pax_global_header00006660000000000000000000000064131406573150014517gustar00rootroot0000000000000052 comment=8099a9787ce5dc5984ed879a3bda47dc730a8e97 go-cmp-0.1.0/000077500000000000000000000000001314065731500126775ustar00rootroot00000000000000go-cmp-0.1.0/.travis.yml000066400000000000000000000007341314065731500150140ustar00rootroot00000000000000sudo: false language: go go: - 1.x - master matrix: include: - go: 1.6.x script: go test -v -race ./... allow_failures: - go: master fast_finish: true install: - # Do nothing. This is needed to prevent default install action "go get -t -v ./..." from happening here (it is intended for this package to have no dependencies other than the standard library). script: - diff -u <(echo -n) <(gofmt -d -s .) - go tool vet . - go test -v -race ./... go-cmp-0.1.0/CONTRIBUTING.md000066400000000000000000000017111314065731500151300ustar00rootroot00000000000000# How to Contribute We'd love to accept your patches and contributions to this project. There are just a few small guidelines you need to follow. ## Contributor License Agreement Contributions to this project must be accompanied by a Contributor License Agreement. You (or your employer) retain the copyright to your contribution, this simply gives us permission to use and redistribute your contributions as part of the project. Head over to to see your current agreements on file or to sign a new one. You generally only need to submit a CLA once, so if you've already submitted one (even if it was for a different project), you probably don't need to do it again. ## Code reviews All submissions, including submissions by project members, require review. We use GitHub pull requests for this purpose. Consult [GitHub Help](https://help.github.com/articles/about-pull-requests/) for more information on using pull requests. go-cmp-0.1.0/LICENSE000066400000000000000000000027071314065731500137120ustar00rootroot00000000000000Copyright (c) 2017 The Go Authors. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Google Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. go-cmp-0.1.0/README.md000066400000000000000000000031471314065731500141630ustar00rootroot00000000000000# Package for equality of Go values [![GoDoc](https://godoc.org/github.com/google/go-cmp/cmp?status.svg)][godoc] [![Build Status](https://travis-ci.org/google/go-cmp.svg?branch=master)][travis] This package is intended to be a more powerful and safer alternative to `reflect.DeepEqual` for comparing whether two values are semantically equal. The primary features of `cmp` are: * When the default behavior of equality does not suit the needs of the test, custom equality functions can override the equality operation. For example, an equality function may report floats as equal so long as they are within some tolerance of each other. * Types that have an `Equal` method may use that method to determine equality. This allows package authors to determine the equality operation for the types that they define. * If no custom equality functions are used and no `Equal` method is defined, equality is determined by recursively comparing the primitive kinds on both values, much like `reflect.DeepEqual`. Unlike `reflect.DeepEqual`, unexported fields are not compared by default; they result in panics unless suppressed by using an `Ignore` option (see `cmpopts.IgnoreUnexported`) or explictly compared using the `AllowUnexported` option. See the [GoDoc documentation][godoc] for more information. This is not an official Google product. [godoc]: https://godoc.org/github.com/google/go-cmp/cmp [travis]: https://travis-ci.org/google/go-cmp ## Install ``` go get -u github.com/google/go-cmp/cmp ``` ## License BSD - See [LICENSE][license] file [license]: https://github.com/google/go-cmp/blob/master/LICENSE go-cmp-0.1.0/cmp/000077500000000000000000000000001314065731500134565ustar00rootroot00000000000000go-cmp-0.1.0/cmp/cmpopts/000077500000000000000000000000001314065731500151435ustar00rootroot00000000000000go-cmp-0.1.0/cmp/cmpopts/equate.go000066400000000000000000000060101314065731500167530ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. // Package cmpopts provides common options for the cmp package. package cmpopts import ( "math" "reflect" "github.com/google/go-cmp/cmp" ) func equateAlways(_, _ interface{}) bool { return true } // EquateEmpty returns a Comparer option that determines all maps and slices // with a length of zero to be equal, regardless of whether they are nil. // // EquateEmpty can be used in conjuction with SortSlices and SortMaps. func EquateEmpty() cmp.Option { return cmp.FilterValues(isEmpty, cmp.Comparer(equateAlways)) } func isEmpty(x, y interface{}) bool { vx, vy := reflect.ValueOf(x), reflect.ValueOf(y) return (x != nil && y != nil && vx.Type() == vy.Type()) && (vx.Kind() == reflect.Slice || vx.Kind() == reflect.Map) && (vx.Len() == 0 && vy.Len() == 0) } // EquateApprox returns a Comparer option that determines float32 or float64 // values to be equal if they are within a relative fraction or absolute margin. // This option is not used when either x or y is NaN or infinite. // // The fraction determines that the difference of two values must be within the // smaller fraction of the two values, while the margin determines that the two // values must be within some absolute margin. // To express only a fraction or only a margin, use 0 for the other parameter. // The fraction and margin must be non-negative. // // The mathematical expression used is equivalent to: // |x-y| ≤ max(fraction*min(|x|, |y|), margin) // // EquateApprox can be used in conjuction with EquateNaNs. func EquateApprox(fraction, margin float64) cmp.Option { if margin < 0 || fraction < 0 || math.IsNaN(margin) || math.IsNaN(fraction) { panic("margin or fraction must be a non-negative number") } a := approximator{fraction, margin} return cmp.Options{ cmp.FilterValues(areRealF64s, cmp.Comparer(a.compareF64)), cmp.FilterValues(areRealF32s, cmp.Comparer(a.compareF32)), } } type approximator struct{ frac, marg float64 } func areRealF64s(x, y float64) bool { return !math.IsNaN(x) && !math.IsNaN(y) && !math.IsInf(x, 0) && !math.IsInf(y, 0) } func areRealF32s(x, y float32) bool { return areRealF64s(float64(x), float64(y)) } func (a approximator) compareF64(x, y float64) bool { relMarg := a.frac * math.Min(math.Abs(x), math.Abs(y)) return math.Abs(x-y) <= math.Max(a.marg, relMarg) } func (a approximator) compareF32(x, y float32) bool { return a.compareF64(float64(x), float64(y)) } // EquateNaNs returns a Comparer option that determines float32 and float64 // NaN values to be equal. // // EquateNaNs can be used in conjuction with EquateApprox. func EquateNaNs() cmp.Option { return cmp.Options{ cmp.FilterValues(areNaNsF64s, cmp.Comparer(equateAlways)), cmp.FilterValues(areNaNsF32s, cmp.Comparer(equateAlways)), } } func areNaNsF64s(x, y float64) bool { return math.IsNaN(x) && math.IsNaN(y) } func areNaNsF32s(x, y float32) bool { return areNaNsF64s(float64(x), float64(y)) } go-cmp-0.1.0/cmp/cmpopts/ignore.go000066400000000000000000000102721314065731500167570ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package cmpopts import ( "fmt" "reflect" "unicode" "unicode/utf8" "github.com/google/go-cmp/cmp" ) // IgnoreFields returns an Option that ignores exported fields of the // given names on a single struct type. // The struct type is specified by passing in a value of that type. // // The name may be a dot-delimited string (e.g., "Foo.Bar") to ignore a // specific sub-field that is embedded or nested within the parent struct. // // This does not handle unexported fields; use IgnoreUnexported instead. func IgnoreFields(typ interface{}, names ...string) cmp.Option { sf := newStructFilter(typ, names...) return cmp.FilterPath(sf.filter, cmp.Ignore()) } // IgnoreTypes returns an Option that ignores all values assignable to // certain types, which are specified by passing in a value of each type. func IgnoreTypes(typs ...interface{}) cmp.Option { tf := newTypeFilter(typs...) return cmp.FilterPath(tf.filter, cmp.Ignore()) } type typeFilter []reflect.Type func newTypeFilter(typs ...interface{}) (tf typeFilter) { for _, typ := range typs { t := reflect.TypeOf(typ) if t == nil { // This occurs if someone tries to pass in sync.Locker(nil) panic("cannot determine type; consider using IgnoreInterfaces") } tf = append(tf, t) } return tf } func (tf typeFilter) filter(p cmp.Path) bool { if len(p) < 1 { return false } t := p[len(p)-1].Type() for _, ti := range tf { if t.AssignableTo(ti) { return true } } return false } // IgnoreInterfaces returns an Option that ignores all values or references of // values assignable to certain interface types. These interfaces are specified // by passing in an anonymous struct with the interface types embedded in it. // For example, to ignore sync.Locker, pass in struct{sync.Locker}{}. func IgnoreInterfaces(ifaces interface{}) cmp.Option { tf := newIfaceFilter(ifaces) return cmp.FilterPath(tf.filter, cmp.Ignore()) } type ifaceFilter []reflect.Type func newIfaceFilter(ifaces interface{}) (tf ifaceFilter) { t := reflect.TypeOf(ifaces) if ifaces == nil || t.Name() != "" || t.Kind() != reflect.Struct { panic("input must be an anonymous struct") } for i := 0; i < t.NumField(); i++ { fi := t.Field(i) switch { case !fi.Anonymous: panic("struct cannot have named fields") case fi.Type.Kind() != reflect.Interface: panic("embedded field must be an interface type") case fi.Type.NumMethod() == 0: // This matches everything; why would you ever want this? panic("cannot ignore empty interface") default: tf = append(tf, fi.Type) } } return tf } func (tf ifaceFilter) filter(p cmp.Path) bool { if len(p) < 1 { return false } t := p[len(p)-1].Type() for _, ti := range tf { if t.AssignableTo(ti) { return true } if t.Kind() != reflect.Ptr && reflect.PtrTo(t).AssignableTo(ti) { return true } } return false } // IgnoreUnexported returns an Option that only ignores the immediate unexported // fields of a struct, including anonymous fields of unexported types. // In particular, unexported fields within the struct's exported fields // of struct types, including anonymous fields, will not be ignored unless the // type of the field itself is also passed to IgnoreUnexported. func IgnoreUnexported(typs ...interface{}) cmp.Option { ux := newUnexportedFilter(typs...) return cmp.FilterPath(ux.filter, cmp.Ignore()) } type unexportedFilter struct{ m map[reflect.Type]bool } func newUnexportedFilter(typs ...interface{}) unexportedFilter { ux := unexportedFilter{m: make(map[reflect.Type]bool)} for _, typ := range typs { t := reflect.TypeOf(typ) if t == nil || t.Kind() != reflect.Struct { panic(fmt.Sprintf("invalid struct type: %T", typ)) } ux.m[t] = true } return ux } func (xf unexportedFilter) filter(p cmp.Path) bool { if len(p) < 2 { return false } sf, ok := p[len(p)-1].(cmp.StructField) if !ok { return false } return xf.m[p[len(p)-2].Type()] && !isExported(sf.Name()) } // isExported reports whether the identifier is exported. func isExported(id string) bool { r, _ := utf8.DecodeRuneInString(id) return unicode.IsUpper(r) } go-cmp-0.1.0/cmp/cmpopts/sort.go000066400000000000000000000117421314065731500164660ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package cmpopts import ( "fmt" "reflect" "github.com/google/go-cmp/cmp" "github.com/google/go-cmp/cmp/internal/function" ) // SortSlices returns a Transformer option that sorts all []V. // The less function must be of the form "func(T, T) bool" which is used to // sort any slice with element type V that is assignable to T. // // The less function must be: // • Deterministic: less(x, y) == less(x, y) // • Irreflexive: !less(x, x) // • Transitive: if !less(x, y) and !less(y, z), then !less(x, z) // // The less function does not have to be "total". That is, if !less(x, y) and // !less(y, x) for two elements x and y, their relative order is maintained. // // SortSlices can be used in conjuction with EquateEmpty. func SortSlices(less interface{}) cmp.Option { vf := reflect.ValueOf(less) if !function.IsType(vf.Type(), function.Less) || vf.IsNil() { panic(fmt.Sprintf("invalid less function: %T", less)) } ss := sliceSorter{vf.Type().In(0), vf} return cmp.FilterValues(ss.filter, cmp.Transformer("Sort", ss.sort)) } type sliceSorter struct { in reflect.Type // T fnc reflect.Value // func(T, T) bool } func (ss sliceSorter) filter(x, y interface{}) bool { vx, vy := reflect.ValueOf(x), reflect.ValueOf(y) if !(x != nil && y != nil && vx.Type() == vy.Type()) || !(vx.Kind() == reflect.Slice && vx.Type().Elem().AssignableTo(ss.in)) || (vx.Len() <= 1 && vy.Len() <= 1) { return false } // Check whether the slices are already sorted to avoid an infinite // recursion cycle applying the same transform to itself. ok1 := sliceIsSorted(x, func(i, j int) bool { return ss.less(vx, i, j) }) ok2 := sliceIsSorted(y, func(i, j int) bool { return ss.less(vy, i, j) }) return !ok1 || !ok2 } func (ss sliceSorter) sort(x interface{}) interface{} { src := reflect.ValueOf(x) dst := reflect.MakeSlice(src.Type(), src.Len(), src.Len()) for i := 0; i < src.Len(); i++ { dst.Index(i).Set(src.Index(i)) } sortSliceStable(dst.Interface(), func(i, j int) bool { return ss.less(dst, i, j) }) ss.checkSort(dst) return dst.Interface() } func (ss sliceSorter) checkSort(v reflect.Value) { start := -1 // Start of a sequence of equal elements. for i := 1; i < v.Len(); i++ { if ss.less(v, i-1, i) { // Check that first and last elements in v[start:i] are equal. if start >= 0 && (ss.less(v, start, i-1) || ss.less(v, i-1, start)) { panic(fmt.Sprintf("incomparable values detected: want equal elements: %v", v.Slice(start, i))) } start = -1 } else if start == -1 { start = i } } } func (ss sliceSorter) less(v reflect.Value, i, j int) bool { vx, vy := v.Index(i), v.Index(j) return ss.fnc.Call([]reflect.Value{vx, vy})[0].Bool() } // SortMaps returns a Transformer option that flattens map[K]V types to be a // sorted []struct{K, V}. The less function must be of the form // "func(T, T) bool" which is used to sort any map with key K that is // assignable to T. // // Flattening the map into a slice has the property that cmp.Equal is able to // use Comparers on K or the K.Equal method if it exists. // // The less function must be: // • Deterministic: less(x, y) == less(x, y) // • Irreflexive: !less(x, x) // • Transitive: if !less(x, y) and !less(y, z), then !less(x, z) // • Total: if x != y, then either less(x, y) or less(y, x) // // SortMaps can be used in conjuction with EquateEmpty. func SortMaps(less interface{}) cmp.Option { vf := reflect.ValueOf(less) if !function.IsType(vf.Type(), function.Less) || vf.IsNil() { panic(fmt.Sprintf("invalid less function: %T", less)) } ms := mapSorter{vf.Type().In(0), vf} return cmp.FilterValues(ms.filter, cmp.Transformer("Sort", ms.sort)) } type mapSorter struct { in reflect.Type // T fnc reflect.Value // func(T, T) bool } func (ms mapSorter) filter(x, y interface{}) bool { vx, vy := reflect.ValueOf(x), reflect.ValueOf(y) return (x != nil && y != nil && vx.Type() == vy.Type()) && (vx.Kind() == reflect.Map && vx.Type().Key().AssignableTo(ms.in)) && (vx.Len() != 0 || vy.Len() != 0) } func (ms mapSorter) sort(x interface{}) interface{} { src := reflect.ValueOf(x) outType := mapEntryType(src.Type()) dst := reflect.MakeSlice(reflect.SliceOf(outType), src.Len(), src.Len()) for i, k := range src.MapKeys() { v := reflect.New(outType).Elem() v.Field(0).Set(k) v.Field(1).Set(src.MapIndex(k)) dst.Index(i).Set(v) } sortSlice(dst.Interface(), func(i, j int) bool { return ms.less(dst, i, j) }) ms.checkSort(dst) return dst.Interface() } func (ms mapSorter) checkSort(v reflect.Value) { for i := 1; i < v.Len(); i++ { if !ms.less(v, i-1, i) { panic(fmt.Sprintf("partial order detected: want %v < %v", v.Index(i-1), v.Index(i))) } } } func (ms mapSorter) less(v reflect.Value, i, j int) bool { vx, vy := v.Index(i).Field(0), v.Index(j).Field(0) if !hasReflectStructOf { vx, vy = vx.Elem(), vy.Elem() } return ms.fnc.Call([]reflect.Value{vx, vy})[0].Bool() } go-cmp-0.1.0/cmp/cmpopts/sort_go17.go000066400000000000000000000022661314065731500173240ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. // +build !go1.8 package cmpopts import ( "reflect" "sort" ) const hasReflectStructOf = false func mapEntryType(reflect.Type) reflect.Type { return reflect.TypeOf(struct{ K, V interface{} }{}) } func sliceIsSorted(slice interface{}, less func(i, j int) bool) bool { return sort.IsSorted(reflectSliceSorter{reflect.ValueOf(slice), less}) } func sortSlice(slice interface{}, less func(i, j int) bool) { sort.Sort(reflectSliceSorter{reflect.ValueOf(slice), less}) } func sortSliceStable(slice interface{}, less func(i, j int) bool) { sort.Stable(reflectSliceSorter{reflect.ValueOf(slice), less}) } type reflectSliceSorter struct { slice reflect.Value less func(i, j int) bool } func (ss reflectSliceSorter) Len() int { return ss.slice.Len() } func (ss reflectSliceSorter) Less(i, j int) bool { return ss.less(i, j) } func (ss reflectSliceSorter) Swap(i, j int) { vi := ss.slice.Index(i).Interface() vj := ss.slice.Index(j).Interface() ss.slice.Index(i).Set(reflect.ValueOf(vj)) ss.slice.Index(j).Set(reflect.ValueOf(vi)) } go-cmp-0.1.0/cmp/cmpopts/sort_go18.go000066400000000000000000000013321314065731500173160ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. // +build go1.8 package cmpopts import ( "reflect" "sort" ) const hasReflectStructOf = true func mapEntryType(t reflect.Type) reflect.Type { return reflect.StructOf([]reflect.StructField{ {Name: "K", Type: t.Key()}, {Name: "V", Type: t.Elem()}, }) } func sliceIsSorted(slice interface{}, less func(i, j int) bool) bool { return sort.SliceIsSorted(slice, less) } func sortSlice(slice interface{}, less func(i, j int) bool) { sort.Slice(slice, less) } func sortSliceStable(slice interface{}, less func(i, j int) bool) { sort.SliceStable(slice, less) } go-cmp-0.1.0/cmp/cmpopts/struct_filter.go000066400000000000000000000120131314065731500203600ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package cmpopts import ( "fmt" "reflect" "strings" "github.com/google/go-cmp/cmp" ) // filterField returns a new Option where opt is only evaluated on paths that // include a specific exported field on a single struct type. // The struct type is specified by passing in a value of that type. // // The name may be a dot-delimited string (e.g., "Foo.Bar") to select a // specific sub-field that is embedded or nested within the parent struct. func filterField(typ interface{}, name string, opt cmp.Option) cmp.Option { // TODO: This is currently unexported over concerns of how helper filters // can be composed together easily. // TODO: Add tests for FilterField. sf := newStructFilter(typ, name) return cmp.FilterPath(sf.filter, opt) } type structFilter struct { t reflect.Type // The root struct type to match on ft fieldTree // Tree of fields to match on } func newStructFilter(typ interface{}, names ...string) structFilter { // TODO: Perhaps allow * as a special identifier to allow ignoring any // number of path steps until the next field match? // This could be useful when a concrete struct gets transformed into // an anonymous struct where it is not possible to specify that by type, // but the transformer happens to provide guarantees about the names of // the transformed fields. t := reflect.TypeOf(typ) if t == nil || t.Kind() != reflect.Struct { panic(fmt.Sprintf("%T must be a struct", typ)) } var ft fieldTree for _, name := range names { cname, err := canonicalName(t, name) if err != nil { panic(fmt.Sprintf("%s: %v", strings.Join(cname, "."), err)) } ft.insert(cname) } return structFilter{t, ft} } func (sf structFilter) filter(p cmp.Path) bool { for i, ps := range p { if ps.Type().AssignableTo(sf.t) && sf.ft.matchPrefix(p[i+1:]) { return true } } return false } // fieldTree represents a set of dot-separated identifiers. // // For example, inserting the following selectors: // Foo // Foo.Bar.Baz // Foo.Buzz // Nuka.Cola.Quantum // // Results in a tree of the form: // {sub: { // "Foo": {ok: true, sub: { // "Bar": {sub: { // "Baz": {ok: true}, // }}, // "Buzz": {ok: true}, // }}, // "Nuka": {sub: { // "Cola": {sub: { // "Quantum": {ok: true}, // }}, // }}, // }} type fieldTree struct { ok bool // Whether this is a specified node sub map[string]fieldTree // The sub-tree of fields under this node } // insert inserts a sequence of field accesses into the tree. func (ft *fieldTree) insert(cname []string) { if ft.sub == nil { ft.sub = make(map[string]fieldTree) } if len(cname) == 0 { ft.ok = true return } sub := ft.sub[cname[0]] sub.insert(cname[1:]) ft.sub[cname[0]] = sub } // matchPrefix reports whether any selector in the fieldTree matches // the start of path p. func (ft fieldTree) matchPrefix(p cmp.Path) bool { for _, ps := range p { switch ps := ps.(type) { case cmp.StructField: ft = ft.sub[ps.Name()] if ft.ok { return true } if len(ft.sub) == 0 { return false } case cmp.Indirect: default: return false } } return false } // canonicalName returns a list of identifiers where any struct field access // through an embedded field is expanded to include the names of the embedded // types themselves. // // For example, suppose field "Foo" is not directly in the parent struct, // but actually from an embedded struct of type "Bar". Then, the canonical name // of "Foo" is actually "Bar.Foo". // // Suppose field "Foo" is not directly in the parent struct, but actually // a field in two different embedded structs of types "Bar" and "Baz". // Then the selector "Foo" causes a panic since it is ambiguous which one it // refers to. The user must specify either "Bar.Foo" or "Baz.Foo". func canonicalName(t reflect.Type, sel string) ([]string, error) { var name string sel = strings.TrimPrefix(sel, ".") if sel == "" { return nil, fmt.Errorf("name must not be empty") } if i := strings.IndexByte(sel, '.'); i < 0 { name, sel = sel, "" } else { name, sel = sel[:i], sel[i:] } // Type must be a struct or pointer to struct. if t.Kind() == reflect.Ptr { t = t.Elem() } if t.Kind() != reflect.Struct { return nil, fmt.Errorf("%v must be a struct", t) } // Find the canonical name for this current field name. // If the field exists in an embedded struct, then it will be expanded. if !isExported(name) { // Disallow unexported fields: // * To discourage people from actually touching unexported fields // * FieldByName is buggy (https://golang.org/issue/4876) return []string{name}, fmt.Errorf("name must be exported") } sf, ok := t.FieldByName(name) if !ok { return []string{name}, fmt.Errorf("does not exist") } var ss []string for i := range sf.Index { ss = append(ss, t.FieldByIndex(sf.Index[:i+1]).Name) } if sel == "" { return ss, nil } ssPost, err := canonicalName(sf.Type, sel) return append(ss, ssPost...), err } go-cmp-0.1.0/cmp/cmpopts/util_test.go000066400000000000000000001015061314065731500175110ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package cmpopts import ( "bytes" "fmt" "io" "math" "reflect" "strings" "sync" "testing" "time" "github.com/google/go-cmp/cmp" ) type ( MyInt int MyFloat float32 MyTime struct{ time.Time } MyStruct struct { A, B []int C, D map[time.Time]string } Foo1 struct{ Alpha, Bravo, Charlie int } Foo2 struct{ *Foo1 } Foo3 struct{ *Foo2 } Bar1 struct{ Foo3 } Bar2 struct { Bar1 *Foo3 Bravo float32 } Bar3 struct { Bar1 Bravo *Bar2 Delta struct{ Echo Foo1 } *Foo3 Alpha string } privateStruct struct{ Public, private int } PublicStruct struct{ Public, private int } ParentStruct struct { *privateStruct *PublicStruct Public int private int } Everything struct { MyInt MyFloat MyTime MyStruct Bar3 ParentStruct } EmptyInterface interface{} ) func TestOptions(t *testing.T) { createBar3X := func() *Bar3 { return &Bar3{ Bar1: Bar1{Foo3{&Foo2{&Foo1{Bravo: 2}}}}, Bravo: &Bar2{ Bar1: Bar1{Foo3{&Foo2{&Foo1{Charlie: 7}}}}, Foo3: &Foo3{&Foo2{&Foo1{Bravo: 5}}}, Bravo: 4, }, Delta: struct{ Echo Foo1 }{Foo1{Charlie: 3}}, Foo3: &Foo3{&Foo2{&Foo1{Alpha: 1}}}, Alpha: "alpha", } } createBar3Y := func() *Bar3 { return &Bar3{ Bar1: Bar1{Foo3{&Foo2{&Foo1{Bravo: 3}}}}, Bravo: &Bar2{ Bar1: Bar1{Foo3{&Foo2{&Foo1{Charlie: 8}}}}, Foo3: &Foo3{&Foo2{&Foo1{Bravo: 6}}}, Bravo: 5, }, Delta: struct{ Echo Foo1 }{Foo1{Charlie: 4}}, Foo3: &Foo3{&Foo2{&Foo1{Alpha: 2}}}, Alpha: "ALPHA", } } tests := []struct { label string // Test name x, y interface{} // Input values to compare opts []cmp.Option // Input options wantEqual bool // Whether the inputs are equal wantPanic bool // Whether Equal should panic reason string // The reason for the expected outcome }{{ label: "EquateEmpty", x: []int{}, y: []int(nil), wantEqual: false, reason: "not equal because empty non-nil and nil slice differ", }, { label: "EquateEmpty", x: []int{}, y: []int(nil), opts: []cmp.Option{EquateEmpty()}, wantEqual: true, reason: "equal because EquateEmpty equates empty slices", }, { label: "SortSlices", x: []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, y: []int{1, 0, 5, 2, 8, 9, 4, 3, 6, 7}, wantEqual: false, reason: "not equal because element order differs", }, { label: "SortSlices", x: []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, y: []int{1, 0, 5, 2, 8, 9, 4, 3, 6, 7}, opts: []cmp.Option{SortSlices(func(x, y int) bool { return x < y })}, wantEqual: true, reason: "equal because SortSlices sorts the slices", }, { label: "SortSlices", x: []MyInt{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, y: []MyInt{1, 0, 5, 2, 8, 9, 4, 3, 6, 7}, opts: []cmp.Option{SortSlices(func(x, y int) bool { return x < y })}, wantEqual: false, reason: "not equal because MyInt is not the same type as int", }, { label: "SortSlices", x: []float64{0, 1, 1, 2, 2, 2}, y: []float64{2, 0, 2, 1, 2, 1}, opts: []cmp.Option{SortSlices(func(x, y float64) bool { return x < y })}, wantEqual: true, reason: "equal even when sorted with duplicate elements", }, { label: "SortSlices", x: []float64{0, 1, 1, 2, 2, 2, math.NaN(), 3, 3, 3, 3, 4, 4, 4, 4}, y: []float64{2, 0, 4, 4, 3, math.NaN(), 4, 1, 3, 2, 3, 3, 4, 1, 2}, opts: []cmp.Option{SortSlices(func(x, y float64) bool { return x < y })}, wantPanic: true, reason: "panics because SortSlices used with non-transitive less function", }, { label: "SortSlices", x: []float64{0, 1, 1, 2, 2, 2, math.NaN(), 3, 3, 3, 3, 4, 4, 4, 4}, y: []float64{2, 0, 4, 4, 3, math.NaN(), 4, 1, 3, 2, 3, 3, 4, 1, 2}, opts: []cmp.Option{SortSlices(func(x, y float64) bool { return (!math.IsNaN(x) && math.IsNaN(y)) || x < y })}, wantEqual: false, reason: "no panics because SortSlices used with valid less function; not equal because NaN != NaN", }, { label: "SortSlices+EquateNaNs", x: []float64{0, 1, 1, 2, 2, 2, math.NaN(), 3, 3, 3, math.NaN(), 3, 4, 4, 4, 4}, y: []float64{2, 0, 4, 4, 3, math.NaN(), 4, 1, 3, 2, 3, 3, 4, 1, math.NaN(), 2}, opts: []cmp.Option{ EquateNaNs(), SortSlices(func(x, y float64) bool { return (!math.IsNaN(x) && math.IsNaN(y)) || x < y }), }, wantEqual: true, reason: "no panics because SortSlices used with valid less function; equal because EquateNaNs is used", }, { label: "SortMaps", x: map[time.Time]string{ time.Date(2009, time.November, 10, 23, 0, 0, 0, time.UTC): "0th birthday", time.Date(2010, time.November, 10, 23, 0, 0, 0, time.UTC): "1st birthday", time.Date(2011, time.November, 10, 23, 0, 0, 0, time.UTC): "2nd birthday", }, y: map[time.Time]string{ time.Date(2009, time.November, 10, 23, 0, 0, 0, time.UTC).In(time.Local): "0th birthday", time.Date(2010, time.November, 10, 23, 0, 0, 0, time.UTC).In(time.Local): "1st birthday", time.Date(2011, time.November, 10, 23, 0, 0, 0, time.UTC).In(time.Local): "2nd birthday", }, wantEqual: false, reason: "not equal because timezones differ", }, { label: "SortMaps", x: map[time.Time]string{ time.Date(2009, time.November, 10, 23, 0, 0, 0, time.UTC): "0th birthday", time.Date(2010, time.November, 10, 23, 0, 0, 0, time.UTC): "1st birthday", time.Date(2011, time.November, 10, 23, 0, 0, 0, time.UTC): "2nd birthday", }, y: map[time.Time]string{ time.Date(2009, time.November, 10, 23, 0, 0, 0, time.UTC).In(time.Local): "0th birthday", time.Date(2010, time.November, 10, 23, 0, 0, 0, time.UTC).In(time.Local): "1st birthday", time.Date(2011, time.November, 10, 23, 0, 0, 0, time.UTC).In(time.Local): "2nd birthday", }, opts: []cmp.Option{SortMaps(func(x, y time.Time) bool { return x.Before(y) })}, wantEqual: true, reason: "equal because SortMaps flattens to a slice where Time.Equal can be used", }, { label: "SortMaps", x: map[MyTime]string{ {time.Date(2009, time.November, 10, 23, 0, 0, 0, time.UTC)}: "0th birthday", {time.Date(2010, time.November, 10, 23, 0, 0, 0, time.UTC)}: "1st birthday", {time.Date(2011, time.November, 10, 23, 0, 0, 0, time.UTC)}: "2nd birthday", }, y: map[MyTime]string{ {time.Date(2009, time.November, 10, 23, 0, 0, 0, time.UTC).In(time.Local)}: "0th birthday", {time.Date(2010, time.November, 10, 23, 0, 0, 0, time.UTC).In(time.Local)}: "1st birthday", {time.Date(2011, time.November, 10, 23, 0, 0, 0, time.UTC).In(time.Local)}: "2nd birthday", }, opts: []cmp.Option{SortMaps(func(x, y time.Time) bool { return x.Before(y) })}, wantEqual: false, reason: "not equal because MyTime is not assignable to time.Time", }, { label: "SortMaps", x: map[int]string{-3: "", -2: "", -1: "", 0: "", 1: "", 2: "", 3: ""}, // => {0, 1, 2, 3, -1, -2, -3}, y: map[int]string{300: "", 200: "", 100: "", 0: "", 1: "", 2: "", 3: ""}, // => {0, 1, 2, 3, 100, 200, 300}, opts: []cmp.Option{SortMaps(func(a, b int) bool { if -10 < a && a <= 0 { a *= -100 } if -10 < b && b <= 0 { b *= -100 } return a < b })}, wantEqual: false, reason: "not equal because values differ even though SortMap provides valid ordering", }, { label: "SortMaps", x: map[int]string{-3: "", -2: "", -1: "", 0: "", 1: "", 2: "", 3: ""}, // => {0, 1, 2, 3, -1, -2, -3}, y: map[int]string{300: "", 200: "", 100: "", 0: "", 1: "", 2: "", 3: ""}, // => {0, 1, 2, 3, 100, 200, 300}, opts: []cmp.Option{ SortMaps(func(x, y int) bool { if -10 < x && x <= 0 { x *= -100 } if -10 < y && y <= 0 { y *= -100 } return x < y }), cmp.Comparer(func(x, y int) bool { if -10 < x && x <= 0 { x *= -100 } if -10 < y && y <= 0 { y *= -100 } return x == y }), }, wantEqual: true, reason: "equal because Comparer used to equate differences", }, { label: "SortMaps", x: map[int]string{-3: "", -2: "", -1: "", 0: "", 1: "", 2: "", 3: ""}, y: map[int]string{}, opts: []cmp.Option{SortMaps(func(x, y int) bool { return x < y && x >= 0 && y >= 0 })}, wantPanic: true, reason: "panics because SortMaps used with non-transitive less function", }, { label: "SortMaps", x: map[int]string{-3: "", -2: "", -1: "", 0: "", 1: "", 2: "", 3: ""}, y: map[int]string{}, opts: []cmp.Option{SortMaps(func(x, y int) bool { return math.Abs(float64(x)) < math.Abs(float64(y)) })}, wantPanic: true, reason: "panics because SortMaps used with partial less function", }, { label: "EquateEmpty+SortSlices+SortMaps", x: MyStruct{ A: []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, C: map[time.Time]string{ time.Date(2009, time.November, 10, 23, 0, 0, 0, time.UTC): "0th birthday", time.Date(2010, time.November, 10, 23, 0, 0, 0, time.UTC): "1st birthday", }, D: map[time.Time]string{}, }, y: MyStruct{ A: []int{1, 0, 5, 2, 8, 9, 4, 3, 6, 7}, B: []int{}, C: map[time.Time]string{ time.Date(2009, time.November, 10, 23, 0, 0, 0, time.UTC).In(time.Local): "0th birthday", time.Date(2010, time.November, 10, 23, 0, 0, 0, time.UTC).In(time.Local): "1st birthday", }, }, opts: []cmp.Option{ EquateEmpty(), SortSlices(func(x, y int) bool { return x < y }), SortMaps(func(x, y time.Time) bool { return x.Before(y) }), }, wantEqual: true, reason: "no panics because EquateEmpty should compose with the sort options", }, { label: "EquateApprox", x: 3.09, y: 3.10, wantEqual: false, reason: "not equal because floats do not exactly matches", }, { label: "EquateApprox", x: 3.09, y: 3.10, opts: []cmp.Option{EquateApprox(0, 0)}, wantEqual: false, reason: "not equal because EquateApprox(0 ,0) is equivalent to using ==", }, { label: "EquateApprox", x: 3.09, y: 3.10, opts: []cmp.Option{EquateApprox(0.003, 0.009)}, wantEqual: false, reason: "not equal because EquateApprox is too strict", }, { label: "EquateApprox", x: 3.09, y: 3.10, opts: []cmp.Option{EquateApprox(0, 0.011)}, wantEqual: true, reason: "equal because margin is loose enough to match", }, { label: "EquateApprox", x: 3.09, y: 3.10, opts: []cmp.Option{EquateApprox(0.004, 0)}, wantEqual: true, reason: "equal because fraction is loose enough to match", }, { label: "EquateApprox", x: 3.09, y: 3.10, opts: []cmp.Option{EquateApprox(0.004, 0.011)}, wantEqual: true, reason: "equal because both the margin and fraction are loose enough to match", }, { label: "EquateApprox", x: float32(3.09), y: float64(3.10), opts: []cmp.Option{EquateApprox(0.004, 0)}, wantEqual: false, reason: "not equal because the types differ", }, { label: "EquateApprox", x: float32(3.09), y: float32(3.10), opts: []cmp.Option{EquateApprox(0.004, 0)}, wantEqual: true, reason: "equal because EquateApprox also applies on float32s", }, { label: "EquateApprox", x: []float64{math.Inf(+1), math.Inf(-1)}, y: []float64{math.Inf(+1), math.Inf(-1)}, opts: []cmp.Option{EquateApprox(0, 1)}, wantEqual: true, reason: "equal because we fall back on == which matches Inf (EquateApprox does not apply on Inf) ", }, { label: "EquateApprox", x: []float64{math.Inf(+1), -1e100}, y: []float64{+1e100, math.Inf(-1)}, opts: []cmp.Option{EquateApprox(0, 1)}, wantEqual: false, reason: "not equal because we fall back on == where Inf != 1e100 (EquateApprox does not apply on Inf)", }, { label: "EquateApprox", x: float64(+1e100), y: float64(-1e100), opts: []cmp.Option{EquateApprox(math.Inf(+1), 0)}, wantEqual: true, reason: "equal because infinite fraction matches everything", }, { label: "EquateApprox", x: float64(+1e100), y: float64(-1e100), opts: []cmp.Option{EquateApprox(0, math.Inf(+1))}, wantEqual: true, reason: "equal because infinite margin matches everything", }, { label: "EquateApprox", x: math.Pi, y: math.Pi, opts: []cmp.Option{EquateApprox(0, 0)}, wantEqual: true, reason: "equal because EquateApprox(0, 0) is equivalent to ==", }, { label: "EquateApprox", x: math.Pi, y: math.Nextafter(math.Pi, math.Inf(+1)), opts: []cmp.Option{EquateApprox(0, 0)}, wantEqual: false, reason: "not equal because EquateApprox(0, 0) is equivalent to ==", }, { label: "EquateNaNs", x: []float64{1.0, math.NaN(), math.E, -0.0, +0.0, math.Inf(+1), math.Inf(-1)}, y: []float64{1.0, math.NaN(), math.E, -0.0, +0.0, math.Inf(+1), math.Inf(-1)}, wantEqual: false, reason: "not equal because NaN != NaN", }, { label: "EquateNaNs", x: []float64{1.0, math.NaN(), math.E, -0.0, +0.0, math.Inf(+1), math.Inf(-1)}, y: []float64{1.0, math.NaN(), math.E, -0.0, +0.0, math.Inf(+1), math.Inf(-1)}, opts: []cmp.Option{EquateNaNs()}, wantEqual: true, reason: "equal because EquateNaNs allows NaN == NaN", }, { label: "EquateNaNs", x: []float32{1.0, float32(math.NaN()), math.E, -0.0, +0.0}, y: []float32{1.0, float32(math.NaN()), math.E, -0.0, +0.0}, opts: []cmp.Option{EquateNaNs()}, wantEqual: true, reason: "equal because EquateNaNs operates on float32", }, { label: "EquateApprox+EquateNaNs", x: []float64{1.0, math.NaN(), math.E, -0.0, +0.0, math.Inf(+1), math.Inf(-1), 1.01, 5001}, y: []float64{1.0, math.NaN(), math.E, -0.0, +0.0, math.Inf(+1), math.Inf(-1), 1.02, 5002}, opts: []cmp.Option{ EquateNaNs(), EquateApprox(0.01, 0), }, wantEqual: true, reason: "equal because EquateNaNs and EquateApprox compose together", }, { label: "EquateApprox+EquateNaNs", x: []MyFloat{1.0, MyFloat(math.NaN()), MyFloat(math.E), -0.0, +0.0, MyFloat(math.Inf(+1)), MyFloat(math.Inf(-1)), 1.01, 5001}, y: []MyFloat{1.0, MyFloat(math.NaN()), MyFloat(math.E), -0.0, +0.0, MyFloat(math.Inf(+1)), MyFloat(math.Inf(-1)), 1.02, 5002}, opts: []cmp.Option{ EquateNaNs(), EquateApprox(0.01, 0), }, wantEqual: false, reason: "not equal because EquateApprox and EquateNaNs do not apply on a named type", }, { label: "EquateApprox+EquateNaNs+Transform", x: []MyFloat{1.0, MyFloat(math.NaN()), MyFloat(math.E), -0.0, +0.0, MyFloat(math.Inf(+1)), MyFloat(math.Inf(-1)), 1.01, 5001}, y: []MyFloat{1.0, MyFloat(math.NaN()), MyFloat(math.E), -0.0, +0.0, MyFloat(math.Inf(+1)), MyFloat(math.Inf(-1)), 1.02, 5002}, opts: []cmp.Option{ cmp.Transformer("", func(x MyFloat) float64 { return float64(x) }), EquateNaNs(), EquateApprox(0.01, 0), }, wantEqual: true, reason: "equal because named type is transformed to float64", }, { label: "IgnoreFields", x: Bar1{Foo3{&Foo2{&Foo1{Alpha: 5}}}}, y: Bar1{Foo3{&Foo2{&Foo1{Alpha: 6}}}}, wantEqual: false, reason: "not equal because values do not match in deeply embedded field", }, { label: "IgnoreFields", x: Bar1{Foo3{&Foo2{&Foo1{Alpha: 5}}}}, y: Bar1{Foo3{&Foo2{&Foo1{Alpha: 6}}}}, opts: []cmp.Option{IgnoreFields(Bar1{}, "Alpha")}, wantEqual: true, reason: "equal because IgnoreField ignores deeply embedded field: Alpha", }, { label: "IgnoreFields", x: Bar1{Foo3{&Foo2{&Foo1{Alpha: 5}}}}, y: Bar1{Foo3{&Foo2{&Foo1{Alpha: 6}}}}, opts: []cmp.Option{IgnoreFields(Bar1{}, "Foo1.Alpha")}, wantEqual: true, reason: "equal because IgnoreField ignores deeply embedded field: Foo1.Alpha", }, { label: "IgnoreFields", x: Bar1{Foo3{&Foo2{&Foo1{Alpha: 5}}}}, y: Bar1{Foo3{&Foo2{&Foo1{Alpha: 6}}}}, opts: []cmp.Option{IgnoreFields(Bar1{}, "Foo2.Alpha")}, wantEqual: true, reason: "equal because IgnoreField ignores deeply embedded field: Foo2.Alpha", }, { label: "IgnoreFields", x: Bar1{Foo3{&Foo2{&Foo1{Alpha: 5}}}}, y: Bar1{Foo3{&Foo2{&Foo1{Alpha: 6}}}}, opts: []cmp.Option{IgnoreFields(Bar1{}, "Foo3.Alpha")}, wantEqual: true, reason: "equal because IgnoreField ignores deeply embedded field: Foo3.Alpha", }, { label: "IgnoreFields", x: Bar1{Foo3{&Foo2{&Foo1{Alpha: 5}}}}, y: Bar1{Foo3{&Foo2{&Foo1{Alpha: 6}}}}, opts: []cmp.Option{IgnoreFields(Bar1{}, "Foo3.Foo2.Alpha")}, wantEqual: true, reason: "equal because IgnoreField ignores deeply embedded field: Foo3.Foo2.Alpha", }, { label: "IgnoreFields", x: createBar3X(), y: createBar3Y(), wantEqual: false, reason: "not equal because many deeply nested or embedded fields differ", }, { label: "IgnoreFields", x: createBar3X(), y: createBar3Y(), opts: []cmp.Option{IgnoreFields(Bar3{}, "Bar1", "Bravo", "Delta", "Foo3", "Alpha")}, wantEqual: true, reason: "equal because IgnoreFields ignores fields at the highest levels", }, { label: "IgnoreFields", x: createBar3X(), y: createBar3Y(), opts: []cmp.Option{ IgnoreFields(Bar3{}, "Bar1.Foo3.Bravo", "Bravo.Bar1.Foo3.Foo2.Foo1.Charlie", "Bravo.Foo3.Foo2.Foo1.Bravo", "Bravo.Bravo", "Delta.Echo.Charlie", "Foo3.Foo2.Foo1.Alpha", "Alpha", ), }, wantEqual: true, reason: "equal because IgnoreFields ignores fields using fully-qualified field", }, { label: "IgnoreFields", x: createBar3X(), y: createBar3Y(), opts: []cmp.Option{ IgnoreFields(Bar3{}, "Bar1.Foo3.Bravo", "Bravo.Foo3.Foo2.Foo1.Bravo", "Bravo.Bravo", "Delta.Echo.Charlie", "Foo3.Foo2.Foo1.Alpha", "Alpha", ), }, wantEqual: false, reason: "not equal because one fully-qualified field is not ignored: Bravo.Bar1.Foo3.Foo2.Foo1.Charlie", }, { label: "IgnoreFields", x: createBar3X(), y: createBar3Y(), opts: []cmp.Option{IgnoreFields(Bar3{}, "Bar1", "Bravo", "Delta", "Alpha")}, wantEqual: false, reason: "not equal because highest-level field is not ignored: Foo3", }, { label: "IgnoreTypes", x: []interface{}{5, "same"}, y: []interface{}{6, "same"}, wantEqual: false, reason: "not equal because 5 != 6", }, { label: "IgnoreTypes", x: []interface{}{5, "same"}, y: []interface{}{6, "same"}, opts: []cmp.Option{IgnoreTypes(0)}, wantEqual: true, reason: "equal because ints are ignored", }, { label: "IgnoreTypes+IgnoreInterfaces", x: []interface{}{5, "same", new(bytes.Buffer)}, y: []interface{}{6, "same", new(bytes.Buffer)}, opts: []cmp.Option{IgnoreTypes(0)}, wantPanic: true, reason: "panics because bytes.Buffer has unexported fields", }, { label: "IgnoreTypes+IgnoreInterfaces", x: []interface{}{5, "same", new(bytes.Buffer)}, y: []interface{}{6, "diff", new(bytes.Buffer)}, opts: []cmp.Option{ IgnoreTypes(0, ""), IgnoreInterfaces(struct{ io.Reader }{}), }, wantEqual: true, reason: "equal because bytes.Buffer is ignored by match on interface type", }, { label: "IgnoreTypes+IgnoreInterfaces", x: []interface{}{5, "same", new(bytes.Buffer)}, y: []interface{}{6, "same", new(bytes.Buffer)}, opts: []cmp.Option{ IgnoreTypes(0, ""), IgnoreInterfaces(struct { io.Reader io.Writer fmt.Stringer }{}), }, wantEqual: true, reason: "equal because bytes.Buffer is ignored by match on multiple interface types", }, { label: "IgnoreInterfaces", x: struct{ mu sync.Mutex }{}, y: struct{ mu sync.Mutex }{}, wantPanic: true, reason: "panics because sync.Mutex has unexported fields", }, { label: "IgnoreInterfaces", x: struct{ mu sync.Mutex }{}, y: struct{ mu sync.Mutex }{}, opts: []cmp.Option{IgnoreInterfaces(struct{ sync.Locker }{})}, wantEqual: true, reason: "equal because IgnoreInterfaces applies on values (with pointer receiver)", }, { label: "IgnoreInterfaces", x: struct{ mu *sync.Mutex }{}, y: struct{ mu *sync.Mutex }{}, opts: []cmp.Option{IgnoreInterfaces(struct{ sync.Locker }{})}, wantEqual: true, reason: "equal because IgnoreInterfaces applies on pointers", }, { label: "IgnoreUnexported", x: ParentStruct{Public: 1, private: 2}, y: ParentStruct{Public: 1, private: -2}, opts: []cmp.Option{cmp.AllowUnexported(ParentStruct{})}, wantEqual: false, reason: "not equal because ParentStruct.private differs with AllowUnexported", }, { label: "IgnoreUnexported", x: ParentStruct{Public: 1, private: 2}, y: ParentStruct{Public: 1, private: -2}, opts: []cmp.Option{IgnoreUnexported(ParentStruct{})}, wantEqual: true, reason: "equal because IgnoreUnexported ignored ParentStruct.private", }, { label: "IgnoreUnexported", x: ParentStruct{Public: 1, private: 2, PublicStruct: &PublicStruct{Public: 3, private: 4}}, y: ParentStruct{Public: 1, private: -2, PublicStruct: &PublicStruct{Public: 3, private: 4}}, opts: []cmp.Option{ cmp.AllowUnexported(PublicStruct{}), IgnoreUnexported(ParentStruct{}), }, wantEqual: true, reason: "equal because ParentStruct.private is ignored", }, { label: "IgnoreUnexported", x: ParentStruct{Public: 1, private: 2, PublicStruct: &PublicStruct{Public: 3, private: 4}}, y: ParentStruct{Public: 1, private: -2, PublicStruct: &PublicStruct{Public: 3, private: -4}}, opts: []cmp.Option{ cmp.AllowUnexported(PublicStruct{}), IgnoreUnexported(ParentStruct{}), }, wantEqual: false, reason: "not equal because ParentStruct.PublicStruct.private differs and not ignored by IgnoreUnexported(ParentStruct{})", }, { label: "IgnoreUnexported", x: ParentStruct{Public: 1, private: 2, PublicStruct: &PublicStruct{Public: 3, private: 4}}, y: ParentStruct{Public: 1, private: -2, PublicStruct: &PublicStruct{Public: 3, private: -4}}, opts: []cmp.Option{ IgnoreUnexported(ParentStruct{}, PublicStruct{}), }, wantEqual: true, reason: "equal because both ParentStruct.PublicStruct and ParentStruct.PublicStruct.private are ignored", }, { label: "IgnoreUnexported", x: ParentStruct{Public: 1, private: 2, privateStruct: &privateStruct{Public: 3, private: 4}}, y: ParentStruct{Public: 1, private: 2, privateStruct: &privateStruct{Public: -3, private: -4}}, opts: []cmp.Option{ cmp.AllowUnexported(privateStruct{}, PublicStruct{}, ParentStruct{}), }, wantEqual: false, reason: "not equal since ParentStruct.privateStruct differs", }, { label: "IgnoreUnexported", x: ParentStruct{Public: 1, private: 2, privateStruct: &privateStruct{Public: 3, private: 4}}, y: ParentStruct{Public: 1, private: 2, privateStruct: &privateStruct{Public: -3, private: -4}}, opts: []cmp.Option{ cmp.AllowUnexported(privateStruct{}, PublicStruct{}), IgnoreUnexported(ParentStruct{}), }, wantEqual: true, reason: "equal because ParentStruct.privateStruct ignored by IgnoreUnexported(ParentStruct{})", }, { label: "IgnoreUnexported", x: ParentStruct{Public: 1, private: 2, privateStruct: &privateStruct{Public: 3, private: 4}}, y: ParentStruct{Public: 1, private: 2, privateStruct: &privateStruct{Public: 3, private: -4}}, opts: []cmp.Option{ cmp.AllowUnexported(PublicStruct{}, ParentStruct{}), IgnoreUnexported(privateStruct{}), }, wantEqual: true, reason: "equal because privateStruct.private ignored by IgnoreUnexported(privateStruct{})", }, { label: "IgnoreUnexported", x: ParentStruct{Public: 1, private: 2, privateStruct: &privateStruct{Public: 3, private: 4}}, y: ParentStruct{Public: 1, private: 2, privateStruct: &privateStruct{Public: -3, private: -4}}, opts: []cmp.Option{ cmp.AllowUnexported(PublicStruct{}, ParentStruct{}), IgnoreUnexported(privateStruct{}), }, wantEqual: false, reason: "not equal because privateStruct.Public differs and not ignored by IgnoreUnexported(privateStruct{})", }, { label: "IgnoreFields+IgnoreTypes+IgnoreUnexported", x: &Everything{ MyInt: 5, MyFloat: 3.3, MyTime: MyTime{time.Now()}, Bar3: *createBar3X(), ParentStruct: ParentStruct{ Public: 1, private: 2, PublicStruct: &PublicStruct{Public: 3, private: 4}, }, }, y: &Everything{ MyInt: -5, MyFloat: 3.3, MyTime: MyTime{time.Now()}, Bar3: *createBar3Y(), ParentStruct: ParentStruct{ Public: 1, private: -2, PublicStruct: &PublicStruct{Public: -3, private: -4}, }, }, opts: []cmp.Option{ IgnoreFields(Everything{}, "MyTime", "Bar3.Foo3"), IgnoreFields(Bar3{}, "Bar1", "Bravo", "Delta", "Alpha"), IgnoreTypes(MyInt(0), PublicStruct{}), IgnoreUnexported(ParentStruct{}), }, wantEqual: true, reason: "equal because all Ignore options can be composed together", }} for _, tt := range tests { tRun(t, tt.label, func(t *testing.T) { var gotEqual bool var gotPanic string func() { defer func() { if ex := recover(); ex != nil { gotPanic = fmt.Sprint(ex) } }() gotEqual = cmp.Equal(tt.x, tt.y, tt.opts...) }() switch { case gotPanic == "" && tt.wantPanic: t.Errorf("expected Equal panic\nreason: %s", tt.reason) case gotPanic != "" && !tt.wantPanic: t.Errorf("unexpected Equal panic: got %v\nreason: %v", gotPanic, tt.reason) case gotEqual != tt.wantEqual: t.Errorf("Equal = %v, want %v\nreason: %v", gotEqual, tt.wantEqual, tt.reason) } }) } } func TestPanic(t *testing.T) { args := func(x ...interface{}) []interface{} { return x } tests := []struct { label string // Test name fnc interface{} // Option function to call args []interface{} // Arguments to pass in wantPanic string // Expected panic message reason string // The reason for the expected outcome }{{ label: "EquateApprox", fnc: EquateApprox, args: args(0.0, 0.0), reason: "zero margin and fraction is equivalent to exact equality", }, { label: "EquateApprox", fnc: EquateApprox, args: args(-0.1, 0.0), wantPanic: "margin or fraction must be a non-negative number", reason: "negative inputs are invalid", }, { label: "EquateApprox", fnc: EquateApprox, args: args(0.0, -0.1), wantPanic: "margin or fraction must be a non-negative number", reason: "negative inputs are invalid", }, { label: "EquateApprox", fnc: EquateApprox, args: args(math.NaN(), 0.0), wantPanic: "margin or fraction must be a non-negative number", reason: "NaN inputs are invalid", }, { label: "EquateApprox", fnc: EquateApprox, args: args(1.0, 0.0), reason: "fraction of 1.0 or greater is valid", }, { label: "EquateApprox", fnc: EquateApprox, args: args(0.0, math.Inf(+1)), reason: "margin of infinity is valid", }, { label: "SortSlices", fnc: SortSlices, args: args(strings.Compare), wantPanic: "invalid less function", reason: "func(x, y string) int is wrong signature for less", }, { label: "SortSlices", fnc: SortSlices, args: args((func(_, _ int) bool)(nil)), wantPanic: "invalid less function", reason: "nil value is not valid", }, { label: "SortMaps", fnc: SortMaps, args: args(strings.Compare), wantPanic: "invalid less function", reason: "func(x, y string) int is wrong signature for less", }, { label: "SortMaps", fnc: SortMaps, args: args((func(_, _ int) bool)(nil)), wantPanic: "invalid less function", reason: "nil value is not valid", }, { label: "IgnoreFields", fnc: IgnoreFields, args: args(Foo1{}, ""), wantPanic: "name must not be empty", reason: "empty selector is invalid", }, { label: "IgnoreFields", fnc: IgnoreFields, args: args(Foo1{}, "."), wantPanic: "name must not be empty", reason: "single dot selector is invalid", }, { label: "IgnoreFields", fnc: IgnoreFields, args: args(Foo1{}, ".Alpha"), reason: "dot-prefix is okay since Foo1.Alpha reads naturally", }, { label: "IgnoreFields", fnc: IgnoreFields, args: args(Foo1{}, "Alpha."), wantPanic: "name must not be empty", reason: "dot-suffix is invalid", }, { label: "IgnoreFields", fnc: IgnoreFields, args: args(Foo1{}, "Alpha "), wantPanic: "does not exist", reason: "identifiers must not have spaces", }, { label: "IgnoreFields", fnc: IgnoreFields, args: args(Foo1{}, "Zulu"), wantPanic: "does not exist", reason: "name of non-existent field is invalid", }, { label: "IgnoreFields", fnc: IgnoreFields, args: args(Foo1{}, "Alpha.NoExist"), wantPanic: "must be a struct", reason: "cannot select into a non-struct", }, { label: "IgnoreFields", fnc: IgnoreFields, args: args(&Foo1{}, "Alpha"), wantPanic: "must be a struct", reason: "the type must be a struct (not pointer to a struct)", }, { label: "IgnoreFields", fnc: IgnoreFields, args: args(Foo1{}, "unexported"), wantPanic: "name must be exported", reason: "unexported fields must not be specified", }, { label: "IgnoreTypes", fnc: IgnoreTypes, reason: "empty input is valid", }, { label: "IgnoreTypes", fnc: IgnoreTypes, args: args(nil), wantPanic: "cannot determine type", reason: "input must not be nil value", }, { label: "IgnoreTypes", fnc: IgnoreTypes, args: args(0, 0, 0), reason: "duplicate inputs of the same type is valid", }, { label: "IgnoreInterfaces", fnc: IgnoreInterfaces, args: args(nil), wantPanic: "input must be an anonymous struct", reason: "input must not be nil value", }, { label: "IgnoreInterfaces", fnc: IgnoreInterfaces, args: args(Foo1{}), wantPanic: "input must be an anonymous struct", reason: "input must not be a named struct type", }, { label: "IgnoreInterfaces", fnc: IgnoreInterfaces, args: args(struct{ _ io.Reader }{}), wantPanic: "struct cannot have named fields", reason: "input must not have named fields", }, { label: "IgnoreInterfaces", fnc: IgnoreInterfaces, args: args(struct{ Foo1 }{}), wantPanic: "embedded field must be an interface type", reason: "field types must be interfaces", }, { label: "IgnoreInterfaces", fnc: IgnoreInterfaces, args: args(struct{ EmptyInterface }{}), wantPanic: "cannot ignore empty interface", reason: "field types must not be the empty interface", }, { label: "IgnoreInterfaces", fnc: IgnoreInterfaces, args: args(struct { io.Reader io.Writer io.Closer io.ReadWriteCloser }{}), reason: "multiple interfaces may be specified, even if they overlap", }, { label: "IgnoreUnexported", fnc: IgnoreUnexported, reason: "empty input is valid", }, { label: "IgnoreUnexported", fnc: IgnoreUnexported, args: args(nil), wantPanic: "invalid struct type", reason: "input must not be nil value", }, { label: "IgnoreUnexported", fnc: IgnoreUnexported, args: args(&Foo1{}), wantPanic: "invalid struct type", reason: "input must be a struct type (not a pointer to a struct)", }, { label: "IgnoreUnexported", fnc: IgnoreUnexported, args: args(Foo1{}, struct{ x, X int }{}), reason: "input may be named or unnamed structs", }} for _, tt := range tests { tRun(t, tt.label, func(t *testing.T) { // Prepare function arguments. vf := reflect.ValueOf(tt.fnc) var vargs []reflect.Value for i, arg := range tt.args { if arg == nil { tf := vf.Type() if i == tf.NumIn()-1 && tf.IsVariadic() { vargs = append(vargs, reflect.Zero(tf.In(i).Elem())) } else { vargs = append(vargs, reflect.Zero(tf.In(i))) } } else { vargs = append(vargs, reflect.ValueOf(arg)) } } // Call the function and capture any panics. var gotPanic string func() { defer func() { if ex := recover(); ex != nil { if s, ok := ex.(string); ok { gotPanic = s } else { panic(ex) } } }() vf.Call(vargs) }() switch { case tt.wantPanic == "" && gotPanic != "": t.Errorf("unexpected panic message: %s\nreason: %s", gotPanic, tt.reason) case tt.wantPanic != "" && !strings.Contains(gotPanic, tt.wantPanic): t.Errorf("panic message:\ngot: %s\nwant: %s\nreason: %s", gotPanic, tt.wantPanic, tt.reason) } }) } } // TODO: Delete this hack when we drop Go1.6 support. func tRun(t *testing.T, name string, f func(t *testing.T)) { type runner interface { Run(string, func(t *testing.T)) bool } var ti interface{} = t if r, ok := ti.