geogebra-4.0.34.0+dfsg1/0000755000175000017500000000000011770612711014724 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/merge_notes.txt0000644000175000017500000000111111272265736017776 0ustar giovannigiovanniMerge into HEAD Note: Markus is taking care of branch merges, please contact markus@geogebra.org if you'd like to have something merged. Last merge on: October 29, 2009 ggb32 start tag: ggb3-2-3-0 ggb32 tag to be merged: ggb3-2-30-14 HEAD version tag before merge: ggb3-3-33-0 HEAD version after merge: ggb3-3-34-0 HOW TO MERGE ggb32 -> HEAD * tag branch ggb32, e.g. ggb3-2-3-0 * close project ggb32 * open and update branch HEAD * tag branch HEAD with version before merge * merge branch ggb32 into HEAD * commit changes to HEAD * tag branch HEAD with version after mergegeogebra-4.0.34.0+dfsg1/build.xml0000644000175000017500000007432311655241332016555 0ustar giovannigiovanni geogebra-4.0.34.0+dfsg1/_LICENSE.txt0000644000175000017500000000661311677434235016725 0ustar giovannigiovanniGeoGebra - Dynamic Mathematics for Everyone http://www.geogebra.org/ LICENSE 1) GeoGebra Source Code License: GNU General Public License v3 or later 2) GeoGebra Language Files, Documentation, and Installers License: Creative Commons Attribution-Share Alike 3.0 or later Note for Non-commercial Users (e.g private, schools, or universities) You may use and distribute GeoGebra free of charge at home, in school and universities under the conditions explained below. Note for Commercial Users (e.g. publishers or online schools) If you would like to use GeoGebra applets, installers, or documentation for commercial purposes and put the resulting work under your copyright (e.g. for books, online courses, or on websites under your own copyright), you can do so by setting up a collaboration agreement with GeoGebra. Please write to office@geogebra.org for details and we will help you to find a simple and good solution for your specific projects. ---------------------------------------------------------------------- 1) GeoGebra Source Code License GeoGebra's source code is subject to the GNU General Public License (see http://www.gnu.org/licenses/): This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You can find GeoGebra's source code at http://www.geogebra.org/source/program/ If you would like to help with programming, please write to office@geogebra.org ---------------------------------------------------------------------- 2) GeoGebra Language Files, Documentation, and Installers License All GeoGebra language files, documentation files, and installers are subject to the following Creative Commons Attribution - Share Alike License; either version 3.0 of the License, or (at your option) any later version (see http://creativecommons.org/licenses/by-sa/3.0/): You are free to copy, distribute, transmit, and adapt GeoGebra language files and documentation under the following conditions: * Attribution. You must attribute the work (i.e. by linking to http://www.geogebra.org/) * Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license. GeoGebra file types that are subject to the above-mentioned license: * GeoGebra language files are ... the user interface language files ("properties files") for all languages used by the GeoGebra application and applets. They are part of every official GeoGebra binary distribution. * GeoGebra documentation files are ... all "GeoGebra Help", "GeoGebra Quickstart" and other documentation files found on the GeoGebra webserver. * GeoGebra installers are ... installation packages that let you install the GeoGebra application and/or documentation files on your system (MS Windows, Mac OS X, Linux, etc.) including GeoGebra WebStart.geogebra-4.0.34.0+dfsg1/icons/0000755000175000017500000000000011770612705016042 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/mode_circumcirclearc3.gif0000644000175000017500000000666511516655704022773 0ustar giovannigiovanniGIF89a`Zp`P@0 Ͽppp```PPP@@@000 ,`Z@pH,Ȥrl:ШtJZجvzxL.zn|N~ ;Pg*`Çz@PAb8|ȱ}(RpQ ?\ٱC %eI͛9\3Մ p  Cy=E JF&43Sje*ԝS-Uyu RP nQ ]D  dD4X(jp|X}8E9i&\AC~"Xа3wFdޏaۑv Y GY)e2q42pu% xWf̅s LqRŸ C%q-}ܕrEyT+ב JGŒG(X$,ELHDtb凢 Ѓ-(Dq c.M#G=nϐL`?B#AyhDAXQ`yGPtaCYL&a+e8QLAP"Q8>dDpFc:TZO镑xR:zܧA*}fs'K0 k+E *5p+,- }5> k0垔n5t\kh DhkK덛)`lXC( -D,q,\Cr?CA!lD2=@-\ɺ\L9ŹTv:@9p? nLc8C2IKf} uRdrk|4@f3 u3@%CӁ|,O9T@-宜\iOS-'U,{Aل_J|z?ObP+sOBo> 6TB;4znƬ$OI䛫y?¯Dw_;u?'ZQS\o ͫ1 UV$b U K!DEF!!@ Q9/ڏR|?38̞ʖđ$"?J+dlEJ9{9=Ⴆ `)G! _DMo8+2 9*hK!(ȏItH^"`,5[UdhL+ %QwQNd^3ɦTD87NlS`ā$#I \414Chɝ0P#$[@Ll%BAcC[RB}dFK"JaPJ+@DJaK}H,J,[)Jը-#@0Q*s!5!TExP]'V&ҥy( ƭ5m]VFUDk1&olD_=PA`RZ%u>0$ C|yxtn 6a¯ywn=~WЭcyLBP/ፅ!oTd!Ⱦ}جdw~2L[Uq 9m&Cږ|Sn0gCL!ݶnH1L.Y~72ADb'MJ{~`", ѱOE2k+K<)1!k1}t2d%#, `}i#8;n%˭(m7"NznE\Sb]9FBΡ'4%Ґ Pv [v1BCn=y-¬rZ\h25d陿9?Ud1[$1] >z*tTDp>S۽(uQ]Go>ؒ=ٵ{na[NLvaKX.K0*/Ql.S𖇄y:<0߶CU4}H~u(aoS^E !Z÷Y7fxFUt> ZoQ"·f}@JC6P59=o_ ' 8}7wwl~Ȁnp5q@6Cq~놁iXn W { 8iV` k@} .H4[P@8Hxk))(`@VpB:` xO$Db(G Dž7^8۴lĂYp6xDP#f҄oV*"ZxnRlb~F0H1 @864ʸPӌ`R8=X⒍P1c PX3肙xlӉ5yy +XjxLFHXO!oshrٚC)NapVaQIKG0Yyؙڹٝ9Yy虞깞ٞ9Y9yA;geogebra-4.0.34.0+dfsg1/icons/mode_point.gif0000644000175000017500000000325411516655704020676 0ustar giovannigiovanniGIF89ap`P@0  00@@PP``ppϿppp```PPP@@@000 ,pH,Ȥrl:ШtJZجvzxL.zn|N~ƍǓϑ֏܍ oBl-i$<AiBM߇.ԃ-:!Ei۷NiH"M JgݷC(fK4i@x`B80Q8b7il9͙5\42[h4Dh>h8B\4.2Tru19Q.me0t-eRv^ND6_J3 $4pnﴄTfvIde[ ,92*rW(×^(sW(MEZ)9gD1@*(_I#@ՀIMsGυ*Sdeqއ$aٕ_'~0 Ƙ!m'zgc!Ǟ{Gm2gF]N;qWa^XX?b57q%3daDY$wN2ܑ̩z콨] YUvq2=~c$gp])ƒGYf\*rk*3a]n|IƢv(y phɌ)e)#j(SWF$ZD+ǎ~v+k '»p !+ )¾o (`!'o &0p! pp0# B$'喰q,ۂP¸s |39s3@̌n2}M4 (L { ;0< 2#xO] w= 0k/ܡ؎ ҟ?›6~C 8A{YA?m=0)gq+0}OaP_T/HpxSX 81Ҏ,dPc7_nx0"T/aIdO&FEYqb < 'ƀ"hWL)<9@|%:fmz\:["]  cAZH9 02`hb W#[0`ˤDGLMY2Ρde@fQB"5U2&| K1lNˊkL&FXȔ6nz 8IrL:v~ @JЂMB: ;geogebra-4.0.34.0+dfsg1/icons/mode_slider.ggb0000644000175000017500000000170311516655704021016 0ustar giovannigiovanniPK#R2 geogebra.xml͗KS"1Ha `hP^v@LYg6(QK\C'/NM˺"4bqL\Qc?9d*UM "|빼#rS9 "mT~L~3:[n͢foy T5(Q;A\*~/S=`ڙ[.>4%fb2)U9^i5Y%1T4/zIy'* %tϒ4҉l0N/=zpdwe c0ajBOiLrc!0C0rطc_7T6P ׸ZLNŬo-aJ#4Re@ 768[IXԀjn62n7U CYIE-߉V9EK+\j{ ;K(}Y>PkӚ,D]+a.[FPu灼/ Ck*J"h0vW>XUZ*Ƭj-؁5z?_V&P(R(mT\d6WH3L?H^Ƹ9D8& g#a™Y8*3y5zv;tN:Yq鼆3aVƬv;][~fϵחmOǞ+YZuAj,I#~ن8L 본ʄԋ֔8Ҋ̐(<'VpYQ>dIjF24E:d>A_:+1lh66Ԙ;nO @f (L㬗zR3H [b&v# @K$q zC PRD@`@ gzf.L@mʊ L Ύ!,-$77sl/N74#/73/*J5&0D+.z5BPDrc_O}3"i }w" m7kG.=Y6S7{MߧT-4PKM=x6D4,8":K+; P,I96K&$*{޷,M?9CD}KͫCklDڜB=dB;DIV됀H@~M(Z ج*DVEzhZ0Ȯt؎=$ E6MaH-PEǎds<4HX}-xC,c&AT @^ٷ+DK1Er X(GLPj:f]>Odf]i-"8Yg H0"鰥P`."q!+\# .0u`.$1I0rj.]iGJR2MQϜVO҈4PÙBR0XJ£DRv#*|f m@T" S0 Dz >p%[UMym{ɉ!؀[QzT%P Eƒ(+ 6q%,?*U{0%1˰i9AP4 hYft5 $(+Lb̈́Hxʪ^C<;V+rG\s Lf[…x#n4fM4Mha18Ի!6B{yn$>;1KzB$DiL `tA`},)^ºڴ"rO)_=v$ޏ229HH于-1_bH`4yZ!O ߆k{"͜,1B-wd'RU @$lD=eN9" ! :bѝp&V<$u&4RHzeՄ39N4-ҧAeJ{>)iڅu5X`}qMdbST& k8݋{`<psS~q9 (( g 9G=BKB"'V >6?/*`[" +f@W sxhoGV`u -qQ E `XR"g E9ZJG Q(v5M~0M;dUA+EVGUP҄H" b6b$E0M8h "D"v bbR% hR R#CH/pK1S"g كZXLӴVOuhw(j0MTԆ0>8TK=U;AH%L!ՉxBw%pKr`|%Vdb 4 dŒ ̨1MH 0fZ baCbHR0ƀ=hHyXKh7$ X^yX qt+ptGcㇾ?8 Yyz &} 4~ 7@z1cB}0_8B9 ވ ph 2 dIY w0e`o(60_:`9p Гpe9lٔPZq lw |ɕN~} )059/b G/ I*P5CY2L G) #c ɘY/IR%AP +RH2[ˠ[$љ’ 89ЕAМ@.y 1n{Ƶ EPZ@&2Vt* %&4Z D>5.:Uifb53yoWD"Y-r|PPd( @Z4Y) 23:@SJ `HEdq[vxN XXMPczW W;:4q@s:p)[޹TBTj]x"+“ H1֩YZ Z:i@UjŦJ:n r"8*xjjJغQڭ:Zz蚮꺮ڮ:Zzگ;[{ ۰;[ ;geogebra-4.0.34.0+dfsg1/icons/mode_parabola.ggb0000644000175000017500000000267311516655704021324 0ustar giovannigiovanniPK8 geogebra.xmlYr6}nw1:c%ع$MgfھA$$H_Ņ"ʼnܨZ,ٳgIzYkZ〄8@.Rq( >yt6\LGF- f [l=7KIN=OeBnn~"cLlAZ7 q7-1bUh8M?ݵ%}ήExTC*koKX{ȸ@g-\ ic~~*3S 5 fK5*6CJ,Tެbi3"*ջ`lj⭪|۔ۋ7삡VƝJkQ:W7ʮwoȢӢmAj7Nvl] h!mÖh@nZ_O=:nE\D5_͗bn/iZqb`tu.GaypƏom=5{XGfOwCX~X~~,/N])il]lVyl^F(֗44xXh|D?>R(Y ,,tpg'&&+,X]Rة箮{u}庆-ca+碾E6Eh M7d/%hOz Y'GD̒{UԳkW?dqUBL< 4)&lž+( Y41_8Mn1#/tLI"jX%O ܎Ore!79/NА1="^BmI: E,mohRMP#T`Ge%o?{:-3ROa:|VV$S WTLč\7P@55j*m %^Rl)yҦKJ0KPjseN|XR& 'l3gvpf= gbK{\W~=E:#t,ĽHf׆ٗH YI+O%ͪ\jAء:',xw?9d,U `$0V}o%ᥭM Ъv&JCfZ }".D2G O@ir-R+Ykci>F !63MڼKy"$vŢMYѬ/Y^v48M W/bevpqZ#͆ 1/$3QXJQ!VY3=7p-OP5rQa;ra81;'%|v& yZD:uXs Zhӛ9S%T|;:/>t1X@ڹ^F+e)Q&,2#3 [N9Z:tFe751…::\NuCfܯoXҲ͹ TWaGa9'{q *^6>E=m5ԨPqzQ7cj-M.зaPo(%UJQE1W_-Ԗ  _p*N8 'юX^t_:'U:/z"ɆtI'߱t֓Kv"0;q>n0+Ǭr;Xh7[nˮ77TbsVsNGqvcK74 lq{d1;2 h[![mY/0.afܣ#nPKCPKHR2C geogebra.xmlPK:geogebra-4.0.34.0+dfsg1/icons/mode_circlearc3.gif0000644000175000017500000000562411516655704021562 0ustar giovannigiovanniGIF89a^bp`P@0 Ͽppp```PPP@@@000 ,^b@pH,Ȥrl:ШtJZجvzxL.zn|N~ HՄ 8x.L(x 3jlAC"`dI"%ɗ?`XyK85z@SV 9`H7vPYTՄI~S  @ ZU[Il( P72 o_s_. * =e n4y!& 0`6$xdhҰ(xa% /_dž$O۔;v%k ]RCGL>8r;|&?_$y ȤnL`RbvI"RI%85h%9 n&Y`a!ali4Ӈ\#^vF'eh/( 4fd.~@cFCd"&ؒ 5!jٕ}4Q\EaIh%P[Ĕ{[ DgF2l`w{F@a`w'g{&AFbj4|A^ -e1Y֘$wzǩ/%Ai0r{&yx,z7-~^!aF_:~~g4qxaFځw)к-pc:|}$2" at A @ @p 0t o)e! 2f8 6$rL8E2DPUC7¸,z!<E1^af3P5zeqpXpȅ)6D|H-pDFa#pIZa (%Ptm z'džp(UB!gt*xO DB+sɄ-H 0 S15I.S[H,1 `&6 pG,mQ5 \a(%-Y\Ý0sHJGC$D=y3cz  M3 i#\y!o~0q@R&#XHzwXbmd89*6RI(* ȵcҌș3qE40%.J ~~ y$T,eu^Ea%8) (9 nIc.HEy2G_!D2#Rlނ?ť(,h{$"@՟$崞*"gGF&nm8r@E?%a-t T5˷h-C ~$c vuE.xWHv`ْTvKE.{5^$oF+G 2o. Hf/.[plZop-ujl]A`ntIp,o.ۊo p$]Uc$D~MqCP $.ȑKA@Y !8vqK %3d@ U8 rLHrG IsyuD$&L. aqCW6.O_"\\tXN| َpq82.aOtp$H@t @50sPsIz]c}BuD@{ݰ-PHv\.  ]2],ǢA;iR9FW\@۟ic״6psN &z!d;,^12elxΈHW# "ÚO%^A 1Ny1ʉMg<@9C?ᱬy8\; L]!.tD]# O}#?х[- nlK\:SI":CuV: d(OIez 9{/g`@TI~''yBzM ׷W7=~[>ĭ_I{]S7mg j@k$6σ3TLw!߻kBCs>IfA 8%Y/P<=~H>:mnӪo/x#i&DBN TEx qyQx@6Cw8| r hsi*r؇/f0 k)E"QmwCq'Fܦt$h\ Tz >DZT"$ܾ\4lF$DĔvr|&<|$6D$t<|$|<&2D4` KM#&s'XSEm İ- M-BkC (r;geogebra-4.0.34.0+dfsg1/icons/mode_rigidpolygon.ggb0000644000175000017500000000472011516655704022244 0ustar giovannigiovanniPK6>geogebra_thumbnail.pngPNG  IHDR w&IDATxڍѯ pq¬AvE V@P?e 0a~YD6q܅iz7@L{,}HF*c!F}=!IƯL|^r>8>tÏ.d52Zaۆ˅bM2ZĻ aT[p5F#tlLg s]$&IENDB`PK#pQPK6>geogebra_javascript.jsK+K.SHOO,TPKE]PK6> geogebra.xmlZYoF~NŀO-*S{ ۴4ӢhQH\r]R&bcfoI}^p,VVC](*eW\T7 er֭|ZVoh$GB,WU(#mTt:=99qn<6ˢl)m:f9#N{ʊߓe2s䳯NdU'p"3@+H;2_I90}dVH<-n<-NJ=A1ǁLL4q0AHHE@HQn-*Qش6;ĊwF瀪b pXr^}}Rh,7U0 jlG\p9`N#Ϟh>1o>}Wv~oxjޟO'/8tU5+*Uq|9Mm,d>cYw˘G>fOYGhzmgKM<?6>I!@r#@\y!(ëg=K| ep| 0{ 9>n 4x{2|# @ERT3TKx<1Y+5B$]f ,ذ'"svqRhZ&*-d&Wtޡ}F3TŎ9bZUMvtڢ`h*ɈQGyALy;h~ƄbMMȍF/9=wʨGB)4d- y*uXRL?tRj9G r]R39NJx6bhJQXNHUj-ɍ`sLr"x!_v4y#z 1X,~kx6ϠТTCYi{ѶZT#: Ě ps A5Cy3p,3|LzX<-Sь1^WʤD ߵ}V aݭXP an<mgcuxY|8m;xT[B,ˤ̠4Hz90 AB5,8+OVZ'czv7?0< / ýDҁM2U LG&oo~Y&L/c?%u!S6pڟT&L$BԺ|\k՟baR_=/DvXNn9/\[ayv5g="`,_ LSCu]5/;]=L ccVq3TFW*g/vrFrܓ]Ƀ 뱃ͯ=X>ч峋c|uy!^42.ÀӸ,#A3hn <|hrč Pw@:' bC2ґtthJߟNK7.wo4ʭrܖC0^]5Xwz ֝+Rn)Wq]čuB8li!8ge^l^ 9?C>I> uhl?~c3[:=ȏyh<{#P1K "A+d~ >v3gZe+V5[VvylgILa|\A⮰8wɺHFV&e(|~}G3?TwٿPK䃅 5$PK6>#pQgeogebra_thumbnail.pngPK6>E]Wgeogebra_javascript.jsPK6>䃅 5$ geogebra.xmlPKgeogebra-4.0.34.0+dfsg1/icons/mode_mirroratpoint.gif0000644000175000017500000000465611516655704022465 0ustar giovannigiovanniGIF89aZ^p`P@0 p`P@0 Ͽppp```PPP@@@000 ,Z^@pH,Ȥrl:ШtJZجvzxL.zn|N~$HH0f%RC-R8X3j|B_$XhIF$r (khIs1eXXg!rѧQ-` MEԨP9|0bRTMiv@ׯ"PСfիAطo'h"(P!\߷6lq7ʑ&]T) {:RC_ƘF(KdM!jԐf#]|֤$iӰ9kD`lnI5~id/^.Ћ{9#fma n_}{Y}qWB~iy"2 6WF,4FEXYhz)aia!$4i%jt"!)j"&(H͘YxH"(H ~= H(WU9o WCpV#)&e$iٚ{0Җfz~襑x\%}7p0 b\V[|PRFCQe$j)i:d.x*vꈭ۫y f4 ze'Y liA}]1_K@ktVAoAL\` / {Ծ 0g~,0 !JpF*z0 & 0C. ! /y!!-"#( (zr#!p +`3 +p/@-DmH'L7PG-TWmXg\w`-dm617lgr, ǍE&|G.M7Tw 7I+U 9#MC^nZ@: > . go<(@S K/}0ВɂQL}x%N% I//L#/gT١IG@$[p א=phF6P9,5&M! !5u0 xuQI 0lvHTilc  >maGok CC9-[HxƵ Fb;4~Oaۘ8=8 tæ0zv2?#q֒x|<ؐ3>w,tѐHG^Ry!G @caCHTfO YE+czwijCt-3B2%8( ЁKCxD 6ⱸ$ 9\ni@yIoqltR>$6[4(]v^vBpO틃 i U\dbF X` TCX€I-~4x}F/L!PX'hhNmIM&2`6W! Ɍ `;!mm{ ׇUɒ~h'殌|rAlvPwujvΌ$ԍC۵ʲMP:׍mHSV^r"b!% wyۍ>b#CyIDҙBm Q1&g#2D2@nY(ufcXd3rd'yK폃l(;nHJc0J{_Wڐ#GR\mXHiH?$akpCij$_C |3dXv= aHeN]T˒^-m lէf &6[inmEi.P7YR ,TKYڨ ]ì*[_r7Jw%^Q׷O;'N[ϸ7{ GN(OW0gN8Ϲ0;geogebra-4.0.34.0+dfsg1/icons/mode_polygon.ggb0000644000175000017500000000215411516655704021224 0ustar giovannigiovanniPK5R2 geogebra.xml͘[oHǟb8]T-iWjj}ؗ`δaX,朹a*=kZ^]ALduE1v:9HWF 6m(ME!n({ǯ^1jꟈW~tA[fyeKg^ryyTp5g;ʰ> B-`llK벒 4&]Uh7kj n0H؏|-WM(N=Ln"'q.Jvˤ- h˼BN\v7ʥ3n6J5Q2^A?t03;Eɾ.5gEØif$j6qJeQ\KV1.sv);kzQ.5*,T-w,Kݛ+,7a.;ݢ-N>7M4URh#Y PMteF-y/0=W ȑtewQOQ;rP3cjkG[QXM}^avn(g)\0I`m.6b?$e\#ɹ '_g#~™Y8 - |z\t_z#tY:EGs]fw1On|tt{F7ȯKcb/r'i4~Y2} }<;H>D3 6R a}0q'>=}C~#nþb wD'{OP{ڸɔcѨXgE֯1lz+XbVlqj0 &PpaCq#ÈG!B!e:@} !L/>* % =zߣQ܁TC< }!*nMU0|8 @*h HF8'븑>(s-'eށt ZzQTH=! 9!eˆp .`c 3 ] x" 7iH]P!Ry4):7!Si DX _q 5f<@]vjR%oy#QaPh4xqyJæNyVvX0Sl.gXpY)2vj.|W:̦: !ԫP +0*ڍ!Gk.묑)22 粳E :46@"*[ۊ 6b *\b: -Р0 *0*,q >gf -ǼEK/*|2+b34K\ͺ̜3K?s;п\*# K (56S՝u/Vsf_ b]0a}cks6N71mrm|d^Qmx1 Nݐ8{Wyрk ?9ޒlW:z,y>% %򺳝nNŠ.<.޻!z!w:4D(⽔7Fo*)?$닩ߍ' Mizğ0ѿ.\& XB05]PAOd0DWBP0[hB bpۣa C ɑOx!PQB|HxDI$>ca)DYlSt g! f["3(1 #x5Cn|c8 8ұsG%# {&A2E2ҏ|d #)IBR$&MNT҅ Z`6p%JD@J5 Z-%X`*# b%—4  Ќf!P@e$-;f4M,,y0`MЙB(*@O~  YOB('0@?*5eA!"0 (?!~Ch#rh@Gr T`'PR"0"P`'CrM>HQ(PQUJ 'z#T#xzxXZ֣r"4zE_}W6C P E% RjEZ)w@l Ť򣘙6Ճ.@,nʄؐR`Y&\Mf "e~u,RɥfFkczuWlܨbEO`]b*ѭsy]pL7&0R ]B\-8 ,fڛ Ǵ€` VL{1J:t ..+KsL;db%I񌣢_vBC"Ge0=_'=Pp )2|8nz`br[~AJ&JDi~18/Ǐ>y wϨsUf7z% i(yUtDjzς^c? CӤ6r8TXnD9|iV:ĜoPռ>`sſ66UYle֏{kF6{ھ=_^;ثo Z~I]ms+;]s:F}=T鮧oh|.gM~!_.WŭL%8V@ۛ ȣBrțZ ĿYrCW̫UsD| yXz%\fgT:RZΒ@kR B/)a@B8DXFxHJL؄NPR8TXVxXZ\؅^`b8dXfxhjl؆np;geogebra-4.0.34.0+dfsg1/icons/mode_circumcirclearc3.ggb0000644000175000017500000000230611516655704022751 0ustar giovannigiovanniPKR2 geogebra.xmlݘKs6ͧ. Q$>hCo KIBA[AY6&RV^ o }\W%c{x{չ(x{ 6YQ5ai{/?2j4Se횗Yg0}V%WWLR3{AJ߀?0vm 3kz&i.,fF bRP8 (0pHI=l`t>GfnƔ kв0 ɋ?+k5+J} mtdJ=Pr^A?t1vtZ/Jg͕l!nj@HqGӉS]TiZtYE \2&(\(DR\g?qՒew@Tfj~]6,;6 Z[h3}}~lbK6R;z'  Cpt *ZtyjVXS{@7q:jծ/NaP)E(mfZfMM5bO@ VC3=7Dp>YL{™&ӕW( ϗչJK>ҙZ\&<_t$هٕeǬ8Ym9 {Gǭ7}TB}=Qn+&y tiH@sЦ4g * tވUlUB{^njB']s͍M˯ ?6 %M]($^S.=϶*} `'G E_}`L!־{!*Y ;Q>0|&]Ijdc%$g&2zqhVuS(|93&CaiĽe*#? Hߵ*7{Dϐ_hI;qm)G;kދݏ惪{PK(<(PKR2(<( geogebra.xmlPK:vgeogebra-4.0.34.0+dfsg1/icons/mode_vectorfrompoint.ggb0000644000175000017500000000203511516655704022773 0ustar giovannigiovanniPK~R2 geogebra.xml͘r0ShaIIeڙYt'l%*=pq$8-^9t>xfYhADE9;9N-oNΛף32pQb9v7vTg_[Bwؑ&OyA]МT r0;]!iyq&U`;"UՌH4"ZUhSa<(a:heI: &qPyqA&J"R %opQǜS&'x.kJLJ$BM0-̎٬ & dZ8 IMm.REׂ"zu]xJ ;g#zS8h $TYh?jcb޺J/ vo|tIrStZ h5vR}gBJ6B ;d-yS+2^_)aOa_Q1r݀M6p9_lNaPbKɳ6] ʈ$oiR˴/IK82*grl‰pLZ™vδg[J'űJG>ҙ\uNֳtN:A܋tavak1˻1N~ a?e=<_7L{ilO0i23] }8:Hw! 4ȍRohQ|hn05޸C}w_g"ט_&~+TC d$[P'0քꞏco4?ߍݸڐOb$X#+f|r2_3HRLc/M;Z*0 |OFuK] }<^LL\a _ m ^.:z;£}ҧ/w 2PK0.PK~R20. geogebra.xmlPK:geogebra-4.0.34.0+dfsg1/icons/mode_dilatefrompoint.gif0000644000175000017500000000620511516655704022744 0ustar giovannigiovanniGIF89a\[p`P@0 p`P@0 ſxxxpppoooeee```PPP@@@000 ,\[@pH,Ȥrl:ШtJZجvzxL.zn|N~c&+&+7_@ n3xFB|Ā+VP#6=ZlRFM$Q3)]JR&36eMvsh3F!Mzl1JCSUN򟋫XBW&!,ZTjEE撬k!z[/Qr  1ȬD|i\0>RN9ՆQV(.v;Uf !8P^;G NwA̳/R(\34"ORYP ݋:C=`X_('߂SJq@!lA| C0)jǁ袋hp^BqeY% A/2jW_<0U≡)et]"ȓ qdA%J iP.ZYt ;[%')0b\z) 9rgo ,eJ-L$&.7Fao4Bբ`[~J|v%= rGDު 5{!pe%&ANKl;qPO8[~r"Rv eUGr )=WncIە   | NmoCj%ocX K&o jo8t #Kő2*)o:D2$>ts[]HӪ= 5RFU[umDOlt!\;6fp?#JZ/22owOy2zoc4َXƅƉwe#m/Vp%=k֍nD2RrSnq zLQHL"ͦV{پ?aČ<,C}OApWsrC-ZaLRl 3P[ؓ>jqZ'Jy^¶4)j4?x-p7`$`HX(Оy:9Q@q<  NDDӁ \CX@EQADx񋊘JpD2jGhD0;7G#cO 4$!߈!R,HrC>)A췚`)%GIR2)'؁(O fltjV7x%*8r4T/Mq#ohLS1@<TCh25f*\Gmz 8Irf&쬄+}xBB,$nɛcsS2mVτn>`C@sQH$(@CJҒ(MJWҖ.Cti!T 'L }˟F7[8Un Wx̐^}ZVy-VxymolW50av{ӬmK8J%m~O+̙X4  nۘkz؄!Óp׈OM |:v@ r'`vYK.TT>8˙ד3`yhR@ `(޼)O'Tw -xK0u<anqA9V-# _R{_M\{k9P\~S8wK{/)oޛ^*6[7…1LO"pftQ˥\|d%`έzee^G9~3 `;ЗWM> קY}Koc9ڵGS7ßf\FiƷ˶\Fiac˱n6'[t Zfvup>gue聪hƁ6WXZ)+bvɖe&Ȃ# V-XbcfhXxå0]xe1^ Xj1^gh'g}>tNm]fMhCV>0}oXBWWeR'SնNi~Ac{7 oWh0Fym P{o'j]q[p[V`qt pZp8qƨwK| 7sBpuwvh,b}ö=0ew1R8y>QH3pDu؏9Yy ِ9Yyّ "9$Y&y(*,JA;geogebra-4.0.34.0+dfsg1/icons/mode_circumcirclesector3.gif0000644000175000017500000000763611516655704023524 0ustar giovannigiovanniGIF89addp`P@0 Ͽppp```PPP@@@000 ,dd@pH,Ȥrl:ШtJZجvzxL.zn|N~Y7 0Ç#JC IaC C遃E m%a˗0~0I!BJV2|ɳ*$%HpM2xPJH >uկ`#bպQѝa%[֟״bEThڒ0 H%½ 4A@0:S/_2,`lH`dn6괪tf:*''Z~: 0`ACKزgs,c8O& vyTֵDݕ$(}x+~ìΩj,2ҢHdx1}xl&KɅ{$UIH0]JDPlGRHx($Nll$> 7H K/e \iKA6T49 Btz,8: U}6Ctܺ$[DPɃ4 kCWEgO6 QS懲<ʠfUN#,d-lĹNM W#aJMb!Ny(UGbN %+@nٵ2AML!5,]rj: Fc#5#RӫG$\\Zq@#Oͽ x@)AWNh#>)R<쇆{uxdd>2$ W!Lզ hԩ߄@ ˆO*AP"@#H&1mه[SZݬ5-DPk-"jo2 F!R!X̲ք5I+6ľf%t0 ]ͺDL[[\'L g xp9 XI!%%q̀1b/~!Rʃ߁y T^0EiL<4!(փw+D$"6@R@D]T ,A dFy=ထ9}Sx$px.c\Dα{"~&:a$W<rP͍GO;ش"@o|=BRlΘ$r1,@Ph,@^y= Gld !#9["-BR$/nޅQnSNו pN~(l3=F:"3[ }/94SYu3ba,G&PrvqU8Cm,e&3 !͉%ΚxpKpwV1a@dm!g@3&iੀb*- q뜸.J()-II[UO*FrLh=7Ѳ XvdĜ~ x-u+t aL-N2HwCl> +){$cP:>"γG]Ay#ov}⏞f K_NGL]"KT߉ soH '!84~ou})F %B}~(sE !|Nwp\ Xs[HwF zׁDMW ~%vY$Xzy󂍒}{68W;8 jBw;Hf$~X \C g P%G@RMh{N>xz7PF0~0U]xxP:pXaw "dh(WM2G {H B $R~ 0GRWHH8hFH$u2nP:'$Ň),J(Ʒ$hjHKFf~ƈhfM B#(I@(YCqȉW؃NL0XL] DLP㸋цpRPqauH)Ora1u!y0t@pp TM%ُ.QT27-969J@E/KcG  K` 52bI1iD!p~CG9)XI=$nm_r?:`r=bKN>$&9SO|:ucßWS8v({ #WÞ" Z0e9V#cK#1ʚY1ɉ¨`9B ɛ*ʚjyhɮ™=!~RQ@"Rn#:]3e P{۱ ";$[&{(*,۲.02;4[6{8:;geogebra-4.0.34.0+dfsg1/icons/mode_circumcirclesector3.ggb0000644000175000017500000000230711516655704023504 0ustar giovannigiovanniPKІR2 geogebra.xmlݘKs6ͧ. Q$>hCo KIBA[AY6&RV^ o }\W%c{x{չ(x{ 6YQ5ai{/?2j4Se횗Yg0}V%WWLR3{AJ߀?0vm 3kz&i.,fF bRP8 (0pHI=l`t>GfnƔ kв0 ɋ?+k5+J} mtdJ=Pr^A?t1vtZ/Jg͕l!nj@HqGӉS]TiZtYE \2&(\(DR\g?qՒew@Tfj~]6,;6 Z[h3}}~lbK6R;z'  Cpt *ZtyjVXS{@7q:jծ/NaP)E(mfZfMM5bO@ VC3=7Dp>YL{™&ӕW( ϗչJK>ҙZ\&<_t$هٕeǬ8Ym9 {Gǭ7}TB}=Qn+&y tiH@sЦ4g * tވUlUB{^njB']s͍M˯ ?6 %M]($^S.=϶*} `'G E_}`L!־{!*Y ;Q>0|&]Ijdc%$g&2zqhVuS(|93&CaiĽe*#? Hߵ*7{̬Ϩ_iII;)nAHkGߋ曪{PK;=+PKІR2;=+ geogebra.xmlPK:wgeogebra-4.0.34.0+dfsg1/icons/mode_orthogonal.gif0000644000175000017500000000640411516655704021721 0ustar giovannigiovanniGIF89aeep`P@0 p`P@0 00@@ PP``PPppπϿϿppp```PPP@@@000 ,ee2)..) $%,,Ԏ1'ݼ! (0+ù$yGL+8ȰC0xH"?pBX܉f1:YEy$S<֬ʗ0w50͛$ NI#[D]Ԑa!J5lسX}^-כ"} Sudӎwkڷçmp½m5{Si<̘ahK6gRr3jz=-S' zkǐ*MkUc NU[+/e6=M6M+ѽT?*=ĕ/#dWBfZ%(ie`xڂGbvw[*Uh]eu}x݀(rU܉5 eGR0.]%ynUޏ|D"%%Y~T$mQݔH !X\$%CIX0l:0}$|C4i i{v" ĢEãfz5TAh*:x* <>ijQ3|>Ūj ૯ 4jz*P@4(Aj,LF>뭷 0m?X{mJ;d@߶l dù*ݠm-D#*  hQ0(iOLņڀqEl:C#j4/3 3Cj*Cc 3Rڴ?;* dۧ\A M66=OJ]#{(4g|ӣád2n8ϊ|:Tly;wާ9y謻˸BnN֮/{;9u;<91:|{S4QC2]6=@kߓk_;?Nck+7bپ37 j| %<rz|Z=zCv}:@5 vc@7HU˃"G(qQ苡7) iCn5\h(Զ~`7* #mQ\UQhGs rUnPv |ysXzyT#VUiR=n"@pɃ6Ё*o`4%|˃ieA$4 $ 9/Ixh)yMD(hEx5KPhGygBtǒ,O{`s';d4 ZDiYN%-!Hqh; &IEL\i(@ZiN$BsRjt-Ն8Sns?5>r w“0)VTe,*4MNcuj4 FcVED)ˬD/ LYʵu+-V*W`tuE0SaѼ΂,:Q§݅PQXWeK#; B`5M)̖ebC G5i?ղBu'*[R, V{QPYU\H)r?vd ج1r#V"I5" S&²u/!h+E- ȴdᾆ8p|"r/C2RDafp@2SD^IU%vxY%iTl2IJ>ADT8D8 [=A\ȁ p_,='q"}"zj+A0{ߠ˕oJf>P#.:ېyO?^v߃p<7&ĉͬ6C,N4xfإ4s L5;nq L@غȉ>2-q8ʉ-x^9[_e9d.+ 5:;& :'J֤Dz׺0/<.:ì, m(;"v-MKh6E#MZv[g>c57L:Һvr;Y%#dp-l֮lX9ˠvfD'| 7l3*g@"]Ɔ-ۀH"P">#ZߙT< }wVp?|~`فjFK^pZ讹*IS`3L8!>Y<Fq8 $PyaàgU)0Dw _в0Kɋ?k5J mff`9`jL˒Yse[JƬn$+R\t`׭*m\KV1A蜁/A¤p8x>HG0oYQ ., K?߱†e':dA;^גּҰͩTމ#oO!xs *Z yiVXS{@7q:j/QaP)E(fZ|]: y;[)™^pT8p=O+rssy5ҙZ&u/1p{?}%pG\ڎJ.QaJ&Aq(Lzy篧p⻃iՄ`E%K ˲ "8 /SH8d8 4 ]8$[ .7t=PKߧ( yPKR2ߧ( y geogebra.xmlPK:Cgeogebra-4.0.34.0+dfsg1/icons/mode_distance.gif0000644000175000017500000000673211516655704021343 0ustar giovannigiovanniGIF89aϿppp```PPP@@@000 , dihlp,tmx|pH,Ȥrl:ШtJZجvzxL.zn|N~ H*\ȰÇ#JHŋ3jȱǏ CIɓ(S\ɲ˗0cʜI͛8sɳϟ@ JѣH*]ʴӧPJJիXjʵׯ`ÊKٳhӪ]˶۷pʝKݻx˷߿ LÈ+^̸ǐ#KL˘3ko @= p"3!F=FkаIVp6g'C{ԕ@@nz) ]1؟ awƑ R'+@&ʼn,h5w"'`)ĉ =8"I< $50‡\e#x] XFb&=j& p=^ mf!q F \~ p LٝdPhBR Rgݠ&ܗ'uY+ʷ(j[R!.* .ٝw'k )"gʂM;!-qj&( `v+gxXCg% 玆  W.gCR{ޘ3[ܾ4J[ݻ3[ܯ70 vkA,^~ G vw/gb1 v*<|ʬ2&[4 #y?Vul` X:u z[֤AM% E hנ)iYoV3uq]o$w6M0wޚ ^Ac#j20xwc&zĕ~YϣI:EҎxl~8˾93f+߻ ;oEwH<WS߼k6~}gv俿<ӃS/t8y{1^(g@SA7+K&X*J Tl}{B06 zvVbⷹ(9Dо Љ$ygr?|@"b&\ rQ,t s78P#F5ǂY mmC@ !4 ,I0xs1pG- ҔJEL:tt6В5PM#_(ZⲐDA-RS+M5, ,`R2G䣀i9yf )cVR(@pqo.E<*?$A)xz18loDN zJr'c w |/"(OA3OW7<ѣSѳ~}6/{D8p=mSzK='P|ܾ0=]oqs~/~l&>gC/?/"07Wǀ'GUx*f2i5 PbN'\w Ʊ$()x=,}.!9(2$46X8;9=}?Xn0~Ch(EHGHIHK:M}OQX~SIU(8ԅ!retyBpq|F"j7lp{m91+grhwѲWvz(n5>c3{ysf10w*'(sE(ࣉ+7Krg)`su X76 ҉9s>#vtT#}(yטk׊׍@A'@9ԘyoR7ۘy."ӂ75<z&uTlN.nUj琯Ō'Ecgatjȵ⦌ Ig1F['Ƒ[;⦓@F@&DƒfD׎D&4kc8YqS d!;geogebra-4.0.34.0+dfsg1/icons/mode_orthogonal.ggb0000644000175000017500000000210711516655704021707 0ustar giovannigiovanniPKR2 geogebra.xml͘Ms:׷B=-[tZvM'L;anŕE =W&9_RpEfV }%D2>oAirF&R{Yi4cZNXMY)r+3S5RZÔ,%q(?uC?`G((prU)iKg$n`E,F5 ǼLD1C>s`޳ >HT(LL3WE *m4B؞V-NU#LڌfN#vsm"k S@z9H3;\.>lzE[apX>TDHg8n9p*̪6-;zk={M*vٰ͸P#T[bG]ރM =8LNIŧ ol * \ n{[Q]vi˷RV uCҺJ)*Dd?*kcvm%)eB# Uἷv3O8# ge/RչJ[K3ҹH'O:ّ{Pv鼄ٕe,ߏY~"V~ )}~n/H~C^cI`}#_gF/g)ttR0 06vUӮ>[}i"C ُ϶77Jhxg6S}MУq$a ݐD NÙA;Iyی^_=syY~9z0հ5ǼDzCt.MRF  ='?.pXQ7ٽ'/'?o}SؖKQ2~&a)>GC`PKgdTPKR2gdT geogebra.xmlPK:geogebra-4.0.34.0+dfsg1/icons/mode_vector.gif0000644000175000017500000000472611516655704021054 0ustar giovannigiovanniGIF89aZZp`P@0 Ͽppp```PPP@@@000 ,ZZ@pH,Ȥrl:ШtJZجvzxL.zn|N~ H*\ȰÇ#JHŋ3j& 8 [M˗0cn!e<6AaгhOrӨSj*!ӫ8cZ>\wVD8 ͩ3OC;cr<@]ϙ{zn?*]NFz/ugSeQAOPx:Et?\N:#wNQ8P AexW#G(ksbS^870$ST}!idgǧ@2VYRSظ^(E:唡T#YIR< -E\&QCM:Tpd6k(Jלq tItM n,)f+ԥSxӄt > gfБ0aMsS&DUGpN , )/vuB,aҐ.!3 ?MڮVjn,ИZ*M ѝFΥ0O N4z25\)-SPtH)ΉU"4&z*֓%B-k #Q!p R;T4 +WgU0%xY\xV ssEue@bZCIA78Ҩ}["E.P@h^VFhcEeDKXY) U47E(hc -( -H]`Өk"yHE=QvWe+씈τ.JΗ0yp=q*SxC=OOx` E s `A;&HVH)m5w?bu=^*'x&;wb$KIy(d;rO R'5_%ߨUc:rkeKZ(АQg0aM0Q{=SfR6L]o n:m `Rsܸ&}֖O-hТK>֔Id @?sz[[ϸ7{ GN(OW0gN8Ϲw@ЇNHOҗ;PԧN[=A;geogebra-4.0.34.0+dfsg1/icons/mode_attachdetachpoint300dpi.png0000644000175000017500000000214011606352460024155 0ustar giovannigiovanniPNG  IHDR79ѳ6 pHYs.#.#x?vIDATx횿Kja+"5 %Ƞ(B B 5KCP```P^W~yJBM;>y5P_8M?+.LRpr쵵d0RUEAJ$bLHacae6qqSS$Lb@ xXL8Ԗj#bVWA! RTK=13WWW573CŢXs> BR♌yYFLEU[ 0_3^,nq(8fx˵50 Wa/..r(9dPhg*fe0[H$BN3 DOOObaY/cccCj:-.j`JĂCrC-xc4^d-0,UdW DB-{Pb_rO6ځ/, 療nz~mookJ>99y5gf"Rru.YIxp.ZWWWU`ۭz'r`}[)ps]]]}  +藥R9~{{{zs k \ݎ԰p|)0xvvFz[<5=x`arttDV]5sKKKd1;Io[/]]GG7S<`oof2xLʗ{GH8c9I"(76[sb?,*_GP" rznVa1«88\Iƒ3`t<dYwpb" K*.E \IENDB`?jr'/'j2IENDB`geogebra-4.0.34.0+dfsg1/icons/mode_vectorpolygon300dpi.png0000644000175000017500000000274311605640207023407 0ustar giovannigiovanniPNG  IHDR79ѳ6 pHYs.#.#x?vIDATxMhi'ߓځfM4Y-KVIvcwJ9z "=Rar(ERBsaAx!]-"c9}mg&)3& d~[t8N.amm<0pLH 8E8}RpW+G`5/zk"%C l6F\ԹPhvf'χ+^|:j)p:52-5>!v"\ͧIENDB`JK$$_T<D/&zuyy,D6dlTJn444FU S;::PJBL$kiiՅZ{!}>_^Â,5'ɨ@̃ʽIENDB`p04*et`Cgd$ 2zŔ? Sd4MM]T$IENDB`IENDB`geogebra-4.0.34.0+dfsg1/icons/mode_text.ggb0000644000175000017500000000211411516655704020515 0ustar giovannigiovanniPK R2 geogebra.xml͘Ko8OA谷(zV6N:!ɢ x7VUr|~JXDiÏ!9ϡѧDx9v|s)X;_ OWF J\TeoՇFAh31vh!iYΨX}Rr&ْe HSd)N K sRGeG6ԫA,cT+Q]SE6] T^W9de"ߍ_Cj\'t+⨗:a9)gMh H`N,6?*J9lkʕ}QB& e#K*0r?%ƚBO둈k*QD2fS^}˨TE6\UhѫÄ/F\'{MOx*,3ͫ[GQa*[2r뚴YD}>mohRMP#T`Ge%o?{:-3ROa:|VV$S WTLč\7P@55j*m %^Rl)yҦKJ0KPjseN|XR& 'l3gvpf= gbK{\W~=E:#t,ĽHf׆ٗ}Wy4>`Vڟ OUIALG`|6uqN33JJ.yzްwR!4]yJ6,Xɨ\~\~dKN5+@R3b9-G^RHv#҆ ReG6<2B`讹,kY)p(0NAa܋=tMalQC#5 [6UB5 /hY#d\0tiІW 9zrV8r1Evvg%LYk3 `=F"^#\bJϦ7N!vTP-k  tŬN]2fQ($REfsw?y%E"p!tPذDG띮z ˑU. ۜJ5B,vԕ;6G0||ǐ V8x3m73>oVb#nԪZoGj.V[_\{+]J8J.%`!K_qk\n[ Y-gjߚp*V8p gg+uח[˗ާHglsڑNt=KvщҽH)N-Ofn̊WJUaP}_6B?$faI?<(b\N(k i;>Ioce|I0hAL OiZ.`2 I*|\;f%-덩s~QstV(hy7B}fmSذQûagSw$e` ,?FqjYG9Gw[/PKpBxPKa2pBx geogebra.xmlPK:geogebra-4.0.34.0+dfsg1/icons/mode_parallel.ggb0000644000175000017500000000207211516655704021330 0ustar giovannigiovanniPKR2 geogebra.xml͘[s:ǟO?8|tZvM&셨#黺` &g%?wxvYD˛zl,t:o/ g`"6brP7r}/3l-#G8-LMC.[kc%W H39+GN2lOBHMmxW3E^ZDu͛F7VBEhp*?sC?Rqqպ)v(N2ϧA/CZ\ Γ΃-6U H0[–OY"EǼ\}|#Wʽg|J5Q9pWճ4fxZD8uTs K58[(%Tj:.6td6l*,2?'j#1:J/ wo|| LttKYD~0tTѥf3!E2K 犁CT R Lu/$aRab"^u3ެz[Sc}CP,%R꺔IG m.vʖsp& θ'~™Y8,z\t_z_"UO:~ɏ,CH%̮ =f~̊`oq=nKy| ,V4&KF/g)tlRnxFYp`Fn}6}Og.?D1,Ѷ 1p'o{.2&I%nLx2D ސ"(7KUgxZE8& gv$iYY8J:J3yG[3sҙI';M:ٙ{ЉH-4f[o7oyiܾR_N=}Z)Ц$~:F+'mjsRi˻PK o PKXR2 o geogebra.xmlPK:geogebra-4.0.34.0+dfsg1/icons/mode_join.ggb0000644000175000017500000000170011516655704020470 0ustar giovannigiovanniPKo}R2 geogebra.xml͗Ks0ͧ $3!I9&Ũe*]I&C^@HӬgZ&`˂Ke -)[WӅ*X(W+Q]pQJ;pxA-"mٝu|iY$Rb"䪁o=emEc5n #> Ԕ]2@r(K\2Nd9Vsӿ6U8F8=YWXSj_/JK) 'i/:^xl`=1Kc|Q5V_١t{?7\<Ȇȫ74#ߎo ouۍw)hi7M=eE|oiف j7K2|חۿPKy6PKo}R2y6 geogebra.xmlPK:pgeogebra-4.0.34.0+dfsg1/icons/mode_join.gif0000644000175000017500000000526311516655704020506 0ustar giovannigiovanniGIF89ae_p`P@0 Ͽppp```PPP@@@000 ,e_@pH,Ȥrl:ШtJZجvzxL.zn|N~LF ]`t6w0 6$!⿉$c8 9J-Iv%TnĆv2EPą05{=34J_ZXĀÚvFͱ4>6ȡW:3T3OcmVٽv xPD +CZSdN]B}Ki5.z6WJfz[q[X0Uݼ$ ax\QN~2Jsmv9;.(E{TKgkˢ2Z|"Kq"%g+܂D@p```XWD't2A=>aH؅HԓEpv(u" 4#Gؘx"csJG=y}^|xH:B^q>~BЇ}f $w.}xex &* i^!H襘 S`xDPE驗 I"5 &z()P믈@O ꚇ ^Vv8J? P-fu\~KmC.dE[+9@oEd/>"m6% pĦoT{EFyB12p$g7Sџ[Nj%x@gJ@̯&hKK `zA .aJ"`)bτJE%ԵL0 Y?~\>1G@ h"qH'Db 9=&az`çȊM K X@,2PE0|(!(@ `t뱻7axJT8peKlPx--J 2L\T.نIC-"P )ÀG2 bL_ 8F%Flit C"L2;*'GF|17>k{E."=:Չ9#hr_CaAu_)yx>|J^zĞ,yN2x9]T@ ? /F6rbGA G wupcA%sAAAjE a@e!46d!3r1#jrOB}̒9 _y$26DpV8˖ += $%16A۬R @ <ѮdH@Zi7X p|Т5K򂃁C kp8dpjW|l2ā.3/8($c<4T0$' .1 5.$p-o54/0+q-8m8<p? b-Cc;SM2 KfvM4C/]tj3?GM-J M 87>#)-7oE N}8 J3\CLhSh 1+>묔 nq| }zLC܍;YMLo0x Pʻ?{.~Jz w i C#˕fXInk y(Q&jH[珬ux79XL!,0`NhXP[rH0&5퐰` Th À!'x DhǢH~Hp93ʛDShQ+ 5Nkb=s !B F0eG!AsĜibܸ87}*$?`G}@9AI fi2xBA"!J4!ȥ&"uF +DEјK#+58^G(UDw l\cD9pM!t(T̈́D"^J L (%#aȧi$Xm N "hP* '6o+5!R$[%X'{WOAㅽ,={pMھ=!X;pU Ir{,F ӡ P"'YG~|X7 l< '`&B$ /Ÿ07*"V#s VՄ)?  ZX[L $ 9{8 R(MW[HSP p` GE Hk RA֘X lh(S ؘ(@W8 `0|ZP 1qqGP(BЏ yP( 4x*Bg @?QHe oRy R0ov >ذ >F0JIG Y/Hðm@m"0&y)VI X|-kU1nP< v*Srf_2f  6ncD4:09% '@>k x"79zy\C7ڨD\⹛O䨡bɝ739٠Ʃ<7qr]lHurA@فc57W0oΊQM^I5 yʺz#ky{ H1z Y@5 P,O6B o!kRkuPV1.d":q`|j^@9.83[в;@B;D[F{HJL۴NPR;T[V{XZ\۵^`b;d[f{;geogebra-4.0.34.0+dfsg1/icons/mode_tangent.gif0000644000175000017500000001111211516655704021175 0ustar giovannigiovanniGIF89abap`P@0 p`P@0  0000@@@@p PP00``PP@@PP``pp`00@ ߀``0 Ϗϟpp￿P@@Ͽppp```PPP@@@000 ,baHF8,$>>''̮$,ߨ8FG12 GG 2 HT h$\ȰK89Hb*j8iCFر(S2{V ʗ0yX⠕ɳvJTRb*]@P"9+ԫC!͋2z #4dӪ,ڷYr ÙT0g|JjS1<:*3{3X ͠]%6fZsq=:Un[&wٸk;oY~sMaM+7AA%9O5a]U4RZ!z.$?y}e܀sv&58^vl'!wfܕIi^&`bwerۊg ׵4FW &H0cn@ΐQH!&6A1&%n#nro(B(J0PLAřT`W9M0Ėq}$cNQŚ|kVt6$#EDW裐Z1K*PS@駐^1sZ*ώQX꫰:Z~VDzꑋ$Ğ6묚ˍ0Y>W@A< A0jVAśd:Ļ:A&g.R| 0&irK&IODS00YbR"7[EMKNHaSh0-]~°Z!EעSdk#bV1h DZE4!̠vrͱD{z@/ĹZҰ`*({J$ǟ5*xP 9٥K0t"{Rq4ݟӟ=E_M'F 4s2Q<^|JE0Uy" !çY.@ %A`H5EM4+18H{* ^;JNg) Sސ_ b'6%8?n7yE7=~tC7<~kN."@0&KO9>O)5M*IG8@#JE³/XYW_c!7+-:LWadQX3ZaQ hx $Kźb  ]!ٍ W,M0AL9q,R-Ź, zcFOaDV$H[O1&GlPDvC: LH@G9GN3?Ak$OWaxh"Ef6T)MD-kF z%}E.ӬOür;:Rf{gN̕!* yyazf _FQ,\>>B%P? 5:Fiwv'm3K,ش;kSs>=_TQtPM1g ^8sV,4H̝bDM#fG7&ˑ0yO3j̒ꜛBivY*% Kƿ3)fJ Mcܹst|6&$xoَA'ڮQ'޽h<pɴ'h_P3|Caꭶ'UM& Cl^8 Entߜ̱N!vLIm̵KAˆK+D.V}S\M-6$Ry+=M{?j"gHBə. $x7CEᯨOC4Pf1udF>8p S}2P7`&.Pz3;dѺ𭖙> ;ǬBZx0W5Asi?k;ߒ?%/:0$~G0j?·Ql ځ!B M{ƕ]_!|2T{Ap S[*՟# kK7¤&|G AS`Gw X8LD>5lE x7-G@@< '*1}ࠀzG,p( )KPrx .24x?)+=G=(,wPeH x?@8r!~0u:' F^s8@շ&G)W>"X0'4P ?^(* x%2gJ'V}PH= 8؋q2RV))i$8%(nQp@HԠ,'"H(5Q艳` '59 ژ8|C=@؋(<0C1q&c'h i'S(+,`HXd YN2*[H K34I 0%YvH,*C*P=#0K99S,mM"])M8"|!lbbT p/&C-"H=w/XM= x>C#XX y0!E͂P С>)&9ؚ#3hAE-Pi$IqCх_Xaqa)n #Q9X _٘>2q!'@s%v Ħ"9M@8ҙhX/=X?8Pi* /Є1衈X3KϦ2.>i⍠PPNI󓿢n(:ɓ(P hJJ8U+)1(I866G#S,6 :-zPr{*ڠ<*X @JbvЄ*0ʨujz qMq* z' t(ꩊ :w z48܉YmJpkrɊ(@s:IJ zk F暭(Bbڮ( jr]ɦ U'@ : Yx '`: V'縨; (m{r'*ڲ"2 5'7~ҳa|D{(HK Fp"O[~~S ؝>~bOK '{ VۋzJjl i I>O;(UoX'N!X tp頃`g0ªA& ɺ K<f(ĺIਐ*: (baI o*[P ?[Rm+' z ,(xe@nÒ Z3 v3 (UI 6R Q,&:i+||)" Y1r( .|P6l< =l'B*E 'נLl-R Q\ɀX ;`u0^L A<^Jf\ 8wi< K@p W<ǵ@v uDzp$ŀ\ 7Ȯ >ȰPƌ< oȰ ǒ $Zɢǚl {ɡǙ0b< \ʆ;geogebra-4.0.34.0+dfsg1/icons/mode_ray.gif0000644000175000017500000000472411516655704020343 0ustar giovannigiovanniGIF89a\Zp`P@0 Ͽppp```PPP@@@000 ,\Z@pH,Ȥrl:ШtJZجvzxL.zn|N~  `@,3!tm)f1j8t4Z#At()-B3D` mBA*ЄvHv:s0i307t`.SXCP l2W)E5ԵBɮMs9Va6+gQ-z4100:vɽ̊W^;[]hq=rˬo-J7ڮŷݴ aZ rYSJ~.5F]iN5{)C{wERs_uۣ ThrU!wtq)%'XpXi̥܇z`qpэ4yP0")CH<{Dl7RwB`0x#פ%Q^J]YG02h0H90=i(gt{&(((@ *GbfBH {P_AAJ *<0VN&Ck}?믶vqD> +-$%o\N{l}&F9/aҮ+Q.+m%`tԥiTKF+Qud,yF=1 t^$+Q0!3C4<9Atm2t\T POkQTnjY/ t_ ao:6]Pi+Z-F}wJ$]{" {9@GS'nu)-yxLxQZ0ܑac.ĤkD˭o!Y@G׾=ӪKRm5P[grLpB֨#7BOȁʳLݒ"]DOL0$*H82,rc8(P qib~e WX$H|DH7X#*$D)*R : i. %L~,'8r\آ>J0Q"Vj&_&Y!