90sEL3(Fg>z̡U&qMxc+S{])42-zN?sjm۶m۶m۶m۶m۶mkޙ:OsA*UIe'Y-zǸaB4 =OS:?S= #DζˆKqſsI)BabK5WdۅҒon2gՅ' !^q=_3&bEF5H$ļ&pxK[2qPeC)2 \%&Z18Qd2*nFǠ[*m`%//wB4>B0AB*J .ĝɒR߂2`PD/NF2蝲7}D0ds, Oﵢ~eIĿZΪ xzhR*o {Ѳnᵎ&B@ bO|%(#Az2Jg߸nsӶfĊ >,RqHIl+vD;y>k?Ϗ@: 1yduη$գnaUԟsfY)\|O ˰Ҳ"݅Fĥq Alun@Mx1@j64y_Q/JȬL^pX&1Dԭ2ռ9A.rzS˲xrs[-z?u4&W?lNUrꢯq#iƅ\vĤnGg3"Xif,`p""2b˷ELKoBk[ZQNDsiN' D`Ob3TDiɒC\ Sg)c Mo2yɔ;#Uiх|'\b˖1Eg ja0 7= vd6)N2£q{ /3?aO9%{p{OjYTɛzIU]R.X֤@ZAS$ո:nY[ʚ8o$. hh@+SM=ԎQM;vH>`Hڥ]Ӄ\#/ĩ6ߣ0 f'ps)*T1@?ᇀ*#yD1f Lן'$י9GU%GfC^ vVI>Ox mGPf@osRyFI\̄ru7IK C}%?s3Nn&Zs> @|mp@)m>6vʧV5]` FX֑>>rB&KŦ!-7^;#B9Mɹ g2Q3ʓ P"澠2Ĝx A*lF'H|w %}0gHi'wRYOwJ9̛DZ^pRk'R4CuK~Qg@Dm} >?(TAEe%vw?M=ӫti] bx3n>3?ely#w3lOk+dfRoZk2h'Q"=PW c!T`RDy-[6KeJ­o=n*קx׸=FWL3u&FS ٝ@\N_^xQCWX\}p+ĔS/TXA^l؆OUͥ4.Bo\_ޕ&uDծ#re 6| 2iO쵴Y#Ccߪ>/˧[N'T-qo(DqMR D.5 J;qOJڀh)B"٥i .cۇ 7^,QD ʱw* ;J RZgtCZ-U,=LPFjYjv#F OS *“&y8O戊x_i+WBFY߹e{U t%+l' Yҝ (tΡ?nx_A xMȺj8/`g!5à+k]lۙF!x$_K uky<'Ll"Hk#\"lf M EJ1΋,v ,t:Ud7%֞;ZX@'>Ua;#'chZۼ!|` @r6O]`lXCN&JtG+4B-oܝ! aӞԹ{6ݍ$Ճ8 6W:y鵻޶%fTϱdy51ڣ]% 7h%|L@q$Z?1cab+0}[œOej!yZS?y)q՗=^)ϻAE~ !@Q:s3Me"< - G!Zl 5}8XX)7w=.p^Bw Ff`9n [(] SSL 0$#ɯ>B~tLX1-441%"ykUmT4Ƙ9WolN"ՂJ&?|U c2u%d[Tn.4#*S5lnNWBF1[ Q݅,OS'߈q{WSYajDмF_3xbHRU0((4%> O yω/k.Ѳ 䲄8&ggTq#T--F1 v%x.gcEFG/AxEv$CO^6TɺoЛ-xĘ68\ uNM LYc엚ۤS F=*S7S} ߾jYܖ(GnC(ƌ6O堤U>f, \TuФ_!Pf?G9!ciԽOaqW# ?= QxŃ'$J*JYA/j0ZdT(Œ\i~ j]rcwIn[ A4J!"(\ ߥ?LJOTʒ欙4F\˷2 t2f;B1$P9SXG]km|sO:  DVZb\owP\GOa 1q:$%'"<EK Yl8}nsk]75a8:"|WHD[h d9ɕT~ 2/bӬ86}\5K%H:#o1Lnn3fzyYL e6}2,Eѡ5"G 5;qs g]35L0=7N~ )U7!&zjun{T= 0⎒(}hW!uqWH"K&Ɲj$(xfYr.L{50>:|~ɮR]Ȫ}d潞zU ?$1Azy5K1I~[ !ӵjN \]>OSny5zTa\>G2KI B'^e&H`@RF_RNTA_RwVQpasvNVK|T11iɂS*bN+9y|"Gyr.^3lܲI:6S7栙O pN~/m!nw΀՜Cnl6P)MujY!A+^\b ]ԐYyO{G7)?׾Fr&A6Kq̰=-6Sx+gA>IY<QdDBU/4.n^%0nxKqKgK ֵ D2C| uZ[P(F;&p"#[%ػԤ dmyy:ck_iD& 1f9JuN&w¸Zj>dȗGUj> ضrJ'/zse?ҝM1.G"-a՟GI"BK߀rjXBQOXi`R@ZӐA7݊6 @ș4 Q"1)gb<@\S-F>FȬW2fN8hHm`4R"Lֆ2_eG9HAL̏ldblM .u_gpfޘĢp|^ XiyCRYf4 ۈwIoQʤaqKZDMbIY\  Ϯ@;IO79P27 h\Dkrg^sۖUcAtosm5VW9wCJ2ͷgrՔi932YMX񦒷X <|j,n+!2ȗ|]Kz19hv CR+a n|Jqrп=54z ijDƈ9Zm?* ذZO.Ƥ{V[p]{GLaES,oeNox$<91$B{fw±P3YҠomӁ8vA!ej vcqXE $vG\ڣ B`?Q.B("1f\071ebcL!xGI&QRߔL%G0G}1PM#ض\ I6WZ'q\:|H7(2_VՉ]VzjKE +?l/ܹٯp,<}<"6i~:(B5CaB!8@QIB$`'O%ݘjV%WDoAD}o)0e"|$RQ0I>*)#CMywB r:cY [857p&ښ|-1s5&k*He6fs?L2g;w Fx%=3WB*UK׳8 [}CFPh?\~(X')_"0 4󦮻TnzАl^3@FǥemO|&NZi=C0ՄZ4ܭ߽/\ g І6\gu q퇐хaZdڀy·{xAMXAh5%.oiHRi*_:m(i]71+Tjj쒮-ֱˎzWk+3 h`4v $Fj6 ˯;H&#d r, O ȕ:7䇋jdby}{&.!^|+O SȺ(cf'3_a_@TLrnExKܔv`ܤ3['X$YS<*;=HrD$Lt< Î\O^x'Em!1OZp1fm`0K\QI0h|.o۟;WPW@ ;Lշ;ht#ԈRo~j>%7wb_Gǵ\^z/Ζ/8'R#TFVh;)ԕd{,>f|~+&1-Lz(bTT^ٲ5ĝJ?s`嬋 3qLG>~l(eFGո]ãmw8dRhqz7ȝLZ%lXJteKi,\$| $1O7@ #)NN8 <o~[y7ZPx%[T3d7ҹM{SeЕwNs7hg,pٖe,<] kr,*D}.(uįic 18fg||dX;CN;\* JZסDJB{NR yC]?]Lja $MX&U]}",3qZ To8%m?\3M8:cև ǒ-Wq2a2.7C*fkmJ&N>|@[5+V3뾄k -%{$c #G7 f$[{LۈI3Sϑ \T/53􈾣v71i@AN%t.@B+M9[Pέ% E:-NDcy 9͡ g)naò*5˹HӋ: ܎G4&};@^ldt.n[T?ر,8ŗo|R><5ǵX U .ADsl wo7Ę<<  gQUHahdl{(ZFhũrYZ젟1ozh d_g&R%pTh(fuW-7`#ErG%<9Z[D@!ځ-k}@FE'˭)'0ϛCc#7Fg{6ɒ1 (-:Dij}{i1 i@y`={ &ul13ZyaN[0N}u-nRߺ\*8id٨[/)cRf_g, 6|_3{M|jLٍ>mmd1cZ*꜆1"O.*KVA#UdwػL}r5})D ˠ#;QE5L=tRrU3&`{Lja LjU iS{{.֢",Z7E3Ͽy8G_H{j혺}eNߩcH#w^&/ԀxRJbd/W><ԴZikׂWq}ewUGrnX5Q"ۖ< qCCoqyPz'-HJn!xk$ŮSkjOFj@҄e+-Qfw +-w̗z﵉(2~ o[\(aN P3wGa~"̽gکJF*< W7H_yW@ѽ\G!壬e Ɣ ɸrU6">ڂF^B$ݿ:J36E%&o"Rq Ǧ)S#L7BsXJ(٦t"TQyMMߩ?9{ Pr|Jv՟`V\YGҋsnO/h~9w`dtcLDPڵvAu@jrr9Uiv;pwƙAjr+ҧI>x:, Zsezy# iF[ +b<Eaqίynk:j4F #n/C`xqCdh<`[հp7Ty.yS"RAx4 'Y 鏃c2quza4tv @B$K#J߫#Pan1Í~G3[y6UGFO0FH5u`N{7;g[sK"pBUd&k_~.[IEzrn>L{U@ 4Hi*JmyJ4=SոNP0cW^HခPMX͸:1bٹfa _̧< 2[wʱl-/.Sw˞E%z*7[0\)8-mvںD5vP+pfi$xfi;3+X=S`sB쥑e X5jym6J9ڪy9p,M2*2ʥ*(DDKj?x5uvs!?$Swim3$*4 {ݼF\JեYcGޡ0mu@/LfYUF%ECIw4;kׯ1l-e P01?XPi(€c;xm+?M~U3O@RH<Ri$|,͛||`-E)J p-G  TT<`3hoz(-(Dڄ~;k@4guuIqYrtİDOq33 R1=2%)?N g@ r; jC;4rέ&cN -ΐZ¤tPT1!r oϜAE^B#NGPhdeWV`Z{>}Tm:?FWK~#NP)kgքRE+-.SOez$Y>2^ԩijܿ!=yYzl~VvןT.0aDvԁnu}>'=!jvYA |ޥ#vTl:}L )8K ?6!%[ ,H/יһ}dq &e@jvV$l,E&/BńDw0m_M`ƣ̧D؋4͖[CȞo\ra%ѣqeC(7 ;+BkZl >NJ!@zZh,5Z`7nOx8,NǫXҸv |:̫p7 wA_u2kL%GF7}~Q'l/[˦=MzZSyfŒ"#7JtX3:NA6xXuX -Z)å-r㶟ƬIJ ҅Pu%$\:z1B4a;\mL[pE0CIhePBn8iS@yv$AARk4}o +jԎ)AOnY u>)3+Ӫ>[cptHrb]iy=X0b۩bAZ!kÍG~;C35ag+)bqݞNѴOp,(֫dwhq֚ía> Da>iOھ\6njUrHX8SS観~IkQERmgQZC(Em~PP55tzREr.1 9e|B3H4m!Sl⣿Ay R:za"..# k7)ZS~oho3gvW@lj#\Es sYzAdR,?#[~RkP38*r32ƱPfg3W,JA(\TSro+ߎ)m(ړ! ;p=WA4a9XংA;LsRAneg֊C%Y,A99U2)RRCo;hܒ%?3^C~6;c\yj[qh=P٧^?!_yx,1Ϗ@2ՠt'0ueW85c6\tNiX"Bp*\b_u"!!xYa#Rc.&.?vC;iY]u D6-^g EA#ݔO$ n8)KN~!0&X.-y|U ek9PcݨN:m옵NMj%RQƇ>AN=3v:IGJj2 sVH0ᢉ/= ׈;d^ XdnЄ)x8aVʨ']"dz(a*P)VA5E?; 11AZ8.s $B>>8,e|ņUE$w$x!3IҴ< `wr }Bn(PX`mTvw E;2Ÿw !0 Ói*.W:!U%<[P;SY'l:HE,Z .7|&Σ*)rV>$EYvJQ}w-|tLAgkkx'tG(T2Ԃ x…nQAUR/R-v>vŶPOȁ€^ O$F ^*cr=3н(d?Cg%/rJSNEs,IHdՖYA 8y-G~uHH>?%.2X4t"SRuL $j,yV33ř6Y oI<7R$ɦB rsu#1;behMLQK\ nv^o8gjCbX'u:URLe[1^&1/&>L7@͸LKvx{߭xf :u?~NԪĺ!x$a筶I`BΞ:Z>ٰG=1㧴mtOr`H<soh]'77jK+'UA32S?_k}&P@1ڷa`2 <ϣ2! 1y.Cˉ 42V* 1*|wڱm:8бX %# ʏ P+3bEmL\@_ǝ8Mvlaf%LEr5UE'9:5%-NJl)ћ-~fǐ\ߟByX̡LPhc,zÁ# xH4lKCNd΃ZeL^~ /=ڭC ~s#IdT)uab=fLzo~ZÇ-_+g;Dw?p)Qs#Qkʦ 27< /ݥxrG"j1%QZ74A\$=) SO˼F?e\?'4'` BN3WOrh``4Y|o~akɑܸHhi ϟ-_ۘ&7puMlo#2;ӏ/Dfqz^ U1J^zM| 59n#ԝЅچLz`w3qf֙-Fceg(%s7elc'sϲAytF+pFْn!㧛Zd!#jJaܥ}PL]Xb>r"/B\aǾpb:,CBDŽo#d @ܑ "$3UWeMQd뼰DSġk\"֎,w ;^_aV[BQ+bw&}X2_Sa ibC^Xg$BK(z08&@&UuBcUQѾ,'iErx`klIdvp/gZHHe+?Ţ=dtBķE<]l цxKY T/bpmB^/1b pk '%~Yd֝zw=M$t*q~),Kd5-`Jh {/mD%Ea#4%>ɉk{{F?sNtP{)6 g;|H`֛ %׾&!%D>*֔A[GLS!0 kС}[+޾v7cC~iy@wX /֘ZϾm*xޅ~Uc9g:ɭ=_V?N*jS=~ef\ae'TfA~ 4p=)m\A2CL?2ez[P OçfR*oZ /D'\\3&8DTa`])FGclLǵHa%spajI" ~6& 8U.h|T  . IFg4tN~xni LK_aA؜LpIǯރ |/%NRE^% SXF.-B|$ ++M 7*_ _C)44=g " ]N bU>!UEJâP?QL)=M[;tkb$ɾ _GvmYOd%Ǯ]p=| 5QCʗ7!K@s4ODmqJXA?bӇ ֊b"395oGJ'I"n(Af;qc-VnRCMP? qXi9Dz;&%־ >^G sz)sQMdWie+t&egdRrxY:#MF10,zj:hG9: 7%d*gU EqyO/~zX$Gøn߬'BJv۴n_ׅKI^P6X1biJV:pjUvx[62”,@|v? J9[/51*Lc1.-6C* 2@lf'F^J ; M!j*3/45!hwϲjx"'=KGȆ}v06ۆ Y&vqp08jl/!nK4,J:v=Ugˊg3󏶹EMuΠdq 2`k2 (eD-Ȋ1)q-$oH S@vqrnY ;B]X2$48&؏{̳v`2ވzs TX$|-8ҭ6U٪Z)W_ոLҠ<v]{4a=w? MfV[S1THKV$z%)w BtvvN'q!_DƑ3>>d:=zr Rҟ[TwU1V5j?MJ.}vZL)5_3ko?fTm&Hc3ZDU/y^7[x^}4B)v-p +L-5tn JVw1yصw#I?*R-i?'FϠC6ݯr@̶aumv/h؃c,o R~:J. TT8:7lɠNL2$9U ]xhdPZ/zt? 3M DJB:Z_k 3C0Y{{͏ Δ)Bj=2g;wK[Ss'V|b$61+*WԼUR,e8"h6bF0聛ܵ%خU##ы^/' b1|:>_v^F,}c^9R8tjIqW:JVstsÔ^F_\ WeLe$|6TYGA$"9k6:}ㅛőV{z,5O MU(#BJ d1=>@,Yx;=^A͑[mnn9YpЕK gCo_uFb87W^~3ZfM|WaS n(uy@0fޤ(|`vn,ؼE>M"-{JϰtfbCpNLfF ^1UaMkPUJ =wn3XY)֦eN&ocJ K٣VFܽ -DxR598iŀ=B]e:t,Ytk]|;HiAL4zx(TH`S_h>jitrr `"~uB g܈A5\Ǘap}F>"w?nzqī ob.Cd} =^UNQǜu(p DNdYˡn&h.?5i Ҳ'guq+EVܵLP͒ ymAgfT$xP)ŕ[˲?+>E7Sŵ2z]l *Ei->Pb{)`F(gտQ JߺjG*},zv;t[X/W_]Pĕh_ RC3^ +c~өC[ZL $gޱ|Bd4|-1L=*!A;Ӑ zgO(3 '^oD1yNgp>c"ԎR#w{A % PMy6A%A,[MJ]=Y5!`v*9< +Y7آ$[U6qq}>Ë׵ޤO5s Ozܺa%UD^F/4~W~\ FW41P˽j'DUвy _^+8_`}@pf Cd0H_e4wRK(Ϩ'UɁ:b8eMS~.pP6RX{g*0$"`HbCp{ͽS- QVoi/ Z[[qUUSfm&.D˒LLҝ6 J~R,ƪ2nbذ {)рwJ~cHy;Hۥ1xq&yMpdۖ{,KJrKIVD5x'4d11# ZY(u+o#V;1g)"Ӗhī P?Y32[e2Z5BioY2i>[.2NRX2Š!~#kkysW $dyE>^)Dhio5P!.J^B}_P%zq⳰cBL` [/b#(c_< ̿tD >B"$@JYL0P"y}mpKSd-t{nVH _.Voن\L[ z6 ҧ`9h9(3ArB3pb/5XPwid8zͰͥybֺKVolomM1Nb&HJak;-KUV$6&smzNw/jlB&:>sFqPʼnPei@|[X&+BR},rB endstream endobj 1915 0 obj << /Length1 725 /Length2 30956 /Length3 0 /Length 31455 /Filter /FlateDecode >> stream xlstf-Î'ѱmIǶmvǶmvl'wι7?