gap-4r6p5/ 0000755 0001750 0001750 00000000000 12174560030 011127 5 ustar bill bill gap-4r6p5/doc/ 0000755 0001750 0001750 00000000000 12174560027 011702 5 ustar bill bill gap-4r6p5/doc/tut/ 0000755 0001750 0001750 00000000000 12174560027 012516 5 ustar bill bill gap-4r6p5/doc/tut/opers.xml 0000644 0001750 0001750 00000046027 12172557252 014405 0 ustar bill bill
required filter, which is made up from certain simple filters which must yield
cheaperto execute. For example, if the size of a group is known it is easy to check whether it is odd, and if so, the Feit-Thompson theorem allows us to set to
elements familyof grp. For permutation groups, the situation is quite easy: all permutations form one family, , and each collection of permutations, for example each permutation group, each coset of a permutation group, or each dense list of permutations, lies in
caretoperator denotes conjugation in a group if both arguments
packagerefers to the ⪆ functionality for group actions, not to a ⪆ package). In our example we can do this by simply passing as an optional last argument. All functions from the actions package accept such an optional argument that describes the action. One example is .
no check. But note that horrible things can happen if is used when the input does not describe a homomorphism.
reversal of arrowsin a homomorphism such as our original
betterrepresentation (say, a permutation group). We call an injective homomorphism, that will give such an isomorphic image a
nice monomorphism. For example in the case of a matrix group we can take the action on the underlying vector space (or a suitable subset) to obtain such a monomorphism:
handled by a nice monomorphism. For such groups, ⪆ uses the command to construct a monomorphism (such as the
nice objectassociated with that automorphism group.
missingentries are treated as zeros, so the results may look unexpectedly in such cases.)
if and only if they are equal=
the generators of a domain, it is always necessary to specify what notion of generation is meant. Access to the different generators is provided by functions with names of the form
no check, and the functions whose names end with
ordinarymatrix product defined for ordinary matrices, as mentioned above, we must use a different construction for matrices that occur as elements of Lie algebras. Such Lie matrices can be constructed by from ordinary matrices, the sum and product of Lie matrices are again Lie matrices.
three-dimensionallist
knowabout its connection with
⪆ 3 compatibility modeis provided (see ), its use will disable some of the new features of ⪆ 4. Also it certainly can only try to provide partial compatibility. For a detailed explanation of the new features and concepts of ⪆ 4, see the manual
Programming in GAP.
redirectthe text
functions areBy
no check. When fun2 is called then it checks whether its arguments are valid, and if so then it calls fun1. The functions
immutableobjects. Such objects cannot be changed, attempting to do so issues an error. Typically attribute values are immutable, and also the results of those binary arithmetic operations where both arguments are immutable, see Section . For example,
bypassing the dispatcherby calling for example
parent(instead of
supergroup) was chosen to indicate that the parent of an object was more than just useful information. In fact the main reason for the introduction of parents was to provide a common roof for example for all groups of polycyclic words that belonged to the same PC-presentation, or for all subgroups of a finitely presented group (see ). A subgroup was never a parent group, and it was possible to create subgroups only of parent groups. In ⪆ 4 this common roof is provided already by the concept of
officialworkaround to set some components of the mapping record was quite unwieldy. In ⪆ 4,
official wayto construct this natural homomorphism was to create first the factor structure
operation homomorphisms, have been replaced (just a name change) by
words in abstract generatorsof the underlying free groups were (mis)used. This caused problems whenever calculations with elements were involved, the most obvious ones being wrong results of element comparisons. Also functions that should in principle work for any group were not applicable to finitely presented groups. In effect, a finitely presented group had to be treated in a special way in ⪆ 3. ⪆ 4 distinguishes free groups and their elements from finitely presented groups and their elements. Comparing two elements of a finitely presented group will yield either the correct result or no result at all. Note that in ⪆ 4, the arithmetic and comparison operations for group elements do not depend on a context provided by a group that contains the elements. In particular, in ⪆ 4 it is not meaningful to call
componentsof domains; besides components that have no meaning for the rest of the ⪆ 4 library, such as
oldobject and an operations record, where the latter was a record containing the functions applicable to the new object. After the library file
Programming in ⪆mentioned above.) The next step is to write a function that creates a new object. It may look as follows.
the integer. There are some predefined variables coming with ⪆. Many of them you will find in the remaining chapters of this manual, since functions are also referred to via identifiers. You can get an overview ofw
the ⪆ Tutorial, but also as an introduction to the system as a whole. ⪆ stands for
⪆ - Changes from Earlier Versions
⪆ packagesand each of these has its own manual. Subsequent sections of this preface explain the structure of the system and list sources of further information about ⪆.
namedobjects, such as, for example,
stableversions of all currently redistributed packages. There are no optional archives to download: the
total degree first then lexicographicalordering.
themesare provided. The display is now adjusted to the current screen width.
colour-classesare now handled by the graph automorphism group and isomorphism testing functions. An automorphism of a graph with colour-classes is an automorphism of the graph which additionally preserves the list of colour-classes (classwise), and an isomorphism from one graph with colour-classes to a second is a graph isomorphism from the first graph to the second which additionally maps the first list of colour-classes to the second (classwise).
tree hash tables.
keystroke. This is not the case with versions 6.1 and older, and has been reported to the GNU readline team. In the meantime, we work around this issue in most situations by setting
UParrow after starting ⪆ yields last stored line. The user preference
UPand
DOWNarrows. [Reported by James Mitchell]
quotient representationwith the quotient not apermutation group.
old. It is not possible to provide test code because the error condition cannot easily be reproduced. [Reported by Klaus Lux]
associateand caused problems with extending the functionality to nonassociative loops. [Reported by Petr Vojtechovsky]
basiccalculations, such as the order of an element, and the same type of problems can arise there. In some cases, working with rewriting systems can still help to solve the problem. The
low indexalgorithm –– can be considered as well as an algorithm that produces permutation group quotients.) , as defined for general groups, returns the largest abelian quotient of the given group.
legacyinterfaces, but we remain committed to our policy of maintaining upward compatibility whenever sensibly possible.
dictionaryabstraction.
interactivelyby ⪆
New features for Developershas been added to the ⪆ manual.
Migrating to GAP 4available at the ⪆ website, see
nice monomorphisms(see Section ) that represent a faithful action on vectors. <#Include Label="IsMatrixGroup">
short formfor , one can install additionally a method for .
and before theEntering break read-eval-print loop ...
line is produced by the functionEntering break read-eval-print loop ...
yankcommand Ctrl-Y.
terms) are compared first by their monomials and then by their coefficients.
Laurentif it occurs in a description. <#Include Label="UnivariatePolynomial"> <#Include Label="UnivariatePolynomialByCoefficients"> <#Include Label="DegreeOfLaurentPolynomial"> <#Include Label="RootsOfPolynomial"> <#Include Label="RootsOfUPol"> <#Include Label="QuotRemLaurpols"> <#Include Label="UnivariatenessTestRationalFunction"> <#Include Label="InfoPoly"> We remark that some functions for multivariate polynomials (which will be defined in the following sections) permit a different syntax for univariate polynomials which drops the requirement to specify the indeterminate. Examples are , , , and :
is less than, i.e. they return
compatible. <#Include Label="RationalFunctionsFamily"> <#Include Label="IsPolynomialFunctionsFamily"> <#Include Label="CoefficientsFamily">
defining attributesthat give an
externalrepresentation (see ) of the representation in the form of lists and are the defining information that tells a rational function what it is. &GAP; also implements methods to compute these attributes for rational functions in
conceptualrepresentations that allow us –as far as possible– to consider an object as a rational function, a polynomial or a Laurent polynomial, regardless of the way it is represented in the computer. Functions thus usually do not need to care about the representation of a rational function. Depending on its (known in the context or determined) properties, they can access the attribute representing the rational function in the desired way. Consequentially, methods for rational functions are installed for properties and not for representations. When
conceptualrepresentation in which the calculation was done is the defining attribute. Iterated operations (like forming the product over a list) therefore will tend to stay in the most suitable representation and the calculation of another conceptual representation (which may be comparatively expensive in certain circumstances) is not necessary.
externalrepresentation (see ) as lists. Functions to perform arithmetic with the coefficient lists of Laurent polynomials are described in Section . <#Include Label="ZippedSum"> <#Include Label="ZippedProduct"> <#Include Label="QuotientPolynomialsExtRep">
sign for positive integers or a+
sign for negative integers. The size of integers in &GAP; is only limited by the amount of available memory, so you can compute with integers having thousands of digits.-
conjugatedchain need not be a stabilizer chain for the image of
preimageof the stabilizer of
conjugatedstabilizer. If, more generally,
conjugatedchain can be made into a real stabilizer chain by extending each level with the generators of the kernel and appending a proper stabilizer chain of the kernel at the end. These special cases will occur in the algorithms for permutation group homomorphisms (see ). To
conjugatethe points (i.e.,
conjugatedSchreier tree. (The ordering of the labels cannot be read from the Schreier tree, however.) In the generalized case, it can happen that the edge
old, i.e., equal to the image of an earlier label
oldonly if the vertex at the end of the corresponding edge has an
oldimage, too, but then it need not be
conjugatedat all. A similar remark applies to labels which map under
image partition
image partition(hence it is an
R-imagein analogy to the R-base). Then &GAP; will call the function
image partitionsmentioned in . In the centralizer example, position 2 contains the element that is to be centralized. In the case of a representative search, i.e., a conjugacy test
R-image. In our example,
R-image) to
meet strategy
meet strategyof
meet strategyif the refinement function in
meet strategycalculated by
list of inverses, whose product is then
list of inversesis extended this way whenever
left objectto a
right objectunder a certain operation. In the centralizer example, we have
list of inverses. The preimage of
hardwiredinto them, but we can install new operations for automorphisms.
cum grano salis, e.g., the declaration of the local variables has been left out.
keeps object, as long asa alive
inner workingsof &GAP;. These files usually do not contain mathematical functionality, except for providing links to kernel functions.
(this catches both and ) and the installation string or the operation name. The following tools from the &GAP; packageMethod(
hidinga variable from the user; namely, the variable may be regarded as of minor importance (for example, it may be a function called by documented &GAP; functions that first compute many input parameters for the undocumented function), or it belongs to a part of &GAP; that is still experimental in the sense that the meaning of the variable has not yet been fixed or even that it is not clear whether the variable will vanish in a more developed version. As a consequence, it is dangerous to use undocumented variables because they are not guaranteed to exist or to behave the same in future versions of &GAP;. Conversely, for
The gapmacro.tex Manual Format(see the file
a, which is a root of the defining polynomial of the extension. Polynomials of degree zero are displayed with a leading exclamation mark to indicate that they are different from elements of the base field. The usual field operations are applicable to algebraic elements.
help). &GAP; exits after printing the summary, all other options are ignored.
snapshotimage of the current &GAP; workspace in a file. The recommended way to start &GAP; is to load an existing workspace file, because this reduces the startup time of &GAP; drastically. So if you have installed &GAP; yourself then you should think about creating a workspace file immediately after you have started &GAP;, and then using this workspace file later on, whenever you start &GAP;. If your &GAP; installation is shared between several users, the system administrator should think about providing such a workspace file.
snapshotimage of the current &GAP; workspace in the file filename. This image then can be loaded by another copy of &GAP; which then will behave as at the point when was called.
by handis not recommended. Important components are documented via index entries, try the input
group operation. In &GAP; 3 as well as in older versions of &GAP; 4 the term
operationas in and
operations for Xyz. Here are some examples of such name changes.
an object is changed. You may think that in the following example the second assignment changes the integer.
listmeans just an object in the category .) (Due to the intended generality and flexibility, the definitions given in the following sections are quite technical. But for not too complicated cases such as matrices (see ) and row vectors (see ) whose entries aren't lists, the resulting behaviour should be intuitive.) For example, we want to deal with matrices which can be added and multiplied in the usual way, via the infix operators
homogeneousmutability status, that is, if the first bound entry at nesting depth
the generators of a domain. Further note that the generators may depend on other information about D. For example the generators of a vector space depend on the underlying field of scalars; the vector space generators of a vector space over the field with four elements need not generate the same vector space when this is viewed as a space over the field with two elements.
no check.
sampleobject. In some cases however such a sample object is not specific enough. For example when storing vectors over a finite field, it would not be clear whether all vectors will be over a prime field or over a field extension. Such an issue can be resolved by indicating in an (optional) third parameter to a
betterthan a method that has been installed for mere groups or for solvable groups but will be ranked lower than the library method for abelian groups. That's all. Using we can check for a nilpotent group that indeed our new method will be used. When testing, remember that the method selection will not check for properties that are not known. (This is done internally by checking the property tester first.) Therefore the method would not be applicable for the group
50used in this example is quite arbitrary. A better way is to use values that are given by the system inherently: We want this method still to be ranked as high,
no method founderror. This is done by redispatching, see . For example to enforce such a final finiteness test for normalizer calculations could be done by:
no method founderror.) For this purpose we can imagine the attribute simply as an one-argument operation:
parentrepresentation as well. Next we need to check in which family our new objects will be. This will be the same family as of every other permutation group, namely the
of general interest, if we want the user to have access to it, attributes are preferable. Moreover, attributes can be used by the method selection (by specifying the filter
technicaldata (say the encoding of a sparse matrix) is better hidden from the user in a component, as declaring it as an attribute would not give any advantage. Resource-wise, attributes need more memory (the attribute setter and tester are implicitly declared, and one filter bit is required), the attribute access is one further function call in the kernel, thus components might be an immeasurable bit faster.
lengthof elements (as a word in certain generators) is defined, groups that can be decomposed as a semidirect product and M-groups. In each case we have two possibilities for the declaration. We can either declare it as a property or as a category. Both are eventually filter(s) and in this way indistinguishable for the method selection. However, the value of a property for a particular object can be unknown at first and later in the session be computed (to be
an object whose operations record is): We might want to indicate this new concept simply by the fact that certain attributes are set. In this case we could simply use the respective attribute tester(s). The examples given below each give a short argument why the respective solution was chosen, but one could argue as well for other choices.XYOps
word lengthfunction). This is exactly what categories are intended for and therefore we use one. First, we declare the category. All objects in this category are groups and so we inherit the supercategory :
enabledby this category, the word length of a group element, which is defined for a group and an element (remember that group elements are described by the category ):
defining dataof the new objects. Also provided are functions that perform arithmetic on this
defining data, that is they take objects of this form and return objects that represent the result of the operation. The function then is called to provide a wrapping such that proper new &GAP;-objects are created which can be multiplied etc. with the default infix operations such as
additionas union and
multiplicationas intersection. These operations are both commutative and we want the resulting elements to know this. We therefore use the following specification:
then the return value is thought of as information deduced from the arguments. Usually such functions are attributes (see ). Examples are , which returns a list of generators for the group entered as argument, or . For the setter and tester functions of an attributeOf
then the return value is thought of as built in a certain way from the parts given as arguments. For example, creating a group as a factor group of a given group by a normal subgroup can be done by taking the image of . Other examples ofBy
functions are and . Often such functions construct an algebraic structure given by its generators (for example, ). In some cases,By
may be replaced byBy
(like e.g. ) or even both versions of the name may be used. The difference betweenWith
then the return value is an object (usually a collection which has the same family of elements), which may, for example:AsSomething
then there is another functionNC
no check. When
wrapped aroundthe other two. This
wrapper functionis called by the user and decides whether to call the operation or the attribute or possibly both. The whole
choose any minimal resp. maximal block system. In this case, the result can be stored as the value of the attribute attr that was entered as fourth argument of . This attribute is considered by a call
compatiblewith its parent, see . In a
non-commutative Gaussalgorithm is described to compute an induced pcgs of a subgroup U from a generating set of U. For calling this in &GAP;, see to . To create a subgroup generated by an induced pcgs such that the induced pcgs gets stored automatically, use . <#Include Label="IsInducedPcgs"> <#Include Label="InducedPcgsByPcSequence"> <#Include Label="ParentPcgs"> <#Include Label="InducedPcgs"> <#Include Label="InducedPcgsByGenerators"> <#Include Label="InducedPcgsByPcSequenceAndGenerators"> <#Include Label="LeadCoeffsIGS"> <#Include Label="ExtendedPcgs"> <#Include Label="SubgroupByPcgs">
compatiblewith P (or its parent).
naturalpcgs, the with respect to which pcgs operations as described in chapter are particularly efficient. Let
syllablerepresentation in the free group (see ). Note that in the end, the collector has to be converted to a group, see . With these methods a pc group with arbitrary defining pcgs can be constructed. However, for almost all applications within &GAP; we need to have a pc group whose defining pcgs is a prime order pcgs, see and . <#Include Label="PcGroupFpGroup">
freeand
opendescribe the conditions under which the system is distributed -- in brief, it is
extensiblein that you can write your own programs in the &GAP; language, and use them in just the same way as the programs which form part of the system (the
library). Indeed, we actively support the contribution, refereeing and distribution of extensions to the system, in the form of
&GAP; packages. Further details of this can be found in chapter , and on our website. Development of &GAP; began at Lehrstuhl D für Mathematik, RWTH-Aachen, under the leadership of Joachim Neubüser in 1985. Version 2.4 was released in 1988 and version 3.1 in 1992. In 1997 coordination of &GAP; development, now very much an international effort, was transferred to St Andrews. A complete internal redesign and almost complete rewrite of the system was completed over the following years and version 4.1 was released in July 1999. A sign of the further internationalization of the project was the &GAP; 4.4 release in 2004, which has been coordinated from Colorado State University, Fort Collins. More information on the motivation and development of &GAP; to date, can be found on our Web pages in a section entitled
Release history and Prefaces. For those readers who have used an earlier version of &GAP;, an overview of the changes from &GAP; 4.4 and a brief summary of changes from earlier versions is given in a separate manual . The system that you are getting now consists of a
core systemand a number of packages. The core system consists of four main parts.
arithmetic, operations for integers, finite fields, permutations and words, as well as natural operations for lists and records;
read-eval-viewstyle user interface.
no method foundis signaled. Otherwise, the applicable method with highest
ambiguousoperations
full mathematical precisionand is less likely to be retrieved for a wrong purpose later. One word about possible conflicts. A typical example is the mathematical term
centre, which is defined as
centre.
Ambiguousoperations such as
second multiplicationfor the elements of a given algebra; in fact, the multiplication in Lie algebras in &GAP; is denoted by
underlyingobjects of the associative algebra, no matter what these objects actually are. Analogously, also the construction of group rings is generic.
lie in the category. The next question is what internal data our new objects store, and how they are accessed. The easiest solution is to store theIsMyObject
underlyingobject from the field
the same element. For creating the type of our objects, we need to specify to which
the unique multiplicative neutral element that belongs to. And also this neutral element, if it exists, cannot be computed by &GAP; in our current situation. It does, however, make sense to ask for the multiplicative neutral element of a given magma, and for inverses of elements in the magma. But before we can form domains of our objects, we must define when two objects are regarded as equal; note that this is necessary in order to decide about the uniqueness of neutral and inverse elements. In our situation, equality is defined in the obvious way. For being able to form sets of our objects, also an ordering via is defined for them.a
on the same set of objects, since the installation of a new multiplication requires the declaration of at least one new filter and the installation of several methods. But the design of &GAP; is not suitable for such dynamic method installations. Turning this argument the other way round, the implementation of the new arithmetics defined by the above multiplication and addition is available for any field
for the multiplication, and as mentioned in Section , there is only one multiplication in &GAP;.
which is similar to the decimal expansion used for the reals (but written from left to right). So for example ifp -adic expansion
ramificationsee for example , or another book on algebraic number theory. Essentially, an extension
andrec(
, and separating them by commas)
. Each component consists of the name, the assignment operator,
, and the value. The:=
first come, first servebasis. Therefore, depending on the version of the library you are using and on the assignments done so far, the
surjective(see ), otherwise the range is set to be the full symmetric group. However do not compute or values, but only the images of a generator set.
betterrepresentation. The way to achieve this in &GAP; is via
standalonearithmetic for residue classes. In order to use the machinery of the &GAP; library for creating higher level objects such as matrices, polynomials, or domains over residue class rings, we have to
integratethis implementation into the &GAP; library. The key step will be to create a new kind of &GAP; objects. This will be done in the following sections; there we assume that residue classes and residue class rings are not yet available in &GAP;; in fact they are available, and their implementation is very close to what is described here.
component object(record-like) or
positional object(list-like). We decide to store the modulus of each residue class in its family, and to encode the element
largermeans for objects that are newly introduced. Next we install methods for the arithmetic operations, first for the additive structure.
nice monomorphism; this can be controlled by the filter . By the way, also groups of (invertible) residue classes can be formed, but this may be of minor interest.
oldfinite field elements.
oldfinite field elements. The definition of the
, we had to install a quite expensive method because of the compatibility with the comparison of finite field elements that did already exist. In fact &GAP; supports finite fields with elements represented via discrete logarithms only up to a given size. So in principle we have the freedom to define a cheaper comparison via<
for objects in<
, in this case we say that the objects describe the same=
defines an equivalence relation on all &GAP; objects. The equivalence classes are called=
{, the answer being= }
, the answer being=
are called=
operationabove refers to the functions and methods which can legitimately be applied to the object, and not the
shallow copyof an iterator that is returned by is not as obvious as for lists and records, and must be explicitly defined.
SMstands for
same mutability, and indicates that the result is mutable if and only if the argument is mutable. The operations , , , and return
syllable representationsin which words are stored in syllable (i.e. generator,exponent) form. (Older versions of &GAP; only used this representation.) The second kind are
letter representationsin which each letter in a word is represented by its index number. Negative numbers are used for inverses. Unless the syllable representation is specified explicitly when creating the free group/monoid or semigroup, a letter representation is used by default. Depending on the task in mind, either of these two representations will perform better in time or in memory use and algorithms that are syllable or letter based (for example and ) perform substantially better in the corresponding representation. For example when creating pc groups (see ), it is advantageous to use a syllable representation while calculations in free groups usually benefit from using a letter representation. <#Include Label="IsLetterAssocWordRep"> <#Include Label="IsLetterWordsFamily"> <#Include Label="IsBLetterAssocWordRep"> <#Include Label="IsBLetterWordsFamily"> <#Include Label="IsSyllableAssocWordRep"> <#Include Label="IsSyllableWordsFamily"> <#Include Label="Is8BitsFamily"> <#Include Label="LetterRepAssocWord"> <#Include Label="AssocWordByLetterRep">
submoduleor
factor modulewe denote actually the
functionin mathematics. &GAP; also implements
relations. Most operations are declared for general mappings and therefore this manual often refers to
(general) mappings, unless you deliberately need the generalization you can ignore the
generalbit and just read it as
mappings. <#Include Label="[1]{mapping}"> For mappings which preserve an algebraic structure a
Representation Theory of Finite Groups and Finite Dimensional Algebras(until 1991), and the Schwerpunkt
Algorithmische Zahlentheorie und Algebra(from 1991 until 1997). Besides that, several Diploma theses at Lehrstuhl D were concerned with the development and/or implementation of algorithms dealing with characters in &GAP;. The major contributions can be listed as follows.
safety net: The routines (being somehow internal) do no error checking, and assume the information given is correct. When the info level of if positive, information about the progress of splitting is printed. (The default value is zero.) <#Include Label="DixonRecord"> <#Include Label="DixonInit"> <#Include Label="DixontinI"> <#Include Label="DixonSplit"> <#Include Label="BestSplittingMatrix"> <#Include Label="DxIncludeIrreducibles"> <#Include Label="SplitCharacters"> <#Include Label="IsDxLargeGroup">
Dixon recordD returned by stores all the information that is used by the Dixon-Schneider routines while computing the irreducible characters of a group. Some entries, however, may be useful to know about when using the algorithm interactively, see .
) from all other &GAP; objects, we are likely to create a new family for it. Note that enlarging an existing family by such new objects may be problematic because of implications that have been installed for all objects of the family in question. The choice of families depends on the applications one has in mind. For example, if the new objects in question are not likely to be arguments of operations for which family relations are relevant (for example binary arithmetic operations), one could create one family for all such objects, and regard it as=
the family of all those &GAP; objects that would in fact not need a family. On the other extreme, if one wants to create domains of the new objects then one has to choose the family in such a way that all intended elements of a domain do in fact lie in the same family. (Remember that a domain is a collection, see Chapter , and that a collection consists of elements in the same family, see Chapter and Section .) Let us look at an example. Suppose that no permutations are available in &GAP;, and that we want to implement permutations. Clearly we want to support permutation groups, but it is not a priori clear how to distribute the new permutations into families. We can put all permutations into one family; this is how in fact permutations are implemented in &GAP;. But it would also be possible to put all permutations of a given degree into a family of their own; this would for example mean that for each degree, there would be distinguished trivial permutations, and that the stabilizer of the point
user interactions. Note that even if cobj claims that it is immutable, i.e., if cobj is not in the category , access and assignment via
user interactions. Note that even if pobj claims that it is immutable, i.e., if pobj is not in the category , access and assignment via
is the Lie product of matrices. In this situation, it makes no sense to put the new matrices into the same family as the original matrices. Note that the product of two Lie matrices shall be defined but not the product of an ordinary matrix and a Lie matrix. So it is possible to have two lists that have the same entries but that are not equal w.r.t.*
because they lie in different families.=
wrapped listswith default behaviour are vector space bases; they are lists with additional properties concerning the computation of coefficients, but arithmetic properties are not important. So it is no loss to enable the default methods for these lists. However, often the arithmetic behaviour of new list objects is important, and one wants to keep these lists away from default methods for addition, multiplication etc. For example, the sum and the product of (compatible) block matrices shall be represented as a block matrix, so the default methods for sum and product of matrices shall not be applicable, although the results will be equal to those of the default methods in the sense that their entries at corresponding positions are equal. So one does not set the filter in such cases, and thus one can implement one's own methods for arithmetic operations. (Of course
canmeans on the other hand that one
wrapped matriceswith stored nesting depths are computed via the method for adding two such wrapped lists, and without accessing any of their rows (which might be expensive). In this sense, the wrapped lists are treated as black boxes.
then the result must be equal to the old result w.r.t.=
. But the implementation of many methods is representation dependent in the sense that certain representation dependent subobjects are accessed. For example, a method that implements the addition of univariate polynomials may access coefficients lists of its arguments only if they are really stored, while in the case of sparsely represented polynomials a different approach is needed. In spite of this, for many operations one does not want to write an own method for each possible representations of each argument, for example because none of the methods could in fact take advantage of the actually given representations of the objects. Another reason could be that one wants to install first a representation independent method, and then add specific methods as they are needed to gain more efficiency, by really exploiting the fact that the arguments have certain representations. For the purpose of admitting representation independent code, one can define an=
standard representation, and then access the data in the way defined for this representation, simply because it may be impossible to choose such a
standard representationuniformly for all objects in the given family. So the aim of an external representation of an object obj is a different one, namely to describe the data from which obj is composed. In particular, the external representation of obj is
standard) representation of obj, in fact the external representation of obj is in general different from obj w.r.t.
, first of all because the external representation of obj does in general not lie in the same family as obj. For example the external representation of a rational function is a list of length two or three, the first entry being the zero coefficient, the second being a list describing the coefficients and monomials of the numerator, and the third, if bound, being a list describing the coefficients and monomials of the denominator. In particular, the external representation of a polynomial is a list and not a polynomial. The other way round, the external representation of obj encodes obj in such a way that from this data and the family of obj, one can create an object that is equal to obj. Usually the external representation of an object is a list or a record. Although the external representation of obj is by definition independent of the actually available representations for obj, it is usual that a representation of obj exists for which the computation of the external representation is obtained by just=
unpackingobj, in the sense that the desired data is stored in a component or a position of obj, if obj is a component object (see ) or a positional object (see ). To implement an external representation means to install methods for the following two operations.
newobjects that you have just created, and which cannot share mutable subobjects with anything else. Both and work on external objects by just resetting the filter in the object's type. This should make ineligible any methods that might change the object. As a consequence, you must allow for the possibility of immutable versions of any objects you create. So, if you are implementing your own external objects. The rules amount to the following:
declarationmeans only an explicit notification of mathematical or technical terms or of concepts to &GAP;. For example, declaring a category or property with name
Permutationis usually abbreviated to
Perm, to save typing. For example, the category test function for permutations is .
workhorseroutine . <#Include Label="TriangulizedIntegerMat"> <#Include Label="TriangulizedIntegerMatTransform"> <#Include Label="TriangulizeIntegerMat"> <#Include Label="HermiteNormalFormIntegerMat"> <#Include Label="HermiteNormalFormIntegerMatTransform"> <#Include Label="SmithNormalFormIntegerMat"> <#Include Label="SmithNormalFormIntegerMatTransforms"> <#Include Label="DiagonalizeIntMat"> <#Include Label="NormalFormIntMat"> <#Include Label="AbelianInvariantsOfList">
naturalfield of the problem. <#Include Label="ConvertToVectorRep"> <#Include Label="NumberFFVector">
storeand
knowhave to be understood in the sense that it is very cheap to get such a value when the attribute is called again. The stored value of an attribute is in general immutable (see ), except if the attribute had been specially constructed as
mutable attribute. It depends on the representation of an object (see ) which attribute values it stores. An object in the representation
system setterand the
system getterof the attribute, respectively.)
largeattribute values (such as element lists) are needed only once and shall not be stored in the object.
easilymeans for an arbitrary &GAP; object, and in this case one cannot compute the value for an arbitrary &GAP; object. In order to access this kind of knowledge as a part of the type of an object, &GAP; provides filters for which the value is
smallorders. The groups are sorted by their orders and they are listed up to isomorphism; that is, for each of the available orders a complete and irredundant list of isomorphism type representatives of groups is given. Currently, the library contains the following groups:
Perfect Groups. Moreover, they have supplied us with files with presentations of 488 of the groups. In terms of these, the remaining 607 nontrivial groups in the library can be described as 276 direct products, 107 central products, and 224 subdirect products. They are computed automatically by suitable &GAP; functions whenever they are needed. Two additional groups omitted from the book
Perfect Groupshave also been included. We are grateful to Derek Holt and Wilhelm Plesken for making their groups available to the &GAP; community by contributing their files. It should be noted that their book contains a lot of further information for many of the library groups. So we would like to recommend it to any &GAP; user who is interested in the groups. The library has been brought into &GAP; format by Volkmar Felsch. As all groups are stored by presentations, a permutation representation is obtained by coset enumeration. Note that some of the library groups do not have a faithful permutation representation of small degree. Computations in these groups may be rather time consuming. <#Include Label="SizesPerfectGroups"> <#Include Label="PerfectGroup"> <#Include Label="PerfectIdentification"> <#Include Label="NumberPerfectGroups"> <#Include Label="NumberPerfectLibraryGroups"> <#Include Label="SizeNumbersPerfectGroups"> <#Include Label="DisplayInformationPerfectGroups">
descriptionof a group is explained in section 5.1.2 of . We quote the respective page from there: Within a class
commutator) between two factors means that the second lies in the commutator subgroup of the first. Similarly, a segment of the form
abelian) between two factors indicates that the second is in the
Amay also follow the factors, if bracketed.
elementary abelian) between two factors indicates that together they generate an elementary abelian group (modulo subsequent factors), but that the resulting
nonsplit) before a factor indicates that
means that the normal subgroupQ f_1 N f_2
Aafter the
cohortsaccording to their socle. For each degree, the variable contains a list of the cohorts for the primitive groups of this degree. Each cohort is represented by a list of length 2, the first entry specifies the socle type (see ), the second entry listing the index numbers of the groups in this degree. For example in degree 49, we have four cohorts with socles
cheap datain the sense that they can be provided by the library without loading any of its large matrix files or performing any matrix calculations. The following function allows you to get proper access to these cheap data instead of just displaying them.
current stabilizer) and
outermostrecord representing the
topmoststabilizer is bound to the group record component
external setswhich represent the concept of a
in the background. This is currently not available on the Macintosh architecture and only on operating systems that have
&GAP; - Changes from Earlier Versions
The &GAP; Reference Manual, but also as an introduction to the whole system. &GAP; stands for
&GAP; packageswhich are developed independently of the core part of &GAP; and can be loaded into a &GAP; session. Each package comes with a its own manual which is also available through the &GAP; help system. This manual is divided into chapters, sections and subsections. Chapter describes the
at-characters
at-character
at-character is used to implement namespaces for global variables in packages. See for details.
at-character
package coderefers to everything which is read with . As the name of the package the entry
at-character
hintssuggesting to &GAP; how the desired result may be computed more quickly, or specifying a level of tolerance for random errors in a Monte Carlo algorithm. Such hints may be supplied to a function-call
modular remainderof a modulo b. Also,
modular inverseof n modulo b. (A pair of integers is said to be
), thevalue: ...
dangling else. In
loop_listand
loop_indexare different variables for each
optional argumentscenario.
any number of argumentsscenario.
opposite: tell &GAP; that a list should be
unwrappedand passed as several arguments to a function. The function is provided for this purpose. Also see Chapter .
) ## InstallMethod( SuzukiGroupCons, "matrix group for finite field size", true, [ IsMatrixGroup and IsFinite, IsInt and IsPosRat ], 0, function ( filter, q ) local G,f; if not IsPrimePowerInt(q) or SmallestRootInt(q) <> 2 or LogInt(q,2) mod 2 = 0 then Error("must be a non-square power of 2\n"); fi; f := GF(q); G := GroupByGenerators( [ImmutableMatrix(f, [[1, 0, 0,0], [1, 1, 0,0], [1+Z(q), 1, 1,0], [1+Z(q)+Z(q)^RootInt(2 * q),Z(q),1,1]] * One(f),true), ImmutableMatrix(f, [[0,0,0,1], [0,0,1,0], [0,1,0,0], [1,0,0,0]] * One(f),true)]); SetName(G,Concatenation("Sz(",String(q),")")); SetDimensionOfMatrixGroup(G,4); SetFieldOfMatrixGroup(G,f); SetIsFinite(G,true); SetSize(G,q^2*(q-1)*(q^2+1)); if q > 2 then SetIsSimpleGroup(G,true); fi; return G; end ); ############################################################################# ## #M SuzukiGroupCons(, ) ## InstallMethod( SuzukiGroupCons, "permutation group for finite field size", true, [ IsPermGroup and IsFinite, IsInt and IsPosRat ], 0, function ( filter, q ) local G,Ovoid,f,r,a,b,v; if not IsPrimePowerInt(q) or SmallestRootInt(q) <> 2 or LogInt(q,2) mod 2 = 0 then Error("must be a non-square power of 2\n"); fi; f := GF(q); r := RootInt(2 * q); v:=[1,0,0,0] * One(f); ConvertToVectorRep(v,q); MakeImmutable(v); Ovoid := [v]; for a in f do for b in f do v:=[a^(r+2) + a*b + b^r,b,a,One(f)]; ConvertToVectorRep(v,q); MakeImmutable(v); Add(Ovoid,NormedRowVector(v)); od; od; Sort(Ovoid); G := Action(SuzukiGroupCons(IsMatrixGroup,q),Ovoid,OnLines); SetName(G,Concatenation("Sz(",String(q),")")); SetSize(G,q^2*(q-1)*(q^2+1)); if q > 2 then SetIsSimpleGroup(G,true); fi; return G; end ); ############################################################################# ## #E suzuki.gi . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here gap-4r6p5/grp/imf19.grp 0000644 0001750 0001750 00000051724 12172557252 013401 0 ustar bill bill ############################################################################# ## #A imf19.grp GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains, for each Z-class representative of the irreducible ## maximal finite integral matrix groups of dimension 19, ## ## [1] a quadratic form (as lower triangle of the Gram matrix), ## [2] a list of matrix generators. ## ############################################################################# ## ## Quadratic form and matrix generators for the Z-class representatives of ## the irreducible maximal finite integral matrix groups of dimension 19. ## IMFList[19].matrices := [ [ # Z-class [19][01] [[1], [0,1], [0,0,1], [0,0,0,1], [0,0,0,0,1], [0,0,0,0,0,1], [0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]], [[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Z-class [19][02] [[4], [-4,8], [4,-8,12], [-4,8,-12,16], [4,-8,12,-16,20], [-4,8,-12,16,-20,24], [4,-8,12,-16,20,-24,28], [-4,8,-12,16,-20,24,-28,32], [4,-8,12,-16,20,-24,28,-32,36], [-4,8,-12,16,-20,24,-28,32,-36,40], [4,-8,12,-16,20,-24,28,-32,36,-40,44], [-4,8,-12,16,-20,24,-28,32,-36,40,-44,48], [4,-8,12,-16,20,-24,28,-32,36,-40,44,-48,52], [-4,8,-12,16,-20,24,-28,32,-36,40,-44,48,-52,56], [4,-8,12,-16,20,-24,28,-32,36,-40,44,-48,52,-56,60], [-4,8,-12,16,-20,24,-28,32,-36,40,-44,48,-52,56,-60,64], [4,-8,12,-16,20,-24,28,-32,36,-40,44,-48,52,-56,60,-64,68], [-4,8,-12,16,-20,24,-28,32,-36,40,-44,48,-52,56,-60,64,-68,72], [2,-4,6,-8,10,-12,14,-16,18,-20,22,-24,26,-28,30,-32,34,-36,19]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,-2], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,-2], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,-2], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,-2], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1]], [[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,-2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,-2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,-2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,-2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Z-class [19][03] [[2], [1,2], [0,1,2], [0,0,1,2], [0,0,0,1,2], [0,0,0,0,1,2], [0,0,0,0,0,1,2], [0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4]], [[[1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,1], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Z-class [19][04] [[19], [-1,19], [1,1,19], [1,1,-1,19], [1,1,-1,-1,19], [1,1,-1,-1,-1,19], [1,1,-1,-1,-1,-1,19], [1,1,-1,-1,-1,-1,-1,19], [1,1,-1,-1,-1,-1,-1,-1,19], [1,1,-1,-1,-1,-1,-1,-1,-1,19], [1,1,-1,-1,-1,-1,-1,-1,-1,-1,19], [1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,19], [1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,19], [1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,19], [1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,19], [1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,19], [1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,19], [-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,19], [-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,19]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1]], [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Z-class [19][05] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]], [[-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]]]], [ # Z-class [19][06] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,2], [-1,0,-1,0,-1,-1,0,-1,0,-1,0,0,0,0,5], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,1,2], [-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [1,0,1,-1,0,0,-1,1,-1,1,-1,0,0,-1,1,1,0,0,-1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,-1,-1,2,1,1,0,-1]], [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,1,0,1,-1,-1,0,-1,1,-1,1,0,1,1,-1,-1,0,-1,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0]]]], [ # Z-class [19][07] [[10], [5,10], [5,5,10], [5,5,5,10], [5,5,5,5,10], [5,5,5,5,5,10], [5,5,5,5,5,5,10], [5,5,5,5,5,5,5,10], [5,5,5,5,5,5,5,5,10], [5,5,0,5,0,5,0,0,0,16], [5,5,5,5,5,5,5,5,5,0,10], [5,5,5,5,5,5,5,5,5,0,5,10], [5,5,5,5,5,5,5,5,5,0,5,5,10], [5,5,5,5,5,5,5,5,5,0,5,5,5,10], [5,5,5,5,5,5,5,5,5,0,5,5,5,5,10], [5,5,5,5,5,5,5,5,5,0,5,5,5,5,5,10], [-5,-5,0,-5,0,0,0,0,0,-11,0,0,0,0,0,0,16], [5,5,5,5,5,5,5,5,5,0,5,5,5,5,5,5,0,10], [-5,-5,-5,-5,-5,-5,-5,-5,-5,0,-5,-5,-5,-5,-5,-5,0,-5,10]], [[[0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1], [1,1,0,1,0,0,0,0,0,0,0,0,-1,0,-1,0,1,-1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [3,3,-1,3,-1,3,-1,-1,-1,-4,-1,-1,-1,-1,0,-1,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1], [1,1,0,1,0,0,0,0,0,0,0,0,0,-1,0,-1,1,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Z-class [19][08] [[8], [-4,8], [-4,4,8], [-4,4,4,8], [-4,4,4,4,8], [-4,4,4,4,4,8], [-4,4,4,4,4,4,8], [-4,4,4,4,4,4,4,8], [-4,4,4,4,4,4,4,4,8], [-4,4,4,4,4,4,4,4,4,8], [-4,4,4,4,4,4,4,4,4,4,8], [-4,4,4,4,4,4,4,4,4,4,4,8], [4,-4,0,-4,0,-4,0,-4,0,0,0,0,15], [-4,4,0,4,0,4,0,0,0,0,0,0,-11,15], [-4,4,0,4,0,4,0,0,0,0,0,0,-11,11,15], [-4,4,0,4,0,4,0,0,0,0,0,0,-11,11,11,15], [4,-4,0,-4,0,-4,0,0,0,0,0,0,11,-11,-11,-11,15], [-4,4,0,4,0,4,0,0,0,0,0,0,-11,11,11,11,-11,15], [4,-4,0,-4,0,-4,0,0,0,0,0,0,11,-11,-11,-11,11,-11,15]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1], [0,0,0,0,0,0,0,1,0,0,0,-1,1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,1,0,0,-1,0,1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,1,0,-1,0,0,1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,1,-1,0,0,0,1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1], [0,0,0,0,0,0,-1,1,0,0,0,0,1,0,0,0,0,0,-1], [0,0,0,0,0,-1,0,1,0,0,0,0,1,0,0,0,0,0,-1], [1,-1,0,-1,0,-1,0,2,0,1,0,1,2,0,1,0,-1,1,0], [-1,1,0,1,-1,1,0,-2,0,0,0,-1,-2,0,-1,0,1,-1,0], [-1,1,0,0,0,1,0,-2,0,0,0,-1,-2,0,-1,0,1,-1,0], [-1,1,-1,1,0,1,0,-2,0,0,0,-1,-2,0,-1,0,1,-1,0], [-2,2,-1,2,-1,2,-1,-1,-1,-1,-1,0,0,-1,0,-1,0,0,1], [-1,0,0,1,0,1,0,-2,0,0,0,-1,-2,0,-1,0,1,-1,0], [0,-1,0,-1,0,-1,0,2,0,0,0,1,2,0,1,0,-1,1,0]], [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1], [0,0,0,0,0,0,0,1,0,0,0,-1,1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,1,0,0,-1,0,1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,1,0,-1,0,0,1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,1,-1,0,0,0,1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1], [0,0,0,0,0,0,-1,1,0,0,0,0,1,0,0,0,0,0,-1], [1,-1,0,-1,0,-1,0,2,0,0,1,0,2,1,0,1,-1,0,0], [-1,1,0,1,0,0,0,-2,0,0,0,0,-2,-1,0,-1,1,0,0], [-1,1,0,1,-1,1,0,-2,0,0,0,0,-2,-1,0,-1,1,0,0], [-1,1,0,0,0,1,0,-2,0,0,0,0,-2,-1,0,-1,1,0,0], [0,-1,0,-1,0,-1,0,2,0,0,0,0,2,1,0,1,-1,0,0], [-1,1,-1,1,0,1,0,-2,0,0,0,0,-2,-1,0,-1,1,0,0], [1,0,0,-1,0,-1,0,2,0,0,0,0,2,1,0,1,-1,0,0]]]], [ # Z-class [19][09] [[9], [-4,9], [-4,4,9], [-4,4,4,9], [-4,-1,4,-1,9], [-4,-1,-1,-1,4,9], [-4,-1,-1,-1,4,4,9], [-4,-1,-1,-1,4,4,4,9], [-4,-1,-1,-1,4,4,4,4,9], [-4,-1,-1,-1,4,4,4,4,4,9], [-4,-1,-1,-1,4,4,4,4,4,4,9], [-4,-1,-1,-1,4,4,4,4,4,4,4,9], [-4,-1,-1,-1,4,4,4,4,4,4,4,4,9], [-4,-1,-1,-1,4,4,4,4,4,4,4,4,4,9], [-4,-1,-1,-1,4,4,4,4,4,4,4,4,4,4,9], [-4,-1,-1,-1,4,4,4,4,4,4,4,4,4,4,4,9], [-4,-1,-1,-1,4,4,4,4,4,4,4,4,4,4,4,4,9], [-4,-1,-1,-1,4,4,4,4,4,4,4,4,4,4,4,4,4,9], [-4,-1,-1,-1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,9]], [[[-7,-1,-6,-1,5,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0], [8,1,6,1,-5,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [7,1,6,1,-5,1,1,1,1,1,1,1,1,1,1,1,1,0,1], [7,1,6,1,-5,1,1,1,1,1,1,1,1,1,1,1,0,1,1], [-1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1], [-1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1], [-1,0,-1,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1], [-1,0,-1,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1], [-1,0,-1,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,-1], [-1,0,-1,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1], [-1,0,-1,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1], [-1,0,-1,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1], [-1,0,-1,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1], [-1,0,-1,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1], [-1,0,-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1], [-1,0,-1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1], [-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1]], [[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [-1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1], [-1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1], [-1,0,-1,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1], [-1,0,-1,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1], [-1,0,-1,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,-1], [-1,0,-1,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1], [-1,0,-1,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1], [-1,0,-1,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1], [-1,0,-1,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1], [-1,0,-1,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1], [-1,0,-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1], [-1,0,-1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1], [-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1]]]] ]; MakeImmutable( IMFList[19].matrices ); gap-4r6p5/grp/simple.gi 0000644 0001750 0001750 00000047363 12172557252 013560 0 ustar bill bill ############################################################################# ## #W simple.gi GAP Library Alexander Hulpke ## ## #Y Copyright (C) 2011 The GAP Group ## ## This file contains basic constructions for simple groups of bounded size, ## if necessary by calling the `atlasrep' package. ## # data for simple groups of order up to 10^18 that are not L_2(q) BindGlobal("SIMPLEGPSNONL2", [[60,"A",5],[360,"A",6],[2520,"A",7], [5616,"L",3,3],[6048,"U",3,3],[7920,"Spor","M(11)"], [20160,"A",8], [20160,"L",3,4], [25920,"S",4,3],[29120,"Sz",8],[62400,"U",3,4], [95040,"Spor","M(12)"],[126000,"U",3,5],[175560,"Spor","J(1)"], [181440,"A",9],[372000,"L",3,5],[443520,"Spor","M(22)"], [604800,"Spor","J(2)"],[979200,"S",4,4], [1451520,"S",6,2],[1814400,"A",10],[1876896,"L",3,7], [3265920,"U",4,3],[4245696,"G",2,3],[4680000,"S",4,5], [5515776,"U",3,8],[5663616,"U",3,7],[6065280,"L",4,3], [9999360,"L",5,2],[10200960,"Spor","M(23)"],[13685760,"U",5,2], [16482816,"L",3,8],[17971200,"T"], [19958400,"A",11],[32537600,"Sz",32],[42456960,"L",3,9], [42573600,"U",3,9],[44352000,"Spor","HS"],[50232960,"Spor","J(3)"], [70915680,"U",3,11],[138297600,"S",4,7],[174182400,"O+",8,2], [197406720,"O-",8,2],[211341312,"3D",4,2],[212427600,"L",3,11], [239500800,"A",12],[244823040,"Spor","M(24)"],[251596800,"G",2,4], [270178272,"L",3,13],[811273008,"U",3,13],[898128000,"Spor","McL"], [987033600,"L",4,4],[1018368000,"U",4,4],[1056706560,"S",4,8], [1425715200,"L",3,16],[1721606400,"S",4,9],[2317678272,"U",3,17], [3113510400,"A",13],[4030387200,"Spor","He"], [4279234560,"U",3,16],[4585351680,"S",6,3],[4585351680,"O",7,3],[5644682640,"L",3,19], [5859000000,"G",2,5],[6950204928,"L",3,17],[7254000000,"L",4,5], [9196830720,"U",6,2],[10073444472,"R",27], [12860654400,"S",4,11],[14742000000,"U",4,5],[16938986400,"U",3,19], [20158709760,"L",6,2],[26056457856,"U",3,23],[34093383680,"Sz",128], [43589145600,"A",14],[47377612800,"S",8,2],[50778000000,"L",3,25], [68518981440,"S",4,13],[78156525216,"L",3,23], [145926144000,"Spor","Ru"],[152353500000,"U",3,25], [166557358800,"U",3,29],[237783237120,"L",5,3], [258190571520,"U",5,3],[282027786768,"L",3,27], [282056445216,"U",3,27],[283991644800,"L",3,31], [366157135872,"U",3,32],[448345497600,"Spor","Suz"], [460815505920,"Spor","ON"],[495766656000,"Spor","Co(3)"], [499631102880,"L",3,29],[653837184000,"A",15], [664376138496,"G",2,7],[852032133120,"U",3,31], [1004497044480,"S",4,17],[1095199948800,"S",4,16], [1098404364288,"L",3,32],[1165572172800,"U",4,7], [1169948144736,"L",3,37],[2317591180800,"L",4,7], [2660096970720,"U",3,41],[3057017889600,"S",4,19], [3509983020816,"U",3,37],[3893910661872,"L",3,43], [4106059776000,"S",6,4],[4329310519296,"G",2,8], [4952179814400,"O+",8,3],[7933578895872,"U",3,47], [7980059337600,"L",3,41],[10151968619520,"O-",8,3], [10461394944000,"A",16],[11072935641600,"L",3,49], [11682025843488,"U",3,43],[20560831566912,"3D",4,3], [20674026236160,"S",4,23],[20745981365616,"U",3,53], [22594320403200,"G",2,9],[23499295948800,"O+",10,2], [23800278205248,"L",3,47],[25015379558400,"O-",10,2], [33219371640000,"U",3,49],[34558531338240,"L",4,8], [34693789777920,"U",4,8],[35115786567680,"Sz",512], [42305421312000,"Spor","Co(2)"],[47607300000000,"S",4,25], [48929657263200,"U",3,59],[50759843097600,"L",4,9], [53443952640000,"U",5,4],[62237108003616,"L",3,53], [63884982751200,"L",3,61],[64561751654400,"Spor","Fi(22)"], [93801727918080,"L",3,64],[101798586432000,"U",4,9], [102804157834560,"S",4,27],[135325289783376,"L",3,67], [146787542351760,"L",3,59],[163849992929280,"L",7,2], [177843714048000,"A",17],[191656636992240,"U",3,61], [210103196385600,"S",4,29],[215209078277760,"U",3,71], [227787103272960,"U",7,2],[228501000000000,"S",6,5],[228501000000000,"O",7,5], [258492255436800,"L",5,4],[268768894995072,"L",3,73], [273030912000000,"Spor","HN"],[281407330713600,"U",3,64], [376611192619200,"G",2,11],[405978568998816,"U",3,67], [409387254681600,"S",4,31],[505620881962560,"L",3,79], [645623627090400,"L",3,71],[750656410078176,"U",3,83], [806310830350368,"U",3,73],[1036388695478400,"U",4,11], [1124799322521600,"S",4,32],[1312032469255200,"U",3,89], [1516868799014400,"U",3,79],[1852734273062400,"L",3,81], [1852741245568320,"U",3,81],[2069665112592000,"L",4,11], [2251961353296816,"L",3,83],[2402534664555840,"S",4,37], [2612197345314816,"L",3,97],[3201186852864000,"A",18], [3311126603366400,"F",4,2],[3609172015066800,"U",3,101], [3914077489672896,"G",2,13],[3936086241056640,"L",3,89], [4222165056643872,"L",3,103],[5726791697419872,"U",3,107], [6641311310615520,"L",3,109],[6707334818822400,"S",4,41], [7836609208799616,"U",3,97],[8860792800073536,"U",3,113], [10799893897531200,"S",4,43],[10827495027060000,"L",3,101], [12666518353227648,"U",3,103],[12714519233969280,"L",4,13], [15315521833180800,"L",3,121],[17180347043675088,"L",3,107], [19866953531250000,"U",3,125],[19923964701735600,"U",3,109], [21032402889738240,"L",6,3],[22557001777261056,"L",3,127], [22837472432087040,"U",6,3],[24017743449686016,"U",3,128], [24815256521932800,"S",10,2],[25452197883665280,"U",4,13], [26287655087416320,"S",4,47],[26582341554402816,"L",3,113], [28908396044367840,"U",3,131],[36011213418659840,"Sz",2048], [39879509765760000,"S",4,49],[41363788790194272,"U",3,137], [45946617370848480,"U",3,121],[46448800925370480,"L",3,139], [49825657439340552,"R",243], [51765179004000000,"Spor","Ly"],[56653740000000000,"L",5,5], [57604365000000000,"U",5,5],[59600799562500000,"L",3,125], [60822550204416000,"A",19],[65784756654489600,"S",8,3],[65784756654489600,"O",9,3], [67010895544320000,"O+",8,4],[67536471195648000,"O-",8,4], [67671071404425216,"U",3,127],[67802350642790400,"3D",4,4], [71776114783027200,"G",2,16],[72053161633775616,"L",3,128], [80974721219670000,"U",3,149],[86725110978620400,"L",3,131], [87412594259315520,"S",4,53],[90089701905420000,"L",3,151], [90745943887872000,"Spor","Th"], [123043374372144096,"L",3,157],[124091269852276608,"L",3,137], [139346506548429600,"U",3,139],[166097514629752272,"L",3,163], [167795197370551296,"G",2,17],[201648518295622272,"U",3,167], [221797724414797440,"L",3,169],[242924016786074400,"L",3,149], [255484940347310400,"S",4,59],[267444174893824656,"U",3,173], [270269262714825600,"U",3,151],[273457218604953600,"S",6,7], [273457218604953600,"O",7,7],[351309192845176800,"U",3,179], [356575576421678400,"S",4,61],[369130313886677616,"U",3,157], [383967100578952800,"L",3,181],[498292774007829408,"U",3,163], [590382996204625920,"U",3,191],[604945295112210528,"L",3,167], [641690334200143872,"L",3,193],[665393448951722400,"U",3,169], [712975930219192320,"L",4,17],[756131656307437872,"U",3,197], [796793353927300800,"G",2,19],[802332214764045216,"L",3,173], [819770591880266400,"L",3,199],[911215823217986880,"S",4,67]]); # call atlasrep, possibly with extra parameters, but only if atlasrep is available BindGlobal("DoAtlasrepGroup",function(params) local g; if LoadPackage("atlasrep")<>true then Error("`atlasrep' package must be available to construct group ",params[1]); fi; g:=CallFuncList(ValueGlobal("AtlasGroup"),params); SetName(g,params[1]); return g; end); InstallGlobalFunction(SimpleGroup,function(arg) local brg,str,p,a,param,g,s,small; if IsRecord(arg[1]) then p:=arg[1]; if p.series="Spor" then brg:=p.parameter; else brg:=Concatenation([p.series],p.parameter); fi; else brg:=arg; fi; str:=brg[1]; # Case x(y gets replaced by x,y for x,y digits p:=Position(str,'('); if p>1 and pnot x in a)); # are there parameters in the string? # skip leading numbers for indicating 2/3 twist if Length(str)>1 then p:=PositionProperty(str{[2..Length(str)]}, x->x in CHARS_DIGITS or x in "+-"); if p<>fail then p:=p+1;fi; else p:=PositionProperty(str{[1..Length(str)]}, x->x in CHARS_DIGITS or x in "+-"); fi; param:=[]; if p<>fail then a:=str{[p..Length(str)]}; str:=str{[1..p-1]}; # special case `O+' or `O-' if Length(a)=1 and a[1] in "+-" then if a[1]='+' then param:=[1]; else param:=[-1]; fi; else p:=Position(a,','); while p<>fail do s:=a{[1..p-1]}; Add(param,Int(s)); a:=a{[p+1..Length(a)]}; p:=Position(a,','); od; Add(param,Int(a)); fi; fi; param:=Concatenation(param,brg{[2..Length(brg)]}); if ForAny(param,x->not IsInt(x)) then Error("parameters must be integral"); fi; # replace Lie names with classical/discoverer equivalents if possible # now parse the name. Is it sporadic, alternating, suzuki, or ree? if Length(param)<=1 then if str="A" or str="ALT" then if Length(param)=1 and param[1]>4 then g:=AlternatingGroup(param[1]); SetName(g,Concatenation("A",String(param[1]))); return g; else Error("Illegal Parameter for Alternating groups"); fi; elif (str="M" and Length(param)=0) or str="FG" then Error("Monster not yet supported"); elif (str="B" or str="BM") and Length(param)=0 then return DoAtlasrepGroup(["B"]); elif str="M" or str="MATHIEU" then if Length(param)=1 and param[1] in [11,12,22,23,24] then g:=MathieuGroup(param[1]); SetName(g,Concatenation("M",String(param[1]))); return g; else Error("Illegal Parameter for Mathieu groups"); fi; elif str="J" or str="JANKO" then if Length(param)=1 and param[1] in [1..4] then if param[1]=1 then g:=PrimitiveGroup(266,1); elif param[1]=2 then g:=PrimitiveGroup(100,1); else g:=[,,"J3","J4"]; g:=DoAtlasrepGroup([g[param[1]]]); fi; return g; else Error("Illegal Parameter for Janko groups"); fi; elif str="CO" or str="." or str="CONWAY" then if Length(param)=1 and param[1] in [1..3] then if param[1]=3 then g:=PrimitiveGroup(276,3); elif param[1]=2 then g:=PrimitiveGroup(2300,1); else g:=DoAtlasrepGroup(["Co1"]); fi; return g; else Error("Illegal Parameter for Conway groups"); fi; elif str="FI" or str="FISCHER" then if Length(param)=1 and param[1] in [22,23,24] then s:=Concatenation("Fi",String(param[1])); if param[1] = 24 then Append(s,"'"); fi; g:=DoAtlasrepGroup([s]); return g; else Error("Illegal Parameter for Fischer groups"); fi; elif str="SUZ" or str="SZ" or str="SUZUKI" then if Length(param)=0 and str="SUZ" then return PrimitiveGroup(1782,1); elif Length(param)=1 and param[1]>7 and Set(Factors(param[1]))=[2] and IsOddInt(LogInt(param[1],2)) then g:=SuzukiGroup(IsPermGroup,param[1]); SetName(g,Concatenation("Sz(",String(param[1]),")")); return g; else Error("Illegal Parameter for Suzuki groups"); fi; elif str="R" or str="REE" or str="2G" then if Length(param)=1 and param[1]>26 and Set(Factors(param[1]))=[3] and IsOddInt(LogInt(param[1],3)) then g:=ReeGroup(IsMatrixGroup,param[1]); SetName(g,Concatenation("Ree(",String(param[1]),")")); return g; else Error("Illegal Parameter for Ree groups"); fi; elif str="ON" then return DoAtlasrepGroup(["ON"]); elif str="HE" then return PrimitiveGroup(2058,1); elif str="HS" then return PrimitiveGroup(100,3); elif str="HN" then return DoAtlasrepGroup(["HN"]); elif str="LY" then return DoAtlasrepGroup(["Ly"]); elif str="MC" or str="MCL" then return PrimitiveGroup(275,1); elif str="TH" then return DoAtlasrepGroup(["Th"]); elif str="RU" then return DoAtlasrepGroup(["Ru"]); elif str="B" then return DoAtlasrepGroup(["B"]); elif str="T" then return PrimitiveGroup(1600,20); fi; fi; # now the name is ``classical''. and the second parameter a prime power if not IsPrimePowerInt(param[Maximum(2,Length(param))]) then Error("field order must be a prime power"); fi; small:=false; s:=fail; if str="L" or str="SL" or str="PSL" then g:=PSL(param[1],param[2]); s:=Concatenation("PSL(",String(param[1]),",",String(param[2]),")"); elif str="U" or str="SU" or str="PSU" then g:=PSU(param[1],param[2]); s:=Concatenation("PSU(",String(param[1]),",",String(param[2]),")"); small:=true; elif str="S" or str="SP" or str="PSP" then g:=PSp(param[1],param[2]); s:=Concatenation("PSp(",String(param[1]),",",String(param[2]),")"); small:=true; elif str="O" or str="SO" or str="PSO" then if Length(param)=2 and IsOddInt(param[1]) then g:=SO(param[1],param[2]); g:=Action(g,NormedRowVectors(GF(param[2])^param[1]),OnLines); g:=DerivedSubgroup(g); s:=Concatenation("O(",String(param[1]),",",String(param[2]),")"); small:=true; elif Length(param)=3 and param[1]=1 and IsEvenInt(param[2]) then g:=SO(1,param[2],param[3]); g:=Action(g,NormedRowVectors(GF(param[3])^param[2]),OnLines); g:=DerivedSubgroup(g); s:=Concatenation("O+(",String(param[2]),",",String(param[3]),")"); small:=true; elif Length(param)=3 and param[1]=-1 and IsEvenInt(param[2]) then g:=SO(-1,param[2],param[3]); g:=Action(g,NormedRowVectors(GF(param[3])^param[2]),OnLines); g:=DerivedSubgroup(g); s:=Concatenation("O-(",String(param[2]),",",String(param[3]),")"); small:=true; else Error("wrong dimension/parity for O"); fi; elif str="E" then if Length(param)<2 or not param[1] in [6,7,8] then Error("E(n,q) needs n=6,7,8"); fi; s:=Concatenation("E",String(param[1]),"(",String(param[2]),")"); g:=DoAtlasrepGroup([s]); elif str="F" then if Length(param)>1 and param[1]<>4 then Error("F(n,q) needs n=4"); fi; a:=param[Length(param)]; if a=2 then g:=DoAtlasrepGroup(["F4(2)"]); else Error("Can't do yet"); fi; s:=Concatenation("F_4(",String(a),")"); elif str="G" then if Length(param)>1 and param[1]<>2 then Error("G(n,q) needs n=2"); fi; a:=param[Length(param)]; if a=2 then return SimpleGroup("U",3,3); elif a=3 then g:=PrimitiveGroup(351,7); elif a=4 then g:=PrimitiveGroup(416,7); elif a=5 then g:=DoAtlasrepGroup(["G2(5)"]); else Error("Can't do yet"); fi; s:=Concatenation("G_2(",String(a),")"); elif str="3D" then if Length(param)>1 and param[1]<>4 then Error("3D(n,q) needs n=4"); fi; a:=param[Length(param)]; if a=2 then g:=PrimitiveGroup(819,5); elif a=3 then g:=DoAtlasrepGroup(["3D4(3)"]); else Error("Can't do yet"); fi; s:=Concatenation("3D4(",String(a),")"); elif str="2E" then if Length(param)>1 and param[1]<>6 then Error("3D(n,q) needs n=4"); fi; a:=param[Length(param)]; s:=Concatenation("2E6(",String(a),")"); g:=DoAtlasrepGroup([s]); else Error("Can't handle type ",str); fi; if small then a:=ShallowCopy(Orbits(g,MovedPoints(g))); if Length(a)>1 then SortParallel(List(a,Length),a); a:=Action(g,a[1]); SetSize(a,Size(g)); g:=a; fi; a:=Blocks(g,MovedPoints(g)); if Length(a)>1 then a:=Action(g,a,OnSets); SetSize(a,Size(g)); g:=a; fi; SetIsSimpleGroup(g,true); fi; if s<>fail and not HasName(g) then SetName(g,s); fi; return g; end); BindGlobal("SizeL2Q",q->q*(q-1)*(q+1)*Gcd(2,q)/2); # deal with irregular order for L2(2^a) # return [usedegree, nexta, stackvalue] BindGlobal("NextL2Q",function(a,stack) local NextL2PrimePowerInt; NextL2PrimePowerInt:=function(a) repeat a:=a+1; # L2(q) for q=4,5,9 duplicates others until IsPrimePowerInt(a) and not a in [4,5,9]; return a; end; a:=NextL2PrimePowerInt(a); if stack<>fail then if SizeL2Q(stack) SizeL2Q(NextL2PrimePowerInt(a)) then stack:=a; a:=NextL2PrimePowerInt(a); return [a,a,stack]; else return [a,a,fail]; fi; end); BindGlobal("NextIterator_SimGp",function(it) local a,l,pos,g; if it!.done then return fail;fi; a:=it!.b; if a>1259903 then # 1259903 is the last prime power whose L2 order is <10^18 Error("List of simple groups is only available up to order 10^18"); fi; l:=SizeL2Q(a); pos:=it!.pos; if l a[1] then Error("order inconsistency"); fi; fi; #Print("pos=",it!.pos," b=",it!.b,"\n"); it!.done:=SIMPLEGPSNONL2[it!.pos][1]>it!.ende and (SizeL2Q(it!.b)>it!.ende or it!.nopsl2); return g; end); BindGlobal("IsDoneIterator_SimGp",function(it) return it!.done; end); InstallGlobalFunction(SimpleGroupsIterator,function(arg) local a,b,stack,ende,start,pos,nopsl2; ende:=infinity; if Length(arg)=0 then start:=60; else start:=Maximum(60,arg[1]); if Length(arg)>1 then ende:=arg[2]; fi; fi; nopsl2:=ValueOption("NOPSL2")=true or ValueOption("nopsl2")=true; # find relevant L2 order a:=RootInt(start,3)-1; stack:=fail; repeat a:=NextL2Q(a,stack); b:=a[1]; stack:=a[3]; a:=a[2]; until SizeL2Q(b)>=start; pos:=First([1..Length(SIMPLEGPSNONL2)],x->SIMPLEGPSNONL2[x][1]>=start); return IteratorByFunctions(rec( IsDoneIterator:=IsDoneIterator_SimGp, NextIterator:=NextIterator_SimGp, ShallowCopy:=ShallowCopy, a:=a, b:=b, ende:=ende, stack:=stack, pos:=pos, nopsl2:=nopsl2, # if nopsl2 then the l2size is irrelevant done:=(SizeL2Q(b)>ende or nopsl2) and SIMPLEGPSNONL2[pos][1]>ende )); end); InstallGlobalFunction(ClassicalIsomorphismTypeFiniteSimpleGroup,function(G) local t,r; t:=IsomorphismTypeInfoFiniteSimpleGroup(G); r:=rec(); if t.series in ["Z","A"] then r.series:=t.series; r.parameter:=[t.parameter]; elif t.series in ["L","E"] then r.series:=t.series; r.parameter:=t.parameter; elif t.series="Spor" then r.series:=t.series; # stupid naming of J2 if Length(t.name)>5 and t.name{[1..5]}="HJ = " then r.parameter:=["J2"]; else r.parameter:=[t.name]; fi; elif t.series="B" then r.series:="O"; r.parameter:=[t.parameter[1]*2+1,t.parameter[2]]; elif t.series="C" then r.series:="S"; r.parameter:=[t.parameter[1]*2,t.parameter[2]]; elif t.series="D" then r.series:="O+"; r.parameter:=[t.parameter[1]*2,t.parameter[2]]; elif t.series="F" then r.series:="F"; r.parameter:=[4,t.parameter]; elif t.series="G" then r.series:="G"; r.parameter:=[2,t.parameter]; elif t.series="2A" then r.series:="U"; r.parameter:=[t.parameter[1]+1,t.parameter[2]]; elif t.series="2B" then r.series:="Sz"; r.parameter:=[t.parameter]; elif t.series="2D" then r.series:="O-"; r.parameter:=[t.parameter[1]*2,t.parameter[2]]; elif t.series="3D" then r.series:="3D"; r.parameter:=[4,t.parameter]; elif t.series="2E" then r.series:="2E"; r.parameter:=[6,t.parameter]; elif t.series="2F" then if t.parameter=2 then r.series:="Spor"; r.parameter:="T"; else r.series:="2F"; r.parameter:=[t.parameter]; fi; elif t.series="2G" then r.series:="2G"; r.parameter:=[t.parameter]; fi; return r; end); gap-4r6p5/grp/basicfp.gi 0000644 0001750 0001750 00000010564 12172557252 013667 0 ustar bill bill ############################################################################# ## #W basicfp.gi GAP Library Alexander Hulpke ## #Y Copyright (C) 2009, The GAP group ## ## This file contains the methods for the construction of the basic fp group ## types. ## ############################################################################# ## #M AbelianGroupCons( , ) ## InstallMethod( AbelianGroupCons, "fp group", true, [ IsFpGroup and IsFinite, IsList ], 0, function( filter, ints ) local f,g,i,j,rels,gfam,fam; if Length(ints)=0 or not ForAll( ints, IsInt ) then Error( " must be a list of integers" ); fi; f := FreeGroup(IsSyllableWordsFamily, Length(ints)); g := GeneratorsOfGroup(f); rels:=[]; for i in [1..Length(ints)] do for j in [1..i-1] do Add(rels,Comm(g[i],g[j])); od; if ints[i]<>0 then Add(rels,g[i]^ints[i]); fi; od; g:=f/rels; if ForAll(ints,IsPosInt) then SetSize( g, Product(ints) ); fi; fam:=FamilyObj(One(f)); gfam:=FamilyObj(One(g)); gfam!.redorders:=ints; SetFpElementNFFunction(gfam,function(x) local u,e,i,j,n; u:=UnderlyingElement(x); e:=ExtRepOfObj(u); # syllable form # bring in correct order and reduction n:=ListWithIdenticalEntries(Length(gfam!.redorders),0); for i in [1,3..Length(e)-1] do j:=e[i]; if gfam!.redorders[j] 0 then Add(e,i); Add(e,n[i]); fi; od; return ObjByExtRep(fam,e); end); SetReducedMultiplication(g); SetIsAbelian( g, true ); return g; end ); ############################################################################# ## #M CyclicGroupCons( , ) ## InstallOtherMethod( CyclicGroupCons, "fp group", true, [ IsFpGroup,IsObject ], 0, function( filter, n ) local f,g,fam,gfam; if n=infinity then return FreeGroup("a"); elif not IsPosInt(n) then TryNextMethod(); fi; f:=FreeGroup( IsSyllableWordsFamily, "a" ); g:=f/[f.1^n]; SetSize(g,n); fam:=FamilyObj(One(f)); gfam:=FamilyObj(One(g)); SetFpElementNFFunction(gfam,function(x) local u,e; u:=UnderlyingElement(x); e:=ExtRepOfObj(u); # syllable form if Length(e)=0 or (e[2]>=0 and e[2] , ) ## InstallMethod( DihedralGroupCons, "fp group", true, [ IsFpGroup and IsFinite, IsInt and IsPosRat ], 0, function( filter, n ) local f,rels,g; if n mod 2 = 1 then TryNextMethod(); elif n = 2 then return CyclicGroup( IsFpGroup, 2 ); fi; f := FreeGroup( IsSyllableWordsFamily, "r", "s" ); rels:= [f.1^(n/2),f.2^2,f.1^f.2*f.1]; g := f/rels; SetReducedMultiplication(g); SetSize(g,n); return g; end ); ############################################################################# ## #M QuaternionGroupCons( , ) ## InstallMethod( QuaternionGroupCons, "fp group", true, [ IsFpGroup and IsFinite, IsInt and IsPosRat ], 0, function( filter, n ) local f,rels,g; if 0 <> n mod 4 then TryNextMethod(); elif n = 4 then return CyclicGroup( IsFpGroup, 4 ); fi; f := FreeGroup( IsSyllableWordsFamily, "r", "s" ); rels:= [ f.1^2/f.2^(n/4), f.2^(n/2), f.2^f.1*f.2 ]; g := f/rels; SetSize(g,n); if n <= 10^4 then SetReducedMultiplication(g); fi; return g; end ); ############################################################################# ## #M ElementaryAbelianGroupCons( , ) ## InstallMethod( ElementaryAbelianGroupCons, "fp group", true, [ IsFpGroup and IsFinite, IsInt and IsPosRat ], 0, function( filter, n ) if n = 1 then return CyclicGroupCons( IsFpGroup, 1 ); elif not IsPrimePowerInt(n) then Error( " must be a prime power" ); fi; n:= AbelianGroupCons( IsFpGroup, Factors(n) ); SetIsElementaryAbelian( n, true ); return n; end ); gap-4r6p5/grp/suzuki.gd 0000644 0001750 0001750 00000003361 12172557252 013602 0 ustar bill bill ############################################################################# ## #W suzuki.gd GAP library Stefan Kohl ## ## #Y (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland ## ############################################################################# ## #O SuzukiGroupCons( , ) ## #### ## DeclareConstructor( "SuzukiGroupCons", [ IsGroup, IsInt ] ); ############################################################################# ## #F SuzukiGroup( [## ## ## ##, ] ) . . . . . . . . . . . . . . . Suzuki group #F Sz( [, ] ) ## ## <#GAPDoc Label="SuzukiGroup"> #### ## <#/GAPDoc> ## BindGlobal( "SuzukiGroup", function ( arg ) if Length(arg) = 1 then return SuzukiGroupCons( IsMatrixGroup, arg[1] ); elif IsOperation(arg[1]) then if Length(arg) = 2 then return SuzukiGroupCons( arg[1], arg[2] ); fi; fi; Error( "usage: SuzukiGroup( [## ## ## ## Constructs a group isomorphic to the Suzuki group Sz( q ) ## over the field with q elements, where q is a non-square ## power of ##2 . ## ## If filt is not given it defaults to , ## and the returned group is the Suzuki group itself. ##SuzukiGroup( 32 ); ## Sz(32) ## ]]> ##, ] )" ); end ); DeclareSynonym( "Sz", SuzukiGroup ); ############################################################################# ## #E gap-4r6p5/grp/imf12.grp 0000644 0001750 0001750 00000057456 12172557252 013402 0 ustar bill bill ############################################################################# ## #A imf12.grp GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains, for each Q-class representative of the irreducible ## maximal finite integral matrix groups of dimension 12, ## ## [1] a quadratic form (as lower triangle of the Gram matrix), ## [2] a list of matrix generators. ## ############################################################################# ## ## Quadratic form and matrix generators for the Q-class representatives of ## the irreducible maximal finite integral matrix groups of dimension 12. ## IMFList[12].matrices := [ [ # Q-class [12][01] [[1], [0,1], [0,0,1], [0,0,0,1], [0,0,0,0,1], [0,0,0,0,0,1], [0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1]], [[[0,-1,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1]], [[0,1,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [12][02] [[2], [0,2], [-1,1,2], [-1,1,1,2], [0,0,0,0,2], [0,0,0,0,0,2], [0,0,0,0,-1,1,2], [0,0,0,0,-1,1,1,2], [0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,-1,1,2], [0,0,0,0,0,0,0,0,-1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1,-1,0], [0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,-1,1,-1,-1], [1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0]], [[-1,0,0,-1,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [12][03] [[2], [-1,2], [0,-1,2], [0,0,-1,2], [0,0,0,-1,2], [0,0,-1,0,0,2], [0,0,0,0,0,0,2], [0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,-1,0,0,2]], [[[0,0,0,0,0,1,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [1,2,2,1,0,1,0,0,0,0,0,0], [0,-1,-2,-2,-1,-1,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,-2,-3,-2,-1,-1,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,1,0,0,1,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0]]]], [ # Q-class [12][04] [[2], [1,2], [0,0,2], [0,0,1,2], [0,0,0,0,2], [0,0,0,0,1,2], [0,0,0,0,0,0,2], [0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,1,2]], [[[0,0,0,1,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1]], [[0,1,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [12][05] [[4], [0,4], [1,0,4], [-2,2,1,4], [0,1,-2,-1,4], [-2,1,-2,1,2,4], [0,-2,0,-2,0,-1,4], [1,-2,2,-1,-2,-2,2,4], [-2,0,0,2,0,2,-2,-1,4], [1,0,0,0,-2,-2,0,1,-2,4], [0,2,1,2,-1,-1,-2,0,0,2,4], [-2,0,-2,0,2,2,0,-1,2,-2,-1,4]], [[[0,0,0,0,0,0,0,0,0,0,0,1], [0,0,-1,1,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,-1,0,0,1], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,-1,0,1,-1,0,-1,1,0], [-1,0,0,0,0,0,0,0,0,0,0,-1], [0,0,1,0,1,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,1,0,0,0,0], [0,0,0,0,-1,1,0,0,-1,0,0,0], [0,0,0,0,1,-1,0,0,1,1,-1,0], [0,0,-1,0,0,-1,0,0,0,0,0,0], [1,-1,0,1,-1,1,1,-1,-1,-1,1,0]], [[-2,1,0,-1,1,-1,-1,1,1,1,-1,-1], [0,1,0,0,0,0,1,0,1,0,0,0], [-1,1,0,-1,1,-1,-1,1,1,0,-1,-1], [1,1,0,0,0,0,1,0,1,0,0,0], [0,0,0,0,-1,1,0,0,-1,0,0,1], [1,0,0,0,-2,1,1,-1,-1,-1,1,1], [0,-1,0,1,0,0,-1,0,-1,0,-1,0], [-1,0,0,0,1,-1,-1,1,0,0,-1,-1], [1,0,1,-1,-1,1,1,-1,0,0,1,1], [0,0,-1,1,1,-1,0,1,1,0,0,-1], [0,1,-1,0,1,-1,1,1,2,0,0,-1], [1,-1,1,0,-1,2,1,-1,-1,0,1,1]]]], [ # Q-class [12][06] [[4], [2,4], [-1,1,4], [-1,0,0,4], [0,0,0,-1,4], [-1,0,2,1,1,4], [-1,-1,0,0,2,2,4], [1,0,0,1,1,1,0,4], [2,1,1,0,-1,0,-1,1,4], [-1,-1,0,1,0,1,0,1,0,4], [0,-1,-1,2,1,1,1,2,1,2,4], [0,0,0,-1,0,-1,0,-1,1,2,1,4]], [[[0,0,1,-1,0,-1,0,-1,0,1,1,-2], [0,0,0,0,0,0,0,-1,0,1,0,-1], [0,0,-1,0,0,1,0,0,0,0,0,0], [0,0,-1,1,1,1,0,0,1,0,-2,1], [-1,1,0,-1,-1,-1,1,0,0,0,1,-1], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,-1,1,0,0,0,0,0], [0,1,1,-2,-1,-1,1,-1,0,1,2,-2], [0,0,0,-1,0,0,0,0,0,1,0,-1], [-1,1,0,-1,0,0,0,0,0,0,1,0], [-1,1,0,-1,0,-1,1,0,1,1,0,-1], [-1,1,0,-1,0,-1,0,0,0,1,1,-1]], [[1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,-1,0,-1,-1,0,1], [-1,1,0,-1,-1,-1,1,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,-1,0,0,0], [-1,0,-1,0,1,0,0,0,1,0,-1,0], [0,0,0,0,0,-1,1,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [-1,1,0,-1,0,-1,1,-1,1,1,1,-2], [1,-1,0,2,1,0,0,0,0,0,-2,1], [0,0,1,0,0,-1,1,0,0,0,0,0], [0,0,1,0,0,-2,1,0,0,1,0,-1], [1,0,1,0,0,-1,1,-1,0,1,1,-1], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,-1,0,1,0,0,0,0,0], [0,0,0,0,0,-1,1,-1,1,1,0,-1], [0,0,0,0,-1,0,0,0,0,0,0,0]]]], [ # Q-class [12][07] [[3], [1,3], [0,1,3], [-1,1,1,3], [1,0,1,-1,3], [-1,-1,1,0,1,3], [0,0,0,0,0,0,3], [0,0,0,0,0,0,1,3], [0,0,0,0,0,0,0,1,3], [0,0,0,0,0,0,-1,1,1,3], [0,0,0,0,0,0,1,0,1,-1,3], [0,0,0,0,0,0,-1,-1,1,0,1,3]], [[[0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [0,0,-1,1,1,0,0,0,0,0,0,0], [-1,0,0,0,1,-1,0,0,0,0,0,0], [0,1,-1,0,0,1,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [0,1,-1,0,0,1,0,0,0,0,0,0], [-1,1,0,-1,0,0,0,0,0,0,0,0], [1,0,0,0,-1,1,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0]]]], [ # Q-class [12][08] [[2], [1,2], [1,1,2], [1,1,1,2], [0,0,0,0,2], [0,0,0,0,1,2], [0,0,0,0,1,1,2], [0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,-1,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0]], [[-1,0,1,0,0,0,0,0,0,0,0,0], [0,0,1,-1,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [0,-1,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [12][09] [[4], [-2,4], [0,-1,4], [0,1,-2,4], [-2,0,-1,0,4], [0,0,0,-2,-1,4], [0,-2,1,0,1,-2,4], [2,0,1,-1,-1,0,0,4], [-1,1,0,0,2,0,0,1,4], [1,-1,2,0,0,-1,1,2,2,4], [-1,0,1,1,1,-2,2,0,1,2,4], [0,0,0,0,1,0,1,2,2,2,2,4]], [[[0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,1,0,0,-1,0,0,0,-1,-1,1], [0,1,-1,0,1,1,1,0,-1,2,0,-1], [-1,-1,0,1,0,1,0,1,0,0,0,-1], [0,0,0,-1,-1,-1,-1,-1,0,0,0,1], [1,1,1,1,1,1,1,0,0,0,-1,0], [0,0,1,1,0,0,0,0,0,-1,0,1], [0,0,1,1,1,1,0,0,-1,0,0,0], [0,0,1,1,1,0,0,0,-1,0,-1,1], [0,0,1,1,1,0,0,0,0,0,-1,0], [0,0,1,1,0,0,0,-1,0,0,-1,1]], [[-1,-2,0,0,-1,-1,-1,0,1,-1,0,0], [1,2,0,0,1,1,1,-1,-1,1,0,0], [-1,-1,0,1,0,1,0,2,0,-1,1,-1], [1,1,0,-1,0,-1,0,-1,0,0,0,0], [0,1,0,0,0,0,1,0,0,1,-1,0], [0,0,0,0,1,1,0,0,-1,1,0,0], [-1,-1,0,0,-1,-1,-1,1,1,-1,0,0], [-1,-1,0,0,-1,0,0,0,1,-1,0,0], [0,1,0,0,0,1,1,0,0,1,0,-1], [-1,-1,0,0,-1,0,0,1,1,-1,1,-1], [0,0,0,0,0,0,0,1,1,-1,1,-1], [0,0,1,0,0,0,0,0,1,-1,0,0]]]], [ # Q-class [12][10] [[4], [-1,4], [2,-1,4], [-1,2,-1,4], [-2,2,-1,1,4], [-1,1,1,0,1,4], [1,0,1,-1,0,1,4], [0,-1,-1,1,-1,-1,1,4], [0,0,1,2,0,1,-1,1,4], [-1,1,1,2,1,1,1,1,2,4], [-1,-1,0,-1,0,1,1,1,1,1,4], [1,0,1,1,-1,1,1,0,1,2,1,4]], [[[0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,1,-1,0,0,-1,0,0,1,-1], [-2,1,1,-1,0,-1,1,1,1,-2,-1,2], [0,0,0,0,0,0,0,0,1,-1,0,0], [1,-1,-1,2,-1,1,0,-1,-1,1,1,-2], [0,0,0,1,-1,0,1,-1,0,0,0,-1], [-2,0,1,0,0,-1,1,0,1,-1,-1,1], [-1,0,0,-1,1,-1,1,0,2,-1,-1,1], [0,0,0,0,0,0,1,0,1,-1,0,0], [-2,1,1,-1,0,-1,1,1,2,-2,-1,1], [-1,0,0,-1,0,0,1,0,1,0,-1,0], [-1,1,1,-1,0,0,0,1,1,-1,-1,1]], [[-3,1,2,-1,1,-2,1,1,2,-3,-1,2], [1,0,0,1,0,1,-1,0,-2,1,1,-1], [-2,0,1,0,0,-1,1,0,1,-1,-1,1], [1,0,0,0,0,1,-1,0,-1,1,0,-1], [1,0,0,1,-1,1,-1,0,-2,1,1,-1], [0,-1,0,1,0,1,0,0,-1,0,0,0], [-2,0,0,-1,0,-1,1,0,1,-1,-1,1], [0,0,-1,-1,0,0,0,0,1,0,-1,0], [1,-1,0,1,0,1,-1,0,-1,1,0,-1], [1,-1,-1,1,-1,1,0,-1,-1,2,0,-2], [2,-2,-2,2,-1,1,0,-2,-1,2,1,-2], [0,-1,0,1,0,0,1,-1,0,0,0,-1]]]], [ # Q-class [12][11] [[6], [2,6], [2,2,6], [-2,2,0,6], [-2,0,2,2,6], [0,-2,2,-2,2,6], [3,1,1,-1,-1,0,6], [1,3,1,1,0,-1,2,6], [1,1,3,0,1,1,2,2,6], [-1,1,0,3,1,-1,-2,2,0,6], [-1,0,1,1,3,1,-2,0,2,2,6], [0,-1,1,-1,1,3,0,-2,2,-2,2,6]], [[[0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,-1,1,0,0,-1], [0,0,0,0,0,0,0,0,0,-1,1,-1], [0,0,0,0,0,0,1,0,-1,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,-1,0,0,0,0,0,1,0,0,0], [0,0,0,0,-1,0,0,0,0,0,1,0], [0,1,-1,0,0,1,0,-1,1,0,0,-1], [0,0,0,1,-1,1,0,0,0,-1,1,-1], [-1,0,1,0,-1,0,1,0,-1,0,1,0]], [[1,-1,0,1,0,0,-1,1,0,-1,0,0], [0,0,0,1,0,0,0,0,0,-1,0,0], [0,0,0,1,-1,1,0,0,0,-1,1,-1], [0,1,0,0,0,0,0,-1,0,0,0,0], [0,1,-1,0,0,1,0,-1,1,0,0,-1], [0,0,0,0,0,1,0,0,0,0,0,-1], [0,0,0,0,0,0,-1,1,0,-1,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,-1,1,-1], [0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,-1,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,-1]], [[1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [-1,1,0,-1,0,0,0,0,0,0,0,0], [-1,0,1,0,-1,0,0,0,0,0,0,0], [0,-1,1,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,-1,1,0,-1,0,0], [0,0,0,0,0,0,-1,0,1,0,-1,0], [0,0,0,0,0,0,0,-1,1,0,0,-1]]]], [ # Q-class [12][12] [[8], [1,8], [2,0,8], [4,-1,-1,8], [0,2,2,-2,8], [3,-1,4,0,4,8], [-4,-3,-3,-3,-3,-4,8], [-3,3,2,-1,2,-2,-1,8], [-2,-2,3,-4,4,2,1,1,8], [-2,1,-4,-2,-2,-4,2,1,-2,8], [-3,-4,-4,1,0,-1,3,-1,1,2,8], [2,4,0,-2,4,1,-3,0,2,2,-2,8]], [[[0,0,0,0,0,0,0,0,0,0,0,1], [0,0,1,1,1,0,1,0,0,1,0,0], [1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,-1,-1,1,1], [0,0,1,0,1,-1,-1,-1,0,1,0,-1], [0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,-1,0,0,0,0,0,1,0,-1,-1], [0,1,1,1,1,0,1,-1,0,1,0,-1], [1,0,0,-1,0,-1,-1,0,0,0,0,-1], [-1,0,0,1,0,1,1,0,0,1,-1,0], [0,0,-1,-1,0,0,-1,0,0,0,0,-1], [0,0,1,0,0,0,0,0,0,1,0,0]], [[-1,-1,0,1,0,0,0,0,0,0,-1,1], [0,0,-1,1,0,1,0,0,1,1,-1,-1], [1,-1,-1,-1,-1,0,0,1,0,-1,0,1], [-1,0,0,1,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,-1,0,1], [0,0,1,-1,0,0,0,0,-1,0,1,0], [1,0,-1,0,0,1,1,1,0,0,0,0], [1,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,-1], [0,1,1,0,0,0,0,0,0,0,1,0], [0,0,0,1,1,0,0,-1,1,1,-1,-1]], [[1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,1,1,0,1,-1,1,1,-1,-1], [0,0,0,0,0,0,0,0,0,-1,0,0], [1,-1,0,-1,0,-1,-1,0,0,0,0,0], [-1,1,0,1,0,1,0,-1,1,1,-1,-1], [0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,-1,-1,0,0,1,-1,-1,1,1], [0,0,-1,0,0,0,0,0,1,0,-1,-1], [-1,1,0,1,-1,1,0,0,1,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,-1,-1,0,-1,0,0,0,1,0], [-1,1,0,2,0,1,1,-1,1,1,-1,0]]]], [ # Q-class [12][13] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [0,0,0,0,0,0,2], [0,0,0,0,0,0,1,2], [0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,1,1,1,1,2], [0,0,0,0,0,0,1,1,1,1,1,2]], [[[0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,-1,1,0,0,0,0,0,0], [0,0,0,-1,0,1,0,0,0,0,0,0], [0,0,-1,0,0,1,0,0,0,0,0,0], [0,-1,0,0,0,1,0,0,0,0,0,0], [-1,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,1,-1,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,-1,1,0,0,0,0,0,0,0], [0,0,-1,0,1,0,0,0,0,0,0,0], [0,-1,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0]]]], [ # Q-class [12][14] [[4], [0,4], [2,-2,4], [2,1,1,4], [1,-1,1,2,4], [0,-1,2,1,2,4], [0,0,0,0,0,0,4], [0,0,0,0,0,0,0,4], [0,0,0,0,0,0,2,-2,4], [0,0,0,0,0,0,2,1,1,4], [0,0,0,0,0,0,1,-1,1,2,4], [0,0,0,0,0,0,0,-1,2,1,2,4]], [[[-1,0,1,0,0,-1,0,0,0,0,0,0], [0,0,0,0,1,-1,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,1,0,0,-1,0,0,0,0,0,0], [0,-1,0,1,-1,0,0,0,0,0,0,0], [0,0,0,1,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0], [1,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,1,-1,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0]]]], [ # Q-class [12][15] [[4], [-1,4], [-2,1,4], [0,-2,1,4], [1,2,0,-2,4], [0,-1,0,-1,0,4], [1,-1,1,2,0,-1,4], [0,0,1,0,0,1,0,4], [-1,1,0,-1,0,0,1,-1,4], [2,0,0,0,2,0,1,0,0,4], [-1,0,2,2,-1,0,2,0,1,1,4], [1,0,-1,-1,1,1,1,1,2,2,1,4]], [[[-1,0,-2,-1,0,0,1,1,0,1,1,-2], [1,-2,1,0,2,-1,-2,0,1,-1,1,0], [1,0,1,1,0,0,-1,0,1,0,-1,0], [0,1,0,0,-1,0,1,0,0,0,-1,0], [1,-2,0,0,2,-1,-2,1,1,-1,2,-1], [0,0,0,0,-1,0,0,0,0,1,0,0], [0,0,-1,0,0,0,0,1,1,0,0,-1], [0,0,0,0,0,0,0,1,1,1,0,-1], [1,-1,0,0,1,0,-1,0,1,-1,1,0], [0,-1,-1,0,1,0,0,1,1,0,1,-2], [0,0,0,1,0,0,0,0,1,0,-1,0], [0,-1,-1,0,1,0,0,1,1,0,1,-1]], [[-1,2,0,0,-2,1,2,-1,-1,1,-2,1], [0,-1,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,1,0,-1,1,1,-1,1,-1], [0,0,0,0,1,0,0,0,0,-1,0,0], [-1,1,-1,1,-1,1,1,0,0,1,-1,0], [0,0,0,0,0,0,0,1,1,1,0,-1], [0,1,-1,0,0,1,1,0,0,0,0,-1], [-1,1,0,0,-1,1,1,0,-1,1,-1,0], [1,-1,0,0,1,0,-1,0,1,0,1,-1], [-1,1,-1,0,-1,1,1,0,0,1,-1,0], [0,-1,-1,-1,1,0,0,1,1,0,1,-2], [-1,1,-1,0,-1,1,1,0,0,2,-1,-1]]]], [ # Q-class [12][16] [[8], [-2,8], [-4,4,8], [4,-2,-1,8], [-2,-3,1,-2,8], [-3,4,3,0,1,8], [1,3,3,3,-4,2,8], [3,-4,-3,0,0,-4,-3,8], [4,-1,0,0,0,-1,1,4,8], [-4,2,1,0,0,2,1,-2,-4,8], [4,-1,-4,4,-2,-1,-1,0,0,0,8], [4,-1,-4,3,-1,-2,-2,3,0,-1,4,8]], [[[0,-1,1,0,-1,0,-1,-1,1,1,0,1], [1,-1,1,-1,-1,1,0,1,-1,0,0,0], [-1,1,-1,0,1,0,2,2,-1,-1,1,-1], [0,0,0,0,0,0,0,0,0,0,1,0], [-2,2,-2,2,2,-1,1,1,0,-1,0,-1], [1,0,0,0,0,0,0,1,-1,0,0,-1], [0,0,0,-1,0,0,1,1,-1,0,1,0], [0,-1,0,0,-1,0,-1,-2,2,1,-1,1], [0,-2,1,-1,-1,0,0,-1,1,1,0,1], [0,1,-1,0,1,0,1,1,-1,-1,0,0], [2,-2,2,-1,-1,1,-1,-1,0,1,0,1], [1,-2,1,0,-2,1,-2,-2,1,1,-1,1]], [[0,-2,1,-1,-1,0,0,-1,1,1,0,1], [0,1,-1,0,1,0,1,0,0,0,0,0], [0,1,-1,1,0,0,-1,-1,1,0,-1,0], [0,-1,0,0,-1,0,-1,-1,1,1,-1,0], [-1,2,-1,2,1,-1,0,1,0,-1,0,-1], [-2,3,-2,2,2,-1,1,1,0,-1,0,-1], [-1,0,-1,0,0,0,0,-1,1,0,0,0], [0,-1,1,-1,-1,0,0,0,0,0,0,1], [-1,0,0,0,0,-1,0,-1,1,0,0,1], [0,1,-1,0,1,0,1,1,-1,-1,0,-1], [1,-1,1,-1,0,0,0,0,0,1,0,0], [1,-1,1,-1,-1,0,0,0,0,1,0,0]]]], [ # Q-class [12][17] [[4], [2,4], [2,1,4], [1,2,2,4], [2,1,2,1,4], [1,2,1,2,2,4], [2,1,2,1,2,1,4], [1,2,1,2,1,2,2,4], [2,1,2,1,2,1,2,1,4], [1,2,1,2,1,2,1,2,2,4], [2,1,2,1,2,1,2,1,2,1,4], [1,2,1,2,1,2,1,2,1,2,2,4]], [[[0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0], [0,0,0,0,0,0,0,0,0,1,0,-1], [0,0,0,0,0,0,0,0,-1,1,1,-1], [0,0,0,0,0,0,0,-1,0,1,0,0], [0,0,0,0,0,0,1,-1,-1,1,0,0], [0,0,0,0,0,-1,0,0,0,1,0,0], [0,0,0,0,1,-1,0,0,-1,1,0,0], [0,0,0,-1,0,0,0,0,0,1,0,0], [0,0,1,-1,0,0,0,0,-1,1,0,0], [0,-1,0,0,0,0,0,0,0,1,0,0], [1,-1,0,0,0,0,0,0,-1,1,0,0]], [[-1,0,0,0,0,0,0,0,0,0,1,0], [-1,1,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,-1,1,1,-1], [0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,-1,1,0,0,1,-1], [0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,-1,1,0,0,0,0,1,-1], [0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,-1,1,0,0,0,0,0,0,1,-1]], [[1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,0,0,0,0,0,0,0], [0,1,0,-1,0,0,0,0,0,0,0,0], [1,0,0,0,-1,0,0,0,0,0,0,0], [0,1,0,0,0,-1,0,0,0,0,0,0], [1,0,0,0,0,0,-1,0,0,0,0,0], [0,1,0,0,0,0,0,-1,0,0,0,0], [1,0,0,0,0,0,0,0,-1,0,0,0], [0,1,0,0,0,0,0,0,0,-1,0,0], [1,0,0,0,0,0,0,0,0,0,-1,0], [0,1,0,0,0,0,0,0,0,0,0,-1]]]], [ # Q-class [12][18] [[8], [4,8], [4,2,8], [2,4,4,8], [-2,-1,2,1,8], [-1,-2,1,2,4,8], [0,0,-2,-1,2,1,8], [0,0,-1,-2,1,2,4,8], [4,2,0,0,-4,-2,2,1,8], [2,4,0,0,-2,-4,1,2,4,8], [4,2,4,2,-2,-1,-4,-2,2,1,8], [2,4,2,4,-1,-2,-2,-4,1,2,4,8]], [[[0,0,0,1,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,0,0,0], [0,-1,0,1,0,0,0,0,0,1,0,0], [1,-1,-1,1,0,0,0,0,-1,1,0,0], [0,-1,0,0,0,0,0,1,0,0,0,1], [1,-1,0,0,0,0,-1,1,0,0,-1,1], [0,0,0,0,0,-1,0,1,0,-1,0,1], [0,0,0,0,1,-1,-1,1,1,-1,-1,1], [0,1,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,-1,0,1,0,0], [0,0,0,0,-1,1,1,-1,-1,1,0,0]], [[-1,0,0,0,0,0,0,0,0,0,1,0], [-1,1,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,1,-1,0,0], [-1,0,1,0,-1,0,1,0,0,0,0,0], [-1,1,1,-1,-1,1,1,-1,0,0,0,0], [-1,0,1,0,0,0,0,0,0,0,0,0], [-1,1,1,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [-1,0,1,0,-1,0,0,0,0,0,0,0], [0,-1,0,1,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,1,0,-1,0], [0,0,0,0,0,0,0,-1,0,1,0,-1], [1,0,0,0,0,0,0,0,0,0,-1,0], [0,1,0,0,0,0,0,0,0,0,0,-1], [1,0,0,0,0,0,0,0,-1,0,0,0], [0,1,0,0,0,0,0,0,0,-1,0,0]]]], [ # Q-class [12][19] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,-1,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,0,0,0,0,1]], [[-1,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,1,0]]]] ]; MakeImmutable( IMFList[12].matrices ); gap-4r6p5/grp/imf21.grp 0000644 0001750 0001750 00000056676 12172557252 013405 0 ustar bill bill ############################################################################# ## #A imf21.grp GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains, for each Q-class representative of the irreducible ## maximal finite integral matrix groups of dimension 21, ## ## [1] a quadratic form (as lower triangle of the Gram matrix), ## [2] a list of matrix generators. ## ############################################################################# ## ## Quadratic form and matrix generators for the Q-class representatives of ## the irreducible maximal finite integral matrix groups of dimension 2.