\ܣ-}r+D"L.c,YS*}VdKԜ&M.R"IJ(qfAd9Jrڤy\MLB/A|2a' d ̔ HJs ]5%⡈O@ɐpj4 䄏3?NѩEhAމR#l vli)M|jt)@# >˝hBОQ!0a/RiSxT5r,9}0HPRtSAa%`Gush9-5q 4]˧!*n8]+BD&I !\@%l4IAPdݗ8 @FF0lmJ0?T -RE W[@:ĦR[_G T L9J6@o+SfPi|hCc+ȭmF[wd7ftoڶ@N4}C(mA_:͎C и` c@gq)=Rp7\U8\}]\mmy buHv:Mo޴{.$&O w@GnԶP0]щҚ\9- WP 0  ^A=yDKd 6u(S*j7GyC=`!h#%P⹢N8D@\UEb@|Fd\G`X{q#V eO=D=@P @ HԇB fXb~PȵSZD EW):JmO BlO96j| `E'`ꩨꪬj*a0Z+fÏC9KOyʕN lP +򉃜KRSͮU)QS \k&bli H d+˶N Bk-D(T041«2FJbB ĀqA 3C,J+E:עVm/}0J54`,b q MtWCЀۍ  \w(?@ͷH W4a)@-7c 68Dז/@`B˴oewP3TdwTwuP>g"c#i> X  L@|SW/Q /85(hU PrRx\'6AnKXAD tS⁤D`jS$DHB*"F:ڂ#JZ̤&7Nz (GIRL*WV򕰌,gIZ̥.w^ 0IbL2f:葉!cK8q( cҲ8gtF56AZJF8( vrz)? 6* (8"ഒ=sd)VQi4LT&1hZE՞z HGJҒ(i8Җ-#(Ś8i7@ P :8 HMR(uPT:N)LtXͪVqJMt` X(shMZOp\J׺xu:׾p'9hOV2iUMWmNRHC%M>F%e3Qgz$Ex4_ڪJvHp'X\ʉ6ٙre#KS+Mr:ЍtKZKͮvz xKMz|Kͯ~LN;geogebra-4.0.34.0+dfsg1/icons/mode_anglefixed.ggb0000644000175000017500000000224411516655704021643 0ustar giovannigiovanniPKa2 geogebra.xml͘r8ϓ@. JrKd*U"5$hK~y<4HHK66X6ɺQU9=$˴TVO0U.ǵ@ ==co?muDuu+=$ڹ*_dg? ՝d*99o_eU*`VzJm XjԃmScu6-TDivbUUg7F)# 1A2-\ Q ej`7N,v6uw7Rk 1D kUWbۺþn 3=>rm]֥,BLơ;ERikd^KigZ8eTS @Zi98 [&J3tc SV2^y:WUQը6n96abv+U58i \f-43ȋKGئֲ3G: o}q i52C{*gFU A q ؂ڸٖ6V_\뻰m=%(aGiեPJiLpmNrBfK>D8WoM8Usis%aY8Ҁ^:oU:/z"++-餇I'=tGS][fe1Nne0nǗ 7("bU`|p48ay:0lḨ'=Gx R|Ԅ,hV}}?3\=D^gFiQ1#Fb_!(KaO#PWhamE}9~twG2wb0|= ^lipr'GFV ]3UI8Av*Bԗ Ц?|?mYs}f4C# $d48N_I`DĜb%])o?iz[08<<EavP8 P_&F\btyN'KcQTI!GhYwnJPKGE[PKa2GE[ geogebra.xmlPK:Tgeogebra-4.0.34.0+dfsg1/icons/mode_tangent.ggb0000644000175000017500000000215711516655704021200 0ustar giovannigiovanniPK:R2 geogebra.xml͘Ks8;B;$K~TA2sCv7a + o˲ %Կ"{yWh+ur{Hir9O㥬rZTfQ{ިOU]FzH4;+;M;f+s*U >9wߥ6*c,J48|j a7jƲIs)QڕخiU~_Y_RW0PcLYM졽k" F &4`px<?BjSJ"RcS4~l7{6^K]NT0m-&f28k&ZJ p2v68]&X,$@7 XA\oAUC]A+ -Ϲ>yJ}U46.j'3x~p~R-Th#k:8+=ȻbǐVE! rim4 lUT\č@;o=51(װ!GJ;J.*dV*]mqu:' U;[9™}4U8_pfˋwFKJ[)ҙ9 '=t(tNav}0cr\[r;![SvÄp"z*Bj(ZL0'a.i.jۺ3Q(뫨4,0ekv{B~-;sʃtrm@MӾהBjOaD4覘2Ħ"{ <,TzNMe xck,q?Wgmt |ꄾ]zZ?I38BJ܆*Lx@(a!T> 9 pb‚ 8AcqBF}`̓LċعteU[P(a(Sr1 j=?. 0S̥*,LcwZ$<] 9 ! ^\pkR]y̅["Lg7PZ<-R;YjchBH%͌mxnW3:E&xiVbRl4d/(S(8Gиdh7$ ,C7  [6UF+<BlRRRb5Oڸ\ o@2HEȭ\O)fPf$)+jBL4b7ObPB%Z0]|SF;4̥"ʄEd?y5GKm"0{K@} 2|銬=ssnXҲMP!TaG]9'Ƿ8T/3ROaa6|Q.kMxdTA85T\ĵ4phA 5߾}X6ԆR)EҶK.JpHoJ*S\~(@wTc3~kIW|t3;N8 gS^tF__:*z"Τ%8'ÒH)&٧8f+٦0{>_hHѠE{=(i'qs _=JCZx68d4١gR'hIw"s+/z_H C(0BĬsRuJ۰#k?h!s89":ˠL>yyL"/GkId'n1 !&N^~&p"8?M4?BO}\ԝ!Dqo}{Z-z0ӣuwiX5pü~}-{Vɼ0M@y%SWvCB{0ێu PKPKR2 geogebra.xmlPK:geogebra-4.0.34.0+dfsg1/icons/mode_linebisector.ggb0000644000175000017500000000174111516655704022220 0ustar giovannigiovanniPKR2 geogebra.xml͘Ks0ͧ $3!ILsM -* |C@!1+iͬDxq|s)X9895'pcG'K߄z3G 8Nf,gT̿B*+k5 y>cAHҼDZF\/2BHa֮h0Is1ZHԔs=+ qs#?^5Z~2C~mōAM!F4օ#C:J>"t >9+eDh'9W=Nj%j RV:2U;-9|/4 xZD8eTS I:8]F(9|sV2WY .Ϲ BEo_~E-3thxzc5g3LZf+23ȼ$({=ESEmJ ;x-y;n/CR^HI \CerVےjHVoRl)yjJJ0䈥/%T*.-Ζ2yp& 'qX8-~.U:z?"NoO:qIO,n H#z8fٙʭ4*swC/^~hF5FzǠKcI`LlێdQr~evݛ{+Ƿo{k>|勼HCܨz;k`pꦏS|%;օrk]߲ b1Vw`Pg׉+ynFm}Z>aEPK+WwPKR2+Ww geogebra.xmlPK:geogebra-4.0.34.0+dfsg1/icons/mode_ellipse3.ggb0000644000175000017500000000254311516655704021257 0ustar giovannigiovanniPK8 geogebra.xmlYMs6=7ûhԌ";Mf4"Ut$.>HɒˍRхb}@R׫EnEU=c2rQN^{`ʫ)H+`j8ˠU_+=%!֬D!\3Uwv\6e3vYu!nD%*l0.X1B KURV҆R#tG;t CTg&oB䂕:Uֵ̯ V> 00 "P1 (N ְN&;yp,\q YQRS)bYRR5 ;I\J1Q9-Q~2WE%KLqbGyaネz)8Sa{An5egJ8<ԔB}h/s 7,&@w1bUXЋt?{s.K^XPʦjjKMМgbKvh9J-! fMNg!z!-SҭKYΔh|z C^ؕi]6 1lbr㭦XۋfgKN\ϭRWr672heD롗]k[Ik(u ⰥP[#ipG- Vd O%NּCh-DjbUvZ~>ƷR*k`MN Due?Lb TXܴ9_~ϒw{(/ѳrx㓧q|rjo#r fO|lY~i,N])ij]jݫVjVVz('^oict,JԏL=B}eRd23ٸ^rKJŒˇ{,dV𝾾}="wh:VLyyd Zk*vkY0=ęn#^RШ^#?E< \Q G-v^Ȟ~>sP#qaI} 7ы5$ 7ŃJ8T *`%TGˢzWGVjUtM%t; qQV#I !>~QHIv{L!8=qca#n#Ob\> VhqJ$a }Jfag_PK&! PK8&!  geogebra.xmlPK:geogebra-4.0.34.0+dfsg1/icons/mode_polyline300dpi.png0000644000175000017500000000247311606351360022330 0ustar giovannigiovanniPNG  IHDR79ѳ6 pHYs.#.#x?vIDATx횿O"[DduybeՂ''''ZJ:0pbH~(݅8`>ߜ u.V^Xx {6 `bb݋#X['c-քG'5Ƥ+]SdLkU FK;?ZBIknw 3!0tnԖMY2q4'Rf_Z1a}ݸwr|ZWP-F1q+c/!wd2N*zqˣ)#r `PQ f*^窔%ȁ*-/,rcͺ7|Q777ձ3-Ɗ h3+F ZR [uB;880%'P H)薨=Y V1oU4Q-|/YDk xU+8e?aH.LX T6$⢾vwDBʺސQ[wq᡺M[^ob}#O>>ښ/u  u ^˝![aQֽә#24|E-FpݧKZ??36:]i*vt$Ș2klzrcjz1)߽P3WrEysmY8 0KٳDr9x~sS^O S[0Av|\[=>2⥰NX5葕;8Чxid8p"NA?^Ab0p{{$emĄ@'&Ţ>I}~^VsB Dg2>K?pi9N!++!%E?OaѐE}4O8@{ޅ2Yt@[ZkLjfԢ nnNgPQ;> 3!~wUPaSNdVjK,P#K- ظ}*ڵܼWxdFB_  *<UJo(;r$zpњzW<N cܕ+$[ҥ,ŜEɄJ d9ΘܽW!pelۯ,T8vbS|f-y?RhΒzep$_V 4B! يпY$  ܲi9“$󚝴ny nD}3e13Y]\L87ͳ n9hܱE" )Ojp>GG{RҒޟO 6qC $GlQo{ +z J.J q#v<Џ+޴ݬdȢ hyޛ$ye:x!(~BxM .$/;M0.׶X (;&fK==>hw p|acGv S_#}>aeUco/*j7,n)8;# f2YŕP$9rI}9\װg;E' BcaIENDB`@L\ &.K%b1q @L\ &.]=y꫙3E\yiܵ/M[3-jm0.Jlyq F\~͉ǖ/C__ퟧy^S@\[߯ZYZ^>?ܿ_KKU7oVݽ[Q$.H\[?Z_vmگ-}IUJW.mmU=|87竮\Z]=rXc~GU-.D޷sŋ9/!.݌-|yիU/V-7Uml "S>t pK@7c--UFoWv߶w&=/#.;mp휤/ǯ1Y$.+ '9<L0%8p'm;y0q &-EVҶȵ3C%`K@7#ǖ}mM|Enį҉K,nF-휥˗vw'+r-.ݽw^) .݌[Zil3/nF--*[Ѻ۫Z^wϼSB\)\Vzx`YP`JK@7G-ۃ/(~zxLq ȱ̽_ƍ#-.H\9rlYYl_֟t|3/\Xv={v!{`K@7G-O>ŋ׃ku+~ܥq 0E%#Ŗ/-mnϹ}v-.V_Clm nsLq H1ng+…~#, Guz>j?wN}g^)#.ݜD\>cҳ?sN;"X2I\я.ץK߽ry+znN̥+W̥ n%^%#ǖ9-[o]u+.^Q?ɕc~-8"͑c~W{zV Ln:"מ ?{ 0E%#ǖ_3Lyױqc9/n[cn|գG`K@7G-UU B~TmbmZ.NԢi~5CU@(LbcDBRFhpcNhx'P*"n އâg.^0;$W Ȫ0V据H͢uwfm'>T[*Ug--&zZ/6ZiY p66=8Rk\+5Sݬ`qc?F[4Y O㣦jZڴg?H&m Nonp8~ROٞtVZ>8ұ-dkTPt@' yu E3ɺD{5v dbU$T| [q 61VԟÚC}$PNt<$o:[\aagpڜ"ѵ p>xጎ3>M83 gS^,PKZWK3ҹ;Nqt3Kwxv鼄ٝgYyB=?+$f[qK%ϋ:_?@<#y nrzAD 9Eh` ?-IxivWGkGs V8T\.pI.SF9qH/ ,r 8Ծy*2aB0א]yi p OjnvoPK!UPK R2!U geogebra.xmlPK:'geogebra-4.0.34.0+dfsg1/icons/mode_segment.gif0000644000175000017500000000453311516655704021210 0ustar giovannigiovanniGIF89a^bp`P@0 Ͽppp```PPP@@@000 ,^b@pH,Ȥrl:ШtJZجvzxL.zn|N~ H*\ȰÇ#JHŋ3jȱǏ C  R&d͛87XST p jS˞0| ʔ( H3Qڴ H@È`_B:0eXuPDLM-tic#>|(4U v͇P޾gzx L'WlVt"`wNBhߧ' <8GPL `wDm] E'uM!5ȆD% whT@zPÁtB=Pw b @m3P8Qb8ƏB)oDP-)[:9v7E)eiT 5a [FTs` d5&b޴ ^SwtZPyCge(x(b _5 @ԗnMPEvBIGgԞ\DTl&*ԇf}jc\4ht)ԤrM娤&,SJ r!8UBV؆ָYXp `,bQYˡZ/,&@2%PL \,`1x,Ї51*M y8C99(dr+IL#BR$cB%f1}[aR4*m3uF21}mH9J*cGtU c8HRa, &'H4tU$xIӨSB7dC[[SY1qWUycYܠ1E˚쒌aNgۂᾳsD, Xd9CCp49&= ob^0I{^&J}ktJ|''𾗼.٦uni5+7h#R]~$P"ܧzt$fr:~%: EKcܲ6fr-͸#^T,n[RR<dbU B8NE PKC E@{c!ݚAd0(E& _:ha0JaA./2 18 r5 )P@(ow^MbNf;ЎMj[ζn{MrNvMzη~";geogebra-4.0.34.0+dfsg1/icons/mode_intersect_large.gif0000644000175000017500000000621511516655704022717 0ustar giovannigiovanniGIF89a[Ip`P@0 Ͽppp```PPP@@@000 !!,[I@pH,Ȥrl:ШtJZجvzxL.zn|N~ůʌ ц ـzsle`AR1‡MJt)Zƍ -p蘱ȇ6dHdE Vl d+Wb 9uPßArh<(= RVkg5!V>:Bҩ, k ܹ@[ޓlQuobxN9u-Wfpj@YZ?-ʬEȐBlЌR-TvqF8x b0.͵SҕQswvc~>LBrHu aܓP> TzL%G|w|UyG?IvH{B5!7M8"T" Ł+rALI"W 1BRE9"!z4LByПOPJxX*Qy\FBAe@N5IdbA5V%^wPU%g$ZY p)5i(5 I$͸a~vf&vT(T2!s}>Z'[)o>Nt8G̉( :!Z**zJ]r몮X jr+MLAǺ룽A+j;fTS`=K rj.B䭬v-#^9Uڬ\[229*+^܈Xqo {  cA&sA:A75 %}&Tl!_ 0C 4TC%Ї2Q GdHHX<ݮOBdhLP`Eph-!   G:JmqH5 ` ɀdBR T4H\/DLeJ$ꋔj@!@ Z>!,@6Tڲ$.IY%9`Ǭe6Jf~Mf-Қm#7c@&@Xlݔن(5<C F7P ħ-S-qOdL֒F'xG*|T)Kߐw´2ijzTTkpiO;Sg&*# * qJR Ry]`'9=SXU=BR+W5䆻: vɔG5 dou:W(X#IjUZX.$T;5 l%WyLH@{*t4 aQ+>7u>hǪ n4|[)Dh5BhƐ@30-U͇FkKPVBRn# p|Cth d`5y=C %@vkHʈ05N%q;SBV8 X@[c:R=kWNB::dD`ըE*TW4`#B-ۈ`*ZsaK:eRr{CB b'.=MƃaYry<<"4XpsA9feBZFsm:fɥ-|Gxߤ6ȆW6t}@͚\v1Sl9o^`Ʃunm 6d5_1g:6:ݱSAfu&F߻Aqdx4ҶKqe,/1Au;$ޖt*~˼WaqL)3r& 2kEi-9ad_F|x7Cf+hs,-)4"./z9*Lo 1\,r[D!y,ldŨαxY^jBSRQ=5nKɡ ?|As?-k]]6. [)>=,(=ŵLuV$9|$Zdig_CG#N\ɧRLpg11%%`sCgR{'X1u} H 'xj`#|Ppܠ~&'˷t0hv0F'Gwy tzꀁ<ԁAEh`sIMBQxU6tYG]h`G Pۃgga3g`rjp%gtv{-G\h$HhGQ8Dx8p\ xvK82([wmH8X8TP 燽cxWŘ(8~ɈAԌSP nЈ՘{DHNHM8h؎VIЈxȏH uC Ar8h@cp爐DpH 8^Y䈓ay!8 A;geogebra-4.0.34.0+dfsg1/icons/mode_vectorpolygon.ggb0000644000175000017500000000510711605640207022437 0ustar giovannigiovanniPK>geogebra_thumbnail.png PNG  IHDR 2ϽIDATxcO$`1\?9y;/Wr,7Wnů… _.-Y gϞB]O_k+l`dQo]y?a7pt`mݨ꿕jBٳk.Ӱ3{z߿ZnjKWŷHbu#!r^?eGIENDB`PK7=tPK>geogebra_javascript.jsK+K.SHOO,TPKE]PK> geogebra.xmlZmoF?p2%| {i mE"%T.)5q,&/3R\ x4/Cgݛof Ddu.lɛ%4Y%{/&ۢΦY6MEZk47to?7򲑬Lj]mWL\\.0`l+ bׂW wYD+#%lUTX<خa~R DRvcrƦ*Ƭ} Ŝ `7+_^Ո]nmd/pY`Nh ƀ\˃VW wy Hj_7\5WYwtڻ v@qݡK;$6#t(u&蹟l4 5U%fhUeII&| Wz}#(h<pp]uOE@qJʀrps<!$A*b Q||:yYrHL[)-8.}D3nf"` %dLzκD͇ZcQ˲HDl! At ;®cW` Gn,MOԈ]!:y)}]fMh~/t]$cC $LOdGf5]qW\Jf Is$]1d[raV]-ku²[7WS jeunzZv8zDgCUt:7W= %im$N&otRr.p[} *1~ns>;E2:TUtgu<^Rk=1]̦s^ Ԋ1q ']YLkʳ1 Rlگa$u^)M#|eֲ ^Ejq!*q'T"\ZT-* SH^[70^fp_)e-zVT fH3e^6$1$Dh0TʀFŹє*4u > gkDieYJ]2Gr=DoVŰq [xpb/ 1KrJ}9jv9 9`DI΀ʾ#1:{7d=c&w :.fl3.+[v͏yr}4LiL̗U'U(>OJTWFR~Y٨N3d9owOQ~;n-ۇc ơ}Hl7x/͈Iȧdfh4=j8}<8(6(/&=U+Ě̘agS K͓w&nl?vdk${x&H5Ѓ zK!}O?,t1PK\J`'PK>7=tgeogebra_thumbnail.pngPK>E]>geogebra_javascript.jsPK>\J`' geogebra.xmlPKo geogebra-4.0.34.0+dfsg1/icons/mode_compass.ggb0000644000175000017500000000517311606351360021175 0ustar giovannigiovanniPKT>geogebra_thumbnail.png sb``p Ҝ $LdR=]C*nNPk1pkv-f rܰZ|+{@(K~.-;& [t7\]!bʺI09$ڜ$%T+{OMlfԧ6Fu]c8 ~25puפ2oЙ ~.PKN PKT>geogebra_javascript.jsK+K.SHOO,TPK7PKT> geogebra.xmlZo8W .IzNne}.p8m"KZ=?rΣlƔ |3endY8%"-3YOGηoE9:YY/JrEcM<]eLVk[mz4rnYG]5_Es؋רngҕ!tcY4mRNJYyW2k'NLBBЀ޼WJ ܂NvY9JUj|2y)3Q8e!SB8ZTDm^R+W]i܁,iT@oF--3-p444Dr#ʍ 72sR6rg (Y7:zIc=m5 = #rĉ3,uwO(3A[Ew3=d{ɑ E.Lx3dlIBڨiŲQ4bc|4  }>p0CT"zIQj!s=<24(0%||*^<;/ CނsM3(xjՌXGz) E΢pXdQu(2/۲ڠҘx$j'Sc?WLrЬ,ZL_Zuٞy,feNl|8u -qFnz$ΔĖ܈OE~[*e6u㑮cѥdR!B_>tnR8?E]b̥10Ĕ㼵qaL(稀Ve+diezaJ̈́T Be:Te#I&ؿ+VdzGSI ?.D(->8 CYE&EBԅ-0k ´LrK07_p7Zxg%Q Oc(D8;}Sr_L=o iI^-<Z;~(]H[dR)*@*!Ll%E 5ow! UݵެNN7{~8}/ 1Dr$t.VꄨX* 8]$Fձc'0YĎ6|b[ pjf>|itqimY&Ե 31yR.\݀+o-fMI.TX'ENȠ/"C51~x'|1}9QEESվCD(O3멜(?gϾYv?eg}f:S.EL7(.48nHv>9Qkz#\a) ]X&+` ɴ))>_M()ަ苙\mse'|0!=(ْx儹xGĪPvgaO@,h_CUq* Yn*: ԀFwd U>Jɋs9'~ݘ }\\cİCcv7;Ҳ|hv<#碸ĵu"ggQQQLzI/5aez6|ϋy'51cFR:r&ӻҮg{Nw sx2u>VrR?~fYVs~5k0^Rb_zF_rE.c}庫pVVU SqسcUu =SHo_d_0#oes?y(ڻn}S Qx'nŞ9=z?PKI;i&PKT>N geogebra_thumbnail.pngPKT>7geogebra_javascript.jsPKT>I;i& wgeogebra.xmlPK geogebra-4.0.34.0+dfsg1/icons/mode_ray.ggb0000644000175000017500000000167411516655704020336 0ustar giovannigiovanniPK}R2 geogebra.xml͗Ks0ͧ $3!I3eCo^?,ŞJyI80+i鿋4Y Y/X ۴ YG,GF)松qs}5!a)\m/^݊ wA[/|z轀Bkxa XKJD%Ѡ-(vHWTxa-"!)P]!I(/B1/e qGJI5Q0!hH'r '(@ y/I2¤a`"IIM +|bn$ pN-\I J 0!$0'3"|gŧ.'D}L ] &z>nڌ$Iܗ\Mw3MIMƒ$NT vVC*;n*x:Zl` B"D?S8<&V k\A x@0m!-T \gjqwCj& #=hw8hY'MJ9øln jqNtL=iM4ڤs J4AҸu1- (AԚA( J:zd7z?ASp&`;$lA0Aހuˠ#vl0K _n?3Qc?eJA l@˦C`$m8RКNtj@ PBRI F8-Pa6 w\#ovKpH*؀lL&Xу0XA=`GRj`p5QރDݚ@71֭%2Ё7n ~F܃j;7aӷV}iVvJv!plgjm//}tf{rh*wzFQ=0#ovr'jqn-5_mXHaHgse x}怹`gxg~!pvwv! oȆ"6=& 4GpJ0n gmMׇgB$pvs- J`lчhfJ I+E .Q -j8fePeXX(}kx`d؋ueXehe8$8HeؘVe8 XxX;geogebra-4.0.34.0+dfsg1/icons/mode_translate.ggb0000644000175000017500000000205411516655704021531 0ustar giovannigiovanniPKR2 geogebra.xml͘]S8_=_zvgw-Sl, ~>aB s${;xOF3*ft* "jE>ta'{teS"͒_ij?3c%SWl *Q)rȉavxRc/ r/${\vDeG:6:3&/Y+]s!dq? c<$q{h4a'z<кe&JJ%HYd\0&dioJlJ}ROTМU0-4N_9S6ZЙfZ8 ŔMo JG4גV"fu]dJ!Go#azS8hRH$uYhf>z1[ D`]Te7 ~-Nt-m{?XeoҰ͉TcG !:8\T⤂7t|B$Ъ@$TlōZ7@]55j׾S][JQ Mqj!{紮2]'odl9S}3yoU8V8p3=pŽiҹz9ѻt&V:WY:E:0>vodӵ0{nEo$f {0aEΌQHQ'Ye4̨m?Ya1ɺs}_v_"7_!Zf ~:-ģPl&ք#_`J n\oHb|[Ft9zdf:? Kw浵$.#9^X969^1˘s-?31#|T?5#x!e86}oc𵶾xLlyI^PK8PKR28 geogebra.xmlPK:geogebra-4.0.34.0+dfsg1/icons/mode_semicircle.gif0000644000175000017500000000537111516655704021666 0ustar giovannigiovanniGIF89aa`p`P@0 Ͽppp```PPP@@@000 ,a`@pH,Ȥrl:ШtJZجvzxL.zn|N~ H*\ȰÇ#JHŋ3‹@ C ّ(T0cʜIs0\ e 0pPѣ59hg+_"J*KO:5C`N֭z&`*ۣ4Xhv΄ D[lϺlKsa.#Kv :;ҍ2A%Hl W3ƕ~` 0hHU&hCl(\; 3 mqw$X`ҍPwB=.tv|b=d8˕3{ვOQbapZEQ``t~ dVqa& 6gU$AuT(N%EV~7I4AFy7(6" Ř" XP "M9"AlH% G}-dPM0LX)-%g>PA`y#D0ŒIՙD#M{SAFe2'NxY&iTHv:Ր͸3Ql>chjQꌨE!zvBͭ5ZͣH*Ɉ4"U5ufoy3ui6e|=Lr#eH 4}6KS+靖oLc=֚0%7A/To،\S+;u4 .9#5U@_r uv*dҤ8Iä|hMP`T}'΀QwG96:y;v|LS1iE@y0^KW{xEy> ME=0G]mTPTS@ S%@ {,jNs POy:^^'n@Qg:M]55n 11_|7Bxr'@-&LE>оq,IOA@`ۖG̥bsEvCC\ɒ8=0b;lmqf0n1ߐL. )!ӌd'1ֲh b5aHpf`fT*y _kKuv]dj`(sҐVJh ,t~ryleMΣ_ JF uF]0xJk(Y0i<yJ 5pWGl /udnMu<X5,"5F15H2JE>3o?c"s{Fz&2u8oI[@[FyQci ul6A.cg-ǵ8m7'fM8F>]xDũkӷ=hʞ#ň##=ggIQ6Q|l6@nSniwsZ5;z5C܎ҁy1AfRΓ^Dș/BPB(P&ja%G5a6|$0*,&}KK6ǯ9=X;0O`%@d2@"COOϿ8Xx ؀8Xx؁ "8$XT;geogebra-4.0.34.0+dfsg1/icons/mode_circlesector3.gif0000644000175000017500000000652311516655704022313 0ustar giovannigiovanniGIF89aaep`P@0 Ͽppp```PPP@@@000 ,ae@pH,Ȥrl:ШtJZجVzxL.zn|N~ H*\ȰÇ#JHŋ3jȱǏ Cyq NTCTm^NX^E`)_E քLPTj Fw@Q$RAQ8޵ D9 vEY`'8jct$ՏܧӇCvNG"9pO)%'TdN喘t`v%NcilBښ,&%A椣۝S|2F#QZ pDPcŖxc E%fPVgN(>@Vbb'i4EF+%4 JAf+-gP%Z,$V&=ɱN`i0Ձr6RaQ hU":{Z\ 8"> /+/!f/n]-HN9\8, SR,N|k #]H`*HU.K^]5̈́3VS 4 -]M}tN{OK5QhV_a5q52w=ut443Ntϱ6N0QDs5ㅻa7"ykRT^ϘK^ ΒzJyũ1y#4Vi#:aλ+ HD%wGbZǞ=E_B1Nd}% W=cǟo fN)\x0Zcc8.*rDtbUTnGѩͥ͂_h)=Q_&BV7ℂֺ!(D+N^+!tKQ?|YNEF)bl h1>|R*tG*ZeQ"Ȋz)9#G*:+h?$2| "W[z*"(HU4͈H,tg J [JY%+[EED].(O-kѴqȘ@VHL[mX#2$(KUXā f1Y8I_Ü+Agl) vĝ. ~ H&W n>ڄF8ɥG Zb4ņtQit i/ʨQpl`J 奸 *_-8EL("~JPs!8Ĩ%02 `X*6 k@(E"` L'TSD6K< E \}5 AkV"d tZʼ1>"$lr%5 *FL> @hEd۰Y0Y/d4GqBt"[!ãyXy pt>n%);FW~%pʕk=rS=W;^81HԴդL̈{ס;e)e}Z$Sv :kXԥCF#B ŬXƥG}dȀ?:P1FCD$4tdhJ "(@^f8y] } ŭ86WGL̘ aǘLbYX3ۜ7Cr1qbg-Fd^љf|'ArQ0( 3d8CpqscB㣵"՞OccxMx‡g 0^;۲8u?-{2"+ ~=ы q! VxoNX '` XٿQan.z8B"qr G1y&iGVr1wί =h. X )8D(y{`Оވ ĝ_'Y'b /p U \ؽ]0ރe*r}w »,Rsx=X@*2˟ ,a{w `#{a:Z{ZI;|9CvlF9Wԇp40GS ţ=~bW)Ԧu:7`}Fqy]@<9s`g/)/O}c.s2bcETc@UrW2,qCbWp;G/{'B5<5-Eb@Xqd$m0Ni_nncbH>n"*j,pX(fbxEbmsjS`x%'78EAfY"y&jfЋ#H(hĸ dƊ d HVHHfE]+qWbf:Al4('`8c^e r&j)g]4,N8p('Ig&ghԱf[1$Y4W"9*Ɍ㐸q⎂(epm'xW + u:Wj,Pc( m'HJWsX_@xgZu5_Hx({dYIɖׂpyzW{@W;|ln@Yy٘9Yyٙ9Yyٚ9Y;geogebra-4.0.34.0+dfsg1/icons/mode_complexnumber300dpi.png0000644000175000017500000000114511614352361023351 0ustar giovannigiovanniPNG  IHDR79ѳ6 pHYs.#.#x?vIDATx=k@mBD"EC}!c.~ GGG?I.2dt0ؒxA/{hPxh#G8p#4p;x}no,S`xbdV˥W3p}-`:Z)p9X \N X l6 $H&n_OO@<.`"k<Qtɖ@$"`ݮBRmɺT߳h4BZe iX,b8 &n>PG8cѨ]b.6v}rلmqX>[;XDt: N'^XBovJ{ =1)߱;xueΠ84qwu.t8^y54 w8 crљZz@%wK~Njp#G8NBφ7^) jIENDB`B`'IENDB`geogebra-4.0.34.0+dfsg1/icons/mode_circlepointradius.ggb0000644000175000017500000000227711516655704023266 0ustar giovannigiovanniPKąR2 geogebra.xml՘Ko6_An,>-Zz%fKQ_C%Y13"ojqSV4#>ruzz/?Yd躑S/#O;qqj+͔M<%;!mD)u f] u%nE%*tF;sDʉb)Zik Ԋ{l|aN3]^BZDO͛Fmx6qV$IFh 3Rm#~0 C-I'E/>2slp-YJQY7V3V4s5i.k^ ֡[)zY?kKɹԯ8u TsPz78`JK4גW$t. Ƹzg8x>kF"BKwz@ sše7yEm'^md?L1TAa3x Pj5>+1MU@5`/ܘ/u:*#Sf9ScC{>P%(ZmMԏ@ *[.13;dg6q8q9J#suЙйN~\'ӢD' C]Yf_̊n>inƷM7݉k(>aSw"2 `e?> mKW $٢mNyik=;Qj"+f` 7*bGQN~9gB%ğmI|z`ϫ7'IòS,y} [6EhutK6`q{X iR?&0N4e&t=[+5ܰEghJ&w1OP%?CCqEyJ2Qq҄k4 2I@=׳4 '@5DQ~ʒ8$Ȳ,(3 Ύ4IY8H0 e!8#4޺8th:@Ώ>;vg 1 OV }~d$;Azμui/PK|5PKąR2|5 geogebra.xmlPK:ogeogebra-4.0.34.0+dfsg1/icons/mode_vector.ggb0000644000175000017500000000167611516655704021047 0ustar giovannigiovanniPK}R2 geogebra.xml͗Ms0ͯO 3&$vi {52$I@J>zWHE9occ|ڷ*9iuۛƂ }˳CK+vsWBS%EՂ/eYۯ"er,AR3bAˌ s RWi{ֳֻA,a4W3Q]cE2Z2 c(ϱ;-ܶ Qq=?EJ ؝[o6Y|R"̒`f*XQp-d%4MH.{$ZD @2G g|IcM`*f$KKLhj$bWo ʢB-zv\t Zɀ^eQwX/x*-2՟c!ME4`Vzjzjpg HLZ&jK0ȲoE({ESEmL;xk&0]*1cj\z8kU'޾<;Bg ۱}r)wEPv(_o]PKX;54#PK}R2X;54# geogebra.xmlPK:ngeogebra-4.0.34.0+dfsg1/icons/mode_hyperbola3.ggb0000644000175000017500000000257611516655704021615 0ustar giovannigiovanniPK!8 geogebra.xmlYr6}nwH2c9Iypi"Ut$}ʴdrv4!X.gբBB qD]4g,x}p&*zDi@p?l1@påMv @]-Bw)xXMLx1ͪQ ,s0+/wn9Ş jQ9PʮZG력(2n,YK1S;BZ8혟BBCKCZڤdZQCkc1\B@#,6xnlnw&^-,!4oM9\I >[wUD\J ޝ!NVnJ9^9qu/Ң9@ ̀:O}t܊fuj-^c;ĉA~h>NZ3~|]uVa/X{XcnQAjѶF|^I[@^.`o,TAKљ ! ukvq8~8>}n弄yXGaرdX^<7}unZêU>j4E)z&OE#6x[^w dAfn+;= C7IV,bywcKUTbߺ"]<X9%,Q-B+kqؽe>o"FB\I?&fC2jYrO=],~>qG!&,O,IyEŃJ$p:5xPIHo2bq#M%?dմOUtMT'uPn79@0Mؓ,omkrGȻxF1&%ycvI, #0OrcA涏Œ2>&) DI8eZ@ NQR`9PK8YPK!88Y geogebra.xmlPK:.geogebra-4.0.34.0+dfsg1/icons/mode_midpoint.ggb0000644000175000017500000000161311516655704021357 0ustar giovannigiovanniPK\R2 geogebra.xml͗Ks0ͧ0L`rH!z0jl2| 4!1+iUDԔ㻞xNY1t9ˋAAxA&)C'pcGzyeP3¥HБ!͒շOڻ̼rL4'<1DG"$p9t",3. gRǧ`A/m H4L֌s?jI*APF~ J~Z%?qq=?#xHTC6v>zsIgIDJY#$P5)7_29sm~+3*mD# Vp-DǬ(wFO@5 $TT$`WO9ʢ"]`Ag#[n6G U*߉~ q @U:5\-tIrS tFKNeohRͰf2CK !8:Wf9bPv]>eF")U +*Ff}A55/vU[X}[JYJ-%e@3=1Rjlvv@ nC3:7U8F8=LYWl)uϗ\s#&鼾t$av,?YIY[xfxq]~4ՌB7$lVAw(t$n1ENà(Oza};}fe~w5M_FA/jA #7~v/(%Ͼ^PKr 3QPK\R2r 3Q geogebra.xmlPK:;geogebra-4.0.34.0+dfsg1/icons/mode_polarline.gif0000644000175000017500000001047011516655704021530 0ustar giovannigiovanniGIF89a]bp`P@0 pP@0 00@@PP``ppϿϿϿppp```PPP@@@000 ,]b3)#2%&2!+,/(Ď$ה#(/,+!&%* HTmZ\Ȱ!FF8H!m'*jܸOF9h8H\I6i,cD Z8sjB@HLУH9*ӧAN53h0 ZXhq3mL๝K|tjJ,޿ 0A$^,"#Vevpo9KC+{xn#2ħl)s{ߺ3_Ί̣Z RPOɽΝ]bx :B!)~Ocbק\]l}%7`}AbځM{ v_$)E(mfawxiՇ!wr$Z#Х(uĄt>݌}wKx8.#hzA(n:2wK~L_QW#V['T 8찃?h)> 5hIʊ,HQ aD|i&rvO06A f$ T><駏 CqVJ cA꫍"#S꫟@Pjx qАÞ6,Kή>B0ltr# n&?)f7nbYf÷xp&?. |: ^ ,<*6pq:#35$j=@0/5C[ <&C0UyB48j8y钿`? :pZ:y H,UN/604SC@g9ҟBW$Bԏʬ֍evb؍>7(ox-HRM2,22/STGT~%+3 9柄H">"iVR"tK FCM4BBؙ4ʝﱛ^2KD1†>C@@bBˤOAPmjLhLFTEsyXAHB!@;&E^O IFULT: l)4UV #.xS?GN!tOOea7sb `WEP4+jz^JEFLTP:sOPgLgBO;?u<; En/,a0ci @o(m>o(ub g~x̷>b~=^}%c̠w}w)GCPw0xVg*lt~Gf`}X)wy GyͰHG,F rb >''$;X0hJh"zP{᠁3 Z{~W@?ԠxL8}֠EX(G&w7 ZhXhs( ~`="~  kȂ{X QM8 *[-h<7XpÈx (l F3! Xq Ȋ9@9(}xy  '#xP2̈ ؄ / CE Z&  ) >и AH S8ǎ`8 J=;H)J )W AُЅ,MS@ `@*Ñ 7p'A*y3I9}))Mv1?j1l8H"6>l6cŏ 䐱1Yǐ(?Q )c~/eȃM^7v O]9*=x譤: 8@* Ԕ K,l0K׬1mU#u5{S ҀfQ3)  ̙l-Rs>d)T̛QVeFrP?*ЭE=<8!+'c~1crGwM?"[G'= iĿb~WQG:X Hb%xo$0Dt$Yix!$!V4bg%~t" YH (m=BFaE=w$]Ud`VSG8`[5%}ugjgklG5Yg"YaKV柈_{ALY&2EHkf5`&٧dꈩvߩZXQG@'Y J"[)50l8r"1`u p)5!*7 `\JDK{|m \E!L0 ãQE< *pƂl\QC|L=Drɓ C ì/b2OZ 8г34ч ],Pg"uEUDQ%Ԇה| -ٚRh2mcvܗ(tcqyWb7Hx .#;$nʌ?G[)#猄ؤb'+6>w̮&v;!G(>|} Sd{`=!e>}1_qӱ:1~{~Don!EC `Xw@!yX BЁ zhLa2)9Ághc8r a|%!(C G E*2!0 Er^Dp " .XF,>k$t"H<6~_5H"@A -;@H Ip.I9Rv6,h C+?8Bz"q#wG@/,IQa-!JR6S`BaR J { sT'MpLyT'Iz<g8J|I5cI|T5&'ύ"}D>yʎē?&Q;+(U%QS41E%Lf1gۄ 3O'0`YR!,էK頧F,_dF촨>5R71.Өu'!jkӞB mf,@#hW>`U*Nqؔ`$HJC GHAVBD]&@A Wʵv36C=V3P/pa l8)f+#f<_T=8KHgGF$4%Y6Lnץ#@ri!{\kKIzJIpp 8|=Eûe~QwEiZcͫ4Flza8NR0#ҥx}N: ;dJ'/H`'QM LU )0a ?+O&a@s,%AP)AlR-X"Rr8l&P?_+`nLa}_a~ `=-n}m#HAyTR `Z0+)f?*Vx~HwΩk+x=&]P`=i(=`w o5N|2H_'8w|v02v:/3'81P7qCSBGw|mfK"8z xQK1,(/_@Ja6)/]"@35XZCy3pR87`3ЁdӃ&b:PXG2B805}16GIxtEC7L(N8C]s8Z?E]qSBq\[x2c5o!Ո9wy(i ç58 `7/vS:D-ud!XGq΂/h8?lSBqg'ju;0Xo u8(׌!h;X0!rdჍKq</":422t蓏% r& im@{)vp,s l8M,oVrAj)I,r$y,tvjLNKi""tE)$Qg"'1Qv?k"3h0Y19'%AI+@a&;`8"Qɖ'h~ 9"R;2%6@xxh'#) Et?pю룆c;/m6"ؙۘ 򍲲B\ ww#B`)]r|3CЉŊ!i!7xg 5ih6(039sI)}M0\ȜiyILy274C#WX9:Zzڡ ":$Z&z(*,ڢ.02:4Z;geogebra-4.0.34.0+dfsg1/icons/mode_parallel.gif0000644000175000017500000000472211516655704021342 0ustar giovannigiovanniGIF89aefp`P@0 p`P@0  00@@@@PP00``pp@ Ͽppp```PPP@@@000 ,efpH,Ȥrl:ШtJZجvzxL.zn|N~ H*\ȰÇ#JHŋ3jȱ#)'<s(Er0Sň1sʜʼnt 3UɓC-*% JB`戗R.zM`arThذHp16IgrPBEH-Zb+C,Bba'_Fh!OzP˶qUQٲ"{3 {®EVCΙEӊ^sb؊Z܈Xsn]j$ke51fha $d&^(F?ҫOc 7arC8z?F= >#VF]k:x]' 9dhb=0nE3pЇSPQq@ʩF\yT"Lǃ rx%!s(&3: P lx!ui&>_i= )[9#W>bܩ!c}6&C 覊9x֝~ wਂ4dؚTui7,@Zg2ѷًŠ+ 6:;]Kg@1(#vm*@ i!倶z weJ\ޛ 2,2gp`U:1:():_ 2@2(H_23(ݾ`I|36((*ПJf^߾Hsk:Q5 wqjܟpft޺`7 6=ڶ (w p7}kރAچxddBl7{! 囊g1jN_W̪"~A {,f%vŻAT uoD]P&/K- /z<  7gэ.ܒɛDHWfo=Ѻ$o=;[Lv b>Dj U, Z_B 8Ӵ %i8~טq'1 :8u+P"z^]02QpA;hE4T C +.HHENcAj'b @: 0㣆*IrbhFHgJGj@AbH|&=Ƞ/RBA0Ha&$lN bL zYS!E?z%D'V"6rC΄%$&`@@r`%D \@paT9Тm l;2Z34=mwh6U P~\,( PR)|D'JъZͨF7юz HGJҒ(MJWҖ0LgJӚ8ͩNwjRkT 3dS,`OQJ]jbP,CRMByʤR:TTGǪlUp˘"qp23yݏ4oPL69STAj`Anyk_e =3dJɺּ`miZKW.*d3Kʾ{6 ӿ5M-KXϲgmcjֶ. *^YѦhgJ잖2Ml[;,t[ֺ'%ozZΔedӷH$s 1Y1>yHdbc(2@z0%{LBpzw+ R[XX0^.ߠ!\:}B+ Pڰz:r>_WXv ??== G3U=VǏ!J#p&Ԃ>_0:my8p,jƞXIn͛߯ V4"p4V;PjUѻBr" Vsffj+)4y0Cn(({o\Ll&&&&u]6\RRB,č2TnG#+gDp4jtmkŢ8ΞEvhhpMw*4T4 Kzl`pq8E3{C@`'>_;}~*pcvob PΫ};᮸aV,Uw钾snuUѨmN 5*' ApuH{GcRm+sn~/5#p2 8q.*!w4Ǝƽ71>xP^erUr8|>h5m͛ڡXUs')kx9m EН;ȵWTw*3N4f\<w$q*HpX=WPlenu D `OK1C a'4<2?p 72:r#iW;M!cJRo˿pZ=y4/ WuU)dhϵh{.b svUCñZK!'}K!C`.cmyym zЎ) g™p& g±!Oc&IENDB`geogebra-4.0.34.0+dfsg1/icons/mode_fitline.ggb0000644000175000017500000000340311516655704021165 0ustar giovannigiovanniPK8geogebra_thumbnail.png sb``p  $s5 Oǐ[?9˔y߷r*oBi??NF˰ۻގs.~V">_UIϯ<.(ܺ7?1a҉L'l6VY t:&PK/-]PK8 geogebra.xmlZ[s8~ OYa0$iM6tw#@Hߣ ۍsi.vy ;d_M)`El`96dQAY^X%+*~9/MU9XIhR|F촚bvbQM٤-'Ǽp)X .Y",B%`:VNY<4(B<B#Ƈ#Loql"qtq}B3Sv;4W;fvm]2!`%SV6 ={yze<t"BJ=r0eFϣ|zsugr(i^^dMB.uxy]33wY;HsIfBUq x|n>THTӧp}JQ% 쟳"cf^4a1k^/8 9Tufz(9R $%dQ^Ȼ i1U {KI]f: 7|)@j+3B/q)lپ!M~WQ.nNwZ|;/Aܻ#,ϳha[z7a/,)^oYMt-zGNzUr<~T~fr aˑt=mN7zOz:vmP%={테6STEM(?xBPO6Tbw:z9Y::~F&$$I̩>Pz蓸ǰSv;mvKz w |~vbxX^F na'C(b]GlU0PK=!PK8/-]geogebra_thumbnail.pngPK8=! geogebra.xmlPK~ogeogebra-4.0.34.0+dfsg1/icons/mode_mirroratcircle.ggb0000644000175000017500000000272511516655704022562 0ustar giovannigiovanniPKhx8 geogebra.xmlZ[w8~ JH%m6>۳o6fm9]l R,/Gc]OStE =l Ey̲d`T|r't\hӐ F]d׶h}/ǝ+y40LVW?iY` vg\OPn(l{>,jL5Z& IYrqL5XE|(9ߴ65-TLLˆ @%,ӫs9D᜖ If :M|!Blg%)6q2Ӽ@vvZ#m~X+e[{ H`pAfwi8YU R~cr͘dwcU'CK]KѫIEʫ]5Ҕ]Cx T֘&m>J8eJT̆mq%rE\! )REҦw.SxVH6"KOZ>}ŋrf3Nt&9^Q\oKS-'q*QXpZBؔJ ! rtKVn nq4bSx&.b ޡD;B5RVv㠪om8MkXc6/@2ZB7[AMBF70 bQt(¬}mr|9(?*:oqGz@^1ˏ w_7aHh;Gu)7f&:R܉V]}VI(Y{4믣šDzly2:F훮~;~#ǁZ4oIڧytv{*pb몰|U#, jN*ƻ F=A u[n!υj~'t;5 /M/?Dmoz#5?[VVh@VhJVF1 zmaj\.jIhĊ(k3T?_.g3` ͮ`yQ"47_jp9PRM7 IhXk90\mv!CKO0ޭ'{7nrF#6ao$o- z qMػ hƪa{ij ||Iȶv,ϱg"F"mxx/ K,E|Bg$CmHc'pw>y[ eS0i 2XQm1WL?J:M˪=Բ˵p̬.=9w})ZjL1tk:j3gjS. f^ -c5S76ff-Z ݦ 1 bOL[̖`~s)>42ɻ vƳ>wo_2>:̩vEWte] i E R (‡ $,T…u`Bq|`‰pR9B29ɂdD~vcLeWYBX]2Z#+(e %MҸւK`՚px⹁Xփ`P&*0gY.AeOt.f)hdhS]2Zy eO*с(tWj,|N_Qd+meHt- J;ꕔLQ2BP#eU_t ڮ$ؙKiӳKYǫo"J#Z <>pIWց)*l_  k‡JrC"AFS*;B%2n@W{.u4JrഷضB\ [F. a},َ ]n̎% y:6j]wDۏ wf&lKlylu\ƺkn"|toiQ,Fp~"i "L Hq?/Q6hgft;z%#g{n |km3yS-zJ =)s @>u 9VPgv>[e(Eer~a`ăNb%H!g[+ d|O<7jX*J?rK=X' Iˎ)!Lܟ3=l &7H `C~dG餑:dHGlBB&b#1%D< 1"gK!yz$( F 8r ?<%\j=U~%ts%O(K0d#.]fe0Ead|JЪ̩Nae$XR3)&R"& m"E޴I/y`-!1љ΂ +YfigS%ҼJϒd$&GZpT"GG ~u$=j:NcN݆KʍR5UgӭRfWԱRcfQL[չbvUʌ]. Z2n}, =^3 +hcтLiEՂb\!eN]f; =%J\Dv m"Z+]Dmm#Qz(D,H H]r֕%dZicJmD1'(6I/@~1\LpFa 3K Jp{p ÃX"]Nsc00q\a5ۙ B[G<`w4p 13d-<! MohF/YsT3J|a97f]5001UW"H'#֌&&r]ft*)RumQdD 0mF `2dw;ˆF|A,܁v<Ԭ[P|$Ҋ-edӇ\p3ԔQ2ֲN'3A% &W$)]ևsߴ٧#JɗJ xL\a"nL@avgE4Nz+6ϓ.wK~pi#^P7#P(L|]r%)!JOQ9Yj |Kv"n Ͻ2,тŜ0p?e=cNQ0vz%sŔ~%(w.QRLh@ rluh >;q1L}e/!@=Wn|sLOCꔇmg.$+pGW"JDJeW]z`|h~$\wx*ׂr0y07o6aЁ< o0BViwH,_N2nPT8xkZX>؅W`D8ZpfxJ~l؃ERrVX ㆇtE|_D eXGHk䆎qT0wYxOHx8GЄhX舛chXȉ5H舩B芔8X؋NXHƸhA;geogebra-4.0.34.0+dfsg1/icons/mode_segment.ggb0000644000175000017500000000166111516655704021201 0ustar giovannigiovanniPK}R2 geogebra.xml͗Ks0ͧHfCNЛ* | % @JZi"nENkV}˵@T)+5Vl\_22qJ/[Z>cW_zz!4W]-g`:[Q>Ls&lR$\}+p28[U1Z pٞj5=%9K-JdפxdxSy~;^~Ƿ4vz~/Ը'[*aB ̚`c&,V:37͏b);:WˉRHX\brQ2)d@{ZD8eT 98[JH9r:.:t}gmdPDa:l7U^qeX$S#!ΛO'-RKݛl?[@7;]@}++mE]* j;h+7u`T ާcHeJJZGȤ]LHUJ*:X7P؃Zokjt/!>-Pr M! KKk\f.w@+[1\p*[-pF gtb+4Z3T|~tZ:=$I'9tZD:a61KϔnuaV{n;~yqH1 :~zcå1(ȔЉ֫o,՘v^'^}};v}_scهW6  b`=Ŀ .x[q!+^YWu霠Ե?u67?PKu_'PK}R2u_' geogebra.xmlPK:ageogebra-4.0.34.0+dfsg1/icons/mode_circlearc3.ggb0000644000175000017500000000232111516655704021543 0ustar giovannigiovanniPKTR2 geogebra.xmlYo6ǟ{uv^gwТChp):;<8so]0bexo34+t+T'f0 hl,, >^|D;ѴU5À,0ӠwW7)VK \Jru(tv̢RR(T`u&Ae*y6OP'lf E%Kӵh[U^;-jC$9,H8Z&'aBh̒404 Pu0{I`гMvZh 0;W03%?V6zz,m^#7B52 5CqfV3% pf58 Uɵ@X \|"`/F !p>nV!eB3wb`j1` n 0 ؇_Dr o"ݡAj~X0e[pEP]tfs Nyw E[׼)Qk|-fnݗb*džxfs@l=5߾sX]yJ.l粸iDי_#VH}pƧ& xG8Ä39pbҹRxӟ]Nwr圆灭0޼vsg)l3šZEt53'MxKXG} ь$Lbƈ%F1hؓb{L,^om i Sɝ;N0IB4%$%|4,<҈`6_g$"Q g!! vXrrA}uj9IS'q$42=n ~/ЋWvvlW=w>~hPK?GPKTR2?G geogebra.xmlPK:geogebra-4.0.34.0+dfsg1/icons/mode_semicircle.ggb0000644000175000017500000000233611516655704021656 0ustar giovannigiovanniPK}R2 geogebra.xml՘Ko6OAEހM-Z z%f#.E%v>}9N2$<+tdE3x5(y3{=˼Fs&l&)j?~ he|a)1n+N߬P1ˊK~K&Q% I Z(BH( OoP,hܬfĺ%^Z!˛uXV1)`*L|0%9Bm?!a'i`ZX ̓ٳOl2d7L)"b-Z3QST4ط7j6lX'*Yk5&bgͼb6\Yk1 p Wz68SIh@W%X ]t7o#aRuxJOE%$:,47g:1[-,~GQA+mXvM[z* . ۂJZj;X+=tm`r1iS0͵݄ϛe *ŚS}ޜy!V >QQtx,$]V[i5lWgzj‰S|™3O8# /Q:?_:*oHgjs9Nt#KCHgfٷr?fO*0{ܾ~Tn;yzWqM%G4]$/6. ٹOgw m+sǯypHg:n 6@K]M_n\`lRۂt 1ce +oˢb/ŠޯbxJV|Κ{SU^HAKyfo)KB5!0k'Cu3SDt[KxǺCTTAf^&{NNnO u>%qQak^< (;f7W#?hq8h  Yz}}jO$հIQke8 rEiB ?򅽆+'׵݉'q5m\AO">!1Gsأ4eIDq4`#!)ˢ$yߥ|BkM_PKTEPK}R2TE geogebra.xmlPK:geogebra-4.0.34.0+dfsg1/icons/mode_locus.ggb0000644000175000017500000000305211516655704020660 0ustar giovannigiovanniPKQ|2 geogebra.xmlY]o6}^ ~EIb ˴UVfK窜IYY-R3h}߽__P._6fi^[봺:/ETH~OdD=@V,GUq"-H0JmK˕A)BD)0zVzk uc9}q4j}6P̻@YZY((.a\kzf[mo^@"i0;x\(w>S°0&]Ö+F^Eh2oJhT.i z3QRr1ey9pѡp^ ^{Ę(I'4hO41cq\BNB$(2 DXRA#&8sV(&)q>DuPI(ޘ! ]r޸w)gR˥lC (u&)cRggT;R&|ΰ.Nkg"cgdS b @:?it{Hw{*#HAT&S,oB_;}xt/t/;ҝ&  $q$ 0]bUp'xBh@oJTȡj"Nܘ0"lH2 M8X%? )Y> l"Ps,t*hg ,`PǎeKv2`( ٳ , 锊 4pi& *g݄ L3@pAn$;hǗN(y-(`!CȨv`ABe7&.й?&B:_ߩ=h ^nve :sYfK]? åHc4(q@\o<?p X}\ElmqC x" lb-("p>*ĖlrA?`dqXc?(G_c?v;#aV,yN!4!A0 !9 !H A#eT,'>*0؄z@qcb,$7S2UaXwRSAK1'q@9"{tPF OD6m"BlI =$zbʲȼ-{ ɪVDhH8JЬ>šGj6,+8DtwTTJ_I࢟fG^s4@B oj8.!qm}CˆY=%IXm>^z"z2 &*<ɏI YGCJ0VDK(1@UxZ])7e;V:r/%^[Bؒu[+rE`3G (of`?I GQJ| ;hGڒ|\ ]:%H 6@@ і"Q$p  5j PLʝO*Tnksm ypRz~/K|JBf0 -o'%q'`07{+<HW"@2"/̏g\VqZMb&1AU (GѢ !dž}\]x!AUBY :D Ć0@\#Bjx H)XZ8ޔd }s$h;;˗k-3 OVJ^4GВ^NKzfZ 0$i-Vԏt[#;̫q)X_a֓ȳoL bm޵ 6 vDGx?,n6 =J{1s vk3!ٍ@3ik{2`nhCJ8J}ꐮM $X <%Z7 1/ͦx:K [XXi:8x?@)s]|?C ja "nu n$0@#:AޙW&?=`Vb [<'U/;~ .ܩgĝ9PQ5 "XJD2Fs@Ui^[FKrd(gj,n5P}?}d=6 j@$W9a@\L&t1^/4["1!mWsF͇_?s6zjUx1n.JInjn0~Vg%C@e^zkPz|'w z\)s)K zcCH,hy6I>P"!^N #B`?Vz !3W_n<<.>wdu|{GtPB8\'7:ga@r](&i u0MsH^b@"Kyy_T!RI_i_| U⚤PY Jq 3ИYc˲)G$A Ac k{4zZ ׵т-6F֓)A\ .,tXtр&d#{] ' TՕU`q!y `. .sp G^ITЎ8B&锲Ў@WӂYHb[a7kE y`0( GUO&⹐ʺ&JxP!rἎ  HHITQ4{gK6˨qSi3!P*i2!]{{$KR[`})xQ[ QY$'"Sxc%\7C +zc0|J=pP .K@lzgX} GlΣws0(MlsoZ'4[\\EB cj[sk<:XR8s{xIjo0pBplhLS`=p lAt``Ƞ\;[V1Sz˅JPz"ܐTA6\|Ȝʼ<\|؜ڼ<\||eA;geogebra-4.0.34.0+dfsg1/icons/mode_mirroratpoint.ggb0000644000175000017500000000161711516655704022451 0ustar giovannigiovanniPKR2 geogebra.xml͗Ks0ͧ0L`rHi [5De@>}WIRH!1+iVUDԔ㻞xNY1t9ˋAAxAC'pcGzyeP#¥rOБ!͊/ڻ̢rL4'<1D{"$p9t",s.gRvg`AOm H4L֌sOֵ$Z$Cs#?{^%}?LB풟8I<$!s{{XY$ `?e ` ALB6Bco'r{g `Tr Ρ%4֜isf$*j)RYגT,:;hp}leuU \ B;Uݏ!ncަJ[߶Hn2Nhe󌽓oߌۛ'e??'V\̾L~YR_[ & VBir,7wMa;}Zy'`ہ݌E26;1CQբBj`!,AFC+E"?eQb"X'=G]k5l_ J?/tzk2 ^hBբ4 "CS`WuQj5zZ8u T3 @Zj98 Sε@׫Xqm 7QۃiS6 )*ϙ9}떋#-Lq/"aم6'ݢV/6wV!=Upٳ͸Ңvީ#o S8*^LziıQPwz7j뼭CÊn)1G ;J!odmkm ?=ʖI}p&Osi3=8:4"/S˗Hgjsu 8dKgtl<ٕeY~m7: F|4\#q3~n/+ރ>O %l'&t>?`,sKi?>x|N}~+0 dGeC3|~=PW5) tۢ!טM~"LXr84~] Z4xqqk-t0fH.qHd#`;E]t%Wulp|4n XQ3G(! FqH#j>q#甆`ς` &v_/_PKV°PK6R2V° geogebra.xmlPK:geogebra-4.0.34.0+dfsg1/icons/mode_polarline.ggb0000644000175000017500000000207011516655704021517 0ustar giovannigiovanniPKzR2 geogebra.xml՘Ms8;B; S Vvs0leo˒ ;a6CbZR鷅c[hTͥyb"9kjx?L & Ty{LhMُU^$,!\//YR7?Vj>6=vK񊞞~L$t7z]r|eEC{j1NS42W87}!_PKiTPKzR2iT geogebra.xmlPK:geogebra-4.0.34.0+dfsg1/icons/mode_circle3.ggb0000644000175000017500000000222511516655704021060 0ustar giovannigiovanniPKR2 geogebra.xml՘Ks8;B;IJL1dڭv{ 2|m=LHH2P 7UL6\C}:CU^꽿}731gSILȊ#O[~AW-m7Tn~cjƌY\5/DgC+zAJP,;жỲy Nk5BmX60)`*qIAg8$G8q@(N2j`50OO|b#J0fA3Z6f.yg%xtZi'j6g L֬,Ck)z^k`sɘԍ8uTs@+=NUP-k*v:H2p@TpǢIS-W EQAVvVذD7L7hc=KUcC\95vAW;qmZ1gǐujZ k ׫V!kU 5qzs>6[Gb{kXC"Gwv]J^3 I-xYrtؿ-ጯM8*V8LO+rzKZs錭t&=t"9ٝeYq'[7rfoAQ\S :u[1] CFn<';69WvHTQXmi#VIwry n5 g ?7 %ČC]'($^c.=⏶U|EjsVaJ!6nn,gu KA5 `Vҏ14: Q-]E/n X3DIˉY$y^~ Wm=RG?..I$!ayag18>k? 8C)AeADp^/rmI'qAi&q,AqGIsn_.t5PK% xPKR2% x geogebra.xmlPK:Egeogebra-4.0.34.0+dfsg1/icons/hicolor/0000755000175000017500000000000011770612705017501 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/48x48/0000755000175000017500000000000011770612705020300 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/48x48/mimetypes/0000755000175000017500000000000011770612705022314 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/48x48/mimetypes/application-vnd.geogebra.file.png0000777000175000017500000000000011770612705034236 2../apps/geogebra.pngustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/48x48/mimetypes/application-vnd.geogebra.tool.png0000777000175000017500000000000011770612705034274 2../apps/geogebra.pngustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/48x48/apps/0000755000175000017500000000000011770612705021243 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/48x48/apps/geogebra.png0000644000175000017500000000456411534420340023523 0ustar giovannigiovanniPNG  IHDR00WsRGBbKGD IDAThZ{p{lBl KLBx$KRtmc&%nPvZ:*jb6K4PCD6wݵ `fTT¶mQޮ2UhO D)uZ7Nj/ĬYZ,Z 0EEEA5@QE|SM :R!D+{x&$$ݰ(d#vCiiidJwaL `qݟ:< YVi2D'qQQQV,Ax?2e+W6wpd2sC/VYYqYYYmeaa4۱cGs,غ6mb-CӴ]VUFGGow!1"vw-f̗=6N!6#ٳ}u9Ȭ Wmj՛LD|WH`dw8q|/1cUUY = xއnPlWWS<ٳ @pNR*<3"JJe1Ĉ3i$*pFDF!OF{}ϷGޮE%`Y2aB:vPS22h4>RPP59cƒX,鲲r" ~KDi|vn;v q=()y y(G;`ȐL/"JSUmJpM7#;{<7Xp ~ݟ;ܹ~fDT'aذQ>Z{f.W{}У|\fhP>OP-!o~QWwB]~ZYMhlFqt.a!vf. B';;۔