pax_global_header 0000666 0000000 0000000 00000000064 14111227330 0014504 g ustar 00root root 0000000 0000000 52 comment=494271c4c016b36c8cee88480288f33b419cf7b0
hdrhistogram-go-1.1.2/ 0000775 0000000 0000000 00000000000 14111227330 0014603 5 ustar 00root root 0000000 0000000 hdrhistogram-go-1.1.2/.github/ 0000775 0000000 0000000 00000000000 14111227330 0016143 5 ustar 00root root 0000000 0000000 hdrhistogram-go-1.1.2/.github/release-drafter-config.yml 0000664 0000000 0000000 00000000625 14111227330 0023201 0 ustar 00root root 0000000 0000000 name-template: 'Version $NEXT_PATCH_VERSION'
tag-template: 'v$NEXT_PATCH_VERSION'
categories:
- title: 'Features'
labels:
- 'feature'
- 'enhancement'
- title: 'Bug Fixes'
labels:
- 'fix'
- 'bugfix'
- 'bug'
- title: 'Maintenance'
label: 'chore'
change-template: '- $TITLE (#$NUMBER)'
exclude-labels:
- 'skip-changelog'
template: |
## Changes
$CHANGES
hdrhistogram-go-1.1.2/.github/workflows/ 0000775 0000000 0000000 00000000000 14111227330 0020200 5 ustar 00root root 0000000 0000000 hdrhistogram-go-1.1.2/.github/workflows/codeql-analysis.yml 0000664 0000000 0000000 00000002000 14111227330 0024003 0 ustar 00root root 0000000 0000000 name: "CodeQL"
on:
push:
branches: [ master ]
pull_request:
# The branches below must be a subset of the branches above
branches: [ master ]
schedule:
- cron: '27 23 * * 4'
jobs:
analyze:
name: Analyze
runs-on: ubuntu-latest
permissions:
actions: read
contents: read
security-events: write
strategy:
fail-fast: false
matrix:
language: [ 'go' ]
steps:
- name: Checkout repository
uses: actions/checkout@v2
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v1
with:
languages: ${{ matrix.language }}
# Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
# If this step fails, then you should remove it and run the build manually (see below)
- name: build
uses: github/codeql-action/autobuild@v1
- run: |
make
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v1
hdrhistogram-go-1.1.2/.github/workflows/coverage.yml 0000664 0000000 0000000 00000000706 14111227330 0022521 0 ustar 00root root 0000000 0000000 on: [push, pull_request]
name: Generate coverage report
jobs:
coverage:
runs-on: ubuntu-latest
steps:
- name: Install Go
uses: actions/setup-go@v2
with:
go-version: 1.15.x
- name: Checkout code
uses: actions/checkout@v2
- name: Generate coverage report
run: |
make coverage
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v1
with:
file: ./coverage.txt
hdrhistogram-go-1.1.2/.github/workflows/release-drafter.yml 0000664 0000000 0000000 00000001062 14111227330 0023767 0 ustar 00root root 0000000 0000000 name: Release Drafter
on:
push:
# branches to consider in the event; optional, defaults to all
branches:
- master
jobs:
update_release_draft:
runs-on: ubuntu-latest
steps:
# Drafts your next Release notes as Pull Requests are merged into "master"
- uses: release-drafter/release-drafter@v5
with:
# (Optional) specify config name to use, relative to .github/. Default: release-drafter.yml
config-name: release-drafter-config.yml
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
hdrhistogram-go-1.1.2/.github/workflows/unit-tests.yml 0000664 0000000 0000000 00000001222 14111227330 0023037 0 ustar 00root root 0000000 0000000 on: [push, pull_request]
name: Test
jobs:
test:
strategy:
matrix:
go-version: [1.14.x, 1.15.x]
os: [ubuntu-latest, macos-latest, windows-latest]
runs-on: ${{ matrix.os }}
steps:
- name: Install Go
uses: actions/setup-go@v2
with:
go-version: ${{ matrix.go-version }}
- name: Checkout code
uses: actions/checkout@v2
- name: Test
run: make test
lint:
runs-on: ubuntu-latest
steps:
- name: Install Go
uses: actions/setup-go@v2
with:
go-version: 1.15.x
- name: Checkout code
uses: actions/checkout@v2
- name: Lint
run: make lint
hdrhistogram-go-1.1.2/.gitignore 0000664 0000000 0000000 00000000541 14111227330 0016573 0 ustar 00root root 0000000 0000000 .vscode/
.idea/
.DS_Store
coverage.txt
# Binaries for programs and plugins
*.exe
*.exe~
*.dll
*.so
*.dylib
# Test binary, built with `go test -c`
*.test
# Test example output
example.logV2.hlog
# Output of the go coverage tool, specifically when used with LiteIDE
*.out
# Dependency directories (remove the comment below to include it)
# vendor/
hdrhistogram-go-1.1.2/LICENSE 0000664 0000000 0000000 00000002064 14111227330 0015612 0 ustar 00root root 0000000 0000000 The MIT License (MIT)
Copyright (c) 2014 Coda Hale
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
hdrhistogram-go-1.1.2/Makefile 0000664 0000000 0000000 00000001431 14111227330 0016242 0 ustar 00root root 0000000 0000000 # Go parameters
GOCMD=GO111MODULE=on go
GOBUILD=$(GOCMD) build
GOINSTALL=$(GOCMD) install
GOCLEAN=$(GOCMD) clean
GOTEST=$(GOCMD) test
GOGET=$(GOCMD) get
GOMOD=$(GOCMD) mod
GOFMT=$(GOCMD) fmt
GODOC=godoc
.PHONY: all test coverage
all: test
checkfmt:
@echo 'Checking gofmt';\
bash -c "diff -u <(echo -n) <(gofmt -d .)";\
EXIT_CODE=$$?;\
if [ "$$EXIT_CODE" -ne 0 ]; then \
echo '$@: Go files must be formatted with gofmt'; \
fi && \
exit $$EXIT_CODE
lint:
$(GOGET) github.com/golangci/golangci-lint/cmd/golangci-lint
golangci-lint run
get:
$(GOGET) -v ./...
fmt:
$(GOFMT) ./...
test: get fmt
$(GOTEST) -count=1 ./...
coverage: get test
$(GOTEST) -count=1 -race -coverprofile=coverage.txt -covermode=atomic .
benchmark: get
$(GOTEST) -bench=. -benchmem
godoc:
$(GODOC)
hdrhistogram-go-1.1.2/README.md 0000664 0000000 0000000 00000006315 14111227330 0016067 0 ustar 00root root 0000000 0000000 hdrhistogram-go
===============
[](https://gitter.im/HdrHistogram/HdrHistogram)

[](https://github.com/HdrHistogram/hdrhistogram-go/blob/master/LICENSE)
[](https://codecov.io/gh/HdrHistogram/hdrhistogram-go)
A pure Go implementation of the [HDR Histogram](https://github.com/HdrHistogram/HdrHistogram).
> A Histogram that supports recording and analyzing sampled data value counts
> across a configurable integer value range with configurable value precision
> within the range. Value precision is expressed as the number of significant
> digits in the value recording, and provides control over value quantization
> behavior across the value range and the subsequent value resolution at any
> given level.
For documentation, check [godoc](https://pkg.go.dev/github.com/HdrHistogram/hdrhistogram-go).
## Getting Started
### Installing
Use `go get` to retrieve the hdrhistogram-go implementation and to add it to your `GOPATH` workspace, or project's Go module dependencies.
```go
go get github.com/HdrHistogram/hdrhistogram-go
```
To update the implementation use `go get -u` to retrieve the latest version of the hdrhistogram.
```go
go get github.com/HdrHistogram/hdrhistogram-go
```
### Go Modules
If you are using Go modules, your `go get` will default to the latest tagged
release version of the histogram. To get a specific release version, use
`@` in your `go get` command.
```go
go get github.com/HdrHistogram/hdrhistogram-go@v0.9.0
```
To get the latest HdrHistogram/hdrhistogram-go master repository change use `@latest`.
```go
go get github.com/HdrHistogram/hdrhistogram-go@latest
```
### Repo transfer and impact on go dependencies
-------------------------------------------
This repository has been transferred under the github HdrHstogram umbrella with the help from the orginal
author in Sept 2020. The main reasons are to group all implementations under the same roof and to provide more active contribution
from the community as the orginal repository was archived several years ago.
Unfortunately such URL change will break go applications that depend on this library
directly or indirectly, as discussed [here](https://github.com/HdrHistogram/hdrhistogram-go/issues/30#issuecomment-696365251).
The dependency URL should be modified to point to the new repository URL.
The tag "v0.9.0" was applied at the point of transfer and will reflect the exact code that was frozen in the
original repository.
If you are using Go modules, you can update to the exact point of transfter using the `@v0.9.0` tag in your `go get` command.
```
go mod edit -replace github.com/codahale/hdrhistogram=github.com/HdrHistogram/hdrhistogram-go@v0.9.0
```
## Credits
-------
Many thanks for Coda Hale for contributing the initial implementation and transfering the repository here.
hdrhistogram-go-1.1.2/example_hdr_test.go 0000664 0000000 0000000 00000007255 14111227330 0020472 0 ustar 00root root 0000000 0000000 package hdrhistogram_test
import (
"fmt"
"github.com/HdrHistogram/hdrhistogram-go"
"os"
)
// This latency Histogram could be used to track and analyze the counts of
// observed integer values between 1 us and 30000000 us ( 30 secs )
// while maintaining a value precision of 4 significant digits across that range,
// translating to a value resolution of :
// - 1 microsecond up to 10 milliseconds,
// - 100 microsecond (or better) from 10 milliseconds up to 10 seconds,
// - 300 microsecond (or better) from 10 seconds up to 30 seconds,
// nolint
func ExampleNew() {
lH := hdrhistogram.New(1, 30000000, 4)
input := []int64{
459876, 669187, 711612, 816326, 931423, 1033197, 1131895, 2477317,
3964974, 12718782,
}
for _, sample := range input {
lH.RecordValue(sample)
}
fmt.Printf("Percentile 50: %d\n", lH.ValueAtQuantile(50.0))
// Output:
// Percentile 50: 931423
}
// This latency Histogram could be used to track and analyze the counts of
// observed integer values between 0 us and 30000000 us ( 30 secs )
// while maintaining a value precision of 3 significant digits across that range,
// translating to a value resolution of :
// - 1 microsecond up to 1 millisecond,
// - 1 millisecond (or better) up to one second,
// - 1 second (or better) up to it's maximum tracked value ( 30 seconds ).
// nolint
func ExampleHistogram_RecordValue() {
lH := hdrhistogram.New(1, 30000000, 3)
input := []int64{
459876, 669187, 711612, 816326, 931423, 1033197, 1131895, 2477317,
3964974, 12718782,
}
for _, sample := range input {
lH.RecordValue(sample)
}
fmt.Printf("Percentile 50: %d\n", lH.ValueAtQuantile(50.0))
// Output:
// Percentile 50: 931839
}
// The following example details the creation of an histogram used to track
// and analyze the counts of observed integer values between 0 us and 30000000 us ( 30 secs )
// and the printing of the percentile output format
// nolint
func ExampleHistogram_PercentilesPrint() {
lH := hdrhistogram.New(1, 30000000, 3)
input := []int64{
459876, 669187, 711612, 816326, 931423, 1033197, 1131895, 2477317,
3964974, 12718782,
}
for _, sample := range input {
lH.RecordValue(sample)
}
lH.PercentilesPrint(os.Stdout, 1, 1.0)
// Output:
// Value Percentile TotalCount 1/(1-Percentile)
//
// 460031.000 0.000000 1 1.00
// 931839.000 0.500000 5 2.00
// 2478079.000 0.750000 8 4.00
// 3966975.000 0.875000 9 8.00
// 12722175.000 0.937500 10 16.00
// 12722175.000 1.000000 10 inf
// #[Mean = 2491481.600, StdDeviation = 3557920.109]
// #[Max = 12722175.000, Total count = 10]
// #[Buckets = 15, SubBuckets = 2048]
}
// When doing an percentile analysis we normally require more than one percentile to be calculated for the given histogram.
//
// When that is the case ValueAtPercentiles() will deeply optimize the total time to retrieve the percentiles vs the other option
// which is multiple calls to ValueAtQuantile().
//
// nolint
func ExampleHistogram_ValueAtPercentiles() {
histogram := hdrhistogram.New(1, 30000000, 3)
for i := 0; i < 1000000; i++ {
histogram.RecordValue(int64(i))
}
percentileValuesMap := histogram.ValueAtPercentiles([]float64{50.0, 95.0, 99.0, 99.9})
fmt.Printf("Percentile 50: %d\n", percentileValuesMap[50.0])
fmt.Printf("Percentile 95: %d\n", percentileValuesMap[95.0])
fmt.Printf("Percentile 99: %d\n", percentileValuesMap[99.0])
fmt.Printf("Percentile 99.9: %d\n", percentileValuesMap[99.9])
// Output:
// Percentile 50: 500223
// Percentile 95: 950271
// Percentile 99: 990207
// Percentile 99.9: 999423
}
hdrhistogram-go-1.1.2/example_log_writer_test.go 0000664 0000000 0000000 00000007350 14111227330 0022066 0 ustar 00root root 0000000 0000000 package hdrhistogram_test
import (
"bytes"
"fmt"
hdrhistogram "github.com/HdrHistogram/hdrhistogram-go"
"io/ioutil"
)
// The log format encodes into a single file, multiple histograms with optional shared meta data.
// The following example showcases reading a log file into a slice of histograms
// nolint
func ExampleNewHistogramLogReader() {
dat, _ := ioutil.ReadFile("./test/tagged-Log.logV2.hlog")
r := bytes.NewReader(dat)
// Create a histogram log reader
reader := hdrhistogram.NewHistogramLogReader(r)
var histograms []*hdrhistogram.Histogram = make([]*hdrhistogram.Histogram, 0)
// Read all histograms in the file
for hist, err := reader.NextIntervalHistogram(); hist != nil && err == nil; hist, err = reader.NextIntervalHistogram() {
histograms = append(histograms, hist)
}
fmt.Printf("Read a total of %d histograms\n", len(histograms))
min := reader.RangeObservedMin()
max := reader.RangeObservedMax()
sigdigits := 3
overallHistogram := hdrhistogram.New(min, max, sigdigits)
//// We can then merge all histograms into one and retrieve overall metrics
for _, hist := range histograms {
overallHistogram.Merge(hist)
}
fmt.Printf("Overall count: %d samples\n", overallHistogram.TotalCount())
fmt.Printf("Overall Percentile 50: %d\n", overallHistogram.ValueAtQuantile(50.0))
// Output:
// Read a total of 42 histograms
// Overall count: 32290 samples
// Overall Percentile 50: 344319
}
// The log format encodes into a single file, multiple histograms with optional shared meta data.
// The following example showcases writing multiple histograms into a log file and then
// processing them again to confirm a proper encode-decode flow
// nolint
func ExampleNewHistogramLogWriter() {
var buff bytes.Buffer
// Create a histogram log writer to write to a bytes.Buffer
writer := hdrhistogram.NewHistogramLogWriter(&buff)
writer.OutputLogFormatVersion()
writer.OutputStartTime(0)
writer.OutputLegend()
// Lets create 3 distinct histograms to exemply the logwriter features
// each one with a time-frame of 60 secs ( 60000 ms )
hist1 := hdrhistogram.New(1, 30000000, 3)
hist1.SetStartTimeMs(0)
hist1.SetEndTimeMs(60000)
for _, sample := range []int64{10, 20, 30, 40} {
hist1.RecordValue(sample)
}
hist2 := hdrhistogram.New(1, 3000, 3)
hist1.SetStartTimeMs(60001)
hist1.SetEndTimeMs(120000)
for _, sample := range []int64{50, 70, 80, 60} {
hist2.RecordValue(sample)
}
hist3 := hdrhistogram.New(1, 30000, 3)
hist1.SetStartTimeMs(120001)
hist1.SetEndTimeMs(180000)
for _, sample := range []int64{90, 100} {
hist3.RecordValue(sample)
}
writer.OutputIntervalHistogram(hist1)
writer.OutputIntervalHistogram(hist2)
writer.OutputIntervalHistogram(hist3)
ioutil.WriteFile("example.logV2.hlog", buff.Bytes(), 0644)
// read check
// Lets read all again and confirm that the total sample count is 10
dat, _ := ioutil.ReadFile("example.logV2.hlog")
r := bytes.NewReader(dat)
// Create a histogram log reader
reader := hdrhistogram.NewHistogramLogReader(r)
var histograms []*hdrhistogram.Histogram = make([]*hdrhistogram.Histogram, 0)
// Read all histograms in the file
for hist, err := reader.NextIntervalHistogram(); hist != nil && err == nil; hist, err = reader.NextIntervalHistogram() {
histograms = append(histograms, hist)
}
fmt.Printf("Read a total of %d histograms\n", len(histograms))
min := reader.RangeObservedMin()
max := reader.RangeObservedMax()
sigdigits := 3
overallHistogram := hdrhistogram.New(min, max, sigdigits)
//// We can then merge all histograms into one and retrieve overall metrics
for _, hist := range histograms {
overallHistogram.Merge(hist)
}
fmt.Printf("Overall count: %d samples\n", overallHistogram.TotalCount())
// Output:
// Read a total of 3 histograms
// Overall count: 10 samples
}
hdrhistogram-go-1.1.2/go.mod 0000664 0000000 0000000 00000001016 14111227330 0015707 0 ustar 00root root 0000000 0000000 module github.com/HdrHistogram/hdrhistogram-go
go 1.14
require (
github.com/davecgh/go-spew v1.1.1 // indirect
github.com/google/go-cmp v0.5.4
github.com/kr/text v0.2.0 // indirect
github.com/niemeyer/pretty v0.0.0-20200227124842-a10e7caefd8e // indirect
github.com/stretchr/testify v1.7.0
golang.org/x/exp v0.0.0-20191030013958-a1ab85dbe136 // indirect
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 // indirect
gonum.org/v1/gonum v0.8.2
gopkg.in/check.v1 v1.0.0-20200227125254-8fa46927fb4f // indirect
)
hdrhistogram-go-1.1.2/go.sum 0000664 0000000 0000000 00000014311 14111227330 0015736 0 ustar 00root root 0000000 0000000 dmitri.shuralyov.com/gpu/mtl v0.0.0-20190408044501-666a987793e9/go.mod h1:H6x//7gZCb22OMCxBHrMx7a5I7Hp++hsVxbQ4BYO7hU=
github.com/BurntSushi/xgb v0.0.0-20160522181843-27f122750802/go.mod h1:IVnqGOEym/WlBOVXweHU+Q+/VP0lqqI8lqeDx9IjBqo=
github.com/ajstarks/svgo v0.0.0-20180226025133-644b8db467af/go.mod h1:K08gAheRH3/J6wwsYMMT4xOr94bZjxIelGM0+d/wbFw=
github.com/creack/pty v1.1.9/go.mod h1:oKZEueFk5CKHvIhNR5MUki03XCEU+Q6VDXinZuGJ33E=
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/fogleman/gg v1.2.1-0.20190220221249-0403632d5b90/go.mod h1:R/bRT+9gY/C5z7JzPU0zXsXHKM4/ayA+zqcVNZzPa1k=
github.com/go-gl/glfw v0.0.0-20190409004039-e6da0acd62b1/go.mod h1:vR7hzQXu2zJy9AVAgeJqvqgH9Q5CA+iKCZ2gyEVpxRU=
github.com/golang/freetype v0.0.0-20170609003504-e2365dfdc4a0/go.mod h1:E/TSTwGwJL78qG/PmXZO1EjYhfJinVAhrmmHX6Z8B9k=
github.com/google/go-cmp v0.5.4 h1:L8R9j+yAqZuZjsqh/z+F1NCffTKKLShY6zXTItVIZ8M=
github.com/google/go-cmp v0.5.4/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/jung-kurt/gofpdf v1.0.3-0.20190309125859-24315acbbda5/go.mod h1:7Id9E/uU8ce6rXgefFLlgrJj/GYY22cpxn+r32jIOes=
github.com/kr/pty v1.1.1/go.mod h1:pFQYn66WHrOpPYNljwOMqo10TkYh1fy3cYio2l3bCsQ=
github.com/kr/text v0.1.0/go.mod h1:4Jbv+DJW3UT/LiOwJeYQe1efqtUx/iVham/4vfdArNI=
github.com/kr/text v0.2.0 h1:5Nx0Ya0ZqY2ygV366QzturHI13Jq95ApcVaJBhpS+AY=
github.com/kr/text v0.2.0/go.mod h1:eLer722TekiGuMkidMxC/pM04lWEeraHUUmBw8l2grE=
github.com/niemeyer/pretty v0.0.0-20200227124842-a10e7caefd8e h1:fD57ERR4JtEqsWbfPhv4DMiApHyliiK5xCTNVSPiaAs=
github.com/niemeyer/pretty v0.0.0-20200227124842-a10e7caefd8e/go.mod h1:zD1mROLANZcx1PVRCS0qkT7pwLkGfwJo4zjcN/Tysno=
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
github.com/stretchr/testify v1.7.0 h1:nwc3DEeHmmLAfoZucVR881uASk0Mfjw8xYJ99tb5CcY=
github.com/stretchr/testify v1.7.0/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190125153040-c74c464bbbf2/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190306152737-a1d7652674e8/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20191030013958-a1ab85dbe136 h1:A1gGSx58LAGVHUUsOf7IiR0u8Xb6W51gRwfDBhkdcaw=
golang.org/x/exp v0.0.0-20191030013958-a1ab85dbe136/go.mod h1:JXzH8nQsPlswgeRAPE3MuO9GYsAcnJvJ4vnMwN/5qkY=
golang.org/x/image v0.0.0-20180708004352-c73c2afc3b81/go.mod h1:ux5Hcp/YLpHSI86hEcLt0YII63i6oz57MZXIpbrjZUs=
golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js=
golang.org/x/image v0.0.0-20190802002840-cff245a6509b/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
golang.org/x/mobile v0.0.0-20190719004257-d2bd2a29d028/go.mod h1:E/iHnbuqvinMTCcRqshq8CkpyQDoeVncDDYHnLhea+o=
golang.org/x/mod v0.1.0/go.mod h1:0QHyrYULN0/3qlju5TqG8bIK38QM8yzMo5ekMj3DlcY=
golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
golang.org/x/net v0.0.0-20190620200207-3b0461eec859/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s=
golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20190206041539-40960b6deb8e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20191012152004-8de300cfc20a/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 h1:go1bK/D/BFZV2I8cIQd1NKEZ+0owSTG1fDTci4IqFcE=
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
gonum.org/v1/gonum v0.0.0-20180816165407-929014505bf4/go.mod h1:Y+Yx5eoAFn32cQvJDxZx5Dpnq+c3wtXuadVZAcxbbBo=
gonum.org/v1/gonum v0.8.2 h1:CCXrcPKiGGotvnN6jfUsKk4rRqm7q09/YbKb5xCEvtM=
gonum.org/v1/gonum v0.8.2/go.mod h1:oe/vMfY3deqTw+1EZJhuvEW2iwGF1bW9wwu7XCu0+v0=
gonum.org/v1/netlib v0.0.0-20190313105609-8cb42192e0e0 h1:OE9mWmgKkjJyEmDAAtGMPjXu+YNeGvK9VTSHY6+Qihc=
gonum.org/v1/netlib v0.0.0-20190313105609-8cb42192e0e0/go.mod h1:wa6Ws7BG/ESfp6dHfk7C6KdzKA7wR7u/rKwOGE66zvw=
gonum.org/v1/plot v0.0.0-20190515093506-e2840ee46a6b/go.mod h1:Wt8AAjI+ypCyYX3nZBvf6cAIx93T+c/OS2HFAYskSZc=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/check.v1 v1.0.0-20200227125254-8fa46927fb4f h1:BLraFXnmrev5lT+xlilqcH8XK9/i0At2xKjWk4p6zsU=
gopkg.in/check.v1 v1.0.0-20200227125254-8fa46927fb4f/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/yaml.v3 v3.0.0-20200313102051-9f266ea9e77c h1:dUUwHk2QECo/6vqA44rthZ8ie2QXMNeKRTHCNY2nXvo=
gopkg.in/yaml.v3 v3.0.0-20200313102051-9f266ea9e77c/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
rsc.io/pdf v0.1.1/go.mod h1:n8OzWcQ6Sp37PL01nO98y4iUCRdTGarVfzxY20ICaU4=
hdrhistogram-go-1.1.2/hdr.go 0000664 0000000 0000000 00000057710 14111227330 0015721 0 ustar 00root root 0000000 0000000 // Package hdrhistogram provides an implementation of Gil Tene's HDR Histogram
// data structure. The HDR Histogram allows for fast and accurate analysis of
// the extreme ranges of data with non-normal distributions, like latency.
package hdrhistogram
import (
"fmt"
"io"
"math"
"math/bits"
"sort"
)
// A Bracket is a part of a cumulative distribution.
type Bracket struct {
Quantile float64
Count, ValueAt int64
}
// A Snapshot is an exported view of a Histogram, useful for serializing them.
// A Histogram can be constructed from it by passing it to Import.
type Snapshot struct {
LowestTrackableValue int64
HighestTrackableValue int64
SignificantFigures int64
Counts []int64
}
// A Histogram is a lossy data structure used to record the distribution of
// non-normally distributed data (like latency) with a high degree of accuracy
// and a bounded degree of precision.
type Histogram struct {
lowestDiscernibleValue int64
highestTrackableValue int64
unitMagnitude int64
significantFigures int64
subBucketHalfCountMagnitude int32
subBucketHalfCount int32
subBucketMask int64
subBucketCount int32
bucketCount int32
countsLen int32
totalCount int64
counts []int64
startTimeMs int64
endTimeMs int64
tag string
}
func (h *Histogram) Tag() string {
return h.tag
}
func (h *Histogram) SetTag(tag string) {
h.tag = tag
}
func (h *Histogram) EndTimeMs() int64 {
return h.endTimeMs
}
func (h *Histogram) SetEndTimeMs(endTimeMs int64) {
h.endTimeMs = endTimeMs
}
func (h *Histogram) StartTimeMs() int64 {
return h.startTimeMs
}
func (h *Histogram) SetStartTimeMs(startTimeMs int64) {
h.startTimeMs = startTimeMs
}
// Construct a Histogram given the Lowest and Highest values to be tracked and a number of significant decimal digits.
//
// Providing a lowestDiscernibleValue is useful in situations where the units used for the histogram's values are
// much smaller that the minimal accuracy required.
// E.g. when tracking time values stated in nanosecond units, where the minimal accuracy required is a microsecond,
// the proper value for lowestDiscernibleValue would be 1000.
//
// Note: the numberOfSignificantValueDigits must be [1,5]. If lower than 1 the numberOfSignificantValueDigits will be
// forced to 1, and if higher than 5 the numberOfSignificantValueDigits will be forced to 5.
func New(lowestDiscernibleValue, highestTrackableValue int64, numberOfSignificantValueDigits int) *Histogram {
if numberOfSignificantValueDigits < 1 {
numberOfSignificantValueDigits = 1
} else if numberOfSignificantValueDigits > 5 {
numberOfSignificantValueDigits = 5
}
if lowestDiscernibleValue < 1 {
lowestDiscernibleValue = 1
}
// Given a 3 decimal point accuracy, the expectation is obviously for "+/- 1 unit at 1000". It also means that
// it's "ok to be +/- 2 units at 2000". The "tricky" thing is that it is NOT ok to be +/- 2 units at 1999. Only
// starting at 2000. So internally, we need to maintain single unit resolution to 2x 10^decimalPoints.
largestValueWithSingleUnitResolution := 2 * math.Pow10(numberOfSignificantValueDigits)
// We need to maintain power-of-two subBucketCount (for clean direct indexing) that is large enough to
// provide unit resolution to at least largestValueWithSingleUnitResolution. So figure out
// largestValueWithSingleUnitResolution's nearest power-of-two (rounded up), and use that:
subBucketCountMagnitude := int32(math.Ceil(math.Log2(float64(largestValueWithSingleUnitResolution))))
subBucketHalfCountMagnitude := subBucketCountMagnitude
if subBucketHalfCountMagnitude < 1 {
subBucketHalfCountMagnitude = 1
}
subBucketHalfCountMagnitude--
unitMagnitude := int32(math.Floor(math.Log2(float64(lowestDiscernibleValue))))
if unitMagnitude < 0 {
unitMagnitude = 0
}
subBucketCount := int32(math.Pow(2, float64(subBucketHalfCountMagnitude)+1))
subBucketHalfCount := subBucketCount / 2
subBucketMask := int64(subBucketCount-1) << uint(unitMagnitude)
// determine exponent range needed to support the trackable value with no
// overflow:
smallestUntrackableValue := int64(subBucketCount) << uint(unitMagnitude)
bucketsNeeded := getBucketsNeededToCoverValue(smallestUntrackableValue, highestTrackableValue)
bucketCount := bucketsNeeded
countsLen := (bucketCount + 1) * (subBucketCount / 2)
return &Histogram{
lowestDiscernibleValue: lowestDiscernibleValue,
highestTrackableValue: highestTrackableValue,
unitMagnitude: int64(unitMagnitude),
significantFigures: int64(numberOfSignificantValueDigits),
subBucketHalfCountMagnitude: subBucketHalfCountMagnitude,
subBucketHalfCount: subBucketHalfCount,
subBucketMask: subBucketMask,
subBucketCount: subBucketCount,
bucketCount: bucketCount,
countsLen: countsLen,
totalCount: 0,
counts: make([]int64, countsLen),
startTimeMs: 0,
endTimeMs: 0,
tag: "",
}
}
func getBucketsNeededToCoverValue(smallestUntrackableValue int64, maxValue int64) int32 {
// always have at least 1 bucket
bucketsNeeded := int32(1)
for smallestUntrackableValue < maxValue {
if smallestUntrackableValue > (math.MaxInt64 / 2) {
// next shift will overflow, meaning that bucket could represent values up to ones greater than
// math.MaxInt64, so it's the last bucket
return bucketsNeeded + 1
}
smallestUntrackableValue <<= 1
bucketsNeeded++
}
return bucketsNeeded
}
// ByteSize returns an estimate of the amount of memory allocated to the
// histogram in bytes.
//
// N.B.: This does not take into account the overhead for slices, which are
// small, constant, and specific to the compiler version.
func (h *Histogram) ByteSize() int {
return 6*8 + 5*4 + len(h.counts)*8
}
func (h *Histogram) getNormalizingIndexOffset() int32 {
return 1
}
// Merge merges the data stored in the given histogram with the receiver,
// returning the number of recorded values which had to be dropped.
func (h *Histogram) Merge(from *Histogram) (dropped int64) {
i := from.rIterator()
for i.next() {
v := i.valueFromIdx
c := i.countAtIdx
if h.RecordValues(v, c) != nil {
dropped += c
}
}
return
}
// TotalCount returns total number of values recorded.
func (h *Histogram) TotalCount() int64 {
return h.totalCount
}
// Max returns the approximate maximum recorded value.
func (h *Histogram) Max() int64 {
var max int64
i := h.iterator()
for i.next() {
if i.countAtIdx != 0 {
max = i.highestEquivalentValue
}
}
return h.highestEquivalentValue(max)
}
// Min returns the approximate minimum recorded value.
func (h *Histogram) Min() int64 {
var min int64
i := h.iterator()
for i.next() {
if i.countAtIdx != 0 && min == 0 {
min = i.highestEquivalentValue
break
}
}
return h.lowestEquivalentValue(min)
}
// Mean returns the approximate arithmetic mean of the recorded values.
func (h *Histogram) Mean() float64 {
if h.totalCount == 0 {
return 0
}
var total int64
i := h.iterator()
for i.next() {
if i.countAtIdx != 0 {
total += i.countAtIdx * h.medianEquivalentValue(i.valueFromIdx)
}
}
return float64(total) / float64(h.totalCount)
}
// StdDev returns the approximate standard deviation of the recorded values.
func (h *Histogram) StdDev() float64 {
if h.totalCount == 0 {
return 0
}
mean := h.Mean()
geometricDevTotal := 0.0
i := h.iterator()
for i.next() {
if i.countAtIdx != 0 {
dev := float64(h.medianEquivalentValue(i.valueFromIdx)) - mean
geometricDevTotal += (dev * dev) * float64(i.countAtIdx)
}
}
return math.Sqrt(geometricDevTotal / float64(h.totalCount))
}
// Reset deletes all recorded values and restores the histogram to its original
// state.
func (h *Histogram) Reset() {
h.totalCount = 0
for i := range h.counts {
h.counts[i] = 0
}
}
// RecordValue records the given value, returning an error if the value is out
// of range.
func (h *Histogram) RecordValue(v int64) error {
return h.RecordValues(v, 1)
}
// RecordCorrectedValue records the given value, correcting for stalls in the
// recording process. This only works for processes which are recording values
// at an expected interval (e.g., doing jitter analysis). Processes which are
// recording ad-hoc values (e.g., latency for incoming requests) can't take
// advantage of this.
func (h *Histogram) RecordCorrectedValue(v, expectedInterval int64) error {
if err := h.RecordValue(v); err != nil {
return err
}
if expectedInterval <= 0 || v <= expectedInterval {
return nil
}
missingValue := v - expectedInterval
for missingValue >= expectedInterval {
if err := h.RecordValue(missingValue); err != nil {
return err
}
missingValue -= expectedInterval
}
return nil
}
// RecordValues records n occurrences of the given value, returning an error if
// the value is out of range.
func (h *Histogram) RecordValues(v, n int64) error {
idx := h.countsIndexFor(v)
if idx < 0 || int(h.countsLen) <= idx {
return fmt.Errorf("value %d is too large to be recorded", v)
}
h.setCountAtIndex(idx, n)
return nil
}
func (h *Histogram) setCountAtIndex(idx int, n int64) {
h.counts[idx] += n
h.totalCount += n
}
// ValueAtQuantile returns the largest value that (100% - percentile) of the overall recorded value entries
// in the histogram are either larger than or equivalent to.
//
// The passed quantile must be a float64 value in [0.0 .. 100.0]
// Note that two values are "equivalent" if `ValuesAreEquivalent(value1,value2)` would return true.
//
// Returns 0 if no recorded values exist.
func (h *Histogram) ValueAtQuantile(q float64) int64 {
return h.ValueAtPercentile(q)
}
// ValueAtPercentile returns the largest value that (100% - percentile) of the overall recorded value entries
// in the histogram are either larger than or equivalent to.
//
// The passed percentile must be a float64 value in [0.0 .. 100.0]
// Note that two values are "equivalent" if `ValuesAreEquivalent(value1,value2)` would return true.
//
// Returns 0 if no recorded values exist.
func (h *Histogram) ValueAtPercentile(percentile float64) int64 {
if percentile > 100 {
percentile = 100
}
countAtPercentile := int64(((percentile / 100) * float64(h.totalCount)) + 0.5)
valueFromIdx := h.getValueFromIdxUpToCount(countAtPercentile)
if percentile == 0.0 {
return h.lowestEquivalentValue(valueFromIdx)
}
return h.highestEquivalentValue(valueFromIdx)
}
func (h *Histogram) getValueFromIdxUpToCount(countAtPercentile int64) int64 {
var countToIdx int64
var valueFromIdx int64
var subBucketIdx int32 = -1
var bucketIdx int32
bucketBaseIdx := h.getBucketBaseIdx(bucketIdx)
for {
if countToIdx >= countAtPercentile {
break
}
// increment bucket
subBucketIdx++
if subBucketIdx >= h.subBucketCount {
subBucketIdx = h.subBucketHalfCount
bucketIdx++
bucketBaseIdx = h.getBucketBaseIdx(bucketIdx)
}
countToIdx += h.getCountAtIndexGivenBucketBaseIdx(bucketBaseIdx, subBucketIdx)
valueFromIdx = int64(subBucketIdx) << uint(int64(bucketIdx)+h.unitMagnitude)
}
return valueFromIdx
}
// ValueAtPercentiles, given an slice of percentiles returns a map containing for each passed percentile,
// the largest value that (100% - percentile) of the overall recorded value entries
// in the histogram are either larger than or equivalent to.
//
// Each element in the given an slice of percentiles must be a float64 value in [0.0 .. 100.0]
// Note that two values are "equivalent" if `ValuesAreEquivalent(value1,value2)` would return true.
//
// Returns a map of 0's if no recorded values exist.
func (h *Histogram) ValueAtPercentiles(percentiles []float64) (values map[float64]int64) {
sort.Float64s(percentiles)
totalQuantilesToCalculate := len(percentiles)
values = make(map[float64]int64, totalQuantilesToCalculate)
countAtPercentiles := make([]int64, totalQuantilesToCalculate)
for i, percentile := range percentiles {
if percentile > 100 {
percentile = 100
}
values[percentile] = 0
countAtPercentiles[i] = int64(((percentile / 100) * float64(h.totalCount)) + 0.5)
}
total := int64(0)
currentQuantileSlicePos := 0
i := h.iterator()
for currentQuantileSlicePos < totalQuantilesToCalculate && i.nextCountAtIdx(h.totalCount) {
total += i.countAtIdx
for currentQuantileSlicePos < totalQuantilesToCalculate && total >= countAtPercentiles[currentQuantileSlicePos] {
currentPercentile := percentiles[currentQuantileSlicePos]
if currentPercentile == 0.0 {
values[currentPercentile] = h.lowestEquivalentValue(i.valueFromIdx)
} else {
values[currentPercentile] = h.highestEquivalentValue(i.valueFromIdx)
}
currentQuantileSlicePos++
}
}
return
}
// Determine if two values are equivalent with the histogram's resolution.
// Where "equivalent" means that value samples recorded for any two
// equivalent values are counted in a common total count.
func (h *Histogram) ValuesAreEquivalent(value1, value2 int64) (result bool) {
result = h.lowestEquivalentValue(value1) == h.lowestEquivalentValue(value2)
return
}
// CumulativeDistribution returns an ordered list of brackets of the
// distribution of recorded values.
func (h *Histogram) CumulativeDistribution() []Bracket {
var result []Bracket
i := h.pIterator(1)
for i.next() {
result = append(result, Bracket{
Quantile: i.percentile,
Count: i.countToIdx,
ValueAt: i.highestEquivalentValue,
})
}
return result
}
// SignificantFigures returns the significant figures used to create the
// histogram
func (h *Histogram) SignificantFigures() int64 {
return h.significantFigures
}
// LowestTrackableValue returns the lower bound on values that will be added
// to the histogram
func (h *Histogram) LowestTrackableValue() int64 {
return h.lowestDiscernibleValue
}
// HighestTrackableValue returns the upper bound on values that will be added
// to the histogram
func (h *Histogram) HighestTrackableValue() int64 {
return h.highestTrackableValue
}
// Histogram bar for plotting
type Bar struct {
From, To, Count int64
}
// Pretty print as csv for easy plotting
func (b Bar) String() string {
return fmt.Sprintf("%v, %v, %v\n", b.From, b.To, b.Count)
}
// Distribution returns an ordered list of bars of the
// distribution of recorded values, counts can be normalized to a probability
func (h *Histogram) Distribution() (result []Bar) {
i := h.iterator()
for i.next() {
result = append(result, Bar{
Count: i.countAtIdx,
From: h.lowestEquivalentValue(i.valueFromIdx),
To: i.highestEquivalentValue,
})
}
return result
}
// Equals returns true if the two Histograms are equivalent, false if not.
func (h *Histogram) Equals(other *Histogram) bool {
switch {
case
h.lowestDiscernibleValue != other.lowestDiscernibleValue,
h.highestTrackableValue != other.highestTrackableValue,
h.unitMagnitude != other.unitMagnitude,
h.significantFigures != other.significantFigures,
h.subBucketHalfCountMagnitude != other.subBucketHalfCountMagnitude,
h.subBucketHalfCount != other.subBucketHalfCount,
h.subBucketMask != other.subBucketMask,
h.subBucketCount != other.subBucketCount,
h.bucketCount != other.bucketCount,
h.countsLen != other.countsLen,
h.totalCount != other.totalCount:
return false
default:
for i, c := range h.counts {
if c != other.counts[i] {
return false
}
}
}
return true
}
// Export returns a snapshot view of the Histogram. This can be later passed to
// Import to construct a new Histogram with the same state.
func (h *Histogram) Export() *Snapshot {
return &Snapshot{
LowestTrackableValue: h.lowestDiscernibleValue,
HighestTrackableValue: h.highestTrackableValue,
SignificantFigures: h.significantFigures,
Counts: append([]int64(nil), h.counts...), // copy
}
}
// Import returns a new Histogram populated from the Snapshot data (which the
// caller must stop accessing).
func Import(s *Snapshot) *Histogram {
h := New(s.LowestTrackableValue, s.HighestTrackableValue, int(s.SignificantFigures))
h.counts = s.Counts
totalCount := int64(0)
for i := int32(0); i < h.countsLen; i++ {
countAtIndex := h.counts[i]
if countAtIndex > 0 {
totalCount += countAtIndex
}
}
h.totalCount = totalCount
return h
}
func (h *Histogram) iterator() *iterator {
return &iterator{
h: h,
subBucketIdx: -1,
}
}
func (h *Histogram) rIterator() *rIterator {
return &rIterator{
iterator: iterator{
h: h,
subBucketIdx: -1,
},
}
}
func (h *Histogram) pIterator(ticksPerHalfDistance int32) *pIterator {
return &pIterator{
iterator: iterator{
h: h,
subBucketIdx: -1,
},
ticksPerHalfDistance: ticksPerHalfDistance,
}
}
func (h *Histogram) sizeOfEquivalentValueRange(v int64) int64 {
bucketIdx := h.getBucketIndex(v)
return h.sizeOfEquivalentValueRangeGivenBucketIdx(v, bucketIdx)
}
func (h *Histogram) sizeOfEquivalentValueRangeGivenBucketIdx(v int64, bucketIdx int32) int64 {
subBucketIdx := h.getSubBucketIdx(v, bucketIdx)
adjustedBucket := bucketIdx
if subBucketIdx >= h.subBucketCount {
adjustedBucket++
}
return int64(1) << uint(h.unitMagnitude+int64(adjustedBucket))
}
func (h *Histogram) valueFromIndex(bucketIdx, subBucketIdx int32) int64 {
return int64(subBucketIdx) << uint(int64(bucketIdx)+h.unitMagnitude)
}
func (h *Histogram) lowestEquivalentValue(v int64) int64 {
bucketIdx := h.getBucketIndex(v)
return h.lowestEquivalentValueGivenBucketIdx(v, bucketIdx)
}
func (h *Histogram) lowestEquivalentValueGivenBucketIdx(v int64, bucketIdx int32) int64 {
subBucketIdx := h.getSubBucketIdx(v, bucketIdx)
return h.valueFromIndex(bucketIdx, subBucketIdx)
}
func (h *Histogram) nextNonEquivalentValue(v int64) int64 {
bucketIdx := h.getBucketIndex(v)
return h.lowestEquivalentValueGivenBucketIdx(v, bucketIdx) + h.sizeOfEquivalentValueRangeGivenBucketIdx(v, bucketIdx)
}
func (h *Histogram) highestEquivalentValue(v int64) int64 {
return h.nextNonEquivalentValue(v) - 1
}
func (h *Histogram) medianEquivalentValue(v int64) int64 {
return h.lowestEquivalentValue(v) + (h.sizeOfEquivalentValueRange(v) >> 1)
}
func (h *Histogram) getCountAtIndex(bucketIdx, subBucketIdx int32) int64 {
return h.counts[h.countsIndex(bucketIdx, subBucketIdx)]
}
func (h *Histogram) getCountAtIndexGivenBucketBaseIdx(bucketBaseIdx, subBucketIdx int32) int64 {
return h.counts[bucketBaseIdx+subBucketIdx-h.subBucketHalfCount]
}
func (h *Histogram) countsIndex(bucketIdx, subBucketIdx int32) int32 {
return h.getBucketBaseIdx(bucketIdx) + subBucketIdx - h.subBucketHalfCount
}
func (h *Histogram) getBucketBaseIdx(bucketIdx int32) int32 {
return (bucketIdx + 1) << uint(h.subBucketHalfCountMagnitude)
}
// return the lowest (and therefore highest precision) bucket index that can represent the value
// Calculates the number of powers of two by which the value is greater than the biggest value that fits in
// bucket 0. This is the bucket index since each successive bucket can hold a value 2x greater.
func (h *Histogram) getBucketIndex(v int64) int32 {
var pow2Ceiling = int64(64 - bits.LeadingZeros64(uint64(v|h.subBucketMask)))
return int32(pow2Ceiling - int64(h.unitMagnitude) -
int64(h.subBucketHalfCountMagnitude+1))
}
// For bucketIndex 0, this is just value, so it may be anywhere in 0 to subBucketCount.
// For other bucketIndex, this will always end up in the top half of subBucketCount: assume that for some bucket
// k > 0, this calculation will yield a value in the bottom half of 0 to subBucketCount. Then, because of how
// buckets overlap, it would have also been in the top half of bucket k-1, and therefore would have
// returned k-1 in getBucketIndex(). Since we would then shift it one fewer bits here, it would be twice as big,
// and therefore in the top half of subBucketCount.
func (h *Histogram) getSubBucketIdx(v int64, idx int32) int32 {
return int32(v >> uint(int64(idx)+int64(h.unitMagnitude)))
}
func (h *Histogram) countsIndexFor(v int64) int {
bucketIdx := h.getBucketIndex(v)
subBucketIdx := h.getSubBucketIdx(v, bucketIdx)
return int(h.countsIndex(bucketIdx, subBucketIdx))
}
func (h *Histogram) getIntegerToDoubleValueConversionRatio() float64 {
return 1.0
}
type iterator struct {
h *Histogram
bucketIdx, subBucketIdx int32
countAtIdx, countToIdx, valueFromIdx int64
highestEquivalentValue int64
}
// nextCountAtIdx does not update the iterator highestEquivalentValue in order to optimize cpu usage.
func (i *iterator) nextCountAtIdx(limit int64) bool {
if i.countToIdx >= limit {
return false
}
// increment bucket
i.subBucketIdx++
if i.subBucketIdx >= i.h.subBucketCount {
i.subBucketIdx = i.h.subBucketHalfCount
i.bucketIdx++
}
if i.bucketIdx >= i.h.bucketCount {
return false
}
i.countAtIdx = i.h.getCountAtIndex(i.bucketIdx, i.subBucketIdx)
i.countToIdx += i.countAtIdx
i.valueFromIdx = i.h.valueFromIndex(i.bucketIdx, i.subBucketIdx)
return true
}
// Returns the next element in the iteration.
func (i *iterator) next() bool {
if !i.nextCountAtIdx(i.h.totalCount) {
return false
}
i.highestEquivalentValue = i.h.highestEquivalentValue(i.valueFromIdx)
return true
}
type rIterator struct {
iterator
countAddedThisStep int64
}
func (r *rIterator) next() bool {
for r.iterator.next() {
if r.countAtIdx != 0 {
r.countAddedThisStep = r.countAtIdx
return true
}
}
return false
}
type pIterator struct {
iterator
seenLastValue bool
ticksPerHalfDistance int32
percentileToIteratorTo float64
percentile float64
}
func (p *pIterator) next() bool {
if !(p.countToIdx < p.h.totalCount) {
if p.seenLastValue {
return false
}
p.seenLastValue = true
p.percentile = 100
return true
}
if p.subBucketIdx == -1 && !p.iterator.next() {
return false
}
var done = false
for !done {
currentPercentile := (100.0 * float64(p.countToIdx)) / float64(p.h.totalCount)
if p.countAtIdx != 0 && p.percentileToIteratorTo <= currentPercentile {
p.percentile = p.percentileToIteratorTo
halfDistance := math.Trunc(math.Pow(2, math.Trunc(math.Log2(100.0/(100.0-p.percentileToIteratorTo)))+1))
percentileReportingTicks := float64(p.ticksPerHalfDistance) * halfDistance
p.percentileToIteratorTo += 100.0 / percentileReportingTicks
return true
}
done = !p.iterator.next()
}
return true
}
// CumulativeDistribution returns an ordered list of brackets of the
// distribution of recorded values.
func (h *Histogram) CumulativeDistributionWithTicks(ticksPerHalfDistance int32) []Bracket {
var result []Bracket
i := h.pIterator(ticksPerHalfDistance)
for i.next() {
result = append(result, Bracket{
Quantile: i.percentile,
Count: i.countToIdx,
ValueAt: int64(i.highestEquivalentValue),
})
}
return result
}
// Output the percentiles distribution in a text format
func (h *Histogram) PercentilesPrint(writer io.Writer, ticksPerHalfDistance int32, valueScale float64) (outputWriter io.Writer, err error) {
outputWriter = writer
dist := h.CumulativeDistributionWithTicks(ticksPerHalfDistance)
_, err = outputWriter.Write([]byte(" Value\tPercentile\tTotalCount\t1/(1-Percentile)\n\n"))
if err != nil {
return
}
for _, slice := range dist {
percentile := slice.Quantile / 100.0
inverted_percentile := 1.0 / (1.0 - percentile)
var inverted_percentile_string = fmt.Sprintf("%12.2f", inverted_percentile)
// Given that other language implementations display inf (instead of Go's +Inf)
// we want to be as close as possible to them
if math.IsInf(inverted_percentile, 1) {
inverted_percentile_string = fmt.Sprintf("%12s", "inf")
}
_, err = outputWriter.Write([]byte(fmt.Sprintf("%12.3f %12f %12d %s\n", float64(slice.ValueAt)/valueScale, percentile, slice.Count, inverted_percentile_string)))
if err != nil {
return
}
}
footer := fmt.Sprintf("#[Mean = %12.3f, StdDeviation = %12.3f]\n#[Max = %12.3f, Total count = %12d]\n#[Buckets = %12d, SubBuckets = %12d]\n",
h.Mean()/valueScale,
h.StdDev()/valueScale,
float64(h.Max())/valueScale,
h.TotalCount(),
h.bucketCount,
h.subBucketCount,
)
_, err = outputWriter.Write([]byte(footer))
return
}
hdrhistogram-go-1.1.2/hdr_benchmark_test.go 0000664 0000000 0000000 00000007426 14111227330 0020771 0 ustar 00root root 0000000 0000000 package hdrhistogram_test
import (
hdrhistogram "github.com/HdrHistogram/hdrhistogram-go"
"gonum.org/v1/gonum/stat/distuv"
"math"
"math/rand"
"testing"
)
// nolint
func BenchmarkHistogramRecordValue(b *testing.B) {
h := hdrhistogram.New(1, 10000000, 3)
for i := 0; i < 1000000; i++ {
if err := h.RecordValue(int64(i)); err != nil {
b.Fatal(err)
}
}
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
h.RecordValue(100)
}
}
func BenchmarkNew(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
hdrhistogram.New(1, 120000, 3) // this could track 1ms-2min
}
}
// nolint
func BenchmarkHistogramValueAtPercentile(b *testing.B) {
rand.Seed(12345)
var highestTrackableValue int64 = 1000000
var lowestDiscernibleValue int64 = 1
var sigfigs = 3
var totalDatapoints = 1000000
h, data := populateHistogramLogNormalDist(b, lowestDiscernibleValue, highestTrackableValue, sigfigs, totalDatapoints)
quantiles := make([]float64, totalDatapoints)
for i := range quantiles {
data[i] = rand.Float64() * 100.0
}
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
h.ValueAtPercentile(data[i%totalDatapoints])
}
}
// nolint
func BenchmarkHistogramValueAtPercentileGivenPercentileSlice(b *testing.B) {
rand.Seed(12345)
var highestTrackableValue int64 = 1000000
var lowestDiscernibleValue int64 = 1
var sigfigs = 3
var totalDatapoints = 1000000
h, data := populateHistogramLogNormalDist(b, lowestDiscernibleValue, highestTrackableValue, sigfigs, totalDatapoints)
quantiles := make([]float64, b.N)
for i := range quantiles {
data[i] = rand.Float64() * 100.0
}
percentilesOfInterest := []float64{50.0, 95.0, 99.0, 99.9}
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for _, percentile := range percentilesOfInterest {
h.ValueAtPercentile(percentile)
}
}
}
// nolint
func BenchmarkHistogramValueAtPercentilesGivenPercentileSlice(b *testing.B) {
rand.Seed(12345)
var highestTrackableValue int64 = 1000000
var lowestDiscernibleValue int64 = 1
var sigfigs = 3
var totalDatapoints = 1000000
h, data := populateHistogramLogNormalDist(b, lowestDiscernibleValue, highestTrackableValue, sigfigs, totalDatapoints)
quantiles := make([]float64, b.N)
for i := range quantiles {
data[i] = rand.Float64() * 100.0
}
percentilesOfInterest := []float64{50.0, 95.0, 99.0, 99.9}
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
h.ValueAtPercentiles(percentilesOfInterest)
}
}
func BenchmarkWindowedHistogramRecordAndRotate(b *testing.B) {
w := hdrhistogram.NewWindowed(3, 1, 10000000, 3)
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
if err := w.Current.RecordValue(100); err != nil {
b.Fatal(err)
}
if i%100000 == 1 {
w.Rotate()
}
}
}
func BenchmarkWindowedHistogramMerge(b *testing.B) {
w := hdrhistogram.NewWindowed(3, 1, 10000000, 3)
for i := 0; i < 10000000; i++ {
if err := w.Current.RecordValue(100); err != nil {
b.Fatal(err)
}
if i%100000 == 1 {
w.Rotate()
}
}
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
w.Merge()
}
}
func populateHistogramLogNormalDist(b *testing.B, lowestDiscernibleValue int64, highestTrackableValue int64, sigfigs int, totalDatapoints int) (*hdrhistogram.Histogram, []float64) {
dist := distuv.LogNormal{Mu: 0.0, Sigma: 0.5}
h := hdrhistogram.New(lowestDiscernibleValue, highestTrackableValue, sigfigs)
data := make([]float64, totalDatapoints)
// Draw some random values from the lognormal distribution
min := math.MaxFloat64
max := 0.0
for i := range data {
data[i] = dist.Rand()
if data[i] < min {
min = data[i]
}
if data[i] > max {
max = data[i]
}
}
k := float64(highestTrackableValue) / (max - min)
for i := range data {
v := k * data[i]
if err := h.RecordValue(int64(v)); err != nil {
b.Fatal(err)
}
}
return h, data
}
hdrhistogram-go-1.1.2/hdr_encoding.go 0000664 0000000 0000000 00000017356 14111227330 0017571 0 ustar 00root root 0000000 0000000 // Histograms are encoded using the HdrHistogram V2 format which is based on an adapted ZigZag LEB128 encoding where:
// consecutive zero counters are encoded as a negative number representing the count of consecutive zeros
// non zero counter values are encoded as a positive number
// A typical histogram (2 digits precision 1 usec to 1 day range) can be encoded in less than the typical MTU size of 1500 bytes.
package hdrhistogram
import (
"bytes"
"compress/zlib"
"encoding/base64"
"encoding/binary"
"fmt"
"io/ioutil"
)
const (
V2EncodingCookieBase int32 = 0x1c849303
V2CompressedEncodingCookieBase int32 = 0x1c849304
encodingCookie int32 = V2EncodingCookieBase | 0x10
compressedEncodingCookie int32 = V2CompressedEncodingCookieBase | 0x10
ENCODING_HEADER_SIZE = 40
)
// Encode returns a snapshot view of the Histogram.
// The snapshot is compact binary representations of the state of the histogram.