-i1 ## IMFList[21].matrices := [ [ # Q-class [21][01] [[1], [0,1], [0,0,1], [0,0,0,1], [0,0,0,0,1], [0,0,0,0,0,1], [0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]], [[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [21][02] [[2], [-1,2], [0,-1,2], [0,0,-1,2], [0,0,0,-1,2], [0,0,0,0,-1,2], [0,0,-1,0,0,0,2], [0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,-1,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,-1,-2,-2,-2,-1,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,2,3,4,3,2,1,2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,-2,-2,-1,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,-2,-3,-3,-2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,2,2,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,2,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [21][03] [[3], [-1,3], [1,1,3], [-1,1,1,3], [1,-1,1,1,3], [-1,-1,-1,1,1,3], [1,1,1,0,0,-1,3], [-1,1,1,1,0,0,1,3], [1,0,1,1,1,0,1,1,3], [-1,0,0,1,1,1,-1,1,1,3], [1,-1,0,0,1,1,-1,-1,1,1,3], [-1,1,-1,0,-1,0,-1,-1,-1,0,0,3], [0,1,0,-1,-1,-1,1,0,-1,-1,-1,1,3], [0,-1,-1,-1,-1,0,-1,-1,-1,-1,0,1,1,3], [1,-1,0,-1,0,-1,1,0,0,-1,-1,-1,1,1,3], [1,0,1,-1,0,-1,1,1,1,0,0,-1,1,0,1,3], [0,1,1,0,-1,-1,0,0,0,0,0,1,1,1,0,1,3], [0,0,-1,-1,-1,-1,0,0,0,0,0,1,1,1,1,1,1,3], [1,0,0,-1,-1,-1,1,0,1,-1,0,0,1,1,1,1,1,1,3], [1,-1,0,-1,0,-1,0,0,1,0,0,-1,-1,0,1,1,0,1,1,3], [-1,0,-1,0,-1,1,-1,0,0,1,1,1,0,1,-1,0,1,1,0,0,3]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,-1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,1,0,0,0,0,-1,1], [1,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,1,0,-1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,1,0,1,-1,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,-1,-1,1,0,0,0,1,-1,1], [0,0,0,0,1,-1,0,0,-1,0,0,0,-1,-1,1,0,0,0,1,-1,1], [1,0,1,0,0,0,0,0,-1,1,-1,0,-1,0,0,0,-1,1,1,-1,1], [0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,-1,0,0,0,0], [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,1,-1,-1,1,1,0,-1,1,0,1], [0,1,0,0,1,0,0,0,-1,0,0,1,-1,0,1,1,-1,-1,1,0,1], [-1,0,1,0,0,0,1,-1,-1,1,0,1,-1,0,0,1,-1,0,1,0,0], [0,1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,1,0,-1,0,1,0,0,0,0,0,0,0,0,1,0], [1,0,0,1,0,0,1,0,-2,1,0,1,-1,0,0,1,-1,0,1,0,0]], [[-1,-1,0,-1,0,0,0,0,2,-1,0,0,1,-1,0,-1,1,0,-1,0,0], [1,1,0,0,0,1,0,-1,0,1,-1,-1,0,1,-1,0,0,1,0,0,-1], [0,-1,1,0,-1,1,1,-1,0,1,-1,0,0,0,-1,0,0,1,0,0,-1], [1,0,1,0,-1,1,0,0,0,1,-1,0,0,1,-1,0,-1,1,0,0,-1], [0,-1,1,0,-1,0,1,0,0,1,0,1,0,0,0,0,-1,0,0,0,0], [0,0,1,0,-1,0,0,0,0,1,0,0,0,1,0,0,-1,0,0,0,0], [0,0,0,-1,0,1,0,0,1,0,0,0,1,0,0,-1,1,0,-1,1,-1], [1,0,0,1,-1,1,0,0,-1,1,0,0,1,0,0,0,0,0,0,1,-1], [0,0,0,0,-1,1,0,0,1,0,0,0,1,0,0,0,0,0,-1,1,-1], [1,0,0,1,-1,0,0,0,-1,1,0,0,0,0,0,1,-1,0,0,0,0], [0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0], [0,1,-1,0,1,-1,0,0,0,0,0,-1,0,1,-1,0,0,0,0,0,0], [0,0,-1,0,1,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0], [-1,0,-1,0,1,-1,0,1,0,-1,1,0,0,0,0,0,1,-1,0,0,0], [-1,-1,-1,0,1,-1,0,1,0,-1,1,1,0,-1,1,0,1,-1,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,1,0,1,-1,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,-1,0,1,0,0,0,-1], [0,1,-2,0,1,-1,-1,1,0,-1,1,0,0,-1,1,0,1,-1,0,0,0], [-1,0,-1,0,0,0,0,0,1,-1,1,0,1,0,0,0,1,-1,-1,1,-1], [-1,0,0,0,0,0,0,0,0,-1,1,0,0,-1,1,0,0,0,0,0,0], [0,1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [21][04] [[3], [1,3], [0,0,3], [0,0,0,3], [-1,-1,0,0,3], [-1,-1,0,1,1,3], [-1,-1,0,1,1,1,3], [-1,0,-1,0,0,0,0,3], [0,0,-1,0,-1,0,1,0,3], [0,0,0,0,0,0,-1,0,-1,3], [0,1,-1,0,0,0,-1,1,0,1,3], [-1,-1,0,0,0,0,1,0,0,0,-1,3], [0,-1,1,0,1,1,1,-1,0,1,0,1,3], [0,0,0,1,-1,0,-1,1,-1,1,0,0,-1,3], [1,1,1,0,-1,-1,-1,-1,-1,1,0,0,0,1,3], [0,0,1,0,1,0,0,0,-1,1,1,-1,1,-1,0,3], [-1,0,1,1,0,1,1,0,0,-1,-1,1,0,0,0,0,3], [1,0,0,0,0,0,-1,-1,-1,1,-1,0,0,1,1,-1,-1,3], [-1,-1,1,-1,0,0,1,0,1,-1,-1,1,1,-1,-1,0,1,-1,3], [0,0,1,0,-1,-1,0,0,0,0,-1,1,0,1,1,-1,0,1,1,3], [-1,-1,1,1,1,1,1,0,-1,1,-1,1,1,1,1,0,1,1,0,1,3]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,1,1,0,1,1,0,0,1,0,0,2,-2,1,0,1,-2,0,1,-1,1], [1,1,0,0,0,1,0,-1,0,0,0,1,-2,0,0,0,-2,-1,2,-1,2], [0,1,-1,-1,-1,0,-1,-1,0,-1,-1,0,1,1,-2,1,0,-1,-1,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [-1,0,0,-1,0,0,0,0,1,-1,0,0,1,1,0,1,1,1,-1,0,-1], [-1,0,0,0,-1,-1,0,0,-1,0,0,-1,1,-1,-1,-1,1,0,-1,0,0], [0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,1,1,-1,-1], [-1,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,1,1,-1,0,-1], [1,0,0,0,0,1,-1,0,0,0,0,1,-1,0,0,0,-1,-1,1,0,1], [0,0,0,0,0,0,-1,0,1,-1,0,1,0,1,0,1,-1,0,0,-1,1], [0,-1,0,0,0,-1,0,1,-1,1,0,-2,1,-2,0,-2,2,0,-1,1,-1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,-1,0,-1,0,0,1], [1,0,0,0,0,1,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0], [1,0,0,0,0,1,0,0,-1,1,0,0,-1,-1,0,-1,-1,-1,1,0,1], [0,1,-1,0,-1,0,-1,-1,0,-2,0,1,0,1,-1,1,-2,-1,1,-1,3], [0,1,-1,-1,0,0,0,-1,0,-1,0,0,0,1,-1,1,0,0,0,0,1], [1,-1,1,0,1,1,1,1,0,2,0,0,-1,-1,1,-1,1,0,0,1,-2], [0,0,0,1,1,0,0,0,0,1,0,0,-1,-1,1,-1,0,0,1,0,-1], [1,-1,1,1,1,0,1,1,-1,3,0,-1,-1,-2,1,-3,1,0,1,0,-2], [1,0,0,0,0,1,0,0,-1,1,0,0,-1,-1,0,-1,0,-1,1,0,0]], [[-1,-1,-1,-1,-1,-2,0,0,-1,-1,0,-2,3,0,-1,-1,2,0,-2,1,0], [-1,-3,1,0,0,-2,2,2,-1,2,1,-3,2,-2,1,-3,4,2,-2,1,-4], [0,0,0,0,0,0,0,-1,1,-1,1,1,-1,1,0,1,-1,1,1,-1,1], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,-1], [1,1,1,1,1,2,-1,0,1,0,-1,2,-3,0,1,1,-3,-1,2,-1,1], [1,1,0,0,1,1,0,-1,1,0,0,1,-2,1,0,1,-1,-1,1,0,1], [1,1,0,1,1,2,-1,0,1,0,-1,2,-2,0,1,1,-2,-1,1,0,0], [0,0,0,1,1,1,0,1,0,1,-1,0,0,0,2,0,0,0,1,0,-2], [1,0,0,0,1,1,0,0,0,1,0,1,-1,0,0,0,0,-1,0,1,-1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [-1,-1,1,0,1,-1,1,1,0,1,0,-1,1,0,1,-1,2,1,-1,0,-3], [1,1,0,0,0,1,0,0,0,0,0,1,-1,0,0,0,-1,0,1,-1,1], [1,1,0,0,1,1,-1,-1,1,-1,0,2,-2,1,0,1,-2,-1,1,-1,2], [-1,0,-1,-1,-1,-1,1,0,0,-1,0,-1,2,1,0,1,1,1,-1,0,0], [-1,-1,0,-1,-1,-2,1,0,0,-1,1,-1,2,0,-1,0,2,2,-2,0,0], [0,0,1,1,1,0,-1,0,1,0,0,1,-1,0,1,0,-1,0,1,-1,0], [1,0,1,0,1,1,1,0,1,1,1,1,-2,0,1,0,0,1,1,0,-1], [0,0,-1,-1,-2,-1,0,-1,-1,-1,0,-1,1,0,-2,0,0,-1,-1,0,3], [1,1,0,0,1,2,-1,-1,1,0,0,2,-2,1,0,1,-2,-1,1,0,1], [0,0,-1,-1,-1,0,0,-1,0,-1,0,0,1,1,-1,1,0,0,-1,0,1], [1,1,0,0,0,1,0,-1,1,-1,0,2,-2,1,0,2,-2,0,1,-1,2]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0], [1,0,1,1,1,1,0,1,1,1,0,1,-2,-1,1,0,-1,0,1,0,0], [-1,-1,0,1,0,-1,1,1,-1,1,0,-1,1,-1,1,-1,1,1,0,0,-2], [0,0,0,1,1,1,-1,0,1,0,0,1,-1,0,1,1,-1,0,1,0,0], [0,-1,1,1,0,0,1,1,0,1,1,0,-1,-1,1,-1,0,1,1,-1,-1], [-1,0,0,-1,0,-1,0,0,1,-1,0,0,1,1,-1,1,1,1,-2,0,0], [1,0,1,0,0,1,0,0,0,0,1,1,-2,0,0,0,-1,0,1,-1,1], [-1,0,-1,-1,-1,-1,0,-1,0,-2,0,-1,2,1,-1,1,1,0,-2,1,1], [0,1,0,-1,0,0,0,-1,1,-1,0,1,0,2,-1,2,0,0,-1,0,1], [0,-1,1,0,0,0,1,0,0,1,1,0,-1,-1,0,-1,1,1,0,0,-1], [0,-1,0,0,0,0,1,0,0,0,1,0,0,0,1,0,1,1,0,0,-1], [0,0,0,0,1,0,-1,0,1,0,-1,0,0,0,0,0,0,-1,-1,1,0], [0,0,0,0,0,-1,0,0,0,0,0,-1,1,0,0,-1,1,0,0,0,0], [-1,0,-1,-1,-1,-1,1,0,0,-1,0,-1,2,1,0,1,1,1,-1,0,0], [0,0,1,1,1,1,0,1,1,1,0,1,-2,-1,2,0,-1,1,2,-1,-1], [0,0,-1,1,0,0,-1,0,-1,0,-1,-1,1,-1,0,-1,0,-1,0,1,0], [0,0,0,0,0,1,0,0,0,0,0,1,-1,0,1,0,-1,0,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [-1,-1,0,1,0,-1,0,1,0,0,0,-1,1,-1,1,-1,1,1,0,0,-1]]]], [ # Q-class [21][05] [[4], [2,4], [1,1,4], [1,1,1,4], [2,1,1,1,4], [1,2,1,2,1,4], [2,1,2,1,2,1,4], [2,1,1,1,2,1,2,4], [2,2,1,2,1,1,1,1,4], [1,1,2,1,2,2,1,1,1,4], [1,2,1,1,2,2,1,1,1,1,4], [1,1,2,2,1,1,1,2,1,2,1,4], [2,2,2,1,1,1,1,1,2,2,1,2,4], [2,1,1,1,1,2,1,1,1,2,1,1,1,4], [1,2,2,1,1,2,2,1,1,1,2,1,1,1,4], [1,1,2,2,1,2,1,1,1,1,1,1,1,1,1,4], [2,1,1,2,1,1,1,1,1,1,1,2,1,2,2,1,4], [2,1,1,1,1,1,1,1,1,1,2,1,1,2,1,1,2,4], [2,1,1,2,2,2,2,2,1,1,1,1,1,1,1,2,1,1,4], [2,2,1,1,1,1,1,1,2,1,1,1,2,1,1,2,1,1,1,4], [2,1,-1,0,1,0,1,1,1,0,0,0,1,0,0,-1,0,0,1,1,4]], [[[-1,0,1,0,1,1,0,0,0,-1,0,0,0,0,-1,-1,1,0,0,1,0], [-1,0,1,0,0,1,0,0,0,-1,0,0,0,0,-1,-1,1,0,0,1,0], [1,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,-1,-1,0,0,1,-1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [-1,0,1,0,1,1,0,0,0,-1,0,-1,0,0,-1,-1,1,0,0,1,0], [0,-1,1,0,0,1,0,0,0,-1,0,0,0,0,0,-1,0,0,0,1,0], [-1,0,1,0,1,1,0,0,0,-1,0,0,0,0,-1,-1,0,0,0,1,0], [-1,0,1,-1,1,1,0,0,0,-1,0,0,0,0,-1,-1,1,0,0,1,0], [-1,0,1,0,1,1,0,0,0,-1,-1,0,0,0,-1,-1,1,0,0,1,0], [0,0,1,1,0,0,0,0,-1,0,0,-1,0,0,0,-1,0,0,0,1,0], [-1,0,1,0,0,1,0,1,0,-1,0,-1,0,0,-1,-1,1,0,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,1,0], [-1,0,1,0,1,1,0,0,0,-1,-1,0,0,0,0,-1,0,1,0,1,0], [0,0,1,0,0,1,0,0,0,-1,0,0,0,0,-1,-1,0,0,0,1,0], [1,-1,0,0,0,1,0,0,0,0,0,0,0,-1,0,-1,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [-1,0,1,0,0,1,0,1,0,0,0,-1,0,0,-1,-1,1,0,0,1,0], [0,-1,1,0,1,1,-1,0,0,-1,0,0,0,0,0,-1,0,0,0,1,0], [0,0,1,0,0,1,0,0,0,0,0,0,-1,-1,-1,-1,1,0,0,1,0], [-1,0,1,0,1,1,0,0,0,-1,0,0,0,0,-1,0,1,0,-1,0,1]], [[1,0,-1,0,0,-1,0,-1,0,0,0,1,0,0,1,1,-1,0,0,-1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,-1,-1,0,0,0,0,-1,0,0,0,1,0,0,1,0,-1,0,0,0,-1], [0,0,-1,-1,0,0,1,-1,0,0,0,1,0,0,0,1,0,0,0,0,0], [1,0,-1,0,0,-1,0,-1,0,1,0,1,0,0,1,1,-1,0,0,-1,0], [0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,-1,0,-1,0,0,0,1,0,1,1,1,-1,0,0,-1,0], [1,0,-1,0,0,0,0,-1,0,0,0,1,0,0,1,1,-1,0,0,-1,0], [0,0,0,-1,1,1,0,-1,0,-1,-1,1,0,0,0,0,0,0,0,0,0], [1,-1,0,0,0,0,0,-1,0,0,0,1,0,0,1,0,-1,0,0,0,0], [0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,-1,0,0,0,0,-1,0,0,0,1,0,0,1,1,-1,0,0,0,0], [1,-1,-1,0,0,0,0,-1,0,0,0,1,0,0,1,0,-1,0,0,0,0], [0,0,0,0,1,0,0,-1,0,-1,-1,1,0,0,1,0,-1,1,0,0,0], [1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,0,1,-1,0,0,0,1,0,0,0,0,-1,0,0,0,-1], [1,0,-1,0,0,-1,0,-1,0,0,0,1,0,0,1,1,-1,0,0,0,0], [0,0,0,0,1,0,0,-1,0,-1,0,1,0,0,0,0,0,0,0,0,0], [0,0,-1,-1,0,0,1,-1,1,0,0,1,0,0,0,1,0,0,0,-1,0], [1,0,0,0,0,0,0,-1,0,0,0,1,-1,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,-1,1]]]], [ # Q-class [21][06] [[21], [7,21], [9,3,21], [-3,7,3,21], [3,3,7,9,21], [7,7,3,1,-1,21], [3,9,7,3,7,3,21], [3,3,7,-1,1,9,7,21], [-1,3,1,3,7,3,7,7,21], [7,1,3,-3,3,7,-1,3,3,21], [3,9,7,3,7,3,1,7,7,9,21], [1,-3,9,-3,3,7,3,3,9,7,3,21], [7,7,3,1,9,1,3,-1,3,7,3,7,21], [9,3,1,3,7,3,-3,-3,1,3,7,-1,3,21], [3,3,-3,-1,1,9,-3,1,7,3,7,3,-1,7,21], [7,-3,3,1,9,1,3,9,3,7,3,-3,1,3,-1,21], [-7,-1,-3,3,7,3,1,7,7,-1,1,3,3,-3,7,3,21], [1,-3,-1,7,3,7,-7,3,-1,7,3,1,-3,9,3,7,3,21], [-3,1,3,7,3,7,-1,3,3,1,-1,7,7,3,3,-3,9,7,21], [-1,3,1,3,7,3,7,7,1,3,7,-1,3,1,7,3,7,-1,3,21], [1,7,9,7,3,7,3,3,-1,-3,3,1,-3,-1,3,-3,3,1,7,-1,21]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,1,0,-1,0,1,-1,0,0,1,0,0,0,0,0,0,0,0,0], [-1,0,2,-1,-1,1,-1,-1,2,-1,-1,-1,2,0,-1,0,0,2,-2,2,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [-1,0,2,0,-1,1,0,-1,1,0,-1,-1,1,0,0,0,0,1,-1,1,0], [-1,0,2,-1,-1,1,0,-2,1,-1,0,-1,1,0,0,1,0,1,0,1,0], [-1,0,1,0,0,0,0,0,0,0,-1,0,1,0,1,0,0,1,-1,0,0], [0,0,0,-1,0,0,0,-1,1,0,0,0,0,0,-1,0,0,1,0,1,1], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,-1,0,0,-1,1,0,-1,1,-1,1,0,1,0,-1,0,0,1,-1,1,1], [-1,0,0,0,0,0,0,1,0,0,-1,0,1,1,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [-1,1,2,-2,-1,1,-1,-2,2,-1,-1,-1,1,0,-1,1,0,2,-1,2,1], [1,0,-1,0,1,0,0,0,-1,-1,1,1,-1,-1,0,0,0,0,1,0,-1], [0,0,0,-1,-1,0,0,-1,1,-1,0,0,1,0,-1,1,0,1,0,1,1], [0,-1,0,0,-1,0,1,0,0,-1,1,0,1,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [-1,0,3,-1,-2,1,0,-2,2,-1,0,-2,2,0,-1,0,1,2,-1,1,0]], [[-3,0,3,-1,-2,1,0,-1,2,0,-2,-2,3,1,0,0,0,2,-2,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,-1,2,-1,-3,1,0,-3,3,-1,1,-2,2,0,-2,0,1,2,-1,2,1], [-1,-1,2,-1,-2,1,0,-2,2,0,0,-2,2,1,-1,0,1,1,-1,1,1], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,-1,0,-1,0,1,0,-1,0,1,1,0,0,0,0,-1,1,1], [0,1,-2,1,2,-2,0,3,-3,1,0,2,-2,0,2,0,-1,-2,2,-2,-1], [-1,0,1,0,-1,0,0,0,0,0,0,0,1,1,0,0,1,0,-1,0,0], [-3,0,4,-2,-3,2,0,-3,3,-1,-1,-3,3,1,-1,1,1,2,-2,2,1], [1,0,-2,1,2,-1,1,2,-3,1,1,1,-2,0,1,-1,0,-2,2,-2,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [-2,1,3,-2,-2,1,-1,-2,3,0,-2,-2,2,1,-1,0,1,2,-2,2,1], [-2,0,3,-1,-2,1,0,-2,2,0,-1,-2,2,1,-1,0,1,2,-2,1,1], [0,-1,-1,0,1,0,1,1,-1,0,1,0,0,0,0,-1,0,0,0,-1,0], [-2,0,2,-1,-2,0,0,-1,1,0,-1,-1,2,1,0,1,0,1,-1,1,1], [1,0,-2,0,1,-1,0,1,-1,0,1,1,-1,0,0,0,0,-1,1,-1,0], [-1,-1,2,-1,-3,1,1,-3,2,-1,1,-2,2,0,-1,1,1,2,-1,1,1], [-1,1,2,-2,-2,1,-1,-3,3,-1,0,-1,1,0,-2,1,1,2,-1,2,1], [0,0,-1,0,2,-1,0,2,-1,1,0,0,-1,0,1,-1,-1,-1,1,-1,0], [1,-1,-1,0,0,1,0,-1,0,-1,2,0,0,-1,-1,0,0,0,1,0,0]]]], [ # Q-class [21][07] [[6], [-2,6], [0,2,6], [-2,1,0,6], [2,2,0,-1,6], [2,0,0,-2,0,6], [-1,0,-1,-1,-2,1,6], [0,0,2,0,0,0,-2,6], [2,0,-1,2,1,0,-2,1,6], [2,2,0,-1,2,0,0,-1,0,6], [-2,1,0,-2,-1,-2,0,0,-2,-1,6], [1,0,-2,0,2,2,0,0,1,0,-2,6], [1,1,0,-2,2,0,2,-2,-1,2,1,0,6], [0,-1,-1,0,0,1,-2,1,2,-2,0,0,0,6], [-2,0,-1,0,0,-1,1,1,-2,0,1,1,0,-2,6], [-1,0,-2,0,1,-2,-1,-1,-1,0,2,2,0,-1,2,6], [0,-2,0,0,0,-1,0,0,0,-1,0,0,0,-1,1,0,6], [0,2,2,0,0,2,0,1,0,2,0,0,0,-1,0,0,-2,6], [0,-1,-1,-2,0,0,0,0,0,1,0,0,0,1,0,0,2,-1,6], [-2,0,0,0,-2,-1,0,0,-2,0,1,-2,-1,0,-2,-1,-2,0,0,6], [2,0,-1,-2,1,0,0,0,0,0,2,-1,0,0,0,1,-2,0,-2,0,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-6,-6,3,3,2,4,0,1,2,4,3,1,1,-2,-2,0,-1,-2,1,-1,2], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,3,-2,-2,-2,-2,-1,0,-1,-2,-2,0,0,0,0,0,1,1,-1,0,-1], [-10,-11,6,6,4,7,1,1,3,7,6,2,1,-3,-3,0,-3,-4,2,-2,4], [-2,-3,2,2,2,2,1,0,1,2,2,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [2,1,0,0,0,0,0,0,0,-1,0,-1,0,0,1,1,0,0,0,1,-1], [-1,0,-1,0,-1,0,-1,1,-1,0,-1,0,1,-1,-1,0,0,0,0,-1,1], [-2,-2,2,1,1,2,1,0,2,2,1,0,0,0,0,1,0,-1,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [-6,-8,4,5,4,5,2,1,2,5,5,1,0,-2,-2,0,-2,-3,1,-1,2], [-4,-4,2,2,1,2,0,0,1,3,2,1,0,-1,-1,-1,-1,-1,1,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [-3,-4,3,3,2,3,1,0,1,3,3,1,0,-1,-1,0,-1,-2,1,0,1], [-3,-4,2,2,2,2,1,0,1,2,2,1,0,-1,-1,0,-1,-1,1,0,1], [-2,-2,1,2,1,2,0,0,0,1,1,0,0,-1,-1,0,-1,-1,1,-1,1], [-3,-4,3,2,2,3,1,0,2,3,2,0,0,0,0,1,0,-2,0,1,1], [-2,-2,1,2,1,2,0,0,1,1,1,0,1,-1,0,0,-1,-1,1,0,1], [8,8,-4,-5,-3,-5,0,-1,-1,-5,-4,-2,-1,3,3,1,2,3,-2,2,-4], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,-2,1,2,1,1,0,0,0,1,2,1,0,-1,-1,-1,-1,-1,1,-1,1], [-5,-6,4,4,3,5,1,0,2,4,4,1,0,-1,-1,0,-1,-3,1,0,2], [2,4,-3,-2,-2,-3,-2,0,-2,-3,-3,0,1,0,0,-1,1,2,0,0,0], [1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [1,1,0,-1,-1,-1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [6,7,-5,-4,-3,-5,-2,0,-3,-5,-4,-1,0,1,1,-1,1,3,-1,0,-2], [-2,-3,1,2,1,1,0,0,0,2,2,1,0,-1,-1,-1,-1,-1,1,-1,1], [-3,-4,3,2,3,3,2,0,2,3,3,0,-1,0,0,1,-1,-2,0,0,0], [4,5,-3,-3,-3,-4,-1,0,-2,-3,-3,0,0,1,0,0,1,2,-1,0,-1], [-6,-8,4,5,4,5,2,1,2,5,5,1,0,-2,-2,0,-2,-3,1,-1,2], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,-1,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [3,2,0,-1,0,-1,1,-1,0,-1,-1,-1,-1,2,2,1,1,1,-1,2,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [2,1,0,0,0,0,1,0,0,0,0,-1,-1,1,1,1,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0]]]], [ # Q-class [21][08] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]], [[-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]]]] ]; MakeImmutable( IMFList[21].matrices ); gap-4r6p5/grp/imf28.grp 0000644 0001750 0001750 00000614603 12172557252 013402 0 ustar bill bill ############################################################################# ## #A imf28.grp GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains, for each Q-class representative of the irreducible ## maximal finite integral matrix groups of dimension 28, ## ## [1] a quadratic form (as lower triangle of the Gram matrix), ## [2] a list of matrix generators. ## ############################################################################# ## ## Quadratic form and matrix generators for the Q-class representatives of ## the irreducible maximal finite integral matrix groups of dimension 28. ## IMFList[28].matrices := [ [ # Q-class [28][01] [[1], [0,1], [0,0,1], [0,0,0,1], [0,0,0,0,1], [0,0,0,0,0,1], [0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [28][02] [[2], [1,2], [0,0,2], [0,0,1,2], [0,0,0,0,2], [0,0,0,0,1,2], [0,0,0,0,0,0,2], [0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [28][03] [[2], [0,2], [0,0,2], [1,1,1,2], [0,0,0,0,2], [0,0,0,0,0,2], [0,0,0,0,0,0,2], [0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,-1,-1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [28][04] [[2], [1,2], [1,1,2], [1,1,1,2], [0,0,0,0,2], [0,0,0,0,1,2], [0,0,0,0,1,1,2], [0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [28][05] [[2], [-1,2], [0,-1,2], [0,0,-1,2], [0,0,0,-1,2], [0,0,0,0,-1,2], [0,0,0,-1,0,0,2], [0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,-1,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,2]], [[[0,0,0,0,0,0,0,-1,-2,-3,-4,-3,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,2,2,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,-1,-1,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-3,-4,-3,-2,-2,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,1,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-3,-4,-3,-2,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,-1,-2,-2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,2,2,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-2,-2,-3,-2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,-1,-2,-3,-2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-3,-4,-3,-2,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,1,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-3,-4,-3,-2,-2,0,0,0,0,0,0,0]]]], [ # Q-class [28][06] [[4], [-2,4], [-2,1,4], [1,-2,-2,4], [0,0,-2,1,4], [0,0,1,-2,-2,4], [0,0,0,0,-2,1,4], [0,0,0,0,1,-2,-2,4], [0,0,0,0,0,0,-2,1,4], [0,0,0,0,0,0,1,-2,-2,4], [0,0,0,0,0,0,0,0,-2,1,4], [0,0,0,0,0,0,0,0,1,-2,-2,4], [0,0,0,0,0,0,-2,1,0,0,0,0,4], [0,0,0,0,0,0,1,-2,0,0,0,0,-2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,-2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,-2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,-2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,-2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,-2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,0,0,0,0,-2,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,2,0,1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,2,0,1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-2,0,-3,0,-4,0,-3,0,-2,0,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-2,0,-3,0,-4,0,-3,0,-2,0,-2,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,2,0,2,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,2,0,2,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,-2,0,-3,0,-4,0,-3,0,-2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,-2,0,-3,0,-4,0,-3,0,-2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,-1,-2,-2,-2,-2,-3,-3,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,2,0,2,0,3,0,2,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,1,2,2,2,2,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,-2,0,-2,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,-1,-2,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,2,0,2,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,2,0,1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,2,0,1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-2,0,-3,0,-4,0,-3,0,-2,0,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-2,0,-3,0,-4,0,-3,0,-2,0,-2,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-2,0,-3,0,-4,0,-2,0,-1,0,-2,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,4,4,2,2,1,1,2,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,3,0,4,0,3,0,1,0,2,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-2,-2,-3,-3,-4,-4,-3,-3,-1,-1,-2,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1]]]], [ # Q-class [28][07] [[4], [1,4], [1,1,4], [1,-1,1,4], [1,1,-1,1,4], [1,1,1,-1,1,4], [1,-1,1,1,-1,1,4], [1,-1,-1,1,1,-1,1,4], [1,-1,-1,-1,1,1,-1,1,4], [1,-1,-1,-1,-1,1,1,-1,1,4], [1,1,-1,-1,-1,-1,1,1,-1,1,4], [1,1,1,-1,-1,-1,-1,1,1,-1,1,4], [1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,4], [1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,1,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,-1,1,1,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,-1,-1,1,1,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1,-1,-1,1,1,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,-1,-1,-1,1,1,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,1,-1,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,1,-1,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,1,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,1,0,0,0,1,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,0,0,0,0,-1,1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,-1,0,0,0,0,-1,0,-1,1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,0,-1,1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,-1,0,-1,1,-1,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,1,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,0,1,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,-1,1,0,0,0,0,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,-1,0,0,0,0,-1,0,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,1,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,1,-1,1,0,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,0,0,-1,0,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,1,-1,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,1,-1,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,1,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,1,0,0,0,1,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,0,0,0,0,-1,1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,-1,0,0,0,0,-1,0,-1,1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,0,-1,1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,-1,0,-1,1,-1,1,-1]]]], [ # Q-class [28][08] [[4], [0,4], [2,1,4], [0,0,0,4], [0,-2,0,0,4], [0,2,1,0,-1,4], [0,0,-1,-1,0,1,4], [-1,2,1,-1,-1,1,0,4], [0,0,-1,1,-1,0,1,0,4], [2,-1,1,0,0,1,1,0,0,4], [2,0,1,0,0,0,0,0,-1,1,4], [0,0,0,0,1,1,0,0,0,0,-1,4], [2,0,1,0,1,0,-1,0,0,2,1,1,4], [1,0,1,0,-1,0,-1,0,2,1,-1,0,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2,1,-1,-1,1,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,0,1,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,1,0,0,1,1,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,1,0,-1,0,0,2,1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,-1,0,-1,0,2,1,-1,0,2,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,1,0,0,0,-1,1,1,0,-2,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1,0,0,1,1,-1,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,0,0,0,1,-1,-1,-1,2,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,-1,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,-1,-1,1,1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,0,1,-1,-1,0,0,2,1,1,-2,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,0,1,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,-1,0,-1,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,-1,0,0,0,1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,0,2,-1,-1,0,0,2,1,1,-3,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,0,1,0,0,0,-1,1,1,0,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,1,0,0,1,1,-1,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,0,-1,0,0,0,1,-1,-1,-1,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,0,0,0,-1,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,-1,0,0,-1,-1,1,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,2,-1,0,1,-1,-1,0,0,2,1,1,-2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,0,-1,0,1,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,-1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,1,-1,0,0,0,1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,2,-1,0,2,-1,-1,0,0,2,1,1,-3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,-1,0,0,-1,1,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,-1,0,0,0,-1,1,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,-1,0,1,0,-1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,1,0,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-2,0,1,-1,1,1,1,-1,-2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,1,0,0,0,-1,1,1,0,-2,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1,0,0,1,1,-1,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,0,0,0,1,-1,-1,-1,2,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,-1,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,-1,-1,1,1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,0,1,-1,-1,0,0,2,1,1,-2,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,0,1,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,-1,0,-1,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,-1,0,0,0,1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,0,2,-1,-1,0,0,2,1,1,-3,2]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0,0,-1,1,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,-1,0,0,0,-1,1,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,-1,0,1,0,-1,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,-1,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,1,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,0,1,-1,1,1,1,-1,-2,0,0,1,0]]]], [ # Q-class [28][09] [[4], [-1,4], [2,-2,4], [1,0,0,4], [0,0,0,0,4], [0,0,1,1,-1,4], [-1,0,-1,2,0,1,4], [-1,0,0,0,2,0,0,4], [0,1,0,-1,0,-1,1,1,4], [1,1,0,1,1,1,1,2,2,4], [1,-1,1,2,1,1,1,1,0,2,4], [0,0,1,0,1,1,-1,1,-1,0,1,4], [0,0,-1,-1,0,-1,1,-1,2,1,1,-1,4], [-1,0,-1,1,1,0,2,0,0,1,2,1,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,2,0,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,2,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,-1,1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,1,1,2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,2,1,1,1,1,0,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,-1,1,-1,0,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,1,-1,2,1,1,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1,1,0,2,0,0,1,2,1,2,4]], [[[1,1,1,-1,-1,-1,1,1,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,-1,0,-1,0,-2,1,-3,-1,3,1,1,-1,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,0,-1,1,0,2,-2,2,2,-3,-1,-1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,1,-1,-1,-1,2,1,-2,0,0,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,0,-1,1,0,-1,1,-1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,1,0,0,0,1,0,2,0,-3,0,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,1,0,-1,-1,2,1,-2,0,0,1,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,1,1,0,0,-1,0,1,-1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,-1,0,1,0,-1,0,-2,0,2,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,0,-1,1,-1,-1,1,0,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,1,0,1,1,-2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,-1,1,1,2,-2,0,3,-2,-1,-1,-1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,-1,1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-1,1,1,0,-2,-3,2,2,0,0,-2,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1,0,1,-1,1,1,-2,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,1,-1,0,1,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1,0,-1,1,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,-1,-1,1,1,-2,1,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,-1,0,1,1,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,2,-1,-1,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,-1,1,1,-2,0,-1,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1,1,2,-2,1,2,-2,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,-1,0,1,0,0,1,-1,1,0,-1,0]], [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-1,1,1,0,-2,-3,2,2,0,0,-2,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1,0,1,-1,1,1,-2,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,1,-1,0,1,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1,0,-1,1,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,-1,-1,1,1,-2,1,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,-1,0,1,1,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,2,-1,-1,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,-1,1,1,-2,0,-1,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1,1,2,-2,1,2,-2,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,-1,0,1,0,0,1,-1,1,0,-1,0], [-2,-2,-1,1,1,0,-2,-3,2,2,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,1,0,1,-1,1,1,-2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,1,0,0,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,1,0,1,-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,-1,1,0,-1,1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,1,0,-1,-1,1,1,-2,1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,-1,-1,0,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,1,0,0,0,1,2,-1,-1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,1,-1,1,1,-2,0,-1,-1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,1,1,2,-2,1,2,-2,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,-1,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,-1,0,1,0,0,1,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,-1,-1,1,0,-2,2,-1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,-1,1,-1,-1,1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-2,-1,2,1,1,-2,-1,2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,-2,-1,-1,2,1,-2,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,1,-1,1,1,-2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,1,1,2,-2,0,2,-1,-1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,1,0,1,0,-1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,1,0,1,0,-1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,1,-1,1,1,-2,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,1,-1,1,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,1,0,1,1,-2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,1,-1,1,1,-2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-1,1,1,0,-2,-3,2,2,0,0,-2,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1,0,1,-1,1,1,-2,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,1,-1,0,1,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1,0,-1,1,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,-1,-1,1,1,-2,1,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,-1,0,1,1,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,2,-1,-1,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,-1,1,1,-2,0,-1,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1,1,2,-2,1,2,-2,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,-1,0,1,0,0,1,-1,1,0,-1,0]]]], [ # Q-class [28][10] [[3], [-1,3], [1,1,3], [1,0,1,3], [0,1,0,-1,3], [0,1,0,-1,1,3], [-1,0,-1,0,0,0,3], [0,-1,0,0,0,0,-1,3], [0,1,0,0,0,0,1,-1,3], [-1,0,0,0,-1,0,1,1,0,3], [0,-1,-1,0,0,-1,0,1,0,1,3], [1,-1,0,1,0,-1,0,0,1,-1,1,3], [-1,1,0,-1,1,0,1,0,1,1,1,0,3], [-1,0,0,0,0,-1,0,1,0,0,0,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,0,1,1,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,-1,0,1,0,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,1,0,-1,0,0,1,-1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,1,0,1,0,1,1,1,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,1,0,0,0,1,1,3]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,-1,1,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,-1,-1,1,1,0,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,0,0,1,-1,1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,0,1,0,0,1,-1,1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,-1,0,0,1,0,0,0,1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,1,0,-1,1,0,1,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,1,0,0,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,1,0,0,-1,1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,1,0,-1,-1,1,1,0,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,1,0,0,0,0,0,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,-1,0,0,1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,1,1,0,1,0,0,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,-1,0,0,1,0,0,0,1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,0,0,1,0,-1,1,0,1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,-1,0,0,1,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,-2,0,1,1,1,-1,-1,1,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,1,0,-1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,-1,0,-1,1,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,-1,-1,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,1,-1,-1,0,1,1,0,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,-1,0,0,1,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,-1,-1,0,1,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,-1,1,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,-1,-1,1,1,0,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,0,0,1,-1,1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,0,1,0,0,1,-1,1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,-1,0,0,1,0,0,0,1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,1,0,-1,1,0,1,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,1,0,0,0,1,0,-1,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,2,0,-1,-1,0,1,1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,-1,0,-1,1,1,-1,0,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,1,0,-1,0,0,1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-2,1,1,1,1,0,-1,1,0,1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,-1,0,1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,-1,1,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,-1,-1,1,1,0,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,0,0,1,-1,1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,0,1,0,0,1,-1,1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,-1,0,0,1,0,0,0,1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,1,0,-1,1,0,1,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,1,0,0,0,1,0,-1,0]]]], [ # Q-class [28][11] [[7], [2,7], [-1,1,7], [1,-1,3,7], [3,3,-1,-1,7], [1,3,1,1,1,7], [1,1,1,2,1,-1,7], [1,1,2,1,1,2,1,7], [1,1,-3,-1,0,3,-1,0,7], [3,-2,1,1,-1,-1,2,1,1,7], [2,0,1,3,-2,-1,1,-1,-1,3,7], [1,-1,-2,2,1,1,-1,-2,2,1,1,7], [0,3,2,1,2,3,-1,3,-1,-1,1,0,7], [2,3,-1,-2,1,-1,0,1,1,2,2,1,1,7], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,7], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,7], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,7], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,3,7], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-1,-1,7], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,1,1,1,7], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,1,-1,7], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,1,1,2,1,7], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-3,-1,0,3,-1,0,7], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-2,1,1,-1,-1,2,1,1,7], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,3,-2,-1,1,-1,-1,3,7], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-2,2,1,1,-1,-2,2,1,1,7], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,2,1,2,3,-1,3,-1,-1,1,0,7], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,-1,-2,1,-1,0,1,1,2,2,1,1,7]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,0,1,-1,0,-1,-1,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,-1,0,1,0,0,1,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,0,0,-1,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,-1,-1,0,1,0,0,-1,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,0,0,-1,1,-1,1,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2,-1,1,0,0,-1,0,-1,2,-1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,1,0,-1,-1,1,-1,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,-1,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2,-2,1,0,0,-1,0,-1,2,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,-1,0,1,-1,0,-1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,-1,0,-1,0,1,0,0,1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,-1,1,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,1,-1,-1,0,1,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,-1,1,0,0,-1,1,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,2,-1,1,0,0,-1,0,-1,2,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,1,0,-1,-1,1,-1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,-1,-1,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,2,-2,1,0,0,-1,0,-1,2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-2,1,-1,1,1,1,-1,0,-1,2,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,-1,1,1,0,-1,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,2,-2,2,1,0,-1,0,-1,2,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,1,0,-1,0,0,-1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,2,-1,1,0,0,-1,0,-1,2,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,-1,1,0,0,0,0,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,2,-1,1,0,0,-1,0,-1,2,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,1,0,0,1,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-2,1,0,0,0,1,-1,1,-1,0,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-2,1,-1,0,1,1,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,0,1,-1,0,-1,-1,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,-1,0,1,0,0,1,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,0,0,-1,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,-1,-1,0,1,0,0,-1,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,0,0,-1,1,-1,1,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2,-1,1,0,0,-1,0,-1,2,-1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,1,0,-1,-1,1,-1,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,-1,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2,-2,1,0,0,-1,0,-1,2,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,1,-1,0,0,1,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,-1,0,1,-1,0,-1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,-1,0,0,-1,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,-1,2,-2,-1,-1,1,0,1,-2,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-2,1,-1,0,0,1,-1,1,-1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,1,0,0,1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,-2,1,-1,-1,0,1,0,1,-2,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-2,1,0,0,0,1,-1,1,-1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-2,1,-1,0,1,1,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,0,1,-1,0,-1,-1,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,-1,0,1,0,0,1,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,0,0,-1,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,-1,-1,0,1,0,0,-1,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,0,0,-1,1,-1,1,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2,-1,1,0,0,-1,0,-1,2,-1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,1,0,-1,-1,1,-1,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,-1,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2,-2,1,0,0,-1,0,-1,2,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]]]], [ # Q-class [28][12] [[6], [0,6], [-2,3,6], [-2,2,1,6], [-2,2,3,3,6], [2,-2,0,0,0,6], [2,-2,-2,0,0,0,6], [-2,-2,0,2,0,0,2,6], [2,0,0,1,2,3,0,-2,6], [-2,0,1,0,-1,0,-1,0,0,6], [0,-3,-2,-2,-2,2,-1,1,0,-1,6], [-2,-2,1,-2,-1,-1,0,0,-2,3,0,6], [-1,-2,-1,-2,-2,-2,-1,0,-1,2,0,3,6], [-1,2,3,0,2,0,-1,-2,0,-1,0,1,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,3,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,3,3,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,0,2,0,0,2,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,2,3,0,-2,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,1,0,-1,0,-1,0,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-2,-2,-2,2,-1,1,0,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,1,-2,-1,-1,0,0,-2,3,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-1,-2,-2,-2,-1,0,-1,2,0,3,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2,3,0,2,0,-1,-2,0,-1,0,1,-1,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,0,0,0,1,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,0,0,-1,1,1,-1,0,-1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,1,-1,0,0,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,0,1,0,1,-1,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,-1,-1,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,1,0,-1,1,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-1,0,1,-1,-2,1,0,1,-1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,-1,-1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,1,0,0,-1,1,1,-1,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,1,-1,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,-1,0,1,0,1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,1,0,1,1,-1,-1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,1,0,-1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,-2,-1,0,1,-1,-2,1,0,1,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,-1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-2,1,1,1,-1,1,2,-2,0,-1,1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,-1,1,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,-1,0,0,-1,1,1,0,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,-1,0,-1,-1,1,1,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,1,-1,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,-1,0,1,0,1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-2,-1,0,0,-1,2,1,0,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,0,0,1,-1,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,1,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,1,0,0,0,-1,1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,0,0,0,1,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,0,0,-1,1,1,-1,0,-1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,1,-1,0,0,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,0,1,0,1,-1,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,-1,-1,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,1,0,-1,1,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-1,0,1,-1,-2,1,0,1,-1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,0,0,1,0,0,0,0,0,0]]]], [ # Q-class [28][13] [[6], [-1,6], [-3,-2,6], [-1,3,-2,6], [2,-3,1,0,6], [-2,2,2,-1,-1,6], [3,0,-3,1,2,0,6], [3,1,-1,1,2,1,1,6], [-3,3,0,2,-2,3,0,0,6], [-2,3,0,3,0,0,-1,1,3,6], [-1,-1,0,-2,-2,0,-1,-2,1,0,6], [2,1,0,1,0,-1,0,2,-1,0,0,6], [2,2,-1,-1,-2,2,0,2,1,-1,1,3,6], [3,-2,0,-1,1,-3,1,0,-3,-2,1,3,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-2,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,3,-2,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-3,1,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,-1,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,-3,1,2,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,-1,1,2,1,1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,2,-2,3,0,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,3,0,3,0,0,-1,1,3,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-2,-2,0,-1,-2,1,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,1,0,-1,0,2,-1,0,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-1,-1,-2,2,0,2,1,-1,1,3,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-2,0,-1,1,-3,1,0,-3,-2,1,3,0,6]], [[[-2,-1,-2,-1,0,0,0,0,0,1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,-1,1,0,2,-1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,2,0,-1,-1,1,1,0,-1,1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,0,0,-1,0,-1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,-2,-2,0,0,1,0,0,0,1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,-1,-2,-1,0,1,0,0,-1,1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,-1,0,0,0,0,0,0,0,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,-1,0,0,0,0,1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,1,0,0,-1,1,-1,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2,0,-1,1,-1,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,2,1,0,-1,0,0,1,-1,1,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,0,0,1,0,0,-1,1,-1,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,-1,0,0,0,0,0,0,0,-1,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,-1,-1,1,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,0,0,2,-1,-1,0,1,0,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,1,0,0,0,0,0,1,-1,0]], [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,-2,-1,0,1,0,0,-1,1,-1,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,-1,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,-1,0,0,1,-1,1,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,-2,0,0,1,0,0,-1,1,-1,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,-1,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,-1,0,0,0,-1,1,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,-1,0,-1,1,1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,-1,-1,0,0,0,0,0,1,-1,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,-1,0,0,0,1,0,0,0,0,0,0], [-2,-2,-2,0,0,1,0,0,-1,1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,2,0,-1,1,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,1,2,1,0,-1,0,0,1,-1,1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,-1,0,0,1,0,0,-1,1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,-1,-1,0,0,0,0,0,0,0,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,0,1,0,-1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,-1,0,0,2,-1,-1,0,1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,0,0,1,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,1,0,0,0,1,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,1,-1,0,0,0,-1,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-1,0,-1,1,0,0,0,1,-1,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,-1,0,0,0,-1,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,-1,0,0,1,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,-1,1,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,1,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1]]]], [ # Q-class [28][14] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [28][15] [[6], [3,6], [3,2,6], [1,3,3,6], [2,1,3,3,6], [2,3,1,3,2,6], [3,3,1,2,3,1,6], [3,1,1,2,3,3,2,6], [3,2,2,1,1,1,1,1,6], [2,1,1,1,2,0,3,1,3,6], [1,3,1,2,1,1,2,0,3,3,6], [1,2,2,3,1,1,1,1,0,1,1,6], [1,1,1,2,1,3,0,2,1,1,2,1,6], [1,2,2,1,1,1,1,1,2,1,3,0,1,6], [2,3,1,1,0,2,1,1,1,0,1,1,3,1,6], [2,1,1,1,2,2,1,3,3,2,1,1,1,3,0,6], [2,3,1,1,-2,2,1,1,1,0,1,1,1,1,2,0,6], [2,1,1,1,2,2,1,1,1,2,1,1,3,1,2,2,0,6], [0,1,1,1,2,2,1,1,1,2,1,1,3,1,2,2,0,2,6], [3,2,2,1,1,1,1,1,2,1,1,2,1,2,1,3,1,3,1,6], [1,0,2,1,1,1,1,1,2,1,1,0,3,2,1,1,1,1,3,0,6], [1,1,1,2,1,1,2,2,1,3,2,1,2,3,1,3,1,1,1,1,1,6], [2,3,1,1,0,2,1,1,1,0,1,1,1,3,2,2,2,2,2,3,1,1,6], [2,1,1,1,0,2,1,1,1,2,1,1,3,1,2,2,2,2,2,3,1,3,2,6], [1,1,1,2,3,1,2,2,1,3,2,3,2,1,1,3,-1,3,3,1,1,2,1,1,6], [1,2,0,1,-1,1,1,1,0,1,1,2,1,2,3,1,3,1,1,2,0,3,3,3,1,6], [3,2,2,1,1,1,1,1,2,1,1,0,1,2,1,1,1,1,1,2,2,1,3,1,1,2,6], [2,1,1,1,0,2,1,1,3,2,1,1,1,1,0,2,2,0,2,1,3,1,2,2,1,1,3,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,-1,1,0,-1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,1,0,-1,0,0,-1,1], [0,0,1,0,0,0,0,-1,-1,1,0,-1,2,-1,0,1,0,-1,-1,1,0,0,1,-2,0,1,-1,1], [-1,1,1,-1,-1,0,1,1,1,-1,0,0,0,0,-1,-1,-1,1,0,0,0,0,0,0,0,1,-1,1], [0,1,0,0,1,0,-1,-1,-1,1,0,-1,1,-1,0,1,0,-1,-1,1,1,0,0,-1,0,1,-1,1], [0,-1,0,0,0,1,0,-1,-1,1,1,0,0,-1,1,1,0,-1,-1,1,1,0,1,-1,0,0,0,0], [-1,-1,1,0,-1,0,1,1,1,-1,1,1,-1,0,0,0,0,1,1,-1,-1,0,0,1,-1,-1,1,0], [0,0,0,0,0,0,0,0,1,-1,0,0,0,0,-1,-1,0,0,1,0,0,1,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,1,-1,0,0,0,0,-1,-1,0,0,1,0,0,1,0,0,0,0,-1,0], [-1,-2,0,0,1,0,1,-1,-2,2,1,1,1,-1,2,3,1,-1,-1,0,0,-1,1,-1,-2,-1,1,0], [1,0,-1,0,0,0,0,0,2,-1,-1,0,0,1,-1,-3,0,0,1,1,0,1,0,0,1,0,-1,0], [-1,0,2,-1,-2,1,1,1,0,0,1,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,1,0,-1,1,0,1,0,-1,0,0,0,0,0,0,0,1,0,-1,0,0], [-3,-1,3,-1,-2,1,2,1,-1,1,2,0,0,-2,1,2,-1,0,-1,0,0,-1,1,0,-1,0,1,0], [1,0,-1,0,0,0,0,0,1,-1,0,1,-1,1,-1,-1,0,1,1,-1,0,0,-1,1,0,0,0,0], [0,0,0,0,-1,0,1,0,1,0,-1,0,1,1,-1,-1,0,0,1,0,-1,0,0,0,0,0,0,0], [-2,0,1,-1,0,0,1,0,1,0,0,0,1,-1,0,0,0,0,-1,0,0,0,1,0,0,0,0,0], [-1,0,1,-1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,-1,-1,1,0,1,0,0,1,0,-1,-1,0,-1,-1,0,0,1,1,1,0,0,0,0,0,0], [-2,0,1,-1,-1,0,1,1,0,0,1,1,-1,-1,1,1,0,1,0,-1,0,0,0,1,-1,-1,1,0], [0,2,0,-1,0,-1,0,1,2,-2,-1,0,0,1,-2,-3,-1,1,1,0,0,1,-1,1,1,1,-1,1], [-2,-2,1,0,0,1,1,-1,-2,3,1,0,1,-2,2,3,1,-2,-2,1,1,-1,2,-1,-1,-1,1,-1], [0,1,-1,-1,1,0,-1,0,0,0,0,1,-1,0,0,-1,0,0,0,0,1,1,0,1,0,-1,0,0], [-1,0,0,-1,1,1,-1,0,0,1,0,0,-1,-1,1,-1,1,-1,-1,1,1,1,1,0,1,-1,0,0], [-2,0,1,-1,0,0,1,1,1,-1,1,1,-1,-1,0,0,0,1,0,-1,0,0,0,1,-1,0,1,0]], [[-3,-2,1,-1,0,1,1,0,-2,2,2,1,-1,-2,3,4,1,0,-2,0,1,-1,1,0,-2,-2,2,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,-1,0,0,0,0,-1,0,0,0], [-3,-2,2,-1,-1,1,2,1,-1,1,2,1,-1,-2,2,3,0,1,-1,-1,0,-1,1,0,-2,-1,2,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,-1,0,1,1,-1,0,1,1,0,1,0,-1,0,0,0,0,-1,-1,1,0], [1,2,-1,0,0,-1,-1,1,1,-2,0,0,-1,1,-1,-2,-1,2,1,-1,0,1,-1,1,0,0,-1,1], [1,-2,-1,1,0,0,0,-1,-1,1,0,1,0,1,1,2,1,0,0,-1,0,-1,0,0,-1,-1,1,-1], [0,0,-1,0,1,-1,-1,0,-1,0,1,1,-1,0,1,1,1,1,0,-1,0,0,0,1,-1,-2,1,0], [0,0,0,0,0,0,0,0,-1,0,1,0,-1,-1,0,1,0,1,0,0,1,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,1,0,0,-1,0,1,-1,0,0,0,0,0,0], [0,0,1,0,-1,0,1,0,0,0,0,0,1,0,-1,1,-1,1,0,-1,0,-1,0,0,-1,1,0,0], [-2,-1,2,-1,-1,2,1,0,-1,2,0,-1,1,-1,1,1,0,-1,-2,1,0,-1,1,-1,1,0,0,0], [0,1,0,0,-1,-1,1,1,1,-2,0,0,0,1,-1,-1,-1,2,1,-1,-1,0,-1,1,0,0,0,1], [0,0,1,0,-2,-1,1,2,1,-2,1,1,-1,0,-1,0,-1,3,2,-2,-1,0,-1,1,-2,0,1,0], [0,0,0,0,0,-1,1,0,0,-1,0,0,1,0,0,1,0,1,0,-1,-1,0,0,0,-1,0,0,1], [0,0,0,0,-1,0,0,1,0,-1,1,1,-2,0,0,0,0,2,1,-1,0,0,-1,1,-1,-1,1,0], [-1,1,0,0,0,-1,0,1,0,0,0,0,0,0,0,1,0,1,0,-1,0,-1,0,1,-1,0,0,0], [-1,1,1,-1,-1,0,1,1,0,-1,0,0,0,0,0,0,-1,1,0,0,0,0,-1,0,0,0,0,1], [2,1,-1,1,-1,-1,0,1,2,-3,-1,0,-1,2,-2,-3,-1,2,2,-1,-1,1,-1,1,1,0,-1,1], [-2,-1,1,-1,-1,1,1,1,0,0,1,1,-1,-1,1,1,0,1,0,0,0,0,0,0,-1,-1,1,0], [1,0,0,1,-2,-1,1,1,1,-2,0,0,-1,1,-1,-1,-1,2,2,-1,-1,0,-1,1,0,0,0,0], [0,0,0,0,-1,-1,1,1,1,-1,0,1,0,1,-1,0,0,2,1,-2,-1,-1,-1,1,-1,0,1,0], [0,0,0,0,-1,0,0,1,1,-1,0,0,-1,0,0,-1,0,1,1,0,0,1,0,0,0,-1,0,0], [-1,-1,0,0,-1,0,1,1,0,0,1,1,-1,0,1,1,0,1,0,-1,0,-1,0,1,-1,-1,1,0], [-1,-1,1,0,-1,1,1,0,-1,1,0,0,0,0,1,1,0,0,-1,0,0,-1,0,0,0,-1,1,0], [-1,0,1,0,-1,-1,1,1,0,0,0,0,1,0,0,1,0,1,0,-1,-1,-1,0,0,-1,0,0,1], [-2,-1,1,0,-1,0,1,1,0,0,1,0,-1,-1,1,1,0,1,0,0,0,0,0,0,-1,-1,1,0], [1,0,-1,1,0,0,-1,0,0,0,0,-1,-1,0,0,-1,0,0,0,1,1,0,0,0,1,0,-1,0]]]], [ # Q-class [28][16] [[6], [3,6], [2,3,6], [2,3,2,6], [2,3,2,2,6], [2,1,2,2,2,6], [0,3,2,2,2,2,6], [1,2,3,3,1,3,3,6], [2,3,2,2,2,2,2,3,6], [2,3,2,2,2,2,2,3,2,6], [1,1,1,1,3,3,1,1,1,1,6], [3,3,1,3,1,1,1,1,1,1,0,6], [2,3,2,2,2,2,2,3,2,2,1,3,6], [0,1,0,0,2,0,2,1,2,0,1,1,2,6], [1,2,1,1,3,1,1,0,1,1,1,1,1,1,6], [1,2,1,1,3,3,1,2,1,1,3,1,1,1,2,6], [2,1,2,2,2,2,-2,1,2,2,3,1,2,0,1,1,6], [3,2,1,3,1,1,1,2,1,1,1,3,3,1,-2,0,1,6], [2,1,0,2,2,0,0,1,2,0,1,1,2,2,3,1,2,1,6], [3,1,1,1,3,3,1,1,1,1,2,2,1,1,1,3,1,1,1,6], [1,1,3,1,1,1,1,1,1,-1,2,2,1,1,1,1,1,1,1,2,6], [1,2,1,1,1,1,3,2,1,1,1,1,3,1,0,0,-1,2,1,1,1,6], [1,2,3,1,1,1,1,2,1,1,1,1,1,1,2,2,1,0,1,1,3,2,6], [2,3,2,2,2,0,2,1,2,0,1,3,2,2,1,1,0,3,2,1,3,3,3,6], [2,1,2,0,0,2,0,1,2,0,1,1,2,2,1,1,2,1,2,1,3,1,3,2,6], [2,1,0,0,2,2,2,1,2,2,1,1,2,2,1,1,0,1,2,3,1,3,1,2,2,6], [0,1,2,0,2,0,2,1,0,0,1,1,2,2,1,1,0,1,2,1,3,1,1,2,2,2,6], [2,1,2,0,2,0,0,1,0,2,1,1,2,2,1,1,2,1,2,1,1,1,3,2,2,2,2,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [-1,1,1,-1,1,1,-1,0,-1,1,1,1,0,0,-1,-1,-2,0,2,0,0,-1,0,0,0,0,-1,0], [0,0,0,1,0,0,-1,-1,1,0,1,0,1,0,0,0,-2,0,0,0,0,0,0,-1,0,0,0,1], [1,-1,-1,0,-1,0,1,-1,1,0,-1,-1,0,0,1,1,1,1,-1,0,0,1,0,0,-1,-1,1,1], [-1,-1,2,0,1,-1,-1,-1,1,1,3,2,1,-1,-1,-1,-4,0,2,0,-1,-1,1,-1,1,0,-1,0], [0,-1,0,1,-1,1,-1,-2,2,1,1,0,1,0,0,0,-2,0,0,0,0,0,0,0,-1,-1,1,1], [-3,0,3,1,2,0,-4,-1,1,2,5,3,2,-1,-2,-3,-8,-1,3,1,-2,-2,1,-1,2,0,-1,0], [-3,1,2,0,1,0,-3,0,1,1,3,2,1,-1,-1,-2,-5,0,2,1,-1,-1,0,-1,1,0,-1,1], [-1,-1,1,0,2,-1,-1,0,0,1,2,2,1,-1,-1,-1,-3,-1,1,0,-1,-1,0,0,2,0,-1,0], [1,-1,0,0,0,-1,1,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0], [0,-1,1,1,0,0,-1,-1,1,0,1,0,1,0,0,0,-2,0,0,0,0,0,0,-1,0,0,0,1], [-3,0,3,1,1,0,-3,-1,1,1,4,2,1,-1,-1,-2,-6,0,2,1,-2,-1,0,-1,2,0,-1,1], [-1,0,1,1,-1,1,-3,-1,2,1,2,0,1,0,0,-1,-4,0,0,1,-1,0,0,0,0,-1,1,1], [1,-1,0,0,-1,0,1,-1,0,0,-1,-1,1,0,0,1,1,0,0,0,0,0,0,1,-1,0,0,0], [1,-1,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,1,2,-1,2,-1,-1,1,-1,0,2,2,0,-1,-1,-1,-3,0,2,0,-1,-1,0,-1,2,1,-2,0], [-1,0,1,1,1,0,-2,0,1,0,2,1,0,0,0,-1,-3,0,0,0,-1,0,0,-1,1,0,0,1], [-1,0,1,1,-1,0,-1,-1,1,0,1,0,1,0,0,0,-2,0,0,1,-1,0,0,0,0,0,0,1], [1,-1,-1,0,-1,0,1,-1,1,0,-1,-1,0,0,1,1,1,1,-1,0,1,1,0,0,-1,-1,1,1], [-1,1,1,-1,1,1,-1,1,-1,0,1,1,0,0,-1,-1,-2,0,2,0,0,-1,0,0,0,0,-1,0], [-1,-1,1,2,-1,0,-2,-2,2,1,2,0,1,0,0,0,-3,0,0,1,-1,0,0,0,0,-1,1,1], [-3,1,3,-1,3,0,-3,1,-1,1,4,3,1,-1,-3,-3,-6,-1,4,1,-2,-3,1,0,2,1,-2,-1], [-1,0,1,1,0,0,-2,0,1,0,2,0,1,0,0,-1,-3,0,0,1,-1,-1,0,0,0,0,0,1], [-3,2,3,-1,2,0,-3,2,-1,0,4,3,0,-1,-2,-3,-5,-1,3,1,-2,-2,0,0,2,1,-2,0], [-1,-2,1,1,0,-1,-1,-1,2,1,2,1,1,-1,0,0,-3,0,0,1,-1,0,0,0,1,-1,0,1], [0,-1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0], [-2,0,2,0,2,0,-2,0,0,1,3,2,1,-1,-2,-2,-5,-1,2,1,-2,-2,1,0,2,0,-1,0]], [[-4,0,4,-1,3,-1,-3,1,0,1,5,4,1,-2,-2,-3,-7,0,4,1,-3,-3,1,-1,3,1,-2,-1], [-3,-1,4,0,3,-2,-3,0,1,1,6,4,2,-2,-2,-3,-8,0,3,1,-3,-3,2,-2,3,1,-2,-1], [-2,-1,3,1,1,-1,-2,-1,1,1,4,2,2,-1,-1,-2,-6,0,2,1,-2,-2,1,-1,2,0,-1,0], [1,-1,1,0,0,-1,0,0,0,0,1,0,1,0,0,0,-1,0,0,0,-1,-1,1,0,0,0,0,-1], [-4,2,3,-1,2,0,-3,1,0,0,4,3,0,-1,-1,-3,-6,1,3,1,-2,-2,1,-2,2,1,-2,0], [-1,1,1,-1,1,1,-1,1,-1,0,1,1,0,0,-1,-1,-2,0,2,0,0,-1,0,0,0,0,-1,0], [-1,0,2,0,3,-1,-1,1,-1,0,3,2,1,-1,-2,-2,-4,-1,2,0,-1,-2,1,-1,2,1,-2,-1], [1,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [-2,0,2,0,1,0,-2,0,1,0,3,2,0,-1,0,-2,-4,1,1,1,-2,-1,1,-1,1,0,0,0], [-1,0,1,-1,2,0,-1,1,0,0,2,2,0,-1,-1,-2,-3,0,2,0,-1,-1,1,-1,1,0,-1,0], [-2,2,1,-1,1,1,-2,1,-1,0,2,1,0,0,-1,-2,-3,0,2,1,-1,-1,0,0,1,0,-1,0], [-1,-1,2,0,2,-2,-1,1,0,0,3,2,1,-1,-1,-1,-3,0,1,0,-2,-2,1,-1,2,1,-1,-1], [-1,0,1,0,2,-1,-1,1,0,0,2,2,0,-1,-1,-1,-3,0,1,0,-1,-1,0,-1,2,0,-1,0], [-1,0,1,1,1,0,-2,0,1,0,2,1,0,0,0,-1,-3,0,0,0,-1,0,0,-1,1,0,0,0], [0,0,0,0,0,-1,0,1,0,-1,0,0,0,0,1,0,0,1,-1,0,0,0,0,-1,0,1,0,0], [-1,0,1,-1,0,0,0,0,0,0,1,1,0,0,0,0,-1,1,1,0,0,0,0,-1,0,0,-1,0], [-1,1,0,0,-1,1,-2,0,1,0,1,0,0,0,1,-1,-2,1,0,1,-1,0,0,0,0,-1,1,1], [-1,-1,2,0,2,-1,-1,0,0,1,3,2,1,-1,-2,-1,-4,-1,2,0,-2,-2,1,0,2,0,-1,-1], [1,0,-1,0,-1,-1,1,1,0,-1,-1,-1,-1,0,2,1,2,1,-2,0,0,1,-1,0,0,0,1,0], [-4,2,3,-1,2,0,-3,2,-1,0,4,3,0,-1,-1,-3,-5,0,3,1,-2,-2,0,-1,2,1,-2,0], [-1,0,1,1,0,-1,-1,0,0,0,2,0,1,0,0,-1,-2,0,0,1,-1,-1,0,0,1,0,0,0], [-1,1,1,-1,3,-1,0,2,-2,0,2,2,0,-1,-2,-2,-2,-1,2,0,-1,-2,0,0,2,1,-2,-1], [0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,-1,-1,0,0,0,0,-1,0,0,0,0,0,0], [-1,-1,2,0,2,-2,0,0,0,0,3,2,1,-1,-1,-1,-3,0,1,0,-2,-2,1,-1,2,1,-1,-1], [0,-1,0,1,0,0,-1,-1,1,1,1,0,1,0,0,0,-2,0,0,0,0,0,0,0,0,-1,1,0], [-2,2,1,-1,2,0,-1,2,-1,-1,2,2,-1,-1,-1,-2,-2,0,2,0,-1,-1,0,-1,1,1,-1,0], [0,0,0,1,0,-1,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,-1,1,0,0,0], [-2,1,1,-1,2,0,-1,1,0,0,2,2,0,-1,-1,-2,-3,0,2,0,-1,-1,0,-1,2,0,-1,0]]]], [ # Q-class [28][17] [[6], [2,6], [2,2,6], [2,2,2,6], [2,2,2,2,6], [2,2,2,2,2,6], [2,2,0,2,0,2,6], [2,2,2,2,2,2,2,6], [2,2,2,2,2,0,0,2,6], [2,2,2,0,2,2,0,2,0,6], [2,2,2,2,2,2,0,2,2,0,6], [2,2,2,0,0,2,0,2,2,2,2,6], [3,1,3,1,1,1,1,1,1,3,1,1,6], [2,0,2,2,2,0,0,2,2,2,0,0,3,6], [2,2,2,2,2,2,2,2,2,2,0,2,1,2,6], [2,2,0,2,2,2,2,2,0,2,0,0,1,2,2,6], [2,2,2,2,0,2,2,2,0,2,2,2,3,2,2,2,6], [2,2,2,2,2,2,0,2,0,2,2,0,1,2,0,2,2,6], [2,2,2,2,0,2,2,2,0,2,2,2,1,0,2,2,2,2,6], [2,0,2,2,2,0,0,2,2,0,2,0,1,2,0,2,0,2,2,6], [2,0,2,2,0,2,0,2,0,2,2,2,1,2,0,0,2,2,2,2,6], [2,2,2,2,2,2,0,2,2,2,2,2,1,0,0,0,0,2,2,2,2,6], [0,0,2,2,2,2,0,2,0,2,2,0,1,2,2,2,2,2,2,2,2,0,6], [2,2,2,0,2,0,0,2,2,2,2,2,1,2,2,2,2,2,2,2,0,0,2,6], [2,2,2,2,0,0,0,0,2,2,0,2,1,2,2,0,2,2,2,0,2,2,0,2,6], [2,2,2,2,2,2,0,2,2,2,2,2,1,2,2,0,2,2,0,0,2,0,2,2,2,6], [2,0,2,0,2,2,0,2,0,2,2,2,1,2,2,2,2,2,2,2,2,0,2,2,0,2,6], [0,0,2,2,0,0,0,2,2,0,2,2,1,2,2,0,2,0,2,2,2,0,2,2,2,2,2,6]], [[[-22,-1,-10,3,2,-2,-5,10,2,-26,-5,-7,34,-20,12,9,-11,-2,0,-7,23,5,-4,17,10,6,12,-16], [4,-1,3,-2,0,-2,1,-4,2,3,-1,0,-6,2,-1,1,3,2,2,-2,-1,2,0,-2,-6,1,-3,4], [-1,0,0,0,0,-1,0,0,1,-2,-1,-1,2,-2,1,1,0,0,0,-1,2,1,0,1,0,1,1,-1], [-9,0,-4,1,0,-1,-2,4,1,-11,-2,-3,14,-8,5,4,-5,-1,0,-3,9,3,-1,7,4,3,5,-7], [-4,0,-2,1,0,0,-1,2,1,-4,-1,-2,6,-4,2,1,-2,-1,0,-1,4,1,-1,3,2,1,3,-3], [-9,0,-4,2,0,-1,-2,4,1,-10,-2,-3,14,-8,5,3,-5,-1,0,-3,9,2,-1,7,4,2,6,-7], [-16,-1,-7,2,1,-1,-4,7,1,-19,-3,-5,24,-13,9,7,-8,-2,1,-5,16,4,-3,12,7,5,8,-12], [-15,-1,-6,1,1,-2,-3,6,1,-18,-3,-5,22,-12,8,7,-7,-2,1,-5,15,5,-3,11,6,6,8,-11], [-2,-1,0,-1,1,-1,0,0,1,-2,0,-1,2,-2,1,2,0,0,1,-1,2,1,-1,1,0,2,0,-1], [-1,0,0,-1,1,-2,0,-1,2,-3,-2,-1,2,-2,1,2,0,1,1,-3,4,2,0,1,-2,1,1,0], [-3,-1,0,0,0,-1,0,1,0,-3,0,-1,4,-3,2,2,-2,0,0,-1,3,1,-1,2,1,2,1,-2], [-7,-1,-2,0,1,-2,-1,2,1,-8,-1,-2,10,-6,4,4,-3,0,1,-3,8,2,-2,5,2,3,3,-5], [-4,0,-2,1,1,-1,-1,2,1,-6,-2,-1,7,-5,2,2,-2,0,0,-2,5,1,0,3,2,1,3,-3], [-7,0,-3,1,1,-1,-1,3,1,-8,-2,-2,10,-6,3,3,-3,-1,0,-2,7,2,-1,5,3,2,4,-5], [-10,-1,-4,1,1,-1,-2,4,2,-11,-2,-3,14,-8,5,4,-4,-1,1,-3,10,2,-2,7,4,3,5,-8], [-8,0,-4,1,0,0,-2,4,1,-9,-2,-3,12,-7,4,3,-4,-1,0,-2,8,2,-1,6,4,2,5,-6], [-7,-1,-2,0,1,-2,-1,2,1,-9,-2,-2,10,-6,4,4,-3,0,1,-3,8,3,-1,5,2,3,3,-5], [-3,1,-2,1,0,-1,-1,1,1,-5,-3,-2,6,-4,2,1,-2,0,0,-2,5,2,0,4,0,1,3,-2], [-9,0,-4,1,0,-1,-2,4,1,-11,-2,-3,14,-8,5,4,-5,-1,0,-3,10,2,-1,7,4,3,5,-7], [-9,1,-5,2,0,1,-2,5,0,-10,-2,-3,14,-8,4,2,-5,-2,-1,-1,8,1,-1,7,6,2,6,-7], [-13,0,-5,1,1,-2,-2,5,1,-16,-3,-4,20,-11,7,6,-7,-1,0,-5,14,4,-2,10,5,4,7,-9], [-3,1,-2,1,0,-1,-1,1,1,-5,-2,-2,6,-4,2,1,-2,0,0,-3,5,2,0,4,0,1,3,-2], [-3,0,-1,0,0,0,0,2,0,-3,0,-1,4,-2,1,1,-2,-1,0,0,2,0,0,1,3,1,2,-3], [-2,-1,0,-1,1,-1,0,0,1,-2,-1,-1,2,-2,1,2,0,0,1,-1,3,1,-1,1,0,2,0,-1], [-1,0,0,-1,1,-2,0,-1,2,-3,-2,-1,2,-2,1,2,0,1,1,-3,4,2,0,2,-2,1,0,0], [-3,-1,0,-1,1,-2,0,0,1,-4,-1,-1,4,-3,2,3,-1,0,1,-2,4,2,-1,2,0,2,1,-2], [-10,0,-4,2,0,0,-2,5,0,-10,-1,-3,14,-8,5,3,-5,-2,-1,-1,9,1,-2,7,6,2,6,-8], [-2,0,0,0,0,0,0,1,0,-2,0,0,2,-1,0,1,-1,-1,0,0,1,0,0,1,2,1,1,-2]], [[-7,0,-4,1,1,1,-2,5,0,-8,-1,-2,11,-6,3,2,-4,-2,0,-1,6,0,-1,5,6,1,4,-6], [0,-1,1,-1,0,0,0,0,0,1,1,0,-1,1,0,1,0,0,1,0,-1,0,-1,-1,0,1,-1,0], [0,-1,1,-2,1,-1,0,-1,1,0,0,0,-1,0,1,2,1,1,1,-1,1,1,-1,-1,-2,1,-2,1], [1,-1,1,-1,0,0,0,0,0,1,1,0,-1,0,0,1,0,0,0,0,-1,0,0,-1,0,0,-1,1], [-10,-1,-4,0,1,-1,-2,4,1,-12,-2,-3,15,-8,6,5,-5,-1,1,-3,10,3,-2,7,4,4,4,-7], [-7,-1,-3,0,1,-1,-2,3,1,-9,-2,-3,11,-6,4,4,-3,-1,1,-3,8,3,-2,6,2,3,3,-5], [-2,0,-1,1,0,1,-1,2,0,-2,-1,-1,3,-2,0,0,-1,-1,0,0,1,0,0,2,2,0,2,-2], [-2,0,-1,0,0,1,-1,2,0,-2,0,-1,3,-1,1,0,-1,-1,0,0,1,0,0,1,2,0,1,-2], [-9,-1,-4,1,1,0,-2,5,0,-9,0,-2,13,-7,5,3,-5,-1,0,-1,7,0,-2,5,6,2,4,-7], [1,0,0,-1,0,0,0,-1,1,0,-1,0,-1,1,0,0,1,1,1,-1,0,1,0,0,-2,0,-1,1], [4,-1,3,-2,0,0,1,-2,0,5,2,1,-7,4,-2,0,2,0,1,1,-4,-1,0,-4,-2,0,-4,3], [-9,-1,-4,0,1,-1,-2,4,1,-10,-1,-3,13,-7,5,4,-4,-1,1,-3,9,2,-2,6,4,3,4,-7], [1,0,0,0,0,1,0,0,0,2,0,1,-2,1,-1,-1,1,0,0,1,-2,-1,0,-1,0,-1,-1,1], [-7,0,-4,1,0,1,-2,4,0,-8,-1,-2,11,-6,4,2,-4,-1,-1,-1,6,1,-1,5,5,1,4,-5], [-5,-1,-2,-1,1,-1,-1,2,1,-6,-1,-2,7,-4,3,3,-2,0,1,-2,5,2,-1,3,2,2,2,-3], [-6,0,-3,0,0,1,-2,4,-1,-7,0,-2,9,-4,3,2,-3,-2,0,0,4,1,-1,4,5,2,3,-5], [11,0,5,-2,-1,1,2,-5,0,13,2,3,-17,9,-6,-4,6,1,0,3,-11,-2,2,-8,-5,-3,-6,8], [1,0,1,-1,0,0,0,-1,0,0,0,0,-1,1,0,1,0,0,0,-1,0,1,0,0,-1,0,-1,1], [6,0,3,-2,0,0,1,-3,0,6,1,1,-9,5,-3,-1,3,1,1,0,-5,0,1,-4,-4,-1,-4,5], [-7,0,-3,0,1,0,-2,4,0,-9,-1,-2,11,-6,4,3,-4,-1,0,-2,7,1,-1,5,4,2,3,-5], [-1,0,-1,0,0,0,-1,1,1,-3,-1,-1,3,-2,1,1,-1,0,0,-2,3,1,0,2,0,0,1,-1], [-6,-1,-2,0,1,-1,-1,2,1,-7,-1,-2,9,-5,4,3,-3,0,1,-3,7,2,-2,5,1,2,2,-4], [6,0,3,-2,-1,0,1,-3,0,6,1,1,-9,5,-2,-1,3,1,0,1,-5,0,1,-4,-4,-1,-4,5], [0,0,0,-1,0,1,0,0,0,1,1,0,-1,1,0,0,0,0,0,1,-1,-1,0,-1,1,0,-1,0], [1,0,0,0,0,0,0,-1,1,1,0,0,-1,0,0,0,0,1,0,-1,0,0,0,0,-1,-1,0,1], [-1,0,-1,0,0,0,-1,1,1,-2,-1,-1,3,-2,1,1,-1,0,0,-1,2,0,0,1,1,0,1,-1], [-7,0,-3,-1,1,-1,-2,3,1,-10,-2,-3,11,-6,4,4,-3,-1,1,-3,8,3,-1,5,3,3,3,-5], [-2,0,-1,0,0,0,-1,1,1,-2,0,-1,3,-2,1,1,-1,0,0,-1,2,0,0,1,1,0,1,-1]]]], [ # Q-class [28][18] [[6], [3,6], [3,2,6], [3,2,2,6], [2,3,3,1,6], [2,3,3,3,2,6], [1,1,3,1,3,1,6], [3,3,1,3,1,3,-2,6], [3,1,1,3,1,1,2,2,6], [3,3,1,1,1,1,0,2,2,6], [3,2,2,2,1,1,1,1,1,3,6], [1,1,1,1,1,1,0,2,0,2,3,6], [0,1,1,1,2,2,1,1,-1,1,1,3,6], [2,1,3,1,2,2,1,1,1,3,3,3,2,6], [1,3,1,1,1,1,0,2,0,2,1,0,1,1,6], [1,3,1,1,1,1,0,2,0,2,3,2,1,1,2,6], [1,1,3,1,1,1,2,0,0,0,1,2,1,1,2,0,6], [2,3,1,1,0,2,-1,3,1,3,1,1,0,2,3,3,1,6], [1,2,2,2,1,3,3,1,1,1,2,1,1,1,1,1,1,1,6], [1,3,1,1,1,1,2,0,0,2,3,2,1,1,2,2,2,1,3,6], [2,3,1,1,2,2,-1,3,-1,1,1,1,2,0,1,1,1,2,1,1,6], [1,0,2,2,1,1,1,1,1,1,2,3,3,3,1,1,3,1,0,1,1,6], [1,2,2,2,3,3,3,1,1,1,0,1,3,1,1,1,1,1,2,1,1,2,6], [1,2,2,0,1,1,1,1,-1,1,2,3,3,1,1,1,3,1,2,3,3,2,2,6], [3,2,2,2,1,3,1,1,1,3,2,1,1,3,1,1,1,3,2,1,1,2,2,0,6], [2,1,1,1,2,0,1,1,1,1,3,3,2,2,-1,1,1,0,1,1,2,3,1,3,1,6], [1,1,1,1,1,1,0,2,0,0,1,2,1,1,0,0,2,1,1,2,3,3,1,3,1,3,6], [1,2,2,2,3,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,2,2,0,2,1,1,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [2,-2,-4,1,1,3,2,0,-2,2,-1,-1,-2,1,0,2,0,-1,0,-2,-1,1,-2,4,-1,-1,0,2], [-2,1,2,-1,0,-2,-1,2,1,-1,2,0,1,-1,-1,-2,0,1,0,1,0,0,1,-1,1,0,-1,0], [2,-1,-2,1,1,1,0,-1,-1,1,-1,0,-1,0,0,1,0,0,1,-1,-1,1,-1,2,-1,-1,0,1], [0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,-1,0,1], [2,-1,-4,1,1,2,2,1,-3,2,0,-2,-1,1,-1,1,1,0,1,-2,-2,1,-2,3,-2,-1,0,2], [-1,1,2,-1,-1,-2,-2,0,2,-2,1,1,1,0,0,-1,0,0,0,1,1,-1,2,-2,1,0,0,0], [0,1,0,-1,0,-1,-1,1,0,-1,2,-1,1,0,-1,-1,1,1,1,0,-1,0,1,-1,-1,0,0,1], [0,-1,0,0,-1,1,1,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,-1,0,0,0,1,0,1], [0,-1,-1,0,0,1,2,2,-1,1,0,-1,0,0,0,0,0,0,-1,0,-1,0,-1,1,0,0,0,1], [-2,0,2,0,0,-2,-1,2,1,-1,0,0,1,0,0,-1,0,0,-1,2,0,-1,1,-1,2,1,-1,-1], [0,0,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,2,1,-1,0,0], [1,-2,-2,1,1,2,2,0,-1,1,-1,0,-1,0,1,1,-1,0,-1,-1,-1,0,-2,3,0,0,0,1], [1,0,-1,0,0,1,1,0,-1,0,0,0,-1,0,0,0,-1,0,0,-1,-1,1,-1,2,0,-1,0,1], [1,0,-1,0,-1,1,1,0,-1,1,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,-1,0,1,1], [1,-1,-3,1,1,2,2,1,-2,1,-1,-1,-2,1,0,1,-1,-1,0,-1,-1,2,-2,4,0,-1,-1,1], [1,0,0,0,-1,1,0,-2,0,0,0,1,0,0,1,0,-1,0,0,-1,0,0,0,0,-1,0,1,1], [1,-1,-3,0,0,1,2,2,-2,1,1,-2,0,1,-1,0,1,0,0,-1,-1,0,-1,2,-1,-1,0,2], [0,-1,-1,0,0,1,1,1,-1,1,0,-1,0,0,0,0,0,0,0,0,-1,0,-1,1,0,0,0,1], [2,0,-1,0,-1,1,-1,-3,1,0,-1,1,0,1,1,1,0,-1,1,-1,1,0,0,0,-1,-1,1,1], [1,-1,-3,1,1,2,2,0,-1,1,-1,0,-2,1,1,1,-1,-1,0,-2,-1,1,-2,4,0,-1,0,1], [1,0,-2,1,1,1,0,-1,-1,1,0,0,-1,0,0,0,0,0,1,-2,-1,1,-1,2,-1,-1,0,1], [1,-1,-3,1,1,2,1,0,-1,1,-1,-1,-1,1,0,1,0,-1,0,-1,-1,1,-2,3,0,-1,0,1], [0,-1,-1,1,0,1,2,0,-1,1,0,0,-1,0,1,0,-1,0,-1,-1,0,0,-1,2,0,0,0,1], [1,-1,-3,1,1,1,2,1,-1,1,-1,-1,-1,1,0,1,0,-1,0,-1,-1,1,-2,3,0,-1,0,1], [1,-2,-3,1,1,2,2,0,-1,1,-1,0,-2,1,1,1,-1,-1,0,-1,0,1,-2,3,0,-1,0,1], [0,0,1,0,0,-1,-2,-1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0]], [[-5,1,7,-1,-1,-4,-3,2,3,-2,1,1,2,-2,0,-3,0,1,-2,5,2,-2,3,-5,3,3,-2,-3], [0,0,1,-1,-1,0,-1,-1,1,0,0,0,1,0,0,0,1,0,0,1,1,-1,1,-2,-1,1,0,0], [-3,0,4,0,-1,-1,-1,0,2,-1,-1,2,0,-1,1,-1,-1,0,-2,3,2,-1,1,-2,2,2,-1,-2], [-3,0,3,0,-1,-2,0,2,1,-1,0,0,1,0,0,-1,0,0,-2,3,1,-2,1,-2,2,2,-1,-1], [-1,1,3,-1,-1,-1,-2,-1,2,-1,0,1,2,-1,0,-1,0,1,0,2,1,-1,1,-3,0,1,0,-1], [0,-1,0,0,-1,1,0,-1,1,0,-1,0,0,1,1,1,0,-1,-1,1,1,-1,0,0,0,1,0,0], [-2,0,2,0,0,-1,0,1,1,-1,0,1,0,-1,0,-1,-1,1,-1,2,1,0,0,-1,1,1,-1,-1], [-2,1,3,-1,-1,-2,-2,0,2,-1,1,0,2,0,0,-1,1,0,-1,2,1,-2,2,-3,1,1,0,-1], [-4,1,6,-1,-1,-4,-3,1,3,-2,1,1,2,-1,0,-2,0,1,-1,4,2,-2,3,-5,2,2,-1,-2], [-2,1,5,-1,-1,-3,-4,-1,3,-1,0,1,2,-1,0,-1,1,0,0,3,2,-2,3,-5,1,2,0,-2], [-3,1,5,-1,-1,-4,-3,2,2,-2,1,0,2,-1,-1,-2,1,1,-1,4,1,-2,3,-4,2,2,-1,-2], [-1,2,3,-1,-1,-3,-3,0,2,-2,1,0,2,0,-1,-1,1,0,0,2,1,-1,2,-3,1,0,0,-1], [1,1,0,0,-1,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,-1,0,1,0], [-2,2,5,-1,-2,-3,-4,-1,3,-2,0,1,2,0,0,-1,1,0,0,3,2,-2,3,-5,1,2,0,-2], [0,0,1,0,-1,0,-1,-2,1,0,0,1,1,0,1,0,1,0,0,0,1,-2,1,-2,-1,1,1,0], [-1,1,3,-1,0,-2,-3,0,1,-1,1,0,2,-1,-1,-1,1,1,0,2,0,-1,2,-3,0,1,0,-1], [0,-1,0,1,0,1,1,-1,0,0,-1,1,-1,0,1,0,-1,0,-1,0,1,0,-1,1,0,0,0,0], [-1,0,2,0,0,-1,-2,-1,1,0,0,0,1,0,0,0,1,0,0,1,1,-1,1,-2,0,1,0,-1], [-2,-1,1,0,0,-1,1,2,1,-1,0,0,0,0,0,0,0,0,-2,2,1,-1,0,0,2,1,-1,-1], [0,0,1,-1,-1,-1,-1,0,1,-1,0,0,1,0,0,0,1,0,0,1,1,-1,1,-2,0,1,0,0], [0,-1,-1,0,0,1,2,1,-1,1,0,-1,0,0,0,0,0,0,-1,0,0,0,-1,1,0,0,0,0], [-2,1,3,0,-1,-2,-1,1,1,-1,0,0,1,0,0,-1,0,0,-1,2,1,-1,1,-2,1,1,0,-1], [-1,0,1,0,-1,0,0,0,1,0,0,0,1,0,0,0,0,0,-1,1,1,-1,0,-1,0,1,0,0], [0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0], [-3,0,4,0,0,-2,-2,1,2,-1,0,0,1,-1,0,-1,0,0,-1,3,1,-1,1,-2,2,2,-1,-2], [-3,2,5,-1,-1,-4,-2,2,2,-2,1,0,2,-1,-1,-2,0,1,-1,3,1,-1,2,-3,2,1,-1,-2], [-1,0,0,0,0,0,1,1,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,-1,1,1,0,0,0], [-2,1,4,-1,-1,-2,-2,0,2,-1,0,1,2,-1,0,-1,0,0,0,2,1,-1,1,-3,1,1,0,-1]]]], [ # Q-class [28][19] [[4], [0,4], [1,2,4], [2,0,2,4], [1,2,2,2,4], [2,1,0,1,1,4], [0,1,1,1,0,0,4], [2,1,1,1,2,2,0,4], [1,1,1,1,0,1,2,0,4], [1,1,1,1,0,1,2,0,2,4], [1,1,2,1,1,0,1,1,2,1,4], [0,1,2,1,1,0,2,0,1,1,2,4], [0,1,1,1,0,0,2,0,2,2,1,1,4], [1,1,1,1,0,1,2,0,2,2,1,1,2,4], [1,1,2,1,1,0,1,1,1,2,2,2,1,1,4], [1,1,2,1,1,0,1,1,1,1,2,2,1,2,2,4], [2,0,1,2,1,1,1,1,1,1,1,1,0,0,1,0,4], [0,1,2,1,1,0,1,0,1,1,2,2,2,1,2,2,0,4], [2,0,1,2,1,1,0,1,1,1,1,0,1,0,1,0,2,1,4], [0,2,1,0,1,1,1,1,2,1,2,1,1,1,1,1,0,1,0,4], [0,2,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,2,4], [2,0,1,2,1,1,1,1,1,2,1,1,1,1,2,1,2,1,2,0,0,4], [0,2,1,0,1,0,0,0,1,0,1,0,1,0,0,0,0,1,0,2,2,0,4], [2,1,1,1,0,2,0,0,2,2,1,0,0,2,1,1,1,0,1,1,0,1,0,4], [2,0,1,2,1,1,1,1,2,1,2,1,1,1,1,1,2,1,2,0,0,2,0,1,4], [0,2,1,0,1,1,0,1,1,0,1,0,0,1,0,1,0,0,0,2,2,0,2,1,0,4], [2,0,1,2,1,1,0,1,0,0,0,0,0,0,0,0,2,0,2,0,0,0,0,1,0,0,4], [1,1,0,1,1,2,0,1,1,1,0,0,0,0,0,0,1,0,1,1,1,1,1,1,1,1,0,4]], [[[-2,-1,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,-1,1,0,1,1,0,-1,0,0], [0,0,1,0,0,1,0,-1,0,0,1,-1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0], [0,-1,1,-1,1,1,1,-1,-1,0,1,-1,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [-1,-2,0,-1,1,0,1,1,-1,0,0,0,1,0,0,0,0,0,0,-1,1,0,1,2,0,0,0,0], [0,-2,0,0,1,0,1,1,-1,0,0,0,1,0,0,0,1,0,1,-1,1,-2,1,2,-1,0,-2,0], [-2,-1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,1,2,0,-1,0,0], [0,0,0,0,0,1,0,-1,0,0,1,0,0,0,0,0,-1,-1,0,0,0,1,0,-1,0,0,1,0], [-1,-1,0,0,0,0,0,2,0,0,0,0,0,1,0,0,1,0,1,-1,1,-1,1,1,-1,-1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,0,0,1,0,0,1,0,1,0], [0,0,0,0,0,-1,0,1,0,0,0,1,0,0,-1,-1,-1,0,0,0,0,1,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,-1,-1,0,1,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,1,0,0,1,0,1,0], [0,0,0,0,0,-1,-1,1,0,1,0,1,0,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,0,0,0,0,1,-1,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,0,-1,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,-1,1,0,-1,0,3,0,1,-1,1,-1,1,-1,0,1,1,1,-1,1,-1,2,2,-1,-1,-2,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,2,0,-2,0,0,1,-1,0,0,1,0,0,-1,0,0,0,0,0,-2,0,0,0,0], [-1,-1,-1,1,0,-1,-1,3,0,1,-1,1,0,1,-1,0,1,1,1,-1,2,-1,1,2,-1,-1,-2,-1], [0,0,1,0,0,1,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [-1,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,-1,-1,0,-1,0,0,1,0,1,1,0,1,0], [-1,-1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,-1,1,0,1,1,0,-1,0,0], [0,0,1,0,0,1,0,-1,0,0,0,-1,0,0,1,0,0,-1,0,0,0,0,0,-1,0,0,0,0], [-1,-1,0,0,0,0,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0], [-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,1,1,0,-1,0,0]], [[0,1,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,1,0,-1,0,0,1,0], [0,0,0,0,0,1,0,-1,0,0,1,0,0,0,1,0,-1,-1,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0], [0,0,-1,1,0,-1,0,2,1,1,-1,1,-1,0,-1,0,0,1,1,-1,0,-1,1,1,-1,0,-1,-1], [0,0,0,0,0,0,0,0,1,1,0,0,-1,0,0,0,-1,0,0,0,0,0,0,-1,0,0,1,0], [0,1,0,0,0,1,0,-1,1,0,1,0,-1,0,0,0,-1,-1,0,0,-1,1,0,-2,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,0,1,0,-1,0,0,1,0], [1,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,-1,-1,0,-1,0,-1,1,-1,-1,0,1,1,0], [0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [1,0,-1,1,0,-1,0,1,0,0,0,1,0,0,0,-1,0,1,0,-1,0,-1,0,1,-1,1,-1,0], [0,1,-1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,1,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,1,0,-1,0,0,1,0], [1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,-1,0], [1,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,-1,0,0,0,-1,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,-1,0,-1,0,0,1,0,0,0,0,1,0], [-1,0,1,-1,0,1,0,-1,0,0,1,-1,0,0,1,0,-1,-1,-1,0,0,1,0,-1,1,0,2,0], [0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,0,-1,0,0,0,0,0,1,0,1,0], [0,1,0,0,0,1,0,-1,0,0,1,0,0,0,0,0,-1,-1,0,0,-1,1,0,-1,0,0,1,0], [1,1,0,0,0,0,0,-1,1,0,0,0,0,-1,0,0,-1,0,-1,0,-1,1,-1,-1,0,1,1,0], [-1,0,0,0,0,1,0,-1,0,0,1,-1,0,0,1,0,-1,-1,-1,0,0,1,0,-1,1,0,2,0], [0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,-1,0,1,0,-1,0,1,0,0,0,0,0], [0,1,0,1,-1,1,-1,0,1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1]]]], [ # Q-class [28][20] [[8], [-2,8], [1,2,8], [0,3,3,8], [-1,4,4,3,8], [2,1,1,3,2,8], [2,1,1,3,2,2,8], [2,4,1,0,2,-1,-1,8], [3,0,0,1,0,3,0,0,8], [3,0,3,2,0,3,0,0,4,8], [3,0,3,2,3,3,3,0,1,2,8], [0,3,3,2,3,0,3,0,1,2,2,8], [1,2,2,3,4,4,1,1,0,0,3,0,8], [1,2,2,0,1,1,1,1,0,0,0,0,2,8], [1,2,2,3,1,1,1,1,3,3,0,0,-1,2,8], [0,3,3,4,3,3,0,0,2,4,1,1,3,0,3,8], [3,0,0,2,0,3,3,0,4,2,2,2,3,0,0,1,8], [0,3,0,4,3,3,0,3,2,1,1,1,3,0,0,2,1,8], [1,2,2,3,1,4,1,1,0,3,3,0,2,2,2,3,0,3,8], [2,1,1,3,2,2,2,2,3,3,0,0,1,1,1,3,3,3,1,8], [0,3,0,4,0,3,3,0,2,1,1,1,0,0,3,2,1,2,3,0,8], [3,0,0,1,0,3,3,0,2,1,4,1,3,3,0,-1,4,2,3,0,2,8], [2,1,4,3,2,2,2,2,0,3,3,0,1,1,4,3,0,0,4,2,3,0,8], [1,2,2,3,1,1,1,1,0,0,0,0,2,2,2,3,0,0,2,1,3,0,4,8], [0,3,3,4,3,3,3,0,-1,1,4,4,3,0,0,2,1,2,3,0,2,2,3,3,8], [2,1,1,3,-1,2,2,-1,3,3,0,0,1,1,4,3,3,0,1,2,3,0,2,1,0,8], [2,1,4,3,2,2,2,-1,0,3,3,3,1,1,1,3,0,0,1,2,0,0,2,1,3,2,8], [2,1,1,3,2,2,2,2,0,0,3,0,4,1,1,0,3,3,1,2,0,3,2,1,3,2,2,8]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,2,1,-2,-3,1,-1,-2,-2,-1,2,2,2,-2,3,-1,-1,1,-1,3,-1,1,0,1,-1,0,-1,-1], [0,1,0,0,0,0,0,-1,0,0,0,-1,-1,0,0,0,1,1,0,-1,-1,0,1,0,0,0,0,0], [0,2,0,0,-1,1,0,-1,-1,0,1,0,0,-1,1,-1,0,1,-1,0,-2,1,1,1,-1,0,0,-1], [0,2,1,-4,-2,-1,-1,-3,-3,0,2,0,3,-2,5,-3,2,3,0,3,1,-1,-1,1,0,-1,1,-2], [0,0,0,-1,0,-1,0,0,0,1,0,-1,1,0,1,-1,1,0,1,0,1,-1,-1,0,1,-1,1,0], [-1,0,0,1,0,1,1,1,1,0,0,0,-1,0,-1,1,-1,-1,0,-1,-1,1,0,0,-1,0,0,1], [0,1,0,0,-2,1,-1,-1,-1,-1,1,2,1,-1,1,0,-1,0,-1,2,-1,1,1,0,-1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,1,1,-3,-1,-1,0,-2,-2,1,1,-1,2,-1,3,-2,2,3,0,1,1,-1,-1,1,0,-1,1,-1], [0,1,1,-3,-1,0,-1,-2,-3,0,2,0,1,-1,3,-1,1,2,-1,2,1,0,-1,1,0,0,0,-1], [1,2,1,-4,-2,-1,-1,-3,-3,0,2,0,3,-2,5,-3,2,3,0,3,1,-1,-1,1,0,-1,1,-2], [0,1,0,1,-1,1,0,0,1,-1,0,1,-1,0,-1,1,-1,-1,0,0,-1,1,1,0,-1,0,-1,1], [-1,0,-1,3,0,2,1,2,2,-1,-1,1,-2,0,-3,2,-2,-2,0,-2,-3,2,2,0,-1,1,-1,1], [0,1,0,-1,-1,0,0,-1,-1,0,1,0,1,-1,2,-1,0,1,0,1,-1,0,0,1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,2,1,-3,-2,0,-2,-3,-4,0,2,1,3,-2,5,-3,1,2,-1,4,1,0,-1,1,0,-1,0,-2], [0,0,0,0,-1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,1,0,0,-1,0,0,-1,0,0,1,0,1,0,1,-1,0,0,0,1,0,-1,0,0,0,-1,0,0], [-1,0,-1,3,0,2,1,2,2,0,-1,1,-2,0,-3,2,-3,-2,-1,-2,-3,3,2,0,-1,1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [-1,0,-1,2,0,1,1,1,2,0,-1,0,-1,0,-2,1,-1,-1,0,-2,-2,1,2,0,-1,0,0,1], [0,1,-1,2,0,0,1,0,2,0,-1,0,-1,0,-2,1,-1,-1,0,-2,-2,1,2,0,-1,0,0,1], [0,1,1,-3,-1,-1,0,-2,-2,1,1,-1,2,-1,3,-2,2,2,0,1,1,-1,-1,1,0,-1,1,-1], [0,0,0,1,0,1,1,1,1,0,0,0,-1,0,-1,1,-1,-1,0,-1,-1,0,0,0,0,0,-1,1], [0,1,0,-1,0,0,0,-1,-1,1,1,-1,0,0,1,-1,1,1,0,0,0,-1,-1,1,0,0,0,0], [1,2,1,-3,-2,0,-1,-3,-3,0,2,1,3,-2,4,-3,1,2,0,3,1,-1,-1,1,-1,-1,0,-1]], [[-2,-2,-2,7,2,2,2,5,5,0,-2,0,-5,2,-7,4,-3,-4,0,-5,-4,3,2,-1,-1,2,-1,2], [1,1,0,0,1,0,-1,-1,-1,0,0,-1,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,1,0,1,0,0,0,0,0,0,-1,0,-1,1,0,0,-1,-1,-1,1,1,0,-1,0,0,0], [0,0,0,0,1,1,-1,0,-1,0,0,0,-1,0,0,0,0,0,-1,0,0,1,0,0,0,1,0,0], [1,1,0,0,1,0,-1,-1,-1,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,2,1,1,0,2,1,0,-1,0,-2,0,-2,1,-1,-2,0,-1,-1,2,0,0,0,1,0,1], [0,1,0,1,-1,2,-1,0,0,-1,0,2,0,-1,0,0,-2,-1,-1,1,-2,2,1,0,-1,1,-1,0], [0,0,-1,3,1,1,0,1,1,0,0,0,-3,1,-3,2,-1,-1,0,-2,-2,1,1,0,-1,1,-1,1], [-2,-2,-1,4,2,1,2,4,4,0,-2,-1,-4,2,-5,3,-1,-3,1,-4,-2,1,1,-1,0,1,0,2], [-1,0,0,1,0,1,1,1,1,0,0,0,-1,0,-1,1,-1,-1,0,-1,-1,1,0,0,-1,0,0,1], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [1,2,1,-2,-1,0,-1,-2,-2,0,1,0,2,-1,3,-2,1,1,0,2,1,-1,-1,0,0,-1,0,-1], [0,0,0,1,1,0,-1,0,0,0,0,0,-1,0,-1,0,0,-1,0,0,0,1,0,0,0,1,0,0], [-1,0,-1,3,0,2,0,2,1,-1,0,1,-2,0,-3,2,-2,-2,-1,-1,-3,3,2,0,-1,2,-1,0], [-1,-1,-1,2,2,1,1,2,2,0,-1,-1,-3,1,-3,2,0,-1,0,-3,-2,1,1,0,0,1,0,1], [0,0,0,0,1,0,0,0,0,0,0,-1,-1,0,0,0,1,0,0,-1,0,0,0,0,0,0,1,0], [-1,0,0,1,0,1,0,1,1,0,0,0,-1,0,-1,0,-1,-1,0,0,-1,1,0,0,0,1,0,0], [0,0,0,0,1,0,-1,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0], [0,1,1,-1,-1,1,-1,-1,-2,-1,1,1,1,-2,2,-1,-1,1,-1,2,-1,2,0,1,-1,1,0,-1], [-1,0,-1,3,0,3,0,2,1,-1,0,2,-3,0,-3,2,-3,-2,-1,-1,-3,3,2,0,-2,2,-1,1], [0,-1,0,1,1,0,0,1,1,0,-1,-1,-1,1,-1,1,0,-1,0,-1,0,0,0,-1,1,0,0,1], [-1,0,0,1,0,0,0,1,1,0,0,0,0,0,-1,0,-1,-1,0,0,-1,1,0,0,0,1,0,0], [0,0,0,2,0,2,0,1,1,-1,0,1,-2,0,-2,2,-2,-1,-1,-1,-2,2,1,0,-1,1,-1,1], [0,-1,-1,3,1,1,0,2,2,-1,-1,0,-2,1,-3,2,-1,-2,0,-2,-1,1,1,-1,0,1,0,1], [1,1,1,-1,0,0,-1,-1,-1,0,0,0,1,-1,1,-1,0,0,0,1,1,0,-1,0,0,0,0,0], [-1,-1,-1,3,2,1,1,2,3,0,-2,-1,-3,1,-4,2,-1,-2,0,-3,-2,2,2,-1,0,1,0,1], [0,1,0,1,0,1,0,0,0,0,0,0,-1,0,-1,0,0,0,-1,-1,-1,1,1,0,-1,0,0,0], [0,0,0,0,1,0,-1,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,1,0,0,0,1,0,0]]]], [ # Q-class [28][21] [[6], [3,6], [2,2,6], [2,2,3,6], [2,2,2,2,6], [2,2,2,2,2,6], [2,2,2,2,3,2,6], [2,2,2,2,2,3,2,6], [3,3,3,3,3,3,3,3,6], [2,2,0,0,2,2,2,2,3,6], [2,2,2,2,3,2,3,2,3,2,6], [3,3,2,2,2,2,2,2,3,2,2,6], [2,2,3,3,2,2,2,2,3,3,2,2,6], [2,2,2,2,2,0,2,0,3,2,2,2,2,6], [2,2,2,2,2,2,2,2,3,2,2,2,2,2,6], [2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,6], [0,0,2,2,2,2,2,2,3,2,2,3,2,2,2,2,6], [2,2,0,0,3,2,2,1,1,1,1,2,0,0,2,2,1,6], [2,1,0,0,1,1,3,1,1,1,2,0,0,0,0,0,0,2,6], [0,0,0,1,1,2,1,2,1,2,1,0,2,1,2,0,2,2,2,6], [2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,3,2,2,2,2,6], [2,2,2,1,2,2,2,2,2,0,2,2,0,0,0,1,0,2,2,0,2,6], [2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,0,2,1,1,1,0,0,6], [2,2,2,2,2,2,2,2,3,2,2,2,2,2,0,2,2,0,1,0,2,2,2,6], [2,0,3,1,2,2,2,2,2,0,2,1,2,0,2,1,1,2,2,2,3,3,1,1,6], [-1,1,1,1,2,2,2,2,2,0,2,0,1,0,1,2,2,2,2,2,2,2,0,0,2,6], [1,1,0,0,2,2,2,0,1,1,2,1,0,2,2,0,0,2,2,1,2,1,1,0,1,1,6], [1,1,1,-1,2,2,2,0,2,1,2,1,0,1,2,1,2,2,2,1,2,1,0,1,2,2,2,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-33,-14,-1,16,-10,21,-14,21,3,13,6,4,8,39,5,-23,-16,36,24,-37,-5,-10,-18,-2,9,-7, -20,3],[-98,-41,-4,47,-29,61,-41,63,8,37,18,12,25,115,13,-67,-46,106,71,-110,-15, -30,-52,-7,28,-22,-58,9],[205,83,8,-100,60,-127,86,-132,-16,-79,-37,-25,-50,-240, -26,141,94,-220,-149,230,32,64,110,15,-62,46,120,-17], [420,170,17,-206,124,-259,176,-271,-34,-162,-76,-50,-102,-491,-53,288,193,-452,-304,471, 67,131,225,30,-128,95,245,-36],[78,31,3,-38,22,-48,33,-50,-6,-30,-14,-9,-19,-91, -10,53,35,-83,-57,87,13,24,42,6,-24,18,45,-6], [172,69,7,-84,51,-106,72,-111,-14,-66,-31,-20,-42,-201,-22,118,78,-185,-125,193,28,54, 93,12,-53,39,100,-14],[45,18,2,-22,13,-28,19,-29,-3,-17,-8,-5,-11,-53,-6,31,20, -48,-33,51,7,14,24,3,-14,10,26,-3], [238,97,10,-116,70,-147,100,-153,-19,-91,-43,-28,-59,-278,-31,163,109,-256,-173,267,37, 73,127,17,-71,54,139,-20],[157,64,6,-77,46,-97,66,-101,-12,-61,-28,-19,-38,-184,-20, 108,72,-169,-114,176,25,49,84,11,-48,35,92,-13], [208,85,8,-101,61,-129,87,-134,-17,-79,-38,-25,-51,-243,-27,143,96,-224,-151,233,32,65, 111,15,-62,47,122,-17],[178,72,8,-87,52,-110,75,-115,-14,-68,-32,-21,-44,-208,-23, 122,81,-191,-130,200,28,55,95,13,-54,41,104,-15], [-214,-87,-8,105,-64,132,-90,138,18,83,39,26,52,250,27,-147,-99,231,155,-240,-35,-67, -115,-15,65,-48,-125,19],[58,23,3,-28,17,-36,24,-37,-4,-22,-11,-7,-14,-68,-8,40,26, -62,-42,65,9,18,31,4,-18,13,34,-4], [-94,-39,-4,46,-28,58,-40,61,8,36,17,12,23,110,12,-64,-44,101,68,-105,-15,-29,-50,-7, 28,-21,-55,9],[-2,-1,0,2,-1,1,-1,1,0,2,0,1,0,2,0,-1,-2,2,1,-2,-1,-1,-1,0,1, 0,-1,1],[203,82,8,-99,60,-126,85,-131,-16,-78,-37,-24,-50,-238,-26,140,93,-219,-147, 228,32,63,109,15,-61,46,119,-17], [-44,-18,-2,21,-13,27,-18,28,4,16,8,6,11,51,6,-30,-21,47,32,-49,-6,-14,-23,-3,13,-10, -26,4],[233,94,10,-114,69,-144,98,-151,-18,-90,-42,-27,-57,-273,-30,160,106,-251, -169,262,37,72,125,17,-71,53,136,-20], [134,53,6,-65,39,-83,56,-86,-10,-51,-24,-15,-33,-156,-17,91,60,-143,-97,150,21,41,71, 10,-41,31,78,-11],[374,151,15,-183,110,-231,157,-241,-30,-144,-67,-45,-91,-437,-47, 256,172,-402,-271,419,60,117,200,27,-114,84,218,-32], [-150,-60,-6,73,-44,93,-63,96,12,58,27,18,36,175,19,-102,-69,161,109,-168,-24,-47,-80, -11,46,-34,-88,13],[-22,-9,-1,11,-7,14,-9,14,2,9,4,3,5,26,3,-15,-10,24,16,-25, -4,-7,-12,-2,7,-5,-13,2],[167,67,7,-81,49,-103,70,-108,-13,-64,-30,-20,-41,-195, -21,114,76,-179,-121,187,27,52,89,12,-51,38,97,-14], [96,38,4,-47,28,-60,40,-62,-7,-37,-17,-11,-23,-113,-12,66,43,-103,-70,108,16,30,52,7, -30,22,56,-8],[260,105,11,-127,76,-161,109,-167,-21,-100,-47,-31,-63,-304,-33,178, 119,-279,-188,291,41,81,139,19,-79,59,152,-22], [98,40,4,-47,28,-61,41,-63,-7,-37,-18,-12,-24,-115,-13,67,45,-105,-71,110,15,30,52,7, -29,22,58,-8]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [174,71,7,-85,51,-108,73,-112,-14,-67,-31,-21,-42,-204,-22,119,80,-187,-126,195,28,54, 93,13,-53,39,102,-15],[142,58,6,-69,42,-88,60,-91,-12,-54,-26,-17,-35,-166,-18,97, 65,-153,-103,159,23,44,76,10,-43,32,83,-12], [-128,-52,-5,62,-38,79,-54,83,10,49,23,15,32,150,17,-88,-59,138,93,-144,-20,-39,-68,-9, 38,-29,-75,11],[9,4,0,-5,3,-5,4,-6,-1,-4,-2,-1,-2,-10,-1,6,4,-10,-6,10,2,3,5, 1,-3,2,5,-1],[20,9,0,-10,6,-12,8,-13,-2,-8,-4,-3,-4,-23,-2,14,10,-22,-14,22,3, 7,11,1,-6,4,12,-2],[-26,-10,-1,13,-8,16,-11,17,2,10,5,3,6,31,3,-18,-12,28,19, -29,-4,-8,-14,-2,8,-6,-15,2],[67,27,3,-33,20,-41,28,-43,-6,-26,-12,-8,-16,-78,-8, 46,30,-72,-48,75,11,21,36,5,-21,15,39,-6], [-154,-63,-6,75,-45,96,-65,99,12,59,28,19,38,181,20,-106,-72,166,112,-173,-24,-48,-82, -11,46,-34,-91,13],[72,29,3,-35,21,-44,30,-46,-6,-28,-13,-9,-17,-84,-9,49,33,-77, -52,80,12,23,39,5,-23,16,42,-6], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [84,34,4,-41,25,-52,35,-54,-7,-32,-15,-10,-20,-98,-11,57,38,-90,-61,94,14,26,45,6,-26, 19,49,-7],[-66,-27,-3,32,-19,41,-28,43,5,25,12,8,17,77,9,-45,-31,71,48,-74,-10, -20,-35,-5,19,-15,-39,6],[82,34,3,-40,25,-51,34,-53,-7,-32,-15,-10,-20,-96,-10,57, 38,-89,-59,92,13,26,44,6,-25,18,48,-7], [265,108,11,-129,78,-164,111,-171,-22,-101,-48,-32,-65,-310,-34,182,122,-285,-192,297,42, 83,142,19,-80,60,155,-23],[66,27,3,-33,20,-41,28,-43,-5,-26,-12,-8,-16,-78,-8,46, 30,-72,-48,75,11,21,36,5,-21,15,39,-6], [275,112,11,-135,81,-170,115,-177,-22,-106,-50,-33,-67,-321,-35,189,127,-296,-199,308,43, 86,147,20,-83,62,161,-24],[-1,0,0,1,-1,1,-1,1,0,1,0,0,0,2,0,-1,0,2,1,-2,-1, -1,-1,0,1,0,0,0],[94,38,4,-46,28,-58,39,-60,-8,-36,-17,-11,-23,-109,-12,64,43, -101,-68,105,15,29,50,7,-29,22,55,-8], [317,128,13,-155,93,-196,133,-204,-26,-122,-57,-38,-77,-370,-40,217,145,-340,-230,355,51, 99,170,23,-97,72,185,-27],[151,61,6,-74,44,-93,63,-97,-12,-58,-27,-18,-37,-176,-19, 103,69,-162,-109,169,24,47,81,11,-46,34,88,-13], [50,21,2,-25,15,-30,21,-32,-4,-20,-9,-6,-12,-58,-6,34,23,-54,-36,56,8,15,26,4,-15,11, 29,-5],[-81,-33,-3,39,-24,51,-34,52,6,31,15,10,20,95,11,-56,-38,87,59,-91,-12,-25, -43,-6,24,-18,-48,7],[395,160,16,-193,116,-244,165,-254,-32,-152,-71,-48,-96,-461, -50,270,182,-424,-286,442,63,123,211,29,-120,89,231,-34], [191,78,8,-93,56,-119,80,-123,-16,-73,-35,-23,-47,-224,-25,132,88,-206,-139,215,30,60, 103,14,-58,43,113,-16],[-147,-59,-7,71,-43,91,-62,95,12,55,26,17,37,172,19,-100, -67,158,107,-165,-23,-45,-78,-11,44,-34,-86,13], [-173,-71,-7,84,-51,107,-73,111,14,66,31,21,43,202,23,-118,-80,186,126,-194,-27,-53,-92, -12,51,-39,-101,15]]]], [ # Q-class [28][22] [[8], [1,8], [4,2,8], [3,3,3,8], [3,3,3,2,8], [3,3,3,4,1,8], [2,1,1,2,2,1,8], [2,4,4,3,3,0,2,8], [0,3,3,2,2,1,2,3,8], [2,4,1,0,3,3,2,2,0,8], [2,1,1,2,2,1,4,2,2,2,8], [1,2,2,3,3,0,4,4,3,1,4,8], [3,3,3,1,1,-1,1,3,1,3,1,3,8], [3,0,0,1,1,2,4,0,1,3,4,0,-1,8], [3,3,0,4,1,2,1,3,-2,3,1,0,2,2,8], [4,2,2,1,1,2,2,1,1,1,0,-1,2,2,2,8], [2,1,1,-1,2,1,1,2,2,2,2,1,1,1,1,0,8], [1,2,2,1,1,-1,2,4,1,1,0,2,2,2,2,2,0,8], [1,2,2,-1,2,1,3,1,2,1,1,2,1,1,-2,1,1,1,8], [1,2,2,-1,2,1,2,1,2,1,3,2,1,1,-2,0,3,0,4,8], [4,2,2,1,1,2,1,1,1,1,2,-1,2,2,2,4,2,1,3,1,8], [2,1,1,1,-2,2,1,2,1,2,3,1,2,2,2,0,3,0,2,1,2,8], [0,3,-3,-1,2,1,2,0,2,3,2,0,-2,4,1,1,2,1,2,2,1,1,8], [1,2,2,1,1,-1,4,4,1,1,2,2,2,2,2,1,2,4,3,1,2,2,1,8], [2,1,1,-1,2,1,2,2,2,2,1,1,1,1,1,2,4,2,3,2,4,1,2,1,8], [2,1,1,1,-2,2,0,2,1,2,1,1,2,2,2,1,1,1,0,2,0,4,1,0,0,8], [1,2,-1,1,1,2,2,1,1,1,0,2,-1,2,2,2,0,2,1,0,1,0,4,1,2,1,8], [1,2,-1,1,1,2,4,1,1,1,2,2,-1,2,2,1,2,1,3,1,2,2,4,2,4,0,4,8]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,1,0,0,-1,1,0,-1,1,-1,0,1,0,-1,0,-1,1,1,1,-1,1,0,0,0,0], [0,2,1,0,1,-1,1,-1,-1,-1,0,0,-1,0,-1,0,0,0,-1,-1,0,1,0,0,1,1,0,0], [1,-2,-2,-2,1,2,-1,0,3,1,-1,1,-1,-1,2,0,-2,1,-1,2,1,1,-1,1,-1,-1,-1,1], [1,-1,1,0,-1,-2,-1,-2,2,3,-2,3,-3,-1,2,1,-1,0,-1,2,1,1,0,1,-1,-1,-1,1], [-1,-1,-2,-3,3,5,1,2,0,-4,-1,0,3,1,0,-1,-2,0,-2,0,1,1,1,1,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [2,1,1,2,-2,-5,-1,-3,2,5,1,0,-5,-2,1,1,1,1,1,1,0,0,-3,0,-1,0,1,1], [0,1,1,0,0,-1,0,-1,0,0,-1,1,-1,0,0,0,0,0,-1,0,1,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0], [0,1,1,0,0,-1,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,2,1,1,0,-2,0,-1,-1,0,1,-1,-1,0,-1,0,1,0,1,-1,-1,0,-1,0,1,1,1,0], [0,-1,0,0,-1,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0], [1,-2,-2,-1,0,1,-1,0,3,2,0,0,-1,-1,2,0,-1,1,0,2,0,0,-2,1,-1,-1,0,1], [0,0,0,-1,0,1,0,0,0,-1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,-1,0,0,0,1,0,-1,0,0,-1,0,1,0,0,0,0,0,-1,0,-1,0,1,1], [1,1,1,-1,-1,-1,0,-1,1,1,0,1,-2,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,1,2,2,-1,-3,1,-1,-1,1,1,-1,-1,-1,-1,0,1,0,1,-1,0,0,0,-1,0,1,1,0], [-2,2,2,1,1,-1,2,0,-3,-2,0,-1,1,1,-2,0,1,-1,0,-2,0,1,1,-1,1,1,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,1,0,2,0,-1,1,0,-1,0,3,-4,1,-1,-2,-1,2,1,2,-2,-1,-1,-1,-1,0,1,2,0], [0,-1,0,0,-1,0,0,0,1,1,-1,1,0,0,1,0,0,0,0,1,1,0,0,0,-1,-1,0,0], [2,0,0,2,-2,-4,-1,-2,2,5,1,0,-4,-2,0,1,1,1,1,1,0,0,-3,0,-1,0,1,1], [0,0,0,-1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,-1,0,0,1], [-2,2,1,0,1,1,2,1,-3,-3,1,-2,2,1,-2,-1,1,0,0,-2,0,0,1,-1,1,1,1,-1], [-1,0,0,0,0,1,0,0,0,-1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,-1,-2,2,3,1,1,0,-3,0,-1,3,1,0,-1,-1,0,-1,0,0,1,0,0,0,0,0,0]], [[0,-2,-1,-1,0,1,-1,0,2,1,-2,2,0,0,2,0,-1,0,-1,2,1,0,0,1,-1,-1,-1,1], [2,-2,-1,1,-2,-2,-2,-1,3,5,0,1,-3,-2,2,1,0,1,2,2,0,-1,-2,0,-2,-1,0,1], [1,0,1,2,-2,-4,-1,-2,1,4,0,1,-3,-1,1,1,1,0,1,1,0,-1,-1,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0], [-1,0,1,0,0,0,0,0,-1,-1,-1,1,1,1,0,0,0,-1,0,0,0,0,1,0,0,0,0,0], [0,0,0,1,-1,-1,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,-1,0,-1,0,0,0,0], [0,0,-1,-1,1,2,0,1,0,-2,0,-1,2,1,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0], [1,-2,0,0,-1,-1,-2,-1,2,3,-1,2,-2,-1,2,1,-1,0,0,2,0,0,0,1,-1,-1,-1,1], [0,1,0,0,1,-1,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0], [0,-2,-1,0,-1,1,-1,1,1,1,0,0,1,0,1,0,0,0,1,1,0,-1,0,0,-1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [2,-2,-1,1,-2,-2,-2,-1,3,5,0,1,-3,-2,2,1,0,1,1,2,0,-1,-2,1,-2,-1,0,1], [-1,0,-1,-1,1,2,0,1,0,-2,0,-1,2,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,-2,-1,-1,0,2,-1,1,1,0,-1,1,1,0,1,0,-1,0,0,1,0,0,1,1,0,-1,-1,0], [1,-1,-1,-2,0,1,-1,0,2,1,-2,2,-1,0,2,0,-1,0,-1,2,1,0,-1,1,-1,-1,-1,1], [1,-1,-1,-1,0,0,-1,-1,2,1,0,1,-1,-1,2,0,-1,0,0,1,0,0,-1,1,0,0,0,0], [1,-1,-1,-1,-1,0,-2,0,2,2,-1,2,-2,0,2,1,-1,0,0,2,0,0,-1,1,-1,-1,-1,1], [2,-1,0,4,-3,-5,-2,-1,2,6,2,-2,-3,-2,0,1,2,1,3,1,-1,-2,-3,-1,-2,0,2,2], [0,1,1,3,-1,-3,0,-1,-1,2,2,-2,-1,-1,-1,0,2,0,2,-1,-1,-1,-1,-1,0,1,2,0], [3,-2,-1,2,-3,-4,-3,-2,4,7,-1,2,-5,-2,2,1,0,1,1,3,1,-1,-3,1,-2,-1,0,2], [1,-2,-1,1,-1,-1,-1,0,2,3,1,-1,-1,-2,1,0,0,1,1,1,0,-1,-1,0,-1,0,0,1], [-1,-1,-2,-2,2,4,0,2,0,-3,0,-1,3,1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0], [3,-2,-2,1,-2,-2,-3,-1,4,5,1,0,-3,-2,2,1,0,1,2,2,-1,-1,-3,1,-2,-1,0,2], [0,0,0,0,0,0,-1,0,0,0,-1,1,0,1,0,0,-1,-1,-1,1,0,0,0,1,1,0,0,0], [-1,-1,-1,0,1,1,0,1,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,-1,0,1,2,0,1,-1,-2,0,-1,2,1,-1,0,0,0,0,0,-1,0,0,0,1,0,0,0], [0,0,-1,-1,1,2,0,1,0,-2,0,-1,2,1,0,-1,-1,0,0,0,-1,0,0,0,1,0,0,0]]]], [ # Q-class [28][23] [[6], [2,6], [1,3,6], [1,1,2,6], [2,2,1,0,6], [0,2,1,1,2,6], [1,1,2,0,3,1,6], [0,1,2,2,1,0,2,6], [0,1,2,2,1,3,2,0,6], [0,2,1,1,2,0,1,3,0,6], [3,1,2,2,1,0,2,0,0,0,6], [2,2,1,3,0,2,0,1,1,2,1,6], [2,0,0,1,-2,0,-1,0,0,0,1,2,6], [1,0,0,2,1,0,2,0,0,0,2,1,0,6], [0,2,1,1,0,0,0,1,0,2,0,2,2,1,6], [0,0,0,1,2,2,1,1,1,2,0,2,-2,1,0,6], [1,0,0,0,1,0,2,2,0,1,2,0,0,0,-1,1,6], [0,0,0,-2,1,0,2,0,0,0,0,-1,0,0,1,-1,0,6], [2,0,0,1,2,0,1,0,0,0,1,2,0,3,2,2,0,0,6], [0,1,2,2,0,0,0,2,0,1,0,1,1,2,3,0,-2,2,1,6], [0,0,0,2,1,1,2,2,2,1,0,1,-1,2,0,3,2,-2,1,0,6], [2,0,0,0,2,0,1,1,0,2,1,0,0,0,-2,2,3,0,0,-1,1,6], [2,0,0,1,2,2,1,0,1,0,1,2,0,0,-2,0,1,1,0,-1,0,2,6], [1,0,0,0,1,-1,2,2,-2,1,2,0,0,2,1,0,0,2,1,2,0,0,0,6], [2,-2,-1,0,0,0,0,-1,0,-2,1,0,2,0,0,-2,0,1,0,0,-1,0,2,1,6], [1,0,0,2,-1,0,-2,0,0,0,2,1,3,0,1,-1,0,0,0,2,-2,0,0,0,1,6], [2,0,0,0,2,2,1,0,1,0,1,0,0,0,0,2,0,0,0,0,1,0,0,0,2,0,6], [1,1,2,2,0,0,0,0,0,0,2,1,0,0,0,1,2,-2,0,0,2,1,0,-2,0,0,1,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,-1,-1,0,0,0,1,1,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [-1,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,-1,0,0,0,0,1,0,-1,0,0,0,1,0,0,0,0,0,-1,1,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,1,0,0,0,0,0,-1,1,0,-1,1,0,0,0,0,0,0,0], [-1,1,0,0,0,-1,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,1,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1], [0,0,0,0,1,-1,0,0,0,-1,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,-1,0,0,0,1,0,0,0,0,0,0,-1,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0], [0,0,0,1,0,0,1,-1,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,1,-1,0,0,0,0,-1,0,0], [-1,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,1,0]], [[-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,0,1,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,0,0,0,1,0,0,0,0,0,1,0,0,-1,0,0,-1,0,0,0,0,0,1,0,1], [-1,0,0,0,1,0,-1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,-1,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,1,0,0,-1,1,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,1,1,-1,1,0,0,0,0,0,1,0,0,-1,1,-1,-1,0,0,-1,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,-1,0,1,0,1,0,0,0,0,-1,1,1,0,-1,0,-1,-1,0,0,0,0,0,1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,-1,0,0,-1,1,1,0,0,0,0,1,0,0,0,0,0,-1,-1,0,0,1,0,0,0,1], [1,-1,0,-1,1,0,-1,1,1,0,0,0,0,1,0,1,0,0,-1,0,-1,-1,0,0,0,0,-1,1], [0,-1,0,-1,1,0,-1,1,1,-1,0,1,0,1,1,-1,-1,0,-1,-1,0,1,0,1,-1,0,0,1], [0,0,0,0,0,0,-1,1,0,0,1,0,0,0,0,0,-1,1,0,-1,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,-1,0,-1,0,-1], [0,-1,0,-1,1,0,-1,1,1,-1,0,1,0,1,1,0,0,0,-1,-1,-1,0,0,1,-1,0,0,1], [0,0,0,-1,0,0,-1,1,1,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,-1,0,0,-1,1,1,0,0,0,0,1,0,0,-1,0,0,-1,0,0,0,1,0,0,0,1], [-1,0,0,0,1,0,-1,1,0,-1,1,1,0,0,0,-1,-1,1,0,-1,1,1,-1,0,0,0,0,0], [-1,1,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,-1,1,0,0,-1], [0,0,1,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,1,0,-1,0,0,0,0,0,0,0,0], [-1,1,0,0,0,-1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,-1,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [-1,1,-1,0,0,-1,0,0,1,0,1,-1,1,0,0,1,0,-1,0,1,-1,0,1,0,0,-1,0,0], [0,0,-1,-1,0,0,0,1,1,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,1,0,0,-1,0,0,1,-1,0,2,0,0,0,0,0,-1,0,-1], [0,1,0,0,0,-1,0,0,0,0,0,-1,1,0,0,1,0,0,0,0,0,-1,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,1,0,-1,1,0,0,0,0,1,0,0], [0,0,1,1,0,0,0,-1,-1,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,-1,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,-1,0,0,0,1,0,0,0,0,0,0,-1,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0], [1,-1,0,0,0,1,0,0,0,0,0,1,-1,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,1,-1,-1,0,1,0,0,-1,0,0,0,0,0,1,1,0,0,-1,0,0,0,-1], [0,0,0,0,1,0,0,0,0,-1,0,1,0,0,0,0,0,0,-1,0,0,0,-1,0,0,0,0,0], [1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,-1,1,0,0,1,0,0,0,0,0,-1,1,0,-1,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,-1,0,0,-1,0,0,0,1,0,1,0,1], [1,-1,0,0,1,0,0,0,0,-1,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,1,-1,0,0,0,0,0,-1,0,0,0,-1,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,1,0,0,-1,0,0,0,0,0,1,1,0,0,-1,0,0,0,-1], [1,0,0,0,-1,0,0,0,0,1,0,-1,0,0,0,1,0,0,0,0,0,-1,1,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,1,0,0,0,0,0,-1,0,0,1,0,-1,0], [0,0,0,1,0,0,1,-1,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,-1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,-1,0,1,-1,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,-1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [28][24] [[4], [0,4], [1,0,4], [1,1,1,4], [1,1,1,0,4], [0,0,1,1,0,4], [0,1,1,0,0,1,4], [1,0,1,0,1,0,1,4], [1,0,1,0,1,1,0,1,4], [0,1,0,0,1,1,1,0,0,4], [1,1,0,1,1,0,0,1,1,0,4], [1,1,0,0,1,1,1,1,1,1,0,4], [0,1,1,1,0,1,0,1,0,1,1,0,4], [1,1,0,0,0,1,1,0,0,1,1,1,0,4], [1,1,0,1,1,1,1,1,1,0,1,0,0,0,4], [1,0,1,0,1,0,1,1,1,1,1,1,0,1,0,4], [1,1,1,1,1,0,0,1,1,1,1,1,0,0,1,0,4], [1,0,0,0,1,0,1,1,1,1,0,1,1,1,0,1,0,4], [1,1,0,0,0,1,1,0,0,1,1,0,1,1,1,1,1,0,4], [0,1,0,1,0,1,1,0,1,1,0,1,0,1,0,1,0,1,1,4], [1,0,0,-1,1,0,1,1,1,1,0,1,-1,1,0,1,0,1,0,1,4], [0,1,0,0,0,0,1,1,0,1,1,0,1,1,1,0,1,0,1,1,0,4], [1,0,0,0,1,1,0,1,-1,0,0,1,1,0,1,0,0,0,1,-1,0,0,4], [0,1,1,1,0,1,1,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,-1,4], [0,0,1,0,1,1,0,0,0,0,1,0,0,1,1,0,1,-1,0,-1,1,1,1,-1,4], [1,1,1,1,0,0,1,0,-1,1,0,0,1,1,0,0,0,0,0,-1,0,0,1,0,1,4], [-1,1,1,1,1,0,0,1,1,0,0,0,1,-1,0,0,0,0,-1,1,0,0,0,0,0,1,4], [1,1,1,0,1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0,0,0,0,1,0,0,0,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,1,0,1,-1,-1,0,2,1,2,0,0,-2,-1,-1,-1,-2,1,1,0,-2,-1,0,0,3,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [3,2,-1,1,-2,-2,2,2,2,3,-1,-1,-1,0,-2,-1,-2,0,0,0,-3,-2,1,0,4,-3,1,0], [-3,-2,0,-2,3,4,-2,-2,-2,-5,1,0,2,0,2,2,4,-1,-2,1,4,2,-1,0,-6,5,-2,0], [3,1,-2,0,0,0,2,1,1,1,-2,-2,1,1,-1,0,0,-1,-1,0,-2,-1,0,0,2,-2,1,-1], [0,1,1,0,-1,0,-1,1,0,1,0,0,-2,-1,0,0,-1,1,1,0,-1,0,0,0,1,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [3,2,-1,1,0,-1,2,3,2,3,-2,-2,0,1,-2,-1,-2,-1,0,0,-3,-2,0,-1,3,-3,0,-1], [-3,-1,1,-1,1,3,-3,-1,-2,-3,1,1,0,-1,2,1,2,1,0,0,3,2,-1,0,-4,4,-1,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,1,0,0,0,2,1,1,-1,-1,-1,0,-1,0,-1,0,0,0,-1,0,0,-1,1,0,-1,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,0,1,-2,0,-1,-1,0,1,-1,0,1,0,0,1,1,-1,1,1,-1,0,-1,1,0,0], [2,1,0,0,-1,-1,1,1,1,2,0,-1,-1,0,-1,-1,-1,0,0,0,-2,-1,1,0,2,-2,1,0], [-1,0,1,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,-1,1,-1,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,0,1,0,1,2,-2,0,-1,-2,0,0,0,0,1,1,1,0,0,0,2,1,-1,-1,-3,2,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [3,3,-1,1,-1,-1,2,3,2,3,-2,-2,-1,0,-2,-1,-2,0,0,0,-3,-2,0,-1,4,-3,0,-1], [-2,-1,0,-1,2,2,-1,-1,-1,-3,0,0,1,0,1,1,2,0,0,0,2,1,-1,0,-3,3,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [-3,-3,0,-1,2,1,-1,-3,-1,-4,1,1,2,0,2,1,3,-1,-1,1,3,2,0,1,-4,4,-1,1], [3,2,0,0,-2,-1,1,2,1,3,-1,-1,-1,0,-1,-1,-2,1,0,0,-3,-2,0,0,4,-3,1,-1], [-1,-2,-1,-1,2,1,0,-2,-1,-3,0,0,2,1,1,1,3,-1,-1,0,2,1,0,1,-3,2,0,0], [-2,-1,1,0,0,0,-2,-1,-1,-1,1,2,-1,-1,1,0,0,1,1,0,1,1,0,1,-1,2,0,1], [1,1,-1,0,1,0,1,1,1,0,-1,-1,1,0,-1,0,0,-1,-1,1,-1,-1,0,0,1,0,-1,-1], [1,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,-1,1,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,0,-1,0,0,0,0,1,0,0,-1,0,0,0,-1,1,0,-1,-1,0,0,0,1,-1,1,0], [1,1,-1,-1,1,1,1,0,0,-1,-1,-2,2,1,0,1,2,-1,-2,1,0,-1,0,-1,-1,0,-1,-1], [3,2,0,0,-1,-1,1,2,1,3,-1,-1,-1,1,-1,-1,-2,0,0,0,-3,-2,0,-1,3,-3,1,-1], [-2,-1,1,-1,1,2,-2,-2,-2,-3,1,1,1,0,2,1,2,0,-1,0,3,2,-1,0,-4,3,-1,0], [3,2,-1,0,0,-1,2,2,1,2,-2,-2,1,1,-1,0,-1,-1,-1,1,-3,-2,0,-1,3,-3,0,-1], [0,0,0,-1,0,1,0,-1,-1,-1,0,0,1,0,1,1,1,0,-1,0,1,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [3,1,-2,0,0,-1,2,1,1,1,-2,-2,2,1,-1,0,0,-1,-1,1,-2,-2,0,0,3,-2,0,-1], [2,0,-1,0,0,-1,2,0,0,1,-1,-1,1,1,0,0,0,-1,-1,0,-1,-1,0,0,1,-2,1,0], [-1,0,1,0,0,1,-2,0,-1,-1,0,1,-1,0,1,0,0,1,1,-1,1,1,-1,0,-1,1,0,0], [0,-1,0,0,0,-1,0,-1,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0], [3,2,0,1,-2,-3,2,2,2,4,-1,-1,-2,0,-2,-2,-3,1,1,0,-4,-2,1,0,5,-4,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,2,1,1,-2,-1,0,2,0,3,0,0,-2,0,-1,-1,-3,1,1,-1,-2,-1,0,-1,3,-3,1,0], [-1,0,1,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,-1,1,-1,0], [0,-1,-1,-1,1,1,0,-1,-1,-2,0,0,2,1,1,1,2,-1,-1,0,1,0,-1,0,-2,1,0,0], [1,0,0,0,-1,-2,1,0,1,1,0,0,0,0,0,-1,-1,0,0,1,-1,-1,1,1,2,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,-1,0,0,-1,1,0,1,1,-1,-1,1,1,0,0,0,-1,-1,1,-1,-1,1,0,1,-1,0,0], [0,-1,-1,-1,1,1,0,-2,-1,-2,0,0,2,0,1,1,2,-1,-1,0,2,1,0,1,-2,1,0,0], [-1,-1,1,0,-1,0,-1,-1,-1,0,1,1,-1,0,1,0,0,1,1,-1,1,1,0,0,-1,0,1,1], [-1,0,2,1,-1,-1,-1,0,0,1,1,2,-2,-1,0,-1,-2,1,2,-1,0,1,0,0,0,0,0,1], [1,1,-1,-1,1,1,1,1,0,0,-1,-2,1,1,0,1,1,-1,-2,1,-1,-1,0,-1,0,0,-1,-1], [-2,-1,1,-1,1,2,-2,-2,-2,-3,1,1,1,0,2,1,2,0,0,-1,3,2,-1,0,-4,2,0,0], [1,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,2,-1,0,0,0,1,2,1,1,-1,-2,0,0,-1,0,-1,0,-1,1,-2,-1,0,-1,2,-1,-1,-1]]]], [ # Q-class [28][25] [[4], [0,4], [-1,0,4], [-1,0,2,4], [1,0,0,0,4], [0,0,-2,0,-2,4], [1,0,0,-2,2,-2,4], [2,0,-2,-2,2,0,2,4], [0,-2,1,1,1,-1,0,0,4], [2,-1,1,0,1,-1,1,1,0,4], [-2,-1,1,2,0,0,-1,-1,0,0,4], [-2,-1,1,1,1,-1,0,-1,0,0,2,4], [0,1,-1,-1,0,1,0,0,0,-2,-2,0,4], [-1,0,-1,0,-1,1,-1,-1,0,-2,0,0,1,4], [0,-2,0,0,0,0,0,0,2,0,0,0,0,-1,4], [1,0,-1,-2,0,0,1,1,0,0,-2,-1,1,0,-1,4], [0,0,1,1,0,0,-1,0,0,1,1,0,-1,-2,1,-2,4], [-1,0,1,1,1,-1,0,-1,0,0,1,2,0,0,1,-2,0,4], [1,0,0,0,0,1,0,1,0,1,0,-1,0,-2,0,0,2,-2,4], [2,0,0,0,0,0,1,1,0,2,0,-2,-2,-1,0,0,0,-1,1,4], [2,0,-1,-1,1,0,1,2,0,1,-1,-1,0,-2,0,2,0,-2,2,1,4], [-1,-1,-1,0,-1,1,-1,-1,1,-2,0,0,1,2,1,0,-1,0,-1,-1,-1,4], [1,-1,-1,-2,0,0,1,1,1,0,-2,-1,1,0,1,2,-1,-1,0,0,1,0,4], [0,1,1,1,0,0,-1,0,-1,1,1,0,-1,-1,-1,-1,2,0,1,0,0,-2,-2,4], [-1,1,1,1,1,-1,0,-1,-1,0,1,2,0,0,-1,-1,0,2,-1,-1,-1,0,-2,0,4], [1,0,0,0,0,1,0,1,0,1,0,-1,0,-1,0,0,1,-1,2,1,1,-2,0,2,-2,4], [0,2,1,1,1,-1,0,0,-2,1,1,1,-1,-1,-2,-1,1,1,0,0,0,-2,-2,2,2,0,4], [2,0,-1,-1,1,0,1,2,0,1,-1,-1,0,-1,0,1,0,-1,1,1,2,-2,2,0,-2,2,0,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,1,-1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0], [1,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,1,1,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,-1,1,1,0,-1,0,0,0,0,0,-1,0,-1,0,-1,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,-1,-1,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,1,0,0,1,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,1,0,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,1,-1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,-1,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0], [0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1], [0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0], [0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1], [0,0,0,-1,1,0,-1,-1,0,0,0,0,0,-1,0,-1,-1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,-1,-1,0,-1,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,-1,0,0,-1,-1,0,0], [-1,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,-1], [1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,-1,0,0,-1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,-1,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,1,0,0,1,0,1,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,-1,-1,-1,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,1,0,0,0,-1,0,0,-1]]]], [ # Q-class [28][26] [[4], [1,4], [-2,-2,4], [1,0,0,4], [-2,0,1,-1,4], [1,-1,1,1,-2,4], [-1,-1,0,-2,1,-1,4], [0,2,-1,-1,0,-1,-1,4], [0,-1,0,1,-1,1,1,-2,4], [2,2,-1,1,-1,1,-2,1,-1,4], [1,1,0,1,-1,1,-2,1,-1,2,4], [2,0,-1,2,-2,1,-2,0,0,1,1,4], [-1,-1,1,1,0,0,-1,0,0,-1,0,1,4], [-1,0,1,1,0,1,0,-1,2,0,0,-1,0,4], [-1,1,-1,-1,1,-2,1,1,0,-1,-2,-1,1,0,4], [-1,-1,1,1,1,-1,-1,0,-1,-1,0,1,2,-1,0,4], [-1,-1,1,-1,1,-1,0,1,-2,-1,1,0,1,-2,-1,2,4], [-1,0,1,1,1,-1,0,-1,1,0,0,-1,0,2,0,0,-1,4], [0,1,0,-1,0,1,-1,2,-2,1,1,0,0,-1,0,0,1,-2,4], [1,1,0,1,-2,2,-2,1,0,2,2,1,0,1,-1,-1,-1,0,1,4], [-1,1,-1,-2,1,-2,2,1,0,-1,-1,-2,-1,0,2,-1,0,0,0,-1,4], [-2,0,1,0,2,-1,1,-1,1,-1,-1,-2,0,2,1,0,-1,2,-1,-1,1,4], [2,0,-1,1,-2,1,-1,0,0,1,2,2,0,-1,-2,0,1,-1,0,1,-1,-2,4], [1,0,0,2,-2,2,-1,-1,2,1,1,1,0,2,-1,-1,-2,1,-1,2,-1,0,1,4], [0,-1,1,2,-1,1,-2,0,0,0,1,2,2,0,-1,2,1,0,0,1,-2,-1,1,1,4], [-1,1,1,2,1,0,-1,-1,1,0,0,0,1,2,0,1,-1,2,-1,0,-1,2,-1,1,1,4], [-1,-1,0,0,1,-1,2,-2,2,-2,-2,-1,0,1,1,0,-1,1,-2,-2,1,2,-1,0,-1,1,4], [1,1,-2,-1,-1,-1,0,2,-1,0,0,1,0,-2,1,0,1,-2,1,0,1,-2,1,-1,0,-2,-1,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,-1,0], [0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0], [0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0], [0,-1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,-1,0,0,0,1,0,0,0,0,1,0,0], [0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0], [0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,1,0,1,0,0,1,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,1,-1,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,-1,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,-1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0]], [[-1,0,-1,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,-1,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0], [1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,-1,0,0,0,0,0,-1,0,0], [-1,1,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0], [-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0], [0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1], [1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,-1,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,-1,0,0,0,0,0], [-1,1,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,-1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [1,-1,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,0,-1,0,0,0,1,0,0,0,0,0,0,0]]]], [ # Q-class [28][27] [[16], [2,16], [4,-4,16], [4,-4,4,16], [-4,4,-4,-4,16], [-4,-2,-4,8,4,16], [1,8,-2,-2,2,-1,16], [2,4,-4,2,-2,4,2,16], [-8,2,-2,-2,2,2,1,-1,16], [2,1,-1,-1,-2,-2,2,1,-4,16], [-2,2,-2,-8,2,-4,-2,2,1,-1,16], [-2,-4,-2,4,2,2,-2,-4,-2,-4,-2,16], [-1,4,-1,2,-2,1,8,1,-1,4,-4,-4,16], [-4,-2,-4,-4,4,-2,-4,-8,2,-2,2,8,-2,16], [-2,2,1,-2,2,-4,4,-1,4,-4,1,4,-4,2,16], [4,2,-2,-2,-4,-4,1,2,-2,8,-2,-8,2,-4,-2,16], [2,4,-4,-4,1,-2,-4,-2,2,-2,2,-4,-2,4,-4,2,16], [-4,-2,-1,2,-2,4,-1,4,2,-2,-4,2,1,-2,-4,-4,-2,16], [4,2,-2,4,2,2,1,8,-2,2,-2,-2,2,-4,1,4,-1,-4,16], [-2,2,1,-2,2,-1,4,-1,-2,8,-2,-2,8,2,-2,4,-4,2,-2,16], [-2,2,4,4,2,2,-2,2,-2,2,-2,-2,2,-4,4,1,-4,-1,4,4,16], [8,4,2,2,-2,-2,2,4,-4,-2,-4,2,-2,-2,2,-4,4,4,2,-4,-1,16], [-2,8,-8,-2,2,2,4,2,-2,-1,1,4,2,2,-2,-2,2,2,-2,-2,-2,2,16], [8,1,2,2,-2,-2,-1,-2,-4,-2,-4,2,1,4,-4,2,4,-2,2,2,-4,4,-1,16], [-2,2,-2,1,2,2,4,2,4,8,-2,-2,2,-4,4,4,-4,-4,4,4,4,-4,-2,-4,16], [4,-4,4,-2,-4,-4,-2,-4,-2,-4,4,1,-4,2,-2,-2,2,2,-8,-2,-8,2,-2,2,-8,16], [2,-2,-4,-4,4,-2,-1,4,-4,4,2,-4,-2,-2,-1,8,1,-2,8,2,2,-2,-4,1,2,-4,16], [-4,4,-1,-4,4,-2,2,-2,2,4,-4,-1,4,1,-1,2,-2,4,-4,8,2,-2,2,-2,2,-4,-2,16]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,1,1,-1,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [1,-1,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,-1,-1,0], [0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0], [1,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,-1,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1], [0,0,-1,0,0,0,0,-1,0,0,0,0,-1,-1,0,0,0,0,1,1,0,0,0,0,-1,0,-1,0], [-1,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0], [0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,-1,-1,0], [0,1,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,1,0,-1,0,-1,-1,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,1,0,0,-1,1,0,0,1,-1,1,0,0,0,0,1,1,0,0,1,0,-1,0], [0,1,0,0,-1,1,0,-1,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,1,1,1], [0,1,0,0,-1,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,1,0,-1,0,0,1,0,0,1,-1,1,0,0,0,-1,0,-1,0,0,0,-1,-1,0,-1], [0,0,0,0,-1,1,1,-1,-1,-1,1,-1,-1,1,0,0,0,1,1,0,0,0,0,0,1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,-1,0,0,1,0,1,0,0,0,1,0,0,0,0,1,0,1,0,-1,1,0,0,1,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0], [-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,1], [0,-1,-1,0,0,0,1,-1,0,-1,1,0,-1,0,-1,1,0,0,1,1,1,1,0,0,0,0,-1,0], [0,1,1,0,0,0,-1,1,0,0,-1,1,1,0,0,0,0,-1,-1,0,-1,0,0,-1,0,0,1,0], [0,0,0,0,-1,1,0,-1,0,0,0,-1,0,0,1,-1,0,0,1,0,0,0,1,0,0,1,1,1], [0,0,0,0,0,0,0,0,0,1,0,0,0,-1,1,-1,1,0,0,0,0,-1,0,1,-1,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,-1,0,1,0,1,0,0,-1,0,0,0], [1,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,1,0,-1,0,0,1,0,0,1,-1,1,0,0,0,-1,-1,0,0,0,1,0,0,0,0], [-1,0,-1,0,1,-1,0,0,0,0,0,0,0,0,-1,1,-1,0,0,0,0,1,-1,0,0,0,-1,-1], [-1,0,0,0,1,0,-1,0,0,1,0,0,1,-1,1,0,0,0,0,-1,0,0,0,1,0,1,0,0], [0,0,-1,0,0,0,-1,0,1,0,0,0,0,-1,0,0,-1,-1,0,1,0,1,0,0,-1,0,0,0], [0,0,0,0,0,0,-1,0,1,1,-1,0,1,-1,1,-1,0,-1,0,0,0,0,1,0,-1,1,1,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,-1,0,0,0,1,0,1,-1,1,0,-1,1,-1,1,0,0,0,0,-2,0,0,-1,0,0,0], [0,0,0,0,-1,0,1,-1,0,-1,0,0,-1,0,-1,0,0,0,1,1,0,0,0,-1,0,0,0,0], [-1,1,0,0,0,0,0,0,-1,-1,0,0,0,1,-1,1,-1,0,-1,-1,0,1,-1,0,1,0,0,0], [0,-1,-1,0,0,0,-1,0,1,1,0,0,0,-2,1,-1,0,-1,0,1,0,0,1,1,-1,0,0,0], [-1,1,0,0,-1,0,1,0,-1,-1,0,0,-1,1,-1,0,0,0,0,0,0,0,-1,0,1,0,0,0], [0,1,0,0,0,0,0,0,0,-1,0,0,0,1,-1,1,-1,0,-1,0,0,1,-1,-1,0,-1,0,-1], [1,0,0,0,0,0,0,1,0,1,-1,0,0,0,1,-1,1,0,0,0,0,-2,0,0,-1,0,0,0], [0,-1,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,1,0,1,1,0,0,0,0,0,0,-1,0], [-1,0,0,1,0,0,0,0,0,1,0,-1,0,0,1,-1,0,0,0,-1,0,0,1,1,0,1,1,1], [0,0,0,0,1,-1,-1,1,1,1,-1,1,1,-1,0,0,0,-1,-1,0,0,0,0,0,-1,0,0,-1], [0,0,-1,0,0,0,0,0,0,1,0,0,0,-1,1,-1,0,0,0,0,0,-1,0,1,-1,0,0,0], [0,0,0,0,1,0,-1,0,0,1,0,0,1,-1,1,0,0,0,-1,0,-1,0,0,0,-1,-1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [-1,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,1,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [1,0,0,-1,1,0,-1,1,1,1,-1,1,1,-1,1,0,0,0,-1,0,0,-1,0,0,-1,0,0,-1], [0,0,0,1,-1,0,1,-1,-1,-1,1,-1,-1,1,0,0,0,1,1,0,0,0,0,0,1,0,0,1], [0,0,0,0,1,-1,0,1,0,1,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,-1,-1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [28][28] [[8], [1,8], [1,4,8], [1,4,4,8], [4,1,1,2,8], [4,2,1,1,2,8], [4,1,1,1,2,2,8], [2,1,1,2,4,4,4,8], [2,1,1,2,4,2,2,4,8], [2,1,2,1,2,2,2,2,4,8], [2,2,2,4,4,2,2,4,4,2,8], [2,1,1,2,2,2,4,2,2,4,4,8], [2,1,2,1,2,2,4,2,4,2,2,4,8], [2,1,1,1,2,4,2,4,2,4,2,4,2,8], [2,1,2,1,2,4,2,4,2,2,2,2,4,4,8], [4,1,2,1,4,2,2,2,2,2,2,2,4,2,4,8], [1,2,4,2,1,2,1,2,1,1,1,1,2,2,4,2,8], [4,2,1,1,4,2,2,2,2,4,2,4,2,4,2,4,1,8], [1,4,2,2,2,2,2,1,1,1,1,2,2,1,1,1,2,1,8], [2,4,2,2,2,1,1,1,1,2,1,2,1,2,1,2,2,4,2,8], [1,2,2,4,2,2,2,4,2,1,2,1,1,2,2,1,4,1,2,2,8], [2,2,4,2,2,1,1,1,1,1,1,1,2,1,2,4,4,2,2,4,2,8], [2,2,2,4,4,1,1,2,2,1,2,1,1,1,1,2,2,2,4,4,4,4,8], [1,2,2,2,1,2,1,2,1,2,1,2,1,4,2,1,4,2,2,4,4,2,2,8], [2,4,4,4,1,1,2,1,1,1,2,1,1,2,1,1,2,1,2,2,2,2,2,4,8], [1,4,2,2,1,2,1,1,2,2,1,1,1,1,1,2,2,1,4,2,2,4,2,2,2,8], [1,2,2,4,2,1,1,2,4,2,2,1,2,1,1,1,2,1,2,2,4,2,4,2,2,4,8], [1,2,1,1,0,2,0,1,0,0,-1,0,0,1,1,0,-1,-1,0,1,-1,0,0,-1,1,0,0,8]], [[[-1,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,1,0,0,0], [1,0,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,0,0,0,0,1,0,0,0,0,0,0], [-1,-1,0,0,0,1,1,-1,0,0,1,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,0,-1,1,-1,0,0,0,1,0,0,0,0,0,0,1,0,-1,0,-1,1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,1,-1,-1,1,-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0,1,0,0,1,-1,0,0,-1,1,0], [0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,-1,1,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,1,0,-1,0,-1,0,1,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,1,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0], [1,0,0,0,0,0,-1,1,-1,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,-1,1,0,0,-1,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,-1,-1,1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0]], [[0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,1,-1,1,-1,0,0,-1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,1,-1,0,0,1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0], [0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,1,1,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,0,1,1,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,1,0,1,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,1,0,1,0,0,0,0], [-1,0,0,0,0,0,1,-1,0,0,1,-1,0,0,0,0,0,1,0,-1,0,0,0,1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0], [0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,1,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,1,1,0,0,0,0], [0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,1,0,-1,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,-1,1,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,-1,1,-1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,-1,0,0,1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,1,0,1,-1,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,1,-1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,0,0,-1,-1,2,0,0,-1,1,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,-1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,-1,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,-1,1,-1,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,-1,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,-1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,-1,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,-1,1,1,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,-1,-1,1,0,0,0], [1,0,0,0,0,0,-1,1,0,0,-1,1,0,0,0,0,0,-1,0,0,0,0,0,-1,1,0,0,-1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,-1,-1,1,0,0,0], [1,0,0,0,0,0,-1,1,0,0,-1,1,0,0,0,0,0,-1,0,1,0,-1,0,-1,1,0,0,-1], [1,0,0,0,0,0,-1,1,0,0,-1,1,0,0,0,0,0,-1,0,1,0,0,-1,-1,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,-1,0,-1,1,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,-1,0,-1,1,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,-1,0,0,0,1,0,0,0,0]]]], [ # Q-class [28][29] [[4], [2,4], [2,2,4], [0,0,0,4], [2,2,2,1,4], [2,2,2,0,2,4], [1,1,1,0,1,1,4], [1,1,1,0,1,2,2,4], [2,2,2,0,2,2,1,1,4], [2,2,2,0,2,2,1,1,2,4], [2,2,2,0,2,2,1,1,2,2,4], [1,1,1,0,1,1,2,2,1,1,1,4], [2,2,2,0,2,2,1,1,2,2,2,1,4], [2,2,2,0,2,2,2,1,2,2,2,1,2,4], [1,1,1,0,1,1,2,2,1,1,1,2,1,1,4], [1,1,1,0,1,1,2,2,1,1,1,2,2,1,2,4], [2,2,2,0,2,2,1,1,2,2,2,2,2,2,1,1,4], [1,1,1,0,1,1,2,2,1,1,1,2,1,1,2,2,1,4], [2,1,1,0,1,1,2,2,1,1,1,2,1,1,2,2,1,2,4], [1,1,1,0,1,1,2,2,2,1,1,2,1,1,2,2,1,2,2,4], [1,1,2,0,1,1,2,2,1,1,1,2,1,1,2,2,1,2,2,2,4], [1,1,1,0,1,1,2,2,1,1,2,2,1,1,2,2,1,2,2,2,2,4], [1,1,1,1,1,1,2,2,1,1,1,2,1,1,2,2,1,2,2,2,2,2,4], [1,2,1,0,1,1,2,2,1,1,1,2,1,1,2,2,1,2,2,2,2,2,2,4], [1,1,1,-1,2,1,2,2,1,1,1,2,1,1,2,2,1,2,2,2,2,2,2,2,4], [1,1,1,0,1,1,2,2,1,2,1,2,1,1,2,2,1,2,2,2,2,2,2,2,2,4], [2,2,2,0,2,2,1,1,2,2,2,1,2,2,1,1,2,2,1,1,1,1,1,1,1,1,4], [2,2,2,0,2,2,1,1,2,2,2,1,2,2,2,1,2,1,1,1,1,1,1,1,1,1,2,4]], [[[-1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0], [-1,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0], [-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0], [-1,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [28][30] [[24], [6,24], [4,6,24], [2,3,12,24], [6,4,-4,-2,24], [2,3,-3,-6,3,24], [4,6,4,2,6,2,24], [6,4,6,3,4,3,6,24], [-4,-6,6,3,4,3,6,4,24], [3,12,3,6,2,6,3,2,-3,24], [12,3,2,4,3,4,2,3,-2,6,24], [3,2,-2,-4,12,6,3,2,2,4,6,24], [4,6,-6,-3,6,12,4,6,6,3,2,3,24], [2,3,2,4,3,4,12,3,3,6,4,6,2,24], [-2,-3,3,6,2,6,3,2,12,-6,-4,4,3,6,24], [6,4,6,3,-6,-2,6,4,4,2,3,-3,-4,3,2,24], [3,2,3,6,2,6,3,12,2,4,6,4,3,6,4,2,24], [2,3,-3,3,3,-2,2,3,-2,-3,-2,-3,2,-2,2,-2,-3,24], [6,4,6,3,-6,-2,6,4,-6,2,3,-3,-4,3,-3,4,2,-2,24], [3,2,3,6,-3,-4,3,2,-3,4,6,-6,-2,6,-6,2,4,2,12,24], [4,6,-6,-3,6,2,4,6,-4,3,2,3,4,2,-2,-4,3,12,-4,-2,24], [6,4,6,3,4,3,-4,-6,4,2,3,2,6,-2,2,4,-3,-2,-6,-3,-4,24], [2,3,2,4,3,4,-3,-2,3,6,4,6,2,-6,6,3,-4,3,-2,-4,-3,3,24], [-3,3,2,4,3,-6,2,-2,-2,6,-6,6,-3,4,-4,-2,-4,-2,3,6,2,-2,4,24], [3,2,3,6,2,6,-2,-3,2,4,6,4,3,-4,4,2,-6,2,-3,-6,-2,12,6,-4,24], [-6,6,4,2,6,-3,4,-4,-4,3,-3,3,-6,2,-2,-4,-2,2,6,3,4,-4,2,12,-2,24], [3,2,-2,-4,2,6,3,2,-3,4,6,4,3,6,-6,-3,4,-3,-3,-6,3,-3,-4,-4,-6,-2,24], [6,4,-4,-2,4,3,6,4,-6,2,3,2,6,3,-3,-6,2,3,-6,-3,6,-6,-2,-2,-3,-4,12,24]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [1,1,-1,0,-1,0,0,0,1,-1,-1,0,-1,1,-1,-1,1,0,0,0,0,0,1,0,1,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,1,-1,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,-1,0,0,0,0,0,-1,0,1,0,-1,1,0,0,0,0,0,1,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0], [1,1,-1,0,-1,0,0,0,1,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,1,0,1,0,0,1,-1,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,-1,0,1,1,0,0,0,0,-1,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,1,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0], [1,1,-1,0,-1,0,0,1,1,-1,-1,0,-1,1,-1,-1,0,-1,-1,1,0,0,1,-1,1,1,0,0], [1,0,-1,0,-1,-1,1,1,0,0,-1,0,0,0,0,-1,0,-1,-1,1,0,0,1,-1,1,1,1,-1], [0,0,1,-1,1,0,0,-1,0,0,0,-1,0,0,0,0,1,0,0,0,0,-1,0,1,1,-1,0,0], [1,0,-1,0,-1,0,1,1,0,0,0,0,0,0,0,-1,0,0,-1,0,-1,0,0,0,0,1,0,-1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,-1,1,0,1,0,-1,-1,0,1,1,0,1,0,0,1,0,1,1,-1,0,0,-1,0,-1,0,-1,1], [0,0,1,0,1,0,-1,-1,0,0,0,0,1,0,0,1,0,0,0,0,0,-1,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,-1,1,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,1,0,1,0,0,0,-1,1,1,0,1,-1,1,1,-1,0,0,0,0,0,-1,0,-1,0,0,0], [1,0,-1,0,-1,0,1,1,0,0,-1,0,-1,0,0,-1,0,-1,-1,1,0,1,1,-1,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,-1,-1,0,-1,0,-1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,-1,1,0,1,0,0,-1,-1,1,0,0,1,-1,1,1,0,0,0,0,0,-1,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,1,1,0,1,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,1,0,0,-1,1,0,-1,0,0,0,0,0,-1,0,-1,0,0,0], [-1,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,1,1,1,-1,0,0,0,1,0,0,0,0,1,-1,0,1,-1,0,0,-1,0,-1,0,-1,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,1,1,-1,0,0,1,0,0,1,0,-1,-1,0,-1,1,0,0,0,0], [-1,-1,2,-1,2,0,-1,-1,-1,1,1,-1,1,0,1,1,0,1,1,-1,0,-1,-1,1,0,-1,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,0,1,0,0,-1,-1,0,0,0,1,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0], [1,0,-1,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,-1,-1,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,1,-1,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,1,0], [1,0,-1,0,-1,0,1,1,0,0,-1,0,-1,0,0,-1,0,-1,-1,1,0,1,1,-1,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [1,0,-1,0,-1,0,1,1,0,0,0,0,-1,0,0,-1,0,0,-1,0,-1,1,0,0,0,1,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [28][31] [[6], [3,6], [3,3,6], [2,1,2,6], [1,0,1,2,6], [2,1,1,3,3,6], [3,1,2,3,1,2,6], [3,2,1,1,1,1,2,6], [1,0,0,2,3,2,2,1,6], [1,1,0,3,2,2,3,3,3,6], [1,0,1,3,3,3,2,1,3,2,6], [2,1,0,1,1,1,1,3,3,2,2,6], [3,1,1,2,1,3,3,2,1,2,2,2,6], [2,1,2,1,1,1,1,2,1,1,-1,1,0,6], [2,2,3,3,1,1,1,1,-1,1,1,0,1,2,6], [2,2,0,2,0,1,1,3,2,3,2,3,1,2,1,6], [1,1,0,2,2,3,2,2,3,3,1,3,2,1,0,1,6], [1,-1,1,2,2,1,2,0,2,1,3,2,3,0,1,0,1,6], [1,2,1,2,0,1,2,2,1,3,1,1,3,2,1,3,1,1,6], [1,0,2,3,1,2,1,1,1,1,2,1,1,1,2,2,1,2,1,6], [1,2,1,1,2,2,1,1,2,1,1,1,2,1,0,0,3,1,1,-1,6], [3,2,2,1,2,2,2,1,-1,1,1,0,2,1,3,1,0,1,1,1,0,6], [2,3,2,1,0,1,1,2,0,1,0,1,1,1,2,1,1,-1,1,1,2,2,6], [1,2,1,1,1,1,1,2,-1,2,0,0,1,3,3,2,0,0,3,1,0,3,1,6], [1,2,2,1,2,1,1,3,1,3,0,1,1,2,1,2,1,0,2,2,1,2,2,3,6], [1,0,1,3,3,1,0,2,2,3,2,1,1,1,2,1,1,2,1,1,1,0,0,1,2,6], [1,2,3,1,2,1,0,2,1,1,1,2,1,2,2,1,2,1,1,1,2,1,1,1,2,2,6], [2,1,0,1,1,1,2,3,1,2,1,1,3,1,0,1,1,2,3,1,2,1,2,2,2,2,0,6]], [[[0,0,0,1,0,-1,-1,0,0,1,1,0,1,1,0,-1,0,-1,-1,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,-1,0,0,0,0,1,0,1,1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,-1,0,1,1,0,1,1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0], [-2,0,2,1,0,0,-1,1,1,0,-1,0,1,0,0,1,0,0,-1,-1,0,1,0,0,-1,0,-1,0], [0,0,0,0,-1,0,-1,0,0,1,1,0,0,1,0,-1,0,0,0,0,0,1,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [-2,0,2,1,0,-1,-2,1,1,1,0,0,2,1,0,0,0,-1,-2,0,0,1,-1,0,-1,-1,-1,1], [0,0,0,-1,0,1,0,0,0,0,0,0,-1,0,1,0,0,0,1,0,0,0,0,-1,0,0,0,0], [-2,0,2,0,0,0,-1,1,1,0,-1,0,1,0,0,1,0,0,-1,0,0,1,0,0,-1,0,-1,0], [0,0,1,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,-1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0], [-1,0,1,1,0,0,-1,1,1,1,-1,0,1,0,0,0,-1,0,-1,0,0,0,0,0,-1,-1,0,0], [-2,1,1,1,0,-1,-1,0,0,1,1,0,2,2,0,0,0,-1,-2,0,0,1,-1,-1,0,-1,-1,1], [-2,1,1,1,0,-2,-1,0,0,1,1,0,3,2,-1,0,0,-1,-2,0,0,1,0,0,-1,0,-1,0], [-2,1,2,1,0,-1,-2,1,1,1,0,0,2,1,0,0,0,-1,-2,0,0,1,-1,0,-1,-1,-1,1], [-1,0,0,-1,0,1,1,0,0,-1,-1,0,0,0,1,1,0,0,0,0,0,0,0,-1,0,1,0,0], [-1,0,1,0,0,1,0,0,0,1,-1,1,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0], [-4,1,3,2,0,-1,-2,2,2,1,-1,0,3,1,-1,1,-1,-1,-3,0,0,2,-1,0,-2,-1,-1,1], [-4,1,3,2,0,-1,-2,1,2,1,-1,0,3,1,0,1,0,-1,-3,-1,-1,2,-1,0,-2,-1,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,1,-1,1,-1,-2,-1,0,0,1,2,0,2,2,-1,-2,0,-1,-1,1,0,1,0,0,0,0,0,-1], [-2,1,1,1,0,-2,-1,1,1,0,1,-1,3,2,-1,0,1,-1,-2,0,-1,1,0,0,-1,0,-1,0], [-3,1,2,2,-1,-2,-2,1,1,1,1,0,3,2,-1,0,0,-1,-3,0,0,2,-1,0,-1,-1,-1,1], [-2,0,2,1,-1,-1,-2,1,2,1,0,0,2,1,0,0,0,-1,-2,0,0,2,-1,0,-1,-1,-1,1], [-2,-1,3,1,0,0,-2,1,1,1,-1,0,1,0,0,1,0,0,-1,-1,0,1,0,0,-1,-1,-1,1], [1,0,-1,-1,0,0,0,-1,-1,1,1,0,0,1,1,0,0,0,0,0,0,-1,0,-1,1,0,0,0], [-4,0,4,3,0,-1,-3,2,2,1,-1,0,3,1,-1,1,0,-1,-3,-1,-1,2,-1,0,-2,-2,-1,2]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [1,0,-1,-1,0,1,1,0,-1,0,0,1,-1,0,0,-1,-1,0,1,1,1,0,0,0,0,1,0,-1], [-1,0,1,0,1,0,0,0,0,0,-1,0,1,0,0,1,0,0,-1,0,0,0,0,0,-1,0,0,1], [0,0,0,1,0,-1,-1,0,0,1,1,0,1,1,0,-1,0,-1,-1,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [-1,1,0,0,0,-1,1,0,0,0,0,0,1,1,-1,0,0,-1,-1,1,0,1,0,0,-1,1,0,0], [0,0,0,0,0,-1,0,-1,0,0,1,0,1,1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,1], [-2,0,1,0,0,0,1,0,1,-1,-1,0,1,0,0,1,0,-1,-1,0,0,1,0,0,-1,1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,1,-1,-1,0,-1,1,-1,0,0,1,0,1,1,0,0,0,-1,-1,1,0,0,0,0,0,1,0,0], [0,1,-1,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,1,0,0,-1,1,1,0,-1,0,1,0,-1,0,0,0,-1,0,0,1,0,1,-1,0,0,0], [-1,0,1,0,0,0,0,0,1,0,-1,0,0,0,0,1,0,0,-1,0,0,1,0,0,-1,0,0,1], [0,1,-1,-1,0,-1,1,-1,0,0,1,0,1,1,0,-1,0,-1,0,1,0,0,0,0,0,1,0,0], [-2,1,1,1,0,-1,-1,1,1,0,0,0,2,1,0,0,0,-1,-2,0,0,1,-1,0,-1,0,-1,1], [-1,1,-1,0,0,0,1,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,1,0,-1,0,1,0,0], [-3,1,2,1,0,-1,-1,1,1,1,-1,1,2,1,-1,0,-1,-1,-2,1,1,2,-1,0,-2,0,-1,1], [2,0,-2,-1,0,0,1,-1,-1,0,1,0,-1,0,1,-1,0,0,1,0,0,-1,0,0,1,0,1,0], [0,0,0,1,-1,0,-1,1,1,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0], [2,0,-2,-1,-1,0,1,-1,-1,0,1,0,-1,0,0,-1,0,0,1,1,1,0,0,0,1,1,1,-1], [-1,0,0,1,0,0,0,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [-1,0,0,0,0,0,1,0,0,0,-1,1,0,0,0,0,-1,-1,0,1,1,1,0,0,-1,1,0,0], [-1,0,1,0,1,0,0,0,0,0,-1,0,1,0,0,1,0,-1,-1,0,0,0,0,0,-1,0,0,1], [0,1,-1,-1,0,0,1,-1,-1,0,1,1,0,1,0,-1,0,-1,0,1,0,0,0,0,0,1,0,0], [-1,1,0,1,0,-1,0,0,0,0,0,0,1,1,0,0,0,-1,-1,0,0,1,-1,-1,0,0,0,1]]]], [ # Q-class [28][32] [[8], [2,8], [4,0,8], [3,3,3,8], [3,3,3,4,8], [2,1,0,2,1,8], [0,4,2,3,3,1,8], [3,3,3,4,2,0,3,8], [4,1,2,1,2,2,-1,0,8], [1,2,1,3,3,1,2,0,1,8], [2,3,0,-1,1,0,3,1,2,1,8], [2,2,1,3,3,-1,1,0,1,2,3,8], [3,1,2,1,2,-2,0,2,0,1,1,3,8], [3,0,3,2,1,2,0,0,3,3,2,2,2,8], [3,1,0,1,2,2,1,1,3,1,2,2,4,4,8], [4,1,2,0,0,2,1,0,2,2,3,2,3,3,3,8], [2,2,1,2,1,1,1,0,4,2,1,2,0,3,3,1,8], [3,1,3,1,2,-1,0,1,3,3,2,2,2,2,1,2,3,8], [1,1,0,2,1,3,2,0,2,2,0,0,0,1,3,1,4,0,8], [1,1,1,2,1,0,2,2,2,4,1,1,1,3,3,1,4,3,2,8], [3,0,3,1,2,1,0,2,3,0,1,0,2,1,2,3,3,4,3,1,8], [2,2,1,0,0,1,0,1,1,0,0,0,2,-1,0,2,2,2,0,0,2,8], [2,2,1,0,0,1,2,3,1,1,3,1,0,0,0,4,2,1,2,2,3,1,8], [4,1,2,3,0,1,0,3,2,2,1,1,0,3,0,2,4,3,2,2,3,1,4,8], [3,3,0,2,1,1,0,2,3,2,1,1,1,1,2,1,3,0,3,0,2,1,2,3,8], [1,3,1,2,1,2,3,1,3,2,2,0,0,1,1,1,3,1,3,0,1,1,2,2,4,8], [3,1,2,1,2,1,1,-1,3,0,2,3,0,2,1,3,3,1,3,0,2,0,3,3,1,2,8], [1,2,1,2,1,1,4,3,1,0,3,1,0,0,1,2,2,0,2,1,3,-1,4,2,2,3,3,8]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,1,0,1,0,-1,0,0,-1,0,0,0,0,0,1,0,1,1,0,-2,0,0,1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [-3,0,2,2,2,0,-2,-1,0,-2,2,-2,1,-1,0,2,1,1,1,0,-3,0,0,1,1,-1,-1,1], [-1,0,1,2,0,0,-1,-1,0,0,1,-2,1,-1,1,0,1,1,0,-1,-2,0,1,0,0,-1,0,1], [-1,0,1,2,0,0,-1,-1,0,0,1,-1,0,-1,1,0,0,0,-1,0,0,0,1,0,0,0,0,0], [-1,0,1,0,1,0,-1,0,0,-1,0,0,0,0,0,1,0,1,1,0,-2,0,0,0,0,0,-1,1], [-2,0,2,1,1,0,-1,-1,0,-1,1,-1,0,-1,1,1,0,1,1,0,-2,0,0,1,1,-1,-1,1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-2,1,2,1,3,-1,-3,-2,-1,-3,1,-1,-1,0,1,2,-1,1,2,1,-3,1,0,2,0,0,-2,2], [1,0,-1,-3,1,0,0,2,0,0,-2,2,-1,1,-1,1,0,0,1,0,0,0,-1,0,-1,1,-1,1], [-1,0,0,-1,2,0,-1,1,0,-1,0,0,0,0,-1,2,1,0,1,0,-2,0,-1,1,0,0,-1,1], [0,0,0,-1,1,0,0,0,0,-1,0,0,0,0,-1,1,0,0,1,1,-1,0,-1,1,0,0,-1,1], [-1,0,0,0,2,0,-1,0,0,-2,0,0,0,0,-1,2,0,0,1,1,-1,0,-1,1,0,0,-1,1], [0,0,0,0,1,0,-1,0,0,-1,0,0,0,0,-1,1,0,0,1,1,-1,0,0,0,0,0,-1,1], [1,1,0,-2,0,0,0,0,0,0,-1,2,-1,0,0,0,-1,-1,0,1,1,0,-1,1,-1,1,-1,1], [0,0,0,0,1,0,-1,0,0,-1,0,0,0,1,-1,1,0,0,1,0,-1,0,0,0,0,0,-1,1], [0,0,0,0,2,-1,-1,-1,0,-2,0,0,-1,1,0,1,-1,1,2,0,-2,1,0,1,0,0,-2,2], [-1,0,1,1,2,0,-2,-1,-1,-2,1,-1,0,0,-1,2,0,1,1,1,-2,0,0,0,1,0,-1,1], [-1,1,2,0,2,-1,-2,-2,0,-2,0,0,-1,0,1,1,-2,0,2,1,-2,1,0,2,0,0,-2,2], [1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [1,0,0,-1,-1,0,0,1,0,1,0,1,-1,0,0,0,0,-1,0,0,1,0,-1,0,-1,1,0,0], [0,1,1,-1,0,0,0,-1,0,0,-1,1,-1,0,1,0,-1,0,0,0,0,0,0,1,0,0,-1,1], [-2,0,1,1,2,0,-1,-1,0,-2,1,-1,0,0,0,2,0,1,1,0,-2,0,0,1,1,-1,-1,1], [-2,0,1,1,2,0,-2,-1,-1,-2,1,-1,0,0,0,2,0,1,1,1,-2,0,0,1,1,0,-1,1], [-1,0,0,0,1,0,-1,0,0,-1,0,0,0,1,-1,1,0,1,1,0,-1,0,0,0,0,0,-1,1], [-2,0,1,1,1,1,-1,-1,0,-1,1,-1,1,-1,0,1,0,1,0,0,-2,0,0,1,1,-1,0,1], [-2,0,2,1,1,1,-1,-2,0,-1,1,-1,1,-1,1,0,0,1,0,0,-2,0,1,1,1,-1,-1,1]], [[-4,0,3,2,4,0,-3,-3,-1,-4,2,-2,0,-1,1,3,-1,2,2,1,-5,1,0,3,2,-1,-2,2], [-2,-1,1,1,1,1,0,-1,0,-2,1,-1,1,-1,0,1,0,1,0,1,-2,0,0,1,2,-1,0,0], [-1,0,1,1,2,0,-1,-2,-1,-2,1,-1,0,0,0,1,-1,1,1,1,-2,1,0,1,1,0,-1,1], [-1,0,1,0,2,0,-1,-1,-1,-2,0,0,-1,0,1,1,-1,1,1,1,-2,1,0,1,1,0,-1,1], [-1,0,1,0,1,1,-1,0,-1,-1,1,0,0,-1,0,1,0,0,0,1,-1,0,-1,1,1,0,0,0], [-3,0,2,2,2,0,-2,-2,0,-2,2,-2,0,-1,2,1,-1,1,1,0,-3,1,1,2,1,-1,-1,1], [-1,-1,0,1,0,1,1,0,0,0,1,-1,1,-1,0,0,1,0,-1,0,0,0,0,0,1,-1,1,-1], [-2,0,2,1,2,0,-1,-2,0,-2,1,-1,0,-1,1,1,-1,1,1,1,-3,1,0,2,1,-1,-1,1], [-2,0,1,0,3,0,-2,0,-1,-3,1,-1,0,0,-1,3,0,1,2,1,-3,0,-1,1,1,0,-1,1], [-1,0,1,1,1,0,-1,-1,-1,-1,1,-1,0,-1,1,1,0,0,0,1,-1,0,0,1,1,0,0,0], [-1,-1,0,1,1,0,0,0,0,-1,1,-1,1,0,-1,1,1,0,0,0,-1,0,0,0,1,-1,0,0], [0,-1,-1,0,1,0,0,1,-1,-1,0,0,0,1,-1,1,1,1,0,0,-1,0,0,-1,1,0,0,0], [1,0,-1,-1,0,0,1,0,0,0,-1,1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,2,-1,-1,-1,-1,-2,0,0,-1,1,0,1,-1,0,1,1,-1,1,0,1,0,1,-1,1], [-1,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,-1,0,0,1,0,0,0,0], [-1,-1,0,2,1,0,0,-1,0,-1,1,-2,1,0,0,1,1,1,0,-1,-2,0,1,0,1,-1,0,0], [-2,0,1,1,2,0,-1,-1,-1,-3,1,-1,0,0,0,2,0,1,1,1,-2,0,0,1,1,0,-1,0], [-1,0,1,1,1,0,-1,-1,-1,-1,1,-1,0,0,0,1,0,0,0,1,-1,0,0,0,1,0,0,0], [-1,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,1,0,0,1,0,-1,0,0,1,0,0,-1,0], [-1,0,1,1,1,0,-1,-1,-1,-1,1,-1,0,-1,1,1,0,0,0,1,-1,0,0,1,0,0,0,0], [0,0,0,0,1,0,0,0,0,-1,0,0,0,1,-1,1,0,0,1,0,-1,0,0,0,0,0,-1,0], [-3,0,2,3,1,1,-1,-3,0,-2,2,-3,2,-1,1,0,0,2,0,0,-3,0,2,1,2,-2,0,0], [-2,-1,1,2,2,0,-1,-1,0,-2,2,-2,1,-1,0,2,1,1,1,0,-3,0,0,1,1,-1,-1,0], [-2,0,2,1,3,-1,-2,-2,-1,-3,1,-1,-1,0,1,2,-1,1,2,1,-3,1,0,2,1,0,-2,1], [-2,0,1,-1,3,0,-1,0,0,-3,0,0,0,0,-1,3,0,1,2,1,-3,0,-1,2,1,0,-2,1], [-1,0,0,-1,2,0,0,0,0,-2,0,0,0,0,-1,2,0,0,1,1,-1,0,-1,1,1,0,-1,0], [-1,-1,0,1,2,0,-1,0,-1,-2,1,-1,0,0,-1,2,1,1,1,0,-2,0,0,0,1,0,-1,0], [-1,-1,0,1,2,0,0,0,0,-2,1,-1,0,0,-1,2,1,1,1,0,-2,0,0,0,1,-1,-1,0]]]], [ # Q-class [28][33] [[12], [6,12], [3,6,12], [3,6,6,12], [1,2,6,6,12], [3,6,4,6,6,12], [3,6,6,4,6,6,12], [1,2,2,6,4,4,2,12], [1,2,2,2,6,2,4,2,12], [1,2,2,4,4,4,4,2,4,12], [6,3,3,6,3,3,2,3,1,2,12], [2,1,1,1,3,1,2,1,6,2,2,12], [6,3,2,2,0,2,1,1,2,1,4,4,12], [3,6,4,4,0,4,2,2,4,2,2,2,6,12], [6,3,6,3,3,2,3,1,1,1,6,2,4,2,12], [1,2,0,4,6,6,0,4,4,6,2,2,1,2,0,12], [6,3,3,2,3,3,6,1,2,2,4,4,2,1,6,0,12], [2,4,2,4,2,6,2,4,0,6,2,0,3,6,1,6,1,12], [4,2,3,2,2,0,0,1,2,1,4,4,4,2,6,1,0,-1,12], [2,1,3,3,6,3,3,2,3,2,6,6,0,0,6,3,6,1,4,12], [4,2,3,0,2,1,1,1,3,0,0,6,2,1,6,0,2,0,4,4,12], [6,3,3,0,1,1,1,1,1,0,0,2,6,3,6,0,2,1,6,2,6,12], [2,1,1,2,3,1,1,2,2,2,4,4,4,2,2,1,2,2,6,6,2,4,12], [2,4,4,4,2,2,4,2,2,4,2,1,2,4,2,4,2,6,0,1,1,-1,0,12], [2,1,2,1,3,1,1,-1,3,-1,2,6,4,2,4,0,2,0,4,6,6,2,6,1,12], [4,2,2,0,2,0,3,1,2,0,0,4,4,2,4,-1,6,1,2,4,6,6,6,2,6,12], [1,2,2,2,6,4,2,2,6,6,1,3,1,2,1,4,1,0,3,3,3,2,3,0,2,2,12], [2,1,1,1,3,2,1,1,3,3,2,6,2,1,2,2,2,0,6,6,6,4,6,0,4,4,6,12]], [[[-1,-1,1,1,-3,-1,2,-1,1,-2,1,-1,0,-1,-1,2,1,2,1,0,1,0,0,-1,0,0,2,-1], [-1,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,0,1,0,1,0,1,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,1,-1,0,2,0,-1,0,-1,-1,-1,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,-1,0,0,-1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,1,0,0,0,1,0,0,0,0,-1,0,0], [-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0], [0,0,0,0,-1,0,1,0,0,-1,0,1,-1,0,2,1,-1,0,-1,-1,-1,0,1,0,0,0,1,0], [-1,1,-1,0,1,-1,0,0,0,0,0,-1,1,0,0,0,1,0,0,0,1,0,0,0,0,-1,0,0], [-1,1,0,-1,1,0,-1,0,0,0,1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0], [-1,1,-1,-1,2,0,-1,0,-1,1,1,0,0,1,-1,-1,1,-1,0,0,1,1,0,1,0,-1,0,-1], [0,2,-2,-2,4,1,-2,1,-1,3,0,0,0,2,1,-2,-1,-3,-1,0,0,0,0,1,0,0,-2,0], [-1,1,-1,0,1,0,-1,0,0,1,0,-1,1,0,-1,-1,1,0,1,1,1,0,-1,0,0,0,0,-1], [-1,1,0,-1,1,0,-1,0,0,1,1,-1,1,0,-2,-1,1,0,1,1,1,0,-1,0,0,0,0,-1], [-1,3,-2,-3,5,2,-4,1,-1,4,1,0,0,2,0,-3,0,-4,-1,0,0,1,0,2,0,0,-3,0], [-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,1,0,0,-2,0,1,0,0,1,0,0,0], [0,2,-2,-2,4,1,-3,1,-1,3,0,0,0,2,1,-2,0,-3,-1,0,0,0,0,1,0,0,-2,0], [-1,2,-1,-2,3,1,-3,1,0,3,1,-1,0,1,-1,-2,1,-2,0,0,0,1,-1,1,1,0,-2,0], [-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0], [-1,3,-3,-3,6,2,-4,1,-1,4,1,0,0,2,0,-4,0,-3,0,0,0,1,-1,2,0,0,-3,0]], [[-1,-1,1,1,-2,-2,2,-1,0,-2,1,-1,1,-1,-2,2,2,2,1,0,2,0,0,-1,0,-1,2,-1], [-1,0,0,0,0,0,0,0,0,0,1,-1,1,0,-2,0,2,0,1,0,2,0,0,0,0,-1,0,-1], [-2,0,0,0,0,0,0,0,0,0,1,-1,1,0,-2,0,2,0,1,0,2,1,0,0,0,-1,0,-1], [-1,0,0,0,0,0,0,0,0,0,0,-1,1,0,-2,0,2,0,1,0,2,0,0,0,0,-1,0,-1], [-1,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,0,1,0,1,0,1,0,0,0,0,0,0,-1], [-1,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,1,0,1,-1,1,0,0,0,0,0,0,-1], [-1,0,0,0,0,0,0,0,0,0,1,-1,1,0,-2,0,1,0,1,0,2,0,0,0,0,0,0,-1], [-1,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,1,0,0,-1,0,1,-1,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,-1,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1], [-1,-1,1,2,-2,-2,2,-1,0,-2,0,-1,1,-1,-2,2,2,2,1,0,2,0,0,-1,0,-1,2,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,-1,-1,-1,0,0,1,0,0,0,0,0], [0,0,0,0,0,-1,1,0,-1,-1,0,1,0,0,1,1,0,0,-1,-1,0,0,1,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,-1,-1,0,0,1,0,0,-1,0,0], [-2,0,0,1,-1,-1,1,-1,0,-1,1,-1,1,-1,-2,1,2,1,1,0,2,1,0,0,0,-1,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [-1,-1,1,1,-2,-1,2,-1,0,-1,1,-1,1,-1,-2,2,1,1,1,0,2,0,0,-1,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [-1,1,-1,0,1,-1,0,0,0,0,0,-1,1,0,0,0,1,0,0,0,1,0,0,0,0,-1,0,0], [-1,-1,1,2,-3,-1,2,-1,1,-2,0,-1,1,-2,-1,2,1,2,1,0,1,0,0,-1,0,0,2,-1], [-1,1,-1,-1,2,1,-2,0,0,1,1,0,0,0,0,-1,1,-1,0,-1,0,1,0,1,0,0,-1,0], [-1,0,0,0,-1,-1,1,0,0,-1,1,0,0,-1,0,1,1,1,0,-1,0,1,0,0,1,-1,1,0], [0,0,0,1,-1,-1,1,0,0,-1,-1,0,1,-1,1,1,0,1,0,0,0,-1,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,1,1,0,0,0,-1,0,0,-1], [0,-1,1,2,-3,-1,2,-1,1,-3,-1,0,1,-2,1,2,0,2,0,0,0,-1,1,-1,-1,0,2,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,-1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,-2,3,1,-2,1,-1,2,1,1,-1,1,1,-1,0,-2,-1,-2,-1,1,0,1,1,0,-2,1], [1,-1,1,1,-2,-1,2,0,0,-2,-1,1,0,-1,2,2,-1,1,-1,-1,-1,-1,1,-1,0,0,1,1], [0,-2,1,2,-3,-2,3,-1,0,-3,0,0,0,-1,0,3,1,2,0,-1,1,0,1,-1,0,-1,2,0], [0,-2,2,2,-4,-2,3,-1,1,-3,0,-1,1,-2,-1,3,1,3,1,0,1,-1,0,-2,0,0,2,0], [0,2,-2,-2,5,1,-3,1,-1,3,0,0,0,2,1,-2,0,-3,-1,-1,0,0,0,1,0,0,-3,1], [1,-1,1,1,-3,-1,2,0,1,-2,-1,0,0,-1,2,2,-1,1,-1,0,-1,-1,1,-1,0,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,1,1,-1,0,1,0,0,0,-1,-2,-1,1,0,0,1,0,0,1], [1,0,0,0,0,0,0,0,0,0,-1,0,0,0,2,0,-1,0,-1,0,-1,-1,1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,1,-1,0,1,0,0,-1,-1,1,-1,0,2,1,-1,0,-1,-1,-1,0,1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,0,1,0,1,0,1,-1,0,0,0,0,0,0], [0,0,-1,0,1,0,0,0,-1,1,0,0,0,1,0,0,0,-1,0,0,1,0,0,0,0,0,-1,0], [1,0,0,0,0,0,0,0,0,0,-1,1,0,0,2,0,-1,0,-1,0,-2,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,-1,1,0,0,2,0,-1,0,-1,-1,-1,-1,1,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,-1,0,1,0,1,0,-1,0,-1,1,0,-1,1,0,-1,0,0,0], [1,0,0,0,0,0,0,0,0,0,-1,0,1,0,1,0,-1,0,0,1,0,-1,0,0,-1,0,0,0], [1,0,0,0,0,0,0,0,0,0,-1,1,0,0,2,0,-1,0,-1,0,-1,-1,0,0,0,0,0,1], [0,0,0,0,0,1,-1,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,-1,0], [1,0,0,0,0,0,0,0,0,0,-1,1,0,0,2,0,-1,0,-1,0,-1,-1,1,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,-1,0,1,0,1,0,-1,0,0,1,0,-2,0,0,-1,1,0,0], [1,0,0,0,0,0,0,0,0,-1,-1,1,0,0,2,0,-1,0,-1,0,-1,-1,1,0,-1,0,0,1], [1,0,0,0,0,0,0,0,0,0,-1,1,0,0,2,0,-1,0,-1,0,-1,-1,1,0,-1,0,0,1]]]], [ # Q-class [28][34] [[14], [6,14], [6,6,14], [4,2,2,14], [6,4,2,2,14], [2,4,6,6,4,14], [6,2,6,6,6,6,14], [4,6,2,6,6,4,2,14], [4,2,6,4,2,6,2,6,14], [6,6,2,0,2,2,4,2,2,14], [2,1,1,7,1,3,3,3,2,0,14], [2,1,3,2,1,3,1,3,7,1,4,14], [7,3,3,2,3,1,3,2,2,3,4,4,14], [3,3,7,1,1,3,3,1,3,1,2,6,6,14], [2,3,1,3,3,2,1,7,3,1,6,6,4,2,14], [3,7,3,1,2,2,1,3,1,3,2,2,6,6,6,14], [2,4,2,2,6,6,4,2,-2,6,1,-1,1,1,1,2,14], [1,2,3,3,2,7,3,2,3,1,6,6,2,6,4,4,3,14], [1,2,1,1,3,3,2,1,-1,3,2,-2,2,2,2,4,7,6,14], [2,0,4,6,2,6,2,2,2,-2,3,1,1,2,1,0,6,3,3,14], [2,6,4,-2,4,6,2,2,2,-2,-1,1,1,2,1,3,2,3,1,-2,14], [3,2,1,1,7,2,3,3,1,1,2,2,6,2,6,4,3,4,6,1,2,14], [3,3,1,0,1,1,2,1,1,7,0,2,6,2,2,6,3,2,6,-1,-1,2,14], [1,3,3,1,1,1,2,-1,-1,2,2,-2,2,6,-2,6,3,2,6,2,1,2,4,14], [2,6,6,2,2,2,4,-2,-2,4,1,-1,1,3,-1,3,6,1,3,4,2,1,2,7,14], [3,1,3,3,3,3,7,1,1,2,6,2,6,6,2,2,2,6,4,1,1,6,4,4,2,14], [1,0,2,3,1,3,1,1,1,-1,6,2,2,4,2,0,3,6,6,7,-1,2,-2,4,2,2,14], [1,3,2,-1,2,3,1,1,1,-1,-2,2,2,4,2,6,1,6,2,-1,7,4,-2,2,1,2,-2,14]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1,0,-1,1,-1,0,0,-1,0,0,0,1,1,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,-1,0,0,1,1,0,0,0,1,1], [0,0,0,0,0,0,0,0,0,0,1,-1,0,1,0,-1,0,0,-1,0,0,1,1,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,1,0,-1,1,0,-1,0,-1,0,0,0,1,1,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,0,-1,0,-1,-1,0,0,1,2,-1,0,-1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,1,-1,0,0,0,1,1,0,0,0,-2,1,0,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,1], [1,0,0,0,-1,1,0,0,0,-1,0,0,-1,0,0,0,1,-1,-1,-1,-1,1,1,0,0,0,1,1], [-1,0,1,1,0,-1,0,0,-1,2,-1,1,1,-1,0,0,-1,1,1,1,1,0,-2,1,-1,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,1,1,0,0,-1,0,0,0,-1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [1,0,-1,-1,-1,1,0,1,0,-1,1,0,-1,1,-1,0,0,-1,0,0,-1,1,1,-1,1,0,0,1], [0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,0,-1,0,0,-1,0,0,1,2,0,0,-1,0,1], [1,1,-1,-1,-1,1,1,0,0,-1,1,0,-1,1,0,-1,0,-1,0,0,-1,1,1,0,0,-1,0,1], [1,1,-1,-1,-1,0,1,0,1,-2,1,-1,-1,1,0,-1,1,0,-1,0,-1,1,2,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,1,0,0,0,0,-1,1,0,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,2,0,-1,1,-1,0,0,-1,0,0,0,1,1,-1,0,-1,0,1], [0,1,-1,-1,-1,0,1,0,1,-1,1,-1,0,1,0,-1,1,0,-1,0,-1,1,1,0,0,-1,0,1], [0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,-1,0,1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [1,1,-1,-1,-1,1,1,0,1,-2,1,-1,-1,1,0,-1,1,-1,-1,-1,-2,1,2,-1,1,-1,1,2], [0,0,0,1,0,-1,0,-1,0,1,-1,0,0,0,1,0,0,1,0,1,1,0,-1,1,-1,0,-1,-1], [1,0,-1,-2,-1,1,1,1,0,-1,2,0,-1,1,-1,0,0,-1,0,0,-1,1,1,-1,1,-1,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,-1,0,0,1,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0], [-1,0,1,1,1,-1,0,-1,-1,2,0,0,0,0,0,0,-1,0,0,1,1,0,0,0,-1,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,1,0,-1,0,0,-1,2,0,0,0,0,0,0,-1,0,0,1,1,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0,0,1,1,0,0,0,0,0,0,0], [1,1,-1,-1,-1,1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,-1,0,0,0], [-1,0,1,1,1,-1,0,-1,-1,2,-1,1,1,-1,1,0,-1,1,1,1,1,-1,-2,1,-1,0,-1,-1], [1,1,-1,-1,-1,1,1,0,0,-1,1,0,-1,1,0,-1,0,-1,0,0,-1,1,1,0,0,-1,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,1,1,0,0,-1,0,0,0,-1,0], [0,0,0,0,0,0,0,0,-1,1,0,1,0,0,0,0,-1,0,1,1,1,0,-1,0,0,0,-1,-1], [0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,-1,1,1,1,1,0,-1,0,0,0,-1,-1], [-1,0,1,1,1,-1,-1,0,-1,2,0,0,0,0,0,0,-1,0,0,1,1,0,0,0,-1,0,0,0], [-1,0,1,1,0,-1,0,0,-1,2,-1,1,1,-1,0,0,-1,1,1,1,1,0,-2,1,-1,0,-1,-1], [-1,0,1,1,1,-1,-1,0,-1,2,-1,1,1,-1,0,0,-1,1,1,1,1,-1,-2,1,-1,1,-1,-1], [-1,0,1,2,1,-1,-1,-1,-1,2,0,0,0,0,0,0,-1,0,0,1,1,0,0,0,-1,0,0,0], [1,0,0,-1,-1,1,0,1,0,-1,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,1,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,1,0,1,1,0,-1,1,-1,0,-1,-1], [-1,0,1,1,1,-1,-1,-1,0,2,-1,0,1,-1,1,0,-1,1,1,1,1,-1,-2,1,-1,1,-1,-1], [-1,0,1,1,1,-1,-1,-1,0,2,0,0,0,0,0,0,-1,0,0,1,1,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [-1,0,1,2,1,-1,-1,-1,-1,2,-2,1,1,-1,1,0,-1,1,1,1,1,-1,-2,1,-1,1,-1,-1], [1,0,0,-1,-1,1,0,1,0,-1,1,0,-1,0,-1,0,0,-1,0,-1,-1,1,1,-1,1,0,1,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,-1,0,0,1,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0], [-1,0,1,1,1,-1,0,-1,-1,2,0,0,0,0,0,0,-1,0,0,1,1,0,0,0,-1,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,1,0,-1,0,0,-1,2,0,0,0,0,0,0,-1,0,0,1,1,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0,0,1,1,0,0,0,0,0,0,0], [1,1,-1,-1,-1,1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,-1,0,0,-1,-1,0,0,1,2,-1,0,0,1,1], [0,0,0,0,0,0,0,0,0,0,-1,0,1,-1,0,1,0,1,0,0,0,-1,-1,0,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,1,0,0,0,1,1], [-1,0,1,1,1,-1,-1,0,-1,2,0,0,0,0,0,0,-1,0,0,1,1,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,0,0,0,-1,-1,0,0,0,2,-1,0,0,1,1], [0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,0,0,0,-1,-1,0,0,1,2,-1,0,-1,1,1], [-1,0,1,2,1,-1,-1,-1,-1,2,0,0,0,0,0,0,-1,0,0,1,1,0,0,0,-1,0,0,0], [1,0,0,-1,-1,1,0,1,0,-1,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,-1,0,0,1,1], [0,0,0,0,0,0,0,0,0,0,1,0,-1,1,-1,0,0,-1,-1,0,0,1,2,-1,0,-1,1,1], [-1,0,1,1,1,-1,-1,-1,0,2,0,0,0,0,0,0,-1,0,0,1,1,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,2,-1,-1,1,-1,0,0,-1,-1,0,0,1,2,-1,0,-1,1,1], [0,0,0,0,0,0,0,0,0,0,-1,0,1,0,1,0,0,1,0,0,0,-1,-1,1,0,0,-1,-1]]]], [ # Q-class [28][35] [[26], [13,26], [2,1,26], [0,0,6,26], [1,2,1,6,26], [6,6,0,-2,6,26], [0,6,0,-1,6,-1,26], [-1,1,1,0,-1,0,6,26], [-1,1,-1,0,13,0,6,-2,26], [0,0,0,13,6,-1,-2,6,6,26], [0,6,0,-1,-6,-1,-2,6,-6,-2,26], [1,2,1,6,2,6,0,1,1,6,6,26], [-1,1,-1,0,-1,0,-6,-2,-2,6,6,-1,26], [0,-6,0,1,0,1,2,6,0,2,-2,-6,6,26], [0,-6,0,1,6,-1,2,0,6,2,2,-6,6,2,26], [2,1,2,6,-1,6,0,-1,1,0,0,1,-1,0,0,26], [1,2,1,6,-2,6,6,1,-1,6,0,2,1,6,-6,13,26], [1,2,13,6,2,0,6,-1,1,6,6,2,1,-6,6,1,2,26], [6,6,6,-2,-6,-2,-1,0,0,-1,13,6,0,-1,1,0,0,6,26], [6,0,6,-1,0,-1,-1,6,6,1,1,0,0,1,1,6,0,0,-1,26], [1,-1,-1,0,-1,0,6,-2,-2,-6,6,1,-2,6,6,-1,1,1,0,6,26], [0,6,0,-1,6,13,-2,-6,6,-2,-2,6,6,2,-2,0,6,0,-1,1,6,26], [6,6,6,-2,6,-2,13,0,0,-1,-1,0,0,1,1,6,6,6,-2,1,0,-1,26], [6,0,6,-1,0,-1,1,6,0,1,-1,0,6,13,1,-6,0,0,1,2,6,1,-1,26], [6,0,-6,-1,0,1,1,6,-6,1,-1,0,-6,-1,1,-6,0,0,1,-2,6,-1,-1,-2,26], [2,1,-2,6,1,-6,0,1,-1,0,0,1,-1,0,0,-2,-1,-1,-6,6,1,0,6,6,0,26], [1,2,-1,6,2,-6,6,-1,1,6,-6,2,1,-6,6,-1,-2,-2,-6,0,-1,-6,6,0,0,13,26], [6,6,-6,-2,6,2,-1,0,0,-1,1,6,0,1,-1,-6,-6,-6,2,-1,0,1,-2,-1,13,0,0,26]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,-1,1,0,-1,2,0,-1,-3,1,2,0,0,0,1,1,1,-1,2,-2,-1,-2,-1,2,-1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0], [1,-1,2,-1,0,0,2,0,0,2,0,0,1,-1,0,1,-1,-2,0,-1,1,0,-1,-1,0,2,-2,0], [2,-1,2,-2,0,-1,2,0,0,2,1,0,0,0,0,2,-1,-1,-1,-2,0,1,-2,-1,0,2,-1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,1,-1,0,-1,2,-2,-1,2,2,0,-1,1,0,2,-2,-1,-1,0,-2,2,-1,1,2,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [3,0,8,-6,1,-4,10,-6,-3,7,5,2,0,2,2,6,-4,-6,-4,-2,-4,3,-8,-2,5,5,-4,-3], [1,-1,3,-2,0,-2,7,-6,-3,5,6,0,-2,1,1,4,-4,-4,-3,1,-5,4,-3,2,4,0,-1,-2], [1,-1,1,-1,0,-1,2,-1,-1,2,2,0,-1,0,0,1,-1,-1,-1,0,-1,2,-1,0,0,0,0,0], [-1,-1,-3,3,-1,2,-3,2,1,-2,-1,-2,0,-1,-1,-2,1,2,2,1,1,0,3,1,-2,-2,2,2], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [-1,1,-1,1,0,1,-2,1,1,-2,-2,0,1,0,0,-1,1,1,1,0,1,-2,1,0,0,0,0,0], [-2,0,-6,4,0,2,-7,4,2,-6,-3,-1,0,0,-2,-4,3,5,3,2,2,-2,5,1,-3,-4,4,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [3,1,5,-5,2,-2,2,1,0,2,-2,2,3,1,0,2,0,-1,-1,-4,3,-2,-5,-5,0,5,-3,-1], [2,1,6,-5,1,-3,6,-4,-2,5,3,2,0,2,2,4,-2,-4,-3,-2,-2,1,-6,-2,3,4,-3,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,1,4,-3,0,-2,6,-5,-2,4,4,2,-1,2,2,3,-3,-4,-3,0,-4,2,-4,0,4,2,-2,-3], [2,0,3,-2,0,-1,1,1,1,1,-1,1,2,0,0,1,0,-1,-1,-3,2,-1,-2,-3,0,3,-2,0], [0,0,-1,1,0,0,-2,1,1,-2,0,0,0,0,0,-1,1,1,0,0,0,0,1,0,0,-1,1,0], [1,0,3,-2,0,-1,5,-4,-1,3,3,1,0,1,1,2,-2,-3,-2,0,-3,1,-3,0,3,2,-2,-2]]]], [ # Q-class [28][36] [[28], [4,28], [9,6,28], [9,-5,9,28], [1,6,9,2,28], [6,2,10,6,10,28], [10,3,6,9,-2,-5,28], [1,9,2,4,6,1,6,28], [6,9,-3,3,-5,-2,9,10,28], [-2,9,9,-2,10,6,9,10,6,28], [3,4,10,9,9,6,10,10,-1,5,28], [10,-2,3,9,6,10,6,-2,9,-5,9,28], [-2,10,9,0,9,2,1,10,3,9,9,-3,28], [9,3,9,10,5,10,6,6,9,9,4,-1,10,28], [9,2,6,1,3,9,5,9,9,10,1,6,9,6,28], [4,-1,-1,10,9,10,6,6,2,2,9,9,1,6,9,28], [4,5,5,4,6,9,-1,-4,-6,-3,10,6,1,3,3,6,28], [10,0,6,10,2,9,3,-2,1,-3,-2,9,-2,-1,6,9,3,28], [9,1,-2,2,9,3,9,9,5,6,6,10,6,4,10,10,-5,9,28], [10,9,6,4,6,9,-1,3,10,9,4,5,-2,6,6,3,6,9,1,28], [9,5,6,2,9,10,-2,-2,2,1,1,9,1,9,5,5,6,-2,0,6,28], [9,-2,6,10,-1,4,2,6,9,4,2,9,-5,3,3,2,0,3,2,5,0,28], [2,2,2,9,9,5,-2,-6,-1,-1,-1,10,3,4,-6,0,2,1,2,-3,10,4,28], [6,10,-2,-1,10,9,2,4,6,9,3,2,9,10,10,9,1,1,9,9,4,-6,6,28], [2,5,-1,9,0,1,6,5,10,4,1,9,0,2,3,-1,-1,-2,4,5,9,3,9,-3,28], [10,6,6,1,6,4,2,-2,-2,-6,1,9,2,-2,-1,3,9,5,4,-4,9,9,9,-5,2,28], [2,9,9,6,10,9,-3,9,6,3,6,9,6,1,-2,-2,1,9,6,10,4,10,6,-1,10,10,28], [-1,2,2,5,2,3,4,1,5,9,6,4,9,10,4,-6,9,-6,-1,1,0,4,9,2,10,-3,0,28]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,-1,2,0,0,0,0,0,2,0,-1,-1,0,-2,-2,1,1,0,1,-1,1,0,-1,1,0,0,0,1], [0,0,-1,-1,1,0,0,0,0,0,1,0,0,1,0,-1,0,2,-1,-1,0,1,0,0,1,0,-1,-1], [0,-2,2,-1,0,1,0,1,2,-1,0,-2,1,-2,-2,0,1,1,1,0,1,1,0,1,1,0,-2,0], [0,1,-2,0,0,-2,-1,0,-2,2,1,3,-1,3,2,-1,-1,1,-2,0,-1,-1,0,-1,0,1,0,-1], [0,1,-2,0,0,-1,0,0,-2,1,1,2,0,2,1,-1,-1,1,-1,0,0,0,0,-1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,1,-1,0,0,-1,0,0,-2,1,0,2,0,2,1,0,0,0,-1,0,-1,0,0,-1,0,0,0,-1], [1,3,-4,1,-1,-2,0,-2,-4,2,1,3,-1,4,5,1,-2,-2,-2,1,-2,-2,2,-4,-3,0,4,-1], [-1,-1,2,-1,1,1,0,0,2,-1,0,-1,1,-1,-3,-1,1,2,1,-1,1,2,-2,2,2,0,-3,0], [0,0,0,-1,0,-1,0,1,-1,0,0,1,0,1,0,0,0,1,-1,0,0,0,0,0,0,0,0,0], [1,3,-5,1,-1,-3,-1,-1,-5,3,2,4,-2,5,6,0,-3,-1,-3,1,-2,-3,2,-4,-3,1,4,-1], [0,0,0,-1,0,-1,0,0,-1,0,0,1,0,1,0,0,0,1,-1,-1,0,1,-1,1,1,0,0,0], [0,2,-3,0,0,-1,1,-1,-3,0,1,2,0,3,3,0,-2,0,-2,1,-1,0,1,-2,-1,0,1,-1], [0,2,-3,0,0,-2,-1,-1,-3,2,2,3,-1,4,3,-1,-1,1,-2,-1,-1,0,0,-1,0,0,1,-2], [0,0,-1,0,0,-1,0,0,-1,1,1,1,0,1,1,-1,0,1,-1,0,0,0,0,0,0,0,0,-1], [0,1,-1,0,0,-1,0,0,-1,0,1,1,-1,1,2,0,-1,0,-1,0,0,-1,1,-1,-1,0,1,0], [1,-1,1,0,0,1,0,0,2,0,0,-2,0,-2,-1,0,1,0,1,-1,1,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,-1,2,0,0,0,-1,0,2,0,0,-1,0,-1,-2,0,1,1,1,-1,1,0,-1,1,1,0,-1,0], [0,3,-5,1,-1,-4,-2,-1,-5,4,3,5,-2,6,5,-1,-3,1,-4,0,-2,-2,1,-2,-1,2,2,-2], [-1,-1,2,-1,1,3,2,0,2,-3,-1,-3,2,-3,-2,0,1,0,2,1,1,2,0,0,1,-1,-2,0], [1,1,-2,1,-1,-2,-2,0,-2,3,1,3,-1,2,2,0,-2,0,-2,0,-1,-2,0,-1,-1,2,1,0], [0,1,-1,1,-1,-2,-1,0,-2,2,0,3,-1,2,1,0,-1,0,-1,0,0,-1,-1,0,-1,1,1,0], [0,-1,1,0,0,-1,-2,0,1,1,1,0,0,0,-1,0,0,1,0,-1,0,0,-1,1,1,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,1,-1,0,0,0,0,0,-1,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,1]], [[-2,-5,8,-2,2,6,3,1,8,-7,-3,-8,4,-9,-9,0,4,1,6,0,4,5,-3,5,4,-2,-6,2], [-1,0,-1,0,1,1,1,0,0,-1,0,0,1,0,0,-1,0,0,0,1,0,1,0,0,0,0,-1,-1], [-1,-2,3,0,1,3,2,0,4,-3,-2,-4,2,-5,-4,0,2,0,3,0,2,2,-1,2,1,-1,-2,1], [-1,-4,6,-2,1,4,3,1,6,-5,-3,-6,3,-7,-6,1,3,0,4,0,3,3,-1,3,2,-2,-3,2], [0,-1,1,0,0,1,0,0,2,-1,0,-2,0,-2,-1,0,0,0,1,0,1,0,0,1,0,0,0,1], [-1,-1,1,-1,1,2,2,0,2,-3,0,-3,1,-2,-1,-1,1,1,1,0,1,2,0,1,1,-1,-1,0], [0,-1,2,0,0,2,2,0,2,-2,-2,-2,1,-3,-2,1,1,-2,2,1,1,0,0,0,-1,-1,0,1], [0,-3,3,-1,0,2,1,1,3,-2,-2,-3,2,-4,-4,1,2,0,2,0,2,1,-1,2,1,-1,-1,1], [0,1,-2,0,0,0,1,0,-2,0,0,2,0,2,2,0,-1,-1,-1,1,-1,-1,1,-2,-1,0,1,-1], [0,1,-2,1,-1,-1,0,0,-2,1,0,2,-1,2,2,0,-1,-1,-1,1,-1,-2,1,-1,-2,1,2,0], [0,0,0,-1,1,2,3,-1,1,-3,-1,-3,1,-2,0,1,0,-1,1,1,1,1,1,-1,-1,-2,1,1], [0,1,-1,0,1,1,2,-1,0,-2,0,-1,0,0,2,0,-1,-1,0,1,0,0,1,-2,-1,-1,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-2,3,-1,0,3,2,1,3,-3,-2,-3,2,-4,-4,0,2,0,3,0,2,2,-1,2,1,-1,-2,1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-3,4,-2,1,2,1,1,4,-3,-1,-4,1,-4,-4,0,2,1,2,-1,2,2,-1,3,2,-1,-2,1], [-1,0,1,-1,1,2,2,0,1,-3,-1,-2,1,-2,-1,0,0,0,1,1,1,2,0,0,0,-1,-1,1], [-1,-2,2,-1,1,1,1,0,2,-2,0,-2,1,-2,-2,-1,1,1,1,0,1,2,-1,2,2,0,-2,0], [0,-1,1,0,0,0,0,0,1,-1,0,-1,0,-1,-1,0,0,0,1,0,1,0,-1,1,0,0,0,1], [-2,-1,1,-1,1,2,2,0,1,-3,0,-2,1,-1,-1,-1,0,1,1,1,1,2,0,1,1,0,-2,0], [0,-1,1,0,1,2,0,0,3,-1,0,-2,1,-2,-2,-1,1,1,1,-1,1,1,-1,1,1,0,-2,0], [-1,-3,5,-1,1,3,2,1,4,-4,-3,-4,2,-5,-5,1,2,0,3,0,2,2,-2,3,2,-1,-2,2], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,-1,0,0,0,0,0,-1,1,0,0,1,0,-1,0,1,0,0,0,1,0,1,1,0,-1,-1], [0,1,-2,1,0,0,1,0,-1,0,0,1,0,1,2,0,-1,-1,-1,1,0,-1,1,-2,-2,0,1,0], [-1,-4,6,-1,2,4,1,1,7,-4,-2,-6,2,-7,-7,0,3,1,4,-1,3,3,-3,4,3,-1,-4,2], [-1,-1,0,0,1,1,1,0,1,-1,0,-1,1,-1,-1,-1,0,1,0,0,1,1,-1,1,1,0,-1,0], [0,4,-5,1,-1,-1,2,-1,-5,0,0,3,-1,4,6,1,-3,-3,-2,3,-2,-2,3,-5,-4,0,4,0]]]], [ # Q-class [28][37] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]]]] ]; MakeImmutable( IMFList[28].matrices ); gap-4r6p5/grp/perf11.grp 0000644 0001750 0001750 00000122252 12172557252 013545 0 ustar bill bill ############################################################################# ## #W perf11.grp GAP Groups Library Volkmar Felsch ## Alexander Hulpke ## ## #Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains the perfect groups of sizes 524880-786240 ## All data is based on Holt/Plesken: Perfect Groups, OUP 1989 ## PERFGRP[250]:=[# 524880.1 [[1,"abcuvwxyz", function(a,b,c,u,v,w,x,y,z) return [[a^4,b^3,c^3,(b*c)^4*a^2,(b*c^-1)^5,a^2*b*a^2 *b^-1,a^2*c*a^2*c^-1, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,u^3, v^3,w^3,x^3,y^3,z^3,u^-1*v^-1*u*v, u^-1*w^-1*u*w,u^-1*x^-1*u*x, u^-1*y^-1*u*y,u^-1*z^-1*u*z, v^-1*w^-1*v*w,v^-1*x^-1*v*x, v^-1*y^-1*v*y,v^-1*z^-1*v*z, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*u*a*(u^2*v*w^2*x^2*y)^-1, a^-1*v*a*(u*v*w^2*z)^-1, a^-1*w*a*(u^2*w*x*y^2*z^2)^-1, a^-1*x*a*(v^2*w*y^2)^-1, a^-1*y*a*(u*v^2*w^2*y^2*z)^-1, a^-1*z*a*(u^2*v^2*x^2*y*z)^-1, b^-1*u*b*(u*w^2*y)^-1, b^-1*v*b*(v*x^2*z)^-1, b^-1*w*b*(w*y)^-1,b^-1*x*b*(x*z)^-1, b^-1*y*b*y^-1,b^-1*z*b*z^-1, c^-1*u*c*u^-1,c^-1*v*c*v^-1, c^-1*w*c*(v*w)^-1, c^-1*x*c*(u*v^2*x)^-1, c^-1*y*c*(u*v^2*x^2*y)^-1, c^-1*z*c*(u^2*v^2*w^2*x*z)^-1], [[c*b*a^-1,b,u,v],[b,c*a*b*c,y,z,w,x]]]; end, [80,90]], "A6 2^1 x 3^6",[14,6,1],2, 3,[80,90]], # 524880.2 [[1,"abcuvwxyz", function(a,b,c,u,v,w,x,y,z) return [[a^4*v^-1*w*x*y^-1,b^3*z^-1,c^3*v,(b*c)^4 *a^2*(v^-1*w*x*y^-1)^-1 *(v*x^-1*y^-1)^-1, (b*c^-1)^5*(v*x^-1*y)^-1, a^2*(v^-1*w*x*y^-1)^-1*b*v^-1*w*x *y^-1*a^(-1*2)*b^-1, a^2*(v^-1*w*x*y^-1)^-1*c*v^-1*w*x *y^-1*a^(-1*2)*c^-1, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,u^3, v^3,w^3,x^3,y^3,z^3,u^-1*v^-1*u*v, u^-1*w^-1*u*w,u^-1*x^-1*u*x, u^-1*y^-1*u*y,u^-1*z^-1*u*z, v^-1*w^-1*v*w,v^-1*x^-1*v*x, v^-1*y^-1*v*y,v^-1*z^-1*v*z, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*u*a*(u^-1*v*w^-1*x^-1*y)^-1 ,a^-1*v*a*(u*v*w^-1*z)^-1, a^-1*w*a*(u^-1*w*x*y^-1*z^-1)^-1 ,a^-1*x*a*(v^-1*w*y^-1)^-1, a^-1*y*a*(u*v^-1*w^-1*y^-1*z)^-1 ,a^-1*z*a*(u^-1*v^-1*x^-1*y*z) ^-1,b^-1*u*b*(u*w^-1*y)^-1, b^-1*v*b*(v*x^-1*z)^-1, b^-1*w*b*(w*y)^-1,b^-1*x*b*(x*z)^-1, b^-1*y*b*y^-1,b^-1*z*b*z^-1, c^-1*u*c*u^-1,c^-1*v*c*v^-1, c^-1*w*c*(v*w)^-1, c^-1*x*c*(u*v^-1*x)^-1, c^-1*y*c*(u*v^-1*x^-1*y)^-1, c^-1*z*c*(u^-1*v^-1*w^-1*x*z)^-1 ],[[c*b*a^-1,b,u,v],[b,c*a*b*c,y,z,w,x]]]; end, [80,90],[0,[2,-3]]], "A6 2^1 x N 3^6",[14,6,2],2, 3,[80,90]], # 524880.3 [[1,"abcdwxyze", function(a,b,c,d,w,x,y,z,e) return [[a^4*d,b^3,c^3*(w*x*y^-1)^-1,(b*c)^4*(a^2*d ^-1)^-1,(b*c^-1)^5, a^2*d^-1*b*(a^2*d^-1)^-1*b^-1, a^2*d^-1*c*(a^2*d^-1)^-1*c^-1, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,e^3, a^-1*e*a*e^-1,b^-1*e*b*e^-1, c^-1*e*c*e^-1,d^-1*e*d*e^-1, w^-1*e*w*e^-1,x^-1*e*x*e^-1, y^-1*e*y*e^-1,z^-1*e*z*e^-1, d^3*e^-1,w^3,x^3,y^3,z^3,d^-1*w^-1*d*w, d^-1*x^-1*d*x,d^-1*y^-1*d*y, d^-1*z^-1*d*z,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*d*a*d^-1, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, b^-1*d*b*(d*w*y^-1*z*e)^-1, b^-1*w*b*(x*e)^-1, b^-1*x*b*(y*e^-1)^-1, b^-1*y*b*w^-1, b^-1*z*b*(z*e^-1)^-1, c^-1*d*c*(d*x^-1*z^-1*e)^-1, c^-1*w*c*(w^-1*x*y^-1*z^-1*e^-1) ^-1,c^-1*x*c*(x^-1*z*e^-1)^-1, c^-1*y*c*(w*x^-1*e)^-1, c^-1*z*c*(x^-1*e)^-1], [[c*b*a^-1,b,w], [a*b,b*a*b*a*b^-1*a*b^-1,w*e]]]; end, [80,324],[0,[2,-3]]], "A6 2^1 x ( 3^1 E 3^4' E 3^1 ) A",[14,6,3],6, 3,[80,324]], # 524880.4 [[1,"abcwxyzef", function(a,b,c,w,x,y,z,e,f) return [[a^4,b^3,c^3,(b*c)^4*a^2,(b*c^-1)^5,a^2*b*a^2 *b^-1,a^2*c*a^2*c^-1, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,w^3, x^3,y^3,z^3,e^3,f^3,w^-1*e^-1*w*e, x^-1*e^-1*x*e,y^-1*e^-1*y*e, z^-1*e^-1*z*e,w^-1*f^-1*w*f, x^-1*f^-1*x*f,y^-1*f^-1*y*f, z^-1*f^-1*z*f,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*w*a*z^-1, a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, a^-1*e*a*e^-1,a^-1*f*a*f^-1, b^-1*w*b*x^-1, b^-1*x*b*(y*e^-1)^-1, b^-1*y*b*(w*e)^-1,b^-1*z*b*(z*e)^-1, b^-1*e*b*e^-1,b^-1*f*b*f^-1, c^-1*w*c*(w^-1*x*y^-1*z^-1*f)^-1 ,c^-1*x*c*(x^-1*z*f)^-1, c^-1*y*c*(w*x^-1*f)^-1, c^-1*z*c*(x^-1*f^-1)^-1, c^-1*e*c*e^-1,c^-1*f*c*f^-1], [[c*b*a^-1,b,w],[a,b,w],[a,c,w]]]; end, [80,18,18]], "A6 2^1 x 3^4' E ( 3^1 x 3^1 )",[14,6,4],18, 3,[80,18,18]], # 524880.5 [[1,"abcwxyzdf", function(a,b,c,w,x,y,z,d,f) return [[a^4*d,b^3,c^3,(b*c)^4*(a^2*d^-1)^-1,(b*c^(-1 *1))^5,a^2*d^-1*b*(a^2*d^-1)^-1 *b^-1,a^2*d^-1*c*(a^2*d^-1)^-1 *c^-1,a^-1*b^-1*c*b*c*b^-1*c*b *c^-1,b^-1*d^-1*b*d, c^-1*d^-1*c*d,w^3,x^3,y^3,z^3,d^3,f^3, w^-1*d^-1*w*d,x^-1*d^-1*x*d, y^-1*d^-1*y*d,z^-1*d^-1*z*d, d^-1*f^-1*d*f,w^-1*f^-1*w*f, x^-1*f^-1*x*f,y^-1*f^-1*y*f, z^-1*f^-1*z*f,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*w*a*z^-1, a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, a^-1*f*a*f^-1,b^-1*w*b*x^-1, b^-1*x*b*y^-1,b^-1*y*b*w^-1, b^-1*z*b*z^-1,b^-1*f*b*f^-1, c^-1*w*c*(w^-1*x*y^-1*z^-1*f)^-1 ,c^-1*x*c*(x^-1*z*f)^-1, c^-1*y*c*(w*x^-1*f)^-1, c^-1*z*c*(x^-1*f^-1)^-1, c^-1*f*c*f^-1], [[c*b*a^-1,b,w],[a,b,w],[a*d,c*d,w]]]; end, [80,18,18]], "A6 2^1 x 3^1 x ( 3^4' E 3^1 ) I",[14,6,5],18, 3,[80,18,18]], # 524880.6 [[1,"abcwxyzde", function(a,b,c,w,x,y,z,d,e) return [[a^4*d,b^3,c^3,(b*c)^4*(a^2*d^-1)^-1,(b*c^(-1 *1))^5,a^2*d^-1*b*(a^2*d^-1)^-1 *b^-1,a^2*d^-1*c*(a^2*d^-1)^-1 *c^-1,a^-1*b^-1*c*b*c*b^-1*c*b *c^-1,b^-1*d^-1*b*d, c^-1*d^-1*c*d,d^3,w^3,x^3,y^3,z^3,e^3, w^-1*d^-1*w*d,x^-1*d^-1*x*d, y^-1*d^-1*y*d,z^-1*d^-1*z*d, e^-1*d^-1*e*d,w^-1*e^-1*w*e, x^-1*e^-1*x*e,y^-1*e^-1*y*e, z^-1*e^-1*z*e,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*w*a*z^-1, a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, a^-1*e*a*e^-1,b^-1*w*b*x^-1, b^-1*x*b*(y*e^-1)^-1, b^-1*y*b*(w*e)^-1,b^-1*z*b*(z*e)^-1, b^-1*e*b*e^-1, c^-1*w*c*(w^-1*x*y^-1*z^-1*e^-1) ^-1,c^-1*x*c*(x^-1*z*e^-1)^-1, c^-1*y*c*(w*x^-1*e^-1)^-1, c^-1*z*c*(x^-1*e)^-1, c^-1*e*c*e^-1], [[c*b*a^-1,b,w],[a*b,b*a*b*a*b^-1*a*b^-1 ,w*e,d],[a*d,c*d,w]]]; end, [80,108,18]], "A6 2^1 x 3^1 x ( 3^4' E 3^1 ) II",[14,6,6],18, 3,[80,108,18]], # 524880.7 [[1,"abcstuvde", function(a,b,c,s,t,u,v,d,e) return [[a^4*d,b^3,c^3,(b*c)^4*a^(-1*2)*d,(b*c^-1)^5,a^(-1 *1)*b^-1*c*b*c*b^-1*c*b *c^-1,a^(-1*2)*b^-1*a^2*b, a^(-1*2)*c^-1*a^2*c,d^3,s^3,t^3,u^3,v^3,e^3, d^-1*e^-1*d*e,d^-1*s^-1*d*s, d^-1*t^-1*d*t,d^-1*u^-1*d*u, d^-1*v^-1*d*v,e^-1*s^-1*e*s, e^-1*t^-1*e*t,e^-1*u^-1*e*u, e^-1*v^-1*e*v,s^-1*t^-1*s*t, s^-1*u^-1*s*u*e^-1,s^-1*v^-1*s *v,t^-1*u^-1*t*u,t^-1*v^-1*t*v *e^-1,u^-1*v^-1*u*v, a^-1*s*a*u^-1,a^-1*t*a*v^-1, a^-1*u*a*(s^-1*e)^-1, a^-1*v*a*(t^-1*e)^-1, a^-1*e*a*e^-1, b^-1*s*b*(s*v^-1*e^-1)^-1, b^-1*t*b*(t*u^-1*v*e)^-1, b^-1*u*b*u^-1,b^-1*v*b*v^-1, b^-1*e*b*e^-1, c^-1*s*c*(s^-1*t*u^-1*v*e)^-1, c^-1*t*c*(s*t*u*v*e^-1)^-1, c^-1*u*c*(s^-1*v^-1)^-1, c^-1*v*c*(t^-1*u^-1*v)^-1, c^-1*e*c*e^-1],[[a,b,c],[a*d,c*d,s]]]; end, [243,18]], "A6 2^1 3^1 x ( 3^4 C 3^1 )",[14,6,7],9, 3,[243,18]], # 524880.8 [[1,"abcstuved", function(a,b,c,s,t,u,v,e,d) return [[a^4*d,b^3,c^3,(b*c)^4*a^(-1*2)*d,(b*c^-1)^5,a^(-1 *1)*b^-1*c*b*c*b^-1*c*b *c^-1,a^(-1*2)*b^-1*a^2*b, a^(-1*2)*c^-1*a^2*c,s^3,t^3,u^3,v^3,e^3,d^3, e^-1*s^-1*e*s,e^-1*t^-1*e*t, e^-1*u^-1*e*u,e^-1*v^-1*e*v, d^-1*s^-1*d*s,d^-1*t^-1*d*t, d^-1*u^-1*d*u,d^-1*v^-1*d*v, d^-1*e^-1*d*e,s^-1*t^-1*s*t, s^-1*u^-1*s*u*e^-1, s^-1*v^-1*s*v*d^-1, t^-1*u^-1*t*u*d^-1, t^-1*v^-1*t*v*(e*d^-1)^-1, u^-1*v^-1*u*v, a^-1*s*a*(u*d^-1)^-1, a^-1*t*a*(v*d)^-1, a^-1*u*a*(s^-1*e)^-1, a^-1*v*a*(t^-1*e)^-1, a^-1*e*a*e^-1, b^-1*s*b*(s*v^-1*e^-1)^-1, b^-1*t*b*(t*u^-1*v*e*d^-1)^-1, b^-1*u*b*u^-1,b^-1*v*b*v^-1, b^-1*e*b*e^-1, c^-1*s*c*(s^-1*t*u^-1*v*e*d)^-1, c^-1*t*c*(s*t*u*v*e^-1)^-1, c^-1*u*c*(s^-1*v^-1*d^-1)^-1, c^-1*v*c*(t^-1*u^-1*v)^-1, c^-1*e*c*e^-1], [[a*d,b*d^-1,e],[a,b,c,d]]]; end, [1458,243]], "A6 2^1 3^4 C ( 3^1 x N 3^1 )",[14,6,8],9, 3,[1458,243]], # 524880.9 [[1,"abcstuvef", function(a,b,c,s,t,u,v,e,f) return [[a^4,b^3,c^3,(b*c)^4*a^(-1*2),(b*c^-1)^5,a^-1 *b^-1*c*b*c*b^-1*c*b*c^-1, a^(-1*2)*b^-1*a^2*b,a^(-1*2)*c^-1*a^2*c, s^3,t^3,u^3,v^3,e^3,f^3,e^-1*s^-1*e*s, e^-1*t^-1*e*t,e^-1*u^-1*e*u, e^-1*v^-1*e*v,f^-1*s^-1*f*s, f^-1*t^-1*f*t,f^-1*u^-1*f*u, f^-1*v^-1*f*v,f^-1*e^-1*f*e, s^-1*t^-1*s*t,s^-1*u^-1*s*u *e^-1,s^-1*v^-1*s*v*f^-1, t^-1*u^-1*t*u*f^-1, t^-1*v^-1*t*v*(e*f^-1)^-1, u^-1*v^-1*u*v, a^-1*s*a*(u*f^-1)^-1, a^-1*t*a*(v*f)^-1, a^-1*u*a*(s^-1*e)^-1, a^-1*v*a*(t^-1*e)^-1, a^-1*e*a*e^-1,a^-1*f*a*f^-1, b^-1*s*b*(s*v^-1*e^-1)^-1, b^-1*t*b*(t*u^-1*v*e*f^-1)^-1, b^-1*u*b*u^-1,b^-1*v*b*v^-1, b^-1*e*b*e^-1,b^-1*f*b*f^-1, c^-1*s*c*(s^-1*t*u^-1*v*e*f)^-1, c^-1*t*c*(s*t*u*v*e^-1)^-1, c^-1*u*c*(s^-1*v^-1*f^-1)^-1, c^-1*v*c*(t^-1*u^-1*v)^-1, c^-1*e*c*e^-1,c^-1*f*c*f^-1], [[a,b,c,e],[a,b,c,f]]]; end, [243,243]], "A6 2^1 3^4 C ( 3^1 x 3^1 )",[14,6,9],9, 3,[243,243]] ]; PERFGRP[251]:=[# 531360.1 [[1,"abc", function(a,b,c) return [[c^40*a^2,b^3,c^(-1*12)*b*c*b*c^11*b^-1,c^(-1*20) *b*c^20*b^(-1*2),a^4,a^2*b^-1*a^2*b, a^2*c^-1*a^2*c,c*a*c*a^-1,(b*a)^3, c^2*b^2*c^2*b*c*a*b*a*c^3*b*c*a*b^(-1*2) *c^(-1*2)*b^-1*a],[[b,c^16]]]; end, [1312],[0,0,2,2,2]], "L2(81) 2^1 = SL(2,81)",22,-2, 42,1312] ]; PERFGRP[252]:=[# 544320.1 [[2,1080,1,504,1], "A6 3^1 x L2(8)",40,3, [3,4],[18,9]] ]; PERFGRP[253]:=[# 546312.1 [[1,"abc", function(a,b,c) return [[c^51,c*b^25*c^-1*b^-1,b^103,a^2,c*a*c*a^(-1 *1),(b*a)^3],[[b,c]]]; end, [104],[0,4,3]], "L2(103)",22,-1, 49,104] ]; PERFGRP[254]:=[# 550368.1 [[2,504,1,1092,1], "L2(8) x L2(13)",40,1, [4,6],[9,14]] ]; PERFGRP[255]:=[# 552960.1 [[4,184320,1,1080,2,360,1,1], "A6 3^1 x ( 2^4 x 2^4 ) 2^1 I",[13,9,1],6, 3,[16,12,18]], # 552960.2 [[4,184320,2,1080,2,360,2,1], "A6 3^1 x ( 2^4 x 2^4 ) 2^1 II",[13,9,2],6, 3,[16,80,18]], # 552960.3 [[4,184320,3,1080,2,360,3,1], "A6 3^1 x ( 2^4 x 2^4 ) 2^1 III",[13,9,3],6, 3,[16,16,80,18]], # 552960.4 [[4,184320,4,1080,2,360,4,1], "A6 3^1 x ( 2^4 x 2^4 ) 2^1 IV",[13,9,4],6, 3,[32,18]], # 552960.5 [[4,184320,5,1080,2,360,5,1], "A6 3^1 x ( 2^4 x 2^4 ) 2^1 V",[13,9,5],6, 3,[1280,18]], # 552960.6 [[4,184320,6,1080,2,360,6,1], "A6 3^1 x ( 2^4 E 2^1 E 2^4 ) A",[13,9,6],3, 3,[480,18]], # 552960.7 [[4,184320,7,1080,2,360,7,1], "A6 3^1 x 2^4 E 2^1 E 2^4'",[13,9,7],3, 3,[240,18]], # 552960.8 [[4,184320,8,1080,2,360,8,1], "A6 3^1 x ( 2^4 E N 2^1 E 2^4 ) A",[13,9,8],3, 3,[480,18]], # 552960.9 [[4,184320,9,1080,2,360,9,1], "A6 3^1 x 2^4 E N 2^1 E 2^4'",[13,9,9],3, 3,[240,18]], # 552960.10 [[4,184320,10,1080,2,360,10,1], "A6 3^1 x ( 2^4 x 2^4' ) 2^1 I",[13,9,10],6, 3,[16,12,18]], # 552960.11 [[4,184320,11,1080,2,360,11,1], "A6 3^1 x ( 2^4 x 2^4' ) 2^1 II",[13,9,11],6, 3,[16,80,18]], # 552960.12 [[4,184320,12,1080,2,360,12,1], "A6 3^1 x ( 2^4 x 2^4' ) 2^1 III",[13,9,12],6, 3,[16,16,80,18]], # 552960.13 [[4,184320,13,1080,2,360,13,1], "A6 3^1 x ( 2^4 x 2^4' ) 2^1 IV",[13,9,13],6, 3,[20,18]], # 552960.14 [[4,184320,14,1080,2,360,14,1], "A6 3^1 x ( 2^4 x 2^4' ) 2^1 V",[13,9,14],6, 3,[80,18]], # 552960.15 [[4,184320,15,1080,2,360,15,1], "A6 3^1 x 2^1 ( 2^4 x 2^4 )",[13,9,15],3, 3,[256,18]], # 552960.16 [[4,184320,16,1080,2,360,16,1], "A6 3^1 x 2^4 x ( 2^1 E 2^4 )",[13,9,16],3, 3,[16,80,18]], # 552960.17 [[4,184320,17,1080,2,360,17,1], "A6 3^1 x 2^4 x ( 2^1 E 2^4' )",[13,9,17],3, 3,[16,80,18]], # 552960.18 [[4,184320,18,1080,2,360,18,1], "A6 3^1 x 2^1 E 2^4 A 2^4",[13,9,18],3, 3,[480,18]], # 552960.19 [[4,184320,19,1080,2,360,19,1], "A6 3^1 x 2^1 E ( 2^4 x 2^4' )",[13,9,19],3, 3,[80,80,18]] ]; PERFGRP[256]:=[# 571704.1 [[1,"abc", function(a,b,c) return [[c^41*a^2,c*b^4*c^-1*b^-1,b^83,a^4,a^2*b^(-1 *1)*a^2*b,a^2*c^-1*a^2*c, c*a*c*a^-1,(b*a)^3],[[b,c^2]]]; end, [168]], "L2(83) 2^1 = SL(2,83)",22,-2, 43,168] ]; PERFGRP[257]:=[# 574560.1 [[2,168,1,3420,1], "L3(2) x L2(19)",40,1, [2,9],[7,20]] ]; PERFGRP[258]:=[# 583200.1 [[2,60,1,9720,1], "( A5 x A5 ) 2^1 # 3^4 [1]",[30,4,1],2, [1,1],[5,24,15]], # 583200.2 [[2,120,1,4860,1], "( A5 x A5 ) 2^1 # 3^4 [2]",[30,4,1],2, [1,1],[24,15]], # 583200.3 [[3,120,1,9720,1,"d1","a2","a2"], "( A5 x A5 ) 2^1 # 3^4 [3]",[30,4,1],2, [1,1],[288,180]], # 583200.4 [[2,60,1,9720,2], "( A5 x A5 ) 2^1 # 3^4 [4]",[30,4,2],2, [1,1],[5,24,60]], # 583200.5 [[2,120,1,4860,2], "( A5 x A5 ) 2^1 # 3^4 [5]",[30,4,2],2, [1,1],[24,60]], # 583200.6 [[3,120,1,9720,2,"d1","a2","a2"], "( A5 x A5 ) 2^1 # 3^4 [6]",[30,4,2],2, [1,1],[288,720]], # 583200.7 [[2,60,1,9720,3], "( A5 x A5 ) 2^1 # 3^4 [7]",[30,4,3],1, [1,1],[5,45]] ]; PERFGRP[259]:=[# 587520.1 [[2,120,1,4896,1], "( A5 x L2(17) ) 2^2",40,4, [1,7],[24,288]] ]; PERFGRP[260]:=[# 589680.1 [[2,60,1,9828,1], "A5 x L2(27)",40,1, [1,16],[5,28]] ]; PERFGRP[261]:=[# 600000.1 [[4,960,1,37500,1,60], "A5 # 2^4 5^4 [1]",6,5, 1,[16,25]], # 600000.2 [[4,960,2,37500,1,60], "A5 # 2^4 5^4 [2]",6,5, 1,[10,25]] ]; PERFGRP[262]:=[# 604800.1 [[1,"ab", function(a,b) return [[a^2,b^5,(a*b)^10,(a^-1*b^(-1*2)*a*b^2)^3,(a*b^2*a *b^-1)^7,a*b^2*a*b^2*a*b^(-1*2) *(a*b^-1*a*b^2*a*b*a*b^2)^2], [[a*b^2*a*b^(-1*2)*a,(b*a*b)^2]]]; end, [100]], "J2",28,-1, 50,100], # 604800.2 [[2,120,1,5040,1], "( A5 x A7 ) 2^2",40,4, [1,8],[24,240]], # 604800.3 [[2,3600,1,168,1], "A5 x A5 x L3(2)",40,1, [1,1,2],[5,5,7]] ]; PERFGRP[263]:=[# 604920.1 [[1,"abyz", function(a,b,y,z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^71,z^71,y^-1 *z^-1*y*z,a^-1*y*a*z^-1, a^-1*z*a*y, b^-1*y*b*(y^-1*z^(-1*25))^-1, b^-1*z*b*y^17],[[a*b,a^2,y]]]; end, [852],[0,0,2,2,2,2,2,2]], "A5 2^1 71^2",[5,2,1],1, 1,852] ]; PERFGRP[264]:=[# 607500.1 [[4,4860,1,7500,1,60], "A5 # 3^4 5^3 [1]",6,1, 1,[15,30]], # 607500.2 [[4,4860,2,7500,1,60], "A5 # 3^4 5^3 [2]",6,1, 1,[60,30]], # 607500.3 [[4,4860,1,7500,2,60], "A5 # 3^4 5^3 [3]",6,1, 1,[15,30]], # 607500.4 [[4,4860,2,7500,2,60], "A5 # 3^4 5^3 [4]",6,1, 1,[60,30]] ]; PERFGRP[265]:=[# 612468.1 [[1,"abc", function(a,b,c) return [[c^53,c*b^4*c^-1*b^-1,b^107,a^2,c*a*c*a^-1 ,(b*a)^3],[[b,c]]]; end, [108]], "L2(107)",22,-1, 51,108] ]; PERFGRP[266]:=[# 622080.1 [[4,7680,1,4860,1,60], "A5 # 2^7 3^4 [1]",6,8, 1,[12,64,15]], # 622080.2 [[4,7680,2,4860,1,60], "A5 # 2^7 3^4 [2]",6,8, 1,[24,64,15]], # 622080.3 [[4,7680,3,4860,1,60], "A5 # 2^7 3^4 [3]",6,8, 1,[24,64,15]], # 622080.4 [[4,7680,4,4860,1,60], "A5 # 2^7 3^4 [4]",6,8, 1,[24,64,15]], # 622080.5 [[4,7680,5,4860,1,60], "A5 # 2^7 3^4 [5]",6,8, 1,[24,24,15]], # 622080.6 [[4,7680,1,4860,2,60], "A5 # 2^7 3^4 [6]",6,8, 1,[12,64,60]], # 622080.7 [[4,7680,2,4860,2,60], "A5 # 2^7 3^4 [7]",6,8, 1,[24,64,60]], # 622080.8 [[4,7680,3,4860,2,60], "A5 # 2^7 3^4 [8]",6,8, 1,[24,64,60]], # 622080.9 [[4,7680,4,4860,2,60], "A5 # 2^7 3^4 [9]",6,8, 1,[24,64,60]], # 622080.10 [[4,7680,5,4860,2,60], "A5 # 2^7 3^4 [10]",6,8, 1,[24,24,60]], # 622080.11 [[4,7680,4,9720,4,120,4,3], "A5 # 2^7 3^4 [11]",6,4, 1,[24,64,45]], # 622080.12 [[4,7680,5,9720,4,120,5,3], "A5 # 2^7 3^4 [12]",6,4, 1,[24,24,45]] ]; PERFGRP[267]:=[# 626688.1 [[1,"abcstuvwxyz", function(a,b,c,s,t,u,v,w,x,y,z) return [[a^2,b^17,c^8,(a*b)^3,(a*c)^2,c^-1*b*c*b^(-1*9), b^5*a*b^-1*a*b^2*a*b^6*a*c^-1,s^2,t^2, u^2,v^2,w^2,x^2,y^2,z^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, s^-1*w^-1*s*w,s^-1*x^-1*s*x, s^-1*y^-1*s*y,s^-1*z^-1*s*z, t^-1*u^-1*t*u,t^-1*v^-1*t*v, t^-1*w^-1*t*w,t^-1*x^-1*t*x, t^-1*y^-1*t*y,t^-1*z^-1*t*z, u^-1*v^-1*u*v,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*s*a*t^-1, a^-1*t*a*s^-1, a^-1*u*a*(s*u*v*w*x)^-1, a^-1*v*a*(s*t*v*x*z)^-1, a^-1*w*a*(s*t*u*w*y*z)^-1, a^-1*x*a*(s*t*u*y)^-1, a^-1*y*a*(t*u*v*w)^-1, a^-1*z*a*(s*t*u*x*y*z)^-1, b^-1*s*b*t^-1,b^-1*t*b*(s*v)^-1, b^-1*u*b*(w*x)^-1,b^-1*v*b*(u*z)^-1, b^-1*w*b*x^-1,b^-1*x*b*(y*z)^-1, b^-1*y*b*(t*u*v*y*z)^-1, b^-1*z*b*(t*u*v*y)^-1, c^-1*s*c*(s*u)^-1, c^-1*t*c*(t*u*w)^-1, c^-1*u*c*(s*t*w*x*y)^-1, c^-1*v*c*(s*t*u*w*x)^-1, c^-1*w*c*(w*y*z)^-1, c^-1*x*c*(s*u*z)^-1, c^-1*y*c*(u*v*w*y*z)^-1, c^-1*z*c*(u*v*w*x*y)^-1],[[a,b,c]]]; end, [256]], "L2(17) 2^8",[21,8,1],1, 7,256] ]; PERFGRP[268]:=[# 633600.1 [[2,960,1,660,1], "( A5 x L2(11) ) # 2^4 [1]",[36,4,1],1, [1,5],[16,11]], # 633600.2 [[2,960,2,660,1], "( A5 x L2(11) ) # 2^4 [2]",[36,4,2],1, [1,5],[10,11]] ]; PERFGRP[269]:=[# 645120.1 [[1,"abduvwxyze", function(a,b,d,u,v,w,x,y,z,e) return [[a^2*d^-1,b^4*d^-1,(a*b)^7,(a*b)^2*a*b^2*( a*b*a*b^-1)^2*(a*b)^2 *(a*b^-1)^2*a*b*a*b^-1,d^2,e^2, e^-1*d^-1*e*d,a^-1*d*a*d^-1, b^-1*d*b*d^-1,u^-1*e*u*e^-1, u^-1*d*u*d^-1,v^-1*e*v*e^-1, v^-1*d*v*d^-1,w^-1*e*w*e^-1, w^-1*d*w*d^-1,x^-1*e*x*e^-1, x^-1*d*x*d^-1,y^-1*e*y*e^-1, y^-1*d*y*d^-1,z^-1*e*z*e^-1, z^-1*d*z*d^-1,u^2*e^-1,v^2*e^-1, w^2*e^-1,x^2*e^-1,y^2*e^-1, z^2*e^-1,u^-1*v^-1*u*v*e^-1, u^-1*w^-1*u*w*e^-1, u^-1*x^-1*u*x*e^-1, u^-1*y^-1*u*y*e^-1, u^-1*z^-1*u*z*e^-1, v^-1*w^-1*v*w*e^-1, v^-1*x^-1*v*x*e^-1, v^-1*y^-1*v*y*e^-1, v^-1*z^-1*v*z*e^-1, w^-1*x^-1*w*x*e^-1, w^-1*y^-1*w*y*e^-1, w^-1*z^-1*w*z*e^-1, x^-1*y^-1*x*y*e^-1, x^-1*z^-1*x*z*e^-1, y^-1*z^-1*y*z*e^-1, a^-1*u*a*u^-1,a^-1*v*a*v^-1, a^-1*w*a*(y*e)^-1,a^-1*x*a*x^-1, a^-1*y*a*(w*e)^-1, a^-1*z*a*(u*v*w*x*y*z*e)^-1, a^-1*e*a*e^-1,b^-1*u*b*w^-1, b^-1*v*b*z^-1,b^-1*w*b*v^-1, b^-1*x*b*(y*e)^-1,b^-1*y*b*(x*e)^-1, b^-1*z*b*u^-1,b^-1*e*b*e^-1], [[a,b], [a*b,b*a*b*a*b^2*a*b^-1*a*b*a*b^-1*a*b *a*b^2*d,u]]]; end, [128,240]], "A7 2^1 x ( 2^6 C 2^1 )",[23,8,1],4, 8,[128,240]], # 645120.2 [[1,"abwxyzWXYZ", function(a,b,w,x,y,z,W,X,Y,Z) return [[a^2,b^4,(a*b)^7,(a*b)^2*a*b^2*(a*b*a*b^-1)^2 *(a*b)^2*(a*b^-1)^2*a*b*a*b^-1,w^2, x^2,y^2,z^2,W^2,X^2,Y^2,Z^2,w*x*w*x,w*y*w*y, w*z*w*z,x*y*x*y,x*z*x*z,y*z*y*z,w*W*w*W, w*X*w*X,w*Y*w*Y,w*Z*w*Z,W*X*W*X,W*Y*W*Y, W*Z*W*Z,X*Y*X*Y,X*Z*X*Z,Y*Z*Y*Z, a^-1*w*a*y^-1,a^-1*x*a*z^-1, a^-1*y*a*w^-1,a^-1*z*a*x^-1, b^-1*w*b*(w*x*y*z)^-1,b^-1*x*b*y^-1 ,b^-1*y*b*(w*x)^-1, b^-1*z*b*(w*z)^-1,a^-1*W*a*Y^-1, a^-1*X*a*Z^-1,a^-1*Y*a*W^-1, a^-1*Z*a*X^-1,b^-1*W*b*(W*X*Y*Z)^-1 ,b^-1*X*b*Y^-1,b^-1*Y*b*(W*X)^-1, b^-1*Z*b*(W*Z)^-1],[[a,b,w],[a,b,W]]]; end, [16,16]], "A7 2^4 x 2^4",[23,8,2],1, 8,[16,16]], # 645120.3 [[1,"abwxyzWXYZ", function(a,b,w,x,y,z,W,X,Y,Z) return [[a^2,b^4,(a*b)^7,(a*b)^2*a*b^2*(a*b*a*b^-1)^2 *(a*b)^2*(a*b^-1)^2*a*b*a*b^-1,w^2, x^2,y^2,z^2,W^2,X^2,Y^2,Z^2,w*x*w*x,w*y*w*y, w*z*w*z,x*y*x*y,x*z*x*z,y*z*y*z,w*W*w*W, w*X*w*X,w*Y*w*Y,w*Z*w*Z,W*X*W*X,W*Y*W*Y, W*Z*W*Z,X*Y*X*Y,X*Z*X*Z,Y*Z*Y*Z, a^-1*w*a*y^-1,a^-1*x*a*z^-1, a^-1*y*a*w^-1,a^-1*z*a*x^-1, b^-1*w*b*(w*x*y*z)^-1,b^-1*x*b*y^-1 ,b^-1*y*b*(w*x)^-1, b^-1*z*b*(w*z)^-1,a^-1*W*a*Y^-1, a^-1*X*a*Z^-1,a^-1*Y*a*W^-1, a^-1*Z*a*X^-1,b^-1*W*b*(W*X*Y*Z)^-1 ,b^-1*X*b*(W*X*Z)^-1,b^-1*Y*b*X^-1 ,b^-1*Z*b*(W*X*Y)^-1],[[a,b,w],[a,b,W]]]; end, [16,16]], "A7 2^4 x 2^4'",[23,8,3],1, 8,[16,16]], # 645120.4 [[1,"abdwxyz", function(a,b,d,w,x,y,z) return [[a^2*d,b^4,(a*b)^15,(a*b^2)^6,(a*b)^2*(a*b^-1*a *b^2)^2*a*b^-1*(a*b)^2*(a*b^-1)^7, a*b*a*b^-1*a*b*a*b^2*(a*b^-1)^5*a*b^2 *(a*b^-1)^5*a*b^2,d^2,d^-1*a^-1*d*a ,d^-1*b^-1*d*b,d^-1*w^-1*d*w, d^-1*x^-1*d*x,d^-1*y^-1*d*y, d^-1*z^-1*d*z,w^2,x^2,y^2,z^2, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*w*a*y^-1,a^-1*x*a*z^-1, a^-1*y*a*w^-1,a^-1*z*a*x^-1, b^-1*w*b*(w*x)^-1,b^-1*x*b*(w*z)^-1, b^-1*y*b*(w*x*y*z)^-1, b^-1*z*b*w^-1],[[a,b],[b,a*b^2*a,w]]]; end, [16,240],[[1,2],[8,8,8]]], "A8 ( 2^1 x 2^4 )",[26,5,1],2, 19,[16,240]], # 645120.5 [[1,"abdwxyz", function(a,b,d,w,x,y,z) return [[a^2*(d*x*z)^-1,b^4*(w*x*z)^-1,(a*b)^15,(a*b^2) ^6, (a*b)^2*(a*b^-1*a*b^2)^2*a*b^-1*(a*b)^2 *(a*b^-1)^7*(y*z)^-1, a*b*a*b^-1*a*b*a*b^2*(a*b^-1)^5*a*b^2 *(a*b^-1)^5*a*b^2*y^-1,d^2, d^-1*a^-1*d*a,d^-1*b^-1*d*b, d^-1*w^-1*d*w,d^-1*x^-1*d*x, d^-1*y^-1*d*y,d^-1*z^-1*d*z,w^2, x^2,y^2,z^2,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*w*a*y^-1, a^-1*x*a*z^-1,a^-1*y*a*w^-1, a^-1*z*a*x^-1,b^-1*w*b*(w*x)^-1, b^-1*x*b*(w*z)^-1, b^-1*y*b*(w*x*y*z)^-1, b^-1*z*b*w^-1], [[b*z,(a*b)^2*(a*b^-1)^2*a*z,y*z],[b,a*b*b*a,w] ]]; end, [30,240],[[1,2],[8,8,8]]], "A8 ( 2^1 x N 2^4 )",[26,5,2],2, 19,[30,240]], # 645120.6 [[2,60,1,10752,1], "( A5 x L3(2) ) # 2^6 [1]",[31,6,1],1, [1,2],[5,8,8]], # 645120.7 [[2,60,1,10752,2], "( A5 x L3(2) ) # 2^6 [2]",[31,6,2],1, [1,2],[5,8,14]], # 645120.8 [[2,60,1,10752,3], "( A5 x L3(2) ) # 2^6 [3]",[31,6,3],1, [1,2],[5,28]], # 645120.9 [[2,60,1,10752,4], "( A5 x L3(2) ) # 2^6 [4]",[31,6,4],1, [1,2],[5,112]], # 645120.10 [[2,60,1,10752,5], "( A5 x L3(2) ) # 2^6 [5]",[31,6,5],1, [1,2],[5,8,8]], # 645120.11 [[2,60,1,10752,6], "( A5 x L3(2) ) # 2^6 [6]",[31,6,6],1, [1,2],[5,8,14]], # 645120.12 [[2,60,1,10752,7], "( A5 x L3(2) ) # 2^6 [7]",[31,6,7],1, [1,2],[5,14,14]], # 645120.13 [[2,60,1,10752,8], "( A5 x L3(2) ) # 2^6 [8]",[31,6,8],1, [1,2],[5,56]], # 645120.14 [[2,60,1,10752,9], "( A5 x L3(2) ) # 2^6 [9]",[31,6,9],1, [1,2],[5,64]], # 645120.15 [[2,120,1,5376,1], "( A5 x L3(2) ) # 2^6 [10]",[31,6,10],8, [1,2],[24,16,16]], # 645120.16 [[2,3840,1,168,1], "( A5 x L3(2) ) # 2^6 [11]",[31,6,11],4, [1,2],[64,7]], # 645120.17 [[2,3840,2,168,1], "( A5 x L3(2) ) # 2^6 [12]",[31,6,12],4, [1,2],[64,7]], # 645120.18 [[2,3840,3,168,1], "( A5 x L3(2) ) # 2^6 [13]",[31,6,13],4, [1,2],[24,7]], # 645120.19 [[2,3840,4,168,1], "( A5 x L3(2) ) # 2^6 [14]",[31,6,14],4, [1,2],[48,7]], # 645120.20 [[2,3840,5,168,1], "( A5 x L3(2) ) # 2^6 [15]",[31,6,15],4, [1,2],[24,12,7]], # 645120.21 [[2,3840,6,168,1], "( A5 x L3(2) ) # 2^6 [16]",[31,6,16],2, [1,2],[48,7]], # 645120.22 [[2,3840,7,168,1], "( A5 x L3(2) ) # 2^6 [17]",[31,6,17],4, [1,2],[32,24,7]], # 645120.23 [[2,1920,1,336,1], "( A5 x L3(2) ) # 2^6 [18]",[31,6,18],4, [1,2],[12,16]], # 645120.24 [[2,1920,2,336,1], "( A5 x L3(2) ) # 2^6 [19]",[31,6,19],4, [1,2],[24,16]], # 645120.25 [[2,1920,3,336,1], "( A5 x L3(2) ) # 2^6 [20]",[31,6,20],4, [1,2],[16,24,16]], # 645120.26 [[2,1920,4,336,1], "( A5 x L3(2) ) # 2^6 [21]",[31,6,21],2, [1,2],[80,16]], # 645120.27 [[2,1920,5,336,1], "( A5 x L3(2) ) # 2^6 [22]",[31,6,22],4, [1,2],[10,24,16]], # 645120.28 [[2,1920,6,336,1], "( A5 x L3(2) ) # 2^6 [23]",[31,6,23],4, [1,2],[80,16]], # 645120.29 [[2,1920,7,336,1], "( A5 x L3(2) ) # 2^6 [24]",[31,6,24],4, [1,2],[32,16]], # 645120.30 [[3,3840,1,336,1,"e1","e1","d2"], "( A5 x L3(2) ) # 2^6 [25]",[31,6,25],4, [1,2],512], # 645120.31 [[3,3840,2,336,1,"e1","e1","d2"], "( A5 x L3(2) ) # 2^6 [26]",[31,6,26],4, [1,2],512], # 645120.32 [[3,3840,3,336,1,"e1","d2"], "( A5 x L3(2) ) # 2^6 [27]",[31,6,27],4, [1,2],192], # 645120.33 [[3,3840,4,336,1,"e1","d2"], "( A5 x L3(2) ) # 2^6 [28]",[31,6,28],4, [1,2],384], # 645120.34 [[3,3840,4,336,1,"d1","d2"], "( A5 x L3(2) ) # 2^6 [29]",[31,6,29],4, [1,2],384], # 645120.35 [[3,3840,5,336,1,"d1","d2"], "( A5 x L3(2) ) # 2^6 [30]",[31,6,30],4, [1,2],[192,96]], # 645120.36 [[3,3840,5,336,1,"e1","d2"], "( A5 x L3(2) ) # 2^6 [31]",[31,6,31],4, [1,2],[192,96]], # 645120.37 [[3,3840,5,336,1,"d1","e1","d2"], "( A5 x L3(2) ) # 2^6 [32]",[31,6,32],4, [1,2],[192,96]], # 645120.38 [[3,3840,6,336,1,"e1","d2"], "( A5 x L3(2) ) # 2^6 [33]",[31,6,33],2, [1,2],384], # 645120.39 [[3,3840,7,336,1,"d1","d2"], "( A5 x L3(2) ) # 2^6 [34]",[31,6,34],4, [1,2],[256,192]], # 645120.40 [[3,3840,7,336,1,"e1","d2"], "( A5 x L3(2) ) # 2^6 [35]",[31,6,35],4, [1,2],[256,192]], # 645120.41 [[3,3840,7,336,1,"d1","e1","d2"], "( A5 x L3(2) ) # 2^6 [36]",[31,6,36],4, [1,2],[256,192]] ]; PERFGRP[270]:=[# 647460.1 [[1,"abc", function(a,b,c) return [[c^54,c*b^12*c^-1*b^-1,b^109,a^2,c*a*c*a^(-1 *1),(b*a)^3, c^(-1*14)*b*c*b^2*c^2*b*a*b^2*a*c^3*b*c*b*a], [[b,c]]]; end, [110],[0,2,2]], "L2(109)",22,-1, 52,110] ]; PERFGRP[271]:=[# 665280.1 [[2,504,1,1320,1], "L2(8) x L2(11) 2^1",40,2, [4,5],[9,24]] ]; PERFGRP[272]:=[# 673920.1 [[2,120,1,5616,1], "A5 2^1 x L3(3)",40,2, [1,11],[24,13]] ]; PERFGRP[273]:=[# 675840.1 [[1,"abqrstuvwxyz", function(a,b,q,r,s,t,u,v,w,x,y,z) return [[a^2,b^3,(a*b)^11,(a*b)^4*(a*b^-1)^5*(a*b)^4*(a *b^-1)^5,q^2,r^2,s^2,t^2,u^2,v^2,w^2,x^2, y^2,z^2,q^-1*r^-1*q*r,q^-1*s^-1*q*s ,q^-1*t^-1*q*t,q^-1*u^-1*q*u, q^-1*v^-1*q*v,q^-1*w^-1*q*w, q^-1*x^-1*q*x,q^-1*y^-1*q*y, q^-1*z^-1*q*z,r^-1*s^-1*r*s, r^-1*t^-1*r*t,r^-1*u^-1*r*u, r^-1*v^-1*r*v,r^-1*w^-1*r*w, r^-1*x^-1*r*x,r^-1*y^-1*r*y, r^-1*z^-1*r*z,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, s^-1*w^-1*s*w,s^-1*x^-1*s*x, s^-1*y^-1*s*y,s^-1*z^-1*s*z, t^-1*u^-1*t*u,t^-1*v^-1*t*v, t^-1*w^-1*t*w,t^-1*x^-1*t*x, t^-1*y^-1*t*y,t^-1*z^-1*t*z, u^-1*v^-1*u*v,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*q*a*y^-1, a^-1*r*a*v^-1,a^-1*s*a*s^-1, a^-1*t*a*u^-1,a^-1*u*a*t^-1, a^-1*v*a*r^-1,a^-1*w*a*x^-1, a^-1*x*a*w^-1,a^-1*y*a*q^-1, a^-1*z*a*z^-1,b^-1*q*b*x^-1, b^-1*r*b*u^-1,b^-1*s*b*r^-1, b^-1*t*b*t^-1,b^-1*u*b*s^-1, b^-1*v*b*q^-1,b^-1*w*b*w^-1, b^-1*x*b*v^-1, b^-1*y*b*(q*r*s*t*u*v*w*x*y*z)^-1, b^-1*z*b*y^-1],[[b,a*b*a*b^-1*a,y*z]] ]; end, [22]], "L2(11) 2^10",[17,10,1],1, 5,22], # 675840.2 [[1,"abqrstuvwxyz", function(a,b,q,r,s,t,u,v,w,x,y,z) return [[a^2,b^3,(a*b)^11,(a*b)^4*(a*b^-1)^5*(a*b)^4*(a *b^-1)^5,q^2,r^2,s^2,t^2,u^2,v^2,w^2,x^2, y^2,z^2,q^-1*r^-1*q*r,q^-1*s^-1*q*s ,q^-1*t^-1*q*t,q^-1*u^-1*q*u, q^-1*v^-1*q*v,q^-1*w^-1*q*w, q^-1*x^-1*q*x,q^-1*y^-1*q*y, q^-1*z^-1*q*z,r^-1*s^-1*r*s, r^-1*t^-1*r*t,r^-1*u^-1*r*u, r^-1*v^-1*r*v,r^-1*w^-1*r*w, r^-1*x^-1*r*x,r^-1*y^-1*r*y, r^-1*z^-1*r*z,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, s^-1*w^-1*s*w,s^-1*x^-1*s*x, s^-1*y^-1*s*y,s^-1*z^-1*s*z, t^-1*u^-1*t*u,t^-1*v^-1*t*v, t^-1*w^-1*t*w,t^-1*x^-1*t*x, t^-1*y^-1*t*y,t^-1*z^-1*t*z, u^-1*v^-1*u*v,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*q*a*q^-1, a^-1*r*a*r^-1,a^-1*s*a*(s*u*w*z)^-1 ,a^-1*t*a*(t*v*x*y*z)^-1, a^-1*u*a*(t*u*x*y)^-1, a^-1*v*a*(s*t*v*w*x*z)^-1, a^-1*w*a*(s*v*x)^-1, a^-1*x*a*(t*u*v*w*x)^-1, a^-1*y*a*(t*u*w*x*z)^-1, a^-1*z*a*(s*t*v*w*y*z)^-1, b^-1*q*b*(s*t*u*v*w*x*y)^-1, b^-1*r*b*(s*u*w*z)^-1, b^-1*s*b*(q*r*s*t*u*y*z)^-1, b^-1*t*b*(q*s*v*y)^-1, b^-1*u*b*(r*z)^-1, b^-1*v*b*(q*r*y*z)^-1, b^-1*w*b*(q*r*u*v*x*y*z)^-1, b^-1*x*b*(q*u*w*x*y)^-1, b^-1*y*b*(s*v*x)^-1, b^-1*z*b*(t*u*v*w*x)^-1], [[a,b^-1*a*b*a*b^-1*a*b,x]]]; end, [132],[[1,-2]]], "L2(11) 2^10'",[17,10,2],1, 5,132], # 675840.3 [[1,"abqrstuvwxyz", function(a,b,q,r,s,t,u,v,w,x,y,z) return [[a^2*q^-1,b^3,(a*b)^11,(a*b)^4*(a*b^-1)^5*(a*b) ^4*(a*b^-1)^5*(q*r*s*t*x*z)^-1,q^2, r^2,s^2,t^2,u^2,v^2,w^2,x^2,y^2,z^2, q^-1*r^-1*q*r,q^-1*s^-1*q*s, q^-1*t^-1*q*t,q^-1*u^-1*q*u, q^-1*v^-1*q*v,q^-1*w^-1*q*w, q^-1*x^-1*q*x,q^-1*y^-1*q*y, q^-1*z^-1*q*z,r^-1*s^-1*r*s, r^-1*t^-1*r*t,r^-1*u^-1*r*u, r^-1*v^-1*r*v,r^-1*w^-1*r*w, r^-1*x^-1*r*x,r^-1*y^-1*r*y, r^-1*z^-1*r*z,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, s^-1*w^-1*s*w,s^-1*x^-1*s*x, s^-1*y^-1*s*y,s^-1*z^-1*s*z, t^-1*u^-1*t*u,t^-1*v^-1*t*v, t^-1*w^-1*t*w,t^-1*x^-1*t*x, t^-1*y^-1*t*y,t^-1*z^-1*t*z, u^-1*v^-1*u*v,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*q*a*q^-1, a^-1*r*a*r^-1,a^-1*s*a*(s*u*w*z)^-1 ,a^-1*t*a*(t*v*x*y*z)^-1, a^-1*u*a*(t*u*x*y)^-1, a^-1*v*a*(s*t*v*w*x*z)^-1, a^-1*w*a*(s*v*x)^-1, a^-1*x*a*(t*u*v*w*x)^-1, a^-1*y*a*(t*u*w*x*z)^-1, a^-1*z*a*(s*t*v*w*y*z)^-1, b^-1*q*b*(s*t*u*v*w*x*y)^-1, b^-1*r*b*(s*u*w*z)^-1, b^-1*s*b*(q*r*s*t*u*y*z)^-1, b^-1*t*b*(q*s*v*y)^-1, b^-1*u*b*(r*z)^-1, b^-1*v*b*(q*r*y*z)^-1, b^-1*w*b*(q*r*u*v*x*y*z)^-1, b^-1*x*b*(q*u*w*x*y)^-1, b^-1*y*b*(s*v*x)^-1, b^-1*z*b*(t*u*v*w*x)^-1], [[a,b^-1*a*b*a*b^-1*a*b]]]; end, [132],[[1,-2],[1,2]]], "L2(11) N 2^10'",[17,10,3],1, 5,132] ]; PERFGRP[274]:=[# 677376.1 [[2,1344,1,504,1], "( L3(2) x L2(8) ) # 2^3 [1]",[38,3,1],1, [2,4],[8,9]], # 677376.2 [[2,1344,2,504,1], "( L3(2) x L2(8) ) # 2^3 [2]",[38,3,2],1, [2,4],[14,9]] ]; PERFGRP[275]:=[# 685440.1 [[2,168,1,4080,1], "L3(2) x L2(16)",40,1, [2,10],[7,17]] ]; PERFGRP[276]:=fail; PERFGRP[277]:=[# 691200.1 [[2,60,1,11520,1], "( A5 x A6 ) # 2^5 [1]",[33,5,1],2, [1,3],[5,12]], # 691200.2 [[2,60,1,11520,2], "( A5 x A6 ) # 2^5 [2]",[33,5,2],2, [1,3],[5,80]], # 691200.3 [[2,60,1,11520,3], "( A5 x A6 ) # 2^5 [3]",[33,5,3],2, [1,3],[5,16,80]], # 691200.4 [[2,60,1,11520,4], "( A5 x A6 ) # 2^5 [4]",[33,5,4],1, [1,3],[5,80]], # 691200.5 [[2,120,1,5760,1], "( A5 x A6 ) # 2^5 [5]",[33,5,5],2, [1,3],[24,16]], # 691200.6 [[3,120,1,11520,1,"d1","e2"], "( A5 x A6 ) # 2^5 [6]",[33,5,6],2, [1,3],144], # 691200.7 [[3,120,1,11520,2,"d1","e2"], "( A5 x A6 ) # 2^5 [7]",[33,5,7],2, [1,3],960], # 691200.8 [[3,120,1,11520,3,"d1","d2"], "( A5 x A6 ) # 2^5 [8]",[33,5,8],2, [1,3],[192,960]], # 691200.9 [[2,1920,1,360,1], "( A5 x A6 ) # 2^5 [9]",[33,5,9],2, [1,3],[12,6]], # 691200.10 [[2,1920,2,360,1], "( A5 x A6 ) # 2^5 [10]",[33,5,10],2, [1,3],[24,6]], # 691200.11 [[2,1920,3,360,1], "( A5 x A6 ) # 2^5 [11]",[33,5,11],2, [1,3],[16,24,6]], # 691200.12 [[2,1920,4,360,1], "( A5 x A6 ) # 2^5 [12]",[33,5,12],1, [1,3],[80,6]], # 691200.13 [[2,1920,5,360,1], "( A5 x A6 ) # 2^5 [13]",[33,5,13],2, [1,3],[10,24,6]], # 691200.14 [[2,1920,6,360,1], "( A5 x A6 ) # 2^5 [14]",[33,5,14],2, [1,3],[80,6]], # 691200.15 [[2,1920,7,360,1], "( A5 x A6 ) # 2^5 [15]",[33,5,15],2, [1,3],[32,6]], # 691200.16 [[2,960,1,720,1], "( A5 x A6 ) # 2^5 [16]",[33,5,16],2, [1,3],[16,80]], # 691200.17 [[2,960,2,720,1], "( A5 x A6 ) # 2^5 [17]",[33,5,17],2, [1,3],[10,80]], # 691200.18 [[3,1920,1,720,1,"e1","d2"], "( A5 x A6 ) # 2^5 [18]",[33,5,18],2, [1,3],480], # 691200.19 [[3,1920,2,720,1,"d1","d2"], "( A5 x A6 ) # 2^5 [19]",[33,5,19],2, [1,3],960], # 691200.20 [[3,1920,3,720,1,"d1","d2"], "( A5 x A6 ) # 2^5 [20]",[33,5,20],2, [1,3],[640,960]], # 691200.21 [[3,1920,5,720,1,"d1","d2"], "( A5 x A6 ) # 2^5 [21]",[33,5,21],2, [1,3],[400,960]], # 691200.22 [[3,1920,6,720,1,"d1","d2"], "( A5 x A6 ) # 2^5 [22]",[33,5,22],2, [1,3],3200], # 691200.23 [[3,1920,7,720,1,"e1","d2"], "( A5 x A6 ) # 2^5 [23]",[33,5,23],2, [1,3],1280] ]; PERFGRP[278]:=[# 693120.1 [[4,1920,3,43320,2,120,3,1], "A5 # 2^5 19^2 [1]",6,1, 1,[16,24,361]], # 693120.2 [[4,1920,4,43320,2,120,4,1], "A5 # 2^5 19^2 [2]",6,1, 1,[80,361]], # 693120.3 [[4,1920,5,43320,2,120,5,1], "A5 # 2^5 19^2 [3]",6,1, 1,[10,24,361]] ]; PERFGRP[279]:=[# 699840.1 [[4,960,1,43740,1,60], "A5 # 2^4 3^6 [1]",6,1, 1,[16,18]], # 699840.2 [[4,960,2,43740,1,60], "A5 # 2^4 3^6 [2]",6,1, 1,[10,18]] ]; PERFGRP[280]:=[# 704880.1 [[1,"abc", function(a,b,c) return [[c^44*a^2,c*b^9*c^-1*b^-1,b^89,a^4,a^2*b^(-1 *1)*a^2*b,a^2*c^-1*a^2*c, c*a*c*a^-1,(b*a)^3, c^-1*b^3*c*b^3*a*b^3*a*c*b^3*a],[[b,c^8]]] ; end, [720],[0,3,3]], "L2(89) 2^1 = SL(2,89)",22,-2, 44,720] ]; PERFGRP[281]:=[# 712800.1 [[2,1080,1,660,1], "A6 3^1 x L2(11)",40,3, [3,5],[18,11]] ]; PERFGRP[282]:=[# 720720.1 [[2,660,1,1092,1], "L2(11) x L2(13)",40,1, [5,6],[11,14]] ]; PERFGRP[283]:=[# 721392.1 [[1,"abc", function(a,b,c) return [[c^56,c*b^9*c^-1*b^-1,b^113,a^2,c*a*c*a^-1 ,(b*a)^3,c^(-1*3)*b^2*c*b^2*c^2*a*b^3*a*c*b^3 *a],[[b,c]]]; end, [114],[0,3,3]], "L2(113)",22,-1, 53,114] ]; PERFGRP[284]:=[# 725760.1 [[2,336,1,2160,1], "( L3(2) x A6 3^1 ) 2^2",[37,2,1],12, [2,3],[16,18,80]], # 725760.2 [[2,120,1,6048,1], "A5 2^1 x U3(3)",40,2, [1,12],[24,28]] ]; PERFGRP[285]:=[# 728640.1 [[2,60,1,12144,1], "( A5 x L2(23) ) 2^1 [1]",40,2, [1,13],[5,48]], # 728640.2 [[2,120,1,6072,1], "( A5 x L2(23) ) 2^1 [2]",40,2, [1,13],[24,24]], # 728640.3 [[3,120,1,12144,1,"d1","a2","a2"], "( A5 x L2(23) ) 2^1 [3]",40,2, [1,13],576] ]; PERFGRP[286]:=[# 729000.1 [[4,29160,5,3000,2,120,2,1], "A5 2^1 # 3^5 5^2 [1]",6,3, 1,[243,25]], # 729000.2 [[4,29160,6,3000,2,120,3,1], "A5 2^1 # 3^5 5^2 [2]",6,3, 1,[243,25]] ]; PERFGRP[287]:=[# 730800.1 [[2,60,1,12180,1], "A5 x L2(29)",40,1, [1,17],[5,30]] ]; PERFGRP[288]:=[# 733824.1 [[2,336,1,2184,1], "( L3(2) x L2(13) ) 2^2",40,4, [2,6],[16,56]] ]; PERFGRP[289]:=[# 734832.1 [[1,"abuvwxyzd", function(a,b,u,v,w,x,y,z,d) return [[a^4,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4*a^2,a^2*b *a^2*b^-1,d^3,a^-1*d*a*d^-1, b^-1*d*b*d^-1,u^-1*d*u*d^-1, v^-1*d*v*d^-1,w^-1*d*w*d^-1, x^-1*d*x*d^-1,y^-1*d*y*d^-1, z^-1*d*z*d^-1,u^3,v^3,w^3,x^3,y^3,z^3, u^-1*v^-1*u*v*d,u^-1*w^-1*u*w *d^-1,u^-1*x^-1*u*x*d^-1, u^-1*y^-1*u*y*d^-1,u^-1*z^-1*u *z,v^-1*w^-1*v*w*d^-1, v^-1*x^-1*v*x*d,v^-1*y^-1*v*y*d, v^-1*z^-1*v*z*d,w^-1*x^-1*w*x, w^-1*y^-1*w*y*d^-1, w^-1*z^-1*w*z*d^-1, x^-1*y^-1*x*y*d^-1, x^-1*z^-1*x*z*d,y^-1*z^-1*y*z*d, a^-1*u*a*(x*y^-1*z^-1*d)^-1, a^-1*v*a*(w*x^-1*y^-1*d)^-1, a^-1*w*a*(u*w^-1*x*y^-1*z^-1)^-1 ,a^-1*x*a*(v*w*x*y^-1)^-1, a^-1*y*a*(u*v*w*z^-1*d)^-1, a^-1*z*a*(u*x*y^-1*z*d^-1)^-1, b^-1*u*b*(v*w^-1*x^-1)^-1, b^-1*v*b*(u*v^-1*w^-1*d^-1)^-1, b^-1*w*b*(u^-1*v*w^-1*x^-1*z^-1) ^-1,b^-1*x*b*(u*v*w^-1*y^-1*z*d) ^-1,b^-1*y*b*(u*x^-1*y*d)^-1, b^-1*z*b*(v*w^-1*x*z)^-1], [[a*b,b*a*b^-1*a*b^-1*a*b*a*b^-1,u], [a,b]]]; end, [16,2187]], "L3(2) 2^1 x 3^6 C 3^1",[9,7,1],6, 2,[16,2187]], # 734832.2 [[1,"abtuvwxyz", function(a,b,t,u,v,w,x,y,z) return [[a^4,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4*a^2,a^2*b *a^2*b^-1,t^3,u^3,v^3,w^3,x^3,y^3,z^3, t^-1*u^-1*t*u,t^-1*v^-1*t*v, t^-1*w^-1*t*w,t^-1*x^-1*t*x, t^-1*y^-1*t*y,t^-1*z^-1*t*z, u^-1*v^-1*u*v,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*t*a*t^-1, a^-1*u*a*w^-1,a^-1*v*a*v, a^-1*w*a*u^-1,a^-1*x*a*z^-1, a^-1*y*a*y,a^-1*z*a*x^-1, b^-1*t*b*u^-1,b^-1*u*b*v^-1, b^-1*v*b*t^-1,b^-1*w*b*x^-1, b^-1*x*b*y^-1,b^-1*y*b*w^-1, b^-1*z*b*z^-1], [[a*b,b*a*b^-1*a*b^-1*a*b*a*b^-1,t], [a*b,a^2,t*u^-1]]]; end, [16,72]], "L3(2) 2^1 x 3^7",[9,7,2],2, 2,[16,72]], # 734832.3 [[1,"abtuvwxyz", function(a,b,t,u,v,w,x,y,z) return [[a^4,b^3/(t*u*v*z^-1),(a*b)^7,(a^-1*b^-1*a*b)^4*a^2,a^2*b *a^2*b^-1,t^3,u^3,v^3,w^3,x^3,y^3,z^3, t^-1*u^-1*t*u,t^-1*v^-1*t*v, t^-1*w^-1*t*w,t^-1*x^-1*t*x, t^-1*y^-1*t*y,t^-1*z^-1*t*z, u^-1*v^-1*u*v,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*t*a*t^-1, a^-1*u*a*w^-1,a^-1*v*a*v, a^-1*w*a*u^-1,a^-1*x*a*z^-1, a^-1*y*a*y,a^-1*z*a*x^-1, b^-1*t*b*u^-1,b^-1*u*b*v^-1, b^-1*v*b*t^-1,b^-1*w*b*x^-1, b^-1*x*b*y^-1,b^-1*y*b*w^-1, b^-1*z*b*z^-1], [[a*b,b*a*b^-1*a*b^-1*a*b*a*b^-1,t], [a*b,a^2,t*u^-1]]]; end, [16,72]], "L3(2) 2^1 x N 3^7",[9,7,3],2, 2,[16,72]] ]; PERFGRP[290]:=[fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail]; PERFGRP[291]:=[# 748920.1 [[1,"abyz", function(a,b,y,z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^79,z^79,y^-1 *z^-1*y*z,a^-1*y*a*z^-1, a^-1*z*a*y,b^-1*y*b*(y^(-1*21)*z^4)^-1, b^-1*z*b*(y^33*z^20)^-1], [[b,a^2,y*z^(-1*36)]]]; end, [1580],[0,0,3,3,3,3]], "A5 2^1 79^2",[5,2,1],1, 1,1580] ]; PERFGRP[292]:=[# 768000.1 [[4,30720,1,3000,2,120,1,1], "A5 # 2^9 5^2 [1]",6,16, 1,[24,64,64,25]], # 768000.2 [[4,30720,4,3000,2,120,4,1], "A5 # 2^9 5^2 [2]",6,1, 1,[240,25]], # 768000.3 [[4,30720,9,3000,2,120,9,1], "A5 # 2^9 5^2 [3]",6,1, 1,[16,16,24,25]], # 768000.4 [[4,30720,10,3000,2,120,10,1], "A5 # 2^9 5^2 [4]",6,1, 1,[16,80,25]], # 768000.5 [[4,30720,11,3000,2,120,11,1], "A5 # 2^9 5^2 [5]",6,1, 1,[240,25]], # 768000.6 [[4,30720,14,3000,2,120,14,1], "A5 # 2^9 5^2 [6]",6,1, 1,[40,24,25]], # 768000.7 [[4,30720,18,3000,2,120,18,1], "A5 # 2^9 5^2 [7]",6,1, 1,[10,16,24,25]], # 768000.8 [[4,30720,22,3000,2,120,22,1], "A5 # 2^9 5^2 [8]",6,1, 1,[160,25]], # 768000.9 [[4,30720,23,3000,2,120,23,1], "A5 # 2^9 5^2 [9]",6,1, 1,[10,80,25]], # 768000.10 [[4,30720,26,3000,2,120,26,1], "A5 # 2^9 5^2 [10]",6,1, 1,[10,10,24,25]], # 768000.11 [[4,30720,33,3000,2,120,33,1], "A5 # 2^9 5^2 [11]",6,1, 1,[24,20,25]], # 768000.12 [[4,30720,36,3000,2,120,36,1], "A5 # 2^9 5^2 [12]",6,1, 1,[80,25]], # 768000.13 [[4,30720,37,3000,2,120,37,1], "A5 # 2^9 5^2 [13]",6,1, 1,[80,25]] ]; PERFGRP[293]:=[# 774144.1 [[1,"abuvwxyzd", function(a,b,u,v,w,x,y,z,d) return [[a^2,b^6,(a*b)^7,(a*b^2)^3*(a*b^(-1*2))^3,(a*b*a*b ^(-1*2))^3*a*b*(a*b^-1)^2,u^2,v^2,w^2, x^2,y^2,z^2,d^2,u^-1*d*u*d^-1, v^-1*d*v*d^-1,w^-1*d*w*d^-1, x^-1*d*x*d^-1,y^-1*d*y*d^-1, z^-1*d*z*d^-1,u^-1*v^-1*u*v, u^-1*w^-1*u*w,u^-1*x^-1*u*x, u^-1*y^-1*u*y,u^-1*z^-1*u*z, v^-1*w^-1*v*w,v^-1*x^-1*v*x, v^-1*y^-1*v*y,v^-1*z^-1*v*z, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*u*a*(u*z)^-1, a^-1*v*a*(u*v*x*z*d)^-1, a^-1*w*a*(u*w*x*z*d)^-1, a^-1*x*a*(x*z)^-1, a^-1*y*a*(u*x*y*d)^-1,a^-1*z*a*z^-1 ,a^-1*d*a*d^-1, b^-1*u*b*(u*w*x*y*z*d)^-1, b^-1*v*b*(u*x*z*d)^-1, b^-1*w*b*(u*w*z)^-1, b^-1*x*b*(u*v*w*x*z)^-1, b^-1*y*b*(v*y*z*d)^-1, b^-1*z*b*(u*v*w*x*y*z)^-1, b^-1*d*b*d^-1],[[a,b]]]; end, [128]], "U3(3) ( 2^6 E 2^1 )",[25,7,1],2, 12,128], # 774144.2 [[1,"abuvwxyzd", function(a,b,u,v,w,x,y,z,d) return [[a^2*(u*x*z)^-1,b^6*d^-1,(a*b)^7*d^-1,(a *b^2)^3*(a*b^(-1*2))^3*(w*y*z)^-1, (a*b*a*b^(-1*2))^3*a*b*(a*b^-1)^2 *(w*x*y)^-1*d^-1,u^2,v^2,w^2,x^2,y^2, z^2,d^2,u^-1*d*u*d^-1,v^-1*d*v*d^-1 ,w^-1*d*w*d^-1,x^-1*d*x*d^-1, y^-1*d*y*d^-1,z^-1*d*z*d^-1, u^-1*v^-1*u*v,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*u*a*(u*z*d)^-1, a^-1*v*a*(u*v*x*z*d)^-1, a^-1*w*a*(u*w*x*z*d)^-1, a^-1*x*a*(x*z*d)^-1, a^-1*y*a*(u*x*y)^-1,a^-1*z*a*z^-1, a^-1*d*a*d^-1, b^-1*u*b*(u*w*x*y*z)^-1, b^-1*v*b*(u*x*z*d)^-1, b^-1*w*b*(u*w*z)^-1, b^-1*x*b*(u*v*w*x*z*d)^-1, b^-1*y*b*(v*y*z)^-1, b^-1*z*b*(u*v*w*x*y*z*d)^-1, b^-1*d*b*d^-1], [[(b^-1*a*b)^-1*(a*b*a*b*a*b^(-1*2))^-1 *b^-1*a*b*a*b*a*b*a*b^(-1*2), a*b*a*b*a*b^(-1*2)*(b^-1*a*b)^-1 *(a*b*a*b*a*b^(-1*2))^-1*b^-1*a*b,u ]]]; end, [448],[[1,2],[10,10,10],[2,2],[1,-12]]], "U3(3) ( N 2^6 E 2^1 )",[25,7,2],2, 12,448] ]; PERFGRP[294]:=[# 777600.1 [[2,360,1,2160,1], "( A6 x A6 ) 3^1 2^1 [1]",40,6, [3,3],[6,18,80]], # 777600.2 [[2,720,1,1080,1], "( A6 x A6 ) 3^1 2^1 [2]",40,6, [3,3],[80,18]], # 777600.3 [[3,720,1,2160,1,"d1","d2"], "( A6 x A6 ) 3^1 2^1 [3]",40,6, [3,3],[720,3200]], # 777600.4 [[3,1080,1,2160,1,"a1","a1","a2","a2","a2","a2"], "( A6 x A6 ) 3^1 2^1 [4]",40,6, [3,3],[108,480]], # 777600.5 [[3,2160,1,2160,1,"a1","a1","a2","a2"], "( A6 x A6 ) 3^1 2^1 [5]",40,6, [3,3],[108,240,240,3200]] ]; PERFGRP[295]:=[# 786240.1 [[2,360,1,2184,1], "( A6 x L2(13) ) 2^1 [1]",40,2, [3,6],[6,56]], # 786240.2 [[2,720,1,1092,1], "( A6 x L2(13) ) 2^1 [2]",40,2, [3,6],[80,14]], # 786240.3 [[3,720,1,2184,1,"d1","a2","a2"], "( A6 x L2(13) ) 2^1 [3]",40,2, [3,6],2240] ]; ############################################################################# ## #E perf11.grp . . . . . . . . . . . . . . . . . . . . . . . . . ends here ## gap-4r6p5/grp/perf7.grp 0000644 0001750 0001750 00000105642 12172557252 013476 0 ustar bill bill ############################################################################# ## #W perf7.grp GAP Groups Library Volkmar Felsch ## Alexander Hulpke ## ## #Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains the perfect groups of sizes 92160-174960 ## All data is based on Holt/Plesken: Perfect Groups, OUP 1989 ## PERFGRP[114]:=[# 92160.1 [[1,"abcstuvSTUV", function(a,b,c,s,t,u,v,S,T,U,V) return [[a^2,b^3,c^3,(b*c)^4,(b*c^-1)^5,a^-1*b^-1*c *b*c*b^-1*c*b*c^-1,s^2,t^2,u^2, v^2,S^2,T^2,U^2,V^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,S^-1*T^-1*S*T, S^-1*U^-1*S*U,S^-1*V^-1*S*V, T^-1*U^-1*T*U,T^-1*V^-1*T*V, U^-1*V^-1*U*V,s^-1*S^-1*s*S, s^-1*T^-1*s*T,s^-1*U^-1*s*U, s^-1*V^-1*s*V,t^-1*S^-1*t*S, t^-1*T^-1*t*T,t^-1*U^-1*t*U, t^-1*V^-1*t*V,u^-1*S^-1*u*S, u^-1*T^-1*u*T,u^-1*U^-1*u*U, u^-1*V^-1*u*V,v^-1*S^-1*v*S, v^-1*T^-1*v*T,v^-1*U^-1*v*U, v^-1*V^-1*v*V,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,a^-1*S*a*U^-1, a^-1*T*a*V^-1,a^-1*U*a*S^-1, a^-1*V*a*T^-1,b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*S*b*(T*V)^-1, b^-1*T*b*(S*T*U*V)^-1, b^-1*U*b*(U*V)^-1,b^-1*V*b*U^-1, c^-1*s*c*(t*u)^-1,c^-1*t*c*t^-1, c^-1*u*c*(s*u)^-1, c^-1*v*c*(s*t*u*v)^-1, c^-1*S*c*(T*U)^-1,c^-1*T*c*T^-1, c^-1*U*c*(S*U)^-1, c^-1*V*c*(S*T*U*V)^-1],[[b,c,S],[b,c,s]]]; end, [16,16]], "A6 2^4 x 2^4",[13,8,1],1, 3,[16,16]], # 92160.2 [[1,"abcstuvwxyz", function(a,b,c,s,t,u,v,w,x,y,z) return [[a^2,b^3,c^3,(b*c)^4,(b*c^-1)^5,a^-1*b^-1*c *b*c*b^-1*c*b*c^-1,s^2,t^2,u^2, v^2,w^2,x^2,y^2,z^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,s^-1*w^-1*s*w, s^-1*x^-1*s*x,s^-1*y^-1*s*y, s^-1*z^-1*s*z,t^-1*w^-1*t*w, t^-1*x^-1*t*x,t^-1*y^-1*t*y, t^-1*z^-1*t*z,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,a^-1*w*a*y^-1, a^-1*x*a*z^-1,a^-1*y*a*w^-1, a^-1*z*a*x^-1,b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*w*b*(x*y)^-1,b^-1*x*b*x^-1, b^-1*y*b*(w*y)^-1, b^-1*z*b*(w*x*y*z)^-1, c^-1*s*c*(t*u)^-1,c^-1*t*c*t^-1, c^-1*u*c*(s*u)^-1, c^-1*v*c*(s*t*u*v)^-1, c^-1*w*c*(x*z)^-1, c^-1*x*c*(w*x*y*z)^-1, c^-1*y*c*(y*z)^-1,c^-1*z*c*y^-1], [[b,c,s],[b,c,w]]]; end, [16,16]], "A6 2^4 x 2^4'",[13,8,2],1, 3,[16,16]] ]; PERFGRP[115]:=[# 95040.1 [[1,"ab", function(a,b) return [[a^2,b^3,(a*b)^11,(a^-1*b^-1*a*b)^6,(a*b*a*b*a *b^-1)^6,(a*b*a*b*a*b^-1*a*b^-1)^5], [[a,b*a*b^-1*a*(b^-1*a*b*a)^2]]]; end, [12]], "M12",28,-1, 31,12] ]; PERFGRP[116]:=[# 96000.1 [[4,3840,5,3000,2,120,5,1], "A5 # 2^6 5^2 [1]",6,2, 1,[24,12,25]], # 96000.2 [[4,3840,6,3000,2,120,6,1], "A5 # 2^6 5^2 [2]",6,2, 1,[48,25]], # 96000.3 [[4,3840,7,3000,2,120,7,1], "A5 # 2^6 5^2 [3]",6,2, 1,[32,24,25]] ]; PERFGRP[117]:=[# 100920.1 [[1,"abyz", function(a,b,y,z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^29,z^29,y^-1 *z^-1*y*z,a^-1*y*a*z^-1, a^-1*z*a*y,b^-1*y*b*(y^14*z^4)^-1, b^-1*z*b*(y^(-1*2)*z^14)^-1],[[a,b]]]; end, [841],[0,0,2,2,2,2]], "A5 2^1 29^2",[5,2,1],1, 1,841] ]; PERFGRP[118]:=[# 102660.1 [[1,"abc", function(a,b,c) return [[c^29,c*b^4*c^-1*b^-1,b^59,a^2,c*a*c*a^-1, (b*a)^3],[[b,c]]]; end, [60]], "L2(59)",22,-1, 32,60] ]; PERFGRP[119]:=[# 103776.1 [[1,"abc", function(a,b,c) return [[c^23*a^2,c*b^(-1*22)*c^-1*b^-1,b^47,a^4,a^2 *b^-1*a^2*b,a^2*c^-1*a^2*c, c*a*c*a^-1,(b*a)^3],[[b,c^2]]]; end, [96],[0,2,2,2]], "L2(47) 2^1 = SL(2,47)",22,-2, 27,96] ]; PERFGRP[120]:=[# 110880.1 [[2,168,1,660,1], "L3(2) x L2(11)",[39,0,1],1, [2,5],[7,11]] ]; PERFGRP[121]:=[# 112896.1 [[2,336,1,336,1], "( L3(2) x L3(2) ) 2^2",[34,2,1],4, [2,2],[16,16]] ]; PERFGRP[122]:=[# 113460.1 [[1,"abc", function(a,b,c) return [[c^30,c*b^4*c^-1*b^-1,b^61,a^2,c*a*c*a^-1, (b*a)^3,c^(-1*4)*(b*c)^3*c*a*b^2*a*c*b^2*a], [[b,c]]]; end, [62]], "L2(61)",22,-1, 33,62] ]; PERFGRP[123]:=[# 115200.1 [[2,960,1,120,1], "( A5 x A5 ) # 2^5 [1]",[29,5,1],2, [1,1],[16,24]], # 115200.2 [[2,960,2,120,1], "( A5 x A5 ) # 2^5 [2]",[29,5,2],2, [1,1],[10,24]], # 115200.3 [[2,1920,1,60,1], "( A5 x A5 ) # 2^5 [3]",[29,5,3],2, [1,1],[12,5]], # 115200.4 [[2,1920,2,60,1], "( A5 x A5 ) # 2^5 [4]",[29,5,4],2, [1,1],[24,5]], # 115200.5 [[2,1920,3,60,1], "( A5 x A5 ) # 2^5 [5]",[29,5,5],2, [1,1],[16,24,5]], # 115200.6 [[2,1920,4,60,1], "( A5 x A5 ) # 2^5 [6]",[29,5,6],1, [1,1],[80,5]], # 115200.7 [[2,1920,5,60,1], "( A5 x A5 ) # 2^5 [7]",[29,5,7],2, [1,1],[10,24,5]], # 115200.8 [[2,1920,6,60,1], "( A5 x A5 ) # 2^5 [8]",[29,5,8],2, [1,1],[80,5]], # 115200.9 [[2,1920,7,60,1], "( A5 x A5 ) # 2^5 [9]",[29,5,9],2, [1,1],[32,5]], # 115200.10 [[3,1920,1,120,1,"e1","d2"], "( A5 x A5 ) # 2^5 [10]",[29,5,10],2, [1,1],144], # 115200.11 [[3,1920,2,120,1,"d1","d2"], "( A5 x A5 ) # 2^5 [11]",[29,5,11],2, [1,1],288], # 115200.12 [[3,1920,3,120,1,"d1","d2"], "( A5 x A5 ) # 2^5 [12]",[29,5,12],2, [1,1],[192,288]], # 115200.13 [[3,1920,5,120,1,"d1","d2"], "( A5 x A5 ) # 2^5 [13]",[29,5,13],2, [1,1],[120,288]], # 115200.14 [[3,1920,6,120,1,"d1","d2"], "( A5 x A5 ) # 2^5 [14]",[29,5,14],2, [1,1],960], # 115200.15 [[3,1920,7,120,1,"e1","d2"], "( A5 x A5 ) # 2^5 [15]",[29,5,15],2, [1,1],384] ]; PERFGRP[124]:=[# 115248.1 [[1,"abxyz", function(a,b,x,y,z) return [[a^4,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4*a^2,a^2*b *a^2*b^-1,x^7,y^7,z^7,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*x*a*z^-1,a^-1*y*a*y, a^-1*z*a*x^-1,b^-1*x*b*z^-1, b^-1*y*b*(y^-1*z^-1)^-1, b^-1*z*b*(x*y^2*z)^-1], [[a*b,b*a*b^-1*a*b^-1*a*b*a*b^-1,x], [a*b,b*a*b^-1*a*b^-1*a*b*a*b^-1,a^2,y ]]]; end, [16,56]], "L3(2) 2^1 x 7^3",[10,3,1],2, 2,[16,56]], # 115248.2 [[1,"abxyz", function(a,b,x,y,z) return [[a^4,b^3,(a*b)^7*z^-1,(a^-1*b^-1*a*b)^4 *a^2,a^2*b*a^2*b^-1,x^7,y^7,z^7, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*x*a*z^-1, a^-1*y*a*y,a^-1*z*a*x^-1, b^-1*x*b*z^-1, b^-1*y*b*(y^-1*z^-1)^-1, b^-1*z*b*(x*y^2*z)^-1], [[a*b,b*a*b^-1*a*b^-1*a*b*a*b^-1,x], [a*b*x^2,b*a*b^-1*a*b^-1*a*b*a*b^-1, a^2,y]]]; end, [16,56]], "L3(2) 2^1 x N 7^3",[10,3,2],2, 2,[16,56]], # 115248.3 [[1,"abyzd", function(a,b,y,z,d) return [[a^4,b^3,(a*b)^7,a^2*b^-1*a^2*b,(a^-1*b^-1 *a*b)^4*a^2,d^7,a^-1*d*a*d^-1, b^-1*d*b*d^-1,y^-1*d*y*d^-1, z^-1*d*z*d^-1,y^7,z^7, y^-1*z^-1*y*z*d^-1, a^-1*y*a*(z^-1*d^(-1*2))^-1, a^-1*z*a*(y*d^2)^-1, b^-1*y*b*(z*d^(-1*2))^-1, b^-1*z*b*(y^-1*z^-1*d)^-1],[[a,b]]]; end, [343]], "L3(2) 2^1 7^2 C 7^1",[10,3,3],7, 2,343], # 115248.4 (otherpres.) [[1,"abDyzd", function(a,b,D,y,z,d) return [[a^2*D^-1,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4 *D^-1,D^2,D^-1*b^-1*D*b,d^7, a^-1*d*a*d^-1,b^-1*d*b*d^-1, y^-1*d*y*d^-1,z^-1*d*z*d^-1,y^7, z^7,y^-1*z^-1*y*z*d^-1, a^-1*y*a*(z^-1*d^(-1*2))^-1, a^-1*z*a*(y*d^2)^-1, b^-1*y*b*(z*d^(-1*2))^-1, b^-1*z*b*(y^-1*z^-1*d)^-1],[[a,b]]]; end, [343]]] ]; PERFGRP[125]:=[# 115320.1 [[1,"abyz", function(a,b,y,z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^31,z^31,y^-1 *z^-1*y*z,a^-1*y*a*z^-1, a^-1*z*a*y,b^-1*y*b*(y^-1*z^15)^-1, b^-1*z*b*y^(-1*2)],[[a*b,a^2,y]]]; end, [372]], "A5 2^1 31^2",[5,2,1],1, 1,372] ]; PERFGRP[126]:=[# 116480.1 [[1,"abde", function(a,b,d,e) return [[a^2,b^4,(a*b)^5,(a^-1*b^-1*a*b)^7*(d*e)^-1 ,(a*b^2)^13, a*b^-1*a*b^2*a*b^2*(a*b^-1*a*b*a*b^2)^2 *a*b^2*a*b*(a*b^2)^4*e^-1,d^2,e^2, d^-1*e^-1*d*e,a^-1*d*a*d^-1, a^-1*e*a*e^-1,b^-1*d*b*d^-1, b^-1*e*b*e^-1], [[a*b^2,(a*b*a*b^2)^2*a*b^2*a*b^-1 *(a*b^2*a*b*a*b^2)^2]]]; end, [2240],[[1,2]]], "Sz(8) 2^1 x 2^1",28,-4, 23,2240] ]; PERFGRP[127]:=[# 117600.1 [[1,"abc", function(a,b,c) return [[c^24*a^2,b^7,c^(-1*8)*b^2*c^8*b^-1,c*b^3*c*b^2 *c^(-1*2)*b^(-1*3),a^4,a^2*b^-1*a^2*b, a^2*c^-1*a^2*c,c*a*c*a^-1,(b*a)^3, c^2*b*c*b^2*a*b*a*c*a*b^2*a*b^-1*c^(-1*3) *b^-1*a],[[b,c^-1*b*c,c^16]]]; end, [800],[0,2,2,0,2,2]], "L2(49) 2^1 = SL(2,49)",22,-2, 28,800] ]; PERFGRP[128]:=[# 120000.1 [[4,960,1,7500,1,60], "A5 # 2^4 5^3 [1]",6,1, 1,[16,30]], # 120000.2 [[4,960,2,7500,1,60], "A5 # 2^4 5^3 [2]",6,1, 1,[10,30]], # 120000.3 [[4,960,1,7500,2,60], "A5 # 2^4 5^3 [3]",6,1, 1,[16,30]], # 120000.4 [[4,960,2,7500,2,60], "A5 # 2^4 5^3 [4]",6,1, 1,[10,30]] ]; PERFGRP[129]:=[# 120960.1 [[1,"abwxyz", function(a,b,w,x,y,z) return [[a^6,b^4,(a*b)^7,(a*b)^2*a*b^2*(a*b*a*b^-1)^2 *(a*b)^2*(a*b^-1)^2*a*b*a*b^-1 *a^2,a^2*b*a^(-1*2)*b^-1,w^2,x^2,y^2,z^2, w*x*w*x,w*y*w*y,w*z*w*z,x*y*x*y,x*z*x*z, y*z*y*z,a^-1*w*a*y^-1, a^-1*x*a*z^-1,a^-1*y*a*w^-1, a^-1*z*a*x^-1,b^-1*w*b*(w*x*y*z)^-1 ,b^-1*x*b*y^-1,b^-1*y*b*(w*x)^-1, b^-1*z*b*(w*z)^-1], [[a^3,(b^-1*a)^2*(b*a)^2*b^2*a*b*a,w],[a,b]]]; end, [45,16]], "A7 3^1 x 2^4",[23,4,1],3, 8,[45,16]], # 120960.2 [[1,"abde", function(a,b,d,e) return [[a^2,b^4,(a*b)^7*e*d^-1,(a^-1*b^-1*a*b)^5, (a*b^2)^5*e^-1,(a*b*a*b*a*b^3)^5, (a*b*a*b*a*b^2*a*b^-1)^5*d^(-1*2),d^3, a^-1*d*a*d^-1,b^-1*d*b*d^-1,e^2, a^-1*e*a*e^-1,b^-1*e*b*e^-1], [[a*b*a,b^2*a*b^-1*a*b*a*b^2*a*b*d], [a*e,b*a*b*a*b^-1*a*b^2]]]; end, [63,112]], "L3(4) 3^1 x 2^1",[27,1,1],-6, 20,[63,112]], # 120960.3 [[2,168,1,720,1], "( L3(2) x A6 ) 2^1 [1]",[37,1,1],2, [2,3],[7,80]], # 120960.4 [[2,336,1,360,1], "( L3(2) x A6 ) 2^1 [2]",[37,1,2],2, [2,3],[16,6]], # 120960.5 [[3,336,1,720,1,"d1","d2"], "( L3(2) x A6 ) 2^1 [3]",[37,1,3],2, [2,3],640] ]; PERFGRP[130]:=[# 122472.1 [[1,"abuvwxyz", function(a,b,u,v,w,x,y,z) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4,u^3,v^3, w^3,x^3,y^3,z^3,u^-1*v^-1*u*v, u^-1*w^-1*u*w,u^-1*x^-1*u*x, u^-1*y^-1*u*y,u^-1*z^-1*u*z, v^-1*w^-1*v*w,v^-1*x^-1*v*x, v^-1*y^-1*v*y,v^-1*z^-1*v*z, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*u*a*(x*y^-1*z^-1)^-1, a^-1*v*a*(w*x^-1*y^-1)^-1, a^-1*w*a*(u*w^-1*x*y^-1*z^-1)^-1 ,a^-1*x*a*(v*w*x*y^-1)^-1, a^-1*y*a*(u*v*w*z^-1)^-1, a^-1*z*a*(u*x*y^-1*z)^-1, b^-1*u*b*(v*w^-1*x^-1)^-1, b^-1*v*b*(u*v^-1*w^-1)^-1, b^-1*w*b*(u^-1*v*w^-1*x^-1*z^-1) ^-1,b^-1*x*b*(u*v*w^-1*y^-1*z) ^-1,b^-1*y*b*(u*x^-1*y)^-1, b^-1*z*b*(v*w^-1*x*z)^-1], [[a,b^-1*a*b,z]]]; end, [63]], "L3(2) 3^6",[9,6,1],1, 2,63], # 122472.2 [[1,"abuvwxyz", function(a,b,u,v,w,x,y,z) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4,u^3,v^3, w^3,x^3,y^3,z^3,u^-1*v^-1*u*v, u^-1*w^-1*u*w,u^-1*x^-1*u*x, u^-1*y^-1*u*y,u^-1*z^-1*u*z, v^-1*w^-1*v*w,v^-1*x^-1*v*x, v^-1*y^-1*v*y,v^-1*z^-1*v*z, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*u*a*w^-1,a^-1*v*a*v^-1, a^-1*w*a*u^-1,a^-1*x*a*z^-1, a^-1*y*a*y^-1,a^-1*z*a*x^-1, b^-1*u*b*v^-1, b^-1*v*b*(u^-1*v^-1*w^-1*x^-1 *y^-1*z^-1)^-1,b^-1*w*b*x^-1 ,b^-1*x*b*y^-1,b^-1*y*b*w^-1, b^-1*z*b*z^-1], [[b,a*b^-1*a*b*a,x*y^-1*z]]]; end, [21]], "L3(2) 3^6'",[9,6,2],1, 2,21] ]; PERFGRP[131]:=fail; PERFGRP[132]:=[# 126000.1 [[1,"ab", function(a,b) return [[a^2,b^4,(a*b)^10,(a*b*a*b^2)^7,a*b^-1*a*b^-1 *a*b*a*b^(-1*2)*a*b *a*b^-1*a*b^-1*a*b *a*b*a*b^-1*a*b*b*a*b^-1 *a*b*a*b, (a*b^-1*a*b^-1*a*b*a*b*a*b)^2*b*a *b^-1*a*b^-1*a*b*a*b*a *b^-1],[[b,a*b*a*b^-1*a]]]; end, [50],[[1,2],0,2]], "U3(5)",28,-1, 34,50] ]; PERFGRP[133]:=[# 129024.1 [[1,"abcuvwxyzde", function(a,b,c,u,v,w,x,y,z,d,e) return [[a^2,b^3,(a*b)^7,b^-1*(a*b)^3*c^-1,c*b^-1 *c*b*a^-1*b^-1*c^-1*b *c^-1*a,u^2,v^2,w^2,x^2,y^2,z^2,d^2,e^2, u^-1*v^-1*u*v,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,u^-1*d^-1*u*d, u^-1*e^-1*u*e,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,v^-1*d^-1*v*d, v^-1*e^-1*v*e,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, w^-1*d^-1*w*d,w^-1*e^-1*w*e, x^-1*y^-1*x*y,x^-1*z^-1*x*z, x^-1*d^-1*x*d,x^-1*e^-1*x*e, y^-1*z^-1*y*z,y^-1*d^-1*y*d, y^-1*e^-1*y*e,z^-1*d^-1*z*d, z^-1*e^-1*z*e,d^-1*e^-1*d*e, a^-1*u*a*(u*x)^-1,a^-1*v*a*(v*y)^-1, a^-1*w*a*(w*z)^-1,a^-1*x*a*x^-1, a^-1*y*a*y^-1,a^-1*z*a*z^-1, a^-1*d*a*d^-1,a^-1*e*a*e^-1, b^-1*u*b*(x*y*d)^-1, b^-1*v*b*(y*z*e)^-1, b^-1*w*b*(x*y*z)^-1, b^-1*x*b*(v*w*x)^-1, b^-1*y*b*(u*v*w*y)^-1, b^-1*z*b*(u*w*z)^-1,b^-1*d*b*d^-1, b^-1*e*b*e^-1,c^-1*u*c*(v*d)^-1, c^-1*v*c*(w*d)^-1, c^-1*w*c*(u*v*e)^-1, c^-1*x*c*(x*z*d)^-1, c^-1*y*c*(x*e)^-1,c^-1*z*c*y^-1, c^-1*d*c*d^-1,c^-1*e*c*e^-1], [[b^-1*c,u*d,e],[b^-1*c,u*e,d]]]; end, [112,112]], "L2(8) 2^6 E ( 2^1 x 2^1 )",[16,8,1],4, 4,[112,112]], # 129024.2 [[1,"abcuvwxyzf", function(a,b,c,u,v,w,x,y,z,f) return [[a^2*f,b^3,(a*b)^7,b^-1*(a*b)^3*c^-1,b^-1 *c^-1*b*c^-1*a^-1*c *b^-1*c*b*a*(y*z*f^2)^-1,f^4,u^2, v^2*f^2,w^2,x^2*f^2,y^2,z^2*f^2, u^-1*v^-1*u*v,u^-1*w^-1*u*w, u^-1*x^-1*u*x*f^2,u^-1*y^-1*u*y *f^2,u^-1*z^-1*u*z,u^-1*f^-1*u*f, v^-1*w^-1*v*w,v^-1*x^-1*v*x*f^2, v^-1*y^-1*v*y,v^-1*z^-1*v*z, v^-1*f^-1*v*f,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z*f^2, w^-1*f^-1*w*f,x^-1*y^-1*x*y, x^-1*z^-1*x*z,x^-1*f^-1*x*f, y^-1*z^-1*y*z,y^-1*f^-1*y*f, z^-1*f^-1*z*f,a^-1*u*a*(u*x)^-1, a^-1*v*a*(v*y*f^2)^-1, a^-1*w*a*(w*z)^-1, a^-1*x*a*(x*f^2)^-1,a^-1*y*a*y^-1, a^-1*z*a*(z*f^2)^-1,a^-1*f*a*f^-1, b^-1*u*b*(x*y*f^-1)^-1, b^-1*v*b*(y*z*f^2)^-1, b^-1*w*b*(x*y*z*f^2)^-1, b^-1*x*b*(v*w*x)^-1, b^-1*y*b*(u*v*w*y*f^2)^-1, b^-1*z*b*(u*w*z*f^-1)^-1, b^-1*f*b*f^-1, c^-1*u*c*(v*f^-1)^-1, c^-1*v*c*(w*f^-1)^-1, c^-1*w*c*(u*v*f)^-1, c^-1*x*c*(x*z*f)^-1, c^-1*y*c*(x*f)^-1, c^-1*z*c*(y*f^-1)^-1, c^-1*f*c*f^-1],[[c^-1*v^-1*a, w*c]]]; end, [288],[[1,2],[11,11,11]]], "L2(8) N ( 2^6 E 2^1 A ) C 2^1",[16,8,2],4, 4,288], # 129024.3 [[1,"abcuvwxyzdf", function(a,b,c,u,v,w,x,y,z,d,f) return [[a^2*f,b^3,(a*b)^7,b^-1*(a*b)^3*c^-1,b^-1 *c^-1*b*c^-1*a^-1*c *b^-1*c*b*a*(y*z*d)^-1,d^2,f^2,u^2, v^2,w^2,x^2,y^2,z^2,u^-1*v^-1*u*v, u^-1*w^-1*u*w,u^-1*x^-1*u*x, u^-1*y^-1*u*y,u^-1*z^-1*u*z, u^-1*d^-1*u*d,u^-1*f^-1*u*f, v^-1*w^-1*v*w,v^-1*x^-1*v*x, v^-1*y^-1*v*y,v^-1*z^-1*v*z, v^-1*d^-1*v*d,v^-1*f^-1*v*f, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,w^-1*d^-1*w*d, w^-1*f^-1*w*f,x^-1*y^-1*x*y, x^-1*z^-1*x*z,x^-1*d^-1*x*d, x^-1*f^-1*x*f,y^-1*z^-1*y*z, y^-1*d^-1*y*d,y^-1*f^-1*y*f, z^-1*d^-1*z*d,z^-1*f^-1*z*f, a^-1*u*a*(u*x)^-1,a^-1*v*a*(v*y)^-1, a^-1*w*a*(w*z)^-1,a^-1*x*a*x^-1, a^-1*y*a*y^-1,a^-1*z*a*z^-1, a^-1*d*a*d^-1,a^-1*f*a*f^-1, b^-1*u*b*(x*y*f^-1)^-1, b^-1*v*b*(y*z)^-1, b^-1*w*b*(x*y*z*d)^-1, b^-1*x*b*(v*w*x)^-1, b^-1*y*b*(u*v*w*y*d)^-1, b^-1*z*b*(u*w*z*f^-1)^-1, b^-1*d*b*d^-1,b^-1*f*b*f^-1, c^-1*u*c*(v*d*f^-1)^-1, c^-1*v*c*(w*d*f^-1)^-1, c^-1*w*c*(u*v*f)^-1, c^-1*x*c*(x*z*d*f)^-1, c^-1*y*c*(x*d*f)^-1, c^-1*z*c*(y*f^-1)^-1, c^-1*d*c*d^-1,c^-1*f*c*f^-1], [[b^-1*c,u*f,d],[b^-1*c*d,u*d,f]]]; end, [112,112],[[1,2]]], "L2(8) N 2^6 E ( 2^1 x 2^1 ) I",[16,8,3],4, 4,[112,112]], # 129024.4 [[1,"abcuvwxyzde", function(a,b,c,u,v,w,x,y,z,d,e) return [[a^2,b^3,(a*b)^7,b^-1*(a*b)^3*c^-1,b^-1*c ^-1*b*c^-1*a^-1*c*b^-1 *c*b*a*(y*z*d)^-1,d^2,e^2,u^2,v^2,w^2, x^2,y^2,z^2,u^-1*v^-1*u*v, u^-1*w^-1*u*w,u^-1*x^-1*u*x, u^-1*y^-1*u*y,u^-1*z^-1*u*z, u^-1*d^-1*u*d,u^-1*e^-1*u*e, v^-1*w^-1*v*w,v^-1*x^-1*v*x, v^-1*y^-1*v*y,v^-1*z^-1*v*z, v^-1*d^-1*v*d,v^-1*e^-1*v*e, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,w^-1*d^-1*w*d, w^-1*e^-1*w*e,x^-1*y^-1*x*y, x^-1*z^-1*x*z,x^-1*d^-1*x*d, x^-1*e^-1*x*e,y^-1*z^-1*y*z, y^-1*d^-1*y*d,y^-1*e^-1*y*e, z^-1*d^-1*z*d,z^-1*e^-1*z*e, a^-1*u*a*(u*x)^-1,a^-1*v*a*(v*y)^-1, a^-1*w*a*(w*z)^-1,a^-1*x*a*x^-1, a^-1*y*a*y^-1,a^-1*z*a*z^-1, a^-1*d*a*d^-1,a^-1*e*a*e^-1, b^-1*u*b*(x*y)^-1, b^-1*v*b*(y*z*e)^-1, b^-1*w*b*(x*y*z*d*e)^-1, b^-1*x*b*(v*w*x*e)^-1, b^-1*y*b*(u*v*w*y*d*e)^-1, b^-1*z*b*(u*w*z*e)^-1,b^-1*d*b*d^-1 ,b^-1*e*b*e^-1,c^-1*u*c*(v*d)^-1, c^-1*v*c*(w*d*e)^-1, c^-1*w*c*(u*v)^-1, c^-1*x*c*(x*z*d)^-1, c^-1*y*c*(x*d*e)^-1,c^-1*z*c*y^-1, c^-1*d*c*d^-1,c^-1*e*c*e^-1], [[b^-1*c*d,u*d,e],[b^-1*c*e,u*e,d]]]; end, [112,112]], "L2(8) N 2^6 E ( 2^1 x 2^1 ) II",[16,8,4],4, 4,[112,112]], # 129024.5 [[1,"abcuvwxyzde", function(a,b,c,u,v,w,x,y,z,d,e) return [[a^2*e^-1,b^3,(a*b)^7,b^-1*(a*b)^3*c^-1, b^-1*c^-1*b*c^-1*a^-1*c*b^-1*c *b*a*(y*z*d)^-1,d^2,e^2,u^2,v^2,w^2,x^2, y^2,z^2,u^-1*v^-1*u*v,u^-1*w^-1*u*w ,u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,u^-1*d^-1*u*d, u^-1*e^-1*u*e,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,v^-1*d^-1*v*d, v^-1*e^-1*v*e,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, w^-1*d^-1*w*d,w^-1*e^-1*w*e, x^-1*y^-1*x*y,x^-1*z^-1*x*z, x^-1*d^-1*x*d,x^-1*e^-1*x*e, y^-1*z^-1*y*z,y^-1*d^-1*y*d, y^-1*e^-1*y*e,z^-1*d^-1*z*d, z^-1*e^-1*z*e,a^-1*u*a*(u*x)^-1, a^-1*v*a*(v*y)^-1,a^-1*w*a*(w*z)^-1, a^-1*x*a*x^-1,a^-1*y*a*y^-1, a^-1*z*a*z^-1,a^-1*d*a*d^-1, a^-1*e*a*e^-1,b^-1*u*b*(x*y*e)^-1, b^-1*v*b*(y*z*e)^-1, b^-1*w*b*(x*y*z*d*e)^-1, b^-1*x*b*(v*w*x*e)^-1, b^-1*y*b*(u*v*w*y*d*e)^-1, b^-1*z*b*(u*w*z)^-1,b^-1*d*b*d^-1, b^-1*e*b*e^-1,c^-1*u*c*(v*d*e)^-1, c^-1*v*c*(w*d)^-1, c^-1*w*c*(u*v*e)^-1, c^-1*x*c*(x*z*d*e)^-1, c^-1*y*c*(x*d)^-1,c^-1*z*c*(y*e)^-1, c^-1*d*c*d^-1,c^-1*e*c*e^-1], [[b^-1*c*d,u*d,e],[b^-1*c*e,u,d]]]; end, [112,112],[[1,2]]], "L2(8) N 2^6 E ( 2^1 x 2^1 ) III",[16,8,5],4, 4,[112,112]], # 129024.6 [[1,"abcstuvwxyz", function(a,b,c,s,t,u,v,w,x,y,z) return [[a^2,b^3,(a*b)^7,b^-1*(a*b)^3*c^-1,b^-1*c ^-1*b*c^-1*a^-1*c*b^-1 *c*b*a,s^2,t^2,u^2,v^2,w^2,x^2,y^2,z^2, s^-1*t^-1*s*t,s^-1*u^-1*s*u, s^-1*v^-1*s*v,s^-1*w^-1*s*w, s^-1*x^-1*s*x,s^-1*y^-1*s*y, s^-1*z^-1*s*z,t^-1*u^-1*t*u, t^-1*v^-1*t*v,t^-1*w^-1*t*w, t^-1*x^-1*t*x,t^-1*y^-1*t*y, t^-1*z^-1*t*z,u^-1*v^-1*u*v, u^-1*w^-1*u*w,u^-1*x^-1*u*x, u^-1*y^-1*u*y,u^-1*z^-1*u*z, v^-1*w^-1*v*w,v^-1*x^-1*v*x, v^-1*y^-1*v*y,v^-1*z^-1*v*z, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*s*a*s^-1,a^-1*t*a*v^-1, a^-1*u*a*y^-1,a^-1*v*a*t^-1, a^-1*w*a*x^-1,a^-1*x*a*w^-1, a^-1*y*a*u^-1, a^-1*z*a*(s*t*u*v*w*x*y*z)^-1, b^-1*s*b*u^-1,b^-1*t*b*s^-1, b^-1*u*b*t^-1,b^-1*v*b*x^-1, b^-1*w*b*v^-1,b^-1*x*b*w^-1, b^-1*y*b*z^-1, b^-1*z*b*(s*t*u*v*w*x*y*z)^-1, c^-1*s*c*s^-1,c^-1*t*c*t^-1, c^-1*u*c*y^-1,c^-1*v*c*w^-1, c^-1*w*c*u^-1,c^-1*x*c*z^-1, c^-1*y*c*(s*t*u*v*w*x*y*z)^-1, c^-1*z*c*v^-1],[[a,c,t*z]]]; end, [18]], "L2(8) 2^8",[16,8,6],1, 4,18] ]; PERFGRP[134]:=[# 129600.1 [[2,60,1,2160,1], "( A5 x A6 3^1 ) 2^1 [1]",[33,1,1],6, [1,3],[5,18,80]], # 129600.2 [[2,120,1,1080,1], "( A5 x A6 3^1 ) 2^1 [2]",[33,1,2],6, [1,3],[24,18]], # 129600.3 [[3,120,1,2160,1,"d1","d2"], "( A5 x A6 3^1 ) 2^1 [3]",[33,1,3],6, [1,3],[216,960]], # 129600.4 [[2,360,1,360,1], "A6 x A6",40,1, [3,3],[6,6]] ]; PERFGRP[135]:=[# 131040.1 [[2,60,1,2184,1], "( A5 x L2(13) ) 2^1 [1]",40,2, [1,6],[5,56]], # 131040.2 [[2,120,1,1092,1], "( A5 x L2(13) ) 2^1 [2]",40,2, [1,6],[24,14]], # 131040.3 [[3,120,1,2184,1,"d1","a2","a2"], "( A5 x L2(13) ) 2^1 [3]",40,2, [1,6],672] ]; PERFGRP[136]:=[# 131712.1 [[4,2688,1,16464,2,336,1,1], "L3(2) # 2^4 7^2 [1]",12,1, 2,[8,16,49]], # 131712.2 [[4,2688,3,16464,2,336,3,1], "L3(2) # 2^4 7^2 [2]",12,1, 2,[16,14,49]] ]; PERFGRP[137]:=[# 138240.1 [[4,46080,1,1080,2,360,1,1], "A6 3^1 x 2^1 x ( 2^4 E 2^1 A ) C 2^1",[13,7,1],24, 3,[64,80,18]], # 138240.2 [[1,"abcduvwxyz", function(a,b,c,d,u,v,w,x,y,z) return [[a^6*d^-1,b^3,c^3,(b*c)^4*d^-1,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,d^2, d^-1*b^-1*d*b,d^-1*c^-1*d*c,u^2, v^2,w^2,x^2,y^2,z^2,u^-1*v^-1*u*v, u^-1*w^-1*u*w,u^-1*x^-1*u*x, u^-1*y^-1*u*y,u^-1*z^-1*u*z, v^-1*w^-1*v*w,v^-1*x^-1*v*x, v^-1*y^-1*v*y,v^-1*z^-1*v*z, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*u*a*(v*x)^-1, a^-1*v*a*(u*v*w*x)^-1,a^-1*w*a*x^-1 ,a^-1*x*a*(w*x)^-1, a^-1*y*a*(x*z)^-1, a^-1*z*a*(w*x*y*z)^-1,b^-1*u*b*u^-1 ,b^-1*v*b*v^-1,b^-1*w*b*(u*x)^-1, b^-1*x*b*(v*w*x)^-1, b^-1*y*b*(u*y*z)^-1, b^-1*z*b*(v*y)^-1,c^-1*u*c*w^-1, c^-1*v*c*x^-1,c^-1*w*c*(y*z)^-1, c^-1*x*c*y^-1,c^-1*y*c*v^-1, c^-1*z*c*(u*v)^-1],[[b,c],[c*b*a*d,b,u]]]; end, [64,80]], "A6 ( ( 3^1 2^6 ) x 2^1 )",[13,7,2],2, 3,[64,80]] ]; PERFGRP[138]:=[# 144060.1 [[1,"abwxyz", function(a,b,w,x,y,z) return [[a^2,b^3,(a*b)^5,w^7,x^7,y^7,z^7,w^-1*x^-1*w *x,w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*w*a*z^-1, a^-1*x*a*x^-1,a^-1*y*a*w*x*y*z, a^-1*z*a*w^-1,b^-1*w*b*x^-1, b^-1*x*b*y^-1,b^-1*y*b*w^-1, b^-1*z*b*z^-1], [[b,a*b*a*b^-1*a,w*x^-1]]]; end, [35]], "A5 7^4",[4,4,1],1, 1,35] ]; PERFGRP[139]:=[# 146880.1 [[2,60,1,2448,1], "A5 x L2(17)",40,1, [1,7],[5,18]] ]; PERFGRP[140]:=[# 148824.1 [[1,"abc", function(a,b,c) return [[c^26*a^2,c*b^4*c^-1*b^-1,b^53,a^4,a^2*b^(-1 *1)*a^2*b,a^2*c^-1*a^2*c, c*a*c*a^-1,(b*a)^3, c^(-1*3)*b*c*b*c^2*a*b^2*a*c*b^2*a],[[b,c^4]]] ; end, [216]], "L2(53) 2^1 = SL(2,53)",22,-2, 30,216] ]; PERFGRP[141]:=[# 150348.1 [[1,"abc", function(a,b,c) return [[c^33,c*b^4*c^-1*b^-1,b^67,a^2,c*a*c*a^-1, (b*a)^3],[[b,c]]]; end, [68]], "L2(67)",22,-1, 35,68] ]; PERFGRP[142]:=[# 151200.1 [[2,60,1,2520,1], "A5 x A7",40,1, [1,8],[5,7]] ]; PERFGRP[143]:=[# 151632.1 [[1,"abxyz", function(a,b,x,y,z) return [[a^2,b^3,(a*b)^13,(a^-1*b^-1*a*b)^4,(a*b)^4*a *b^-1*(a*b)^4*a*b^-1*(a*b)^2 *(a*b^-1)^2*a*b*(a*b^-1)^2*(a*b)^2 *a*b^-1,x^3,y^3,z^3,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*x*a*(x*z)^-1,a^-1*y*a*y, a^-1*z*a*z,b^-1*x*b*x*y, b^-1*y*b*x^-1,b^-1*z*b*(x*y*z)^-1], [[a,b]]]; end, [27]], "L3(3) 3^3",[24,3,1],1, 11,27] ]; PERFGRP[144]:=[# 155520.1 [[1,"abdwxyzstuv", function(a,b,d,w,x,y,z,s,t,u,v) return [[a^2*d^-1,b^3,(a*b)^5,d^2,a^-1*d^-1*a*d, b^-1*d^-1*b*d,d^-1*w^-1*d*w, d^-1*x^-1*d*x,d^-1*y^-1*d*y, d^-1*z^-1*d*z,w^2,x^2,y^2,z^2,(w*x)^2*d, (w*y)^2*d,(w*z)^2*d,(x*y)^2*d,(x*z)^2*d,(y*z)^2*d, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w*x*y*z)^-1,a^-1*z*a*w^-1 ,b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1,s^3, t^3,u^3,v^3,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*s*a*(s*t*u*v)^-1 ,a^-1*t*a*(s^-1*t*u*v^-1)^-1, a^-1*u*a*(s^-1*u^-1*v)^-1, a^-1*v*a*(t*u^-1*v^-1)^-1, b^-1*s*b*(s^-1*t^-1*u*v^-1)^-1, b^-1*t*b*(s^-1*v^-1)^-1, b^-1*u*b*(s*t^-1*u^-1*v^-1)^-1, b^-1*v*b*(t^-1*u^-1)^-1, d^-1*s*d*s,d^-1*t*d*t,d^-1*u*d*u, d^-1*v*d*v,w^-1*s*w*s^-1, w^-1*t*w*(s^-1*t*v)^-1, w^-1*u*w*(s*t*u^-1*v^-1)^-1, w^-1*v*w*(s^-1*v^-1)^-1, x^-1*s*x*(s*t*u*v^-1)^-1, x^-1*t*x*t^-1, x^-1*u*x*(s^-1*v^-1)^-1, x^-1*v*x*(s^-1*t^-1*u*v)^-1, y^-1*s*y*(s*v^-1)^-1, y^-1*t*y*(t*u*v^-1)^-1,y^-1*u*y*u, y^-1*v*y*v, z^-1*s*z*(s*t^-1*u^-1*v^-1)^-1, z^-1*t*z*(s*u*v)^-1, z^-1*u*z*(t*u^-1*v)^-1, z^-1*v*z*(s^-1*t*u^-1)^-1], [[a,b,w]]]; end, [81]], "A5 2^4' C N 2^1 3^4",[7,4,1],1, 1,81], # 155520.2 [[4,1920,1,4860,1,60], "A5 # 2^5 3^4 [1]",6,2, 1,[12,15]], # 155520.3 [[4,1920,2,4860,1,60], "A5 # 2^5 3^4 [2]",6,2, 1,[24,15]], # 155520.4 [[4,1920,3,4860,1,60], "A5 # 2^5 3^4 [3]",6,2, 1,[16,24,15]], # 155520.5 [[4,1920,4,4860,1,60], "A5 # 2^5 3^4 [4]",6,1, 1,[80,15]], # 155520.6 [[4,1920,5,4860,1,60], "A5 # 2^5 3^4 [5]",6,2, 1,[10,24,15]], # 155520.7 [[4,1920,6,4860,1,60], "A5 # 2^5 3^4 [6]",6,2, 1,[80,15]], # 155520.8 [[4,1920,7,4860,1,60], "A5 # 2^5 3^4 [7]",6,2, 1,[32,15]], # 155520.9 [[4,1920,1,4860,2,60], "A5 # 2^5 3^4 [8]",6,2, 1,[12,60]], # 155520.10 [[4,1920,2,4860,2,60], "A5 # 2^5 3^4 [9]",6,2, 1,[24,60]], # 155520.11 [[4,1920,3,4860,2,60], "A5 # 2^5 3^4 [10]",6,2, 1,[16,24,60]], # 155520.12 [[4,1920,4,4860,2,60], "A5 # 2^5 3^4 [11]",6,1, 1,[80,60]], # 155520.13 [[4,1920,5,4860,2,60], "A5 # 2^5 3^4 [12]",6,2, 1,[10,24,60]], # 155520.14 [[4,1920,6,4860,2,60], "A5 # 2^5 3^4 [13]",6,2, 1,[80,60]], # 155520.15 [[4,1920,7,4860,2,60], "A5 # 2^5 3^4 [14]",6,2, 1,[32,60]], # 155520.16 [[4,1920,3,9720,4,120,3,3], "A5 # 2^5 3^4 [15]",6,1, 1,[16,24,45]], # 155520.17 [[4,1920,4,9720,4,120,4,3], "A5 # 2^5 3^4 [16]",6,1, 1,[80,45]], # 155520.18 [[4,1920,5,9720,4,120,5,3], "A5 # 2^5 3^4 [17]",6,1, 1,[10,24,45]] ]; PERFGRP[145]:=[# 158400.1 [[2,120,1,1320,1], "( A5 x L2(11) ) 2^2",[36,2,1],4, [1,5],[24,24]] ]; PERFGRP[146]:=[# 159720.1 [[1,"abxyz", function(a,b,x,y,z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,x^11,y^11,z^11, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*x*a*z^-1, a^-1*y*a*y,a^-1*z*a*x^-1, b^-1*x*b*(x*y^(-1*5)*z^(-1*2))^-1, b^-1*y*b*(x^(-1*4)*y^-1)^-1, b^-1*z*b*x^(-1*5)], [[a*b,z],[a*b,b*a*b*a*b^-1*a*b^-1,y*z^5]]]; end, [24,66]], "A5 2^1 11^3",[5,3,1],2, 1,[24,66]], # 159720.2 [[1,"abyzd", function(a,b,y,z,d) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,d^11,d^-1*y ^-1*d*y,d^-1*z^-1*d*z,y^11,z^11, y^-1*z^-1*y*z*d^-1, a^-1*y*a*z^-1,a^-1*z*a*y, a^-1*d*a*d^-1, b^-1*y*b*(y^-1*z^(-1*3)*d^4)^-1, b^-1*z*b*y^(-1*4)],[[a,b]]]; end, [1331]], "A5 2^1 11^2 C 11^1",[5,3,2],11, 1,1331], # 159720.3 [[1,"abyz", function(a,b,y,z) return [[a^4,b^3,(a*b)^11,a^2*b^-1*a^2*b,(a*b*a*b*a*b*a *b*a*b^-1*a*b^-1*a*b^-1 *a*b^-1*a*b^-1)^2*a^2,y^11,z^11, y^-1*z^-1*y*z,a^-1*y*a*z, a^-1*z*a*y^-1,b^-1*y*b*z^-1, b^-1*z*b*(y^-1*z^-1)^-1],[[a,b]]]; end, [121]], "L2(11) 2^1 11^2",[19,2,1],1, 5,121] ]; PERFGRP[147]:=[# 160380.1 [[1,"abvwxyz", function(a,b,v,w,x,y,z) return [[a^2,b^3,(a*b)^11,(a*b)^4*(a*b^-1)^5*(a*b)^4*(a *b^-1)^5,v^3,w^3,x^3,y^3,z^3, v^-1*w^-1*v*w,v^-1*x^-1*v*x, v^-1*y^-1*v*y,v^-1*z^-1*v*z, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*v*a*v^-1,a^-1*w*a*w^-1, a^-1*x*a*(v^2*x^2*y)^-1, a^-1*y*a*y^-1,a^-1*z*a*(w*y*z^2)^-1 ,b^-1*v*b*w^-1,b^-1*w*b*x^-1, b^-1*x*b*v^-1,b^-1*y*b*(y^2*z)^-1, b^-1*z*b*y^(-1*2)],[[b,a*b*a*b^-1*a,y*z]] ]; end, [33]], "L2(11) 3^5",[18,5,1],1, 5,33] ]; PERFGRP[148]:=[# 161280.1 [[1,"abuvwxyz", function(a,b,u,v,w,x,y,z) return [[a^2,b^4,(a*b)^7,(a*b)^2*a*b^2*(a*b*a*b^-1)^2 *(a*b)^2*(a*b^-1)^2*a*b*a*b^-1,u^2, v^2,w^2,x^2,y^2,z^2,u^-1*v^-1*u*v, u^-1*w^-1*u*w,u^-1*x^-1*u*x, u^-1*y^-1*u*y,u^-1*z^-1*u*z, v^-1*w^-1*v*w,v^-1*x^-1*v*x, v^-1*y^-1*v*y,v^-1*z^-1*v*z, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*u*a*u^-1,a^-1*v*a*v^-1, a^-1*w*a*y^-1,a^-1*x*a*x^-1, a^-1*y*a*w^-1, a^-1*z*a*(u*v*w*x*y*z)^-1, b^-1*u*b*w^-1,b^-1*v*b*z^-1, b^-1*w*b*v^-1,b^-1*x*b*y^-1, b^-1*y*b*x^-1,b^-1*z*b*u^-1], [[a,b^2*a*b^-1*(a*b*a*b*b)^2*(a*b)^2, b*(a*b^-1)^2*a*b^2*(a*b)^2,y*z]]]; end, [14]], "A7 2^6",[23,6,1],1, 8,14], # 161280.2 [[1,"abef", function(a,b,e,f) return [[a^2,b^4*f^(-1*2),(a*b)^7*e,(a*b^2)^5*(e*f)^-1, (a^-1*b^-1*a*b)^5*f^(-1*2), (a*b*a*b*a*b^3)^5*f,(a*b*a*b*a*b^2*a*b^-1) ^5,e^2,f^4,e^-1*f^-1*e*f, a^-1*e*a*e^-1,a^-1*f*a*f^-1, b^-1*e*b*e^-1,b^-1*f*b*f^-1], [[a,b*a*b*a*b^-1*a*b^2*f^-1], [a*e^2,b^-1*a*b^-1*a*b*a*b^2]]]; end, [224,112]], "L3(4) 2^1 x ( 2^1 A 2^1 )",[27,3,1],-8, 20,[224,112]], # 161280.3 [[2,60,1,2688,1], "( A5 x L3(2) ) # 2^4 [1]",[31,4,1],2, [1,2],[5,8,16]], # 161280.4 [[2,60,1,2688,2], "( A5 x L3(2) ) # 2^4 [2]",[31,4,2],2, [1,2],[5,16]], # 161280.5 [[2,60,1,2688,3], "( A5 x L3(2) ) # 2^4 [3]",[31,4,3],2, [1,2],[5,16,14]], # 161280.6 [[2,120,1,1344,1], "( A5 x L3(2) ) # 2^4 [4]",[31,4,4],2, [1,2],[24,8]], # 161280.7 [[2,120,1,1344,2], "( A5 x L3(2) ) # 2^4 [5]",[31,4,5],2, [1,2],[24,14]], # 161280.8 [[3,120,1,2688,1,"d1","d2"], "( A5 x L3(2) ) # 2^4 [6]",[31,4,6],2, [1,2],[96,192]], # 161280.9 [[3,120,1,2688,2,"d1","e2"], "( A5 x L3(2) ) # 2^4 [7]",[31,4,7],2, [1,2],192], # 161280.10 [[3,120,1,2688,3,"d1","d2"], "( A5 x L3(2) ) # 2^4 [8]",[31,4,8],2, [1,2],[192,168]], # 161280.11 [[2,960,1,168,1], "( A5 x L3(2) ) # 2^4 [9]",[31,4,9],1, [1,2],[16,7]], # 161280.12 [[2,960,2,168,1], "( A5 x L3(2) ) # 2^4 [10]",[31,4,10],1, [1,2],[10,7]] ]; PERFGRP[149]:=[# 169344.1 [[2,336,1,504,1], "L3(2) 2^1 x L2(8)",[38,1,1],2, [2,4],[16,9]] ]; PERFGRP[150]:=fail; PERFGRP[151]:=[# 174960.1 [[1,"abcdwxyz", function(a,b,c,d,w,x,y,z) return [[a^4*d,b^3,c^3*(w*x*y^-1)^-1,(b*c)^4*(a^2*d ^-1)^-1,(b*c^-1)^5, a^2*d^-1*b*(a^2*d^-1)^-1*b^-1, a^2*d^-1*c*(a^2*d^-1)^-1*c^-1, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,d^3, w^3,x^3,y^3,z^3,d^-1*w^-1*d*w, d^-1*x^-1*d*x,d^-1*y^-1*d*y, d^-1*z^-1*d*z,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*d*a*d^-1, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, b^-1*d*b*(d*w*y^-1*z)^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1, c^-1*d*c*(d*x^-1*z^-1)^-1, c^-1*w*c*(w^-1*x*y^-1*z^-1)^-1, c^-1*x*c*(x^-1*z)^-1, c^-1*y*c*(w*x^-1)^-1,c^-1*z*c*x], [[c*b*a^-1,b,w],[b,c*a*b*c,d*y^-1*z]]]; end, [80,30]], "A6 2^1 x 3^1 E 3^4' I",[14,5,1],2, 3,[80,30]], # 174960.2 [[1,"abcdwxyz", function(a,b,c,d,w,x,y,z) return [[a^4*d,b^3*(w*x*y*z^-1)^-1,c^3*(w*y^-1 *z^-1)^-1,(b*c)^4*(a^2*d^-1)^-1, (b*c^-1)^5,a^2*d^-1*b*(a^2*d^-1)^-1 *b^-1,a^2*d^-1*c*(a^2*d^-1)^-1 *c^-1,a^-1*b^-1*c*b*c*b^-1*c*b *c^-1,d^3,w^3,x^3,y^3,z^3,d^-1*w^-1*d *w,d^-1*x^-1*d*x,d^-1*y^-1*d*y, d^-1*z^-1*d*z,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*d*a*d^-1, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, b^-1*d*b*(d*w*x^-1*z)^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1, c^-1*d*c*(d*x)^-1, c^-1*w*c*(w^-1*x*y^-1*z^-1)^-1, c^-1*x*c*(x^-1*z)^-1, c^-1*y*c*(w*x^-1)^-1,c^-1*z*c*x], [[c*b*a^-1,b,w],[b*w^-1,c*a*b*c]]]; end, [80,30]], "A6 2^1 x 3^1 E 3^4' II",[14,5,2],2, 3,[80,30]], # 174960.3 [[1,"abcwxyzf", function(a,b,c,w,x,y,z,f) return [[a^4,b^3,c^3,(b*c)^4*a^2,(b*c^-1)^5,a^2*b*a^2 *b^-1,a^2*c*a^2*c^-1, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,w^3, x^3,y^3,z^3,f^3,w^-1*f^-1*w*f, x^-1*f^-1*x*f,y^-1*f^-1*y*f, z^-1*f^-1*z*f,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*w*a*z^-1, a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, a^-1*f*a*f^-1,b^-1*w*b*x^-1, b^-1*x*b*y^-1,b^-1*y*b*w^-1, b^-1*z*b*z^-1,b^-1*f*b*f^-1, c^-1*w*c*(w^-1*x*y^-1*z^-1*f)^-1 ,c^-1*x*c*(x^-1*z*f)^-1, c^-1*y*c*(w*x^-1*f)^-1, c^-1*z*c*(x^-1*f^-1)^-1, c^-1*f*c*f^-1], [[c*b*a^-1,b,w],[a,b,w]]]; end, [80,18]], "A6 2^1 x 3^4' E 3^1 I",[14,5,3],6, 3,[80,18]], # 174960.4 [[1,"abcwxyze", function(a,b,c,w,x,y,z,e) return [[a^4,b^3,c^3,(b*c)^4*a^2,(b*c^-1)^5,a^2*b*a^2 *b^-1,a^2*c*a^2*c^-1, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,w^3, x^3,y^3,z^3,e^3,w^-1*e^-1*w*e, x^-1*e^-1*x*e,y^-1*e^-1*y*e, z^-1*e^-1*z*e,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*w*a*z^-1, a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, a^-1*e*a*e^-1,b^-1*w*b*x^-1, b^-1*x*b*(y*e^-1)^-1, b^-1*y*b*(w*e)^-1,b^-1*z*b*(z*e)^-1, b^-1*e*b*e^-1, c^-1*w*c*(w^-1*x*y^-1*z^-1*e^-1) ^-1,c^-1*x*c*(x^-1*z*e^-1)^-1, c^-1*y*c*(w*x^-1*e^-1)^-1, c^-1*z*c*(x^-1*e)^-1, c^-1*e*c*e^-1], [[c*b*a^-1,b,w],[a*b,b*a*b*a*b^-1*a*b^-1 ,w*e]]]; end, [80,108]], "A6 2^1 x 3^4' E 3^1 II",[14,5,4],6, 3,[80,108]], # 174960.5 [[1,"abcwxyzd", function(a,b,c,w,x,y,z,d) return [[a^4*d,b^3,c^3,(b*c)^4*(a^2*d^-1)^-1,(b*c^(-1 *1))^5,a^2*d^-1*b*(a^2*d^-1)^-1 *b^-1,a^2*d^-1*c*(a^2*d^-1)^-1 *c^-1,a^-1*b^-1*c*b*c*b^-1*c*b *c^-1,d^3,b^-1*d*b*d^-1, c^-1*d*c*d^-1,w^3,x^3,y^3,z^3, w^-1*d^-1*w*d,x^-1*d^-1*x*d, y^-1*d^-1*y*d,z^-1*d^-1*z*d, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1, c^-1*w*c*(w^-1*x*y^-1*z^-1)^-1, c^-1*x*c*(x^-1*z)^-1, c^-1*y*c*(w*x^-1)^-1, c^-1*z*c*x], [[c*b*a^-1,b,w],[a*d,c*d,w],[b,c*a*b*c,z]]]; end, [80,18,30]], "A6 2^1 x 3^1 x 3^4'",[14,5,5],6, 3,[80,18,30]], # 174960.6 [[1,"abcdstuv", function(a,b,c,d,s,t,u,v) return [[a^4*d,b^3,c^3,(b*c)^4*a^(-1*2)*d,(b*c^-1)^5,a^(-1 *1)*b^-1*c*b*c*b^-1*c*b *c^-1,a^(-1*2)*b^-1*a^2*b, a^(-1*2)*c^-1*a^2*c,d^3,b^-1*d^-1*b*d, c^-1*d^-1*c*d,s^3,t^3,u^3,v^3, s^-1*d^-1*s*d,t^-1*d^-1*t*d, u^-1*d^-1*u*d,v^-1*d^-1*v*d, s^-1*t^-1*s*t,s^-1*u^-1*s*u, s^-1*v^-1*s*v,t^-1*u^-1*t*u, t^-1*v^-1*t*v,u^-1*v^-1*u*v, a^-1*s*a*u^-1,a^-1*t*a*v^-1, a^-1*u*a*s,a^-1*v*a*t, b^-1*s*b*(s*v^-1)^-1, b^-1*t*b*(t*u^-1*v)^-1, b^-1*u*b*u^-1,b^-1*v*b*v^-1, c^-1*s*c*(s^-1*t*u^-1*v)^-1, c^-1*t*c*(s*t*u*v)^-1, c^-1*u*c*(s^-1*v^-1)^-1, c^-1*v*c*(t^-1*u^-1*v)^-1], [[a*d,c*d,s],[a,b,c]]]; end, [18,81]], "A6 2^1 x 3^1 x 3^4",[14,5,6],3, 3,[18,81]], # 174960.7 [[1,"abcstuvd", function(a,b,c,s,t,u,v,d) return [[a^4*d,b^3,c^3,(b*c)^4*a^(-1*2)*d,(b*c^-1)^5,a^(-1 *1)*b^-1*c*b*c*b^-1*c*b *c^-1,a^(-1*2)*b^-1*a^2*b, a^(-1*2)*c^-1*a^2*c,s^3,t^3,u^3,v^3,d^3, d^-1*s^-1*d*s,d^-1*t^-1*d*t, d^-1*u^-1*d*u,d^-1*v^-1*d*v, s^-1*t^-1*s*t,s^-1*u^-1*s*u, s^-1*v^-1*s*v*d,t^-1*u^-1*t*u*d, t^-1*v^-1*t*v*d^-1,u^-1*v^-1*u *v,a^-1*s*a*(u*d)^-1, a^-1*t*a*(v*d^-1)^-1,a^-1*u*a*s, a^-1*v*a*t,a^-1*d*a*d^-1, b^-1*s*b*(s*v^-1)^-1, b^-1*t*b*(t*u^-1*v*d)^-1, b^-1*u*b*u^-1,b^-1*v*b*v^-1, b^-1*d*b*d^-1, c^-1*s*c*(s^-1*t*u^-1*v*d^-1)^-1 ,c^-1*t*c*(s*t*u*v)^-1, c^-1*u*c*(s^-1*v^-1*d)^-1, c^-1*v*c*(t^-1*u^-1*v)^-1, c^-1*d*c*d^-1],[[a*d,b*d^-1]]]; end, [1458]], "A6 2^1 3^4 C N 3^1",[14,5,7],3, 3,1458], # 174960.8 [[1,"abcstuve", function(a,b,c,s,t,u,v,e) return [[a^4,b^3,c^3,(b*c)^4*a^(-1*2),(b*c^-1)^5,a^-1 *b^-1*c*b*c*b^-1*c*b*c^-1, a^(-1*2)*b^-1*a^2*b,a^(-1*2)*c^-1*a^2*c, s^3,t^3,u^3,v^3,e^3,e^-1*s^-1*e*s, e^-1*t^-1*e*t,e^-1*u^-1*e*u, e^-1*v^-1*e*v,s^-1*t^-1*s*t, s^-1*u^-1*s*u*e^-1,s^-1*v^-1*s *v,t^-1*u^-1*t*u,t^-1*v^-1*t*v *e^-1,u^-1*v^-1*u*v, a^-1*s*a*u^-1,a^-1*t*a*v^-1, a^-1*u*a*(s^-1*e)^-1, a^-1*v*a*(t^-1*e)^-1, a^-1*e*a*e^-1, b^-1*s*b*(s*v^-1*e^-1)^-1, b^-1*t*b*(t*u^-1*v*e)^-1, b^-1*u*b*u^-1,b^-1*v*b*v^-1, b^-1*e*b*e^-1, c^-1*s*c*(s^-1*t*u^-1*v*e)^-1, c^-1*t*c*(s*t*u*v*e^-1)^-1, c^-1*u*c*(s^-1*v^-1)^-1, c^-1*v*c*(t^-1*u^-1*v)^-1, c^-1*e*c*e^-1],[[a,b,c]]]; end, [243]], "A6 2^1 3^4 C 3^1",[14,5,8],3, 3,243] ]; ############################################################################# ## #E perf7.grp . . . . . . . . . . . . . . . . . . . . . . . . . ends here ## gap-4r6p5/grp/ree.gd 0000644 0001750 0001750 00000003373 12172557252 013026 0 ustar bill bill ############################################################################# # #W ree.gd GAP library Alexander Hulpke ## ## #Y (C) 2001 School Math. Sci., University of St Andrews, Scotland ## ############################################################################# ## #O ReeGroupCons(, ) ## #### ## DeclareConstructor( "ReeGroupCons", [ IsGroup, IsInt ] ); ############################################################################# ## #F ReeGroup( [## ## ## ##, ] ) . . . . . . . . . . . . . . . Ree group #F Ree( [, ] ) ## ## <#GAPDoc Label="ReeGroup"> #### ## <#/GAPDoc> ## BindGlobal( "ReeGroup", function ( arg ) if Length(arg) = 1 then return ReeGroupCons( IsMatrixGroup, arg[1] ); elif IsOperation(arg[1]) then if Length(arg) = 2 then return ReeGroupCons( arg[1], arg[2] ); fi; fi; Error( "usage: ReeGroup( [## ## ## ## Constructs a group isomorphic to the Ree group ##^2G_2(q) where ##q = 3^{{1+2m}} form a non-negative integer. ## ## If filt is not given it defaults to ## and the generating matrices are based on . ## (No particular choice of a generating set is guaranteed.) ## ##ReeGroup( 27 ); ## Ree(27) ## ]]> ##, ] )" ); end ); DeclareSynonym( "Ree", ReeGroup ); ############################################################################# ## #E gap-4r6p5/grp/imf13.grp 0000644 0001750 0001750 00000051100 12172557252 013357 0 ustar bill bill ############################################################################# ## #A imf13.grp GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains, for each Z-class representative of the irreducible ## maximal finite integral matrix groups of dimension 13, ## ## [1] a quadratic form (as lower triangle of the Gram matrix), ## [2] a list of matrix generators. ## ############################################################################# ## ## Quadratic form and matrix generators for the Z-class representatives of ## the irreducible maximal finite integral matrix groups of dimension 13. ## IMFList[13].matrices := [ [ # Z-class [13][01] [[1], [0,1], [0,0,1], [0,0,0,1], [0,0,0,0,1], [0,0,0,0,0,1], [0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1]], [[[0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0], [-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1,0]]]], [ # Z-class [13][02] [[2], [0,2], [1,0,2], [0,1,0,2], [0,0,1,0,2], [0,0,0,1,0,2], [0,0,0,0,1,0,2], [0,0,0,0,0,1,0,2], [0,0,0,0,0,0,1,0,2], [0,0,0,0,0,0,0,1,0,2], [0,0,0,0,0,0,0,0,1,0,2], [1,0,0,0,0,0,0,0,0,1,0,2], [0,1,0,0,0,0,0,0,0,0,1,0,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,1,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,-1,0,1,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,-1,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,0,0,0,0,0,0,0,1], [-1,0,0,1,0,-1,0,1,0,-1,0,1,0]], [[-1,0,1,0,-1,-1,1,1,-1,-1,1,1,0], [0,1,1,0,-1,0,1,0,-1,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,1,1,-1,-1,1,1,0,-1,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,1,0,-1,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,-1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,1,0,0,0,0,0], [0,1,0,0,-1,0,1,0,-1,0,1,0,-1]]]], [ # Z-class [13][03] [[13], [-11,13], [9,-11,13], [-7,9,-11,13], [5,-7,9,-11,13], [-3,5,-7,9,-11,13], [1,-3,5,-7,9,-11,13], [1,1,-3,5,-7,9,-11,13], [-3,1,1,-3,5,-7,9,-11,13], [5,-3,1,1,-3,5,-7,9,-11,13], [-7,5,-3,1,1,-3,5,-7,9,-11,13], [9,-7,5,-3,1,1,-3,5,-7,9,-11,13], [-11,9,-7,5,-3,1,1,-3,5,-7,9,-11,13]], [[[1,1,1,1,1,1,1,1,1,1,1,1,1], [-1,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1], [1,0,0,0,0,1,1,1,1,1,1,1,1], [-1,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1], [1,0,0,0,0,0,0,0,0,1,1,1,1], [-1,0,0,0,0,0,0,0,0,0,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,-1,-1,-1,0,0], [0,0,0,0,0,0,1,1,1,1,1,0,0], [0,0,0,0,-1,-1,-1,-1,-1,-1,-1,0,0], [0,0,1,1,1,1,1,1,1,1,1,0,0], [-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0]], [[0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1], [-1,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Z-class [13][04] [[13], [-1,13], [-1,-1,13], [-1,-1,-1,13], [-1,-1,-1,-1,13], [-1,-1,-1,-1,-1,13], [-1,-1,-1,-1,-1,-1,13], [-1,-1,-1,-1,-1,-1,-1,13], [-1,-1,-1,-1,-1,-1,-1,-1,13], [-1,-1,-1,-1,-1,-1,-1,-1,-1,13], [-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,13], [-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,13], [-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,13]], [[[0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1], [1,1,1,1,1,1,1,1,1,1,1,1,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0]]]], [ # Z-class [13][05] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,1,0], [-1,0,0,0,0,0,0,0,0,0,0,1,0]], [[-1,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,1,0]]]], [ # Z-class [13][06] [[12], [5,12], [-2,5,12], [-2,-2,5,12], [-2,-2,-2,5,12], [-2,-2,-2,-2,5,12], [-2,-2,-2,-2,-2,5,12], [-2,-2,-2,-2,-2,-2,5,12], [-2,-2,-2,-2,-2,-2,-2,5,12], [-2,-2,-2,-2,-2,-2,-2,-2,5,12], [-2,-2,-2,-2,-2,-2,-2,-2,-2,5,12], [-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,5,12], [5,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,5,12]], [[[0,-1,0,-1,0,-1,0,-1,0,-1,0,-1,0], [0,-1,0,-1,0,-1,0,-1,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,1,0,1,0,1,0,1,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,-1,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,-1,1,-1,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,-1,1,-1,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,-1,1,-1,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,-1,1,-1,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,1,0,1,0,1,0,1,0,1]]]], [ # Z-class [13][07] [[7], [5,7], [3,5,7], [1,3,5,7], [-1,1,3,5,7], [-3,-1,1,3,5,7], [-5,-3,-1,1,3,5,7], [-5,-5,-3,-1,1,3,5,7], [-3,-5,-5,-3,-1,1,3,5,7], [-1,-3,-5,-5,-3,-1,1,3,5,7], [1,-1,-3,-5,-5,-3,-1,1,3,5,7], [3,1,-1,-3,-5,-5,-3,-1,1,3,5,7], [5,3,1,-1,-3,-5,-5,-3,-1,1,3,5,7]], [[[0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,-1,1,0,0,0,0,-1,0], [0,0,0,0,-1,0,1,0,0,0,-1,-1,1], [0,0,0,-1,0,0,1,0,0,-1,-1,0,1], [0,0,-1,0,0,0,1,0,-1,-1,0,0,1], [0,-1,0,0,0,0,1,-1,-1,0,0,0,1], [-1,0,0,0,0,0,0,-1,0,0,0,0,1]], [[-1,-1,-1,0,1,1,0,-1,-1,0,0,1,1], [0,-1,-1,0,1,1,1,-1,-1,0,0,1,1], [0,0,-1,-1,1,1,1,0,-1,-1,0,1,1], [0,0,0,-1,0,1,1,0,0,-1,-1,1,1], [0,0,0,0,-1,1,1,0,0,-1,0,0,1], [0,0,1,0,-1,1,0,0,0,0,0,0,0], [0,1,1,0,-1,0,0,0,1,0,0,0,-1], [0,1,1,0,-1,-1,0,0,1,0,0,-1,-1], [-1,1,1,1,-1,-1,-1,0,1,1,0,-1,-1], [-1,0,1,1,0,-1,-1,-1,1,1,1,-1,-1], [-1,0,0,1,1,-1,-1,-1,0,1,1,0,-1], [-1,0,0,0,1,-1,0,-1,0,1,0,0,0], [-1,0,-1,0,1,0,0,-1,0,0,0,0,1]]]], [ # Z-class [13][08] [[5], [3,5], [2,3,5], [1,2,3,5], [-1,1,2,3,5], [-3,-1,1,2,3,5], [-3,-3,-1,1,2,3,5], [-3,-3,-3,-1,1,2,3,5], [-3,-3,-3,-3,-1,1,2,3,5], [-1,-3,-3,-3,-3,-1,1,2,3,5], [1,-1,-3,-3,-3,-3,-1,1,2,3,5], [2,1,-1,-3,-3,-3,-3,-1,1,2,3,5], [3,2,1,-1,-3,-3,-3,-3,-1,1,2,3,5]], [[[0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,1,0,-1,0,0,1,0,-1,1,0], [0,0,0,1,0,0,0,-1,0,1,0,1,-1], [0,0,-1,1,0,0,0,-1,0,0,0,1,-1], [0,0,0,1,0,0,0,0,0,0,0,1,-1], [0,0,0,1,-1,0,0,0,0,0,0,0,-1], [0,0,-1,0,0,1,0,0,-1,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,-1,0], [0,0,0,0,0,0,0,1,0,0,0,-1,1], [0,0,0,-1,0,0,0,1,-1,0,0,-1,1], [0,1,0,-1,0,0,0,1,0,0,0,-1,1], [-1,0,1,0,0,-1,0,1,0,0,0,0,1]], [[-1,-1,0,0,0,0,0,1,-1,-1,0,1,1], [0,0,0,-1,0,1,0,1,-1,0,0,0,1], [0,0,-1,0,0,1,0,0,0,0,0,0,1], [-1,1,0,0,0,0,0,0,0,1,0,0,0], [0,1,0,0,0,0,-1,0,1,1,0,-1,0], [0,1,0,0,0,0,0,-1,1,1,0,-1,0], [0,1,0,0,0,-1,0,-1,1,1,0,-1,-1], [0,1,1,0,-1,-1,0,0,1,0,0,-1,-1], [1,0,0,0,0,-1,0,0,1,0,-1,-1,0], [0,0,0,0,0,-1,1,0,0,-1,0,0,0], [0,-1,1,0,0,-1,0,1,0,-1,0,0,0], [0,-1,0,0,0,0,0,1,-1,-1,0,0,1], [0,-1,0,0,0,0,1,1,-1,-1,0,1,1]]]], [ # Z-class [13][09] [[3], [1,3], [-1,1,3], [-1,-1,1,3], [0,-1,-1,1,3], [0,0,-1,-1,1,3], [0,0,0,-1,-1,1,3], [0,0,0,0,-1,-1,1,3], [0,0,0,0,0,-1,-1,1,3], [0,0,0,0,0,0,-1,-1,1,3], [-1,0,0,0,0,0,0,-1,-1,1,3], [-1,-1,0,0,0,0,0,0,-1,-1,1,3], [1,-1,-1,0,0,0,0,0,0,-1,-1,1,3]], [[[-1,0,0,-1,1,-1,0,0,-1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1,-1,1,0], [0,0,0,0,0,0,0,0,0,0,-1,1,-1], [0,-1,1,-1,0,1,-1,1,0,-1,1,-1,0], [0,0,1,-1,1,0,0,1,0,0,1,-1,1], [-1,1,0,0,1,-1,1,0,0,1,0,0,1], [0,0,0,1,0,0,0,0,0,0,0,0,0], [1,-1,0,1,-1,1,0,-1,1,-1,0,0,-1], [1,-1,0,0,-1,0,0,-1,1,-1,0,0,-1], [0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,-1,1,0,0,0], [-1,1,-1,0,1,-1,1,0,-1,1,-1,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1], [1,-1,0,1,-1,1,0,0,1,-1,1,0,-1], [1,-1,1,0,0,1,0,0,1,-1,1,0,0], [0,0,0,0,0,0,0,-1,1,-1,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,-1,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,-1,1,-1,0,0,0,0,0], [-1,1,0,0,1,-1,1,0,0,1,0,0,1], [-1,1,-1,0,1,-1,1,0,0,1,-1,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0]]]], [ # Z-class [13][10] [[4], [2,4], [1,2,4], [-1,1,2,4], [-1,-1,1,2,4], [-1,-1,-1,1,2,4], [0,-1,-1,-1,1,2,4], [0,0,-1,-1,-1,1,2,4], [-1,0,0,-1,-1,-1,1,2,4], [-1,-1,0,0,-1,-1,-1,1,2,4], [-1,-1,-1,0,0,-1,-1,-1,1,2,4], [1,-1,-1,-1,0,0,-1,-1,-1,1,2,4], [2,1,-1,-1,-1,0,0,-1,-1,-1,1,2,4]], [[[0,-1,0,1,0,0,-1,0,1,0,-1,0,1], [-1,0,0,0,0,0,0,0,0,1,-1,0,1], [0,0,0,0,0,0,0,0,0,1,0,-1,1], [0,0,0,-1,1,0,0,0,0,1,0,-1,1], [0,0,0,0,1,-1,0,1,0,0,0,0,1], [0,0,0,0,0,0,0,0,1,-1,0,1,0], [0,0,-1,1,0,-1,0,0,1,-1,-1,1,0], [0,1,-1,0,0,0,0,-1,1,0,-1,1,-1], [0,1,-1,0,0,0,0,0,0,0,0,0,-1], [1,0,0,-1,0,1,-1,0,0,0,1,-1,-1], [0,0,0,-1,1,0,-1,1,-1,0,1,-1,0], [0,-1,1,0,0,0,-1,1,0,-1,1,0,0], [-1,-1,1,0,0,0,-1,1,0,-1,0,0,1]], [[-1,-1,1,0,0,-1,0,1,0,-1,0,0,1], [-1,0,0,0,0,-1,0,1,0,-1,0,1,0], [-1,0,0,0,0,-1,0,1,-1,0,0,0,0], [-1,1,0,0,-1,0,1,0,-1,0,0,1,-1], [0,0,0,0,-1,1,0,-1,0,0,0,0,-1], [0,1,0,-1,0,1,0,-1,0,0,0,0,-1], [1,0,0,-1,0,1,0,-1,0,0,1,-1,-1], [1,0,0,0,0,0,0,0,0,-1,1,0,-1], [1,0,0,0,0,0,0,0,0,0,1,0,-1], [0,0,1,0,0,0,0,1,-1,0,1,0,0], [0,0,1,0,-1,1,0,0,0,0,1,0,0], [-1,0,1,0,0,0,0,0,0,0,0,0,1], [-1,0,1,-1,0,0,0,0,0,0,0,0,1]]]], [ # Z-class [13][11] [[4], [2,4], [2,2,4], [1,2,2,4], [0,1,2,2,4], [0,0,1,2,2,4], [-1,0,0,1,2,2,4], [-1,-1,0,0,1,2,2,4], [0,-1,-1,0,0,1,2,2,4], [0,0,-1,-1,0,0,1,2,2,4], [1,0,0,-1,-1,0,0,1,2,2,4], [2,1,0,0,-1,-1,0,0,1,2,2,4], [2,2,1,0,0,-1,-1,0,0,1,2,2,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,1,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,1,0,-1,1,0,-1,1,0,-1,0,1,-1], [1,0,-1,0,1,-1,0,1,-1,-1,1,0,-1], [0,1,-1,-1,1,0,-1,1,0,-1,0,1,-1], [1,0,-1,0,1,-1,0,1,-1,0,1,0,-1], [0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,1,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,-1,1,0,0], [1,-1,0,1,0,-1,1,0,-1,0,1,-1,0], [0,0,0,1,0,-1,0,0,0,0,1,-1,0], [0,-1,1,1,-1,0,1,-1,0,1,0,-1,1], [0,-1,0,1,0,0,0,-1,0,1,0,-1,1], [0,-1,0,1,-1,0,1,-1,0,1,0,-1,1], [0,-1,0,1,0,0,0,-1,0,1,0,0,0], [0,0,-1,1,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,1,0,-1,0,0,0,1,0], [0,0,-1,0,1,0,0,0,0,-1,0,1,0]]]], [ # Z-class [13][12] [[15], [-5,15], [-5,-5,15], [3,-5,-5,15], [-1,3,-5,-5,15], [7,-1,3,-5,-5,15], [-5,7,-1,3,-5,-5,15], [-5,-5,7,-1,3,-5,-5,15], [7,-5,-5,7,-1,3,-5,-5,15], [-1,7,-5,-5,7,-1,3,-5,-5,15], [3,-1,7,-5,-5,7,-1,3,-5,-5,15], [-5,3,-1,7,-5,-5,7,-1,3,-5,-5,15], [-5,-5,3,-1,7,-5,-5,7,-1,3,-5,-5,15]], [[[0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,-1,0,0,0,0,0,-1], [1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,1,1,0,0,-1,-1,0,0,0,0], [-1,0,-1,0,-1,0,0,1,1,1,1,0,0], [0,0,0,0,0,0,0,0,0,-1,-1,-1,0], [0,0,1,0,1,0,0,0,0,0,0,0,-1], [0,-1,-1,0,0,0,0,0,0,1,1,1,0], [0,1,1,1,0,0,0,0,0,0,-1,-1,0], [-1,0,0,0,0,0,0,0,1,0,1,0,0], [0,-1,-1,-1,0,0,0,0,0,0,0,0,0], [0,0,1,1,1,1,0,0,-1,0,-1,0,-1], [0,0,0,0,-1,-1,0,0,1,1,1,0,0]], [[-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0], [0,0,1,1,1,0,-1,-1,-1,0,0,0,-1], [1,1,0,0,0,0,1,0,0,-1,0,0,1], [0,-1,-1,-1,0,1,1,1,0,0,-1,0,0], [-1,0,0,0,0,-1,-1,0,1,1,1,0,-1], [0,0,0,0,-1,0,0,0,0,0,0,0,0], [1,0,1,0,1,0,0,-1,-1,-1,-1,0,0], [0,1,0,0,0,0,1,1,1,0,0,-1,0], [0,-1,-1,-1,-1,0,0,1,0,1,0,1,0], [-1,0,1,1,1,0,-1,-1,0,0,0,0,-1], [0,0,0,0,0,0,1,0,0,-1,0,-1,0], [1,0,0,0,0,0,0,0,-1,0,-1,0,0], [0,1,0,0,0,0,0,1,1,0,0,0,0]]]], [ # Z-class [13][13] [[13], [-3,13], [-7,-3,13], [5,-7,-3,13], [1,5,-7,-3,13], [-7,1,5,-7,-3,13], [5,-7,1,5,-7,-3,13], [5,5,-7,1,5,-7,-3,13], [-7,5,5,-7,1,5,-7,-3,13], [1,-7,5,5,-7,1,5,-7,-3,13], [5,1,-7,5,5,-7,1,5,-7,-3,13], [-7,5,1,-7,5,5,-7,1,5,-7,-3,13], [-3,-7,5,1,-7,5,5,-7,1,5,-7,-3,13]], [[[0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,1,1,1,1,1,1,0,0,0,0,0,0], [0,0,0,0,-1,-1,0,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,1,1,1,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,-1,0,0,0,0,0,1], [0,0,0,0,1,1,1,1,1,1,1,0,0], [0,0,0,0,0,0,1,0,0,0,-1,0,-1], [0,0,0,0,-1,-1,-1,-1,0,-1,0,0,0], [0,0,0,1,1,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,1,1,0,0,0,0,0], [0,-1,0,-1,-1,-1,-1,0,0,0,0,0,0], [-1,0,0,0,1,0,0,0,0,0,0,-1,0]]]], [ # Z-class [13][14] [[5], [-1,5], [-1,-1,5], [-1,-1,-1,5], [1,-1,-1,-1,5], [-1,1,-1,-1,-1,5], [1,-1,1,-1,-1,-1,5], [1,1,-1,1,-1,-1,-1,5], [-1,1,1,-1,1,-1,-1,-1,5], [1,-1,1,1,-1,1,-1,-1,-1,5], [-1,1,-1,1,1,-1,1,-1,-1,-1,5], [-1,-1,1,-1,1,1,-1,1,-1,-1,-1,5], [-1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,5]], [[[-1,0,-1,-1,0,-1,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,1,0,0,0,-1,0,-1,-1], [0,1,0,0,0,-1,0,-1,-1,0,-1,0,0], [1,0,1,0,0,0,-1,0,0,0,1,0,1], [-1,0,0,0,1,0,1,1,0,1,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,-1,0,-1,-1,0,-1,0,0,0,1,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0], [1,1,0,1,0,0,0,-1,0,0,0,1,0], [0,0,1,0,1,1,0,1,0,0,0,-1,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,1,0,0,0,-1,0,-1,-1], [0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,1,0,1,1,0,1], [0,0,0,1,0,1,1,0,1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,-1,0,-1,-1,0,-1,0,0,0,1,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0]]]], [ # Z-class [13][15] [[4], [-2,4], [0,-2,4], [1,0,-2,4], [0,1,0,-2,4], [-1,0,1,0,-2,4], [1,-1,0,1,0,-2,4], [1,1,-1,0,1,0,-2,4], [-1,1,1,-1,0,1,0,-2,4], [0,-1,1,1,-1,0,1,0,-2,4], [1,0,-1,1,1,-1,0,1,0,-2,4], [0,1,0,-1,1,1,-1,0,1,0,-2,4], [-2,0,1,0,-1,1,1,-1,0,1,0,-2,4]], [[[0,-1,-1,1,1,0,-1,0,1,0,-1,0,1], [0,1,1,-1,-1,0,0,-1,-1,0,1,0,-1], [0,0,0,0,0,1,1,1,0,0,0,0,0], [1,0,0,1,1,-1,-2,-1,0,0,-1,0,1], [-1,0,1,0,-1,0,1,0,-1,-1,1,1,0], [0,-1,-1,-1,0,0,0,1,1,1,0,0,0], [0,0,1,2,1,0,0,0,0,-1,-1,0,0], [1,0,-1,-1,0,0,-1,-1,0,0,0,0,1], [-1,0,1,0,-1,0,1,1,0,0,0,0,-1], [1,1,0,0,1,1,0,-1,-1,0,0,0,0], [0,-1,0,1,0,-1,-1,0,0,-1,-1,0,1], [-1,0,0,-1,0,1,1,0,0,1,1,0,-1], [1,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,1,0,-1,-1,0,0,-1,-1,0], [0,1,0,-1,-1,1,1,0,0,1,1,0,-1], [-1,-1,0,0,0,-1,0,1,1,0,0,0,0], [0,1,1,0,0,1,1,-1,-2,-1,0,0,-1], [1,0,-1,-1,-1,-1,-1,0,1,1,1,1,1], [-1,0,1,1,1,1,1,1,0,-1,-1,-1,-1], [1,1,0,-1,0,0,-1,-2,-1,1,1,0,0], [0,-1,-1,0,0,0,0,1,1,0,-1,0,0], [0,1,0,-1,0,1,1,0,0,1,1,-1,-1], [-1,0,1,0,-1,-1,0,0,-1,-1,0,1,0]]]], [ # Z-class [13][16] [[13], [-7,13], [1,-7,13], [1,1,-7,13], [-1,1,1,-7,13], [3,-1,1,1,-7,13], [-1,3,-1,1,1,-7,13], [-1,-1,3,-1,1,1,-7,13], [3,-1,-1,3,-1,1,1,-7,13], [-1,3,-1,-1,3,-1,1,1,-7,13], [1,-1,3,-1,-1,3,-1,1,1,-7,13], [1,1,-1,3,-1,-1,3,-1,1,1,-7,13], [-7,1,1,-1,3,-1,-1,3,-1,1,1,-7,13]], [[[2,2,1,0,-1,-2,-3,-2,-1,0,1,2,2], [-1,0,1,2,2,2,2,1,0,-1,-2,-3,-2], [1,0,-1,-1,-1,-1,-1,-1,-1,0,1,2,2], [1,1,1,0,0,0,0,0,0,0,0,0,0], [-2,-2,-2,-1,-1,0,1,2,2,2,1,0,-1], [2,2,2,1,0,-1,-2,-3,-2,-1,0,1,2], [0,0,0,1,1,1,1,1,0,-1,-1,-1,-1], [-1,-1,-1,-1,0,1,1,1,1,1,0,0,0], [2,1,0,-1,-2,-3,-2,-1,0,1,2,2,2], [-1,0,1,2,2,2,1,0,-1,-1,-2,-2,-2], [0,0,0,0,0,0,0,0,0,0,1,1,1], [2,2,1,0,-1,-1,-1,-1,-1,-1,-1,0,1], [-2,-3,-2,-1,0,1,2,2,2,2,1,0,-1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0], [-1,-1,-1,0,1,1,1,1,1,0,-1,-1,-1], [1,1,1,1,0,-1,-1,-1,-1,0,1,1,1], [-1,-1,-1,-1,0,1,1,1,1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,1,0,0,0], [1,0,-1,-2,-2,-2,-1,0,1,1,2,2,2], [-1,0,1,2,2,2,1,1,0,-1,-2,-2,-2], [0,0,0,0,0,0,1,0,0,0,0,0,0], [-1,-1,-1,-1,0,0,0,1,1,1,1,0,-1], [1,1,1,1,1,1,0,-1,-1,-1,-1,0,1], [-1,-1,-1,-1,-1,-1,0,1,1,1,1,1,0]]]], [ # Z-class [13][17] [[6], [1,6], [2,1,6], [2,2,1,6], [-2,2,2,1,6], [1,-2,2,2,1,6], [-2,1,-2,2,2,1,6], [-2,-2,1,-2,2,2,1,6], [1,-2,-2,1,-2,2,2,1,6], [-2,1,-2,-2,1,-2,2,2,1,6], [2,-2,1,-2,-2,1,-2,2,2,1,6], [2,2,-2,1,-2,-2,1,-2,2,2,1,6], [1,2,2,-2,1,-2,-2,1,-2,2,2,1,6]], [[[0,0,-1,0,1,0,-1,0,0,0,0,0,0], [0,0,0,0,1,-1,0,0,1,-1,0,0,0], [-1,1,0,0,0,0,-1,0,1,0,0,0,0], [0,0,0,0,1,-1,0,0,0,0,1,0,-1], [0,0,1,0,0,-1,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0], [0,-1,1,0,0,-1,1,0,0,0,0,0,0], [0,0,1,0,-1,0,0,0,0,1,-1,0,0], [0,-1,0,1,0,0,0,0,-1,1,0,0,0], [0,-1,1,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,1,-1,0,0,1,-1,0,0], [0,-1,0,0,1,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,-1,0,1,0,-1,0,0]], [[1,0,0,0,0,0,0,1,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,1,-1,0,0,0,0,1,0,-1,0,0], [-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,1,0,0,0,0,-1,1,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0], [1,0,0,-1,0,0,1,0,0,0,0,0,0], [0,1,-1,0,0,0,0,0,0,0,1,-1,0], [1,0,-1,0,1,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,1,0,-1,0], [0,0,-1,1,0,0,0,0,0,0,0,-1,1]]]] ]; MakeImmutable( IMFList[13].matrices ); gap-4r6p5/grp/perf8.grp 0000644 0001750 0001750 00000063233 12172557252 013476 0 ustar bill bill ############################################################################# ## #W perf8.grp GAP Groups Library Volkmar Felsch ## Alexander Hulpke ## ## #Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains the perfect groups of sizes 175560-187500 ## All data is based on Holt/Plesken: Perfect Groups, OUP 1989 ## PERFGRP[152]:=[# 175560.1 [[1,"ab", function(a,b) return [[a^2,b^3,(a*b)^7,(a*b*a*b*a*b^-1)^11,(a*b*a*b*a *b^-1*a*b*a*b^-1*a*b^-1)^5], [[b,a*b^-1*a*b*a]]]; end, [266]], "J1",28,-1, 36,266] ]; PERFGRP[153]:=[# 178920.1 [[1,"abc", function(a,b,c) return [[c^35,c*b^(-1*22)*c^-1*b^-1,b^71,a^2,c*a*c*a ^-1,(b*a)^3],[[b,c]]]; end, [72],[0,3,5,3]], "L2(71)",22,-1, 37,72] ]; PERFGRP[154]:=[# 180000.1 [[2,60,1,3000,1], "( A5 x A5 ) 2^1 # 5^2",[30,2,1],1, [1,1],[5,25]] ]; PERFGRP[155]:=[# 181440.1 [[1,"ab", function(a,b) return [[a^2,b^4,(a*b)^9,(a^-1*b^-1*a*b)^4,(a*b^(-1*2) *a*b^-1*a*b*a*b^2)^3, (a*b^-1*a*b^-1*a*b^2*a*b^2*a*b*a*b)^2, (a*b*a*b*b*a*b*a*b*a*b^-1)^3, (a*b*a*b*a*b^2)^6],[[b,a*b*a*b^-1*a]]]; end, [9],[[1,2],2]], "A9",28,-1, 38,9], # 181440.2 [[2,168,1,1080,1], "L3(2) x A6 3^1",[37,0,1],3, [2,3],[7,18]], # 181440.3 [[2,360,1,504,1], "A6 x L2(8)",40,1, [3,4],[6,9]] ]; PERFGRP[156]:=[# 183456.1 [[2,168,1,1092,1], "L3(2) x L2(13)",40,1, [2,6],[7,14]] ]; PERFGRP[157]:=[# 184320.1 [[1,"abcstuvSTUVf", function(a,b,c,s,t,u,v,S,T,U,V,f) return [[a^2,b^3,c^3,(b*c)^4,(b*c^-1)^5,a^-1*b^-1*c *b*c*b^-1*c*b*c^-1,f^2, f^-1*s^-1*f*s,f^-1*t^-1*f*t, f^-1*u^-1*f*u,f^-1*v^-1*f*v, f^-1*S^-1*f*S,f^-1*T^-1*f*T, f^-1*U^-1*f*U,f^-1*V^-1*f*V,s^2, t^2,u^2,v^2,S^2,T^2,U^2,V^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,S^-1*T^-1*S*T, S^-1*U^-1*S*U,S^-1*V^-1*S*V, T^-1*U^-1*T*U,T^-1*V^-1*T*V, U^-1*V^-1*U*V,s^-1*S^-1*s*S, s^-1*T^-1*s*T,s^-1*U^-1*s*U, s^-1*V^-1*s*V,t^-1*S^-1*t*S, t^-1*T^-1*t*T,t^-1*U^-1*t*U, t^-1*V^-1*t*V,u^-1*S^-1*u*S, u^-1*T^-1*u*T,u^-1*U^-1*u*U, u^-1*V^-1*u*V,v^-1*S^-1*v*S, v^-1*T^-1*v*T,v^-1*U^-1*v*U, v^-1*V^-1*v*V,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,a^-1*S*a*U^-1, a^-1*T*a*V^-1,a^-1*U*a*S^-1, a^-1*V*a*T^-1,a^-1*f*a*f^-1, b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*S*b*(T*V*f)^-1, b^-1*T*b*(S*T*U*V)^-1, b^-1*U*b*(U*V)^-1,b^-1*V*b*U^-1, b^-1*f*b*f^-1,c^-1*s*c*(t*u)^-1, c^-1*t*c*t^-1,c^-1*u*c*(s*u)^-1, c^-1*v*c*(s*t*u*v)^-1, c^-1*S*c*(T*U)^-1,c^-1*T*c*T^-1, c^-1*U*c*(S*U*f)^-1, c^-1*V*c*(S*T*U*V)^-1, c^-1*f*c*f^-1],[[b,c,S],[a,c,V,s]]]; end, [16,12]], "A6 ( 2^4 x 2^4 ) 2^1 I",[13,9,1],2, 3,[16,12]], # 184320.2 [[1,"abcstuvSTUVf", function(a,b,c,s,t,u,v,S,T,U,V,f) return [[a^2*f^-1,b^3,c^3,(b*c)^4*f^-1,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,f^2, f^-1*s^-1*f*s,f^-1*t^-1*f*t, f^-1*u^-1*f*u,f^-1*v^-1*f*v, f^-1*S^-1*f*S,f^-1*T^-1*f*T, f^-1*U^-1*f*U,f^-1*V^-1*f*V,s^2, t^2,u^2,v^2,S^2,T^2,U^2,V^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,S^-1*T^-1*S*T, S^-1*U^-1*S*U,S^-1*V^-1*S*V, T^-1*U^-1*T*U,T^-1*V^-1*T*V, U^-1*V^-1*U*V,s^-1*S^-1*s*S, s^-1*T^-1*s*T,s^-1*U^-1*s*U, s^-1*V^-1*s*V,t^-1*S^-1*t*S, t^-1*T^-1*t*T,t^-1*U^-1*t*U, t^-1*V^-1*t*V,u^-1*S^-1*u*S, u^-1*T^-1*u*T,u^-1*U^-1*u*U, u^-1*V^-1*u*V,v^-1*S^-1*v*S, v^-1*T^-1*v*T,v^-1*U^-1*v*U, v^-1*V^-1*v*V,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,a^-1*S*a*U^-1, a^-1*T*a*V^-1,a^-1*U*a*S^-1, a^-1*V*a*T^-1,a^-1*f*a*f^-1, b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*S*b*(T*V*f)^-1, b^-1*T*b*(S*T*U*V)^-1, b^-1*U*b*(U*V)^-1,b^-1*V*b*U^-1, b^-1*f*b*f^-1,c^-1*s*c*(t*u)^-1, c^-1*t*c*t^-1,c^-1*u*c*(s*u)^-1, c^-1*v*c*(s*t*u*v)^-1, c^-1*S*c*(T*U)^-1,c^-1*T*c*T^-1, c^-1*U*c*(S*U*f)^-1, c^-1*V*c*(S*T*U*V)^-1, c^-1*f*c*f^-1],[[b,c,S],[c*b*a*f,b,S,s]]]; end, [16,80]], "A6 ( 2^4 x 2^4 ) 2^1 II",[13,9,2],2, 3,[16,80]], # 184320.3 [[1,"abcdstuvSTUV", function(a,b,c,d,s,t,u,v,S,T,U,V) return [[a^2*d^-1,b^3,c^3,(b*c)^4*d^-1,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,d^2, b^-1*d^-1*b*d,c^-1*d^-1*c*d,s^2, t^2,u^2,v^2,S^2,T^2,U^2,V^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,S^-1*T^-1*S*T, S^-1*U^-1*S*U,S^-1*V^-1*S*V, T^-1*U^-1*T*U,T^-1*V^-1*T*V, U^-1*V^-1*U*V,s^-1*S^-1*s*S, s^-1*T^-1*s*T,s^-1*U^-1*s*U, s^-1*V^-1*s*V,t^-1*S^-1*t*S, t^-1*T^-1*t*T,t^-1*U^-1*t*U, t^-1*V^-1*t*V,u^-1*S^-1*u*S, u^-1*T^-1*u*T,u^-1*U^-1*u*U, u^-1*V^-1*u*V,v^-1*S^-1*v*S, v^-1*T^-1*v*T,v^-1*U^-1*v*U, v^-1*V^-1*v*V,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,a^-1*S*a*U^-1, a^-1*T*a*V^-1,a^-1*U*a*S^-1, a^-1*V*a*T^-1,b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*S*b*(T*V)^-1, b^-1*T*b*(S*T*U*V)^-1, b^-1*U*b*(U*V)^-1,b^-1*V*b*U^-1, c^-1*s*c*(t*u)^-1,c^-1*t*c*t^-1, c^-1*u*c*(s*u)^-1, c^-1*v*c*(s*t*u*v)^-1, c^-1*S*c*(T*U)^-1,c^-1*T*c*T^-1, c^-1*U*c*(S*U)^-1, c^-1*V*c*(S*T*U*V)^-1], [[b,c,S],[b,c,s],[c*b*a*d,b,s,S]]]; end, [16,16,80]], "A6 ( 2^4 x 2^4 ) 2^1 III",[13,9,3],2, 3,[16,16,80]], # 184320.4 [[1,"abcstuvSTUVg", function(a,b,c,s,t,u,v,S,T,U,V,g) return [[a^2,b^3,c^3,(b*c)^4,(b*c^-1)^5,a^-1*b^-1*c *b*c*b^-1*c*b*c^-1,g^2, g^-1*s^-1*g*s,g^-1*t^-1*g*t, g^-1*u^-1*g*u,g^-1*v^-1*g*v, g^-1*S^-1*g*S,g^-1*T^-1*g*T, g^-1*U^-1*g*U,g^-1*V^-1*g*V,s^2, t^2,u^2,v^2,S^2,T^2,U^2,V^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,S^-1*T^-1*S*T, S^-1*U^-1*S*U,S^-1*V^-1*S*V, T^-1*U^-1*T*U,T^-1*V^-1*T*V, U^-1*V^-1*U*V,s^-1*S^-1*s*S, s^-1*T^-1*s*T,s^-1*U^-1*s*U *g^-1,s^-1*V^-1*s*V, t^-1*S^-1*t*S,t^-1*T^-1*t*T, t^-1*U^-1*t*U,t^-1*V^-1*t*V *g^-1,u^-1*S^-1*u*S*g^-1, u^-1*T^-1*u*T,u^-1*U^-1*u*U, u^-1*V^-1*u*V,v^-1*S^-1*v*S, v^-1*T^-1*v*T*g^-1,v^-1*U^-1*v *U,v^-1*V^-1*v*V,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,a^-1*S*a*U^-1, a^-1*T*a*V^-1,a^-1*U*a*S^-1, a^-1*V*a*T^-1,a^-1*g*a*g^-1, b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*S*b*(T*V)^-1, b^-1*T*b*(S*T*U*V)^-1, b^-1*U*b*(U*V)^-1,b^-1*V*b*U^-1, b^-1*g*b*g^-1,c^-1*s*c*(t*u)^-1, c^-1*t*c*t^-1,c^-1*u*c*(s*u)^-1, c^-1*v*c*(s*t*u*v)^-1, c^-1*S*c*(T*U)^-1,c^-1*T*c*T^-1, c^-1*U*c*(S*U)^-1, c^-1*V*c*(S*T*U*V)^-1, c^-1*g*c*g^-1],[[b,c,s]]]; end, [32]], "A6 ( 2^4 x 2^4 ) 2^1 IV",[13,9,4],2, 3,32], # 184320.5 [[1,"abcstuvSTUVg", function(a,b,c,s,t,u,v,S,T,U,V,g) return [[a^2*g^-1,b^3,c^3,(b*c)^4*g^-1,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,g^2, g^-1*s^-1*g*s,g^-1*t^-1*g*t, g^-1*u^-1*g*u,g^-1*v^-1*g*v, g^-1*S^-1*g*S,g^-1*T^-1*g*T, g^-1*U^-1*g*U,g^-1*V^-1*g*V,s^2, t^2,u^2,v^2,S^2,T^2,U^2,V^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,S^-1*T^-1*S*T, S^-1*U^-1*S*U,S^-1*V^-1*S*V, T^-1*U^-1*T*U,T^-1*V^-1*T*V, U^-1*V^-1*U*V,s^-1*S^-1*s*S, s^-1*T^-1*s*T,s^-1*U^-1*s*U *g^-1,s^-1*V^-1*s*V, t^-1*S^-1*t*S,t^-1*T^-1*t*T, t^-1*U^-1*t*U,t^-1*V^-1*t*V *g^-1,u^-1*S^-1*u*S*g^-1, u^-1*T^-1*u*T,u^-1*U^-1*u*U, u^-1*V^-1*u*V,v^-1*S^-1*v*S, v^-1*T^-1*v*T*g^-1,v^-1*U^-1*v *U,v^-1*V^-1*v*V,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,a^-1*S*a*U^-1, a^-1*T*a*V^-1,a^-1*U*a*S^-1, a^-1*V*a*T^-1,a^-1*g*a*g^-1, b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*S*b*(T*V)^-1, b^-1*T*b*(S*T*U*V)^-1, b^-1*U*b*(U*V)^-1,b^-1*V*b*U^-1, b^-1*g*b*g^-1,c^-1*s*c*(t*u)^-1, c^-1*t*c*t^-1,c^-1*u*c*(s*u)^-1, c^-1*v*c*(s*t*u*v)^-1, c^-1*S*c*(T*U)^-1,c^-1*T*c*T^-1, c^-1*U*c*(S*U)^-1, c^-1*V*c*(S*T*U*V)^-1, c^-1*g*c*g^-1],[[c*b*a*g,b,s]]]; end, [1280]], "A6 ( 2^4 x 2^4 ) 2^1 V",[13,9,5],2, 3,1280], # 184320.6 [[1,"abcstuveSTUV", function(a,b,c,s,t,u,v,e,S,T,U,V) return [[a^2,b^3,c^3,(b*c)^4,(b*c^-1)^5,a^-1*b^-1*c *b*c*b^-1*c*b*c^-1,e^2, e^-1*s^-1*e*s,e^-1*t^-1*e*t, e^-1*u^-1*e*u,e^-1*v^-1*e*v, e^-1*S^-1*e*S,e^-1*T^-1*e*T, e^-1*U^-1*e*U,e^-1*V^-1*e*V, s^2*S^-1,t^2*T^-1,u^2*U^-1, v^2*V^-1,S^2,T^2,U^2,V^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,a^-1*e*a*e^-1, a^-1*S*a*U^-1,a^-1*T*a*V^-1, a^-1*U*a*S^-1,a^-1*V*a*T^-1, b^-1*s*b*(t*v*e*S*U)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v*U*V)^-1,b^-1*v*b*u^-1 ,b^-1*e*b*(e*U*V)^-1, b^-1*S*b*(T*V)^-1, b^-1*T*b*(S*T*U*V)^-1, b^-1*U*b*(U*V)^-1,b^-1*V*b*U^-1, c^-1*s*c*(t*u*S*T*U*V)^-1, c^-1*t*c*(t*S*T*U)^-1, c^-1*u*c*(s*u*e*S*T*U*V)^-1, c^-1*v*c*(s*t*u*v*S*T*U*V)^-1, c^-1*e*c*(e*T*U)^-1, c^-1*S*c*(T*U)^-1,c^-1*T*c*T^-1, c^-1*U*c*(S*U)^-1, c^-1*V*c*(S*T*U*V)^-1],[[c,v,e]]]; end, [480]], "A6 ( 2^4 E 2^1 E 2^4 ) A",[13,9,6],1, 3,480], # 184320.7 [[1,"abcstuvewxyz", function(a,b,c,s,t,u,v,e,w,x,y,z) return [[a^2,b^3,c^3,(b*c)^4,(b*c^-1)^5,a^-1*b^-1*c *b*c*b^-1*c*b*c^-1,e^2, e^-1*s^-1*e*s,e^-1*t^-1*e*t, e^-1*u^-1*e*u,e^-1*v^-1*e*v, e^-1*w^-1*e*w,e^-1*x^-1*e*x, e^-1*y^-1*e*y,e^-1*z^-1*e*z,s^2, t^2,u^2,v^2,w^2,x^2,y^2,z^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,s^-1*w^-1*s*w, s^-1*x^-1*s*x,s^-1*y^-1*s*y, s^-1*z^-1*s*z,t^-1*w^-1*t*w, t^-1*x^-1*t*x,t^-1*y^-1*t*y, t^-1*z^-1*t*z,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,a^-1*s*a*(u*w*x)^-1, a^-1*t*a*(v*w*x)^-1, a^-1*u*a*(s*y*z)^-1, a^-1*v*a*(t*y*z)^-1,a^-1*e*a*e^-1, a^-1*w*a*y^-1,a^-1*x*a*z^-1, a^-1*y*a*w^-1,a^-1*z*a*x^-1, b^-1*s*b*(t*v*e*w*z)^-1, b^-1*t*b*(s*t*u*v*w*x*y*z)^-1, b^-1*u*b*(u*v*x)^-1, b^-1*v*b*(u*x)^-1, b^-1*e*b*(e*x*y)^-1, b^-1*w*b*(x*y)^-1,b^-1*x*b*x^-1, b^-1*y*b*(w*y)^-1, b^-1*z*b*(w*x*y*z)^-1, c^-1*s*c*(t*u*x*y)^-1, c^-1*t*c*(t*y)^-1, c^-1*u*c*(s*u*e*w*z)^-1, c^-1*v*c*(s*t*u*v*w*y)^-1, c^-1*e*c*(e*y*z)^-1, c^-1*w*c*(x*z)^-1, c^-1*x*c*(w*x*y*z)^-1, c^-1*y*c*(y*z)^-1,c^-1*z*c*y^-1], [[b,s*y*z,u,e,x*z]]]; end, [240]], "A6 2^4 E 2^1 E 2^4'",[13,9,7],1, 3,240], # 184320.8 [[1,"abcstuveSTUV", function(a,b,c,s,t,u,v,e,S,T,U,V) return [[a^2*e^-1,b^3,c^3*(S*V)^-1,(b*c)^4*(e*S)^-1 ,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,e^2, e^-1*s^-1*e*s,e^-1*t^-1*e*t, e^-1*u^-1*e*u,e^-1*v^-1*e*v, e^-1*S^-1*e*S,e^-1*T^-1*e*T, e^-1*U^-1*e*U,e^-1*V^-1*e*V, s^2*S^-1,t^2*T^-1,u^2*U^-1, v^2*V^-1,S^2,T^2,U^2,V^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,a^-1*e*a*e^-1, a^-1*S*a*U^-1,a^-1*T*a*V^-1, a^-1*U*a*S^-1,a^-1*V*a*T^-1, b^-1*s*b*(t*v*e*S*U)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v*U*V)^-1,b^-1*v*b*u^-1 ,b^-1*e*b*(e*U*V)^-1, b^-1*S*b*(T*V)^-1, b^-1*T*b*(S*T*U*V)^-1, b^-1*U*b*(U*V)^-1,b^-1*V*b*U^-1, c^-1*s*c*(t*u*S*T*U*V)^-1, c^-1*t*c*(t*S*T*U)^-1, c^-1*u*c*(s*u*e*S*T*U*V)^-1, c^-1*v*c*(s*t*u*v*S*T*U*V)^-1, c^-1*e*c*(e*T*U)^-1, c^-1*S*c*(T*U)^-1,c^-1*T*c*T^-1, c^-1*U*c*(S*U)^-1, c^-1*V*c*(S*T*U*V)^-1],[[c,v,e]]]; end, [480]], "A6 ( 2^4 E N 2^1 E 2^4 ) A",[13,9,8],1, 3,480], # 184320.9 [[1,"abcstuvewxyz", function(a,b,c,s,t,u,v,e,w,x,y,z) return [[a^2*e^-1,b^3*(w*x*z)^-1,c^3,(b*c)^4*(e*x*y) ^-1,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,e^2, e^-1*s^-1*e*s,e^-1*t^-1*e*t, e^-1*u^-1*e*u,e^-1*v^-1*e*v, e^-1*w^-1*e*w,e^-1*x^-1*e*x, e^-1*y^-1*e*y,e^-1*z^-1*e*z,s^2, t^2,u^2,v^2,w^2,x^2,y^2,z^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,s^-1*w^-1*s*w, s^-1*x^-1*s*x,s^-1*y^-1*s*y, s^-1*z^-1*s*z,t^-1*w^-1*t*w, t^-1*x^-1*t*x,t^-1*y^-1*t*y, t^-1*z^-1*t*z,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,a^-1*s*a*(u*w*x)^-1, a^-1*t*a*(v*w*x)^-1, a^-1*u*a*(s*y*z)^-1, a^-1*v*a*(t*y*z)^-1,a^-1*e*a*e^-1, a^-1*w*a*y^-1,a^-1*x*a*z^-1, a^-1*y*a*w^-1,a^-1*z*a*x^-1, b^-1*s*b*(t*v*e*w*z)^-1, b^-1*t*b*(s*t*u*v*w*x*y*z)^-1, b^-1*u*b*(u*v*x)^-1, b^-1*v*b*(u*x)^-1, b^-1*e*b*(e*x*y)^-1, b^-1*w*b*(x*y)^-1,b^-1*x*b*x^-1, b^-1*y*b*(w*y)^-1, b^-1*z*b*(w*x*y*z)^-1, c^-1*s*c*(t*u*x*y)^-1, c^-1*t*c*(t*y)^-1, c^-1*u*c*(s*u*e*w*z)^-1, c^-1*v*c*(s*t*u*v*w*y)^-1, c^-1*e*c*(e*y*z)^-1, c^-1*w*c*(x*z)^-1, c^-1*x*c*(w*x*y*z)^-1, c^-1*y*c*(y*z)^-1,c^-1*z*c*y^-1], [[b,s*y*z,u,e,x*z]]]; end, [240]], "A6 2^4 E N 2^1 E 2^4'",[13,9,9],1, 3,240], # 184320.10 [[1,"abcstuvewxyz", function(a,b,c,s,t,u,v,e,w,x,y,z) return [[a^2,b^3,c^3,(b*c)^4,(b*c^-1)^5,a^-1*b^-1*c *b*c*b^-1*c*b*c^-1,e^2, e^-1*s^-1*e*s,e^-1*t^-1*e*t, e^-1*u^-1*e*u,e^-1*v^-1*e*v, e^-1*w^-1*e*w,e^-1*x^-1*e*x, e^-1*y^-1*e*y,e^-1*z^-1*e*z,s^2, t^2,u^2,v^2,w^2,x^2,y^2,z^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,s^-1*w^-1*s*w, s^-1*x^-1*s*x,s^-1*y^-1*s*y, s^-1*z^-1*s*z,t^-1*w^-1*t*w, t^-1*x^-1*t*x,t^-1*y^-1*t*y, t^-1*z^-1*t*z,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,a^-1*w*a*y^-1, a^-1*x*a*z^-1,a^-1*y*a*w^-1, a^-1*z*a*x^-1,a^-1*e*a*e^-1, b^-1*s*b*(t*v*e)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*w*b*(x*y)^-1,b^-1*x*b*x^-1, b^-1*y*b*(w*y)^-1, b^-1*z*b*(w*x*y*z)^-1,b^-1*e*b*e^-1 ,c^-1*s*c*(t*u)^-1,c^-1*t*c*t^-1, c^-1*u*c*(s*u*e)^-1, c^-1*v*c*(s*t*u*v)^-1, c^-1*w*c*(x*z)^-1, c^-1*x*c*(w*x*y*z)^-1, c^-1*y*c*(y*z)^-1,c^-1*z*c*y^-1, c^-1*e*c*e^-1],[[b,c,s],[a,c,v,w]]]; end, [16,12]], "A6 ( 2^4 x 2^4' ) 2^1 I",[13,9,10],2, 3,[16,12]], # 184320.11 [[1,"abcstuvewxyz", function(a,b,c,s,t,u,v,e,w,x,y,z) return [[a^2*e^-1,b^3,c^3,(b*c)^4*e^-1,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,e^2, e^-1*s^-1*e*s,e^-1*t^-1*e*t, e^-1*u^-1*e*u,e^-1*v^-1*e*v, e^-1*w^-1*e*w,e^-1*x^-1*e*x, e^-1*y^-1*e*y,e^-1*z^-1*e*z,s^2, t^2,u^2,v^2,w^2,x^2,y^2,z^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,s^-1*w^-1*s*w, s^-1*x^-1*s*x,s^-1*y^-1*s*y, s^-1*z^-1*s*z,t^-1*w^-1*t*w, t^-1*x^-1*t*x,t^-1*y^-1*t*y, t^-1*z^-1*t*z,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,a^-1*w*a*y^-1, a^-1*x*a*z^-1,a^-1*y*a*w^-1, a^-1*z*a*x^-1,a^-1*e*a*e^-1, b^-1*s*b*(t*v*e)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*w*b*(x*y)^-1,b^-1*x*b*x^-1, b^-1*y*b*(w*y)^-1, b^-1*z*b*(w*x*y*z)^-1,b^-1*e*b*e^-1 ,c^-1*s*c*(t*u)^-1,c^-1*t*c*t^-1, c^-1*u*c*(s*u*e)^-1, c^-1*v*c*(s*t*u*v)^-1, c^-1*w*c*(x*z)^-1, c^-1*x*c*(w*x*y*z)^-1, c^-1*y*c*(y*z)^-1,c^-1*z*c*y^-1, c^-1*e*c*e^-1],[[b,c,s],[c*b*a*e,b,s,z]]]; end, [16,80]], "A6 ( 2^4 x 2^4' ) 2^1 II",[13,9,11],2, 3,[16,80]], # 184320.12 [[1,"abcdstuvwxyz", function(a,b,c,d,s,t,u,v,w,x,y,z) return [[a^2*d^-1,b^3,c^3,(b*c)^4*d^-1,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,d^2, b^-1*d^-1*b*d,c^-1*d^-1*c*d,s^2, t^2,u^2,v^2,w^2,x^2,y^2,z^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,s^-1*w^-1*s*w, s^-1*x^-1*s*x,s^-1*y^-1*s*y, s^-1*z^-1*s*z,t^-1*w^-1*t*w, t^-1*x^-1*t*x,t^-1*y^-1*t*y, t^-1*z^-1*t*z,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,a^-1*w*a*y^-1, a^-1*x*a*z^-1,a^-1*y*a*w^-1, a^-1*z*a*x^-1,b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*w*b*(x*y)^-1,b^-1*x*b*x^-1, b^-1*y*b*(w*y)^-1, b^-1*z*b*(w*x*y*z)^-1, c^-1*s*c*(t*u)^-1,c^-1*t*c*t^-1, c^-1*u*c*(s*u)^-1, c^-1*v*c*(s*t*u*v)^-1, c^-1*w*c*(x*z)^-1, c^-1*x*c*(w*x*y*z)^-1, c^-1*y*c*(y*z)^-1,c^-1*z*c*y^-1], [[b,c,s],[b,c,w],[c*b*a*d,b,s,z]]]; end, [16,16,80]], "A6 ( 2^4 x 2^4' ) 2^1 III",[13,9,12],2, 3,[16,16,80]], # 184320.13 [[1,"abcstuvewxyz", function(a,b,c,s,t,u,v,e,w,x,y,z) return [[a^2,b^3,c^3,(b*c)^4,(b*c^-1)^5,a^-1*b^-1*c *b*c*b^-1*c*b*c^-1,e^2, e^-1*s^-1*e*s,e^-1*t^-1*e*t, e^-1*u^-1*e*u,e^-1*v^-1*e*v, e^-1*w^-1*e*w,e^-1*x^-1*e*x, e^-1*y^-1*e*y,e^-1*z^-1*e*z,s^2, t^2,u^2,v^2,w^2,x^2,y^2,z^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,s^-1*w^-1*s*w, s^-1*x^-1*s*x,s^-1*y^-1*s*y, s^-1*z^-1*s*z,t^-1*w^-1*t*w, t^-1*x^-1*t*x,t^-1*y^-1*t*y, t^-1*z^-1*t*z,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,a^-1*w*a*y^-1, a^-1*x*a*z^-1,a^-1*y*a*w^-1, a^-1*z*a*x^-1,a^-1*e*a*e^-1, b^-1*s*b*(t*v*e)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*w*b*(x*y)^-1,b^-1*x*b*x^-1, b^-1*y*b*(w*y*e)^-1, b^-1*z*b*(w*x*y*z)^-1,b^-1*e*b*e^-1 ,c^-1*s*c*(t*u)^-1,c^-1*t*c*t^-1, c^-1*u*c*(s*u*e)^-1, c^-1*v*c*(s*t*u*v)^-1, c^-1*w*c*(x*z*e)^-1, c^-1*x*c*(w*x*y*z)^-1, c^-1*y*c*(y*z)^-1,c^-1*z*c*y^-1, c^-1*e*c*e^-1],[[c*a*b*c,b,s,w*e]]]; end, [20]], "A6 ( 2^4 x 2^4' ) 2^1 IV",[13,9,13],2, 3,20], # 184320.14 [[1,"abcstuvewxyz", function(a,b,c,s,t,u,v,e,w,x,y,z) return [[a^2*e^-1,b^3,c^3,(b*c)^4*e^-1,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,e^2, e^-1*s^-1*e*s,e^-1*t^-1*e*t, e^-1*u^-1*e*u,e^-1*v^-1*e*v, e^-1*w^-1*e*w,e^-1*x^-1*e*x, e^-1*y^-1*e*y,e^-1*z^-1*e*z,s^2, t^2,u^2,v^2,w^2,x^2,y^2,z^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,s^-1*w^-1*s*w, s^-1*x^-1*s*x,s^-1*y^-1*s*y, s^-1*z^-1*s*z,t^-1*w^-1*t*w, t^-1*x^-1*t*x,t^-1*y^-1*t*y, t^-1*z^-1*t*z,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,a^-1*w*a*y^-1, a^-1*x*a*z^-1,a^-1*y*a*w^-1, a^-1*z*a*x^-1,a^-1*e*a*e^-1, b^-1*s*b*(t*v*e)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*w*b*(x*y)^-1,b^-1*x*b*x^-1, b^-1*y*b*(w*y*e)^-1, b^-1*z*b*(w*x*y*z)^-1,b^-1*e*b*e^-1 ,c^-1*s*c*(t*u)^-1,c^-1*t*c*t^-1, c^-1*u*c*(s*u*e)^-1, c^-1*v*c*(s*t*u*v)^-1, c^-1*w*c*(x*z*e)^-1, c^-1*x*c*(w*x*y*z)^-1, c^-1*y*c*(y*z)^-1,c^-1*z*c*y^-1, c^-1*e*c*e^-1],[[c*b*a*e,b,s,z]]]; end, [80]], "A6 ( 2^4 x 2^4' ) 2^1 V",[13,9,14],2, 3,80], # 184320.15 [[1,"abcdstuvSTUV", function(a,b,c,d,s,t,u,v,S,T,U,V) return [[a^2*d^-1,b^3,c^3,(b*c)^4*d^-1,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,d^2, b^-1*d^-1*b*d,c^-1*d^-1*c*d, s^2*S^-1,t^2*T^-1,u^2*U^-1, v^2*V^-1,S^2,T^2,U^2,V^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,d^-1*s*d*s, d^-1*t*d*t,d^-1*u*d*u,d^-1*v*d*v, a^-1*s*a*u^-1,a^-1*t*a*v^-1, a^-1*u*a*s,a^-1*v*a*t, a^-1*S*a*U^-1,a^-1*T*a*V^-1, a^-1*U*a*S^-1,a^-1*V*a*T^-1, b^-1*s*b*(t*v*T*U)^-1, b^-1*t*b*(s*t*u*v*T*U*V)^-1, b^-1*u*b*(u*v*U)^-1, b^-1*v*b*(u*U)^-1,b^-1*S*b*(T*V)^-1, b^-1*T*b*(S*T*U*V)^-1, b^-1*U*b*(U*V)^-1,b^-1*V*b*U^-1, c^-1*s*c*(t*u*S*T*U)^-1, c^-1*t*c*(t*S)^-1, c^-1*u*c*(s*u*S*V)^-1, c^-1*v*c*(s*t*u*v)^-1, c^-1*S*c*(T*U)^-1,c^-1*T*c*T^-1, c^-1*U*c*(S*U)^-1, c^-1*V*c*(S*T*U*V)^-1],[[b,c]]]; end, [256]], "A6 2^1 ( 2^4 x 2^4 )",[13,9,15],1, 3,256], # 184320.16 [[1,"abcdstuvSTUV", function(a,b,c,d,s,t,u,v,S,T,U,V) return [[a^2*d^-1,b^3,c^3*(S*V)^-1,(b*c)^4*(d*S)^-1 ,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,d^2, b^-1*d*b*(d*U*V)^-1, c^-1*d*c*(d*T*U)^-1,s^2,t^2,u^2,v^2,S^2, T^2,U^2,V^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,S^-1*T^-1*S*T, S^-1*U^-1*S*U,S^-1*V^-1*S*V, T^-1*U^-1*T*U,T^-1*V^-1*T*V, U^-1*V^-1*U*V,s^-1*S^-1*s*S, s^-1*T^-1*s*T,s^-1*U^-1*s*U, s^-1*V^-1*s*V,t^-1*S^-1*t*S, t^-1*T^-1*t*T,t^-1*U^-1*t*U, t^-1*V^-1*t*V,u^-1*S^-1*u*S, u^-1*T^-1*u*T,u^-1*U^-1*u*U, u^-1*V^-1*u*V,v^-1*S^-1*v*S, v^-1*T^-1*v*T,v^-1*U^-1*v*U, v^-1*V^-1*v*V,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,a^-1*S*a*U^-1, a^-1*T*a*V^-1,a^-1*U*a*S^-1, a^-1*V*a*T^-1,b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*S*b*(T*V)^-1, b^-1*T*b*(S*T*U*V)^-1, b^-1*U*b*(U*V)^-1,b^-1*V*b*U^-1, c^-1*s*c*(t*u)^-1,c^-1*t*c*t^-1, c^-1*u*c*(s*u)^-1, c^-1*v*c*(s*t*u*v)^-1, c^-1*S*c*(T*U)^-1,c^-1*T*c*T^-1, c^-1*U*c*(S*U)^-1, c^-1*V*c*(S*T*U*V)^-1], [[b,c,S],[c*b*a*U,b,c^-1*a*c*U,T,s]]]; end, [16,80]], "A6 2^4 x ( 2^1 E 2^4 )",[13,9,16],1, 3,[16,80]], # 184320.17 [[1,"abcdstuvwxyz", function(a,b,c,d,s,t,u,v,w,x,y,z) return [[a^2*d^-1,b^3*(w*x*z)^-1,c^3,(b*c)^4*(d*x*y) ^-1,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,d^2, b^-1*d*b*(d*x*y)^-1, c^-1*d*c*(d*y*z)^-1,s^2,t^2,u^2,v^2,w^2, x^2,y^2,z^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,s^-1*w^-1*s*w, s^-1*x^-1*s*x,s^-1*y^-1*s*y, s^-1*z^-1*s*z,t^-1*w^-1*t*w, t^-1*x^-1*t*x,t^-1*y^-1*t*y, t^-1*z^-1*t*z,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,a^-1*w*a*y^-1, a^-1*x*a*z^-1,a^-1*y*a*w^-1, a^-1*z*a*x^-1,b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*w*b*(x*y)^-1,b^-1*x*b*x^-1, b^-1*y*b*(w*y)^-1, b^-1*z*b*(w*x*y*z)^-1, c^-1*s*c*(t*u)^-1,c^-1*t*c*t^-1, c^-1*u*c*(s*u)^-1, c^-1*v*c*(s*t*u*v)^-1, c^-1*w*c*(x*z)^-1, c^-1*x*c*(w*x*y*z)^-1, c^-1*y*c*(y*z)^-1,c^-1*z*c*y^-1], [[b,c,w],[b*c*a*y,c,b^-1*a*b*z,d*z,v]]]; end, [16,80]], "A6 2^4 x ( 2^1 E 2^4' )",[13,9,17],1, 3,[16,80]], # 184320.18 [[1,"abcdstuvSTUV", function(a,b,c,d,s,t,u,v,S,T,U,V) return [[a^2*d^-1,b^3,c^3*(s*v*S*U*V)^-1,(b*c)^4*( d*s*S*T)^-1,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,d^2, b^-1*d*b*(d*u*v*T*U)^-1, c^-1*d*c*(d*t*u*S)^-1,d^-1*s*d*s, d^-1*t*d*t,d^-1*u*d*u,d^-1*v*d*v, s^2*S^-1,t^2*T^-1,u^2*U^-1, v^2*V^-1,S^2,T^2,U^2,V^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s, a^-1*v*a*t,a^-1*S*a*U^-1, a^-1*T*a*V^-1,a^-1*U*a*S^-1, a^-1*V*a*T^-1,b^-1*s*b*(t*v*T*U)^-1 ,b^-1*t*b*(s*t*u*v*T*U*V)^-1, b^-1*u*b*(u*v*U)^-1, b^-1*v*b*(u*U)^-1,b^-1*S*b*(T*V)^-1, b^-1*T*b*(S*T*U*V)^-1, b^-1*U*b*(U*V)^-1,b^-1*V*b*U^-1, c^-1*s*c*(t*u*S*T*U)^-1, c^-1*t*c*(t*S)^-1, c^-1*u*c*(s*u*S*V)^-1, c^-1*v*c*(s*t*u*v)^-1, c^-1*S*c*(T*U)^-1,c^-1*T*c*T^-1, c^-1*U*c*(S*U)^-1, c^-1*V*c*(S*T*U*V)^-1],[[d,c*s*S*U,v]]]; end, [480]], "A6 2^1 E 2^4 A 2^4",[13,9,18],1, 3,480], # 184320.19 [[1,"abcdstuvwxyz", function(a,b,c,d,s,t,u,v,w,x,y,z) return [[a^2*d^-1,b^3*(w*x*z)^-1,c^3*(s*v)^-1,(b*c) ^4*(d*s*x*y)^-1,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,d^2, b^-1*d*b*(d*u*v*x*y)^-1, c^-1*d*c*(d*t*u*y*z)^-1,s^2,t^2,u^2,v^2, w^2,x^2,y^2,z^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,s^-1*w^-1*s*w, s^-1*x^-1*s*x,s^-1*y^-1*s*y, s^-1*z^-1*s*z,t^-1*w^-1*t*w, t^-1*x^-1*t*x,t^-1*y^-1*t*y, t^-1*z^-1*t*z,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,a^-1*w*a*y^-1, a^-1*x*a*z^-1,a^-1*y*a*w^-1, a^-1*z*a*x^-1,b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*w*b*(x*y)^-1,b^-1*x*b*x^-1, b^-1*y*b*(w*y)^-1, b^-1*z*b*(w*x*y*z)^-1, c^-1*s*c*(t*u)^-1,c^-1*t*c*t^-1, c^-1*u*c*(s*u)^-1, c^-1*v*c*(s*t*u*v)^-1, c^-1*w*c*(x*z)^-1, c^-1*x*c*(w*x*y*z)^-1, c^-1*y*c*(y*z)^-1,c^-1*z*c*y^-1], [[c*b*a*u,b,c^-1*a*c*u,t,w], [b*c*a*y,c,b^-1*a*b*z,d*z,v]]]; end, [80,80]], "A6 2^1 E ( 2^4 x 2^4' )",[13,9,19],1, 3,[80,80]] ]; PERFGRP[158]:=[# 187500.1 [[1,"abvwxyz", function(a,b,v,w,x,y,z) return [[a^2,b^3,(a*b)^5,v^5,w^5,x^5,y^5,z^5,v^-1*w^-1 *v*w,v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*v*a*z^-1, a^-1*w*a*y,a^-1*x*a*x^-1, a^-1*y*a*w,a^-1*z*a*v^-1, b^-1*v*b*z^-1, b^-1*w*b*(y^-1*z)^-1, b^-1*x*b*(x*y^(-1*2)*z)^-1, b^-1*y*b*(w^-1*x^(-1*2)*y^2*z)^-1, b^-1*z*b*(v*w*x*y*z)^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,w]]]; end, [30]], "A5 5^5",[3,5,1],1, 1,30] ]; ############################################################################# ## #E perf8.grp . . . . . . . . . . . . . . . . . . . . . . . . . ends here ## gap-4r6p5/grp/perf2.grp 0000644 0001750 0001750 00000057147 12172557252 013477 0 ustar bill bill ############################################################################# ## #W perf2.grp GAP Groups Library Volkmar Felsch ## Alexander Hulpke ## ## #Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains the perfect groups of sizes 7800-20160 ## All data is based on Holt/Plesken: Perfect Groups, OUP 1989 ## PERFGRP[39]:=[# 7800.1 [[1,"bca", function(b,c,a) return [[b^5,c^12,c^(-1*2)*b*c^2*(b*c^-1*b^2*c)^-1, c^-1*b^2*c*b*(b*c^-1*b^2*c)^-1,a^2, c*a*c*a^-1,(b*a)^3,(c^4*b*c*b*a)^3],[[b,c]]]; end, [26]], "L2(25)",22,-1, 14,26] ]; PERFGRP[40]:=[# 7920.1 [[1,"ab", function(a,b) return [[a^2,b^4,(a*b)^11,(a*b^2)^6,a*b^-1*a*b^-1*a*b *a*b*a*b^-1*a*b*a*b^2*a *b^-1*a*b], [[a*b^-1*a*b^-1*a*b*a*b*a,b]]]; end, [11]], "M11",28,-1, 15,11] ]; PERFGRP[41]:=[# 9720.1 [[1,"abwxyz", function(a,b,w,x,y,z) return [[a^4,b^3,(a*b)^5,a^2*b*a^2*b^-1,w^3,x^3,y^3,z^3, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1], [[a*b,w],[b,a*b*a*b^-1*a,w*x^-1]]]; end, [24,15]], "A5 2^1 x 3^4'",[2,4,1],2, 1,[24,15]], # 9720.2 [[1,"abwxyz", function(a,b,w,x,y,z) return [[a^4,b^3*z^-1,(a*b)^5,a^2*b*a^2*b^-1,w^3,x^3, y^3,z^3,w^-1*x^-1*w*x,w^-1*y^-1*w*y ,w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1], [[a*b,w],[a^2,b,w*x^-1]]]; end, [24,60]], "A5 2^1 x N 3^4'",[2,4,2],2, 1,[24,60]], # 9720.3 [[1,"abstuv", function(a,b,s,t,u,v) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,s^3,t^3,u^3,v^3, s^-1*t^-1*s*t,s^-1*u^-1*s*u, s^-1*v^-1*s*v,t^-1*u^-1*t*u, t^-1*v^-1*t*v,u^-1*v^-1*u*v, a^-1*s*a*u^-1,a^-1*t*a*v^-1, a^-1*u*a*s,a^-1*v*a*t, b^-1*s*b*(s*v^-1)^-1, b^-1*t*b*(t*u^-1*v)^-1, b^-1*u*b*u^-1,b^-1*v*b*v^-1], [[b,a*b*a*b^-1*a,u]]]; end, [45]], "A5 2^1 3^4",[2,4,3],1, 1,45], # 9720.4 (otherpres.) [[1,"abdstuv", function(a,b,d,s,t,u,v) return [[a^2*d^-1,b^3,(a*b)^5,d^2,d^-1*b^-1*d*b, s^3,t^3,u^3,v^3,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s, a^-1*v*a*t,b^-1*s*b*(s*v^-1)^-1, b^-1*t*b*(t*u^-1*v)^-1, b^-1*u*b*u^-1,b^-1*v*b*v^-1], [[b,a*b*a*b^-1*a,u]]]; end, [45]]] ]; PERFGRP[42]:=[# 9828.1 [[1,"abc", function(a,b,c) return [[c^13,b^3,(c*b)^3*c^(-1*3)*b^-1,c^(-1*4)*b*c^2*b *c*b*c*b^-1,a^2,c*a*c*a^-1,(b*a)^3], [[b,c]]]; end, [28]], "L2(27)",22,-1, 16,28] ]; PERFGRP[43]:=[# 10080.1 [[1,"abcd", function(a,b,c,d) return [[a^2,b^3,(a*b)^5,c^2,d^3,(c*d)^7,(c^-1*d^-1*c *d)^4,a^-1*c^-1*a*c,a^-1*d^-1*a*d ,b^-1*c^-1*b*c,b^-1*d^-1*b*d], [[b,a*b*a*b^-1*a,c,d],[a,b,d,c*d*c*d^-1*c]]] ; end, [5,7]], "A5 x L3(2)",[31,0,1,32],1, [1,2],[5,7]] ]; PERFGRP[44]:=[# 10752.1 [[1,"abxyzXYZ", function(a,b,x,y,z,X,Y,Z) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4,x^2,y^2, z^2,x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,X^2,Y^2,Z^2, X^-1*Y^-1*X*Y,X^-1*Z^-1*X*Z, Y^-1*Z^-1*Y*Z,a^-1*x*a*z^-1, a^-1*y*a*(x*y*z)^-1,a^-1*z*a*x^-1, b^-1*x*b*y^-1,b^-1*y*b*(x*y)^-1, b^-1*z*b*z^-1,a^-1*X*a*Z^-1, a^-1*Y*a*(X*Y*Z)^-1,a^-1*Z*a*X^-1, b^-1*X*b*Y^-1,b^-1*Y*b*(X*Y)^-1, b^-1*Z*b*Z^-1,x^-1*X*x*X^-1, x^-1*Y*x*Y^-1,x^-1*Z*x*Z^-1, y^-1*X*y*X^-1,y^-1*Y*y*Y^-1, y^-1*Z*y*Z^-1,z^-1*X*z*X^-1, z^-1*Y*z*Y^-1,z^-1*Z*z*Z^-1], [[a,b,X],[a,b,x]]]; end, [8,8]], "L3(2) 2^3 x 2^3",[8,6,1],1, 2,[8,8]], # 10752.2 [[1,"abxyzXYZ", function(a,b,x,y,z,X,Y,Z) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4*(Y*Z)^-1 ,x^2,y^2,z^2,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z,X^2, Y^2,Z^2,X^-1*Y^-1*X*Y,X^-1*Z^-1*X*Z ,Y^-1*Z^-1*Y*Z,a^-1*x*a*z^-1, a^-1*y*a*(x*y*z)^-1,a^-1*z*a*x^-1, b^-1*x*b*y^-1,b^-1*y*b*(x*y)^-1, b^-1*z*b*z^-1,a^-1*X*a*Z^-1, a^-1*Y*a*(X*Y*Z)^-1,a^-1*Z*a*X^-1, b^-1*X*b*Y^-1,b^-1*Y*b*(X*Y)^-1, b^-1*Z*b*Z^-1,x^-1*X*x*X^-1, x^-1*Y*x*Y^-1,x^-1*Z*x*Z^-1, y^-1*X*y*X^-1,y^-1*Y*y*Y^-1, y^-1*Z*y*Z^-1,z^-1*X*z*X^-1, z^-1*Y*z*Y^-1,z^-1*Z*z*Z^-1], [[a,b,X],[b,a*b*a*b^-1*a,x,z,X]]]; end, [8,14]], "L3(2) 2^3 x N 2^3",[8,6,2],1, 2,[8,14]], # 10752.3 [[1,"abxyzXYZ", function(a,b,x,y,z,X,Y,Z) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4,x^2*X^(-1 *1),y^2*Y^-1,z^2*Z^-1, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*x*a*(z*Y)^-1, a^-1*y*a*(x*y*z)^-1, a^-1*z*a*(x*X*Y*Z)^-1, b^-1*x*b*(y*X)^-1, b^-1*y*b*(x*y*Z)^-1, b^-1*z*b*(z*X*Y)^-1,a^-1*X*a*Z^-1, a^-1*Y*a*(X*Y*Z)^-1,a^-1*Z*a*X^-1, b^-1*X*b*Y^-1,b^-1*Y*b*(X*Y)^-1, b^-1*Z*b*Z^-1],[[b,a*b*a*b^-1*a,x*Z]] ]; end, [28]], "L3(2) 2^3 A 2^3",[8,6,3],1, 2,28], # 10752.4 [[1,"abxyzXYZ", function(a,b,x,y,z,X,Y,Z) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4*(y*z*X*Z) ^-1,x^2*X^-1,y^2*Y^-1,z^2*Z^-1, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*x*a*(z*Y)^-1, a^-1*y*a*(x*y*z)^-1, a^-1*z*a*(x*X*Y*Z)^-1, b^-1*x*b*(y*X)^-1, b^-1*y*b*(x*y*Z)^-1, b^-1*z*b*(z*X*Y)^-1,a^-1*X*a*Z^-1, a^-1*Y*a*(X*Y*Z)^-1,a^-1*Z*a*X^-1, b^-1*X*b*Y^-1,b^-1*Y*b*(X*Y)^-1, b^-1*Z*b*Z^-1], [[b,a*b*a*b*a*b^-1*a*b*a*b*a,x*Z]]]; end, [112]], "L3(2) N 2^3 A 2^3",[8,6,4],1, 2,112], # 10752.5 [[1,"abxyzuvw", function(a,b,x,y,z,u,v,w) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4,u^2,v^2, w^2,u^-1*v^-1*u*v,u^-1*w^-1*u*w, v^-1*w^-1*v*w,x^2,y^2,z^2, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*u*a*(v*w)^-1, a^-1*v*a*v^-1,a^-1*w*a*(u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*w*b*w^-1,a^-1*x*a*z^-1, a^-1*y*a*(x*y*z)^-1,a^-1*z*a*x^-1, b^-1*x*b*y^-1,b^-1*y*b*(x*y)^-1, b^-1*z*b*z^-1,u^-1*x*u*x^-1, u^-1*y*u*y^-1,u^-1*z*u*z^-1, v^-1*x*v*x^-1,v^-1*y*v*y^-1, v^-1*z*v*z^-1,w^-1*x*w*x^-1, w^-1*y*w*y^-1,w^-1*z*w*z^-1], [[a,b,u],[a,b,x]]]; end, [8,8]], "L3(2) 2^3 x 2^3'",[8,6,5],1, 2,[8,8]], # 10752.6 [[1,"abxyzuvw", function(a,b,x,y,z,u,v,w) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4*(u*v*w)^(-1 *1),u^2,v^2,w^2,u^-1*v^-1*u*v, u^-1*w^-1*u*w,v^-1*w^-1*v*w,x^2, y^2,z^2,x^-1*y^-1*x*y,x^-1*z^-1*x*z ,y^-1*z^-1*y*z,a^-1*u*a*(v*w)^-1, a^-1*v*a*v^-1,a^-1*w*a*(u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*w*b*w^-1,a^-1*x*a*z^-1, a^-1*y*a*(x*y*z)^-1,a^-1*z*a*x^-1, b^-1*x*b*y^-1,b^-1*y*b*(x*y)^-1, b^-1*z*b*z^-1,u^-1*x*u*x^-1, u^-1*y*u*y^-1,u^-1*z*u*z^-1, v^-1*x*v*x^-1,v^-1*y*v*y^-1, v^-1*z*v*z^-1,w^-1*x*w*x^-1, w^-1*y*w*y^-1,w^-1*z*w*z^-1], [[a,b,u],[b,a*b^-1*a*b*a,x,z,u]]]; end, [8,14]], "L3(2) 2^3 x N 2^3'",[8,6,6],1, 2,[8,14]], # 10752.7 [[1,"abxyzuvw", function(a,b,x,y,z,u,v,w) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4*(y*z*u*v *w)^-1,u^2,v^2,w^2,u^-1*v^-1*u*v, u^-1*w^-1*u*w,v^-1*w^-1*v*w,x^2, y^2,z^2,x^-1*y^-1*x*y,x^-1*z^-1*x*z ,y^-1*z^-1*y*z,a^-1*u*a*(v*w)^-1, a^-1*v*a*v^-1,a^-1*w*a*(u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*w*b*w^-1,a^-1*x*a*z^-1, a^-1*y*a*(x*y*z)^-1,a^-1*z*a*x^-1, b^-1*x*b*y^-1,b^-1*y*b*(x*y)^-1, b^-1*z*b*z^-1,u^-1*x*u*x^-1, u^-1*y*u*y^-1,u^-1*z*u*z^-1, v^-1*x*v*x^-1,v^-1*y*v*y^-1, v^-1*z*v*z^-1,w^-1*x*w*x^-1, w^-1*y*w*y^-1,w^-1*z*w*z^-1], [[b,a*b*a*b^-1*a,x,u,w], [b,a*b^-1*a*b*a,x,z,u]]]; end, [14,14]], "L3(2) N 2^3 x N 2^3'",[8,6,7],1, 2,[14,14]], # 10752.8 [[1,"abxyzuvw", function(a,b,x,y,z,u,v,w) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4,u^2,v^2, w^2,u^-1*v^-1*u*v,u^-1*w^-1*u*w, v^-1*w^-1*v*w,x^2,y^2,z^2, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*x*a*z^-1, a^-1*y*a*(x*y*z)^-1,a^-1*z*a*x^-1, b^-1*x*b*(y*w)^-1,b^-1*y*b*(x*y)^-1, b^-1*z*b*(z*u)^-1,a^-1*u*a*(v*w)^-1, a^-1*v*a*v^-1,a^-1*w*a*(u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*w*b*w^-1,u^-1*x*u*x^-1, u^-1*y*u*y^-1,u^-1*z*u*z^-1, v^-1*x*v*x^-1,v^-1*y*v*y^-1, v^-1*z*v*z^-1,w^-1*x*w*x^-1, w^-1*y*w*y^-1,w^-1*z*w*z^-1], [[b,a*b*a*b^-1*a,x,w]]]; end, [56]], "L3(2) 2^3 E 2^3'",[8,6,8],1, 2,56], # 10752.9 [[1,"abxyzuvw", function(a,b,x,y,z,u,v,w) return [[a^2*(u*w)^-1,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4 *(y*z*v)^-1,u^2,v^2,w^2,u^-1*v^-1*u*v, u^-1*w^-1*u*w,v^-1*w^-1*v*w,x^2, y^2,z^2,x^-1*y^-1*x*y,x^-1*z^-1*x*z ,y^-1*z^-1*y*z,a^-1*x*a*z^-1, a^-1*y*a*(x*y*z)^-1,a^-1*z*a*x^-1, b^-1*x*b*(y*w)^-1,b^-1*y*b*(x*y)^-1, b^-1*z*b*(z*u)^-1,a^-1*u*a*(v*w)^-1, a^-1*v*a*v^-1,a^-1*w*a*(u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*w*b*w^-1,u^-1*x*u*x^-1, u^-1*y*u*y^-1,u^-1*z*u*z^-1, v^-1*x*v*x^-1,v^-1*y*v*y^-1, v^-1*z*v*z^-1,w^-1*x*w*x^-1, w^-1*y*w*y^-1,w^-1*z*w*z^-1], [[a*b,b*a*b^-1*a*b^-1*a*b*a*b^-1*x*y*u, x*u*w]]]; end, [64]], "L3(2) N 2^3 E 2^3'",[8,6,9],1, 2,64] ]; PERFGRP[45]:=[# 11520.1 [[1,"abcstuve", function(a,b,c,s,t,u,v,e) return [[a^2,b^3,c^3,(b*c)^4,(b*c^-1)^5,a^-1*b^-1*c *b*c*b^-1*c*b*c^-1,e^2, e^-1*s^-1*e*s,e^-1*t^-1*e*t, e^-1*u^-1*e*u,e^-1*v^-1*e*v,s^2, t^2,u^2,v^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,b^-1*s*b*(t*v*e)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, c^-1*s*c*(t*u)^-1,c^-1*t*c*t^-1, c^-1*u*c*(s*u*e)^-1, c^-1*v*c*(s*t*u*v)^-1],[[a,c,v]]]; end, [12]], "A6 2^4 E 2^1",[13,5,1],2, 3,12], # 11520.2 [[1,"abcstuve", function(a,b,c,s,t,u,v,e) return [[a^2*e^-1,b^3,c^3,(b*c)^4*e^-1,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,e^2, e^-1*s^-1*e*s,e^-1*t^-1*e*t, e^-1*u^-1*e*u,e^-1*v^-1*e*v,s^2, t^2,u^2,v^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,b^-1*s*b*(t*v*e)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, c^-1*s*c*(t*u)^-1,c^-1*t*c*t^-1, c^-1*u*c*(s*u*e)^-1, c^-1*v*c*(s*t*u*v)^-1],[[c*b*a*e,b,s]]]; end, [80]], "A6 2^4 E N 2^1",[13,5,2],2, 3,80], # 11520.3 [[1,"abcdstuv", function(a,b,c,d,s,t,u,v) return [[a^2*d^-1,b^3,c^3,(b*c)^4*d^-1,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,d^2, d^-1*b^-1*d*b,d^-1*c^-1*d*c,s^2, t^2,u^2,v^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, c^-1*s*c*(t*u)^-1,c^-1*t*c*t^-1, c^-1*u*c*(s*u)^-1, c^-1*v*c*(s*t*u*v)^-1], [[b,c],[c*b*a*d,b,s]]]; end, [16,80]], "A6 2^1 x 2^4",[13,5,3],2, 3,[16,80]], # 11520.4 [[1,"abcdstuv", function(a,b,c,d,s,t,u,v) return [[a^2*d^-1,b^3,c^3*(s*v)^-1,(b*c)^4*(d*s)^-1 ,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,d^2, b^-1*d*b*(d*u*v)^-1, c^-1*d*c*(d*t*u)^-1,s^2,t^2,u^2,v^2, s^-1*t^-1*s*t,s^-1*u^-1*s*u, s^-1*v^-1*s*v,t^-1*u^-1*t*u, t^-1*v^-1*t*v,u^-1*v^-1*u*v, a^-1*s*a*u^-1,a^-1*t*a*v^-1, a^-1*u*a*s^-1,a^-1*v*a*t^-1, b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, c^-1*s*c*(t*u)^-1,c^-1*t*c*t^-1, c^-1*u*c*(s*u)^-1, c^-1*v*c*(s*t*u*v)^-1], [[c*b*a*u,b,c^-1*a*c*u,t]]]; end, [80]], "A6 2^1 E 2^4",[13,5,4],1, 3,80] ]; PERFGRP[46]:=[# 12144.1 [[1,"abc", function(a,b,c) return [[c^11*a^2,c*b^3*c^-1*b^-1,b^23,a^2*b^-1 *a^2*b,a^2*c^-1*a^2*c,a^4,c*a*c*a^-1, (b*a)^3],[[b,c^2]]]; end, [48]], "L2(23) 2^1 = SL(2,23)",22,-2, 13,48] ]; PERFGRP[47]:=[# 12180.1 [[1,"abc", function(a,b,c) return [[c^14,c*b^4*c^-1*b^-1,b^29,a^2,c*a*c*a^-1, (b*a)^3,c^(-1*5)*b*c^2*b*c^3*a*b^2*a*c*b^2*a], [[b,c]]]; end, [30]], "L2(29)",22,-1, 17,30] ]; PERFGRP[48]:=[# 14400.1 [[1,"abcd", function(a,b,c,d) return [[a^4,b^3,(a*b)^5,a^2*b*a^2*b^-1,c^4,d^3,(c*d)^5, c^2*d*c^2*d^-1,a^-1*c^-1*a*c, a^-1*d^-1*a*d,b^-1*c^-1*b*c, b^-1*d^-1*b*d],[[a*b,c,d],[a,b,c*d]]]; end, [24,24]], "A5 2^1 x A5 2^1",[29,2,1,30],4, [1,1],[24,24]] ]; PERFGRP[49]:=[# 14520.1 [[1,"abyz", function(a,b,y,z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^11,z^11,y^-1 *z^-1*y*z,a^-1*y*a*z^-1, a^-1*z*a*y, b^-1*y*b*(y^-1*z^(-1*3))^-1, b^-1*z*b*y^(-1*4)],[[a,b]]]; end, [121]], "A5 2^1 11^2",[5,2,1],1, 1,121], # 14520.2 (otherpres.) [[1,"abdyz", function(a,b,d,y,z) return [[a^2*d^-1,b^3,(a*b)^5,d^2,d^-1*b^-1*d*b, y^11,z^11,y^-1*z^-1*y*z, a^-1*y*a*z^-1,a^-1*z*a*y, b^-1*y*b*(y^-1*z^(-1*3))^-1, b^-1*z*b*y^(-1*4)],[[a,b]]]; end, [121]]] ]; PERFGRP[50]:=[# 14580.1 [[1,"abwxyzd", function(a,b,w,x,y,z,d) return [[a^2,b^3,(a*b)^5,w^3,x^3,y^3,z^3,d^3,a^-1*d*a*d ^-1,b^-1*d*b*d^-1,w^-1*d^-1*w *d,x^-1*d^-1*x*d,y^-1*d^-1*y*d, z^-1*d^-1*z*d,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*w*a*z^-1, a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1*d, b^-1*y*b*w^-1*d^-1, b^-1*z*b*z^-1*d^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,w*d]]]; end, [18]], "A5 3^4' E 3^1",[2,5,1],3, 1,18] ]; PERFGRP[51]:=[# 14880.1 [[1,"abc", function(a,b,c) return [[c^15,c*b^9*c^-1*b^-1,b^31,a^2,c*a*c*a^-1, (b*a)^3],[[b,c]]]; end, [32]], "L2(31)",22,-1, 18,32] ]; PERFGRP[52]:=[# 15000.1 [[1,"abxyz", function(a,b,x,y,z) return [[a^4,b^3,(a*b)^5,a^2*b*a^2*b^-1,x^5,y^5,z^5,x ^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*x*a*z^-1, a^-1*y*a*y,a^-1*z*a*x^-1, b^-1*x*b*z^-1, b^-1*y*b*(y^-1*z)^-1, b^-1*z*b*(x*y^(-1*2)*z)^-1], [[a*b,x],[a*b,b*a*b*a*b^-1*a*b^-1,y]]]; end, [24,30]], "A5 2^1 x 5^3",[3,3,1],2, 1,[24,30]], # 15000.2 [[1,"abxyz", function(a,b,x,y,z) return [[a^4,b^3,a^2*b*a^2*b^-1,(a*b)^5*z^-1,x^5,y^5, z^5,x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*x*a*z^-1, a^-1*y*a*y,a^-1*z*a*x^-1, b^-1*x*b*z^-1, b^-1*y*b*(y^-1*z)^-1, b^-1*z*b*(x*y^(-1*2)*z)^-1], [[a*b,x],[a*b,b*a*b*a*b^-1*a*b^-1,y]]]; end, [24,30]], "A5 2^1 x N 5^3",[3,3,2],2, 1,[24,30]], # 15000.3 [[1,"abyzd", function(a,b,y,z,d) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^5,z^5,d^5,y ^-1*d^-1*y*d,z^-1*d^-1*z*d, y^-1*z^-1*y*z*d^-1, a^-1*y*a*z^-1*d^(-1*2),a^-1*z*a*y, a^-1*d*a*d^-1,b^-1*y*b*z, b^-1*z*b*(y*z^-1)^-1, b^-1*d*b*d^-1],[[a,b]]]; end, [125]], "A5 2^1 5^2 C 5^1",[3,3,3],5, 1,125], # 15000.4 (otherpres.) [[1,"abDyzd", function(a,b,D,y,z,d) return [[a^2*D^-1,b^3,(a*b)^5,D^2,D^-1*b^-1*D*b, y^5,z^5,d^5,y^-1*d^-1*y*d, z^-1*d^-1*z*d,y^-1*z^-1*y*z *d^-1,a^-1*y*a*z^-1*d^(-1*2), a^-1*z*a*y,a^-1*d*a*d^-1, b^-1*y*b*z,b^-1*z*b*(y*z^-1)^-1, b^-1*d*b*d^-1],[[a,b]]]; end, [125]]] ]; PERFGRP[53]:=[# 15120.1 [[1,"abd", function(a,b,d) return [[a^6*d,b^4*d,(a*b)^7,(a*b)^2*a*b^2*(a*b*a*b^-1) ^2*(a*b)^2*(a*b^-1)^2*a*b*a *b^-1*a^2*d,a^2*d*b*a^(-1*2)*d*b^-1, d^2,d*a*d*a^-1,d*b*d*b^-1], [[a^3,(b^-1*a)^2*(b*a)^2*b^2*a*b*a^4,d], [a*b,b*a*b*a*b^2*a*b^-1*a*b*a*b^-1*a*b *a*b^2*d,a^2*d]]]; end, [45,240]], "A7 3^1 x 2^1",[23,1,1],-6, 8,[45,240]] ]; PERFGRP[54]:=[# 15360.1 [[1,"abstuvef", function(a,b,s,t,u,v,e,f) return [[a^2,b^3,(a*b)^5,e^4,f^4,e^-1*a^-1*e*a,e^(-1 *1)*b^-1*e*b,e^-1*s^-1*e*s, e^-1*t^-1*e*t,e^-1*u^-1*e*u, e^-1*v^-1*e*v,e^-1*f^-1*e*f, f^-1*a^-1*f*a,f^-1*b^-1*f*b, f^-1*s^-1*f*s,f^-1*t^-1*f*t, f^-1*u^-1*f*u,f^-1*v^-1*f*v,s^2, t^2,u^2,v^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u*e^2,s^-1*v^-1*s*v *f^2,t^-1*u^-1*t*u*f^2, t^-1*v^-1*t*v*e^2*f^2,u^-1*v^-1*u *v,a^-1*s*a*u^-1*f^2, a^-1*t*a*v^-1,a^-1*u*a*s^-1*f^2, a^-1*v*a*t^-1, b^-1*s*b*(t*v*e*f^-1)^-1, b^-1*t*b*(s*t*u*v*f)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1 *f^2],[[a,b,e],[a,b,f]]]; end, [64,64]], "A5 ( 2^4 E ( 2^1 A x 2^1 A ) ) C ( 2^1 x 2^1 )",[1,8,1],16, 1,[64,64]], # 15360.2 [[1,"abdstuvef", function(a,b,d,s,t,u,v,e,f) return [[a^2*d,b^3,(a*b)^5,d^2,d^-1*b^-1*d*b,e^4,f^2, d^-1*a^-1*d*a,d^-1*s^-1*d*s, d^-1*t^-1*d*t,d^-1*u^-1*d*u, d^-1*v^-1*d*v,d^-1*e^-1*d*e, d^-1*f^-1*d*f,e^-1*a^-1*e*a, e^-1*b^-1*e*b,e^-1*s^-1*e*s, e^-1*t^-1*e*t,e^-1*u^-1*e*u, e^-1*v^-1*e*v,e^-1*f^-1*e*f, f^-1*a^-1*f*a,f^-1*b^-1*f*b, f^-1*s^-1*f*s,f^-1*t^-1*f*t, f^-1*u^-1*f*u,f^-1*v^-1*f*v,s^2, t^2,u^2,v^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u*e^2,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v*e^2, u^-1*v^-1*u*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1, b^-1*s*b*(t*v*e*f^-1)^-1, b^-1*t*b*(s*t*u*v*f)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1], [[a*b,s,e,f],[a*b,b*a*b*a*b^-1*a*b^-1,s*f,e] ,[a,b,f]]]; end, [24,12,64]], "A5 2^1 x ( 2^4 E ( 2^1 A x 2^1 ) ) C 2^1",[1,8,2],16, 1,[24,12,64]], # 15360.3 [[1,"abstuvSTUV", function(a,b,s,t,u,v,S,T,U,V) return [[a^2,b^3,(a*b)^5,s^2,t^2,u^2,v^2,s^-1*t^-1*s *t,u^-1*v^-1*u*v,s^-1*u^-1*s*u, s^-1*v^-1*s*v,t^-1*u^-1*t*u, t^-1*v^-1*t*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, S^2,T^2,U^2,V^2,S^-1*T^-1*S*T, S^-1*U^-1*S*U,S^-1*V^-1*S*V, T^-1*U^-1*T*U,T^-1*V^-1*T*V, U^-1*V^-1*U*V,a^-1*S*a*U^-1, a^-1*T*a*V^-1,a^-1*U*a*S^-1, a^-1*V*a*T^-1,b^-1*S*b*(T*V)^-1, b^-1*T*b*(S*T*U*V)^-1, b^-1*U*b*(U*V)^-1,b^-1*V*b*U^-1, s^-1*S*s*S^-1,s^-1*T*s*T^-1, s^-1*U*s*U^-1,s^-1*V*s*V^-1, t^-1*S*t*S^-1,t^-1*T*t*T^-1, t^-1*U*t*U^-1,t^-1*V*t*V^-1, u^-1*S*u*S^-1,u^-1*T*u*T^-1, u^-1*U*u*U^-1,u^-1*V*u*V^-1, v^-1*S*v*S^-1,v^-1*T*v*T^-1, v^-1*U*v*U^-1,v^-1*V*v*V^-1], [[a,b,S],[a,b,s]]]; end, [16,16]], "A5 2^4 x 2^4",[1,8,3],1, 1,[16,16]], # 15360.4 [[1,"abstuvwxyz", function(a,b,s,t,u,v,w,x,y,z) return [[a^2,b^3,(a*b)^5,w^2,w*s^-1*w*s,w*t^-1*w*t, w*u^-1*w*u,w*v^-1*w*v,s^2*w,t^2*w,u^2*z, v^2*z,s^-1*t^-1*s*t*w, s^-1*u^-1*s*u*w*x*z, s^-1*v^-1*s*v*x*y, t^-1*u^-1*t*u*w*y*z, t^-1*v^-1*t*v*w*x*z,u^-1*v^-1*u*v *z,a^-1*s*a*u^-1,a^-1*t*a*v^-1, a^-1*u*a*s^-1,a^-1*v*a*t^-1, a^-1*w*a*z,a^-1*x*a*x,a^-1*y*a*w*x*y *z,a^-1*z*a*w,b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v*y*z)^-1, b^-1*u*b*(u*v*w*x*y)^-1, b^-1*v*b*u^-1,b^-1*w*b*x, b^-1*x*b*y,b^-1*y*b*w,b^-1*z*b*z], [[b,a*b*a*b^-1*a,v*w,w*x]]]; end, [40]], "A5 2^4 C 2^4'",[1,8,4],1, 1,40], # 15360.5 [[1,"abstuvwxyz", function(a,b,s,t,u,v,w,x,y,z) return [[a^2,b^3,(a*b)^5,w^2,x^2,y^2,z^2,w^-1*x^-1*w *x,w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*w*a*z^-1, a^-1*x*a*x^-1,a^-1*y*a*(w*x*y*z)^-1 ,a^-1*z*a*w^-1,b^-1*w*b*x^-1, b^-1*x*b*y^-1,b^-1*y*b*w^-1, b^-1*z*b*z^-1,s^2,t^2,u^2,v^2, s^-1*t^-1*s*t,s^-1*u^-1*s*u, s^-1*v^-1*s*v,t^-1*u^-1*t*u, t^-1*v^-1*t*v,u^-1*v^-1*u*v, a^-1*s*a*u^-1,a^-1*t*a*v^-1, a^-1*u*a*s^-1,a^-1*v*a*t^-1, b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, w^-1*s*w*s^-1,w^-1*t*w*t^-1, w^-1*u*w*u^-1,w^-1*v*w*v^-1, x^-1*s*x*s^-1,x^-1*t*x*t^-1, x^-1*u*x*u^-1,x^-1*v*x*v^-1, y^-1*s*y*s^-1,y^-1*t*y*t^-1, y^-1*u*y*u^-1,y^-1*v*y*v^-1, z^-1*s*z*s^-1,z^-1*t*z*t^-1, z^-1*u*z*u^-1,z^-1*v*z*v^-1], [[a,b,w],[a*b*a*b^-1*a,b,w*x,s]]]; end, [16,10]], "A5 2^4 x 2^4'",[1,8,5],1, 1,[16,10]], # 15360.6 [[1,"abwxyzWXYZ", function(a,b,w,x,y,z,W,X,Y,Z) return [[a^2,b^3,(a*b)^5,w^2,x^2,y^2,z^2,w^-1*x^-1*w *x,w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*w*a*z^-1, a^-1*x*a*x^-1,a^-1*y*a*(w*x*y*z)^-1 ,a^-1*z*a*w^-1,b^-1*w*b*x^-1, b^-1*x*b*y^-1,b^-1*y*b*w^-1, b^-1*z*b*z^-1,W^2,X^2,Y^2,Z^2, W^-1*X^-1*W*X,W^-1*Y^-1*W*Y, W^-1*Z^-1*W*Z,X^-1*Y^-1*X*Y, X^-1*Z^-1*X*Z,Y^-1*Z^-1*Y*Z, a^-1*W*a*Z^-1,a^-1*X*a*X^-1, a^-1*Y*a*(W*X*Y*Z)^-1,a^-1*Z*a*W^-1 ,b^-1*W*b*X^-1,b^-1*X*b*Y^-1, b^-1*Y*b*W^-1,b^-1*Z*b*Z^-1, w^-1*W*w*W^-1,w^-1*X*w*X^-1, w^-1*Y*w*Y^-1,w^-1*Z*w*Z^-1, x^-1*W*x*W^-1,x^-1*X*x*X^-1, x^-1*Y*x*Y^-1,x^-1*Z*x*Z^-1, y^-1*W*y*W^-1,y^-1*X*y*X^-1, y^-1*Y*y*Y^-1,y^-1*Z*y*Z^-1, z^-1*W*z*W^-1,z^-1*X*z*X^-1, z^-1*Y*z*Y^-1,z^-1*Z*z*Z^-1], [[a*b*a*b^-1*a,b,w*x,W], [a*b*a*b^-1*a,b,W*X,w]]]; end, [10,10]], "A5 2^4' x 2^4'",[1,8,6],1, 1,[10,10]], # 15360.7 [[1,"abwxyzWXYZ", function(a,b,w,x,y,z,W,X,Y,Z) return [[a^2,b^3,(a*b)^5,w^2*W^-1,x^2*X^-1,y^2*Y^(-1 *1),z^2*Z^-1,W^2,X^2,Y^2,Z^2, w*x*w^-1*x^-1,w*y*w^-1*y^-1, w*z*w^-1*z^-1,x*y*x^-1*y^-1, x*z*x^-1*z^-1,y*z*y^-1*z^-1, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w*x*y*z*W*X*Y*Z)^-1, a^-1*z*a*w^-1,b^-1*w*b*x^-1, b^-1*x*b*y^-1,b^-1*y*b*w^-1, b^-1*z*b*z^-1], [[a*b*a*b^-1*a,b,w*x^-1]]]; end, [20]], "A5 2^4' A 2^4'",[1,8,7],1, 1,20] ]; PERFGRP[55]:=[# 15600.1 [[1,"bca", function(b,c,a) return [[b^5,c^12*a^2,a^4,a^2*b^-1*a^2*b,a^2*c^-1 *a^2*c,c*a*c*a^-1,(b*a)^3,(c^4*b*c*b*a)^3, c^(-1*2)*b*c^2*(b*c^-1*b^2*c)^-1, c^-1*b^2*c*b*(b*c^-1*b^2*c)^-1], [[b,c^8]]]; end, [208]], "L2(25) 2^1 = SL(2,25)",22,-2, 14,208] ]; PERFGRP[56]:=[# 16464.1 [[1,"abyz", function(a,b,y,z) return [[a^4,b^3,(a*b)^7,a^2*b^-1*a^2*b,(a^-1*b^-1 *a*b)^4*a^2,y^7,z^7,y^-1*z^-1*y*z, a^-1*y*a*z,a^-1*z*a*y^-1, b^-1*y*b*z^-1, b^-1*z*b*(y^-1*z^-1)^-1],[[a,b]]]; end, [49]], "L3(2) 2^1 7^2",[10,2,1],1, 2,49], # 16464.2 (otherpres.) [[1,"abdyz", function(a,b,d,y,z) return [[a^2*d^-1,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4 *d^-1,d^2,d^-1*b^-1*d*b,y^7,z^7, y^-1*z^-1*y*z,a^-1*y*a*z, a^-1*z*a*y^-1,b^-1*y*b*z^-1, b^-1*z*b*(y^-1*z^-1)^-1],[[a,b]]]; end, [49]]] ]; PERFGRP[57]:=[# 17280.1 [[1,"abcstuv", function(a,b,c,s,t,u,v) return [[b^3,c^3,(b*c)^4,(b*c^-1)^5,a^-1*b^-1*c*b *c*b^-1*c*b*c^-1,s^2,t^2,u^2,v^2, s^-1*t^-1*s*t,s^-1*u^-1*s*u, s^-1*v^-1*s*v,t^-1*u^-1*t*u, t^-1*v^-1*t*v,u^-1*v^-1*u*v, a^-1*s*a*u^-1,a^-1*t*a*v^-1, a^-1*u*a*s^-1,a^-1*v*a*t^-1, b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, c^-1*s*c*(t*u)^-1,c^-1*t*c*t^-1, c^-1*u*c*(s*u)^-1, c^-1*v*c*(s*t*u*v)^-1], [[a^3,c*a^2,s],[b,c]]]; end, [18,16]], "A6 3^1 x 2^4",[13,4,1],3, 3,[18,16]] ]; PERFGRP[58]:=[# 19656.1 [[1,"abc", function(a,b,c) return [[c^13*a^2,b^3,(c*b)^3*c^(-1*3)*b^-1,c^(-1*4)*b*c ^2*b*c*b*c*b^-1,a^4, a^2*b^-1*a^2*b,a^2*c^-1*a^2*c, c*a*c*a^-1,(b*a)^3],[[b,c^2]]]; end, [56]], "L2(27) 2^1 = SL(2,27)",22,-2, 16,56] ]; PERFGRP[59]:=[# 20160.1 [[1,"abcd", function(a,b,c,d) return [[a^2,b^3,(a*b)^5,c^4,d^3,(c*d)^7,(c^-1*d^-1*c *d)^4*c^2,c^2*d*c^2*d^-1, a^-1*c^-1*a*c,a^-1*d^-1*a*d, b^-1*c^-1*b*c,b^-1*d^-1*b*d], [[b,a*b*a*b^-1*a,c,d], [a,b,c*d,d*c*d^-1*c*d^-1*c*d*c*d^-1]] ]; end, [5,16]], "A5 x L3(2) 2^1",[31,1,1,32],2, [1,2],[5,16]], # 20160.2 [[1,"abcd", function(a,b,c,d) return [[a^4,b^3,(a*b)^5,a^2*b*a^2*b^-1,c^2,d^3,(c*d)^7, (c^-1*d^-1*c*d)^4,a^-1*c^-1*a*c, a^-1*d^-1*a*d,b^-1*c^-1*b*c, b^-1*d^-1*b*d], [[a*b,c,d],[a,b,d,c*d*c*d^-1*c]]]; end, [24,7]], "A5 2^1 x L3(2)",[31,1,2,32],2, [1,2],[24,7]], # 20160.3 [[1,"abcd", function(a,b,c,d) return [[a^4,b^3,(a*b)^5,c^2*a^2,d^3,(c*d)^7,(c^-1*d^(-1 *1)*c*d)^4*c^2,a^-1*c^-1*a*c, a^-1*d^-1*a*d,b^-1*c^-1*b*c, b^-1*d^-1*b*d], [[a*b,c*d,d*c*d^-1*c*d^-1*c*d*c*d^-1]]] ; end, [192]], "( A5 x L3(2) ) 2^1",[31,1,3],2, [1,2],192], # 20160.4 [[1,"ab", function(a,b) return [[a^2,b^4,(a*b)^15,(a*b^2)^6,(a*b)^2*(a*b^-1*a*b^2) ^2*a*b^-1*(a*b)^2*(a*b^-1)^7, a*b*a*b^-1*a*b*a*b^2*(a*b^-1)^5*a*b^2 *(a*b^-1)^5*a*b^2], [[a,b^-1*(a*b*b)^2]]]; end, [8]], "A8",[26,0,1],-1, 19,8], # 20160.5 [[1,"ab", function(a,b) return [[a^2,b^4,(a*b)^7,(a*b^2)^5,(a^-1*b^-1*a*b)^5, (a*b*a*b*a*b^3)^5,(a*b*a*b*a*b^2*a*b^-1)^5], [[a*b*a,b^2*a*b^-1*a*b*a*b^2*a*b]]]; end, [21]], "L3(4)",[27,0,1],-1, 20,21] ]; ############################################################################# ## #E perf2.grp . . . . . . . . . . . . . . . . . . . . . . . . . ends here ## gap-4r6p5/grp/basic.gd 0000644 0001750 0001750 00000044614 12172557252 013337 0 ustar bill bill ############################################################################# ## #W basic.gd GAP Library Frank Celler ## ## #Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains the operations for the construction of the basic group ## types. ## ############################################################################# ## ## <#GAPDoc Label="[1]{basic}"> ## There are several infinite families of groups which are parametrized by ## numbers. ## &GAP; provides various functions to construct these groups. ## The functions always permit (but do not require) one to indicate ## a filter (see ), ## for example , or ## , in which the group shall be constructed. ## There always is a default filter corresponding to a naturalway ## to describe the group in question. ## Note that not every group can be constructed in every filter, ## there may be theoretical restrictions ( only works ## for solvable groups) or methods may be available only for a few filters. ## ## Certain filters may admit additional hints. ## For example, groups constructed in may be ## constructed over a specified field, which can be given as second argument ## of the function that constructs the group; ## The default field is . ## <#/GAPDoc> ############################################################################# ## #O TrivialGroupCons() ## ## ## ## DeclareConstructor( "TrivialGroupCons", [ IsGroup ] ); ############################################################################# ## #F TrivialGroup( [## ## ## ##] ) . . . . . . . . . . . . . . . . trivial group ## ## <#GAPDoc Label="TrivialGroup"> ## ## ## <#/GAPDoc> ## BindGlobal( "TrivialGroup", function( arg ) if Length( arg ) = 0 then return TrivialGroupCons( IsPcGroup ); elif IsFilter( arg[1] ) and Length( arg ) = 1 then return TrivialGroupCons( arg[1] ); fi; Error( "usage: TrivialGroup( [## ## ## constructs a trivial group in the category given by the filter ## filter. ## If filter is not given it defaults to . ## ## ##TrivialGroup(); ## #### gap> TrivialGroup( IsPermGroup ); ## Group(()) ## ]]> ] )" ); end ); ############################################################################# ## #O AbelianGroupCons( , ) ## ## ## ## DeclareConstructor( "AbelianGroupCons", [ IsGroup, IsList ] ); ############################################################################# ## #F AbelianGroup( [## ## ## ##, ] ) . . . . . . . . . . . . . abelian group ## ## <#GAPDoc Label="AbelianGroup"> ## ## ## <#/GAPDoc> ## BindGlobal( "AbelianGroup", function ( arg ) if Length(arg) = 1 then if ForAny(arg[1],x->x=0) then return AbelianGroupCons( IsFpGroup, arg[1] ); fi; return AbelianGroupCons( IsPcGroup, arg[1] ); elif IsOperation(arg[1]) then if Length(arg) = 2 then return AbelianGroupCons( arg[1], arg[2] ); elif Length(arg) = 3 then return AbelianGroupCons( arg[1], arg[2], arg[3] ); fi; fi; Error( "usage: AbelianGroup( [## ## ## constructs an abelian group in the category given by the filter ## filt which is of isomorphism type ## ##C_{{ints[1]}} \times C_{{ints[2]}} \times \ldots ## \times C_{{ints[n]}} , ## where ints must be a list of positive integers. ## If filt is not given it defaults to . ## The generators of the group returned are the elements corresponding to ## the integers in ints. ## ##AbelianGroup([1,2,3]); ## #### ]]> , ] )" ); end ); ############################################################################# ## #O AlternatingGroupCons( , ) ## ## ## ## DeclareConstructor( "AlternatingGroupCons", [ IsGroup, IsInt ] ); ############################################################################# ## #F AlternatingGroup( [## ## ## ##, ] ) . . . . . . . . . . alternating group #F AlternatingGroup( [ , ] ) . . . . . . . . . . alternating group ## ## <#GAPDoc Label="AlternatingGroup"> ## ## ## <#/GAPDoc> ## BindGlobal( "AlternatingGroup", function ( arg ) if Length(arg) = 1 then return AlternatingGroupCons( IsPermGroup, arg[1] ); elif IsOperation(arg[1]) then if Length(arg) = 2 then return AlternatingGroupCons( arg[1], arg[2] ); fi; fi; Error( "usage: AlternatingGroup( [AlternatingGroup #### ## ## ## constructs the alternating group of degree deg in the category given ## by the filter filt. ## If filt is not given it defaults to . ## In the second version, the function constructs the alternating group on ## the points given in the set dom which must be a set of positive ## integers. ## ##AlternatingGroup(5); ## Alt( [ 1 .. 5 ] ) ## ]]> ##, ] )" ); end ); ############################################################################# ## #O CyclicGroupCons( , ) ## ## ## ## DeclareConstructor( "CyclicGroupCons", [ IsGroup, IsInt ] ); ############################################################################# ## #F CyclicGroup( [## ## ## ##, ] ) . . . . . . . . . . . . . . . cyclic group ## ## <#GAPDoc Label="CyclicGroup"> ## ## ## <#/GAPDoc> ## BindGlobal( "CyclicGroup", function ( arg ) if Length(arg) = 1 then if arg[1]=infinity then return CyclicGroupCons(IsFpGroup,arg[1]); fi; return CyclicGroupCons( IsPcGroup, arg[1] ); elif IsOperation(arg[1]) then if Length(arg) = 2 then return CyclicGroupCons( arg[1], arg[2] ); elif Length(arg) = 3 then return CyclicGroupCons( arg[1], arg[2], arg[3] ); fi; fi; Error( "usage: CyclicGroup( [## ## ## constructs the cyclic group of size n in the category given by the ## filter filt. ## If filt is not given it defaults to . ## ## ##CyclicGroup(12); ## #### gap> CyclicGroup(IsPermGroup,12); ## Group([ (1,2,3,4,5,6,7,8,9,10,11,12) ]) ## gap> matgrp1:= CyclicGroup( IsMatrixGroup, 12 ); ## ## gap> FieldOfMatrixGroup( matgrp1 ); ## Rationals ## gap> matgrp2:= CyclicGroup( IsMatrixGroup, GF(2), 12 ); ## ## gap> FieldOfMatrixGroup( matgrp2 ); ## GF(2) ## ]]> , ] )" ); end ); ############################################################################# ## #O DihedralGroupCons( , ) ## ## ## ## DeclareConstructor( "DihedralGroupCons", [ IsGroup, IsInt ] ); ############################################################################# ## #F DihedralGroup( [## ## ## ##, ] ) . . . . . . . dihedral group of order ## ## <#GAPDoc Label="DihedralGroup"> ## ## ## <#/GAPDoc> ## BindGlobal( "DihedralGroup", function ( arg ) if Length(arg) = 1 then return DihedralGroupCons( IsPcGroup, arg[1] ); elif IsOperation(arg[1]) then if Length(arg) = 2 then return DihedralGroupCons( arg[1], arg[2] ); elif Length(arg) = 3 then return DihedralGroupCons( arg[1], arg[2], arg[3] ); fi; fi; Error( "usage: DihedralGroup( [## ## ## constructs the dihedral group of size n in the category given by the ## filter filt. ## If filt is not given it defaults to . ## ## ##DihedralGroup(10); ## #### ]]> , ] )" ); end ); ############################################################################# ## #O QuaternionGroupCons( , ) ## ## ## ## DeclareConstructor( "QuaternionGroupCons", [ IsGroup, IsInt ] ); ############################################################################# ## #F QuaternionGroup( [## ## ## ##, ] ) . . . . . . . quaternion group of order ## ## <#GAPDoc Label="QuaternionGroup"> ## ## ## <#/GAPDoc> ## BindGlobal( "QuaternionGroup", function ( arg ) if Length(arg) = 1 then return QuaternionGroupCons( IsPcGroup, arg[1] ); elif IsOperation(arg[1]) then if Length(arg) = 2 then return QuaternionGroupCons( arg[1], arg[2] ); elif Length(arg) = 3 then return QuaternionGroupCons( arg[1], arg[2], arg[3] ); fi; fi; Error( "usage: QuaternionGroup( [## ## ## ## constructs the generalized quaternion group (or dicyclic group) of size ## n in the category given by the filter filt. Here, n ## is a multiple of 4. ## If filt is not given it defaults to . ## Methods are also available for permutation and matrix groups (of minimal ## degree and minimal dimension in coprime characteristic). ## ## ##QuaternionGroup(32); ## #### gap> g:=QuaternionGroup(IsMatrixGroup,CF(16),32); ## Group([ [ [ 0, 1 ], [ -1, 0 ] ], [ [ E(16), 0 ], [ 0, -E(16)^7 ] ] ]) ## ]]> , ] )" ); end ); DeclareSynonym( "DicyclicGroup", QuaternionGroup ); ############################################################################# ## #O ElementaryAbelianGroupCons( , ) ## ## ## ## DeclareConstructor( "ElementaryAbelianGroupCons", [ IsGroup, IsInt ] ); ############################################################################# ## #F ElementaryAbelianGroup( [## ## ## ##, ] ) . . . . elementary abelian group ## ## <#GAPDoc Label="ElementaryAbelianGroup"> ## ## ## <#/GAPDoc> ## BindGlobal( "ElementaryAbelianGroup", function ( arg ) if Length(arg) = 1 then return ElementaryAbelianGroupCons( IsPcGroup, arg[1] ); elif IsOperation(arg[1]) then if Length(arg) = 2 then return ElementaryAbelianGroupCons( arg[1], arg[2] ); elif Length(arg) = 3 then return ElementaryAbelianGroupCons( arg[1], arg[2], arg[3] ); fi; fi; Error( "usage: ElementaryAbelianGroup( [## ## ## constructs the elementary abelian group of size n in the category ## given by the filter filt. ## If filt is not given it defaults to . ## ## ##ElementaryAbelianGroup(8192); ## #### ]]> , ] )" ); end ); ############################################################################# ## #O ExtraspecialGroupCons( , , ) ## ## ## ## DeclareConstructor( "ExtraspecialGroupCons", [ IsGroup, IsInt, IsObject ] ); ############################################################################# ## #F ExtraspecialGroup( [## ## ## ##, ] , ) . . . . extraspecial group ## ## <#GAPDoc Label="ExtraspecialGroup"> ## ## ## <#/GAPDoc> ## BindGlobal( "ExtraspecialGroup", function ( arg ) if Length(arg) = 2 then return ExtraspecialGroupCons( IsPcGroup, arg[1], arg[2] ); elif IsOperation(arg[1]) then if Length(arg) = 3 then return ExtraspecialGroupCons( arg[1], arg[2], arg[3] ); elif Length(arg) = 4 then return ExtraspecialGroupCons( arg[1], arg[2], arg[3], arg[4] ); fi; fi; Error( "usage: ExtraspecialGroup( [## ## ## Let order be of the form ##p^{{2n+1}} , for a prime integer ##p and a positive integern . ## returns the extraspecial group of order ## order that is determined by exp, ## in the category given by the filter filt. ## ## Ifp is odd then admissible values of exp are the exponent ## of the group (eitherp orp^2 ) or one of'+' , ##"+" ,'-' ,"-" . ## Forp = 2 , only the above plus or minus signs are admissible. ## ## If filt is not given it defaults to . ## ##ExtraspecialGroup( 27, 3 ); ## #### gap> ExtraspecialGroup( 27, '+' ); ## ## gap> ExtraspecialGroup( 8, "-" ); ## ## ]]> , ] , )" ); end ); ############################################################################# ## #O MathieuGroupCons( , ) ## ## ## ## DeclareConstructor( "MathieuGroupCons", [ IsGroup, IsInt ] ); ############################################################################# ## #F MathieuGroup( [## ## ## ##, ] ) . . . . . . . . . . . . Mathieu group ## ## <#GAPDoc Label="MathieuGroup"> ## ## ## <#/GAPDoc> ## BindGlobal( "MathieuGroup", function( arg ) if Length( arg ) = 1 then return MathieuGroupCons( IsPermGroup, arg[1] ); elif IsOperation( arg[1] ) then if Length( arg ) = 2 then return MathieuGroupCons( arg[1], arg[2] ); elif Length( arg ) = 3 then return MathieuGroupCons( arg[1], arg[2], arg[3] ); fi; fi; Error( "usage: MathieuGroup( [## ## ## constructs the Mathieu group of degree degree in the category ## given by the filter filt, where degree must be in the set ## ##\{ 9, 10, 11, 12, 21, 22, 23, 24 \} . ## If filt is not given it defaults to . ## ##MathieuGroup( 11 ); ## Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ]) ## ]]> ##, ] )" ); end ); ############################################################################# ## #O SymmetricGroupCons( , ) ## ## ## ## DeclareConstructor( "SymmetricGroupCons", [ IsGroup, IsInt ] ); ############################################################################# ## #F SymmetricGroup( [## ## ## ##, ] ) #F SymmetricGroup( [ , ] ) ## ## <#GAPDoc Label="SymmetricGroup"> ## ## ## <#/GAPDoc> ## BindGlobal( "SymmetricGroup", function ( arg ) if Length(arg) = 1 then return SymmetricGroupCons( IsPermGroup, arg[1] ); elif IsOperation(arg[1]) then if Length(arg) = 2 then return SymmetricGroupCons( arg[1], arg[2] ); fi; fi; Error( "usage: SymmetricGroup( [SymmetricGroup #### ## ## ## constructs the symmetric group of degree deg in the category ## given by the filter filt. ## If filt is not given it defaults to . ## In the second version, the function constructs the symmetric group on ## the points given in the set dom which must be a set of positive ## integers. ## ## ##SymmetricGroup(10); ## Sym( [ 1 .. 10 ] ) ## ]]> ## ## Note that permutation groups provide special treatment of symmetric and ## alternating groups, ## see . ##, ] )" ); end ); BIND_GLOBAL("PermConstructor",function(oper,filter,use) local val, i; val:=0; # force value 0 (unless offset). for i in filter do # when completing, `RankFilter' is redefined. Thus we must use # SIZE_FLAGS. val:=val-SIZE_FLAGS(WITH_HIDDEN_IMPS_FLAGS(FLAGS_FILTER(i))); od; InstallOtherMethod( oper, "convert to permgroup", filter, val, function(arg) local argc,g,h; argc:=ShallowCopy(arg); argc[1]:=use; g:=CallFuncList(oper,argc); h:=Image(IsomorphismPermGroup(g),g); if HasName(g) then SetName(h,Concatenation("Perm_",Name(g))); fi; if HasSize(g) then SetSize(h,Size(g)); fi; return h; end); end); ############################################################################# ## #E gap-4r6p5/grp/simple.gd 0000644 0001750 0001750 00000007043 12172557252 013542 0 ustar bill bill ############################################################################# ## #W simple.gd GAP Library Alexander Hulpke ## ## #Y Copyright (C) 2011 The GAP Group ## ## This file contains basic constructions for simple groups of bounded size, ## if necessary by calling the `atlasrep' package. ## ############################################################################# ## #F SimpleGroup( [, [, [] ) ## ## <#GAPDoc Label="SimpleGroup"> ## ## ## <#/GAPDoc> ## DeclareGlobalFunction("SimpleGroup"); ############################################################################# ## #F SimpleGroupsIterator( [## ## ## This function will construct an instance of the specified simple group. ## Groups are specified via their name in ATLAS style notation, with parameters added ## if necessary. The intelligence applied to parsing the name is limited, and at the ## moment no proper extensions can be constructed. ## For groups who do not have a permutation representation of small degree the ## ATLASREP package might need to be installed to construct theses groups. ## ##g:=SimpleGroup("M(23)"); ## M23 ## gap> Size(g); ## 10200960 ## gap> g:=SimpleGroup("PSL",3,5); ## PSL(3,5) ## gap> Size(g); ## 372000 ## gap> g:=SimpleGroup("PSp6",2); ## PSp(6,2) ## ]]> ##, ] ) ## ## <#GAPDoc Label="SimpleGroupsIterator"> ## ## ## <#/GAPDoc> DeclareGlobalFunction("SimpleGroupsIterator"); ############################################################################# ## #F ClassicalIsomorphismTypeFiniteSimpleGroup(## ## ## This function returns an iterator that will run over all simple groups, starting ## at order start if specified, up to order ##10^{18} (or -- if specified ## -- order end). If the option NOPSL2 is given, groups of type ##PSL_2(q) are omitted. ##it:=SimpleGroupsIterator(20000); ## #### gap> List([1..8],x->NextIterator(it)); ## [ A8, PSL(3,4), PSL(2,37), PSp(4,3), Sz(8), PSL(2,32), PSL(2,41), ## PSL(2,43) ] ## gap> it:=SimpleGroupsIterator(1,2000);; ## gap> l:=[];;for i in it do Add(l,i);od;l; ## [ A5, PSL(2,7), A6, PSL(2,8), PSL(2,11), PSL(2,13) ] ## gap> it:=SimpleGroupsIterator(20000,100000:NOPSL2);; ## gap> l:=[];;for i in it do Add(l,i);od;l; ## [ A8, PSL(3,4), PSp(4,3), Sz(8), PSU(3,4), M12 ] ## ]]> ] ) ## ## <#GAPDoc Label="ClassicalIsomorphismTypeFiniteSimpleGroup"> ## ## ## <#/GAPDoc> DeclareGlobalFunction("ClassicalIsomorphismTypeFiniteSimpleGroup"); gap-4r6p5/grp/imf22.grp 0000644 0001750 0001750 00000117177 12172557252 013400 0 ustar bill bill ############################################################################# ## #A imf22.grp GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains, for each Q-class representative of the irreducible ## maximal finite integral matrix groups of dimension 22, ## ## [1] a quadratic form (as lower triangle of the Gram matrix), ## [2] a list of matrix generators. ## ############################################################################# ## ## Quadratic form and matrix generators for the Q-class representatives of ## the irreducible maximal finite integral matrix groups of dimension 22. ## IMFList[22].matrices := [ [ # Q-class [22][01] [[1], [0,1], [0,0,1], [0,0,0,1], [0,0,0,0,1], [0,0,0,0,0,1], [0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[[0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [22][02] [[8], [4,8], [2,4,8], [4,2,4,8], [2,4,2,4,8], [2,4,2,1,2,8], [2,4,2,1,2,2,8], [1,2,4,2,1,1,4,8], [2,1,2,1,-1,2,2,4,8], [4,2,1,2,1,1,4,2,4,8], [2,4,2,-2,2,2,2,1,2,1,8], [2,1,2,4,2,-1,2,4,2,4,-1,8], [2,1,2,1,2,2,2,1,2,4,2,2,8], [2,1,2,4,2,-1,2,1,-1,1,-1,2,2,8], [1,2,4,2,1,4,1,2,1,2,1,1,4,1,8], [2,1,2,4,2,2,2,4,2,1,-1,2,2,2,1,8], [4,2,1,2,1,4,1,2,1,2,1,1,1,1,2,4,8], [1,2,1,2,1,4,1,-1,1,2,1,1,1,1,2,1,2,8], [2,1,2,1,-1,2,2,1,2,1,2,-1,2,2,1,2,1,4,8], [1,2,1,2,1,1,1,2,1,-1,1,1,1,4,-1,4,2,2,4,8], [2,4,2,1,2,2,2,1,2,1,2,-1,2,2,1,2,1,1,2,4,8], [2,4,2,1,2,2,2,4,2,1,2,2,2,2,1,2,1,1,2,4,2,8]], [[[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-3,2,-2,3,-2,1,-1,1,-1,0,2,1,1,1,-2,0,1,-1,2,-3,1,0] , [-2,3,-2,2,-2,1,-2,3,-1,0,1,0,2,1,-2,0,0,0,1,-2,0,-1], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,0,-1,3,-2,1,0,0,-1,0,2,1,0,0,-1,0,1,-1,1,-2,1,1], [-4,4,-4,5,-3,1,-2,3,-1,0,2,0,2,1,-2,-1,1,-1,2,-3,1,-1], [-1,0,0,0,0,1,0,-1,0,0,1,1,-1,1,0,1,0,-1,1,-1,0,0], [2,-2,2,-4,2,0,1,-2,1,0,-1,1,-2,0,2,1,-1,0,0,2,-1,0], [2,-2,2,-4,2,0,1,-2,1,0,-1,1,-2,0,2,1,-1,0,0,1,0,0], [1,-2,2,-2,1,1,1,-2,0,1,0,1,-2,0,1,1,-1,-1,0,1,0,0], [-3,3,-3,4,-3,1,-1,1,-1,-1,2,1,2,1,-2,0,1,-1,2,-4,1,0], [1,-3,2,-2,1,1,1,-2,0,1,0,1,-2,0,1,1,-1,-1,0,1,0,1], [-1,0,0,1,-1,1,0,0,-1,1,1,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,3,-2,2,-2,1,-2,2,-1,1,1,0,1,1,-1,0,0,-1,1,-1,0,-1], [1,-1,1,-2,2,-1,1,-1,1,0,-1,0,-1,-1,2,0,0,0,0,2,-1,0], [-2,3,-3,4,-2,0,-1,3,-1,0,1,-1,2,0,-1,-1,0,0,1,-1,0,-1], [-3,3,-3,4,-2,1,-2,3,-1,0,1,0,2,1,-2,-1,1,-1,2,-3,1,-1], [-2,3,-2,2,-1,0,-1,2,0,-1,0,0,2,1,-1,-1,1,0,1,-2,0,-1], [-1,1,-1,1,0,-1,0,1,0,-1,0,0,1,0,0,-1,1,0,1,-1,0,0], [-1,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,1,-1,0,0], [1,-2,1,-2,1,0,1,-1,0,0,0,1,-1,0,1,0,0,0,0,1,0,0]], [[-5,5,-5,7,-4,1,-3,4,-2,0,3,0,3,1,-3,-1,1,-1,2,-4,1,-1], [0,0,0,-1,1,0,0,-1,0,0,0,1,-1,0,1,0,0,-1,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [-1,1,-1,2,-1,0,-1,2,-1,1,1,-1,1,0,-1,-1,0,0,0,0,0,-1], [0,-1,1,-1,1,0,0,-1,0,1,0,0,-1,0,1,0,0,-1,0,1,0,0], [0,1,-1,1,0,0,0,1,0,-1,0,0,1,0,0,-1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [-1,1,-1,2,-1,0,-1,1,-1,0,1,0,1,0,-1,0,0,0,0,-1,0,0], [-1,1,-1,0,0,1,-1,0,0,0,0,1,0,1,0,0,0,-1,1,-1,0,0], [-1,1,-1,2,-1,0,-1,1,-1,1,1,-1,1,0,-1,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [-1,0,0,1,-1,1,0,0,-1,1,1,0,0,0,-1,0,0,-1,0,0,0,0], [1,1,0,-1,1,-1,0,1,1,-1,-1,-1,1,0,0,-1,0,1,-1,1,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [-4,4,-4,6,-3,1,-2,3,-1,-1,2,0,3,1,-3,-1,1,-1,2,-4,1,-1], [0,1,-1,1,-1,1,-1,2,-1,0,1,0,1,1,-1,0,-1,0,0,-1,0,-1], [-1,2,-2,2,-2,1,-1,2,-1,0,1,0,1,1,-1,0,-1,0,0,-1,0,-1], [1,-2,1,-2,1,1,1,-2,0,1,0,1,-2,0,1,1,-1,-1,0,1,0,0], [1,-3,2,-3,2,0,2,-4,1,0,0,2,-3,0,2,1,0,-1,0,1,0,1], [1,-1,1,-2,1,1,0,-2,0,1,0,1,-2,0,1,1,-1,-1,0,1,0,0]]]], [ # Q-class [22][03] [[2], [1,2], [0,0,2], [0,0,1,2], [0,0,0,0,2], [0,0,0,0,1,2], [0,0,0,0,0,0,2], [0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]], [[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [22][04] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [22][05] [[4], [1,4], [2,0,4], [1,-1,-1,4], [2,0,2,0,4], [1,0,1,0,1,4], [2,0,2,0,2,1,4], [1,0,1,0,1,2,1,4], [2,0,2,0,2,1,2,1,4], [1,0,1,0,2,2,1,2,1,4], [2,-1,2,0,2,1,2,1,2,1,4], [1,0,1,0,1,2,1,2,1,2,1,4], [2,1,0,1,0,0,0,0,0,0,0,-1,4], [1,0,1,0,1,2,2,2,1,2,1,2,0,4], [1,0,1,0,1,2,1,2,1,2,1,2,0,2,4], [2,1,0,1,0,0,0,0,0,0,0,0,2,0,0,4], [1,0,1,0,1,2,1,2,2,2,1,2,0,2,2,0,4], [2,1,0,1,0,0,0,0,0,0,0,0,2,0,-1,2,0,4], [1,1,1,0,1,2,1,2,1,2,2,2,0,2,2,0,2,0,4], [2,0,2,0,2,1,2,2,2,1,2,1,0,1,1,0,1,0,1,4], [1,0,1,0,1,2,1,2,1,2,1,2,0,2,2,-1,2,0,2,1,4], [2,1,0,1,0,-1,0,0,0,0,0,0,2,0,0,2,0,2,0,0,0,4]], [[[-1,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [-1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,1], [-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-2,1,1,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,1], [-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,1], [-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,1,0,1,0,0], [-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,-1,0,0,0,1,1,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,1,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [-1,0,0,0,0,1,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,-1,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,1,0,0]], [[-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,1,1,0,0], [-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,1], [-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1], [-2,1,1,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,1], [-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,1,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,1], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0], [-1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,1], [-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0], [-1,0,0,0,0,1,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,1], [-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,1,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]], [[-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1]]]], [ # Q-class [22][06] [[3], [0,3], [0,0,3], [1,-1,0,3], [0,0,-1,0,3], [0,-1,0,0,-1,3], [0,-1,-1,1,1,1,3], [-1,1,0,-1,0,0,-1,3], [1,0,-1,0,1,0,1,-1,3], [0,0,0,-1,1,-1,-1,1,0,3], [1,-1,0,0,-1,1,0,-1,1,-1,3], [-1,1,1,-1,-1,1,0,1,-1,0,-1,3], [0,-1,1,0,1,-1,0,-1,1,1,0,-1,3], [0,1,1,-1,-1,-1,-1,1,-1,1,-1,1,0,3], [1,1,0,1,-1,0,-1,0,0,-1,0,0,-1,0,3], [-1,1,1,-1,1,-1,0,1,0,1,-1,1,1,1,-1,3], [0,0,0,1,-1,1,0,1,0,-1,0,0,-1,0,1,-1,3], [-1,-1,-1,-1,1,1,1,0,0,0,0,0,0,-1,-1,0,-1,3], [-1,1,0,-1,-1,1,-1,1,0,0,0,1,-1,0,1,0,1,0,3], [-1,0,-1,-1,-1,1,0,0,0,0,0,1,-1,0,0,-1,0,1,1,3], [1,1,-1,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0,0,0,3], [0,-1,0,1,0,0,0,0,0,1,0,-1,1,0,0,0,0,0,0,0,0,3]], [[[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,1,0,0,0,2,1,-1,1,1,-1,1,0,1,0,0,0,0,1,0,-1], [1,1,-1,0,-1,0,0,0,-1,0,0,0,1,-1,0,1,0,0,0,0,-1,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,1,1,2,0,-2,0,2,-1,0,1,-1,1,-1,-1,0,0,0,0,1,0], [0,0,-1,-1,0,0,0,-1,0,0,0,1,0,0,0,0,1,0,0,-1,0,1], [-1,0,0,1,1,1,-1,-1,1,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,1,0,0,1,0,-1,-1,-1,0,0,0,-1,0,0,0,0,0], [0,0,0,1,-1,1,-1,1,1,0,-1,-1,0,0,-1,0,-1,0,0,0,0,-1], [0,0,0,-1,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,-1,0,1], [0,1,-1,0,-1,1,1,0,-1,1,0,-1,1,0,1,1,0,0,0,0,-1,-1], [0,0,0,1,0,1,-2,0,1,-1,-1,0,0,0,-1,0,-1,0,0,0,0,0], [1,1,-1,1,-1,1,0,1,-1,0,0,-1,1,0,0,1,-1,0,0,1,-1,-1], [1,0,0,-1,-1,-1,2,1,-1,0,0,0,1,-1,1,0,0,0,0,0,0,0], [-1,1,0,2,0,2,-1,1,1,0,0,-1,0,1,0,0,-2,0,0,0,-1,-1], [1,0,0,-1,0,-1,1,0,-1,0,0,1,0,-1,0,0,1,0,0,0,0,1], [-1,-1,0,0,1,-1,-2,-1,2,-1,0,2,-1,1,-1,-1,1,1,0,-1,1,1], [1,0,0,-1,-1,-1,2,1,-1,0,0,0,1,-1,0,0,0,0,1,0,0,0], [0,0,0,-1,-1,0,1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0], [-1,1,0,1,0,1,1,1,0,1,1,-1,1,1,1,-1,-1,0,0,0,0,-1], [0,0,0,1,-1,1,-1,1,1,-1,-1,-1,0,0,-1,0,-1,0,0,0,0,0]], [[1,-1,0,0,1,-2,-1,-1,0,-1,0,2,0,0,-1,0,2,1,1,0,1,1], [-1,1,0,0,1,1,0,-1,0,1,1,0,0,1,1,0,1,0,-1,0,0,0], [0,-1,0,-1,0,0,-1,0,1,-1,-1,0,-1,0,0,0,0,0,-1,0,0,1], [1,-2,0,-1,1,-2,-1,0,0,-2,0,2,0,0,-1,0,1,0,1,0,1,1], [1,0,0,-1,-1,0,3,1,-2,1,0,-2,1,-1,2,1,-1,-1,1,1,-1,-1], [0,1,0,1,-1,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0], [0,0,0,0,0,-1,1,0,-1,0,1,0,0,0,0,0,0,0,1,0,0,0], [-1,1,0,1,0,2,0,0,0,1,0,-1,0,1,1,0,-1,0,-1,0,-1,-1], [0,0,0,0,1,-1,1,0,-1,0,1,1,1,0,0,-1,1,0,1,0,1,0], [0,0,0,1,0,2,0,1,0,0,-1,-2,0,0,1,1,-2,-1,0,1,-1,-1], [0,0,0,-1,0,-2,0,-1,0,0,0,2,0,-1,-1,-1,2,1,0,-1,1,1], [-1,1,0,1,0,2,-1,0,1,0,0,-1,-1,1,0,0,-1,0,-1,0,-1,0], [0,-1,0,-1,-1,0,1,1,0,0,-1,-1,0,-1,1,0,-1,-1,0,0,0,0], [-1,0,0,1,1,1,-2,-1,1,0,0,0,-1,1,0,0,0,0,-1,0,0,0], [1,-1,0,-1,1,-1,-1,-1,0,-1,0,2,0,0,-1,0,2,0,0,0,1,1], [-1,0,0,-1,0,1,1,0,0,1,0,-1,-1,0,2,0,-1,-1,-1,0,-1,0], [0,0,0,1,1,-1,-1,0,0,-1,1,2,1,1,-1,-1,1,1,0,0,1,0], [0,1,0,0,-2,1,2,0,-1,2,0,-2,0,-1,1,1,-1,0,0,0,-1,-1], [0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [-1,1,0,2,0,2,-1,0,1,0,0,-1,0,1,-1,0,-1,0,0,0,0,-1], [0,0,0,0,0,0,0,-1,0,1,0,0,-1,0,0,1,1,0,0,0,0,0], [0,-1,-1,0,0,1,-1,0,0,-1,-1,0,0,0,0,1,-1,-1,0,0,0,0]]]], [ # Q-class [22][07] [[12], [2,12], [2,-3,12], [-3,2,-3,12], [2,-3,2,2,12], [2,2,-3,2,2,12], [-3,2,2,2,2,-3,12], [-3,-3,2,2,-3,-3,-3,12], [-3,-3,-3,2,2,2,-3,2,12], [2,2,-3,-3,2,2,2,-3,-3,12], [2,2,2,2,-3,2,-3,2,2,-3,12], [2,2,-3,-3,-3,2,-3,-3,2,2,-3,12], [2,2,2,2,-3,-3,2,-3,-3,-3,2,2,12], [2,2,-3,2,2,-3,2,2,-3,2,-3,-3,-3,12], [2,2,2,2,2,2,-3,-3,-3,-3,2,-3,2,-3,12], [2,-3,2,2,2,2,-3,2,2,-3,2,-3,2,-3,2,12], [-3,2,-3,2,-3,-3,-3,2,2,-3,2,-3,2,2,2,2,12], [-3,-3,2,-3,2,2,2,-3,2,2,-3,2,-3,-3,-3,-3,-3,12], [2,2,2,2,-3,2,-3,2,-3,-3,2,2,2,2,2,2,2,-3,12], [-3,2,-3,2,-3,2,2,-3,-3,2,-3,2,2,-3,2,-3,-3,2,-3,12], [2,-3,2,-3,2,2,-3,2,2,2,-3,2,-3,-3,2,2,-3,2,-3,2,12], [2,-3,2,2,2,-3,2,2,2,2,2,-3,2,2,-3,2,2,2,-3,-3,2,12]], [[[1,0,-1,0,0,-1,0,0,0,0,0,-1,0,-1,0,0,0,1,1,0,0,0], [0,0,0,-1,1,0,0,0,0,0,0,0,-1,-1,0,0,0,-1,1,1,-1,1], [1,-1,0,1,-1,0,1,1,0,1,0,1,0,0,1,0,1,1,-1,-1,0,-1], [0,0,1,1,0,0,-1,-1,0,0,-1,-1,0,-1,-1,-1,0,-1,0,0,0,0], [1,-1,0,1,0,0,1,1,-1,0,1,1,0,0,0,0,1,1,-1,0,0,-1], [0,-1,1,1,-1,0,0,0,0,1,1,1,1,2,1,1,0,1,-2,-1,0,-2], [0,-1,2,1,-1,1,0,0,0,1,0,1,0,1,0,0,1,0,-1,0,0,-1], [0,1,-1,-1,1,0,0,0,0,-1,-1,-1,0,-2,-1,-1,0,-1,1,0,0,1], [-1,0,0,0,-1,1,0,0,0,0,0,0,1,1,1,0,-1,0,-1,-1,0,0], [0,-1,1,-1,0,1,1,1,0,0,1,2,0,2,1,1,1,0,-1,1,-1,0], [0,-1,1,1,-2,0,0,-1,1,1,0,0,0,1,1,0,0,0,-1,-1,0,-1], [-1,1,-1,-1,1,0,-1,0,0,0,0,-1,1,0,0,0,-1,0,1,0,0,1], [0,0,1,1,-1,0,-1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0], [0,1,-2,-2,3,-1,0,0,-1,-2,0,-1,-1,-3,-2,-1,0,-1,3,2,0,2], [1,0,0,1,0,-1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0], [1,-1,1,2,-2,0,1,0,0,1,0,1,0,1,1,1,1,1,-2,-1,0,-2], [0,0,-1,-1,1,0,1,0,0,-1,0,0,-1,-1,0,0,0,-1,1,1,0,1], [-1,-1,1,0,-1,1,1,1,0,1,1,2,1,3,2,1,0,1,-2,-1,0,-1], [0,0,-1,0,1,-1,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0], [-1,1,1,0,0,0,-2,-1,0,0,-1,-1,0,0,-1,0,-1,-1,0,0,0,1], [0,1,-1,-1,1,0,0,1,-1,-1,0,0,0,-1,0,0,0,0,0,0,0,1], [0,-1,1,0,-1,1,1,0,0,0,0,1,0,1,1,0,1,0,-1,0,0,0]], [[1,0,-1,-1,1,0,1,1,-1,-1,0,1,-1,-1,0,0,1,0,0,1,-1,1], [1,-1,-1,0,0,0,2,1,0,0,1,1,0,0,1,0,1,1,0,0,0,-1], [0,1,0,-1,1,0,-1,0,0,-1,-1,-1,0,-1,-1,-1,0,-1,1,1,0,1], [0,0,0,0,0,0,0,0,1,1,0,-1,1,0,0,0,0,0,0,0,0,-1], [0,1,-1,-1,2,-1,0,0,-1,-1,0,0,-1,-2,-1,0,0,-1,1,1,0,1], [1,0,-1,0,0,0,1,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,1,1,0,0,0,-1,0,0,0,0,0,0,-1,0,1,0,0,0,1,-1], [0,0,1,0,-1,0,-1,0,2,1,-1,-1,1,1,1,0,-1,0,0,0,-1,0], [0,1,-1,0,1,-1,-1,0,0,0,0,-1,0,-1,-1,0,-1,0,1,0,0,0], [1,-1,0,1,0,0,1,0,-1,0,0,1,-1,-1,0,0,1,0,0,0,0,0], [1,-1,1,0,-1,1,1,1,1,1,0,1,0,1,1,0,1,0,-1,0,-1,-1], [0,1,-2,0,1,-1,-1,-1,-1,-1,0,-2,0,-2,-2,-1,-1,0,2,0,1,1], [-1,0,0,-1,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0], [0,-1,1,0,0,0,1,0,0,0,1,2,-1,1,1,1,1,0,-1,1,-1,0], [0,0,-1,-1,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,-1,-1,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [-1,-1,0,-1,0,1,1,1,0,0,1,2,0,2,2,1,0,0,-1,0,-1,0], [0,0,1,2,-1,0,-1,-1,-1,0,0,0,0,0,-1,0,0,0,-1,-1,1,-1], [0,0,-1,-1,1,0,0,0,0,-1,0,-1,0,-1,-1,-1,0,-1,1,1,0,1], [0,0,0,1,-1,0,0,0,0,1,0,-1,1,0,0,0,0,1,0,-1,1,-1], [0,1,-1,0,0,-1,-1,0,0,0,-1,-1,0,-1,0,0,-1,0,1,0,0,1], [0,-1,2,1,-1,1,0,0,0,1,0,2,0,2,1,1,1,0,-2,0,-1,-1]]]], [ # Q-class [22][08] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]]]], [ # Q-class [22][09] [[4], [2,4], [1,2,4], [2,2,2,4], [2,2,1,2,4], [1,1,2,1,1,4], [1,2,1,1,2,1,4], [1,1,1,1,1,0,2,4], [1,1,1,2,1,0,1,1,4], [2,1,0,1,1,0,1,2,1,4], [1,1,2,2,1,2,1,2,0,1,4], [1,1,1,1,2,1,1,1,1,0,0,4], [2,1,1,2,2,0,1,2,0,2,2,1,4], [1,1,1,1,1,1,1,1,1,1,1,1,1,4], [0,1,1,1,1,1,1,1,1,1,1,2,1,0,4], [1,1,0,0,1,1,2,2,0,1,1,2,1,1,2,4], [0,1,2,1,1,1,1,1,1,0,1,1,1,0,2,1,4], [1,1,2,2,2,1,1,1,2,1,1,1,1,0,1,0,2,4], [2,1,0,1,1,0,1,1,1,2,0,1,1,1,1,1,0,1,4], [1,1,0,1,1,1,1,1,1,1,0,2,1,2,1,2,1,0,0,4], [2,1,1,2,2,0,0,1,1,2,1,1,2,1,1,1,1,2,1,1,4], [1,1,0,1,1,1,1,1,1,1,1,1,0,-1,2,2,1,1,1,0,1,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,1], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-2,2,-1,1,0,0,0,1,-1,1,0,0,0,1,1,0,-1,-2,0,-1], [0,0,-1,2,0,1,0,0,0,2,-1,1,-1,0,0,1,1,-1,-1,-2,0,-1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,2,0,1,0,0,0,2,-1,1,-1,0,-1,1,2,-1,-1,-2,0,-1], [0,0,1,-1,0,-1,1,-1,0,0,1,0,0,0,0,-1,0,0,0,1,0,1], [1,0,-2,3,-1,0,0,0,-1,2,-1,2,-1,1,0,1,2,0,-2,-3,-1,-1], [0,0,1,-1,0,-1,0,-1,0,0,1,0,0,0,0,0,0,0,0,1,0,1], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,2,-1,0,-1,1,-1,0,0,1,0,0,-1,0,-1,-1,0,1,2,0,1], [-1,0,2,-1,1,-1,0,-1,0,0,1,-1,0,-1,0,0,-1,0,1,2,0,1], [0,0,1,-1,0,-1,0,-1,0,0,1,0,0,0,0,-1,0,0,1,1,0,1], [0,-1,3,-1,1,-2,0,-1,0,0,1,-1,0,-1,0,0,-1,0,1,3,-1,1], [0,-1,3,-3,1,-2,1,-1,0,-1,2,-1,0,-1,0,-2,-1,0,2,4,0,2], [1,-1,1,1,1,-1,0,0,-1,0,0,-1,-1,0,1,0,0,0,0,1,-1,0], [0,0,-1,2,0,1,0,0,0,1,-1,1,0,0,0,1,1,-1,-1,-2,0,-1], [-1,0,1,-1,0,0,0,-1,1,0,1,0,1,-1,-1,0,0,-1,1,1,0,1], [1,-1,2,-2,0,-2,1,-1,-1,-1,1,-1,0,0,1,-2,-1,1,1,3,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [1,0,-1,1,0,0,0,0,0,1,0,1,-1,0,0,1,1,0,-1,-1,-1,-1]], [[1,1,-4,2,-2,2,0,1,0,1,-1,2,0,1,0,1,2,0,-2,-4,0,-2], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0], [1,1,-3,3,-1,2,-1,1,0,1,-2,1,0,1,0,2,2,0,-2,-4,-1,-2], [0,1,-3,3,-1,2,-1,1,0,2,-2,2,0,1,-1,2,2,0,-2,-4,-1,-2], [0,0,0,-1,0,0,0,0,0,-1,0,0,1,1,0,-1,0,0,0,0,0,1], [0,0,0,0,0,-1,0,-1,0,1,1,1,0,0,-1,0,1,0,0,0,-1,0], [1,0,-2,3,-1,0,0,0,-1,2,-1,2,-1,1,0,1,2,0,-2,-3,-1,-1], [0,0,-1,3,0,1,-1,0,0,2,-1,1,-1,0,-1,3,2,-1,-1,-3,-1,-2], [1,0,-3,3,-1,1,0,0,0,2,-1,2,-1,1,0,2,2,0,-2,-4,-1,-2], [0,1,-2,1,-1,1,0,0,0,0,-1,1,1,1,0,0,1,0,-1,-2,0,0], [1,0,-1,2,0,0,-1,1,-1,1,-1,1,-1,1,0,1,1,0,-1,-2,-1,-1], [1,1,-4,3,-2,2,0,1,0,1,-2,2,0,1,0,1,2,0,-2,-4,0,-2], [0,0,-1,2,0,0,-1,0,0,1,-1,0,0,1,0,2,1,0,-1,-2,-1,-1], [1,0,-1,2,0,0,0,0,-1,1,-1,1,-1,1,0,1,1,0,-1,-2,-1,-1], [1,0,-1,1,0,-1,0,0,-1,1,0,1,-1,1,0,0,1,0,-1,-1,-1,0], [0,0,-1,2,0,1,0,0,0,1,-1,1,0,0,-1,1,1,-1,-1,-2,0,-1], [0,0,-1,2,0,1,-1,0,0,1,-1,1,0,0,-1,2,1,0,-1,-2,-1,-1], [1,0,-2,2,-1,0,0,0,-1,1,0,1,-1,1,0,1,1,1,-1,-2,-1,-1], [1,0,-2,3,0,1,-1,1,0,2,-2,1,-1,1,0,2,2,-1,-2,-4,-1,-2], [1,1,-4,4,-1,2,-1,1,0,2,-2,2,-1,1,0,3,2,0,-3,-5,-1,-3], [1,0,-1,1,0,0,0,0,-1,1,0,1,-1,1,0,0,1,0,-1,-1,-1,0]]]], [ # Q-class [22][10] [[6], [2,6], [2,1,6], [1,1,3,6], [1,1,3,3,6], [2,0,2,2,2,6], [2,2,3,2,3,2,6], [1,1,2,3,2,3,2,6], [3,0,2,2,1,1,1,3,6], [1,0,3,3,1,2,2,2,3,6], [0,1,2,3,2,1,3,3,0,2,6], [1,1,1,1,2,3,1,1,1,3,0,6], [2,0,2,2,3,2,3,3,2,1,2,1,6], [0,1,1,2,2,3,3,2,0,2,3,3,2,6], [1,0,3,2,3,2,3,3,2,3,3,1,2,2,6], [1,1,2,0,2,2,3,2,2,2,0,2,2,2,2,6], [1,3,2,2,3,1,1,2,1,0,2,0,1,1,2,2,6], [2,0,1,2,1,2,2,2,2,3,2,0,3,2,2,2,1,6], [0,2,1,2,3,1,2,2,1,2,2,3,2,2,1,2,2,1,6], [1,1,2,2,3,2,2,1,1,2,1,3,0,2,3,2,2,0,3,6], [2,1,2,3,1,2,1,3,3,2,1,0,1,0,2,1,3,2,0,1,6], [2,1,3,3,2,3,1,2,3,3,0,3,1,1,2,2,2,0,2,3,2,6]], [[[1,2,-1,0,1,2,-4,-2,0,3,1,-4,2,1,0,2,-2,-3,1,1,1,-1], [1,2,-1,-1,2,2,-4,-2,0,3,1,-5,2,2,0,2,-3,-3,1,1,2,-1], [0,3,-1,-1,2,2,-4,-3,1,2,2,-4,2,1,0,2,-3,-2,0,1,1,0], [0,2,0,0,1,2,-3,-3,1,-1,2,-2,1,0,1,2,-3,-1,1,0,1,0], [0,2,-1,0,1,2,-2,-2,1,2,1,-3,2,0,0,1,-1,-2,0,1,0,-1], [0,1,0,0,0,1,-1,-1,0,1,0,-1,1,0,0,0,0,-1,0,1,0,-1], [0,3,-1,-1,2,3,-4,-3,1,3,2,-5,2,1,0,2,-3,-3,1,1,1,-1], [1,0,0,-1,1,0,-1,0,-1,2,0,-2,1,1,-1,0,0,-1,0,1,0,0], [0,1,0,-1,1,0,-2,-1,0,0,2,-1,1,0,-1,1,-2,0,0,1,1,1], [-1,2,0,-1,1,1,-2,-2,1,-1,2,-1,1,0,0,1,-3,0,0,1,1,1], [0,2,0,0,1,2,-3,-3,1,0,2,-3,1,1,1,2,-3,-2,1,0,1,0], [0,1,-1,-1,1,1,-1,0,0,3,0,-2,2,0,-1,0,0,-2,-1,2,0,-1], [1,2,-1,-1,2,2,-3,-1,0,4,1,-4,2,1,-1,1,-1,-3,0,1,0,-1], [-1,2,0,-1,1,2,-2,-2,1,0,2,-2,1,0,0,1,-2,-1,0,1,1,0], [0,1,-1,-1,1,1,-1,-1,0,3,0,-3,2,1,-1,0,0,-2,0,1,0,0], [-1,2,0,-1,1,1,-2,-2,1,0,2,-1,1,0,0,1,-2,0,0,1,1,0], [0,2,0,0,1,1,-3,-3,1,-1,2,-2,1,1,1,2,-3,-1,1,0,2,0], [-1,2,1,0,0,1,-2,-2,1,-3,2,0,0,0,1,1,-3,1,1,0,1,1], [0,1,0,0,0,1,-1,-1,1,0,1,-1,1,0,0,1,-1,-1,0,1,0,-1], [0,1,-1,0,0,1,-1,-1,0,2,0,-2,2,0,0,1,0,-2,0,1,0,-1], [1,0,0,-1,1,-1,-1,0,-1,0,0,-1,0,1,0,0,-1,0,1,0,1,1], [0,2,-1,0,1,2,-3,-3,1,1,2,-2,2,0,0,2,-2,-2,0,1,1,-1]], [[1,2,-1,-1,2,2,-4,-2,0,3,1,-5,2,2,0,2,-3,-3,1,1,2,-1], [1,2,-1,0,1,2,-4,-2,0,3,1,-4,2,1,0,2,-2,-3,1,1,1,-1], [0,2,-1,-2,2,2,-3,-2,1,3,2,-4,2,1,-1,1,-2,-2,0,1,1,0], [1,1,-1,-1,2,2,-3,-1,0,4,1,-4,2,1,-1,1,-1,-3,0,1,0,-1], [0,2,-1,0,1,2,-3,-2,1,2,2,-3,2,0,0,2,-2,-2,0,1,0,-1], [0,1,0,-1,1,1,-2,-1,0,1,1,-2,1,1,0,1,-2,-1,1,0,1,0], [0,3,-1,-1,2,3,-4,-3,1,3,2,-5,2,1,0,2,-3,-3,1,1,1,-1], [0,1,0,0,0,2,-2,-2,1,0,1,-1,1,0,1,1,-1,-1,1,0,0,-1], [0,2,-1,-1,2,2,-3,-2,1,2,1,-3,2,1,0,1,-2,-2,0,1,1,-1], [0,1,-1,-2,2,1,-2,-1,0,3,1,-3,2,1,-1,0,-1,-2,0,1,1,0], [0,1,0,0,0,2,-2,-2,1,1,1,-2,1,0,1,1,-1,-2,1,0,0,-1], [-1,2,0,0,1,1,-3,-3,1,-2,3,-1,1,0,1,2,-4,0,1,0,2,1], [0,2,0,0,1,2,-3,-3,1,0,2,-2,1,0,1,2,-3,-1,1,0,1,-1], [-1,2,0,0,1,2,-3,-3,1,0,2,-2,1,0,1,2,-3,-1,1,0,1,0], [-1,1,0,-1,0,1,-1,-1,1,0,1,-1,1,0,0,0,-1,0,0,1,0,0], [-1,2,0,-1,1,1,-2,-2,1,0,2,-1,1,0,0,1,-2,0,0,1,1,0], [0,1,0,0,0,1,-2,-1,1,1,1,-1,1,0,0,1,-1,-1,0,1,0,-1], [1,0,-1,-1,1,1,-1,0,-1,5,-1,-3,2,1,-1,0,1,-3,0,1,0,-2], [0,1,0,1,0,1,-2,-2,1,0,1,-1,1,0,1,1,-1,-1,1,0,0,-1], [-1,1,0,0,0,1,-1,-1,1,0,1,-1,1,0,0,0,-1,0,0,1,0,0], [1,0,-1,-1,1,1,-1,0,0,3,0,-2,1,1,-1,0,0,-2,0,1,0,-1], [0,1,0,-2,2,0,-2,0,0,1,1,-2,1,1,-1,0,-2,0,0,1,1,1]]]], [ # Q-class [22][11] [[8], [2,8], [0,4,8], [4,4,4,8], [0,-2,-2,-3,8], [1,1,-3,0,3,8], [-1,-3,-1,-2,1,0,8], [-3,1,-1,-2,3,3,-2,8], [-1,1,-2,-2,1,4,1,1,8], [-2,-4,-3,-2,-1,1,2,1,1,8], [-3,0,-1,-2,-3,-1,1,-1,2,3,8], [-2,2,-2,-2,1,3,-1,3,2,-2,0,8], [-3,-1,-1,0,-3,1,0,0,-1,3,3,2,8], [1,1,1,2,1,1,-2,1,-1,1,0,1,1,8], [-2,0,-2,-4,1,3,1,3,3,1,2,4,0,0,8], [-1,1,-1,-2,-1,2,0,1,2,0,1,2,2,1,4,8], [-1,0,-4,-4,0,2,-2,2,1,1,4,3,2,1,4,4,8], [-2,-1,-2,-4,3,-1,0,2,1,-1,1,2,-1,0,3,1,2,8], [-1,-1,-1,-1,0,1,4,-2,2,0,2,1,2,-1,3,4,1,1,8], [0,-2,-4,-3,3,1,3,-1,1,-1,2,2,1,0,1,2,3,2,4,8], [-1,-1,-1,-1,-1,0,2,-1,3,3,4,-2,0,0,2,2,1,0,2,2,8], [-1,2,1,-1,0,0,1,0,2,-1,1,2,-1,4,1,2,1,0,0,1,0,8]], [[[0,0,0,-2,-1,1,0,0,0,-1,0,0,0,1,0,0,-1,0,0,0,0,-1], [0,1,0,-4,-3,2,0,0,-1,-1,-1,0,-1,2,-1,-1,-1,0,1,0,1,-1], [0,1,1,-3,-3,2,-1,0,-1,1,-2,0,-1,1,-1,-2,0,1,2,1,1,0], [0,0,1,-3,-3,3,-1,0,-1,0,-1,0,-1,1,-1,-1,-1,1,1,1,1,0], [-1,0,1,2,1,-1,0,-1,1,2,-1,0,0,-1,1,0,1,0,-1,1,-1,0], [-1,-1,1,2,1,0,0,-1,0,1,0,1,-1,-1,0,1,1,0,-1,0,0,0], [-1,0,-1,3,2,-3,1,0,2,0,-1,-1,1,0,2,0,2,-1,-1,0,-1,0], [0,0,1,2,2,-1,0,-1,0,2,0,1,0,-2,0,1,1,0,-1,0,0,1], [-1,0,0,0,-1,1,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,-1,0,3,2,-1,0,0,0,1,1,1,0,-2,0,1,1,0,-1,0,0,1], [0,0,-2,2,2,-2,1,0,0,-1,1,0,1,0,1,1,0,-1,-1,-1,0,0], [0,0,-1,0,1,-1,0,0,0,-1,1,0,0,0,0,1,-1,-1,0,-1,0,0], [0,-1,0,1,0,0,0,0,0,0,1,1,-1,0,-1,1,0,0,0,0,0,0], [1,-1,0,-1,0,1,-1,0,-1,0,1,1,0,-1,-1,0,-1,0,1,-1,1,1], [1,-1,-1,3,4,-3,0,0,0,0,2,1,1,-2,1,2,0,-1,-1,-2,0,1], [2,-2,0,0,1,0,0,1,-1,-1,2,2,0,-1,-2,1,0,0,1,-3,1,1], [1,-1,-1,2,3,-2,1,0,0,-1,2,1,1,-1,0,2,0,-1,-1,-2,0,0], [0,1,-2,0,1,-2,1,0,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1], [1,-2,0,2,1,-1,0,1,0,0,1,1,0,-1,0,1,0,0,0,-1,0,1], [0,-1,-1,2,2,-2,1,0,1,-1,1,0,1,0,1,1,0,-1,-1,-1,-1,0], [0,-1,0,2,1,-1,0,0,0,0,0,0,1,-1,1,0,1,0,-1,0,0,1], [1,0,-1,-3,-1,1,0,1,-1,-2,1,0,0,1,-1,-1,-1,-1,2,-2,1,0]], [[0,0,1,-3,-4,3,-1,1,-1,0,0,0,-2,1,-2,-1,-1,1,2,1,0,0], [1,0,0,-5,-3,4,-1,1,-3,-1,2,1,-2,1,-3,0,-3,1,2,-1,1,0], [0,0,-1,-2,0,1,0,0,-1,-2,1,0,0,1,-1,0,-1,0,1,-2,1,0], [1,-1,1,-4,-3,4,-1,1,-2,-1,2,1,-2,1,-3,0,-2,1,2,-1,1,0], [-1,1,-1,0,0,-1,0,0,1,0,-1,-1,0,1,1,0,0,-1,0,1,-1,-1], [0,0,0,-2,-2,2,0,1,-1,0,1,1,-2,1,-2,0,-1,0,1,0,0,-1], [-1,-1,1,3,1,-1,0,-1,1,1,-1,0,0,-1,1,0,2,0,-1,1,-1,0], [0,1,-1,-1,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,-1], [0,0,0,1,1,0,0,0,-1,1,1,1,-1,-1,-1,1,0,0,0,0,0,0], [-1,0,0,4,2,-2,1,-1,2,1,-1,-1,1,-1,2,0,2,0,-2,1,-1,0], [0,0,0,2,2,-1,0,-1,0,1,0,0,1,-2,1,0,1,0,-1,0,0,1], [0,0,0,1,1,-1,0,0,0,1,0,1,0,-1,0,1,0,0,-1,0,0,0], [0,-1,0,4,3,-2,1,-1,1,1,0,1,1,-2,1,1,2,0,-2,-1,0,1], [-2,1,0,0,-1,0,0,-1,1,1,-1,-1,-1,1,1,0,0,0,-1,2,-1,-1], [0,0,0,1,1,-1,0,0,0,1,0,1,0,-1,0,0,0,0,0,0,0,0], [0,0,0,-1,-1,0,1,0,0,0,0,1,-1,1,-1,0,0,0,0,0,0,-1], [0,1,0,-1,-1,0,0,0,0,1,-1,0,0,0,0,-1,0,0,0,1,0,0], [0,1,-1,2,3,-3,0,-1,1,1,0,0,1,-1,2,1,0,-1,-1,0,-1,0], [1,-2,1,2,2,-1,0,0,0,1,1,2,0,-2,-1,1,1,0,0,-1,0,1], [-1,0,1,2,0,-1,0,-1,1,2,-2,0,0,-1,1,0,2,0,-1,2,-1,0], [-1,0,2,1,-1,1,0,-1,0,2,-2,0,-1,-1,0,-1,2,1,0,2,0,0], [-2,1,0,0,-1,0,0,-1,0,1,-1,-1,-1,1,1,0,0,0,-1,2,-1,-1]]]], [ # Q-class [22][12] [[12], [3,12], [-4,-1,12], [4,4,-3,12], [4,3,2,4,12], [0,2,0,-2,0,12], [1,4,-1,2,4,-3,12], [3,4,-4,2,3,-4,4,12], [0,0,0,-2,-4,4,-4,-2,12], [4,1,2,2,4,-2,0,0,0,12], [-2,2,3,-4,1,4,-4,-2,2,-1,12], [-3,1,3,3,0,0,2,1,1,-2,0,12], [3,-1,-2,0,2,0,0,0,4,1,2,0,12], [-2,4,4,2,3,-4,1,2,-1,4,2,0,0,12], [-3,-1,2,-2,-2,1,0,0,3,-2,2,4,-2,-2,12], [3,-3,-3,3,4,0,-2,-2,0,4,2,-2,4,0,-2,12], [-4,-1,4,-1,-3,3,-3,-3,1,-2,0,1,-2,1,-2,-2,12], [-4,0,-1,-2,-2,4,0,-3,0,-4,2,2,0,-3,-2,0,2,12], [0,-3,2,1,-4,-2,0,-3,-2,2,-2,3,0,-1,2,0,2,-4,12], [4,3,-4,2,0,-2,3,0,-4,3,0,-2,0,0,-4,1,-4,-2,4,12], [2,4,0,3,2,4,0,-2,-2,4,0,-4,-3,0,0,2,2,-2,0,0,12], [4,0,-2,4,2,2,-1,4,-4,3,-4,0,-2,0,0,0,0,-4,3,1,4,12]], [[[-3,7,-2,-2,1,-8,4,-7,4,0,5,-1,-2,-5,-3,2,1,-1,0,-4,-4,9], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,1,1,-2,3,0,1,-3,1,-1,0,1,1,1,0,0,-1,-1,0,-1,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [-1,3,0,0,-1,-1,1,-2,-1,1,1,-1,0,-2,0,1,1,-1,-1,-1,-3,2], [1,-2,-1,0,0,2,-1,1,-1,0,-1,1,0,2,1,-1,0,0,0,1,1,-2], [-2,3,0,0,0,-3,2,-3,1,0,2,-1,0,-3,-1,1,1,-1,-1,-1,-2,4], [-2,5,-1,-2,2,-7,2,-5,4,-1,3,-1,-1,-4,-2,1,1,0,0,-2,-2,7], [1,-1,-1,0,0,0,0,0,0,0,0,1,0,1,0,-1,0,0,0,0,1,-1], [-1,3,0,0,-1,-3,3,-3,1,1,3,-1,-1,-3,-1,1,1,-1,-1,-2,-3,4], [2,-4,1,0,0,5,-3,5,-2,-1,-4,1,1,4,2,-1,-1,1,1,3,3,-6], [1,-1,1,0,-1,2,-1,1,-2,0,-2,1,1,1,1,0,0,0,-1,1,1,-2], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,-1,1,-1,0,0,1,-1,0,-1,0,0,0,0,0,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,-1], [3,-6,1,1,0,5,-3,5,-2,-1,-3,1,1,5,2,-2,-1,2,1,3,4,-6], [1,-3,1,1,-1,4,-2,3,-2,0,-2,1,1,2,1,-1,-1,0,0,2,2,-4], [0,0,1,0,-1,0,1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,1], [-1,1,0,-1,1,-2,1,-1,2,-1,1,0,-1,-1,-1,1,0,0,0,0,0,2], [1,-3,0,1,0,3,-1,3,-1,0,-1,0,0,2,1,-1,0,1,1,1,1,-3], [-2,5,-2,-2,2,-7,3,-6,4,0,4,-1,-2,-4,-2,1,1,0,0,-3,-3,8]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,0,0,-1,1,-2,0,1,1,0,0,-1,0,0,1,-1,-1,-1,-1,1], [1,-3,2,1,0,3,-2,4,-1,-1,-3,0,1,2,2,0,0,1,0,3,2,-4], [-2,5,-1,-1,-1,-5,4,-6,2,1,4,-1,-1,-4,-2,2,1,-2,-2,-3,-4,7], [-1,2,-2,-1,1,-4,2,-4,2,0,3,0,-1,-2,-2,0,0,-1,0,-2,-1,4], [1,-3,1,1,1,2,-2,3,0,-1,-2,0,0,2,1,-1,-1,2,1,2,2,-3], [1,0,0,0,0,1,-1,0,-1,0,-1,0,0,1,1,0,0,0,0,0,0,-1], [0,0,0,0,1,-1,0,0,1,-1,0,0,0,0,0,0,0,1,1,0,1,0], [-2,3,0,0,-1,-3,2,-3,1,1,2,-1,0,-3,-1,1,0,-1,-1,-2,-2,4], [1,-2,0,1,0,1,0,1,0,0,0,0,0,1,1,-1,0,1,0,1,1,-1], [-1,2,-2,-1,2,-3,1,-3,2,0,2,0,-1,-1,-1,0,0,0,1,-2,-1,3], [-2,3,0,0,0,-3,2,-3,2,0,2,-1,-1,-3,-2,1,0,-1,0,-2,-2,4], [1,-1,0,0,1,1,-1,1,0,0,-1,0,0,1,1,-1,0,1,1,1,1,-2], [2,-6,1,0,2,4,-4,6,0,-2,-4,1,1,5,2,-2,-1,3,2,4,5,-6], [-1,2,0,-1,0,-3,1,-2,1,0,1,0,0,-2,0,1,1,0,-1,0,-1,3], [1,-2,2,1,-2,4,-1,3,-2,0,-2,0,1,2,1,0,-1,0,0,1,1,-3], [1,0,1,1,-3,3,0,1,-3,1,-1,0,1,1,1,1,0,-1,-1,0,-1,-2], [1,-2,1,0,1,2,-2,3,0,-1,-2,0,0,2,1,0,0,1,1,2,2,-3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0]]]] ]; MakeImmutable( IMFList[22].matrices ); gap-4r6p5/grp/imf31.grp 0000644 0001750 0001750 00000055755 12172557252 013403 0 ustar bill bill ############################################################################# ## #A imf31.grp GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains, for each Q-class representative of the irreducible ## maximal finite integral matrix groups of dimension 31, ## ## [1] a quadratic form (as lower triangle of the Gram matrix), ## [2] a list of matrix generators. ## ############################################################################# ## ## Quadratic form and matrix generators for the Q-class representatives of ## the irreducible maximal finite integral matrix groups of dimension 31. ## IMFList[31].matrices := [ [ # Q-class [31][01] [[1], [0,1], [0,0,1], [0,0,0,1], [0,0,0,0,1], [0,0,0,0,0,1], [0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [31][02] [[4], [1,4], [0,1,4], [1,1,0,4], [1,1,1,1,4], [1,1,1,1,1,4], [1,1,1,1,1,0,4], [1,0,1,0,1,1,1,4], [1,1,1,1,0,1,1,1,4], [1,1,1,1,0,1,1,1,1,4], [1,1,1,1,1,1,1,1,1,1,4], [0,0,1,1,1,1,1,1,1,1,1,4], [1,1,1,1,1,1,0,1,1,0,1,1,4], [0,1,1,1,1,1,1,0,0,0,1,0,0,4], [1,1,1,1,1,1,1,1,0,1,0,1,1,1,4], [1,1,0,0,0,1,1,1,1,1,0,0,0,1,0,4], [0,1,0,1,0,0,1,1,1,1,-1,0,1,0,1,1,4], [1,0,0,1,1,0,1,1,0,1,0,1,0,-1,0,1,1,4], [0,0,1,1,0,1,1,0,1,1,1,1,1,1,0,1,1,0,4], [1,1,1,0,1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,4], [1,1,-1,1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0,0,4], [0,1,1,1,1,1,1,0,-1,0,1,1,1,1,0,0,0,0,1,0,1,4], [0,1,1,0,1,1,0,0,1,0,1,1,1,0,-1,1,0,1,1,1,0,0,4], [1,1,-1,1,1,1,1,0,0,0,0,1,0,0,1,0,0,1,-1,0,1,0,0,4], [0,1,0,1,1,1,1,0,0,0,-1,1,1,1,1,1,1,1,0,1,0,1,1,1,4], [1,1,0,0,1,0,1,1,1,-1,1,1,1,0,-1,1,0,0,0,1,1,1,1,1,1,4], [0,1,1,0,1,1,1,1,1,0,1,0,0,1,0,1,1,1,0,0,1,0,1,0,0,0,4], [1,1,0,0,1,0,1,1,0,0,1,0,1,0,0,1,1,0,0,0,1,1,1,-1,0,1,1,4], [0,1,1,0,1,1,1,1,0,0,0,1,0,0,1,1,1,0,1,1,1,1,0,0,0,1,0,1,4], [1,1,1,0,0,1,0,1,0,1,1,0,1,1,0,0,1,0,1,1,1,1,1,-1,0,0,1,1,0,4], [1,1,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,0,0,0,1,0,0,1,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [10,2,11,-2,8,-16,-14,5,9,-14,15,7,-14,-18,-10,10,5,-15,12,6,-3,7,-11,18,19,-25,3,4,-2,6,-9], [3,2,5,-1,4,-4,-4,1,2,-7,5,4,-6,-8,-3,5,3,-5,5,3,0,2,-5,5,5,-8,0,1,-4,2,-4], [2,0,0,-1,0,-2,-2,1,2,0,1,0,-1,0,-1,-1,0,-1,1,0,-1,2,0,2,2,-2,1,0,1,0,-1], [-1,0,-2,0,-1,3,2,-1,-1,2,-2,-1,1,2,2,-2,0,2,-2,-1,0,0,2,-3,-3,4,0,-1,0,-1,1], [-3,-1,-4,1,-2,4,4,-1,-2,5,-5,-3,4,5,4,-3,-2,4,-4,-2,0,-1,4,-5,-6,8,0,-2,1,-1,3], [3,0,3,-1,1,-4,-4,1,2,-2,3,1,-3,-3,-2,1,1,-3,3,1,0,2,-2,4,5,-5,1,1,0,0,-2], [0,-1,0,0,0,-1,-1,0,1,1,0,-1,0,0,0,0,-1,0,0,0,0,1,0,1,1,0,1,0,1,0,0], [2,-1,1,-1,1,-5,-4,1,4,0,2,-1,-2,-2,-1,0,-1,-2,3,1,-1,3,-1,5,4,-4,2,1,2,1,-2], [-2,-1,-4,1,-2,4,4,-1,-2,4,-5,-2,4,5,3,-3,-1,3,-4,-1,0,-1,4,-5,-6,7,0,-2,1,-2,3], [2,-1,-1,-1,0,-3,-2,1,3,1,0,-1,-1,0,0,-1,-1,-1,1,0,-1,3,1,2,2,-2,2,0,2,0,-1], [-2,-1,-4,0,-2,3,2,-1,0,5,-5,-3,3,5,4,-4,-2,4,-2,-1,0,1,4,-4,-5,7,1,-1,1,-2,1], [5,-1,4,-1,3,-9,-8,3,6,-4,8,0,-6,-6,-5,3,1,-6,5,0,-3,4,-4,10,11,-11,2,2,3,3,-3], [-1,0,-1,0,-2,4,3,-1,-3,3,-3,-1,3,4,1,-2,0,3,-3,-2,1,-2,2,-4,-4,5,-1,-1,0,-2,2], [-2,0,-3,1,-3,6,5,-1,-5,4,-4,-2,5,6,2,-3,0,4,-5,-3,1,-3,4,-7,-6,8,-1,-3,1,-3,4], [2,-1,3,-1,2,-5,-5,1,4,-2,4,0,-3,-4,-2,2,0,-3,3,1,-1,2,-3,6,6,-6,1,2,1,2,-2], [0,-1,0,1,-1,1,1,0,-2,2,0,-1,2,2,-1,-1,0,0,-2,-2,0,-2,1,-1,0,2,0,-1,2,-1,2], [-1,-1,-2,0,0,0,0,0,2,1,-1,-1,0,0,2,-1,-1,0,0,1,-1,2,1,0,-1,1,1,0,0,0,0], [-5,-2,-7,1,-5,9,8,-3,-5,10,-9,-5,9,12,6,-7,-3,9,-8,-5,1,-4,7,-11,-11,16,-1,-3,3,-4,6], [-4,-1,-4,1,-3,7,6,-2,-4,5,-6,-2,5,6,4,-3,-1,5,-5,-2,1,-3,4,-7,-8,10,-1,-2,0,-2,4], [1,0,1,0,1,-2,-1,0,1,-1,1,1,-1,-2,-1,1,0,-2,1,1,0,1,-1,2,2,-3,1,0,0,1,-1], [5,1,6,-1,5,-8,-7,2,5,-8,8,4,-8,-10,-5,6,3,-8,6,3,-2,4,-6,9,10,-13,1,2,-2,4,-5], [9,1,9,-3,8,-17,-15,5,12,-12,14,5,-14,-17,-8,8,3,-13,13,6,-4,9,-10,19,19,-24,4,5,-1,6,-10], [0,-1,-1,0,-1,-2,-2,1,2,2,-1,-2,0,1,1,-2,-2,0,1,0,-1,2,1,2,1,0,2,1,2,0,0], [5,0,6,-1,4,-10,-9,3,7,-7,9,2,-8,-10,-5,5,2,-8,7,3,-3,5,-6,12,12,-14,2,3,0,4,-5], [6,0,8,-2,5,-13,-12,3,9,-8,10,3,-10,-12,-6,6,1,-9,10,4,-2,6,-8,15,15,-17,3,5,0,5,-7], [0,1,1,0,1,0,0,0,0,-1,0,1,-1,-2,0,1,0,-1,1,1,1,0,-1,0,0,-1,0,0,-2,0,-1], [9,1,9,-2,6,-13,-12,4,7,-10,13,5,-11,-13,-9,7,4,-11,9,3,-2,5,-8,14,17,-20,2,3,0,4,-7], [-4,0,-3,1,-3,9,7,-3,-7,5,-6,-1,6,7,4,-3,0,6,-6,-3,3,-5,4,-10,-9,12,-2,-3,-1,-3,4], [3,2,5,0,4,-4,-3,1,1,-7,5,5,-5,-8,-4,6,3,-6,4,3,0,1,-5,5,5,-9,0,1,-4,2,-3], [-3,0,-4,1,-1,5,5,-2,-2,3,-5,-1,3,3,4,-2,-1,3,-3,0,0,-1,3,-6,-7,7,0,-2,-1,-1,2]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,-1,0,-1,2,1,-1,-1,2,-2,-1,2,2,1,-1,-1,2,-1,-1,1,-1,1,-2,-2,3,0,0,0,-1,1], [1,-1,2,0,1,-4,-4,1,3,-1,3,-1,-2,-2,-2,1,-1,-2,2,0,-1,1,-2,5,5,-4,1,2,2,2,-1], [-6,-2,-9,2,-6,11,10,-3,-6,11,-11,-6,10,13,7,-8,-4,10,-9,-5,1,-4,9,-13,-13,18,-1,-4,3,-4,7], [3,-1,2,-1,2,-7,-6,2,6,-2,4,-1,-4,-4,-2,1,-1,-3,4,1,-2,4,-2,7,7,-7,2,2,2,2,-3], [-2,0,-3,0,-1,3,2,-1,0,3,-4,-2,2,3,3,-3,-2,3,-1,0,0,0,2,-3,-4,5,0,0,0,-1,1], [3,-1,2,0,2,-6,-5,2,4,-2,4,0,-3,-4,-3,2,0,-4,3,1,-2,3,-2,6,6,-7,2,1,2,2,-2], [0,2,1,0,1,1,0,0,-1,-2,0,2,-1,-1,0,1,1,0,1,1,1,-1,-1,-1,-1,0,-1,0,-3,0,-1], [5,1,6,-1,3,-7,-7,2,3,-6,7,3,-6,-7,-5,4,2,-6,6,2,0,2,-5,8,9,-11,1,2,-1,2,-4], [-5,1,-4,2,-3,10,9,-3,-8,5,-8,-1,7,7,4,-3,-1,6,-6,-2,3,-6,4,-11,-11,13,-2,-3,-2,-3,5], [-1,0,-1,1,-1,1,1,0,0,1,-2,-1,1,1,1,-1,-1,1,-1,0,0,0,1,-1,-2,2,0,0,0,0,1], [0,0,1,0,1,-1,-1,0,1,-1,1,0,-1,-2,0,1,0,-1,1,1,0,1,-1,1,1,-1,0,0,-1,1,-1], [-8,-2,-10,2,-8,14,12,-4,-8,14,-14,-7,13,17,9,-10,-5,13,-11,-6,3,-6,11,-16,-17,23,-2,-4,3,-6,8], [-1,-2,-4,0,-2,1,1,0,1,5,-3,-4,3,5,2,-4,-2,3,-3,-2,-1,1,4,-2,-2,4,1,-1,4,-1,2], [-4,-2,-7,1,-5,8,7,-2,-5,10,-8,-5,9,12,4,-7,-3,8,-8,-5,1,-4,7,-10,-9,14,-1,-3,4,-4,6], [-3,0,-4,0,-3,7,5,-2,-4,5,-6,-2,5,7,4,-4,-1,6,-4,-2,2,-3,4,-8,-8,10,-1,-2,0,-3,3], [-5,0,-6,1,-5,11,9,-3,-8,9,-9,-3,9,12,5,-6,-2,9,-8,-5,3,-6,7,-13,-12,16,-2,-4,1,-5,6], [-5,0,-4,1,-3,8,7,-3,-5,5,-7,-2,6,7,5,-3,-2,7,-5,-2,2,-4,4,-9,-10,12,-2,-2,-1,-2,4], [0,0,-2,0,-1,1,1,0,0,2,-2,-1,1,2,1,-2,-1,1,-1,0,0,1,2,-2,-2,2,1,-1,1,-1,0], [3,2,5,-1,4,-5,-5,1,3,-7,5,4,-6,-8,-3,5,2,-5,5,3,0,2,-5,6,6,-9,0,2,-3,3,-4], [5,1,4,-1,3,-8,-7,3,5,-5,6,2,-6,-7,-4,3,1,-6,6,2,-2,4,-4,8,9,-11,2,2,0,2,-4], [-4,-2,-6,1,-3,4,4,-1,0,7,-6,-5,5,6,5,-5,-4,5,-4,-2,-1,0,5,-5,-6,9,1,-1,3,-1,3], [-1,0,0,0,-1,2,1,-1,-1,1,-1,-1,1,2,1,-1,0,2,-1,-1,1,-1,1,-2,-2,3,-1,0,0,-1,1], [-4,-1,-5,1,-3,7,6,-2,-4,6,-7,-3,6,7,5,-4,-2,6,-5,-2,1,-2,5,-8,-9,11,-1,-2,0,-3,4], [-5,-2,-7,1,-4,8,7,-3,-4,9,-8,-5,8,10,6,-6,-3,8,-7,-4,1,-3,7,-10,-10,14,-1,-3,3,-3,5], [4,1,5,-1,4,-7,-7,2,5,-7,7,3,-7,-9,-3,5,2,-6,6,3,-1,4,-5,8,8,-11,1,2,-2,3,-5], [-2,-1,-2,0,-2,2,1,-1,0,4,-3,-3,3,5,2,-3,-2,4,-2,-2,0,-1,2,-2,-3,5,0,0,2,-1,2], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [9,2,10,-3,8,-16,-15,5,11,-13,14,6,-14,-17,-9,9,3,-13,13,6,-3,8,-11,18,19,-24,3,5,-2,6,-10], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [3,0,3,-1,2,-6,-5,1,4,-3,4,1,-4,-5,-2,2,0,-4,4,2,-1,3,-3,6,6,-7,2,2,0,2,-3]]]], [ # Q-class [31][03] [[5], [1,5], [1,0,5], [0,1,1,5], [-1,1,0,1,5], [-1,-1,1,1,1,5], [1,0,-2,0,0,-1,6], [1,1,2,-2,0,-2,-2,6], [2,0,0,-2,-1,-2,0,2,6], [2,2,0,2,2,0,0,-1,-1,6], [0,2,1,2,2,-2,0,1,0,1,6], [2,0,2,0,0,2,1,-1,1,1,-1,6], [-2,-2,2,2,0,2,-2,-1,-2,-2,1,0,6], [0,0,-2,0,-2,-2,1,-2,1,0,1,-1,0,6], [0,-1,-1,0,0,2,-1,-2,-1,2,-3,1,-1,-2,6], [-1,2,1,2,2,0,0,0,1,-1,2,-1,1,-1,-2,6], [-1,-2,-2,0,0,-2,3,-1,1,-2,1,-2,0,2,-2,1,6], [-2,2,-1,1,2,0,-1,-1,1,1,1,-1,0,2,-1,3,0,6], [2,1,0,2,0,2,-1,-2,-1,3,-1,2,0,-1,3,-1,-3,0,6], [0,-2,2,0,0,2,-3,0,2,-1,-1,1,2,-1,1,1,-1,1,1,6], [-1,1,-1,2,1,-2,1,-1,-2,2,2,-3,-1,1,0,1,2,1,-1,-2,6], [-2,0,0,2,0,2,-3,-1,-1,-1,0,-1,3,1,0,1,-1,2,1,2,-1,6], [2,0,0,0,0,-2,2,2,-1,1,1,0,-1,-1,-1,-2,1,-3,0,-3,1,-3,6], [0,-2,0,0,0,-2,0,0,2,-1,2,-1,1,3,-2,0,3,1,-2,1,1,0,0,6], [-2,2,-2,1,0,-2,1,0,-1,1,2,-2,-1,2,-1,0,1,2,-1,-3,3,0,1,0,6], [0,0,-2,0,-1,0,3,-3,0,1,0,2,-1,3,0,-2,1,0,0,-2,0,-1,0,0,2,6], [-2,0,0,1,-1,-1,0,0,0,-1,2,0,2,2,-2,0,1,1,-1,-1,0,1,1,1,3,2,6], [-1,1,-2,1,0,2,1,-3,-2,0,-1,1,1,1,1,0,-1,1,2,-2,-1,2,-1,-2,1,2,1,6], [-2,2,-1,2,2,2,0,-2,-3,1,1,0,1,0,0,1,-1,2,1,-1,1,2,-1,-2,2,2,1,3,6], [2,2,1,1,0,2,-1,-1,-1,1,0,2,1,0,0,0,-3,0,3,1,-2,2,-1,-2,-2,0,-1,2,2,6], [2,1,2,0,-1,0,-2,3,0,1,-1,-1,-1,-2,0,0,-2,-1,1,1,0,0,1,-2,-1,-3,-2,-2,-1,1,6]], [[[0,0,0,0,0,1,0,-1,1,0,0,-1,0,0,0,0,-1,0,-1,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,1,-1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,-1,0,0], [0,0,0,0,1,0,-1,-1,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,-1,0,1], [-1,-1,-1,0,1,-1,0,0,0,0,0,1,0,1,0,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,-1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,-1,0,0,0,-1,-1,0,0,-1,0,0,0,0,0], [1,-1,-1,0,0,0,-1,0,0,0,0,1,0,-1,-1,0,0,0,0,-1,1,0,-1,0,0,0,0,0,0,0,0], [0,-1,0,-1,-1,1,1,1,0,1,1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0], [0,1,1,0,0,0,0,-1,0,-1,0,-1,0,-1,0,-1,0,1,0,0,0,0,0,0,0,1,0,0,-1,0,0], [-1,1,1,0,0,1,0,-1,2,0,0,-1,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [-1,0,-1,1,1,0,0,1,0,0,-1,0,0,2,0,1,-1,-2,0,1,0,-1,0,0,0,0,0,0,0,0,0], [-1,0,0,1,1,-1,0,0,0,-1,0,0,0,1,1,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,1], [1,-1,0,0,1,1,-1,0,1,-1,0,0,0,1,0,0,0,0,0,-1,1,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,1,-1,-1,-1,0,-1,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,-1,0,1,0,0,0,0,-1,1,0,0], [0,0,0,0,0,0,0,1,0,1,-1,0,0,0,-1,0,0,-1,0,1,1,0,0,0,0,0,0,1,0,0,-1], [-1,0,-1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [-2,0,1,0,-1,0,1,0,1,1,1,0,0,1,1,0,0,0,0,0,-1,0,1,0,0,-1,-1,0,1,0,0], [-1,0,-1,0,0,0,0,1,0,0,0,1,0,1,0,1,0,-1,1,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,-1,0,1,0,0,0,1,0,-1,0,1,0,-1,0,-1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,-1,1,0,0,0,0,-1,-1,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,-1,1,1,-1,1,0,0,0,1,1,1,0,-1,0,1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,-1,-1,-1,0,0,0,1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,1,0,1,0,0,-1,0,-1,0,1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,0,0,0,-1,1,0,0,0,0,1,1,0,0,0,0,-1,-1,0,1,0,0,-1,0,-1,1,0,0], [-1,0,0,0,0,-1,1,2,-1,0,0,0,0,1,1,1,0,0,1,1,0,0,0,0,-1,1,0,0,0,0,0], [1,-1,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,1,0,2,-1,0,0,0,-2,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1], [0,-1,-1,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0], [1,-1,-1,0,0,-1,0,1,-1,0,0,1,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [1,0,-1,0,0,0,-1,-1,0,0,0,0,0,-1,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,-1,0,-1,-1,0,-1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0]], [[-2,0,0,0,-1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,1,0], [0,1,0,0,0,0,0,-1,1,0,-1,0,1,-1,-1,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,-1,0,0,1,0,0], [-1,-1,0,0,-1,0,1,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,1,1,0,1,0,0,-1,1,0,-1,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0], [1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,1,0,0,0,1], [-2,0,0,0,0,0,1,1,1,0,0,0,0,1,0,0,-1,-1,1,0,1,0,0,0,-1,0,0,0,0,0,0], [1,1,0,0,0,0,-1,-1,0,-1,0,0,0,-1,0,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0], [-1,0,0,0,-1,0,0,-1,1,1,0,0,0,-1,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,1,0], [-1,1,0,0,0,0,0,0,0,0,-1,0,0,1,0,1,0,-1,0,1,0,0,1,0,0,0,0,0,0,0,0], [0,-1,0,0,-1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,1,0,0], [0,-1,0,1,0,0,0,1,-1,0,0,0,-1,1,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [-2,0,-1,1,0,0,0,1,0,0,0,1,0,2,0,1,-1,-1,0,1,0,-1,1,0,0,0,-1,0,0,0,0], [1,-1,0,-1,-1,0,0,-1,0,1,1,0,0,-2,0,0,0,1,-1,-1,0,1,0,0,0,0,0,0,0,0,0], [-1,1,1,0,1,0,1,0,1,0,-1,-1,1,1,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,1,0,1,1,0,-1,0,0,0,2,1,1,-1,-1,1,0,0,0,0,0,0,0,0,-1,0,0,0], [-1,1,0,1,1,0,0,0,1,0,-1,0,1,1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,-1,0,0,-1,0,0,0,0,1,0,0,0,-1,0,0,0,1,-1,-1,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,1,-1,1,0,0,0,1,1,1,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,0,0,0,1,-1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0], [-1,0,0,0,-1,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0], [-2,1,0,1,0,0,0,1,0,0,0,0,0,2,1,1,0,-1,0,1,-1,-1,1,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,0,0,0,0,1,0,0,0,1,0,1,0,1,-1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,-1,0,0,1,-1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,-1,0,0,0,1,0,0,1,0,0,0,0,0,-1,0,-1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,1,0,0,0,0,0,-1,0,0,0,-1,0,0,-1,0,0,1,0,-1,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]]]], [ # Q-class [31][04] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]] ]; MakeImmutable( IMFList[31].matrices ); gap-4r6p5/grp/ree.gi 0000644 0001750 0001750 00000004736 12172557252 013037 0 ustar bill bill ############################################################################# ## #W ree.gi GAP library ## ## #Y (C) 2001 School Math. Sci., University of St Andrews, Scotland ## ############################################################################# ## #M ReeGroupCons(## This function returns a result equivalent to (and based on) ## , but returns a ## classically names series (consistent with ## ) and the parameter always in a list. This makes it ## easier to parse the result. ## ## ##ClassicalIsomorphismTypeFiniteSimpleGroup(SimpleGroup("O+",8,2)); ## rec( parameter := [ 8, 2 ], series := "O+" ) ## gap> IsomorphismTypeInfoFiniteSimpleGroup(SimpleGroup("O+",8,2)); ## rec( name := "D(4,2) = O+(8,2)", parameter := [ 4, 2 ], series := "D" ) ## ]]> ##, ) ## InstallMethod(ReeGroupCons,"matrix",true, [IsMatrixGroup,IsPosInt],0, function ( filter, q ) local theta, m, f, bas, one, zero, x, h, r, gens, G, i; m:=Int((LogInt(q,3)-1)/2); if m<0 or q<>3^(1+2*m) then Error("Usage: ReeGroup(,3^(1+2m))"); fi; theta:=3^m; f:=GF(q); bas:=BasisVectors(Basis(f)); one:=One(f); zero:=Zero(f); x:=function(t,u,v) return [[1,t^theta,-u^theta,(t*u)^theta-v^theta,-u-t^(3*theta+1)-(t*v)^theta, -v-(u*v)^theta-t^(3*theta+2)-t^theta*u^(2*theta), t^theta*v-u^(theta+1)+t^(4*theta+2)-v^(2*theta) -t^(3*theta+1)*u^theta-(t*u*v)^theta], [0,1,t,u^theta+t^(theta+1), -t^(2*theta+1)-v^theta,-u^(2*theta)+t^(theta+1)*u^theta+t*v^theta, v+t*u-t^(2*theta+1)*u^theta-(u*v)^theta-t^(3*theta+2)-t^(theta+1)*v^theta], [0,0,1,t^theta,-t^(2*theta),v^theta+(t*u)^theta, u+t^(3*theta+1)-(t*v)^theta-t^(2*theta)*u^theta], [0,0,0,1,t^theta,u^theta,(t*u)^theta-v^theta], [0,0,0,0,1,-t,u^theta+t^(theta+1)], [0,0,0,0,0,1,-t^theta], [0,0,0,0,0,0,1]]*one; end; h:=function(t) return [[t^theta,0,0,0,0,0,0], [0,t^(1-theta),0,0,0,0,0], [0,0,t^(2*theta-1),0,0,0,0], [0,0,0,1,0,0,0], [0,0,0,0,t^(1-2*theta),0,0], [0,0,0,0,0,t^(theta-1),0], [0,0,0,0,0,0,t^(-theta)]]*one; end; r:=[[0,0,0,0,0,0,-1], [0,0,0,0,0,-1,0], [0,0,0,0,-1,0,0], [0,0,0,-1,0,0,0], [0,0,-1,0,0,0,0], [0,-1,0,0,0,0,0], [-1,0,0,0,0,0,0]]*one; # this generating set is not very good -- there is a 2-generator set. AH gens:=[]; for i in bas do Add(gens,x(i,zero,zero)); Add(gens,x(zero,i,zero)); Add(gens,x(zero,zero,i)); od; Add(gens,h(PrimitiveRoot(f))); Add(gens,r); G:=Group(gens,One(gens[1])); SetName(G,Concatenation("Ree(",String(q),")")); SetDimensionOfMatrixGroup(G,7); SetFieldOfMatrixGroup(G,f); SetIsFinite(G,true); SetSize(G,q^3*(q-1)*(q^3+1)); if q > 3 then SetIsSimpleGroup(G,true); fi; return G; end ); PermConstructor(ReeGroupCons,[IsPermGroup,IsObject], IsMatrixGroup); ############################################################################# ## #E ree.gi . . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here gap-4r6p5/grp/perf10.grp 0000644 0001750 0001750 00000111677 12172557252 013555 0 ustar bill bill ############################################################################# ## #W perf10.grp GAP Groups Library Volkmar Felsch ## Alexander Hulpke ## ## #Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains the perfect groups of sizes 352440-518400 ## All data is based on Holt/Plesken: Perfect Groups, OUP 1989 ## PERFGRP[202]:=[# 352440.1 [[1,"abc", function(a,b,c) return [[c^44,c*b^9*c^-1*b^-1,b^89,a^2,c*a*c*a^-1, (b*a)^3,c^-1*b^3*c*b^3*a*b^3*a*c*b^3*a], [[b,c]]]; end, [90]], "L2(89)",22,-1, 44,90] ]; PERFGRP[203]:=[# 357840.1 [[1,"abc", function(a,b,c) return [[c^35*a^2,c*b^(-1*22)*c^-1*b^-1,b^71,a^4,a^2 *b^-1*a^2*b,a^2*c^-1*a^2*c, c*a*c*a^-1,(b*a)^3],[[b,c^2]]]; end, [144],[0,3,5,3]], "L2(71) 2^1 = SL(2,71)",22,-2, 37,144] ]; PERFGRP[204]:=[# 360000.1 [[2,120,1,3000,1], "( A5 x A5 ) 2^2 # 5^2",[30,2,1],2, [1,1],[24,25]] ]; PERFGRP[205]:=[# 362880.1 [[1,"abd", function(a,b,d) return [[a^2*d^-1,b^4,(a*b)^9,(a^-1*b^-1*a*b)^4 *d^-1,(a*b^(-1*2)*a*b^-1*a*b*a*b^2)^3, (a*b^-1*a*b^-1*a*b^2*a*b^2*a*b*a*b)^2 *d^-1,(a*b*a*b*b*a*b*a*b*a*b^-1)^3, (a*b*a*b*a*b^2)^6,d^2,a^-1*d*a*d^-1, b^-1*d*b*d^-1], [[(a*b*a*b*a*b^2)^2,(a*b*a*b*a*b*a*b^2)^3*d]]]; end, [240],[[1,2]]], "A9 2^1",28,-2, 38,240], # 362880.2 [[2,168,1,2160,1], "( L3(2) x A6 3^1 ) 2^1 [1]",[37,1,1],6, [2,3],[7,18,80]], # 362880.3 [[2,336,1,1080,1], "( L3(2) x A6 3^1 ) 2^1 [2]",[37,1,2],6, [2,3],[16,18]], # 362880.4 [[3,336,1,2160,1,"d1","d2"], "( L3(2) x A6 3^1 ) 2^1 [3]",[37,1,3],6, [2,3],[144,640]], # 362880.5 [[2,720,1,504,1], "A6 2^1 x L2(8)",40,2, [3,4],[80,9]], # 362880.6 [[2,60,1,6048,1], "A5 x U3(3)",40,1, [1,12],[5,28]] ]; PERFGRP[206]:=[# 363000.1 [[4,3000,2,14520,2,120,1,1], "A5 2^1 # 5^2 11^2",6,1, 1,[25,121]] ]; PERFGRP[207]:=[# 364320.1 [[2,60,1,6072,1], "A5 x L2(23)",40,1, [1,13],[5,24]] ]; PERFGRP[208]:=[# 366912.1 [[2,168,1,2184,1], "( L3(2) x L2(13) ) 2^1 [1]",40,2, [2,6],[7,56]], # 366912.2 [[2,336,1,1092,1], "( L3(2) x L2(13) ) 2^1 [2]",40,2, [2,6],[16,14]], # 366912.3 [[3,336,1,2184,1,"d1","a2","a2"], "( L3(2) x L2(13) ) 2^1 [3]",40,2, [2,6],448] ]; PERFGRP[209]:=[# 367416.1 [[1,"abuvwxyzd", function(a,b,u,v,w,x,y,z,d) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4,d^3,a^-1 *d*a*d^-1,b^-1*d*b*d^-1, u^-1*d*u*d^-1,v^-1*d*v*d^-1, w^-1*d*w*d^-1,x^-1*d*x*d^-1, y^-1*d*y*d^-1,z^-1*d*z*d^-1,u^3, v^3,w^3,x^3,y^3,z^3,u^-1*v^-1*u*v*d, u^-1*w^-1*u*w*d^-1, u^-1*x^-1*u*x*d^-1, u^-1*y^-1*u*y*d^-1,u^-1*z^-1*u *z,v^-1*w^-1*v*w*d^-1, v^-1*x^-1*v*x*d,v^-1*y^-1*v*y*d, v^-1*z^-1*v*z*d,w^-1*x^-1*w*x, w^-1*y^-1*w*y*d^-1, w^-1*z^-1*w*z*d^-1, x^-1*y^-1*x*y*d^-1, x^-1*z^-1*x*z*d,y^-1*z^-1*y*z*d, a^-1*u*a*(x*y^-1*z^-1*d)^-1, a^-1*v*a*(w*x^-1*y^-1*d)^-1, a^-1*w*a*(u*w^-1*x*y^-1*z^-1)^-1 ,a^-1*x*a*(v*w*x*y^-1)^-1, a^-1*y*a*(u*v*w*z^-1*d)^-1, a^-1*z*a*(u*x*y^-1*z*d^-1)^-1, b^-1*u*b*(v*w^-1*x^-1)^-1, b^-1*v*b*(u*v^-1*w^-1*d^-1)^-1, b^-1*w*b*(u^-1*v*w^-1*x^-1*z^-1) ^-1,b^-1*x*b*(u*v*w^-1*y^-1*z*d) ^-1,b^-1*y*b*(u*x^-1*y*d)^-1, b^-1*z*b*(v*w^-1*x*z)^-1],[[a,b]]]; end, [2187]], "L3(2) 3^6 C 3^1",[9,7,1],3, 2,2187], # 367416.2 [[1,"abtuvwxyz", function(a,b,t,u,v,w,x,y,z) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4,t^3,u^3, v^3,w^3,x^3,y^3,z^3,t^-1*u^-1*t*u, t^-1*v^-1*t*v,t^-1*w^-1*t*w, t^-1*x^-1*t*x,t^-1*y^-1*t*y, t^-1*z^-1*t*z,u^-1*v^-1*u*v, u^-1*w^-1*u*w,u^-1*x^-1*u*x, u^-1*y^-1*u*y,u^-1*z^-1*u*z, v^-1*w^-1*v*w,v^-1*x^-1*v*x, v^-1*y^-1*v*y,v^-1*z^-1*v*z, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*t*a*t^-1,a^-1*u*a*w^-1, a^-1*v*a*v,a^-1*w*a*u^-1, a^-1*x*a*z^-1,a^-1*y*a*y, a^-1*z*a*x^-1,b^-1*t*b*u^-1, b^-1*u*b*v^-1,b^-1*v*b*t^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1], [[a*b,t*u^-1]]]; end, [72]], "L3(2) 3^7",[9,7,2],1, 2,72], # 367416.3 [[1,"abtuvwxyz", function(a,b,t,u,v,w,x,y,z) return [[a^2,b^3*(t*u*v*z^-1)^-1,(a*b)^7,(a^-1*b ^-1*a*b)^4,t^3,u^3,v^3,w^3,x^3,y^3,z^3, t^-1*u^-1*t*u,t^-1*v^-1*t*v, t^-1*w^-1*t*w,t^-1*x^-1*t*x, t^-1*y^-1*t*y,t^-1*z^-1*t*z, u^-1*v^-1*u*v,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*t*a*t^-1, a^-1*u*a*w^-1,a^-1*v*a*v, a^-1*w*a*u^-1,a^-1*x*a*z^-1, a^-1*y*a*y,a^-1*z*a*x^-1, b^-1*t*b*u^-1,b^-1*u*b*v^-1, b^-1*v*b*t^-1,b^-1*w*b*x^-1, b^-1*x*b*y^-1,b^-1*y*b*w^-1, b^-1*z*b*z^-1],[[a*b,t*u^-1]]]; end, [72]], "L3(2) N 3^7",[9,7,3],1, 2,72] ]; PERFGRP[210]:=[fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail]; PERFGRP[211]:=[# 369096.1 [[1,"abcyz", function(a,b,c,y,z) return [[a^4,b^13,(a*b)^3,c^6*a^2,(a*c)^2*a^2,a^2*b^-1 *a^2*b,c^-1*b*c*b^(-1*4), b^6*a*b^-1*a*b*a*b^7*a*c^-1,y^13,z^13, y^-1*z^-1*y*z,a^-1*y*a*z, a^-1*z*a*y^-1,b^-1*y*b*y^-1, b^-1*z*b*(y*z)^-1,c^-1*y*c*y^(-1*2), c^-1*z*c*z^(-1*7)],[[a,b]]]; end, [169]], "L2(13) 2^1 13^2",[20,2,1],1, 6,169] ]; PERFGRP[212]:=[# 372000.1 [[1,"ab", function(a,b) return [[a^2,b^3,(a*b)^31,(a^-1*b^-1*a*b)^4,(a*b*a*b*a *b*a*b*a*b^-1)^4, (a*b^-1*a*b^-1*a*b^-1*a*b^-1*a *b^-1*a*b*a*b*a*b*a*b*a*b)^3], [[a,(b^-1*a)^3*b*(a*b*a*b^-1)^2]]]; end, [31]], "L3(5)",28,-1, 45,31] ]; PERFGRP[213]:=[# 375000.1 [[1,"abvwxyz", function(a,b,v,w,x,y,z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,v^5,w^5,x^5,y^5, z^5,v^-1*w^-1*v*w,v^-1*x^-1*v*x, v^-1*y^-1*v*y,v^-1*z^-1*v*z, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*v*a*z^-1,a^-1*w*a*y, a^-1*x*a*x^-1,a^-1*y*a*w, a^-1*z*a*v^-1,b^-1*v*b*z^-1, b^-1*w*b*(y^-1*z)^-1, b^-1*x*b*(x*y^(-1*2)*z)^-1, b^-1*y*b*(w^-1*x^(-1*2)*y^2*z)^-1, b^-1*z*b*(v*w*x*y*z)^-1], [[a*b,v],[a*b,b*a*b*a*b^-1*a*b^-1,w]]]; end, [24,30]], "A5 2^1 x 5^5",[3,5,1],2, 1,[24,30]], # 375000.2 [[1,"abwxyzd", function(a,b,w,x,y,z,d) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,w^5,x^5,y^5,z^5, d^5,d^-1*a*d*a^-1,d^-1*b*d*b^-1, d^-1*w*d*w^-1,d^-1*x*d*x^-1, d^-1*y*d*y^-1,d^-1*z*d*z^-1, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z*d,x^-1*y^-1*x*y *d^(-1*2),x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*w*a*z^-1, a^-1*x*a*y,a^-1*y*a*(x*d)^-1, a^-1*z*a*w,b^-1*w*b*z, b^-1*x*b*(y*z^-1*d^-1)^-1, b^-1*y*b*(x^-1*y^2*z^-1*d)^-1, b^-1*z*b*(w*x^2*y^(-1*2)*z^-1*d^(-1*2)) ^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,y*d^2]]]; end, [750]], "A5 2^1 5^4 C 5^1",[3,5,2],5, 1,750], # 375000.3 [[1,"abyzXYZ", function(a,b,y,z,X,Y,Z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^5,z^5,X^5,Y^5, Z^5,y^-1*z^-1*y*z,y^-1*X^-1*y*X, y^-1*Y^-1*y*Y,y^-1*Z^-1*y*Z, z^-1*X^-1*z*X,z^-1*Y^-1*z*Y, z^-1*Z^-1*z*Z,X^-1*Y^-1*X*Y, X^-1*Z^-1*X*Z,Y^-1*Z^-1*Y*Z, a^-1*y*a*z^-1,a^-1*z*a*y, a^-1*X*a*Z^-1,a^-1*Y*a*Y, a^-1*Z*a*X^-1,b^-1*y*b*z, b^-1*z*b*(y*z^-1)^-1, b^-1*X*b*Z^-1, b^-1*Y*b*(Y^-1*Z)^-1, b^-1*Z*b*(X*Y^(-1*2)*Z)^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,Y,y],[a,b,X]]]; end, [30,25]], "A5 2^1 5^2 x 5^3",[3,5,3],1, 1,[30,25]], # 375000.4 [[1,"abyzXYZ", function(a,b,y,z,X,Y,Z) return [[a^4,b^3,(a*b)^5*Z^-1,a^2*b^-1*a^2*b,y^5,z^5, X^5,Y^5,Z^5,y^-1*z^-1*y*z, y^-1*X^-1*y*X,y^-1*Y^-1*y*Y, y^-1*Z^-1*y*Z,z^-1*X^-1*z*X, z^-1*Y^-1*z*Y,z^-1*Z^-1*z*Z, X^-1*Y^-1*X*Y,X^-1*Z^-1*X*Z, Y^-1*Z^-1*Y*Z,a^-1*y*a*z^-1, a^-1*z*a*y,a^-1*X*a*Z^-1, a^-1*Y*a*Y,a^-1*Z*a*X^-1, b^-1*y*b*z,b^-1*z*b*(y*z^-1)^-1, b^-1*X*b*Z^-1, b^-1*Y*b*(Y^-1*Z)^-1, b^-1*Z*b*(X*Y^(-1*2)*Z)^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,Y,y],[a,b,X]]]; end, [30,25]], "A5 2^1 5^2 x N 5^3",[3,5,4],1, 1,[30,25]], # 375000.5 [[1,"abyzYZf", function(a,b,y,z,Y,Z,f) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^5,z^5,Y^5,Z^5, f^5,y^-1*f^-1*y*f,Y^-1*f^-1*Y*f, y^-1*z^-1*y*z,y^-1*Y^-1*y*Y, y^-1*Z^-1*y*Z*f^-1, z^-1*Y^-1*z*Y*f,z^-1*Z^-1*z*Z, Y^-1*Z^-1*Y*Z,a^-1*y*a*z^-1, a^-1*z*a*y,a^-1*Y*a*Z^-1, a^-1*Z*a*Y,a^-1*f*a*f^-1, b^-1*y*b*z,b^-1*z*b*(y*z^-1)^-1, b^-1*Y*b*Z,b^-1*Z*b*(Y*Z^-1)^-1, b^-1*f*b*f^-1],[[a,b,y]]]; end, [125]], "A5 2^1 ( 5^2 x 5^2 ) C 5^1",[3,5,5],5, 1,125], # 375000.6 [[1,"abyzYZd", function(a,b,y,z,Y,Z,d) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^5,z^5,Y^5,Z^5, d^5,y^-1*d^-1*y*d,Y^-1*d^-1*Y*d, y^-1*z^-1*y*z*d^-1,y^-1*Y^-1*y *Y,y^-1*Z^-1*y*Z,z^-1*Y^-1*z*Y, z^-1*Z^-1*z*Z,Y^-1*Z^-1*Y*Z *d^(-1*2),a^-1*y*a*(z*d^2)^-1, a^-1*z*a*y,a^-1*Y*a*(Z*d^-1)^-1, a^-1*Z*a*Y,a^-1*d*a*d^-1, b^-1*y*b*z,b^-1*z*b*(y*z^-1)^-1, b^-1*Y*b*Z,b^-1*Z*b*(Y*Z^-1)^-1, b^-1*d*b*d^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,z*d,Z*d^2]]]; end, [750]], "A5 2^1 ( 5^2 C x 5^2 C ) 5^1",[3,5,6],5, 1,750], # 375000.7 [[1,"abyzdYZ", function(a,b,y,z,d,Y,Z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,Y^5,Z^5,Y^-1 *Z^-1*Y*Z,y^-1*Y*y*Y^-1, y^-1*Z*y*Z^-1,z^-1*Y*z*Y^-1, z^-1*Z*z*Z^-1,d^-1*Y*d*Y^-1, d^-1*Z*d*Z^-1,y^5,z^5,d^5, y^-1*d^-1*y*d,z^-1*d^-1*z*d, y^-1*z^-1*y*z*d^-1, a^-1*y*a*z^-1*d^(-1*2),a^-1*z*a*y, a^-1*d*a*d^-1,a^-1*Y*a*Z^-1, a^-1*Z*a*Y,b^-1*y*b*z, b^-1*z*b*(y*z^-1)^-1,b^-1*Y*b*Z, b^-1*Z*b*(Y*Z^-1)^-1, b^-1*d*b*d^-1],[[a,b,y],[a,b,Y]]]; end, [25,125]], "A5 2^1 ( 5^2 C 5^1 ) x 5^2",[3,5,7],5, 1,[25,125]], # 375000.8 [[1,"abyzdYZ", function(a,b,y,z,d,Y,Z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^5,z^5,d^5,Y^5, Z^5,y^-1*d^-1*y*d*Y^-1, z^-1*d^-1*z*d*Z^-1, y^-1*z^-1*y*z*(d*Y*Z)^-1, y^-1*Y^-1*y*Y,z^-1*Y^-1*z*Y, d^-1*Y^-1*d*Y,y^-1*Z^-1*y*Z, z^-1*Z^-1*z*Z,d^-1*Z^-1*d*Z, a^-1*y*a*(z*d^2*Z^-1)^-1, a^-1*z*a*y,a^-1*d*a*d^-1, a^-1*Y*a*Z^-1,a^-1*Z*a*Y, b^-1*y*b*(z^-1*Z)^-1, b^-1*z*b*(y*z^-1*Y)^-1, b^-1*d*b*d^-1,b^-1*Y*b*Z, b^-1*Z*b*(Y*Z^-1)^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,d,z*Y^-1]]]; end, [150]], "A5 2^1 5^2 C 5^1 C 5^2",[3,5,8],1, 1,150], # 375000.9 [[1,"abyzdYZ", function(a,b,y,z,d,Y,Z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^5,z^5,d^5,Y^5, Z^5,y^-1*d^-1*y*d*Y^-1, z^-1*d^-1*z*d*Z^-1, y^-1*z^-1*y*z*(d*Y*Z)^-1, y^-1*Y^-1*y*Y,z^-1*Y^-1*z*Y, d^-1*Y^-1*d*Y,y^-1*Z^-1*y*Z, z^-1*Z^-1*z*Z,d^-1*Z^-1*d*Z, a^-1*y*a*(z*d^2*Y^-1*Z^-1)^-1, a^-1*z*a*(y^-1*Z)^-1, a^-1*d*a*d^-1,a^-1*Y*a*Z^-1, a^-1*Z*a*Y, b^-1*y*b*(z^-1*Y^-1*Z^2)^-1, b^-1*z*b*(y*z^-1*Y*Z)^-1, b^-1*d*b*d^-1,b^-1*Y*b*Z, b^-1*Z*b*(Y*Z^-1)^-1], [[b*a*b*a*b^-1*a*b^-1,d,z*Y]]]; end, [750]], "A5 2^1 5^2 C 5^1 C E 5^2",[3,5,9],1, 1,750], # 375000.10 [[1,"abyzdYZ", function(a,b,y,z,d,Y,Z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,d^5,y^5,z^5,Y^5, Z^5,d^-1*y^-1*d*y,d^-1*z^-1*d*z, d^-1*Y^-1*d*Y,d^-1*Z^-1*d*Z, y^-1*z^-1*y*z*d^-1,y^-1*Y^-1*y *Y,y^-1*Z^-1*y*Z,z^-1*Y^-1*z*Y, z^-1*Z^-1*z*Z,Y^-1*Z^-1*Y*Z, a^-1*y*a*(z*d^2*Y^-1)^-1, a^-1*z*a*(y^-1*Z)^-1, a^-1*d*a*d^-1,a^-1*Y*a*Z^-1, a^-1*Z*a*Y, b^-1*y*b*(z^-1*Y^-1*Z)^-1, b^-1*z*b*(y*z^-1*Z)^-1, b^-1*d*b*d^-1,b^-1*Y*b*Z, b^-1*Z*b*(Y*Z^-1)^-1], [[a,b,Y],[b,a*b*a*b^-1*a,y*Y^-1*Z^-1]]]; end, [125,125]], "A5 2^1 5^2 ( C 5^1 x E 5^2 )",[3,5,10],5, 1,[125,125]], # 375000.11 [[1,"abyzYZe", function(a,b,y,z,Y,Z,e) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,e^5,y^-1*e*y *e^-1,z^-1*e*z*e^-1, Y^-1*e*Y*e^-1,Z^-1*e*Z*e^-1,y^5, z^5,Y^5,Z^5,y^-1*z^-1*y*z, y^-1*Y^-1*y*Y,y^-1*Z^-1*y*Z *e^-1,z^-1*Y^-1*z*Y*e, z^-1*Z^-1*z*Z,Y^-1*Z^-1*Y*Z, a^-1*y*a*(z*Y^-1*e^-1)^-1, a^-1*z*a*(y^-1*Z*e^(-1*2))^-1, a^-1*Y*a*Z^-1,a^-1*Z*a*Y, a^-1*e*a*e^-1, b^-1*y*b*(z^-1*Y^-1*Z*e^(-1*2))^-1, b^-1*z*b*(y*z^-1*Z*e^-1)^-1, b^-1*Y*b*Z,b^-1*Z*b*(Y*Z^-1)^-1, b^-1*e*b*e^-1],[[a,b,Y]]]; end, [125]], "A5 2^1 ( 5^2 E 5^2 ) C 5^1",[3,5,11],5, 1,125] ]; PERFGRP[214]:=[# 378000.1 [[1,"abd", function(a,b,d) return [[a^2,b^4,(a*b)^10*d^-1,(a*b*a*b^2)^7,a*b^-1*a *b^-1*a*b*a *b^(-1*2)*a*b*a*b^-1 *a*b^-1*a*b*a*b*a *b^-1*a*b*b*a*b^-1*a*b*a*b, (a*b^-1*a*b^-1*a*b*a*b*a*b)^2*b*a *b^-1*a*b^-1*a*b*a*b*a*b^-1 ,d^3,a^-1*d*a*d^-1,b^-1*d*b*d^-1], [[b*a*b^2*a*b*a*b^-1*a*b^2*a*b^-1, a*b*a*b*a*b^2*d^-1]]]; end, [378],[[1,2]]], "U3(5) 3^1",28,-3, 34,378] ]; PERFGRP[215]:=[# 384000.1 [[4,15360,2,3000,2,120,2,1], "A5 # 2^8 5^2",6,8, 1,[24,12,64,25]] ]; PERFGRP[216]:=[# 387072.1 [[1,"abuvwxyz", function(a,b,u,v,w,x,y,z) return [[a^2,b^6,(a*b)^7,(a*b^2)^3*(a*b^(-1*2))^3,(a*b*a*b ^(-1*2))^3*a*b*(a*b^-1)^2,u^2,v^2,w^2, x^2,y^2,z^2,u^-1*v^-1*u*v, u^-1*w^-1*u*w,u^-1*x^-1*u*x, u^-1*y^-1*u*y,u^-1*z^-1*u*z, v^-1*w^-1*v*w,v^-1*x^-1*v*x, v^-1*y^-1*v*y,v^-1*z^-1*v*z, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*u*a*(u*z)^-1, a^-1*v*a*(u*v*x*z)^-1, a^-1*w*a*(u*w*x*z)^-1, a^-1*x*a*(x*z)^-1, a^-1*y*a*(u*x*y)^-1,a^-1*z*a*z^-1, b^-1*u*b*(u*w*x*y*z)^-1, b^-1*v*b*(u*x*z)^-1, b^-1*w*b*(u*w*z)^-1, b^-1*x*b*(u*v*w*x*z)^-1, b^-1*y*b*(v*y*z)^-1, b^-1*z*b*(u*v*w*x*y*z)^-1],[[a,b]]]; end, [64]], "U3(3) 2^6",[25,6,1],1, 12,64], # 387072.2 [[1,"abuvwxyz", function(a,b,u,v,w,x,y,z) return [[a^2*(u*x*z)^-1,b^6,(a*b)^7,(a*b^2)^3*(a*b^(-1*2)) ^3*(w*y*z)^-1, (a*b*a*b^(-1*2))^3*a*b*(a*b^-1)^2 *(w*x*y)^-1,u^2,v^2,w^2,x^2,y^2,z^2, u^-1*v^-1*u*v,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*u*a*(u*z)^-1, a^-1*v*a*(u*v*x*z)^-1, a^-1*w*a*(u*w*x*z)^-1, a^-1*x*a*(x*z)^-1, a^-1*y*a*(u*x*y)^-1,a^-1*z*a*z^-1, b^-1*u*b*(u*w*x*y*z)^-1, b^-1*v*b*(u*x*z)^-1, b^-1*w*b*(u*w*z)^-1, b^-1*x*b*(u*v*w*x*z)^-1, b^-1*y*b*(v*y*z)^-1, b^-1*z*b*(u*v*w*x*y*z)^-1], [[b^3,a*b^3*a*y, (b*a)^2*(b^-1*a)^2*b^3*(a*b)^2*(a*b^-1) ^2*y]]]; end, [504],[0]], "U3(3) N 2^6",[25,6,2],1, 12,504] ]; PERFGRP[217]:=[# 388800.1 [[2,360,1,1080,1], "( A6 x A6 ) 3^1 [1]",40,3, [3,3],[6,18]], # 388800.2 [[3,1080,1,1080,1,"a1","a1","a2","a2"], "( A6 x A6 ) 3^1 [2]",40,3, [3,3],108] ]; PERFGRP[218]:=[# 388944.1 [[1,"abc", function(a,b,c) return [[c^36*a^2,c*b^25*c^-1*b^-1,b^73,a^4,a^2*b^(-1 *1)*a^2*b,a^2*c^-1*a^2*c, c*a*c*a^-1,(b*a)^3, c^(-1*10)*b^2*c*b*c*a*b*c^2*b*a*b^2*c*b*a], [[b,c^8]]]; end, [592],[0,3,6,3]], "L2(73) 2^1 = SL(2,73)",22,-2, 39,592] ]; PERFGRP[219]:=[# 393120.1 [[2,360,1,1092,1], "A6 x L2(13)",40,1, [3,6],[6,14]] ]; PERFGRP[220]:=[# 393660.1 [[1,"abwxyzWXYZ", function(a,b,w,x,y,z,W,X,Y,Z) return [[a^2,b^3,(a*b)^5,w^3,x^3,y^3,z^3,W^3,X^3,Y^3,Z^3,W ^-1*X^-1*W*X,W^-1*Y^-1*W*Y, W^-1*Z^-1*W*Z,X^-1*Y^-1*X*Y, X^-1*Z^-1*X*Z,Y^-1*Z^-1*Y*Z, w^-1*W*w*W^-1,w^-1*X*w*X^-1, w^-1*Y*w*Y^-1,w^-1*Z*w*Z^-1, x^-1*W*x*W^-1,x^-1*X*x*X^-1, x^-1*Y*x*Y^-1,x^-1*Z*x*Z^-1, y^-1*W*y*W^-1,y^-1*X*y*X^-1, y^-1*Y*y*Y^-1,y^-1*Z*y*Z^-1, z^-1*W*z*W^-1,z^-1*X*z*X^-1, z^-1*Y*z*Y^-1,z^-1*Z*z*Z^-1, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1, a^-1*W*a*Z^-1,a^-1*X*a*X^-1, a^-1*Y*a*(W^2*X^2*Y^2*Z^2)^-1, a^-1*Z*a*W^-1,b^-1*W*b*X^-1, b^-1*X*b*Y^-1,b^-1*Y*b*W^-1, b^-1*Z*b*Z^-1], [[b,a*b*a*b^-1*a,w*x^-1,W], [b,a*b*a*b^-1*a,W*X^-1,w]]]; end, [15,15]], "A5 3^4' x 3^4'",[2,8,1],1, 1,[15,15]], # 393660.2 [[1,"abwxyz", function(a,b,w,x,y,z) return [[a^2,b^3,(a*b)^5,w^9,x^9,y^9,z^9,w^-1*x^-1*w *x,w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*w*a*z^-1, a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1], [[b,a*b*a*b^-1*a,w*x^-1]]]; end, [45]], "A5 3^4' A 3^4'",[2,8,2],1, 1,45], # 393660.3 [[1,"abwxyzWXYZ", function(a,b,w,x,y,z,W,X,Y,Z) return [[a^2,b^3*Z^-1,(a*b)^5,w^3,x^3,y^3,z^3,W^3,X^3, Y^3,Z^3,W^-1*X^-1*W*X,W^-1*Y^-1*W*Y ,W^-1*Z^-1*W*Z,X^-1*Y^-1*X*Y, X^-1*Z^-1*X*Z,Y^-1*Z^-1*Y*Z, w^-1*W*w*W^-1,w^-1*X*w*X^-1, w^-1*Y*w*Y^-1,w^-1*Z*w*Z^-1, x^-1*W*x*W^-1,x^-1*X*x*X^-1, x^-1*Y*x*Y^-1,x^-1*Z*x*Z^-1, y^-1*W*y*W^-1,y^-1*X*y*X^-1, y^-1*Y*y*Y^-1,y^-1*Z*y*Z^-1, z^-1*W*z*W^-1,z^-1*X*z*X^-1, z^-1*Y*z*Y^-1,z^-1*Z*z*Z^-1, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1, a^-1*W*a*Z^-1,a^-1*X*a*X^-1, a^-1*Y*a*(W^2*X^2*Y^2*Z^2)^-1, a^-1*Z*a*W^-1,b^-1*W*b*X^-1, b^-1*X*b*Y^-1,b^-1*Y*b*W^-1, b^-1*Z*b*Z^-1], [[b,a*b*a*b^-1*a,w*x^-1,W],[b,z,W*X^-1,w] ]]; end, [15,60]], "A5 3^4' x N 3^4'",[2,8,3],1, 1,[15,60]], # 393660.4 [[1,"abwxyz", function(a,b,w,x,y,z) return [[a^2,b^3*z^-1,(a*b)^5,w^9,x^9,y^9,z^9,w^-1*x ^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1], [[b,w*x^-1]]]; end, [180]], "A5 N 3^4' A 3^4'",[2,8,4],1, 1,180] ]; PERFGRP[221]:=[# 410400.1 [[2,60,1,6840,1], "( A5 x L2(19) ) 2^1 [1]",40,2, [1,9],[5,40]], # 410400.2 [[2,120,1,3420,1], "( A5 x L2(19) ) 2^1 [2]",40,2, [1,9],[24,20]], # 410400.3 [[3,120,1,6840,1,"d1","a2","a2"], "( A5 x L2(19) ) 2^1 [3]",40,2, [1,9],480] ]; PERFGRP[222]:=[# 411264.1 [[2,168,1,2448,1], "L3(2) x L2(17)",40,1, [2,7],[7,18]] ]; PERFGRP[223]:=[# 411540.1 [[1,"abxyz", function(a,b,x,y,z) return [[a^2,b^3,(a*b)^5,x^19,y^19,z^19,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*x*a*z^-1,a^-1*y*a*y, a^-1*z*a*x^-1, b^-1*x*b*(x^(-1*2)*y^(-1*6)*z^5)^-1, b^-1*y*b*(x^(-1*8)*y^(-1*4)*z^(-1*7))^-1, b^-1*z*b*(x^6*y^7*z^6)^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,y*z^(-1*2)]]]; end, [114],[0,0,2,2,2,3,3,3]], "A5 19^3",[5,3,1],1, 1,114] ]; PERFGRP[224]:=[# 417720.1 [[1,"abyz", function(a,b,y,z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^59,z^59,y^-1 *z^-1*y*z,a^-1*y*a*z^-1, a^-1*z*a*y,b^-1*y*b*(y^(-1*29)*z^21)^-1, b^-1*z*b*(y^(-1*5)*z^28)^-1],[[a,b]]]; end, [3481],[0,0,2,2,3,3,2]], "A5 2^1 59^2",[5,2,1],1, 1,3481] ]; PERFGRP[225]:=[# 423360.1 [[2,168,1,2520,1], "L3(2) x A7",40,1, [2,8],[7,7]] ]; PERFGRP[226]:=[# 432000.1 [[2,120,1,3600,1], "( A5 x A5 x A5 ) 2^1 [1]",40,2, [1,1,1],[24,5,5]], # 432000.2 [[2,60,1,7200,2], "( A5 x A5 x A5 ) 2^1 [2]",40,2, [1,1,1],[5,288]], # 432000.3 [[3,120,1,7200,2,"d1","a2","a2"], "( A5 x A5 x A5 ) 2^1 [3]",40,2, [1,1,1],3456] ]; PERFGRP[227]:=[# 435600.1 [[2,660,1,660,1], "L2(11) x L2(11)",40,1, [5,5],[11,11]] ]; PERFGRP[228]:=[# 443520.1 [[1,"ab", function(a,b) return [[a^2,b^4,(a*b)^11,(a*b*a*b^2)^7,(a*b*a*b^-1*a*b ^-1*a*b^2*a*b)^2*b*a*b^-1], [[b,a*b^-1*a*b*a]]]; end, [22]], "M22",28,-1, 46,22], # 443520.2 [[2,336,1,1320,1], "( L3(2) x L2(11) ) 2^2",[39,2,1],4, [2,5],[16,24]] ]; PERFGRP[229]:=[# 446520.1 [[1,"abyz", function(a,b,y,z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^61,z^61,y^-1 *z^-1*y*z,a^-1*y*a*z^-1, a^-1*z*a*y,b^-1*y*b*(y^-1*z^27)^-1, b^-1*z*b*y^(-1*9)],[[a*b,a^2,y]]]; end, [732],[0,0,2,2]], "A5 2^1 61^2",[5,2,1],1, 1,732] ]; PERFGRP[230]:=[# 447216.1 [[1,"abxyz", function(a,b,x,y,z) return [[a^4,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4*a^2,a^2*b *a^2*b^-1,x^11,y^11,z^11,x^-1*y^-1*x *y,x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*x*a*z^-1,a^-1*y*a*y, a^-1*z*a*x^-1, b^-1*x*b*(y^4*z^-1)^-1, b^-1*y*b*(x^5*y*z^(-1*5))^-1, b^-1*z*b*(x^(-1*5)*y^3*z^-1)^-1], [[a*b,b*a*b^-1*a*b^-1*a*b*a*b^-1,x], [b*a*b^-1,b^-1*a*b,a^2,z]]]; end, [16,231]], "L3(2) 2^1 x 11^3",[11,3,1],2, 2,[16,231]] ]; PERFGRP[231]:=[# 450000.1 [[2,60,1,7500,1], "A5 x A5 # 5^3 [1]",[30,3,1],1, [1,1],[5,30]], # 450000.2 [[2,60,1,7500,2], "A5 x A5 # 5^3 [2]",[30,3,2],1, [1,1],[5,30]], # 450000.3 [[1,"abcdxyzw", function(a,b,c,d,x,y,z,w) return [[ a^4, b^3, c^3, (a*b)^5, (b*c^-1)^5, a^2/d, (b*c)^4/d, Comm(d,b), Comm(d,c), c*(b*c*b)^2/(b*a*c), x^5, y^5, z^5, w^5, Comm(w,x), Comm(w,y), Comm(w,z), Comm(z,x), Comm(z,y), Comm(y,x), x^a/y, y^a*x, z^a*y*w, w^a/(x*z), x^b*y, y^b*y/x, z^b/(x^2*y^3*z^2*w^4), w^b*x*y/(z^2*w^2), x^c*z/(x*y*w), y^c/(x^2*y^3*z), Comm(z,c), Comm(w,c),], [[a,b,x,y]]]; end, [150]], "A6 2^1 # 5^4",[41,4,1],1, [3],[150]] ]; PERFGRP[232]:=[# 451584.1 [[2,168,1,2688,1], "( L3(2) x L3(2) ) # 2^4 [1]",[34,4,1],2, [2,2],[7,8,16]], # 451584.2 [[2,168,1,2688,2], "( L3(2) x L3(2) ) # 2^4 [2]",[34,4,2],2, [2,2],[7,16]], # 451584.3 [[2,168,1,2688,3], "( L3(2) x L3(2) ) # 2^4 [3]",[34,4,3],2, [2,2],[7,16,14]], # 451584.4 [[2,336,1,1344,1], "( L3(2) x L3(2) ) # 2^4 [4]",[34,4,4],2, [2,2],[16,8]], # 451584.5 [[2,336,1,1344,2], "( L3(2) x L3(2) ) # 2^4 [5]",[34,4,5],2, [2,2],[16,14]], # 451584.6 [[3,336,1,2688,1,"d1","d2"], "( L3(2) x L3(2) ) # 2^4 [6]",[34,4,6],2, [2,2],[64,128]], # 451584.7 [[3,336,1,2688,2,"d1","e2"], "( L3(2) x L3(2) ) # 2^4 [7]",[34,4,7],2, [2,2],128], # 451584.8 [[3,336,1,2688,3,"d1","d2"], "( L3(2) x L3(2) ) # 2^4 [8]",[34,4,8],2, [2,2],[128,112]] ]; PERFGRP[233]:=[# 453600.1 [[2,60,1,7560,1], "A5 x A7 3^1",40,3, [1,8],[5,45]] ]; PERFGRP[234]:=[# 456288.1 [[1,"abc", function(a,b,c) return [[c^48,c*b^25*c^-1*b^-1,b^97,a^2,c*a*c*a^-1 ,(b*a)^3,c^10*(b*c)^2*a*b*c^2*a*b*a*b^2*c*b*a ],[[b,c]]]; end, [98],[0,3,5,3]], "L2(97)",22,-1, 47,98] ]; PERFGRP[235]:=[# 460800.1 [[2,3840,1,120,1], "( A5 x A5 ) # 2^7 [1]",[29,7,1],8, [1,1],[64,24]], # 460800.2 [[2,3840,2,120,1], "( A5 x A5 ) # 2^7 [2]",[29,7,2],8, [1,1],[64,24]], # 460800.3 [[2,3840,3,120,1], "( A5 x A5 ) # 2^7 [3]",[29,7,3],8, [1,1],[24,24]], # 460800.4 [[2,3840,4,120,1], "( A5 x A5 ) # 2^7 [4]",[29,7,4],8, [1,1],[48,24]], # 460800.5 [[2,3840,5,120,1], "( A5 x A5 ) # 2^7 [5]",[29,7,5],8, [1,1],[24,12,24]], # 460800.6 [[2,3840,6,120,1], "( A5 x A5 ) # 2^7 [6]",[29,7,6],4, [1,1],[48,24]], # 460800.7 [[2,3840,7,120,1], "( A5 x A5 ) # 2^7 [7]",[29,7,7],8, [1,1],[32,24,24]], # 460800.8 [[2,7680,1,60,1], "( A5 x A5 ) # 2^7 [8]",[29,7,8],8, [1,1],[12,64,5]], # 460800.9 [[2,7680,2,60,1], "( A5 x A5 ) # 2^7 [9]",[29,7,9],8, [1,1],[24,64,5]], # 460800.10 [[2,7680,3,60,1], "( A5 x A5 ) # 2^7 [10]",[29,7,10],8, [1,1],[24,64,5]], # 460800.11 [[2,7680,4,60,1], "( A5 x A5 ) # 2^7 [11]",[29,7,11],8, [1,1],[24,64,5]], # 460800.12 [[2,7680,5,60,1], "( A5 x A5 ) # 2^7 [12]",[29,7,12],8, [1,1],[24,24,5]], # 460800.13 [[3,7680,1,120,1,"f1","d2"], "( A5 x A5 ) # 2^7 [13]",[29,7,13],8, [1,1],[144,768]], # 460800.14 [[3,7680,1,120,1,"e1","e1","d2"], "( A5 x A5 ) # 2^7 [14]",[29,7,14],8, [1,1],[144,768]], # 460800.15 [[3,7680,1,120,1,"f1","e1","e1","d2"], "( A5 x A5 ) # 2^7 [15]",[29,7,15],8, [1,1],[144,768]], # 460800.16 [[3,7680,2,120,1,"d1","d2"], "( A5 x A5 ) # 2^7 [16]",[29,7,16],8, [1,1],[288,768]], # 460800.17 [[3,7680,2,120,1,"e1","e1","d2"], "( A5 x A5 ) # 2^7 [17]",[29,7,17],8, [1,1],[288,768]], # 460800.18 [[3,7680,3,120,1,"d1","d2"], "( A5 x A5 ) # 2^7 [18]",[29,7,18],8, [1,1],[288,768]], # 460800.19 [[3,7680,3,120,1,"e1","e1","d2"], "( A5 x A5 ) # 2^7 [19]",[29,7,19],8, [1,1],[288,768]], # 460800.20 [[3,7680,4,120,1,"d1","d2"], "( A5 x A5 ) # 2^7 [20]",[29,7,20],8, [1,1],[288,768]], # 460800.21 [[3,7680,4,120,1,"e1","e1","d2"], "( A5 x A5 ) # 2^7 [21]",[29,7,21],8, [1,1],[288,768]], # 460800.22 [[3,7680,4,120,1,"d1","e1","e1","d2"], "( A5 x A5 ) # 2^7 [22]",[29,7,22],8, [1,1],[288,768]], # 460800.23 [[3,7680,5,120,1,"d1","d2"], "( A5 x A5 ) # 2^7 [23]",[29,7,23],8, [1,1],[288,288]], # 460800.24 [[3,7680,5,120,1,"e1","d2"], "( A5 x A5 ) # 2^7 [24]",[29,7,24],8, [1,1],[288,288]], # 460800.25 [[3,7680,5,120,1,"d1","e1","d2"], "( A5 x A5 ) # 2^7 [25]",[29,7,25],8, [1,1],[288,288]] ]; PERFGRP[236]:=[# 460992.1 [[4,1344,1,57624,1,168], "L3(2) # 2^3 7^3 [1]",12,1, 2,[8,56]], # 460992.2 [[4,1344,2,57624,1,168], "L3(2) # 2^3 7^3 [2]",12,1, 2,[14,56]], # 460992.3 [[4,1344,1,57624,2,168], "L3(2) # 2^3 7^3 [3]",12,1, 2,[8,56]], # 460992.4 [[4,1344,2,57624,2,168], "L3(2) # 2^3 7^3 [4]",12,1, 2,[14,56]] ]; PERFGRP[237]:=[# 464640.1 [[4,3840,5,14520,2,120,5,1], "A5 # 2^6 11^2 [1]",6,2, 1,[24,12,121]], # 464640.2 [[4,3840,6,14520,2,120,6,1], "A5 # 2^6 11^2 [2]",6,2, 1,[48,121]], # 464640.3 [[4,3840,7,14520,2,120,7,1], "A5 # 2^6 11^2 [3]",6,2, 1,[32,24,121]] ]; PERFGRP[238]:=[# 466560.1 [[1,"abdwxyzstuve", function(a,b,d,w,x,y,z,s,t,u,v,e) return [[a^2*d^-1,b^3,(a*b)^5,d^2,a^-1*d^-1*a*d, b^-1*d^-1*b*d,w^2,x^2,y^2,z^2,(w*x)^2*d, (w*y)^2*d,(w*z)^2*d,(x*y)^2*d,(x*z)^2*d,(y*z)^2*d, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w*x*y*z)^-1,a^-1*z*a*w^-1 ,b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1, d^-1*w^-1*d*w,d^-1*x^-1*d*x, d^-1*y^-1*d*y,d^-1*z^-1*d*z,s^3, t^3,u^3,v^3,e^3,s^-1*t^-1*s*t*e^-1, s^-1*u^-1*s*u*e,s^-1*v^-1*s*v, t^-1*u^-1*t*u*e,t^-1*v^-1*t*v*e, u^-1*v^-1*u*v*e,s^-1*e*s*e^-1, t^-1*e*t*e^-1,u^-1*e*u*e^-1, v^-1*e*v*e^-1, a^-1*s*a*(s*t*u*v*e)^-1, a^-1*t*a*(s^-1*t*u*v^-1*e^-1)^-1 ,a^-1*u*a*(s^-1*u^-1*v)^-1, a^-1*v*a*(t*u^-1*v^-1*e)^-1, a^-1*e*a*e^-1, b^-1*s*b*(s^-1*t^-1*u*v^-1)^-1, b^-1*t*b*(s^-1*v^-1*e)^-1, b^-1*u*b*(s*t^-1*u^-1*v^-1)^-1, b^-1*v*b*(t^-1*u^-1*e)^-1, b^-1*e*b*e^-1,d^-1*s*d*s, d^-1*t*d*(t^-1*e)^-1, d^-1*u*d*(u^-1*e^-1)^-1, d^-1*v*d*(v^-1*e)^-1, d^-1*e*d*e^-1,w^-1*s*w*s^-1, w^-1*t*w*(s^-1*t*v*e^-1)^-1, w^-1*u*w*(s*t*u^-1*v^-1*e^-1)^-1 ,w^-1*v*w*(s^-1*v^-1*e)^-1, w^-1*e*w*e^-1, x^-1*s*x*(s*t*u*v^-1)^-1, x^-1*t*x*t^-1, x^-1*u*x*(s^-1*v^-1)^-1, x^-1*v*x*(s^-1*t^-1*u*v*e)^-1, x^-1*e*x*e^-1, y^-1*s*y*(s*v^-1*e^-1)^-1, y^-1*t*y*(t*u*v^-1*e^-1)^-1, y^-1*u*y*(u^-1*e^-1)^-1, y^-1*v*y*(v^-1*e)^-1, y^-1*e*y*e^-1, z^-1*s*z*(s*t^-1*u^-1*v^-1*e^-1) ^-1,z^-1*t*z*(s*u*v)^-1, z^-1*u*z*(t*u^-1*v*e^-1)^-1, z^-1*v*z*(s^-1*t*u^-1)^-1, z^-1*e*z*e^-1],[[a,b,w]]]; end, [243]], "A5 2^4' C N 2^1 3^4 C 3^1",[7,5,1],3, 1,243], # 466560.2 [[1,"abwxyzrstuv", function(a,b,w,x,y,z,r,s,t,u,v) return [[a^4,b^3,(a*b)^5,a^2*b*a^2*b^-1,w^2,x^2,y^2,z^2, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w*x*y*z)^-1,a^-1*z*a*w^-1 ,b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1,r^3, s^3,t^3,u^3,v^3,r^-1*s^-1*r*s, r^-1*t^-1*r*t,r^-1*u^-1*r*u, r^-1*v^-1*r*v,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*r*a*u^-1, a^-1*s*a*s^-1,a^-1*t*a*v^-1, a^-1*u*a*r^-1,a^-1*v*a*t^-1, b^-1*r*b*s^-1,b^-1*s*b*t^-1, b^-1*t*b*r^-1,b^-1*u*b*u^-1, b^-1*v*b*v^-1,w^-1*r*w*r^-1, w^-1*s*w*s,w^-1*t*w*t,w^-1*u*w*u, w^-1*v*w*v,x^-1*r*x*r, x^-1*s*x*s^-1,x^-1*t*x*t, x^-1*u*x*u,x^-1*v*x*v,y^-1*r*y*r, y^-1*s*y*s,y^-1*t*y*t^-1, y^-1*u*y*u,y^-1*v*y*v,z^-1*r*z*r, z^-1*s*z*s,z^-1*t*z*t, z^-1*u*z*u^-1,z^-1*v*z*v], [[a*b,w,r],[b,a*b*a*b^-1*a,w,r]]]; end, [24,15]], "A5 2^1 x 2^4' 3^5",[7,5,2],2, 1,[24,15]], # 466560.3 [[1,"abdwxyzrstuv", function(a,b,d,w,x,y,z,r,s,t,u,v) return [[a^2*d^-1,b^3,(a*b)^5,d^2,a^-1*d^-1*a*d, b^-1*d^-1*b*d,w^-1*d^-1*w*d, x^-1*d^-1*x*d,y^-1*d^-1*y*d, z^-1*d^-1*z*d,w^2,x^2,y^2,z^2, w^-1*x^-1*w*x*d,w^-1*y^-1*w*y*d, w^-1*z^-1*w*z*d,x^-1*y^-1*x*y*d, x^-1*z^-1*x*z*d,y^-1*z^-1*y*z*d, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w*x*y*z)^-1,a^-1*z*a*w^-1 ,b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1,r^3, s^3,t^3,u^3,v^3,r^-1*s^-1*r*s, r^-1*t^-1*r*t,r^-1*u^-1*r*u, r^-1*v^-1*r*v,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*r*a*u^-1, a^-1*s*a*s^-1,a^-1*t*a*v^-1, a^-1*u*a*r^-1,a^-1*v*a*t^-1, b^-1*r*b*s^-1,b^-1*s*b*t^-1, b^-1*t*b*r^-1,b^-1*u*b*u^-1, b^-1*v*b*v^-1,w^-1*r*w*r^-1, w^-1*s*w*s,w^-1*t*w*t,w^-1*u*w*u, w^-1*v*w*v,x^-1*r*x*r, x^-1*s*x*s^-1,x^-1*t*x*t, x^-1*u*x*u,x^-1*v*x*v,y^-1*r*y*r, y^-1*s*y*s,y^-1*t*y*t^-1, y^-1*u*y*u,y^-1*v*y*v,z^-1*r*z*r, z^-1*s*z*s,z^-1*t*z*t, z^-1*u*z*u^-1,z^-1*v*z*v], [[b,a*b*a*b^-1*a^-1*w*x,u,v], [b,a*b*a*b^-1*a,w,r]]]; end, [80,15]], "A5 2^4' C N 2^1 3^5",[7,5,2],2, 1,[80,15]], # 466560.4 [[1,"abdwxyzrstuv", function(a,b,d,w,x,y,z,r,s,t,u,v) return [[a^2,b^3,(a*b)^5,d^2,a^-1*d^-1*a*d,b^-1 *d^-1*b*d,w^-1*d^-1*w*d, x^-1*d^-1*x*d,y^-1*d^-1*y*d, z^-1*d^-1*z*d,w^2,x^2,y^2,z^2, w^-1*x^-1*w*x*d,w^-1*y^-1*w*y*d, w^-1*z^-1*w*z*d,x^-1*y^-1*x*y*d, x^-1*z^-1*x*z*d,y^-1*z^-1*y*z*d, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w*x*y*z)^-1,a^-1*z*a*w^-1 ,b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1,r^3, s^3,t^3,u^3,v^3,r^-1*s^-1*r*s, r^-1*t^-1*r*t,r^-1*u^-1*r*u, r^-1*v^-1*r*v,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*r*a*u^-1, a^-1*s*a*s^-1,a^-1*t*a*v^-1, a^-1*u*a*r^-1,a^-1*v*a*t^-1, b^-1*r*b*s^-1,b^-1*s*b*t^-1, b^-1*t*b*r^-1,b^-1*u*b*u^-1, b^-1*v*b*v^-1,w^-1*r*w*r^-1, w^-1*s*w*s,w^-1*t*w*t,w^-1*u*w*u, w^-1*v*w*v,x^-1*r*x*r, x^-1*s*x*s^-1,x^-1*t*x*t, x^-1*u*x*u,x^-1*v*x*v,y^-1*r*y*r, y^-1*s*y*s,y^-1*t*y*t^-1, y^-1*u*y*u,y^-1*v*y*v,z^-1*r*z*r, z^-1*s*z*s,z^-1*t*z*t, z^-1*u*z*u^-1,z^-1*v*z*v], [[a,b,r],[b,a*b*a*b^-1*a,w,r]]]; end, [32,15]], "A5 2^4' C 2^1 3^5",[7,5,2],2, 1,[32,15]], # 466560.5 [[4,1920,1,14580,1,60], "A5 # 2^5 3^5 [1]",6,6, 1,[12,18]], # 466560.6 [[4,1920,2,14580,1,60], "A5 # 2^5 3^5 [2]",6,6, 1,[24,18]], # 466560.7 [[4,1920,3,14580,1,60], "A5 # 2^5 3^5 [3]",6,6, 1,[16,24,18]], # 466560.8 [[4,1920,4,14580,1,60], "A5 # 2^5 3^5 [4]",6,3, 1,[80,18]], # 466560.9 [[4,1920,5,14580,1,60], "A5 # 2^5 3^5 [5]",6,6, 1,[10,24,18]], # 466560.10 [[4,1920,6,14580,1,60], "A5 # 2^5 3^5 [6]",6,6, 1,[80,18]], # 466560.11 [[4,1920,7,14580,1,60], "A5 # 2^5 3^5 [7]",6,6, 1,[32,18]], # 466560.12 [[4,1920,3,29160,5,120,3,2], "A5 # 2^5 3^5 [8]",6,3, 1,[16,24,243]], # 466560.13 [[4,1920,4,29160,5,120,4,2], "A5 # 2^5 3^5 [9]",6,3, 1,[80,243]], # 466560.14 [[4,1920,5,29160,5,120,5,2], "A5 # 2^5 3^5 [10]",6,3, 1,[10,24,243]], # 466560.15 [[4,1920,3,29160,6,120,3,3], "A5 # 2^5 3^5 [11]",6,3, 1,[16,24,243]], # 466560.16 [[4,1920,4,29160,6,120,4,3], "A5 # 2^5 3^5 [12]",6,3, 1,[80,243]], # 466560.17 [[4,1920,5,29160,6,120,5,3], "A5 # 2^5 3^5 [13]",6,3, 1,[10,24,243]], # 466560.18 [[4,5760,1,29160,4,360,1,4], "A6 # 2^4 3^4",15,1, 3,[16,30]] ]; PERFGRP[239]:=[# 468000.1 [[2,60,1,7800,1], "A5 x L2(25)",40,1, [1,14],[5,26]] ]; PERFGRP[240]:=[# 475200.1 [[2,360,1,1320,1], "( A6 x L2(11) ) 2^1 [1]",40,2, [3,5],[6,24]], # 475200.2 [[2,720,1,660,1], "( A6 x L2(11) ) 2^1 [2]",40,2, [3,5],[80,11]], # 475200.3 [[3,720,1,1320,1,"d1","d2"], "( A6 x L2(11) ) 2^1 [3]",40,2, [3,5],960], # 475200.4 [[2,60,1,7920,1], "A5 x M11",40,1, [1,15],[5,11]] ]; PERFGRP[241]:=[# 480000.1 [[4,3840,1,7500,1,60], "A5 # 2^6 5^3 [1]",6,4, 1,[64,30]], # 480000.2 [[4,3840,2,7500,1,60], "A5 # 2^6 5^3 [2]",6,4, 1,[64,30]], # 480000.3 [[4,3840,3,7500,1,60], "A5 # 2^6 5^3 [3]",6,4, 1,[24,30]], # 480000.4 [[4,3840,4,7500,1,60], "A5 # 2^6 5^3 [4]",6,4, 1,[48,30]], # 480000.5 [[4,3840,5,7500,1,60], "A5 # 2^6 5^3 [5]",6,4, 1,[24,12,30]], # 480000.6 [[4,3840,6,7500,1,60], "A5 # 2^6 5^3 [6]",6,2, 1,[48,30]], # 480000.7 [[4,3840,7,7500,1,60], "A5 # 2^6 5^3 [7]",6,4, 1,[32,24,30]], # 480000.8 [[4,3840,1,7500,2,60], "A5 # 2^6 5^3 [8]",6,4, 1,[64,30]], # 480000.9 [[4,3840,2,7500,2,60], "A5 # 2^6 5^3 [9]",6,4, 1,[64,30]], # 480000.10 [[4,3840,3,7500,2,60], "A5 # 2^6 5^3 [10]",6,4, 1,[24,30]], # 480000.11 [[4,3840,4,7500,2,60], "A5 # 2^6 5^3 [11]",6,4, 1,[48,30]], # 480000.12 [[4,3840,5,7500,2,60], "A5 # 2^6 5^3 [12]",6,4, 1,[24,12,30]], # 480000.13 [[4,3840,6,7500,2,60], "A5 # 2^6 5^3 [13]",6,2, 1,[48,30]], # 480000.14 [[4,3840,7,7500,2,60], "A5 # 2^6 5^3 [14]",6,4, 1,[32,24,30]], # 480000.15 [[4,3840,5,15000,4,120,5,3], "A5 # 2^6 5^3 [15]",6,10, 1,[24,12,125]], # 480000.16 [[4,3840,6,15000,4,120,6,3], "A5 # 2^6 5^3 [16]",6,10, 1,[48,125]], # 480000.17 [[4,3840,7,15000,4,120,7,3], "A5 # 2^6 5^3 [17]",6,10, 1,[32,24,125]] ]; PERFGRP[242]:=[# 483840.1 [[1,"abuvwxyz", function(a,b,u,v,w,x,y,z) return [[a^6,b^4,(a*b)^7,(a*b)^2*a*b^2*(a*b*a*b^-1)^2 *(a*b)^2*(a*b^-1)^2*a*b*a*b^-1 *a^2,a^2*b*a^(-1*2)*b^-1,u^2,v^2,w^2,x^2, y^2,z^2,u^-1*v^-1*u*v,u^-1*w^-1*u*w ,u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*u*a*u^-1, a^-1*v*a*v^-1,a^-1*w*a*y^-1, a^-1*x*a*x^-1,a^-1*y*a*w^-1, a^-1*z*a*(u*v*w*x*y*z)^-1, b^-1*u*b*w^-1,b^-1*v*b*z^-1, b^-1*w*b*v^-1,b^-1*x*b*y^-1, b^-1*y*b*x^-1,b^-1*z*b*u^-1], [[a^3,(b^-1*a)^2*(b*a)^2*b^2*a*b*a,u], [a,b^2*a*b^-1*(a*b*a*b*b)^2*(a*b)^2, b*(a*b^-1)^2*a*b^2*(a*b)^2,y*z]]]; end, [45,14],[[1,2],[1,-2]]], "A7 3^1 x 2^6",[23,6,1],3, 8,[45,14]], # 483840.2 [[1,"abdef", function(a,b,d,e,f) return [[a^2,b^4*f^(-1*2),(a*b)^7*d^-1*e,(a^-1*b^-1 *a*b)^5*f^(-1*2),(a*b^2)^5*(e*f)^-1, (a*b*a*b*a*b^3)^5*f, (a*b*a*b*a*b^2*a*b^-1)^5*d^(-1*2),d^3, a^-1*d*a*d^-1,b^-1*d*b*d^-1,e^2, f^4,e^-1*f^-1*e*f,a^-1*e*a*e^-1, a^-1*f*a*f^-1,b^-1*e*b*e^-1, b^-1*f*b*f^-1], [[a*b*a,b^2*a*b^-1*a*b*a*b^2*a*b*d], [a,b*a*b*a*b^-1*a*b^2*f^-1], [a*e^2,b^-1*a*b^-1*a*b*a*b^2]]]; end, [63,224,112],[[1,2]]], "L3(4) 3^1 x 2^1 x ( 2^1 A 2^1 )",[27,3,1],-24, 20,[63,224,112]], # 483840.3 [[2,960,1,504,1], "( A5 x L2(8) ) # 2^4 [1]",[35,4,1],1, [1,4],[16,9]], # 483840.4 [[2,960,2,504,1], "( A5 x L2(8) ) # 2^4 [2]",[35,4,2],1, [1,4],[10,9]], # 483840.5 [[2,1344,1,360,1], "( L3(2) x A6 ) # 2^3 [1]",[37,3,1],1, [2,3],[8,6]], # 483840.6 [[2,1344,2,360,1], "( L3(2) x A6 ) # 2^3 [2]",[37,3,2],1, [2,3],[14,6]] ]; PERFGRP[243]:=[# 489600.1 [[2,120,1,4080,1], "A5 2^1 x L2(16)",40,2, [1,10],[24,17]] ]; PERFGRP[244]:=fail; PERFGRP[245]:=[# 492960.1 [[1,"abc", function(a,b,c) return [[c^39*a^2,c*b^9*c^-1*b^-1,b^79,a^4,a^2*b^(-1 *1)*a^2*b,a^2*c^-1*a^2*c, c*a*c*a^-1,(b*a)^3],[[b,c^2]]]; end, [160],[0,3,3]], "L2(79) 2^1 = SL(2,79)",22,-2, 40,160] ]; PERFGRP[246]:=[# 504000.1 [[2,3000,1,168,1], "( A5 x L3(2) ) 2^1 # 5^2",[32,2,1],1, [1,2],[25,7]] ]; PERFGRP[247]:=[# 515100.1 [[1,"abc", function(a,b,c) return [[c^50,c*b^4*c^-1*b^-1,b^101,a^2,c*a*c*a^-1 ,(b*a)^3,c^(-1*3)*b^2*c*b*c*b^2*c*a*b^2*a*c *b^2*a],[[b,c]]]; end, [102]], "L2(101)",22,-1, 48,102] ]; PERFGRP[248]:=[# 516096.1 [[1,"abcuvwxyzdef", function(a,b,c,u,v,w,x,y,z,d,e,f) return [[a^2*(e*f^-1)^-1,b^3,(a*b)^7,b^-1*(a*b)^3 *c^-1, b^-1*c^-1*b*c^-1*a^-1*c*b^-1*c *b*a*(y*z*d*f^2)^-1,d^2,e^2,f^4,u^2, v^2*f^2,w^2,x^2*f^2,y^2,z^2*f^2, u^-1*v^-1*u*v,u^-1*w^-1*u*w, u^-1*x^-1*u*x*f^2,u^-1*y^-1*u*y *f^2,u^-1*z^-1*u*z,u^-1*d^-1*u*d, u^-1*e^-1*u*e,u^-1*f^-1*u*f, v^-1*w^-1*v*w,v^-1*x^-1*v*x*f^2, v^-1*y^-1*v*y,v^-1*z^-1*v*z, v^-1*d^-1*v*d,v^-1*e^-1*v*e, v^-1*f^-1*v*f,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z*f^2, w^-1*d^-1*w*d,w^-1*e^-1*w*e, w^-1*f^-1*w*f,x^-1*y^-1*x*y, x^-1*z^-1*x*z,x^-1*d^-1*x*d, x^-1*e^-1*x*e,x^-1*f^-1*x*f, y^-1*z^-1*y*z,y^-1*d^-1*y*d, y^-1*e^-1*y*e,y^-1*f^-1*y*f, z^-1*d^-1*z*d,z^-1*e^-1*z*e, z^-1*f^-1*z*f,a^-1*u*a*(u*x)^-1, a^-1*v*a*(v*y*f^2)^-1, a^-1*w*a*(w*z)^-1, a^-1*x*a*(x*f^2)^-1,a^-1*y*a*y^-1, a^-1*z*a*(z*f^2)^-1,a^-1*d*a*d^-1, a^-1*e*a*e^-1,a^-1*f*a*f^-1, b^-1*u*b*(x*y*e*f^-1)^-1, b^-1*v*b*(y*z*e*f^2)^-1, b^-1*w*b*(x*y*z*d*e*f^2)^-1, b^-1*x*b*(v*w*x*e)^-1, b^-1*y*b*(u*v*w*y*d*e*f^2)^-1, b^-1*z*b*(u*w*z*f^-1)^-1, b^-1*d*b*d^-1,b^-1*e*b*e^-1, b^-1*f*b*f^-1, c^-1*u*c*(v*d*e*f^-1)^-1, c^-1*v*c*(w*d*f^-1)^-1, c^-1*w*c*(u*v*e*f)^-1, c^-1*x*c*(x*z*d*e*f)^-1, c^-1*y*c*(x*d*f)^-1, c^-1*z*c*(y*e*f^-1)^-1, c^-1*d*c*d^-1,c^-1*e*c*e^-1, c^-1*f*c*f^-1], [[c*c*a,y/b*a],[a^b,w*a]]]; #[[w*c*b,v^-1*c^-1*a]]]; corefree index 1152 end, [288,112],[[1,2],[12,12]]], "L2(8) N ( 2^6 E ( 2^1 x 2^1 x 2^1 A ) ) C 2^1",[16,10,1],16, 4,[288,112]] ]; PERFGRP[249]:=[# 518400.1 [[2,720,1,720,1], "( A6 x A6 ) 2^2",40,4, [3,3],[80,80]] ]; ############################################################################# ## #E perf10.grp . . . . . . . . . . . . . . . . . . . . . . . . . ends here ## gap-4r6p5/grp/imf24.grp 0000644 0001750 0001750 00001066406 12172557252 013401 0 ustar bill bill ############################################################################# ## #A imf24.grp GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains, for each Q-class representative of the irreducible ## maximal finite integral matrix groups of dimension 24, ## ## [1] a quadratic form (as lower triangle of the Gram matrix), ## [2] a list of matrix generators. ## ############################################################################# ## ## Quadratic form and matrix generators for the Q-class representatives of ## the irreducible maximal finite integral matrix groups of dimension 24. ## IMFList[24].matrices := [ [ # Q-class [24][01] [[1], [0,1], [0,0,1], [0,0,0,1], [0,0,0,0,1], [0,0,0,0,0,1], [0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[[0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [24][02] [[2], [-1,2], [0,-1,2], [0,0,-1,2], [0,0,0,-1,2], [0,0,0,0,-1,2], [0,0,0,0,0,-1,2], [0,0,-1,0,0,0,0,2], [0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,-1,-2,-2,-2,-1,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,2,3,4,3,2,1,1,2,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,-2,-2,-1,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-2,-4,-6,-5,-4,-3,-1,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,2,2,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [24][03] [[4], [-2,4], [-2,0,4], [2,0,0,4], [2,-2,0,0,4], [2,0,-2,0,0,4], [-1,-1,0,-2,-1,0,4], [-1,2,0,-1,-1,0,1,4], [2,0,0,2,1,1,-1,1,4], [2,0,0,2,1,1,-1,1,2,4], [-2,2,2,0,-1,-1,0,2,0,0,4], [2,-1,0,2,1,1,-2,-1,2,1,0,4], [-2,1,0,-2,-1,-1,2,1,-2,-2,1,-2,4], [1,1,-2,1,0,1,0,0,1,0,-1,0,0,4], [-1,-1,1,0,0,-1,0,-1,0,-1,0,1,-1,-1,4], [1,1,-1,2,-1,1,0,1,1,1,1,0,0,1,-1,4], [1,-2,-1,-1,0,1,2,-1,-1,-1,-1,0,1,0,-1,0,4], [2,-2,-1,0,2,0,-1,-1,0,1,-2,1,-1,-1,0,-1,1,4], [0,-1,1,-1,0,1,0,-1,-1,0,0,0,-1,-2,0,-1,1,1,4], [-1,1,-1,0,-2,0,0,-1,-2,-1,0,-1,1,0,0,0,0,-1,0,4], [0,1,-1,1,-2,1,-1,-1,0,-1,0,1,0,0,0,1,0,-1,0,2,4], [-2,2,1,-1,-1,0,1,1,-1,-1,2,-2,2,0,-1,1,0,-2,0,0,0,4], [-2,1,0,-1,-2,-1,2,1,-1,-1,1,-2,2,0,0,0,0,-2,-1,2,1,1,4], [2,-2,-1,0,2,1,-1,-1,0,1,-2,1,-2,0,0,-1,0,2,1,-1,-1,-2,-2,4]], [[[-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,-1,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,-1,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,-1,0,0,0,0,-1,1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [2,1,1,0,0,0,0,1,-1,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [-2,0,-1,2,1,1,0,1,0,-1,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0], [-4,-2,-1,2,1,1,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [-2,-1,-1,3,1,1,0,2,-1,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [3,0,0,-2,-1,-1,0,-1,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0], [2,0,0,-2,-1,-1,0,-1,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [3,1,1,-3,-1,-1,0,-2,0,1,1,0,0,0,0,0,0,0,-1,0,0,0,0,0], [1,1,-1,-1,-1,-1,0,-2,0,1,1,0,0,0,0,0,0,0,0,-1,0,0,0,0], [1,1,-1,-1,-1,-1,0,-2,1,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,1,1,1,1,1,0,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,-1,-1,-1,-1,0,-1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,-1,0], [-1,-1,0,1,1,1,0,1,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1]], [[0,2,1,3,3,0,1,3,-1,-1,-2,0,0,0,1,0,1,0,1,1,1,0,0,0], [2,-1,0,-3,-3,-1,-1,-2,1,1,1,0,0,0,0,0,0,0,-1,0,-1,1,0,0], [0,-1,0,-1,-1,1,0,-2,0,0,2,-1,0,0,-1,0,-1,1,-1,-1,0,-1,0,0], [4,0,1,-2,-2,-1,-1,-1,0,1,1,-1,1,1,1,0,0,0,0,0,0,0,0,0], [-3,0,0,3,3,1,1,2,0,-1,-1,0,0,0,0,0,0,1,1,1,1,0,0,0], [2,3,0,0,1,-1,1,0,0,0,-1,0,0,-1,1,0,1,-1,0,0,0,0,0,0], [1,2,1,0,1,0,1,1,-1,-1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0], [2,0,2,-3,-1,-1,0,0,0,0,0,1,-1,1,0,1,0,1,-1,1,0,1,0,0], [0,0,2,2,2,1,0,3,-1,-1,-1,-1,0,1,1,0,1,1,0,1,1,0,0,0], [1,1,1,1,1,0,1,1,0,-1,0,0,0,0,0,0,0,1,0,1,0,0,0,0], [11,-1,1,-16,-11,-5,-3,-11,4,6,6,-1,2,2,1,2,-2,0,-3,-1,-1,1,-1,1], [1,2,1,1,1,0,1,0,0,0,0,-1,1,0,1,0,1,0,0,0,1,-1,0,1], [6,2,1,-7,-4,-3,-1,-4,1,2,1,1,0,0,1,1,0,-1,-1,0,-1,1,0,1], [-6,2,1,12,8,4,3,9,-4,-5,-5,1,-2,-1,0,-2,2,1,2,1,1,0,1,-1], [0,-2,-1,-2,-2,0,-1,-2,1,1,2,-1,1,1,0,0,-1,0,0,-1,0,-1,0,0], [2,0,1,-1,0,-1,0,1,-1,0,-1,1,-1,1,0,0,0,0,0,1,0,1,0,-1], [-2,3,1,5,4,2,2,3,-2,-2,-2,0,-1,-1,0,-1,1,0,0,0,1,-1,0,0], [-8,0,-1,9,6,3,2,5,-1,-3,-2,0,-1,-1,-1,-1,1,1,1,1,1,-1,0,0], [-1,0,-2,-1,-1,0,1,-3,1,1,2,-1,0,-1,-1,0,-1,0,-1,-1,0,-1,-1,0], [8,0,-1,-10,-8,-4,-3,-7,3,4,3,0,2,0,1,1,-1,-2,-1,-1,-2,1,0,1], [8,-1,-1,-11,-8,-5,-4,-7,3,6,3,-1,3,1,2,1,0,-3,-1,-1,-1,1,-1,1], [8,-1,0,-12,-8,-4,-3,-8,3,5,4,-1,1,1,1,1,-1,-1,-2,-1,-1,1,-1,0], [12,-2,0,-17,-12,-6,-5,-10,4,7,5,0,3,2,2,2,-2,-2,-2,-1,-2,2,-1,1], [-2,0,-1,2,2,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0]]]], [ # Q-class [24][04] [[4], [-1,4], [-1,-1,4], [0,1,0,4], [0,-1,0,0,4], [0,-1,-1,0,0,4], [0,1,0,2,0,0,4], [0,0,1,2,-1,-1,1,4], [-1,2,0,-1,-1,-1,0,0,4], [0,-2,1,0,1,0,0,1,0,4], [-1,0,1,-1,0,0,-1,-1,0,0,4], [0,-1,0,0,1,1,0,-1,-1,1,-1,4], [1,1,-1,1,0,-1,1,1,0,-1,0,-2,4], [0,1,-1,0,1,1,0,-1,0,-1,0,-1,1,4], [-1,0,-1,0,-1,2,-2,-1,0,0,1,0,-1,1,4], [0,-1,1,0,-1,-1,-1,2,0,1,-1,-1,-1,-1,0,4], [-1,0,2,0,-1,0,-1,1,1,0,0,-1,-1,0,1,1,4], [1,0,0,0,1,-1,1,-1,0,0,-1,2,-1,-2,-2,-1,-1,4], [1,0,-1,0,-2,1,1,0,1,0,-2,1,-1,-1,0,0,0,1,4], [-1,-1,1,0,1,2,0,-1,-1,1,1,2,-1,0,1,-1,0,0,-1,4], [0,2,0,-1,-1,0,0,-1,2,-2,1,-1,1,1,0,-2,1,0,0,0,4], [2,-1,-1,-1,1,0,-2,-1,-1,0,0,-1,1,2,1,0,0,-1,-1,-1,0,4], [-1,0,2,0,1,-2,1,1,1,1,1,-1,0,-1,-2,0,1,1,-1,-1,0,-1,4], [-1,0,-1,-2,0,1,-2,-2,1,0,1,1,-2,0,2,0,0,0,0,1,0,0,-1,4]], [[[0,0,-1,1,0,0,0,-1,0,0,0,1,0,-1,-1,1,0,-2,0,1,1,1,1,0], [0,0,1,0,1,0,-1,0,-1,0,-1,-1,0,0,1,0,-1,0,1,0,1,-1,1,0], [0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,-1,0,1,1,0,1,1,1] , [0,0,0,1,-1,1,-1,0,1,0,0,0,-1,0,-2,-1,0,0,-1,0,-1,1,0,0], [0,-1,-2,0,-2,0,0,0,3,-1,1,0,-2,0,-2,-2,1,0,-2,1,-3,1,-1,-2], [0,0,0,0,0,0,1,0,0,1,0,0,-1,0,0,0,0,0,-1,-1,1,0,-1,0], [0,0,1,0,0,1,0,0,1,0,0,0,0,0,-1,-1,0,0,-1,-1,-1,0,-1,0], [0,1,1,0,0,0,-1,1,-1,0,-1,-1,0,0,0,-1,-1,0,1,1,0,1,1,1], [1,0,2,-2,2,-1,0,1,-2,0,-1,-1,1,1,4,0,-1,1,1,-1,1,-3,0,0], [1,0,0,-1,0,-1,0,1,0,0,0,0,0,1,1,-1,0,0,0,0,-1,-1,0,0], [-1,0,-1,0,0,0,0,0,-1,0,1,1,1,1,0,2,0,1,1,0,1,0,1,0], [0,-1,0,0,-1,0,0,0,1,1,1,0,0,1,-1,-1,1,1,-1,-1,-1,-1,-2,0], [0,1,0,0,0,1,-1,-1,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,-1], [0,0,-1,1,-1,0,0,-1,1,-1,-1,0,-2,-1,-1,0,-1,-2,0,2,0,2,2,-1], [0,0,0,0,0,0,0,0,-1,1,0,0,0,1,1,1,0,1,0,-1,1,-1,0,0], [0,0,0,1,0,-1,0,1,0,-1,-1,-1,-1,-1,0,-1,-1,-1,1,2,0,2,1,1], [1,1,1,-1,1,0,0,1,-2,0,-1,-1,0,0,2,0,-1,0,1,0,1,-1,1,1], [0,-1,0,0,0,0,0,0,1,0,1,0,0,0,-1,-1,1,0,-1,-1,-1,-1,-2,0], [1,0,2,-1,1,0,1,0,-1,1,-1,0,1,0,2,0,0,0,-1,-2,1,-2,-1,1], [0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,1,0,-1,0,-1,-1,0], [0,1,1,-1,2,0,0,0,-2,0,0,0,1,0,2,2,-1,0,2,0,2,-1,1,0], [0,0,-2,1,-1,0,0,-1,1,-1,0,1,-1,-1,-1,1,0,-2,0,2,0,2,2,-1], [0,0,0,-1,0,0,0,1,0,-1,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0], [0,-1,0,0,0,-1,0,0,-1,1,0,-1,0,1,1,0,0,1,0,-1,1,-2,-1,0]], [[0,-1,0,0,-1,1,0,0,1,1,1,0,0,1,0,-1,1,2,-2,-2,-1,-1,-2,-1], [-2,0,0,2,0,0,0,0,-1,0,0,0,0,-1,-2,1,-1,-1,2,1,2,3,1,2], [1,1,1,-1,1,-1,0,0,-1,0,-1,0,0,0,2,0,-1,-1,1,0,1,-1,1,0], [0,0,1,0,1,0,-1,0,-2,1,-1,0,2,1,2,1,-1,1,1,-1,2,-2,1,1], [1,0,0,0,-1,1,0,0,1,-1,0,1,0,0,0,0,0,0,-1,0,-1,0,1,0], [1,0,0,-1,1,-1,0,1,-1,0,0,-1,0,1,2,0,0,1,0,0,0,-2,0,0], [0,0,0,1,0,0,0,0,0,0,-1,0,0,-1,0,0,-1,-1,0,0,1,1,1,1], [0,0,1,-1,1,0,0,0,-1,1,0,1,2,1,2,1,0,1,0,-2,1,-2,-1,0], [-1,0,0,1,0,0,1,0,0,0,0,0,-1,-1,-2,0,0,-1,0,0,1,2,-1,1], [1,0,0,-1,0,0,1,0,1,-1,0,1,0,0,1,0,0,0,-1,0,-1,0,0,-1], [0,0,0,0,0,-1,1,0,1,-1,0,0,-1,-1,0,-1,0,-1,0,1,-1,1,0,0], [1,0,0,0,0,0,0,-1,-1,0,-1,0,0,0,1,1,-1,-1,0,0,1,-1,2,0], [-1,0,0,1,-1,1,0,0,1,0,0,1,0,-1,-1,0,0,0,-1,0,0,2,0,0], [0,1,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1,1,0,1,1,1], [0,0,0,-1,1,-1,0,1,-1,0,0,-1,0,1,1,0,0,1,1,1,0,-1,0,0], [0,0,0,-1,0,0,-1,0,0,1,1,0,1,2,0,0,1,2,0,-1,-1,-2,-2,-1], [0,0,0,-1,1,-1,0,1,-1,0,0,0,0,1,1,0,0,0,1,0,1,-1,0,0], [0,-1,0,1,-1,1,0,-1,1,0,0,0,0,0,-1,0,0,0,-1,-1,0,0,0,0], [0,0,0,0,1,0,0,0,-1,1,0,-1,0,0,0,0,0,0,0,-1,1,-1,-1,0], [1,0,0,0,0,-1,0,0,0,-1,-1,0,-1,0,1,0,-1,-1,0,1,0,0,2,0], [-1,0,0,1,0,0,1,0,0,0,0,0,-1,-1,-1,0,0,-1,0,0,1,2,0,1], [0,0,0,-1,-1,1,0,1,1,0,1,0,0,1,0,-1,1,2,-1,0,-2,0,-1,-1], [0,0,0,0,0,0,1,0,1,-1,0,1,0,-1,0,0,0,-1,0,0,0,1,0,0], [0,-1,-1,1,-1,-1,0,0,1,-1,0,-1,-2,0,-2,-1,0,-1,0,2,-1,1,0,0]]]], [ # Q-class [24][05] [[2], [0,2], [-1,1,2], [-1,1,1,2], [0,0,0,0,2], [0,0,0,0,0,2], [0,0,0,0,-1,1,2], [0,0,0,0,-1,1,1,2], [0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,-1,1,2], [0,0,0,0,0,0,0,0,-1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,2]], [[[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [24][06] [[4], [0,4], [1,0,4], [-2,2,1,4], [0,1,-2,-1,4], [-2,1,-2,1,2,4], [0,-2,0,-2,0,-1,4], [1,-2,2,-1,-2,-2,2,4], [-2,0,0,2,0,2,-2,-1,4], [1,0,0,0,-2,-2,0,1,-2,4], [0,2,1,2,-1,-1,-2,0,0,2,4], [-2,0,-2,0,2,2,0,-1,2,-2,-1,4], [0,0,1,0,0,0,0,1,0,-1,0,0,4], [0,0,0,0,1,1,0,0,0,0,0,0,0,4], [-1,0,0,1,0,0,0,0,0,0,1,0,1,0,4], [0,0,-1,0,1,1,0,-1,0,0,0,0,-2,2,1,4], [0,-1,0,-1,0,0,0,0,0,0,-1,0,0,1,-2,-1,4], [0,-1,0,-1,0,0,1,0,0,0,-1,0,-2,1,-2,1,2,4], [0,0,0,0,0,-1,0,0,0,0,0,0,0,-2,0,-2,0,-1,4], [-1,0,0,1,0,0,0,0,1,-1,0,1,1,-2,2,-1,-2,-2,2,4], [0,0,0,0,0,0,0,-1,0,0,0,0,-2,0,0,2,0,2,-2,-1,4], [1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,-2,-2,0,1,-2,4], [0,0,-1,0,1,1,0,0,0,0,0,1,0,2,1,2,-1,-1,-2,0,0,2,4], [0,0,0,0,0,0,0,-1,0,0,-1,0,-2,0,-2,0,2,2,0,-1,2,-2,-1,4]], [[[0,0,-1,1,0,-1,0,0,0,-1,0,0,0,0,1,-1,0,1,0,-1,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,1,-1,0,1,0,1,0,0,-1,0,0,1], [0,0,-2,1,0,-1,0,1,0,-1,0,-1,0,1,0,-1,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,1,0,-1,1,0,0,0,1,0,-1,0,0], [-1,0,1,-1,0,0,-1,0,0,0,0,0,1,-1,0,1,-1,1,1,-1,-1,0,1,1], [-1,1,1,-2,0,0,0,0,1,1,0,0,1,-1,0,2,0,0,0,0,-1,0,0,1], [0,0,0,0,-1,1,0,0,-1,-1,0,0,-1,1,0,-1,1,-1,1,0,2,1,0,-1], [1,0,-1,1,-1,0,1,0,0,-1,0,0,-1,1,0,-1,1,-1,0,0,1,0,0,-1], [0,0,0,-1,0,0,0,0,1,1,0,0,1,0,0,1,-1,0,0,0,-1,-1,0,1], [1,0,0,1,0,0,1,-1,0,0,0,0,-1,0,0,-1,1,0,-1,1,0,0,0,-1], [1,-1,0,1,0,0,1,-1,0,0,1,0,0,0,-1,0,0,0,-1,1,-1,-1,0,0], [0,0,1,-1,0,1,0,0,1,1,0,0,1,-1,0,1,-1,0,1,-1,-1,-1,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,1,0,1,0,0,-1,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,0,0,-1,0,1,1,-1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,1,0,-1,-1,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,0,0,1,0,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,1,0,1,-1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,0,0,0,0,-1,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,0,-1,1,1,-1,0,0,1,1]], [[0,1,0,-1,0,0,0,0,1,1,0,0,1,-1,1,1,0,1,0,0,-1,0,0,1], [0,-1,0,0,0,0,0,0,0,0,1,0,1,0,-1,1,-1,0,0,0,-1,-1,0,1], [-1,1,0,-1,0,-1,0,0,1,1,-1,0,1,0,0,1,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,-1,-1,0,0,0,-1,0,0], [-1,0,0,0,1,0,-1,1,0,0,0,-1,1,-1,0,0,-1,1,1,-1,0,0,1,1], [0,-1,0,1,1,0,0,0,0,0,0,-1,0,0,-1,-1,-1,0,0,0,0,-1,1,0], [0,0,1,0,-1,1,0,-1,-1,0,0,1,0,0,0,0,1,0,1,0,1,1,0,-1], [0,1,0,-1,-1,0,1,-1,1,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0], [0,0,-1,1,1,-1,0,1,1,0,-1,-1,0,0,0,-1,-1,0,0,-1,0,-1,1,0], [1,0,1,-1,-1,1,1,-1,0,0,1,1,-1,0,0,1,1,-1,-1,1,-1,0,-1,0], [0,0,0,-1,0,0,1,0,1,0,1,0,0,0,0,1,0,-1,-1,0,-1,0,-1,1], [0,0,-1,1,0,0,0,1,0,-1,0,-1,0,0,0,-1,0,0,1,-1,1,0,1,0], [-1,1,-1,-1,0,-1,0,0,1,0,0,-1,0,1,0,-1,0,0,0,0,1,1,0,0], [-1,0,1,-1,1,0,0,0,1,1,0,-1,0,-1,0,0,0,0,0,0,0,0,1,0], [-1,0,0,-1,0,0,0,0,0,0,0,0,-1,1,0,-1,0,-1,0,0,1,1,-1,0], [0,-1,1,0,1,1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,1,-1,-1,1,0,0,-1,-1,-1,0,0,0,1,0,-1,1,0,0,0,-1], [0,0,1,1,1,0,0,0,0,1,-1,0,0,-1,0,1,1,0,0,0,0,0,0,-1], [0,0,0,0,-1,0,-1,0,-1,-1,0,1,0,0,1,0,-1,1,0,-1,-1,0,0,1], [0,0,-1,0,-1,0,0,0,0,-1,0,0,0,1,0,-1,-1,0,1,-1,1,0,0,0], [0,0,0,1,1,0,0,1,0,1,-1,0,0,0,-1,1,1,-1,0,1,1,0,-1,-1], [1,0,0,-1,-1,1,1,-1,1,0,1,0,1,0,1,-1,-1,1,1,-1,0,0,1,1], [0,0,0,-1,0,1,1,0,1,0,1,-1,0,0,0,-1,0,0,1,0,1,0,1,0], [0,0,0,1,0,0,-1,1,-1,0,-1,0,0,0,-1,1,0,0,0,1,0,-1,0,-1]]]], [ # Q-class [24][07] [[2], [-1,2], [0,-1,2], [0,0,-1,2], [0,0,0,-1,2], [0,0,-1,0,0,2], [0,0,0,0,0,0,2], [0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,-1,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,2]], [[[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,2,2,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,-2,-2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,-2,-3,-2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [24][08] [[4], [-2,4], [-1,1,4], [-1,2,-1,4], [0,0,0,1,4], [-1,1,-1,0,1,4], [0,1,-1,2,0,-1,4], [0,1,-1,2,1,1,0,4], [2,-2,0,-1,1,0,-1,1,4], [-2,2,1,0,-2,1,0,0,-1,4], [-2,2,2,1,1,0,1,1,0,1,4], [-1,1,-1,2,2,2,0,2,0,0,1,4], [-1,0,2,0,2,-1,0,0,0,-1,2,0,4], [0,-1,-1,1,2,0,0,0,1,-1,0,1,1,4], [0,1,-1,1,1,2,1,2,1,1,1,1,0,1,4], [-1,1,-1,2,-1,-1,1,1,-2,0,0,0,0,0,0,4], [-1,2,2,1,-1,-1,0,1,0,2,2,0,0,-1,0,1,4], [-1,1,2,-1,1,0,0,-1,0,1,2,0,2,0,0,-1,1,4], [0,1,-1,0,-1,0,1,1,0,1,0,0,-1,-1,1,0,0,0,4], [2,-1,0,-1,0,-1,-1,1,2,-1,0,0,0,0,0,0,1,0,0,4], [-2,0,0,0,1,0,-1,0,0,0,1,1,1,1,-1,0,0,1,0,0,4], [-1,2,1,0,1,2,-1,0,-1,1,1,1,0,0,1,0,1,1,-1,0,0,4], [0,1,-1,0,0,2,1,1,0,1,0,0,-1,-1,2,-1,-1,0,2,-1,-1,0,4], [-1,1,-1,0,1,1,1,-1,-1,0,0,0,0,1,1,0,-1,1,1,-1,1,1,1,4]], [[[-1,3,0,-3,-1,-2,1,0,1,-2,-2,2,0,0,2,0,0,0,-1,-1,1,0,0,-1], [-1,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,1,-1,0,1,0], [-1,-1,1,1,0,2,1,0,-2,-2,-1,-2,-1,1,1,-1,1,1,1,1,1,0,0,-2], [1,1,0,-2,-1,-1,0,0,1,0,0,2,1,1,-1,1,1,-1,-1,-1,0,0,2,1], [2,1,-2,-1,1,-1,-2,-2,0,1,2,1,1,0,0,1,1,-1,0,-1,0,-1,1,0], [2,1,-3,0,3,0,-2,-2,2,5,3,0,2,-1,-3,2,-1,-2,0,0,-2,-1,0,1], [-1,0,2,-1,-3,-1,1,1,-1,-3,-2,2,-1,1,2,-1,1,1,-1,0,1,0,1,0], [0,3,-2,-4,0,-2,0,0,2,0,0,2,1,1,-1,1,1,-1,-1,-2,-1,0,1,0], [0,3,-3,-3,1,-3,-1,-2,2,0,0,2,1,-1,1,1,1,-1,-1,-2,0,0,1,-1], [-1,-1,0,1,1,1,0,0,0,1,0,-1,0,0,-1,0,0,0,0,1,-1,0,0,0], [0,-1,0,0,0,1,0,-1,-1,-1,0,0,0,1,0,0,2,0,1,0,0,0,1,-1], [3,1,-2,-1,2,0,-2,-2,1,3,2,1,2,0,-2,2,1,-2,0,-1,-1,-1,1,1], [0,-1,1,1,-1,1,0,0,-2,-2,0,-1,-1,1,1,-1,1,1,1,0,1,0,0,-1], [2,0,-2,0,1,-1,-2,-2,1,2,2,1,2,-1,-1,1,1,-2,0,-1,0,0,1,1], [0,2,-2,-2,0,-2,-1,-1,2,1,1,2,1,0,-1,1,0,-1,-1,-1,-1,0,1,0], [0,-1,2,0,-1,0,1,2,0,0,0,0,-1,1,-1,0,-1,0,0,0,0,1,0,1], [-1,0,0,-1,0,0,1,0,0,-1,-1,0,0,1,0,0,1,0,0,0,0,1,1,-1], [0,-1,0,1,2,1,-1,-2,-2,0,1,-1,-1,0,1,0,1,0,1,1,0,-1,0,-1], [-2,1,0,-1,-1,-2,0,1,0,-2,-1,1,-1,0,1,-1,0,1,-1,0,-1,0,0,0], [-1,2,-1,-2,0,-2,0,0,1,-1,-1,1,0,0,1,0,0,0,0,-1,0,1,0,-1], [1,-2,-1,2,2,0,-2,-1,0,2,2,-1,0,-1,-1,1,0,0,1,0,-1,0,0,1], [1,-1,-1,1,2,1,-1,-1,0,3,2,-1,1,0,-2,1,-1,-1,1,1,-1,0,0,0], [-1,2,-1,-2,0,-1,0,0,1,0,0,1,0,0,0,0,0,0,-1,0,-1,-1,0,0], [0,-1,-1,2,0,-1,-2,-1,0,1,2,0,0,-1,0,0,-1,0,0,1,-1,0,0,1]], [[-1,1,1,-2,0,0,1,1,0,-1,-1,0,-1,1,0,0,0,0,0,0,0,0,0,-1], [2,0,-1,0,1,1,-1,-1,0,2,2,0,1,0,-1,1,0,-1,0,0,0,-1,0,1], [1,-3,1,3,0,3,0,0,-1,1,1,-2,0,0,-1,0,0,0,1,1,0,0,-1,1], [2,1,-2,-1,1,-1,-2,-2,0,1,2,1,1,0,0,1,1,-1,0,-1,0,-1,1,0], [1,0,0,0,1,0,-1,-1,-1,0,0,0,0,0,1,0,1,0,0,0,0,-1,0,0], [1,0,-1,0,2,-1,-1,-1,1,3,1,1,1,-1,-1,1,-1,-1,0,0,-1,0,0,1], [1,2,-2,-2,0,-1,-1,-1,0,0,1,1,1,0,0,0,1,-1,-1,-1,0,-1,1,0], [1,1,-1,-2,2,-1,-1,-1,0,1,1,1,0,0,0,1,1,-1,0,-1,0,-1,0,0], [-1,0,0,0,1,-1,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0], [1,-1,-1,1,1,0,-1,0,1,3,2,0,1,-1,-2,1,-1,-1,0,0,-1,0,0,2], [1,-1,0,1,0,1,-1,-1,-1,0,1,0,0,0,0,0,1,0,0,0,0,-1,0,1], [1,1,-1,-2,1,-1,-1,-2,0,0,0,2,1,0,1,1,2,-1,0,-1,0,-1,1,0], [1,-3,2,3,0,3,0,0,-3,-1,0,-2,-1,0,1,-1,1,1,1,1,1,-1,-1,0], [0,-1,1,1,0,-1,-1,0,-1,-1,0,0,-1,0,1,0,0,1,0,0,0,0,1,0], [1,0,-1,0,3,-1,-2,-1,0,3,2,0,0,-1,-1,1,-1,-1,0,0,-1,-1,0,1], [-1,0,0,0,-1,-1,0,0,-1,-2,0,0,-1,0,2,-1,0,1,0,0,1,0,0,-1], [0,-1,0,1,-1,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,-2,2,2,-1,2,0,1,-2,-1,0,-1,-1,0,1,-1,0,1,0,1,0,-1,-1,1], [0,3,-1,-3,1,-1,0,0,1,0,0,1,0,0,0,1,0,-1,-1,-1,0,-1,0,0], [-2,0,2,-1,-1,0,1,1,-1,-3,-2,0,-2,1,2,-1,1,1,0,0,1,0,0,-1], [-1,0,0,1,-1,0,0,0,0,-2,-1,0,0,0,1,-1,1,1,0,0,0,0,0,0], [0,-1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,1,0,0,0,1], [2,2,-2,-2,3,-1,-1,-1,2,4,2,1,1,-1,-2,2,-1,-2,-1,-1,-1,-1,0,1], [-1,1,0,0,-1,-1,0,1,0,-1,-1,0,0,0,1,-1,-1,1,-1,0,0,0,0,0]]]], [ # Q-class [24][09] [[4], [0,4], [1,0,4], [0,-1,0,4], [1,1,0,-1,4], [0,0,-1,0,1,4], [0,1,0,1,0,1,4], [0,1,1,0,1,1,2,4], [0,1,-1,0,1,2,1,0,4], [1,-1,1,0,-1,-2,-1,0,-2,4], [0,1,-1,-1,-1,-1,0,0,-1,2,4], [1,0,1,-1,2,0,-1,0,0,-1,-2,4], [0,-2,0,1,-1,0,-1,-1,-1,1,-1,0,4], [0,0,0,-1,2,1,0,1,1,-1,-1,2,-1,4], [0,-2,0,1,0,-1,-1,0,-1,1,-1,1,0,1,4], [0,-1,0,-1,-1,-2,-1,0,-2,2,1,0,0,0,2,4], [0,0,1,1,-1,-2,-1,0,-2,2,1,-1,1,-2,0,0,4], [0,0,1,-1,-1,-2,-2,-1,-2,2,1,0,0,-1,1,2,2,4], [-1,0,0,0,-2,-1,-1,-1,0,1,1,-2,0,-2,0,0,1,1,4], [0,1,0,-2,1,1,-1,-1,1,-1,0,0,0,0,-2,-1,-1,0,0,4], [1,-2,2,1,0,-1,0,0,-1,1,-1,1,0,1,2,1,0,0,-1,-1,4], [-1,-1,1,2,-2,0,1,1,-1,0,-1,-1,0,-1,1,0,1,0,1,-2,1,4], [0,1,0,-1,2,1,0,1,2,-1,0,0,-2,2,0,-1,-1,-1,0,1,0,-1,4], [1,2,0,-1,0,0,1,2,-1,1,2,-1,-1,0,-1,1,0,0,0,0,-1,0,0,4]], [[[-1,-1,-1,1,-1,1,2,-1,0,1,-1,3,-1,0,-1,1,2,0,1,1,0,-1,1,1], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,-1,1,-1,0,-1,0,-1,0,0,0,0,0,0,0,0,-1], [0,0,-1,0,0,0,0,1,0,0,-1,0,0,0,-1,0,0,1,1,0,1,0,0,0], [-1,-3,0,2,-1,1,2,-1,0,1,-1,3,-2,0,-1,1,2,0,1,1,-1,-2,1,2], [0,-1,0,0,0,-1,0,0,1,0,0,0,0,0,0,-1,-1,1,0,0,0,0,0,1], [0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,1,-1,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,-1,1,0,0,-1,0,-1,0,-1,0,0,1,1,-1,0,0,0,-1,0,-1], [0,1,1,0,0,1,0,-1,0,-1,1,0,0,0,1,1,1,-1,0,0,0,0,0,0], [0,-1,-1,1,-1,0,1,0,-1,2,-1,2,-1,0,-1,0,0,0,0,1,-1,0,1,0], [0,0,-1,-1,-1,-1,-1,1,0,0,-2,-1,0,-1,0,-2,-1,1,-1,-1,1,-1,0,1], [0,-1,0,1,0,0,1,0,0,1,0,1,-1,0,0,0,0,0,0,1,-1,0,0,0], [0,0,0,1,0,1,1,0,-1,1,-1,1,-1,1,-1,2,1,-1,1,1,-1,0,0,-1], [0,1,0,0,0,1,0,0,-1,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,1,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,-1], [1,2,1,-1,1,0,-1,0,0,-1,1,-2,1,1,0,1,0,-1,0,-1,0,1,-1,-2], [-1,-1,0,0,0,-1,-1,0,1,0,0,0,0,-1,0,-2,-1,1,-1,-1,1,-1,0,2], [0,0,-1,1,0,1,1,0,-1,1,-1,1,-1,1,-1,1,1,0,1,1,0,0,0,-1], [1,1,0,-1,1,-1,-1,1,0,-1,1,-2,1,1,0,0,-1,0,0,0,0,2,-1,-2], [0,-1,1,1,1,1,1,-1,1,0,1,1,-1,1,0,2,2,-1,1,1,-1,0,-1,0], [0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,-1,-1,1,-1,0,1,0,0,1,-1,2,0,-1,-1,0,0,1,0,0,0,-1,2,1], [1,1,0,-1,1,-1,-1,1,0,-1,1,-2,1,1,0,0,-1,0,0,-1,0,1,-1,-2], [0,0,-2,1,-1,0,0,1,-1,1,-2,1,-1,0,-2,0,0,1,1,0,1,-1,1,0], [0,0,0,0,0,0,0,0,0,1,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,-1,-1,-1,-1,1,0,0,0,-1,0,-1,1,-2,-1,0,-1,-1,0,-1,0,0], [1,0,1,0,0,0,1,-1,0,0,1,0,0,1,1,1,1,-1,0,1,-2,1,0,-1], [0,0,1,0,0,0,0,-1,0,0,0,0,0,1,0,1,1,-1,0,0,-1,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,-1,0,0,0,-1,0,0,0,-1,0,0,1,-1,0,0,-1,-1,-1,0,0,0], [-1,-1,-1,1,0,0,1,0,0,0,-1,2,0,-1,-1,0,0,1,1,0,1,-1,1,2], [0,0,0,0,1,-1,0,0,0,-1,1,0,1,0,0,0,-1,0,0,0,0,1,0,0], [0,0,-1,0,-1,0,0,1,0,0,0,0,0,0,0,-1,0,1,0,0,1,-1,0,0], [0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,1,1,0,1,1,0,0,0,0], [0,0,0,-1,0,-1,-1,0,1,-1,1,-1,1,-1,1,-2,-1,1,-1,-1,1,0,0,1], [-1,-1,0,1,0,0,0,0,1,0,0,1,0,-1,0,-1,0,1,0,0,1,-1,0,2], [-1,-1,0,1,0,0,0,0,1,-1,0,1,0,-1,0,0,0,1,0,0,1,-1,0,2], [0,1,-1,0,0,0,0,1,-1,1,-1,0,0,0,-1,0,-1,0,1,0,1,0,0,-1], [0,0,-1,1,0,0,0,1,0,0,0,1,0,0,-1,0,-1,1,1,0,1,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0], [-1,-1,-1,1,-1,0,0,0,0,1,-2,1,-1,-1,-1,-1,0,1,0,0,1,-2,1,2], [0,0,0,1,0,1,1,-1,0,1,-1,1,-1,1,-1,2,2,-1,1,1,0,0,0,0], [0,0,0,-1,0,-1,-1,0,0,0,0,-1,0,-1,1,-2,-1,0,-1,-1,0,0,0,0], [0,0,0,0,1,-1,0,0,1,-1,1,0,1,0,0,1,0,0,0,0,0,1,0,0]]]], [ # Q-class [24][10] [[2], [1,2], [0,0,2], [0,0,1,2], [0,0,0,0,2], [0,0,0,0,1,2], [0,0,0,0,0,0,2], [0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2]], [[[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [24][11] [[4], [0,4], [1,0,4], [-2,2,1,4], [0,1,-2,-1,4], [-2,1,-2,1,2,4], [0,-2,0,-2,0,-1,4], [1,-2,2,-1,-2,-2,2,4], [-2,0,0,2,0,2,-2,-1,4], [1,0,0,0,-2,-2,0,1,-2,4], [0,2,1,2,-1,-1,-2,0,0,2,4], [-2,0,-2,0,2,2,0,-1,2,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,-2,2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,-2,1,-2,1,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-2,0,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,-2,2,-1,-2,-2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,2,0,2,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-2,-2,0,1,-2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,2,-1,-1,-2,0,0,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-2,0,2,2,0,-1,2,-2,-1,4]], [[[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,1,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,-1,0,0,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,1,-1,1,1,-1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[-2,1,0,-1,1,-1,-1,1,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,-1,1,-1,-1,1,1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,-2,1,1,-1,-1,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,0,-1,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,1,-1,-1,1,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,1,-1,-1,1,1,-1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,1,-1,0,1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,0,1,-1,1,1,2,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,1,0,-1,2,1,-1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [24][12] [[4], [-2,4], [0,-2,4], [0,0,-2,4], [0,0,0,-2,4], [0,0,-2,0,0,4], [0,0,0,0,0,0,4], [0,0,0,0,0,0,-2,4], [0,0,0,0,0,0,0,-2,4], [0,0,0,0,0,0,0,0,-2,4], [0,0,0,0,0,0,0,0,0,-2,4], [0,0,0,0,0,0,0,0,-2,0,0,4], [-2,1,0,0,0,0,2,-1,0,0,0,0,4], [1,-2,1,0,0,0,-1,2,-1,0,0,0,-2,4], [0,1,-2,1,0,1,0,-1,2,-1,0,-1,0,-2,4], [0,0,1,-2,1,0,0,0,-1,2,-1,0,0,0,-2,4], [0,0,0,1,-2,0,0,0,0,-1,2,0,0,0,0,-2,4], [0,0,1,0,0,-2,0,0,-1,0,0,2,0,0,-2,0,0,4], [-2,1,0,0,0,0,2,-1,0,0,0,0,2,-1,0,0,0,0,4], [1,-2,1,0,0,0,-1,2,-1,0,0,0,-1,2,-1,0,0,0,-2,4], [0,1,-2,1,0,1,0,-1,2,-1,0,-1,0,-1,2,-1,0,-1,0,-2,4], [0,0,1,-2,1,0,0,0,-1,2,-1,0,0,0,-1,2,-1,0,0,0,-2,4], [0,0,0,1,-2,0,0,0,0,-1,2,0,0,0,0,-1,2,0,0,0,0,-2,4], [0,0,1,0,0,-2,0,0,-1,0,0,2,0,0,-1,0,0,2,0,0,-2,0,0,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-2,-2,-1,-1,0,0,0,0,0,0], [0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,-1,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,0], [0,0,0,0,0,0,-1,-1,-2,-2,-1,-1,0,0,0,0,0,0,1,1,2,2,1,1], [0,0,0,0,0,0,1,1,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,-1,-1,-1,0,0,1,1,1,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,-1,-2,-2,-1,-1,1,1,2,2,1,1,0,0,0,0,0,0], [-1,-1,0,0,0,0,1,1,0,0,0,0,-1,-1,0,0,0,0,-1,-1,0,0,0,0], [0,0,-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0], [0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0], [0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,-1,0], [0,1,1,1,1,0,0,-1,-1,-1,-1,0,0,1,1,1,1,0,0,1,1,1,1,0], [1,1,2,2,1,1,-1,-1,-2,-2,-1,-1,1,1,2,2,1,1,1,1,2,2,1,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-2,-3,-2,-1,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,2,1,2,-1,-2,-3,-2,-1,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-3,-2,-1,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,1,2,3,2,1,2,0,0,0,0,0,0,-1,-2,-3,-2,-1,-2], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-2,-3,-2,-1,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,-2,-3,-2,-1,-2,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-3,-2,-1,-2,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1], [1,2,3,2,1,2,-1,-2,-3,-2,-1,-2,0,0,0,0,0,0,1,2,3,2,1,2], [0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0]]]], [ # Q-class [24][13] [[4], [2,4], [-1,1,4], [-1,0,0,4], [0,0,0,-1,4], [-1,0,2,1,1,4], [-1,-1,0,0,2,2,4], [1,0,0,1,1,1,0,4], [2,1,1,0,-1,0,-1,1,4], [-1,-1,0,1,0,1,0,1,0,4], [0,-1,-1,2,1,1,1,2,1,2,4], [0,0,0,-1,0,-1,0,-1,1,2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,2,1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,1,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,2,1,1,0,-1,0,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,1,0,1,0,1,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,2,1,1,1,2,1,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,-1,1,2,1,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,1,0,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,1,0,1,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,-1,0,1,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,-1,0,0,0,1,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,0,0,0,1,1,-2,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,0,-2,1,-1,0,2,1,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,1,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,-1,0,-1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,-1,-1,-1,1,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,-1,0,1,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,1,-1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,1,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,1,0,-1,-1,1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,1,0,1,0,1,-1,-1,-1,2,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [24][14] [[4], [0,4], [0,0,4], [0,0,0,4], [0,1,0,2,4], [-2,-1,0,0,0,4], [0,-1,0,0,0,0,4], [0,-1,0,0,0,0,2,4], [0,0,1,0,1,-1,1,0,4], [-2,-2,-2,-2,-1,1,-1,1,-2,8], [-2,0,-2,-2,0,0,2,2,0,4,8], [0,1,2,0,0,0,0,0,0,-1,0,4], [-2,-2,-2,-2,-1,1,-1,1,-1,6,2,-1,8], [-2,-2,-2,-2,-2,2,2,0,-1,4,4,-2,2,8], [0,0,0,-1,0,1,0,-1,0,0,0,-1,-1,1,4], [0,0,1,-1,-1,-1,-1,-1,0,1,0,0,0,1,0,4], [1,-2,-1,-1,-1,0,1,0,0,1,0,-1,2,2,0,0,4], [-1,2,1,1,1,0,-1,0,-1,-1,0,1,-2,-2,-1,1,-3,6], [-2,1,-2,1,1,2,-1,0,0,1,0,-2,2,1,-1,0,-1,2,8], [0,2,2,2,1,0,-2,-1,-1,-3,-4,1,-3,-4,-1,1,-3,5,2,8], [1,0,1,-1,0,-1,1,1,2,-1,0,1,-1,-1,0,0,0,0,-1,0,4], [0,-1,0,-2,0,-1,2,2,2,2,4,1,1,1,-1,1,0,1,-1,-2,3,8], [0,1,0,0,0,0,0,0,-1,-1,0,0,-1,0,0,1,-1,1,1,1,0,0,4], [1,0,0,1,0,0,1,0,0,-2,0,1,-2,-1,0,-2,0,0,-1,0,0,0,0,4]], [[[-1,0,0,0,0,0,-1,1,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0], [1,0,1,1,0,0,-1,0,0,-1,1,0,1,1,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,1,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,1,-1,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,-1,0,-1,0,0,-1,0,0,0,-1,-1,0,0,0,-1,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0], [0,-1,0,-1,0,-1,0,0,0,0,0,1,-1,0,0,-1,0,0,1,0,-1,0,0,-1], [0,1,-1,0,0,1,1,0,1,0,-1,0,1,0,0,1,-1,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,-1,-1,0,0,0,0,0,0], [0,0,0,-1,1,1,1,0,-1,0,0,-1,0,-1,-1,2,-1,0,0,-1,1,-1,-1,1], [-1,0,-1,-1,1,0,0,0,-1,-1,-1,0,0,0,0,1,-1,-1,0,0,0,1,-1,1], [0,0,0,0,-1,0,1,-1,1,1,0,0,0,-1,0,-1,0,0,0,0,0,0,1,0], [-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,1,0,1,-1,1,0,0,3,1,0,0,1,1,0,-1,0,2,-1,0,0,-1,1,0], [-1,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0], [2,1,0,1,0,1,0,0,2,1,0,0,1,1,0,0,0,1,-1,0,0,-1,1,0], [2,1,1,2,-1,0,-1,-1,1,0,1,1,1,1,1,-2,1,0,0,1,-1,1,1,-1], [2,1,0,1,0,1,0,0,2,1,0,0,1,1,0,0,1,2,-1,0,0,-1,1,0], [0,0,-1,-1,0,1,1,0,1,1,0,0,-1,-1,-1,1,0,0,0,0,0,-1,0,0], [0,0,-1,-1,0,1,1,0,1,1,-1,0,-1,-1,-1,1,-1,0,0,-1,0,-1,0,0], [1,1,1,2,-1,1,0,-1,0,0,1,-1,1,0,0,0,0,0,0,0,1,0,0,0], [-2,-1,0,-1,1,-1,0,0,-3,-1,0,0,-1,-1,0,1,0,-1,1,-1,1,0,-1,0]], [[1,1,1,1,-1,1,1,-1,0,1,1,-1,0,-1,0,0,0,0,0,0,0,0,0,0], [1,1,0,1,0,1,0,0,1,0,0,0,1,1,0,0,0,1,-1,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [-2,-1,-1,-2,1,-2,0,0,-1,0,-1,1,-1,0,0,0,0,-1,1,0,0,0,0,0], [-1,0,0,-1,1,-1,-1,1,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,-2,-1,-2,1,-2,-1,0,-1,-1,0,1,-1,0,0,0,0,-1,1,0,0,0,0,0], [-1,0,-1,-1,0,-1,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,1,-1,1,1,0,2,1,0,0,1,0,0,0,0,1,-1,0,0,-1,1,0], [-2,0,-1,-1,1,0,1,0,-2,0,-1,-1,-1,-1,-1,2,-1,-1,0,-1,1,0,-1,1], [-1,-1,0,-1,0,-1,0,0,-1,0,0,0,-1,-1,0,0,0,0,1,-1,0,0,0,0], [-1,1,0,0,1,0,-1,1,-1,-1,-1,0,0,1,0,1,0,-1,0,0,0,1,-1,1], [0,0,0,0,0,0,-1,0,-1,-2,0,0,1,1,0,0,-1,-1,0,0,0,1,-1,0], [0,1,0,1,0,1,0,0,-1,-1,0,0,0,0,0,1,0,-1,0,0,0,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [-3,-1,0,-2,2,-2,-1,1,-3,-1,-1,0,-1,0,0,1,-1,-2,1,0,0,1,-1,1], [0,1,0,0,0,1,0,0,0,0,0,-1,0,0,-1,0,0,0,-1,0,0,0,0,0], [2,1,2,2,-1,0,-1,0,1,0,1,0,1,1,1,-2,1,0,0,1,-1,1,1,-1]], [[0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [-1,-1,-1,-1,1,-1,-1,1,0,0,-1,1,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,-1,-1,0,0,1,0,0,1,-1,0,-1,-1,0,0,0,0,0,0,0,0,0,0], [-1,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [1,0,1,1,-1,0,0,-1,0,-1,1,-1,1,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0], [-1,-1,-1,-1,1,-1,-1,1,0,-1,-1,1,0,1,0,0,0,0,0,0,0,0,0,0], [1,0,0,1,-1,0,0,-1,0,-1,1,0,1,0,0,0,-1,0,0,0,0,0,0,0], [0,1,1,1,-1,0,1,-1,0,1,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0], [0,1,1,1,0,0,0,0,-1,0,0,-1,0,0,0,0,0,-1,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,-1,0,1,1,0,1,1,0,0,-1,-1,-1,1,0,0,0,0,0,-1,0,0], [1,0,0,1,-1,2,2,-2,0,1,1,-1,0,-2,-1,1,0,1,0,-1,1,-1,0,0], [1,0,-1,0,0,2,1,0,2,1,0,0,0,0,-1,1,0,1,-1,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,-1,-1,-1,0,0,1,0,0,0,0,0,0,-1,0,1,-1,0,0,0,1,-1,0,0], [1,0,0,1,-1,0,0,0,2,1,0,1,0,0,1,-1,1,1,0,0,-1,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1]]]], [ # Q-class [24][15] [[4], [0,4], [-2,2,4], [-2,2,2,4], [2,0,-1,-1,4], [0,2,1,1,0,4], [-1,1,2,1,-2,2,4], [-1,1,1,2,-2,2,2,4], [0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,-2,2,4], [0,0,0,0,0,0,0,0,-2,2,2,4], [0,0,0,0,0,0,0,0,2,0,-1,-1,4], [0,0,0,0,0,0,0,0,0,2,1,1,0,4], [0,0,0,0,0,0,0,0,-1,1,2,1,-2,2,4], [0,0,0,0,0,0,0,0,-1,1,1,2,-2,2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,-1,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,1,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,2,1,-2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,2,-2,2,2,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,0,1,-1,1,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]], [[-1,0,-1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,1,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [24][16] [[8], [-1,8], [2,1,8], [0,-1,2,8], [2,0,1,-2,8], [2,-4,-1,4,0,8], [0,0,2,1,-1,1,8], [1,1,1,1,-1,-1,-3,8], [0,-3,-1,4,-1,4,2,-1,8], [0,-2,1,2,2,2,0,0,2,8], [1,-1,3,-1,-1,-1,2,0,-2,-2,8], [-1,1,2,4,-2,0,0,3,0,0,2,8], [1,1,4,3,0,1,4,0,1,1,2,0,8], [-1,0,1,1,1,1,2,-2,0,1,2,1,2,8], [-2,2,0,1,-2,-1,-1,3,-1,1,-1,1,-1,-1,8], [3,-1,2,-1,3,-1,0,0,-2,0,2,0,1,-1,-4,8], [0,1,-1,-4,-1,-4,0,1,0,-2,0,-4,-1,-4,1,0,8], [1,2,0,-3,1,-3,0,1,-2,2,0,-3,1,0,3,-2,4,8], [-1,1,-1,-3,2,-3,-4,2,-2,2,-4,-3,-2,-4,2,0,4,4,8], [3,0,2,-2,2,-2,0,2,-4,0,4,1,1,2,0,2,0,4,0,8], [2,-2,-3,-1,3,2,-3,-1,1,0,-2,-2,-3,-4,-1,2,1,-1,2,-2,8], [-1,-3,1,0,0,2,3,-4,1,3,1,-1,2,3,-4,0,-3,-1,-2,0,-3,8], [1,-3,3,3,2,3,4,-3,2,2,2,2,3,2,-4,4,-4,-4,-4,0,0,4,8], [-3,1,1,-2,1,-2,2,-4,-3,-2,3,0,1,2,-3,1,-1,-1,-2,1,-1,3,2,8]], [[[-2,-1,1,-1,1,1,-1,-2,-2,2,-1,1,1,-1,-2,-1,2,-1,-3,1,-1,-2,-1,-2], [1,1,-1,0,0,0,0,0,0,0,0,1,1,1,1,0,2,-2,1,1,1,2,0,0], [0,0,0,-1,-1,0,0,0,1,1,0,-1,0,0,0,0,-1,-1,1,1,-1,-2,1,1], [0,-1,0,0,0,0,1,0,1,0,1,-1,-1,-1,-1,1,-3,1,1,-1,-2,-2,-1,1], [-2,-1,1,-2,0,1,-1,-1,0,0,-1,0,0,-2,-2,0,-2,3,-2,0,-2,-3,1,-1], [-1,-1,1,0,0,0,0,0,0,0,0,-1,-1,-1,-2,0,-2,2,-1,-1,-1,-2,0,0], [0,0,0,0,-1,-1,1,0,0,1,0,-1,1,1,0,-1,0,-3,1,2,2,0,-1,0], [2,0,-1,0,0,0,-1,0,1,-1,0,1,0,1,2,1,1,0,1,-1,-1,1,1,1], [-1,-2,1,0,1,1,0,-1,-1,0,-1,1,0,-1,-1,1,0,2,-2,-1,-1,-1,-2,0], [0,-1,0,-1,0,0,0,1,1,-1,0,0,-1,0,0,1,-2,3,0,-2,-1,-1,1,1], [0,0,0,0,0,-1,0,0,0,1,0,-1,1,0,0,-1,0,-2,0,1,0,-1,0,0], [2,0,-1,0,-1,-1,1,1,2,0,2,-2,-1,0,0,0,-3,0,3,-1,-2,-2,1,2], [-2,-1,1,-1,0,0,0,-1,0,1,-1,0,1,-1,-1,1,-1,0,-2,1,0,-1,-2,-1], [0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0], [3,1,-2,1,0,-1,0,1,1,-1,0,1,0,2,3,0,2,-2,2,0,1,3,1,2], [-3,-1,1,-1,0,1,0,-1,-1,1,0,-1,0,-2,-3,0,-2,2,-2,0,-2,-4,0,-2], [0,0,0,0,1,1,-1,-1,-2,0,-2,3,2,1,2,0,5,-2,-2,1,2,3,-1,-1], [0,0,0,-1,1,0,-1,-1,-1,0,-2,3,2,1,2,0,4,-2,-2,1,2,3,-1,-1], [0,0,0,-1,0,1,-1,0,0,-1,-1,2,0,0,1,1,1,2,-1,-1,0,1,1,0], [0,0,0,-1,0,-1,0,-1,0,1,0,0,1,0,0,-1,0,-2,0,1,0,-1,0,-1], [-2,-1,1,-1,1,2,-1,-1,-1,0,-1,1,0,-2,-2,0,0,3,-3,-1,-2,-2,0,-1], [-1,0,1,0,-1,-1,1,1,1,0,1,-2,-1,0,-1,0,-3,1,1,0,1,-1,0,0], [-2,-1,1,-1,-1,0,1,0,1,1,1,-3,-1,-2,-3,0,-5,2,0,0,-2,-5,0,0], [0,1,0,0,-1,-1,1,1,1,0,1,-2,0,0,0,-1,-2,-1,2,1,1,0,1,0]], [[-4,-2,2,-2,1,2,-1,-3,-2,1,-2,2,1,-3,-3,1,0,3,-5,0,-2,-3,-2,-3], [0,0,0,1,0,0,1,1,-1,0,1,-1,-1,0,-1,-1,-1,1,1,-1,0,-1,1,0], [-1,0,0,0,0,0,0,0,0,0,1,-1,-1,-1,-2,0,-2,2,0,-1,-1,-2,1,-1], [0,0,0,0,0,-1,1,0,1,0,0,0,0,0,0,0,-1,-1,1,1,1,0,-1,0], [0,0,0,0,1,1,-1,-1,-2,1,-1,2,1,0,0,0,3,-1,-2,0,0,1,-1,-1], [0,0,0,-1,0,0,0,-1,1,0,-1,1,1,0,1,1,0,-1,0,1,0,0,-1,0], [-1,0,0,0,0,0,1,0,1,1,1,-2,-1,-2,-2,0,-3,1,0,0,-2,-3,0,0], [1,0,0,0,-1,-1,0,0,0,0,0,0,0,1,0,-1,0,0,1,0,1,0,1,0], [0,0,0,-1,0,0,0,0,2,0,0,0,0,-1,0,1,-2,1,0,0,-1,-1,-1,1], [2,0,-1,0,0,-1,0,0,1,0,1,0,0,0,1,0,-1,-1,2,-1,-1,0,0,1], [-2,-1,1,0,0,0,0,0,0,0,0,-1,-1,-1,-2,1,-2,3,-2,-1,-1,-2,0,-1], [-1,0,1,1,0,-1,1,0,0,0,0,-1,-1,0,-1,0,-1,0,0,1,1,0,-1,-1], [-1,0,0,0,0,-1,1,0,0,1,1,-1,0,-1,-2,-1,-2,0,0,0,0,-2,0,-1], [0,1,0,1,-1,-1,1,1,1,0,1,-2,-1,0,0,0,-2,-1,1,1,1,0,0,0], [2,0,-1,1,0,-1,0,1,0,-1,0,0,0,1,2,0,1,0,1,-1,1,2,1,1], [-2,-1,1,-1,1,1,-1,-2,-2,2,-1,1,1,-1,-2,-1,2,-1,-3,1,-1,-2,-1,-2], [0,-1,0,-1,0,1,-1,0,0,0,0,0,0,-1,-1,0,-1,3,-1,-2,-2,-2,1,1], [0,-1,0,0,0,0,0,0,-1,0,0,0,0,-1,-1,0,-1,2,-1,-2,-1,-1,0,0], [2,0,-1,0,0,0,-1,0,-1,0,0,1,1,1,1,-1,2,-1,1,-1,0,1,1,1], [-2,-1,1,0,0,0,0,-1,-2,1,-1,0,0,-1,-2,0,0,1,-3,0,0,-1,-1,-2], [-1,-1,1,-1,2,2,-2,-2,-2,0,-3,4,2,0,1,1,5,0,-4,0,0,2,-2,-1], [1,1,-1,0,-1,-1,1,1,2,0,2,-2,-1,0,0,0,-3,-1,3,0,-1,-1,1,1], [-1,0,0,0,1,0,0,-1,0,1,0,0,0,-1,-1,0,0,-1,-1,1,-1,-1,-1,-1], [0,1,0,1,0,0,1,1,0,0,1,-1,-1,1,0,0,0,-1,1,0,1,1,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,-1,0,1,0,1,0,1,-1,-1,0,-1,0,-2,0,2,0,0,-1,0,0], [2,1,-1,1,0,0,0,1,0,-1,0,0,0,2,2,0,2,-2,2,0,1,2,1,1], [-2,-1,1,0,1,0,0,-1,-2,1,-1,0,1,-1,-2,-1,1,-1,-2,1,0,-1,-1,-2], [3,1,-2,1,-1,-1,1,1,1,0,2,-1,0,1,1,-1,-1,-2,4,0,0,0,1,2], [-2,-1,1,0,1,0,0,-1,-2,1,-1,0,1,-1,-2,-1,1,0,-3,1,0,-1,-1,-2], [-2,0,1,-1,1,2,-1,-2,-2,1,-2,2,2,0,0,0,4,-2,-3,2,1,1,-2,-2], [1,0,0,0,0,0,0,1,1,-1,0,0,-1,0,0,0,-1,1,1,-1,-1,0,1,1], [-3,-2,1,-1,2,1,-1,-2,-3,1,-2,2,2,-2,-2,0,2,1,-5,0,-1,-1,-2,-3], [2,0,-1,0,-1,-1,0,1,0,0,0,0,1,2,1,-1,1,-2,2,0,1,1,1,1], [2,1,-1,1,1,0,0,1,0,-1,0,1,0,2,3,0,3,-2,1,0,2,4,0,1], [0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,1,-1,0], [0,1,0,0,0,0,0,0,-1,0,-1,0,1,1,1,-1,2,-3,0,2,2,2,0,-1], [0,0,0,0,0,0,1,0,0,0,1,-1,0,0,0,0,-1,-1,1,0,0,0,-1,0], [0,0,0,-1,-1,0,0,1,2,-1,1,-1,-1,0,-1,0,-3,2,2,-1,-1,-2,2,1], [3,1,-1,1,0,-1,0,0,0,0,0,1,1,2,3,-1,3,-4,2,1,2,3,0,1], [0,0,0,-1,0,1,-1,0,0,-1,-1,2,0,0,1,1,1,2,-1,-1,0,1,1,0], [2,1,-1,-1,-2,0,0,2,2,-1,1,-1,-1,1,1,0,-2,1,3,-1,0,0,3,2], [2,1,-1,0,-2,-1,0,2,2,-1,1,-1,-1,1,1,0,-2,1,3,-1,0,0,3,2], [3,1,-1,0,-1,0,0,2,2,-1,1,-1,-1,1,2,0,-1,0,3,-1,0,1,2,3], [1,0,-1,1,0,-1,0,0,0,0,1,0,0,0,0,-1,0,0,1,0,0,0,1,0], [0,0,0,0,0,0,0,0,-1,1,-1,0,1,1,1,0,2,-2,-1,1,1,1,-1,0], [0,0,0,1,1,0,0,-1,-2,1,-1,1,2,1,1,-1,4,-4,-1,2,2,2,-2,-1], [1,1,-1,1,0,0,0,0,0,0,0,0,0,1,2,0,2,-2,1,1,1,2,0,1]]]], [ # Q-class [24][17] [[8], [2,8], [2,3,8], [-2,-2,0,8], [-2,0,0,-2,8], [-3,-1,-3,0,2,8], [-3,-1,-2,0,2,2,8], [-1,-4,-2,0,-1,-1,2,8], [1,0,-1,-2,0,2,-1,-2,8], [-1,0,2,2,-2,-4,0,2,-4,8], [0,-2,-2,0,2,2,0,0,0,-4,8], [0,2,1,-1,-2,-3,-1,-1,1,3,-4,8], [0,-1,1,2,-1,0,-2,1,1,0,3,-2,8], [2,4,4,-3,2,-1,0,-2,1,0,0,1,0,8], [-3,-2,-4,0,2,2,1,1,0,-1,1,-2,-4,-2,8], [0,0,-3,0,-1,-2,0,3,-4,2,1,2,0,-2,0,8], [2,2,4,2,-1,-2,-4,-2,0,3,-2,3,3,1,-4,0,8], [2,4,3,-4,2,-2,-2,-2,-2,1,-3,2,-4,2,0,1,1,8], [4,-2,1,-2,1,0,-3,0,2,-2,2,-2,3,2,-3,-2,1,0,8], [4,2,0,-4,-1,-2,-2,0,3,0,-3,3,-2,2,-1,0,0,3,3,8], [-1,3,0,-4,4,4,1,-3,4,-4,0,0,-2,3,2,-3,-1,2,0,2,8], [0,-2,-4,0,-2,4,2,2,2,-4,2,-3,2,-3,0,0,-2,-4,0,-2,0,8], [2,4,3,-1,-1,-1,2,0,-2,2,-4,0,-3,3,-1,-1,0,3,-2,1,0,-1,8], [-2,2,1,0,2,-2,3,2,-4,4,-4,2,-3,1,1,2,1,3,-4,-1,0,-2,4,8]], [[[-1,0,-1,1,1,-1,0,1,-1,0,0,1,0,0,0,-1,1,1,0,0,1,1,1,-2], [0,-1,-1,1,1,-1,0,0,-1,0,1,2,1,0,0,-1,0,1,0,0,1,1,2,-1], [0,0,-2,1,0,-1,0,1,0,1,1,1,0,0,-1,-1,0,1,0,-1,2,0,1,-1], [1,0,-1,0,-1,1,0,1,0,-1,-1,-1,0,1,-1,0,0,0,-1,-1,0,-2,-1,0], [0,0,1,0,1,0,-1,-1,1,1,1,0,0,-1,0,1,-1,-1,0,1,0,1,1,1], [1,-1,0,0,0,0,-1,-1,0,0,0,0,1,0,0,0,-1,0,-1,0,0,0,0,1], [0,0,2,1,1,0,-1,-1,1,2,1,0,0,0,0,1,-2,0,0,1,0,2,0,1], [0,2,2,0,0,1,0,0,1,1,0,0,-1,-1,1,1,-1,-1,2,0,-1,0,-1,1], [0,-1,-1,0,0,-1,0,0,0,0,-1,0,1,0,0,0,0,1,0,-1,1,0,1,-1], [-1,1,0,1,0,-1,0,1,0,1,1,0,-2,0,-1,0,0,0,1,0,1,1,0,-1], [1,0,0,-1,-1,1,1,0,0,-2,-1,-1,1,0,1,0,1,0,-1,0,-1,-2,-1,1], [-1,0,0,0,0,-1,0,0,-1,0,0,1,0,0,0,0,0,0,1,0,1,1,1,-1], [2,0,-1,0,-1,1,1,1,0,-1,-1,0,1,0,0,-1,0,1,-1,-1,0,-2,-1,0], [-1,0,0,1,0,-1,0,0,1,1,2,1,0,-1,0,0,0,1,1,0,1,1,2,0], [-1,1,2,-1,0,0,0,-1,1,0,0,-1,-1,-1,1,2,0,-2,2,0,-1,0,0,1], [0,1,1,-1,0,1,1,0,-1,-2,-1,0,0,0,1,0,1,-1,0,1,-2,-1,-1,0], [0,0,-2,1,0,-1,0,1,-1,0,0,1,0,0,-1,-1,0,1,0,-1,2,0,1,-2], [-1,0,-1,0,1,-1,0,0,-1,0,1,1,0,0,0,-1,1,0,0,1,0,1,1,-1], [0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,-1,1,1,-1,0,0,0,0,-1], [-1,0,-1,0,1,-1,0,1,-1,0,0,1,0,0,0,-1,1,1,0,0,0,1,1,-2], [0,-1,0,0,1,-1,-1,-1,0,1,1,1,1,-1,0,0,-1,0,0,0,1,1,2,0], [1,0,1,0,0,1,0,-1,0,0,-1,0,1,0,1,0,-1,0,0,0,-1,0,-1,1], [-1,0,0,2,1,-1,-1,0,1,2,2,1,-1,0,-1,0,-1,1,1,0,1,2,1,0], [-1,1,2,1,1,0,-1,-1,1,2,2,1,-1,-1,0,1,-2,-1,2,1,0,2,1,1]], [[0,0,1,0,0,0,0,-1,1,1,1,0,0,-1,0,1,-1,-1,1,0,1,0,1,1], [-1,-1,0,2,1,-1,-1,0,0,2,2,1,0,0,-1,0,-1,1,0,1,2,2,2,-1], [0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,1,0], [1,0,-2,0,0,0,0,1,-1,-1,-1,-1,0,1,-1,-1,1,1,-2,0,0,-1,-1,-1], [0,-1,-1,0,-1,0,0,0,0,-1,0,0,1,0,-1,-1,0,1,-1,0,0,-1,0,1], [-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,-1], [1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,-1,-1,1,0,0,-1,0,-1,1], [1,1,1,-1,0,1,1,0,0,-1,-1,0,0,0,1,0,0,-1,0,0,-2,-1,-2,1], [-1,0,2,0,0,0,-1,-1,2,1,0,-1,-1,0,0,2,-1,-1,1,0,0,1,0,1], [1,0,0,0,1,1,0,0,-1,0,0,1,1,0,1,-1,0,0,-1,1,-1,0,0,0], [0,0,0,-1,-2,0,1,0,0,-1,0,-1,0,0,0,0,1,0,0,0,0,-1,-1,1], [0,0,-1,0,1,0,0,1,-1,0,-1,0,0,1,0,-1,1,0,-1,0,0,0,0,-2], [0,1,1,-1,-1,1,0,0,1,0,0,-1,-1,0,0,1,0,-1,0,0,-1,-1,-1,1], [0,-2,0,0,0,0,-1,-1,0,1,1,0,1,0,-1,0,-1,0,-1,1,1,0,1,1], [0,-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0], [0,1,0,0,0,0,1,1,-1,0,0,0,-1,0,0,-1,1,0,0,0,0,0,-1,-1], [0,0,-2,0,0,0,0,1,0,0,0,-1,0,1,-1,-1,1,1,-2,0,0,-1,0,-1], [-1,0,0,1,1,-1,0,0,0,1,1,1,0,-1,0,0,0,0,1,0,1,1,2,-1], [0,0,1,-2,-1,1,0,-1,1,-1,0,-1,0,-1,0,1,0,-2,0,0,-1,-2,0,2], [-1,0,2,0,1,0,-1,-1,1,1,1,0,-1,-1,0,1,-1,-2,1,1,0,1,1,1], [-1,-1,0,1,0,-1,-1,0,1,1,1,0,0,0,-1,0,-1,1,0,0,1,1,1,0], [0,1,1,0,0,0,0,0,1,1,0,0,-1,0,0,1,-1,0,1,-1,0,1,-1,0], [0,-1,0,1,1,0,0,-1,0,1,1,1,1,0,0,0,-1,1,0,1,0,1,1,0], [1,-1,-2,1,1,0,0,1,-1,0,0,1,1,1,-1,-2,0,2,-2,0,0,0,0,-1]], [[0,-1,-1,0,0,0,1,0,-1,-1,0,0,1,1,0,-1,1,2,-2,1,-1,0,0,-1], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,-1,0,0,0,0,0,0,0,-1,0,-1,0,-1,0,0,0,0,0], [0,0,2,0,0,0,0,-1,0,0,-1,0,0,0,1,1,-1,-1,1,0,0,1,-1,1], [0,0,-2,1,1,-1,-1,1,-1,1,0,1,0,0,-1,-1,0,1,0,-1,2,1,1,-2], [0,0,0,1,0,-1,-1,0,1,2,1,0,-1,-1,-1,0,-1,0,1,-1,2,1,1,0], [0,0,-1,0,0,-1,0,1,0,1,0,-1,-1,0,-1,0,1,0,0,-1,2,0,0,-1], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,-2,0,0,0,0,1,-1,-1,0,0,0,1,-1,-2,1,1,-2,0,0,-1,0,-1], [0,1,2,-1,0,1,0,-1,0,0,0,0,0,-1,1,1,-1,-2,1,1,-1,0,-1,2], [1,-1,-1,0,0,0,0,0,0,0,-1,0,1,1,0,0,0,1,-1,-1,0,0,0,-1], [0,1,1,0,0,1,0,0,0,0,1,0,-1,0,0,0,0,-1,0,1,-1,0,-1,1], [2,-1,-1,0,0,1,0,0,0,-1,-1,0,2,1,0,-1,-1,1,-2,0,-1,-1,-1,1], [1,0,0,0,1,1,-1,0,0,1,0,0,0,0,-1,0,-1,0,-1,0,0,0,0,0], [-1,1,1,0,0,-1,0,0,0,1,0,1,-1,-1,1,1,0,-1,3,-1,1,1,1,-1], [0,1,1,0,-1,1,1,0,1,0,0,0,0,0,1,1,0,0,1,0,-1,0,-1,1], [0,0,1,1,1,0,-1,-1,0,1,1,1,0,0,0,0,-2,0,0,1,0,2,0,1], [-1,1,0,0,0,0,0,0,0,0,1,1,0,-1,0,0,0,0,1,0,0,0,1,0], [1,-2,-2,0,0,1,0,0,-1,-1,0,0,2,1,-1,-2,0,2,-3,1,-1,-1,0,0], [0,0,-2,-1,-1,1,1,1,-1,-2,0,-1,0,1,-1,-2,2,1,-2,1,-2,-2,-1,0], [0,0,-2,1,0,-1,-1,1,0,1,1,0,-1,0,-2,-1,0,1,0,-1,2,0,1,-1], [0,-1,0,1,0,-1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,1,1,1,0], [-1,1,1,0,1,-1,0,0,0,1,0,0,-1,-1,0,1,0,-1,1,0,1,1,1,-1], [-1,1,1,1,1,-1,-1,0,0,2,1,1,-1,-1,0,1,-1,-1,2,0,2,2,1,0]]]], [ # Q-class [24][18] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]]]], [ # Q-class [24][19] [[2], [1,2], [1,1,2], [1,1,1,2], [0,0,0,0,2], [0,0,0,0,1,2], [0,0,0,0,1,1,2], [0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2]], [[[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [24][20] [[3], [1,3], [0,1,3], [-1,1,1,3], [1,0,1,-1,3], [-1,-1,1,0,1,3], [0,0,0,0,0,0,3], [0,0,0,0,0,0,1,3], [0,0,0,0,0,0,0,1,3], [0,0,0,0,0,0,-1,1,1,3], [0,0,0,0,0,0,1,0,1,-1,3], [0,0,0,0,0,0,-1,-1,1,0,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,1,3]], [[[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [24][21] [[4], [-2,4], [0,0,4], [1,-2,2,4], [1,-2,0,2,4], [-2,2,-1,-2,0,4], [-2,2,2,0,-1,0,4], [-1,-1,-2,-1,-1,0,-1,4], [0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,-2,4], [0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,1,-2,2,4], [0,0,0,0,0,0,0,0,1,-2,0,2,4], [0,0,0,0,0,0,0,0,-2,2,-1,-2,0,4], [0,0,0,0,0,0,0,0,-2,2,2,0,-1,0,4], [0,0,0,0,0,0,0,0,-1,-1,-2,-1,-1,0,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,0,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-1,-2,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,0,-1,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-2,-1,-1,0,-1,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,1,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,-1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,1,-1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,-1,1,0,-1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [24][22] [[8], [-1,8], [2,-1,8], [0,4,-1,8], [4,-1,2,-1,8], [-1,-1,2,0,-2,8], [-1,0,0,0,-1,2,8], [-1,4,-2,2,-1,0,-2,8], [1,3,-2,2,0,-2,2,1,8], [-1,-2,-1,-3,-2,2,-2,2,-3,8], [3,0,-2,3,-1,-1,-2,1,3,0,8], [2,-1,0,1,0,-1,-4,-1,-1,1,4,8], [2,0,4,1,3,-2,-1,-2,-1,-2,0,1,8], [-4,-2,-3,-1,-4,1,1,-1,0,3,1,0,-2,8], [3,-2,-1,-2,0,-1,-4,2,-1,4,2,2,-2,1,8], [3,0,0,0,3,-3,-1,-3,0,-3,1,2,1,-3,-1,8], [0,-4,-1,-4,1,0,-1,-2,-3,4,-1,0,-2,2,2,1,8], [0,0,-2,1,-1,0,-4,0,-2,2,2,4,1,2,2,1,1,8], [-2,-4,3,-3,-2,0,-1,-3,-3,2,-2,2,2,2,1,-2,1,1,8], [3,0,4,0,2,3,2,-1,0,0,-2,-2,2,-1,0,-2,-1,0,0,8], [0,-2,-2,-2,-1,4,3,-1,0,2,-1,-3,-4,3,1,0,3,1,-2,2,8], [4,-2,2,-2,4,-4,-4,-2,-2,-1,1,4,4,-4,2,4,1,2,2,-1,-4,8], [1,2,-4,2,1,-2,-4,4,2,0,4,3,0,-1,2,1,-2,4,-3,-3,-1,2,8], [1,2,3,0,2,-1,4,-2,3,-4,-2,-4,3,-3,-4,1,-3,-4,-1,3,-1,0,-3,8]], [[[3,0,2,0,-2,1,2,-2,-3,-2,-2,-1,-2,2,2,3,5,-1,2,2,-7,-7,10,3], [1,1,0,1,0,0,-1,1,-1,0,0,0,-1,2,-2,-1,0,-1,1,0,2,3,0,1], [0,0,0,0,-1,0,1,0,-1,-1,0,0,0,0,1,1,2,-1,1,1,-1,-2,3,1], [1,-1,0,-1,0,0,0,0,-1,-1,0,0,0,0,0,0,1,1,0,0,-2,-3,1,1], [3,1,2,1,-2,1,2,-2,-3,-1,-2,-1,-3,4,1,3,5,-3,3,3,-6,-4,11,3], [-1,0,-1,0,1,0,-1,1,1,0,1,0,1,-1,0,-1,-2,0,0,-1,3,2,-4,-1], [0,1,-1,1,0,0,-2,1,1,0,0,0,0,1,-2,-1,-1,-2,1,0,4,5,-2,-1], [1,0,0,2,0,0,-1,1,0,1,-1,0,-1,2,-2,-1,-1,-1,0,0,2,4,-1,0], [1,0,0,1,-1,1,0,0,-1,-1,-1,0,-1,2,0,1,2,-1,1,1,-2,0,3,2], [-2,0,-1,0,1,-1,-1,1,1,1,1,1,2,-2,0,-1,-3,0,-1,-1,4,2,-5,-2], [1,-2,1,-1,-1,0,1,-1,-1,-1,-1,0,0,-1,2,1,2,2,-1,0,-5,-6,3,2], [1,-1,1,-1,0,-1,1,-1,-1,0,0,0,0,-1,1,0,0,2,-1,-1,-2,-4,1,1], [2,0,1,0,-1,0,1,-1,-1,0,-1,-1,-1,1,0,1,2,0,1,0,-3,-3,4,1], [-3,-1,-1,-1,1,-1,-1,1,3,1,1,1,3,-3,0,-2,-4,2,-3,-2,4,3,-8,-3], [0,-1,1,0,0,0,1,0,0,0,-1,0,0,0,1,1,0,1,-1,0,-2,-2,1,0], [0,1,1,-1,0,-1,1,-2,-2,-1,1,0,-1,-1,1,0,2,0,1,1,-2,-4,4,1], [-2,0,0,-1,0,0,1,-1,0,0,1,0,1,-2,2,1,0,0,0,1,-1,-2,1,-1], [-1,0,0,-1,1,-1,0,-1,0,1,1,0,1,-2,0,-1,-2,1,-1,-1,1,-1,-2,-1], [-2,-1,-1,-1,1,-1,0,1,2,1,1,1,2,-3,0,-1,-3,2,-2,-2,3,1,-6,-2], [1,1,0,1,-1,1,0,0,-1,-1,-1,0,0,2,0,1,2,-3,2,1,0,0,4,1], [-2,1,-1,0,1,0,-1,0,1,0,1,0,1,-1,0,-1,-2,-1,0,0,3,3,-3,-2], [2,0,2,0,-1,0,2,-2,-2,0,-1,-1,-2,1,1,2,3,0,1,1,-5,-5,7,2], [2,0,1,1,0,0,0,-1,-1,1,-1,-1,-2,2,-1,0,0,0,0,0,-2,0,2,1], [1,1,0,1,-1,1,0,0,-1,-1,-1,0,-1,2,0,1,3,-2,2,1,-1,0,4,2]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,1,0,1,0], [0,0,1,0,0,-1,-1,-1,0,1,0,0,-1,0,-1,-1,-1,0,-1,0,1,1,0,0], [-2,1,-1,0,0,0,0,0,0,0,1,1,1,-1,1,0,0,-2,1,1,2,1,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,-1,0,1,-1,-1,0,0,-1,-1,0,1,2,2,0,1,2,-3,-3,4,1], [-1,-1,0,-1,0,1,1,-1,1,0,0,-1,1,-2,2,1,0,2,-1,0,-3,-3,0,-1], [2,1,1,2,0,0,0,0,0,1,-1,-1,-2,3,-2,0,0,-2,2,0,1,3,2,0], [1,0,0,1,-1,1,0,0,0,0,-1,-1,0,2,0,1,1,-2,1,1,-1,1,3,0], [1,1,1,1,0,-1,0,0,0,1,0,-1,-1,1,-2,-1,-1,0,0,-1,2,3,-1,-1], [0,1,-1,1,-1,0,-1,1,0,0,0,1,1,1,-1,0,0,-3,1,1,3,3,0,0], [1,1,0,0,-1,0,0,0,-2,-1,0,1,0,1,0,0,2,-2,1,1,0,-1,3,2], [-1,0,0,-1,0,0,0,-1,0,0,0,1,1,-1,1,0,0,0,-1,0,0,-1,0,0], [-1,0,-1,1,0,0,-1,1,1,1,0,0,1,0,-1,-1,-2,0,-1,-1,3,4,-4,-1], [3,1,0,2,0,0,-1,1,0,1,-1,-1,-2,3,-3,-1,-1,-1,1,-1,2,5,-1,0], [-1,-1,-1,-2,1,-1,0,1,0,-1,1,2,2,-3,1,-1,-1,2,-1,-1,1,-3,-3,0], [-1,-1,0,-1,1,-1,0,1,1,0,1,0,1,-2,0,-1,-2,3,-2,-2,1,0,-5,-1], [0,0,0,0,-1,0,1,0,-2,-1,0,1,0,0,1,1,2,-1,1,1,-1,-2,3,2], [1,0,1,0,-1,0,0,-1,-1,0,-1,0,-1,1,0,0,1,0,-1,0,-2,-1,2,1], [0,0,1,1,0,0,0,-1,0,1,0,-1,-1,0,0,0,0,0,0,0,0,1,1,0], [0,-1,0,0,0,0,1,0,0,0,0,-1,0,-1,1,1,0,2,0,0,-2,-2,0,0], [1,0,0,-1,0,0,0,0,-1,-1,0,1,0,0,0,0,1,0,0,0,-1,-2,1,1], [2,1,0,1,-1,1,1,0,-2,-1,-1,0,-1,3,0,2,3,-3,3,2,-2,-1,6,2], [-1,-1,0,-1,0,0,0,-1,1,0,0,0,1,-2,1,0,0,1,-1,0,-1,-2,0,-1]]]], [ # Q-class [24][23] [[4], [-2,4], [0,-1,4], [0,1,-2,4], [-2,0,-1,0,4], [0,0,0,-2,-1,4], [0,-2,1,0,1,-2,4], [2,0,1,-1,-1,0,0,4], [-1,1,0,0,2,0,0,1,4], [1,-1,2,0,0,-1,1,2,2,4], [-1,0,1,1,1,-2,2,0,1,2,4], [0,0,0,0,1,0,1,2,2,2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,-2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,4], [0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,0,1,-2,4], [0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,-1,-1,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,2,0,0,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,2,0,0,-1,1,2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,1,1,-2,2,0,1,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,2,2,2,2,4]], [[[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,-1,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,0,1,1,1,0,-1,2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,1,0,1,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,-1,-1,-1,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,1,1,1,1,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,1,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,1,1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,1,1,0,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,1,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,1,0,0,0,-1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,-2,0,0,-1,-1,-1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,2,0,0,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,1,0,1,0,2,0,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,-1,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,0,-1,-1,-1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,0,-1,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,1,1,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,0,-1,0,0,1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [24][24] [[4], [-1,4], [2,-1,4], [-1,2,-1,4], [-2,2,-1,1,4], [-1,1,1,0,1,4], [1,0,1,-1,0,1,4], [0,-1,-1,1,-1,-1,1,4], [0,0,1,2,0,1,-1,1,4], [-1,1,1,2,1,1,1,1,2,4], [-1,-1,0,-1,0,1,1,1,1,1,4], [1,0,1,1,-1,1,1,0,1,2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,-1,2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,0,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,-1,0,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,-1,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,1,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,2,1,1,1,1,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,0,1,1,1,1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,-1,1,1,0,1,2,1,4]], [[[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,-1,0,0,-1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [-2,1,1,-1,0,-1,1,1,1,-2,-1,2,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,-1,2,-1,1,0,-1,-1,1,1,-2,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,-1,0,1,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [-2,0,1,0,0,-1,1,0,1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,-1,1,-1,1,0,2,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,1,1,-1,0,-1,1,1,2,-2,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,-1,0,0,1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,1,-1,0,0,0,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,0,0,0,0,0,0,-3,1,2,-1,1,-2,1,1,2,-3,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,-1,0,-2,1,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,-2,0,1,0,0,-1,1,0,1,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,-1,0,-1,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,-1,1,-1,0,-2,1,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,1,0,0,-1,0,0,0] , [0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,-1,0,-1,1,0,1,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,1,0,1,-1,0,-1,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,-1,1,0,-1,-1,2,0,-2], [0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,2,-1,1,0,-2,-1,2,1,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,1,-1,0,0,0,-1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [24][25] [[6], [0,6], [1,0,6], [-2,-1,-1,6], [-3,0,0,1,6], [1,-1,0,0,-1,6], [-1,-2,1,0,2,-1,6], [-1,0,-2,1,0,2,-2,6], [0,1,-1,0,-2,0,-2,0,6], [-2,-1,0,0,1,-1,3,-2,-2,6], [1,-1,1,-1,1,-1,3,-3,-3,3,6], [0,2,-2,0,0,0,-2,1,3,-2,-2,6], [-2,-1,0,1,2,1,2,1,-3,2,1,-3,6], [1,-1,0,0,-1,-1,-1,0,0,-1,0,1,-2,6], [1,-1,-1,1,0,0,1,0,0,-1,0,1,-2,-1,6], [-1,-1,-2,0,1,-1,1,0,0,2,0,2,-1,0,3,6], [2,-1,2,0,-1,0,3,-2,-1,1,2,0,0,1,1,1,6], [0,1,1,0,0,3,-3,3,-1,-2,-2,-1,1,0,-2,-3,-3,6], [-2,0,-1,-1,1,0,0,2,2,0,-3,1,0,-1,-1,2,-1,0,6], [0,1,-1,0,1,2,-1,2,0,-2,-1,3,0,1,2,1,0,1,-1,6], [-2,0,-2,2,0,0,0,2,0,1,-1,0,3,0,-2,-1,0,0,0,0,6], [0,-3,1,3,0,1,1,1,0,-1,-1,1,0,2,1,1,3,-1,0,1,1,6], [0,2,-1,-1,0,1,-3,2,2,-3,-3,2,-2,-1,0,0,-2,2,3,0,0,-1,6], [0,0,-1,1,-2,-2,-1,-1,3,0,-1,0,0,0,-2,-1,0,-2,1,-3,3,0,1,6]], [[[0,0,0,0,0,0,1,0,-1,0,0,0,-1,0,0,0,0,1,0,1,0,0,0,2], [0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,-1,0,-2,0,0,0,0,1,-1], [1,-1,1,2,-1,0,0,0,0,-1,0,0,0,0,-2,1,0,-2,0,0,1,-2,1,-2], [0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,-1,-1], [0,0,0,0,0,0,-1,0,1,1,0,1,2,1,1,-1,0,-1,0,-2,0,0,1,-2], [0,0,1,0,0,1,1,0,-1,-1,0,0,-1,0,0,1,-1,0,0,0,1,-1,-1,1], [0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,1,0,0,-1,-1,0,0,1,-1], [-1,1,0,-1,1,1,0,1,-1,0,0,0,-1,0,1,0,0,1,0,0,-1,0,-2,3], [0,0,0,0,-1,0,0,0,0,1,0,0,1,0,0,-1,-1,-1,0,1,-1,1,1,0], [0,0,0,0,0,0,0,-1,0,-2,1,-1,-2,-1,-1,2,0,1,1,0,2,0,-1,-1], [0,0,0,0,0,0,0,-1,0,-2,1,0,-1,0,0,1,0,1,1,-1,2,0,-1,-1], [0,1,-1,-1,0,0,0,0,0,1,0,0,1,0,1,-1,-1,0,0,0,-1,2,0,1], [-1,0,0,-1,1,1,0,0,-1,-1,0,1,-1,0,1,1,1,2,0,-1,0,-1,-2,2], [0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,-1,1], [1,0,0,0,0,-1,0,0,1,2,-1,0,2,1,0,-1,-1,-1,-1,0,-1,1,2,-1], [1,0,0,0,0,-1,0,0,1,1,0,0,1,0,0,0,-1,0,0,0,0,1,1,-1], [0,0,0,0,0,0,1,0,0,-1,0,0,0,0,-1,2,0,1,-1,0,0,0,0,1], [0,0,1,1,0,1,0,0,-1,-1,0,0,-1,0,0,0,0,-1,1,0,1,-2,-1,0], [0,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,-1,0,-1,0,1,0], [0,1,0,-1,0,0,0,0,0,1,0,1,2,1,2,-1,-1,0,0,-1,-1,1,0,1], [-2,1,-1,-2,1,1,0,0,-2,-1,0,0,-2,-1,1,1,1,3,0,0,-1,1,-3,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,-1,1], [0,0,0,0,0,0,0,1,0,1,-1,0,1,0,0,-1,0,-1,-1,0,-1,0,1,0], [-1,0,-1,-1,0,0,0,0,-1,0,0,0,-1,-1,0,0,1,2,0,1,-1,1,-1,2]], [[0,0,0,0,0,0,1,0,-1,0,0,-1,-2,-1,-1,1,0,1,0,2,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,1,-1], [0,-1,0,1,0,0,0,0,0,0,0,0,-1,-1,-1,0,1,0,0,1,0,-1,0,0], [0,0,0,0,0,0,0,1,0,1,-1,1,2,1,1,-1,0,-1,-1,-1,-1,0,1,0], [0,0,0,0,0,0,0,0,1,-1,0,0,1,0,0,1,0,0,-1,-1,0,0,0,-1], [1,0,1,1,0,0,0,1,1,1,0,0,1,1,0,0,0,-1,0,0,0,-1,1,-1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,-1,1,0,0,0,0,0,0,-1,0], [1,0,1,1,-1,0,0,0,1,1,0,1,3,2,1,-1,-1,-2,0,-1,0,-1,2,-2], [0,0,0,0,0,-1,-1,0,1,2,0,0,2,1,1,-2,0,-1,0,0,-1,1,2,-1], [0,0,0,0,0,0,0,0,0,-1,0,0,-1,-1,-1,1,0,0,0,-1,1,0,-1,-1], [0,0,0,0,0,0,1,0,-1,-2,0,-1,-3,-2,-2,2,0,1,0,1,1,0,-2,1], [0,1,0,0,0,0,0,0,0,1,0,0,1,1,1,-1,-1,-1,0,0,-1,1,1,0], [1,0,0,0,0,0,-1,0,1,0,0,0,1,0,0,0,0,-1,0,-1,1,0,0,-2], [0,-1,0,1,-1,-1,0,0,0,0,0,0,0,0,-1,0,0,-1,0,1,0,-1,1,-1], [-1,1,0,-1,1,1,1,0,-1,-1,0,0,-1,0,1,1,0,2,0,0,0,0,-2,3], [-1,1,0,-1,1,1,0,0,-1,-1,0,0,-1,0,1,1,0,1,0,-1,0,0,-2,2], [0,0,0,0,0,0,0,0,-1,0,0,0,-1,-1,0,0,0,0,1,1,0,0,-1,1], [1,-1,1,2,-1,0,0,0,1,0,0,0,1,1,-1,0,0,-2,0,0,1,-2,2,-3], [0,0,0,0,0,0,-1,0,1,1,0,0,2,1,1,-1,0,-1,0,-1,-1,0,1,-1], [1,0,1,1,0,0,0,0,1,0,0,0,1,1,0,0,-1,-2,0,0,1,-1,1,-2], [1,0,0,0,-1,-1,-1,0,1,2,0,1,3,1,1,-2,-1,-2,0,-1,0,1,2,-3], [0,0,0,0,0,0,0,1,0,2,-1,1,2,1,1,-1,0,-1,-1,0,-2,0,1,1], [0,0,0,0,0,0,0,0,0,1,0,0,1,1,1,-1,0,0,0,0,-1,0,1,0], [0,0,-1,-1,0,-1,-1,0,0,2,0,0,1,0,1,-2,0,0,0,0,-1,2,1,0]]]], [ # Q-class [24][26] [[8], [1,8], [1,2,8], [4,2,2,8], [3,3,1,3,8], [4,2,2,4,3,8], [3,2,4,1,2,1,8], [4,2,2,2,0,2,1,8], [4,2,2,2,2,4,1,4,8], [3,4,2,1,1,1,4,1,1,8], [3,3,1,3,2,2,2,2,0,1,8], [3,3,1,2,2,3,2,2,3,1,4,8], [2,4,4,4,3,4,2,4,4,2,3,3,8], [4,2,2,4,2,2,1,4,2,1,3,0,4,8], [3,3,1,2,4,0,2,3,2,1,2,4,3,3,8], [3,1,3,2,2,0,1,3,2,2,1,2,3,3,4,8], [2,2,2,2,3,4,1,0,0,1,3,1,4,4,1,1,8], [3,1,3,3,4,3,1,0,2,2,1,1,3,2,2,4,3,8], [3,1,3,2,1,3,1,2,3,2,2,4,3,0,2,4,1,2,8], [2,4,1,2,2,1,1,2,1,2,3,0,2,4,3,1,2,-1,0,8], [3,1,3,0,2,2,1,3,3,2,2,1,3,2,1,2,2,4,2,-1,8], [3,1,3,3,1,2,1,2,0,2,4,2,3,3,1,2,3,2,4,1,4,8], [3,3,1,0,4,2,2,3,3,1,4,2,3,2,2,1,2,2,1,2,4,2,8], [4,2,3,2,3,2,3,2,2,1,3,3,1,2,3,1,1,1,1,4,1,1,3,8]], [[[1,0,2,-1,0,2,-2,-1,2,2,3,-3,-1,-1,3,1,0,-2,-2,-3,-2,1,0,0], [-1,0,0,0,0,1,-1,0,2,1,2,-2,-1,-1,2,1,1,-1,-1,-2,-1,1,0,1], [-2,1,0,-1,-1,4,-1,-1,5,2,5,-7,-1,-2,5,3,1,-3,-3,-6,-3,3,-1,3], [0,0,1,0,0,2,-1,-1,1,1,2,-2,-1,0,2,1,0,-2,-1,-2,0,0,0,0], [0,0,1,0,0,1,-1,0,1,1,2,-2,-1,-1,2,1,1,-1,-1,-2,-1,0,0,0], [0,0,1,0,0,1,-1,0,1,1,2,-2,-1,0,2,0,0,-1,0,-2,-1,0,0,0], [1,0,1,0,0,0,-1,0,1,1,1,-1,0,-1,1,0,1,-1,-1,-1,-1,0,0,0], [0,0,1,-1,0,2,-1,0,2,1,2,-2,-1,-1,2,1,0,-1,-2,-2,-2,2,0,0], [0,0,1,-1,0,1,-1,0,2,1,2,-2,-1,0,2,0,0,0,-1,-2,-2,1,0,0], [0,0,1,-1,0,2,-2,-1,2,2,3,-3,0,-1,3,1,0,-2,-2,-3,-2,1,0,1], [0,0,1,0,0,1,-1,-1,2,1,2,-2,-1,-1,2,1,1,-2,-1,-2,-1,1,0,0], [0,0,1,0,0,0,-1,0,2,1,2,-2,-1,-1,2,0,1,-1,-1,-2,-1,1,0,0], [1,0,2,-1,0,2,-2,-1,2,1,3,-3,0,-1,3,1,0,-2,-2,-3,-2,1,0,0], [0,0,1,0,0,2,-1,-1,2,1,2,-2,-1,-1,2,2,0,-2,-2,-2,-1,1,0,0], [0,0,1,0,0,1,-1,0,2,1,2,-2,-1,-2,2,1,1,-1,-2,-2,-1,1,0,0], [0,1,1,-2,-1,4,-2,-2,4,2,5,-6,0,-2,5,3,0,-3,-4,-6,-3,3,-1,2], [1,0,2,0,0,1,-2,-1,1,1,2,-2,0,-1,2,1,0,-2,-1,-2,-1,0,0,0], [0,1,1,-2,-1,4,-2,-2,4,2,6,-7,0,-2,5,3,0,-3,-3,-6,-3,2,-1,2], [0,1,1,-2,-1,4,-2,-2,4,2,5,-7,0,-2,6,2,0,-3,-3,-6,-3,3,-1,2], [-2,-1,0,1,1,0,0,1,1,1,0,1,-2,0,0,0,1,0,0,0,0,0,0,0], [0,1,1,-2,-1,4,-2,-2,4,2,5,-7,0,-2,5,3,0,-3,-3,-6,-4,3,0,2], [0,1,1,-2,0,4,-2,-2,4,2,5,-7,0,-2,5,3,0,-4,-3,-6,-3,3,-1,2], [0,0,1,-1,0,1,-1,0,2,1,2,-2,-1,-1,2,1,1,-1,-1,-2,-2,1,0,0], [-3,-1,0,1,0,1,0,1,3,2,2,-2,-3,-1,2,1,2,-1,-1,-2,-1,1,0,1]], [[0,-1,0,2,0,-3,1,1,-3,-1,-4,5,0,1,-3,-2,0,2,2,4,2,-2,2,-2], [0,-1,1,0,1,-1,0,1,0,0,0,2,-1,0,-1,-1,0,1,0,2,0,0,0,-2], [-2,0,-1,1,0,0,1,0,0,0,0,0,-1,1,0,0,0,0,1,0,1,0,0,0], [0,-1,0,1,0,-2,1,1,-3,-1,-3,4,0,1,-2,-2,0,2,2,4,2,-2,1,-2], [-1,-2,0,2,1,-3,1,2,-2,0,-3,5,-1,1,-3,-2,1,2,2,4,2,-2,1,-2], [0,-1,0,2,1,-4,2,2,-4,-2,-5,7,0,2,-5,-3,0,3,3,6,3,-3,1,-3], [-2,-1,0,1,0,0,0,0,0,1,0,1,-1,1,0,0,0,0,0,0,0,0,1,0], [2,0,0,1,0,-3,1,0,-3,-2,-3,4,1,1,-3,-2,-1,2,2,4,2,-2,1,-2], [0,-1,0,2,0,-3,1,1,-2,-1,-3,4,0,1,-3,-2,0,2,2,4,2,-2,1,-2], [0,0,1,-1,0,1,-1,-1,2,1,2,-2,0,-1,2,1,0,-1,-2,-2,-2,2,0,0], [-1,-1,0,2,1,-3,1,2,-2,-1,-3,5,-2,1,-3,-2,1,2,2,4,2,-2,1,-2], [-2,-1,0,2,0,-1,1,1,0,0,-1,2,-2,0,-1,-1,1,1,1,2,1,-1,1,-1], [0,-1,0,1,1,-3,1,1,-2,-1,-2,4,0,1,-3,-2,0,2,2,4,2,-2,0,-2], [2,-1,0,1,1,-4,1,1,-5,-2,-5,7,1,2,-5,-3,-1,3,3,6,3,-3,1,-3], [0,-1,0,1,0,-1,0,0,-1,0,-1,2,0,0,-1,-1,0,1,1,2,1,-1,1,-1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,1,1,0,0,0,0,0], [0,-1,0,1,2,-3,1,2,-3,-1,-3,5,0,1,-4,-2,0,2,2,4,2,-2,0,-2], [-2,0,-1,1,0,-1,1,1,0,0,-1,1,-1,0,-1,0,1,1,1,1,1,0,0,0], [-2,0,-1,1,0,-1,1,1,1,0,0,0,-1,0,0,-1,1,1,1,0,0,0,0,0], [3,-1,2,0,1,-2,-1,0,-3,-1,-2,4,1,1,-2,-2,-1,1,1,3,1,-2,1,-3], [-2,0,-2,2,0,-2,2,1,0,-1,-2,2,-1,0,-2,0,1,1,1,2,2,0,0,0], [-2,0,-2,1,0,-1,2,1,0,-1,-1,1,-1,0,-1,0,1,1,1,1,1,0,0,0], [0,-1,0,2,1,-4,1,2,-2,-1,-3,5,-1,1,-4,-2,1,2,2,4,2,-2,1,-2], [0,-1,1,2,0,-1,0,0,-2,0,-2,3,-1,1,-1,-1,0,0,1,2,2,-2,2,-2]]]], [ # Q-class [24][27] [[6], [0,6], [-3,3,6], [-3,3,3,6], [2,0,-1,-1,6], [0,2,1,1,0,6], [-1,1,2,1,-3,3,6], [-1,1,1,2,-3,3,3,6], [0,0,0,0,2,0,-1,-1,6], [0,0,0,0,0,2,1,1,0,6], [0,0,0,0,-1,1,2,1,-3,3,6], [0,0,0,0,-1,1,1,2,-3,3,3,6], [-2,0,1,1,2,0,-1,-1,2,0,-1,-1,6], [0,-2,-1,-1,0,2,1,1,0,2,1,1,0,6], [1,-1,-2,-1,-1,1,2,1,-1,1,2,1,-3,3,6], [1,-1,-1,-2,-1,1,1,2,-1,1,1,2,-3,3,3,6], [2,0,-1,-1,0,0,0,0,2,0,-1,-1,-2,0,1,1,6], [0,2,1,1,0,0,0,0,0,2,1,1,0,-2,-1,-1,0,6], [-1,1,2,1,0,0,0,0,-1,1,2,1,1,-1,-2,-1,-3,3,6], [-1,1,1,2,0,0,0,0,-1,1,1,2,1,-1,-1,-2,-3,3,3,6], [-2,0,1,1,-2,0,1,1,2,0,-1,-1,0,0,0,0,2,0,-1,-1,6], [0,-2,-1,-1,0,-2,-1,-1,0,2,1,1,0,0,0,0,0,2,1,1,0,6], [1,-1,-2,-1,1,-1,-2,-1,-1,1,2,1,0,0,0,0,-1,1,2,1,-3,3,6], [1,-1,-1,-2,1,-1,-1,-2,-1,1,1,2,0,0,0,0,-1,1,1,2,-3,3,3,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,-1,0,-1,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1], [0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,1,-1], [0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1], [0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,-1,0,1,0,1,0,1,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,1,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,-1,0,-1,0,1,0,-1,0,1,0,0,0,0], [0,0,0,0,1,0,1,0,-1,0,-1,0,0,0,0,0,0,0,0,0,1,0,1,0], [0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,-1,1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,-1,0,1,0,1,0,-1,0,0,0,0,0,0,0,0,0,-1,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [24][28] [[8], [1,8], [0,-1,8], [-1,-2,0,8], [-2,0,-1,-1,8], [1,2,2,1,-4,8], [1,-1,2,0,1,-2,8], [-2,2,-2,1,-1,2,-4,8], [0,1,-2,0,2,0,-1,1,8], [2,1,1,-1,-1,1,-1,2,2,8], [-2,1,1,-1,1,1,2,2,2,2,8], [-1,1,-1,2,2,-2,2,-1,2,-1,-1,8], [-4,0,0,2,-2,1,-2,1,0,0,0,0,8], [-4,-2,0,1,0,1,-2,4,2,2,2,0,2,8], [-1,1,2,0,-1,0,2,-2,0,0,0,2,2,-1,8], [-2,2,2,-2,0,1,0,0,0,2,2,0,4,0,1,8], [-1,-1,0,1,-1,-1,2,-2,-1,-4,0,1,0,-1,4,-1,8], [2,2,-4,-2,2,-1,-2,1,2,-1,-1,-1,-4,-1,0,-4,2,8], [1,-2,0,1,0,2,-2,0,1,-2,-2,-2,-2,1,-4,-2,-2,0,8], [0,-1,-1,1,0,-4,1,-2,-2,-2,-2,-2,0,-2,0,-2,2,1,-1,8], [0,-2,-1,1,1,-2,0,0,0,0,-4,1,-2,2,1,-4,-1,2,1,2,8], [0,1,2,-2,0,2,1,1,4,4,4,1,0,2,0,4,-2,-2,-1,-4,-2,8], [0,0,-1,0,4,0,-1,0,4,1,1,2,0,2,-2,0,-2,1,1,-4,-1,2,8], [2,2,0,-1,-4,4,-2,0,-1,2,-1,-1,2,-1,2,2,0,0,-2,-2,-1,1,-2,8]], [[[0,-1,1,-1,-1,0,1,1,-1,1,1,2,2,-1,0,0,0,2,2,1,0,0,1,0], [0,0,0,0,0,0,0,1,-1,0,0,0,0,0,1,0,0,0,1,1,0,1,1,0], [1,0,1,0,0,0,0,0,0,0,1,1,1,0,-1,1,0,1,0,0,1,-1,0,0] , [0,0,0,0,0,0,0,0,1,0,0,-1,-1,0,0,0,0,-1,-1,0,0,-1,0,0], [0,1,-1,1,0,-1,0,-1,0,-1,-1,-2,-1,1,0,0,0,-1,-1,-1,0,1,0,0], [0,0,1,-1,0,0,0,1,0,1,1,1,1,-1,-1,0,1,0,1,0,1,-1,0,0], [0,0,0,1,-1,-1,0,0,0,-1,0,0,-2,1,1,1,-1,0,0,1,-1,0,1,1], [0,0,0,-1,1,1,0,1,0,1,0,0,1,-1,-1,-1,2,-1,0,0,1,0,0,0], [-1,0,1,-1,0,0,1,1,-1,1,1,1,2,-2,-1,-1,1,1,2,1,1,1,1,1], [0,-1,1,-1,0,0,1,2,0,0,0,1,1,-1,0,0,0,1,1,1,0,0,1,1], [0,0,0,0,0,0,0,1,0,-1,0,0,-1,0,0,0,0,-1,0,1,0,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0], [0,0,0,0,0,0,-1,0,0,0,1,0,0,-1,0,0,0,0,0,0,1,0,0,0] , [0,1,0,0,1,0,0,0,1,0,-1,-1,0,0,-1,-1,1,-1,-1,-1,0,0,-1,0], [-1,-1,1,0,-1,0,1,1,-1,1,1,2,1,-1,0,1,-1,3,2,2,0,0,1,1], [1,0,0,0,0,0,-1,0,0,-1,1,0,0,0,0,1,0,0,0,0,1,0,0,0], [0,0,0,1,0,0,0,-1,0,0,0,0,0,1,0,0,-1,1,0,0,-1,0,-1,0], [-1,0,0,0,0,0,1,0,-1,1,-1,0,1,0,0,-1,0,1,1,0,-1,1,0,0], [0,1,0,0,0,0,0,-1,1,0,0,-1,0,0,-1,0,1,-1,-1,-2,1,-1,-1,-1], [0,0,-1,1,0,0,0,-1,0,-1,-1,-1,-2,2,2,0,-2,0,-1,0,-2,0,0,0], [-1,0,0,0,0,0,1,0,0,1,-1,0,0,0,0,0,0,1,0,0,-1,0,0,0], [0,0,1,-1,0,0,0,1,0,0,1,1,1,-1,-1,0,1,0,1,1,1,0,1,1], [0,1,0,0,0,-1,0,0,0,0,0,-1,1,-1,-1,-1,1,-1,0,-1,1,1,0,0], [0,-1,1,-1,0,0,0,1,-1,1,1,2,2,-1,0,0,0,2,2,1,0,0,0,0]], [[-1,-1,1,-1,-1,0,1,1,-1,1,1,2,1,-1,0,0,0,2,2,2,0,0,2,1], [-1,0,1,0,-1,-1,1,1,-1,1,0,1,1,-1,0,0,0,2,2,1,0,1,1,1], [1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,-1,0,0,-1,0], [0,0,-1,1,0,0,0,0,1,-2,-2,-2,-3,2,2,1,-2,-1,-2,0,-2,0,0,0], [0,0,1,0,0,0,0,0,-1,1,1,1,2,-1,-1,-1,1,1,1,0,1,1,0,0], [0,0,0,0,0,0,0,0,0,-1,-1,0,-1,1,0,0,-1,0,-1,0,-1,0,0,0], [0,1,0,1,0,-1,0,-1,0,0,0,-1,0,1,0,0,0,0,0,-1,0,0,-1,0], [-1,0,0,0,0,0,0,0,1,0,-1,-1,-1,0,0,0,0,-1,-1,0,0,0,0,0], [0,1,0,1,0,-1,0,-1,1,-1,-1,-2,-1,1,0,0,0,-1,-1,-1,0,0,0,0], [0,1,0,1,0,-1,0,-1,1,-1,-1,-2,-1,1,-1,0,0,-1,-2,-2,0,0,-1,0], [-1,0,0,0,0,0,0,0,0,0,-1,0,-1,0,1,0,-1,0,0,0,-1,0,0,0], [1,1,0,0,1,0,-1,-1,1,0,0,-1,1,0,-1,-1,1,-1,-1,-2,1,0,-2,-1], [1,1,-1,1,1,0,-1,-2,1,-1,-1,-2,-1,2,0,0,0,-2,-2,-2,0,0,-2,-1], [0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1,1,-1,0], [1,1,0,1,0,-1,-1,-1,1,-1,-1,-2,-1,1,0,0,0,-1,-2,-2,0,0,-1,-1], [0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,1,0,0,-1,0,-1,0], [-1,-1,0,0,-1,0,1,1,0,0,0,1,-1,0,1,1,-1,1,1,2,-1,0,1,1], [0,-1,0,-1,0,1,0,1,-1,1,1,1,1,-1,0,0,1,0,1,1,1,0,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,1,1,0,0,0,0,-1,0,-1,1,1,0,0,-1,0,1,-1,0,0,0], [0,1,0,1,0,-1,-1,-1,1,-1,-1,-2,-2,1,0,0,0,-2,-2,-1,0,0,0,0], [0,0,0,0,0,0,0,0,1,-1,-1,-1,-1,1,1,0,-1,-1,-1,0,-1,0,0,0], [0,0,1,0,0,0,0,0,0,1,1,1,1,-1,-1,0,1,1,1,0,1,0,0,0]]]], [ # Q-class [24][29] [[6], [2,6], [2,2,6], [-2,2,0,6], [-2,0,2,2,6], [0,-2,2,-2,2,6], [3,1,1,-1,-1,0,6], [1,3,1,1,0,-1,2,6], [1,1,3,0,1,1,2,2,6], [-1,1,0,3,1,-1,-2,2,0,6], [-1,0,1,1,3,1,-2,0,2,2,6], [0,-1,1,-1,1,3,0,-2,2,-2,2,6], [0,0,0,0,0,0,0,0,0,0,0,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,2,6], [0,0,0,0,0,0,0,0,0,0,0,0,2,2,6], [0,0,0,0,0,0,0,0,0,0,0,0,-2,2,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,-2,0,2,2,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,6], [0,0,0,0,0,0,0,0,0,0,0,0,3,1,1,-1,-1,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,1,3,1,1,0,-1,2,6], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,3,0,1,1,2,2,6], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,3,1,-1,-2,2,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,1,3,1,-2,0,2,2,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,3,0,-2,2,-2,2,6]], [[[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,0,0,1,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,-1,1,0,0,0,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,-1,0,1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[1,-1,0,1,0,0,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,-1,1,0,0,0,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,0,0,1,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [24][30] [[8], [1,8], [2,0,8], [4,-1,-1,8], [0,2,2,-2,8], [3,-1,4,0,4,8], [-4,-3,-3,-3,-3,-4,8], [-3,3,2,-1,2,-2,-1,8], [-2,-2,3,-4,4,2,1,1,8], [-2,1,-4,-2,-2,-4,2,1,-2,8], [-3,-4,-4,1,0,-1,3,-1,1,2,8], [2,4,0,-2,4,1,-3,0,2,2,-2,8], [0,0,0,0,0,0,0,0,0,0,0,0,8], [0,0,0,0,0,0,0,0,0,0,0,0,1,8], [0,0,0,0,0,0,0,0,0,0,0,0,2,0,8], [0,0,0,0,0,0,0,0,0,0,0,0,4,-1,-1,8], [0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,8], [0,0,0,0,0,0,0,0,0,0,0,0,3,-1,4,0,4,8], [0,0,0,0,0,0,0,0,0,0,0,0,-4,-3,-3,-3,-3,-4,8], [0,0,0,0,0,0,0,0,0,0,0,0,-3,3,2,-1,2,-2,-1,8], [0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,3,-4,4,2,1,1,8], [0,0,0,0,0,0,0,0,0,0,0,0,-2,1,-4,-2,-2,-4,2,1,-2,8], [0,0,0,0,0,0,0,0,0,0,0,0,-3,-4,-4,1,0,-1,3,-1,1,2,8], [0,0,0,0,0,0,0,0,0,0,0,0,2,4,0,-2,4,1,-3,0,2,2,-2,8]], [[[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,1,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,-1,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,1,-1,-1,-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,1,1,1,0,1,-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,-1,0,-1,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,1,0,1,1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,-1,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,-1,0,1,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,1,0,0,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,-1,-1,-1,0,0,1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,-1,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,1,0,0,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,1,1,0,1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,-1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,1,0,1,0,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,-1,0,0,1,-1,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,1,-1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,-1,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,2,0,1,1,-1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [24][31] [[8], [-2,8], [4,-2,8], [-2,4,-2,8], [-4,4,-2,2,8], [-2,2,2,0,2,8], [2,0,2,-2,0,2,8], [0,-2,-2,2,-2,-2,2,8], [0,0,2,4,0,2,-2,2,8], [-2,2,2,4,2,2,2,2,4,8], [-2,-2,0,-2,0,2,2,2,2,2,8], [2,0,2,2,-2,2,2,0,2,4,2,8], [4,-1,2,-1,-2,-1,1,0,0,-1,-1,1,8], [-1,4,-1,2,2,1,0,-1,0,1,-1,0,-2,8], [2,-1,4,-1,-1,1,1,-1,1,1,0,1,4,-2,8], [-1,2,-1,4,1,0,-1,1,2,2,-1,1,-2,4,-2,8], [-2,2,-1,1,4,1,0,-1,0,1,0,-1,-4,4,-2,2,8], [-1,1,1,0,1,4,1,-1,1,1,1,1,-2,2,2,0,2,8], [1,0,1,-1,0,1,4,1,-1,1,1,1,2,0,2,-2,0,2,8], [0,-1,-1,1,-1,-1,1,4,1,1,1,0,0,-2,-2,2,-2,-2,2,8], [0,0,1,2,0,1,-1,1,4,2,1,1,0,0,2,4,0,2,-2,2,8], [-1,1,1,2,1,1,1,1,2,4,1,2,-2,2,2,4,2,2,2,2,4,8], [-1,-1,0,-1,0,1,1,1,1,1,4,1,-2,-2,0,-2,0,2,2,2,2,2,8], [1,0,1,1,-1,1,1,0,1,2,1,4,2,0,2,2,-2,2,2,0,2,4,2,8]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,-2,1,1,-1,0,-1,1,1,1,-2,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,2,-1,1,0,-1,-1,1,1,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,1,-1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,-2,0,1,0,0,-1,1,0,1,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,1,-1,1,0,2,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-2,1,1,-1,0,-1,1,1,2,-2,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,1,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,-1,0,0,0,1,1,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,1,0,0,1,0,0,-1,1,0,0,0,1,-1,0,0,-1,0,0,1,-1], [2,-1,-1,1,0,1,-1,-1,-1,2,1,-2,-2,1,1,-1,0,-1,1,1,1,-2,-1,2], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0], [-1,1,1,-2,1,-1,0,1,1,-1,-1,2,1,-1,-1,2,-1,1,0,-1,-1,1,1,-2], [0,0,0,-1,1,0,-1,1,0,0,0,1,0,0,0,1,-1,0,1,-1,0,0,0,-1], [2,0,-1,0,0,1,-1,0,-1,1,1,-1,-2,0,1,0,0,-1,1,0,1,-1,-1,1], [1,0,0,1,-1,1,-1,0,-2,1,1,-1,-1,0,0,-1,1,-1,1,0,2,-1,-1,1], [0,0,0,0,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0,1,0,1,-1,0,0], [2,-1,-1,1,0,1,-1,-1,-2,2,1,-1,-2,1,1,-1,0,-1,1,1,2,-2,-1,1], [1,0,0,1,0,0,-1,0,-1,0,1,0,-1,0,0,-1,0,0,1,0,1,0,-1,0], [1,-1,-1,1,0,0,0,-1,-1,1,1,-1,-1,1,1,-1,0,0,0,1,1,-1,-1,1]], [[0,0,0,1,-1,0,1,-1,0,0,0,-1,0,0,0,-1,1,0,-1,1,0,0,0,1], [-1,1,0,-1,0,-1,0,0,1,-1,0,1,1,-1,0,1,0,1,0,0,-1,1,0,-1], [2,0,-1,1,-1,1,0,-1,-1,2,1,-2,-2,0,1,-1,1,-1,0,1,1,-2,-1,2], [-1,1,1,-1,0,0,-1,1,0,-1,0,1,1,-1,-1,1,0,0,1,-1,0,1,0,-1], [-1,1,1,-1,1,-1,0,1,1,-2,0,2,1,-1,-1,1,-1,1,0,-1,-1,2,0,-2], [2,0,-1,1,0,1,-1,0,-1,1,1,-1,-2,0,1,-1,0,-1,1,0,1,-1,-1,1], [1,0,0,1,0,0,0,0,-1,0,1,-1,-1,0,0,-1,0,0,0,0,1,0,-1,1], [0,0,1,0,0,0,-1,1,-1,0,0,0,0,0,-1,0,0,0,1,-1,1,0,0,0], [1,0,0,1,-1,1,-1,0,-1,1,1,-1,-1,0,0,-1,1,-1,1,0,1,-1,-1,1], [0,1,1,0,0,0,-1,1,-1,0,1,0,0,-1,-1,0,0,0,1,-1,1,0,-1,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [-1,1,1,0,0,0,0,1,0,-1,0,0,1,-1,-1,0,0,0,0,-1,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,1,0,1,0,0,-1,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,-2,0,1,-1,1,-1,0,1,1,-2,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,0,0,1,-1,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,-1,1,0,-1,-1,2,0,-2], [0,0,0,0,0,0,0,0,0,0,0,0,-2,0,1,-1,0,-1,1,0,1,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,-1,1,0,0,0] , [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,1,-1,1,0,1,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,1,-1,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,0,0,0,0,-1,0,1,0,0]]]], [ # Q-class [24][32] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [0,0,0,0,0,0,2], [0,0,0,0,0,0,1,2], [0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,1,1,1,1,2], [0,0,0,0,0,0,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [24][33] [[4], [1,4], [2,2,4], [1,2,2,4], [2,1,1,2,4], [1,2,1,1,1,4], [1,1,1,0,1,2,4], [0,-1,-1,0,-1,0,-1,4], [1,0,1,1,0,0,0,1,4], [-1,0,-1,-1,-2,-1,-1,1,1,4], [0,0,0,0,-1,-1,-1,2,1,2,4], [0,0,0,-1,1,1,2,-2,-2,-2,-2,4], [-1,0,-1,1,0,-1,-2,2,0,1,2,-2,4], [-1,-1,0,1,0,-1,-2,1,0,-1,0,-1,2,4], [1,1,2,1,1,1,1,-1,1,-2,-1,1,-1,1,4], [1,1,1,2,1,1,0,1,2,-1,1,-1,1,1,2,4], [1,1,1,1,2,1,2,-1,0,-2,0,1,0,0,2,2,4], [1,1,1,1,1,2,2,0,2,-1,-1,0,-1,-1,2,2,2,4], [-1,0,0,1,0,1,1,1,0,0,0,0,1,1,0,0,0,0,4], [0,-2,-1,0,1,-1,0,1,1,0,0,0,1,1,0,0,0,0,2,4], [-2,-1,-2,-1,-1,0,0,1,0,1,0,0,1,1,0,0,0,0,2,2,4], [-1,-2,-1,-1,-1,0,0,2,0,0,1,0,1,1,0,0,0,0,2,2,2,4], [-2,-1,-1,1,0,-1,-1,1,0,0,0,-1,2,2,0,0,0,0,2,2,2,2,4], [-1,-1,-2,0,1,1,0,1,-1,-1,-1,1,1,1,0,0,0,0,2,2,2,2,2,4]], [[[1,0,1,-1,-1,0,0,0,0,0,0,1,0,0,-1,1,0,0,0,0,0,-1,1,1], [0,1,1,-1,0,-1,0,0,-1,1,0,0,-1,1,-1,1,0,1,0,0,0,0,0,1], [1,0,1,-1,-1,0,1,-1,-1,0,1,0,0,1,-1,1,-1,1,0,0,0,-1,1,1], [0,-1,1,-1,0,1,0,0,-1,1,0,0,0,0,0,1,0,0,0,0,0,-1,1,0], [1,-1,0,-1,0,0,0,0,0,1,0,1,0,0,0,1,0,0,1,-1,0,-1,1,0], [0,0,0,-1,1,-1,0,0,-1,0,0,0,0,0,0,1,-1,1,1,-1,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,1], [-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,1,-1,0], [-1,1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,2,-1,0,0,0], [1,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0], [-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,-1], [0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1], [1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,-1,1,0], [0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0], [0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0], [-1,-1,0,1,0,0,0,0,-1,0,0,-1,0,-1,1,0,0,0,0,0,0,0,-1,0], [0,-1,-1,1,0,1,0,0,0,0,0,0,0,-1,1,0,0,-1,0,0,0,0,0,-1], [-1,0,-1,1,1,0,0,0,0,0,-1,-1,0,-1,1,0,0,-1,0,0,0,1,-1,-1], [-1,0,-1,0,0,1,0,0,0,-1,0,-1,0,-1,1,0,0,-1,0,1,-1,0,0,-1], [-1,-1,0,0,1,1,0,0,0,0,0,-1,0,-1,1,0,0,-1,0,0,0,0,0,-1], [0,-1,-1,0,1,0,-1,0,0,0,0,0,0,-1,1,0,0,0,1,-1,0,0,0,-1]], [[0,-1,0,0,1,0,-1,1,0,1,-1,1,0,0,0,0,1,0,1,-1,0,0,0,-1], [1,-1,0,0,0,0,-1,0,0,-1,1,0,0,0,0,-1,0,1,1,-1,1,-1,0,0], [0,-1,0,0,1,0,-1,0,0,-1,0,0,0,-1,0,0,0,0,1,-1,1,0,0,-1], [0,0,0,0,1,-1,-1,0,0,-1,1,0,0,0,0,-1,0,1,1,-1,1,0,-1,0], [0,0,-1,0,1,0,-1,1,1,0,0,1,0,0,0,-1,1,0,1,-1,0,0,0,-1], [1,0,-1,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,-1], [1,0,-1,0,0,1,-1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,-2], [0,1,1,-1,0,-1,0,0,-1,1,0,0,-1,1,-1,1,0,1,0,1,-1,0,0,1], [-1,0,1,0,0,-1,-1,1,0,0,-1,0,0,-1,0,0,1,0,1,0,0,0,-1,0], [0,0,2,0,-2,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,1,0,-1,0,2], [0,0,2,-2,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,-1,1,1], [0,0,-2,0,0,2,0,0,0,0,0,0,0,0,1,0,0,-1,0,1,-1,0,1,-2], [0,1,1,-1,0,-1,0,0,0,0,1,0,-1,1,-1,0,0,1,0,0,0,-1,0,2], [-1,1,0,0,1,-1,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,1,-1,1], [0,-1,-1,0,1,0,-1,0,0,0,0,0,0,-1,1,0,0,0,2,-1,0,0,0,-1], [0,0,0,-1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,1,2,-1,0,0,-1,0], [1,0,-1,-1,1,0,-1,0,1,0,0,1,0,0,0,0,0,0,2,-2,0,0,1,-1], [1,0,-1,0,0,-1,-1,0,0,0,0,1,0,0,0,0,0,1,2,-1,0,0,0,-1], [0,1,0,0,0,0,-1,0,-1,0,1,0,-1,0,0,0,0,1,0,1,0,0,0,0], [-1,1,0,0,0,0,-1,1,0,1,0,1,-1,0,0,0,1,0,0,1,-1,0,0,0], [0,1,0,0,-1,0,-1,0,0,1,0,0,-1,0,0,0,1,0,0,1,-1,0,0,1], [0,1,0,-1,0,0,0,0,-1,1,0,0,-1,0,0,1,0,0,0,1,-1,0,1,0], [0,1,0,0,0,-1,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,1,-1,0,0,0,0,0,-1,1,1,0,-1,1,0,0,0,1,0,1,-1,0,0,0]]]], [ # Q-class [24][34] [[4], [0,4], [2,-2,4], [2,1,1,4], [1,-1,1,2,4], [0,-1,2,1,2,4], [0,0,0,0,0,0,4], [0,0,0,0,0,0,0,4], [0,0,0,0,0,0,2,-2,4], [0,0,0,0,0,0,2,1,1,4], [0,0,0,0,0,0,1,-1,1,2,4], [0,0,0,0,0,0,0,-1,2,1,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,2,-2,4], [0,0,0,0,0,0,0,0,0,0,0,0,2,1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2,1,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2,1,2,4]], [[[0,0,0,0,0,0,-1,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [24][35] [[8], [1,8], [1,4,8], [-3,0,-2,8], [0,0,-1,-2,8], [0,2,2,0,0,8], [2,0,2,-4,0,-2,8], [4,0,0,-3,-2,2,0,8], [1,-1,0,-1,0,-2,1,2,8], [0,0,0,-3,4,-1,0,-1,0,8], [0,0,1,1,1,0,-1,-2,0,1,8], [-1,0,0,0,1,-2,0,-3,-2,2,2,8], [2,-2,-2,-3,2,-1,2,1,0,-1,0,0,8], [-2,0,0,1,-1,2,-3,0,0,-2,0,-4,0,8], [-2,0,-1,2,3,-2,-1,-4,-2,2,0,4,-2,-4,8], [1,-2,2,-2,0,-2,2,-1,-1,1,2,4,2,-2,1,8], [2,2,2,-2,3,-1,1,-1,2,0,2,0,4,0,0,2,8], [-1,-4,0,-3,-2,0,2,1,-1,-1,-2,0,2,2,-3,4,-2,8], [2,-2,-2,-1,-2,0,-2,4,0,0,-2,-1,-1,0,0,-1,-3,1,8], [2,0,1,-1,-2,4,-3,4,0,-1,2,-3,-1,4,-4,-1,-1,1,4,8], [4,0,0,-4,-1,-2,4,4,3,-1,-2,-3,2,0,-4,-1,1,1,0,0,8], [-2,2,-2,4,-1,0,-4,-1,-3,0,2,0,-2,2,1,-4,-2,-4,1,1,-2,8], [0,2,2,0,-3,3,1,3,0,-1,-4,-4,-4,0,-2,-4,-4,0,1,1,2,0,8], [-3,-3,-3,4,0,2,-4,0,2,-2,-1,-2,-2,2,0,-2,-2,0,1,1,-2,0,1,8]], [[[0,-1,0,-1,0,0,0,0,0,0,0,1,0,1,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,-1,0,1,1,1,2,0,0,-1,-2,1,-1,0,-2,1,0], [0,0,0,0,0,0,0,-1,0,0,0,1,1,1,0,1,0,-1,1,0,0,0,2,0], [1,1,1,2,0,-1,1,1,0,1,1,0,1,0,2,-2,0,3,-1,1,0,0,0,1], [-1,-1,-1,0,0,1,0,0,0,0,0,0,0,1,-1,2,0,-3,1,-1,0,-1,1,-1], [0,-1,0,-1,1,0,0,-1,0,-1,-1,0,-1,-1,-2,1,0,-1,0,0,-1,1,0,0], [0,0,-1,0,0,0,-1,0,0,0,1,1,0,1,0,0,1,0,1,-1,0,-1,2,-1], [0,0,1,-1,0,0,0,0,0,0,0,0,0,-1,0,-1,0,1,0,0,0,1,-1,1], [0,0,0,-1,1,1,-1,-1,2,-1,-1,-1,0,-1,0,2,-1,0,0,0,0,2,0,-1], [-1,-1,-1,-1,0,1,0,0,0,-1,-1,0,-1,0,-1,2,0,-3,0,0,0,0,0,-1], [1,0,0,-1,-1,-1,1,1,0,0,0,0,0,1,1,-1,0,0,-1,0,-2,0,0,1], [-1,-1,-1,0,0,1,0,0,0,-1,0,0,-1,1,-1,1,0,-2,1,-1,0,-1,0,-2], [0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,-1,-1,0], [1,1,1,1,0,-1,1,0,0,1,-1,0,1,-1,1,-1,0,2,-1,2,0,1,-1,2], [-1,0,-1,1,0,1,0,0,0,0,1,0,0,1,0,1,0,-1,1,-1,1,-1,1,-1], [0,0,0,1,-1,0,1,1,0,1,0,1,0,1,1,-1,1,1,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,1,0,0,1,1,1,0,-1,-1,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,-1,-1,-1,0,1,1,0,0,0,1,-1,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,1,0,0,1,1,-1,1], [1,0,1,-1,0,-1,1,0,0,0,-1,0,0,-1,0,-1,0,1,-1,1,-1,2,-1,2], [0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,1,1,-1,-1,1,1,-1,1,1,0,1,0,2,-3,0,2,-1,1,0,-1,-1,2], [0,0,0,-1,1,0,-1,-1,0,-1,0,0,0,-1,-1,1,0,0,0,0,0,1,1,0], [0,0,1,1,1,0,0,0,1,0,-1,-1,0,-2,0,0,0,2,-1,1,0,2,-1,0]], [[0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,0,1,-1,0,0,1,0], [0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,-1,1,1,0,0,0,0,0,0], [0,1,0,1,0,-1,0,1,0,0,1,1,1,1,1,-1,0,1,0,0,0,-1,1,0], [0,0,0,-1,1,1,0,-1,1,-1,-2,-1,-1,-2,-1,1,-1,0,-1,1,0,2,-2,0], [-1,-1,0,0,0,0,0,1,-1,0,0,0,-1,1,-1,0,0,-2,1,-1,0,-2,-1,-1], [0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,1,0,0,-1,1,0,1,0,0], [0,1,0,2,0,0,0,0,0,1,2,1,1,1,1,-1,1,2,2,-1,1,-1,2,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0], [-1,-1,-1,0,1,1,0,0,0,-1,0,0,-1,1,-1,2,0,-2,1,-1,0,0,1,-2], [-1,-1,0,0,0,-1,0,1,-2,0,1,1,0,2,-1,0,0,-3,1,-1,0,-3,1,0], [0,0,0,0,0,0,0,1,0,0,1,0,0,1,1,-1,0,0,0,-1,0,-1,0,0], [1,1,1,1,-2,-1,1,2,-2,2,2,1,1,2,2,-4,0,1,0,-1,0,-3,-1,2], [0,0,0,0,-1,0,0,0,0,1,0,0,0,0,1,-1,1,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,-1,-1,0,-2,1,0,0,2,-2,2,0,2,-1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,1,-1,0,-1,-2,1,-1,0,-2,-1,0], [1,1,0,0,-1,-1,0,1,-1,1,2,1,1,2,2,-2,0,1,0,-1,0,-2,1,1], [-1,-1,-1,-1,0,1,-1,0,0,-1,0,0,-1,1,-1,1,0,-2,1,-2,0,-1,0,-2], [1,1,0,0,-1,-1,0,0,0,1,1,0,1,0,2,-1,0,2,-1,1,0,0,1,1], [0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,1,0,-1,0,1,0,0,1,0], [0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1,0,0,-1,1,0,1,1,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,-1,0,1,1,0], [0,0,1,0,0,0,0,0,0,0,-1,-1,0,-2,0,-1,0,1,-1,1,0,1,-2,1], [0,0,0,0,1,0,0,-1,1,-1,-1,0,0,-1,-1,2,0,0,0,1,0,2,1,0], [0,-1,0,-1,1,1,0,-1,1,-1,-2,-1,-1,-1,-1,2,-1,-1,-1,1,0,2,-1,-1]]]], [ # Q-class [24][36] [[4], [-1,4], [-2,1,4], [0,-2,1,4], [1,2,0,-2,4], [0,-1,0,-1,0,4], [1,-1,1,2,0,-1,4], [0,0,1,0,0,1,0,4], [-1,1,0,-1,0,0,1,-1,4], [2,0,0,0,2,0,1,0,0,4], [-1,0,2,2,-1,0,2,0,1,1,4], [1,0,-1,-1,1,1,1,1,2,2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,-2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,-2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,2,0,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,0,0,1,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,2,0,1,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,2,2,-1,0,2,0,1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,-1,1,1,1,1,2,2,1,4]], [[[-1,0,-2,-1,0,0,1,1,0,1,1,-2,0,0,0,0,0,0,0,0,0,0,0,0], [1,-2,1,0,2,-1,-2,0,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,1,1,0,0,-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,-1,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-2,0,0,2,-1,-2,1,1,-1,2,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,1,0,-1,0,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,0,1,0,0,1,1,0,1,-2,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,0,1,0,0,1,1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,2,0,0,-2,1,2,-1,-1,1,-2,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,1,0,-1,1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,-1,1,-1,1,1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,0,0,1,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,-1,1,1,0,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,1,0,-1,0,1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,-1,0,-1,1,1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,-1,1,0,0,1,1,0,1,-2,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,-1,0,-1,1,1,0,0,2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [24][37] [[4], [0,4], [-2,2,4], [-2,2,2,4], [2,0,-1,-1,4], [0,2,1,1,0,4], [-1,1,2,1,-2,2,4], [-1,1,1,2,-2,2,2,4], [2,0,-1,-1,2,0,-1,-1,4], [0,2,1,1,0,2,1,1,0,4], [-1,1,2,1,-1,1,2,1,-2,2,4], [-1,1,1,2,-1,1,1,2,-2,2,2,4], [2,0,-1,-1,2,0,-1,-1,2,0,-1,-1,4], [0,2,1,1,0,2,1,1,0,2,1,1,0,4], [-1,1,2,1,-1,1,2,1,-1,1,2,1,-2,2,4], [-1,1,1,2,-1,1,1,2,-1,1,1,2,-2,2,2,4], [2,0,-1,-1,2,0,-1,-1,2,0,-1,-1,2,0,-1,-1,4], [0,2,1,1,0,2,1,1,0,2,1,1,0,2,1,1,0,4], [-1,1,2,1,-1,1,2,1,-1,1,2,1,-1,1,2,1,-2,2,4], [-1,1,1,2,-1,1,1,2,-1,1,1,2,-1,1,1,2,-2,2,2,4], [2,0,-1,-1,2,0,-1,-1,2,0,-1,-1,2,0,-1,-1,2,0,-1,-1,4], [0,2,1,1,0,2,1,1,0,2,1,1,0,2,1,1,0,2,1,1,0,4], [-1,1,2,1,-1,1,2,1,-1,1,2,1,-1,1,2,1,-1,1,2,1,-2,2,4], [-1,1,1,2,-1,1,1,2,-1,1,1,2,-1,1,1,2,-1,1,1,2,-2,2,2,4]], [[[0,0,0,0,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,-1,1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,-1,1,1,-1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,-1,1,0,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,-1,0,0,0,0,1,-1,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,-1,1,1,0,0,0,0,-1,1,-1,-1,0,0,0,0,0,0,0,0], [0,0,0,0,1,-1,1,0,0,0,0,0,-1,1,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,-1,0,0,0,0,0,0,0,0,1,-1,0,1,0,0,0,0], [0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0], [0,0,0,0,1,-1,1,1,0,0,0,0,0,0,0,0,-1,1,-1,-1,0,0,0,0], [0,0,0,0,1,-1,1,0,0,0,0,0,0,0,0,0,-1,1,-1,0,0,0,0,0], [0,0,0,0,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,1], [0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0], [0,0,0,0,1,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1], [0,0,0,0,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,0], [1,-1,0,1,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,-1,-1,1,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,-1,0,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]]]], [ # Q-class [24][38] [[8], [-2,8], [-4,4,8], [4,-2,-1,8], [-2,-3,1,-2,8], [-3,4,3,0,1,8], [1,3,3,3,-4,2,8], [3,-4,-3,0,0,-4,-3,8], [4,-1,0,0,0,-1,1,4,8], [-4,2,1,0,0,2,1,-2,-4,8], [4,-1,-4,4,-2,-1,-1,0,0,0,8], [4,-1,-4,3,-1,-2,-2,3,0,-1,4,8], [0,0,0,0,0,0,0,0,0,0,0,0,8], [0,0,0,0,0,0,0,0,0,0,0,0,-2,8], [0,0,0,0,0,0,0,0,0,0,0,0,-4,4,8], [0,0,0,0,0,0,0,0,0,0,0,0,4,-2,-1,8], [0,0,0,0,0,0,0,0,0,0,0,0,-2,-3,1,-2,8], [0,0,0,0,0,0,0,0,0,0,0,0,-3,4,3,0,1,8], [0,0,0,0,0,0,0,0,0,0,0,0,1,3,3,3,-4,2,8], [0,0,0,0,0,0,0,0,0,0,0,0,3,-4,-3,0,0,-4,-3,8], [0,0,0,0,0,0,0,0,0,0,0,0,4,-1,0,0,0,-1,1,4,8], [0,0,0,0,0,0,0,0,0,0,0,0,-4,2,1,0,0,2,1,-2,-4,8], [0,0,0,0,0,0,0,0,0,0,0,0,4,-1,-4,4,-2,-1,-1,0,0,0,8], [0,0,0,0,0,0,0,0,0,0,0,0,4,-1,-4,3,-1,-2,-2,3,0,-1,4,8]], [[[0,-1,1,0,-1,0,-1,-1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,1,-1,-1,1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,-1,0,1,0,2,2,-1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,2,-2,2,2,-1,1,1,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,1,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,1,1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,-1,0,-1,-2,2,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,-2,1,-1,-1,0,0,-1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,0,1,0,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,-2,2,-1,-1,1,-1,-1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,-2,1,0,-2,1,-2,-2,1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,-2,1,-1,-1,0,0,-1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,1,0,0,-1,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,-1,0,-1,-1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,2,-1,2,1,-1,0,1,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [-2,3,-2,2,2,-1,1,1,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,-1,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,-1,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,-1,0,-1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,0,1,0,1,1,-1,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,1,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,1,-1,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [24][39] [[8], [0,8], [-4,4,8], [-4,4,4,8], [0,0,0,0,8], [0,0,0,0,0,8], [0,0,0,0,-4,4,8], [0,0,0,0,-4,4,4,8], [4,0,-2,-2,-4,0,2,2,8], [0,4,2,2,0,-4,-2,-2,0,8], [-2,2,4,2,2,-2,-4,-2,-4,4,8], [-2,2,2,4,2,-2,-2,-4,-4,4,4,8], [4,0,-2,-2,2,0,-1,-1,2,0,-1,-1,8], [0,4,2,2,0,2,1,1,0,2,1,1,0,8], [-2,2,4,2,-1,1,2,1,-1,1,2,1,-4,4,8], [-2,2,2,4,-1,1,1,2,-1,1,1,2,-4,4,4,8], [2,0,-1,-1,-2,0,1,1,2,0,-1,-1,4,0,-2,-2,8], [0,2,1,1,0,-2,-1,-1,0,2,1,1,0,4,2,2,0,8], [-1,1,2,1,1,-1,-2,-1,-1,1,2,1,-2,2,4,2,-4,4,8], [-1,1,1,2,1,-1,-1,-2,-1,1,1,2,-2,2,2,4,-4,4,4,8], [0,0,0,0,-2,0,1,1,4,0,-2,-2,2,0,-1,-1,4,0,-2,-2,8], [0,0,0,0,0,-2,-1,-1,0,4,2,2,0,2,1,1,0,4,2,2,0,8], [0,0,0,0,1,-1,-2,-1,-2,2,4,2,-1,1,2,1,-2,2,4,2,-4,4,8], [0,0,0,0,1,-1,-1,-2,-2,2,2,4,-1,1,1,2,-2,2,2,4,-4,4,4,8]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,0], [0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,-1,0,0,1,-1,0,0,-1,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,-1,1,0,0,1,-1,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,-1,0,-1,1,-1,0,1,-1,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,0,1,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,-1,1,-1,0,0,0,0,0,0,0,0,0,1,-1,1,0], [0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,1], [0,-1,1,0,0,0,0,0,0,1,-1,0,0,1,-1,0,0,0,0,0,0,-1,1,0], [0,0,1,-1,0,0,0,0,0,0,-1,1,0,0,-1,1,0,0,0,0,0,0,1,-1], [1,-1,1,0,0,0,0,0,-1,1,-1,0,-1,1,-1,0,0,0,0,0,1,-1,1,0], [0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,1], [0,-1,1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,1,-1,0,0,-1,1,0], [0,0,1,-1,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,1,0,0,1,-1], [1,-1,1,0,0,0,0,0,-1,1,-1,0,0,0,0,0,-1,1,-1,0,1,-1,1,0]], [[-1,0,-1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [1,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,-1,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,-1,0,-1,0,-1,0,1,0,1,0,-1,0,-1,0,1,0,1,0], [0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1], [0,0,0,0,1,0,0,1,1,0,0,1,-1,0,0,-1,1,0,0,1,-1,0,0,-1], [0,0,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [1,0,1,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,1,0,1,0], [0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1], [-1,0,0,-1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,-1], [0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,-1,-1,1,0,-1,1,-1,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0], [0,0,0,0,1,-1,0,1,0,0,0,0,-1,1,0,-1,1,-1,0,1,0,0,0,0], [-1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0], [0,-1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,-1,0,0], [0,0,-1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,-1,0], [1,-1,0,1,0,0,0,0,-1,1,0,-1,-1,1,0,-1,0,0,0,0,1,-1,0,1]]]], [ # Q-class [24][40] [[12], [-2,12], [2,0,12], [2,-4,-1,12], [-1,3,1,-2,12], [6,-1,-1,1,-2,12], [-2,1,0,-2,2,-2,12], [1,-6,0,4,0,0,0,12], [-4,-2,-3,2,-3,1,2,1,12], [1,2,6,0,4,0,-2,-2,-5,12], [-4,0,-6,-1,3,0,1,2,-1,0,12], [-2,-4,0,-1,-3,-2,-2,4,3,2,1,12], [-3,2,-2,-2,-2,-2,4,-1,4,-3,-2,-1,12], [3,-3,-1,6,0,3,-4,4,2,0,-1,2,-6,12], [1,4,2,2,3,-1,2,-6,-3,6,-2,-4,-1,2,12], [0,0,-4,2,-2,3,1,4,6,-3,3,3,0,4,-3,12], [0,1,2,2,0,0,-5,1,-1,4,0,2,-2,6,4,2,12], [3,4,2,-3,0,0,-5,-6,-3,6,-2,2,0,-1,4,-2,5,12], [3,-1,-4,-1,-2,3,-5,0,0,2,4,4,0,2,0,4,5,6,12], [3,-1,4,3,-5,2,0,-1,1,3,-6,1,2,2,4,-2,4,3,0,12], [-4,5,-5,-2,3,-6,1,-4,0,0,4,0,4,-5,1,0,-1,4,3,-5,12], [3,-4,3,6,1,0,-3,2,-4,1,-3,-3,-6,4,2,-4,1,-2,-4,-1,-3,12], [-2,6,3,-5,1,-1,4,-6,-2,-1,-4,-6,4,-4,4,-6,-2,0,-6,2,-1,-2,12], [-5,-4,-5,5,-3,-4,0,5,6,-6,2,4,2,2,-5,3,0,-5,-1,-2,3,2,-5,12]], [[[0,0,-1,0,-1,0,0,0,1,1,0,0,0,0,-1,0,1,-1,-1,0,1,1,0,-2], [0,0,0,0,0,0,-1,1,0,-1,1,1,0,0,1,1,-1,0,0,1,1,1,1,-1], [-1,0,-1,1,0,0,1,0,0,1,-1,0,0,0,-1,0,0,1,1,-1,-1,0,1,0], [0,0,0,0,1,-1,0,-1,0,1,0,0,0,0,-2,2,-1,-1,2,2,0,2,2,0], [-1,1,0,1,1,0,0,0,0,-1,0,1,0,0,-1,0,-1,0,2,1,0,2,1,-1], [1,0,-1,-1,-1,0,0,0,1,1,0,0,0,0,0,0,1,-1,-1,0,1,1,0,-1], [0,0,0,0,0,1,0,0,-1,0,-1,0,0,0,1,-1,0,0,-1,-1,0,-2,-2,1], [-1,0,0,1,1,0,1,-1,-1,0,-1,0,0,0,-1,0,0,0,1,0,-1,0,0,0], [1,-1,0,-1,0,0,0,0,0,1,0,-1,0,1,0,0,0,0,-1,0,1,-1,0,1], [-1,1,0,1,0,0,1,0,0,0,0,0,0,0,-1,0,-1,1,2,0,-1,1,1,0], [0,0,1,0,0,1,0,0,-1,-1,0,0,0,0,1,-1,0,0,0,0,0,-1,-1,1], [0,-1,1,0,0,1,0,0,-1,0,0,-1,0,0,1,0,0,1,-1,-1,0,-2,0,2], [1,0,-1,0,0,-1,0,1,1,1,0,0,-1,-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,1,0,0,-1,0,0,0,0,0,0,-1,1,0,-1,1,1,0,1,1,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0,0,1], [1,0,0,0,0,0,0,-1,0,0,1,1,1,1,-1,0,1,-2,-1,1,2,1,0,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,1,0], [0,0,0,0,-1,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,1,1,1,-1], [1,0,0,0,-1,0,0,0,1,0,1,0,0,0,0,-1,1,-1,-1,0,1,0,0,-1], [0,-1,0,-1,-1,1,0,1,0,1,-1,-1,-1,0,1,0,0,0,-1,-1,1,-2,0,1], [0,0,1,0,0,0,-1,1,0,-1,1,0,0,0,1,0,-1,0,0,1,1,0,0,0], [-1,1,0,0,1,-1,0,-1,0,0,0,0,1,0,-1,1,-1,0,2,1,-2,2,0,0], [0,0,-1,0,0,0,0,1,0,0,-1,0,-1,-1,1,0,0,1,0,-1,-1,-1,0,1], [0,-1,1,-1,1,0,-1,0,-1,0,0,-1,0,0,1,1,-1,0,0,1,0,-1,0,2]], [[0,1,0,1,1,-1,0,-1,0,-1,1,1,1,-1,-1,1,0,0,1,1,-1,2,0,-1], [0,0,0,0,1,-1,-1,0,1,-1,1,1,0,0,0,1,-1,-1,1,2,1,2,1,-2], [0,0,0,-1,-1,0,-1,1,0,0,1,0,1,1,1,0,0,0,-2,0,1,0,-1,-1], [0,0,1,0,0,0,0,0,-1,0,0,-1,0,0,1,0,-1,2,0,-1,-2,-2,0,3], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,1,-1,-1,-1,1,0,2,1,1,-1,-1,2,0,-1,1,2,0,3,2,-1], [-1,-1,1,0,0,1,0,0,-1,0,-1,0,0,1,0,0,0,-1,0,0,2,-1,0,0], [0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,-1,0,1,0,-1,-2,0,-1,1], [1,-1,1,-1,-1,1,-1,0,0,0,0,0,0,0,2,-1,1,-1,-2,-1,1,-2,-1,1], [0,0,0,-1,0,0,-1,1,0,0,1,0,0,0,1,1,-1,0,0,1,1,1,1,0], [0,0,-1,1,1,0,1,0,0,1,-1,0,-1,-1,-1,0,0,0,2,0,-1,0,2,1], [0,0,0,-1,-1,1,0,1,0,0,0,0,0,0,1,-1,0,0,-1,0,1,0,-1,0], [0,-1,1,-1,-1,1,0,0,-1,0,-1,-1,0,1,2,-1,0,0,-1,-2,0,-3,-2,2], [1,1,0,0,1,-1,-1,-1,1,-1,2,2,1,-1,-1,1,0,-1,0,2,0,3,1,-2], [0,0,0,0,1,-1,-1,-1,0,0,1,1,0,0,-1,2,-1,-1,1,2,1,2,2,-1], [0,1,0,1,1,-1,0,-1,1,-1,1,2,1,-1,-1,0,0,-1,2,1,-1,3,1,-2], [1,1,-1,0,1,-2,-1,-1,1,0,2,2,1,-1,-1,2,-1,-1,1,2,-1,4,2,-2], [1,0,-1,0,0,-1,-1,0,1,0,1,1,0,-1,0,1,0,-1,0,1,1,2,1,-2], [1,1,-1,1,1,-1,0,-1,1,0,1,2,0,-2,-1,1,0,-1,2,1,-1,3,2,-1], [0,-1,1,-2,-1,1,-2,1,-1,0,0,-1,0,0,3,1,-1,0,-2,0,1,-2,-1,2], [0,0,0,1,0,0,1,0,0,0,-1,0,-1,0,0,-1,0,0,1,-1,0,-1,0,0], [0,1,0,1,0,-1,1,-1,0,0,1,0,1,1,-2,0,0,1,0,0,-1,1,0,-1], [0,-1,0,-1,0,0,-1,0,0,0,0,0,0,1,0,1,0,-1,-1,1,2,0,0,-1], [0,0,1,0,-1,1,1,0,-1,0,-1,-1,0,1,1,-2,0,1,-1,-2,-1,-3,-2,2]]]], [ # Q-class [24][41] [[4], [0,4], [1,1,4], [0,2,-1,4], [1,1,2,-1,4], [0,2,0,2,0,4], [1,2,1,1,0,2,4], [1,1,-1,0,0,-1,1,4], [1,-1,0,0,1,-1,-1,0,4], [-1,0,1,0,-1,-1,0,-1,0,4], [0,-1,1,-2,0,-2,0,0,1,1,4], [-1,-2,-2,-1,-1,0,-2,-1,0,-1,0,4], [1,1,0,0,1,1,0,1,-1,-2,-1,0,4], [1,-1,0,-1,0,-2,0,1,1,0,1,-1,0,4], [1,0,0,1,-1,0,0,0,0,0,-1,-1,0,0,4], [-1,-1,-1,0,-2,-1,-1,0,0,0,1,1,0,1,1,4], [2,0,2,0,2,0,1,0,1,0,0,-1,0,0,0,-2,4], [1,1,2,0,1,-1,1,1,-1,1,0,-2,0,1,0,0,1,4], [-1,1,-1,2,0,1,-1,-1,0,-1,-2,0,1,0,1,1,-1,-1,4], [2,2,1,1,0,1,2,1,0,0,0,-1,1,1,1,0,1,1,0,4], [1,-1,-1,0,0,1,1,0,0,-2,-1,1,0,1,-1,0,0,0,0,0,4], [-1,-1,-1,0,0,1,-1,-1,1,-1,-1,2,-1,-2,-1,-1,0,-2,0,-2,1,4], [2,-1,2,-1,0,-1,1,0,1,1,2,-1,-1,1,0,0,2,1,-2,1,0,-1,4], [1,-2,-1,0,-1,-1,0,0,2,1,1,0,-1,1,1,0,1,-1,-1,0,0,0,1,4]], [[[0,1,-1,-2,-2,0,0,-1,2,0,0,-1,0,-1,0,0,2,0,0,0,1,-1,-1,-1], [0,1,0,1,-1,-1,1,-1,1,0,0,1,1,1,1,-1,0,0,-1,-1,0,0,0,-1], [1,2,-1,-1,-1,0,1,-1,1,1,0,1,1,1,1,0,1,0,0,-2,0,0,0,-1], [-1,1,0,0,-1,-1,0,-1,1,-1,-1,0,0,0,0,-1,0,0,-1,0,0,-1,0,0], [0,1,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,-1,0,0,1,0], [0,0,-1,-1,-2,-1,0,-2,1,-1,-1,-2,0,-1,-1,0,1,0,-1,1,0,-1,-1,-1], [0,0,0,0,-1,-1,1,-1,1,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,-1], [0,-1,2,2,1,-1,1,1,0,0,0,1,0,0,0,0,-1,-1,0,0,0,0,0,0], [-1,2,-1,-1,0,0,-1,-1,0,-1,-1,-1,0,0,0,1,1,0,-1,0,0,0,1,1], [0,1,-2,-1,-1,0,0,-1,1,0,1,0,1,0,1,-1,1,1,0,-1,0,0,0,-1], [0,1,-1,0,1,1,0,0,0,1,1,1,1,1,1,0,0,1,0,-1,0,1,1,0], [0,-3,0,0,1,1,-1,1,-1,0,0,-2,-1,-1,-1,1,0,0,0,2,0,0,-1,0], [0,0,1,0,-1,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,1,-1,-1,0], [0,1,1,0,1,0,0,1,-1,0,0,1,0,0,0,0,-1,0,1,0,0,1,1,2], [0,1,1,0,-1,1,-1,1,0,1,2,1,0,1,1,-1,1,0,1,-1,1,0,-1,0], [0,1,2,1,1,0,0,1,-1,0,0,2,0,1,0,0,-1,0,0,-1,0,0,0,2], [0,0,0,-1,-1,2,-1,1,1,1,1,0,0,0,1,-1,1,0,1,-1,1,-1,0,-1], [1,0,1,1,1,-1,2,0,0,0,-1,2,0,1,0,0,-1,-1,0,-1,-1,0,0,0], [-1,2,2,1,0,0,-1,1,-1,0,0,2,0,1,1,-1,-1,0,0,-1,1,0,1,2], [0,0,0,0,-1,0,0,0,1,1,1,0,1,0,1,-1,1,0,0,0,1,0,-1,-1], [0,-2,1,0,1,-1,1,0,-1,-1,-2,-1,-1,-1,-2,1,-1,-1,0,2,-1,0,0,1], [0,-2,-1,0,1,-1,0,-1,-1,-1,-2,-3,-1,-1,-2,2,0,-1,-1,2,-1,0,0,0], [0,2,-1,-2,-2,1,0,0,2,1,1,1,1,0,1,-1,2,1,1,-2,1,-1,0,-1], [-1,0,-1,-1,0,1,-2,0,0,0,1,-2,0,-1,0,0,1,0,0,1,1,0,0,0]], [[0,0,-1,-1,0,1,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0], [-1,-1,2,2,2,1,-1,2,-2,0,0,1,-1,1,0,0,-1,-1,0,0,0,0,1,1], [0,-2,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1], [0,-1,2,2,2,0,-1,1,-2,0,-1,0,-1,1,-1,1,-1,-2,-1,1,0,0,0,1], [-1,1,1,0,0,1,-1,1,0,0,1,1,0,0,1,-1,0,1,1,-1,1,0,1,1], [-1,-1,1,2,2,0,-1,1,-2,0,0,0,0,1,0,0,-1,-1,0,1,0,1,1,1], [0,-3,0,2,3,0,0,1,-2,0,0,-1,-1,0,-1,1,-1,-1,0,2,-1,1,0,0], [0,1,0,-1,0,0,0,0,0,-1,-1,0,-1,-1,-1,1,0,0,0,0,0,-1,0,1], [0,1,-1,-2,-2,0,0,-1,2,0,0,-1,0,-1,0,0,2,0,0,0,1,-1,-1,-1], [1,0,-1,0,-1,0,1,-1,1,0,0,0,0,1,0,0,1,0,-1,-1,-1,0,-1,-2], [1,-1,-1,-1,-1,0,1,0,1,1,1,-1,0,-1,0,0,1,0,1,0,0,0,-1,-2], [0,2,-1,-2,-2,1,-1,0,1,1,1,0,1,0,1,-1,1,1,1,-1,1,0,0,0], [-1,1,0,-1,-1,0,-1,0,0,-1,0,0,0,-1,0,-1,0,1,1,0,1,-1,1,1], [1,-2,-1,-1,0,-1,1,-1,0,-1,-1,-2,-1,-2,-2,1,0,0,0,2,-1,0,-1,0], [0,-1,1,1,1,-1,2,0,0,0,-1,2,0,1,0,0,-1,0,0,0,-1,0,0,0], [1,-2,0,0,0,-1,1,0,0,1,-1,-1,0,-1,-1,1,0,-1,0,1,0,0,-1,-1], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-2,1,1,1,1,0,1,-1,0,0,0,-1,0,-1,1,0,0,0,0,-1,0,-1,0], [-1,0,1,1,1,-1,-1,0,-1,0,-1,0,0,0,0,0,-1,-1,-1,1,1,0,1,1], [0,-2,0,0,1,1,0,1,-1,0,0,0,-1,0,-1,0,0,0,1,1,-1,0,0,0], [0,-1,-1,0,1,0,-1,0,-1,0,0,-2,0,-1,-1,1,0,0,0,2,0,1,0,1], [-1,2,-1,-1,-1,0,-1,-1,1,0,0,-1,1,0,1,0,1,0,-1,0,1,0,0,0], [1,-2,-2,-1,0,0,1,-1,1,0,0,-2,0,-1,-1,1,1,0,0,1,-1,0,-1,-2], [1,1,-1,-1,-1,-1,1,-1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,-1]]]], [ # Q-class [24][42] [[4], [1,4], [0,1,4], [1,0,1,4], [1,1,1,1,4], [0,1,2,1,1,4], [1,0,1,2,2,2,4], [0,1,2,1,1,2,1,4], [1,1,1,1,0,1,1,2,4], [1,1,1,1,2,1,1,1,0,4], [1,1,1,1,2,2,2,2,1,1,4], [1,1,1,1,0,2,2,1,1,0,1,4], [1,1,1,1,1,2,2,1,0,1,2,2,4], [2,1,0,1,1,1,2,0,1,1,2,1,2,4], [2,1,0,1,2,1,2,1,0,1,2,1,2,2,4], [1,2,1,0,1,1,1,1,1,0,1,2,1,1,1,4], [1,1,1,1,1,1,2,0,0,0,1,2,1,1,1,1,4], [1,2,1,0,1,1,0,1,2,0,1,1,0,0,0,2,1,4], [0,1,2,1,1,1,1,1,1,0,1,1,1,1,0,2,1,1,4], [1,2,1,0,2,0,0,0,0,2,1,0,1,1,1,1,1,2,1,4], [1,1,1,1,2,0,1,0,1,0,1,0,0,1,0,1,2,2,2,2,4], [1,1,1,1,2,1,2,0,0,0,2,1,1,2,1,1,2,1,1,1,2,4], [1,0,1,2,2,1,2,1,0,1,2,1,1,1,2,0,1,0,1,1,1,2,4], [1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,2,1,1,2,0,1,2,1,4]], [[[0,-1,-1,0,-2,1,-1,0,1,2,0,0,0,-3,3,0,0,-1,2,0,1,3,-2,-1], [1,0,0,0,1,1,2,1,-1,-3,0,0,-1,1,-2,0,0,-1,-1,3,-1,-2,0,1], [2,3,2,1,7,1,6,1,-2,-11,2,1,-4,6,-10,-2,0,-3,-5,9,-5,-11,2,6], [0,0,0,0,0,0,1,0,0,-1,1,1,-1,-1,0,-1,-1,-1,0,2,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0], [2,2,1,1,6,1,4,1,-1,-9,2,1,-3,4,-8,-1,0,-4,-4,8,-4,-8,1,5], [1,1,1,1,4,1,2,0,0,-6,2,1,-2,2,-5,-1,0,-3,-3,6,-3,-5,0,4], [0,0,0,0,-1,0,1,1,-1,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0], [-1,-1,0,0,-2,0,-1,0,0,2,0,1,0,-1,3,0,-1,0,1,-1,2,2,-1,-1], [0,0,0,0,1,0,1,0,0,-1,0,0,0,0,-1,0,0,0,0,1,-1,-1,0,1], [0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,1,1,1,4,1,3,1,-1,-7,2,1,-3,3,-6,-1,0,-3,-3,7,-3,-6,0,4], [1,0,0,0,1,1,1,0,0,-2,1,0,-1,0,-2,0,0,-2,-1,3,-1,-2,0,2], [0,-1,-1,0,-1,1,-1,0,1,1,0,0,0,-2,2,0,0,-1,1,1,0,2,-1,0], [0,-1,-1,0,-2,1,-1,0,1,2,0,-1,1,-3,2,1,0,-1,1,0,1,3,-1,-1], [1,0,0,1,1,1,1,1,-1,-3,0,0,-1,1,-2,0,0,-1,-1,3,-1,-2,0,1], [2,2,1,1,5,1,4,1,-2,-8,2,1,-3,4,-7,-2,0,-2,-3,7,-4,-7,0,4], [1,1,1,1,3,0,3,1,-2,-5,1,1,-2,3,-4,-1,0,-1,-2,4,-2,-5,0,2], [0,0,0,0,-2,0,0,0,-1,1,0,0,0,-1,2,0,-1,1,1,-1,1,1,0,-1], [0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0], [0,0,0,0,-1,0,0,0,-1,1,0,1,0,-1,2,-1,-1,1,1,-1,1,1,-1,-1], [2,2,1,1,6,1,4,1,-1,-9,2,1,-3,4,-8,-2,1,-3,-4,8,-5,-8,1,5], [0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0], [2,1,0,1,2,1,3,1,-1,-5,1,0,-2,1,-4,-1,0,-2,-1,5,-3,-3,0,2]], [[2,2,1,1,7,1,5,1,-1,-10,2,1,-4,5,-9,-2,1,-3,-4,9,-6,-9,1,6], [0,0,0,0,0,0,0,1,-1,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0], [-2,-2,-1,-1,-5,-1,-4,0,0,8,-2,-1,3,-3,7,2,0,4,3,-8,4,7,0,-5], [-1,-1,-1,0,-3,0,-1,0,0,4,-1,0,1,-2,4,0,-1,2,2,-3,2,4,-1,-2], [-1,0,0,0,-1,0,0,0,-1,1,0,0,0,0,1,0,0,1,0,-1,1,0,0,0], [-1,-1,-1,0,-2,0,-2,0,0,3,-1,0,1,-1,3,1,0,1,1,-3,2,3,0,-2], [-1,0,-1,0,-1,0,-1,0,0,2,-1,0,1,-1,2,0,0,1,1,-2,1,2,0,-1], [-1,-1,0,0,-1,0,-2,0,0,2,-1,0,1,0,2,1,0,1,0,-2,1,2,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0], [0,0,0,0,0,1,1,0,0,-1,0,0,-1,0,0,0,0,-1,-1,2,0,-1,0,1], [-1,-1,-1,0,-3,0,-2,0,0,4,-1,0,1,-2,4,1,0,1,2,-3,2,4,-1,-2], [0,0,-1,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0], [-1,-1,-1,0,-2,0,-2,0,1,3,-1,0,1,-2,3,1,0,0,1,-2,2,3,0,-1], [0,0,-1,0,-1,0,0,0,0,1,0,0,0,-1,1,0,0,0,1,0,0,1,0,0], [1,1,0,1,3,1,2,1,-1,-5,1,1,-2,2,-4,-1,0,-2,-2,5,-2,-4,0,3], [0,1,0,0,1,0,1,1,-1,-2,0,0,-1,2,-2,0,0,0,-1,1,-1,-2,1,1], [0,0,-1,0,0,0,0,1,-1,1,-1,0,0,0,0,0,0,1,1,-1,0,1,0,-1], [0,0,0,0,0,0,1,1,-1,-1,0,0,-1,1,-1,0,0,0,0,1,-1,0,0,0], [-1,0,0,0,-2,-1,-1,0,-1,3,-1,-1,1,0,2,1,0,3,1,-4,1,2,1,-2], [0,0,0,0,-1,0,1,1,-1,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0], [-1,0,0,0,-1,-1,0,0,-1,2,0,0,0,0,1,0,0,2,1,-2,0,1,0,-1], [-2,-2,-2,-1,-6,-1,-4,0,0,9,-2,-1,3,-4,8,1,0,4,5,-8,4,8,-1,-5], [-1,-1,-1,0,-3,0,-2,0,0,4,-1,0,1,-2,4,0,0,2,2,-3,2,4,-1,-2], [-1,-1,-1,0,-2,0,-2,0,0,3,-1,-1,1,-1,3,1,0,2,2,-3,1,3,0,-2]]]], [ # Q-class [24][43] [[8], [1,8], [2,2,8], [2,4,2,8], [2,4,4,2,8], [1,2,2,1,2,8], [4,1,2,2,0,2,8], [2,2,2,2,0,4,4,8], [4,1,2,4,3,0,2,1,8], [4,0,4,1,2,2,3,4,2,8], [0,2,2,1,2,4,0,2,2,2,8], [1,4,4,3,2,4,2,4,1,2,2,8], [3,2,2,1,4,0,0,2,2,4,1,2,8], [1,2,2,1,4,2,0,2,1,2,3,0,4,8], [2,2,2,3,4,2,1,2,3,2,1,4,2,2,8], [4,2,4,2,3,1,2,1,4,2,2,2,1,2,3,8], [2,2,1,4,1,2,4,3,2,2,1,1,2,1,1,0,8], [2,1,2,1,1,2,2,4,2,4,4,2,3,2,1,0,2,8], [1,4,0,2,2,4,1,2,0,2,3,2,2,4,2,1,2,2,8], [2,2,3,4,0,2,4,2,2,1,2,4,0,0,1,4,2,0,1,8], [2,3,4,2,3,2,2,2,4,2,4,4,2,1,2,2,1,4,1,2,8], [2,1,4,3,4,1,2,0,4,2,2,1,2,2,1,2,2,0,0,3,2,8], [4,0,0,2,1,1,2,1,4,2,2,0,3,2,1,0,4,4,1,0,2,2,8], [-1,2,2,1,4,4,0,2,2,0,3,2,0,4,2,1,0,1,2,0,2,2,1,8]], [[[0,-1,-1,0,2,0,0,0,0,0,0,1,-1,1,-1,0,0,0,0,0,0,0,0,-1], [0,-1,-1,0,2,-1,-1,1,0,0,0,2,-2,1,-1,0,0,0,0,0,0,0,1,-1], [0,0,-1,0,0,0,0,-1,0,1,0,1,0,1,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-2,0,0,0,-1,-1,-1,1,-1,1,-1,1,0,1,1,1,-1,0,1,1,0,0], [0,0,-1,-1,1,0,-1,0,1,1,-1,2,-2,2,-1,0,1,0,-1,0,0,0,0,-1], [0,0,0,-1,1,0,0,0,1,0,0,1,-1,1,0,-1,0,0,0,0,-1,0,0,-1], [0,-1,0,0,1,0,0,0,1,0,0,2,-1,1,-1,0,0,0,0,-1,-1,0,0,-1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,-1,-1,0,2,-1,-1,1,0,1,0,2,-2,1,-1,0,0,-1,0,0,0,0,1,-1], [0,-1,-1,1,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,-1,1,1,0,0], [0,0,-1,0,-1,0,0,-1,0,0,0,1,0,1,0,1,1,1,-1,-1,0,1,-1,0], [0,-1,-1,0,2,-1,-1,0,0,1,0,2,-2,1,-1,0,1,0,0,0,0,0,0,-1], [0,-1,-1,0,2,-1,0,0,0,0,0,2,-1,1,-1,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,-1,2,-1,-1,1,1,0,0,2,-2,1,-1,0,1,0,0,0,0,0,0,-1], [-1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,1,-1], [0,0,-1,0,0,0,0,-1,0,1,0,1,-1,1,0,0,0,0,-1,0,0,0,0,0], [0,1,0,0,-1,1,0,-1,0,0,0,-1,1,0,1,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,-1,-1,0,-1,-1,0,1,-1,1,-1,1,0,1,1,1,-1,0,0,1,0,0]], [[0,1,0,0,-2,1,0,-1,-1,0,-1,-2,1,-1,1,1,0,1,0,0,1,1,0,1], [0,0,0,0,1,0,0,1,-1,0,0,-1,0,-1,0,0,-1,0,0,1,0,0,1,0], [0,1,0,-1,-1,1,-1,0,0,0,-1,-1,0,0,1,0,0,1,0,1,0,1,0,0], [0,1,1,0,-1,0,0,0,-1,0,0,-2,1,-1,1,0,-1,0,0,1,0,0,1,1], [0,1,-1,-1,0,0,-1,0,0,1,-1,0,-1,0,0,0,0,1,0,1,0,1,0,0], [1,1,0,0,-1,1,0,-1,1,0,0,0,0,1,0,-1,0,1,-1,0,-1,0,-1,0], [0,1,-1,0,-2,1,0,-1,-1,0,-1,-1,1,0,1,1,0,1,-1,0,1,1,0,1], [1,1,0,0,-2,1,0,-1,0,0,0,-1,1,0,1,0,0,1,-1,0,0,0,-1,1], [0,1,0,0,-2,0,0,-1,-1,0,0,-1,1,-1,1,1,0,1,0,0,0,1,0,1], [0,1,0,0,-2,1,-1,0,-1,0,-1,-2,1,-1,1,1,0,1,0,0,1,1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0], [1,1,0,0,-2,1,0,-1,-1,0,0,-1,1,0,1,0,0,1,-1,0,0,1,-1,1], [0,0,-1,0,0,0,-1,0,-1,1,-1,0,-1,0,0,1,0,1,0,0,1,1,0,0], [0,0,-1,0,1,0,-1,0,0,1,-1,0,-1,0,0,0,0,1,0,1,0,0,0,0], [1,1,0,0,-2,0,0,-1,-1,0,0,-1,1,-1,1,0,0,1,0,0,0,1,-1,2], [0,1,0,0,-2,1,0,-1,-1,0,-1,-1,1,-1,1,1,0,1,0,0,0,1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,1,1,0,0,1,-1,0,0,-1,0,-1,0,0,-1,0,0,0,0,0,1,0], [0,1,0,0,-2,1,0,-1,-1,0,-1,-1,1,0,1,1,0,1,-1,0,0,1,0,1], [0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0], [0,1,0,-1,-1,0,-1,0,0,0,-1,-1,0,0,1,0,0,1,0,1,0,1,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [1,1,-1,-1,0,0,-1,-1,1,1,0,1,-1,1,0,-1,1,1,-1,1,-1,0,-1,0]]]], [ # Q-class [24][44] [[10], [0,10], [3,-3,14], [3,-3,-1,16], [5,-5,6,4,16], [-1,1,-4,4,-6,16], [4,0,-3,-1,3,1,16], [3,1,-2,-5,-1,-3,8,16], [5,-5,6,4,8,-8,0,-2,16], [0,0,-3,5,3,-2,3,0,3,10], [-1,-3,1,0,2,-5,-5,0,1,2,10], [0,-2,5,0,5,1,5,1,2,0,-1,10], [0,0,-6,5,3,-2,-2,-5,3,5,2,-3,16], [-3,-5,4,1,5,-8,-4,-3,8,4,5,0,-1,16], [-5,0,0,0,-1,-1,1,-3,-1,0,-1,3,-3,3,10], [0,0,-2,-5,-3,2,5,8,-3,0,0,1,-5,0,0,10], [0,1,-2,-4,-1,3,5,2,-4,0,0,3,0,-5,0,2,10], [1,1,5,0,-3,-2,-8,-7,5,-1,0,-3,4,-1,-2,-5,-4,18], [0,-2,0,0,-3,2,-3,-4,2,-3,1,0,2,0,0,-1,0,2,10], [2,-3,-4,-3,4,2,5,6,1,2,0,2,1,1,-4,6,4,-5,0,18], [-2,0,2,0,3,-2,-5,-4,-2,-1,3,0,4,0,1,-3,-1,4,0,-3,10], [3,-1,7,0,4,-1,1,-1,4,0,1,5,-3,0,0,-1,3,0,0,-2,0,10], [-2,0,3,1,2,0,-3,1,2,1,0,2,-3,4,1,0,-1,-1,-2,3,0,1,10], [0,-4,1,8,7,-2,3,-3,6,5,-2,4,5,4,3,-3,-4,2,-3,-1,3,-1,1,16]], [[[-2,1,1,0,1,1,0,1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0], [-1,0,-1,1,1,-1,0,0,-1,0,-1,0,-1,0,-1,1,0,1,1,0,0,1,0,0], [2,-1,1,-1,-2,1,0,0,1,1,0,1,1,0,1,-1,-1,-1,-2,0,1,-1,0,-1], [0,0,0,-1,0,1,0,1,0,0,0,0,0,1,0,-2,0,0,0,0,0,0,0,0], [0,0,1,-1,-1,1,1,0,1,0,1,0,1,0,0,-1,-1,-1,-1,0,0,0,0,0], [0,0,-2,0,2,0,0,1,-2,-1,0,0,0,1,0,0,0,2,1,-1,-1,1,1,0], [-2,1,0,1,2,-1,1,0,-1,-1,0,-1,0,0,0,1,0,1,1,0,-1,1,0,0], [-2,1,2,1,0,-1,0,-1,1,0,0,-1,0,-2,0,1,0,-1,0,1,0,0,-1,0], [-1,1,2,0,-1,1,1,0,2,0,1,-1,0,0,0,-1,0,-1,-1,1,1,-1,-1,0], [0,0,-1,0,0,-1,0,-1,0,0,0,1,-1,0,-1,0,0,0,0,0,0,0,0,0], [1,-1,0,-1,-1,0,-1,-1,1,1,0,1,0,-1,0,0,0,-1,-1,0,0,-1,0,0], [1,-1,0,0,-1,-1,1,-1,-1,0,0,1,1,0,0,0,-1,0,-1,0,0,0,1,-1], [0,0,-1,0,0,0,0,0,0,-1,0,1,0,1,-1,0,0,0,0,0,0,0,0,0], [2,-1,0,-1,-2,0,0,-1,1,1,0,1,0,0,0,-1,0,-1,-1,0,1,-1,0,0], [1,-1,0,0,-1,-1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,-1,0,-1,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0], [-1,0,-1,1,1,-1,0,0,-1,-1,0,0,0,0,0,1,0,1,0,0,-1,1,0,0], [1,0,0,0,-1,1,0,0,1,0,0,1,0,1,0,0,0,0,-1,0,1,-1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [-2,1,0,1,0,-1,1,-1,1,-1,1,0,0,-1,-1,1,0,0,0,0,0,0,0,0], [2,-1,0,-1,-2,0,0,-1,0,0,0,1,1,0,0,0,-1,-1,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,1,0,-2,0,1,-1,1,0,1,0,0,-1,0,-1,-1,-1,-1,1,1,0,0,0], [2,-1,0,-1,-2,0,1,-1,0,0,0,1,1,1,0,-1,-1,-1,-1,0,1,0,1,-1]], [[0,1,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0], [2,-1,0,-1,-2,0,0,-1,0,0,1,1,1,0,0,0,-1,-1,-1,0,0,0,1,0], [-1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,1,0,1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,1,0,1], [0,0,1,0,0,-1,-1,-1,0,1,-1,0,0,-1,0,1,0,-1,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,-1,0,1,0,0,1,-2,-1,0,0,0,1,0,-1,0,1,1,0,-1,1,0,1], [1,0,0,-1,-2,1,0,0,2,0,1,1,0,0,0,-1,0,-1,-1,0,1,-1,0,0], [-1,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [2,-1,0,-1,-2,0,0,-1,0,0,0,1,1,0,0,0,-1,-1,-1,0,1,0,1,0], [-1,1,-1,0,2,1,0,1,1,0,0,-1,-1,0,0,0,1,1,1,-1,0,0,0,0], [0,-1,-1,0,-1,0,0,0,1,0,0,1,0,0,0,0,0,0,-1,0,1,0,0,-1], [1,-1,0,0,-1,0,0,0,0,0,-1,1,1,1,0,0,0,0,-1,0,1,0,0,-1], [1,-1,-1,0,0,-1,-1,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,-1,0,0,-1,0,-1,-1,0,-1,1,0,0,-1,1,0,0,0,-1,0,0,1,0], [1,0,1,-1,-1,0,0,-1,1,1,1,0,0,-1,0,0,0,-1,0,0,0,-1,0,0], [1,0,0,0,-1,0,0,-1,1,0,0,1,0,0,0,0,0,-1,-1,0,1,-1,0,-1], [-2,1,0,1,1,-1,0,0,0,-1,0,-1,-1,-1,-1,1,1,0,1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0], [2,-1,0,-1,-2,0,0,-1,0,0,0,1,1,0,0,0,-1,-1,-1,0,0,0,1,0], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]], [[-1,0,0,0,1,0,0,0,0,1,0,-1,-1,-1,0,0,0,0,1,0,0,0,0,0], [0,0,1,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0], [0,0,-1,0,1,1,0,1,0,0,0,0,0,1,1,-1,0,1,0,0,0,0,0,-1], [1,-1,-2,0,0,-1,-1,-1,0,1,-1,2,-1,0,-1,1,0,0,0,-1,1,0,0,-1], [1,-1,0,-1,-1,1,0,0,1,1,0,0,0,0,1,-1,-1,-1,-1,0,1,0,0,-1], [0,0,-1,1,0,-2,-1,-1,0,0,-1,1,-1,-1,-1,1,1,0,0,0,0,0,0,0], [1,-1,0,-1,-1,0,0,0,0,1,-1,0,0,0,0,-1,0,-1,0,0,1,0,0,0], [0,0,1,-1,-1,0,1,-1,0,0,1,-1,0,-1,0,-1,-1,-1,0,1,0,0,0,1], [-1,0,-1,0,2,1,0,1,0,0,0,-1,-1,1,0,0,1,1,1,-1,0,0,0,0], [2,-1,-1,-1,0,0,-1,0,-1,1,-1,1,0,1,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [1,-1,-1,0,-1,0,0,0,0,0,-1,1,0,1,0,-1,0,0,-1,0,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,-1,0,0,0,0,0,-1,1,1,1,0,0,0,0,-1,0,1,0,0,-1], [0,0,1,0,-1,-1,0,-1,0,0,0,-1,0,-1,0,0,0,-1,0,1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,2,1,-1,2,-1,0,0,0,0,1,1,0,1,2,1,-1,-1,0,0,0], [-2,1,0,2,1,-1,1,0,0,-1,0,-1,-1,0,-1,1,1,1,1,0,0,0,0,0], [0,0,1,0,-1,-1,0,-1,0,0,0,-1,-1,-1,0,0,0,-1,0,1,0,0,0,1], [1,-1,0,0,-1,0,0,0,0,0,0,1,1,0,1,0,-1,0,-1,0,0,0,0,-1], [1,-1,-2,0,1,0,0,0,-1,0,-1,1,0,1,0,0,0,1,0,-1,0,0,1,-1], [0,0,-1,0,1,0,0,0,-1,-1,0,0,0,1,0,0,0,1,0,0,-1,1,0,0], [2,-2,-2,-1,-1,0,-1,0,0,1,-1,2,0,1,0,0,0,0,-1,-1,1,0,0,-1]]]], [ # Q-class [24][45] [[16], [6,16], [8,6,16], [5,3,1,16], [6,0,6,5,16], [4,3,5,6,4,16], [4,6,8,6,0,5,16], [8,6,4,6,0,8,4,16], [5,8,1,1,0,5,5,5,16], [5,0,1,6,8,8,1,4,4,16], [6,8,6,0,8,4,3,3,5,5,16], [5,8,1,6,0,2,5,5,8,4,5,16], [2,4,1,4,5,6,6,2,8,6,5,4,16], [5,3,1,3,5,6,1,6,5,6,8,6,5,16], [5,3,4,6,4,1,4,5,5,5,4,6,6,8,16], [1,0,5,5,8,4,5,0,0,8,3,0,5,3,5,16], [1,3,5,8,5,4,5,4,0,5,0,3,1,3,5,8,16], [1,8,5,0,0,6,5,5,8,0,3,0,4,2,0,4,3,16], [4,4,5,4,3,-3,6,0,5,0,3,5,-1,0,6,5,4,5,16], [4,3,5,4,4,5,6,6,5,4,3,0,5,-1,2,8,5,6,5,16], [8,0,4,3,6,4,0,8,4,5,3,4,2,3,6,5,1,0,4,6,16], [1,0,5,2,8,4,5,0,4,8,5,4,6,5,4,8,5,0,3,4,5,16], [1,5,2,5,4,5,3,0,5,4,4,2,4,0,-1,8,3,6,6,8,3,4,16], [5,8,1,3,0,2,6,6,8,1,5,8,8,1,6,-3,-3,0,2,2,5,1,-1,16]], [[[0,-2,2,2,-2,-3,0,-3,-1,2,0,-1,-1,3,-1,-2,1,3,-2,1,2,0,1,3], [0,-2,3,3,-3,-2,-2,-3,0,1,0,-1,-1,3,-2,0,1,2,-1,1,1,0,0,4], [0,-1,1,1,-1,-1,-1,0,1,0,0,-1,0,1,-1,1,0,0,0,0,0,0,0,1], [0,0,0,0,0,-1,1,-1,-1,1,-1,0,-1,1,0,-1,0,1,-1,0,1,0,1,1], [1,-1,-1,0,0,0,0,-1,-1,0,0,0,-1,0,1,-1,0,2,-1,0,0,1,1,1], [-1,0,1,1,-1,-1,0,-1,0,1,0,-1,0,1,-1,0,0,0,0,0,1,0,0,1], [0,-1,1,1,-1,-1,-1,0,0,0,0,0,0,1,-1,1,0,0,0,0,0,0,0,1], [0,-2,2,2,-2,-3,0,-3,-1,2,0,-1,-2,3,-1,-1,1,3,-2,1,1,0,1,4], [-1,0,2,2,-2,-1,-1,-1,0,1,0,-1,1,2,-2,0,0,0,1,0,1,0,-1,1], [0,0,-1,0,0,0,1,-1,-1,1,0,0,0,0,0,-1,0,1,0,0,1,0,0,0], [1,-1,0,1,-1,0,-1,-2,-1,0,0,0,-1,1,0,0,0,2,-1,1,0,1,0,2], [0,0,1,1,-1,-1,0,-2,-1,1,-1,0,0,2,-1,-1,0,1,0,1,1,0,0,1], [1,-1,0,1,-2,0,-1,-1,-1,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1], [0,0,0,1,-1,-1,0,-2,-1,1,0,0,-1,1,0,-1,0,2,-1,1,1,1,0,1], [1,0,-1,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,3,-3,-2,2,2,1,2,0,-1,-1,0,1,-2,1,1,-1,-2,2,-1,0,0,-1,-3], [-1,0,1,1,-1,0,-1,0,1,0,0,-1,0,1,-1,1,0,-1,1,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0], [-1,0,1,1,-1,-1,0,-1,0,1,0,-1,0,2,-1,0,0,0,0,0,1,-1,0,1], [0,-2,2,2,-2,-3,0,-3,-1,2,0,-1,-1,3,-1,-2,1,3,-2,1,1,0,1,3], [0,-1,1,1,-1,-1,-1,-1,0,1,0,0,0,1,-1,0,0,1,0,0,0,0,0,1], [-2,2,1,1,0,0,0,0,1,1,-1,-1,1,1,-1,0,-1,-2,1,0,1,-1,-1,-1], [2,-5,3,3,-4,-3,-2,-4,-2,1,1,0,-2,3,-1,-1,2,5,-3,1,0,1,2,6]], [[0,-4,4,3,-3,-4,-1,-5,-1,2,0,0,-3,4,-1,-2,2,5,-4,2,1,0,2,6], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [1,-4,3,2,-2,-3,-1,-3,-1,1,0,0,-2,3,-1,-1,2,4,-3,1,0,0,2,5], [2,-4,2,2,-3,-2,-2,-4,-1,0,1,0,-2,2,0,-1,2,4,-3,1,0,1,2,5], [1,-3,2,1,-2,-2,-1,-3,-1,1,0,0,-2,3,-1,-1,2,3,-2,1,0,0,2,5], [1,-5,3,3,-3,-3,-2,-4,-1,1,1,0,-2,3,-1,-1,2,5,-3,1,0,0,2,6], [1,-3,2,1,-1,-2,-1,-1,0,0,0,0,-1,1,0,0,1,2,-2,0,-1,0,2,3], [0,-3,3,3,-2,-3,-1,-4,0,1,0,0,-2,3,-1,-1,1,4,-3,1,1,0,1,4], [-1,-1,2,1,-1,-1,-1,0,1,0,0,0,0,1,-1,1,0,0,0,0,0,-1,0,1], [2,-3,0,0,-1,-1,-1,-2,-2,0,0,1,-2,1,1,-1,1,4,-2,1,-1,1,2,4], [0,1,-1,-1,1,1,0,1,0,-1,-1,0,0,0,0,1,0,-1,1,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-3,1,0,-1,-1,-1,-1,-1,0,0,1,-1,1,0,0,1,2,-1,0,-1,0,2,3], [0,-1,1,1,-1,-1,-1,-1,0,0,0,0,0,1,-1,0,1,1,0,0,0,0,0,2], [2,-2,0,0,-1,0,-1,-1,-1,-1,0,1,-1,0,1,0,1,2,-1,0,-1,1,1,2], [2,-3,0,-1,0,0,-1,0,-1,-1,0,1,-1,0,1,0,1,2,-1,0,-2,1,2,3], [3,-4,0,0,-1,-1,-1,-2,-1,-1,1,1,-2,0,1,0,2,4,-3,0,-1,1,2,4], [-1,-1,2,1,0,-1,-1,0,1,0,0,0,0,1,-1,1,0,0,0,0,0,-1,0,1], [0,0,1,0,0,0,-1,1,1,-1,0,0,0,0,0,1,0,-1,0,0,-1,0,0,0], [1,-4,2,1,-1,-2,-1,-2,0,0,0,1,-2,2,0,0,1,3,-3,1,-1,0,2,4], [0,-3,3,2,-2,-2,-1,-3,0,1,0,0,-2,3,-1,-1,1,3,-2,1,0,0,1,4], [1,-2,1,0,-1,-1,-1,0,0,0,0,0,0,1,-1,0,1,1,0,0,-1,0,1,2], [0,0,0,-1,0,1,-1,1,0,-1,0,0,1,0,0,1,0,-1,1,0,-1,0,0,0], [0,-1,1,1,-1,-1,0,-1,0,0,0,0,-1,1,0,0,0,1,-1,0,0,0,1,1]], [[1,-5,3,3,-3,-4,-1,-5,-1,2,1,0,-3,4,-1,-2,2,5,-4,2,1,0,2,6], [1,-3,1,1,-1,-2,0,-1,0,0,1,0,-1,1,0,0,1,2,-2,0,0,0,1,2], [0,-1,0,1,0,-1,0,-1,0,0,0,0,-1,1,0,0,0,1,-1,1,0,0,0,1], [1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,-2,1,1,-1,-2,0,-2,0,1,0,0,-2,2,0,-1,1,2,-2,1,0,0,1,3], [1,-2,0,0,0,-1,0,-2,-1,0,0,1,-2,1,1,-1,1,3,-2,1,0,0,1,2], [2,0,-3,-2,1,2,0,1,-1,-2,0,1,0,-2,2,1,0,0,0,0,-1,1,0,-1], [1,-2,1,1,-1,-2,0,-3,-1,1,0,0,-1,2,0,-2,1,3,-2,1,1,0,1,2], [2,-3,0,0,-1,0,-1,-1,-1,-1,1,1,-1,0,1,0,1,2,-1,0,-1,1,1,2], [0,-2,2,1,-1,-2,-1,-2,0,1,0,0,-2,2,0,-1,1,2,-2,1,0,0,1,3], [0,-3,2,2,-2,-3,0,-3,0,1,1,0,-2,2,0,-1,1,3,-3,1,1,0,1,3], [0,0,0,-1,0,0,0,1,0,0,0,0,1,0,0,0,0,-1,1,0,0,0,0,-1], [2,-2,-1,-1,0,0,0,-1,-1,-1,0,1,-2,0,2,0,1,2,-2,0,-1,1,2,2], [-1,-2,3,2,-2,-3,0,-3,0,2,0,0,-1,3,-1,-2,1,2,-2,1,2,-1,1,2], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,-1], [0,0,0,0,0,0,-1,1,1,-1,0,0,0,0,0,1,0,-1,0,0,-1,0,0,0], [0,-1,1,1,-1,-1,-1,0,1,0,0,-1,0,1,-1,0,1,0,0,0,0,0,0,1], [2,-3,0,1,-1,-1,-1,-1,-1,-1,1,1,-1,0,1,0,1,3,-2,0,-1,1,1,2], [1,0,-1,0,-1,1,-1,1,0,-1,1,0,1,-1,0,1,0,-1,1,0,-1,1,-1,-1], [2,-2,-1,0,-1,0,-1,-1,-1,-1,1,0,-1,0,1,0,1,2,-1,0,-1,1,1,2], [0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,-1,0,0,0,1,0,0,0,0], [-1,3,-2,-2,2,2,1,2,0,-1,-1,0,1,-1,1,0,-1,-3,2,0,0,0,-1,-3], [1,-1,0,0,-1,0,-1,0,0,-1,1,0,0,0,0,1,1,0,0,0,-1,0,0,1], [2,-1,-2,-2,1,1,1,0,-1,-1,0,1,-1,-1,2,0,0,1,-1,0,-1,1,1,0]]]], [ # Q-class [24][46] [[4], [2,4], [2,1,4], [1,2,2,4], [2,1,2,1,4], [1,2,1,2,2,4], [2,1,2,1,2,1,4], [1,2,1,2,1,2,2,4], [2,1,2,1,2,1,2,1,4], [1,2,1,2,1,2,1,2,2,4], [2,1,2,1,2,1,2,1,2,1,4], [1,2,1,2,1,2,1,2,1,2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,2,1,2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,2,1,2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,2,1,2,1,2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,2,1,2,1,2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,2,1,2,1,2,1,2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,2,1,2,1,2,1,2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,2,1,2,1,2,1,2,1,2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,2,1,2,1,2,1,2,1,2,2,4]], [[[0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,-1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,-1,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [24][47] [[8], [4,8], [4,2,8], [2,4,4,8], [-2,-1,2,1,8], [-1,-2,1,2,4,8], [0,0,-2,-1,2,1,8], [0,0,-1,-2,1,2,4,8], [4,2,0,0,-4,-2,2,1,8], [2,4,0,0,-2,-4,1,2,4,8], [4,2,4,2,-2,-1,-4,-2,2,1,8], [2,4,2,4,-1,-2,-2,-4,1,2,4,8], [0,0,0,0,0,0,0,0,0,0,0,0,8], [0,0,0,0,0,0,0,0,0,0,0,0,4,8], [0,0,0,0,0,0,0,0,0,0,0,0,4,2,8], [0,0,0,0,0,0,0,0,0,0,0,0,2,4,4,8], [0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,2,1,8], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,1,2,4,8], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,2,1,8], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,1,2,4,8], [0,0,0,0,0,0,0,0,0,0,0,0,4,2,0,0,-4,-2,2,1,8], [0,0,0,0,0,0,0,0,0,0,0,0,2,4,0,0,-2,-4,1,2,4,8], [0,0,0,0,0,0,0,0,0,0,0,0,4,2,4,2,-2,-1,-4,-2,2,1,8], [0,0,0,0,0,0,0,0,0,0,0,0,2,4,2,4,-1,-2,-2,-4,1,2,4,8]], [[[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,-1,1,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,0,0,-1,1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,-1,-1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,1,-1,-1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [24][48] [[8], [-2,8], [-4,2,8], [0,-4,2,8], [2,4,0,-4,8], [0,-2,0,-2,0,8], [2,-2,2,4,0,-2,8], [0,0,2,0,0,2,0,8], [-2,2,0,-2,0,0,2,-2,8], [4,0,0,0,4,0,2,0,0,8], [-2,0,4,4,-2,0,4,0,2,2,8], [2,0,-2,-2,2,2,2,2,4,4,2,8], [4,-1,-2,0,1,0,1,0,-1,2,-1,1,8], [-1,4,1,-2,2,-1,-1,0,1,0,0,0,-2,8], [-2,1,4,1,0,0,1,1,0,0,2,-1,-4,2,8], [0,-2,1,4,-2,-1,2,0,-1,0,2,-1,0,-4,2,8], [1,2,0,-2,4,0,0,0,0,2,-1,1,2,4,0,-4,8], [0,-1,0,-1,0,4,-1,1,0,0,0,1,0,-2,0,-2,0,8], [1,-1,1,2,0,-1,4,0,1,1,2,1,2,-2,2,4,0,-2,8], [0,0,1,0,0,1,0,4,-1,0,0,1,0,0,2,0,0,2,0,8], [-1,1,0,-1,0,0,1,-1,4,0,1,2,-2,2,0,-2,0,0,2,-2,8], [2,0,0,0,2,0,1,0,0,4,1,2,4,0,0,0,4,0,2,0,0,8], [-1,0,2,2,-1,0,2,0,1,1,4,1,-2,0,4,4,-2,0,4,0,2,2,8], [1,0,-1,-1,1,1,1,1,2,2,1,4,2,0,-2,-2,2,2,2,2,4,4,2,8]], [[[-1,0,-2,-1,0,0,1,1,0,1,1,-2,1,0,2,1,0,0,-1,-1,0,-1,-1,2], [1,-2,1,0,2,-1,-2,0,1,-1,1,0,-1,2,-1,0,-2,1,2,0,-1,1,-1,0], [1,0,1,1,0,0,-1,0,1,0,-1,0,-1,0,-1,-1,0,0,1,0,-1,0,1,0], [0,1,0,0,-1,0,1,0,0,0,-1,0,0,-1,0,0,1,0,-1,0,0,0,1,0], [1,-2,0,0,2,-1,-2,1,1,-1,2,-1,-1,2,0,0,-2,1,2,-1,-1,1,-2,1], [0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,-1,0,0], [0,0,-1,0,0,0,0,1,1,0,0,-1,0,0,1,0,0,0,0,-1,-1,0,0,1], [0,0,0,0,0,0,0,1,1,1,0,-1,0,0,0,0,0,0,0,-1,-1,-1,0,1], [1,-1,0,0,1,0,-1,0,1,-1,1,0,-1,1,0,0,-1,0,1,0,-1,1,-1,0], [0,-1,-1,0,1,0,0,1,1,0,1,-2,0,1,1,0,-1,0,0,-1,-1,0,-1,2], [0,0,0,1,0,0,0,0,1,0,-1,0,0,0,0,-1,0,0,0,0,-1,0,1,0], [0,-1,-1,0,1,0,0,1,1,0,1,-1,0,1,1,0,-1,0,0,-1,-1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,1,0,0,-1,-1,0,-1,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,-1,2,-1,0,-2,1,2,0,-1,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,-1,0,0,1,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,2,0,0,-2,1,2,-1,-1,1,-2,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,0,1,0,-1,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,-1,0,0,-1,-1,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,-1,0,0,-1,-1,0,-1,1]], [[-1,0,0,-1,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,1,0,0,-1,-1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,1,1,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,1,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,-1,1,1,-1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,-1,0,-1,0,1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,1,-1,0,-1,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,-1,1,1,0,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,1,1,0,0,-1,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,1,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,-1,-1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,-1,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,1,1,-1,-1,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,0,-1,0,1,0,-1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,0,-1,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,1,1,0,-1,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,-1,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1]]]], [ # Q-class [24][49] [[16], [-4,16], [-8,8,16], [8,-4,-2,16], [-4,-6,2,-4,16], [-6,8,6,0,2,16], [2,6,6,6,-8,4,16], [6,-8,-6,0,0,-8,-6,16], [8,-2,0,0,0,-2,2,8,16], [-8,4,2,0,0,4,2,-4,-8,16], [8,-2,-8,8,-4,-2,-2,0,0,0,16], [8,-2,-8,6,-2,-4,-4,6,0,-2,8,16], [8,-2,-4,4,-2,-3,1,3,4,-4,4,4,16], [-2,8,4,-2,-3,4,3,-4,-1,2,-1,-1,-4,16], [-4,4,8,-1,1,3,3,-3,0,1,-4,-4,-8,8,16], [4,-2,-1,8,-2,0,3,0,0,0,4,3,8,-4,-2,16], [-2,-3,1,-2,8,1,-4,0,0,0,-2,-1,-4,-6,2,-4,16], [-3,4,3,0,1,8,2,-4,-1,2,-1,-2,-6,8,6,0,2,16], [1,3,3,3,-4,2,8,-3,1,1,-1,-2,2,6,6,6,-8,4,16], [3,-4,-3,0,0,-4,-3,8,4,-2,0,3,6,-8,-6,0,0,-8,-6,16], [4,-1,0,0,0,-1,1,4,8,-4,0,0,8,-2,0,0,0,-2,2,8,16], [-4,2,1,0,0,2,1,-2,-4,8,0,-1,-8,4,2,0,0,4,2,-4,-8,16], [4,-1,-4,4,-2,-1,-1,0,0,0,8,4,8,-2,-8,8,-4,-2,-2,0,0,0,16], [4,-1,-4,3,-1,-2,-2,3,0,-1,4,8,8,-2,-8,6,-2,-4,-4,6,0,-2,8,16]], [[[-2,1,-1,0,1,-1,2,1,0,-1,1,0,2,-1,1,0,-1,1,-2,-1,0,1,-1,0], [0,0,0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0,0,1,1,-1,0,0,0], [1,0,0,0,0,0,-1,-1,0,0,-1,0,-1,0,0,0,0,0,1,1,0,0,1,0], [0,-1,0,-1,0,0,1,0,0,0,0,1,0,1,0,1,0,0,-1,0,0,0,0,-1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [1,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0], [-2,2,-2,2,1,-1,1,1,0,-1,0,-1,2,-2,2,-2,-1,1,-1,-1,0,1,0,1], [-2,2,-2,1,1,-1,1,1,0,-1,0,-1,2,-2,2,-1,-1,1,-1,-1,0,1,0,1], [2,-2,1,-1,-1,1,-1,-1,0,1,0,0,-2,2,-1,1,1,-1,1,1,0,-1,0,0], [0,-2,1,-1,-1,0,0,-1,1,1,0,1,0,2,-1,1,1,0,0,1,-1,-1,0,-1], [-1,-1,0,0,-1,0,0,-1,1,0,0,1,1,1,0,0,1,0,0,1,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,2,-1,1,0,-1,1,-2,-1,0,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,1,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,-1,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,-1,1,-1,-1,0,1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-1,-1,1,-1,-1,0,1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-1,1,1,-1,1,1,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,1,1,0,0,1,-1,-1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,1,-1,0,0,-1]], [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,-2,-1,1,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,1,0,1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,0,-1,0,-2,-2,1,1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,-1,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,1,-1,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,-1,-1,1,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,-1,1,0,1,1,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,2,-1,1,0,-1,1,-2,-1,0,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,-1,0,0,0,-1,0], [0,0,0,-1,1,0,2,1,-1,-1,1,0,0,0,0,1,-1,0,-2,-1,1,1,-1,0], [0,-1,1,0,-1,0,-1,-1,0,0,0,0,0,1,-1,0,1,0,1,1,0,0,0,0], [0,1,0,1,0,0,-1,0,0,0,0,-1,0,-1,0,-1,0,0,1,0,0,0,0,1], [-1,1,-1,0,1,0,2,2,-1,-1,1,-1,1,-1,1,0,-1,0,-2,-2,1,1,-1,1], [-1,1,-1,1,1,0,0,0,1,0,0,0,1,-1,1,-1,-1,0,0,0,-1,0,0,0], [-1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0], [1,-1,1,-1,-1,1,0,0,-1,0,0,0,-1,1,-1,1,1,-1,0,0,1,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,1,0,1,1,-1,-1,1,0,0,-1,0,0,-1,0,-1,-1,1,1,-1,0], [-1,0,-1,1,-1,0,-1,-1,1,0,-1,0,1,0,1,-1,1,0,1,1,-1,0,1,0], [-2,1,-1,0,1,-1,2,1,0,-1,1,0,2,-1,1,0,-1,1,-2,-1,0,1,-1,0], [0,-1,0,-1,0,0,1,0,0,0,1,0,0,1,0,1,0,0,-1,0,0,0,-1,0]], [[0,0,0,1,-1,0,-2,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,-1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,1,0,2,1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,-1,0,-1,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,1,0,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,-2,2,-1,-2,1,-2,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,1,-1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,-1,1,-1,0,-1,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-2,1,0,-2,1,-2,-2,1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,-2,-1,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,2,1,-1,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,-1,-1,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,1,0,1,1,-1,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-1,-2,1,-2,-1,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,-1,1,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1,-1,0,-1,-1,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-2,1,0,-2,1,-2,-2,1,1,-1,1]]]], [ # Q-class [24][50] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [24][51] [[4], [0,4], [-2,0,4], [-1,2,2,4], [-2,2,2,2,4], [2,2,-2,0,0,4], [2,0,-2,-1,-2,1,4], [1,-1,1,0,0,-1,1,4], [-1,1,2,2,2,0,-2,-1,4], [-2,-1,2,1,0,-2,-2,0,0,4], [2,0,-2,-2,-2,2,2,0,-2,-1,4], [-1,-2,0,-2,0,-1,0,0,0,0,0,4], [-1,1,2,2,2,-1,-2,0,2,1,-2,-1,4], [-2,-1,2,1,1,-2,-1,1,0,2,-2,0,1,4], [-1,1,1,0,2,0,-2,0,0,1,0,0,1,0,4], [1,2,-1,1,1,2,1,-1,1,-2,0,-1,1,-1,-1,4], [2,0,-2,-1,-2,2,2,-1,0,-2,2,0,-1,-2,-2,1,4], [2,-2,-2,-2,-2,0,1,1,-2,-1,1,0,-1,-1,-1,0,1,4], [2,-1,0,-1,-1,0,1,2,0,-1,1,0,-1,-1,0,-1,1,1,4], [-1,-1,2,1,0,-1,0,1,0,2,0,0,1,2,0,-1,0,-1,0,4], [-2,-2,0,-1,0,-2,-1,0,0,1,-1,2,-1,1,0,-2,-1,0,0,0,4], [1,-1,-1,-2,-1,1,1,0,0,-1,2,2,-1,-2,0,0,2,1,1,0,0,4], [-1,1,2,2,2,-1,-1,1,1,1,-1,0,1,0,1,0,-2,-1,0,0,0,-1,4], [-2,2,0,1,2,0,0,-1,0,0,-1,0,1,1,1,1,-1,-2,-2,0,0,-1,0,4]], [[[0,0,0,0,-1,1,-1,-1,-2,-1,-1,0,1,1,-1,0,-1,-1,1,0,0,1,1,0], [0,0,-1,0,0,-1,0,1,1,0,0,0,-1,0,1,0,1,0,-1,0,-1,-1,0,0], [0,0,0,0,-1,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,1,0,0,-1,0,1,0,1,0,0,1,0,0,1,0,0,1,0,0,0,-1,0,0], [0,0,-1,0,0,-1,0,1,1,0,0,0,-1,0,1,0,1,0,-1,0,-1,0,0,0], [0,0,-1,0,1,0,0,0,0,0,0,0,0,0,-1,-1,-1,0,0,0,-1,0,0,0], [1,0,1,0,0,1,0,-1,-1,0,0,0,1,0,-1,0,-1,0,0,0,1,0,0,0], [1,0,1,0,-2,1,0,-1,0,-1,0,0,1,1,0,0,-1,0,0,0,1,1,1,1], [-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0], [0,1,1,0,-1,0,1,0,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,1,0,-1,-1,-1,0,0,0,0,0,0,0], [0,-1,0,0,1,0,-1,0,-1,0,0,-1,0,-1,-1,0,0,-1,0,0,0,1,0,0], [0,0,0,0,0,0,1,0,0,0,-1,0,0,0,1,0,1,0,0,0,0,0,0,0], [1,-1,1,-1,1,0,2,0,1,1,0,-1,0,0,1,0,1,0,-1,-1,1,0,0,0], [0,0,0,0,0,-1,0,1,1,0,0,0,-1,0,1,0,1,0,-1,0,-1,0,0,0], [0,0,0,0,0,1,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,1,0,-1,-1,0,0,0,1,0,-2,-1,-1,0,1,0,0,0,0,0], [0,1,1,1,-1,1,-1,-1,-2,-1,0,1,1,1,-1,0,-1,0,1,0,1,1,0,0], [0,0,1,0,-2,1,-1,-1,-1,-1,0,0,1,1,-1,0,-1,0,1,0,0,1,1,1], [1,0,1,0,0,1,2,-1,1,0,0,0,1,0,0,-1,-1,1,0,0,1,0,0,0], [-1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,1,0,0,0,1,-1,-1,-1,-1,0,0,1,0,-2,-1,-2,0,1,1,0,1,0,0], [-1,1,0,1,-3,0,-1,1,0,-1,0,1,0,0,1,1,0,0,0,0,0,0,0,0], [1,-1,0,-1,2,-1,1,1,1,1,0,-1,-1,-1,1,0,2,0,-2,0,0,-1,0,0]], [[-1,0,-1,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,1,0,0,1,1,-1,0,-1,0,0,1,0,0,-1,-1,1,0,0,1,0,0,0], [0,0,-1,0,0,0,0,0,1,-1,0,0,0,0,0,-1,-1,0,0,1,-1,0,0,0], [-1,1,0,1,-2,1,0,-1,0,-2,0,1,1,0,0,-1,-2,1,1,1,0,0,0,0], [1,0,1,0,0,1,1,-1,0,-1,0,0,1,0,0,-1,-1,0,0,0,1,0,0,0], [0,0,1,0,1,1,2,-1,0,1,0,0,1,0,0,-1,0,1,0,-1,1,0,0,0], [-1,-2,0,0,1,0,0,1,-1,1,0,-1,0,-1,0,1,1,-1,0,-1,0,0,0,0], [-1,-1,-2,0,2,-1,1,1,1,1,1,0,0,-1,0,0,0,-1,0,0,-1,-1,-1,-1], [1,1,0,1,0,0,0,-1,0,-1,0,1,0,0,0,-1,-1,1,0,1,0,0,0,0], [-1,2,-1,0,-2,0,-1,0,1,-1,0,1,0,1,0,0,-1,1,1,1,-1,0,0,0], [0,-1,0,-1,2,0,1,0,0,2,0,-1,0,0,0,0,1,0,0,-1,0,0,0,0], [1,-1,1,0,1,0,0,0,-1,1,0,0,0,0,0,1,1,-1,0,-1,0,0,0,0], [0,1,0,0,-1,1,0,0,1,-1,0,1,0,0,0,-1,-1,1,0,1,0,-1,0,0], [-1,0,-1,0,-1,0,-1,1,0,-1,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0], [1,1,1,-1,0,1,2,-1,1,0,0,0,1,1,0,-1,-1,1,0,0,1,0,0,0], [0,0,1,0,0,1,0,0,-1,0,-1,0,0,-1,0,0,0,0,0,0,1,0,0,0], [0,-1,0,1,1,0,0,0,-1,1,0,0,0,0,0,0,1,0,0,-1,0,0,0,0], [0,0,-1,0,0,-1,-1,1,0,1,0,0,-1,0,0,1,1,-1,0,0,0,0,0,0], [0,0,-1,1,2,-1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,-1,-1], [-1,0,-1,0,0,1,0,0,0,0,0,0,1,0,-1,-1,-1,0,1,0,-1,0,0,0], [1,0,0,0,0,-1,-1,0,-1,0,0,0,0,0,0,1,1,-1,0,0,0,0,0,0], [1,-1,0,0,2,0,1,0,0,2,0,0,0,0,0,0,1,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,-1,0,1,1,0,0,0,0], [0,0,2,0,-1,1,0,0,-1,-1,0,0,1,0,0,0,0,0,0,-1,1,0,0,0]]]], [ # Q-class [24][52] [[4], [2,4], [2,2,4], [2,2,2,4], [2,2,2,2,4], [2,2,2,2,2,4], [2,2,2,2,2,2,4], [2,2,2,2,2,2,2,4], [2,2,2,2,2,2,2,2,4], [2,2,2,2,2,2,2,2,2,4], [2,2,2,2,2,2,2,2,2,2,4], [2,2,2,2,2,2,2,2,2,2,2,4], [2,1,1,1,1,1,1,1,1,1,1,1,4], [1,2,1,1,1,1,1,1,1,1,1,1,2,4], [1,1,2,1,1,1,1,1,1,1,1,1,2,2,4], [1,1,1,2,1,1,1,1,1,1,1,1,2,2,2,4], [1,1,1,1,2,1,1,1,1,1,1,1,2,2,2,2,4], [1,1,1,1,1,2,1,1,1,1,1,1,2,2,2,2,2,4], [1,1,1,1,1,1,2,1,1,1,1,1,2,2,2,2,2,2,4], [1,1,1,1,1,1,1,2,1,1,1,1,2,2,2,2,2,2,2,4], [1,1,1,1,1,1,1,1,2,1,1,1,2,2,2,2,2,2,2,2,4], [1,1,1,1,1,1,1,1,1,2,1,1,2,2,2,2,2,2,2,2,2,4], [1,1,1,1,1,1,1,1,1,1,2,1,2,2,2,2,2,2,2,2,2,2,4], [1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,1,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,1], [0,1,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,1]], [[-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,-1], [-1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0], [-1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0], [-1,1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0], [-1,0,1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0], [-1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,-1,0,0], [-1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1]]]], [ # Q-class [24][53] [[6], [1,6], [0,1,6], [2,-1,0,6], [-2,-3,-3,2,10], [2,0,-1,2,-2,6], [-2,-2,-2,2,2,2,6], [-1,-1,1,-2,1,0,-1,6], [-1,1,2,0,2,-3,0,-1,8], [3,2,-2,3,-2,3,2,-2,-3,10], [2,0,0,-1,-3,2,-1,1,-3,3,6], [2,-1,-2,-1,-1,0,0,-1,-1,2,3,6], [-3,-2,-2,0,5,-2,1,0,3,-4,-4,-1,8], [-1,2,0,-2,1,-2,-1,-1,1,-1,0,1,1,6], [0,0,1,1,3,-3,0,1,2,-2,-3,-2,1,1,8], [0,1,1,2,2,-2,0,0,1,2,-1,-1,0,0,1,6], [-2,-1,2,2,0,0,2,1,0,0,0,-2,0,-1,2,2,6], [-2,-3,2,-1,-2,-2,0,0,2,-3,0,1,0,-2,0,-1,2,8], [-1,-3,0,2,5,-2,0,-1,0,-3,-2,-2,3,0,1,2,1,0,8], [-2,-3,0,-2,-2,1,0,1,-1,-1,1,0,0,-3,-3,-3,0,4,-1,8], [0,-1,2,2,-2,2,2,1,-2,1,1,0,-3,-2,0,0,3,1,-1,0,6], [0,-1,1,-2,-2,-1,-2,2,-2,-3,0,-1,-1,0,2,-1,1,2,0,1,0,6], [-3,-3,-3,-1,5,-1,2,2,1,-4,-2,0,5,1,0,0,0,0,2,0,-1,0,8], [-1,2,1,-2,-1,-1,0,0,2,1,1,1,0,1,0,1,1,1,-2,0,-1,-1,-2,6]], [[[-2,-1,-2,1,-2,1,-1,1,2,0,0,1,-1,0,1,0,0,-1,1,0,0,0,0,0], [-1,1,0,1,0,1,0,0,0,-1,1,1,0,0,1,1,-1,0,0,1,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0], [3,2,0,0,1,-2,2,1,-1,0,0,-1,1,1,-1,-1,0,1,0,1,1,0,0,0], [3,2,1,-3,2,-1,2,0,-1,1,0,-1,2,0,-1,0,0,2,0,0,1,0,-1,-1], [0,0,1,0,0,0,0,0,0,0,-1,1,-1,-1,0,-1,1,-1,0,0,-1,0,1,0], [2,1,1,-1,1,-1,1,0,-1,0,-1,0,0,0,-1,-1,1,0,0,0,0,0,0,0], [0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [-1,0,0,-2,1,2,-1,-1,1,1,0,1,1,0,0,1,0,0,0,0,1,1,-1,-1], [-2,0,-1,2,-2,1,-1,2,1,0,-1,2,-2,0,1,-1,0,-1,2,0,-1,0,1,1], [-2,-1,-1,2,-2,1,-1,1,1,0,-1,1,-2,0,1,0,0,-1,1,0,-1,0,1,1], [-3,-1,-1,0,-1,2,-2,0,2,1,0,1,-1,-1,1,0,0,-1,1,-1,0,1,0,0], [2,2,2,-3,3,-1,1,-2,-1,1,1,-1,2,-1,-1,0,0,1,-1,0,1,1,0,-1], [0,1,1,-3,2,2,-1,-2,0,1,1,0,1,-1,1,1,0,1,0,0,1,0,0,-1], [1,0,-1,-1,0,0,0,0,0,0,0,-1,1,1,0,0,0,1,0,0,1,-1,-1,0], [2,1,-1,1,0,-2,2,2,-1,-1,0,-1,0,2,-1,0,0,1,0,1,0,-1,-1,0], [4,1,0,1,1,-3,2,1,-2,-1,-1,-2,0,2,-2,-1,1,1,-1,1,0,-1,0,1], [0,-2,-1,0,0,0,-1,0,0,0,-1,-1,0,1,-1,0,1,0,-1,-1,0,0,-1,0], [5,1,-1,0,1,-4,3,1,-2,-1,0,-3,1,2,-2,0,0,2,-1,1,1,-1,-1,0], [-3,-4,0,1,-2,1,-3,0,1,1,-2,1,-2,-1,0,-1,1,-2,0,-2,-2,0,1,1], [2,1,0,2,0,-2,2,1,-1,-1,0,-1,0,1,-1,-1,0,0,0,1,0,0,0,1], [0,-2,0,-1,0,0,-1,-1,0,0,0,-1,0,0,0,0,1,0,-1,-1,0,-1,0,0], [3,1,1,-3,2,-1,2,-1,-1,0,1,-2,2,0,-1,1,0,1,-1,0,1,0,-1,-1], [-1,0,0,0,0,1,-1,0,0,0,-1,1,-1,0,0,0,1,0,0,0,-1,0,0,0]], [[2,3,1,-1,2,0,2,-1,-1,0,2,-1,2,0,0,1,-1,2,0,1,1,1,0,-1], [0,1,2,-2,2,1,0,-1,0,1,0,1,1,-1,0,0,1,0,0,0,0,1,0,-1], [0,2,1,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,-1], [5,3,-1,1,1,-3,4,1,-2,-2,2,-3,2,2,-1,1,-1,2,-1,2,1,0,-1,0], [1,-1,-2,0,-1,-1,-1,0,0,0,0,-2,0,1,0,0,0,0,0,0,1,-1,0,1], [3,2,0,1,0,-2,3,1,-1,-1,1,-1,1,1,-1,0,0,1,0,1,0,0,0,0], [2,-1,-1,1,-1,-2,1,1,-1,-1,0,-2,0,1,-1,0,0,0,-1,0,0,-1,0,1], [-3,-2,-1,0,-2,2,-2,0,2,1,-1,1,-1,0,1,0,0,-1,1,-1,0,0,0,0], [-2,-1,0,-1,0,2,-3,-1,1,1,-1,1,-1,-1,1,0,1,-1,0,0,0,0,1,0], [3,1,1,0,1,-2,3,0,-2,-1,1,-2,1,0,-1,0,0,1,-1,0,-1,0,0,0], [0,-1,0,0,0,0,0,0,0,0,-1,0,-1,0,-1,-1,1,0,0,-1,-1,0,0,0], [-1,-1,0,-1,0,1,-1,-1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0], [-2,-1,-2,1,-2,1,-2,1,1,0,-1,1,-1,0,1,0,0,-1,1,0,0,-1,0,1], [-2,-1,0,-1,0,1,-2,0,1,1,-1,1,-1,-1,0,-1,1,-1,1,-1,0,0,0,0], [-1,-1,-2,1,-1,0,-1,1,1,0,0,-1,0,1,0,1,-1,0,0,0,1,0,-1,0], [2,2,2,-3,3,0,1,-2,-1,1,1,-1,2,-1,0,0,0,1,-1,0,1,1,0,-1], [1,0,-1,1,0,-1,1,1,0,-1,0,-1,0,1,-1,0,0,0,-1,0,0,0,-1,0], [-4,-3,-1,1,-2,2,-3,0,2,0,-1,2,-2,-1,1,0,0,-2,0,-1,-1,0,0,0], [2,2,0,0,1,-1,1,0,-1,0,1,-1,1,1,0,0,-1,1,0,1,1,0,0,0], [-1,-1,0,3,-2,-1,0,1,0,-1,-1,1,-2,0,0,-1,0,-1,0,0,-2,-1,1,1], [3,1,-1,1,0,-2,3,1,-1,-2,1,-2,1,2,-1,1,-1,1,-1,1,1,0,-1,0], [-4,-1,0,1,-1,2,-2,0,2,1,0,2,-1,-1,1,0,-1,-1,1,-1,0,1,0,0], [-2,-3,-2,-1,-2,2,-3,0,2,1,-1,0,-1,0,1,0,0,-1,1,-1,1,-1,0,1], [-3,-1,1,0,0,1,-2,-1,1,1,-1,2,-1,-2,0,-1,1,-2,0,-1,-1,1,1,0]]]], [ # Q-class [24][54] [[4], [2,4], [2,2,4], [2,2,2,4], [-2,-1,-1,-1,4], [-1,-2,-1,-1,2,4], [-1,-1,-2,-1,2,2,4], [-1,-1,-1,-2,2,2,2,4], [2,1,1,1,-2,-1,-1,-1,4], [1,2,1,1,-1,-2,-1,-1,2,4], [1,1,2,1,-1,-1,-2,-1,2,2,4], [1,1,1,2,-1,-1,-1,-2,2,2,2,4], [2,1,1,1,0,0,0,0,0,0,0,0,4], [1,2,1,1,0,0,0,0,0,0,0,0,2,4], [1,1,2,1,0,0,0,0,0,0,0,0,2,2,4], [1,1,1,2,0,0,0,0,0,0,0,0,2,2,2,4], [-2,-1,-1,-1,2,1,1,1,0,0,0,0,-2,-1,-1,-1,4], [-1,-2,-1,-1,1,2,1,1,0,0,0,0,-1,-2,-1,-1,2,4], [-1,-1,-2,-1,1,1,2,1,0,0,0,0,-1,-1,-2,-1,2,2,4], [-1,-1,-1,-2,1,1,1,2,0,0,0,0,-1,-1,-1,-2,2,2,2,4], [2,1,1,1,-2,-1,-1,-1,2,1,1,1,2,1,1,1,-2,-1,-1,-1,4], [1,2,1,1,-1,-2,-1,-1,1,2,1,1,1,2,1,1,-1,-2,-1,-1,2,4], [1,1,2,1,-1,-1,-2,-1,1,1,2,1,1,1,2,1,-1,-1,-2,-1,2,2,4], [1,1,1,2,-1,-1,-1,-2,1,1,1,2,1,1,1,2,-1,-1,-1,-2,2,2,2,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0], [-1,0,0,1,-1,0,0,1,0,0,0,0,1,0,0,-1,0,0,0,0,-1,0,0,1], [-1,1,0,0,-1,1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,-1,1,0,0], [-1,0,1,0,-1,0,1,0,0,0,0,0,1,0,-1,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0,1,0], [0,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,1,-1,0,0,1,1,0,0,-1,1,0,0,-1,0,0,0,0], [0,0,0,0,-1,1,0,0,-1,1,0,0,1,-1,0,0,1,-1,0,0,0,0,0,0], [0,0,0,0,-1,0,1,0,-1,0,1,0,1,0,-1,0,1,0,-1,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0], [0,0,0,0,1,0,0,-1,0,0,0,0,-1,0,0,1,-1,0,0,1,1,0,0,-1], [0,0,0,0,1,-1,0,0,0,0,0,0,-1,1,0,0,-1,1,0,0,1,-1,0,0], [0,0,0,0,1,0,-1,0,0,0,0,0,-1,0,1,0,-1,0,1,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,-1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,-1,0,1,0]], [[1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,-1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,1,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,1,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,1,0,-1,0,0,0,0,0]]]], [ # Q-class [24][55] [[4], [2,4], [2,1,4], [1,2,2,4], [2,1,2,1,4], [1,2,1,2,2,4], [2,1,2,1,2,1,4], [1,2,1,2,1,2,2,4], [0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,2,4], [0,0,0,0,0,0,0,0,2,1,4], [0,0,0,0,0,0,0,0,1,2,2,4], [0,0,0,0,0,0,0,0,2,1,2,1,4], [0,0,0,0,0,0,0,0,1,2,1,2,2,4], [0,0,0,0,0,0,0,0,2,1,2,1,2,1,4], [0,0,0,0,0,0,0,0,1,2,1,2,1,2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,1,2,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,2,1,2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,1,2,1,2,2,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,-1,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]], [[-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [24][56] [[8], [4,8], [3,4,8], [3,4,4,8], [2,4,2,2,8], [2,3,3,3,3,8], [3,2,4,4,1,4,8], [3,2,4,2,4,3,2,8], [0,2,3,3,4,3,3,3,8], [3,2,1,2,4,4,1,2,3,8], [3,2,2,1,4,3,2,4,3,4,8], [2,3,2,3,3,2,3,4,4,3,3,8], [3,4,4,2,2,3,4,2,3,2,4,3,8], [2,2,3,3,4,4,4,3,4,3,3,3,3,8], [3,4,2,4,2,2,2,1,3,4,2,3,4,3,8], [4,3,4,3,3,3,3,2,2,3,3,0,3,2,3,8], [4,1,1,2,2,3,2,2,2,4,4,2,2,3,2,4,8], [3,1,2,2,2,2,4,4,3,2,4,3,2,2,1,3,4,8], [3,2,2,4,4,3,2,4,3,4,2,3,1,3,2,3,4,4,8], [3,3,4,3,3,4,3,2,2,4,3,2,3,3,2,4,3,3,3,8], [2,3,2,3,3,2,3,4,3,2,3,4,3,2,4,2,3,3,3,0,8], [1,0,2,2,3,2,2,4,3,2,3,2,0,4,1,2,0,1,1,0,2,8], [2,2,2,4,1,3,4,1,4,2,2,4,4,3,4,2,4,2,2,3,3,0,8], [3,2,1,3,1,2,1,2,0,4,3,1,0,-1,2,3,1,2,3,2,1,2,-1,8]], [[[-15,18,-10,4,-9,-9,27,18,-2,9,11,-6,-4,-22,13,-3,14,-11,10,2,-17,9, -12,-21], [-15,18,-10,4,-9,-9,26,18,-2,9,11,-6,-4,-22,13,-3,14,-11,10,2,-17,9, -11,-21], [-9,10,-5,2,-5,-5,15,10,-2,5,6,-3,-2,-13,8,-2,8,-6,6,1,-10,6,-6,-12], [-13,16,-9,3,-8,-8,24,16,-2,8,10,-5,-4,-20,12,-3,12,-10,9,2,-15,8,-10, -19], [-7,8,-4,2,-4,-4,11,8,-1,5,5,-3,-2,-9,5,-1,5,-4,4,0,-7,3,-4,-9], [-8,10,-5,2,-5,-5,14,9,-1,5,6,-3,-2,-12,7,-2,7,-6,6,1,-9,5,-6,-11], [-9,10,-5,2,-4,-5,16,10,-2,5,6,-3,-2,-14,9,-3,9,-6,6,1,-11,6,-7,-12], [-5,5,-2,1,-2,-3,8,5,-1,3,3,-2,-1,-7,4,-1,4,-3,3,0,-5,3,-3,-6], [-3,3,-1,0,-1,-1,4,2,-1,1,2,-1,-1,-4,3,-1,2,-1,2,0,-3,2,-1,-3], [-7,9,-5,2,-5,-4,12,8,-1,5,6,-3,-2,-10,5,-1,5,-5,5,1,-7,4,-5,-10], [-4,4,-2,1,-1,-2,6,4,-1,2,2,-2,0,-5,3,-1,3,-2,2,0,-4,2,-2,-4], [-5,5,-3,1,-2,-3,8,5,-1,3,3,-2,-1,-7,4,-1,4,-3,3,1,-5,3,-3,-6], [-6,6,-3,1,-2,-3,10,6,-1,2,4,-2,-1,-9,6,-2,6,-4,4,1,-7,4,-4,-7], [-4,4,-2,1,-1,-2,6,4,-1,2,2,-1,-1,-5,3,-1,3,-2,2,0,-4,2,-2,-4], [-12,15,-8,3,-7,-7,22,14,-2,7,10,-5,-4,-19,11,-3,11,-9,9,2,-14,8,-9, -18], [-12,15,-8,3,-8,-7,22,15,-2,8,10,-5,-4,-18,11,-2,10,-9,9,1,-14,7,-9, -18], [-8,10,-6,2,-5,-5,15,10,-1,5,6,-4,-2,-12,7,-2,7,-6,6,1,-9,5,-6,-11], [-9,10,-5,2,-4,-5,16,10,-2,5,6,-4,-2,-14,9,-3,9,-6,6,1,-10,6,-7,-12], [-7,8,-4,1,-4,-4,12,8,-1,4,5,-3,-2,-10,6,-2,6,-5,5,1,-7,4,-5,-9], [-5,6,-3,1,-3,-3,8,6,-1,3,3,-2,-1,-7,4,-1,4,-3,3,1,-5,3,-3,-6], [-11,13,-7,3,-6,-7,20,13,-2,7,9,-5,-3,-17,10,-3,10,-8,8,1,-13,7,-8,-16], [-2,2,-1,1,-1,-1,3,2,-1,2,2,0,-1,-2,1,1,0,-1,1,-1,-2,0,-1,-3], [-5,6,-3,0,-2,-3,9,5,-1,2,3,-2,-1,-8,5,-2,5,-3,4,1,-6,4,-3,-6], [-7,9,-5,2,-5,-4,13,9,-1,5,6,-3,-2,-11,6,-1,6,-6,5,1,-8,4,-6,-11]], [[-11,14,-7,3,-7,-6,20,13,-2,7,9,-4,-4,-17,10,-2,10,-8,8,1,-13,7,-9,-17], [0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [-2,2,0,0,0,-1,4,2,-1,1,1,-1,-1,-3,2,-1,2,-1,1,0,-2,1,-1,-2], [-2,2,0,0,0,-1,3,2,-1,1,1,-1,-1,-3,2,-1,2,-1,1,0,-2,1,-1,-2], [0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,1,0,1,0,-1,0,0,0,0,-2,1,-1,1,0,1,0,-1,1,0,-1], [-3,3,-1,0,-1,-1,5,3,-1,1,2,-1,-1,-5,3,-1,3,-2,2,1,-3,2,-2,-4], [-4,4,-2,1,-1,-2,7,5,-1,2,2,-1,-1,-6,4,-1,4,-2,2,0,-5,2,-3,-5], [2,-3,2,-1,2,1,-3,-2,0,-2,-2,1,1,2,-1,0,-1,1,-1,0,2,-1,1,3], [4,-5,3,-1,3,3,-7,-5,0,-3,-3,2,1,5,-3,1,-4,3,-2,-1,4,-2,3,5], [-1,1,0,0,0,0,2,1,-1,0,0,0,0,-3,2,-1,2,0,1,0,-2,2,-1,-2], [1,-2,1,0,1,1,-2,-1,0,-1,-1,1,0,1,0,1,-1,1,-1,0,1,-1,0,1], [-5,6,-3,1,-3,-3,10,6,-1,3,4,-2,-2,-9,5,-1,5,-4,4,1,-6,4,-4,-8], [-2,2,-1,1,-1,-1,3,3,-1,2,1,-1,0,-3,1,0,1,-1,1,0,-2,1,-1,-3], [2,-2,1,0,1,1,-3,-2,0,-1,-1,1,0,2,-2,1,-2,1,-1,0,2,-1,1,2], [-5,7,-3,1,-3,-3,10,6,-1,3,4,-2,-2,-9,5,-2,5,-4,4,1,-6,4,-4,-8], [-9,11,-6,3,-6,-5,17,11,-2,6,8,-3,-3,-15,9,-2,8,-7,7,1,-11,6,-8,-15], [-6,7,-4,2,-3,-3,12,8,-1,3,5,-2,-2,-11,7,-2,7,-5,4,1,-8,4,-6,-10], [-4,4,-2,1,-1,-2,7,5,-1,2,2,-1,-1,-6,4,-1,4,-3,2,0,-5,2,-3,-5], [-3,3,-1,1,-1,-1,5,3,-1,1,2,-1,-1,-5,3,-1,3,-2,2,0,-3,2,-2,-4], [3,-4,2,-1,2,2,-5,-3,0,-2,-2,2,0,4,-2,1,-3,2,-2,0,3,-2,2,4], [5,-6,4,-2,4,3,-10,-6,0,-3,-5,2,2,8,-5,1,-5,5,-4,-1,6,-3,5,8], [-4,4,-2,1,-2,-2,7,4,-1,2,3,-1,-1,-7,4,-1,4,-3,3,1,-4,3,-4,-6], [4,-5,4,-2,4,3,-8,-6,0,-4,-4,2,1,6,-3,0,-3,4,-3,-1,4,-2,4,7]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [4,-5,3,-1,3,3,-7,-5,0,-2,-3,2,1,5,-3,1,-3,3,-3,-1,4,-2,3,5], [4,-5,3,-1,3,3,-7,-5,0,-3,-3,2,1,5,-3,1,-3,3,-2,-1,4,-2,3,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [2,-2,1,-1,1,1,-3,-2,0,-1,-1,1,0,3,-2,1,-2,1,-1,0,2,-1,2,2], [3,-3,2,-1,2,2,-5,-4,0,-2,-2,1,1,3,-2,0,-2,2,-1,0,3,0,2,3], [2,-2,1,-1,1,1,-3,-2,0,-1,-1,1,0,2,-1,1,-2,1,-1,0,2,-1,2,2], [4,-5,4,-2,3,3,-9,-6,0,-3,-4,2,1,7,-4,1,-4,4,-3,-1,5,-2,5,7], [-1,2,-1,0,-1,-1,3,2,0,1,1,-1,-1,-2,1,0,1,-1,1,0,-2,1,0,-2], [-1,2,-1,0,-1,-1,2,2,0,1,1,-1,0,-2,1,0,1,-1,1,0,-2,1,0,-2], [-1,2,-1,0,-1,-1,2,2,0,1,1,-1,-1,-2,1,0,1,-1,1,0,-1,1,0,-2], [8,-10,6,-3,6,5,-15,-10,1,-6,-7,3,3,12,-7,1,-6,6,-6,-1,9,-4,7,13], [8,-9,6,-3,5,5,-14,-10,1,-5,-6,3,2,11,-7,1,-7,6,-5,-1,9,-4,7,11], [8,-10,6,-3,6,5,-15,-10,1,-6,-8,3,3,12,-7,1,-6,7,-6,-1,9,-4,7,13], [7,-8,4,-1,4,4,-12,-8,1,-4,-5,3,2,10,-6,2,-6,5,-5,-1,7,-4,5,9], [5,-5,3,-1,2,2,-8,-5,1,-2,-3,2,1,7,-5,2,-5,3,-3,-1,5,-3,4,6], [-3,5,-3,1,-3,-2,6,4,0,2,3,-1,-1,-6,3,0,3,-3,3,1,-4,3,-3,-6], [2,-2,1,0,1,1,-3,-2,0,-1,-1,1,0,2,-2,1,-2,1,-1,0,2,-1,2,2], [5,-5,2,-1,2,3,-8,-5,1,-2,-3,2,1,7,-5,2,-5,3,-3,-1,5,-3,4,6], [2,-3,2,-1,2,1,-4,-3,0,-2,-2,1,1,2,-1,0,-1,2,-1,0,2,0,2,3], [-2,3,-1,0,-1,-1,4,2,-1,1,2,-1,-1,-4,3,-1,2,-1,2,0,-3,2,-1,-4], [10,-12,7,-3,6,6,-19,-12,1,-6,-8,4,3,16,-10,3,-10,8,-7,-2,12,-6,9,15], [-6,8,-5,2,-4,-4,12,8,-1,4,5,-3,-2,-10,6,-1,6,-5,5,1,-8,4,-5,-10]]]], [ # Q-class [24][57] [[8], [-4,8], [0,-2,8], [0,2,-4,8], [-4,0,-2,0,8], [0,0,0,-4,-2,8], [0,-4,2,0,2,-4,8], [4,0,2,-2,-2,0,0,8], [-2,2,0,0,4,0,0,2,8], [2,-2,4,0,0,-2,2,4,4,8], [-2,0,2,2,2,-4,4,0,2,4,8], [0,0,0,0,2,0,2,4,4,4,4,8], [4,-2,0,0,-2,0,0,2,-1,1,-1,0,8], [-2,4,-1,1,0,0,-2,0,1,-1,0,0,-4,8], [0,-1,4,-2,-1,0,1,1,0,2,1,0,0,-2,8], [0,1,-2,4,0,-2,0,-1,0,0,1,0,0,2,-4,8], [-2,0,-1,0,4,-1,1,-1,2,0,1,1,-4,0,-2,0,8], [0,0,0,-2,-1,4,-2,0,0,-1,-2,0,0,0,0,-4,-2,8], [0,-2,1,0,1,-2,4,0,0,1,2,1,0,-4,2,0,2,-4,8], [2,0,1,-1,-1,0,0,4,1,2,0,2,4,0,2,-2,-2,0,0,8], [-1,1,0,0,2,0,0,1,4,2,1,2,-2,2,0,0,4,0,0,2,8], [1,-1,2,0,0,-1,1,2,2,4,2,2,2,-2,4,0,0,-2,2,4,4,8], [-1,0,1,1,1,-2,2,0,1,2,4,2,-2,0,2,2,2,-4,4,0,2,4,8], [0,0,0,0,1,0,1,2,2,2,2,4,0,0,0,0,2,0,2,4,4,4,4,8]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,1,1,1,0,-1,2,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,1,0,1,0,1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,-1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,-1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,-1,0,0,1,0,0,0,1,1,-1,0,0,1,0,0,-1,0,0,0,-1,-1,1], [0,-1,1,0,-1,-1,-1,0,1,-2,0,1,0,1,-1,0,1,1,1,0,-1,2,0,-1], [1,1,0,-1,0,-1,0,-1,0,0,0,1,-1,-1,0,1,0,1,0,1,0,0,0,-1], [0,0,0,1,1,1,1,1,0,0,0,-1,0,0,0,-1,-1,-1,-1,-1,0,0,0,1], [-1,-1,-1,-1,-1,-1,-1,0,0,0,1,0,1,1,1,1,1,1,1,0,0,0,-1,0], [0,0,-1,-1,0,0,0,0,0,1,0,-1,0,0,1,1,0,0,0,0,0,-1,0,1], [0,0,-1,-1,-1,-1,0,0,1,0,0,0,0,0,1,1,1,1,0,0,-1,0,0,0], [0,0,-1,-1,-1,0,0,0,1,0,1,-1,0,0,1,1,1,0,0,0,-1,0,-1,1], [0,0,-1,-1,-1,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,-1,0], [0,0,-1,-1,0,0,0,1,0,0,1,-1,0,0,1,1,0,0,0,-1,0,0,-1,1]], [[-2,-2,-1,0,-1,-1,-1,1,0,0,0,0,2,2,1,0,1,1,1,-1,0,0,0,0], [1,1,1,1,1,1,1,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0], [0,0,0,-1,0,-1,0,-1,0,0,-1,1,0,0,0,1,0,1,0,1,0,0,1,-1], [0,0,0,0,0,0,0,1,0,0,1,-1,0,0,0,0,0,0,0,-1,0,0,-1,1], [1,1,0,0,1,1,0,0,0,0,1,-1,-1,-1,0,0,-1,-1,0,0,0,0,-1,1], [0,0,1,1,0,0,0,0,0,-1,-1,1,0,0,-1,-1,0,0,0,0,0,1,1,-1], [0,0,-1,-1,0,0,0,0,0,1,0,-1,0,0,1,1,0,0,0,0,0,-1,0,1], [-1,-1,-1,0,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,-1,0,0,0,0], [1,1,0,0,1,0,0,0,0,0,0,0,-1,-1,0,0,-1,0,0,0,0,0,0,0], [0,0,-1,-1,0,-1,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0], [0,1,-1,-1,0,0,1,0,0,1,0,-1,0,-1,1,1,0,0,-1,0,0,-1,0,1], [0,1,-1,0,1,1,1,1,-1,1,0,-1,0,-1,1,0,-1,-1,-1,-1,1,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,2,2,1,0,1,1,1,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,-1,-1,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,1,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,0,0,-1,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,-1,-1,-1,1,-1,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,-1,-1,-1,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,-1,0,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,-1,0,-1,0,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,1,0,0,-1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,-1,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,1,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,-1,0,1,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,0,0,-1,0,1,-1,0,0]]]], [ # Q-class [24][58] [[6], [3,6], [3,3,6], [2,3,3,6], [3,3,3,3,6], [3,3,3,2,3,6], [3,3,2,3,3,2,6], [2,3,2,3,3,3,3,6], [2,1,1,2,2,1,2,1,6], [1,1,1,1,1,1,1,0,2,6], [3,2,2,3,3,3,3,3,0,1,6], [3,2,3,3,2,2,3,3,2,0,3,6], [2,3,3,3,2,3,3,3,0,1,3,3,6], [3,3,3,3,3,3,3,2,1,1,3,3,3,6], [1,1,2,1,1,2,1,1,3,2,1,2,0,1,6], [2,1,2,1,1,1,2,1,3,1,0,1,1,2,3,6], [3,3,3,2,3,3,3,3,0,0,2,3,3,3,0,0,6], [3,3,3,3,2,3,3,3,1,1,3,3,3,2,1,1,2,6], [2,1,2,1,1,1,1,1,1,1,1,1,2,2,0,3,0,0,6], [2,2,0,2,2,0,2,0,2,1,2,1,0,2,2,2,0,0,2,6], [0,0,1,1,1,1,0,1,0,2,1,1,1,1,-1,0,1,0,2,0,6], [3,3,3,3,3,3,2,3,1,0,3,3,2,3,1,0,3,3,0,1,1,6], [3,0,1,-1,0,1,0,-1,1,2,1,1,-1,0,3,1,0,0,1,2,0,1,6], [2,3,2,2,3,3,3,3,2,0,2,3,3,2,2,1,3,2,1,1,-1,3,0,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,1,-3,1,1,-2,0,-2,0,-1,1,-1,0,0,4,-1,2,1,3,-3,0,1,-1,-1], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,-2,4,-1,-2,1,0,3,0,1,-1,0,0,1,-3,0,-2,-1,-3,3,0,-1,0,2], [1,0,0,0,0,-1,0,0,0,-1,0,-1,0,1,1,-1,0,1,0,0,1,-1,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,-2,0,1,-2,0,-1,0,-1,0,-1,1,1,3,-1,0,1,1,-2,1,0,0,0], [2,1,-3,0,1,-2,1,-2,0,-1,0,-1,0,0,5,-2,1,1,3,-3,1,1,-2,-1], [0,-1,4,-1,-2,2,0,2,0,1,0,1,-1,0,-4,1,-2,-1,-3,3,0,-1,0,2], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,-1,0], [1,1,-2,0,1,-1,1,-1,-1,0,0,0,0,0,3,-1,0,0,2,-2,0,1,-1,-1], [0,0,0,0,0,0,0,1,0,0,0,0,0,1,-1,0,-1,0,-1,0,0,-1,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [2,1,-3,1,1,-2,1,-2,0,-2,0,-2,1,0,5,-2,1,1,3,-3,1,1,-1,-1], [1,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0], [1,2,-5,1,2,-2,1,-4,-1,-1,1,0,0,-1,6,-1,2,1,4,-4,0,2,-2,-2], [0,0,1,-1,-1,0,0,1,1,0,0,0,0,0,-1,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [1,1,-3,0,1,-1,1,-2,-1,0,0,0,0,-1,4,-1,1,0,3,-2,0,2,-2,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,-4,1,2,-2,0,-2,0,-1,0,-1,1,0,4,-1,2,1,3,-3,0,1,0,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,0,0,0,1,0], [0,0,0,0,0,1,0,0,0,1,0,1,0,-1,-1,1,0,-1,0,0,-1,1,0,-1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,0,0,-1,0,0,0,0,0,-1,1,0,1,0,1,0,0,1,-1,-1], [1,3,-7,1,3,-3,1,-5,0,-2,2,-1,1,-2,8,-1,4,1,6,-6,0,3,-2,-4], [-2,-2,5,-1,-2,2,-1,4,1,1,0,0,0,1,-7,2,-2,-1,-5,4,0,-2,3,3], [0,-1,3,-1,-1,2,0,2,0,1,-1,1,0,0,-4,1,-2,-1,-3,3,0,-1,1,1], [0,2,-4,1,2,-1,0,-3,0,-1,1,0,0,-1,3,0,2,1,3,-3,0,1,0,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [2,2,-6,1,3,-3,1,-4,0,-2,1,-2,1,-1,8,-2,3,1,5,-5,1,2,-2,-3], [4,3,-10,2,4,-5,2,-7,-1,-3,1,-3,2,-2,14,-4,5,2,9,-8,1,4,-4,-5], [1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,-4,1,2,-2,1,-3,-1,-1,0,-1,1,-1,5,-1,2,1,4,-3,0,2,-1,-2], [1,0,-1,0,1,0,1,-1,-1,0,0,0,0,-1,2,0,0,0,1,-1,0,1,-1,-1], [-2,-1,3,0,-1,2,-1,2,0,1,0,1,0,0,-5,2,-1,-1,-3,3,-1,-1,2,1], [-1,-1,3,-1,-1,2,-1,2,0,2,0,2,-1,0,-5,2,-1,-1,-3,3,-1,-1,1,1], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,-2,0,1,-1,0,-2,0,0,1,0,0,-1,2,0,1,0,2,-2,0,1,-1,-1]]]], [ # Q-class [24][59] [[4], [-1,4], [0,-1,4], [-1,0,0,4], [-1,1,-2,1,4], [-2,0,0,1,1,4], [0,0,0,0,0,0,4], [-1,1,-2,1,1,1,-1,4], [-1,-1,-1,1,1,1,0,1,4], [1,0,1,-2,-1,0,0,-1,-2,4], [1,0,1,-1,-1,0,1,-2,-1,1,4], [-2,1,-1,0,1,2,0,2,1,0,-2,4], [0,0,0,0,1,1,0,1,0,1,-2,2,4], [1,-1,1,0,-1,-2,-1,-1,0,0,1,-2,-2,4], [1,0,-1,-1,0,-1,-1,0,1,-1,0,0,-1,1,4], [-1,2,-1,0,1,0,0,1,1,-2,0,1,-1,0,1,4], [1,1,-2,1,1,0,1,2,0,-1,-1,1,1,-1,0,1,4], [-1,-1,2,0,-1,0,1,-2,1,-1,1,-1,-2,1,0,1,-2,4], [0,0,0,-2,0,-1,0,-1,-1,2,1,-1,-1,1,0,-1,-2,0,4], [1,0,-1,1,0,-1,1,0,1,-2,-1,0,0,0,2,1,2,0,-2,4], [-1,1,-1,-1,1,1,0,0,1,-1,0,1,-1,-1,2,2,0,1,0,1,4], [0,2,-1,0,0,0,0,2,-1,0,-2,2,2,-2,0,1,2,-2,-1,1,0,4], [1,1,-1,-1,0,-1,-1,0,1,-1,1,-1,-1,1,2,2,0,0,0,1,1,0,4], [1,-1,2,-2,-2,-1,0,-2,-2,2,2,-2,-1,1,-1,-1,-2,1,2,-2,-1,-1,0,4]], [[[1,1,-1,1,0,0,0,1,0,0,0,1,1,0,0,0,-1,1,0,1,0,-1,0,2], [0,0,0,0,0,0,-1,0,0,-1,1,0,1,0,0,-1,1,1,1,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,-1,0,1], [0,0,0,0,-1,1,0,-1,0,0,-1,-1,0,-1,1,1,1,0,1,-1,-1,-1,0,-1], [0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,-1,0,1,0,0,0,1,0,-1], [-1,-1,0,-1,0,0,0,-1,0,0,0,-1,-1,0,0,0,0,-1,-1,-1,0,1,0,-1], [0,0,1,0,0,0,0,0,0,0,-1,0,-1,-1,0,1,0,-1,0,0,-1,-1,0,0], [0,0,0,-1,0,0,-1,0,0,-1,1,0,0,0,-1,-1,0,1,1,1,0,1,0,-1], [0,0,0,-1,0,1,0,0,0,0,0,-1,-1,0,0,1,-1,-1,0,1,-1,0,-1,-1], [0,0,0,0,1,-1,0,1,0,0,1,1,0,1,-1,-2,0,1,-1,0,1,1,1,1], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [-1,-1,1,-1,0,0,0,0,0,0,0,-1,-1,0,0,0,0,-1,0,0,0,1,0,-1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,0,1,0,0,1,0,0,0,1,0,0,0,-1,0,1,0,1,0,-1,0,1], [1,0,0,0,0,1,1,1,-1,0,-1,0,0,0,0,1,-2,-1,0,1,0,-1,0,0], [0,0,0,0,0,0,-1,0,0,-1,1,0,1,0,0,0,0,0,1,1,0,0,-1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,1,1,1,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,-1,-1,0], [0,0,0,0,1,-1,0,1,0,0,1,1,0,1,-1,-2,0,1,-1,0,1,1,1,0], [1,0,0,1,-1,1,1,0,-1,0,-2,0,0,-1,1,2,-1,-1,1,0,-1,-2,0,0], [0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,-1,0,0,0,0,0,-1], [0,0,0,0,-1,0,0,0,0,-1,0,0,1,0,0,0,0,0,1,0,0,0,0,0], [1,1,-1,0,0,1,0,0,0,-1,0,0,1,1,0,0,-1,0,0,1,0,0,-1,1], [0,0,0,0,1,-1,0,0,1,0,1,1,0,1,-1,-1,0,0,-1,0,1,1,0,1]], [[1,1,-1,1,0,0,0,0,0,-1,0,1,1,1,0,-1,0,1,0,0,1,0,0,2], [0,0,0,0,1,-1,-1,1,0,0,2,1,0,0,-1,-2,0,2,0,1,0,1,0,0], [0,1,0,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,-1,-1,-1,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1], [-1,-1,0,0,0,0,-1,0,0,1,1,-1,0,0,0,0,1,1,0,0,0,1,0,-1], [0,0,1,-1,0,1,0,0,0,0,-1,-1,-1,-1,0,1,0,-1,0,0,-1,-1,0,-1], [0,1,0,-1,0,0,-1,0,1,-1,1,0,0,1,-1,-1,0,0,0,1,0,1,-1,0], [0,-1,1,-1,1,0,0,1,0,0,1,0,-1,0,-1,0,-1,0,0,1,0,1,0,-1], [0,-1,0,0,-1,1,1,0,-1,0,-1,-1,0,0,0,2,-1,-2,0,0,0,-1,0,-1], [0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,1], [1,1,0,1,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,-1,0,1], [-1,-1,1,-1,0,0,0,0,0,0,0,-1,-1,-1,0,1,0,-1,0,0,-1,0,0,-1], [-1,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,1,0,0,1,0,0,1,-1,0,0,0,1,1,0,-1,0,0,0,-1,0,1], [0,-1,0,1,0,0,1,0,-1,0,-1,0,0,0,1,0,0,0,0,-1,0,0,1,0], [0,-1,0,0,1,-1,-1,1,0,0,2,1,0,0,-1,-1,0,1,0,1,0,1,0,0], [0,0,0,-1,1,0,-1,0,1,-1,2,0,0,1,-1,-1,0,1,0,1,0,2,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,-1,1,0,1,1,0,-1,0,1,0,0,0,1,0,0], [0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,1,0,-1], [0,0,0,-1,1,-1,-1,1,0,-1,2,1,0,0,-1,-2,0,2,0,1,0,1,0,0], [1,0,-1,1,0,0,0,1,-1,0,0,1,1,0,0,0,-1,1,0,1,0,-1,0,1], [1,1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,-1,0,1]]]], [ # Q-class [24][60] [[4], [0,4], [1,1,4], [1,1,0,4], [1,1,1,1,4], [1,1,0,1,1,4], [1,1,1,1,1,1,4], [1,1,1,1,0,1,1,4], [0,1,1,1,1,0,1,1,4], [1,1,1,1,1,1,1,1,0,4], [1,0,1,0,1,0,-1,0,1,0,4], [0,1,-1,0,1,1,1,0,1,0,1,4], [1,1,0,0,0,1,1,1,-1,1,0,1,4], [1,0,1,1,0,1,1,0,0,0,0,1,1,4], [1,1,1,0,1,0,0,0,1,1,1,1,1,1,4], [1,1,0,1,0,1,-1,1,0,0,1,1,1,0,1,4], [0,1,-1,1,0,1,0,0,1,0,1,1,1,1,1,1,4], [1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1,0,4], [1,-1,0,1,1,1,0,1,1,0,1,1,0,1,0,1,0,1,4], [1,0,1,1,0,0,1,1,0,-1,0,0,1,1,0,1,0,0,1,4], [0,1,1,1,0,1,1,0,0,0,1,1,0,1,1,1,1,1,-1,1,4], [-1,1,1,0,0,0,1,1,1,0,0,1,0,1,0,0,1,0,1,1,1,4], [1,1,1,0,0,1,1,0,0,-1,-1,0,1,1,0,1,0,0,0,1,0,0,4], [0,1,1,1,1,-1,1,0,1,1,1,1,1,0,1,1,0,1,1,1,0,1,0,4]], [[[-1,-2,1,3,-1,3,1,-1,-1,-1,2,1,-1,-1,2,1,-1,2,-4,1,-5,3,0,-1], [0,0,3,1,-1,0,0,0,-1,-1,-1,2,0,-1,0,0,1,0,0,0,-1,-1,-1,0], [-1,-1,0,1,0,1,1,-1,0,0,1,0,0,0,1,1,-1,1,-2,1,-2,1,0,-1], [0,1,3,1,-1,-1,1,0,-2,-1,-1,2,0,-1,0,0,1,-1,2,-1,0,-1,-1,-1], [0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,1,-1,1,-1,0,0,0], [0,1,-1,0,0,0,0,0,0,0,1,-1,0,1,0,0,-1,0,0,0,0,0,0,0], [-1,0,2,2,-1,0,2,-1,-1,-1,1,1,0,-1,1,1,0,0,0,0,-2,0,-1,-2], [-1,0,-1,0,0,0,1,0,0,0,1,-1,0,1,0,1,-1,0,0,0,0,0,0,0], [-1,1,0,0,0,-1,2,0,-1,0,1,0,0,0,0,1,0,-1,1,0,0,-1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,1,-2,-1,0,0,1,0,1,0,1,-2,0,1,0,1,-1,0,0,0,0,0,0,0], [0,-1,-1,0,0,1,0,0,1,0,1,-1,0,1,0,1,-1,1,-2,0,-1,1,0,0], [0,-1,-3,0,0,3,0,-1,2,0,2,-2,0,1,1,1,-3,2,-4,1,-2,3,0,0], [0,-1,-1,0,0,2,0,-1,1,0,1,-1,0,0,0,1,-1,2,-3,1,-2,2,0,0], [0,0,-1,0,0,0,1,0,0,0,1,-1,0,1,0,1,-1,0,-1,0,-1,1,0,0], [1,-1,1,1,-1,2,-1,0,0,-1,0,1,0,-1,0,-1,0,1,-2,0,-1,1,0,1], [0,-1,-2,0,0,2,0,-1,2,0,1,-1,0,1,0,1,-2,2,-3,1,-2,2,0,0], [0,0,-5,-1,1,1,0,0,2,1,2,-3,0,2,0,1,-3,1,-2,1,0,2,1,0], [0,-1,2,2,-1,1,1,-1,-1,-1,0,1,0,-1,1,1,0,0,-1,0,-2,1,-1,-1], [0,1,3,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,0,0,1,-1,2,-1,0,-1,-1,-1], [0,0,-1,0,0,0,0,0,1,0,0,-1,1,0,0,0,-1,0,0,0,1,0,0,0], [-1,-2,-1,2,-1,3,1,-1,0,0,3,0,-1,0,2,1,-2,2,-5,2,-5,3,0,-1], [0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,2,0,0,-1,0,0,-1,-1,-2,1,0,-1,0,0,1,-1,2,-1,1,-1,-1,0], [1,-2,1,2,-1,3,-2,0,0,-1,0,2,-1,-1,1,-1,0,2,-4,1,-3,2,0,1], [1,-2,-3,0,0,4,-2,0,2,0,1,-1,-1,0,1,-1,-2,3,-5,2,-2,3,1,2], [0,1,-2,-1,0,0,0,0,1,1,1,-1,0,1,0,0,-1,0,0,1,0,0,0,0], [1,0,1,0,0,0,-1,0,0,0,-1,1,0,-1,0,-1,1,0,0,0,0,0,0,0], [1,1,-3,-2,1,0,-1,0,2,1,0,-2,0,2,-1,0,-1,0,0,0,2,0,0,1], [0,-1,-1,1,0,2,0,0,0,0,1,0,-1,0,1,0,-1,1,-3,1,-2,2,0,0], [1,1,1,-1,0,-1,-1,1,0,0,-2,1,0,0,-1,-1,1,-1,2,-1,2,-2,0,1], [0,0,-5,-1,1,1,0,0,2,1,2,-3,0,2,0,1,-3,1,-2,1,0,2,1,0], [0,0,-2,0,0,1,-1,0,1,1,1,-1,0,0,0,-1,-1,1,-1,1,0,1,1,0], [1,1,0,-1,0,0,-1,0,0,0,-1,0,0,0,-1,-1,1,0,1,0,1,-1,0,1], [1,0,3,1,-1,0,-1,0,-1,-1,-2,2,0,-2,0,-1,2,0,1,0,0,-1,-1,0], [0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,1,-1,1,-1,0,0,0], [0,1,-1,0,0,0,0,0,0,0,1,-1,0,1,0,0,-1,0,0,0,0,0,0,0], [0,0,-2,0,0,1,0,0,1,0,1,-1,0,1,0,0,-1,1,-2,1,-1,1,0,0], [1,1,-2,-2,1,-1,-2,1,1,1,-1,-1,0,1,-1,-1,0,0,1,0,3,-1,1,1], [1,-1,-1,0,0,2,-2,0,1,0,0,0,0,0,0,-1,-1,1,-2,1,0,1,0,1], [1,-1,3,2,-1,2,-1,-1,-1,-2,-1,2,0,-2,1,-1,1,1,-1,0,-2,1,-1,0], [0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1], [1,1,2,0,0,-1,-1,0,0,-1,-2,1,1,-1,-1,-1,1,-1,2,-1,2,-1,-1,0], [0,0,3,2,-1,0,1,-1,-2,-1,0,2,0,-2,1,0,1,0,0,0,-2,0,-1,-1], [1,-1,1,1,0,2,-2,0,0,-1,-1,1,0,-1,0,-1,0,1,-2,0,-1,1,0,1]]]], [ # Q-class [24][61] [[4], [2,4], [2,0,4], [-2,-1,-2,4], [-1,-2,-1,2,4], [2,1,2,-1,0,4], [2,2,1,-2,-1,0,4], [1,-1,2,0,1,0,1,4], [0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,2,4], [0,0,0,0,0,0,0,0,2,0,4], [0,0,0,0,0,0,0,0,-2,-1,-2,4], [0,0,0,0,0,0,0,0,-1,-2,-1,2,4], [0,0,0,0,0,0,0,0,2,1,2,-1,0,4], [0,0,0,0,0,0,0,0,2,2,1,-2,-1,0,4], [0,0,0,0,0,0,0,0,1,-1,2,0,1,0,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,-2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-1,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,2,-1,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,1,-2,-1,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,2,0,1,0,1,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,-1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,-1,0,1,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]], [[-1,0,-1,0,-1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [24][62] [[4], [2,4], [2,2,4], [2,2,2,4], [2,1,1,1,4], [1,2,1,1,2,4], [1,1,2,1,2,2,4], [1,1,1,2,2,2,2,4], [2,1,1,1,2,1,1,1,4], [1,2,1,1,1,2,1,1,2,4], [1,1,2,1,1,1,2,1,2,2,4], [1,1,1,2,1,1,1,2,2,2,2,4], [2,1,1,1,2,1,1,1,2,1,1,1,4], [1,2,1,1,1,2,1,1,1,2,1,1,2,4], [1,1,2,1,1,1,2,1,1,1,2,1,2,2,4], [1,1,1,2,1,1,1,2,1,1,1,2,2,2,2,4], [2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,4], [1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,2,4], [1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,2,2,4], [1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,2,2,2,4], [2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,4], [1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,2,4], [1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,2,2,4], [1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,2,2,2,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1]], [[-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1], [-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0], [-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,1,0,-1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,-1], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0], [0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,1,0,-1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1], [0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0], [0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1]]]], [ # Q-class [24][63] [[8], [4,8], [4,4,8], [4,4,4,8], [0,0,0,0,8], [0,0,0,0,4,8], [0,0,0,0,4,4,8], [0,0,0,0,4,4,4,8], [4,2,2,2,-4,-2,-2,-2,8], [2,4,2,2,-2,-4,-2,-2,4,8], [2,2,4,2,-2,-2,-4,-2,4,4,8], [2,2,2,4,-2,-2,-2,-4,4,4,4,8], [4,2,2,2,2,1,1,1,2,1,1,1,8], [2,4,2,2,1,2,1,1,1,2,1,1,4,8], [2,2,4,2,1,1,2,1,1,1,2,1,4,4,8], [2,2,2,4,1,1,1,2,1,1,1,2,4,4,4,8], [2,1,1,1,-2,-1,-1,-1,2,1,1,1,4,2,2,2,8], [1,2,1,1,-1,-2,-1,-1,1,2,1,1,2,4,2,2,4,8], [1,1,2,1,-1,-1,-2,-1,1,1,2,1,2,2,4,2,4,4,8], [1,1,1,2,-1,-1,-1,-2,1,1,1,2,2,2,2,4,4,4,4,8], [0,0,0,0,-2,-1,-1,-1,4,2,2,2,2,1,1,1,4,2,2,2,8], [0,0,0,0,-1,-2,-1,-1,2,4,2,2,1,2,1,1,2,4,2,2,4,8], [0,0,0,0,-1,-1,-2,-1,2,2,4,2,1,1,2,1,2,2,4,2,4,4,8], [0,0,0,0,-1,-1,-1,-2,2,2,2,4,1,1,1,2,2,2,2,4,4,4,4,8]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,-1,0,0,1,-1,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,-1,0,1,0,-1,0,-1,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,-1,1,0,0,-1,-1,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,-1,1,0,0,0,0,0,0,1,-1,0,0,1,-1,0,0,0,0,0,0,-1,1], [0,-1,0,1,0,0,0,0,0,1,0,-1,0,1,0,-1,0,0,0,0,0,-1,0,1], [-1,0,0,1,0,0,0,0,1,0,0,-1,1,0,0,-1,0,0,0,0,-1,0,0,1], [0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,-1,1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,1,-1,0,0,-1,1], [0,-1,0,1,0,0,0,0,0,1,0,-1,0,0,0,0,0,1,0,-1,0,-1,0,1], [-1,0,0,1,0,0,0,0,1,0,0,-1,0,0,0,0,1,0,0,-1,-1,0,0,1]], [[-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0], [0,0,0,0,-1,0,0,1,-1,0,0,1,1,0,0,-1,-1,0,0,1,1,0,0,-1], [0,0,0,0,-1,1,0,0,-1,1,0,0,1,-1,0,0,-1,1,0,0,1,-1,0,0], [0,0,0,0,-1,0,1,0,-1,0,1,0,1,0,-1,0,-1,0,1,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0], [1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [1,0,0,-1,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,-1], [1,-1,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0], [1,0,-1,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,1,0,-1,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0], [0,1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,1,0,0], [0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [24][64] [[12], [3,12], [6,4,12], [4,6,6,12], [6,2,4,1,12], [6,2,6,4,4,12], [6,2,4,3,3,6,12], [4,6,6,6,3,6,6,12], [6,6,6,4,6,3,3,4,12], [3,6,6,6,3,2,1,4,6,12], [6,3,6,3,6,4,6,6,4,4,12], [4,4,4,2,1,6,3,2,2,-2,1,12], [1,0,1,-1,4,3,2,-1,2,1,2,3,12], [2,1,1,0,2,1,2,-2,1,3,4,1,6,12], [1,4,4,-2,3,2,1,2,2,2,4,4,4,3,12], [0,3,1,1,2,1,-1,-1,3,2,2,2,6,6,6,12], [3,1,4,-2,6,2,1,0,3,1,4,3,6,4,6,6,12], [3,2,2,-2,2,6,3,0,2,0,0,6,6,2,6,4,6,12], [2,2,2,0,2,4,1,-2,1,2,1,2,2,4,6,6,4,6,12], [4,2,6,2,6,3,4,3,6,4,6,2,2,2,6,4,6,3,4,12], [-1,4,0,2,0,2,2,-2,1,2,-1,4,4,2,4,6,2,6,6,1,12], [1,3,1,2,2,4,4,2,3,-1,2,4,3,6,2,4,3,3,3,3,2,12], [2,0,4,2,3,6,4,2,0,-2,2,4,2,0,4,3,1,2,6,3,4,3,12], [4,1,3,1,4,1,4,2,3,0,6,2,4,2,4,2,6,3,1,6,2,4,2,12]], [[[-2,1,0,0,1,1,2,-2,0,1,-1,1,-1,0,0,1,0,0,0,-1,-2,-1,0,2], [-1,0,-1,0,0,0,0,0,1,1,0,1,-1,1,-1,0,0,1,0,0,-1,-1,1,1], [-2,1,-1,0,1,1,2,-2,0,2,-1,1,-2,0,0,2,0,1,-1,-1,-3,-1,1,2], [0,1,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0], [-2,1,0,0,1,1,2,-2,0,1,-1,1,-1,0,0,2,-1,0,0,-1,-2,-1,0,2], [0,1,0,-1,0,1,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,1], [-1,1,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [-1,1,-1,0,0,1,0,-1,1,0,0,0,-1,1,0,0,0,1,-1,0,-1,-1,1,1], [-3,1,-1,1,1,1,2,-2,1,1,-1,1,-2,1,0,1,0,1,0,-1,-3,-2,1,2], [-1,1,-1,0,0,0,1,-1,0,1,0,1,-1,0,-1,1,0,1,0,0,-2,-1,1,1], [-2,1,0,0,1,1,2,-2,0,1,-1,1,-1,0,0,2,-1,1,0,-1,-3,-1,0,2], [0,0,0,-1,0,1,0,0,0,1,-1,0,0,0,0,0,0,-1,0,0,0,0,0,1], [-1,1,0,0,0,2,1,-1,0,0,-1,0,0,0,0,1,0,-1,0,0,-1,-1,0,1], [-1,0,0,0,0,1,1,0,0,0,-1,1,0,0,0,1,0,-1,1,0,-1,-1,-1,1], [-1,0,0,0,1,1,1,-1,0,1,-1,1,-1,0,0,2,-1,0,0,-1,-2,-1,0,2], [-1,0,0,0,1,1,1,0,0,0,-1,1,0,0,0,1,-1,-1,1,0,-1,-1,-1,1], [-2,0,0,0,1,1,2,-1,0,1,-1,1,-1,0,0,2,-1,0,0,-1,-2,-1,0,2], [0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,1,-1,1,0,0,1,-1,0,-1,1,0,0,-1,1,-1,-1,1,0,0,0,-1,1], [-2,1,0,0,1,1,2,-2,0,1,-1,1,-1,0,0,2,-1,0,0,-1,-3,-1,0,2], [1,0,1,-1,0,0,-1,1,-1,0,0,0,1,-1,-1,0,-1,-1,1,1,1,1,-1,0], [-1,0,0,0,0,1,0,1,1,-1,-1,0,0,1,0,0,0,-1,1,0,0,-1,-1,1], [0,1,1,-1,1,1,0,0,-1,0,-1,0,0,0,0,1,-1,-1,0,0,0,0,-1,1], [-2,1,1,0,1,2,2,-2,0,0,-1,0,-1,0,0,2,-1,0,0,-1,-2,-1,-1,2]], [[0,0,1,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0], [-1,0,0,0,1,1,1,-1,0,1,-1,0,-1,0,0,1,0,0,0,-1,-1,0,0,1], [0,0,0,-1,0,0,0,0,0,1,0,0,-1,0,-1,1,0,1,-1,0,0,0,1,0], [0,0,1,-1,1,-1,0,0,-1,1,0,0,0,-1,-1,1,-1,1,0,0,0,1,0,0], [0,0,1,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,1,-1,0,0,-1,1,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0], [1,0,1,-1,-1,0,-2,1,0,-1,1,-1,1,0,-1,-1,0,0,0,1,2,1,0,-1], [0,0,1,-1,0,0,0,0,-1,1,0,0,0,-1,-1,1,0,0,0,0,0,1,0,0], [0,0,0,-1,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,1,0], [-1,0,0,0,1,0,1,-1,0,1,0,0,-1,0,0,1,0,1,-1,-1,-1,0,1,0], [0,0,1,-1,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [-1,0,0,0,0,1,0,0,1,0,-1,0,-1,1,0,0,0,0,0,0,0,-1,0,1], [-1,0,0,0,0,0,0,0,1,0,0,0,-1,1,0,0,0,1,0,-1,-1,-1,1,1], [0,-1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0], [-1,0,0,0,0,1,1,0,1,0,-1,0,-1,1,0,1,0,0,0,-1,-1,-1,0,1], [0,-1,0,0,0,-1,0,1,1,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0], [-1,0,0,0,0,1,1,-1,1,0,0,0,-1,0,0,1,0,0,0,-1,-1,-1,0,1], [-1,0,0,0,0,1,0,0,1,0,0,0,-1,1,0,0,0,0,0,-1,0,-1,0,1], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,1,-1,0,0,0,0,0,0,0,0,0,0,-1,1,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,1,-1,0,-1,0,1,0,-1,0,0,0,0,1,0,0,0], [1,-1,1,-1,0,0,-1,1,0,0,0,0,1,-1,0,0,-1,-1,1,0,1,1,-1,0], [2,0,1,-1,-1,-1,-2,2,0,-1,0,-1,1,0,-1,-1,0,0,0,1,2,1,0,-1], [0,0,1,-1,0,0,0,0,0,0,0,0,0,0,-1,1,-1,0,0,0,0,0,0,1]]]], [ # Q-class [24][65] [[6], [3,6], [2,2,6], [2,3,3,6], [1,1,2,1,6], [2,3,3,3,2,6], [2,1,2,2,3,2,6], [3,1,3,2,1,2,2,6], [3,3,1,2,2,0,2,2,6], [3,1,1,1,2,1,3,2,3,6], [1,2,1,1,2,2,1,1,2,2,6], [2,2,1,3,2,1,1,2,3,2,2,6], [2,2,3,3,2,3,3,3,2,2,0,0,6], [3,2,3,2,3,3,2,2,1,1,2,1,2,6], [1,1,3,2,2,2,3,2,2,2,1,1,3,1,6], [2,1,1,1,2,1,1,2,2,3,3,2,2,1,2,6], [1,2,2,2,3,3,2,1,2,3,3,1,3,2,2,2,6], [1,2,3,3,3,2,1,1,2,2,2,3,2,2,2,3,3,6], [0,0,0,1,2,0,1,1,1,1,2,2,1,0,-1,3,1,1,6], [2,2,2,2,1,1,1,3,1,1,2,2,2,3,1,2,1,1,2,6], [3,2,2,2,1,3,2,3,1,2,1,1,3,2,3,3,1,1,0,2,6], [2,2,1,0,1,1,2,1,1,1,2,0,0,1,0,1,1,0,2,2,0,6], [2,1,1,1,1,0,2,1,1,1,1,1,0,1,0,0,1,0,2,2,1,3,6], [2,3,0,3,1,1,1,1,2,0,0,2,1,1,0,0,0,0,2,2,1,2,2,6]], [[[-2,0,1,0,0,-1,-1,0,-1,1,1,2,3,1,-1,1,-1,-1,-2,-2,0,1,1,1], [-2,-1,1,0,0,0,0,-1,0,0,1,2,3,0,-2,2,-1,-1,-3,-1,0,1,1,1], [-1,0,0,0,0,-1,-1,0,-1,0,1,2,3,1,0,1,-1,-1,-1,-2,0,1,1,0], [-1,-1,0,1,1,0,-1,0,0,0,1,1,2,0,-1,1,-1,-1,-2,-1,0,1,1,0], [0,0,0,0,0,-2,-1,0,-1,0,1,1,2,0,0,-1,0,0,0,-1,1,1,0,0], [-1,-1,1,0,0,0,-1,-1,0,0,1,2,3,0,-1,1,-1,-1,-2,-1,0,1,1,0], [0,0,0,0,0,-2,-1,0,-1,0,1,1,2,1,0,-1,0,0,0,-2,1,1,0,0], [-1,0,0,0,0,-1,-1,0,-1,1,1,2,3,1,0,0,-1,-1,-1,-2,0,1,1,0], [-2,0,0,0,0,-1,-1,0,-1,1,1,2,3,1,-1,1,-1,-1,-2,-2,0,1,1,1], [-2,0,1,-1,0,-1,-1,0,-1,1,1,2,3,1,-1,1,-1,-1,-2,-2,0,1,1,1], [0,-1,1,-1,0,0,0,-1,0,0,1,1,1,-1,-1,0,0,0,-1,0,1,0,0,1], [-1,0,0,1,1,-1,-1,0,-1,1,1,1,2,0,-1,1,-1,-1,-2,-1,0,1,1,0], [-1,0,0,0,0,-1,-1,0,-1,0,1,2,3,1,0,0,-1,-1,-1,-2,0,1,1,0], [0,0,0,0,0,-1,-1,0,-1,0,1,1,2,0,0,-1,0,0,0,-1,1,1,0,0], [-1,0,0,0,0,-1,-1,0,-1,0,0,2,2,1,0,1,0,-1,-1,-2,0,1,1,0], [-1,0,1,-1,0,-1,0,0,-1,0,1,2,2,0,-1,1,0,-1,-2,-1,0,0,1,1], [-1,-1,1,-1,0,0,-1,-1,0,0,1,2,3,0,-1,1,-1,-1,-2,-1,0,1,1,1], [-1,0,0,0,1,-1,-1,0,-1,0,1,2,3,0,-1,1,-1,-1,-2,-1,0,1,1,0], [0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,1,0,0,0], [0,0,0,0,0,-1,0,0,-1,0,1,1,1,0,0,-1,0,0,0,-1,1,1,0,0], [-1,0,1,0,0,0,0,0,0,0,0,1,1,0,-1,1,0,-1,-1,-1,0,0,1,0], [-1,-1,1,-1,-1,-1,0,-1,0,0,1,2,2,1,-1,0,0,0,-1,-1,1,1,0,1], [0,0,0,0,0,0,0,0,1,0,0,-1,-1,0,0,-1,0,1,1,0,1,0,0,0], [-1,-1,0,1,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,-1,0,1,1,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,-1,0,0,1,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,1,0,0,0,1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,-1,-1,1,-1,1,0,0,0,1,1,-1,0,0,1,-1,0,0,0,0], [0,-1,1,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,-1,1,1,-1,-1,1,-1,0,0,-1,0,0,1,-1,0,0,1,0,0,0,0,-1], [0,0,0,0,0,1,0,0,1,0,-1,-1,-1,0,0,0,0,0,0,1,0,0,0,0], [0,0,1,-1,-1,-1,0,0,-1,0,1,1,1,1,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,-1,0,0,-1,0,1,0,1,0,0,-1,0,0,0,0,0,0,0,0], [1,1,0,0,0,0,0,1,-1,0,0,-1,-1,0,1,0,0,0,1,0,-1,-1,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,-1,0,1,0,1,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,-1,-1,0,-1,1,1,1,2,1,0,-1,-1,0,0,-1,0,1,0,0], [1,0,0,1,1,0,0,0,0,0,0,-1,-1,-1,0,0,0,0,0,1,0,-1,0,0], [1,0,0,1,1,0,0,0,0,0,0,-1,-1,-1,0,0,0,0,0,1,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]] ]; MakeImmutable( IMFList[24].matrices ); gap-4r6p5/grp/perf1.grp 0000644 0001750 0001750 00000061362 12172557252 013470 0 ustar bill bill ############################################################################# ## #W perf1.grp GAP Groups Library Volkmar Felsch ## Alexander Hulpke ## ## #Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains the perfect groups of sizes 2-7680 ## All data is based on Holt/Plesken: Perfect Groups, OUP 1989 ## PERFGRP[1]:=[]; PERFGRP[2]:=[# 60.1 [[1,"ab", function(a,b) return [[a^2,b^3,(a*b)^5],[[b,a*b*a*b^-1*a]]]; end, [5]], "A5",[1,0,1,2,3,4,5],-1, 1,5] ]; PERFGRP[3]:=[# 120.1 [[1,"abd", function(a,b,d) return [[a^2*d^-1,b^3,(a*b)^5,d^2,d^-1*b^-1*d*b], [[a*b]]]; end, [24]], "A5 2^1",[1,1,1,2,3,4,5],-2, 1,24] ]; PERFGRP[4]:=[# 168.1 [[1,"ab", function(a,b) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4], [[b,a*b*a*b^-1*a]]]; end, [7]], "L3(2)",[8,0,1,9,10,11],-1, 2,7] ]; PERFGRP[5]:=[# 336.1 [[1,"abd", function(a,b,d) return [[a^2*d^-1,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4 *d^-1,d^2,d^-1*b^-1*d*b], [[a*b,b*a*b^-1*a*b^-1*a*b*a*b^-1]]]; end, [16]], "L3(2) 