v7L> z]hjB8y# ` "J|۫.{9i%¥ԝ>+VIBK*58|8ScFջD$fΜ`06m%hvDq=O`Ĉdx0WN3s~G7nS ![<x9AUSɱIIIx̌ D-Պ _L'K8W'k=ܽhh4:]8t:v&jqBy7Vڇ闌2e/"5M$FLn϶X,O Dt{^oPsn~~~]XXءؤ%)ؘSAJy?AH*i3<^Sa'OƩS8|8s޽@JGU};z:#IzY,),f'nf'"3qBw”)[KyC6l{:./Eb?ol^>H#lmuoM]4-55.? J@ 1f~jKJ^ 51c\NJTXXxdF%?XijBL|:=[o]~UسiHKK>m4U &ziWXXJN Z!Dg7X `Y(^5k;@@#IDF""TWAYY]W"7 y 0aLye[p$H| D?X*sk{a4ΝG??J*MӾuh~J.]N=gSe^~yW0~x[O]X^4M0xpb2dP^^`<;d:m2VL9nO dR痖q=&CMӖYFKqA Ί麮O3RX,|f-Z((%%U;9 gϞ>m:?Iq)&iO:,w舫qsĞv*.Σ$@/((fX4mUWò->IIIIe… WiK%s BBzx^RVz `Rܵ2PDz3W-?TRSSu]O ֦m۶u XȑOa0`5QX>[.WJU7;l67@6Xb| VWW矿Ɏ+O>aĉi7n|אqݜ0Ý6=@Ik  /{pLYFZ Fxw &]Ճv{Ǖtrq9( "$$m#CN'ZKܧȱ TU}Q+JZ'Z'zh16,AAw >*Ee9w0pӽi Y `$**y&]VXTvpGw{EtR,~[.l9xt2xN*X{Bh[2G8Wor&bbFڇz+}Wz%d}lz9EyQBWQJٕR9@ICa߾), cRGX^\<6B;wR:J2|R6 !>>z?Hdd$QQQ }'O&khii`fC3 ٲ%crR̒jQhJo=f/Mmm-JT!Q)uNHJ]ܮZ ]&"уdMӢDtrp{}#c6]<[3a{7#&]nېL&SsQTq\qE%"m+4))ogE&999}k^TWF?? (jX*騛NFwFpRRRfTE^kڸqc5hRr >-Y2r. 7ͣ| yFD s4Ǒ+D䔿꺺lNW+W}}2Oܘ;·IxU]6mQVVࢢkCM6yԏ+mZEEw4[7~)ֽ{o&Mza&ICEJKc Μ9 ѣ2d2ŲEM&Ӌ EVuTVVV-ߡ#c!4˸զMI:Mctimp9YDD$ODu~J`s}!_r#$v io! r8wfTڹsD\(~LH` H:_4`fqqV=ͧz*msέ %"c];w)LHH'Rj60FD)Nv F kcbFc0ٚBCPVV=)))pGi~~>4'$GSIH*)GfL.\ dHo΍М'YpU}'aÆ ` pbDy1fk9Źέ遀#Dg޼y"bRzKޚb~6#fЫ׽L[e :LFL>} 'Onil&g+n0jv{.C}6y9P)UEfs" +q5^=}pl a:đ3ɥK?0rfs.Piϵ`iZD*b!4'Rv9|0/VnT,2Un)Np:  Eoq% ͠FsAM\1McܸqdggSV%+V` :~{iAo%Hujb 9z+aaaK={쉶Z}9Juۗ}JH$88#9]vMnpL%0FZI=B)˙}eܸNRr߿#// "ZMc  < 4mikfl1#`֬Y>+,,lXqqhuYY}a<`5k%III7+~ < $;4, i QQQ=f1͞=i+Rm&#@HH̅ 9>.,v\7Fscwrrrv$''Ԥ>}zXrr򢚚o~ddÇ:;w|(h}=84V)Z_>"2hӦ8vlX<さ"`0~0?Xr`̙ "T6l@^^ ~Uee̟?$Gm}:v8DDƈD Kmouue˖\h6 JK3|:fy/~G@y(L5srMuu˗_S g?/^RTT4k7th6¥ؽol2bf -"|Tjjj^&{X% d2]̙3'JVb2l:P"#o"(-EEg9{[tƙO3W#%FOFFFơCB Ԩ̘1&NXeźRX ^_F=ˀj`޽ǁgDde x+u}[ou$k嶞rڦ?OTWWg 541_Ma4nx֬YS+uiڌ ͛ :`I &88'b߾u;wҙ~`Tm'iZ;3ATJ%H)MIIIo10lt *Mna۶֭Kuu6Ao÷#=Q񫪪~&F,'>!6vzG|߇=*"+@)v f9۳g:wşRSS&mNB<FH5kplE$#R`DDDpwu!ɴ&LJ^x~.7uMG/ؗ3g?+".q>wgӦM۷q FÇJ?CNw~##ǀ훠P~}??#9t_|J "Q\\]w%"2+55u̓n_DFfwS/JX@߾c:5v"kM;=.ƌ6=jHCǏCaa ,,P[7:Y6@¤Ifww+"O|ɱDAcãCnLnXF!f]O Ξh}8lޫ>'gf>x]YDعs]8g^(:/ݺw,\JfN,@fNV{Uy8uʱvT})ʱ\|۫9Hf:w5>ݣ{]iy8|pێhzH(//b»뤃7ꫣ]b5SЕ$x6QPKKc΀ &4#ɞ=ә))QJfS^^DPP;c5jf)`ǷsvwUD$ZSn#qVYHV\qR6mׯ߷u :laA[g)Z"k8?fJ"R Y) [nzϊ  !::]b43zk1L)_`hYY!))3?iʕ>`ID5?9G]YXC+ #+kw cٵ]7_"HDؠ`zH)NDCI߾cܹ7?qIOGgRb#Qwg#G.ܷoӥǎ}αc@"%I>11}@@+ao "&MD~wW0  00pNch4z殾 4siΝ;lٳgE$J"cO}?1118lko5 W.U6rMnz(_HLLjtԷkRf0.,-]=X(",Y,m 7q·39f]v٧'"|FmlƸ(rb 0PJui}#2ӻHUK`M2o<˪ R֯_?mlGo5BCCl62[jWuő塇y,|nİa3D7oydNII95I~wyy^7~WJ? нbcGx{8Oc]gM |r$u$عs'^۴ _lZEwϰM{1"vt>1X*^={4":d>Cɓ_%4%G?5_j uRj8θ}tk JvfjdŋaKYVVG_W@ԣM6rc? Dz۔ &i-7̈́ /{#8=f'0б-e3gv5j#ȹs>)//u%}eHMM}QDfff:ɓzѓ{ĝF^tURRҝ4 zԦ5ܑ#8k>jvD)u3V8zܹ۽qBO=FvHDniȏ56Z9Jmѣ֥fGIwee)=w||:ȑ+2ҷnOY>~1--]Dnu}`>ĦI;v aTzS~KDXlӱ&_j*BB| d/>>DӴcJ]sR"<"`0t"nu=;Ǒ#Gy'J3CN79lY{/^&5Y.6g&fsG"",O튆 Faa!X,Z5;2t4h,*Μ7mےQDQzCp; N/,=lun۶-~``̘1lݺ5?;;;]<֏%"4j{PpIm/v\wJX$*ӧO_LM>ǚ=n#@DD)x\-[7x\$-[;nvoXV8yJ5X]bykﰺo/.[2*zb;18q?<,*.ʼnV.]0~]| ֚L\Ԡa""JXs<~Ӕ2vs&`ŊD;loUJWmJ&'n v}x߶3xTnV ٻwsTErr"rQJ뱦cTJu@)u^)uB)u$%%TMVJ4=:)W}REYM_)ot7cJs]jʺkSJJJ49SҿUIENDB`geogebra-4.0.34.0+dfsg1/icons/hicolor/24x24/0000755000175000017500000000000011770612705020264 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/24x24/mimetypes/0000755000175000017500000000000011770612705022300 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/24x24/mimetypes/application-vnd.geogebra.file.png0000777000175000017500000000000011770612705034222 2../apps/geogebra.pngustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/24x24/mimetypes/application-vnd.geogebra.tool.png0000777000175000017500000000000011770612705034260 2../apps/geogebra.pngustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/24x24/apps/0000755000175000017500000000000011770612705021227 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/24x24/apps/geogebra.png0000644000175000017500000000213011534420340023472 0ustar giovannigiovanniPNG  IHDRw=sRGBbKGDIDATHǵVmLU~NBtmRdt hFY&- cbH+2 3Y&NKDqq]p~ &| '0xQ>J$7{y=ϹxZ"m!D3? ڶ0i4]Y̠ADD֭}?@%TU߿"'oCrefeeIƥ1v)R̟r [v+Qt^MfV$*AR4& ^X\\ BTPPKQzE)bǀ ߻;+d`/zz>,Oݝ u "RhNIK{P0s$Iί籘I.ss8w.}t`I lδ'ZZGbbcyraaZyx9=j>73L8v݃C (`\L(V^ j`lKX{vLM}יg@g_޺uUKF]ݩwCgز[Fc}fV<gQ<垘bYHΝ{z#dIDtLYhTM$3"~EQF b'ly@3x< ƶ-;ZZZG~Y[[oE fWy=,S.P=2J%O_)dfeӧVN׶ROXjX,۷ǟ=y :45}.򕋊Ó3E1~9DG 3q% u{GzN(/OOO-Q43? cZ[th墉&$^YӃ>pΝvLߢ4' eFd_WӃE{'*јCC7$=(J%E)Ioe5S&m`0v g„IENDB`geogebra-4.0.34.0+dfsg1/icons/hicolor/16x16/0000755000175000017500000000000011770612705020266 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/16x16/mimetypes/0000755000175000017500000000000011770612705022302 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/16x16/mimetypes/application-vnd.geogebra.file.png0000777000175000017500000000000011770612705034224 2../apps/geogebra.pngustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/16x16/mimetypes/application-vnd.geogebra.tool.png0000777000175000017500000000000011770612705034262 2../apps/geogebra.pngustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/16x16/apps/0000755000175000017500000000000011770612705021231 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/16x16/apps/geogebra.png0000644000175000017500000000126311534420340023502 0ustar giovannigiovanniPNG  IHDRasRGBbKGD[IDAT8˥S_HSq>w r0BDFԼ HzzȢPiHփ$oT`So6,):^rt༜spC'c5Lf_#_ff\5Gjt*+S'&P'^(a$z[۳NnWsƲ "C0,W!3xIRM:Nv5EQ>HP(IEk˥YZZ`JEHZZZXc`J׫K=k'uu} Z&j`l0DYޜL$Dz1==T] xgGstT6xs ˽~xl6d^!33QGqNE [r,/HO86 OnXvh4,mNVmd5ަW'%=ŝ;񖖏#uil7v#^_,DDm$=tT9 & _9 Őovv.'BR :i:9C 4M:::L{MQ`rIENDB`geogebra-4.0.34.0+dfsg1/icons/hicolor/36x36/0000755000175000017500000000000011770612705020272 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/36x36/mimetypes/0000755000175000017500000000000011770612705022306 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/36x36/mimetypes/application-vnd.geogebra.file.png0000777000175000017500000000000011770612705034230 2../apps/geogebra.pngustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/36x36/mimetypes/application-vnd.geogebra.tool.png0000777000175000017500000000000011770612705034266 2../apps/geogebra.pngustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/36x36/apps/0000755000175000017500000000000011770612705021235 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/36x36/apps/geogebra.png0000644000175000017500000000337011534420340023507 0ustar giovannigiovanniPNG  IHDR$$sRGBbKGDIDATX}Pǿ{ wE ӈ1T 6tT$S;š XoԘQ4b*18jjmM@8B 񲷷p Lofgv}~Ybf|X2aq1.I2m$YMJZړIRTY6EcYCDbqT;qqg,YrVӴÇ{Y,Q'W,XCwy|ҠeS b6nw.7~t&""bݞ87T&5\{r=JD4nk[~CP[[̗XXɐuZ/YX,SQMS(w}?dwo֦MR 8ྖ~2fz \\f. y?v\qew:1VщhnOz!M "<.6%:5uwE `Wiii3Qrxxdm^W;./IS_9ދ&<`Aڿuu f-C( ̟z(ZY6=0[oL~vJKKx<4]xd008AސQ` |qّY2&0vVix55edk` aDxx䈷DD0EE޹Gb' TMSvs* 46{ޘH{{TC<HK[3ݴ7:s,@[pTWU/]jh7 㥉<\t:`x~bիWG55asf~IbI>uԶ-666fڴiEQ8pc\avvM+(0"2m֘L$̃]j[lOL^^ǀ Go DD{4mY())%au7EAȚ?'"2}DTGDO(:dY~K4?]Z""YQm)sf*>ٳo(Dfwݹ l1>GD9fx@&hƌ)7We +NGTTǏjT z!ZQ]VNHv$)͊b}(3 Ù'5Ɖ'uGu]O~F<|y$,..yd- &555,Gl1#"#cQ+O={lwmi U],̬֭[NN6 Q"z7߾硇c!I=˗08pg> ,T̬_< QҔ)SRr,HAEVu鹊M.5Á?(l, p8M9 H$)Us Q$)⃴333$esDCD>i4YȨiPqZ;LB >vZr8pڵ s&Dt9OflR Ĵ'ݤIENDB`geogebra-4.0.34.0+dfsg1/icons/hicolor/64x64/0000755000175000017500000000000011770612705020274 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/64x64/mimetypes/0000755000175000017500000000000011770612705022310 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/64x64/mimetypes/application-vnd.geogebra.file.png0000777000175000017500000000000011770612705034232 2../apps/geogebra.pngustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/64x64/mimetypes/application-vnd.geogebra.tool.png0000777000175000017500000000000011770612705034270 2../apps/geogebra.pngustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/64x64/apps/0000755000175000017500000000000011770612705021237 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/64x64/apps/geogebra.png0000644000175000017500000000625011534420340023511 0ustar giovannigiovanniPNG  IHDR@@iqsRGBbKGD PIDATx{tյ?{&3LB cQĔ-4\dbԮ޻JY>V^#PPP07ʣA h^@$߾0$ L[߳>s*72ntec"b` WU U&0?ibU_~r-Vf ٵkVW P DU]SH*Jm_WWؽ{ @!0HU]/+7"rӜ9_}.^~u=0`\*oQQ>=7(Ə26Ȇ/rrr<~ O7< 2]9aaaEv鴴n|ꩧLœbbbVTTҦ6[jxÇsoJJJJ 3-U9sf_a+K.bGۼɵUv)~:twP[{ڧ,~@jjjl#>٣G%3؎n@gJ۾}{0|#$&N"4'sؼ%#g(zL/` M&Sʫ=v"dd2OaݷXlHNEEŔ.9WiK`'ZZ_av^ pn hQٯ?Fe4nzSWWáCOs֯_ϸq6lGrrr9կ=zK#sH|Dj rP׮QDF3xx.Gdʕnw{ vLjLrMf70fZG``Wxi^kt )/?]d?[ѳ[KH"V`l{K :ɶmVyʾ=@DBhB6ݯ7DW?޽|2TUdn.Pպq54uyZx\dgc$&N"<<->KuuN"Z#"Gjjo.kרV=_v @U*0߼yA͛cZ׺\M]6`An6T^~/X N`Tu-U!!!DDD0p@&LijͅBb @f}Iv$'Ȼ1QuףKbbr6ncǎ Øޖhσ)"4AK,xq+v*zjoQ_#GXtmf%fZoM>XBD"rU~0)$$<'1sL/uuuU pzAo{#^GDC b 0~ӄ]:P~1b uXb Ñ|4 z;3^`_Re8,E-xUjۧOfӦM44HNEJ|M6<󬪺BDFwqE4'1ݻwrLg3ce̘Xg.GAAA@uu_?)bxAr##ca [MWd 4˗ҧO;f}ٹsl6 mm^[[OU H@sƭˏ~oDFg׮ Xhz᱑oȑ9vػb8KIU݀ΝNhx8gH}MI3u뫬Zx'O|4*+ms#_pppEق;Y[TT?%:QQ}x=>[kktQRU;V@YWc,+їLD&6,䕖c\K*?BUpIV[GDDzN$+ott~0dgg\HRREj|=ٜx> ˻WU.ۼl;:uzt.rZ~+3(,Z߹sۼ\|TE0-gW]eW`0@DĭĩS'(+;8Ʃ?t&)RD:y.fU\tI6/{=Ħx]MHWU;C7:Z(D f/IENDB`geogebra-4.0.34.0+dfsg1/icons/hicolor/scalable/0000755000175000017500000000000011770612705021247 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/scalable/mimetypes/0000755000175000017500000000000011770612705023263 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/scalable/mimetypes/application-vnd.geogebra.tool.svgz0000777000175000017500000000000011770612705035655 2../apps/geogebra.svgzustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/scalable/mimetypes/application-vnd.geogebra.file.svgz0000777000175000017500000000000011770612705035617 2../apps/geogebra.svgzustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/scalable/apps/0000755000175000017500000000000011770612705022212 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/scalable/apps/geogebra.svgz0000644000175000017500000000177011534420340024673 0ustar giovannigiovanniXݓ6:/Y[d:$Cg2o.l*#ÇLrûJ-է+<l6ɧi MEgxgvdyjٸSؤ~>xef^l68*qKq7,{"(hXlxB~-luCؤr> My(,{i8Ť~W ux୳7ᝋWtR;s޻|X'ybq1iKSpFw>_K:Y%0Qxs_uoV4ݛFЯגBb(XƥK?P,1FkDA RR""Xi"T/9 :WS(]цu#zif=Q:v7OhHGDN9y\eyMm>6fGz- RP;D5OeM6YX4^=뜸|MHIZ>Fwm'޽%$'B"F L_,ь#9Z(8E*8"pfHBf *3A(MܳpXU x6yO@&jaœ(5ÈVh6J/ ;cP}+qR*ЪT1mɞ2e-Q'c6_D^؊^w v#IρTF !\p*n J[7{cP69:Vt'b&{Hq R)}Dp81)p0CC.<B\U\'RZyz^ySwq9/[<JùF: TdNOV6~eR4.|?ޯNQ4d&-3>=<[p(aXYwuK7NQ\#P}$ؾq*v(geogebra-4.0.34.0+dfsg1/icons/hicolor/22x22/0000755000175000017500000000000011770612705020260 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/22x22/mimetypes/0000755000175000017500000000000011770612705022274 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/22x22/mimetypes/application-vnd.geogebra.file.png0000777000175000017500000000000011770612705034216 2../apps/geogebra.pngustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/22x22/mimetypes/application-vnd.geogebra.tool.png0000777000175000017500000000000011770612705034254 2../apps/geogebra.pngustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/22x22/apps/0000755000175000017500000000000011770612705021223 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/22x22/apps/geogebra.png0000644000175000017500000000175311534420340023500 0ustar giovannigiovanniPNG  IHDRĴl;sRGBbKGDIDAT8˵]LUۯ\ K. $XٖL]l#`MkFi73\JY55,z0Q0+-e'"}඲d'99qs4!267-"2MfG΂߽tsMMLYY6ѣRaٞ 9dr/ZaT\#u/T8C&M)n<[$I|@G* 63ylيe2*]czfa3vZ3G޺5yRz-[һRR"듒.BD0pm rss,˖0~angy>b#nl/%ILj]#D}Cnݺ I4f^ $IW6-m2Y"/ަT*58y`qƶ$!lf^@Ns5!|I "Dn_j#T*omme|999)aaa%,O=Ʀ{@/Yw23+j#a:hpVOD@O 9qSX$xww޻w}y>P(2Z@sx||6-m"::^0t:+Ѳ֟nLX6jR< W7}>>>uuGPR1M{ъd:Z7mH(ၦ ʕGf =}9f54ʲv7(\H!˾|8A9yuuxx:|O.ć|Ձ`0pzID/\; **v.hBlݳ*Yz}܁K &x? O{{k*3GDdZDfh3(쉿t̙7Z3] 9dgg  Wz*k(݆%''MNN-^aFw Q#`߾}]cf 69 Rh\ZXXxb=[@nn;̜ZVC"6HN "cNNN m gL&~pf4 Zmd^o$Qw + Tv}W{fffh)\#Gv%mzGm[8c:Myy5|f<֐83 &z\\6+%OaQ) ($ӧ DEEEyΔQ KJ1Ipo &IENDB`geogebra-4.0.34.0+dfsg1/icons/hicolor/256x256/0000755000175000017500000000000011770612705020442 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/256x256/mimetypes/0000755000175000017500000000000011770612705022456 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/256x256/mimetypes/application-vnd.geogebra.file.png0000777000175000017500000000000011770612705034400 2../apps/geogebra.pngustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/256x256/mimetypes/application-vnd.geogebra.tool.png0000777000175000017500000000000011770612705034436 2../apps/geogebra.pngustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/256x256/apps/0000755000175000017500000000000011770612705021405 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/256x256/apps/geogebra.png0000644000175000017500000003274611534420340023670 0ustar giovannigiovanniPNG  IHDR\rfsRGBbKGD IDATxyxUևlaSYEQY]QథTtp?ǙQmPNwEdYq}YqFRIӕϓvթ{~ush'4-F Fhh4-F Fhh4-F Fhh4-F FhlK?R4 "OGz#5go \\ tmO«ہr`ꧨ@S p'p0P5<X SjDOx."ikG{+8O)" Vm-4L4?Z):*UJE7[s'@_ &"hЄ>'0Wm7Hfqc'݋﫩iD~KZ4qf{V7t4=o[+hӷ}2ۗqG|ݚꚸ""miXn`!y}S""2d"EN5⋙,[6,؟} ""iX'&Sgh޼%>|xoy/۶-'?鷦@cds",ADX){D3hjglީ38S:tK1:u¬<=(XfΟp&ݗ!w~nݮࡇ¬hwt @Sa;.&-MsԶ}sWHDoS bpsι:,};x76,KDD)Uq ǔRyǏ?UߺM/8p,FV; ˌ1f͚EdRjlؖw jhT%66eg0yrwJK,ӧODJJ5"5E @Ct~gװyUeni Cc}܇XYq8~_Z}Y? X""\.ӧ׵G @CڪGF6'` {O8#t0\-d7V "Rҫk >0:xEɶq~fZӫ͆c١\\("&$$x<M4gK@#0` 0`Ç׵I-1Jr=)))'Nӿ11 t2vq QU y1pۥ)))3RSS/LwoN`ii׮"""6me߾=^PP@EEN3ܦ&*RE$lRox^YlA7II]mkxVU(Nݬ]/T:p %%NW?-a!99ٝ:b35md{hxSKPJMvx:uBZZZܛ*"IfM@/{eí xt:>}-˙0aBI(?gS.}l37#< eeeϚ5+_ ֤^,"CO͊0]ZZh{+))0iriݺɓ'K]cx{WzfNg ˴jժ@`H\Clp|U-))^?9%==٨H) "3|>_bEENJ* (6omڴikh(TJJJ _G].]|a_6*-~\_ӧͦ顶'%%Rn`$fUǏShRSSSE) ]^^NVVEEEN㗿RN3k(֬yìNeK {uZ -)HL-c,Zȴcno[>_fbݺ9^Dٍ=:>22rL庌NZۜz8 ٳ|[y]Ϙ1,Yɓȸ;S%o7eǡCAZdgbbDQl4TVVo+,,4]؎ѣ_kڰi'XN *Fb]%OII < " M>~!`r@F]v~iii***TJ] "iفF#+϶I~#tFFUyN\Hzsn7^ii!6}ʚ5oi'TTʫ߿}%<ӈOx&Jhq0=##ck_4`\zrErq-[vYDE!"޽{V,ZDVLLz3R@^P9J5h\GԟpMJ7_O=^SU:\'<Ok-/'''l9": gDe"$''3Rα%۫rx= _s!"KJx<SV777m۶{nJKk4x> -&LH|5Y*"X_VLGM R"rՓwt:Ed@mu!6lBaN"RcǶq\u;EZԕqみutI'N819 &a͚5uu?0xYDZNc1L&jӦ͋-j ~ȏeͷR*@Y@> v;DP2f̘.#T(Ν,]RѢE'bcjJii!eeȑ]|55xSz-'(Gxa1jԨؘOXo>,XP-珋kFе`bb,wZn]skbF!=Ddi];]^^>1&l"pA|>_pgՇo#z 錨fz,G[!y inxޗk4:w|VvvSNl°a'pXsg۶̞FNΎ`WWU~3EDDJ~xUk5 ,&_?-ZfFkּL@9X']|_effhhtp/Y޽of==ܹTDnhPLHHG v]P)=='6FoM`s^/Q2,`ڵ5k~"Yz,!!:tJ^o-97שw'wB0EVJ K @)E`"s*xwJJC6CD׿ rU<:"#b7R Yqf+LR} X S+[jj۶:쳉ʜoL6vF-68ΤIK,XJJN2y9<."&Jh`,5ݭ8gٳ':uᰴީS~W 4jw1п]zm] ͊],"T*NTѐ$ϧk׮8냉Hf~~'++B@O:p82e+II]n)S!ȃUޏϡJȪ2T7_PP˙3g{ͩ_SɕF/`-?oab: qC(,,d,X0fLz#``Р[{fc{TNiN*cmAݻyqȑ`;g]5?M^UOH8nݮQ\pi|Ӂ!G~zg sϞ7f/zɬH+g]tT`: pر:Un4iҜx@(.ʞ=oN3ǂ i߾l̙3u]s1:xYv.}jX';w \|=q5MNqq6nի_c۶AgѢE :L9s㺞kpYRRW[&єHK@)Շ@rge.n VZ11 0F޺-[?>Ç'66`kL0kaKRŵ /oQD˄3y39Eˮ6i֬Q8>4auٲ'BOYb=X/Vo錠_;kuOF@Y:Yt- ݿk#bKnr;۽}iVd*yW}_?9% >Tr+a۶=iҤ^bvk8iGWuS[ZrصKb"RZ@g2mڜk˷U+ímRMu=Tu0 eɒb2gfN*iѢm_bRiгuU0`ؾzuԨ= fk `z %5u\c X2*Wy'˗׉M O>9 3i @\} R65\cC^3xu;**Cfsy8y4iUp[!* 6@c Fefe,O?}GԆBfϞ@zzr("˃=nӂV&XFسg5S־!gOXlF?{@B1[k((8bDSI'+^TO9. Yy.`8}]u8p߬_?5k^7w:FW7ɍg1⧶^N F,8*Dii!VªUEǎh׮͛M\\SRr8th+;w~AaanMl\'"'C38P 8_۶ݨ:F+@R"0>:-//aǎر4}\/"GkcMU>q{~ey|պJkj D~,"5pDqWmV~ͬȗ:kjWy *" T[֮mhǏ͊-UYSK!XK`Խpi4UX,JNNv6mw N8Aqq1唕r **f͚ѬY3"## ϭ*sq "ddC- f+|^yeY ozjꒄD|+sT?ԩq:{ ӦDYtVWIM]RQQo)"zѣyK8p!۶-SP`0𨮎p$Xܽ86r'N'/aʗCϞ6ه .F$V T:+DJ(++WF1'YfpNvj{?SDD/фT;Oifș\.M>k~coS =Kt|e=M`e7**Ǫ R-iI׮ӫMt>6mΫ2_پ} |>{k!FhBAjj<*qa-DRzm'C˖݈kAtt FgqqN8đ#jM5FDzZ؝k}Z.NjYߗ%hj˨Qb ?j=LNNs~B`CƵ5v 66|+|-h @dd9C /'***zoe몧~c 99 tڵ+#Fr3>LzTThSZ^YD\?j p%ЧO6nȖ-[(/|xV@M]RJ[nv@ M9ٱc;w$7V@x׀7EHW1]IMM['O쳝HgzIϞ=),,pq)-r0 |,&١Fcoc(B:V4i҄nݺѭ[?GYY݄˗}DDJt5c,xVk].׏ SXXxg:RR ۣh{ŧ?cƌMoi @g<OsO%mX9҉R@W#M=f$m@/W)ضj߹FR[zr (5PJ ݵ~NZZZ[jkp:hNk:+T,DW'M=w~e8̺Vp8,SJi+DOV3fk{p:V @RQJeyRj%/1B{Zj/8gŧպuTr1Zi)))bqԟʯɓ'(UKcwLRJ=S9Yuy/VA 6e0uIMMx̙t֜Ɖ" ]\QRj x_DNp,99?G)&DVTTxDDx4OU]3zRjlO כaTR@BB JCh[<-{uAB4()^&Jli޼cǎ6Z7jocǎ];xb-1SN-m +@ѣ+4J Z8v"++;vXy/O3ffff+Zlckۭ㻔R/sᰡKd**jMw^^ޟ-WUZ|xԨQ5G;w'PVVVS#]!x`eTTDE+ۨt26mΣENGII%%=ڵjСC|G :ٿz3tdJJKJ6pt\uix$0 &Mӷw':0ٿ_}&_}&/oӦ 7pG 緼^/]8B~SXIcGG7㦛0xp.B} iBn Vzy0|\ve\j ՂU"2jmq8f̘BKR7M7߻uL5nyHQ1zk"k֭QbƌC6 E]3'Nݦ8{`;.nY޳bc`792+VW8(Fmv 畕=] $&-mW]kR!3K1q|bbST|>.]J3gΜW_~`>!cuvMM߁ɈL^7ՉM]fҤ%DGGe˖-?zq *۝Vpxi7$RqfӭujYgOj{KJJJRjNޓR3g~ =Bn Ĺ"R]Fߝ&*3u+n} {- D SN= XAbƍ,]bbXevT)J.4:Xsr9W>:hyޏ=K<՘-[zu2)c~t6Ν/UqF{:u5۷/a۶AnRj>ntm[{&jZݗ&\+5={X" gсSN3aŊYlAN)r?ٻ#II;ǗE333 Dna6bhn1{l^{S?mA޷0a{_r晽ial#N8\.MMTJT7,\믫䬳oً N.Gq `DT`*.*ʾ~ehz-d̙/[~Ŋ盖n~Ujpq-sUPJu~_7:XQamZjC8Tѯء6{uLM[m ?,--%%FOj^TU5wpτ4hďiB|sӽJp`A=cGoTq8ٮ]8qxFwm{0]+e7͸#GvhlP~VN337666#_"\u9Ws \ߘ={6.ۿ-m߿k"[Ծ%XD_=l:7l߈kVo/4mʬiii<sn{9coƏlyAصV <ÿwiX>) ?zTTSnfņ*''';SRR~wqM6%&&۷C^N<֭9`]w "ؿ8u=|8pYj7puCvcǶx<&$$VJ}("C6mc [ӗ_f})"eZ?>|xZQQaQc~ ""K/5pECs{キIJJ.k?8оm۶5qE,^Obw簳q|^l*?0`Y G2rRȵcǎ8NCS{]x*3~]6bcv'%u3{s@k+Dx},ƍKt\׊/nu0cǎUߒ%/0p`vᅌ|̊-**84sFvF\)"W9 DĒGz2r^{m<2@Dx`V&>.UOLlcK[}Nƍr]/v8DGGԑ͛Ӯ];A={V1gy:6}jVl| (*ǟiۇ`l[tttp7z.J" 詔t:Du.~8p%˖ ""n{z-X¬&ZBʨ(4%إKx<6`7_)=_D|~ެYJ{dwf͒G[ip8N@'v+.ݻ76p1rdFH;!-z>"Z @0)lmx2AA΋s祸xl29*RGH< Q?vn &''ǰʕ/qfr; ͖- )D`ʌSA[wZGgy(rW^y%ͣĸ{ ni.Z/%+A)^&" AvQ_Iʠ2ȦM3lر矿`_"<{۶DP)u*bwqcbccmrelٲٳ^63=k Ckחl۶u搗W }pU,?@iiaXVf͚i? ݺuUO͒%/d 8NӢ$Oqq>%%=ܽ5N<О`SU "޽=;wV=ů"11Q{{ٓH W=6Fߊ3 y;lnaCngMHHc&t5{J0r :}uYWfxuë[WǏb dɖ DmR{;^Rr+_f4[[ZZȗ_dXl+l#DDd!LFFܦF(2'0+hGEFC쳧j3c)_|5t:Ma4"rRO+_TADE~"{0lS;ŋv:4+22̙3gv̙;TTD"t58\#"<1Pa5RQuOKTTSl%>>|_O1 eu76.l`oa.!",Wa{7K/ʊ.woJx`[Ά 7\İaS!"쌌uXW@ ɚ;QK @A.op5<7pgyfCKt222j?zQDJ *;Wy:i %Ӧl;vl_,>v8Θ1v)eK`:`:׻-jHSM[/tBTTÇo(}"F)p|ުU5'Oi7PW7+ԅ9uVk=Wo%K^ u]Gvk((VWdffhNL UW=С-4yg}A'޽., 6qoR6eeeUh7`7 b4mڒ2`HZ^8B}Vd%"RxE\TwR,iG`ĺ].٥gfffkwPD.5ߺuwΝ/U$&ELL @y) s_mbvt43yZ;F @݉@_CE9()]4ZVUd D$O@m#~ 0@T[L٥KV 6r`6-іOI]ZH( .$lĵ"mp}F7"WVnV=u-[Mlls4hJiiy9 l޼ʢ:\)"u h`;E72d ڷ8 Xirr2*z80TDV)<cޱc?ne6mڜWKK Y).IYYkG^"kC u} F#F È (֓z? yN7<'I>ゖމx8 Y1Ê^;3h(ФI+O*j=@8Z~ ԰=Fp >m[0g=z4l1a`i WRRW^9kR _}<5;3m^f牉;d+6`l/|\װ@epχ 7<裝)++)v7o&MDVLDt4~M~p hQQk|DVW޽{0 |jGIII>-V$O%cp;,gf};;pi+:\~u{ zأLjf⬳R~СCLpt:wDGG/=郳j=P )k煅# ]JKK̝:ujO-:䨔͛7*<>mdfAAA8@)54͍N)S\X[|>}zbW||@;ðnkկkFk ør}xKKKN ;lxHʯ'v\ {k"ͪ@DF1t~x;wn-ZSv0M! hJJN=NoT/Rcr:JJJ7o^D(Ng;6MsbE~XaǑ#?=ǎ|޸qH*111\.M0L0iLL}J[>?xp =z [=ReI~^$"o\=䴴  qGJJʴ]U!?@˖֛]ob}m.4?ny@ wfeeUJUۄ4(ݻjXbf͚m6YxEtә6}zȑ:yt6SJ=-"Su6[,Yݻ/l\|x&Lx-##c#VGh#"YG"r&])[Djzp5k-"%%eRi_… wF>{<l߾*+̘1AAAA/0.{a TO"2:55u@1u֦i#i;mWpĄ\9^h|o1 ǽۇN7Oߦzb֭X2K]rM̜y1%%wE,C [3Pee"2155 -0}&EEEs|7B4ζ 5Qƌy"h:Z"3999*!!aL\$ȄAԩS1ן~?4\x ?w߽ǛopF;"rs:wSFuURN e˖۹s(ېzE̟/kצW&`.ĉGGG?L{(IJӧOWTT4K)5)LIny'==ķtoEmۋC\GttJ˖ʕ*ltC$RSS?DP%"L~U@>/0/~&tx1gх6ԫטBsN226r*>x.wFB=\"2+Cϓ>:-h4v?-0eʔ 83IQJ=6gΜ#a;"7cƌ N87Rh4ML222";; h%"`y8A@|-"~XS`#E$bᦤ QJw'N`ӦMܹ"Op SDI\D$$r'rrr^JOO/v)7E'^Z=u]u X!Xn7n %B`&\D5BsEKKK @@iG9"R@-BrrrT||߀D,^ܐݕ$Z/yT *VJM3gN=(Zu1yX ,&umyߎ\Nd_|;5" G4 i*%"{_M;5+7W(e'^ӄu>*"{eŶ ڴ9IHhKÆdgdfn |-jRRRPJSJEQSL0/8WHƍqw2`DUc{Ye-ɓ9JYRkroE!_ZZ:6]Ԯ ӧssʬ91 v#F:kug^X#x*K˸.N套ưkv"RNk ..W w\oަ͹<72Zaa3g^̡C+@W1l9B<|gϞ?@ &bNN=5&yx5ג-$fdld̋(-Y#"SC*T'&`pUu֜y晴i&[>`?۹ @HO : ,.ap0qƜ{t ZE"rsuhLw$&'wZZ?EΌ??q=]\f޾}Xz55qqZJ4l4`Ij-ɳȣ;^olfX˜1O؊gƍL׮+=L)bu|صR+H'.Ƒ#{jEf=lKؾ} 8QjՃԫFر}<?ϯ*/:l2,YY[16BvA4jQJVʶ?vl/˖ 89>yTr}̉UX ߷s_z|2G rCc9a+;>b"xXvD s|B[/ʛFċ` םȑ#7n+"QAfw)}N? iam~5j>>VJ$*ػ0h޼9[欳΢iӦ?BeV!ܧ `^&]tkH ĉcvkD{M:!MŌGǎ;𓜜??hbcc3 &&w*@Szk*mڜt/s9`ʓ:u1J)ڶm돐2*UXqq/0;{?!)x]{CQQ>sK/]NqYY1=cl9Ͻ@R l?<0M:@t:W =aaO#P=3<ϻKup"ט0aBSTJQ;wiLdIe j $?1yԽDQbƫS0o޼\ϴ4No8?yw?՘|36/MUD6wP ϴkx<~ZgZwyHII $K(OJKKi:vCxFv}0Y?BiU-@PM.j`BCiii"F3`V opyt*QJke֚$Z35@R = hhDd>!;LbhRZ:-n\ly'OwSSS? W9-4?k_ܧiXcA`~j;wݻpwX".k\eQQQ=_za%2={ү_?bFWv? gy847R xiZVej5@ll bbq1on޼" TUN3 51 ={u!'?:>}_ر?GPCvYbn:묪`3pQ&Ao*"SneQGb[(.ŕW>B\\˪aJ^DAQzGEEp0]D68D$%555MS5$owҮkhx].B@M=uҷ_MKRRR&)S͋˗/gʵS~,:E.4ir11 0M޳*}GN΁ʢX$"YuL[v. k&5; rd9Yt\͊+*%v0d .:T?|ҥ/vm:YfZ`RjCl3=#-ZtaoO}T)LDIdgg??*j_~=[ڛJHhGrumر;㪫wbEJK ) oQ#@ d4*tŚ5kl/{lK39ꮨ׸xcb=#QQml:9 5~TJXz</_^ud7]%){Wmݥ+-Smi;:/9s,TJoi&+eذ{>DL!"RSS߾}ZF 2mNs͂ k~[k76R_k ;Q)2vێ[<;?ڈmRJ5->}ziNsպukI~>Va7߼n@zz';;v4ʲ K^tN,G2铓\.PjqqqRjp@4mڴwǎL[18IDAT%GGJY:`zz'::zNYYM9Up)c9,8H0EU__ވ>A^.\8ba6q 7h k>;jRV˰FBL4)6::zC5̍wRYY[6,tvɲd voDR⨡t{Z=lٲGX3ѠAm.gR**gǏߨQF}LӼ\D8Dį:jڴ)ڵc?Quv$$sބSjZ.;=#͚i%F`3Cl."n]ԠALtյf޽{sr=\YY1g_o6Mo1Mv<#"9Z`[^g~}cnIIIWJPJe19f1S""y111DDs3: ? h#" TWc5kF=ؼys<%L!m۞pZ'O2ox6n+;#mAIFBإSJw{gdXvhҤ W^y%| EEE6+73g,͛woߛRҤI/KG9rdϚ5{וl#"oElQCnʝo>xp+mڜLsȞrccc[6=z4 ,"'GOc8ƽHgU;B,+#4j;vQ~)vFF`uYYڗ_~i@=`6|~ a Xr=S+<˕x6 l4|VfTH]alhF '&g@Ʃ:vΝ/#)+qq-nSJAQױiӧVUp{!999*11146JD4RJz"kuaE)?HfzkkT$Xna?0ʷq"<|;WJikDܚ K.=5"jd1$j@ t75j~%(`po~й ݮ_~Q;`!vxmwZ=OT1~NEC @CkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhTķ)hIENDB`geogebra-4.0.34.0+dfsg1/icons/hicolor/128x128/0000755000175000017500000000000011770612705020436 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/128x128/mimetypes/0000755000175000017500000000000011770612705022452 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/128x128/mimetypes/application-vnd.geogebra.file.png0000777000175000017500000000000011770612705034374 2../apps/geogebra.pngustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/128x128/mimetypes/application-vnd.geogebra.tool.png0000777000175000017500000000000011770612705034432 2../apps/geogebra.pngustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/128x128/apps/0000755000175000017500000000000011770612705021401 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/icons/hicolor/128x128/apps/geogebra.png0000644000175000017500000001470111534420340023653 0ustar giovannigiovanniPNG  IHDR>asRGBbKGDiIDATxy|ǿwf=!aQdߌT7d˧ D}k[JyZl_%!T}BJX"&R,Bd-'@ L83$Of&+ϝ<3{ι+hq~4hA#4hpCAB.` U@>pX dK)4\_KX̕Rkh%7 ă?H)?l֧x >iFttwڴ >BB(_ӯ y~FYee c׮p`;H)khx ۟'XFCGS?樂5l+m={Kjj6̀,Z4G96>RcZ.>S\=ڷwdY.[wRXCBBz-RBr.33T#@P~g4 l:^ye] X?"' 00i c^!^!ޘ9sX4\=R\>ΓO܌)޽~=l0zj&Q!6H)_|xs^=yro3u׮]5j'm:NKjue 8- D "z[5j)s̱j /0jԨWKr~mXV?Kt$999iܹk;ZgϞPSSِBBQPp~}e|%>Nd2&%%enǎ?V#BOl4W]]}FJ.0U/W||GK)?0L{~i# ###_k[FYoWs+*~ZtucZ6 jjjdeeU#B$''O< ,rUDGG;q (+;']vWewIIICoX$''ߒE@tMNm| ۶l_ˁuw hyNn4_ #ŸFxxhJKKO`;JxxG z f(SJyĵojjjl B<7R~i0,Y&@RRRN{hrO?~ݷC̚f.EnfowsFI)8i&0ε1veL&VZdrlmm7rtzOdv[h8F,q%JPP$_1DEDHH/STtqTUf1x")(_.jrzLpLLMT@1X`z< uvvГ:t:.a|6mz۞YcZٺu+AAAcOӻ/b|&800 jj.VpAk˳Ϯs灍4((Id ,Y2 $ɩ=|c{{u;y}6+8P1{v*;{}y$2ek ҭNvuardȐ^==$ڍnڜÖjxN)*:/צ0b9>pst`͚?x-ҥ26oYcoo&^|0>pǏ+ٯQYT{)eS=ʯw?@;6uBkzN)?JYY>[,rm^tN>nhwK I(@>%%'$d|AoUַyVkI5ΝF\l)vocӦXJKO5̩}e?F9\^*BU5]rr`qmv%00s;˾}9r+w/m0QJ6r"%\h0`A ^;fRT^${c'+#[\bf ޽5EiGl+< \muG'?q͚?4:4J֯hpK]@l]4_ѥK&MĴi,<[uجرy叺'8 ,@&)ӣGUVVb6 $(((vjedZU(ܰF+mk.]2pظqk_M F1T{!*7wۧĿ>N*vb0L@JY LR\ddLeɒ=A'OG34_MCPSZTTj040BLT5}Voj:v쭤u#$.R\|ַURt#@ʕ+k"B 8~xvEV`|/0cƌPp NHH;f7 Tަ0VS`05~CռŠfg|<%Kp@4OM QRUV-\زBX,Lfw244&Tt7ZgRj>+[CeMuZ)lnݸplgܪ@1؎7a%R&%%ݧje*_QeiӧO/ !>öL1PqۉSoJ)WR-X,/YUjn¡QhӦ͔XAB%p]***~bŊZy*!C0hР=--I_= &TCRgwn WF{4h:%<UU穨'7we;RsN***>|[R>gW;('jDJjjjv*ɱ}L'ڷPnoNv3HHH !!jW_re {dX|NϴiijP6뮧'.={pST_+IPwGa_4O fl<:ٱîM"ҥK !JMMuB<#DCqV/+X+xES[^r2d*#G#A<:EZ),,ɓRM=3(555bE}fv;/]آg- cp8gz|ѣ_`l2-< N!DK(ŀ1w" k/Rrƌ þª*)//w1$ 8A&ң=wD3p|O޽ҵ}>)B'/:GGY ,_d4ܛpٸqc7nĉDDD' ĉovu"ragBۥ-a'hd""l\_«A El0-[G@rc["Ԋ gW88e$zFINN%%%? x8:0`8:uGXX*JKO[9vkwA+UNUϞu^ Ə_~zSAAoWq:?<=>镰ZرnݺaSꁜ@T Kfߧn6WfG~ߝcQQQ^koRNnNOOw-6,ƶz.5A -9>AxBl3Lgz~#yy.^, :\ T[SMq;(ֽ J͹>ʗ^-c廽nڷo_[ot@Epp0SL`*e=\}v E=`pڞrpU2JJNtdΜq|~\y幷 !7{oX($2\ 6e5m[.aŘUNoRRBRզ^+RRC@j=|Z7( ,!y "#71,3g'/̧%lweFc^R]2ϯb_BC@!p`zj9)ep~ -lho#hH9r ȒR~:"C!A'l!4 n @F 4hР@F 4hbH˜vv)IENDB`geogebra-4.0.34.0+dfsg1/icons/mode_circlesector.ggb0000644000175000017500000000232211516655704022213 0ustar giovannigiovanniPKER2 geogebra.xmlYo6ǟ{uv^gwТChp):;<8so]4bexo3<+t+T'f0 hl,Y|0v&V\ؗOn!^.ߤZ-Er%+韢Н1JKy+KP0'PZqy}hcx~ :y/`v7,*YJޘE۪rZX 瘲,"qhp 1K<„,@Om5_ W)YnYcKeo'zmO\Ո,TB0LĭΛY%~ovR̔n~$i:ZhRL4`7O%bV]`p񩀩6/|AZq ߩ>uŜ%z+54`~s-ttVnw~b”m@uvЕzW0|:U 1m]D aĎݺ/R#U R ؁zj|/}FP(1O)6]*Ieqӈ3;G e OM8_''p gzd<3syy錝t.wS&9{Zt;t1ìg u`@H25512N!S"LokZ$@^K^{B~U"a/ 9w Rw{+ .#ڏ ^'o>j E$vc^yk,n`☵)z ^@B!$ȞeP!bTNciM9c '`& d5.@6C P Q#!INa|XZ BiEcmK_LHQ0j.dcbaHP $!-4ސۺ&>p|f6Y"ЀIP@|'uvN!Zyцsr#X!"r,gI`l +e 4L V R!8͂?LAMRԦ:PTJժZXͪVծz` XJֲhMD@r5%@ V肟P[4w҂U"4WL=KE` 귐F!](.n a @ N<۶2_ pl"X,Uԭ`iBp@[ie&ʶ9Ef 6W)V)W#]-4b[EM x~/$>Εb iP2̮a")rT7v5êFVX0hX%QLE;2]D;Z3B,̕'VhB2U1 hla*DwX1gnM,J+5$' ֜\cpM I2cYω7+ /!Ya sͰ}ʒy+DcJxL.NH;iLhaf׼_C ^~ !oBb^EXk%S^>M aGݔP7l…qsܔ(poCql+$asEDk8٩B5lȽŚ2^6!Uj qSTErcR+Q\U+ ~NO;'N[ϸ7{ GN(OW޶ ;geogebra-4.0.34.0+dfsg1/icons/mode_circlepointradius.gif0000644000175000017500000000742311516655704023272 0ustar giovannigiovanniGIF89ab`p`P@0 Ͽppp```PPP@@@000 ,b`@pH,Ȥrl:ШtJZجvzxL.zn|N~,؛0ل XȰÇ;pЀ$ Ǐ =zP Y(`!˗0 :f 4mpCϣH_r`Rh :&J MF*ׯf՚hW%omhz 'p,.`2 vEȒf(XXٲܺLPuf7U73 FGNլMAXC?*hܓClihQIT1'#!N۔<}K <=\l)…!3nt~k` Pxm_OpSw1}zCaHA ,HI8Dt+CPR2A}J8 yX.TP5f-K"܌!qP.7l}ĸR4 IiLu"8""Z̎.a`S .iPP!}3GF:d4x:9~Dixrn&H[ ) J)z3ʚ aMfCl,V8;$HېXlx hY' BT; ʣ o94:pA^;   k*LB{r K u m αi|LIlN9 YXr . = N ;)= ]i= y u:D#ڮ̐ -)jC˂[Dh˪i],Caq|l@-.0E8rg'jiLV%Ļ@:Ő]<2JXgDLS),q,DGQ`Me$1kņ Q|DȞ:z)T0RO2 ͛FPLludL#̸.6eT PG  `vbzt,-1r5Ӌ`A%u@>qDH 숍y PM҉0vyDVwwỳXH9 + 1/i xр%#h:dӀX(US'EU5А-I"H3,UeSU9 ⓗ AY9 shHH S;ݐV=pڀ]TgSU `АT93dIJ /i)0o/hF:Tw ^PQaX 1:ˠS㠕ȣN"Еd Nr )z~iY DAR!`7UTzĚF NQ x ´TS"Yt 1+">q`eYiQI5iA5irA!; ꪋnZک#\ZIسRZ"MTֹxD3_},(!ĩb n&Y?X9s~=FtEo(VvMl[5aڃrke^yDVmB 5ܐÊ,P 1XFv) :< .<_ ;;cb=VLVd0$&`CV Av | Z b$OŠ5Cnc EĄvRMf!rm2By0m$@*0ЦyIa:` _#BPR.*,j `D`e +XC~ DE`ӆTåT.U0ؖLtS UY_g&H.0c& @UlDï*oL@K*Ӻ=kP$(K00 $PbK s&+o ;s2X pL:t$HKKpJ>u. Y,9$kK*FRÒԽ/q*B󷒁 ..͹D-6teCC(2jÕ Ycˤm;s˃ .s4|2 a=9LdÊۧ ysc=ţL~d׺d92&=%xW46ə{pA)jA~x || ľ؎!F:9@q´Pp6duǐG3= >%t1|-O,1} b(K P`H0 0T(@x,8rې 57M(ׁ6+g (0z6^ૌɠwjGQQ8)GX X.)?3 0DN$/BY+1-<$^06&9_"a"%b<bHҕ( ~7^tJTh" AP2Lh 6Y Z] TF`2i!,SL+A3*$ t HFE1G1NOk0'jW"(g'Zh>uEwyO0o@ծ@ls0i؎ZIp4-K #4U Za)_?Jl*r 沪b?!=P'*Kj VĒȪԪ$zeC^{al#} D knLҁm v.uYz8vQuSI<8x{*G]/3D{K|(Go3d{VI&FnqN%6xEYݰi¼0Zi c hakN]zKL6aprYL0b/a );FT#9%@>g|dfTnr1ۣ |Rdee(p/?<`bffWIML. UtY30ĶWЩx2|I_ ZTQDG_b="liKM+.‚;= 4(U.fdF$]"# _惁`+X7}H,QgJ‰CVx[f;gIQbA=B7Ʉ=Iьm_6*t`OQyaD"83y%Uэb=gx4aDVQe3~FGs*#H.}=9,JB3agn:,8,Pvb# )CHhahaYz PM-!aі~nkwg qG(5./oB&Qx -i+>0pz5zh8@SyOxw kٛU4 y@V) 0yH9> UXY A%B`ɹ{`QVYrНq0Z5깠dОc0Jyp` t*]0$zףnР.c04zzX:ڣT@*8% F);ʢOĤ\P:3:W`V*9H0\z?ʥBVd*&zKzĦRjUʦtJ[geogebra_thumbnail.png8PNG  IHDR Vu\IDATxڕjP0KCA(cA*Hp/NrKp!CFG \i1BI{ù=vG-AK=G}IZL֏}׏} kZw;9oiJ~p;Cԭ,䞷N\gMTocZzçfCaM46Q&9o`|>I\|}炄%.4>x||,.x8 {9.4AO2wp5xzH V@HJI}HZ$Y1kDygc_&kfgcbJ=!),5lQINDhj\>p =/\,ɪl* 7L8_X&K+P`<9ӼA5۱mj3sQ q>fiǶ5ovk1FMRE0MTg>ntզr|6F4"ye^Qy\UBLFbM{W:m}gc)R݀+>+Ė,b}&\0!# D9 \7V5G] F7n"AJ*)#,+Wޡ8VͿ]R̊4+%42e~#)UK SIV,,m9/܆-l<'CvQ~g,_%nT#w(R4±WԁH8Gg=6z_ {ŎQ3Ýd(x~2<-O76gln9#|"9ȾqXnxl|77I~_>)/?-%vĄHJ/u{'6AwOxKkltbw ?aMTձVuTuhJS<~Uwt+z:_>uVuuX;G(~1W#[GFP*Pҁu(p5)tTc\{˛O:yKؾh9uzLmyńց?N&,cwݮ/'X m*8wpMl~m~2LPK~o2IPK6> Β=8geogebra_thumbnail.pngPK6>E]geogebra_javascript.jsPK6>~o2I geogebra.xmlPKgeogebra-4.0.34.0+dfsg1/icons/mode_attachdetachpoint.ggb0000644000175000017500000000515411606352460023220 0ustar giovannigiovanniPK>geogebra_thumbnail.png;PNG  IHDR 2ϽIDATxcO$` `:))޸qWƮkkkgggϟ?cW 1KllKcc*mm-DIENDB`PKrNPK>geogebra_javascript.jsK+K.SHOO,TPKE]PK> geogebra.xmlZko<+.E,Lgw2],Z,1YR%q{I7'[EK{ᕝyKմyUx'2xd?x6 T<@\9NRuyJX;ht~~~F_e{'֠sn3B>YyvI*^2<ϺS\ cNU>;řʘy0zj\*kvR8tp yvuӶ_3( ˗yA( A &We%9keέY}f<tUUL(˼ͧ:NIخPw߰Cm;#\X@p{d/ mg4p S!/ H5wY=W̜vN0o U MGQA̟yxIzj^!GoC]ߧzӝǩ=^HI;~-&o('8z^y]tyz/?/S5;jV+YuL}kIG:N S*9bR|J>M/ [=g)U'iQ-Znīq|mpq5SF9P1s Rx0n&5rHf8rQ9T6@81 iPEwZ5J:ݢ3Ps35 {SH@57JDkCxGfH4AM.TcW4SmCYHmiQ+e53ٺ%f o?y(DfG$$u/_ln,$taNz/N А δϓ2NGyl ѨBB5W-pS7L<]c0hxw*8hA'?YLuh|%ww5/H_\ 7MoBAN4 &`YtcIE0<A0.N?]ik^X Fv7X;FH6D)e¤Ohs@cڶn$2GVdLzȴ5qMef 聓 f_H&!G:EBG}aAL]SJ)U"sbvv7vڻq<@܄o-p=׳guSrA¿Ͼ~҈p툞<_t,4&Q;Q;ډvQ>9yrOɋ~Mn|5!