֚5jYkQ"#uV213rTT,ddŽ@Cg ;[Cg @hP@`vfJc;jֆ&65;k;W cs ?@9`ja +hJʉ(T@[5@ ca uRLlM,ɉl]3uȊ˩DT&:;q;;+;ZXֆc?QGXLL cg_Iښ6qoBNP!hZwq:dLihPC k_EH:#?1e$f4QpGogG,?ӁhϮZ{I1hK +O;,jklgbakPvGOCGq;`h /Ve -ڌ*=tJH73#3`_t]\;w1@cصe;c Ԗr HiUe&ЕkmdAsK;<7x#݋ɻfbX dQ2K1IO֛bk}usZ$kf)R^dq(>HՅ[q*] /x>M5ҬypXh^.5yAaVaI KKK69d-,EyiAeI{%O%1 5WCp" zdܰfWJTóz̺Sܔ1Dv1s*Vܨ6j]63${'׫ќ7Zx&nY_ìtU{'ʉrfΡ/8w$Rfv*rz"WQѤ2'3P{᭭ y$wO0:nѓ/Rmf瓦GwTfE_V&v"Q7/ {-3{۷P"g{^-r ؟+ålP5, ca,ypsǐ)=u){ɮ뤣A`ORf"8: F' ðq%HT!piű^5 d UB(ܡZQ<4S3Lw/S(awT 3[ɭ! ^޼㾈K  }Xe`Ig]x^NLy:^ G!Bx)Oc Us-~Ex߉RFߋnA>iuF\gH]wG'\O[ɒ}L[t>F1m5B 8_[IgWվ?4|^Ln%Y|\JVYE5ȽڽA֐{hu PQXLm<%م}=vCQ1ZuՔwrD/B?y:%IwU-RŷdrL~L<˩ hQKN=nि k0x)e;.?_\HY=?l}zYi=2CB,OFP(3 #C NKE۽t936D#bAR24Cɿ?iC0(YW;jm ȼ'ޫl*"Uc3gT<*ksJݢ7A9ˬYY4i.xJH-m zG5bSf mA; (XWgQ쨭 hFY}lL;ˍ/K"INźDl;oc}Qզ9pN[16 Xx4.iC#Dr gUL $ٷ病XFɥiƓ8Ԣ/IEOE\v9NTղ7{$~ӷy3[*/U?)AgSU>]ʷ^YİYw;#覒 WRM۪)7I%;hZ#3 Zѝm  A8XI Gy"%/)w{haP9N)˯r=IA^mKb(sD-d?Q&Z8N⺲7jy\;IIEIL560CTFoFO4NDO47AeLD~$XC8d)}fvQ;+c-aO]lŬn(Ǡi|x^i^{Qn4C,՚U7VwTx?[dU4y'8?Wz)_e fS5qb*=rTS_SÂ|v _CD&>O V9s.S)`j?DsB4"EWOOL7Е+5GĖ> <"G|TAս&HLb97>(tE}R$aJDPֵ~ RMoW@)vEl}^F"|qg5O Vh,DO;y'JܠDjmޤƭ$ܶ1n]L6Yدs@l7 [!RWa`5š] SRQǹ=|@Z ]F]Z^87e zNͰatR| (pqGK7Ep/ԇxݿU0Njhlptׯ8N˝$;4`7w[h PQ?; ^)z4eًiR#T*J[4>VzEf \HaZZae*coU?aD! ^0įDi$۫ALeGu5-+޲Uβ6}ȓ VTSUr¯plt9j$U JfbqEJ˂ Q}V+BܪAb_z΢N8$As nD 2NW~ǖvRxG@Ja >5 $޶.hiJaSzc%Gq%<ӑ&"0ew% Dd[c51fn't_L%jWX:!.rڙֹCRy%_v2SBY/yY_S:KjЋ~y:  dy bVAaoA> ?֒|L-\m_AثDI}a?zIxmr }qX?uj)SIc Ec_ᤲENR?cM5 y\G`р`ڢgtzwk{ ޏ01 kuqy,M>P?rr<߳ jSms؁']#4t ө7d}tF#v0^;6w`*![suZm0p(DdWB;]3&0%ENͰTRvp"$ /"HdWVcx vRAȴ7eĴ>EM@$lUfQI_יW?l^ĨZ )8/xyt=:kkymK~Px 3ذ\6* Pr/2E8 b܀Gt(ն1z/x5怣G%OcvgR ZaŚSC2ה,K!(3H R٢N4_R;rv(́@b`z.iVA`JX\WYZ_dX3%yrԎMEK,i[z` cJ`fyd|秵;? Rs؛ il@Brm,fXR2T/3g"]Q.t2?f'Xr~*~wr9HR;F$geܟ5]KZj>,|ϪDep;voTAP9*1&73"CIky`r`$ bs}qv3[:=;60d{qm%v"AŨJ 8S 8̳ H1|ݱS0~.`qG"ݲXJCA(Thdۤ΃``@\<Un8tXnxо\ϙ?aQB8z2Yx1,l/kIR&SNHR 1>ROcMšHUd_pc.5ISjudCAz^E ՘A ? W{@ՊZv8pSUM`p"a9v5ryMG QX]}g%lSL2h/%'^`,ͫj@)XA M}Ggȡ7 B1+MI JW1SBm+MqfAѩqhkL.oO>ŻuW50`bu#>SHš-=?2[DBO jʪYG" EE_A}gOn2y1$pMtVQXAOibqdw-3* kl<Хҽ鯆|+wh]7hFL9!Q,CΥb,,9B1H: d7ƼY1Ï5kDF8Bp-/+_j:K^LT4MPE)ReK PqdU2L!~^4[Dw= mګ# 4g=ձp`˹KJHGڡqYZ,M ٜ)cгXI=;n1`ЅCSo  =Yr[_ %zLeTc^c NΖ4<6Vw$lBigKr.BoJnKa=ţi(w˽ -:6h%vyiHDzxg*r2Q\Tm'uSgwg,{Ԕ>Ba=MҶ#ǔG*»)+_{D1%VS_4YM_lҫ_7hy}m^Ce:伝7rq-H(DqY TY)з5kϦ.[dn7r5Yz!p4Uk%Ekx;r]u/(Rx yFp^F A:I_(QW bUWsP%;IԌ 9B? odsυUsżatp-}R6Q|t–+LypnLqM:ʰ-`8]XS~5ɧ!0^/}s?%~{o J5#;" ߳ab?o_QD\,ajݕ{h7:O#p䚆2[-lSB62v]I&&bI H>1+es<`#fQ]K]^@hZGHԗx5`J+3+E:~dD ^PihH:m}^ nu}N&z7Mޮ!'|ntskn;OkN*C]o=ʀ V/"/SOWI}E9OH/OdRT&Sln8JcHA{9\E7MUtU;_/?$2 / nm;|r~߱g/wrdBG TuEHtx{O9%.XYZNЦ2odIT.pHf`RVJfo…iz6/@"Һ1gB(4]:h}N%:ɠ~6.e. Kvp^Ā$Hu;ܵbQ13|okRtD[,LUy= ߿FӊKcڇag|3 kI#YF=/ʝOіcJRQmQ_n@rCDg%D6K7Bه=h4WP!]p\DmW!=,e b>@#Jc>^z{9OZ1fzL|[q~gx1.SQ-/`Ta g- g:e{̭eW&I]SŒJOR(uz2mHn'2ן(mKm8m ,JU+rjG;3qu}Ą\kiG&rZEM0]Yu9nU7tʩߠXi~við֢~i PhS{JZ!%_G #9Z`+kS]K/#wHg)h*=M\3OS^TʿXͶ8} C"²I.h /DLg^D7]^1H>ҀP55n cϒ7Vv3Yȓ՚oS "Y 9m"^y²5 $tp.?.W3K%cbNq܂5dtbbO^EE=Ƈ+աSEC."Ƨ%Ʈ;^}#S?w76ⅷHHp/`idcz4s+UJA$O>= 2b8o+Nl9;%Y 3Ћuʵk -UwŰm b,@52S*#Dlv_ GU,׎4: )*.$&Op<,otə|HN;(Arw?k$!Uf|~z;/"q & q8|waUqW}XN ێ-âGch:9FK4/_*ql9oD9ku؅|~v_@ v7HN='txppX z"[ λM&@4ioFxde#҈6Ni 8}KD3d!3)G`2g}3 K{%m 1Z.T+쎰DP 8 h,55f+C)y. dpX;*D5p};z3G iy_#!.[K?#G\JP$%_c=l?>ޖrţ #f6\. IۤFa>Hבp@-힫fF_\=/I)]H-ITHfrX[~9yHVTOqzNӉGF׆y,A+ -s oN5}{re"M[]gF @!B;5ߖRת9u,vGrU(P&V&S@;>bβ=a|[㕠@oP!XȴuZBC7CF'Dk8K9 -G*G:D?+w~wͭyZZ%ziUH{H-v,~`-\y'>4OEd3v.ގD웳[Njnzc<WiLi:ZeTl7T^ ro Oٕdά+Z1;ϿXĖ,&^$6'~V !neCX[&Z/5-"2 %JUm&J_ɸ:d9=&?A[{|\L(8ՁJLu rnq,>(klށGǞ4xewCP)ˇ6J+9 jLϢoLb)ߪQ$L<{GJsA?iUJ$[)K\D]N+nKEFQeeDZSr}I&4xMڝxH#2T95.UXr|P<<Ag3K$UhiVXpu.ћp<]lyLlu\N]RטƬ0 p ZJQΤ?ziL_RJ*z^ .Ex 'qQGT,]it&XFDa{v•O9F@ǰxЧaC6һR h\*q8IqGA:L$:Fw~v+pF5?#iT-M"pyd`-gߋM"z%lȱX%颋" K"Mq ]P,ʞ_?cɎlG?Z$t25q6iتCE'|4ţUDEUyQ`\et,Yas4KDFS- KZ7lO%1=f^5b!+U02L /-J}4sRɗH٨pN0H|<e?e*NT0i@bXYSyCzQv=ܽӇy~TgZ@Yt:j qDOhآ Yz;FD!MԇQB?Gjlaʈf%@Ր'|Sf۟ }F|;ԧv-<#p+=;k('ɡaV0l|X/xm;b1p}"MlOBDL\qy &Ef6 & 5h{onAx"žI6!I,& C[.Nq= Li 4nSoCy8S*K*ˁ:ijUV4J͔cB`{9 ?-'=1Ҭ6@ }!XWc$>dcfU#aHý:8jC| ģF}i tT[T%,_-?C?f6 J9ႅY[|TW'j9C 6<< =9OQ,v3t `Fc3N xN($<VfwEo{XfRŚ]Uo̳\oR}+ _0䛁%M7hJVVy1C=l6d])9ٝq~n6 t3a>c34'w\W獩ܲт\8G1Bg;5LKQvp&F5۱C u\^n?29oOSܩCzx ےA]̎ tϣ۞4ŧ k|ozo`Xÿfj(r`r q'boH(J&~Β6nrCji^ ښWٝO gb}hzbu?}fuUrٙ<$g] u:qKG9?ؤ8Bf;&\oEoH::X7KפAV4A^ s~?0Ąz0dEЊIR{ʸw(ԀomtCo||*M.{g6RM޻'tsp7zz;8»~= "f=ڦIwkxfבx8=سV :Zu& ,PFޙ&C+f(yN" ;59zg$^AX̡8&*1r c>I59&*rm`&?eG܂щOQ A "Ge%h_Hݪ(ȃɓg.kpҮ1('D,!n؇ڌqْG֩ɿNkE񾍃Pj{}7;8pp`_zc\ za3_DPUC6b[)qBݦ:B-# =~0%[V @"l`6_]+;(؝w#H3$9['Cp(sLD> FO5q,[cG2&;}F7*VUo)4X/5Mbk]W"t /z\F?;6l.5cŏ8D0WQ{y4׬ϝ8j%SM>$l=WD~蘛n1ł#[!ܣEbNtB_ r4.ȯCQr״(6y? 5fᆘ_h%^a *5Emyx xݛW&]J1_c;[Fq4om$u7aGWV`Yr, 4s&OYWq=|W^BQ`n,}]XM{U1|Aq&#b߃+* Ď3mu䮷,{'"B!)쫫qw"d:e U-lQRh,}(a \EM^6Ճ51G e%5jw ?+xބ/T/#@7FSl`QsJ >YAlFYJf4C /f? CDT嗤:.DW-#@Di&i !ȌY" 7$/qطE%rR86$&ÀN_s_ Rߝ0,*vim< q_*vbd7q_UҞ~^\JOk/uN=L Xmsz%R-]/0HQj!IZf]Y Yd#]5V }Uru;^+QKrǤ'Mj-ԃazv M_'50e;WG AZkSO#:g[Qd65Z.TȄ4J5JRվ:}bPrC1Rq}_YvHw%ԀGQ{KE3M=E;փ+;GL렘wsX>?+$# .[zWpثV4$\7QҶ HygB(TGJV=!%^;P$swŢjLr@R_x)xֱBj*Y.`@\ȩdK-ᬌ+@ V'z<;9/2 [*|7V|۩qn6ܥGv6_`Y{M+K ,o%)ucڐg$ "e]T5@;&KQ=\>G,%,XI=RDgb$@YGʢֲbl]Ч`Hv~ޟݷJ-H+'=E SW &|E 11`&k ¹Ґt=%Pv(ZڀgBMad4xDvS;&E{ sy+ZktBMV٧;`Ӧ{JTShy{blX =1pח)G,% pzWȄpCxKp\SĂB\%Pj gl.lI }@@C*ȱBE|aP:v4_͗E@b'}z\.ٸzm .2I );$2Wa+{XDzy5XiyϨ~ _T4mA@qFbhlnW1'M Z?xWI) ujC9W$c*;y9%C#'z.UfǗVNݚS+l$e+CцQTby0׸q x;:Ɩi"N7ڥ37S\t{=4W}oow8By2W[9^d8ߙK^h!88]]]5m۶m۶m755'4M&MqyG91m◐~MTge 9QR Lޑ$#EPlϤ7y4J 477Rh(99=7}ۄȱT#'L}ӗlnbٶ~%ƅ8KN#-(G;&0Z?BXBKQBݜN˜d|?6R)l#/ ?g=rP v FNEL6xCx`=m1LkO4gA ,><>HEz&}056qpnSPd(|A>}~FhK8\tf/{X&i"EȰ E_(8hY :ͦt_8(9)C)/pD *"E9aWTq-;+J~ !ҏv\ƐpF.<}DoŲ :?iZ0FB#xS"7 FzT=w"sgPWw]3%D]>xJ˒]mVW9(Tazj nȂEdtLgWL*oYP &c,P0O$#җ*KzJ|Tddqy\\ z܋}`eBP!\)+a5'ZN9B꽷4v4jmNMIaɌWt>d[Z2ۨ9[!dFzod 69I6ɍ"'b.}IkgTbR+NxvP 姁:|#іRf'0\;uf )}( /f>ً)5ȟ<'%}Ro507;Ɯud$]тh+Fgj{~f7_ݑ': H dC!_qҙCmm,:vῒ3ژctrx辞r ^٬IeE:|rexԋ*>%p3OWY 0#06&Gx|Re ih'g0EqHT羑^8Ձe;QoɋGE_*iWW[߲ ţɆ*KZAz*3a_ C%h'FD FZ<34y~C$3prͩ?i>B+zr8x5@~­o__kv92 ꂳm3E9nvLVO駛PPoIn4f|SŏHڷMRu۱2TTT(oeWb ΪߒX~ˀe@tܯjo{Yf>WRzdzќ3Ub_qiU!~V 5&xP#jzW_iV .rFAzY=hnw&") +ag_)-5eED+Ubf';0;cr^MQ׍^;=TdbB-qLe(FBsV GqѿVݯEmL*HFG-GcL]$y *lCRIF' CYŶ6i2g'I^7*#U7v kMHYM&`E@$/4jZ p}áQ[tU } yyg帔OT Od5\|qXrWGsfil??MD r#)fr`E;cx0pU1@G uʸi3ķ@뾫0ٚDAzdZh"Hyۏs ށDCF)ga:ޘŗE$/|yt@ݼ1Uw(W@𛊱,&kzUǪAs !6Lcfr(py}xCWXa )Al#H1)l҆4񼞰&!4F¶Nk}{u_r[P\(z@h̒`_ :x rMxRPV1|^1rI06J',g/EpD>[hqY~No7v#y)~F@hi$̣סUU7Ƿ 1X7[n4p)!3@B-kJPl+OֶU:Йj98-0Mibsu"G h)XOMթSU].)2durJP.!g6#)H+ī!=T8o"%Zw60㙃0# Y诧թV jYL԰^rm[^mɌ\<ݩ^>W}wt^]q$O3@1$ @ל#IQbSKPU:al,孷"˨ وLcimfcXDd+Ik Wͤ4=6r7Lry򰤏u8[Qvוk԰SIܘonY pFM#'˖M)"6$W->5ZPMwB(\wOu1I }##ɼ52``[T?܌؈(L/"S'3X)f:0qj]a\:#JJL1~03'xc|z¿QiWH3|/OSqBv Zޘ8fpqLA-caɑ4%9U-DdP+1? H8K}bt5XOnVN Gxwv(lj"E.9ⶫ{]:G\D?AJ^QM]~u̡NA.eV7)%4n.(Ou N~xԭIR{s<}A= idԚ;{(W8z"-)UKMe߾U@f[RO:Fi[6r"DItg̍LZ>耇+"Rs`z ؒBd _v]^Ⰴ3'C俩Q;sD=Qz6-G}ڕjwnjyU,H%JgJoHjރ>'l.]|DjU<PK%+Jy8kRYi)ڟ9.w¼++Vg(flst'CI.Mv]gs^z~Q[.scѺZ ({JDw7/X"NA|̉03T&Ōql2qlT̑ V}ٗ$DaH;X鑟]m@4~} )#՘<"HL4QNزgǃ| ACx Gdw^0ٍh6DG{Ș˜6 `ws p2b _R_#z ֗wd Yw`[s:G/8-$vxhdrK]UGVR)vM. M9k7t&(Ӭ n2Q Srqզpw| > 폐2Jv.