2^1 = SL(2,7)",[8,1,1,9,10,11],-2, 2,16] ]; PERFGRP[6]:=[# 360.1 [[1,"abc", function(a,b,c) return [[a^2,b^3,c^3,(b*c)^4,(b*c^-1)^5,a^-1*b^-1*c *b*c*b^-1*c*b*c^-1],[[a,b]]]; end, [6]], "A6",[13,0,1,14],-1, 3,6] ]; PERFGRP[7]:=[# 504.1 [[1,"abc", function(a,b,c) return [[a^2,b^3,(a*b)^7,b^-1*(a*b)^3*c^-1,c*b^-1 *c*b*a^-1*b^-1*c^-1*b *c^-1*a],[[a,c]]]; end, [9]], "L2(8)",[16,0,1],-1, 4,9] ]; PERFGRP[8]:=[# 660.1 [[1,"ab", function(a,b) return [[a^2,b^3,(a*b)^11,(a*b)^4*(a*b^-1)^5*(a*b)^4*(a *b^-1)^5],[[b,a*b*a*b^-1*a]]]; end, [11]], "L2(11)",[17,0,1,18,19],-1, 5,11] ]; PERFGRP[9]:=[# 720.1 [[1,"abcd", function(a,b,c,d) return [[a^2*d^-1,b^3,c^3,(b*c)^4*d^-1,(b*c^-1)^5, a^-1*b^-1*c*b*c*b^-1*c*b*c^-1,d^2, d^-1*b^-1*d*b,d^-1*c^-1*d*c], [[c*b*a*d,b]]]; end, [80]], "A6 2^1",[13,1,1,14],-2, 3,80] ]; PERFGRP[10]:=[# 960.1 [[1,"abstuv", function(a,b,s,t,u,v) return [[a^2,b^3,(a*b)^5,s^2,t^2,u^2,v^2,s^-1*t^-1*s *t,u^-1*v^-1*u*v,s^-1*u^-1*s*u, s^-1*v^-1*s*v,t^-1*u^-1*t*u, t^-1*v^-1*t*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1], [[a,b]]]; end, [16]], "A5 2^4",[1,4,1],1, 1,16], # 960.2 [[1,"abwxyz", function(a,b,w,x,y,z) return [[a^2,b^3,(a*b)^5,w^2,x^2,y^2,z^2,w^-1*x^-1*w *x,w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*w*a*z^-1, a^-1*x*a*x^-1,a^-1*y*a*(w*x*y*z)^-1 ,a^-1*z*a*w^-1,b^-1*w*b*x^-1, b^-1*x*b*y^-1,b^-1*y*b*w^-1, b^-1*z*b*z^-1],[[b,a*b*a*b^-1*a,w*x]] ]; end, [10]], "A5 2^4'",[1,4,2,7],1, 1,10] ]; PERFGRP[11]:=[# 1080.1 [[1,"abc", function(a,b,c) return [[a^6,b^3,c^3,(b*c)^4,(b*c^-1)^5,a^-1*b^-1*c *b*c*b^-1*c*b*c^-1],[[a^3,c*a^2]] ]; end, [18]], "A6 3^1",[13,0,1,14],-3, 3,18], # 1080.2 (otherpres.) [[1,"abcd", function(a,b,c,d) return [[a^2*d^-1,b^3,c^3,(b*c)^4,(b*c^-1)^5,a^-1 *b^-1*c*b*c*b^-1*c*b*c^-1, d^3,d^-1*b^-1*d*b,d^-1*c^-1*d*c], [[a^3,c*a^2]]]; end, [18]]] ]; PERFGRP[12]:=[# 1092.1 [[1,"abc", function(a,b,c) return [[a^2,b^13,(a*b)^3,c^6,(a*c)^2,c^-1*b*c*b^(-1*4), b^6*a*b^-1*a*b*a*b^7*a*c^-1],[[b,c]]]; end, [14]], "L2(13)",[20,0,1],-1, 6,14] ]; PERFGRP[13]:=[# 1320.1 [[1,"abd", function(a,b,d) return [[a^2*d^-1,b^3,(a*b)^11,(a*b)^4*(a*b^-1)^5*(a*b) ^4*(a*b^-1)^5*d^-1,d^2, b^-1*d*b*d^-1], [[a*b,(b*a)^2*(b^-1*a)^4*b^-1*d]]]; end, [24]], "L2(11) 2^1 = SL(2,11)",[17,1,1,18,19],-2, 5,24] ]; PERFGRP[14]:=[# 1344.1 [[1,"abxyz", function(a,b,x,y,z) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4,x^2,y^2, z^2,x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*x*a*z^-1, a^-1*y*a*(x*y*z)^-1,a^-1*z*a*x^-1, b^-1*x*b*y^-1,b^-1*y*b*(x*y)^-1, b^-1*z*b*z^-1],[[a,b]]]; end, [8]], "L3(2) 2^3",[8,3,1],1, 2,8], # 1344.2 [[1,"abxyz", function(a,b,x,y,z) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4*(y*z)^-1 ,x^2,y^2,z^2,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*x*a*z^-1,a^-1*y*a*(x*y*z)^-1, a^-1*z*a*x^-1,b^-1*x*b*y^-1, b^-1*y*b*(x*y)^-1,b^-1*z*b*z^-1], [[b,a*b*a*b^-1*a,x]]]; end, [14]], "L3(2) N 2^3",[8,3,2],1, 2,14], # 1344.3 (otherpres.) [[1,"abuvw", function(a,b,u,v,w) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4,u^2,v^2, w^2,u^-1*v^-1*u*v,u^-1*w^-1*u*w, v^-1*w^-1*v*w,a^-1*u*a*(v*w)^-1, a^-1*v*a*v^-1,a^-1*w*a*(u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, b^-1*w*b*w^-1],[[a,b]]]; end, [8]]], # 1344.4 (otherpres.) [[1,"abuvw", function(a,b,u,v,w) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4*(u*v*w)^(-1 *1),u^2,v^2,w^2,u^-1*v^-1*u*v, u^-1*w^-1*u*w,v^-1*w^-1*v*w, a^-1*u*a*(v*w)^-1,a^-1*v*a*v^-1, a^-1*w*a*(u*v)^-1,b^-1*u*b*(u*v)^-1, b^-1*v*b*u^-1,b^-1*w*b*w^-1], [[b,a*b^-1*a*b*a,u]]]; end, [14]]] ]; PERFGRP[15]:=[# 1920.1 [[1,"abstuve", function(a,b,s,t,u,v,e) return [[a^2,b^3,(a*b)^5,s^2,t^2,u^2,v^2,e^2,s^-1*t^-1 *s*t,u^-1*v^-1*u*v,s^-1*u^-1*s*u, s^-1*v^-1*s*v,t^-1*u^-1*t*u, t^-1*v^-1*t*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,b^-1*s*b*(t*v*e)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, e^-1*a^-1*e*a,e^-1*b^-1*e*b, e^-1*s^-1*e*s,e^-1*t^-1*e*t, e^-1*u^-1*e*u,e^-1*v^-1*e*v], [[a*b,b*a*b*a*b^-1*a*b^-1,s]]]; end, [12]], "A5 2^4 E 2^1",[1,5,1],2, 1,12], # 1920.2 [[1,"abstuvd", function(a,b,s,t,u,v,d) return [[a^2*d^-1,b^3,(a*b)^5,s^2,t^2,u^2,v^2,d^2,s^-1 *t^-1*s*t,u^-1*v^-1*u*v, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, a^-1*s*a*u^-1,a^-1*t*a*v^-1, a^-1*u*a*s^-1,a^-1*v*a*t^-1, b^-1*s*b*(t*v*d)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, d^-1*a^-1*d*a,d^-1*b^-1*d*b, d^-1*s^-1*d*s,d^-1*t^-1*d*t, d^-1*u^-1*d*u,d^-1*v^-1*d*v], [[a*b,s]]]; end, [24]], "A5 2^4 E N 2^1",[1,5,2],2, 1,24], # 1920.3 [[1,"abdstuv", function(a,b,d,s,t,u,v) return [[a^2*d^-1,b^3,(a*b)^5,d^2,d^-1*b^-1*d*b, s^2,t^2,u^2,v^2,s^-1*t^-1*s*t, u^-1*v^-1*u*v,s^-1*u^-1*s*u, s^-1*v^-1*s*v,t^-1*u^-1*t*u, t^-1*v^-1*t*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, d^-1*a^-1*d*a,d^-1*s^-1*d*s, d^-1*t^-1*d*t,d^-1*u^-1*d*u, d^-1*v^-1*d*v],[[a,b],[a*b,s]]]; end, [16,24]], "A5 2^1 x 2^4",[1,5,3],2, 1,[16,24]], # 1920.4 [[1,"abdstuv", function(a,b,d,s,t,u,v) return [[a^2*d^-1,b^3,(a*b)^5,d^2,b^-1*d*b*(d*u*v) ^-1,s^2,t^2,u^2,v^2,s^-1*t^-1*s*t, u^-1*v^-1*u*v,s^-1*u^-1*s*u, s^-1*v^-1*s*v,t^-1*u^-1*t*u, t^-1*v^-1*t*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, d^-1*a^-1*d*a,d^-1*s^-1*d*s, d^-1*t^-1*d*t,d^-1*u^-1*d*u, d^-1*v^-1*d*v],[[b,d]]]; end, [80]], "A5 2^1 E 2^4",[1,5,4],1, 1,80], # 1920.5 [[1,"abdwxyz", function(a,b,d,w,x,y,z) return [[a^2*d^-1,b^3,(a*b)^5,d^2,b^-1*d^-1*b*d, a^-1*d^-1*a*d,w^2,x^2,y^2,z^2,(w*x)^2, (w*y)^2,(w*z)^2,(x*y)^2,(x*z)^2,(y*z)^2, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w*x*y*z)^-1,a^-1*z*a*w^-1 ,b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1, d^-1*w^-1*d*w,d^-1*x^-1*d*x, d^-1*y^-1*d*y,d^-1*z^-1*d*z], [[b,a*b*a*b^-1*a,w*x],[a*b,w]]]; end, [10,24]], "A5 2^1 x 2^4'",[1,5,5,7],2, 1,[10,24]], # 1920.6 [[1,"abdwxyz", function(a,b,d,w,x,y,z) return [[a^2*d^-1,b^3,(a*b)^5,d^2,a^-1*d^-1*a*d, b^-1*d^-1*b*d,w^2,x^2,y^2,z^2,(w*x)^2*d, (w*y)^2*d,(w*z)^2*d,(x*y)^2*d,(x*z)^2*d,(y*z)^2*d, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w*x*y*z)^-1,a^-1*z*a*w^-1 ,b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1, d^-1*w^-1*d*w,d^-1*x^-1*d*x, d^-1*y^-1*d*y,d^-1*z^-1*d*z], [[b,a*b*a*b^-1*a^-1*w*x]]]; end, [80]], "A5 2^4' C N 2^1",[1,5,6,7],2, 1,80], # 1920.7 [[1,"abwxyze", function(a,b,w,x,y,z,e) return [[a^2,b^3,(a*b)^5,e^2,a^-1*e^-1*a*e,b^-1 *e^-1*b*e,w^2,x^2,y^2,z^2,(w*x)^2*e, (w*y)^2*e,(w*z)^2*e,(x*y)^2*e,(x*z)^2*e,(y*z)^2*e, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w*x*y*z)^-1,a^-1*z*a*w^-1 ,b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1, e^-1*w^-1*e*w,e^-1*x^-1*e*x, e^-1*y^-1*e*y,e^-1*z^-1*e*z], [[a,b]]]; end, [32]], "A5 2^4' C 2^1",[1,5,7,7],2, 1,32], # 1920.8 (otherpres.) [[1,"abstuvf", function(a,b,s,t,u,v,f) return [[f^2,f^-1*a^-1*f*a,f^-1*b^-1*f*b,f^(-1 *1)*s^-1*f*s,f^-1*t^-1*f*t, f^-1*u^-1*f*u,f^-1*v^-1*f*v,s^2, t^2,u^2,v^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^2,b^3,(a*b)^5, a^-1*s*a*u^-1,a^-1*t*a*v^-1, a^-1*u*a*s^-1,a^-1*v*a*t^-1, b^-1*s*b*(t*v*f)^-1, b^-1*t*b*(s*t*u*v*f)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,s*f]]]; end, [12]]] ]; PERFGRP[16]:=[# 2160.1 [[1,"abcd", function(a,b,c,d) return [[b^3,c^3,(b*c)^4*d^-1,(b*c^-1)^5,a^-1*b^(-1 *1)*c*b*c*b^-1*c*b*c^-1,d^2, d^-1*b^-1*d*b,d^-1*c^-1*d*c], [[a^3,c*a^2],[c*b*a*d,b]]]; end, [18,80]], "A6 3^1 x 2^1",[13,1,1,14],-6, 3,[18,80]] ]; PERFGRP[17]:=[# 2184.1 [[1,"abc", function(a,b,c) return [[a^4,b^13,(a*b)^3,c^6*a^2,(a*c)^2*a^2,a^2*b^-1 *a^2*b,c^-1*b*c*b^(-1*4), b^6*a*b^-1*a*b*a*b^7*a*c^-1],[[b,c^4]]]; end, [56]], "L2(13) 2^1 = SL(2,13)",[20,0,1],-2, 6,56] ]; PERFGRP[18]:=[# 2448.1 [[1,"abc", function(a,b,c) return [[a^2,(a*b)^3,(a*c)^2,c^-1*b*c*b^(-1*9),b^5*a*b ^-1*a*b^2*a*b^6*a*c^-1,c^8,b^17] ,[[b,c]]]; end, [18]], "L2(17)",[21,0,1],-1, 7,18] ]; PERFGRP[19]:=[# 2520.1 [[1,"ab", function(a,b) return [[a^2,b^4,(a*b)^7,(a*b)^2*a*b^2*(a*b*a*b^-1)^2 *(a*b)^2*(a*b^-1)^2*a*b*a*b^-1], [[a,b^2*a*b^-1*(a*b*a*b^2)^2*(a*b)^2, b*(a*b^-1)^2*a*b^2*(a*b)^2]]]; end, [7]], "A7",[23,0,1],-1, 8,7] ]; PERFGRP[20]:=[# 2688.1 [[1,"abdxyz", function(a,b,d,x,y,z) return [[a^2*d^-1,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4 *d^-1,d^2,b^-1*d^-1*b*d,x^2,y^2,z^2, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*x*a*z^-1, a^-1*y*a*(x*y*z)^-1,a^-1*z*a*x^-1, b^-1*x*b*y^-1,b^-1*y*b*(x*y)^-1, b^-1*z*b*z^-1], [[a,b],[a*b,b*a*b^-1*a*b^-1*a*b*a*b^-1, x]]]; end, [8,16]], "L3(2) 2^1 x 2^3",[8,4,1],2, 2,[8,16]], # 2688.2 [[1,"abxyze", function(a,b,x,y,z,e) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4,x^2,y^2, z^2,e^2,e^-1*x^-1*e*x,e^-1*y^-1*e*y ,e^-1*z^-1*e*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*x*a*(z*e)^-1, a^-1*y*a*(x*y*z)^-1, a^-1*z*a*(x*e)^-1,a^-1*e^-1*a*e, b^-1*x*b*y^-1,b^-1*y*b*(x*y)^-1, b^-1*z*b*z^-1,b^-1*e^-1*b*e], [[a*b,b*a*b^-1*a*b^-1*a*b*a*b^-1,z]]]; end, [16]], "L3(2) 2^3 E 2^1",[8,4,2],2, 2,16], # 2688.3 [[1,"abdxyz", function(a,b,d,x,y,z) return [[a^2*d^-1,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4 *(d*y*z)^-1,d^2,b^-1*d^-1*b*d,x^2,y^2, z^2,x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*x*a*z^-1, a^-1*y*a*(x*y*z)^-1,a^-1*z*a*x^-1, b^-1*x*b*y^-1,b^-1*y*b*(x*y)^-1, b^-1*z*b*z^-1], [[a*b,b*a*b^-1*a*b^-1*a*b*a*b^-1], [b,a*b*a*b^-1*a,x]]]; end, [16,14]], "L3(2) 2^1 x N 2^3",[8,4,3],2, 2,[16,14]] ]; PERFGRP[21]:=[# 3000.1 [[1,"abyz", function(a,b,y,z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^5,z^5,y^-1 *z^-1*y*z,a^-1*y*a*z^-1, a^-1*z*a*y,b^-1*y*b*z, b^-1*z*b*(y*z^-1)^-1],[[a,b]]]; end, [25]], "A5 2^1 5^2",[3,2,1],1, 1,25], # 3000.2 (otherpres.) [[1,"abdyz", function(a,b,d,y,z) return [[a^2*d^-1,b^3,(a*b)^5,d^2,d^-1*b^-1*d*b, y^5,z^5,y^-1*z^-1*y*z,a^-1*y*a*z^-1 ,a^-1*z*a*y,b^-1*y*b*z, b^-1*z*b*(y*z^-1)^-1],[[a,b]]]; end, [25]]] ]; PERFGRP[22]:=[# 3420.1 [[1,"abc", function(a,b,c) return [[c^9,c*b^4*c^-1*b^-1,b^19,a^2,c*a*c*a^-1, (b*a)^3],[[b,c]]]; end, [20]], "L2(19)",22,-1, 9,20] ]; PERFGRP[23]:=[# 3600.1 [[1,"abcd", function(a,b,c,d) return [[a^2,b^3,(a*b)^5,c^2,d^3,(c*d)^5,a^-1*c^-1*a*c ,a^-1*d^-1*a*d,b^-1*c^-1*b*c, b^-1*d^-1*b*d], [[a,b,c*d*c*d^-1*c,d],[a*b*a*b^-1*a,b,c,d]]] ; end, [5,5]], "A5 x A5",[29,0,1,30],1, [1,1],[5,5]] ]; PERFGRP[24]:=[# 3840.1 [[1,"abstuve", function(a,b,s,t,u,v,e) return [[a^2,b^3,(a*b)^5,e^4,e^-1*a^-1*e*a,e^-1 *b^-1*e*b,e^-1*s^-1*e*s, e^-1*t^-1*e*t,e^-1*u^-1*e*u, e^-1*v^-1*e*v,s^2,t^2,u^2,v^2, s^-1*t^-1*s*t,s^-1*u^-1*s*u*e^2, s^-1*v^-1*s*v,t^-1*u^-1*t*u, t^-1*v^-1*t*v*e^2,u^-1*v^-1*u*v, a^-1*s*a*u^-1,a^-1*t*a*v^-1, a^-1*u*a*s^-1,a^-1*v*a*t^-1, b^-1*s*b*(t*v*e)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1], [[a,b]]]; end, [64]], "A5 ( 2^4 E 2^1 A ) C 2^1 I",[1,6,1],4, 1,64], # 3840.2 [[1,"abstuve", function(a,b,s,t,u,v,e) return [[a^2*e^2,b^3,(a*b)^5,e^4,e^-1*a^-1*e*a,e^(-1 *1)*b^-1*e*b,e^-1*s^-1*e*s, e^-1*t^-1*e*t,e^-1*u^-1*e*u, e^-1*v^-1*e*v,s^2,t^2,u^2,v^2, s^-1*t^-1*s*t,s^-1*u^-1*s*u*e^2, s^-1*v^-1*s*v,t^-1*u^-1*t*u, t^-1*v^-1*t*v*e^2,u^-1*v^-1*u*v, a^-1*s*a*u^-1,a^-1*t*a*v^-1, a^-1*u*a*s^-1,a^-1*v*a*t^-1, b^-1*s*b*(t*v*e)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1], [[a*e^-1,b*u]]]; end, [64]], "A5 ( 2^4 E 2^1 A ) C 2^1 II",[1,6,2],4, 1,64], # 3840.3 [[1,"abstuvef", function(a,b,s,t,u,v,e,f) return [[a^2,b^3,(a*b)^5,e^2,f^2,e^-1*a^-1*e*a,e^(-1 *1)*b^-1*e*b,e^-1*s^-1*e*s, e^-1*t^-1*e*t,e^-1*u^-1*e*u, e^-1*v^-1*e*v,e^-1*f^-1*e*f, f^-1*a^-1*f*a,f^-1*b^-1*f*b, f^-1*s^-1*f*s,f^-1*t^-1*f*t, f^-1*u^-1*f*u,f^-1*v^-1*f*v,s^2, t^2,u^2,v^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,b^-1*s*b*(t*v*e*f)^-1 ,b^-1*t*b*(s*t*u*v*f)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,s*f]]]; end, [24]], "A5 2^4 E ( 2^1 x 2^1 )",[1,6,3],4, 1,24], # 3840.4 [[1,"abstuvde", function(a,b,s,t,u,v,d,e) return [[a^2*d,b^3,(a*b)^5,d^2,e^2,d^-1*a^-1*d*a,d ^-1*b^-1*d*b,d^-1*s^-1*d*s, d^-1*t^-1*d*t,d^-1*u^-1*d*u, d^-1*v^-1*d*v,d^-1*e^-1*d*e, e^-1*a^-1*e*a,e^-1*b^-1*e*b, e^-1*s^-1*e*s,e^-1*t^-1*e*t, e^-1*u^-1*e*u,e^-1*v^-1*e*v,s^2, t^2,u^2,v^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,b^-1*s*b*(t*v*e*d)^-1 ,b^-1*t*b*(s*t*u*v*d)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1], [[a*b,s*d]]]; end, [48]], "A5 2^4 E ( 2^1 x N 2^1 )",[1,6,4],4, 1,48], # 3840.5 [[1,"abdstuve", function(a,b,d,s,t,u,v,e) return [[a^2*d,b^3,(a*b)^5,d^2,d^-1*b^-1*d*b,e^2,d ^-1*a^-1*d*a,d^-1*s^-1*d*s, d^-1*t^-1*d*t,d^-1*u^-1*d*u, d^-1*v^-1*d*v,d^-1*e^-1*d*e, e^-1*a^-1*e*a,e^-1*b^-1*e*b, e^-1*s^-1*e*s,e^-1*t^-1*e*t, e^-1*u^-1*e*u,e^-1*v^-1*e*v,s^2, t^2,u^2,v^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,b^-1*s*b*(t*v*e)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1], [[a*b,s,e],[a*b,b*a*b*a*b^-1*a*b^-1,s]]]; end, [24,12]], "A5 2^1 x ( 2^4 E 2^1 )",[1,6,5],4, 1,[24,12]], # 3840.6 [[1,"abdstuve", function(a,b,d,s,t,u,v,e) return [[a^2*d^-1,b^3,(a*b)^5,d^2*e,b^-1*d*b*(d*u*v) ^-1,s^2,t^2,u^2,v^2,e^2,s^-1*t^-1*s*t ,u^-1*v^-1*u*v,s^-1*u^-1*s*u, s^-1*v^-1*s*v,t^-1*u^-1*t*u, t^-1*v^-1*t*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,b^-1*s*b*(t*v*e)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, d^-1*a^-1*d*a,d^-1*s^-1*d*s, d^-1*t^-1*d*t,d^-1*u^-1*d*u, d^-1*v^-1*d*v],[[a*b,s]]]; end, [48]], "A5 2^1 E 2^4 E 2^1",[1,6,6],2, 1,48], # 3840.7 [[1,"abdwxyze", function(a,b,d,w,x,y,z,e) return [[a^2*d^-1,b^3,(a*b)^5,d^2,b^-1*d^-1*b*d, e^2,a^-1*d^-1*a*d,a^-1*e^-1*a*e, b^-1*e^-1*b*e,w^2,x^2,y^2,z^2,(w*x)^2*e, (w*y)^2*e,(w*z)^2*e,(x*y)^2*e,(x*z)^2*e,(y*z)^2*e, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w*x*y*z)^-1,a^-1*z*a*w^-1 ,b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1, d^-1*w^-1*d*w,d^-1*x^-1*d*x, d^-1*y^-1*d*y,d^-1*z^-1*d*z, e^-1*w^-1*e*w,e^-1*x^-1*e*x, e^-1*y^-1*e*y,e^-1*z^-1*e*z], [[a,b],[a*b,w]]]; end, [32,24]], "A5 2^1 x ( 2^4' C 2^1 )",[1,6,7,7],4, 1,[32,24]] ]; PERFGRP[25]:=[# 4080.1 [[1,"abc", function(a,b,c) return [[c^15,b^2,c^(-1*4)*b*c^3*b*c*b^-1,a^2,(a*c)^2, (a*b)^3],[[b,c]]]; end, [17]], "L2(16)",22,-1, 10,17] ]; PERFGRP[26]:=[# 4860.1 [[1,"abwxyz", function(a,b,w,x,y,z) return [[a^2,b^3,(a*b)^5,w^3,x^3,y^3,z^3,w^-1*x^-1*w *x,w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*w*a*z^-1, a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1], [[b,a*b*a*b^-1*a,w*x^-1]]]; end, [15]], "A5 3^4'",[2,4,1],1, 1,15], # 4860.2 [[1,"abwxyz", function(a,b,w,x,y,z) return [[a^2,b^3*z^-1,(a*b)^5,w^3,x^3,y^3,z^3,w^-1*x ^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1], [[b,w*x^-1]]]; end, [60]], "A5 N 3^4'",[2,4,2],1, 1,60] ]; PERFGRP[27]:=[# 4896.1 [[1,"abcd", function(a,b,c,d) return [[a^2*d^-1,b^17,c^8*d^-1,(a*b)^3,(a*c)^2*d^(-1 *1),d^2,d^-1*b^-1*d*b, d^-1*c^-1*d*c,c^-1*b*c*b^(-1*9), b^5*a*b^-1*a*b^2*a*b^6*a*c^-1],[[b]]]; end, [288]], "L2(17) 2^1 = SL(2,17)",[21,1,1],-2, 7,288] ]; PERFGRP[28]:=[# 5040.1 [[1,"abd", function(a,b,d) return [[a^2*d,b^4*d,(a*b)^7,(a*b)^2*a*b^2*(a*b*a*b^-1) ^2*(a*b)^2*(a*b^-1)^2*a*b*a*b^-1, d^2,d*a*d*a^-1,d*b*d*b^-1], [[a*b,b*a*b*a*b^2*a*b^-1*a*b*a*b^-1*a*b*a *b^2*d]]]; end, [240]], "A7 2^1",[23,1,1],-2, 8,240] ]; PERFGRP[29]:=[# 5376.1 [[1,"abdxyze", function(a,b,d,x,y,z,e) return [[a^2*d^-1,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4 *d^-1,d^2,d^-1*b^-1*d*b,x^2,y^2,z^2, e^2,e^-1*x^-1*e*x,e^-1*y^-1*e*y, e^-1*z^-1*e*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*x*a*(z*e)^-1, a^-1*y*a*(x*y*z)^-1, a^-1*z*a*(x*e)^-1,a^-1*e^-1*a*e, b^-1*x*b*y^-1,b^-1*y*b*(x*y)^-1, b^-1*z*b*z^-1,b^-1*e^-1*b*e], [[a*b,b*a*b^-1*a*b^-1*a*b*a*b^-1,x,e], [a,b]]]; end, [16,16]], "L3(2) 2^1 x ( 2^3 E 2^1 )",[8,5,1],4, 2,[16,16]] ]; PERFGRP[30]:=[# 5616.1 [[1,"ab", function(a,b) return [[a^2,b^3,(a*b)^13,(a^-1*b^-1*a*b)^4,(a*b)^4*a *b^-1*(a*b)^4*a*b^-1*(a*b)^2 *(a*b^-1)^2*a*b*(a*b^-1)^2*(a*b)^2 *a*b^-1],[[b,a*b*a*b^-1*a]]]; end, [13]], "L3(3)",[24,0,1],-1, 11,13] ]; PERFGRP[31]:=[# 5760.1 [[1,"abcstuv", function(a,b,c,s,t,u,v) return [[a^2,b^3,c^3,(b*c)^4,(b*c^-1)^5,a^-1*b^-1*c *b*c*b^-1*c*b*c^-1,s^2,t^2,u^2, v^2,s^-1*t^-1*s*t,s^-1*u^-1*s*u, s^-1*v^-1*s*v,t^-1*u^-1*t*u, t^-1*v^-1*t*v,u^-1*v^-1*u*v, a^-1*s*a*u^-1,a^-1*t*a*v^-1, a^-1*u*a*s^-1,a^-1*v*a*t^-1, b^-1*s*b*(t*v)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1, c^-1*s*c*(t*u)^-1,c^-1*t*c*t^-1, c^-1*u*c*(s*u)^-1, c^-1*v*c*(s*t*u*v)^-1],[[b,c]]]; end, [16]], "A6 2^4",[13,4,1],1, 3,16] ]; PERFGRP[32]:=[# 6048.1 [[1,"ab", function(a,b) return [[a^2,b^6,(a*b)^7,(a*b^2)^3*(a*b^(-1*2))^3,(a*b*a*b ^(-1*2))^3*a*b*(a*b^-1)^2], [[a,(b*a)^3*b^3]]]; end, [28]], "U3(3)",[25,0,1],-1, 12,28] ]; PERFGRP[33]:=[# 6072.1 [[1,"abc", function(a,b,c) return [[c^11,c*b^3*c^-1*b^-1,b^23,a^2,c*a*c*a^-1, (b*a)^3],[[b,c]]]; end, [24]], "L2(23)",22,-1, 13,24] ]; PERFGRP[34]:=[# 6840.1 [[1,"abc", function(a,b,c) return [[c^9*a^2,c*b^4*c^-1*b^-1,b^19,a^2*b^-1 *a^2*b,a^2*c^-1*a^2*c,a^4,c*a*c*a^-1, (b*a)^3],[[b,c^2]]]; end, [40]], "L2(19) 2^1 = SL(2,19)",22,-2, 9,40] ]; PERFGRP[35]:=[# 7200.1 [[1,"abcd", function(a,b,c,d) return [[a^2,b^3,(a*b)^5,c^4,d^3,(c*d)^5,c^2*d*c^2*d^-1, a^-1*c^-1*a*c,a^-1*d^-1*a*d, b^-1*c^-1*b*c,b^-1*d^-1*b*d], [[a*b*a*b^-1*a,b,c,d],[a,b,c*d]]]; end, [5,24]], "A5 2^1 x A5",[29,1,1,30],2, [1,1],[5,24]], # 7200.2 [[1,"abcd", function(a,b,c,d) return [[a^4,b^3,(a*b)^5,c^2*a^2,d^3,(c*d)^5,a^-1*c^-1 *a*c,a^-1*d^-1*a*d,b^-1*c^-1*b*c, b^-1*d^-1*b*d],[[a*b,c*d]]]; end, [288]], "( A5 N x A5 N ) 2^1",[29,1,2,30],2, [1,1],288] ]; PERFGRP[36]:=[# 7500.1 [[1,"abxyz", function(a,b,x,y,z) return [[a^2,b^3,(a*b)^5,x^5,y^5,z^5,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*x*a*z^-1,a^-1*y*a*y, a^-1*z*a*x^-1,b^-1*x*b*z^-1, b^-1*y*b*(y^-1*z)^-1, b^-1*z*b*(x*y^(-1*2)*z)^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,y]]]; end, [30]], "A5 5^3",[3,3,1],1, 1,30], # 7500.2 [[1,"abxyz", function(a,b,x,y,z) return [[a^2,b^3,(a*b)^5*z^-1,x^5,y^5,z^5,x^-1*y^(-1 *1)*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*x*a*z^-1, a^-1*y*a*y,a^-1*z*a*x^-1, b^-1*x*b*z^-1, b^-1*y*b*(y^-1*z)^-1, b^-1*z*b*(x*y^(-1*2)*z)^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,y]]]; end, [30]], "A5 N 5^3",[3,3,2],1, 1,30] ]; PERFGRP[37]:=[# 7560.1 [[1,"ab", function(a,b) return [[a^6,b^4,(a*b)^7,(a*b)^2*a*b^2*(a*b*a*b^-1)^2 *(a*b)^2*(a*b^-1)^2*a*b*a*b^-1 *a^2,a^2*b*a^(-1*2)*b^-1], [[a^3,(b^-1*a)^2*(b*a)^2*b^2*a*b*a]]]; end, [45]], "A7 3^1",[23,0,1],-3, 8,45] ]; PERFGRP[38]:=[# 7680.1 [[1,"abstuvef", function(a,b,s,t,u,v,e,f) return [[a^2,b^3,(a*b)^5,e^4,f^2,e^-1*a^-1*e*a,e^(-1 *1)*b^-1*e*b,e^-1*s^-1*e*s, e^-1*t^-1*e*t,e^-1*u^-1*e*u, e^-1*v^-1*e*v,e^-1*f^-1*e*f, f^-1*a^-1*f*a,f^-1*b^-1*f*b, f^-1*s^-1*f*s,f^-1*t^-1*f*t, f^-1*u^-1*f*u,f^-1*v^-1*f*v,s^2, t^2,u^2,v^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u*e^2,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v*e^2, u^-1*v^-1*u*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1, b^-1*s*b*(t*v*e*f^-1)^-1, b^-1*t*b*(s*t*u*v*f)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,s*f,e],[a,b,f]]]; end, [12,64]], "A5 ( 2^4 E ( 2^1 A x 2^1 ) ) C 2^1",[1,7,1],8, 1,[12,64]], # 7680.2 [[1,"abstuvde", function(a,b,s,t,u,v,d,e) return [[a^2*d,b^3,(a*b)^5,d^2,e^4,d^-1*a^-1*d*a,d ^-1*b^-1*d*b,d^-1*s^-1*d*s, d^-1*t^-1*d*t,d^-1*u^-1*d*u, d^-1*v^-1*d*v,d^-1*e^-1*d*e, e^-1*a^-1*e*a,e^-1*b^-1*e*b, e^-1*s^-1*e*s,e^-1*t^-1*e*t, e^-1*u^-1*e*u,e^-1*v^-1*e*v,s^2, t^2,u^2,v^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u*e^2,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v*e^2, u^-1*v^-1*u*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,b^-1*s*b*(t*v*e*d)^-1 ,b^-1*t*b*(s*t*u*v*d)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1], [[a*b,s*d,e],[a,b]]]; end, [24,64]], "A5 ( 2^4 E ( 2^1 A x N 2^1 ) ) C 2^1 I",[1,7,2],8, 1,[24,64]], # 7680.3 [[1,"abstuvde", function(a,b,s,t,u,v,d,e) return [[a^2*d,b^3,(a*b)^5,d^2,e^4,d^-1*a^-1*d*a,d ^-1*b^-1*d*b,d^-1*s^-1*d*s, d^-1*t^-1*d*t,d^-1*u^-1*d*u, d^-1*v^-1*d*v,d^-1*e^-1*d*e, e^-1*a^-1*e*a,e^-1*b^-1*e*b, e^-1*s^-1*e*s,e^-1*t^-1*e*t, e^-1*u^-1*e*u,e^-1*v^-1*e*v,s^2, t^2,u^2,v^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u*e^2,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v*e^2, u^-1*v^-1*u*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1, b^-1*s*b*(t*v*d*e^-1)^-1, b^-1*t*b*(s*t*u*v*d*e^2)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1], [[a*b,s*d,e],[a*e^-1,b*u]]]; end, [24,64]], "A5 ( 2^4 E ( 2^1 A x N 2^1 ) ) C 2^1 II",[1,7,3],8, 1,[24,64]], # 7680.4 [[1,"abdstuve", function(a,b,d,s,t,u,v,e) return [[a^2*d,b^3,(a*b)^5,d^2,d^-1*b^-1*d*b,e^4,d ^-1*a^-1*d*a,d^-1*s^-1*d*s, d^-1*t^-1*d*t,d^-1*u^-1*d*u, d^-1*v^-1*d*v,d^-1*e^-1*d*e, e^-1*a^-1*e*a,e^-1*b^-1*e*b, e^-1*s^-1*e*s,e^-1*t^-1*e*t, e^-1*u^-1*e*u,e^-1*v^-1*e*v,s^2, t^2,u^2,v^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u*e^2,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v*e^2, u^-1*v^-1*u*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,b^-1*s*b*(t*v*e)^-1, b^-1*t*b*(s*t*u*v)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1], [[a*b,s,e],[a,b]]]; end, [24,64]], "A5 2^1 x ( 2^4 E 2^1 A ) C 2^1",[1,7,4],8, 1,[24,64]], # 7680.5 [[1,"abdstuvef", function(a,b,d,s,t,u,v,e,f) return [[a^2*d,b^3,(a*b)^5,d^2,d^-1*b^-1*d*b,e^2,f^2, d^-1*a^-1*d*a,d^-1*s^-1*d*s, d^-1*t^-1*d*t,d^-1*u^-1*d*u, d^-1*v^-1*d*v,d^-1*e^-1*d*e, d^-1*f^-1*d*f,e^-1*a^-1*e*a, e^-1*b^-1*e*b,e^-1*s^-1*e*s, e^-1*t^-1*e*t,e^-1*u^-1*e*u, e^-1*v^-1*e*v,e^-1*f^-1*e*f, f^-1*a^-1*f*a,f^-1*b^-1*f*b, f^-1*s^-1*f*s,f^-1*t^-1*f*t, f^-1*u^-1*f*u,f^-1*v^-1*f*v,s^2, t^2,u^2,v^2,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*s*a*u^-1, a^-1*t*a*v^-1,a^-1*u*a*s^-1, a^-1*v*a*t^-1,b^-1*s*b*(t*v*e*f)^-1 ,b^-1*t*b*(s*t*u*v*f)^-1, b^-1*u*b*(u*v)^-1,b^-1*v*b*u^-1], [[a*b,s,e,f],[a*b,b*a*b*a*b^-1*a*b^-1,s*f]] ]; end, [24,24]], "A5 2^1 x ( 2^4 E ( 2^1 x 2^1 ) )",[1,7,5],8, 1,[24,24]] ]; ############################################################################# ## #E perf1.grp . . . . . . . . . . . . . . . . . . . . . . . . . ends here ## gap-4r6p5/grp/imf14.grp 0000644 0001750 0001750 00000041611 12172557252 013366 0 ustar bill bill ############################################################################# ## #A imf14.grp GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains, for each Q-class representative of the irreducible ## maximal finite integral matrix groups of dimension 14, ## ## [1] a quadratic form (as lower triangle of the Gram matrix), ## [2] a list of matrix generators. ## ############################################################################# ## ## Quadratic form and matrix generators for the Q-class representatives of ## the irreducible maximal finite integral matrix groups of dimension 14. ## IMFList[14].matrices := [ [ # Q-class [14][01] [[1], [0,1], [0,0,1], [0,0,0,1], [0,0,0,0,1], [0,0,0,0,0,1], [0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[[0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [14][02] [[2], [-1,2], [0,-1,2], [0,0,-1,2], [0,0,0,-1,2], [0,0,0,0,-1,2], [0,0,-1,0,0,0,2], [0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,-1,0,0,0,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,-1,-1,-2,-2,-2,-1,-1], [0,0,0,0,0,0,0,2,3,4,3,2,1,2], [0,0,0,0,0,0,0,0,-1,-2,-2,-1,0,-1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0]], [[-1,-2,-3,-3,-2,-1,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,2,2,1,1,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,1,2,1,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [14][03] [[2], [1,2], [0,0,2], [0,0,1,2], [0,0,0,0,2], [0,0,0,0,1,2], [0,0,0,0,0,0,2], [0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0]], [[0,1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [14][04] [[4], [1,4], [1,1,4], [1,-1,1,4], [1,1,-1,1,4], [1,1,1,-1,1,4], [1,-1,1,1,-1,1,4], [1,-1,-1,1,1,-1,1,4], [1,-1,-1,-1,1,1,-1,1,4], [1,-1,-1,-1,-1,1,1,-1,1,4], [1,1,-1,-1,-1,-1,1,1,-1,1,4], [1,1,1,-1,-1,-1,-1,1,1,-1,1,4], [1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,4], [1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,4]], [[[1,0,0,0,0,-1,-1,0,-1,1,-1,0,-1,-1], [0,1,0,1,0,-1,0,-1,1,1,0,0,-1,-1], [0,0,-1,1,0,1,-1,0,-1,1,0,1,0,-1], [1,0,0,-1,0,0,-1,1,-1,0,0,-1,1,-1], [1,0,1,0,-1,-1,-1,0,1,0,0,-1,-1,0], [0,0,0,1,-1,0,-1,0,0,1,0,0,-1,0], [0,0,-1,0,0,0,0,0,-1,0,0,0,1,-1], [0,-1,1,-1,1,-1,0,0,0,0,0,0,0,0], [0,-1,1,0,0,0,-1,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,1,-1,1,-1,0,0,0,0,0,-1], [0,-1,0,0,1,0,0,-1,0,0,0,1,-1,0], [0,0,0,0,0,1,-1,1,-1,0,0,0,0,0], [1,1,0,0,0,-1,0,0,0,0,0,-1,0,-1]], [[-1,0,-1,0,0,1,1,0,0,-1,0,1,1,1], [-1,0,1,-1,1,0,1,1,0,0,0,0,1,1], [-1,0,0,0,0,0,1,0,1,0,0,0,0,1], [0,-1,0,0,0,0,0,-1,0,0,0,1,-1,1], [0,0,0,-1,1,0,0,0,-1,0,0,0,1,0], [0,1,-1,0,0,0,1,0,0,0,-1,0,1,0], [0,0,-1,1,-1,1,0,0,0,0,-1,1,-1,1], [0,0,-1,0,0,1,0,0,-1,0,0,1,0,0], [0,1,-1,0,0,0,0,0,0,0,0,0,1,-1], [1,0,-1,0,-1,0,0,0,0,-1,-1,0,0,0], [0,0,0,0,-1,1,0,1,0,-1,0,0,0,1], [-1,0,0,0,0,1,0,1,0,0,1,0,1,0], [0,-1,0,0,0,0,0,-1,1,-1,1,0,0,0], [0,-1,1,-1,0,0,0,0,0,-1,0,0,0,1]]]], [ # Q-class [14][05] [[3], [-1,3], [1,1,3], [1,0,1,3], [0,1,0,-1,3], [0,1,0,-1,1,3], [-1,0,-1,0,0,0,3], [0,-1,0,0,0,0,-1,3], [0,1,0,0,0,0,1,-1,3], [-1,0,0,0,-1,0,1,1,0,3], [0,-1,-1,0,0,-1,0,1,0,1,3], [1,-1,0,1,0,-1,0,0,1,-1,1,3], [-1,1,0,-1,1,0,1,0,1,1,1,0,3], [-1,0,0,0,0,-1,0,1,0,0,0,1,1,3]], [[[-1,-2,0,1,1,1,-1,-1,1,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,-1,0,0,1,0,-1,-1,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,1,-1,0,0], [1,1,0,-1,0,-1,1,1,0,0,0,0,-1,0], [0,1,0,-1,-1,0,0,0,-1,0,0,1,0,0], [0,-1,0,0,0,0,0,0,1,0,0,-1,0,0], [0,1,1,-1,-1,0,1,1,0,-1,1,0,-1,0], [-1,-1,1,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,1,-1,0,0,1,0,0,0,1,0,-1,0], [1,1,0,-1,-1,0,1,0,-1,0,0,1,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,1,0,0,0,0,0,0,-1,0,0,1,0,0], [1,2,0,-1,-1,0,1,1,-1,0,0,1,0,0], [0,1,0,-1,0,-1,1,1,-1,0,-1,1,0,-1], [0,-1,0,1,0,1,0,-1,0,0,1,-1,0,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0], [-1,-2,1,1,1,1,0,-1,1,0,1,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,1,0,0,-1,0,1,0,0,-1,1], [0,0,0,0,0,0,0,-1,0,0,1,-1,-1,1]]]], [ # Q-class [14][06] [[4], [-2,4], [-2,1,4], [1,-2,-2,4], [0,0,-2,1,4], [0,0,1,-2,-2,4], [0,0,0,0,-2,1,4], [0,0,0,0,1,-2,-2,4], [0,0,0,0,0,0,-2,1,4], [0,0,0,0,0,0,1,-2,-2,4], [0,0,0,0,0,0,0,0,-2,1,4], [0,0,0,0,0,0,0,0,1,-2,-2,4], [0,0,0,0,0,0,-2,1,0,0,0,0,4], [0,0,0,0,0,0,1,-2,0,0,0,0,-2,4]], [[[0,1,0,1,0,1,0,1,0,1,0,1,0,0], [-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0], [0,0,0,-1,0,-1,0,-1,0,-1,0,-1,0,0], [0,0,1,1,1,1,1,1,1,1,1,1,0,0], [0,-1,0,-1,0,-1,0,-1,0,0,0,0,0,-1], [1,1,1,1,1,1,1,1,0,0,0,0,1,1], [0,1,0,2,0,2,0,2,0,1,0,0,0,1], [-1,-1,-2,-2,-2,-2,-2,-2,-1,-1,0,0,-1,-1], [0,0,0,0,0,1,0,2,0,1,0,1,0,1], [0,0,0,0,-1,-1,-2,-2,-1,-1,-1,-1,-1,-1], [0,0,0,0,0,-1,0,-1,0,0,0,0,0,0], [0,0,0,0,1,1,1,1,0,0,0,0,0,0], [0,-1,0,-2,0,-3,0,-4,0,-3,0,-1,0,-2], [1,1,2,2,3,3,4,4,3,3,1,1,2,2]], [[0,0,0,0,0,0,0,0,1,1,1,1,0,0], [0,0,0,0,0,0,0,0,0,-1,0,-1,0,0], [-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0], [0,1,0,1,0,1,0,1,0,1,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,1,1,1,1,1,1,1,1,1,0,0,1,1], [0,-1,0,-1,0,-1,0,-1,0,-1,0,0,0,-1], [0,0,1,1,2,2,2,2,1,1,1,1,1,1], [0,0,0,-1,0,-2,0,-2,0,-1,0,-1,0,-1], [0,0,-1,-1,-1,-1,0,0,0,0,0,0,0,0], [0,0,0,1,0,1,0,0,0,0,0,0,0,0], [-1,-1,-2,-2,-3,-3,-4,-4,-3,-3,-1,-1,-2,-2], [0,1,0,2,0,3,0,4,0,3,0,1,0,2]]]], [ # Q-class [14][07] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,1,0]]]], [ # Q-class [14][08] [[4], [0,4], [2,1,4], [0,0,0,4], [0,-2,0,0,4], [0,2,1,0,-1,4], [0,0,-1,-1,0,1,4], [-1,2,1,-1,-1,1,0,4], [0,0,-1,1,-1,0,1,0,4], [2,-1,1,0,0,1,1,0,0,4], [2,0,1,0,0,0,0,0,-1,1,4], [0,0,0,0,1,1,0,0,0,0,-1,4], [2,0,1,0,1,0,-1,0,0,2,1,1,4], [1,0,1,0,-1,0,-1,0,2,1,-1,0,2,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,1,-1,0,1,0,0,0,-1,1,1,0,-2,2], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [1,0,-1,1,0,0,1,1,-1,-1,0,0,0,1], [0,-1,1,0,-1,0,0,0,1,-1,-1,-1,2,-2], [1,0,-1,0,0,0,0,0,-1,0,0,0,-1,1], [0,1,0,-1,0,0,-1,-1,1,1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,1,0,0,-1,0], [0,2,-1,0,1,-1,-1,0,0,2,1,1,-2,1], [1,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,-1,1,0,-1,0,1,0,0,-1,0,0,1,0], [-1,1,0,0,0,-1,0,-1,0,1,0,0,0,0], [0,1,0,0,1,-1,0,0,0,1,0,0,-1,1], [0,2,-1,0,2,-1,-1,0,0,2,1,1,-3,2]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,1,0,0,-1,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,-1,0,0,-1,1,0,0,0,1,-1], [-1,0,1,-1,0,0,0,-1,1,0,0,0,1,-1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,-1,1], [0,-1,0,1,-1,0,1,0,-1,-1,0,0,1,0], [1,0,0,0,0,0,0,0,0,-1,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,-1,0,0,0,1,0,0,0,-1,0,-1,1,0], [1,-1,0,0,0,1,0,0,0,-1,0,0,0,0], [1,-2,0,1,-1,1,1,1,-1,-2,0,0,1,0]]]], [ # Q-class [14][09] [[4], [-1,4], [2,-2,4], [1,0,0,4], [0,0,0,0,4], [0,0,1,1,-1,4], [-1,0,-1,2,0,1,4], [-1,0,0,0,2,0,0,4], [0,1,0,-1,0,-1,1,1,4], [1,1,0,1,1,1,1,2,2,4], [1,-1,1,2,1,1,1,1,0,2,4], [0,0,1,0,1,1,-1,1,-1,0,1,4], [0,0,-1,-1,0,-1,1,-1,2,1,1,-1,4], [-1,0,-1,1,1,0,2,0,0,1,2,1,2,4]], [[[-2,-1,0,0,0,-1,0,-2,-1,3,0,1,0,-1], [2,2,1,-1,-1,0,2,3,-2,-2,0,0,2,0], [-2,-1,0,-1,0,-2,1,-3,-1,4,1,1,-1,-2], [0,1,1,-1,0,-1,1,0,-2,1,0,0,0,0], [0,0,0,0,0,1,-1,0,1,-1,1,-1,-1,1], [0,1,1,-1,-1,-2,2,0,-3,2,0,1,1,-2], [0,1,1,0,0,-1,1,1,-2,0,0,0,1,-1], [1,0,-1,-1,0,1,0,0,1,-1,1,-1,-2,1], [0,0,0,0,0,0,1,1,-1,0,0,0,1,-1], [0,1,1,-1,-1,-1,2,1,-3,1,0,0,1,-1], [-1,0,1,-1,0,-1,1,-1,-2,2,0,0,0,-1], [1,0,-1,-1,0,1,-1,0,1,-1,1,-1,-1,1], [-1,0,1,1,0,0,0,1,-1,0,-1,0,2,-1], [0,1,1,0,0,0,0,1,-1,-1,0,-1,1,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,-1,1,1,0,-1,0,-1,-1,2,-1,1,1,-1], [2,1,0,0,0,1,0,2,0,-2,0,-1,1,1], [1,1,1,1,0,1,-1,2,0,-2,-1,-1,1,1], [0,1,1,-1,-1,-1,1,0,-1,0,1,0,0,0], [1,0,0,1,0,1,-1,2,1,-2,-1,-1,1,1], [0,1,1,1,0,0,0,1,0,-1,-1,0,1,0], [1,0,-1,1,0,2,-2,1,2,-3,0,-1,0,2], [0,0,0,1,0,0,0,0,0,0,-1,1,1,0], [1,0,0,1,0,1,-1,1,1,-2,-1,0,1,1], [2,1,0,0,0,1,-1,2,1,-3,0,-1,0,2], [0,0,0,0,0,0,-1,0,0,0,0,-1,0,1], [0,0,0,-1,0,-1,1,-1,0,1,0,1,-1,0], [0,1,1,-1,0,-1,1,0,-1,0,0,0,0,0]]]], [ # Q-class [14][10] [[7], [2,7], [-1,1,7], [1,-1,3,7], [3,3,-1,-1,7], [1,3,1,1,1,7], [1,1,1,2,1,-1,7], [1,1,2,1,1,2,1,7], [1,1,-3,-1,0,3,-1,0,7], [3,-2,1,1,-1,-1,2,1,1,7], [2,0,1,3,-2,-1,1,-1,-1,3,7], [1,-1,-2,2,1,1,-1,-2,2,1,1,7], [0,3,2,1,2,3,-1,3,-1,-1,1,0,7], [2,3,-1,-2,1,-1,0,1,1,2,2,1,1,7]], [[[0,0,1,-1,0,0,0,1,0,-1,1,1,-1,0], [0,1,0,-1,0,-1,0,1,0,0,1,1,0,-1], [-1,2,-1,1,0,-1,-1,0,0,1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,1,0,-1,0,0,0,1,0,0,1,1,-1,-1], [0,1,0,0,0,-1,0,1,0,0,0,1,0,-1], [0,-1,1,-1,1,0,0,0,1,-1,1,0,0,0], [1,0,1,0,0,-1,0,0,1,-1,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,-1,1,0,0,0,0,0,1,-1,0,0,0,1], [0,-1,0,0,0,0,0,0,0,-1,0,0,0,1], [0,-1,0,0,0,1,1,0,0,-1,0,0,0,1], [2,-1,1,-1,-1,-1,1,0,1,-2,0,1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,-1,0,0,0,1,0,0,1,1,0,-1], [1,-1,1,-1,0,0,1,0,0,-1,0,1,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0], [-1,1,0,0,1,0,-1,1,0,1,1,0,-1,-1], [0,1,0,-1,0,-1,0,1,0,0,1,1,0,-1], [0,0,0,1,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,1,0,0,0,1,0], [0,0,0,1,0,0,0,0,0,0,-1,0,0,1], [0,-1,0,0,0,1,1,0,0,-1,0,0,0,1], [-1,1,0,0,0,0,0,0,0,1,0,0,0,0], [0,1,0,-1,0,0,0,1,0,0,1,1,-1,-1], [0,-1,0,0,0,1,0,0,0,0,0,0,0,1]]]], [ # Q-class [14][11] [[6], [0,6], [-2,3,6], [-2,2,1,6], [-2,2,3,3,6], [2,-2,0,0,0,6], [2,-2,-2,0,0,0,6], [-2,-2,0,2,0,0,2,6], [2,0,0,1,2,3,0,-2,6], [-2,0,1,0,-1,0,-1,0,0,6], [0,-3,-2,-2,-2,2,-1,1,0,-1,6], [-2,-2,1,-2,-1,-1,0,0,-2,3,0,6], [-1,-2,-1,-2,-2,-2,-1,0,-1,2,0,3,6], [-1,2,3,0,2,0,-1,-2,0,-1,0,1,-1,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,-1,0,0,0,0,0,0,0,-1,0,0], [-1,1,-1,-1,0,0,0,1,1,0,0,0,0,0], [-2,1,0,0,-1,1,1,-1,0,-1,0,0,0,-1], [-1,1,0,0,0,0,1,-1,0,0,1,0,0,-1], [-1,1,0,0,-1,0,1,0,1,-1,0,1,0,0], [0,1,0,1,0,1,1,-1,-1,0,1,0,1,0], [0,0,0,1,-1,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,1,-1,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,1,1,0,-1,0,0,0,0,0,0,0,0], [1,0,-1,0,1,0,-1,1,0,0,0,1,0,0], [2,-2,-1,0,1,-1,-2,1,0,1,-1,0,-1,1], [0,1,-1,-1,1,0,0,1,0,0,0,0,0,0]], [[-2,1,1,1,-1,1,2,-2,0,-1,1,0,1,-1], [0,-1,0,0,0,0,-1,0,0,0,-1,0,0,0], [0,0,-1,-1,1,0,-1,1,0,0,-1,0,0,0], [0,0,-1,-1,0,0,-1,1,1,0,-1,1,-1,0], [0,-1,0,-1,0,-1,-1,1,1,0,-1,0,-1,0], [-1,1,0,0,0,0,1,-1,0,0,1,0,0,-1], [-1,1,0,0,-1,0,1,0,1,-1,0,1,0,0], [0,1,-2,-1,0,0,-1,2,1,0,-1,1,-1,1], [-1,0,1,0,0,0,1,-1,0,0,1,0,0,-1], [1,0,0,0,1,0,0,0,-1,1,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,1,0,0,0], [1,0,0,0,1,0,0,0,-1,0,0,0,0,0], [1,-1,0,0,1,0,0,0,-1,1,0,-1,0,1], [1,-1,0,0,1,-1,-1,0,0,0,0,0,0,0]]]], [ # Q-class [14][12] [[6], [-1,6], [-3,-2,6], [-1,3,-2,6], [2,-3,1,0,6], [-2,2,2,-1,-1,6], [3,0,-3,1,2,0,6], [3,1,-1,1,2,1,1,6], [-3,3,0,2,-2,3,0,0,6], [-2,3,0,3,0,0,-1,1,3,6], [-1,-1,0,-2,-2,0,-1,-2,1,0,6], [2,1,0,1,0,-1,0,2,-1,0,0,6], [2,2,-1,-1,-2,2,0,2,1,-1,1,3,6], [3,-2,0,-1,1,-3,1,0,-3,-2,1,3,0,6]], [[[-2,-1,-2,-1,0,0,0,0,0,1,-1,0,1,1], [1,-1,-1,1,0,2,-1,-1,-1,1,0,0,0,0], [1,1,2,0,-1,-1,1,1,0,-1,1,0,-1,-1], [0,0,-1,0,1,1,-1,0,0,0,0,0,0,0], [-2,0,0,-1,0,-1,1,1,0,0,0,0,1,0], [0,-1,0,1,-1,1,0,0,-1,0,0,0,0,0], [-2,-2,-2,0,0,1,0,0,0,1,-1,0,1,1], [-2,-1,-2,-1,0,1,0,0,-1,1,-1,0,1,1], [0,0,0,1,0,1,0,0,-1,0,0,0,0,0], [0,0,0,0,0,1,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,-1,0], [0,0,-1,-1,0,0,0,0,0,0,0,1,-1,-1], [-1,0,-1,0,0,0,0,0,-1,0,0,0,0,0], [0,0,-1,-1,0,0,0,0,1,0,0,1,-1,0]], [[-2,-1,-2,-1,0,1,0,0,-1,1,-1,0,1,1], [-1,0,0,0,1,-1,0,0,0,0,0,0,1,0], [2,2,2,0,0,-1,0,0,1,-1,1,0,-1,-1], [0,-1,0,1,0,0,0,0,0,0,0,0,1,0], [0,1,0,0,0,0,0,0,0,-1,0,0,0,0], [0,1,1,0,0,-1,0,0,0,0,0,0,0,0], [-2,-1,-2,0,0,1,0,0,-1,1,-1,0,1,1], [-1,0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,1,1,0,-1,0,0,0,0,0,-1,1,0], [0,1,1,1,1,-1,0,0,0,-1,1,-1,1,0], [-1,0,0,0,0,0,0,1,0,0,0,-1,0,1], [-2,0,0,-1,0,-1,1,1,0,0,0,0,1,0], [-2,-1,-1,-1,0,0,0,0,0,1,-1,0,1,1], [-1,0,-1,-1,0,0,0,1,0,0,0,0,0,0]]]] ]; MakeImmutable( IMFList[14].matrices ); gap-4r6p5/grp/imf27.grp 0000644 0001750 0001750 00000055214 12172557252 013376 0 ustar bill bill ############################################################################# ## #A imf27.grp GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains, for each Q-class representative of the irreducible ## maximal finite integral matrix groups of dimension 27, ## ## [1] a quadratic form (as lower triangle of the Gram matrix), ## [2] a list of matrix generators. ## ############################################################################# ## ## Quadratic form and matrix generators for the Q-class representatives of ## the irreducible maximal finite integral matrix groups of dimension 27. ## IMFList[27].matrices := [ [ # Q-class [27][01] [[1], [0,1], [0,0,1], [0,0,0,1], [0,0,0,0,1], [0,0,0,0,0,1], [0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [27][02] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1]]]], [ # Q-class [27][03] [[4], [2,4], [0,1,4], [1,2,2,4], [2,1,0,1,4], [2,1,1,2,2,4], [0,0,1,0,0,1,4], [0,1,2,1,0,0,1,4], [2,1,0,1,2,2,0,1,4], [1,1,0,1,2,1,0,0,1,4], [1,1,0,1,1,1,0,0,2,1,4], [1,1,0,2,2,1,0,0,1,2,1,4], [0,0,1,0,0,0,1,1,0,-1,0,0,4], [1,2,0,1,2,1,0,0,1,2,1,2,0,4], [0,1,2,1,0,0,2,2,0,0,0,0,1,0,4], [0,0,1,0,0,0,1,2,2,0,1,0,1,0,1,4], [0,0,1,0,0,0,1,1,0,1,0,0,2,0,1,1,4], [2,1,0,2,1,1,0,0,1,1,1,2,0,1,0,0,0,4], [1,2,2,1,0,0,1,2,0,0,0,0,1,0,2,1,1,0,4], [1,2,1,2,1,1,0,2,2,1,1,1,0,1,1,1,0,1,1,4], [1,1,0,2,1,1,0,0,2,1,2,2,0,1,0,1,0,2,0,1,4], [1,2,0,1,1,1,0,0,2,1,2,1,0,2,0,1,0,1,0,1,2,4], [2,1,0,1,1,1,0,0,1,1,2,1,0,2,0,0,0,2,0,1,1,1,4], [1,0,1,0,0,0,2,1,0,0,0,0,1,0,2,1,1,1,1,0,0,0,1,4], [0,0,1,0,1,0,2,1,0,2,0,1,1,1,2,1,2,0,1,0,0,0,0,2,4], [1,1,0,1,1,1,0,0,1,2,2,1,1,1,0,0,2,1,0,1,1,1,2,0,1,4], [0,0,1,0,0,0,2,1,1,0,1,0,1,0,2,2,1,0,1,0,1,1,0,2,2,0,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,-1,0,0,0,0,0,1,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,-1,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,1,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,1,0,0,-1,0], [-1,1,-1,0,0,1,0,0,0,1,0,0,1,-1,0,0,0,0,0,0,0,0,1,0,0,-1,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,1,0,-1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,-1,1,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0], [1,-1,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,1,0,0,-1,0,-1,1,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,-1,1,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,-1,0], [1,-1,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]], [[-1,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [-1,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,1,0,0,0,-1,0,0,1,0], [-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,1,0], [-1,0,0,0,0,0,0,-1,1,0,-1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0], [1,-1,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,-1,0,1,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,-1,1,0,0,0,0,0,0,0,0,-1,1,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,-1,1,1,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [-1,1,0,0,0,0,0,-1,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,1,-1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,1,1,0,-1,0,0,0,0,0,0], [0,-1,-1,1,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,1,0], [0,-1,0,0,0,0,0,0,0,-1,0,0,-1,1,0,0,0,0,1,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0]]]], [ # Q-class [27][04] [[6], [3,6], [1,1,6], [2,2,2,6], [3,2,0,1,6], [2,1,3,1,0,6], [1,1,3,3,0,2,6], [1,3,2,1,0,2,2,6], [1,2,2,1,0,2,3,3,6], [2,3,1,3,1,1,1,2,2,6], [2,1,2,1,0,3,2,3,2,1,6], [1,1,0,1,3,0,0,0,0,1,0,6], [2,3,1,2,1,1,1,2,3,3,1,2,6], [3,2,1,3,1,2,1,1,1,3,3,1,2,6], [3,3,3,3,2,1,2,1,1,2,1,1,2,2,6], [2,2,0,1,3,0,0,0,0,1,0,2,1,1,3,6], [2,3,0,1,3,0,0,0,0,1,0,2,1,1,2,3,6], [1,1,3,2,0,2,3,3,2,1,3,0,1,1,2,0,0,6], [0,0,1,0,3,1,2,1,2,0,1,2,0,0,0,1,1,1,6], [1,1,0,2,3,0,0,0,0,3,0,3,1,2,1,2,2,0,2,6], [0,0,1,0,2,1,1,2,1,0,2,3,0,0,0,1,1,3,3,2,6], [1,1,0,1,2,0,0,0,0,1,0,3,2,1,1,2,3,0,1,2,1,6], [1,1,0,2,2,0,0,0,0,2,0,2,1,3,1,3,2,0,1,3,1,2,6], [1,1,0,1,2,0,0,0,0,1,0,3,3,1,1,3,2,0,1,2,1,3,3,6], [3,2,1,2,1,3,1,1,1,2,2,2,3,3,2,1,1,1,0,1,0,3,1,2,6], [0,0,2,0,2,2,1,1,1,0,1,2,0,0,0,1,1,1,3,3,3,1,1,1,0,6], [0,0,1,0,1,1,3,1,2,0,1,1,0,0,0,1,2,1,3,1,2,2,1,1,0,2,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,-1,0,0,1,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,-1,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,0,0,1,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,1,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0], [0,0,0,-1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,1,0,1], [0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0], [0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,1], [0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,1], [0,0,0,-1,0,0,1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,1], [0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,1], [0,0,1,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,1], [0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,-1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0], [0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,-1,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0]]]], [ # Q-class [27][05] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]] ]; MakeImmutable( IMFList[27].matrices ); gap-4r6p5/grp/glzmodmz.gd 0000644 0001750 0001750 00000002303 12172557252 014106 0 ustar bill bill ############################################################################# ## #W glzmodmz.gd GAP library Stefan Kohl #W Alexander Hulpke ## ## #Y Copyright (C) 2011 The GAP Group ## ## This file contains declarations for constructing clasical groups over ## residue class rings. ############################################################################# ## #F SizeOfGLdZmodmZ( d, m ) . . . . . . . . . . Size of the group GL(d,Z/mZ) ## ## Computes the order of the group `GL( , Integers mod )' for ## positive integers and > 1. ## DeclareGlobalFunction( "SizeOfGLdZmodmZ" ); ############################################################################# ## #F ConstructFormPreservingGroup(oper [,sign] d, R ) ## ## constructs the classical group sefined by oper over a prime field ## over the residue class ring R, which must be modulo an odd prime ## power. DeclareGlobalFunction("ConstructFormPreservingGroup"); ############################################################################# ## #E glzmodmz.gd . . . . . . . . . . . . . . . . . . . . . . . . . . ends here gap-4r6p5/grp/imf26.grp 0000644 0001750 0001750 00000225306 12172557252 013376 0 ustar bill bill ############################################################################# ## #A imf26.grp GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains, for each Q-class representative of the irreducible ## maximal finite integral matrix groups of dimension 26, ## ## [1] a quadratic form (as lower triangle of the Gram matrix), ## [2] a list of matrix generators. ## ############################################################################# ## ## Quadratic form and matrix generators for the Q-class representatives of ## the irreducible maximal finite integral matrix groups of dimension 26. ## IMFList[26].matrices := [ [ # Q-class [26][01] [[1], [0,1], [0,0,1], [0,0,0,1], [0,0,0,0,1], [0,0,0,0,0,1], [0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [26][02] [[2], [1,2], [0,0,2], [0,0,1,2], [0,0,0,0,2], [0,0,0,0,1,2], [0,0,0,0,0,0,2], [0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [26][03] [[5], [3,5], [2,3,5], [1,2,3,5], [-1,1,2,3,5], [-3,-1,1,2,3,5], [-3,-3,-1,1,2,3,5], [-3,-3,-3,-1,1,2,3,5], [-3,-3,-3,-3,-1,1,2,3,5], [-1,-3,-3,-3,-3,-1,1,2,3,5], [1,-1,-3,-3,-3,-3,-1,1,2,3,5], [2,1,-1,-3,-3,-3,-3,-1,1,2,3,5], [3,2,1,-1,-3,-3,-3,-3,-1,1,2,3,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,3,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,2,3,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-1,1,2,3,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-1,1,2,3,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-1,1,2,3,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-1,1,2,3,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-3,-3,-3,-3,-1,1,2,3,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-3,-3,-3,-3,-1,1,2,3,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,-1,-3,-3,-3,-3,-1,1,2,3,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,3,2,1,-1,-3,-3,-3,-3,-1,1,2,3,5]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,1,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,1,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,-1,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,-1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,1,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,-1,0,1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,-1,0,0,1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,-1,0,1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,-1,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,1,-1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,-1,0,0,0,1,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,0,-1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,-1,0,0,0,0,0,1,-1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,1,0,1,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,-1,0,1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,-1,1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,-1,0,-1,1,1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,1,0,-1,-1,0,0,1,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,-1,0,0,1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,0,0,-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,1,-1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,1,1,-1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,1,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,1,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,-1,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,-1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,1,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,-1,0,1,0,0,0,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,1,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,1,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,-1,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,-1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,1,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,-1,0,1,0,0,0,0,1]]]], [ # Q-class [26][04] [[5], [-1,5], [-1,-1,5], [-1,-1,-1,5], [1,-1,-1,-1,5], [-1,1,-1,-1,-1,5], [1,-1,1,-1,-1,-1,5], [1,1,-1,1,-1,-1,-1,5], [-1,1,1,-1,1,-1,-1,-1,5], [1,-1,1,1,-1,1,-1,-1,-1,5], [-1,1,-1,1,1,-1,1,-1,-1,-1,5], [-1,-1,1,-1,1,1,-1,1,-1,-1,-1,5], [-1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,1,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,-1,1,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,-1,1,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,1,-1,1,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,5]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,0,-1,-1,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,1,0,0,0,-1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,-1,0,-1,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,1,0,0,0,-1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,1,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,-1,-1,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,1,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,1,1,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,-1,-1,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,1,0,0,0,-1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,1,1,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,-1,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,0,-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,-1,0,-1,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,1,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [26][05] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [26][06] [[3], [1,3], [1,1,3], [1,1,1,3], [1,1,1,0,3], [1,1,1,1,1,3], [1,1,1,1,1,1,3], [1,1,1,1,1,1,1,3], [1,1,1,1,1,1,0,1,3], [1,1,1,1,1,1,1,1,1,3], [1,1,1,1,0,0,0,0,1,1,3], [1,1,1,0,1,1,0,0,1,1,1,3], [1,0,1,0,1,1,1,0,0,0,1,1,3], [1,1,1,0,1,1,1,1,0,1,0,1,1,3], [1,1,1,0,1,1,1,0,1,1,1,1,1,0,3], [1,1,1,1,0,0,1,0,0,0,0,0,0,1,0,3], [1,1,1,1,1,1,0,1,1,1,1,0,0,1,0,0,3], [1,1,1,0,1,1,1,0,0,1,1,1,1,1,1,1,0,3], [1,1,1,1,1,1,1,0,1,1,0,1,0,1,1,1,1,0,3], [1,1,1,1,0,1,1,1,1,0,1,1,1,0,1,0,0,0,0,3], [1,1,1,1,1,1,0,0,1,1,1,1,1,1,0,1,1,1,1,0,3], [0,1,1,1,1,1,1,1,1,1,0,1,0,1,0,0,1,0,1,1,0,3], [1,1,1,0,1,0,1,1,0,1,1,1,1,1,1,0,0,1,0,1,0,0,3], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,0,1,1,1,1,3], [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0,3], [1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,1,0,1,1,1,1,1,1,1,3]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,1,5,3,-2,-5,-1,-1,-2,-2,-6,1,-3,2,6,-4,1,3,-4,-1,1,-1,-4,1,1,7], [1,0,3,2,-2,-3,0,0,-1,-2,-4,1,-2,1,4,-3,1,2,-3,-1,2,0,-2,0,1,4], [1,0,3,1,-1,-2,0,0,-2,-2,-3,1,-3,1,4,-2,0,1,-3,-1,2,0,-2,1,1,4], [0,1,2,2,-1,-3,-1,-1,0,0,-4,0,0,1,2,-2,1,2,-1,1,0,-1,-2,0,0,3], [1,1,2,1,-1,-2,-1,0,-1,-1,-3,0,-1,1,3,-2,0,1,-2,-1,1,0,-2,1,1,3], [1,0,2,0,-1,-1,-1,0,-2,-1,-2,0,-2,0,3,-1,0,0,-2,-1,2,1,-1,1,1,3], [0,1,2,1,0,-2,-2,0,-2,0,-3,0,-1,1,2,-2,0,2,-1,1,0,-1,-3,1,2,3], [1,0,2,1,0,-1,-1,-1,0,-1,-1,-1,-1,1,2,-1,-1,1,-1,0,0,0,-1,0,-1,3], [1,0,2,1,-1,-1,-1,-1,0,-1,-2,-1,-1,1,2,-1,0,1,-1,0,0,0,0,0,-1,3], [1,-1,2,1,-1,-1,1,-1,0,-2,-1,0,-2,1,3,-1,0,0,-2,-1,1,0,0,0,-1,3], [1,0,2,2,-1,-2,0,-1,0,-2,-2,0,-2,2,3,-2,0,1,-2,-1,1,0,-1,0,0,3], [0,0,-1,0,0,0,1,0,0,0,0,1,0,0,0,0,1,-1,-1,0,1,0,0,0,1,-1], [0,1,1,2,-1,-3,0,0,-1,-1,-4,2,-1,1,2,-3,2,2,-2,0,1,-1,-2,0,2,2], [1,0,2,1,-1,-2,-1,-1,0,0,-2,-1,0,1,2,-1,0,1,-1,0,0,0,-1,0,-1,3], [1,0,2,1,-2,-2,1,0,-1,-2,-3,2,-2,0,3,-2,1,1,-3,-2,2,1,-1,0,1,3], [0,1,2,2,-1,-3,0,0,-1,-1,-4,1,-1,1,3,-3,1,2,-2,0,1,-1,-2,0,1,3], [1,0,2,1,-2,-2,0,-1,1,-1,-3,0,0,0,2,-1,1,1,-1,-1,0,0,0,0,-1,3], [1,0,2,1,-1,-2,0,0,-1,-2,-2,0,-2,1,3,-2,0,1,-2,-1,2,1,-1,0,0,3], [1,0,2,1,0,-1,-1,0,-2,-1,-1,0,-2,1,3,-1,-1,0,-2,-1,1,0,-2,1,1,3], [1,0,2,2,-1,-2,1,-1,0,-2,-3,1,-2,1,3,-2,1,1,-3,-1,1,0,-1,0,0,3], [0,1,2,2,-1,-3,-1,0,-1,-1,-4,1,-1,1,3,-2,1,2,-2,0,1,-1,-2,0,1,3], [1,0,2,1,-1,-2,-1,0,-2,-1,-2,0,-2,1,3,-2,0,1,-1,0,1,0,-2,1,1,3], [1,0,3,2,-1,-2,-1,-1,-1,-2,-3,0,-2,1,4,-2,0,1,-2,-1,1,0,-1,1,0,4], [1,-1,-1,-2,0,2,1,1,-1,-1,3,0,-1,-1,0,1,-1,-2,0,-1,2,2,1,0,0,-1], [1,0,1,0,0,0,0,0,-2,-2,0,0,-3,1,3,-1,-1,-1,-2,-1,2,1,-1,1,1,2]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,2,1,0,-1,-1,-1,0,-1,-1,-1,-1,1,2,-1,-1,1,-1,0,0,0,-1,0,-1,3], [2,-1,2,1,-1,-1,0,0,-2,-3,-1,0,-4,1,5,-2,-1,0,-3,-2,3,2,-1,1,1,3], [2,-1,2,0,-1,0,-1,0,-1,-2,0,-1,-2,0,3,0,-2,0,-1,-2,1,2,0,1,-1,3], [0,0,0,0,1,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,1,0], [1,0,3,2,-1,-3,-1,-1,-1,-1,-4,0,-2,1,4,-2,0,2,-2,0,1,0,-2,1,0,4], [1,-1,0,-1,0,1,0,0,0,-1,2,-1,-1,0,1,1,-1,-1,0,-1,1,2,1,0,-1,0], [1,0,3,1,-1,-3,-1,0,-2,-1,-3,0,-2,1,4,-2,0,2,-2,0,1,0,-3,1,1,4], [0,0,-1,0,1,1,-1,0,0,1,1,-1,1,0,-1,1,-1,0,1,1,-1,0,0,0,0,-1], [1,0,3,2,-1,-3,-1,0,-2,-2,-4,1,-3,2,5,-3,0,2,-3,-1,2,0,-3,1,2,4], [1,0,1,1,0,0,0,0,0,-1,0,0,-1,1,1,-1,-1,0,-1,-1,0,0,-1,0,0,1], [1,0,2,2,-1,-2,0,-1,0,-1,-3,0,-1,1,3,-2,0,1,-2,-1,1,0,-1,0,0,3], [1,0,1,1,0,-1,0,-1,0,0,-1,0,-1,1,1,-1,0,0,-1,0,0,0,-1,0,0,1], [1,0,2,1,-1,-2,0,-1,0,-1,-2,0,-1,1,2,-2,0,1,-1,0,1,0,-1,0,0,2], [0,0,-1,0,1,1,0,0,0,0,1,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,-1], [1,-1,-1,-2,0,3,0,0,1,-1,4,-2,0,-1,-1,2,-2,-2,2,-1,0,2,3,0,-2,-1], [1,0,2,1,0,-1,-1,0,-2,-1,-1,0,-2,1,2,-2,-1,1,-1,0,1,0,-2,1,1,2], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,-1,-1,0,2,0,0,0,-1,2,-1,0,-1,0,1,-1,-1,1,-1,1,2,2,0,-1,-1], [1,0,2,2,-1,-2,0,-1,0,-1,-2,0,-1,1,3,-1,0,1,-2,-1,0,0,-1,0,-1,3], [1,0,2,2,-1,-2,-1,-1,0,-1,-3,0,-1,1,2,-2,0,2,-1,0,0,0,-1,0,0,3], [1,0,2,1,-1,-2,-1,0,-2,-1,-2,0,-2,1,4,-2,-1,1,-2,-1,2,1,-2,1,1,3], [1,0,2,1,0,-1,0,-1,0,-1,-1,0,-1,1,2,-1,0,0,-2,-1,0,0,-1,0,0,2], [1,0,2,1,0,-1,-1,-1,0,0,-1,-1,-1,1,1,-1,-1,1,-1,0,0,0,-1,0,0,2], [1,-1,-2,-2,1,4,0,0,1,0,5,-2,1,-1,-2,3,-2,-3,2,-1,-1,2,3,0,-2,-3], [1,0,2,1,0,-1,-1,-1,0,0,-1,-1,0,1,1,-1,-1,1,0,0,-1,0,-1,0,-1,2]]]], [ # Q-class [26][07] [[8], [2,8], [4,1,8], [4,1,2,8], [2,2,-2,1,8], [4,1,2,2,1,8], [2,-1,1,4,2,1,8], [2,2,1,1,2,1,2,8], [2,2,4,1,-1,1,2,2,8], [1,1,2,-1,1,2,1,1,1,8], [2,2,1,1,2,1,2,2,2,1,8], [1,1,2,-1,1,2,1,4,4,2,1,8], [2,2,1,4,2,1,2,2,2,-2,2,1,8], [2,2,1,1,2,1,2,-1,2,1,2,1,2,8], [1,1,2,2,1,2,1,1,1,2,1,2,4,1,8], [2,2,1,1,2,4,-1,2,2,1,2,4,2,2,4,8], [1,1,2,2,1,2,4,1,1,2,1,2,1,4,2,1,8], [2,2,1,1,2,1,2,2,2,1,2,4,2,2,1,2,4,8], [1,1,2,2,1,2,1,1,1,2,1,2,1,4,2,4,2,1,8], [4,1,2,2,1,2,1,1,1,2,1,-1,1,4,-1,1,2,1,2,8], [4,1,2,2,1,2,1,1,1,2,1,2,1,1,2,1,-1,1,2,2,8], [1,1,2,2,1,2,1,1,1,2,1,-1,1,1,2,1,-1,-2,2,2,2,8], [2,-1,1,1,2,1,2,2,2,1,2,1,2,2,1,2,1,2,1,4,1,4,8], [2,2,1,4,2,1,2,2,2,1,-1,1,2,2,1,2,1,2,4,1,1,1,-1,8], [2,2,1,1,2,1,2,2,2,1,2,4,2,2,1,2,1,2,1,1,4,1,2,-1,8], [2,2,1,1,2,4,-1,2,-1,4,2,1,-1,-1,1,2,1,2,1,1,1,1,-1,2,-1,8]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [-5,-1,3,5,2,3,-1,5,0,3,-1,-4,-2,5,-1,2,-4,3,-2,-2,1,-2,-1,-3,-1,-3], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [4,2,-3,-6,-2,-2,1,-6,-1,-4,3,5,1,-7,2,-3,5,-5,1,3,-1,1,3,6,2,2], [1,0,0,-1,0,-1,1,-1,0,0,0,0,1,-1,-1,1,1,0,0,0,0,1,-1,0,0,0], [1,0,-1,-2,-1,-1,1,-1,0,-1,0,0,1,-1,-1,1,2,-1,0,0,1,1,0,1,0,1], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [-1,0,1,0,0,1,0,0,-1,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,-1], [-3,-1,2,4,2,2,-1,3,0,3,-1,-2,-1,3,-1,1,-3,3,-1,-1,0,0,-2,-3,-1,-3], [-5,-2,4,6,2,2,0,7,1,5,-4,-7,0,8,-4,5,-5,5,-2,-5,2,-1,-3,-7,-2,-2], [-6,-2,4,7,3,3,-1,7,1,5,-3,-6,-1,7,-3,4,-5,6,-2,-3,2,0,-4,-7,-3,-4], [-4,-2,3,5,2,2,-1,5,1,4,-2,-5,0,5,-3,4,-3,4,-2,-3,2,0,-3,-5,-2,-3], [2,0,-1,-3,-1,-1,1,-1,0,-1,0,0,1,-2,0,0,2,-1,1,0,0,1,0,1,1,1], [0,-1,0,0,0,0,0,1,0,1,0,-1,1,0,-1,1,0,1,0,0,0,1,-2,-1,0,-1], [-6,-2,4,7,2,3,-1,7,1,5,-3,-6,-1,8,-3,4,-5,5,-3,-4,2,-1,-3,-6,-2,-3], [2,0,-1,-2,-1,-2,1,-1,0,0,-1,0,2,-1,-2,2,2,-1,0,-1,1,1,0,0,0,1], [-3,-1,2,4,1,1,0,4,0,3,-2,-3,0,5,-2,3,-3,3,-2,-2,1,0,-2,-4,-2,-2], [-5,-1,3,5,2,2,0,5,1,4,-3,-5,0,6,-3,4,-4,4,-2,-3,2,-1,-2,-5,-2,-2], [-4,-2,3,4,2,1,0,5,1,4,-3,-5,1,5,-4,5,-3,4,-2,-3,2,0,-3,-5,-2,-2], [-2,-1,1,3,1,1,-1,3,1,3,-1,-3,0,3,-2,2,-1,2,-1,-2,1,0,-2,-3,-1,-2], [-1,0,1,0,0,0,1,0,-1,0,0,0,0,1,0,1,-1,0,-1,0,0,0,0,0,0,0], [5,2,-4,-6,-3,-2,1,-6,-1,-4,3,5,1,-7,2,-3,5,-5,2,3,-1,1,3,6,2,2]], [[-11,-4,7,13,5,6,-3,13,2,9,-5,-11,-2,14,-5,6,-10,10,-4,-6,3,-2,-6,-11,-4,-6], [-7,-2,5,8,3,4,-2,7,0,5,-2,-5,-2,8,-2,2,-6,5,-3,-3,1,-2,-2,-5,-2,-4], [-1,-1,0,2,1,1,-1,1,1,1,0,-1,-1,1,0,0,-1,1,0,0,0,0,-1,-1,0,-1], [-3,-1,2,3,1,2,-1,3,0,3,-1,-3,0,3,-2,2,-2,2,-1,-2,1,-1,-1,-2,-1,-2], [-4,-2,3,5,2,2,-1,6,1,4,-3,-5,0,6,-3,3,-4,5,-1,-3,1,0,-3,-6,-2,-2], [-3,-1,2,3,1,1,0,3,1,2,-2,-3,0,4,-2,2,-3,2,-1,-2,1,-1,-1,-3,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0], [-3,-1,2,3,1,1,0,3,0,2,-1,-2,0,3,-2,2,-2,2,-1,-1,1,0,-2,-3,-1,-1], [0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-3,-1,2,4,2,2,-1,3,1,2,-1,-2,-1,3,-1,1,-3,3,-1,-1,0,0,-2,-3,-1,-2], [-7,-2,5,8,3,4,-1,8,1,5,-3,-7,-2,9,-2,3,-7,6,-2,-4,1,-2,-3,-7,-2,-3], [-3,0,2,3,1,1,0,2,0,1,-1,-1,-1,3,-1,1,-2,1,-1,-1,1,-1,0,-2,-1,0], [1,1,-1,-1,-1,0,0,-2,-1,-1,1,2,0,-2,1,-2,1,-2,1,1,-1,-1,2,2,1,1], [-1,-1,1,2,1,0,0,2,1,2,-2,-3,1,2,-2,2,-1,2,0,-2,1,0,-1,-3,-1,0], [1,1,-1,-1,-1,0,0,-2,0,-1,1,2,0,-2,1,-2,1,-2,1,1,-1,-1,2,2,1,1], [-3,-1,2,3,1,1,0,3,1,2,-2,-3,0,4,-2,2,-2,2,-1,-2,1,-1,-1,-3,-1,0], [-1,-1,1,2,1,0,0,2,1,2,-2,-2,1,2,-2,2,-1,1,0,-2,1,0,-1,-3,-1,0], [-6,-2,4,8,3,3,-2,7,1,5,-3,-5,-1,8,-3,3,-5,5,-2,-4,2,-1,-3,-7,-3,-3], [-1,-1,1,1,1,0,0,1,1,1,-1,-2,1,1,-2,2,0,1,0,-1,1,0,-1,-2,-1,0], [-3,-2,2,4,2,2,-1,4,1,3,-2,-4,0,4,-2,2,-3,4,-1,-2,1,0,-3,-4,-1,-2], [-6,-1,4,6,2,4,-2,5,0,3,-1,-4,-2,6,-1,1,-5,4,-2,-2,1,-2,-1,-3,-1,-3], [4,1,-3,-5,-2,-2,1,-5,0,-3,2,3,1,-6,1,-2,4,-3,2,2,-1,1,2,4,2,2], [-2,-1,1,3,1,1,0,3,1,2,-2,-3,0,3,-2,2,-2,3,0,-2,1,0,-2,-4,-1,-1], [3,0,-2,-3,-1,-2,0,-3,0,-1,1,2,2,-4,-1,0,4,-2,1,1,0,2,0,2,0,1], [-6,-1,4,6,2,3,-1,5,0,3,-2,-4,-2,6,-1,2,-5,4,-2,-2,1,-2,-1,-4,-1,-2], [-4,-2,3,5,2,2,-1,5,1,4,-2,-4,0,6,-3,3,-4,4,-2,-3,1,0,-3,-5,-2,-2]]]], [ # Q-class [26][08] [[4], [1,4], [0,0,4], [1,1,0,4], [0,1,-1,1,4], [0,0,1,0,1,4], [1,1,1,-1,-1,0,4], [-1,0,1,-1,-1,-2,0,4], [0,0,0,0,1,1,-1,0,4], [1,1,0,2,1,-1,-2,0,0,4], [0,1,0,1,0,-1,0,0,0,1,4], [0,0,2,0,0,0,1,0,0,0,1,4], [0,1,0,-1,-1,0,0,1,-1,0,-1,-1,4], [1,0,0,-1,0,1,2,-2,0,-1,0,0,-1,4], [-1,1,-1,0,0,-1,0,1,0,0,1,0,-1,-1,4], [0,2,1,0,0,1,1,0,-1,0,0,-1,2,1,-1,4], [-1,0,1,-1,-1,-1,0,2,1,0,-1,-1,1,0,-1,1,4], [-1,1,0,1,0,-1,1,1,0,-1,1,0,-1,-1,2,0,0,4], [1,1,0,0,0,2,1,-1,0,-1,-1,-1,0,1,1,1,-1,0,4], [0,1,0,2,2,1,0,-2,0,1,1,1,-1,1,-1,1,-1,0,0,4], [1,-1,0,1,1,1,0,-1,1,0,0,1,-2,0,1,-2,-2,0,1,0,4], [0,-1,0,1,0,1,-2,-2,1,1,-1,0,-1,0,-1,-1,0,-1,0,1,0,4], [0,0,0,2,1,-1,-1,1,1,1,0,1,0,-2,0,-1,0,1,-1,1,1,0,4], [0,0,-1,1,1,-1,0,0,1,1,0,-1,-1,1,0,0,1,1,-1,1,0,0,1,4], [1,1,0,0,1,1,-1,-1,-1,1,0,0,1,0,-1,1,-1,-2,1,1,-1,1,-1,-2,4], [1,1,1,-1,-1,0,2,0,1,-1,0,0,0,2,-1,1,2,0,1,0,-1,0,-1,0,0,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,-1,0,1,0,-1,0,1,1,0,-1,0,1,1,0,0,-1,1,0,1,0,0,-1,-1,0,0], [0,0,0,-1,-2,0,-1,-1,1,1,-1,0,-1,0,0,0,0,1,0,1,0,-2,0,0,1,0], [-1,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,1,-1,-1,0,-1,0,0,0,1,0,1], [0,0,0,0,1,-1,1,1,0,-1,1,0,0,0,0,1,0,-1,1,0,0,2,0,0,-1,-1], [1,-1,1,0,1,-1,0,-1,0,-1,0,0,1,-1,1,0,1,0,0,1,0,0,-1,0,0,0], [-1,0,0,1,0,-1,0,0,1,1,-1,0,1,1,-1,-1,-1,1,0,0,0,-1,-1,-1,0,0], [0,-1,0,1,1,0,0,0,0,0,0,1,0,0,1,1,-1,-1,0,-1,-1,0,0,0,-1,1], [-1,1,-1,0,-2,1,-1,1,0,1,-1,0,-1,1,-1,0,-1,1,-1,0,1,-1,0,0,1,1], [1,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,-1,-1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,-1,0,0,0,0,0,0,0,0,1], [-1,1,0,0,0,0,1,1,0,1,0,-1,1,2,-1,-1,0,1,0,0,1,1,0,-1,0,-1], [1,0,1,0,1,0,0,0,-1,-2,1,0,0,-1,1,0,1,-1,0,0,0,1,0,1,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,-1,-1,0,0,0,-1,0,0,-1,-1,0,0,0,0], [0,1,1,0,0,-1,0,1,0,-1,0,-1,1,1,0,-1,0,0,0,1,1,1,-1,0,0,-1], [0,0,0,1,0,0,-1,0,0,0,-1,1,1,1,0,-1,0,1,0,0,0,-1,-1,0,0,0], [1,-1,1,0,0,-1,-1,-2,1,0,-1,0,0,-1,1,0,0,0,0,1,-1,-2,-1,0,0,0], [0,0,0,0,1,-1,1,0,0,-1,1,0,0,0,0,0,1,-1,1,0,0,1,0,0,0,-1], [0,0,0,-1,-1,0,0,0,0,0,0,0,-1,-1,0,1,0,0,0,0,1,0,0,1,1,0], [0,-1,0,0,0,0,0,-1,0,0,0,0,-1,-1,1,1,0,-1,0,0,-1,-1,1,0,0,1], [0,0,-1,0,-1,1,0,0,0,0,0,1,-1,0,0,1,0,0,0,-1,0,0,1,1,1,0], [-1,-1,0,0,-1,0,0,-1,1,2,-1,0,0,0,0,0,-1,1,0,0,0,-2,0,0,1,1], [0,0,1,0,-1,0,-1,-2,0,0,-1,0,-1,-1,1,0,0,0,-1,0,0,-2,0,1,1,1], [-1,1,-1,0,0,0,1,2,0,0,1,0,0,1,-2,0,0,0,1,-1,1,2,0,0,0,-1], [1,-1,0,1,1,0,0,0,0,-1,0,1,1,0,1,0,1,0,0,0,0,0,-1,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,-1,0,1,0,0,0,0,0,1,-1,0,0,0,1,0,0,1,0,-1,-1,-1], [1,-1,-1,-1,1,0,0,0,-1,0,1,1,0,-1,0,1,1,0,1,0,0,1,0,0,-1,0], [0,0,1,0,1,-1,0,0,0,0,0,-1,1,1,0,0,-1,0,0,0,0,1,0,-1,-1,0], [0,0,0,1,1,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,-1,-1,0], [1,0,0,-1,0,1,0,-1,-1,0,0,0,-1,-1,1,1,1,0,-1,0,0,0,1,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,1,0,-1,-1,0,0,0,1,0,0,0,-1,1,0,0], [0,0,-1,0,0,0,-1,1,0,0,0,1,0,0,-1,0,0,0,1,0,0,0,-1,0,-1,0], [0,-1,-1,1,0,0,0,0,1,1,-1,1,0,0,0,1,0,1,0,0,0,-1,-1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,1,-1,0,0], [-1,1,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,-1,-1,1,0,0,0,0,0,-1,0], [0,-1,0,0,1,-1,1,0,0,0,1,0,0,-1,0,1,0,-1,1,0,0,1,0,0,-1,0], [1,1,0,-1,-1,0,-1,0,0,-1,0,0,-1,0,0,0,1,0,0,1,0,0,0,0,0,-1], [0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,1,0], [-1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0], [1,1,0,-1,0,0,-1,1,-1,-1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,-1,0], [0,0,-1,0,0,0,-1,1,0,0,0,1,0,0,-1,0,0,1,1,0,0,0,-1,0,0,0], [-1,0,0,1,1,-1,0,1,0,0,0,1,1,1,-1,0,-1,0,1,-1,0,1,-1,0,-1,0], [1,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,1,0,-1,0,0,0,0,0,0,0], [0,0,1,0,1,-1,0,1,0,0,0,-1,1,1,0,0,-1,0,0,1,0,1,0,-1,-1,0], [0,-1,0,1,1,0,1,-1,0,0,0,0,0,-1,1,1,0,-1,-1,-1,0,0,0,0,0,1], [0,-1,0,0,0,1,1,0,0,1,0,-1,0,1,1,0,0,1,-1,0,0,0,1,-1,1,0], [0,-1,0,1,1,-1,0,1,1,0,0,0,1,1,0,1,-1,0,0,0,0,1,-1,-1,-1,0], [-1,0,0,1,0,-1,0,1,1,0,-1,0,1,1,-1,0,-1,1,0,0,1,0,-1,0,1,0], [1,1,0,-1,0,1,0,1,-1,0,1,-1,0,1,0,-1,1,0,0,1,0,1,1,-1,-1,-1], [0,0,-1,0,0,0,0,1,0,1,0,1,0,0,-1,0,0,1,1,0,0,0,-1,0,0,0]]]], [ # Q-class [26][09] [[6], [0,6], [-1,0,6], [2,-1,-1,6], [2,3,-1,0,6], [1,-1,1,0,-2,6], [2,-1,0,1,1,0,6], [2,-2,1,0,1,1,0,6], [1,-1,0,1,0,3,2,2,6], [-2,1,1,-1,-2,2,0,-1,2,6], [-1,-1,-1,0,-1,2,-1,1,2,0,6], [0,0,2,1,-1,1,2,1,2,1,2,6], [0,1,0,-1,0,-2,2,-2,0,-1,0,2,6], [0,-2,-3,0,-2,1,1,0,0,2,0,-1,-2,6], [-2,1,-1,-3,0,-2,1,-2,-1,1,1,1,3,0,6], [0,1,1,3,0,1,-1,0,1,0,-1,1,-1,-2,-3,6], [-1,3,0,1,1,2,-2,0,1,2,1,1,-2,0,-2,3,6], [3,1,1,2,2,1,1,1,1,-1,1,1,-1,-2,-1,0,0,6], [3,1,0,1,1,-1,3,0,-1,0,-3,1,2,1,0,0,-1,0,6], [0,1,2,1,-2,2,-3,-1,-1,0,0,1,0,-2,-2,3,2,0,0,6], [-3,2,1,-1,1,0,-1,-2,0,1,2,0,0,-2,2,0,2,0,-3,0,6], [0,1,-2,-1,0,-1,-1,-2,0,-1,2,-1,2,-1,2,-1,-1,1,-2,-1,1,6], [0,-1,-1,-2,-3,1,-2,-1,0,1,1,-2,1,1,1,-2,-2,-1,-1,1,-1,3,6], [1,-2,-2,-1,0,1,2,3,3,0,1,1,0,2,1,-1,-1,-1,0,-3,-2,0,0,6], [1,0,2,0,0,3,0,2,2,0,0,1,-1,-1,-3,3,2,-1,0,2,0,-2,-1,1,6], [0,-2,0,1,0,0,2,1,1,-1,0,0,-1,1,-1,0,-1,0,0,-2,0,-1,-2,2,2,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0], [1,0,1,0,1,0,0,-1,0,0,1,0,0,0,0,0,0,-1,-1,0,-1,0,0,0,0,0], [-1,0,-1,0,-1,0,0,0,0,-1,-1,1,-1,-1,0,-1,1,1,1,-1,0,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [-1,0,0,1,0,0,0,1,1,-1,-1,0,0,1,1,-1,0,0,0,1,0,1,0,-1,1,0], [2,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,-1,-1,0,0,0,0,0,-1,1], [-1,0,0,1,1,1,1,1,-1,1,0,0,0,0,-1,-1,-1,-1,0,1,0,2,-1,0,0,0], [0,-1,0,1,0,0,0,1,0,0,-1,0,0,0,1,-1,1,0,0,0,0,1,0,-1,1,0], [-1,-1,-2,0,-2,-1,1,1,1,0,-1,-1,-1,-2,1,-2,1,1,1,1,0,1,-1,-1,2,-1], [0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,-1,0,0], [3,1,1,0,1,1,1,0,-1,0,1,1,0,-1,0,1,1,-3,-2,-1,-1,-1,2,-1,-3,2], [3,0,1,-1,0,0,-1,-1,0,0,1,0,1,0,0,2,1,-1,-1,-2,0,-2,1,0,-2,1], [-1,0,-1,0,-1,0,1,1,0,0,-1,0,-1,-1,0,-1,0,0,1,1,1,1,0,0,0,0], [2,0,0,-1,-1,-1,0,0,0,1,1,-1,1,0,0,1,0,0,-1,0,0,-1,-1,0,-1,0], [-1,0,-1,1,0,1,0,0,0,-1,-1,1,-1,-1,1,-1,1,0,0,-1,-1,0,1,-1,1,0], [-1,1,-1,1,0,1,1,1,0,-1,-1,1,-1,-1,0,-1,0,-1,0,0,0,0,1,-1,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,1,1,0,0,-1,1,0,0,0,0,-1,0,1,0], [1,0,-1,-1,-1,0,1,0,0,0,0,0,-1,-2,0,0,1,-1,0,0,0,0,0,0,-1,1], [0,1,0,0,1,1,0,0,0,-1,0,1,0,0,0,1,0,-1,-1,-1,-1,-1,2,-1,-1,1], [0,0,0,0,0,-1,0,0,0,0,0,0,1,1,0,0,0,1,-1,0,0,-1,0,0,1,-1], [0,-1,0,0,-1,-1,-2,-1,1,0,0,-1,1,1,1,0,0,2,1,-1,0,-1,-1,0,2,-1], [-1,-1,0,0,-1,-1,-1,0,1,0,0,-2,1,1,1,0,0,2,1,0,0,0,-1,0,2,-1], [1,0,1,1,1,1,1,1,-1,1,0,0,0,0,0,0,0,-2,-1,1,0,1,0,0,-2,1], [0,0,1,1,2,1,1,0,0,-1,0,1,-1,0,1,0,1,-2,-1,0,-1,0,2,-1,-1,1], [1,0,1,0,2,1,1,0,-1,0,0,2,-1,0,0,1,0,-2,-1,0,0,0,2,0,-2,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,0,-1,0,-1,-1,0,1,1,0,-1,0,0,1,0,-1,-1,2,1,1,1,1,-1,0,2,-1], [0,-1,-1,0,0,0,0,0,0,1,0,0,-1,-1,0,-1,0,0,1,1,0,1,-1,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,-1,-1,0,0,0,0,0,0,1,0,-1,-1,1,0,0,0,-1,1,-1,1,0,-1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,1,0,1,0,0,0,0,0,0,0], [-1,-1,-1,0,1,0,0,0,0,0,-1,1,0,0,0,0,0,1,0,0,0,0,1,0,1,0], [0,-1,-1,-1,1,0,1,0,-1,1,0,1,0,-1,-2,0,0,0,0,1,1,0,1,1,-1,0], [-1,-1,-1,-1,-1,-1,0,0,0,1,0,-1,1,0,-1,0,0,2,1,1,1,0,-1,1,1,-1], [1,0,1,0,1,1,0,-1,0,-1,0,1,0,0,0,1,1,-1,-1,-1,0,-1,2,0,-2,1], [-1,0,0,1,1,1,0,0,0,0,-1,1,0,0,0,-1,0,0,0,0,0,0,1,0,0,0], [1,1,1,0,1,1,1,0,-1,0,0,1,0,0,-1,0,0,-2,-1,0,0,0,1,0,-2,1], [1,-1,1,0,0,0,-1,-1,0,0,1,-1,1,0,1,1,1,0,0,-1,-1,-1,0,0,0,0], [0,0,1,0,0,0,0,-1,0,-1,0,0,0,0,0,0,1,0,0,-1,0,-1,1,0,0,0], [-1,0,-2,0,0,0,0,1,0,1,-1,1,-1,-1,-1,-1,-1,0,1,1,1,1,0,0,0,0], [0,0,-1,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [1,2,0,0,0,1,1,1,0,0,0,1,-1,0,0,1,-1,-2,-1,0,0,0,1,-1,-2,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [2,1,2,0,1,0,0,-1,-1,0,1,0,1,1,-1,1,0,-1,-2,0,0,-1,1,1,-2,1], [2,1,1,-1,0,0,1,0,-1,0,1,0,1,1,-1,2,0,-1,-2,0,0,-1,1,0,-2,1], [0,-1,0,0,1,0,0,-1,-1,0,0,1,0,-1,-1,0,1,0,0,-1,0,-1,2,1,0,0], [0,0,-1,0,0,0,0,1,0,0,-1,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0], [0,-1,1,1,1,0,0,0,-1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,1,0,0]]]], [ # Q-class [26][10] [[5], [1,5], [-1,0,5], [1,1,-1,5], [1,0,1,1,5], [1,1,-1,1,-1,5], [0,0,-1,-1,-1,1,5], [1,0,-1,-1,-1,-1,0,5], [1,1,1,0,-1,1,1,-1,5], [0,1,1,1,1,-1,-1,-1,1,5], [1,-1,-1,1,1,-1,-1,1,-1,-1,5], [0,1,1,-1,0,-1,-1,1,1,1,1,5], [1,1,1,1,-1,1,-1,-1,1,1,-1,-1,5], [0,-1,1,-1,-1,1,-1,0,1,1,-1,1,1,5], [0,1,-1,0,-1,1,0,1,-1,1,-1,1,0,1,5], [1,1,0,1,-1,1,0,1,1,0,-1,-1,0,0,1,5], [0,0,-1,1,-1,0,1,1,-1,-1,1,-1,0,-1,-1,-1,5], [-1,1,1,-1,1,-1,-1,1,-1,0,-1,1,1,-1,1,-1,-1,5], [1,1,1,1,1,-1,1,0,1,1,1,1,-1,-1,-1,-1,1,-1,5], [0,-1,-1,1,1,1,-1,0,-1,1,0,0,-1,1,1,1,-1,-1,-1,5], [-1,0,-1,-1,-1,-1,1,1,-1,0,1,0,-1,-1,0,-1,1,1,1,-1,5], [-1,1,1,-1,1,1,1,-1,1,0,0,1,-1,0,0,-1,-1,1,1,1,1,5], [0,1,0,-1,1,0,0,1,-1,-1,1,-1,-1,-1,0,1,1,1,-1,-1,1,1,5], [-1,-1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,0,0,-1,-1,-1,-1,1,1,1,1,5], [-1,-1,1,0,1,-1,0,-1,1,1,0,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,5], [-1,0,-1,0,-1,1,0,0,1,0,-1,1,0,1,-1,-1,1,1,-1,1,1,1,-1,-1,1,5]], [[[-1,-1,-1,0,1,0,0,0,0,0,0,1,1,0,0,1,0,0,1,-1,-1,0,0,1,-1,1], [0,0,0,0,0,-1,0,1,0,0,0,-1,1,-1,1,-1,-1,-2,0,0,0,1,1,-1,1,1], [0,1,1,0,0,-1,1,0,0,0,1,-1,0,0,1,-1,-1,-1,0,1,0,-1,1,-1,0,1], [0,-1,-1,0,0,0,0,0,0,0,-1,1,1,0,0,0,0,0,1,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,1,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,1,-1,0,0,-1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,-1,-1,-1,0,1,0,0,1,-1,1,0], [0,0,0,0,1,-1,0,0,0,-1,0,0,1,0,1,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,-1,0,0,0,-1,0,0,1,0,1,0,-1,-1,1,0,0,0,1,0,0,1], [0,-1,0,0,0,0,0,0,-1,0,-1,1,1,-1,0,0,-1,-1,1,0,0,0,1,0,0,1], [0,0,1,1,0,-1,0,1,0,-1,-1,0,1,-1,1,-2,-2,-3,0,1,1,0,2,-1,1,1], [-1,0,0,-1,1,0,0,0,0,0,1,0,1,0,1,1,0,0,1,-1,-1,-1,0,1,-1,2], [-1,0,0,0,1,0,0,0,0,-1,0,0,1,0,1,0,-1,-1,1,0,0,-1,1,0,0,1], [0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,1,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,-1,1,1,-1,0,0,0,-1,0,0,0,0,1,0,0,0], [0,1,1,0,-1,0,0,0,1,0,1,-1,-1,0,0,-1,0,1,0,1,0,-1,0,0,0,0], [0,0,0,0,0,-1,1,0,0,0,0,0,1,0,0,-1,-1,-1,0,1,0,0,1,-1,0,0], [0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,-1,0,0,1,1,0,-1,1,-1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,1,0,0,0,0,0,-1], [0,1,0,0,0,-1,0,0,0,0,0,-1,0,0,0,-1,0,-1,-1,1,1,1,0,-2,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,-1,0,1,-1,0,0,0], [0,0,1,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,1,0,0,-1,0,1,0,1], [0,0,0,0,0,0,-1,0,1,-1,-1,0,0,0,0,0,1,0,0,1,1,0,0,0,1,-1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,1,0,0,0,0,0,0,0,1,-1,-1,0,0,0,0,0,-1,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,-1,-1,0,1,-1,1], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,-1,0,1,0,-1,0,1,1,0,-1,1,-1,2,2,3,0,-1,-1,0,-2,1,-1,-1], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,1,-1,-1,0,0,0,0,-1,0,0,0,0,-1,0,-1,-1,1,1,1,1,-1,1,-1], [0,1,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,1,0,0,0,0,0,0,0,0,1,-1,-1,1,0,0,0,1,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,1,0,-1,1,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,-1,1,1,0,0,-1,1,-1], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,-1,-1,0,-1,1,-1,1], [0,0,0,0,0,1,0,0,0,1,1,0,-1,1,-1,1,1,2,-1,-1,0,0,-2,1,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [1,0,0,1,-2,0,0,0,0,0,-1,0,-1,0,-1,-1,0,1,0,1,0,0,1,0,1,-1], [0,0,0,0,0,-1,0,0,-1,0,0,0,1,-1,1,0,-1,-2,0,0,0,1,1,-1,1,1], [1,1,1,0,-1,0,0,0,0,0,0,-1,-1,0,0,-1,0,0,0,1,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,1,0,0,-1,1,-1,0,1,1,-1,0,0,1,-1,-1,0,-2], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,1,0], [0,1,0,-1,0,0,0,0,0,1,1,-1,-1,0,0,0,1,0,-1,0,0,1,-1,-1,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [-1,0,0,0,1,0,1,0,1,0,1,0,0,1,0,0,0,1,0,0,0,-1,0,0,-1,0], [-1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,-1,0,0,0,0,-1,0,0,-1,1], [0,0,-1,0,-1,0,0,0,-1,1,0,0,0,0,-1,0,0,0,0,0,0,1,0,-1,1,-1]]]], [ # Q-class [26][11] [[6], [0,6], [0,-1,6], [1,2,-2,6], [-1,1,-1,3,6], [-1,-1,2,-1,0,6], [0,2,3,1,1,0,6], [-1,0,-2,-2,-1,-2,-1,6], [0,0,1,-1,-1,2,-1,0,6], [-2,-1,2,-3,0,0,0,2,2,6], [0,1,0,2,2,1,0,-1,1,0,6], [-1,1,-1,1,1,0,0,0,0,0,0,6], [1,1,-1,1,1,0,-1,0,-1,-2,0,-2,6], [1,2,-1,2,2,-1,1,-1,-2,-2,1,1,2,6], [1,-1,1,-1,-3,-2,1,1,-2,-1,-2,-1,1,-1,6], [1,-1,0,-1,-2,1,-1,0,-2,-2,-1,0,0,0,1,6], [0,0,0,0,0,0,1,0,0,-2,-2,1,1,2,1,1,6], [0,-2,-1,0,1,-1,-1,1,-2,0,1,-1,1,0,1,0,-2,6], [0,-1,1,1,-1,1,0,0,3,1,2,0,0,-2,1,-2,0,-1,6], [-1,-1,2,-1,-1,3,0,-3,3,1,1,1,-1,0,-1,-2,0,-1,2,6], [1,2,-1,0,0,-2,0,0,0,0,-2,-1,0,0,1,-1,0,-1,-2,-1,6], [1,2,0,1,0,-3,2,-1,-3,-2,-3,1,0,2,2,1,2,-1,-3,-2,3,6], [1,2,-1,3,3,0,1,-2,0,-2,3,0,2,3,-1,-2,0,2,0,1,1,0,6], [0,-2,-3,1,-1,-1,-3,0,-1,-2,-1,0,2,-1,2,1,0,2,1,0,0,0,0,6], [0,-1,-1,-1,-1,-3,-2,2,0,1,0,1,0,-1,1,0,-1,3,0,-1,-1,0,0,2,6], [-1,-1,-1,-1,1,1,-2,-1,1,0,-1,2,1,1,-1,-1,2,0,-1,3,1,0,1,2,0,6]], [[[-1,-1,-4,0,0,1,3,-2,0,-2,-1,-1,1,2,0,2,-3,1,5,-1,2,0,-3,-5,3,4], [0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,1,-1,-1,0,1,-1], [0,0,0,0,0,-1,-1,0,0,1,-1,0,0,-1,1,0,0,-1,-1,0,-2,0,2,0,-1,0], [0,0,0,-1,1,-1,1,0,0,-1,1,1,1,0,-1,0,1,1,0,2,2,-1,-2,1,0,-2], [1,1,2,0,1,0,-1,1,0,1,1,1,0,-1,0,-2,3,0,-4,2,0,-1,0,4,-1,-4], [0,1,1,0,1,-1,-1,1,0,0,-1,0,0,-1,0,1,0,0,0,1,-1,0,1,0,-1,0], [0,0,0,-1,1,-1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,-1], [0,0,-1,0,0,2,0,0,0,0,0,-1,-1,1,1,0,-1,0,1,-1,0,1,0,-1,1,1], [0,1,1,0,0,0,-1,0,-1,0,-1,0,-1,0,0,0,0,0,1,-1,0,-1,1,0,0,1], [1,1,3,0,0,0,-3,1,0,2,0,1,-1,-1,1,-2,2,-1,-4,0,-2,0,3,4,-2,-3], [0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [1,1,4,-1,0,-1,-3,1,1,2,1,2,-1,-1,0,-3,3,-1,-6,0,-2,-1,3,7,-4,-5], [-1,-1,-3,1,0,1,3,-1,0,-1,0,-1,1,1,0,2,-2,1,3,0,2,0,-3,-4,3,3], [0,0,-1,0,0,0,1,-1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0], [-1,-2,-2,0,-1,0,2,-1,0,-1,0,0,1,1,0,1,-2,0,2,-1,1,0,-1,-3,1,2], [-1,-1,-2,0,-1,0,1,-1,1,0,0,0,1,0,0,1,-1,0,1,-1,0,1,0,-2,0,1], [0,0,1,0,-2,-1,0,0,0,1,0,1,0,-1,-1,-1,1,0,-2,-1,-1,-1,2,2,-2,-1], [0,-1,-1,0,0,1,1,0,0,0,1,0,1,0,0,0,0,0,0,1,1,1,-1,-1,1,0], [0,0,1,-1,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,-1,1,1,-1,0], [0,1,2,0,0,-1,-1,0,0,0,-1,0,-1,0,0,0,0,0,0,-1,-1,-1,1,1,-1,1], [0,0,0,1,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,1,1,-1,-1,-1,1,0], [0,-1,0,0,-1,-1,0,0,0,0,1,1,1,-1,-1,-1,1,0,-2,1,0,0,0,1,-1,-2], [0,0,0,0,1,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,1,1,-1,-1,0,1,0], [-1,-1,-1,0,-1,0,2,-1,0,-1,1,0,1,1,-1,1,-1,1,2,-1,2,0,-2,-2,1,2], [0,-1,0,0,-1,1,0,0,0,1,1,0,0,0,0,-1,0,-1,-1,-1,0,1,1,1,0,0], [0,1,2,1,-1,0,-1,0,0,1,0,0,-1,0,0,-1,1,0,-2,-1,-1,-1,1,2,-1,0]], [[-1,0,-2,0,-1,1,2,-2,0,-1,-1,-1,0,2,0,1,-2,1,3,-2,1,-1,-2,-3,2,3], [0,0,0,0,0,1,0,0,1,0,1,0,-1,1,1,-1,0,0,-1,-1,0,0,-1,1,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,-1,0,1,0,0,0,1,1,1,0,-1,-1,1,0,-1,0,1,-1,-1,1,0,-1], [0,-1,1,0,0,0,0,1,0,-1,1,1,1,0,-1,-1,1,0,-1,1,1,0,-1,1,0,-2], [1,1,3,-1,0,-1,-3,1,0,2,1,2,0,-2,0,-3,3,-1,-5,1,-2,0,3,5,-3,-5], [-1,0,-2,0,0,1,2,-1,0,-2,0,-1,0,2,0,1,-2,1,4,-1,2,0,-3,-3,2,3], [-1,-1,-2,0,0,0,1,-1,0,-1,-1,-1,0,1,0,2,-2,1,4,-1,1,1,-1,-4,1,3], [0,0,-1,0,0,1,0,-1,1,1,0,0,0,0,1,-1,0,0,-1,-1,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [1,0,3,-1,-1,-1,-2,1,1,2,2,3,1,-2,-1,-3,4,0,-6,1,-1,0,2,6,-4,-6], [0,0,1,0,-1,0,-1,0,1,1,0,0,-1,0,0,-1,0,-1,-1,-2,-2,1,2,2,-1,0], [0,-1,0,0,0,0,0,1,-1,0,1,1,1,-1,-1,0,1,0,-1,2,1,0,0,0,0,-2], [0,0,2,0,-1,-1,-1,1,0,0,1,1,0,-1,-1,-1,1,0,-2,0,-1,0,1,2,-2,-1], [-1,0,-3,1,0,1,2,-1,-1,-1,-1,-2,0,1,0,3,-2,1,5,0,2,0,-2,-5,3,4], [0,1,1,-1,0,-1,-1,0,0,0,-1,0,-1,0,0,0,0,0,0,-1,-1,-1,2,1,-1,0], [-1,0,-2,0,1,0,1,-1,0,-2,-1,-1,0,1,0,2,-2,1,4,0,1,0,-2,-4,2,3], [0,0,1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,1,0,0,0,1,-1,0,1,0,-1], [0,-1,-2,0,-1,0,1,-1,0,1,1,1,2,-1,-1,0,1,1,0,1,1,1,-1,-1,0,-1], [1,1,2,0,0,0,-2,1,0,2,1,1,0,-2,0,-2,2,-1,-4,1,-2,1,2,4,-2,-3], [-1,0,-3,1,1,2,2,-1,0,-2,-1,-3,-1,2,2,2,-3,0,4,-1,1,0,-3,-5,4,5], [-1,0,-2,1,0,1,2,-1,0,-2,-1,-2,-1,2,1,2,-3,0,4,-2,1,-1,-2,-4,3,5], [0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,-1,1,0,-1,0,0,0,-1,1,0,-1], [0,-1,-1,0,0,0,1,0,-1,0,0,0,1,-1,-1,1,0,0,1,1,1,0,0,-1,1,0], [0,0,-1,0,0,1,1,-1,0,0,-1,-1,-1,1,0,1,-1,0,2,-2,0,0,0,-1,1,2], [0,0,1,0,1,0,-1,1,0,0,0,0,0,-1,0,0,0,-1,-1,1,-1,1,1,1,0,-1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,-2,0,0,1,1,-2,0,-1,-1,-1,0,2,1,1,-2,1,4,-2,1,0,-2,-4,2,3], [0,1,0,0,0,0,0,0,0,-1,-1,-1,-1,0,0,0,-1,0,1,-1,-1,0,0,-1,0,2], [0,0,-1,0,-1,0,0,-1,0,1,0,0,0,0,1,0,0,0,0,-1,-1,0,1,-1,0,1], [0,0,1,0,-2,-1,-1,0,0,2,0,1,0,-1,0,-1,1,-1,-2,-1,-2,0,3,2,-2,-1], [0,0,1,0,0,-1,0,1,-1,-1,0,0,0,-1,-1,0,0,0,0,1,0,0,0,0,0,0], [0,1,0,0,0,0,-1,0,0,0,-1,-1,-1,0,1,0,-1,0,1,-1,-2,1,1,-1,-1,2], [0,0,0,0,1,0,0,1,0,0,0,0,1,0,-1,1,0,1,1,2,1,1,-1,0,0,-1], [0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1], [0,1,1,0,1,0,-1,1,0,0,-1,-1,-1,0,0,0,0,-1,0,0,-1,0,1,1,0,0], [-1,0,-3,1,-1,1,2,-2,-1,-1,-1,-2,0,1,0,2,-2,1,5,-2,1,0,-2,-5,3,5], [0,0,2,0,-1,0,-1,0,0,1,0,1,0,0,0,-2,1,-1,-3,-1,-1,-1,2,3,-1,-2], [0,-1,-1,0,-1,0,1,0,0,0,1,1,1,0,-1,0,0,1,1,0,1,1,-1,-1,0,0], [0,0,0,0,-1,0,0,-1,1,1,0,1,0,0,1,-1,0,0,-1,-2,-1,0,1,1,-1,0], [0,0,-2,0,1,1,1,0,0,-1,0,-1,0,1,0,1,-1,1,2,1,1,1,-2,-2,1,1], [0,0,1,-1,0,-1,0,0,0,-1,0,1,0,0,-1,0,0,1,0,0,1,-1,0,1,-1,-1], [0,-1,0,0,-1,-1,0,0,1,1,1,1,1,-1,0,-1,0,0,-2,0,-1,1,1,1,-2,-1], [0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0], [0,0,-2,1,0,1,1,0,-1,0,0,-2,0,0,0,1,-1,0,2,0,0,1,-1,-3,2,3], [0,0,0,1,0,1,0,0,0,0,0,-1,-1,0,1,-1,0,-1,-1,-1,-1,0,0,0,1,1], [0,0,-1,-1,1,0,0,-1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,-1,0,0,-1], [0,0,0,-1,0,0,0,-1,1,0,0,1,0,1,1,-1,0,0,-1,-1,0,-1,0,1,-1,-1], [0,0,-1,1,-1,0,0,-1,0,1,0,0,0,0,1,0,0,0,0,-1,-1,0,0,-1,0,1], [0,-1,-1,0,0,1,1,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,-1,0,1,0], [0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,-1,-1,0,1,0], [0,-1,1,0,-1,0,0,0,1,1,1,1,0,0,0,-2,1,-1,-3,-1,-1,0,1,3,-1,-2]]]], [ # Q-class [26][12] [[4], [1,4], [0,0,4], [0,1,0,4], [1,1,1,1,4], [1,0,1,1,1,4], [1,0,1,0,1,0,4], [1,1,0,1,0,1,0,4], [0,1,0,0,1,0,-1,0,4], [1,0,1,0,0,1,1,0,0,4], [0,1,-1,0,0,0,0,-1,1,1,4], [0,1,1,1,0,0,1,0,0,0,0,4], [0,0,1,1,0,0,0,1,0,1,0,1,4], [0,0,0,0,0,0,0,0,1,0,1,0,0,4], [1,0,-1,0,1,0,0,0,1,-1,0,0,0,0,4], [1,1,0,0,0,0,-1,0,1,0,0,-1,0,1,1,4], [0,0,0,0,1,-1,0,0,0,0,1,-1,0,1,1,0,4], [1,0,0,-1,1,0,0,-1,0,0,1,0,0,0,0,0,1,4], [0,-1,0,1,0,0,1,0,-1,-1,0,0,0,1,0,0,0,0,4], [0,1,1,-1,0,0,0,0,0,-1,1,0,0,1,0,1,0,1,1,4], [0,0,-1,1,0,1,0,0,0,0,1,-1,0,1,0,0,0,-1,1,0,4], [0,0,0,1,0,1,0,0,1,-1,0,0,-1,-1,1,0,0,0,1,0,0,4], [1,0,0,0,0,-1,0,0,0,0,0,1,0,1,1,0,1,1,0,1,-1,-1,4], [0,-1,0,0,1,1,0,-1,0,0,0,0,0,0,1,-1,0,0,1,0,0,1,0,4], [-1,-1,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,-1,0,-1,0,0,0,0,4], [1,0,0,0,0,0,0,-1,0,1,0,0,-1,0,0,1,0,-1,0,-1,0,0,0,0,0,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,-1,-1,1,1,-1,-1,0,1,0,1,0,0,0,0,1,-2,1,0,-1,0,0,-1,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,-1,0,0,1,0,-1,1,1,-1,0,0,0,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,0], [0,0,0,-1,1,0,0,0,-1,-1,1,0,1,0,-1,1,0,-1,0,-1,0,1,1,0,0,0], [0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,-2,2,0,-1,0,-2,0,1,0,1,1,0,0,-1,-1,0,-1,0,2,1,-1,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,1,-1,1,-1,-1,1,-1,0,1,0,0,1,0,0,-1,0,0,-1,0,1,0,0,0,0], [0,0,0,0,-1,1,0,0,1,0,0,0,0,-1,0,0,1,0,1,0,0,-1,0,0,0,0], [0,0,1,1,-1,-1,1,1,0,-1,1,-1,0,0,0,0,-1,1,-1,0,0,0,0,1,1,1], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,-1,0,0,0,1,1,-1,1,-1,0,1,0,1,0,0,1,0,-1,-1,0,-1,0], [0,0,0,0,-1,1,1,0,1,-1,0,0,0,-1,-1,1,1,0,0,0,0,-1,0,1,0,0], [1,-1,-1,1,-1,1,0,-1,2,1,-1,1,-1,-1,0,0,2,-1,1,1,-1,-2,-1,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,-1,1,1,-1,1,0,-1,0,0,0,0,0,1,0,0,1,-1,-1,-1,0,0,0], [1,-1,0,1,-1,0,0,0,1,0,0,1,-1,-1,0,0,1,0,0,1,0,-1,-1,0,0,0], [0,0,1,1,-1,0,1,1,0,-2,1,-1,0,0,0,0,-1,1,-1,0,0,-1,0,1,1,1], [0,1,1,-1,0,0,0,0,-1,-1,1,-1,1,0,0,0,-1,0,0,-1,0,1,1,0,1,0], [0,0,-1,-1,1,1,0,-1,0,0,0,0,1,0,-1,0,0,-1,0,0,0,1,1,-1,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,0,0,0,0,0,1,1,-1,1,0,0,0,0,1,0,0,1,0,0,-1,0,-1,0], [0,0,-1,0,0,0,0,0,0,1,-1,1,0,0,0,0,1,0,0,1,0,0,-1,0,0,0], [0,0,0,1,-1,0,0,0,1,0,-1,0,0,0,1,-1,0,1,0,1,0,-1,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0], [0,0,1,-1,1,-1,-1,1,-1,0,1,0,0,0,0,0,-1,0,0,-1,1,1,1,0,0,0]]]], [ # Q-class [26][13] [[6], [-1,6], [-1,-1,6], [1,1,1,6], [1,1,1,1,6], [-1,1,1,0,0,6], [0,-1,1,-1,-1,-1,6], [-1,-1,-1,1,-1,-1,1,6], [1,1,1,-1,1,1,1,1,6], [1,1,1,1,-1,1,-1,-1,0,6], [1,0,1,0,1,0,1,0,1,1,6], [-1,-1,1,0,-1,-1,0,1,1,0,0,6], [-1,1,-1,0,-1,-1,1,-1,-1,-1,-1,1,6], [1,-1,0,-1,-1,0,-1,1,1,-1,1,1,1,6], [-1,0,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,6], [-1,1,1,1,1,-1,0,0,1,0,0,0,1,-1,1,6], [0,-1,1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,1,1,6], [1,1,-1,-1,1,-1,-1,-1,0,-1,-1,1,1,1,0,-1,1,6], [-1,1,-1,-1,0,-1,-1,1,0,-1,1,-1,1,1,0,1,0,0,6], [-1,0,-1,1,-1,-1,-1,1,-1,-1,1,1,0,-1,1,1,0,-1,1,6], [1,1,-1,1,-1,1,0,0,1,1,1,-1,1,1,-1,0,1,1,-1,1,6], [1,-1,1,1,-1,1,-1,-1,0,0,-1,1,-1,-1,-1,1,0,-1,0,1,-1,6], [-1,-1,-1,-1,1,-1,-1,0,-1,1,1,1,0,-1,-1,1,1,-1,-1,1,0,-1,6], [-1,0,1,1,1,0,1,1,1,-1,0,-1,-1,-1,1,0,1,1,-1,-1,1,-1,-1,6], [0,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,0,1,-1,-1,1,1,1,-1,1,-1,1,6], [-1,1,1,-1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,1,1,1,1,-1,1,1,-1,1,-1,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,-1,0,0,1,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,-1,1,0,0,0,0,1,0,1,-1,0,0,0,0,0,1,-1,0,-1,0,0,-1,0,1], [0,0,0,-1,0,-1,-1,0,0,0,0,1,0,-1,0,0,0,-1,0,-1,1,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,1,0,0,0,1,-1,0,0,0,0,1,-1,0,0,1,0,0], [1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,-1,0,0,1,-1,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,-1,0,0,-1,0,-1,0,1,0,-1,0,1,0,1,0,1,0,0,0], [-1,-1,0,1,0,0,1,-1,1,0,0,-1,0,0,1,-1,-1,1,1,0,0,1,1,0,-1,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,1,-1,0,0,-1,0,-1,1,0,0,0,0,1,0,0,0,1,0,0,0], [-1,0,-1,1,0,0,0,0,1,0,0,-1,0,1,0,0,1,0,-1,0,-1,0,0,-1,1,1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,1,0,0,1,0,0,0,-1,0,0,1,-1,1,-1,0,0,1,0,0,0,1,0,-1,0], [0,0,0,1,0,0,1,-1,1,0,-1,0,0,0,1,-1,0,0,1,0,0,0,1,0,0,0], [1,1,1,-1,0,0,-1,1,-1,-1,0,1,0,-1,0,0,0,-1,0,-1,1,0,0,0,0,0], [0,-1,0,1,0,1,1,-1,0,0,0,0,0,0,1,0,-1,1,1,0,0,0,1,0,-1,0], [0,0,0,1,-1,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,-1,0,1,0,0,0], [0,0,0,0,-1,0,-1,0,0,-1,1,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,0], [0,1,0,0,0,0,1,0,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0,1,0,1,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [-1,-1,-1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,1,0,0,-1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,-1,0], [1,0,1,-1,0,0,0,0,-1,0,0,1,0,-1,0,0,-1,0,1,0,1,0,0,1,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,1,-1,0,0,-1,1,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,1,-1,0,0,-1,1,-1,-1,0,1,0,-1,0,0,0,-1,0,-1,1,0,0,0,0,0], [-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,1,0,-1,0,0,0,0,0,0,-1,0,0,0,0,-1,1,0,0,0,0,1,0,0,0], [-1,0,0,0,0,-1,-1,0,0,0,1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0], [0,-1,0,0,0,0,-1,0,0,0,1,0,1,-1,0,0,0,0,0,0,0,0,-1,0,-1,0], [-1,0,-1,0,0,-1,0,0,0,1,0,0,-1,1,-1,1,0,0,-1,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [26][14] [[8], [-4,8], [-2,4,8], [4,-4,-2,8], [2,-4,-2,4,8], [-2,2,2,-2,-2,8], [-4,2,4,-2,-2,2,8], [-4,2,4,-4,-2,4,2,8], [4,-4,-4,2,4,-2,-2,-4,8], [-2,2,4,-2,-4,2,4,4,-4,8], [-2,2,4,-2,-4,4,4,2,-4,2,8], [-4,4,2,-2,-2,4,2,2,-4,2,2,8], [2,-2,-2,4,2,0,-2,-4,0,-4,2,2,8], [4,-2,-1,2,1,-1,-2,-2,2,-1,-1,-2,1,8], [-2,4,2,-2,-2,1,1,1,-2,1,1,2,-1,-4,8], [-1,2,4,-1,-1,1,2,2,-2,2,2,1,-1,-2,4,8], [2,-2,-1,4,2,-1,-1,-2,1,-1,-1,-1,2,4,-4,-2,8], [1,-2,-1,2,4,-1,-1,-1,2,-2,-2,-1,1,2,-4,-2,4,8], [-1,1,1,-1,-1,4,1,2,-1,1,2,2,0,-2,2,2,-2,-2,8], [-2,1,2,-1,-1,1,4,1,-1,2,2,1,-1,-4,2,4,-2,-2,2,8], [-2,1,2,-2,-1,2,1,4,-2,2,1,1,-2,-4,2,4,-4,-2,4,2,8], [2,-2,-2,1,2,-1,-1,-2,4,-2,-2,-2,0,4,-4,-4,2,4,-2,-2,-4,8], [-1,1,2,-1,-2,1,2,2,-2,4,1,1,-2,-2,2,4,-2,-4,2,4,4,-4,8], [-1,1,2,-1,-2,2,2,1,-2,1,4,1,1,-2,2,4,-2,-4,4,4,2,-4,2,8], [-2,2,1,-1,-1,2,1,1,-2,1,1,4,1,-4,4,2,-2,-2,4,2,2,-4,2,2,8], [1,-1,-1,2,1,0,-1,-2,0,-2,1,1,4,2,-2,-2,4,2,0,-2,-4,0,-4,2,2,8]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,-1,1,0,-1,0,0,-1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,0,-1,0,1,1,0,1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,1,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,1,-1,0,0,0,0,2,1,-2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,1,0,0,0,0,1,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,1,0,0,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,1,0,-1,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,1,-1,0,1,-1,0,1,0,0,1,1,0,-1,-1,1,0,-1,1,0,-1,0,0,-1,-1,0], [0,0,0,0,0,0,0,1,0,0,-1,0,1,0,0,0,0,0,0,0,-1,0,0,1,0,-1], [0,-1,1,-1,0,1,0,-1,-1,0,-1,-1,0,0,1,-1,1,0,-1,0,1,1,0,1,1,0], [0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,1,0,-1,-1,0,-1,0,0,0,0,0,0,0,-1,0,1,1,0,1,0,0], [0,-1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,-1,0], [-1,0,1,0,-1,1,0,0,0,0,-2,-1,2,1,0,-1,0,1,-1,0,0,0,0,2,1,-2], [0,0,-1,0,0,0,0,0,0,0,1,0,-1,0,0,1,0,0,0,0,0,0,0,-1,0,1], [0,-1,1,0,-1,0,0,0,0,-1,-1,1,0,0,1,-1,0,1,0,0,0,0,1,1,-1,0], [0,0,0,0,0,0,0,0,0,1,-1,0,1,0,0,0,0,0,0,0,0,0,-1,1,0,-1], [0,0,0,0,1,0,-1,-1,0,0,1,1,-1,0,0,0,0,-1,0,1,1,0,0,-1,-1,1], [0,0,0,0,1,0,-1,-1,0,1,1,0,-1,0,0,0,0,-1,0,1,1,0,-1,-1,0,1]], [[-1,-1,0,0,0,0,-1,-1,0,0,1,0,-1,1,1,0,0,0,0,1,1,0,0,-1,0,1], [1,1,-1,1,0,-1,1,1,0,-1,1,1,-1,-1,-1,1,-1,0,1,-1,-1,0,1,-1,-1,1], [1,0,-1,0,0,0,1,0,-1,-1,0,1,-1,-1,0,1,0,0,0,-1,0,1,1,0,-1,1], [0,0,-1,0,1,-1,-1,0,1,1,2,1,-1,0,0,1,0,-1,1,1,0,-1,-1,-2,-1,1], [-1,0,0,0,0,0,-1,0,1,1,0,0,1,1,0,0,0,0,0,1,0,-1,-1,0,0,-1], [1,0,0,0,0,0,1,0,-1,-1,-1,0,0,-1,0,0,0,0,0,-1,0,1,1,1,0,0], [1,0,0,-1,0,0,1,0,-1,0,-1,0,1,-1,0,0,1,0,0,-1,0,1,0,1,0,-1], [1,0,0,0,0,1,1,0,-1,-1,-1,0,0,-1,0,0,0,0,-1,-1,0,1,1,1,0,0], [-1,0,0,0,0,0,-1,0,0,1,0,-1,1,1,0,0,0,0,0,1,0,0,-1,0,1,-1], [1,-1,0,0,0,0,1,0,-1,-1,0,1,-1,-1,1,0,0,0,0,-1,0,1,1,0,-1,1], [1,0,0,-1,0,0,1,0,-1,-1,-1,0,0,-1,0,0,1,0,0,-1,0,1,1,1,0,0], [1,0,0,1,0,-1,0,0,0,-1,1,2,-2,-1,0,0,-1,0,1,0,0,0,1,-1,-2,2], [0,0,0,0,0,-1,-1,0,1,0,1,1,-1,0,0,0,0,0,1,1,0,-1,0,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,-1,0,1,-1,-1,0,1,-1,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,-1,0,1,1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1,1,0,-1,-1,-2,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,-1,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,-1,0,1,1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,-1,0,1,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,-1,0,1,1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,-1,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,-1,0,1,1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,-1,0,1,1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,1,0,0,0,1,-1,-2,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,-1,0,-1,-1,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1]]]], [ # Q-class [26][15] [[4], [2,4], [2,2,4], [2,2,2,4], [2,2,2,2,4], [2,2,2,2,2,4], [2,2,2,2,2,2,4], [2,2,2,2,2,2,2,4], [2,2,2,2,2,2,2,2,4], [2,2,2,2,2,2,2,2,2,4], [2,2,2,2,2,2,2,2,2,2,4], [2,2,2,2,2,2,2,2,2,2,2,4], [2,2,2,2,2,2,2,2,2,2,2,2,4], [2,1,1,1,1,1,1,1,1,1,1,1,1,4], [1,2,1,1,1,1,1,1,1,1,1,1,1,2,4], [1,1,2,1,1,1,1,1,1,1,1,1,1,2,2,4], [1,1,1,2,1,1,1,1,1,1,1,1,1,2,2,2,4], [1,1,1,1,2,1,1,1,1,1,1,1,1,2,2,2,2,4], [1,1,1,1,1,2,1,1,1,1,1,1,1,2,2,2,2,2,4], [1,1,1,1,1,1,2,1,1,1,1,1,1,2,2,2,2,2,2,4], [1,1,1,1,1,1,1,2,1,1,1,1,1,2,2,2,2,2,2,2,4], [1,1,1,1,1,1,1,1,2,1,1,1,1,2,2,2,2,2,2,2,2,4], [1,1,1,1,1,1,1,1,1,2,1,1,1,2,2,2,2,2,2,2,2,2,4], [1,1,1,1,1,1,1,1,1,1,2,1,1,2,2,2,2,2,2,2,2,2,2,4], [1,1,1,1,1,1,1,1,1,1,1,2,1,2,2,2,2,2,2,2,2,2,2,2,4], [1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,1,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0]]]], [ # Q-class [26][16] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]]]] ]; MakeImmutable( IMFList[26].matrices ); gap-4r6p5/grp/imf25.grp 0000644 0001750 0001750 00000052564 12172557252 013401 0 ustar bill bill ############################################################################# ## #A imf25.grp GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains, for each Q-class representative of the irreducible ## maximal finite integral matrix groups of dimension 25, ## ## [1] a quadratic form (as lower triangle of the Gram matrix), ## [2] a list of matrix generators. ## ############################################################################# ## ## Quadratic form and matrix generators for the Q-class representatives of ## the irreducible maximal finite integral matrix groups of dimension 25. ## IMFList[25].matrices := [ [ # Q-class [25][01] [[1], [0,1], [0,0,1], [0,0,0,1], [0,0,0,0,1], [0,0,0,0,0,1], [0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [25][02] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [0,0,0,0,0,2], [0,0,0,0,0,1,2], [0,0,0,0,0,1,1,2], [0,0,0,0,0,1,1,1,2], [0,0,0,0,0,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [25][03] [[4], [2,4], [1,1,4], [2,2,2,4], [2,1,2,1,4], [1,2,0,1,0,4], [2,1,1,1,2,0,4], [1,1,1,1,1,-1,1,4], [1,1,1,1,1,0,2,2,4], [2,1,1,1,2,0,2,1,1,4], [1,1,2,2,1,0,2,1,2,1,4], [1,1,2,1,2,0,1,2,2,1,1,4], [1,1,1,1,1,0,2,1,2,1,2,1,4], [2,2,1,2,1,1,1,2,2,1,1,2,1,4], [2,1,1,1,2,-1,2,2,1,2,1,1,1,1,4], [1,2,1,1,1,0,2,1,2,1,2,1,2,1,1,4], [1,1,2,2,1,-1,1,2,1,1,2,1,1,1,2,1,4], [2,2,1,2,1,1,1,1,1,1,1,1,2,2,1,1,1,4], [1,1,1,1,1,0,1,2,2,2,1,2,1,2,1,1,1,1,4], [1,1,2,2,1,0,1,1,1,2,2,1,1,1,1,1,2,1,2,4], [1,1,1,1,1,0,1,1,1,2,1,1,2,1,1,1,1,2,2,2,4], [1,1,1,1,1,-1,1,2,1,1,1,1,2,1,2,1,2,2,1,1,2,4], [1,1,2,1,2,0,1,1,1,1,1,2,2,1,1,1,1,2,1,1,2,2,4], [1,2,2,1,2,0,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,1,2,4], [1,2,1,1,1,0,1,1,1,2,1,1,1,1,1,2,1,1,2,2,2,1,1,2,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,1], [0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,-1,0,0,0,0,1], [0,-1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,-1,0,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,1,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [1,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,-1,1], [0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1]], [[-1,0,0,0,0,0,0,-1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,-1,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0], [0,0,0,0,-1,0,0,-1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,-1,-1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1], [0,1,0,0,0,-1,0,-1,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,1,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0], [0,1,0,0,0,-1,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,-1,1,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,-1,1,0,0,0], [0,0,0,-1,0,0,0,-1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0], [0,1,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,1,-1,0,0,0,0,0], [0,0,-1,0,0,0,0,-1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]]]], [ # Q-class [25][04] [[6], [3,6], [2,2,6], [2,2,2,6], [2,2,2,0,6], [2,2,3,2,2,6], [2,2,3,2,2,0,6], [3,3,1,1,1,0,1,6], [1,1,1,3,0,1,1,2,6], [2,3,2,1,1,1,1,3,2,6], [1,2,1,0,3,2,0,2,1,1,6], [3,0,2,2,2,2,2,1,1,0,0,6], [2,1,3,1,2,0,2,2,1,2,1,1,6], [2,2,1,2,0,1,0,2,1,2,2,2,2,6], [1,2,3,1,1,1,2,2,2,2,3,0,3,2,6], [2,2,2,2,0,0,2,2,2,2,0,1,3,2,3,6], [2,1,2,2,1,1,0,2,2,2,1,2,2,2,1,2,6], [0,1,2,0,3,1,1,1,1,3,3,1,2,2,1,1,2,6], [0,2,0,2,2,0,1,2,2,2,2,0,2,2,2,2,1,2,6], [2,2,2,0,2,2,0,1,0,2,2,1,2,2,2,2,2,2,0,6], [2,1,1,2,1,2,-1,2,2,1,2,2,1,2,1,1,0,1,1,1,6], [2,1,2,1,1,0,3,1,2,2,0,1,3,1,3,2,2,1,0,2,-1,6], [1,0,2,2,2,2,0,2,1,2,2,1,2,1,2,2,2,2,2,2,2,0,6], [2,1,3,1,1,0,3,2,2,2,0,1,2,0,2,3,1,2,0,2,1,3,2,6], [2,2,2,3,3,2,2,2,3,1,3,2,1,2,1,1,2,3,2,0,2,1,2,2,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [-1,-2,-1,2,2,1,-1,0,-1,2,2,0,1,1,0,1,0,-2,-1,-1,-1,-1,-2,2,0], [0,0,2,0,1,-1,-1,0,1,0,2,0,-1,1,-2,1,-1,-1,0,-1,-1,1,1,0,-1], [-2,-2,-2,3,3,2,-1,1,-1,2,2,0,1,1,0,1,0,-2,-1,-1,-1,-1,-3,3,-1], [-2,-3,-2,3,4,2,0,1,-1,3,2,-1,1,2,0,1,1,-3,-2,-1,-1,-2,-3,3,-1], [0,1,1,-1,-1,-1,-1,-1,0,0,1,1,0,0,-1,0,-1,-1,1,0,0,1,1,0,1], [2,2,1,-2,-2,-1,0,-1,1,-2,-2,0,-1,-1,1,-1,0,2,1,0,1,1,2,-2,1], [1,-1,1,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,1,0,0,0,0,0,0], [2,0,-1,0,-1,0,0,0,0,-1,-3,-1,0,-1,3,-1,0,2,0,1,0,-1,0,-1,2], [-1,-2,-2,2,3,2,0,1,-1,1,0,-1,0,1,1,1,1,-1,-1,-1,0,-1,-2,2,-1], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,1,-1,0,0,-1,0,1,0,0,0], [1,1,0,-1,-1,0,0,0,0,-1,-1,0,0,-1,1,0,0,1,0,0,0,0,1,-1,1], [0,-1,0,1,1,0,-1,0,-1,1,1,0,0,0,0,1,0,-1,0,-1,0,0,-1,1,0], [2,2,3,-3,-3,-2,0,-1,1,-2,0,0,-1,-1,-2,0,-1,1,2,0,1,3,3,-3,1], [2,1,2,-1,-2,-1,-1,0,1,-2,0,0,-1,-1,-1,0,-1,2,1,0,0,2,2,-2,0], [1,0,-1,0,0,1,0,0,0,-1,-1,-1,0,0,1,0,0,1,0,0,0,0,0,0,0], [1,2,2,-1,-1,-1,-1,0,1,-2,0,0,-1,0,-1,0,-1,1,1,-1,0,2,2,-1,-1], [0,-2,-3,1,1,2,1,1,-1,1,-1,-1,1,0,2,0,1,0,-1,0,0,-2,-2,1,1], [-1,-1,-1,1,2,1,1,0,0,1,1,-1,0,1,0,1,1,-1,-1,-1,0,-1,-1,1,-1], [1,1,1,-1,-2,-1,-1,-1,0,0,1,1,0,-1,-1,0,-1,0,1,0,0,1,1,0,1], [0,-2,-1,2,3,1,-1,1,0,1,0,-1,0,1,1,1,0,0,-1,-1,-1,-1,-2,1,-1], [1,0,0,-1,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1], [-1,-1,0,1,2,1,-1,0,0,1,2,0,0,1,-1,1,0,-2,0,-1,-1,0,-1,2,-1]], [[-2,-3,-2,2,2,2,0,1,-2,3,1,0,1,0,1,1,1,-2,-1,0,-1,-2,-3,2,1], [0,-2,0,1,1,1,0,1,-1,1,0,-1,-1,0,0,1,0,0,0,0,0,0,-1,0,0], [0,-2,0,2,1,1,-1,1,-1,1,0,0,0,0,1,0,0,0,0,0,-1,-1,-2,1,0], [1,1,0,-1,-2,0,0,0,0,-1,-2,0,0,-1,1,-1,0,2,1,1,0,0,1,-1,1], [1,0,0,0,-1,0,0,0,-1,0,-1,0,0,-1,1,0,0,1,0,0,0,0,0,-1,1], [1,1,0,0,-1,0,0,0,0,-1,-1,0,0,-1,1,-1,0,2,0,0,0,0,1,-1,0], [1,0,1,-1,-1,0,0,0,0,-1,-1,0,-1,0,0,0,0,1,1,0,0,1,1,-1,0], [-2,-2,0,2,2,1,-1,1,-1,2,3,0,0,1,-2,2,0,-2,-1,-1,-1,0,-2,2,-1], [1,3,3,-2,-3,-2,-1,-1,1,-2,1,1,-1,-1,-3,0,-1,1,2,0,0,3,3,-2,0], [-1,-1,1,1,1,0,-1,1,-1,1,1,0,-1,0,-1,1,0,-1,0,0,0,1,-1,0,0], [1,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,-1,0], [1,2,1,-2,-3,-1,0,-1,0,-1,0,1,0,-1,0,-1,0,1,1,0,0,1,2,-1,1], [-2,-3,-2,3,3,2,-1,1,-2,3,1,0,1,1,1,1,1,-2,-1,-1,-1,-2,-4,3,0], [0,-2,-1,1,1,1,0,1,-1,1,0,-1,0,0,1,0,1,0,0,0,0,-1,-2,1,0], [0,-2,-1,2,1,1,-1,1,-1,1,0,0,0,0,1,0,0,0,0,0,-1,-1,-2,1,0], [-2,-2,0,2,2,1,-1,1,-1,2,2,0,0,1,-1,1,0,-2,0,-1,-1,0,-2,2,-1], [0,1,2,-1,-2,-1,-1,0,0,0,1,1,0,-1,-2,0,-1,0,1,0,0,2,1,-1,1], [1,1,2,-1,-2,-1,0,0,0,-1,0,0,-1,-1,-1,0,0,1,1,0,1,2,1,-2,0], [1,0,0,0,0,0,0,1,0,-1,-2,-1,-1,0,1,0,0,2,0,0,0,0,0,-1,0], [0,-1,0,1,0,0,-1,0,-1,1,0,0,0,-1,1,0,0,0,0,0,0,0,-1,0,1], [-1,-1,-2,2,1,1,0,0,-1,2,1,0,1,0,1,0,1,-1,-1,0,-1,-2,-2,2,0], [0,0,0,0,-1,0,-1,0,-1,0,0,1,0,-1,0,0,0,0,1,0,0,1,0,0,1], [-1,-1,-1,2,1,1,-1,1,-1,1,0,0,1,0,1,0,0,0,-1,0,-1,-1,-2,1,0], [-1,-2,0,2,1,1,-1,1,-1,1,1,0,0,0,0,1,0,-1,0,0,-1,0,-2,1,0], [1,1,1,-1,-2,0,0,0,0,-1,0,0,0,-1,-1,0,0,1,1,0,0,1,1,-1,0]]]], [ # Q-class [25][05] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]] ]; MakeImmutable( IMFList[25].matrices ); gap-4r6p5/grp/basicprm.gi 0000644 0001750 0001750 00000030240 12172557252 014051 0 ustar bill bill ############################################################################# ## #W basicprm.gi GAP Library Frank Celler ## ## #Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains the methods for the construction of the basic perm ## group types. ## ############################################################################# ## #M TrivialGroupCons( ) ## InstallMethod( TrivialGroupCons, "perm group", [ IsPermGroup and IsFinite ], function( filter ) filter:= Group( () ); SetIsTrivial( filter, true ); return filter; end ); ############################################################################# ## #M AbelianGroupCons( , ) ## InstallMethod( AbelianGroupCons, "perm group", true, [ IsPermGroup and IsFinite, IsList ], 0, function( filter, ints ) local grp, grps; if not ForAll( ints, IsInt ) then Error( " must be a list of integers" ); fi; if not ForAll( ints, x -> 0 < x ) then TryNextMethod(); fi; grps := List( ints, x -> CyclicGroupCons( IsPermGroup, x ) ); # the way a direct product is constructed guarantees the right # generators grp := CallFuncList( DirectProduct, grps ); SetSize( grp, Product(ints) ); SetIsAbelian( grp, true ); return grp; end ); ############################################################################# ## #M ElementaryAbelianGroupCons( , ) ## InstallMethod( ElementaryAbelianGroupCons, "perm group", true, [ IsPermGroup and IsFinite, IsPosInt ], 0,function(filter,size) local G; if size = 1 or IsPrimePowerInt( size ) then G := AbelianGroup( filter, Factors(size) ); else Error( " must be a prime power" ); fi; SetIsElementaryAbelian( G, true ); return G; end); ############################################################################# ## #M AlternatingGroupCons( , ) ## InstallMethod( AlternatingGroupCons, "perm group with degree", true, [ IsPermGroup and IsFinite, IsInt], 0, function( filter, deg ) if deg<0 then TryNextMethod();fi; return AlternatingGroupCons( IsPermGroup, [ 1 .. deg ] ); end ); ############################################################################# ## #M AlternatingGroupCons( , ) ## InstallOtherMethod( AlternatingGroupCons, "perm group with domain", true, [ IsPermGroup and IsFinite, IsDenseList ], 0, function( filter, dom ) local alt, dl, g, l; dom := Set(dom); IsRange( dom ); if Length(dom) < 3 then alt := GroupByGenerators( [], () ); SetSize( alt, 1 ); SetMovedPoints( alt, [] ); SetNrMovedPoints( alt, 0 ); SetIsPerfectGroup( alt, true ); else if Length(dom) mod 2 = 0 then dl := dom{[ 1 .. Length(dom)-1 ]}; else dl := dom; fi; g := [ MappingPermListList( dl, Concatenation( dl{[2..Length(dl)]}, [dl[1]] ) ) ]; if 3 < Length(dom) then l := Length(dom); Add( g, (dom[l-2],dom[l-1],dom[l]) ); fi; alt := GroupByGenerators(g); if Length(dom)<5000 then SetSize( alt, Factorial(Length(dom))/2 ); fi; SetMovedPoints( alt, dom ); SetNrMovedPoints( alt, Length(dom) ); if 4 < Length(dom) then SetIsSimpleGroup( alt, true ); SetIsPerfectGroup( alt, true ); elif 2 < Length(dom) then SetIsPerfectGroup( alt, false ); fi; SetIsPrimitiveAffine( alt, Length( dom ) < 5 ); fi; SetIsAlternatingGroup( alt, true ); SetIsNaturalAlternatingGroup( alt, true ); return alt; end ); ############################################################################# ## #M AlternatingGroupCons( , ) ## InstallMethod( AlternatingGroupCons, "regular perm group with degree", true, [ IsPermGroup and IsRegular and IsFinite, IsInt], 0, function( filter, deg ) if deg<0 then TryNextMethod();fi; return AlternatingGroupCons( IsPermGroup and IsRegular, [ 1 .. deg ] ); end ); ############################################################################# ## #M AlternatingGroupCons( , ) ## InstallOtherMethod( AlternatingGroupCons, "regular perm group with domain", true, [ IsPermGroup and IsRegular and IsFinite, IsDenseList ], 0, function( filter, dom ) local alt; alt := AlternatingGroupCons( IsPermGroup, dom ); alt := Action( alt, AsList(alt), OnRight ); SetIsAlternatingGroup( alt, true ); return alt; end ); ############################################################################# ## #M CyclicGroupCons( , ) ## InstallMethod( CyclicGroupCons, "regular perm group", true, [ IsPermGroup and IsRegular and IsFinite, IsInt and IsPosRat ], 0, function( filter, n ) local g, c; g := PermList( Concatenation( [2..n], [1] ) ); c := GroupByGenerators( [g] ); SetSize( c, n ); SetIsCyclic( c, true ); if n > 1 then SetMinimalGeneratingSet (c, [g]); else SetMinimalGeneratingSet (c, []); fi; return c; end ); ############################################################################# ## #M DihedralGroupCons( , <2n> ) ## InstallMethod( DihedralGroupCons, "perm. group", true, [ IsPermGroup, IsPosInt ], 0, function( filter, 2n ) local D, g, h; if 2n = 2 then D:= GroupByGenerators( [ (1,2) ] ); elif 2n = 4 then D := GroupByGenerators( [ (1,2), (3,4) ] ); elif 2n mod 2 = 1 then Error( "<2n> must be an even integer" ); else g:= PermList( Concatenation( [ 2 .. 2n/2 ], [ 1 ] ) ); h:= PermList( Concatenation( [ 1 ], Reversed( [ 2 .. 2n/2 ] ) ) ); D:= GroupByGenerators( [ g, h ] ); fi; return D; end ); ############################################################################# ## #M QuaternionGroupCons( , <4n> ) ## InstallMethod( QuaternionGroupCons, "perm. group", true, [ IsPermGroup, IsPosInt ], 0, function( filter, n ) local y, z, x; if 0 <> n mod 4 then TryNextMethod(); fi; y := PermList( Concatenation( [2..n/2], [1], [n/2+2..n], [n/2+1] ) ); x := PermList( Concatenation( Cycle( y^-1, [n/2+1..n], n/2+1 ), Cycle( y^-1, [1..n/2], n/4+1 ) ) ); return Group(x,y); end ); ############################################################################# ## #M MathieuGroupCons( , ) ## ## The returned permutation groups are compatible only in the following way. ## $M_{23}$ is the stabilizer of the point $24$ in $M_{24}$. ## $M_{21}$ is the stabilizer of the point $22$ in $M_{22}$. ## $M_{11}$ is the stabilizer of the point $12$ in $M_{12}$. ## $M_{10}$ is the stabilizer of the point $11$ in $M_{11}$. ## $M_{9}$ is the stabilizer of the point $10$ in $M_{10}$. ## InstallMethod( MathieuGroupCons, "perm group with degree", [ IsPermGroup and IsFinite, IsPosInt ], function( filter, degree ) local M; # degree 9, base 1 2, indices 9 8 if degree = 9 then M:= Group( (1,4,9,8)(2,5,3,6), (1,6,5,2)(3,7,9,8) ); SetSize( M, 72 ); # degree 10, base 1 2 3, indices 10 9 8 elif degree = 10 then M:= Group( (1,9,6,7,5)(2,10,3,8,4), (1,10,7,8)(2,9,4,6) ); SetSize( M, 720 ); # degree 11, base 1 2 3 4, indices 11 10 9 8 elif degree = 11 then M:= Group( (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ); SetSize( M, 7920 ); SetIsSimpleGroup( M, true ); # degree 12, base 1 2 3 4 5, indices 12 11 10 9 8 elif degree = 12 then M:= Group( (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6), (1,12)(2,11)(3,6)(4,8)(5,9)(7,10) ); SetSize( M, 95040 ); SetIsSimpleGroup( M, true ); # degree 21, base 1 2 3 4, indices 21 20 16 3 elif degree = 21 then M:= Group( (1,4,5,9,3)(2,8,10,7,6)(12,15,16,20,14)(13,19,21,18,17), (1,21,5,12,20)(2,16,3,4,17)(6,18,7,19,15)(8,13,9,14,11) ); SetSize( M, 20160 ); SetIsSimpleGroup( M, true ); # degree 22, base 1 2 3 4 5, indices 22 21 20 16 3 elif degree = 22 then M:= Group( (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22), (1,4,5,9,3)(2,8,10,7,6)(12,15,16,20,14)(13,19,21,18,17), (1,21)(2,10,8,6)(3,13,4,17)(5,19,9,18)(11,22)(12,14,16,20) ); SetSize( M, 443520 ); SetIsSimpleGroup( M, true ); # degree 23, base 1 2 3 4 5 6, indices 23 22 21 20 16 3 elif degree = 23 then M:= Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23), (3,17,10,7,9)(4,13,14,19,5)(8,18,11,12,23)(15,20,22,21,16) ); SetSize( M, 10200960 ); SetIsSimpleGroup( M, true ); # degree 24, base 1 2 3 4 5 6 7, indices 24 23 22 21 20 16 3 elif degree = 24 then M:= Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23), (3,17,10,7,9)(4,13,14,19,5)(8,18,11,12,23)(15,20,22,21,16), (1,24)(2,23)(3,12)(4,16)(5,18)(6,10)(7,20)(8,14)(9,21)(11,17) (13,22)(19,15) ); SetSize( M, 244823040 ); SetIsSimpleGroup( M, true ); # error else Error("degree must be 9, 10, 11, 12, 21, 22, 23, or 24" ); fi; return M; end ); ############################################################################# ## #M SymmetricGroupCons( , ) ## InstallMethod( SymmetricGroupCons, "perm group with degree", true, [ IsPermGroup and IsFinite, IsInt ], 0, function( filter, deg ) if deg<0 then TryNextMethod();fi; return SymmetricGroupCons( IsPermGroup, [ 1 .. deg ] ); end ); ############################################################################# ## #M SymmetricGroupCons( , ) ## InstallOtherMethod( SymmetricGroupCons, "perm group with domain", true, [ IsPermGroup and IsFinite, IsDenseList ], 0, function( filters, dom ) local sym, g; dom := Set(dom); IsRange( dom ); if Length(dom) < 2 then sym := GroupByGenerators( [], () ); SetSize( sym, 1 ); SetMovedPoints( sym, [] ); SetNrMovedPoints( sym, 0 ); SetIsPerfectGroup( sym, true ); else g := [ MappingPermListList( dom, Concatenation( dom{[2..Length(dom)]}, [ dom[1] ] ) ) ]; if 2 < Length(dom) then Add( g, ( dom[1], dom[2] ) ); fi; sym := GroupByGenerators( g ); if Length(dom)<5000 then SetSize( sym, Factorial(Length(dom)) ); fi; SetMovedPoints( sym, dom ); SetNrMovedPoints( sym, Length(dom) ); fi; SetIsPrimitiveAffine( sym, Length( dom ) < 5 ); SetIsSymmetricGroup( sym, true ); SetIsNaturalSymmetricGroup( sym, true ); return sym; end ); ############################################################################# ## #M SymmetricGroupCons( , ) ## InstallMethod( SymmetricGroupCons, "regular perm group with degree", true, [ IsPermGroup and IsRegular and IsFinite, IsInt], 0, function( filter, deg ) if deg<0 then TryNextMethod();fi; return SymmetricGroupCons( IsPermGroup and IsRegular, [ 1 .. deg ] ); end ); ############################################################################# ## #M SymmetricGroupCons( , ) ## InstallOtherMethod( SymmetricGroupCons, "regular perm group with domain", true, [ IsPermGroup and IsRegular and IsFinite, IsDenseList ], 0, function( filter, dom ) local alt; alt := SymmetricGroupCons( IsPermGroup, dom ); alt := Action( alt, AsList(alt), OnRight ); SetIsSymmetricGroup( alt, true ); return alt; end ); ############################################################################# ## #E gap-4r6p5/grp/perf.gd 0000644 0001750 0001750 00000031367 12172557252 013213 0 ustar bill bill ############################################################################# ## #W perf.gd GAP Groups Library Alexander Hulpke ## ## #Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains the declarations for the Holt/Plesken library of ## perfect groups ## PERFRec := fail; # indicator that perf0.grp is not loaded PERFSELECT := []; PERFGRP := []; ############################################################################# ## #C IsPerfectLibraryGroup( ) identifier for groups constructed from the ## library (used for perm->fp isomorphism) ## ## ## ## DeclareCategory("IsPerfectLibraryGroup", IsGroup ); ############################################################################# ## #O PerfGrpConst(## ## ## ##, ) ## ## ## ## DeclareConstructor("PerfGrpConst",[IsGroup,IsList]); ############################################################################# ## #F PerfGrpLoad(## ## ## ##) force loading of secondary files, return index ## ## ## ## DeclareGlobalFunction("PerfGrpLoad"); ############################################################################# ## #A PerfectIdentification(## ## ## ##) . . . . . . . . . . . . id. for perfect groups ## ## <#GAPDoc Label="PerfectIdentification"> ## ## ## <#/GAPDoc> ## DeclareAttribute("PerfectIdentification", IsGroup ); ############################################################################# ## #F SizesPerfectGroups() ## ## <#GAPDoc Label="SizesPerfectGroups"> #### ## ## This attribute is set for all groups obtained from the perfect groups ## library and has the value ##[size,nr] if the group is obtained with ## these parameters from the library. #### ## <#/GAPDoc> ## DeclareGlobalFunction("SizesPerfectGroups"); ############################################################################# ## #F NumberPerfectGroups(## ## ## This is the ordered list of all numbers up to ##10^6 that occur as ## sizes of perfect groups. ## One can iterate over the perfect groups library with: ##for n in SizesPerfectGroups() do ## > for k in [1..NrPerfectLibraryGroups(n)] do ## > pg := PerfectGroup(n,k); ## > od; ## > od; ## ]]> ##) . . . . . . . . . . . . . . . . . . . . . . ## ## <#GAPDoc Label="NumberPerfectGroups"> ## ## ## <#/GAPDoc> ## DeclareGlobalFunction("NumberPerfectGroups"); DeclareSynonym("NrPerfectGroups",NumberPerfectGroups); ############################################################################# ## #F NumberPerfectLibraryGroups(## ## ## returns the number of non-isomorphic perfect groups of size size for ## each positive integer size up to ##10^6 except for the eight sizes ## listed at the beginning of this section for which the number is not ## yet known. For these values as well as for any argument out of range it ## returnsfail . ##) . . . . . . . . . . . . . . . . . . ## ## <#GAPDoc Label="NumberPerfectLibraryGroups"> ## ## ## <#/GAPDoc> ## DeclareGlobalFunction("NumberPerfectLibraryGroups"); DeclareSynonym("NrPerfectLibraryGroups",NumberPerfectLibraryGroups); ############################################################################# ## #F PerfectGroup( [## ## ## returns the number of perfect groups of size size which are available ## in the library of finite perfect groups. (The purpose of the function ## is to provide a simple way to formulate a loop over all library groups ## of a given size.) ## ##, ] [, ] ) #F PerfectGroup( [ , ] ) ## ## <#GAPDoc Label="PerfectGroup"> ## ## ## <#/GAPDoc> ## DeclareGlobalFunction("PerfectGroup"); ############################################################################# ## #F DisplayInformationPerfectGroups(PerfectGroup #### ## ## ## returns a group which is isomorphic to the library group specified ## by the size number ##[ size, n ] or by the two ## separate arguments size and n, assuming a default value of ##n = 1 . ## The optional argument filt defines the filter in which the group is ## returned. ## Possible filters so far are and ## . ## In the latter case, the generators and relators used coincide with those ## given in . ##G := PerfectGroup(IsPermGroup,6048,1); ## U3(3) ## gap> G:=PerfectGroup(IsPermGroup,823080,2); ## A5 2^1 19^2 C 19^1 ## gap> NrMovedPoints(G); ## 6859 ## ]]> ##[, ] ) . . . . . . . . . . . . #F DisplayInformationPerfectGroups( ] ) . . . . . . . . . . ## ## <#GAPDoc Label="DisplayInformationPerfectGroups"> ## ## ## <#/GAPDoc> ## DeclareGlobalFunction("DisplayInformationPerfectGroups"); ############################################################################# ## #F SizeNumbersPerfectGroups(DisplayInformationPerfectGroups #### ## ## ## ## displays some invariants of the n-th group of order size ## from the perfect groups library. ## ## If no value of n has been specified, the invariants will be ## displayed for all groups of size size available in the library. ## ## Alternatively, also a list of length two may be entered as the only ## argument, with entries size and n. ## ## The information provided for ##G includes the following items: ####
