pax_global_header 0000666 0000000 0000000 00000000064 14102210121 0014472 g ustar 00root root 0000000 0000000 52 comment=6706a746e52d8ec7cde2b74a13fac55513e4ee35
golang-github-antlr-antlr4-4.7.2+ds/ 0000775 0000000 0000000 00000000000 14102210121 0017155 5 ustar 00root root 0000000 0000000 golang-github-antlr-antlr4-4.7.2+ds/LICENSE.txt 0000664 0000000 0000000 00000005213 14102210121 0021001 0 ustar 00root root 0000000 0000000 [The "BSD 3-clause license"]
Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=====
MIT License for codepointat.js from https://git.io/codepointat
MIT License for fromcodepoint.js from https://git.io/vDW1m
Copyright Mathias Bynens
(Currently: Java, C#, Python2|3, JavaScript, Go, C++, Swift)
* [Java API](http://www.antlr.org/api/Java/index.html)
* [ANTLR v3](http://www.antlr3.org/)
* [v3 to v4 Migration, differences](https://github.com/antlr/antlr4/blob/master/doc/faq/general.md)
You might also find the following pages useful, particularly if you want to mess around with the various target languages.
* [How to build ANTLR itself](https://github.com/antlr/antlr4/blob/master/doc/building-antlr.md)
* [How we create and deploy an ANTLR release](https://github.com/antlr/antlr4/blob/master/doc/releasing-antlr.md)
## The Definitive ANTLR 4 Reference
Programmers run into parsing problems all the time. Whether it’s a data format like JSON, a network protocol like SMTP, a server configuration file for Apache, a PostScript/PDF file, or a simple spreadsheet macro language—ANTLR v4 and this book will demystify the process. ANTLR v4 has been rewritten from scratch to make it easier than ever to build parsers and the language applications built on top. This completely rewritten new edition of the bestselling Definitive ANTLR Reference shows you how to take advantage of these new features.
You can buy the book [The Definitive ANTLR 4 Reference](http://amzn.com/1934356999) at amazon or an [electronic version at the publisher's site](https://pragprog.com/book/tpantlr2/the-definitive-antlr-4-reference).
You will find the [Book source code](http://pragprog.com/titles/tpantlr2/source_code) useful.
## Additional grammars
[This repository](https://github.com/antlr/grammars-v4) is a collection of grammars without actions where the
root directory name is the all-lowercase name of the language parsed
by the grammar. For example, java, cpp, csharp, c, etc...
golang-github-antlr-antlr4-4.7.2+ds/contributors.txt 0000664 0000000 0000000 00000027774 14102210121 0022474 0 ustar 00root root 0000000 0000000 ANTLR Project Contributors Certification of Origin and Rights
All contributors to ANTLR v4 must formally agree to abide by this
certificate of origin by signing on the bottom with their github
userid, full name, email address (you can obscure your e-mail, but it
must be computable by human), and date.
By signing this agreement, you are warranting and representing that
you have the right to release code contributions or other content free
of any obligations to third parties and are granting Terence Parr and
ANTLR project contributors, henceforth referred to as The ANTLR
Project, a license to incorporate it into The ANTLR Project tools
(such as ANTLRWorks and StringTemplate) or related works under the BSD
license. You understand that The ANTLR Project may or may not
incorporate your contribution and you warrant and represent the
following:
1. I am the creator of all my contributions. I am the author of all
contributed work submitted and further warrant and represent that
such work is my original creation and I have the right to license
it to The ANTLR Project for release under the 3-clause BSD
license. I hereby grant The ANTLR Project a nonexclusive,
irrevocable, royalty-free, worldwide license to reproduce,
distribute, prepare derivative works, and otherwise use this
contribution as part of the ANTLR project, associated
documentation, books, and tools at no cost to The ANTLR Project.
2. I have the right to submit. This submission does not violate the
rights of any person or entity and that I have legal authority over
this submission and to make this certification.
3. If I violate another's rights, liability lies with me. I agree to
defend, indemnify, and hold The ANTLR Project and ANTLR users
harmless from any claim or demand, including reasonable attorney
fees, made by any third party due to or arising out of my violation
of these terms and conditions or my violation of the rights of
another person or entity.
4. I understand and agree that this project and the contribution are
public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license indicated in the file.
I have read this agreement and do so certify by adding my signoff to
the end of the following contributors list.
CONTRIBUTORS:
YYYY/MM/DD, github id, Full name, email
2012/07/12, parrt, Terence Parr, parrt@antlr.org
2012/09/18, sharwell, Sam Harwell, sam@tunnelvisionlabs.com
2012/10/10, stephengaito, Stephen Gaito, stephen@percepitsys.co.uk
2012/11/23, maguro, Alan Cabrera, adc@toolazydogs.com
2013/01/29, metadave, Dave Parfitt, diparfitt@gmail.com
2013/03/06, bkiers, Bart Kiers, bkiers@gmail.com
2013/08/20, cayhorstmann, Cay Horstmann, cay@horstmann.com
2014/03/18, aphyr, Kyle Kingsbury, aphyr@aphyr.com
2014/06/07, ericvergnaud, Eric Vergnaud, eric.vergnaud@wanadoo.fr
2014/07/04, jimidle, Jim Idle, jimi@Idle.ws
2014/01/01, danmclaughlin, Dan McLaughlin, dan.mclaughlin@gmail.com
2014/09/04. jeduden, Jan-Eric Duden, jeduden@gmail.com
2014/09/27, petrbel, Petr Bělohlávek, antlr@petrbel.cz
2014/10/18, sergiusignacius, Sérgio Silva, serge.a.silva@gmail.com
2014/10/26, bdkearns, Brian Kearns, bdkearns@gmail.com
2014/10/27, michaelpj, Michael Peyton Jones, michaelpj@gmail.com
2015/01/29, TomLottermann, Thomas Lottermann, tomlottermann@gmail.com
2015/02/15, pavlo, Pavlo Lysov, pavlikus@gmail.com
2015/03/07, RedTailedHawk, Lawrence Parker, larry@answerrocket.com
2015/04/03, rljacobson, Robert Jacobson, rljacobson@gmail.com
2015/04/06, ojakubcik, Ondrej Jakubcik, ojakubcik@gmail.com
2015/04/29, jszheng, Jinshan Zheng, zheng_js@hotmail.com
2015/05/08, ViceIce, Michael Kriese, michael.kriese@gmx.de
2015/05/09, lkraz, Luke Krasnoff, luke.krasnoff@gmail.com
2015/05/12, Pursuit92, Josh Chase, jcjoshuachase@gmail.com
2015/05/20, peturingi, Pétur Ingi Egilsson, petur@petur.eu
2015/05/27, jcbrinfo, Jean-Christophe Beaupré, jcbrinfo@users.noreply.github.com
2015/06/29, jvanzyl, Jason van Zyl, jason@takari.io
2015/08/18, krzkaczor, Krzysztof Kaczor, krzysztof@kaczor.io
2015/09/18, worsht, Rajiv Subrahmanyam, rajiv.public@gmail.com
2015/09/24, HSorensen, Henrik Sorensen, henrik.b.sorensen@gmail.com
2015/10/06, brwml, Bryan Wilhelm, bryan.wilhelm@microsoft.com
2015/10/08, fedotovalex, Alex Fedotov, me@alexfedotov.com
2015/10/12, KvanTTT, Ivan Kochurkin, ivan.kochurkin@gmail.com
2015/10/21, martin-probst, Martin Probst, martin-probst@web.de
2015/10/21, hkff, Walid Benghabrit, walid.benghabrit@mines-nantes.fr
2015/11/12, cooperra, Robbie Cooper, cooperra@users.noreply.github.com
2015/11/25, abego, Udo Borkowski, ub@abego.org
2015/12/17, sebadur, Sebastian Badur, sebadur@users.noreply.github.com
2015/12/23, pboyer, Peter Boyer, peter.b.boyer@gmail.com
2015/12/24, dtymon, David Tymon, david.tymon@gmail.com
2016/02/18, reitzig, Raphael Reitzig, reitzig[at]cs.uni-kl.de
2016/03/10, mike-lischke, Mike Lischke, mike@lischke-online.de
2016/03/27, beardlybread, Bradley Steinbacher, bradley.j.steinbacher@gmail.com
2016/03/29, msteiger, Martin Steiger, antlr@martin-steiger.de
2016/03/28, gagern, Martin von Gagern, gagern@ma.tum.de
2016/07/10, twz123, Tom Wieczorek, tom.wieczorek@zalando.de
2016/07/20, chrisheller, Chris Heller, chris.heller.greyheller@gmail.com
2016/07/20, nburles, Nathan Burles, nburles@gmail.com
2016/07/20, kosl90, Li Liqiang, kos1990l@gmail.com
2016/07/27, timoc, Tim O'Callaghan, timo@linux.com
2016/07/26, nic30, Michal Orsák, michal.o.socials@gmail.com
2016/07/18, willfaught, Will Faught, will.faught@gmail.com
2016/08/08, wjkohnen, Wolfgang Johannes Kohnen, wjkohnen-go-antlr@ko-sys.com
2016/08/11, BurtHarris, Ralph "Burt" Harris, Burt_Harris_antlr4@azxs.33mail.com
2016/08/19, andjo403, Andreas Jonson, andjo403@hotmail.com
2016/09/27, harriman, Kurt Harriman, harriman@acm.org
2016/10/13, cgudrian, Christian Gudrian, christian.gudrian@gmx.de
2016/10/13, nielsbasjes, Niels Basjes, niels@basjes.nl
2016/10/21, FloorGoddijn, Floor Goddijn, floor.goddijn[at]aimms.com
2016/11/01, RYDB3RG, Kai Stammerjohann, RYDB3RG@users.noreply.github.com
2016/11/05, runner-mei, meifakun, runner.mei@gmail.com
2016/11/15, hanjoes, Hanzhou Shi, hanzhou87@gmail.com
2016/11/16, sridharxp, Sridharan S, aurosridhar@gmail.com
2016/11/06, NoodleOfDeath, Thom Morgan, github@bytemeapp.com
2016/11/01, sebkur, Sebastian Kürten, sebastian@topobyte.de
2016/04/13, renatahodovan, Renata Hodovan, reni@inf.u-szeged.hu
2016/11/05, ewanmellor, Ewan Mellor, github@ewanmellor.org
2016/11/06, janyou, Janyou, janyou.antlr@outlook.com
2016/11/20, marcohu, Marco Hunsicker, antlr@hunsicker.de
2016/09/02, lygav, Vladimir (Vladi) Lyga, lyvladi@gmail.com
2016/09/23, ghosthope, Dmitry Shakhtanov, sudstrike@gmail.com
2016/11/25, MrSampson, Oliver Sampson, olsam@quickaudio.com
2016/11/29, millergarym, Gary Miller, miller.garym@gmail.com
2016/11/29, wxio, Gary Miller, gm@wx.io
2016/11/29, Naios, Denis Blank, naios@users.noreply.github.com
2016/12/01, samtatasurya, Samuel Tatasurya, xemradiant@gmail.com
2016/12/03, redxdev, Samuel Bloomberg, sam@redxdev.com
2016/12/11, Gaulouis, Gaulouis, gaulouis.com@gmail.com
2016/12/22, akosthekiss, Akos Kiss, akiss@inf.u-szeged.hu
2016/12/24, adrpo, Adrian Pop, adrian.pop@liu.se
2017/01/11, robertbrignull, Robert Brignull, robertbrignull@gmail.com
2017/01/13, marcelo-rocha, Marcelo Rocha, mcrocha@gmail.com
2017/01/23, bhamiltoncx, Ben Hamilton, bhamiltoncx+antlr@gmail.com
2017/01/18, mshockwave, Bekket McClane, yihshyng223@gmail.com
2017/02/10, lionelplessis, Lionel Plessis, lionelplessis@users.noreply.github.com
2017/02/14, lecode-official, David Neumann, david.neumann@lecode.de
2017/02/14, xied75, Dong Xie, xied75@gmail.com
2017/02/20, Thomasb81, Thomas Burg, thomasb81@gmail.com
2017/02/26, jvasileff, John Vasileff, john@vasileff.com
2017/03/08, harry-tallbelt, Igor Vysokopoyasny, harry.tallbelt@gmail.com
2017/03/09, teverett, Tom Everett, tom@khubla.com
2017/03/03, chund, Christian Hund, christian.hund@gmail.com
2017/03/15, robertvanderhulst, Robert van der Hulst, robert@xsharp.eu
2017/03/28, cmd-johnson, Jonas Auer, jonas.auer.94@gmail.com
2017/04/12, lys0716, Yishuang Lu, luyscmu@gmail.com
2017/04/30, shravanrn, Shravan Narayan, shravanrn@gmail.com
2017/05/11, jimallman, Jim Allman, jim@ibang.com
2017/05/26, waf, Will Fuqua, wafuqua@gmail.com
2017/05/29, kosak, Corey Kosak, kosak@kosak.com
2017/06/11, erikbra, Erik A. Brandstadmoen, erik@brandstadmoen.net
2017/06/10, jm-mikkelsen, Jan Martin Mikkelsen, janm@transactionware.com
2017/06/25, alimg, Alim Gökkaya, alim.gokkaya@gmail.com
2017/06/28, jBugman, Sergey Parshukov, codedby@bugman.me
2017/07/09, neatnerd, Mike Arshinskiy, neatnerd@users.noreply.github.com
2017/07/11, dhalperi, Daniel Halperin, daniel@halper.in
2017/07/17, vaibhavaingankar09, Vaibhav Vaingankar, vbhvvaingankar9@gmail.com
2017/07/23, venkatperi, Venkat Peri, venkatperi@gmail.com
2017/07/27, shirou, WAKAYAMA Shirou, shirou.faw@gmail.com
2017/07/09, neatnerd, Mike Arshinskiy, neatnerd@users.noreply.github.com
2017/07/27, matthauck, Matt Hauck, matthauck@gmail.com
2017/07/27, shirou, WAKAYAMA Shirou, shirou.faw@gmail.com
2017/08/20, tiagomazzutti, Tiago Mazzutti, tiagomzt@gmail.com
2017/08/20, milanaleksic, Milan Aleksic, milanaleksic@gmail.com
2017/08/29, Eddy Reyes, eddy@mindsight.io
2017/09/09, brauliobz, Bráulio Bezerra, brauliobezerra@gmail.com
2017/09/11, sachinjain024, Sachin Jain, sachinjain024@gmail.com
2017/09/25, kaedvann, Rostislav Listerenko, r.listerenko@gmail.com
2017/10/06, bramp, Andrew Brampton, brampton@gmail.com
2017/10/15, simkimsia, Sim Kim Sia, kimcity@gmail.com
2017/10/27, Griffon26, Maurice van der Pot, griffon26@kfk4ever.com
2017/05/29, rlfnb, Ralf Neeb, rlfnb@rlfnb.de
2017/10/29, gendalph, Максим Прохоренко, Maxim\dotProhorenko@gm@il.com
2017/11/02, jasonmoo, Jason Mooberry, jason.mooberry@gmail.com
2017/11/05, ajaypanyala, Ajay Panyala, ajay.panyala@gmail.com
2017/11/24, zqlu.cn, Zhiqiang Lu, zqlu.cn@gmail.com
2017/11/28, niccroad, Nicolas Croad, nic.croad@gmail.com
2017/12/01, DavidMoraisFerreira, David Morais Ferreira, david.moraisferreira@gmail.com
2017/12/01, SebastianLng, Sebastian Lang, sebastian.lang@outlook.com
2017/12/03, oranoran, Oran Epelbaum, oran / epelbaum me
2017/12/12, janlinde, Jan Lindemann, jan@janware.com
2017/12/13, enessoylu, Enes Soylu, enessoylutr@gmail.com
2017/12/20, kbsletten, Kyle Sletten, kbsletten@gmail.com
2017/12/27, jkmar, Jakub Marciniszyn, marciniszyn.jk@gmail.com
2018/03/08, dannoc, Daniel Clifford, danno@google.com
2018/03/10, uvguy, kangjoni76@gmail.com
2018/01/06, kasbah, Kaspar Emanuel, kaspar@monostable.co.uk
2018/01/15, xgcssch, Sönke Schau, xgcssch@users.noreply.github.com
2018/02/08, razfriman, Raz Friman, raz@razfriman.com
2018/02/11, io7m, Mark Raynsford, code@io7m.com
2018/04/24, solussd, Joe Smith, joe@uwcreations.com
2018/15/05, johnvanderholt, jan dillingh johnvanderholte@gmail.com
2018/06/14, scadgek, Sergey Chupov, scadgek@live.com
2018/06/16, EternalPhane, Zongyuan Zuo, eternalphane@gmail.com
2018/06/27, wu-sheng, Wu Sheng, wu.sheng@foxmail.com
2018/02/25, chaseoxide, Marcus Ong, taccs97[at]gmail[dot]com
2018/05/15, johnvanderholt, jan dillingh johnvanderholte@gmail.com
2018/06/16, EternalPhane, Zongyuan Zuo, eternalphane@gmail.com
2018/05/15, johnvanderholt, jan dillingh johnvanderholte@gmail.com
2018/05/17, sinopsysHK, Eric Bardes, sinofwd@gmail.com
2018/05/23, srvance, Stephen Vance, steve@vance.com
2018/06/14, alecont, Alessandro Contenti, alecontenti@hotmail.com
2018/06/16, EternalPhane, Zongyuan Zuo, eternalphane@gmail.com
2018/07/03, jgoppert, James Goppert, james.goppert@gmail.com
2018/07/27, Maksim Novikov, mnovikov.work@gmail.com
2018/07/31, Lucas Henrqiue, lucashenrique580@gmail.com
2018/08/03, ENDOH takanao, djmchl@gmail.com
2018/10/29, chrisaycock, Christopher Aycock, chris[at]chrisaycock[dot]com
2018/11/12, vinoski, Steve Vinoski, vinoski@ieee.org
2018/11/14, nxtstep, Adriaan (Arjan) Duz, codewithadriaan[et]gmail[dot]com
2018/11/15, amykyta3, Alex Mykyta, amykyta3@users.noreply.github.com
2018/11/29, hannemann-tamas, Ralf Hannemann-Tamas, ralf.ht@gmail.com golang-github-antlr-antlr4-4.7.2+ds/runtime/ 0000775 0000000 0000000 00000000000 14102210121 0020640 5 ustar 00root root 0000000 0000000 golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/ 0000775 0000000 0000000 00000000000 14102210121 0021205 5 ustar 00root root 0000000 0000000 golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/ 0000775 0000000 0000000 00000000000 14102210121 0022325 5 ustar 00root root 0000000 0000000 golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/atn.go 0000664 0000000 0000000 00000011272 14102210121 0023441 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
var ATNInvalidAltNumber int
type ATN struct {
// DecisionToState is the decision points for all rules, subrules, optional
// blocks, ()+, ()*, etc. Used to build DFA predictors for them.
DecisionToState []DecisionState
// grammarType is the ATN type and is used for deserializing ATNs from strings.
grammarType int
// lexerActions is referenced by action transitions in the ATN for lexer ATNs.
lexerActions []LexerAction
// maxTokenType is the maximum value for any symbol recognized by a transition in the ATN.
maxTokenType int
modeNameToStartState map[string]*TokensStartState
modeToStartState []*TokensStartState
// ruleToStartState maps from rule index to starting state number.
ruleToStartState []*RuleStartState
// ruleToStopState maps from rule index to stop state number.
ruleToStopState []*RuleStopState
// ruleToTokenType maps the rule index to the resulting token type for lexer
// ATNs. For parser ATNs, it maps the rule index to the generated bypass token
// type if ATNDeserializationOptions.isGenerateRuleBypassTransitions was
// specified, and otherwise is nil.
ruleToTokenType []int
states []ATNState
}
func NewATN(grammarType int, maxTokenType int) *ATN {
return &ATN{
grammarType: grammarType,
maxTokenType: maxTokenType,
modeNameToStartState: make(map[string]*TokensStartState),
}
}
// NextTokensInContext computes the set of valid tokens that can occur starting
// in state s. If ctx is nil, the set of tokens will not include what can follow
// the rule surrounding s. In other words, the set will be restricted to tokens
// reachable staying within the rule of s.
func (a *ATN) NextTokensInContext(s ATNState, ctx RuleContext) *IntervalSet {
return NewLL1Analyzer(a).Look(s, nil, ctx)
}
// NextTokensNoContext computes the set of valid tokens that can occur starting
// in s and staying in same rule. Token.EPSILON is in set if we reach end of
// rule.
func (a *ATN) NextTokensNoContext(s ATNState) *IntervalSet {
if s.GetNextTokenWithinRule() != nil {
return s.GetNextTokenWithinRule()
}
s.SetNextTokenWithinRule(a.NextTokensInContext(s, nil))
s.GetNextTokenWithinRule().readOnly = true
return s.GetNextTokenWithinRule()
}
func (a *ATN) NextTokens(s ATNState, ctx RuleContext) *IntervalSet {
if ctx == nil {
return a.NextTokensNoContext(s)
}
return a.NextTokensInContext(s, ctx)
}
func (a *ATN) addState(state ATNState) {
if state != nil {
state.SetATN(a)
state.SetStateNumber(len(a.states))
}
a.states = append(a.states, state)
}
func (a *ATN) removeState(state ATNState) {
a.states[state.GetStateNumber()] = nil // Just free the memory; don't shift states in the slice
}
func (a *ATN) defineDecisionState(s DecisionState) int {
a.DecisionToState = append(a.DecisionToState, s)
s.setDecision(len(a.DecisionToState) - 1)
return s.getDecision()
}
func (a *ATN) getDecisionState(decision int) DecisionState {
if len(a.DecisionToState) == 0 {
return nil
}
return a.DecisionToState[decision]
}
// getExpectedTokens computes the set of input symbols which could follow ATN
// state number stateNumber in the specified full parse context ctx and returns
// the set of potentially valid input symbols which could follow the specified
// state in the specified context. This method considers the complete parser
// context, but does not evaluate semantic predicates (i.e. all predicates
// encountered during the calculation are assumed true). If a path in the ATN
// exists from the starting state to the RuleStopState of the outermost context
// without Matching any symbols, Token.EOF is added to the returned set.
//
// A nil ctx defaults to ParserRuleContext.EMPTY.
//
// It panics if the ATN does not contain state stateNumber.
func (a *ATN) getExpectedTokens(stateNumber int, ctx RuleContext) *IntervalSet {
if stateNumber < 0 || stateNumber >= len(a.states) {
panic("Invalid state number.")
}
s := a.states[stateNumber]
following := a.NextTokens(s, nil)
if !following.contains(TokenEpsilon) {
return following
}
expected := NewIntervalSet()
expected.addSet(following)
expected.removeOne(TokenEpsilon)
for ctx != nil && ctx.GetInvokingState() >= 0 && following.contains(TokenEpsilon) {
invokingState := a.states[ctx.GetInvokingState()]
rt := invokingState.GetTransitions()[0]
following = a.NextTokens(rt.(*RuleTransition).followState, nil)
expected.addSet(following)
expected.removeOne(TokenEpsilon)
ctx = ctx.GetParent().(RuleContext)
}
if following.contains(TokenEpsilon) {
expected.addOne(TokenEOF)
}
return expected
}
golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/atn_config.go 0000664 0000000 0000000 00000020276 14102210121 0024772 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import (
"fmt"
)
type comparable interface {
equals(other interface{}) bool
}
// ATNConfig is a tuple: (ATN state, predicted alt, syntactic, semantic
// context). The syntactic context is a graph-structured stack node whose
// path(s) to the root is the rule invocation(s) chain used to arrive at the
// state. The semantic context is the tree of semantic predicates encountered
// before reaching an ATN state.
type ATNConfig interface {
comparable
hash() int
GetState() ATNState
GetAlt() int
GetSemanticContext() SemanticContext
GetContext() PredictionContext
SetContext(PredictionContext)
GetReachesIntoOuterContext() int
SetReachesIntoOuterContext(int)
String() string
getPrecedenceFilterSuppressed() bool
setPrecedenceFilterSuppressed(bool)
}
type BaseATNConfig struct {
precedenceFilterSuppressed bool
state ATNState
alt int
context PredictionContext
semanticContext SemanticContext
reachesIntoOuterContext int
}
func NewBaseATNConfig7(old *BaseATNConfig) *BaseATNConfig { // TODO: Dup
return &BaseATNConfig{
state: old.state,
alt: old.alt,
context: old.context,
semanticContext: old.semanticContext,
reachesIntoOuterContext: old.reachesIntoOuterContext,
}
}
func NewBaseATNConfig6(state ATNState, alt int, context PredictionContext) *BaseATNConfig {
return NewBaseATNConfig5(state, alt, context, SemanticContextNone)
}
func NewBaseATNConfig5(state ATNState, alt int, context PredictionContext, semanticContext SemanticContext) *BaseATNConfig {
if semanticContext == nil {
panic("semanticContext cannot be nil") // TODO: Necessary?
}
return &BaseATNConfig{state: state, alt: alt, context: context, semanticContext: semanticContext}
}
func NewBaseATNConfig4(c ATNConfig, state ATNState) *BaseATNConfig {
return NewBaseATNConfig(c, state, c.GetContext(), c.GetSemanticContext())
}
func NewBaseATNConfig3(c ATNConfig, state ATNState, semanticContext SemanticContext) *BaseATNConfig {
return NewBaseATNConfig(c, state, c.GetContext(), semanticContext)
}
func NewBaseATNConfig2(c ATNConfig, semanticContext SemanticContext) *BaseATNConfig {
return NewBaseATNConfig(c, c.GetState(), c.GetContext(), semanticContext)
}
func NewBaseATNConfig1(c ATNConfig, state ATNState, context PredictionContext) *BaseATNConfig {
return NewBaseATNConfig(c, state, context, c.GetSemanticContext())
}
func NewBaseATNConfig(c ATNConfig, state ATNState, context PredictionContext, semanticContext SemanticContext) *BaseATNConfig {
if semanticContext == nil {
panic("semanticContext cannot be nil")
}
return &BaseATNConfig{
state: state,
alt: c.GetAlt(),
context: context,
semanticContext: semanticContext,
reachesIntoOuterContext: c.GetReachesIntoOuterContext(),
precedenceFilterSuppressed: c.getPrecedenceFilterSuppressed(),
}
}
func (b *BaseATNConfig) getPrecedenceFilterSuppressed() bool {
return b.precedenceFilterSuppressed
}
func (b *BaseATNConfig) setPrecedenceFilterSuppressed(v bool) {
b.precedenceFilterSuppressed = v
}
func (b *BaseATNConfig) GetState() ATNState {
return b.state
}
func (b *BaseATNConfig) GetAlt() int {
return b.alt
}
func (b *BaseATNConfig) SetContext(v PredictionContext) {
b.context = v
}
func (b *BaseATNConfig) GetContext() PredictionContext {
return b.context
}
func (b *BaseATNConfig) GetSemanticContext() SemanticContext {
return b.semanticContext
}
func (b *BaseATNConfig) GetReachesIntoOuterContext() int {
return b.reachesIntoOuterContext
}
func (b *BaseATNConfig) SetReachesIntoOuterContext(v int) {
b.reachesIntoOuterContext = v
}
// An ATN configuration is equal to another if both have the same state, they
// predict the same alternative, and syntactic/semantic contexts are the same.
func (b *BaseATNConfig) equals(o interface{}) bool {
if b == o {
return true
}
var other, ok = o.(*BaseATNConfig)
if !ok {
return false
}
var equal bool
if b.context == nil {
equal = other.context == nil
} else {
equal = b.context.equals(other.context)
}
var (
nums = b.state.GetStateNumber() == other.state.GetStateNumber()
alts = b.alt == other.alt
cons = b.semanticContext.equals(other.semanticContext)
sups = b.precedenceFilterSuppressed == other.precedenceFilterSuppressed
)
return nums && alts && cons && sups && equal
}
func (b *BaseATNConfig) hash() int {
var c int
if b.context != nil {
c = b.context.hash()
}
h := murmurInit(7)
h = murmurUpdate(h, b.state.GetStateNumber())
h = murmurUpdate(h, b.alt)
h = murmurUpdate(h, c)
h = murmurUpdate(h, b.semanticContext.hash())
return murmurFinish(h, 4)
}
func (b *BaseATNConfig) String() string {
var s1, s2, s3 string
if b.context != nil {
s1 = ",[" + fmt.Sprint(b.context) + "]"
}
if b.semanticContext != SemanticContextNone {
s2 = "," + fmt.Sprint(b.semanticContext)
}
if b.reachesIntoOuterContext > 0 {
s3 = ",up=" + fmt.Sprint(b.reachesIntoOuterContext)
}
return fmt.Sprintf("(%v,%v%v%v%v)", b.state, b.alt, s1, s2, s3)
}
type LexerATNConfig struct {
*BaseATNConfig
lexerActionExecutor *LexerActionExecutor
passedThroughNonGreedyDecision bool
}
func NewLexerATNConfig6(state ATNState, alt int, context PredictionContext) *LexerATNConfig {
return &LexerATNConfig{BaseATNConfig: NewBaseATNConfig5(state, alt, context, SemanticContextNone)}
}
func NewLexerATNConfig5(state ATNState, alt int, context PredictionContext, lexerActionExecutor *LexerActionExecutor) *LexerATNConfig {
return &LexerATNConfig{
BaseATNConfig: NewBaseATNConfig5(state, alt, context, SemanticContextNone),
lexerActionExecutor: lexerActionExecutor,
}
}
func NewLexerATNConfig4(c *LexerATNConfig, state ATNState) *LexerATNConfig {
return &LexerATNConfig{
BaseATNConfig: NewBaseATNConfig(c, state, c.GetContext(), c.GetSemanticContext()),
lexerActionExecutor: c.lexerActionExecutor,
passedThroughNonGreedyDecision: checkNonGreedyDecision(c, state),
}
}
func NewLexerATNConfig3(c *LexerATNConfig, state ATNState, lexerActionExecutor *LexerActionExecutor) *LexerATNConfig {
return &LexerATNConfig{
BaseATNConfig: NewBaseATNConfig(c, state, c.GetContext(), c.GetSemanticContext()),
lexerActionExecutor: lexerActionExecutor,
passedThroughNonGreedyDecision: checkNonGreedyDecision(c, state),
}
}
func NewLexerATNConfig2(c *LexerATNConfig, state ATNState, context PredictionContext) *LexerATNConfig {
return &LexerATNConfig{
BaseATNConfig: NewBaseATNConfig(c, state, context, c.GetSemanticContext()),
lexerActionExecutor: c.lexerActionExecutor,
passedThroughNonGreedyDecision: checkNonGreedyDecision(c, state),
}
}
func NewLexerATNConfig1(state ATNState, alt int, context PredictionContext) *LexerATNConfig {
return &LexerATNConfig{BaseATNConfig: NewBaseATNConfig5(state, alt, context, SemanticContextNone)}
}
func (l *LexerATNConfig) hash() int {
var f int
if l.passedThroughNonGreedyDecision {
f = 1
} else {
f = 0
}
h := murmurInit(7)
h = murmurUpdate(h, l.state.hash())
h = murmurUpdate(h, l.alt)
h = murmurUpdate(h, l.context.hash())
h = murmurUpdate(h, l.semanticContext.hash())
h = murmurUpdate(h, f)
h = murmurUpdate(h, l.lexerActionExecutor.hash())
h = murmurFinish(h, 6)
return h
}
func (l *LexerATNConfig) equals(other interface{}) bool {
var othert, ok = other.(*LexerATNConfig)
if l == other {
return true
} else if !ok {
return false
} else if l.passedThroughNonGreedyDecision != othert.passedThroughNonGreedyDecision {
return false
}
var b bool
if l.lexerActionExecutor != nil {
b = !l.lexerActionExecutor.equals(othert.lexerActionExecutor)
} else {
b = othert.lexerActionExecutor != nil
}
if b {
return false
}
return l.BaseATNConfig.equals(othert.BaseATNConfig)
}
func checkNonGreedyDecision(source *LexerATNConfig, target ATNState) bool {
var ds, ok = target.(DecisionState)
return source.passedThroughNonGreedyDecision || (ok && ds.getNonGreedy())
}
golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/atn_config_set.go 0000664 0000000 0000000 00000022244 14102210121 0025642 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import "fmt"
type ATNConfigSet interface {
hash() int
Add(ATNConfig, *DoubleDict) bool
AddAll([]ATNConfig) bool
GetStates() *Set
GetPredicates() []SemanticContext
GetItems() []ATNConfig
OptimizeConfigs(interpreter *BaseATNSimulator)
Equals(other interface{}) bool
Length() int
IsEmpty() bool
Contains(ATNConfig) bool
ContainsFast(ATNConfig) bool
Clear()
String() string
HasSemanticContext() bool
SetHasSemanticContext(v bool)
ReadOnly() bool
SetReadOnly(bool)
GetConflictingAlts() *BitSet
SetConflictingAlts(*BitSet)
FullContext() bool
GetUniqueAlt() int
SetUniqueAlt(int)
GetDipsIntoOuterContext() bool
SetDipsIntoOuterContext(bool)
}
// BaseATNConfigSet is a specialized set of ATNConfig that tracks information
// about its elements and can combine similar configurations using a
// graph-structured stack.
type BaseATNConfigSet struct {
cachedHash int
// configLookup is used to determine whether two BaseATNConfigSets are equal. We
// need all configurations with the same (s, i, _, semctx) to be equal. A key
// effectively doubles the number of objects associated with ATNConfigs. All
// keys are hashed by (s, i, _, pi), not including the context. Wiped out when
// read-only because a set becomes a DFA state.
configLookup *Set
// configs is the added elements.
configs []ATNConfig
// TODO: These fields make me pretty uncomfortable, but it is nice to pack up
// info together because it saves recomputation. Can we track conflicts as they
// are added to save scanning configs later?
conflictingAlts *BitSet
// dipsIntoOuterContext is used by parsers and lexers. In a lexer, it indicates
// we hit a pred while computing a closure operation. Do not make a DFA state
// from the BaseATNConfigSet in this case. TODO: How is this used by parsers?
dipsIntoOuterContext bool
// fullCtx is whether it is part of a full context LL prediction. Used to
// determine how to merge $. It is a wildcard with SLL, but not for an LL
// context merge.
fullCtx bool
// Used in parser and lexer. In lexer, it indicates we hit a pred
// while computing a closure operation. Don't make a DFA state from a.
hasSemanticContext bool
// readOnly is whether it is read-only. Do not
// allow any code to manipulate the set if true because DFA states will point at
// sets and those must not change. It not protect other fields; conflictingAlts
// in particular, which is assigned after readOnly.
readOnly bool
// TODO: These fields make me pretty uncomfortable, but it is nice to pack up
// info together because it saves recomputation. Can we track conflicts as they
// are added to save scanning configs later?
uniqueAlt int
}
func NewBaseATNConfigSet(fullCtx bool) *BaseATNConfigSet {
return &BaseATNConfigSet{
cachedHash: -1,
configLookup: NewSet(nil, equalATNConfigs),
fullCtx: fullCtx,
}
}
// Add merges contexts with existing configs for (s, i, pi, _), where s is the
// ATNConfig.state, i is the ATNConfig.alt, and pi is the
// ATNConfig.semanticContext. We use (s,i,pi) as the key. Updates
// dipsIntoOuterContext and hasSemanticContext when necessary.
func (b *BaseATNConfigSet) Add(config ATNConfig, mergeCache *DoubleDict) bool {
if b.readOnly {
panic("set is read-only")
}
if config.GetSemanticContext() != SemanticContextNone {
b.hasSemanticContext = true
}
if config.GetReachesIntoOuterContext() > 0 {
b.dipsIntoOuterContext = true
}
existing := b.configLookup.add(config).(ATNConfig)
if existing == config {
b.cachedHash = -1
b.configs = append(b.configs, config) // Track order here
return true
}
// Merge a previous (s, i, pi, _) with it and save the result
rootIsWildcard := !b.fullCtx
merged := merge(existing.GetContext(), config.GetContext(), rootIsWildcard, mergeCache)
// No need to check for existing.context because config.context is in the cache,
// since the only way to create new graphs is the "call rule" and here. We cache
// at both places.