_4Z%} _>߬| ь{0IH`>6r[NԎLבL^@@O ڈ|؉VY>_o;Uzjg3b]_#݃>=O*mke3mv%LX=xl$S=eQWa 5ܛPKԣp'PK>rNgeogebra_thumbnail.pngPK>E] geogebra_javascript.jsPK>ԣp' kgeogebra.xmlPK geogebra-4.0.34.0+dfsg1/icons/mode_complexnumber.ggb0000644000175000017500000000444211614352361022407 0ustar giovannigiovanniPKȳ>geogebra_thumbnail.png sb``p  65:HUz8TJᯒ YQ˦/-šQLV3}{jofoVeb]'۞{з ^#+$??o&1.(6 ~.PK<=PKȳ>geogebra_javascript.jsK+K.SHOO,TPKE]PKȳ> geogebra.xmlYmo6>m#zid+֭/ Æa%"D'v;Rxi5%sigd(B6m#Ye*/ّgT39mR8S"GN@#WmR҅l4\.*K6׺~4_^^|W5l6uWme9#437=/âjuZeZײx䲨ru E沘q"?>e-3]\ȏU;(78E.#EĘ(t@5t7K46M. yiҝ8*)Z-|x!K= u1}$j_?\5[\r>.$PއD;G6phFϼ<ާ(Oq2nQ9Ҩ@^CO@ !cA>C 6p!0DV>p#cyt:0Dd#@Cb89x~=94 iF"O RA!0#bi)zwyUGmJێLt*K7N)qiIcJC_mT(}j2U:Tf%:aG8Wa,[U<N#輮q#Zn&cM2+Hob~C2JGA@5EW(cn0f^  uŅ"JǽoHX'v.a]ˋS5檅t%*X&IZecXf Eݨ%nTNm֛u-iYtfpwYwګCKیbf 3#:dtiuשQHI.TއYh(1^pд/Btwr;r1 F,tJU[P<&nOx2IZY],e/fɹl*YvEtZek뾟q0eV,еm3K| 5z3lX.W'~ 6k8 S)e> Jה@j[j.B\@o9 ]6l#xO^Hz$YkkT.iPP4j2@D]AM} sr(LDoFxl_غ} |nyZʡ2S9vg/,>KwdZgc/mg8OՌ0 )Hޗ-!- ^j=GoNO69<h*;X, A>4 4'QRִ94iW\;d(}?\g/7ߍ:n9 ǟ??D?#zz7W546Y;Y;nY>ԫ!g<}{<]' 8cU/G>/ր݀(2..>@}7NиcC<Uݠђ2_ժrوok"oïDoҐ{bIZn|O5S =Doߖ볳VjӪUt ?N ixKH_o PK<^PKȳ><=geogebra_thumbnail.pngPKȳ>E]geogebra_javascript.jsPKȳ><^ Wgeogebra.xmlPKJgeogebra-4.0.34.0+dfsg1/icons/mode_angle.ggb0000644000175000017500000000223311516655704020621 0ustar giovannigiovanniPKR2 geogebra.xml͘n8ۧ tQ"qCE %D%vj_ϴCNc4vC ?&_ t/FU#>,*Se>Z=w\VMz&ȣ>U6wE嫒#O׭hP^~|n3/Q*5*:}V(F^rW*1ç`AQMmxf(۴PىVU.-gh+Xb? ǘaBXnAxEqQS# OSo@TŴ}m}ډG6Ͽ aq~YQ:3J:1#i/DyX NԧC۲>eI?q:@q$x#a+[R[#$tLm{ы2o Q_',fC,i}QO0X0q21W%!IDxqB@O"#$(9BHcպЌcP]jo p e:m%*H괏z2Erѡy6A^l^uWPK`RZPKR2`RZ geogebra.xmlPK:Kgeogebra-4.0.34.0+dfsg1/icons/mode_vectorfrompoint.gif0000644000175000017500000000542411516655704023006 0ustar giovannigiovanniGIF89a^^p`P@0 p`P@0  00@@@@``@00Ͽppp```PPP@@@000 ,^^@pH,Ȥrl:ШtJZجvzxL.zn|N~F//S059<>;84F4;924= ̧o1 \2.l4(jdj7nq ({<, F@4X0 (`LC :4 kdvraDaʥ *P m`ET W^s :Xʍa ^ U.Z sV6~9 ,Zh/8D;PoFXϽF6 ԩRXw @kk|sjN Dž9Q^ ЇN8:*N;;axD% ]@Um]@[C{]M6zz t|h&g- C}(ɄXA֕ $\LlDE`c",zu02ݑ$m#FwQHW7B /(B8x釕afg/Xw@]ymxN)y14CgJ2(J69¤M`6ְe^wG`.MXټw{T;;ZD%^<%}G[do\P?[!>WS~WPO|QO7ca(ȍ~E '$mkEIqqb뮈E%J]dx1 f$ d Y i n@}Bq"<8q#&7(`@Y1sG%y'zħb05!TF@x"` !x(D@v8 BqNa )?N!JiŸ4 2L9 9Nӟ:!*ˎȴ(i V50] * n[jO aL lKSvn2VDer/;v׎D|Z=$˻^z 9n)j ؔX7E0C\ %2ǁ%T"rH2 sX# f@7P$76|-l 6L\-4$D YaL]LnLWG76!,o\00G9铬d y g gyo{ B:9cvad'sjh\Wɍd~HՑ@Jkz}3zrqgnZ|֤ i^hVuK [3975[S^97\k|*й^kN赱=fnlG!=%3*6 hs/H&ϔmo;DlqF¾7.{ _QR)>|- g')㡢=?aw/n+a)INjO>hYpS8ypGa:#WDѫjC}>¼esO= ֹ ^kAB!knv.9jo.w9c;dûgݫW0|3 "/,P&[º{ᷓBGٟ)Xx ؀89Xx؁ "8$X&x(*,؂.0284X6x;geogebra-4.0.34.0+dfsg1/icons/mode_intersect.ggb0000644000175000017500000000217111516655704021534 0ustar giovannigiovanniPKZR2 geogebra.xml͘Ks8;B;$[~TA2TmR; [ceɼɄ֣?-<|, U9=$ʬe9y+=$wùb8Ujȣ>}%o6mR|yZjoo1B;P2w*/F^X)Tvg`AOMmxӮf(VY!sK5*?lj-K \Q$` a ^({"?1JZ&Re8ʼͼ/ge)3gٌ 3JEj ]], D9KUA500>$Č&,L1qhN)a/ ->dv?_C>S".X\OA(1.\!HcW!g[2`rtt=G880B^dψ ~ č!T_:ܗZ>+,|=/3>TqZe8NI$ iCHIf=P.ͽPK)J#PKZR2)J# geogebra.xmlPK:)geogebra-4.0.34.0+dfsg1/_README.txt0000644000175000017500000000201511617435131016556 0ustar giovannigiovanniGeoGebra - Dynamic Mathematics for Everyone http://www.geogebra.org/ The software GeoGebra is licensed under GNU GPL v3 (or later). However, as part of this SVN repository you will also find libraries and plug-in files that are subject to other licenses. For details please read on and see the file LICENSE.txt Libraries used by GeoGebra: * MathPiper, http://www.mathpiper.org/ (GPL) * Reduce, http://reduce-algebra.sourceforge.net/ (BSD) * The Apache Commons Mathematics Library, http://commons.apache.org/math/ (Apache Software License) * FreeHEP Java Libraries, http://java.freehep.org (LGPL) * EPS Graphics, http://epsgraphics.sf.net (GPL) * JLaTeXMath, http://forge.scilab.org/index.php/p/jlatexmath/ (GPL) * JUNG, http://jung.sourceforge.net (BSD) * Tango Icon Gallery, http://tango.freedesktop.org (Public Domain) * Maxima, http://maxima.sourceforge.net/ (GPL) * JSXGraph, http://jsxgraph.org/ (LGPL) For other tools used for running or building GeoGebra please see http://www.geogebra.org/trac/wiki/SourcesForUsedLibrariesgeogebra-4.0.34.0+dfsg1/build.pro0000644000175000017500000001153411734776260016563 0ustar giovannigiovanni# # Proguard config file for GeoGebra # # -ignorewarnings -injars build/geogebra.jar -injars build/geogebra_main.jar -injars build/geogebra_gui.jar -injars build/geogebra_export.jar -injars build/geogebra_algos.jar -injars build/geogebra_cas.jar -injars build/jlatexmath.jar -outjars build/temp # libraries -libraryjars ../java150-rt.jar -libraryjars lib_jsobject.jar -libraryjars lib_mac_extensions.jar #-libraryjars jlatexmath.jar # Rhino Javascript is not obfuscated -libraryjars build/geogebra_javascript.jar -dontoptimize -allowaccessmodification -overloadaggressively # needed for eg StringBuilder.setLength() # see http://proguard.sourceforge.net/manual/troubleshooting.html -dontskipnonpubliclibraryclasses -printmapping geogebra.map #-applymapping geogebra3-2-0-0.map # Keep GeoGebra application -keep class geogebra.GeoGebra { public static void main(java.lang.String[]); } ## enums -keepclassmembers enum * { public static **[] values(); public static ** valueOf(java.lang.String); } # Keep GeoGebra applet -keep class geogebra.GeoGebraApplet { public ; } # Keep GeoGebraAppletPreloader -keep class geogebra.GeoGebraAppletPreloader { public ; } # Keep GeoGebraPanel -keep class geogebra.GeoGebraPanel { public ; } # Keep Moodle plugin -keep class geogebra.GeoGebraMoodleApplet { public ; } # see META-INF/services -keep class org.freehep.graphicsio.raw.RawImageWriterSpi { ; } # needed so that hoteqn can find Des12.gif, etc. #-keep class geogebra.gui.hoteqn.SymbolLoader { ; } # JLaTeXMath uses reflection -keep class org.scilab.forge.jlatexmath.* { ; } # MathPiper / JAS interaction -keep class org.mathpiper.builtin.library.jas.* { ; } -keep class org.mathpiper.builtin.javareflection.* { ; } -keep class edu.jas.poly.* { ; } # called with reflection -keep class edu.xtec.adapter.impl.AdapterImpl { ; } # Jasymca uses reflection to create functions like LambaSIN #-keep class jasymca.Lambda* {} # Rhino Javascript #-keep class org.mozilla.classfile.* { } #-keep class org.mozilla.javascript.* { } #-keep class org.mozilla.javascript.jdk13.* { } #-keep class org.mozilla.javascript.jdk15.* { } #-keep class org.mozilla.javascript.optimizer.* { } #-keep class org.mozilla.javascript.regexp.* { } #-keep class org.mozilla.javascript.serialize.* { } #-keep class org.mozilla.javascript.xml.* { } # supress foxtrot error messages -keep class java.util.LinkedList { java.lang.Object getFirst(); } -keep class java.lang.Object { java.lang.Object list; } -keep class geogebra.gui.virtualkeyboard.VirtualKeyboard { public static void main(java.lang.String[]); } ##### # Plugin part #### -keep class geogebra.plugin.GgbAPI { ; } # -keep public class * { # public protected *; # } #-keep class geogebra.gui.util.BrowserLauncher { ; } -keep class geogebra.plugin.PlugLetIF { ; } #-keep class geogebra.MyFileFilter { ; } #-keep class geogebra.Application { ; } #-keep class geogebra.kernel.Construction { ; } #-keep class geogebra.kernel.ConstructionElement { ; } #-keep class geogebra.kernel.AlgoElement { ; } #-keep class geogebra.kernel.arithmetic.Equation { ; } #-keep class geogebra.kernel.arithmetic.ExpressionNode { ; } #-keep class geogebra.kernel.arithmetic.ExpressionValue { ; } #-keep class geogebra.kernel.arithmetic.Function { ; } #-keep class geogebra.kernel.arithmetic.NumberValue { ; } #-keep class geogebra.kernel.Dilateable { ; } #-keep class geogebra.kernel.GeoBoolean { ; } #-keep class geogebra.kernel.GeoConic { ; } #-keep class geogebra.kernel.GeoCurveCartesian { ; } #-keep class geogebra.kernel.GeoDeriveable { ; } #-keep class geogebra.kernel.GeoElement { ; } #-keep class geogebra.kernel.GeoFunction { ; } #-keep class geogebra.kernel.GeoImage { ; } #-keep class geogebra.kernel.GeoLine { ; } #-keep class geogebra.kernel.GeoList { ; } #-keep class geogebra.kernel.GeoNumeric { ; } #-keep class geogebra.kernel.GeoPoint { ; } #-keep class geogebra.kernel.GeoPolygon { ; } #-keep class geogebra.kernel.GeoSegment { ; } #-keep class geogebra.kernel.GeoText { ; } #-keep class geogebra.kernel.GeoVec3D { ; } #-keep class geogebra.kernel.GeoVector { ; } #-keep class geogebra.kernel.Kernel { ; } #-keep class geogebra.kernel.Macro { ; } #-keep class geogebra.kernel.Mirrorable { ; } #-keep class geogebra.kernel.Path { ; } #-keep class geogebra.kernel.PointRotateable { ; } #-keep class geogebra.kernel.Rotateable { ; } #-keep class geogebra.kernel.Translateable { ; } #-keep class org.freehep.graphics2d.TagString { ; } geogebra-4.0.34.0+dfsg1/xsd/0000755000175000017500000000000011770612703015523 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/xsd/ggb.xsd0000644000175000017500000003344311534545750017016 0ustar giovannigiovanni This is a schema for file geogebra.xml which should be compatible with GeoGebra 4.0 file format. This schema is a part of GeoGebra which is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or any later version. This schema is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GeoGebra; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. This element is required except for the preferences file. Deprecated since 4.0, use perspectives insted. Deprecated since 4.0, use perspectives/perspective/panes insted. Deprecated since 4.0, use perspectives/perspective/toolbar insted. Works only with GeoGebra >= 4.0 geogebra-4.0.34.0+dfsg1/xsd/common.xsd0000644000175000017500000004331411511327005017527 0ustar giovannigiovanni This schema shoul be compatible with GeoGebra 4.0 file format. This schema is a part of GeoGebra which is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or any later version. This schema is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GeoGebra; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Subelements tooltipMode, javascript, ggbscript, sellectionAllowed and linkedGeo only available with GeoGebra >= 4.0. Either exp (for relative start point) or numers x, y, z (for absolute start point) must be entered. Number parameter is valid only for image elements and reffers to one of the corners (1 to 3) Values "button", "implicitpoly", "polyline" and "textfield" only available for GeoGebra >=4.0 Meaning of values:0=value,1=definition,2=command. Possible ways for representing coefficients, only 1 possibility in 4.0 Meaning of values:0=major minor,1=major,2=none Meaning of values:0=full,1=arrrow,2=full bold,3=full arrow bold Meanings of values: 0=full, 10=dashed short,15=dashed long,20=dotted,30=dashed dotted Meanings of values: 0=none, 1=single tick,2=double tick, 3=tripple tick, 4=simple arrow, 5=double arrow, 6=tripple arrow.square, 2=dot,3=L (Belgian style). Meanings of values: 0=none, 1=square, 2=dot,3=L (Belgian style). Meanings of values: 0=off, 1=on, 2=on grid,3=automatic. Meanings of values: 0=cartesian, 1=isometric, 2 polar Meanings of values: 0=x, 1=y, 2=z Meanings of values: -1=use global default, 0=full dot, 1=cross, 2=empty dot, 3=plus sign, 4=full diamond, 5=empty diamond, 6=triangle north, 7=triangle south, 8=triangle east, 9=triangle west. geogebra-4.0.34.0+dfsg1/xsd/ggt.xsd0000644000175000017500000000352611344223750017027 0ustar giovannigiovanni This is a schema for geogebra_macro.xml which should be compatible with GeoGebra 4.0 file format. This schema is a part of GeoGebra which is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or any later version. This schema is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GeoGebra; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. geogebra-4.0.34.0+dfsg1/.classpath0000644000175000017500000000151411607254713016713 0ustar giovannigiovanni geogebra-4.0.34.0+dfsg1/geogebra/0000755000175000017500000000000011770612711016477 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/geogebra/properties/0000755000175000017500000000000011770612675020704 5ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/geogebra/properties/command_ru.properties0000644000175000017500000022520711766730045025153 0ustar giovannigiovanniANOVA=\u0414\u0438\u0441\u043f\u0435\u0440\u0441\u0438\u043e\u043d\u043d\u044b\u0439\u0410\u043d\u0430\u043b\u0438\u0437 ANOVA.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u0421\u043f\u0438\u0441\u043e\u043a>, ... ] AffineRatio=\u041f\u0440\u043e\u0441\u0442\u043e\u0435\u041e\u0442\u043d\u043e\u0448\u0435\u043d\u0438\u0435 AffineRatio.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ] Angle=\u0423\u0433\u043e\u043b Angle.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442> ]\n[ <\u0412\u0435\u043a\u0442\u043e\u0440>, <\u0412\u0435\u043a\u0442\u043e\u0440> ]\n[ <\u041f\u0440\u044f\u043c\u0430\u044f>, <\u041f\u0440\u044f\u043c\u0430\u044f> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0423\u0433\u043e\u043b> ] AngularBisector=\u0411\u0438\u0441\u0441\u0435\u043a\u0442\u0440\u0438\u0441\u0430 AngularBisector.Syntax=[ <\u041f\u0440\u044f\u043c\u0430\u044f>, <\u041f\u0440\u044f\u043c\u0430\u044f> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ] Append=\u0414\u043e\u0431\u0430\u0432\u0438\u0442\u044c Append.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u041e\u0431\u044a\u0435\u043a\u0442> ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u0421\u043f\u0438\u0441\u043e\u043a> ] ApplyMatrix.Syntax=[ <\u041c\u0430\u0442\u0440\u0438\u0446\u0430>, <\u041e\u0431\u044a\u0435\u043a\u0442> ] Arc=\u0414\u0443\u0433\u0430 Arc.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ]\n[ <\u041a\u043e\u043d\u0438\u043a\u0430>, <\u0417\u043d\u0430\u0447\u0435\u043d\u0438\u0435 \u043f\u0430\u0440\u0430\u043c\u0435\u0442\u0440\u0430>, <\u0417\u043d\u0430\u0447\u0435\u043d\u0438\u0435 \u043f\u0430\u0440\u0430\u043c\u0435\u0442\u0440\u0430> ] Area=\u041f\u043b\u043e\u0449\u0430\u0434\u044c Area.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, ..., <\u0422\u043e\u0447\u043a\u0430> ] Asymptote=\u0410\u0441\u0438\u043c\u043f\u0442\u043e\u0442\u0430 Asymptote.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430> ]\n[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f> ]\n[ <\u041d\u0435\u044f\u0432\u043d\u0430\u044f \u043a\u0440\u0438\u0432\u0430\u044f> ] Axes=\u041e\u0441\u0438 Axes.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430> ] AxisStepX=\u0428\u0430\u0433\u041e\u0441\u0438\u0410\u0431\u0441\u0446\u0438\u0441\u0441 AxisStepY=\u0428\u0430\u0433\u041e\u0441\u0438\u041e\u0440\u0434\u0438\u043d\u0430\u0442 BarChart=\u0414\u0438\u0430\u0433\u0440\u0430\u043c\u043c\u0430 BarChart.Syntax=[ <\u0414\u0430\u043d\u043d\u044b\u0435>, <\u0427\u0430\u0441\u0442\u043e\u0442\u044b> ]\n[ <\u0414\u0430\u043d\u043d\u044b\u0435>, <\u0414\u043e\u043b\u0438> ]\n[ <\u0414\u0430\u043d\u043d\u044b\u0435>, <\u0427\u0430\u0441\u0442\u043e\u0442\u044b>, <\u0414\u043e\u043b\u0438> ]\n[ <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u0412\u044b\u0441\u043e\u0442\u044b> ]\n[ <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u0412\u044b\u0440\u0430\u0436\u0435\u043d\u0438\u0435>, <\u041f\u0435\u0440\u0435\u043c\u0435\u043d\u043d\u0430\u044f>, <\u041e\u0442>, <\u0414\u043e> ]\n[ <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u0412\u044b\u0440\u0430\u0436\u0435\u043d\u0438\u0435>, <\u041f\u0435\u0440\u0435\u043c\u0435\u043d\u043d\u0430\u044f>, <\u041e\u0442>, <\u0414\u043e>, <\u0428\u0430\u0433> ] Bernoulli=\u0411\u0435\u0440\u043d\u0443\u043b\u043b\u0438 Bernoulli.Syntax=[ <\u0412\u0435\u0440\u043e\u044f\u0442\u043d\u043e\u0441\u0442\u044c>, <\u041b\u043e\u0433\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u0432\u044b\u0440\u0430\u0436\u0435\u043d\u0438\u0435> ] Binomial=\u0411\u0438\u043d\u043e\u043c\u0438\u0430\u043b\u044c\u043d\u044b\u0439\u041a\u043e\u044d\u0444\u0444\u0438\u0446\u0438\u0435\u043d\u0442 Binomial.Syntax=[ <\u0427\u0438\u0441\u043b\u043e n>, <\u0427\u0438\u0441\u043b\u043e r> ] BoxPlot=\u041a\u043e\u0440\u043e\u0431\u0447\u0430\u0442\u0430\u044f\u0414\u0438\u0430\u0433\u0440\u0430\u043c\u043c\u0430 BoxPlot.Syntax=[ <\u041e\u0442\u0441\u0442\u0443\u043f \u043f\u043e y>, <\u041c\u0430\u0441\u0448\u0442\u0430\u0431 \u043f\u043e y>, <\u0414\u0430\u043d\u043d\u044b\u0435> ]\n[ <\u041e\u0442\u0441\u0442\u0443\u043f \u043f\u043e y>, <\u041c\u0430\u0441\u0448\u0442\u0430\u0431 \u043f\u043e y>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, , <\u041c\u0435\u0434\u0438\u0430\u043d\u0430>, , <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435> ] Button=\u041a\u043d\u043e\u043f\u043a\u0430 Button.Syntax=[ ]\n[ <\u0417\u0430\u0433\u043e\u043b\u043e\u0432\u043e\u043a> ] Cell=\u042f\u0447\u0435\u0439\u043a\u0430 Cell.Syntax=[ <\u0421\u0442\u043e\u043b\u0431\u0435\u0446>, <\u0421\u0442\u0440\u043e\u043a\u0430> ] CellRange=\u0414\u0438\u0430\u043f\u0430\u0437\u043e\u043d\u042f\u0447\u0435\u0435\u043a CellRange.Syntax=[ <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u0430\u044f \u044f\u0447\u0435\u0439\u043a\u0430>, <\u041a\u043e\u043d\u0435\u0447\u043d\u0430\u044f \u044f\u0447\u0435\u0439\u043a\u0430> ] Center=\u0426\u0435\u043d\u0442\u0440 Center.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430> ] Centroid=\u0426\u0435\u043d\u0442\u0440\u043e\u0438\u0434 Centroid.Syntax=[ <\u041c\u043d\u043e\u0433\u043e\u0443\u0433\u043e\u043b\u044c\u043d\u0438\u043a> ] Checkbox=\u0424\u043b\u0430\u0436\u043e\u043a Checkbox.Syntax=[ ]\n[ <\u0417\u0430\u0433\u043e\u043b\u043e\u0432\u043e\u043a> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a> ]\n[ <\u0417\u0430\u0433\u043e\u043b\u043e\u0432\u043e\u043a>, <\u0421\u043f\u0438\u0441\u043e\u043a> ] Circle=\u041e\u043a\u0440\u0443\u0436\u043d\u043e\u0441\u0442\u044c Circle.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u0420\u0430\u0434\u0438\u0443\u0441> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u041e\u0442\u0440\u0435\u0437\u043e\u043a> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ] CircleArc=\u0414\u0443\u0433\u0430\u041e\u043a\u0440\u0443\u0436\u043d\u043e\u0441\u0442\u0438 CircleArc.Syntax=[ <\u0426\u0435\u043d\u0442\u0440>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ] CircleSector=\u0421\u0435\u043a\u0442\u043e\u0440\u041a\u0440\u0443\u0433\u0430 CircleSector.Syntax=[ <\u0426\u0435\u043d\u0442\u0440>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ] CircumcircleArc=\u041e\u043f\u0438\u0441\u0430\u043d\u043d\u0430\u044f\u0414\u0443\u0433\u0430 CircumcircleArc.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ] CircumcircleSector=\u041e\u043f\u0438\u0441\u0430\u043d\u043d\u044b\u0439\u0421\u0435\u043a\u0442\u043e\u0440 CircumcircleSector.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ] Circumference=\u041f\u0435\u0440\u0438\u0444\u0435\u0440\u0438\u044f Circumference.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430> ] Coefficients=\u041a\u043e\u044d\u0444\u0444\u0438\u0446\u0438\u0435\u043d\u0442\u044b Coefficients.Syntax=[ <\u041c\u043d\u043e\u0433\u043e\u0447\u043b\u0435\u043d> ]\n[ <\u041a\u043e\u043d\u0438\u043a\u0430> ] Column=\u0421\u0442\u043e\u043b\u0431\u0435\u0446 Column.Syntax=[ <\u042f\u0447\u0435\u0439\u043a\u0430> ] ColumnName=\u0418\u043c\u044f\u0421\u0442\u043e\u043b\u0431\u0446\u0430 ColumnName.Syntax=[ <\u042f\u0447\u0435\u0439\u043a\u0430> ] Command=\u041a\u043e\u043c\u0430\u043d\u0434\u0430 CommonDenominator=\u041e\u0431\u0449\u0438\u0439\u0417\u043d\u0430\u043c\u0435\u043d\u0430\u0442\u0435\u043b\u044c CompleteSquare=\u041f\u043e\u043b\u043d\u044b\u0439\u041a\u0432\u0430\u0434\u0440\u0430\u0442 CompleteSquare.Syntax=[ <\u041a\u0432\u0430\u0434\u0440\u0430\u0442\u0438\u0447\u0435\u0441\u043a\u0430\u044f \u0444\u0443\u043d\u043a\u0446\u0438\u044f> ] ComplexRoot=\u041a\u043e\u043c\u043f\u043b\u0435\u043a\u0441\u043d\u044b\u0439\u041a\u043e\u0440\u0435\u043d\u044c ComplexRoot.Syntax=[ <\u041c\u043d\u043e\u0433\u043e\u0447\u043b\u0435\u043d> ] Conic=\u041a\u043e\u043d\u0438\u043a\u0430 Conic.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ]\n[ <\u0427\u0438\u0441\u043b\u043e>, <\u0427\u0438\u0441\u043b\u043e>, <\u0427\u0438\u0441\u043b\u043e>, <\u0427\u0438\u0441\u043b\u043e>, <\u0427\u0438\u0441\u043b\u043e>, <\u0427\u0438\u0441\u043b\u043e> ] ConstructionStep=\u0428\u0430\u0433\u041f\u043e\u0441\u0442\u0440\u043e\u0435\u043d\u0438\u044f ConstructionStep.Syntax=[ ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442> ] ConvexHull=\u0412\u044b\u043f\u0443\u043a\u043b\u0430\u044f\u041e\u0431\u043e\u043b\u043e\u0447\u043a\u0430 ConvexHull.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] CopyFreeObject=\u041a\u043e\u043f\u0438\u0440\u043e\u0432\u0430\u0442\u044c\u0421\u0432\u043e\u0431\u043e\u0434\u043d\u044b\u0439\u041e\u0431\u044a\u0435\u043a\u0442 CopyFreeObject.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442> ] Corner=\u041a\u043e\u043e\u0440\u0434\u0438\u043d\u0430\u0442\u044b Corner.Syntax=[ <\u041d\u043e\u043c\u0435\u0440 \u0443\u0433\u043b\u0430 \u043f\u043e\u043b\u043e\u0442\u043d\u0430> ]\n[ <\u0418\u0437\u043e\u0431\u0440\u0430\u0436\u0435\u043d\u0438\u0435>, <\u041d\u043e\u043c\u0435\u0440 \u0443\u0433\u043b\u0430> ]\n[ <\u0422\u0435\u043a\u0441\u0442>, <\u041d\u043e\u043c\u0435\u0440 \u0443\u0433\u043b\u0430> ] CountIf=\u041a\u043e\u043b\u0438\u0447\u0435\u0441\u0442\u0432\u043e\u042d\u043b\u0435\u043c\u0435\u043d\u0442\u043e\u0432 CountIf.Syntax=[ <\u0423\u0441\u043b\u043e\u0432\u0438\u0435>, <\u0421\u043f\u0438\u0441\u043e\u043a> ] Covariance=\u041a\u043e\u0432\u0430\u0440\u0438\u0430\u0446\u0438\u044f Covariance.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b>, <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ] Cross=\u0412\u0435\u043a\u0442\u043e\u0440\u043d\u043e\u0435\u041f\u0440\u043e\u0438\u0437\u0432\u0435\u0434\u0435\u043d\u0438\u0435 CrossRatio=\u0421\u043b\u043e\u0436\u043d\u043e\u0435\u041e\u0442\u043d\u043e\u0448\u0435\u043d\u0438\u0435 CrossRatio.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ] Curvature=\u041a\u0440\u0438\u0432\u0438\u0437\u043d\u0430 Curvature.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u0424\u0443\u043d\u043a\u0446\u0438\u044f> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u041a\u0440\u0438\u0432\u0430\u044f> ] CurvatureVector=\u0412\u0435\u043a\u0442\u043e\u0440\u041a\u0440\u0438\u0432\u0438\u0437\u043d\u044b CurvatureVector.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u0424\u0443\u043d\u043a\u0446\u0438\u044f> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u041a\u0440\u0438\u0432\u0430\u044f> ] CurveCartesian=\u041a\u0440\u0438\u0432\u0430\u044f CurveCartesian.Syntax=[ <\u0412\u044b\u0440\u0430\u0436\u0435\u043d\u0438\u0435>, <\u0412\u044b\u0440\u0430\u0436\u0435\u043d\u0438\u0435>, <\u041f\u0430\u0440\u0430\u043c\u0435\u0442\u0440>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435> ] Decimal=\u0414\u0435\u0441\u044f\u0442\u0438\u0447\u043d\u0430\u044f\u0421\u0418 Defined=\u0421\u0443\u0449\u0435\u0441\u0442\u0432\u0443\u0435\u0442 Defined.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442> ] Degree=\u0421\u0442\u0435\u043f\u0435\u043d\u044c Degree.Syntax=[ <\u041c\u043d\u043e\u0433\u043e\u0447\u043b\u0435\u043d> ] DelauneyTriangulation=\u0422\u0440\u0438\u0430\u043d\u0433\u0443\u043b\u044f\u0446\u0438\u044f\u0414\u0435\u043b\u043e\u043d\u0435 DelauneyTriangulation.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] Delete=\u0423\u0434\u0430\u043b\u0438\u0442\u044c Delete.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442> ] Denominator=\u0417\u043d\u0430\u043c\u0435\u043d\u0430\u0442\u0435\u043b\u044c Denominator.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f> ] Derivative=\u041f\u0440\u043e\u0438\u0437\u0432\u043e\u0434\u043d\u0430\u044f Derivative.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f> ]\n[ <\u041a\u0440\u0438\u0432\u0430\u044f> ]\n[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u0427\u0438\u0441\u043b\u043e> ]\n[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041f\u0435\u0440\u0435\u043c\u0435\u043d\u043d\u0430\u044f> ]\n[ <\u041a\u0440\u0438\u0432\u0430\u044f>, <\u0427\u0438\u0441\u043b\u043e> ]\n[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041f\u0435\u0440\u0435\u043c\u0435\u043d\u043d\u0430\u044f>, <\u0427\u0438\u0441\u043b\u043e> ] Determinant=\u041e\u043f\u0440\u0435\u0434\u0435\u043b\u0438\u0442\u0435\u043b\u044c Determinant.Syntax=[ <\u041c\u0430\u0442\u0440\u0438\u0446\u0430> ] Diameter=\u0414\u0438\u0430\u043c\u0435\u0442\u0440 Diameter.Syntax=[ <\u0412\u0435\u043a\u0442\u043e\u0440>, <\u041a\u043e\u043d\u0438\u043a\u0430> ]\n[ <\u041f\u0440\u044f\u043c\u0430\u044f>, <\u041a\u043e\u043d\u0438\u043a\u0430> ] Dilate=\u0413\u043e\u043c\u043e\u0442\u0435\u0442\u0438\u044f Dilate.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041a\u043e\u044d\u0444\u0444\u0438\u0446\u0438\u0435\u043d\u0442 \u0433\u043e\u043c\u043e\u0442\u0435\u0442\u0438\u0438>, <\u0426\u0435\u043d\u0442\u0440 \u0433\u043e\u043c\u043e\u0442\u0435\u0442\u0438\u0438> ] Dimension=\u0420\u0430\u0437\u043c\u0435\u0440\u043d\u043e\u0441\u0442\u044c\u041f\u0440\u043e\u0441\u0442\u0440\u0430\u043d\u0441\u0442\u0432\u0430 Direction=\u041d\u0430\u043f\u0440\u0430\u0432\u043b\u0435\u043d\u0438\u0435 Direction.Syntax=[ <\u041f\u0440\u044f\u043c\u0430\u044f> ] Directrix=\u0414\u0438\u0440\u0435\u043a\u0442\u0440\u0438\u0441\u0430 Directrix.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430> ] Distance=\u0420\u0430\u0441\u0441\u0442\u043e\u044f\u043d\u0438\u0435 Distance.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u041f\u0440\u044f\u043c\u0430\u044f> ] Div.Syntax=[ <\u0414\u0435\u043b\u0438\u043c\u043e\u0435>, <\u0414\u0435\u043b\u0438\u0442\u0435\u043b\u044c> ] Division=\u0414\u0435\u043b\u0435\u043d\u0438\u0435 Divisors=\u041a\u043e\u043b\u0438\u0447\u0435\u0441\u0442\u0432\u043e\u0414\u0435\u043b\u0438\u0442\u0435\u043b\u0435\u0439 DivisorsList=\u0421\u043f\u0438\u0441\u043e\u043a\u0414\u0435\u043b\u0438\u0442\u0435\u043b\u0435\u0439 DivisorsSum=\u0421\u0443\u043c\u043c\u0430\u0414\u0435\u043b\u0438\u0442\u0435\u043b\u0435\u0439 Dot=\u0421\u043a\u0430\u043b\u044f\u0440\u043d\u043e\u0435\u041f\u0440\u043e\u0438\u0437\u0432\u0435\u0434\u0435\u043d\u0438\u0435 DynamicCoordinates=\u0414\u0438\u043d\u0430\u043c\u0438\u0447\u043d\u044b\u0435\u041a\u043e\u043e\u0440\u0434\u0438\u043d\u0430\u0442\u044b DynamicCoordinates.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u0427\u0438\u0441\u043b\u043e>, <\u0427\u0438\u0441\u043b\u043e> ] Eccentricity=\u042d\u043a\u0441\u0446\u0435\u043d\u0442\u0440\u0438\u0441\u0438\u0442\u0435\u0442 Eccentricity.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430> ] Element=\u042d\u043b\u0435\u043c\u0435\u043d\u0442 Element.