pax_global_header00006660000000000000000000000064142675503240014522gustar00rootroot0000000000000052 comment=6c5a7317d6e3b6e7f85db696d6c83ed353e7cb4c yamux-0.1.1/000077500000000000000000000000001426755032400126645ustar00rootroot00000000000000yamux-0.1.1/.gitignore000066400000000000000000000004031426755032400146510ustar00rootroot00000000000000# Compiled Object files, Static and Dynamic libs (Shared Objects) *.o *.a *.so # Folders _obj _test # Architecture specific extensions/prefixes *.[568vq] [568vq].out *.cgo1.go *.cgo2.c _cgo_defun.c _cgo_gotypes.go _cgo_export.* _testmain.go *.exe *.test yamux-0.1.1/LICENSE000066400000000000000000000370601426755032400136770ustar00rootroot00000000000000Mozilla Public License, version 2.0 1. Definitions 1.1. "Contributor" means each individual or legal entity that creates, contributes to the creation of, or owns Covered Software. 1.2. "Contributor Version" means the combination of the Contributions of others (if any) used by a Contributor and that particular Contributor's Contribution. 1.3. "Contribution" means Covered Software of a particular Contributor. 1.4. "Covered Software" means Source Code Form to which the initial Contributor has attached the notice in Exhibit A, the Executable Form of such Source Code Form, and Modifications of such Source Code Form, in each case including portions thereof. 1.5. "Incompatible With Secondary Licenses" means a. that the initial Contributor has attached the notice described in Exhibit B to the Covered Software; or b. that the Covered Software was made available under the terms of version 1.1 or earlier of the License, but not also under the terms of a Secondary License. 1.6. "Executable Form" means any form of the work other than Source Code Form. 1.7. "Larger Work" means a work that combines Covered Software with other material, in a separate file or files, that is not Covered Software. 1.8. "License" means this document. 1.9. "Licensable" means having the right to grant, to the maximum extent possible, whether at the time of the initial grant or subsequently, any and all of the rights conveyed by this License. 1.10. "Modifications" means any of the following: a. any file in Source Code Form that results from an addition to, deletion from, or modification of the contents of Covered Software; or b. any new file in Source Code Form that contains any Covered Software. 1.11. "Patent Claims" of a Contributor means any patent claim(s), including without limitation, method, process, and apparatus claims, in any patent Licensable by such Contributor that would be infringed, but for the grant of the License, by the making, using, selling, offering for sale, having made, import, or transfer of either its Contributions or its Contributor Version. 1.12. "Secondary License" means either the GNU General Public License, Version 2.0, the GNU Lesser General Public License, Version 2.1, the GNU Affero General Public License, Version 3.0, or any later versions of those licenses. 1.13. "Source Code Form" means the form of the work preferred for making modifications. 1.14. "You" (or "Your") means an individual or a legal entity exercising rights under this License. For legal entities, "You" includes any entity that controls, is controlled by, or is under common control with You. For purposes of this definition, "control" means (a) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (b) ownership of more than fifty percent (50%) of the outstanding shares or beneficial ownership of such entity. 2. License Grants and Conditions 2.1. Grants Each Contributor hereby grants You a world-wide, royalty-free, non-exclusive license: a. under intellectual property rights (other than patent or trademark) Licensable by such Contributor to use, reproduce, make available, modify, display, perform, distribute, and otherwise exploit its Contributions, either on an unmodified basis, with Modifications, or as part of a Larger Work; and b. under Patent Claims of such Contributor to make, use, sell, offer for sale, have made, import, and otherwise transfer either its Contributions or its Contributor Version. 2.2. Effective Date The licenses granted in Section 2.1 with respect to any Contribution become effective for each Contribution on the date the Contributor first distributes such Contribution. 2.3. Limitations on Grant Scope The licenses granted in this Section 2 are the only rights granted under this License. No additional rights or licenses will be implied from the distribution or licensing of Covered Software under this License. Notwithstanding Section 2.1(b) above, no patent license is granted by a Contributor: a. for any code that a Contributor has removed from Covered Software; or b. for infringements caused by: (i) Your and any other third party's modifications of Covered Software, or (ii) the combination of its Contributions with other software (except as part of its Contributor Version); or c. under Patent Claims infringed by Covered Software in the absence of its Contributions. This License does not grant any rights in the trademarks, service marks, or logos of any Contributor (except as may be necessary to comply with the notice requirements in Section 3.4). 2.4. Subsequent Licenses No Contributor makes additional grants as a result of Your choice to distribute the Covered Software under a subsequent version of this License (see Section 10.2) or under the terms of a Secondary License (if permitted under the terms of Section 3.3). 2.5. Representation Each Contributor represents that the Contributor believes its Contributions are its original creation(s) or it has sufficient rights to grant the rights to its Contributions conveyed by this License. 2.6. Fair Use This License is not intended to limit any rights You have under applicable copyright doctrines of fair use, fair dealing, or other equivalents. 2.7. Conditions Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in Section 2.1. 3. Responsibilities 3.1. Distribution of Source Form All distribution of Covered Software in Source Code Form, including any Modifications that You create or to which You contribute, must be under the terms of this License. You must inform recipients that the Source Code Form of the Covered Software is governed by the terms of this License, and how they can obtain a copy of this License. You may not attempt to alter or restrict the recipients' rights in the Source Code Form. 3.2. Distribution of Executable Form If You distribute Covered Software in Executable Form then: a. such Covered Software must also be made available in Source Code Form, as described in Section 3.1, and You must inform recipients of the Executable Form how they can obtain a copy of such Source Code Form by reasonable means in a timely manner, at a charge no more than the cost of distribution to the recipient; and b. You may distribute such Executable Form under the terms of this License, or sublicense it under different terms, provided that the license for the Executable Form does not attempt to limit or alter the recipients' rights in the Source Code Form under this License. 3.3. Distribution of a Larger Work You may create and distribute a Larger Work under terms of Your choice, provided that You also comply with the requirements of this License for the Covered Software. If the Larger Work is a combination of Covered Software with a work governed by one or more Secondary Licenses, and the Covered Software is not Incompatible With Secondary Licenses, this License permits You to additionally distribute such Covered Software under the terms of such Secondary License(s), so that the recipient of the Larger Work may, at their option, further distribute the Covered Software under the terms of either this License or such Secondary License(s). 3.4. Notices You may not remove or alter the substance of any license notices (including copyright notices, patent notices, disclaimers of warranty, or limitations of liability) contained within the Source Code Form of the Covered Software, except that You may alter any license notices to the extent required to remedy known factual inaccuracies. 3.5. Application of Additional Terms You may choose to offer, and to charge a fee for, warranty, support, indemnity or liability obligations to one or more recipients of Covered Software. However, You may do so only on Your own behalf, and not on behalf of any Contributor. You must make it absolutely clear that any such warranty, support, indemnity, or liability obligation is offered by You alone, and You hereby agree to indemnify every Contributor for any liability incurred by such Contributor as a result of warranty, support, indemnity or liability terms You offer. You may include additional disclaimers of warranty and limitations of liability specific to any jurisdiction. 4. Inability to Comply Due to Statute or Regulation If it is impossible for You to comply with any of the terms of this License with respect to some or all of the Covered Software due to statute, judicial order, or regulation then You must: (a) comply with the terms of this License to the maximum extent possible; and (b) describe the limitations and the code they affect. Such description must be placed in a text file included with all distributions of the Covered Software under this License. Except to the extent prohibited by statute or regulation, such description must be sufficiently detailed for a recipient of ordinary skill to be able to understand it. 5. Termination 5.1. The rights granted under this License will terminate automatically if You fail to comply with any of its terms. However, if You become compliant, then the rights granted under this License from a particular Contributor are reinstated (a) provisionally, unless and until such Contributor explicitly and finally terminates Your grants, and (b) on an ongoing basis, if such Contributor fails to notify You of the non-compliance by some reasonable means prior to 60 days after You have come back into compliance. Moreover, Your grants from a particular Contributor are reinstated on an ongoing basis if such Contributor notifies You of the non-compliance by some reasonable means, this is the first time You have received notice of non-compliance with this License from such Contributor, and You become compliant prior to 30 days after Your receipt of the notice. 5.2. If You initiate litigation against any entity by asserting a patent infringement claim (excluding declaratory judgment actions, counter-claims, and cross-claims) alleging that a Contributor Version directly or indirectly infringes any patent, then the rights granted to You by any and all Contributors for the Covered Software under Section 2.1 of this License shall terminate. 5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user license agreements (excluding distributors and resellers) which have been validly granted by You or Your distributors under this License prior to termination shall survive termination. 6. Disclaimer of Warranty Covered Software is provided under this License on an "as is" basis, without warranty of any kind, either expressed, implied, or statutory, including, without limitation, warranties that the Covered Software is free of defects, merchantable, fit for a particular purpose or non-infringing. The entire risk as to the quality and performance of the Covered Software is with You. Should any Covered Software prove defective in any respect, You (not any Contributor) assume the cost of any necessary servicing, repair, or correction. This disclaimer of warranty constitutes an essential part of this License. No use of any Covered Software is authorized under this License except under this disclaimer. 7. Limitation of Liability Under no circumstances and under no legal theory, whether tort (including negligence), contract, or otherwise, shall any Contributor, or anyone who distributes Covered Software as permitted above, be liable to You for any direct, indirect, special, incidental, or consequential damages of any character including, without limitation, damages for lost profits, loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses, even if such party shall have been informed of the possibility of such damages. This limitation of liability shall not apply to liability for death or personal injury resulting from such party's negligence to the extent applicable law prohibits such limitation. Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages, so this exclusion and limitation may not apply to You. 8. Litigation Any litigation relating to this License may be brought only in the courts of a jurisdiction where the defendant maintains its principal place of business and such litigation shall be governed by laws of that jurisdiction, without reference to its conflict-of-law provisions. Nothing in this Section shall prevent a party's ability to bring cross-claims or counter-claims. 9. Miscellaneous This License represents the complete agreement concerning the subject matter hereof. If any provision of this License is held to be unenforceable, such provision shall be reformed only to the extent necessary to make it enforceable. Any law or regulation which provides that the language of a contract shall be construed against the drafter shall not be used to construe this License against a Contributor. 10. Versions of the License 10.1. New Versions Mozilla Foundation is the license steward. Except as provided in Section 10.3, no one other than the license steward has the right to modify or publish new versions of this License. Each version will be given a distinguishing version number. 10.2. Effect of New Versions You may distribute the Covered Software under the terms of the version of the License under which You originally received the Covered Software, or under the terms of any subsequent version published by the license steward. 10.3. Modified Versions If you create software not governed by this License, and you want to create a new license for such software, you may create and use a modified version of this License if you rename the license and remove any references to the name of the license steward (except to note that such modified license differs from this License). 10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses If You choose to distribute Source Code Form that is Incompatible With Secondary Licenses under the terms of this version of the License, the notice described in Exhibit B of this License must be attached. Exhibit A - Source Code Form License Notice This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/. If it is not possible or desirable to put the notice in a particular file, then You may include the notice in a location (such as a LICENSE file in a relevant directory) where a recipient would be likely to look for such a notice. You may add additional accurate notices of copyright ownership. Exhibit B - "Incompatible With Secondary Licenses" Notice This Source Code Form is "Incompatible With Secondary Licenses", as defined by the Mozilla Public License, v. 2.0.yamux-0.1.1/README.md000066400000000000000000000035211426755032400141440ustar00rootroot00000000000000# Yamux Yamux (Yet another Multiplexer) is a multiplexing library for Golang. It relies on an underlying connection to provide reliability and ordering, such as TCP or Unix domain sockets, and provides stream-oriented multiplexing. It is inspired by SPDY but is not interoperable with it. Yamux features include: * Bi-directional streams * Streams can be opened by either client or server * Useful for NAT traversal * Server-side push support * Flow control * Avoid starvation * Back-pressure to prevent overwhelming a receiver * Keep Alives * Enables persistent connections over a load balancer * Efficient * Enables thousands of logical streams with low overhead ## Documentation For complete documentation, see the associated [Godoc](http://godoc.org/github.com/hashicorp/yamux). ## Specification The full specification for Yamux is provided in the `spec.md` file. It can be used as a guide to implementors of interoperable libraries. ## Usage Using Yamux is remarkably simple: ```go func client() { // Get a TCP connection conn, err := net.Dial(...) if err != nil { panic(err) } // Setup client side of yamux session, err := yamux.Client(conn, nil) if err != nil { panic(err) } // Open a new stream stream, err := session.Open() if err != nil { panic(err) } // Stream implements net.Conn stream.Write([]byte("ping")) } func server() { // Accept a TCP connection conn, err := listener.Accept() if err != nil { panic(err) } // Setup server side of yamux session, err := yamux.Server(conn, nil) if err != nil { panic(err) } // Accept a stream stream, err := session.Accept() if err != nil { panic(err) } // Listen for a message buf := make([]byte, 4) stream.Read(buf) } ``` yamux-0.1.1/addr.go000066400000000000000000000022761426755032400141340ustar00rootroot00000000000000package yamux import ( "fmt" "net" ) // hasAddr is used to get the address from the underlying connection type hasAddr interface { LocalAddr() net.Addr RemoteAddr() net.Addr } // yamuxAddr is used when we cannot get the underlying address type yamuxAddr struct { Addr string } func (*yamuxAddr) Network() string { return "yamux" } func (y *yamuxAddr) String() string { return fmt.Sprintf("yamux:%s", y.Addr) } // Addr is used to get the address of the listener. func (s *Session) Addr() net.Addr { return s.LocalAddr() } // LocalAddr is used to get the local address of the // underlying connection. func (s *Session) LocalAddr() net.Addr { addr, ok := s.conn.(hasAddr) if !ok { return &yamuxAddr{"local"} } return addr.LocalAddr() } // RemoteAddr is used to get the address of remote end // of the underlying connection func (s *Session) RemoteAddr() net.Addr { addr, ok := s.conn.(hasAddr) if !ok { return &yamuxAddr{"remote"} } return addr.RemoteAddr() } // LocalAddr returns the local address func (s *Stream) LocalAddr() net.Addr { return s.session.LocalAddr() } // RemoteAddr returns the remote address func (s *Stream) RemoteAddr() net.Addr { return s.session.RemoteAddr() } yamux-0.1.1/bench_test.go000066400000000000000000000116451426755032400153400ustar00rootroot00000000000000package yamux import ( "io" "io/ioutil" "testing" ) func BenchmarkPing(b *testing.B) { client, server := testClientServer() defer func() { client.Close() server.Close() }() b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { rtt, err := client.Ping() if err != nil { b.Fatalf("err: %v", err) } if rtt == 0 { b.Fatalf("bad: %v", rtt) } } } func BenchmarkAccept(b *testing.B) { client, server := testClientServer() defer func() { client.Close() server.Close() }() doneCh := make(chan struct{}) b.ReportAllocs() b.ResetTimer() go func() { defer close(doneCh) for i := 0; i < b.N; i++ { stream, err := server.AcceptStream() if err != nil { return } stream.Close() } }() for i := 0; i < b.N; i++ { stream, err := client.Open() if err != nil { b.Fatalf("err: %v", err) } stream.Close() } <-doneCh } func BenchmarkSendRecv32(b *testing.B) { const payloadSize = 32 benchmarkSendRecv(b, payloadSize, payloadSize) } func BenchmarkSendRecv64(b *testing.B) { const payloadSize = 64 benchmarkSendRecv(b, payloadSize, payloadSize) } func BenchmarkSendRecv128(b *testing.B) { const payloadSize = 128 benchmarkSendRecv(b, payloadSize, payloadSize) } func BenchmarkSendRecv256(b *testing.B) { const payloadSize = 256 benchmarkSendRecv(b, payloadSize, payloadSize) } func BenchmarkSendRecv512(b *testing.B) { const payloadSize = 512 benchmarkSendRecv(b, payloadSize, payloadSize) } func BenchmarkSendRecv1024(b *testing.B) { const payloadSize = 1024 benchmarkSendRecv(b, payloadSize, payloadSize) } func BenchmarkSendRecv2048(b *testing.B) { const payloadSize = 2048 benchmarkSendRecv(b, payloadSize, payloadSize) } func BenchmarkSendRecv4096(b *testing.B) { const payloadSize = 4096 benchmarkSendRecv(b, payloadSize, payloadSize) } func BenchmarkSendRecvLarge(b *testing.B) { const sendSize = 512 * 1024 * 1024 //512 MB const recvSize = 4 * 1024 //4 KB benchmarkSendRecv(b, sendSize, recvSize) } func benchmarkSendRecv(b *testing.B, sendSize, recvSize int) { client, server := testClientServer() defer func() { client.Close() server.Close() }() sendBuf := make([]byte, sendSize) recvBuf := make([]byte, recvSize) doneCh := make(chan struct{}) b.SetBytes(int64(sendSize)) b.ReportAllocs() b.ResetTimer() go func() { defer close(doneCh) stream, err := server.AcceptStream() if err != nil { return } defer stream.Close() switch { case sendSize == recvSize: for i := 0; i < b.N; i++ { if _, err := stream.Read(recvBuf); err != nil { b.Fatalf("err: %v", err) } } case recvSize > sendSize: b.Fatalf("bad test case; recvSize was: %d and sendSize was: %d, but recvSize must be <= sendSize!", recvSize, sendSize) default: chunks := sendSize / recvSize for i := 0; i < b.N; i++ { for j := 0; j < chunks; j++ { if _, err := stream.Read(recvBuf); err != nil { b.Fatalf("err: %v", err) } } } } }() stream, err := client.Open() if err != nil { b.Fatalf("err: %v", err) } defer stream.Close() for i := 0; i < b.N; i++ { if _, err := stream.Write(sendBuf); err != nil { b.Fatalf("err: %v", err) } } <-doneCh } func BenchmarkSendRecvParallel32(b *testing.B) { const payloadSize = 32 benchmarkSendRecvParallel(b, payloadSize) } func BenchmarkSendRecvParallel64(b *testing.B) { const payloadSize = 64 benchmarkSendRecvParallel(b, payloadSize) } func BenchmarkSendRecvParallel128(b *testing.B) { const payloadSize = 128 benchmarkSendRecvParallel(b, payloadSize) } func BenchmarkSendRecvParallel256(b *testing.B) { const payloadSize = 256 benchmarkSendRecvParallel(b, payloadSize) } func BenchmarkSendRecvParallel512(b *testing.B) { const payloadSize = 512 benchmarkSendRecvParallel(b, payloadSize) } func BenchmarkSendRecvParallel1024(b *testing.B) { const payloadSize = 1024 benchmarkSendRecvParallel(b, payloadSize) } func BenchmarkSendRecvParallel2048(b *testing.B) { const payloadSize = 2048 benchmarkSendRecvParallel(b, payloadSize) } func BenchmarkSendRecvParallel4096(b *testing.B) { const payloadSize = 4096 benchmarkSendRecvParallel(b, payloadSize) } func benchmarkSendRecvParallel(b *testing.B, sendSize int) { client, server := testClientServer() defer func() { client.Close() server.Close() }() sendBuf := make([]byte, sendSize) discarder := ioutil.Discard.(io.ReaderFrom) b.SetBytes(int64(sendSize)) b.ReportAllocs() b.ResetTimer() b.RunParallel(func(pb *testing.PB) { doneCh := make(chan struct{}) go func() { defer close(doneCh) stream, err := server.AcceptStream() if err != nil { return } defer stream.Close() if _, err := discarder.ReadFrom(stream); err != nil { b.Fatalf("err: %v", err) } }() stream, err := client.Open() if err != nil { b.Fatalf("err: %v", err) } for pb.Next() { if _, err := stream.Write(sendBuf); err != nil { b.Fatalf("err: %v", err) } } stream.Close() <-doneCh }) } yamux-0.1.1/const.go000066400000000000000000000107551426755032400143510ustar00rootroot00000000000000package yamux import ( "encoding/binary" "fmt" ) // NetError implements net.Error type NetError struct { err error timeout bool temporary bool } func (e *NetError) Error() string { return e.err.Error() } func (e *NetError) Timeout() bool { return e.timeout } func (e *NetError) Temporary() bool { return e.temporary } var ( // ErrInvalidVersion means we received a frame with an // invalid version ErrInvalidVersion = fmt.Errorf("invalid protocol version") // ErrInvalidMsgType means we received a frame with an // invalid message type ErrInvalidMsgType = fmt.Errorf("invalid msg type") // ErrSessionShutdown is used if there is a shutdown during // an operation ErrSessionShutdown = fmt.Errorf("session shutdown") // ErrStreamsExhausted is returned if we have no more // stream ids to issue ErrStreamsExhausted = fmt.Errorf("streams exhausted") // ErrDuplicateStream is used if a duplicate stream is // opened inbound ErrDuplicateStream = fmt.Errorf("duplicate stream initiated") // ErrReceiveWindowExceeded indicates the window was exceeded ErrRecvWindowExceeded = fmt.Errorf("recv window exceeded") // ErrTimeout is used when we reach an IO deadline ErrTimeout = &NetError{ err: fmt.Errorf("i/o deadline reached"), // Error should meet net.Error interface for timeouts for compatability // with standard library expectations, such