existing.SetReachesIntoOuterContext(intMax(existing.GetReachesIntoOuterContext(), config.GetReachesIntoOuterContext()))
// Preserve the precedence filter suppression during the merge
if config.getPrecedenceFilterSuppressed() {
existing.setPrecedenceFilterSuppressed(true)
}
// Replace the context because there is no need to do alt mapping
existing.SetContext(merged)
return true
}
func (b *BaseATNConfigSet) GetStates() *Set {
states := NewSet(nil, nil)
for i := 0; i < len(b.configs); i++ {
states.add(b.configs[i].GetState())
}
return states
}
func (b *BaseATNConfigSet) HasSemanticContext() bool {
return b.hasSemanticContext
}
func (b *BaseATNConfigSet) SetHasSemanticContext(v bool) {
b.hasSemanticContext = v
}
func (b *BaseATNConfigSet) GetPredicates() []SemanticContext {
preds := make([]SemanticContext, 0)
for i := 0; i < len(b.configs); i++ {
c := b.configs[i].GetSemanticContext()
if c != SemanticContextNone {
preds = append(preds, c)
}
}
return preds
}
func (b *BaseATNConfigSet) GetItems() []ATNConfig {
return b.configs
}
func (b *BaseATNConfigSet) OptimizeConfigs(interpreter *BaseATNSimulator) {
if b.readOnly {
panic("set is read-only")
}
if b.configLookup.length() == 0 {
return
}
for i := 0; i < len(b.configs); i++ {
config := b.configs[i]
config.SetContext(interpreter.getCachedContext(config.GetContext()))
}
}
func (b *BaseATNConfigSet) AddAll(coll []ATNConfig) bool {
for i := 0; i < len(coll); i++ {
b.Add(coll[i], nil)
}
return false
}
func (b *BaseATNConfigSet) Equals(other interface{}) bool {
if b == other {
return true
} else if _, ok := other.(*BaseATNConfigSet); !ok {
return false
}
other2 := other.(*BaseATNConfigSet)
return b.configs != nil &&
// TODO: b.configs.equals(other2.configs) && // TODO: Is b necessary?
b.fullCtx == other2.fullCtx &&
b.uniqueAlt == other2.uniqueAlt &&
b.conflictingAlts == other2.conflictingAlts &&
b.hasSemanticContext == other2.hasSemanticContext &&
b.dipsIntoOuterContext == other2.dipsIntoOuterContext
}
func (b *BaseATNConfigSet) hash() int {
if b.readOnly {
if b.cachedHash == -1 {
b.cachedHash = b.hashCodeConfigs()
}
return b.cachedHash
}
return b.hashCodeConfigs()
}
func (b *BaseATNConfigSet) hashCodeConfigs() int {
h := murmurInit(1)
for _, c := range b.configs {
if c != nil {
h = murmurUpdate(h, c.hash())
}
}
return murmurFinish(h, len(b.configs))
}
func (b *BaseATNConfigSet) Length() int {
return len(b.configs)
}
func (b *BaseATNConfigSet) IsEmpty() bool {
return len(b.configs) == 0
}
func (b *BaseATNConfigSet) Contains(item ATNConfig) bool {
if b.configLookup == nil {
panic("not implemented for read-only sets")
}
return b.configLookup.contains(item)
}
func (b *BaseATNConfigSet) ContainsFast(item ATNConfig) bool {
if b.configLookup == nil {
panic("not implemented for read-only sets")
}
return b.configLookup.contains(item) // TODO: containsFast is not implemented for Set
}
func (b *BaseATNConfigSet) Clear() {
if b.readOnly {
panic("set is read-only")
}
b.configs = make([]ATNConfig, 0)
b.cachedHash = -1
b.configLookup = NewSet(nil, equalATNConfigs)
}
func (b *BaseATNConfigSet) FullContext() bool {
return b.fullCtx
}
func (b *BaseATNConfigSet) GetDipsIntoOuterContext() bool {
return b.dipsIntoOuterContext
}
func (b *BaseATNConfigSet) SetDipsIntoOuterContext(v bool) {
b.dipsIntoOuterContext = v
}
func (b *BaseATNConfigSet) GetUniqueAlt() int {
return b.uniqueAlt
}
func (b *BaseATNConfigSet) SetUniqueAlt(v int) {
b.uniqueAlt = v
}
func (b *BaseATNConfigSet) GetConflictingAlts() *BitSet {
return b.conflictingAlts
}
func (b *BaseATNConfigSet) SetConflictingAlts(v *BitSet) {
b.conflictingAlts = v
}
func (b *BaseATNConfigSet) ReadOnly() bool {
return b.readOnly
}
func (b *BaseATNConfigSet) SetReadOnly(readOnly bool) {
b.readOnly = readOnly
if readOnly {
b.configLookup = nil // Read only, so no need for the lookup cache
}
}
func (b *BaseATNConfigSet) String() string {
s := "["
for i, c := range b.configs {
s += c.String()
if i != len(b.configs)-1 {
s += ", "
}
}
s += "]"
if b.hasSemanticContext {
s += ",hasSemanticContext=" + fmt.Sprint(b.hasSemanticContext)
}
if b.uniqueAlt != ATNInvalidAltNumber {
s += ",uniqueAlt=" + fmt.Sprint(b.uniqueAlt)
}
if b.conflictingAlts != nil {
s += ",conflictingAlts=" + b.conflictingAlts.String()
}
if b.dipsIntoOuterContext {
s += ",dipsIntoOuterContext"
}
return s
}
type OrderedATNConfigSet struct {
*BaseATNConfigSet
}
func NewOrderedATNConfigSet() *OrderedATNConfigSet {
b := NewBaseATNConfigSet(false)
b.configLookup = NewSet(nil, nil)
return &OrderedATNConfigSet{BaseATNConfigSet: b}
}
func equalATNConfigs(a, b interface{}) bool {
if a == nil || b == nil {
return false
}
if a == b {
return true
}
var ai, ok = a.(ATNConfig)
var bi, ok1 = b.(ATNConfig)
if !ok || !ok1 {
return false
}
nums := ai.GetState().GetStateNumber() == bi.GetState().GetStateNumber()
alts := ai.GetAlt() == bi.GetAlt()
cons := ai.GetSemanticContext().equals(bi.GetSemanticContext())
return nums && alts && cons
}
golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/atn_deserialization_options.go 0000664 0000000 0000000 00000001405 14102210121 0030457 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
var ATNDeserializationOptionsdefaultOptions = &ATNDeserializationOptions{true, false, false}
type ATNDeserializationOptions struct {
readOnly bool
verifyATN bool
generateRuleBypassTransitions bool
}
func NewATNDeserializationOptions(CopyFrom *ATNDeserializationOptions) *ATNDeserializationOptions {
o := new(ATNDeserializationOptions)
if CopyFrom != nil {
o.readOnly = CopyFrom.readOnly
o.verifyATN = CopyFrom.verifyATN
o.generateRuleBypassTransitions = CopyFrom.generateRuleBypassTransitions
}
return o
}
golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/atn_deserializer.go 0000664 0000000 0000000 00000046605 14102210121 0026213 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import (
"encoding/hex"
"fmt"
"strconv"
"strings"
"unicode/utf16"
)
// This is the earliest supported serialized UUID.
// stick to serialized version for now, we don't need a UUID instance
var BaseSerializedUUID = "AADB8D7E-AEEF-4415-AD2B-8204D6CF042E"
var AddedUnicodeSMP = "59627784-3BE5-417A-B9EB-8131A7286089"
// This list contains all of the currently supported UUIDs, ordered by when
// the feature first appeared in this branch.
var SupportedUUIDs = []string{BaseSerializedUUID, AddedUnicodeSMP}
var SerializedVersion = 3
// This is the current serialized UUID.
var SerializedUUID = AddedUnicodeSMP
type LoopEndStateIntPair struct {
item0 *LoopEndState
item1 int
}
type BlockStartStateIntPair struct {
item0 BlockStartState
item1 int
}
type ATNDeserializer struct {
deserializationOptions *ATNDeserializationOptions
data []rune
pos int
uuid string
}
func NewATNDeserializer(options *ATNDeserializationOptions) *ATNDeserializer {
if options == nil {
options = ATNDeserializationOptionsdefaultOptions
}
return &ATNDeserializer{deserializationOptions: options}
}
func stringInSlice(a string, list []string) int {
for i, b := range list {
if b == a {
return i
}
}
return -1
}
// isFeatureSupported determines if a particular serialized representation of an
// ATN supports a particular feature, identified by the UUID used for
// serializing the ATN at the time the feature was first introduced. Feature is
// the UUID marking the first time the feature was supported in the serialized
// ATN. ActualUuid is the UUID of the actual serialized ATN which is currently
// being deserialized. It returns true if actualUuid represents a serialized ATN
// at or after the feature identified by feature was introduced, and otherwise
// false.
func (a *ATNDeserializer) isFeatureSupported(feature, actualUUID string) bool {
idx1 := stringInSlice(feature, SupportedUUIDs)
if idx1 < 0 {
return false
}
idx2 := stringInSlice(actualUUID, SupportedUUIDs)
return idx2 >= idx1
}
func (a *ATNDeserializer) DeserializeFromUInt16(data []uint16) *ATN {
a.reset(utf16.Decode(data))
a.checkVersion()
a.checkUUID()
atn := a.readATN()
a.readStates(atn)
a.readRules(atn)
a.readModes(atn)
sets := make([]*IntervalSet, 0)
// First, deserialize sets with 16-bit arguments <= U+FFFF.
sets = a.readSets(atn, sets, a.readInt)
// Next, if the ATN was serialized with the Unicode SMP feature,
// deserialize sets with 32-bit arguments <= U+10FFFF.
if (a.isFeatureSupported(AddedUnicodeSMP, a.uuid)) {
sets = a.readSets(atn, sets, a.readInt32)
}
a.readEdges(atn, sets)
a.readDecisions(atn)
a.readLexerActions(atn)
a.markPrecedenceDecisions(atn)
a.verifyATN(atn)
if a.deserializationOptions.generateRuleBypassTransitions && atn.grammarType == ATNTypeParser {
a.generateRuleBypassTransitions(atn)
// Re-verify after modification
a.verifyATN(atn)
}
return atn
}
func (a *ATNDeserializer) reset(data []rune) {
temp := make([]rune, len(data))
for i, c := range data {
// Don't adjust the first value since that's the version number
if i == 0 {
temp[i] = c
} else if c > 1 {
temp[i] = c - 2
} else {
temp[i] = c + 65533
}
}
a.data = temp
a.pos = 0
}
func (a *ATNDeserializer) checkVersion() {
version := a.readInt()
if version != SerializedVersion {
panic("Could not deserialize ATN with version " + strconv.Itoa(version) + " (expected " + strconv.Itoa(SerializedVersion) + ").")
}
}
func (a *ATNDeserializer) checkUUID() {
uuid := a.readUUID()
if stringInSlice(uuid, SupportedUUIDs) < 0 {
panic("Could not deserialize ATN with UUID: " + uuid + " (expected " + SerializedUUID + " or a legacy UUID).")
}
a.uuid = uuid
}
func (a *ATNDeserializer) readATN() *ATN {
grammarType := a.readInt()
maxTokenType := a.readInt()
return NewATN(grammarType, maxTokenType)
}
func (a *ATNDeserializer) readStates(atn *ATN) {
loopBackStateNumbers := make([]LoopEndStateIntPair, 0)
endStateNumbers := make([]BlockStartStateIntPair, 0)
nstates := a.readInt()
for i := 0; i < nstates; i++ {
stype := a.readInt()
// Ignore bad types of states
if stype == ATNStateInvalidType {
atn.addState(nil)
continue
}
ruleIndex := a.readInt()
if ruleIndex == 0xFFFF {
ruleIndex = -1
}
s := a.stateFactory(stype, ruleIndex)
if stype == ATNStateLoopEnd {
loopBackStateNumber := a.readInt()
loopBackStateNumbers = append(loopBackStateNumbers, LoopEndStateIntPair{s.(*LoopEndState), loopBackStateNumber})
} else if s2, ok := s.(BlockStartState); ok {
endStateNumber := a.readInt()
endStateNumbers = append(endStateNumbers, BlockStartStateIntPair{s2, endStateNumber})
}
atn.addState(s)
}
// Delay the assignment of loop back and end states until we know all the state
// instances have been initialized
for j := 0; j < len(loopBackStateNumbers); j++ {
pair := loopBackStateNumbers[j]
pair.item0.loopBackState = atn.states[pair.item1]
}
for j := 0; j < len(endStateNumbers); j++ {
pair := endStateNumbers[j]
pair.item0.setEndState(atn.states[pair.item1].(*BlockEndState))
}
numNonGreedyStates := a.readInt()
for j := 0; j < numNonGreedyStates; j++ {
stateNumber := a.readInt()
atn.states[stateNumber].(DecisionState).setNonGreedy(true)
}
numPrecedenceStates := a.readInt()
for j := 0; j < numPrecedenceStates; j++ {
stateNumber := a.readInt()
atn.states[stateNumber].(*RuleStartState).isPrecedenceRule = true
}
}
func (a *ATNDeserializer) readRules(atn *ATN) {
nrules := a.readInt()
if atn.grammarType == ATNTypeLexer {
atn.ruleToTokenType = make([]int, nrules) // TODO: initIntArray(nrules, 0)
}
atn.ruleToStartState = make([]*RuleStartState, nrules) // TODO: initIntArray(nrules, 0)
for i := 0; i < nrules; i++ {
s := a.readInt()
startState := atn.states[s].(*RuleStartState)
atn.ruleToStartState[i] = startState
if atn.grammarType == ATNTypeLexer {
tokenType := a.readInt()
if tokenType == 0xFFFF {
tokenType = TokenEOF
}
atn.ruleToTokenType[i] = tokenType
}
}
atn.ruleToStopState = make([]*RuleStopState, nrules) //initIntArray(nrules, 0)
for i := 0; i < len(atn.states); i++ {
state := atn.states[i]
if s2, ok := state.(*RuleStopState); ok {
atn.ruleToStopState[s2.ruleIndex] = s2
atn.ruleToStartState[s2.ruleIndex].stopState = s2
}
}
}
func (a *ATNDeserializer) readModes(atn *ATN) {
nmodes := a.readInt()
for i := 0; i < nmodes; i++ {
s := a.readInt()
atn.modeToStartState = append(atn.modeToStartState, atn.states[s].(*TokensStartState))
}
}
func (a *ATNDeserializer) readSets(atn *ATN, sets []*IntervalSet, readUnicode func() int) []*IntervalSet {
m := a.readInt()
for i := 0; i < m; i++ {
iset := NewIntervalSet()
sets = append(sets, iset)
n := a.readInt()
containsEOF := a.readInt()
if containsEOF != 0 {
iset.addOne(-1)
}
for j := 0; j < n; j++ {
i1 := readUnicode()
i2 := readUnicode()
iset.addRange(i1, i2)
}
}
return sets
}
func (a *ATNDeserializer) readEdges(atn *ATN, sets []*IntervalSet) {
nedges := a.readInt()
for i := 0; i < nedges; i++ {
var (
src = a.readInt()
trg = a.readInt()
ttype = a.readInt()
arg1 = a.readInt()
arg2 = a.readInt()
arg3 = a.readInt()
trans = a.edgeFactory(atn, ttype, src, trg, arg1, arg2, arg3, sets)
srcState = atn.states[src]
)
srcState.AddTransition(trans, -1)
}
// Edges for rule stop states can be derived, so they are not serialized
for i := 0; i < len(atn.states); i++ {
state := atn.states[i]
for j := 0; j < len(state.GetTransitions()); j++ {
var t, ok = state.GetTransitions()[j].(*RuleTransition)
if !ok {
continue
}
outermostPrecedenceReturn := -1
if atn.ruleToStartState[t.getTarget().GetRuleIndex()].isPrecedenceRule {
if t.precedence == 0 {
outermostPrecedenceReturn = t.getTarget().GetRuleIndex()
}
}
trans := NewEpsilonTransition(t.followState, outermostPrecedenceReturn)
atn.ruleToStopState[t.getTarget().GetRuleIndex()].AddTransition(trans, -1)
}
}
for i := 0; i < len(atn.states); i++ {
state := atn.states[i]
if s2, ok := state.(*BaseBlockStartState); ok {
// We need to know the end state to set its start state
if s2.endState == nil {
panic("IllegalState")
}
// Block end states can only be associated to a single block start state
if s2.endState.startState != nil {
panic("IllegalState")
}
s2.endState.startState = state
}
if s2, ok := state.(*PlusLoopbackState); ok {
for j := 0; j < len(s2.GetTransitions()); j++ {
target := s2.GetTransitions()[j].getTarget()
if t2, ok := target.(*PlusBlockStartState); ok {
t2.loopBackState = state
}
}
} else if s2, ok := state.(*StarLoopbackState); ok {
for j := 0; j < len(s2.GetTransitions()); j++ {
target := s2.GetTransitions()[j].getTarget()
if t2, ok := target.(*StarLoopEntryState); ok {
t2.loopBackState = state
}
}
}
}
}
func (a *ATNDeserializer) readDecisions(atn *ATN) {
ndecisions := a.readInt()
for i := 0; i < ndecisions; i++ {
s := a.readInt()
decState := atn.states[s].(DecisionState)
atn.DecisionToState = append(atn.DecisionToState, decState)
decState.setDecision(i)
}
}
func (a *ATNDeserializer) readLexerActions(atn *ATN) {
if atn.grammarType == ATNTypeLexer {
count := a.readInt()
atn.lexerActions = make([]LexerAction, count) // initIntArray(count, nil)
for i := 0; i < count; i++ {
actionType := a.readInt()
data1 := a.readInt()
if data1 == 0xFFFF {
data1 = -1
}
data2 := a.readInt()
if data2 == 0xFFFF {
data2 = -1
}
lexerAction := a.lexerActionFactory(actionType, data1, data2)
atn.lexerActions[i] = lexerAction
}
}
}
func (a *ATNDeserializer) generateRuleBypassTransitions(atn *ATN) {
count := len(atn.ruleToStartState)
for i := 0; i < count; i++ {
atn.ruleToTokenType[i] = atn.maxTokenType + i + 1
}
for i := 0; i < count; i++ {
a.generateRuleBypassTransition(atn, i)
}
}
func (a *ATNDeserializer) generateRuleBypassTransition(atn *ATN, idx int) {
bypassStart := NewBasicBlockStartState()
bypassStart.ruleIndex = idx
atn.addState(bypassStart)
bypassStop := NewBlockEndState()
bypassStop.ruleIndex = idx
atn.addState(bypassStop)
bypassStart.endState = bypassStop
atn.defineDecisionState(bypassStart.BaseDecisionState)
bypassStop.startState = bypassStart
var excludeTransition Transition
var endState ATNState
if atn.ruleToStartState[idx].isPrecedenceRule {
// Wrap from the beginning of the rule to the StarLoopEntryState
endState = nil
for i := 0; i < len(atn.states); i++ {
state := atn.states[i]
if a.stateIsEndStateFor(state, idx) != nil {
endState = state
excludeTransition = state.(*StarLoopEntryState).loopBackState.GetTransitions()[0]
break
}
}
if excludeTransition == nil {
panic("Couldn't identify final state of the precedence rule prefix section.")
}
} else {
endState = atn.ruleToStopState[idx]
}
// All non-excluded transitions that currently target end state need to target
// blockEnd instead
for i := 0; i < len(atn.states); i++ {
state := atn.states[i]
for j := 0; j < len(state.GetTransitions()); j++ {
transition := state.GetTransitions()[j]
if transition == excludeTransition {
continue
}
if transition.getTarget() == endState {
transition.setTarget(bypassStop)
}
}
}
// All transitions leaving the rule start state need to leave blockStart instead
ruleToStartState := atn.ruleToStartState[idx]
count := len(ruleToStartState.GetTransitions())
for count > 0 {
bypassStart.AddTransition(ruleToStartState.GetTransitions()[count-1], -1)
ruleToStartState.SetTransitions([]Transition{ruleToStartState.GetTransitions()[len(ruleToStartState.GetTransitions())-1]})
}
// Link the new states
atn.ruleToStartState[idx].AddTransition(NewEpsilonTransition(bypassStart, -1), -1)
bypassStop.AddTransition(NewEpsilonTransition(endState, -1), -1)
MatchState := NewBasicState()
atn.addState(MatchState)
MatchState.AddTransition(NewAtomTransition(bypassStop, atn.ruleToTokenType[idx]), -1)
bypassStart.AddTransition(NewEpsilonTransition(MatchState, -1), -1)
}
func (a *ATNDeserializer) stateIsEndStateFor(state ATNState, idx int) ATNState {
if state.GetRuleIndex() != idx {
return nil
}
if _, ok := state.(*StarLoopEntryState); !ok {
return nil
}
maybeLoopEndState := state.GetTransitions()[len(state.GetTransitions())-1].getTarget()
if _, ok := maybeLoopEndState.(*LoopEndState); !ok {
return nil
}
var _, ok = maybeLoopEndState.GetTransitions()[0].getTarget().(*RuleStopState)
if maybeLoopEndState.(*LoopEndState).epsilonOnlyTransitions && ok {
return state
}
return nil
}
// markPrecedenceDecisions analyzes the StarLoopEntryState states in the
// specified ATN to set the StarLoopEntryState.precedenceRuleDecision field to
// the correct value.
func (a *ATNDeserializer) markPrecedenceDecisions(atn *ATN) {
for _, state := range atn.states {
if _, ok := state.(*StarLoopEntryState); !ok {
continue
}
// We analyze the ATN to determine if a ATN decision state is the
// decision for the closure block that determines whether a
// precedence rule should continue or complete.
if atn.ruleToStartState[state.GetRuleIndex()].isPrecedenceRule {
maybeLoopEndState := state.GetTransitions()[len(state.GetTransitions())-1].getTarget()
if s3, ok := maybeLoopEndState.(*LoopEndState); ok {
var _, ok2 = maybeLoopEndState.GetTransitions()[0].getTarget().(*RuleStopState)
if s3.epsilonOnlyTransitions && ok2 {
state.(*StarLoopEntryState).precedenceRuleDecision = true
}
}
}
}
}
func (a *ATNDeserializer) verifyATN(atn *ATN) {
if !a.deserializationOptions.verifyATN {
return
}
// Verify assumptions
for i := 0; i < len(atn.states); i++ {
state := atn.states[i]
if state == nil {
continue
}
a.checkCondition(state.GetEpsilonOnlyTransitions() || len(state.GetTransitions()) <= 1, "")
switch s2 := state.(type) {
case *PlusBlockStartState:
a.checkCondition(s2.loopBackState != nil, "")
case *StarLoopEntryState:
a.checkCondition(s2.loopBackState != nil, "")
a.checkCondition(len(s2.GetTransitions()) == 2, "")
switch s2 := state.(type) {
case *StarBlockStartState:
var _, ok2 = s2.GetTransitions()[1].getTarget().(*LoopEndState)
a.checkCondition(ok2, "")
a.checkCondition(!s2.nonGreedy, "")
case *LoopEndState:
var s3, ok2 = s2.GetTransitions()[1].getTarget().(*StarBlockStartState)
a.checkCondition(ok2, "")
a.checkCondition(s3.nonGreedy, "")
default:
panic("IllegalState")
}
case *StarLoopbackState:
a.checkCondition(len(state.GetTransitions()) == 1, "")
var _, ok2 = state.GetTransitions()[0].getTarget().(*StarLoopEntryState)
a.checkCondition(ok2, "")
case *LoopEndState:
a.checkCondition(s2.loopBackState != nil, "")
case *RuleStartState:
a.checkCondition(s2.stopState != nil, "")
case *BaseBlockStartState:
a.checkCondition(s2.endState != nil, "")
case *BlockEndState:
a.checkCondition(s2.startState != nil, "")
case DecisionState:
a.checkCondition(len(s2.GetTransitions()) <= 1 || s2.getDecision() >= 0, "")
default:
var _, ok = s2.(*RuleStopState)
a.checkCondition(len(s2.GetTransitions()) <= 1 || ok, "")
}
}
}
func (a *ATNDeserializer) checkCondition(condition bool, message string) {
if !condition {
if message == "" {
message = "IllegalState"
}
panic(message)
}
}
func (a *ATNDeserializer) readInt() int {
v := a.data[a.pos]
a.pos++
return int(v)
}
func (a *ATNDeserializer) readInt32() int {
var low = a.readInt()
var high = a.readInt()
return low | (high << 16)
}
//TODO
//func (a *ATNDeserializer) readLong() int64 {
// panic("Not implemented")
// var low = a.readInt32()
// var high = a.readInt32()
// return (low & 0x00000000FFFFFFFF) | (high << int32)
//}
func createByteToHex() []string {
bth := make([]string, 256)
for i := 0; i < 256; i++ {
bth[i] = strings.ToUpper(hex.EncodeToString([]byte{byte(i)}))
}
return bth
}
var byteToHex = createByteToHex()
func (a *ATNDeserializer) readUUID() string {
bb := make([]int, 16)
for i := 7; i >= 0; i-- {
integer := a.readInt()
bb[(2*i)+1] = integer & 0xFF
bb[2*i] = (integer >> 8) & 0xFF
}
return byteToHex[bb[0]] + byteToHex[bb[1]] +
byteToHex[bb[2]] + byteToHex[bb[3]] + "-" +
byteToHex[bb[4]] + byteToHex[bb[5]] + "-" +
byteToHex[bb[6]] + byteToHex[bb[7]] + "-" +
byteToHex[bb[8]] + byteToHex[bb[9]] + "-" +
byteToHex[bb[10]] + byteToHex[bb[11]] +
byteToHex[bb[12]] + byteToHex[bb[13]] +
byteToHex[bb[14]] + byteToHex[bb[15]]
}
func (a *ATNDeserializer) edgeFactory(atn *ATN, typeIndex, src, trg, arg1, arg2, arg3 int, sets []*IntervalSet) Transition {
target := atn.states[trg]
switch typeIndex {
case TransitionEPSILON:
return NewEpsilonTransition(target, -1)
case TransitionRANGE:
if arg3 != 0 {
return NewRangeTransition(target, TokenEOF, arg2)
}
return NewRangeTransition(target, arg1, arg2)
case TransitionRULE:
return NewRuleTransition(atn.states[arg1], arg2, arg3, target)
case TransitionPREDICATE:
return NewPredicateTransition(target, arg1, arg2, arg3 != 0)
case TransitionPRECEDENCE:
return NewPrecedencePredicateTransition(target, arg1)
case TransitionATOM:
if arg3 != 0 {
return NewAtomTransition(target, TokenEOF)
}
return NewAtomTransition(target, arg1)
case TransitionACTION:
return NewActionTransition(target, arg1, arg2, arg3 != 0)
case TransitionSET:
return NewSetTransition(target, sets[arg1])
case TransitionNOTSET:
return NewNotSetTransition(target, sets[arg1])
case TransitionWILDCARD:
return NewWildcardTransition(target)
}
panic("The specified transition type is not valid.")
}
func (a *ATNDeserializer) stateFactory(typeIndex, ruleIndex int) ATNState {
var s ATNState
switch typeIndex {
case ATNStateInvalidType:
return nil
case ATNStateBasic:
s = NewBasicState()
case ATNStateRuleStart:
s = NewRuleStartState()
case ATNStateBlockStart:
s = NewBasicBlockStartState()
case ATNStatePlusBlockStart:
s = NewPlusBlockStartState()
case ATNStateStarBlockStart:
s = NewStarBlockStartState()
case ATNStateTokenStart:
s = NewTokensStartState()
case ATNStateRuleStop:
s = NewRuleStopState()
case ATNStateBlockEnd:
s = NewBlockEndState()
case ATNStateStarLoopBack:
s = NewStarLoopbackState()
case ATNStateStarLoopEntry:
s = NewStarLoopEntryState()
case ATNStatePlusLoopBack:
s = NewPlusLoopbackState()
case ATNStateLoopEnd:
s = NewLoopEndState()
default:
panic(fmt.Sprintf("state type %d is invalid", typeIndex))
}
s.SetRuleIndex(ruleIndex)
return s
}
func (a *ATNDeserializer) lexerActionFactory(typeIndex, data1, data2 int) LexerAction {
switch typeIndex {
case LexerActionTypeChannel:
return NewLexerChannelAction(data1)
case LexerActionTypeCustom:
return NewLexerCustomAction(data1, data2)
case LexerActionTypeMode:
return NewLexerModeAction(data1)
case LexerActionTypeMore:
return LexerMoreActionINSTANCE
case LexerActionTypePopMode:
return LexerPopModeActionINSTANCE
case LexerActionTypePushMode:
return NewLexerPushModeAction(data1)
case LexerActionTypeSkip:
return LexerSkipActionINSTANCE
case LexerActionTypeType:
return NewLexerTypeAction(data1)
default:
panic(fmt.Sprintf("lexer action %d is invalid", typeIndex))
}
}
golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/atn_simulator.go 0000664 0000000 0000000 00000002352 14102210121 0025537 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
var ATNSimulatorError = NewDFAState(0x7FFFFFFF, NewBaseATNConfigSet(false))
type IATNSimulator interface {
SharedContextCache() *PredictionContextCache
ATN() *ATN
DecisionToDFA() []*DFA
}
type BaseATNSimulator struct {
atn *ATN
sharedContextCache *PredictionContextCache
decisionToDFA []*DFA
}
func NewBaseATNSimulator(atn *ATN, sharedContextCache *PredictionContextCache) *BaseATNSimulator {
b := new(BaseATNSimulator)
b.atn = atn
b.sharedContextCache = sharedContextCache
return b
}
func (b *BaseATNSimulator) getCachedContext(context PredictionContext) PredictionContext {
if b.sharedContextCache == nil {
return context
}
visited := make(map[PredictionContext]PredictionContext)
return getCachedBasePredictionContext(context, b.sharedContextCache, visited)
}
func (b *BaseATNSimulator) SharedContextCache() *PredictionContextCache {
return b.sharedContextCache
}
func (b *BaseATNSimulator) ATN() *ATN {
return b.atn
}
func (b *BaseATNSimulator) DecisionToDFA() []*DFA {
return b.decisionToDFA
}
golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/atn_state.go 0000664 0000000 0000000 00000020311 14102210121 0024633 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import "strconv"
// Constants for serialization.
const (
ATNStateInvalidType = 0
ATNStateBasic = 1
ATNStateRuleStart = 2
ATNStateBlockStart = 3
ATNStatePlusBlockStart = 4
ATNStateStarBlockStart = 5
ATNStateTokenStart = 6
ATNStateRuleStop = 7
ATNStateBlockEnd = 8
ATNStateStarLoopBack = 9
ATNStateStarLoopEntry = 10
ATNStatePlusLoopBack = 11
ATNStateLoopEnd = 12
ATNStateInvalidStateNumber = -1
)
var ATNStateInitialNumTransitions = 4
type ATNState interface {
GetEpsilonOnlyTransitions() bool
GetRuleIndex() int
SetRuleIndex(int)
GetNextTokenWithinRule() *IntervalSet
SetNextTokenWithinRule(*IntervalSet)
GetATN() *ATN
SetATN(*ATN)
GetStateType() int
GetStateNumber() int
SetStateNumber(int)
GetTransitions() []Transition
SetTransitions([]Transition)
AddTransition(Transition, int)
String() string
hash() int
}
type BaseATNState struct {
// NextTokenWithinRule caches lookahead during parsing. Not used during construction.
NextTokenWithinRule *IntervalSet
// atn is the current ATN.
atn *ATN
epsilonOnlyTransitions bool
// ruleIndex tracks the Rule index because there are no Rule objects at runtime.
ruleIndex int
stateNumber int
stateType int
// Track the transitions emanating from this ATN state.
transitions []Transition
}
func NewBaseATNState() *BaseATNState {
return &BaseATNState{stateNumber: ATNStateInvalidStateNumber, stateType: ATNStateInvalidType}
}
func (as *BaseATNState) GetRuleIndex() int {
return as.ruleIndex
}
func (as *BaseATNState) SetRuleIndex(v int) {
as.ruleIndex = v
}
func (as *BaseATNState) GetEpsilonOnlyTransitions() bool {
return as.epsilonOnlyTransitions
}
func (as *BaseATNState) GetATN() *ATN {
return as.atn
}
func (as *BaseATNState) SetATN(atn *ATN) {
as.atn = atn
}
func (as *BaseATNState) GetTransitions() []Transition {
return as.transitions
}
func (as *BaseATNState) SetTransitions(t []Transition) {
as.transitions = t
}
func (as *BaseATNState) GetStateType() int {
return as.stateType
}
func (as *BaseATNState) GetStateNumber() int {
return as.stateNumber
}
func (as *BaseATNState) SetStateNumber(stateNumber int) {
as.stateNumber = stateNumber
}
func (as *BaseATNState) GetNextTokenWithinRule() *IntervalSet {
return as.NextTokenWithinRule
}
func (as *BaseATNState) SetNextTokenWithinRule(v *IntervalSet) {
as.NextTokenWithinRule = v
}
func (as *BaseATNState) hash() int {
return as.stateNumber
}
func (as *BaseATNState) String() string {
return strconv.Itoa(as.stateNumber)
}
func (as *BaseATNState) equals(other interface{}) bool {
if ot, ok := other.(ATNState); ok {
return as.stateNumber == ot.GetStateNumber()
}
return false
}
func (as *BaseATNState) isNonGreedyExitState() bool {
return false
}
func (as *BaseATNState) AddTransition(trans Transition, index int) {
if len(as.transitions) == 0 {
as.epsilonOnlyTransitions = trans.getIsEpsilon()
} else if as.epsilonOnlyTransitions != trans.getIsEpsilon() {
as.epsilonOnlyTransitions = false
}
if index == -1 {
as.transitions = append(as.transitions, trans)
} else {
as.transitions = append(as.transitions[:index], append([]Transition{trans}, as.transitions[index:]...)...)
// TODO: as.transitions.splice(index, 1, trans)
}
}
type BasicState struct {
*BaseATNState
}
func NewBasicState() *BasicState {
b := NewBaseATNState()
b.stateType = ATNStateBasic
return &BasicState{BaseATNState: b}
}
type DecisionState interface {
ATNState
getDecision() int
setDecision(int)
getNonGreedy() bool
setNonGreedy(bool)
}
type BaseDecisionState struct {
*BaseATNState
decision int
nonGreedy bool
}
func NewBaseDecisionState() *BaseDecisionState {
return &BaseDecisionState{BaseATNState: NewBaseATNState(), decision: -1}
}
func (s *BaseDecisionState) getDecision() int {
return s.decision
}
func (s *BaseDecisionState) setDecision(b int) {
s.decision = b
}
func (s *BaseDecisionState) getNonGreedy() bool {
return s.nonGreedy
}
func (s *BaseDecisionState) setNonGreedy(b bool) {
s.nonGreedy = b
}
type BlockStartState interface {
DecisionState
getEndState() *BlockEndState
setEndState(*BlockEndState)
}
// BaseBlockStartState is the start of a regular (...) block.
type BaseBlockStartState struct {
*BaseDecisionState
endState *BlockEndState
}
func NewBlockStartState() *BaseBlockStartState {
return &BaseBlockStartState{BaseDecisionState: NewBaseDecisionState()}
}
func (s *BaseBlockStartState) getEndState() *BlockEndState {
return s.endState
}
func (s *BaseBlockStartState) setEndState(b *BlockEndState) {
s.endState = b
}
type BasicBlockStartState struct {
*BaseBlockStartState
}
func NewBasicBlockStartState() *BasicBlockStartState {
b := NewBlockStartState()
b.stateType = ATNStateBlockStart
return &BasicBlockStartState{BaseBlockStartState: b}
}
// BlockEndState is a terminal node of a simple (a|b|c) block.
type BlockEndState struct {
*BaseATNState
startState ATNState
}
func NewBlockEndState() *BlockEndState {
b := NewBaseATNState()
b.stateType = ATNStateBlockEnd
return &BlockEndState{BaseATNState: b}
}
// RuleStopState is the last node in the ATN for a rule, unless that rule is the
// start symbol. In that case, there is one transition to EOF. Later, we might
// encode references to all calls to this rule to compute FOLLOW sets for error
// handling.
type RuleStopState struct {
*BaseATNState
}
func NewRuleStopState() *RuleStopState {
b := NewBaseATNState()
b.stateType = ATNStateRuleStop
return &RuleStopState{BaseATNState: b}
}
type RuleStartState struct {
*BaseATNState
stopState ATNState
isPrecedenceRule bool
}
func NewRuleStartState() *RuleStartState {
b := NewBaseATNState()
b.stateType = ATNStateRuleStart
return &RuleStartState{BaseATNState: b}
}
// PlusLoopbackState is a decision state for A+ and (A|B)+. It has two
// transitions: one to the loop back to start of the block, and one to exit.
type PlusLoopbackState struct {
*BaseDecisionState
}
func NewPlusLoopbackState() *PlusLoopbackState {
b := NewBaseDecisionState()
b.stateType = ATNStatePlusLoopBack
return &PlusLoopbackState{BaseDecisionState: b}
}
// PlusBlockStartState is the start of a (A|B|...)+ loop. Technically it is a
// decision state; we don't use it for code generation. Somebody might need it,
// it is included for completeness. In reality, PlusLoopbackState is the real
// decision-making node for A+.
type PlusBlockStartState struct {
*BaseBlockStartState
loopBackState ATNState
}
func NewPlusBlockStartState() *PlusBlockStartState {
b := NewBlockStartState()
b.stateType = ATNStatePlusBlockStart
return &PlusBlockStartState{BaseBlockStartState: b}
}
// StarBlockStartState is the block that begins a closure loop.
type StarBlockStartState struct {
*BaseBlockStartState
}
func NewStarBlockStartState() *StarBlockStartState {
b := NewBlockStartState()
b.stateType = ATNStateStarBlockStart
return &StarBlockStartState{BaseBlockStartState: b}
}
type StarLoopbackState struct {
*BaseATNState
}
func NewStarLoopbackState() *StarLoopbackState {
b := NewBaseATNState()
b.stateType = ATNStateStarLoopBack
return &StarLoopbackState{BaseATNState: b}
}
type StarLoopEntryState struct {
*BaseDecisionState
loopBackState ATNState
precedenceRuleDecision bool
}
func NewStarLoopEntryState() *StarLoopEntryState {
b := NewBaseDecisionState()
b.stateType = ATNStateStarLoopEntry
// False precedenceRuleDecision indicates whether s state can benefit from a precedence DFA during SLL decision making.
return &StarLoopEntryState{BaseDecisionState: b}
}
// LoopEndState marks the end of a * or + loop.
type LoopEndState struct {
*BaseATNState
loopBackState ATNState
}
func NewLoopEndState() *LoopEndState {
b := NewBaseATNState()
b.stateType = ATNStateLoopEnd
return &LoopEndState{BaseATNState: b}
}
// TokensStartState is the Tokens rule start state linking to each lexer rule start state.
type TokensStartState struct {
*BaseDecisionState
}
func NewTokensStartState() *TokensStartState {
b := NewBaseDecisionState()
b.stateType = ATNStateTokenStart
return &TokensStartState{BaseDecisionState: b}
}
golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/atn_type.go 0000664 0000000 0000000 00000000470 14102210121 0024500 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
// Represent the type of recognizer an ATN applies to.
const (
ATNTypeLexer = 0
ATNTypeParser = 1
)
golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/char_stream.go 0000664 0000000 0000000 00000000547 14102210121 0025152 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
type CharStream interface {
IntStream
GetText(int, int) string
GetTextFromTokens(start, end Token) string
GetTextFromInterval(*Interval) string
}
golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/common_token_factory.go 0000664 0000000 0000000 00000004060 14102210121 0027073 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
// TokenFactory creates CommonToken objects.
type TokenFactory interface {
Create(source *TokenSourceCharStreamPair, ttype int, text string, channel, start, stop, line, column int) Token
}
// CommonTokenFactory is the default TokenFactory implementation.
type CommonTokenFactory struct {
// copyText indicates whether CommonToken.setText should be called after
// constructing tokens to explicitly set the text. This is useful for cases
// where the input stream might not be able to provide arbitrary substrings of
// text from the input after the lexer creates a token (e.g. the
// implementation of CharStream.GetText in UnbufferedCharStream panics an
// UnsupportedOperationException). Explicitly setting the token text allows
// Token.GetText to be called at any time regardless of the input stream
// implementation.