(runner); ok { r.Run(name, f) } else { t.Logf("Test: %s", name) f(t) } } go-cmp-0.1.0/cmp/compare.go000066400000000000000000000414231314065731500154370ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. // Package cmp determines equality of values. // // This package is intended to be a more powerful and safer alternative to // reflect.DeepEqual for comparing whether two values are semantically equal. // // The primary features of cmp are: // // • When the default behavior of equality does not suit the needs of the test, // custom equality functions can override the equality operation. // For example, an equality function may report floats as equal so long as they // are within some tolerance of each other. // // • Types that have an Equal method may use that method to determine equality. // This allows package authors to determine the equality operation for the types // that they define. // // • If no custom equality functions are used and no Equal method is defined, // equality is determined by recursively comparing the primitive kinds on both // values, much like reflect.DeepEqual. Unlike reflect.DeepEqual, unexported // fields are not compared by default; they result in panics unless suppressed // by using an Ignore option (see cmpopts.IgnoreUnexported) or explictly compared // using the AllowUnexported option. package cmp import ( "fmt" "reflect" "github.com/google/go-cmp/cmp/internal/diff" "github.com/google/go-cmp/cmp/internal/function" "github.com/google/go-cmp/cmp/internal/value" ) // BUG: Maps with keys containing NaN values cannot be properly compared due to // the reflection package's inability to retrieve such entries. Equal will panic // anytime it comes across a NaN key, but this behavior may change. // // See https://golang.org/issue/11104 for more details. var nothing = reflect.Value{} // Equal reports whether x and y are equal by recursively applying the // following rules in the given order to x and y and all of their sub-values: // // • If two values are not of the same type, then they are never equal // and the overall result is false. // // • Let S be the set of all Ignore, Transformer, and Comparer options that // remain after applying all path filters, value filters, and type filters. // If at least one Ignore exists in S, then the comparison is ignored. // If the number of Transformer and Comparer options in S is greater than one, // then Equal panics because it is ambiguous which option to use. // If S contains a single Transformer, then use that to transform the current // values and recursively call Equal on the output values. // If S contains a single Comparer, then use that to compare the current values. // Otherwise, evaluation proceeds to the next rule. // // • If the values have an Equal method of the form "(T) Equal(T) bool" or // "(T) Equal(I) bool" where T is assignable to I, then use the result of // x.Equal(y). Otherwise, no such method exists and evaluation proceeds to // the next rule. // // • Lastly, try to compare x and y based on their basic kinds. // Simple kinds like booleans, integers, floats, complex numbers, strings, and // channels are compared using the equivalent of the == operator in Go. // Functions are only equal if they are both nil, otherwise they are unequal. // Pointers are equal if the underlying values they point to are also equal. // Interfaces are equal if their underlying concrete values are also equal. // // Structs are equal if all of their fields are equal. If a struct contains // unexported fields, Equal panics unless the AllowUnexported option is used or // an Ignore option (e.g., cmpopts.IgnoreUnexported) ignores that field. // // Arrays, slices, and maps are equal if they are both nil or both non-nil // with the same length and the elements at each index or key are equal. // Note that a non-nil empty slice and a nil slice are not equal. // To equate empty slices and maps, consider using cmpopts.EquateEmpty. // Map keys are equal according to the == operator. // To use custom comparisons for map keys, consider using cmpopts.SortMaps. func Equal(x, y interface{}, opts ...Option) bool { s := newState(opts) s.compareAny(reflect.ValueOf(x), reflect.ValueOf(y)) return s.result.Equal() } // Diff returns a human-readable report of the differences between two values. // It returns an empty string if and only if Equal returns true for the same // input values and options. The output string will use the "-" symbol to // indicate elements removed from x, and the "+" symbol to indicate elements // added to y. // // Do not depend on this output being stable. func Diff(x, y interface{}, opts ...Option) string { r := new(defaultReporter) opts = Options{Options(opts), r} eq := Equal(x, y, opts...) d := r.String() if (d == "") != eq { panic("inconsistent difference and equality results") } return d } type state struct { // These fields represent the "comparison state". // Calling statelessCompare must not result in observable changes to these. result diff.Result // The current result of comparison curPath Path // The current path in the value tree reporter reporter // Optional reporter used for difference formatting // dynChecker triggers pseudo-random checks for option correctness. // It is safe for statelessCompare to mutate this value. dynChecker dynChecker // These fields, once set by processOption, will not change. exporters map[reflect.Type]bool // Set of structs with unexported field visibility opts Options // List of all fundamental and filter options } func newState(opts []Option) *state { s := new(state) for _, opt := range opts { s.processOption(opt) } return s } func (s *state) processOption(opt Option) { switch opt := opt.(type) { case nil: case Options: for _, o := range opt { s.processOption(o) } case coreOption: type filtered interface { isFiltered() bool } if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() { panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt)) } s.opts = append(s.opts, opt) case visibleStructs: if s.exporters == nil { s.exporters = make(map[reflect.Type]bool) } for t := range opt { s.exporters[t] = true } case reporter: if s.reporter != nil { panic("difference reporter already registered") } s.reporter = opt default: panic(fmt.Sprintf("unknown option %T", opt)) } } // statelessCompare compares two values and returns the result. // This function is stateless in that it does not alter the current result, // or output to any registered reporters. func (s *state) statelessCompare(vx, vy reflect.Value) diff.Result { // We do not save and restore the curPath because all of the compareX // methods should properly push and pop from the path. // It is an implementation bug if the contents of curPath differs from // when calling this function to when returning from it. oldResult, oldReporter := s.result, s.reporter s.result = diff.Result{} // Reset result s.reporter = nil // Remove reporter to avoid spurious printouts s.compareAny(vx, vy) res := s.result s.result, s.reporter = oldResult, oldReporter return res } func (s *state) compareAny(vx, vy reflect.Value) { // TODO: Support cyclic data structures. // Rule 0: Differing types are never equal. if !vx.IsValid() || !vy.IsValid() { s.report(vx.IsValid() == vy.IsValid(), vx, vy) return } if vx.Type() != vy.Type() { s.report(false, vx, vy) // Possible for path to be empty return } t := vx.Type() if len(s.curPath) == 0 { s.curPath.push(&pathStep{typ: t}) defer s.curPath.pop() } vx, vy = s.tryExporting(vx, vy) // Rule 1: Check whether an option applies on this node in the value tree. if s.tryOptions(vx, vy, t) { return } // Rule 2: Check whether the type has a valid Equal method. if s.tryMethod(vx, vy, t) { return } // Rule 3: Recursively descend into each value's underlying kind. switch t.Kind() { case reflect.Bool: s.report(vx.Bool() == vy.Bool(), vx, vy) return case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: s.report(vx.Int() == vy.Int(), vx, vy) return case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: s.report(vx.Uint() == vy.Uint(), vx, vy) return case reflect.Float32, reflect.Float64: s.report(vx.Float() == vy.Float(), vx, vy) return case reflect.Complex64, reflect.Complex128: s.report(vx.Complex() == vy.Complex(), vx, vy) return case reflect.String: s.report(vx.String() == vy.String(), vx, vy) return case reflect.Chan, reflect.UnsafePointer: s.report(vx.Pointer() == vy.Pointer(), vx, vy) return case reflect.Func: s.report(vx.IsNil() && vy.IsNil(), vx, vy) return case reflect.Ptr: if vx.IsNil() || vy.IsNil() { s.report(vx.IsNil() && vy.IsNil(), vx, vy) return } s.curPath.push(&indirect{pathStep{t.Elem()}}) defer s.curPath.pop() s.compareAny(vx.Elem(), vy.Elem()) return case reflect.Interface: if vx.IsNil() || vy.IsNil() { s.report(vx.IsNil() && vy.IsNil(), vx, vy) return } if vx.Elem().Type() != vy.Elem().Type() { s.report(false, vx.Elem(), vy.Elem()) return } s.curPath.push(&typeAssertion{pathStep{vx.Elem().Type()}}) defer s.curPath.pop() s.compareAny(vx.Elem(), vy.Elem()) return case reflect.Slice: if vx.IsNil() || vy.IsNil() { s.report(vx.IsNil() && vy.IsNil(), vx, vy) return } fallthrough case reflect.Array: s.compareArray(vx, vy, t) return case reflect.Map: s.compareMap(vx, vy, t) return case reflect.Struct: s.compareStruct(vx, vy, t) return default: panic(fmt.Sprintf("%v kind not handled", t.Kind())) } } func (s *state) tryExporting(vx, vy reflect.Value) (reflect.Value, reflect.Value) { if sf, ok := s.curPath[len(s.curPath)-1].(*structField); ok && sf.unexported { if sf.force { // Use unsafe pointer arithmetic to get read-write access to an // unexported field in the struct. vx = unsafeRetrieveField(sf.pvx, sf.field) vy = unsafeRetrieveField(sf.pvy, sf.field) } else { // We are not allowed to export the value, so invalidate them // so that tryOptions can panic later if not explicitly ignored. vx = nothing vy = nothing } } return vx, vy } func (s *state) tryOptions(vx, vy reflect.Value, t reflect.Type) bool { // If there were no FilterValues, we will not detect invalid inputs, // so manually check for them and append invalid if necessary. // We still evaluate the options since an ignore can override invalid. opts := s.opts if !vx.IsValid() || !vy.IsValid() { opts = Options{opts, invalid{}} } // Evaluate all filters and apply the remaining options. if opt := opts.filter(s, vx, vy, t); opt != nil { return opt.apply(s, vx, vy) } return false } func (s *state) tryMethod(vx, vy reflect.Value, t reflect.Type) bool { // Check if this type even has an Equal method. m, ok := t.MethodByName("Equal") if !ok || !function.IsType(m.Type, function.EqualAssignable) { return false } eq := s.callTTBFunc(m.Func, vx, vy) s.report(eq, vx, vy) return true } func (s *state) callTRFunc(f, v reflect.Value) reflect.Value { if !s.dynChecker.Next() { return f.Call([]reflect.Value{v})[0] } // Run the function twice and ensure that we get the same results back. // We run in goroutines so that the race detector (if enabled) can detect // unsafe mutations to the input. c := make(chan reflect.Value) go detectRaces(c, f, v) want := f.Call([]reflect.Value{v})[0] if got := <-c; !s.statelessCompare(got, want).Equal() { // To avoid false-positives with non-reflexive equality operations, // we sanity check whether a value is equal to itself. if !s.statelessCompare(want, want).Equal() { return want } fn := getFuncName(f.Pointer()) panic(fmt.Sprintf("non-deterministic function detected: %s", fn)) } return want } func (s *state) callTTBFunc(f, x, y reflect.Value) bool { if !s.dynChecker.Next() { return f.Call([]reflect.Value{x, y})[0].Bool() } // Swapping the input arguments is sufficient to check that // f is symmetric and deterministic. // We run in goroutines so that the race detector (if enabled) can detect // unsafe mutations to the input. c := make(chan reflect.Value) go detectRaces(c, f, y, x) want := f.Call([]reflect.Value{x, y})[0].Bool() if got := <-c; !got.IsValid() || got.Bool() != want { fn := getFuncName(f.Pointer()) panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", fn)) } return want } func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) { var ret reflect.Value defer func() { recover() // Ignore panics, let the other call to f panic instead c <- ret }() ret = f.Call(vs)[0] } func (s *state) compareArray(vx, vy reflect.Value, t reflect.Type) { step := &sliceIndex{pathStep{t.Elem()}, 0, 0} s.curPath.push(step) // Compute an edit-script for slices vx and vy. eq, es := diff.Difference(vx.Len(), vy.Len(), func(ix, iy int) diff.Result { step.xkey, step.ykey = ix, iy return s.statelessCompare(vx.Index(ix), vy.Index(iy)) }) // Equal or no edit-script, so report entire slices as is. if eq || es == nil { s.curPath.pop() // Pop first since we are reporting the whole slice s.report(eq, vx, vy) return } // Replay the edit-script. var ix, iy int for _, e := range es { switch e { case diff.UniqueX: step.xkey, step.ykey = ix, -1 s.report(false, vx.Index(ix), nothing) ix++ case diff.UniqueY: step.xkey, step.ykey = -1, iy s.report(false, nothing, vy.Index(iy)) iy++ default: step.xkey, step.ykey = ix, iy if e == diff.Identity { s.report(true, vx.Index(ix), vy.Index(iy)) } else { s.compareAny(vx.Index(ix), vy.Index(iy)) } ix++ iy++ } } s.curPath.pop() return } func (s *state) compareMap(vx, vy reflect.Value, t reflect.Type) { if vx.IsNil() || vy.IsNil() { s.report(vx.IsNil() && vy.IsNil(), vx, vy) return } // We combine and sort the two map keys so that we can perform the // comparisons in a deterministic order. step := &mapIndex{pathStep: pathStep{t.Elem()}} s.curPath.push(step) defer s.curPath.pop() for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) { step.key = k vvx := vx.MapIndex(k) vvy := vy.MapIndex(k) switch { case vvx.IsValid() && vvy.IsValid(): s.compareAny(vvx, vvy) case vvx.IsValid() && !vvy.IsValid(): s.report(false, vvx, nothing) case !vvx.IsValid() && vvy.IsValid(): s.report(false, nothing, vvy) default: // It is possible for both vvx and vvy to be invalid if the // key contained a NaN value in it. There is no way in // reflection to be able to retrieve these values. // See https://golang.org/issue/11104 panic(fmt.Sprintf("%#v has map key with NaNs", s.curPath)) } } } func (s *state) compareStruct(vx, vy reflect.Value, t reflect.Type) { var vax, vay reflect.Value // Addressable versions of vx and vy step := &structField{} s.curPath.push(step) defer s.curPath.pop() for i := 0; i < t.NumField(); i++ { vvx := vx.Field(i) vvy := vy.Field(i) step.typ = t.Field(i).Type step.name = t.Field(i).Name step.idx = i step.unexported = !isExported(step.name) if step.unexported { // Defer checking of unexported fields until later to give an // Ignore a chance to ignore the field. if !vax.IsValid() || !vay.IsValid() { // For unsafeRetrieveField to work, the parent struct must // be addressable. Create a new copy of the values if // necessary to make them addressable. vax = makeAddressable(vx) vay = makeAddressable(vy) } step.force = s.exporters[t] step.pvx = vax step.pvy = vay step.field = t.Field(i) } s.compareAny(vvx, vvy) } } // report records the result of a single comparison. // It also calls Report if any reporter is registered. func (s *state) report(eq bool, vx, vy reflect.Value) { if eq { s.result.NSame++ } else { s.result.NDiff++ } if s.reporter != nil { s.reporter.Report(vx, vy, eq, s.curPath) } } // dynChecker tracks the state needed to periodically perform checks that // user provided functions are symmetric and deterministic. // The zero value is safe for immediate use. type dynChecker struct{ curr, next int } // Next increments the state and reports whether a check should be performed. // // Checks occur every Nth function call, where N is a triangular number: // 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ... // See https://en.wikipedia.org/wiki/Triangular_number // // This sequence ensures that the cost of checks drops significantly as // the number of functions calls grows larger. func (dc *dynChecker) Next() bool { ok := dc.curr == dc.next if ok { dc.curr = 0 dc.next++ } dc.curr++ return ok } // makeAddressable returns a value that is always addressable. // It returns the input verbatim if it is already addressable, // otherwise it creates a new value and returns an addressable copy. func makeAddressable(v reflect.Value) reflect.Value { if v.CanAddr() { return v } vc := reflect.New(v.Type()).Elem() vc.Set(v) return vc } go-cmp-0.1.0/cmp/compare_test.go000066400000000000000000001364611314065731500165050ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package cmp_test import ( "bytes" "crypto/md5" "fmt" "io" "math" "math/rand" "reflect" "regexp" "sort" "strings" "sync" "testing" "time" "github.com/google/go-cmp/cmp" "github.com/google/go-cmp/cmp/cmpopts" pb "github.com/google/go-cmp/cmp/internal/testprotos" ts "github.com/google/go-cmp/cmp/internal/teststructs" ) var now = time.Now() func intPtr(n int) *int { return &n } type test struct { label string // Test description x, y interface{} // Input values to compare opts []cmp.Option // Input options wantDiff string // The exact difference string wantPanic string // Sub-string of an expected panic message } func TestDiff(t *testing.T) { var tests []test tests = append(tests, comparerTests()...) tests = append(tests, transformerTests()...) tests = append(tests, embeddedTests()...) tests = append(tests, methodTests()...) tests = append(tests, project1Tests()...) tests = append(tests, project2Tests()...) tests = append(tests, project3Tests()...) tests = append(tests, project4Tests()...) for _, tt := range tests { tt := tt tRunParallel(t, tt.label, func(t *testing.T) { var gotDiff, gotPanic string func() { defer func() { if ex := recover(); ex != nil { if s, ok := ex.(string); ok { gotPanic = s } else { panic(ex) } } }() gotDiff = cmp.Diff(tt.x, tt.y, tt.opts...) }() if tt.wantPanic == "" { if gotPanic != "" { t.Fatalf("unexpected panic message: %s", gotPanic) } if got, want := strings.TrimSpace(gotDiff), strings.TrimSpace(tt.wantDiff); got != want { t.Fatalf("difference message:\ngot:\n%s\n\nwant:\n%s", got, want) } } else { if !strings.Contains(gotPanic, tt.wantPanic) { t.Fatalf("panic message:\ngot: %s\nwant: %s", gotPanic, tt.wantPanic) } } }) } } func comparerTests() []test { const label = "Comparer" return []test{{ label: label, x: 1, y: 1, }, { label: label, x: 1, y: 1, opts: []cmp.Option{cmp.Ignore()}, wantPanic: "cannot use an unfiltered option", }, { label: label, x: 1, y: 1, opts: []cmp.Option{cmp.Comparer(func(_, _ interface{}) bool { return true })}, wantPanic: "cannot use an unfiltered option", }, { label: label, x: 1, y: 1, opts: []cmp.Option{cmp.Transformer("", func(x interface{}) interface{} { return x })}, wantPanic: "cannot use an unfiltered option", }, { label: label, x: 1, y: 1, opts: []cmp.Option{ cmp.Comparer(func(x, y int) bool { return true }), cmp.Transformer("", func(x int) float64 { return float64(x) }), }, wantPanic: "ambiguous set of applicable options", }, { label: label, x: 1, y: 1, opts: []cmp.Option{ cmp.FilterPath(func(p cmp.Path) bool { return len(p) > 0 && p[len(p)-1].Type().Kind() == reflect.Int }, cmp.Options{cmp.Ignore(), cmp.Ignore(), cmp.Ignore()}), cmp.Comparer(func(x, y int) bool { return true }), cmp.Transformer("", func(x int) float64 { return float64(x) }), }, }, { label: label, opts: []cmp.Option{struct{ cmp.Option }{}}, wantPanic: "unknown option", }, { label: label, x: struct{ A, B, C int }{1, 2, 3}, y: struct{ A, B, C int }{1, 2, 3}, }, { label: label, x: struct{ A, B, C int }{1, 2, 3}, y: struct{ A, B, C int }{1, 2, 4}, wantDiff: "root.C:\n\t-: 3\n\t+: 4\n", }, { label: label, x: struct{ a, b, c int }{1, 2, 3}, y: struct{ a, b, c int }{1, 2, 4}, wantPanic: "cannot handle unexported field", }, { label: label, x: &struct{ A *int }{intPtr(4)}, y: &struct{ A *int }{intPtr(4)}, }, { label: label, x: &struct{ A *int }{intPtr(4)}, y: &struct{ A *int }{intPtr(5)}, wantDiff: "*root.A:\n\t-: 4\n\t+: 5\n", }, { label: label, x: &struct{ A *int }{intPtr(4)}, y: &struct{ A *int }{intPtr(5)}, opts: []cmp.Option{ cmp.Comparer(func(x, y int) bool { return true }), }, }, { label: label, x: &struct{ A *int }{intPtr(4)}, y: &struct{ A *int }{intPtr(5)}, opts: []cmp.Option{ cmp.Comparer(func(x, y *int) bool { return x != nil && y != nil }), }, }, { label: label, x: &struct{ R *bytes.Buffer }{}, y: &struct{ R *bytes.Buffer }{}, }, { label: label, x: &struct{ R *bytes.Buffer }{new(bytes.Buffer)}, y: &struct{ R *bytes.Buffer }{}, wantDiff: "root.R:\n\t-: \"\"\n\t+: \n", }, { label: label, x: &struct{ R *bytes.Buffer }{new(bytes.Buffer)}, y: &struct{ R *bytes.Buffer }{}, opts: []cmp.Option{ cmp.Comparer(func(x, y io.Reader) bool { return true }), }, }, { label: label, x: &struct{ R bytes.Buffer }{}, y: &struct{ R bytes.Buffer }{}, wantPanic: "cannot handle unexported field", }, { label: label, x: &struct{ R bytes.Buffer }{}, y: &struct{ R bytes.Buffer }{}, opts: []cmp.Option{ cmp.Comparer(func(x, y io.Reader) bool { return true }), }, wantPanic: "cannot handle unexported field", }, { label: label, x: &struct{ R bytes.Buffer }{}, y: &struct{ R bytes.Buffer }{}, opts: []cmp.Option{ cmp.Transformer("Ref", func(x bytes.Buffer) *bytes.Buffer { return &x }), cmp.Comparer(func(x, y io.Reader) bool { return true }), }, }, { label: label, x: []*regexp.Regexp{nil, regexp.MustCompile("a*b*c*")}, y: []*regexp.Regexp{nil, regexp.MustCompile("a*b*c*")}, wantPanic: "cannot handle unexported field", }, { label: label, x: []*regexp.Regexp{nil, regexp.MustCompile("a*b*c*")}, y: []*regexp.Regexp{nil, regexp.MustCompile("a*b*c*")}, opts: []cmp.Option{cmp.Comparer(func(x, y *regexp.Regexp) bool { if x == nil || y == nil { return x == nil && y == nil } return x.String() == y.String() })}, }, { label: label, x: []*regexp.Regexp{nil, regexp.MustCompile("a*b*c*")}, y: []*regexp.Regexp{nil, regexp.MustCompile("a*b*d*")}, opts: []cmp.Option{cmp.Comparer(func(x, y *regexp.Regexp) bool { if x == nil || y == nil { return x == nil && y == nil } return x.String() == y.String() })}, wantDiff: ` {[]*regexp.Regexp}[1]: -: "a*b*c*" +: "a*b*d*"`, }, { label: label, x: func() ***int { a := 0 b := &a c := &b return &c }(), y: func() ***int { a := 0 b := &a c := &b return &c }(), }, { label: label, x: func() ***int { a := 0 b := &a c := &b return &c }(), y: func() ***int { a := 1 b := &a c := &b return &c }(), wantDiff: ` ***{***int}: -: 0 +: 1`, }, { label: label, x: []int{1, 2, 3, 4, 5}[:3], y: []int{1, 2, 3}, }, { label: label, x: struct{ fmt.Stringer }{bytes.NewBufferString("hello")}, y: struct{ fmt.Stringer }{regexp.MustCompile("hello")}, opts: []cmp.Option{cmp.Comparer(func(x, y fmt.Stringer) bool { return x.String() == y.String() })}, }, { label: label, x: struct{ fmt.Stringer }{bytes.NewBufferString("hello")}, y: struct{ fmt.Stringer }{regexp.MustCompile("hello2")}, opts: []cmp.Option{cmp.Comparer(func(x, y fmt.Stringer) bool { return x.String() == y.String() })}, wantDiff: ` root: -: "hello" +: "hello2"`, }, { label: label, x: md5.Sum([]byte{'a'}), y: md5.Sum([]byte{'b'}), wantDiff: ` {[16]uint8}: -: [16]uint8{0x0c, 0xc1, 0x75, 0xb9, 0xc0, 0xf1, 0xb6, 0xa8, 0x31, 0xc3, 0x99, 0xe2, 0x69, 0x77, 0x26, 0x61} +: [16]uint8{0x92, 0xeb, 0x5f, 0xfe, 0xe6, 0xae, 0x2f, 0xec, 0x3a, 0xd7, 0x1c, 0x77, 0x75, 0x31, 0x57, 0x8f}`, }, { label: label, x: new(fmt.Stringer), y: nil, wantDiff: ` : -: & +: `, }, { label: label, x: make([]int, 1000), y: make([]int, 1000), opts: []cmp.Option{ cmp.Comparer(func(_, _ int) bool { return rand.Intn(2) == 0 }), }, wantPanic: "non-deterministic or non-symmetric function detected", }, { label: label, x: make([]int, 1000), y: make([]int, 1000), opts: []cmp.Option{ cmp.FilterValues(func(_, _ int) bool { return rand.Intn(2) == 0 }, cmp.Ignore()), }, wantPanic: "non-deterministic or non-symmetric function detected", }, { label: label, x: []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, y: []int{10, 9, 8, 7, 6, 5, 4, 3, 2, 1}, opts: []cmp.Option{ cmp.Comparer(func(x, y int) bool { return x < y }), }, wantPanic: "non-deterministic or non-symmetric function detected", }, { label: label, x: make([]string, 1000), y: make([]string, 1000), opts: []cmp.Option{ cmp.Transformer("", func(x string) int { return rand.Int() }), }, wantPanic: "non-deterministic function detected", }, { // Make sure the dynamic checks don't raise a false positive for // non-reflexive comparisons. label: label, x: make([]int, 10), y: make([]int, 10), opts: []cmp.Option{ cmp.Transformer("", func(x int) float64 { return math.NaN() }), }, wantDiff: ` {[]int}: -: []int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0} +: []int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}`, }} } func transformerTests() []test { const label = "Transformer/" return []test{{ label: label, x: uint8(0), y: uint8(1), opts: []cmp.Option{ cmp.Transformer("", func(in uint8) uint16 { return uint16(in) }), cmp.Transformer("", func(in uint16) uint32 { return uint32(in) }), cmp.Transformer("", func(in uint32) uint64 { return uint64(in) }), }, wantDiff: ` λ(λ(λ({uint8}))): -: 0x00 +: 0x01`, }, { label: label, x: 0, y: 1, opts: []cmp.Option{ cmp.Transformer("", func(in int) int { return in / 2 }), cmp.Transformer("", func(in int) int { return in }), }, wantPanic: "ambiguous set of applicable options", }, { label: label, x: []int{0, -5, 0, -1}, y: []int{1, 3, 0, -5}, opts: []cmp.Option{ cmp.FilterValues( func(x, y int) bool { return x+y >= 0 }, cmp.Transformer("", func(in int) int64 { return int64(in / 2) }), ), cmp.FilterValues( func(x, y int) bool { return x+y < 0 }, cmp.Transformer("", func(in int) int64 { return int64(in) }), ), }, wantDiff: ` λ({[]int}[1]): -: -5 +: 3 λ({[]int}[3]): -: -1 +: -5`, }, { label: label, x: 0, y: 1, opts: []cmp.Option{ cmp.Transformer("", func(in int) interface{} { if in == 0 { return "string" } return float64(in) }), }, wantDiff: ` λ({int}): -: "string" +: 1`, }} } func embeddedTests() []test { const label = "EmbeddedStruct/" privateStruct := *new(ts.ParentStructA).PrivateStruct() createStructA := func(i int) ts.ParentStructA { s := ts.ParentStructA{} s.PrivateStruct().Public = 1 + i s.PrivateStruct().SetPrivate(2 + i) return s } createStructB := func(i int) ts.ParentStructB { s := ts.ParentStructB{} s.PublicStruct.Public = 1 + i s.PublicStruct.SetPrivate(2 + i) return s } createStructC := func(i int) ts.ParentStructC { s := ts.ParentStructC{} s.PrivateStruct().Public = 1 + i s.PrivateStruct().SetPrivate(2 + i) s.Public = 3 + i s.SetPrivate(4 + i) return s } createStructD := func(i int) ts.ParentStructD { s := ts.ParentStructD{} s.PublicStruct.Public = 1 + i s.PublicStruct.SetPrivate(2 + i) s.Public = 3 + i s.SetPrivate(4 + i) return s } createStructE := func(i int) ts.ParentStructE { s := ts.ParentStructE{} s.PrivateStruct().Public = 1 + i s.PrivateStruct().SetPrivate(2 + i) s.PublicStruct.Public = 3 + i s.PublicStruct.SetPrivate(4 + i) return s } createStructF := func(i int) ts.ParentStructF { s := ts.ParentStructF{} s.PrivateStruct().Public = 1 + i s.PrivateStruct().SetPrivate(2 + i) s.PublicStruct.Public = 3 + i s.PublicStruct.SetPrivate(4 + i) s.Public = 5 + i s.SetPrivate(6 + i) return s } createStructG := func(i int) *ts.ParentStructG { s := ts.NewParentStructG() s.PrivateStruct().Public = 1 + i s.PrivateStruct().SetPrivate(2 + i) return s } createStructH := func(i int) *ts.ParentStructH { s := ts.NewParentStructH() s.PublicStruct.Public = 1 + i s.PublicStruct.SetPrivate(2 + i) return s } createStructI := func(i int) *ts.ParentStructI { s := ts.NewParentStructI() s.PrivateStruct().Public = 1 + i s.PrivateStruct().SetPrivate(2 + i) s.PublicStruct.Public = 3 + i s.PublicStruct.SetPrivate(4 + i) return s } createStructJ := func(i int) *ts.ParentStructJ { s := ts.NewParentStructJ() s.PrivateStruct().Public = 1 + i s.PrivateStruct().SetPrivate(2 + i) s.PublicStruct.Public = 3 + i s.PublicStruct.SetPrivate(4 + i) s.Private().Public = 5 + i s.Private().SetPrivate(6 + i) s.Public.Public = 7 + i s.Public.SetPrivate(8 + i) return s } return []test{{ label: label + "ParentStructA", x: ts.ParentStructA{}, y: ts.ParentStructA{}, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructA", x: ts.ParentStructA{}, y: ts.ParentStructA{}, opts: []cmp.Option{ cmpopts.IgnoreUnexported(ts.ParentStructA{}), }, }, { label: label + "ParentStructA", x: createStructA(0), y: createStructA(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructA{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructA", x: createStructA(0), y: createStructA(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructA{}, privateStruct), }, }, { label: label + "ParentStructA", x: createStructA(0), y: createStructA(1), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructA{}, privateStruct), }, wantDiff: ` {teststructs.ParentStructA}.privateStruct.Public: -: 1 +: 2 {teststructs.ParentStructA}.privateStruct.private: -: 2 +: 3`, }, { label: label + "ParentStructB", x: ts.ParentStructB{}, y: ts.ParentStructB{}, opts: []cmp.Option{ cmpopts.IgnoreUnexported(ts.ParentStructB{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructB", x: ts.ParentStructB{}, y: ts.ParentStructB{}, opts: []cmp.Option{ cmpopts.IgnoreUnexported(ts.ParentStructB{}), cmpopts.IgnoreUnexported(ts.PublicStruct{}), }, }, { label: label + "ParentStructB", x: createStructB(0), y: createStructB(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructB{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructB", x: createStructB(0), y: createStructB(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructB{}, ts.PublicStruct{}), }, }, { label: label + "ParentStructB", x: createStructB(0), y: createStructB(1), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructB{}, ts.PublicStruct{}), }, wantDiff: ` {teststructs.ParentStructB}.PublicStruct.Public: -: 1 +: 2 {teststructs.ParentStructB}.PublicStruct.private: -: 2 +: 3`, }, { label: label + "ParentStructC", x: ts.ParentStructC{}, y: ts.ParentStructC{}, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructC", x: ts.ParentStructC{}, y: ts.ParentStructC{}, opts: []cmp.Option{ cmpopts.IgnoreUnexported(ts.ParentStructC{}), }, }, { label: label + "ParentStructC", x: createStructC(0), y: createStructC(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructC{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructC", x: createStructC(0), y: createStructC(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructC{}, privateStruct), }, }, { label: label + "ParentStructC", x: createStructC(0), y: createStructC(1), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructC{}, privateStruct), }, wantDiff: ` {teststructs.ParentStructC}.privateStruct.Public: -: 1 +: 2 {teststructs.ParentStructC}.privateStruct.private: -: 2 +: 3 {teststructs.ParentStructC}.Public: -: 3 +: 4 {teststructs.ParentStructC}.private: -: 4 +: 5`, }, { label: label + "ParentStructD", x: ts.ParentStructD{}, y: ts.ParentStructD{}, opts: []cmp.Option{ cmpopts.IgnoreUnexported(ts.ParentStructD{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructD", x: ts.ParentStructD{}, y: ts.ParentStructD{}, opts: []cmp.Option{ cmpopts.IgnoreUnexported(ts.ParentStructD{}), cmpopts.IgnoreUnexported(ts.PublicStruct{}), }, }, { label: label + "ParentStructD", x: createStructD(0), y: createStructD(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructD{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructD", x: createStructD(0), y: createStructD(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructD{}, ts.PublicStruct{}), }, }, { label: label + "ParentStructD", x: createStructD(0), y: createStructD(1), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructD{}, ts.PublicStruct{}), }, wantDiff: ` {teststructs.ParentStructD}.PublicStruct.Public: -: 1 +: 2 {teststructs.ParentStructD}.PublicStruct.private: -: 2 +: 3 {teststructs.ParentStructD}.Public: -: 3 +: 4 {teststructs.ParentStructD}.private: -: 4 +: 5`, }, { label: label + "ParentStructE", x: ts.ParentStructE{}, y: ts.ParentStructE{}, opts: []cmp.Option{ cmpopts.IgnoreUnexported(ts.ParentStructE{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructE", x: ts.ParentStructE{}, y: ts.ParentStructE{}, opts: []cmp.Option{ cmpopts.IgnoreUnexported(ts.ParentStructE{}), cmpopts.IgnoreUnexported(ts.PublicStruct{}), }, }, { label: label + "ParentStructE", x: createStructE(0), y: createStructE(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructE{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructE", x: createStructE(0), y: createStructE(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructE{}, ts.PublicStruct{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructE", x: createStructE(0), y: createStructE(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructE{}, ts.PublicStruct{}, privateStruct), }, }, { label: label + "ParentStructE", x: createStructE(0), y: createStructE(1), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructE{}, ts.PublicStruct{}, privateStruct), }, wantDiff: ` {teststructs.ParentStructE}.privateStruct.Public: -: 1 +: 2 {teststructs.ParentStructE}.privateStruct.private: -: 2 +: 3 {teststructs.ParentStructE}.PublicStruct.Public: -: 3 +: 4 {teststructs.ParentStructE}.PublicStruct.private: -: 4 +: 5`, }, { label: label + "ParentStructF", x: ts.ParentStructF{}, y: ts.ParentStructF{}, opts: []cmp.Option{ cmpopts.IgnoreUnexported(ts.ParentStructF{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructF", x: ts.ParentStructF{}, y: ts.ParentStructF{}, opts: []cmp.Option{ cmpopts.IgnoreUnexported(ts.ParentStructF{}), cmpopts.IgnoreUnexported(ts.PublicStruct{}), }, }, { label: label + "ParentStructF", x: createStructF(0), y: createStructF(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructF{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructF", x: createStructF(0), y: createStructF(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructF{}, ts.PublicStruct{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructF", x: createStructF(0), y: createStructF(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructF{}, ts.PublicStruct{}, privateStruct), }, }, { label: label + "ParentStructF", x: createStructF(0), y: createStructF(1), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructF{}, ts.PublicStruct{}, privateStruct), }, wantDiff: ` {teststructs.ParentStructF}.privateStruct.Public: -: 1 +: 2 {teststructs.ParentStructF}.privateStruct.private: -: 2 +: 3 {teststructs.ParentStructF}.PublicStruct.Public: -: 3 +: 4 {teststructs.ParentStructF}.PublicStruct.private: -: 4 +: 5 {teststructs.ParentStructF}.Public: -: 5 +: 6 {teststructs.ParentStructF}.private: -: 6 +: 7`, }, { label: label + "ParentStructG", x: ts.ParentStructG{}, y: ts.ParentStructG{}, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructG", x: ts.ParentStructG{}, y: ts.ParentStructG{}, opts: []cmp.Option{ cmpopts.IgnoreUnexported(ts.ParentStructG{}), }, }, { label: label + "ParentStructG", x: createStructG(0), y: createStructG(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructG{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructG", x: createStructG(0), y: createStructG(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructG{}, privateStruct), }, }, { label: label + "ParentStructG", x: createStructG(0), y: createStructG(1), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructG{}, privateStruct), }, wantDiff: ` {*teststructs.ParentStructG}.privateStruct.Public: -: 1 +: 2 {*teststructs.ParentStructG}.privateStruct.private: -: 2 +: 3`, }, { label: label + "ParentStructH", x: ts.ParentStructH{}, y: ts.ParentStructH{}, }, { label: label + "ParentStructH", x: createStructH(0), y: createStructH(0), wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructH", x: ts.ParentStructH{}, y: ts.ParentStructH{}, opts: []cmp.Option{ cmpopts.IgnoreUnexported(ts.ParentStructH{}), }, }, { label: label + "ParentStructH", x: createStructH(0), y: createStructH(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructH{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructH", x: createStructH(0), y: createStructH(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructH{}, ts.PublicStruct{}), }, }, { label: label + "ParentStructH", x: createStructH(0), y: createStructH(1), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructH{}, ts.PublicStruct{}), }, wantDiff: ` {*teststructs.ParentStructH}.PublicStruct.Public: -: 1 +: 2 {*teststructs.ParentStructH}.PublicStruct.private: -: 2 +: 3`, }, { label: label + "ParentStructI", x: ts.ParentStructI{}, y: ts.ParentStructI{}, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructI", x: ts.ParentStructI{}, y: ts.ParentStructI{}, opts: []cmp.Option{ cmpopts.IgnoreUnexported(ts.ParentStructI{}), }, }, { label: label + "ParentStructI", x: createStructI(0), y: createStructI(0), opts: []cmp.Option{ cmpopts.IgnoreUnexported(ts.ParentStructI{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructI", x: createStructI(0), y: createStructI(0), opts: []cmp.Option{ cmpopts.IgnoreUnexported(ts.ParentStructI{}, ts.PublicStruct{}), }, }, { label: label + "ParentStructI", x: createStructI(0), y: createStructI(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructI{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructI", x: createStructI(0), y: createStructI(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructI{}, ts.PublicStruct{}, privateStruct), }, }, { label: label + "ParentStructI", x: createStructI(0), y: createStructI(1), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructI{}, ts.PublicStruct{}, privateStruct), }, wantDiff: ` {*teststructs.ParentStructI}.privateStruct.Public: -: 1 +: 2 {*teststructs.ParentStructI}.privateStruct.private: -: 2 +: 3 {*teststructs.ParentStructI}.PublicStruct.Public: -: 3 +: 4 {*teststructs.ParentStructI}.PublicStruct.private: -: 4 +: 5`, }, { label: label + "ParentStructJ", x: ts.ParentStructJ{}, y: ts.ParentStructJ{}, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructJ", x: ts.ParentStructJ{}, y: ts.ParentStructJ{}, opts: []cmp.Option{ cmpopts.IgnoreUnexported(ts.ParentStructJ{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructJ", x: ts.ParentStructJ{}, y: ts.ParentStructJ{}, opts: []cmp.Option{ cmpopts.IgnoreUnexported(ts.ParentStructJ{}, ts.PublicStruct{}), }, }, { label: label + "ParentStructJ", x: createStructJ(0), y: createStructJ(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructJ{}, ts.PublicStruct{}), }, wantPanic: "cannot handle unexported field", }, { label: label + "ParentStructJ", x: createStructJ(0), y: createStructJ(0), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructJ{}, ts.PublicStruct{}, privateStruct), }, }, { label: label + "ParentStructJ", x: createStructJ(0), y: createStructJ(1), opts: []cmp.Option{ cmp.AllowUnexported(ts.ParentStructJ{}, ts.PublicStruct{}, privateStruct), }, wantDiff: ` {*teststructs.ParentStructJ}.privateStruct.Public: -: 1 +: 2 {*teststructs.ParentStructJ}.privateStruct.private: -: 2 +: 3 {*teststructs.ParentStructJ}.PublicStruct.Public: -: 3 +: 4 {*teststructs.ParentStructJ}.PublicStruct.private: -: 4 +: 5 {*teststructs.ParentStructJ}.Public.Public: -: 7 +: 8 {*teststructs.ParentStructJ}.Public.private: -: 8 +: 9 {*teststructs.ParentStructJ}.private.Public: -: 5 +: 6 {*teststructs.ParentStructJ}.private.private: -: 6 +: 7`, }} } func methodTests() []test { const label = "EqualMethod/" // A common mistake that the Equal method is on a pointer receiver, // but only a non-pointer value is present in the struct. // A transform can be used to forcibly reference the value. derefTransform := cmp.FilterPath(func(p cmp.Path) bool { if len(p) == 0 { return false } t := p[len(p)-1].Type() if _, ok := t.MethodByName("Equal"); ok || t.Kind() == reflect.Ptr { return false } if m, ok := reflect.PtrTo(t).MethodByName("Equal"); ok { tf := m.Func.Type() return !tf.IsVariadic() && tf.NumIn() == 2 && tf.NumOut() == 1 && tf.In(0).AssignableTo(tf.In(1)) && tf.Out(0) == reflect.TypeOf(true) } return false }, cmp.Transformer("Ref", func(x interface{}) interface{} { v := reflect.ValueOf(x) vp := reflect.New(v.Type()) vp.Elem().Set(v) return vp.Interface() })) // For each of these types, there is an Equal method defined, which always // returns true, while the underlying data are fundamentally different. // Since the method should be called, these are expected to be equal. return []test{{ label: label + "StructA", x: ts.StructA{"NotEqual"}, y: ts.StructA{"not_equal"}, }, { label: label + "StructA", x: &ts.StructA{"NotEqual"}, y: &ts.StructA{"not_equal"}, }, { label: label + "StructB", x: ts.StructB{"NotEqual"}, y: ts.StructB{"not_equal"}, wantDiff: ` {teststructs.StructB}.X: -: "NotEqual" +: "not_equal"`, }, { label: label + "StructB", x: ts.StructB{"NotEqual"}, y: ts.StructB{"not_equal"}, opts: []cmp.Option{derefTransform}, }, { label: label + "StructB", x: &ts.StructB{"NotEqual"}, y: &ts.StructB{"not_equal"}, }, { label: label + "StructC", x: ts.StructC{"NotEqual"}, y: ts.StructC{"not_equal"}, }, { label: label + "StructC", x: &ts.StructC{"NotEqual"}, y: &ts.StructC{"not_equal"}, }, { label: label + "StructD", x: ts.StructD{"NotEqual"}, y: ts.StructD{"not_equal"}, wantDiff: ` {teststructs.StructD}.X: -: "NotEqual" +: "not_equal"`, }, { label: label + "StructD", x: ts.StructD{"NotEqual"}, y: ts.StructD{"not_equal"}, opts: []cmp.Option{derefTransform}, }, { label: label + "StructD", x: &ts.StructD{"NotEqual"}, y: &ts.StructD{"not_equal"}, }, { label: label + "StructE", x: ts.StructE{"NotEqual"}, y: ts.StructE{"not_equal"}, wantDiff: ` {teststructs.StructE}.X: -: "NotEqual" +: "not_equal"`, }, { label: label + "StructE", x: ts.StructE{"NotEqual"}, y: ts.StructE{"not_equal"}, opts: []cmp.Option{derefTransform}, }, { label: label + "StructE", x: &ts.StructE{"NotEqual"}, y: &ts.StructE{"not_equal"}, }, { label: label + "StructF", x: ts.StructF{"NotEqual"}, y: ts.StructF{"not_equal"}, wantDiff: ` {teststructs.StructF}.X: -: "NotEqual" +: "not_equal"`, }, { label: label + "StructF", x: &ts.StructF{"NotEqual"}, y: &ts.StructF{"not_equal"}, }, { label: label + "StructA1", x: ts.StructA1{ts.StructA{"NotEqual"}, "equal"}, y: ts.StructA1{ts.StructA{"not_equal"}, "equal"}, }, { label: label + "StructA1", x: ts.StructA1{ts.StructA{"NotEqual"}, "NotEqual"}, y: ts.StructA1{ts.StructA{"not_equal"}, "not_equal"}, wantDiff: "{teststructs.StructA1}.X:\n\t-: \"NotEqual\"\n\t+: \"not_equal\"\n", }, { label: label + "StructA1", x: &ts.StructA1{ts.StructA{"NotEqual"}, "equal"}, y: &ts.StructA1{ts.StructA{"not_equal"}, "equal"}, }, { label: label + "StructA1", x: &ts.StructA1{ts.StructA{"NotEqual"}, "NotEqual"}, y: &ts.StructA1{ts.StructA{"not_equal"}, "not_equal"}, wantDiff: "{*teststructs.StructA1}.X:\n\t-: \"NotEqual\"\n\t+: \"not_equal\"\n", }, { label: label + "StructB1", x: ts.StructB1{ts.StructB{"NotEqual"}, "equal"}, y: ts.StructB1{ts.StructB{"not_equal"}, "equal"}, opts: []cmp.Option{derefTransform}, }, { label: label + "StructB1", x: ts.StructB1{ts.StructB{"NotEqual"}, "NotEqual"}, y: ts.StructB1{ts.StructB{"not_equal"}, "not_equal"}, opts: []cmp.Option{derefTransform}, wantDiff: "{teststructs.StructB1}.X:\n\t-: \"NotEqual\"\n\t+: \"not_equal\"\n", }, { label: label + "StructB1", x: &ts.StructB1{ts.StructB{"NotEqual"}, "equal"}, y: &ts.StructB1{ts.StructB{"not_equal"}, "equal"}, opts: []cmp.Option{derefTransform}, }, { label: label + "StructB1", x: &ts.StructB1{ts.StructB{"NotEqual"}, "NotEqual"}, y: &ts.StructB1{ts.StructB{"not_equal"}, "not_equal"}, opts: []cmp.Option{derefTransform}, wantDiff: "{*teststructs.StructB1}.X:\n\t-: \"NotEqual\"\n\t+: \"not_equal\"\n", }, { label: label + "StructC1", x: ts.StructC1{ts.StructC{"NotEqual"}, "NotEqual"}, y: ts.StructC1{ts.StructC{"not_equal"}, "not_equal"}, }, { label: label + "StructC1", x: &ts.StructC1{ts.StructC{"NotEqual"}, "NotEqual"}, y: &ts.StructC1{ts.StructC{"not_equal"}, "not_equal"}, }, { label: label + "StructD1", x: ts.StructD1{ts.StructD{"NotEqual"}, "NotEqual"}, y: ts.StructD1{ts.StructD{"not_equal"}, "not_equal"}, wantDiff: ` {teststructs.StructD1}.StructD.X: -: "NotEqual" +: "not_equal" {teststructs.StructD1}.X: -: "NotEqual" +: "not_equal"`, }, { label: label + "StructD1", x: ts.StructD1{ts.StructD{"NotEqual"}, "NotEqual"}, y: ts.StructD1{ts.StructD{"not_equal"}, "not_equal"}, opts: []cmp.Option{derefTransform}, }, { label: label + "StructD1", x: &ts.StructD1{ts.StructD{"NotEqual"}, "NotEqual"}, y: &ts.StructD1{ts.StructD{"not_equal"}, "not_equal"}, }, { label: label + "StructE1", x: ts.StructE1{ts.StructE{"NotEqual"}, "NotEqual"}, y: ts.StructE1{ts.StructE{"not_equal"}, "not_equal"}, wantDiff: ` {teststructs.StructE1}.StructE.X: -: "NotEqual" +: "not_equal" {teststructs.StructE1}.X: -: "NotEqual" +: "not_equal"`, }, { label: label + "StructE1", x: ts.StructE1{ts.StructE{"NotEqual"}, "NotEqual"}, y: ts.StructE1{ts.StructE{"not_equal"}, "not_equal"}, opts: []cmp.Option{derefTransform}, }, { label: label + "StructE1", x: &ts.StructE1{ts.StructE{"NotEqual"}, "NotEqual"}, y: &ts.StructE1{ts.StructE{"not_equal"}, "not_equal"}, }, { label: label + "StructF1", x: ts.StructF1{ts.StructF{"NotEqual"}, "NotEqual"}, y: ts.StructF1{ts.StructF{"not_equal"}, "not_equal"}, wantDiff: ` {teststructs.StructF1}.StructF.X: -: "NotEqual" +: "not_equal" {teststructs.StructF1}.X: -: "NotEqual" +: "not_equal"`, }, { label: label + "StructF1", x: &ts.StructF1{ts.StructF{"NotEqual"}, "NotEqual"}, y: &ts.StructF1{ts.StructF{"not_equal"}, "not_equal"}, }, { label: label + "StructA2", x: ts.StructA2{&ts.StructA{"NotEqual"}, "equal"}, y: ts.StructA2{&ts.StructA{"not_equal"}, "equal"}, }, { label: label + "StructA2", x: ts.StructA2{&ts.StructA{"NotEqual"}, "NotEqual"}, y: ts.StructA2{&ts.StructA{"not_equal"}, "not_equal"}, wantDiff: "{teststructs.StructA2}.X:\n\t-: \"NotEqual\"\n\t+: \"not_equal\"\n", }, { label: label + "StructA2", x: &ts.StructA2{&ts.StructA{"NotEqual"}, "equal"}, y: &ts.StructA2{&ts.StructA{"not_equal"}, "equal"}, }, { label: label + "StructA2", x: &ts.StructA2{&ts.StructA{"NotEqual"}, "NotEqual"}, y: &ts.StructA2{&ts.StructA{"not_equal"}, "not_equal"}, wantDiff: "{*teststructs.StructA2}.X:\n\t-: \"NotEqual\"\n\t+: \"not_equal\"\n", }, { label: label + "StructB2", x: ts.StructB2{&ts.StructB{"NotEqual"}, "equal"}, y: ts.StructB2{&ts.StructB{"not_equal"}, "equal"}, }, { label: label + "StructB2", x: ts.StructB2{&ts.StructB{"NotEqual"}, "NotEqual"}, y: ts.StructB2{&ts.StructB{"not_equal"}, "not_equal"}, wantDiff: "{teststructs.StructB2}.X:\n\t-: \"NotEqual\"\n\t+: \"not_equal\"\n", }, { label: label + "StructB2", x: &ts.StructB2{&ts.StructB{"NotEqual"}, "equal"}, y: &ts.StructB2{&ts.StructB{"not_equal"}, "equal"}, }, { label: label + "StructB2", x: &ts.StructB2{&ts.StructB{"NotEqual"}, "NotEqual"}, y: &ts.StructB2{&ts.StructB{"not_equal"}, "not_equal"}, wantDiff: "{*teststructs.StructB2}.X:\n\t-: \"NotEqual\"\n\t+: \"not_equal\"\n", }, { label: label + "StructC2", x: ts.StructC2{&ts.StructC{"NotEqual"}, "NotEqual"}, y: ts.StructC2{&ts.StructC{"not_equal"}, "not_equal"}, }, { label: label + "StructC2", x: &ts.StructC2{&ts.StructC{"NotEqual"}, "NotEqual"}, y: &ts.StructC2{&ts.StructC{"not_equal"}, "not_equal"}, }, { label: label + "StructD2", x: ts.StructD2{&ts.StructD{"NotEqual"}, "NotEqual"}, y: ts.StructD2{&ts.StructD{"not_equal"}, "not_equal"}, }, { label: label + "StructD2", x: &ts.StructD2{&ts.StructD{"NotEqual"}, "NotEqual"}, y: &ts.StructD2{&ts.StructD{"not_equal"}, "not_equal"}, }, { label: label + "StructE2", x: ts.StructE2{&ts.StructE{"NotEqual"}, "NotEqual"}, y: ts.StructE2{&ts.StructE{"not_equal"}, "not_equal"}, }, { label: label + "StructE2", x: &ts.StructE2{&ts.StructE{"NotEqual"}, "NotEqual"}, y: &ts.StructE2{&ts.StructE{"not_equal"}, "not_equal"}, }, { label: label + "StructF2", x: ts.StructF2{&ts.StructF{"NotEqual"}, "NotEqual"}, y: ts.StructF2{&ts.StructF{"not_equal"}, "not_equal"}, }, { label: label + "StructF2", x: &ts.StructF2{&ts.StructF{"NotEqual"}, "NotEqual"}, y: &ts.StructF2{&ts.StructF{"not_equal"}, "not_equal"}, }, { label: label + "StructNo", x: ts.StructNo{"NotEqual"}, y: ts.StructNo{"not_equal"}, wantDiff: "{teststructs.StructNo}.X:\n\t-: \"NotEqual\"\n\t+: \"not_equal\"\n", }, { label: label + "AssignA", x: ts.AssignA(func() int { return 0 }), y: ts.AssignA(func() int { return 1 }), }, { label: label + "AssignB", x: ts.AssignB(struct{ A int }{0}), y: ts.AssignB(struct{ A int }{1}), }, { label: label + "AssignC", x: ts.AssignC(make(chan bool)), y: ts.AssignC(make(chan bool)), }, { label: label + "AssignD", x: ts.AssignD(make(chan bool)), y: ts.AssignD(make(chan bool)), }} } func project1Tests() []test { const label = "Project1" ignoreUnexported := cmpopts.IgnoreUnexported( ts.EagleImmutable{}, ts.DreamerImmutable{}, ts.SlapImmutable{}, ts.GoatImmutable{}, ts.DonkeyImmutable{}, ts.LoveRadius{}, ts.SummerLove{}, ts.SummerLoveSummary{}, ) createEagle := func() ts.Eagle { return ts.Eagle{ Name: "eagle", Hounds: []string{"buford", "tannen"}, Desc: "some description", Dreamers: []ts.Dreamer{{}, { Name: "dreamer2", Animal: []interface{}{ ts.Goat{ Target: "corporation", Immutable: &ts.GoatImmutable{ ID: "southbay", State: (*pb.Goat_States)(intPtr(5)), Started: now, }, }, ts.Donkey{}, }, Amoeba: 53, }}, Slaps: []ts.Slap{{ Name: "slapID", Args: &pb.MetaData{Stringer: pb.Stringer{"metadata"}}, Immutable: &ts.SlapImmutable{ ID: "immutableSlap", MildSlap: true, Started: now, LoveRadius: &ts.LoveRadius{ Summer: &ts.SummerLove{ Summary: &ts.SummerLoveSummary{ Devices: []string{"foo", "bar", "baz"}, ChangeType: []pb.SummerType{1, 2, 3}, }, }, }, }, }}, Immutable: &ts.EagleImmutable{ ID: "eagleID", Birthday: now, MissingCall: (*pb.Eagle_MissingCalls)(intPtr(55)), }, } } return []test{{ label: label, x: ts.Eagle{Slaps: []ts.Slap{{ Args: &pb.MetaData{Stringer: pb.Stringer{"metadata"}}, }}}, y: ts.Eagle{Slaps: []ts.Slap{{ Args: &pb.MetaData{Stringer: pb.Stringer{"metadata"}}, }}}, wantPanic: "cannot handle unexported field", }, { label: label, x: ts.Eagle{Slaps: []ts.Slap{{ Args: &pb.MetaData{Stringer: pb.Stringer{"metadata"}}, }}}, y: ts.Eagle{Slaps: []ts.Slap{{ Args: &pb.MetaData{Stringer: pb.Stringer{"metadata"}}, }}}, opts: []cmp.Option{cmp.Comparer(pb.Equal)}, }, { label: label, x: ts.Eagle{Slaps: []ts.Slap{{}, {}, {}, {}, { Args: &pb.MetaData{Stringer: pb.Stringer{"metadata"}}, }}}, y: ts.Eagle{Slaps: []ts.Slap{{}, {}, {}, {}, { Args: &pb.MetaData{Stringer: pb.Stringer{"metadata2"}}, }}}, opts: []cmp.Option{cmp.Comparer(pb.Equal)}, wantDiff: "{teststructs.Eagle}.Slaps[4].Args:\n\t-: \"metadata\"\n\t+: \"metadata2\"\n", }, { label: label, x: createEagle(), y: createEagle(), opts: []cmp.Option{ignoreUnexported, cmp.Comparer(pb.Equal)}, }, { label: label, x: func() ts.Eagle { eg := createEagle() eg.Dreamers[1].Animal[0].(ts.Goat).Immutable.ID = "southbay2" eg.Dreamers[1].Animal[0].(ts.Goat).Immutable.State = (*pb.Goat_States)(intPtr(6)) eg.Slaps[0].Immutable.MildSlap = false return eg }(), y: func() ts.Eagle { eg := createEagle() devs := eg.Slaps[0].Immutable.LoveRadius.Summer.Summary.Devices eg.Slaps[0].Immutable.LoveRadius.Summer.Summary.Devices = devs[:1] return eg }(), opts: []cmp.Option{ignoreUnexported, cmp.Comparer(pb.Equal)}, wantDiff: ` {teststructs.Eagle}.Dreamers[1].Animal[0].(teststructs.Goat).Immutable.ID: -: "southbay2" +: "southbay" *{teststructs.Eagle}.Dreamers[1].Animal[0].(teststructs.Goat).Immutable.State: -: testprotos.Goat_States(6) +: testprotos.Goat_States(5) {teststructs.Eagle}.Slaps[0].Immutable.MildSlap: -: false +: true {teststructs.Eagle}.Slaps[0].Immutable.LoveRadius.Summer.Summary.Devices[1->?]: -: "bar" +: {teststructs.Eagle}.Slaps[0].Immutable.LoveRadius.Summer.Summary.Devices[2->?]: -: "baz" +: `, }} } type germSorter []*pb.Germ func (gs germSorter) Len() int { return len(gs) } func (gs germSorter) Less(i, j int) bool { return gs[i].String() < gs[j].String() } func (gs germSorter) Swap(i, j int) { gs[i], gs[j] = gs[j], gs[i] } func project2Tests() []test { const label = "Project2" sortGerms := cmp.FilterValues(func(x, y []*pb.Germ) bool { ok1 := sort.IsSorted(germSorter(x)) ok2 := sort.IsSorted(germSorter(y)) return !ok1 || !ok2 }, cmp.Transformer("Sort", func(in []*pb.Germ) []*pb.Germ { out := append([]*pb.Germ(nil), in...) // Make copy sort.Sort(germSorter(out)) return out })) equalDish := cmp.Comparer(func(x, y *ts.Dish) bool { if x == nil || y == nil { return x == nil && y == nil } px, err1 := x.Proto() py, err2 := y.Proto() if err1 != nil || err2 != nil { return err1 == err2 } return pb.Equal(px, py) }) createBatch := func() ts.GermBatch { return ts.GermBatch{ DirtyGerms: map[int32][]*pb.Germ{ 17: { {Stringer: pb.Stringer{"germ1"}}, }, 18: { {Stringer: pb.Stringer{"germ2"}}, {Stringer: pb.Stringer{"germ3"}}, {Stringer: pb.Stringer{"germ4"}}, }, }, GermMap: map[int32]*pb.Germ{ 13: {Stringer: pb.Stringer{"germ13"}}, 21: {Stringer: pb.Stringer{"germ21"}}, }, DishMap: map[int32]*ts.Dish{ 0: ts.CreateDish(nil, io.EOF), 1: ts.CreateDish(nil, io.ErrUnexpectedEOF), 2: ts.CreateDish(&pb.Dish{Stringer: pb.Stringer{"dish"}}, nil), }, HasPreviousResult: true, DirtyID: 10, GermStrain: 421, InfectedAt: now, } } return []test{{ label: label, x: createBatch(), y: createBatch(), wantPanic: "cannot handle unexported field", }, { label: label, x: createBatch(), y: createBatch(), opts: []cmp.Option{cmp.Comparer(pb.Equal), sortGerms, equalDish}, }, { label: label, x: createBatch(), y: func() ts.GermBatch { gb := createBatch() s := gb.DirtyGerms[18] s[0], s[1], s[2] = s[1], s[2], s[0] return gb }(), opts: []cmp.Option{cmp.Comparer(pb.Equal), equalDish}, wantDiff: ` {teststructs.GermBatch}.DirtyGerms[18][0->?]: -: "germ2" +: {teststructs.GermBatch}.DirtyGerms[18][?->2]: -: +: "germ2"`, }, { label: label, x: createBatch(), y: func() ts.GermBatch { gb := createBatch() s := gb.DirtyGerms[18] s[0], s[1], s[2] = s[1], s[2], s[0] return gb }(), opts: []cmp.Option{cmp.Comparer(pb.Equal), sortGerms, equalDish}, }, { label: label, x: func() ts.GermBatch { gb := createBatch() delete(gb.DirtyGerms, 17) gb.DishMap[1] = nil return gb }(), y: func() ts.GermBatch { gb := createBatch() gb.DirtyGerms[18] = gb.DirtyGerms[18][:2] gb.GermStrain = 22 return gb }(), opts: []cmp.Option{cmp.Comparer(pb.Equal), sortGerms, equalDish}, wantDiff: ` {teststructs.GermBatch}.DirtyGerms[17]: -: +: []*testprotos.Germ{"germ1"} {teststructs.GermBatch}.DirtyGerms[18][2->?]: -: "germ4" +: {teststructs.GermBatch}.DishMap[1]: -: (*teststructs.Dish)(nil) +: &teststructs.Dish{err: &errors.errorString{s: "unexpected EOF"}} {teststructs.GermBatch}.GermStrain: -: 421 +: 22`, }} } func project3Tests() []test { const label = "Project3" allowVisibility := cmp.AllowUnexported(ts.Dirt{}) ignoreLocker := cmpopts.IgnoreInterfaces(struct{ sync.Locker }{}) transformProtos := cmp.Transformer("", func(x pb.Dirt) *pb.Dirt { return &x }) equalTable := cmp.Comparer(func(x, y ts.Table) bool { tx, ok1 := x.(*ts.MockTable) ty, ok2 := y.