(B_qn !WqL_~C kt88;pOz&ǯ!p3,K;⍏iWcFd('d}5T z@An pSiK}&7ӯUb@*sKJz[ď0 t nU 5*?o(]Xd,0f|_׀qorf0<5 `{ )T lORr'YydLtCw?}z|/Z&|D-wPDy)H8ӋUD?A-Oq3.%k Gb}VV]EU*1 iFe g's[[ε3=ؚ5i^(fҋ(<]LGcU܎,ߧ<Й]C\ز'w:DuVQY1`g2`&J5Eper tU]XGo\鍇f[pg !ݵen r.Gr*]쯙Om@"?q/MFGĩq@ʸ{|@6 '#6XMtx@-1CJxm_cȎB_y Bə,}=n{S֘,7C\01D $V05 sx֔̃9S]V w!jDғvZU`2ƹ ,M"{*ӤHJ; h$E=p>ξ W˓YZnT:8i%PM%ꛣ !˥9: x̌j?$#Tb_1qҿ׬VDW J@dl&f=kcjoZP#O1kJ&p>{?YlMDH0QD3}cҝFҡ\^Rp*#<><|CM&!N08K鲥uܾ^mJYc ,۠}ݑ77#/kzZQ u@Kj/$mOXSͿKkYN P9$H37 0LKۋA-%W˭;<oΙ_'8 1[CBGȗWʶ^a,c3|ZGmzxC)HIE[؞1]Ѯ"UKͣW4J[Q~) O3(6;/RzG& B)ԖaH '(/KjO_k[^ T}'{AzCy׍妥VX3W.TwnEG\ :86VHggVdK+lj;l-8'/tgB~沜QAXC̕tAzb9@=֎#D%b\{+8n YAju:C֛s.1yLd38բykd%\O7>k$ro!iw@vn"r=}AWP \a:i1b44 fBv @TƘ!x׍'[ fÏt@. 8!-\;@KٴcVڦ:P_gNQ ū{M&[N!OgW ~7Lw3 5 3R/=G@D8/w6hi=]SwbLе qk/IʩWa&2aٝmal|Y&EHjM"NۅYգo AӷӜ2&K~`QۅɁ=r ?/"3+LOT)ŎS/܁1rЩugljⳳ4Lp࿽_}KE@sf3-3٨{,h#u_P9ut&ǗAAPO!nIeckpY"S ry0ݷpȉ׿ sX&' J%U>$L`ڊgmgDKp UwWM.1/GӨq \n4D)A1w7Hg$c~Qzşg􊢐ZGR?:RƩ:v1?gag[=X?1@&9$@4=EVJ룮\,cvһIsgv!ht{O]4&ˌF 0`ŐFfυ ^8~5zz c9?ڰSuѨj1Ƴ]C+f%=Y˝ӾKHOM8( . RݑS[Ǎ_:iMeiό|;2}i"^oF8NO`Hv`txTpݔ'\aaĎ&x߱7y-,QP6ƢɂcJd %^ gҐusX(ӮЯr$=#bB/ICF8rɈ_5kZ^rɁ >r xôQ,STiomzO)7mL`a@nFoCz%oB,6#Mt T!ZA'[Gn@NU81T2dm-:w@n`KN9k7!>!Ícye[NȠ3XET=CWft k5u]}1f WWjH`'R)tak]',IF%x&> نA#x3g"AY crI6V7+X $iDqYV HF82DԌQڜHMDFMT7TNN42`S=#H LC\fd¯ 8ZPycJFNǴC+$#>}ǛM1ǖ ʈ:\@kƧisѼi[j4k$^P :#/!t{BLAv$JSWxFxPM腘Y֙F.jc,9s`ny䖘-uAxmKLs\ҍޕLBiZ)|ΞWi`˟q%a-2(B 12#"_CZdU%N ײeЇ燚""ݫ;Y "5dyJ*l qu*Ib{'ՙu 8lLK0I+5GxGR!ի4y{+S[}赅ɱ,vD2]%(~'I 7n{mvF~ǠUy+)sm#Bq#!}2l,kz"Ե ՀӴvQֈϹΔMs4e2)Yf$粞J`iҚ-!2SAB7Y`mdZV IM=_73ɼ#sL1ZlY5[@gwN:[I$Ӥ\eψҝO 0Q`ɮ+o{$a0%) W=eZ&<:{Ӆ5oON\+UAsQjZ~n"l1 !+bByuAhp!k3fH 3uO fL/LхTJӋ75Oomt4S \u{vvAvt!;_4)x|&- 8gq!T56%5J[ݬw_akgE-GKA"T5[t}n)6h@5c"rNІM.2C9ʷR6VAD` ><]C,Ww*tRZLaMGt*n MLPkyª[U9`-3c}ʜݫQi$fjdAHV5 mT0,Ub6 XqkpO3'Y*5?.$9E &`BvD0.2 mَ7^nJ78HfM.>qg\nd@)_Kh/W!# ߎ܄>Qc8'u`soo*BR *:#0DF A> <.fd3TaedTii7 +MPqBD`'բ?95  a$2l66ۃu{̀?k(Xafݎ W!x83,l<ӖQl elDW@z)n]]UXXdI Q<'~^0)<6Nw]'ך/1I5cXFuHm̩ɵ׷V2??諁}5֐š#,,[vůu<Em??Ew`IΞ \a{ n{vۨh3b?1nrn8Ik&0'>1.r!\ _vGlS͵ >e 5,o zB;s1'y R]!xђ5D`FЫ8@ShlbL9רN}:wgD*d/iݎ>Uuq{9SD~YC2o#R 1mo6Fġy WWo+ϞgSIMFn*1sj[eWZqL`]K?B&:|;Og\ }9KoÒ lILLp^",:+@\- 3:!f 胳Y 9gv;.wmD4$4J8ZHMÆ95Hމ PFqDž!m?:g{ʷeY.v@#Y#A27 IˁiE(u@CЍ``BWȗ|8!Gzc#{+aJOkӸNы| X vVST&t.&nEjbZ\V !VNjeL?buL0QߍdǞ;\ěNzx((zVAiK-^V,{6 v*6'Ae(Qn,vc X*"/ͱaݬV" {MPyaJ3h9grYޞNSZ=Ts{r殞:mGB秵"7W1&eS; ;L S[tt; ]~9wǍTxgi)B~Cg6 eRzIeLl|>Ch{K}X5@'Ɲ9Jz'%\̆a#G~΍ ^@ ٰgXEMet.&[ mB䧇wz>+ %Í]/b!oD7EP#Tl_C}0Y口u{j;/O~۰bfܷq"+o$@4,+)~XTf{Fť4cl;7&QhJ/P4(D'C>$Q2ho !G<].T0RQՌ{wfX=Dŭӎ2Iԩbw;e?\Q9g\ˑܢD< e>0Er!H:|G=iױsfy?/r;d}囕lwwvS]]>Jf@BɎx"t5OD|t=4p|tn)K;jÕBϥb3I8^F9T`yDN@!=mVQ&4#6Zw 쐛Ph`_U֨Rzm i|~D> stream xl{cp.mlyb۶m۶Nv۶mvr[V֘c]MF$`hDD PWUebee0ҳ8Z9؋q4L*f&f3## @@iB @`neb uwwtwqwvH ji05((jIK(%ffFE7c[+`o``oj?\Ebv91U!qyU +O ?h3W?d=m01LL\fV0 aS7MC~4v73P899L͜?Yz!jB?z:;aq33rw?^wZz ZR*Z4ML-*ilҊFV`'@FJXӇ@`bafp0]7gg3{O/k_mTuDbb}>Y'3{u-- $Nк<1qҭ]&?G/]T^E6ѿo?_e?"aJ1̶,È^*"Wz""POUK_0|ʹbGDA;U|t30'(p-Ì\c`3Yӹ &9sW6:'RfÔ() BvVlsUo'g)}t  |J˿eEEJ?P,@ nʋS {rg}FOq{tڞts7,ض L2"8" p P*voBQ,i 曜 M9p?v3B_co2kQJ MεuQ?2; ĝ}86Q_-.F=#iqT50PfvH$rn8;/(: FC^0,}z#|E9H[3&c8Ԗ3k{l3k[ކBx&>]֠+BoBI7oX)=P[5 ua[e;'UѿBFҾv լY|SPxB(o2>N,}:rz:gWysJd[?V3"[;ڏQKM@f,jQ,tf#Ii<>t5ę  0+]&@#СJxM\꿼5b!=<G*&ݺ!Ny Z ߣ.d!PX&9:27 21?a Al@@\ɔ8L-iqq9kH}Ee ӜQJ[Em39[A4uIcA9 MߖEwω? &T`Kź|"}I )j߱Z܇^u9X+ֶaabǎq]dێW1 cʏ%%rDZu mVPi&)NvQGAG^y_9L,NGnN肸Xe# ;^WOХCcTmƇd̔ΗLp 15@*f1 VCr="}R1`C,ֳ҉fU_G|QשWz| yHq5mrKf1HT"D: fw²8ecdg[ ٜ.\(71@v=Ɇ~`.[tdZ&Um_tZDGjQ݄tG y'yrC]i(0';[K׶2Ok1u6\|N͡XRF&pХlTXª1 ga);Ub?ø*GR6Nmjc-܄?Ho6sa岕?q\*H;"KxzzkvzY2?x9k' wBOv lWRڟjEFV :r|*^H\S fWeh9H"EM>n(Q ~c1pܯ:Aֱǩ!:L t~." 1Ϻ!Tm㓵gkoBꐫl3c*go- ޚM0a;G負oiH~LD|'-~IRxڛ?b3Zu8o$u*9X4*.:6'Vʊ8"\9n PVAIqtg7gD:a!-bqL~|m}j2^b#]JD Hv]\I*%Wbr(=W$R⬢#VEvu0I-r6=7dPj`c5M .#ڛ&)#ODv GW10PZ A8(e *Q=J 6E-} be^ty+WτCE\?EyLkE8yEb&<;Mw饗MY%$*BOÞЗ5!'h[O-L(~976[9Ay/Id ^`)6XX39[W@l:H Unae!I勣>F'߅3Vi F&Egm&zj:d72|'ep5;QW'V.jjɴ[G@+tR]4[`pCyl"bn]F< ]+Q2?ɢ{g$0QZLjc}Q71Ynh\ An;t>0zC]zHe&ko#Ë\P_ˈ堶S>}T9n]/MM';=Ӑ%c\Y!5jL])!I27" >v%J7C?ȁ®(\-^&(FA!.Es>LRr4Vp1 bJAǸOBG4ؓb4w3FKƾn9$@xRzp! Xڷ%"hLB3J |#5t3G51یUc0x9O$F yKjQZW\v|_(ܺ}M4TX5 8mD*p<{1"@i?Zo:Vm[5\ k-}u&E^w7-R=)C*7=n56Y~RJGe}B*t u>" A'C6e3LpӇ8W::gWZn:>5͊Zﻏ?%`a3=FHMRYZΑ)UWJy@eZ]U!FupK6cĬ @4#Cp{* +j71 X Fg3ȁ\ULذ8#-ʀWe)ohIj=bP#1ߤU3\e#~``&ZNaO4Hw6ܳ06a列Z_PCA}KSmXG)}xe ?8.v3/ ? E9ΈÕ*+ކn4J%j2`ej ]]**N6mgh>GfϠеfC1۽qNrul'Ù\墜.͗M\s|at[03[|}իW--0Ź%!.L&!̪Tp d4~D*⹉!YRi_t6B>d@oa0|qҙƼu峽<= E|<|+˴7ٳA̅}t1>6rBZKa\ޯ" R+1q^ SUƉL' KB2ʻko+p,E(]%ax} *->hyT|HH\;[(̧\Iԫ-B҅}"l>I(KBl7K:K,SS$BomWnz=FMv/ƋTRVz ay" fkTi(C ]yuky,9ȧLH& @`ȼa+&6r76 ܤJ$%>DIFM$@" 7T€w8kC3X MU VD=VR Ȋ _]K&h{]|cBHg_dNJ1-dlBՅ%X8V^@Q;VȆ(}F֧55һM([Vxys):e8s`+9r+"mV;ș=%?S>ҋcr װQpy_33- 6CȨ@XpxFZq~'jNv۬F%1,{r%ZSRXA1!#, `2OU]FE|ZhhK1g=f9Z\P*uT>J uއ:s8z&ɚ@7}ΣaeoP>X1X9\`Țgڦv ڳ/01ζn窕maO=*'.r$H[9Hq}G9_-xpOn#&A` 9W[LM@{G@܍ǩEqRT6'aI:ܨ~Rmou3b;ye>=`aEh$#`lָ~g @3IG Sp?LEFSxz[A&>G9BlB'2DϖM*U/27A-f^t yM`DnLIuQ8+6Ԑh1C& ҡM,Gmc)5X+=^SMWpOC6EW` YI+ЩSzj=aG7^c|}*R܏Ț|TT⋵yڪZN `X6ԨI -_i~&u-i{."vArՠ[{Z!0N惛l[(*8}7^OowI'u$!׹ `li8t1leӳ܅%\ٹ}Nդ-*(#&k ]>eI7(&y}-HV\"Yst1_BΒ~Wj5>iC9ԠD<ט0ZaeݖqW(: /C?{dʴ90@-="gHf$J/_S#\/n~jx\ 0ϰ!e`mPG|3aVz~XJ>&zieMSo3G;7hK 5݆,I{MÛd<LFDJU^{B`&\S#kQW2-icȧº ~ Ĉ7n6>@a`~7n1:׉_ڃ$7"RN cyBvކc V'Jk_mXZ5oPmO<@$KPקK sKakZ> uY#$7$aOd0O'p:((7Q4-5~PD H†v}p:=2n#Bkl@k<,gn;Gd$5[MҴ64_CѸɐmy 9KeQ7O?ٷF4q[:8q]>5XgDwaXݷ?x2fa9Y"ҡ(Zi/t.$,dF> JqZ]5 +fyv/& '`5ou#hzKǩֱ֢9lم$`\SB{A;>w0*֭fY{AQI/FrN8FɉoܶROw%D(k VK߰2=LH֏2c& œYa_ Lj$7?u/] GM2P61#AJKg.=E]dR/H2꒩':5PEӐʵ[v[hcNi|Y^pǂ&+pd)lYO(v0\CoW^vBuv;#M( [ҙpK#h,Ysl Sa@8lQOJ̍Z1Q?agM0/2.sFm}R ~0$/7BLBr"j|9yExt @v@D'P亃[H9)rIz]xs3]Q2Pݺf[4")QЁk IǶxAR[uh <(xNļC1 Eh% )#*9 u 33Y!h ӧ_1SkM2w6ymC?qr6-`H߿hT2]F PHt՗q씮t fS@xɲ\.'x /Ir쏃]p?O≊?h!TxwKca=3BJ$'%4ydˈ@Trg^ TEɫד]~ 6=~DV;m`Qh՘\Q*аtw_'-i@LM:w !g׳OF$A 4&g'JתOA +fJ4za6 "7*zu9 $:ָؼ™Yd)+1Nu` 1{pxQVC-p`'qg FGkqbˑJhCv2健ip 3}. E[Rғv龍rPVK44er31̹B󬧟lkV4)4 yy~|m\;!ٌ7La[ptcacdǬ&l3,)lW'a`2R5j}} #oX5;ؠN1II7z7C./yVz:`੷J )Xbt1~l${w[rذDd} V A %%YE}i>Ƣ8o2+[đ_d &jzGGqW]XN̩Q 4Ǜu*r;h@hWE٣HݮBQWM*KM\ګբ Wz3lCm xWSH) 8t~PD\[ߌav5\*Gba6lNfqr6Ă]m.+_4yśi?Ĵ+,EZ ӑiiY]0; kթ}mɍSʆ N}q'Iuh/͒ſzJ԰6ÐQf*v N8Bm~ci7Yv :Qi̞QŒnT @ZADObd&F/Y""hg6g &c5i)T%*?c&= ׅ -{N(x2C\U_^nJk¨YR./tW2Y>ur %Hq)޿Xo>ܒNlWz N/r *ElPt =s2%rWڬ}k92;sMB}D? @C#\"-iF'7oz_^lRٜ*th HѢØsyRvU]A%ƕAwFF67yG(<*\tأN~!.C=f) gxGӒfNq>숹FN|Mq5yej\.)ZyXtt0Qǃ*v؁4'C)\grw0c~iAS ̥&V"_ A:2`3G'$cc2gC;i(xaáβwqJMXC@nvfbgyBjLڒ#2of<iƕ Ae=m_}zpK̵-͈]; S H,\-r4#JJ{(yOx;Oj]s쟥ci pZ;=#SU1L`Q}ԕ>wyמ ӭmj5YJUٲRQMRˢEtuD`{ǯl(y~{qZ7EwU'fha2quϤϨ{ ~6a`+rSѥșg=I^^{ @ "ŧ2ΣlFTlJeo'"x\&:Œ$k` su#cZTi+{JQ =̉lw{oEńRN`z^)}?E=|^,ν7J]:^;EsSAAy%CNl/06ٷb˝zyDγG#P)ImHcI VKFQwV0L>:>XeA?ޮ}GY ^XGUJ\K5vZ|zv$3E|@BX4\Njb? mGEKCf{^p oνg\pox aXzFA}0=r&n9/F.1 ^eݖI8λ("}l$cOE}z6f?%+ۜN]t8F8XqEM8R 2=Ii윾C2`w¥҇L9)/0F[8JUHϸ:tιy 9",M컯|$v~n%#eH(GQɱE&O~NhY4Ts;G.Z}rꉿ%)jsxf.)vkVLPɊ}NG3ӀH=惫;m):)_]3{`N#긫NL6q=B˪ys0}%{CCkؙ.KQfrIOtO&An UƪPQFZɧek`dvo" ao0Tgc>V܀1^_%F:T6G R5UHq\92(Y\|r7\PqDj@_k䁪姼kD q+29jxRH,'w q]Nn|M"kz$56乄Ό[|6lȺG, Pٔ]|)#sC6mɃr>eM=x_:ХAЏXW*XDQkeS2Rv"I5IڄPtokyɰ-ImD #;U)ժ{yJ"$6(Bxv$i&.?