//
// The default value is false to avoid the performance and memory overhead of
// copying text for every token unless explicitly requested.
copyText bool
}
func NewCommonTokenFactory(copyText bool) *CommonTokenFactory {
return &CommonTokenFactory{copyText: copyText}
}
// CommonTokenFactoryDEFAULT is the default CommonTokenFactory. It does not
// explicitly copy token text when constructing tokens.
var CommonTokenFactoryDEFAULT = NewCommonTokenFactory(false)
func (c *CommonTokenFactory) Create(source *TokenSourceCharStreamPair, ttype int, text string, channel, start, stop, line, column int) Token {
t := NewCommonToken(source, ttype, channel, start, stop)
t.line = line
t.column = column
if text != "" {
t.SetText(text)
} else if c.copyText && source.charStream != nil {
t.SetText(source.charStream.GetTextFromInterval(NewInterval(start, stop)))
}
return t
}
func (c *CommonTokenFactory) createThin(ttype int, text string) Token {
t := NewCommonToken(nil, ttype, TokenDefaultChannel, -1, -1)
t.SetText(text)
return t
}
golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/common_token_stream.go 0000664 0000000 0000000 00000023567 14102210121 0026734 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import (
"strconv"
)
// CommonTokenStream is an implementation of TokenStream that loads tokens from
// a TokenSource on-demand and places the tokens in a buffer to provide access
// to any previous token by index. This token stream ignores the value of
// Token.getChannel. If your parser requires the token stream filter tokens to
// only those on a particular channel, such as Token.DEFAULT_CHANNEL or
// Token.HIDDEN_CHANNEL, use a filtering token stream such a CommonTokenStream.
type CommonTokenStream struct {
channel int
// fetchedEOF indicates whether the Token.EOF token has been fetched from
// tokenSource and added to tokens. This field improves performance for the
// following cases:
//
// consume: The lookahead check in consume to preven consuming the EOF symbol is
// optimized by checking the values of fetchedEOF and p instead of calling LA.
//
// fetch: The check to prevent adding multiple EOF symbols into tokens is
// trivial with bt field.
fetchedEOF bool
// index indexs into tokens of the current token (next token to consume).
// tokens[p] should be LT(1). It is set to -1 when the stream is first
// constructed or when SetTokenSource is called, indicating that the first token
// has not yet been fetched from the token source. For additional information,
// see the documentation of IntStream for a description of initializing methods.
index int
// tokenSource is the TokenSource from which tokens for the bt stream are
// fetched.
tokenSource TokenSource
// tokens is all tokens fetched from the token source. The list is considered a
// complete view of the input once fetchedEOF is set to true.
tokens []Token
}
func NewCommonTokenStream(lexer Lexer, channel int) *CommonTokenStream {
return &CommonTokenStream{
channel: channel,
index: -1,
tokenSource: lexer,
tokens: make([]Token, 0),
}
}
func (c *CommonTokenStream) GetAllTokens() []Token {
return c.tokens
}
func (c *CommonTokenStream) Mark() int {
return 0
}
func (c *CommonTokenStream) Release(marker int) {}
func (c *CommonTokenStream) reset() {
c.Seek(0)
}
func (c *CommonTokenStream) Seek(index int) {
c.lazyInit()
c.index = c.adjustSeekIndex(index)
}
func (c *CommonTokenStream) Get(index int) Token {
c.lazyInit()
return c.tokens[index]
}
func (c *CommonTokenStream) Consume() {
SkipEOFCheck := false
if c.index >= 0 {
if c.fetchedEOF {
// The last token in tokens is EOF. Skip the check if p indexes any fetched.
// token except the last.
SkipEOFCheck = c.index < len(c.tokens)-1
} else {
// No EOF token in tokens. Skip the check if p indexes a fetched token.
SkipEOFCheck = c.index < len(c.tokens)
}
} else {
// Not yet initialized
SkipEOFCheck = false
}
if !SkipEOFCheck && c.LA(1) == TokenEOF {
panic("cannot consume EOF")
}
if c.Sync(c.index + 1) {
c.index = c.adjustSeekIndex(c.index + 1)
}
}
// Sync makes sure index i in tokens has a token and returns true if a token is
// located at index i and otherwise false.
func (c *CommonTokenStream) Sync(i int) bool {
n := i - len(c.tokens) + 1 // TODO: How many more elements do we need?
if n > 0 {
fetched := c.fetch(n)
return fetched >= n
}
return true
}
// fetch adds n elements to buffer and returns the actual number of elements
// added to the buffer.
func (c *CommonTokenStream) fetch(n int) int {
if c.fetchedEOF {
return 0
}
for i := 0; i < n; i++ {
t := c.tokenSource.NextToken()
t.SetTokenIndex(len(c.tokens))
c.tokens = append(c.tokens, t)
if t.GetTokenType() == TokenEOF {
c.fetchedEOF = true
return i + 1
}
}
return n
}
// GetTokens gets all tokens from start to stop inclusive.
func (c *CommonTokenStream) GetTokens(start int, stop int, types *IntervalSet) []Token {
if start < 0 || stop < 0 {
return nil
}
c.lazyInit()
subset := make([]Token, 0)
if stop >= len(c.tokens) {
stop = len(c.tokens) - 1
}
for i := start; i < stop; i++ {
t := c.tokens[i]
if t.GetTokenType() == TokenEOF {
break
}
if types == nil || types.contains(t.GetTokenType()) {
subset = append(subset, t)
}
}
return subset
}
func (c *CommonTokenStream) LA(i int) int {
return c.LT(i).GetTokenType()
}
func (c *CommonTokenStream) lazyInit() {
if c.index == -1 {
c.setup()
}
}
func (c *CommonTokenStream) setup() {
c.Sync(0)
c.index = c.adjustSeekIndex(0)
}
func (c *CommonTokenStream) GetTokenSource() TokenSource {
return c.tokenSource
}
// SetTokenSource resets the c token stream by setting its token source.
func (c *CommonTokenStream) SetTokenSource(tokenSource TokenSource) {
c.tokenSource = tokenSource
c.tokens = make([]Token, 0)
c.index = -1
}
// NextTokenOnChannel returns the index of the next token on channel given a
// starting index. Returns i if tokens[i] is on channel. Returns -1 if there are
// no tokens on channel between i and EOF.
func (c *CommonTokenStream) NextTokenOnChannel(i, channel int) int {
c.Sync(i)
if i >= len(c.tokens) {
return -1
}
token := c.tokens[i]
for token.GetChannel() != c.channel {
if token.GetTokenType() == TokenEOF {
return -1
}
i++
c.Sync(i)
token = c.tokens[i]
}
return i
}
// previousTokenOnChannel returns the index of the previous token on channel
// given a starting index. Returns i if tokens[i] is on channel. Returns -1 if
// there are no tokens on channel between i and 0.
func (c *CommonTokenStream) previousTokenOnChannel(i, channel int) int {
for i >= 0 && c.tokens[i].GetChannel() != channel {
i--
}
return i
}
// GetHiddenTokensToRight collects all tokens on a specified channel to the
// right of the current token up until we see a token on DEFAULT_TOKEN_CHANNEL
// or EOF. If channel is -1, it finds any non-default channel token.
func (c *CommonTokenStream) GetHiddenTokensToRight(tokenIndex, channel int) []Token {
c.lazyInit()
if tokenIndex < 0 || tokenIndex >= len(c.tokens) {
panic(strconv.Itoa(tokenIndex) + " not in 0.." + strconv.Itoa(len(c.tokens)-1))
}
nextOnChannel := c.NextTokenOnChannel(tokenIndex+1, LexerDefaultTokenChannel)
from := tokenIndex + 1
// If no onchannel to the right, then nextOnChannel == -1, so set to to last token
var to int
if nextOnChannel == -1 {
to = len(c.tokens) - 1
} else {
to = nextOnChannel
}
return c.filterForChannel(from, to, channel)
}
// GetHiddenTokensToLeft collects all tokens on channel to the left of the
// current token until we see a token on DEFAULT_TOKEN_CHANNEL. If channel is
// -1, it finds any non default channel token.
func (c *CommonTokenStream) GetHiddenTokensToLeft(tokenIndex, channel int) []Token {
c.lazyInit()
if tokenIndex < 0 || tokenIndex >= len(c.tokens) {
panic(strconv.Itoa(tokenIndex) + " not in 0.." + strconv.Itoa(len(c.tokens)-1))
}
prevOnChannel := c.previousTokenOnChannel(tokenIndex-1, LexerDefaultTokenChannel)
if prevOnChannel == tokenIndex-1 {
return nil
}
// If there are none on channel to the left and prevOnChannel == -1 then from = 0
from := prevOnChannel + 1
to := tokenIndex - 1
return c.filterForChannel(from, to, channel)
}
func (c *CommonTokenStream) filterForChannel(left, right, channel int) []Token {
hidden := make([]Token, 0)
for i := left; i < right+1; i++ {
t := c.tokens[i]
if channel == -1 {
if t.GetChannel() != LexerDefaultTokenChannel {
hidden = append(hidden, t)
}
} else if t.GetChannel() == channel {
hidden = append(hidden, t)
}
}
if len(hidden) == 0 {
return nil
}
return hidden
}
func (c *CommonTokenStream) GetSourceName() string {
return c.tokenSource.GetSourceName()
}
func (c *CommonTokenStream) Size() int {
return len(c.tokens)
}
func (c *CommonTokenStream) Index() int {
return c.index
}
func (c *CommonTokenStream) GetAllText() string {
return c.GetTextFromInterval(nil)
}
func (c *CommonTokenStream) GetTextFromTokens(start, end Token) string {
if start == nil || end == nil {
return ""
}
return c.GetTextFromInterval(NewInterval(start.GetTokenIndex(), end.GetTokenIndex()))
}
func (c *CommonTokenStream) GetTextFromRuleContext(interval RuleContext) string {
return c.GetTextFromInterval(interval.GetSourceInterval())
}
func (c *CommonTokenStream) GetTextFromInterval(interval *Interval) string {
c.lazyInit()
c.Fill()
if interval == nil {
interval = NewInterval(0, len(c.tokens)-1)
}
start := interval.Start
stop := interval.Stop
if start < 0 || stop < 0 {
return ""
}
if stop >= len(c.tokens) {
stop = len(c.tokens) - 1
}
s := ""
for i := start; i < stop+1; i++ {
t := c.tokens[i]
if t.GetTokenType() == TokenEOF {
break
}
s += t.GetText()
}
return s
}
// Fill gets all tokens from the lexer until EOF.
func (c *CommonTokenStream) Fill() {
c.lazyInit()
for c.fetch(1000) == 1000 {
continue
}
}
func (c *CommonTokenStream) adjustSeekIndex(i int) int {
return c.NextTokenOnChannel(i, c.channel)
}
func (c *CommonTokenStream) LB(k int) Token {
if k == 0 || c.index-k < 0 {
return nil
}
i := c.index
n := 1
// Find k good tokens looking backward
for n <= k {
// Skip off-channel tokens
i = c.previousTokenOnChannel(i-1, c.channel)
n++
}
if i < 0 {
return nil
}
return c.tokens[i]
}
func (c *CommonTokenStream) LT(k int) Token {
c.lazyInit()
if k == 0 {
return nil
}
if k < 0 {
return c.LB(-k)
}
i := c.index
n := 1 // We know tokens[n] is valid
// Find k good tokens
for n < k {
// Skip off-channel tokens, but make sure to not look past EOF
if c.Sync(i + 1) {
i = c.NextTokenOnChannel(i+1, c.channel)
}
n++
}
return c.tokens[i]
}
// getNumberOfOnChannelTokens counts EOF once.
func (c *CommonTokenStream) getNumberOfOnChannelTokens() int {
var n int
c.Fill()
for i := 0; i < len(c.tokens); i++ {
t := c.tokens[i]
if t.GetChannel() == c.channel {
n++
}
if t.GetTokenType() == TokenEOF {
break
}
}
return n
}
golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/common_token_stream_test.go 0000664 0000000 0000000 00000012602 14102210121 0027757 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import (
"testing"
)
type commonTokenStreamTestLexer struct {
*BaseLexer
tokens []Token
i int
}
func (l *commonTokenStreamTestLexer) NextToken() Token {
tmp := l.tokens[l.i]
l.i++
return tmp
}
func TestCommonTokenStreamOffChannel(t *testing.T) {
assert := assertNew(t)
lexEngine := &commonTokenStreamTestLexer{
tokens: []Token{
newTestCommonToken(1, " ", LexerHidden), // 0
newTestCommonToken(1, "x", LexerDefaultTokenChannel), // 1
newTestCommonToken(1, " ", LexerHidden), // 2
newTestCommonToken(1, "=", LexerDefaultTokenChannel), // 3
newTestCommonToken(1, "34", LexerDefaultTokenChannel), // 4
newTestCommonToken(1, " ", LexerHidden), // 5
newTestCommonToken(1, " ", LexerHidden), // 6
newTestCommonToken(1, ";", LexerDefaultTokenChannel), // 7
newTestCommonToken(1, "\n", LexerHidden), // 9
newTestCommonToken(TokenEOF, "", LexerDefaultTokenChannel), // 10
},
}
tokens := NewCommonTokenStream(lexEngine, TokenDefaultChannel)
assert.Equal("x", tokens.LT(1).GetText()) // must skip first off channel token
tokens.Consume()
assert.Equal("=", tokens.LT(1).GetText())
assert.Equal("x", tokens.LT(-1).GetText())
tokens.Consume()
assert.Equal("34", tokens.LT(1).GetText())
assert.Equal("=", tokens.LT(-1).GetText())
tokens.Consume()
assert.Equal(";", tokens.LT(1).GetText())
assert.Equal("34", tokens.LT(-1).GetText())
tokens.Consume()
assert.Equal(TokenEOF, tokens.LT(1).GetTokenType())
assert.Equal(";", tokens.LT(-1).GetText())
assert.Equal("34", tokens.LT(-2).GetText())
assert.Equal("=", tokens.LT(-3).GetText())
assert.Equal("x", tokens.LT(-4).GetText())
}
func TestCommonTokenStreamFetchOffChannel(t *testing.T) {
assert := assertNew(t)
lexEngine := &commonTokenStreamTestLexer{
tokens: []Token{
newTestCommonToken(1, " ", LexerHidden), // 0
newTestCommonToken(1, "x", LexerDefaultTokenChannel), // 1
newTestCommonToken(1, " ", LexerHidden), // 2
newTestCommonToken(1, "=", LexerDefaultTokenChannel), // 3
newTestCommonToken(1, "34", LexerDefaultTokenChannel), // 4
newTestCommonToken(1, " ", LexerHidden), // 5
newTestCommonToken(1, " ", LexerHidden), // 6
newTestCommonToken(1, ";", LexerDefaultTokenChannel), // 7
newTestCommonToken(1, " ", LexerHidden), // 8
newTestCommonToken(1, "\n", LexerHidden), // 9
newTestCommonToken(TokenEOF, "", LexerDefaultTokenChannel), // 10
},
}
tokens := NewCommonTokenStream(lexEngine, TokenDefaultChannel)
tokens.Fill()
assert.Nil(tokens.GetHiddenTokensToLeft(0, -1))
assert.Nil(tokens.GetHiddenTokensToRight(0, -1))
assert.Equal("[[@0,0:0=' ',<1>,channel=1,0:-1]]", tokensToString(tokens.GetHiddenTokensToLeft(1, -1)))
assert.Equal("[[@2,0:0=' ',<1>,channel=1,0:-1]]", tokensToString(tokens.GetHiddenTokensToRight(1, -1)))
assert.Nil(tokens.GetHiddenTokensToLeft(2, -1))
assert.Nil(tokens.GetHiddenTokensToRight(2, -1))
assert.Equal("[[@2,0:0=' ',<1>,channel=1,0:-1]]", tokensToString(tokens.GetHiddenTokensToLeft(3, -1)))
assert.Nil(tokens.GetHiddenTokensToRight(3, -1))
assert.Nil(tokens.GetHiddenTokensToLeft(4, -1))
assert.Equal("[[@5,0:0=' ',<1>,channel=1,0:-1], [@6,0:0=' ',<1>,channel=1,0:-1]]",
tokensToString(tokens.GetHiddenTokensToRight(4, -1)))
assert.Nil(tokens.GetHiddenTokensToLeft(5, -1))
assert.Equal("[[@6,0:0=' ',<1>,channel=1,0:-1]]",
tokensToString(tokens.GetHiddenTokensToRight(5, -1)))
assert.Equal("[[@5,0:0=' ',<1>,channel=1,0:-1]]",
tokensToString(tokens.GetHiddenTokensToLeft(6, -1)))
assert.Nil(tokens.GetHiddenTokensToRight(6, -1))
assert.Equal("[[@5,0:0=' ',<1>,channel=1,0:-1], [@6,0:0=' ',<1>,channel=1,0:-1]]",
tokensToString(tokens.GetHiddenTokensToLeft(7, -1)))
assert.Equal("[[@8,0:0=' ',<1>,channel=1,0:-1], [@9,0:0='\\n',<1>,channel=1,0:-1]]",
tokensToString(tokens.GetHiddenTokensToRight(7, -1)))
assert.Nil(tokens.GetHiddenTokensToLeft(8, -1))
assert.Equal("[[@9,0:0='\\n',<1>,channel=1,0:-1]]",
tokensToString(tokens.GetHiddenTokensToRight(8, -1)))
assert.Equal("[[@8,0:0=' ',<1>,channel=1,0:-1]]",
tokensToString(tokens.GetHiddenTokensToLeft(9, -1)))
assert.Nil(tokens.GetHiddenTokensToRight(9, -1))
}
type commonTokenStreamTestLexerSingleEOF struct {
*BaseLexer
tokens []Token
i int
}
func (l *commonTokenStreamTestLexerSingleEOF) NextToken() Token {
return newTestCommonToken(TokenEOF, "", LexerDefaultTokenChannel)
}
func TestCommonTokenStreamSingleEOF(t *testing.T) {
assert := assertNew(t)
lexEngine := &commonTokenStreamTestLexerSingleEOF{}
tokens := NewCommonTokenStream(lexEngine, TokenDefaultChannel)
tokens.Fill()
assert.Equal(TokenEOF, tokens.LA(1))
assert.Equal(0, tokens.index)
assert.Equal(1, tokens.Size())
}
func TestCommonTokenStreamCannotConsumeEOF(t *testing.T) {
assert := assertNew(t)
lexEngine := &commonTokenStreamTestLexerSingleEOF{}
tokens := NewCommonTokenStream(lexEngine, TokenDefaultChannel)
tokens.Fill()
assert.Equal(TokenEOF, tokens.LA(1))
assert.Equal(0, tokens.index)
assert.Equal(1, tokens.Size())
assert.Panics(tokens.Consume)
}
golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/dfa.go 0000664 0000000 0000000 00000010556 14102210121 0023415 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import (
"sort"
"sync"
)
type DFA struct {
// atnStartState is the ATN state in which this was created
atnStartState DecisionState
decision int
// states is all the DFA states. Use Map to get the old state back; Set can only
// indicate whether it is there.
states map[int]*DFAState
statesMu sync.RWMutex
s0 *DFAState
s0Mu sync.RWMutex
// precedenceDfa is the backing field for isPrecedenceDfa and setPrecedenceDfa.
// True if the DFA is for a precedence decision and false otherwise.
precedenceDfa bool
}
func NewDFA(atnStartState DecisionState, decision int) *DFA {
return &DFA{
atnStartState: atnStartState,
decision: decision,
states: make(map[int]*DFAState),
}
}
// getPrecedenceStartState gets the start state for the current precedence and
// returns the start state corresponding to the specified precedence if a start
// state exists for the specified precedence and nil otherwise. d must be a
// precedence DFA. See also isPrecedenceDfa.
func (d *DFA) getPrecedenceStartState(precedence int) *DFAState {
if !d.precedenceDfa {
panic("only precedence DFAs may contain a precedence start state")
}
d.s0Mu.RLock()
defer d.s0Mu.RUnlock()
// s0.edges is never nil for a precedence DFA
if precedence < 0 || precedence >= len(d.s0.edges) {
return nil
}
return d.s0.edges[precedence]
}
// setPrecedenceStartState sets the start state for the current precedence. d
// must be a precedence DFA. See also isPrecedenceDfa.
func (d *DFA) setPrecedenceStartState(precedence int, startState *DFAState) {
if !d.precedenceDfa {
panic("only precedence DFAs may contain a precedence start state")
}
if precedence < 0 {
return
}
d.s0Mu.Lock()
defer d.s0Mu.Unlock()
// Synchronization on s0 here is ok. When the DFA is turned into a
// precedence DFA, s0 will be initialized once and not updated again. s0.edges
// is never nil for a precedence DFA.
if precedence >= len(d.s0.edges) {
d.s0.edges = append(d.s0.edges, make([]*DFAState, precedence+1-len(d.s0.edges))...)
}
d.s0.edges[precedence] = startState
}
// setPrecedenceDfa sets whether d is a precedence DFA. If precedenceDfa differs
// from the current DFA configuration, then d.states is cleared, the initial
// state s0 is set to a new DFAState with an empty outgoing DFAState.edges to
// store the start states for individual precedence values if precedenceDfa is
// true or nil otherwise, and d.precedenceDfa is updated.
func (d *DFA) setPrecedenceDfa(precedenceDfa bool) {
if d.precedenceDfa != precedenceDfa {
d.states = make(map[int]*DFAState)
if precedenceDfa {
precedenceState := NewDFAState(-1, NewBaseATNConfigSet(false))
precedenceState.edges = make([]*DFAState, 0)
precedenceState.isAcceptState = false
precedenceState.requiresFullContext = false
d.s0 = precedenceState
} else {
d.s0 = nil
}
d.precedenceDfa = precedenceDfa
}
}
func (d *DFA) getS0() *DFAState {
d.s0Mu.RLock()
defer d.s0Mu.RUnlock()
return d.s0
}
func (d *DFA) setS0(s *DFAState) {
d.s0Mu.Lock()
defer d.s0Mu.Unlock()
d.s0 = s
}
func (d *DFA) getState(hash int) (*DFAState, bool) {
d.statesMu.RLock()
defer d.statesMu.RUnlock()
s, ok := d.states[hash]
return s, ok
}
func (d *DFA) setState(hash int, state *DFAState) {
d.statesMu.Lock()
defer d.statesMu.Unlock()
d.states[hash] = state
}
func (d *DFA) numStates() int {
d.statesMu.RLock()
defer d.statesMu.RUnlock()
return len(d.states)
}
type dfaStateList []*DFAState
func (d dfaStateList) Len() int { return len(d) }
func (d dfaStateList) Less(i, j int) bool { return d[i].stateNumber < d[j].stateNumber }
func (d dfaStateList) Swap(i, j int) { d[i], d[j] = d[j], d[i] }
// sortedStates returns the states in d sorted by their state number.
func (d *DFA) sortedStates() []*DFAState {
vs := make([]*DFAState, 0, len(d.states))
for _, v := range d.states {
vs = append(vs, v)
}
sort.Sort(dfaStateList(vs))
return vs
}
func (d *DFA) String(literalNames []string, symbolicNames []string) string {
if d.s0 == nil {
return ""
}
return NewDFASerializer(d, literalNames, symbolicNames).String()
}
func (d *DFA) ToLexerString() string {
if d.s0 == nil {
return ""
}
return NewLexerDFASerializer(d).String()
}
golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/dfa_serializer.go 0000664 0000000 0000000 00000005363 14102210121 0025646 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import (
"fmt"
"strconv"
)
// DFASerializer is a DFA walker that knows how to dump them to serialized
// strings.
type DFASerializer struct {
dfa *DFA
literalNames []string
symbolicNames []string
}
func NewDFASerializer(dfa *DFA, literalNames, symbolicNames []string) *DFASerializer {
if literalNames == nil {
literalNames = make([]string, 0)
}
if symbolicNames == nil {
symbolicNames = make([]string, 0)
}
return &DFASerializer{
dfa: dfa,
literalNames: literalNames,
symbolicNames: symbolicNames,
}
}
func (d *DFASerializer) String() string {
if d.dfa.s0 == nil {
return ""
}
buf := ""
states := d.dfa.sortedStates()
for _, s := range states {
if s.edges != nil {
n := len(s.edges)
for j := 0; j < n; j++ {
t := s.edges[j]
if t != nil && t.stateNumber != 0x7FFFFFFF {
buf += d.GetStateString(s)
buf += "-"
buf += d.getEdgeLabel(j)
buf += "->"
buf += d.GetStateString(t)
buf += "\n"
}
}
}
}
if len(buf) == 0 {
return ""
}
return buf
}
func (d *DFASerializer) getEdgeLabel(i int) string {
if i == 0 {
return "EOF"
} else if d.literalNames != nil && i-1 < len(d.literalNames) {
return d.literalNames[i-1]
} else if d.symbolicNames != nil && i-1 < len(d.symbolicNames) {
return d.symbolicNames[i-1]
}
return strconv.Itoa(i - 1)
}
func (d *DFASerializer) GetStateString(s *DFAState) string {
var a, b string
if s.isAcceptState {
a = ":"
}
if s.requiresFullContext {
b = "^"
}
baseStateStr := a + "s" + strconv.Itoa(s.stateNumber) + b
if s.isAcceptState {
if s.predicates != nil {
return baseStateStr + "=>" + fmt.Sprint(s.predicates)
}
return baseStateStr + "=>" + fmt.Sprint(s.prediction)
}
return baseStateStr
}
type LexerDFASerializer struct {
*DFASerializer
}
func NewLexerDFASerializer(dfa *DFA) *LexerDFASerializer {
return &LexerDFASerializer{DFASerializer: NewDFASerializer(dfa, nil, nil)}
}
func (l *LexerDFASerializer) getEdgeLabel(i int) string {
return "'" + string(i) + "'"
}
func (l *LexerDFASerializer) String() string {
if l.dfa.s0 == nil {
return ""
}
buf := ""
states := l.dfa.sortedStates()
for i := 0; i < len(states); i++ {
s := states[i]
if s.edges != nil {
n := len(s.edges)
for j := 0; j < n; j++ {
t := s.edges[j]
if t != nil && t.stateNumber != 0x7FFFFFFF {
buf += l.GetStateString(s)
buf += "-"
buf += l.getEdgeLabel(j)
buf += "->"
buf += l.GetStateString(t)
buf += "\n"
}
}
}
}
if len(buf) == 0 {
return ""
}
return buf
}
golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/dfa_state.go 0000664 0000000 0000000 00000012227 14102210121 0024612 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import (
"fmt"
)
// PredPrediction maps a predicate to a predicted alternative.
type PredPrediction struct {
alt int
pred SemanticContext
}
func NewPredPrediction(pred SemanticContext, alt int) *PredPrediction {
return &PredPrediction{alt: alt, pred: pred}
}
func (p *PredPrediction) String() string {
return "(" + fmt.Sprint(p.pred) + ", " + fmt.Sprint(p.alt) + ")"
}
// DFAState represents a set of possible ATN configurations. As Aho, Sethi,
// Ullman p. 117 says: "The DFA uses its state to keep track of all possible
// states the ATN can be in after reading each input symbol. That is to say,
// after reading input a1a2..an, the DFA is in a state that represents the
// subset T of the states of the ATN that are reachable from the ATN's start
// state along some path labeled a1a2..an." In conventional NFA-to-DFA
// conversion, therefore, the subset T would be a bitset representing the set of
// states the ATN could be in. We need to track the alt predicted by each state
// as well, however. More importantly, we need to maintain a stack of states,
// tracking the closure operations as they jump from rule to rule, emulating
// rule invocations (method calls). I have to add a stack to simulate the proper
// lookahead sequences for the underlying LL grammar from which the ATN was
// derived.
//
// I use a set of ATNConfig objects, not simple states. An ATNConfig is both a
// state (ala normal conversion) and a RuleContext describing the chain of rules
// (if any) followed to arrive at that state.
//
// A DFAState may have multiple references to a particular state, but with
// different ATN contexts (with same or different alts) meaning that state was
// reached via a different set of rule invocations.
type DFAState struct {
stateNumber int
configs ATNConfigSet
// edges elements point to the target of the symbol. Shift up by 1 so (-1)
// Token.EOF maps to the first element.
edges []*DFAState
isAcceptState bool
// prediction is the ttype we match or alt we predict if the state is accept.
// Set to ATN.INVALID_ALT_NUMBER when predicates != nil or
// requiresFullContext.
prediction int
lexerActionExecutor *LexerActionExecutor
// requiresFullContext indicates it was created during an SLL prediction that
// discovered a conflict between the configurations in the state. Future
// ParserATNSimulator.execATN invocations immediately jump doing
// full context prediction if true.
requiresFullContext bool
// predicates is the predicates associated with the ATN configurations of the
// DFA state during SLL parsing. When we have predicates, requiresFullContext
// is false, since full context prediction evaluates predicates on-the-fly. If
// d is
// not nil, then prediction is ATN.INVALID_ALT_NUMBER.
//
// We only use these for non-requiresFullContext but conflicting states. That
// means we know from the context (it's $ or we don't dip into outer context)
// that it's an ambiguity not a conflict.
//
// This list is computed by
// ParserATNSimulator.predicateDFAState.
predicates []*PredPrediction
}
func NewDFAState(stateNumber int, configs ATNConfigSet) *DFAState {
if configs == nil {
configs = NewBaseATNConfigSet(false)
}
return &DFAState{configs: configs, stateNumber: stateNumber}
}
// GetAltSet gets the set of all alts mentioned by all ATN configurations in d.
func (d *DFAState) GetAltSet() *Set {
alts := NewSet(nil, nil)
if d.configs != nil {
for _, c := range d.configs.GetItems() {
alts.add(c.GetAlt())
}
}
if alts.length() == 0 {
return nil
}
return alts
}
func (d *DFAState) setPrediction(v int) {
d.prediction = v
}
// equals returns whether d equals other. Two DFAStates are equal if their ATN
// configuration sets are the same. This method is used to see if a state
// already exists.
//
// Because the number of alternatives and number of ATN configurations are
// finite, there is a finite number of DFA states that can be processed. This is
// necessary to show that the algorithm terminates.
//
// Cannot test the DFA state numbers here because in
// ParserATNSimulator.addDFAState we need to know if any other state exists that
// has d exact set of ATN configurations. The stateNumber is irrelevant.
func (d *DFAState) equals(other interface{}) bool {
if d == other {
return true
} else if _, ok := other.(*DFAState); !ok {
return false
}
return d.configs.Equals(other.(*DFAState).configs)
}
func (d *DFAState) String() string {
var s string
if d.isAcceptState {
if d.predicates != nil {
s = "=>" + fmt.Sprint(d.predicates)
} else {
s = "=>" + fmt.Sprint(d.prediction)
}
}
return fmt.Sprintf("%d:%s%s", fmt.Sprint(d.configs), s)
}
func (d *DFAState) hash() int {
h := murmurInit(11)
c := 1
if d.isAcceptState {
if d.predicates != nil {
for _, p := range d.predicates {
h = murmurUpdate(h, p.alt)
h = murmurUpdate(h, p.pred.hash())
c += 2
}
} else {
h = murmurUpdate(h, d.prediction)
c += 1
}
}
h = murmurUpdate(h, d.configs.hash())
return murmurFinish(h, c)
} golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/diagnostic_error_listener.go 0000664 0000000 0000000 00000007601 14102210121 0030122 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import (
"strconv"
)
//
// This implementation of {@link ANTLRErrorListener} can be used to identify
// certain potential correctness and performance problems in grammars. "reports"
// are made by calling {@link Parser//NotifyErrorListeners} with the appropriate
// message.
//
//
// This implementation prints messages to {@link System//err} containing the // values of {@code line}, {@code charPositionInLine}, and {@code msg} using // the following format.
// //// line line:charPositionInLine msg //// func (c *ConsoleErrorListener) SyntaxError(recognizer Recognizer, offendingSymbol interface{}, line, column int, msg string, e RecognitionException) { fmt.Fprintln(os.Stderr, "line "+strconv.Itoa(line)+":"+strconv.Itoa(column)+" "+msg) } type ProxyErrorListener struct { *DefaultErrorListener delegates []ErrorListener } func NewProxyErrorListener(delegates []ErrorListener) *ProxyErrorListener { if delegates == nil { panic("delegates is not provided") } l := new(ProxyErrorListener) l.delegates = delegates return l } func (p *ProxyErrorListener) SyntaxError(recognizer Recognizer, offendingSymbol interface{}, line, column int, msg string, e RecognitionException) { for _, d := range p.delegates { d.SyntaxError(recognizer, offendingSymbol, line, column, msg, e) } } func (p *ProxyErrorListener) ReportAmbiguity(recognizer Parser, dfa *DFA, startIndex, stopIndex int, exact bool, ambigAlts *BitSet, configs ATNConfigSet) { for _, d := range p.delegates { d.ReportAmbiguity(recognizer, dfa, startIndex, stopIndex, exact, ambigAlts, configs) } } func (p *ProxyErrorListener) ReportAttemptingFullContext(recognizer Parser, dfa *DFA, startIndex, stopIndex int, conflictingAlts *BitSet, configs ATNConfigSet) { for _, d := range p.delegates { d.ReportAttemptingFullContext(recognizer, dfa, startIndex, stopIndex, conflictingAlts, configs) } } func (p *ProxyErrorListener) ReportContextSensitivity(recognizer Parser, dfa *DFA, startIndex, stopIndex, prediction int, configs ATNConfigSet) { for _, d := range p.delegates { d.ReportContextSensitivity(recognizer, dfa, startIndex, stopIndex, prediction, configs) } } golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/error_strategy.go 0000664 0000000 0000000 00000066362 14102210121 0025744 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. // Use of this file is governed by the BSD 3-clause license that // can be found in the LICENSE.txt file in the project root. package antlr import ( "fmt" "reflect" "strconv" "strings" ) type ErrorStrategy interface { reset(Parser) RecoverInline(Parser) Token Recover(Parser, RecognitionException) Sync(Parser) inErrorRecoveryMode(Parser) bool ReportError(Parser, RecognitionException) ReportMatch(Parser) } // This is the default implementation of {@link ANTLRErrorStrategy} used for // error Reporting and recovery in ANTLR parsers. // type DefaultErrorStrategy struct { errorRecoveryMode bool lastErrorIndex int lastErrorStates *IntervalSet } var _ ErrorStrategy = &DefaultErrorStrategy{} func NewDefaultErrorStrategy() *DefaultErrorStrategy { d := new(DefaultErrorStrategy) // Indicates whether the error strategy is currently "recovering from an // error". This is used to suppress Reporting multiple error messages while // attempting to recover from a detected syntax error. // // @see //inErrorRecoveryMode // d.errorRecoveryMode = false // The index into the input stream where the last error occurred. // This is used to prevent infinite loops where an error is found // but no token is consumed during recovery...another error is found, // ad nauseum. This is a failsafe mechanism to guarantee that at least // one token/tree node is consumed for two errors. // d.lastErrorIndex = -1 d.lastErrorStates = nil return d } //
The default implementation simply calls {@link //endErrorCondition} to // ensure that the handler is not in error recovery mode.
func (d *DefaultErrorStrategy) reset(recognizer Parser) { d.endErrorCondition(recognizer) } // // This method is called to enter error recovery mode when a recognition // exception is Reported. // // @param recognizer the parser instance // func (d *DefaultErrorStrategy) beginErrorCondition(recognizer Parser) { d.errorRecoveryMode = true } func (d *DefaultErrorStrategy) inErrorRecoveryMode(recognizer Parser) bool { return d.errorRecoveryMode } // // This method is called to leave error recovery mode after recovering from // a recognition exception. // // @param recognizer // func (d *DefaultErrorStrategy) endErrorCondition(recognizer Parser) { d.errorRecoveryMode = false d.lastErrorStates = nil d.lastErrorIndex = -1 } // // {@inheritDoc} // //The default implementation simply calls {@link //endErrorCondition}.