as http servers. timeout: true, } // ErrStreamClosed is returned when using a closed stream ErrStreamClosed = fmt.Errorf("stream closed") // ErrUnexpectedFlag is set when we get an unexpected flag ErrUnexpectedFlag = fmt.Errorf("unexpected flag") // ErrRemoteGoAway is used when we get a go away from the other side ErrRemoteGoAway = fmt.Errorf("remote end is not accepting connections") // ErrConnectionReset is sent if a stream is reset. This can happen // if the backlog is exceeded, or if there was a remote GoAway. ErrConnectionReset = fmt.Errorf("connection reset") // ErrConnectionWriteTimeout indicates that we hit the "safety valve" // timeout writing to the underlying stream connection. ErrConnectionWriteTimeout = fmt.Errorf("connection write timeout") // ErrKeepAliveTimeout is sent if a missed keepalive caused the stream close ErrKeepAliveTimeout = fmt.Errorf("keepalive timeout") ) const ( // protoVersion is the only version we support protoVersion uint8 = 0 ) const ( // Data is used for data frames. They are followed // by length bytes worth of payload. typeData uint8 = iota // WindowUpdate is used to change the window of // a given stream. The length indicates the delta // update to the window. typeWindowUpdate // Ping is sent as a keep-alive or to measure // the RTT. The StreamID and Length value are echoed // back in the response. typePing // GoAway is sent to terminate a session. The StreamID // should be 0 and the length is an error code. typeGoAway ) const ( // SYN is sent to signal a new stream. May // be sent with a data payload flagSYN uint16 = 1 << iota // ACK is sent to acknowledge a new stream. May // be sent with a data payload flagACK // FIN is sent to half-close the given stream. // May be sent with a data payload. flagFIN // RST is used to hard close a given stream. flagRST ) const ( // initialStreamWindow is the initial stream window size initialStreamWindow uint32 = 256 * 1024 ) const ( // goAwayNormal is sent on a normal termination goAwayNormal uint32 = iota // goAwayProtoErr sent on a protocol error goAwayProtoErr // goAwayInternalErr sent on an internal error goAwayInternalErr ) const ( sizeOfVersion = 1 sizeOfType = 1 sizeOfFlags = 2 sizeOfStreamID = 4 sizeOfLength = 4 headerSize = sizeOfVersion + sizeOfType + sizeOfFlags + sizeOfStreamID + sizeOfLength ) type header []byte func (h header) Version() uint8 { return h[0] } func (h header) MsgType() uint8 { return h[1] } func (h header) Flags() uint16 { return binary.BigEndian.Uint16(h[2:4]) } func (h header) StreamID() uint32 { return binary.BigEndian.Uint32(h[4:8]) } func (h header) Length() uint32 { return binary.BigEndian.Uint32(h[8:12]) } func (h header) String() string { return fmt.Sprintf("Vsn:%d Type:%d Flags:%d StreamID:%d Length:%d", h.Version(), h.MsgType(), h.Flags(), h.StreamID(), h.Length()) } func (h header) encode(msgType uint8, flags uint16, streamID uint32, length uint32) { h[0] = protoVersion h[1] = msgType binary.BigEndian.PutUint16(h[2:4], flags) binary.BigEndian.PutUint32(h[4:8], streamID) binary.BigEndian.PutUint32(h[8:12], length) } yamux-0.1.1/const_test.go000066400000000000000000000024361426755032400154050ustar00rootroot00000000000000package yamux import ( "testing" ) func TestConst(t *testing.T) { if protoVersion != 0 { t.Fatalf("bad: %v", protoVersion) } if typeData != 0 { t.Fatalf("bad: %v", typeData) } if typeWindowUpdate != 1 { t.Fatalf("bad: %v", typeWindowUpdate) } if typePing != 2 { t.Fatalf("bad: %v", typePing) } if typeGoAway != 3 { t.Fatalf("bad: %v", typeGoAway) } if flagSYN != 1 { t.Fatalf("bad: %v", flagSYN) } if flagACK != 2 { t.Fatalf("bad: %v", flagACK) } if flagFIN != 4 { t.Fatalf("bad: %v", flagFIN) } if flagRST != 8 { t.Fatalf("bad: %v", flagRST) } if goAwayNormal != 0 { t.Fatalf("bad: %v", goAwayNormal) } if goAwayProtoErr != 1 { t.Fatalf("bad: %v", goAwayProtoErr) } if goAwayInternalErr != 2 { t.Fatalf("bad: %v", goAwayInternalErr) } if headerSize != 12 { t.Fatalf("bad header size") } } func TestEncodeDecode(t *testing.T) { hdr := header(make([]byte, headerSize)) hdr.encode(typeWindowUpdate, flagACK|flagRST, 1234, 4321) if hdr.Version() != protoVersion { t.Fatalf("bad: %v", hdr) } if hdr.MsgType() != typeWindowUpdate { t.Fatalf("bad: %v", hdr) } if hdr.Flags() != flagACK|flagRST { t.Fatalf("bad: %v", hdr) } if hdr.StreamID() != 1234 { t.Fatalf("bad: %v", hdr) } if hdr.Length() != 4321 { t.Fatalf("bad: %v", hdr) } } yamux-0.1.1/go.mod000066400000000000000000000000531426755032400137700ustar00rootroot00000000000000module github.com/hashicorp/yamux go 1.15 yamux-0.1.1/mux.go000066400000000000000000000072651426755032400140360ustar00rootroot00000000000000package yamux import ( "fmt" "io" "log" "os" "time" ) // Config is used to tune the Yamux session type Config struct { // AcceptBacklog is used to limit how many streams may be // waiting an accept. AcceptBacklog int // EnableKeepalive is used to do a period keep alive // messages using a ping. EnableKeepAlive bool // KeepAliveInterval is how often to perform the keep alive KeepAliveInterval time.Duration // ConnectionWriteTimeout is meant to be a "safety valve" timeout after // we which will suspect a problem with the underlying connection and // close it. This is only applied to writes, where's there's generally // an expectation that things will move along quickly. ConnectionWriteTimeout time.Duration // MaxStreamWindowSize is used to control the maximum // window size that we allow for a stream. MaxStreamWindowSize uint32 // StreamOpenTimeout is the maximum amount of time that a stream will // be allowed to remain in pending state while waiting for an ack from the peer. // Once the timeout is reached the session will be gracefully closed. // A zero value disables the StreamOpenTimeout allowing unbounded // blocking on OpenStream calls. StreamOpenTimeout time.Duration // StreamCloseTimeout is the maximum time that a stream will allowed to // be in a half-closed state when `Close` is called before forcibly // closing the connection. Forcibly closed connections will empty the // receive buffer, drop any future packets received for that stream, // and send a RST to the remote side. StreamCloseTimeout time.Duration // LogOutput is used to control the log destination. Either Logger or // LogOutput can be set, not both. LogOutput io.Writer // Logger is used to pass in the logger to be used. Either Logger or // LogOutput can be set, not both. Logger *log.Logger } // DefaultConfig is used to return a default configuration func DefaultConfig() *Config { return &Config{ AcceptBacklog: 256, EnableKeepAlive: true, KeepAliveInterval: 30 * time.Second, ConnectionWriteTimeout: 10 * time.Second, MaxStreamWindowSize: initialStreamWindow, StreamCloseTimeout: 5 * time.Minute, StreamOpenTimeout: 75 * time.Second, LogOutput: os.Stderr, } } // VerifyConfig is used to verify the sanity of configuration func VerifyConfig(config *Config) error { if config.AcceptBacklog <= 0 { return fmt.Errorf("backlog must be positive") } if config.KeepAliveInterval == 0 { return fmt.Errorf("keep-alive interval must be positive") } if config.MaxStreamWindowSize < initialStreamWindow { return fmt.Errorf("MaxStreamWindowSize must be larger than %d", initialStreamWindow) } if config.LogOutput != nil && config.Logger != nil { return fmt.Errorf("both Logger and LogOutput may not be set, select one") } else if config.LogOutput == nil && config.Logger == nil { return fmt.Errorf("one of Logger or LogOutput must be set, select one") } return nil } // Server is used to initialize a new server-side connection. // There must be at most one server-side connection. If a nil config is // provided, the DefaultConfiguration will be used. func Server(conn io.ReadWriteCloser, config *Config) (*Session, error) { if config == nil { config = DefaultConfig() } if err := VerifyConfig(config); err != nil { return nil, err } return newSession(config, conn, false), nil } // Client is used to initialize a new client-side connection. // There must be at most one client-side connection. func Client(conn io.ReadWriteCloser, config *Config) (*Session, error) { if config == nil { config = DefaultConfig() } if err := VerifyConfig(config); err != nil { return nil, err } return newSession(config, conn, true), nil } yamux-0.1.1/session.go000066400000000000000000000440661426755032400147100ustar00rootroot00000000000000package yamux import ( "bufio" "bytes" "fmt" "io" "io/ioutil" "log" "math" "net" "strings" "sync" "sync/atomic" "time" ) // Session is used to wrap a reliable ordered connection and to // multiplex it into multiple streams. type Session struct { // remoteGoAway indicates the remote side does // not want futher connections. Must be first for alignment. remoteGoAway int32 // localGoAway indicates that we should stop // accepting futher connections. Must be first for alignment. localGoAway int32 // nextStreamID is the next stream we should // send. This depends if we are a client/server. nextStreamID uint32 // config holds our configuration config *Config // logger is used for our logs logger *log.Logger // conn is the underlying connection conn io.ReadWriteCloser // bufRead is a buffered reader bufRead *bufio.Reader // pings is used to track inflight pings pings map[uint32]chan struct{} pingID uint32 pingLock sync.Mutex // streams maps a stream id to a stream, and inflight has an entry // for any outgoing stream that has not yet been established. Both are // protected by streamLock. streams map[uint32]*Stream inflight map[uint32]struct{} streamLock sync.Mutex // synCh acts like a semaphore. It is sized to the AcceptBacklog which // is assumed to be symmetric between the client and server. This allows // the client to avoid exceeding the backlog and instead blocks the open. synCh chan struct{} // acceptCh is used to pass ready streams to the client acceptCh chan *Stream // sendCh is used to mark a stream as ready to send, // or to send a header out directly. sendCh chan *sendReady // recvDoneCh is closed when recv() exits to avoid a race // between stream registration and stream shutdown recvDoneCh chan struct{} sendDoneCh chan struct{} // shutdown is used to safely close a session shutdown bool shutdownErr error shutdownCh chan struct{} shutdownLock sync.Mutex shutdownErrLock sync.Mutex } // sendReady is used to either mark a stream as ready // or to directly send a header type sendReady struct { Hdr []byte mu sync.Mutex // Protects Body from unsafe reads. Body []byte Err chan error } // newSession is used to construct a new session func newSession(config *Config, conn io.ReadWriteCloser, client bool) *Session { logger := config.Logger if logger == nil { logger = log.New(config.LogOutput, "", log.LstdFlags) } s := &Session{ config: config, logger: logger, conn: conn, bufRead: bufio.NewReader(conn), pings: make(map[uint32]chan struct{}), streams: make(map[uint32]*Stream), inflight: make(map[uint32]struct{}), synCh: make(chan struct{}, config.AcceptBacklog), acceptCh: make(chan *Stream, config.AcceptBacklog), sendCh: make(chan *sendReady, 64), recvDoneCh: make(chan struct{}), sendDoneCh: make(chan struct{}), shutdownCh: make(chan struct{}), } if client { s.nextStreamID = 1 } else { s.nextStreamID = 2 } go s.recv() go s.send() if config.EnableKeepAlive { go s.keepalive() } return s } // IsClosed does a safe check to see if we have shutdown func (s *Session) IsClosed() bool { select { case <-s.shutdownCh: return true default: return false } } // CloseChan returns a read-only channel which is closed as // soon as the session is closed. func (s *Session) CloseChan() <-chan struct{} { return s.shutdownCh } // NumStreams returns the number of currently open streams func (s *Session) NumStreams() int { s.streamLock.Lock() num := len(s.streams) s.streamLock.Unlock() return num } // Open is used to create a new stream as a net.Conn func (s *Session) Open() (net.Conn, error) { conn, err := s.OpenStream() if err != nil { return nil, err } return conn, nil } // OpenStream is used to create a new stream func (s *Session) OpenStream() (*Stream, error) { if s.IsClosed() { return nil, ErrSessionShutdown } if atomic.LoadInt32(&s.remoteGoAway) == 1 { return nil, ErrRemoteGoAway } // Block if we have too many inflight SYNs select { case s.synCh <- struct{}{}: case <-s.shutdownCh: return nil, ErrSessionShutdown } GET_ID: // Get an ID, and check for stream exhaustion id := atomic.LoadUint32(&s.nextStreamID) if id >= math.MaxUint32-1 { return nil, ErrStreamsExhausted } if !atomic.CompareAndSwapUint32(&s.nextStreamID, id, id+2) { goto GET_ID } // Register the stream stream := newStream(s, id, streamInit) s.streamLock.Lock() s.streams[id] = stream s.inflight[id] = struct{}{} s.streamLock.Unlock() if s.config.StreamOpenTimeout > 0 { go s.setOpenTimeout(stream) } // Send the window update to create if err := stream.sendWindowUpdate(); err != nil { select { case <-s.synCh: default: s.logger.Printf("[ERR] yamux: aborted stream open without inflight syn semaphore") } return nil, err } return stream, nil } // setOpenTimeout implements a timeout for streams that are opened but not established. // If the StreamOpenTimeout is exceeded we assume the peer is unable to ACK, // and close the session. // The number of running timers is bounded by the capacity of the synCh. func (s *Session) setOpenTimeout(stream *Stream) { timer := time.NewTimer(s.config.StreamOpenTimeout) defer timer.Stop() select { case <-stream.establishCh: return case <-s.shutdownCh: return case <-timer.C: // Timeout reached while waiting for ACK. // Close the session to force connection re-establishment. s.logger.Printf("[ERR] yamux: aborted stream open (destination=%s): %v", s.RemoteAddr().String(), ErrTimeout.err) s.Close() } } // Accept is used to block until the next available stream // is ready to be accepted. func (s *Session) Accept() (net.Conn, error) { conn, err := s.AcceptStream() if err != nil { return nil, err } return conn, err } // AcceptStream is used to block until the next available stream // is ready to be accepted. func (s *Session) AcceptStream() (*Stream, error) { select { case stream := <-s.acceptCh: if err := stream.sendWindowUpdate(); err != nil { return nil, err } return stream, nil case <-s.shutdownCh: return nil, s.shutdownErr } } // Close is used to close the session and all streams. // Attempts to send a GoAway before closing the connection. func (s *Session) Close() error { s.shutdownLock.Lock() defer s.shutdownLock.Unlock() if s.shutdown { return nil } s.shutdown = true s.shutdownErrLock.Lock() if s.shutdownErr == nil { s.shutdownErr = ErrSessionShutdown } s.shutdownErrLock.Unlock() close(s.shutdownCh) s.conn.Close() <-s.recvDoneCh s.streamLock.Lock() defer s.streamLock.Unlock() for _, stream := range s.streams { stream.forceClose() } <-s.sendDoneCh return nil } // exitErr is used to handle an error that is causing the // session to terminate. func (s *Session) exitErr(err error) { s.shutdownErrLock.Lock() if s.shutdownErr == nil { s.shutdownErr = err } s.shutdownErrLock.Unlock() s.Close() } // GoAway can be used to prevent accepting further // connections. It does not close the underlying conn. func (s *Session) GoAway() error { return s.waitForSend(s.goAway(goAwayNormal), nil) } // goAway is used to send a goAway message func (s *Session) goAway(reason uint32) header { atomic.SwapInt32(&s.localGoAway, 1) hdr := header(make([]byte, headerSize)) hdr.encode(typeGoAway, 0, 0, reason) return hdr } // Ping is used to measure the RTT response time func (s *Session) Ping() (time.Duration, error) { // Get a channel for the ping ch := make(chan struct{}) // Get a new ping id, mark as pending s.pingLock.Lock() id := s.pingID s.pingID++ s.pings[id] = ch s.pingLock.Unlock() // Send the ping request hdr := header(make([]byte, headerSize)) hdr.encode(typePing, flagSYN, 0, id) if err := s.waitForSend(hdr, nil); err != nil { return 0, err } // Wait for a response start := time.Now() select { case <-ch: case <-time.After(s.config.ConnectionWriteTimeout): s.pingLock.Lock() delete(s.pings, id) // Ignore it if a response comes later. s.pingLock.Unlock() return 0, ErrTimeout case <-s.shutdownCh: return 0, ErrSessionShutdown } // Compute the RTT return time.Now().Sub(start), nil } // keepalive is a long running goroutine that periodically does // a ping to keep the connection alive. func (s *Session) keepalive() { for { select { case <-time.After(s.config.KeepAliveInterval): _, err := s.Ping() if err != nil { if err != ErrSessionShutdown { s.logger.Printf("[ERR] yamux: keepalive failed: %v", err) s.exitErr(ErrKeepAliveTimeout) } return } case <-s.shutdownCh: return } } } // waitForSendErr waits to send a header, checking for a potential shutdown func (s *Session) waitForSend(hdr header, body []byte) error { errCh := make(chan error, 1) return s.waitForSendErr(hdr, body, errCh) } // waitForSendErr waits to send a header with optional data, checking for a // potential shutdown. Since there's the expectation that sends can happen // in a timely manner, we enforce the connection write timeout here. func (s *Session) waitForSendErr(hdr header, body []byte, errCh chan error) error { t := timerPool.Get() timer := t.(*time.Timer) timer.Reset(s.config.ConnectionWriteTimeout) defer func() { timer.Stop() select { case <-timer.C: default: } timerPool.Put(t) }() ready := &sendReady{Hdr: hdr, Body: body, Err: errCh} select { case s.sendCh <- ready: case <-s.shutdownCh: return ErrSessionShutdown case <-timer.C: return ErrConnectionWriteTimeout } bodyCopy := func() { if body == nil { return // A nil body is ignored. } // In the event of session shutdown or connection write timeout, // we need to prevent `send` from reading the body buffer after // returning from this function since the caller may re-use the // underlying array. ready.mu.Lock() defer ready.mu.Unlock() if ready.Body == nil { return // Body was already copied in `send`. } newBody := make([]byte, len(body)) copy(newBody, body) ready.Body = newBody } select { case err := <-errCh: return err case <-s.shutdownCh: bodyCopy() return ErrSessionShutdown case <-timer.C: bodyCopy() return ErrConnectionWriteTimeout } } // sendNoWait does a send without waiting. Since there's the expectation that // the send happens right here, we enforce the connection write timeout if we // can't queue the header to be sent. func (s *Session) sendNoWait(hdr header) error { t := timerPool.Get() timer := t.(*time.Timer) timer.Reset(s.config.ConnectionWriteTimeout) defer func() { timer.Stop() select { case <-timer.C: default: } timerPool.Put(t) }() select { case s.sendCh <- &sendReady{Hdr: hdr}: return nil case <-s.shutdownCh: return ErrSessionShutdown case <-timer.C: return ErrConnectionWriteTimeout } } // send is a long running goroutine that sends data func (s *Session) send() { if err := s.sendLoop(); err != nil { s.exitErr(err) } } func (s *Session) sendLoop() error { defer close(s.sendDoneCh) var bodyBuf bytes.Buffer for { bodyBuf.Reset() select { case ready := <-s.sendCh: // Send a header if ready if ready.Hdr != nil { _, err := s.conn.Write(ready.Hdr) if err != nil { s.logger.Printf("[ERR] yamux: Failed to write header: %v", err) asyncSendErr(ready.Err, err) return err } } ready.mu.Lock() if ready.Body != nil { // Copy the body into the buffer to avoid // holding a mutex lock during the write. _, err := bodyBuf.Write(ready.Body) if err != nil { ready.Body = nil ready.mu.Unlock() s.logger.Printf("[ERR] yamux: Failed to copy body into buffer: %v", err) asyncSendErr(ready.Err, err) return err } ready.Body = nil } ready.mu.Unlock() if bodyBuf.Len() > 0 { // Send data from a body if given _, err := s.conn.Write(bodyBuf.Bytes()) if err != nil { s.logger.Printf("[ERR] yamux: Failed to write body: %v", err) asyncSendErr(ready.Err, err) return err } } // No error, successful send asyncSendErr(ready.Err, nil) case <-s.shutdownCh: return nil } } } // recv is a long running goroutine that accepts new data func (s *Session) recv() { if err := s.recvLoop(); err != nil { s.exitErr(err) } } // Ensure that the index of the handler (typeData/typeWindowUpdate/etc) matches the message type var ( handlers = []func(*Session, header) error{ typeData: (*Session).handleStreamMessage, typeWindowUpdate: (*Session).handleStreamMessage, typePing: (*Session).handlePing, typeGoAway: (*Session).handleGoAway, } ) // recvLoop continues to receive data until a fatal error is encountered func (s *Session) recvLoop() error { defer close(s.recvDoneCh) hdr := header(make([]byte, headerSize)) for { // Read the header if _, err := io.ReadFull(s.bufRead, hdr); err != nil { if err != io.EOF && !strings.Contains(err.Error(), "closed") && !strings.Contains(err.Error(), "reset by peer") { s.logger.Printf("[ERR] yamux: Failed to read header: %v", err) } return err } // Verify the version if hdr.Version() != protoVersion { s.logger.Printf("[ERR] yamux: Invalid protocol version: %d", hdr.Version()) return ErrInvalidVersion } mt := hdr.MsgType() if mt < typeData || mt > typeGoAway { return ErrInvalidMsgType } if err := handlers[mt](s, hdr); err != nil { return err } } } // handleStreamMessage handles either a data or window update frame func (s *Session) handleStreamMessage(hdr header) error { // Check for a new stream creation id := hdr.StreamID() flags := hdr.Flags() if flags&flagSYN == flagSYN { if err := s.incomingStream(id); err != nil { return err } } // Get the stream s.streamLock.Lock() stream := s.streams[id] s.streamLock.Unlock() // If we do not have a stream, likely we sent a RST if stream == nil { // Drain any data on the wire if hdr.MsgType() == typeData && hdr.Length() > 0 { s.logger.Printf("[WARN] yamux: Discarding data for stream: %d", id) if _, err := io.CopyN(ioutil.Discard, s.bufRead, int64(hdr.Length())); err != nil { s.logger.Printf("[ERR] yamux: Failed to discard data: %v", err) return nil } } else { s.logger.Printf("[WARN] yamux: frame for missing stream: %v", hdr) } return nil } // Check if this is a window update if hdr.MsgType() == typeWindowUpdate { if err := stream.incrSendWindow(hdr, flags); err != nil { if sendErr := s.sendNoWait(s.goAway(goAwayProtoErr)); sendErr != nil { s.logger.Printf("[WARN] yamux: failed to send go away: %v", sendErr) } return err } return nil } // Read the new data if err := stream.readData(hdr, flags, s.bufRead); err != nil { if sendErr := s.sendNoWait(s.goAway(goAwayProtoErr)); sendErr != nil { s.logger.Printf("[WARN] yamux: failed to send go away: %v", sendErr) } return err } return nil } // handlePing is invokde for a typePing frame func (s *Session) handlePing(hdr header) error { flags := hdr.Flags() pingID := hdr.Length() // Check if this is a query, respond back in a separate context so we // don't interfere with the receiving thread blocking for the write. if flags&flagSYN == flagSYN { go func() { hdr := header(make([]byte, headerSize)) hdr.encode(typePing, flagACK, 0, pingID) if err := s.sendNoWait(hdr); err != nil { s.logger.Printf("[WARN] yamux: failed to send ping reply: %v", err) } }() return nil } // Handle a response s.pingLock.Lock() ch := s.pings[pingID] if ch != nil { delete(s.pings, pingID) close(ch) } s.pingLock.Unlock() return nil } // handleGoAway is invokde for a typeGoAway frame func (s *Session) handleGoAway(hdr header) error { code := hdr.Length() switch code { case goAwayNormal: atomic.SwapInt32(&s.remoteGoAway, 1) case goAwayProtoErr: s.logger.Printf("[ERR] yamux: received protocol error go away") return fmt.Errorf("yamux protocol error") case goAwayInternalErr: s.logger.Printf("[ERR] yamux: received internal error go away") return fmt.Errorf("remote yamux internal error") default: s.logger.Printf("[ERR] yamux: received unexpected go away") return fmt.Errorf("unexpected go away received") } return nil } // incomingStream is used to create a new incoming stream func (s *Session) incomingStream(id uint32) error { // Reject immediately if we are doing a go away if atomic.LoadInt32(&s.localGoAway) == 1 { hdr := header(make([]byte, headerSize)) hdr.encode(typeWindowUpdate, flagRST, id, 0) return s.sendNoWait(hdr) } // Allocate a new stream stream := newStream(s, id, streamSYNReceived) s.streamLock.Lock() defer s.streamLock.Unlock() // Check if stream already exists if _, ok := s.streams[id]; ok { s.logger.Printf("[ERR] yamux: duplicate stream declared") if sendErr := s.sendNoWait(s.goAway(goAwayProtoErr)); sendErr != nil { s.logger.Printf("[WARN] yamux: failed to send go away: %v", sendErr) } return ErrDuplicateStream } // Register the stream s.streams[id] = stream // Check if we've exceeded the backlog select { case s.acceptCh <- stream: return nil default: // Backlog exceeded! RST the stream s.logger.Printf("[WARN] yamux: backlog exceeded, forcing connection reset") delete(s.streams, id) hdr := header(make([]byte, headerSize)) hdr.encode(typeWindowUpdate, flagRST, id, 0) return s.sendNoWait(hdr) } } // closeStream is used to close a stream once both sides have // issued a close. If there was an in-flight SYN and the stream // was not yet established, then this will give the credit back. func (s *Session) closeStream(id uint32) { s.streamLock.Lock() if _, ok := s.inflight[id]; ok { select { case <-s.synCh: default: s.logger.Printf("[ERR] yamux: SYN tracking out of sync") } } delete(s.streams, id) s.streamLock.Unlock() } // establishStream is used to mark a stream that was in the // SYN Sent state as established. func (s *Session) establishStream(id uint32) { s.streamLock.Lock() if _, ok := s.inflight[id]; ok { delete(s.inflight, id) } else { s.logger.Printf("[ERR] yamux: established stream without inflight SYN (no tracking entry)") } select { case <-s.synCh: default: s.logger.Printf("[ERR] yamux: established stream without inflight SYN (didn't have semaphore)") } s.streamLock.Unlock() } yamux-0.1.1/session_test.go000066400000000000000000000746771426755032400157620ustar00rootroot00000000000000package yamux import ( "bytes" "fmt" "io" "io/ioutil" "log" "net" "reflect" "runtime" "strings" "sync" "testing" "time" ) type logCapture struct{ bytes.Buffer } func (l *logCapture) logs() []string { return strings.Split(strings.TrimSpace(l.String()), "\n") } func (l *logCapture) match(expect []string) bool { return reflect.DeepEqual(l.logs(), expect) } func captureLogs(s *Session) *logCapture { buf := new(logCapture) s.logger = log.New(buf, "", 0) return buf } type pipeConn struct { reader *io.PipeReader writer *io.PipeWriter writeBlocker sync.Mutex } func (p *pipeConn) Read(b []byte) (int, error) { return p.reader.Read(b) } func (p *pipeConn) Write(b []byte) (int, error) { p.writeBlocker.Lock() defer p.writeBlocker.Unlock() return p.writer.Write(b) } func (p *pipeConn) Close() error { p.reader.Close() return p.writer.Close() } func testConn() (io.ReadWriteCloser, io.ReadWriteCloser) { read1, write1 := io.Pipe() read2, write2 := io.Pipe() conn1 := &pipeConn{reader: read1, writer: write2} conn2 := &pipeConn{reader: read2, writer: write1} return conn1, conn2 } func testConf() *Config { conf := DefaultConfig() conf.AcceptBacklog = 64 conf.KeepAliveInterval = 100 * time.Millisecond conf.ConnectionWriteTimeout = 250 * time.Millisecond return conf } func testConfNoKeepAlive() *Config { conf := testConf() conf.EnableKeepAlive = false return conf } func testClientServer() (*Session, *Session) { return testClientServerConfig(testConf()) } func testClientServerConfig(conf *Config) (*Session, *Session) { conn1, conn2 := testConn() client, _ := Client(conn1, conf) server, _ := Server(conn2, conf) return client, server } func TestPing(t *testing.T) { client, server := testClientServer() defer client.Close() defer server.Close() rtt, err := client.Ping() if err != nil { t.Fatalf("err: %v", err) } if rtt == 0 { t.Fatalf("bad: %v", rtt) } rtt, err = server.Ping() if err != nil { t.Fatalf("err: %v", err) } if rtt == 0 { t.Fatalf("bad: %v", rtt) } } func TestPing_Timeout(t *testing.T) { client, server := testClientServerConfig(testConfNoKeepAlive()) defer client.Close() defer server.Close() // Prevent the client from responding clientConn := client.conn.(*pipeConn) clientConn.writeBlocker.Lock() errCh := make(chan error, 1) go func() { _, err := server.Ping() // Ping via the server session errCh <- err }() select { case err := <-errCh: if err != ErrTimeout { t.Fatalf("err: %v", err) } case <-time.After(client.config.ConnectionWriteTimeout * 2): t.Fatalf("failed to timeout within expected %v", client.config.ConnectionWriteTimeout) } // Verify that we recover, even if we gave up clientConn.writeBlocker.Unlock() go func() { _, err := server.Ping() // Ping via the server session errCh <- err }() select { case err := <-errCh: if err != nil { t.Fatalf("err: %v", err) } case <-time.After(client.config.ConnectionWriteTimeout): t.Fatalf("timeout") } } func TestCloseBeforeAck(t *testing.T) { cfg := testConf() cfg.AcceptBacklog = 8 client, server := testClientServerConfig(cfg) defer client.Close() defer server.Close() for i := 0; i < 8; i++ { s, err := client.OpenStream() if err != nil { t.Fatal(err) } s.Close() } for i := 0; i < 8; i++ { s, err := server.AcceptStream() if err != nil { t.Fatal(err) } s.Close() } done := make(chan struct{}) go func() { defer close(done) s, err := client.OpenStream() if err != nil { t.Fatal(err) } s.Close() }() select { case <-done: case <-time.After(time.Second * 5): t.Fatal("timed out trying to open stream") } } func TestAccept(t *testing.T) { client, server := testClientServer() defer client.Close() defer server.Close() if client.NumStreams() != 0 { t.Fatalf("bad") } if server.NumStreams() != 0 { t.Fatalf("bad") } wg := &sync.WaitGroup{} wg.Add(4) go func() { defer wg.Done() stream, err := server.AcceptStream() if err != nil { t.Fatalf("err: %v", err) } if id := stream.StreamID(); id != 1 { t.Fatalf("bad: %v", id) } if err := stream.Close(); err != nil { t.Fatalf("err: %v", err) } }() go func() { defer wg.Done() stream, err := client.AcceptStream() if err != nil { t.Fatalf("err: %v", err) } if id := stream.StreamID(); id != 2 { t.Fatalf("bad: %v", id) } if err := stream.Close(); err != nil { t.Fatalf("err: %v", err) } }() go func() { defer wg.Done() stream, err := server.OpenStream() if err != nil { t.Fatalf("err: %v", err) } if id := stream.StreamID(); id != 2 { t.Fatalf("bad: %v", id) } if err := stream.Close(); err != nil { t.Fatalf("err: %v", err) } }() go func() { defer wg.Done() stream, err := client.OpenStream() if err != nil { t.Fatalf("err: %v", err) } if id := stream.StreamID(); id != 1 { t.Fatalf("bad: %v", id) } if err := stream.Close(); err != nil { t.Fatalf("err: %v", err) } }() doneCh := make(chan struct{}) go func() { wg.Wait() close(doneCh) }() select { case <-doneCh: case <-time.After(time.Second): panic("timeout") } } func TestOpenStreamTimeout(t *testing.T) { const timeout = 25 * time.Millisecond cfg := testConf() cfg.StreamOpenTimeout = timeout client, server := testClientServerConfig(cfg) defer client.Close() defer server.Close() clientLogs := captureLogs(client) // Open a single stream without a server to acknowledge it. s, err := client.OpenStream() if err != nil { t.Fatal(err) } // Sleep for longer than the stream open timeout. // Since no ACKs are received, the stream and session should be closed. time.Sleep(timeout * 5) if !clientLogs.match([]string{"[ERR] yamux: aborted stream open (destination=yamux:remote): i/o deadline reached"}) { t.Fatalf("server log incorect: %v", clientLogs.logs()) } if s.state != streamClosed { t.Fatalf("stream should have been closed") } if !client.IsClosed() { t.Fatalf("session should have been closed") } } func TestClose_closeTimeout(t *testing.T) { conf := testConf() conf.StreamCloseTimeout = 10 * time.Millisecond client, server := testClientServerConfig(conf) defer client.Close() defer server.Close() if client.NumStreams() != 0 { t.Fatalf("bad") } if server.NumStreams() != 0 { t.Fatalf("bad") } wg := &sync.WaitGroup{} wg.Add(2) // Open a stream on the client but only close it on the server. // We want to see if the stream ever gets cleaned up on the client. var clientStream *Stream go func() { defer wg.Done() var err error clientStream, err = client.OpenStream() if err != nil { t.Fatalf("err: %v", err) } }() go func() { defer wg.Done() stream, err := server.AcceptStream() if err != nil { t.Fatalf("err: %v", err) } if err := stream.Close(); err != nil { t.Fatalf("err: %v", err) } }() doneCh := make(chan struct{}) go func() { wg.Wait() close(doneCh) }() select { case <-doneCh: case <-time.After(time.Second): panic("timeout") } // We should have zero streams after our timeout period time.Sleep(100 * time.Millisecond) if v := server.NumStreams(); v > 0 { t.Fatalf("should have zero streams: %d", v) } if v := client.NumStreams(); v > 0 { t.Fatalf("should have zero streams: %d", v) } if _, err := clientStream.Write([]byte("hello")); err == nil { t.Fatal("should error on write") } else if err.Error() != "connection reset" { t.Fatalf("expected connection reset, got %q", err) } } func TestNonNilInterface(t *testing.T) { _, server := testClientServer() server.Close() conn, err := server.Accept() if err != nil && conn != nil { t.Error("bad: accept should return a connection of nil value") } conn, err = server.Open() if err != nil && conn != nil { t.Error("bad: open should return a connection of nil value") } } func TestSendData_Small(t *testing.T) { client, server := testClientServer() defer client.Close() defer server.Close() wg := &sync.WaitGroup{} wg.Add(2) go func() { defer wg.Done() stream, err := server.AcceptStream() if err != nil { t.Fatalf("err: %v", err) } if server.NumStreams() != 1 { t.Fatalf("bad") } buf := make([]byte, 4) for i := 0; i < 1000; i++ { n, err := stream.Read(buf) if err != nil { t.Fatalf("err: %v", err) } if n != 4 { t.Fatalf("short read: %d", n) } if string(buf) != "test" { t.Fatalf("bad: %s", buf) } } if err := stream.Close(); err != nil { t.Fatalf("err: %v", err) } }() go func() { defer wg.Done() stream, err := client.Open() if err != nil { t.Fatalf("err: %v", err) } if client.NumStreams() != 1 { t.Fatalf("bad") } for i := 0; i < 1000; i++ { n, err := stream.Write([]byte("test")) if err != nil { t.Fatalf("err: %v", err) } if n != 4 { t.Fatalf("short write %d", n) } } if err := stream.Close(); err != nil { t.Fatalf("err: %v", err) } }() doneCh := make(chan struct{}) go func() { wg.Wait() close(doneCh) }() select { case <-doneCh: if client.NumStreams() != 0 { t.Fatalf("bad") } if server.NumStreams() != 0 { t.Fatalf("bad") } return case <-time.After(time.Second): panic("timeout") } } func TestSendData_Large(t *testing.T) { client, server := testClientServer() defer client.Close() defer server.Close() const ( sendSize = 250 * 1024 * 1024 recvSize = 4 * 1024 ) data := make([]byte, sendSize) for idx := range data { data[idx] = byte(idx % 256) } wg := &sync.WaitGroup{} wg.Add(2) go func() { defer wg.Done() stream, err := server.AcceptStream() if err != nil { t.Fatalf("err: %v", err) } var sz int buf := make([]byte, recvSize) for i := 0; i < sendSize/recvSize; i++ { n, err := stream.Read(buf) if err != nil { t.Fatalf("err: %v", err) } if n != recvSize { t.Fatalf("short read: %d", n) } sz += n for idx := range buf { if buf[idx] != byte(idx%256) { t.Fatalf("bad: %v %v %v", i, idx, buf[idx]) } } } if err := stream.Close(); err != nil { t.Fatalf("err: %v", err) } t.Logf("cap=%d, n=%d\n", stream.recvBuf.Cap(), sz) }() go func() { defer wg.Done() stream, err := client.Open() if err != nil { t.Fatalf("err: %v", err) } n, err := stream.Write(data) if err != nil { t.Fatalf("err: %v", err) } if n != len(data) { t.Fatalf("short write %d", n) } if err := stream.Close(); err != nil { t.Fatalf("err: %v", err) } }() doneCh := make(chan struct{}) go func() { wg.Wait() close(doneCh) }() select { case <-doneCh: return case <-time.After(5 * time.Second): panic("timeout") } } func TestGoAway(t *testing.T) { client, server := testClientServer() defer client.Close() defer server.Close() if err := server.GoAway(); err != nil { t.Fatalf("err: %v", err) } _, err := client.Open() if err != ErrRemoteGoAway { t.Fatalf("err: %v", err) } } func TestManyStreams(t *testing.T) { client, server := testClientServer() defer client.Close() defer server.Close() wg := &sync.WaitGroup{} acceptor := func(i int) { defer wg.Done() stream, err := server.AcceptStream() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() buf := make([]byte, 512) for { n, err := stream.Read(buf) if err == io.EOF { return } if err != nil { t.Fatalf("err: %v", err) } if n == 0 { t.Fatalf("err: %v", err) } } } sender := func(i int) { defer wg.Done() stream, err := client.Open() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() msg := fmt.Sprintf("%08d", i) for i := 0; i < 1000; i++ { n, err := stream.Write([]byte(msg)) if err != nil { t.Fatalf("err: %v", err) } if n != len(msg) { t.Fatalf("short write %d", n) } } } for i := 0; i < 50; i++ { wg.Add(2) go acceptor(i) go sender(i) } wg.Wait() } func TestManyStreams_PingPong(t *testing.T) { client, server := testClientServer() defer client.Close() defer server.Close() wg := &sync.WaitGroup{} ping := []byte("ping") pong := []byte("pong") acceptor := func(i int) { defer wg.Done() stream, err := server.AcceptStream() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() buf := make([]byte, 4) for { // Read the 'ping' n, err := stream.Read(buf) if err == io.EOF { return } if err != nil { t.Fatalf("err: %v", err) } if n != 4 { t.Fatalf("err: %v", err) } if !bytes.Equal(buf, ping) { t.Fatalf("bad: %s", buf) } // Shrink the internal buffer! stream.Shrink() // Write out the 'pong' n, err = stream.Write(pong) if err != nil { t.Fatalf("err: %v", err) } if n != 4 { t.Fatalf("err: %v", err) } } } sender := func(i int) { defer wg.Done() stream, err := client.OpenStream() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() buf := make([]byte, 4) for i := 0; i < 1000; i++ { // Send the 'ping' n, err := stream.Write(ping) if err != nil { t.Fatalf("err: %v", err) } if n != 4 { t.Fatalf("short write %d", n) } // Read the 'pong' n, err = stream.Read(buf) if err != nil { t.Fatalf("err: %v", err) } if n != 4 { t.Fatalf("err: %v", err) } if !bytes.Equal(buf, pong) { t.Fatalf("bad: %s", buf) } // Shrink the buffer stream.Shrink() } } for i := 0; i < 50; i++ { wg.Add(2) go acceptor(i) go sender(i) } wg.Wait() } func TestHalfClose(t *testing.T) { client, server := testClientServer() defer client.Close() defer server.Close() stream, err := client.Open() if err != nil { t.Fatalf("err: %v", err) } if _, err = stream.Write([]byte("a")); err != nil { t.Fatalf("err: %v", err) } stream2, err := server.Accept() if err != nil { t.Fatalf("err: %v", err) } stream2.Close() // Half close buf := make([]byte, 4) n, err := stream2.Read(buf) if err != nil { t.Fatalf("err: %v", err) } if n != 1 { t.Fatalf("bad: %v", n) } // Send more if _, err = stream.Write([]byte("bcd")); err != nil { t.Fatalf("err: %v", err) } stream.Close() // Read after close n, err = stream2.Read(buf) if err != nil { t.Fatalf("err: %v", err) } if n != 3 { t.Fatalf("bad: %v", n) } // EOF after close n, err = stream2.Read(buf) if err != io.EOF { t.Fatalf("err: %v", err) } if n != 0 { t.Fatalf("bad: %v", n) } } func TestHalfCloseSessionShutdown(t *testing.T) { client, server := testClientServer() defer client.Close() defer server.Close() // dataSize must be large enough to ensure the server will send a window // update dataSize := int64(server.config.MaxStreamWindowSize) data := make([]byte, dataSize) for idx := range data { data[idx] = byte(idx % 256) } stream, err := client.Open() if err != nil { t.Fatalf("err: %v", err) } if _, err = stream.Write(data); err != nil { t.Fatalf("err: %v", err) } stream2, err := server.Accept() if err != nil { t.Fatalf("err: %v", err) } if err := stream.Close(); err != nil { t.Fatalf("err: %v", err) } // Shut down the session of the sending side. This should not cause reads // to fail on the receiving side. if err := client.Close(); err != nil { t.Fatalf("err: %v", err) } buf := make([]byte, dataSize) n, err := stream2.Read(buf) if err != nil { t.Fatalf("err: %v", err) } if int64(n) != dataSize { t.Fatalf("bad: %v", n) } // EOF after close n, err = stream2.Read(buf) if err != io.EOF { t.Fatalf("err: %v", err) } if n != 0 { t.Fatalf("bad: %v", n) } } func TestReadDeadline(t *testing.T) { client, server := testClientServer() defer client.Close() defer server.Close() stream, err := client.Open() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() stream2, err := server.Accept() if err != nil { t.Fatalf("err: %v", err) } defer stream2.Close() if err := stream.SetReadDeadline(time.Now().Add(5 * time.Millisecond)); err != nil { t.Fatalf("err: %v", err) } buf := make([]byte, 4) _, err = stream.Read(buf) if err != ErrTimeout { t.Fatalf("err: %v", err) } // See https://github.com/hashicorp/yamux/issues/90 // The standard library's http server package will read from connections in // the background to detect if they are alive. // // It sets a read deadline on connections and detect if the returned error // is a network timeout error which implements net.Error. // // The HTTP server will cancel all server requests if it isn't timeout error // from the connection. // // We assert that we return an error meeting the interface to avoid // accidently breaking yamux session compatability with the standard // library's http server implementation. if netErr, ok := err.(net.Error); !ok || !netErr.Timeout() { t.Fatalf("reading timeout error is expected to implement net.Error and return true when calling Timeout()") } } func TestReadDeadline_BlockedRead(t *testing.T) { client, server := testClientServer() defer client.Close() defer server.Close() stream, err := client.Open() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() stream2, err := server.Accept() if err != nil { t.Fatalf("err: %v", err) } defer stream2.Close() // Start a read that will block errCh := make(chan error, 1) go func() { buf := make([]byte, 4) _, err := stream.Read(buf) errCh <- err close(errCh) }() // Wait to ensure the read has started. time.Sleep(5 * time.Millisecond) // Update the read deadline if err := stream.SetReadDeadline(time.Now().Add(5 * time.Millisecond)); err != nil { t.Fatalf("err: %v", err) } select { case <-time.After(100 * time.Millisecond): t.Fatal("expected read timeout") case err := <-errCh: if err != ErrTimeout { t.Fatalf("expected ErrTimeout; got %v", err) } } } func TestWriteDeadline(t *testing.T) { client, server := testClientServer() defer client.Close() defer server.Close() stream, err := client.Open() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() stream2, err := server.Accept() if err != nil { t.Fatalf("err: %v", err) } defer stream2.Close() if err := stream.SetWriteDeadline(time.Now().Add(50 * time.Millisecond)); err != nil { t.Fatalf("err: %v", err) } buf := make([]byte, 512) for i := 0; i < int(initialStreamWindow); i++ { _, err := stream.Write(buf) if err != nil && err == ErrTimeout { return } else if err != nil { t.Fatalf("err: %v", err) } } t.Fatalf("Expected timeout") } func TestWriteDeadline_BlockedWrite(t *testing.T) { client, server := testClientServer() defer client.Close() defer server.Close() stream, err := client.Open() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() stream2, err := server.Accept() if err != nil { t.Fatalf("err: %v", err) } defer stream2.Close() // Start a goroutine making writes that will block errCh := make(chan error, 1) go func() { buf := make([]byte, 512) for i := 0; i < int(initialStreamWindow); i++ { _, err := stream.Write(buf) if err == nil { continue } errCh <- err close(errCh) return } close(errCh) }() // Wait to ensure the write has started. time.Sleep(5 * time.Millisecond) // Update the write deadline if err := stream.SetWriteDeadline(time.Now().Add(5 * time.Millisecond)); err != nil { t.Fatalf("err: %v", err) } select { case <-time.After(1 * time.Second): t.Fatal("expected write timeout") case err := <-errCh: if err != ErrTimeout { t.Fatalf("expected ErrTimeout; got %v", err) } } } func TestBacklogExceeded(t *testing.T) { client, server := testClientServer() defer client.Close() defer server.Close() // Fill the backlog max := client.config.AcceptBacklog for i := 0; i < max; i++ { stream, err := client.Open() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() if _, err := stream.Write([]byte("foo")); err != nil { t.Fatalf("err: %v", err) } } // Attempt to open a new stream errCh := make(chan error, 1) go func() { _, err := client.Open() errCh <- err }() // Shutdown the server go func() { time.Sleep(10 * time.Millisecond) server.Close() }() select { case err := <-errCh: if err == nil { t.Fatalf("open should fail") } case <-time.After(time.Second): t.Fatalf("timeout") } } func TestKeepAlive(t *testing.T) { client, server := testClientServer() defer client.Close() defer server.Close() time.Sleep(200 * time.Millisecond) // Ping value should increase client.pingLock.Lock() defer client.pingLock.Unlock() if client.pingID == 0 { t.Fatalf("should ping") } server.pingLock.Lock() defer server.pingLock.Unlock() if server.pingID == 0 { t.Fatalf("should ping") } } func TestKeepAlive_Timeout(t *testing.T) { conn1, conn2 := testConn() clientConf := testConf() clientConf.ConnectionWriteTimeout = time.Hour // We're testing keep alives, not connection writes clientConf.EnableKeepAlive = false // Just test one direction, so it's deterministic who hangs up on whom client, _ := Client(conn1, clientConf) defer client.Close() server, _ := Server(conn2, testConf()) defer server.Close() _ = captureLogs(client) // Client logs aren't part of the test serverLogs := captureLogs(server) errCh := make(chan error, 1) go func() { _, err := server.Accept() // Wait until server closes errCh <- err }() // Prevent the client from responding clientConn := client.conn.(*pipeConn) clientConn.writeBlocker.Lock() select { case err := <-errCh: if err != ErrKeepAliveTimeout { t.Fatalf("unexpected error: %v", err) } case <-time.After(1 * time.Second): t.Fatalf("timeout waiting for timeout") } clientConn.writeBlocker.Unlock() if !server.IsClosed() { t.Fatalf("server should have closed") } if !serverLogs.match([]string{"[ERR] yamux: keepalive failed: i/o deadline reached"}) { t.Fatalf("server log incorect: %v", serverLogs.logs()) } } func TestLargeWindow(t *testing.T) { conf := DefaultConfig() conf.MaxStreamWindowSize *= 2 client, server := testClientServerConfig(conf) defer client.Close() defer server.Close() stream, err := client.Open() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() stream2, err := server.Accept() if err != nil { t.Fatalf("err: %v", err) } defer stream2.Close() stream.SetWriteDeadline(time.Now().Add(10 * time.Millisecond)) buf := make([]byte, conf.MaxStreamWindowSize) n, err := stream.Write(buf) if err != nil { t.Fatalf("err: %v", err) } if n != len(buf) { t.Fatalf("short write: %d", n) } } type UnlimitedReader struct{} func (u *UnlimitedReader) Read(p []byte) (int, error) { runtime.Gosched() return len(p), nil } func TestSendData_VeryLarge(t *testing.T) { client, server := testClientServer() defer client.Close() defer server.Close() var n int64 = 1 * 1024 * 1024 * 1024 var workers int = 16 wg := &sync.WaitGroup{} wg.Add(workers * 2) for i := 0; i < workers; i++ { go func() { defer wg.Done() stream, err := server.AcceptStream() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() buf := make([]byte, 4) _, err = stream.Read(buf) if err != nil { t.Fatalf("err: %v", err) } if !bytes.Equal(buf, []byte{0, 1, 2, 3}) { t.Fatalf("bad header") } recv, err := io.Copy(ioutil.Discard, stream) if err != nil { t.Fatalf("err: %v", err) } if recv != n { t.Fatalf("bad: %v", recv) } }() } for i := 0; i < workers; i++ { go func() { defer wg.Done() stream, err := client.Open() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() _, err = stream.Write([]byte{0, 1, 2, 3}) if err != nil { t.Fatalf("err: %v", err) } unlimited := &UnlimitedReader{} sent, err := io.Copy(stream, io.LimitReader(unlimited, n)) if err != nil { t.Fatalf("err: %v", err) } if sent != n { t.Fatalf("bad: %v", sent) } }() } doneCh := make(chan struct{}) go func() { wg.Wait() close(doneCh) }() select { case <-doneCh: case <-time.After(20 * time.Second): panic("timeout") } } func TestBacklogExceeded_Accept(t *testing.T) { client, server := testClientServer() defer client.Close() defer server.Close() max := 5 * client.config.AcceptBacklog go func() { for i := 0; i < max; i++ { stream, err := server.Accept() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() } }() // Fill the backlog for i := 0; i < max; i++ { stream, err := client.Open() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() if _, err := stream.Write([]byte("foo")); err != nil { t.Fatalf("err: %v", err) } } } func TestSession_WindowUpdateWriteDuringRead(t *testing.T) { client, server := testClientServerConfig(testConfNoKeepAlive()) defer client.Close() defer server.Close() var wg sync.WaitGroup wg.Add(2) // Choose a huge flood size that we know will result in a window update. flood := int64(client.config.MaxStreamWindowSize) - 1 // The server will accept a new stream and then flood data to it. go func() { defer wg.Done() stream, err := server.AcceptStream() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() n, err := stream.Write(make([]byte, flood)) if err != nil { t.Fatalf("err: %v", err) } if int64(n) != flood { t.Fatalf("short write: %d", n) } }() // The client will open a stream, block outbound writes, and then // listen to the flood from the server, which should time out since // it won't be able to send the window update. go func() { defer wg.Done() stream, err := client.OpenStream() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() conn := client.conn.