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u041d\u043e\u043c\u0435\u0440 \u044d\u043b\u0435\u043c\u0435\u043d\u0442\u0430> ]\n[ <\u041c\u0430\u0442\u0440\u0438\u0446\u0430>, <\u0421\u0442\u0440\u043e\u043a\u0430>, <\u0421\u0442\u043e\u043b\u0431\u0435\u0446> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a>, , , ... ] Ellipse=\u042d\u043b\u043b\u0438\u043f\u0441 Ellipse.Syntax=[ <\u0424\u043e\u043a\u0443\u0441>, <\u0424\u043e\u043a\u0443\u0441>, <\u0414\u043b\u0438\u043d\u0430 \u0433\u043b\u0430\u0432\u043d\u043e\u0439 \u043f\u043e\u043b\u0443\u043e\u0441\u0438> ]\n[ <\u0424\u043e\u043a\u0443\u0441>, <\u0424\u043e\u043a\u0443\u0441>, <\u041e\u0442\u0440\u0435\u0437\u043e\u043a> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ] Excentricity=\u042d\u043a\u0441\u0446\u0435\u043d\u0442\u0440\u0438\u0441\u0438\u0442\u0435\u0442 Excentricity.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430> ] Expand=\u0420\u0430\u0441\u043a\u0440\u044b\u0442\u044c Expand.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f> ] Exponential=\u042d\u043a\u0441\u043f\u043e\u043d\u0435\u043d\u0442\u0430\u043b\u044c\u043d\u043e\u0435\u0420\u0430\u0441\u043f\u0440\u0435\u0434\u0435\u043b\u0435\u043d\u0438\u0435 Exponential.Syntax=[ <\u041b\u044f\u043c\u0431\u0434\u0430>, x ]\n[ <\u041b\u044f\u043c\u0431\u0434\u0430>, <\u0417\u043d\u0430\u0447\u0435\u043d\u0438\u0435 \u043f\u0435\u0440\u0435\u043c\u0435\u043d\u043d\u043e\u0439> ]\n[ <\u041b\u044f\u043c\u0431\u0434\u0430>, x, <\u041b\u043e\u0433\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u0432\u044b\u0440\u0430\u0436\u0435\u043d\u0438\u0435> ] Extremum=\u042d\u043a\u0441\u0442\u0440\u0435\u043c\u0443\u043c Extremum.Syntax=[ <\u041f\u043e\u043b\u0438\u043d\u043e\u043c> ] Factor=\u0420\u0430\u0437\u043b\u043e\u0436\u0438\u0442\u044c Factor.Syntax=[ <\u041c\u043d\u043e\u0433\u043e\u0447\u043b\u0435\u043d> ] Factors=\u0420\u0430\u0437\u043b\u043e\u0436\u0435\u043d\u0438\u044f Factors.Syntax=[ <\u041c\u043d\u043e\u0433\u043e\u0447\u043b\u0435\u043d> ] FillCells=\u0417\u0430\u043f\u043e\u043b\u043d\u0438\u0442\u044c\u042f\u0447\u0435\u0439\u043a\u0438 FillCells.Syntax=[ <\u042f\u0447\u0435\u0439\u043a\u0430>, <\u0421\u043f\u0438\u0441\u043e\u043a> ]\n[ <\u042f\u0447\u0435\u0439\u043a\u0430>, <\u041c\u0430\u0442\u0440\u0438\u0446\u0430> ]\n[ , <\u041e\u0431\u044a\u0435\u043a\u0442> ] FillColumn=\u0417\u0430\u043f\u043e\u043b\u043d\u0438\u0442\u044c\u0421\u0442\u043e\u043b\u0431\u0435\u0446 FillColumn.Syntax=[ <\u0421\u0442\u043e\u043b\u0431\u0435\u0446>, <\u0421\u043f\u0438\u0441\u043e\u043a> ] FillRow=\u0417\u0430\u043f\u043e\u043b\u043d\u0438\u0442\u044c\u0421\u0442\u0440\u043e\u043a\u0443 FillRow.Syntax=[ <\u0421\u0442\u0440\u043e\u043a\u0430>, <\u0421\u043f\u0438\u0441\u043e\u043a> ] First=\u041d\u0430\u0447\u0430\u043b\u043e First.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a> ]\n[ <\u0422\u0435\u043a\u0441\u0442> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u0427\u0438\u0441\u043b\u043e \u044d\u043b\u0435\u043c\u0435\u043d\u0442\u043e\u0432> ]\n[ <\u0422\u0435\u043a\u0441\u0442>, <\u0427\u0438\u0441\u043b\u043e \u044d\u043b\u0435\u043c\u0435\u043d\u0442\u043e\u0432> ]\n[ <\u041b\u043e\u043a\u0443\u0441>, <\u0427\u0438\u0441\u043b\u043e \u044d\u043b\u0435\u043c\u0435\u043d\u0442\u043e\u0432> ] FirstAxis=\u0424\u043e\u043a\u0430\u043b\u044c\u043d\u0430\u044f\u041e\u0441\u044c FirstAxis.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430> ] FirstAxisLength=\u0411\u043e\u043b\u044c\u0448\u0430\u044f\u041f\u043e\u043b\u0443\u043e\u0441\u044c FirstAxisLength.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430> ] FitExp=\u042d\u043a\u0441\u043f\u043e\u043d\u0435\u043d\u0446\u0438\u0430\u043b\u044c\u043d\u0430\u044f\u0410\u043f\u043f\u0440\u043e\u043a\u0441\u0438\u043c\u0430\u0446\u0438\u044f FitExp.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] FitLineX=\u041b\u0438\u043d\u0435\u0439\u043d\u0430\u044f\u0410\u043f\u043f\u0440\u043e\u043a\u0441\u0438\u043c\u0430\u0446\u0438\u044f\u041f\u043eX FitLineX.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] FitLineY=\u041b\u0438\u043d\u0435\u0439\u043d\u0430\u044f\u0410\u043f\u043f\u0440\u043e\u043a\u0441\u0438\u043c\u0430\u0446\u0438\u044f FitLineY.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] FitLog=\u041b\u043e\u0433\u0430\u0440\u0438\u0444\u043c\u0438\u0447\u0435\u0441\u043a\u0430\u044f\u0410\u043f\u043f\u0440\u043e\u043a\u0441\u0438\u043c\u0430\u0446\u0438\u044f FitLog.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] FitLogistic=\u041b\u043e\u0433\u0438\u0441\u0442\u0438\u0447\u0435\u0441\u043a\u0430\u044f\u0410\u043f\u043f\u0440\u043e\u043a\u0441\u0438\u043c\u0430\u0446\u0438\u044f FitLogistic.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] FitPoly=\u041f\u043e\u043b\u0438\u043d\u043e\u043c\u0438\u0430\u043b\u044c\u043d\u0430\u044f\u0410\u043f\u043f\u0440\u043e\u043a\u0441\u0438\u043c\u0430\u0446\u0438\u044f FitPoly.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a>, <\u0421\u0442\u0435\u043f\u0435\u043d\u044c> ] FitPow=\u0421\u0442\u0435\u043f\u0435\u043d\u043d\u0430\u044f\u0410\u043f\u043f\u0440\u043e\u043a\u0441\u0438\u043c\u0430\u0446\u0438\u044f FitPow.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] FitSin=\u0421\u0438\u043d\u0443\u0441\u043e\u0438\u0434\u0430\u043b\u044c\u043d\u0430\u044f\u0410\u043f\u043f\u0440\u043e\u043a\u0441\u0438\u043c\u0430\u0446\u0438\u044f FitSin.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] Focus=\u0424\u043e\u043a\u0443\u0441 Focus.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430> ] FractionText=\u0414\u0440\u043e\u0431\u044c FractionText.Syntax=[ <\u0427\u0438\u0441\u043b\u043e> ] FractionalPart=\u0414\u0440\u043e\u0431\u043d\u0430\u044f\u0427\u0430\u0441\u0442\u044c Frequency=\u0427\u0430\u0441\u0442\u043e\u0442\u0430 Frequency.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0438\u0441\u0445\u043e\u0434\u043d\u044b\u0445 \u0434\u0430\u043d\u043d\u044b\u0445> ]\n[ , <\u0421\u043f\u0438\u0441\u043e\u043a \u0438\u0441\u0445\u043e\u0434\u043d\u044b\u0445 \u0434\u0430\u043d\u043d\u044b\u0445> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a \u043a\u043b\u0430\u0441\u0441\u043e\u0432\u044b\u0445 \u0433\u0440\u0430\u043d\u0438\u0446>, <\u0421\u043f\u0438\u0441\u043e\u043a \u0438\u0441\u0445\u043e\u0434\u043d\u044b\u0445 \u0434\u0430\u043d\u043d\u044b\u0445> ]\n[ , <\u0421\u043f\u0438\u0441\u043e\u043a \u043a\u043b\u0430\u0441\u0441\u043e\u0432\u044b\u0445 \u0433\u0440\u0430\u043d\u0438\u0446>, <\u0421\u043f\u0438\u0441\u043e\u043a \u0438\u0441\u0445\u043e\u0434\u043d\u044b\u0445 \u0434\u0430\u043d\u043d\u044b\u0445> ]\n[ , , , ]\n[ , , , , ] Function=\u0424\u0443\u043d\u043a\u0446\u0438\u044f Function.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435> ] GCD=\u041d\u041e\u0414 GCD.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ]\n[ <\u0427\u0438\u0441\u043b\u043e>, <\u0427\u0438\u0441\u043b\u043e> ] Gamma=\u0413\u0430\u043c\u043c\u0430\u0420\u0430\u0441\u043f\u0440\u0435\u0434\u0435\u043b\u0435\u043d\u0438\u0435 Gamma.Syntax=[ , , x ]\n[ , , <\u0417\u043d\u0430\u0447\u0435\u043d\u0438\u0435 \u043f\u0435\u0440\u0435\u043c\u0435\u043d\u043d\u043e\u0439> ]\n[ , , x, <\u041b\u043e\u0433\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u0432\u044b\u0440\u0430\u0436\u0435\u043d\u0438\u0435> ] GeometricMean=\u0421\u0440\u0435\u0434\u043d\u0435\u0435\u0413\u0435\u043e\u043c\u0435\u0442\u0440\u0438\u0447\u0435\u0441\u043a\u043e\u0435 GeometricMean.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ] GetTime=\u0412\u0440\u0435\u043c\u044f HarmonicMean=\u0421\u0440\u0435\u0434\u043d\u0435\u0435\u0413\u0430\u0440\u043c\u043e\u043d\u0438\u0447\u0435\u0441\u043a\u043e\u0435 HarmonicMean.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ] HideLayer=\u0421\u043f\u0440\u044f\u0442\u0430\u0442\u044c\u0421\u043b\u043e\u0439 HideLayer.Syntax=[ <\u0427\u0438\u0441\u043b\u043e> ] Hull.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a>, <\u041f\u0440\u043e\u0446\u0435\u043d\u0442> ] Hyperbola=\u0413\u0438\u043f\u0435\u0440\u0431\u043e\u043b\u0430 Hyperbola.Syntax=[ <\u0424\u043e\u043a\u0443\u0441>, <\u0424\u043e\u043a\u0443\u0441>, <\u0414\u043b\u0438\u043d\u0430 \u0431\u043e\u043b\u044c\u0448\u043e\u0439 \u043f\u043e\u043b\u0443\u043e\u0441\u0438> ]\n[ <\u0424\u043e\u043a\u0443\u0441>, <\u0424\u043e\u043a\u0443\u0441>, <\u041e\u0442\u0440\u0435\u0437\u043e\u043a> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ] Identity=\u0415\u0434\u0438\u043d\u0438\u0447\u043d\u0430\u044f\u041c\u0430\u0442\u0440\u0438\u0446\u0430 Identity.Syntax=[ <\u0427\u0438\u0441\u043b\u043e> ] If=\u0415\u0441\u043b\u0438 If.Syntax=[ <\u0423\u0441\u043b\u043e\u0432\u0438\u0435>, <\u0422\u043e> ]\n[ <\u0423\u0441\u043b\u043e\u0432\u0438\u0435>, <\u0422\u043e>, <\u0418\u043d\u0430\u0447\u0435> ] Imaginary=\u041c\u043d\u0438\u043c\u0430\u044f\u0427\u0430\u0441\u0442\u044c ImplicitCurve=\u041d\u0435\u044f\u0432\u043d\u0430\u044f\u041a\u0440\u0438\u0432\u0430\u044f ImplicitCurve.Syntax=[ ]\n[ ] Incircle=\u0412\u043f\u0438\u0441\u0430\u043d\u043d\u0430\u044f\u041e\u043a\u0440\u0443\u0436\u043d\u043e\u0441\u0442\u044c Incircle.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ] IndexOf=\u041f\u043e\u0437\u0438\u0446\u0438\u044f IndexOf.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u0421\u043f\u0438\u0441\u043e\u043a> ]\n[ <\u0422\u0435\u043a\u0441\u0442>, <\u0422\u0435\u043a\u0441\u0442> ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u041d\u0430\u0447\u0438\u043d\u0430\u044f \u0441> ]\n[ <\u0422\u0435\u043a\u0441\u0442>, <\u0422\u0435\u043a\u0441\u0442>, <\u041d\u0430\u0447\u0438\u043d\u0430\u044f \u0441> ] Insert=\u0412\u0441\u0442\u0430\u0432\u0438\u0442\u044c Insert.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u041f\u043e\u0437\u0438\u0446\u0438\u044f> ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u041f\u043e\u0437\u0438\u0446\u0438\u044f> ] IntegerPart=\u0426\u0435\u043b\u0430\u044f\u0427\u0430\u0441\u0442\u044c Integral=\u0418\u043d\u0442\u0435\u0433\u0440\u0430\u043b Integral.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f> ]\n[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435> ]\n[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435> ] IntegralBetween.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435 x>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435 x> ]\n[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435 x>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435 x>, ] Intersect=\u041f\u0435\u0440\u0435\u0441\u0435\u0447\u0435\u043d\u0438\u0435 Intersect.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041e\u0431\u044a\u0435\u043a\u0442> ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041d\u043e\u043c\u0435\u0440 \u0442\u043e\u0447\u043a\u0438 \u043f\u0435\u0440\u0435\u0441\u0435\u0447\u0435\u043d\u0438\u044f> ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041f\u0435\u0440\u0432\u043e\u0435 \u043f\u0440\u0438\u0431\u043b\u0438\u0436\u0435\u043d\u0438\u0435> ]\n[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435 x>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435 x> ] IntersectRegion=\u041e\u0431\u043b\u0430\u0441\u0442\u044c\u041f\u0435\u0440\u0435\u0441\u0435\u0447\u0435\u043d\u0438\u044f IntersectRegion.Syntax=[ <\u041c\u043d\u043e\u0433\u043e\u0443\u0433\u043e\u043b\u044c\u043d\u0438\u043a>, <\u041c\u043d\u043e\u0433\u043e\u0443\u0433\u043e\u043b\u044c\u043d\u0438\u043a> ] Intersection=\u041f\u0435\u0440\u0435\u0441\u0435\u0447\u0435\u043d\u0438\u0435\u041c\u043d\u043e\u0436\u0435\u0441\u0442\u0432 Intersection.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u0421\u043f\u0438\u0441\u043e\u043a> ] InverseNormal.Syntax=[ <\u0421\u0440\u0435\u0434\u043d\u0435\u0435>, <\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435 \u043e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u0438\u0435>, <\u0412\u0435\u0440\u043e\u044f\u0442\u043d\u043e\u0441\u0442\u044c> ] Invert=\u041e\u0431\u0440\u0430\u0442\u043d\u0430\u044f\u041c\u0430\u0442\u0440\u0438\u0446\u0430 Invert.Syntax=[ <\u041c\u0430\u0442\u0440\u0438\u0446\u0430> ] IsInRegion=\u0412\u043d\u0443\u0442\u0440\u0438 IsInRegion.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u041e\u0431\u043b\u0430\u0441\u0442\u044c> ] IsInteger=\u0426\u0435\u043b\u043e\u0435 IsInteger.Syntax=[ <\u0427\u0438\u0441\u043b\u043e> ] IsPrime=\u041f\u0440\u043e\u0441\u0442\u043e\u0435 Iteration=\u0418\u0442\u0435\u0440\u0430\u0446\u0438\u044f Iteration.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u0427\u0438\u0441\u043b\u043e \u0438\u0442\u0435\u0440\u0430\u0446\u0438\u0439> ] IterationList=\u0420\u044f\u0434\u0418\u0442\u0435\u0440\u0430\u0446\u0438\u0439 IterationList.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u0427\u0438\u0441\u043b\u043e \u0438\u0442\u0435\u0440\u0430\u0446\u0438\u0439> ] Join=\u041a\u043e\u043d\u043a\u0430\u0442\u0435\u043d\u0430\u0446\u0438\u044f Join.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0441\u043f\u0438\u0441\u043a\u043e\u0432> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u0421\u043f\u0438\u0441\u043e\u043a> ] KeepIf=\u0424\u0438\u043b\u044c\u0442\u0440 KeepIf.Syntax=[ <\u0423\u0441\u043b\u043e\u0432\u0438\u0435>, <\u0421\u043f\u0438\u0441\u043e\u043a> ] LCM=\u041d\u041e\u041a LCM.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ]\n[ <\u0427\u0438\u0441\u043b\u043e>, <\u0427\u0438\u0441\u043b\u043e> ] LaTeX=LaTeX LaTeX.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442> ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041f\u043e\u0434\u0441\u0442\u0430\u043d\u043e\u0432\u043a\u0430 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0439 \u043f\u0435\u0440\u0435\u043c\u0435\u043d\u043d\u044b\u0445> ] Last=\u041a\u043e\u043d\u0435\u0446 Last.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u0427\u0438\u0441\u043b\u043e \u044d\u043b\u0435\u043c\u0435\u043d\u0442\u043e\u0432> ] LeftSide=\u041b\u0435\u0432\u0430\u044f\u0427\u0430\u0441\u0442\u044c Length=\u0414\u043b\u0438\u043d\u0430 Length.Syntax=[ <\u0412\u0435\u043a\u0442\u043e\u0440> ]\n[ <\u0422\u043e\u0447\u043a\u0430> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a> ]\n[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435> ]\n[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u0430\u044f \u0442\u043e\u0447\u043a\u0430>, <\u041a\u043e\u043d\u0435\u0447\u043d\u0430\u044f \u0442\u043e\u0447\u043a\u0430> ]\n[ <\u041a\u0440\u0438\u0432\u0430\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435> ]\n[ <\u041a\u0440\u0438\u0432\u0430\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u0430\u044f \u0442\u043e\u0447\u043a\u0430>, <\u041a\u043e\u043d\u0435\u0447\u043d\u0430\u044f \u0442\u043e\u0447\u043a\u0430> ] LetterToUnicode=\u0421\u0438\u043c\u0432\u043e\u043b\u0412Unicdoe LetterToUnicode.Syntax=[ <\u0422\u0435\u043a\u0441\u0442> ] Limit=\u041f\u0440\u0435\u0434\u0435\u043b Limit.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u0427\u0438\u0441\u043b\u043e> ] LimitAbove=\u0412\u0435\u0440\u0445\u043d\u0438\u0439\u041f\u0440\u0435\u0434\u0435\u043b LimitAbove.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u0427\u0438\u0441\u043b\u043e> ] LimitBelow=\u041d\u0438\u0436\u043d\u0438\u0439\u041f\u0440\u0435\u0434\u0435\u043b LimitBelow.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u0427\u0438\u0441\u043b\u043e> ] Line=\u041f\u0440\u044f\u043c\u0430\u044f Line.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u041f\u0430\u0440\u0430\u043b\u043b\u0435\u043b\u044c\u043d\u0430\u044f \u043f\u0440\u044f\u043c\u0430\u044f> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u041d\u0430\u043f\u0440\u0430\u0432\u043b\u0435\u043d\u0438\u0435> ] LineBisector=\u0421\u0440\u0435\u0434\u0438\u043d\u043d\u044b\u0439\u041f\u0435\u0440\u043f\u0435\u043d\u0434\u0438\u043a\u0443\u043b\u044f\u0440 LineBisector.Syntax=[ <\u041e\u0442\u0440\u0435\u0437\u043e\u043a> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ] Locus=\u041b\u043e\u043a\u0443\u0441 Locus.Syntax=[ <\u0422\u043e\u0447\u043a\u0430 \u043b\u043e\u043a\u0443\u0441\u0430>, <\u0422\u043e\u0447\u043a\u0430> ] LogNormal=\u041b\u043e\u0433\u043e\u043d\u043e\u0440\u043c\u0430\u043b\u044c\u043d\u043e\u0435\u0420\u0430\u0441\u043f\u0440\u0435\u0434\u0435\u043b\u0435\u043d\u0438\u0435 LogNormal.Syntax=[ <\u0421\u0440\u0435\u0434\u043d\u0435\u0435>, <\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435 \u043e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u0438\u0435>, x ]\n[ <\u0421\u0440\u0435\u0434\u043d\u0435\u0435>, <\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435 \u043e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u0438\u0435>, <\u0417\u043d\u0430\u0447\u0435\u043d\u0438\u0435 \u043f\u0435\u0440\u0435\u043c\u0435\u043d\u043d\u043e\u0439> ]\n[ <\u0421\u0440\u0435\u0434\u043d\u0435\u0435>, <\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435 \u043e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u0438\u0435>, x, <\u041b\u043e\u0433\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u0432\u044b\u0440\u0430\u0436\u0435\u043d\u0438\u0435> ] Logistic=\u041b\u043e\u0433\u0438\u0441\u0442\u0438\u0447\u0435\u0441\u043a\u043e\u0435\u0420\u0430\u0441\u043f\u0440\u0435\u0434\u0435\u043b\u0435\u043d\u0438\u0435 Logistic.Syntax=[ <\u0421\u0440\u0435\u0434\u043d\u0435\u0435>, <\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435 \u043e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u0438\u0435>, x ]\n[ <\u0421\u0440\u0435\u0434\u043d\u0435\u0435>, <\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435 \u043e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u0438\u0435>, <\u0417\u043d\u0430\u0447\u0435\u043d\u0438\u0435 \u043f\u0435\u0440\u0435\u043c\u0435\u043d\u043d\u043e\u0439> ]\n[ <\u0421\u0440\u0435\u0434\u043d\u0435\u0435>, <\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435 \u043e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u0438\u0435>, x, <\u041b\u043e\u0433\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u0432\u044b\u0440\u0430\u0436\u0435\u043d\u0438\u0435> ] LowerSum=\u041d\u0438\u0436\u043d\u044f\u044f\u0421\u0443\u043c\u043c\u0430 LowerSum.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u0427\u0438\u0441\u043b\u043e \u043f\u0440\u044f\u043c\u043e\u0443\u0433\u043e\u043b\u044c\u043d\u0438\u043a\u043e\u0432> ] MatrixRank=\u0420\u0430\u043d\u0433\u041c\u0430\u0442\u0440\u0438\u0446\u044b Max.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a> ]\n[ <\u0418\u043d\u0442\u0435\u0440\u0432\u0430\u043b> ]\n[ <\u0427\u0438\u0441\u043b\u043e>, <\u0427\u0438\u0441\u043b\u043e> ]\n[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435> ] Mean=\u0421\u0440\u0435\u0434\u043d\u0435\u0435\u0410\u0440\u0438\u0444\u043c\u0435\u0442\u0438\u0447\u0435\u0441\u043a\u043e\u0435 Mean.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ] MeanX=\u0421\u0440\u0435\u0434\u043d\u0435\u0435X MeanX.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] MeanY=\u0421\u0440\u0435\u0434\u043d\u0435\u0435Y MeanY.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] Median=\u041c\u0435\u0434\u0438\u0430\u043d\u0430 Median.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ] Midpoint=\u0421\u0435\u0440\u0435\u0434\u0438\u043d\u0430 Midpoint.Syntax=[ <\u041e\u0442\u0440\u0435\u0437\u043e\u043a> ]\n[ <\u041a\u043e\u043d\u0438\u043a\u0430> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ] Min.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a> ]\n[ <\u0418\u043d\u0442\u0435\u0440\u0432\u0430\u043b> ]\n[ <\u0427\u0438\u0441\u043b\u043e>, <\u0427\u0438\u0441\u043b\u043e> ]\n[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435> ] MinimumSpanningTree=\u041c\u0438\u043d\u0438\u043c\u0430\u043b\u044c\u043d\u043e\u0435\u041e\u0441\u0442\u043e\u0432\u043d\u043e\u0435\u0414\u0435\u0440\u0435\u0432\u043e MinimumSpanningTree.Syntax=[ ] Mirror=\u041e\u0442\u0440\u0430\u0437\u0438\u0442\u044c Mirror.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u0422\u043e\u0447\u043a\u0430> ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041f\u0440\u044f\u043c\u0430\u044f> ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041e\u043a\u0440\u0443\u0436\u043d\u043e\u0441\u0442\u044c> ] MixedNumber=\u041f\u0440\u0430\u0432\u0438\u043b\u044c\u043d\u0430\u044f\u0414\u0440\u043e\u0431\u044c Mod.Syntax=[ <\u0414\u0435\u043b\u0438\u043c\u043e\u0435>, <\u0414\u0435\u043b\u0438\u0442\u0435\u043b\u044c> ] Mode=\u041c\u043e\u0434\u0430 Mode.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] Name=\u0418\u043c\u044f Name.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442> ] Normal=\u041d\u043e\u0440\u043c\u0430\u043b\u044c\u043d\u043e\u0435\u0420\u0430\u0441\u043f\u0440\u0435\u0434\u0435\u043b\u0435\u043d\u0438\u0435 Normal.Syntax=[ <\u0421\u0440\u0435\u0434\u043d\u0435\u0435>, <\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435 \u043e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u0438\u0435>, x ]\n[ <\u0421\u0440\u0435\u0434\u043d\u0435\u0435>, <\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435 \u043e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u0438\u0435>, <\u0417\u043d\u0430\u0447\u0435\u043d\u0438\u0435 \u043f\u0435\u0440\u0435\u043c\u0435\u043d\u043d\u043e\u0439> ]\n[ <\u0421\u0440\u0435\u0434\u043d\u0435\u0435>, <\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435 \u043e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u0438\u0435>, x, <\u041b\u043e\u0433\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u0432\u044b\u0440\u0430\u0436\u0435\u043d\u0438\u0435> ] Numerator=\u0427\u0438\u0441\u043b\u0438\u0442\u0435\u043b\u044c Numerator.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f> ] Numeric=\u0414\u0435\u0441\u044f\u0442\u0438\u0447\u043d\u0430\u044f\u0414\u0440\u043e\u0431\u044c Object=\u041e\u0431\u044a\u0435\u043a\u0442 Object.Syntax=[ <\u0418\u043c\u044f \u043e\u0431\u044a\u0435\u043a\u0442\u0430> ] Ordinal=\u041f\u043e\u0440\u044f\u0434\u043a\u043e\u0432\u044b\u0439\u041d\u043e\u043c\u0435\u0440 Ordinal.Syntax=[ <\u0426\u0435\u043b\u043e\u0435> ] OrthogonalLine=\u041f\u0435\u0440\u043f\u0435\u043d\u0434\u0438\u043a\u0443\u043b\u044f\u0440 OrthogonalLine.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u041f\u0440\u044f\u043c\u0430\u044f> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u041e\u0442\u0440\u0435\u0437\u043e\u043a> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u0412\u0435\u043a\u0442\u043e\u0440> ] OrthogonalVector=\u041d\u043e\u0440\u043c\u0430\u043b\u044c\u043d\u044b\u0439\u0412\u0435\u043a\u0442\u043e\u0440 OrthogonalVector.Syntax=[ <\u041f\u0440\u044f\u043c\u0430\u044f> ]\n[ <\u041e\u0442\u0440\u0435\u0437\u043e\u043a> ]\n[ <\u0412\u0435\u043a\u0442\u043e\u0440> ] OsculatingCircle=\u041a\u0440\u0443\u0433\u041a\u0440\u0438\u0432\u0438\u0437\u043d\u044b OsculatingCircle.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u0424\u0443\u043d\u043a\u0446\u0438\u044f> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u041a\u0440\u0438\u0432\u0430\u044f> ] PMCC=\u041a\u043e\u044d\u0444\u0444\u0438\u0446\u0438\u0435\u043d\u0442\u041a\u043e\u0440\u0440\u0435\u043b\u044f\u0446\u0438\u0438 PMCC.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0430\u0431\u0441\u0446\u0438\u0441\u0441>, <\u0421\u043f\u0438\u0441\u043e\u043a \u043e\u0440\u0434\u0438\u043d\u0430\u0442> ] Parabola=\u041f\u0430\u0440\u0430\u0431\u043e\u043b\u0430 Parabola.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u041f\u0440\u044f\u043c\u0430\u044f> ] Parameter=\u041f\u0430\u0440\u0430\u043c\u0435\u0442\u0440 Parameter.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430> ] PartialFractions=\u041f\u0440\u043e\u0441\u0442\u0435\u0439\u0448\u0438\u0435\u0414\u0440\u043e\u0431\u0438 PartialFractions.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f> ] Percentile=\u041f\u0440\u043e\u0446\u0435\u043d\u0442\u0438\u043b\u044c Percentile.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b>, <\u041f\u0440\u043e\u0446\u0435\u043d\u0442> ] Perimeter=\u041f\u0435\u0440\u0438\u043c\u0435\u0442\u0440 Perimeter.Syntax=[ <\u041c\u043d\u043e\u0433\u043e\u0443\u0433\u043e\u043b\u044c\u043d\u0438\u043a> ]\n[ <\u041a\u043e\u043d\u0438\u043a\u0430> ] PlaySound.Syntax=[ <\u0424\u0430\u0439\u043b> ]\n[ ]\n[ , <\u0418\u043d\u0441\u0442\u0440\u0443\u043c\u0435\u043d\u0442> ]\n[ <\u041d\u043e\u0442\u0430>, <\u041f\u0440\u043e\u0434\u043e\u043b\u0436\u0438\u0442\u0435\u043b\u044c\u043d\u043e\u0441\u0442\u044c>, <\u0418\u043d\u0441\u0442\u0440\u0443\u043c\u0435\u043d\u0442> ]\n[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041c\u0438\u043d\u0438\u043c\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041c\u0430\u043a\u0441\u0438\u043c\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435> ]\n[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041c\u0438\u043d\u0438\u043c\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041c\u0430\u043a\u0441\u0438\u043c\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, , ] Point=\u0422\u043e\u0447\u043a\u0430 Point.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u0412\u0435\u043a\u0442\u043e\u0440> ] PointIn=\u0422\u043e\u0447\u043a\u0430\u0412\u043d\u0443\u0442\u0440\u0438 PointIn.Syntax=[ <\u0420\u0435\u0433\u0438\u043e\u043d> ] PointList=\u0421\u043f\u0438\u0441\u043e\u043a\u0422\u043e\u0447\u0435\u043a PointList.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a> ] Polar=\u041f\u043e\u043b\u044f\u0440\u0430 Polar.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u041a\u043e\u043d\u0438\u043a\u0430> ] PolyLine=\u041b\u043e\u043c\u0430\u043d\u0430\u044f PolyLine.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, ..., <\u0422\u043e\u0447\u043a\u0430> ] Polygon=\u041c\u043d\u043e\u0433\u043e\u0443\u0433\u043e\u043b\u044c\u043d\u0438\u043a Polygon.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, ..., <\u0422\u043e\u0447\u043a\u0430> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0427\u0438\u0441\u043b\u043e \u0432\u0435\u0440\u0448\u0438\u043d> ] Polynomial=\u041c\u043d\u043e\u0433\u043e\u0447\u043b\u0435\u043d Polynomial.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] PrimeFactors=\u041f\u0440\u043e\u0441\u0442\u044b\u0435\u041c\u043d\u043e\u0436\u0438\u0442\u0435\u043b\u0438 PrimeFactors.Syntax=[ <\u0427\u0438\u0441\u043b\u043e> ] Product=\u041f\u0440\u043e\u0438\u0437\u0432\u0435\u0434\u0435\u043d\u0438\u0435 Product.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b>, <\u041a\u043e\u043b\u043b\u0438\u0447\u0435\u0441\u0442\u0432\u043e \u044d\u043b\u0435\u043c\u0435\u043d\u0442\u043e\u0432> ] Q1.