// func (d *DefaultErrorStrategy) ReportMatch(recognizer Parser) { d.endErrorCondition(recognizer) } // // {@inheritDoc} // //The default implementation returns immediately if the handler is already // in error recovery mode. Otherwise, it calls {@link //beginErrorCondition} // and dispatches the Reporting task based on the runtime type of {@code e} // according to the following table.
// //The default implementation reSynchronizes the parser by consuming tokens // until we find one in the reSynchronization set--loosely the set of tokens // that can follow the current rule.
// func (d *DefaultErrorStrategy) Recover(recognizer Parser, e RecognitionException) { if d.lastErrorIndex == recognizer.GetInputStream().Index() && d.lastErrorStates != nil && d.lastErrorStates.contains(recognizer.GetState()) { // uh oh, another error at same token index and previously-Visited // state in ATN must be a case where LT(1) is in the recovery // token set so nothing got consumed. Consume a single token // at least to prevent an infinite loop d is a failsafe. recognizer.Consume() } d.lastErrorIndex = recognizer.GetInputStream().Index() if d.lastErrorStates == nil { d.lastErrorStates = NewIntervalSet() } d.lastErrorStates.addOne(recognizer.GetState()) followSet := d.getErrorRecoverySet(recognizer) d.consumeUntil(recognizer, followSet) } // The default implementation of {@link ANTLRErrorStrategy//Sync} makes sure // that the current lookahead symbol is consistent with what were expecting // at d point in the ATN. You can call d anytime but ANTLR only // generates code to check before subrules/loops and each iteration. // //Implements Jim Idle's magic Sync mechanism in closures and optional // subrules. E.g.,
// //// a : Sync ( stuff Sync )* // Sync : {consume to what can follow Sync} //// // At the start of a sub rule upon error, {@link //Sync} performs single // token deletion, if possible. If it can't do that, it bails on the current // rule and uses the default error recovery, which consumes until the // reSynchronization set of the current rule. // //
If the sub rule is optional ({@code (...)?}, {@code (...)*}, or block // with an empty alternative), then the expected set includes what follows // the subrule.
// //During loop iteration, it consumes until it sees a token that can start a // sub rule or what follows loop. Yes, that is pretty aggressive. We opt to // stay in the loop as long as possible.
// //ORIGINS
// //Previous versions of ANTLR did a poor job of their recovery within loops. // A single mismatch token or missing token would force the parser to bail // out of the entire rules surrounding the loop. So, for rule
// //// classfunc : 'class' ID '{' member* '}' //// // input with an extra token between members would force the parser to // consume until it found the next class definition rather than the next // member definition of the current class. // //
This functionality cost a little bit of effort because the parser has to // compare token set at the start of the loop and at each iteration. If for // some reason speed is suffering for you, you can turn off d // functionality by simply overriding d method as a blank { }.
// func (d *DefaultErrorStrategy) Sync(recognizer Parser) { // If already recovering, don't try to Sync if d.inErrorRecoveryMode(recognizer) { return } s := recognizer.GetInterpreter().atn.states[recognizer.GetState()] la := recognizer.GetTokenStream().LA(1) // try cheaper subset first might get lucky. seems to shave a wee bit off nextTokens := recognizer.GetATN().NextTokens(s, nil) if nextTokens.contains(TokenEpsilon) || nextTokens.contains(la) { return } switch s.GetStateType() { case ATNStateBlockStart, ATNStateStarBlockStart, ATNStatePlusBlockStart, ATNStateStarLoopEntry: // Report error and recover if possible if d.SingleTokenDeletion(recognizer) != nil { return } panic(NewInputMisMatchException(recognizer)) case ATNStatePlusLoopBack, ATNStateStarLoopBack: d.ReportUnwantedToken(recognizer) expecting := NewIntervalSet() expecting.addSet(recognizer.GetExpectedTokens()) whatFollowsLoopIterationOrRule := expecting.addSet(d.getErrorRecoverySet(recognizer)) d.consumeUntil(recognizer, whatFollowsLoopIterationOrRule) default: // do nothing if we can't identify the exact kind of ATN state } } // This is called by {@link //ReportError} when the exception is a // {@link NoViableAltException}. // // @see //ReportError // // @param recognizer the parser instance // @param e the recognition exception // func (d *DefaultErrorStrategy) ReportNoViableAlternative(recognizer Parser, e *NoViableAltException) { tokens := recognizer.GetTokenStream() var input string if tokens != nil { if e.startToken.GetTokenType() == TokenEOF { input = "This method is called when {@link //singleTokenDeletion} identifies // single-token deletion as a viable recovery strategy for a mismatched // input error.
// //The default implementation simply returns if the handler is already in // error recovery mode. Otherwise, it calls {@link //beginErrorCondition} to // enter error recovery mode, followed by calling // {@link Parser//NotifyErrorListeners}.
// // @param recognizer the parser instance // func (d *DefaultErrorStrategy) ReportUnwantedToken(recognizer Parser) { if d.inErrorRecoveryMode(recognizer) { return } d.beginErrorCondition(recognizer) t := recognizer.GetCurrentToken() tokenName := d.GetTokenErrorDisplay(t) expecting := d.GetExpectedTokens(recognizer) msg := "extraneous input " + tokenName + " expecting " + expecting.StringVerbose(recognizer.GetLiteralNames(), recognizer.GetSymbolicNames(), false) recognizer.NotifyErrorListeners(msg, t, nil) } // This method is called to Report a syntax error which requires the // insertion of a missing token into the input stream. At the time d // method is called, the missing token has not yet been inserted. When d // method returns, {@code recognizer} is in error recovery mode. // //This method is called when {@link //singleTokenInsertion} identifies // single-token insertion as a viable recovery strategy for a mismatched // input error.
// //The default implementation simply returns if the handler is already in // error recovery mode. Otherwise, it calls {@link //beginErrorCondition} to // enter error recovery mode, followed by calling // {@link Parser//NotifyErrorListeners}.
// // @param recognizer the parser instance // func (d *DefaultErrorStrategy) ReportMissingToken(recognizer Parser) { if d.inErrorRecoveryMode(recognizer) { return } d.beginErrorCondition(recognizer) t := recognizer.GetCurrentToken() expecting := d.GetExpectedTokens(recognizer) msg := "missing " + expecting.StringVerbose(recognizer.GetLiteralNames(), recognizer.GetSymbolicNames(), false) + " at " + d.GetTokenErrorDisplay(t) recognizer.NotifyErrorListeners(msg, t, nil) } //The default implementation attempts to recover from the mismatched input // by using single token insertion and deletion as described below. If the // recovery attempt fails, d method panics an // {@link InputMisMatchException}.
// //EXTRA TOKEN (single token deletion)
// //{@code LA(1)} is not what we are looking for. If {@code LA(2)} has the // right token, however, then assume {@code LA(1)} is some extra spurious // token and delete it. Then consume and return the next token (which was // the {@code LA(2)} token) as the successful result of the Match operation.
// //This recovery strategy is implemented by {@link // //singleTokenDeletion}.
// //MISSING TOKEN (single token insertion)
// //If current token (at {@code LA(1)}) is consistent with what could come // after the expected {@code LA(1)} token, then assume the token is missing // and use the parser's {@link TokenFactory} to create it on the fly. The // "insertion" is performed by returning the created token as the successful // result of the Match operation.
// //This recovery strategy is implemented by {@link // //singleTokenInsertion}.
// //EXAMPLE
// //For example, Input {@code i=(3} is clearly missing the {@code ')'}. When // the parser returns from the nested call to {@code expr}, it will have // call chain:
// //// stat &rarr expr &rarr atom //// // and it will be trying to Match the {@code ')'} at d point in the // derivation: // //
// => ID '=' '(' INT ')' ('+' atom)* '' // ^ //// // The attempt to Match {@code ')'} will fail when it sees {@code ''} and // call {@link //recoverInline}. To recover, it sees that {@code LA(1)==''} // is in the set of tokens that can follow the {@code ')'} token reference // in rule {@code atom}. It can assume that you forgot the {@code ')'}. // func (d *DefaultErrorStrategy) RecoverInline(recognizer Parser) Token { // SINGLE TOKEN DELETION MatchedSymbol := d.SingleTokenDeletion(recognizer) if MatchedSymbol != nil { // we have deleted the extra token. // now, move past ttype token as if all were ok recognizer.Consume() return MatchedSymbol } // SINGLE TOKEN INSERTION if d.SingleTokenInsertion(recognizer) { return d.GetMissingSymbol(recognizer) } // even that didn't work must panic the exception panic(NewInputMisMatchException(recognizer)) } // // This method implements the single-token insertion inline error recovery // strategy. It is called by {@link //recoverInline} if the single-token // deletion strategy fails to recover from the mismatched input. If this // method returns {@code true}, {@code recognizer} will be in error recovery // mode. // //
This method determines whether or not single-token insertion is viable by // checking if the {@code LA(1)} input symbol could be successfully Matched // if it were instead the {@code LA(2)} symbol. If d method returns // {@code true}, the caller is responsible for creating and inserting a // token with the correct type to produce d behavior.
// // @param recognizer the parser instance // @return {@code true} if single-token insertion is a viable recovery // strategy for the current mismatched input, otherwise {@code false} // func (d *DefaultErrorStrategy) SingleTokenInsertion(recognizer Parser) bool { currentSymbolType := recognizer.GetTokenStream().LA(1) // if current token is consistent with what could come after current // ATN state, then we know we're missing a token error recovery // is free to conjure up and insert the missing token atn := recognizer.GetInterpreter().atn currentState := atn.states[recognizer.GetState()] next := currentState.GetTransitions()[0].getTarget() expectingAtLL2 := atn.NextTokens(next, recognizer.GetParserRuleContext()) if expectingAtLL2.contains(currentSymbolType) { d.ReportMissingToken(recognizer) return true } return false } // This method implements the single-token deletion inline error recovery // strategy. It is called by {@link //recoverInline} to attempt to recover // from mismatched input. If this method returns nil, the parser and error // handler state will not have changed. If this method returns non-nil, // {@code recognizer} will not be in error recovery mode since the // returned token was a successful Match. // //If the single-token deletion is successful, d method calls // {@link //ReportUnwantedToken} to Report the error, followed by // {@link Parser//consume} to actually "delete" the extraneous token. Then, // before returning {@link //ReportMatch} is called to signal a successful // Match.
// // @param recognizer the parser instance // @return the successfully Matched {@link Token} instance if single-token // deletion successfully recovers from the mismatched input, otherwise // {@code nil} // func (d *DefaultErrorStrategy) SingleTokenDeletion(recognizer Parser) Token { NextTokenType := recognizer.GetTokenStream().LA(2) expecting := d.GetExpectedTokens(recognizer) if expecting.contains(NextTokenType) { d.ReportUnwantedToken(recognizer) // print("recoverFromMisMatchedToken deleting " \ // + str(recognizer.GetTokenStream().LT(1)) \ // + " since " + str(recognizer.GetTokenStream().LT(2)) \ // + " is what we want", file=sys.stderr) recognizer.Consume() // simply delete extra token // we want to return the token we're actually Matching MatchedSymbol := recognizer.GetCurrentToken() d.ReportMatch(recognizer) // we know current token is correct return MatchedSymbol } return nil } // Conjure up a missing token during error recovery. // // The recognizer attempts to recover from single missing // symbols. But, actions might refer to that missing symbol. // For example, x=ID {f($x)}. The action clearly assumes // that there has been an identifier Matched previously and that // $x points at that token. If that token is missing, but // the next token in the stream is what we want we assume that // d token is missing and we keep going. Because we // have to return some token to replace the missing token, // we have to conjure one up. This method gives the user control // over the tokens returned for missing tokens. Mostly, // you will want to create something special for identifier // tokens. For literals such as '{' and ',', the default // action in the parser or tree parser works. It simply creates // a CommonToken of the appropriate type. The text will be the token. // If you change what tokens must be created by the lexer, // override d method to create the appropriate tokens. // func (d *DefaultErrorStrategy) GetMissingSymbol(recognizer Parser) Token { currentSymbol := recognizer.GetCurrentToken() expecting := d.GetExpectedTokens(recognizer) expectedTokenType := expecting.first() var tokenText string if expectedTokenType == TokenEOF { tokenText = "// This error strategy is useful in the following scenarios.
// //// {@code myparser.setErrorHandler(NewBailErrorStrategy())}
// // @see Parser//setErrorHandler(ANTLRErrorStrategy) type BailErrorStrategy struct { *DefaultErrorStrategy } var _ ErrorStrategy = &BailErrorStrategy{} func NewBailErrorStrategy() *BailErrorStrategy { b := new(BailErrorStrategy) b.DefaultErrorStrategy = NewDefaultErrorStrategy() return b } // Instead of recovering from exception {@code e}, re-panic it wrapped // in a {@link ParseCancellationException} so it is not caught by the // rule func catches. Use {@link Exception//getCause()} to get the // original {@link RecognitionException}. // func (b *BailErrorStrategy) Recover(recognizer Parser, e RecognitionException) { context := recognizer.GetParserRuleContext() for context != nil { context.SetException(e) context = context.GetParent().(ParserRuleContext) } panic(NewParseCancellationException()) // TODO we don't emit e properly } // Make sure we don't attempt to recover inline if the parser // successfully recovers, it won't panic an exception. // func (b *BailErrorStrategy) RecoverInline(recognizer Parser) Token { b.Recover(recognizer, NewInputMisMatchException(recognizer)) return nil } // Make sure we don't attempt to recover from problems in subrules.// func (b *BailErrorStrategy) Sync(recognizer Parser) { // pass } golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/errors.go 0000664 0000000 0000000 00000016015 14102210121 0024173 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. // Use of this file is governed by the BSD 3-clause license that // can be found in the LICENSE.txt file in the project root. package antlr // The root of the ANTLR exception hierarchy. In general, ANTLR tracks just // 3 kinds of errors: prediction errors, failed predicate errors, and // mismatched input errors. In each case, the parser knows where it is // in the input, where it is in the ATN, the rule invocation stack, // and what kind of problem occurred. type RecognitionException interface { GetOffendingToken() Token GetMessage() string GetInputStream() IntStream } type BaseRecognitionException struct { message string recognizer Recognizer offendingToken Token offendingState int ctx RuleContext input IntStream } func NewBaseRecognitionException(message string, recognizer Recognizer, input IntStream, ctx RuleContext) *BaseRecognitionException { // todo // Error.call(this) // // if (!!Error.captureStackTrace) { // Error.captureStackTrace(this, RecognitionException) // } else { // stack := NewError().stack // } // TODO may be able to use - "runtime" func Stack(buf []byte, all bool) int t := new(BaseRecognitionException) t.message = message t.recognizer = recognizer t.input = input t.ctx = ctx // The current {@link Token} when an error occurred. Since not all streams // support accessing symbols by index, we have to track the {@link Token} // instance itself. t.offendingToken = nil // Get the ATN state number the parser was in at the time the error // occurred. For {@link NoViableAltException} and // {@link LexerNoViableAltException} exceptions, this is the // {@link DecisionState} number. For others, it is the state whose outgoing // edge we couldn't Match. t.offendingState = -1 if t.recognizer != nil { t.offendingState = t.recognizer.GetState() } return t } func (b *BaseRecognitionException) GetMessage() string { return b.message } func (b *BaseRecognitionException) GetOffendingToken() Token { return b.offendingToken } func (b *BaseRecognitionException) GetInputStream() IntStream { return b.input } //If the state number is not known, b method returns -1.
// // Gets the set of input symbols which could potentially follow the // previously Matched symbol at the time b exception was panicn. // //If the set of expected tokens is not known and could not be computed, // b method returns {@code nil}.
// // @return The set of token types that could potentially follow the current // state in the ATN, or {@code nil} if the information is not available. // / func (b *BaseRecognitionException) getExpectedTokens() *IntervalSet { if b.recognizer != nil { return b.recognizer.GetATN().getExpectedTokens(b.offendingState, b.ctx) } return nil } func (b *BaseRecognitionException) String() string { return b.message } type LexerNoViableAltException struct { *BaseRecognitionException startIndex int deadEndConfigs ATNConfigSet } func NewLexerNoViableAltException(lexer Lexer, input CharStream, startIndex int, deadEndConfigs ATNConfigSet) *LexerNoViableAltException { l := new(LexerNoViableAltException) l.BaseRecognitionException = NewBaseRecognitionException("", lexer, input, nil) l.startIndex = startIndex l.deadEndConfigs = deadEndConfigs return l } func (l *LexerNoViableAltException) String() string { symbol := "" if l.startIndex >= 0 && l.startIndex < l.input.Size() { symbol = l.input.(CharStream).GetTextFromInterval(NewInterval(l.startIndex, l.startIndex)) } return "LexerNoViableAltException" + symbol } type NoViableAltException struct { *BaseRecognitionException startToken Token offendingToken Token ctx ParserRuleContext deadEndConfigs ATNConfigSet } // Indicates that the parser could not decide which of two or more paths // to take based upon the remaining input. It tracks the starting token // of the offending input and also knows where the parser was // in the various paths when the error. Reported by ReportNoViableAlternative() // func NewNoViableAltException(recognizer Parser, input TokenStream, startToken Token, offendingToken Token, deadEndConfigs ATNConfigSet, ctx ParserRuleContext) *NoViableAltException { if ctx == nil { ctx = recognizer.GetParserRuleContext() } if offendingToken == nil { offendingToken = recognizer.GetCurrentToken() } if startToken == nil { startToken = recognizer.GetCurrentToken() } if input == nil { input = recognizer.GetInputStream().(TokenStream) } n := new(NoViableAltException) n.BaseRecognitionException = NewBaseRecognitionException("", recognizer, input, ctx) // Which configurations did we try at input.Index() that couldn't Match // input.LT(1)?// n.deadEndConfigs = deadEndConfigs // The token object at the start index the input stream might // not be buffering tokens so get a reference to it. (At the // time the error occurred, of course the stream needs to keep a // buffer all of the tokens but later we might not have access to those.) n.startToken = startToken n.offendingToken = offendingToken return n } type InputMisMatchException struct { *BaseRecognitionException } // This signifies any kind of mismatched input exceptions such as // when the current input does not Match the expected token. // func NewInputMisMatchException(recognizer Parser) *InputMisMatchException { i := new(InputMisMatchException) i.BaseRecognitionException = NewBaseRecognitionException("", recognizer, recognizer.GetInputStream(), recognizer.GetParserRuleContext()) i.offendingToken = recognizer.GetCurrentToken() return i } // A semantic predicate failed during validation. Validation of predicates // occurs when normally parsing the alternative just like Matching a token. // Disambiguating predicate evaluation occurs when we test a predicate during // prediction. type FailedPredicateException struct { *BaseRecognitionException ruleIndex int predicateIndex int predicate string } func NewFailedPredicateException(recognizer Parser, predicate string, message string) *FailedPredicateException { f := new(FailedPredicateException) f.BaseRecognitionException = NewBaseRecognitionException(f.formatMessage(predicate, message), recognizer, recognizer.GetInputStream(), recognizer.GetParserRuleContext()) s := recognizer.GetInterpreter().atn.states[recognizer.GetState()] trans := s.GetTransitions()[0] if trans2, ok := trans.(*PredicateTransition); ok { f.ruleIndex = trans2.ruleIndex f.predicateIndex = trans2.predIndex } else { f.ruleIndex = 0 f.predicateIndex = 0 } f.predicate = predicate f.offendingToken = recognizer.GetCurrentToken() return f } func (f *FailedPredicateException) formatMessage(predicate, message string) string { if message != "" { return message } return "failed predicate: {" + predicate + "}?" } type ParseCancellationException struct { } func NewParseCancellationException() *ParseCancellationException { // Error.call(this) // Error.captureStackTrace(this, ParseCancellationException) return new(ParseCancellationException) } golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/file_stream.go 0000664 0000000 0000000 00000001512 14102210121 0025145 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. // Use of this file is governed by the BSD 3-clause license that // can be found in the LICENSE.txt file in the project root. package antlr import ( "bytes" "io" "os" ) // This is an InputStream that is loaded from a file all at once // when you construct the object. type FileStream struct { *InputStream filename string } func NewFileStream(fileName string) (*FileStream, error) { buf := bytes.NewBuffer(nil) f, err := os.Open(fileName) if err != nil { return nil, err } defer f.Close() _, err = io.Copy(buf, f) if err != nil { return nil, err } fs := new(FileStream) fs.filename = fileName s := string(buf.Bytes()) fs.InputStream = NewInputStream(s) return fs, nil } func (f *FileStream) GetSourceName() string { return f.filename } golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/input_stream.go 0000664 0000000 0000000 00000004124 14102210121 0025367 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. // Use of this file is governed by the BSD 3-clause license that // can be found in the LICENSE.txt file in the project root. package antlr type InputStream struct { name string index int data []rune size int } func NewInputStream(data string) *InputStream { is := new(InputStream) is.name = "The {@code Skip} command does not have any parameters, so l action is // implemented as a singleton instance exposed by {@link //INSTANCE}.
type LexerSkipAction struct { *BaseLexerAction } func NewLexerSkipAction() *LexerSkipAction { la := new(LexerSkipAction) la.BaseLexerAction = NewBaseLexerAction(LexerActionTypeSkip) return la } // Provides a singleton instance of l parameterless lexer action. var LexerSkipActionINSTANCE = NewLexerSkipAction() func (l *LexerSkipAction) execute(lexer Lexer) { lexer.Skip() } func (l *LexerSkipAction) String() string { return "skip" } // Implements the {@code type} lexer action by calling {@link Lexer//setType} // with the assigned type. type LexerTypeAction struct { *BaseLexerAction thetype int } func NewLexerTypeAction(thetype int) *LexerTypeAction { l := new(LexerTypeAction) l.BaseLexerAction = NewBaseLexerAction(LexerActionTypeType) l.thetype = thetype return l } func (l *LexerTypeAction) execute(lexer Lexer) { lexer.SetType(l.thetype) } func (l *LexerTypeAction) hash() int { h := murmurInit(0) h = murmurUpdate(h, l.actionType) h = murmurUpdate(h, l.thetype) return murmurFinish(h, 2) } func (l *LexerTypeAction) equals(other LexerAction) bool { if l == other { return true } else if _, ok := other.(*LexerTypeAction); !ok { return false } else { return l.thetype == other.(*LexerTypeAction).thetype } } func (l *LexerTypeAction) String() string { return "actionType(" + strconv.Itoa(l.thetype) + ")" } // Implements the {@code pushMode} lexer action by calling // {@link Lexer//pushMode} with the assigned mode. type LexerPushModeAction struct { *BaseLexerAction mode int } func NewLexerPushModeAction(mode int) *LexerPushModeAction { l := new(LexerPushModeAction) l.BaseLexerAction = NewBaseLexerAction(LexerActionTypePushMode) l.mode = mode return l } //This action is implemented by calling {@link Lexer//pushMode} with the // value provided by {@link //getMode}.
func (l *LexerPushModeAction) execute(lexer Lexer) { lexer.PushMode(l.mode) } func (l *LexerPushModeAction) hash() int { h := murmurInit(0) h = murmurUpdate(h, l.actionType) h = murmurUpdate(h, l.mode) return murmurFinish(h, 2) } func (l *LexerPushModeAction) equals(other LexerAction) bool { if l == other { return true } else if _, ok := other.(*LexerPushModeAction); !ok { return false } else { return l.mode == other.(*LexerPushModeAction).mode } } func (l *LexerPushModeAction) String() string { return "pushMode(" + strconv.Itoa(l.mode) + ")" } // Implements the {@code popMode} lexer action by calling {@link Lexer//popMode}. // //The {@code popMode} command does not have any parameters, so l action is // implemented as a singleton instance exposed by {@link //INSTANCE}.
type LexerPopModeAction struct { *BaseLexerAction } func NewLexerPopModeAction() *LexerPopModeAction { l := new(LexerPopModeAction) l.BaseLexerAction = NewBaseLexerAction(LexerActionTypePopMode) return l } var LexerPopModeActionINSTANCE = NewLexerPopModeAction() //This action is implemented by calling {@link Lexer//popMode}.
func (l *LexerPopModeAction) execute(lexer Lexer) { lexer.PopMode() } func (l *LexerPopModeAction) String() string { return "popMode" } // Implements the {@code more} lexer action by calling {@link Lexer//more}. // //The {@code more} command does not have any parameters, so l action is // implemented as a singleton instance exposed by {@link //INSTANCE}.
type LexerMoreAction struct { *BaseLexerAction } func NewLexerMoreAction() *LexerMoreAction { l := new(LexerMoreAction) l.BaseLexerAction = NewBaseLexerAction(LexerActionTypeMore) return l } var LexerMoreActionINSTANCE = NewLexerMoreAction() //This action is implemented by calling {@link Lexer//popMode}.
func (l *LexerMoreAction) execute(lexer Lexer) { lexer.More() } func (l *LexerMoreAction) String() string { return "more" } // Implements the {@code mode} lexer action by calling {@link Lexer//mode} with // the assigned mode. type LexerModeAction struct { *BaseLexerAction mode int } func NewLexerModeAction(mode int) *LexerModeAction { l := new(LexerModeAction) l.BaseLexerAction = NewBaseLexerAction(LexerActionTypeMode) l.mode = mode return l } //This action is implemented by calling {@link Lexer//mode} with the // value provided by {@link //getMode}.
func (l *LexerModeAction) execute(lexer Lexer) { lexer.SetMode(l.mode) } func (l *LexerModeAction) hash() int { h := murmurInit(0) h = murmurUpdate(h, l.actionType) h = murmurUpdate(h, l.mode) return murmurFinish(h, 2) } func (l *LexerModeAction) equals(other LexerAction) bool { if l == other { return true } else if _, ok := other.(*LexerModeAction); !ok { return false } else { return l.mode == other.(*LexerModeAction).mode } } func (l *LexerModeAction) String() string { return "mode(" + strconv.Itoa(l.mode) + ")" } // Executes a custom lexer action by calling {@link Recognizer//action} with the // rule and action indexes assigned to the custom action. The implementation of // a custom action is added to the generated code for the lexer in an override // of {@link Recognizer//action} when the grammar is compiled. // //This class may represent embedded actions created with the {...}
// syntax in ANTLR 4, as well as actions created for lexer commands where the
// command argument could not be evaluated when the grammar was compiled.
Custom actions are implemented by calling {@link Lexer//action} with the // appropriate rule and action indexes.
func (l *LexerCustomAction) execute(lexer Lexer) { lexer.Action(nil, l.ruleIndex, l.actionIndex) } func (l *LexerCustomAction) hash() int { h := murmurInit(0) h = murmurUpdate(h, l.actionType) h = murmurUpdate(h, l.ruleIndex) h = murmurUpdate(h, l.actionIndex) return murmurFinish(h, 3) } func (l *LexerCustomAction) equals(other LexerAction) bool { if l == other { return true } else if _, ok := other.(*LexerCustomAction); !ok { return false } else { return l.ruleIndex == other.(*LexerCustomAction).ruleIndex && l.actionIndex == other.(*LexerCustomAction).actionIndex } } // Implements the {@code channel} lexer action by calling // {@link Lexer//setChannel} with the assigned channel. // Constructs a New{@code channel} action with the specified channel value. // @param channel The channel value to pass to {@link Lexer//setChannel}. type LexerChannelAction struct { *BaseLexerAction channel int } func NewLexerChannelAction(channel int) *LexerChannelAction { l := new(LexerChannelAction) l.BaseLexerAction = NewBaseLexerAction(LexerActionTypeChannel) l.channel = channel return l } //This action is implemented by calling {@link Lexer//setChannel} with the // value provided by {@link //getChannel}.
func (l *LexerChannelAction) execute(lexer Lexer) { lexer.SetChannel(l.channel) } func (l *LexerChannelAction) hash() int { h := murmurInit(0) h = murmurUpdate(h, l.actionType) h = murmurUpdate(h, l.channel) return murmurFinish(h, 2) } func (l *LexerChannelAction) equals(other LexerAction) bool { if l == other { return true } else if _, ok := other.(*LexerChannelAction); !ok { return false } else { return l.channel == other.(*LexerChannelAction).channel } } func (l *LexerChannelAction) String() string { return "channel(" + strconv.Itoa(l.channel) + ")" } // This implementation of {@link LexerAction} is used for tracking input offsets // for position-dependent actions within a {@link LexerActionExecutor}. // //This action is not serialized as part of the ATN, and is only required for // position-dependent lexer actions which appear at a location other than the // end of a rule. For more information about DFA optimizations employed for // lexer actions, see {@link LexerActionExecutor//append} and // {@link LexerActionExecutor//fixOffsetBeforeMatch}.
// Constructs a Newindexed custom action by associating a character offset // with a {@link LexerAction}. // //Note: This class is only required for lexer actions for which // {@link LexerAction//isPositionDependent} returns {@code true}.
// // @param offset The offset into the input {@link CharStream}, relative to // the token start index, at which the specified lexer action should be // executed. // @param action The lexer action to execute at a particular offset in the // input {@link CharStream}. type LexerIndexedCustomAction struct { *BaseLexerAction offset int lexerAction LexerAction isPositionDependent bool } func NewLexerIndexedCustomAction(offset int, lexerAction LexerAction) *LexerIndexedCustomAction { l := new(LexerIndexedCustomAction) l.BaseLexerAction = NewBaseLexerAction(lexerAction.getActionType()) l.offset = offset l.lexerAction = lexerAction l.isPositionDependent = true return l } //This method calls {@link //execute} on the result of {@link //getAction} // using the provided {@code lexer}.
func (l *LexerIndexedCustomAction) execute(lexer Lexer) { // assume the input stream position was properly set by the calling code l.lexerAction.execute(lexer) } func (l *LexerIndexedCustomAction) hash() int { h := murmurInit(0) h = murmurUpdate(h, l.actionType) h = murmurUpdate(h, l.offset) h = murmurUpdate(h, l.lexerAction.hash()) return murmurFinish(h, 3) } func (l *LexerIndexedCustomAction) equals(other LexerAction) bool { if l == other { return true } else if _, ok := other.(*LexerIndexedCustomAction); !ok { return false } else { return l.offset == other.(*LexerIndexedCustomAction).offset && l.lexerAction == other.(*LexerIndexedCustomAction).lexerAction } } golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/lexer_action_executor.go 0000664 0000000 0000000 00000014126 14102210121 0027252 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. // Use of this file is governed by the BSD 3-clause license that // can be found in the LICENSE.txt file in the project root. package antlr // Represents an executor for a sequence of lexer actions which traversed during // the Matching operation of a lexer rule (token). // //The executor tracks position information for position-dependent lexer actions // efficiently, ensuring that actions appearing only at the end of the rule do // not cause bloating of the {@link DFA} created for the lexer.
type LexerActionExecutor struct { lexerActions []LexerAction cachedHash int } func NewLexerActionExecutor(lexerActions []LexerAction) *LexerActionExecutor { if lexerActions == nil { lexerActions = make([]LexerAction, 0) } l := new(LexerActionExecutor) l.lexerActions = lexerActions // Caches the result of {@link //hashCode} since the hash code is an element // of the performance-critical {@link LexerATNConfig//hashCode} operation. l.cachedHash = murmurInit(57) for _, a := range lexerActions { l.cachedHash = murmurUpdate(l.cachedHash, a.hash()) } return l } // Creates a {@link LexerActionExecutor} which executes the actions for // the input {@code lexerActionExecutor} followed by a specified // {@code lexerAction}. // // @param lexerActionExecutor The executor for actions already traversed by // the lexer while Matching a token within a particular // {@link LexerATNConfig}. If this is {@code nil}, the method behaves as // though it were an empty executor. // @param lexerAction The lexer action to execute after the actions // specified in {@code lexerActionExecutor}. // // @return A {@link LexerActionExecutor} for executing the combine actions // of {@code lexerActionExecutor} and {@code lexerAction}. func LexerActionExecutorappend(lexerActionExecutor *LexerActionExecutor, lexerAction LexerAction) *LexerActionExecutor { if lexerActionExecutor == nil { return NewLexerActionExecutor([]LexerAction{lexerAction}) } return NewLexerActionExecutor(append(lexerActionExecutor.lexerActions, lexerAction)) } // Creates a {@link LexerActionExecutor} which encodes the current offset // for position-dependent lexer actions. // //Normally, when the executor encounters lexer actions where // {@link LexerAction//isPositionDependent} returns {@code true}, it calls // {@link IntStream//seek} on the input {@link CharStream} to set the input // position to the end of the current token. This behavior provides // for efficient DFA representation of lexer actions which appear at the end // of a lexer rule, even when the lexer rule Matches a variable number of // characters.
// //Prior to traversing a Match transition in the ATN, the current offset // from the token start index is assigned to all position-dependent lexer // actions which have not already been assigned a fixed offset. By storing // the offsets relative to the token start index, the DFA representation of // lexer actions which appear in the middle of tokens remains efficient due // to sharing among tokens of the same length, regardless of their absolute // position in the input stream.
// //If the current executor already has offsets assigned to all // position-dependent lexer actions, the method returns {@code this}.
// // @param offset The current offset to assign to all position-dependent // lexer actions which do not already have offsets assigned. // // @return A {@link LexerActionExecutor} which stores input stream offsets // for all position-dependent lexer actions. // / func (l *LexerActionExecutor) fixOffsetBeforeMatch(offset int) *LexerActionExecutor { var updatedLexerActions []LexerAction for i := 0; i < len(l.lexerActions); i++ { _, ok := l.lexerActions[i].(*LexerIndexedCustomAction) if l.lexerActions[i].getIsPositionDependent() && !ok { if updatedLexerActions == nil { updatedLexerActions = make([]LexerAction, 0) for _, a := range l.lexerActions { updatedLexerActions = append(updatedLexerActions, a) } } updatedLexerActions[i] = NewLexerIndexedCustomAction(offset, l.lexerActions[i]) } } if updatedLexerActions == nil { return l } return NewLexerActionExecutor(updatedLexerActions) } // Execute the actions encapsulated by l executor within the context of a // particular {@link Lexer}. // //This method calls {@link IntStream//seek} to set the position of the // {@code input} {@link CharStream} prior to calling // {@link LexerAction//execute} on a position-dependent action. Before the // method returns, the input position will be restored to the same position // it was in when the method was invoked.