[hC8Z1z,#xMK"U Pf`W58\+z}çO#mgX4du[؟s EO_~!sZ#E+"́7en!Ž?F%6d[\,1F~Nq~گ;rÅu|um@4FGZrwY2ġw?`x ܴ1 'YYL\?6&ljM!}sC: Nvqj5#͙҂>Oqf?8^@ fI؋"]C6q票[(`XM$Ypb_Wt#)M0X4zv4J͏2wPSe UxIvI62h4Ëݻ7AXۉ=Cfw՟\ΔAVB F#*U{"Rf w DH,hOPY0Z_ѣ).қDzh{-sUL #ZBĿCQPY{Z!z:jG fmŹ>Yթ(C4amE5>VvVv6A6Br] w@AvD>T'%"=%45 H iGnd 'xO7=+ 9[Q)sp0lCۍ䘸5e.Nhbb Ŝvb+O76EH8,T[*HA3>P)!WT]\{lBx+^@QL|cCYlnZ(n0!ioLyqEDk_d=, ++$ -Ss i G[C 6̮1\̪R]̽A`vT|C=wB`[tzBU6N^?kϓi ]@!Py{,F;\A$H@A}6]tALA29ל +f:F3PȖ9'#GzĎ@]Gp={/?uM+f\8Iؕ$KH7L"ˢd􅸿s W6)Lct^Ӭ$׆7Xx [G^kٜŠRY3+ &5_ÃrdȂeRwU endstream endobj 1919 0 obj << /Length1 1608 /Length2 5870 /Length3 0 /Length 6677 /Filter /FlateDecode >> stream xڭtg8]׶ Cwcf01f=!-Z.D-5($S_Ze\\{ Y-&%.0zb|-p#1  ;4Q k%  Ђ)EEE*&{Bw-lEDDp gA`7CZB Afv&!]]fW0 p_0 2  ݚ8K"! ($A7Q@8?4`ox!$ `f_/EfZ:D{ѿkBa F0[h  @CпkB`/ ƃ!Q?40PPw aؿ>{  s'_h_MJJ_v©$~/>   HI8,QI = WK`&@o//rPX{ / D ďABR\/'WA ]8A[ ;s<xKjkX5eWmG@ @LFR$e! @4 p7-)| ! /0Bs-HD5=ݎ|fr"BZW"2c]ΪpJMe:a헜!| 7*|p.ڰy3n4Ob//imq{Fƅ{+9 xjuƍߏi#\yB)pΛtAւ*^<uTSw|SPvT5̄kHj0Ɍ u%K r\Wgǩw܁urd5s#PT9盧dQsQߵԥf;kr|8gWd I4е ~沤e-x3v)kU;YNy]Zd73qIj5<Ìr.j獺Hc{[`R@GIՈ::ŵ5uk`1ΖhܡmJ}"cƻ/-MuPg{2[I+8~![N(d9َu_<jUwBC5ՙH׮zc?ӫKoCKIԩQG I]Jy{o{tRMgvԻc#3@V: A=g13Rozu"k$:Ȑ.%4T`"1Z$Ug {JL,N>&uvӼtղkylה\̘ٚD١iZnl @?jm]Wkc.~< ו x#Y/i!콕s|0'Pʕxğ1[F/3}H21Aē_+'AF`P(R0Do>XS8^?l'}A6g/QVD*kqJ۷Tۯ!iǴ\ d4rpU=+T?fwiZ$v"OT?(l9qHP;5[w 4$J*vr̰="kJ&ANjY3l1hMouG}ʊ;> kh5֍7c ܩB.ǚ_|fhimhZ #VlbZ81_6?;#g>$󩱍~变/䨝.\bp)ZJ%SdQH襟4(#!r[u9DGqf:`C?; -ëoeʈ~6 ;<)3|X,fRs:% dUvǗ HPL 䜺dUCk?";}ί%h>pMR-7BE.Fz!BA¶SNk9ݑRw@.\&]og@Nyw n/}I>Hx] K b(ESB,Bs Gᳲ=aq1v%p"񇡱$*wM[/[fZÖ7=\aW\4^/)掗RDWW?Uyөp,L H&u 2ͬ"rJx }jNtsQ`?- s2]EQ-]Jhr%hպo+n +da 5ˤ'1 Ww6QQ1" 2蘹r ux2zn {^KT;#c)*D$ԛ H-w ?o]dQMfp\XVlFq)S28JY7^B7X#\wfcQg j'Ճ]z 5.?s<dl $ZkoQFcJt5D&}7>Y6G3&t [sA:g+;ֹ䨶,r`)=ݳX*Z`EV[/ ܴ.-t@Dm3-;S[I35 C`{BLֆtaX^ p~{-+ {Nۓ+nw+' aA!Q X0xShI9МL 9,Us`cj<('*@+Gh3EL!]]&m'6DKeK }}/(ST;SA쫤؛v,V˦ۗ9'4y[;Iσx x`!N1,"OS5Z~'}E=hQ ^G{$*׺8+']p"b{/U{P=>j6y}V%؛HDDI~rN;F!h]).qy?ӺЇ&~TNV&fsG9_xʑ݊mQTS9):9r])Qz MҜeJ4MލiL*^ `|KcmFj|MxԑgOz39q!M#WnOGߘk @ٻ_[CS|d{užuF>p7Z1Rp8u5q.u1k8?WՔXҎ؂U8hs包0 25(aQ?xHGƹ.dvX1 czqرo}33۴c"b7t]n&W[ه|0C>>%y1,}pTRB$,z;fxsSW"7u[C-#8{uwߒxɔz/Ew/p3v.XDY T!mUeޘ_Ƭ)w{1pUe(ildG|9~~NߡJ`й@#s:w]e; #9E,fr&YWD[pFcv3RZcD]F(r6IJ>ӷ?~Y>З%k܏*V7#VB,j81#aKp:lSyQNg0n0i{;;è !䙃I`؎)HP/CX\YAķ4iz]hm5Tꇛ71)O $~2NN*޻لulv Vrtdhy@vuzd#)e/Jh%Ǿ}yv =/bqcf *, '}[;d7kĔ'aZnѵ+Bh ŮHǢ߲mYtj WT,%!^T>Cɀ۩zI2 BS82E?9oc )׶V_gQ|>G~Y>Uvcע\3V4].\=nqn=55$#>O}PciJ5Op=MIےnάysm$z-I^pIP:,^uB*͇ UL&'ΰA3n]?äVꚲR}C3= |/]_U0?](e4Awfzly=g']iun8G\PB SP1/lf 7:FMFӧ~x19JO|*tsO7]hS|r3}6e_BpMV\< CO `HyH )GqrFh=eWy OB^Wdxy3 l4Rq%cˀףlJ Ym51kz/ՓRm: Per 6/}dORUŊ*ǞQf"pbxTtIO*_lxRB ue?:zj[A@ã0q: h h7q ItSRⱘgv~f'.1<R ?렧қL vT5b g*Sl_M]P6aB*`w[|l~TdPC,|cj5"bpxWf  In&pL)WWɛ,)3 +?Wڮ޻@U7V-'=%picp:9zO镗6,j%_'efx 7 HYh<%}QxբuG,KǾZN0ºPVh2Iܡ*UN3uٺu ^k Կ4^ܦk^pv"5aWLo53P t HPdY?XnYw[_#J S| endstream endobj 1921 0 obj << /Length1 1144 /Length2 5791 /Length3 0 /Length 6547 /Filter /FlateDecode >> stream xuSu\ۺF@:a$f`ff@J@D;àKBg߳Ϲoyz#=Cny#y$:0W;!muD@a0+ Pt0\ ㍜Pm;@''&!+.s"|zP$(W(irssA!P!p?n0G'$1;''8/9';ӝ*u+;V ! `sB"$xy;ÁE ("\ xjה7?Ch r5ÞJ|9Ba>>q>)މwJ#o7$o !`?z{BHw@`HVHw3?݅BpuP?{WN_T- &|;Eqa*a[߇M=w.aXv+ 0{(oX _o?s\\w{{wG8_31O?:H ^1 kJ~ǡMz}@l[nkWSLV2wnH`p}ph2݇tiWʅq OŞ!K4}DU OiD㎟Mw~jl|A-,2.+q'~5>^ի qVA"[ޭ|\ KQ;n(ſixq. = Zб,K,/ CNaEi6PtcHdL\JHňG@` 7 *͛Jlji8"{ek)4O<=+bJ,j+|6XJC$1-?1|wߑxy6c^fiITKIY4w7"M$c`;b߅ga[ XuћcNi,8[m 1j8eICڞ2* w}k@A 2r ewGzcrm19?Mkg{2q2]ݚ1̧FS Y '/ԍ(cٝ&Snjz&^BP 'mX)!t"LWdl67I$)hJӷcTVJS-7pzhj1s \G;qyDk//dZUns`hIQ- Ku9@< SwcL+I,A) 3B79J"luZCv@哫ɲTFڍsf( yRԏhFL}\y@Y!@uG1 iIlIKS~狠9UFl|nݴw12&t-4Ilz !^!Z+X]~mRq Fu&D_*HPNa+gf&,&4gpCy} PUJd:y%ywSW*^=%؟ X1OnCq>"_^5GA΃MdTAGtqpqU|Q^je<47'U5PXtPS//Υe^{vEk%7=681F9PNr\@d v+tZ#$n}7ޢ TэIH]68-nMĂu.3imymfMĴrղ,M OucZh4ߛ#$`ʴ'[(UgG1rDW륇M37Ŀ*8xӭUZUmZ]X6OZ-5H;"*Y UR|8/u"I!ÃdiU.99UY'8ǩvhs!Ez8iI*bTZ=nh{Iw#xi&ál'GO F@Ç&# P;X }7{l1\A,F*bi$VRݵ<}\ +`h$ɢ=*ۯJu }Q%/_rovM轰&N+.{k Urޚb4jP;3d7WXR_)/ Fe91(hәˬB>챷7xoLdb#;B6<kS<6=+;J6f*xx']7xN"tǰ>vҵDX`/ݥL3Q9mQœqe"<ڋ:]~7j:Bˁ#1TqslcSBƣmܹ|"e-bbu $:{M2tؒ*#L)Lj8eG`\GA%VܓG4bn?\\K06`SO"r۸G/N]kpm>3:J0_IWY,L6:|H,Tp2Y9 Ut-X'Dmb3OH򒂜cg$^7wH<Պk /,@gasϱ%4SfezWYHwݫŸ!*)yu*m1 A~i2 :EaL$3 W;& tQj _qv<+F+|e- I\ح&duFrv>JgT$5Eۡ3k eA) ZJ H*VV҄ܫרv{/]2<4aHnM]Hyh&;xk E쬎ls*0qPM7:Pp* ۷ xTwd%OFbo1ڲ +[u'U@,\GeO|?ڏ/UZ.Tkb.FZ!伢-iµzs5>wQ"F?[%&Z ҉{eu oNQq6]jN*'q{khvvmVOx`qXd}Š=e4vհ2xq^M )2򻘆?xdH1(C^p 6 RpZ6}m3lʼOzJ6c̾Y,z*kqZ=%4d{b8ln_/Kiam.,\T#f2 tF{*@ԝ q,>7MSqTį(鸞f>= zzMCCpYD:ejpi{5`=ůcB%f9sMjyx(M u%I+;]~PLŻ六ۭc]{}zJ7KT"5[z#\j VFn^psK=!O<-}&tBa{i_ǍfugD@{֠Bދ>% _}dѮm)fLF$Xª]tj[[pւUŹ%_a5P!gzXȜ7k2v˚ "X]xaROuGMX1"z"4枦{dΧ9{vYWN@/xfj g`>,ҁUnu{8wk{t礽I qB9^~ \yCՖY`A[TIFiUWx8: F.H筶UsSOZVnx8]AD7Ҝ^KvO'rNm!U|'}AT+ Ğ)d.- yH3$s!o [OBx[gte^-ú= (1{ GW-7$CZo?|EI>cKH鋌EZNON5}ȳ/|WSkFfNbT玠X E lBD\ '> stream xmSy (QT C‚ ZEq(%ʝ <AP"*' 3 $(6Mq$K7XD<O;  !%%p7 FYXi $Pw95sE`Hqw!'),U$(\^@4EfKbp.幐q2wb$@ *CU/s {(, ¸c  $ w0AgЍr%?S`E"`.PY(@Wu?MP^ gmafa);F"xJY #`p%_0wsS_@nb ࿕L$ xHk_8Gb@x'r0 e0XxaJs L!\]0$q.ߟ"h'b3%E gA{@"bsP$QM&(s~SJ xD3g<*kBdzZO[o}# *2b>RzBs7UR2ͺϖ6>LщU#e889e+UM̫֠| 1isZz+'lDjpXFโv.BN/a0s.a#h߼h҆zF14}>epfqi` ɢ&BT )TF447j4Q=΋95.ʹ?B 3-oR3+/%#3hzȝ{m}/Ud4qN e~B ryFtuw8w]w {v졭˛Kx-E!\2Sj&OX8;OGqrN5sw~H!jO(!+>w̃ZgiHPrB=*CYѣ2}  aS;% ڜl:Sё$S##l4+2 % b7nPIb%x 5, ,kz/忙*Pzykp<f_ϒO)*8k- QL ;Ҕؿr#C.lR#ʙ%{6iwWR<;H]j;+{vP-Ϗ] N{_N̂3\S.X]lX.65\3iF15xZęlOi^AN)/*O#&Wȑ1L kxJxSxXK(=5(58θiXHVXe.AJLFcA=!Ʉھ߆Wu 6[V {ljY&ݱ &:i:GVu^tn}~8k~Aj7LT7[0JoM#ZLmm }Q_6yA1T`QS⋮[]IKa9^7ڵӘ*G桥WNM69‹:3I:IA;t}ynl]a3iM'ݛUԔX~N=g3|8g"}F1#E+B+r5ŌDG~ߕ@{@Gb"_?m֋8濔2XfPh@ĥqێ0 g% EEEHɏs*YjTqK}쒃ɑLk9sn.NDa=cCr]R99wK.rh 4(ԓuoK 9+͔3Ülx3=dҳ &blKӼHh]t t_,Ӯ>/]{<$GNRd5G/L'[AV[HL4.f둫BS3#8y*D-ޛV9*X`'MlGޒq", It[#;Esޭ[wf#t'.%]j?g6,^'ۨp]t1L8v>̶ZWmHJDnoӘԞv^}6 Q.쁛sPDe>fбǡLY[;y L>͵yD[J[F"L>OWT*Q6Zy2(J75݈ P4>4):Oot6BK@^Xo)R!T>G-kl3 ,t,{'_zVcG Mh:.GTqϧu}}+C:UʢkiTrl9ҹCթ}e;iˬ+zJi/ 3DE+6Gvyz;M؜Oh-/vīNM6\5֠CY]C;Y`f`)v9ӎodZGUָz׿̪'Y^N1,[7: ~QIJfvى7"z<8yq2:}Rk}l!TB㩐X 1;sԦKMu7Ef4{*'Kǣ>( -P^"0{"P2qϿj;4$ERk ݾs“oM4}^qIUu\O!*_vR%G5ͱ͐pLw=GPnVd\~; "apj]m]-sV YZ܍Y 4޲Ic[fާ)˷4?jDZ߾۱~#PmXi݅ο Ӽ "wz4e%Lgz Okn |2xKl̰LUlLz1YPlz7Э@O\L}vVj~%Q˦nSR.hu_H:,$А1i9Uxy&KQt"gB;9n'>,rnXJn`wRmu7Iv{pE"¨k>1u=}{n7}hSҔRW7gWqjEjniő#&cD||W);HgefL;ZPb{Gҭ~[m^uW8epy#` [nKZ+-t: gu<ڕfa~C$w@[%CVJ N{w3mqT2cnRd=͇'UxYu{-k\GUYwcV/_6 eM˖8˸tDrQh =Zɩxº>E](*282`2BN4o!ԨaÈ`JS[׊մt_*\P*צWb |wVf:&L4|MJG /`I,QfzI}FQӞQpN]O~%> ϓ_I T-׾X 3h0 Ϸ;꛲oۓ,祃-5!>EpYq$^ET|-]/7a;kTy"ѫʁ~Gv\e6kUܒ>ތ E83nGSi)x-`ڧӤr,P*gG2 6K֔ha׮y'g >! v%ySOy8v{ޠ2yIGv &]v6 p'NŎ|/֦䴺J>8E3NHxRC"6*aL* _|핆P{'UdJДղvۡ۷^SFEqG endstream endobj 1925 0 obj << /Length1 1622 /Length2 1177 /Length3 0 /Length 1988 /Filter /FlateDecode >> stream xڭTiXW i :aQh$dPT ʪjeM4hBpEq Ah1(*02Vc?;{}Va.>iw$ (cH*H$'*B'i'RA(W)d2-M3LP`nD 2DwQeEBxrR аCC@\)bJW8&qHqi(_)ԑDˇL! 9*@r (IJ5#r4 °4P 9Y'x]mDa@Q&Ajx} (xjC@46cXROC͑Tk΀ H%8uy'C(5Ӵ>w$A\$Hx@RB RrH%/y[ Y^^G#hJ !47PUD} AߊMqJeBҾzzi%+SJ͛f"`ZÁRIG`0 ]eg߮|Z34BҾb|eѷN;/*6Yl4$nMxĢg&Ԟw=q̴YZiA/3"|F30;nIًU<z}_k녍Maıݧm?<:?hȼ_sÃ>kY%~D ݫJ^r6eO7taz\M23q1n2.׷_1[[1kԽgT5J}Җ{d)#l}eF!.M^=.