(*ts.MockTable) if !ok1 || !ok2 { panic("table type must be MockTable") } return cmp.Equal(tx.State(), ty.State()) }) createDirt := func() (d ts.Dirt) { d.SetTable(ts.CreateMockTable([]string{"a", "b", "c"})) d.SetTimestamp(12345) d.Discord = 554 d.Proto = pb.Dirt{Stringer: pb.Stringer{"proto"}} d.SetWizard(map[string]*pb.Wizard{ "harry": {Stringer: pb.Stringer{"potter"}}, "albus": {Stringer: pb.Stringer{"dumbledore"}}, }) d.SetLastTime(54321) return d } return []test{{ label: label, x: createDirt(), y: createDirt(), wantPanic: "cannot handle unexported field", }, { label: label, x: createDirt(), y: createDirt(), opts: []cmp.Option{allowVisibility, ignoreLocker, cmp.Comparer(pb.Equal), equalTable}, wantPanic: "cannot handle unexported field", }, { label: label, x: createDirt(), y: createDirt(), opts: []cmp.Option{allowVisibility, transformProtos, ignoreLocker, cmp.Comparer(pb.Equal), equalTable}, }, { label: label, x: func() ts.Dirt { d := createDirt() d.SetTable(ts.CreateMockTable([]string{"a", "c"})) d.Proto = pb.Dirt{Stringer: pb.Stringer{"blah"}} return d }(), y: func() ts.Dirt { d := createDirt() d.Discord = 500 d.SetWizard(map[string]*pb.Wizard{ "harry": {Stringer: pb.Stringer{"otter"}}, }) return d }(), opts: []cmp.Option{allowVisibility, transformProtos, ignoreLocker, cmp.Comparer(pb.Equal), equalTable}, wantDiff: ` {teststructs.Dirt}.table: -: &teststructs.MockTable{state: []string{"a", "c"}} +: &teststructs.MockTable{state: []string{"a", "b", "c"}} {teststructs.Dirt}.Discord: -: teststructs.DiscordState(554) +: teststructs.DiscordState(500) λ({teststructs.Dirt}.Proto): -: "blah" +: "proto" {teststructs.Dirt}.wizard["albus"]: -: "dumbledore" +: {teststructs.Dirt}.wizard["harry"]: -: "potter" +: "otter"`, }} } func project4Tests() []test { const label = "Project4" allowVisibility := cmp.AllowUnexported( ts.Cartel{}, ts.Headquarter{}, ts.Poison{}, ) transformProtos := cmp.Transformer("", func(x pb.Restrictions) *pb.Restrictions { return &x }) createCartel := func() ts.Cartel { var p ts.Poison p.SetPoisonType(5) p.SetExpiration(now) p.SetManufactuer("acme") var hq ts.Headquarter hq.SetID(5) hq.SetLocation("moon") hq.SetSubDivisions([]string{"alpha", "bravo", "charlie"}) hq.SetMetaData(&pb.MetaData{Stringer: pb.Stringer{"metadata"}}) hq.SetPublicMessage([]byte{1, 2, 3, 4, 5}) hq.SetHorseBack("abcdef") hq.SetStatus(44) var c ts.Cartel c.Headquarter = hq c.SetSource("mars") c.SetCreationTime(now) c.SetBoss("al capone") c.SetPoisons([]*ts.Poison{&p}) return c } return []test{{ label: label, x: createCartel(), y: createCartel(), wantPanic: "cannot handle unexported field", }, { label: label, x: createCartel(), y: createCartel(), opts: []cmp.Option{allowVisibility, cmp.Comparer(pb.Equal)}, wantPanic: "cannot handle unexported field", }, { label: label, x: createCartel(), y: createCartel(), opts: []cmp.Option{allowVisibility, transformProtos, cmp.Comparer(pb.Equal)}, }, { label: label, x: func() ts.Cartel { d := createCartel() var p1, p2 ts.Poison p1.SetPoisonType(1) p1.SetExpiration(now) p1.SetManufactuer("acme") p2.SetPoisonType(2) p2.SetManufactuer("acme2") d.SetPoisons([]*ts.Poison{&p1, &p2}) return d }(), y: func() ts.Cartel { d := createCartel() d.SetSubDivisions([]string{"bravo", "charlie"}) d.SetPublicMessage([]byte{1, 2, 4, 3, 5}) return d }(), opts: []cmp.Option{allowVisibility, transformProtos, cmp.Comparer(pb.Equal)}, wantDiff: ` {teststructs.Cartel}.Headquarter.subDivisions[0->?]: -: "alpha" +: {teststructs.Cartel}.Headquarter.publicMessage[2]: -: 0x03 +: 0x04 {teststructs.Cartel}.Headquarter.publicMessage[3]: -: 0x04 +: 0x03 {teststructs.Cartel}.poisons[0].poisonType: -: testprotos.PoisonType(1) +: testprotos.PoisonType(5) {teststructs.Cartel}.poisons[1->?]: -: &teststructs.Poison{poisonType: testprotos.PoisonType(2), manufactuer: "acme2"} +: `, }} } // TODO: Delete this hack when we drop Go1.6 support. func tRunParallel(t *testing.T, name string, f func(t *testing.T)) { type runner interface { Run(string, func(t *testing.T)) bool } var ti interface{} = t if r, ok := ti.(runner); ok { r.Run(name, func(t *testing.T) { t.Parallel() f(t) }) } else { // Cannot run sub-tests in parallel in Go1.6. t.Logf("Test: %s", name) f(t) } } go-cmp-0.1.0/cmp/example_test.go000066400000000000000000000260651314065731500165100ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package cmp_test import ( "fmt" "math" "reflect" "sort" "strings" "github.com/google/go-cmp/cmp" ) // TODO: Re-write these examples in terms of how you actually use the // fundamental options and filters and not in terms of what cool things you can // do with them since that overlaps with cmp/cmpopts. // Use Diff for printing out human-readable errors for test cases comparing // nested or structured data. func ExampleDiff_testing() { // Code under test: type ShipManifest struct { Name string Crew map[string]string Androids int Stolen bool } // AddCrew tries to add the given crewmember to the manifest. AddCrew := func(m *ShipManifest, name, title string) { if m.Crew == nil { m.Crew = make(map[string]string) } m.Crew[title] = name } // Test function: tests := []struct { desc string before *ShipManifest name, title string after *ShipManifest }{ { desc: "add to empty", before: &ShipManifest{}, name: "Zaphod Beeblebrox", title: "Galactic President", after: &ShipManifest{ Crew: map[string]string{ "Zaphod Beeblebrox": "Galactic President", }, }, }, { desc: "add another", before: &ShipManifest{ Crew: map[string]string{ "Zaphod Beeblebrox": "Galactic President", }, }, name: "Trillian", title: "Human", after: &ShipManifest{ Crew: map[string]string{ "Zaphod Beeblebrox": "Galactic President", "Trillian": "Human", }, }, }, { desc: "overwrite", before: &ShipManifest{ Crew: map[string]string{ "Zaphod Beeblebrox": "Galactic President", }, }, name: "Zaphod Beeblebrox", title: "Just this guy, you know?", after: &ShipManifest{ Crew: map[string]string{ "Zaphod Beeblebrox": "Just this guy, you know?", }, }, }, } var t fakeT for _, test := range tests { AddCrew(test.before, test.name, test.title) if diff := cmp.Diff(test.before, test.after); diff != "" { t.Errorf("%s: after AddCrew, manifest differs: (-got +want)\n%s", test.desc, diff) } } // Output: // add to empty: after AddCrew, manifest differs: (-got +want) // {*cmp_test.ShipManifest}.Crew["Galactic President"]: // -: "Zaphod Beeblebrox" // +: // {*cmp_test.ShipManifest}.Crew["Zaphod Beeblebrox"]: // -: // +: "Galactic President" // // add another: after AddCrew, manifest differs: (-got +want) // {*cmp_test.ShipManifest}.Crew["Human"]: // -: "Trillian" // +: // {*cmp_test.ShipManifest}.Crew["Trillian"]: // -: // +: "Human" // // overwrite: after AddCrew, manifest differs: (-got +want) // {*cmp_test.ShipManifest}.Crew["Just this guy, you know?"]: // -: "Zaphod Beeblebrox" // +: // {*cmp_test.ShipManifest}.Crew["Zaphod Beeblebrox"]: // -: "Galactic President" // +: "Just this guy, you know?" } // Approximate equality for floats can be handled by defining a custom // comparer on floats that determines two values to be equal if they are within // some range of each other. // // This example is for demonstrative purposes; use cmpopts.EquateApprox instead. func ExampleOption_approximateFloats() { // This Comparer only operates on float64. // To handle float32s, either define a similar function for that type // or use a Transformer to convert float32s into float64s. opt := cmp.Comparer(func(x, y float64) bool { delta := math.Abs(x - y) mean := math.Abs(x+y) / 2.0 return delta/mean < 0.00001 }) x := []float64{1.0, 1.1, 1.2, math.Pi} y := []float64{1.0, 1.1, 1.2, 3.14159265359} // Accurate enough to Pi z := []float64{1.0, 1.1, 1.2, 3.1415} // Diverges too far from Pi fmt.Println(cmp.Equal(x, y, opt)) fmt.Println(cmp.Equal(y, z, opt)) fmt.Println(cmp.Equal(z, x, opt)) // Output: // true // false // false } // Normal floating-point arithmetic defines == to be false when comparing // NaN with itself. In certain cases, this is not the desired property. // // This example is for demonstrative purposes; use cmpopts.EquateNaNs instead. func ExampleOption_equalNaNs() { // This Comparer only operates on float64. // To handle float32s, either define a similar function for that type // or use a Transformer to convert float32s into float64s. opt := cmp.Comparer(func(x, y float64) bool { return (math.IsNaN(x) && math.IsNaN(y)) || x == y }) x := []float64{1.0, math.NaN(), math.E, -0.0, +0.0} y := []float64{1.0, math.NaN(), math.E, -0.0, +0.0} z := []float64{1.0, math.NaN(), math.Pi, -0.0, +0.0} // Pi constant instead of E fmt.Println(cmp.Equal(x, y, opt)) fmt.Println(cmp.Equal(y, z, opt)) fmt.Println(cmp.Equal(z, x, opt)) // Output: // true // false // false } // To have floating-point comparisons combine both properties of NaN being // equal to itself and also approximate equality of values, filters are needed // to restrict the scope of the comparison so that they are composable. // // This example is for demonstrative purposes; // use cmpopts.EquateNaNs and cmpopts.EquateApprox instead. func ExampleOption_equalNaNsAndApproximateFloats() { alwaysEqual := cmp.Comparer(func(_, _ interface{}) bool { return true }) opts := cmp.Options{ // This option declares that a float64 comparison is equal only if // both inputs are NaN. cmp.FilterValues(func(x, y float64) bool { return math.IsNaN(x) && math.IsNaN(y) }, alwaysEqual), // This option declares approximate equality on float64s only if // both inputs are not NaN. cmp.FilterValues(func(x, y float64) bool { return !math.IsNaN(x) && !math.IsNaN(y) }, cmp.Comparer(func(x, y float64) bool { delta := math.Abs(x - y) mean := math.Abs(x+y) / 2.0 return delta/mean < 0.00001 })), } x := []float64{math.NaN(), 1.0, 1.1, 1.2, math.Pi} y := []float64{math.NaN(), 1.0, 1.1, 1.2, 3.14159265359} // Accurate enough to Pi z := []float64{math.NaN(), 1.0, 1.1, 1.2, 3.1415} // Diverges too far from Pi fmt.Println(cmp.Equal(x, y, opts)) fmt.Println(cmp.Equal(y, z, opts)) fmt.Println(cmp.Equal(z, x, opts)) // Output: // true // false // false } // Sometimes, an empty map or slice is considered equal to an allocated one // of zero length. // // This example is for demonstrative purposes; use cmpopts.EquateEmpty instead. func ExampleOption_equalEmpty() { alwaysEqual := cmp.Comparer(func(_, _ interface{}) bool { return true }) // This option handles slices and maps of any type. opt := cmp.FilterValues(func(x, y interface{}) bool { vx, vy := reflect.ValueOf(x), reflect.ValueOf(y) return (vx.IsValid() && vy.IsValid() && vx.Type() == vy.Type()) && (vx.Kind() == reflect.Slice || vx.Kind() == reflect.Map) && (vx.Len() == 0 && vy.Len() == 0) }, alwaysEqual) type S struct { A []int B map[string]bool } x := S{nil, make(map[string]bool, 100)} y := S{make([]int, 0, 200), nil} z := S{[]int{0}, nil} // []int has a single element (i.e., not empty) fmt.Println(cmp.Equal(x, y, opt)) fmt.Println(cmp.Equal(y, z, opt)) fmt.Println(cmp.Equal(z, x, opt)) // Output: // true // false // false } // Two slices may be considered equal if they have the same elements, // regardless of the order that they appear in. Transformations can be used // to sort the slice. // // This example is for demonstrative purposes; use cmpopts.SortSlices instead. func ExampleOption_sortedSlice() { // This Transformer sorts a []int. // Since the transformer transforms []int into []int, there is problem where // this is recursively applied forever. To prevent this, use a FilterValues // to first check for the condition upon which the transformer ought to apply. trans := cmp.FilterValues(func(x, y []int) bool { return !sort.IntsAreSorted(x) || !sort.IntsAreSorted(y) }, cmp.Transformer("Sort", func(in []int) []int { out := append([]int(nil), in...) // Copy input to avoid mutating it sort.Ints(out) return out })) x := struct{ Ints []int }{[]int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}} y := struct{ Ints []int }{[]int{2, 8, 0, 9, 6, 1, 4, 7, 3, 5}} z := struct{ Ints []int }{[]int{0, 0, 1, 2, 3, 4, 5, 6, 7, 8}} fmt.Println(cmp.Equal(x, y, trans)) fmt.Println(cmp.Equal(y, z, trans)) fmt.Println(cmp.Equal(z, x, trans)) // Output: // true // false // false } type otherString string func (x otherString) Equal(y otherString) bool { return strings.ToLower(string(x)) == strings.ToLower(string(y)) } // If the Equal method defined on a type is not suitable, the type can be be // dynamically transformed to be stripped of the Equal method (or any method // for that matter). func ExampleOption_avoidEqualMethod() { // Suppose otherString.Equal performs a case-insensitive equality, // which is too loose for our needs. // We can avoid the methods of otherString by declaring a new type. type myString otherString // This transformer converts otherString to myString, allowing Equal to use // other Options to determine equality. trans := cmp.Transformer("", func(in otherString) myString { return myString(in) }) x := []otherString{"foo", "bar", "baz"} y := []otherString{"fOO", "bAr", "Baz"} // Same as before, but with different case fmt.Println(cmp.Equal(x, y)) // Equal because of case-insensitivity fmt.Println(cmp.Equal(x, y, trans)) // Not equal because of more exact equality // Output: // true // false } func roundF64(z float64) float64 { if z < 0 { return math.Ceil(z - 0.5) } return math.Floor(z + 0.5) } // The complex numbers complex64 and complex128 can really just be decomposed // into a pair of float32 or float64 values. It would be convenient to be able // define only a single comparator on float64 and have float32, complex64, and // complex128 all be able to use that comparator. Transformations can be used // to handle this. func ExampleOption_transformComplex() { opts := []cmp.Option{ // This transformer decomposes complex128 into a pair of float64s. cmp.Transformer("T1", func(in complex128) (out struct{ Real, Imag float64 }) { out.Real, out.Imag = real(in), imag(in) return out }), // This transformer converts complex64 to complex128 to allow the // above transform to take effect. cmp.Transformer("T2", func(in complex64) complex128 { return complex128(in) }), // This transformer converts float32 to float64. cmp.Transformer("T3", func(in float32) float64 { return float64(in) }), // This equality function compares float64s as rounded integers. cmp.Comparer(func(x, y float64) bool { return roundF64(x) == roundF64(y) }), } x := []interface{}{ complex128(3.0), complex64(5.1 + 2.9i), float32(-1.2), float64(12.3), } y := []interface{}{ complex128(3.1), complex64(4.9 + 3.1i), float32(-1.3), float64(11.7), } z := []interface{}{ complex128(3.8), complex64(4.9 + 3.1i), float32(-1.3), float64(11.7), } fmt.Println(cmp.Equal(x, y, opts...)) fmt.Println(cmp.Equal(y, z, opts...)) fmt.Println(cmp.Equal(z, x, opts...)) // Output: // true // false // false } type fakeT struct{} func (t fakeT) Errorf(format string, args ...interface{}) { fmt.Printf(format+"\n", args...) } go-cmp-0.1.0/cmp/internal/000077500000000000000000000000001314065731500152725ustar00rootroot00000000000000go-cmp-0.1.0/cmp/internal/diff/000077500000000000000000000000001314065731500162025ustar00rootroot00000000000000go-cmp-0.1.0/cmp/internal/diff/debug_disable.go000066400000000000000000000005771314065731500213130ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. // +build !debug package diff var debug debugger type debugger struct{} func (debugger) Begin(_, _ int, f EqualFunc, _, _ *EditScript) EqualFunc { return f } func (debugger) Update() {} func (debugger) Finish() {} go-cmp-0.1.0/cmp/internal/diff/debug_enable.go000066400000000000000000000077301314065731500211340ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. // +build debug package diff import ( "fmt" "strings" "sync" "time" ) // The algorithm can be seen running in real-time by enabling debugging: // go test -tags=debug -v // // Example output: // === RUN TestDifference/#34 // ┌───────────────────────────────┐ // │ \ · · · · · · · · · · · · · · │ // │ · # · · · · · · · · · · · · · │ // │ · \ · · · · · · · · · · · · · │ // │ · · \ · · · · · · · · · · · · │ // │ · · · X # · · · · · · · · · · │ // │ · · · # \ · · · · · · · · · · │ // │ · · · · · # # · · · · · · · · │ // │ · · · · · # \ · · · · · · · · │ // │ · · · · · · · \ · · · · · · · │ // │ · · · · · · · · \ · · · · · · │ // │ · · · · · · · · · \ · · · · · │ // │ · · · · · · · · · · \ · · # · │ // │ · · · · · · · · · · · \ # # · │ // │ · · · · · · · · · · · # # # · │ // │ · · · · · · · · · · # # # # · │ // │ · · · · · · · · · # # # # # · │ // │ · · · · · · · · · · · · · · \ │ // └───────────────────────────────┘ // [.Y..M.XY......YXYXY.|] // // The grid represents the edit-graph where the horizontal axis represents // list X and the vertical axis represents list Y. The start of the two lists // is the top-left, while the ends are the bottom-right. The '·' represents // an unexplored node in the graph. The '\' indicates that the two symbols // from list X and Y are equal. The 'X' indicates that two symbols are similar // (but not exactly equal) to each other. The '#' indicates that the two symbols // are different (and not similar). The algorithm traverses this graph trying to // make the paths starting in the top-left and the bottom-right connect. // // The series of '.', 'X', 'Y', and 'M' characters at the bottom represents // the currently established path from the forward and reverse searches, // seperated by a '|' character. const ( updateDelay = 100 * time.Millisecond finishDelay = 500 * time.Millisecond ansiTerminal = true // ANSI escape codes used to move terminal cursor ) var debug debugger type debugger struct { sync.Mutex p1, p2 EditScript fwdPath, revPath *EditScript grid []byte lines int } func (dbg *debugger) Begin(nx, ny int, f EqualFunc, p1, p2 *EditScript) EqualFunc { dbg.Lock() dbg.fwdPath, dbg.revPath = p1, p2 top := "┌─" + strings.Repeat("──", nx) + "┐\n" row := "│ " + strings.Repeat("· ", nx) + "│\n" btm := "└─" + strings.Repeat("──", nx) + "┘\n" dbg.grid = []byte(top + strings.Repeat(row, ny) + btm) dbg.lines = strings.Count(dbg.String(), "\n") fmt.Print(dbg) // Wrap the EqualFunc so that we can intercept each result. return func(ix, iy int) (r Result) { cell := dbg.grid[len(top)+iy*len(row):][len("│ ")+len("· ")*ix:][:len("·")] for i := range cell { cell[i] = 0 // Zero out the multiple bytes of UTF-8 middle-dot } switch r = f(ix, iy); { case r.Equal(): cell[0] = '\\' case r.Similar(): cell[0] = 'X' default: cell[0] = '#' } return } } func (dbg *debugger) Update() { dbg.print(updateDelay) } func (dbg *debugger) Finish() { dbg.print(finishDelay) dbg.Unlock() } func (dbg *debugger) String() string { dbg.p1, dbg.p2 = *dbg.fwdPath, dbg.p2[:0] for i := len(*dbg.revPath) - 1; i >= 0; i-- { dbg.p2 = append(dbg.p2, (*dbg.revPath)[i]) } return fmt.Sprintf("%s[%v|%v]\n\n", dbg.grid, dbg.p1, dbg.p2) } func (dbg *debugger) print(d time.Duration) { if ansiTerminal { fmt.Printf("\x1b[%dA", dbg.lines) // Reset terminal cursor } fmt.Print(dbg) time.Sleep(d) } go-cmp-0.1.0/cmp/internal/diff/diff.go000066400000000000000000000304171314065731500174460ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. // Package diff implements an algorithm for producing edit-scripts. // The edit-script is a sequence of operations needed to transform one list // of symbols into another (or vice-versa). The edits allowed are insertions, // deletions, and modifications. The summation of all edits is called the // Levenshtein distance as this problem is well-known in computer science. // // This package prioritizes performance over accuracy. That is, the run time // is more important than obtaining a minimal Levenshtein distance. package diff // EditType represents a single operation within an edit-script. type EditType uint8 const ( // Identity indicates that a symbol pair is identical in both list X and Y. Identity EditType = iota // UniqueX indicates that a symbol only exists in X and not Y. UniqueX // UniqueY indicates that a symbol only exists in Y and not X. UniqueY // Modified indicates that a symbol pair is a modification of each other. Modified ) // EditScript represents the series of differences between two lists. type EditScript []EditType // String returns a human-readable string representing the edit-script where // Identity, UniqueX, UniqueY, and Modified are represented by the // '.', 'X', 'Y', and 'M' characters, respectively. func (es EditScript) String() string { b := make([]byte, len(es)) for i, e := range es { switch e { case Identity: b[i] = '.' case UniqueX: b[i] = 'X' case UniqueY: b[i] = 'Y' case Modified: b[i] = 'M' default: panic("invalid edit-type") } } return string(b) } // stats returns a histogram of the number of each type of edit operation. func (es EditScript) stats() (s struct{ NI, NX, NY, NM int }) { for _, e := range es { switch e { case Identity: s.NI++ case UniqueX: s.NX++ case UniqueY: s.NY++ case Modified: s.NM++ default: panic("invalid edit-type") } } return } // Dist is the Levenshtein distance and is guaranteed to be 0 if and only if // lists X and Y are equal. func (es EditScript) Dist() int { return len(es) - es.stats().NI } // LenX is the length of the X list. func (es EditScript) LenX() int { return len(es) - es.stats().NY } // LenY is the length of the Y list. func (es EditScript) LenY() int { return len(es) - es.stats().NX } // EqualFunc reports whether the symbols at indexes ix and iy are equal. // When called by Difference, the index is guaranteed to be within nx and ny. type EqualFunc func(ix int, iy int) Result // Result is the result of comparison. // NSame is the number of sub-elements that are equal. // NDiff is the number of sub-elements that are not equal. type Result struct{ NSame, NDiff int } // Equal indicates whether the symbols are equal. Two symbols are equal // if and only if NDiff == 0. If Equal, then they are also Similar. func (r Result) Equal() bool { return r.NDiff == 0 } // Similar indicates whether two symbols are similar and may be represented // by using the Modified type. As a special case, we consider binary comparisons // (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar. // // The exact ratio of NSame to NDiff to determine similarity may change. func (r Result) Similar() bool { // Use NSame+1 to offset NSame so that binary comparisons are similar. return r.NSame+1 >= r.NDiff } // Difference reports whether two lists of lengths nx and ny are equal // given the definition of equality provided as f. // // This function may return a edit-script, which is a sequence of operations // needed to convert one list into the other. If non-nil, the following // invariants for the edit-script are maintained: // • eq == (es.Dist()==0) // • nx == es.LenX() // • ny == es.LenY() // // This algorithm is not guaranteed to be an optimal solution (i.e., one that // produces an edit-script with a minimal Levenshtein distance). This algorithm // favors performance over optimality. The exact output is not guaranteed to // be stable and may change over time. func Difference(nx, ny int, f EqualFunc) (eq bool, es EditScript) { es = searchGraph(nx, ny, f) st := es.stats() eq = len(es) == st.NI if !eq && st.NI < (nx+ny)/4 { return eq, nil // Edit-script more distracting than helpful } return eq, es } func searchGraph(nx, ny int, f EqualFunc) EditScript { // This algorithm is based on traversing what is known as an "edit-graph". // See Figure 1 from "An O(ND) Difference Algorithm and Its Variations" // by Eugene W. Myers. Since D can be as large as N itself, this is // effectively O(N^2). Unlike the algorithm from that paper, we are not // interested in the optimal path, but at least some "decent" path. // // For example, let X and Y be lists of symbols: // X = [A B C A B B A] // Y = [C B A B A C] // // The edit-graph can be drawn as the following: // A B C A B B A // ┌─────────────┐ // C │_|_|\|_|_|_|_│ 0 // B │_|\|_|_|\|\|_│ 1 // A │\|_|_|\|_|_|\│ 2 // B │_|\|_|_|\|\|_│ 3 // A │\|_|_|\|_|_|\│ 4 // C │ | |\| | | | │ 5 // └─────────────┘ 6 // 0 1 2 3 4 5 6 7 // // List X is written along the horizontal axis, while list Y is written // along the vertical axis. At any point on this grid, if the symbol in // list X matches the corresponding symbol in list Y, then a '\' is drawn. // The goal of any minimal edit-script algorithm is to find a path from the // top-left corner to the bottom-right corner, while traveling through the // fewest horizontal or vertical edges. // A horizontal edge is equivalent to inserting a symbol from list X. // A vertical edge is equivalent to inserting a symbol from list Y. // A diagonal edge is equivalent to a matching symbol between both X and Y. // Invariants: // • 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx // • 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny // // In general: // • fwdFrontier.X < revFrontier.X // • fwdFrontier.Y < revFrontier.Y // Unless, it is time for the algorithm to terminate. fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)} revPath := path{-1, point{nx, ny}, make(EditScript, 0)} fwdFrontier := fwdPath.point // Forward search frontier revFrontier := revPath.point // Reverse search frontier // Search budget bounds the cost of searching for better paths. // The longest sequence of non-matching symbols that can be tolerated is // approximately the square-root of the search budget. searchBudget := 4 * (nx + ny) // O(n) // The algorithm below is a greedy, meet-in-the-middle algorithm for // computing sub-optimal edit-scripts between two lists. // // The algorithm is approximately as follows: // • Searching for differences switches back-and-forth between // a search that starts at the beginning (the top-left corner), and // a search that starts at the end (the bottom-right corner). The goal of // the search is connect with the search from the opposite corner. // • As we search, we build a path in a greedy manner, where the first // match seen is added to the path (this is sub-optimal, but provides a // decent result in practice). When matches are found, we try the next pair // of symbols in the lists and follow all matches as far as possible. // • When searching for matches, we search along a diagonal going through // through the "frontier" point. If no matches are found, we advance the // frontier towards the opposite corner. // • This algorithm terminates when either the X coordinates or the // Y coordinates of the forward and reverse frontier points ever intersect. // // This algorithm is correct even if searching only in the forward direction // or in the reverse direction. We do both because it is commonly observed // that two lists commonly differ because elements were added to the front // or end of the other list. // // Running the tests with the "debug" build tag prints a visualization of // the algorithm running in real-time. This is educational for understanding // how the algorithm works. See debug_enable.go. f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es) for { // Forward search from the beginning. if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 { break } for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ { // Search in a diagonal pattern for a match. z := zigzag(i) p := point{fwdFrontier.X + z, fwdFrontier.Y - z} switch { case p.X >= revPath.X || p.Y < fwdPath.Y: stop1 = true // Hit top-right corner case p.Y >= revPath.Y || p.X < fwdPath.X: stop2 = true // Hit bottom-left corner case f(p.X, p.Y).Equal(): // Match found, so connect the path to this point. fwdPath.connect(p, f) fwdPath.append(Identity) // Follow sequence of matches as far as possible. for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y { if !f(fwdPath.X, fwdPath.Y).Equal() { break } fwdPath.append(Identity) } fwdFrontier = fwdPath.point stop1, stop2 = true, true default: searchBudget-- // Match not found } debug.Update() } // Advance the frontier towards reverse point. if revPath.X-fwdFrontier.X >= revPath.Y-fwdFrontier.Y { fwdFrontier.X++ } else { fwdFrontier.Y++ } // Reverse