// // @param lexer The lexer instance. // @param input The input stream which is the source for the current token. // When l method is called, the current {@link IntStream//index} for // {@code input} should be the start of the following token, i.e. 1 // character past the end of the current token. // @param startIndex The token start index. This value may be passed to // {@link IntStream//seek} to set the {@code input} position to the beginning // of the token. // / func (l *LexerActionExecutor) execute(lexer Lexer, input CharStream, startIndex int) { requiresSeek := false stopIndex := input.Index() defer func() { if requiresSeek { input.Seek(stopIndex) } }() for i := 0; i < len(l.lexerActions); i++ { lexerAction := l.lexerActions[i] if la, ok := lexerAction.(*LexerIndexedCustomAction); ok { offset := la.offset input.Seek(startIndex + offset) lexerAction = la.lexerAction requiresSeek = (startIndex + offset) != stopIndex } else if lexerAction.getIsPositionDependent() { input.Seek(stopIndex) requiresSeek = false } lexerAction.execute(lexer) } } func (l *LexerActionExecutor) hash() int { if l == nil { return 61 } return l.cachedHash } func (l *LexerActionExecutor) equals(other interface{}) bool { if l == other { return true } else if _, ok := other.(*LexerActionExecutor); !ok { return false } else { return l.cachedHash == other.(*LexerActionExecutor).cachedHash && &l.lexerActions == &other.(*LexerActionExecutor).lexerActions } } golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/lexer_atn_simulator.go 0000664 0000000 0000000 00000052716 14102210121 0026747 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. // Use of this file is governed by the BSD 3-clause license that // can be found in the LICENSE.txt file in the project root. package antlr import ( "fmt" "strconv" ) var ( LexerATNSimulatorDebug = false LexerATNSimulatorDFADebug = false LexerATNSimulatorMinDFAEdge = 0 LexerATNSimulatorMaxDFAEdge = 127 // forces unicode to stay in ATN LexerATNSimulatorMatchCalls = 0 ) type ILexerATNSimulator interface { IATNSimulator reset() Match(input CharStream, mode int) int GetCharPositionInLine() int GetLine() int GetText(input CharStream) string Consume(input CharStream) } type LexerATNSimulator struct { *BaseATNSimulator recog Lexer predictionMode int mergeCache DoubleDict startIndex int Line int CharPositionInLine int mode int prevAccept *SimState MatchCalls int } func NewLexerATNSimulator(recog Lexer, atn *ATN, decisionToDFA []*DFA, sharedContextCache *PredictionContextCache) *LexerATNSimulator { l := new(LexerATNSimulator) l.BaseATNSimulator = NewBaseATNSimulator(atn, sharedContextCache) l.decisionToDFA = decisionToDFA l.recog = recog // The current token's starting index into the character stream. // Shared across DFA to ATN simulation in case the ATN fails and the // DFA did not have a previous accept state. In l case, we use the // ATN-generated exception object. l.startIndex = -1 // line number 1..n within the input/// l.Line = 1 // The index of the character relative to the beginning of the line // 0..n-1/// l.CharPositionInLine = 0 l.mode = LexerDefaultMode // Used during DFA/ATN exec to record the most recent accept configuration // info l.prevAccept = NewSimState() // done return l } func (l *LexerATNSimulator) copyState(simulator *LexerATNSimulator) { l.CharPositionInLine = simulator.CharPositionInLine l.Line = simulator.Line l.mode = simulator.mode l.startIndex = simulator.startIndex } func (l *LexerATNSimulator) Match(input CharStream, mode int) int { l.MatchCalls++ l.mode = mode mark := input.Mark() defer func() { input.Release(mark) }() l.startIndex = input.Index() l.prevAccept.reset() dfa := l.decisionToDFA[mode] if dfa.s0 == nil { return l.MatchATN(input) } return l.execATN(input, dfa.s0) } func (l *LexerATNSimulator) reset() { l.prevAccept.reset() l.startIndex = -1 l.Line = 1 l.CharPositionInLine = 0 l.mode = LexerDefaultMode } func (l *LexerATNSimulator) MatchATN(input CharStream) int { startState := l.atn.modeToStartState[l.mode] if LexerATNSimulatorDebug { fmt.Println("MatchATN mode " + strconv.Itoa(l.mode) + " start: " + startState.String()) } oldMode := l.mode s0Closure := l.computeStartState(input, startState) suppressEdge := s0Closure.hasSemanticContext s0Closure.hasSemanticContext = false next := l.addDFAState(s0Closure) if !suppressEdge { l.decisionToDFA[l.mode].setS0(next) } predict := l.execATN(input, next) if LexerATNSimulatorDebug { fmt.Println("DFA after MatchATN: " + l.decisionToDFA[oldMode].ToLexerString()) } return predict } func (l *LexerATNSimulator) execATN(input CharStream, ds0 *DFAState) int { if LexerATNSimulatorDebug { fmt.Println("start state closure=" + ds0.configs.String()) } if ds0.isAcceptState { // allow zero-length tokens l.captureSimState(l.prevAccept, input, ds0) } t := input.LA(1) s := ds0 // s is current/from DFA state for { // while more work if LexerATNSimulatorDebug { fmt.Println("execATN loop starting closure: " + s.configs.String()) } // As we move src->trg, src->trg, we keep track of the previous trg to // avoid looking up the DFA state again, which is expensive. // If the previous target was already part of the DFA, we might // be able to avoid doing a reach operation upon t. If s!=nil, // it means that semantic predicates didn't prevent us from // creating a DFA state. Once we know s!=nil, we check to see if // the DFA state has an edge already for t. If so, we can just reuse // it's configuration set there's no point in re-computing it. // This is kind of like doing DFA simulation within the ATN // simulation because DFA simulation is really just a way to avoid // computing reach/closure sets. Technically, once we know that // we have a previously added DFA state, we could jump over to // the DFA simulator. But, that would mean popping back and forth // a lot and making things more complicated algorithmically. // This optimization makes a lot of sense for loops within DFA. // A character will take us back to an existing DFA state // that already has lots of edges out of it. e.g., .* in comments. target := l.getExistingTargetState(s, t) if target == nil { target = l.computeTargetState(input, s, t) // print("Computed:" + str(target)) } if target == ATNSimulatorError { break } // If l is a consumable input element, make sure to consume before // capturing the accept state so the input index, line, and char // position accurately reflect the state of the interpreter at the // end of the token. if t != TokenEOF { l.Consume(input) } if target.isAcceptState { l.captureSimState(l.prevAccept, input, target) if t == TokenEOF { break } } t = input.LA(1) s = target // flip current DFA target becomes Newsrc/from state } return l.failOrAccept(l.prevAccept, input, s.configs, t) } // Get an existing target state for an edge in the DFA. If the target state // for the edge has not yet been computed or is otherwise not available, // l method returns {@code nil}. // // @param s The current DFA state // @param t The next input symbol // @return The existing target DFA state for the given input symbol // {@code t}, or {@code nil} if the target state for l edge is not // already cached func (l *LexerATNSimulator) getExistingTargetState(s *DFAState, t int) *DFAState { if s.edges == nil || t < LexerATNSimulatorMinDFAEdge || t > LexerATNSimulatorMaxDFAEdge { return nil } target := s.edges[t-LexerATNSimulatorMinDFAEdge] if LexerATNSimulatorDebug && target != nil { fmt.Println("reuse state " + strconv.Itoa(s.stateNumber) + " edge to " + strconv.Itoa(target.stateNumber)) } return target } // Compute a target state for an edge in the DFA, and attempt to add the // computed state and corresponding edge to the DFA. // // @param input The input stream // @param s The current DFA state // @param t The next input symbol // // @return The computed target DFA state for the given input symbol // {@code t}. If {@code t} does not lead to a valid DFA state, l method // returns {@link //ERROR}. func (l *LexerATNSimulator) computeTargetState(input CharStream, s *DFAState, t int) *DFAState { reach := NewOrderedATNConfigSet() // if we don't find an existing DFA state // Fill reach starting from closure, following t transitions l.getReachableConfigSet(input, s.configs, reach.BaseATNConfigSet, t) if len(reach.configs) == 0 { // we got nowhere on t from s if !reach.hasSemanticContext { // we got nowhere on t, don't panic out l knowledge it'd // cause a failover from DFA later. l.addDFAEdge(s, t, ATNSimulatorError, nil) } // stop when we can't Match any more char return ATNSimulatorError } // Add an edge from s to target DFA found/created for reach return l.addDFAEdge(s, t, nil, reach.BaseATNConfigSet) } func (l *LexerATNSimulator) failOrAccept(prevAccept *SimState, input CharStream, reach ATNConfigSet, t int) int { if l.prevAccept.dfaState != nil { lexerActionExecutor := prevAccept.dfaState.lexerActionExecutor l.accept(input, lexerActionExecutor, l.startIndex, prevAccept.index, prevAccept.line, prevAccept.column) return prevAccept.dfaState.prediction } // if no accept and EOF is first char, return EOF if t == TokenEOF && input.Index() == l.startIndex { return TokenEOF } panic(NewLexerNoViableAltException(l.recog, input, l.startIndex, reach)) } // Given a starting configuration set, figure out all ATN configurations // we can reach upon input {@code t}. Parameter {@code reach} is a return // parameter. func (l *LexerATNSimulator) getReachableConfigSet(input CharStream, closure ATNConfigSet, reach ATNConfigSet, t int) { // l is used to Skip processing for configs which have a lower priority // than a config that already reached an accept state for the same rule SkipAlt := ATNInvalidAltNumber for _, cfg := range closure.GetItems() { currentAltReachedAcceptState := (cfg.GetAlt() == SkipAlt) if currentAltReachedAcceptState && cfg.(*LexerATNConfig).passedThroughNonGreedyDecision { continue } if LexerATNSimulatorDebug { fmt.Printf("testing %s at %s\n", l.GetTokenName(t), cfg.String()) // l.recog, true)) } for _, trans := range cfg.GetState().GetTransitions() { target := l.getReachableTarget(trans, t) if target != nil { lexerActionExecutor := cfg.(*LexerATNConfig).lexerActionExecutor if lexerActionExecutor != nil { lexerActionExecutor = lexerActionExecutor.fixOffsetBeforeMatch(input.Index() - l.startIndex) } treatEOFAsEpsilon := (t == TokenEOF) config := NewLexerATNConfig3(cfg.(*LexerATNConfig), target, lexerActionExecutor) if l.closure(input, config, reach, currentAltReachedAcceptState, true, treatEOFAsEpsilon) { // any remaining configs for l alt have a lower priority // than the one that just reached an accept state. SkipAlt = cfg.GetAlt() } } } } } func (l *LexerATNSimulator) accept(input CharStream, lexerActionExecutor *LexerActionExecutor, startIndex, index, line, charPos int) { if LexerATNSimulatorDebug { fmt.Printf("ACTION %s\n", lexerActionExecutor) } // seek to after last char in token input.Seek(index) l.Line = line l.CharPositionInLine = charPos if lexerActionExecutor != nil && l.recog != nil { lexerActionExecutor.execute(l.recog, input, startIndex) } } func (l *LexerATNSimulator) getReachableTarget(trans Transition, t int) ATNState { if trans.Matches(t, 0, LexerMaxCharValue) { return trans.getTarget() } return nil } func (l *LexerATNSimulator) computeStartState(input CharStream, p ATNState) *OrderedATNConfigSet { configs := NewOrderedATNConfigSet() for i := 0; i < len(p.GetTransitions()); i++ { target := p.GetTransitions()[i].getTarget() cfg := NewLexerATNConfig6(target, i+1, BasePredictionContextEMPTY) l.closure(input, cfg, configs, false, false, false) } return configs } // Since the alternatives within any lexer decision are ordered by // preference, l method stops pursuing the closure as soon as an accept // state is reached. After the first accept state is reached by depth-first // search from {@code config}, all other (potentially reachable) states for // l rule would have a lower priority. // // @return {@code true} if an accept state is reached, otherwise // {@code false}. func (l *LexerATNSimulator) closure(input CharStream, config *LexerATNConfig, configs ATNConfigSet, currentAltReachedAcceptState, speculative, treatEOFAsEpsilon bool) bool { if LexerATNSimulatorDebug { fmt.Println("closure(" + config.String() + ")") // config.String(l.recog, true) + ")") } _, ok := config.state.(*RuleStopState) if ok { if LexerATNSimulatorDebug { if l.recog != nil { fmt.Printf("closure at %s rule stop %s\n", l.recog.GetRuleNames()[config.state.GetRuleIndex()], config) } else { fmt.Printf("closure at rule stop %s\n", config) } } if config.context == nil || config.context.hasEmptyPath() { if config.context == nil || config.context.isEmpty() { configs.Add(config, nil) return true } configs.Add(NewLexerATNConfig2(config, config.state, BasePredictionContextEMPTY), nil) currentAltReachedAcceptState = true } if config.context != nil && !config.context.isEmpty() { for i := 0; i < config.context.length(); i++ { if config.context.getReturnState(i) != BasePredictionContextEmptyReturnState { newContext := config.context.GetParent(i) // "pop" return state returnState := l.atn.states[config.context.getReturnState(i)] cfg := NewLexerATNConfig2(config, returnState, newContext) currentAltReachedAcceptState = l.closure(input, cfg, configs, currentAltReachedAcceptState, speculative, treatEOFAsEpsilon) } } } return currentAltReachedAcceptState } // optimization if !config.state.GetEpsilonOnlyTransitions() { if !currentAltReachedAcceptState || !config.passedThroughNonGreedyDecision { configs.Add(config, nil) } } for j := 0; j < len(config.state.GetTransitions()); j++ { trans := config.state.GetTransitions()[j] cfg := l.getEpsilonTarget(input, config, trans, configs, speculative, treatEOFAsEpsilon) if cfg != nil { currentAltReachedAcceptState = l.closure(input, cfg, configs, currentAltReachedAcceptState, speculative, treatEOFAsEpsilon) } } return currentAltReachedAcceptState } // side-effect: can alter configs.hasSemanticContext func (l *LexerATNSimulator) getEpsilonTarget(input CharStream, config *LexerATNConfig, trans Transition, configs ATNConfigSet, speculative, treatEOFAsEpsilon bool) *LexerATNConfig { var cfg *LexerATNConfig if trans.getSerializationType() == TransitionRULE { rt := trans.(*RuleTransition) newContext := SingletonBasePredictionContextCreate(config.context, rt.followState.GetStateNumber()) cfg = NewLexerATNConfig2(config, trans.getTarget(), newContext) } else if trans.getSerializationType() == TransitionPRECEDENCE { panic("Precedence predicates are not supported in lexers.") } else if trans.getSerializationType() == TransitionPREDICATE { // Track traversing semantic predicates. If we traverse, // we cannot add a DFA state for l "reach" computation // because the DFA would not test the predicate again in the // future. Rather than creating collections of semantic predicates // like v3 and testing them on prediction, v4 will test them on the // fly all the time using the ATN not the DFA. This is slower but // semantically it's not used that often. One of the key elements to // l predicate mechanism is not adding DFA states that see // predicates immediately afterwards in the ATN. For example, // a : ID {p1}? | ID {p2}? // should create the start state for rule 'a' (to save start state // competition), but should not create target of ID state. The // collection of ATN states the following ID references includes // states reached by traversing predicates. Since l is when we // test them, we cannot cash the DFA state target of ID. pt := trans.(*PredicateTransition) if LexerATNSimulatorDebug { fmt.Println("EVAL rule " + strconv.Itoa(trans.(*PredicateTransition).ruleIndex) + ":" + strconv.Itoa(pt.predIndex)) } configs.SetHasSemanticContext(true) if l.evaluatePredicate(input, pt.ruleIndex, pt.predIndex, speculative) { cfg = NewLexerATNConfig4(config, trans.getTarget()) } } else if trans.getSerializationType() == TransitionACTION { if config.context == nil || config.context.hasEmptyPath() { // execute actions anywhere in the start rule for a token. // // TODO: if the entry rule is invoked recursively, some // actions may be executed during the recursive call. The // problem can appear when hasEmptyPath() is true but // isEmpty() is false. In l case, the config needs to be // split into two contexts - one with just the empty path // and another with everything but the empty path. // Unfortunately, the current algorithm does not allow // getEpsilonTarget to return two configurations, so // additional modifications are needed before we can support // the split operation. lexerActionExecutor := LexerActionExecutorappend(config.lexerActionExecutor, l.atn.lexerActions[trans.(*ActionTransition).actionIndex]) cfg = NewLexerATNConfig3(config, trans.getTarget(), lexerActionExecutor) } else { // ignore actions in referenced rules cfg = NewLexerATNConfig4(config, trans.getTarget()) } } else if trans.getSerializationType() == TransitionEPSILON { cfg = NewLexerATNConfig4(config, trans.getTarget()) } else if trans.getSerializationType() == TransitionATOM || trans.getSerializationType() == TransitionRANGE || trans.getSerializationType() == TransitionSET { if treatEOFAsEpsilon { if trans.Matches(TokenEOF, 0, LexerMaxCharValue) { cfg = NewLexerATNConfig4(config, trans.getTarget()) } } } return cfg } // Evaluate a predicate specified in the lexer. // //If {@code speculative} is {@code true}, l method was called before // {@link //consume} for the Matched character. This method should call // {@link //consume} before evaluating the predicate to ensure position // sensitive values, including {@link Lexer//GetText}, {@link Lexer//GetLine}, // and {@link Lexer//getcolumn}, properly reflect the current // lexer state. This method should restore {@code input} and the simulator // to the original state before returning (i.e. undo the actions made by the // call to {@link //consume}.
// // @param input The input stream. // @param ruleIndex The rule containing the predicate. // @param predIndex The index of the predicate within the rule. // @param speculative {@code true} if the current index in {@code input} is // one character before the predicate's location. // // @return {@code true} if the specified predicate evaluates to // {@code true}. // / func (l *LexerATNSimulator) evaluatePredicate(input CharStream, ruleIndex, predIndex int, speculative bool) bool { // assume true if no recognizer was provided if l.recog == nil { return true } if !speculative { return l.recog.Sempred(nil, ruleIndex, predIndex) } savedcolumn := l.CharPositionInLine savedLine := l.Line index := input.Index() marker := input.Mark() defer func() { l.CharPositionInLine = savedcolumn l.Line = savedLine input.Seek(index) input.Release(marker) }() l.Consume(input) return l.recog.Sempred(nil, ruleIndex, predIndex) } func (l *LexerATNSimulator) captureSimState(settings *SimState, input CharStream, dfaState *DFAState) { settings.index = input.Index() settings.line = l.Line settings.column = l.CharPositionInLine settings.dfaState = dfaState } func (l *LexerATNSimulator) addDFAEdge(from *DFAState, tk int, to *DFAState, cfgs ATNConfigSet) *DFAState { if to == nil && cfgs != nil { // leading to l call, ATNConfigSet.hasSemanticContext is used as a // marker indicating dynamic predicate evaluation makes l edge // dependent on the specific input sequence, so the static edge in the // DFA should be omitted. The target DFAState is still created since // execATN has the ability to reSynchronize with the DFA state cache // following the predicate evaluation step. // // TJP notes: next time through the DFA, we see a pred again and eval. // If that gets us to a previously created (but dangling) DFA // state, we can continue in pure DFA mode from there. // / suppressEdge := cfgs.HasSemanticContext() cfgs.SetHasSemanticContext(false) to = l.addDFAState(cfgs) if suppressEdge { return to } } // add the edge if tk < LexerATNSimulatorMinDFAEdge || tk > LexerATNSimulatorMaxDFAEdge { // Only track edges within the DFA bounds return to } if LexerATNSimulatorDebug { fmt.Println("EDGE " + from.String() + " -> " + to.String() + " upon " + strconv.Itoa(tk)) } if from.edges == nil { // make room for tokens 1..n and -1 masquerading as index 0 from.edges = make([]*DFAState, LexerATNSimulatorMaxDFAEdge-LexerATNSimulatorMinDFAEdge+1) } from.edges[tk-LexerATNSimulatorMinDFAEdge] = to // connect return to } // Add a NewDFA state if there isn't one with l set of // configurations already. This method also detects the first // configuration containing an ATN rule stop state. Later, when // traversing the DFA, we will know which rule to accept. func (l *LexerATNSimulator) addDFAState(configs ATNConfigSet) *DFAState { proposed := NewDFAState(-1, configs) var firstConfigWithRuleStopState ATNConfig for _, cfg := range configs.GetItems() { _, ok := cfg.GetState().(*RuleStopState) if ok { firstConfigWithRuleStopState = cfg break } } if firstConfigWithRuleStopState != nil { proposed.isAcceptState = true proposed.lexerActionExecutor = firstConfigWithRuleStopState.(*LexerATNConfig).lexerActionExecutor proposed.setPrediction(l.atn.ruleToTokenType[firstConfigWithRuleStopState.GetState().GetRuleIndex()]) } hash := proposed.hash() dfa := l.decisionToDFA[l.mode] existing, ok := dfa.getState(hash) if ok { return existing } newState := proposed newState.stateNumber = dfa.numStates() configs.SetReadOnly(true) newState.configs = configs dfa.setState(hash, newState) return newState } func (l *LexerATNSimulator) getDFA(mode int) *DFA { return l.decisionToDFA[mode] } // Get the text Matched so far for the current token. func (l *LexerATNSimulator) GetText(input CharStream) string { // index is first lookahead char, don't include. return input.GetTextFromInterval(NewInterval(l.startIndex, input.Index()-1)) } func (l *LexerATNSimulator) Consume(input CharStream) { curChar := input.LA(1) if curChar == int('\n') { l.Line++ l.CharPositionInLine = 0 } else { l.CharPositionInLine++ } input.Consume() } func (l *LexerATNSimulator) GetCharPositionInLine() int { return l.CharPositionInLine } func (l *LexerATNSimulator) GetLine() int { return l.Line } func (l *LexerATNSimulator) GetTokenName(tt int) string { if tt == -1 { return "EOF" } return "'" + string(tt) + "'" } func resetSimState(sim *SimState) { sim.index = -1 sim.line = 0 sim.column = -1 sim.dfaState = nil } type SimState struct { index int line int column int dfaState *DFAState } func NewSimState() *SimState { s := new(SimState) resetSimState(s) return s } func (s *SimState) reset() { resetSimState(s) } golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/ll1_analyzer.go 0000664 0000000 0000000 00000016331 14102210121 0025255 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. // Use of this file is governed by the BSD 3-clause license that // can be found in the LICENSE.txt file in the project root. package antlr type LL1Analyzer struct { atn *ATN } func NewLL1Analyzer(atn *ATN) *LL1Analyzer { la := new(LL1Analyzer) la.atn = atn return la } //* Special value added to the lookahead sets to indicate that we hit // a predicate during analysis if {@code seeThruPreds==false}. /// const ( LL1AnalyzerHitPred = TokenInvalidType ) //* // Calculates the SLL(1) expected lookahead set for each outgoing transition // of an {@link ATNState}. The returned array has one element for each // outgoing transition in {@code s}. If the closure from transition // i leads to a semantic predicate before Matching a symbol, the // element at index i of the result will be {@code nil}. // // @param s the ATN state // @return the expected symbols for each outgoing transition of {@code s}. func (la *LL1Analyzer) getDecisionLookahead(s ATNState) []*IntervalSet { if s == nil { return nil } count := len(s.GetTransitions()) look := make([]*IntervalSet, count) for alt := 0; alt < count; alt++ { look[alt] = NewIntervalSet() lookBusy := NewSet(nil, nil) seeThruPreds := false // fail to get lookahead upon pred la.look1(s.GetTransitions()[alt].getTarget(), nil, BasePredictionContextEMPTY, look[alt], lookBusy, NewBitSet(), seeThruPreds, false) // Wipe out lookahead for la alternative if we found nothing // or we had a predicate when we !seeThruPreds if look[alt].length() == 0 || look[alt].contains(LL1AnalyzerHitPred) { look[alt] = nil } } return look } //* // Compute set of tokens that can follow {@code s} in the ATN in the // specified {@code ctx}. // //If {@code ctx} is {@code nil} and the end of the rule containing // {@code s} is reached, {@link Token//EPSILON} is added to the result set. // If {@code ctx} is not {@code nil} and the end of the outermost rule is // reached, {@link Token//EOF} is added to the result set.
// // @param s the ATN state // @param stopState the ATN state to stop at. This can be a // {@link BlockEndState} to detect epsilon paths through a closure. // @param ctx the complete parser context, or {@code nil} if the context // should be ignored // // @return The set of tokens that can follow {@code s} in the ATN in the // specified {@code ctx}. /// func (la *LL1Analyzer) Look(s, stopState ATNState, ctx RuleContext) *IntervalSet { r := NewIntervalSet() seeThruPreds := true // ignore preds get all lookahead var lookContext PredictionContext if ctx != nil { lookContext = predictionContextFromRuleContext(s.GetATN(), ctx) } la.look1(s, stopState, lookContext, r, NewSet(nil, nil), NewBitSet(), seeThruPreds, true) return r } //* // Compute set of tokens that can follow {@code s} in the ATN in the // specified {@code ctx}. // //If {@code ctx} is {@code nil} and {@code stopState} or the end of the // rule containing {@code s} is reached, {@link Token//EPSILON} is added to // the result set. If {@code ctx} is not {@code nil} and {@code addEOF} is // {@code true} and {@code stopState} or the end of the outermost rule is // reached, {@link Token//EOF} is added to the result set.
// // @param s the ATN state. // @param stopState the ATN state to stop at. This can be a // {@link BlockEndState} to detect epsilon paths through a closure. // @param ctx The outer context, or {@code nil} if the outer context should // not be used. // @param look The result lookahead set. // @param lookBusy A set used for preventing epsilon closures in the ATN // from causing a stack overflow. Outside code should pass // {@code NewSetIf the symbol type does not Match, // {@link ANTLRErrorStrategy//recoverInline} is called on the current error // strategy to attempt recovery. If {@link //getBuildParseTree} is // {@code true} and the token index of the symbol returned by // {@link ANTLRErrorStrategy//recoverInline} is -1, the symbol is added to // the parse tree by calling {@link ParserRuleContext//addErrorNode}.
// // @param ttype the token type to Match // @return the Matched symbol // @panics RecognitionException if the current input symbol did not Match // {@code ttype} and the error strategy could not recover from the // mismatched symbol func (p *BaseParser) Match(ttype int) Token { t := p.GetCurrentToken() if t.GetTokenType() == ttype { p.errHandler.ReportMatch(p) p.Consume() } else { t = p.errHandler.RecoverInline(p) if p.BuildParseTrees && t.GetTokenIndex() == -1 { // we must have conjured up a Newtoken during single token // insertion // if it's not the current symbol p.ctx.AddErrorNode(t) } } return t } // Match current input symbol as a wildcard. If the symbol type Matches // (i.e. has a value greater than 0), {@link ANTLRErrorStrategy//ReportMatch} // and {@link //consume} are called to complete the Match process. // //If the symbol type does not Match, // {@link ANTLRErrorStrategy//recoverInline} is called on the current error // strategy to attempt recovery. If {@link //getBuildParseTree} is // {@code true} and the token index of the symbol returned by // {@link ANTLRErrorStrategy//recoverInline} is -1, the symbol is added to // the parse tree by calling {@link ParserRuleContext//addErrorNode}.
// // @return the Matched symbol // @panics RecognitionException if the current input symbol did not Match // a wildcard and the error strategy could not recover from the mismatched // symbol func (p *BaseParser) MatchWildcard() Token { t := p.GetCurrentToken() if t.GetTokenType() > 0 { p.errHandler.ReportMatch(p) p.Consume() } else { t = p.errHandler.RecoverInline(p) if p.BuildParseTrees && t.GetTokenIndex() == -1 { // we must have conjured up a Newtoken during single token // insertion // if it's not the current symbol p.ctx.AddErrorNode(t) } } return t } func (p *BaseParser) GetParserRuleContext() ParserRuleContext { return p.ctx } func (p *BaseParser) SetParserRuleContext(v ParserRuleContext) { p.ctx = v } func (p *BaseParser) GetParseListeners() []ParseTreeListener { if p.parseListeners == nil { return make([]ParseTreeListener, 0) } return p.parseListeners } // Registers {@code listener} to receive events during the parsing process. // //To support output-preserving grammar transformations (including but not // limited to left-recursion removal, automated left-factoring, and // optimized code generation), calls to listener methods during the parse // may differ substantially from calls made by // {@link ParseTreeWalker//DEFAULT} used after the parse is complete. In // particular, rule entry and exit events may occur in a different order // during the parse than after the parser. In addition, calls to certain // rule entry methods may be omitted.
// //With the following specific exceptions, calls to listener events are // deterministic, i.e. for identical input the calls to listener // methods will be the same.
// //If {@code listener} is {@code nil} or has not been added as a parse // listener, p.method does nothing.