%W4ͪZRXwev/E&d&%߿UWϘh:Bd^';-'e(;c??sY1yўWjFTpʹCfwց vĨU o⅁;Eo.N*ޱ?2k0g[S&<](&?v{RJ]v/װqmF{<ίO~ARV+*9rrL׊HnXIJ*mi ϯQPX]CU,&^R̟wR +VGW>?_U2-OWnO6^gg!nQ4-o1w%=~GFjǻ^(WѳV.wl0f(^U9^]|$7/A;2ア&)ީD^(Y,2n桉1KވZ7N+=On,;h̓мhsߠα' Wr@Ѯf[oYRaUK,:wTOڶI@n endstream endobj 1927 0 obj << /Length1 1631 /Length2 1867 /Length3 0 /Length 2702 /Filter /FlateDecode >> stream xڭT{H>kQ!6 A@-9d"G% W1DT7X~;R߄oBGׄ|i=̯qE|K@P]&c_wׂ #D|g;D) r!1p6gLC0H8?bnȅ;==M+*y\1`)gӡK+Q {;NCl|W(gd<-YIAqǵfQ;ٖ wim> ?ma uxݤJf{D#Rt۸Gux$bFj$i7ۼxYʻɔ EJN g@8Az;y^2NXj/I_ɳmĠT\xӞ+xM]pQO Z;`/nz?f ž/p4Z~n;{KQZ=Jj;bdC v*$F6O d.=HX[b9'#6Ġeܼr7n< =@Ymq[v[|Iڕ\p z*tݧؙq i \]v u/lcytc$CEᵠG a )I&\8׫AOn>N.iG;7ro#HL_u烍̷qcZ{ |=5[^Sz^P 7Mx3QpRZd o H ~X}TDF͂Ԇ[{>$wK+.ѰC3UF 㙁u7?̉ys$W{) ^0ى.j <.J=eٟ+{݂K1Dy:1(5}` ]S-^X=:fRc\]HtQݭT#cM,w?5;4rdv:kÛq AjM;Ta*f51j 8ZC_?(=cnmK╊+Y-sSR=mְWBϷk ie&F깩w7!3g&3y5bHŠA=~GK.p`Jn߅*fU!OzT/ؐ#&ʠYW>9~N~8y/bZTp`lc-jm>G(<?Maݛ _73!T!iҌ7e^L=aEإ0|U\B=Jst:ruk?.3pƼ%rxߩW&e ҜoeeRcCdko-5{f}h+xL{d魔K7OM #Oڶ^R`~H[{ޜ~ROۃjZS+(.QcALnt52C$:)N368.)JthYs!a8%DS%s1AaL,Ѣ;t!Q(> stream xڬctf&ŮĶmvضT͊*QmΩwzOcݓל׼k) \Ʈ\tr@SK_9,N D&ff,@@AECC_LƞS@ hc` sQXf6@RB^ :]m,M&@;g  `Ҝr&݀&@Tw3o\v&6+7 'u);88Y:fU7N #r;[UZڛSҿtպY9\.2L-l<_0\- - hndjtvo_ul3Go490dNs01&R2Ҽ5Lƃ5aԋ-e(؏M8 y{-u|8d ZY }C+ؾ?<=[6kՋzsx8<;=OQ͸mcn̑G\nU+OXIET{*/>ܯ`lPY Oq$`%s~=85@{L34WS/fF%ypZzEZ <}/D=˛5 @WNA(RF'hCkvA*W@H z<͙I1DYeAoKI t=I_< Vs⦢8|j8$Ʒ+DNn-C >ͺGҪl3Kn6.TpXM}pBV !iܹ40<sC S/XX PrzZ!lVYe8qq("z4`yQ؆IҒay_L*2M3SOcJp,=+Z}!xOqCb5F7 :mECk7%bs.sÅ8 Ju?ró֏}%vw?raӶ_rc:hWثa㞻|:V\?ȕ4-ozqn V~7o%tYyŽ^eY?Oou_򋋇:=KjsEO(mIՍʟJBڊњ$(/VyǬd#Dщ_zv6^j g_W&g_h~nv " RއwqSQ=vՃȏX2MN-5 rZ\y7\ rfQ۵yꪜLYuZ [ݷ3/eN.6ȇZlYX(}2@AߊƏ*-f\xrm#i1$CH-p49Ec3}*‹40Q>ĝ!1DDջ4/uБ+Ul.a_Y1ܮL6O 0>R /I##V߿~ʔ;=NY(L nX*>t&5D1+ˢGLP{+\8VН+G)Hh=@{8#ruMPX`>`qfU G7Уߏq\tdZ_B6{S2=@ZosӈJ3j,#S8 V>$vZJ1U 0#M%R,ZslUl;ӭdT'#f5mb2 ׯ~qg 3>}γҽP>nN6n[ pK7=gq{~Hy躺yս _}d 7>n2 Щ C]_c.g:ߡ@ k045v h:~a7pit p%'U$yҦ;@!c)UuwT< sxG,/*ͦB̹Ʌ bOճXnS8H&5~Y ,W5nN*ޮf1RP^":%ǢY{d,Ab[= k #oUG=B$-_0Dň0C,%̔Z^‡^Yj̍ƧP9x(ie`yUh|VANՊw$1чG#k,CF~#%t}ޝEϞJ4Z3u\G!x=°½ rj0^侇;Ώ)ƣL*܋%vKBB;'3;6Rr.lo_Lwޭ-, C?+6D j0v⿷ێwN^^|˚ > jm <|="je˭4O+ZϨd1:/v:h}w֏}2Wq,p_X:ʤc]0Uz E5Hsxk/numeoMpf\Țy,Hqkz'N*&WJӪ( {[7cEc[ЧGPzY}~jYNM=$>"TM{QEƆ@ 5FۈB*hBgSާ JtdsxzGA0*UDaonI'Mp8!yLF7\O]:%3WwF"o"1я))[ԗw-4کA۽,j6?Tw*'E7nnbHRމHHP$olQjYErTwIY.zY6=,hQ r3jDWÊiw0Yۄ82IMe=WaŶ!TSDŽ}-Kߟo7&[~M֟6##@@zsKmf ]Ni g>)D\3mκ򠹶H=eIZreD|<ԩW *ʚ/>5 ZzuW+"*stpoQ0zSD]2* ,T5n&=E rfpc_}(54B$vi+:p+9IxE&CR4n[5i3)QItXߦP]),PX Ә%d#֊  ȸ (`: 7PN5݈:BvGnW ߏIԜ~B: n,nz8I$G2Ku&BXCx1@W^um{>ߋŦǒXP H 8a֍ͭAK'a>S6(8UV3y y-.:O`ei\QW @d nfZ"19ɍW(̉bvX|ͳl[?I>Ϋ6 I}mkjb4J`-Iv%Q:~x$x0/VȰYH BeOC>E,P A&JCLy _5ey ߛjNzG0_>a|vjOi/n *@>ssWxHvQa$%F$ l {t%($(tv~gֽ&OO q]9 TK^E\I b%Q|*a0B˭Dц<U.*I+gu>_=P`u~MvUPNɯiBvX س.F^Lj);;-]}LiONNkبQ$#̞F,(//fLL3`*o 0emaR=XݒBuϚ{Y7w4(xȱUn|˼oZ2|BfD6(x]V6,(jʥޤhΓ/gHT*&I%~B``&!d8x59V_e( (qʗk%/Cse !4 qA'] 9Oz%?a"z5!Q!F6x u܊|&H,mm᷊oYm_S أwyR(@Dg읧%33 ΎcRULg>Jf Z.:S6̂W g$-b-7e?l.w7Bq FҗԸ˿V0w,s(k(C뀊B0> .ƃ^i[}Gѐ\GK_^\6&Ŵ+]T=f$6=5zzB; I56 ĶE<Ǽ6y@k`(e1DaBSC+ O6<8 %َQRڸIn![&-fxtjr,F˕d דj@AX8JU r,GgܑBe葳'l[q'Է.KBQI/ɁgYdZ:}jV=jC6Y:y'"Y_.yLH IwWו@!"%ט5[)c| ?F0l[vU;v"@W$#l6mIۏ);RA^Bu(VoV'Z u:.D* !#v30qY-P+fb}}2\ax16 `>"<>k4Ӵ;x.+ Nx|ƅQrc{;&q{X*2)FbJa}_6-}el3Y֐yej=C]'YAMQ⼅Utt1-zRRcWR5\Ri23Rcۜ9]Ts 1O>hB9(2a ݪ[Ђk8l/[ 5owW· z/Dʁ`ʨGH]/vAd^EO [?D(gR3]>xEW"ý=ߊBm+ P΍OI`7~ }^\É)g&d7Gys{4yCb{d* eW(0WdUYqaEK['plbzP߫Z0oqg/Y~qaͳbtn6޼ YykϱR>8ѯ:l֯$3hbF>-#Lk " A\8!~,m&ɺvBाBYƞc|x12?O)/FI'|LWZ .OvyܹbKdN'p qN(fT$k,v,Iq3x)I,3#i]52vM9+T;aWs7<~Jm4ۑ@ē׌ YyEHoKs,$ۓv3jtϢ lgӹPfo-_XDH@.QHjM*d)jV"j'[ $|yᬅާDL>njߗ`ZWj X)j0N?)n_L.l7Ye%2V,۱T@M;L$jy}!ntvQ.TCt&tҼ`>ˤ>qIKNKjcRoƿ?,f"?r"8QfZ+qY -"Rh$<®=k}TYK 0mJEf3T\ {s@Mb11+*wOGcoҟ tKzFIzѳ?뤽Ifi_}|"ڏDy(g賻rw:A6}1.i~c-|Y=NG Jin(F*2b*$c+~ mᗚ5/{P,Bs߈l{L%1Qf&Z WQnxAK`r`/>"U5VW(Ӭ[I+ Vܧq.Q[k8cOu#5~dBs]a=jDW."S5bO}D@;c+L`x3 Rk W!ag!@uU; F 0KR cwv"`&!;o`(lgPkWiI5#ģ5xU c ,ڡs:mwBrvГhцmrwRhдз=HЛ-_!]ml>R0sgM'rPlO $1HLz&+<|zA7&%94JCZ9ٟnB]ޑm/lp/X",[=:t=+6\hawP2cso$cI0SYՃ0\"?J-f$,D V@B9n:ah3'imUJC:!Qޏr%k`PsRL)7voH(İ7O"%DtlgCO!sFb2cclj!0j y孠i!LqL۬Fmavϴł:؍"{0߉5H/#'5\B? pa* S.xti@5!\ -(H9&C^0R<ްȣ۪UvMFCW)tnw᧛##Ao˵v['"LA_?QM̞"̆3vy#X)1 ԣ8;T5!\5֥e<vw`wPJA{/+CsLpg`ybS1?C\W#vPr`b\t#BaWw="ߌ,L[6zh$י$&D.4z REDX {O3Lz=gT* e,+eF~0o 8QX`mV,<ɗud>hiQǽ p"jJ.?KfMV, 'mzOe"Yb? ]ն(¡#XCK+Z_qiQ~TRWUd篕PTVWIa] :j4etM1OMʼmU,yc\J֡*EYZ6# vC-.v(iIG |VCb筑]\;;U %"0aQIZCUV(BsJy23J}Ɓ2a!{PwmMLL+Kk(Ljhl݁䲛޼YFоkA\b֩1dvK~XR>.ᓜ5[BsE'0^N-ntaKW? Ǿۧ6L}7+ c΂^X\bðӜ2Ekhc/e`u-Inq{/\3%)Re'Lg8,O+F`YÖ-']* =8p~CCcjԗ~3W:^60 Fen.Re02=9u%APsE*@%lVcODSYEou$6=Vhf@0J c'{`WN↡=1`[\)ISIv!oe3Obbƽ(5И踷GvKNGeީz{.DgpmRgFA+S!e;ߣ߾yT)2fL7٪'`)޳dgE5`uIdS;E`t R6Kλ?fV􋳌AcZW¶s!ADګ0 iC7q ?=0]XST.z9v9'Ϲ^cc$ ϛZ %d>4f5M!c~MbrL cyKг_yqlJё}oOk7㜥Cv3|FyZy@Vq]e3Ǹ?U2#$ 7r޾fX$"} $X z ׭]VZkk1@$:ڛ>{F 0UgZ LPE,܃Ȭ < {za*5z c9.J3#tE2y/i{n3;}uۏFSBd"!U -{l͒:J.u h /On㹭66dǛ.42i6pmXTFhXgw3!_SJA1rfgɜdB6Aj='UmO, v:"<.?)U0&{DwtpzwxЍITI&`J gN۶i4䛦`.I9vY ^)|[Y+2,<{ :rh/e~r#CUhQ55sw0ÙnVEnADgOJWsO12蝄TrNT] -’VcӴ]V#ۀXL*F _F79""WO4w4hBfg}p$pNcيcV3w* О=2A :\9 Q(͇ksF]|Es] 5v)!+Hm.VxI!i} ̲ۄ(*ܾ<{:#ZSs_yiCEehl輖)ra9Kɐ>ui<i4g%]Җ|H]^Eo"K=,Za#.+tb*:#y8[I }T&4QNQ;}3:J|fx.9T^vA#;EL6?[DG"{)v":-m !AԜl-nх҆,Web'ڼFM'Ŧ;=:QXaDAuFkS'% \B% >WL5~G3^ ]J uIS*|V 4ĒIw肖oW{NwN,V?;w&QQ@2 ef4xhm\B/-tljR(gA?Iحjr  S4QE(zY}9$ȲX#D?,5:W}=[-?\vzNͽtN%k-"hÙVP9~.ߟ 4NC}325+d/gBAF=!/n XUbH!%jmOwIskg0̚_j'yI1e`'_잯j[}@5=^5Pɳca]U0{h6ק Z)f$3G]@ w-ȟp:rt.B,LR9TlOC9x1[ͼ|FB˃b^0;Y'~z&*A6XS9>G_w}YFLτ!l, %LaQ"1" ;ÔyHS,tؾgU tš"BD]C+QRT밺G޶f(9wSwuF3PP-A̐=/eC9_CSʴc?- ѥq@%@Jsu);W):ټ9B7a@PXq>jQX߹7Fݿ cB0$l[ut3~ kyza>cX>OY1v񵼓mh[HNY نNn* FӔBFECv8~s C9vJg19"[7T!x6b E/:C?rVd\66eo;JاTZs+TWW}ju϶)4?I;.(#aњ!]>zlñ 9s-=miV ƠOȹuS[{Ir0btMpx#!ܪAF#:7L O4,wTS1\vj~ ^M4E~q!\!IC0l{;SE!y"aV ژ߷G gŒ4A!U>Q^gi,3B %>:>5h0|ID@#uuRdtL)bqڪyq7C!p#16&:)Z+@Fϋz٫|E4ZO8~c^|h%ITNv & \¾fmtez+m+En Nȕ7@NX̖4[U`os!,z8Bb\եHچ&ۧ$W:$-~Sx  nrtZ#!;R|l0dAe=m_ecR&eB;ü×WuM~L2k Ky u dњ۟hV2փi8f^.\?&LDj3W2PfY'a.z^Ia{I1T5l,rMΙ %Aԓtl~-`n&2h4*w0C/I$4j2>Xي<,ջ'>V{ҞVy8V̙ 3UB?j* MfFc&- Ҟ?c\"(غB4jBk*/CV)QN x3F˱\|8n[Wz0\}Ϡ.! 4=/"kF O!-85p͸> x-rOV[$yA^[!u&"3FA# =d&xhW71̮D*1`xјfA=$gb;4^D& eaNjP,w!E27;\Q.TVR[0,"z eJUԿTu.p(q_3/z&ZfIC2Xb%pi9ŕje0 m~.ZuޯK\qTQM(hhP%6"8ۅ7`0-wCh7T_ EUڗ[(!-NO\ߑIJJ1~7'pvU; Pt؏.oσȚ1VƛąO^\=:(}k6=0[Fb[af(dm{VU4Ų'_.HW,v }E\̈ ]X`^zTKgބ`+HP`f%m5;dK-ꆄF*cKF:DbKpG؁!tg%Pr8гFo6uU0v_# }d,\ W@jCCUE(T1ѱ4: P´p-0d,, /hFs9DkC җ2 I.Dj]",r,X &MMXϭ^uzDQm3s]Ul=m .,|̠18!#d$ߥ: BH4w4# g&g8wĵ{JҬ]OsXz܊pwh |&ZaKd{B{BmV"r]CR_ӉN`sEf@˭QU^ɩt<#“ļ2tx~ptMfNv6gfVWDw{wSr={%\3>v3*R 3|bWJf24 3\;))yl167Z+V7jr32U};;FN'A']g$'b\& ܵgi}) @ƠEP23憬.d8+Ovz-&w¹~Q_\<YE}<]!ѱZ*7nJk-nŋ ͷx)\f  ݒMfх mN'a^I892{HiJuL{ε7-GR1sJNt~v ʦRZ=ƲNTMM" 6|1r&G~%|m@ɡCWw2کFYcPKZQxǕWKudrY?5ti9/#2jbfupOVV= $^$f.]f/fYp^f0- G1DowLtW;_Hq5Un`#* *p$<^n]7:,-'kM \Q->כW|_ vg`!dN̂uժVoU>=x1q0 t;o"8q]$_k{ gPy֨ Q ?["kGӞZaSf_up|Yʉ6>j50gz 8MJVj|!Vs}NT1y@?!t&5ˤ·"dw(BADO(x~Fߘ֢>KTa|+"E޾F<Kl\ck)ZgZ暢J|R"3b8+aˡL1r/WagmW4h-i jF~}BpNL=oE9,wȫ1_ 0ao,p ()j(V yMеAC̽ؒ}>߯)\ުGɶ&˷Vlѣ}5'VVZauقUJ3.{TE}ף4>>nJI|{ tx@JfTwgOvj*QJx<> VeUJA&I0TwT^5)2,> stream xڭteX\۲-N;A .6 4 4wwwCp\$߻=?