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ] Q3.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ] RSquare=\u041a\u043e\u044d\u0444\u0444\u0438\u0446\u0438\u0435\u043d\u0442\u0414\u0435\u0442\u0435\u0440\u043c\u0438\u043d\u0430\u0446\u0438\u0438 RSquare.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a>, <\u0424\u0443\u043d\u043a\u0446\u0438\u044f> ] Radius=\u0420\u0430\u0434\u0438\u0443\u0441 Radius.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430> ] Random=\u0421\u043b\u0443\u0447\u0430\u0439\u043d\u043e\u0435\u0427\u0438\u0441\u043b\u043e Random.Syntax=[ <\u041c\u0438\u043d\u0438\u043c\u0443\u043c (\u0446\u0435\u043b\u043e\u0435 \u0447\u0438\u0441\u043b\u043e)>, <\u041c\u0430\u043a\u0441\u0438\u043c\u0443\u043c (\u0446\u0435\u043b\u043e\u0435 \u0447\u0438\u0441\u043b\u043e)> ] RandomBinomial.Syntax=[ <\u041a\u043e\u043b\u0438\u0447\u0435\u0441\u0442\u0432\u043e \u043f\u043e\u043f\u044b\u0442\u043e\u043a>, <\u0412\u0435\u0440\u043e\u044f\u0442\u043d\u043e\u0441\u0442\u044c> ] RandomElement=\u0421\u043b\u0443\u0447\u0430\u0439\u043d\u044b\u0439\u042d\u043b\u0435\u043c\u0435\u043d\u0442 RandomElement.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a> ] RandomNormal.Syntax=[ <\u0421\u0440\u0435\u0434\u043d\u0435\u0435>, <\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435 \u043e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u0438\u0435> ] RandomPoisson.Syntax=[ <\u0421\u0440\u0435\u0434\u043d\u0435\u0435> ] RandomPolynomial=\u0421\u043b\u0443\u0447\u0430\u0439\u043d\u044b\u0439\u041c\u043d\u043e\u0433\u043e\u0447\u043b\u0435\u043d Rationalize=\u041f\u0440\u0435\u0434\u0441\u0442\u0430\u0432\u0438\u0432\u0442\u044c\u0412\u0412\u0438\u0434\u0435\u0414\u0440\u043e\u0431\u0438 Ray=\u041b\u0443\u0447 Ray.Syntax=[ <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u0430\u044f \u0442\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ]\n[ <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u0430\u044f \u0442\u043e\u0447\u043a\u0430>, <\u041d\u0430\u043f\u0440\u0430\u0432\u043b\u0435\u043d\u0438\u0435> ] Real=\u0412\u0435\u0449\u0435\u0441\u0442\u0432\u0435\u043d\u043d\u0430\u044f\u0427\u0430\u0441\u0442\u044c ReducedRowEchelonForm=\u041f\u0440\u0438\u0432\u0435\u0434\u0451\u043d\u043d\u043e\u0421\u0442\u0443\u043f\u0435\u043d\u0447\u0430\u0442\u0430\u044f\u0424\u043e\u0440\u043c\u0430 ReducedRowEchelonForm.Syntax=[ <\u041c\u0430\u0442\u0440\u0438\u0446\u0430> ] Relation=\u041e\u0442\u043d\u043e\u0448\u0435\u043d\u0438\u0435 Relation.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041e\u0431\u044a\u0435\u043a\u0442> ] RemoveUndefined=\u0423\u0434\u0430\u043b\u0438\u0442\u044c\u041d\u0435\u043e\u043f\u0440\u0435\u0434\u0435\u043b\u0451\u043d\u043d\u044b\u0435\u042d\u043b\u0435\u043c\u0435\u043d\u0442\u044b RemoveUndefined.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a> ] Rename=\u041f\u0435\u0440\u0435\u0438\u043c\u0435\u043d\u043e\u0432\u0430\u0442\u044c Rename.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u0418\u043c\u044f> ] ResidualPlot=\u0413\u0440\u0430\u0444\u0438\u043a\u041e\u0441\u0442\u0430\u0442\u043a\u043e\u0432 ResidualPlot.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a>, <\u0424\u0443\u043d\u043a\u0446\u0438\u044f> ] Reverse=\u041e\u0431\u0440\u0430\u0442\u0438\u0442\u044c Reverse.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a> ] RightSide=\u041f\u0440\u0430\u0432\u0430\u044f\u0427\u0430\u0441\u0442\u044c RigidPolygon=\u0416\u0451\u0441\u0442\u043a\u0438\u0439\u041c\u043d\u043e\u0433\u043e\u0443\u0433\u043e\u043b\u044c\u043d\u0438\u043a RigidPolygon.Syntax=[ <\u0421\u0432\u043e\u0431\u043e\u0434\u043d\u0430\u044f \u0442\u043e\u0447\u043a\u0430>, ..., <\u0421\u0432\u043e\u0431\u043e\u0434\u043d\u0430\u044f \u0442\u043e\u0447\u043a\u0430> ] Root=\u041a\u043e\u0440\u0435\u043d\u044c Root.Syntax=[ <\u041c\u043d\u043e\u0433\u043e\u0447\u043b\u0435\u043d> ]\n[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041f\u0435\u0440\u0432\u043e\u0435 \u043f\u0440\u0438\u0431\u043b\u0438\u0436\u0435\u043d\u0438\u0435> ]\n[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435 \u0438\u043d\u0442\u0435\u0440\u0432\u0430\u043b\u0430>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435 \u0438\u043d\u0442\u0435\u0440\u0432\u0430\u043b\u0430> ] RootMeanSquare=\u0421\u0440\u0435\u0434\u043d\u0435\u0435\u041a\u0432\u0430\u0434\u0440\u0430\u0442\u0438\u0447\u0435\u0441\u043a\u043e\u0435 RootMeanSquare.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ] Roots=\u041d\u0443\u043b\u0438\u0424\u0443\u043d\u043a\u0446\u0438\u0438 Roots.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435 x>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435 x> ] Rotate=\u041f\u043e\u0432\u0435\u0440\u043d\u0443\u0442\u044c Rotate.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u0423\u0433\u043e\u043b> ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u0423\u0433\u043e\u043b>, <\u0422\u043e\u0447\u043a\u0430> ] RotateText=\u041f\u043e\u0432\u0435\u0440\u043d\u0443\u0442\u044c\u0422\u0435\u043a\u0441\u0442 RotateText.Syntax=[ <\u0422\u0435\u043a\u0441\u0442>, <\u0423\u0433\u043e\u043b> ] Row=\u0421\u0442\u0440\u043e\u043a\u0430 Row.Syntax=[ <\u042f\u0447\u0435\u0439\u043a\u0430> ] SD=\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435\u041e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u0438\u0435 SD.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] SDX=\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435\u041e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u0438\u0435X SDX.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] SDY=\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435\u041e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u0438\u0435Y SDY.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] SXX.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b>, <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ] SXY.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b>, <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ] SYY.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b>, <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ] Sample=\u0412\u044b\u0431\u043e\u0440\u043a\u0430 Sample.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u0420\u0430\u0437\u043c\u0435\u0440> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u0420\u0430\u0437\u043c\u0435\u0440>, ] SampleSD=\u0412\u044b\u0431\u043e\u0440\u043a\u0430\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435\u041e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u0438\u0435 SampleSD.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ] SampleSDX=\u0412\u044b\u0431\u043e\u0440\u043a\u0430\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435\u041e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u0438\u0435X SampleSDX.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] SampleSDY=\u0412\u044b\u0431\u043e\u0440\u043a\u0430\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435\u041e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u0438\u0435Y SampleSDY.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] SampleVariance=\u0412\u044b\u0431\u043e\u0440\u043e\u0447\u043d\u0430\u044f\u0414\u0438\u0441\u043f\u0435\u0440\u0441\u0438\u044f SampleVariance.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ] SecondAxis=\u0412\u0442\u043e\u0440\u0438\u0447\u043d\u0430\u044f\u041e\u0441\u044c SecondAxis.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430> ] SecondAxisLength=\u041c\u0430\u043b\u0430\u044f\u041f\u043e\u043b\u0443\u043e\u0441\u044c SecondAxisLength.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430> ] Sector=\u0421\u0435\u043a\u0442\u043e\u0440 Sector.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ]\n[ <\u041a\u043e\u043d\u0438\u043a\u0430>, <\u0417\u043d\u0430\u0447\u0435\u043d\u0438\u0435 \u043f\u0430\u0440\u0430\u043c\u0435\u0442\u0440\u0430>, <\u0417\u043d\u0430\u0447\u0435\u043d\u0438\u0435 \u043f\u0430\u0440\u0430\u043c\u0435\u0442\u0440\u0430> ] Segment=\u041e\u0442\u0440\u0435\u0437\u043e\u043a Segment.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u0414\u043b\u0438\u043d\u0430> ] SelectObjects=\u0412\u044b\u0431\u0440\u0430\u0442\u044c\u041e\u0431\u044a\u0435\u043a\u0442\u044b SelectObjects.Syntax=[ ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041e\u0431\u044a\u0435\u043a\u0442>, ... ] SelectedElement=\u0412\u044b\u0431\u0440\u0430\u043d\u043d\u044b\u0439\u042d\u043b\u0435\u043c\u0435\u043d\u0442 SelectedElement.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a> ] SelectedIndex=\u041d\u043e\u043c\u0435\u0440\u0412\u044b\u0431\u0440\u0430\u043d\u043d\u043e\u0433\u043e\u042d\u043b\u0435\u043c\u0435\u043d\u0442\u0430 SelectedIndex.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a> ] Semicircle=\u041f\u043e\u043b\u0443\u043e\u043a\u0440\u0443\u0436\u043d\u043e\u0441\u0442\u044c Semicircle.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u0422\u043e\u0447\u043a\u0430> ] Sequence=\u041f\u043e\u0441\u043b\u0435\u0434\u043e\u0432\u0430\u0442\u0435\u043b\u044c\u043d\u043e\u0441\u0442\u044c Sequence.Syntax=[ <\u0412\u044b\u0440\u0430\u0436\u0435\u043d\u0438\u0435>, <\u041f\u0435\u0440\u0435\u043c\u0435\u043d\u043d\u0430\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435> ]\n[ <\u0412\u044b\u0440\u0430\u0436\u0435\u043d\u0438\u0435>, <\u041f\u0435\u0440\u0435\u043c\u0435\u043d\u043d\u0430\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u0427\u0438\u0441\u043b\u043e \u0448\u0430\u0433\u043e\u0432> ] SetActiveView=\u0412\u044b\u0431\u0440\u0430\u0442\u044c\u0410\u043a\u0442\u0438\u0432\u043d\u044b\u0439\u0412\u0438\u0434 SetActiveView.Syntax=[ <\u0427\u0438\u0441\u043b\u043e (1/2)> ] SetAxesRatio=\u041e\u0442\u043d\u043e\u0448\u0435\u043d\u0438\u0435\u041e\u0441\u0435\u0439 SetBackgroundColor=\u0412\u044b\u0431\u0440\u0430\u0442\u044c\u0426\u0432\u0435\u0442\u0424\u043e\u043d\u0430 SetBackgroundColor.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, "\u0446\u0432\u0435\u0442" ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041a\u0440\u0430\u0441\u043d\u044b\u0439>, <\u0417\u0435\u043b\u0451\u043d\u044b\u0439>, <\u0421\u0438\u043d\u0438\u0439> ] SetCaption=\u0412\u044b\u0431\u0440\u0430\u0442\u044c\u0417\u0430\u0433\u043e\u043b\u043e\u0432\u043e\u043a SetCaption.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u0422\u0435\u043a\u0441\u0442> ] SetColor=\u0412\u044b\u0431\u0440\u0430\u0442\u044c\u0426\u0432\u0435\u0442 SetColor.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, "\u0446\u0432\u0435\u0442" ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041a\u0440\u0430\u0441\u043d\u044b\u0439>, <\u0417\u0435\u043b\u0451\u043d\u044b\u0439>, <\u0421\u0438\u043d\u0438\u0439> ] SetConditionToShowObject=\u0412\u044b\u0431\u0440\u0430\u0442\u044c\u0423\u0441\u043b\u043e\u0432\u0438\u044f\u041e\u0442\u043e\u0431\u0440\u0430\u0436\u0435\u043d\u0438\u044f\u041e\u0431\u044a\u0435\u043a\u0442\u0430 SetConditionToShowObject.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u0423\u0441\u043b\u043e\u0432\u0438\u044f> ] SetCoords=\u0423\u043a\u0430\u0437\u0430\u0442\u044c\u041a\u043e\u043e\u0440\u0434\u0438\u043d\u0430\u0442\u044b SetCoords.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, , ] SetDynamicColor=\u0412\u044b\u0431\u0440\u0430\u0442\u044c\u0414\u0438\u043d\u0430\u043c\u0438\u0447\u0435\u0441\u043a\u0443\u044e\u041e\u043a\u0440\u0430\u0441\u043a\u0443 SetDynamicColor.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041a\u0440\u0430\u0441\u043d\u044b\u0439>, <\u0417\u0435\u043b\u0451\u043d\u044b\u0439>, <\u0421\u0438\u043d\u0438\u0439> ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041a\u0440\u0430\u0441\u043d\u044b\u0439>, <\u0417\u0435\u043b\u0451\u043d\u044b\u0439>, <\u0421\u0438\u043d\u0438\u0439>, <\u0417\u0430\u043b\u0438\u0432\u043a\u0430> ] SetFilling=\u0412\u044b\u0431\u0440\u0430\u0442\u044c\u0417\u0430\u043b\u0438\u0432\u043a\u0443 SetFilling.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u0427\u0438\u0441\u043b\u043e> ] SetFixed=\u0417\u0430\u0444\u0438\u043a\u0441\u0438\u0440\u043e\u0432\u0430\u0442\u044c SetFixed.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, ] SetLabelMode=\u0412\u0438\u0434\u041e\u0431\u043e\u0437\u043d\u0430\u0447\u0435\u043d\u0438\u044f SetLabelMode.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u0427\u0438\u0441\u043b\u043e> ] SetLayer=\u0412\u044b\u0431\u0440\u0430\u0442\u044c\u0421\u043b\u043e\u0439 SetLayer.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u0421\u043b\u043e\u0439> ] SetLineStyle=\u0412\u044b\u0431\u0440\u0430\u0442\u044c\u0422\u0438\u043f\u041b\u0438\u043d\u0438\u0438 SetLineStyle.Syntax=[ <\u041f\u0440\u044f\u043c\u0430\u044f>, <\u0427\u0438\u0441\u043b\u043e> ] SetLineThickness=\u0412\u044b\u0431\u0440\u0430\u0442\u044c\u0422\u043e\u043b\u0449\u0438\u043d\u0443\u041b\u0438\u043d\u0438\u0438 SetLineThickness.Syntax=[ <\u041f\u0440\u044f\u043c\u0430\u044f>, <\u0427\u0438\u0441\u043b\u043e> ] SetPointSize=\u0412\u044b\u0431\u0440\u0430\u0442\u044c\u0420\u0430\u0437\u043c\u0435\u0440\u0422\u043e\u0447\u043a\u0438 SetPointSize.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u0427\u0438\u0441\u043b\u043e> ] SetPointStyle=\u0412\u044b\u0431\u0440\u0430\u0442\u044c\u0421\u0442\u0438\u043b\u044c\u0422\u043e\u0447\u043a\u0438 SetPointStyle.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u0427\u0438\u0441\u043b\u043e> ] SetVisibleInView=\u0412\u044b\u0431\u0440\u0430\u0442\u044c\u0420\u0430\u0441\u043f\u043e\u043b\u043e\u0436\u0435\u043d\u0438\u0435 SetVisibleInView.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041d\u043e\u043c\u0435\u0440 \u0432\u0438\u0434\u0430 1|2>, <\u041b\u043e\u0433\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u0432\u044b\u0440\u0430\u0436\u0435\u043d\u0438\u0435> ] Shear=\u0421\u0434\u0432\u0438\u0433 Shear.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041f\u0440\u044f\u043c\u0430\u044f>, <\u041a\u043e\u044d\u0444\u0444\u0438\u0446\u0438\u0435\u043d\u0442> ] ShowLabel=\u041f\u043e\u043a\u0430\u0437\u044b\u0432\u0430\u0442\u044c\u041e\u0431\u043e\u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435 ShowLabel.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041b\u043e\u0433\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435> ] ShowLayer=\u041f\u043e\u043a\u0430\u0437\u044b\u0432\u0430\u0442\u044c\u0421\u043b\u043e\u0439 ShowLayer.Syntax=[ <\u0427\u0438\u0441\u043b\u043e> ] Shuffle=\u041f\u0435\u0440\u0435\u043c\u0435\u0448\u0430\u0442\u044c Shuffle.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a> ] SigmaXX.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] SigmaXY.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0430\u0431\u0441\u0446\u0438\u0441\u0441>, <\u0421\u043f\u0438\u0441\u043e\u043a \u043e\u0440\u0434\u0438\u043d\u0430\u0442> ] SigmaYY.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] Simplify=\u0423\u043f\u0440\u043e\u0441\u0442\u0438\u0442\u044c Simplify.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f> ] Slider=\u041f\u043e\u043b\u0437\u0443\u043d\u043e\u043a Slider.Syntax=[ , , <\u0428\u0430\u0433>, <\u0421\u043a\u043e\u0440\u043e\u0441\u0442\u044c>, <\u0428\u0438\u0440\u0438\u043d\u0430>, <\u0423\u0433\u043e\u043b?>, <\u0413\u043e\u0440\u0438\u0437\u043e\u043d\u0442\u0430\u043b\u044c\u043d\u044b\u0439>, <\u0410\u043d\u0438\u043c\u0430\u0446\u0438\u044f>, <\u0421\u043b\u0443\u0447\u0430\u0439\u043d\u043e\u0435 \u0447\u0438\u0441\u043b\u043e> ] Slope=\u041d\u0430\u043a\u043b\u043e\u043d Slope.Syntax=[ <\u041f\u0440\u044f\u043c\u0430\u044f> ] SlowPlot=\u041f\u043e\u0441\u0442\u0440\u043e\u0438\u0442\u044c\u0413\u0440\u0430\u0444\u0438\u043a SlowPlot.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f> ] Solve=\u0420\u0435\u0448\u0438\u0442\u044c SolveODE=\u0420\u0435\u0448\u0438\u0442\u044c\u041e\u0414\u0423 SolveODE.Syntax=[ , <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u044b\u0439 x>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u044b\u0439 y>, <\u041a\u043e\u043d\u0435\u0447\u043d\u044b\u0439 x>, <\u0428\u0430\u0433> ]\n[ , , <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u044b\u0439 x>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u044b\u0439 y>, <\u041a\u043e\u043d\u0435\u0447\u043d\u044b\u0439 t>, <\u0428\u0430\u0433> ]\n[ , , , <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u044b\u0439 x>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u044b\u0439 y>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u044b\u0439 y'>, <\u041a\u043e\u043d\u0435\u0447\u043d\u044b\u0439 x>, <\u0428\u0430\u0433> ] Sort=\u0421\u043e\u0440\u0442\u0438\u0440\u043e\u0432\u043a\u0430 Sort.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a> ] Spearman=\u0421\u043f\u0438\u0440\u043c\u0435\u043d Spearman.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b>, <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ] StartAnimation=\u0417\u0430\u043f\u0443\u0441\u0442\u0438\u0442\u044c\u0410\u043d\u0438\u043c\u0430\u0446\u0438\u044e StartAnimation.Syntax=[ ]\n[ <\u041b\u043e\u0433\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435> ]\n[ <\u041f\u043e\u043b\u0437\u0443\u043d\u043e\u043a \u0438\u043b\u0438 \u0442\u043e\u0447\u043a\u0430>, <\u041f\u043e\u043b\u0437\u0443\u043d\u043e\u043a \u0438\u043b\u0438 \u0442\u043e\u0447\u043a\u0430>, ... ]\n[ <\u041f\u043e\u043b\u0437\u0443\u043d\u043e\u043a \u0438\u043b\u0438 \u0442\u043e\u0447\u043a\u0430>, <\u041f\u043e\u043b\u0437\u0443\u043d\u043e\u043a \u0438\u043b\u0438 \u0442\u043e\u0447\u043a\u0430>, ..., <\u041b\u043e\u0433\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435> ] Stretch=\u0420\u0430\u0441\u0442\u044f\u043d\u0443\u0442\u044c Stretch.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u0412\u0435\u043a\u0442\u043e\u0440> ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041f\u0440\u044f\u043c\u0430\u044f>, <\u041a\u043e\u044d\u0444\u0444\u0438\u0446\u0438\u0435\u043d\u0442> ] Substitute=\u0417\u0430\u043c\u0435\u043d\u0430 Sum=\u0421\u0443\u043c\u043c\u0430 Sum.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a> ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u0427\u0438\u0441\u043b\u043e \u044d\u043b\u0435\u043c\u0435\u043d\u0442\u043e\u0432> ] SumSquaredErrors=\u041e\u0441\u0442\u0430\u0442\u043e\u0447\u043d\u0430\u044f\u0414\u0438\u0441\u043f\u0435\u0440\u0441\u0438\u044f SumSquaredErrors.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a>, <\u0424\u0443\u043d\u043a\u0446\u0438\u044f> ] TableText=\u0422\u0430\u0431\u043b\u0438\u0446\u0430 TableText.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u0421\u043f\u0438\u0441\u043e\u043a>, ... ]\n[ <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u0421\u043f\u0438\u0441\u043e\u043a>, ..., <\u0412\u044b\u0440\u0430\u0432\u043d\u0438\u0432\u0430\u043d\u0438\u0435 \u0442\u0435\u043a\u0441\u0442\u0430> ] Take=\u0424\u0440\u0430\u0433\u043c\u0435\u043d\u0442 Take.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u0430\u044f \u043f\u043e\u0437\u0438\u0446\u0438\u044f>, <\u041a\u043e\u043d\u0435\u0447\u043d\u0430\u044f \u043f\u043e\u0437\u0438\u0446\u0438\u044f> ] Tangent=\u041a\u0430\u0441\u0430\u0442\u0435\u043b\u044c\u043d\u0430\u044f Tangent.Syntax=[ <\u0422\u043e\u0447\u043a\u0430>, <\u041a\u043e\u043d\u0438\u043a\u0430> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u0424\u0443\u043d\u043a\u0446\u0438\u044f> ]\n[ <\u0422\u043e\u0447\u043a\u0430>, <\u041a\u0440\u0438\u0432\u0430\u044f> ]\n[ <\u0410\u0441\u0431\u0446\u0438\u0441\u0441\u0430>, <\u0424\u0443\u043a\u0446\u0438\u044f> ]\n[ <\u041f\u0430\u0440\u0430\u043b\u043b\u0435\u043b\u044c\u043d\u0430\u044f \u043f\u0440\u044f\u043c\u0430\u044f>, <\u041a\u043e\u043d\u0438\u043a\u0430> ]\n[ <\u041f\u0430\u0440\u0430\u043b\u043b\u0435\u043b\u044c\u043d\u044b\u0439 \u043e\u0442\u0440\u0435\u0437\u043e\u043a>, <\u041a\u043e\u043d\u0438\u043a\u0430> ] TaylorSeries=\u0420\u044f\u0434\u0422\u0435\u0439\u043b\u043e\u0440\u0430 TaylorSeries.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u0410\u0431\u0441\u0446\u0438\u0441\u0441\u0430>, <\u041f\u043e\u0440\u044f\u0434\u043e\u043a> ] Text=\u0424\u043e\u0440\u043c\u0443\u043b\u0430 Text.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442> ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u041f\u043e\u0434\u0441\u0442\u0430\u043d\u043e\u0432\u043a\u0430 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0439 \u043f\u0435\u0440\u0435\u043c\u0435\u043d\u043d\u044b\u0445> ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u0422\u043e\u0447\u043a\u0430> ]\n[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u0422\u043e\u0447\u043a\u0430>, <\u041f\u043e\u0434\u0441\u0442\u0430\u043d\u043e\u0432\u043a\u0430 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0439 \u043f\u0435\u0440\u0435\u043c\u0435\u043d\u043d\u044b\u0445> ] TextToUnicode=\u0422\u0435\u043a\u0441\u0442\u0412Unicode TextToUnicode.Syntax=[ <\u0422\u0435\u043a\u0441\u0442> ] Textfield=\u041e\u043a\u043d\u043e\u0412\u0432\u043e\u0434\u0430 Textfield.Syntax=[ ]\n[ <\u0423\u043f\u0440\u0430\u0432\u043b\u044f\u0435\u043c\u044b\u0439 \u043e\u0431\u044a\u0435\u043a\u0442> ] TiedRank=\u0421\u043e\u0432\u043f\u0430\u0434\u0430\u044e\u0449\u0438\u0435\u0420\u0430\u043d\u0433\u0438 TiedRank.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a> ] ToComplex=\u0412\u041a\u043e\u043c\u043f\u043b\u0435\u043a\u0441\u043d\u043e\u0435\u0427\u0438\u0441\u043b\u043e ToExponential=\u0412\u042d\u043a\u0441\u043f\u043e\u043d\u0435\u043d\u0446\u0438\u0430\u043b\u044c\u043d\u044b\u0439\u0412\u0438\u0434 ToPoint=\u0412\u0422\u043e\u0447\u043a\u0443 ToPolar=\u041f\u043e\u043b\u044f\u0440\u043d\u044b\u0435\u041a\u043e\u043e\u0440\u0434\u0438\u043d\u0430\u0442\u044b ToolImage=\u0418\u0437\u043e\u0431\u0440\u0430\u0436\u0435\u043d\u0438\u0435\u0418\u043d\u0441\u0442\u0440\u0443\u043c\u0435\u043d\u0442\u0430 ToolImage.Syntax=[ <\u0427\u0438\u0441\u043b\u043e> ] Translate=\u041f\u0435\u0440\u0435\u043d\u0435\u0441\u0442\u0438 Translate.Syntax=[ <\u041e\u0431\u044a\u0435\u043a\u0442>, <\u0412\u0435\u043a\u0442\u043e\u0440> ]\n[ <\u0412\u0435\u043a\u0442\u043e\u0440>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u0430\u044f \u0442\u043e\u0447\u043a\u0430> ] Transpose=\u0422\u0440\u0430\u043d\u0441\u043f\u043e\u043d\u0438\u0440\u043e\u0432\u0430\u0442\u044c Transpose.Syntax=[ <\u041c\u0430\u0442\u0440\u0438\u0446\u0430> ] TrapezoidalSum=\u0422\u0440\u0430\u043f\u0435\u0446\u0435\u0438\u0434\u0430\u043b\u044c\u043d\u0430\u044f\u0421\u0443\u043c\u043c\u0430 TrapezoidalSum.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u0427\u0438\u0441\u043b\u043e \u0442\u0440\u0430\u043f\u0435\u0446\u0438\u0439> ] TravelingSalesman=\u041a\u043e\u043c\u043c\u0438\u0432\u043e\u044f\u0436\u0451\u0440 TravelingSalesman.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] TurningPoint=\u0422\u043e\u0447\u043a\u0430\u041f\u0435\u0440\u0435\u0433\u0438\u0431\u0430 TurningPoint.Syntax=[ <\u041f\u043e\u043b\u0438\u043d\u043e\u043c> ] UnicodeToLetter=Unicode\u0412\u0421\u0438\u043c\u0432\u043e\u043b UnicodeToLetter.Syntax=[ <\u0426\u0435\u043b\u043e\u0435 \u0447\u0438\u0441\u043b\u043e> ] UnicodeToText=Unicode\u0412\u0422\u0435\u043a\u0441\u0442 UnicodeToText.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ] Uniform=\u041d\u0435\u043f\u0440\u0435\u0440\u044b\u0432\u043d\u043e\u0435\u0420\u0430\u0432\u043d\u043e\u043c\u0435\u0440\u043d\u043e\u0435\u0420\u0430\u0441\u043f\u0440\u0435\u0434\u0435\u043b\u0435\u043d\u0438\u0435 Uniform.Syntax=[ <\u041d\u0438\u0436\u043d\u044f\u044f \u0433\u0440\u0430\u043d\u0438\u0446\u0430>, <\u0412\u0435\u0440\u0445\u043d\u044f\u044f \u0433\u0440\u0430\u043d\u0438\u0446\u0430>, x ]\n[ <\u041d\u0438\u0436\u043d\u044f\u044f \u0433\u0440\u0430\u043d\u0438\u0446\u0430>, <\u0412\u0435\u0440\u0445\u043d\u044f\u044f \u0433\u0440\u0430\u043d\u0438\u0446\u0430>, <\u0417\u043d\u0430\u0447\u0435\u043d\u0438\u0435 \u043f\u0435\u0440\u0435\u043c\u0435\u043d\u043d\u043e\u0439> ]\n[ <\u041d\u0438\u0436\u043d\u044f\u044f \u0433\u0440\u0430\u043d\u0438\u0446\u0430>, <\u0412\u0435\u0440\u0445\u043d\u044f\u044f \u0433\u0440\u0430\u043d\u0438\u0446\u0430>, x, <\u041b\u043e\u0433\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u0432\u044b\u0440\u0430\u0436\u0435\u043d\u0438\u0435> ] Union=\u041e\u0431\u044a\u0435\u0434\u0438\u043d\u0435\u043d\u0438\u0435\u041c\u043d\u043e\u0436\u0435\u0441\u0442\u0432 Union.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a>, <\u0421\u043f\u0438\u0441\u043e\u043a> ] Unique=\u0415\u0434\u0438\u043d\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u0435 Unique.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a> ] UnitOrthogonalVector=\u041d\u043e\u0440\u043c\u0430\u043b\u044c\u043d\u044b\u0439\u041e\u0440\u0442 UnitOrthogonalVector.Syntax=[ <\u041f\u0440\u044f\u043c\u0430\u044f> ]\n[ <\u041e\u0442\u0440\u0435\u0437\u043e\u043a> ]\n[ <\u0412\u0435\u043a\u0442\u043e\u0440> ] UnitVector=\u041e\u0440\u0442 UnitVector.Syntax=[ <\u0412\u0435\u043a\u0442\u043e\u0440> ]\n[ <\u041f\u0440\u044f\u043c\u0430\u044f> ]\n[ <\u041e\u0442\u0440\u0435\u0437\u043e\u043a> ] UpdateConstruction=\u041e\u0431\u043d\u043e\u0432\u0438\u0442\u044c UpperSum=\u0412\u0435\u0440\u0445\u043d\u044f\u044f\u0421\u0443\u043c\u043c\u0430 UpperSum.Syntax=[ <\u0424\u0443\u043d\u043a\u0446\u0438\u044f>, <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u041a\u043e\u043d\u0435\u0447\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435>, <\u0427\u0438\u0441\u043b\u043e \u043f\u0440\u044f\u043c\u043e\u0443\u0433\u043e\u043b\u044c\u043d\u0438\u043a\u043e\u0432> ] Variance=\u0412\u0430\u0440\u0438\u0430\u0446\u0438\u044f Variance.