##- ## a headline containing the size number
##[ size, n ] ofG ## in the formsize.n (the suffix.n will be suppressed ## if, up to isomorphism,G is the only perfect group of order ## size), ##- ## a message if
##G is simple or quasisimple, i.e., ## if the factor group ofG by its centre is simple, ##- ## the
##descriptionof the structure ofG as it is ## given by Holt and Plesken in (see below), ##- ## the size of the centre of
##G (suppressed, ifG is ## simple), ##- ## the prime decomposition of the size of
##G , ##- ## orbit sizes for a faithful permutation representation ## of
##G which is provided by the library (see below), ##- ## a reference to each occurrence of
##G in the tables of ## section 5.3 of . Each of these references ## consists of a class number and an internal number(i,j) under which ##G is listed in that class. For some groups, there is more than one ## reference because these groups belong to more than one of the classes ## in the book. ##DisplayInformationPerfectGroups( 30720, 3 ); ## #I Perfect group 30720: A5 ( 2^4 E N 2^1 E 2^4 ) A ## #I size = 2^11*3*5 orbit size = 240 ## #I Holt-Plesken class 1 (9,3) ## gap> DisplayInformationPerfectGroups( 30720, 6 ); ## #I Perfect group 30720: A5 ( 2^4 x 2^4 ) C N 2^1 ## #I centre = 2 size = 2^11*3*5 orbit size = 384 ## #I Holt-Plesken class 1 (9,6) ## gap> DisplayInformationPerfectGroups( Factorial( 8 ) / 2 ); ## #I Perfect group 20160.1: A5 x L3(2) 2^1 ## #I centre = 2 size = 2^6*3^2*5*7 orbit sizes = 5 + 16 ## #I Holt-Plesken class 31 (1,1) (occurs also in class 32) ## #I Perfect group 20160.2: A5 2^1 x L3(2) ## #I centre = 2 size = 2^6*3^2*5*7 orbit sizes = 7 + 24 ## #I Holt-Plesken class 31 (1,2) (occurs also in class 32) ## #I Perfect group 20160.3: ( A5 x L3(2) ) 2^1 ## #I centre = 2 size = 2^6*3^2*5*7 orbit size = 192 ## #I Holt-Plesken class 31 (1,3) ## #I Perfect group 20160.4: simple group A8 ## #I size = 2^6*3^2*5*7 orbit size = 8 ## #I Holt-Plesken class 26 (0,1) ## #I Perfect group 20160.5: simple group L3(4) ## #I size = 2^6*3^2*5*7 orbit size = 21 ## #I Holt-Plesken class 27 (0,1) ## ]]> ##, , ... ) ## ## <#GAPDoc Label="SizeNumbersPerfectGroups"> ## ## ## <#/GAPDoc> ## DeclareGlobalFunction("SizeNumbersPerfectGroups"); ############################################################################# ## #E gap-4r6p5/grp/imf30.grp 0000644 0001750 0001750 00000656137 12172557252 013403 0 ustar bill bill ############################################################################# ## #A imf30.grp GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains, for each Q-class representative of the irreducible ## maximal finite integral matrix groups of dimension 30, ## ## [1] a quadratic form (as lower triangle of the Gram matrix), ## [2] a list of matrix generators. ## ############################################################################# ## ## Quadratic form and matrix generators for the Q-class representatives of ## the irreducible maximal finite integral matrix groups of dimension 30. ## IMFList[30].matrices := [ [ # Q-class [30][01] [[1], [0,1], [0,0,1], [0,0,0,1], [0,0,0,0,1], [0,0,0,0,0,1], [0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [30][02] [[2], [1,2], [0,0,2], [0,0,1,2], [0,0,0,0,2], [0,0,0,0,1,2], [0,0,0,0,0,0,2], [0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [30][03] [[5], [-1,5], [-1,-1,5], [-1,-1,-1,5], [-1,-1,-1,-1,5], [0,0,0,0,0,5], [0,0,0,0,0,-1,5], [0,0,0,0,0,-1,-1,5], [0,0,0,0,0,-1,-1,-1,5], [0,0,0,0,0,-1,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,5], [0,0,0,0,0,0,0,0,0,0,-1,5], [0,0,0,0,0,0,0,0,0,0,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,5], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,5]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [30][04] [[2], [0,2], [-1,0,2], [0,-1,-1,2], [0,0,0,-1,2], [0,0,0,0,-1,2], [0,0,0,0,0,0,2], [0,0,0,0,0,0,0,2], [0,0,0,0,0,0,-1,0,2], [0,0,0,0,0,0,0,-1,-1,2], [0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2]], [[[0,0,0,0,0,0,-1,-2,-2,-3,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-2,-3,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-2,-3,-2,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-2,-3,-2,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,-1,-2,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,-2,-2,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,2,3,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-2,-3,-2,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-2,-3,-2,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-2,-3,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,-2,-2,-3,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,-1,-1,-2,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-2,-3,-2,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-2,-3,-2,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-2,-2,-3,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [30][05] [[6], [-1,6], [-1,-1,6], [-1,-1,-1,6], [-1,-1,-1,-1,6], [-1,-1,-1,-1,-1,6], [0,0,0,0,0,0,6], [0,0,0,0,0,0,-1,6], [0,0,0,0,0,0,-1,-1,6], [0,0,0,0,0,0,-1,-1,-1,6], [0,0,0,0,0,0,-1,-1,-1,-1,6], [0,0,0,0,0,0,-1,-1,-1,-1,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [30][06] [[4], [-1,4], [-2,-1,4], [1,-2,-1,4], [1,1,-2,-1,4], [-2,1,1,-2,-1,4], [0,0,0,0,0,0,4], [0,0,0,0,0,0,-1,4], [0,0,0,0,0,0,-2,-1,4], [0,0,0,0,0,0,1,-2,-1,4], [0,0,0,0,0,0,1,1,-2,-1,4], [0,0,0,0,0,0,-2,1,1,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,-2,1,1,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,1,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,1,-2,-1,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [30][07] [[3], [-1,3], [-1,-1,3], [1,-1,0,3], [1,0,-1,-1,3], [0,1,-1,1,-1,3], [0,0,0,0,0,0,3], [0,0,0,0,0,0,-1,3], [0,0,0,0,0,0,-1,-1,3], [0,0,0,0,0,0,1,-1,0,3], [0,0,0,0,0,0,1,0,-1,-1,3], [0,0,0,0,0,0,0,1,-1,1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,3]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]], [ # Q-class [30][08] [[4], [1,4], [1,0,4], [-2,-1,1,4], [1,2,2,-1,4], [-2,1,-2,1,-1,4], [-2,0,1,2,1,0,4], [-2,0,1,1,1,1,2,4], [2,2,2,-1,2,-1,-1,-1,4], [-2,-2,1,2,0,0,1,2,-1,4], [0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,1,4], [0,0,0,0,0,0,0,0,0,0,1,0,4], [0,0,0,0,0,0,0,0,0,0,-2,-1,1,4], [0,0,0,0,0,0,0,0,0,0,1,2,2,-1,4], [0,0,0,0,0,0,0,0,0,0,-2,1,-2,1,-1,4], [0,0,0,0,0,0,0,0,0,0,-2,0,1,2,1,0,4], [0,0,0,0,0,0,0,0,0,0,-2,0,1,1,1,1,2,4], [0,0,0,0,0,0,0,0,0,0,2,2,2,-1,2,-1,-1,-1,4], [0,0,0,0,0,0,0,0,0,0,-2,-2,1,2,0,0,1,2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,-2,1,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,1,2,1,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,1,1,1,1,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,-1,2,-1,-1,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,1,2,0,0,1,2,-1,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,1,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,-1,-1,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,-1,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,-1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,1,-1,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,-1,-1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,1,-1,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,1,0,-1,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,1,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,-1,-1,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,-1,-1,1,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,0,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,-1,1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,1,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,1,-1,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,1,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,-1,-1,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,-1]]]], [ # Q-class [30][09] [[3], [1,3], [1,1,3], [1,1,1,3], [-1,1,0,0,3], [-1,0,1,0,1,3], [-1,0,0,1,1,1,3], [0,-1,1,0,-1,1,0,3], [0,-1,0,1,-1,0,1,1,3], [0,0,-1,1,0,-1,1,-1,1,3], [0,0,0,0,0,0,0,0,0,0,3], [0,0,0,0,0,0,0,0,0,0,1,3], [0,0,0,0,0,0,0,0,0,0,1,1,3], [0,0,0,0,0,0,0,0,0,0,1,1,1,3], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,3], [0,0,0,0,0,0,0,0,0,0,-1,0,1,0,1,3], [0,0,0,0,0,0,0,0,0,0,-1,0,0,1,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,1,0,3], [0,0,0,0,0,0,0,0,0,0,0,-1,0,1,-1,0,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,1,-1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,1,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,-1,0,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,1,-1,1,3]], [[[-1,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1]]]], [ # Q-class [30][10] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [30][11] [[4], [1,4], [-2,0,4], [-2,1,1,4], [-2,1,2,1,4], [-2,1,2,2,1,4], [-2,1,0,1,1,1,4], [-1,1,2,0,1,2,0,4], [1,2,1,-1,0,0,0,2,4], [2,0,-2,0,-1,-1,-2,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,1,4], [0,0,0,0,0,0,0,0,0,0,-2,0,4], [0,0,0,0,0,0,0,0,0,0,-2,1,1,4], [0,0,0,0,0,0,0,0,0,0,-2,1,2,1,4], [0,0,0,0,0,0,0,0,0,0,-2,1,2,2,1,4], [0,0,0,0,0,0,0,0,0,0,-2,1,0,1,1,1,4], [0,0,0,0,0,0,0,0,0,0,-1,1,2,0,1,2,0,4], [0,0,0,0,0,0,0,0,0,0,1,2,1,-1,0,0,0,2,4], [0,0,0,0,0,0,0,0,0,0,2,0,-2,0,-1,-1,-2,-2,-1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,2,2,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,0,1,1,1,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,2,0,1,2,0,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,1,-1,0,0,0,2,4], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,-2,0,-1,-1,-2,-2,-1,4]], [[[0,0,0,0,0,0,0,0,0,0,-2,1,0,0,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,1,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0], [-2,1,0,-1,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,-2,-1,1,1,1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,-1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,0,-1,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-1,1,1,1,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,1,1,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0]], [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,0,0,-1,-1,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,0,1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,1,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,1,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,0,0,0,1,1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,0,0,-1], [-2,1,0,-1,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,-2,-1,1,1,1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,-1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-2,1,0,-1,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,2,-2,-1,1,1,1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,2,-1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,1,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,-1,0,0,1,-1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,1,-1,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,0,-1,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,-1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-2,1,0,-1,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,2,-2,-1,1,1,1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,2,-1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,1,0,-1,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-1,1,1,1,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,1,1,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0]]]], [ # Q-class [30][12] [[6], [-1,6], [1,2,6], [-3,-1,-3,6], [-2,-1,0,2,6], [-2,2,2,1,2,6], [-2,-2,0,0,3,2,6], [-2,2,-2,0,-2,-2,-1,6], [2,-3,0,-2,-2,-1,0,-2,6], [-1,2,3,-1,-2,0,-2,0,0,6], [0,0,0,0,0,0,0,0,0,0,6], [0,0,0,0,0,0,0,0,0,0,-1,6], [0,0,0,0,0,0,0,0,0,0,1,2,6], [0,0,0,0,0,0,0,0,0,0,-3,-1,-3,6], [0,0,0,0,0,0,0,0,0,0,-2,-1,0,2,6], [0,0,0,0,0,0,0,0,0,0,-2,2,2,1,2,6], [0,0,0,0,0,0,0,0,0,0,-2,-2,0,0,3,2,6], [0,0,0,0,0,0,0,0,0,0,-2,2,-2,0,-2,-2,-1,6], [0,0,0,0,0,0,0,0,0,0,2,-3,0,-2,-2,-1,0,-2,6], [0,0,0,0,0,0,0,0,0,0,-1,2,3,-1,-2,0,-2,0,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-1,-3,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,0,2,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,1,2,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,0,0,3,2,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,0,-2,-2,-1,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-3,0,-2,-2,-1,0,-2,6], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2,3,-1,-2,0,-2,0,0,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,-1,0,-1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,-1,0,0,-1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,-1,0,-1,-1,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,0,1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,-1,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,-1,-1,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,-1,0,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,0,1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,-1,-1,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,-1,-1,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,1,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,-1,-1,0,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,-1,0,1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[-1,-1,0,-1,-1,0,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,-1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,-1,0,-1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,-1,0,0,-1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,-1,0,-1,-1,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,0,1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,-1,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,-1,-1,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,-1,0,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,0,1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,-1,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,1,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,-1,0,-1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,-1,0,0,-1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,-1,0,-1,-1,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,0,1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,-1,0,0]]]], [ # Q-class [30][13] [[3], [1,3], [0,-1,3], [0,1,-1,3], [0,-1,0,0,3], [0,0,0,-1,-1,3], [-1,-1,1,0,1,1,3], [0,0,-1,0,0,0,-1,3], [-1,-1,0,-1,0,1,1,-1,3], [0,1,0,0,0,1,1,-1,1,3], [0,-1,0,-1,0,1,1,1,1,0,3], [1,1,0,0,-1,0,-1,1,0,0,1,3], [0,0,-1,1,1,0,1,0,0,1,0,-1,3], [0,1,1,0,0,-1,0,0,-1,1,0,1,0,3], [0,0,0,-1,1,0,1,-1,1,1,1,0,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,0,1,1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,-1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,1,1,1,1,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,-1,0,-1,1,0,0,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,0,1,0,0,1,0,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,-1,0,0,-1,1,0,1,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,1,-1,1,1,1,0,1,1,3]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,0,0,1,0,-1,0,-1,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,-1,0,-1,0,0,-1,1,0,1,1,-2,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,1,0,1,0,0,-1,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,-1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,-1,0,-1,1,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,-1,0,0,0,1,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,1,1,-1,-1,-1,-1,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,-1,0,0,1,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,1,-1,0,-1,0,0,-1,1,0,1,1,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,1,0,1,0,0,-1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,1,0,0,-1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,0,0,-1,0,-1,1,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,1,0,0,0,-1,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,1,0,1,0,1,1,-1,-1,-1,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,-1,-1,1,1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,1,0,1,0,-1,0,-1,1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,0,0,0,-1,1,0,0,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,-1,0,0,1,-1,0,-1,0,1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,1,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,-1,0,0,1,-1,0,-1,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,-1,0,0,1,1,0,1,-1,-1,0,0,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,1,0,0,1,-1,0,-1,0,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,0,0,0,0,-2,1,0,1,0,-2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,1,-1,0,1,2,1,0,-1,-1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,-1,0,-1,0,2,1,0,0,-2,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,0,0,1,0,-1,0,-1,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,-1,0,-1,0,0,-1,1,0,1,1,-2,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,1,0,1,0,0,-1,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,-1,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,-1,0,-1,1,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,-1,0,0,0,1,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,1,1,-1,-1,-1,-1,1,1]]]], [ # Q-class [30][14] [[3], [-1,3], [1,-1,3], [1,1,-1,3], [1,1,-1,1,3], [-1,-1,0,-1,-1,3], [1,0,-1,1,1,-1,3], [1,-1,1,-1,0,1,-1,3], [1,-1,1,0,-1,1,-1,1,3], [0,1,1,0,0,-1,-1,0,0,3], [1,-1,0,1,0,-1,1,-1,0,-1,3], [-1,1,-1,0,1,1,0,0,-1,-1,-1,3], [1,0,1,1,0,0,-1,1,1,0,0,0,3], [1,0,1,0,1,0,-1,1,1,0,0,0,1,3], [0,-1,0,-1,-1,1,0,1,1,0,-1,0,-1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1,1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,0,1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,0,-1,1,-1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,-1,-1,0,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,1,0,-1,1,-1,0,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,0,1,1,0,0,-1,-1,-1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,-1,1,1,0,0,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,-1,1,1,0,0,0,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,-1,1,0,1,1,0,-1,0,-1,-1,3]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0,1,1,0,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,0,1,0,0,1,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,-1,-1,-1,-1,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,1,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,-1,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,-1,0,0,-1,-1,-1,-1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,1,0,0,1,-1,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,1,1,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,-1,-1,1,1,-1,-1,1,0,0,1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,-1,-1,-1,-1,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,0,0,0,1,0,1,1,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,0,-1,0,1,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,-1,-1,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,1,1,0,-1,0,0,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,-1,0,1,0,0,1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,-1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,-1,-1,1,1,-1,-1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,1,0,1,1,-1,-1,-1,-1,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,1,1,0,0,0,-1,0,0,-1,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-3,-1,1,1,1,-1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,-1,-1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,1,0,1,0,0,0,0,-1,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,1,0,-1,0,1,1,-1,-1,0,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,-1,-1,1,1,-1,-1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,1,1,0,-1,0,0,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,-1,0,0,0,0,0,0,1,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,-1,0,1,0,-1,-1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,0,0,0,-1,0,-1,-1,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,0,0,-1,1,0,1,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0,1,1,0,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,0,1,0,0,1,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,-1,-1,-1,-1,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,1,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,-1,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,-1,0,0,-1,-1,-1,-1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,1,0,0,1,-1,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,1,1,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,-1,-1,1,1,-1,-1,1,0,0,1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,-1,-1,-1,-1,0,-1,0,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,-1,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0,1,1,0,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,0,1,0,0,1,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,-1,-1,-1,-1,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,1,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,-1,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,-1,0,0,-1,-1,-1,-1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,1,0,0,1,-1,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,1,1,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,-1,-1,1,1,-1,-1,1,0,0,1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,-1,-1,-1,-1,0,-1,0,0,1]]]], [ # Q-class [30][15] [[3], [1,3], [1,1,3], [1,1,1,3], [1,1,1,1,3], [-1,1,0,0,0,3], [-1,0,1,0,0,1,3], [-1,0,0,1,0,1,1,3], [-1,0,0,0,1,1,1,1,3], [0,-1,1,0,0,-1,1,0,0,3], [0,-1,0,1,0,-1,0,1,0,1,3], [0,-1,0,0,1,-1,0,0,1,1,1,3], [0,0,-1,1,0,0,-1,1,0,-1,1,0,3], [0,0,-1,0,1,0,-1,0,1,-1,0,1,1,3], [0,0,0,-1,1,0,0,-1,1,0,-1,1,-1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,1,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,1,0,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0,1,0,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,-1,0,0,1,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,1,0,-1,1,0,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0,1,-1,0,1,1,3], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,1,0,-1,1,-1,1,3]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,-1,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [30][16] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]]]], [ # Q-class [30][17] [[3], [0,3], [1,0,3], [0,1,1,3], [0,1,0,0,3], [0,0,1,1,0,3], [0,0,0,0,0,0,3], [1,1,1,0,1,0,0,3], [0,0,0,0,0,0,1,0,3], [0,1,0,0,1,0,0,1,0,3], [1,1,0,0,0,1,0,0,0,0,3], [0,0,0,0,0,0,1,0,0,1,0,3], [1,0,1,0,-1,0,0,1,1,0,0,0,3], [-1,0,1,1,0,1,1,0,1,0,-1,0,0,3], [0,0,0,0,0,1,0,0,0,1,1,0,0,0,3], [1,0,1,0,0,0,0,1,-1,0,0,0,1,0,0,3], [0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,3], [0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,3], [0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,1,0,3], [0,0,1,1,1,1,0,0,0,0,0,0,0,1,0,0,-1,0,0,3], [1,0,1,0,0,-1,0,1,0,0,0,0,1,0,0,1,0,0,0,0,3], [1,0,1,-1,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,3], [0,0,0,0,0,1,0,0,0,0,1,1,0,0,1,0,1,1,1,0,0,0,3], [1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,3], [0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3], [0,1,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3], [0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,3], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,-1,0,0,1,3], [1,0,1,0,0,0,0,1,0,-1,0,0,1,0,-1,1,1,0,0,-1,1,1,0,0,0,0,0,0,3], [0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,3]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,-1,0,1,0,0,-1,1,0,-1,1,1,0,0,0,0,0,1,0,-1,0,1,-1,1,0,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [-1,-1,0,1,0,-1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,-1,1,0,1,0,0,0,0,0,0], [-1,0,1,0,0,0,-1,1,0,-1,1,1,0,0,0,0,0,1,0,-1,0,0,-1,1,0,0,1,0,-1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,-1,0,0,0,0,0,0,0,1,0], [-1,0,0,0,-1,0,0,1,0,0,0,0,0,-1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,1,-1,1,0,-1,0,1,0,0,0,0,0,1,0,-1,0,0,-1,1,0,0,1,0,-1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,0,0,0,-1,2,0,-1,1,1,0,0,0,0,0,1,0,-1,0,0,-1,1,0,1,1,0,-1,0], [0,0,0,0,-1,-1,0,0,0,0,0,0,-1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1], [-1,-1,0,0,0,0,-1,2,0,-1,1,1,0,0,0,0,0,1,0,0,0,0,-1,1,0,1,0,0,-1,0], [0,0,0,0,0,1,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1], [-1,0,0,0,0,0,0,1,0,-1,0,1,0,-1,1,0,0,1,0,0,0,0,-1,1,0,0,0,0,0,0], [-1,0,0,0,-1,1,0,1,1,0,0,0,-1,-1,0,1,0,0,-1,0,0,0,0,1,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0], [0,1,0,0,-1,0,0,0,1,0,-1,0,-1,-1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0], [0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0], [1,1,0,-1,0,1,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [-1,0,0,0,0,0,-1,1,0,-1,0,1,0,0,1,0,0,1,0,0,0,0,-1,1,0,0,0,0,0,0], [0,0,0,0,1,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0], [0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [-2,-1,0,1,0,0,0,1,0,0,1,0,0,-1,0,0,0,1,0,0,0,1,-1,1,0,0,0,0,0,0], [-1,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0], [-1,0,1,0,-1,0,0,1,1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0]], [[-1,-1,0,0,-1,0,0,2,0,0,1,0,-1,0,0,0,0,0,-1,0,0,0,0,1,0,1,0,1,0,0], [-1,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,1,1,0,0,0,0,0,0,1,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,1,-1,0,0,-1,0,1,1,0,0,0,0,1,0,-1,0,0,-1,0,0,0,1,-1,-1,-1], [0,1,0,0,-1,0,0,0,1,0,-1,0,-1,-1,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,-1,0,0,1,0,0,0,0,-1,-1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,1,0,0,0,1,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0], [-1,-1,0,0,0,0,-1,2,0,-1,1,1,0,0,0,0,0,1,0,-1,0,0,-1,1,0,1,1,0,-1,0], [0,0,0,0,0,0,1,0,0,0,-1,0,0,-1,0,0,1,0,0,1,0,0,0,0,-1,0,-1,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,1,0,-1,1,0,-1,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1], [-1,-1,0,1,0,0,-1,2,0,-1,1,1,0,0,0,0,0,1,0,-1,0,0,-1,1,0,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [1,1,0,-1,-1,0,0,-1,1,1,-1,-1,-1,0,0,1,0,-1,0,1,0,-1,1,-1,0,0,0,0,1,0], [-1,0,0,0,0,1,-1,1,0,-1,0,1,0,0,0,0,0,1,0,-1,1,0,-1,1,0,0,1,0,-1,0], [0,0,0,0,1,1,-1,0,0,-1,0,1,1,0,0,0,0,1,0,-1,0,0,-1,0,0,0,0,0,-1,-1], [0,0,0,0,-1,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0], [-1,0,0,0,-1,0,0,1,0,0,0,0,-1,-1,1,0,0,1,0,1,0,0,-1,1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [-1,-1,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,-1,-1,0,1,0,1,0,0,0,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [1,1,0,-1,0,1,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,1,-1,0,-1,0,0,0,0,0,0], [1,1,0,-1,-1,0,1,-1,0,1,-1,-1,-1,0,0,0,0,-1,0,1,0,0,1,-1,0,0,0,0,1,0], [1,0,-1,0,1,0,0,-1,-1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0]]]], [ # Q-class [30][18] [[6], [3,6], [2,3,6], [2,3,3,6], [2,3,2,2,6], [3,3,2,2,2,6], [2,3,2,2,2,2,6], [2,3,0,3,2,2,2,6], [2,3,2,2,2,2,3,2,6], [2,1,2,0,2,0,1,0,2,6], [0,1,2,2,2,0,1,0,1,2,6], [2,3,2,2,2,2,3,2,3,0,1,6], [2,3,2,2,3,2,2,2,2,2,1,2,6], [3,3,2,2,2,0,2,2,2,2,1,2,2,6], [2,3,2,2,2,2,3,2,0,1,2,0,2,2,6], [2,2,2,3,2,1,2,1,1,2,2,0,0,2,2,6], [2,3,3,3,2,2,2,0,2,1,2,2,2,2,2,1,6], [0,2,2,1,2,0,2,1,1,1,1,0,0,2,2,3,0,6], [1,2,2,2,2,1,2,1,2,1,2,2,0,0,1,2,2,2,6], [2,1,3,2,2,2,1,1,1,2,2,1,2,0,2,2,1,1,1,6], [0,2,2,1,2,2,2,1,2,0,2,2,0,0,1,2,0,2,2,2,6], [0,1,1,2,0,0,3,2,2,1,1,1,0,1,2,2,0,3,2,1,1,6], [2,2,2,3,1,2,2,1,2,1,1,2,1,1,1,3,1,2,2,3,2,2,6], [0,1,1,1,2,2,2,2,0,-1,2,1,1,-1,2,0,1,2,2,2,2,2,0,6], [2,3,2,2,0,2,2,2,2,1,1,2,3,2,2,0,2,0,0,1,0,2,2,1,6], [3,3,2,2,2,3,2,2,2,1,0,2,2,0,2,0,2,0,1,2,1,0,2,1,2,6], [1,1,3,2,2,2,1,1,2,2,2,0,1,1,1,2,1,2,2,2,2,2,2,2,1,0,6], [2,2,2,2,2,2,1,1,1,1,1,1,0,1,0,2,2,2,2,2,1,0,2,2,0,2,2,6], [3,2,2,1,1,1,2,1,2,1,1,2,1,1,1,1,0,2,2,3,2,2,3,2,2,2,1,2,6], [2,2,2,1,0,1,2,1,2,2,1,2,1,2,1,2,0,1,2,2,2,2,2,0,1,0,1,1,3,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [-2,0,1,-1,0,1,0,1,0,0,0,0,0,1,0,1,0,-1,0,0,-1,0,0,0,-1,0,0,0,1,0], [0,-3,3,-5,2,1,0,5,-2,-3,2,-1,2,-2,-1,1,4,0,-1,-2,0,3,0,-5,-1,0,0,1,2,1], [0,-1,2,-4,1,1,1,4,-2,-2,2,-2,1,-1,-2,0,3,0,-1,-1,0,2,1,-3,-1,0,0,0,1,1], [1,0,-1,5,-1,-4,-4,-5,6,4,-5,4,-2,-1,7,1,-4,-1,-1,-2,0,-4,2,8,1,-2,-1,1,-3,1], [-2,1,2,-5,1,4,3,4,-5,-3,4,-4,1,3,-7,0,3,-1,1,1,-1,4,0,-4,-2,2,0,-2,2,0], [0,-1,2,-7,2,3,3,6,-6,-5,5,-4,2,0,-7,0,6,1,0,1,0,5,-1,-8,-1,2,1,-1,2,1], [-4,3,-2,0,-2,4,2,-1,-3,0,1,-2,0,6,-5,1,0,-1,2,3,-1,1,-2,0,-2,3,1,-3,2,-1], [-2,2,-1,0,-1,2,2,0,-2,0,1,-2,0,3,-4,0,0,0,1,2,-1,0,-1,0,-1,2,1,-2,1,0], [0,-1,0,4,-1,-2,-3,-3,5,4,-4,3,-1,-1,6,1,-3,-1,-1,-3,0,-4,2,6,0,-2,-1,1,-1,0], [-1,1,-2,3,-1,0,0,-3,1,2,-2,1,-1,2,1,0,-2,0,1,1,0,-2,0,3,0,0,0,-1,-1,0], [0,-2,3,-4,1,0,-1,3,0,-2,1,-1,2,-1,0,1,2,-1,-1,-2,0,2,2,-1,-1,0,-1,1,0,1], [-1,1,2,-6,1,4,4,5,-6,-4,5,-5,2,2,-8,-1,4,0,1,2,0,5,-1,-7,-2,2,0,-1,2,0], [1,-1,2,-1,1,-1,-1,1,1,0,0,0,0,-1,1,0,0,-1,-1,-2,0,0,2,1,0,-1,-1,1,-1,1], [1,-2,2,-2,1,0,0,3,-1,-1,1,0,1,-3,0,0,2,1,-1,-2,0,1,0,-3,0,-1,0,1,1,1], [-1,0,1,0,0,0,-1,0,1,1,-1,0,0,1,1,1,-1,-2,0,-1,0,0,1,2,-1,0,-1,0,0,0], [-1,1,3,-9,2,6,6,8,-9,-7,8,-7,2,2,-12,-1,6,1,1,3,-1,7,-2,-11,-2,3,1,-2,3,0], [-3,2,-5,7,-2,0,0,-6,2,4,-4,3,-3,3,2,1,-4,0,1,2,-1,-5,-2,5,1,1,2,-2,0,0], [1,-5,6,-8,2,0,-1,8,-1,-4,3,-1,3,-4,0,2,5,0,-2,-4,0,3,2,-5,-1,-1,-1,2,2,1], [0,0,-2,6,-2,-3,-3,-5,5,5,-5,5,-2,-1,7,1,-4,0,-1,-2,0,-5,1,7,1,-2,0,1,-2,0], [-4,4,-3,0,-1,5,4,-1,-5,-1,2,-3,-1,7,-8,0,0,0,3,5,-2,1,-3,-2,-1,4,2,-4,2,-1], [1,-3,4,-7,2,1,1,7,-3,-5,4,-2,3,-3,-3,1,5,1,-1,-2,0,4,0,-7,-1,0,0,1,2,1], [-1,0,2,-4,1,2,1,3,-2,-2,2,-2,0,1,-3,1,2,-1,0,0,-1,2,1,-2,-1,1,0,-1,1,0], [-2,2,-2,3,-1,0,-1,-4,2,2,-2,1,-1,3,1,1,-3,-1,1,1,-1,-2,0,4,0,1,0,-1,-1,0], [1,-1,2,-3,1,0,0,3,-1,-2,2,-1,1,-1,-1,0,2,0,-1,-1,0,2,1,-2,-1,0,0,0,0,1], [-2,1,0,-2,0,2,1,2,-2,-1,1,-1,0,1,-3,1,2,0,0,1,-1,1,-1,-2,-1,1,1,-1,2,0], [1,-3,6,-11,3,3,3,11,-6,-7,7,-5,3,-3,-7,0,8,1,-1,-1,0,7,0,-11,-2,1,0,0,3,1], [-2,0,1,-4,0,3,2,3,-3,-3,3,-2,1,2,-4,1,2,0,1,1,-1,2,-1,-4,-1,2,1,-1,2,0], [-2,1,-2,3,-2,0,0,-3,1,2,-2,2,-1,2,1,1,-2,0,1,1,-1,-3,-1,3,0,1,1,-1,0,0]], [[-6,7,-8,10,-5,2,1,-11,2,6,-5,2,-4,10,0,1,-8,-2,4,6,-2,-6,-3,9,0,3,2,-4,0,-3], [0,0,-4,9,-3,-4,-4,-8,7,6,-7,6,-2,0,9,1,-6,0,0,-1,1,-7,0,9,2,-2,0,1,-2,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [-1,1,-2,3,-1,0,0,-3,1,2,-2,1,-1,2,1,0,-2,0,1,1,0,-2,0,3,0,0,0,-1,0,-1], [-2,-1,2,-7,1,4,3,6,-6,-5,5,-4,3,2,-7,1,5,0,1,1,0,5,-2,-8,-2,3,1,-1,4,-1], [-2,1,-2,6,-3,-2,-4,-7,6,5,-6,4,-1,3,7,2,-6,-3,1,-1,0,-4,1,9,0,-1,-1,1,-1,-2], [-2,1,-2,4,-2,-1,-1,-4,3,3,-3,2,-1,2,3,1,-3,-1,0,0,0,-3,0,5,0,0,0,0,0,-1], [-2,2,-4,7,-3,-1,-2,-7,4,5,-5,3,-2,4,4,1,-5,-1,1,1,0,-5,0,8,0,0,0,-1,-1,-1], [-2,0,-2,5,-2,-1,-2,-4,4,4,-4,3,-1,1,5,1,-3,-1,0,-1,0,-4,0,5,0,-1,0,0,1,-1], [-3,4,-5,5,-2,2,2,-5,-1,2,-1,0,-2,5,-3,0,-3,0,2,4,-1,-2,-3,2,0,3,2,-3,1,-1], [0,0,1,-2,1,1,1,2,-2,-2,2,-2,1,0,-3,0,2,0,0,0,0,2,0,-2,-1,1,0,-1,1,0], [-1,0,0,0,-1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,-1], [-2,0,0,-4,0,3,2,3,-4,-3,3,-2,2,2,-5,1,3,0,1,2,0,3,-2,-5,-1,2,1,-1,3,-1], [-2,4,-3,2,-2,3,3,-2,-3,1,1,-2,-1,5,-5,-1,-1,0,2,4,0,0,-2,0,-1,2,1,-3,1,-2], [-1,2,-2,3,-2,-1,-1,-4,2,2,-2,1,-1,3,1,1,-3,-1,1,1,0,-2,0,5,0,1,0,-1,-1,-1], [-1,3,-4,8,-2,-2,-1,-8,4,5,-5,3,-3,3,4,0,-6,-1,1,1,0,-5,0,8,1,0,0,-1,-2,-1], [-1,1,-2,1,-1,1,1,-1,-1,0,0,0,0,1,-1,0,0,1,1,2,0,0,-2,-1,0,1,1,-1,1,-1], [2,-1,2,-2,1,-1,0,2,0,-1,1,-1,1,-2,0,0,1,0,-1,-2,1,1,1,-1,0,-1,-1,1,0,0], [0,0,0,1,0,-1,0,-1,1,0,-1,0,0,0,1,0,-1,0,0,0,0,-1,0,1,0,0,0,0,0,0], [-2,2,-2,3,-1,0,-1,-4,2,2,-2,1,-1,3,1,1,-3,-1,1,1,-1,-2,0,4,0,1,0,-1,0,-1], [2,-3,3,1,0,-4,-4,0,5,2,-3,3,1,-4,7,1,-1,-1,-2,-5,1,-2,3,4,0,-3,-2,3,-1,0], [0,0,0,3,-1,-2,-2,-3,4,3,-3,2,-1,0,4,1,-3,-1,-1,-2,0,-3,2,6,0,-1,-1,0,-1,0], [-1,2,-3,7,-2,-2,-2,-7,5,5,-5,3,-2,2,5,0,-6,-1,1,0,0,-5,1,8,1,-1,-1,0,-2,-1], [0,-2,3,-4,1,0,-1,3,0,-2,1,-1,2,-1,0,2,2,-1,-1,-2,0,2,1,-1,-1,0,-1,1,1,0], [-2,2,-4,7,-3,-1,-2,-7,4,5,-5,3,-2,3,4,1,-5,-1,1,1,0,-5,0,8,1,0,0,-1,-1,-1], [-3,2,-5,7,-3,0,-1,-7,3,4,-4,3,-2,4,3,1,-5,0,2,2,-1,-5,-2,6,1,1,1,-1,0,-1], [-1,0,1,0,0,0,-1,0,1,1,-1,0,0,1,1,1,-1,-2,0,-1,0,0,1,2,-1,0,-1,0,1,-1], [-1,2,-5,10,-2,-2,-2,-9,5,6,-6,4,-3,2,6,0,-7,0,1,1,0,-6,-1,8,2,-1,0,0,-2,-1], [-2,2,-3,6,-2,-1,-1,-6,4,4,-4,2,-2,3,3,1,-5,-1,1,1,-1,-5,0,7,1,0,0,-1,-1,-1], [0,1,0,3,-1,-1,-1,-3,3,2,-2,1,-1,1,2,0,-3,-1,0,0,0,-2,1,4,0,-1,-1,0,-1,-1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,2,-4,9,-2,-3,-3,-8,6,6,-6,4,-3,1,6,0,-6,0,0,0,0,-6,0,9,2,-1,0,0,-3,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,2,-4,0,1,1,3,-2,-3,3,-2,2,0,-3,0,2,0,0,0,0,3,0,-3,-1,1,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,2,-4,1,1,1,3,-2,-3,3,-2,1,0,-3,0,2,0,0,0,0,3,0,-3,-1,1,0,0,0,0], [0,1,-2,6,-2,-3,-3,-6,5,5,-5,4,-2,1,6,1,-5,-1,0,-1,0,-5,1,8,1,-1,0,0,-2,-1], [-2,4,-6,13,-4,-4,-4,-13,9,9,-9,6,-5,4,9,1,-10,-2,1,1,-1,-9,1,15,2,-1,0,-1,-4,-1], [0,2,-4,9,-3,-3,-3,-8,6,6,-6,5,-3,1,7,0,-6,0,0,0,0,-6,0,9,1,-1,0,0,-3,0], [0,2,-4,9,-2,-3,-2,-8,5,6,-6,4,-3,1,6,0,-6,0,0,0,0,-6,0,9,2,-1,0,0,-3,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [1,-2,4,-4,1,0,-1,4,0,-2,2,-1,2,-2,0,1,2,-1,-1,-3,0,2,2,-2,-1,-1,-1,1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-3,4,-5,2,-1,-1,5,0,-3,2,0,2,-4,1,1,3,0,-2,-3,0,2,1,-4,0,-1,0,2,1,1], [-2,2,-2,1,-1,1,1,-1,-1,0,0,0,-1,2,-2,1,0,0,1,2,-1,-1,-2,0,0,2,2,-2,1,0], [1,0,0,5,-1,-3,-3,-4,5,4,-4,3,-2,-1,6,0,-4,-1,-1,-2,0,-4,2,7,1,-2,-1,1,-2,0], [0,1,2,-1,0,0,-1,0,1,0,0,-1,0,1,0,0,-1,-2,0,-1,0,1,2,2,-1,0,-1,0,-1,0], [3,-3,2,-1,1,-3,-2,2,2,-1,0,2,1,-5,4,0,1,1,-2,-3,1,0,1,-1,1,-2,0,2,-1,1], [0,-1,2,-2,0,0,-1,2,0,-1,1,0,1,-1,1,1,1,-1,-1,-2,0,1,1,-1,-1,0,0,1,1,0], [1,0,-2,6,-1,-4,-3,-5,6,4,-5,4,-2,-2,7,0,-4,0,-1,-1,0,-5,1,7,2,-2,0,1,-3,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [-1,1,0,-1,0,1,1,1,-1,-1,1,-1,0,1,-2,0,1,0,0,1,-1,0,0,-1,-1,1,1,-1,1,0], [2,0,0,2,0,-3,-2,-2,3,1,-2,2,-1,-2,4,0,-2,0,-1,-1,0,-2,1,3,1,-1,0,1,-2,1], [0,1,-2,6,-2,-3,-3,-6,5,4,-5,4,-2,1,6,1,-5,-1,0,-1,0,-5,1,8,1,-1,0,0,-2,0]]]], [ # Q-class [30][19] [[4], [2,4], [2,2,4], [2,2,2,4], [2,2,2,2,4], [2,2,2,2,2,4], [2,2,2,2,2,2,4], [2,2,2,2,2,2,2,4], [2,2,2,2,2,2,2,2,4], [2,2,2,2,2,2,2,2,2,4], [2,2,2,2,2,2,2,2,2,2,4], [2,2,2,2,2,2,2,2,2,2,2,4], [2,2,2,2,2,2,2,2,2,2,2,2,4], [2,2,2,2,2,2,2,2,2,2,2,2,2,4], [1,1,1,1,1,1,2,1,1,1,1,1,1,1,4], [1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,4], [1,1,2,1,1,1,1,1,1,1,1,1,1,1,2,2,4], [1,1,1,2,1,1,1,1,1,1,1,1,1,1,2,2,2,4], [1,1,1,1,2,1,1,1,1,1,1,1,1,1,2,2,2,2,4], [1,1,1,1,1,2,1,1,1,1,1,1,1,1,2,2,2,2,2,4], [1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,2,2,2,2,2,4], [1,1,1,1,1,1,1,2,1,1,1,1,1,1,2,2,2,2,2,2,2,4], [1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,2,2,2,2,2,2,2,4], [1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,2,2,2,2,2,2,2,2,4], [1,1,1,1,1,1,1,1,1,1,2,1,1,1,2,2,2,2,2,2,2,2,2,2,4], [1,1,1,1,1,1,1,1,1,1,1,2,1,1,2,2,2,2,2,2,2,2,2,2,2,4], [2,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,4], [1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4], [2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,-1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,-1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,-1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,-1], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,-1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]]]], [ # Q-class [30][20] [[4], [-1,4], [1,-1,4], [0,0,1,4], [-2,0,-1,1,4], [1,0,0,0,-1,4], [0,-2,-1,-1,0,1,4], [-1,1,0,1,1,-1,0,4], [-2,2,-2,0,2,0,0,1,4], [0,1,-1,-1,0,-2,0,1,1,4], [2,0,0,-1,-1,0,0,0,-1,1,4], [-1,2,-1,0,0,0,-1,0,1,0,-1,4], [1,0,2,0,-1,0,-1,-1,-1,0,1,-1,4], [-1,0,0,2,1,0,0,1,1,0,-2,0,-1,4], [-1,0,0,1,2,0,0,1,1,-1,-2,0,-1,1,4], [-1,1,-1,1,1,0,-1,1,1,0,-1,2,-2,2,1,4], [0,-1,0,0,0,0,2,1,0,1,0,-2,-1,1,0,-1,4], [0,0,-1,0,1,0,1,2,1,1,1,-1,-2,1,1,1,2,4], [-1,1,-1,1,1,0,0,1,2,0,-2,2,-2,2,2,2,0,1,4], [1,0,0,-1,-1,0,1,0,0,2,2,-1,1,-1,-2,-2,2,1,-1,4], [0,1,-1,-2,0,-1,0,1,0,2,2,0,0,-1,-1,0,0,1,-1,1,4], [-1,0,-1,0,0,0,0,-1,0,-1,-1,2,-1,0,0,1,-1,-1,1,-1,-1,4], [1,1,0,-1,-1,0,-1,-2,0,1,1,0,2,-1,-1,-1,-1,-1,-1,1,1,-1,4], [2,0,1,0,-1,0,-1,-1,-2,-1,1,0,1,-2,0,-1,-1,-1,-1,0,0,0,1,4], [0,0,1,1,0,1,0,1,0,-2,-1,0,0,0,2,0,0,0,1,-1,-2,0,-1,1,4], [0,-1,1,1,0,-2,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,0,4], [0,0,1,1,0,-1,0,2,0,2,0,-1,0,1,0,0,2,1,0,1,0,-2,-1,-1,0,0,4], [-1,1,2,1,-1,-1,-2,0,-1,-1,-1,1,1,0,0,0,-1,-2,0,-1,-1,1,0,1,1,1,0,4], [0,0,0,2,0,0,0,1,0,-1,-1,1,-1,1,1,1,0,0,2,-1,-2,2,-2,0,2,1,0,1,4], [-1,2,-2,0,1,0,-1,1,2,2,0,1,-1,1,0,2,0,1,1,0,1,0,0,-2,-1,-2,1,-1,0,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,1,0,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,-1,-1,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,-1,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,1,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,1,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,1,1,0,0,0,0,0,0,-1,1,0,-1,-1,0,-1,0,0,0,1,0,0,1,1,0,1,0], [0,0,1,-1,0,-1,1,1,0,-2,1,0,-1,1,1,0,0,-1,0,1,-1,0,1,1,-1,0,0,0,0,2], [0,0,1,1,-1,-1,0,0,1,0,-1,-1,0,-1,0,1,0,0,0,0,1,1,0,0,0,-1,0,-1,0,-1], [-1,-1,0,0,-1,0,0,0,1,0,0,1,0,0,1,0,0,0,-1,0,0,-1,0,1,-1,0,0,0,1,0], [0,-1,0,0,0,1,-1,0,1,1,-1,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,1,-1], [0,1,0,1,-1,-1,0,0,0,0,0,-1,1,-1,0,1,0,0,1,0,0,1,-1,0,0,-1,0,-1,-1,-1], [0,0,0,1,-1,0,0,-1,1,0,-1,0,1,-1,0,0,0,1,0,0,1,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,1,0,-1,0,0,0,0,0,-1,1,-1,0,1,0,0,0,0,0,1,0,1,-1], [1,1,0,0,0,-1,1,0,0,-2,0,-1,0,0,0,0,-1,0,1,1,0,1,0,0,0,0,1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,-1,1,1,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,1,1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,-1,1,0,-1,-1,-1,-1,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1]], [[-1,-1,-1,0,0,1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1], [0,0,1,-1,0,0,1,0,1,-2,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,1,1,0,1,2], [0,0,-1,-1,1,1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,1,0,1,0,0], [0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [1,1,0,1,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1,1,0,0,0,-1,-1], [-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,1,0,1,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1,-1,0,-1,-1,-1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,1,0,0,0], [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,0,0,0,-1,0,0,1,1,0,1,0,0,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,1,-1,0,1,1,0,1,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,-1,0,0,0,1,0,-1,0,0,-1,0,1,0,0,-1,-1,1,-1,-1,1,0,-1,1,0,0,1,1], [0,0,0,0,0,0,0,-1,0,1,0,1,1,0,0,-1,0,1,0,-1,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,1,1,0,1,0,-1,0,0,0,0,0,0,-1,0,1,1,0,0,-1,1], [0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,1,0,1,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,1,0,1,0,1,0,-1,0,1,-1,-1,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,-1,-1,1,0,0,1,1,0,0,1,0,1,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,1,1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,1,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,-1,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,-1,1,0,0,1,1], [0,-1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,1,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,1,0,0,-1,1], [0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,-1,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,-1,0,1,-1,1,0,1,0,2], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0]]]], [ # Q-class [30][21] [[4], [0,4], [-1,1,4], [0,-1,0,4], [1,1,0,0,4], [-1,-1,0,0,0,4], [1,0,0,0,0,0,4], [-1,0,0,0,0,0,0,4], [-1,-1,0,0,0,0,0,0,4], [0,-1,0,2,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,0,0,0,0,0,4], [0,0,0,0,0,0,-1,0,0,0,0,1,4], [0,0,0,0,0,0,0,0,0,0,0,-2,-1,4], [0,0,0,1,-1,-1,0,0,0,1,-1,0,0,1,4], [1,-1,0,0,0,0,0,0,0,0,-2,0,1,0,1,4], [0,0,1,0,-1,-1,1,0,0,1,1,1,0,-1,0,-1,4], [0,0,1,1,0,0,0,-1,1,1,-1,1,0,0,0,1,0,4], [0,1,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,4], [0,2,0,-1,0,0,0,0,-1,0,1,0,0,0,0,-1,0,0,1,4], [0,-1,0,0,0,0,0,0,2,0,0,0,0,0,-1,0,-1,1,0,0,4], [0,0,1,-1,1,0,-1,1,1,0,1,-1,0,0,-2,0,0,0,0,0,1,4], [0,0,1,0,-1,0,1,-1,0,0,0,-1,0,0,0,-1,0,0,1,0,1,0,4], [0,0,0,0,-1,0,1,-1,1,0,1,-1,0,1,0,-1,0,0,1,0,1,0,2,4], [0,-1,0,0,0,2,0,0,0,0,0,0,-1,0,-1,0,-1,0,0,-1,0,1,0,0,4], [0,0,1,-1,1,1,1,0,1,-1,0,1,0,-1,0,0,0,0,1,0,1,0,0,0,0,4], [1,0,0,0,0,0,2,0,0,0,0,0,-1,0,1,0,1,-1,0,0,0,-1,1,0,0,1,4], [0,0,0,-1,1,1,1,-1,1,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,1,2,0,4], [0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,-1,0,-1,0,0,1,0,0,0,0,0,4], [0,0,0,-1,-1,-1,0,-1,1,0,0,1,0,0,0,-1,2,0,-1,0,0,0,0,0,0,0,1,0,-1,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,1,0,0,1,1,0,0,0,0,1,-1,0,-1,1,1,1,0,0,0,1,-1,0,0,1,0,-1,-1,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,-1,-1,1,0,-1,0,1,-1,0,-1,0,1,1,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,0,-1,-1,-1,0,0,0,-1,2,0,1,-1,-1,-1,0,-1,0,-1,1,0,1,-1,-1,2,2,-1,-2], [-1,0,-1,-1,1,1,2,-1,-2,-1,0,-3,2,-2,3,-2,1,2,1,-1,2,1,-3,0,1,0,0,-2,2,1], [0,-1,1,0,0,-1,-1,1,0,0,0,0,0,0,-1,0,-1,1,-1,1,-1,-1,0,1,0,0,1,1,0,0], [0,1,-1,-1,1,1,1,0,0,0,1,-2,1,-1,1,0,1,1,1,-1,1,-1,0,-1,1,0,-1,-2,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,0,0,0,0,0,0,0,0,1,-1,0,0,0,-1,-1,0,0,0,0,0,0,-1,-1,0,1,-1,0], [0,0,0,0,0,1,1,0,-1,0,0,0,0,-1,1,-1,-1,0,1,-1,1,1,-1,0,-1,-1,0,0,0,1], [1,-1,1,1,-2,-1,-1,0,1,1,-1,3,-1,2,-3,0,-2,-2,0,0,-2,1,1,0,-2,0,1,2,-2,-1], [0,0,0,-1,0,0,1,0,0,0,0,-1,1,-1,1,-1,0,1,0,0,0,0,-1,0,1,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [-1,1,-1,0,1,1,1,0,-1,0,1,-1,0,-1,1,1,0,0,1,-1,1,0,0,0,0,0,-1,-1,1,2], [-1,1,-1,0,2,1,1,0,-1,-1,1,-3,1,-2,2,1,2,1,1,0,2,-1,-1,0,2,0,-1,-2,2,2], [-1,0,-1,0,1,0,0,0,-1,-1,0,-1,1,0,1,0,2,1,0,0,1,0,0,0,1,0,0,0,1,0], [0,-1,1,0,0,-1,-1,0,0,0,-1,1,0,1,-1,0,0,0,-1,1,-1,0,0,1,0,0,1,1,0,-1], [-1,1,-1,0,1,1,1,0,-1,-1,0,-2,1,-1,2,0,2,1,0,0,2,0,-1,0,1,0,-1,-1,2,1], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,1,0,-1,-1,0,-1,1,-1,2,-1,0,1,0,0,1,1,-1,0,0,-1,0,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,-1,1,1,1,0,0,-1,0,-1,1,-1,2,-1,1,1,0,0,1,0,-1,0,1,-1,0,-1,1,0]], [[-1,0,-1,-1,2,1,2,-1,-1,-1,0,-3,2,-2,3,-1,2,1,1,0,2,0,-2,0,2,0,-1,-3,2,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,-1,0,0,-1,0,1,0,0,-1,0,0,0,0,0,1,-1,0,0,0,1,0,0,-1], [0,0,0,1,-1,0,0,0,0,0,0,1,0,1,-1,0,-1,0,0,0,-1,1,0,0,-1,0,1,1,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [1,-1,2,1,-2,-2,-2,1,1,1,-1,3,-1,2,-3,0,-2,-1,-2,1,-2,0,1,1,-1,0,2,3,-2,-2], [1,0,1,0,-1,0,-1,1,1,1,0,1,-1,1,-2,1,-1,-1,0,0,-1,-1,1,0,-1,0,0,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,-1,1,0,-1,-1,-1,0,1,1,0,2,-1,1,-2,0,-2,-1,0,0,-2,0,1,0,-1,0,1,1,-2,-1], [-1,1,-1,0,1,1,1,0,-1,0,1,-1,0,-1,1,1,0,0,1,-1,1,0,0,0,0,0,-1,-1,0,2], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,1,0,0,0,-1,1,0,0,0,1,-1,0,0,0,-1,0,-1,0,-1,0,1,1,-1,0,0,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,-1,1,0,0,0,0,0,0,0,0,1,-1,0,0,0,-1,-1,0,0,0,0,0,0,-1,-1,0,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,0,0,0,0,0,1,1,0,0,0,1,-1,1,1,-1,1,0,0,-1,1,-1,1,1,-1,-1,0,0], [0,1,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,1,0,0,0,1,-1,-1,0,1,0,0,0,1,0], [-1,1,-2,0,2,1,1,0,-1,-1,1,-3,1,-1,2,1,3,1,1,0,2,-1,0,-1,2,1,-2,-2,2,2], [0,1,-1,0,1,1,1,0,0,0,1,-2,0,-1,1,1,1,0,1,0,1,-1,0,-1,1,1,-2,-2,1,2], [0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,0,1,0,0,0,0,-1,0,0,0,1,0,1,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,-1,-1,0,1,0,0,0,0,1,-1,1,1,0,-1,1,-1,-1,1,0,1,1,0,0,0,-1], [0,0,0,-1,1,1,1,0,0,0,1,-1,0,-1,1,0,0,0,1,-1,1,-1,0,-1,0,-1,-1,-1,0,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,-1,0,0,0,0,0,0,0,0,-1,1,0,0,0,1,1,0,0,0,0,0,0,1,1,0,-1,1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,1,0,-1,0,0,0,1,1,0,1,-1,0,-1,0,-2,-1,0,0,-1,0,0,0,-1,0,0,0,-1,0], [-1,1,-1,0,1,1,1,0,-1,0,1,-1,0,-1,1,1,0,0,1,-1,1,0,0,0,0,0,-1,-1,0,2], [0,0,0,0,-1,-1,0,0,1,1,0,1,0,1,-1,0,-1,-1,0,0,-1,0,1,-1,0,1,0,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,1,0,0,0,1,-1,-1,0,1,0,0,0,1,0], [0,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,-1,-1,1,0,-1,0,1,-1,0,-1,0,1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [1,0,1,1,-1,-1,-2,1,2,1,0,3,-2,2,-3,2,-1,-2,-1,1,-2,-1,3,0,-1,0,0,2,-2,-1], [0,0,0,0,1,0,0,1,0,0,1,0,-1,0,0,1,0,0,0,0,0,-1,1,0,0,0,-1,0,0,1], [1,-1,1,0,0,0,-1,1,0,0,0,1,-1,0,0,0,-1,0,-1,0,-1,0,1,1,-1,0,0,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [1,-1,1,0,-2,-1,-1,0,1,1,-1,3,-1,2,-2,-1,-2,-1,-1,0,-2,1,1,0,-2,0,1,2,-2,-2], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,-1,-1,0,-1,1,1,0,1,0,1,-1,0,-1,-1,0,0,-1,0,1,-1,0,1,0,0,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,-1,1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,-1,0,0,-1,-1,0,0], [1,-1,2,1,-2,-2,-1,0,2,1,-1,3,-1,2,-3,0,-2,-2,-1,1,-2,0,1,0,-1,0,1,2,-2,-2], [0,0,0,0,0,1,1,0,-1,-1,0,-1,1,-1,2,-1,0,1,0,0,1,1,-1,0,0,-1,0,0,1,1], [0,0,0,0,-1,-1,0,0,0,1,0,0,0,0,-1,0,-1,0,0,0,-1,0,0,0,0,1,0,0,0,0], [0,1,-1,0,1,1,1,0,0,0,1,-2,0,-1,1,1,1,0,1,0,1,-1,0,-1,1,1,-2,-2,1,2], [0,0,0,-1,0,0,1,0,0,0,0,-1,1,-1,1,-1,0,1,0,0,0,0,-1,0,1,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0]]]], [ # Q-class [30][22] [[4], [2,4], [2,2,4], [1,0,0,4], [0,0,0,0,4], [2,2,2,0,0,4], [1,1,2,0,1,1,4], [0,1,1,0,1,0,2,4], [2,1,1,1,1,1,0,0,4], [1,1,1,2,0,0,0,0,1,4], [1,1,1,0,2,1,2,2,0,0,4], [1,1,1,0,1,2,2,0,0,0,2,4], [0,1,0,2,0,0,0,0,0,2,0,0,4], [0,0,0,2,0,1,0,0,0,0,0,0,2,4], [0,0,1,2,0,0,0,0,0,2,0,0,2,2,4], [1,0,0,0,1,1,0,0,0,0,2,2,0,0,0,4], [1,1,0,0,1,0,0,2,0,0,2,0,0,0,0,2,4], [0,0,0,0,2,0,1,0,1,0,1,2,0,0,0,1,0,4], [0,0,-1,1,1,-1,1,1,0,1,1,1,1,0,0,1,0,1,4], [0,0,0,0,2,0,0,0,1,0,1,1,0,0,0,2,1,2,1,4], [2,1,1,1,0,1,0,0,2,1,0,0,0,0,0,0,0,0,0,0,4], [1,2,1,0,1,1,0,0,2,1,0,0,1,0,0,0,0,1,0,0,1,4], [2,2,2,1,0,0,1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,1,4], [0,0,0,0,2,0,2,1,1,0,1,1,0,0,0,0,0,2,1,0,0,1,0,4], [0,0,0,0,2,0,1,1,0,0,2,1,0,0,0,1,1,1,1,1,1,0,0,1,4], [0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,2,1,1,1,2,1,0,0,0,2,4], [0,0,0,0,1,0,1,1,0,0,1,1,0,0,0,1,0,1,2,1,0,0,0,1,2,2,4], [0,0,0,0,1,0,1,0,0,0,1,2,0,0,0,1,0,2,1,1,1,0,0,1,2,2,2,4], [1,2,1,0,0,1,0,0,1,1,0,0,1,0,0,0,0,0,0,0,2,2,1,0,1,0,0,1,4], [1,1,1,2,0,0,0,0,1,2,0,0,2,0,2,0,0,0,0,0,1,1,2,0,0,0,0,0,1,4]], [[[-2,-1,1,0,0,1,0,-2,0,0,1,0,0,0,0,-1,2,0,1,0,1,0,1,0,-1,-1,1,0,0,0], [-1,-1,0,0,0,0,0,-1,0,0,1,1,0,0,0,-1,1,0,0,0,0,0,1,0,-1,0,1,-1,1,0], [-1,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,-1,0,0,0,0], [0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [1,1,0,1,0,-1,0,1,0,-1,-1,0,1,-1,1,1,-1,0,-1,0,0,0,-1,0,0,0,0,0,0,-1], [-1,-1,0,0,0,1,0,-1,0,0,1,0,0,0,0,-1,1,0,1,0,0,0,1,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [1,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,-1,-1,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,1,0,0,0,0,0,0,0,-1,0,0,0,1,0], [1,0,0,0,0,-1,-1,1,-1,0,0,1,0,0,0,0,-1,-1,-1,1,0,1,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,1,1,0,1,-1,0,0,0,0,-1,0,0,0,0,1,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0], [1,0,0,0,0,-1,0,1,0,0,-1,1,1,0,0,0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0], [1,0,0,0,0,-1,-1,1,0,0,0,1,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,0,0,-2,0,1,0,0,-1,1,0,1,0,1,-1,0,-1,0,0,0,-1,0,0,0,0,0,0,0], [-1,-1,1,0,0,1,0,-1,0,0,0,0,0,0,0,-1,1,0,1,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,1,0,0,0], [1,0,-1,0,0,0,0,1,0,0,0,0,1,-1,1,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,1,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [1,0,-1,0,0,0,0,1,-1,1,0,0,0,0,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,-1,0,0,-1,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,-1,0,0,-1,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,1,0,0,0,0,0,1,0,0,-1,-1,0,0,0,2,-1,0,0,0,0,0,0,0,1,-1,-1,1,-1,0], [0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,-1,0,0,1,0,0,1,0,0,-1,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,-1,0,0,1,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,0,-1,1,0,0,-1,1,1,0,-1,0,0,-1,0,0,0,1,0,1,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [1,1,-1,0,0,-1,0,1,0,0,0,0,0,0,0,1,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,1,0,1,0,0,0,-1,-1,0,0,0,1,0,1,0,-1,0,-1,-1,-1,0,0,0,0,0,1], [0,0,-1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [-1,0,-1,0,0,1,1,-1,0,1,1,-1,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,-1,0,0,1,1,0,0,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,-1,0,0,1,0,0,1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,1,-1,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,0,0,-1,0,1,0,0,0,0,0,0,0,1,-1,0,-1,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [30][23] [[8], [2,8], [2,2,8], [1,3,2,8], [3,1,4,3,8], [4,2,4,2,3,8], [2,1,4,2,4,2,8], [3,1,2,2,4,1,2,8], [2,2,2,3,4,2,1,3,8], [2,1,3,3,2,1,4,4,2,8], [3,4,4,1,2,4,1,2,4,1,8], [3,4,2,1,2,4,2,2,2,2,2,8], [2,2,2,4,4,2,4,2,2,3,1,1,8], [2,2,2,2,3,0,2,1,1,1,2,0,4,8], [4,1,3,2,4,3,2,2,2,4,3,2,3,3,8], [2,1,0,4,3,1,3,2,4,4,1,1,3,2,4,8], [2,4,2,4,2,4,3,2,2,3,2,2,4,2,1,2,8], [4,3,1,2,2,2,2,2,4,2,2,2,2,2,2,4,4,8], [2,2,2,2,1,4,1,3,0,2,2,2,2,2,2,1,4,2,8], [2,4,2,2,2,1,3,0,2,2,2,2,4,4,3,4,2,3,1,8], [4,1,1,2,3,2,1,3,1,1,0,3,1,1,2,1,1,2,1,1,8], [1,3,1,4,2,2,0,0,4,-1,2,1,2,1,0,2,3,2,1,2,2,8], [3,1,2,4,4,4,2,2,3,1,2,2,2,-1,2,2,2,1,2,0,3,3,8], [1,2,2,2,2,2,0,1,4,1,4,1,0,0,2,2,1,1,1,2,2,3,4,8], [1,2,4,2,1,2,2,3,-1,3,2,0,1,2,1,1,2,0,4,1,-1,-1,0,0,8], [1,4,1,3,2,1,2,2,1,2,2,2,4,1,2,2,2,0,1,2,2,3,2,1,1,8], [1,1,4,4,2,4,3,0,1,2,2,2,2,1,3,2,2,1,2,0,2,2,2,1,2,2,8], [1,3,1,2,0,2,-1,2,3,0,2,3,0,-1,-1,1,1,2,3,1,2,4,2,2,1,3,1,8], [0,4,2,4,1,0,1,1,0,1,2,0,2,4,1,1,2,-1,2,3,0,2,0,1,4,2,2,0,8], [1,1,4,3,2,1,2,3,4,4,2,1,1,-1,1,2,1,2,0,1,2,2,3,2,1,2,2,3,0,8]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,1,0,0,0,1,0,0,-1,0,0,0,1,0,0,1,-1,0,0,-1,0,1,-1,0,0,-1,-1,0,0,1], [-1,2,0,0,-1,3,1,1,-1,0,-1,-1,1,1,0,1,-2,0,0,-2,0,1,-1,1,-1,-1,-1,0,0,1], [-1,2,1,0,-2,3,1,2,-1,0,-1,-1,1,1,0,1,-2,0,-1,-1,0,1,0,0,-1,-1,-1,0,0,0], [-1,2,-1,0,-1,3,2,1,-1,0,-1,-1,1,1,1,0,-2,0,-1,-2,0,1,-1,1,0,-1,-1,1,0,1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,1,-1,0,0,1,1,0,-1,0,0,0,1,0,0,0,-1,0,0,-1,0,1,-1,1,0,-1,0,0,0,1], [0,0,0,0,0,1,0,0,0,1,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,1,1,0,-1,0,-1,0,-1,1,1,1,-1,0,1,0,0,0,-1,1,0,-1,0,1,0,-1,0,0,0], [0,0,0,0,0,1,0,0,0,1,0,0,0,0,-1,0,-1,0,0,0,0,1,0,0,0,0,0,-1,0,0], [0,0,1,0,0,0,-1,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,-1,0,0,0,0,-1,0,0,0,1,0,0,1,-1,0,0,-1,0,1,0,0,0,-1,0,0,0,1], [-1,1,-1,0,-1,3,1,1,0,1,-1,-1,0,1,0,-1,-2,1,-1,0,0,1,0,0,0,0,0,0,0,0], [-1,1,-1,0,-1,2,1,1,0,1,-1,-1,0,1,1,-1,-1,0,-1,0,0,1,0,0,0,-1,0,1,0,0], [-1,1,0,-1,-1,2,0,1,0,1,-1,-1,0,1,0,0,-1,0,-1,0,0,1,1,0,0,0,0,0,0,0], [-1,1,0,0,-1,1,1,0,0,0,0,0,1,0,1,0,-1,0,-1,-1,1,1,0,0,1,-1,-1,0,0,0], [1,-2,-1,1,1,-1,0,-1,0,-1,1,1,0,-1,0,-1,1,0,0,1,0,0,-1,0,1,0,0,0,0,1], [0,-3,-1,1,1,-2,0,-2,0,-1,2,2,1,-2,1,-1,1,1,0,0,1,0,-1,0,2,0,-1,0,1,1], [0,-1,-1,0,1,0,-1,0,0,1,1,0,-1,0,-1,-1,0,0,0,2,0,0,1,-1,0,0,1,0,0,0], [-1,1,-1,0,0,1,1,-1,0,0,0,0,1,0,1,0,-1,0,0,-1,1,1,-1,0,1,-1,-1,0,0,1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,1,0,1,-1,0,1,0,0,-2,0,0,1,0,1,1,0,-1,0,-1,1,0,-1,0,1,-1,-1,0,-1,1], [0,1,1,0,0,1,0,1,-1,0,0,-1,0,0,-1,1,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,1,0,1,0,-1,0,-1,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,2,0,0,-1,3,1,1,0,1,-1,-1,0,1,0,0,-2,0,0,-1,0,1,0,0,-1,-1,-1,0,0,0], [0,2,0,0,-1,2,0,1,0,1,-1,-1,0,1,-1,0,-2,0,0,0,0,1,0,0,0,0,0,-1,-1,0], [-1,2,1,-1,-2,2,0,2,-1,0,-1,-1,1,1,0,1,-1,0,-1,-1,0,1,1,0,-1,-1,0,0,0,0], [0,-1,0,1,1,-2,-1,-1,0,0,2,1,0,-1,-1,0,0,0,1,1,1,0,0,-1,1,0,0,-1,-1,0], [-1,4,1,-1,-2,4,1,2,-1,1,-2,-2,1,2,0,2,-2,-1,-1,-2,0,1,0,0,-2,-2,-1,1,0,0], [0,0,1,1,0,0,0,-1,0,0,1,0,1,-1,-1,1,-1,0,1,-1,1,0,-1,0,0,0,-1,-1,0,0]], [[-2,1,1,-1,-1,3,0,1,-1,2,-1,-1,0,1,0,0,-2,2,-1,-1,0,1,1,0,-1,0,-1,0,1,-1], [0,-2,0,0,2,-2,-2,-1,0,1,1,1,-1,-1,-1,-1,1,1,0,2,0,0,1,-1,1,1,1,0,0,-1], [-1,1,0,-1,0,2,0,1,-1,1,-1,-1,0,1,0,0,-1,1,-1,-1,-1,0,1,0,-1,0,0,1,1,0], [0,-1,0,-1,1,-2,-1,-1,0,0,1,1,0,-1,0,0,1,0,0,1,0,0,1,-1,1,0,1,0,0,0], [-1,0,0,-1,0,0,0,0,-1,0,0,0,1,0,1,0,0,1,-1,-1,0,0,1,0,0,-1,0,1,1,0], [-2,2,0,-1,-1,3,1,1,-1,1,-1,-1,1,1,1,0,-2,1,-1,-2,0,1,0,0,-1,-1,-1,1,1,0], [0,0,0,-1,1,0,-1,0,-1,1,0,0,0,0,-1,0,0,1,0,0,-1,0,1,0,-1,0,1,0,1,0], [-1,-1,0,-1,0,0,0,0,-1,0,0,0,0,0,1,0,1,1,-1,0,0,0,1,0,0,0,0,1,1,0], [0,-2,-1,0,1,-1,0,-1,-1,0,1,1,0,-1,1,-1,1,1,-1,0,0,0,0,0,1,0,0,1,1,0], [0,-1,0,-1,1,0,-1,0,-1,1,0,0,-1,0,-1,0,0,1,0,1,-1,0,1,0,-1,1,1,0,1,0], [-1,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,0,1,-1,-1,0,0,0,0,0,0,-1,1,1,0], [-1,0,-1,0,1,1,0,0,-1,1,0,0,0,0,0,-1,-1,1,0,0,0,1,0,0,0,0,0,0,0,0], [0,-2,0,-1,2,-2,-2,-1,-1,1,2,1,0,-1,-1,0,1,1,0,1,0,0,1,-1,0,0,1,0,1,0], [0,-1,1,0,1,-1,-1,-1,-1,0,1,1,1,-1,0,1,0,1,0,-1,0,0,0,0,0,0,-1,0,1,0], [-1,0,1,0,0,1,0,0,-1,0,0,0,0,0,0,1,-1,1,0,-1,0,0,0,0,-1,0,-1,0,1,0], [0,-1,0,0,1,-1,0,-1,-1,0,1,1,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0], [0,-2,1,-1,1,-2,-2,-1,0,1,1,1,0,-1,-1,0,1,1,0,1,0,0,1,-1,0,1,1,0,1,-1], [0,-2,1,0,1,-1,-1,-1,-1,1,1,1,0,-1,-1,0,0,2,0,0,0,0,0,0,0,1,0,0,1,-1], [-2,2,0,-1,-1,3,1,1,-1,1,-1,-1,1,1,1,1,-2,1,-1,-2,0,1,0,0,-1,-1,-1,1,1,0], [0,-1,0,0,2,-1,-1,-1,-1,1,1,1,0,-1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0], [-1,2,1,-1,-1,1,1,0,0,0,-1,-1,1,0,1,1,-1,0,0,-2,1,1,0,0,0,-1,-1,0,0,0], [0,-1,-1,0,1,-2,0,-2,1,0,1,1,0,-1,1,-1,1,0,0,0,1,0,0,-1,2,0,0,0,0,0], [-2,4,0,-2,-2,4,1,2,-1,1,-2,-2,1,2,1,1,-2,0,-2,-2,0,1,1,0,-1,-2,0,1,0,0], [-1,2,0,-1,-1,2,1,0,0,0,-1,-1,1,0,1,1,-1,0,-1,-2,1,0,0,0,0,-1,-1,1,1,0], [-1,1,0,-1,0,2,0,1,-1,1,-1,-1,0,1,0,0,-1,1,-1,0,-1,0,1,0,-1,0,0,1,1,0], [0,0,0,-1,1,-1,-1,0,0,0,0,0,-1,0,0,0,1,0,0,1,0,0,1,-1,0,0,1,0,0,0], [0,0,0,0,1,-1,0,-1,0,0,1,0,0,-1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0], [-1,2,-1,-1,0,2,1,1,-1,1,-1,-1,0,1,1,0,-1,0,-1,-1,0,1,0,0,0,-1,0,1,0,0], [0,-1,0,0,1,-2,-1,-1,0,0,1,1,0,-1,0,0,1,0,0,1,0,0,1,-1,1,0,0,0,0,0], [0,1,0,-1,0,1,0,1,-1,1,-1,-1,-1,1,0,0,0,0,-1,0,-1,0,1,0,-1,0,1,1,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,0,1,1,-1,-1,0,0,0,0,1,-1,0,-1,-1,0,0,1,2,-1,0,0,0,0,1,1,-1,-1,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-4,0,1,2,-4,-2,-2,1,0,2,2,-1,-2,-1,-2,2,1,1,3,0,-1,1,-1,2,2,1,-1,0,-1], [1,-1,0,0,1,-2,-1,-1,1,1,1,0,-1,-1,-1,-1,1,0,1,2,0,-1,1,-1,0,1,1,0,0,-1], [1,-1,-1,0,1,-2,0,-1,0,0,1,1,0,-1,0,-1,1,0,0,1,0,0,0,0,1,0,1,0,0,0], [0,1,1,-1,0,0,-1,1,0,1,0,-1,0,0,-1,0,0,0,0,1,0,0,1,-1,-1,0,1,0,0,-1], [0,-1,0,0,1,0,-1,-1,0,2,1,0,-1,0,-1,-1,0,1,0,1,0,0,1,-1,0,1,0,0,0,-1], [1,-2,1,0,1,-2,-2,-1,1,1,1,1,-1,-1,-2,0,1,0,1,2,0,-1,1,-1,0,2,1,-1,0,-1], [0,-1,0,0,1,0,-2,0,0,2,1,0,-1,0,-2,-1,0,1,0,2,0,0,1,-1,0,1,1,-1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,1,0,-1,0,-1,1,0,0,0,0,-1,0,0,0,0,1,-1,0,0,0,-1,0,1,0,0,0], [0,-1,0,0,1,-1,-1,0,0,1,1,0,-1,-1,-1,-1,0,1,1,2,0,0,1,-1,0,1,1,-1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,1,0,0,0,1,0,0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0,0,0,1,0], [1,-3,1,0,1,-2,-2,-1,1,1,1,1,-1,-1,-2,-1,1,1,1,2,0,-1,1,-1,0,2,1,-1,1,-1], [1,-2,0,0,2,-3,-2,-1,0,1,2,1,-1,-1,-2,-1,1,0,1,3,0,0,1,-1,1,1,2,-1,-1,-1], [1,0,2,0,0,0,-1,0,0,1,0,0,0,0,-2,1,-1,0,1,0,0,0,0,0,-1,1,0,-1,0,-1], [0,-1,-1,0,1,-1,0,-1,-1,1,1,1,0,0,0,-1,0,1,0,0,0,1,0,0,1,0,0,0,0,0], [1,0,1,0,0,0,-1,1,0,0,-1,0,-1,0,-1,0,0,0,1,1,-1,0,0,0,-1,1,1,-1,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [2,-5,0,1,3,-6,-2,-3,1,-1,3,3,-1,-3,-1,-1,3,0,2,3,0,-1,0,-1,2,2,1,-1,0,0], [1,-2,0,0,1,-3,-1,-1,1,0,1,1,-1,-1,0,-1,2,0,0,2,0,-1,1,-1,1,1,1,0,0,-1], [1,-1,0,0,1,-1,-1,0,0,0,0,1,-1,0,-1,0,1,0,0,1,-1,-1,0,0,0,1,1,0,0,0], [0,-2,-1,1,1,-1,0,-1,0,0,1,1,-1,0,0,-2,1,1,0,1,0,0,0,0,1,1,0,0,0,0], [0,-2,-1,1,1,-1,0,-1,1,0,1,1,-1,-1,0,-2,0,1,1,2,0,0,0,-1,1,1,0,-1,0,0], [0,-1,-1,0,1,-1,0,-1,0,0,1,1,1,-1,0,-1,0,1,0,0,0,0,0,0,1,0,0,0,1,0], [1,-2,0,1,1,-2,0,-2,0,-1,1,2,0,-1,0,0,1,0,1,0,0,0,-1,0,1,1,-1,-1,0,1], [0,-2,-1,0,1,-1,-1,0,0,0,0,1,-1,0,0,-2,1,1,0,2,-1,0,1,0,1,1,1,0,0,0], [0,0,1,0,0,0,-1,0,1,1,0,0,-1,0,-1,0,0,0,0,1,0,0,1,-1,0,1,0,-1,0,-1]]]], [ # Q-class [30][24] [[6], [3,6], [0,0,6], [2,1,2,6], [1,2,1,1,6], [2,1,2,0,1,6], [1,2,0,1,2,1,6], [2,1,0,2,1,2,3,6], [2,1,2,2,3,2,1,2,6], [0,0,3,1,2,1,0,0,1,6], [2,1,2,0,0,2,1,2,0,1,6], [2,1,2,0,1,0,0,0,2,1,2,6], [2,1,2,0,1,2,0,0,2,1,2,2,6], [1,2,1,1,2,0,0,0,1,2,0,1,0,6], [1,2,1,3,2,0,2,1,1,2,0,0,0,2,6], [1,2,1,0,2,1,0,0,1,2,1,1,3,0,0,6], [2,1,2,2,1,0,0,0,2,1,0,2,0,3,1,0,6], [1,2,1,0,2,3,2,1,1,2,1,0,1,0,0,2,0,6], [0,0,2,2,1,0,1,2,2,1,2,2,0,1,1,0,2,0,6], [2,1,0,2,0,0,0,0,0,0,2,2,2,0,1,1,0,0,0,6], [0,0,1,1,2,1,2,1,1,2,1,0,1,2,2,2,1,2,1,1,6], [1,2,0,1,0,0,0,0,0,0,1,1,1,0,2,2,0,0,0,3,2,6], [0,0,2,2,1,2,1,2,2,1,2,0,2,1,1,1,2,1,2,2,3,1,6], [0,0,1,1,2,0,2,1,1,2,1,1,0,2,2,0,1,0,3,0,2,0,1,6], [1,2,1,1,0,0,2,1,0,2,1,1,0,2,2,0,1,0,0,1,2,2,1,0,6], [1,2,1,0,2,0,0,0,1,2,1,3,1,2,0,2,1,0,1,1,0,2,0,2,2,6], [1,2,1,0,0,1,2,1,0,2,3,1,1,0,0,2,0,2,1,1,2,2,1,2,2,2,6], [1,2,0,1,2,0,2,1,1,0,1,1,1,0,2,2,0,0,1,1,2,2,1,2,0,2,2,6], [2,1,2,0,0,2,0,0,0,1,0,0,2,0,0,1,0,1,-2,-2,-1,-1,-2,-1,0,0,0,0,6], [2,1,2,2,1,2,0,0,2,1,2,2,0,0,1,0,0,1,0,2,0,1,0,0,1,1,1,0,0,6]], [[[-1,-1,0,1,0,1,-1,0,1,-1,1,0,0,1,0,1,0,1,-1,0,-2,0,-1,1,2,-1,0,1,-1,-1], [0,-1,0,0,0,0,-1,0,0,-1,0,0,0,1,0,1,0,1,0,0,-2,0,0,1,2,-1,0,1,0,0], [0,1,0,-1,0,0,0,0,0,0,0,0,-1,-1,1,0,0,-1,0,1,1,-1,1,0,-1,1,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,-2,0,1,1,1,-1,0,0,-1,1,0,0,1,0,1,0,1,-1,0,-2,0,-1,1,2,-1,0,1,-1,-1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,0,0,1,-1,0,0,-1,1,0,-1,0,0], [0,-1,0,0,0,0,-1,0,1,-1,1,0,-1,0,1,1,0,1,-1,0,-1,0,0,1,1,0,0,0,0,-1], [1,-1,1,-1,0,0,0,0,0,-1,-1,0,-1,1,1,1,-1,0,0,0,-1,0,1,0,0,0,1,0,0,0], [0,-2,0,1,1,1,-1,-1,1,-2,1,1,-1,1,1,1,-1,1,-1,0,-2,0,0,1,2,-1,1,0,0,-2], [0,3,0,0,-1,0,1,0,0,2,0,0,0,-1,-1,-1,0,-2,0,0,2,0,0,0,-2,1,-1,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,-2,0,0,1,0,-1,0,0,-2,0,0,0,1,1,1,0,1,0,0,-2,0,0,1,2,-1,1,0,0,0], [-1,3,-1,0,-1,0,1,0,0,2,0,0,0,-1,-1,-1,0,-2,0,0,2,0,1,0,-2,1,-1,-1,1,1], [0,-2,0,0,1,0,-1,0,0,-1,0,0,0,1,0,1,0,1,0,0,-2,0,0,1,2,-1,0,1,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,-1,0,0,1,0,1,0,-1,1,0,-1,1,0], [1,-2,0,0,0,0,0,-1,1,-1,0,0,-1,1,1,1,-1,1,0,0,-2,0,1,0,1,0,1,0,0,-1], [0,1,0,0,0,0,0,0,0,1,0,0,0,-1,0,-1,0,-1,0,0,1,0,0,0,-1,1,0,-1,0,0], [0,-2,0,0,0,0,0,0,0,-1,0,0,0,1,1,1,0,1,0,0,-2,0,0,0,1,0,1,0,0,0], [0,1,-1,0,0,0,0,0,0,1,0,0,0,-1,0,-1,0,-1,0,0,1,0,1,0,-1,1,0,-1,1,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,1,0,0,0,-1,1,0,-1,0,0], [0,2,0,0,-1,0,0,0,0,1,0,0,0,-1,1,-1,0,-1,0,0,2,-1,0,-1,-2,2,0,-1,0,0], [0,-1,0,0,0,0,0,0,0,-1,0,0,0,1,1,1,0,0,0,0,-1,0,0,0,0,0,1,0,0,0], [0,-1,0,0,0,0,-1,0,0,-1,0,0,0,0,1,1,0,1,0,0,-1,0,0,1,1,0,0,0,0,0], [0,-2,0,0,1,0,-1,0,0,-1,0,0,0,1,0,1,0,1,0,0,-3,1,0,1,2,-2,1,1,0,0], [-1,-1,0,1,1,1,-1,0,0,-1,1,1,0,1,0,1,0,1,-1,0,-2,0,-1,1,2,-2,0,1,-1,-1], [1,-2,1,-1,0,0,0,0,0,-1,0,-1,0,1,1,1,0,1,0,0,-2,0,0,0,1,0,0,1,-1,0]], [[0,-3,0,0,1,0,0,0,0,-1,0,0,0,2,0,1,0,1,0,0,-3,1,0,0,1,-1,1,1,0,0], [2,-3,1,0,1,0,0,0,-1,-1,-1,0,0,2,0,1,-1,1,0,-1,-3,1,1,0,1,-1,1,1,-1,0], [0,-1,0,0,0,0,-1,0,0,-1,0,0,0,1,0,1,0,1,0,0,-2,0,0,1,2,-1,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,1,-1,1,-1,0,1,1,-1,0,0,0,0,-1,-1,1,0,0,0,-1,0,1,-1,1], [0,-2,0,0,0,0,0,0,0,-1,0,0,0,2,0,1,0,1,0,0,-2,1,0,0,1,-1,0,1,0,0], [0,-1,0,1,1,1,0,0,-1,0,0,0,1,1,-1,0,0,0,0,-1,-1,1,-1,0,1,-1,0,1,-1,0], [0,-1,0,0,1,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,-1,1,0,0,1,-1,0,1,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,1,-1,0,0,0,0,0,-1,1,0,0,0,-1,0,1,0,0], [-1,-1,0,1,0,1,-1,0,1,-1,1,0,0,1,0,1,0,1,-1,0,-2,0,-1,1,2,-1,0,1,-1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,-2,0,0,1,0,-1,0,0,-1,0,0,0,1,0,1,0,1,0,0,-3,1,0,1,2,-2,1,1,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,0,0,0,0,0,0,0,1,1,-1,0,0,1,-1,-1,-2,1,0,1,1,-1,0,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,1,0,0,-2,1,0,1,1,-1,0,1,0,0], [1,-2,1,0,0,0,0,0,0,-1,0,0,0,2,0,1,-1,1,0,-1,-2,1,0,0,1,-1,0,1,-1,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,-1,1,0,1,1,-1,-1,1,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,1,0,0,0,-1,1,0,-1,0,0], [-1,2,0,0,-1,0,0,1,0,1,0,-1,1,-1,-1,-1,1,-1,0,0,2,0,-1,0,-1,1,-1,0,0,1], [0,1,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,-1,0,0,1,0,1,0,-1,1,0,-1,1,0], [0,2,0,0,-1,0,0,0,0,1,0,0,0,-1,-1,-1,0,-1,0,0,2,0,0,0,-1,1,-1,0,0,0], [-1,0,-1,1,0,1,0,0,0,1,1,0,1,0,-1,0,1,0,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,0], [0,-2,1,1,1,1,-1,0,0,-2,0,0,0,1,0,1,0,1,-1,0,-2,0,-1,1,2,-1,1,1,-1,-1], [0,-2,0,1,1,1,-1,0,0,-1,0,1,0,1,0,1,0,1,-1,-1,-3,1,0,1,2,-2,1,1,-1,-1], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,-1,0,0,0,1,-1,1,-1,-1,1,-1,0,-1,1,-1,1,0,1,0,0,-1,-1,1,0,0,0,1], [0,-3,0,0,1,0,-1,0,0,-2,0,0,0,2,1,1,0,2,0,0,-3,0,0,0,2,-1,1,1,0,0], [0,-1,0,0,0,0,0,0,0,-1,0,0,0,1,1,1,0,0,0,0,-1,0,0,0,0,0,1,0,0,0]]]], [ # Q-class [30][25] [[6], [-1,6], [3,1,6], [1,0,1,6], [0,0,0,-1,6], [1,0,1,0,0,6], [0,-2,0,0,0,0,6], [0,-1,0,0,0,0,-1,6], [0,0,0,1,1,1,0,0,6], [-3,0,-3,-1,0,-1,0,0,0,6], [0,0,0,-1,3,0,0,0,2,0,6], [0,0,0,1,0,0,0,1,0,-1,1,6], [-1,0,-1,2,-1,0,0,1,0,1,-1,3,6], [0,0,0,0,3,0,-1,1,0,0,0,0,0,6], [0,0,0,0,3,0,1,0,0,0,0,0,0,3,6], [0,-1,1,0,-1,0,0,1,0,0,0,0,0,-2,-1,6], [1,-1,0,0,0,-3,-1,0,0,0,0,0,0,0,0,0,6], [0,-3,-1,0,0,1,1,1,0,0,0,0,0,0,0,2,-1,6], [0,0,0,0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0,6], [0,-1,-1,0,0,0,-1,-2,0,0,0,0,0,0,0,0,0,1,3,6], [1,0,1,0,0,3,0,-1,1,-1,0,0,0,0,0,0,0,0,3,3,6], [1,0,1,-2,0,1,0,1,-1,-1,0,1,2,0,0,0,0,0,1,1,2,6], [-1,0,0,1,0,0,-1,0,0,0,0,0,0,0,1,0,1,0,-1,-1,-1,0,6], [0,0,0,1,-1,1,0,0,0,0,0,0,0,-1,-1,0,-1,0,-1,-1,-1,0,3,6], [0,0,1,0,0,0,-1,0,1,1,-1,0,0,-1,0,0,0,0,-1,1,0,0,0,0,6], [1,0,2,1,1,-1,-1,0,-1,-1,1,0,0,-1,0,0,0,0,0,1,-1,0,0,0,3,6], [0,0,1,-1,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,1,2,1,0,-3,-3,3,3,6], [0,1,0,1,0,0,-3,2,0,0,0,0,0,1,0,0,0,-1,1,2,1,-1,-1,-1,1,1,2,6], [0,1,0,-1,-1,-1,-3,1,-3,0,-1,0,0,1,0,0,0,-1,0,1,-1,1,0,0,1,2,1,3,6], [0,-1,0,0,1,1,3,0,0,0,0,0,0,1,2,0,-2,-1,0,0,0,0,-1,1,0,0,0,0,0,6]], [[[-1,-1,0,0,-1,0,-1,-1,0,0,0,0,0,0,1,0,0,0,0,-1,0,1,-1,0,0,1,-1,1,-1,0], [0,0,0,1,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,1,1,0,0,0,0,0,0,1,0,1,0,-1,0,0,0,0,0,0,0,1,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,1,1,0,-1,1,-1,1,0,0,0,0,-1,1,1,-1,-1,0,0,1,-1,0,-1,1,-1], [0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0,0,0,0,0,-1,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,-1,0,0,0,-1,0,0,0], [0,0,0,-1,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,0], [0,0,0,0,-1,0,-1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,0,-1,1], [0,0,0,-1,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,-1,0,-1,1], [0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,-1,0,-1,1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,0,0,0,1,0,0,0,0,0,0,1,0,1,0,-1,0,0,0,0,0,1,0,0,1,0,0,-1], [0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,-1,0,0,0,0,0,1,0,0,1,0,0,-1], [0,0,0,-1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,1,-1,0,0,-1,0,0,0,0,0,1,-1,0,-1,0,1,0,0,0,-1,0,-1,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0]], [[0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,-1,-1,-1,0,1,-1,1,-1,0,0,0,-1,0,-1,-1,1,1,0,0,-1,1,0,1,-1,0], [0,0,0,0,-1,0,-1,0,-1,0,1,0,0,0,1,0,0,0,0,0,0,0,-1,0,1,0,-1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0], [0,0,0,-1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,-1,1,-1,0,0,0,0,0,-1,0,0,1,0,0,-1,1,0,1,-1,0], [0,0,-1,1,0,1,1,0,0,0,0,0,-1,1,0,1,0,-1,0,0,-1,1,0,0,0,0,1,0,0,-1], [0,0,-1,0,0,1,1,0,0,-1,0,0,0,1,0,1,0,-1,1,0,-1,0,0,0,1,0,0,0,0,-1], [0,-1,0,0,0,-1,-1,-1,0,0,0,0,0,0,0,0,-1,0,0,-1,0,1,0,0,0,0,0,1,-1,0], [0,-1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,-1,0,0,-1,1,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,1,-1,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,-1,0,0,0], [0,0,0,-1,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,-1,0,-1,1], [0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,-1,0,-1,1], [0,0,0,0,-1,0,-1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,-1,0,0,-1,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,1,-1,1,-1,0,0,0,0,0,-1,0,1,0,0,0,-1,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [-1,0,0,1,0,1,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,-1,1,-1,0,0,0,0,0,0,0], [0,0,-1,1,0,1,1,0,0,0,0,0,-1,1,0,1,0,-1,0,0,-1,1,0,0,0,0,1,0,0,-1], [0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,-1,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,-1,0,0,0,0], [0,0,1,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,-1,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,1,-1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,-1]]]], [ # Q-class [30][26] [[6], [2,6], [2,2,6], [2,2,2,6], [2,2,2,2,6], [-2,2,0,0,0,6], [-2,0,2,0,0,2,6], [-2,0,0,2,0,2,2,6], [-2,0,0,0,2,2,2,2,6], [0,-2,2,0,0,-2,2,0,0,6], [0,-2,0,2,0,-2,0,2,0,2,6], [0,-2,0,0,2,-2,0,0,2,2,2,6], [0,0,-2,2,0,0,-2,2,0,-2,2,0,6], [0,0,-2,0,2,0,-2,0,2,-2,0,2,2,6], [0,0,0,-2,2,0,0,-2,2,0,-2,2,-2,2,6], [3,1,1,1,1,-1,-1,-1,-1,0,0,0,0,0,0,6], [1,3,1,1,1,1,0,0,0,-1,-1,-1,0,0,0,2,6], [1,1,3,1,1,0,1,0,0,1,0,0,-1,-1,0,2,2,6], [1,1,1,3,1,0,0,1,0,0,1,0,1,0,-1,2,2,2,6], [1,1,1,1,3,0,0,0,1,0,0,1,0,1,1,2,2,2,2,6], [-1,1,0,0,0,3,1,1,1,-1,-1,-1,0,0,0,-2,2,0,0,0,6], [-1,0,1,0,0,1,3,1,1,1,0,0,-1,-1,0,-2,0,2,0,0,2,6], [-1,0,0,1,0,1,1,3,1,0,1,0,1,0,-1,-2,0,0,2,0,2,2,6], [-1,0,0,0,1,1,1,1,3,0,0,1,0,1,1,-2,0,0,0,2,2,2,2,6], [0,-1,1,0,0,-1,1,0,0,3,1,1,-1,-1,0,0,-2,2,0,0,-2,2,0,0,6], [0,-1,0,1,0,-1,0,1,0,1,3,1,1,0,-1,0,-2,0,2,0,-2,0,2,0,2,6], [0,-1,0,0,1,-1,0,0,1,1,1,3,0,1,1,0,-2,0,0,2,-2,0,0,2,2,2,6], [0,0,-1,1,0,0,-1,1,0,-1,1,0,3,1,-1,0,0,-2,2,0,0,-2,2,0,-2,2,0,6], [0,0,-1,0,1,0,-1,0,1,-1,0,1,1,3,1,0,0,-2,0,2,0,-2,0,2,-2,0,2,2,6], [0,0,0,-1,1,0,0,-1,1,0,-1,1,-1,1,3,0,0,0,-2,2,0,0,-2,2,0,-2,2,-2,2,6]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1], [0,0,0,0,0,0,0,1,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1], [0,0,-1,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,1,0], [-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,0,0,0], [0,-1,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,1,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0], [0,0,0,0,0,-1,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,1,0,0,0]], [[0,-1,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]]]], [ # Q-class [30][27] [[10], [4,10], [4,2,10], [4,4,4,10], [4,4,4,2,10], [2,0,1,2,1,10], [5,2,2,2,2,4,10], [1,2,1,1,1,2,2,10], [2,2,2,2,4,1,1,0,10], [2,2,-1,2,1,4,4,2,1,10], [1,1,1,1,2,2,2,0,5,2,10], [2,4,4,4,4,1,1,1,2,1,1,10], [2,2,-1,2,1,4,4,4,2,4,4,1,10], [2,2,2,5,1,4,4,2,1,4,2,2,4,10], [4,4,-2,4,2,2,2,2,4,2,2,2,5,2,10], [4,0,2,4,2,5,2,1,2,2,1,2,2,2,4,10], [1,1,2,2,1,2,2,2,2,2,4,0,2,4,1,1,10], [1,1,1,1,2,4,2,2,2,4,4,1,2,2,1,2,2,10], [2,1,2,1,0,4,4,2,1,2,2,1,2,2,1,2,4,2,10], [2,2,2,2,2,1,1,1,2,2,1,4,1,1,2,2,1,0,1,10], [1,2,1,0,1,-2,-1,0,1,-1,2,2,2,0,1,-4,4,-1,0,0,10], [4,2,2,2,2,0,2,2,1,0,-1,2,0,1,0,0,1,2,0,-4,2,10], [4,2,4,2,0,2,2,1,2,1,1,2,1,1,2,4,2,1,5,2,0,0,10], [2,2,2,2,4,2,1,1,4,2,2,2,1,1,2,4,1,5,1,0,-2,1,2,10], [2,2,4,4,2,1,1,1,4,1,2,0,1,2,2,2,5,1,2,2,2,-1,4,2,10], [2,0,0,0,0,0,4,1,2,2,1,-2,0,0,0,0,1,-1,0,1,0,2,0,-2,-1,10], [1,1,1,2,1,0,-1,1,-2,0,2,1,0,-2,0,0,0,2,2,2,2,1,1,-2,0,1,10], [4,4,-2,4,2,2,2,1,2,5,1,2,2,2,4,4,1,2,1,4,-2,0,2,4,2,1,0,10], [2,1,0,0,-2,4,4,1,2,0,1,-1,2,0,1,2,0,0,4,-1,0,2,2,0,0,4,0,0,10], [1,2,1,1,1,2,2,4,1,4,2,1,2,2,1,1,4,0,4,0,0,-1,2,0,2,-1,-2,2,0,10]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,1,0,0,0,0,1,1,1,0,0,-1,0,0,0,1,0,0,-1,0,-1,0,-1,-1,-1,0,1,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,1,1,1,1,0,0,-1,-1,0,0,1,0,0,-1,0,-1,0,-1,-1,-1,0,1,0,-1], [0,-2,11,-3,0,-2,4,5,9,5,-4,1,-2,-2,2,-2,10,-2,-4,-11,-2,-9,0,-8,-8,-9,4,11,4,-8], [-1,0,2,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,-1,0,0,0,2,0,0], [-2,2,-10,4,1,2,-4,-4,-10,-4,6,-3,1,1,-2,2,-11,1,5,12,3,11,1,7,8,8,-6,-10,-4,7], [0,4,-19,5,0,4,-7,-8,-16,-8,8,-2,3,2,-4,4,-17,2,8,19,3,17,0,13,15,15,-8,-19,-8,13], [0,-4,21,-7,-1,-4,8,8,18,8,-10,3,-3,-2,4,-4,19,-2,-9,-21,-4,-18,-1,-14,-15,-16,10,21,8,-13], [0,4,-16,4,0,3,-6,-7,-14,-7,7,-2,3,2,-4,4,-15,2,7,16,3,14,0,11,13,13,-7,-16,-7,11], [0,0,1,0,0,0,1,1,1,0,0,0,-1,0,0,0,1,0,0,-1,0,-1,0,-1,-1,-1,0,1,0,-1], [-1,4,-19,6,1,4,-8,-8,-18,-8,10,-3,3,2,-4,4,-19,2,9,20,4,18,0,13,16,16,-10,-19,-8,13], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,2,-10,3,0,2,-4,-4,-9,-4,5,-1,1,1,-2,2,-9,1,4,10,2,9,0,7,8,8,-5,-10,-4,7], [0,-1,5,-1,0,-1,2,2,4,2,-2,0,-1,-1,1,-1,5,-1,-2,-5,-1,-4,0,-3,-4,-4,2,5,2,-3], [1,0,1,-1,-1,0,1,1,3,0,-2,1,0,0,-1,0,2,0,-1,-3,0,-3,0,-1,-1,-1,2,2,0,-1], [0,-3,16,-5,0,-3,6,7,13,7,-7,2,-3,-2,3,-3,15,-2,-7,-16,-3,-14,0,-11,-12,-13,7,16,7,-11], [0,-2,12,-4,-1,-2,5,5,11,5,-6,2,-2,-1,2,-2,11,-2,-5,-13,-2,-11,0,-8,-9,-9,6,12,4,-8], [-1,0,1,0,0,0,1,0,1,0,0,-1,-1,0,0,1,0,0,0,0,1,0,0,-1,-1,-1,0,1,0,0], [1,3,-15,4,0,3,-5,-5,-11,-6,6,-1,2,2,-4,3,-13,2,6,13,3,11,0,9,11,11,-6,-14,-6,9], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,5,-2,0,-1,2,2,5,2,-3,1,-1,0,1,-1,5,-1,-2,-6,-1,-5,0,-3,-4,-4,3,5,2,-3], [1,-2,11,-3,0,-2,4,5,10,5,-6,2,-2,-2,2,-3,12,-1,-5,-12,-3,-11,0,-8,-9,-9,5,11,5,-8], [1,0,-1,0,0,0,0,0,1,0,-1,1,0,0,-1,0,1,0,0,-1,0,-1,0,0,0,0,1,0,0,0], [-2,1,-5,1,0,1,-2,-3,-6,-3,3,-2,1,1,0,2,-7,1,3,7,2,7,0,4,5,5,-3,-5,-3,5], [-1,-1,8,-2,0,-2,4,4,7,4,-3,0,-2,-1,1,0,7,-1,-3,-8,0,-7,0,-6,-7,-7,3,8,3,-6], [0,-2,10,-3,0,-2,4,4,9,4,-5,1,-2,-1,2,-2,10,-1,-5,-10,-2,-9,0,-7,-8,-8,5,10,4,-6], [-1,2,-7,2,0,2,-3,-3,-7,-3,4,-2,1,1,-1,2,-8,0,4,8,2,8,0,5,6,6,-4,-7,-4,5], [0,1,-3,0,-1,1,-1,-2,-2,-2,1,0,1,1,-1,0,-3,0,1,3,0,3,0,3,3,3,0,-3,-2,3]], [[-2,1,-5,1,0,1,-2,-3,-6,-3,3,-2,1,1,0,2,-7,1,3,7,2,7,0,4,5,5,-3,-5,-3,5], [-1,0,1,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,-6,1,0,2,-3,-3,-7,-3,4,-1,1,1,0,1,-7,0,3,7,1,7,0,5,6,6,-3,-6,-3,5], [-1,2,-7,2,0,1,-3,-3,-7,-3,4,-2,1,1,-1,2,-8,1,4,8,2,7,0,5,6,6,-4,-7,-3,5], [-1,1,-2,1,0,1,-1,-1,-3,-1,2,-1,0,0,0,1,-3,0,2,3,1,3,0,1,2,2,-2,-2,-2,1], [-1,1,-5,1,0,1,-2,-3,-6,-3,3,-1,1,1,0,1,-6,1,3,6,1,6,0,4,5,5,-3,-5,-3,4], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,-2,0,0,0,-1,-1,-3,-1,2,-1,0,1,0,1,-3,0,1,3,1,3,0,2,2,2,-1,-2,-1,2], [-1,0,2,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,-1,0,0,0,2,0,-1], [-2,1,-3,1,0,1,-1,-2,-4,-2,3,-2,0,1,0,1,-5,0,2,5,2,5,0,3,3,3,-2,-3,-2,3], [0,-1,8,-3,-1,-1,3,3,7,3,-4,1,-1,-1,2,-2,8,-1,-4,-8,-2,-7,0,-5,-6,-6,4,8,3,-5], [-2,3,-12,3,0,3,-5,-7,-13,-6,7,-3,2,2,-1,3,-14,1,6,15,3,14,0,10,11,11,-6,-13,-6,10], [-1,3,-13,3,0,3,-5,-6,-12,-6,7,-2,2,2,-2,3,-13,1,6,14,2,13,0,9,11,11,-6,-13,-6,9], [-2,3,-12,3,0,3,-5,-6,-13,-6,7,-3,2,2,-1,3,-14,1,6,15,3,14,0,10,11,11,-6,-13,-6,10], [-1,2,-7,2,0,2,-3,-3,-7,-3,4,-2,1,1,-1,2,-8,0,4,8,2,8,0,5,6,6,-4,-7,-4,5], [0,1,-3,0,-1,1,0,-1,-1,-2,1,0,0,1,-1,1,-3,0,1,2,1,2,0,2,2,2,0,-2,-2,2], [-1,-1,7,-2,0,-1,3,3,5,3,-2,0,-2,-1,2,-1,5,-1,-2,-6,0,-5,0,-5,-5,-5,2,7,2,-5], [0,2,-8,2,0,2,-2,-3,-6,-4,3,-1,1,1,-2,2,-7,1,3,7,2,6,0,5,6,6,-3,-7,-4,5], [0,1,-3,0,0,1,-2,-2,-3,-2,1,0,1,1,0,0,-3,1,1,3,0,3,0,2,3,3,-1,-3,-1,3], [0,0,1,-1,-1,0,1,0,2,0,-1,0,0,0,0,0,1,0,-1,-1,0,-1,0,0,-1,-1,2,1,0,0], [0,-2,9,-3,-1,-2,4,4,8,4,-4,1,-2,-1,2,-1,8,-1,-4,-9,-1,-8,0,-6,-7,-7,4,9,3,-6], [-1,4,-20,6,1,4,-7,-8,-17,-8,9,-3,3,2,-4,4,-18,2,8,20,4,18,1,13,15,15,-9,-19,-8,13], [-1,0,4,-1,0,-1,2,2,3,2,-1,0,-1,-1,1,0,3,-1,-1,-4,0,-3,0,-3,-3,-3,1,4,1,-3], [0,-1,4,-2,0,-1,2,2,4,2,-2,1,-1,0,1,-1,4,-1,-2,-5,-1,-4,0,-3,-3,-4,3,5,2,-3], [0,2,-11,3,0,2,-5,-5,-10,-5,5,-1,2,2,-2,2,-11,2,5,11,2,10,0,8,9,10,-5,-11,-5,8], [0,1,-7,2,0,2,-3,-3,-6,-3,3,-1,1,1,-1,1,-7,1,3,7,2,6,0,5,6,6,-3,-7,-3,5], [-1,0,2,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,-1,0,0,0,2,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]]]], [ # Q-class [30][28] [[4], [2,4], [0,-1,4], [-1,0,2,4], [2,1,0,-1,4], [1,2,-1,0,2,4], [2,2,0,0,1,1,4], [2,1,0,-1,2,1,1,4], [1,2,-1,0,1,2,1,2,4], [0,0,-2,-2,0,0,1,0,0,4], [2,2,0,0,1,1,2,1,1,0,4], [1,1,0,0,2,2,2,1,1,1,1,4], [0,0,-1,-1,0,0,1,0,0,2,0,1,4], [-1,-1,-2,-2,-1,-1,-1,-1,-1,2,-1,-1,1,4], [0,0,-2,-2,0,0,0,0,0,2,1,0,1,2,4], [0,-1,1,0,0,-1,0,0,-1,0,1,0,0,0,1,4], [-1,0,0,1,-1,0,0,-1,0,0,1,0,0,0,1,2,4], [0,-1,2,1,0,-1,0,0,-1,-1,0,0,-1,-1,-1,1,0,4], [-1,0,1,2,-1,0,0,-1,0,-1,0,0,-1,-1,-1,0,1,2,4], [1,1,1,1,2,2,1,1,1,-1,1,2,-1,-2,-1,0,0,1,1,4], [-1,-1,0,0,-2,-2,-1,-1,-1,0,-2,-2,0,1,-1,-1,-1,0,0,-2,4], [-1,-1,0,0,-1,-1,-2,-1,-1,-1,-1,-2,-1,1,0,0,0,0,0,-1,1,4], [1,1,1,1,1,1,1,1,1,-1,1,1,-1,-2,-1,0,0,1,1,2,-1,-2,4], [2,2,1,1,1,1,2,1,1,-1,2,1,-1,-2,-1,0,0,1,1,2,-1,-1,2,4], [-1,-1,0,0,-1,-1,-2,-1,-1,-1,-1,-2,-1,1,0,0,0,0,0,-1,1,2,-1,-1,4], [1,1,0,0,1,1,1,1,1,0,2,1,0,-1,1,2,2,0,0,1,-2,-2,2,1,-1,4], [1,1,0,0,1,1,1,1,1,0,2,1,0,-1,1,1,1,0,0,1,-2,-1,1,1,-2,2,4], [-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,2,1,0,0,-2,-2,-2,1,1,-2,-2,2,-1,-2,4], [0,0,-1,-1,0,0,0,0,0,1,1,0,2,1,2,1,1,-1,-1,-1,-1,0,-1,-1,0,1,1,1,4], [1,1,1,1,1,1,1,2,2,-1,1,1,-2,-2,-1,0,0,1,1,2,-1,-1,2,2,-1,1,1,-2,-2,4]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,1,0,0,0,0,-1,0,0,0,-1,0,0,0,-1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0], [0,0,0,1,0,0,0,1,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,-1,0,0,0,-1], [0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1], [0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1], [1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1], [0,0,-1,1,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0]]]], [ # Q-class [30][29] [[8], [0,8], [4,-4,8], [4,2,2,8], [2,-2,2,4,8], [0,-2,4,2,4,8], [4,0,2,2,1,0,8], [0,4,-2,1,-1,-1,0,8], [2,-2,4,1,1,2,4,-4,8], [2,1,1,4,2,1,4,2,2,8], [1,-1,1,2,4,2,2,-2,2,4,8], [0,-1,2,1,2,4,0,-2,4,2,4,8], [4,0,2,2,1,0,4,0,2,2,1,0,8], [0,4,-2,1,-1,-1,0,4,-2,1,-1,-1,0,8], [2,-2,4,1,1,2,2,-2,4,1,1,2,4,-4,8], [2,1,1,4,2,1,2,1,1,4,2,1,4,2,2,8], [1,-1,1,2,4,2,1,-1,1,2,4,2,2,-2,2,4,8], [0,-1,2,1,2,4,0,-1,2,1,2,4,0,-2,4,2,4,8], [4,0,2,2,1,0,4,0,2,2,1,0,4,0,2,2,1,0,8], [0,4,-2,1,-1,-1,0,4,-2,1,-1,-1,0,4,-2,1,-1,-1,0,8], [2,-2,4,1,1,2,2,-2,4,1,1,2,2,-2,4,1,1,2,4,-4,8], [2,1,1,4,2,1,2,1,1,4,2,1,2,1,1,4,2,1,4,2,2,8], [1,-1,1,2,4,2,1,-1,1,2,4,2,1,-1,1,2,4,2,2,-2,2,4,8], [0,-1,2,1,2,4,0,-1,2,1,2,4,0,-1,2,1,2,4,0,-2,4,2,4,8], [4,0,2,2,1,0,4,0,2,2,1,0,4,0,2,2,1,0,4,0,2,2,1,0,8], [0,4,-2,1,-1,-1,0,4,-2,1,-1,-1,0,4,-2,1,-1,-1,0,4,-2,1,-1,-1,0,8], [2,-2,4,1,1,2,2,-2,4,1,1,2,2,-2,4,1,1,2,2,-2,4,1,1,2,4,-4,8], [2,1,1,4,2,1,2,1,1,4,2,1,2,1,1,4,2,1,2,1,1,4,2,1,4,2,2,8], [1,-1,1,2,4,2,1,-1,1,2,4,2,1,-1,1,2,4,2,1,-1,1,2,4,2,2,-2,2,4,8], [0,-1,2,1,2,4,0,-1,2,1,2,4,0,-1,2,1,2,4,0,-1,2,1,2,4,0,-2,4,2,4,8]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,0,0,0,-1,-1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,1,0,-1,1,0,-1,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,1,-1,1,0,-1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,1,0,-1,0,0,0,0,0,0,1,0,-1,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,1,-1,0,0,0,0,0,0,1,0,-1,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,-1,0,1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,-1,0,1], [0,0,0,0,0,0,-1,0,1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,-1,1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0], [0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [-1,0,1,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,-1,0,1], [-1,0,1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,-1,1]], [[-1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,1,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,1,1,0,1,-1,0,0,0,0,0,0,1,-1,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,1,-1,0,0,0,0,0,0,1,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,0,-1,0,0,0,0,0,0,1,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,-1,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,0,-1,1,-1,1,1,0,1,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,-1,1,-1,0,1,0,1,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,1,-1,0,1,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,0,-1,1,0,0,0,0,0,0,-1,1,1,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,-1,1,0,0,0,0,0,0,-1,0,1,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,1,0,0,0,0,0,0,-1,0,1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,1,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,1,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,1,1,0,1,-1,1,-1,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,1,0,1,-1,1,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,1,0,0,-1,1,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1]]]], [ # Q-class [30][30] [[15], [3,15], [4,5,15], [5,5,1,15], [3,3,3,3,15], [5,1,4,3,1,15], [5,2,5,4,4,1,15], [3,1,4,1,3,-3,3,15], [5,1,3,1,-1,-1,3,5,15], [3,5,0,1,0,3,3,0,5,15], [3,3,1,3,5,3,3,1,5,3,15], [-3,0,0,5,3,-3,3,5,3,-3,3,15], [3,4,4,3,4,3,3,3,3,1,5,3,15], [3,0,1,1,3,5,3,-1,1,-1,4,5,3,15], [3,5,2,3,3,5,-1,-5,-1,3,1,-3,-2,3,15], [3,1,3,-3,1,3,3,4,1,-1,3,1,3,4,-3,15], [3,3,3,-3,-1,-1,-1,-1,5,0,3,1,0,1,3,3,15], [-3,1,-2,3,1,-3,1,2,3,3,3,3,5,-1,-3,3,0,15], [4,1,3,3,5,4,3,3,1,-1,0,2,0,3,3,1,3,-3,15], [1,4,1,5,-3,3,4,-1,5,4,3,3,3,3,1,1,-1,3,-1,15], [4,4,4,0,5,3,-2,3,1,3,3,-3,3,-3,3,0,1,-3,3,-1,15], [3,1,3,-1,1,5,0,1,3,-1,-1,-1,5,3,0,3,3,1,1,-3,1,15], [0,3,-1,3,-3,3,0,3,1,1,3,5,-3,2,3,3,3,-2,3,1,-3,-1,15], [5,3,1,1,0,4,1,3,0,-3,3,-1,3,2,1,5,0,0,2,1,3,3,3,15], [3,0,1,3,3,3,3,0,1,3,3,0,2,3,5,3,-1,3,1,3,-3,0,0,1,15], [1,3,3,3,1,-1,5,-1,3,-3,5,3,1,2,5,3,3,3,3,3,0,-1,3,4,1,15], [3,1,1,4,3,1,3,3,0,-1,2,2,1,-1,3,3,1,0,3,4,3,-3,5,5,2,4,15], [1,1,-1,4,5,-1,3,3,1,-1,4,3,1,-3,0,0,0,-1,-3,1,1,1,1,-1,1,-1,3,15], [4,1,3,4,1,1,1,5,3,1,4,3,1,5,0,1,-1,3,3,5,5,-3,-1,5,2,3,2,-5,15], [4,4,3,-4,1,-1,5,3,1,3,-3,-1,0,1,3,3,5,-1,3,-2,-3,3,3,3,3,1,0,-1,-3,15]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,-1,1,0,1,0,0,0,0,0,0,0,-1,0,0,-1,0,-1,0,0,1,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [3,2,1,-4,-3,0,0,-2,0,-1,1,2,0,0,1,-1,-3,3,2,-2,0,0,0,-1,0,-1,1,2,1,0], [5,5,1,-8,-6,1,1,-5,2,-4,1,4,0,0,2,-1,-6,6,4,-4,1,-1,1,-3,0,-3,2,4,2,0], [-1,-2,0,2,2,-1,0,2,-1,1,1,-1,0,-1,1,1,1,-2,-1,2,-1,1,0,1,-1,0,-1,-2,-1,0], [3,4,1,-5,-5,1,0,-3,1,-3,1,2,-1,2,-1,-2,-4,5,3,-3,2,-1,0,-2,1,-1,2,3,0,1], [1,1,0,-2,-1,0,0,-1,0,0,0,1,0,0,0,0,-1,1,1,-1,0,0,0,-1,0,0,1,1,1,0], [0,2,-1,-2,-1,1,1,-1,1,-1,0,1,1,-2,2,1,-1,0,1,-2,-2,0,-1,-1,-1,-1,1,1,3,0], [-5,-5,-1,9,5,0,-2,7,-2,4,0,-3,-1,1,-2,1,6,-6,-4,4,0,0,-3,3,0,4,-2,-5,-5,1], [3,3,1,-4,-3,1,0,-2,1,-2,0,2,-1,1,0,-1,-3,4,2,-2,1,-1,0,-1,0,-1,1,2,0,0], [7,8,1,-12,-9,2,2,-8,3,-6,1,5,0,0,2,-2,-9,9,6,-7,1,-1,1,-5,0,-4,4,7,5,0], [6,7,1,-10,-6,2,1,-5,2,-4,0,4,-1,1,0,-3,-6,7,4,-5,1,-1,1,-3,1,-2,3,5,2,-1], [4,6,0,-8,-6,2,2,-6,3,-5,2,4,0,-2,3,0,-7,5,4,-5,-1,0,0,-4,-1,-4,3,4,5,1], [-1,-2,0,2,1,-1,0,2,-1,1,1,0,0,-1,2,1,1,-2,-1,2,-1,1,-1,1,-1,0,-1,-2,-1,0], [5,5,1,-8,-5,1,1,-4,1,-3,0,3,-1,1,0,-2,-5,6,4,-3,1,-1,1,-2,1,-2,2,4,1,-1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [4,4,1,-6,-4,1,0,-3,1,-2,0,3,-1,1,0,-2,-4,5,3,-3,1,-1,0,-1,1,-1,2,3,0,-1], [6,6,1,-10,-7,0,2,-7,2,-5,2,5,1,-2,4,0,-8,6,5,-5,-1,0,1,-4,-1,-5,3,5,5,0], [-1,0,-1,1,1,1,0,2,0,0,0,-1,0,0,0,0,1,-1,-1,0,-1,0,-1,0,0,1,0,-1,0,0], [2,1,1,-3,-1,0,0,-1,0,0,-1,1,0,1,0,-1,-1,2,1,-1,0,-1,1,0,0,0,0,2,0,-1], [-1,0,-1,0,1,0,0,0,0,1,0,0,1,-2,1,1,0,-2,0,0,-2,1,0,0,-1,0,0,0,2,0], [0,-1,0,1,0,-1,0,1,-1,1,1,0,0,-1,1,1,0,-1,0,1,-1,1,-1,0,-1,0,0,-1,0,0], [4,3,1,-6,-3,-1,1,-4,1,-2,0,2,0,0,1,-1,-4,4,3,-2,0,0,2,-1,0,-2,1,3,2,-1], [0,-1,0,1,1,0,0,2,-1,0,0,0,-1,1,-1,-1,1,0,-1,2,2,0,0,1,1,1,-1,-2,-3,0], [8,9,2,-14,-10,1,2,-9,3,-6,1,6,0,0,3,-2,-10,10,7,-7,0,-1,1,-4,0,-5,4,8,5,-1], [4,3,1,-5,-4,0,1,-2,0,-2,0,2,-1,2,0,-2,-3,5,2,-2,2,-1,1,-1,1,-1,1,2,-1,-1], [-5,-6,-1,9,6,-1,-2,7,-3,5,-1,-4,0,1,-2,1,7,-6,-4,5,0,1,-1,3,0,4,-3,-5,-4,0], [4,4,1,-7,-4,1,1,-5,2,-3,0,3,0,0,1,-1,-5,5,3,-4,0,-1,1,-2,0,-2,2,4,3,0], [-3,-3,-1,5,3,-1,-1,3,-1,2,0,-2,0,0,-1,1,3,-4,-2,3,0,1,-1,1,0,2,-1,-3,-2,1]], [[-10,-10,-2,17,10,-1,-3,11,-3,7,-1,-7,-1,2,-4,2,11,-11,-8,8,1,1,-3,5,0,6,-4,-9,-7,2], [-3,-3,0,5,3,-1,-1,3,-1,3,-1,-2,0,1,-1,1,3,-3,-2,2,0,0,-1,2,0,2,-1,-2,-2,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-3,-4,0,6,3,0,-2,5,-2,3,0,-2,-1,2,-2,0,4,-3,-3,3,1,0,-2,2,0,3,-1,-3,-4,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [-1,-1,0,2,1,0,-1,2,0,1,0,-1,-1,1,-1,0,1,-1,-1,1,0,0,-1,1,0,1,0,-1,-2,0], [0,0,0,1,-1,1,-1,1,0,0,0,0,-1,2,-2,-1,0,1,0,0,2,-1,-1,0,1,1,0,0,-2,1], [-4,-5,-1,8,5,-1,-1,5,-2,3,0,-3,0,0,-1,1,5,-5,-4,4,0,1,-1,2,0,2,-2,-5,-3,1], [-7,-7,-2,11,7,-1,-1,7,-2,5,0,-4,1,-2,0,3,7,-9,-5,5,-2,2,-2,3,-1,3,-3,-6,-2,1], [-2,-2,0,4,2,0,-1,3,-1,2,-1,-1,-1,1,-2,0,3,-2,-2,2,1,0,-1,2,1,2,-1,-2,-3,0], [-1,-1,0,1,0,-1,0,0,0,1,1,0,1,-2,2,2,0,-2,0,0,-2,1,-1,0,-1,-1,0,0,2,0], [3,2,1,-4,-3,0,0,-2,0,-1,1,2,0,0,1,-1,-3,3,2,-2,0,0,0,-1,0,-1,1,2,1,0], [0,-1,0,1,0,-1,0,1,-1,1,1,0,0,-1,1,1,0,-1,0,1,-1,1,-1,0,-1,0,0,-1,0,0], [0,0,0,0,0,0,-1,1,0,1,0,0,0,0,0,0,0,-1,0,0,-1,0,-1,0,0,1,0,0,0,0], [-1,-2,1,2,2,-1,-1,2,-1,2,-1,-1,-1,2,-2,-1,2,-1,-1,2,1,0,0,2,1,2,-1,-1,-3,-1], [-3,-4,0,6,3,-2,-1,3,-1,2,0,-3,0,1,-1,1,3,-3,-2,3,1,0,0,2,0,1,-2,-3,-3,1], [-3,-4,0,5,4,-2,-1,2,-1,3,-1,-3,1,0,-1,1,3,-4,-2,3,0,1,1,2,0,2,-2,-2,-1,0], [1,-1,1,0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,1,0,1,1,0,1,0,0,0,-1,0,-1,0], [-6,-7,-1,11,8,-1,-3,8,-3,6,-1,-5,0,1,-3,1,8,-8,-5,6,-1,1,-2,4,0,5,-3,-6,-5,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-5,-5,-1,8,6,-1,-1,5,-2,4,-1,-4,0,0,-2,1,6,-6,-4,4,-1,1,-1,3,0,3,-2,-4,-2,0], [-4,-5,-1,7,5,-1,-1,4,-1,3,0,-3,0,-1,0,2,4,-5,-3,4,-1,1,-1,2,-1,2,-2,-4,-2,1], [0,-1,1,1,0,-1,-1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0], [-5,-6,-1,9,6,-2,-1,6,-2,4,0,-4,0,0,0,2,6,-6,-4,5,-1,1,-1,3,-1,2,-3,-5,-3,0], [-2,-4,0,5,3,-2,-1,4,-2,2,1,-1,-1,0,0,1,3,-3,-2,4,1,1,-1,2,0,1,-2,-4,-4,0], [-1,-2,1,2,1,-1,-1,1,-1,2,0,-1,0,1,-1,0,1,-1,0,1,0,0,0,1,0,1,-1,0,-1,0], [1,0,1,-1,-1,-1,0,-1,0,-1,0,0,0,1,0,-1,-1,2,1,0,1,0,1,0,0,-1,0,1,0,0], [1,1,0,-2,-2,0,1,-2,1,-2,1,1,0,0,1,0,-2,2,1,-1,1,0,0,-1,0,-2,1,1,1,1], [-5,-6,-1,9,7,-1,-2,7,-3,5,-1,-4,0,0,-2,1,7,-7,-5,5,-1,1,-1,3,0,4,-3,-5,-3,0], [-2,-3,0,5,3,-1,-1,3,-1,2,-1,-2,-1,2,-2,0,3,-2,-2,3,2,0,0,2,1,2,-2,-3,-4,0]]]], [ # Q-class [30][31] [[8], [3,8], [2,1,8], [1,-1,-2,8], [0,2,0,-4,8], [1,2,2,-2,1,8], [0,1,1,-1,0,2,8], [0,1,2,1,-1,3,1,8], [1,-1,0,3,0,1,2,-1,8], [0,2,-1,0,0,1,0,1,-3,8], [-1,-2,3,0,-1,1,3,-1,3,-2,8], [0,-1,-2,1,-3,0,-1,0,0,-2,0,8], [0,0,-2,-1,0,0,0,-2,0,2,2,1,8], [2,-1,1,-2,1,2,0,0,0,0,-1,-1,2,8], [0,-1,-1,3,-4,-1,-2,2,-1,-1,0,3,0,-1,8], [0,-1,-1,2,-2,-2,0,-3,3,0,0,1,0,-2,0,8], [-1,1,0,0,3,1,-2,-1,1,0,0,-1,1,0,-2,-1,8], [1,0,-2,1,0,-2,-3,-1,-1,1,-4,1,-1,2,-1,0,2,8], [2,0,2,0,0,2,1,2,-1,3,0,-2,-3,-1,0,-1,-2,0,8], [-3,0,-1,1,-1,-1,-1,-2,2,-1,2,2,2,-3,0,2,3,0,-3,8], [1,0,1,1,-2,-3,1,0,-3,1,0,-1,-2,-1,1,-1,-2,0,3,-2,8], [0,0,-1,2,-2,1,0,1,1,-1,-2,1,-1,1,3,-1,0,1,-1,1,-2,8], [0,2,-1,1,-1,1,4,2,1,0,0,1,0,-3,1,3,-1,-3,-1,0,-1,0,8], [3,0,2,2,-3,0,3,-1,1,1,2,1,-1,-1,1,2,-1,-1,3,-1,3,-1,2,8], [0,2,2,-2,1,-1,2,1,-1,-3,2,-1,-2,-2,-1,-3,-2,-2,0,0,2,-1,0,-2,8], [1,1,-1,-2,2,-1,-1,-2,-3,-1,-3,2,0,1,2,0,0,0,-1,-2,1,0,1,1,-1,8], [-1,-1,-1,3,-3,-3,-2,-1,-1,3,0,-2,1,-1,3,2,-2,0,0,1,2,1,-1,0,-2,-2,8], [-1,-1,-1,2,-4,-2,-2,1,-2,2,-3,0,0,0,3,3,0,2,-2,0,0,2,2,0,-3,0,4,8], [3,1,0,2,-2,0,-1,0,-1,1,-2,2,0,1,-1,-1,2,4,0,0,0,1,-1,3,-2,0,-2,1,8], [0,-3,0,2,-3,-3,-3,1,-2,0,0,0,-1,0,4,-2,-2,0,1,-3,3,0,-3,1,0,0,3,2,0,8]], [[[-2,-1,-3,-2,0,1,-5,5,2,-1,0,0,3,-2,-2,1,1,0,-2,-5,0,2,-4,8,5,1,3,1,-1,-5], [-2,0,-6,-2,-2,-1,-7,9,1,-2,3,0,3,-2,-5,1,2,0,-2,-7,-2,3,-7,12,6,3,4,2,-3,-8], [0,-2,3,0,0,2,2,-3,1,2,-3,0,0,1,2,1,1,1,0,2,1,-1,4,-4,1,0,1,-3,2,4], [-1,1,-3,0,1,-1,-4,4,0,-2,2,0,2,-2,-3,-1,-2,0,-1,-3,0,2,-5,7,1,0,-1,4,-3,-5], [0,-1,2,0,0,1,2,-2,0,1,-1,0,-1,1,2,1,1,0,0,1,0,-1,2,-3,0,0,1,-2,2,2], [0,-1,0,0,-1,0,-1,0,0,1,-1,0,0,-1,1,0,1,0,-2,-2,0,0,-1,2,1,-1,0,-1,-1,-2], [0,-1,0,0,-1,0,0,1,-1,0,-2,0,1,0,1,2,2,0,-1,-2,-1,0,-1,2,2,-1,1,-2,-1,-1], [-1,-1,2,0,0,0,1,-2,1,1,-3,1,0,1,2,0,1,0,0,0,0,-1,2,-1,1,-1,1,-2,1,1], [1,-3,7,0,1,3,8,-8,0,3,-6,1,-2,2,6,3,2,1,1,4,1,-3,8,-12,-1,-2,2,-7,6,9], [0,0,0,1,1,0,-1,0,-1,0,0,0,0,0,0,-1,-1,0,-1,0,0,0,0,2,0,-1,-1,1,-1,-1], [1,0,1,1,0,0,1,-1,-1,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,-1,-1,-1,-1,0,-1,1], [0,-1,3,0,0,1,3,-3,0,1,-3,0,0,0,3,1,1,1,0,1,0,-1,3,-4,0,-1,1,-4,2,3], [0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0], [0,0,0,0,0,0,-1,-1,0,1,0,-1,0,-1,2,-1,-1,0,-2,-1,1,0,-1,1,-1,-2,-3,1,-1,-2], [-1,3,-8,-1,-1,-4,-9,9,0,-3,6,-1,2,-3,-6,-3,-2,-1,-2,-6,-1,4,-10,14,1,1,-2,7,-7,-11], [1,-2,7,1,2,3,8,-9,-1,2,-5,1,-2,3,5,2,1,1,3,6,1,-3,10,-13,-2,-2,1,-6,6,11], [1,-1,3,0,0,1,3,-3,0,1,-1,0,-1,0,2,0,0,1,0,2,1,-1,3,-5,-2,0,0,-2,2,3], [0,-1,3,1,2,2,3,-4,0,1,-2,0,0,0,3,0,-1,1,0,2,1,-1,3,-4,-1,-1,-1,-1,2,3], [0,-1,1,1,2,1,0,-1,0,1,-1,0,0,0,1,0,-1,0,-1,1,1,0,1,0,0,-1,-1,0,0,1], [1,-1,3,0,0,1,4,-3,-1,1,-2,0,-1,1,2,2,1,1,1,3,0,-1,4,-6,-1,0,1,-4,3,5], [0,1,-3,0,0,-1,-4,4,0,-1,3,-1,1,-1,-3,-1,-2,0,-1,-1,0,2,-3,5,0,1,-2,3,-3,-3], [-1,2,-10,-2,-3,-4,-10,12,0,-3,6,-2,3,-5,-6,-2,-1,-1,-4,-9,-2,4,-14,18,3,2,-1,7,-8,-15], [-1,-1,0,-1,-1,0,0,1,0,-1,-2,1,1,1,0,2,3,0,1,-2,-1,0,1,1,3,0,4,-3,1,0], [0,-2,2,0,1,2,1,-1,0,1,-3,0,1,0,2,2,1,1,-1,0,1,0,2,-1,2,-1,1,-3,1,2], [-1,1,-5,-1,-2,-2,-5,7,1,-2,3,0,2,-1,-5,0,1,-1,0,-4,-2,2,-6,8,3,3,2,3,-3,-6], [-1,1,-3,-1,-1,-1,-4,4,0,-1,3,-1,1,-1,-2,0,0,0,-1,-3,0,2,-3,5,1,1,0,1,-2,-4], [0,3,-7,0,0,-3,-7,7,-1,-3,6,-1,1,-2,-6,-3,-3,-1,-1,-3,-1,3,-8,11,0,1,-3,8,-6,-8], [0,1,-1,0,0,-1,-1,0,0,-1,1,0,0,0,-1,-2,-1,0,1,0,0,0,0,1,-1,0,-1,2,-1,-1], [-1,-1,1,0,1,2,0,0,1,0,-2,0,2,-1,1,1,0,1,-1,-1,1,0,0,1,2,0,1,-1,1,0], [0,2,-3,0,0,-2,-3,3,1,-1,3,0,0,-1,-3,-3,-2,-1,0,-1,0,1,-4,4,-1,1,-2,5,-3,-4]], [[-2,0,-1,-1,-1,0,-2,3,1,-1,-1,0,2,0,-1,2,2,0,0,-3,-1,1,-2,4,4,1,3,-1,0,-2], [-1,-1,-1,0,0,0,-2,3,0,-1,-1,0,2,-1,-1,1,1,0,-1,-3,-1,1,-3,5,3,0,2,0,-1,-3], [-1,0,-1,0,1,0,-3,1,0,0,0,-1,1,-1,1,0,-1,0,-2,-2,1,1,-2,4,1,-2,-2,1,-1,-3], [-1,3,-6,0,0,-2,-6,7,0,-3,5,0,2,-2,-6,-2,-2,-1,0,-3,-1,3,-8,10,1,2,-1,7,-5,-7], [1,-3,5,-1,-1,2,6,-5,0,3,-5,0,-2,2,5,3,3,1,0,3,0,-3,7,-9,0,-1,3,-8,5,7], [0,-2,5,0,1,2,5,-6,1,2,-4,1,-1,2,4,2,2,1,2,3,1,-2,7,-9,0,-1,2,-5,5,7], [0,-1,4,1,1,1,4,-5,1,2,-3,1,-1,1,3,0,0,0,1,2,1,-2,4,-7,-1,-1,0,-2,3,4], [-1,0,0,0,1,0,-1,0,1,0,0,1,0,1,0,0,0,0,1,0,0,0,1,0,1,0,1,0,1,0], [0,1,0,1,1,0,1,-1,-1,0,0,0,0,0,0,0,-1,0,0,1,0,0,-1,0,-1,-1,-2,1,-1,1], [0,1,-3,0,-1,-1,-3,4,0,-2,3,-1,1,-2,-3,-1,-1,0,0,-2,-1,1,-4,4,0,2,0,3,-2,-4], [0,1,-3,0,0,-1,-4,3,0,0,3,-1,1,-2,-2,-1,-2,0,-2,-2,1,2,-4,5,0,0,-3,3,-3,-4], [-1,1,-4,-1,-1,-1,-4,5,1,-2,2,1,2,-1,-4,0,1,-1,0,-4,-1,2,-5,7,3,2,2,3,-2,-5], [0,2,-6,-1,-2,-2,-6,7,0,-2,6,-1,1,-2,-6,-1,-1,0,-1,-4,-1,3,-6,8,1,3,0,4,-4,-6], [0,-1,4,0,0,2,4,-5,1,2,-2,0,-2,2,3,1,1,1,1,3,1,-2,6,-8,-1,0,1,-4,4,6], [-1,4,-9,-1,-1,-4,-9,10,1,-4,8,0,2,-2,-8,-3,-2,-2,0,-5,-1,4,-10,13,1,3,-1,9,-6,-10], [1,1,3,2,2,1,4,-5,-2,0,-1,0,-1,1,2,0,-2,0,1,4,1,-1,3,-6,-4,-2,-3,0,1,5], [0,-1,0,-1,0,1,0,0,0,0,-1,0,0,0,0,1,1,0,0,0,0,0,1,0,1,0,2,-2,1,1], [0,-1,1,0,-1,1,1,-1,0,0,-2,0,0,0,1,0,1,0,0,0,-1,-1,0,0,1,0,1,-1,0,0], [0,0,1,0,0,0,1,-1,1,0,-1,0,0,0,1,0,0,0,1,1,0,-1,1,-2,0,0,0,0,1,1], [0,2,-8,-1,-1,-3,-8,9,-1,-3,6,-1,2,-4,-6,-2,-2,-1,-3,-6,-1,4,-11,14,1,1,-2,7,-7,-11], [-1,1,-2,0,0,-1,-3,3,1,-1,2,0,1,-1,-2,-1,-1,-1,0,-2,0,1,-3,4,1,1,0,3,-1,-4], [0,1,-3,-1,-1,-2,-2,3,1,-1,2,0,0,-1,-2,-2,0,-1,0,-2,-1,1,-4,4,0,1,0,3,-2,-4], [0,-1,5,1,2,2,6,-6,0,1,-4,2,-1,3,3,2,1,0,3,4,1,-2,7,-10,-1,-1,2,-4,5,8], [-2,2,-4,0,0,-1,-5,5,1,-3,2,0,3,-2,-4,-1,-1,-1,0,-4,0,2,-6,8,2,1,0,5,-3,-6], [0,-2,1,0,0,0,0,0,0,2,-2,0,0,0,2,1,1,0,-2,-1,0,0,0,1,2,-1,0,-2,0,-1], [0,0,1,-1,-1,0,2,-1,1,0,-1,1,-1,2,0,1,2,-1,2,1,0,-1,3,-4,0,1,3,-2,3,3], [0,4,-9,0,-1,-4,-9,10,-1,-4,9,-2,2,-4,-7,-4,-4,-1,-2,-5,-1,4,-12,14,-1,2,-4,10,-8,-12], [0,2,-2,1,1,-1,-2,1,-1,-2,3,0,0,0,-2,-2,-2,-1,1,0,0,1,-2,2,-2,0,-2,4,-2,-2], [-2,0,-3,-1,-1,0,-5,5,1,-2,0,0,3,-2,-3,0,1,0,-1,-5,-1,2,-5,9,4,1,2,2,-3,-6], [-1,3,-7,0,-1,-3,-8,8,0,-3,6,-1,2,-2,-6,-3,-2,-1,-1,-4,-1,3,-8,12,1,2,-2,7,-6,-9]]]], [ # Q-class [30][32] [[16], [-2,16], [4,2,16], [1,4,2,16], [3,3,2,5,16], [4,4,0,5,4,16], [4,4,1,0,2,4,16], [0,2,-3,2,0,2,2,16], [5,0,2,-1,-3,4,1,5,16], [5,1,4,4,4,5,4,2,3,16], [4,2,0,4,2,4,2,4,5,4,16], [0,4,5,-1,-4,-5,-4,-2,2,2,2,16], [2,0,4,4,4,1,1,1,4,4,0,2,16], [0,5,0,0,3,4,-1,0,4,-1,0,4,5,16], [4,-2,4,-1,3,3,2,1,4,4,5,-1,4,0,16], [2,1,4,5,-4,-1,2,4,1,4,4,4,2,-2,2,16], [1,2,1,4,0,4,4,0,-1,4,0,0,-2,2,0,2,16], [-1,4,0,5,1,3,-3,0,-4,2,-1,3,0,4,-5,0,4,16], [0,1,0,0,-2,4,0,4,2,-2,2,1,-2,3,1,4,4,4,16], [5,2,2,3,2,2,-1,0,-4,2,-4,0,2,-2,4,0,4,4,2,16], [2,0,4,5,2,4,4,4,1,4,-2,-4,0,-4,2,3,3,-1,-3,3,16], [2,2,4,0,0,4,0,3,2,2,4,4,5,4,4,4,2,4,2,3,2,16], [0,4,4,4,2,2,-1,3,4,5,4,0,5,4,0,4,0,2,2,-2,0,4,16], [4,-1,0,4,-4,4,-2,5,4,5,0,-2,2,-2,4,5,2,4,1,4,4,2,4,16], [4,-2,2,3,5,3,-4,4,5,4,2,0,3,4,1,4,-2,0,3,0,2,2,4,1,16], [5,3,0,4,4,1,4,-1,-3,2,0,3,0,2,-4,4,4,0,5,4,-1,-2,-2,-5,3,16], [2,-1,-2,4,4,4,5,5,3,0,2,-3,3,4,-1,0,1,-1,4,-4,2,-2,-3,-3,1,5,16], [-4,4,5,2,0,1,3,5,0,0,-4,-3,4,4,4,2,4,0,2,2,4,4,5,4,0,-4,1,16], [4,0,3,5,2,4,0,0,4,5,1,1,4,0,4,2,1,1,2,4,4,2,4,2,2,0,4,0,16], [4,-2,5,3,4,4,-5,-4,4,4,2,0,5,2,4,-1,-1,0,1,2,2,2,4,2,4,-1,1,-1,4,16]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-5,3,2,-1,-8,1,7,1,-5,-8,-6,5,-3,-7,12,-6,5,3,-9,1,-4,2,12,4,11,2,12,-9,-3,2], [-2,0,1,0,-1,0,2,1,-1,-2,-1,1,-1,-1,2,-2,1,0,-2,0,-1,1,2,2,2,1,2,-2,0,1], [0,0,-1,0,0,1,1,-1,0,-1,-1,2,-1,-1,1,0,0,0,-1,1,0,0,2,0,1,-1,2,0,-1,0], [0,0,0,0,-1,0,1,1,-1,-1,0,0,0,0,1,-1,0,1,-1,-1,0,0,0,0,1,1,-1,0,1,1], [0,1,0,0,-2,1,1,1,-1,-2,-2,1,0,-2,3,-1,1,1,-2,-1,-1,0,2,0,2,1,1,-1,0,1], [-3,1,1,-1,-4,1,4,1,-2,-5,-3,3,-2,-4,6,-3,3,2,-6,1,-3,1,6,2,6,2,6,-4,-1,2], [2,0,-1,1,2,-1,-2,-1,2,3,1,-2,1,2,-3,2,-1,-1,3,0,1,0,-3,-2,-3,-2,-3,2,0,-1], [-1,0,0,-1,0,1,1,0,0,-2,0,1,0,-2,1,0,1,1,-2,0,-1,0,1,1,1,1,1,0,0,1], [0,0,0,0,0,0,0,1,0,0,0,-1,0,1,0,0,0,0,0,-1,0,0,-1,0,-1,1,-2,0,1,1], [-2,1,1,-2,-3,1,3,1,-2,-4,-1,2,-1,-3,4,-2,2,2,-5,0,-2,0,4,2,4,2,4,-2,0,2], [-6,4,3,-2,-9,1,7,1,-6,-9,-6,5,-3,-8,13,-7,6,3,-10,2,-4,2,14,5,12,2,15,-11,-4,2], [1,-2,-1,0,3,1,-1,0,1,1,2,0,1,2,-4,2,-1,-1,2,0,1,-1,-3,-1,-3,-1,-4,3,1,0], [-5,3,2,-2,-8,2,6,1,-5,-9,-5,5,-2,-8,12,-6,5,4,-10,1,-4,1,12,4,11,3,12,-8,-3,2], [-1,-1,0,-2,-1,2,1,2,0,-3,0,1,0,-2,2,0,1,3,-4,-1,-1,-1,1,0,1,3,0,1,1,2], [-2,0,0,-1,-1,1,2,0,0,-2,-1,2,-1,-2,2,-1,1,1,-3,1,-1,0,3,1,2,1,3,-1,-1,1], [-4,3,1,-2,-7,2,5,1,-4,-8,-6,5,-3,-8,12,-5,5,4,-10,1,-4,1,12,3,10,3,12,-7,-3,2], [0,2,0,1,-3,0,1,0,-2,-1,-3,1,-1,-2,4,-2,1,0,-1,0,-1,1,4,0,3,-1,4,-3,-2,0], [-1,1,0,-1,-3,2,2,1,-1,-4,-3,3,-1,-5,6,-2,2,3,-5,0,-2,0,6,0,4,2,5,-2,-2,1], [-2,2,1,0,-5,1,3,1,-3,-4,-5,3,-2,-4,8,-3,3,2,-5,1,-2,1,8,1,6,0,8,-6,-3,1], [0,1,0,1,0,-1,0,0,0,1,-1,-1,0,1,0,0,0,-1,1,0,0,1,-1,0,0,-1,0,-1,0,0], [-4,4,3,0,-8,0,6,2,-6,-6,-6,3,-2,-5,10,-6,5,1,-7,1,-4,2,10,4,10,0,11,-10,-3,2], [1,-2,-1,0,4,0,-1,0,2,2,3,-1,1,3,-5,2,-2,-1,3,-1,1,-1,-5,0,-4,0,-6,4,2,0], [4,-3,-3,1,7,0,-5,-1,5,6,4,-3,2,5,-9,6,-4,-2,7,-1,3,-2,-9,-4,-9,-2,-10,8,2,-1], [-4,2,2,-1,-5,1,5,1,-3,-6,-4,3,-2,-5,8,-4,3,3,-7,1,-3,1,8,3,7,2,8,-6,-2,2], [-3,2,1,-1,-5,1,4,0,-3,-5,-4,4,-2,-5,8,-4,3,2,-6,2,-2,1,9,2,7,1,9,-6,-3,1], [2,0,-1,1,1,0,-2,-1,1,2,1,-1,1,1,-2,1,-1,-1,2,0,1,0,-2,-2,-2,-1,-2,2,0,-1], [-3,1,1,0,-4,1,4,1,-2,-5,-4,3,-2,-4,7,-3,3,2,-6,1,-3,1,7,2,6,1,7,-5,-2,1], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [3,-1,-1,1,3,0,-3,1,1,3,2,-2,2,3,-4,2,-2,-1,4,-3,2,-1,-6,-2,-5,0,-7,4,2,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,-1,-2,0,3,1,-2,0,2,1,1,0,1,0,-3,2,-1,0,2,-1,1,-1,-3,-2,-3,0,-4,4,1,0], [1,1,0,1,0,-1,-1,-1,0,1,-1,-1,0,0,0,0,0,-1,1,0,0,1,0,0,0,-1,1,-1,-1,-1], [2,0,-1,1,2,-1,-2,0,1,3,1,-2,1,2,-3,2,-1,-1,3,-1,1,0,-4,-2,-3,-1,-4,2,1,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [4,-1,-2,1,4,-1,-4,0,2,5,3,-3,2,4,-6,3,-3,-2,6,-2,3,-1,-7,-3,-6,-1,-8,5,2,-1], [0,1,0,1,-2,0,1,0,-1,-1,-2,1,-1,-2,3,-2,1,0,-1,0,-1,1,3,0,2,0,3,-2,-1,0], [0,0,0,0,0,0,0,1,0,0,0,-1,0,1,0,0,0,0,0,-1,0,0,-1,0,-1,1,-2,0,1,1], [-6,4,3,-2,-10,1,8,2,-6,-10,-7,5,-4,-8,14,-7,6,4,-12,2,-5,2,14,5,13,3,15,-11,-3,3], [5,-2,-2,2,6,-2,-6,-1,3,8,5,-5,3,7,-10,4,-4,-4,9,-2,4,-1,-11,-3,-9,-2,-11,7,3,-2], [-5,2,2,-2,-7,2,7,2,-5,-9,-5,5,-3,-7,11,-5,5,4,-10,1,-4,1,11,4,10,3,11,-8,-2,3], [0,-1,-1,-1,1,1,0,-1,1,-1,1,1,0,-1,-1,1,0,1,-1,1,0,-1,0,0,0,0,0,2,0,0], [-2,4,2,1,-7,-1,4,1,-5,-4,-6,2,-2,-4,9,-5,4,1,-5,1,-3,2,9,2,8,-1,10,-9,-3,1], [0,-1,-1,-1,1,1,0,0,1,-1,0,1,0,-1,0,1,0,1,-1,1,0,-1,1,-1,0,0,0,1,0,0], [-3,2,2,1,-5,0,5,1,-4,-4,-5,3,-3,-3,7,-4,3,0,-5,2,-3,2,8,3,7,-1,9,-8,-3,1], [1,0,0,1,0,0,-1,0,0,1,0,-1,0,1,-1,1,0,-1,1,0,0,0,-1,-1,-1,-1,-1,0,0,0], [2,-2,-2,0,4,0,-3,-1,3,3,3,-1,1,2,-5,3,-2,-1,3,0,2,-1,-4,-2,-5,0,-5,5,1,-1], [7,-5,-4,1,11,-1,-9,-1,7,10,9,-6,5,9,-16,8,-7,-3,12,-3,6,-3,-17,-6,-15,-1,-19,14,5,-2], [3,-3,-2,0,6,0,-4,-1,4,5,5,-3,2,5,-9,5,-4,-2,6,0,3,-2,-8,-3,-8,-1,-9,7,2,-1], [8,-4,-4,3,11,-2,-9,-2,7,12,7,-6,4,10,-16,8,-7,-5,14,-2,6,-2,-16,-6,-15,-4,-17,12,3,-3], [-1,3,1,1,-4,-1,1,0,-2,-1,-3,0,-1,-2,5,-3,2,0,-2,0,-1,2,4,1,4,0,5,-5,-2,0], [1,1,0,1,-2,0,0,1,-1,-1,-2,0,0,-1,3,-1,1,1,-1,-1,0,0,2,-1,1,0,1,-2,-1,0], [1,1,0,0,-1,0,-1,1,-1,0,-1,-1,1,0,1,0,1,0,0,-1,0,0,0,-1,0,0,0,-1,0,0], [2,0,0,1,1,-1,-2,1,0,3,1,-2,1,3,-3,1,-1,-2,3,-1,1,0,-4,-1,-3,-1,-4,1,1,0], [2,-1,-1,0,3,0,-3,-1,2,3,2,-2,1,3,-4,3,-2,-1,3,0,2,-1,-4,-2,-4,-1,-4,3,1,-1], [7,-5,-4,1,12,-1,-9,-3,8,11,9,-6,4,9,-17,9,-7,-4,13,-1,6,-3,-16,-6,-15,-3,-17,14,4,-3], [-4,2,2,-1,-5,0,5,1,-3,-5,-3,2,-2,-4,7,-4,3,2,-6,1,-3,1,7,3,7,2,7,-6,-1,2], [1,1,0,2,0,-1,-1,0,0,2,-2,-1,0,1,0,0,0,-2,2,0,0,1,0,-1,-1,-2,0,-2,-1,-1], [0,1,0,0,-2,0,1,1,-1,-1,-1,0,0,-1,2,-1,1,1,-2,-1,-1,0,1,0,2,1,1,-1,0,1], [-4,4,3,0,-7,-1,5,1,-5,-5,-5,2,-2,-4,9,-5,4,1,-6,2,-3,2,9,4,9,0,11,-10,-3,1]]]], [ # Q-class [30][33] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]]]] ]; MakeImmutable( IMFList[30].matrices ); gap-4r6p5/grp/imf.gd 0000644 0001750 0001750 00000022267 12172557252 013031 0 ustar bill bill ############################################################################# ## #W imf.gd GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany #Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland ## ## This file contains the declarations of operations for the GAP library of ## irreducible maximal finite integral matrix groups. ## ############################################################################# ## #V InfoImf ## ## is the info class for the imf functions ## (see~"Info Functions"). ## DeclareInfoClass( "InfoImf" ); ############################################################################# ## ## Some global variables. ## ############################################################################# ## #F IsImfMatrixGroup(## ## ## returns a list of pairs, ## each entry consisting of a group order and the number of those groups in ## the library of perfect groups that contain the specified factors ## factor1, factor2, ... ## among their composition factors. ## ## Each argument must either be the name of a simple group or an integer ## which stands for the product of the sizes of one or more cyclic factors. ## (In fact, the function replaces all integers among the arguments ## by their product.) ## ## The following text strings are accepted as simple group names. ## ####
## ## Note that, for most of the groups, the preceding list offers two ## different names in order to be consistent with the notation used in ## as well as with the notation used in the ## command of &GAP;. ## However, as the names are ## compared as text strings, you are restricted to the above choice. Even ## expressions like- ##
##An orA(n) for the alternating groups ##A_{n} , ##5 \leq n \leq 9 , for exampleA5 orA(6) . ##- ##
##Ln(q) orL(n,q) for ## PSL(n,q) , where ##n \in \{ 2, 3 \} andq a prime power, ranging ####
##- ## for
##n = 2 from 4 to 125 ##- ## for
##n = 3 from 2 to 5 ##- ##
##Un(q) orU(n,q) for ## PSU(n,q) , where ##n \in \{ 3, 4 \} andq a prime power, ranging ####
##- ## for
##n = 3 from 3 to 5 ##- ## for
##n = 4 from 2 to 2 ##- ##
##Sp4(4) orS(4,4) for the symplectic group Sp(4,4) , ##- ##
##Sz(8) for the Suzuki group Sz(8) , ##- ##
##Mn orM(n) for the Mathieu groups ##M_{11} ,M_{12} , andM_{22} , and ##- ##
##Jn orJ(n) for the Janko groups ##J_1 andJ_2 . ##L2(2^5) are not accepted. ## ## As the use of the term PSU(n,q) is not unique in the literature, ## we mention that in this library it denotes the factor group of ## SU(n,q) by its centre, where SU(n,q) is the group of all ##n \times n unitary matrices with entries inGF(q^2) ## and determinant 1. ## ## The purpose of the function is to provide a simple way to formulate a ## loop over all library groups which contain certain composition factors. ##) ## DeclareFilter( "IsImfMatrixGroup" ); ############################################################################# ## #A ImfRecord( ) ## DeclareAttribute( "ImfRecord", IsGroup, "mutable" ); ############################################################################# ## ## list of global variables not thought for the user ## ############################################################################# ## #F BaseShortVectors( ) . . . . . . . . . . . . . . . . . . . . . . . ## ## 'BaseShortVectors' expects as argument an orbit of short vectors under ## some imf matrix group of dimension dim, say. This orbit can be ## considered as a set of generatos of a dim-dimensional Q-vectorspace. ## 'BaseShortVectors' determines a subset B, say, of which is a base ## of that vectorspace, and it returns a list of two lists containing ## ## - a list of the position numbers with respect to of the elements ## of the base B and ## - the base change matrix B^-1. ## ## Both will be needed by the function 'ImfPermutationToMatrix'. ## DeclareGlobalFunction( "BaseShortVectors" ); ############################################################################# ## #F DisplayImfInvariants( , ) . . . . . . . . . . . . . . . . . . . #F DisplayImfInvariants(, ,) . . . . . . . . . . . . . . . . . ## ## 'DisplayImfInvariants' displays some Z-class invariants of the specified ## classes of irreducible maximal finite integral matrix groups in some ## easily readable format. ## ## The default value of z is 1. If any of the arguments is zero, the routine ## loops over all legal values of the respective parameter. ## DeclareGlobalFunction( "DisplayImfInvariants" ); ############################################################################# ## #F DisplayImfReps( , ,) . . . . . . . . . . . . . . . . . . . . ## ## 'DisplayImfReps' is a subroutine of the 'DisplayImfInvariants' command. ## It displays some Z-class invariants of the zth Z-classes in the qth ## Q-class of the irreducible maximal finite integral matrix groups of ## dimension dim. ## ## If an argument z = 0 has been specified, then all classes in the given ## Q-class will be displayed, otherwise just the zth Z-class is displayed. ## ## This subroutine is considered to be an internal one. Hence the arguments ## are not checked for being in range. Moreover, it is assumed that the imf ## main list IMFList has already been loaded. ## DeclareGlobalFunction( "DisplayImfReps" ); ############################################################################# ## #F ImfInvariants( , ) . . . . . . . . . . . . . . . . . . . . . . . #F ImfInvariants(, ,