֬Q5jZ@!AdavnNWU&V&̡C@Ƈ "0;i  ! [HH 9@-,fM]66-]fnB"vƇg n C;vTi'RbZUn 0luNڿIykMO[kVܦۇd>zF2NҖ.q++6uۭMhG>fnB[{|WLGe; ~fLkU6Բ?O$R@yd+gMձf(R+RIe9hT뺸zL R1'5{HQםhR"|5Ǯc5ìw$^ ]%9c<_jdR}Ib4^cdo7ba63+%u`H,_^}TXsQIX!e`s)# ayHuxh3[MGnK[5$`Msk['=I,tM*$'Hy0x+ʙAREfub_|'ԏD:h? M.JHvV[z'!L2: N4HFkD9g!4$g9 `ywA$vhth"QR!O*F) D(-sOnwu]*2jEײs%GdcOpSҏ WC޾ )7`~ĠCl+M3i132C>8?2{&DIx{5]Jz|u!yMIf%fJ kfsA7E ?Ռ~ b1=[6QfWƻ`NJ_c! s}"Z8Pq#UM|AiȄy+ /3֡_+&Ct"C7Xm)j!Ϗ^ep-IguAsexʒFT}wT ;izZj޻>d#Vv[Cfq@oş;rK9 Bu[wky@t[hsnn/n&9>TSq\Uv7㏤}^+ /pW@u-MXhn97fSzxpS 2gL2cPDDFN3sԃŒihw-F>xm>{+/|~sSTIm`jjˆ[H4>` j=*sќ\~M!+dz$$*_aعJ<|W| +\XԎ4HP% n`WAR%yi83Se$v|:2+}v]|xvyj qv,G*Na1XWWo~{]}R>1rOQGHzi+jS]ii ouvP~qj_.( 1,is Yz9V`5f|HGX˧4@`5(&G3|ESڋ0 }L4#o:ɱ2Zg|mCVYg3x4FvRΒcWGwsȚ|?()veUs_2 =uryo.\1C!Y+0mR[^rf{*[%!V T<IҼ%8f!paȅW_%#)Pz)!U KY~7R*]C/?W<3eaȬq!ϵ}76|ogzA]CBm<r=݄W^y]Xqm؜|9g _*/rXnL9X?,Q~c\AU;E2מ#W`[OlEZ4wS7}^<2B5~FdO0LCiuPyEy" l~NG" hzYDћ"/ۢCJj1p@JW6l:nOE'%"|i3,ڟ?(XAш4qtB W=CIsoxRӡ[0;|f! \l^7eN#<*{d(CM{=hT=5sc"IBBjo\T 2_v662"' +02(2-X Š.8Kp`}Ŗx] A[y,U}ĝM^md™MlC~ڞ`4>6/Z~7Au!hʲPgo'/0@58(/)'VD(ix-u.lvT ]eAotl\m I-6Xkf0_DqN}sd,'ȑoІ`bC=- g.`'7-ǯS܏n:r%w٢g!jLHRrc)o Fa6VU{C֛MW%a)a[C5„{zt $vKa^rh[UXx睔M9S#eSUu hTa-+~1v?9w;x*G(vs#VSHhd$R\rTAe*6H3‰z2.Ty`4K:'›_|p"s=CLiR;p-]ι IUH#q{4g%^ qKSѬ`KKN*wV˽OUy6<EUa@/$#p\Yq WCkZ2bF'dBBTx;PS2eD@)2'E 9`R[',k{D k+,Vm0Lm۳~@-ad΃bG{7{ ,;>[Y!Y.sˊB]Ugt%KbƗ/ͶٲI&V^gGHKJH0ljQ:@N^: "ahrzEUOjB~{b6#c#_@}x6O7]_HvH*H 2b _ɑE_WN-Bڅ_&){t} ӈ/ ϪjMҖ3#4$N% ^P3/jG2_|60 VR|ԍcW"Qw%Ao%gqZjw]]bV<~yW˅'+"OCd 9`K3S>fZ'yVXŋ (M>%<ŨBH_sp𢃥.jBrD6?.*1B\=+7[G\kKiF_|?&:=D?_?rpD)w攚.@?:Hh' ;hs]Ӭ8F OigI#;:RvS4 ۓԾN-67m/h]]գ4t }q`,h_[% ۍL1br`L].s\ڼYְҿZ/is?ڈj:s+n,`ҺeƩG<83=F9qJYc׫'1rEbARVZf#X*w41Ş Ed W95leͺGM7yuv>.mu}g=+FVF尋UPS rg}~ቦё0uQ?_ʋBk JEwjen{ /h"owx^ѨI^륌{_̙u^ +O_&>e[=qgW9̓c2Ȧή\qL4G8m6W_ϐYXDRI!u}q:鹁H=V?PgP 3ްUU/9(Oj09xYse] UE4vʐBc-\e5'ْIy.6'ݕFW7S3b{InnՄ8SGL~3?t_6XBTl+e%01YhVô!.)ũ?ikd@D_.Op omb5 z6V;2뱃ָSeALjF2PѮcC "UsۭM)2~;SXⱕu/:!jE>ˍ4B3AɳIhcoFtn?WgD뽚P4!gJsj .;j%:Ov qiWM yӘuBs{@4B_omJ;˷pO|VXvW2jGi%y24p$(K-^*XVIQ?U(xyT-6dˎ@,q_=m3b+ViY+KaFݚijRLOM m+s33B|u8A^ V&F PpV],>,. ;cY˻h<8fw7 $QE;q ų' DK{Alcv(o%}3DFTP?\=+&Gω\O\xbԂ9ZHF ~̸zpNe0{3պ{B 5{\%RE}u""d9KGa3T|r+:uTpN8'`v%$̶.VLRzHc[±4? !_s#]_?z3M^$~2(5MN~m.h'ރ?]*9(ǵU Rm7YFM^KXJr L۶0k#*wɓx-C"yRNΌ)T'K>Xqi6u5~<\NҵFnw:"Q;hʪ`S3}|Z'lXbVV|ڜƋƯL=n2> stream xڬct]%;ݱm۶m۶mN*mb}Oq?5Ƶ\{my%c;CQ;[gZzN4 ௜DVلfb 6102888`HBvfrE5 **c0Nfҿ?&v6&!LL&S k\LV fbkh` w10H[:PL>l-)͉/dobd5? `h`v [#k+7WBv-l99;9Z;Fwvؙ43r:X:Mܝeh0p6/ſpq5 &f&NNabӝTo`oo/oY,LMia4rY50[nb?t&j?3C7 c;[k) ߐ;iHoz/>WhQkkYd l @Ϣ6pXX{ɿ?I8m_ji-pp71p62Xٿ*&&W[4 Elnade ,V 4Ĩ7 _YonQ<#(hEadg{& / <8;ZMϓ53gt lN6rqtKߪ_sobnblgd\;2)5:l_ڨ\TWcQQL4tny(Iy4ڇnM֛b'Ǜi(N>B-&+ޤnt'#3k*=QjC,Zbr]i[ClXh. s$g}LJF/7W6VD7Oe|ǘ]+&\%chk7oθBdmęZથ(Ov+4Kb纺+[m?Ig)LؙHEqIyQVU7Kg W ;">ڣ2<3 Z8 \TG0Y+b+Cɮ^=%U aerҳu@gދ0T(2@[9־n;>/] \mBXKӕfE;3f T݆^X5;ޖd*:oٻtMF-w'JH;7x~|VRKRC„%y:LeC?z b!OF!D S:?2zx~$AH+;&p젳/ޚp2 4r]nI WqI" DTBGʃdw`}蔷? qNy4-H䄋 8u 佩g]xdnk*, ʊw$n'Ķ,m4AdίZ(~QTn " mZ(j '+҈Xk {9vJ{`xȐ<9XYM*T/B4j(Qۡ, Sٓ$$(At舿4S$] )o[*Jӄ=UJ}j'fMUXuj+Qrԋ}m4b68MXPgzP65R`r=U6C+vU5ٲ78vEX]p6>zľz)A!ZRv ?cPN++?NaL#pX), VV]ĴQ,d`c{ԉOHl ˰u=  jN^=Je 1{3x-'Zncwrt]Z wtoIu:OIRu\dɂ 9sw.e7JTyr''R'د%)G~ pF[Ɏ4r՚\(|HRn="ޚTvgq0դsvPWi{n b_?S.q+d6&Ԉ^?Xa=bPzP"J% LRtC5kEt%S;U~v!og.jh퐸|  N$ K$N\z7n{+-<9bs) HA>6ZOT,d^wG51lzj'@*3Q8Jަ8['iJKI\ʡt'G貴F.-.u-Fà 3(qU?i H($7f%#I=!)s]#}&$~+;d0{Zl@$̮:*H*_z >XeQ/1IؼtzzlyVp nmp>N}:)2!|` Qc D#7 ֒+oh[YqƧB&+>_[:Z9Đ NK^Mh .4he/c}y~ XEwa,-kvT>Tu4G6&1G^;N EۇjLтU8Bu:oTQC 50Aa"V'P!9 fvS ^YB4Dυn4|J63-Y 'Wbe}̵ģk1)\Uu(ov 7a)&SKS.}CV8swe9A)RT}UZʁ6R2վ jOqZ{fP BPg,{ $a-uUȉSr%79h a\ >g:Kf /uf *ʗ n@CjxFF JFtN*6ü1b/][Tͫ0gM_OIX suA΋9R-j4𶟡Ѱ<mĶtHT$ )UF|;γG;d21j|bӼ\/D Ubf=,#O'$<*[>vsQI[}@+W[ܟws, HF 2n:uUy.\^D2[W%S/,T8:`f& Y!dHHxsu *QkGE?;i- }s LA^j"|)|͖$53%Ieŏb|yt:K? s7bq<Iln]drH%ark?4qQ덂^m.fcD  N/NOP1ءn˚oFaKiʛCj;k_6p}HmmTܢ~ș=WD3-VqI)@#8Eoͱ1 sp]'-6ŖiTqs2@CA ;]9*r[ F-i }5nkg{8-9smMn~pͭdX w2}tl@4۱Ӭ6݉d.=*ԣ-=:%}_x|Y'iJ\kX#L͛8\i~*Q6;`w_Gq.3L#U+lř܏_#HgfTwkQ!: !)BA*.Ȩ%TBW]~K)' R}j'މc?y) c@jYcI-UJ#pE@2m9b-DW $YɍdqCyJh57 ֩zs;DIxA:L@ H}톯?$%$hnk0.. @A񈤸،O"o^}v3ێG ٿJ~+򍸌=n{d#a19-xUM=;TNKyve j麝Gô7Ӣܟ6Duseh}^ĨiP}ixX\*.5gkzqa݅URG ~EQu>ф0ꡀ9e>gq p%uMN?˞8w4B-`2"#9ofŜU5xZV)QɦOJ+Qt㡦ف;r#xz=?Y(ҹ\Aɐim 2բ %:<#$͉IEKj} rP}UobV>} Gy{XbSMOVM?-Z޾]trAW~ ]}D/+j}hL]Rl[,cy8K3jV"UxZ+Y_+x&k+xt^:< ޼zP' aunb$W+c +r D8'ԎOx^N\IN/]*0޲%7\zvb{e[[BEJV<*qᬬƕIL[ gFbPT<unaF#b5]ZzeY/pZ`#5~d yNz/bl BhE/"Py+]s 8丼7` qTKļlHJˆXzQy>aԳR,E8E\B_jrgTI9'$ &nUUBWq%z1EhX0YSA xKq ^%T0a5RU`3e(?MmMf *)_vwZhbZ1P ~m:u/LAk<^+dNWRU1{D {VͩEpH]6WU~Ie =x?GLfT /o.\Tʠ@$f~f7 MK4v}Q?S Դ[20w]>#Y@:wf,P+%eivMy fLJUO_)`qCPwY_'k\qkvV@bi<`5TŨ1,c`ʐ~̡iR8Jot@f ?sFL@V(Ҝ MXEi(,jryD'Yc-4bhwoQg24B=%kR/2 Rbl6ôA_ڦ Oamzǩ(ҹ5}<P83B>3_ mV6 tND*\3s nş)\cyvW#?AԄے?(>Uu{û Zz~%9EOޙĕKf4?֎QfWfJ0q: 3}t#ޛ>;:S,lQ1dv{X֣Dr=:='9tr. n.影MwY:^v-WbY$ln<FW"Ap۞]v 2sV\MMVHwl*_"hԽckPPu5/nJ&S-˵Ȍp7\WEK{MX.v2 x:&;v2l3gLFæjhT0dsm$T|t_lHh.3MtF Tlzj?%!S瀒 &Zl+-|3&,ɭ`rlS~5i+'-AI\. 0>4ӹ)ylʉ6pl&'hVuïeY>ηYHQPT + q[9Y\E(m9y#Yx>]3 l)wp4GHJ"k_"az"%Y!5aZ6#ebfG4 bwMTئ$lD3<`V<5ZkX@n'"|Lg5_S BZ7Yڙ$8ys>:@ůP>lqT4;D-ΎF'f?#g|+CNLnw蒭+O,~}KY%t}LrEɩtI4QL<\O\ #n!rҰu iƆB4%^`Ku]Oo5bl;5}Q R[(~U/~&DԀ6uT@N>d6)I5viD~c|moMI=FW}VY!l&}NBI#nfP{Xv!#q hmp*|d* Z^,(m'pزԮs>tӕy|I.ٶWɀ,+4A4Vp/5Й4kDgS˅tJC)HѼ]o+i _Y4͗؂d~)0UlO$ ZfդӬi9Z9*7B#̕wB~n߽$]5,O[sf:jXGSÄ N qA&ጟ $!;$ vIQ:Hԇ2ϰD[ϛ+o*|EN 09'pwЭv6(lMq@sfFAI4Z}{ܔ%GL{HC ڨ5c4^O7EAԞ7r}Hd\nsbDZ&֓TeǀS2'gb4p,F_f9v_ ׎Th^aYk&/~lHw\'hfDiᤂDJzQ X!f0{2w*!hK+H = x3@)JJ&FLW?'遠qmj_(Q )f_3SǙhf *+4E6%d;3撌%ToJwekkkǟ'XڹRCDJXqH[K !TtSцQ1@vt:иkTaovo."򻾞UpP6ɬeoq91EխAnqa/~hX+MEޮy<[q] ffx Sk D[Kvp\9 k(9MS*-!sHTijh+_Oږ!{}1X'L>q ,/:N]٧.Nռ0٘ntǤ ]]Zd#~(;tGv>FĖPƫZ~kY_ eZ{UG֕{>a.B^ҦvMAebv"Kϲ|7ni<Ol{F \;Ů8$:4gѦ+-ζwFgiCWp777[WZZ,Y5y E>Eܳ+wB%^]a'4x3z3(D贳 ؽ`Ӓ=3kj3pˈs)TL5j j$*Ds1ge䋅>PR쉵Nϱʡs̫#&N2dI hH'j4w )+XTf+)QKTEΝ| 0ӘaN4 xAb*UkAAE tl67lIC! 0_a?VaiCvhVlkSv1m 1>ޙY(LӺBѫ4'0{,nU xD|ǯR \R{Z(AJX{kf5I_VDH/t~u:^%N e(7v]Í%Bѥv3ɅTdjtwDz'kySyܮo~ Wc[sSQs 5pZc0%*1 Fp+i$6[nj+?c*ukzf&-ԼG dbE%lѲxHXׂAq.VSA5h s:G̪)+MA#Wfbc2%[1L+ 5@P',T3ӓF'iC@*!'_iͦ!)muUʹHЙ%zI BHk_)/R2qvWzn؊_Q1fO;:#_٫}ܙ .Y*I< XK2(wIVk?1cI/ZX pU>TTgLx+IMRڙhҏ+ v&b㷲jGQIy6ΎZz͢1JYŽI-2xY+?ݷ-~5Dr"LB?厥[U/=˘bN#y0mgPf ˵=c!k%teHd|-*[􆽖x}Vt5{!rrҬ&|bk⁛LVb L@(3Dp"w$Y}-B%ηtwg\= ,d&{><'dXEͼWn Vs˃IfQXxY-X-,r5b* y=GTv9<~V^KՄ/x:KWICvxPP&僮J&Ea[ccɇLXΛ_c0Y) C2?՘k94)I2NuX&m4Ćm0p"Sq:A!nn,[vHS!5!)C2G"J*6e):NM^U}VQa~Ksdz1oeJkiT\~FU'd 51  +$ B0&/(`jp6sbh Ys).C{ RC{ ]Frp]0li q$.}cyQt!Zޑ@|ĭM˂}`)ks4 (qg8J`]8—Ɛ~C:Hc?^9'btyd]RWtk^ ص:xNRpwލFl^/х:M',zuCt~ݷ I_SD6dNN GZ434І[g?rzۙJķ)q#.z9s@TrjN^pSpy`$mPMS6' %3D4ȞlDS̶[ĿWnQ񲟠n< 0YV㞣Ko9XGqVZs-9zMn׿[?g2DHi\*'(AD kdpVLߠ HsG 4$!n*(g0X֢'& d1)ʨ!E\Rl _`75wB|tz"̐9,4#yº趪`imn@>+ѢR§.#> aG ؚHLC6%6r9\+{f@!"~˪.}%Xs3rY-eu)*;5m%3Y~wAtN#ʟ\o mb}"[) Zq5͢Պs,cȖȺ&D4]A{O Q)KFg>Z:18Mx fqUuO}}D_a'2iQ ,~Y斚 .lŴ a^PgckD'DqqyQTГ A"^}sDoGmK;<FqdZ$u{K_l'XzQ6/3F&s"tEx$.>mdJ1$":->T.[&ֻ}$^Z@6tUWT߈ \m0b"Ï'GNl3f Hy&*?9_tG 'n[bX1u2T}WR3A㱨+՞ʥR-Oas<[ {_1Q FCKqk̢Zq:dWθCYO ,7u7 u~ŋLQ$z%ަm@ gRiۿ ȵQHhm=l~8%"ܶ0Zwrc${\qfCcLg=lN^"$.