// @param listener the listener to remove // func (p *BaseParser) RemoveParseListener(listener ParseTreeListener) { if p.parseListeners != nil { idx := -1 for i, v := range p.parseListeners { if v == listener { idx = i break } } if idx == -1 { return } // remove the listener from the slice p.parseListeners = append(p.parseListeners[0:idx], p.parseListeners[idx+1:]...) if len(p.parseListeners) == 0 { p.parseListeners = nil } } } // Remove all parse listeners. func (p *BaseParser) removeParseListeners() { p.parseListeners = nil } // Notify any parse listeners of an enter rule event. func (p *BaseParser) TriggerEnterRuleEvent() { if p.parseListeners != nil { ctx := p.ctx for _, listener := range p.parseListeners { listener.EnterEveryRule(ctx) ctx.EnterRule(listener) } } } // // Notify any parse listeners of an exit rule event. // // @see //addParseListener // func (p *BaseParser) TriggerExitRuleEvent() { if p.parseListeners != nil { // reverse order walk of listeners ctx := p.ctx l := len(p.parseListeners) - 1 for i := range p.parseListeners { listener := p.parseListeners[l-i] ctx.ExitRule(listener) listener.ExitEveryRule(ctx) } } } func (p *BaseParser) GetInterpreter() *ParserATNSimulator { return p.Interpreter } func (p *BaseParser) GetATN() *ATN { return p.Interpreter.atn } func (p *BaseParser) GetTokenFactory() TokenFactory { return p.input.GetTokenSource().GetTokenFactory() } // Tell our token source and error strategy about a Newway to create tokens.// func (p *BaseParser) setTokenFactory(factory TokenFactory) { p.input.GetTokenSource().setTokenFactory(factory) } // The ATN with bypass alternatives is expensive to create so we create it // lazily. // // @panics UnsupportedOperationException if the current parser does not // implement the {@link //getSerializedATN()} method. // func (p *BaseParser) GetATNWithBypassAlts() { // TODO panic("Not implemented!") // serializedAtn := p.getSerializedATN() // if (serializedAtn == nil) { // panic("The current parser does not support an ATN with bypass alternatives.") // } // result := p.bypassAltsAtnCache[serializedAtn] // if (result == nil) { // deserializationOptions := NewATNDeserializationOptions(nil) // deserializationOptions.generateRuleBypassTransitions = true // result = NewATNDeserializer(deserializationOptions).deserialize(serializedAtn) // p.bypassAltsAtnCache[serializedAtn] = result // } // return result } // The preferred method of getting a tree pattern. For example, here's a // sample use: // //// ParseTree t = parser.expr() // ParseTreePattern p = parser.compileParseTreePattern("<ID>+0", // MyParser.RULE_expr) // ParseTreeMatch m = p.Match(t) // String id = m.Get("ID") //func (p *BaseParser) compileParseTreePattern(pattern, patternRuleIndex, lexer Lexer) { panic("NewParseTreePatternMatcher not implemented!") // // if (lexer == nil) { // if (p.GetTokenStream() != nil) { // tokenSource := p.GetTokenStream().GetTokenSource() // if _, ok := tokenSource.(ILexer); ok { // lexer = tokenSource // } // } // } // if (lexer == nil) { // panic("Parser can't discover a lexer to use") // } // m := NewParseTreePatternMatcher(lexer, p) // return m.compile(pattern, patternRuleIndex) } func (p *BaseParser) GetInputStream() IntStream { return p.GetTokenStream() } func (p *BaseParser) SetInputStream(input TokenStream) { p.SetTokenStream(input) } func (p *BaseParser) GetTokenStream() TokenStream { return p.input } // Set the token stream and reset the parser.// func (p *BaseParser) SetTokenStream(input TokenStream) { p.input = nil p.reset() p.input = input } // Match needs to return the current input symbol, which gets put // into the label for the associated token ref e.g., x=ID. // func (p *BaseParser) GetCurrentToken() Token { return p.input.LT(1) } func (p *BaseParser) NotifyErrorListeners(msg string, offendingToken Token, err RecognitionException) { if offendingToken == nil { offendingToken = p.GetCurrentToken() } p._SyntaxErrors++ line := offendingToken.GetLine() column := offendingToken.GetColumn() listener := p.GetErrorListenerDispatch() listener.SyntaxError(p, offendingToken, line, column, msg, err) } func (p *BaseParser) Consume() Token { o := p.GetCurrentToken() if o.GetTokenType() != TokenEOF { p.GetInputStream().Consume() } hasListener := p.parseListeners != nil && len(p.parseListeners) > 0 if p.BuildParseTrees || hasListener { if p.errHandler.inErrorRecoveryMode(p) { node := p.ctx.AddErrorNode(o) if p.parseListeners != nil { for _, l := range p.parseListeners { l.VisitErrorNode(node) } } } else { node := p.ctx.AddTokenNode(o) if p.parseListeners != nil { for _, l := range p.parseListeners { l.VisitTerminal(node) } } } // node.invokingState = p.state } return o } func (p *BaseParser) addContextToParseTree() { // add current context to parent if we have a parent if p.ctx.GetParent() != nil { p.ctx.GetParent().(ParserRuleContext).AddChild(p.ctx) } } func (p *BaseParser) EnterRule(localctx ParserRuleContext, state, ruleIndex int) { p.SetState(state) p.ctx = localctx p.ctx.SetStart(p.input.LT(1)) if p.BuildParseTrees { p.addContextToParseTree() } if p.parseListeners != nil { p.TriggerEnterRuleEvent() } } func (p *BaseParser) ExitRule() { p.ctx.SetStop(p.input.LT(-1)) // trigger event on ctx, before it reverts to parent if p.parseListeners != nil { p.TriggerExitRuleEvent() } p.SetState(p.ctx.GetInvokingState()) if p.ctx.GetParent() != nil { p.ctx = p.ctx.GetParent().(ParserRuleContext) } else { p.ctx = nil } } func (p *BaseParser) EnterOuterAlt(localctx ParserRuleContext, altNum int) { localctx.SetAltNumber(altNum) // if we have Newlocalctx, make sure we replace existing ctx // that is previous child of parse tree if p.BuildParseTrees && p.ctx != localctx { if p.ctx.GetParent() != nil { p.ctx.GetParent().(ParserRuleContext).RemoveLastChild() p.ctx.GetParent().(ParserRuleContext).AddChild(localctx) } } p.ctx = localctx } // Get the precedence level for the top-most precedence rule. // // @return The precedence level for the top-most precedence rule, or -1 if // the parser context is not nested within a precedence rule. func (p *BaseParser) GetPrecedence() int { if len(p.precedenceStack) == 0 { return -1 } return p.precedenceStack[len(p.precedenceStack)-1] } func (p *BaseParser) EnterRecursionRule(localctx ParserRuleContext, state, ruleIndex, precedence int) { p.SetState(state) p.precedenceStack.Push(precedence) p.ctx = localctx p.ctx.SetStart(p.input.LT(1)) if p.parseListeners != nil { p.TriggerEnterRuleEvent() // simulates rule entry for // left-recursive rules } } // // Like {@link //EnterRule} but for recursive rules. func (p *BaseParser) PushNewRecursionContext(localctx ParserRuleContext, state, ruleIndex int) { previous := p.ctx previous.SetParent(localctx) previous.SetInvokingState(state) previous.SetStop(p.input.LT(-1)) p.ctx = localctx p.ctx.SetStart(previous.GetStart()) if p.BuildParseTrees { p.ctx.AddChild(previous) } if p.parseListeners != nil { p.TriggerEnterRuleEvent() // simulates rule entry for // left-recursive rules } } func (p *BaseParser) UnrollRecursionContexts(parentCtx ParserRuleContext) { p.precedenceStack.Pop() p.ctx.SetStop(p.input.LT(-1)) retCtx := p.ctx // save current ctx (return value) // unroll so ctx is as it was before call to recursive method if p.parseListeners != nil { for p.ctx != parentCtx { p.TriggerExitRuleEvent() p.ctx = p.ctx.GetParent().(ParserRuleContext) } } else { p.ctx = parentCtx } // hook into tree retCtx.SetParent(parentCtx) if p.BuildParseTrees && parentCtx != nil { // add return ctx into invoking rule's tree parentCtx.AddChild(retCtx) } } func (p *BaseParser) GetInvokingContext(ruleIndex int) ParserRuleContext { ctx := p.ctx for ctx != nil { if ctx.GetRuleIndex() == ruleIndex { return ctx } ctx = ctx.GetParent().(ParserRuleContext) } return nil } func (p *BaseParser) Precpred(localctx RuleContext, precedence int) bool { return precedence >= p.precedenceStack[len(p.precedenceStack)-1] } func (p *BaseParser) inContext(context ParserRuleContext) bool { // TODO: useful in parser? return false } // // Checks whether or not {@code symbol} can follow the current state in the // ATN. The behavior of p.method is equivalent to the following, but is // implemented such that the complete context-sensitive follow set does not // need to be explicitly constructed. // //
// return getExpectedTokens().contains(symbol) //// // @param symbol the symbol type to check // @return {@code true} if {@code symbol} can follow the current state in // the ATN, otherwise {@code false}. func (p *BaseParser) IsExpectedToken(symbol int) bool { atn := p.Interpreter.atn ctx := p.ctx s := atn.states[p.state] following := atn.NextTokens(s, nil) if following.contains(symbol) { return true } if !following.contains(TokenEpsilon) { return false } for ctx != nil && ctx.GetInvokingState() >= 0 && following.contains(TokenEpsilon) { invokingState := atn.states[ctx.GetInvokingState()] rt := invokingState.GetTransitions()[0] following = atn.NextTokens(rt.(*RuleTransition).followState, nil) if following.contains(symbol) { return true } ctx = ctx.GetParent().(ParserRuleContext) } if following.contains(TokenEpsilon) && symbol == TokenEOF { return true } return false } // Computes the set of input symbols which could follow the current parser // state and context, as given by {@link //GetState} and {@link //GetContext}, // respectively. // // @see ATN//getExpectedTokens(int, RuleContext) // func (p *BaseParser) GetExpectedTokens() *IntervalSet { return p.Interpreter.atn.getExpectedTokens(p.state, p.ctx) } func (p *BaseParser) GetExpectedTokensWithinCurrentRule() *IntervalSet { atn := p.Interpreter.atn s := atn.states[p.state] return atn.NextTokens(s, nil) } // Get a rule's index (i.e., {@code RULE_ruleName} field) or -1 if not found.// func (p *BaseParser) GetRuleIndex(ruleName string) int { var ruleIndex, ok = p.GetRuleIndexMap()[ruleName] if ok { return ruleIndex } return -1 } // Return List<String> of the rule names in your parser instance // leading up to a call to the current rule. You could override if // you want more details such as the file/line info of where // in the ATN a rule is invoked. // // this very useful for error messages. func (p *BaseParser) GetRuleInvocationStack(c ParserRuleContext) []string { if c == nil { c = p.ctx } stack := make([]string, 0) for c != nil { // compute what follows who invoked us ruleIndex := c.GetRuleIndex() if ruleIndex < 0 { stack = append(stack, "n/a") } else { stack = append(stack, p.GetRuleNames()[ruleIndex]) } vp := c.GetParent() if vp == nil { break } c = vp.(ParserRuleContext) } return stack } // For debugging and other purposes.// func (p *BaseParser) GetDFAStrings() string { return fmt.Sprint(p.Interpreter.decisionToDFA) } // For debugging and other purposes.// func (p *BaseParser) DumpDFA() { seenOne := false for _, dfa := range p.Interpreter.decisionToDFA { if dfa.numStates() > 0 { if seenOne { fmt.Println() } fmt.Println("Decision " + strconv.Itoa(dfa.decision) + ":") fmt.Print(dfa.String(p.LiteralNames, p.SymbolicNames)) seenOne = true } } } func (p *BaseParser) GetSourceName() string { return p.GrammarFileName } // During a parse is sometimes useful to listen in on the rule entry and exit // events as well as token Matches. p.is for quick and dirty debugging. // func (p *BaseParser) SetTrace(trace *TraceListener) { if trace == nil { p.RemoveParseListener(p.tracer) p.tracer = nil } else { if p.tracer != nil { p.RemoveParseListener(p.tracer) } p.tracer = NewTraceListener(p) p.AddParseListener(p.tracer) } } golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/parser_atn_simulator.go 0000664 0000000 0000000 00000151755 14102210121 0027127 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. // Use of this file is governed by the BSD 3-clause license that // can be found in the LICENSE.txt file in the project root. package antlr import ( "fmt" "strconv" "strings" ) var ( ParserATNSimulatorDebug = false ParserATNSimulatorListATNDecisions = false ParserATNSimulatorDFADebug = false ParserATNSimulatorRetryDebug = false ) type ParserATNSimulator struct { *BaseATNSimulator parser Parser predictionMode int input TokenStream startIndex int dfa *DFA mergeCache *DoubleDict outerContext ParserRuleContext } func NewParserATNSimulator(parser Parser, atn *ATN, decisionToDFA []*DFA, sharedContextCache *PredictionContextCache) *ParserATNSimulator { p := new(ParserATNSimulator) p.BaseATNSimulator = NewBaseATNSimulator(atn, sharedContextCache) p.parser = parser p.decisionToDFA = decisionToDFA // SLL, LL, or LL + exact ambig detection?// p.predictionMode = PredictionModeLL // LAME globals to avoid parameters!!!!! I need these down deep in predTransition p.input = nil p.startIndex = 0 p.outerContext = nil p.dfa = nil // Each prediction operation uses a cache for merge of prediction contexts. // Don't keep around as it wastes huge amounts of memory. DoubleKeyMap // isn't Synchronized but we're ok since two threads shouldn't reuse same // parser/atnsim object because it can only handle one input at a time. // This maps graphs a and b to merged result c. (a,b)&rarrc. We can avoid // the merge if we ever see a and b again. Note that (b,a)&rarrc should // also be examined during cache lookup. // p.mergeCache = nil return p } func (p *ParserATNSimulator) GetPredictionMode() int { return p.predictionMode } func (p *ParserATNSimulator) SetPredictionMode(v int) { p.predictionMode = v } func (p *ParserATNSimulator) reset() { } func (p *ParserATNSimulator) AdaptivePredict(input TokenStream, decision int, outerContext ParserRuleContext) int { if ParserATNSimulatorDebug || ParserATNSimulatorListATNDecisions { fmt.Println("AdaptivePredict decision " + strconv.Itoa(decision) + " exec LA(1)==" + p.getLookaheadName(input) + " line " + strconv.Itoa(input.LT(1).GetLine()) + ":" + strconv.Itoa(input.LT(1).GetColumn())) } p.input = input p.startIndex = input.Index() p.outerContext = outerContext dfa := p.decisionToDFA[decision] p.dfa = dfa m := input.Mark() index := input.Index() defer func() { p.dfa = nil p.mergeCache = nil // wack cache after each prediction input.Seek(index) input.Release(m) }() // Now we are certain to have a specific decision's DFA // But, do we still need an initial state? var s0 *DFAState if dfa.precedenceDfa { // the start state for a precedence DFA depends on the current // parser precedence, and is provided by a DFA method. s0 = dfa.getPrecedenceStartState(p.parser.GetPrecedence()) } else { // the start state for a "regular" DFA is just s0 s0 = dfa.s0 } if s0 == nil { if outerContext == nil { outerContext = RuleContextEmpty } if ParserATNSimulatorDebug || ParserATNSimulatorListATNDecisions { fmt.Println("predictATN decision " + strconv.Itoa(dfa.decision) + " exec LA(1)==" + p.getLookaheadName(input) + ", outerContext=" + outerContext.String(p.parser.GetRuleNames(), nil)) } // If p is not a precedence DFA, we check the ATN start state // to determine if p ATN start state is the decision for the // closure block that determines whether a precedence rule // should continue or complete. t2 := dfa.atnStartState t, ok := t2.(*StarLoopEntryState) if !dfa.precedenceDfa && ok { if t.precedenceRuleDecision { dfa.setPrecedenceDfa(true) } } fullCtx := false s0Closure := p.computeStartState(dfa.atnStartState, RuleContextEmpty, fullCtx) if dfa.precedenceDfa { // If p is a precedence DFA, we use applyPrecedenceFilter // to convert the computed start state to a precedence start // state. We then use DFA.setPrecedenceStartState to set the // appropriate start state for the precedence level rather // than simply setting DFA.s0. // s0Closure = p.applyPrecedenceFilter(s0Closure) s0 = p.addDFAState(dfa, NewDFAState(-1, s0Closure)) dfa.setPrecedenceStartState(p.parser.GetPrecedence(), s0) } else { s0 = p.addDFAState(dfa, NewDFAState(-1, s0Closure)) dfa.s0 = s0 } } alt := p.execATN(dfa, s0, input, index, outerContext) if ParserATNSimulatorDebug { fmt.Println("DFA after predictATN: " + dfa.String(p.parser.GetLiteralNames(), nil)) } return alt } // Performs ATN simulation to compute a predicted alternative based // upon the remaining input, but also updates the DFA cache to avoid // having to traverse the ATN again for the same input sequence. // There are some key conditions we're looking for after computing a new // set of ATN configs (proposed DFA state): // if the set is empty, there is no viable alternative for current symbol // does the state uniquely predict an alternative? // does the state have a conflict that would prevent us from // putting it on the work list? // We also have some key operations to do: // add an edge from previous DFA state to potentially NewDFA state, D, // upon current symbol but only if adding to work list, which means in all // cases except no viable alternative (and possibly non-greedy decisions?) // collecting predicates and adding semantic context to DFA accept states // adding rule context to context-sensitive DFA accept states // consuming an input symbol // Reporting a conflict // Reporting an ambiguity // Reporting a context sensitivity // Reporting insufficient predicates // cover these cases: // dead end // single alt // single alt + preds // conflict // conflict + preds // func (p *ParserATNSimulator) execATN(dfa *DFA, s0 *DFAState, input TokenStream, startIndex int, outerContext ParserRuleContext) int { if ParserATNSimulatorDebug || ParserATNSimulatorListATNDecisions { fmt.Println("execATN decision " + strconv.Itoa(dfa.decision) + " exec LA(1)==" + p.getLookaheadName(input) + " line " + strconv.Itoa(input.LT(1).GetLine()) + ":" + strconv.Itoa(input.LT(1).GetColumn())) } previousD := s0 if ParserATNSimulatorDebug { fmt.Println("s0 = " + s0.String()) } t := input.LA(1) for { // for more work D := p.getExistingTargetState(previousD, t) if D == nil { D = p.computeTargetState(dfa, previousD, t) } if D == ATNSimulatorError { // if any configs in previous dipped into outer context, that // means that input up to t actually finished entry rule // at least for SLL decision. Full LL doesn't dip into outer // so don't need special case. // We will get an error no matter what so delay until after // decision better error message. Also, no reachable target // ATN states in SLL implies LL will also get nowhere. // If conflict in states that dip out, choose min since we // will get error no matter what. e := p.noViableAlt(input, outerContext, previousD.configs, startIndex) input.Seek(startIndex) alt := p.getSynValidOrSemInvalidAltThatFinishedDecisionEntryRule(previousD.configs, outerContext) if alt != ATNInvalidAltNumber { return alt } panic(e) } if D.requiresFullContext && p.predictionMode != PredictionModeSLL { // IF PREDS, MIGHT RESOLVE TO SINGLE ALT => SLL (or syntax error) conflictingAlts := D.configs.GetConflictingAlts() if D.predicates != nil { if ParserATNSimulatorDebug { fmt.Println("DFA state has preds in DFA sim LL failover") } conflictIndex := input.Index() if conflictIndex != startIndex { input.Seek(startIndex) } conflictingAlts = p.evalSemanticContext(D.predicates, outerContext, true) if conflictingAlts.length() == 1 { if ParserATNSimulatorDebug { fmt.Println("Full LL avoided") } return conflictingAlts.minValue() } if conflictIndex != startIndex { // restore the index so Reporting the fallback to full // context occurs with the index at the correct spot input.Seek(conflictIndex) } } if ParserATNSimulatorDFADebug { fmt.Println("ctx sensitive state " + outerContext.String(nil, nil) + " in " + D.String()) } fullCtx := true s0Closure := p.computeStartState(dfa.atnStartState, outerContext, fullCtx) p.ReportAttemptingFullContext(dfa, conflictingAlts, D.configs, startIndex, input.Index()) alt := p.execATNWithFullContext(dfa, D, s0Closure, input, startIndex, outerContext) return alt } if D.isAcceptState { if D.predicates == nil { return D.prediction } stopIndex := input.Index() input.Seek(startIndex) alts := p.evalSemanticContext(D.predicates, outerContext, true) if alts.length() == 0 { panic(p.noViableAlt(input, outerContext, D.configs, startIndex)) } else if alts.length() == 1 { return alts.minValue() } else { // Report ambiguity after predicate evaluation to make sure the correct set of ambig alts is Reported. p.ReportAmbiguity(dfa, D, startIndex, stopIndex, false, alts, D.configs) return alts.minValue() } } previousD = D if t != TokenEOF { input.Consume() t = input.LA(1) } } panic("Should not have reached p state") } // Get an existing target state for an edge in the DFA. If the target state // for the edge has not yet been computed or is otherwise not available, // p method returns {@code nil}. // // @param previousD The current DFA state // @param t The next input symbol // @return The existing target DFA state for the given input symbol // {@code t}, or {@code nil} if the target state for p edge is not // already cached func (p *ParserATNSimulator) getExistingTargetState(previousD *DFAState, t int) *DFAState { edges := previousD.edges if edges == nil { return nil } return edges[t+1] } // Compute a target state for an edge in the DFA, and attempt to add the // computed state and corresponding edge to the DFA. // // @param dfa The DFA // @param previousD The current DFA state // @param t The next input symbol // // @return The computed target DFA state for the given input symbol // {@code t}. If {@code t} does not lead to a valid DFA state, p method // returns {@link //ERROR}. func (p *ParserATNSimulator) computeTargetState(dfa *DFA, previousD *DFAState, t int) *DFAState { reach := p.computeReachSet(previousD.configs, t, false) if reach == nil { p.addDFAEdge(dfa, previousD, t, ATNSimulatorError) return ATNSimulatorError } // create Newtarget state we'll add to DFA after it's complete D := NewDFAState(-1, reach) predictedAlt := p.getUniqueAlt(reach) if ParserATNSimulatorDebug { altSubSets := PredictionModegetConflictingAltSubsets(reach) fmt.Println("SLL altSubSets=" + fmt.Sprint(altSubSets) + ", previous=" + previousD.configs.String() + ", configs=" + reach.String() + ", predict=" + strconv.Itoa(predictedAlt) + ", allSubsetsConflict=" + fmt.Sprint(PredictionModeallSubsetsConflict(altSubSets)) + ", conflictingAlts=" + p.getConflictingAlts(reach).String()) } if predictedAlt != ATNInvalidAltNumber { // NO CONFLICT, UNIQUELY PREDICTED ALT D.isAcceptState = true D.configs.SetUniqueAlt(predictedAlt) D.setPrediction(predictedAlt) } else if PredictionModehasSLLConflictTerminatingPrediction(p.predictionMode, reach) { // MORE THAN ONE VIABLE ALTERNATIVE D.configs.SetConflictingAlts(p.getConflictingAlts(reach)) D.requiresFullContext = true // in SLL-only mode, we will stop at p state and return the minimum alt D.isAcceptState = true D.setPrediction(D.configs.GetConflictingAlts().minValue()) } if D.isAcceptState && D.configs.HasSemanticContext() { p.predicateDFAState(D, p.atn.getDecisionState(dfa.decision)) if D.predicates != nil { D.setPrediction(ATNInvalidAltNumber) } } // all adds to dfa are done after we've created full D state D = p.addDFAEdge(dfa, previousD, t, D) return D } func (p *ParserATNSimulator) predicateDFAState(dfaState *DFAState, decisionState DecisionState) { // We need to test all predicates, even in DFA states that // uniquely predict alternative. nalts := len(decisionState.GetTransitions()) // Update DFA so reach becomes accept state with (predicate,alt) // pairs if preds found for conflicting alts altsToCollectPredsFrom := p.getConflictingAltsOrUniqueAlt(dfaState.configs) altToPred := p.getPredsForAmbigAlts(altsToCollectPredsFrom, dfaState.configs, nalts) if altToPred != nil { dfaState.predicates = p.getPredicatePredictions(altsToCollectPredsFrom, altToPred) dfaState.setPrediction(ATNInvalidAltNumber) // make sure we use preds } else { // There are preds in configs but they might go away // when OR'd together like {p}? || NONE == NONE. If neither // alt has preds, resolve to min alt dfaState.setPrediction(altsToCollectPredsFrom.minValue()) } } // comes back with reach.uniqueAlt set to a valid alt func (p *ParserATNSimulator) execATNWithFullContext(dfa *DFA, D *DFAState, s0 ATNConfigSet, input TokenStream, startIndex int, outerContext ParserRuleContext) int { if ParserATNSimulatorDebug || ParserATNSimulatorListATNDecisions { fmt.Println("execATNWithFullContext " + s0.String()) } fullCtx := true foundExactAmbig := false var reach ATNConfigSet previous := s0 input.Seek(startIndex) t := input.LA(1) predictedAlt := -1 for { // for more work reach = p.computeReachSet(previous, t, fullCtx) if reach == nil { // if any configs in previous dipped into outer context, that // means that input up to t actually finished entry rule // at least for LL decision. Full LL doesn't dip into outer // so don't need special case. // We will get an error no matter what so delay until after // decision better error message. Also, no reachable target // ATN states in SLL implies LL will also get nowhere. // If conflict in states that dip out, choose min since we // will get error no matter what. e := p.noViableAlt(input, outerContext, previous, startIndex) input.Seek(startIndex) alt := p.getSynValidOrSemInvalidAltThatFinishedDecisionEntryRule(previous, outerContext) if alt != ATNInvalidAltNumber { return alt } panic(e) } altSubSets := PredictionModegetConflictingAltSubsets(reach) if ParserATNSimulatorDebug { fmt.Println("LL altSubSets=" + fmt.Sprint(altSubSets) + ", predict=" + strconv.Itoa(PredictionModegetUniqueAlt(altSubSets)) + ", resolvesToJustOneViableAlt=" + fmt.Sprint(PredictionModeresolvesToJustOneViableAlt(altSubSets))) } reach.SetUniqueAlt(p.getUniqueAlt(reach)) // unique prediction? if reach.GetUniqueAlt() != ATNInvalidAltNumber { predictedAlt = reach.GetUniqueAlt() break } else if p.predictionMode != PredictionModeLLExactAmbigDetection { predictedAlt = PredictionModeresolvesToJustOneViableAlt(altSubSets) if predictedAlt != ATNInvalidAltNumber { break } } else { // In exact ambiguity mode, we never try to terminate early. // Just keeps scarfing until we know what the conflict is if PredictionModeallSubsetsConflict(altSubSets) && PredictionModeallSubsetsEqual(altSubSets) { foundExactAmbig = true predictedAlt = PredictionModegetSingleViableAlt(altSubSets) break } // else there are multiple non-conflicting subsets or // we're not sure what the ambiguity is yet. // So, keep going. } previous = reach if t != TokenEOF { input.Consume() t = input.LA(1) } } // If the configuration set uniquely predicts an alternative, // without conflict, then we know that it's a full LL decision // not SLL. if reach.GetUniqueAlt() != ATNInvalidAltNumber { p.ReportContextSensitivity(dfa, predictedAlt, reach, startIndex, input.Index()) return predictedAlt } // We do not check predicates here because we have checked them // on-the-fly when doing full context prediction. // // In non-exact ambiguity detection mode, we might actually be able to // detect an exact ambiguity, but I'm not going to spend the cycles // needed to check. We only emit ambiguity warnings in exact ambiguity // mode. // // For example, we might know that we have conflicting configurations. // But, that does not mean that there is no way forward without a // conflict. It's possible to have nonconflicting alt subsets as in: // altSubSets=[{1, 2}, {1, 2}, {1}, {1, 2}] // from // // [(17,1,[5 $]), (13,1,[5 10 $]), (21,1,[5 10 $]), (11,1,[$]), // (13,2,[5 10 $]), (21,2,[5 10 $]), (11,2,[$])] // // In p case, (17,1,[5 $]) indicates there is some next sequence that // would resolve p without conflict to alternative 1. Any other viable // next sequence, however, is associated with a conflict. We stop // looking for input because no amount of further lookahead will alter // the fact that we should predict alternative 1. We just can't say for // sure that there is an ambiguity without looking further. p.ReportAmbiguity(dfa, D, startIndex, input.Index(), foundExactAmbig, nil, reach) return predictedAlt } func (p *ParserATNSimulator) computeReachSet(closure ATNConfigSet, t int, fullCtx bool) ATNConfigSet { if ParserATNSimulatorDebug { fmt.Println("in computeReachSet, starting closure: " + closure.String()) } if p.mergeCache == nil { p.mergeCache = NewDoubleDict() } intermediate := NewBaseATNConfigSet(fullCtx) // Configurations already in a rule stop state indicate reaching the end // of the decision rule (local context) or end of the start rule (full // context). Once reached, these configurations are never updated by a // closure operation, so they are handled separately for the performance // advantage of having a smaller intermediate set when calling closure. // // For full-context reach operations, separate handling is required to // ensure that the alternative Matching the longest overall sequence is // chosen when multiple such configurations can Match the input. var SkippedStopStates []*BaseATNConfig // First figure out where we can reach on input t for _, c := range closure.GetItems() { if ParserATNSimulatorDebug { fmt.Println("testing " + p.GetTokenName(t) + " at " + c.String()) } _, ok := c.GetState().(*RuleStopState) if ok { if fullCtx || t == TokenEOF { if SkippedStopStates == nil { SkippedStopStates = make([]*BaseATNConfig, 0) } SkippedStopStates = append(SkippedStopStates, c.(*BaseATNConfig)) if ParserATNSimulatorDebug { fmt.Println("added " + c.String() + " to SkippedStopStates") } } continue } for j := 0; j < len(c.GetState().GetTransitions()); j++ { trans := c.GetState().GetTransitions()[j] target := p.getReachableTarget(trans, t) if target != nil { cfg := NewBaseATNConfig4(c, target) intermediate.Add(cfg, p.mergeCache) if ParserATNSimulatorDebug { fmt.Println("added " + cfg.String() + " to intermediate") } } } } // Now figure out where the reach operation can take us... var reach ATNConfigSet // This block optimizes the reach operation for intermediate sets which // trivially indicate a termination state for the overall // AdaptivePredict operation. // // The conditions assume that intermediate // contains all configurations relevant to the reach set, but p // condition is not true when one or more configurations have been // withheld in SkippedStopStates, or when the current symbol is EOF. // if SkippedStopStates == nil && t != TokenEOF { if len(intermediate.configs) == 1 { // Don't pursue the closure if there is just one state. // It can only have one alternative just add to result // Also don't pursue the closure if there is unique alternative // among the configurations. reach = intermediate } else if p.getUniqueAlt(intermediate) != ATNInvalidAltNumber { // Also don't pursue the closure if there is unique alternative // among the configurations. reach = intermediate } } // If the reach set could not be trivially determined, perform a closure // operation on the intermediate set to compute its initial value. // if reach == nil { reach = NewBaseATNConfigSet(fullCtx) closureBusy := NewSet(nil, nil) treatEOFAsEpsilon := t == TokenEOF for k := 0; k < len(intermediate.configs); k++ { p.closure(intermediate.configs[k], reach, closureBusy, false, fullCtx, treatEOFAsEpsilon) } } if t == TokenEOF { // After consuming EOF no additional input is possible, so we are // only interested in configurations which reached the end of the // decision rule (local context) or end of the start rule (full // context). Update reach to contain only these configurations. This // handles both explicit EOF transitions in the grammar and implicit // EOF transitions following the end of the decision or start rule. // // When reach==intermediate, no closure operation was performed. In // p case, removeAllConfigsNotInRuleStopState needs to check for // reachable rule stop states as well as configurations already in // a rule stop state. // // This is handled before the configurations in SkippedStopStates, // because any configurations potentially added from that list are // already guaranteed to meet p condition whether or not it's // required. // reach = p.removeAllConfigsNotInRuleStopState(reach, reach == intermediate) } // If SkippedStopStates!=nil, then it contains at least one // configuration. For full-context reach operations, these // configurations reached the end of the start rule, in which case we // only add them back to reach if no configuration during the current // closure operation reached such a state. This ensures AdaptivePredict // chooses an alternative Matching the longest overall sequence when // multiple alternatives are viable. // if SkippedStopStates != nil && ((!fullCtx) || (!PredictionModehasConfigInRuleStopState(reach))) { for l := 0; l < len(SkippedStopStates); l++ { reach.Add(SkippedStopStates[l], p.mergeCache) } } if len(reach.GetItems()) == 0 { return nil } return reach } // // Return a configuration set containing only the configurations from // {@code configs} which are in a {@link RuleStopState}. If all // configurations in {@code configs} are already in a rule stop state, p // method simply returns {@code configs}. // //
When {@code lookToEndOfRule} is true, p method uses // {@link ATN//NextTokens} for each configuration in {@code configs} which is // not already in a rule stop state to see if a rule stop state is reachable // from the configuration via epsilon-only transitions.
// // @param configs the configuration set to update // @param lookToEndOfRule when true, p method checks for rule stop states // reachable by epsilon-only transitions from each configuration in // {@code configs}. // // @return {@code configs} if all configurations in {@code configs} are in a // rule stop state, otherwise return a Newconfiguration set containing only // the configurations from {@code configs} which are in a rule stop state // func (p *ParserATNSimulator) removeAllConfigsNotInRuleStopState(configs ATNConfigSet, lookToEndOfRule bool) ATNConfigSet { if PredictionModeallConfigsInRuleStopStates(configs) { return configs } result := NewBaseATNConfigSet(configs.FullContext()) for _, config := range configs.GetItems() { _, ok := config.GetState().(*RuleStopState) if ok { result.Add(config, p.mergeCache) continue } if lookToEndOfRule && config.GetState().GetEpsilonOnlyTransitions() { NextTokens := p.atn.NextTokens(config.GetState(), nil) if NextTokens.contains(TokenEpsilon) { endOfRuleState := p.atn.ruleToStopState[config.GetState().GetRuleIndex()] result.Add(NewBaseATNConfig4(config, endOfRuleState), p.mergeCache) } } } return result } func (p *ParserATNSimulator) computeStartState(a ATNState, ctx RuleContext, fullCtx bool) ATNConfigSet { // always at least the implicit call to start rule initialContext := predictionContextFromRuleContext(p.atn, ctx) configs := NewBaseATNConfigSet(fullCtx) for i := 0; i < len(a.GetTransitions()); i++ { target := a.GetTransitions()[i].getTarget() c := NewBaseATNConfig6(target, i+1, initialContext) closureBusy := NewSet(nil, nil) p.closure(c, configs, closureBusy, true, fullCtx, false) } return configs } // // This method transforms the start state computed by // {@link //computeStartState} to the special start state used by a // precedence DFA for a particular precedence value. The transformation // process applies the following changes to the start state's configuration // set. // //// The prediction context must be considered by p filter to address // situations like the following. //
//
//
// grammar TA
// prog: statement* EOF
// statement: letterA | statement letterA 'b'
// letterA: 'a'
//
//
// // If the above grammar, the ATN state immediately before the token // reference {@code 'a'} in {@code letterA} is reachable from the left edge // of both the primary and closure blocks of the left-recursive rule // {@code statement}. The prediction context associated with each of these // configurations distinguishes between them, and prevents the alternative // which stepped out to {@code prog} (and then back in to {@code statement} // from being eliminated by the filter. //
// // @param configs The configuration set computed by // {@link //computeStartState} as the start state for the DFA. // @return The transformed configuration set representing the start state // for a precedence DFA at a particular precedence level (determined by // calling {@link Parser//getPrecedence}). // func (p *ParserATNSimulator) applyPrecedenceFilter(configs ATNConfigSet) ATNConfigSet { statesFromAlt1 := make(map[int]PredictionContext) configSet := NewBaseATNConfigSet(configs.FullContext()) for _, config := range configs.GetItems() { // handle alt 1 first if config.GetAlt() != 1 { continue } updatedContext := config.GetSemanticContext().evalPrecedence(p.parser, p.outerContext) if updatedContext == nil { // the configuration was eliminated continue } statesFromAlt1[config.GetState().GetStateNumber()] = config.GetContext() if updatedContext != config.GetSemanticContext() { configSet.Add(NewBaseATNConfig2(config, updatedContext), p.mergeCache) } else { configSet.Add(config, p.mergeCache) } } for _, config := range configs.GetItems() { if config.GetAlt() == 1 { // already handled continue } // In the future, p elimination step could be updated to also // filter the prediction context for alternatives predicting alt>1 // (basically a graph subtraction algorithm). if !config.getPrecedenceFilterSuppressed() { context := statesFromAlt1[config.GetState().GetStateNumber()] if context != nil && context.equals(config.GetContext()) { // eliminated continue } } configSet.Add(config, p.mergeCache) } return configSet } func (p *ParserATNSimulator) getReachableTarget(trans Transition, ttype int) ATNState { if trans.Matches(ttype, 0, p.atn.maxTokenType) { return trans.getTarget() } return nil } func (p *ParserATNSimulator) getPredsForAmbigAlts(ambigAlts *BitSet, configs ATNConfigSet, nalts int) []SemanticContext { altToPred := make([]SemanticContext, nalts+1) for _, c := range configs.GetItems() { if ambigAlts.contains(c.GetAlt()) { altToPred[c.GetAlt()] = SemanticContextorContext(altToPred[c.GetAlt()], c.GetSemanticContext()) } } nPredAlts := 0 for i := 1; i < nalts+1; i++ { pred := altToPred[i] if pred == nil { altToPred[i] = SemanticContextNone } else if pred != SemanticContextNone { nPredAlts++ } } // nonambig alts are nil in altToPred if nPredAlts == 0 { altToPred = nil } if ParserATNSimulatorDebug { fmt.Println("getPredsForAmbigAlts result " + fmt.Sprint(altToPred)) } return altToPred } func (p *ParserATNSimulator) getPredicatePredictions(ambigAlts *BitSet, altToPred []SemanticContext) []*PredPrediction { pairs := make([]*PredPrediction, 0) containsPredicate := false for i := 1; i < len(altToPred); i++ { pred := altToPred[i] // unpredicated is indicated by SemanticContextNONE if ambigAlts != nil && ambigAlts.contains(i) { pairs = append(pairs, NewPredPrediction(pred, i)) } if pred != SemanticContextNone { containsPredicate = true } } if !containsPredicate { return nil } return pairs } // // This method is used to improve the localization of error messages by // choosing an alternative rather than panicing a // {@link NoViableAltException} in particular prediction scenarios where the // {@link //ERROR} state was reached during ATN simulation. // //// The default implementation of p method uses the following // algorithm to identify an ATN configuration which successfully parsed the // decision entry rule. Choosing such an alternative ensures that the // {@link ParserRuleContext} returned by the calling rule will be complete // and valid, and the syntax error will be Reported later at a more // localized location.
// //// In some scenarios, the algorithm described above could predict an // alternative which will result in a {@link FailedPredicateException} in // the parser. Specifically, p could occur if the only configuration // capable of successfully parsing to the end of the decision rule is // blocked by a semantic predicate. By choosing p alternative within // {@link //AdaptivePredict} instead of panicing a // {@link NoViableAltException}, the resulting // {@link FailedPredicateException} in the parser will identify the specific // predicate which is preventing the parser from successfully parsing the // decision rule, which helps developers identify and correct logic errors // in semantic predicates. //
// // @param configs The ATN configurations which were valid immediately before // the {@link //ERROR} state was reached // @param outerContext The is the \gamma_0 initial parser context from the paper // or the parser stack at the instant before prediction commences. // // @return The value to return from {@link //AdaptivePredict}, or // {@link ATN//INVALID_ALT_NUMBER} if a suitable alternative was not // identified and {@link //AdaptivePredict} should Report an error instead. // func (p *ParserATNSimulator) getSynValidOrSemInvalidAltThatFinishedDecisionEntryRule(configs ATNConfigSet, outerContext ParserRuleContext) int { cfgs := p.splitAccordingToSemanticValidity(configs, outerContext) semValidConfigs := cfgs[0] semInvalidConfigs := cfgs[1] alt := p.GetAltThatFinishedDecisionEntryRule(semValidConfigs) if alt != ATNInvalidAltNumber { // semantically/syntactically viable path exists return alt } // Is there a syntactically valid path with a failed pred? if len(semInvalidConfigs.GetItems()) > 0 { alt = p.GetAltThatFinishedDecisionEntryRule(semInvalidConfigs) if alt != ATNInvalidAltNumber { // syntactically viable path exists return alt } } return ATNInvalidAltNumber } func (p *ParserATNSimulator) GetAltThatFinishedDecisionEntryRule(configs ATNConfigSet) int { alts := NewIntervalSet() for _, c := range configs.GetItems() { _, ok := c.GetState().(*RuleStopState) if c.GetReachesIntoOuterContext() > 0 || (ok && c.GetContext().hasEmptyPath()) { alts.addOne(c.GetAlt()) } } if alts.length() == 0 { return ATNInvalidAltNumber } return alts.first() } // Walk the list of configurations and split them according to // those that have preds evaluating to true/false. If no pred, assume // true pred and include in succeeded set. Returns Pair of sets. // // Create a NewSet so as not to alter the incoming parameter. // // Assumption: the input stream has been restored to the starting point // prediction, which is where predicates need to evaluate. type ATNConfigSetPair struct { item0, item1 ATNConfigSet } func (p *ParserATNSimulator) splitAccordingToSemanticValidity(configs ATNConfigSet, outerContext ParserRuleContext) []ATNConfigSet { succeeded := NewBaseATNConfigSet(configs.FullContext()) failed := NewBaseATNConfigSet(configs.FullContext()) for _, c := range configs.GetItems() { if c.GetSemanticContext() != SemanticContextNone { predicateEvaluationResult := c.GetSemanticContext().evaluate(p.parser, outerContext) if predicateEvaluationResult { succeeded.Add(c, nil) } else { failed.Add(c, nil) } } else { succeeded.Add(c, nil) } } return []ATNConfigSet{succeeded, failed} } // Look through a list of predicate/alt pairs, returning alts for the // pairs that win. A {@code NONE} predicate indicates an alt containing an // unpredicated config which behaves as "always true." If !complete // then we stop at the first predicate that evaluates to true. This // includes pairs with nil predicates. // func (p *ParserATNSimulator) evalSemanticContext(predPredictions []*PredPrediction, outerContext ParserRuleContext, complete bool) *BitSet { predictions := NewBitSet() for i := 0; i < len(predPredictions); i++ { pair := predPredictions[i] if pair.pred == SemanticContextNone { predictions.add(pair.alt) if !complete { break } continue } predicateEvaluationResult := pair.pred.evaluate(p.parser, outerContext) if ParserATNSimulatorDebug || ParserATNSimulatorDFADebug { fmt.Println("eval pred " + pair.String() + "=" + fmt.Sprint(predicateEvaluationResult)) } if predicateEvaluationResult { if ParserATNSimulatorDebug || ParserATNSimulatorDFADebug { fmt.Println("PREDICT " + fmt.Sprint(pair.alt)) } predictions.add(pair.alt) if !complete { break } } } return predictions } func (p *ParserATNSimulator) closure(config ATNConfig, configs ATNConfigSet, closureBusy *Set, collectPredicates, fullCtx, treatEOFAsEpsilon bool) { initialDepth := 0 p.closureCheckingStopState(config, configs, closureBusy, collectPredicates, fullCtx, initialDepth, treatEOFAsEpsilon) } func (p *ParserATNSimulator) closureCheckingStopState(config ATNConfig, configs ATNConfigSet, closureBusy *Set, collectPredicates, fullCtx bool, depth int, treatEOFAsEpsilon bool) { if ParserATNSimulatorDebug { fmt.Println("closure(" + config.String() + ")") fmt.Println("configs(" + configs.String() + ")") if config.GetReachesIntoOuterContext() > 50 { panic("problem") } } _, ok := config.GetState().(*RuleStopState) if ok { // We hit rule end. If we have context info, use it // run thru all possible stack tops in ctx if !config.GetContext().isEmpty() { for i := 0; i < config.GetContext().length(); i++ { if config.GetContext().getReturnState(i) == BasePredictionContextEmptyReturnState { if fullCtx { configs.Add(NewBaseATNConfig1(config, config.GetState(), BasePredictionContextEMPTY), p.mergeCache) continue } else { // we have no context info, just chase follow links (if greedy) if ParserATNSimulatorDebug { fmt.Println("FALLING off rule " + p.getRuleName(config.GetState().GetRuleIndex())) } p.closureWork(config, configs, closureBusy, collectPredicates, fullCtx, depth, treatEOFAsEpsilon) } continue } returnState := p.atn.states[config.GetContext().getReturnState(i)] newContext := config.GetContext().GetParent(i) // "pop" return state c := NewBaseATNConfig5(returnState, config.GetAlt(), newContext, config.GetSemanticContext()) // While we have context to pop back from, we may have // gotten that context AFTER having falling off a rule. // Make sure we track that we are now out of context. c.SetReachesIntoOuterContext(config.GetReachesIntoOuterContext()) p.closureCheckingStopState(c, configs, closureBusy, collectPredicates, fullCtx, depth-1, treatEOFAsEpsilon) } return } else if fullCtx { // reached end of start rule configs.Add(config, p.mergeCache) return } else { // else if we have no context info, just chase follow links (if greedy) if ParserATNSimulatorDebug { fmt.Println("FALLING off rule " + p.getRuleName(config.GetState().GetRuleIndex())) } } } p.closureWork(config, configs, closureBusy, collectPredicates, fullCtx, depth, treatEOFAsEpsilon) } // Do the actual work of walking epsilon edges// func (p *ParserATNSimulator) closureWork(config ATNConfig, configs ATNConfigSet, closureBusy *Set, collectPredicates, fullCtx bool, depth int, treatEOFAsEpsilon bool) { state := config.GetState() // optimization if !state.GetEpsilonOnlyTransitions() { configs.Add(config, p.mergeCache) // make sure to not return here, because EOF transitions can act as // both epsilon transitions and non-epsilon transitions. } for i := 0; i < len(state.GetTransitions()); i++ { t := state.GetTransitions()[i] _, ok := t.(*ActionTransition) continueCollecting := collectPredicates && !ok c := p.getEpsilonTarget(config, t, continueCollecting, depth == 0, fullCtx, treatEOFAsEpsilon) if ci, ok := c.(*BaseATNConfig); ok && ci != nil { if !t.getIsEpsilon() && closureBusy.add(c) != c { // avoid infinite recursion for EOF* and EOF+ continue } newDepth := depth if _, ok := config.GetState().(*RuleStopState); ok { // target fell off end of rule mark resulting c as having dipped into outer context // We can't get here if incoming config was rule stop and we had context // track how far we dip into outer context. Might // come in handy and we avoid evaluating context dependent // preds if p is > 0. if closureBusy.add(c) != c { // avoid infinite recursion for right-recursive rules continue } if p.dfa != nil && p.dfa.precedenceDfa { if t.(*EpsilonTransition).outermostPrecedenceReturn == p.dfa.atnStartState.GetRuleIndex() { c.setPrecedenceFilterSuppressed(true) } } c.SetReachesIntoOuterContext(c.GetReachesIntoOuterContext() + 1) configs.SetDipsIntoOuterContext(true) // TODO: can remove? only care when we add to set per middle of p method newDepth-- if ParserATNSimulatorDebug { fmt.Println("dips into outer ctx: " + c.String()) } } else if _, ok := t.(*RuleTransition); ok { // latch when newDepth goes negative - once we step out of the entry context we can't return if newDepth >= 0 { newDepth++ } } p.closureCheckingStopState(c, configs, closureBusy, continueCollecting, fullCtx, newDepth, treatEOFAsEpsilon) } } } func (p *ParserATNSimulator) getRuleName(index int) string { if p.parser != nil && index >= 0 { return p.parser.GetRuleNames()[index] } return "If {@code to} is {@code nil}, p method returns {@code nil}. // Otherwise, p method returns the {@link DFAState} returned by calling // {@link //addDFAState} for the {@code to} state.