search from the end. if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 { break } for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ { // Search in a diagonal pattern for a match. z := zigzag(i) p := point{revFrontier.X - z, revFrontier.Y + z} switch { case fwdPath.X >= p.X || revPath.Y < p.Y: stop1 = true // Hit bottom-left corner case fwdPath.Y >= p.Y || revPath.X < p.X: stop2 = true // Hit top-right corner case f(p.X-1, p.Y-1).Equal(): // Match found, so connect the path to this point. revPath.connect(p, f) revPath.append(Identity) // Follow sequence of matches as far as possible. for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y { if !f(revPath.X-1, revPath.Y-1).Equal() { break } revPath.append(Identity) } revFrontier = revPath.point stop1, stop2 = true, true default: searchBudget-- // Match not found } debug.Update() } // Advance the frontier towards forward point. if revFrontier.X-fwdPath.X >= revFrontier.Y-fwdPath.Y { revFrontier.X-- } else { revFrontier.Y-- } } // Join the forward and reverse paths and then append the reverse path. fwdPath.connect(revPath.point, f) for i := len(revPath.es) - 1; i >= 0; i-- { t := revPath.es[i] revPath.es = revPath.es[:i] fwdPath.append(t) } debug.Finish() return fwdPath.es } type path struct { dir int // +1 if forward, -1 if reverse point // Leading point of the EditScript path es EditScript } // connect appends any necessary Identity, Modified, UniqueX, or UniqueY types // to the edit-script to connect p.point to dst. func (p *path) connect(dst point, f EqualFunc) { if p.dir > 0 { // Connect in forward direction. for dst.X > p.X && dst.Y > p.Y { switch r := f(p.X, p.Y); { case r.Equal(): p.append(Identity) case r.Similar(): p.append(Modified) case dst.X-p.X >= dst.Y-p.Y: p.append(UniqueX) default: p.append(UniqueY) } } for dst.X > p.X { p.append(UniqueX) } for dst.Y > p.Y { p.append(UniqueY) } } else { // Connect in reverse direction. for p.X > dst.X && p.Y > dst.Y { switch r := f(p.X-1, p.Y-1); { case r.Equal(): p.append(Identity) case r.Similar(): p.append(Modified) case p.Y-dst.Y >= p.X-dst.X: p.append(UniqueY) default: p.append(UniqueX) } } for p.X > dst.X { p.append(UniqueX) } for p.Y > dst.Y { p.append(UniqueY) } } } func (p *path) append(t EditType) { p.es = append(p.es, t) switch t { case Identity, Modified: p.add(p.dir, p.dir) case UniqueX: p.add(p.dir, 0) case UniqueY: p.add(0, p.dir) } debug.Update() } type point struct{ X, Y int } func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy } // zigzag maps a consecutive sequence of integers to a zig-zag sequence. // [0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...] func zigzag(x int) int { if x&1 != 0 { x = ^x } return x >> 1 } go-cmp-0.1.0/cmp/internal/diff/diff_test.go000066400000000000000000000272301314065731500205040ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package diff import ( "fmt" "math/rand" "strings" "testing" "unicode" ) func TestDifference(t *testing.T) { tests := []struct { // Before passing x and y to Difference, we strip all spaces so that // they can be used by the test author to indicate a missing symbol // in one of the lists. x, y string want string }{{ x: "", y: "", want: "", }, { x: "#", y: "#", want: ".", }, { x: "##", y: "# ", want: ".X", }, { x: "a#", y: "A ", want: "MX", }, { x: "#a", y: " A", want: "XM", }, { x: "# ", y: "##", want: ".Y", }, { x: " #", y: "@#", want: "Y.", }, { x: "@#", y: " #", want: "X.", }, { x: "##########0123456789", y: " 0123456789", want: "XXXXXXXXXX..........", }, { x: " 0123456789", y: "##########0123456789", want: "YYYYYYYYYY..........", }, { x: "#####0123456789#####", y: " 0123456789 ", want: "XXXXX..........XXXXX", }, { x: " 0123456789 ", y: "#####0123456789#####", want: "YYYYY..........YYYYY", }, { x: "01234##########56789", y: "01234 56789", want: ".....XXXXXXXXXX.....", }, { x: "01234 56789", y: "01234##########56789", want: ".....YYYYYYYYYY.....", }, { x: "0123456789##########", y: "0123456789 ", want: "..........XXXXXXXXXX", }, { x: "0123456789 ", y: "0123456789##########", want: "..........YYYYYYYYYY", }, { x: "abcdefghij0123456789", y: "ABCDEFGHIJ0123456789", want: "MMMMMMMMMM..........", }, { x: "ABCDEFGHIJ0123456789", y: "abcdefghij0123456789", want: "MMMMMMMMMM..........", }, { x: "01234abcdefghij56789", y: "01234ABCDEFGHIJ56789", want: ".....MMMMMMMMMM.....", }, { x: "01234ABCDEFGHIJ56789", y: "01234abcdefghij56789", want: ".....MMMMMMMMMM.....", }, { x: "0123456789abcdefghij", y: "0123456789ABCDEFGHIJ", want: "..........MMMMMMMMMM", }, { x: "0123456789ABCDEFGHIJ", y: "0123456789abcdefghij", want: "..........MMMMMMMMMM", }, { x: "ABCDEFGHIJ0123456789 ", y: " 0123456789abcdefghij", want: "XXXXXXXXXX..........YYYYYYYYYY", }, { x: " 0123456789abcdefghij", y: "ABCDEFGHIJ0123456789 ", want: "YYYYYYYYYY..........XXXXXXXXXX", }, { x: "ABCDE0123456789 FGHIJ", y: " 0123456789abcdefghij", want: "XXXXX..........YYYYYMMMMM", }, { x: " 0123456789abcdefghij", y: "ABCDE0123456789 FGHIJ", want: "YYYYY..........XXXXXMMMMM", }, { x: "ABCDE01234F G H I J 56789 ", y: " 01234 a b c d e56789fghij", want: "XXXXX.....XYXYXYXYXY.....YYYYY", }, { x: " 01234a b c d e 56789fghij", y: "ABCDE01234 F G H I J56789 ", want: "YYYYY.....XYXYXYXYXY.....XXXXX", }, { x: "FGHIJ01234ABCDE56789 ", y: " 01234abcde56789fghij", want: "XXXXX.....MMMMM.....YYYYY", }, { x: " 01234abcde56789fghij", y: "FGHIJ01234ABCDE56789 ", want: "YYYYY.....MMMMM.....XXXXX", }, { x: "ABCAB BA ", y: " C BABAC", want: "XX.X.Y..Y", }, { x: "# #### ###", y: "#y####yy###", want: ".Y....YY...", }, { x: "# #### # ##x#x", y: "#y####y y## # ", want: ".Y....YXY..X.X", }, { x: "###z#z###### x #", y: "#y##Z#Z###### yy#", want: ".Y..M.M......XYY.", }, { x: "0 12z3x 456789 x x 0", y: "0y12Z3 y456789y y y0", want: ".Y..M.XY......YXYXY.", }, { x: "0 2 4 6 8 ..................abXXcdEXF.ghXi", y: " 1 3 5 7 9..................AB CDE F.GH I", want: "XYXYXYXYXY..................MMXXMM.X..MMXM", }, { x: "I HG.F EDC BA..................9 7 5 3 1 ", y: "iXhg.FXEdcXXba.................. 8 6 4 2 0", want: "MYMM..Y.MMYYMM..................XYXYXYXYXY", }, { x: "x1234", y: " 1234", want: "X....", }, { x: "x123x4", y: " 123 4", want: "X...X.", }, { x: "x1234x56", y: " 1234 ", want: "X....XXX", }, { x: "x1234xxx56", y: " 1234 56", want: "X....XXX..", }, { x: ".1234...ab", y: " 1234 AB", want: "X....XXXMM", }, { x: "x1234xxab.", y: " 1234 AB ", want: "X....XXMMX", }, { x: " 0123456789", y: "9012345678 ", want: "Y.........X", }, { x: " 0123456789", y: "8901234567 ", want: "YY........XX", }, { x: " 0123456789", y: "7890123456 ", want: "YYY.......XXX", }, { x: " 0123456789", y: "6789012345 ", want: "YYYY......XXXX", }, { x: "0123456789 ", y: " 5678901234", want: "XXXXX.....YYYYY", }, { x: "0123456789 ", y: " 4567890123", want: "XXXX......YYYY", }, { x: "0123456789 ", y: " 3456789012", want: "XXX.......YYY", }, { x: "0123456789 ", y: " 2345678901", want: "XX........YY", }, { x: "0123456789 ", y: " 1234567890", want: "X.........Y", }, { x: "0123456789", y: "9876543210", }, { x: "0123456789", y: "6725819034", }, { x: "FBQMOIGTLN72X90E4SP651HKRJUDA83CVZW", y: "5WHXO10R9IVKZLCTAJ8P3NSEQM472G6UBDF", }} for _, tt := range tests { tRun(t, "", func(t *testing.T) { x := strings.Replace(tt.x, " ", "", -1) y := strings.Replace(tt.y, " ", "", -1) es := testStrings(t, x, y) if got := es.String(); got != tt.want { t.Errorf("Difference(%s, %s):\ngot %s\nwant %s", x, y, got, tt.want) } }) } } func TestDifferenceFuzz(t *testing.T) { tests := []struct{ px, py, pm float32 }{ {px: 0.0, py: 0.0, pm: 0.1}, {px: 0.0, py: 0.1, pm: 0.0}, {px: 0.1, py: 0.0, pm: 0.0}, {px: 0.0, py: 0.1, pm: 0.1}, {px: 0.1, py: 0.0, pm: 0.1}, {px: 0.2, py: 0.2, pm: 0.2}, {px: 0.3, py: 0.1, pm: 0.2}, {px: 0.1, py: 0.3, pm: 0.2}, {px: 0.2, py: 0.2, pm: 0.2}, {px: 0.3, py: 0.3, pm: 0.3}, {px: 0.1, py: 0.1, pm: 0.5}, {px: 0.4, py: 0.1, pm: 0.5}, {px: 0.3, py: 0.2, pm: 0.5}, {px: 0.2, py: 0.3, pm: 0.5}, {px: 0.1, py: 0.4, pm: 0.5}, } for i, tt := range tests { tRun(t, fmt.Sprintf("P%d", i), func(t *testing.T) { // Sweep from 1B to 1KiB. for n := 1; n <= 1024; n <<= 1 { tRun(t, fmt.Sprintf("N%d", n), func(t *testing.T) { for j := 0; j < 10; j++ { x, y := generateStrings(n, tt.px, tt.py, tt.pm, int64(j)) testStrings(t, x, y) } }) } }) } } func benchmarkDifference(b *testing.B, n int) { // TODO: Use testing.B.Run when we drop Go1.6 support. x, y := generateStrings(n, 0.05, 0.05, 0.10, 0) b.ReportAllocs() b.SetBytes(int64(len(x) + len(y))) for i := 0; i < b.N; i++ { Difference(len(x), len(y), func(ix, iy int) Result { return compareByte(x[ix], y[iy]) }) } } func BenchmarkDifference1K(b *testing.B) { benchmarkDifference(b, 1<<10) } func BenchmarkDifference4K(b *testing.B) { benchmarkDifference(b, 1<<12) } func BenchmarkDifference16K(b *testing.B) { benchmarkDifference(b, 1<<14) } func BenchmarkDifference64K(b *testing.B) { benchmarkDifference(b, 1<<16) } func BenchmarkDifference256K(b *testing.B) { benchmarkDifference(b, 1<<18) } func BenchmarkDifference1M(b *testing.B) { benchmarkDifference(b, 1<<20) } func generateStrings(n int, px, py, pm float32, seed int64) (string, string) { if px+py+pm > 1.0 { panic("invalid probabilities") } py += px pm += py b := make([]byte, n) r := rand.New(rand.NewSource(seed)) r.Read(b) var x, y []byte for len(b) > 0 { switch p := r.Float32(); { case p < px: // UniqueX x = append(x, b[0]) case p < py: // UniqueY y = append(y, b[0]) case p < pm: // Modified x = append(x, 'A'+(b[0]%26)) y = append(y, 'a'+(b[0]%26)) default: // Identity x = append(x, b[0]) y = append(y, b[0]) } b = b[1:] } return string(x), string(y) } func testStrings(t *testing.T, x, y string) EditScript { wantEq := x == y eq, es := Difference(len(x), len(y), func(ix, iy int) Result { return compareByte(x[ix], y[iy]) }) if eq != wantEq { t.Errorf("equality mismatch: got %v, want %v", eq, wantEq) } if es != nil { if es.LenX() != len(x) { t.Errorf("es.LenX = %d, want %d", es.LenX(), len(x)) } if es.LenY() != len(y) { t.Errorf("es.LenY = %d, want %d", es.LenY(), len(y)) } if got := (es.Dist() == 0); got != wantEq { t.Errorf("violation of equality invariant: got %v, want %v", got, wantEq) } if !validateScript(x, y, es) { t.Errorf("invalid edit script: %v", es) } } return es } func validateScript(x, y string, es EditScript) bool { var bx, by []byte for _, e := range es { switch e { case Identity: if !compareByte(x[len(bx)], y[len(by)]).Equal() { return false } bx = append(bx, x[len(bx)]) by = append(by, y[len(by)]) case UniqueX: bx = append(bx, x[len(bx)]) case UniqueY: by = append(by, y[len(by)]) case Modified: if !compareByte(x[len(bx)], y[len(by)]).Similar() { return false } bx = append(bx, x[len(bx)]) by = append(by, y[len(by)]) } } return string(bx) == x && string(by) == y } // compareByte returns a Result where the result is Equal if x == y, // similar if x and y differ only in casing, and different otherwise. func compareByte(x, y byte) (r Result) { switch { case x == y: return equalResult // Identity case unicode.ToUpper(rune(x)) == unicode.ToUpper(rune(y)): return similarResult // Modified default: return differentResult // UniqueX or UniqueY } } var ( equalResult = Result{NDiff: 0} similarResult = Result{NDiff: 1} differentResult = Result{NDiff: 2} ) func TestResult(t *testing.T) { tests := []struct { result Result wantEqual bool wantSimilar bool }{ // equalResult is equal since NDiff == 0, by definition of Equal method. {equalResult, true, true}, // similarResult is similar since it is a binary result where only one // element was compared (i.e., Either NSame==1 or NDiff==1). {similarResult, false, true}, // differentResult is different since there are enough differences that // it isn't even considered similar. {differentResult, false, false}, // Zero value is always equal. {Result{NSame: 0, NDiff: 0}, true, true}, // Binary comparisons (where NSame+NDiff == 1) are always similar. {Result{NSame: 1, NDiff: 0}, true, true}, {Result{NSame: 0, NDiff: 1}, false, true}, // More complex ratios. The exact ratio for similarity may change, // and may require updates to these test cases. {Result{NSame: 1, NDiff: 1}, false, true}, {Result{NSame: 1, NDiff: 2}, false, true}, {Result{NSame: 1, NDiff: 3}, false, false}, {Result{NSame: 2, NDiff: 1}, false, true}, {Result{NSame: 2, NDiff: 2}, false, true}, {Result{NSame: 2, NDiff: 3}, false, true}, {Result{NSame: 3, NDiff: 1}, false, true}, {Result{NSame: 3, NDiff: 2}, false, true}, {Result{NSame: 3, NDiff: 3}, false, true}, {Result{NSame: 1000, NDiff: 0}, true, true}, {Result{NSame: 1000, NDiff: 1}, false, true}, {Result{NSame: 1000, NDiff: 2}, false, true}, {Result{NSame: 0, NDiff: 1000}, false, false}, {Result{NSame: 1, NDiff: 1000}, false, false}, {Result{NSame: 2, NDiff: 1000}, false, false}, } for _, tt := range tests { if got := tt.result.Equal(); got != tt.wantEqual { t.Errorf("%#v.Equal() = %v, want %v", tt.result, got, tt.wantEqual) } if got := tt.result.Similar(); got != tt.wantSimilar { t.Errorf("%#v.Similar() = %v, want %v", tt.result, got, tt.wantSimilar) } } } // TODO: Delete this hack when we drop Go1.6 support. func tRun(t *testing.T, name string, f func(t *testing.T)) { type runner interface { Run(string, func(t *testing.T)) bool } var ti interface{} = t if r, ok := ti.(runner); ok { r.Run(name, f) } else { t.Logf("Test: %s", name) f(t) } } go-cmp-0.1.0/cmp/internal/function/000077500000000000000000000000001314065731500171175ustar00rootroot00000000000000go-cmp-0.1.0/cmp/internal/function/func.go000066400000000000000000000023661314065731500204100ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. // Package function identifies function types. package function import "reflect" type funcType int const ( _ funcType = iota ttbFunc // func(T, T) bool tibFunc // func(T, I) bool trFunc // func(T) R Equal = ttbFunc // func(T, T) bool EqualAssignable = tibFunc // func(T, I) bool; encapsulates func(T, T) bool Transformer = trFunc // func(T) R ValueFilter = ttbFunc // func(T, T) bool Less = ttbFunc // func(T, T) bool ) var boolType = reflect.TypeOf(true) // IsType reports whether the reflect.Type is of the specified function type. func IsType(t reflect.Type, ft funcType) bool { if t == nil || t.Kind() != reflect.Func || t.IsVariadic() { return false } ni, no := t.NumIn(), t.NumOut() switch ft { case ttbFunc: // func(T, T) bool if ni == 2 && no == 1 && t.In(0) == t.In(1) && t.Out(0) == boolType { return true } case tibFunc: // func(T, I) bool if ni == 2 && no == 1 && t.In(0).AssignableTo(t.In(1)) && t.Out(0) == boolType { return true } case trFunc: // func(T) R if ni == 1 && no == 1 { return true } } return false } go-cmp-0.1.0/cmp/internal/testprotos/000077500000000000000000000000001314065731500175205ustar00rootroot00000000000000go-cmp-0.1.0/cmp/internal/testprotos/protos.go000066400000000000000000000031021314065731500213710ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package testprotos func Equal(x, y Message) bool { if x == nil || y == nil { return x == nil && y == nil } return x.String() == y.String() } type Message interface { Proto() String() string } type proto interface { Proto() } type notComparable struct { unexportedField func() } type Stringer struct{ X string } func (s *Stringer) String() string { return s.X } // Project1 protocol buffers type ( Eagle_States int Eagle_MissingCalls int Dreamer_States int Dreamer_MissingCalls int Slap_States int Goat_States int Donkey_States int SummerType int Eagle struct { proto notComparable Stringer } Dreamer struct { proto notComparable Stringer } Slap struct { proto notComparable Stringer } Goat struct { proto notComparable Stringer } Donkey struct { proto notComparable Stringer } ) // Project2 protocol buffers type ( Germ struct { proto notComparable Stringer } Dish struct { proto notComparable Stringer } ) // Project3 protocol buffers type ( Dirt struct { proto notComparable Stringer } Wizard struct { proto notComparable Stringer } Sadistic struct { proto notComparable Stringer } ) // Project4 protocol buffers type ( HoneyStatus int PoisonType int MetaData struct { proto notComparable Stringer } Restrictions struct { proto notComparable Stringer } ) go-cmp-0.1.0/cmp/internal/teststructs/000077500000000000000000000000001314065731500177015ustar00rootroot00000000000000go-cmp-0.1.0/cmp/internal/teststructs/project1.go000066400000000000000000000132751314065731500217670ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package teststructs import ( "time" pb "github.com/google/go-cmp/cmp/internal/testprotos" ) // This is an sanitized example of equality from a real use-case. // The original equality function was as follows: /* func equalEagle(x, y Eagle) bool { if x.Name != y.Name && !reflect.DeepEqual(x.Hounds, y.Hounds) && x.Desc != y.Desc && x.DescLong != y.DescLong && x.Prong != y.Prong && x.StateGoverner != y.StateGoverner && x.PrankRating != y.PrankRating && x.FunnyPrank != y.FunnyPrank && !pb.Equal(x.Immutable.Proto(), y.Immutable.Proto()) { return false } if len(x.Dreamers) != len(y.Dreamers) { return false } for i := range x.Dreamers { if !equalDreamer(x.Dreamers[i], y.Dreamers[i]) { return false } } if len(x.Slaps) != len(y.Slaps) { return false } for i := range x.Slaps { if !equalSlap(x.Slaps[i], y.Slaps[i]) { return false } } return true } func equalDreamer(x, y Dreamer) bool { if x.Name != y.Name || x.Desc != y.Desc || x.DescLong != y.DescLong || x.ContSlapsInterval != y.ContSlapsInterval || x.Ornamental != y.Ornamental || x.Amoeba != y.Amoeba || x.Heroes != y.Heroes || x.FloppyDisk != y.FloppyDisk || x.MightiestDuck != y.MightiestDuck || x.FunnyPrank != y.FunnyPrank || !pb.Equal(x.Immutable.Proto(), y.Immutable.Proto()) { return false } if len(x.Animal) != len(y.Animal) { return false } for i := range x.Animal { vx := x.Animal[i] vy := y.Animal[i] if reflect.TypeOf(x.Animal) != reflect.TypeOf(y.Animal) { return false } switch vx.(type) { case Goat: if !equalGoat(vx.(Goat), vy.(Goat)) { return false } case Donkey: if !equalDonkey(vx.(Donkey), vy.(Donkey)) { return false } default: panic(fmt.Sprintf("unknown type: %T", vx)) } } if len(x.PreSlaps) != len(y.PreSlaps) { return false } for i := range x.PreSlaps { if !equalSlap(x.PreSlaps[i], y.PreSlaps[i]) { return false } } if len(x.ContSlaps) != len(y.ContSlaps) { return false } for i := range x.ContSlaps { if !equalSlap(x.ContSlaps[i], y.ContSlaps[i]) { return false } } return true } func equalSlap(x, y Slap) bool { return x.Name == y.Name && x.Desc == y.Desc && x.DescLong == y.DescLong && pb.Equal(x.Args, y.Args) && x.Tense == y.Tense && x.Interval == y.Interval && x.Homeland == y.Homeland && x.FunnyPrank == y.FunnyPrank && pb.Equal(x.Immutable.Proto(), y.Immutable.Proto()) } func equalGoat(x, y Goat) bool { if x.Target != y.Target || x.FunnyPrank != y.FunnyPrank || !pb.Equal(x.Immutable.Proto(), y.Immutable.Proto()) { return false } if len(x.Slaps) != len(y.Slaps) { return false } for i := range x.Slaps { if !equalSlap(x.Slaps[i], y.Slaps[i]) { return false } } return true } func equalDonkey(x, y Donkey) bool { return x.Pause == y.Pause && x.Sleep == y.Sleep && x.FunnyPrank == y.FunnyPrank && pb.Equal(x.Immutable.Proto(), y.Immutable.Proto()) } */ type Eagle struct { Name string Hounds []string Desc string DescLong string Dreamers []Dreamer Prong int64 Slaps []Slap StateGoverner string PrankRating string FunnyPrank string Immutable *EagleImmutable } type EagleImmutable struct { ID string State *pb.Eagle_States MissingCall *pb.Eagle_MissingCalls Birthday time.Time Death time.Time Started time.Time LastUpdate time.Time Creator string empty bool } type Dreamer struct { Name string Desc string DescLong string PreSlaps []Slap ContSlaps []Slap ContSlapsInterval int32 Animal []interface{} // Could be either Goat or Donkey Ornamental bool Amoeba int64 Heroes int32 FloppyDisk int32 MightiestDuck bool FunnyPrank string Immutable *DreamerImmutable } type DreamerImmutable struct { ID string State *pb.Dreamer_States MissingCall *pb.Dreamer_MissingCalls Calls int32 Started time.Time Stopped time.Time LastUpdate time.Time empty bool } type Slap struct { Name string Desc string DescLong string Args pb.Message Tense int32 Interval int32 Homeland uint32 FunnyPrank string Immutable *SlapImmutable } type SlapImmutable struct { ID string Out pb.Message MildSlap bool PrettyPrint string State *pb.Slap_States Started time.Time Stopped time.Time LastUpdate time.Time LoveRadius *LoveRadius empty bool } type Goat struct { Target string Slaps []Slap FunnyPrank string Immutable *GoatImmutable } type GoatImmutable struct { ID string State *pb.Goat_States Started time.Time Stopped time.Time LastUpdate time.Time empty bool } type Donkey struct { Pause bool Sleep int32 FunnyPrank string Immutable *DonkeyImmutable } type DonkeyImmutable struct { ID string State *pb.Donkey_States Started time.Time Stopped time.Time LastUpdate time.Time empty bool } type LoveRadius struct { Summer *SummerLove empty bool } type SummerLove struct { Summary *SummerLoveSummary empty bool } type SummerLoveSummary struct { Devices []string ChangeType []pb.SummerType empty bool } func (EagleImmutable) Proto() *pb.Eagle { return nil } func (DreamerImmutable) Proto() *pb.Dreamer { return nil } func (SlapImmutable) Proto() *pb.Slap { return nil } func (GoatImmutable) Proto() *pb.Goat { return nil } func (DonkeyImmutable) Proto() *pb.Donkey { return nil } go-cmp-0.1.0/cmp/internal/teststructs/project2.go000066400000000000000000000035501314065731500217630ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package teststructs import ( "time" pb "github.com/google/go-cmp/cmp/internal/testprotos" ) // This is an sanitized example of equality from a real use-case. // The original equality function was as follows: /* func equalBatch(b1, b2 *GermBatch) bool { for _, b := range []*GermBatch{b1, b2} { for _, l := range b.DirtyGerms { sort.Slice(l, func(i, j int) bool { return l[i].String() < l[j].String() }) } for _, l := range b.CleanGerms { sort.Slice(l, func(i, j int) bool { return l[i].String() < l[j].String() }) } } if !pb.DeepEqual(b1.DirtyGerms, b2.DirtyGerms) || !pb.DeepEqual(b1.CleanGerms, b2.CleanGerms) || !pb.DeepEqual(b1.GermMap, b2.GermMap) { return false } if len(b1.DishMap) != len(b2.DishMap) { return false } for id := range b1.DishMap { kpb1, err1 := b1.DishMap[id].Proto() kpb2, err2 := b2.DishMap[id].Proto() if !pb.Equal(kpb1, kpb2) || !reflect.DeepEqual(err1, err2) { return false } } return b1.HasPreviousResult == b2.HasPreviousResult && b1.DirtyID == b2.DirtyID && b1.CleanID == b2.CleanID && b1.GermStrain == b2.GermStrain && b1.TotalDirtyGerms == b2.TotalDirtyGerms && b1.InfectedAt.Equal(b2.InfectedAt) } */ type GermBatch struct { DirtyGerms, CleanGerms map[int32][]*pb.Germ GermMap map[int32]*pb.Germ DishMap map[int32]*Dish HasPreviousResult bool DirtyID, CleanID int32 GermStrain int32 TotalDirtyGerms int InfectedAt time.Time } type Dish struct { pb *pb.Dish err error } func CreateDish(m *pb.Dish, err error) *Dish { return &Dish{pb: m, err: err} } func (d *Dish) Proto() (*pb.Dish, error) { if d.err != nil { return nil, d.err } return d.pb, nil } go-cmp-0.1.0/cmp/internal/teststructs/project3.go000066400000000000000000000037211314065731500217640ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package teststructs import ( "sync" pb "github.com/google/go-cmp/cmp/internal/testprotos" ) // This is an sanitized example of equality from a real use-case. // The original equality function was as follows: /* func equalDirt(x, y *Dirt) bool { if !reflect.DeepEqual(x.table, y.table) || !reflect.DeepEqual(x.ts, y.ts) || x.Discord != y.Discord || !pb.Equal(&x.Proto, &y.Proto) || len(x.wizard) != len(y.wizard) || len(x.sadistic) != len(y.sadistic) || x.lastTime != y.lastTime { return false } for k, vx := range x.wizard { vy, ok := y.wizard[k] if !ok || !pb.Equal(vx, vy) { return false } } for k, vx := range x.sadistic { vy, ok := y.sadistic[k] if !ok || !pb.Equal(vx, vy) { return false } } return true } */ type Dirt struct { table Table // Always concrete type of MockTable ts Timestamp Discord DiscordState Proto pb.Dirt wizard map[string]*pb.Wizard sadistic map[string]*pb.Sadistic lastTime int64 mu sync.Mutex } type DiscordState int type Timestamp int64 func (d *Dirt) SetTable(t Table) { d.table = t } func (d *Dirt) SetTimestamp(t Timestamp) { d.ts = t } func (d *Dirt) SetWizard(m map[string]*pb.Wizard) { d.wizard = m } func (d *Dirt) SetSadistic(m map[string]*pb.Sadistic) { d.sadistic = m } func (d *Dirt) SetLastTime(t int64) { d.lastTime = t } type Table interface { Operation1() error Operation2() error Operation3() error } type MockTable struct { state []string } func CreateMockTable(s []string) *MockTable { return &MockTable{s} } func (mt *MockTable) Operation1() error { return nil } func (mt *MockTable) Operation2() error { return nil } func (mt *MockTable) Operation3() error { return nil } func (mt *MockTable) State() []string { return mt.state } go-cmp-0.1.0/cmp/internal/teststructs/project4.go000066400000000000000000000132031314065731500217610ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package teststructs import ( "time" pb "github.com/google/go-cmp/cmp/internal/testprotos" ) // This is an sanitized example of equality from a real use-case. // The original equality function was as follows: /* func equalCartel(x, y Cartel) bool { if !(equalHeadquarter(x.Headquarter, y.Headquarter) && x.Source() == y.Source() && x.CreationDate().Equal(y.CreationDate()) && x.Boss() == y.Boss() && x.LastCrimeDate().Equal(y.LastCrimeDate())) { return false } if len(x.Poisons()) != len(y.Poisons()) { return false } for i := range x.Poisons() { if !equalPoison(*x.Poisons()[i], *y.Poisons()[i]) { return false } } return true } func equalHeadquarter(x, y Headquarter) bool { xr, yr := x.Restrictions(), y.Restrictions() return x.ID() == y.ID() && x.Location() == y.Location() && reflect.DeepEqual(x.SubDivisions(), y.SubDivisions()) && x.IncorporatedDate().Equal(y.IncorporatedDate()) && pb.Equal(x.MetaData(), y.MetaData()) && bytes.Equal(x.PrivateMessage(), y.PrivateMessage()) && bytes.Equal(x.PublicMessage(), y.PublicMessage()) && x.HorseBack() == y.HorseBack() && x.Rattle() == y.Rattle() && x.Convulsion() == y.Convulsion() && x.Expansion() == y.Expansion() && x.Status() == y.Status() && pb.Equal(&xr, &yr) && x.CreationTime().Equal(y.CreationTime()) } func equalPoison(x, y Poison) bool { return x.PoisonType() == y.PoisonType() && x.Expiration().Equal(y.Expiration()) && x.Manufactuer() == y.Manufactuer() && x.Potency() == y.Potency() } */ type Cartel struct { Headquarter source string creationDate time.Time boss string lastCrimeDate time.Time poisons []*Poison } func (p Cartel) Source() string { return p.source } func (p Cartel) CreationDate() time.Time { return p.creationDate } func (p Cartel) Boss() string { return p.boss } func (p Cartel) LastCrimeDate() time.Time { return p.lastCrimeDate } func (p Cartel) Poisons() []*Poison { return p.poisons } func (p *Cartel) SetSource(x string) { p.source = x } func (p *Cartel) SetCreationDate(x time.Time) { p.creationDate = x } func (p *Cartel) SetBoss(x string) { p.boss = x } func (p *Cartel) SetLastCrimeDate(x time.Time) { p.lastCrimeDate = x } func (p *Cartel) SetPoisons(x []*Poison) { p.poisons = x } type Headquarter struct { id uint64 location string subDivisions []string incorporatedDate time.Time metaData *pb.MetaData privateMessage []byte publicMessage []byte horseBack string rattle string convulsion bool expansion uint64 status pb.HoneyStatus restrictions pb.Restrictions creationTime time.Time } func (hq Headquarter) ID() uint64 { return hq.id } func (hq Headquarter) Location() string { return hq.location } func (hq Headquarter) SubDivisions() []string { return hq.subDivisions } func (hq Headquarter) IncorporatedDate() time.Time { return hq.incorporatedDate } func (hq Headquarter) MetaData() *pb.MetaData { return hq.metaData } func (hq Headquarter) PrivateMessage() []byte { return hq.privateMessage } func (hq Headquarter) PublicMessage() []byte { return hq.publicMessage } func (hq Headquarter) HorseBack() string { return hq.horseBack } func (hq Headquarter) Rattle() string { return hq.rattle } func (hq Headquarter) Convulsion() bool { return hq.convulsion } func (hq Headquarter) Expansion() uint64 { return hq.expansion } func (hq Headquarter) Status() pb.HoneyStatus { return hq.status } func (hq Headquarter) Restrictions() pb.Restrictions { return hq.restrictions } func (hq Headquarter) CreationTime() time.Time { return hq.creationTime } func (hq *Headquarter) SetID(x uint64) { hq.id = x } func (hq *Headquarter) SetLocation(x string) { hq.location = x } func (hq *Headquarter) SetSubDivisions(x []string) { hq.subDivisions = x } func (hq *Headquarter) SetIncorporatedDate(x time.Time) { hq.incorporatedDate = x } func (hq *Headquarter) SetMetaData(x *pb.MetaData) { hq.metaData = x } func (hq *Headquarter) SetPrivateMessage(x []byte) { hq.privateMessage = x } func (hq *Headquarter) SetPublicMessage(x []byte) { hq.publicMessage = x } func (hq *Headquarter) SetHorseBack(x string) { hq.horseBack = x } func (hq *Headquarter) SetRattle(x string) { hq.rattle = x } func (hq *Headquarter) SetConvulsion(x bool) { hq.convulsion = x } func (hq *Headquarter) SetExpansion(x uint64) { hq.expansion = x } func (hq *Headquarter) SetStatus(x pb.HoneyStatus) { hq.status = x } func (hq *Headquarter) SetRestrictions(x pb.Restrictions) { hq.restrictions = x } func (hq *Headquarter) SetCreationTime(x time.Time) { hq.creationTime = x } type Poison struct { poisonType pb.PoisonType expiration time.Time manufactuer string potency int } func (p Poison) PoisonType() pb.PoisonType { return p.poisonType } func (p Poison) Expiration() time.Time { return p.expiration } func (p Poison) Manufactuer() string { return p.manufactuer } func (p Poison) Potency() int { return p.potency } func (p *Poison) SetPoisonType(x pb.PoisonType) { p.poisonType = x } func (p *Poison) SetExpiration(x time.Time) { p.expiration = x } func (p *Poison) SetManufactuer(x string) { p.manufactuer = x } func (p *Poison) SetPotency(x int) { p.potency = x } go-cmp-0.1.0/cmp/internal/teststructs/structs.go000066400000000000000000000121701314065731500217400ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package teststructs type InterfaceA interface { InterfaceA() } type ( StructA struct{ X string } // Equal method on value receiver StructB struct{ X string } // Equal method on pointer receiver StructC struct{ X string } // Equal method (with interface argument) on value receiver StructD struct{ X string } // Equal method (with interface argument) on pointer receiver StructE struct{ X string } // Equal method (with interface argument on value receiver) on pointer receiver StructF struct{ X string } // Equal method (with interface argument on pointer receiver) on value receiver // These embed the above types as a value. StructA1 struct { StructA X string } StructB1 struct { StructB X string } StructC1 struct { StructC X string } StructD1 struct { StructD X string } StructE1 struct { StructE X string } StructF1 struct { StructF X string } // These embed the above types as a pointer. StructA2 struct { *StructA X string } StructB2 struct { *StructB X string } StructC2 struct { *StructC X string } StructD2 struct { *StructD X string } StructE2 struct { *StructE X string } StructF2 struct { *StructF X string } StructNo struct{ X string } // Equal method (with interface argument) on non-satisfying receiver AssignA func() int AssignB struct{ A int } AssignC chan bool AssignD <-chan bool ) func (x StructA) Equal(y StructA) bool { return true } func (x *StructB) Equal(y *StructB) bool { return true } func (x StructC) Equal(y InterfaceA) bool { return true } func (x StructC) InterfaceA() {} func (x *StructD) Equal(y InterfaceA) bool { return true } func (x *StructD) InterfaceA() {} func (x *StructE) Equal(y InterfaceA) bool { return true } func (x StructE) InterfaceA() {} func (x StructF) Equal(y InterfaceA) bool { return true } func (x *StructF) InterfaceA() {} func (x StructNo) Equal(y InterfaceA) bool { return true } func (x AssignA) Equal(y func() int) bool { return true } func (x AssignB) Equal(y struct{ A int }) bool { return true } func (x AssignC) Equal(y chan bool) bool { return true } func (x AssignD) Equal(y <-chan bool) bool { return true } var _ = func( a StructA, b StructB, c StructC, d StructD, e StructE, f StructF, ap *StructA, bp *StructB, cp *StructC, dp *StructD, ep *StructE, fp *StructF, a1 StructA1, b1 StructB1, c1 StructC1, d1 StructD1, e1 StructE1, f1 StructF1, a2 StructA2, b2 StructB2, c2 StructC2, d2 StructD2, e2 StructE2, f2 StructF1, ) { a.Equal(a) b.Equal(&b) c.Equal(c) d.Equal(&d) e.Equal(e) f.Equal(&f) ap.Equal(*ap) bp.Equal(bp) cp.Equal(*cp) dp.Equal(dp) ep.Equal(*ep) fp.Equal(fp) a1.Equal(a1.StructA) b1.Equal(&b1.StructB) c1.Equal(c1) d1.Equal(&d1) e1.Equal(e1) f1.Equal(&f1) a2.Equal(*a2.StructA) b2.Equal(b2.StructB) c2.Equal(c2) d2.Equal(&d2) e2.Equal(e2) f2.Equal(&f2) } type ( privateStruct struct{ Public, private int } PublicStruct struct{ Public, private int } ParentStructA struct{ privateStruct } ParentStructB struct{ PublicStruct } ParentStructC struct { privateStruct Public, private int } ParentStructD struct { PublicStruct Public, private int } ParentStructE struct { privateStruct PublicStruct } ParentStructF struct { privateStruct PublicStruct Public, private int } ParentStructG struct { *privateStruct } ParentStructH struct { *PublicStruct } ParentStructI struct { *privateStruct *PublicStruct } ParentStructJ struct { *privateStruct *PublicStruct Public PublicStruct private privateStruct } ) func NewParentStructG() *ParentStructG { return &ParentStructG{new(privateStruct)} } func NewParentStructH() *ParentStructH { return &ParentStructH{new(PublicStruct)} } func NewParentStructI() *ParentStructI { return &ParentStructI{new(privateStruct), new(PublicStruct)} } func NewParentStructJ() *ParentStructJ { return &ParentStructJ{ privateStruct: new(privateStruct), PublicStruct: new(PublicStruct), } } func (s *privateStruct) SetPrivate(i int) { s.private = i } func (s *PublicStruct) SetPrivate(i int) { s.private = i } func (s *ParentStructC) SetPrivate(i int) { s.private = i } func (s *ParentStructD) SetPrivate(i int) { s.private = i } func (s *ParentStructF) SetPrivate(i int) { s.private = i } func (s *ParentStructA) PrivateStruct() *privateStruct { return &s.privateStruct } func (s *ParentStructC) PrivateStruct() *privateStruct { return &s.privateStruct } func (s *ParentStructE) PrivateStruct() *privateStruct { return &s.privateStruct } func (s *ParentStructF) PrivateStruct() *privateStruct { return &s.privateStruct } func (s *ParentStructG) PrivateStruct() *privateStruct { return s.privateStruct } func (s *ParentStructI) PrivateStruct() *privateStruct { return s.privateStruct } func (s *ParentStructJ) PrivateStruct() *privateStruct { return s.privateStruct } func (s *ParentStructJ) Private() *privateStruct { return &s.private } go-cmp-0.1.0/cmp/internal/value/000077500000000000000000000000001314065731500164065ustar00rootroot00000000000000go-cmp-0.1.0/cmp/internal/value/format.go000066400000000000000000000162631314065731500202350ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. // Package value provides functionality for reflect.Value types. package value import ( "fmt" "reflect" "strings" "unicode" "unicode/utf8" ) // formatFakePointers controls whether to substitute pointer addresses with nil. // This is used for deterministic testing. var formatFakePointers = false var stringerIface = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() // Format formats the value v as a string. // // This is similar to fmt.Sprintf("%+v", v) except this: // * Prints the type unless it can be elided // * Avoids printing struct fields that are zero // * Prints a nil-slice as being nil, not empty // * Prints map entries in deterministic order func Format(v reflect.Value, useStringer bool) string { return formatAny(v, formatConfig{useStringer, true, true, !formatFakePointers}, nil) } type formatConfig struct { useStringer bool // Should the String method be used if available? printType bool // Should we print the type before the value? followPointers bool // Should we recursively follow pointers? realPointers bool // Should we print the real address of pointers? } func formatAny(v reflect.Value, conf formatConfig, visited map[uintptr]bool) string { // TODO: Should this be a multi-line printout in certain situations? if !v.IsValid() { return "" } if conf.useStringer && v.Type().Implements(stringerIface) && v.CanInterface() { if (v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface) && v.IsNil() { return "" } return fmt.Sprintf("%q", v.Interface().(fmt.Stringer).String()) } switch v.Kind() { case reflect.Bool: return formatPrimitive(v.Type(), v.Bool(), conf) case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: return formatPrimitive(v.Type(), v.Int(), conf) case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: if v.Type().PkgPath() == "" || v.Kind() == reflect.Uintptr { // Unnamed uints are usually bytes or words, so use hexadecimal. return formatPrimitive(v.Type(), formatHex(v.Uint()), conf) } return formatPrimitive(v.Type(), v.Uint(), conf) case reflect.Float32, reflect.Float64: return formatPrimitive(v.Type(), v.Float(), conf) case reflect.Complex64, reflect.Complex128: return formatPrimitive(v.Type(), v.Complex(), conf) case reflect.String: return formatPrimitive(v.Type(), fmt.Sprintf("%q", v), conf) case reflect.UnsafePointer, reflect.Chan, reflect.Func: return formatPointer(v, conf) case reflect.Ptr: if v.IsNil() { if conf.printType { return fmt.Sprintf("(%v)(nil)", v.Type()) } return "" } if visited[v.Pointer()] || !conf.followPointers { return formatPointer(v, conf) } visited = insertPointer(visited, v.Pointer()) return "&" + formatAny(v.Elem(), conf, visited) case reflect.Interface: if v.IsNil() { if conf.printType { return fmt.Sprintf("%v(nil)", v.Type()) } return "" } return formatAny(v.Elem(), conf, visited) case reflect.Slice: if v.IsNil() { if conf.printType { return fmt.Sprintf("%v(nil)", v.Type()) } return "" } if visited[v.Pointer()] { return formatPointer(v, conf) } visited = insertPointer(visited, v.Pointer()) fallthrough case reflect.Array: var ss []string subConf := conf subConf.printType = v.Type().Elem().Kind() == reflect.Interface for i := 0; i < v.Len(); i++ { s := formatAny(v.Index(i), subConf, visited) ss = append(ss, s) } s := fmt.Sprintf("{%s}", strings.Join(ss, ", ")) if conf.printType { return v.Type().String() + s } return s case reflect.Map: if v.IsNil() { if conf.printType { return fmt.Sprintf("%v(nil)", v.Type()) } return "" } if visited[v.Pointer()] { return formatPointer(v, conf) } visited = insertPointer(visited, v.Pointer()) var ss []string subConf := conf subConf.printType = v.Type().Elem().Kind() == reflect.Interface for _, k := range SortKeys(v.MapKeys()) { sk := formatAny(k, formatConfig{realPointers: conf.realPointers}, visited) sv := formatAny(v.MapIndex(k), subConf, visited) ss = append(ss, fmt.Sprintf("%s: %s", sk, sv)) } s := fmt.Sprintf("{%s}", strings.Join(ss, ", ")) if conf.printType { return v.Type().String() + s } return s case reflect.Struct: var ss []string subConf := conf subConf.printType = true for i := 0; i < v.NumField(); i++ { vv := v.Field(i) if isZero(vv) { continue // Elide zero value fields } name := v.Type().Field(i).Name subConf.useStringer = conf.useStringer && isExported(name) s := formatAny(vv, subConf, visited) ss = append(ss, fmt.Sprintf("%s: %s", name, s)) } s := fmt.Sprintf("{%s}", strings.Join(ss, ", ")) if conf.printType { return v.Type().String() + s } return s default: panic(fmt.Sprintf("%v kind not handled", v.Kind())) } } func formatPrimitive(t reflect.Type, v interface{}, conf formatConfig) string { if conf.printType && t.PkgPath() != "" { return fmt.Sprintf("%v(%v)", t, v) } return fmt.Sprintf("%v", v) } func formatPointer(v reflect.Value, conf formatConfig) string { p := v.Pointer() if !conf.realPointers { p = 0 // For deterministic printing purposes } s := formatHex(uint64(p)) if conf.printType { return fmt.Sprintf("(%v)(%s)", v.Type(), s) } return s } func formatHex(u uint64) string { var f string switch { case u <= 0xff: f = "0x%02x" case u <= 0xffff: f = "0x%04x" case u <= 0xffffff: f = "0x%06x" case u <= 0xffffffff: f = "0x%08x" case u <= 0xffffffffff: f = "0x%010x" case u <= 0xffffffffffff: f = "0x%012x" case u <= 0xffffffffffffff: f = "0x%014x" case u <= 0xffffffffffffffff: f = "0x%016x" } return fmt.Sprintf(f, u) } // insertPointer insert p into m, allocating m if necessary. func insertPointer(m map[uintptr]bool, p uintptr) map[uintptr]bool { if m == nil { m = make(map[uintptr]bool) } m[p] = true return m } // isZero reports whether v is the zero value. // This does not rely on Interface and so can be used on unexported fields. func isZero(v reflect.Value) bool { switch v.Kind() { case reflect.Bool: return v.Bool() == false case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: return v.Int() == 0 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: return v.Uint() == 0 case reflect.Float32, reflect.Float64: return v.Float() == 0 case reflect.Complex64, reflect.Complex128: return v.Complex() == 0 case reflect.String: return v.String() == "" case reflect.UnsafePointer: return v.Pointer() == 0 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr, reflect.Map, reflect.Slice: return v.IsNil() case reflect.Array: for i := 0; i < v.Len(); i++ { if !isZero(v.Index(i)) { return false } } return true case reflect.Struct: for i := 0; i < v.NumField(); i++ { if !isZero(v.Field(i)) { return false } } return true } return false } // isExported reports whether the identifier is exported. func isExported(id string) bool { r, _ := utf8.DecodeRuneInString(id) return unicode.IsUpper(r) } go-cmp-0.1.0/cmp/internal/value/format_test.go000066400000000000000000000040651314065731500212710ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package value import ( "bytes" "io" "reflect" "testing" ) func TestFormat(t *testing.T) { type key struct { a int b string c chan bool } tests := []struct { in interface{} want string }{{ in: []int{}, want: "[]int{}", }, { in: []int(nil), want: "[]int(nil)", }, { in: []int{1, 2, 3, 4, 5}, want: "[]int{1, 2, 3, 4, 5}", }, { in: []interface{}{1, true, "hello", struct{ A, B int }{1, 2}}, want: "[]interface {}{1, true, \"hello\", struct { A int; B int }{A: 1, B: 2}}", }, { in: []struct{ A, B int }{{1, 2}, {0, 4}, {}}, want: "[]struct { A int; B int }{{A: 1, B: 2}, {B: 4}, {}}", }, { in: map[*int]string{new(int): "hello"}, want: "map[*int]string{0x00: \"hello\"}", }, { in: map[key]string{{}: "hello"}, want: "map[value.key]string{{}: \"hello\"}", }, { in: map[key]string{{a: 5, b: "key", c: make(chan bool)}: "hello"}, want: "map[value.key]string{{a: 5, b: \"key\", c: (chan bool)(0x00)}: \"hello\"}", }, { in: map[io.Reader]string{new(bytes.Reader): "hello"}, want: "map[io.Reader]string{0x00: \"hello\"}", }, { in: func() interface{} { var a = []interface{}{nil} a[0] = a return a }(), want: "[]interface {}{([]interface {})(0x00)}", }, { in: func() interface{} { type A *A var a A a = &a return a }(), want: "&(value.A)(0x00)", }, { in: func() interface{} { type A map[*A]A a := make(A) a[&a] = a return a }(), want: "value.A{0x00: 0x00}", }, { in: func() interface{} { var a [2]interface{} a[0] = &a return a }(), want: "[2]interface {}{&[2]interface {}{(*[2]interface {})(0x00), interface {}(nil)}, interface {}(nil)}", }} formatFakePointers = true defer func() { formatFakePointers = false }() for i, tt := range tests { got := Format(reflect.ValueOf(tt.in), true) if got != tt.want { t.Errorf("test %d, Format():\ngot %q\nwant %q", i, got, tt.want) } } } go-cmp-0.1.0/cmp/internal/value/sort.go000066400000000000000000000063421314065731500177310ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package value import ( "fmt" "math" "reflect" "sort" ) // SortKeys sorts a list of map keys, deduplicating keys if necessary. // The type of each value must be comparable. func SortKeys(vs []reflect.Value) []reflect.Value { if len(vs) == 0 { return vs } // Sort the map keys. sort.Sort(valueSorter(vs)) // Deduplicate keys (fails for NaNs). vs2 := vs[:1] for _, v := range vs[1:] { if v.Interface() != vs2[len(vs2)-1].Interface() { vs2 = append(vs2, v) } } return vs2 } // TODO: Use sort.Slice once Google AppEngine is on Go1.8 or above. type valueSorter []reflect.Value func (vs valueSorter) Len() int { return len(vs) } func (vs valueSorter) Less(i, j int) bool { return isLess(vs[i], vs[j]) } func (vs valueSorter) Swap(i, j int) { vs[i], vs[j] = vs[j], vs[i] } // isLess is a generic function for sorting arbitrary map keys. // The inputs must be of the same type and must be comparable. func isLess(x, y reflect.Value) bool { switch x.Type().Kind() { case reflect.Bool: return !x.Bool() && y.Bool() case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: return x.Int() < y.Int() case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: return x.Uint() < y.Uint() case reflect.Float32, reflect.Float64: fx, fy := x.Float(), y.Float() return fx < fy || math.IsNaN(fx) && !math.IsNaN(fy) case reflect.Complex64, reflect.Complex128: cx, cy := x.Complex(), y.Complex() rx, ix, ry, iy := real(cx), imag(cx), real(cy), imag(cy) if rx == ry || (math.IsNaN(rx) && math.IsNaN(ry)) { return ix < iy || math.IsNaN(ix) && !math.IsNaN(iy) } return rx < ry || math.IsNaN(rx) && !math.IsNaN(ry) case reflect.Ptr, reflect.UnsafePointer, reflect.Chan: return x.Pointer() < y.Pointer() case reflect.String: return x.String() < y.String() case reflect.Array: for i := 0; i < x.Len(); i++ { if isLess(x.Index(i), y.Index(i)) { return true } if isLess(y.Index(i), x.Index(i)) { return false } } return false case reflect.Struct: for i := 0; i < x.NumField(); i++ { if isLess(x.Field(i), y.Field(i)) { return true } if isLess(y.Field(i), x.Field(i)) { return false } } return false case reflect.Interface: vx, vy := x.Elem(), y.Elem() if !vx.IsValid() || !vy.IsValid() { return !vx.IsValid() && vy.IsValid() } tx, ty := vx.Type(), vy.Type() if tx == ty { return isLess(x.Elem(), y.Elem()) } if tx.Kind() != ty.Kind() { return vx.Kind() < vy.Kind() } if tx.String() != ty.String() { return tx.String() < ty.String() } if tx.PkgPath() != ty.PkgPath() { return tx.PkgPath() < ty.PkgPath() } // This can happen in rare situations, so we fallback to just comparing // the unique pointer for a reflect.Type. This guarantees deterministic // ordering within a program, but it is obviously not stable. return reflect.ValueOf(vx.Type()).Pointer() < reflect.ValueOf(vy.Type()).Pointer() default: // Must be Func, Map, or Slice; which are not comparable. panic(fmt.Sprintf("%T is not comparable", x.Type())) } } go-cmp-0.1.0/cmp/internal/value/sort_test.go000066400000000000000000000111051314065731500207610ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package value_test import ( "math" "reflect" "testing" "github.com/google/go-cmp/cmp" "github.com/google/go-cmp/cmp/internal/value" ) func TestSortKeys(t *testing.T) { type ( MyString string MyArray [2]int MyStruct struct { A MyString B MyArray C chan float64 } EmptyStruct struct{} ) opts := []cmp.Option{ cmp.Comparer(func(x, y float64) bool { if math.IsNaN(x) && math.IsNaN(y) { return true } return x == y }), cmp.Comparer(func(x, y complex128) bool { rx, ix, ry, iy := real(x), imag(x), real(y), imag(y) if math.IsNaN(rx) && math.IsNaN(ry) { rx, ry = 0, 0 } if math.IsNaN(ix) && math.IsNaN(iy) { ix, iy = 0, 0 } return rx == ry && ix == iy }), cmp.Comparer(func(x, y chan bool) bool { return true }), cmp.Comparer(func(x, y chan int) bool { return true }), cmp.Comparer(func(x, y chan float64) bool { return true }), cmp.Comparer(func(x, y chan interface{}) bool { return true }), cmp.Comparer(func(x, y *int) bool { return true }), } tests := []struct { in map[interface{}]bool // Set of keys to sort want []interface{} }{{ in: map[interface{}]bool{1: true, 2: true, 3: true}, want: []interface{}{1, 2, 3}, }, { in: map[interface{}]bool{ nil: true, true: true, false: true, -5: true, -55: true, -555: true, uint(1): true, uint(11): true, uint(111): true, "abc": true, "abcd": true, "abcde": true, "foo": true, "bar": true, MyString("abc"): true, MyString("abcd"): true, MyString("abcde"): true, new(int): true, new(int): true, make(chan bool): true, make(chan bool): true, make(chan int): true, make(chan interface{}): true, math.Inf(+1): true, math.Inf(-1): true, 1.2345: true, 12.345: true, 123.45: true, 1234.5: true, 0 + 0i: true, 1 + 0i: true, 2 + 0i: true, 0 + 1i: true, 0 + 2i: true, 0 + 3i: true, [2]int{2, 3}: true, [2]int{4, 0}: true, [2]int{2, 4}: true, MyArray([2]int{2, 4}): true, EmptyStruct{}: true, MyStruct{ "bravo", [2]int{2, 3}, make(chan float64), }: true, MyStruct{ "alpha", [2]int{3, 3}, make(chan float64), }: true, }, want: []interface{}{ nil, false, true, -555, -55, -5, uint(1), uint(11), uint(111), math.Inf(-1), 1.2345, 12.345, 123.45, 1234.5, math.Inf(+1), (0 + 0i), (0 + 1i), (0 + 2i), (0 + 3i), (1 + 0i), (2 + 0i), [2]int{2, 3}, [2]int{2, 4}, [2]int{4, 0}, MyArray([2]int{2, 4}), make(chan bool), make(chan bool), make(chan int), make(chan interface{}), new(int), new(int), "abc", "abcd", "abcde", "bar", "foo", MyString("abc"), MyString("abcd"), MyString("abcde"), EmptyStruct{}, MyStruct{"alpha", [2]int{3, 3}, make(chan float64)}, MyStruct{"bravo", [2]int{2, 3}, make(chan float64)}, }, }, { // NaN values cannot be properly deduplicated. // This is okay since map entries with NaN in the keys cannot be // retrieved anyways. in: map[interface{}]bool{ math.NaN(): true, math.NaN(): true, complex(0, math.NaN()): true, complex(0, math.NaN()): true, complex(math.NaN(), 0): true, complex(math.NaN(), 0): true, complex(math.NaN(), math.NaN()): true, }, want: []interface{}{ math.NaN(), math.NaN(), math.NaN(), math.NaN(), complex(math.NaN(), math.NaN()), complex(math.NaN(), math.NaN()), complex(math.NaN(), 0), complex(math.NaN(), 0), complex(math.NaN(), 0), complex(math.NaN(), 0), complex(0, math.NaN()), complex(0, math.NaN()), complex(0, math.NaN()), complex(0, math.NaN()), }, }} for i, tt := range tests { keys := append(reflect.ValueOf(tt.in).MapKeys(), reflect.ValueOf(tt.in).MapKeys()...) var got []interface{} for _, k := range value.SortKeys(keys) { got = append(got, k.Interface()) } if d := cmp.Diff(got, tt.want, opts...); d != "" { t.Errorf("test %d, Sort() mismatch (-got +want):\n%s", i, d) } } } go-cmp-0.1.0/cmp/options.go000066400000000000000000000354761314065731500155170ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package cmp import ( "fmt" "reflect" "runtime" "strings" "github.com/google/go-cmp/cmp/internal/function" ) // Option configures for specific behavior of Equal and Diff. In particular, // the fundamental Option functions (Ignore, Transformer, and Comparer), // configure how equality is determined. // // The fundamental options may be composed with filters (FilterPath and // FilterValues) to control the scope over which they are applied. // // The cmp/cmpopts package provides helper functions for creating options that // may be used with Equal and Diff. type Option interface { // filter applies all filters and returns the option that remains. // Each option may only read s.curPath and call s.callTTBFunc. // // An Options is returned only if multiple comparers or transformers // can apply simultaneously and will only contain values of those types // or sub-Options containing values of those types. filter(s *state, vx, vy reflect.Value, t reflect.Type) applicableOption } // applicableOption represents the following types: // Fundamental: ignore | invalid | *comparer | *transformer // Grouping: Options type applicableOption interface { Option // apply executes the option and reports whether the option was applied. // Each option may mutate s. apply(s *state, vx, vy reflect.Value) bool } // coreOption represents the following types: // Fundamental: ignore | invalid | *comparer | *transformer // Filters: *pathFilter | *valuesFilter type coreOption interface { Option isCore() } type core struct{} func (core) isCore() {} // Options is a list of Option values that also satisfies the Option interface. // Helper comparison packages may return an Options value when packing multiple // Option values into a single Option. When this package processes an Options, // it will be implicitly expanded into a flat list. // // Applying a filter on an Options is equivalent to applying that same filter // on all individual options held within. type Options []Option func (opts Options) filter(s *state, vx, vy reflect.Value, t reflect.Type) (out applicableOption) { for _, opt := range opts { switch opt := opt.filter(s, vx, vy, t); opt.(type) { case ignore: return ignore{} // Only ignore can short-circuit evaluation case invalid: out = invalid{} // Takes precedence over comparer or transformer case *comparer, *transformer, Options: switch out.(type) { case nil: out = opt case invalid: // Keep invalid case *comparer, *transformer, Options: out = Options{out, opt} // Conflicting comparers or transformers } } } return out } func (opts Options) apply(s *state, _, _ reflect.Value) bool { const warning = "ambiguous set of applicable options" const help = "consider using filters to ensure at most one Comparer or Transformer may apply" var ss []string for _, opt := range flattenOptions(nil, opts) { ss = append(ss, fmt.Sprint(opt)) } set := strings.Join(ss, "\n\t") panic(fmt.Sprintf("%s at %#v:\n\t%s\n%s", warning, s.curPath, set, help)) } func (opts Options) String() string { var ss []string for _, opt := range opts { ss = append(ss, fmt.Sprint(opt)) } return fmt.Sprintf("Options{%s}", strings.Join(ss, ", ")) } // FilterPath returns a new Option where opt is only evaluated if filter f // returns true for the current Path in the value tree. // // The option passed in may be an Ignore, Transformer, Comparer, Options, or // a previously filtered Option. func FilterPath(f func(Path) bool, opt Option) Option { if f == nil { panic("invalid path filter function") } if opt := normalizeOption(opt); opt != nil { return &pathFilter{fnc: f, opt: opt} } return nil } type pathFilter struct { core fnc func(Path) bool opt Option } func (f pathFilter) filter(s *state, vx, vy reflect.Value, t reflect.Type) applicableOption { if f.fnc(s.curPath) { return f.opt.filter(s, vx, vy, t) } return nil } func (f pathFilter) String() string { fn := getFuncName(reflect.ValueOf(f.fnc).Pointer()) return fmt.Sprintf("FilterPath(%s, %v)", fn, f.opt) } // FilterValues returns a new Option where opt is only evaluated if filter f, // which is a function of the form "func(T, T) bool", returns true for the // current pair of values being compared. If the type of the values is not // assignable to T, then this filter implicitly returns false. // // The filter function must be // symmetric (i.e., agnostic to the order of the inputs) and // deterministic (i.e., produces the same result when given the same inputs). // If T is an interface, it is possible that f is called with two values with // different concrete types that both implement T. // // The option passed in may be an Ignore, Transformer, Comparer, Options, or // a previously filtered Option. func FilterValues(f interface{}, opt Option) Option { v := reflect.ValueOf(f) if !function.IsType(v.Type(), function.ValueFilter) || v.IsNil() { panic(fmt.Sprintf("invalid values filter function: %T", f)) } if opt := normalizeOption(opt); opt != nil { vf := &valuesFilter{fnc: v, opt: opt} if ti := v.Type().In(0); ti.Kind() != reflect.Interface || ti.NumMethod() > 0 { vf.typ = ti } return vf } return nil } type valuesFilter struct { core typ reflect.Type // T fnc reflect.Value // func(T, T) bool opt Option } func (f valuesFilter) filter(s *state, vx, vy reflect.Value, t reflect.Type) applicableOption { if !vx.IsValid() || !vy.IsValid() { return invalid{} } if (f.typ == nil || t.AssignableTo(f.typ)) && s.callTTBFunc(f.fnc, vx, vy) { return f.opt.filter(s, vx, vy, t) } return nil } func (f valuesFilter) String() string { fn := getFuncName(f.fnc.Pointer()) return fmt.Sprintf("FilterValues(%s, %v)", fn, f.opt) } // Ignore is an Option that causes all comparisons to be ignored. // This value is intended to be combined with FilterPath or FilterValues. // It is an error to pass an unfiltered Ignore option to Equal. func Ignore() Option { return ignore{} } type ignore struct{ core } func (ignore) isFiltered() bool { return false } func (ignore) filter(_ *state, _, _ reflect.Value, _ reflect.Type) applicableOption { return ignore{} } func (ignore) apply(_ *state, _, _ reflect.Value) bool { return true } func (ignore) String() string { return "Ignore()" } // invalid is a sentinel Option type to indicate that some options could not // be evaluated due to unexported fields. type invalid struct{ core } func (invalid) filter(_ *state, _, _ reflect.Value, _ reflect.Type) applicableOption { return invalid{} } func (invalid) apply(s *state, _, _ reflect.Value) bool { const help = "consider using AllowUnexported or cmpopts.IgnoreUnexported" panic(fmt.Sprintf("cannot handle unexported field: %#v\n%s", s.curPath, help)) } // Transformer returns an Option that applies a transformation function that // converts values of a certain type into that of another. // // The transformer f must be a function "func(T) R" that converts values of // type T to those of type R and is implicitly filtered to input values // assignable to T. The transformer must not mutate T in any way. // If T and R are the same type, an additional filter must be applied to // act as the base case to prevent an infinite recursion applying the same // transform to itself (see the SortedSlice example). // // The name is a user provided label that is used as the Transform.Name in the // transformation PathStep. If empty, an arbitrary name is used. func Transformer(name string, f interface{}) Option { v := reflect.ValueOf(f) if !function.IsType(v.Type(), function.Transformer) || v.IsNil() { panic(fmt.Sprintf("invalid transformer function: %T", f)) } if name == "" { name = "λ" // Lambda-symbol as place-holder for anonymous transformer } if !isValid(name) { panic(fmt.Sprintf("invalid name: %q", name)) } tr := &transformer{name: name, fnc: reflect.ValueOf(f)} if ti := v.Type().In(0); ti.Kind() != reflect.Interface || ti.NumMethod() > 0 { tr.typ = ti } return tr } type transformer struct { core name string typ reflect.Type // T fnc reflect.Value // func(T) R } func (tr *transformer) isFiltered() bool { return tr.typ != nil } func (tr *transformer) filter(_ *state, _, _ reflect.Value, t reflect.Type) applicableOption { if tr.typ == nil || t.AssignableTo(tr.typ) { return tr } return nil } func (tr *transformer) apply(s *state, vx, vy reflect.Value) bool { // Update path before calling the Transformer so that dynamic checks // will use the updated path. s.curPath.push(&transform{pathStep{tr.fnc.Type().Out(0)}, tr}) defer s.curPath.pop() vx = s.callTRFunc(tr.fnc, vx) vy = s.callTRFunc(tr.fnc, vy) s.compareAny(vx, vy) return true } func (tr transformer) String() string { return fmt.Sprintf("Transformer(%s, %s)", tr.name, getFuncName(tr.fnc.Pointer())) } // Comparer returns an Option that determines whether two values are equal // to each other. // // The comparer f must be a function "func(T, T) bool" and is implicitly // filtered to input values assignable to T. If T is an interface, it is // possible that f is called with two values of different concrete types that // both implement T. // // The equality function must be: // • Symmetric: equal(x, y) == equal(y, x) // • Deterministic: equal(x, y) == equal(x, y) // • Pure: equal(x, y) does not modify x or y func Comparer(f interface{}) Option { v := reflect.ValueOf(f) if !function.IsType(v.Type(), function.Equal) || v.IsNil() { panic(fmt.Sprintf("invalid comparer function: %T", f)) } cm := &comparer{fnc: v} if ti := v.Type().In(0); ti.Kind() != reflect.Interface || ti.NumMethod() > 0 { cm.typ = ti } return cm } type comparer struct { core typ reflect.Type // T fnc reflect.Value // func(T, T) bool } func (cm *comparer) isFiltered() bool { return cm.typ != nil } func (cm *comparer) filter(_ *state, _, _ reflect.Value, t reflect.Type) applicableOption { if cm.typ == nil || t.AssignableTo(cm.typ) { return cm } return nil } func (cm *comparer) apply(s *state, vx, vy reflect.Value) bool { eq := s.callTTBFunc(cm.fnc, vx, vy) s.report(eq, vx, vy) return true } func (cm comparer) String() string { return fmt.Sprintf("Comparer(%s)", getFuncName(cm.fnc.Pointer())) } // AllowUnexported returns an Option that forcibly allows operations on // unexported fields in certain structs, which are specified by passing in a // value of each struct type. // // Users of this option must understand that comparing on unexported fields // from external packages is not safe since changes in the internal // implementation of some external package may cause the result of Equal // to unexpectedly change. However, it may be valid to use this option on types // defined in an internal package where the semantic meaning of an unexported // field is in the control of the user. // // For some cases, a custom Comparer should be used instead that defines // equality as a function of the public API of a type rather than the underlying // unexported implementation. // // For example, the reflect.Type documentation defines equality to be determined // by the == operator on the interface (essentially performing a shallow pointer // comparison) and most attempts to compare *regexp.Regexp types are interested // in only checking that the regular expression strings are equal. // Both of these are accomplished using Comparers: // // Comparer(func(x, y reflect.Type) bool { return x == y }) // Comparer(func(x, y *regexp.Regexp) bool { return x.String() == y.String() }) // // In other cases, the cmpopts.IgnoreUnexported option can be used to ignore // all unexported fields on specified struct types. func AllowUnexported(types ...interface{}) Option { if !supportAllowUnexported { panic("AllowUnexported is not supported on App Engine Classic or GopherJS") } m := make(map[reflect.Type]bool) for _, typ := range types { t := reflect.TypeOf(typ) if t.Kind() != reflect.Struct { panic(fmt.Sprintf("invalid struct type: %T", typ)) } m[t] = true } return visibleStructs(m) } type visibleStructs map[reflect.Type]bool func (visibleStructs) filter(_ *state, _, _ reflect.Value, _ reflect.Type) applicableOption { panic("not implemented") } // reporter is an Option that configures how differences are reported. type reporter interface { // TODO: Not exported yet. // // Perhaps add PushStep and PopStep and change Report to only accept // a PathStep instead of the full-path? Adding a PushStep and PopStep makes // it clear that we are traversing the value tree in a depth-first-search // manner, which has an effect on how values are printed. Option // Report is called for every comparison made and will be provided with // the two values being compared, the equality result, and the // current path in the value tree. It is possible for x or y to be an // invalid reflect.Value if one of the values is non-existent; // which is possible with maps and slices. Report(x, y reflect.Value, eq bool, p Path) } // normalizeOption normalizes the input options such that all Options groups // are flattened and groups with a single element are reduced to that element. // Only coreOptions and Options containing coreOptions are allowed. func normalizeOption(src Option) Option { switch opts := flattenOptions(nil, Options{src}); len(opts) { case 0: return nil case 1: return opts[0] default: return opts } } // flattenOptions copies all options in src to dst as a flat list. // Only coreOptions and Options containing coreOptions are allowed. func flattenOptions(dst, src Options) Options { for _, opt := range src { switch opt := opt.(type) { case nil: continue case Options: dst = flattenOptions(dst, opt) case coreOption: dst = append(dst, opt) default: panic(fmt.Sprintf("invalid option type: %T", opt)) } } return dst } // getFuncName returns a short function name from the pointer. // The string parsing logic works up until Go1.9. func getFuncName(p uintptr) string { fnc := runtime.FuncForPC(p) if fnc == nil { return "" } name := fnc.Name() // E.g., "long/path/name/mypkg.(mytype).(long/path/name/mypkg.myfunc)-fm" if strings.HasSuffix(name, ")-fm") || strings.HasSuffix(name, ")·fm") { // Strip the package name from method name. name = strings.TrimSuffix(name, ")-fm") name = strings.TrimSuffix(name, ")·fm") if i := strings.LastIndexByte(name, '('); i >= 0 { methodName := name[i+1:] // E.g., "long/path/name/mypkg.myfunc" if j := strings.LastIndexByte(methodName, '.'); j >= 0 { methodName = methodName[j+1:] // E.g., "myfunc" } name = name[:i] + methodName // E.g., "long/path/name/mypkg.(mytype)." + "myfunc" } } if i := strings.LastIndexByte(name, '/'); i >= 0 { // Strip the package name. name = name[i+1:] // E.g., "mypkg.(mytype).myfunc" } return name } go-cmp-0.1.0/cmp/options_test.go000066400000000000000000000152461314065731500165470ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package cmp import ( "io" "reflect" "strings" "testing" ts "github.com/google/go-cmp/cmp/internal/teststructs" ) // Test that the creation of Option values with non-sensible inputs produces // a run-time panic with a decent error message func TestOptionPanic(t *testing.T) { type myBool bool tests := []struct { label string // Test description fnc interface{} // Option function to call args []interface{} // Arguments to pass in wantPanic string // Expected panic message }{{ label: "AllowUnexported", fnc: AllowUnexported, args: []interface{}{}, }, { label: "AllowUnexported", fnc: AllowUnexported, args: []interface{}{1}, wantPanic: "invalid struct type", }, { label: "AllowUnexported", fnc: AllowUnexported, args: []interface{}{ts.StructA{}}, }, { label: "AllowUnexported", fnc: AllowUnexported, args: []interface{}{ts.StructA{}, ts.StructB{}, ts.StructA{}}, }, { label: "AllowUnexported", fnc: AllowUnexported, args: []interface{}{ts.StructA{}, &ts.StructB{}, ts.StructA{}}, wantPanic: "invalid struct type", }, { label: "Comparer", fnc: Comparer, args: []interface{}{5}, wantPanic: "invalid comparer function", }, { label: "Comparer", fnc: Comparer, args: []interface{}{func(x, y interface{}) bool { return true }}, }, { label: "Comparer", fnc: Comparer, args: []interface{}{func(x, y io.Reader) bool { return true }}, }, { label: "Comparer", fnc: Comparer, args: []interface{}{func(x, y io.Reader) myBool { return true }}, wantPanic: "invalid comparer function", }, { label: "Comparer", fnc: Comparer, args: []interface{}{func(x string, y interface{}) bool { return true }}, wantPanic: "invalid comparer function", }, { label: "Comparer", fnc: Comparer, args: []interface{}{(func(int, int) bool)(nil)}, wantPanic: "invalid comparer function", }, { label: "Transformer", fnc: Transformer, args: []interface{}{"", 0}, wantPanic: "invalid transformer function", }, { label: "Transformer", fnc: Transformer, args: []interface{}{"", func(int) int { return 0 }}, }, { label: "Transformer", fnc: Transformer, args: []interface{}{"", func(bool) bool { return true }}, }, { label: "Transformer", fnc: Transformer, args: []interface{}{"", func(int) bool { return true }}, }, { label: "Transformer", fnc: Transformer, args: []interface{}{"", func(int, int) bool { return true }}, wantPanic: "invalid transformer function", }, { label: "Transformer", fnc: Transformer, args: []interface{}{"", (func(int) uint)(nil)}, wantPanic: "invalid transformer function", }, { label: "Transformer", fnc: Transformer, args: []interface{}{"Func", func(Path) Path { return nil }}, }, { label: "Transformer", fnc: Transformer, args: []interface{}{"世界", func(int) bool { return true }}, }, { label: "Transformer", fnc: Transformer, args: []interface{}{"/*", func(int) bool { return true }}, wantPanic: "invalid name", }, { label: "Transformer", fnc: Transformer, args: []interface{}{"_", func(int) bool { return true }}, wantPanic: "invalid name", }, { label: "FilterPath", fnc: FilterPath, args: []interface{}{(func(Path) bool)(nil), Ignore()}, wantPanic: "invalid path filter function", }, { label: "FilterPath", fnc: FilterPath, args: []interface{}{func(Path) bool { return true }, Ignore()}, }, { label: "FilterPath", fnc: FilterPath, args: []interface{}{func(Path) bool { return true }, &defaultReporter{}}, wantPanic: "invalid option type", }, { label: "FilterPath", fnc: FilterPath, args: []interface{}{func(Path) bool { return true }, Options{Ignore(), Ignore()}}, }, { label: "FilterPath", fnc: FilterPath, args: []interface{}{func(Path) bool { return true }, Options{Ignore(), &defaultReporter{}}}, wantPanic: "invalid option type", }, { label: "FilterValues", fnc: FilterValues, args: []interface{}{0, Ignore()}, wantPanic: "invalid values filter function", }, { label: "FilterValues", fnc: FilterValues, args: []interface{}{func(x, y int) bool { return true }, Ignore()}, }, { label: "FilterValues", fnc: FilterValues, args: []interface{}{func(x, y interface{}) bool { return true }, Ignore()}, }, { label: "FilterValues", fnc: FilterValues, args: []interface{}{func(x, y interface{}) myBool { return true }, Ignore()}, wantPanic: "invalid values filter function", }, { label: "FilterValues", fnc: FilterValues, args: []interface{}{func(x io.Reader, y interface{}) bool { return true }, Ignore()}, wantPanic: "invalid values filter function", }, { label: "FilterValues", fnc: FilterValues, args: []interface{}{(func(int, int) bool)(nil), Ignore()}, wantPanic: "invalid values filter function", }, { label: "FilterValues", fnc: FilterValues, args: []interface{}{func(int, int) bool { return true }, &defaultReporter{}}, wantPanic: "invalid option type", }, { label: "FilterValues", fnc: FilterValues, args: []interface{}{func(int, int) bool { return true }, Options{Ignore(), Ignore()}}, }, { label: "FilterValues", fnc: FilterValues, args: []interface{}{func(int, int) bool { return true }, Options{Ignore(), &defaultReporter{}}}, wantPanic: "invalid option type", }} for _, tt := range tests { tRun(t, tt.label, func(t *testing.T) { var gotPanic string func() { defer func() { if ex := recover(); ex != nil { if s, ok := ex.(string); ok { gotPanic = s } else { panic(ex) } } }() var vargs []reflect.Value for _, arg := range tt.args { vargs = append(vargs, reflect.ValueOf(arg)) } reflect.ValueOf(tt.fnc).Call(vargs) }() if tt.wantPanic == "" { if gotPanic != "" { t.Fatalf("unexpected panic message: %s", gotPanic) } } else { if !strings.Contains(gotPanic, tt.wantPanic) { t.Fatalf("panic message:\ngot: %s\nwant: %s", gotPanic, tt.wantPanic) } } }) } } // TODO: Delete this hack when we drop Go1.6 support. func tRun(t *testing.T, name string, f func(t *testing.T)) { type runner interface { Run(string, func(t *testing.T)) bool } var ti interface{} = t if r, ok := ti.(runner); ok { r.Run(name, f) } else { t.Logf("Test: %s", name) f(t) } } go-cmp-0.1.0/cmp/path.go000066400000000000000000000201701314065731500147410ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package cmp import ( "fmt" "reflect" "strings" "unicode" "unicode/utf8" ) type ( // Path is a list of PathSteps describing the sequence of operations to get // from some root type to the current position in the value tree. // The first Path element is always an operation-less PathStep that exists // simply to identify the initial type. // // When traversing structs with embedded structs, the embedded struct will // always be accessed as a field before traversing the fields of the // embedded struct themselves. That is, an exported field from the // embedded struct will never be accessed directly from the parent struct. Path []PathStep // PathStep is a union-type for specific operations to traverse // a value's tree structure. Users of this package never need to implement // these types as values of this type will be returned by this package. PathStep interface { String() string Type() reflect.Type // Resulting type after performing the path step isPathStep() } // SliceIndex is an index operation on a slice or array at some index Key. SliceIndex interface { PathStep Key() int // May return -1 if in a split state // SplitKeys returns the indexes for indexing into slices in the // x and y values, respectively. These indexes may differ due to the // insertion or removal of an element in one of the slices, causing // all of the indexes to be shifted. If an index is -1, then that // indicates that the element does not exist in the associated slice. // // Key is guaranteed to return -1 if and only if the indexes returned // by SplitKeys are not the same. SplitKeys will never return -1 for // both indexes. SplitKeys() (x int, y int) isSliceIndex() } // MapIndex is an index operation on a map at some index Key. MapIndex interface { PathStep Key() reflect.Value isMapIndex() } // TypeAssertion represents a type assertion on an interface. TypeAssertion interface { PathStep isTypeAssertion() } // StructField represents a struct field access on a field called Name. StructField interface { PathStep Name() string Index() int isStructField() } // Indirect represents pointer indirection on the parent type. Indirect interface { PathStep isIndirect() } // Transform is a transformation from the parent type to the current type. Transform interface { PathStep Name() string Func() reflect.Value isTransform() } ) func (pa *Path) push(s PathStep) { *pa = append(*pa, s) } func (pa *Path) pop() { *pa = (*pa)[:len(*pa)-1] } // Last returns the last PathStep in the Path. // If the path is empty, this returns a non-nil PathStep that reports a nil Type. func (pa Path) Last() PathStep { if len(pa) > 0 { return pa[len(pa)-1] } return pathStep{} } // String returns the simplified path to a node. // The simplified path only contains struct field accesses. // // For example: // MyMap.MySlices.MyField func (pa Path) String() string { var ss []string for _, s := range pa { if _, ok := s.(*structField); ok { ss = append(ss, s.String()) } } return strings.TrimPrefix(strings.Join(ss, ""), ".") } // GoString returns the path to a specific node using Go syntax. // // For example: // (*root.MyMap["key"].(*mypkg.MyStruct).MySlices)[2][3].MyField func (pa Path) GoString() string { var ssPre, ssPost []string var numIndirect int for i, s := range pa { var nextStep PathStep if i+1 < len(pa) { nextStep = pa[i+1] } switch s := s.(type) { case *indirect: numIndirect++ pPre, pPost := "(", ")" switch nextStep.(type) { case *indirect: continue // Next step is indirection, so let them batch up case *structField: numIndirect-- // Automatic indirection on struct fields case nil: pPre, pPost = "", "" // Last step; no need for parenthesis } if numIndirect > 0 { ssPre = append(ssPre, pPre+strings.Repeat("*", numIndirect)) ssPost = append(ssPost, pPost) } numIndirect = 0 continue case *transform: ssPre = append(ssPre, s.trans.name+"(") ssPost = append(ssPost, ")") continue case *typeAssertion: // Elide type assertions immediately following a transform to // prevent overly verbose path printouts. // Some transforms return interface{} because of Go's lack of // generics, but typically take in and return the exact same // concrete type. Other times, the transform creates an anonymous // struct, which will be very verbose to print. if _, ok := nextStep.(*transform); ok { continue } } ssPost = append(ssPost, s.String()) } for i, j := 0, len(ssPre)-1; i < j; i, j = i+1, j-1 { ssPre[i], ssPre[j] = ssPre[j], ssPre[i] } return strings.Join(ssPre, "") + strings.Join(ssPost, "") } type ( pathStep struct { typ reflect.Type } sliceIndex struct { pathStep xkey, ykey int } mapIndex struct { pathStep key reflect.Value } typeAssertion struct { pathStep } structField struct { pathStep name string idx int // These fields are used for forcibly accessing an unexported field. // pvx, pvy, and field are only valid if unexported is true. unexported bool force bool // Forcibly allow visibility pvx, pvy reflect.Value // Parent values field reflect.StructField // Field information } indirect struct { pathStep } transform struct { pathStep trans *transformer } ) func (ps pathStep) Type() reflect.Type { return ps.typ } func (ps pathStep) String() string { if ps.typ == nil { return "" } s := ps.typ.String() if s == "" || strings.ContainsAny(s, "{}\n") { return "root" // Type too simple or complex to print } return fmt.Sprintf("{%s}", s) } func (si sliceIndex) String() string { switch { case si.xkey == si.ykey: return fmt.Sprintf("[%d]", si.xkey) case si.ykey == -1: // [5->?] means "I don't know where X[5] went" return fmt.Sprintf("[%d->?]", si.xkey) case si.xkey == -1: // [?->3] means "I don't know where Y[3] came from" return fmt.Sprintf("[?->%d]", si.ykey) default: // [5->3] means "X[5] moved to Y[3]" return fmt.Sprintf("[%d->%d]", si.xkey, si.ykey) } } func (mi mapIndex) String() string { return fmt.Sprintf("[%#v]", mi.key) } func (ta typeAssertion) String() string { return fmt.Sprintf(".(%v)", ta.typ) } func (sf structField) String() string { return fmt.Sprintf(".%s", sf.name) } func (in indirect) String() string { return "*" } func (tf transform) String() string { return fmt.Sprintf("%s()", tf.trans.name) } func (si sliceIndex) Key() int { if si.xkey != si.ykey { return -1 } return si.xkey } func (si sliceIndex) SplitKeys() (x, y int) { return si.xkey, si.ykey } func (mi mapIndex) Key() reflect.Value { return mi.key } func (sf structField) Name() string { return sf.name } func (sf structField) Index() int { return sf.idx } func (tf transform) Name() string { return tf.trans.name } func (tf transform) Func() reflect.Value { return tf.trans.fnc } func (pathStep) isPathStep() {} func (sliceIndex) isSliceIndex() {} func (mapIndex) isMapIndex() {} func (typeAssertion) isTypeAssertion() {} func (structField) isStructField() {} func (indirect) isIndirect() {} func (transform) isTransform() {} var ( _ SliceIndex = sliceIndex{} _ MapIndex = mapIndex{} _ TypeAssertion = typeAssertion{} _ StructField = structField{} _ Indirect = indirect{} _ Transform = transform{} _ PathStep = sliceIndex{} _ PathStep = mapIndex{} _ PathStep = typeAssertion{} _ PathStep = structField{} _ PathStep = indirect{} _ PathStep = transform{} ) // isExported reports whether the identifier is exported. func isExported(id string) bool { r, _ := utf8.DecodeRuneInString(id) return unicode.IsUpper(r) } // isValid reports whether the identifier is valid. // Empty and underscore-only strings are not valid. func isValid(id string) bool { ok := id != "" && id != "_" for j, c := range id { ok = ok && (j > 0 || !unicode.IsDigit(c)) ok = ok && (c == '_' || unicode.IsLetter(c) || unicode.IsDigit(c)) } return ok } go-cmp-0.1.0/cmp/reporter.go000066400000000000000000000024641314065731500156550ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. package cmp import ( "fmt" "reflect" "strings" "github.com/google/go-cmp/cmp/internal/value" ) type defaultReporter struct { Option diffs []string // List of differences, possibly truncated ndiffs int // Total number of differences nbytes int // Number of bytes in diffs nlines int // Number of lines in diffs } var _ reporter = (*defaultReporter)(nil) func (r *defaultReporter) Report(x, y reflect.Value, eq bool, p Path) { if eq { return // Ignore equal results } const maxBytes = 4096 const maxLines = 256 r.ndiffs++ if r.nbytes < maxBytes && r.nlines < maxLines { sx := value.Format(x, true) sy := value.Format(y, true) if sx == sy { // Stringer is not helpful, so rely on more exact formatting. sx = value.Format(x, false) sy = value.Format(y, false) } s := fmt.Sprintf("%#v:\n\t-: %s\n\t+: %s\n", p, sx, sy) r.diffs = append(r.diffs, s) r.nbytes += len(s) r.nlines += strings.Count(s, "\n") } } func (r *defaultReporter) String() string { s := strings.Join(r.diffs, "") if r.ndiffs == len(r.diffs) { return s } return fmt.Sprintf("%s... %d more differences ...", s, len(r.diffs)-r.ndiffs) } go-cmp-0.1.0/cmp/unsafe_panic.go000066400000000000000000000006011314065731500164350ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. // +build appengine js package cmp import "reflect" const supportAllowUnexported = false func unsafeRetrieveField(reflect.Value, reflect.StructField) reflect.Value { panic("unsafeRetrieveField is not implemented") } go-cmp-0.1.0/cmp/unsafe_reflect.go000066400000000000000000000012511314065731500167710ustar00rootroot00000000000000// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. // +build !appengine,!js package cmp import ( "reflect" "unsafe" ) const supportAllowUnexported = true // unsafeRetrieveField uses unsafe to forcibly retrieve any field from a struct // such that the value has read-write permissions. // // The parent struct, v, must be addressable, while f must be a StructField // describing the field to retrieve. func unsafeRetrieveField(v reflect.Value, f reflect.StructField) reflect.Value { return reflect.NewAt(f.Type, unsafe.Pointer(v.UnsafeAddr()+f.Offset)).Elem() }