%Uw ~R a[+mh4@ >WB79;oOLf lk p9 M=6LҪ"i$%Ec}"8& k)n'g",Mt.w^6}YPy[bJ>'I ˅*3ymWnF-N[}J4bY|~ 2FF<|æMOSVO;>4{L^&hn]:*X@m5GxfMۖ ]fǤ6B@^|me5>=``;R"u8J{lF@3zZ|L'Fhɘْ 'O2TJ grU-ʦN‡ҙ#H7ݡe˅.B"7 I*L?q;!,U78մyO+eZGrhXĈ6V/s ~DŽ-DTXHuAk70jfz<6Q]"#9|x]#ɾ 契_`q+,7LV?b\o k7䡧Q77%\:'W?SV! 0uIq:ԷH3?Y; S*vǿSwŎXdjdFH ravAÓ#J*w:EDv (a&ӂ7Yrͻ(76ڏTipeO(Pex-D,v8ْVOЛwq|/A"".::lVu#Bćr%DžiIb?<]_d8ܿw gF'}W^,+gX5"IV;*)?I5 FlT_<[͸ɬ ¾hp"P#vEyMmߊ3_+&u7"jBCKNxl)9^>,3%;7cfybW1N5`xVS`4Lb a٩6"^TظW$v>w0zlՆ>R,`@e4ϹιSB 02>h J abc1RP$PA]˟5i^k.dp'-%s?b]tS9|~B:L28<1T#631X^-re@jˊ|UqއQoO .S29Nv љ 7%OKg.OBb{sW,~6]YaGɜ5 f!^ݓ3 u;X>5aBwT$:]>i#cDZ>MAd?{U5dO)+lgŜLp;hi褔mLryxwdR]-lޑ[cd(nAF%*7{)+.]>Fg(~k $(Lajώn+h_}S°C.hC02 :k HN4dv/YuըOJu'BnwFY$Gգ3(B0򜮥;JO[ -Li^^뭈 Mpk0/dt=X$"˳E}=213nͻ~~=?5҈6+l\Т6r㮻0]0)!6-+K?ٞ]5DSU,wW|y47GYæ\vy䣦 fg F=X2ŚS2-i:cg噙G[A ;DwU.1a]J$k[RǼo u57yl˝+,&yK n0fd@C(?VNN%t雨yZ4# 62ϾT~i-bF,c*V%0`)=>ud)ujVDa+Mޙ_78(VKyKu\-dzn#/OKzA5msh~#$䔀%H 8u=Hp2!yA'hÞ9>9fwxZᾢΔ~ϤGjwtg$z}0 jM*ѓP-jfӕnҧa=nX` \0 KnU)yF9$rf3WH*Ϙ`-eS_Cg^`_i?n lg!:Ԙ;'`#YV*;pz#g:/_xHzv$ʼny]tL05i-&Sܞ}f[)/"jͧWT /I6yB;:ە1NNv 7^f./+2BŖ1Ŝi07%|%ƃ̒wu[8@Qv d#t)ua>Ѯ'UdJT:St("*j2^.d<7ڜbYf:PeTP6;j͂'/$pi椴+VS5XeB3LN_/ ؒUveyĆbJ{g"/4j$ Sĺ1: bB-TJg8LҿפM[l:=4>*b=e9]Qnoldfe!yF|I圽5#nnDP K7NQSzh!yaCBD#Փ1g?{_M"ABd3[cpmm M̏e-A<jtPA>\n:1.:Tc ޲DtAQS~nѤ +kP2Ƅ4,ZK~Q=46G,.h,I3C t:Ճ ˼AB.S>:D߽c ,B2}U}TK͒r$ J=ݷv7^!u渪mk :yo\5-dX+D 7P}H7: DE%c.1wRp'mP}¹BsFIBqAnc5aSQ70p34p G):Ո7‹7 f@=oB;vK9T;L͘(|u9f P.ҕBEs7&yGeluoG3#J3GaƱa ![>yE_ ^&}n6vnόGߖ-26"@MH^%Hh:DW/J`?G\%RĊ]}Y@eb? Y&?$sm'>l>ИIrk'0dapj~&]+ `d:Qă>IvnԷqH'Pp!o?7'3l'ԕUFZEV@,oYr:j4[8`s [\yklzYbˍ3۟`v(>0r7HG6u?k=q8cXgs'T~{7,\˼FQ~6kiX 2D\>4R m]RJfiץ5D_x{+VWF«]FM ufySAAD4!1d/QtJ"5itUkB-^  ˑM* M o`cMKUFvhk*Q\.L X M 3kn\UVs]P`wZ#Qʁ;)2lbY{\"2VEiWR)&&}@À#L?JMU|X,bt[ ɂ(]4NY6ɫmce5 Ùt g_,16KEݸ١G۾;vYw¨+gdZ4 r<+5>\܅rfzJj6zAEO%.oVDq" Ul9 \%$90 endstream endobj 1935 0 obj << /Length1 1644 /Length2 7431 /Length3 0 /Length 8274 /Filter /FlateDecode >> stream xڭVuXmi@a!fFf()IEBnii vwvfs?>q\?F}y;-DCIH=\\G 㳰 S c@Y@8 spqq ȝ'P=j똪j=?2< n   Ѐ!0$`wu0;Ґw\HD@;7 q7W(yE@0]Ppvq'!vGG`7(W(Gwl$nKܡ( ^߱l!;(}GpI 9+nfA"hw_uK 7ϭE!!.w1P߳ ۹#y@4p%\v{'Zp]HMe-[w#S+h\[2 n4 \.oCJ!SE"sGWHO/TzAt(#r׷?vC ~>aP3A߫O Op%ˣr7l"܍gvg`BƟz HK}On˰yq2 C15iսYYh)LyK$Fr*&bTĈSuM"DeYd#^ $GYq; RzIC1x<_=ⓓ3u ܋sW,-&E}/iRdĩl lJ}t;I:%KE:H,SDN% Y:U\>S"u[ &SE>ejqJӴd8k6lRH8֕bf!KY3/,M:-v/*VnOzkdfGZw㑎q[EcP?I%0)aW +QnUr9-eGJ EE$s-]|^O7AӅ_Hø7Dz6BS0K|(`kڮ//Wm4CGbVm}(H}'VJi]Ү27S/ 5!abB;J օI먢$NגA]F=75hF]u jB9 T$"=3c!n vM%L#c}Rz%an{輲7RJ;4Fޑ6bf ?V^WTR̴+9& ?0KU&+.!cBH9O9 *V֗kKNZ٩Ip 693XhU $$~=-CVnNfy$͕}*KԽKyGO^EW35'{_x5&kӓۊR,GK⚷y㫚R,/JmךL= }XtAHw8t tvS^.IֱY0)w[ ^+ylyVۅ* B?);tL?K~O,~r4JAÕ"KK5%Mx#b@ "xP@8-|ƭYå/3FBJQ;2_ { UasZrR0$3Fn->;Y^DZG &ͪmȇey qK)Fl Fd,S~ >[wla $$Dy$p$?+/R*"?}ůD; ʎ%Dxt^ބ &cקiϱ ?Bdښo7p|>'V~#S~8B 0籄Q1Ĉکz]T2gԈ%\a6h\}ޕEZ>["ܐNSV3'9DXrur_׶&eM7j/o'aczμEM{uY(:6VQ9VB`,SȌǐڻkV&`C(!a gmzd27 y=Ӣ%0L]7J QIHɷ`tGɏK XSeZ|;<cRŅ՚"s2nH)ft}s|.O4,ҟq~[Uđ㴏7$%pMySjCKKLc☛դΏF( oIAgGt7GM0&*71ýDV 1'|?'ݺ1IӶQ5-%l6/{0f}s[ǐesG?C',ep$Ff4YWؘ'҃Buy/K!9lk,#X{kr&1Jdi5m6;@!bn51RvXpk&cJqE+|`~Lx@샷Vhc&E6R-rm̈Y\?G0fmS5AgUӃ97WҜifcoq-sqNz1@fb'',h~co6ϐzW6'#5l7E)5=z ebdcqx[EmR-CY'Wn|]M=ݖNak]$jA5|)3[ -r4K9sկ#:["O)g1[ >Pvg}N{Ss+ Mz} jNP<^p%0GL(:bP"} aȌGZ}l֋h&jb98Fjh2#5o^S)~4zϾ6nqkFԹ"2|NU‰ u%*ӆ:i)eFCKVYBA&6",/@&3n: $k,\ϋgj[[~ W$Qr]n?+;u\6}mvkn##=/}wvmtH/RCY᜼39T>mMl".3q6:ʱ=> az䤀iCJyɧ9m6O+4G+ͫzbϬo*t͘ 1~uh:Yt<ך&A#_~2+ q{d Ak۸ yt\i:@#'yb[ z9hb]?VVmְbJISyH\U!M8?赛bGQY_Fs`Osc-%~\ T `M ɧM~&Vy<-`9'edSA6hM>j >:d{ B1?W* Rh&DwϴJ /L%ȏyg28i1ێj;Nixeg퓾BS8%ֺMs3~ TX™a,e,37K~av7 dGI&vqa.iE<0t/VW9c ;,=zqB͜aK>[M_#"ﰑf%asu)S"A!# q" p !1ȑ GqtHXi07r^ֵTڪ^OHQ߯Ĕ(j`IEg Hi 6q]LT 8gYwу3pi}Sz|:`ag@!V"lL^ȢԢվvnqce<}U{޺҅<[]7gzv+؁ȅ Sh{f}tKR^KC*S&@]+'{눃?QKw{V.%lh 9P% t9 @pVi.bL%BHw\BkbMuN|0*cFuZ:"sr$QN4*ȷ|E$qSjf!ܥ$ Nir}盂Y7IyWi hO=oc" ַ;}]Cq5JNc9%wȉQ̮ձc.Ij}q -{jHvCo&=k"U QeGބnV,∓H_e!I5Z_v'pPO|0bԶY C/b5<_gunbC/XːY_Ebe-_a:&NϤB6rJ.ڸzuL3fġP[.$Εv}kKtS%RB9z֣m/p FV"޸(2ةσ z뢟=uzU6b"N*]1,N"OnIXm0a2ˌR4t?L;{1w ?MnJH=SS/o*X16 }vE58PCW kc#zҸ;ivfҤ%ߞX'%“ ~֋!U5s-ZnyU61$W~̳Cm"6 1Fnyj 4xpb6Mkͳ8qsBS]ɋ<"TtͥҨ0onz1MߒN'PV4khMK){8-GQ&;U5xr+8vvLy^rAkhޮ_9{.G⹓㤫BXLsF%<@.(w1&,P9|Es< 8c=^m+Lt'8XmEG)-cib /O.+'BW ŕ%|- KBnAМ}/e.C[rN[?ZtoѶSu-qr#,[e3]jOn,|X;ӶRquJˣ~",eNFR莄*<}hes?h`S 1a,^3/d0z-tI7/u_T\芴%I}=EDE_|q7D7 𸁗&smq2\AuD1vSUe 7qvp5tP`6R=nK8xL} x춘Sީ廏 d 9#~Xwmz<T\%VMGO8.r{38iR<ږDN^ӫF׫X`㙴YrŦc˿H97MnY-ՍЯB^ yuA¼kZj_גRH1.? )w6Zp"wO/DVhȬ8fcty@R֓%\fit%yÉhv 0|d\ι6cIto.mD,rQƹi/;z %u ߗ"uGX"X˄_!"9k-fS_9`̑>=P뤨?'ߠsyгñn_Z65U5L]wKQ{.Q'EϏ? yU_ܠ@cfEd_7FxtljMa#AGkhߎ`dGgAZ7e P#ZVUyb\IE'X!2z endstream endobj 1937 0 obj << /Length1 1647 /Length2 13150 /Length3 0 /Length 13995 /Filter /FlateDecode >> stream xڭucx$nl۩tl۶I*c۶ݱmulN:N7{9s9Οo]xZEA d 469102sl@.Ye3 g)'# B h'jd 03|pqqQDVNj5e ::I2Sheabf5s;,V6fE-)y @Egc+ `34GO,!G/=7``d' >w~Z~>N&VNϨ؎VjhWI>a>NFVv'37bLm?c;Xſ28Y9ژ9:~|b՝ /۸ ?srr41gc3_"eg0CnlO kfh>02ٸLN!3H_zwC;~? >o @ױ1rupL/W#[+߭5`!,>b`acdQT`ndټjvf6Vvf$O'fөZZ| LOIYM\C\+~N?"iM0 `#@,z99XtYo0bv&@ӿHsSg|ffnf&p+@@Ԍ4육qQ z|*`Oj6Wkuc${©۾4H UweMo>e;݁?~ bڙFռ6;θ~+d;#/K/=IJ] fJZMe` d>>]v ,w)I]; 3+zڛ3i*P_ۀI]WCw"|dtO?h(}<Itj.ɈLԬRnr54Z6R+f<;+5ae-9MwGWىQr=,VaE @rBp \bZ\\ak%2FzOPf|Q#NUJv˄l^Z?IJw'QU;( 8;4WFS~zlY`rSZX0%DoÑ6xy09kP",f̯[pZ1oܰ58&HRg:A1vóJCI/S>:np2xۅ@BOufA;z@UK"&mEzz` |o\_+ L_M5,jiFSUeMNQ- pFJ{ REV6Ԉt7bɑus0F>vrq1VYX̶ȭ*e0+e8VSM2ׄNO@Em`~![6|}AR{Mp:u?|p% (mnGIE׃Q*lr?Gb$.m/Ȝ%{y5id;FXۙoW]+t$ؓ-mDWI%)#6A [WwX]sn횾|;DZUqwlv9LK b<%ݭ`/u7?pw؅nijr>4GRZ~-ə)Z*?rFɏ[qR?%_@*<7"J2Rt;uQ%cppURѷ,hCFxc+> G^k6vƆޫo$u鈳nv VO `]Jb-Q;3 \Zu k k՚2ʰ%$A 7Nmy̨ Z'Q^U2e'~T՘lW|fickB)(_f>ypl׽DlQ;8"hdȺk1-zĉV1* bk4+STxCAG}NqэftgV>|q eL~ t,iw;7}1kWR5=,1L\ |/Ṗo8~V'dy30sh !R;Huj{& v tw|ᇲ! \}fE} hVJOX{7J?xXye\`> r=>ZnNPkǙ\0J+&,m|@ھA2 t.?!#)&8 wȼ_(\-S !Ku`|[ϰrP;plda7Q-Amª}`yI{@m>čMJ}_ۑQq ;H/h~ש8MVH*TE $ۀqljPw/5/!W0#Vm`th<>k5L @Et/~ Rm![|}t%Rg_3O?)S*\ar#i߅a+㞍)1=WoM5[ S/r@V>nбףR2B$֠Yr12:=*9i%Ah. }ds{=ጭEޘ*d>6;(aUpOܬK9T va4%}' 33{Gy&ZG;.H\k6?ly/]shnAu~ݴB G܏Dp,.2_]wIF5$\KG]UI vMd赭=I7ZD*@5wd٨ &h:S^`ẇ2]9zOz*c@4%,i]TQ`ʳ^qZ./2U4arehk'ԿBDɧWav1F+u)~zJCtFkt=W2uƃ-^綱4Y{0cru|A? REĩ= Y?|85 c,C\IO*@0݉kƉrnz16sSq5sb4 QG)WMg:$Qqچ=T* H)Ә]p54Jdhg{pM맄(>]˄^uZPawL$Uq:SJۗjFhj?#fd UB3hCߏ5`U[$1XIˮdU׬i2g0Ʉa3etQn|·1)&gP9u/G~nhȨخBP;[<"Lth߲WL[rv grGp+a$SG}x1P~,cr&g,h6ͮ=vÞh fR9ij)HQk> u `TW-`3Dzq2 P&a*>l>7qB?FyaNFQ$;Cq2wB7L/ԖN)Nif*r_ty'*]9lR"T2si5+nP,R_öo,gh_ώ]Or@)3)Nj@cj7($aFz'x9[D$s_23ZF:u7pa-{ v?xG 2YYm_@޹[o"?xB =u~_:U`,]ލ^@-E[Lky-TKXJԱCl;z{5 S6Jy8.NA@QVN[5k>C{R[?ptj,?2f~$0 2ϳTq ^@4P֢hKaA\ }sxa 癠;˿ *iRJg5b [uޣo*Q>Df]TxD{~sŇJܧk}Rom.ūD=dZx6#}f)²a–7:_CreF  %EmQ~߷v~",:AѾg{3c96e",)8+<+E/SSX=9RRBj#of@|Hia)Rp5RI@@_#{DƑeDۮ&>EIQZʆk5|>AدQK^Lv>u^wvo(((M! L( (.=Tmmso'9l,zGGp,`jP7(Á(F" 98n>[ȳh l#IlAv1ohk FȾ%]Y mh[=umwѱ#i*\lZ_(ٽIG]9ze3@ѡ5h5ykZ21!5S,eHI;9uc)ˤ ACQ~+g4hV tK.gz4pcikN@KL }",89kkQ'Ͷ/5h$-kYYf#s{#@J͙ SͬH@v 1NѲ-Gh'E%?\䈏VEC B5ݯ8?W͋5OV9mkU*1){$R*Q&*t1eǑ9Ai8Zٍ?V?Ey6ʹZ.qTZJP.~z$t/ aL` TW|{B =7k밥y0d Tm\K$TqU+5 H{_z{LJ .bλ 3xhJyDBfQL$Q֕ Âp5dS>*&%kv8+ @pbTQqDde'A,ץ5:N}iײ4C04F6ߘxZQzG :UJȸ&zW4]=ܰI>a>O,7 kqlX`0҅wQ*NiXM2倯mT0f|s?Q4~ړ۹JSo15 ^w(GqM9x۱Xme뢿~Ea|kԝݍ0LЋ]m\ 44bbwn,̪:4=bܔifk&ߣV7-- T}i_S"BlpYtyr|[aأ1 7 q 1ǘ2)(wDbY#0ZlG֔%xeS DEvDj,j JD% KQV9Ή=;رwXUU>t $8XZ2AlԍzFIs¬_4Op&i &-Ïģ^9F}X\.v.lǁĖÒ~\?Nyxk_u- כ;N36?d#E!