// // @param dfa The DFA // @param from The source state for the edge // @param t The input symbol // @param to The target state for the edge // // @return If {@code to} is {@code nil}, p method returns {@code nil} // otherwise p method returns the result of calling {@link //addDFAState} // on {@code to} // func (p *ParserATNSimulator) addDFAEdge(dfa *DFA, from *DFAState, t int, to *DFAState) *DFAState { if ParserATNSimulatorDebug { fmt.Println("EDGE " + from.String() + " -> " + to.String() + " upon " + p.GetTokenName(t)) } if to == nil { return nil } to = p.addDFAState(dfa, to) // used existing if possible not incoming if from == nil || t < -1 || t > p.atn.maxTokenType { return to } if from.edges == nil { from.edges = make([]*DFAState, p.atn.maxTokenType+1+1) } from.edges[t+1] = to // connect if ParserATNSimulatorDebug { var names []string if p.parser != nil { names = p.parser.GetLiteralNames() } fmt.Println("DFA=\n" + dfa.String(names, nil)) } return to } // // Add state {@code D} to the DFA if it is not already present, and return // the actual instance stored in the DFA. If a state equivalent to {@code D} // is already in the DFA, the existing state is returned. Otherwise p // method returns {@code D} after adding it to the DFA. // //If {@code D} is {@link //ERROR}, p method returns {@link //ERROR} and // does not change the DFA.
// // @param dfa The dfa // @param D The DFA state to add // @return The state stored in the DFA. This will be either the existing // state if {@code D} is already in the DFA, or {@code D} itself if the // state was not already present. // func (p *ParserATNSimulator) addDFAState(dfa *DFA, d *DFAState) *DFAState { if d == ATNSimulatorError { return d } hash := d.hash() existing, ok := dfa.getState(hash) if ok { return existing } d.stateNumber = dfa.numStates() if !d.configs.ReadOnly() { d.configs.OptimizeConfigs(p.BaseATNSimulator) d.configs.SetReadOnly(true) } dfa.setState(hash, d) if ParserATNSimulatorDebug { fmt.Println("adding NewDFA state: " + d.String()) } return d } func (p *ParserATNSimulator) ReportAttemptingFullContext(dfa *DFA, conflictingAlts *BitSet, configs ATNConfigSet, startIndex, stopIndex int) { if ParserATNSimulatorDebug || ParserATNSimulatorRetryDebug { interval := NewInterval(startIndex, stopIndex+1) fmt.Println("ReportAttemptingFullContext decision=" + strconv.Itoa(dfa.decision) + ":" + configs.String() + ", input=" + p.parser.GetTokenStream().GetTextFromInterval(interval)) } if p.parser != nil { p.parser.GetErrorListenerDispatch().ReportAttemptingFullContext(p.parser, dfa, startIndex, stopIndex, conflictingAlts, configs) } } func (p *ParserATNSimulator) ReportContextSensitivity(dfa *DFA, prediction int, configs ATNConfigSet, startIndex, stopIndex int) { if ParserATNSimulatorDebug || ParserATNSimulatorRetryDebug { interval := NewInterval(startIndex, stopIndex+1) fmt.Println("ReportContextSensitivity decision=" + strconv.Itoa(dfa.decision) + ":" + configs.String() + ", input=" + p.parser.GetTokenStream().GetTextFromInterval(interval)) } if p.parser != nil { p.parser.GetErrorListenerDispatch().ReportContextSensitivity(p.parser, dfa, startIndex, stopIndex, prediction, configs) } } // If context sensitive parsing, we know it's ambiguity not conflict// func (p *ParserATNSimulator) ReportAmbiguity(dfa *DFA, D *DFAState, startIndex, stopIndex int, exact bool, ambigAlts *BitSet, configs ATNConfigSet) { if ParserATNSimulatorDebug || ParserATNSimulatorRetryDebug { interval := NewInterval(startIndex, stopIndex+1) fmt.Println("ReportAmbiguity " + ambigAlts.String() + ":" + configs.String() + ", input=" + p.parser.GetTokenStream().GetTextFromInterval(interval)) } if p.parser != nil { p.parser.GetErrorListenerDispatch().ReportAmbiguity(p.parser, dfa, startIndex, stopIndex, exact, ambigAlts, configs) } } golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/parser_rule_context.go 0000664 0000000 0000000 00000020133 14102210121 0026742 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. // Use of this file is governed by the BSD 3-clause license that // can be found in the LICENSE.txt file in the project root. package antlr import ( "reflect" "strconv" ) type ParserRuleContext interface { RuleContext SetException(RecognitionException) AddTokenNode(token Token) *TerminalNodeImpl AddErrorNode(badToken Token) *ErrorNodeImpl EnterRule(listener ParseTreeListener) ExitRule(listener ParseTreeListener) SetStart(Token) GetStart() Token SetStop(Token) GetStop() Token AddChild(child RuleContext) RuleContext RemoveLastChild() } type BaseParserRuleContext struct { *BaseRuleContext start, stop Token exception RecognitionException children []Tree } func NewBaseParserRuleContext(parent ParserRuleContext, invokingStateNumber int) *BaseParserRuleContext { prc := new(BaseParserRuleContext) prc.BaseRuleContext = NewBaseRuleContext(parent, invokingStateNumber) prc.RuleIndex = -1 // * If we are debugging or building a parse tree for a Visitor, // we need to track all of the tokens and rule invocations associated // with prc rule's context. This is empty for parsing w/o tree constr. // operation because we don't the need to track the details about // how we parse prc rule. // / prc.children = nil prc.start = nil prc.stop = nil // The exception that forced prc rule to return. If the rule successfully // completed, prc is {@code nil}. prc.exception = nil return prc } func (prc *BaseParserRuleContext) SetException(e RecognitionException) { prc.exception = e } func (prc *BaseParserRuleContext) GetChildren() []Tree { return prc.children } func (prc *BaseParserRuleContext) CopyFrom(ctx *BaseParserRuleContext) { // from RuleContext prc.parentCtx = ctx.parentCtx prc.invokingState = ctx.invokingState prc.children = nil prc.start = ctx.start prc.stop = ctx.stop } func (prc *BaseParserRuleContext) GetText() string { if prc.GetChildCount() == 0 { return "" } var s string for _, child := range prc.children { s += child.(ParseTree).GetText() } return s } // Double dispatch methods for listeners func (prc *BaseParserRuleContext) EnterRule(listener ParseTreeListener) { } func (prc *BaseParserRuleContext) ExitRule(listener ParseTreeListener) { } // * Does not set parent link other add methods do that/// func (prc *BaseParserRuleContext) addTerminalNodeChild(child TerminalNode) TerminalNode { if prc.children == nil { prc.children = make([]Tree, 0) } if child == nil { panic("Child may not be null") } prc.children = append(prc.children, child) return child } func (prc *BaseParserRuleContext) AddChild(child RuleContext) RuleContext { if prc.children == nil { prc.children = make([]Tree, 0) } if child == nil { panic("Child may not be null") } prc.children = append(prc.children, child) return child } // * Used by EnterOuterAlt to toss out a RuleContext previously added as // we entered a rule. If we have // label, we will need to remove // generic ruleContext object. // / func (prc *BaseParserRuleContext) RemoveLastChild() { if prc.children != nil && len(prc.children) > 0 { prc.children = prc.children[0 : len(prc.children)-1] } } func (prc *BaseParserRuleContext) AddTokenNode(token Token) *TerminalNodeImpl { node := NewTerminalNodeImpl(token) prc.addTerminalNodeChild(node) node.parentCtx = prc return node } func (prc *BaseParserRuleContext) AddErrorNode(badToken Token) *ErrorNodeImpl { node := NewErrorNodeImpl(badToken) prc.addTerminalNodeChild(node) node.parentCtx = prc return node } func (prc *BaseParserRuleContext) GetChild(i int) Tree { if prc.children != nil && len(prc.children) >= i { return prc.children[i] } return nil } func (prc *BaseParserRuleContext) GetChildOfType(i int, childType reflect.Type) RuleContext { if childType == nil { return prc.GetChild(i).(RuleContext) } for j := 0; j < len(prc.children); j++ { child := prc.children[j] if reflect.TypeOf(child) == childType { if i == 0 { return child.(RuleContext) } i-- } } return nil } func (prc *BaseParserRuleContext) ToStringTree(ruleNames []string, recog Recognizer) string { return TreesStringTree(prc, ruleNames, recog) } func (prc *BaseParserRuleContext) GetRuleContext() RuleContext { return prc } func (prc *BaseParserRuleContext) Accept(visitor ParseTreeVisitor) interface{} { return visitor.VisitChildren(prc) } func (prc *BaseParserRuleContext) SetStart(t Token) { prc.start = t } func (prc *BaseParserRuleContext) GetStart() Token { return prc.start } func (prc *BaseParserRuleContext) SetStop(t Token) { prc.stop = t } func (prc *BaseParserRuleContext) GetStop() Token { return prc.stop } func (prc *BaseParserRuleContext) GetToken(ttype int, i int) TerminalNode { for j := 0; j < len(prc.children); j++ { child := prc.children[j] if c2, ok := child.(TerminalNode); ok { if c2.GetSymbol().GetTokenType() == ttype { if i == 0 { return c2 } i-- } } } return nil } func (prc *BaseParserRuleContext) GetTokens(ttype int) []TerminalNode { if prc.children == nil { return make([]TerminalNode, 0) } tokens := make([]TerminalNode, 0) for j := 0; j < len(prc.children); j++ { child := prc.children[j] if tchild, ok := child.(TerminalNode); ok { if tchild.GetSymbol().GetTokenType() == ttype { tokens = append(tokens, tchild) } } } return tokens } func (prc *BaseParserRuleContext) GetPayload() interface{} { return prc } func (prc *BaseParserRuleContext) getChild(ctxType reflect.Type, i int) RuleContext { if prc.children == nil || i < 0 || i >= len(prc.children) { return nil } j := -1 // what element have we found with ctxType? for _, o := range prc.children { childType := reflect.TypeOf(o) if childType.Implements(ctxType) { j++ if j == i { return o.(RuleContext) } } } return nil } // Go lacks generics, so it's not possible for us to return the child with the correct type, but we do // check for convertibility func (prc *BaseParserRuleContext) GetTypedRuleContext(ctxType reflect.Type, i int) RuleContext { return prc.getChild(ctxType, i) } func (prc *BaseParserRuleContext) GetTypedRuleContexts(ctxType reflect.Type) []RuleContext { if prc.children == nil { return make([]RuleContext, 0) } contexts := make([]RuleContext, 0) for _, child := range prc.children { childType := reflect.TypeOf(child) if childType.ConvertibleTo(ctxType) { contexts = append(contexts, child.(RuleContext)) } } return contexts } func (prc *BaseParserRuleContext) GetChildCount() int { if prc.children == nil { return 0 } return len(prc.children) } func (prc *BaseParserRuleContext) GetSourceInterval() *Interval { if prc.start == nil || prc.stop == nil { return TreeInvalidInterval } return NewInterval(prc.start.GetTokenIndex(), prc.stop.GetTokenIndex()) } //need to manage circular dependencies, so export now // Print out a whole tree, not just a node, in LISP format // (root child1 .. childN). Print just a node if b is a leaf. // func (prc *BaseParserRuleContext) String(ruleNames []string, stop RuleContext) string { var p ParserRuleContext = prc s := "[" for p != nil && p != stop { if ruleNames == nil { if !p.IsEmpty() { s += strconv.Itoa(p.GetInvokingState()) } } else { ri := p.GetRuleIndex() var ruleName string if ri >= 0 && ri < len(ruleNames) { ruleName = ruleNames[ri] } else { ruleName = strconv.Itoa(ri) } s += ruleName } if p.GetParent() != nil && (ruleNames != nil || !p.GetParent().(ParserRuleContext).IsEmpty()) { s += " " } pi := p.GetParent() if pi != nil { p = pi.(ParserRuleContext) } else { p = nil } } s += "]" return s } var RuleContextEmpty = NewBaseParserRuleContext(nil, -1) type InterpreterRuleContext interface { ParserRuleContext } type BaseInterpreterRuleContext struct { *BaseParserRuleContext } func NewBaseInterpreterRuleContext(parent BaseInterpreterRuleContext, invokingStateNumber, ruleIndex int) *BaseInterpreterRuleContext { prc := new(BaseInterpreterRuleContext) prc.BaseParserRuleContext = NewBaseParserRuleContext(parent, invokingStateNumber) prc.RuleIndex = ruleIndex return prc } golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/prediction_context.go 0000664 0000000 0000000 00000053264 14102210121 0026572 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. // Use of this file is governed by the BSD 3-clause license that // can be found in the LICENSE.txt file in the project root. package antlr import ( "strconv" ) // Represents {@code $} in local context prediction, which means wildcard. // {@code//+x =//}. // / const ( BasePredictionContextEmptyReturnState = 0x7FFFFFFF ) // Represents {@code $} in an array in full context mode, when {@code $} // doesn't mean wildcard: {@code $ + x = [$,x]}. Here, // {@code $} = {@link //EmptyReturnState}. // / var ( BasePredictionContextglobalNodeCount = 1 BasePredictionContextid = BasePredictionContextglobalNodeCount ) type PredictionContext interface { hash() int GetParent(int) PredictionContext getReturnState(int) int equals(PredictionContext) bool length() int isEmpty() bool hasEmptyPath() bool String() string } type BasePredictionContext struct { cachedHash int } func NewBasePredictionContext(cachedHash int) *BasePredictionContext { pc := new(BasePredictionContext) pc.cachedHash = cachedHash return pc } func (b *BasePredictionContext) isEmpty() bool { return false } func calculateHash(parent PredictionContext, returnState int) int { h := murmurInit(1) h = murmurUpdate(h, parent.hash()) h = murmurUpdate(h, returnState) return murmurFinish(h, 2) } func calculateEmptyHash() int { h := murmurInit(1) return murmurFinish(h, 0) } // Used to cache {@link BasePredictionContext} objects. Its used for the shared // context cash associated with contexts in DFA states. This cache // can be used for both lexers and parsers. type PredictionContextCache struct { cache map[PredictionContext]PredictionContext } func NewPredictionContextCache() *PredictionContextCache { t := new(PredictionContextCache) t.cache = make(map[PredictionContext]PredictionContext) return t } // Add a context to the cache and return it. If the context already exists, // return that one instead and do not add a Newcontext to the cache. // Protect shared cache from unsafe thread access. // func (p *PredictionContextCache) add(ctx PredictionContext) PredictionContext { if ctx == BasePredictionContextEMPTY { return BasePredictionContextEMPTY } existing := p.cache[ctx] if existing != nil { return existing } p.cache[ctx] = ctx return ctx } func (p *PredictionContextCache) Get(ctx PredictionContext) PredictionContext { return p.cache[ctx] } func (p *PredictionContextCache) length() int { return len(p.cache) } type SingletonPredictionContext interface { PredictionContext } type BaseSingletonPredictionContext struct { *BasePredictionContext parentCtx PredictionContext returnState int } func NewBaseSingletonPredictionContext(parent PredictionContext, returnState int) *BaseSingletonPredictionContext { s := new(BaseSingletonPredictionContext) s.BasePredictionContext = NewBasePredictionContext(37) if parent != nil { s.cachedHash = calculateHash(parent, returnState) } else { s.cachedHash = calculateEmptyHash() } s.parentCtx = parent s.returnState = returnState return s } func SingletonBasePredictionContextCreate(parent PredictionContext, returnState int) PredictionContext { if returnState == BasePredictionContextEmptyReturnState && parent == nil { // someone can pass in the bits of an array ctx that mean $ return BasePredictionContextEMPTY } return NewBaseSingletonPredictionContext(parent, returnState) } func (b *BaseSingletonPredictionContext) length() int { return 1 } func (b *BaseSingletonPredictionContext) GetParent(index int) PredictionContext { return b.parentCtx } func (b *BaseSingletonPredictionContext) getReturnState(index int) int { return b.returnState } func (b *BaseSingletonPredictionContext) hasEmptyPath() bool { return b.returnState == BasePredictionContextEmptyReturnState } func (b *BaseSingletonPredictionContext) equals(other PredictionContext) bool { if b == other { return true } else if _, ok := other.(*BaseSingletonPredictionContext); !ok { return false } else if b.hash() != other.hash() { return false // can't be same if hash is different } otherP := other.(*BaseSingletonPredictionContext) if b.returnState != other.getReturnState(0) { return false } else if b.parentCtx == nil { return otherP.parentCtx == nil } return b.parentCtx.equals(otherP.parentCtx) } func (b *BaseSingletonPredictionContext) hash() int { h := murmurInit(1) if b.parentCtx == nil { return murmurFinish(h, 0) } h = murmurUpdate(h, b.parentCtx.hash()) h = murmurUpdate(h, b.returnState) return murmurFinish(h, 2) } func (b *BaseSingletonPredictionContext) String() string { var up string if b.parentCtx == nil { up = "" } else { up = b.parentCtx.String() } if len(up) == 0 { if b.returnState == BasePredictionContextEmptyReturnState { return "$" } return strconv.Itoa(b.returnState) } return strconv.Itoa(b.returnState) + " " + up } var BasePredictionContextEMPTY = NewEmptyPredictionContext() type EmptyPredictionContext struct { *BaseSingletonPredictionContext } func NewEmptyPredictionContext() *EmptyPredictionContext { p := new(EmptyPredictionContext) p.BaseSingletonPredictionContext = NewBaseSingletonPredictionContext(nil, BasePredictionContextEmptyReturnState) return p } func (e *EmptyPredictionContext) isEmpty() bool { return true } func (e *EmptyPredictionContext) GetParent(index int) PredictionContext { return nil } func (e *EmptyPredictionContext) getReturnState(index int) int { return e.returnState } func (e *EmptyPredictionContext) equals(other PredictionContext) bool { return e == other } func (e *EmptyPredictionContext) String() string { return "$" } type ArrayPredictionContext struct { *BasePredictionContext parents []PredictionContext returnStates []int } func NewArrayPredictionContext(parents []PredictionContext, returnStates []int) *ArrayPredictionContext { // Parent can be nil only if full ctx mode and we make an array // from {@link //EMPTY} and non-empty. We merge {@link //EMPTY} by using // nil parent and // returnState == {@link //EmptyReturnState}. c := new(ArrayPredictionContext) c.BasePredictionContext = NewBasePredictionContext(37) for i := range parents { c.cachedHash += calculateHash(parents[i], returnStates[i]) } c.parents = parents c.returnStates = returnStates return c } func (a *ArrayPredictionContext) GetReturnStates() []int { return a.returnStates } func (a *ArrayPredictionContext) hasEmptyPath() bool { return a.getReturnState(a.length()-1) == BasePredictionContextEmptyReturnState } func (a *ArrayPredictionContext) isEmpty() bool { // since EmptyReturnState can only appear in the last position, we // don't need to verify that size==1 return a.returnStates[0] == BasePredictionContextEmptyReturnState } func (a *ArrayPredictionContext) length() int { return len(a.returnStates) } func (a *ArrayPredictionContext) GetParent(index int) PredictionContext { return a.parents[index] } func (a *ArrayPredictionContext) getReturnState(index int) int { return a.returnStates[index] } func (a *ArrayPredictionContext) equals(other PredictionContext) bool { if _, ok := other.(*ArrayPredictionContext); !ok { return false } else if a.cachedHash != other.hash() { return false // can't be same if hash is different } else { otherP := other.(*ArrayPredictionContext) return &a.returnStates == &otherP.returnStates && &a.parents == &otherP.parents } } func (a *ArrayPredictionContext) hash() int { h := murmurInit(1) for _, p := range a.parents { h = murmurUpdate(h, p.hash()) } for _, r := range a.returnStates { h = murmurUpdate(h, r) } return murmurFinish(h, 2 * len(a.parents)) } func (a *ArrayPredictionContext) String() string { if a.isEmpty() { return "[]" } s := "[" for i := 0; i < len(a.returnStates); i++ { if i > 0 { s = s + ", " } if a.returnStates[i] == BasePredictionContextEmptyReturnState { s = s + "$" continue } s = s + strconv.Itoa(a.returnStates[i]) if a.parents[i] != nil { s = s + " " + a.parents[i].String() } else { s = s + "nil" } } return s + "]" } // Convert a {@link RuleContext} tree to a {@link BasePredictionContext} graph. // Return {@link //EMPTY} if {@code outerContext} is empty or nil. // / func predictionContextFromRuleContext(a *ATN, outerContext RuleContext) PredictionContext { if outerContext == nil { outerContext = RuleContextEmpty } // if we are in RuleContext of start rule, s, then BasePredictionContext // is EMPTY. Nobody called us. (if we are empty, return empty) if outerContext.GetParent() == nil || outerContext == RuleContextEmpty { return BasePredictionContextEMPTY } // If we have a parent, convert it to a BasePredictionContext graph parent := predictionContextFromRuleContext(a, outerContext.GetParent().(RuleContext)) state := a.states[outerContext.GetInvokingState()] transition := state.GetTransitions()[0] return SingletonBasePredictionContextCreate(parent, transition.(*RuleTransition).followState.GetStateNumber()) } func merge(a, b PredictionContext, rootIsWildcard bool, mergeCache *DoubleDict) PredictionContext { // share same graph if both same if a == b { return a } ac, ok1 := a.(*BaseSingletonPredictionContext) bc, ok2 := b.(*BaseSingletonPredictionContext) if ok1 && ok2 { return mergeSingletons(ac, bc, rootIsWildcard, mergeCache) } // At least one of a or b is array // If one is $ and rootIsWildcard, return $ as// wildcard if rootIsWildcard { if _, ok := a.(*EmptyPredictionContext); ok { return a } if _, ok := b.(*EmptyPredictionContext); ok { return b } } // convert singleton so both are arrays to normalize if _, ok := a.(*BaseSingletonPredictionContext); ok { a = NewArrayPredictionContext([]PredictionContext{a.GetParent(0)}, []int{a.getReturnState(0)}) } if _, ok := b.(*BaseSingletonPredictionContext); ok { b = NewArrayPredictionContext([]PredictionContext{b.GetParent(0)}, []int{b.getReturnState(0)}) } return mergeArrays(a.(*ArrayPredictionContext), b.(*ArrayPredictionContext), rootIsWildcard, mergeCache) } // // Merge two {@link SingletonBasePredictionContext} instances. // //Stack tops equal, parents merge is same return left graph.
//
Same stack top, parents differ merge parents giving array node, then
// remainders of those graphs. A Newroot node is created to point to the
// merged parents.
//
Different stack tops pointing to same parent. Make array node for the
// root where both element in the root point to the same (original)
// parent.
//
Different stack tops pointing to different parents. Make array node for
// the root where each element points to the corresponding original
// parent.
//
These local-context merge operations are used when {@code rootIsWildcard} // is true.
// //{@link //EMPTY} is superset of any graph return {@link //EMPTY}.
//
{@link //EMPTY} and anything is {@code //EMPTY}, so merged parent is
// {@code //EMPTY} return left graph.
//
Special case of last merge if local context.
//
These full-context merge operations are used when {@code rootIsWildcard} // is false.
// // // //Must keep all contexts {@link //EMPTY} in array is a special value (and
// nil parent).
//
Different tops, different parents.
//
Shared top, same parents.
//
Shared top, different parents.
//
Shared top, all shared parents.
//
Equal tops, merge parents and reduce top to
// {@link SingletonBasePredictionContext}.
//
// When using this prediction mode, the parser will either return a correct // parse tree (i.e. the same parse tree that would be returned with the // {@link //LL} prediction mode), or it will Report a syntax error. If a // syntax error is encountered when using the {@link //SLL} prediction mode, // it may be due to either an actual syntax error in the input or indicate // that the particular combination of grammar and input requires the more // powerful {@link //LL} prediction abilities to complete successfully.
// //// This prediction mode does not provide any guarantees for prediction // behavior for syntactically-incorrect inputs.
// PredictionModeSLL = 0 // // The LL(*) prediction mode. This prediction mode allows the current parser // context to be used for resolving SLL conflicts that occur during // prediction. This is the fastest prediction mode that guarantees correct // parse results for all combinations of grammars with syntactically correct // inputs. // //// When using this prediction mode, the parser will make correct decisions // for all syntactically-correct grammar and input combinations. However, in // cases where the grammar is truly ambiguous this prediction mode might not // Report a precise answer for exactly which alternatives are // ambiguous.
// //// This prediction mode does not provide any guarantees for prediction // behavior for syntactically-incorrect inputs.
// PredictionModeLL = 1 // // The LL(*) prediction mode with exact ambiguity detection. In addition to // the correctness guarantees provided by the {@link //LL} prediction mode, // this prediction mode instructs the prediction algorithm to determine the // complete and exact set of ambiguous alternatives for every ambiguous // decision encountered while parsing. // //// This prediction mode may be used for diagnosing ambiguities during // grammar development. Due to the performance overhead of calculating sets // of ambiguous alternatives, this prediction mode should be avoided when // the exact results are not necessary.
// //// This prediction mode does not provide any guarantees for prediction // behavior for syntactically-incorrect inputs.
// PredictionModeLLExactAmbigDetection = 2 ) // // Computes the SLL prediction termination condition. // //// This method computes the SLL prediction termination condition for both of // the following cases.
// //COMBINED SLL+LL PARSING
// //When LL-fallback is enabled upon SLL conflict, correct predictions are // ensured regardless of how the termination condition is computed by this // method. Due to the substantially higher cost of LL prediction, the // prediction should only fall back to LL when the additional lookahead // cannot lead to a unique SLL prediction.
// //Assuming combined SLL+LL parsing, an SLL configuration set with only // conflicting subsets should fall back to full LL, even if the // configuration sets don't resolve to the same alternative (e.g. // {@code {1,2}} and {@code {3,4}}. If there is at least one non-conflicting // configuration, SLL could continue with the hopes that more lookahead will // resolve via one of those non-conflicting configurations.
// //Here's the prediction termination rule them: SLL (for SLL+LL parsing) // stops when it sees only conflicting configuration subsets. In contrast, // full LL keeps going when there is uncertainty.
// //HEURISTIC
// //As a heuristic, we stop prediction when we see any conflicting subset // unless we see a state that only has one alternative associated with it. // The single-alt-state thing lets prediction continue upon rules like // (otherwise, it would admit defeat too soon):
// //{@code [12|1|[], 6|2|[], 12|2|[]]. s : (ID | ID ID?) '' }
// //When the ATN simulation reaches the state before {@code ''}, it has a // DFA state that looks like: {@code [12|1|[], 6|2|[], 12|2|[]]}. Naturally // {@code 12|1|[]} and {@code 12|2|[]} conflict, but we cannot stop // processing this node because alternative to has another way to continue, // via {@code [6|2|[]]}.
// //It also let's us continue for this rule:
// //{@code [1|1|[], 1|2|[], 8|3|[]] a : A | A | A B }
// //After Matching input A, we reach the stop state for rule A, state 1. // State 8 is the state right before B. Clearly alternatives 1 and 2 // conflict and no amount of further lookahead will separate the two. // However, alternative 3 will be able to continue and so we do not stop // working on this state. In the previous example, we're concerned with // states associated with the conflicting alternatives. Here alt 3 is not // associated with the conflicting configs, but since we can continue // looking for input reasonably, don't declare the state done.
// //PURE SLL PARSING
// //To handle pure SLL parsing, all we have to do is make sure that we // combine stack contexts for configurations that differ only by semantic // predicate. From there, we can do the usual SLL termination heuristic.
// //PREDICATES IN SLL+LL PARSING
// //SLL decisions don't evaluate predicates until after they reach DFA stop // states because they need to create the DFA cache that works in all // semantic situations. In contrast, full LL evaluates predicates collected // during start state computation so it can ignore predicates thereafter. // This means that SLL termination detection can totally ignore semantic // predicates.
// //Implementation-wise, {@link ATNConfigSet} combines stack contexts but not // semantic predicate contexts so we might see two configurations like the // following.
// //{@code (s, 1, x, {}), (s, 1, x', {p})}
// //Before testing these configurations against others, we have to merge // {@code x} and {@code x'} (without modifying the existing configurations). // For example, we test {@code (x+x')==x''} when looking for conflicts in // the following configurations.
// //{@code (s, 1, x, {}), (s, 1, x', {p}), (s, 2, x'', {})}
// //If the configuration set has predicates (as indicated by // {@link ATNConfigSet//hasSemanticContext}), this algorithm makes a copy of // the configurations to strip out all of the predicates so that a standard // {@link ATNConfigSet} will merge everything ignoring predicates.
// func PredictionModehasSLLConflictTerminatingPrediction(mode int, configs ATNConfigSet) bool { // Configs in rule stop states indicate reaching the end of the decision // rule (local context) or end of start rule (full context). If all // configs meet this condition, then none of the configurations is able // to Match additional input so we terminate prediction. // if PredictionModeallConfigsInRuleStopStates(configs) { return true } // pure SLL mode parsing if mode == PredictionModeSLL { // Don't bother with combining configs from different semantic // contexts if we can fail over to full LL costs more time // since we'll often fail over anyway. if configs.HasSemanticContext() { // dup configs, tossing out semantic predicates dup := NewBaseATNConfigSet(false) for _, c := range configs.GetItems() { // NewBaseATNConfig({semanticContext:}, c) c = NewBaseATNConfig2(c, SemanticContextNone) dup.Add(c, nil) } configs = dup } // now we have combined contexts for configs with dissimilar preds } // pure SLL or combined SLL+LL mode parsing altsets := PredictionModegetConflictingAltSubsets(configs) return PredictionModehasConflictingAltSet(altsets) && !PredictionModehasStateAssociatedWithOneAlt(configs) } // Checks if any configuration in {@code configs} is in a // {@link RuleStopState}. Configurations meeting this condition have reached // the end of the decision rule (local context) or end of start rule (full // context). // // @param configs the configuration set to test // @return {@code true} if any configuration in {@code configs} is in a // {@link RuleStopState}, otherwise {@code false} func PredictionModehasConfigInRuleStopState(configs ATNConfigSet) bool { for _, c := range configs.GetItems() { if _, ok := c.GetState().(*RuleStopState); ok { return true } } return false } // Checks if all configurations in {@code configs} are in a // {@link RuleStopState}. Configurations meeting this condition have reached // the end of the decision rule (local context) or end of start rule (full // context). // // @param configs the configuration set to test // @return {@code true} if all configurations in {@code configs} are in a // {@link RuleStopState}, otherwise {@code false} func PredictionModeallConfigsInRuleStopStates(configs ATNConfigSet) bool { for _, c := range configs.GetItems() { if _, ok := c.GetState().(*RuleStopState); !ok { return false } } return true } // // Full LL prediction termination. // //Can we stop looking ahead during ATN simulation or is there some // uncertainty as to which alternative we will ultimately pick, after // consuming more input? Even if there are partial conflicts, we might know // that everything is going to resolve to the same minimum alternative. That // means we can stop since no more lookahead will change that fact. On the // other hand, there might be multiple conflicts that resolve to different // minimums. That means we need more look ahead to decide which of those // alternatives we should predict.
// //The basic idea is to split the set of configurations {@code C}, into // conflicting subsets {@code (s, _, ctx, _)} and singleton subsets with // non-conflicting configurations. Two configurations conflict if they have // identical {@link ATNConfig//state} and {@link ATNConfig//context} values // but different {@link ATNConfig//alt} value, e.g. {@code (s, i, ctx, _)} // and {@code (s, j, ctx, _)} for {@code i!=j}.
// //Reduce these configuration subsets to the set of possible alternatives. // You can compute the alternative subsets in one pass as follows:
// //{@code A_s,ctx = {i | (s, i, ctx, _)}} for each configuration in // {@code C} holding {@code s} and {@code ctx} fixed.
// //Or in pseudo-code, for each configuration {@code c} in {@code C}:
// //// map[c] U= c.{@link ATNConfig//alt alt} // map hash/equals uses s and x, not // alt and not pred //// //
The values in {@code map} are the set of {@code A_s,ctx} sets.
// //If {@code |A_s,ctx|=1} then there is no conflict associated with // {@code s} and {@code ctx}.
// //Reduce the subsets to singletons by choosing a minimum of each subset. If // the union of these alternative subsets is a singleton, then no amount of // more lookahead will help us. We will always pick that alternative. If, // however, there is more than one alternative, then we are uncertain which // alternative to predict and must continue looking for resolution. We may // or may not discover an ambiguity in the future, even if there are no // conflicting subsets this round.
// //The biggest sin is to terminate early because it means we've made a // decision but were uncertain as to the eventual outcome. We haven't used // enough lookahead. On the other hand, announcing a conflict too late is no // big deal you will still have the conflict. It's just inefficient. It // might even look until the end of file.
// //No special consideration for semantic predicates is required because // predicates are evaluated on-the-fly for full LL prediction, ensuring that // no configuration contains a semantic context during the termination // check.
// //CONFLICTING CONFIGS
// //Two configurations {@code (s, i, x)} and {@code (s, j, x')}, conflict // when {@code i!=j} but {@code x=x'}. Because we merge all // {@code (s, i, _)} configurations together, that means that there are at // most {@code n} configurations associated with state {@code s} for // {@code n} possible alternatives in the decision. The merged stacks // complicate the comparison of configuration contexts {@code x} and // {@code x'}. Sam checks to see if one is a subset of the other by calling // merge and checking to see if the merged result is either {@code x} or // {@code x'}. If the {@code x} associated with lowest alternative {@code i} // is the superset, then {@code i} is the only possible prediction since the // others resolve to {@code min(i)} as well. However, if {@code x} is // associated with {@code j>i} then at least one stack configuration for // {@code j} is not in conflict with alternative {@code i}. The algorithm // should keep going, looking for more lookahead due to the uncertainty.