(*pipeConn) conn.writeBlocker.Lock() defer conn.writeBlocker.Unlock() _, err = stream.Read(make([]byte, flood)) if err != ErrConnectionWriteTimeout { t.Fatalf("err: %v", err) } }() wg.Wait() } func TestSession_PartialReadWindowUpdate(t *testing.T) { client, server := testClientServerConfig(testConfNoKeepAlive()) defer client.Close() defer server.Close() var wg sync.WaitGroup wg.Add(1) // Choose a huge flood size that we know will result in a window update. flood := int64(client.config.MaxStreamWindowSize) var wr *Stream // The server will accept a new stream and then flood data to it. go func() { defer wg.Done() var err error wr, err = server.AcceptStream() if err != nil { t.Fatalf("err: %v", err) } defer wr.Close() if wr.sendWindow != client.config.MaxStreamWindowSize { t.Fatalf("sendWindow: exp=%d, got=%d", client.config.MaxStreamWindowSize, wr.sendWindow) } n, err := wr.Write(make([]byte, flood)) if err != nil { t.Fatalf("err: %v", err) } if int64(n) != flood { t.Fatalf("short write: %d", n) } if wr.sendWindow != 0 { t.Fatalf("sendWindow: exp=%d, got=%d", 0, wr.sendWindow) } }() stream, err := client.OpenStream() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() wg.Wait() _, err = stream.Read(make([]byte, flood/2+1)) if exp := uint32(flood/2 + 1); wr.sendWindow != exp { t.Errorf("sendWindow: exp=%d, got=%d", exp, wr.sendWindow) } } func TestSession_sendNoWait_Timeout(t *testing.T) { client, server := testClientServerConfig(testConfNoKeepAlive()) defer client.Close() defer server.Close() var wg sync.WaitGroup wg.Add(2) go func() { defer wg.Done() stream, err := server.AcceptStream() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() }() // The client will open the stream and then block outbound writes, we'll // probe sendNoWait once it gets into that state. go func() { defer wg.Done() stream, err := client.OpenStream() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() conn := client.conn.(*pipeConn) conn.writeBlocker.Lock() defer conn.writeBlocker.Unlock() hdr := header(make([]byte, headerSize)) hdr.encode(typePing, flagACK, 0, 0) for { err = client.sendNoWait(hdr) if err == nil { continue } else if err == ErrConnectionWriteTimeout { break } else { t.Fatalf("err: %v", err) } } }() wg.Wait() } func TestSession_PingOfDeath(t *testing.T) { client, server := testClientServerConfig(testConfNoKeepAlive()) defer client.Close() defer server.Close() var wg sync.WaitGroup wg.Add(2) var doPingOfDeath sync.Mutex doPingOfDeath.Lock() // This is used later to block outbound writes. conn := server.conn.(*pipeConn) // The server will accept a stream, block outbound writes, and then // flood its send channel so that no more headers can be queued. go func() { defer wg.Done() stream, err := server.AcceptStream() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() conn.writeBlocker.Lock() for { hdr := header(make([]byte, headerSize)) hdr.encode(typePing, 0, 0, 0) err = server.sendNoWait(hdr) if err == nil { continue } else if err == ErrConnectionWriteTimeout { break } else { t.Fatalf("err: %v", err) } } doPingOfDeath.Unlock() }() // The client will open a stream and then send the server a ping once it // can no longer write. This makes sure the server doesn't deadlock reads // while trying to reply to the ping with no ability to write. go func() { defer wg.Done() stream, err := client.OpenStream() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() // This ping will never unblock because the ping id will never // show up in a response. doPingOfDeath.Lock() go func() { client.Ping() }() // Wait for a while to make sure the previous ping times out, // then turn writes back on and make sure a ping works again. time.Sleep(2 * server.config.ConnectionWriteTimeout) conn.writeBlocker.Unlock() if _, err = client.Ping(); err != nil { t.Fatalf("err: %v", err) } }() wg.Wait() } func TestSession_ConnectionWriteTimeout(t *testing.T) { client, server := testClientServerConfig(testConfNoKeepAlive()) defer client.Close() defer server.Close() var wg sync.WaitGroup wg.Add(2) go func() { defer wg.Done() stream, err := server.AcceptStream() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() }() // The client will open the stream and then block outbound writes, we'll // tee up a write and make sure it eventually times out. go func() { defer wg.Done() stream, err := client.OpenStream() if err != nil { t.Fatalf("err: %v", err) } defer stream.Close() conn := client.conn.(*pipeConn) conn.writeBlocker.Lock() defer conn.writeBlocker.Unlock() // Since the write goroutine is blocked then this will return a // timeout since it can't get feedback about whether the write // worked. n, err := stream.Write([]byte("hello")) if err != ErrConnectionWriteTimeout { t.Fatalf("err: %v", err) } if n != 0 { t.Fatalf("lied about writes: %d", n) } }() wg.Wait() } yamux-0.1.1/spec.md000066400000000000000000000112651426755032400141450ustar00rootroot00000000000000# Specification We use this document to detail the internal specification of Yamux. This is used both as a guide for implementing Yamux, but also for alternative interoperable libraries to be built. # Framing Yamux uses a streaming connection underneath, but imposes a message framing so that it can be shared between many logical streams. Each frame contains a header like: * Version (8 bits) * Type (8 bits) * Flags (16 bits) * StreamID (32 bits) * Length (32 bits) This means that each header has a 12 byte overhead. All fields are encoded in network order (big endian). Each field is described below: ## Version Field The version field is used for future backward compatibility. At the current time, the field is always set to 0, to indicate the initial version. ## Type Field The type field is used to switch the frame message type. The following message types are supported: * 0x0 Data - Used to transmit data. May transmit zero length payloads depending on the flags. * 0x1 Window Update - Used to updated the senders receive window size. This is used to implement per-session flow control. * 0x2 Ping - Used to measure RTT. It can also be used to heart-beat and do keep-alives over TCP. * 0x3 Go Away - Used to close a session. ## Flag Field The flags field is used to provide additional information related to the message type. The following flags are supported: * 0x1 SYN - Signals the start of a new stream. May be sent with a data or window update message. Also sent with a ping to indicate outbound. * 0x2 ACK - Acknowledges the start of a new stream. May be sent with a data or window update message. Also sent with a ping to indicate response. * 0x4 FIN - Performs a half-close of a stream. May be sent with a data message or window update. * 0x8 RST - Reset a stream immediately. May be sent with a data or window update message. ## StreamID Field The StreamID field is used to identify the logical stream the frame is addressing. The client side should use odd ID's, and the server even. This prevents any collisions. Additionally, the 0 ID is reserved to represent the session. Both Ping and Go Away messages should always use the 0 StreamID. ## Length Field The meaning of the length field depends on the message type: * Data - provides the length of bytes following the header * Window update - provides a delta update to the window size * Ping - Contains an opaque value, echoed back * Go Away - Contains an error code # Message Flow There is no explicit connection setup, as Yamux relies on an underlying transport to be provided. However, there is a distinction between client and server side of the connection. ## Opening a stream To open a stream, an initial data or window update frame is sent with a new StreamID. The SYN flag should be set to signal a new stream. The receiver must then reply with either a data or window update frame with the StreamID along with the ACK flag to accept the stream or with the RST flag to reject the stream. Because we are relying on the reliable stream underneath, a connection can begin sending data once the SYN flag is sent. The corresponding ACK does not need to be received. This is particularly well suited for an RPC system where a client wants to open a stream and immediately fire a request without waiting for the RTT of the ACK. This does introduce the possibility of a connection being rejected after data has been sent already. This is a slight semantic difference from TCP, where the conection cannot be refused after it is opened. Clients should be prepared to handle this by checking for an error that indicates a RST was received. ## Closing a stream To close a stream, either side sends a data or window update frame along with the FIN flag. This does a half-close indicating the sender will send no further data. Once both sides have closed the connection, the stream is closed. Alternatively, if an error occurs, the RST flag can be used to hard close a stream immediately. ## Flow Control When Yamux is initially starts each stream with a 256KB window size. There is no window size for the session. To prevent the streams from stalling, window update frames should be sent regularly. Yamux can be configured to provide a larger limit for windows sizes. Both sides assume the initial 256KB window, but can immediately send a window update as part of the SYN/ACK indicating a larger window. Both sides should track the number of bytes sent in Data frames only, as only they are tracked as part of the window size. ## Session termination When a session is being terminated, the Go Away message should be sent. The Length should be set to one of the following to provide an error code: * 0x0 Normal termination * 0x1 Protocol error * 0x2 Internal error yamux-0.1.1/stream.go000066400000000000000000000310421426755032400145060ustar00rootroot00000000000000package yamux import ( "bytes" "errors" "io" "sync" "sync/atomic" "time" ) type streamState int const ( streamInit streamState = iota streamSYNSent streamSYNReceived streamEstablished streamLocalClose streamRemoteClose streamClosed streamReset ) // Stream is used to represent a logical stream // within a session. type Stream struct { recvWindow uint32 sendWindow uint32 id uint32 session *Session state streamState stateLock sync.Mutex recvBuf *bytes.Buffer recvLock sync.Mutex controlHdr header controlErr chan error controlHdrLock sync.Mutex sendHdr header sendErr chan error sendLock sync.Mutex recvNotifyCh chan struct{} sendNotifyCh chan struct{} readDeadline atomic.Value // time.Time writeDeadline atomic.Value // time.Time // establishCh is notified if the stream is established or being closed. establishCh chan struct{} // closeTimer is set with stateLock held to honor the StreamCloseTimeout // setting on Session. closeTimer *time.Timer } // newStream is used to construct a new stream within // a given session for an ID func newStream(session *Session, id uint32, state streamState) *Stream { s := &Stream{ id: id, session: session, state: state, controlHdr: header(make([]byte, headerSize)), controlErr: make(chan error, 1), sendHdr: header(make([]byte, headerSize)), sendErr: make(chan error, 1), recvWindow: initialStreamWindow, sendWindow: initialStreamWindow, recvNotifyCh: make(chan struct{}, 1), sendNotifyCh: make(chan struct{}, 1), establishCh: make(chan struct{}, 1), } s.readDeadline.Store(time.Time{}) s.writeDeadline.Store(time.Time{}) return s } // Session returns the associated stream session func (s *Stream) Session() *Session { return s.session } // StreamID returns the ID of this stream func (s *Stream) StreamID() uint32 { return s.id } // Read is used to read from the stream func (s *Stream) Read(b []byte) (n int, err error) { defer asyncNotify(s.recvNotifyCh) START: s.stateLock.Lock() switch s.state { case streamLocalClose: fallthrough case streamRemoteClose: fallthrough case streamClosed: s.recvLock.Lock() if s.recvBuf == nil || s.recvBuf.Len() == 0 { s.recvLock.Unlock() s.stateLock.Unlock() return 0, io.EOF } s.recvLock.Unlock() case streamReset: s.stateLock.Unlock() return 0, ErrConnectionReset } s.stateLock.Unlock() // If there is no data available, block s.recvLock.Lock() if s.recvBuf == nil || s.recvBuf.Len() == 0 { s.recvLock.Unlock() goto WAIT } // Read any bytes n, _ = s.recvBuf.Read(b) s.recvLock.Unlock() // Send a window update potentially err = s.sendWindowUpdate() if err == ErrSessionShutdown { err = nil } return n, err WAIT: var timeout <-chan time.Time var timer *time.Timer readDeadline := s.readDeadline.Load().