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0447\u0438\u0441\u0435\u043b> ] Vector=\u0412\u0435\u043a\u0442\u043e\u0440 Vector.Syntax=[ <\u0422\u043e\u0447\u043a\u0430> ]\n[ <\u041d\u0430\u0447\u0430\u043b\u044c\u043d\u0430\u044f \u0442\u043e\u0447\u043a\u0430>, <\u041a\u043e\u043d\u0435\u0447\u043d\u0430\u044f \u0442\u043e\u0447\u043a\u0430> ] Vertex=\u0412\u0435\u0440\u0448\u0438\u043d\u0430 Vertex.Syntax=[ <\u041a\u043e\u043d\u0438\u043a\u0430> ] VerticalText=\u0412\u0435\u0440\u0442\u0438\u043a\u0430\u043b\u044c\u043d\u044b\u0439\u0422\u0435\u043a\u0441\u0442 VerticalText.Syntax=[ <\u0422\u0435\u043a\u0441\u0442> ] Voronoi=\u0414\u0438\u0430\u0433\u0440\u0430\u043c\u043c\u0430\u0412\u043e\u0440\u043e\u043d\u043e\u0433\u043e Voronoi.Syntax=[ <\u0421\u043f\u0438\u0441\u043e\u043a \u0442\u043e\u0447\u0435\u043a> ] Zip.Syntax=[ <\u0412\u044b\u0440\u0430\u0436\u0435\u043d\u0438\u0435>, <\u041f\u0435\u0440\u0435\u043c\u0435\u043d\u043d\u0430\u044f1>, <\u0421\u043f\u0438\u0441\u043e\u043a1>, <\u041f\u0435\u0440\u0435\u043c\u0435\u043d\u043d\u0430\u044f2>, <\u0421\u043f\u0438\u0441\u043e\u043a2>, ... ] ZoomIn=\u0423\u0432\u0435\u043b\u0438\u0447\u0438\u0442\u044c\u041c\u0430\u0441\u0448\u0442\u0430\u0431 ZoomIn.Syntax=[ <\u0417\u043d\u0430\u0447\u0435\u043d\u0438\u0435 \u043c\u043d\u043e\u0436\u0438\u0442\u0435\u043b\u044f> ]\n[ <\u0417\u043d\u0430\u0447\u0435\u043d\u0438\u0435 \u043c\u0430\u0441\u0448\u0442\u0430\u0431\u0430>, <\u0426\u0435\u043d\u0442\u0440 \u0443\u0432\u0435\u043b\u0435\u0447\u0435\u043d\u0438\u044f> ]\n[ , , , ] ZoomOut=\u0423\u043c\u0435\u043d\u044c\u0448\u0438\u0442\u044c\u041c\u0430\u0441\u0448\u0442\u0430\u0431 ZoomOut.Syntax=[ <\u0417\u043d\u0430\u0447\u0435\u043d\u0438\u0435 \u043c\u043d\u043e\u0436\u0438\u0442\u0435\u043b\u044f> ]\n[ <\u0417\u043d\u0430\u0447\u0435\u043d\u0438\u0435 \u043c\u0430\u0441\u0448\u0442\u0430\u0431\u0430>, <\u0426\u0435\u043d\u0442\u0440 \u0443\u0432\u0435\u043b\u0435\u0447\u0435\u043d\u0438\u044f> ] nPr=\u0427\u0438\u0441\u043b\u043e\u0420\u0430\u0437\u043c\u0435\u0449\u0435\u043d\u0438\u0439geogebra-4.0.34.0+dfsg1/geogebra/properties/command_sr.properties0000644000175000017500000004721611766730045025153 0ustar giovannigiovanniAffineRatio=KoeficijentAfinosti AffineRatio.Syntax=[ , , ] Angle=Ugao Angle.Syntax=[ ]\n[ , ]\n[ , ]\n[ , , ]\n[ , , ] AngularBisector=SimetralaUgla AngularBisector.Syntax=[ , ]\n[ , , ] Append=Dodaj Append.Syntax=[ , ]\n[ , ] ApplyMatrix=PrimeniMatricu ApplyMatrix.Syntax=[ , ] Arc=Luk Arc.Syntax=[ , , ]\n[ , , ] Area=Povr\u0161ina Area.Syntax=[ ]\n[ , ..., ] Asymptote=Asimptota Asymptote.Syntax=[ ] Axes=Ose Axes.Syntax=[ ] AxisStepX=KorakNaXOsi AxisStepY=KorakNaYOsi BarChart=TrakastiDijagram BarChart.Syntax=[ , ]\n[ , <\u0161irina traka> ]\n[ , , <\u0161irina traka> ]\n[ , , ]\n[ , , , , , ]\n[ , , , , , , ] Binomial=BinomniKoeficijent Binomial.Syntax=[ , ] BoxPlot=DijagramPravougaonika BoxPlot.Syntax=[ , , ]\n[ , , , , , , ] Button=Dugme Button.Syntax=[ ]\n[ ] CSolve=CRe\u0161i Cauchy=Ko\u0161i Cauchy.Syntax=[ , , x ]\n[ , , ]\n[ , , x, ] Cell=\u0106elija Cell.Syntax=[ , ] CellRange=Opseg\u0106elija CellRange.Syntax=[ , ] Center=Centar Center.Syntax=[ ] Centroid=Te\u017ei\u0161te Centroid.Syntax=[ ] Checkbox=PoljeZaPotvrdu Checkbox.Syntax=[ ]\n[ ]\n[ ]\n[ , ] ChiSquared=HiKvadrat ChiSquared.Syntax=[ , x ]\n[ , ]\n[ , x, ] Circle=Kru\u017enica Circle.Syntax=[ , ]\n[ , ]\n[ , ]\n[ , , ] CircleArc=Kru\u017eniLuk CircleArc.Syntax=[ , , ] CircleSector=Ise\u010dakKruga CircleSector.Syntax=[ , , ] CircumcircleArc=LukKrozTa\u010dke CircumcircleArc.Syntax=[ , , ] CircumcircleSector=Ise\u010dakOpisanogKruga CircumcircleSector.Syntax=[ , , ] Circumference=ObimKrive Circumference.Syntax=[ ] Classes=Klase Classes.Syntax=[ , ]\n[ , , <\u0161irina klasa> ] ClosestPoint=Najbli\u017eaTa\u010dka ClosestPoint.Syntax=[ , ] Coefficients=Koeficijenti Coefficients.Syntax=[ ]\n[ ] Column=Kolona Column.Syntax=[ <\u0107elija u tabeli> ] ColumnName=ImeKolone ColumnName.Syntax=[ <\u0107elija tabele> ] Command=Naredba CommonDenominator=Zajedni\u010dkiImenilac Conic=KonusniPresek Conic.Syntax=[ , , , , ] ConstructionStep=KorakKonstrukcije ConstructionStep.Syntax=[ ]\n[ ] Corner=\u0106o\u0161ak Corner.Syntax=[ ]\n[ , ]\n[ , ] CountIf.Syntax=[ , ] Covariance=Kovarijansa Covariance.Syntax=[ ]\n[ , ] CrossRatio=Dvorazmera CrossRatio.Syntax=[ , , , ] Curvature=Krivina Curvature.Syntax=[ , ]\n[ , ] CurvatureVector=VektorKrivine CurvatureVector.Syntax=[ , ]\n[ , ] CurveCartesian=Kriva CurveCartesian.Syntax=[ , , , , ] Decimal=Decimalni Defined=Definisan Defined.Syntax=[ ] Degree=Stepen Degree.Syntax=[ ] Delete=Izbri\u0161i Delete.Syntax=[ ] Denominator=Imenilac Denominator.Syntax=[ ] Derivative=Izvod Derivative.Syntax=[ ]\n[ ]\n[ , ]\n[ , ] Determinant=Determinanta Determinant.Syntax=[ ] Diameter=Pre\u010dnik Diameter.Syntax=[ , ]\n[ , ] Dilate=Homotetija Dilate.Syntax=[ , , ] Dimension=Dimenzija Direction=Pravac Direction.Syntax=[ ] Directrix=Direktrisa Directrix.Syntax=[ ] Distance=Rastojanje Distance.Syntax=[ , ]\n[ , ] Div=Deli Div.Syntax=[ , ]\n[ , ] Division=Deljenje Divisors=Delitelji Element.Syntax=[ , ] Ellipse=Elipsa Ellipse.Syntax=[ , , ]\n[ , , ]\n[ , , ] Excentricity=Ekscentricitet Excentricity.Syntax=[ ] Execute=Izvr\u0161i Execute.Syntax=[ ]\n[ , , , ... ] Expand=Razvoj Expand.Syntax=[ ] Extremum=Ekstrem Extremum.Syntax=[ ] Factor=Faktorizacija Factor.Syntax=[ ] First=Prvi First.Syntax=[ ]\n[ ]\n[ , ]\n[ , ]\n[ , ] FirstAxis=GlavnaOsa FirstAxis.Syntax=[ ] FirstAxisLength=GlavnaPoluosa FirstAxisLength.Syntax=[ ] Fit.Syntax=[ , ]\n[ , ] FitExp.Syntax=[ ] FitLineX=FitLinearniX FitLineX.Syntax=[ ] FitLineY=FitLinearni FitLineY.Syntax=[ ] FitLog.Syntax=[ ] FitLogistic=FitLogisti\u010dki FitLogistic.Syntax=[ ] FitPoly=FitPolinomni FitPoly.Syntax=[ , ] FitPow=FitStepeni FitPow.Syntax=[ ] FitSin.Syntax=[ ] Focus=\u017di\u017ea Focus.Syntax=[ ] FractionText=RazlomakTekst FractionText.Syntax=[ ] FractionalPart=RazlomljeniDeo Function=Funkcija Function.Syntax=[ , , ] GCD=NZD GCD.Syntax=[ ]\n[ , ] Histogram.Syntax=[ , ]\n[ , ] Hyperbola=Hiperbola Hyperbola.Syntax=[ <\u017ei\u017ea>, <\u017ei\u017ea>, ]\n[ <\u017ei\u017ea>, <\u017ei\u017ea>, ]\n[ , , ] If.Syntax=[ , ]\n[ , , ] Imaginary=Imaginarni ImplicitCurve=ImplicitnaKriva ImplicitCurve.Syntax=[ ] ImplicitDerivative=ImplicitniIzvod IndexOf=IndeksOd IndexOf.Syntax=[ , ]\n[ , ]\n[ , , ]\n[ , , ] Insert=Ubaci Insert.Syntax=[ , , ]\n[ , , ] Integral.Syntax=[ ]\n[ , , ]\n[ , , , ] Intersect=Preseci Intersect.Syntax=[ , ]\n[ , , ]\n[ , , ] Intersection=Presek Intersection.Syntax=[ , ] InverseNormal=InverznaNormalnaRaspodela InverseNormal.Syntax=[ , , ] Invert=Invertuj Invert.Syntax=[ ] IsInRegion=JeUnutar IsInRegion.Syntax=[ , ] IsInteger=JeCeoBroj IsInteger.Syntax=[ ] IsPrime=JeProst Iteration=Iteracija Iteration.Syntax=[ , , ] IterationList=IteracijaLista IterationList.Syntax=[ , , ] Join=Spoji Join.Syntax=[ ]\n[ , , ... ] KeepIf=Zadr\u017eiAko KeepIf.Syntax=[ , ] LCM=NZS LCM.Syntax=[ ]\n[ , ] LaTeX=FormulaTekst LaTeX.Syntax=[ ]\n[ , ] Last=Poslednji Last.Syntax=[ ]\n[ ]\n[ , ]\n[ , ] LeftSide=LevaStrana LeftSum=LevaSuma LeftSum.Syntax=[ , , , ] Length=Du\u017eina Length.Syntax=[ ]\n[ ]\n[ ]\n[ ]\n[ ]\n[ , , ]\n[ , , ]\n[ , , ]\n[ , , ] LetterToUnicode=SlovoUUnicode LetterToUnicode.Syntax=[ ] Limit=Limes Limit.Syntax=[ , ] Line=Prava Line.Syntax=[ , ]\n[ , ]\n[ , ] LineBisector=SimetralaDu\u017ei LineBisector.Syntax=[ ]\n[ , ] Locus=Lokus Locus.Syntax=[ , ] LowerSum=DonjaSuma LowerSum.Syntax=[ , , , ] Max.Syntax=[ ]\n[ , ] Mean=Aritmeti\u010dkaSredina Mean.Syntax=[ ] MeanX=Aritmeti\u010dkaSredinaX MeanX.Syntax=[ ] MeanY=Aritmeti\u010dkaSredinaY MeanY.Syntax=[ ] Median=Medijana Median.Syntax=[ ] Midpoint=Sredi\u0161te Midpoint.Syntax=[ ]\n[ ]\n[ , ] Min.Syntax=[ ]\n[ , ] Mirror=Ogledanje Mirror.Syntax=[ , ]\n[ , ]\n[ , ] MixedNumber=PraviRazlomak Mod=Ostatak Mod.Syntax=[ , ]\n[ , ] Mode=Modus Mode.Syntax=[ ] Name=Ime Name.Syntax=[ ] NextPrime=Slede\u0107iProstBroj Normal=NormalnaRaspodela Normal.Syntax=[ , , ] Numerator=Brojilac Numerator.Syntax=[ ] Numeric=Numeri\u010dki Object=Objekat Object.Syntax=[ ] Ordinal=Redni Ordinal.Syntax=[ ] OrthogonalLine=Normala OrthogonalLine.Syntax=[ , ]\n[ , ]\n[ , ] OrthogonalVector=NormalniVektor OrthogonalVector.Syntax=[ ]\n[ ]\n[ ] OsculatingCircle=OskulatornaKru\u017enica OsculatingCircle.Syntax=[ , ]\n[ , ] PMCC=KoeficijentKorelacije PMCC.Syntax=[ ]\n[ , ] Parabola.Syntax=[ , ] Parameter=Parametar Parameter.Syntax=[ ] Perimeter=Obim Perimeter.Syntax=[ ]\n[ ] PlaySound=Sviraj PlaySound.Syntax=[ ]\n[ ]\n[ , ]\n[ , ]\n[ , , ]\n[ , , , ] Point=Ta\u010dka Point.Syntax=[ ]\n[ , ] PointIn=Ta\u010dkaU PointIn.Syntax=[ ] PointList=ListaTa\u010daka PointList.Syntax=[ ] Polar=Polara Polar.Syntax=[ , ] PolyLine=IzlomljenaLinija PolyLine.Syntax=[ ]\n[ , ..., ] Polygon=Mnogougao Polygon.Syntax=[ , ..., ]\n[ , , ] Polynomial=Polinom Polynomial.Syntax=[ ]\n[ ] PreviousPrime=PrethodniProstBroj PrimeFactors=Prosti\u010cinioci PrimeFactors.Syntax=[ ] Product=Proizvod Product.Syntax=[ ]\n[ , ] Q1.Syntax=[ ] Q3.Syntax=[ ] Radius=Polupre\u010dnik Radius.Syntax=[ ] Random=Slu\u010dajanBrojIzme\u0111u Random.Syntax=[ , ] RandomBinomial=BinomnaSlu\u010dajnaVarijabla RandomBinomial.Syntax=[ , ] RandomElement=Slu\u010dajniElement RandomElement.Syntax=[ ] RandomNormal=NormalnaSlu\u010dajnaVarijabla RandomNormal.Syntax=[ , ] RandomPoisson=PoasonovaSlu\u010dajnaVarijabla RandomPoisson.Syntax=[ ] RandomPolynomial=Slu\u010dajniPolinom RandomUniform=Slu\u010dajanBrojUniformno RandomUniform.Syntax=[ , ] Ray=Poluprava Ray.Syntax=[ , ]\n[ , ] Real=Realni Relation=Odnos Relation.Syntax=[ , ] RemoveUndefined=IzbaciNedefinisane RemoveUndefined.Syntax=[ ] Rename=Preimenuj Rename.Syntax=[ , ] Reverse=Obrni Reverse.Syntax=[ ] RigidPolygon=KrutiPoligon RigidPolygon.Syntax=[ , ..., ] Root=NulaFunkcije Root.Syntax=[ ]\n[ , ]\n[ , , ] RootList=NuleLista RootList.Syntax=[ ] Roots=NuleFunkcije Roots.Syntax=[ , , ] Rotate=Rotiraj Rotate.Syntax=[ , ]\n[ , , ] RotateText=RotirajTekst RotateText.Syntax=[ , ] Row=Vrsta Row.Syntax=[ <\u0107elija tabele> ] SD.Syntax=[ ] SXX=SXX SXX.Syntax=[ ]\n[ ] SXY=SXY SXY.Syntax=[ ]\n[ , ] SYY=SYY SYY.Syntax=[ ] SecondAxis=SporednaOsa SecondAxis.Syntax=[ ] SecondAxisLength=SporednaPoluosa SecondAxisLength.Syntax=[ ] Sector=Ise\u010dak Sector.Syntax=[ , , ]\n[ , , ] Segment=Du\u017e Segment.Syntax=[ , ]\n[ , ] Semicircle=Polukru\u017enica Semicircle.Syntax=[ , ] Sequence=Niz Sequence.Syntax=[ , , , ]\n[ , , , , ] SetActiveView=AktivirajPrikaz SetActiveView.Syntax=[ ] SetColor=PostaviBoju SetColor.Syntax=[ , "" ]\n[ , , , ] SetConditionToShowObject=PostaviUslovZaPrikazivanjeObjekta SetConditionToShowObject.Syntax=[ , ] SetCoords=PostaviKoordinate SetCoords.Syntax=[ , , ] SetDynamicColor=PostaviDinami\u010dkuBoju SetDynamicColor.Syntax=[ , , , ] SetFilling=PostaviPopunu SetFilling.Syntax=[ , ] SetFixed=Fiksiraj SetFixed.Syntax=[ , ] SetLabelMode=PostaviPrikazOznake SetLabelMode.Syntax=[ , ] SetLayer=PostaviSloj SetLayer.Syntax=[ , ] SetValue=PostaviVrednost SetValue.Syntax=[ , <0|1> ]\n[ , ]\n[ , , ] ShortestDistance=Najkra\u0107eRastojanje ShortestDistance.Syntax=[ , , , ] ShowLayer=Prika\u017eiSloj ShowLayer.Syntax=[ ] Shuffle=Prome\u0161aj Shuffle.Syntax=[ ] SigmaXX.Syntax=[ ]\n[ ] SigmaXY.Syntax=[ ]\n[ , ] SigmaYY.Syntax=[ ] Simplify=Pojednostavi Simplify.Syntax=[ ]\n[ ] Slider=Kliza\u010d Slider.Syntax=[ , , , , <\u0161irina>, , , , ] Slope=Nagib Slope.Syntax=[ ] SlowPlot=Prika\u017eiGrafik SlowPlot.Syntax=[ ] Solve=Re\u0161i SolveODE=Re\u0161iODE SolveODE.Syntax=[ , , , , ]\n[ , , , , , ]\n[ , , , , , , , ] Sort=Sortiraj Sort.Syntax=[ ] StartAnimation=Po\u010dniAnimaciju StartAnimation.Syntax=[ ]\n[ ]\n[ , , ... ]\n[ , , ..., ] Stretch=Rastegni Stretch.Syntax=[ , ]\n[ , , ] Substitute=Zameni Sum=Suma Sum.Syntax=[ ]\n[ , ] TableText=TabelaTekst TableText.Syntax=[ , , ... ]\n[ , , ..., ] Take=Uzmi Take.Syntax=[ , , ]\n[ , , ] Tangent=Tangenta Tangent.Syntax=[ , ]\n[ , ]\n[ , ]\n[ , ]\n[ , ]\n[ , ] TaylorSeries=TejlorovPolinom TaylorSeries.Syntax=[ , , ] Text=Tekst Text.Syntax=[ ]\n[ , ]\n[ , ]\n[ , , ] TextToUnicode=TekstUUnicode TextToUnicode.Syntax=[ ] Textfield=TekstualnoPolje Textfield.Syntax=[ ]\n[ ] ToPolar=UPolarni ToolImage=SlikaAlata ToolImage.Syntax=[ ] Translate=Translacija Translate.Syntax=[ , ]\n[ , ] Transpose=Transponuj Transpose.Syntax=[ ] TrapezoidalSum=TrapeznaSuma TrapezoidalSum.Syntax=[ , , , ] TurningPoint=PrevojnaTa\u010dka TurningPoint.Syntax=[ ] UnicodeToLetter=UnicodeUSlovo UnicodeToLetter.Syntax=[ ] UnicodeToText=UnicodeUTekst UnicodeToText.Syntax=[ ] Union=Unija Union.Syntax=[ , ] Unique=Jedinstveni Unique.Syntax=[ ] UnitOrthogonalVector=Jedini\u010dniNormalniVektor UnitOrthogonalVector.Syntax=[ ]\n[ ]\n[ ] UnitVector=Jedini\u010dniVektor UnitVector.Syntax=[ ]\n[ ]\n[ ] UpdateConstruction=A\u017eurirajKonstrukciju UpperSum=GornjaSuma UpperSum.Syntax=[ , , , ] Variance=Varijansa Variance.Syntax=[ ] Vector=Vektor Vector.Syntax=[ ]\n[ , ] Vertex=Teme Vertex.Syntax=[ ] VerticalText=VertikalniTekst VerticalText.Syntax=[ ] ZoomIn=Pove\u0107anje ZoomIn.Syntax=[ ]\n[ , ]\n[ , , , ] ZoomOut=Smanjenje ZoomOut.Syntax=[ ]\n[ , ]geogebra-4.0.34.0+dfsg1/geogebra/properties/menu_hr.properties0000644000175000017500000006342411757744615024475 0ustar giovannigiovanniAbout=O programu Accents=Naglasci AccentsExt=Produ\u017eeni naglasci ActionObjectTools=Alati za pomicanje objekta AddTrace=Dodaj objekt listi tragova Adjustment=Pode\u0161avanje Advanced=Dodatno AlgebraDescriptions=Algebarski opisi AllCommands=Sve naredbe AllowRescaling=Dozvoli skaliranje AllowTooltips=Dozvoli info-obla\u010di\u0107e AlternativeHypothesis=Alternativna pretpostavka AlternativeHypothesis.short=Alternativa Angle=Kut Angle.Help=Odaberite tri to\u010dke ili dva pravca AngleFixed=Kut zadane veli\u010dine AngleFixed.Help=Odaberite to\u010dku kraka, vrh i unesite kut AngleUnit=Kutna mjera AngularBisector=Simetrala kuta AngularBisector.Help=Odaberite tri to\u010dke ili dva pravca ApplyDefaults=Primijeni zadano Area=Povr\u0161ina Area.Help=Odaberite mnogokut, kru\u017enicu ili koniku Ascending=Rastu\u0107i AttachDetachPoint=Prive\u017ei / Odvoji to\u010dku AttachDetachPoint.Help=Kliknite na to\u010dku (i na objekt za koji se ve\u017ee) AutoDimension=Automatske dimenzije Axes=Koordinatne osi Back=Natrag BackgroundColor=Boja pozadine BasicLineTools=Alati za crte BetweenGroups=Izme\u0111u grupa BlackboardLetters=Blackboard slova Blue=Plava Bold=Podebljano Boxplot=Pravokutni dijagram Brackets=Zagrade Browser=Preglednik Button.Caption=Natpis ButtonAction=Umetanje gumba ButtonAction.Help=Kliknite na grafi\u010dki prikaz za umetanje gumba ByLayering=Po slojevima Calculate=Izra\u010dunaj CalligraphicLetters=Krasopisna slova Cancel=Odustani Cartesian=Kartezijeva CheckboxSize=Veli\u010dina potvrdnog okvira CheckboxSize.Large=velik CheckboxSize.Regular=obi\u010dan ChooseFromFile=Odaberite iz datoteke Circle2=Kru\u017enica odre\u0111ena sredi\u0161tem i jednom to\u010dkom Circle2.Help=Odaberite sredi\u0161te pa to\u010dku na kru\u017enici Circle3=Kru\u017enica kroz tri to\u010dke Circle3.Help=Odaberite tri to\u010dke na kru\u017enici CircleArc3=Kru\u017eni luk odre\u0111en sredi\u0161tem i dvjema to\u010dkama CircleArc3.Help=Odaberite sredi\u0161te i dvije to\u010dke na luku CircleArcTools=Alati za kru\u017enicu i luk CircleAxisPoint=Kru\u017enica odre\u0111ena s osi i jednom to\u010dkom CircleAxisPoint.Help=Odaberite os pa to\u010dku na kru\u017enici CirclePointRadius=Kru\u017enica odre\u0111ena sredi\u0161tem i polumjerom CirclePointRadius.Help=Odaberite sredi\u0161te i upi\u0161ite polumjer CirclePointRadiusDirection=Kru\u017enica sa sredi\u0161tem, polumjerom i smjerom CirclePointRadiusDirection.Help=Odaberite sredi\u0161te, smjer i upi\u0161ite polumjer CircleSector3=Kru\u017eni isje\u010dak odre\u0111en sredi\u0161tem i dvjema to\u010dkama CircleSector3.Help=Odaberite sredi\u0161te i dvije to\u010dke CircumcircleArc3=Luk opisan trima to\u010dkama CircumcircleArc3.Help=Odaberite tri to\u010dke na luku CircumcircleSector3=Isje\u010dak luka opisanog trima to\u010dkama CircumcircleSector3.Help=Odaberite tri to\u010dke isje\u010dka ClassRule=Pravilo za razred Classes=Razredi ClearColumn=O\u010disti stupac ClearColumns=O\u010disti stupce ClearRow=O\u010disti redak ClearRows=O\u010disti retke ClearSelection=O\u010disti odabir ClearTrace=O\u010disti sve tragove Clipboard=Me\u0111uspremnik ClipboardMessage=Me\u0111uspremnik uspje\u0161no izvezen.\nSada pokrenite HTML ure\u0111iva\u010d i zalijepite u LMS (npr. Moodle) Close=Zatvori CloseAll=Zatvori sve CloseFile=Zatvaranje datoteke CmdList=Izbornik naredbi Coefficient=Koeficijent CollapseAll=Sa\u017emi sve ColumnHeader=Zaglavlje stupca ColumnOrder=Poredak stupca ColumnReset=Vrati po\u010detno stanje stupca Columns=Stupci Comma=Zarez CommandName=Naziv naredbe Compasses=\u0160estar Compasses.Help=Odaberite du\u017einu ili dvije to\u010dke za polumjer, a zatim sredi\u0161te ComplexNumber=Kompleksan broj ComplexNumber.Help=Klikom na grafi\u010dki prikaz odredite kompleksan broj ConciseCode=Sa\u017eet kod ConciseUsingCSE5=Sa\u017emi uporabom CSE5 Condition.ShowObject=Uvjet za prikaz objekta Conditions=Uvjeti ConfidenceInterval=Interval pouzdanosti ConfidenceLevel=Razina pouzdanosti Conic=Konika Conic5=Konika kroz pet to\u010daka Conic5.Help=Odaberite pet to\u010daka ConicMenu=Konike ConicSectionTools=Alati za konike Continuity=Neprekidnost Continuous=Neprekidan Copy=Kopiraj CopyToClipboard=Kopiraj u me\u0111uspremnik CopyToGraphics=Kopiraj u grafi\u010dki prikaz CopyToInputBar=Kopiraj u traku za unos CopyToSpreadsheet=Kopiraj u prora\u010dunsku tablicu CopyVisualStyle=Prenositelj oblikovanja CopyVisualStyle.Help=Odaberite objekt, a zatim kliknite na ostale Count=Broj CountCells=Pobroji vrijednosti CountCells.Help=Odaberite raspon \u0107elija Create=Izradi CreateCurveFit=Krivulja najbolje prilagodbe CreateCurveFit.Help=Odaberite \u0107elije za to\u010dke pa kliknite gumb alata CreateList=Izradi listu CreateList.Help=Odaberite \u0107elije pa kliknite na gumb alata CreateListGraphicsView=Izradi listu CreateListGraphicsView.Help=Povucite pravokutnik oko objekata CreateListOfPoints=Izradi listu to\u010daka CreateListOfPoints.Help=Odaberite \u0107elije pa kliknite na gumb alata CreateMatrix=Izradi matricu CreateMatrix.Help=Odaberite \u0107elije pa kliknite na gumb alata CreateOperationTable=Izradi tablicu operacija CreateOperationTable.Help=Odaberite blok \u0107elija pa kliknite na gumb alata CreatePolyLine=Izradi izlomljenu crtu CreatePolyLine.Help=Odaberite \u0107elije za to\u010dke pa kliknite na gumb alata CreateTable=Izradi tablicu CreateTable.Help=Odaberite \u0107elije pa kliknite na gumb alata Cumulative=Kumulativno CursiveLetters=Nako\u0161ena slova CustomTools=Korisni\u010dki alati Cut=Izre\u017ei Data=Podaci DataColumn=Stupac podataka DataColumnName=Naziv stupca podataka DataTitle=Naslov podataka DecimalPlaces=Decimalna mjesta Default.Restore=Vrati izvorno Default.Set=Postavi kao zadano Degree=stupnjevi DegreesOfFreedom.short=ss DegreesOfFreedom1.short=ss1 DegreesOfFreedom2.short=ss2 Delete=Izbri\u0161i objekt Delete.Help=Odaberite objekt DeleteObjects=Brisanje objekata DeleteTool=Brisanje alata Delimiter=Znak razdvajanja Derivative=Derivacija Derivative.Help=Ra\u010duna prvu derivaciju Descending=Padaju\u0107i DifferenceofMeansT=Razlika srednjih vrijednosti Differences=Razlike DilateFromPoint=Rastezanje objekta iz to\u010dke za faktor DilateFromPoint.Help=Odaberite objekt, zatim sredi\u0161te i faktor rastezanja Discrete=Diskretan Distance=Udaljenost ili duljina Distance.Help=Odaberite dvije to\u010dke, du\u017einu, mnogokut ili kru\u017enicu Distribution=Razdioba Distribution.Binomial=Binomna Distribution.Cauchy=Cauchyjeva Distribution.ChiSquare=Hi kvadrat Distribution.Exponential=Eksponencijalna Distribution.F=F razdioba Distribution.Gamma=Gama Distribution.Hypergeometric=Hipergeometrijska Distribution.Logistic=Logisti\u010dka Distribution.Lognormal=Log-normalna Distribution.Normal=Normalna Distribution.Pascal=Pascalova Distribution.Poisson=Poissonova Distribution.Scale=skala Distribution.Shape=oblik Distribution.StudentT=studentova Distribution.Weibull=Weibullova DoYouWantToSaveYourChanges=\u017delite li spremiti promjene? DontDeleteTool=Ne bri\u0161i alat DontOverwrite=Nemoj zamijeniti DontSave=Nemoj spremiti DotPlot=To\u010dkasti dijagram DrawingPadToClipboard=Grafi\u010dki prikaz u me\u0111uspremnik DynamicColors=Dinami\u010dne boje Edit=Ure\u0111ivanje Ellipse3=Elipsa Ellipse3.Help=Odaberite dva \u017eari\u0161ta i to\u010dku na elipsi EnableLabelDrags=Omogu\u0107i povla\u010denje oznaka EnableRightClick=Omogu\u0107i desni klik, zumiranje i tipkovni\u010dke kratice English=Engleski EnterAppletAddress=Unesite internet adresu GeoGebrinog apleta EnterWebAddress=Unesite internet adresu EqualVariance=Jednaka varijanca Equation=Jednad\u017eba EstimatedValue=O\u010dekivana vrijednost Evaluate=Izra\u010dun Evaluate.Help=Daje to\u010dnu vrijednost Exit=Izlaz Expand=Pro\u0161irivanje Expand.Help=Osloba\u0111a od zagrada ExpandAll=Pro\u0161iri sve Exponential=Eksponencijalna Export=Izvoz ExportAllWorksheets=Izvezi sve otvorene uratke Factor=Faktorizacija Factor.Help=Ra\u010duna faktore FastHelp=Brza pomo\u0107 File=Datoteka FileBrowser=Preglednik datoteka FileSystem=Datote\u010dni sustav Files=Datoteke FillType=Vrsta ispune Filling=Ispuna Filling.Hatch=pruge Filling.Image=slika Filling.Standard=puna FitCurve=Krivulja najbolje prilagodbe FitCurve.Help=Odaberite to\u010dke provokutnikom odabira ili odaberite listu to\u010daka FitLine=Pravac regresije FitLine.Help=Odaberite to\u010dke pravokutnikom odabira ili odaberite listu to\u010daka Fix=Fiksiranje uklju\u010deno / isklju\u010deno Fix.Help=Odaberite objekt za fiksiranje / osloba\u0111anje FixedToGrid=\u010dvrsto za \u010dvorove FontSize=Veli\u010dina fonta ForegroundColor=Boja prednje strane Formulas=Formule FrakturLetters=Fraktura slova Frequency=Frekvencija FrequencyPolygon=Poligon frekvencije FrequencyTable=Tablica frekvencije FrequencyType=Tip frekvencije FunctionInspector=Ispitiva\u010d funkcije FunctionInspector.Help=Odaberite funkciju Functionality=Funkcionalnost GUIFontSize=Veli\u010dina slova trake izbornika General=Osnovno GeneralTools=Op\u0107i alati GenerateCode=Generiraj kod GeogebraToAsymptoteExport=Izvoz GeoGebre u Asymptote Geometry=Geometrija German=Njema\u010dki Graph=Graf GraphicsQuality=Grafika Green=Zelena Grid=Koordinatna mre\u017ea Gridlines=Crte mre\u017ee GroupObjects=Grupa objekata HTML5Only=Izvoz u HTLM5 (isklju\u010divo) HTML5WithJava=Izvoz u HTLM5 (s Java podr\u0161kom) Help=Pomo\u0107 Hidden.Dashed=Iscrtkano Hidden.Invisible=Nevidljivo Hidden.Unchanged=Nepromijenjen HiddenLineStyle=Stil skrivenih crta HighQuality=visoka kvaliteta HomeDirectory=Polazni direktorij HorizontalScrollbars=Horizontalna klizna traka Hue=Nijansa Hyperbola3=Hiperbola Hyperbola3.Help=Odaberite dva \u017eari\u0161ta i to\u010dku na hiperboli Hypergeometric.population=populacija Hypergeometric.sample=uzorak Icon=Ikona Image=Umetanje slike Image.Help=Klikom na grafi\u010dki prikaz ili na to\u010dku pozicionirajte sliku Images=Slike ImportDataFile=Uvoz podataka IncludeHTML5=Uklju\u010di HTML5 InputField=Traka za unos InputField.Help=Odaberite objekt da bi kopirali njegov naziv u traku za unos InputHelp=Pomo\u0107 za unos InputObjects=Ulazni objekti InsertAbove=Umetni iznad InsertBelow=Umetni ispod InsertLeft=Umetni lijevo InsertRight=Umetni desno Integral.Help=Ra\u010duna neodre\u0111eni integral Intercept=Odsje\u010dak InternalCAS=Interni CAS Intersect=Sjeci\u0161te dvaju objekata Intersect.Help=Odaberite dva objekta ili kliknite na samo sjeci\u0161te IntersectionCurve=Sjeci\u0161te dviju ploha IntersectionCurve.Help=Kreira krivulju kao sjeci\u0161te dviju ploha IntervalType=Vrsta intervala InvertSelection=Sve osim odabranog Isometric=Izometri\u010dna JavaOnly=Izvoz u Javu (isklju\u010divo) JavaWithHTML5=Izvoz u Javu (s HTML5 podr\u0161kom) Join=Pravac kroz dvije to\u010dke Join.Help=Odaberite dvije to\u010dke KeepDotColors=\u010cuva boje to\u010daka KeepInput=Zadr\u017ei unos KeepInput.Help=Zadr\u017eava i provjerava unos LabelColumn=Oznaka stupca LabelColumnName=Naziv oznake stupca Labeling=Ozna\u010davanje Labeling.automatic=automatsko Labeling.off=isklju\u010deno Labeling.on=svih novih objekata Labeling.pointsOnly=samo novih to\u010daka Labeling.propertiesDefault=koristi izvorno Labels=Poka\u017ei / sakrij oznake Landscape=Pejza\u017e Language=Jezik Layout=Raspored LeftProb=Jednostrani lijevi License=Licenca Lightness=Svjetlina LineBisector=Simetrala du\u017eine LineBisector.Help=Odaberite dvije to\u010dke ili jednu du\u017einu LineGraph=Graf pravca LineMenu=Pravac Linear=Linearna LinkedFiles=Povezane datoteke List=Lista ListOfPoints=Lista to\u010daka Load=Otvori Location=Polo\u017eaj Locus=Lokus Locus.Help=Odaberite to\u010dku lokusa, zatim to\u010dku na objektu ili kliza\u010d Log=Logaritamska Logistic=Logisti\u010dka LookAndFeel=Izgled i svojstva LowQuality=niska kvaliteta LowerLimit=Donja granica ManagePerspectives=Upravljanje izgledima MarginOfError=Margina gre\u0161ke MarginOfError.short=MG MathematicalFunctions=Matemati\u010dke funkcije Matrices=Matrice Matrix=Matrica MaxCells=Najve\u0107a vrijednost MaxCells.Help=Odaberite skup \u0107elija Mean=A. sredina MeanCells=Srednja vrijednost MeanCells.Help=Odaberite skup \u0107elija MeanDifference=Srednja razlika MeanSquare.short=KSV MeanX=SrednjiX MeanY=SrednjiY MeasurementTools=Alati za mjerenje Median=Medijan Midpoint=Polovi\u0161te ili sredi\u0161te Midpoint.Help=Odaberite dvije to\u010dke, du\u017einu, kru\u017enicu ili koniku MinCells=Najmanja vrijednost MinCells.Help=Odaberite skup \u0107elija MirrorAtCircle=Inverzija objekta na kru\u017enici MirrorAtCircle.Help=Odaberite to\u010dku pa kru\u017enicu MirrorAtLine=Zrcaljenje objekta preko pravca MirrorAtLine.Help=Odaberite objekt pa os zrcaljenja MirrorAtPoint=Zrcaljenje objekta preko to\u010dke MirrorAtPoint.Help=Odaberite objekt pa sredi\u0161te zrcaljenja Mode=Na\u010din Motif=Motiv Move=Pomicanje Move.Help=Povla\u010dite ili odaberite objekte (Esc) MoveRotate=Rotacija oko to\u010dke MoveRotate.Help=Odaberite sredi\u0161te rotacije i pomi\u010dite objekt MovementTools=Alati za pomicanje MultiVarStats=Multivarijabilna analiza MultiVarStats.Help=Analiza dva ili vi\u0161e skupova podataka u odabranim stupcima MultiVariableStatistics=Multivarijabilna statistika Name=Naziv NameAndDraw=Naziv i crte\u017e NameAndDraw.Help=Imenuje i crta trenutni stupac NameIcon=Naziv i ikona New=Nova NewWindow=Novi prozor Next=Sljede\u0107i None=Nijedan NormalCurve=Normalna krivulja NormalQuantilePlot=Normalni kvantil grafikon Normalized=Normirano NullHypothesis=Nulta hipoteza NullHypothesis.short=Nulta Numeric=Aproksimacija Numeric.Help=Broj\u010dana aproksimacija Objects=Objekti OneVarStats=Jednovarijabilna analiza OneVarStats.Help=Analizira broj\u010dane vrijednosti odabranih \u0107elija OneVariable=Jedna varijabla OneVariableInference=Jednovarijabilna inferencija OneVariableStatistics=Jednovarijabilna statistika OnlyOpaqueFills=Samo neprozirne ispune Opacity=Neprozirnost OpenFileFolder=Otvori mapu OpenFromWebpage=Otvori s