// //For simplicity, I'm doing a equality check between {@code x} and // {@code x'} that lets the algorithm continue to consume lookahead longer // than necessary. The reason I like the equality is of course the // simplicity but also because that is the test you need to detect the // alternatives that are actually in conflict.
// //CONTINUE/STOP RULE
// //Continue if union of resolved alternative sets from non-conflicting and // conflicting alternative subsets has more than one alternative. We are // uncertain about which alternative to predict.
// //The complete set of alternatives, {@code [i for (_,i,_)]}, tells us which // alternatives are still in the running for the amount of input we've // consumed at this point. The conflicting sets let us to strip away // configurations that won't lead to more states because we resolve // conflicts to the configuration with a minimum alternate for the // conflicting set.
// //CASES
// //EXACT AMBIGUITY DETECTION
// //If all states Report the same conflicting set of alternatives, then we // know we have the exact ambiguity set.
// //|A_i|>1
and
// A_i = A_j
for all i, j.
In other words, we continue examining lookahead until all {@code A_i} // have more than one alternative and all {@code A_i} are the same. If // {@code A={{1,2}, {1,3}}}, then regular LL prediction would terminate // because the resolved set is {@code {1}}. To determine what the real // ambiguity is, we have to know whether the ambiguity is between one and // two or one and three so we keep going. We can only stop prediction when // we need exact ambiguity detection when the sets look like // {@code A={{1,2}}} or {@code {{1,2},{1,2}}}, etc...
// func PredictionModeresolvesToJustOneViableAlt(altsets []*BitSet) int { return PredictionModegetSingleViableAlt(altsets) } // // Determines if every alternative subset in {@code altsets} contains more // than one alternative. // // @param altsets a collection of alternative subsets // @return {@code true} if every {@link BitSet} in {@code altsets} has // {@link BitSet//cardinality cardinality} > 1, otherwise {@code false} // func PredictionModeallSubsetsConflict(altsets []*BitSet) bool { return !PredictionModehasNonConflictingAltSet(altsets) } // // Determines if any single alternative subset in {@code altsets} contains // exactly one alternative. // // @param altsets a collection of alternative subsets // @return {@code true} if {@code altsets} contains a {@link BitSet} with // {@link BitSet//cardinality cardinality} 1, otherwise {@code false} // func PredictionModehasNonConflictingAltSet(altsets []*BitSet) bool { for i := 0; i < len(altsets); i++ { alts := altsets[i] if alts.length() == 1 { return true } } return false } // // Determines if any single alternative subset in {@code altsets} contains // more than one alternative. // // @param altsets a collection of alternative subsets // @return {@code true} if {@code altsets} contains a {@link BitSet} with // {@link BitSet//cardinality cardinality} > 1, otherwise {@code false} // func PredictionModehasConflictingAltSet(altsets []*BitSet) bool { for i := 0; i < len(altsets); i++ { alts := altsets[i] if alts.length() > 1 { return true } } return false } // // Determines if every alternative subset in {@code altsets} is equivalent. // // @param altsets a collection of alternative subsets // @return {@code true} if every member of {@code altsets} is equal to the // others, otherwise {@code false} // func PredictionModeallSubsetsEqual(altsets []*BitSet) bool { var first *BitSet for i := 0; i < len(altsets); i++ { alts := altsets[i] if first == nil { first = alts } else if alts != first { return false } } return true } // // Returns the unique alternative predicted by all alternative subsets in // {@code altsets}. If no such alternative exists, this method returns // {@link ATN//INVALID_ALT_NUMBER}. // // @param altsets a collection of alternative subsets // func PredictionModegetUniqueAlt(altsets []*BitSet) int { all := PredictionModeGetAlts(altsets) if all.length() == 1 { return all.minValue() } return ATNInvalidAltNumber } // Gets the complete set of represented alternatives for a collection of // alternative subsets. This method returns the union of each {@link BitSet} // in {@code altsets}. // // @param altsets a collection of alternative subsets // @return the set of represented alternatives in {@code altsets} // func PredictionModeGetAlts(altsets []*BitSet) *BitSet { all := NewBitSet() for _, alts := range altsets { all.or(alts) } return all } // // This func gets the conflicting alt subsets from a configuration set. // For each configuration {@code c} in {@code configs}: // //// map[c] U= c.{@link ATNConfig//alt alt} // map hash/equals uses s and x, not // alt and not pred //// func PredictionModegetConflictingAltSubsets(configs ATNConfigSet) []*BitSet { configToAlts := make(map[int]*BitSet) for _, c := range configs.GetItems() { key := 31 * c.GetState().GetStateNumber() + c.GetContext().hash() alts, ok := configToAlts[key] if !ok { alts = NewBitSet() configToAlts[key] = alts } alts.add(c.GetAlt()) } values := make([]*BitSet, 0, 10) for _, v := range configToAlts { values = append(values, v) } return values } // // Get a map from state to alt subset from a configuration set. For each // configuration {@code c} in {@code configs}: // //
// map[c.{@link ATNConfig//state state}] U= c.{@link ATNConfig//alt alt} //// func PredictionModeGetStateToAltMap(configs ATNConfigSet) *AltDict { m := NewAltDict() for _, c := range configs.GetItems() { alts := m.Get(c.GetState().String()) if alts == nil { alts = NewBitSet() m.put(c.GetState().String(), alts) } alts.(*BitSet).add(c.GetAlt()) } return m } func PredictionModehasStateAssociatedWithOneAlt(configs ATNConfigSet) bool { values := PredictionModeGetStateToAltMap(configs).values() for i := 0; i < len(values); i++ { if values[i].(*BitSet).length() == 1 { return true } } return false } func PredictionModegetSingleViableAlt(altsets []*BitSet) int { result := ATNInvalidAltNumber for i := 0; i < len(altsets); i++ { alts := altsets[i] minAlt := alts.minValue() if result == ATNInvalidAltNumber { result = minAlt } else if result != minAlt { // more than 1 viable alt return ATNInvalidAltNumber } } return result } golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/recognizer.go 0000664 0000000 0000000 00000014036 14102210121 0025027 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. // Use of this file is governed by the BSD 3-clause license that // can be found in the LICENSE.txt file in the project root. package antlr import ( "fmt" "strings" "strconv" ) type Recognizer interface { GetLiteralNames() []string GetSymbolicNames() []string GetRuleNames() []string Sempred(RuleContext, int, int) bool Precpred(RuleContext, int) bool GetState() int SetState(int) Action(RuleContext, int, int) AddErrorListener(ErrorListener) RemoveErrorListeners() GetATN() *ATN GetErrorListenerDispatch() ErrorListener } type BaseRecognizer struct { listeners []ErrorListener state int RuleNames []string LiteralNames []string SymbolicNames []string GrammarFileName string } func NewBaseRecognizer() *BaseRecognizer { rec := new(BaseRecognizer) rec.listeners = []ErrorListener{ConsoleErrorListenerINSTANCE} rec.state = -1 return rec } var tokenTypeMapCache = make(map[string]int) var ruleIndexMapCache = make(map[string]int) func (b *BaseRecognizer) checkVersion(toolVersion string) { runtimeVersion := "4.7.2" if runtimeVersion != toolVersion { fmt.Println("ANTLR runtime and generated code versions disagree: " + runtimeVersion + "!=" + toolVersion) } } func (b *BaseRecognizer) Action(context RuleContext, ruleIndex, actionIndex int) { panic("action not implemented on Recognizer!") } func (b *BaseRecognizer) AddErrorListener(listener ErrorListener) { b.listeners = append(b.listeners, listener) } func (b *BaseRecognizer) RemoveErrorListeners() { b.listeners = make([]ErrorListener, 0) } func (b *BaseRecognizer) GetRuleNames() []string { return b.RuleNames } func (b *BaseRecognizer) GetTokenNames() []string { return b.LiteralNames } func (b *BaseRecognizer) GetSymbolicNames() []string { return b.SymbolicNames } func (b *BaseRecognizer) GetLiteralNames() []string { return b.LiteralNames } func (b *BaseRecognizer) GetState() int { return b.state } func (b *BaseRecognizer) SetState(v int) { b.state = v } //func (b *Recognizer) GetTokenTypeMap() { // var tokenNames = b.GetTokenNames() // if (tokenNames==nil) { // panic("The current recognizer does not provide a list of token names.") // } // var result = tokenTypeMapCache[tokenNames] // if(result==nil) { // result = tokenNames.reduce(function(o, k, i) { o[k] = i }) // result.EOF = TokenEOF // tokenTypeMapCache[tokenNames] = result // } // return result //} // Get a map from rule names to rule indexes. // //
Used for XPath and tree pattern compilation.
// func (b *BaseRecognizer) GetRuleIndexMap() map[string]int { panic("Method not defined!") // var ruleNames = b.GetRuleNames() // if (ruleNames==nil) { // panic("The current recognizer does not provide a list of rule names.") // } // // var result = ruleIndexMapCache[ruleNames] // if(result==nil) { // result = ruleNames.reduce(function(o, k, i) { o[k] = i }) // ruleIndexMapCache[ruleNames] = result // } // return result } func (b *BaseRecognizer) GetTokenType(tokenName string) int { panic("Method not defined!") // var ttype = b.GetTokenTypeMap()[tokenName] // if (ttype !=nil) { // return ttype // } else { // return TokenInvalidType // } } //func (b *Recognizer) GetTokenTypeMap() map[string]int { // Vocabulary vocabulary = getVocabulary() // // Synchronized (tokenTypeMapCache) { // Map// Since tokens on hidden channels (e.g. whitespace or comments) are not // added to the parse trees, they will not appear in the output of b // method. // func (b *BaseRuleContext) GetParent() Tree { return b.parentCtx } golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/semantic_context.go 0000664 0000000 0000000 00000022745 14102210121 0026235 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. // Use of this file is governed by the BSD 3-clause license that // can be found in the LICENSE.txt file in the project root. package antlr import ( "fmt" "strconv" ) // A tree structure used to record the semantic context in which // an ATN configuration is valid. It's either a single predicate, // a conjunction {@code p1&&p2}, or a sum of products {@code p1||p2}. // //
I have scoped the {@link AND}, {@link OR}, and {@link Predicate} subclasses of // {@link SemanticContext} within the scope of this outer class.
// type SemanticContext interface { comparable evaluate(parser Recognizer, outerContext RuleContext) bool evalPrecedence(parser Recognizer, outerContext RuleContext) SemanticContext hash() int String() string } func SemanticContextandContext(a, b SemanticContext) SemanticContext { if a == nil || a == SemanticContextNone { return b } if b == nil || b == SemanticContextNone { return a } result := NewAND(a, b) if len(result.opnds) == 1 { return result.opnds[0] } return result } func SemanticContextorContext(a, b SemanticContext) SemanticContext { if a == nil { return b } if b == nil { return a } if a == SemanticContextNone || b == SemanticContextNone { return SemanticContextNone } result := NewOR(a, b) if len(result.opnds) == 1 { return result.opnds[0] } return result } type Predicate struct { ruleIndex int predIndex int isCtxDependent bool } func NewPredicate(ruleIndex, predIndex int, isCtxDependent bool) *Predicate { p := new(Predicate) p.ruleIndex = ruleIndex p.predIndex = predIndex p.isCtxDependent = isCtxDependent // e.g., $i ref in pred return p } //The default {@link SemanticContext}, which is semantically equivalent to //a predicate of the form {@code {true}?}. var SemanticContextNone SemanticContext = NewPredicate(-1, -1, false) func (p *Predicate) evalPrecedence(parser Recognizer, outerContext RuleContext) SemanticContext { return p } func (p *Predicate) evaluate(parser Recognizer, outerContext RuleContext) bool { var localctx RuleContext if p.isCtxDependent { localctx = outerContext } return parser.Sempred(localctx, p.ruleIndex, p.predIndex) } func (p *Predicate) equals(other interface{}) bool { if p == other { return true } else if _, ok := other.(*Predicate); !ok { return false } else { return p.ruleIndex == other.(*Predicate).ruleIndex && p.predIndex == other.(*Predicate).predIndex && p.isCtxDependent == other.(*Predicate).isCtxDependent } } func (p *Predicate) hash() int { return p.ruleIndex*43 + p.predIndex*47 } func (p *Predicate) String() string { return "{" + strconv.Itoa(p.ruleIndex) + ":" + strconv.Itoa(p.predIndex) + "}?" } type PrecedencePredicate struct { precedence int } func NewPrecedencePredicate(precedence int) *PrecedencePredicate { p := new(PrecedencePredicate) p.precedence = precedence return p } func (p *PrecedencePredicate) evaluate(parser Recognizer, outerContext RuleContext) bool { return parser.Precpred(outerContext, p.precedence) } func (p *PrecedencePredicate) evalPrecedence(parser Recognizer, outerContext RuleContext) SemanticContext { if parser.Precpred(outerContext, p.precedence) { return SemanticContextNone } return nil } func (p *PrecedencePredicate) compareTo(other *PrecedencePredicate) int { return p.precedence - other.precedence } func (p *PrecedencePredicate) equals(other interface{}) bool { if p == other { return true } else if _, ok := other.(*PrecedencePredicate); !ok { return false } else { return p.precedence == other.(*PrecedencePredicate).precedence } } func (p *PrecedencePredicate) hash() int { return p.precedence * 51 } func (p *PrecedencePredicate) String() string { return "{" + strconv.Itoa(p.precedence) + ">=prec}?" } func PrecedencePredicatefilterPrecedencePredicates(set *Set) []*PrecedencePredicate { result := make([]*PrecedencePredicate, 0) for _, v := range set.values() { if c2, ok := v.(*PrecedencePredicate); ok { result = append(result, c2) } } return result } // A semantic context which is true whenever none of the contained contexts // is false.` type AND struct { opnds []SemanticContext } func NewAND(a, b SemanticContext) *AND { operands := NewSet(nil, nil) if aa, ok := a.(*AND); ok { for _, o := range aa.opnds { operands.add(o) } } else { operands.add(a) } if ba, ok := b.(*AND); ok { for _, o := range ba.opnds { operands.add(o) } } else { operands.add(b) } precedencePredicates := PrecedencePredicatefilterPrecedencePredicates(operands) if len(precedencePredicates) > 0 { // interested in the transition with the lowest precedence var reduced *PrecedencePredicate for _, p := range precedencePredicates { if reduced == nil || p.precedence < reduced.precedence { reduced = p } } operands.add(reduced) } vs := operands.values() opnds := make([]SemanticContext, len(vs)) for i, v := range vs { opnds[i] = v.(SemanticContext) } and := new(AND) and.opnds = opnds return and } func (a *AND) equals(other interface{}) bool { if a == other { return true } else if _, ok := other.(*AND); !ok { return false } else { for i, v := range other.(*AND).opnds { if !a.opnds[i].equals(v) { return false } } return true } } // // {@inheritDoc} // //// The evaluation of predicates by a context is short-circuiting, but // unordered.
// func (a *AND) evaluate(parser Recognizer, outerContext RuleContext) bool { for i := 0; i < len(a.opnds); i++ { if !a.opnds[i].evaluate(parser, outerContext) { return false } } return true } func (a *AND) evalPrecedence(parser Recognizer, outerContext RuleContext) SemanticContext { differs := false operands := make([]SemanticContext, 0) for i := 0; i < len(a.opnds); i++ { context := a.opnds[i] evaluated := context.evalPrecedence(parser, outerContext) differs = differs || (evaluated != context) if evaluated == nil { // The AND context is false if any element is false return nil } else if evaluated != SemanticContextNone { // Reduce the result by Skipping true elements operands = append(operands, evaluated) } } if !differs { return a } if len(operands) == 0 { // all elements were true, so the AND context is true return SemanticContextNone } var result SemanticContext for _, o := range operands { if result == nil { result = o } else { result = SemanticContextandContext(result, o) } } return result } func (a *AND) hash() int { h := murmurInit(37) // Init with a value different from OR for _, op := range a.opnds { h = murmurUpdate(h, op.hash()) } return murmurFinish(h, len(a.opnds)) } func (a *OR) hash() int { h := murmurInit(41) // Init with a value different from AND for _, op := range a.opnds { h = murmurUpdate(h, op.hash()) } return murmurFinish(h, len(a.opnds)) } func (a *AND) String() string { s := "" for _, o := range a.opnds { s += "&& " + fmt.Sprint(o) } if len(s) > 3 { return s[0:3] } return s } // // A semantic context which is true whenever at least one of the contained // contexts is true. // type OR struct { opnds []SemanticContext } func NewOR(a, b SemanticContext) *OR { operands := NewSet(nil, nil) if aa, ok := a.(*OR); ok { for _, o := range aa.opnds { operands.add(o) } } else { operands.add(a) } if ba, ok := b.(*OR); ok { for _, o := range ba.opnds { operands.add(o) } } else { operands.add(b) } precedencePredicates := PrecedencePredicatefilterPrecedencePredicates(operands) if len(precedencePredicates) > 0 { // interested in the transition with the lowest precedence var reduced *PrecedencePredicate for _, p := range precedencePredicates { if reduced == nil || p.precedence > reduced.precedence { reduced = p } } operands.add(reduced) } vs := operands.values() opnds := make([]SemanticContext, len(vs)) for i, v := range vs { opnds[i] = v.(SemanticContext) } o := new(OR) o.opnds = opnds return o } func (o *OR) equals(other interface{}) bool { if o == other { return true } else if _, ok := other.(*OR); !ok { return false } else { for i, v := range other.(*OR).opnds { if !o.opnds[i].equals(v) { return false } } return true } } //// The evaluation of predicates by o context is short-circuiting, but // unordered.
// func (o *OR) evaluate(parser Recognizer, outerContext RuleContext) bool { for i := 0; i < len(o.opnds); i++ { if o.opnds[i].evaluate(parser, outerContext) { return true } } return false } func (o *OR) evalPrecedence(parser Recognizer, outerContext RuleContext) SemanticContext { differs := false operands := make([]SemanticContext, 0) for i := 0; i < len(o.opnds); i++ { context := o.opnds[i] evaluated := context.evalPrecedence(parser, outerContext) differs = differs || (evaluated != context) if evaluated == SemanticContextNone { // The OR context is true if any element is true return SemanticContextNone } else if evaluated != nil { // Reduce the result by Skipping false elements operands = append(operands, evaluated) } } if !differs { return o } if len(operands) == 0 { // all elements were false, so the OR context is false return nil } var result SemanticContext for _, o := range operands { if result == nil { result = o } else { result = SemanticContextorContext(result, o) } } return result } func (o *OR) String() string { s := "" for _, o := range o.opnds { s += "|| " + fmt.Sprint(o) } if len(s) > 3 { return s[0:3] } return s } golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/testing_assert_test.go 0000664 0000000 0000000 00000004156 14102210121 0026757 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. // Use of this file is governed by the BSD 3-clause license that // can be found in the LICENSE.txt file in the project root. // These assert functions are borrowed from https://github.com/stretchr/testify/ (MIT License) package antlr import ( "fmt" "reflect" "testing" ) type assert struct { t *testing.T } func assertNew(t *testing.T) *assert { return &assert{ t: t, } } func (a *assert) Equal(expected, actual interface{}) bool { if !objectsAreEqual(expected, actual) { return a.Fail(fmt.Sprintf("Not equal:\n"+ "expected: %#v\n"+ " actual: %#v\n", expected, actual)) } return true } func objectsAreEqual(expected, actual interface{}) bool { if expected == nil || actual == nil { return expected == actual } return reflect.DeepEqual(expected, actual) } func (a *assert) Nil(object interface{}) bool { if isNil(object) { return true } return a.Fail(fmt.Sprintf("Expected nil, but got: %#v", object)) } func (a *assert) NotNil(object interface{}) bool { if !isNil(object) { return true } return a.Fail("Expected value not to be nil.") } // isNil checks if a specified object is nil or not, without Failing. func isNil(object interface{}) bool { if object == nil { return true } value := reflect.ValueOf(object) kind := value.Kind() if kind >= reflect.Chan && kind <= reflect.Slice && value.IsNil() { return true } return false } func (a *assert) Panics(f func()) bool { if funcDidPanic, panicValue := didPanic(f); !funcDidPanic { return a.Fail(fmt.Sprintf("func %#v should panic\n\r\tPanic value:\t%v", f, panicValue)) } return true } // Fail reports a failure through func (a *assert) Fail(failureMessage string) bool { a.t.Errorf("%s", failureMessage) return false } // didPanic returns true if the function passed to it panics. Otherwise, it returns false. func didPanic(f func()) (bool, interface{}) { didPanic := false var message interface{} func() { defer func() { if message = recover(); message != nil { didPanic = true } }() // call the target function f() }() return didPanic, message } golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/testing_lexer_b_test.go 0000664 0000000 0000000 00000006235 14102210121 0027076 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. // Use of this file is governed by the BSD 3-clause license that // can be found in the LICENSE.txt file in the project root. package antlr /* LexerB is a lexer for testing purpose. This file is generated from this grammer. lexer grammar LexerB; ID : 'a'..'z'+; INT : '0'..'9'+; SEMI : ';'; ASSIGN : '='; PLUS : '+'; MULT : '*'; WS : ' '+; */ var lexerB_serializedLexerAtn = []uint16{ 3, 24715, 42794, 33075, 47597, 16764, 15335, 30598, 22884, 2, 9, 40, 8, 1, 4, 2, 9, 2, 4, 3, 9, 3, 4, 4, 9, 4, 4, 5, 9, 5, 4, 6, 9, 6, 4, 7, 9, 7, 4, 8, 9, 8, 3, 2, 6, 2, 19, 10, 2, 13, 2, 14, 2, 20, 3, 3, 6, 3, 24, 10, 3, 13, 3, 14, 3, 25, 3, 4, 3, 4, 3, 5, 3, 5, 3, 6, 3, 6, 3, 7, 3, 7, 3, 8, 6, 8, 37, 10, 8, 13, 8, 14, 8, 38, 2, 2, 9, 3, 3, 5, 4, 7, 5, 9, 6, 11, 7, 13, 8, 15, 9, 3, 2, 2, 2, 42, 2, 3, 3, 2, 2, 2, 2, 5, 3, 2, 2, 2, 2, 7, 3, 2, 2, 2, 2, 9, 3, 2, 2, 2, 2, 11, 3, 2, 2, 2, 2, 13, 3, 2, 2, 2, 2, 15, 3, 2, 2, 2, 3, 18, 3, 2, 2, 2, 5, 23, 3, 2, 2, 2, 7, 27, 3, 2, 2, 2, 9, 29, 3, 2, 2, 2, 11, 31, 3, 2, 2, 2, 13, 33, 3, 2, 2, 2, 15, 36, 3, 2, 2, 2, 17, 19, 4, 99, 124, 2, 18, 17, 3, 2, 2, 2, 19, 20, 3, 2, 2, 2, 20, 18, 3, 2, 2, 2, 20, 21, 3, 2, 2, 2, 21, 4, 3, 2, 2, 2, 22, 24, 4, 50, 59, 2, 23, 22, 3, 2, 2, 2, 24, 25, 3, 2, 2, 2, 25, 23, 3, 2, 2, 2, 25, 26, 3, 2, 2, 2, 26, 6, 3, 2, 2, 2, 27, 28, 7, 61, 2, 2, 28, 8, 3, 2, 2, 2, 29, 30, 7, 63, 2, 2, 30, 10, 3, 2, 2, 2, 31, 32, 7, 45, 2, 2, 32, 12, 3, 2, 2, 2, 33, 34, 7, 44, 2, 2, 34, 14, 3, 2, 2, 2, 35, 37, 7, 34, 2, 2, 36, 35, 3, 2, 2, 2, 37, 38, 3, 2, 2, 2, 38, 36, 3, 2, 2, 2, 38, 39, 3, 2, 2, 2, 39, 16, 3, 2, 2, 2, 6, 2, 20, 25, 38, 2, } var lexerB_lexerDeserializer = NewATNDeserializer(nil) var lexerB_lexerAtn = lexerB_lexerDeserializer.DeserializeFromUInt16(lexerB_serializedLexerAtn) var lexerB_lexerChannelNames = []string{ "DEFAULT_TOKEN_CHANNEL", "HIDDEN", } var lexerB_lexerModeNames = []string{ "DEFAULT_MODE", } var lexerB_lexerLiteralNames = []string{ "", "", "", "';'", "'='", "'+'", "'*'", } var lexerB_lexerSymbolicNames = []string{ "", "ID", "INT", "SEMI", "ASSIGN", "PLUS", "MULT", "WS", } var lexerB_lexerRuleNames = []string{ "ID", "INT", "SEMI", "ASSIGN", "PLUS", "MULT", "WS", } type LexerB struct { *BaseLexer channelNames []string modeNames []string // TODO: EOF string } var lexerB_lexerDecisionToDFA = make([]*DFA, len(lexerB_lexerAtn.DecisionToState)) func init() { for index, ds := range lexerB_lexerAtn.DecisionToState { lexerB_lexerDecisionToDFA[index] = NewDFA(ds, index) } } func NewLexerB(input CharStream) *LexerB { l := new(LexerB) l.BaseLexer = NewBaseLexer(input) l.Interpreter = NewLexerATNSimulator(l, lexerB_lexerAtn, lexerB_lexerDecisionToDFA, NewPredictionContextCache()) l.channelNames = lexerB_lexerChannelNames l.modeNames = lexerB_lexerModeNames l.RuleNames = lexerB_lexerRuleNames l.LiteralNames = lexerB_lexerLiteralNames l.SymbolicNames = lexerB_lexerSymbolicNames l.GrammarFileName = "LexerB.g4" // TODO: l.EOF = TokenEOF return l } // LexerB tokens. const ( LexerBID = 1 LexerBINT = 2 LexerBSEMI = 3 LexerBASSIGN = 4 LexerBPLUS = 5 LexerBMULT = 6 LexerBWS = 7 ) golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/testing_util_test.go 0000664 0000000 0000000 00000001216 14102210121 0026425 0 ustar 00root root 0000000 0000000 package antlr import ( "fmt" "strings" ) // newTestCommonToken create common token with tokentype, text and channel // notice: test purpose only func newTestCommonToken(tokenType int, text string, channel int) *CommonToken { t := new(CommonToken) t.BaseToken = new(BaseToken) t.tokenType = tokenType t.channel = channel t.text = text t.line = 0 t.column = -1 return t } // tokensToString returnes []Tokens string // notice: test purpose only func tokensToString(tokens []Token) string { buf := make([]string, len(tokens)) for i, token := range tokens { buf[i] = fmt.Sprintf("%v", token) } return "[" + strings.Join(buf, ", ") + "]" } golang-github-antlr-antlr4-4.7.2+ds/runtime/Go/antlr/token.go 0000664 0000000 0000000 00000011674 14102210121 0024005 0 ustar 00root root 0000000 0000000 // Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. // Use of this file is governed by the BSD 3-clause license that // can be found in the LICENSE.txt file in the project root. package antlr import ( "strconv" "strings" ) type TokenSourceCharStreamPair struct { tokenSource TokenSource charStream CharStream } // A token has properties: text, type, line, character position in the line // (so we can ignore tabs), token channel, index, and source from which // we obtained this token. type Token interface { GetSource() *TokenSourceCharStreamPair GetTokenType() int GetChannel() int GetStart() int GetStop() int GetLine() int GetColumn() int GetText() string SetText(s string) GetTokenIndex() int SetTokenIndex(v int) GetTokenSource() TokenSource GetInputStream() CharStream } type BaseToken struct { source *TokenSourceCharStreamPair tokenType int // token type of the token channel int // The parser ignores everything not on DEFAULT_CHANNEL start int // optional return -1 if not implemented. stop int // optional return -1 if not implemented. tokenIndex int // from 0..n-1 of the token object in the input stream line int // line=1..n of the 1st character column int // beginning of the line at which it occurs, 0..n-1 text string // text of the token. readOnly bool } const ( TokenInvalidType = 0 // During lookahead operations, this "token" signifies we hit rule end ATN state // and did not follow it despite needing to. TokenEpsilon = -2 TokenMinUserTokenType = 1 TokenEOF = -1 // All tokens go to the parser (unless Skip() is called in that rule) // on a particular "channel". The parser tunes to a particular channel // so that whitespace etc... can go to the parser on a "hidden" channel. TokenDefaultChannel = 0 // Anything on different channel than DEFAULT_CHANNEL is not parsed // by parser. TokenHiddenChannel = 1 ) func (b *BaseToken) GetChannel() int { return b.channel } func (b *BaseToken) GetStart() int { return b.start } func (b *BaseToken) GetStop() int { return b.stop } func (b *BaseToken) GetLine() int { return b.line } func (b *BaseToken) GetColumn() int { return b.column } func (b *BaseToken) GetTokenType() int { return b.tokenType } func (b *BaseToken) GetSource() *TokenSourceCharStreamPair { return b.source } func (b *BaseToken) GetTokenIndex() int { return b.tokenIndex } func (b *BaseToken) SetTokenIndex(v int) { b.tokenIndex = v } func (b *BaseToken) GetTokenSource() TokenSource { return b.source.tokenSource } func (b *BaseToken) GetInputStream() CharStream { return b.source.charStream } type CommonToken struct { *BaseToken } func NewCommonToken(source *TokenSourceCharStreamPair, tokenType, channel, start, stop int) *CommonToken { t := new(CommonToken) t.BaseToken = new(BaseToken) t.source = source t.tokenType = tokenType t.channel = channel t.start = start t.stop = stop t.tokenIndex = -1 if t.source.tokenSource != nil { t.line = source.tokenSource.GetLine() t.column = source.tokenSource.GetCharPositionInLine() } else { t.column = -1 } return t } // An empty {@link Pair} which is used as the default value of // {@link //source} for tokens that do not have a source. //CommonToken.EMPTY_SOURCE = [ nil, nil ] // Constructs a New{@link CommonToken} as a copy of another {@link Token}. // //// If {@code oldToken} is also a {@link CommonToken} instance, the newly // constructed token will share a reference to the {@link //text} field and // the {@link Pair} stored in {@link //source}. Otherwise, {@link //text} will // be assigned the result of calling {@link //GetText}, and {@link //source} // will be constructed from the result of {@link Token//GetTokenSource} and // {@link Token//GetInputStream}.
// // @param oldToken The token to copy. // func (c *CommonToken) clone() *CommonToken { t := NewCommonToken(c.source, c.tokenType, c.channel, c.start, c.stop) t.tokenIndex = c.GetTokenIndex() t.line = c.GetLine() t.column = c.GetColumn() t.text = c.GetText() return t } func (c *CommonToken) GetText() string { if c.text != "" { return c.text } input := c.GetInputStream() if input == nil { return "" } n := input.Size() if c.start < n && c.stop < n { return input.GetTextFromInterval(NewInterval(c.start, c.stop)) } return "// You can insert stuff, replace, and delete chunks. Note that the operations // are done lazily--only if you convert the buffer to a {@link String} with // {@link TokenStream#getText()}. This is very efficient because you are not // moving data around all the time. As the buffer of tokens is converted to // strings, the {@link #getText()} method(s) scan the input token stream and // check to see if there is an operation at the current index. If so, the // operation is done and then normal {@link String} rendering continues on the // buffer. This is like having multiple Turing machine instruction streams // (programs) operating on a single input tape. :)
//// This rewriter makes no modifications to the token stream. It does not ask the // stream to fill itself up nor does it advance the input cursor. The token // stream {@link TokenStream#index()} will return the same value before and // after any {@link #getText()} call.
//// The rewriter only works on tokens that you have in the buffer and ignores the // current input cursor. If you are buffering tokens on-demand, calling // {@link #getText()} halfway through the input will only do rewrites for those // tokens in the first half of the file.
//// Since the operations are done lazily at {@link #getText}-time, operations do // not screw up the token index values. That is, an insert operation at token // index {@code i} does not change the index values for tokens // {@code i}+1..n-1.
//// Because operations never actually alter the buffer, you may always get the // original token stream back without undoing anything. Since the instructions // are queued up, you can easily simulate transactions and roll back any changes // if there is an error just by removing instructions. For example,
//// CharStream input = new ANTLRFileStream("input"); // TLexer lex = new TLexer(input); // CommonTokenStream tokens = new CommonTokenStream(lex); // T parser = new T(tokens); // TokenStreamRewriter rewriter = new TokenStreamRewriter(tokens); // parser.startRule(); ////
// Then in the rules, you can execute (assuming rewriter is visible):
//// Token t,u; // ... // rewriter.insertAfter(t, "text to put after t");} // rewriter.insertAfter(u, "text after u");} // System.out.println(rewriter.getText()); ////
// You can also have multiple "instruction streams" and get multiple rewrites // from a single pass over the input. Just name the instruction streams and use // that name again when printing the buffer. This could be useful for generating // a C file and also its header file--all from the same buffer:
//// rewriter.insertAfter("pass1", t, "text to put after t");} // rewriter.insertAfter("pass2", u, "text after u");} // System.out.println(rewriter.getText("pass1")); // System.out.println(rewriter.getText("pass2")); ////
// If you don't use named rewrite streams, a "default" stream is used as the // first example shows.
const( Default_Program_Name = "default" Program_Init_Size = 100 Min_Token_Index = 0 ) // Define the rewrite operation hierarchy type RewriteOperation interface { // Execute the rewrite operation by possibly adding to the buffer. // Return the index of the next token to operate on. Execute(buffer *bytes.Buffer) int String() string GetInstructionIndex() int GetIndex() int GetText() string GetOpName() string GetTokens() TokenStream SetInstructionIndex(val int) SetIndex(int) SetText(string) SetOpName(string) SetTokens(TokenStream) } type BaseRewriteOperation struct { //Current index of rewrites list instruction_index int //Token buffer index index int //Substitution text text string //Actual operation name op_name string //Pointer to token steam tokens TokenStream } func (op *BaseRewriteOperation)GetInstructionIndex() int{ return op.instruction_index } func (op *BaseRewriteOperation)GetIndex() int{ return op.index } func (op *BaseRewriteOperation)GetText() string{ return op.text } func (op *BaseRewriteOperation)GetOpName() string{ return op.op_name } func (op *BaseRewriteOperation)GetTokens() TokenStream{ return op.tokens } func (op *BaseRewriteOperation)SetInstructionIndex(val int){ op.instruction_index = val } func (op *BaseRewriteOperation)SetIndex(val int) { op.index = val } func (op *BaseRewriteOperation)SetText(val string){ op.text = val } func (op *BaseRewriteOperation)SetOpName(val string){ op.op_name = val } func (op *BaseRewriteOperation)SetTokens(val TokenStream) { op.tokens = val } func (op *BaseRewriteOperation) Execute(buffer *bytes.Buffer) int{ return op.index } func (op *BaseRewriteOperation) String() string { return fmt.Sprintf("<%s@%d:\"%s\">", op.op_name, op.tokens.Get(op.GetIndex()), op.text, ) } type InsertBeforeOp struct { BaseRewriteOperation } func NewInsertBeforeOp(index int, text string, stream TokenStream) *InsertBeforeOp{ return &InsertBeforeOp{BaseRewriteOperation:BaseRewriteOperation{ index:index, text:text, op_name:"InsertBeforeOp", tokens:stream, }} } func (op *InsertBeforeOp) Execute(buffer *bytes.Buffer) int{ buffer.WriteString(op.text) if op.tokens.Get(op.index).GetTokenType() != TokenEOF{ buffer.WriteString(op.tokens.Get(op.index).GetText()) } return op.index+1 } func (op *InsertBeforeOp) String() string { return op.BaseRewriteOperation.String() } // Distinguish between insert after/before to do the "insert afters" // first and then the "insert befores" at same index. Implementation // of "insert after" is "insert before index+1". type InsertAfterOp struct { BaseRewriteOperation } func NewInsertAfterOp(index int, text string, stream TokenStream) *InsertAfterOp{ return &InsertAfterOp{BaseRewriteOperation:BaseRewriteOperation{ index:index+1, text:text, tokens:stream, }} } func (op *InsertAfterOp) Execute(buffer *bytes.Buffer) int { buffer.WriteString(op.text) if op.tokens.Get(op.index).GetTokenType() != TokenEOF{ buffer.WriteString(op.tokens.Get(op.index).GetText()) } return op.index+1 } func (op *InsertAfterOp) String() string { return op.BaseRewriteOperation.String() } // I'm going to try replacing range from x..y with (y-x)+1 ReplaceOp // instructions. type ReplaceOp struct{ BaseRewriteOperation LastIndex int } func NewReplaceOp(from, to int, text string, stream TokenStream)*ReplaceOp { return &ReplaceOp{ BaseRewriteOperation:BaseRewriteOperation{ index:from, text:text, op_name:"ReplaceOp", tokens:stream, }, LastIndex:to, } } func (op *ReplaceOp)Execute(buffer *bytes.Buffer) int{ if op.text != ""{ buffer.WriteString(op.text) } return op.LastIndex +1 } func (op *ReplaceOp) String() string { if op.text == "" { return fmt.Sprintf("