(time.Time) if !readDeadline.IsZero() { delay := readDeadline.Sub(time.Now()) timer = time.NewTimer(delay) timeout = timer.C } select { case <-s.recvNotifyCh: if timer != nil { timer.Stop() } goto START case <-timeout: return 0, ErrTimeout } } // Write is used to write to the stream func (s *Stream) Write(b []byte) (n int, err error) { s.sendLock.Lock() defer s.sendLock.Unlock() total := 0 for total < len(b) { n, err := s.write(b[total:]) total += n if err != nil { return total, err } } return total, nil } // write is used to write to the stream, may return on // a short write. func (s *Stream) write(b []byte) (n int, err error) { var flags uint16 var max uint32 var body []byte START: s.stateLock.Lock() switch s.state { case streamLocalClose: fallthrough case streamClosed: s.stateLock.Unlock() return 0, ErrStreamClosed case streamReset: s.stateLock.Unlock() return 0, ErrConnectionReset } s.stateLock.Unlock() // If there is no data available, block window := atomic.LoadUint32(&s.sendWindow) if window == 0 { goto WAIT } // Determine the flags if any flags = s.sendFlags() // Send up to our send window max = min(window, uint32(len(b))) body = b[:max] // Send the header s.sendHdr.encode(typeData, flags, s.id, max) if err = s.session.waitForSendErr(s.sendHdr, body, s.sendErr); err != nil { if errors.Is(err, ErrSessionShutdown) || errors.Is(err, ErrConnectionWriteTimeout) { // Message left in ready queue, header re-use is unsafe. s.sendHdr = header(make([]byte, headerSize)) } return 0, err } // Reduce our send window atomic.AddUint32(&s.sendWindow, ^uint32(max-1)) // Unlock return int(max), err WAIT: var timeout <-chan time.Time writeDeadline := s.writeDeadline.Load().(time.Time) if !writeDeadline.IsZero() { delay := writeDeadline.Sub(time.Now()) timeout = time.After(delay) } select { case <-s.sendNotifyCh: goto START case <-timeout: return 0, ErrTimeout } return 0, nil } // sendFlags determines any flags that are appropriate // based on the current stream state func (s *Stream) sendFlags() uint16 { s.stateLock.Lock() defer s.stateLock.Unlock() var flags uint16 switch s.state { case streamInit: flags |= flagSYN s.state = streamSYNSent case streamSYNReceived: flags |= flagACK s.state = streamEstablished } return flags } // sendWindowUpdate potentially sends a window update enabling // further writes to take place. Must be invoked with the lock. func (s *Stream) sendWindowUpdate() error { s.controlHdrLock.Lock() defer s.controlHdrLock.Unlock() // Determine the delta update max := s.session.config.MaxStreamWindowSize var bufLen uint32 s.recvLock.Lock() if s.recvBuf != nil { bufLen = uint32(s.recvBuf.Len()) } delta := (max - bufLen) - s.recvWindow // Determine the flags if any flags := s.sendFlags() // Check if we can omit the update if delta < (max/2) && flags == 0 { s.recvLock.Unlock() return nil } // Update our window s.recvWindow += delta s.recvLock.Unlock() // Send the header s.controlHdr.encode(typeWindowUpdate, flags, s.id, delta) if err := s.session.waitForSendErr(s.controlHdr, nil, s.controlErr); err != nil { if errors.Is(err, ErrSessionShutdown) || errors.Is(err, ErrConnectionWriteTimeout) { // Message left in ready queue, header re-use is unsafe. s.controlHdr = header(make([]byte, headerSize)) } return err } return nil } // sendClose is used to send a FIN func (s *Stream) sendClose() error { s.controlHdrLock.Lock() defer s.controlHdrLock.Unlock() flags := s.sendFlags() flags |= flagFIN s.controlHdr.encode(typeWindowUpdate, flags, s.id, 0) if err := s.session.waitForSendErr(s.controlHdr, nil, s.controlErr); err != nil { if errors.Is(err, ErrSessionShutdown) || errors.Is(err, ErrConnectionWriteTimeout) { // Message left in ready queue, header re-use is unsafe. s.controlHdr = header(make([]byte, headerSize)) } return err } return nil } // Close is used to close the stream func (s *Stream) Close() error { closeStream := false s.stateLock.Lock() switch s.state { // Opened means we need to signal a close case streamSYNSent: fallthrough case streamSYNReceived: fallthrough case streamEstablished: s.state = streamLocalClose goto SEND_CLOSE case streamLocalClose: case streamRemoteClose: s.state = streamClosed closeStream = true goto SEND_CLOSE case streamClosed: case streamReset: default: panic("unhandled state") } s.stateLock.Unlock() return nil SEND_CLOSE: // This shouldn't happen (the more realistic scenario to cancel the // timer is via processFlags) but just in case this ever happens, we // cancel the timer to prevent dangling timers. if s.closeTimer != nil { s.closeTimer.Stop() s.closeTimer = nil } // If we have a StreamCloseTimeout set we start the timeout timer. // We do this only if we're not already closing the stream since that // means this was a graceful close. // // This prevents memory leaks if one side (this side) closes and the // remote side poorly behaves and never responds with a FIN to complete // the close. After the specified timeout, we clean our resources up no // matter what. if !closeStream && s.session.config.StreamCloseTimeout > 0 { s.closeTimer = time.AfterFunc( s.session.config.StreamCloseTimeout, s.closeTimeout) } s.stateLock.Unlock() s.sendClose() s.notifyWaiting() if closeStream { s.session.closeStream(s.id) } return nil } // closeTimeout is called after StreamCloseTimeout during a close to // close this stream. func (s *Stream) closeTimeout() { // Close our side forcibly s.forceClose() // Free the stream from the session map s.session.closeStream(s.id) // Send a RST so the remote side closes too. s.sendLock.Lock() defer s.sendLock.Unlock() hdr := header(make([]byte, headerSize)) hdr.encode(typeWindowUpdate, flagRST, s.id, 0) s.session.sendNoWait(hdr) } // forceClose is used for when the session is exiting func (s *Stream) forceClose() { s.stateLock.Lock() s.state = streamClosed s.stateLock.Unlock() s.notifyWaiting() } // processFlags is used to update the state of the stream // based on set flags, if any. Lock must be held func (s *Stream) processFlags(flags uint16) error { s.stateLock.Lock() defer s.stateLock.Unlock() // Close the stream without holding the state lock closeStream := false defer func() { if closeStream { if s.closeTimer != nil { // Stop our close timeout timer since we gracefully closed s.closeTimer.Stop() } s.session.closeStream(s.id) } }() if flags&flagACK == flagACK { if s.state == streamSYNSent { s.state = streamEstablished } asyncNotify(s.establishCh) s.session.establishStream(s.id) } if flags&flagFIN == flagFIN { switch s.state { case streamSYNSent: fallthrough case streamSYNReceived: fallthrough case streamEstablished: s.state = streamRemoteClose s.notifyWaiting() case streamLocalClose: s.state = streamClosed closeStream = true s.notifyWaiting() default: s.session.logger.Printf("[ERR] yamux: unexpected FIN flag in state %d", s.state) return ErrUnexpectedFlag } } if flags&flagRST == flagRST { s.state = streamReset closeStream = true s.notifyWaiting() } return nil } // notifyWaiting notifies all the waiting channels func (s *Stream) notifyWaiting() { asyncNotify(s.recvNotifyCh) asyncNotify(s.sendNotifyCh) asyncNotify(s.establishCh) } // incrSendWindow updates the size of our send window func (s *Stream) incrSendWindow(hdr header, flags uint16) error { if err := s.processFlags(flags); err != nil { return err } // Increase window, unblock a sender atomic.AddUint32(&s.sendWindow, hdr.Length()) asyncNotify(s.sendNotifyCh) return nil } // readData is used to handle a data frame func (s *Stream) readData(hdr header, flags uint16, conn io.Reader) error { if err := s.processFlags(flags); err != nil { return err } // Check that our recv window is not exceeded length := hdr.Length() if length == 0 { return nil } // Wrap in a limited reader conn = &io.LimitedReader{R: conn, N: int64(length)} // Copy into buffer s.recvLock.Lock() if length > s.recvWindow { s.session.logger.Printf("[ERR] yamux: receive window exceeded (stream: %d, remain: %d, recv: %d)", s.id, s.recvWindow, length) s.recvLock.Unlock() return ErrRecvWindowExceeded } if s.recvBuf == nil { // Allocate the receive buffer just-in-time to fit the full data frame. // This way we can read in the whole packet without further allocations. s.recvBuf = bytes.NewBuffer(make([]byte, 0, length)) } copiedLength, err := io.Copy(s.recvBuf, conn) if err != nil { s.session.logger.Printf("[ERR] yamux: Failed to read stream data: %v", err) s.recvLock.Unlock() return err } // Decrement the receive window s.recvWindow -= uint32(copiedLength) s.recvLock.Unlock() // Unblock any readers asyncNotify(s.recvNotifyCh) return nil } // SetDeadline sets the read and write deadlines func (s *Stream) SetDeadline(t time.Time) error { if err := s.SetReadDeadline(t); err != nil { return err } if err := s.SetWriteDeadline(t); err != nil { return err } return nil } // SetReadDeadline sets the deadline for blocked and future Read calls. func (s *Stream) SetReadDeadline(t time.Time) error { s.readDeadline.Store(t) asyncNotify(s.recvNotifyCh) return nil } // SetWriteDeadline sets the deadline for blocked and future Write calls func (s *Stream) SetWriteDeadline(t time.Time) error { s.writeDeadline.Store(t) asyncNotify(s.sendNotifyCh) return nil } // Shrink is used to compact the amount of buffers utilized // This is useful when using Yamux in a connection pool to reduce // the idle memory utilization. func (s *Stream) Shrink() { s.recvLock.Lock() if s.recvBuf != nil && s.recvBuf.Len() == 0 { s.recvBuf = nil } s.recvLock.Unlock() } yamux-0.1.1/util.go000066400000000000000000000011451426755032400141710ustar00rootroot00000000000000package yamux import ( "sync" "time" ) var ( timerPool = &sync.Pool{ New: func() interface{} { timer := time.NewTimer(time.Hour * 1e6) timer.Stop() return timer }, } ) // asyncSendErr is used to try an async send of an error func asyncSendErr(ch chan error, err error) { if ch == nil { return } select { case ch <- err: default: } } // asyncNotify is used to signal a waiting goroutine func asyncNotify(ch chan struct{}) { select { case ch <- struct{}{}: default: } } // min computes the minimum of two values func min(a, b uint32) uint32 { if a < b { return a } return b } yamux-0.1.1/util_test.go000066400000000000000000000012541426755032400152310ustar00rootroot00000000000000package yamux import ( "testing" ) func TestAsyncSendErr(t *testing.T) { ch := make(chan error) asyncSendErr(ch, ErrTimeout) select { case <-ch: t.Fatalf("should not get") default: } ch = make(chan error, 1) asyncSendErr(ch, ErrTimeout) select { case <-ch: default: t.Fatalf("should get") } } func TestAsyncNotify(t *testing.T) { ch := make(chan struct{}) asyncNotify(ch) select { case <-ch: t.Fatalf("should not get") default: } ch = make(chan struct{}, 1) asyncNotify(ch) select { case <-ch: default: t.Fatalf("should get") } } func TestMin(t *testing.T) { if min(1, 2) != 1 { t.Fatalf("bad") } if min(2, 1) != 1 { t.Fatalf("bad") } }