|6=4& e2DI ERr@L(8xu3}}=G'[ҊTt*U֬Q,Mtb @ ȻO~xp3iT7/X`2/'bK{xq3x?ȥCYle'h_tjR1qg<ڜfK;3?qB2&\U <_I0FohF"q!PJvo' \oi{:0pYW#cX WNx"? U{J2f:/Xآz \1w4PvͅA$x Sw"c1Ɣ%n7;@"Ϥ#cg^|唱Nх1 qաPSz1{,nFo65bx2e_3 $:0˩= "<̽_h {Jz6€f# QbZ JH$$H)#"m(cKxr#AgK^Nht9q7DyˈT{-jy v>bhnsY4lve!ц5SO%Xm8:QQ\žx}αg+I5B'|:φh[>{Ic/kuפ_Q*H'q/ ZVVFge]]$((S۪m 2_jnTJ.C*TruF^șU0ڹ7ϔqeʫjIxαɓTj+/$YL_v(G|~.~p`K~? ()K,hsN6>V`W u`[w0ќ^apͲYCoJJԿ`&f})UBcBX90Q[|u * <ӻzHmA6e ohn ӱRc.Τ+{8 %z-ԵEо TD6\ ^^-n.QUxHMygČb?=edU2[&*!G^YMNܣ Xg=\$5KwJ[ AENCr0(nr7Pn>x?&w)QEYN=ZS3fY(-ϟcݨڔm@7a133c\8`A<.WU)Or(*' 2&G9^z5? E!K/MRLkP]oohMpl As`3V=ow=p: bl1d }Ä\yi 1Mw k7`VROԧ UǴ)ᬄ~B:TKfj -m)sYIj{ KtY:GY#:М@Qa|:M!lElJYtK8 k7(/PcOt6 fu2lqO>Fã>Xޜ4voF;ݹ”CWxQqmz9}z3-kFǸ~zj] ˿nʅUh'Bg=uUB>oW:\^d(kQm*)*p;#ۆ-Bw.&мZI}o5 ٺ+;Lri0Lx?bhx6p8Dx-PsDkChԎͧPjy-cv{Y<#mV"uA:FZ&jrR_z&O&d7;þkՀmpH ZΣNV=M<EWw2ƥt>m~[(2$p܇vjyjE_ yM&>M|Rٖޱ9:fktu!ּ'"莩Ł[NB8:&̍09$-c@ӐiSM8]4Y72s /:rSFW#䔳/XkC0)>p$![<ĪUGSaoeޕtr1I9o\9\YۨR:E3 (ߠs, . =:c{hJ=@;`k 򻇹WȽKskk;V*i(R;YTġ_6,<lK他`Aq,p@_H ܦ~XTXƋ#0j5ǁM]hX=q??"qIAKޯA`mB 52Z֍ YkqrCqܣWQ`2 㴩FNRwtKqSn6 xeh:0~eY) iђ_ύ*J3lj#b.8#r.}旐j 9<$cphFD|HR;ujë\kS/}BygX4Zr^D4@wשC;?鋷l6T㏔lܷ3Z_4$/w`"JKUz W𞾯?!Zvv=߶))ۧie5~lf#E.G%TH !֜dˌgja7T Uc洗~n;J&5@n]Vh+Lˠ} m4vV:PN F~ SDL;ˮ+$3 4r',9bNPr9ᄏ{?ϸl׿,}pΧ岟]@xGv!Z> [9Dt S >@NM^3ߺX2j(f j# V?#GNu]dso7sLfP0-&9_5jL`( >PtC21베GԆatiԔNv$F~z C55"@Y/ /  1qIwT5409)'o\ϖh󵨷8$ZP*o݂cW/V)d`z硐g3YZ;I 7aqB>aDO@Z+l|T@Qal`E;>zV*YMp%F,_$ XG@vϲ[܍z&V{50E%G6ZndPޘ "PL /IyTC6`[EGDEKގr^+ 5%˔|%iEd]ZhsB7Cn(vAI y*r`"QIi5/rt)@r.fI.%Y7Ig gHo{~/ڕYcPb2Cz%U7~!ٻ%7aZ6v4Mî/DžoVR o.h\3ҁoݍȈìIऽ.t ­OvvSJmyD_!rth'I5 !VQeq,Fܵ[p 7 EqәdKT 9hdq'3NtE)zt=#gf/< aFXsj?l9E֠*"lpc#_צS15LX.;5'Vly@=.5od=[/@}&1G fql)O fSwoks!)Fc*fC~sֶ>6 -yi܄bb^ފ)\MDl}uOEeK.ϛl1v]23%0J9qzL ?#%]4dXE% endstream endobj 1879 0 obj << /Type /ObjStm /N 100 /First 1021 /Length 4960 /Filter /FlateDecode >> stream x\YoH}  h 'ڶ#(6c,%3~)."iI\ ).Ūo=B2W:̕IV>wE< (HJJ99nT>pd:RMd r4e#10P2J HpɬACNccj4YKAx#A_2hA1O:cUidQ|ˇ8ucԩҁ)eBb2JPЌ hxŕ {lW)/d_/$?O;y<6M@OI࣌';aq2O>BC*z2i.aڦK%xd\Ί3׿v 4xJz\UQm) S4H!Hs˛|Hi{&4ۣv҆VzeP iR]ӱL9) n @1)rPwd pޔiT}0u4FJ:** 6(mj)LGR>r T mawF)H*5T@g#D*]ME&ƤP{zO^ĮmZFkX' ^Ge 0|- B.-B wT0 HO!إ" $ pyɍ4GMUpdCw@a 1a21TYk 3 "EЀH*`D۴K#cTL<"ʚ(jH"St̢B7T5FmEk-J <tbqQEI9\-""F;P9APP#Fv.`3,C"@/sGDUi`#BAs_C{4\ JA fVMZlT BnٝBrU8{0Ѐ„;ꐰ#MlU1S XX:. QMSeX2 LCUl *oQ=2ܭ (hw(삯#q|Ӡ;e`).§+$0Rs7>aJ0X1r幰wCA]Sb#$!b3Q mF :L1c휭D@&r4-fTiSei6 oH١ƦcL6*|AABbdž:_)>nN@511"C"(Pk{!(SDrdHg\JWѧzd<Ǘy~l$ Rk(]|٫#I~ϓAF 9@|acn*(+w^_}_M:[D=ߚ[E9>l">_?sbk!_G:Ho=y e>(熎Fu*^INQy@G)U|ߢ;fd9[(q0K`UG 6[q><& 04hV/LX1ֻx99&>|#HZM?1/'Nj-s s/9'~IF?'%!df&$N,6)(-~!@* ٣9kT+ǜqV߇ʸ|A]B0Q?>ϣGo(W*M"{&b՞yzey9.%cdud|N]5RkKh\>i Uˠ8>mn-&-bzŕy|~Pm5tϣk{ank{&rx6JLe8R朅_OJr']9czR~NQGfȣ2! OHFNC 4LܷDf"]/2%ܫtl#2ui1M-3qEQB=1S^Vkzl g AY`42nPηؚYllic@PF6݄\5y:k""jPFԪ &9& 3M{S "yXj#.%Njn㿮>J> 7JoiQT*o>JveY|kK*͜NlEzD'B%uݎMl/#Q)??ߺL*oJeh$xv柀y7\4UV^k=Ȣk]_+MƱZ?"^v*[@=A{[|[= ޵[iop;2_Q[nlD^y-ϭFu}&@zU6㖹7Q*s_oo]sx׌&<}]ߒti:M gvډR#Oowy.g&r>_ .p{)pc48%7;Ub-nb%سb G Ĵ2ZbL..e1NNh0;3L9%mC( v_ۯfo`pFԼ=SVry:8/8r\ F`ZxT޺]zЛH{U"P! #m6bض%(RQhT\`lTf.Yvq5/G_+ "mŴ8.Ë"N';^ GiOv#I}x$HF[q=c Im!>>XћGv93]hGlnxʴ]#1 h?;>rRiVd_<fq6.k#j2/N?i6Ugw'>~;>fYG+y*0q y`GQrRүٳy"{~8{f`v2 'W|8:-p~s/1x#h2nhۗOnr5ΦB_/ϋqLwx8.b:Q\\ mǃrMaV\ KgşXs68|Z j|EO&m'Ob:隐(~W 9% MH7U2>ӬʍBӽ{G/^| v&z x[`ZĂxPJ#,Zp:QK(оy}jK}-P.b[vٖ] sZ`$Z˖ j?[uÿwţ6 "_:<ꋇQN!9v%|%98x{Gt0==zl9kwlyw<=_amGGu>fW\ =6°_<=x[ݣ`챸ielyq:\#`IL5y ;VYߞH"o8eZP)L&eg+ҒnB. QO_.ja{W+onU*$~ 4_BTUG4hrL;z_o>g`k lq|R̒\5ѡmKݤgY9jEfNF/= j;:m'WG/ݧra>-I@N"+%_9Y U0U9̨ LeW]Vj~͢˰Vlֲk[TKݟkw0TI]MB)-(hel-UCXG̊#ko:WEWzs?Dd';ٳAutt~>+R]~%ֵ͵EkyBby7HwKy|/+Hѧ@6 > stream xڭZm>?v]eKQ~e7@6*,H D0\}}pazrUk4>00FnƆ8 ql|Ш;DD6? F# mތE xаӆ ȘFl95 9CI77)D{b L/ [ ',3AJ 3 90j>Ʌu' v IDp3 73KJdԲFcčs!\$8s [N& V5dSu61 4=+?)&xY,!, /%Jrg> #DAT_ h$ m_ c D@IzT[Gx%A$UJ@Vx)8UXZuX3}"M+*+8'FD'"=j:1jLkz7))JxL|ţWuhzMQw:4^?{.WYs1 pt>/qmHGO_,A7on1u!;9Z&=Q,3}9;/zw6)J@GEIoOxOJ,,TEئWOWݑZLg!/};&sȗь{.Yi~oUxhidU fЬ캒%{"9gIוC)Gae!CLYn+.rX5]<-"\wׯX;o949̓͟qw'_ f%1ZG]R6ϩMƓ&;ډɛ߯S,-g=w5y~۴MIyp.1[>#mQT8pN@8-֝յC`M]"mkq0[8=}. ;6ðȁykQnٸ "]UO`٪{M;V afOC>BZ*NӁH5(TJP8pn5Zr^CU,ƷFz*s,$̈́g'HЭUl۶&{c%ߵοuۣfSk54[={5%&أSkWWgutӭ}T>rd@QZOۚQoK|WNͮl h [|z\]n{qꇭGJ+`knjܚS~4é r`yAc$ k\u0Շ:q?(,\0wP.?:)A1\y)ߛ=y{s{d?-nJ>-O`/Ց$\,%PR)1iZ(EBZb!άjQe~'"Ѷ'O )oVCD]6;&0Ƒz 1E`[ajtvniju4}?v*]}Ћ4vP ߋݖZ1gۉzK-NLcR Irc~4pS d%O MՁxVeWDg { ?@a01IR{g8i6};I[n֍u%CUh}kS-ru@톨S:ŸJU;;dP0F2",-bqkߑӐvܝOG,-U}z:Bϥt1̾K5O}qI4$&Iݍ}tޏ2QQz˃Aɤ+"1~Bon[ئg[s9+Q,ʕC]*F]cUط=^~LIc:"P"R͡ra8/E#Mq0CtB vg$ORMB:i&F \ t5LF` A@&]r \h$}R`W:'bQ,&+W١Q75O<םG Rq:"U :p0/bӈݳhnL h:L3q;GaD:hq0sFx}Tū8 v iHŚ؍}6Τc\$HSGԢ醋#=X,J.R4Q9s[v*6ּ?q*^% MhnMQҍrlrdj~hN-WDUf&n.hZDqs@ZX$Ĩ}a4s}?v*][0)HY&ȪE9K:qlNVNa@DL3JH1O!faH}iXa%!Լ?q*^>#^SHty(QZ#r*:3u0&-ч|7vD:NCM1k8beOG*Z?u*=ۀ endstream endobj 2043 0 obj << /Producer (pdfTeX-1.40.20) /Author(Robert A. Wilson ; Richard A. Parker ; Simon Nickerson ; John N. Bray ; Thomas Breuer)/Title(AtlasRep \204 A GAP 4 Package)/Subject()/Creator(LaTeX with hyperref package / GAPDoc)/Keywords() /CreationDate (D:20240104110416+01'00') /ModDate (D:20240104110416+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019/Debian) kpathsea version 6.3.1) >> endobj 1964 0 obj << /Type /ObjStm /N 79 /First 811 /Length 3875 /Filter /FlateDecode >> stream xڭ[[ ~nu%% 0׶q (q颎װ7 !*Jgflعx]40&?Z:YHk<"/@9x9t/hh[F (%yy:; Ӓ|LGXg+\H2R 2/v!]1ԅUnʤei(ZAmu1Z9. $#."ʼY (cGdm KD ) luhȒ4_(t6@hbF%焛"sIlbvTFh!|}$1 7vdWF`I-[[Cif%v/khM2$ -@؝vOhF !imnٌ̓{$ͅuHG G(~p,I$ͥ,sIgАyC杗 ${9bmWH[Rj.W=X#dXHya!ښLtV|R8N[}@{ޓF*ҹ6{{~\U>dƁw5'Ýb*J0OamrKt7Kl]$dDx>e:&a ˋcgJhH@€``)ZL˪[M~u:n&dʯTΆdz?}rXq1CT 1#.2Z j+2сsm`(e*Pr59U\UNyC,~-Ԧ=CH[4-S>'*=/ jv9gHXg l`NnbPC YJԠWW,ٻI}훱_D1{v₲m&>Mm@ưOp6~Oṯ]@fvړ)G̞U-~uNwt[*at%g"RxO[JiRdiKaCij[ʩl}%Q6%3 "LB^g;[޼5*C ?yq|D=RX\~?g> 6߿z{ucڟH;ھDPJj-jcMӷlZ_}MP f7߾fqPX,b'i|C|xgå6oа*G=UOw~ZcZ!=G˵=0gvx='Mb;+F"Dcaof+ 1W⦢M=0_yc3Z\_geBl~cT;X'=1vRc"gy|=U?|WLd;'ޭ孱٘h[["c- Z-F3c >n' ~D?-|Yp4!{>RK%y&J#nl-OL%ʏ GG3r#>2D/LK۵oYqKhh}3s-y]KÖ*!nR *ݾr?ifGyڋ;ryAD _2W1Kgec?A)klAE9CEX2(@" >by E1(A16PP@oH_|~Y$cQ bX̎X_?@?::,aQ j;X]ZhUC(8)](k" \@:[#+\ 9ȹt9}H{__6pe A,|}HveTESc/sbFdJt:䯃Nnv,Z助m-Z]_"E+Wr._*G)%ny}rۚRmb_EyQ4۝W?w/ǻ?xE‹J+i=Oǟ_^07LEn$ endstream endobj 2044 0 obj << /Type /XRef /Index [0 2045] /Size 2045 /W [1 3 1] /Root 2042 0 R /Info 2043 0 R /ID [<04A4272D2CD4F9D0A0A86C518D0542EC> <04A4272D2CD4F9D0A0A86C518D0542EC>] /Length 4860 /Filter /FlateDecode >> stream x%kl]^|_'_I8c'$8sc;qر/q..PEժЪ[U*S`Ajeg B]itˈj?LbQ+ |P>~y<s\8|PpcN)qłS(PD*"(65V(AuES 0H2FD]uKfNRwbPwEQwb+hn;Z]x@uS]ԍR7GTAmnQ7K u3MQwb/8A u7)}=St.:3)x(sRwy0DuW(SZn(@2ŋ`;MRƩR|q:ui7x㇩n:w/PTZ骱gOE5G uWu7(AjUj&uQ?5^.u!j1gS/Ep Q%ġp M4!҄^X"C8fxHT\!愘bN.h. Q%Dp 膊W6F_B  n>h>2/">!Iw(2tZjٿ@Pg*(fP`?I-tl:V(]K~tK1sm4[e,XIp Zơz 'nj-*UHVVpQQp\c а.~Q{IC,qWP ` jip̀VXpmUe6>f6 XX!x: ش/V(]<^ӊ'@O|dQaM6y%R^#YSN+塏>x&{ukoF <|CVCO;:{ڣwZ%%xgxQY+wx! 2x Yh;щ7nF_ƈ.Z 7[AYFxu+n၇xՒq2olYpMq_wj5|DKV7xHKnҒy/iiꇾV/hiUK Zz` _@Kk>-[{_҆5|Zzh ?\kxYKq񟵴iMjiQҶ5Xn1>Xh!p#y6УHőn&]+E F5^!pG!pG!pG!pG!pG!pG!pG!pG!pD EPD EPD EPG!pG!pG!pė&OFxiFxiFxiFxiFx1yTIiE|K^lMmC