web stranice OpenWebpage=Otvori web stranicu Operation=Operacija OperationTable=Tablica operacija Options=Postavke Orthogonal=Okomica Orthogonal.Help=Odaberite to\u010dku i okomit pravac Other=Ostalo OutputObjects=Izlazni objekti Overlay=Prekrivanje OverlayFrequencyPolygon=Prekrivanje poligona frekvencija OverlayNormalCurve=Prekrivanje normalne krivulje Overwrite=Zamijeni PairedT=Sparen T Parabola.Help=Odaberite to\u010dku i ravnalicu Parallel=Usporednica Parallel.Help=Odaberite to\u010dku i usporedan pravac Paste=Zalijepi PasteDataFromClipboard=Unos podataka iz me\u0111uspremnika PasteSpecial=Posebno ljepljenje Pen=Olovka Pen.Help=Crtanje u grafi\u010dkom prikazu. Odaberite drugi alat za zavr\u0161etak Perspective.AlgebraAndGraphics=Algebarski i grafi\u010dki Perspective.BasicGeometry=Osnovna geometrija Perspective.CASAndGraphics=CAS i grafi\u010dki Perspective.Geometry=Geometrija Perspective.Primary=Po\u010detni Perspective.TableAndGraphics=Tabli\u010dni i grafi\u010dki Perspective.Whiteboard=Interaktivna plo\u010da Perspectives=Prikazi Point=Nova to\u010dka Point.Help=Kliknite na grafi\u010dki prikaz ili na pravac, funkciju ili krivulju PointCapturing=Hvatanje to\u010dke na mre\u017eu PointInside=To\u010dka u podru\u010dju PointMenu=To\u010dka PointOnObject=To\u010dka na objektu PointOnObject.Help=Kliknite na unutra\u0161njost objekta ili na njegov rub PointStyle=Oblik to\u010dke PointTools=Alati za to\u010dku Polar=Polarna PolarDiameter=Polara ili konjugirani promjer PolarDiameter.Help=Odaberite to\u010dku ili pravac, a zatim kru\u017enicu ili koniku PolyLine=Razlomljena crta PolyLine.Help=Odaberite sve to\u010dke i ponovo kliknite na po\u010detnu Polygon=Mnogokut Polygon.Help=Odaberite sve vrhove i ponovo po\u010detnu to\u010dku PolygonTools=Alati za mnogokut Polynomial=Polinomna Portrait=Portret Power=Potencijska Preview=Pretpregled Print=Ispis PrintPreview=Pretpregled ispisa Probability=Vjerojatnost ProbabilityCalculator=Kalkulator vjerojatnosti ProbabilityCalculator.Help=Dijalo\u0161ki okvir za izra\u010dun vjerojatnosti Properties.Basic=Osnovno Properties.Position=Polo\u017eaj Properties.Style=Stil Radiant=radijani Ray=Zraka kroz dvije to\u010dke Ray.Help=Odaberite po\u010detnu to\u010dku i to\u010dku na zraki Recent=Nedavne RecomputeAllViews=Prera\u010dunaj sve objekte RecordToSpreadsheet=Zapis u tablicu RecordToSpreadsheet.Help=Odaberite objekt za pra\u0107enje, a zatim izvodite promjene RecoveryCancel=Prekini RecoveryCancelQuestion=Jeste li sigurni da \u017eelite prekinuti obnavljanje? Izgubit \u0107ete nespremljene datoteke. RecoveryOpen=Otvori RecoverySave=Spremi RecoveryText=Sljede\u0107e Geogebrine datoteke mogu se obnoviti. RecoveryTitle=Neuspio oporavak Red=Crvena Redo=Ponovi Refresh=Osvje\u017ei RegressionAnalysis=Regresijska analiza RegressionInference=Regresijska inferencija RegressionModel=Prilagodba RegularPolygon=Pravilni mnogokut RegularPolygon.Help=Odaberite dvije to\u010dke i unesite broj vrhova Relation=Veza izme\u0111u dva objekta Relation.Help=Odaberite dva objekta Relative=Relativno RemoveLineBreaks=Ukloni prekide redaka RemoveTrace=Ukloni objekt s liste za tragove Rename=Preimenovanje ReplaceAll=Zamijeni sve \u0107elije RequireEquals=Zahtijeva se znak "=" prije naredbe ResidualPlot=Rezidualni grafikon Result=Rezultat ReturnAngleInverseTrig=Uklju\u010di kutnu mjeru arkus funkcijama RightAngleStyle=Oznaka pravog kuta RightProb=Jednostrani desni RigidPolygon=Kruti mnogokut RigidPolygon.Help=Odaberite sve vrhove i ponovo kliknite na prvi RootsAndFractions=Korijeni i razlomci RotateByAngle=Rotacija objekta oko to\u010dke za kut RotateByAngle.Help=Odaberite objekt pa sredi\u0161te i upi\u0161ite kut rotacije Rounding=Zaokru\u017eivanje RowHeader=Zaglavlje retka RowLimit=Ograni\u010denje RowOrder=Poredak retka Sample1=Uzorak 1 Sample2=Uzorak 2 Saturation=Zasi\u0107enje Save=Spremi SaveAs=Spremi kao SaveCurrentFileQuestion=\u017delite li spremiti trenutnu datoteku? SaveCurrentPerspective=Spremi trenutni izgled SavePrintUndo=Omogu\u0107i Spremi, Ispis i Poni\u0161ti SaveToXML=Spremi u XML formatu Scatterplot=Raspr\u0161eni grafikon Segment=Du\u017eina izme\u0111u dviju to\u010daka Segment.Help=Odaberite dvije to\u010dke SegmentFixed=Du\u017eina zadane duljine iz to\u010dke SegmentFixed.Help=Odaberite to\u010dku i unesite duljinu du\u017eine Select=Odabir objekta Select.Help=Kliknite na objekt SelectACurve=Odabir krivulje SelectAll=Odaberi sve SelectAnObjectToTrace=Odaberite objekt za ostavljanje traga SelectAncestors=Odaberi pretke SelectCurrentLayer=Odaberi trenutnu razinu SelectDescendants=Odaberi potomke Semicircle=Polukru\u017enica odre\u0111ena dvjema to\u010dkama Semicircle.Help=Odaberite dvije krajnje to\u010dke Semicolon=To\u010dka-zarez Separator=Razdjelnik SetClasssesManually=Postavi ru\u010dno SetToCurrentLocation=Postavi na trenutni polo\u017eaj Settings=Postavke Settings.ResetDefault=Vrati zadane postavke Settings.Save=Spremi postavke Share=Dijeli Show=Poka\u017ei ShowAtTop=Poka\u017ei na vrhu ShowAxesGrid=Poka\u017ei osi i mre\u017eu ShowCheckBox=Potvrdni okvir za prikaz i skrivanje objekata ShowCheckBox.Help=Klikom na grafi\u010dki prikaz odredite mu poziciju ShowColumnHeader=Poka\u017ei zaglavlje stupca ShowCornerCoordinates=Poka\u017ei koordinate ugla ShowData=Poka\u017ei podatke ShowFileBrowser=Poka\u017ei preglednik datoteka ShowGridlines=Poka\u017ei mre\u017eu ShowHide=Poka\u017ei / sakrij objekte ShowHideLabel=Poka\u017ei / sakrij oznaku ShowHideLabel.Help=Odaberite objekt ShowHideLabels=Poka\u017ei / sakrij oznake ShowHideObject=Poka\u017ei / sakrij objekt ShowHideObject.Help=Odaberite objekte koje \u017eelite sakriti, a potom prije\u0111ite na drugi alat ShowHorizontalScrollbars=Poka\u017ei horizontalnu kliznu traku ShowInToolBar=Poka\u017ei u alatnoj traci ShowInputField=Poka\u017ei traku za unos ShowMenuBar=Poka\u017ei traku izbornika ShowMouseCoordinates=Poka\u017ei koordinate pokaziva\u010da ShowPlot2=Poka\u017ei drugi grafikon ShowResetIcon=Poka\u017ei ikonu za resetiranje apleta ShowRowHeader=Poka\u017ei zaglavlje retka ShowStatistics=Poka\u017ei statistiku ShowToolBar=Poka\u017ei alatnu traku ShowToolBarHelp=Poka\u017ei pomo\u0107 u alatnoj traci ShowVerticalScrollbars=Poka\u017ei vertikalnu kliznu traku Sin=Sinusna SingleFile=Pojedina\u010dna datoteka SingleFileTabs=Pojedina\u010dna datoteka (kartice) Slider=Kliza\u010d Slider.Help=Klikom na grafi\u010dki prikaz odredite mu polo\u017eaj Slope=Nagib Slope.Help=Odaberite pravac SnapToGrid=za \u010dvorove SnapToObjects=Hvatanje za objekte SnapToPoints=Hvatanje za to\u010dke Solution=Rje\u0161enje Solution.Help=Nalazi rje\u0161enje jedne ili vi\u0161e jednad\u017ebi Solve=Rje\u0161enje Solve.Help=Rje\u0161ava jednu ili vi\u0161e jednad\u017ebi Sort=Sortiranje \u0107elija Sort.Help=Odaberite \u0107elije za sortiranje SortBy=Sortiranje po Space=Razmak SpaceBetweenThousands=Razmak izme\u0111u tisu\u0107ica Spacing=Prore\u0111ivanje SpecialLineTools=Posebni alati za pravac SpecialObjectTools=Posebni alati za objekt Sphere2=Sfera odre\u0111ena sredi\u0161tem i to\u010dkom Sphere2.Help=Odaberite sredi\u0161te i to\u010dku na sferi SpherePointRadius=Sfera odre\u0111ena sredi\u0161tem i polumjerom SpherePointRadius.Help=Odaberite sredi\u0161te i unesite polumjer Split=Podjela stupaca Split.Help=Odaberite stupce za podjelu SpreadsheetOptions=Postavke tablice Stack=Slaganje \u0107elija stupaca Stack.Help=Odaberite stupce za slaganje StackedBoxPlots=Slo\u017eeni pravokutni dijagrami StandardError=Standardna pogre\u0161ka StandardError.short=SP Start=Po\u010detak StartRow=Po\u010detni redak Statistics=Statistika Statistics2=Statistika2 StemPlot=Stablo-list dijagram Step=Korak Substitute=Supstitucija Substitute.Help=Zamjenjuje dio izraza SubstituteDialog=Dijalo\u0161ki okvir supstitucije SumCells=Zbroji vrijednosti SumCells.Help=Odaberite skup \u0107elija SumSquaredErrors.short=ZKP SumSquares.short=ZB SumsAndIntegrals=Zbrojevi i integrali Symbol.And=I Symbol.Angle=Kut Symbol.AngleMeasure=Kutna mjera Symbol.BooleanEqual=Logi\u010dki jednak Symbol.Cube=Kub Symbol.Degree=Stupanj Symbol.GreaterThanEqualTo=Ve\u0107i ili jednak od Symbol.Infinity=Beskona\u010dno Symbol.LessThanEqualTo=Manje ili jednako od Symbol.NBSP=Neprelamaju\u0107i razmak Symbol.Negation=Negacija Symbol.NotEqual=Nejednako Symbol.Or=Ili Symbol.Parallel=Usporedno Symbol.Perpendicular=Okomito Symbol.Square=Kvadrat Symbol.StrictSubset=Pravi podskup Symbol.Subset=Podskup Symbol.VectorProduct=Vektorski umno\u017eak Symbols=Simboli TEstimateDifferenceOfMeans=T procjena, razlika srednjih vrijednosti TEstimatePairedDifferences=T procjena, sparene razlike TMeanInterval=T procjena srednje vrijednosti TMeanTest=T test srednje vrijednosti TTestDifferenceOfMeans=T test, razlika srednjih vrijednosti TTestPairedDifferences=T test, sparenih razlika Tab=Kartica Table=Tablica Tangent=Tangente Tangent.Help=Odaberite to\u010dku ili pravac pa kru\u017enicu, krivulju ili funkciju Text=Umetanje teksta Text.Help=Kliknite na grafi\u010dki prikaz ili na to\u010dku koja odre\u0111uje polo\u017eaj teksta TextFieldAction=Umetanje tekstualnog polja TextFieldAction.Help=Kliknite na grafi\u010dki prikaz za umetanje tekstualnog polja ThenBy=Potom po Tool=Alat Tool.CreateNew=Izrada novog alata Tool.CreationSuccess=Novi alat je uspje\u0161no izra\u0111en! Tool.DeleteQuestion=\u017delite li zaista obrisati odabrane alate? Tool.Manage=Upravljanje alatima Tool.SelectObjects=Odaberite objekte u konstrukciji ili s liste ToolHelp=Pomo\u0107 za alat ToolName=Naziv alata Toolbar=Alatna traka Toolbar.Customize=Prilagodba alatne trake Toolbar.ResetDefault=Vrati izvornu alatnu traku Tools=Alati Tooltip=Info-obla\u010di\u0107 Total=Potpun Trace=Uklju\u010di / isklju\u010di trag Trace.Help=Odaberite objekt za uklj. / isklj. traga TraceCopy=Kopiraj trag TraceToList=Bilje\u017ei u listu TraceToSpreadsheet=Bilje\u017ei u tablicu TraceToSpreadsheet.Help=Dijalog okvir za bilje\u017eenje objekata u prora\u010dunsku tablicu TransformationTools=Transformacijski alati TranslateByVector=Translacija objekta za vektor TranslateByVector.Help=Odaberite objekt pa vektor translacije TranslateView=Pomicanje grafi\u010dkog prikaza TranslateView.Help=Povla\u010dite grafi\u010dki prikaz ili koordinatnu os (Shift + pomicanje) Transparent=Prozirnost Transpose=Transponirana Tutorials=Upute TwoVarStats=Dvovarijabilna regresijska analiza TwoVarStats.Help=Analizira sparene broj\u010dane vrijednosti odabranih \u0107elija TwoVariable=Dvije varijable TwoVariableInference=Dvovarijabilna inferencija Type.CAS=CAS posebne naredbe Type.Chart=Dijagram Type.Conic=Konika Type.DiscreteMath=Diskretna matematika Type.FunctionsAndCalculus=Funkcije i Analiza Type.Geometry=Geometrija Type.List=Lista Type.Logic=Logi\u010dke naredbe Type.OptimizationCommands=Naredbe optimiranja Type.Probability=Vjerojatnost Type.Scripting=Skriptiranje Type.Spreadsheet=Prora\u010dunska tablica Type.Statistics=Statistika Type.Text=Tekst Type.Transformation=Transformacija Type.VectorAndMatrix=Vektor i matrica Undo=Poni\u0161ti UngroupObjectes=Razgrupiranje objekata Untitled=Bez naslova UploadGeoGebraTube=Postavljanje na GeoGebraTube UpperLimit=Gornja granica UseBrowserForJS=Koristi preglednik za JavaSript UseButtonsAndCheckboxes=Koristi gumbe i potvrdne okvire UseHeaderRow=Koristi zaglavlje stupca UserInterface=Korisni\u010dko su\u010delje Value=Vrijednost Values=Vrijednosti Vector=Vektor izme\u0111u dviju to\u010daka Vector.Help=Odaberite po\u010detnu i zavr\u0161nu to\u010dku VectorFromPoint=Vektor iz to\u010dke VectorFromPoint.Help=Odaberite po\u010detnu to\u010dku i vektor VectorMenu=Vektor VectorPolygon=Vektorski mnogokut VectorPolygon.Help=Odaberite sve vrhove pa kliknite ponovo na prvi vrh VerticalScrollbars=Vertikalna traka za pomicanje View=Pogled Views=Pogledi VisualStyle=Stil izgleda VisualStyle.Help=Kliknite na objekte ili povla\u010dite pravokutnik za promjenu njihovih svojstava Width=\u0160irina Window=Prozor Windows=Prozori WithOpacityPen=S neprozirnom olovkom WithinGroups=Unutar grupa ZMeanInterval=Z procjena srednjih vrijednosti ZMeanTest=Z test srednjih vrijednosti ZoomIn=Pove\u0107anje ZoomIn.Help=Kliknite na grafi\u010dki prikaz ili okre\u0107ite kota\u010di\u0107 mi\u0161a ZoomOut=Smanjenje ZoomOut.Help=Kliknite na grafi\u010dki prikaz ili okre\u0107ite kota\u010di\u0107 mi\u0161a off=isklju\u010deno on=uklju\u010denogeogebra-4.0.34.0+dfsg1/geogebra/properties/command_ta.properties0000644000175000017500000002374011673055155025126 0ustar giovannigiovanniAffineRatio=\u0b89\u0bb1\u0bb5\u0bc1\u0bb5\u0bbf\u0b95\u0bbf\u0ba4\u0bae\u0bcd Angle=\u0b95\u0bcb\u0ba3\u0bae\u0bcd AngularBisector=\u0b95\u0bcb\u0ba3\u0b87\u0bb0\u0bc1\u0b95\u0bc2\u0bb1\u0bbe\u0b95\u0bcd\u0b95\u0bbf Append=\u0b87\u0ba3\u0bc8\u0b95\u0bcd\u0b95 Arc=\u0bb5\u0bbf\u0bb2\u0bcd Area=\u0baa\u0bb0\u0baa\u0bcd\u0baa\u0bb3\u0bb5\u0bc1 Asymptote=\u0b85\u0ba3\u0bc1\u0b95\u0bc1\u0b95\u0bcb\u0b9f\u0bc1 Axes=\u0b85\u0b9a\u0bcd\u0b9a\u0bc1\u0b95\u0bcd\u0b95\u0bb3\u0bcd AxisStepX=\u0b85\u0b9a\u0bcd\u0b9a\u0bc1\u0baa\u0bcd\u0baa\u0b9f\u0bbfX AxisStepY=\u0b85\u0b9a\u0bcd\u0b9a\u0bc1\u0baa\u0bcd\u0baa\u0b9f\u0bbfY BarChart=\u0b9a\u0bb2\u0bbe\u0b95\u0bc8\u0bb5\u0bb0\u0bc8\u0baa\u0bc1 Binomial=\u0b88\u0bb0\u0bc1\u0bb1\u0bc1\u0baa\u0bcd\u0baa\u0bc1\u0b95\u0bcd\u0b95\u0bc1\u0ba3\u0b95\u0bae\u0bcd CellRange=\u0b95\u0bb2\u0bb5\u0bc0\u0b9a\u0bcd\u0b9a\u0bc1 Center=\u0bae\u0bc8\u0baf\u0bae\u0bcd Centroid=\u0bae\u0bc8\u0baf\u0baa\u0bcd\u0baa\u0bcb\u0bb2\u0bbf Circle=\u0bb5\u0b9f\u0bcd\u0b9f\u0bae\u0bcd CircleArc=\u0bb5\u0b9f\u0bcd\u0b9f\u0bb5\u0bbf\u0bb2\u0bcd CircleSector=\u0bb5\u0b9f\u0bcd\u0b9f\u0b86\u0bb0\u0bc8\u0b9a\u0bcd\u0b9a\u0bbf\u0bb1\u0bc8 CircumcircleArc=\u0b9a\u0bc1\u0bb1\u0bcd\u0bb1\u0bc1\u0bb5\u0b9f\u0bcd\u0b9f\u0bb5\u0bbf\u0bb2\u0bcd CircumcircleSector=\u0b9a\u0bc1\u0bb1\u0bcd\u0bb1\u0bc1\u0bb5\u0b9f\u0bcd\u0b9f\u0b86\u0bb0\u0bc8\u0b9a\u0bcd\u0b9a\u0bbf\u0bb1\u0bc8 Circumference=\u0baa\u0bb0\u0bbf\u0ba4\u0bbf Column=\u0ba8\u0bbf\u0bb0\u0bb2\u0bcd ColumnName=\u0ba8\u0bbf\u0bb0\u0bb2\u0bcd\u0baa\u0bcd\u0baa\u0bc6\u0baf\u0bb0\u0bcd Command=\u0b95\u0b9f\u0bcd\u0b9f\u0bb3\u0bc8\u0baf\u0bbf\u0b9f\u0bc1\u0b95 Conic=\u0b95\u0bc2\u0bae\u0bcd\u0baa\u0bc1\u0bb5\u0bb3\u0bc8\u0bb5\u0bc1 ConstructionStep=\u0b85\u0bae\u0bc8\u0baa\u0bcd\u0baa\u0bc1\u0baa\u0bcd\u0baa\u0b9f\u0bbf Corner=\u0bae\u0bc2\u0bb2\u0bc8 Covariance=\u0b87\u0ba3\u0bc8\u0bae\u0bbe\u0bb1\u0bb2\u0bcd CrossRatio=\u0b95\u0bc1\u0bb1\u0bc1\u0b95\u0bcd\u0b95\u0bc1\u0bb5\u0bbf\u0b95\u0bbf\u0ba4\u0bae\u0bcd Curvature=\u0bb5\u0bb3\u0bc8\u0bb5\u0bc1 CurvatureVector=\u0bb5\u0bb3\u0bc8\u0bb5\u0bc1\u0b95\u0bcd\u0b95\u0bbe\u0bb5\u0bbf CurveCartesian=\u0bb5\u0bb3\u0bc8\u0bb5\u0bc1 Defined=\u0bb5\u0bb0\u0bc8\u0baf\u0bb1\u0bc1\u0b95\u0bcd\u0b95\u0baa\u0bcd\u0baa\u0b9f\u0bcd\u0b9f\u0bc1\u0bb3\u0bcd\u0bb3\u0ba4\u0bc1 Delete=\u0ba8\u0bc0\u0b95\u0bcd\u0b95\u0bc1\u0b95 Derivative=\u0baa\u0bc6\u0bb1\u0bc1\u0ba4\u0bbf Determinant=\u0ba4\u0bc1\u0ba3\u0bbf\u0b95\u0bcb\u0bb5\u0bc8 Diameter=\u0b89\u0b9f\u0ba9\u0bcd\u0baa\u0bc1\u0ba3\u0bb0\u0bbf\u0bb5\u0bbf\u0b9f\u0bcd\u0b9f\u0bae\u0bcd Dilate=\u0b85\u0b95\u0bb2\u0bbf\u0baa\u0bcd\u0baa\u0bc1 Direction=\u0ba4\u0bbf\u0b9a\u0bc8 Directrix=\u0b9a\u0bc6\u0bb2\u0bc1\u0ba4\u0bcd\u0ba4\u0bb2\u0bbf Distance=\u0ba4\u0bc2\u0bb0\u0bae\u0bcd Div=\u0baa\u0bbf\u0bb0\u0bbf Element=\u0bae\u0bc2\u0bb2\u0b95\u0bae\u0bcd Ellipse=\u0ba8\u0bc0\u0bb3\u0bcd\u0bb5\u0b9f\u0bcd\u0b9f\u0bae\u0bcd Excentricity=\u0b8f\u0b95\u0baa\u0bb0\u0bbf\u0bae\u0bbe\u0ba3\u0bae\u0bc8\u0baf\u0bb5\u0b95\u0bb1\u0bcd\u0b9a\u0bbf Expand=\u0bb5\u0bbf\u0bb0\u0bbf Extremum=\u0bae\u0bc1\u0ba9\u0bc8 Factor=\u0b95\u0bbe\u0bb0\u0ba3\u0bbf First=\u0bae\u0bc1\u0ba4\u0bb2\u0bcd FirstAxis=\u0baa\u0bc7\u0bb0\u0bbf\u0b85\u0b9a\u0bcd\u0b9a\u0bc1 FirstAxisLength=\u0b85\u0bb0\u0bc8\u0baa\u0bcd\u0baa\u0bc7\u0bb0\u0bbf\u0baf\u0b85\u0b9a\u0bcd\u0b9a\u0bc1\u0ba8\u0bc0\u0bb3\u0bae\u0bcd FitLineX=\u0baa\u0bca\u0bb0\u0bc1\u0ba4\u0bcd\u0ba4\u0bae\u0bbe\u0ba9\u0b95\u0bcb\u0b9f\u0bc1X FitLineY=\u0baa\u0bca\u0bb0\u0bc1\u0ba4\u0bcd\u0ba4\u0bae\u0bbe\u0ba9\u0b95\u0bcb\u0b9f\u0bc1 FitLog=\u0baa\u0bca\u0bb0\u0bc1\u0ba4\u0bcd\u0ba4\u0bae\u0bbe\u0ba9\u0bae\u0b9f\u0b95\u0bcd\u0b95\u0bc8 FitLogistic=\u0baa\u0bca\u0bb0\u0bc1\u0ba4\u0bcd\u0ba4\u0bae\u0bbe\u0ba9\u0b85\u0bb3\u0bb5\u0bc0\u0b9f\u0bc1 Focus=\u0b95\u0bc1\u0bb5\u0bbf\u0baf\u0bae\u0bcd FractionText=\u0baa\u0bbf\u0ba9\u0bcd\u0ba9\u0b89\u0bb0\u0bc8 Function=\u0b9a\u0bbe\u0bb0\u0bcd\u0baa\u0bc1 Histogram=\u0bb5\u0bb2\u0bc8\u0baf\u0bc1\u0bb0\u0bc1\u0bb5\u0bb0\u0bc8\u0baf\u0bae\u0bcd Hyperbola=\u0b85\u0ba4\u0bbf\u0baa\u0bb0\u0bb5\u0bb3\u0bc8\u0bb5\u0bc1 If=\u0b86\u0bb2\u0bcd Insert=\u0b89\u0bb3\u0bcd\u0bb3\u0bbf\u0b9f\u0bc1\u0b95 Integral=\u0ba4\u0bca\u0b95\u0bc8\u0baf\u0bc0\u0b9f\u0bc1 Intersect=\u0b87\u0b9f\u0bc8\u0bb5\u0bc6\u0b9f\u0bcd\u0b9f\u0bc1 Intersection=\u0b87\u0b9f\u0bc8\u0bb5\u0bc6\u0b9f\u0bcd\u0b9f\u0bc1 Invert=\u0ba8\u0bc7\u0bb0\u0bcd\u0bae\u0bbe\u0bb1\u0bcd\u0bb1\u0bc1 Iteration=\u0bae\u0bc0\u0bb3\u0b9a\u0bcd\u0b9a\u0bc6\u0baf\u0bcd\u0ba4\u0bb2\u0bcd IterationList=\u0bae\u0bc0\u0bb3\u0b9a\u0bcd\u0b9a\u0bc6\u0baf\u0bcd\u0ba4\u0baa\u0b9f\u0bcd\u0b9f\u0bbf\u0baf\u0bb2\u0bcd Join=\u0ba4\u0bca\u0b9f\u0bc1\u0baa\u0bcd\u0baa\u0bc1 KeepIf=\u0b87\u0bb5\u0bcd\u0bb5\u0bbe\u0bb1\u0bbe\u0baf\u0bbf\u0ba9\u0bcd\u0bb5\u0bc8\u0ba4\u0bcd\u0ba4\u0bbf\u0bb0\u0bc1\u0b95\u0bcd\u0b95 LaTeX=\u0b9a\u0bc2\u0ba4\u0bcd\u0ba4\u0bbf\u0bb0\u0b89\u0bb0\u0bc8 Last=\u0b95\u0b9f\u0bc8\u0b9a\u0bbf Length=\u0ba8\u0bc0\u0bb3\u0bae\u0bcd LetterToUnicode=\u0b92\u0bb0\u0bc1\u0b99\u0bcd\u0b95\u0bc1\u0b95\u0bc1\u0bb1\u0bbf\u0b95\u0bcd\u0b95\u0bbe\u0ba9\u0b8e\u0bb4\u0bc1\u0ba4\u0bcd\u0ba4\u0bc1\u0bb5\u0b9f\u0bbf\u0bb5\u0bae\u0bcd Line=\u0b95\u0bcb\u0b9f\u0bc1 LineBisector=\u0b9a\u0bc6\u0b99\u0bcd\u0b95\u0bc1\u0ba4\u0bcd\u0ba4\u0bc1\u0b87\u0bb0\u0bc1\u0b95\u0bc2\u0bb1\u0bbe\u0b95\u0bcd\u0b95\u0bbf Locus=\u0b92\u0bb4\u0bc1\u0b95\u0bcd\u0b95\u0bc1 LowerSum=\u0b95\u0bc0\u0bb4\u0bcd\u0b95\u0bcd\u0b95\u0bc2\u0b9f\u0bcd\u0b9f\u0bb2\u0bcd Max=\u0b89\u0baf\u0bb0\u0bcd\u0ba8\u0bcd\u0ba4 Mean=\u0b87\u0b9f\u0bc8 MeanX=\u0b87\u0b9f\u0bc8X MeanY=\u0b87\u0b9f\u0bc8Y Median=\u0b87\u0b9f\u0bc8\u0baf\u0bae\u0bcd Midpoint=\u0ba8\u0b9f\u0bc1\u0baa\u0bcd\u0baa\u0bc1\u0bb3\u0bcd\u0bb3\u0bbf Min=\u0b87\u0bb4\u0bbf\u0bb5\u0bc1 Mirror=\u0ba4\u0bc6\u0bb1\u0bbf\u0baa\u0bcd\u0baa\u0bc1 Mod=\u0bae\u0b9f\u0bcd\u0b9f\u0bc1 Mode=\u0b86\u0b95\u0bbe\u0bb0\u0bae\u0bcd Name=\u0baa\u0bc6\u0baf\u0bb0\u0bcd Normal=\u0b9a\u0bbe\u0ba4\u0bbe\u0bb0\u0ba3\u0bae\u0bcd Object=\u0baa\u0bca\u0bb0\u0bc1\u0bb3\u0bcd OrthogonalLine=\u0b9a\u0bc6\u0b99\u0bcd\u0b95\u0bc1\u0ba4\u0bcd\u0ba4\u0bc1\u0b95\u0bcd\u0b95\u0bc7\u0bbe\u0b9f\u0bc1 OrthogonalVector=\u0b9a\u0bc6\u0b99\u0bcd\u0b95\u0bc1\u0ba4\u0bcd\u0ba4\u0bc1\u0b95\u0bcd\u0b95\u0bbe\u0bb5\u0bbf OsculatingCircle=\u0b95\u0bca\u0b9e\u0bcd\u0b9a\u0bc1\u0bb5\u0b9f\u0bcd\u0b9f\u0bae\u0bcd PMCC=\u0b87\u0ba3\u0bc8\u0baa\u0bcd\u0baa\u0bc1\u0b95\u0bcd\u0b95\u0bc1\u0ba3\u0b95\u0bae\u0bcd Parabola=\u0baa\u0bb0\u0bb5\u0bb3\u0bc8\u0bb5\u0bc1 Parameter=\u0baa\u0bb0\u0bae\u0bbe\u0ba9\u0bae\u0bcd Perimeter=\u0b9a\u0bc1\u0bb1\u0bcd\u0bb1\u0bb3\u0bb5\u0bc1 Point=\u0baa\u0bc1\u0bb3\u0bcd\u0bb3\u0bbf Polar=\u0bae\u0bc1\u0ba9\u0bc8\u0bb5\u0bae\u0bcd Polygon=\u0baa\u0bb2\u0bcd\u0b95\u0bcb\u0ba3\u0bbf Polynomial=\u0baa\u0bb2\u0bcd\u0bb2\u0bc1\u0bb1\u0bc1\u0baa\u0bcd\u0baa\u0bbf Product=\u0baa\u0bc6\u0bb0\u0bc1\u0b95\u0bcd\u0b95\u0bae\u0bcd Radius=\u0b86\u0bb0\u0bc8 Random=\u0b8e\u0bb4\u0bc1\u0bae\u0bbe\u0bb1\u0bcd\u0bb1\u0bc1\u0b95\u0bcd\u0b95\u0bbf\u0b9f\u0bc8\u0baf\u0bbf\u0bb2\u0bcd RandomBinomial=\u0b8e\u0bb4\u0bc1\u0bae\u0bbe\u0bb1\u0bcd\u0bb1\u0bc1\u0b88\u0bb0\u0bc1\u0bb1\u0bc1\u0baa\u0bcd\u0baa\u0bc1 RandomPoisson=\u0b8e\u0bb4\u0bc1\u0bae\u0bbe\u0bb1\u0bcd\u0bb1\u0bc1\u0ba8\u0bbf\u0bb2\u0bc8 Ray=\u0b95\u0ba4\u0bbf\u0bb0\u0bcd Relation=\u0ba4\u0bca\u0b9f\u0bb0\u0bcd\u0baa\u0bc1 RemoveUndefined=\u0bb5\u0bb0\u0bc8\u0baf\u0bb1\u0bc1\u0b95\u0bcd\u0b95\u0baa\u0bcd\u0baa\u0b9f\u0bbe\u0ba4\u0ba4\u0bc8\u0ba8\u0bc0\u0b95\u0bcd\u0b95\u0bc1\u0b95 Reverse=\u0baa\u0bc1\u0bb1\u0bae\u0bbe\u0bb1\u0bcd\u0bb1\u0bc1 Root=\u0bae\u0bc2\u0bb2\u0bae\u0bcd Rotate=\u0b9a\u0bc1\u0bb4\u0bb2\u0bcd Row=\u0ba8\u0bbf\u0bb0\u0bc8 SecondAxis=\u0b9a\u0bc0\u0bb1\u0bbf\u0b85\u0b9a\u0bcd\u0b9a\u0bc1 SecondAxisLength=\u0b85\u0bb0\u0bc8\u0b9a\u0bcd\u0b9a\u0bc0\u0bb1\u0bbf\u0b85\u0b9a\u0bcd\u0b9a\u0bc1\u0ba8\u0bc0\u0bb3\u0bae\u0bcd Sector=\u0b86\u0bb0\u0bc8\u0b9a\u0bcd\u0b9a\u0bbf\u0bb1\u0bc8 Segment=\u0ba4\u0bc1\u0ba3\u0bcd\u0b9f\u0bae\u0bcd Semicircle=\u0b85\u0bb0\u0bc8\u0bb5\u0b9f\u0bcd\u0b9f\u0bae\u0bcd Sequence=\u0ba4\u0bca\u0b9f\u0bb0\u0bbf SigmaXX=\u0b9a\u0bbf\u0b95\u0bcd\u0bae\u0bbeXX SigmaXY=\u0b9a\u0bbf\u0b95\u0bcd\u0bae\u0bbeXY SigmaYY=\u0b9a\u0bbf\u0b95\u0bcd\u0bae\u0bbeYY Simplify=\u0b9a\u0bc1\u0bb0\u0bc1\u0b95\u0bcd\u0b95\u0bc1\u0b95 Slope=\u0b9a\u0bbe\u0baf\u0bcd\u0bb5\u0bc1 Sort=\u0bb5\u0bb0\u0bbf\u0b9a\u0bc8\u0baa\u0bcd\u0baa\u0b9f\u0bc1\u0ba4\u0bcd\u0ba4\u0bc1\u0b95 Sum=\u0b95\u0bc2\u0b9f\u0bcd\u0b9f\u0bc1\u0ba4\u0bcd\u0ba4\u0bca\u0b95\u0bc8 TableText=\u0b85\u0b9f\u0bcd\u0b9f\u0bb5\u0ba3\u0bc8\u0b89\u0bb0\u0bc8 Take=\u0b8e\u0b9f\u0bc1\u0b95\u0bcd\u0b95 TaylorSeries=\u0ba4\u0bc6\u0baf\u0bbf\u0bb2\u0bb0\u0bcd\u0ba4\u0bca\u0b9f\u0bb0\u0bcd Text=\u0b89\u0bb0\u0bc8 TextToUnicode=\u0b92\u0bb0\u0bc1\u0b99\u0bcd\u0b95\u0bc1\u0b95\u0bc1\u0bb1\u0bbf\u0b95\u0bcd\u0b95\u0bbe\u0ba9\u0b89\u0bb0\u0bc8\u0bb5\u0b9f\u0bbf\u0bb5\u0bae\u0bcd Translate=\u0baa\u0bc6\u0baf\u0bb0\u0bcd\u0bb5\u0bc1 Transpose=\u0ba8\u0bbf\u0bb2\u0bc8\u0bae\u0bbe\u0bb1\u0bcd\u0bb1\u0bc1 TrapezoidalSum=\u0b9a\u0bb0\u0bbf\u0bb5\u0b95\u0baa\u0bcd\u0baa\u0bcb\u0bb2\u0bbf\u0b95\u0bcd\u0b95\u0bc1\u0bb0\u0bbf\u0baf\u0b95\u0bc2\u0b9f\u0bcd\u0b9f\u0bc1\u0ba4\u0bcd\u0ba4\u0bca\u0b95\u0bc8 TurningPoint=\u0bb5\u0bbf\u0baa\u0ba4\u0bcd\u0ba4\u0bbf\u0baa\u0bcd\u0baa\u0bc1\u0bb3\u0bcd\u0bb3\u0bbf UnicodeToLetter=\u0b8e\u0bb4\u0bc1\u0ba4\u0bcd\u0ba4\u0bc1\u0bb5\u0b9f\u0bbf\u0bb5\u0ba4\u0bcd\u0ba4\u0bbf\u0bb1\u0bcd\u0b95\u0bbe\u0ba9\u0b92\u0bb0\u0bc1\u0b99\u0bcd\u0b95\u0bc1\u0b95\u0bc1\u0bb1\u0bbf UnicodeToText=\u0b89\u0bb0\u0bc8\u0bb5\u0b9f\u0bbf\u0bb5\u0ba4\u0bcd\u0ba4\u0bbf\u0bb1\u0bcd\u0b95\u0bbe\u0ba9\u0b92\u0bb0\u0bc1\u0b99\u0bcd\u0b95\u0bc1\u0b95\u0bc1\u0bb1\u0bbf Union=\u0b92\u0ba9\u0bcd\u0bb1\u0bbf\u0baa\u0bcd\u0baa\u0bc1 UnitOrthogonalVector=\u0b85\u0bb2\u0b95\u0bc1\u0b9a\u0bc6\u0b99\u0bcd\u0b95\u0bc1\u0ba4\u0bcd\u0ba4\u0bc1\u0b95\u0bcd\u0b95\u0bbe\u0bb5\u0bbf UnitVector=\u0b85\u0bb2\u0b95\u0bc1\u0b95\u0bcd\u0b95\u0bbe\u0bb5\u0bbf UpperSum=\u0bae\u0bc7\u0bb2\u0bcd\u0b95\u0bcd\u0b95\u0bc2\u0b9f\u0bcd\u0b9f\u0bc1\u0ba4\u0bcd\u0ba4\u0bca\u0b95\u0bc8 Variance=\u0bae\u0bbe\u0bb1\u0bb1\u0bcd\u0bb1\u0bbf\u0bb1\u0ba9\u0bcd Vector=\u0b95\u0bbe\u0bb5\u0bbf Vertex=\u0b89\u0b9a\u0bcd\u0b9a\u0bbfgeogebra-4.0.34.0+dfsg1/geogebra/properties/symbols_lt.properties0000644000175000017500000000000011673055155025173 0ustar giovannigiovannigeogebra-4.0.34.0+dfsg1/geogebra/properties/plain_sv.properties0000644000175000017500000004505511766730045024643 0ustar giovannigiovanniADecimalPlace=%0 Decimaler ADecimalPlaces=%0 Decimaler ADerivativeOfB=%0-derivatan av %1 ADilatedByFactorBfromC=%0 utvidgad med en faktor %1 frn %2 ADoesNotIntersectWithB=%0 skr inte %1 AGray=%0 gr AIntersectsWithB=%0 skr %1 AMirroredAtB=%0 speglad vid %1 ARotatedByAngleB=%0 roterad med vinkeln %1 ASignificantFigure=%0 gllande siffra ASignificantFigures=%0 gllande siffror AandBareEqual=%0 och %1 r lika AandBareLinearlyDependent=%0 och %1 r linjrt beroende AandBareLinearlyIndependent=%0 och %1 r linjrt oberoende AandBareNotEqual=%0 och %1 r inte lika AandBareParallel=%0 och %1 r parallella AandBarePerpendicular=%0 och %1 r vinkelrta AandBcannotBeCompared=%0 och %1 kan inte jmfras AbsoluteScreenLocation=Absolut position i fnstret AdoesNotLieOnB=%0 ligger inte p %1 AdoesNotLieOnThePerimeterOfB=%0 ligger inte p omkretsen av %1 AdoesNothaveTheSameAreaAsB=%0 har inte samme area som %1 AdoesNothaveTheSameLengthAsB=%0 har inte samma lngd som %1 AhasTheSameAreaAsB=%0 har samma area som %1 AhasTheSameLengthAsB=%0 har samma lngd som %1 AintersectsWithBOnce=%0 och %1 har en skrningspunkt AintersectsWithBTwice=%0 och %1 har tv skrningspunkter AisAnAsymptoteToB=%0 r en asymptot till %1 AisNotDefined=%0 r inte definierad AisaDegenerateBranchOfB=%0 r en degenererad gren av %1 AisaTangentToB=%0 r en tangent till %1 AlgebraWindow=Algebrafnster AliesOnB=%0 ligger p %1 AliesOnThePerimeterOfB=%0 ligger p omkretsen till %1 AllowOfflineUse=Inkludera jar-filerna fr att kunna kra off-line AllowStyleBar=Formateringsverktyg r tilltna AltGr=AltGr Altitude=Hjd Angle=Vinkel AngleBetweenAB=Vinkel mellan %0 och %1 AngleBetweenABC=Vinkel mellan %0-%1 och %1-%2 AngleBetweenABCofD=Vinkel mellan %0-%1 och %1-%2 av %3 AngleBisectorOfAB=Bisektrisen till %0, %1 AngleBisectorOfABC=Bisektrisen till %0, %1, %2 AngleOfA=Vinkel till %0 Angles=Vinklar AnimatedGIFExport=Animerad GIF Export Animating=Animering p AnimationSpeed=Animationshastighet AnimationStep=Steglngd Apply=Verkstll Arc=Bge AsymptoteToA=Asymptot till %0 Ath=%0:e Author=Skapad av Automatic=Visa automatiskt AuxiliaryObject=Hjlpobjekt AuxiliaryObjects=Hjlpobjekt AxisLabel=Namn p axlarna AxisOfA=Axel fr %0 AxisTicks=Mrke lngs axel AxisUnitLabel=Enhet Back=Tillbaka BackgroundColor=Bakgrundsfrg BackgroundImage=Bakgrundsbild Bold=Fet stil Boolean=Logiskt (booleskt) vrde Breakpoint=Brytpunkt CASInitializing=CAS Initialiseras CASTimedOut=CAS avbrts d berkningen tog fr lng tid Cancel=Avbryt Caption=Frklaring CartesianCoords=Kartesiska koordinater CasTimeout=CAS Tidsgrns (i sekunder) CellAisNotDefined=Cell %0 r inte definierad CenterOfA=Centrum i %0 CentroidOfA=Tyngdpunkt fr %0 CheckedNumerically=(kontrollerat numeriskt) ChooseColor=Vlj frg ChooseObject=Vlj ett objekt Circle=Cirkel CircleOfAxisAThroughB=Cirkel med radien %0 genom %1 CircleThroughABC=Cirkel genom %0, %1 och %2 CircleThroughAwithCenterB=Cirkel genom %0 med centrum i %1 CircleWithCenterARadiusBParallelToC=Cirkel med centrum i %0 och radie %1, parallell med %2 CircleWithCenterAThroughBAxisParallelToC=Cirkel med centrum i %0 genom %1, axlar parallella med %2 CircleWithCenterAThroughBParallelToC=Cirkel med centrum i %0 genom %1, parallell med %2 CircleWithCenterAandRadiusB=Cirkel med centrum i %0 och radie %1 CircleWithCenterAandRadiusBAxisParallelToC=Cirkel med centrum i %0 och radie %1, axlar parallella med %2 Clipboard.Blackboard=Urklipp: Blackboard Clipboard.Google=Urklipp: Google Gadget Clipboard.HTML=Urklipp: html Clipboard.Moodle=Urklipp: Moodle Clipboard.iframe=Urklipp: