pax_global_header00006660000000000000000000000064142565420570014524gustar00rootroot0000000000000052 comment=78d058c5618891f74d604bd15356fca690b64d8a go-version-1.6.0/000077500000000000000000000000001425654205700136205ustar00rootroot00000000000000go-version-1.6.0/.circleci/000077500000000000000000000000001425654205700154535ustar00rootroot00000000000000go-version-1.6.0/.circleci/config.yml000066400000000000000000000030471425654205700174470ustar00rootroot00000000000000version: 2.1 references: images: go: &GOLANG_IMAGE docker.mirror.hashicorp.services/circleci/golang:1.15.3 environments: tmp: &TEST_RESULTS_PATH /tmp/test-results # path to where test results are saved # reusable 'executor' object for jobs executors: go: docker: - image: *GOLANG_IMAGE environment: - TEST_RESULTS: *TEST_RESULTS_PATH jobs: go-test: executor: go steps: - checkout - run: mkdir -p $TEST_RESULTS - restore_cache: # restore cache from dev-build job keys: - go-version-modcache-v1-{{ checksum "go.mod" }} - run: go mod download # Save go module cache if the go.mod file has changed - save_cache: key: go-version-modcache-v1-{{ checksum "go.mod" }} paths: - "/go/pkg/mod" # check go fmt output because it does not report non-zero when there are fmt changes - run: name: check go fmt command: | files=$(go fmt ./...) if [ -n "$files" ]; then echo "The following file(s) do not conform to go fmt:" echo "$files" exit 1 fi # run go tests with gotestsum - run: | PACKAGE_NAMES=$(go list ./...) gotestsum --format=short-verbose --junitfile $TEST_RESULTS/gotestsum-report.xml -- $PACKAGE_NAMES - store_test_results: path: *TEST_RESULTS_PATH - store_artifacts: path: *TEST_RESULTS_PATH workflows: version: 2 test-and-build: jobs: - go-test go-version-1.6.0/CHANGELOG.md000066400000000000000000000027051425654205700154350ustar00rootroot00000000000000# 1.6.0 (June 28, 2022) FEATURES: - Add `Prerelease` function to `Constraint` to return true if the version includes a prerelease field ([#100](https://github.com/hashicorp/go-version/pull/100)) # 1.5.0 (May 18, 2022) FEATURES: - Use `encoding` `TextMarshaler` & `TextUnmarshaler` instead of JSON equivalents ([#95](https://github.com/hashicorp/go-version/pull/95)) - Add JSON handlers to allow parsing from/to JSON ([#93](https://github.com/hashicorp/go-version/pull/93)) # 1.4.0 (January 5, 2022) FEATURES: - Introduce `MustConstraints()` ([#87](https://github.com/hashicorp/go-version/pull/87)) - `Constraints`: Introduce `Equals()` and `sort.Interface` methods ([#88](https://github.com/hashicorp/go-version/pull/88)) # 1.3.0 (March 31, 2021) Please note that CHANGELOG.md does not exist in the source code prior to this release. FEATURES: - Add `Core` function to return a version without prerelease or metadata ([#85](https://github.com/hashicorp/go-version/pull/85)) # 1.2.1 (June 17, 2020) BUG FIXES: - Prevent `Version.Equal` method from panicking on `nil` encounter ([#73](https://github.com/hashicorp/go-version/pull/73)) # 1.2.0 (April 23, 2019) FEATURES: - Add `GreaterThanOrEqual` and `LessThanOrEqual` helper methods ([#53](https://github.com/hashicorp/go-version/pull/53)) # 1.1.0 (Jan 07, 2019) FEATURES: - Add `NewSemver` constructor ([#45](https://github.com/hashicorp/go-version/pull/45)) # 1.0.0 (August 24, 2018) Initial release. go-version-1.6.0/LICENSE000066400000000000000000000371511425654205700146340ustar00rootroot00000000000000Mozilla Public License, version 2.0 1. Definitions 1.1. “Contributor” means each individual or legal entity that creates, contributes to the creation of, or owns Covered Software. 1.2. “Contributor Version” means the combination of the Contributions of others (if any) used by a Contributor and that particular Contributor’s Contribution. 1.3. “Contribution” means Covered Software of a particular Contributor. 1.4. “Covered Software” means Source Code Form to which the initial Contributor has attached the notice in Exhibit A, the Executable Form of such Source Code Form, and Modifications of such Source Code Form, in each case including portions thereof. 1.5. “Incompatible With Secondary Licenses” means a. that the initial Contributor has attached the notice described in Exhibit B to the Covered Software; or b. that the Covered Software was made available under the terms of version 1.1 or earlier of the License, but not also under the terms of a Secondary License. 1.6. “Executable Form” means any form of the work other than Source Code Form. 1.7. “Larger Work” means a work that combines Covered Software with other material, in a separate file or files, that is not Covered Software. 1.8. “License” means this document. 1.9. “Licensable” means having the right to grant, to the maximum extent possible, whether at the time of the initial grant or subsequently, any and all of the rights conveyed by this License. 1.10. “Modifications” means any of the following: a. any file in Source Code Form that results from an addition to, deletion from, or modification of the contents of Covered Software; or b. any new file in Source Code Form that contains any Covered Software. 1.11. “Patent Claims” of a Contributor means any patent claim(s), including without limitation, method, process, and apparatus claims, in any patent Licensable by such Contributor that would be infringed, but for the grant of the License, by the making, using, selling, offering for sale, having made, import, or transfer of either its Contributions or its Contributor Version. 1.12. “Secondary License” means either the GNU General Public License, Version 2.0, the GNU Lesser General Public License, Version 2.1, the GNU Affero General Public License, Version 3.0, or any later versions of those licenses. 1.13. “Source Code Form” means the form of the work preferred for making modifications. 1.14. “You” (or “Your”) means an individual or a legal entity exercising rights under this License. For legal entities, “You” includes any entity that controls, is controlled by, or is under common control with You. For purposes of this definition, “control” means (a) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (b) ownership of more than fifty percent (50%) of the outstanding shares or beneficial ownership of such entity. 2. License Grants and Conditions 2.1. Grants Each Contributor hereby grants You a world-wide, royalty-free, non-exclusive license: a. under intellectual property rights (other than patent or trademark) Licensable by such Contributor to use, reproduce, make available, modify, display, perform, distribute, and otherwise exploit its Contributions, either on an unmodified basis, with Modifications, or as part of a Larger Work; and b. under Patent Claims of such Contributor to make, use, sell, offer for sale, have made, import, and otherwise transfer either its Contributions or its Contributor Version. 2.2. Effective Date The licenses granted in Section 2.1 with respect to any Contribution become effective for each Contribution on the date the Contributor first distributes such Contribution. 2.3. Limitations on Grant Scope The licenses granted in this Section 2 are the only rights granted under this License. No additional rights or licenses will be implied from the distribution or licensing of Covered Software under this License. Notwithstanding Section 2.1(b) above, no patent license is granted by a Contributor: a. for any code that a Contributor has removed from Covered Software; or b. for infringements caused by: (i) Your and any other third party’s modifications of Covered Software, or (ii) the combination of its Contributions with other software (except as part of its Contributor Version); or c. under Patent Claims infringed by Covered Software in the absence of its Contributions. This License does not grant any rights in the trademarks, service marks, or logos of any Contributor (except as may be necessary to comply with the notice requirements in Section 3.4). 2.4. Subsequent Licenses No Contributor makes additional grants as a result of Your choice to distribute the Covered Software under a subsequent version of this License (see Section 10.2) or under the terms of a Secondary License (if permitted under the terms of Section 3.3). 2.5. Representation Each Contributor represents that the Contributor believes its Contributions are its original creation(s) or it has sufficient rights to grant the rights to its Contributions conveyed by this License. 2.6. Fair Use This License is not intended to limit any rights You have under applicable copyright doctrines of fair use, fair dealing, or other equivalents. 2.7. Conditions Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in Section 2.1. 3. Responsibilities 3.1. Distribution of Source Form All distribution of Covered Software in Source Code Form, including any Modifications that You create or to which You contribute, must be under the terms of this License. You must inform recipients that the Source Code Form of the Covered Software is governed by the terms of this License, and how they can obtain a copy of this License. You may not attempt to alter or restrict the recipients’ rights in the Source Code Form. 3.2. Distribution of Executable Form If You distribute Covered Software in Executable Form then: a. such Covered Software must also be made available in Source Code Form, as described in Section 3.1, and You must inform recipients of the Executable Form how they can obtain a copy of such Source Code Form by reasonable means in a timely manner, at a charge no more than the cost of distribution to the recipient; and b. You may distribute such Executable Form under the terms of this License, or sublicense it under different terms, provided that the license for the Executable Form does not attempt to limit or alter the recipients’ rights in the Source Code Form under this License. 3.3. Distribution of a Larger Work You may create and distribute a Larger Work under terms of Your choice, provided that You also comply with the requirements of this License for the Covered Software. If the Larger Work is a combination of Covered Software with a work governed by one or more Secondary Licenses, and the Covered Software is not Incompatible With Secondary Licenses, this License permits You to additionally distribute such Covered Software under the terms of such Secondary License(s), so that the recipient of the Larger Work may, at their option, further distribute the Covered Software under the terms of either this License or such Secondary License(s). 3.4. Notices You may not remove or alter the substance of any license notices (including copyright notices, patent notices, disclaimers of warranty, or limitations of liability) contained within the Source Code Form of the Covered Software, except that You may alter any license notices to the extent required to remedy known factual inaccuracies. 3.5. Application of Additional Terms You may choose to offer, and to charge a fee for, warranty, support, indemnity or liability obligations to one or more recipients of Covered Software. However, You may do so only on Your own behalf, and not on behalf of any Contributor. You must make it absolutely clear that any such warranty, support, indemnity, or liability obligation is offered by You alone, and You hereby agree to indemnify every Contributor for any liability incurred by such Contributor as a result of warranty, support, indemnity or liability terms You offer. You may include additional disclaimers of warranty and limitations of liability specific to any jurisdiction. 4. Inability to Comply Due to Statute or Regulation If it is impossible for You to comply with any of the terms of this License with respect to some or all of the Covered Software due to statute, judicial order, or regulation then You must: (a) comply with the terms of this License to the maximum extent possible; and (b) describe the limitations and the code they affect. Such description must be placed in a text file included with all distributions of the Covered Software under this License. Except to the extent prohibited by statute or regulation, such description must be sufficiently detailed for a recipient of ordinary skill to be able to understand it. 5. Termination 5.1. The rights granted under this License will terminate automatically if You fail to comply with any of its terms. However, if You become compliant, then the rights granted under this License from a particular Contributor are reinstated (a) provisionally, unless and until such Contributor explicitly and finally terminates Your grants, and (b) on an ongoing basis, if such Contributor fails to notify You of the non-compliance by some reasonable means prior to 60 days after You have come back into compliance. Moreover, Your grants from a particular Contributor are reinstated on an ongoing basis if such Contributor notifies You of the non-compliance by some reasonable means, this is the first time You have received notice of non-compliance with this License from such Contributor, and You become compliant prior to 30 days after Your receipt of the notice. 5.2. If You initiate litigation against any entity by asserting a patent infringement claim (excluding declaratory judgment actions, counter-claims, and cross-claims) alleging that a Contributor Version directly or indirectly infringes any patent, then the rights granted to You by any and all Contributors for the Covered Software under Section 2.1 of this License shall terminate. 5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user license agreements (excluding distributors and resellers) which have been validly granted by You or Your distributors under this License prior to termination shall survive termination. 6. Disclaimer of Warranty Covered Software is provided under this License on an “as is” basis, without warranty of any kind, either expressed, implied, or statutory, including, without limitation, warranties that the Covered Software is free of defects, merchantable, fit for a particular purpose or non-infringing. The entire risk as to the quality and performance of the Covered Software is with You. Should any Covered Software prove defective in any respect, You (not any Contributor) assume the cost of any necessary servicing, repair, or correction. This disclaimer of warranty constitutes an essential part of this License. No use of any Covered Software is authorized under this License except under this disclaimer. 7. Limitation of Liability Under no circumstances and under no legal theory, whether tort (including negligence), contract, or otherwise, shall any Contributor, or anyone who distributes Covered Software as permitted above, be liable to You for any direct, indirect, special, incidental, or consequential damages of any character including, without limitation, damages for lost profits, loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses, even if such party shall have been informed of the possibility of such damages. This limitation of liability shall not apply to liability for death or personal injury resulting from such party’s negligence to the extent applicable law prohibits such limitation. Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages, so this exclusion and limitation may not apply to You. 8. Litigation Any litigation relating to this License may be brought only in the courts of a jurisdiction where the defendant maintains its principal place of business and such litigation shall be governed by laws of that jurisdiction, without reference to its conflict-of-law provisions. Nothing in this Section shall prevent a party’s ability to bring cross-claims or counter-claims. 9. Miscellaneous This License represents the complete agreement concerning the subject matter hereof. If any provision of this License is held to be unenforceable, such provision shall be reformed only to the extent necessary to make it enforceable. Any law or regulation which provides that the language of a contract shall be construed against the drafter shall not be used to construe this License against a Contributor. 10. Versions of the License 10.1. New Versions Mozilla Foundation is the license steward. Except as provided in Section 10.3, no one other than the license steward has the right to modify or publish new versions of this License. Each version will be given a distinguishing version number. 10.2. Effect of New Versions You may distribute the Covered Software under the terms of the version of the License under which You originally received the Covered Software, or under the terms of any subsequent version published by the license steward. 10.3. Modified Versions If you create software not governed by this License, and you want to create a new license for such software, you may create and use a modified version of this License if you rename the license and remove any references to the name of the license steward (except to note that such modified license differs from this License). 10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses If You choose to distribute Source Code Form that is Incompatible With Secondary Licenses under the terms of this version of the License, the notice described in Exhibit B of this License must be attached. Exhibit A - Source Code Form License Notice This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/. If it is not possible or desirable to put the notice in a particular file, then You may include the notice in a location (such as a LICENSE file in a relevant directory) where a recipient would be likely to look for such a notice. You may add additional accurate notices of copyright ownership. Exhibit B - “Incompatible With Secondary Licenses” Notice This Source Code Form is “Incompatible With Secondary Licenses”, as defined by the Mozilla Public License, v. 2.0. go-version-1.6.0/README.md000066400000000000000000000036141425654205700151030ustar00rootroot00000000000000# Versioning Library for Go [![Build Status](https://circleci.com/gh/hashicorp/go-version/tree/main.svg?style=svg)](https://circleci.com/gh/hashicorp/go-version/tree/main) [![GoDoc](https://godoc.org/github.com/hashicorp/go-version?status.svg)](https://godoc.org/github.com/hashicorp/go-version) go-version is a library for parsing versions and version constraints, and verifying versions against a set of constraints. go-version can sort a collection of versions properly, handles prerelease/beta versions, can increment versions, etc. Versions used with go-version must follow [SemVer](http://semver.org/). ## Installation and Usage Package documentation can be found on [GoDoc](http://godoc.org/github.com/hashicorp/go-version). Installation can be done with a normal `go get`: ``` $ go get github.com/hashicorp/go-version ``` #### Version Parsing and Comparison ```go v1, err := version.NewVersion("1.2") v2, err := version.NewVersion("1.5+metadata") // Comparison example. There is also GreaterThan, Equal, and just // a simple Compare that returns an int allowing easy >=, <=, etc. if v1.LessThan(v2) { fmt.Printf("%s is less than %s", v1, v2) } ``` #### Version Constraints ```go v1, err := version.NewVersion("1.2") // Constraints example. constraints, err := version.NewConstraint(">= 1.0, < 1.4") if constraints.Check(v1) { fmt.Printf("%s satisfies constraints %s", v1, constraints) } ``` #### Version Sorting ```go versionsRaw := []string{"1.1", "0.7.1", "1.4-beta", "1.4", "2"} versions := make([]*version.Version, len(versionsRaw)) for i, raw := range versionsRaw { v, _ := version.NewVersion(raw) versions[i] = v } // After this, the versions are properly sorted sort.Sort(version.Collection(versions)) ``` ## Issues and Contributing If you find an issue with this library, please report an issue. If you'd like, we welcome any contributions. Fork this library and submit a pull request. go-version-1.6.0/constraint.go000066400000000000000000000162621425654205700163420ustar00rootroot00000000000000package version import ( "fmt" "reflect" "regexp" "sort" "strings" ) // Constraint represents a single constraint for a version, such as // ">= 1.0". type Constraint struct { f constraintFunc op operator check *Version original string } func (c *Constraint) Equals(con *Constraint) bool { return c.op == con.op && c.check.Equal(con.check) } // Constraints is a slice of constraints. We make a custom type so that // we can add methods to it. type Constraints []*Constraint type constraintFunc func(v, c *Version) bool var constraintOperators map[string]constraintOperation type constraintOperation struct { op operator f constraintFunc } var constraintRegexp *regexp.Regexp func init() { constraintOperators = map[string]constraintOperation{ "": {op: equal, f: constraintEqual}, "=": {op: equal, f: constraintEqual}, "!=": {op: notEqual, f: constraintNotEqual}, ">": {op: greaterThan, f: constraintGreaterThan}, "<": {op: lessThan, f: constraintLessThan}, ">=": {op: greaterThanEqual, f: constraintGreaterThanEqual}, "<=": {op: lessThanEqual, f: constraintLessThanEqual}, "~>": {op: pessimistic, f: constraintPessimistic}, } ops := make([]string, 0, len(constraintOperators)) for k := range constraintOperators { ops = append(ops, regexp.QuoteMeta(k)) } constraintRegexp = regexp.MustCompile(fmt.Sprintf( `^\s*(%s)\s*(%s)\s*$`, strings.Join(ops, "|"), VersionRegexpRaw)) } // NewConstraint will parse one or more constraints from the given // constraint string. The string must be a comma-separated list of // constraints. func NewConstraint(v string) (Constraints, error) { vs := strings.Split(v, ",") result := make([]*Constraint, len(vs)) for i, single := range vs { c, err := parseSingle(single) if err != nil { return nil, err } result[i] = c } return Constraints(result), nil } // MustConstraints is a helper that wraps a call to a function // returning (Constraints, error) and panics if error is non-nil. func MustConstraints(c Constraints, err error) Constraints { if err != nil { panic(err) } return c } // Check tests if a version satisfies all the constraints. func (cs Constraints) Check(v *Version) bool { for _, c := range cs { if !c.Check(v) { return false } } return true } // Equals compares Constraints with other Constraints // for equality. This may not represent logical equivalence // of compared constraints. // e.g. even though '>0.1,>0.2' is logically equivalent // to '>0.2' it is *NOT* treated as equal. // // Missing operator is treated as equal to '=', whitespaces // are ignored and constraints are sorted before comaparison. func (cs Constraints) Equals(c Constraints) bool { if len(cs) != len(c) { return false } // make copies to retain order of the original slices left := make(Constraints, len(cs)) copy(left, cs) sort.Stable(left) right := make(Constraints, len(c)) copy(right, c) sort.Stable(right) // compare sorted slices for i, con := range left { if !con.Equals(right[i]) { return false } } return true } func (cs Constraints) Len() int { return len(cs) } func (cs Constraints) Less(i, j int) bool { if cs[i].op < cs[j].op { return true } if cs[i].op > cs[j].op { return false } return cs[i].check.LessThan(cs[j].check) } func (cs Constraints) Swap(i, j int) { cs[i], cs[j] = cs[j], cs[i] } // Returns the string format of the constraints func (cs Constraints) String() string { csStr := make([]string, len(cs)) for i, c := range cs { csStr[i] = c.String() } return strings.Join(csStr, ",") } // Check tests if a constraint is validated by the given version. func (c *Constraint) Check(v *Version) bool { return c.f(v, c.check) } // Prerelease returns true if the version underlying this constraint // contains a prerelease field. func (c *Constraint) Prerelease() bool { return len(c.check.Prerelease()) > 0 } func (c *Constraint) String() string { return c.original } func parseSingle(v string) (*Constraint, error) { matches := constraintRegexp.FindStringSubmatch(v) if matches == nil { return nil, fmt.Errorf("Malformed constraint: %s", v) } check, err := NewVersion(matches[2]) if err != nil { return nil, err } cop := constraintOperators[matches[1]] return &Constraint{ f: cop.f, op: cop.op, check: check, original: v, }, nil } func prereleaseCheck(v, c *Version) bool { switch vPre, cPre := v.Prerelease() != "", c.Prerelease() != ""; { case cPre && vPre: // A constraint with a pre-release can only match a pre-release version // with the same base segments. return reflect.DeepEqual(c.Segments64(), v.Segments64()) case !cPre && vPre: // A constraint without a pre-release can only match a version without a // pre-release. return false case cPre && !vPre: // OK, except with the pessimistic operator case !cPre && !vPre: // OK } return true } //------------------------------------------------------------------- // Constraint functions //------------------------------------------------------------------- type operator rune const ( equal operator = '=' notEqual operator = '≠' greaterThan operator = '>' lessThan operator = '<' greaterThanEqual operator = '≥' lessThanEqual operator = '≤' pessimistic operator = '~' ) func constraintEqual(v, c *Version) bool { return v.Equal(c) } func constraintNotEqual(v, c *Version) bool { return !v.Equal(c) } func constraintGreaterThan(v, c *Version) bool { return prereleaseCheck(v, c) && v.Compare(c) == 1 } func constraintLessThan(v, c *Version) bool { return prereleaseCheck(v, c) && v.Compare(c) == -1 } func constraintGreaterThanEqual(v, c *Version) bool { return prereleaseCheck(v, c) && v.Compare(c) >= 0 } func constraintLessThanEqual(v, c *Version) bool { return prereleaseCheck(v, c) && v.Compare(c) <= 0 } func constraintPessimistic(v, c *Version) bool { // Using a pessimistic constraint with a pre-release, restricts versions to pre-releases if !prereleaseCheck(v, c) || (c.Prerelease() != "" && v.Prerelease() == "") { return false } // If the version being checked is naturally less than the constraint, then there // is no way for the version to be valid against the constraint if v.LessThan(c) { return false } // We'll use this more than once, so grab the length now so it's a little cleaner // to write the later checks cs := len(c.segments) // If the version being checked has less specificity than the constraint, then there // is no way for the version to be valid against the constraint if cs > len(v.segments) { return false } // Check the segments in the constraint against those in the version. If the version // being checked, at any point, does not have the same values in each index of the // constraints segments, then it cannot be valid against the constraint. for i := 0; i < c.si-1; i++ { if v.segments[i] != c.segments[i] { return false } } // Check the last part of the segment in the constraint. If the version segment at // this index is less than the constraints segment at this index, then it cannot // be valid against the constraint if c.segments[cs-1] > v.segments[cs-1] { return false } // If nothing has rejected the version by now, it's valid return true } go-version-1.6.0/constraint_test.go000066400000000000000000000120721425654205700173740ustar00rootroot00000000000000package version import ( "fmt" "reflect" "sort" "testing" ) func TestNewConstraint(t *testing.T) { cases := []struct { input string count int err bool }{ {">= 1.2", 1, false}, {"1.0", 1, false}, {">= 1.x", 0, true}, {">= 1.2, < 1.0", 2, false}, // Out of bounds {"11387778780781445675529500000000000000000", 0, true}, } for _, tc := range cases { v, err := NewConstraint(tc.input) if tc.err && err == nil { t.Fatalf("expected error for input: %s", tc.input) } else if !tc.err && err != nil { t.Fatalf("error for input %s: %s", tc.input, err) } if len(v) != tc.count { t.Fatalf("input: %s\nexpected len: %d\nactual: %d", tc.input, tc.count, len(v)) } } } func TestConstraintCheck(t *testing.T) { cases := []struct { constraint string version string check bool }{ {">= 1.0, < 1.2", "1.1.5", true}, {"< 1.0, < 1.2", "1.1.5", false}, {"= 1.0", "1.1.5", false}, {"= 1.0", "1.0.0", true}, {"1.0", "1.0.0", true}, {"~> 1.0", "2.0", false}, {"~> 1.0", "1.1", true}, {"~> 1.0", "1.2.3", true}, {"~> 1.0.0", "1.2.3", false}, {"~> 1.0.0", "1.0.7", true}, {"~> 1.0.0", "1.1.0", false}, {"~> 1.0.7", "1.0.4", false}, {"~> 1.0.7", "1.0.7", true}, {"~> 1.0.7", "1.0.8", true}, {"~> 1.0.7", "1.0.7.5", true}, {"~> 1.0.7", "1.0.6.99", false}, {"~> 1.0.7", "1.0.8.0", true}, {"~> 1.0.9.5", "1.0.9.5", true}, {"~> 1.0.9.5", "1.0.9.4", false}, {"~> 1.0.9.5", "1.0.9.6", true}, {"~> 1.0.9.5", "1.0.9.5.0", true}, {"~> 1.0.9.5", "1.0.9.5.1", true}, {"~> 2.0", "2.1.0-beta", false}, {"~> 2.1.0-a", "2.2.0", false}, {"~> 2.1.0-a", "2.1.0", false}, {"~> 2.1.0-a", "2.1.0-beta", true}, {"~> 2.1.0-a", "2.2.0-alpha", false}, {"> 2.0", "2.1.0-beta", false}, {">= 2.1.0-a", "2.1.0-beta", true}, {">= 2.1.0-a", "2.1.1-beta", false}, {">= 2.0.0", "2.1.0-beta", false}, {">= 2.1.0-a", "2.1.1", true}, {">= 2.1.0-a", "2.1.1-beta", false}, {">= 2.1.0-a", "2.1.0", true}, {"<= 2.1.0-a", "2.0.0", true}, } for _, tc := range cases { c, err := NewConstraint(tc.constraint) if err != nil { t.Fatalf("err: %s", err) } v, err := NewVersion(tc.version) if err != nil { t.Fatalf("err: %s", err) } actual := c.Check(v) expected := tc.check if actual != expected { t.Fatalf("Version: %s\nConstraint: %s\nExpected: %#v", tc.version, tc.constraint, expected) } } } func TestConstraintPrerelease(t *testing.T) { cases := []struct { constraint string prerelease bool }{ {"= 1.0", false}, {"= 1.0-beta", true}, {"~> 2.1.0", false}, {"~> 2.1.0-dev", true}, {"> 2.0", false}, {">= 2.1.0-a", true}, } for _, tc := range cases { c, err := parseSingle(tc.constraint) if err != nil { t.Fatalf("err: %s", err) } actual := c.Prerelease() expected := tc.prerelease if actual != expected { t.Fatalf("Constraint: %s\nExpected: %#v", tc.constraint, expected) } } } func TestConstraintEqual(t *testing.T) { cases := []struct { leftConstraint string rightConstraint string expectedEqual bool }{ { "0.0.1", "0.0.1", true, }, { // whitespaces " 0.0.1 ", "0.0.1", true, }, { // equal op implied "=0.0.1 ", "0.0.1", true, }, { // version difference "=0.0.1", "=0.0.2", false, }, { // operator difference ">0.0.1", "=0.0.1", false, }, { // different order ">0.1.0, <=1.0.0", "<=1.0.0, >0.1.0", true, }, } for _, tc := range cases { leftCon, err := NewConstraint(tc.leftConstraint) if err != nil { t.Fatalf("err: %s", err) } rightCon, err := NewConstraint(tc.rightConstraint) if err != nil { t.Fatalf("err: %s", err) } actual := leftCon.Equals(rightCon) if actual != tc.expectedEqual { t.Fatalf("Constraints: %s vs %s\nExpected: %t\nActual: %t", tc.leftConstraint, tc.rightConstraint, tc.expectedEqual, actual) } } } func TestConstraint_sort(t *testing.T) { cases := []struct { constraint string expectedConstraints string }{ { ">= 0.1.0,< 1.12", "< 1.12,>= 0.1.0", }, { "< 1.12,>= 0.1.0", "< 1.12,>= 0.1.0", }, { "< 1.12,>= 0.1.0,0.2.0", "< 1.12,0.2.0,>= 0.1.0", }, { ">1.0,>0.1.0,>0.3.0,>0.2.0", ">0.1.0,>0.2.0,>0.3.0,>1.0", }, } for i, tc := range cases { t.Run(fmt.Sprintf("%d", i), func(t *testing.T) { c, err := NewConstraint(tc.constraint) if err != nil { t.Fatalf("err: %s", err) } sort.Sort(c) actual := c.String() if !reflect.DeepEqual(actual, tc.expectedConstraints) { t.Fatalf("unexpected order\nexpected: %#v\nactual: %#v", tc.expectedConstraints, actual) } }) } } func TestConstraintsString(t *testing.T) { cases := []struct { constraint string result string }{ {">= 1.0, < 1.2", ""}, {"~> 1.0.7", ""}, } for _, tc := range cases { c, err := NewConstraint(tc.constraint) if err != nil { t.Fatalf("err: %s", err) } actual := c.String() expected := tc.result if expected == "" { expected = tc.constraint } if actual != expected { t.Fatalf("Constraint: %s\nExpected: %#v\nActual: %s", tc.constraint, expected, actual) } } } go-version-1.6.0/go.mod000066400000000000000000000000471425654205700147270ustar00rootroot00000000000000module github.com/hashicorp/go-version go-version-1.6.0/version.go000066400000000000000000000242251425654205700156410ustar00rootroot00000000000000package version import ( "bytes" "fmt" "reflect" "regexp" "strconv" "strings" ) // The compiled regular expression used to test the validity of a version. var ( versionRegexp *regexp.Regexp semverRegexp *regexp.Regexp ) // The raw regular expression string used for testing the validity // of a version. const ( VersionRegexpRaw string = `v?([0-9]+(\.[0-9]+)*?)` + `(-([0-9]+[0-9A-Za-z\-~]*(\.[0-9A-Za-z\-~]+)*)|(-?([A-Za-z\-~]+[0-9A-Za-z\-~]*(\.[0-9A-Za-z\-~]+)*)))?` + `(\+([0-9A-Za-z\-~]+(\.[0-9A-Za-z\-~]+)*))?` + `?` // SemverRegexpRaw requires a separator between version and prerelease SemverRegexpRaw string = `v?([0-9]+(\.[0-9]+)*?)` + `(-([0-9]+[0-9A-Za-z\-~]*(\.[0-9A-Za-z\-~]+)*)|(-([A-Za-z\-~]+[0-9A-Za-z\-~]*(\.[0-9A-Za-z\-~]+)*)))?` + `(\+([0-9A-Za-z\-~]+(\.[0-9A-Za-z\-~]+)*))?` + `?` ) // Version represents a single version. type Version struct { metadata string pre string segments []int64 si int original string } func init() { versionRegexp = regexp.MustCompile("^" + VersionRegexpRaw + "$") semverRegexp = regexp.MustCompile("^" + SemverRegexpRaw + "$") } // NewVersion parses the given version and returns a new // Version. func NewVersion(v string) (*Version, error) { return newVersion(v, versionRegexp) } // NewSemver parses the given version and returns a new // Version that adheres strictly to SemVer specs // https://semver.org/ func NewSemver(v string) (*Version, error) { return newVersion(v, semverRegexp) } func newVersion(v string, pattern *regexp.Regexp) (*Version, error) { matches := pattern.FindStringSubmatch(v) if matches == nil { return nil, fmt.Errorf("Malformed version: %s", v) } segmentsStr := strings.Split(matches[1], ".") segments := make([]int64, len(segmentsStr)) for i, str := range segmentsStr { val, err := strconv.ParseInt(str, 10, 64) if err != nil { return nil, fmt.Errorf( "Error parsing version: %s", err) } segments[i] = val } // Even though we could support more than three segments, if we // got less than three, pad it with 0s. This is to cover the basic // default usecase of semver, which is MAJOR.MINOR.PATCH at the minimum for i := len(segments); i < 3; i++ { segments = append(segments, 0) } pre := matches[7] if pre == "" { pre = matches[4] } return &Version{ metadata: matches[10], pre: pre, segments: segments, si: len(segmentsStr), original: v, }, nil } // Must is a helper that wraps a call to a function returning (*Version, error) // and panics if error is non-nil. func Must(v *Version, err error) *Version { if err != nil { panic(err) } return v } // Compare compares this version to another version. This // returns -1, 0, or 1 if this version is smaller, equal, // or larger than the other version, respectively. // // If you want boolean results, use the LessThan, Equal, // GreaterThan, GreaterThanOrEqual or LessThanOrEqual methods. func (v *Version) Compare(other *Version) int { // A quick, efficient equality check if v.String() == other.String() { return 0 } segmentsSelf := v.Segments64() segmentsOther := other.Segments64() // If the segments are the same, we must compare on prerelease info if reflect.DeepEqual(segmentsSelf, segmentsOther) { preSelf := v.Prerelease() preOther := other.Prerelease() if preSelf == "" && preOther == "" { return 0 } if preSelf == "" { return 1 } if preOther == "" { return -1 } return comparePrereleases(preSelf, preOther) } // Get the highest specificity (hS), or if they're equal, just use segmentSelf length lenSelf := len(segmentsSelf) lenOther := len(segmentsOther) hS := lenSelf if lenSelf < lenOther { hS = lenOther } // Compare the segments // Because a constraint could have more/less specificity than the version it's // checking, we need to account for a lopsided or jagged comparison for i := 0; i < hS; i++ { if i > lenSelf-1 { // This means Self had the lower specificity // Check to see if the remaining segments in Other are all zeros if !allZero(segmentsOther[i:]) { // if not, it means that Other has to be greater than Self return -1 } break } else if i > lenOther-1 { // this means Other had the lower specificity // Check to see if the remaining segments in Self are all zeros - if !allZero(segmentsSelf[i:]) { //if not, it means that Self has to be greater than Other return 1 } break } lhs := segmentsSelf[i] rhs := segmentsOther[i] if lhs == rhs { continue } else if lhs < rhs { return -1 } // Otherwis, rhs was > lhs, they're not equal return 1 } // if we got this far, they're equal return 0 } func allZero(segs []int64) bool { for _, s := range segs { if s != 0 { return false } } return true } func comparePart(preSelf string, preOther string) int { if preSelf == preOther { return 0 } var selfInt int64 selfNumeric := true selfInt, err := strconv.ParseInt(preSelf, 10, 64) if err != nil { selfNumeric = false } var otherInt int64 otherNumeric := true otherInt, err = strconv.ParseInt(preOther, 10, 64) if err != nil { otherNumeric = false } // if a part is empty, we use the other to decide if preSelf == "" { if otherNumeric { return -1 } return 1 } if preOther == "" { if selfNumeric { return 1 } return -1 } if selfNumeric && !otherNumeric { return -1 } else if !selfNumeric && otherNumeric { return 1 } else if !selfNumeric && !otherNumeric && preSelf > preOther { return 1 } else if selfInt > otherInt { return 1 } return -1 } func comparePrereleases(v string, other string) int { // the same pre release! if v == other { return 0 } // split both pre releases for analyse their parts selfPreReleaseMeta := strings.Split(v, ".") otherPreReleaseMeta := strings.Split(other, ".") selfPreReleaseLen := len(selfPreReleaseMeta) otherPreReleaseLen := len(otherPreReleaseMeta) biggestLen := otherPreReleaseLen if selfPreReleaseLen > otherPreReleaseLen { biggestLen = selfPreReleaseLen } // loop for parts to find the first difference for i := 0; i < biggestLen; i = i + 1 { partSelfPre := "" if i < selfPreReleaseLen { partSelfPre = selfPreReleaseMeta[i] } partOtherPre := "" if i < otherPreReleaseLen { partOtherPre = otherPreReleaseMeta[i] } compare := comparePart(partSelfPre, partOtherPre) // if parts are equals, continue the loop if compare != 0 { return compare } } return 0 } // Core returns a new version constructed from only the MAJOR.MINOR.PATCH // segments of the version, without prerelease or metadata. func (v *Version) Core() *Version { segments := v.Segments64() segmentsOnly := fmt.Sprintf("%d.%d.%d", segments[0], segments[1], segments[2]) return Must(NewVersion(segmentsOnly)) } // Equal tests if two versions are equal. func (v *Version) Equal(o *Version) bool { if v == nil || o == nil { return v == o } return v.Compare(o) == 0 } // GreaterThan tests if this version is greater than another version. func (v *Version) GreaterThan(o *Version) bool { return v.Compare(o) > 0 } // GreaterThanOrEqual tests if this version is greater than or equal to another version. func (v *Version) GreaterThanOrEqual(o *Version) bool { return v.Compare(o) >= 0 } // LessThan tests if this version is less than another version. func (v *Version) LessThan(o *Version) bool { return v.Compare(o) < 0 } // LessThanOrEqual tests if this version is less than or equal to another version. func (v *Version) LessThanOrEqual(o *Version) bool { return v.Compare(o) <= 0 } // Metadata returns any metadata that was part of the version // string. // // Metadata is anything that comes after the "+" in the version. // For example, with "1.2.3+beta", the metadata is "beta". func (v *Version) Metadata() string { return v.metadata } // Prerelease returns any prerelease data that is part of the version, // or blank if there is no prerelease data. // // Prerelease information is anything that comes after the "-" in the // version (but before any metadata). For example, with "1.2.3-beta", // the prerelease information is "beta". func (v *Version) Prerelease() string { return v.pre } // Segments returns the numeric segments of the version as a slice of ints. // // This excludes any metadata or pre-release information. For example, // for a version "1.2.3-beta", segments will return a slice of // 1, 2, 3. func (v *Version) Segments() []int { segmentSlice := make([]int, len(v.segments)) for i, v := range v.segments { segmentSlice[i] = int(v) } return segmentSlice } // Segments64 returns the numeric segments of the version as a slice of int64s. // // This excludes any metadata or pre-release information. For example, // for a version "1.2.3-beta", segments will return a slice of // 1, 2, 3. func (v *Version) Segments64() []int64 { result := make([]int64, len(v.segments)) copy(result, v.segments) return result } // String returns the full version string included pre-release // and metadata information. // // This value is rebuilt according to the parsed segments and other // information. Therefore, ambiguities in the version string such as // prefixed zeroes (1.04.0 => 1.4.0), `v` prefix (v1.0.0 => 1.0.0), and // missing parts (1.0 => 1.0.0) will be made into a canonicalized form // as shown in the parenthesized examples. func (v *Version) String() string { var buf bytes.Buffer fmtParts := make([]string, len(v.segments)) for i, s := range v.segments { // We can ignore err here since we've pre-parsed the values in segments str := strconv.FormatInt(s, 10) fmtParts[i] = str } fmt.Fprintf(&buf, strings.Join(fmtParts, ".")) if v.pre != "" { fmt.Fprintf(&buf, "-%s", v.pre) } if v.metadata != "" { fmt.Fprintf(&buf, "+%s", v.metadata) } return buf.String() } // Original returns the original parsed version as-is, including any // potential whitespace, `v` prefix, etc. func (v *Version) Original() string { return v.original } // UnmarshalText implements encoding.TextUnmarshaler interface. func (v *Version) UnmarshalText(b []byte) error { temp, err := NewVersion(string(b)) if err != nil { return err } *v = *temp return nil } // MarshalText implements encoding.TextMarshaler interface. func (v *Version) MarshalText() ([]byte, error) { return []byte(v.String()), nil } go-version-1.6.0/version_collection.go000066400000000000000000000005201425654205700200440ustar00rootroot00000000000000package version // Collection is a type that implements the sort.Interface interface // so that versions can be sorted. type Collection []*Version func (v Collection) Len() int { return len(v) } func (v Collection) Less(i, j int) bool { return v[i].LessThan(v[j]) } func (v Collection) Swap(i, j int) { v[i], v[j] = v[j], v[i] } go-version-1.6.0/version_collection_test.go000066400000000000000000000012131425654205700211030ustar00rootroot00000000000000package version import ( "reflect" "sort" "testing" ) func TestCollection(t *testing.T) { versionsRaw := []string{ "1.1.1", "1.0", "1.2", "2", "0.7.1", } versions := make([]*Version, len(versionsRaw)) for i, raw := range versionsRaw { v, err := NewVersion(raw) if err != nil { t.Fatalf("err: %s", err) } versions[i] = v } sort.Sort(Collection(versions)) actual := make([]string, len(versions)) for i, v := range versions { actual[i] = v.String() } expected := []string{ "0.7.1", "1.0.0", "1.1.1", "1.2.0", "2.0.0", } if !reflect.DeepEqual(actual, expected) { t.Fatalf("bad: %#v", actual) } } go-version-1.6.0/version_test.go000066400000000000000000000401141425654205700166730ustar00rootroot00000000000000package version import ( "encoding/json" "fmt" "reflect" "testing" ) func TestNewVersion(t *testing.T) { cases := []struct { version string err bool }{ {"", true}, {"1.2.3", false}, {"1.0", false}, {"1", false}, {"1.2.beta", true}, {"1.21.beta", true}, {"foo", true}, {"1.2-5", false}, {"1.2-beta.5", false}, {"\n1.2", true}, {"1.2.0-x.Y.0+metadata", false}, {"1.2.0-x.Y.0+metadata-width-hyphen", false}, {"1.2.3-rc1-with-hyphen", false}, {"1.2.3.4", false}, {"1.2.0.4-x.Y.0+metadata", false}, {"1.2.0.4-x.Y.0+metadata-width-hyphen", false}, {"1.2.0-X-1.2.0+metadata~dist", false}, {"1.2.3.4-rc1-with-hyphen", false}, {"1.2.3.4", false}, {"v1.2.3", false}, {"foo1.2.3", true}, {"1.7rc2", false}, {"v1.7rc2", false}, {"1.0-", false}, } for _, tc := range cases { _, err := NewVersion(tc.version) if tc.err && err == nil { t.Fatalf("expected error for version: %q", tc.version) } else if !tc.err && err != nil { t.Fatalf("error for version %q: %s", tc.version, err) } } } func TestNewSemver(t *testing.T) { cases := []struct { version string err bool }{ {"", true}, {"1.2.3", false}, {"1.0", false}, {"1", false}, {"1.2.beta", true}, {"1.21.beta", true}, {"foo", true}, {"1.2-5", false}, {"1.2-beta.5", false}, {"\n1.2", true}, {"1.2.0-x.Y.0+metadata", false}, {"1.2.0-x.Y.0+metadata-width-hyphen", false}, {"1.2.3-rc1-with-hyphen", false}, {"1.2.3.4", false}, {"1.2.0.4-x.Y.0+metadata", false}, {"1.2.0.4-x.Y.0+metadata-width-hyphen", false}, {"1.2.0-X-1.2.0+metadata~dist", false}, {"1.2.3.4-rc1-with-hyphen", false}, {"1.2.3.4", false}, {"v1.2.3", false}, {"foo1.2.3", true}, {"1.7rc2", true}, {"v1.7rc2", true}, {"1.0-", true}, } for _, tc := range cases { _, err := NewSemver(tc.version) if tc.err && err == nil { t.Fatalf("expected error for version: %q", tc.version) } else if !tc.err && err != nil { t.Fatalf("error for version %q: %s", tc.version, err) } } } func TestCore(t *testing.T) { cases := []struct { v1 string v2 string }{ {"1.2.3", "1.2.3"}, {"2.3.4-alpha1", "2.3.4"}, {"3.4.5alpha1", "3.4.5"}, {"1.2.3-2", "1.2.3"}, {"4.5.6-beta1+meta", "4.5.6"}, {"5.6.7.1.2.3", "5.6.7"}, } for _, tc := range cases { v1, err := NewVersion(tc.v1) if err != nil { t.Fatalf("error for version %q: %s", tc.v1, err) } v2, err := NewVersion(tc.v2) if err != nil { t.Fatalf("error for version %q: %s", tc.v2, err) } actual := v1.Core() expected := v2 if !reflect.DeepEqual(actual, expected) { t.Fatalf("expected: %s\nactual: %s", expected, actual) } } } func TestVersionCompare(t *testing.T) { cases := []struct { v1 string v2 string expected int }{ {"1.2.3", "1.4.5", -1}, {"1.2-beta", "1.2-beta", 0}, {"1.2", "1.1.4", 1}, {"1.2", "1.2-beta", 1}, {"1.2+foo", "1.2+beta", 0}, {"v1.2", "v1.2-beta", 1}, {"v1.2+foo", "v1.2+beta", 0}, {"v1.2.3.4", "v1.2.3.4", 0}, {"v1.2.0.0", "v1.2", 0}, {"v1.2.0.0.1", "v1.2", 1}, {"v1.2", "v1.2.0.0", 0}, {"v1.2", "v1.2.0.0.1", -1}, {"v1.2.0.0", "v1.2.0.0.1", -1}, {"v1.2.3.0", "v1.2.3.4", -1}, {"1.7rc2", "1.7rc1", 1}, {"1.7rc2", "1.7", -1}, {"1.2.0", "1.2.0-X-1.2.0+metadata~dist", 1}, } for _, tc := range cases { v1, err := NewVersion(tc.v1) if err != nil { t.Fatalf("err: %s", err) } v2, err := NewVersion(tc.v2) if err != nil { t.Fatalf("err: %s", err) } actual := v1.Compare(v2) expected := tc.expected if actual != expected { t.Fatalf( "%s <=> %s\nexpected: %d\nactual: %d", tc.v1, tc.v2, expected, actual) } } } func TestVersionCompare_versionAndSemver(t *testing.T) { cases := []struct { versionRaw string semverRaw string expected int }{ {"0.0.2", "0.0.2", 0}, {"1.0.2alpha", "1.0.2-alpha", 0}, {"v1.2+foo", "v1.2+beta", 0}, {"v1.2", "v1.2+meta", 0}, {"1.2", "1.2-beta", 1}, {"v1.2", "v1.2-beta", 1}, {"1.2.3", "1.4.5", -1}, {"v1.2", "v1.2.0.0.1", -1}, {"v1.0.3-", "v1.0.3", -1}, } for _, tc := range cases { ver, err := NewVersion(tc.versionRaw) if err != nil { t.Fatalf("err: %s", err) } semver, err := NewSemver(tc.semverRaw) if err != nil { t.Fatalf("err: %s", err) } actual := ver.Compare(semver) if actual != tc.expected { t.Fatalf( "%s <=> %s\nexpected: %d\n actual: %d", tc.versionRaw, tc.semverRaw, tc.expected, actual, ) } } } func TestVersionEqual_nil(t *testing.T) { mustVersion := func(v string) *Version { ver, err := NewVersion(v) if err != nil { t.Fatal(err) } return ver } cases := []struct { leftVersion *Version rightVersion *Version expected bool }{ {mustVersion("1.0.0"), nil, false}, {nil, mustVersion("1.0.0"), false}, {nil, nil, true}, } for _, tc := range cases { given := tc.leftVersion.Equal(tc.rightVersion) if given != tc.expected { t.Fatalf("expected Equal to nil to be %t", tc.expected) } } } func TestComparePreReleases(t *testing.T) { cases := []struct { v1 string v2 string expected int }{ {"1.2-beta.2", "1.2-beta.2", 0}, {"1.2-beta.1", "1.2-beta.2", -1}, {"1.2-beta.2", "1.2-beta.11", -1}, {"3.2-alpha.1", "3.2-alpha", 1}, {"1.2-beta.2", "1.2-beta.1", 1}, {"1.2-beta.11", "1.2-beta.2", 1}, {"1.2-beta", "1.2-beta.3", -1}, {"1.2-alpha", "1.2-beta.3", -1}, {"1.2-beta", "1.2-alpha.3", 1}, {"3.0-alpha.3", "3.0-rc.1", -1}, {"3.0-alpha3", "3.0-rc1", -1}, {"3.0-alpha.1", "3.0-alpha.beta", -1}, {"5.4-alpha", "5.4-alpha.beta", 1}, {"v1.2-beta.2", "v1.2-beta.2", 0}, {"v1.2-beta.1", "v1.2-beta.2", -1}, {"v3.2-alpha.1", "v3.2-alpha", 1}, {"v3.2-rc.1-1-g123", "v3.2-rc.2", 1}, } for _, tc := range cases { v1, err := NewVersion(tc.v1) if err != nil { t.Fatalf("err: %s", err) } v2, err := NewVersion(tc.v2) if err != nil { t.Fatalf("err: %s", err) } actual := v1.Compare(v2) expected := tc.expected if actual != expected { t.Fatalf( "%s <=> %s\nexpected: %d\nactual: %d", tc.v1, tc.v2, expected, actual) } } } func TestVersionMetadata(t *testing.T) { cases := []struct { version string expected string }{ {"1.2.3", ""}, {"1.2-beta", ""}, {"1.2.0-x.Y.0", ""}, {"1.2.0-x.Y.0+metadata", "metadata"}, {"1.2.0-metadata-1.2.0+metadata~dist", "metadata~dist"}, } for _, tc := range cases { v, err := NewVersion(tc.version) if err != nil { t.Fatalf("err: %s", err) } actual := v.Metadata() expected := tc.expected if actual != expected { t.Fatalf("expected: %s\nactual: %s", expected, actual) } } } func TestVersionPrerelease(t *testing.T) { cases := []struct { version string expected string }{ {"1.2.3", ""}, {"1.2-beta", "beta"}, {"1.2.0-x.Y.0", "x.Y.0"}, {"1.2.0-7.Y.0", "7.Y.0"}, {"1.2.0-x.Y.0+metadata", "x.Y.0"}, {"1.2.0-metadata-1.2.0+metadata~dist", "metadata-1.2.0"}, {"17.03.0-ce", "ce"}, // zero-padded fields } for _, tc := range cases { v, err := NewVersion(tc.version) if err != nil { t.Fatalf("err: %s", err) } actual := v.Prerelease() expected := tc.expected if actual != expected { t.Fatalf("expected: %s\nactual: %s", expected, actual) } } } func TestVersionSegments(t *testing.T) { cases := []struct { version string expected []int }{ {"1.2.3", []int{1, 2, 3}}, {"1.2-beta", []int{1, 2, 0}}, {"1-x.Y.0", []int{1, 0, 0}}, {"1.2.0-x.Y.0+metadata", []int{1, 2, 0}}, {"1.2.0-metadata-1.2.0+metadata~dist", []int{1, 2, 0}}, {"17.03.0-ce", []int{17, 3, 0}}, // zero-padded fields } for _, tc := range cases { v, err := NewVersion(tc.version) if err != nil { t.Fatalf("err: %s", err) } actual := v.Segments() expected := tc.expected if !reflect.DeepEqual(actual, expected) { t.Fatalf("expected: %#v\nactual: %#v", expected, actual) } } } func TestVersionSegments64(t *testing.T) { cases := []struct { version string expected []int64 }{ {"1.2.3", []int64{1, 2, 3}}, {"1.2-beta", []int64{1, 2, 0}}, {"1-x.Y.0", []int64{1, 0, 0}}, {"1.2.0-x.Y.0+metadata", []int64{1, 2, 0}}, {"1.4.9223372036854775807", []int64{1, 4, 9223372036854775807}}, } for _, tc := range cases { v, err := NewVersion(tc.version) if err != nil { t.Fatalf("err: %s", err) } actual := v.Segments64() expected := tc.expected if !reflect.DeepEqual(actual, expected) { t.Fatalf("expected: %#v\nactual: %#v", expected, actual) } { expected := actual[0] actual[0]++ actual = v.Segments64() if actual[0] != expected { t.Fatalf("Segments64 is mutable") } } } } func TestJsonMarshal(t *testing.T) { cases := []struct { version string err bool }{ {"1.2.3", false}, {"1.2.0-x.Y.0+metadata", false}, {"1.2.0-x.Y.0+metadata-width-hyphen", false}, {"1.2.3-rc1-with-hyphen", false}, {"1.2.3.4", false}, {"1.2.0.4-x.Y.0+metadata", false}, {"1.2.0.4-x.Y.0+metadata-width-hyphen", false}, {"1.2.0-X-1.2.0+metadata~dist", false}, {"1.2.3.4-rc1-with-hyphen", false}, {"1.2.3.4", false}, } for _, tc := range cases { v, err1 := NewVersion(tc.version) if err1 != nil { t.Fatalf("error for version %q: %s", tc.version, err1) } parsed, err2 := json.Marshal(v) if err2 != nil { t.Fatalf("error marshaling version %q: %s", tc.version, err2) } result := string(parsed) expected := fmt.Sprintf("%q", tc.version) if result != expected && !tc.err { t.Fatalf("Error marshaling unexpected marshaled content: result=%q expected=%q", result, expected) } } } func TestJsonUnmarshal(t *testing.T) { cases := []struct { version string err bool }{ {"1.2.3", false}, {"1.2.0-x.Y.0+metadata", false}, {"1.2.0-x.Y.0+metadata-width-hyphen", false}, {"1.2.3-rc1-with-hyphen", false}, {"1.2.3.4", false}, {"1.2.0.4-x.Y.0+metadata", false}, {"1.2.0.4-x.Y.0+metadata-width-hyphen", false}, {"1.2.0-X-1.2.0+metadata~dist", false}, {"1.2.3.4-rc1-with-hyphen", false}, {"1.2.3.4", false}, } for _, tc := range cases { expected, err1 := NewVersion(tc.version) if err1 != nil { t.Fatalf("err: %s", err1) } actual := &Version{} err2 := json.Unmarshal([]byte(fmt.Sprintf("%q", tc.version)), actual) if err2 != nil { t.Fatalf("error unmarshaling version: %s", err2) } if !reflect.DeepEqual(actual, expected) { t.Fatalf("error unmarshaling, unexpected object content: actual=%q expected=%q", actual, expected) } } } func TestVersionString(t *testing.T) { cases := [][]string{ {"1.2.3", "1.2.3"}, {"1.2-beta", "1.2.0-beta"}, {"1.2.0-x.Y.0", "1.2.0-x.Y.0"}, {"1.2.0-x.Y.0+metadata", "1.2.0-x.Y.0+metadata"}, {"1.2.0-metadata-1.2.0+metadata~dist", "1.2.0-metadata-1.2.0+metadata~dist"}, {"17.03.0-ce", "17.3.0-ce"}, // zero-padded fields } for _, tc := range cases { v, err := NewVersion(tc[0]) if err != nil { t.Fatalf("err: %s", err) } actual := v.String() expected := tc[1] if actual != expected { t.Fatalf("expected: %s\nactual: %s", expected, actual) } if actual := v.Original(); actual != tc[0] { t.Fatalf("expected original: %q\nactual: %q", tc[0], actual) } } } func TestEqual(t *testing.T) { cases := []struct { v1 string v2 string expected bool }{ {"1.2.3", "1.4.5", false}, {"1.2-beta", "1.2-beta", true}, {"1.2", "1.1.4", false}, {"1.2", "1.2-beta", false}, {"1.2+foo", "1.2+beta", true}, {"v1.2", "v1.2-beta", false}, {"v1.2+foo", "v1.2+beta", true}, {"v1.2.3.4", "v1.2.3.4", true}, {"v1.2.0.0", "v1.2", true}, {"v1.2.0.0.1", "v1.2", false}, {"v1.2", "v1.2.0.0", true}, {"v1.2", "v1.2.0.0.1", false}, {"v1.2.0.0", "v1.2.0.0.1", false}, {"v1.2.3.0", "v1.2.3.4", false}, {"1.7rc2", "1.7rc1", false}, {"1.7rc2", "1.7", false}, {"1.2.0", "1.2.0-X-1.2.0+metadata~dist", false}, } for _, tc := range cases { v1, err := NewVersion(tc.v1) if err != nil { t.Fatalf("err: %s", err) } v2, err := NewVersion(tc.v2) if err != nil { t.Fatalf("err: %s", err) } actual := v1.Equal(v2) expected := tc.expected if actual != expected { t.Fatalf( "%s <=> %s\nexpected: %t\nactual: %t", tc.v1, tc.v2, expected, actual) } } } func TestGreaterThan(t *testing.T) { cases := []struct { v1 string v2 string expected bool }{ {"1.2.3", "1.4.5", false}, {"1.2-beta", "1.2-beta", false}, {"1.2", "1.1.4", true}, {"1.2", "1.2-beta", true}, {"1.2+foo", "1.2+beta", false}, {"v1.2", "v1.2-beta", true}, {"v1.2+foo", "v1.2+beta", false}, {"v1.2.3.4", "v1.2.3.4", false}, {"v1.2.0.0", "v1.2", false}, {"v1.2.0.0.1", "v1.2", true}, {"v1.2", "v1.2.0.0", false}, {"v1.2", "v1.2.0.0.1", false}, {"v1.2.0.0", "v1.2.0.0.1", false}, {"v1.2.3.0", "v1.2.3.4", false}, {"1.7rc2", "1.7rc1", true}, {"1.7rc2", "1.7", false}, {"1.2.0", "1.2.0-X-1.2.0+metadata~dist", true}, } for _, tc := range cases { v1, err := NewVersion(tc.v1) if err != nil { t.Fatalf("err: %s", err) } v2, err := NewVersion(tc.v2) if err != nil { t.Fatalf("err: %s", err) } actual := v1.GreaterThan(v2) expected := tc.expected if actual != expected { t.Fatalf( "%s > %s\nexpected: %t\nactual: %t", tc.v1, tc.v2, expected, actual) } } } func TestLessThan(t *testing.T) { cases := []struct { v1 string v2 string expected bool }{ {"1.2.3", "1.4.5", true}, {"1.2-beta", "1.2-beta", false}, {"1.2", "1.1.4", false}, {"1.2", "1.2-beta", false}, {"1.2+foo", "1.2+beta", false}, {"v1.2", "v1.2-beta", false}, {"v1.2+foo", "v1.2+beta", false}, {"v1.2.3.4", "v1.2.3.4", false}, {"v1.2.0.0", "v1.2", false}, {"v1.2.0.0.1", "v1.2", false}, {"v1.2", "v1.2.0.0", false}, {"v1.2", "v1.2.0.0.1", true}, {"v1.2.0.0", "v1.2.0.0.1", true}, {"v1.2.3.0", "v1.2.3.4", true}, {"1.7rc2", "1.7rc1", false}, {"1.7rc2", "1.7", true}, {"1.2.0", "1.2.0-X-1.2.0+metadata~dist", false}, } for _, tc := range cases { v1, err := NewVersion(tc.v1) if err != nil { t.Fatalf("err: %s", err) } v2, err := NewVersion(tc.v2) if err != nil { t.Fatalf("err: %s", err) } actual := v1.LessThan(v2) expected := tc.expected if actual != expected { t.Fatalf( "%s < %s\nexpected: %t\nactual: %t", tc.v1, tc.v2, expected, actual) } } } func TestGreaterThanOrEqual(t *testing.T) { cases := []struct { v1 string v2 string expected bool }{ {"1.2.3", "1.4.5", false}, {"1.2-beta", "1.2-beta", true}, {"1.2", "1.1.4", true}, {"1.2", "1.2-beta", true}, {"1.2+foo", "1.2+beta", true}, {"v1.2", "v1.2-beta", true}, {"v1.2+foo", "v1.2+beta", true}, {"v1.2.3.4", "v1.2.3.4", true}, {"v1.2.0.0", "v1.2", true}, {"v1.2.0.0.1", "v1.2", true}, {"v1.2", "v1.2.0.0", true}, {"v1.2", "v1.2.0.0.1", false}, {"v1.2.0.0", "v1.2.0.0.1", false}, {"v1.2.3.0", "v1.2.3.4", false}, {"1.7rc2", "1.7rc1", true}, {"1.7rc2", "1.7", false}, {"1.2.0", "1.2.0-X-1.2.0+metadata~dist", true}, } for _, tc := range cases { v1, err := NewVersion(tc.v1) if err != nil { t.Fatalf("err: %s", err) } v2, err := NewVersion(tc.v2) if err != nil { t.Fatalf("err: %s", err) } actual := v1.GreaterThanOrEqual(v2) expected := tc.expected if actual != expected { t.Fatalf( "%s >= %s\nexpected: %t\nactual: %t", tc.v1, tc.v2, expected, actual) } } } func TestLessThanOrEqual(t *testing.T) { cases := []struct { v1 string v2 string expected bool }{ {"1.2.3", "1.4.5", true}, {"1.2-beta", "1.2-beta", true}, {"1.2", "1.1.4", false}, {"1.2", "1.2-beta", false}, {"1.2+foo", "1.2+beta", true}, {"v1.2", "v1.2-beta", false}, {"v1.2+foo", "v1.2+beta", true}, {"v1.2.3.4", "v1.2.3.4", true}, {"v1.2.0.0", "v1.2", true}, {"v1.2.0.0.1", "v1.2", false}, {"v1.2", "v1.2.0.0", true}, {"v1.2", "v1.2.0.0.1", true}, {"v1.2.0.0", "v1.2.0.0.1", true}, {"v1.2.3.0", "v1.2.3.4", true}, {"1.7rc2", "1.7rc1", false}, {"1.7rc2", "1.7", true}, {"1.2.0", "1.2.0-X-1.2.0+metadata~dist", false}, } for _, tc := range cases { v1, err := NewVersion(tc.v1) if err != nil { t.Fatalf("err: %s", err) } v2, err := NewVersion(tc.v2) if err != nil { t.Fatalf("err: %s", err) } actual := v1.LessThanOrEqual(v2) expected := tc.expected if actual != expected { t.Fatalf( "%s <= %s\nexpected: %t\nactual: %t", tc.v1, tc.v2, expected, actual) } } }