// They are intended to be used for archival or transmission to other systems for further analysis.
func (h *Histogram) Encode(version int32) (buffer []byte, err error) {
switch version {
case V2CompressedEncodingCookieBase:
buffer, err = h.dumpV2CompressedEncoding()
default:
err = fmt.Errorf("The provided enconding version %d is not supported.", version)
}
return
}
// Decode returns a new Histogram by decoding it from a String containing
// a base64 encoded compressed histogram representation.
func Decode(encoded []byte) (rh *Histogram, err error) {
var decoded []byte
decoded, err = base64.StdEncoding.DecodeString(string(encoded))
if err != nil {
return
}
rbuf := bytes.NewBuffer(decoded[0:8])
r32 := make([]int32, 2)
err = binary.Read(rbuf, binary.BigEndian, &r32)
if err != nil {
return
}
Cookie := r32[0] & ^0xf0
lengthOfCompressedContents := r32[1]
if Cookie != V2CompressedEncodingCookieBase {
err = fmt.Errorf("Encoding not supported, only V2 is supported. Got %d want %d", Cookie, V2CompressedEncodingCookieBase)
return
}
decodeLengthOfCompressedContents := int32(len(decoded[8:]))
if lengthOfCompressedContents > decodeLengthOfCompressedContents {
err = fmt.Errorf("The compressed contents buffer is smaller than the lengthOfCompressedContents. Got %d want %d", decodeLengthOfCompressedContents, lengthOfCompressedContents)
return
}
rh, err = decodeCompressedFormat(decoded[8:8+lengthOfCompressedContents], ENCODING_HEADER_SIZE)
return
}
// internal method to encode an histogram in V2 Compressed format
func (h *Histogram) dumpV2CompressedEncoding() (outBuffer []byte, err error) {
// final buffer
buf := new(bytes.Buffer)
err = binary.Write(buf, binary.BigEndian, compressedEncodingCookie)
if err != nil {
return
}
toCompress, err := h.encodeIntoByteBuffer()
if err != nil {
return
}
uncompressedBytes := toCompress.Bytes()
var b bytes.Buffer
w, err := zlib.NewWriterLevel(&b, zlib.BestCompression)
if err != nil {
return
}
_, err = w.Write(uncompressedBytes)
if err != nil {
return
}
w.Close()
// LengthOfCompressedContents
compressedContents := b.Bytes()
err = binary.Write(buf, binary.BigEndian, int32(len(compressedContents)))
if err != nil {
return
}
err = binary.Write(buf, binary.BigEndian, compressedContents)
if err != nil {
return
}
outBuffer = []byte(base64.StdEncoding.EncodeToString(buf.Bytes()))
return
}
func (h *Histogram) encodeIntoByteBuffer() (*bytes.Buffer, error) {
countsBytes, err := h.fillBufferFromCountsArray()
if err != nil {
return nil, err
}
toCompress := new(bytes.Buffer)
err = binary.Write(toCompress, binary.BigEndian, encodingCookie) // 0-3
if err != nil {
return nil, err
}
err = binary.Write(toCompress, binary.BigEndian, int32(len(countsBytes))) // 3-7
if err != nil {
return nil, err
}
err = binary.Write(toCompress, binary.BigEndian, h.getNormalizingIndexOffset()) // 8-11
if err != nil {
return nil, err
}
err = binary.Write(toCompress, binary.BigEndian, int32(h.significantFigures)) // 12-15
if err != nil {
return nil, err
}
err = binary.Write(toCompress, binary.BigEndian, h.lowestDiscernibleValue) // 16-23
if err != nil {
return nil, err
}
err = binary.Write(toCompress, binary.BigEndian, h.highestTrackableValue) // 24-31
if err != nil {
return nil, err
}
err = binary.Write(toCompress, binary.BigEndian, h.getIntegerToDoubleValueConversionRatio()) // 32-39
if err != nil {
return nil, err
}
err = binary.Write(toCompress, binary.BigEndian, countsBytes)
if err != nil {
return nil, err
}
return toCompress, err
}
func decodeCompressedFormat(compressedContents []byte, headerSize int) (rh *Histogram, err error) {
b := bytes.NewReader(compressedContents)
z, err := zlib.NewReader(b)
if err != nil {
return
}
defer z.Close()
decompressedSlice, err := ioutil.ReadAll(z)
if err != nil {
return
}
decompressedSliceLen := int32(len(decompressedSlice))
cookie, PayloadLength, _, NumberOfSignificantValueDigits, LowestTrackableValue, HighestTrackableValue, _, err := decodeDeCompressedHeaderFormat(decompressedSlice[0:headerSize])
if err != nil {
return
}
if cookie != V2EncodingCookieBase {
err = fmt.Errorf("Encoding not supported, only V2 is supported. Got %d want %d", cookie, V2EncodingCookieBase)
return
}
actualPayloadLen := decompressedSliceLen - int32(headerSize)
if PayloadLength != actualPayloadLen {
err = fmt.Errorf("PayloadLength should have the same size of the actual payload. Got %d want %d", actualPayloadLen, PayloadLength)
return
}
rh = New(LowestTrackableValue, HighestTrackableValue, int(NumberOfSignificantValueDigits))
payload := decompressedSlice[headerSize:]
err = fillCountsArrayFromSourceBuffer(payload, rh)
return rh, err
}
func fillCountsArrayFromSourceBuffer(payload []byte, rh *Histogram) (err error) {
var payloadSlicePos = 0
var dstIndex int64 = 0
var n int
var count int64
var zerosCount int64
for payloadSlicePos < len(payload) {
count, n, err = zig_zag_decode_i64(payload[payloadSlicePos:])
if err != nil {
return
}
payloadSlicePos += n
if count < 0 {
zerosCount = -count
dstIndex += zerosCount
} else {
rh.setCountAtIndex(int(dstIndex), count)
dstIndex += 1
}
}
return
}
func (rh *Histogram) fillBufferFromCountsArray() (buffer []byte, err error) {
buf := new(bytes.Buffer)
// V2 encoding format uses a ZigZag LEB128-64b9B encoded long. Positive values are counts,
// while negative values indicate a repeat zero counts.
var countsLimit int32 = int32(rh.countsIndexFor(rh.Max()) + 1)
var srcIndex int32 = 0
for srcIndex < countsLimit {
count := rh.counts[srcIndex]
srcIndex++
var zeros int64 = 0
// check for contiguous zeros
if count == 0 {
zeros = 1
for srcIndex < countsLimit && 0 == rh.counts[srcIndex] {
zeros++
srcIndex++
}
}
if zeros > 1 {
err = binary.Write(buf, binary.BigEndian, zig_zag_encode_i64(-zeros))
if err != nil {
return
}
} else {
err = binary.Write(buf, binary.BigEndian, zig_zag_encode_i64(count))
if err != nil {
return
}
}
}
buffer = buf.Bytes()
return
}
func decodeDeCompressedHeaderFormat(decoded []byte) (Cookie int32, PayloadLength int32, NormalizingIndexOffSet int32, NumberOfSignificantValueDigits int32, LowestTrackableValue int64, HighestTrackableValue int64, IntegerToDoubleConversionRatio float64, err error) {
rbuf := bytes.NewBuffer(decoded[0:40])
r32 := make([]int32, 4)
r64 := make([]int64, 2)
err = binary.Read(rbuf, binary.BigEndian, &r32)
if err != nil {
return
}
err = binary.Read(rbuf, binary.BigEndian, &r64)
if err != nil {
return
}
err = binary.Read(rbuf, binary.BigEndian, &IntegerToDoubleConversionRatio)
if err != nil {
return
}
Cookie = r32[0] & ^0xf0
PayloadLength = r32[1]
NormalizingIndexOffSet = r32[2]
NumberOfSignificantValueDigits = r32[3]
LowestTrackableValue = r64[0]
HighestTrackableValue = r64[1]
return
}
hdrhistogram-go-1.1.2/hdr_encoding_test.go 0000664 0000000 0000000 00000013764 14111227330 0020627 0 ustar 00root root 0000000 0000000 package hdrhistogram_test
import (
hdrhistogram "github.com/HdrHistogram/hdrhistogram-go"
"github.com/stretchr/testify/assert"
"testing"
)
func TestHistogram_Load_Errors(t *testing.T) {
// should throw an error when trying to decompress an histogram using V1 encoding
v1 := []byte("HISTIgAAAFd42pNpmazIwMAYxgABTBDKT4GBgdnNYMcCBvsPUBkeBkYGZqA8MwMbAzsDC5DFBCTZgJCDQY1BjkGLQZRBlUEPCB8zWDCYMxgDZZkZhgJgHDibAY8JB/A=")
_, err := hdrhistogram.Decode(v1)
assert.NotNil(t, err)
}
func TestHistogram_Load(t *testing.T) {
inputBase64 := []byte("HISTFAAAAB542pNpmSzMwMDAxAABzFCaEUoz2X+AMIKZAEARAtM=")
rh, err := hdrhistogram.Decode(inputBase64)
assert.Nil(t, err)
assert.Equal(t, int64(1), rh.TotalCount())
assert.Equal(t, float64(42.0), rh.Mean())
rh, err = hdrhistogram.Decode([]byte("HISTFAAAAB94nJNpmSzMwMDABMSMQMzMAAGMUJoJxg9mAgA1TQGm"))
assert.Nil(t, err)
assert.Equal(t, int64(1), rh.TotalCount())
assert.Equal(t, float64(42.0), rh.Mean())
// empty histogram
// 20,1000,3
empty := []byte("HISTFAAAABl4nJNpmSzMgADMUFoEyn1h/wHCAgBDogN4")
rh, err = hdrhistogram.Decode(empty)
assert.Nil(t, err)
assert.Equal(t, int64(20), rh.LowestTrackableValue())
assert.Equal(t, int64(1000), rh.HighestTrackableValue())
assert.Equal(t, int64(3), rh.SignificantFigures())
assert.Equal(t, int64(0), rh.TotalCount())
bigBuffer := []byte("HISTFAAACGB42j1WQY4cuRGks7KzWWwOh1NTGo1GEmzBWCx0EAxjsdiTsdiTD4ZPfoa/4R/4o/7BOiKSrWnNVBWLzIyMiMzWp//897mUA7/62db1D/n3999//V8umBW74POTPds7+4In2/xq722zv9huj/bRbvZH+2oPdrV3vtu//AOeP9if8Ra7H7DlhlcPePyo+w1xrrh+84uZFzd7QkyEL/ZXJPgN295jC5bsii0FN084/BXXDQH+jqPMlhn5eYf1D/beb9h7BdSfseMJGG5C94h3BRFveibyZ9x9wR1KeaebR0P8J/vVfsCbHevv7DOxPxt2/1MrLOQz3j8BH2DjhOHpA/ZfEILRWaD9bZHyb7z60X6xRxByMzxsQEJsCPlNoP/BFI849WQP/iy+cHJHqG+4veIAWcf+DQ9Y51MRBRueHlRqEbOPXqQR74Ec28Dab9pseLpqI7na/bPCPuBz0xskIIAvUqVIpQdTcr7/Afje68RHpPwsBrXnUYE3UVy0AYubljZTggshU+gdlTHej6iyJEfXuOb+B51wcXdbzD/yaFkQNn+fXnHBY7In5Sgi4wb34IYciy83hbxSG/pJFipa+VnByeJXFMPD0pQMoUTc+i3BExV+bgKa98WYHqk2GnaH+bPg3Xl8X9AEZpcI4qCsDx/9kpfMWJyG3Xz3PQGWDI88N2myqfh1c9H10XQT4qoI1E19uC87cKMLtS2byDWs3u6Qnlyet7gqYvHtTnWaKXndXBZ6oo2IGJTnywxyuT/tstx+p2ZTBQKQql6F67ogJCWXxO4cIrhcJfwui1ouMTInwc1vi8RLtSUuJarJNYtGjgcpuPuDcHBgMMQqyiwZUF0C4ImHhRehVqurp7w0npbmm2yllFTJXEJv3wNJL/LEQlYxFw9bei3hmY9oWJO70goSLxpr3q+22EhF434Sa/i58M+yTSKGdHYJW6aETlouZMIyrSbqCgd6N6DyBJ3q4TUmLlNuUcJZoTasfmAtSLBpLssdC96+ig9Cu3PKZ0/RNZsyENkDXiZOrusmWXYcjs2yjbDX9ljQfV3ijoMPvEbiJvOeTIGRO0OXO5ll1U6W2bqhAsDelenq9/Zy+dnVAQv5fudVfUcAG15gGFRGvvrVy3cmNqa+eIlkZbkT7ighNrZEcwmtMaQno241JTed3URhOuOSE6wsDRapRVnFhpJdkxZfv3GLrJqu5LZLLi+XpOfFaRISd19d6BkMlmBcNOxW0zmF5odgllbO/lCxPEKDkP9lVjKULpF/WEXdeA1lYo3A3oSYXIa4KLWwQZitlaixpfXYzniV6nPbQDaPKIIu/SuTBk7JuVhWJJcXeSi80hQMmbTLh7Ws0qsoRIoadRNFZBY5NtoxP3jp6kjiR8BNdTFbLNRllIj8ErLOgcDV7qsXbKu0SFSK4FU80l7Yhr2DrHNjIAvh8FUGcxqDYlovqiPVCiXfKhfUcNnAcpHUjNWGjZi5iUiT3bpVYKucA0TM7S5QVWR6PkjCFBx7OuGRIzFcazgUwraS/sk6inedzENVRZnc0XL0izNrOKxQauPm3tgfqC2p1SqtxgQkpLgaTtR7qIPYghHihqe6NAhbLROaYT2/yJxKcJAJag67xn/6b6UgBtNHzcmH9Y7LgFTf86nRYCCqKiOrmODpyFlrpsKjKX3AayLK6OKarcUnrJckOKk3fW14fgWsdg0NsEySspJnygVIta7h17Nn2cClVc+5Fzp5SW9KQBJZt/Wl4voGoys13gsNjinMmu8y0lhdfLC1kgA1cLBdOoEnj9Sb2hVrfcIPECO8NfwB791rZ19RZ+yLjmrxjH9QrEPo5r0Ovnd2HQ4OvBit19oqtanRkL2hyOqNkwgP2BzHydZG5CYhu0yGfYFzzkFSOzB1Grnxq9GzE7ypsfxAFmIYDdfRG9gEUCTD+8ZJAHlG57CAnEgCCqczdMhvAFVUGRAP49xoqBr4bVLNNg2BmiplOoQFPsZ2nOnYxWZrfQBhVIwG1FZZFT5HdxWrTgweZm/JiCgV25kMEQfrl68rVUECyhTE3CIdELwJze0u0jgrrHfOCrgaK9hdR0eGMch+JXGpTggNzkKIThVqBVCUNBobodN+YAqFkUGUCUt0Dg5ALNNGdjwq5ixpnXVoevAAqGM0mgtniDlG5Zxx6HcGItlI7G1SyANyAQDVBFZYhFTiyhkMX1XBBY+9I2/OMucIxhYaAh+EmVg2+ik/eGO0Jzgg1Zw++iJBgEpWcGl10sUqFw6hd+vp+S0xOHIqC5fGrRIRq0IxTUZtloyDI9aP8kagP6fmk/us9HEos4YEzrEOCk1BWBtkYk6OXKObwHgMfN81sVnpdliHDPKLDnoWGRJGiK4xPzhjKruu9UYpQYh6ASv0lbe0DOdX6ayAmNEkyFoLv7JoQH6o/+CDoS3xt5wqjSpJhHjtjZr1OCA+Ys5ZDzYx/DL6iI4eG8dr6bOPA7hnbccc53gbPNJHqzgx5zE6/ImJQKMN3OFYe5mQ9qxv/RyvzY854QpIM/AX2/w8xoluoETnnONtvowxZjuPjiLbS61vwydCAu4x2tlfz47U3A75zonNmEHgZbzM3pAIaNuJQYbFMY8GaMjjAyv1PNtLf208c87XPlBEsLVeZ5/HGfWIAwyjodoJwmYMR6HH2SfcVnGnsYbTfPiENP316K8Dr8+K4hpIgdlHBUdgox3jBSk6K0YP9qMBzZzRX0CQgwTYPXBw1IHCQDLeI1kDG/0E0nqOA5+O8EA+XhFytKO1E5MJlZ4dvNY5zzpeHFkhH9K8sS/npFjIZZ8aM4e/NGjUx/BjvCHA0QnkBTHwFqGO2Y+jw24T0rNF/oT3/Zx06P8BChhtKw==")
rh, err = hdrhistogram.Decode(bigBuffer)
assert.Nil(t, err)
assert.Equal(t, int64(10000), rh.TotalCount())
}
func TestHistogram_Dump_empty(t *testing.T) {
// empty histogram
// 20,1000,3
empty := []byte("HISTFAAAABl4nJNpmSzMgADMUFoEyn1h/wHCAgBDogN4")
loadedHist, err := hdrhistogram.Decode(empty)
assert.Nil(t, err)
assert.Equal(t, int64(20), loadedHist.LowestTrackableValue())
assert.Equal(t, int64(1000), loadedHist.HighestTrackableValue())
assert.Equal(t, int64(3), loadedHist.SignificantFigures())
}
func TestHistogram_Dump_Load_Merge(t *testing.T) {
h1 := hdrhistogram.New(1, 1000, 3)
h2 := hdrhistogram.New(1, 1000, 3)
for i := 0; i < 100; i++ {
if err := h1.RecordValue(int64(i)); err != nil {
t.Fatal(err)
}
}
for i := 100; i < 200; i++ {
if err := h2.RecordValue(int64(i)); err != nil {
t.Fatal(err)
}
}
bufferH1, err := h1.Encode(hdrhistogram.V2CompressedEncodingCookieBase)
assert.Nil(t, err)
bufferH2, err := h2.Encode(hdrhistogram.V2CompressedEncodingCookieBase)
assert.Nil(t, err)
h1Decoded, err := hdrhistogram.Decode(bufferH1)
assert.Nil(t, err)
assert.Equal(t, int64(1), h1Decoded.LowestTrackableValue())
assert.Equal(t, int64(1000), h1Decoded.HighestTrackableValue())
assert.Equal(t, int64(3), h1Decoded.SignificantFigures())
assert.Equal(t, int64(100), h1Decoded.TotalCount())
h2Decoded, err := hdrhistogram.Decode(bufferH2)
assert.Nil(t, err)
assert.Equal(t, int64(1), h2Decoded.LowestTrackableValue())
assert.Equal(t, int64(1000), h2Decoded.HighestTrackableValue())
assert.Equal(t, int64(3), h2Decoded.SignificantFigures())
assert.Equal(t, int64(100), h2Decoded.TotalCount())
dropped := h1Decoded.Merge(h2Decoded)
assert.Equal(t, int64(0), dropped)
assert.Equal(t, int64(200), h1Decoded.TotalCount())
assert.Equal(t, int64(1), h1Decoded.LowestTrackableValue())
assert.Equal(t, int64(1000), h1Decoded.HighestTrackableValue())
}
hdrhistogram-go-1.1.2/hdr_encoding_whitebox_test.go 0000664 0000000 0000000 00000001601 14111227330 0022523 0 ustar 00root root 0000000 0000000 package hdrhistogram
import (
"github.com/google/go-cmp/cmp"
"github.com/stretchr/testify/assert"
"testing"
)
func TestHistogram_encodeIntoByteBuffer(t *testing.T) {
hist := New(1, 9007199254740991, 2)
err := hist.RecordValue(42)
assert.Nil(t, err)
buffer, err := hist.encodeIntoByteBuffer()
assert.Nil(t, err)
assert.Equal(t, 42, buffer.Len())
}
func TestHistogram_DumpLoadWhiteBox(t *testing.T) {
hist := New(1, 100000, 3)
for i := 1; i <= 100; i++ {
err := hist.RecordValue(int64(i))
assert.Nil(t, err)
}
dumpedHistogram, err := hist.Encode(V2CompressedEncodingCookieBase)
assert.Nil(t, err)
hist2, err := Decode(dumpedHistogram)
assert.Nil(t, err)
assert.Equal(t, hist.totalCount, hist2.totalCount)
assert.Equal(t, hist.countsLen, hist2.countsLen)
if diff := cmp.Diff(hist.counts, hist2.counts); diff != "" {
t.Errorf("counts differs: (-got +want)\n%s", diff)
}
}
hdrhistogram-go-1.1.2/hdr_test.go 0000664 0000000 0000000 00000026003 14111227330 0016747 0 ustar 00root root 0000000 0000000 package hdrhistogram_test
import (
hdrhistogram "github.com/HdrHistogram/hdrhistogram-go"
"github.com/stretchr/testify/assert"
"math"
"reflect"
"testing"
)
// nolint
func TestHighSigFig(t *testing.T) {
input := []int64{
459876, 669187, 711612, 816326, 931423, 1033197, 1131895, 2477317,
3964974, 12718782,
}
hist := hdrhistogram.New(459876, 12718782, 5)
for _, sample := range input {
hist.RecordValue(sample)
}
if v, want := hist.ValueAtQuantile(50), int64(1048575); v != want {
t.Errorf("Median was %v, but expected %v", v, want)
}
}
func TestValueAtQuantile(t *testing.T) {
h := hdrhistogram.New(1, 10000000, 3)
for i := 0; i < 1000000; i++ {
if err := h.RecordValue(int64(i)); err != nil {
t.Fatal(err)
}
}
data := []struct {
q float64
v int64
}{
{q: 50, v: 500223},
{q: 75, v: 750079},
{q: 90, v: 900095},
{q: 95, v: 950271},
{q: 99, v: 990207},
{q: 99.9, v: 999423},
{q: 99.99, v: 999935},
}
for _, d := range data {
if v := h.ValueAtQuantile(d.q); v != d.v {
t.Errorf("P%v was %v, but expected %v", d.q, v, d.v)
}
}
}
func TestMean(t *testing.T) {
h := hdrhistogram.New(1, 10000000, 3)
for i := 0; i < 1000000; i++ {
if err := h.RecordValue(int64(i)); err != nil {
t.Fatal(err)
}
}
assert.InDelta(t, 500000, h.Mean(), 500000*0.001)
}
func TestStdDev(t *testing.T) {
h := hdrhistogram.New(1, 10000000, 3)
total := 0.0
for i := 0; i < 1000000; i++ {
total += math.Pow(float64(i-500000.0), 2)
if err := h.RecordValue(int64(i)); err != nil {
t.Fatal(err)
}
}
variance := total / float64(1000000-1)
stdDev := math.Sqrt(variance)
assert.InDelta(t, stdDev, h.StdDev(), stdDev*0.001)
}
func TestTotalCount(t *testing.T) {
h := hdrhistogram.New(1, 10000000, 3)
for i := 0; i < 1000000; i++ {
if err := h.RecordValue(int64(i)); err != nil {
t.Fatal(err)
}
if v, want := h.TotalCount(), int64(i+1); v != want {
t.Errorf("TotalCount was %v, but expected %v", v, want)
}
}
}
func TestMax(t *testing.T) {
h := hdrhistogram.New(1, 10000000, 3)
for i := 0; i < 1000000; i++ {
if err := h.RecordValue(int64(i)); err != nil {
t.Fatal(err)
}
}
if v, want := h.Max(), int64(1000447); v != want {
t.Errorf("Max was %v, but expected %v", v, want)
}
}
func TestReset(t *testing.T) {
h := hdrhistogram.New(1, 10000000, 3)
for i := 0; i < 1000000; i++ {
if err := h.RecordValue(int64(i)); err != nil {
t.Fatal(err)
}
}
h.Reset()
if v, want := h.Max(), int64(0); v != want {
t.Errorf("Max was %v, but expected %v", v, want)
}
}
func TestMerge(t *testing.T) {
h1 := hdrhistogram.New(1, 1000, 3)
h2 := hdrhistogram.New(1, 1000, 3)
for i := 0; i < 100; i++ {
if err := h1.RecordValue(int64(i)); err != nil {
t.Fatal(err)
}
}
for i := 100; i < 200; i++ {
if err := h2.RecordValue(int64(i)); err != nil {
t.Fatal(err)
}
}
h1.Merge(h2)
if v, want := h1.ValueAtQuantile(50), int64(99); v != want {
t.Errorf("Median was %v, but expected %v", v, want)
}
}
func TestMin(t *testing.T) {
h := hdrhistogram.New(1, 10000000, 3)
for i := 0; i < 1000000; i++ {
if err := h.RecordValue(int64(i)); err != nil {
t.Fatal(err)
}
}
if v, want := h.Min(), int64(0); v != want {
t.Errorf("Min was %v, but expected %v", v, want)
}
}
func TestHistogram_ValueAtPercentiles(t *testing.T) {
h := hdrhistogram.New(1, 3600*1000*1000, 3)
for i := 0; i < 1000000; i++ {
if err := h.RecordValue(int64(i)); err != nil {
t.Fatal(err)
}
}
// Ensure calculating the percentiles altogether returns the same values
// multiple calls to ValueAtQuantile()
values := h.ValueAtPercentiles([]float64{0.0, 50.0, 95.0, 99.0, 100.0})
assert.Equal(t, h.ValueAtQuantile(0.0), values[0.0])
assert.Equal(t, h.ValueAtQuantile(50.0), values[50.0])
assert.Equal(t, h.ValueAtQuantile(95.0), values[95.0])
assert.Equal(t, h.ValueAtQuantile(99.0), values[99.0])
assert.Equal(t, h.ValueAtQuantile(100.0), values[100.0])
// negative test using out of bounds percentiles
assert.Equal(t, h.ValueAtQuantile(110.0), h.ValueAtPercentiles([]float64{110.0})[110.0])
// assert upper bound is enforced
assert.Equal(t, h.ValueAtQuantile(100.0), h.ValueAtPercentiles([]float64{110.0})[110.0])
assert.Equal(t, h.ValueAtQuantile(-1.0), h.ValueAtPercentiles([]float64{-1.0})[-1.0])
// assert lower bound is enforced
assert.Equal(t, h.ValueAtQuantile(0.0), h.ValueAtPercentiles([]float64{-1.0})[-1.0])
assert.Equal(t, int64(0), h.ValueAtPercentiles([]float64{-1.0})[-1.0])
h.Reset()
for i := 0; i < 10000; i++ {
if err := h.RecordValue(int64(1000)); err != nil {
t.Fatal(err)
}
}
if err := h.RecordValue(int64(100000000)); err != nil {
t.Fatal(err)
}
// ensure that percentiles that are calculated using the count number will be properly computed
values = h.ValueAtPercentiles([]float64{30.0, 99.0, 99.99, 99.999, 100.0})
assert.Equal(t, h.ValueAtQuantile(30.0), values[30.0])
assert.Equal(t, h.ValueAtQuantile(99.0), values[99.0])
assert.Equal(t, h.ValueAtQuantile(99.99), values[99.99])
assert.Equal(t, h.ValueAtQuantile(99.999), values[99.999])
assert.Equal(t, h.ValueAtQuantile(100.0), values[100.0])
}
func TestByteSize(t *testing.T) {
h := hdrhistogram.New(1, 100000, 3)
if v, want := h.ByteSize(), 65604; v != want {
t.Errorf("ByteSize was %v, but expected %d", v, want)
}
}
func TestRecordCorrectedValue(t *testing.T) {
h := hdrhistogram.New(1, 100000, 3)
if err := h.RecordCorrectedValue(10, 100); err != nil {
t.Fatal(err)
}
if v, want := h.ValueAtQuantile(75), int64(10); v != want {
t.Errorf("Corrected value was %v, but expected %v", v, want)
}
}
func TestRecordCorrectedValueStall(t *testing.T) {
h := hdrhistogram.New(1, 100000, 3)
if err := h.RecordCorrectedValue(1000, 100); err != nil {
t.Fatal(err)
}
if v, want := h.ValueAtQuantile(75), int64(800); v != want {
t.Errorf("Corrected value was %v, but expected %v", v, want)
}
}
func TestCumulativeDistribution(t *testing.T) {
h := hdrhistogram.New(1, 100000000, 3)
for i := 0; i < 1000000; i++ {
if err := h.RecordValue(int64(i)); err != nil {
t.Fatal(err)
}
}
actual := h.CumulativeDistribution()
expected := []hdrhistogram.Bracket{
hdrhistogram.Bracket{Quantile: 0, Count: 1, ValueAt: 0},
hdrhistogram.Bracket{Quantile: 50, Count: 500224, ValueAt: 500223},
hdrhistogram.Bracket{Quantile: 75, Count: 750080, ValueAt: 750079},
hdrhistogram.Bracket{Quantile: 87.5, Count: 875008, ValueAt: 875007},
hdrhistogram.Bracket{Quantile: 93.75, Count: 937984, ValueAt: 937983},
hdrhistogram.Bracket{Quantile: 96.875, Count: 969216, ValueAt: 969215},
hdrhistogram.Bracket{Quantile: 98.4375, Count: 984576, ValueAt: 984575},
hdrhistogram.Bracket{Quantile: 99.21875, Count: 992256, ValueAt: 992255},
hdrhistogram.Bracket{Quantile: 99.609375, Count: 996352, ValueAt: 996351},
hdrhistogram.Bracket{Quantile: 99.8046875, Count: 998400, ValueAt: 998399},
hdrhistogram.Bracket{Quantile: 99.90234375, Count: 999424, ValueAt: 999423},
hdrhistogram.Bracket{Quantile: 99.951171875, Count: 999936, ValueAt: 999935},
hdrhistogram.Bracket{Quantile: 99.9755859375, Count: 999936, ValueAt: 999935},
hdrhistogram.Bracket{Quantile: 99.98779296875, Count: 999936, ValueAt: 999935},
hdrhistogram.Bracket{Quantile: 99.993896484375, Count: 1000000, ValueAt: 1000447},
hdrhistogram.Bracket{Quantile: 100, Count: 1000000, ValueAt: 1000447},
}
if !reflect.DeepEqual(actual, expected) {
t.Errorf("CF was %#v, but expected %#v", actual, expected)
}
}
func TestDistribution(t *testing.T) {
h := hdrhistogram.New(8, 1024, 3)
for i := 0; i < 1024; i++ {
if err := h.RecordValue(int64(i)); err != nil {
t.Fatal(err)
}
}
actual := h.Distribution()
if len(actual) != 128 {
t.Errorf("Number of bars seen was %v, expected was 128", len(actual))
}
for _, b := range actual {
if b.Count != 8 {
t.Errorf("Count per bar seen was %v, expected was 8", b.Count)
}
}
}
func TestNaN(t *testing.T) {
h := hdrhistogram.New(1, 100000, 3)
if math.IsNaN(h.Mean()) {
t.Error("mean is NaN")
}
if math.IsNaN(h.StdDev()) {
t.Error("stddev is NaN")
}
}
func TestSignificantFigures(t *testing.T) {
const sigFigs = 4
h := hdrhistogram.New(1, 10, sigFigs)
if h.SignificantFigures() != sigFigs {
t.Errorf("Significant figures was %v, expected %d", h.SignificantFigures(), sigFigs)
}
}
func TestLowestTrackableValue(t *testing.T) {
const minVal = 2
h := hdrhistogram.New(minVal, 10, 3)
if h.LowestTrackableValue() != minVal {
t.Errorf("LowestTrackableValue figures was %v, expected %d", h.LowestTrackableValue(), minVal)
}
}
func TestHighestTrackableValue(t *testing.T) {
const maxVal = 11
h := hdrhistogram.New(1, maxVal, 3)
if h.HighestTrackableValue() != maxVal {
t.Errorf("HighestTrackableValue figures was %v, expected %d", h.HighestTrackableValue(), maxVal)
}
}
func TestUnitMagnitudeOverflow(t *testing.T) {
h := hdrhistogram.New(0, 200, 4)
if err := h.RecordValue(11); err != nil {
t.Fatal(err)
}
}
// nolint
func TestSubBucketMaskOverflow(t *testing.T) {
hist := hdrhistogram.New(2e7, 1e8, 5)
for _, sample := range [...]int64{1e8, 2e7, 3e7} {
hist.RecordValue(sample)
}
for q, want := range map[float64]int64{
50: 33554431,
83.33: 33554431,
83.34: 100663295,
99: 100663295,
} {
if got := hist.ValueAtQuantile(q); got != want {
t.Errorf("got %d for %fth percentile. want: %d", got, q, want)
}
}
}
func TestExportImport(t *testing.T) {
min := int64(1)
max := int64(10000000)
sigfigs := 3
h := hdrhistogram.New(min, max, sigfigs)
for i := 0; i < 1000000; i++ {
if err := h.RecordValue(int64(i)); err != nil {
t.Fatal(err)
}
}
s := h.Export()
if v := s.LowestTrackableValue; v != min {
t.Errorf("LowestTrackableValue was %v, but expected %v", v, min)
}
if v := s.HighestTrackableValue; v != max {
t.Errorf("HighestTrackableValue was %v, but expected %v", v, max)
}
if v := int(s.SignificantFigures); v != sigfigs {
t.Errorf("SignificantFigures was %v, but expected %v", v, sigfigs)
}
if imported := hdrhistogram.Import(s); !imported.Equals(h) {
t.Error("Expected Histograms to be equivalent")
}
}
func TestEquals(t *testing.T) {
h1 := hdrhistogram.New(1, 10000000, 3)
for i := 0; i < 1000000; i++ {
if err := h1.RecordValue(int64(i)); err != nil {
t.Fatal(err)
}
}
h2 := hdrhistogram.New(1, 10000000, 3)
for i := 0; i < 10000; i++ {
if err := h1.RecordValue(int64(i)); err != nil {
t.Fatal(err)
}
}
if h1.Equals(h2) {
t.Error("Expected Histograms to not be equivalent")
}
h1.Reset()
h2.Reset()
if !h1.Equals(h2) {
t.Error("Expected Histograms to be equivalent")
}
}
// nolint
func TestHistogram_ValuesAreEquivalent(t *testing.T) {
hist := hdrhistogram.New(1476573605, 1476593605, 3)
assert.True(t, hist.ValuesAreEquivalent(1476583605, 2147483647))
// test large histograms
hist = hdrhistogram.New(20000000, 100000000, 5)
hist.RecordValue(100000000)
hist.RecordValue(20000000)
hist.RecordValue(30000000)
assert.True(t, hist.ValuesAreEquivalent(20000000, hist.ValueAtQuantile(50.0)))
assert.True(t, hist.ValuesAreEquivalent(100000000, hist.ValueAtQuantile(83.34)))
assert.True(t, hist.ValuesAreEquivalent(100000000, hist.ValueAtQuantile(99.0)))
}
hdrhistogram-go-1.1.2/hdr_whitebox_test.go 0000664 0000000 0000000 00000001036 14111227330 0020657 0 ustar 00root root 0000000 0000000 package hdrhistogram
import (
"github.com/stretchr/testify/assert"
"testing"
)
func TestHistogram_New_internals(t *testing.T) {
// test for numberOfSignificantValueDigits if higher than 5 the numberOfSignificantValueDigits will be forced to 5
hist := New(1, 9007199254740991, 6)
assert.Equal(t, int64(5), hist.significantFigures)
// test for numberOfSignificantValueDigits if lower than 1 the numberOfSignificantValueDigits will be forced to 1
hist = New(1, 9007199254740991, 0)
assert.Equal(t, int64(1), hist.significantFigures)
}
hdrhistogram-go-1.1.2/log_reader.go 0000664 0000000 0000000 00000013070 14111227330 0017236 0 ustar 00root root 0000000 0000000 package hdrhistogram
import (
"bufio"
"io"
"math"
"regexp"
"strconv"
"strings"
)
type HistogramLogReader struct {
log *bufio.Reader
startTimeSec float64
observedStartTime bool
baseTimeSec float64
observedBaseTime bool
// scanner handling state
absolute bool
rangeStartTimeSec float64
rangeEndTimeSec float64
observedMax bool
rangeObservedMax int64
observedMin bool
rangeObservedMin int64
reStartTime *regexp.Regexp
reBaseTime *regexp.Regexp
reHistogramInterval *regexp.Regexp
}
func (hlr *HistogramLogReader) ObservedMin() bool {
return hlr.observedMin
}
func (hlr *HistogramLogReader) ObservedMax() bool {
return hlr.observedMax
}
// Returns the overall observed max limit ( up to the current point ) of the read histograms
func (hlr *HistogramLogReader) RangeObservedMax() int64 {
return hlr.rangeObservedMax
}
// Returns the overall observed min limit ( up to the current point ) of the read histograms
func (hlr *HistogramLogReader) RangeObservedMin() int64 {
return hlr.rangeObservedMin
}
func NewHistogramLogReader(log io.Reader) *HistogramLogReader {
//# "#[StartTime: %f (seconds since epoch), %s]\n"
reStartTime, _ := regexp.Compile(`#\[StartTime: ([\d\.]*)`)
//# "#[BaseTime: %f (seconds since epoch)]\n"
reBaseTime, _ := regexp.Compile(`#\[BaseTime: ([\d\.]*)`)
//# 0.127,1.007,2.769,HISTFAAAAEV42pNpmSz...
//# Tag=A,0.127,1.007,2.769,HISTFAAAAEV42pNpmSz
//# "%f,%f,%f,%s\n"
reHistogramInterval, _ := regexp.Compile(`([\d\.]*),([\d\.]*),([\d\.]*),(.*)`)
//
reader := bufio.NewReader(log)
return &HistogramLogReader{log: reader,
startTimeSec: 0.0,
observedStartTime: false,
baseTimeSec: 0.0,
observedBaseTime: false,
reStartTime: reStartTime,
reBaseTime: reBaseTime,
reHistogramInterval: reHistogramInterval,
rangeObservedMin: math.MaxInt64,
observedMin: false,
rangeObservedMax: math.MinInt64,
observedMax: false,
}
}
func (hlr *HistogramLogReader) NextIntervalHistogram() (histogram *Histogram, err error) {
return hlr.NextIntervalHistogramWithRange(0.0, math.MaxFloat64, true)
}
func (hlr *HistogramLogReader) NextIntervalHistogramWithRange(rangeStartTimeSec, rangeEndTimeSec float64, absolute bool) (histogram *Histogram, err error) {
hlr.rangeStartTimeSec = rangeStartTimeSec
hlr.rangeEndTimeSec = rangeEndTimeSec
hlr.absolute = absolute
return hlr.decodeNextIntervalHistogram()
}
func (hlr *HistogramLogReader) decodeNextIntervalHistogram() (histogram *Histogram, err error) {
var line string
var tag string = ""
var logTimeStampInSec float64
var intervalLengthSec float64
for {
line, err = hlr.log.ReadString('\n')
if err != nil {
if err == io.EOF {
err = nil
break
}
break
}
if line[0] == '#' {
matchRes := hlr.reStartTime.FindStringSubmatch(line)
if len(matchRes) > 0 {
hlr.startTimeSec, err = strconv.ParseFloat(matchRes[1], 64)
if err != nil {
return
}
hlr.observedStartTime = true
continue
}
matchRes = hlr.reBaseTime.FindStringSubmatch(line)
if len(matchRes) > 0 {
hlr.baseTimeSec, err = strconv.ParseFloat(matchRes[1], 64)
if err != nil {
return
}
hlr.observedBaseTime = true
continue
}
continue
}
if strings.HasPrefix(line, "Tag=") {
commaPos := strings.Index(line, ",")
tag = line[4:commaPos]
line = line[commaPos+1:]
}
matchRes := hlr.reHistogramInterval.FindStringSubmatch(line)
if len(matchRes) >= 1 {
// Decode: startTimestamp, intervalLength, maxTime, histogramPayload
// Timestamp is expected to be in seconds
logTimeStampInSec, err = strconv.ParseFloat(matchRes[1], 64)
if err != nil {
return
}
intervalLengthSec, err = strconv.ParseFloat(matchRes[2], 64)
if err != nil {
return
}
cpayload := matchRes[4]
// No explicit start time noted. Use 1st observed time:
if !hlr.observedStartTime {
hlr.startTimeSec = logTimeStampInSec
hlr.observedStartTime = true
}
// No explicit base time noted.
// Deduce from 1st observed time (compared to start time):
if !hlr.observedBaseTime {
// Criteria Note: if log timestamp is more than a year in
// the past (compared to StartTime),
// we assume that timestamps in the log are not absolute
if logTimeStampInSec < (hlr.startTimeSec - (365 * 24 * 3600.0)) {
hlr.baseTimeSec = hlr.startTimeSec
} else {
hlr.baseTimeSec = 0.0
}
hlr.observedBaseTime = true
}
absoluteStartTimeStampSec := logTimeStampInSec + hlr.baseTimeSec
offsetStartTimeStampSec := absoluteStartTimeStampSec + hlr.startTimeSec
// Timestamp length is expect to be in seconds
absoluteEndTimeStampSec := absoluteStartTimeStampSec + intervalLengthSec
var startTimeStampToCheckRangeOn float64
if hlr.absolute {
startTimeStampToCheckRangeOn = absoluteStartTimeStampSec
} else {
startTimeStampToCheckRangeOn = offsetStartTimeStampSec
}
if startTimeStampToCheckRangeOn < hlr.rangeStartTimeSec {
continue
}
if startTimeStampToCheckRangeOn > hlr.rangeEndTimeSec {
return
}
histogram, err = Decode([]byte(cpayload))
if err != nil {
return
}
if histogram.Max() > hlr.rangeObservedMax {
hlr.rangeObservedMax = histogram.Max()
}
if histogram.Min() < hlr.rangeObservedMin {
hlr.rangeObservedMin = histogram.Min()
}
histogram.SetStartTimeMs(int64(absoluteStartTimeStampSec * 1000.0))
histogram.SetEndTimeMs(int64(absoluteEndTimeStampSec * 1000.0))
if tag != "" {
histogram.SetTag(tag)
}
return
}
}
return
}
hdrhistogram-go-1.1.2/log_writer.go 0000664 0000000 0000000 00000014154 14111227330 0017314 0 ustar 00root root 0000000 0000000 //The log format encodes into a single file, multiple histograms with optional shared meta data.
package hdrhistogram
import (
"fmt"
"io"
"regexp"
"time"
)
const HISTOGRAM_LOG_FORMAT_VERSION = "1.3"
const MsToNsRatio float64 = 1000000.0
type HistogramLogOptions struct {
startTimeStampSec float64
endTimeStampSec float64
maxValueUnitRatio float64
}
func DefaultHistogramLogOptions() *HistogramLogOptions {
return &HistogramLogOptions{0, 0, MsToNsRatio}
}
type HistogramLogWriter struct {
baseTime int64
log io.Writer
}
// Return the current base time offset
func (lw *HistogramLogWriter) BaseTime() int64 {
return lw.baseTime
}
// Set a base time to subtract from supplied histogram start/end timestamps when
// logging based on histogram timestamps.
// baseTime is expected to be in msec since the epoch, as histogram start/end times
// are typically stamped with absolute times in msec since the epoch.
func (lw *HistogramLogWriter) SetBaseTime(baseTime int64) {
lw.baseTime = baseTime
}
func NewHistogramLogWriter(log io.Writer) *HistogramLogWriter {
return &HistogramLogWriter{baseTime: 0, log: log}
}
// Output an interval histogram, using the start/end timestamp indicated in the histogram, and the [optional] tag associated with the histogram.
// The histogram start and end timestamps are assumed to be in msec units
//
// By convention, histogram start/end time are generally stamped with absolute times in msec
// since the epoch. For logging with absolute time stamps, the base time would remain zero ( default ).
// For logging with relative time stamps (time since a start point), the base time should be set with SetBaseTime(baseTime int64)
//
// The max value in the histogram will be reported scaled down by a default maxValueUnitRatio of 1000000.0 (which is the msec : nsec ratio).
// If you need to specify a different start/end timestamp or a different maxValueUnitRatio you should use OutputIntervalHistogramWithLogOptions(histogram *Histogram, logOptions *HistogramLogOptions)
func (lw *HistogramLogWriter) OutputIntervalHistogram(histogram *Histogram) (err error) {
return lw.OutputIntervalHistogramWithLogOptions(histogram, nil)
}
// Output an interval histogram, with the given timestamp information and the [optional] tag associated with the histogram
//
// If you specify non-nil logOptions, and non-zero start timestamp, the the specified timestamp information will be used, and the start timestamp information in the actual histogram will be ignored.
// If you specify non-nil logOptions, and non-zero start timestamp, the the specified timestamp information will be used, and the end timestamp information in the actual histogram will be ignored.
// If you specify non-nil logOptions, The max value reported with the interval line will be scaled by the given maxValueUnitRatio,
// otherwise a default maxValueUnitRatio of 1,000,000 (which is the msec : nsec ratio) will be used.
//
// By convention, histogram start/end time are generally stamped with absolute times in msec
// since the epoch. For logging with absolute time stamps, the base time would remain zero ( default ).
// For logging with relative time stamps (time since a start point), the base time should be set with SetBaseTime(baseTime int64)
func (lw *HistogramLogWriter) OutputIntervalHistogramWithLogOptions(histogram *Histogram, logOptions *HistogramLogOptions) (err error) {
tag := histogram.Tag()
var match bool
tagStr := ""
if tag != "" {
match, err = regexp.MatchString(".[, \\r\\n].", tag)
if err != nil {
return
}
if match {
err = fmt.Errorf("Tag string cannot contain commas, spaces, or line breaks. Used tag: %s", tag)
return
}
tagStr = fmt.Sprintf("Tag=%s,", tag)
}
var usedStartTime float64 = float64(histogram.StartTimeMs())
var usedEndTime float64 = float64(histogram.EndTimeMs())
var maxValueUnitRatio float64 = MsToNsRatio
if logOptions != nil {
if logOptions.startTimeStampSec != 0 {
usedStartTime = logOptions.startTimeStampSec
}
if logOptions.endTimeStampSec != 0 {
usedEndTime = logOptions.endTimeStampSec
}
maxValueUnitRatio = logOptions.maxValueUnitRatio
}
startTime := usedStartTime - float64(lw.baseTime)/1000.0
endTime := usedEndTime - float64(lw.baseTime)/1000.0
maxValueAsDouble := float64(histogram.Max()) / maxValueUnitRatio
cpayload, err := histogram.Encode(V2CompressedEncodingCookieBase)
if err != nil {
return
}
_, err = lw.log.Write([]byte(fmt.Sprintf("%s%f,%f,%f,%s\n", tagStr, startTime, endTime, maxValueAsDouble, string(cpayload))))
return
}
// Log a start time in the log.
// Start time is represented as seconds since epoch with up to 3 decimal places. Line starts with the leading text '#[StartTime:'
func (lw *HistogramLogWriter) OutputStartTime(start_time_msec int64) (err error) {
secs := start_time_msec / 1000
iso_str := time.Unix(secs, start_time_msec%int64(1000)*int64(1000000000)).Format(time.RFC3339)
_, err = lw.log.Write([]byte(fmt.Sprintf("#[StartTime: %d (seconds since epoch), %s]\n", secs, iso_str)))
return
}
// Log a base time in the log.
// Base time is represented as seconds since epoch with up to 3 decimal places. Line starts with the leading text '#[BaseTime:'
func (lw *HistogramLogWriter) OutputBaseTime(base_time_msec int64) (err error) {
secs := base_time_msec / 1000
_, err = lw.log.Write([]byte(fmt.Sprintf("#[Basetime: %d (seconds since epoch)]\n", secs)))
return
}
// Log a comment to the log.
// A comment is any line that leads with '#' that is not matched by the BaseTime or StartTime formats. Comments are ignored when parsed.
func (lw *HistogramLogWriter) OutputComment(comment string) (err error) {
_, err = lw.log.Write([]byte(fmt.Sprintf("#%s\n", comment)))
return
}
// Output a legend line to the log.
// Human readable column headers. Ignored when parsed.
func (lw *HistogramLogWriter) OutputLegend() (err error) {
_, err = lw.log.Write([]byte("\"StartTimestamp\",\"Interval_Length\",\"Interval_Max\",\"Interval_Compressed_Histogram\"\n"))
return
}
// Output a log format version to the log.
func (lw *HistogramLogWriter) OutputLogFormatVersion() (err error) {
return lw.OutputComment(fmt.Sprintf("[Histogram log format version %s]", HISTOGRAM_LOG_FORMAT_VERSION))
}
hdrhistogram-go-1.1.2/log_writer_test.go 0000664 0000000 0000000 00000004706 14111227330 0020355 0 ustar 00root root 0000000 0000000 package hdrhistogram
import (
"bytes"
"github.com/stretchr/testify/assert"
"io/ioutil"
"testing"
)
func TestHistogramLogWriter_empty(t *testing.T) {
var b bytes.Buffer
writer := NewHistogramLogWriter(&b)
err := writer.OutputLogFormatVersion()
assert.Nil(t, err)
var startTimeWritten int64 = 1000
err = writer.OutputStartTime(startTimeWritten)
assert.Nil(t, err)
err = writer.OutputLogFormatVersion()
assert.Nil(t, err)
err = writer.OutputLegend()
assert.Nil(t, err)
got, _ := b.ReadString('\n')
want := "#[Histogram log format version 1.3]\n"
assert.Equal(t, want, got)
got, _ = b.ReadString('\n')
// avoid failing tests due to GMT time differences ( so we want all to be equal up until the first + )
want = "#[StartTime: 1 (seconds since epoch), 1970-01-01"
assert.Contains(t, got, want)
}
func TestHistogramLogWriterReader(t *testing.T) {
var b bytes.Buffer
writer := NewHistogramLogWriter(&b)
err := writer.OutputLogFormatVersion()
assert.Equal(t, nil, err)
var startTimeWritten int64 = 1000
err = writer.OutputStartTime(startTimeWritten)
assert.Nil(t, err)
err = writer.OutputLogFormatVersion()
assert.Nil(t, err)
err = writer.OutputLegend()
assert.Nil(t, err)
histogram := New(1, 1000, 3)
for i := 0; i < 10; i++ {
err = histogram.RecordValue(int64(i))
assert.Nil(t, err)
}
err = writer.OutputIntervalHistogram(histogram)
assert.Equal(t, nil, err)
r := bytes.NewReader(b.Bytes())
reader := NewHistogramLogReader(r)
outHistogram, err := reader.NextIntervalHistogram()
assert.Equal(t, nil, err)
assert.Equal(t, histogram.TotalCount(), outHistogram.TotalCount())
assert.Equal(t, histogram.LowestTrackableValue(), outHistogram.LowestTrackableValue())
assert.Equal(t, histogram.HighestTrackableValue(), outHistogram.HighestTrackableValue())
}
func TestHistogramLogReader_logV2(t *testing.T) {
dat, err := ioutil.ReadFile("./test/jHiccup-2.0.7S.logV2.hlog")
assert.Equal(t, nil, err)
r := bytes.NewReader(dat)
reader := NewHistogramLogReader(r)
for i := 0; i < 61; i++ {
outHistogram, err := reader.NextIntervalHistogram()
assert.Equal(t, nil, err)
assert.NotNil(t, outHistogram)
}
}
func TestHistogramLogReader_tagged_log(t *testing.T) {
dat, err := ioutil.ReadFile("./test/tagged-Log.logV2.hlog")
assert.Equal(t, nil, err)
r := bytes.NewReader(dat)
reader := NewHistogramLogReader(r)
for i := 0; i < 42; i++ {
outHistogram, err := reader.NextIntervalHistogram()
assert.Equal(t, nil, err)
assert.NotNil(t, outHistogram)
}
}
hdrhistogram-go-1.1.2/test/ 0000775 0000000 0000000 00000000000 14111227330 0015562 5 ustar 00root root 0000000 0000000 hdrhistogram-go-1.1.2/test/jHiccup-2.0.1.logV0.hlog 0000664 0000000 0000000 00000033527 14111227330 0021456 0 ustar 00root root 0000000 0000000 #[Logged with jHiccup version 2.0.1]
#[Histogram log format version 1.01]
#[StartTime: 1438869961.225 (seconds since epoch), Thu Aug 06 07:06:01 PDT 2015]
"StartTimestamp","EndTimestamp","Interval_Max","Interval_Compressed_Histogram"
0.116,1.005,3.031,HISTiQAAAG542pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI+gDFYozQmlOaA0M5Rmg9LsUJoFjc+GZg4rmjkwdUxofG4obQeldaG0LJTmR1PvCKXVIRQjzL2BUFoYTT0jwyjABkbDZTSeR8FofI+CEQ4AUBEGxA==
1.121,1.000,0.442,HISTiQAAAGR42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA+hDEY0mhVKc0BpdijNAqW50NSx4dDPhqafDYf5OlDaGEpLQmleNPs8oLQy1LoYVD5cPcydUH+PglEwCkbBKBgFowAZAABAZwbC
2.121,0.999,0.459,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPcYsANmNJoNB82Jpo4Fjc8NpVlhFkJpLijNDqV1obQGlFZEMx+mLghKK0AoxigoXxVKi0NpRjT/MDKMglEwCkbBKBgFowAOAAw5Brw=
3.120,1.002,0.442,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPehDEYozYxGs0BpVjQ+F5o+dhz6OWAWoZkDU88GpXWhtCqU1kDTD9MXAqXVodb7QvlmUJoXzZ0w942CUTAKRsEoGAWjAAkAABrTBr4=
4.122,1.000,0.475,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPcYsAOoegY2ND6MZoHSXFCaHU09jM+Kpp4NB60DpfWhtByU5kYzLxBK60EoRncoXwNKS0BpZhz+YmQYBaNgFIyCUTAKRgEDAArJBrw=
5.122,1.000,0.442,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTHcZUAEjTAJKs0BpNjRxGJ8dSnOgibPioFlw8JWhtBqUloXSPFCaC0qHQWltqHPDoXwtKC2MZj4jwygYBaNgFIyCUTAKMAAA+GAGug==
6.122,1.001,0.459,HISTiQAAAGd42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTHcZsANGmAIozQKlWaE0M5RmQxOHqeNAU8eOpp4Lja8JpbWhtC6U5kQzPwRKa0CdaQPlm0JpYTRzGdHoUTAKRsEoGAWjYBQAAQD4sAa6
7.123,0.997,0.541,HISTiQAAAGt42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI+gDBYozYhGs6HJw/isaOpY0dTBaA4ozQmlmdHkeaG0HZR2gdKKUJodzV5VKO0Kpe9D6UooLQaludDcRywgVf0oGAWjYBSMglEwJAEAhtAHww==
8.120,1.001,0.459,HISTiQAAAGJ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTHcZsANGKM0MUwilWXHQMHXsaHwWNBomzonGl4PSulBaEUoLoZkrD6XdofQbKL0CSsuiqUf3zygYBaNgFIyCUTAKgAAAJX4HuQ==
9.121,0.999,0.442,HISTiQAAAGJ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI+hDBY0mhWNhomzodEweSYc5jDjMIcTjTaC0i5QWhVK86Cpk4DSDlD6NZSuh9KSUJoDSjMyjIJRMApGwSgYBaMAAwAAlsoHxQ==
10.120,1.001,0.459,HISTiQAAAGB42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA8ZUAETGs0KpZmhNDsazYKmDpd+GM2NQ582lFZDoznR7FeE0iEQilEKyi+E0vxo+mCAkWEUjIJRMApGwSgYBXAAADJXBsI=
11.121,1.000,0.442,HISTiQAAAGh42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPegDEYozQyTgNLsaOLMaOpZ0NSzQmkuHPIw8zjRzFOB0jpQWhFK80NpHigtDaVdoPR3KD0dSkug2Q9z5ygYBaNgFIyCUTAKkAAAOxAHuw==
12.121,2.238,1568.670,HISTiQAAAOl42u2aMQ7CMAxFnZaqILEhISQYOAIjJ2Bk40YM7FyAMzBxPCRwhkYqlUpTTPL+8uXEdv6312zO14uIFPLCcStSHnaP2zuU6VyacAF7VMraRyZBXAfnZcBVy71/Z6m8Vl55gUG+17tXviuflBct+sAwcIyAPQP2DNgz/vGNX3wb1OUy3QPzxreF/r+qz+1ddDOvGHWu572L1DdVXcyTPVvS5TrqrMTozEMn8xtHpzUujOtDJ3NMSV/Rk8sv6/+tH77pl6JO/18m/KfTxtbzUvPDfPAdM8//s5t1xGPloWeY+loA+IAnHpcMHQ==
14.359,0.761,0.459,HISTiQAAAGp42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTFZQBhuUZsHBZ4bSHFCaFY2Gms/AjqafFYe5MPP4oLQWlLaB0mJQWhhKc0FpfihtBKX7oHQilBZAswfmLkaGUTAKRsEoGAWjYBTAAQCDmgZz
15.120,1.000,0.442,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPcZUAEjGs2GRnOi8VmgNDManxtNnBlNH9Q9DOxQWhBK60FpeTRxDijNC6XDofRpKH0JSguj2c/IMApGwSgYBaNgFIwCDAAAR8IHvQ==
16.120,1.002,0.475,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPehDEY0mhmNZoHS7Gg0CxoNU8+GQx4mzoTGl4PSulBaA0qLQGluKM0Ppb2g9EYofRdKi6Kph9nLgOa/UTAKRsEoGAWjYEQDAEgCB70=
17.122,1.001,0.475,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTE8ZUAEjlGaFKUCj2aA0N5RmgdLsaPIsOPgcaHyYuTZQ2hBKq0BpUSjNCaWFobQvlD4IpVdCaXEozYXmH3R6FIyCUTAKRsEoGNEAAK+GB8k=
18.123,1.001,0.426,HISTiQAAAGJ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI8ZsAOoegYWHDQblGZFo7mhNCeU5sKhnx2NlofSZlBaEUqLQmkOKC0EpcOg9H4ovQVKy6G5ZxSMglEwCkbBKBgFWAAAjYoHxQ==
19.124,0.996,0.426,HISTiQAAAGN42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTE9gDCjNBqVZ0GhmKM2KQx2MzwmleaA0OxrNhGYeTL0hlHaC0gY4zOOH0ilQeh2U7oHSMlCai2EUjIJRMApGwSgYBTgBAKssB8c=
20.120,1.003,0.459,HISTiQAAAGh42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI8ZUAFUHQMjlGZBo1mhNDsOPgeaek4ozQyluaA0N5p+ESitC6W10NTB3CUMpUOh9EYofQFKy6PZw4zmn1EwCkbBKBgFo2AUAAEAiFIHxQ==
21.123,0.997,0.442,HISTiQAAAGR42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTHdhDCjNiMaH0cxQmgNNnAuNzwalWdHMY0ETR1cnAaUdoLQylBZGswfG94bSZ6H0DigtCqV50OwfBaNgFIyCUTAKRgESAAArzge5
22.120,1.000,0.475,HISTiQAAAGh42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTO+gDBYozQylWaE0B5o8D5RmQ6PZoTQnmn6YODcanw3NvEQo7QGlZaA0L5r9YlDaHEp3Q+kVaPLo+mCAkWEUjIJRMApGwSgYBQwAU9cH2w==
23.120,1.002,0.442,HISTiQAAAGd42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA8ZUAFUHQMLGs0OpdmgNCuaOIzPCaWZ0fSzotFsaPaJQWkdKC0BpXnQaFEoHQulL0DpTVBaBkoLobljFIyCUTAKRsEoGAVIAABnpgfB
24.122,1.001,0.475,HISTiQAAAGh42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTM9gDDSahQEVsKGJc0JpdhzizFCaFUrzQGkONH1cUNoISjtDaTUoLYCmng9Ku0Dp+VD6KJQWgtL8DNgBI8MoGAWjYBSMglEwChgAxMAHyw==
25.123,0.997,0.459,HISTiQAAAGt42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA8ZsANmKM0CpbmgNCeUZofSrGh8DijNhmYejM+NZh7MfBkobQyllaE0H5q9wlDaD0qfh9KroLQ4mvlQfzMwMoyCUTAKRsEoGAWjAA4AcjYHwQ==
26.120,1.003,0.426,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTE8ZUAEjlGZFo5mhNBuU5oTSLGg0O5o+FjQ+OxoNk1eF0gZQ2gRK86GpF4LSPlB6I5Q+BaVFoTQvwygYBaNgFIyCUTAKcAIArGYHyQ==
27.123,0.997,0.475,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPcZUAEzGs0KpVmgNBuaOBcanxNNHQuaPIxmh9KMUFoMSutBaWUoLYLmHgkoHQ2l70DpJWjqOdHMR6dHwSgYBaNgFIyCEQ0ATtIHvQ==
28.120,1.004,0.623,HISTiQAAAG142pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI8ZUAEzlGaDKYDSrGjyXFCaHU2eA43PiKaPBc1cmD2SUNoUSqtDaX40+0SgdCCU3g+lT0JpYSjNg2Y/Aw4+uYBa5oyCUTAKRsEoGAUDAgCJQgfF
29.124,0.997,0.459,HISTiQAAAGd42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTM+gDGYozYJGc+CQZ4XS3FCaHUpzouljQ1PPhibPB6UNobQmlDZBM48LSotBaTcovQFKb4fSPGg0DDAyjIJRMApGwSgYBaMADgDKMAfL
30.121,0.999,0.475,HISTiQAAAG542pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI8YUAELlGZG48NoqDkMvFCaE0qz46A5oDQblOZCMx+mTgpKG0FpTSgtAKUFobQYlHaC0jCPHIfSslCaD0ozormbkWEUjIJRMApGwSgYBQwAgpgHww==
31.120,1.000,0.475,HISTiQAAAGp42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA8YUAEzlGaEKUATZ4PS7FCaBU0dB5RmRaNZ0PSxoYnLQmlrKK0GpfnQzJeG0o5Qei+UvgClJaE0J5q7GdD8NQpGwSgYBaNgFIxoAABYbAe/
32.120,1.004,0.459,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA8ZUAEjlGaB0qxoNNQcBnY0deji6Hx0c2D6mKG0JJRWh9JKUFoQSnNCaSEonQil10HpJ1BaHIc7GBlGwSgYBaNgFIyCUQAHAGMmB8E=
33.124,0.996,0.492,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA+gDEY0mgVKM0NpNhw0K5Rmh9KcUJoDTR07DhomrwSlbaC0Mpo5MPVCUNoPSh+H0mugtCiU5oF5kAE7YGQYBaNgFIyCUTAKRjAAAGPcB78=
34.120,1.003,0.442,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTG+gDGYozYJGw8Q5oDQnlGZDk0cXZ0cT50QzlxVKc0NpHSjtAqWNobQgmj5xKG0NpTdD6RVQWhhK88E8yDAKRsEoGAWjYBSMAgwAACgzB9c=
35.123,0.998,0.475,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPdhDCjNiEazQGkOKM2KRjOj0Rxo5rGjqUc3ByYvC6X1obQulBaG0mxQWhRKu0LpLVD6MpQWgdJcaO5iQPPXKBgFo2AUjIJRMKIBAEwqB70=
36.121,1.003,0.475,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTE8ZUAELGg3Vx8CBJs4NpdmhNCuUZkZTx4qmDibOiWauHJQ2htLqUFoYSnNBaSEoHQylD0DpVWjmwNzHiIMeBaNgFIyCUTAKRjQAAK6eB8k=
37.124,0.998,0.442,HISTiQAAAGp42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI8YUAEHlGaB0sxQmg2NZofSrGg0Gxofpo4LzVwONFoBShtCaTUozQulOaG0EJQOgNI7oPRuKC0CpflgHmQYBaNgFIyCUTAKRgEGAACDQAfD
38.122,1.001,0.524,HISTiQAAAGt42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI+hDEYozQKl2dDE2dBomDpWKM2MQ54dSnOgyTOh8SWhtD6UVoPSvGjmSEDpFCj9GUo3Q2lhKM2D5i6YP3ABQvKjYBSMglEwCkbBsAIAi7IHxQ==
39.123,1.001,0.475,HISTiQAAAG542pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTO8YUAELlGaD0pxQmhtK80JpDjR1glCaC0ozo5nHgWYeE5q4LpQOhdLKUFoYSvNAaQko7QylJ0LpZWjqYe5kRPMfOn8UjIJRMApGwSgYkQAAVCcH2w==
40.124,1.000,0.442,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTC+hDEY0mhWN5ofSXFCaDUpzQGl2KM2MQ5wDh7kwcxSgtBmUNobSslBaCEpLQukgKL0FSvdCaREozQmlWRhGwSgYBaNgFIyCUYABAPuGB9E=
41.124,0.996,0.475,HISTiQAAAGd42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI+hDGaYAJRmgdJsUJoDjWZB08eFJs+OJg8TZ8WhThNKG0FpPSjNj0ZLQGlvKL0ISm+D0mJQmhPNP4xo9CgYBaNgFIyCUTCiAQCYogfF
42.120,1.004,0.475,HISTiQAAAGp42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTC9hDCjNCqXZ0PgsOMRhfHYozYEmzwyledDkWdDUKUBpWyhtCqXFoDQXlBaC0m5QeiGU3gmlRdHUwfwFA4wMo2AUjIJRMApGwShgAADzjgfR
43.124,0.996,0.442,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPcYUAFUHQMzlGZHE2dCE4fRLDhoDjQ+Nw5xGSitDaVVobQwlGaF0uJQOgVKL4bSu6C0CpQWgNKMDKNgFIyCUTAKRsEowAAAPDAHuw==
44.120,1.004,0.459,HISTiQAAAGN42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA8YUAEjDj4rTAManwVKs6PxOdDUM6OpY0WjRaC0NZRWhtICUJobTV0wlL4IpTdAaSUozYVmL7q/RsEoGAWjYBSMghENAFMcB78=
45.124,0.999,0.459,HISTiQAAAGN42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTDcZsANGmAI0mhlNnhVKs0FpFjT1rDhoFjS+GJTWgdKKUJofzXwYPwJK74fSl6G0KpTmQbOHkWEUjIJRMApGwSgYBXAAAN73B7E=
46.123,1.001,0.442,HISTiQAAAGh42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMzGxQBlSegQNKs0JpdijNB6W5oDQbGs2Bph5Gs8AsQqNZUNUxhkH5hVBaFs0cJjT75KG0C5S2Q3MHzHxGhlEwCkbBKBgFo2AUYAAAlrEGDQ==
47.124,1.409,1233.125,HISTiQAAAMt42u2asQ3CMBREzzZG0DEABSMwBSU1FdNQ0LMAYzAeEpiCL1kCR8YmeddcfvL/9925zfp0OUvyemC/kcJue7s+S8VjepgldnqHN6xMX8jsCWbezsXEh8SrTJ+tQV2QN/cMuGfAPZMHfvGN33/Q5/DNufhudo5r7A/d6Cav4fOucE+r7+giT3QP19VrjU7yQ2c9nb2w71QXOslxzPr8lxwK5369d2r78M2+En79txNNneOp9eGbvjH7WSZeGP70fa2+uQAA1XAH+BcJvg==
48.533,0.591,0.311,HISTiQAAAFR42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMjNegDKg8AxeUZkGjWdFoTijNjqaODY2GqWdEU8eMqo5RHMpPRnMHTN8oGAWjYBSMglEwCqgIAEz/Bas=
49.124,1.000,0.442,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTH+hDHYozQGlWaA0M5RmhdJsaDQ7Gp8Djc+Iwzw09YzcUH41lJZBs5cXzXxlKO0DpdOgNDeau6D+HgWjYBSMglEwCkYBMgAA774G+g==
50.124,1.000,0.442,HISTiQAAAGR42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTLcZUAETGp8ZSjNCaRYozYomz46mH5c+dhzmy0JpbSitBqX5oTQHlOaD0n5QeibUGph75ND0oftnFIyCUTAKRsEoGAVAAADL1Aa2
51.124,1.000,0.442,HISTiQAAAGN42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTHcZsANWKM2CxofR7FCaEYc6qH0MbGg0TJwTzRwY3xJKi0FpPijNgcaPhdIbofQjKK0EpbnQ3DcKRsEoGAWjYBSMAiQAACOuB7k=
52.124,1.000,0.475,HISTiQAAAGd42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI8YUAFUHQMrlGZD46PTHFCaB0ozo+lDp5nQ1PFDaVEobYDGh5nLAqUFoXQalJ4DpZ9DaXEozYlmDyMaPQpGwSgYBaNgFIxoAAB6gAfD
53.124,0.999,0.442,HISTiQAAAF542pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTO+gDHY0mhNK8+AQZ0UTZ8GhjhOH+TD9vFDaEUp7QGllKM2BZr4Mmrq5UHohmnkwfcwMo2AUjIJRMApGwSjAAABYjwfb
54.123,1.001,0.442,HISTiQAAAGt42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTJ+gDGYozQuluaE0B5RmgdJcUJodSvOgibOg0cxo6tnRxIWgtCuUjoTS0lCaD0pzoqk3h9IdUHorlBZHczcjwygYBaNgFIyCUTAKMAAAl8cH4w==
55.124,0.999,0.442,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI+gDEYozQylWaA0K5o41BwGNjRxbjQ+Kw5z0M3jhdJqUNocSkui0TB1IlDaD0pvhdLHobQglOZC89coGAWjYBSMglEwCpAAAH2wB8M=
56.123,1.001,0.442,HISTiQAAAGR42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTB9hDCjNCaU5oDQXDj4blObFoY4VBw2TZ4fSQlDaF0qbQGllKM2P5i5JKO0KpSdA6eVo5sHUMzKMglEwCkbBKBgFowADAACIDQfh
57.124,0.999,0.459,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA8YUAEblGaE0swwhVCaA0qzQGl2KM2Kpg5dPTsazYKmThFKm0JpFSjNi2aOIJQOhdLLofQlKC2Npo4RjR4Fo2AUjIJRMApGARAAAFlsB78=
58.123,1.000,0.442,HISTiQAAAGB42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTHcZsAMmHDQLlGaE0hxQmg1Ks6PxWXHoZ0FTJwWlTaC0OpTmQzMHZl8glF4OpX+jqRdAc+coGAWjYBSMglEwCpAAACNmB7k=
59.123,1.001,0.442,HISTiQAAAF942pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTE9gDCjNgkZzoMmzQml2NHVsaHxmKM2Ipp4Zhz5dKO2KxudDs18QSjtD6alQ+gGUFsOhbxSMglEwCkbBKBgFSAAAnxwHxw==
60.124,0.999,0.492,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTLcZUAEjGs0GpVnQ+MxoNEyeFUqzo5nDiaafDU2dBJRWhdLSUJoDTT8flPaB0rOh9A8orQSlZXD4Cxd/FIyCUTAKRsEoGFEAAAFqB7U=
61.123,0.999,0.442,HISTiQAAAGB42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTDcYUAFUHQMjGh+XODMazQKl2QioY0VTLwqlDaG0MJTmRzNPEEqHQeldUPoLlJaF0lxo9o2CUTAKRsEoGAWjAAkAAMvVB68=
62.122,1.000,18.481,HISTiQAAAIp42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI8ZsAMmHDQrlOaC0mxQmhlKc6Cpg9EsaOpg4pxQWgpKW0FpSSgthKZOFEo7Q2mYR95CaQEozYPDP4wMo2Akg9H4H43nUTAaz6NgNF5G/Tvq71H/Di5/jto76u9Rewev/YxDPBxGwSgYBUgAAP6WB8U=
63.122,1.001,0.459,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTM8ZUAErTAJKs0Fpdhx8VjQ+TB8LGp8Vhz6YeQlQ2hxKS0BpHijNBaX5obQ7lF4GpbdBaRk0cxnR6FEwCkbBKBgFo2AUAAEA1joHzQ==
64.123,1.000,0.442,HISTiQAAAGR42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPehDEaYAAMqYEGTZ4fSHGjqOdDUw2hWND4zGs0GpWWhtBEaXwBK80FpISgdA6VXQ+mLaPp40OwdBaNgFIyCUTAKRgESAABF0ge9
65.123,0.999,0.442,HISTiQAAAGR42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPcYUAEjlGaB0swE+Gxo4mxo8qxofA40cRgtC6UtoLQ8lOaF0lxQmhtKu0PpxVD6C5SWhNL8aP4ZBaNgFIyCUTAKRgESAAA10Ae7
66.122,1.001,0.459,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTM+hDFYozYxGw8TZoDQHmjg3mjyMZoTSLGjqYXx2NPNUoLQrlNaA0nxQmhNKC0Fpfyi9BErvgdLiaPoY0ehRMApGwSgYBaNgFAABANPaB80=
67.123,0.999,0.442,HISTiQAAAGF42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPdhDDSaHUqzoPFZoTQnlGaD0hw4zGFG04euHsaXg9KaUJoPSvOgqReF0hFQej2UfoBmDrp7RsEoGAWjYBSMglGABABLoge9
68.122,1.001,0.475,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTHcZsANGNBqqn4ENSrNCaWY0cRYCfG4ozQGl2aG0IJTWgdJiaPKcUJoPSsdC6R1Q+g2UlkWzDx0wMYyCUTAKRsEoGAWjgAEAIHYHuQ==
69.123,0.999,0.459,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTLcYiAOMUJoNSjOj8dnQ1LNCaXYozYmmjwVKc0BpAShtC6WFoDQ3mnoYPwFK74LSd6C0LJQWhHkQzf2jYBSMglEwCkbBKAACAO+JB7M=
70.122,1.001,0.442,HISTiQAAAGN42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTDcZsANGKM0CpZnRaFY0PhManw1NnAnNPFY0cUUobQSleaA0N5p7OKG0PZTuhkrbQvnSUFoEzfxRMApGwSgYBaNgFCABAKc4BrI=
71.123,0.999,0.426,HISTiQAAAFh42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTHehDBaYAAGaBQfNjEazofFZcfBhtDqUtofSEmjmwOwXgdKBULofQjGiy8PoUTAKRsEoGAWjYBRgAQDzCAa6
72.122,1.001,0.442,HISTiQAAAF142pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTNcZsANGHHwWKM2MRrPgoJnQaBYc+vigtAaUFoDSgmjqeKB0IpReBHWeDJQPo3lx+GMUjIJRMApGwSgYBUAAAIOkBq4=
73.123,1.001,0.475,HISTiQAAAGB42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTNcYsAOoegZGND4LGp8BTR0zGs2Kph6XuSJQ2hBKC0FpPjRzeKC0D5RuhhpnD+XLoulnweHOUTAKRsEoGAWjYEQDAHGaBqw=
74.124,0.999,0.442,HISTiQAAAGJ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTLcYsANGKM0MU4hGs0BpVjQ+G5o6mH52NHlWNHl5KG0JpYWgNBeaOhg/HErPgtJ/obQMmn4OhlEwCkbBKBgFo2AUYAAA7wEHsw==
75.123,1.000,0.459,HISTiQAAAGh42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTLehDGaYAJRmZEAFTGjq0NXDaBY0GqaOC0rzoIlzQGk1KK0DpQWgNBuUZkfTHwylm6HOlYPypdH0M6K5bxSMglEwCkbBKBgFQAAAzUwGtg==
76.123,1.000,0.475,HISTiQAAAGR42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTDcZUAFUHQMjGp8FBw1Tx4YmzoYmz4zDPJi8GJQ2htLCUFoQzTwRKO0BpeugxuhC+bJQWgjNPgY0+0bBKBgFo2AUjIIRDQCpiAay
77.123,1.001,0.459,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPcZsAOoegZmNBpdnBVKc0FpFjR5DjR9LGg0TFwbSptCaRkoLYBmviCUDobSG6D0BSitAKW50cxnZBgFo2AUjIJRMApGARwAAET6B70=
78.124,0.999,0.475,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTFcZsANGNBqqn4EFSrOh8WHqWNHUw2hmHPIwfZxQWgdK80FpDjSaF0p7Q+lpUGPsoXxRKC2Mw32MDKNgFIyCUTAKRsEoYAAAYlAGqg==
79.123,0.999,0.459,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPdgDCjNAqUZ0WiYPDOUZkMTZ8VhDisOdTB5TiitB6U9obQIlOZC0ycApV2gdC/UmTB3SqPpY0bzxygYBaNgFIyCUTAKgAAABCkGvA==
80.122,1.001,0.459,HISTiQAAAGN42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTNcY8ANGKM2Mxoeax8ACpVlxqGNDE0enYeaIQ2lVKC2Aph9Gc0DpWCg9HWqdDpQvCaVF0cxnZBgFo2AUjIJRMApGARwAAHIqBqw=
81.123,0.999,0.557,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTFcZiANQ/QxsUJoRSrNAaWY0PjsaH109K5q5glBaHUrzQ2leNPUcUNobSndDjXeG8sWhtDCafQxo7iAEiFU3CkbBKBgFo2AUDEkAAGNwBqo=
hdrhistogram-go-1.1.2/test/jHiccup-2.0.6.logV1.hlog 0000664 0000000 0000000 00000030267 14111227330 0021462 0 ustar 00root root 0000000 0000000 #[Logged with jHiccup version 2.0.6]
#[Histogram log format version 1.1]
#[StartTime: 1438867590.285 (seconds since epoch), Thu Aug 06 06:26:30 PDT 2015]
"StartTimestamp","Interval_Length","Interval_Max","Interval_Compressed_Histogram"
0.133,1.005,2.802,HISTIgAAAFd42pNpmazIwMAYxgABTBDKT4GBgdnNYMcCBvsPUBkeBkYGZqA8MwMbAzsDC5DFBCTZgJCDQY1BjkGLQZRBlUEPCB8zWDCYMxgDZZkZhgJgHDibAY8JB/A=
1.138,0.998,0.475,HISTIgAAAE542pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDDDACMQsQJKRgYOBlYEZCFmAkB3IB/HkGJQYJBi4gXIyDPGMTAxzGKQZ2EC6AJ7YBtg=
2.136,1.001,0.475,HISTIgAAAEt42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDDDACIfMYMjCwArEzEA9TEBSgkGJQZCBn4GLQYDBh+ESw2cGYSBkYWAEAKZvB9Q=
3.137,1.001,0.492,HISTIgAAAE542pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPUBlGsCwTkGYFYg4GFgZmIIsFDNmBcrIMGgz8DDxAMTGGNIZHDPsZpIFskHlMALndB9o=
4.138,0.999,0.492,HISTIgAAAE142pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPUBkWBjY4BpGsQMwOFGcG6mEBQl8GOwZRBj6gGBtDBMMOhpUMUgxcQDkmBkYAwSAH4w==
5.137,1.003,0.459,HISTIgAAAEx42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPcBmQHBuYZmZgZWABYnYgZmNgBLI5GXQYrBj4wSKiDB4MexgeMwgw8DKwAgCbcgfb
6.140,0.998,0.492,HISTIgAAAE542pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDMiAGaiClYGRgR3MYmdgA5JsQDYLgxKDBgM/kGYBkq4MFxg+MEgyCAFVAs0EALiCB9c=
7.138,1.001,0.475,HISTIgAAAE942pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDDDACMQsDMxAyAaE7ECaFcxnAdLMDMoMagxCDBxAcTGGIIZbDBcZRBm4geYxAQCqKAfZ
8.139,0.997,0.459,HISTIgAAAFB42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDDDACMTMQBXsDCxANguQzcLABoQsQMjKIMegzsADFGNmkGBIYGRmWMIgw8DLwAQAj9EG1Q==
9.136,1.004,0.475,HISTIgAAAEx42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDMiACYyZGRiBEESzACEzkMXCoMmgzCDAwM/AysDH4MXwhOE5gwiDIFA1IwCmuAfX
10.140,0.996,0.459,HISTIgAAAE142pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPUBk2IGYBQiYGZgZWIGQBk0wM7AyMQDYbgy6DOQMHAzeQJcTgzHAFCMWBfGYAm8UH2A==
11.136,1.233,1035.993,HISTIgAAAJx42pNpmazIwMD5jgECmCCUnwIDA7ObwY4FDPYfGFABRAUjGDNCWcxgzMnAChZjYeBn0GbQY2ADsoYCYBy1eRCYyjiA/mGkqnpGiuxiHBI2MxLQy0g12cFiMyNJNP1V0d5MRhTMiCGCC1Nb5cDYjB0y4ZShvUr6msgEhsxQGhUyU1lsIHXjMpEFClmxsLCLks4aHOawMDACAO56ClU=
12.369,0.771,0.459,HISTIgAAAEx42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPSDJMDCxAyMTADMSMQMwGJFmBIiC2NIM8gxADO1BMjMGdYT5DL4M4Ax8DEwCR7Acv
13.140,0.996,0.459,HISTIgAAAEp42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDAjACJRnYmBmYAHTrEAWI5hkAdKSDKoMXEDIxiDI4MlwnJGDQQLIYgIAjsYG0A==
14.136,1.001,0.459,HISTIgAAAE142pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDAjAyMACxMxAVSxAyAqk2YAYJMLAIMmgwSDIwAkUFWXwYzjL8JNBnEGAgREAlsUH1A==
15.137,1.002,0.459,HISTIgAAAEx42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPcBlGBmYGViCEkExAmomBBYp5GYwYdBkkGfgY2BiEGFwZLjJcYBBm4GJgBACcBQfc
16.139,0.998,0.475,HISTIgAAAEt42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDMiAEQiZGViBkAUIWcE62IEsZgYpBm0GHiCbk0GQwYfhAcMjBjEgC6geAKdjB9Q=
17.137,1.003,0.475,HISTIgAAAEl42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDMiACQxZGRgZ2ME0M5BkBrNUGLQZBICizAzcDL4M1xneMEgz8AFlGAGnqwfY
18.140,0.998,0.442,HISTIgAAAE142pNpmazIwMBgxgABTBDKT4GBgdnNYMcCBvsPDAxIcswMjAwsYMjAwAaErEBRFqAYI4MDgzKDKAMfgziDHIM5w0WGkwxiDLwAiiQH1Q==
19.138,1.000,0.459,HISTIgAAAE542pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDAjABITMDIwMXECanYGVgYWBDcxiBpKKDCoMQgzcQBEBBh+GjwynGCQZOBiYAJl6B9c=
20.138,1.002,0.557,HISTIgAAAFF42pNpmazIwMDgwgABTBDKT4GBgdnNYMcCBvsPUBlWBhagLAiyACEzWC0jkMUBxIwMbAyaDJYMfAzsQB4/gxvDM4ZTDNIMPEAZBGAEAP1VB+Y=
21.140,0.998,0.459,HISTIgAAAEt42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDDDACIRAYTBkY2AFqmVjYAFiBiCbmUGQQROIuYGiggwejLwMuxhkgCxGAI58BtQ=
22.138,1.000,0.475,HISTIgAAAE542pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDDDACJRlZGBlYIaqYmdgA0IWoBgjUEyGQZlBCMhnYhBlCGOUYFjLIMnACdIBAJ0WBtg=
23.138,0.998,0.492,HISTIgAAAEx42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDDDADJYFkSxADKLZgJgJyldmUGEQYOBhYGXgYwhlZGTYxyDMwM/ACNTBCACrbwbX
24.136,1.003,0.573,HISTIgAAAE942pNpmazIwMDgxgABTBDKT4GBgdnNYMcCBvsPDDDACITMQBXMDBxAkgUIQWxmMIuFQYFBkYGPgQ0oJsUQwsjMsJ1BkkEAZh7MBAD0rQbn
25.139,1.000,0.459,HISTIgAAAEx42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDDDACCbZGFiBkAOokpGBBchiY2AGQxkGTQZBoAgbAy+DKyM7wykgT4CBEQCPpwbX
26.139,0.997,0.475,HISTIgAAAEx42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPUBlGIGQFyjMDSVYGFjBkgoqyALEigzqDMAMnAy+DGIMfoyTDNAYhBh6QCgCfhQbZ
27.136,1.004,0.442,HISTIgAAAEp42pNpmazIwMBgxgABTBDKT4GBgdnNYMcCBvsPDDDAyMAMxixQdSxANgMDGxAyA6EigyoDJwM3AzsDH4M3w3eGGwyyDDwAhpMH1A==
28.140,0.996,0.459,HISTIgAAAEt42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPUBkWoBwIMgNZ7ECaHcxiYWAEk1wMBgxmDGIM3EC+IIMLw2eGTQz8QFEmAJxuB9k=
29.136,1.000,0.492,HISTIgAAAEp42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDKiAEQhZGNiAmBkIGRlYwXwWBmEGZQZ+MEuQIYWRi2EbgwoDB1AOqAMAqa0G1w==
30.136,1.003,0.459,HISTIgAAAE542pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDDDACIQgwMzAxsAChKxAmhlIMwJZzAxSDEoMvAzsQCjE4MPwnuE+gwQDPwMjAJclB9Y=
31.139,0.998,0.459,HISTIgAAAFF42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPUBkuBmagLBMDCwMbkGRkYAVCFiBmAGJmBj4GRQZdBlmgKjYg6cDwk2E+gwQDDwMzAJzYB9s=
32.137,0.999,0.459,HISTIgAAAEp42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPSDKMYMzCwM7AysAMFGEC0iAWCwM3gwyDBgM/mCfIEMfIzrAeSPMzMAIAj9AG1g==
33.136,1.004,0.459,HISTIgAAAE142pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDDDACJbnAGJWMGRiYAZCJgYWIGRmkGNQZRAAyjIzcDKEMrIy7GGQYRBkYAQAj3YG2g==
34.140,0.999,0.442,HISTIgAAAEl42pNpmazIwMBgxgABTBDKT4GBgdnNYMcCBvsPDDDACITMQMwGh6wMLEDIBBRjZZBiUGLgYeAAsngZ3BleMTxmkGHgBQCIIAfT
35.139,1.001,0.459,HISTIgAAAE142pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPcBkWIGZiYAZCCJuZgY2BFYhZgCQXgwmDNgM/AzuQJ8bgzHCX4TyDCAM3AyMAm0EH2g==
36.140,0.996,0.459,HISTIgAAAEp42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDMiAkYEFjNmAKpmhkBUImRjEGOQZ+BnYGTgYJBhCGD4zXGMQZeBhYAQAlpQH0Q==
37.136,1.004,0.475,HISTIgAAAE542pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPUBlGIGRgYAWqYGZgA5IsQJoFzAPxmRkUGYwZhIAsVgYZBmeG3wwHGCQYOEC6AKnrB9w=
38.140,0.996,0.492,HISTIgAAAE542pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDAjAyMAMhEwM7EDMCoZsQDEOoBgLgzyDIgMPkM/KIMJgxfCI4SODOAMv2DxGALigB9c=
39.136,1.000,0.459,HISTIgAAAEt42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDAjAysAIVMECpFmANBsDB5AG8ZiAWI5BhUEKLCbBEMzIyTCPQYyBl4EJAJEUBtg=
40.136,1.000,0.492,HISTIgAAAE942pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPUBkWIGYGQkYgZgGqY2JgB9LMYMgGhIYMDgyyDBwMrAz8DCEMzxlmMkgDWSDACAC9Gwfg
41.136,1.002,0.492,HISTIgAAAE542pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPcBkWIMkMJFmBkJmBF4hBLBYGTqAcO4Migw+DAAMHUFSMwYjhHMNNII8frJMRAL4nB+I=
42.138,0.998,0.475,HISTIgAAAE542pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDAjAyMAMxKxAyMTAAmSzAVnMQMgC5EszaDFwMXAAefwMngyvGZ4wiDIIgPQAAKfOB9U=
43.136,1.002,0.475,HISTIgAAAE542pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDAxIciwMzAxsQAgimYA8RiDJAeSxMygwKDEIMHAC2YIMvgwvGC4zSDHwA+UZAalrB9o=
44.138,1.002,0.492,HISTIgAAAEx42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDAjACMTMQMgKhCCaBcxiYmADyigyKDFwM7AzcDGIMzgzCjBsBdICQFmgLgCrjQbb
45.140,0.996,0.459,HISTIgAAAEt42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPUBkWBkYwZGFgBaoCYTYgyQ7EbEAxNgZjBiMGfjBfjMGB4QPDLgYhII8JAJv1B9g=
46.136,1.003,0.492,HISTIgAAAFF42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPcBlGIGZhYGVgBtLsDBxAmh3MYwHKsDMYMOgySDBwAfmiQNOOMDxiEGIQBsowMDACALywB+E=
47.139,1.001,0.475,HISTIgAAAE542pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDMiAkYGZgQWImYCYmYEViBmBJBNQTJxBg0GEgZOBjYGPIYjhGsNroIgwUIYRAKbXB9Y=
48.140,1.000,0.442,HISTIgAAAEt42pNpmazIwMBgxgABTBDKT4GBgdnNYMcCBvsPDAjAxMDIwAzG7AysDFxAkpmBBUwyMtgwGDIIM/AycDCIMpgz3GI4CaR5AItmB9k=
49.140,1.000,0.459,HISTIgAAAE142pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDMiAiYERCNkZmIGQlYENyGdmYAGKszCIMcgwcAMhFwM/QzjDK4anQBF+BkYAli4H0w==
50.140,2.452,1895.825,HISTIgAAAKx42pNpmazIwMB1hAECmCCUnwIDA7ObwY4FDPYfGGCAEYiZwWoYgZgZzGcCQwYGVgZhBhEGbgZ2BjYgW4+hjqGcgR/IYgSrohxQx5RRm+lpM+OA6aaXzYwDJDtQNjPiVUmKLC1V08pmRqJoRhqoHhw2E8aMA6aS9jYThkxEqSJe3eAykQkJMqPwSBMbSN2UmMjKwAKHrFRhDS1zOBk4gJATijmw8ge5GgDvng6P
52.592,0.546,0.442,HISTIgAAAEl42pNpmazIwMBgxgABTBDKT4GBgdnNYMcCBvsPUBlmoBwLEDMBWcxgkhEqxgpksTNIMQgxcDGwAfl8DDIM1Qy5DLwMrAB+SwaO
53.138,1.002,0.475,HISTIgAAAE142pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPcBlGBmYgZGRgAWImIMkMFmEDslgYOBnMGEwYJBjYGbgZeBkSGG4xrAXzgGoAq7YH3Q==
54.140,1.000,0.524,HISTIgAAAE942pNpmazIwMDgwAABTBDKT4GBgdnNYMcCBvsPDAjACIQgNWxAzMLACsTMQMwEZDEzKDLIMwgycANZ4gz+DI8Y7jBIM/AA5RghOgHYtgfd
55.140,0.996,0.475,HISTIgAAAEh42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDMiAGaiCBQwZwZgZCNnAumQY1Bh4gDwWBkEGZ4bLjMwMkgxCQBlGAJ0MBtI=
56.136,1.000,0.492,HISTIgAAAE942pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPUBkWoBwjEINIZgZWMIuVgQOIWRnYgLKaDPYMXGBRDgYvhhsMVxhkGASB+hgZGAG66gfd
57.136,1.003,0.492,HISTIgAAAFF42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDDDACIQMDCxAkomBFUizMLAxMANFmIF8NgZFBnUGYQYuoCgfgzfDR4brQB4/2DwmALhmB9s=
58.139,0.997,0.475,HISTIgAAAEt42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPUBlGqDwjAwsQsgFpNgZmKASJyDMoMAgx8AJV8DA4M9xheMsgziAClGMEAKc6B9M=
59.136,1.003,0.492,HISTIgAAAE542pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDAjACITMUMjIwAJUzczACsYsDHIMqgz8DNwM7AyCDN4MVxneM8gz8ABVAXUBALeqB9s=
60.139,0.999,0.459,HISTIgAAAE542pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPUBlmoBwLAyOQBrFAkBmMGYFyrAxcDGYMOgwiDAJANbwMrgznGB4ziDJwMjACAJn0B9c=
61.138,1.001,0.492,HISTIgAAAE942pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDDDACJRlYmBmYGVgY2AB8piBkAuIWYCiLAySDM4MQmAZMQZ/hg8MuxhEGHgg+gC7NQfe
62.139,0.999,0.475,HISTIgAAAEt42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDAgAkmUHklwMrAwsQMwMZINYTEAozaDEIAxkMzPIMKQy8jDMA/J4geKMAJ7UBto=
63.138,1.001,13.959,HISTIgAAAGJ42pNpmazIwMC8igECmCCUnwJQzM1gxwIG+w8MDHA5ZiBmZeBgYASS7AwsYD6IzQakVRjUGEQZuICyYgw2DDcY7gLZwkAVIMDIMNQA46jNA2YW45CwmZEikxhpJwsAR+UIUA==
64.139,0.997,0.492,HISTIgAAAE942pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDMiAhYGNgRUIWRiYGdiBmAUI2cGitgx6DJJAmp2BhyGU4SrDbgYBBg6gCkYGRgC9Qwfe
65.136,1.002,0.459,HISTIgAAAE142pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPcBkWBmYGNgZWMGQB8kFsJgZ2BkYg5mXQYNBnEGbgArL5GNwYXjAcANJ8DIwAnS0H3g==
66.138,0.998,0.459,HISTIgAAAEt42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDAjACIasDOxAkgWoloWBGQiZwGwFBjUGHgYOoBw3gx/DBYbfDMIMQgzMAJalB9I=
67.136,1.002,0.492,HISTIgAAAFF42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDDDAApRlYeBgYAOymYEkKxAyglnsQBjLYMEgwMDNwAkk7RiOMexi4GfgAsozMDACAMCHB+Y=
68.138,1.002,0.459,HISTIgAAAEp42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDDDAzMAKVgGiWYAQRHIAITOYJ89gySDMwAMUFWJwYtjD8JJBioGPgRkAmrYH2w==
69.140,1.212,763.363,HISTIgAAAKR42pNpmazIwMCZwwABTBDKT4GBgdnNYMcCBvsPDMiAEQiZgJgFiFnBqpmg+vgY+IEizGBxFYZshjQGbgZ2II8WgDamjtpMG5sZB8xu2tvMSJE87WRpYzYjSXxqqh4cNjOi0IxYRXHR9FdFfTMZoSQhTJyqgVVJqnnEQSYqq6OFSvJMZEKBzGh8XGLEq6SPieTrZgG2a1igED+LeJXYWYwAsfYJeg==
70.352,0.784,0.475,HISTIgAAAFJ42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPUBkuBm4GTgYWBl4gZmFgY+AAqmUEYhYGdiDNw2DGYAMk+YGQl0GLoZ6hDUizAfUxAgCtOgdN
71.136,1.001,0.492,HISTIgAAAEt42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDAjACMaMDKxAzMzADibZgCQLUESFQQ1I8gBFuBhCGLYzCjMIMYiAVTMBAKvBBtk=
72.137,1.003,0.475,HISTIgAAAEt42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDAjAyMAMxEApBhagSiYgyQjEELYsgzoDLwM7kMfFEMBwlpGLQYaBB6QHAJ0DBtc=
73.140,0.996,0.475,HISTIgAAAE942pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDDDACMTMQJKJgR1IsgLZIB4zAwsQszKIMWgyiANpVgZehgiGMwz3GeQZRIEyTACm5QfS
74.136,1.004,0.459,HISTIgAAAEx42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDAjACJZnZmBlYAFCJiBmBLKZgSQLgyiDJgM3AzsQ8jEkMjxkeAYU4WdgAgCWiAfX
75.140,0.997,0.492,HISTIgAAAEx42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDDDACJZnBkIWMIsNiFmBoiARJgZJBmUGYSCfnYGXoYCRiWEngwiQDdLDCACq1wbX
76.137,1.000,0.442,HISTIgAAAE142pNpmazIwMBgxgABTBDKT4GBgdnNYMcCBvsPDDDACJZnYmBmYANiJiCfmYEFCFmBLE4GeQYFBn4gzcIgxuDNcIzhB4M0gwgAho8H0g==
77.137,1.003,0.459,HISTIgAAAE942pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDMiAkYGZgRWoioWBE8hiZmADirABeawMUgxaDHwMHECeAIMfw2WGrwwiDFwMzACYHQfY
78.140,1.000,0.459,HISTIgAAAFB42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPUBlmIGYEyjMDISsDCwMbkAbx2IBsRgYOBj8GDwZJBnYgX4TBlmEdw2kGUQZ+BkYAnacH3g==
79.140,0.998,0.475,HISTIgAAAE142pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDAjACJRnApLsDMxgkoGBBchiA2JmBhEGHQZBoBgbAz+DL8Npht8M4gwCINUApvkH1A==
80.138,1.002,0.508,HISTIgAAAE542pNpmazIwMBgxwABTBDKT4GBgdnNYMcCBvsPDDDACIQsDMxAzMTACqSZgBgE2RjYgaQUgxaDIFhMnCGY4Q7DXQYJBn4gD6wTAMlCB90=
81.140,0.997,0.557,HISTIgAAAFB42pNpmazIwMDgwgABTBDKT4GBgdnNYMcCBvsPUBlWoBwjAzOQZAFCZiCbhYENyGOFimkz2DPwM/AB+dwMTgzHGJ4zCDDwgNXBACMA/WwH4w==
82.137,0.999,0.475,HISTIgAAAE542pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDDDACMZMQMjCwArEzAxsDJxgEWYgKc+gzsDHwA0UF2AIYrjK8IJBnIEfKMcIAKfXB9Y=
83.136,1.003,0.475,HISTIgAAAEx42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDAxwOUYgycrADIQscMwGFAexpBgUGbgZuBg4GAQZYhluMTxhEGYQAupgBACn3gfZ
84.139,1.001,0.492,HISTIgAAAEx42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDDDACIWsDMwMbGCVzGAeA5DHzCDBoMsgzMAB5MszeDI8ZLjCIMfAC1bBCAC31AfZ
85.140,0.996,0.442,HISTIgAAAEt42pNpmazIwMBgxgABTBDKT4GBgdnNYMcCBvsPUBl2IGQByrMCSTYGDiBkBfNYwSK8DG0M7gzCDJxAOX4GC4ZFDLMZRBg4AZVqB+U=
86.136,1.001,0.557,HISTIgAAAFF42pNpmazIwMDgwgABTBDKT4GBgdnNYMcCBvsPDAjACISsDCxAVSCSDUiD2MxAUTYGcQZNBiEgn5VBgiGU4Q7DYwYxBm6gDAMYg3UDAPppB+I=
87.137,0.999,0.541,HISTIgAAAE142pNpmazIwMDgxAABTBDKT4GBgdnNYMcCBvsPDAjACITMQDUsQJIVTLIAaRDJwiDMoAnEnAwcDCIMVgxXGP4ySDHwwMwD6QUA6PAH3Q==
88.136,1.002,0.475,HISTIgAAAE142pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPUBlGIGQCYxYGVgZ2IMkGxIwMzEAaREowaDLwM3AAebYM6ozdDE4MIkBVQF0An+EG3w==
hdrhistogram-go-1.1.2/test/jHiccup-2.0.7S.logV2.hlog 0000664 0000000 0000000 00000017474 14111227330 0021614 0 ustar 00root root 0000000 0000000 #[Logged with jHiccup version 2.0.7-SNAPSHOT]
#[Histogram log format version 1.2]
#[StartTime: 1441812279.474 (seconds since epoch), Wed Sep 09 08:24:39 PDT 2015]
"StartTimestamp","Interval_Length","Interval_Max","Interval_Compressed_Histogram"
0.127,1.007,2.769,HISTFAAAAEV42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPEBEJISEuATEZMQ4uASkhIR4nrxg9v2lMaxhvMekILGZkKmcCAEf2CsI=
1.134,0.999,0.442,HISTFAAAAEJ42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWLj45FTExAT4pBSEBKa6UkAgBi1uM7xjfMMlwMDABAC0CCjM=
2.133,1.001,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBE+Ph4OLgk5OSkeIS4+LgEeswIDo1+MbmdYNASYAA51CSo=
3.134,1.001,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBExPiEpITEFGTkRKSEeOR6FkCg1hTeMXvNYlHhYABQ5CTo=
4.135,0.997,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBE2PiERBREpBREhER4+Hj4uvQAdrTlMBldYDDhYAAugCKk=
5.132,1.002,0.426,HISTFAAAAEF42pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPEBEWPhElOR4pARUpKTkpGQkxq2mMegZnGI0+MZuIcAEAHo8Jvw==
6.134,0.999,0.442,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWIS4FITEhDiEJERE+GT6ZkhZGLbl7jEqrWHREmFgAIbAJMw==
7.133,0.999,0.459,HISTFAAAAEJ42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNEhEtMQEBBTk5MQERCRkBEQEWlh9FJbg9jE+MS5ig1LhYmADkkCcE=
8.132,1.000,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWIREgEOIQEuGT4xHg41Oo0pIqu8LYwVImwMfGBAAfkgkw
9.132,1.751,1551.892,HISTFAAAAJZ42pNpmSzMwMB0nQECmCCUnwIDA7ObwY4FDPYfYDJMXFxsbGwMbBwszDwsDDxsHFw6RWJMLJMZmcqBMJrJmskSiA2ZZJmkgRBCgmheIORGI1H5rEzMQAyDzFhY2EWRWUwMWCBxQtQQhAIWJiyAaEHyFbKwsLHAADYWAWmiFeKS5gACLsIEzdQICAgBIQShEfhFABXDF+M=
10.883,0.250,0.426,HISTFAAAAD142pNpmSzMwMAgxQABTBDKT4GBgdnNYMcCBvsPEBEeFi4mPg4WLhY2BjY2FhYOBSkpASEtoRA+NgDkCQZR
11.133,1.003,0.524,HISTFAAAAER42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPUBk2HgkZKREpEQUeGSEBAQ6xSYxhCnp7GJ02sWgJsbCwMgEAO0AJSQ==
12.136,0.997,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPUBk2AT4eCQURHgkuEREOHjERlSQhhWuMSV9Y7ERYWAAa4gko
13.133,0.998,0.459,HISTFAAAAD942pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPMBkRIR4RMRk5KQE+PgEhMRmzEjWZJ4whW1hMBNiYAB42CTA=
14.131,1.000,0.492,HISTFAAAAEN42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPUBkWFhE5GT4FKQkRCR4ZCREpqwmMBhpHGG16WHx42JgYmAA6swk+
15.131,1.001,0.442,HISTFAAAAD542pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPMBkuMTEFHgklFRkRATkJERGdKgudfYwRTSwGalwAF2IJOw==
16.132,1.001,0.524,HISTFAAAAEZ42pNpmSzMwMCgxAABTBDKT4GBgdnNYMcCBvsPEBE2IQEFCQkpGREpHj4hKS6NU4z7GDMkuBoYDSYw2wiwMLEyAQBQ3wne
17.133,0.998,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPUBk2DjElIR4RHiExKQE5IT61iCodtXWMdn0sKVJMTAAekAk0
18.131,1.000,0.459,HISTFAAAAEF42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPUBkWISERJSUJESklHhEJEREhqwZGLakPjDZdLBYCHCwAKOkJPg==
19.131,1.000,0.475,HISTFAAAAEF42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPUAk2HjkJBSk+Pi4BMT4xIQE9pxIluTOMPhtYbITY2JgAKLoJOQ==
20.131,1.004,0.475,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBFmPhEJOSEhDi4+ETEeASEhswIVi1+MFjtYvCRYGJgAIP8JNw==
21.135,0.999,0.492,HISTFAAAAEB42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNMhk1AjINDRECAj4+Hi49LKS5CS2EGo1kXa4ANExMDEwAmOQil
22.134,0.997,0.459,HISTFAAAAEB42pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPEBFmHhE+MRExCTEZAS4RMQERvRI1hSuMTidY3KQ4mAAXhgks
23.131,1.004,0.508,HISTFAAAAEB42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNMhotHSEBASEyMg09MQUSIT6tKS2YKY8gfFj8tJmYmJgAsowkz
24.135,0.998,0.492,HISTFAAAAEJ42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPEBEBLjkhETEpET4BISEhCR6FsqAQFY1jjBoTWPQEOJiZAC2aCUY=
25.133,1.002,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPUBkuHh4BITEpMSEpLiE5AS6FoAgdpQuMJk9YzMRYmAAdngk2
26.135,0.998,0.508,HISTFAAAAER42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPUAkOKSEJKTUJOT4+IQkeIT69LYwVCnIbGI0eMZtJsTAxMwEAQvkJyg==
27.133,0.998,0.442,HISTFAAAAEN42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPEBE2CQUZFTkZOSURKQkRMT6NKYwhbYxaOocY/a4xSUmwAQA4pQpb
28.131,1.002,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBGtFDcHIy0jDQUdPjENFZUzjNNYHCT4uBQkzJiYADIGCcY=
29.133,1.460,968.884,HISTFAAAAJZ42pNpmSzMwMDUwgABTBDKT4GBgdnNYMcCBvsPEBE5AwMDJSUFISk2ETYuAS6PQ0xSXCzsTEw7GZnKgdCTyZLJGog1maSZZIFYGkpLMnEz8QIhOolgcTKxAiEzmGRFYxMShbEYUCAalzRBsjSjARYmTIBNjDKFSIIsIMDGAgPYWJRJE1DIxQEEaAQHF2GCNDVsAE2dFJE=
30.593,0.541,0.459,HISTFAAAAEB42pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPEBEFCxUNBRkFMTE+Pj4ZHgGHFYwGIkJcMiIpbEwMTAAdQQhJ
31.134,0.997,0.737,HISTFAAAAER42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPEJGAHsYexqKaIAcPPRMVKTEhoR6mJUxqfBx8LFwCTOxM0kwAfR8KqA==
32.131,1.002,0.508,HISTFAAAAEJ42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNEJKCDMcHJw8jOTUfNSEZGQuUb4x9GHxkJDg2hMA4WViYmAHWrC2k=
33.133,1.000,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBGXGK8QHS09PRM9BRMxBa55jBOY03REhByE3DhYADicCkc=
34.133,0.998,0.442,HISTFAAAAEB42pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPEBE1NzsfJwMVEw0pFS0hOZm4FqYKPy2FAoUJjFIsTAA/mQql
35.131,1.000,0.459,HISTFAAAAEN42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPEBERMy0jPTk5LRUFJQk1GamYdUzHGO0UxIrUljBKsbEwAQBKXgqU
36.131,1.001,0.557,HISTFAAAAEd42pNpmSzMwMCgygABTBDKT4GBgdnNYMcCBvsPEBExJzcNMyU5PRUpLSkJKYWwHqYWRjslkTKNC4wKHGwMTExArUwAi/IKnA==
37.132,1.002,0.442,HISTFAAAAEJ42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPEBEFLRsVPQkTKTkhPT4ZBTm3V4yTGD20pFoYtZqYxESYAEjICok=
38.134,1.000,0.803,HISTFAAAAEJ42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNERM7Hwk3LRslMSkZMQExDLGQL0yTGIC2pKJ1VjCwcTJpMAFufCso=
39.134,0.997,0.492,HISTFAAAAEN42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPEBE5Oz8DPRsFORM5FQkNKaGCA8wtjCoSfBYSTYxCLEBtTABiWgor
40.131,1.000,0.442,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBExJQUNFTElFRUZBRUZDTGfJqYKHzmhHka5ZUwSQmwANK0J+g==
41.131,1.002,0.475,HISTFAAAAEV42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPEBE2Hj45PiEFGSU5EQkpKREJuVmMLYwaWk8YQyYwa3CxMTABAEOgCdQ=
42.133,1.000,0.459,HISTFAAAAD942pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPMBk+Lg4+ER4hMT4hIT4lLh69OAOZZ4wOr1hCpFiYABjUCSY=
43.133,1.002,0.442,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBFmLgEJMTERHjEuCRERBSERoww5rRuMendYPFRYAA3tCTM=
44.135,0.998,0.590,HISTFAAAAEJ42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPUBk+FT0lJTktJSUjOTE1OQGpmnOMdnorGF3WMemxCTIBAEAhCnU=
45.133,0.998,0.442,HISTFAAAAEJ42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWMS0DIyMFOSsNPTEFMSGNA4x+LxidfOp0VjBKcLAAAECLCv4=
46.131,1.004,0.442,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEuMS0VEyMlLSkzGQUJOSkJj6RnjE56WxjNWpik2JgAO34KfQ==
47.135,0.996,0.475,HISTFAAAAEF42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNUgk2GR0ZOQkSAR4aLS0KKTyNtDqOWxjVGu2fMGlJMTEwANsIJvA==
48.131,1.950,1803.551,HISTFAAAAKF42pNpmSzMwMD0mQECmCCUnwIDA7ObwY4FDPYfICKsTExMLCysLCxsbEwMTAIsDHIsWTwsbNsZmcqZKpncmayZLIFYnUmWSRoMIbQkEy8TNxQjkwgWJxMrGDJDaews/KIMKBCNSytBZCYqYGHCBNjEiBckoJAFBNhYYADBwipIhkIC0lwcQIBGcHARJqigBkwKCQgICSAIFA75IlwAeB8ZpQ==
50.081,0.050,0.393,HISTFAAAADl42pNpmSzMwMAgxgABTBDKT4GBgdnNYMcCBvsPEBE2BiYWNiYWZiYGJiZmJg4OLiYuFiYWAMWGBSM=
50.131,1.001,0.442,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBE2Lj4VAQkuJT45KTkOKSExI68eRgeDvB2MfcxxckwAJD8JyA==
51.132,0.999,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPUBk2NgUFGSkNAQEeJSkuKSmxhAojhZADjKuYiyS4WAAlWgm/
52.131,1.002,0.557,HISTFAAAAER42pNpmSzMwMCgxAABTBDKT4GBgdnNYMcCBvsPUBkWPjEFGSMZKQMJJSEhPgkJiyodjZIHjB+YSvh4mBiYWJkAVc8KVw==
53.133,0.998,0.442,HISTFAAAAEJ42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBE2HjklJR0VPSUDHTUxJSkJs02MuxhtrLxKHjH6cbEAADjeCuw=
54.131,1.003,0.442,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPMBkNPzMLIw0NLQ0pFTERCTGLT4wpQSVbGFcwynExAQA/uwsC
55.134,0.997,0.426,HISTFAAAAD942pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPUBkWFTUjCy01BQ0VFRUJGSkJjRamiqA5jHmXGIV4ACoyCmo=
56.131,1.000,0.459,HISTFAAAAEF42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNUhk1FzsrAQElFQ0xCQkJOTEDnE6ObxwrGDsYuJjUODiYASN8KbA==
57.131,1.000,0.459,HISTFAAAAEF42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPMBk5FT0JAzUNKTklKQ0FMaGUJ4wJFjcYk+4wqnAwMAEAQooK6Q==
58.131,1.002,0.442,HISTFAAAAEB42pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPEBEuCRMNJwMlIzUtLR0ZMREZv6IHjFYGdUXLGE14WAA4OwsG
59.133,0.998,0.442,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPMBklExUdIwcdFRUlOTMZPhWXB4wBTssYsy4xKnGwAQA8bAry
60.131,1.000,0.524,HISTFAAAAEJ42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBFmIRcjPR0bFR0lDSk5KQkZpXlMXkF5qxh3MMqIcDIBADy8CoE=
61.131,1.000,26.083,HISTFAAAAF542pNpmSzMwMAQyAABTBDKT4GBgdnNYMcCBvsPMBkFHSMrCzEZLSUFCSkJOTmTf4xRQW2MYT8Y5diYdjIylTNVMrkzWTJZA7EmkzQYykJpSSZeJm4ghpAQFgATDg85
hdrhistogram-go-1.1.2/test/tagged-Log.logV2.hlog 0000664 0000000 0000000 00000012757 14111227330 0021413 0 ustar 00root root 0000000 0000000 #[Logged with jHiccup version 2.0.7-SNAPSHOT, manually edited to duplicate contents with Tag=A]
#[Histogram log format version 1.2]
#[StartTime: 1441812279.474 (seconds since epoch), Wed Sep 09 08:24:39 PDT 2015]
"StartTimestamp","Interval_Length","Interval_Max","Interval_Compressed_Histogram"
0.127,1.007,2.769,HISTFAAAAEV42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPEBEJISEuATEZMQ4uASkhIR4nrxg9v2lMaxhvMekILGZkKmcCAEf2CsI=
Tag=A,0.127,1.007,2.769,HISTFAAAAEV42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPEBEJISEuATEZMQ4uASkhIR4nrxg9v2lMaxhvMekILGZkKmcCAEf2CsI=
1.134,0.999,0.442,HISTFAAAAEJ42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWLj45FTExAT4pBSEBKa6UkAgBi1uM7xjfMMlwMDABAC0CCjM=
Tag=A,1.134,0.999,0.442,HISTFAAAAEJ42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWLj45FTExAT4pBSEBKa6UkAgBi1uM7xjfMMlwMDABAC0CCjM=
2.133,1.001,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBE+Ph4OLgk5OSkeIS4+LgEeswIDo1+MbmdYNASYAA51CSo=
Tag=A,2.133,1.001,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBE+Ph4OLgk5OSkeIS4+LgEeswIDo1+MbmdYNASYAA51CSo=
3.134,1.001,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBExPiEpITEFGTkRKSEeOR6FkCg1hTeMXvNYlHhYABQ5CTo=
Tag=A,3.134,1.001,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBExPiEpITEFGTkRKSEeOR6FkCg1hTeMXvNYlHhYABQ5CTo=
4.135,0.997,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBE2PiERBREpBREhER4+Hj4uvQAdrTlMBldYDDhYAAugCKk=
Tag=A,4.135,0.997,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBE2PiERBREpBREhER4+Hj4uvQAdrTlMBldYDDhYAAugCKk=
5.132,1.002,0.426,HISTFAAAAEF42pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPEBEWPhElOR4pARUpKTkpGQkxq2mMegZnGI0+MZuIcAEAHo8Jvw==
Tag=A,5.132,1.002,0.426,HISTFAAAAEF42pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPEBEWPhElOR4pARUpKTkpGQkxq2mMegZnGI0+MZuIcAEAHo8Jvw==
6.134,0.999,0.442,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWIS4FITEhDiEJERE+GT6ZkhZGLbl7jEqrWHREmFgAIbAJMw==
Tag=A,6.134,0.999,0.442,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWIS4FITEhDiEJERE+GT6ZkhZGLbl7jEqrWHREmFgAIbAJMw==
7.133,0.999,0.459,HISTFAAAAEJ42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNEhEtMQEBBTk5MQERCRkBEQEWlh9FJbg9jE+MS5ig1LhYmADkkCcE=
Tag=A,7.133,0.999,0.459,HISTFAAAAEJ42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNEhEtMQEBBTk5MQERCRkBEQEWlh9FJbg9jE+MS5ig1LhYmADkkCcE=
8.132,1.000,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWIREgEOIQEuGT4xHg41Oo0pIqu8LYwVImwMfGBAAfkgkw
Tag=A,8.132,1.000,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWIREgEOIQEuGT4xHg41Oo0pIqu8LYwVImwMfGBAAfkgkw
9.132,1.751,1551.892,HISTFAAAAJZ42pNpmSzMwMB0nQECmCCUnwIDA7ObwY4FDPYfYDJMXFxsbGwMbBwszDwsDDxsHFw6RWJMLJMZmcqBMJrJmskSiA2ZZJmkgRBCgmheIORGI1H5rEzMQAyDzFhY2EWRWUwMWCBxQtQQhAIWJiyAaEHyFbKwsLHAADYWAWmiFeKS5gACLsIEzdQICAgBIQShEfhFABXDF+M=
Tag=A,9.132,1.751,1551.892,HISTFAAAAJZ42pNpmSzMwMB0nQECmCCUnwIDA7ObwY4FDPYfYDJMXFxsbGwMbBwszDwsDDxsHFw6RWJMLJMZmcqBMJrJmskSiA2ZZJmkgRBCgmheIORGI1H5rEzMQAyDzFhY2EWRWUwMWCBxQtQQhAIWJiyAaEHyFbKwsLHAADYWAWmiFeKS5gACLsIEzdQICAgBIQShEfhFABXDF+M=
10.883,0.250,0.426,HISTFAAAAD142pNpmSzMwMAgxQABTBDKT4GBgdnNYMcCBvsPEBEeFi4mPg4WLhY2BjY2FhYOBSkpASEtoRA+NgDkCQZR
Tag=A,10.883,0.250,0.426,HISTFAAAAD142pNpmSzMwMAgxQABTBDKT4GBgdnNYMcCBvsPEBEeFi4mPg4WLhY2BjY2FhYOBSkpASEtoRA+NgDkCQZR
11.133,1.003,0.524,HISTFAAAAER42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPUBk2HgkZKREpEQUeGSEBAQ6xSYxhCnp7GJ02sWgJsbCwMgEAO0AJSQ==
Tag=A,11.133,1.003,0.524,HISTFAAAAER42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPUBk2HgkZKREpEQUeGSEBAQ6xSYxhCnp7GJ02sWgJsbCwMgEAO0AJSQ==
12.136,0.997,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPUBk2AT4eCQURHgkuEREOHjERlSQhhWuMSV9Y7ERYWAAa4gko
Tag=A,12.136,0.997,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPUBk2AT4eCQURHgkuEREOHjERlSQhhWuMSV9Y7ERYWAAa4gko
13.133,0.998,0.459,HISTFAAAAD942pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPMBkRIR4RMRk5KQE+PgEhMRmzEjWZJ4whW1hMBNiYAB42CTA=
Tag=A,13.133,0.998,0.459,HISTFAAAAD942pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPMBkRIR4RMRk5KQE+PgEhMRmzEjWZJ4whW1hMBNiYAB42CTA=
14.131,1.000,0.492,HISTFAAAAEN42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPUBkWFhE5GT4FKQkRCR4ZCREpqwmMBhpHGG16WHx42JgYmAA6swk+
Tag=A,14.131,1.000,0.492,HISTFAAAAEN42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPUBkWFhE5GT4FKQkRCR4ZCREpqwmMBhpHGG16WHx42JgYmAA6swk+
15.131,1.001,0.442,HISTFAAAAD542pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPMBkuMTEFHgklFRkRATkJERGdKgudfYwRTSwGalwAF2IJOw==
Tag=A,15.131,1.001,0.442,HISTFAAAAD542pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPMBkuMTEFHgklFRkRATkJERGdKgudfYwRTSwGalwAF2IJOw==
16.132,1.001,0.524,HISTFAAAAEZ42pNpmSzMwMCgxAABTBDKT4GBgdnNYMcCBvsPEBE2IQEFCQkpGREpHj4hKS6NU4z7GDMkuBoYDSYw2wiwMLEyAQBQ3wne
Tag=A,16.132,1.001,0.524,HISTFAAAAEZ42pNpmSzMwMCgxAABTBDKT4GBgdnNYMcCBvsPEBE2IQEFCQkpGREpHj4hKS6NU4z7GDMkuBoYDSYw2wiwMLEyAQBQ3wne
17.133,0.998,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPUBk2DjElIR4RHiExKQE5IT61iCodtXWMdn0sKVJMTAAekAk0
Tag=A,17.133,0.998,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPUBk2DjElIR4RHiExKQE5IT61iCodtXWMdn0sKVJMTAAekAk0
18.131,1.000,0.459,HISTFAAAAEF42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPUBkWISERJSUJESklHhEJEREhqwZGLakPjDZdLBYCHCwAKOkJPg==
Tag=A,18.131,1.000,0.459,HISTFAAAAEF42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPUBkWISERJSUJESklHhEJEREhqwZGLakPjDZdLBYCHCwAKOkJPg==
19.131,1.000,0.475,HISTFAAAAEF42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPUAk2HjkJBSk+Pi4BMT4xIQE9pxIluTOMPhtYbITY2JgAKLoJOQ==
Tag=A,19.131,1.000,0.475,HISTFAAAAEF42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPUAk2HjkJBSk+Pi4BMT4xIQE9pxIluTOMPhtYbITY2JgAKLoJOQ==
20.131,1.004,0.475,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBFmPhEJOSEhDi4+ETEeASEhswIVi1+MFjtYvCRYGJgAIP8JNw==
Tag=A,20.131,1.004,0.475,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBFmPhEJOSEhDi4+ETEeASEhswIVi1+MFjtYvCRYGJgAIP8JNw==
hdrhistogram-go-1.1.2/test/ycsb.logV1.hlog 0000664 0000000 0000000 00000674630 14111227330 0020404 0 ustar 00root root 0000000 0000000 #[Logging for: READ]
#[Histogram log format version 1.1]
#[StartTime: 1438613579.295 (seconds since epoch), Mon Aug 03 07:52:59 PDT 2015]
"StartTimestamp","Interval_Length","Interval_Max","Interval_Compressed_Histogram"
1438613579.290,0.660,0.488,HISTggAAAkp42u3dwU1jMRAA0Iw50ASdcKA2JDqgAUqkA5CAEwIFnG9nxn7vsKvVkh977Bk7/tm/d0/Pj6e4fzl9uvn6PT5+vX17e3g9AQAAAEB2cebPu8dDv/ZodygF4gDy/pA6oI4AqKOAvAcAAAAAAAAAAAAAAAAAAAAAAAAAAACA1XiuOAAAAAA/cW6EeQbyBQAAsM8H+YT5or3GGwDrBCA/9427cQCwbooPyBvtxXhjHMRV/CHPPArx005xMD4A1g0Kj7f9srzcoZ8x+fXmPYD1Cn6bT7HovMvSL3krTpgP+mscmR/3MI/0c4P+VDtHD+Mmv/lzfHw/P+f7m9/yU7/UW3HO/bnOfMd4wJx6u1seyOu9x/O/P9/OvD4m52ckn/+jrn+jDujvRvFt9iVLjfNR5xnVvgcWi41/9jobm/W3yni3YvGNzfIlkrV/VHtWf65sdOZf9vsIVZ+34bkTfe8XSeZbXPi6OOh659o1K3/jl3oSk+NaLe+q1oHeuMdB+Z/lvuqo9le5b/w973s/h8+uU9c+P4grxYdj65A4zt3fZb/Ps1q7q+yLLq3rq53HzlrPVn3+0ej5cO1ztSz3Xb7/fZuUp9X+3cLo/eeseltt3csyTyLZz2f//LPr/xPXew7WkuV9lnUxDqoHR12n932zrmOts51t0DzovU/YBl1/9n626n4+JsWn2j4/6/oUSa+XdR2PQa/rvd9QpU70xiNrHc9+DjH6e1+X7nPJ+Xm2ynlkG1xXRueN+Tr3/Xb73rP5Y5zMQ5avF+/0KAca
1438613579.950,1.000,0.511,HISTggAAA3V42u3dy3HcMAyA4QV9SBOpJWkpLWQmHaTRdODMOLl6ViuJJAh+/8G+2BLxFEBS1Ndfv38+4tuPxz/e/v+Oj59f3t+//3kAAAAAADCKePHvW+f7xmT5Zl//mV7u1lsMlic+8acYpP+4+HftoD1Gj78Nsmcv+doi+QR98mEsNt678sljUbmNv6Z+g34AAAD0cQDEJQAAANSHAAAAAAAAAJbHvCIAyJ8AxDkAAAAAAAAAAAAAAKtjnR8A5HHjBv8H+4F/1JZDvAHib3f9BXtBvABDafweANQD5CbvIvIGfQH8jH0AiDP6B3vws5R6Zwf+SX/7yhVJxxOTxh2b2Cvrc0DexRF/4CfqRnXUOvcN+p0yvhAnW9UlsZmfsLs8qm7kL+Kb/PqV+fYN+upyP/PO+rDM8qqrAPm31zjj5LhjMX1FMXmy+W8U9Rt5pIbej/atsai+s8SVcy1yPMey+Xewe0raxTpp1Xypvul7v9F+Mvv61fZNxmR/yZ5PVt3fu3tf8Kqe1Cvn4kI8Y8f6uVoe2X0f2C7r1lFUn1XrsdXWke0TonfU6Z+AEXWN72+gpx2y7j88u44Xk/Xx2fWrnLsd/HirfjKS5oUs8d3r/q/mv7hZT3f191nmj7KNc3Q8eW+pZj5c9fm0SpzGov5w13Oml5xX7R+D9RiD/i9Lvrh6/5bEDtmfd9EpDnftA3vNE/Tyy9n5KZv/z/LTs/sY1NF97Lja+xy969vs74nP3h88Og/v9h5ADIqPVeq2XeYtVu1rq/QHq9VX1fqOVc6zlifl5Z3kv1qPzJ7XnTWPFTdfB3vEWdb105jk77P3IThf8948Okqf7aQ8zqPOIVf2PvptcDxmX0doRf13l/O/qr6Xt/o5cFXX4bNctxXx81HjdB45ZvZ3u88P7NYH9Orjs/jh6vuJVs339vfVzO++l0de9Q07rvo8m6WfXefvdvfHVdbHYrAfz6pbZu3/rFpfxBO/771eX60f6t1fZz3vdfY6Qtys52f5M262S5yU567nWZXvjWRfp5w9jnbQ347681X/yvKe0at5o53UX0viN1ff12yDxtkOjvvV/RZZ9lmtXj9dfW+8d5xns3O17+5VPU+92nnB2fuks/VB7/cvqvlFte/L7vL9o1nji+TjyDqerP6y2nx/1Xi07ik+K8jLj+l3il7+Anb5B94=
1438613580.950,1.000,0.303,HISTggAAAyh42u3d2W0bMRCAYQ0VIE3kNXWkNgPuII2mAwcInBcDwl7kckh+/4MNSSuKcw/3/PH+++0RPx+fPD//x7+/3z8+fv15AAAAALiXuPj51e3vGreWHNHJHkftdFbeuDjvOLh9+fL/7Pdf8erz54vfKy/k2dru1fjPjXGeX8Z7bmy3V//Pi/b6//63nXqNg/OJnXqODX2/8oOy009iY7s4Kf/jZLyWg3asHc9ROW/V+t7Z/LY3v8TF1631cjU/967f2er7LP3Zan1psCO56B2AOGc/8tEbAMgzACC/ARgu/uUpQD4CAHkMAAAAAGC9BkBeArBSfhj1Ok1A3RZn0I8CAIA6dde6EADWrAexuPzAEf+JzuMB8rs6wM/Mnz7Aj/g32Deb/uhfvIhjANbv+fMffUMcgJ7ZZUT5YzB7nJUnOukrkvpxKzlqPZ8xmx4iiR1GzaOeX5ZzXZdN7kg2j63nEs/in7Xzbpk8X9SSqzTSh+MQa9aLvc8bD3Yesg+fTQ+l0/zLZH402n6AUfrj2r83q91XPz7Vqj8ri+lFf6CPH7nOj1ZHI+m6IJLGT7b9U4B+vV99GGV/QK9xHX8n9531rlU8RpJxVvPfOPg66/rNOniO/raW/93tF3cdP4zGdo6k8pdGftOrjt6t797xMuv9HuJmu6ONHlfpI2Y5Hr7afjv9rXn1lO+u/QOlsx1a7W/Lfv5EOdlHl8b+dHSckA+G7LtGiZfRj3eO5vdBH/qsxPJZx69Z39T9uepc1vOx+OFc9ty7Xbm5L60tZ+lsr5jMj+867nf1e7F43D8q26PV+60ok9ozFpNLXzF3H9R7P3Ysoq/R84/nMJm3ujtOnAW/3fW7zhNfq9+Wf/m7erQ9D34ub9DTfLS6Djfb9YSz9l2t78ss/8hr6sE48vOrOf22Vx4f/TzLWvXzrjqQ5f50+q+1+oJs1xtn6bez3wdwtvOZVuljnA8F/iuf9qqn2fUjPwEAYH0AAPIlVvYnfiY+6RXgt+Bf/Bn8IZ/8rieGurJ//NXv5ynurukr2OEShX7ENTuBvgHICwAgr8nPEI/mB4gT8z8i319PvQcy
1438613581.950,1.000,0.096,HISTggAAAq542u3dTY6cMBCGYcq0corcJWeLlBvkIjlZlBtMFpNZBA2iAeN2meddzAhBG7v81Y+Bpr/++Pl9mn7/mt6Z//2P979vb9/+TAAAAAD+pyy2I0m/o/JxrfpTdrZXKs1nnBzPs5//WId92XmeWBlHefK45f6Pfjw29pfF9rN2WH5u3rDTsv3HSv/nlfGv2WPaGOdj5fNH/WhtnPNK/8rK/r36nU/6Rxy0w1b/Y6X95fZjp33XdB1P6jWetFccjANx8vi4OA61zgNn42w06mdW2IWdQNcAAHFe3gAA9TcAcQQAAABQfwIAAKizQIcAAAAAYJ0B+gDoH3QIQHzA9vtYRnmPSdAFcNs4zd8B3CVeiHfgt/yjl3VPJGt3NN3EIOOV19QbdIDRdEDP7NjT+IOdkVif2evZGGQcR/sb/CD1/KFvnZhPft/jOP1uTs56pPe6bzS/v6re4nfy/Uh28vsT6psz/Y9Kenv1822j5k3+2He91WvdV2tccTAObJ2/JNVLtvwQJ+fbc8v3rAtGWU9fvR6MRuehVxyp65Ejj4V5aXq+1tdXsjyXHI3zVq92iZ3bvdXxrftVphzIi7niUTa7yeP3yKOuX/Wtn637HL7/apx7zhfmjW4+oSSb53ix/l/VXqncr1rrwdHWTVc9lxUX96vVfYxSqZ4Z5fpBrfFEcr+4er+6ZKz10F393ryfazfbewyyPY8SN9fvXh26jqHfV6y/s9kpy32FXq4fZMu74lmO9WIMYu9C19Y1U3/3ZVvnuaC/IfSFsXV51To/bq7LXsYvTogLI8cZ+vj8uKjcXm86D358yM9q60M+GVNPvb6X4q7rOs9BQh0KOgTyrceAV9Zx7sft25bX+N8I/aI3QNxiD/WT/EQXGDuOe98l7jzfwU+MCwAAABitrv4LbUgIfA==
1438613582.950,1.000,0.090,HISTggAAAsx42u3dQY7bMAyF4VDOMXqXnq3A3GCu2UVvMF10VkENObZsU9L3L2YAw7Ek8pGiFDv+8fH56/H4/fhm+f4f//5+ff388wAAAMD9hH79t90YdLxxUj9KUn1FpX+v/W/t/63t1z631p9lZ79r56+1v2anteNR0cOyYp/ny/lLxR5RsUftc3vtUTt/2RgvZaPdYqOOX6/3XLnOml2XSntbdfBcuU550x41/ZbK+PeefzRPbo3/2Hj83X7V7BAH+/Nunilv9uPRyG6t7JylLmhlv9Z6y1YvZq1vs9eVrXQVg9oFoJu84xenAADzIjsBEF8AAED9AQAAAACw7gN6iwvxJO/Jy4D8AQAA+p4/zfd0B4yqc3GBnvNs0DPkOXYHvRgn2B24LU7El/zGHrjKP0GHkJ+q16c/8cpeqFEG0wldIoPOYnIdhzifyi9HfyefP8+1UwyeD0YZV7DPqe1nvX9klHwpj4tTuuF38B97jV93Zt/f631eO7rPVJLZK27WXTTWU+v34ZWLdTvr/HH2ewyDX24Zz+jvp9z6PtkYxG+j6z0mG0d0Or6t1zlab0UynY3+Pd7VddrV75merT6IQXQ5W902i76sC87ZDxBX7GLeyLMOcB/6vX45e912dd6e9X7IGCQfnNWO/Sl1xkjzpvpiznVAGUzPZ82DkUxvs+6r7p2XW83nd92n8Hq8nKyHo7ovO9tfLqrLsq/3o9P4bK2PbPV473XH3Xa0j9xHPeX5otz7Ca3uH8z6PXh05r9Z1ouR1E9H1wX2qzBjPB+ty3vLm37HDVfo/q51fZbnC7wvIXfdyh+54vbs+LtrfZBl/+Fqe4m7ueqjbPspfleD/mfyT6t828tz/rOs00e5j2/0/N/7/fPZ6nfzdl/9C3pK7Q92gnxl/LPXbZ5bAeRBAJCX++iH+QMjxxV9AwAwXn3bq73YD5DXAACVvPwXYwwHzw==
1438613583.950,1.000,0.102,HISTggAAAs142u3d0XHbMAzGcYNao7t0tt51gyzQEdsJ0of0odeLS8mSSJD8/R/iS2xJBPABJGQp+vL97dvj8evH44Ptz2t8/Hx///rzAQAAAODvdfJ4x41k9t+1nzh5vNI5jlH5XKlsV558Lir7L0/eLy/6tfb3rTL+2DmuZ/uNit/KznGXJ69Ref3389vO424HdRQ7dXM0f6LyftkZj737q9lXKvmwV8/Pjrvt9GMc1MHR+hMnf9/rn6PHLTfXvVfr4V5Kp+PW7C+N/Xm0nlw1jmhkV9zkn17rv0gyrkjil5LU/0CP+WO0OqXPH7MPj0Xibj4w70E+yzNxZD/EGYC8AwAAANC7f9CXAAAAANBHQVwAegcAAOZ5AOoUIC8AOhEXdvEjgDvyUp6uWSfFfW0dRNLt6RKAea6NPSGOANTD1Paof+aLHva6PxoYR/fyih4+2y9d0A89rLeOj0X0TP+YWRcx+Pb6yzHnj7Pjj0nrQnbdZr+u5OzzdmPyehCDxDFbHxJJx1sm0elVfmv13MrRdJmlfmQ5TxkX210Gy5e4KJ+yrpdmPR9eHnMz+3M4Y5A8wxrnA3rbGQfzhK7+Xz9azXut51f1MVcee44q5Mm685X8y9HHi3+fdc5q57+Ortt799e9/BQv7n/W7zOv1k3W9Wu2fmXW7/OvsqtcpM8s9aaXDmc/X5tlfrTebltn9FfX1K+zdpRkfp3lPkrn1cfoU9TXNfUxi3+umjeCvi/1z6jXyUXnvNsspZtQGukMbdfd4jTn+sO6iX0r5f9q51X9v8O+41h93rRuEPcR9j/aOqj1/a6r3Zef5bqGSKr/u/rM7eS4I1m+mf/myvdZ/UqndDSjn1zPp7/V39w3jt46cV2QfIR6ulqe62fAv/wKuhqhP5AXdKaO0gH7MINePE8OPf0U4kcH/CKPcChOnrfFLojraPEIcbMOgHhgLF3+BvILCGI=
1438613584.950,1.000,0.107,HISTggAAAtF42u3dQW7cMAyFYVNOb9ED9BY9W4HeoBftovtkka4GEMbOyDIlff8igwS2LJKPlOSxo++///zatn8/tk/2/5/x+fP9/effDQAA4EqC/exP0E7w96nzar+Xk+3uD+dF5XN7OG6vtBOV/rxVzt8r1/n2pL2otFMOfj767e2J3VHp716x77Hd/Ul7pXLd/Uk/y8F2juqkFu+tYu/2RV3uJ/VWGuVdHMyno+2cPX8/GJ+j8Ygv9jMuqlOvthcn7WvVn+zjTzTyp3naGP1bfV4K6xIAufMpFrWbnXPZRcf0AvHiV1zh/xBvADAOA5DfAAAAAAAAAAAAC+N7FtAnAADGN0AeQvwAeYT5KVxwS/7IN8D4yG7QB53JZ/4b2b5YxG75A7oA3a3tX+tB/RD/rx83+nzL/d5r7R1l/yN1yDqWrtjJ3zniSU/3+pf/AZhfjF0fy2B+e7YPY6/9eka/XzFKvpRJ41Q6xTl7XcvWnnntvfn1av2KxvnWav/dq+pyucnPV68ns++jPMs4NEo9XHUfxtn0kTUvSme9xcV+7RX3WZ8jXG1f0Gisu2ikk1H9u+q+dbOuD2Pw/F61n7Fo+55DwhXzTHEao97dtX6JTjq9W7cxWN7J2zH9aH5B75n6l2W+kP17vsf2S3Kd9RqvRlv3tb5ftjXSxat5cfa4uDmfz/a3TJ5HWceFePG87OvR3nUwJtFH6+vP9vxUlvF1tvcdI2ncZ7nvluX5mOzv749+v6d33R7l/pn3w8fKpzJJfO7Kj1Wfazjr91bHrZ6voI+R5nnZ5tWt/Od9cPVxpfl1tvV50Dmgvh38e7b3+3qtg7KvT1dbP4e8HYqymL30MpYuez+vKG4569FoeZh13pB9vlBu0gn6ztuNu1ghjvRIlyvbQf90y7/6B3Fjbzt77c8rzqAjOgFgHqAuYlw90CkA9VhdXGE88n9I6QjiCXTR7Qe5mAgK
1438613585.950,1.000,0.137,HISTggAAAq142u3dy3HbMBCAYS2odJFe0o7byEw6SKPpwDnYucjhgG8swO+/cCzZwL6xACnr+6/fPx8Rb48Pps9rfPz0/v7jzwMAAADtiM7G7dW+cZEda79fDpIjFuoZM/NH5VoWjlPTu/Z6mZHr8d/9y9frtHD8Ob3KzHw1uz4XzlPT71WOqfL3r9fnQnmnhXYuM/adXuYrC+Npzq7TSv++vv6s5FNU9C2VvPjHtxl5ykq5y8p6Egvlq+kbO+vJ1joXJ9W5s9a5q/RpLX+sfD8Okqt1PxKdj6+vZU+Mbwd+5h96AMfuE7LlgfyDdQLiCAAAWPfZAQDUGQAAAAAAAAAAAABwHxSQz+wCAFBvwa+AfAXEFf/yfzY/sL+6Bn5jX/A79D3ybUT91B9xCn7mB/LwP3+Jb/qzy375I7k+0WgccQ/16T72aVUfQjxcol8MlrdZv78jbhq3e7+nNgbNO/Kjpb/i4jjYK180skOWPiQGz9tIYtfezpGvOvds1R/14h/rZR/5ru8ay56j2avV99b3Tmm0Ll4dN7HSDtaVvvdd2fqL3uUIeQD18LT92WhxOaq8cXM7ZfWP+x7k7cFesXLfFeKr6Tp9l3zbWz9j47ijn0uvHaf3c4hINn8c7PcsfXscpLc+IWf/uTUOt8bnXc/L42S7Z7k/n/XcYe/4Jfl8Z9mn1X7Yvm+s/ijbetjrc9XyItd+Pvu61/s5wVX9ytVyWG/Yo4d5sz+fG+IlRXx4rrPvvkW/0ed+6Ki4CXkpnxP2L3f9nPnW+5zqeu75R/38yFn3JdbG+yj/LyHbcw7+f5u+WN/Ubn9tPULG/vys91uvY1nWO+dqYEfcNU7EPQD1a9+8e/te9ydzxYt9ey75xb04A+QPIJ/kHwB9A8QBAEB9BgCo2wAAAAAAdLZ//wuQBwdN
1438613586.950,1.000,0.125,HISTggAAAsF42u3dS27bMBCAYQ3V7nuA3iVnK9Ab9KK9QJEs0mwMCKJsSiKH37+I4UQSh/NmTEs/f//5tSz/fiyfrP9f4/Pn+/vb3wUAAADnEYPIUZLPvxXlZP2UyuPLzt+j8vdHzy8bx5WN92Xnenvj1463Plxn3ZErduTdOu/rut93jvv28BqV/lR25N+y/57e985bK/W5VOpvrZzn8qCnx/HWJ+Nua16xMc6WfdaDdtvST1TGQW2cLk/G6dH8U1s34uB5y0G9vJpX4+DxrercXfWv17obN9m31XWz9TP6ZgCA/A5AXsg/f/kXAAB9EAAAAABYDwGAfAQAAPQ9ACDvyZ/sDQDyEzsAAAB1lh4AyD/yHY7Ynf1zxxf70gf4WXb9BD/AgBQqAKAumRd/xEX6o+9z7UC/c/hdJNPTXevySDr/q/UGALi3TxulD2z13K4yqf+gb330up/mrucQRFL9vvqcx1n9PU4a56znNZ79HMK4WE+zrO9Hq1ut+qKo9K9W8s6el7L3SXGxfHf/H+7s+BxtPTpaPxOTxWd2Oe1XapMnY1J/a13/SuPxsvb5z+rpqn4lBtFrtnqSrY/qdf1Ij/qxM/JqsGvX6/B40Z7yRs51pjhi3zv7EXa4Z74xiJ3ZzfrvFflHixvMmXciSbzNms+y79eYpR5H5/EYF/tpNJL7av/2+WndeLPuTyyDyj/KfsZe62EMEp/yY9v8dtX5+irMrP9evy/d++cD4idH/bjbr/hRn3aO5P7B7/quU+yDDH7h+93kYPdx+48slEnis7f1UNmR46i8o+5f7rVPlA/NL+P66Vm5PHfH/Hqs463G7eW+CK/eHy4a93niRVzTH3BOHePf4AfgT/fO99nzy+R+4PMRcps/AIyT/+RFzFSX79o37/6u0A+fPw/1DNaBAP+H+3wD4th8AADyNNgZSBG3H8DGB/A=
1438613587.950,1.000,0.057,HISTggAAAm142u3dy3HbMBCAYS6UuIr0ktoykw7SRDpKG+nAPji5YAYDURSE1/dfOLZAAPvEQobJbz9//TiOP7+PT27/rvF5eX///vcAAADYiciuvcZ/dj8xmH572+fRfuKinlNWdx+Fnx+1X2TjROGaf34r/P442b40zn/esvu/FtrVxqmNG1n/R+W+3A7Zvuj4UrFDFO4r2b0kT/55bb6lcVKlfWT2SJX51+xVm3e60/9Kdr9V7Px2ZzzV/OZW8d9U0WctbtKdfhSV/JEezK+t1oE4GWf35r3W849G7c7K0Wo9Wq0uOzr596z10ijzisHnu2rcYO98CH5ALgDiDBAP7AXwRwAAAPUUAADAePWIegjiAQAAAFBfq9/tf8C+gLgEAMif89kj2BcAgOXrq9mepwOIW/W5/Sv7s8Pj4/KDueIkNpd/Ff+gV/FPX+bJ//rIrf7po4ddzhMm8S9PDiSXc7ziaUb5gx74s/0/f6TfrUib2HWX98IEuyxtb/mWvmbeB8Yi/fS2y2zvA1xF77vnidbr6mjr9lW/3e2c2avy0qvfExqDzi8GkytO+sGu5zBH+z7r1XktNZInLs5ntDwVT+5PfbNGnYU1/at1fl/Fr5K4lU/oi7yT1s+YY5/Sq+6/uv8Wt2vVb6PqffTn18jLff2k99/Ddv+/wlXjQVzPrd84uY+PTu348bl5p8nkPfv9ejRqt1rct5Y7vXjcdGCm/NXrfJS6ZA29hfGGXj/o6bn7cPtSeZTd5q07xCv417p+u9r5HfkDEJ/koxeMZ1d+IA6Bq/7q+Z/yErBKHgMA6yS56Zu+AQDyLrkANMkTHz4PCEs=
1438613588.950,1.000,0.043,HISTggAAAkd42u3dzXHbMBCGYS6kpIr0ktoy4w7cVapJB/YhPnGMAUUNxeXieS+coSgSux/2B7As/Xp7/7Msf5cvbl/H+H/4+Pj9bwEAAMDjxMHXn21HnDzurc+PjXbspb3I761zPjrH9n1/37X3tvH9t875+2Ac6/cvg/u21fHeuW/vuja43/p5951+XB9/Dq7vjevWmU9tML7o6DB6fuucvw/uGzvn423ln5Ee6/H/6JzvxUd05ncb+GHp2Nubr21jXD0a3zHIL1vzcjyYZ0avx5N5NWud22r3q+vrWf1HNZ3iYL2AmdYrqKE33XPEV0xmr3wFAPI8AABQnwFAfgMAqAMAIJ8CAAAA0L8DAAAAsM4Bf63tD/qA/oB4Yw8A+U1eAn1hHosj9k6oU/ADkC5v+L5GzFwfo4gd1fQN/i2Zr83772kX92+1/t481U/wy/7vF79afM+6DmJvrvmnXl+zX44X+dG6CPqSOvVhdntm7T+y7WPu7fdn/93Fs+M3kvgxqz9j0nxQLb+e/XuwV//8zlY/taUme9dnrZg91pfH0JLqma2+XXX81caXZd8+Jo33bH1A9brOjnP7AjqLl5n8wc859Ax6olD+qdL/Zdmfm22/GfKMfhN7dZxtfyjLOnnrft2r+914ch7t3Yd8dj5efR96tr9LVa2v2T6fevRzYlJ9s+vo/yFy6doOHg9dc/eD8WTcVqkXOHa9UDWfzlo3UCsuxCl9zA/A/AZdq/qJ/yFOjrt/8Jv8wz/8THcs1/0eB/EPABfNb5+gRQeX
1438613589.950,1.000,0.055,HISTggAAAol42u3dy5GcMBCAYVqss3AQzsCxucoZODfH4QzWh7UvU0shQEIS+v4LtSoYqZ90w8zq689fP5bl97flg/XfMT4O7+/f/ywAAAA1Ceu/ZZ6ofF1s/J073ispUx8pU97YuO7LzvVn508718XLeWnj+rRzXnzeT2we9z5vzfS3OCjP1jq29PUqV9oY/8/byzFt6GXN1MuyM3/srGdrfN0Zz/XbdUPeyIz3dNB/Uub4WihvvZ2M57N+ezTu9+L57PxHx+Og3a/KmzLPi8z8XPt+mquvo3KVup9Goc9Phee/Ks9Zf+y1Loyb5rlLD9GJvKP3IaXyuL7vWt+jTx8zTz1t/bM935gl/8/qhwD/ByCPAAAAqI8AAHB/Bvi7dUOcgD4xq//xXwCl84S8AgD6FvogJwAAAADoXwAAAKC+BfoiPTx+QvwOIY/8yB4t1xPsBvH9mPXEIHqX1yAv0C878z/yQz1177rO7lNTW0/+L3qf65v9OcHT9515iv+oI+a+f4/m5/qRZ9i19vOt3uyxLnMz+v5Qtev60fcXKrWP3137b17t20rvP9lbPNTab7PU/K375+gk7karB6Kyn9Re51P2/Rt1P9u7PicV9uun+0F0el1ctO8yqH5a1bFP7d9Gj+fS9bU+9Vl69P2iz+Nk1O9heO/VRj56t76R6rbZnsOrZ/oiFZKv9fO44EddzheTxpV8Q18zxmXv6+k9j159L1nqvt5aj9H4/FL1fuosrmrZLd0sf3R2fm95Ntfuo+qlN/tEp31Rr/PMWneRq22ctH6v4L3uHHLbz2Ru/fj9OH9Av35Vqz9q5d/iR/3FfgAgPwEj1rHiEezKfwEAgDpCnUSPAAAAOFDX/QXPKAfg
1438613590.950,1.000,0.053,HISTggAAAfV42u3dUVKDMBAA0GwQvYR38Tpewxlv4NG8iDeoH60/jBlIS0sC7/0wTqEkm90Q2o68fn59pPT9ns6GyzbOm9Pp7ScBALQoGjlfGIpNxyFfOQ4x2eaV8i0vPD5m2pMK7Su1e+nr+f91/+K4/P39fNm+FI4bCucZC68/TbZj4fhcaNc42daO/zATx1j4elrY7lJ8hpl8y4Xz5Jm6qJ2/cmWe5sr8T5XxzQvPmyvrbW5eWbp/7X63vs+t45tWbv+jroOx8nG9Xr+tO8R5y37LP/mrfgDo5frgegTmB+QDAAAAAAAAAAAAAABM+d06AK4H68VLHOUtAID1Wf3/8bR+BDDviR/GWX9BXeiXOK3XLuN/7DryPaZ8NP7txEPczXuYB6DHfPX8OnHpqV3XrgOisX630p7YKK+i0fw82n3YvfsbnfbLfWmfeR132n/u+c7Wm/toR26kzmKnebPWca3eJ8VO54XePn+Lyjo/+nqhV8NO4r1VfUUn79vqc8jVJ7gPcv0XP/1mL+steUrL+bH257zRWV2HupW/O7pPj4Pl1aM/T45G87rX+epo+Xq09WTsLE+hh3WEfK2ThQDML+Ijjhg/UFez51Pf5sWe4xmNjp/8wLymLsC8QGtxbu37NfklTli/GQ+MG2B+6f++AFBfd4/rL6SKB5Y=
1438613591.950,1.000,0.586,HISTggAAAMR42u3WwQ1AQBAF0J0oQAN6cVCZRAcaUpIOVoIWSHb2vQM34ZudmWnb1xLLUR7De4/7OtY6nwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgsxABgP4NAADYt+Usb+8H6HegrpPkEnL+5TvV5bf5RCN1kLU/RmfPy/Jf9aV/52a2fSg6yzkaPz+t74Hmgr4DOI9yBIB3Pl20mAYg
1438613592.950,1.000,1.546,HISTggAAA1142u3c3Y3UMBAA4NgJXSDRAh1QEjUg0QGN0sEhAU8ngn9iO3b2+x64h1t2k/F4PHbu7uP3H9+28PXz9sf+92v4/e+nt7cvPzcAAOCasNj7PuW6xAcA6wAAAIB9CwAAAAAAAAAAAAAAAAAAAMB7/r4CAAAAAK/EeRgAAADYXwMAAPp7AAAAsD8HANA3AQAAAAAAwIw8FwNQJ5FPAAD6IACsP4C6AKCeIC8BULfBPIF/56F8BHWbZ+eh/AXQbwCoO8ZBPAHUG3GEMfkXbsp380l8nhhP44a8QB4AqNuIr/iLK+LPM8YpiPctoqkydNyDeA39nPji8Rn93Ckslv+zxjtcfF1o9DlPq1ev8tzq7ryeZR5Yj/PuP3QeD/vG/8eldf7a/43d94SHxOWuvnGV+tdqXt4d37D4eF29z9n63jBZnofG49C7X4g395+vYrbzlDDJuIfC61vl7/SEwfO+9+t61bXWeXdXfvS6j1mve/V9Unix+191//H0z3vV/ioM7o/Czfcxqr8Kk8R/9PnAavOz976vV77Vjmvv8++nnJufzcvV+sFV+6re+f2U+veU8X76uOaO02zn3nHycW+9n1xlHQuDrzd1rjPr899Zn1df7a9mXX9K8+ZqfEOn/K/t92LjvCi13zTeo59/lc6D2Ph6w+D1MlTOj9T7xEF5WVsPRtXB2Pj1sz0P790Pt65zd/XLreMUC/uQ0ecMq/TNvfqH1eJZ29/Wrkux8XiPmq+9+9Je+85Y2L+M+vmF2fRe/3r18ftN8Vn193rufn511/zqvW+MF8ev9TlI73UkZOZVHJTXpecPMbFvO7vfWDnPzj43N1575rqVO8/fX8fROF9r+/DU/8uNa26fcSSu/0PjetDqOVwsnD+hMH/OHIV5H0/W6bPXxczx3yvzPHVe8/46jsr5lvq6F9axmPh6JPKitG5shddd+j7v69qemQ+586K2bzx7v+NiPp3dd27+X60PsTCftsLr3hL15qyulvZRe2ZehczrSn3/qKyfMbMe5d5fbj6V/pxe7jp+VNarVDzO5v+WWedLzxFKzxlq+6DU/e+F/ULMvJ+tsC7tifpe2t/mzq/c/rd23x8Lx/1qX5bKw9y4Xp2vs54DjX6e0fvnfsKg6272e06/AKGnCLs=
1438613593.950,1.000,1.237,HISTggAABFV42u3d243dNhCA4TPUugsDLiXVpJAA6SANuSR3sAaSPC0gHF1Iakh+/4MX8FmtOPchRR1+//ufv17x58/Xf2z//4x///3x+fnHrxcAAMDIxMn/zzbe6CTnXX2UpHoqJ+W8q6+v9/vYuW7v5959ype/923n97ad68rO5+/0Wd58vu2Me+8+2xv5y0F97F33Tn/bwb/7OminvXHHRb8rb+x31C/3rn9nx3LQbttBuT5O6vd10J5H7fc66e9n71Mq3e+sP96tf3fz/918X7v+Zq3ntf1iFHljUPtk6U9nvS85AP4M/jSTHuiZfxgnAAAAAADIiPUEAAAAAAAAPIn1KfB3gJ8AAAAA+nwA4h0AAHWMfPwMQJ84EYf0Se517cRuAOSRsetcTCYP1oyHEE8A1H80sBv7iVeAf9AvAPmA3saRw7pMH/3FIH4bk/gn6JWe55Mre/6bNd+VZP4mrox/JnnC34W44XfqKRau15G0/7yqt2DnIeQMdpDPyDOsHvWbufUd9JXaD61zzNlvqAPHPu8dX8GuQ443ktxvlHn77HaLQcdhPgR2Iw87sOvM/tD7PbVR5umxSDybh88xPwd9iWP5Cjn74RhcX7Osx8ZiehO38neG+eUs88KnxsHfII+LB4zdD2ffp736c6iorMfe881s/YXvbSbvCvOXrHqrlQ/KCzPF0SzPN2Mw+eRd8zjUr8Ot1xXsR5dPMsijD5vL/6Lz+oF4B/ug1zwM4g78grxr6+cpOxT+sMS8uJX88sda/hL8Ygl7117n5Q/0wK71/MBzTeNeeV606vlb/A/8g54xhp31aeIQeePResYccnpuAfBzcSJv8Q/6enq8/GkMPWX9Pp5W94tF42/VfX3Ol1mzvsUi/o02/uLcwL7j4c999ZmlH5l9HwO/7kOpFBfq+TF/9tyor1/Tm74c/e3k3LW+/eTs55G11qP8k0tv7CG/Y36/Cn47Zb+92vf6ZauDq74fdDcPtO4js6z/eA9vDv+Om7+nL79GaRwX9sm17eviYX2v8vxu9ueVUckPe9WFVecxtfzwqe+N7rXvpnY/0fvcp1r2jZP6eMq/R593jppvate1Ub9PcbU645yAMfNJq3NPsvVdV/e9tOqPaufT1Z5LZ8vD2c/7zqaHbHkvm/6tJ17L39njMLvde52DZh/csT4j6/6t0b9vlF7GipuscVAO+tXd9cNW67nl4nVxcRx35WvdB+xdt1XKN3HTnmfl3i7qsda69tn1oXLTv9+N+6jcpXJ+2U5e3+v9s9pxlGW/Ya/6fjaf1V4nLY3106pfyrLPo1bd671OmK0fGnWd8pUkHp/2g3g47q/qudzsD3rXnaf2RYz2PnvvelMr/iKJn92dx9auk63tOeu+0Gzv79xdH661zjnL86PW58Jlf871dP2Jxp9jDWY/f23UvlB8zqWfIJ/8IF8PN65W61Sr2b+XfPbZtxln630I8hnomz7S6vs3nPAJRQ==
1438613594.950,1.000,0.058,HISTggAAAld42u3dzXHbMBCGYS4odZEi0kFq84w7SHMpIx3YB+uEGQwpCSQI4HkvHFkiufj2DwBt+dfn349l+fd7+WF9HOPn8PX15/8CAACAejzmWUvKXrey46r6xJN2xpvvry/akzZelz4fG8f743jLzisdoxBfpfGVxlOKz7TT/lvB7tyO0vVzO++F9/P75Ne/b+iyFuxOhc/t1T23eynYnQr+TjvjKr/PuuHHUjzesvPXgj5b8bIV53vzKm2cv26M49n43qoTe8e77Mz79cU69ezP04t19ax6e/U+9Op4o5JOcVHdjrYrOvH3UaTB8gYYad1mHBDf4CdAPgEAAJjfAAAAAACAXrGPAADQdwB5I88BAIB5lvmN+Sa/A7C+BnqJY/kBAADMBwB5wc/sG9neqHwd9eEY3YM+7MJ0fmi13xn0B/QtiFPxBv6uokMazD8hHjBRnYrO8xL6oPHJk1bjH+U5QUweR/oLf7SsH2fVnb15PuvzzyT1pqgD+h27jqgLib7yYDl+X+WofZ/YGffRKM+utj8bg+flqPWi13leDO7Pd/9/eIj/LvrdWc8VxYO+MpJevc5X8ZxuSR6LR6jXb+4L1LIjBvdHiDeYZ0+rQ0yW561+Xz7kR9X7RiU/xCR6jbYuv9p9W893R+/D0TiOo7I/4iQdovH9z/a7Oi3PrUvE32j9yTq1D71i8nyi7zXt9T0wY8a7vwfva30zy/d16IN01B/ohLnnu9HZuMUv3QGoOzXq0mjroKuuX2fd34rB7zearuY5dKMvXQFxDH43XgAAoD831fcb7HQH0g==
1438613595.950,1.000,0.061,HISTggAAAj542u3dy03FMBCF4YyTXFECC3qhNiQ6oDyaoANYAJtIxs4lT+f7NxH3YXvOnLEdg8jT69tL170/dt/0P9f4vnx+Pn90AAAAexKNjTsajTvtnP+ofD8K447C9ffzw+TnvjLvqbL9lGl/2l6faXca11joJ6fLUBjXLRPHUIhv+vqY6XfMvJ9rb8joU5vHlHn/odBOn+nvNnl9zPTbFfKc8+lY8OFt8rmu0gepUDd9Rueu8LlhZp0MM+tr7nyRZr5eW9f3zptz57GonN9SpV7/XXfWWrdio3a2jv+s+xsss88D4L6RfgA/AgAAAHCfAACA9dR6D6hDAACsW+AfAACsa3QAAAD2EwDMD5BX8BO20Vm+AJhHjRsAsN18bR63jxAHAAD2EcaBrfMT/2w36Nl0/EGvVfwT6kw9X8i/a4/P/onPjhyn57CoD5zHZ/a96p+exn0V38ZF9Sydf53l+XytjKNV/7fyf0ud46wT39rPKV2qP+vgvj7Y+rw53dnuUc474mR+2Cu+WOh70Xjdun+ll7jWm1f2vn9Rp8Yl7vbnJXr9vX+Lg4yn1TzsdV8SF6+fVv0VdD5FfEE347e/a8ZPwQeH1N35DB/co9dVf38dfL2qnrXtpTv7ObrPj/L3mEt/z3nSMt+7yr46+ALy1WzcZ9c3zdxnqP9z3ZfGxXzvvJGOLeuyVP9JKg/lA/UG8z34D2deb4I/0HDe+JBfsZ3e8kEPutBh6bj5hd/pA/ANAADWefABAMB6gEPl5QvLwgfJ
1438613596.950,1.000,0.042,HISTggAAAg942u3d21HDMBCFYa/iMEMP9EJtzNABTVEOHcADPAk0SoyjrO3vf/HAKJL27EWrcMnT69vLNL2/T9+cfp7x/fj8fP6YAADAvonB8wW9V50n7qR7DNInOnbXlIV6lc73S2PcXI0/Vc96fGu+ep6Hhj31uue/+/hf654aX58a+5+reR6q9aKxfm3P3LC3Xic6+rb23Vq3XKhHb/y5M0/vdbW+j439RmN/9Xw9P82N108dP5QL8yQads2dZ/ln/vbysFxYl0pj39EZV1aqUzGo3vZ0znoOjzrHYiUds/YFe++L4kbrHb0/zX6/AOSBPIN4AeQZAAAAALjf0B0AAAD6KQCAcw0AoK4CgPoG8QIA6hwdAfnCDgDqBsQFxBP4DwDWqj+j/t+guplTX36A/LBvdfwYevAXlsSHuKELfcfvNzZudxwkLm7ld/VFncLt/BXiAPy6Gb34gX73oIgX9y7Iy53nbyTLv0iiXyT1V9Z6dq1uWT6Pzz14jD5Z8nrpuEiWJ5EsnrLFw7Wf87qXnztsvS9e6retfY7u1vy2NF8ieby5X7MLkGfyPWOfCvm4p/5dPCy758gPZNBz9Pvie33f171YPTqyXVnOv+D3Q9jn71z2EWdh/SH9xFr1OVu/GAfPn2z1Vx2+jz/9Po3zNcM+9fnsAgD1lJ72Ly7YS1dxCwDqEgAAzm0AAHD38/sL50EIYA==
1438613597.950,1.000,0.055,HISTggAAAih42u3b3W3bMBAAYB3peIru0q4WIBt0tuyRDdKHNC8EWLIJZZHS970INvRDHo9HSYZ/vPx+3rbXX9uH/HcbH5v3959vGwDADGKS68Ti/XtUe6Jxnhh0vujc/3ObOtvTe1wutp+eKseX582NbdmuW+U8t+I6T8V5atdv7Zcrn2v7le27F9/nyv61ftfiX/b3XnzORf9ulfZulfakSvzL86bKcbdG/LZKv6JxnnK87o3johGHVNkvNdqZOudx7jxf73zNjXZEZ/3JnfUldfar9/rxzevuVdd727XqOjfb+nrWdf8q47Z3e9MGAID7TgD1UxwAwLqJcQLzAQAAAAAAADia3w0Bzl3P1XnrNmC+AaijAJ7Xueb6GQddF76TV7H4vDPOAGvUK/XLOoP8WCX/wny79PO6eqy/ZxqHkH8MyB/5oB7rr/krX+QrjMrbvX5HjYOPP3rex6Dvz1YXY+frzBrHtNg4h3b8cxy177Hj5f33Wr6ah6vU9dnyMeSf57OJ8k/8z5H/ez0vjv5dRL5ds67Gg/Nv1riO7m807uesx6C+Y1zFa973AvLgmuMYxo0Bz/HGda3nvxi03yzx+Gp71YHHrDt7/09g9vfQR71/kt9rxcl4jY1fEpKl7x/9XqhOiOfx/ZVva47v1f4nvfr/U80z6wLqtboB1hXrFebJcc81jKk/veOVLh6n/90vLh4fz4G4vzI+AKjH4mi8xQvkLwAnWcf+ADvdB+0=
1438613598.950,1.000,0.048,HISTggAAAlV42u3cyY3cMBCFYRUl2yn44FwcmwFn4MCcijMYH2YwBwEE1d2UxOX7L0K3RmKx+GrRMv3j959fy/L3+/LO+rGN983b289/CwAAwJlE5ePiZLuiE//FxX6pPZ+0+xxPHr9kzhOF88dBP24Ze3P2rLv9+++3jP27Pv3z85rZnxt/K9iVO18U1qc0v9z4W2b//nypYM+X3fFr5vjcON8K808Ffa07O5bd55L/vmbsXzJ25UgP6ii3zY1fWs9c/GyZ8y2F9V0fjPdUiP+jeSwX/6W8kg6Ok/v70rouT45zVT5/9HzpZHuurtupk74BbesI9AQAQK26ot5APwL6BQD5AwAAABilj9bPAwDUAwAAAOhrAQAAAMD1U4vHAZg33wCAvDiXneoFAADqJID6cR8Xjyevua7jD/MG3cDvFkI+uEL/4ukcP/LrnH12NOrPoJcm86g8MUb8Bz/Q/4B9nPdhoS+nX3oZs468er1A72Pnidp1PL04Xq398WI8xMlx1WqfGE/6o1c9RyVdtz7vaExfo+fbo3EUlfTZut+is7zQe5yO0m/HxfGp35yrP+/9fsHV9dR7bK5f7yTxI93f6K8YZPxe+r9R6+uzdqRJ5jt7vfMe4DXzneV6vNU8eVZ98BxYn3qH/WF9MCCp0vV4Kd+nyvqd9T019+nqjt96Px6T6Ka3+cVNeqs13t3PAaLT9X61Tp5tzyz3F3rLZ70938BYOjxar9yfnEtH1ofeRtQHXY+1XtYTNfTg/6NgfQFAflZPMLIe/L6d+JfH+BsAAACYst/+DzOYB78=
1438613599.950,1.000,0.046,HISTggAAAiZ42u3d3W3CMBSG4RwHkLpDd+k6XaNSN+hc3aUb0AvaG0uWCSEQ2897E5UE/3zn87FjUnj9/PqYpu/36cL8d4zL4Xx++5kAAACwf2Ll+We1M13ZzlhZXhSuj+x9KVsX59fNhfLy95fOR+V8qfxD4fpjofxr9UmV+k+F13N9/v9+ydpV6t+88LqSjqlQXq7XsVBuyq6fKnHI9T4V2lPSf674ZS4cS/Gq1XdY6N+5MM7mig/Swv5PlX5Gpf81n9fyRVTiNl05rqPS3rX5Ny3sz1I91s4nt/Zr7fu3mifvRdr5emBvegE9+NJ44SfQn+4A5BeAnwDIM/IfAACAdRPdARjnAAAAAAAAQJvYHwMAeZUO4EuIO1+B/wEAAGDdBwDyGsQFwT9Dx0uc0JMvem+37w+CPKPdo/shNqpntPwafN9EfOmOEeZJPu9rvWJ/qQ9fG5fb6hp05mt67Pb57kf/7t2t9wPPvq+NB+sXxuGQ7R09b8fgetw7P/Y6vlrdV2plvzOerHNv9/XmN/W33L4wrrrI++JCrxb0i0bjudd2jzrPGq/Y0lcxSL2t5I3Qv6Hy5qP1s99v3a6/dKbTGPNGK/PtXvcJ7/V51V6fC7hXvb19XrW1n1v/vsQ0aJ60PuhTh9HuZ1p9Lsj4a9MvvTzf0+t+nv+7lH/o2M46nw/pA7hvBfgf/Av4HSbxB/h5XTlbP1dvnMpfz+w//4G/IJ4A8KA8+gu8BQfx
1438613600.950,1.000,0.071,HISTggAAAlR42u3dy23bQBAAUM5Q8iE1pJe0lWuAdJAOU4E7cA6OLwQW/EnaD987WLAkUrszsx/asvX9959f0/T35/Rp/n8bn18/Pn68TwDAc4T2cyDeMUg+4sHHb/0+NsZ3Ljw/Vx5fa++8sR25uC0dv7z/Xjh+Ljx/Lrzu8nxfj98W7Z0Lxy2/nxbH5+L8t0L73haPf93/bSWOWejn/WBcs3Bbis995/lKz8+V+5fneyvEIQtxzp31divEfV4ZT7kyDkvxj43nm1buj53zTxbqdut8Mm1s77QSj0f1Z+vz8+TrlM5zdt5/9XHPXrfPtisvum+Mxtpj/448tR83cQQAwPUD6gDUD+oYwLyBOgUAAABcb6N+wLjSP+RPfQKA9RUAAMbZZ9t/g+tr7T72+nGRfKhLeUJeYOQ6Nq7E44r5CHHSH/Gn0/VavWFcIo/aiXphrLrwOZP6Ly71Xsf4e047jIu6eT+bD5/j1uc8V/o8zt7zFQ+Oy7P7WWtdGv19O9aVc7JynGPQOojBxsvezxF+1vuwa+9DWhkH0VidtLLvufr1W63fE7aWF/+vRZxb7ketv1OKRo4P9XCoHVG5foxv/XnlOH/V8akuqu7zev255KOuk64yb+fg/bPOcKV8q49rrLOMOU+frYes1O7W17VsrB5q7VNz43HRWX1E4+3vbdwcjfco8c1B87p3nPf++71R389gH9nHPHmVPLUyzsI4q5r/GCTPvbfD3030GS/riX3Vla87AF61DwX7C+RL/AGwDgDGMWC+0U8AALBfBsC8DVB1PvwHcEYIPw==
1438613601.950,1.000,0.072,HISTggAAAeN42u3dy1HDMBAAUH2ccKUAeqE2ZuiAEmkgHYRDctKMkJyPI9vvHfAEhC2tVvI6wPDx/fMVwu97uMjXY7x8PJ8/TwEAWLcoBIvEJ4r/TXGKd7br/Xoq2uXi9VS0K7+eina9/U6N65Wmon3ZLlfOO1XGmSrXnTr7VxtvrZ/H6/Gt+PyhOE/v+XJx3mNjfnqPtXmdKvN5aMQ1VOKaGu1TYz5DY5yx8/tio/+50r/cmUe5kV+h8jrMjE9tPLkx7kft163rzt2PwszzxMZx7n3n0fFpjfNZ98O40HVGua+rK8QXrB/kl3yzvwAAqGcA6878AQAAAAAAALyen2+KC4D9GwDc/wCw/2Pe5BtYn4wXz2ie5Z04iJe8hmHyLFo38gvk8y7HHcVX/ugfO4+/fHtN/KJ8kCcr7p88Ycl6HM835nG8/sgj9deI9XActD+j122950uD5du9/w9zq/vz1uq2vT1vb+X3mdQJ67xfeP5cRrJO5OMG+iF/xZXtzlfUD/XZQHG1zv5vL57LjFO9te/xqM/cF2Dr603d+5h+u2/bp2+J01r+vjZuJD/Vn8azh7jcW197H0Y+Y/8Tn3Xv6+IHAKgPAAAAPIcgv/ayDqxb6wZxB6x/AAAAAACW4X1knpJXf4EGB50=
1438613602.950,1.000,0.034,HISTggAAAhh42u3dXW6dMBCGYY99km4ie+naKnUBlbqi7ig7SC+S3qBahoQf2zzvDToIzPx8MwaMdF5+/v6R0p9f6Z3ysY33zdvb99cEAABwB2LjcbFxvLzyuPii/dFpXFvbVIlXfDJ/0chDrlwnrxwvKuOkRt6jcf1o2Pm0OK5UziuV36Uy7qOx/Tf+88Kf2vFl8Ts39j9V7HteXP9bI35lo/+PRvzLyvPLSn2lSjzzRn3W9i/Hf6y0ozT0WKuDstHO2HjdaNRXWllHsbKvLPcv854a9fzZPnV0n4+N+9eSdx7vqPnvKP9nv98BXQB0Caib3upSXwAA8xIA9c9eAAAAwH0wAAAAAHgOAwAAADDyfbfnA3EAAMB8CAAwrwD0DrqDuN453vJOTyPaHXSNCeoqJvOHLuRJniH+98xT0BO/cXg+5HPfOIX4DtmH1BHUAT27P6YXzKf7mFSnva9fxKBxA+jzfn73cv29+3rcXB+9P9+fPY/HRfnKg+opdj4/BqufvePWW93ESXZ89X914yIdxM71gP/3w9xpfe+lw7yxTmZ9v3lU/Yz6PVFMktdR7LPeZb66Mg6+V+XPSHHI8k9HE9od8taF3aH+9Rd23T7vIT78u4H/+s6xcTlrnfSq9aSz1y9j5+PupudZvmeQ3z79NJ+Irzj119fXkjuNr/XEc+/zRn+fqU+KJ/8AQL8GoM7EG4D6A4CL+uxfBC8IIg==
1438613603.950,1.000,0.044,HISTggAAAhl42u3d0Y3bMAzGcVNOihuiu9xsB3SDjtVlukHuocmLAIE2XMeS/fu/GM45EkV+JBUlwP389ftrmv5MT+bnNf5dHo/PvxMAAMASYrB5YuNzsXHeGDxe5T/NFwv9U5LXX9waz2fjlcY1s7Mk9t2rffZc2Vk/PzfWMVfjteyfk3XU494TO1p21+973X807Kjv6/W35ns9/2OhH+fEL3Myb23frfH3lr+mxuv3hl3ReH9Lr5l9kaw3En2XZLzMrrIyT24L68uc6D6rH7GybkUS16Xx36tub+1LsfJ+a584uu/FweP00vcBAHAeAX4CAHUSwLXrgToHqFsAoF4AAPQj0AEAAADsBwEA0M9AV6AnAFD3IB7iAdA/+B0AAP0N9AZA/gPyAKBv/sDRcYqd7Ai6BE6rb3nKHyOuP8T9FJTB4xbyl/0Drufs9U49xxX6H9SbHta517lSdBbHoKcu9vk+p/el5xjML0vHKfK7y7q6drzoLI7RuO6ll7Od6/XSD7J5y0b99h637P8mx6A6vYrde9e3d+33YxB/Hq0L52LXqhtn2zfEyfI2TrIO9KnL4FdcOM/8TqTvzwm9zkc36rj+z390OIbdIc/lR0d6eNc5ZunMH0fN0/v3faPV5V7tWFv/z1oX9cEx4hL8OKQOYxC7/I4I4gM6A39v3+/TFd3RCwBA/wW/iRsgHwA6vHJeqAcAAH2hA79/A5E1B6Q=
1438613604.950,1.000,0.045,HISTggAAAiZ42u3dy3HbMBAAUC4oKU2kl9SWmXSQZtJDmnEHzsHWBcmGpCWYBPjehWOTArWLBUDqY3/98fP7NP3+Nb2Z37fxtnl9/fYyAQD8TxysnbXtxiD5a/34SI6Lnfs3Vj7P7Pg52X///fV9Wx48b60stHPff6m2c9LOXP1ct1+3Uz+u3t6Pu1V5iGR/SbZZu3dfkuNuSVy35Phr0n+Xf9/f/BVHVO1H8vg5iS/rn0uSl2vS31kdZP2atTMn7dbnn5I4YmF8lKT9y8bxUhbOV1aOn6XxGAv53jqvxMZxvXYdar1OrY279XoQG/PSy3VGmT5XfHB/HOx5HvX8ZbA8uA8RH/q91bqCOoVQT+IEAAAAAAAAOBHv+4LxDwCA6zL0L+pKXs73fWWA1vNZ7HRe6xuoMwCsJ9CqbkPd02H/q1Mw74gf1NnZ+ycGryd1C8cbB72NyzJIXObDbXmQL9SFvOydD69zWFdGzl90HnecfDyZ989xnxb646n7e81HDF4nof2u6roMEm8c/HFned1klHm/9f3nR/+v7WfX97P6Mzqpv1HG0VHvF0f7P7Zxkjoa9f4lButv9+f6dY/rAB673pvUq/Va/DRSpIBpvM+tms/lqYe69vdnjH/zoXhaxTl6nsqT83zWzzeZd/aNu9fPu+0V516vP3qdZIz87PX5Ku8/qMsz5s33Jftc74Bx1xPzCbi/Nk9gnZFfcaJuAMC6AgAAD183/wH0dwhd
1438613605.950,1.000,0.047,HISTggAAAgp42u3d3W2DMBAAYJ8hUYfoLp2tUjfoMl2iu3SD9CF9smQZUiBgvu8F5YcA57szhKp5/fh8T+n7K90Nf8u4L263t58EALCFOPnxxs7jnieu13o+N56PmftR+7yY+b4ozodT8ThPPN7cOK5LZbtjsRwqy/Jzr8Xjcn9z5fWh8v5LY3upEq9y/ZfKdq7FMlX2c2zEp9yPayW+qXg9Kp9/mbg/Y3F8tXEcGtvLlTjGxPVa67fytza+YyM/WnUwVOooNeLbqtvWdmNin4sH+0dMrPd4sN9OfT5m9qNH55de5uNYOP4sm0chzuC6CdQN8gdAPwUAzN8YbwDA+QXiBwCA801xA8D8Yv7CeAK77Cf6DgCYHwEwf4B6A/QV/cXxn3c8jDuoi7OMh3GVL/LTuJ89HuIkHuKE/Onjelxdym/2P86+b2bJfjH39/16iZf6MU85/v3HRZyPPe7P+h417zQP17o+i53W0VbzbTw5/uaXY89D+SDjtdbvlC/dP+Kf+99b/mf12EUd7f0+bSxc31ufV8TB89h9fOdBz5i/OUZ/A/XXT30t1c/X7kP6mPOXZ17HzV0v5Mcht3+0/y/me116yrve/z5S/TiPOfNxxsnqduvrnl7uA+w9L0O96rsLWOq+/Vr3t1236JM4/8N4yz/khfEC1BvG0ziDfAX0DwD9EeQHyH+AA/brXyZZCE8=
1438613606.950,1.000,0.044,HISTggAAAgd42u3d0U3DMBAA0JzTdgp2YQ3WQWIDxmIZNigfhR9LJydtQhPnvZ+okNT2+XxOS1FfPj7fh+HrbbgZf49xO1yvr98DAMCS4s7fx53ttK4rncUvOy9mnjc1buXO58sej0k70TiW5PzS6G+p2v17fKrOGye2NyaPs5+fquO5MY4hue5SXX+a2K9snKV6vkvSbhaP+rp6vk6N9krS70j6keVhSc67TJyfcxKnkpxXkvi28nFM+lmS8Y6NfBkb10V1fTTybpyY7631la3rIZnfqfWtTKw/U/efmLlPxMz6PCx0fsx8vrntLb1PL9X+VvbfWHicsdK8cKz7aOMQZ6x3kOccff7lFWA/Qz4CALhfAYAe9y/7KPIO5DMAAAB4/QsA2O8B9UM9BOsTAPUX7sv73j4Xbt1jXxI3oN915v/Z1Efkibw3T0eKV4iH/sPB89B6AtQX5Nl67YT1J582PL6l8zoWjnN0Nu/xz+3Gyu2ob4/F/dHvtT5anY+NrsO9rYO1vud2L3GMTtZPbLweRCfrZK3r/J3CuHuOi8/DrNOvEC95ZX7EE/m1o7x1P/Cc1xNHWQd7fz+1tzomTvvM81rZaBywX8svQH3p5/6l1/c9y8rxeXa8vN+5j3Fs9fVHyJNdjc/9dd/zb37lhbgB9FM31DXkFWA9M3f+5QXqFaC+AADQ/X3gD2EtCA0=
1438613607.950,1.000,0.039,HISTggAAAgZ42u3dQU7DMBCF4YzTcgruwtmQuAEXYsN9uEFZlAWyZNlJ0zZ2vn8TAak9fvNm4gREXj8+36fp+2u6Mv8d43q4XN5+JgAAgH/7g8OtKxrPj8afr9U1OstrbDRvujE/0TjfXDkvZcd54by1OPP5U+N4UYgn55SNm3/uVIkzFY7nwrilz52yefNx8njO2fFUmHcufF3StaTfXBhvqsxTW9dafSL7/ksh7pLPUkWXueCTKMR1LowfFX9FYfyo1PvcWM9pYb+Ixj5Tq9NoHDcq86SCTmnl9ai1f04L+1Yt7mlhH1kb19bX0Vg4ztrr57wwnq2v24/ex8VKP8aT4rv3PL3kbZT7gtjJONGJXu4/gfH8FnSwXkDdgd4AAAD2fwDUGQAAAAAAAIC74XkhAAAAALhPAn+OWifqGQDgegJ+hLwA6gaPz1/wAR884XyAj3BUn27VX/3/QvH2tK44mI70UU9A8L3+Ar4B/Xe4nuhcb/V5mw704/ce13G09yWp033mcTQft76Hz/NP9b3Hdd67Hp8Vv/7/2PuftFO/x4PH770/qKd95CM692F0onPiw033u/q2/icv/Aa+GEnvo7+v3N+5q/eRdAr5xAHq3O8/x9AjBs+fPspf1kkfeR1Tz+CfQ+2bPK+H/PIt/cAf6DVfIR4A0PfAVwDUP+gLAAAA2B/vU+dfoPgIPg==
1438613608.950,1.000,0.045,HISTggAAAdp42u3dS07DMBAA0IzTVCw5AHfhbEjcgGtxGG5QFoWNhWWXNq3jvLeJWpLUn5mxlSL15f3jbZo+n6ez+ecY58Pp9Po1AQBjC/28i1RoTww6n1HpZ+n91Niv0uvUOA7p7/1vsX1zdkyNn5tftxTOnyvXzZV25fc7ZO8fG+/36yk775jdr9T/JTvOWXtq/Tpkr5fK9bV+p8Z5TI1/Xwrnp0L7a3FyyI7HSlzU2lOKi6VxnGrzWxr31jwo5fVSud/UmK+t9SAa86BWx1rrbjSe33qf+Z91r3V9uHQduXbdWfv6e43LXvZT2F8DAID9OMBYdU/dBAAAAAAAAEp8nwjyBlB/AADAvpOtxoF4RVyCvME8i0fE0/7iWZ4iPtnqPIgPYCv1Qb3qa5xCXIibAforftaNH79DJO96lMSfeoVxND7G33zuZl8Zg8+n+DRvPbQjxDfcPJ739lw+Nt6fuPD1rdqx9vOouFM7R//9zjRIvYiV52O0OrN2XloHH1uP6LMuQY/ruv2zusfjxtW6/5h+z/KHHdVd8Wt8e+5HGDfjOED/t5o/134/sPZzQvtguD5/5Yl52eK8PWrd6WUdC/nXRTvkL8gHEP8AYB+g3QD4fwYAAAAA9iy+AeGbB5s=
1438613609.950,1.000,0.049,HISTggAAAfR42u3dy00DMRAAUI+TAEXQC7Uh0QEN0BGt0EE4ABeLkRMl2eza710i8tm1Z8ZjgxTx/Pb+WsrnR/mx+32Mn4fj8eWrAACcIpKfI3l9LeNcOh5rGV9ZSRxOjVNtXq/NY+l8rjbn3ey6JbnPQ+f+D831n5r3/z1/SD7fXqf+fz4v+854Dsnn2/tH8vpjMp9sXk/N+9vx7zvjyeLQzrc042/jcmjev0vqIzrxbe8bnbwfknGcer2S5D+r42xe9cL+08vDLqm/2un30RlfdK5Tr9wns7jtO/epZz5/7b4eF/ZZltm/lz6fxJ3uW9Sb9SH/ANP0edQDAAA4J8oHAADOawAA4LwL1gEA4FwA1jGAPjZD37QfiBsA9hvkHwDY5r7svKD+zA/QH+frOzF5fu0b6mykvhPifVb8Qt0hr+pmJfO0Lseqb/kUF9Sx+td/uF3cQzw4I84xWX3HIOtga9/niMHXz+j93PeHbjPu3v/NZe7zQwx+/630zTr5+llLnmIj85o1n1uLx+j9del5+D3eOYPt5tPf8eX3Fvvp7Pus9WGfNN75+uS98qbfoK+Yv/MU6kndq5dl7iM/jNDPQnzvGoetzq9ar8ijOE8+z5BnBs6fulhHXORhHXGWB3UB6so6AetU/EC9g3UA6hmwvgEm6rffmXcIOQ==
1438613610.950,1.000,0.036,HISTggAAAex42u3dy3HbQAwAUGKXUppIL3ZrmUkHLskNpQPn4M+BEwyoyOL3vQuHtijtYgEsLXnsn79ffg3D6/Pwrn8c4/3w9vb0ZwAAWELc+f21xnX29WnJeSTHoTjPvt6SY/W4+Pd97pexeJ6ePE9PHtdmXt+S1xuTeIzJ9z/PL5PzXhxbMf4xGedlEq/P666Tx1+S55uO81qs31ic9+T1WhK3nqz7UMTnWsRtus4/knlFMZ6YWVc9GXcU8Yhi3Fn+3VrXUYy/zewzvZhH1of6zH5Tqebdi3V51H6z9L4UK413K/NE/OURANiXxQtQt6CeAHULAAAAAMB2hPEfIg6gf4A8BvUoDiDPAfQp5AnyaA/jVz+APgvyFdQdAPqzOHHc9YwHXy//9xWfUEf6ifhtZj7yA/W23Lji5OsY+o59Gvlx8rhaT/B+l/UXd9S1+Vkf899PHNb+P6ex8Pzu/f3/+OZ53Hpdmzke7tMWrr9YOJ/ayvV7tM9vlu6j6v4cefaoPt+kBu6X9VU2+XOKPJYvR17ntfLd5zTfe9+pzxyzz3t/SZ/+n/mEOMlvYNX6unX/3tv9eCw0D/1xnnby+vN35dy3bHGcoS45UZ3GzusV+4z84uz3TXHyuKpv+zjiDwC4b7Cu5iOeoC6YsY5/AWYXB9A=
1438613611.950,1.000,0.035,HISTggAAAeN42u3d3W2jQBAAYGbBXIpIAeniajvpOriOUtF1kDzYeVlptNhGhoXve0HGGPZnZlicSH7/++/PMHx+DFfjbRvXzdfX7/8DAHBscbD2x86uHzudr7izvfHg+R4dp5/XpVqnDtX+lrE6viTX+9k/NY6/VMdNSf/fbttf1XGXql1jcv1qXT7M1f5LtZ2rz8/JeF6q12PS7+w6JenHnJxvSt6P5DwlGc85eX9szEM2fqXR/9b4Tkk/sniNZN7HJJ6jkVelkS8l2R8Lzz822j0k+bD0/Ev3Z/1o5XmrHmVxNCxs17RwvuLOevxsnY8nP/+q+9DW7dtq3bC39Vbv6z/r83P0X5wC6iWAOgsAcKT1lPUV4LnO+IJ8AQAAAAAAAIDz8vdzAADAcwKgzumP9kOf8S5/xIPxMr7Iwy3HzfjJlyNcTxwjb43PWu+H8ROX8pyV1tEhPrrOK9/X76PdcZB6sHV/4qBx/qp5k++w3vPX2vfpvf2O4qP1trw4r8eT1GnP933WB+PfV/uis37t7fd7rePUiSOf79nrFfEkfzuez7P8rniId+vsO+q3OoE6gPEEca//AH3WVXWbM8bB0u9j5EffdW2r/58XN+5/rDcv5gl5bbyfva64QL0BAAAAALYQ39rBB8k=
1438613612.950,1.000,0.025,HISTggAAAdZ42u3d0VHDMAzG8chOOwW7sA5bcNyxAYswGhvAQ+HFdzqHUtIk/v1fcmkTW5Y+S0r7kIfXt5dpen+aLtTvY1wOz5+PHxMAAMA9iZXvG8U/S8eNG89bmvPafL50vrLQ/nMzz5TM93N+as5rch7N9XNzXTt+ba6rneOczFc69rT3nZJx58TOdp658eOcjNvOF8l17TiRHGsSt1MSr9pZV+3Y2+pp7ug1i8+5o5+S2JHpMRbqNRL9lySekejhnPildPRzau7v2d3TXe2M0/s+Fua16OSZpePVf87ncaV9vx1/r3X3VnUqVrYP0JcC6+gpNq5z++bYfhvt94ygQ+uybgAAAEAfCwBQDwAAUG/VcwDwHAUAAAD9JEBnAOQj8CvoBbBPAToH//EPAEAdwo7jHvRj/wH2F8SfX0AP+lrxwCH2LZ3Rj/VD3PjlyP4NdgD6SftafCAuoAuI05Xr++v7lPRJ29BV7NRPW3nOj43ZF4Po2Pti/4fS8Ye+5L51LgbT8VH7hVHrxqjxUKdwhLwa9H3I58299eH0sY/9Nfr/acHOTdknb4gX1otDDK5fQN62T61v2frk3XX0Ueh/E+sK/gLkHf2M/MUf/ADx3pEfQjz3qasvEnUHgQ==
1438613613.950,1.000,0.069,HISTggAAAet42u3d3U3DMBAAYJ+TAkOwC7MhsQHLsA4bsEF5aJ8iLKclaRL7+x6I1Obn7JzPTluJ14/P95S+v9LFcN3G5e/5/PaTAID/ic7iDvfrUHHESvvFjcdPj8uF12vnzX+ua8vXm+6fKtc/Xbdj4fg82S8m+w+F96fnHwpxjIX2jYX3c+G6Q+H1XOifp8k2Va4zPS4X4jxV7sdQif+l0B+1PBgL+TBW8rKUB6kQb67k51DJ71SJM2aOp6jEN8y8D88zx09UxslYGb+18b1U3YqZ9WvpOhszt/e2b6n4842vH32dcPT1C9adAOoWAJjPAAAAAABa4vNcAAAA8FwNAOZdAAAAz1sAqNcAmFd6m3fMr8BS9UM9aav+Rif3NQ46nrIhJJ8eEHc03o8hX7vop5Afxpn26FftWCW+kBfy0/Pqw9bha/3fNPksXjwHuV/HPn/s7Py1+TkazfdYqd9jpfhi43xpvS6uned7XwfHxtfL/+wnedxXe/ZeF/Y6b64VVy/fe+aN77Pn023WV57H2liHaQ+0V1/8PhzwObq4xYvn7mONB/3bRt2yDmeP9dbnMPts/72/hzD/HLvuRSdxIc9pP096+5279TfIQ+QtAGD9gP7UXgD1VD8gP0BeA2DeMe/JCwAAAADYk/gFln4IXQ==
1438613614.950,1.000,0.035,HISTggAAAc142u3cy1HDMBAAUK/sACVwoBdqY4YO6IiK6CAcAheBRgr4o9jvXTw4xhKr3bXjZHh6fXsZhvfH4WL82sZlcz4/fwwAAMwnrtxfkxY6fzSeL2aaf1z5eips8/nk+6fC/lQZN2X3y1O2jez1U2F++fin3+/Df/ycjzdWtqlwfGm+38ffZfN6aJxnqow/ZfHNz3NfiMtUmFcprqfC+UrHDYV5p8Z1HgtxTo3jpz+ua23/UMjfVNlfWp9U6Tdjpe5q/SIq442VPpSu7GOt8xka4xuN/XSY6bjer2ux8nhbxS9ufJ3cfwHoL7D3+gn1DfIb1COsmr/yGQAAAAAAAABun8//xYfl80IegT6BOHPcfJGnAAD0LLnvxzrAKnk81/8lDPUP6L+L9B39C3Xm79AP6Pl9gvzklvqbPEWdHU/qfD30JfXA/Ovme3hwnLwO6yBOqDd1IB93MI9e3h+u/Xy5t/v2dPA6iBuZz9bPkV1Ptu3TvfSVXvp1L59Hx87iXav/NNN5tq7LOFh/APlzvLjHQr8nX3B9w7pYN/qPr+8hoi7gf/kof/UJ62L+WO+WceWbOpYH/cXR8235A6gvAHB9AwDcLyAfAXbUBz8BXd4HrQ==
1438613615.950,1.000,0.047,HISTggAAAdl42u3b0W2DMBAAUHyQJkN0l85WqRt0ru7SDdKPND+WTnZKUgi894Mg4Ji7szGN+vrx+T4MX9/Dxfi7LZfN+fx2/QQAWLsy8/PhwdezzziXZD+7z2gcL41t1s7186la947V8Wj0+5BcN3X25yX5nrq9Q2M/Gv26Hj9W55+q86Jq91hdH0n7Ue0PyXVT0v6YnP+SHK+/Z0ry2YpH3a9T0k7d30O1jaS9kuSrNOotkrrM6nls5KM0+hON8ZXFLYvj2DivNMZx7zzYO5/EjfPO1Dmv9O634jf3+R2d12X3HzPn9bjTdbe205uXez2neuvH+gRxkxdxAAAA8F4CxgcAniOgnkH9A2CeBwBgretO60/vGQDgOQcAANatAABYb1q3gvkDML7ZbjzVw7byEE+W/7KzejTe2GJ9qGvY3zgq+vFQYb7FOBCnld6PemML9e//ZveRd/llz8/xR81zZWNxepbn1VLxiYXyMC48bnr3l6qnstHxsrZ5oewkfnPnmXhQPGNl9VWeZBz4ffU+6yPvEagH+RIf1MH2+1n+eJ7fx5Fvls6jeuAZ617dArDndffe/k9q6fVr/NN9hCHjfdn9iwvyBQAAAADchb8TAphHAQCsd1hNvf0A1r0Img==
1438613616.950,1.000,0.039,HISTggAAAet42u3dy1HDMBAAUK/tJE3QC23QDjN0QE/UQwfhEDgg0EgOxLGl9y4ZjK3vamUnmcnDy+vzMLw9DRfT52tcXs7nx/cBAKAlUTgeK9V37Xm1ppXavdSYKT8Wtj8qyx1/v8/9cd6cnDdWvh6S8uZMfWl75uT/abnH5Ly03ClTT9rfOXO81M9jppxI+p22Lx2P9Pqvck+ZcqdCObl+zZk4SI/n4mUqxMmcKe9Q2a5TZp6ich7TOB0K1+XKz62vqGzfVJjfqXI9RiE/HCrzxViY36Fw3bX5OSqPx5X1l/LV0nbeel8aF5b31/pvtT8NG6lv7Xpjo/0H2Gp+BvEKgH0LxDMAAAAAAEBvfO4CAPvbt+3fAAAAbT/3gXjcTv+sSwDsp8YbQN7UX6Cv9S9fiA/Mf+9x1mretB8gPxk/433fcent9xKis3qtL/lBPwGgz/3Hfe867al9nir9viL3jYf//t7y3t7/iIV/t5YHrcs+n8di5/2Pla93X7FsP2nlc87Y2bqLleqPG41HK/tvr/tKa/nMvHquN74g3hA3mG/xCvtab73ex+/1e49bff9QPm9zXt0nrNuPMO67jAP57/s4GA9uEQfed8b4QZtxv/T7s8aVLcy3+JAHQTwibvXLOAPg/gDELwAN7BsfXN8H7A==
1438613617.950,1.000,0.031,HISTggAAAdR42u3dwU3DMBQA0PwkpRIzsAujISQ24MIuLMUGcGi5WPq4LWmT2u9dLIqdON/+jhMk+vT2/joMnx/DwXQs41C8fD9/DQDAbYQQiP+GrzPOrDeeefwxaR9JOVbOW/5+OvE8tf5NyfF+y92xnJN284ll1q4835xcZyT9eijq7Yr6u0r7Ml77oizjs0/azUm7h+R6H0+My5zEZU76F8l41uqPlfplvMfKfJ+K64yi/ZDU3yWfR2XeD8l4jJV2UVkXpiT+QyWPoxLfOHN9iCuvm/HP9a1Wb+l1O1sPa8ePheO31n02Fq4fN5o397qPuPQ6x0bjgTgaN7jN86d+AgDg+cb+EwAAAADol/eiAAAAAAD3wftcANwfYNt5JR8xH+h9Hpv3APYtQNv55//P9xmnaPR8IW/oeHxDP5qafyHvEDcw7zHexrmLeWWeGxfEHc/zbG/96O0987W+H9L9Zdl+X/t7oKLTfD81H1qdt7FSP6LRvG11HYsrH2fr33MXZ/689n3g0v1prJTfsbG4by1/YuE86nV/5e+urlcckQf624LJeK7af/P2PuJw6/cp5gXyVlzgL6N8gOb2f+KN+IgzwFbWJesh8gjAegcAYJ/R2Tj/ANErB64=
1438613618.950,1.000,0.035,HISTggAAAc142u3dQW7CMBAAwKyTwCf6l76tUn/QF/VHPfZGD8DF0soIaIKTmUtE1Njxer0xINS3z6+PYfj+Hc7GyzHOh9Pp/WcAAB4TQrCrOMaL9RtPai8Wus/rsVSvx+p8aVx3qF5fTZfj3Ggv6z/rb6zaPyTXZa/HRj9j0u6Y9B/VOOt2D0m7c9Lu9fwx+bs5abeOe308JvM2JeMak3yYkvmYk/PRaHdq5E99/dDob0riVpLzQyMP6zzL8r0kx2x82XqLG9dvacS7tX6zfkoS99KoI626cmu9at1Xq27Gk+rkcOd9P/qciCQ/4852ii3NovuF2Pj4AOtUfAEAwD4Y+QKg/gEA2CcBAADgfSQA6rf4gLw2LrC+QB4DANjfgHUA1g3mDZbM67Cu1CPxg1XzXL6zp32F5wWvmAchTl3HKzq9j9hpHnp+Ik/kbZhfOpgX871OXM0nW9rvb+V+Qv5t4v78Lo49x83n1fftx9aqL71/b7b3/1O/VN6o/9uM01LvF+VPH3n4X/Ptexl1CVBf2E/8QjzkrfGsPh6/T1FfkMfGA/JbfPe5z5MfxveMdkOcus4vdQJQD5DPvErczJv4AAD2ObQVIQDUbehnvfwBo7kIog==
1438613619.950,1.000,0.043,HISTggAAAcF42u3dy1HDMBAAUK0/oQkKoAtqY4YO6Ipq6CAcwoERs5FxbE9iv3fxJCPJ0molyyc/v3+8lfL5Ui76n2tcLufz61cBAPgtNmo3ZvYjZvY37iResVG/Y2Y8p/a7Va9rlO+qa6s/dXvVufZPO0PSbp/0a0h+P1XtD1U7Y9J+X9Ubk/qn6v+6fFeVG6vfrfv2Sf0xKVePZ6ziMFblh6TekMzz1HJZ/PoknpG00yX97ZM4xMQ49hPz7JTkcdafmNifmDj+oZGn2bosjfUZjftm9bP1XJJxleQ+Q2Of6m7cn8tK++d/9+lbn1u3Pj+Wfg7j3Kj/4iFeAIDnvHgC2P8QHwAA5zgAAOceAAAA7zWA9QsAOG+AvAUAnCcA6x3kP/LPOMXNvIkX8g/zLk7X72N+wP611bjtN8fQyY9drWvzgrwwH3GQPFj7+132YfuV+BnX3H7IY/l0xLgt/d1O88i1+Y6F8mBqXsfOxp3p7mzdhfX/kHH2/dpt94O9xSvkwa7Hbf+WB8YpDrDE+xniwfp5I7/EyXgfbx2GfIHD5q/19ljxNl/yB/MK8tJ6Eg/AukfeAIDnGgDgfAAAANzJe8c3l5oHyg==
1438613620.950,1.000,0.027,HISTggAAAat42u3dS07DMBAAUNv5tFKvwF04GkLiBlyFg3EDWBQ2I41caApp8t4mapv4MzN20rLg4eX1uZS3Yzkbvo71fHj6eHwvAAB/qV55fr2TcS/dX71yfLXzfvvhuGJ7LTxvZteNSTut08/QuW5I3m/JefE4h2PrjLck1w/h+lP4fErOH8N1U+jnlIz7kMx7Cu1+n38MxzmcN4bPW9L+HPov4fXcyc+QvF86+c1ej0n7U9JfS+LVknaz17G9Q2d844V12Tp1VpL8xHVWOush2xd65196bJ11Pvxwn6q/3D+vbe9W/f3X/aysdBzIPwDuM+578g/Wi/EA2N8AAMDzLwAAALAtfqcA6wr2sK6sS7AfiBMA4P5vXAC4zwGw7v3Xfs891Ls6BXxPAqx7cRcH81l7nKp6Qpzlf6fzrTvPU1XvnmcA623D8ZEHsI4816srcVmftvB8l/7/p+ppmf62Gu+9/n7W+7yupP56v/fVG9e1OltHna4tT3Xn+wTyZ/6A/UB8QD35nqW+zFPc1SvriKt8WD9gnex7/v4eDupN/swL+RU35BeAre6/9RNg9wcX
1438613621.950,1.000,0.031,HISTggAAAc542u3dSU7DMBQAUA8pVJyBu3A0hMQNuAh7LsUNYFFWX1hOKUnq5r1N1DSD/fM9pI2Ux9e3l5Q+3tNJ/Vnm0+L56+kzAQD7ksNytHJf6/G2Ok9eaLvcyZfe5xLWl85+Jayfwvw1Nbbrnb+G48X1NayP5ayNZfz+EJaxPHc/y2PYbgqfS1j/ED7fd+oXzxvPd2yUd2rUawrlb+3XqkfpxLk28iCeP8YxzzxuLH9txGlq7HdotINpZn5Pje1beX9o1LsVx7ntL3Xyu3Tae2mct3bKUTv1rjP7hzSzfOf2g/nM7euF/frc/i+f2Y+vNa7nC79fa9wcbX5z6/OuIpTyAdCOkNfqAQBg/gLoNwAAML8EAAAAhuN3AEbKN/kKYDxQTgAAMO8FAADzYtBOEV9gH/2Q/gnjJvJD3o5U7yyubBC3pd8bMurznnkneaI9isuer+tf36skP7Qncbi8XlmeyGOGib/55TJxy8q/Sn4Zf2+z3Yz2O0OWP5vEOYu38ovHauWVJ+Kzh+vgPdug3zS+r3u/5H4ecV4+LuIEoD9E3iIfbimv/uv+Uvva1/3PtT+Xv1W/cS3Pu/ifXTt2/VxHkO+4TgD6UwCAX+cj35IAB7w=
1438613622.950,1.000,0.578,HISTggAAAcF42u3aQU7DMBAAQK+TOx/gLxy48C0kfsBH+UGRgFMly06a1saZOVC1Kom9u3Y2UZ8/Pt9TvL6lX8vfa/z8fbpcXr4SAMAMQgh2xSE6jysKr7X/v36/VI5bkgvfy5XzRuP4St9frz6vjX9tPO5SOF7eOI/cmL+1Mo5ojHvp/dI431T4PDfmq1a3ufKadtZD3riOciWOsTHuW9dvaZ3kTvtP3Hj+dFAc0s46SDcez/VOn6DvAgBA3wfYXwAAAAAAAAAAAAAAgKP53T8AoE+QFwAAAPc3oP4BANd1+TJe5At1gDwC9iVxQn7FSzwAANd/AAD0k6BOxBUAAP0egH0QAEA/hTwBAACA+18AANA/AwAA7jMAAAAA7svzDgAAfRGAfRvUHfIrvoB9BHkSN/NGfkFdi4O8mj/yKQ7IJ/3jHeIsrhPXQUw6b/v0OeMl7+IJvddB6ft5kHX3X/q9OFndPPp8+eDxxuT53DufOEn9zT5u/dBj4hvyfsr5jf68z33yGNfNsG6HyHeI913kxrhbB67roM6P7d/iQfG2/4xd16Mff2+deb5i/3S96n8/G4OOy3ro239Yt/YRxJdJ1vU3gkAGiQ==
1438613623.950,1.000,1.374,HISTggAAA0d42u3c2W0bMRAAUA3VRoCUknpShoF0kEbTgQPk+DFgrJbncPe9jxhGZIk7HJJDrqQvP36+PeL7r8dfz38/48+/X9/fv/3/HwAAYBcx+PG7XV/v141N23/VfrlbnAEAsN8DAAAAAAAAAAAAAAAAAACAq/F5egAAAADYh/M8AAAAAACAudyfAeMAjD/A+AXMOwBgvQLAugAYtwBgfQaMdwCwDgMA1nPAuAUAAHU2YLwC5gXAOEY/6yf0k+ultl/1917jQ3+Beebuin4BzPPmqxNxCPFE/5O0X0O8jFPAeAbgsutAaDcN8Qx5gfEwPR9DfEkQd/0oHleMZyR7vH5iZf/cNb/ltf65cl7L72vn7V0/PySv1+ZPGG9cML/jpuNIXl8jr2PT/Fx9ju7c9B51SGl8/rufs8w+N43B/XG3dUBdkTsed+23UfXMLvPJ7t/7EI15PrtOy36unKUebW3HLp+jj8VxtE7uFZdV59Cr8yga2xUXy4PR88nsPLv7+8Vr4z27flrVb1natev3LcSm+V3bjnLzOicm91PveMcmeb37uNwlb+MgT3fbx8+ul6PxcWVyu2vbvzo/e7WzNP7d7Dow2zhbFbfZ69gu81Gvfc6qvFp1Lrrr9cbF4h2LXi8m9UfpFI9Z97l671OO4j07H2fVGb3yP9v9idH91VpPj77esvjva19n1uuerf8+jrvyye9Z9+3ReN2z23c0H5fF467Xuh2VeZ9lX/tYnB9H++bavO+VL+VkHmT7nNGr8VtVr3z0fHG9qb3/Oeo6zs5nrfX6rDyLkz+zz3erzyWzvA981vlatjpq1P6ldp6MQf03eh9/1K7SuJ7Ozq+SJJ97t3vUfD06Xs/O+42zdc+q84le90lHrYu17Z41P0dj3jw658eo+0tZ7j/3qidbja5PysnXffX6Zp0blEXzyKx8yXZ+92qcyqB2jlrf4+R4iMn5vZvSOE+svk/b61w+y34vWz5le990bd2w6n02vT5HPmvdqb2P3Xp/Jev3f8Tg8Xs2L0tlvF7Nq+fguGTZH/W6vtb6u3X/uPu+6TH4eWuf/+z+KSrrz+icP73iUXtO2jo/rnof0Oq6bNTnEHbdl2SpZ7M8f/wGkp0I0A==
1438613624.950,1.000,1.128,HISTggAAArN42u3dbU7bMBgA4LxOCj3EJI7CXXaCXWESN9hFd4MiMfhjyXNa2sR2nucHVaFN7ffDTqigP97+/J7i56/pn/nzNj6+vlwur38nAIAtRCOvH42Mp9W4leJT+n668rjzynykym1pXF/HP33eLpXjRHb/VLjNH7esfL1T9riU3f96/FPleKfC9yN7/nPheU+F+Zwr48+f95yN85w9LlXmm8+v9POlcL9UT3MlfqXjl/orFfId2f2lUNdzFpfSeGt1uVT6pXSbbuynqfL6c6UPp8I8ppWvV5pH7fjzndfLdOO6ee3P48bjP2pfaH1fjAc/r5e4xjcfH43kv5fzMOQNsN6IKwAAzvfMC/QJAAAAuH4FAHAeB/pAvwDgPAsAAOD+1z2ujwAes76CPkFckUfQN6hP81EXiDvoG30NAC3tc/ZX9B2gb9qbV3Qeb+vrWHFs5fMDt/68wdTYeFqpl9hovNaRdXGJjetKXrilHnpZ35KUbhLXvT6Xd6t92zrJyNdT6vuY8ZR3cTd/+VFn7JmHUA/IH8Bhfff3tb2+v2Ff6yPO0cj41LV5iY95wR716n1SaKfu9R3qCPSReMkP6Hvk8bpxqkfUAehH64L8A/oV9J++to6Kd8t5Uy8AHGG/kxeg937U7wDYH+SDY9VPqEdg0P62PokL6GfkAfSn8ZindRt9hPirL8B6Ie7igzzQb369X3nMeVln2KM+9q7rkB91bdzipK6N27wZ9Lyp1/9roi/UuzjRS55Gu95Up+p2xHpQ18eKj3zT83WQcboeXTOuGCzuMXgdRCPxP8r+mDbuP59/Yh8V53HHee99xN95IR/HjXOIKzvEWx4A7KP0F1+/3zE+rEOA9QDUsXFbN0BfGrc6QZ30Iok3+hLnVYA+Q50YN6hvAOs3Q+cr1Js++V883gFSvQhX
1438613625.950,1.000,0.055,HISTggAAAdR42u3dXU7CQBAA4M6WgolX8C5eTRNv4Nm8hzfAGPBlk8kWgf7Q73tphLo/s9PZBR98+fh877qvt+6kP1/jdDkeX787AGAbYqbfD6GfNR63XvcY2W5fXVvtluT+SN7P+i/JtR53Pb6/+4bGOA7n6666P/t5l4y37ndfvT9Urx+ScQ5JXIZknkPVzlMjbs9Jf/tGHKMRlz6JU0niVrffJe1HNb5IxpXlUzTyp2+Mt/V7XdJvaYwje16isX598vrYduLC/lvPZZb/uwv7z+pRjKxbl9aVsXXx2jpcVrq/lpHjmmu8ceX6Xbr/3SpvHv18MnW/zqPA2uuMOgYAAADL5/M7AOD8AwAAAMAv35sAAAA+54D89xwCAGs5LzhnAIDzAeD5Ej8eKY/kF/esT2v7/xL2BYBt1xn11bqYj+fAeogDyFPrAvLVfO4xzxC/RaxH3Hndpl5febLuvCz/zMt7jSesk7hsYL4x8/0hbzedt7HR+ft702PXvVudu/Fciqf5bGX+YX0mnbd6p77ID8C+DrD881Rc2e5U37uXG/W/9M83a9/f7K/zxFfc58nfqeNeFrJPgLqAfQ7UK3Ha5vzkmTgij0D+AgCAczAAAAAArE38ADpBCCQ=
1438613626.950,1.000,0.040,HISTggAAAap42u3cS07DMBAA0IyTFLgDd+FsSNyAO3EeluzKoi0Li5HTFpo0eW9j9ZP4O2OnSDy/vb923cdXd9AfyzgU+/3LZwcArFPc2X2XUm/c6Tz+1ffizO+1rqtfl+Tz0ij76rrh9/Ptz+u+uv70+Vi9PyTty+ofk/tF8v0haVdXXX8qHxr9ezyWT0m9Q9K+PmnX0Hh/1+jXmJT1+I9V+0vS37resTFvYzJfYzKvU/sXyfjW7crus0va1zfum8VHPzHuSrLuSxLHZeK6yNZXFjfdxH5fm3+iEa+RjMe1ebFcmCf7M/P0pfvRuddfW89S99eYqV6ArT4nAgAAAAC0+H0SAAAAAAAAAJbP3/cBlpEPw/iBdYR1AQA4v4B1ywbnPYyv9opD8wrYF0A8gfU3Q3/EJ/ID5m2e9sWN+x/Wv/xgPGfvj3XFEvYRnEO2nH/FzX2vN+fZdeSHqe0oxk/+31A+W9u5c67xLP/UrhB38tINxsN4AfKqeTTvAIDzqfYjTvA8ttR1aT0jP4iDteyfW/9/B7e6n30XAADW/3wFgH0AQN4DAGCuc118A4AaCKg=
1438613627.950,1.000,0.034,HISTggAAAY942u3dwVHDMBAAQF0kJ03QC1/aYoYOqIiO6AAeST6auZExTkzw7keT2JZl3Z2l8OHp7f21lI+XclYvbZybr6/nzwIA8BPhOWedH3/0eWLh+GPl/q8OXXs9ryXX15nXte54Ta7P+suui6St3X2vn0+Xduq+n7r7HJPv+3774y0ZX0vaqRtXS+ahJeNryfPU5DnqIH5tEJdpEJd+XKfBfdvMeY1BP3VwXUvO7/s7JJ+z+Edyn6xes/5rEueSfG6Dej8mcSyDcS09PmpL8vxz31ujOl86nq3W31i5v73sH5bGcS/7JACsmwB4fwMA1n8ArAcAAPZfAID13z4GAOuw9Q6wTwfUH/IA1BeoBwCwzgHgPQ3gfYo8Au5Rp2EeUCfyDfkO8kjcbtCPfLH/B6y7az5PiIc6kN+Y54d02Dguv/0/pbHTfA317P1yh3lZ6+8M5l8+PUJ9xk7qFOuK+Qd5vMX4rfeoQ/l3q3kM8UBcxcE8gPoCeQPqCgCwDwD1AvLY/LBhXOQBAAD8g98R37l0B9E=
1438613628.950,1.000,0.033,HISTggAAAbV42u3Zy03DQBAAUM/aSZBogQOdUBsSHdAQJdFBOAQuK43WCY7jz3sXKybez+zsx+Tl4/O9675eu4v+9xqXy/n89t0BAPxHzPzco8pdWnxj4ufHfq/ceL8ur2/8vTTaVZ1ru6G6/t0/VOUdq+eHpN5Dcj1Vz5WkHXU/D8nn0qi/JO0fqvKeq8+npL1Dox3H6v5T9f26/JLE85DUW5I41fVG0t4sPtn3Imlndj028rCv4pKNU5ZfQ2M8hkbeZ3kXjbj1SXkluWb1ZfM0e/7adau1DkWjH1Otk3Hl/VvLn3pdH9v+W9u31v04dlav/uC9BAAAAAAAAICM31XB/AcAwLkQALD/AgAAAN7nkb8YB4Atr6vWYfsiYD0A+bysfpv/gPXZOjlH/MRRfuv//uJt3q8rrsYL+TNdf8I47ar91s99jMNcv4eGfF31Or62c9rYckvHmPjZD9ah3Hm+xE7yfWn759bGLXZW/9zr6aP/Xx0rqycW0q7YaDyWnn9bmyfOa+x5f8d4wFLn29LOG86NAODcDY/Ma/NGfJfcb/kpD/QX5C3IU+QzxhnjDQAAANz1/f4HvckHxg==
1438613629.950,1.000,0.024,HISTggAAAZV42u3cy03DQBAA0N21HUfUQC+UhpDogD6og3LoAA4hlxEjm1ghtvPeZRUbj3dnv8mBx9e3l1LeP8pJ91PWU/H89fRZAAC4nrrw/tzn6sL6TF2vF9ajhevdzPjxegtlH+J14X6XvP9cDsn9GL8lz53LQ1LvManPGOL3Id4xxOuSv4/tP4T3HcPnkrTjmLS3hLhjeO78+SHEGZL6DEl7DqHskjxPxYnjZ5jo12z89Mn4jfXqk3HWfv/elfZ3myiz9/Uz52tN+rdNxKsT7RmSvHdJ/rK4mTZzfWoz17/2x3WtTNS7Xbj+Ll33y8z8rXW/W3v8e8mj8xbAvtdB6x3OMQCA/R7jCwAA50AAAAAAANg2v5+D+Sg/YBwCAAD43gSY3/qV+8mTfpd37Yd9ziPzzDqG/pUPgH2sZ/7vM+bPdutt3gL2C+1f03vsS84dwG3mXb3zvNSN9Zd19Tr5Xcs+WTeav1tp8rCo3tYR1jxenWPQ/2C+YNwAYJ/4j/fY78B8wn5gnMsHYD7LhzzoTwDY2b73De+EB9E=
1438613630.950,1.000,0.027,HISTggAAAXF42u3aS07DMBAAUE+ctHAHDsKOoyEkbsBZuBc3gEXJxtLICSW0oe9tLKWxHY/HHyQeXt9eSnl/LCf1u4xT8fz59FEAAMjFhetfyziHhfVjYf0hqV+b3+dyTJ4399syJc+HpP2237Hz/lwemt/n8i5p79iUY/K9bf2p097QvDc/v0/GMTXt1E5cp874D0m9YxKfqRlnmwc1Ge+YzM+UxKWdn7JyHockTpHkVax8b2k+1k67pdNO6fQbnfUdC/utnX7HTnvDwn3i3H2rLqwfK9+LX95vnVv7PEf/+nv3FpdbvQcCgPNIfAEAwL0XAAAAAAAAAAAA1vF/b+ID2CcAcA5hHpE3xg2A80Icri2+Yb5A3pgf5AMA4LzHvIL15PuuMi7iJf/WfL98EQfzJn+4TB7Exv2E9WD/uqH+3K+3GX9Yj5v2FzsbV9xYXjiPQP6A9QEAwN7vk/FPxvHT/tzLAfsBYJ8DAAAAf/ee2058AdpDByc=
1438613631.950,1.000,0.033,HISTggAAAZB42u3dUU6DQBAA0J0FWr2DB/AWns3EG3ghj+QN6kf1Z5PJ0opIy3s/pHQZhmV2ComJT2/vr6V8PJez4Xsb583p9PJZAABYX9zYebI4zfNluq2deGMyfkg+H5vjaxOnJvFLEm9qzv/QfD8mn4/NdkrGtfHb62jz/hn/2Mn7mMSZknHZ/na+Dp15jSTu2Ll/7feHJk505j06cYdOPrVzXE3yH5t82zyy46MzPjr5RWf8kNTNkKyrqbM+567XIdmfHTcm++vMPlM7+9t56sWbu79e2Sez7bV9em6ccuG8ll9e33/9Pi2dh+cH1w3qGUCfBdCXAAAAAAAAAIBL+HsA8wsAAOD9CAAA8B4CWH+g7t0/ULdw7/Vo3ZhX8wKgz6E+tpRvWF+Avo86WO286vQ26yF2Vt/qFP3fdSydd2wkH/3tvut5reex0Bd2XW9/9X9iY2frdet9f6k+sdX3iLjx9bv2Ogr3CzyPA/oZ7LiurAN1BgB4bpA/3Fe9WjcA+H1AfeI+APoNAAAAi7/PfQEULQfB
1438613632.950,1.000,0.022,HISTggAAAXR42u3d0U3DMBAA0NixG8QM7MJoCIkN2IJpGIUN4KPl58A6hVYlVd77iZTE8eWcu6Tig4eX1+dpenufjubTthw3T5+PHxMAwBaVnc371/guFW8N16vJ+W1lXHVwvP7+nfrj/Bjf9/mHcLyG+EbjehjfwvE2iKuFcfF6fRDPctreh3Fxvh7234X5erheG8Qb87qE/T2Zdwnzx3nnJD8tub9Dsn7zYH1G583JepdkXE/WZU7yWwd10cP8ZbC/DtapJvXVBtepyXkluZ+s/4zG16R+6+A6bWXfm5O4ysr+VM58H5Qz+3G50H7fB/IlL6AeAPUN6DsAgO8GAAAAwO9vAAAAAAAAAIj8HR0A7ylQR4A+gfUErldvRd2jXriRvPt/INuMWz3Jj3zJO7edV+vveXOfwH/Up3oG9Ev90PsCrlsXW+k/5crz6yPn5amoJ/Fu8PlS19zC+0dfBM+jfLpPAAAAYJ+/44u4drXe8ggAK95jX0XwB9A=
1438613633.950,1.000,0.032,HISTggAAAXh42u3Z3U3DMBAAYF9+oIgV2IXREBIbMBArsQE8lL4cOrktaRXS73ux2trJ5XyOm/bp7f21tY9d2xt/2tg3L1/Pnw0AuC0hBZuYt1ho3uPMftX704nHP/Qf0ueH13Mxbkz98vj71G9K7a44z5TGT+k4cyfOoThPjiPSuLvUVnEPxfVH6jcX4+Y0fizin4v4HtL5xk7+dp3r68VZze9jkaehyFP+vBXXUbVV3VV10bvO9Fz2qx2K+Kaif153Q1EPYzEu12Mr+rcj425Hvt873qn948T7z7n3u6ou44/77KXGrW3fjyuN79XN0vup73uA9Q4AALDO5x7PTXA76x0AAAAAAIDL8D8OAAAAAABsj9//UWegrgHrHsD91XXJn3nGOlH/qBt1D4D9GPOJOmG982YerU+2m98Qz1Xis97WnbeQn1XEGfL9r+Kxz91GnPYv+y/rz+/Wn9/Vo3kErrOO/N4BAAD4vg/WjfsCAPYbAAAAAACWEt+RQwci
1438613634.950,1.000,0.023,HISTggAAAYR42u3aS07DMBAA0EyctsAZOAg7joaQuAHX4HDcABYlLCyN3BYL5fPexmpwbGdsT5KWx7f312H4eBrOyk8Z5+Ll6/lzAADWJYRgEfGKTv3FlX+PG9u99Lyxqh83XndcWX+qjlfPrb/japXzeadGu3N5qMZxqurfVe3U541Jf3O9Y9J/Pa6pavdYlVPj+KH6/JAcL0k/8+f7qn7Wb33+WB0vVfwiie+hEddjMm/ZPE/JuMYk3tl1TY15m5J1WpL+StJOSeIwXrgvS2PfRXLdrfZKYx+PyTj/mjcuzV+t8/4774+d8nx0Hl8kebT3fXJpzyXRebxrfe6KnVwPALif0GtdWB8AAAAAbInvuwAAAAAAAFgSv18BAOB51vUCAADeC4D17nN5QX4H1rWvwngAkJfFc6fzb30j7yCe+4yDeVx23H1PAdvZ5/bPvvOO+d9GPMM6gcXvs9jYeLf6PhAbmT/2mYesG8/VAMjL5ose8d/L/89ad1gnAAAA3rMA2Pl96RscPAdN
1438613635.950,1.000,0.028,HISTggAAAZJ42u3dS07DMBAA0NhxPwuOwF04GkLiBtyFc3EDWJQsGDEYStNP8t7GUjKN7fGnjlSp988vT8Pw+jYcjJ9lORSP7w/THQCAr8ofrw8nil9Kni7d/zJTP2JcTeKn6y35fAtxNYmL5diJ34RyDOUmqTe2N8ZP9uF+C3EtaW9W1qS+lpTTc3dJf6dyG8r4nH2n/TV8/q7TzjHEZ/nZJvH7JK4l+Rq+f79J81qS8Y/jEed77dwfkuf05uuYzL9tZ53VJP9ZXLy+66zP3nrO1mNL2l06+8fYqXfu76vyy3bOtT+XG/u+LOpb1bln6ec3MP/B+gAA1n0uca4BAAAAAAAAAIDr5fc9AIDzCwD2cwAAAPC+jHEDsO+C+S5fxz3XOAEc1AvX7/8vwPlOvuQd7EMYT3n8b7vrwvNZbny8ysrmo31PP0+xTq41X9bvPPXM/b8y5+p/Xcg8KitZF8436xrfutD8Xss503vrvHmVX7AvYR6D+QjWHcYVsE7lE3n/uX/mG9Yp3PY8sy4AAADO9P71AXxlB/8=
1438613636.950,1.000,0.019,HISTggAAAYt42u3dUVKDMBAAUEKg9RDexaM5zngDz+D9vIF+2H64zhpoTQfxvR+mbQhhsyyhP9w/vzwNw+twUk/b8rl5fH94GwAA+K50bp/tXzZ2ntnvdeHn8/5j4/usn1a7ceE2xjcbx5T0PyX9HkL7uN8c9j80tiW0n0I/xyQ+WfvY//n7u/B5TsZbQ/tDIz7H8HtsH88ji3tN4jwl45xX5kVNxjUmeTKGOJQkX1vHqcl+cX6yvJyT45VG3IdG/tdwnFZ9GpPrcmjEozWOa+tuacSnrKx/48rx3ap+97pfXHqepVMc1vZbfrm/ra87APb2PAUAAIDnKwAAAOAr/wsAAID1NKAuAOC+Ix4g750HAADWhQAAYP1tvQ6en5EPALh/sM95MO994iCufeJRxOtPjEv+yyPjd12gbt+if9eVuMkL+co25mXpezh7H790yjd5uCwOe3sfp3kXv5/Oa2vvoy0bi/tW/t++dJ7UD/XIuNwfQL0TF5DX7HW+5A+gDqu/sPW8dr3IE+Cf1YkPFFwHCw==
1438613637.950,1.000,0.021,HISTggAAAXN42u3ZQU7DMBAAQG+ShvIH/sLTEBI/4BX8jiM3OBQhsWKVpkVp08xcrDSxY6/XTto+vLw+t/b20Q767zIOxdPn43sDAM4TQnBV8Y4z2w15+Ut3ZLtRHHep3KXzw9/vqT/HfWq3T+0N6TjXq9of0+d3Rf3qPvtifEPRTnWfVrST+7+baLcqx6L+VLyq+cr93xX3q/rfFdfn8Y/pfl063hf9HIt5uC/yLs/bmOZlODGfcr+qeRyKccbEfVtxfRyZV9X5XH+cOJ/jFCeWbea45l4fM/ex6nx/Zv2Y2Z9beX+ZO95Y6TgBYEs6IQDgCvn+h/wDAPDeBAAAAAAAACzP/4BgnQPrWXfWM3iuAgAAAGR+r0B+wLbWl3UtX4xP/AH7qHiZB+8blx9/WH8gf8ULADzvuOi8hHxcRb/ixOtjI+s1Nr6u/2uel45jt9C8e07ddr6bZ+BS71sAvicZJ2DfQNzFEbC/iANYByDvAVa3730B39oIBA==
1438613638.950,1.000,0.044,HISTggAAAX542u3YyVHDMBQAUH3LWeiBXqiNGTqgLJqhg3BIfNHMRw4JiZ28d9GICK1fy/j14/O9lK99OaqnNI7J4fD2XQAALhELqT+edH7/Oj/RKRdJueGUbpp8m45NvjTv0aHTTu3UWzvp2KSRlNsm+dLkN03a60ck5Uvz96n8LmmvJvlsnJvk921S3y75v2m+9814hqa+KX1J+t/Wk8VLbcpl/a6d9axJHNVk3bL4yOJ4SOajJvE8dtrN6iudemNmuZL0pyTtxpm/9/p37vlUO+WGmefZ3HaHC8/ja91Pl95fceX67nX/x43aedT30rO9j7yvxc8tztf/noewz1c1HvcR1h+WGZfiGgC8IwDA/WOeQVwBAAAAwLL4HgcA7mnA+QEAAACwVr6DLGsdrAc83rlpXyMeAOeBdcN8Im4B+9l5gn0D9g+ID7Cv9YtbrFuYJ6wX1veu4xbf646LWNn4QvwAAOCdhjgD7FfEB4BzBwAAAAB+4XsZAAAAAPAo4gddtQec
1438613639.950,1.000,0.021,HISTggAAAX542u3dS07DMBAA0Ex+rTgDd+FoCIkbcAmWHI0bwKLtZsooQW0JTd7bWLFj1+Nfomz6+Pr20jTvH81Bd0zjkDx/PX02AACci4Xajxv1L4rrmHlfVS+Xdz+/d56Vtym/Ldpti3qn6/6YDkV+P9FOO9FOTsdUb0zlD8d0V8R1yt8X6ZDq5f7si/iGIt0Vce5T/8fid9qZ7ef8sehnHs9mIo5uYh6bIj+K+e6L+RtSeRT974t2h1Qvj+dQ3NdOXGfjzPur8rGII4p9kdsdJvZrdW60v/ydql73R+fzped2zKx36Tlfna/XjnOp8V7Le0DcuP3/Fhc4FzBvWEeA/QWA5wUAAAAAADDF938AAAAA4F74ngkAAADAkkK/wL4Wr/E13+IFwPMCWOX+i5XHB1tep/Yn1uP647XPjaNx4rfzFdbZXfYnbtwf+5s1rIdrn3v39j+bsZF16H9XndtLjotxB/tKnObDvAJ4XgIAbP39yXsb4JzEvBhHNrruvgHaiwfV
1438613640.950,1.000,0.023,HISTggAAAXJ42u3W3U3DMBAA4NhxWmAGdmE0hMQGrMFQjMAG8FCK0ImTW1BLXL7vJXL+fLbPl9w+Pj1M0/PLtDN/HMvucP929zoBAJxD+eX1Ucc1WtzlwOu1c76G8+3AflryfP3+f/azHY81ua+F9t51eK4l711C+yqJexPa+/u2yXuWZJzbEF9LnltCv63Tb036y87H98Z+W5jvmySuuTPPcd22nXyqyXhbMt4lyYdNyIcl6acm1+dOnpYkH2tn/Utn39RO/sc8mpL1ys7HfT4n7dLZd1PnuV4dKgfWj9iuyfHYevdT9Uz1+tg6fqo4L+X76D/DuLH+o43bfgHUa+QRAAAAAAAAAAAAAAAAAAAA8FUxLgB1C+CEdaoMHj/4n7CvzAPywXqKy/r9ZVzWG8apG/ar+UO+ym95sOb6VwZ/P8Cl1if1c93zVgeLWz7xH/e1vL/s+qFuGr/5ZdR5tf6AOoN1BgAA/N+bB0DdAcD3Z5XxvQPulQfz
1438613641.950,1.000,0.015,HISTggAAAVx42u3aS07DMBAA0NjOT5yBu/QqXAWJG7DlkNwAFqWbgZHTKgLavreJmiYejz/TROrjy+vzMLw9DUft61iOh8PH4X0AAOB2lJ2vH8N15efnym/nT8eaxGmdfsT7s3hDEn8O55dOf09x1pB3zH8KcWsSd0ruW0N/lvD9HNp7SPKI1y+hvy3Jcw2fY56xvZbEXZPzcRzGzrqI30+dz2Ny/5jEjesvzmcNcaaN67km7QxJu3MnrzlpP9uHrTPPpTO+pXNsST5Dcr509mftXF87+deN9aptrG+l0245s16WjeN1aZ3e+/6927nW+PfW773yK2deBwCc/zt6788jAMDfvfcDqIMAgN9bAAAAAAAAAAC28D8RQP0BQJ0G+wzsA0AdUb8Az0cAAADgfdU4mncAddA4mTeud97qTvNtfXDJuijWl7punn9tnIwv9gPm57bztR8AAOAfvy98Al3VBx0=
1438613642.950,1.000,0.017,HISTggAAAVp42u3a0U3DMBAA0JydtHQHdmE0hMQGLMBIjMIG8NGWjxMnp1T9SHnvJyq1Y/t854aqj69vL9P0/jEd9dM1jpfnr6fPCQC4DyEEm45b3GhebeV4c2ofg/u1ov+Unjt70b9ab//9ufWnX0/jzcW8qvWc/74/XZfBuLui31zMJ4p55Pmc73M4XR+K++9SvyW166ndoWjfUrtejLMMXufxdmndo/i04j77wT7n/GhpvfsiD1oxn1a8jrTuZeV62iBv5+L9Ub1GMU6sPD9y+xiME4M67yvPl0vPubby/Ivi/XZhPGMwn7jyfB2t76/n/LXzvfXnlOcQcUA+wz3kkbwHdQQ4ZwAAAAAAAAAAgPvjd0cAAAAAwH/h+1AA8LkOqB8A5y/2UzwB9ScOyGu2Hlf7C+rPOuQhyL9t1kOoa9SLeIkT9lu+qaNNxtk+AQCeJ0H+AQAAG/7/5Rs/UQe6
1438613643.950,1.000,0.015,HISTggAAAVh42u3aS07DMBAA0IzdNnyuwF16NqQu2LPlkNwAFqWbgZHVFPoR722iRHE8HsefSHnavT5P09vLtNe/jrE/bD+27xMAALU4Uz1tYVxtEGe+virKtSKeSMfVke2Jop4+KNdSfYf714Pn9VRuk84P5eaiXE/PnVO9q8H5YzrfpPP7dP0h1RPpvqqedSq3SfHPRR6rduV4c97moj9yXLn/qutRxNl+/m75lseqv6Io34r3IAbxVvdHEffBXZGvaRBnFO3qg3HSB+OnGmej9vVB/7Ujx/905Hy1dH6OX6p/aZxL141T15tzrVeXXv9OzcO15elW+w3w3QMYP/obAAAAAAAAAAAAAPgr/tsFAMC+FgDAfsP+Sn4B4xcAAOzTATAvW1fAvKX9yAveDzBe5J/byGfcWL/7/w79efn3Iv7J+xzG91W3M8yTYF4AME8BvhsBgEvvBz4By6kHPg==
1438613644.950,1.000,0.031,HISTggAAAW142u3YS07DMBAA0Dixk3IH7sLREBI34CLsuRQ3gEVTFiONHNQPJXpvYyV1bHc8dtw+vr69DMPH+3A0rWU5Fs9fT58DALBv5Y/7KeJ01fGNF263dz0m/W6tl40/nFN/ruP9U7kkz4+h3mEt5/D56fm6li25H8exhPolXB+SdsdwvyZxaqF8CP0OYTxzqFdD/SmMK4vvlPTfkvjE52qn3ZqMp3XqtSSOWd5kcV+Sdqdk3rK4lM78ZeuiJfGvST7HfkpnPdTkflZ/TsZZkvU8ddbZuev/t/vUtHG/2tpu2Tiucub+eu5+7H3oe4mz+ZcfmF/gP61L+wJYDwAAAAC35n8YAAAA/P4EAO9BAAAAAOA2/F8IYL8GsE+Jv/GLFwCw7/dxcY4A+4o47PJ7yxvuKW/lI3gPgPw0D5gneWe+xMX5VHyxrrlk3It8wDrBvAAAzhvOKQD2R8A+Ig7IE/kKADhHAQAAwH3/7v0Ga8QH1Q==
1438613645.950,1.000,0.114,HISTggAAAZN42u3ZQVLCMBQA0CYpBe7gXbyWW2e8gRd15xIX1M2f+ZPCILbw3sJMoUnTJP+nxZePz/dh+H4bztpclvPf0+n1awAAYLly5XllZf3v9ad2jnvt1PB9TeqVpF48vyX1fj8/zOUY6rek3V0oD+G4hPZ24biF42kuj8l1p1DG67cwDvukHy3pVwvtj6E8hv7EfpdOv+P196Eck/GdkvZq0u4UjrP5a8l8tc71SjKOWf9r0p+WzE/tlKVzf1PSbhY3MS6nTvxl6yjLV63zfe3ki6X55tLzhs44lIV5uHfdtjCv1hvvJ5d+/lf7W7my/lr2u7U9FwAAwDPz3AzIKwAAAAAAAHB7/m9mHAAAAID/5XcJAAAAvA8DgP0Bnj1exD/WF+YfxBEAt83P8jfIB2DfQf4yHlhH1jNbXK/Wz2ONh/mEx49LcY79BfMGyE/uA/GjnwAAcL/nU8/h3g8A+wRY52xh3swz4sL9uC8A5HsAsA8D4goAAMB7GABgXwZxDQD2QbDuQPyAdQcgTwMAbPi56AdW+ghE
1438613646.950,1.000,0.026,HISTggAAAW942u3dS07DMBAA0IyTpkhcgbtwLXYIiRtwFC7GDWDRdjPS4BRQmpb3NlYT7Njjz6Sw4OH17WUY3p+Gg/FYxqF4/nz8GACAdYUQiPMVxC0W3h+L8nS/Hctd+ly104r6ud2p6NfU6Ue+vy+ePxb17orn7VK9qaifP89Fv3rtzcXzpzSuKNrZpXZyHOZUVtf3Rf9bsS5O1++L63MRnyHFf1y4rqZi/LFwnuZiPub0c60Y99RZr9HpXyxc53lec73WWV+t2O/VfozOfhyKfRhFe1W91jnXe3Faeq5V58/4R/kkFvZj7XwWG21v7fztfWEb8TAPWC8AAAAAAMBP+LsBAAAAAN/x+yMAAPCeDwCA9y4A5BnxNj4A5w/mF/NsvgCcI+IA9gPY74gz5hVwPogbcKl9HVfW33PrO9+4hfxqHcPl8wnn5V15eVvr7Vb+D3OY3389LucKAPIyAOD9A7CvxQuw38QNAACAX30f/AIEVweM
1438613647.950,1.000,0.024,HISTggAAAWR42u3a3U3DMBAAYP8kjRArsAsrsQFCYgP2YDY2gIfCy0knB2irpvm+FysGuz7b55iKh9e3l1Len8pR/y7rsXj+fPwoAAC3oG5snO3EcdZfPpdwP8z6i+PNnkuo7+F5SuKug/GE+2s5hP7m5HPnUC6h3SHpdw71UxJP7P+Q1E9Jf/eh3RLKltTH8f+4S+Z7Ttq1Qb9TKEtS35JyGuyHnszLkrRfQrs+2I/x97Jx1yTOnsxfS/Kjrlz3Nsi3LL6e7MdR3vRkPDVZt7oyzr+eu3XlebNWO9PnjeL973ycat5O9XPve+DS+SWP7TMAwH0A7A8AAAAAAAAAYOv8nwMAgHsc2113+wAAAPy9BwAAAMD/+D7mOua/Wnd2fE7Yj/If5NFlx+MccH5aBwDY1nvG+4895VfdaB7IU64hT/b2nm07i/dW46zynSuYr2re7C8AAPcPQN4CAAAAwFn4fo1N798vliAHZw==
1438613648.950,1.000,0.016,HISTggAAAVl42u3dyU3DQBQAUP8ZL0i0QC+pDYkOKCAt0gEcgi8DX2NCQAa/dxkl9p/Ns8WXPDw9Pw7D+WW4qO9pXJLT62m9AgDwNXHj+36qPnGw/l6VJi6S/GoS1ys/krjS5Dsl9RiTeq5xc3J9bPKdkzSa+DmJb8u9a+KW5vPY5Lckn2tS3pjct5Z732nn0nw/Nd8vSXtL0q/l898JH/KNpNyxiV+Sfq1JOXMyXqbk+pLk1xsvtZOWJI1kXpRk/rTzoib9MXauR6deQ5NPJHHRWT967e2VXzeuD9n6EleuN7GxfVvv3xpfvrnflCvLvXYf2Mv+F3+0/P9yfgAAOPp5UHsA8x4AAAC4Ne8LAAAAAIC98d4SAADnUgAAAACA/fMeFQD7CmDdQv/qP/0CAPZP+zE4B6u//tRePF88H8/xN8eB/3M99u866wtHmpfGOwCAcyEYfwBAup+/AYHDB64=
1438613649.950,1.000,0.017,HISTggAAAUB42u3aW06EMBQAUFoozsQtuBeXZkzcgStwFy7LHejHOD83uamRQICc89NAH/RdmMzT2/vrMHx8Djfjb1huwcv389cAALBEOUi+tcoZdl6f0im//LOcksTXP8bfTeH+FN5b5yRdjL+HLUnXwnPHpNyWXF9DvocQX5L4KYTxfgvXl6TdU1LvXj+MoT3XkO6S1K8l148h/Zz0c9b/LRnvIemPkuSbk/aNSRjHuSb5s3ncOuWPnXHt1bN2xjlbP711WZN8tRMufX7daH/s7Te9/ar3nLLRPrzVuVBWqufW5+Dezu+z1RfjCgB4zwAAAHwXAAAAAAAAAACwX/5fAnDOfd3+DgAAACzl9wXMcwBwvsFW8828BQDAe7N+AADnhvED60H74MjzvJx8nRy9HfVg/WV/xfrXLgAAAABgfeUHJPcHsw==
1438613650.950,1.000,0.027,HISTggAAAV142u3Zy03DQBAAUI/XSQg10AulISQ6oBUKowM4EF9WGg0Riu2Y9y6rJOP9zH6ySp7e3l+H4WO4aJcyfoqXr+fPAQBYVtxZveZl2XZioX5Xz41d3NS9ji5uTJ7r35+Sco4/FO21JG5M4oZkHFMXd+zKQ1HOceekX2Myjiwfp6T+ud7HLm5M4h66elrSz769czHe6Zf9PiXttyTv0fW7z0/WflZ/dP1oxTodi3qPyetqH7Rkn03FPqnWSxXfkvWe7f8onq+0K8+XSD5vyTir5/56/vX5rNq71fm79vd3bLyd2Eie1pqXWHne/kt7YF0CzhEAAPcuAAD3HAAAAABgq/w+aL4BAHC/018A5xsAAAAAAAD7538t8wQA4N4iX4DzBKxD+2vveQj5wzztNh/m7bo8hbwuMr6t1R872X9r59V5g+8vwDkEgHMc6w0AAACAe+V3HgCAG9+3vgFidgcb
1438613651.950,1.000,0.021,HISTggAAAUd42u3ZS07DMBAAUI+TNu0duAtbboWQuAGX4HjcABalEhoxcvmpDX1vY8WNx/FvEqk3j08PrT3ftYPpvYxDcf96+9IAAD6KC4tzrv7in69bnNg+Tow/ff692Xqq36Z2PZVzuj7G2aTfI8Xt6b5juSueayri5/pt0f88iD8X85LHt0/9zIPrpfg9x98U4+rpuffpvqVYj21qtynWvw/Wqxf3L8V9vaifU/+7In4U+y/XL0W/vZjXqZifzeB5o9h3rWgXg/MyDa7jxHNZ7c/RuWyD+ij2SW7XfjkfVfG/midH4730/B9n7n/t79m1fQcAAAAAAAAA/Ff+vwUAAAAAAAAAAAAArlU3BQDAhYqVx4drOEfAes+p/CBPA8h/AKw9L3uf2H8A4D0IzsV324V5NU7j4I/WzfrZ94B8AQAAAAAA8BPxBlMoBzc=
1438613652.950,1.000,0.029,HISTggAAAWh42u3dXU7CQBAA4O52i2A8gnfxaMbEG3gYPZY30AfAhwmTRTC2Kd/30mzZn+7sdCkkhMfXt5dheP8Y9sbDsewPz19PnwMAsE6lU+6dH66sX24sjpf2e+m6lDP7++04NWnXaz912o2nn0d/xptCOdbPrncM7TfJuLFck/N3SflYvx2Ou1A+jrsN7e9D+xrqT2GcXShncYnzjfFqSf8x3nEex9cfkv43yfVvk3i2ZB3isSXXt+nEYRvat856Tsl61k7+t6R+S/KgdvItu49qkt81qRfrT538Hjv3fW+fyu7La/e53j50brzmel+Yu5+ljFsWOt+1PZcAAADcKp/rrDMAAAAAAAAAAAAAAAAAAMCa+b01sLT9xr50Og7ignww/7niVoVOHoP7BQDA8wzyaOHxKOIsP80HeWdeLG4d/H8gf7EeRV4A/7Q/2R/ss4B9BQAAAID5+B4IAAAAAGCdfP/LovPzGwguB8s=
1438613653.950,1.000,0.013,HISTggAAASp42u3dS27CMBAAUH9C2iL1Bj1Ab8HZKvUGXJQbtAtgM9XISVUqUN7bWLGTeIwndlgg3j6PH6Uc38tZv5T1XBy+DqcCAGxTFfdN+6n/HFddeV1P2ls4jtdl7S0p43XTwuOncHyNd5fE0ZLze6jfhTI773rfOZwf44rx9uT+Me45lC3cpyZx9aT9JemvJuPeX8rXJB9if3My/n0S53Noj/M1JXkyDeY11veVeVmT8bYkH7K87sl8tKS+JOMfPX9l0F8dPHej9aEvfL6zcSztf239b9e7duN19F73z/pH48J7l88N8w9YZ0BeIQ8AAADfWwAA+y4AAAAAAAAAAAAAAACwDX7/BAAAAAA/3dv/DwKwrf1iK/EhfzAfPHZeyUusewAAG35f+wZiKAaW
1438613654.950,1.000,1.211,HISTggAAAWp42u3dwW0CMRAF0J2lDSRKoRkaQaIDGuXIDSTgioBdFjOe9w7JBRL7e2xPFBDrw3E/xO483K0e3+P2dXO5bE8DAAA8E3/ye8YXj4sPxxsT5znOnN/U8a1ePH9qPuNC6zm+me/c9Zyax1Lz/Pa+iZk/N748r1+fC0OScZinvAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyMvn2gIAAAAAAAAAAFV4vRQAAAAAAAAAvC/MGwAA0E8DACza/+ifAPx9CwAA1ftt/TcAALTvy4Hf7Tv7D/cJqGcAgCX7FX0N+nVQ36C+QV0D4P6QN/KWN/LOlrO8Aec3ALg35Q2A8xt5y1s+8qZt3qF+1HfDOomkeUfROml1jkTScVe9n7PmnfV9nL3f71nzdr7U3pfy1nf3eH73fr+Dvr7e+KJI3v9yfkdn9Vtl/1sH+cgd93yOcVf/P1/rPsP745zTLXMJ69lHfVwBAeYG9A==
1438613655.950,1.000,1.316,HISTggAAA8542u3dXW7UMBSG4RynpUhsAYlbdsF22AYSO2Cj7KBI0N4YWZl2Etsned6LRjO1nOPz89lOMjOff/76scT3r8s/1pdj/P375fn52+8FAAAgM3FR++Od/cSN/4+N9uXl+FC9XqvXrf7qdh9ubL823v9QHR+r12v1fuv/r+N5aoyrdZ66v6Xq77Hq77Eax0N1rMf7VL3+2GjXOl9p+O+h4Yc6Lq/tPjXOV8e7bNj52LBzyx+teKwN/64befnQyOf6/aXhz61jq07LRp3U511vbF/XxbIRn1b7pWHHlk5s2b1u+PVenWzZsaVncWP89tb3uLP9bPNp3Jgve/U/y/wfk/d3VP/Z11/WqwDoDAAA5jNAfgPXrr9Qx/IAAAAAAAAAAAAAwK64LwcAAAAA9mkAAPMHOwEAAGC9CAB0iy4D6hiAOqUr/LHHeEM+AADoKADAvABgkrqOk49PPvCHuED8AXUBAKDr/MU/gLzlN0CdQF4A8hpQf+A/fuJ/QN4D8g9QVwBA5wCAjgIAAPMwoC4AHFX/9AMwz9MD4P86UA90EvKIvYB6B6Du6Ag/Yly85QeuqF/y3jwEeQDIW/59q10hHu9qr46uWZeR1G6YT66s19l1gB6oV5w3/iHf5QP4374K8kfe0EPjpNuQZ8Yz0H7PYV1jvFfVcfE7t//MP+JI966r25E0L6+qjzHIvuznoWM56yzkNd1LPI44qV+zxs9651iKlKXbxsPfO/cvr4E8+Tf7OqCcPF70pa9f4mTju/d6TFzEf9mez4vBeXHveSNJXO/tJ/s+Wl4fq5f32hGTxquXv9dO9sdF63Fvfy9J/B2TxyHL/JfNH2VwHEbp9971N3q8sz0nGJPbN8s+a3R/e/fTe78zOg9GX7e42n3Lo3U6OsU7i/6P6veq142zPPeT/TrJrPutOFn+9F5Px0663XseiEnqorcen+W6w6g4Z5knZ/++zlHzXq99xDK4fmMy3Yid91Oj94ExuH6W5HbHQXrRW/e3zrO+0Z5ycLxv7a8k2+f22m/EwXbMsv4qg/KPbvddv8xeD0fZe5XPj5aD7R61Hj3a3+Wd5y2D7Z71cxOxs7+zfR531nnnrXUbk+dhbKxnZ5kHt/I/S35H5/ocXY+j8qPlb5/fOMbfLT+XwX6PO+szy7q3TOrP0fuyo67Xls56u5cuz/I8zlvvi2bNkyz3u49a9/VaD2f9HqDZr0vN/vuNvgdobn9nff6zJPH/rHqSTQePWtfGSet69H6n1/yUze6zf9/jbLoTSe3uNZ5seZf1fucoP6f9/cg/+1UJKw==
1438613656.950,1.000,0.025,HISTggAAAWB42u3czW3CMBQA4NiOKXSG7tLRqkps0AU6QkfrBu2B5vKkJwMKBcT3XSw5dpz34p+IAy/7j/dp+vqcDtpfWQ7F28/r9wQA3Idy5f6PkrdR+zpoX47sN2o/qi8r1bdBvHN4/pLUx/bx/jXpt5SbcH3p15P2PbRbym24T0+u11C/jP8Uyp6066FdjKMlcWxD/XPSvyf9dyHfmyQ/c5K/TZKnmP9dGH9O4srmSYyjJ+PUJI9zkveWzOuSzNM4P1syT/sgby1Zzy15rmy87H4lea6SvN9j4x/lpSRxZeu3Hbmf1BP3t3rmPn3qfrz2OVhWqp8G7+HWz/FH/b7gvuZDMZ8BAAAAAAAAAAAAAAAAAAAAAO6K/4MBAOen9wCAc8D5BACA7zsA+yLePwDOJbiMar2uun7Ljcf3X/crV8pTuVA/+7pzUbziB/MbsA+A9SXvAAAAAMA5/A4HAKTfCb866Ae4
1438613657.950,1.000,0.022,HISTggAAAUF42u3aW07CQBQA0Hm0FVyDe3Fb/hkSd+Ay3Jw70A/g58abFohS5Jyfm5ahc+dZJuHp7X1XysdL2euHWPfh9ev5swAA11Hlt4p21CvXe2p+x+t24fPbwnzn6hlCuRbux3JZ/j3cj+WOn48hPoTyY6hvSPLqC+OQXI/J/U3y+TFOh7gN+W+TdkxJezbhuY9JvlmeUxKHmX4cQt7xekrGM9bbkn7JxmFMvtdn5lf/+RyUzr+ezJs6E1uyjrK8y8J8e/LctrCenoxHm2lfmcn31H2i/vJ+eu7+Ws7cf8uF++ra39/1xvKFNawz8xjnV/hf87NaRwAAAM6LAAAAAAAAAAAAAABwY/yPHgAAAJzTwTwFAPwuAcB+D+Y5WDcA3Mu+X1fevnqn44L1+xf1Vf2JftU/AOD9BgAAAAAAsFr1Gww4B2I=
1438613658.950,1.000,0.026,HISTggAAAVB42u3ay03EMBAA0PiT7CJaoBdKQ0h0QAP0QGN0AIddOIw08q4S0Aa9d7FiPLEz8ScCHl5en6fp/W06aeeynIqnz8ePCQBgjXJl+ypfq9rVC+PKRuNtSf899BO+M3/alaSsSbuW1Mf2h2R839dLuJ6T8fekvznE91B/CP0sof54Lu+S+DmJu0/qe6ifk7iYvyWJb2Gcx3C/bJx9UF/Dz0sS15LnqYP5MSXzb07mS7Y+2uA63jd7vpaUZbBus/zUwXW2nloSd+m+MVqvZZDfOsjjqBztY9fGjfbHrc6hrfZZ/XoeefGewLrDfEDeAQAAAAAAAACAPfL/ToB9AgAAAAAAAPbD3+8AcB7hvQH2JQBwLsoTYL0CsKf9vvzy/W/1XHMeytst502e9/U+i/eI9eBcgT+cz9YN5gsAAAAAAKzj9+cAgO8PAODff398AYWnB60=
1438613659.950,1.000,0.020,HISTggAAAS542u3cQU7DMBAAQG+ckCC+wEO48TRUiR/wB97HD+BQuKxYWkdILWjmYjlxbGedrtMeev/8cmjt9aEd9c8yjsXT++NbAwAuI65snBCvP3m/02B/Mdiup3F6Kud0/ibVc3/T4HhLGmdN7ZdU5nlV85+L+eb72Ir2PY3biuNb0e9Xu9ui/ZLaV/VelGtRX4px1yJu1fXV/VTlXRGfat3mYl3y+HneUfQTRT1fvxXPYyuep+nM4y3NP058PnI82vff58rP2XxmXukn4h2D+WNvXtvb/zSYN2Nn3vyt8zF4vX1XHAAA+zQAAAAAAAAAAAAAAAAAAAAAAFwL//sDyD8AAAAAP/M7BgD2Ny4VN+t0HfG0DiBfyBvYb7znAMivAGCfBADwvgMA8E/emz4AIKEHMw==
1438613660.950,1.000,0.029,HISTggAAAVV42u3Zy03EMBAAUI/zWwlKoBdKQ0h0QDG0Qwl0AIeFy0hDDCsQ7L53sSJ/kozHdlZ78/B439rTczua3ss4Fnevty8NAPgbQgjE5ZP374P1cWL8qvH6Tpn7V+Wc2i/FfZZUrqn/ksaZUv81lR/1h3S/fJ8ttc/1V+l6TuNuxThranedrufUfivqo7h/no9D8Vwt9ctxyvHuqf1cxGcq5mEqyrVoNxd5sJePU5EfUYxTPWcVn6XoF0WcRtdLVV+NW73/UrRrO+uzfXMdt6J/DO5be/tbH3z+0f2tD9bHF/fJdmK/Sz1X45fGizOJFwA4vwAAwHc8AAAAfhcCAOB7EQAAAAAAAPhZ/pcD6w8AnEsA9mXMO4B9EXmCfAB5CtaRdQ7g3ECeyL9zfr8wf8CFrfcwf4infAEA56h5EwIAwPcJgH0LAAB8JwPYJ8G6gf+/Tt4AFqwIAA==
1438613661.950,1.000,0.020,HISTggAAAUN42u3ZS07DMBAAUH+SNL0Dd+FoCIkb9A6sORo3gEVhM9LIXqAWyHsbK4ljj1173KoPL5fnUl7fylX/Kuu1ePp4fC8AALdUb1S/Hny+RuXo/SXcb4NyTa5ruB/jWJN+eyhbuN5CWZL7PfTz3f4peS/2t4X6e2gvtr8mcZxC/SWUcV728HxN3juHfs6hnz08b5PxZOPfkvH2pL2e9N+TcW7hek/iivPWk3o9WV91sD5b0k5L9sWS7K+exFkH9dsgztl2yqD9PthvWR6qg3p1cp5n89Ts8zIZ973Pj1H7LZnfMvnebz//furz4j7fMwAA8L0KQN4FAAAAAAAA4Fb8PwwAAAAAAAAAAAD8V9W4xAXIBwDyKQA4xwBw/vyx8805CsfJT0fNK/Kc89W6wnqwbs0b1gPYfwAAAIDf3QB3z7ef4KgHuA==
1438613662.950,1.000,0.019,HISTggAAAUF42u3c203DMBQAUD+auuzALoyGkNiAGdiFcdgAPgo/V7pyqAqk7Tk/luPUdm78yk/vn1+eSnl9K0f9K63H5PHj4b0AAFyzGtKS5H+7/b+qJ97XkvIeymuSn9VbJ2lsf5fUtwvpCP1ckn5/Xz+E8rtQvoTftdBeD/kl1DOS8ti/WN8+5EdID8n1nvR7JHGKv4vxyOI2Qn4/iUvMt5Xx6ZP62iRfk/GblY/kPS8r338P4zNrr4S4Zf2sk/uyeZO11yf96ivncZZvk/m+dh3qP2z/XOvfqetu29g+de595b+fb6vng3LiON3qcxXvGQAA50wAAAAAAAAAAAAAAAAAAAAAbpT/qwCsgwCA8wDiAeaVeACA/VD84LLng3kB2GcxboBrnNf1Qvt9q+tt9Z0C1gcAAMB3AGBdAAC2d074BKZtB7k=
1438613663.950,1.000,0.013,HISTggAAAUF42u3aW07CQBQG4HY63IwPLsC9sDYTd6ALdQf6ALz8yUmVgAXyfS8n7TQzp3MFwuv7x9swfL4MB9Mxjoew/95/DQAAj2CcuV4qj6Xf89x+yed63M/y0+fM9TG2iKfnV3F/iriK9rK8F3EqrrPdU36bmfJW5PN8jNsoX0V9vahnF+VP0e42rnvk2+O5XZRnPb1ot8f4ZX67qG+K99lEO63IoxXj3Ypxqvot59F6Zh71YnyreZR5DkW726Lf1sX6yNiKdTb3fLWeWrF+e3G/6u+q/emP+8d05r40/LJf2pn1XmvfnBvPa58jS51zt36OjjeWDwAAgO8nAAAAAHA5ficDAAAAAAAAAACAy/P/PAB4/HPaeQ8AAAAAAPyX8c7qBfMSuMX1b38xL8wjzPvH7A/9hfUBgH0U4wl3sk5/AAYWBso=
1438613664.950,1.000,0.017,HISTggAAAS942u3cwU3DMBQGYMdJGhArsAujIaRuwARsxChsAIeSyxO/kopLG33fxXIax8/Ji+1c+nx+f2vt47NdjL/lcClev1++GgBwLMNBx3Nv4+p38lyGsk+s8fdy3lqfS30Kx1P7sbQ77eyntlvrSzme4ppLf0u4DzWuU7hO7XctH0I/j6WfGv8S2tdx1Phqvk2lvzrusfxe46zx9RLXU6mP4X6lPJhDOYXnuITxTSEfUpnys4e86SFPUj4Opd5CvYf5bdp4H8dw3fSetb+/A+O82jfi3Dsv953nb8Ux/HNeG65cJ/euN9fG1W98/b719QkA36kAYB0DAAAAAAAAAAAAAAAAAAAAAACA4/J/X+A9BnkKANgvAJiXALDeuD+eHwAAAL4jAfMPAADs3mf+AFfZB94=
1438613665.950,1.000,0.014,HISTggAAATZ42u3bS07DMBQFUDtNUgoTFsBeujYkdsAAlskOYNB28uAqrcoghXMmUezYz784SaU+vbw+t/b23g42x2M/HPaf+48GAFyna9dN9Xv45fHqK5/fIVzfF8ZjDOXHUC61ZxPKbUv+VPKHkp/Sa/4upJ/O5xB3W9p5Sr8r/Xs4Hu/L9bWfY4k3lvpq/B7KTaGexzCeu1JuCv2q49FCfUNoxxzqb2E+xzBeKV7/+fvl27qr9cxhvc1hHY0hTp2PpfO0PttC+hjiDmHepoV+9HJdWxi3FuKn9H7m/rPUn6V9uYf8S/fvfuX5pfvw8EffB/rK2gMAwG3/LgMAAAAAAAAAAAAAAAAAa+T/ceB+BwAAvK8DAAC+EwAA8F4HuJ/BfWz/ALC/81/HtesX5gkAPEcBYC3Pty+f5AdK
1438613666.950,1.000,0.018,HISTggAAASt42u3cS07DMBAA0IyT9IPEDbgLR0OVuAE34IQs2cGiZcGIkdOmQgW9t7GcTMZOYsde5eH55TAMr+/D0Xgq41g8fTy+DQAAl4h/1p+4Ut5YeTyKstI6eXr9jJRnLPJORXwU11X18ed9afd4leerX3MRv01x2/QcxuL6zancp3or2t8UcXNqd5fq9+l4LudU36f8UzofKf9dyjMV/ch5W3E/u+L+ctkWvv8cV72XtjB+LMbt0BknVb525vjsjedq3kbRj9bJHwvzRXF/sfJ71Gt/uLCddub39rfXo1h5ful1ceX4W13Pb20/AQAAAAAAAAAAAAAAAAAAAAAAAAD8Hf5rCPgeAQD2DfYj9oWeJ2C+AIB1HwCsF94fGJeA+QzmFwAAAADAd/EJIlwH6Q==
1438613667.950,1.000,0.017,HISTggAAAUh42u3Z3U3DMBQG0Dp/DWUFdmE0hMQGTMCGbAAPpTxc8altCFDRc14sx+6tc+04aXr39Py42by8bvb6j7Lti4e3+0MLAMAyzXgWja/9UT66I8e7EKd+rgvlEOKP4fyH0D4ciduXMo1jKvVtqc+l367UpzK+rhwvz9ef8acwrpsQdyrtY6jvyvcc6rchnzUPc8hvjd+H/nNp35b6EI7XPPQnrottWH9DmIc59B/DPPZH4g1hvaX1l66PMazPtC+0cD2m63cIn+9Lvz7EP7We9o3f2n+7E/e5tnB//O6+3c4c/9L7QfvhvKx937n0+zLg9wkAAAAAfMV7JgAAAIDL5v0NAAAAAAAA/4H/vQAAAADW5X2LeQHAvi+P8gNgH3QemE8AAM9l68VpFzYu5Feer299tCsZh/c9ztf6xPwBAAAAAMD62jvh/QgX
1438613668.950,1.000,0.014,HISTggAAATF42u3a203DMBQAUDvOgzADu3Qd1kBiA8SebAAfbYV0xVWiVEFpdc6PFdeP60ectsrL+8dbKZ+v5axd0npOTt+nrwIAwK+aXNfk8736rxvjLX9/7yvdQjstlIv1hqS/buU4Yv0+yW8h7ZPrLP8az3xJx6TeGOpPSXtziDO2U5N4utDPtdxTaK8l+XEcLbQ3hvJTEucQ1mVK+u2TenMyT30yv3XjutbQ/pjE05J6JYznOeSPC/1n7Wb7dEz2XUvGXZM42sL+Xnu/ZvMx3Hi+ZOfCkm5juW7l+ZaNZ6l+3fk8fvTnYblxPvdu5177BwAAAAAAAAAAAIAj874tAAAAAAAAAAAAAMCxee/buoJ9Z/4BAAAA/oP/L8wLuB8fO85qve963J5HAAB+D8Hh9+kPnagHHg==
1438613669.950,1.000,0.011,HISTggAAAS542u3aS07DMBAAUDt2wu8K3KVnQ2LFlouyZAeLtptBozRqhJr0vY0V1/E/E7fq6/vnWykf3+WondJ6TA4/h68CANy2utF+Dzcyb3Vn612vHP+wsJ1wfvyzrvG6Jff1UH4M1z2Un0K5FvKnUH4M+S3Jj/Vl/R7CfX2mvjEZ5/n6IanvManvKSk/N75Y7xjaP3/+ckqfk/XI+tuSNBt/C/W1mfrqhe1OF+6znpTLno+a3N+TfR/3yzDT75600xb2uyXjHWae+57s/zLT3tK4WhfGrbXaXeu9WVeOx2vF77Iwf6vnh72dhwAA5wXzDAAAAAAAAAAAAADAHvg/OQAAANwfvwcA4gQA3lNgvwMAzhEA/H/8FJ8BAMD3jL21B4hX9zLeal7Bft76+v0CETsHog==
1438613670.950,1.000,0.011,HISTggAAARJ42u3WS07DMBAAUDuJk3AH7tKzIbFhzWU4FjdoF2U10jARUlsQ722sNtOJP2PXz6/vL629fbSr+avt1+Z0Pn02AIDv9D/+nl58P91pnP1G/e9FfBxnC5+nIt+U5JnC/bLK10P8XKxDzL8l71uK+Bi3hLg9xI/wfBTjfkry7yF+C/Fr0t8Rnu9Jv2PcSPoR47bQrklczBPncw3rtRxcl5GsY1yPbFyxntZinbN5G0k9jqQ+56Qf88F9shR5q30+F/uyF/sw9uPo+fLT83Iqxnvrc+9e57D7gfvGI+pDPQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/11/8O/NKwDgfxjAeQb2L2D/mEfUD7+sDi7yrAdR
1438613671.950,1.000,0.023,HISTggAAAVl42u3ZwU3DMBQAUDtxWgoXBmAXRquQ2IA1GI4N4FC4fPRlGhqUkvcullv/2I5/nKR9eH55KuX1vpyMn2U9Fcf3x7cCAMDy6sx29cL9ZvWsn5a0H0JZwvNmC/UvU/J9C8fP6rF9C8fdhfoYPj+EuCGJ34f4KZQx7hDib0J8LPch/jbU78LxWjKOFvqL8xySecX1jOMYk/PSOuuRzTdrPyV5uOvk55CMJ+ZnTfodOu17/Yyd9lk5JvPO4munvzG5XrN59fornbh65v7WixvObP/T/e7S++ilj7N0P381zjIzH9Y+/jIzn5fqp25k3f9bvv82bq3XAde9PlWe4fnlaveHKn/MBwD7sfMBrjOu4rzLAwAAAAAAgG3wvxAAAAAAAHzn93MAAAC8B3tvBgAAvBcA4L6AvJP/gP0CWMv1bR8B9++tnzfrAQAAAAD0+B0RAADY3HvQB7t8BxU=
1438613672.950,1.000,0.016,HISTggAAATZ42u3bwU3DMBQAUDtOmyAYgQHYgtEqJDZgAUZkAziUXr705TTyoYreu3zFie0fO3baSn39/Poo5futXLX/WK/h8vv+UwAA9qh3lh/l/h6l3ZrE6c5+pqR+LG+d6+L5OZTH9p6TPGP9c6e9Uzgf821JezUc3+Ia4pJcF+MS8rkdP3XG5Ryua0k+cbxfQr0lxDX0t3bymDvjegpxCufnjc9Pdr9z53koybxOSf1zMh8tGY+2sb/Ybwn9tGQcYp4l5DUl7cb8snVbk/yzdktn36gb623d1/buT3Vnf6P21VH799b86+C86878Rpc/6vv4KPkA+B4KHHVdWe8AAAAAAAAAAAAAAAAAjOR/awAAAADAaH53BADwOQwA7wUA8F4Fz537N49gnWB+AfsdAAAAAMCx1D+94Qco
1438613673.950,1.000,0.012,HISTggAAASx42u3bQW7DIBAAQMDG8RNy6F/ytkq99pSP9gftIUkPK61wWlVJ5ZkLgsBig7NGkfLydn4t5f1YLqZrWS/F6fP0UQCA/61agl3sb/3h89CSetsYNxufzXM7b85JeziPfvebk36xPYvXBuPiPD2p9zDuEPqtoX0N5e06lqSM8y0hXg/xsvs4JPVsfadk/3uyHktor4P9acnzGu9zHezLlMSbk3pPxvfBfZfk+kfPV0vmqxvXK/u8bty3GKclccrg+5nljXkQtw3Gt43XUQZ5Kctno/w26l/uzH/3ahvz8m/f88/+3t/7ucS5zHoCPDLvyZsA8iMAAAAAAAAAAAAAAADslf8RAeD9AyB/AQAAAADAI/jdHXxfAAD+6vxTnaucXwEAnJd4lv3+AggXBrE=
1438613674.950,1.000,0.017,HISTggAAATh42u3cS07DMBAAULvOBySOwF04GkLqgj0n4IbcABZtNyON7IoIaHhvYzXN2ONfYnXRx+PbSynvr+Wknct6Kp4/nz4KAPA3Vfnuerx+Ku92ZR5ZGR065TQY18Ln7L45uV6T+6bB+HA+Tj+XTnsltHspl1C2Tn4PSfwc4tdzeZ/kvYR61lBe6rtL4tcQPyf9i/XGfNdQ/5yMQ/Z9Ddez/mXrKZvvKbl/SdZvnL+WjEdN9sHUyTfut6y+bF0unfsOSf51MG70+ZXty9JpL6u3t/9Kp/3R52ztPA9Lp73RuNF6y0b5lyvHY6v30Xf7d6vvc3733GTdAMD+f9/AuAMAAAAAAAAAAAAAAAAAAAAAAAAAAP+D/10FAJw3AADnEW5xPqr+2n/2D+Zzl+vDOgcAAAAAgO3ULys7B3E=
1438613675.950,1.000,0.018,HISTggAAAS142u3aS07DMBAA0EziJAWuwF04GkJiwZ4bcEJuAIu2m5FGTkspAt7bWI78GcefpJ/759enYXh7GfamQxr75PHj4X0AALiGMP6LGDv53F9sjGcsrkeRjkX/Lb135nRO+Zaut065lvrdFfWrOI7ll0N6k+JfU/tVXHMq34p6czH+luofr9+muNaULp325mLcuf5YtL+mendFe1X9fN+XlOZ1tRbt7jrrrRX3I9J9qNb3VORz+1Gsq6WzL6KYp7Eol/fd1CnX24+98cbG9oeN+aGIf2vcp56j58YXXzyX48R6lzr3f9vzM/5YP3jvBMC5j/kEAAAAAACuw+8EAAAAAAAAAAAAAN/L/zXBfgMAAAAAfH/3X+fJvAMAAPicBGGfAQAAAAAAAD8sPgFH9AeK
1438613676.950,1.000,0.010,HISTggAAASN42u3cUU6DQBAAUGYBadQD+OFderYmJh7Ai3oD/Sj9Gd0uBENM+97PpDDMDlu60H709e3j1HXvL91ZP8c4h+PX8bMDAK6LjfvvfX7W1smx7NzHXvPU6resPM/S2B6N/FLJj8r+Sxwaxw1pnMvrcY4Pc5zS/sv2Q4pjys/Hl0qdnDelun3KGyt9DJW8p8p4jynvkLY/p/GHRv6U8vtK/yXV6Sv9l8r7leuOlbpjZb7i9+8fP+oMjXGXXqelcb13jeOiMU5Z+XnqK5/bvtHf0nWhLFxfYmG/sXBelq4/a+vFxvVy7/vVrd+fY2Ne/PPzAwD3EwAAAAAAAAAAAAAAAAAAAAAAgL/nf50AADy/AQAAAFzj9wgAAG7pOTLutJ/4BsKlBqw=
1438613677.950,1.000,0.011,HISTggAAARp42u3XPU7DQBAGUK/trE1OQMFdcjYkSjoumhuEIkkz0idDEMIS7zUrr53Z8Yx/4pe3j9dheH8erqbb2K7D6XI6DwAAj2jy2tX5tB/WoYVxDvNb64/l/+dU5lvZvo+HsN60MT+VfOeQx6Hs72W+h3h1nTWs18P6S5lfwnzKL433459u4zHkMYc6LCHPtWwfy3aqe82v9rX2o4d4qZ+pTlOpQ43fwvFriFf7V/vWy/We6tvDfKrHHK73dF+1jftqCL+vcdL+cSPe1vOnffH5lM4zHTf+8nP10bz/6v3TvtkX710AoDkvAAAAAAAAAAAAAAAAAAAAAACAf63tPB7qDAAA+P4BAAAAfLerL+qtHoD7Xt3YTd8/AXBSBto=
1438613678.950,1.000,0.018,HISTggAAATt42u3aS07DMBAAUP+Slq44AHfhaAiJG3AELsgNYFG6GRilTahE0XsbK/X4G9tp1D68vD6X8nZfjvpXWo/J08fjewEA+Avqxrj6z8b5W+Wz+JbkZ/E9lBvhui+035L2T+kU6plD+X3I76HcHD4/9W8XrmP8HD5vSf0jGf8uiYvj2Sfxh5DfQtwh6e8cyp3quwvpCPM4hfp7Mn9zMt8j5I8z53NO1l1N5ivOf0360X5+z/l2P0ZSfiTrsyfrvif9H6H8tLA/pqR8S9ZZT/ZPWZjXsnDdk/yWtFPPPG/qxvPt0vOprIy/9vNjbft15XiXzvdbe97hPgDb9rf9j+cVgPMPAAAAAAAAAAAAAMD/lgEAAAAAAIBr8XskAADgfcH9c/8B8L0FsL/BegOcU4B9CgAAAAAA3J76CZutBw4=
1438613679.950,1.000,0.015,HISTggAAASl42u3bbUrDMBgA4CRtunoH77IreCXBG+yfp/QGCk5BXnhNRx06eZ4/IU3SvF0+Ggq7fzo9lvL8UM6mj7Sek+Pr8aUAAHw5H3Cj49I2th/l24VxzeGcmd2nhnqf6SHcJ9ZroXxOymsS1xLyPaRLSNek/hr6vUvareF6T+r1JP6s3Rz6jfHFuFry+y4b89NgPGI+3qeF+LLrPRnfOM7zYF5MSdx1MI8Og3kcf+eaxNUG8fakvCbzoCVptn6z+iXpL9s/snVbB+stS8vG8rZzX6xX2lcvbd929lev9Nz1h5//r59L6i/3DwDc3rnCex8AAAAAAAAAAAAAAACAPfxPDfMTwP4IAAAAwPd8jwEAAAAA4D/y/Rusc3GDfQAAvI8AAMC5+739G/gLBv0=
1438613680.950,1.000,0.014,HISTggAAASt42u3bS07DMBAAUI/dpBVcgbv0OlwDqTdA4pzcABZNN4aR088G8t7Gav3JeBI7iaq+nN7fSvl4LWdtKeNcHL+OnwUA2Kb4Y8eJB/WPf3reYuXnNshLTcavyedIxr/U75dy6trtknFaV79L6qeuPuvXunLu6vdJv9qVWft5cPxLnM9Leej6zcl4fd7mZP6ta5/Fd0jiHOX/aRBXSc5Hn68sj1MX3zSIL5J5Z+3L7+9BP75vg+s0u55ikL86WB9tsE5rUmbtYhBXtq7ryn1ytE/ElftRuXI+a+8Ht+7z9cpxR8dpd8YdN84rHhT/veN7bkLeAAAAAAAAAAAAAAAAAMj4/xkAAAAAAABb5HcyeQMAwHMeAIDnKwBwvwSsbwDcVwAAgI29Z3wDy9QHFw==
1438613681.950,1.000,0.009,HISTggAAASZ42u3aS07DMBAA0IyTNJQzcJeeDcSCPRflBiCRZjPSkNKqCRLvbSwntT3xt1H79Pr+3HUvb92sP6cxJ6fP00cHAPxP8Ufri43ivbbe2Gl8YuV6uzC+fL9P5buUbxe2t+THIr+0M6Xrh3M6pPt9EV+uP9cbqb6l/oeUH4vnOhTx5bRP+SnF9ZjuR7o+pvwxff6Y6s39FkU/Vf1dxTkU/ZvjacV45faHYr72RblI7Vblq/k9FePdivkTv5zXa+VbMS5dMc9asf6qdVelsbLe19Zvta/Ejfvg2nitlYsL49r6PLi2n+51Ht37/I6N2t/reff+vgQAzjHMJwAAAAAAAAAAAICf+d8igH0dzGMAAAAAAICZ3ykAAADwvgoAAAB8v49/AUcvBxI=
1438613682.950,1.000,0.008,HISTggAAASF42u3cS07DMBAAUNv5AldAgptwMyQkbsBFuQEs2rIYMXI/aiPEe5tRUnsysRvL2eTx/eOtlNfnsjPsY92Fp6+XzwIA/A/VEFw0LvVK1+mdr5329ch87cj8Lewby+/7yJ92LZwfQ/uYb0j6xbxj0m/axyXEw/k1HB/yzkm+NcQ5qeMhqWsOdRyO70LeWMecjMcS+t0n9xt/n8J8jeE6a7herC+bpzHErF3t1BHHYejM9xRiS+pqSZ1L8r9vSZw6dWXtpuS+sudr6tTdknxZv9J5nk597obOutKLw43W4XZm/nphu1auq545LlvtE+rG41A3um/7NADvwwAAAAAAAAAAAAAAAAAAAAAAAAAAt+B7igAAAHhPNG8A/JH1/hsVVAaz
1438613683.950,1.000,0.016,HISTggAAASF42u3cSU7DMBQA0NjOoPYM3KVXA4kbcIBesTeARSmLLz4OalEH3ttYaTzF30OURZ9e316GYf88HLXPtByT3fvuMAAA3ILyR+Xrg4xHWfl7TfLVzjjFetrKfGPSfmx37MSjJvnH0J8sjfnm5P4pnZL2TuWW79+fv663Id8c6p1DvUvSfus897IybaHeTbiekjhsO3GqyfPEcd104rUk7dUkXnE+ZXEuSb+zfsR2p878i+ulJeVKEo+axDtbt2Nyv7f+x864tc46bxfaD3r7zdp9fm358st9vlwo37nn1bXOyXvpX7nT+AAAAADALfPdDAAAAAAAAAAAAAAAAAAAAACA/8z/8AAAAADwE9+PAHBu8ehxN28AAAAAAIBrKx94MQco
1438613684.950,1.000,0.010,HISTggAAARh42u3a3U3DMBAAYP8FgliBXTobEhIDsATjsQE8lPBw0slJRRFSv+/F6vVinx3ZUas8vbw9l/L6Xs76d1vPzenz9FEAgNtUzfcm17NO6q2T/Lbzc5uM15J2hPwe4iMZryfxh3DdFr8L8fvQz5a3hHgP8dh/T+a19b+GtoZ61iQ/jrPlPybrE+tckvnEcVuyHiNcP0JdLfl+SfppSd4a6urJvEZy/+O8s/uwJHX0pG3JuDXJqzv3RYyXpN8y2Xdlsr/qzn15NJ6Ne7Sfo/O/tL4yWc9rPQfqhdf99vl+9Ly/Vn1/9fxsBQDw/wAAAAAAAAAAAAAA8N95nxkAAAAAAAAAAACAI7x/CuD8BQAA8LsFgJ/z/wuorgcv
1438613685.950,1.000,0.441,HISTggAAAX942u3X3U3DMBAA4JyTNLADa/DMbEhswFKMwwZFgvblpJNrVEF/vu+hltMkti/na/P09v46xfPH9GM+tPH9ue33L58TAMAtiUPbBs+v+n897974bfB4FHFpne+X1J9T2zr9uRivOu84/u7Qrmkex/7WuV9L5+XrHtLxXTq+dMZf03j5+mrdS9Hm8473eSzGy+2S+nm91Xl5/nNnfWsx3xzH/BzbiflS5cV6Yr5W+ZTjv53pfr16sRTri06eVHUsiv3eOvWjde4zdfZpDNan6NSfOPG6afC6GKyzv+1f6+9hXOi8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/E9YJAAAAeL+/yHEBAADwfgsA4H8IAADgPQbxB9QNxB9QLwBQzz0HYGxfxpXPH+QH2J/ID5Dv5ol8kdfce97Ia+w/uK78kdcA6if3k6fyFvD7J86Mx9vzkN/ym3PltXirMyDPxZk6ruItf2/6f+AXSzwH1A==
1438613686.950,1.000,0.466,HISTggAAAYR42u3aXUrDQBAA4Ex+GiN4Aw/im2cTvIEX9QYVtEUYHDYtWGP7fQ9dkmy2u5PNbEL7+Pr20sXTe/dlOJTx+Tnv98/HIwDArYmN9KPfeD/jQufHyvpxZv0q7tHY7lee12ov0vPo7lCORTvTj8+v38eHVG9M5Vwc36XjS2r3PtWbUnms91C0l/uR+xnFuKeivFs5rqGIW96/pPOWIj5j0Z+q3Xz9dsX+oYjvWFzvOe3vG2WuNzbmWTVPx6Ldaj7n74tiuzWvu3S8lSf7xv0+FP09NQ/3jXwyXDjf/ta6EH98/ta+L24sDlt5LgIAAAAAAAAAALh2/q8FAAAAAAAAAACcy/+PAAAAAAAAAK6L34HBfW58AID1GwAAAAAAAAC2x+/rAIDnHwAAALzHAYD1CADrHIA8BADWOwAAAO9lAAB4fgKQr8E8AwAA8B4GgLwtfmBeu06IGyAPiRuuDyBPACB/Y166X8wD40K8xds8EG/jAvMakFeuPe+FfhoH8D/zyQceGggM
1438613687.950,1.000,0.022,HISTggAAASd42u3cwU3EMBAAwKwTBxCiA3qhNIREB5RBA5RFB/C4y2ellYkiAQczH0vx2l4ntpPH6e6fX56m6fVtOpnPZZyKx4+H9wkA+FvCPP71/GNnXEvXW3F9St+TVdzWby/y2dovqX4r13N5neJ7Mf5a5LOkfu5SfU/tc//5+s0g/17kf5Xar6l9L+p7iluL/pc0zpLKuYibizx6MZ+5qM/3YSna3Q7uV863eu5VXAzWxzpYn3n9xGDfLMX4bZBvK9ZZFGUf7JdW9Fvt2yjm2Yr7uPe8qc6DKOL31h89774a3w7mdfQ8jwt9H4a88FwAwPsTAAAAAAAAAAAAAAAAAAAAgB/nfyoAAAAAAAAAAADg+/n9HtiX5gMAAAAAAAAAwCWJX9ZvfALmPQfJ
1438613688.950,1.000,0.008,HISTggAAARR42u3bS27CMBAAUNuBGNoeoYvehLMh9QZclBu0C5LNSNMkLYtGem8zwp+J7ThYkeD983Yt5fpRHoYp1ke4fF3uBQDgJ3Vj+dr6re3Ytu6xXftlnpbkjeVD8jmWH8J1xikeQ/1Svrldn+JbyBPbjck45v6nZBxzPCf1PSkfQzyFcWV5Yr/zwrxaKO/JuF9CfQ/rcQz5Dsk44zzG5D7Gzz3kz+Zfk/3aQnxN5l+S9cnWqyb94/7uSb+W7OeS3O8heZ6G5LolGd/a5zR7/pe+N9rK6649H+qT8vz13HjWubWXc23v46gb9xMAAAAAAAAAAAAAAADr+H8GAAAAAAAAAMC++L0HAADg/QYAAAD4t+/731RpBrM=
1438613689.950,1.000,0.011,HISTggAAARF42u3dO04DMRQF0HE8nwxrYBHsIGtDoqFmo9lBKEKBrvRkkEikiHMay5P4+cXxr5vnt4/XaXp/ma76V9muxelyOk8AAN/uBzz4/9OKetX+EGWLeuqD/jNej/oa5Vz0vxRxquc94s3RT9yDp6ci7hbxlyjX+N5axNvj8yXy2iPONhivLdpl/CreXozDMfLqxbhlu8wz81tinHvxfI76VuR3KMq1mK85n46DebUU87uK24p514s8q7htkEcr+qvWaRus/6rdaL32wT7w035H+9Nf7Ye/7e/W51670Xl7r/O6PVhcvxMAwP0EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4J68Fwaw3wD/fn/6BLcSBuE=
1438613690.950,1.000,0.008,HISTggAAAQR42u3cQW7CMBAFUNtJKPQMvQtXayUOUKkX7Q1gQbsZ6culolIl3ttYY8hkPCFOVrycPt5ae31vV8vX2K/D8Xz8bADAY+ta8C/702/8Xg/HpTwjxCnfEuJ1Evcyv5U4zdd8I4xbiJ9C/q3UtQuf17yHMr8r477ES8j/Xc/zZL7mXUsdtZ596OsI9aa+1OPWsO563sMkX72uW+hTvW59cr1HOF+KW8jbQ796qHMJfZr9/kdYf1rvCPdxuh9aybuEevuN93v/Yf9aOL7O32vf++t9+tGej33yfAG89wJgX7V+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4Hf/jD8BdnicXfZ0HUg==
1438613691.950,1.000,0.010,HISTggAAARF42u3cO04DMRAGYHtfIeIK3CVnQ0LiADQckxtAEaAY6Zc3KNXyfY1lrR+j9XgzVZ5e3p5be31vV/N326/N5fPy0QCA/617BYc8z9pOg/Pug+c/85fQL3Xmb38q/XmwzrpznamMr3Fs5Xkdt4U4TiHO2vaw7lrWWcP4KcR5LvPrug+lP4d9TmX9LcT1OBiX3ucS4lsH+VLjbiE/ziFva38L57+E/VuIJ8WxhvxL+bmEeNJ9Svc15f0S7ukSxred4+/1vRjNH+0z+g7t/f3q4dzbIL7pxjj6H7/PR68P+p3mq39AXgMA6gwAANR1AAAAAAAAAAAAAAAAAAAAAAAAAABwVP4vFABAXQfceN++AAE2By8=
1438613692.950,1.000,0.010,HISTggAAARF42u3dQW7CMBAAQDt2HOAN/Qtvq1RxrtSP9gftAXrZauVwQK3QzGVlsng3jnGOvLx9vJZyeS9X7RbrNZy/zp8FAPhfqiV4inWrD+qr3jneO8+SjGty/UdP8mexhe+1pK+WxDV8/3iLW8gbSZ011BtJ/hbiGuIhjEfI7yGOkB+vn5J1j32MZL41mX+EeeN6HUP+IVmPNfQZ7zuub3xuPRlvSZ0teU4tyY+fL6FOSdY39nWa7L+YXyb7vCb7bkn2Z5/8DltSvyf1+yQv67sl9Wf933s+LjvPz2XnOVcfdL7+1XtgNs/i/e8+AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKfg/wuBX+fCN8+OB0A=
1438613693.950,1.000,0.011,HISTggAAAQp42u3dO07EMBAA0Izz2fA5AgU32bMh0VBzUW4AxYZmpJFhlbAU7zWjJB5/Yytdnl7fX4bh7Xm4GLcYl3D+PH8MAAAcLw7Oq8qNvywfxfN8PW2xpfstxSnlj0Xs5UW6n/Oqeuctnra4bPEhPV9TfXPRbiva/a73sdOfNcUptTcV5YfU79zfJV3fp7xc/5rylmKceZ7uUvm5iNV65XU7Feu+dPo3d+Z5KfZBFPPSOuvcG08Uea3oRyv2RRTvV/ywfG8/VOOIK2NPb5yx87kZNz6H9zq/46D644/GvVf+rdfvv3wHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnq7+X/AXxe4GuA==
1438613694.950,1.000,0.009,HISTggAAARF42u3c0U3DMBAAUJ8TGrWswC5diRWo2IBF2QA+2vycdHKJKFDx3s8psc8+u4nbrz69vr20dnpuZ9MlxjkcP47vDQDgnsSN+/+1dcUvryvS78g19hQjxdw+D/Km1G8q4tq+u8SHoq5qvJx3SPfXuE/xkPLyOOs8S7qf2x+L/F1R734wT96/pahjLj6PXEcedx6ME8X+5/V/9Tnoxbqi2Ifd4LmpnqNqfS1dR1FXS/m53zLIm4r3uRfX0+A960Xdo/Oiyru2zl7UHRvPrSj2K67M6xvPz77xfI1vOmdj4zyxsc6f/n6MOx8fAAAAAAAAAAAAAAAAAAAAAAAAAG7J/+oBzgUAAAAAAACA/y0+AUHzBwg=
1438613695.950,1.000,0.007,HISTggAAAQl42u3cy00DMRAAUH/z6QGJUmiKBpDSAU1RDh3AIeEy0siLBFJWee8ystb22F7bm1OeLu9vpbx+lKt+i/Uanr9ePgsAwH+qD56n3sm4s7w9GcdPuSUxa9dDvZGUe4jHW5xJ/4dQbyzyHEJ/Wfkc8h1CfyO0G6HdTNr3Rd4479Ni3ucQR2if5R/J+p5CeYZ6x0X7kbzPmYwr62eG9zbD/Geyr+K6tGT+JdknNek328c1iavndXGe+qJe35ivLc5vpi3Of03WM5tfWaxr23gv1cXz9sf34G/v47px3Pd6/+/le/uo4/V7EAAAAAAAAAAAAAAAAAAAAAAAAADYO/9DCAAAALAP9RtHXQc1
1438613696.950,1.000,0.007,HISTggAAARR42u3c0U3DMBAAUNtJigtiAyRGYSgmQGIAJBZlA/ho83PSyW1KUYXe+zm1ic8XX+s0P316/3wr5fWjHEzHWA/h+fvlqwAAbFEtwZ9qgz7Ujf2rG/sbx09JnfH4Gpfweg7j1/fvwvFT552T/EtyfBrUuzvGHuranZivh/PXeh+T+pYwTw8xXsd63j7M85CMu0/GxeuLfepJv1pST03iPoyLeXuynvHzU5L1XkL+rK8tiSXk6YNxUzLfnNQ5qq8O6i5J3qwfJam3Dr7X7cS6rnVfGO177cz96tJ9s5w579Z1qb+c79J5243+ntjadwAAALhFnlsBAAAAAAAAAAAAAAAAAAAAAPjP/M8OAABw9eeOHzmpBwE=
1438613697.950,1.000,0.008,HISTggAAAQN42u3czU3DQBAG0P0lhhroJa2BlA5oinLoIDkEX0YarQEJOLx3GTnxfp5dx3ZyyfPl7bWUl/dy1z9rvZfz9fxRAAB+UzXvP1mnnuTu2+3gceP+cVx8v4Tth6SOsN9I8k+h7uO3MM+R1Mfk+D3k7PlPoW4hrye5+/YMeX0xjxGOF3Nn0scM+TOMPyXj47qOJDe+viV9j5Abz+NM1qUm/WfnsyfzqAf7GYvPWU2un69erzFvJvMtSR9tUfviusv6qIv7REn66ot5t8X4enD92jfXt/3wfloX+eB7FgDgeQwAAAAAAAAAAAAAAAAAAAAAAAAAAAAc4f+KAQAA+Fe/U2830Qdx
1438613698.950,1.000,0.009,HISTggAAARN42u3Xy03DQBAA0P04tqEGekk7tBEpHdBoOoBD2MvAyAkhCEXvXVbaz3hm7Xidl+PboZTDaznrn209N/v3/akAAPylqr67XKfemMeY35L1LRmP/T2JO/p3oX+0U2hH/xLizyH+iLeG8Smsn8P8JcyLde1C3nOyLstvCnFa6B9xn5M6WtL/FK67hDhxP+dk/3uS95rUGfPeGu/J/sS64ropmV+SeT2pZ02ep5rcl5bE6Um+JXlupu//d30Zbxv11o19qMnvtCfXLxfm3ZL4W/fj0vdLTeLcql35Pr7Xe/qndT36ufjfz9V65fOL70X7BwA4hwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+T/0AxRwG7w==
1438613699.950,1.000,0.011,HISTggAAARl42u3WS07DMBAAUH/alMIVuEu5GhIrtlyUG8CimMWIkROUSki8t7GcjMeu7dp5fHl7LuX1qVz1r7Jei8vH5b0AAHA7dec8dZK/rhzHqLdJ/vLzd+R3vYc8Leknizsk5Wh3TPKNuCXkP4b3PcS1EJe1OyZxLeS7D3Hj+SlpN/I/hPqIP4d859BPT8a3JPVR3oV+4zycknlYkvFn89dCvpasQw/5sv2wJOuerfMh2WdZmY2nTvL1yf+nT+IPK5/3lf3Pzo3ZOGfPSzKO7H2dnB81meeyMX/2fut5WH55rt76Hljbrm28N8rGfbP379vrXgQAgL/Edy4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/Vj8BVXQG9Q==
1438613700.950,1.000,0.005,HISTggAAAQp42u3cy03EMBAAUDvOD4kSkCiFdjhuC0h0QKN0AIfdXEYaOatEQsB7l5Ej7/jv5LRP7x9vpbxeylW7xXoNz18vnwUA+N+qKfhV61RPXu+WPB9ucQzlmsQh5Bt35tnKU/L7MdTP8mb9iHFrZ07am0KM+ePzx5Bviw9hPmOeNanfkn5t9ZZOeQ1xCXmy8cbyEuKUjHNO+rkm+Vuy3kMS1876xX1Qkvayfds68zOHvFNnf5VkXGPS7t5zNiX5e+c6zmfZOS/3nv/SKffq3fs+qgfvzWy8Z9/HZ9/XZed8l+Q+P9p+PZjPd5TvNQAAAAAAAAAAAAAAAAAAAAAAAAAAgL/op/4/tn4DVDUG2g==
1438613701.950,1.000,0.007,HISTggAAAQ142u3cS07DMBAA0PiTpMAVkDgK9+oOiRv0otwAFm02I41ckFoReG8zcjO2x4mTKJs+v5/epul4mM7aJZZzePl8/ZgAAPak/LN6y43mqYPjLckvIdYQW1LXkhzf2j1pb+POSV6soyd5Mdakrh7m2/IeL3Ed1Bn7b3mHkPcQYuy/hHlbmH9Jxt/6PyX1jdY7h3n6IC/WFa93vA7xvK5hP6yD69+SfqN9Mg/aPTm/2T4f7bPsPom/99Cek3W15D7Pxs/my8apSbte+dy5to6fPo/qYP3fjb/lub2391XZ2TrLncYrf3S9AID3NAAAAAAAAAAAAAAAAAAAAAAAAAAA7In/AQUAAO72/fEFHAYGcA==
1438613702.950,1.000,0.009,HISTggAAAQd42u3dTU7DMBAGUNv5gSAWHIC79GxIvQEX5QawaNhY+uQgAlKl9zaW5fF47Dppd329vr+Vcn0pN9Pe1ltz+bx8FACA/1AdwV2c43f+FtY7Oj6H+OlgXB8/d/00voS8z138FOIf93br+ktYp8/zsLdrN7528+ewr1Tf0uVZQt4W5m9d/NrVu3T7nUL8GurawuezhP5ov09h3hri03m1sM+j55/uXX+/aqijhfE6uPclrDcNnoP0fI6e11RHG9RdBvevDtYtYb+jOusP34/tpPftaN36y/xnxdeT6vO9j99LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcB/8j98fn+8XFewGuQ==
1438613703.950,1.000,0.006,HISTggAAAQJ42u3YS2rDMBAAUOtjxb1DoUfpnXqDQhbd96K5QbpIuxkY5NAGCn5vIyRLmpGsyJDn8+f7srx9LDftuyy34uX6elkAAPj/yoPmK5P526R/Tfr1UG9JvzXM00N7HF+T+gj1mMcpjFvDuC08H0k+Me6683kLefy0P4V4a4g7wvge8h1h3i1ZT7YvWbkm69hC/ZTEL5P5anIuYh6xvSbvPTsfYxKnhH4lideTeUaSd915btvk9xT7Z/dBubO9J+eiJu2z+2eW32zdv73/yh/dm3v3L1v3o+//e987x/7OW5f9AAAAADgy/8MAAAAAAAAAAAAAAAAAAAAAAAAAR1G+AFBTBt8=
1438613704.950,1.000,0.001,HISTggAAANt42u1VSQ7CMAz0kgYqOHHmAfyib0PiB3yUJ3AguYw0clWhgiLPZeRkajuO61wfz7vI5SYfeGNtbMtLEolEIpFIJEaGDp5X5MdAh2yEnegcuAQ6A123J9AJ2Vew2blKoOv7B+AevxI/DnaB9VPjufGR5D1BnBrErcQ+k/wczlWAWbxKvptgHXV4P3PQJ+w+ndStBvUvcM+F9J2QPtWgjhb0kQVxor5GOPHvwX+K53IyH5TkYyvnigY6I/bWOcby9p3nva5ct53i6Zf8jfqu64/roX9al83+3gxSBQ4=
1438613705.950,1.000,0.002,HISTggAAARR42u2XQY7CMAxFY4cWBq7ASWYz12I70tyAi3KEWUA2X/pKKSAKvLexEjuO6zhWuv87/pbyfShn6kXGRebPqQAAAMCyCFLwUXmOmfrefHTsV+09KPPV+EmRo9injJ3/EH2Tg6yvZv/B2IeRLc61jEdj1+RW/Kt+I37X5nsGmd/JuIi/Zv9l1ru87cy5aFyq1zxqHGnOTeMLE+9g6sPVwWjqIMUuOt/j8lY78ZTOvk6fpt6n3q9i6r1X31P3cXHVK/tUTuwvMXN9zOyTt/bfuLEfX9vn487+3uU98ejzT94pHxlnkIeXzPez8pncH/oK/W4x/7/cD/oGUB/kBwAAAAAAAPgfBQAAAADeVQAAC+nD/+VQBZQ=
1438613706.950,1.000,0.002,HISTggAAAPh42u3WQQ7CIBCFYaaAWF14Ae/iwgt5BRNv4EW9gS5aEvOSCW1jTKP/t5lAyzgUSzne7tcQzpcwiGO0IRyep0cAAAB4ZyvP9+/P22a2vfE2s57a30l/bW/GmOTcWeNWovYnade8eYxFonc9S54s9e2lvZPx2u5l/kXq13kn6Y+SJ8t9xZn/RubZO/mL0695shO952TOOur1JG2tO0qd1lh/7/9jzrpH6e+c+716ovNemFNvK39rvEn9wXmfWnnm7gfWeJ+n7gs2se6l+9zS3/fqWdt3yb487lfPFZwH8Il9AAAAAAAAAAAAAAAAAAAAAAAAoLIXQKYGpg==
1438613707.950,1.000,0.001,HISTggAAANh42u1XSQ7CMAz0QtJF4saRv/CtXpH4AR/lCRwIl5FGTlFRQfJcLDcTe+xaSXu+3a8ip0Ve8Ga1Wbs8JJFIJBKJRCLBoTvltU6ed+q3znqUxHeI40SvET4+L+AfwBbCH8BX4OH6SPK8eRPom5utwMN9I/BQ9ww8g/UjrOP+KYjjpL5K+ol9qeCz/heybwC/kjmz4D1qoMPJf4ySvkqgA+c8ymPAkyBPpIvVwfJaoN9W6vnUV3I+2I+dn7ry/Nz6HtAvx99K/1b17HU/5ndDIufm/+ZMnwgfBWw=
1438613708.950,1.000,0.001,HISTggAAAMt42u1USw4CMQjlM1NrNPEC3sWzTeINvKhHcOF085IXStTEBW9DKPCglHK9PzaRy1Pe8F3qLu02LIVCoVAoFAqFf4B+6Gdg10keJp3wDiwgG8SN8xV0B/8D+BnhbWDHOJSN6Ar8ndTXSf5G+Ef8CXhGnUdSP8pG6jqTvCvpJ/a/B/1ych/WFyV1L2R+8F1RV+KP507mjMV7MOeMV4N5kuCe7D9p8v8JiZfJ/25Jfw3ySHK/2OQe0+S+y+43Se7HX+/xb8WHfXgByCEF2Q==
1438613709.950,1.000,0.001,HISTggAAANN42u1UyQ0CMQyMj00ILwqgF2pD2g5ojFIogQe7n5FGDihaPp7PKNF45NiOr+vjXsrlWT6wjWVjvb1KIpFIJBKJROJ/kC91MqjTQR8FFqJfiN6InxDdfq4bn4L4nc+gx3jMwyDvSthB10i8Axv4YFyHvCt5vxO9w7lBXId7B3+si5Ozg08n9+z9jfTDSf+N9Bn9JZgv7A/ObSXzGvXTSb5G5kWDOPYfZfD/RP9Kg7glyMMCX4QO7i8J9smsfXjUPtZJPnKQj0yugxxU/5/zfQPrfQXP
1438613710.950,1.000,0.001,HISTggAAAMx42u2Xyw0CMQxE7Xx2A1wogF5ogZaQ6IBGKYEDy+VJowSBBIs8l1GcZDJ2PlIOl+vZbH+yB/LCvnA63iwQCAQCgUBgDfCV+PIX/av5/mZdEtjRtsH4E2XQXxXtDE7QbegvmD8jnhGnLsdTr4nxm4UnMPNoQm8r5u/QX9BPvQp/k8inwDd1Z3AS9eA5UPmmjg+1v3nwHKj94nnmv6Z26sfxqp068SrWzaKOLu6luk+8h7mjx3pZJ8/eOsrvp97hX33H/8W/f0nX76kmBTU=
1438613711.950,1.000,0.001,HISTggAAANp42u1WSQ7CMAzMOGs58QAO/IS3IfEDPsoTOFAuI42sVLmAPBfLqZfJtHFzeTzvKZ2v6YO8W+zWbq8UCAQCgUDgP4CQ4Kd0wEH+mMw3x4dT35znoHsm3zcL1cm0Xmm9k38S+d+8jfwmeHDeELwH8ajEdxCvTn2b4FGJzyBrol4VdTu9F8Vb6VQofiO+jeKK4FeIB+vOelfaL38fEHpk6tMpvglf9TGHTxffvYrPor46fxD7UnHqvEHo7/VR59s75zY5l+DYo/MSk3Nz1bzGojqr/w9YrAPeuYQFFw==
1438613712.950,1.000,0.001,HISTggAAAMh42u1VyQ3DMAzTYeco+ugA3aWzBegGXTQj5ON8iBKyCxRoAfFD2KEk2rHl+/O1idykwRtrY3vskkgkEolEIvFNaPp8Cxv0YZ06JXoDPnUTiUOdBvlLEOdEhxzpHMYLiTt5bVxBX2H9heSdyHiGuAV4hvo4f218gbysHsuDcQ7rq+Q76layP07q4f4KqaOQD89PJb6i/+5BPnbu0E8B3xacJ+30o8F9MJIP77UTPesDvX3FBvuiBj7kw/lffz/+5f0aXtcBXC0E9g==
1438613713.950,1.000,0.001,HISTggAAANB42u1WQQ4CIQwsLVtW48EH+Be/sd8x8Qd+1Cd4EC6TTIoeVg+dy6QttAMUwuX+uImcN3nDOpfOen1KIpFIJBKJROJ3ULBLYAv864SMZ4zjjOhYwI/j8V+5kHwjXokehfmts8O8BrZCveE/gu1B3Qp5GthO/CvR66DjQHQ2iEe2Q93BJ9i/Ferg+hZg1G2EZ/vBgn5g8Ury4nkryRfFy6Qu7H92b3zyvhWiI4obOT8J+pnddwvWo8F7o5Pv2awe+TDfXti73r/q+/bcygtKmQU5
1438613714.950,1.000,0.001,HISTggAAANp42u1VQQ4CIQykLQgYEn2AD/Hm20z8gR/1CR6EyyQTMO4mHjqXpqXtdGBhL4/nPYTzNXxg3Uq3ensFh8PhcDgcjl8grnOXfkJsWPRnfRTyDOIjL3abYN2gHutG/oHwJeiTIY7zGvTLJF4Ir4Ie1HsE/kJ0DFvBb92eoK4BT4I5UE8Dv5D5MumrZN8i1FWIR8JboY8RHUq+L8Zv5HyM+LP7wM6XzRfI9xrJXLqoN03uJavTybqQOZgeW3xflNxPxi+Tc9E/+U/I5B3cqt+32Gt/ZOM8Wv8G++UFMg==
1438613715.950,1.000,0.001,HISTggAAANh42u2WQQ7CMAwEbTdpqIAXwF94GxIH7nyUJ3Cguay0chESFLRzWTWOt66bpD1ebmezw9WeDLP6rHG6mxBCCCHEP+JvxtdaX4DiuMN/H/pF4mOQ37WAj8N4kHiAzwjxHfEZIa/CeIHxrnuId20wbwINiLfkvhvQAvO675bkN4jjcwT4T5CH/aykHuxnI4p14Xwn/cD3PBHfmqzzgdRtyXoq5LqQfrL1XMl+yuo0su49iZeFeUH2oy3c79m5wvbrqz7fOld/7X6+ku+PEEIIIYQQ4vP4A+ZnBY4=
1438613716.950,1.000,0.001,HISTggAAAN142u1XwQ3CMAx07LgpICEGYJfOhsQGLMF4jMCDhMdJp6Qqqnj4PpZd+85tGqe93h83kctTPrBqU7W6vCQQCAQCgUAgsB9Sxx+Nf7/nSL6S/NF6I3wGtsW92gxxvI58mdjGP0N/Dn6BuJM+G8/U0ZuA50jqHfRRB/WbzrnaA9TP4J9AR0G/AK+TdXDgx76VrG8hz0eIHtqJ3L8RvUzeP1aP8UR87bzXubNvjMR7eWzfMB4l/2ups/+NrLcOzhvWx+h8WTuvRvNk5VzUjXN4a96vz4V/593tvHwDMlAFjw==
1438613717.950,1.000,0.001,HISTggAAAM942u1WQQ4CIQxsCwusevABHvyJbzPxB37UJ3gQLpNMuoY18dC5NNMwpTSlcHk87yLnq3yQutVu7faSQCAQCAQCgcD+UId7/tn4Bv8/AW6gU6JLG3WoX8CfSZzWbSXrBy/gR96cvCvwE+gxToNzDP0B/Ab5FNCPfVbQFYiLdajkvCvJD7lXl0Ls0B3J/onUDeuRSb/gOnH6TIhuAZsIN9LX5vS9kTxYPRLpX3YfvXmQiZ/d863xZ+ePTvp1cu59m6fuNG//9V352Xv1Bhn1BRk=
1438613718.950,1.000,0.001,HISTggAAAMx42u2WQQ7DIAwEHQOBqJc+oH/p2yrlB/1on9ALuYy0IlXV5FDvZQXB64XYJLf1+TC7WkfqPHX2+8sCgUAgEAgEfonp5Ph/OcfRc/4Hkl3obOMsdB1cwIwvWL/5qp0XzDehQ67QbwNfar4KXw3+ZqxbhE4D0y/HF+gX4WcGV+GH55TE+2C8i31k5M1CzzDvou6yqC+eC+slifp14dPF/rLwqfrLB/lcrLdBv6WdecugjyfRn7Yzzj/0Y4N749t7/Oi4o+7j078nbwOrBOQ=
1438613719.950,1.000,0.001,HISTggAAAM942u2VSw7CMAxEYzstRUWIA3CXcjUkbsBFOQIL2s1Ij0TAgoVnM6ozjj9NnPPtfi3ldCkvxMq2si+PkkgkEolEIvEOlnV/5e/Cn8Zz0Fmnf0BeAXG8Yd/2qbKP7juC/050AXmG6Kt8T6IbJG6Irgpv+hl4FJ4gzl7WJ/Bz6Ndx5YP4zVKv8gD5ONgr1DWCnuoeoI8O54L6btAPb9jpPFrnOp3faORN9y2gDw7+Dv8pOu97gTpKY97UzvnlnfPJGv23H8/VfMf+5H18AkFSBVE=
1438613720.950,1.000,0.001,HISTggAAANp42u1X2w3CMAz0I0lbEIgBGIAtmA2JDViUEfig+Tnp5LZIFR++H8tu7mxXjtVen6+HyOUmX/hsdbZ2f0sikUgkEolEYjv0R54t1FViJdCJ9IzoKPEbfFca0XGi2+MF/K5bIV8FfueNs50gXsEfQM9JHxPEMd8Z4o3kw+cT1NHjJ+ijkn4anDvCeeQfwHfSvxP+AH2MgU6DeguZUzZXBeaksP+WYO6czE0l5zXQY7YSXlQXuxdC3oOTemXhXrDg/rN7b4Gurtx/tnLP7bV3t/L3qvNf6tEPKkgFBA==
1438613721.950,1.000,0.001,HISTggAAAM542u1WwQ0CMQyr015LEQ8GYBfWYQ0kNmBRRuDB9WPJ5FQJhFD8sZxrkipt0jvd7teUjpf0Ql4ZK9v5kQKBQCAQCAS+CUQJ3sJEvWxjXSH8IPLA0ZmY/Rfi4V+IQesqsYn/1UJ21ibiNvrOeZqzfsTbi/hDdyc/67H+IPw7+WWyd4q3I66kizinJuq5kL2JukGcbxH7N6H5vvE9L6SruOfZiQeHuU5qH9npGzj9C9EP2elXbLTPzglMzh9Mznl8aG7Oxv21d+lf9oMn0AkFSg==
1438613722.950,1.000,0.001,HISTggAAANJ42u2XzQ3CMAyFE6dNmp4YgF2YDYkNWJARGIED5fJJT06FQEj4XZ5i13+J47bHy/Wc0uGWnigb543tdE+BQCAQCAQCAR958DkDe35G16Ny6plPFnpll0V908ZV6BP0JuxnfKdWyKmf4IfyF6+wX1BPQ7zu2HfIF9hXyOl/FXWpPBrqa2Bz/Mxin5hvRt1d1KvOy8S5NMi9/jX1vyL6UeUz6t+c/E3Yq/4rzr0ywcynijjcv2nn/DDnvnvr8uZc3DsHPzWfvxXnX/3/zPv6AZVRBdU=
1438613723.950,1.000,0.001,HISTggAAAM142u1XyQ3CQAz0tWxEHjRAL9SGlA5ogvIogQdBQiONvIr2wcPzsRx7xxPLcZLr9riLXJ7yge9Wd2u3lxQKhUKhUCj8fh8U5vZTJ/XbkriTfLSoy0leDPJgXgPLeAPqx2Cc8ZwSvkZ4nOjvEF/AnsHvoONrV/AX8Dvw4fWAcwHxlejrhIf110n/GvA2EnfQj3NioEdJXSPzjrp0cL6C6PFkro3Ml5DzTv63guge3Q9Knm9EkL5Fcp+S1LFk/+jB/Xd0H87O+/v3yBv7FQWf
1438613724.950,1.000,0.004,HISTggAAAQl42u3bzU3EMBAGUMf5YyVKQKIUeqGTleiAJiiPDuCwcPnQyHtZFMF7F8vKeGxv7CQ+7MPL67m157d2MX+V06V4/Hh6bwAAf8l043z9l8d97Xx6ET9FucZ3YYv6EvmyzLjMP0e5FtfXYtx7EZ/j+o7b4voS+U8Rtxbxp8h7F/33aL8X9ewn579E/m0wjsy3Rfse9T3yZH/3xf1bivmvg99/Le5nnDt+3OceeedivU3Fes19mPMf5WvF+q/W21LEzcU+qNr3wf4YyXaj/Tt6XvTiedEHeaaibFfWj/I8v1W/R5nv0d+vAM4dAAAAAAAAAAAAAAAAAP+T/2cBAPgeBAAA4EDntE8xJgcO
1438613725.950,1.000,0.000,HISTggAAAMN42u2WQQ4CMQhFoWVapzHxAt7FK3glE2/gRT2CC8vmJz/UuDAxvA2BMjAw0Mz5/riJnK7ypk6pU5bLU5IkSZIkSZLfo4HO/HXRjueF/B8i7rcRP4zjNLA3ks/tBnoh+TuxG0gldoM4/vyBxCukDj/fpxzB++6QZxC/I/izvgyI10FvpO8byEbq7aQfncQxyGNBPyqROFcafA+c60rmpyzOL+YRMrfRHrG9qot12OKe6uLeR/k+vaf0z+5b+bYvL0UPBSI=
1438613726.950,1.000,0.001,HISTggAAANR42u1W2w3CMAy03YTSCtQF2IXZkNiABRmBEfgg+TnpdC0qfPl+Tm79uLiJm8v9cTNbnvbB0Ngbx/VliUQikUgkEon94cT2L+PQ7ve6EHXU+4HdEzf6VVIPdXa7AI/Ev+c9EC7gx7hAXEDdCvXR70z09byz0Is6lsbHxhPRieubQccI/tjHiTx3yI/9KBB/Ar8g+vC74j4woq+QfRJEtxMdLtap7CB6K6nLzoPS7eK8FaJTIcRcUfVj5XyKlfNr65y0nfKyvviP8puYt//+7/gbgiwFyw==
1438613727.950,1.000,0.000,HISTggAAAMV42u1XSw4CIQylhSklLryAd/FsJt7Ai3oENziLl7x0iHFh7Ns0bV8/zEADl/vjVsq5TNQpZUq9PksikUgkEonEL0D+pO5+TwPJeBL0qYSnxP++LzZS30h8g3gDfQR9bVN2yLcFfTXCR92hngX5HfQBcQb2AXlOYHeIcyI74Rn4nawTpZLvguu1IF+D+riPKumzkndIPbgv8f+w/VYIT4if8TrxK+m7BecxOm960C+L82h1HtTFfBLYvzV/5cP43f4CU1AE5Q==
1438613728.950,1.000,0.001,HISTggAAAM942u1WwQ3CMAy0YyekICEGYJd+WQuJDViUEXiQfk46JUXlAfg+p1rxnd3GSc+3+1XkdJEXrLE2TvNDAoFAIBAIBL4J+iN165v96CAn8v+HSMCo4yTfVvrmxgXiBXwc4ga6BfSW9TtSR4X4oaO76O0bH8HP4HkCfyd1ZqJrkG+kv0J8aicvwfMEepV8r0rqr8THiB/bX6P7R8CPrUudvg3YiX/uzJWT+fHBedSV8+Sdfrc6L3XwnJHBuHTOm3+5p3TwPX/qfttKn+XpE9LBBR8=
1438613729.950,1.000,0.000,HISTggAAAL142u2Uyw0CMQwF43yJQNAAvWxtSHRAA5RICRxYLk8aORLi5rk82Ulsx/Hu9f64pXR5pg9lV9s1b68UBEEQBEEQ/A8Df/kxXnb2ZVCDOjLEL6Am+vWPxTxVtEF+9Q9ZP4DdRauc17zTydfFbmKfxN8h7oQ6p8Q773qEfA36pPdusD7g3Yr0Jzv3L2DTnOp70JyYM380z+qvzjlbzJtgvcI++p4M4nn1dCc+9cGrS2mL/6G86PfuG0B/3ik+BYg=
1438613730.950,1.000,0.001,HISTggAAAMp42u1UyQ2DQAz0AbsIIqWB9JLakNJBGkpJKSGP8BppNCiBn+czWjM+1nh9ezxXs+vLvsiNfeO4v61QKBQKhUKhcBz8YD8nZ+Qg+iQ6RBAegNGOdSgdfh9JniS6RnSN3HsC7hvPEGcm+gnyd/BDe4d6MM5C9DPxW8DO+nAhfcZ+N1I3zs0IfcT/kWJOmtCFiB/CjvdR89vFewjyHlzMcxL/hLwh3vkg6gjRHyPn2Lk/jNwrhb+JveI7/X/dp37yXv43zll5/QMRKQW+
1438613731.950,1.000,0.000,HISTggAAAMh42u1WyRECMQyzld2ELA8aoBdqY4YOaIASKYEH2Y9mNAkQftZHs44tx86xOd/uV7PTw95Ijb0xLk8LBAKBQCAQ+Cd8sl/gN4D6ncQ70dX7UehAcCadtfFC46Bx9gfF7Xykeex6B4pnLuSv7Mxb4yrikmCue6O4Rcy/dOIq2XMnX6V+sv4q7EX0EcKeaV143SDyct9435rYpxjc9xD6vXMAUY/6NpEvd/Kq+lyMq3M3qoPB/n16b/sknVn+o/WlyXpf/w9fGwAFig==
1438613732.950,1.000,0.001,HISTggAAANV42u1W2w3CMAy0TdI0CKQOwC5lNSQ2YFFG4IOEj5MOF7UIPnw/pzi2c7LzOl1vF5HpLE/sGmtjm+8SCAQCgUAg8A4aJdi0DrrST+Ff582//n3EzuI6J+BuH2CcyXpC8mL+DHEJ4guZRzaSv4BuXDcRe+cK8T3fAcadR8i3bzzBfAW/Cv5HUudC+mHAI6kf7oNM6pGdfnl+4vQV94OBLiX9UYeF6ML9ORCd6tiN6FfnHC49H0r6yXTZwnvFPqyfOPm3us/W3rffeqf+9f37tS59AG5PBR0=
1438613733.950,1.000,0.001,HISTggAAANx42u1VyQ0DIQzENtdqH0kB6SW1RUoHaS5lpIQ8dvmMNPLyiFaKPB8LY4bBGHN7vh4pXd9pg+1Wdqv3TwoEAoFAIBA4A/Kn55HJeHXyIgf9QniHzZP6R3whPOpYxm/AU2GciY4KtoG+Bfi7s08BHgP9HWwDnhXmKznfAvtV8K/gH3wXWNdJnhrYDjowT4XoYfoyOVch9y7kvg3qAcfq1K2R+jayzg6+FyX5wvXFeV9KdLL6F8LL5nWyDyjJbyJ+ceJY35KD/cSLm/XLj/vz2f/W7D4W//Km/wsMRAXY
1438613734.950,1.000,0.001,HISTggAAAM142u2VwQ3CMAxFEztNKXBgAHZhNiQ2YDnGYAQOhMuTviwBQiryv1j5db6dxHaPl+u5lMOtPOHD1mHtdC+JRCKRSCQSa0Zdebz6oa5h7cH3Cr4Gtgld6jTwLmyHv4HvQncGvwG/BT8Nuxd5Nfg16CzIZ8b+RZxnQh5d8K/9O6wX5KF0m7gHD96P/jw//Ses+V4u4nbhV6Cr6tFEHfA+Ix0XdU19F33kQZ+ZiFOCfrGgHlUfmsjH3pxT9uU5V9+M9+t5+2//pcS49wfvPwXK
1438613735.950,1.000,0.001,HISTggAAANF42u1XyQ0CMQz0kTgrPlAAvdAKraxEBzRKCTzY10gjR0gLAnk+kWNnfMRyds+3+ypyusoLvq26rXZ5SKFQKBQKhcIvQXfm1S+dZ3w2qdckDpSNyAPkDt+RDWQHO3YuYL+BP+QP4mchfpEvYD2CPfIP0DM/ncS5AM8B6h5EH0l+g9xPkDg6yQf3W1IP9Mfi8IRvkD71yb62pN8t6Xfcd3IvjeSDfJ3E58TO2X8Y0UsSL8vPkrpl82l2btnkfMn49U2eT8/hf3vn9gK+J/oEvW0FXg==
1438613736.950,1.000,0.001,HISTggAAANN42u2WwQ3CMAxFkzhNC+qBAdiFlVgBiQ1YlBE4kHL40pOL1CIO/hcrzve3ZcVWzvfHLaXTNb1h3eZuy+WZAoFAIBAIBAI+8sY6+Utdj+/pfv5/4De5N+Drf7I6OosdhG/ib92OUIfGV9DTukbRn8Q/SvxynoVP8UtdR6m7SR0z3E+g26CfHr9JXQa2Qv8P0HeNI34DvuZPzntTW8HvxQ3wPulMc6X9ornKoG8wL8WZ2+LMF8XZyvlfu99ov5Sd9+dWe3cvvV/nX7v//60/+QWK7gVY
1438613737.950,1.000,0.001,HISTggAAAMd42u1XWw7CMAxrmq7tJj44AHfhbEjcgItyhP20P5YsAxIIRPwTZYk997FIO11vl5SOacBHtBHz+Z4CgUAgEAgE/hn2Zl2mnwUP6y50MvBd8BnPHvQz80Wsx8n72PMCcfb1EeuIjfShTiM60/cB+rDeIN9AvxLeBnkl/jv4wDrrz8QP+nJSXyFfIBrZ30Z08VzZeRipV8g7uWdKn91LvA9J+FbfpZH1FPLfZYLnQr+I7yx/aK6pufDqPPyVef8s/1v3x3ZTfwTw
1438613738.950,1.000,0.001,HISTggAAANF42u1W2w3CMAyM7byokFiAXZitEhuwFOMwAh8kPyedElG1CMn3Y/lin904aXu9P9YQLs/wgTUrzertFRwOh8PhcBwL+TNdn89vdeVLvv/3KYlX4gvxjeT19Qg+8j2vAJ+ALxBfSR+52YXUiRBvoJeBP4G/gMX8QnQqPFcd5HX+DH1gXCK2Qp+Z7C/uD8ZFMv9MdCLUN4jD82KkDxucO5x7IPUS0QuTdY3wkfCZ9DV7P3E+7D4q0WH7oYN7v9Xf6z2oG+vL5Pre30k5OF/elJgFtQ==
1438613739.950,1.000,0.001,HISTggAAANV42u2VSQ7CMAxF7bjNwLBh3btwNiRuwKU4DkdAgnTzJetngZAofhsrTj0kdp3leruInO7yxrrULtP5IUEQBEEQBL+A/mme6kjcTyR+Arkyg96InRdPwZ/Bd7nLCWQhawV/q77Begb7CnY7R1/BvsF+gf013gHWFeIY2GUnLp7jCP4L1KOBfg/+Z1LXyakr3n9x8s4kHtZDSd94/WZOH43qxen3TM7P8k2D/5sRf949KLE3cn9sfhiZDzI4Z2RwLm1lrn/rvdAP+dn6OxsEr359AigyBb4=
1438613740.950,1.000,0.001,HISTggAAANF42u2WUQrCMAyGm3TdqlPwAB7CG3g2wRt4UY/ggy3CBz+biOJD/peQNMkfmjTb8Xq7pHQ4pSdyk9akn+8pEAgEAoFAIPCC/QmPLdgpHX5dL8K/iPiuD0KyrkHEj+AZxP8ozxk3NVlFPcq+Qb4dzpnfoWf4zdBHwd/tW9RRYZ8RNyF+D/8qeFmvi74U6Fn0Ja/sky/4mfAbxbwUMb/sVxZzam/OaRU8Ju7TcN/q3XD+TbxfF3xEFvmX9oSv9Lcv7UX70f79dF97fJfW8T8Au+4FKw==
1438613741.950,1.000,0.001,HISTggAAANF42u1WwQ3CMAxMbCdp4cMAPNiE2ZDYgEUZgQcpj5NONkICHr6PZfdqX53EzfF6u5RyOJUndNo6rZzvJZFIJBKJRCLxPbzuYUEeWgYhvEp4QnhK8qlTz8j3GbyH99E+7YDnnfgSjDfIOyC+kvimdwG/O+8P4Bvwt3x78Ecw/w54HXhK8ijUW0gc130ldQbpi5H90sg6oz5cf+yfd37Qt+D+F1JHyD5nlp0n1NEc/ey81TfnSCX9VKcv3vyIQoL6vflWg3PyU72//h/8na4HDDcFGw==
1438613742.950,1.000,0.001,HISTggAAAN542u1WQQ4CIQykLbiwevABHvyJbzPxB37UJ3hw8TDJpBhXo0nn0pTtDLRA2cPlek5pf0wP2GJlsXq6pUAgEAgEAoFvQFaO+/e8n/9j4AvhqaODekbidXAedeI3ZDyDXvcL2D5eiV6GPAziOm8CazCPAq/rNlIv1C1Er4KfgVdBt5H19nVtIa7B95nkuSN1xTrOoId5TSSPRvajkPzNqbuR86qgy+6HkX0TR5fxDNbH6ifOeffulZF7LIN8cfhC6uT1idE+lQb72Lt9UlZ6B+TDPHnR/7X3zd3XOxZxBRU=
1438613743.950,1.000,0.000,HISTggAAAM942u1WSQ7CMAz0koS0IF7AX3gbEj/oR3vkyIHmMtLIaiW44LlYTtIZO4md3p7LQ+T6kg98s7pZu6+SSCQSiUQi8Qvon+ZnB/dBiTX4r2O8Rsad8CIK4Uf9SnSdrDOwQ6fB+Anma+Ajj4PfwRbQq6A7/Bn8Cb5rsK4B/wV4O/gz+BPZv07yKYSX7bORcxvzZ7K+QDyoi/fJiR47p+h+KomLWSc6GtSLkPgV8mB12YK6j/qBk3MxEo8G9S5BX9CdfedoP7Sd/e9b74m+AZ2IBdQ=
1438613744.950,1.000,0.001,HISTggAAANJ42u1VQQ4CMQgstOCqFx/gX3zbJv7AT/kcn+DBbUwmmdBNXKMJcyHtUKAU6Pl6m0s53csLdZGySL08SiKRSCQSiUTiDfmSXQn2mR47p8F+5LeCVMIL8ErO9bXBfgNZYe1wbgd8tzORuNCegdwTfw7+MB9O7oXxHYHvcR6IPrMzkfw78OweaBfjMaLn5J2E8A68kfrwII9G/LG61MH3b0Q/qmeUFvR1Jf2FfqM+bEF/lkE7GsyF0fkgK+ebrJynW83bT83nreL9lXv//X/9BP0rBaQ=
1438613745.950,1.000,0.001,HISTggAAAM142u1WyQ0CMQz0sckmSEgUQC/UhkQHNEcZlMCD7GekkQNIwMPzGVnxMUm8Gx8v17PI4SZP+GAdbKe7JBKJRCKRSHwCTV0/0bfNdYbzHaljEBfpUTI/IleiB+tVyL8MXkmcwnol+Qrkc2IXsPvgBnaFeAN7F/ivkLcRvw681dmD3g52CdYX4BacdwU/VsfIPTC24F5Z/ynZh072eSF1PNBjk7o90Ouk/33yO5ZJXUr6WoJzY/ojPfKmX/SfeTXe5Lv493ck31fQ9QBgzAW3
1438613746.950,1.000,0.001,HISTggAAANR42u1WORLCMAzUyk5smBQ8gL/Q8i1m+AEf5QkUJM3OaNZQJI222ZF1Kz5yfb4eZpe7fVFWxsp+e1sikUgkEonEEUCO4Kc5QKwjWHdiBFyFndP/pAueSZ5E/VXwRPEq5VF+newXWt/itpVPQR8zcSPZKH+jOhrxQvkKyZ38N/2Z/EtQ30xxQPkr6Qvl47r64HxB+uj7837qYv9Voed9aoGMID/beXC+XOR3YQ/RD2ieZfD8RPdCGaxH+VnQHwbvHeV/9HuCnd4n1T/+jLP3+4QPN6IFQQ==
1438613747.950,1.000,0.001,HISTggAAANJ42u1VyQ0CMQz0kU1YkBAF0Au1IdEBDVAiJfAg+xlp5KzgASvPx4oyHh9xkvPtfhU5PeQN71a7tctTEolEIpFI/Dc0W/BRP/RH8tPBfBgv0vVBvgdxln0L4pVuJ2INeBX2HdaVrBX0JtA9kvgNeA66GG8X1LOHPGai00Cvgf/idyD+Bfyi/mA8rHMmfCPnhfuVnFcBi/5O5pNZDfiVzLmBH/IKmVuWhwzeJwvuMatLyVzj2kg/LLi3ZeW7p4P1rX2/JDinrf8z9mX9zf3jL/cFBZs=
1438613748.950,1.000,0.001,HISTggAAANN42u1XyRHCMAzUYccBP2iAXqiNGTqgIUqiBB7Yn53ZUT6Gj/ajcXR4JTlycn087yKXl3zhQ+qQdntLIpFIJBKJxC+gWYIldVT8viN+TvynfQ3i43rGK/CcrT2QBfhM/43EdaKvoN+J33nINuQJ4jTwr8CvEx4V9Mink3WB/Trhs4GdA/8deG6EH8pG+oV9Yf1sxN5IXwv7PwnOrwd8KjkvRvRYHwt4Hc3Pgzw98BfCx8h7L6R+SvYvJA7rgwVzJ5pXumj+/eue0YN56iJ++gGi+gWu
1438613749.950,1.000,0.001,HISTggAAAMt42u1XQQoCMQxskt24FhEf4F/2bYI/8CM+zSd4sL0MDKnCImLmEibJZNOQFvZ8vV1KOd3LC9asNKvroyQSiUQikUgkvgcJ4vpmvgzmRfWN+JXoFfImwntdB3/nc7M74F23h+91/xF0BnyBek7yPIhj3gJ9IcfzVYhjfwfgTuZXIa/C+Sro2JydzBt1M+GoY/tgJO6wT0b0rC7uF9tLjE9kz5VY+7BfIf9h7D4Zmb8N3jsN7rUEc7SN3jMZfH9+9Z3+93627l+elPQFtA==
1438613750.950,1.000,0.000,HISTggAAAMp42u2VMQ7CMBAE72wHOwKJD/AXvpUWiR/wUZ5AQdysNHICTYrb5pTNetdnXZzb8/Uwuy72RV6rrzXd3xYIBAKBQCBwRHj0uUnvO3UZ3ifhqapfgvVF8vr7CfgMfl1fgZ8kT/06f5JaZP0sOVX0CfjzWpvwXXeR/cyS32A/uo76reKTZR8Zcgro9bzofArwDeaswrP2TfNjotM5MJgj5Udz5pDj4GODPBt8b1QN5pn68AGv5zq6J3znfbXVx/+8/371Ocr/xD+xCQVn
1438613751.950,1.000,0.001,HISTggAAANN42u1WWw4CIQyk5bXozx7Au3gtf028gRf1CH4IP5NMStw1Mdr5mbSU2YEU2NPtfg1hvYQXYmfprOdHcDgcDofD4fgGyJ/5lA/pC+EBNeoxH4ED+6/snDoXqMsQN4gVeOhWyBfwkQ0W8MXqKugvEI/xI/HTIM6Qb+Cjkv1Z4DuoP8ZXmFfIOoTUDf8H0JVJnwr5CvMixKyfhOgp6VurLxPRT6Qv1KiLk+cpEV01zvfsOsXwo5P52fP/LnTyXpON99je9+WvvJt77ZNsrGO+5AkniAVj
1438613752.950,1.000,0.001,HISTggAAAMh42u1VOQ7CQAz0tSFBCD7AX/I2JH7ARykpKViakUbWhnR4mpEVe+K1vd7r/XETubzkA++snW19SqFQKBQKhcIe0Dr3T/FbdWyjvkI882tgO8QZ0XHCAboG31vCU+cD6Bn4BeQTJM5BdyL/acRGv7nzCfQx7gj2QurzjT+T+hroL0n9WP1n0idP+jSBfyRzECSfAD0nfpLMF54rCCMimX8lfcnuoZE5ZSzJfdXEP9snTvIf1WH7Y3Rf6uBes5327r++b/oGPtsF1A==
1438613753.950,1.000,0.001,HISTggAAANR42u2Wyw3CQAxE195PEsSBAuiF1kCiAxqlBA4kHEZ6WgiIXDwXa732jPfn5Hi9XVI6nNMTebY2Wz/dUyAQCAQCgUDge9ifeKwz9g/1vKPrEKdj8i//nwXqM5mvoLvwjJCn/E1sEZ4mfKPoF4lT3p2Ml7wJ+AeJG2R+D/4Geco/wbxDvQ3WOco+6bqVP8M5KK8Bb4VzLhA/Qf0V1k08vXta4J5l0TPQc7D0bjO8p9p5lwnqSLCv3ukrtrKv2Zt+X5m3db+2H/fVrb9LW+37S+cB7MsFfg==
1438613754.950,1.000,0.001,HISTggAAANB42u1VwQ3DIAzEBockrZQFuktmq9QNukTH6wh9FD4nnRxV9BP5Picu+GwjcG6P5z2l7ZW+yI2lse7vFAgEAoFAIHBGyMn6EKcvT9eD+TLJp8BG8hj4FIhDXWBtsL/rM4kzknci9dbGK/jMwCuJy8Bdv0Jc91nAZ2t8gToryVfBzyDOHH2CehdyrkrOnfko6AW+G1krnHsm9y6TfEr2F+eemuNbgNm7UhIvxE9IX4no6viqMw+8d350DijZL4PmrvxY16j5/u/4Uf8f+QDUrAWW
1438613755.950,1.000,0.001,HISTggAAAMp42u2WyQ0CMQxFbWeWsAhNAfRCbUh0QKOUwIGZy5eeEokLi//Fcub7x3a2Od/uV7NlsRfKan21cXlYIpFIJBKJxDfCf6wOf7P+Xp2A/0IHXgBPdVr8AvED8Eb5rnydt4rOLPxJdKvoFOFXyIN0jjLv5p9kPCR+Lzo7GZ/EbjoHyWuQ+Fb96mt/Z+jzCOtZoY8O6xiQv0HfDfZJwH6kfUJxdC5Iz6Auh7pL53lqnS+HvhCP7gfvvE97x6PhO+T7afd5/Ok75U9JxwT5
1438613756.950,1.000,0.001,HISTggAAAM142u1WwQ3CMAx04rihFSAG6BBswGxIbMCijMCD5MGhkyPBg0q+zykXn+M0VtL1dr+KnM7ygjZOjfPlIYFAIBAIBAJbQop9vQH/7xLJi6yDcay+DFwgrjj1GfEr6D1+13iCcQG9gl4hbyX+rh8bz6AjL7CPPt6DfnDWnZ36DXwG86gr+U4T+BaIN3IORs5bgQuZZ30jxK+Of7S/CukvIf2Vic+LF7JvI/GZ5GPrsHrSoN+rm91DefAeSF/ea7/Ot/X35V/et49zeQIeRwUU
1438613757.950,1.000,0.001,HISTggAAAOB42u2XXQ6CMBCEd7stUuMR9CyezcQbeCmP4xF8EHyYZFIwoCbM99KwXabTH9pyvN4uZqe7vYih9KFM54cJIYQQQvwzvvF+eSPfJ+q+73+NvAx5Be6RqBeQbxDPjfYLyQui0xGdMb4DXYwHxFleT3yO8UPDF+pW4ndP/FVor8J7Qfx0ZN4yeb+AD5yPHvy1dDLpZ5D1guOViG4i6xO/j9Y6son18WG9k2dj/2PkO0ykdDIeTN+Jjk30MXf/8pX2QZvp0xdud+n9fO3zzX/cr62c40IIIYQQQgjxLfwJVQQFvA==
1438613758.950,1.000,0.001,HISTggAAAMh42u1VQQoCMQxMmnS7CoIP8CHefJvgD/yoT/BgvQwMieAKQuYytJvMNNlt9nS7X0WOZ3nBJuvkdnlIoVAoFAqFHLRaUH3ZsD/65f42oqNJP8YG7ODH9p2c7607Jneil9XH/AUY41fIQ50O+YPoHuD5HvR3sGY6C/haED+Anfjge1vJmsWzPiL3oA4j/bZAV0mck+/LAx0l+43cDw/uA/MXEi/J+jQ4dyO6EtQTzQdJzgsJ8rJx+uHc043m8L/9F/XH/voEYQIFDw==
1438613759.950,1.000,0.001,HISTggAAAM142u1WwQ3CMAy03SQtAQnxZxdmq9QNWIxRGIEH8eekUwIfBPg+lhv7cpekac/bdRU53uSJqUVt0S53CQQCgUAg8B/Q0POT+6SD/Qr/gx6N1CEP61PIE+S5xRmeMz6vL5Ab0bMAf+7oSIR3Bj8Zos9Tyfie+Cwket+J6C/g08cPoGMHeSW+KvFXSF5gvRfgxXWdYH1fPS/Mt5D91E40ogfPXybvRyZ+bZBPOnqN+Ov1JTKvkj4h9aP3B+MZvYf0zXr98L36bd9FfQA15wXF
1438613760.950,1.000,0.001,HISTggAAANh42u1VSQ7CMAx0nIVCuXLjEfyAtyHxAz7KEzjQXEYaOZUoQmjmYsXLZGon6fn+uJmdLvZGXmxarF+fJgiCIAiCIGyHBNbIepRnFA51OeDLhKf7K/Dimu0X+RlPt4XoaBDfQV6BfRvEMX8P/gnqGsS7nUFXgfzOcxzkn0HXAXiRrwXzwb5NwFeJ/kT0VTIXNucazMWDuWA/nZzXSuKZ7OfB/SyD99gIL+q1QM/ae+NBP9j3ZaIrBXVpsC7yr30nWZ9/5V3fKv/b+v7lPytonoLw8fP4AiteBSg=
1438613761.950,1.000,0.001,HISTggAAANR42u1Wyw3CMAxN7HxcOLAAuzAbEhuwDGMxAgdSCT305EI5VMjvYjmx/ew4cXu8XM8pHW7pCR0yDymnewoEAoFAIBB4Rf5zvq3klR0eIfayMk8lcZTos2xDFvCf+SvsI8+sd+KPfHuI10Fv5P+2kDyNxNuB3iF+g/qM+E9gh/GM7BvwTITfSN2V9Af7wvqI8YycX3XOt5D+K7GrZF2c+95gXZw4Su6JkvejpJ5CzteT4rz7vHAulIXzxJsPXj7y5TyTD+fTVuf+r78XeaX/m90DTOMFnw==
1438613762.950,1.000,0.001,HISTggAAANh42u1W2w3CMAy047RNQEIMwC7MhsQGLMNYjMAHyc9Jp8ZVQULy/Zyc+BU7cXu5P24i56d8YI21cbq+JBAIBAKBQCDgh+5sj3Ii+8wuERn1cuPitE/sf7LxRPxkYMzfgGfQT8AZ9CcSv+8fYH+G9S6fGleIU4mfvr6An0IYz3Uk/cB4BeIskIfBupLzsvqyuhmxr2CXSX8yubfsnqG+Dfaf+WGyrdjb4L1nbM73K6Qua3XAPrP6CnlvMpiHd25556NunJP6pbm8NV/dyc+/ffd+fQ59Ax90Ba0=
1438613763.950,1.000,0.001,HISTggAAANF42u1VOQ4DIQwEg9nANnlA/pK3RcoP8tGUKVMEmpFGJuem8DSWr/GwYs3hfDmFsL+FB1K3sVs5XoPD4XA4HA6H431Ew3+VL07yMz8RHoH6RHwhfCOeIT98hbgSPQp8I1+6rd02iK/dLjC3EJ0V6hvER9+O9DXII4+Cjgz1xdCTCf8K/Phd1Dh/BT+DDiU8C/QlMicb/DJ5P4X0Z1LH+GWyDnVUci+V1IsRl8n/TwxeMeKze+LZ/RSNORb/t/bqr/f41no+9b5spfvv3uk78EgF7g==
1438613764.950,1.000,0.001,HISTggAAANd42u1WQQ4CIQwEWpBdPfgAD/sT32biD/yoT/AgXMZMSmKPncukpZSBLWVvz9cjpeuRvpDBeXC5v1MgEAgEAoFA4BcZ2CsfQzHimS2Gbpyn+D9IeOY9Da7gn9zALmQc809/B13V8Gey7jZ4H3whejvs6wy6OqynsB7ajcRX0LOBrkrOoUG8kHiF/DvsS4Hx/FGvkO/YyLiSOlNSn0L0MD/mrcTP6rYQHdWoV7xPGKeL/cJiK28x7veq7dWv1CnPal9l4+LctzOpF+/+7v2e/KvHnP8BYuAFHA==
1438613765.950,1.000,0.001,HISTggAAANN42u2WzQ3CMAyFYydpWiRgAXZhNiQ2YAnGYwQONJevstxCxcnvYrl+/okbu73cH7eUzs/0QZ6lzFKvrxQIBAKBQCAQWEJ25q3li6HLRr5+mUeN/0bayauIR/8Cuzr5Gp4XyAG8Ar3XM8E+Qk7gZ9TV7UcjfkU9J+gj/Kg34zwT5GDo7EuGnefq8Q+OH/teDSng8/0Wo6/q1J+ce1ehN+PeiJF/cOxi5MnOvKhTtzfX6syNOPF05fxnZy/oyv2TNvK27qm98v26t//1fVns5TfsowWd
1438613766.950,1.000,0.001,HISTggAAANV42u1WSQ7CMAy0szcICe78hbch8QM+yhM4EC4jjdxW6QnPZZRk7EyaxOnt+XqIXC/yRRysg8P9LQ6Hw+FwOByO+VBgIe1AxsPO+VgeNm8i/YH9PxJW0GO8EH0DH8nwkUFXoL+R/p++Akfio0KeCvnO0F4gT4V8ffAJ4jr4iKBDHwXm66BbyHfD+Aacid9C9j8Z+6ZkvIEuk7hM7lFa6QPPeyTjwWircb6V3JO48T6qUT/UqBdWfNiZTzfWnbV1TCfX1b06OdiHTF6/HLyuv32vP+SVBQs=
1438613767.950,1.000,0.001,HISTggAAANF42u2XzQ2DMAyFYzskcOsA3aWzVeoAlbpoR+ihnD7pKYA4VJXf5cnB/3ECXB+veymXZ/kiVraV/fYuiUQikUgktsGyBYkT5scG82QH/Sn4wL5uzNMHcdvKM+SAfYXc4G/Ceoddgzwh7iTidujR7yzyqmDD8wXxOtZn0R/mvQzqbULPRd20o16FnwBXURf7EGI/Qvx/kLvYfzU3IeYyRH6s20V+jOcDf6ouNS97z62J8+sbz6XvvG8CfSo78zx63/3Le/nXvw/sZP2z67UPFiAFbQ==
1438613768.950,1.000,0.000,HISTggAAAMl42u2WTQoCMQyFk2ba+QHxAt7F63gNwRt4UY/gwnHzwaMzIoKQtwlJXpI2bUNPt/vV7HixF2KVvspyflgikUgkEolE4v/gHX8RPOd/sMMzwVf2AfoIveBf+uZX5J2Rv0IWYed6GuoE+AFeRf0F/gn+wD4r9Bn2A/I02EeRb4Icxf6qiB9E/5tYZ4W/iTzq3F30NTben+j4F3GPSme/Dp3xTfRRxZuo66JPfD/R4W+dA7Hx/drG97933uyt+624T+ek22/gT1ksBVE=
1438613769.950,1.000,0.001,HISTggAAAMV42u1XWwrCMBDcR9K0ingB7+LZBG/QC3kkj+CHyc/AuCJFEXZ+hmyGmXSbpPR0XS8ix5s84Z21s53vkkgkEolEIvEKmi34av/0zXrkaxu/RwdfZCVjJfqpcwH/Broa6LE+kZwKzHIr8ZthfowX0A+fHdTxORbgBvN7YIfcBjzqB8jFfCP9q7BuC/ptRFfJf4eT/VBIjgc+TnwinZJ+sD4JWbcH+94DnX94bgphI+ef+Ub3jAa+/3oP60b34a+/i/oAjdkFpQ==
1438613770.950,1.000,0.001,HISTggAAAMx42u1XwQ3CMAy045gQ4NEB2KWzIbEBizEKI/AgfE46OQ8qQPJ9Tq6dsxM7VXu+3i4iy11esME6uKwPSSQSiUQikUj8Hgp8t7HnyCWwUaeQOCPxEuStYL91duBncWgbqa+RvD64Q17kDryQOCfr9lBHhzoOZN8NdI/gx7wN+BTkZefaiL6TfmLfClmvpE8YZ8Hcsbm1yfVK/ncYO5lrC/Sjc66gV4N765P3Vsk9Zvbse0JIvRFYPRb4Z3U/FbcVvp1/6/r0z/avT/zLBb0=
1438613771.950,1.000,0.001,HISTggAAAMt42u1VQQ4CMQiE0m531Rgf4F98m4k/8KM+wYPbyySTMb1pmAuhUIaWQq+P593sstoHsUvfZbm9LJFIJBKJROIX4X+at0/uK2LdSTwn/gvYg8Rzwj/WK9hRNsITYK+wPvI7gh6EZ4E4Q3bCi/4n0FfYv8E+lAfif4ZzdIi/kTwX8MPzG7n/DvfK4rrwb8DTRB0q+BXB20icJvRCzh3i3QZ5j+zdmugflocTu+pPrGsQqfJx0ccmeE30vX05h3xy7s3Ox/zfSF3e1N0E/g==
1438613772.950,1.000,0.001,HISTggAAAM542u1XQQ4CIQykBeqixvgA/+LbTPyBH/UJXsplkknNblYvncuEtpQBShNuz9ejlGtxVGdx1vu7JBKJRCKRSCS2Q/40L2Il8yr4JdCDcR3sGuRvYG/gr8TfiC70Tz0HGM98g/gb2BeIH8RuzkfgGXdxPgOfYF2DMa7D9jUgrwXnjP+BBcYG99GDe1bYj5Jzt6De2f1Wsn4n/5pK6j2qN1bPQs5Pid5O6ljJe2T7jt6TBDowPnrHurIPyZd5dKe+uLZvlh/n3UvnZl0fcMoE+w==
1438613773.950,1.000,0.001,HISTggAAANJ42u1XyQkDMQy0JB+7OSAF7COdpLZAOkijKSGPrD8Dg5wlsHloPkKyNR4ZS+Dl8byndLmmD2y1slq9vVIgEAgEAoHAP0OijiFeJetG9guJG/AVsj87+YXow7y+r8H6BPk9XiEP7Ql0ZOBXcs4MvoLfiMV6D6BzAv8I+Ux/5zmD3hlsc+qtJJ5JHHkK3IdA3Mi7wXtEXiX/k1F+gfoqxJtznpF3rcR6urE+c/pSSX8Wp1+F9JUQneLMHxmcC/rlHNk6D2Xnefpr3bKzrs18bz2LBSc=
1438613774.950,1.000,0.001,HISTggAAANF42u1Wyw3DMAg14E+cHrpAd+lslbpBl+yxI/RQ5/KkJ5xTJYt3QeAHBmyT3J6vR0rXd/rBhpQh9f5JgUAgEAgEAitBFslTQXp2jCuT60LiM13Afuh5yAL8DvwK/AZ6Bv8N/BvEKfCfq7BvJ/t2ohvRjdTZIa8L8DeS9+G3w/pOeA3qK8BrJF/0M/DPYK+kXuavwKvkfDK5v9lZF3K+RvqhpP94j43UL6RvyemHOO90Ng72g703deaJNyf05JySk3NE/jxHZ+frKt83av8CbbIF4g==
1438613775.950,1.000,0.001,HISTggAAANZ42u1W2w3CMAyM87BDi8QC7MJsSGzAYozCCHwQEDrp5BZRiQ/fzymOc7ETx+3xcj2ndLilJ8pgGZxP9xQIBAKBQCDwCYl8NtWVlTqyUuf9n0f8MowLWY86qNfIfAbdCuMXFOze+gn27YN3YK9EZ4J9UUchv3nwHvZR4A5s4N+Jv4EdxzPEY2BXkjeywXmYc14N4q8QRyH31oDVqSN236zeCqnj5vjrwjpndcPiYu8H581ZX533yvJPjj07fUOcdbJQZ6v++Kv++m08srB//sv3VB5qfwXF
1438613776.950,1.000,0.000,HISTggAAAMx42u2WSw7CMAxEnU+TFBZcgLuw7bWQuAEX5QgsqDdPGhXBCurZWE4cj+1O2p5v96vZabEXymrTavPlYYFAIBAIBPaJtDPeX30u6cs47mdYX6/w/b9xQh6u83yBX3HeeWfsN5xvsCq/19GR3/2DyOd2iL46eAb8o6i/I558zF9E/IR+muDhvGaxruZMniHm3UQ9VegnoU4TcVXo04Rei+iDela6yUI/6l6UjfuTN+pUeU3w2MY81D1Xc1N9fPo+fpf/X79r1Hd6AvduBSg=
1438613777.950,1.000,0.001,HISTggAAAMh42u1UyQ0CMQy04xwLD7YBeqG2leiAJiiPEniw+Yw08kLy4OH5jBzbIx9JrvfHJrI+5QPbWXdOt5cEAoFAIBAIBP4HetCfJsUr4R5fiK4RxvwKftQ1sLu/gV4m9TTIy2DjeSV2Ab1K4jufwMY6zmAvoNeAV9Dt5xfIx7wF6se5ZjJf7B91Mtljg7jq7J/tOzl7N1KnOfsu5J4noqtO/cWxjeiYE8fmhO+yfPlu2fu3g/+MTvqv9Ec9GcyTyX2NzmO0D30DpncFkQ==
1438613778.950,1.000,0.001,HISTggAAANF42u1W2w3CMAx0EqdJCkIM0CHYgNmQ2IBFGYEPEj5OOjkgISHh+zn5EdutY7fb9XYROZ7kidQ5dI7nuzgcDofD4XA4fg+v/zXDjn7JsEeiV4ifQFbQYz60L8RfiDzOZ5AXqDcbz1Mg7/CvIBfQY717Ug/yiLOSfEryraBvnQ+ddyROhfoU3sMC3ECuRv8L+GNf22S/M9ErOa+kHrQHcq8iuffJuPeB9JnNzey8qiGzOQ5kDpk9GHFn81j+7yJ+uO9kct99a9/+2/dl2v8BfpsFKA==
1438613779.950,1.000,0.001,HISTggAAANd42u1WwQ3CMAyM7SQNLUgM0AebMBsSG7AoI/Ag/Zx0cipVgofvYyU++xLXtbI+X4+Urrf0hXUr3er9nQKBQCAQCAQCx0Gctbfv5WVxSnhC/Ereh0Z4aPNg/MYrcN4CfCM6E+SbIL7CWsg5C8RX8FewjfgXwt/0znCfzX8B/VO3M/Bm0G9EF+uwkP0MeSqpt5DvZuSeHr+AVcLPg/2G8Y30nZF+MNBTUocJ1snpczxfGayTOnnU+f9lsE5sXpgzH2TnHBIyj349f0fnrRys929xu3U+DBAFHA==
1438613780.950,1.000,0.001,HISTggAAAMx42u1UyQ0CMQz0kWO1fCiAXmiHNpDogEYpgQd5jTRyuPLyfKxNxuNx5PXpdr+KHC/ygo+oI9r5IYlEIpFIJBKJz6GL+TaZZ5DvgW4ZsQLfIDrRV9BRwtvIvRN9/C5w3sB3J7FBPuYV4gPfZSc6G/AqqXMAPvrayb0H9Trxq+RciM9O3ht9YF0hfPauTuYF/VowV43MNauD81SJbiFzGM2tEL4Snxr8jzaZF0Xsa3Z/WLA3/M2+Zvegfrk3f73H9U+6srjP1fX0CXDfBUA=
1438613781.950,1.000,0.001,HISTggAAAM942u1WUQ7CMAiFQu00MdkBvItnW+INvKhH2IetH8+8sEQTs8j7IawUHgxIL7f7IjLP8oR1qV2W60MSiUQikUgk/hm6E174jnu954h9ITq7XyGOkPjIw8AP043EYd+d6MPvocsj6EM20CewryAbnKMd1qsRPw7xkKcT3g3kmdQn4m+kbk7q3Ehe4/xE8ke/QvJEntjfDnVw8r+xr5CHkr60YL5K0JdC6llJXA32SiHzacG8bt1XGuQpG+NIsE/2tj+/zffXfvRDP2/3V4YhBPM=
1438613782.950,1.000,0.001,HISTggAAAMt42u1XSQ7CMAy04yR16YUH8BfehsQP+ChP4JJeRhq5RPSA5LmM7E68VJab3p6vh8hVBmywDi73tyQSiUQikUgkzoeCXU4+x3Qdnhs5p8CVxGugM+BG8uG9dIE8BvZlsIN/Af3e30rqbqS+Pe4GcTCeg99JnexcA/8KfaCOsZN+kJ28zw55N6IrYFeSp+N/RmAbmUcl82EH54jND85hIXkjPeqifiupM+JC+pagLjsYV77cK9Ee0sl9JqROmYwvk/39Ks/ffI8+b4cE+A==
1438613783.950,1.000,0.001,HISTggAAAMp42u2Vyw3CQAxEvd5PAiQSBdALtIZEBzRKCRzYXJ5kOUGROOC5jCbrX7K2c3k87yLnm3yQO6fOen1JIBAIBAKBQOD3SIbmcwV7ftZ5gc6OfwaroenXOg9GnAWHzhX1HWE/wp7vM8CuGnEXPqHOijg8n5C/IV5D/hl6cnhAHbOTL8NPoQv8R+f+GnSFLkYdvAcx4lj9ZvWPOixOH2YnH+3ZL+LEVWO+1JnD7GhvftfqtXWljXuqbswrX+6rvffqv/9X9vpO6Q1LcQVI
1438613784.950,1.000,0.001,HISTggAAAMp42u1W2w3CMAz0o2ki4IMB2IXZKrEBCzESI/BB83PSyQ0CqUi+n1Pc8yOuE+Vyuy8i54e84SvrynZ9SiKRSCQSiUTid9Avx5v6Ow7iR4z1GInjYMd8TuKXwG8KdGifIV8DfbefwF6Jbg50Pe8R9MgFGL83WB+gzkq4AeO+K1mzPmlQt2/sF/4n7COykrkyMkdO/JlfCeLgvtAuxF9Ifg/mX4jOBs+pk3m0jedPg/57cC9F94YN6kfvR5V9Q/+8rk/rt73u+wXODgW3
1438613785.950,1.000,0.001,HISTggAAAM542u2WwQ3CMAxF4yRtSLkwAAOwRWdDYgMWZQQOhMuTvkxFOeF/sZLYPz+u6+R8u19TOl3SC2VYGzavjxQIBAKBQCAQ8GE/4rEv9zG+72AJNV/xXsyC1xz/inERumaMJ8xPIr4I//d8G7ZDT8N4GfYAviPWO/zIQ70N8VwnT4P+LnQxnnnpTn4WobuBpyE+O9+F+7EuvHqoor68elZ1WMR/pPYjbxHnnoXOIuJN+NlGm0T+zOkDW/uP7dSP9uqrtvFceyH/yb3xcT6esHwFGA==
1438613786.950,1.000,0.001,HISTggAAANB42u1W2w3CMAy0HZcmIKQOwC7MhsQGLMNYjMAHKR+HTs5XhcD3c/IruTpulNP1dhFZ7vJC6ayd7fyQRCKRSCQS20CzBYkN5+b93iN+DfwYN3hPFpKP8bXOyX4OeRPUOzD61/wKtoP/CPYM+TvgStathJfOrfO+8wHsRnQ0st8MuibSl0rOpUDfWb6DDtzfQQc7X2QN5sXIegV0WlCP8UrmDPtopA8azGMheUr0SPC9RtYVco7s/5bB/sigXhmM64/dp/plev71PfIxr08/BAW9
1438613787.950,1.000,0.001,HISTggAAANd42u1WSQ7CMAy0naWBwoEbB/7C2yr1B3yUJ3AguQwaJVKlqkKey8iu19Sx8lhfi8jtLl+EylrZnm9xOBwOh8Ph2BPq9Q3lH63DBuPoYJ5A9C1PJPLPOxPk9r0QfeMJ5AR5EsQ38MvED3kiMuoL5DlXvoL9CfhSeYZ4c6ffAn1k0lcBOYGdQdxI/leBuvHccF4isTOSR4k/0+M8Y73Yl5C4RubIoN9I5pHNVyCciT+7R2yOhdxHG7zH2rHfuh9Ynt4+Y33qxjqPtv9NjoG9zuvv3icfT8kFEA==
1438613788.950,1.000,0.001,HISTggAAAM942u1VyQ3CQAz0sRuy4gEF0Au1RaIDGqDElMCDFY+RRiYRK3h4PiM7PsaK41xu90Xk/JAXvLN2tusqiUQikUgkEolxUGLrl+pt7efEj2ydK9gOfrQxv3SeIB51FPAfiI4K8YX0Q65Qt5E81meGfIe5Cpm3Qd6x8wmet6C/k/7or4Tx/RViG+ifAl3RHrA43FPUiftqZL886CdBvJE+TK8H9YTUF4hn36sFrMEd0Z1sRG90d/TD+XXn/dMf3eet+TpI1+j5/+3/+PY/AUcoBXY=
1438613789.950,1.000,0.001,HISTggAAANR42u1WyQ0CMQz0kYNlP1sAvdAG7SDRAY1SAg92PyONHM4H8nwsx0dsJ3ZyuFzPIstJHvCV6krteJNEIpFIJBKJd6ABn/hMXS3Q02DdgvNhesr+kUAr6G20gLwSeQF/LdCbV7oj68xu099DPAvIO9h18FshzonYT6A/g7wB30n+rK6N8E7Or0Kd0a4Se6yHk/o0uFed3BcDPxiPkrwtuIdoJ4N9UAL/2A8lyEtJ37I+ddLvHvA6OEdG43h2fvvg/JIX99Mvz9Vfv4dsf/uXd+sOe9cFNw==
1438613790.950,1.000,0.001,HISTggAAANV42u1Wyw3DIAy1MQSS5tABukvX6DqVskEW7Qg9lPbwpCcnl0SV/C4Wxj9sbLgt61Pk+pAPrFPtNN1fEggEAoFAIBA4HkrWHv/3jwO6124i9hT+jfh/zE4cjG+EP3RaQO7rp8F+Bf0G8pXojcQf6g0gP8M6A710OoE+2h0hrgb6M4l7grxg3Hi+CvuJ5FfBXyV1YfXKpK7m1N/gHlaIp5A8q7M2cn+wP4ojl0i/iNN3RvrNNvabbrTP7AjJt+ycK+y84uRJD5qTZ83ls/z/3bv2BgzYBVk=
1438613791.950,1.000,0.001,HISTggAAAMx42u2XMQ7CMAxF7SZpqCgSB+AurFwLiRtwUY7AQFi+9OR2QGLwW6xU9vdPY0Xt5fG8m51v9qGM6CNO15clSZIkSZIk/8cUrD1YK/odSFH7kQ+t+z6vUD+BD/VXQadJnGXd5XkX3QI6Req0/gD9TpC/jLhK/lHyNa+Dr1V8LHAOFfbTYX8z5DfpU0C/0v8FRBf9GsxLg/pojjzoTzq0L53/Fsy7wTkW8KPzb7CfyL/qbtUz0LOd90t0n/wK33g/2U5fHpxXMt7PG/apBS8=
1438613792.950,1.000,0.001,HISTggAAANh42u1WuQ3DMAwkKdmS88ALeJfMFiAbZKmMkxFSREpxwIEK4MIFryGoI4+UoG97PO8i60u+SM1qs3Z7SyAQCAQCgcCRoDHfv+J0UEfJf/D3L4R4g3jk52Yn4LstwHebIS6DRd2Z5Cfgu1/Bx7xC+q7AL5DX/TOpl0G3AF+h3wvozpC3wnjXv5I6C1nPPr8TWS8j/bP1nyA/Ez0jfaizD8zZfzieBvMS6UOAF3JOsqNjzjnM5BziPlYyHyH+6D3g9ZsGdRivTj3vPtOd7sOjvzO2c339APAwBc0=
1438613793.950,1.000,0.001,HISTggAAAMh42u1X2w3CMAy0nTShFRIMwC6dDYkNWJARGIEPws+hk/3BS8j3c0ru6lertD2czkeR3UXuKIN1sK1XSSQSiUQikfgE9M/7szf3r8G8ng/1x/fhNLjCGv2N5DXCGM8gL64b+AvRO8Svjo75OvE14M3gmegLqXsP13XQO+hbUsfizAH7FzLXGfoxp58efC4mwubc9+rsK9Hxf6aQuTGfAlfiM2ffHL8F8xvxexw9Byx4TmkwnlePV+erz8Fvv1f0R+I8zeUG0JkF2A==
1438613794.950,1.000,0.001,HISTggAAANF42u2X3Q3CMAyE4/y1ASQWYJfOhsQGLMoIPNDy8KFTqFClCvleLDvni+vEkXq53a8hnB/hhTRbm22clhWHw+FwOByO/4btTEchdnwigRdX6ibxXYwnrBfEK/wsfINPHeoVYavIH7DeEG/gH1BPRryJ/chvog8V+y92hK3QG8E/Cf0B53kU/S5in0H4CXkR+UGcL++Z4hdRnwnex3+MuI/UMTEfUdx7E3OVBW+tzZ05tU5fTfhpZX3hyzp67579+D7axu+q7Vxv63re/X0CGGIF2w==
1438613795.950,1.000,0.000,HISTggAAAM142u1Wyw1CMQxL0vSnB0zALsyGxAYsxiiMwIH2Ysn0CSRO8cV6chO3SfPU8+1+FTk95I00WAfb5SmBQCAQCAQCn6CL78C+uv0aZ1/6rPIpcCLvRtTbYp2CTx5cgGe8A1eIc8g347fBneid+BbIX4E72ecG56+wv5nvQPwqxDvoR/BvwJjPoa8O9XdyvkL8G7kHuM5AN9LHDLot7gdbl0l/C8nH7q2RuUiEBfwTmUcldVFyDif6ao7ZfMlOffVfN1I3Jf35N1j/7AW/swXM
1438613796.950,1.000,0.001,HISTggAAAMl42u1WQQ4CMQgsFGyTXnyAf/ELfsnEH/hRn+DB9TLJhLrVgwlzaSgzLF0I7el2v5ZyvJQX6rbKtur5URKJRCKRSCQS34cs+iO+fqhjeoF3IsKAX8FW4CHfCe8A8Qzst7+B7eRdi/4B+wN0neTp8N1O8nKwO+gG2I3wO8Qzku+sDv+bkHMo7GM9nMS3oN6sH7BujfQp81fSx6irpF+F8CXobyM8DeKUIC7LS4NzKtFF82GvbjaPWejiPNuL1Xn56/n+9/fdE/v6BUE=
1438613797.950,1.000,0.001,HISTggAAANJ42u1XOQ4CMQy0EzvLsQUP4C/b8i0kfsBHeQIFSTPSyIsQUgpPY63t8RUryl4fz7vI5SYf1C61y7K9JJFIJBKJRCIxD/RLPyW8gu8+sFvAN3g/VpLfIP6B8IbdSV1G/IdswPOgzgZ+o64T6Mf30uUK/ME7A28FvZH4BvEa5EO+gR31DvYCeY9k3k7qMuizEf8F5uvkvDQ4RyYliFt27hPucQ32XUn9snM/nfxneZCfzU2DviXwi/qL7hvWf3QPlZ35fr33/oUic0MnnZu+AVzeBT0=
1438613798.950,1.000,0.001,HISTggAAAMl42u2Wyw0CMQxE43w2AQ40QC/UthId0BxlUAIHksuTRgkXJITnMlrLHttry8rldt9DOD/CG6mzdY7XZ3A4HA6Hw+FYgXkfP1WHifdfEHb6D5TxbgRnxBXEJ9ipU9T7FPoV30fED/uhc4O9wb8KP+oMvw1cEF8Rt4n6qqiDfBJ9qjycQ4NfFjrsN4n6OXc13wZ7xB5FsWdZsE32NMA/iTwm7FHoz/Ixb5zo5UldSscW/+MMcfHu2If3yRbz/ct9ty/VN53LCxA7BcI=
1438613799.950,1.000,0.001,HISTggAAAMd42u2XSw7CMAxEYydNW8qCA3AXrgZSb8BFOQILshrpKQgE4uPZjBw7zsR10na/nk8p7Y7phtzYGvvhkgKBQCAQCAT+GfZjeh/1Z/heVFZ/kfGx8QBxJv4sdunoqY0niKuSp8h4FZ09HsRehGfY/wzrb4QXWWcLOhzqpPYoeqieRfIWyJvhuVWYrzq1Dxz0JPA79CnFVehXijewqU40v9D/Vuc8WSfe4dzea+dOnHfON90Tz96f/mF5vu09YS/S+6592hW2/AVf
1438613800.950,1.000,0.001,HISTggAAANR42u1WwQ3CMAy046SlggcDsAvrdA0kNmBRRuBBwuOkkxPa/nyfU2Ofc6lTq7fn6yFyXeULq6yV0/0tgUAgEAgEAoFxaGdc/6z3+18DVhJndTxdb9wIt/wMzHQTyVeia/lz5QLPLW+B5wTrmegn4BPEZ1hfiL4Q37jfhdQ9Q36BeHb8sPcixA/2wSCeSb1CzptI/xFG7lcZ1Cvpa3J8sfvNWJz7if0W4k8Jm/PdGumTOXNAOudEcvx5+dI5f2RQpzvN4a3z+6j9j6q3t5/N5/kAT94FaA==
1438613801.950,1.000,0.001,HISTggAAANl42u1WyQ0CMQz0kQTYgKAAeqE2JDqgMUqhBB4kPEYaZVkQ4uH5jOx1PNbGcXK8XM8i+5s84Y21sZ3uEggEAoFAIBDg0D/TR9vgnecL8yl5LyroIHckWF/Ieic6CbiAXcHuWAEnyLsGfyZ6RvJsoZ6p8abxgej0+B3YBeqooJuBsR6MK+CfwG/gT0Qnw75UUi+ykn5g/eKDONYv+D2TvkskXgf5BfZRSX4jfWiD88LyKTmXTurUmefaB/NiNAeE/B+dOR/1y/P23Xz2ob4urPPX982r3gdT4QXH
1438613802.950,1.000,0.001,HISTggAAAMV42u2WwQ3DIAxFsRNMmxyyQHfpbJG6QRfpaB2hh8LlS18mbVEvfpcvsLEtcAiX231PaXukN1NVqarXZwqCIAiCIAjGIR/6y8G40qmM9k5UmFewz+RdifaZrF+duEbmzyR/0wzrDda1fFvVU9UCfiupo4AajDNoIfZC6mv1LDC2zriLcw54nubsu0J97JwwTiZxtLNP0C+RPlPSB5PT/5n0Pfqps4+sbgb6Sef3x+o6em/Ij/KPvidH5/n2fv7bf+QFukEFnA==
1438613803.950,1.000,0.001,HISTggAAANJ42u1XwQ3CMAy0naSk5cMADMKvsyGxAYsyAg+Sz0knp0UCCXwfS/b54rquo55v96vI6SIvpGa1WVsfEggEAoFA4L+g0YKf7L8RfXXiCeLdFqJvkJeIn/FmiGfCn0k9BeI9fwJbiD+DraB3BH4luqjf85ZmD5BfyXkF+KyuxdEz0MH+FqcvLI7/Dxn8E5w3kbnJG+fHm18bnOME56vDw3nzvhdxeNgndfpqzvOP7hUl70FInd4+MYc3Wp9u3IP65j7cu591Zx2ful+/dY/rE09sBTo=
1438613804.950,1.000,0.001,HISTggAAAMJ42u1U2w3CMAz0I00L/HQAdmE2JDZgUUboR5Ofk05OQQgh+X5O59qu49i5Pp53kXWVHd5YG9vtJYlEIpFIJBKJ38MO+uuHfgasoJ2wAjvRnQv5D9pn0BX8u56AC+EKeSeoC/Ogf+cF+NL4BH4Yfwa/hWg8P37H/JXU50RH/cL7moP+GNGFzDFqJ/OG9bB9wPrZ3BaihcQZyROdz0k82zcN7BbsjQb2aP+j+FE++u7oYJ/0zXfu29A/zT96b7oBV7gE8g==
1438613805.950,1.000,0.001,HISTggAAAMd42u1WyQ0CMQyMPYQN2Q8F0Ast0BISHdAoJfAg8Bhp5DyQWCHPx/KxHttxoj3d7tdSjpfyAoa0If38KIlEIpFIJBKJ7eDznxb4WUYA6S74XPgZO/IvQ1bSQfb3d3vSOa5SHWxvJBfKy/kb2auIq6KuRv414OmCbxV1cz2d7F3Mt4r+TMzjIOYFknz+fD6gvnlvIPo3kReCR+2hBfmi/cbk3ru4NxD8Pqmre+RBvRbUr3jU/DAZ7z96B7f6Pv8L37fy2xMbUAVA
1438613806.950,1.000,0.001,HISTggAAANJ42u2Xyw3CMBBE17/EhEg0QC+pDYkOaJASKIEDyeWhkSEW4rJzWXl37JmsHUc5X28Xs9PdXkhrDGuMy8McDofD4XA4HP9H2MlT8yLiXiSMM3QDeAUxwQf9FuF3iwPGtaGTkZ9QH5Gv0BnA29Y5gl8Fb0Z9Fjoj/E7g0y91suh7gs5B9DmIPmbMr8hnsa8D/zPEftOfOrfkFcHj+UvifJrwzeeOoh5EvaWbGn6Vz9h4D62hZ431VT1+yf9Up/f+C533pnX66/X56+/C2z48AVSSBcE=
1438613807.950,1.000,0.001,HISTggAAAMh42u1WOw7DIAy1MRD6GXqA3iVnq9Qhey7aI3QoWZ70ZKgqdfFbnmzMwwZDcn/uD5HbJh9YZ+2c1pcEAoFAIBAIBP4PdWxvnk3OV/wvhHFz4pg/k7jD3zoXsk4mOod9AruAbu28AJ+JzgJ2g/gKdoP4QvJA/7XzBfy4LtaB9VSik508leTF9kXJORjhPHh+Xv+kwf5LpG+V3ItE/F59TNe7N6jv3cM0Wa8O5ieDfpt8b/TL8dn3TZz9HtX15s/mE/jRd+8NFFYFgw==
1438613808.950,1.000,0.001,HISTggAAAMh42u1WSQ7CMAx07DYhcOEB/IW3VeIHfJQncKC5jDRy2wMCaeZiJXbt8Rb19nguZteXfRCrLKv0+9AIgiAIgiAI34TvtC9EMjsWb4Kzk//ELB5+N8M5wK6Cn8GjgR55Btg10KOcQQ6/J7j3nfYXuEc+Q9+J3RnOQfKvkE8n9WqEryd9wLpi3XrSj0r8eBIP543NE/YBeRYy75HkP5H+x8Y98CQvI/kVwpPtrSd7bInfrfvL4vnB98WSOL+OIj5/UZfDebwBv1QF0Q==
1438613809.950,1.000,0.001,HISTggAAAMZ42u2UQQoCMQxFm7SdGRXBA3gXzyZ4Ay/qEVzY2Tz4RAVFIW/z6TT5KWk6x8v1XMphKQ/qUBvqp1tJkiRJkiRJfg+HmlCVF8UZ4hvWFepiX8Wv2sW5Kup26IS4GfuG/Bl5TZxjjdsO3UC78FuwZp0Jvh3198KX/i78mugXv1twDwb/nfBR99nE/bSg7x7MkQV11Ryyz1Mwzy7mXr2v+uK7oF8P/FmHVNFX5cNzlCfff0H//M18FVeC/9GnsS/n/Qt2B/zjBPw=
1438613810.950,1.000,0.000,HISTggAAAMJ42u1XwQ3CMAx0HMcl5cEC7MJsSAyAxKKMwIP2c+jkIFV5+T6WE/vOTR1LuT5ed5HLU76omy2b1dtbEolEIpFIJBLHoUzW0UBXSRzmj/KyvArWiL+jkbwG/Li/QNwJfId8J/wV9jvwd+DvRHdfX4N4J/Wj/pnEY70rnGsDf4H/5RCH8UrO39g7Anid8ER9VoI6ldRjpE9tsO8NfPZ90f2IdMrg/WO2kvsczZ3yp43ql8H1o+ehTp6zs+b3j+4HfFAFYA==
1438613811.950,1.000,0.001,HISTggAAANd42u1WyQ0DIQzE5lhCFGkLSCH7S22R0sE2mhLyCHxGGkH2kPLwfCybwTYGW9xf69O5eXFf+CqlSn28ncFgMBgMBoPhfyA/2nFdBtcV/odKeIH4Q34EfibxIsRt/ATrEfYl0HPHjwBvInGuJK8M/FLlBeweZARegfhN3oDX5AznKaBH8q8P4N9DnhPwAqlb7vAz6ELqwOoSSN6JvDchefTeK8vLkXsW0g9K3rF2+lOJnfVhGOxLHYwn5Nyj80E6fo+aW1vn2dY5eta+o+f1WXntPtcHMWoFOA==
1438613812.950,1.000,0.001,HISTggAAANl42u2WzQ3CMAyF4yRtKFwYgF2YrRIbsCAjMAIH0suTPqWhBXHwuzzF8V+c2Mrldp9DOD/CG6myVY7XZ3A4HA6Hw+Fw/A7WKY/6fwP92Ii71k73M/wjE+SVZa08VB5lrXL1u8Qron8QXuxPEGfRO0JclRewi7KfxG6CfIr4KaI3gf8i9R2gLgb3kERO+iOcyyB+hHwyvK8M73NovBs6D/XHCPsZ8jTw22IDOdWN+oc4QX9ao3/jh3Opd670zpu95mXo9L927trGPLeeN3y5Xv+a19552wtpNQXJ
1438613813.950,1.000,0.001,HISTggAAAMd42u2WSw7CMAxE3STNBzYcgLtwtkrcgItyBBakm4cGd4eEPJtRbHfi2I7S6/2xmV26vZEnL5PT7WmBQCAQCAQC37BECf6iHx//gfAnMONX2MvkCvvOHXHUNWGvIo46Hfm1ySesV3DBemDfJvz7fmfoNOHvIq6I+g2xpj7zrM65C+rZRF2z6HN26jhEfzhn6tyrmLcs9LKY1+rMOeeYdnIR9irmyOA/eq/UfU5Cz0T+JnST01dzvvfy9PaPd+Q3SEffkxdCOwUN
1438613814.950,1.000,0.001,HISTggAAAMp42u1WWwoCMRCb6bTb7oIf/nsXvZrgDbyoR/DDghAIU5+rMPkJZUMmnT62u9P5KLI9yA3WWTun/UUCgUAgEAgEAvf30dr19cW8ibCQsZHv+G7MxHcCfQE24lvBF3UZWIn/DLqZ5GqdF5JjAi6gx3ElvpX4NxgvTu6NUw/7U5z5NaKfQIf7A9cR+6REZ2Rfm8NpcD8zNie/OvkKOV9YRx/MkZzzqk4d1kd2f+Qn7xcdzD2K9Gf3rL7JXz5c51f/Z2uv79fmeQVRHAU/
1438613815.950,1.000,0.002,HISTggAAAOl42u3VzQ3CMAyG4SQOtFAEC3BgE1gNiQ1YlA3g0ObySZYr/iTQ+1ysyk6cpiHsL9dzSqdDGtkU8xh29+MtAQAA/LP85Xmzk88vzlNm1lswjzfenH7VGW9ObOOWUr9w6szpZ/Lc5uskDk6+SN+W306xl3rtYzK+xbXUd06f6jxrXVvHRp5XEgfp18t8mtd9r8H3MuccWPA++h76HYtE77x6573MPN86fxecs+Kstwa/GwvWFY3PwfqjvNcn2o8c7HOamS9P3mPvvm8/da/jN/5/AQAAAAAAAAAAAAAAAAAAAABASvkBmZsGSQ==
1438613816.950,1.000,0.001,HISTggAAAM142u1WwRECIQxMQkA4PxZgL7ZyrThjBzZqCT6Ez87s4MPzHpf97ABhSYAEro/nXeSyygeps3a220sCgUAgEAgcG/rnebGf++xjIv/BAZvYG/4jO2dg7HfgBO1hVzqfQAfXL0QvE13UH/YN+itwATu0x3jPJI4Guhn8KGR+IzoLzK8k3kr2w4AXaFcSh5NzcaKrMK7kPB3WM3KPEhk34hfmF/PHJ3mhk/uFeeMkj4ys8y2zumE/qi+20XugG9VX3bmeyuS+HP4dfANrMwVM
1438613817.950,1.000,0.001,HISTggAAAM142u2U3Q3CMAyE7fy0UCHBAOzSlVgBiQ1YlBF4oHn5pFOKWsSL7+UU53xxEifXx/NudrnZB3lhXzjNLwsEAoFAIBAI/A++cb6n9w6nznyGX0Fegq7xCK5C3+ID1i2IZ8QrxkWsR3/mNd8DdG18XviI+kfhW6Gf4Mf5E3QT4gVxE/uu4rzUOQxiPzxH9sco7nsS/cF7ZR+YqCcLXRGs+rDX9yrfUK+LenrvZvjy3a2NJ1GP+gfW5nvHz3f699JO/+PWPP+RbwB98wbuEQVr
1438613818.950,1.000,0.001,HISTggAAAM142u1WQQ4CMQiEtnTX1Yt3/+LbTPyBH/UJHlwuk0yoh8ZomAsp0IGFZdnL/XETOa/yRt2l7rJcn5JIJBKJRCIxAp3s/+/10sl1L+SeEr9P7Q3s/l+5gN3Ajmf368BvJA7GPwV8C8geyDboj3FdrsTfgPcAej9vkIfrj4S/kXor+CvUsZP6bpBnJXWspP/IW0lc1BfCZ+S9ENJ3JX3BeTAStwV8QuxGnpvNK+Zlg3MYzbOQfguZHxm8r4PfMw3iz94z395ziR/f0y802QT/
1438613819.950,1.000,0.001,HISTggAAANh42u2WzQ3CMAyF7TRpm54YgAHYgtmQ2IBFGYED5fJJTwmlXCq/y5Or55/Elpvz/XEzO13sjWFlXzldnxYIBAKBQOCY8LiCQ/VJ6VJDR/vzHszCTg0/vicHwVnomKesXGEz3gj/GXr6FeQZRf0jeIZfRd4FcWboaCd85zmqqKMIXRV+E/JlEZe8oM9ZzEcR8SfRT85RAg+iP6kxV+yfow7vnHM1x94ZJwm9C13rfhRbo27rPAfvVe0PtXe8cx/5xj3mf9qbtnM+//Kce/2HfWPffs77AqUGBSI=
1438613820.950,1.000,0.003,HISTggAAAPh42u3Wy23CQBQFUI9tbLASpYEUQQcpIhVFSgdpNB0kC2BzpadBiAUS52yemM+bj2ds3r9/vobh8zicTOfYTuHt7+N3AAB4ZO3J1906+5Dl4435p6J/ths75Wvku8T5HHfneCjG30VcIv+lfB+/h8izxbiHqN9H3q3Iu0b5Enlfi3m/RL815pH7sBT1W/TP/c91rtE/n+tS7O8c7dfiuYwRq3MzF+dgKvpV42d9npehOIdj0b512lfzq9ZZza917uPUmVfv3o5F++nKe9pufI+Md34P9Vw733t/R571u+P/AwAAAAAAAAAAAAAAAAAAAACPqP0DIDcGYw==
1438613821.950,1.000,0.000,HISTggAAAMh42u2WzQ3CMAyFEydpCQWxQHdhHdZAYgMWZQQOhMsnPSW59eB3eYpjO8/OT7u/3s8Qbo/wQ2ocG9v9ExwOh8PhcDiOgOgtGOpPnOwj40zYs4gz/Ef2+O+/IG8RbGJ92qm7ggv8K3RtmD8LPRvGl8ZX2CvyVNTN9U9g6l7FPOMX9IN27kcR+2Cir9Szijj6J7FfPabeReRLon6e39w5v6r+LPqk7k+vjiDG1rmHcfD+2+A7kCb9Z9+b2fdqNt+s7qN9f+IX5pUFYg==
1438613822.950,1.000,0.001,HISTggAAANR42u1VuQ3DMAwkKVqynSILZJfMFiAbZMmUGSFFrOaAAy3YQBpeQ1A68ZNwuj1fD5HrW34om9XN2v0jiUQikUgkEonj0MF1OYnPzhuJp4TX4eAX8A14DuudP4PfeQ34FfhTcK6CxfwTyY91YdwVeAvsLyT+DPU0sBfYX8HiHCvU0SAv9j8F8zUyB4d3UMj8sQ4n96fB/Tl5j4W8SyV9KOlLSXwn5534bA5K+BbU7cF9SLAf5WF6Ec1tr/7oTn3TQf3SQd07qoujOm3yX5z1b+gXMUUFzQ==
1438613823.950,1.000,0.001,HISTggAAANl42u1W2w3CMAy0nZimDYgF2IXZkNiA5RiDEfgg/Tl0SuCHh3w/VhzfxUrPbQ/ny0lkf5UHUovaoh1vEggEAoFAIPBN0D/pVwd5+qLOaP3Tfx/UGdTZIH/NZ8J3co4BD89JRN/IvkNc8wXWU4sb2F8g71BfIL/2M7e4a7GCzgz8LegsoOfAr+QeHHQr9Iu+mAg/w3mJ6BRSZ5DHtRB/ZPL8FPYz8asTnyrxH/OxEh8y3dH5kI5eInOBPO/MO/JSZ55YP733kL75Pu7V249+L/TDOqP3pncPIgXJ
1438613824.950,1.000,0.001,HISTggAAAN142u1XOQ7CMBDcw05MEAU9RX7C25D4AR/lCRTYzUgjGwogaKdZZa/xen3ldL1dRI6rPOFVapV2vksgEAgEAoHAO9CNx38bBnVopz4brH9Un/BdWGWG7wQSx9PkTOrCOAd9IbzIP0F889+BPcN4ZvDbA2+zL4RvIvkyyAR5FrAXoj8AT4F8DnHoJ6SeTOYL50fBbyL9S2QdYT/Zus7E30m/cR2wOB/My/qlZB8omQcjvNbZX0LyKvlPY3HWORek06dXz1Pv2G1wnL92/9iHeKTT/3+/5zb7vnkAl1IFIg==
1438613825.950,1.000,0.001,HISTggAAAM942u1Wyw7CMAxL2pU9QPAD/AvfhsQf8KMcOXIgu1iyvB44DMUXK63rNGqX9fp43s0ub/uiBntwub0skUgkEolE4p/gO8vvnfFWPyfvPxd6HG/4fgwegg8QK24irhAX0K3zC+Q/EF9cv+pOwaOoB+M5eAo+g24h/rjPWex/jY9EV4GbqH+Ac8R8E/EfiT+7X3huTNfgvlUxjvcP6y9kH2r9QL6DQhi/E5w3Ub8RvYn8Ltb39g0n9av+VDr9e/vNr/v41jze6bOX/6B/AKmjBdw=
1438613826.950,1.000,0.001,HISTggAAAM542u1U2w3CMAz0IzSFSogB2IXZkLpBF2QERuCD5OfQyVAV+PH9nOwk9iWxfZ6Xq8jpJk94Y21sl7skEolEIpFIJP4P/dAfxUG2YB33CdjIDnYBf+dK9lVgh/UhiDs2nkieAfzdPsB5zDuS88g74B53D3FY/kruqeA/El0TeS/UhfGU5Cvw707+HfOwOrWgPgqpvwJsxHZSr4XoMrJfSFwnfWNw/0gv6z8huhXyR/3tb/Z7NB+2mku6cv7Zl+bnVvrkR/oS697vpc4fR/sFvw==
1438613827.950,1.000,0.000,HISTggAAAMd42u2WwQ3CMAxF7SR1ChcWYBdWYRUkNmBRRuBAuTzpKy0qnPwvlpOfb1t13Jzvj5vZ6Wpv1MX6YsvlaYlEIpFIJBJ7wLPOn+q72F/Ld7wHC/gNvI8/Cb6L9yX1qRNY7+CTp/Rn+AfoBHgB64gf8CvyDOgzzoTzXdRDe0SeE3zWGUJ3FutdnFf1qf2139kH/aX6Tem3ga/yVfekgK/qGPV5EferifpNxFP3ugpdE+e3zok64I/myLfzcOv82msul3//J16O0AUs
1438613828.950,1.000,0.001,HISTggAAANJ42u1W2w3CMAy0Yzck7Q8DsAuzIbEBizICHyQ/J51SoLwk34/lxj7nUsft4Xw5ieyL3GHNarPpeJVAIBAIBAKBX4Q++Fw2iv+2Xh+sJ6KL6TSSzyzCgWcCPuR18Htebpb9l3beHanT/QV8A94M692fgb+AL2T/WBfPoRJ9FeIK2IXonSHfIS4Tv0K+A+9EdGfQi3oMrJNzwvevJN4G/ZZIPOtr1t9G+kDJPozs31beGx3YNLivunJe6aCuPFnn1XmrG8/Bd/H+y/fgU7r0BnEZBQM=
1438613829.950,1.000,0.001,HISTggAAAM942u1WuQ3DMAwkqc9PkwGyS2YLkA2yaEqXLiI1BxyoIkBc8BqC4h0fS5Z9f72fIrdDvkjdarf2+EggEAgEAoFA4H/QSZ4RPvr4v6dOHsZn68NmsJh3+AX8DXQVeFh/xBfQFfAX0KG+dbsS/YjvoN9JnQbzFIhvUG8FnQK/kryVzNXIPmQyZyXPuzr7kaFuIXOYc87wnCTiJ8I30gfGs+MXpz+d7CuROZT0ZeQ9wjrirCenjnevmHM/yGR8luf1pRe9j/Vi/cR38Ed1Tg+0Bfs=
1438613830.950,1.000,0.001,HISTggAAAMl42u1WOQ4CMQy0nd0cuw30/GXfhsQP+ChPoGDTjDRyAFEAnmbk2J44l5XT5XoWOR7kgbSz7mzbTQKBQCAQCAT+Efqldakzzlgc24An8n9MJD4RvT5eQbeBPZN5J6LX7QL5nRfiz8ReQD8DV5K3gn8Ff4NxXF+DfNz/CvGzs24h+1qccyxkHqZjZD8SsQ3q8+5Pdu6jkXueyftIhDPos3fD8pXUI4N68uS7VTLvaL9Qcg6j8a/2Kx3sX5/uz/pmvEngJ/8Dd2E+BOw=
1438613831.950,1.000,0.001,HISTggAAAMl42u1WuQ3DMAwkKclSkCYDZJe0WctANsiiHsFF7OaAw0VtwmsOJnk0H0HQ/fVezW5P+6Ac7AfHY7NEIpFIJBK/Bc8R/OWeXfCJSvwN/AHvR+RKvhewB3ADPuM71FMgrpM8FfwD7FeIHxCPOuSF6LD/QeY7oA7Mg3NAxnwd/CH2UUl8F30xXRH7dXFunOwRdReia6Rvdu4LnP8m+hlE76T+EHMIoffJ+lUd6v4PkpfFubh/1H1jk3r78r/KruZmk/58R5C4HYBqBUE=
1438613832.950,1.000,0.001,HISTggAAAM142u2WSw7CMAxE43yalg0X4C6cDYkbcEmWHIEF6eahkSskRCU8m5ETe+x86vR0vV1SOt7TC2WwDc7nRwoEAoFAIPDfsKhvl8gf7gP93v7/YJuYL+As6psG98ENcTPshDiVh3qT0Ft5Ac/Qm4XuAeNrngq/RcxXod8xTj3mr4IzbFVvgx/3l3l5zh3xxbkfPA/6FXHfmqNfHB3WV0WeLOY9LoKbc1+zsw7WY8JW35m3LhWv+kDauA4Tceb0n1/1bduJrn053+b34Alf6gXa
1438613833.950,1.000,0.001,HISTggAAANF42u2VSw7CMAxEEydNWiohsecA3IKzIXEDLsoRWNBunjRyhdoFkmczij9TOx/3+nw9Urrc0hdl4byw3d8pEAgEAoFAIHAc8kE6nq5hXZFHNsQVMP0GzsJewQPWDfYB+VwX5K06Hf4OHhc+IW4Sdaz2M/wj7Kxr9c/4/iz2oYEnUXeDjiFO1eGdaxXn2sX5c3893eLckyzizImrG/tT972I96T0m6PDOtQ7VP3TX504c+ZEEX0m0cev88oOmn95Z9288/yN/9d/17c1L38A5GkFGQ==
1438613834.950,1.000,0.001,HISTggAAAMt42u1Wyw3CMAy1nTQEuDAAuzBbJTZgQUboCD3QcnjS0wNVQoD8Lpb/tuI4OV9vo9npbg+UhfpC4zJZIpFIJBKJROLz8I1+z/8c0QehBv/CQuoJkA8kTpC6WPwOfhX41b6BntGB2DeIdwR9B/898KvdAewxLsobkav6d+DXSbwK+bF/xhfSX4fzwfis7gZ1q7kIkcdfnKNK+gpip+ZTzX0l/uxcQ9xTdT9D2BupK0R+F3vHxR7xN/eZC/nWPfgt/r/6jvz9+zoD8tsFtg==
1438613835.950,1.000,0.001,HISTggAAAMx42u1UyQ3CQAz0sSQbxIMC6IXaItEBTVAeJfBg9zPSyEkQkIfnM9r1NbYsX273WeT8kDe8sTa261MSiUQikUgkEvuDLvQz4KX++HZgzKtgL41H8Cukj84HUk8gvv9P8O7xFeqOhCeit8K75z2Cf/cbiJ4CcZgX45AHwmh3Mj+sg/YT2NkcKpm/Qd4CzPZEoa4FccgD2Q8L/o304YFOps/JPnugX1faNdCnRId9eD+iuyAr78vW+8b639rPv++y/qjuXubytXm/AI/9BZQ=
1438613836.950,1.000,0.001,HISTggAAAM542u1WyQ0CMQy0c2yyggcF0Au1IdEBjVICD5LPoJG9Wh6APJ9RvPas4zjH+Xa/ipy6vJAH6+B0eUggEAgEAoHfhEYJ/nI9GYsx9vpPJGCMf3s3Di7AathnXCX+C/wvg53FTd0O/qg7/RroHwcfIG4FbpBHB/tC7MhMn+W5Ev1O7IXUr5H1LTCv4uRqxGXSXwvpx2TkV0h/VDKuoOvdX83Z/8mYpxjf1bn/LTvTTRvPm7zzXtl6PiXn/Lznl3woX91YB91Zt295N+gT5+sE9A==
1438613837.950,1.000,0.001,HISTggAAAMN42u1WQQ7CMAxrk60UhsQH+MvehsQP+ChHjhxoORhZruAAQvElWuY67pSlPZ4vp5QOt/SAt5hbtPWaAoFAIBAIBAK/i0yik/vd8543qKP4BnECXq8/Ay+TfF9fWtwN6mxarIS3B93O3wK/5xfisxJ/C9FHXxXWFZEvZP+zqId8Bz5+byc8pmtE34hvE32JflTfuegLtl8T/wX2r4nnTN6P7stF/0+krpoHys+7cyUN5v3DeWZE/1vz9F/PjZf8HdYNBeY=
1438613838.950,1.000,0.001,HISTggAAANN42u2W3Q3CMAyEEztpy48QA7ALsyGxAQswIiPwQPrySafSUvUF38vJiZ1z0+iSy/1xS+n8TB9449zYrq8UCAQCgUAgEFiOvHLer30oHcN7kOPGd+JEHfMK5se4E+/QQ+MB7KJ+jCt4j7we89Q/YnwH7pHPPk9Cv2Cdijr2aUKP9RxX+1qwnol59uvQM/xHF30W8CDOEdnFuclCvyLPROwiVvpFsDrn/uX3JLFeJ/aniPqp/UsT/eaZ/qD8Yq7f2EK/W9tHbSO/3drn/+ZefQM2tgWd
1438613839.950,1.000,0.001,HISTggAAAM142u1WSQ7CMAy047RZ4MAD+Eu/wJeQ+AEf5QkcSC4jjVxOUMlzGTmNx0vtqtfH8y5yuckHNlgHp+0lgUAgEAgEAoHjwMBWwhNp5/1E2Ej8+TzDeSb++B+agRfg7OTTSB7o3+C8DD4NXoGxjgp+jeRbiT11O+gUEr9DHp3UV52+nYluhvqxTyvkZ0Q/k3nA/hXyHhV0V2e+2Lyy+Upk3hKJs8B9c+J7c57I/n67b0psc/ZenX4Y+U4wPS8fcfRkp9/RoD+u61/6qG9GnAVU
1438613840.950,1.000,0.001,HISTggAAAMd42u1WQQoDIQzUGI0LvfTev/Rthf1BP9Kn7RP2UL0MDGFLYWnJXIboJA4axdv6fKR0faU3yuA8WO5bCgQCgUAgEAicjwzsoXxpHQHOUB/XQb2S+ZlnJFaIFydfyX92xm1wHdyBDXQG+ln/AuOF5KGvDjpk5mchdQz8NOLLyHng+XXiu5L9EYiVnH8FZvMZ6rF+EtKnrA+ZjtVtxJ8694/dG9aPnk4cHwh18o++B5jv6bx9Ofr+fJp/1rv8r+sFfuR/sAO9OQWV
1438613841.950,1.000,0.001,HISTggAAAMt42u1XyQ0CMQzMOCQKpyiAAuiC2pDogEYpgQfJZ6SRQQEJgeczyvqIY3ud3cPlek5pf0wP5M7obKdbCgQCgUAg8F1AxPWXdcZk3vEmfYjvRpYb6fF68IK4dK7CXsmVHstXtK70fNhtOy+JN2L/EX8jvSzOtyb9SvLm8Ih35+Qjk98i8p7JfxH5ZjuIfZrTJ0nUCSKuIvrLyJ+p/xrBqj6qX/Fkn5s4jxd3cvThsPKn8m/Oe48X5w0m5w8m5+Gn76tZu1+7J3EHghEFDQ==
1438613842.950,1.000,0.001,HISTggAAANR42u1VSQ7CMAz0krYp9MAD+Eu/xRWJH/BRnsCB9DLSyOkFROW5jMZJHMdxnOvjeRe53OQDb6yNbX1JIpFIJBKJxB7ol/3qQfMSnRfZOuczOGgDu5P9Rhg3YCV2J1waD8AzjI8wvulK4ivkfBPwTOIs4B/9YlwTxLfA+gr7LWTdps+gT6AL2J3kqYK2IP/sPIVoJ3VlMM/IfRhZp2AfwF4CP1Ed4v07qW+F/Z28Lyfvz0l9Sud8JVqC96edfcSDPmJBn9Kd/U4P1ud//U/+fV7e1gcFeg==
1438613843.950,1.000,0.001,HISTggAAAMx42u1Xyw3CMAy146SUcGEAdmG2SmzAoozAgeTypCeHVOWA/C5P/jt1mrS3x3MTub7kA2usjdO9WwKBQCAQCAQCR0AdeVa/157g+zABC9Ezf2QFLmDPJJ+BP8on4AL5MG+Xz41XiK/gX8G+gh7jjcRXqMv67+tegC9kfZXUzyR/hjyFxBnUNzKfQuwLmaM3fwVZiL44fRnZL0r2JZOFxCv7nxrsR53nol+yDOrZe8/WPXu+6OQ56PU52sds/0ed87+u/+/35u58b5/dBdI=
1438613844.950,1.000,0.000,HISTggAAAL542u1WwQ3CMAy0HVOCQIIB2KXrsAYSG7AoI/Ag4XHSyWkB8fF9TnLOZzl1rZxv96vI8SIvlMba2OaHJBKJRCKRSCT+j/f77MP86FwXxo0wviudcNdvgAvwtvEE8dG8QvK6XwW9g95JnkPeCfy6bt94F9R30u9E+u33d4B4JXWwPyV+lejQV8l3xPtm82GBTglbMIeFzIsHutE6SuY7+g9YXAL/6F6iPaEr94gt9F+7fyL9t/1/vaeH9U8gaQUu
1438613845.950,1.000,0.001,HISTggAAAN942u2XzQ3CMAxG4/y0UMQG3BmD2ZDYgEUZgUt6sfTJKqiiRe9dPrmxncRyk/byeN5TuqZO6Wpd8+2VAAAAALaErey/NfLCfZqIsyC/ie/B4jSLuJkq/FR8czq4PD5ufn5w48pf5R1cnmPXUdRh6npy8bN9dnYTfqObt7n5J2dnsd4q8gxOW1CnaLyKddRgvhb0URH9k9V/iejrKrQE/VhFfl+XFPRzEnYUV8R7a8E6LaiLeu/VflXepefo2ufyp+e4fen36/tjr/fX3u9dAAAAAAAAAAAAAPhP7A2XSQUI
1438613846.950,1.000,0.001,HISTggAAANZ42u1WSw4CMQiFdrCdzMYDeBB3ns3EG3hRj+DC6eaZF8hk4ifhbUgpPAgB2tPtfhU5nuWFukpdZbk8JJFIJBKJROIb0D/n3xpHd7pXYu/pi2NXQKL+QPzGP3MKxjGQE/AMdPAfdg3yaeDf4czidMh3JnzjvBDeBvwL8BuRDeIb+HViPxN9Bb7u1APzNsKjpH4Gdnhfib04enX6rJC+xD7Evq+O3ps3rIc5czY581Sd+a/BPEpwP0jwXki+UTt1/HTj/ozuTd1pv/7qO/Sp9/Otrk8wowUA
1438613847.950,1.000,0.001,HISTggAAAMp42u1UuQ3DMAwk9dpuskB2yWwBvEEWTenSRaTmgANlJ0YaXkNQIo8nSuJ9fT1Fbpt8EJvVZsPjLQ6Hw+FwOByO66CD63oyfrROhPVE6nabSX63odkCfiLxGeIwH3kj4Z9gvYJO3J9BV/cXyJ9BJ/JkwlfJeRLUwT4sUCdD3kT0FdI3tIn0DXkZTz14n4W8F+YruXfLKvj4ThPRrcb7svSo0e9o/Kdg7Fv/Xww+If88GvGj8yd8Off04Hz811z+lb6r+U+feweubQXe
1438613848.950,1.000,0.001,HISTggAAAM542u1Wyw3DIAy1wQm0HLJAd+lslbpBl+h4GSGHcnrSk6GpevK7PNlg418It+frIbK95YPcWTun+y6BQCAQCAQCgXnon/wkR2Z+dPJcxXciML4jDeQF2MDOYL2AvpLzDLiAn0r2F+DqyBg/5s/yQ/218wX2tc5b5xU4QzwN/DYnzgX8YR1WUnfWx0r05tizOcpkXZx1Nv9K5iwRFuKXxYl2Xt8V7GUwH3Hq4n3HRvLRL++J5PRlNK588r5Mg/Z68hyZ7Ic48/7r/4Qeq9IFhA==
1438613849.950,1.000,0.001,HISTggAAAM942u2Xyw0CMQxE43iT/R1ogF6oDYkOaIayKIEDKyE9aZQsAsHBcxn5G8fZWNnj5XpO6XBLT/jGtnE+3VMgEAgEAoFA4PU++lfkzrpd2E34U8/3YgFTnwUPG0/QV9hHyAV1MK7A3yBX5M0iboT/DPuMuBV1LYinPGGdCfkWrLPCvyBuwPpF9E/tu3b2oYq+Do3zcOjV+Rn0hjpc2L3xvWXh5+o/SOzLBadOOb9537Korzbup+2cX/6h+Wed82nv/EqNfv16ftuX8zXlB3U9BbE=
1438613850.950,1.000,0.000,HISTggAAAM142u2WQQ4CIQxFS2EYx41x71082yTewI3H9AguHDYv+eIYNcb0bxoK/P/bAOFwOs9mu4vdkZeYlujHqwUCgUAgEAg8QvpzvW/7ULz+om4R+fbvG8CbMG/in5hFdJE3sb90+Dk/Qqf5r1jPOAlfTW8LfupXzFNXjZvupuNzgG4V9Q/wy77soVcwnkRd9M2+Ma/OiyMW+Evgc/hzUbfqQxZ+1DlK4j7Rvz15Pqk3Cj0T673D19u3Np9XrreOv/zh96/Xj19/19/OdwOAtwWA
1438613851.950,1.000,0.001,HISTggAAAMt42u1WSQ7CMAz0kji0XHgAf+FrIPEDPsoTONBeRhqZcgCEPJdR3LFlu3aU4/V2ETmc5QlfWBe2010KhUKhUCgUCr8Hg7MCC/nO/I3EQQ5iR/8GvL4zO+gD7HuwO8QJOAt7xyZ+QfKbE/2a3wQ8QD+Ad6S+meiD9LEn+g76ifhNpD4HDsif5eNJPCP/v5P5ccKN6BqZS0/m1GGOOpkLjD+SPTCSf1anJfub7Z2+uM+N9EcSe3aWN+8l/dI9qhvtW/vwqTj/Bn0Ab1gFhA==
1438613852.950,1.000,0.001,HISTggAAAMl42u1UwQ0CMQxL06ZXQEIMwC6swipIbMCijMCD9mPJSgFx8Ig/1jW1c23SHK+3i8jhLE/kzqmznu4SCAQCgUAgEJhHWlnHfNLk+qv5s+OvwLVzgf0KfgXWG+jR10jeDfghG3CD+NAvwJXw0G+J3wK+I+8evtk+A78G5x26Heib41PgHEbuHetdSX2V1KOQehvRsTjqlfS1TfaV559JHPOw/kd/9t4y0YujV/KuxHmf784hT68/nnv/Puc/nbtp5f/9+v09AAFoBTk=
1438613853.950,1.000,0.001,HISTggAAANB42u1WwQnDMAy0ZNlJQyALdJfOVugGXSLjZYQ+Gn8ODqUlhhZ0HyFOsiTnouT6eN5TWtb0Rt6t7FZvWwoEAoFAIPDfkJj3p+5FDvLSuZ5XJ4NViK/kPCX5Ld7If2fjR/ArxBdSr4Ct4BvEG+GbP4A/k/4K9DcBPwHf8i8QN0NdPH+BuOrMjfVwzgHiDPrC/EzuT52+M3neeB7TDdMh483RHerY06M4ustEn6zOSHh17st7z4Tw8uH+0ZP36Vn7Tg7m9d6b3+7pXt8beQFsTQW4
1438613854.950,1.000,0.001,HISTggAAAMV42u1WyQ3CQAz0sfEm4UED9EJtSHRAg5RACTwIn5FG3gchH8/Hcjwe29lDe7k/biLnp3zgm9XN2vUlhUKhUCgUCoX9oDvl66A+xo3wbNB39q4E/jfegDdBnOmiXUndGeoE6C6kn4D8hdhO+B3sCeZr4AeZt4HOCnUC+J34HfQa6T8S/kzWa4L+Db4r8VHfyX7B/exkflYH/6sM+pjfyPoY6UOTfS+JDjtn2fn2JM+Tvtn8mvCOuj+Pqv+ve/7n/bwB/0UFqw==
1438613855.950,1.000,0.001,HISTggAAANV42u1Xyw3CMAy1naQJFQcGYBeurIXEBl20I3AguTzpyRUIioTfxbLjv5M0Pd+Xm8jpKk+kTrVTu6wSCAQCgUDgt6F/FjfmvY339MyZozr+xrsxAy9EPuwnoJXoNZBXsEP/o54C8gTyidRfIW4BvUTWBz10Ond6hPVG8qtgV0idDXjMF/uJfmawN6f/LE+vn5XMJ+N/BpmDEf3s5JlJfbZx/yPFvAvxa2T/m5NHcvJIxL+R88riCeGV9F3JOZYP3TPv3nv6ov1e3zvdOf633wH6AAwKBSk=
1438613856.950,1.000,0.001,HISTggAAAM542u1XwQ3CMAy0XadpKyQWYBdmQ2IDFmIkRuBB8jl0chFQIeH7WL7YPtdNovZwvpxE9ld5YGhWm7XjTRKJRCKRSCS2hP55fd0or8c74Q38yArk9e/KAjxaXHeoW4AfgR/AOuExvutNsD4R3bnZCnyP34Ffod/uL6SOA4/9LMDPUN+J7kjmg/NF3UKes0I+07FA18l7d1LHyb5zoqcr94UG+wTrC/tvCs6Nvdi3kf4kOG9C+rUgX1fG65v3kQa6v3q/f6tP/dBcn+LuoloFng==
1438613857.950,1.000,0.001,HISTggAAAM142u2VyQ0CMQxFYyezhEU0QC/UhkQHNEYplMCB5PKlp2EOaJDwv3x5t2fi5Hy7X1M6PdIbubE19sszBQKBQCAQCPwzbKW8NfLCHMSUR+0u3P2KyJOw+g0iK5v46VxF8hfQ97i58aFxhX72jUdh6nOW+M47kav0NYpcJV/XHyHOIU+B/ifJr/GD6HWOAv/ZIU7tBnkczp3D+V1bz8SeYX7yoz6p7wzfk/aswD45+PtCvMEeJdgrW1nPF+6F/OH98qv359bvydfqvgCePwXN
1438613858.950,1.000,0.001,HISTggAAANB42u2XMQ7CMAxFYydpAmJgZOAuPRsSN+CiHIGBsjzJMokYQPgvVmLn+8dy3fZ8vV1SOp7SE3mzslld7ykQCAQCgcBvQkL/V+uRQX5+p4nDK86+GnF5UD/5FDwL1mVwTZ6KvA1+xtU3eWkL8nTcryL+5d/hvMXfwNOhq8EeNrvHPvN1+NXQWY16NejoRr3Iz74oTj8sTv+w/tmwVt7s9KU6+vlcWOezs59QXzXupdb/mKMvO/PAu7c6c2Z2Xo3Op9k5Kx+ew//yfp2u1wMkxwT6
1438613859.950,1.000,0.000,HISTggAAAM142u1VOQ4CMQz0ld3AFnyAv/C2lSjo+ShPoCDbjDQyLKJA8jRWFGfGsR3nfL2vIqebvODD6rB2eUihUCgUCoXCJ9BKwa586I912fpda4meg9+2bmCd8PdhJ/Df+ILwzcDbYR95URf1gvA46KH/AvFOYI8k7gOsZ/Dv4Ndgf0l4GqkH5kvIvZzkOeB+QepkhC9gX5P+YLysnpb0MfazJeeUxMnypeTdGYkX35Ek54ToCbmvJnPGEh1N5own84Xpyc459S//mH7Jr08lJAVs
1438613860.950,1.000,0.001,HISTggAAANZ42u1W2wnDMAyU/Hag0AG6S1fJKoVu0EU7Qj9q+nFwCIf0BbqfI3o48kmxc7reLiLHVZ6Ig3VwON/F4XA4HA6HYwb64+v9u646qdfrv47Y42Q+5gXix7g0OIM9kzoq5BWIK2T9BPUUsAvkIffBbfBC3lNh/QrxDfwddDmQuivhZsQvYG+gbyW6d7KPQvqbjb53Q98E8ew5kLkVo/84v5n0Xcl8IQKpi81/JP5E5pDpGMj+tn6HYvjVOC+s88E6r7fGfete0J3y9EN16Jt12v1efwAa9gVH
1438613861.950,1.000,0.001,HISTggAAANJ42u1WSQ7CMAyMx2loe+IB/IW3IfEDLjyTJ3AgXEYauaBSEPJcRrKdsV1n6eF8OZWyv5YHvLN1xvFWEolEIpFIJP4R9mN5bKH9XT0EehB2jneKd5HHiQfxv9k674hB/lHogPwQ9tp5Ih1eV8k/UF1P/yzsk6izEc+BX8Vx3Y3yV6qL49VcuB+e0yj2BeeHiKtibibWu5gn77dIl+eq6kWwv5W+C11f+B24DwvOoQV9qvpc6Hpw3hHktY3uW1tZ71Vgpfu7fLmPrd6fj72TdwTGBYQ=
1438613862.950,1.000,0.000,HISTggAAAMt42u2WwQ3CMAxF49S0oQixALt0HdZAYgMWZQQOpBye9GU4Var8L5ad2v52HSvXx/NeyuVWPhi6tC7r8iqJRCKRSCT2BcsW7Lqv33dcwK8K/xrUE8U5wF7xznTYHX4Ndur8nvY1zwS9QWedE+LyXdxwfhb5Vzkirgs+LviOkIxLnscuZ9GnWfi5qJ/5T+L/KT5V6C7mg+cWzA3n0YWu5jnyY151P1S9JegD567+eK/Jbwjum4KLfWFCqnPF0zbei7bRfv43j70BGWAFNQ==
1438613863.950,1.000,0.001,HISTggAAANZ42u2Yyw3CQAxE1473EzpAohdaA4kOaJQSOBAuI428QgJymHexnHXG3p+l5HS7X0s5XsqLZbO2WT8/ihBCCCHENzDpfqSPcQ7+MqlriR9k/J2vkfwB1qGuCj7qBcStRM9AB+MG+Cs8b5DHwD9AvgrvddDF8UbmHcQOiB9kXp3kqfBeh/pxPRrRjcl9wn1tJB7Xl+lX9j1CzmEl59RJfUHGg5xfT+pCXUvOp5E4JzqW3F827yzvrL4l99+SvvPr/jnb1/bW9/+dTwghhBBC7OT/yBM/JgVq
1438613864.950,1.000,0.001,HISTggAAAM142u2WwQ3CQAwEfTk7JMqHAuiF2pDogEYpgQcJj5VGhggkHt7Pyjl7vdHdOTldbxez42RP9JXbysP5boVCoVAoFAqF36FB/Pof26k7gE5L+ioc1nviOyRvFB/EAfUuOhp34YB44xnqD8KT+FO9UfJn8Reyrv22/AX6L5JHeiF9XeoD8jvskyfPA/L0nDnss0P/DvUGfeg9HM5jAx8O59iByWcW9+R+mvgdEt+W3Gu63zQPsvpsPrUP473zsn1J7925/O/fjV/ptQfTwATx
1438613865.950,1.000,0.001,HISTggAAAM142u1WyQ0CMQz0lbALPCiAXqgNiQ5ogBIpgQfhM9LIC68FPJ+RnXhsZ9dRjpfrWeRwkyd8sA62010KhUKhUCh8F7T6+au+9U2/4XsPbPQ7WRdYlyTuZcfgNngC/wY4YN8Meg1sI7r7wTvwd5LXSR0d9LeJ7kz6deJvJJ7l78CNnLcT/QZ9GIlHnYl8Twd9JYz1RLJPk34RkfzPBtwX1snOF+NYfpwbrCeSeQwyd0HmU5P5zfbLQnvpPfWpbnaf2cruZ11JHb+aXx9xCwWq
1438613866.950,1.000,0.001,HISTggAAANN42u1WQQ4CIQxsS5FFLz7Av/il/YKJP/CjPsGDcJlkQkwwkti5NLDDdOg2wOX+uImcd3kjtagt2vUpgUAgEAgE/hMavn6yL53Mkw/5/T1oLWbgGfAd348wb6B7IHkc8jnESt6rXa/AOAMf8zsZo5+N+OjxCONCfBXwVUC/rz+RvBl0DfgVvm+wjkXUr6AvpC5O+gbrb6QPHPRZHxnxy/otkT5Jg30zf0b61ch/SQOfSuorpN6YXwZ1GuVNk84NnXTerXa+65f5q90nq9zD+gL3jwVp
1438613867.950,1.000,0.000,HISTggAAAM942u2WSw7CMAxEE8dt2oLEBbhLz4bEDdhwTI7AgrJ5aJSWIlaezWic+NPEtXK+3i4pne7phbJwXtjmRwoEAoFAIBAI7Ef+U5wsdIsNftQOexb7Xdj5zuwWHrHu0D38BviruirWR2j6006uqIc8Ic4E/4L6K9YHsEMfhd87/wHaRZ0m8vbiPAt0he6xrxP3YKJP1vZradhd5LFGfYxTxH+h+jiJPjKRrxXPV353apxbasRRsI3x7cv5lHfOtbX77Mfzd++czhvv88P+BEhiBXM=
1438613868.950,1.000,0.001,HISTggAAAMx42u1WQQ4CMQiEdqH1YnyAf/FtJv7Aj/oED241mWRS1myMB+ZC2JZh2gXS8+1+FTl1eaGuVldbLg9JJBKJRCKRSHzeR9/uj/rvdxj5Ho3XoG4NnnPoWYjOCuuov4I9wP5hHSzyG8mH/C3I5yQ/3t8CvGhRX4dzNvCN+A3ih38EfTaxHuQ1og/rwGG9k/tj/92I76S+sB6N1F0h+Qupr0ryFlIfLD/rU4wvE55ZP7E+lI19zuKjPLpxHkbn2F7z9td8/6pHd86jTxkXBPk=
1438613869.950,1.000,0.001,HISTggAAANB42u1VSQ4CMQxrkgnDoArxAP7ClW8h8QM+yhM40F4sWSkwIA7xxWqSOu50meP1dinlcC5PWGNprKd7SSQSiUQikVgTkut/Ky/ARuoliEdjBX0L8kp0HOo2MJ4az5BX4BnqMe6QR+66Cxmj/hZ0sb7Hd40r1FXQRX0nfjrvg/kL8VuJbye+2bqc+DKyP8genB/so2R/J9LXyf6O9sfzwc6/kDj2YXl2P43cbw2+hwb3XIjeaLwEvj597+TFd3BUT770Dq89X37k6+/+dw9U8gVi
1438613870.950,1.000,0.000,HISTggAAANh42u1WyRHCMAzU4SQOx9AAvdAObTBDBzRKCTxwPsvsyJD80H524lV0xLKc8/1xEzld5Q1vrI3t8pREIpFIJBKJf4Su1Hvtf/WjnX4ceEEh/j7+B4FH0AvoGG8gfgR0J/lgnAHywPXleWpcQR9I3Ery3oG+xN0H+Ywk3gR8bDyDXSV5CdEniI/7UqCeAnGd1HmAfZjBr4K9EfZgPeo7J32K+gh1SNBPRtbZOSmk75x8bwnq10724ByxOWHEjwfvG5kr1jl37Mt5qMF822oOb30PrLXTF+VdBWI=
1438613871.950,1.000,0.001,HISTggAAAMl42u1WyQ0CMQyMj+wBElAAvVAbEh3QKCXwIPmMNHJW4np4PpYde8a761h7vt2vpRwf5QVrVprVSz9JJBKJRCKRSPwCEvij+cx2KP4HBjwdFeIW+KiH50uz3uwEeV1vhjjWVdBxyFsJ7w5095C/Al/3D0R/Bj4WP8G5Qz+oh/UL5DMefG9O+DT4DmwunMzFROaLxS2wQuasQn8W8OM84nNrUGdk3iTwldwzHbyvPng/ZeMe2bpvRveXfnlPfqpe/qzvd+nLEwVDBdQ=
1438613872.950,1.000,0.001,HISTggAAAM542u2XMQ7CMAxF7aRJCiyMDNylZ0PiBlyUIzBQloe+XDEgIfyXr7j2j+s4SXu+3i5mx5M9UVf2lctyt0QikUgkEv8BzxL85Hpx3UrAJr77KvwmEecinnYTOgN28oB/g31gvnnlDvskdKhXMd4jfgbvoPPyP4g8p2D+Bv2BcRN16mClV4ROQzzr1YN1Mvixz2oQ56Ifo/59+18Rz9nHNZinB/tF5c26cT+wL5uIU/mbeF8PzgPfeH4olI3njW/Mr3yYR+SX99aX750HPZoE9Q==
1438613873.950,1.000,0.000,HISTggAAANl42u2XzQ3CMAyF89eEgAQLsEvXYB0kNmBRRuBAw+GTnpxKiJPfxUpsP9uJY7XXx/MewuUWPsibjJtM6ys4HA6Hw+FwzCD6Efz0fKLw+36n7fQLBp9aJyEV/9Avwq/AP0M/1hU8FfrBc4Dd2G+Io/QN+iN4K/xOsDsjrw7/BB7KBvsu6usiT66ZR8M+6+K9VFE3z4/3WMEfRb8W0Ufsp0X8n2TR/1Hct3ovBXxZ9Ktlr/qX/lacLN6RNQeyqHN2biTj3as41txKO+3/PVfDzjlpIc3GfwNvxQVJ
1438613874.950,1.000,0.000,HISTggAAAMV42u1WOQ4CMQz0xImzqfgAf+FtSPyAhmfyBAqWZqRRIoFWFJ5mlMNjO+s4e77dr2anh73hO2PncnlaIpFIJBKJROL3wEF2heww0S2TcdB/44crjZuYL6RThb8qmO06+WO/jfZtwr4Lu02w07hT/Ox3UPwcT6P1mOTL5z6Eboh8YpLvWPx+QfPMXA9Odefi3EzoQOiG0IPQcVH/XOcQdhDrEFwW65zPb3afTexX9x2L/QVf6vlkHxb7Gw7ur//+LuAFr6AFgQ==
1438613875.950,1.000,0.002,HISTggAAAOZ42u3WwQ2CQBCF4ZldQNDYgaWYWJuJHdiQJVmCB8HDS16Akxr+7zLZdXdmVlA43e7XiPMj3uoYc4zl8gwAAIBflBs/5+d9zazTcZFYF9ZrZNyafGHeJxuJRcat7JvmO5OnNeeupo/G7N9JnOrtTb+DRM3Xyfy07ih5DvJ5NXHqq5e+BtN3L/ODOYeeu5X9Reb1+6rmunUyLmac5j5IyZvmOoZZl6b/kP6W1m1m7ucweYrpo5p1Yeq5/Dnze8+ZOnP71q6rK//Pyp88J7byfAEAAAAAAAAAAAAAAAAAAACAb8sXQekF0Q==
1438613876.950,1.000,0.000,HISTggAAAM142u1U2w0CQQhk2Qenl2gDFmAX1mZiBzZqCX54/IyZcHvfzA9ZmAH2xe31fopc7/JD3WzZrD4+kkgkEolEIpH4RwnWe3URr0zyShBXYjEuJN5hXYke4+4fQR9K8nrdBtb9Bn7XL8AbYHE/A3Se7wJ1DOqcQO/rlfRjpK+V9L0AD8/HyH5Yvw3yGfE3qI/32uHezuCv5DwxTyW6RnS68/0LeRfsvTXwd8hjhMf4jBdBJ/95NF90cq7IZJ6oH52cn3pwPh7d19F5Xb6FMAUQ
1438613877.950,1.000,0.001,HISTggAAAM142u2WwQ3CMAxFbadJSkGwALswG1I3YBFGYwQOJJcvfblBhZP/xbLjPNutEuW6Pu4il6d8lJrVZu32klAoFAqFQqHQ/6TE14370yDXSJ2t65gn4Hc7ER/fnxPYHq8O59DsQvgnwjdSv8czcDr/CPmZ+L2vAvEF4meHizz0Z+izwnqFuRLpC797gb4K4WD9DPkKcYP1RLjpy/9mZB7GVZJnxOJ5YvWF7DPnPJrDY/XY+TfnXvD69e6T0XttlKODc+1dR3aa91f79Q1wUwWW
1438613878.950,1.000,0.001,HISTggAAANZ42u2WwQ3CMAxF47hpUnFhAHZhLa5IbMCijMCB9vKkrxQBUpD8L1918h07cdycbvdrSsdLesFXtpXz+ZECgUAgEAiMDYst+AvkL5+nCVZ+8k698pPB27txhr2sXIXexfgEfy7sDXbOq/gmF/ip4IZ5Dt7yWKBbEOdmP4i41boNurkTb0VcFboJ+zyLceoL8lL7qc7LRT0UUY+snyLiZn3yXFjHvfVUXqruqVP3XN1333nfs9C5iM86edqb/abXF/Jg/dU+7Ke/+r/mQfdr1HeIPQG+YgVt
1438613879.950,1.000,0.001,HISTggAAANp42u1XQQ4CIQxsCwvrxoMP8C++bRN/4Md8ik/wIHiYZAKroonpXCbQUlrYtuzxfFlFDld5IBTWwna6icPhcDgcDsc/Q4FH2X9V//kuI/rWGGtjfqvfRuSR7KdEHuH9ORVOIGdsoJ/BfoB51KvyfeEd0Wd26v4z+FXjWGDMOAMv5DwSzEeyPkM8kcTD7M/kHtg4kXsJwLhOiZ401mHcRr67ifglxE8DjsR+IHqtPOjNW+vM61Y+snOVTn+U/B9+qq6FN+vh1vo9qr6P7kuj+8q3+trPz/MOC2MFvg==
1438613880.950,1.000,0.000,HISTggAAANB42u1USwpCMQxskr60BcELeBev5BUEb+BFPYIL+1wMDMEnikhmE9p0ZtL0c7hcz6XsT+UBm1Fm1OOtJBKJRCKR+E1ItuAv+iAb8wp5ITyB9YyPPCP8db4Sn2XGRnxRr5K6KvgZ6C/Ebx37jB34jfCZfic+A+rthO8Qd6DjsN8O+Ur2M8BnQN5Bp5FzjfqgoGfkPmCfPbg3NbjH0bwRXXavjeyf+WH9rB7GNzJW8i4KORfmH70TDd7/q/+mBv+LbOR96z+XN9fJh3Sf+TsqKQVP
1438613881.950,1.000,0.001,HISTggAAAMh42u2XwQ3CMAxF0yR1W1rBAt2F2ZDYgEUYjRE4kNOXnlwoEhz8L1+1nW/HiSN1vd4uKZ3u6YXSuGucz48UCAQCgUAgEPgcnfDW+L36nt3TobjcuEpcBX8RVn+F+F64wvfQeJT1E+gb6PWip/UcRHcQvWPjGfIVyKP1T7JuFv/o1LvIepM46qdBPwzqW+A8zTmvTvpB96jA/4k590XtBjqkr/OQN/ppvxlY69D5onktkD879nfnn/a59x38l/hfv/Nfz/8ERsgFxA==
1438613882.950,1.000,0.000,HISTggAAAMZ42u1WSQrDMAyUvDtQ+oEe+pO8rdAf5KN5Qg8VPQwMSiGFHjSXQc5YGtuK8e25PUSud3kjG6txWncJBAKBQCAQCPwP9ORxJbrPexDeiQm+F+Ds5MN5FeJm3EGfQZ+BMV8jeszfQdfJuhupi/UmxMN4Mb7A/AH1BviYxOcC8XDGG/E9yTlU8FWd/VQyjvnUiTG/EN9eX7FzKqSP1amfnP5OZB7qCunb4uwn1vH8yJf+vHsC/385qD/7Pks/vlf14H7qC8FgBQ8=
1438613883.950,1.000,0.001,HISTggAAANF42u1WyQ3DQAiEvbCdRxpIL6nNUjpIcy7DJeQR+zPSiFWyyYv5jFjYWbAA+fZ4riLXTd7IB+vB6b5LIBAIBAKBQGAc0of3FBjPEznvtQX+BzFf5ObkW0CvEZ1M7ELqbiSP0zbgCtxA/7RnsDGuQn4LxGV49wL3ZtAzsCfghXyPBn4j9VWSN75jRJ/Vb6TuCeIS6Sf0F2DWH+r0Y3H6xiBeib4Sf+qcCyVzwPrdq1Od+WT5sv2QnX2hzv6RTr8O3m8yaG9+q/er+uVfeb0Az84FvA==
1438613884.950,1.000,0.001,HISTggAAAM142u1WWwoCMQxskr5WETyAd9lr+St4Ay/qEfyw/gwMqYsgSuZnIJ2k2TZJ93S9XVI6ntMTNlgG63pPgUAgEAgEAv8A+dF8ZKOfTvqLY1fHLsSe4f9Sgaujw/UCOgP7S9fAvwAL0VXYfwF7I7wb3IEbyS+TuJX4N8hnT3QHJ26Dc+vkfDs5zwXsndxfJ3WQyf0mWMc6KmTdCCvRsX5Qp28K0ZlT/xgnO3qb7FMjcWfngGycP+J8/+x8enf/b81/Nv8+NZ/jXST5PACllgVx
1438613885.950,1.000,0.001,HISTggAAAM942u1WyQ0CMQy0nTh7iAcF0Au1IdEBzW0ZlMCD5DPSkN19AFp5Plac8RE71+X+uImcF3kjValV2vUpgUAgEAgEPkMPkq9GKw+x39b210C2+Uz0aJfx30j4XmWB/2azn4CXwJ+TODPhY14F/CCvzY+gz0RfQE4wHiBeG59IPQaQ1qlDJnYO+TqJh+OZ8J2ss+eP1T91+oD9x/VLpz55pZ2R/ZQ6vETOiUIflNg5yVOgTrbxnBuJKzvvAdnp91fvqH45jv7Z+uM93Mh/Aaz7Bb4=
1438613886.950,1.000,0.001,HISTggAAANV42u1WQQ7CMAxrmnRdgQPc+QtvQ+IHfJQncKBcLFmZ6CahKb5EjVLbidau18fzntLlnD7QHqXHfHulQCAQCAQCgS0hO9WTlfWyk0e9PDgHIWsjOkrqG3lnfnlm4MmQR73aY4H6I9QXWFfwg7oG/ieoQ71G+lGiP4PPQnxViIy3EZ5TjwcyRyP9KPFbnXoFvYnMle0zkk/kuxDQMaInJG+EN0OfSnzjOVOHX4kf1pd3votzv4hzL3j7lsJW4vl1nyyc32i/upP/0NZ88udzGO77DcJBBQc=
1438613887.950,1.000,0.001,HISTggAAANR42u1Wyw1CMQyL+wXehQEYgg2YDYkNWJQRONBeLFltkfgc4kuUvtRO89Kop9v9anY82wuxWTQbLg9zOBwOh8PhcHwPgd5jq8Cib+odSFbpcL5R8Pa43Gwiv8cV8hOtd52NfN63a7YK/Srik9BPtK/zHEg/E1+3e9pfBN9G+pV4ijhvpXz4fFnUMwmeKP4TBnXPon8C8XH/RPE9irgg7g3rqD4Mk30PUSeVH0QcRH5KD6LuKg6DezrK10RdMTkHsDi3ZufSr4E/43m3nuHDeeIJzl8FAw==
1438613888.950,1.000,0.001,HISTggAAANd42u2XwQ3CMAxFEydNSLkwALswWyU2YAnGYwQOtJcnfbWRiqiE/8Wq/b/tOFHTXu+PKYTLM3yQZhtna7dXcDgcDofD8d+IPoJDzCVujBuelVUwkUfVU3b5rqzIl4SteFb8E+oU2CWeoSsib0N8QD8j8jb4qSvQF9Q7Ix/7HlGnQcf5DNBV6Cp4al+K4CX4B8E3MXdbiZNXxXlOKzoT+xw6z2/orKf8JvLlFT91Wcyjdx3kZ8E38V+o8scvvx9/df/Eg/Sx99yscz1b74240z529/UGtFsFog==
1438613889.950,1.000,0.001,HISTggAAAOV42u1XWw7CMAxLmrU8dgE+uAtcDYkbcFGOwAfbjyUrXYUESPZPlC32kipJtfP9cTM7Xe2NWKwvtlyeJgiCIAiCIGyHD8b5YDzjlU4e0ymJnsPzAL9B3A7eT8BDi/GrX4Ffku866M7AX/X2YAP0AniYT4BfyXdWeyC8Bvroz+BjXg30K8Szunek7kbqbtAfWMeRnEOQvkC+A89Jn2Af1qQvUcc6dZ3UgedipC8y/SBzHMm81mR+S1KPdc6/JflNG/WyfVcG92vvXvVB/U/t81+9l/79HtU5CoIg6H9LeX6hzhf8ggVC
1438613890.950,1.000,0.001,HISTggAAANJ42u1WORLCMAyUfOZq6fgLb2OGH/AhnsQTKIibZXacdEB2G43i9UqWZTvn2/1qdnrYG3G1vtpweZogCIIgCMIvwf8kru/U//iP26iHvEDGm00bx5ufIb8MvGZH4BXgD+A3/QrzB9CtkG+BOBX4EfRQZ+nEmyBOgrxH8DPRm2H+TOpXSL0nsi+RrB+/o/5C6pXIegLJN3RsJn2ZdvKxj530QSJ9bZ08MR+sH/KMxHESF/fLOueanWcjOt7R8Z33xrffz0d/r1R3QRCEg7wrL3STBcU=
1438613891.950,1.000,0.001,HISTggAAANx42u1XMQ7CMAy04yZNgI2Vv/RtSPyAhWfyBAbS5aSTAZWog285xb7ajpuk6eV2v4qcH/KGddbOaXlKIBAIBAKBwB6hg5/b27wS6JXE8eyMMf5E/Ov9MTv1TcAG4+T4D51b5wJ5sQ70184zxJ1B18Beob7VfiR6I/mw7hnmZTA+QZwCdiP5E9gb0RfQF9LHCv3K5H1mYOwrrhtkIevBwJ/ZfwvozMnnrWeFsZG4SvQsbvqwPnH2o7dfvX7o4HNSN9Kpc75tPY9v8/0ad9T3SwflCQQCf7gfvgA9QQWu
1438613892.950,1.000,0.001,HISTggAAAMx42u2XQQ4CIQxFC4Vh1IUX8C6ezcQbeBGP5hFcOLN5yQ8jk+imf9MU+tsPFBIu98fN7Py0D3yxabH5+rJAIBAIBAKBwP+QBuNpc4fniEui/tb8ijcJXsU8xzN0lsUeELf6R4zP4DfEO+o38KlvBn/1T/AL9BfMM0+D/iLiJuiiXuqoyEefOpv4H5TOuVRhXdTleSbRjyqPiXW46O8idKu+rkKPizrs+16d0uF9e8+8c/96ft4Yv/edssH8eed7aIPr+9U+DO/fG5r5BZw=
1438613893.950,1.000,0.000,HISTggAAAM942u2Wyw0CMQxEnT+BAw3QC7Uh0QEXyqQEDmxAetIoCO2Ki+di2Y5jz67j5HS9XcyOd3shLTIsMp4f5nA4HA6Hw+H4vI+2Wr92fJxIIgt/gp3vxTDxF/XOhD1h/VjXRHyHbOCh9ASd9VXEDXmAn/kr9h36DrLATz0ibxX+PerqgkcR9an/yry0d/FduX8TfNhv7KMk6lP9wr7Ioo8i7Cq/6uv85TmNoh4Vp845+ZmoyybnajYfgtAVrxn/sPI8CxvNx195/Os+ecc9AYy+BXc=
1438613894.950,1.000,0.000,HISTggAAAMJ42u1UwRHCMAyL7TYpPGABdmEd1uCODVi0I/RB8tGdToUfPevjiy0rSpP69no/S7k+ygfRo/Xo97UkEolEIpFIHAF20HP4Tn6IPK4D9HHthD90ZogjXyE/QT/jO+Qn4I96I3WWD5If8dTjAusz+Guk70J8VOAF6DbYl/lBX/hdK/GJ9UX04/th9+fiPc3EjxEe6hm5N6w76S/knTnRVf+LE79KT/2fLs6n5pmL/WznfGB6yod9yft1/v37XLcNAMIFYA==
1438613895.950,1.000,0.013,HISTggAAAP542u3YQW7CMBAAQNtJSIEv8Beu/RYSH0B8tD9oDySXlVamhQOoM5dVnPXajp0gcThfT6VcPsvNsMR6C8fv41cBAPiP6ovUqXe21yRm94ckryX5a/sYYkvqbZY4LXEbrmPeEO4PyTj7zrw24XoO9WLdOO85zHdO6kxJ3Cf94nOL898m48R1xby1fZesa837SPZl7uzDLtm3qdOvJe1jcg7bH69rsr8lec6/PefZ+Y7jxPM2ddbZe19bMk7pvNex/tip25K8+uTv4KPfx/qkfn7PHmsHAAAAAOA1+B8XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB3Un8Ap8MG6Q==
1438613896.950,1.000,0.000,HISTggAAAM142u2WSw7CMAxEnThtISy4AAtuwtmQuAEX5QgsaFg8yXIJQWLh2YyS+DOTT9XT7X4VOZ7lBV05rZwvDwkEAoFAIBD4B6TBcb/W0Qvt1JOc+ff/neOnjQviyQl6Z+TRD3lC/M6owz6t/2LombFejH5tvEdexfwEfQXr1F/Rv6LOAj6g3uL4YH/qnA1Ww8+EfSzGPSjOfmbMk9U4RzXuZ3bOn36SodvSyXzp1KuOj62+ivE+9cP3LE6+bBznQd/BUXHWvn5bL/XmPwFE6AUg
1438613897.950,1.000,0.000,HISTggAAAMN42u2WTQoCMQyFm7SdsSp4Ae8y13IreAMv6hFcOCI8+AizURd5m5DOe/lh0tDz7X4t5XQpL9TV2mp9eZREIpFIJBKJxAf2J3k80Km+BTrSV3gnNno/wvcW8Lrw1Z9XO8n5299J3Ems6o8Qp0q8Jn4P6hiiG6Dfi9U+B+SbgroOAZ9sh//Wge/gO+gpvvbdYf7mYN5ozmh+O/At6KfKuQV1UX0OfPLp3hOf8lhw323jfoji+ca9aT/ev16+A+rDnzo1BXQ=
1438613898.950,1.000,0.001,HISTggAAANl42u1WwQ3CMAyMHTdJ4cMADMEGzIbEBizKCDxIPiedXBUq5eH7WHFz9tm13F6fr0dKl1v6Incr3er9nQKBQCAQCASOhEymQybTLT/yslOnF3/wbfwfAm8h8Q34rdsCvELuKzmfgF/BGpwz0ZFJnAy6MJ85foyLdaLeoWcl/ajwvEE/UH8h77USnWfwr04fC+RHHQ34WI+BLiVzxuZViR/n3MgcZ5LPnHiLk9+Lo0SPOPUI4SfnnpA+sz2hDn/rvhAnP6tnb769e/Ko/S0b88zy3ftb3R9cGAUd
1438613899.950,1.000,0.001,HISTggAAAM142u1XwQ0CMQxrmjRHEYgF2IXZkNiApRiHEXjQ+1iyUoQOPvHHSs9NclYbqefb/VrK6VHe0MEyuF6eJZFIJBKJRCIxD/mRfpZXWFAX91XCSuIGdYToG6wb+d4H7wYvoDPQNdCv9R32N9LHQnQOOgc+Dt6Tvh1iXG/EvwOph/kUYoP/cPCjE1+wLyM+sXNhk3GBdTwnSt4l8mE/eI57kFdJHczrQR4J7gO7Z1FfSvxDH9i8qMG8kUAfzYtv55v8ea5uNe9n/d6svxclPwXN
1438613900.950,1.000,0.001,HISTggAAANR42u1WMQ6DMAyMHQIGts79S7/FWqk/6Ed5AkPDctLJtE274Fss4ovPDomT6+N5T+mypBdytVKt3tYUCAQCgUAg8A0k6v0I+qaOOPrMr0RP4H2YyXiP70fCG6otMG7A3+N1YDHPHuLtvAl4E/hRxwhvhLwN/EbymKG+mfCZvoHFenE9Mb+BrGNx1q3A/Ezi4H5Q8o3jqK9OXBaf6Yizn718M5k3Qv5H46tz/jLZl51znti5Pqrn9QNp1M+0UR+Vxn31X/eU/Ih/tvs03icn+x8b1kAFdA==
1438613901.950,1.000,0.000,HISTggAAANR42u2WwQ3CMAxF4yRNCj2wALuwEisgsQGLMgIHmsuTvkxVDgj5Xywn3/6Om7o93x+3lE7X9EZZra02X54pEAgEAoHAf8KiBT/db4+fwTMRp9aLyFexTx2lm5GvYp//mWN/Wm2HT/3hN6wzXtXXwJuFHuuqiB9xC/J18BfwO/IcoEO/iXN18Hm+hvWhf3T6PIl6TDzH6tRZ4fM5Kpud+qpzL9T9zeJeZqHLfLPQZX8YX5z3rTg8c/Rs4xzw5kj+MM42ziv7Mi/trMt2zt+vfx9edUYFbA==
1438613902.950,1.000,0.001,HISTggAAANJ42u1W2w3CMAy0nTgl9IcB2IXZKjEAEosyAh8kPyed0iKkgvD9nPyIz4kaN+frfRE53eSF1Fgb2+UhgUAgEAgEAv8M3amerszXAXeU/r4jcfQbqWfABeKF5NlAxxtPYDu8UzPkHSAP44nUnYi/kHhtfCTruu5M+neiM8M5ZIhjP6hfyDrsr0JeBd1E6jnpp5D9C+gb2V96kxVsBz/Wx3viZN/s+5ZBnhC9TGwb3GNbeR+Zrm20WZ3R3NKVc2jr/Pv0vN37P6Ff1tevnr8+AeGzBYg=
1438613903.950,1.000,0.001,HISTggAAANJ42u1X2w3CMAy0nbgPEGIBdmE2JDZgOcZgBD6ohXTSyaio6o/v5xTH9jlJ47aX++Mmcn7KB21hXdiuLykUCoVCoVAofKEb+evG9cZ3ngErjDM/IXE4HsDeIT9yzDuMDXTD/wg6DvNhn4Cd6EW+kbBD3sPCMzD6z6A3wrrCfiL75CT/RNaPdiN6AzmvTvyVnKsT/07OX5P8LXkOG/lvkUQf68U6HPJYopPFsXvTSFwjdVnSH5TcExavf/Yd3Je1/UhX+uuP9e39fti771O9N8qKBbA=
1438613904.950,1.000,0.000,HISTggAAAMB42u1WwQ2DMAy0nThQaNUF2KWzVWKDLtoR+iB8TjoZpErtw/exHMf2cTiQZX09Re6jbCjdarf2eEsikUgkEonEGWhK8FPdsI7BOutj7D5I8hziuK9CPSf1ncT3++kAfiF9PfAL1POAL/K4QP4A6zPsvwX5rdsrWCd9GtSboK8H/J3oWYmuDeKV9GnkfQjkGeFngR/NrR6cP+SBuiqZGw38cvLcRfpUUoc9tx48/xbwEMLr29+rf/0/0Pn6ABhABO4=
1438613905.950,1.000,0.000,HISTggAAAM142u1WuQ3DMAykqM/O4wm8S2YLkA28pMuMkCJic8CBcVKk4TUHid9ZlAivj+0usuzyRh6cBuvtKYFAIBAIBAKB/yF9Gafk/86rg/7GdXABPwWusDZ0oitDHNYxPhNdlneCeNy3+EZ0Fogr4HcZfAW/GfTMTnyH755gv4NOy3MCO+pYyDk2qNdIH/HcKulTJvlYPzM5D+wvu0esrhIu5J4Vssb7pMSu5H0lR1cmeZS8P2YXxz8RO2P50N+bL95++nGOycH5dbSOvgD8aQXs
1438613906.950,1.000,0.001,HISTggAAAMZ42u1WSQ7CMBCbpNlaDnyAv/A2JH7AJ3vsEziQXFxZBqEKIY0vVjvOZLZEudwfN7Pzai9MnUPneN3M4XA4HA6Hw/E/iPCuQwTCu3eg8Ds4dc5EH0GHfgvRF7Kugr1A3BhPBR72BfwuYB88w/eJxJdBX0HfiD1DPWfQI1eybyN1iSKfRPpZwD/TNTEPifQxkb6bmCM1X+/O9UQ4CD2Lk61n5y4JfRb5sTqxvNX5N/HfxH3yrS4c5D98eH8erf+1390+TzUzBcM=
1438613907.950,1.000,0.001,HISTggAAANV42u2XUQqDMBBEdxM1SlvoAXoXe7VCb9CL9gj9qKHwYDAWwZ+dn+A6uzObxKi35+thdr3bF3kZfRnT/LZAIBAIBAKBwA9+kG6Cvm/06Ss8b8xz+BmWscP9gnjC92YW8YS8HteVdxL1MvgFPgfUHUT9CToF8epzRJ0JdWreWfQ1glegOwpezb+IPifwevgirxP+2AfXh/1nMZ/8z+B6J5HvjTzuN1vZt1nEW5+HJPRUPWv05Y1+lb+y0/mlfLTybeO87n0++599H/2+OMrn3vr+AchgBS4=
1438613908.950,1.000,0.000,HISTggAAAM142u1WMQ7CMAy046RJBBIf4C+8DYmBnY/yBAbq5dDJZaISvsVqfT7brR3lfHtcRU53ecNWq6stl6ckEolEIpFI/AN0Z/WUL+tTvMcRPeYX4rdAx/0V/KjvvAX8HteInufp5L46gd+JjtsD1LFA/gHPyDPgFaijA78T/QF6zjuSviboTOBXEjdIXY301aAv5DfynyuZAyNzVYiegS2Bnm3MoySO7YVurE/J/hjJK2S+JdjLSE+CPiSIj95vPXei+F+fs7pz/Y/v9QIvuAVg
1438613909.950,1.000,0.001,HISTggAAANR42u2WMQ7CMAxFY7tt2sLCzl24AldC4gZclCMwkC5PslzoQoX/8pXI/nZjx+n5/riVcrqWN6yxNNbLsyQSiUQikdgXZKd5SJbuK+hGewGbU4/Fr8daAu7ABn9z4neIt/Ch8ejokyvWM+JV6FfoHxtP2Ke9Ib8B+wadGToT/AbsMy/aVdjzHBTrEcw8q1On3vl+79zV6TvWfXDimdMXnl4PO3Hy0KA/u+D+mNPvGsw1z68E93Lt/Iy4BOeydh5/mrd8qKM/Nmdlo1++b//9fyQvWuwFOA==
1438613910.950,1.000,0.000,HISTggAAAM942u1WwQ3CMAy0HbehFIkFGIQfsyGxAYsyAg8SHiedXIoEj/o+JyfO2UkcK6fb/SpyPMsLpbE2tstDEolEIpFI/Be68fhbv2f98D50od3/fdbYg/kB/4nAlYwrrB8gXoV4I9i4roLfRPwwTuc9rN+BTtefwa4kLwOd7neAcTyXkexjJvudSJ5RfnieDjaOYz1gnuhXAjuK50HdCLlXVn+FMKtrJbYGOgrnYpCvk3040ROiz94xxivB/Np+EunYyr60FPZl//tV337zE1AZBTM=
1438613911.950,1.000,0.001,HISTggAAAMp42u2WwQ2DMAxFbUhSQg9doLt0NqRu0IU6UkfooeHypK8gRDn5X74c298OOFHuz9didnvbD2Njbzw8PhYIBAKBQCAQOB++05/4noO9vveyiBugw3XmJ/GOdKFzaVzgn6FTwI78BHtqXLFOvRnxGf4K/yj6JWfUpc1+quhn/U5XxDOf+y2CM/LU/01ifiaRT92EuqOYg63zp+ZOzbGKZ12D3dNJwm8b9+Mbz6WJvr1zrvzge6TXX0/HT77vjtLfq+N/rre7zy+VnAXB
1438613912.950,1.000,0.000,HISTggAAAMV42u1Wyw3CMAyN7ZAmLWICdulsSGzQRToaI3DAuTzpKUWUm9/lyY5/+djK/bk9Urrt6QNzFmddXykQCAQCgUAg8H/IyXZ60F/x/0fs2Drj4pzhn9nliei7X3O+ACv4Z1jHvJi/gX91XkCeQcb4ldRbiF0jdhPE7/VeQW5Q1wz7WuB8jMQ1IhdyThiH3Vsm+dh7NKJn7xHzCNmvQTysq4JeST0sDztfHfShDvKN+i8N+nHU5/LlPJGD80VOmjs/z883RWUFpA==
1438613913.950,1.000,0.000,HISTggAAAMR42u1W2w3CMAz0o05b8cEC7MJKrFCJDViUEfgg/Jx0ciqBQMj3c6od2+fWSXq63jaR40We8M7a2c53KRQKhUKhUHgH9M/06Yd1aGLPmMUZ/PcJ2NHvJI+TPJ7oevmD5FnBPwEv4J87N7AHWRdEx4HUb8CoZyY6UC8+L0k97H8l9Vh/kbxHIfHIWJd9R4P8DnZc15J5CzJfE6nH5t9JnCX7wnfuJxvUle0fVs9IX1kcgw2eG7923uugXXfm+fb9pA94dAVS
1438613914.950,1.000,0.000,HISTggAAAMp42u1Xyw3CMAyN7ZCkigQLsAsrsQISG7BoR+iBcnnoyRTlEsnvEtnx5znOp70+X4+ULvf0hu2j7KPe1hQIBAKBQGBOSCzBFOslB2U9GNerSx29gfyJl/G7EfQn8M/ErxK7DnEqjJnYN6ijgL6D3xniNpAX4Id2DXh2EqcCH1YX5umkbuRRoA8LySOgz04/9cf9wPpdyLxBn5CHknlz+LF9mtj/DrFndkbOF8uvzjlUsh466L4QEk/+vPdkkH62d0oG8/3q0wa3swVZ
1438613915.950,1.000,0.001,HISTggAAAMh42u1WwQ3DIAy0DYY0/XSADtJfZqvUDbJoRuij9HPSiVBVSh6+zwk7PmPAkPtrfYrcHvJBaqyNbdkkEAgEAoFAYA80luAvsB/XG//jkI3Yhfhz53v0J+Cv30l8BXuFuNzRvTSewV5Ab2p8BZ6gbof4AvYKeRPRw/wVdGYyP4cx03MyzqQO9GOcQz3W0c9Qh5N9Qj08n4X4cZ+NcCF52PnvnSsn/adkXrKzP0b7Wwf7PQ3q2eB9pAfd80e/J3bSOs7+zuobcrQFKg==
1438613916.950,1.000,0.001,HISTggAAAMt42u1WSQ7CMAz0kqahHPgAf+FtSPyAT3LkCRzwaaSRiVShHjyXURJvdcZRr4/nXeTyki88WIPt9pZCoVAoFAqFwn7Qnf1ZPANWwsL+A4Ex3xLcwN9JHgf7BvGd2A1Yr8FbcId6TuR8JXZn2Mfv2sC/Q10Yr4Ofw74ldWO9A9YG9qyPA7gDN7gfvBfsQyd6aokejOTzpO+W6IjpyUk/lMS1RPfsXBL9GpmzhcyTTs63/zj/muSbfWcyP5t8x+xg763KMfCvOvQDh/UFzQ==
1438613917.950,1.000,0.001,HISTggAAANJ42u1UyQ0CMQz0kd1s4EMB9EJtSHRAo5Swj918Rho5RPDzfCwfYztO4vvr/RS5feSAn1JPaY/uSSQSiUQikUj8Ahroo/xRnpF4tDtIrFfAvxC+EamE32WD+BXqKtg34BfwX6Fej68Qt0KeyN75F9Ab4VcS56DjeTaSr0E+nJcH88H5V3KfBnYnczHIj/dgpH4h74PVX0j/Rt4J04W8RyFzKKQvC/pVIkvwry347xr889G9M8uL+hjdbzq533RyD367Z0fPM5tX/pQnMTn/HT4LBeE=
1438613918.950,1.000,0.000,HISTggAAAMp42u1XSQ7CMAz0krYpIPgAf+FtSPygn+yRJ3AguYw0cipx4OC5jFK704mTWOn9tT1Frrt84Y21sT3ekkgkEolEIpH4HyiwkHGHAeugTsF7IXCPT3CPrEQX85W8b6DTn8+Q3/UW0KuQbzCuoFNJfAWuwOfGJ9C7gS8negv4c9Bh31/Br4MeqwfW7ULW28l6TCS/kP3F4jP77wj2qQfxQvYVm58RH070I39Yp2ieOnhO5eC51aBvSOBfg/5jP+5joz6P6gz7+ADN8gXV
1438613919.950,1.000,0.001,HISTggAAANB42u1XQRLCIAwkaQJUPfgA/+LbnOkP+hGf5hM8iJed2aF1bPWQveyEQJamEOAyzbeUzvf0wtBYGuv1kQKBQCAQCASWQCIFm+RNOv2YX4ktZLwSuzY28OeVcd62QzyDe6gDZ+hXgY/gH4FPjQv5ngzs0G+E8Q7taGO8QvQOJI84z0LyUUkeGTvoOrn/585/GICN2NpZD4wxvrJ3CmlnOrh+DfJuRNeIXiL+pfuAzdM7+1q+VG9kZT2SDu99DsjOep/Wcf2x/r+dy1vNR56ywQWh
1438613920.950,1.000,0.001,HISTggAAAMV42u1W2w3CMAyMHykJCLEAuzAbEht0kY7GCHyQ/Jx0MkhIgOT7ObW279zUSXu+rddSTlt5wgbLYL3cSyKRSCQSiUTi+5A340ruGzDWa+Djgyvx2wFPnw55nfx/LuBjoIf+TvKd+BvUI0+fA+jsIa9DvMF1B71G6hZSb8Rv8jFYh0r8Hd5DhT4qPG+DuEF9NA/oZ0FcSH9MpwZzgrpsTpzMo5N1UsIS7Ndon1mwjzXQlaCPV3UY9EPn06+eo3/7fXgAD5cFqw==
1438613921.950,1.000,0.000,HISTggAAAMR42u1WyQ3DMAyTbMc5GqALdIBs0dkKZIMs2hH6qPMhQNAo8uhD/BCOZFESZCGP/XiZ3Tf7Ijf2xun5tkAgEAgEAoHA/8MFJzjjvUz+BxGJxEOdgcQvwInYR+C58QT+57kCY9wR7Of3G9GpUMcq/BawL516mfRthfoG4JnUz/KbSJ+xPw46mfSD9bUKHayzED8X86bmz4gezjmb0wR5ufDL4l0Vkad31mPiXTrosT3RG0/tjV/jq/111T68yo/e/wDzNQUl
1438613922.950,1.000,0.000,HISTggAAAMV42u2WwQ3CMAxF4zRpWnpgAXZhtSKxAYsyAgfC5UlfpioIDv4XS7bzv53EUU7X2yWl45qeGLq1bvP5ngKBQCAQCAQCv4M5/uz4TfAU+Cv+g4NYX5w88ihe1qf4JuS/4iMs9RriWf13kdegOwn/Af6K/SngXbqdEWedFToV8Rm2ib4H6Czo19MfBU+GfnL6z859M5Fv4pzIx/0ycd7lzXkZd9ZXnHgSc8H5ZP1q/m3je5I3rrOdeval9+/f3udP12kPubYFZQ==
1438613923.950,1.000,0.001,HISTggAAAMB42u1WOQ4CMQz0EZINFHyAv/C2lfgBH6WkpCA0I42iCHkrT2M5dsYTW17t7fHcRa5v+cKH1WHt/pJEIpFIJBKJRBwM/r+i4ZP4T0eZ6DKi30m9Aj7aE7GN8DewRu5XqN/A78NuwFPhvAHvBnln8C+Qj7o71EN9Fe4X0g/M71C/TvqC73DSt0L4bDJHJzw4TyO+Ej4lcabHCb/9GXeyN07m64t7X0j+bC/loO+KLp5H8WnQuzUoXw/Ss8z/AY4wBdk=
1438613924.950,1.000,0.000,HISTggAAAM142u2Wyw3CQAxEvd5PEjjQAL3QBu0g0QGNUgIHksuTRo4EuXku1jpjzyTxrvb6fD3MLnf7oq6xrNFvb0skEolEIpFIHIfy5/rC+9xOPfIb7ocdfOZZv8UJ/Rz8hjiw7tCrIj9hvYg4gz+h36Z7EjodPhfwZ+Qr8gNx0z+jfxc+F3xH9quB/1nosB/rHGtDvgteE304hyOYWxf/wYWPEcwl58/Ec/powo/ad0XUmfie0T72YN/7zvMi4peDzic7SO9Xn/96P4/O2Q9vMwU3
1438613925.950,1.000,0.000,HISTggAAAM542u2WQQoCMQxFm7SdqQ7iBbzLnE3wBm48pkdwYWfz4NMBBRHyN580aX+Tadq53O7XlM6P9EbubJ19faZAIBAIBAKBwO9h/E8TcRm2C7+a70JP6Wdw7VyEn/obz50XrDNh3mHgL/BnxDnsBfpH6DTBE+bVQV6M23ROYMbRboivYMP++B24f6VTRF0bbBd1LqIeWZwjMvdhIr8Z4+r883yyr4rI20Qd9vZdGfSPi/VtZ51scF+4GFe26v80yNu+fM+N7r9P1/vbd+AFP28FoQ==
1438613926.950,1.000,0.000,HISTggAAAM542u1WyQ0CMQy0nXNBiAbohbb4ItEBjVICD5LPSCOzu/DzfEbxMXE2ibOXx/Mucr7JB2mwDrbrSwKBQCAQCAQC66Er7cyvf6qLsZD/wgSMKIMzjFG/gb9C3uQF/BV0Kuh0Yi/EbpDXiV4m+ZXMO8cnWO/UOZD4RtZZIG9x6i1kP3D/mrOvRuosEG/kOx0hrhN9IToKdnX8zckzcr4zObcGnIjdnHubyD1Izj01J16desRZv63sV/plf9KNfXFvX/31fLazTtv4DugbMSMFag==
1438613927.950,1.000,0.001,HISTggAAAMl42u2VwQ3CMAxFbSehhRMDsAuzIbEByzAWI3CgvTzpK74gOPhfrHx//7qJm17uj5vZ+WkftC36FuP6skKhUCgUCoXC7+HJfIAPkadfE/xAXUBvgmdcsFa+Dn0XfgO6BfwB6w4+hI7Ppe8q9Dt/Svazgl9QT30Tfux3j0fEBv8u9p2+PjkXh38X9UPoupgfF+fPOVZzxXlR80uefXG+h+ijJb9H9V42WUfyPnCRV9+/T3wj6Z/Nz/bHkn3ZpP7b923hT/+Tb/gJBaE=
1438613928.950,1.000,0.001,HISTggAAAM542u2WSw7CMAxE4zhpUxBI7HsXtlwLiRtwUY7AgnbzpFH4LpA8m9GkiWM7jtP5cj2ndDilB3xhWzgfbykQCAQCgUDgHVik4Cf5VJzFeA8F8x32CpjrOF/p1X4FO/S6rkEPsDNiXHGFvzthX/m3wfyVJ/Ae+zTBFf5voRu0ykeDfxPiG8W+PNcqzrMiL/w+iHgYv4k6K/CH9VJe1FXUm4tz9o7u1XsS9887cZqIO4t7q+5x/rDv2pN9Ru1rnTzkL/e7eMfif+Ev47oDnVwFWA==
1438613929.950,1.000,0.006,HISTggAAAPZ42u3Wy03EMBAA0IwTb7ILJSCxndAQTSDRAY3SARyWXEYaWXtYfnrvYtke2yN/ojy8vr1M0/N5upi/yrgUjx9P7xMA8D/FN4/jNufVBvFRxEf6/5sH8a2I29sPRfySyij6I9XXNG9P9bnIay7y6UX9mNY7Fnnfp/Fr6u9p/Z769/atiN/zPRXzHtL4u7Rvp2LdpRi/DvJtRX5bcX/yvubzi8F59SKPXqwTg/swOv8l3fNtcH/boJzTfMvg3cXgvbaif9TeBu94uvJ7ET/8fbt2XNw4n/il8wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAf1d8ApriBnM=
1438613930.950,1.000,0.001,HISTggAAANR42u1WwQ3CMAyM7bhp4cMA7MJsSGzAYozCCDxIPied0tJWAuH7WJfEZ8dtLJ9v92tKp0d6w6qVavXyTIFAIBAIBAJrIH+Wh2wcf64ecp25Lzj/VZuJTuNO/JvfQHSczJ3ob8CdxG26hejmjk7p5Hsg5wz4EfhU7QjrhfBM9B32J/AbCXfiP5B1gXUl9cukvk7ua+R7KoljJJ/c+U+tk7eSfPTD+xu8CyNxlJxXUj+sa+89K9lPJO7SfqMLz8tO/WxtX9+6/8uX6fz6fLB3HeQF8LUFtw==
1438613931.950,1.000,0.001,HISTggAAAMp42u2WwQ3CMAxF7TgtqUCIAdiF2ZDYgGUYixE4EC5feipFXFr5X76c2s633aQ93+5Xs9PD3ojO3rlcnpZIJBKJRCKxZvjG6ikL6/Mv4xw4JN7hv7EKh/Ag+1V47mAb6KniX4Q/6yPwrvPUuQlXyHMUu4neEeL34j/BusY30TuATvVz6OsB5knzC/BT/xH0BfSxQF6H/GXmvdB9VGeZ0a99CogvEBdwXrVuQsDcbKHtcP4d+mwz+9qfdK3tnv1V91rq3dr30V/nBAWk
1438613932.950,1.000,0.001,HISTggAAANx42u1WSQ7CMAz0ko32wgP4C29D4gd8gufxBA60l5FGSYq4IM9l1NgeO2ns9nJ/3ETOT/nAN9aN7fqSQCAQCAQCgcA49GCcTer7ZF78z9POOnICvdzRMWDvcCHxBTgR3u0V4iv47c+NrGdixzoWsK+kzkzyruDn4FfI+S1gd9A9AWfww7oy6DXyXrCeRuxK8uF9SMTPB++rkfNGfSX7NZJfSH85qaOSvJXoYJ2sX1gfGul3Ng+sMx9YPhmcC2wfvfmlg/NTv5yrs/NaD8aN6v1qH//2PRzWfwMDWgWy
1438613933.950,1.000,0.001,HISTggAAANV42u1WuQ3DMAwkqddxlzq7ZDYD2SCLeDSPkCJyc8BBhhwXAXjNQRR1JAWK0OP1XkTuq3wRGmtje27icDgcDofD4ehDT/rpYDxkAz/r+MdOHrhOwEbiJPhfJvLfZPt7XhnsmdgLcCa8696I7gQ6kdhr45nYJ9iv4Mfqx7iVrBPYDeJi3YnwDPkU0EP9QOxK+kKJXgE9I/dinb5heoHEDZ0+Z+8okrqFxGV5CMnHSF5Yv5B9GXzXOjhnjp6zg3qjc/DX8/kqnbN16sX343D89f/rAxhZBas=
1438613934.950,1.000,0.000,HISTggAAAMt42u2UwQ3CMAxFk9hJQy8swC6sxApIbMCijMCB5vKlpxQEEgf/i2XH3/l1HZ9u92tKx0t6wTabN1vOjxQIBAKBQCAQ+B3yTl/jBnlF4mVSJ090OdQrcD50NfAd9Go+6W5yXsUqf/hd8vS+oesg8Sr8LvwOeavU7XDvIlb1uvCoT1XyF4mv0O8q+U36Td/noM92/tcGc2GTOTHQ6cBzsAbvRXk0hz6JF+An6SfVp3daP3zXtB9oz8z2yN66396Hs734L3v8bf4TKrUFUw==
1438613935.950,1.000,0.001,HISTggAAAMx42u1WSQ7CMAz0UqdlVR/AX3gbEj/gozyBS3oZaeSAOCDhuVheYk+aSZXL/XETWaXDu9Vu7fqUQqFQKBT+BVqfoPDDetHBvCV1E6nH/kbqHOwE65zwctLXEx4bgrxXG8Qb8NrB+oD83O2J1DWwB8gvkJ8hf0zm4rwtvifzzjDXoC/2b8RHHeD8hZw7zsF4kP0p0aFDvRL9BNGfJzyYToLcFyU6NuhjhJcRnUaSR3/0PjP+mtwnH+wnybmM+t/6v8mH/Oqd8OY+X0ZqBOs=
1438613936.950,1.000,0.001,HISTggAAAM542u2UMQ7DIAxFjYHQpEvHDr1LzlapN+hFe4QOjTp86QmqRpn8ly+M+XwM5vZ43s0uV/sgb5w29vVlgUAgEAgEAoHjkYRpnuIu8QzxX304zBcYN+EMnEC3gg89zyT5J4kXyDuDvyrjSXiWvAbrXHyrL913hvVax0X0KtSriY6LfoNzUj20nhn2WSSvdupTQL+Ab713B70K78uBE+xLfeCdd0NcOn2boR+pbgY+fPA/sU4f2uD6f/81H/yn0qDuXn73ytvL19G6X/030z0E9w==
1438613937.950,1.000,0.001,HISTggAAAM942u1WSQoDMQyzs0wyUOgH+pe+rdAf9JM99gk9NHMRCGUKuVkXY1uRHU8m5PZ8Pcyub/shD+vDpvvHAoFAIBAIBALrkcB3wXcRT0SX1XVimS76bdhK6h7vzCLqNeCj/sHroLcBr5A82gv0XSHfQRd95HWis5P9NWF30MH9VDHfCnH0cV6ZxDvkMzlnhfSVyXcpQsdh/UbOlZF1G+gqfiF89j9kso7l1fxc1E3ET4Jnoo6Jej55D6XJe8tP6hqZ2yz8T57bGqzSPd3HF0l8BdQ=
1438613938.950,1.000,0.000,HISTggAAAMl42u2WwQ3CMAxFYzcpRRxYgF1YiRWQ2IBFOwIH0stHT6YtEhf/i9XU/j+1HTeXx/NeyvlW3hi6tW79OpdEIpFIJBKJxCfsz/q+cn+m9zy6/4G/vq+wDwd+taPwVNH5Ns5l/dBtE1vFbxD/Zf0I8U38yJ90NM6AJ+LTfDX4bgfdKVhfeE/QHw3236BeFeqlPOqnPA46xO/Qzx70rQGfBXkwqJuewxH0DfJa4Tx5MBc8mAu2cq5F+dqqV34ct3VO287n3f+TFwKYBU4=
1438613939.950,1.000,0.000,HISTggAAAM142u1Vyw3CMAyNHTupxIEF2IXZkNigCzAiI/TQ9vKkJ4eCBBJ+FyuOP8+Ok1zu862U86OsqJuUTer1WRKJRCKRSCT+CfKjfGSQpwbxKomrsK4g9SBfA3+Mt+930KN9A4l6JfU5yVch776ewM5B38Cvwz7qndRp4Hci60Z4RvE7+E+kDif9Q30j/Bs5ByPnL2TOcJ6NxFMyj+x+OMnP9Eb6YIS/kLnWgC/2ld3zyF8DXnLw3spgf+1F+9F3KuL/7jut5TPQL/0jsgDMIgVz
1438613940.950,1.000,0.001,HISTggAAAM142u2WTQ4CIQyFoYVhdBZewLt4NhNv4EU9ggsZE7+kKf5kEpO+TQPtK22hwPFyPad0uKUHtMvcpZxWTSAQCAQCgcArcpTgrbrkjer7/McZevnQrkCvsBNHz/iq8f8sjn6GXRnkL4iHfiZI+lll63KH+T3WmeFPwFvgr8Ge9ZvA45jxMc8KnpW/V/8KfoMd+dwndfaN82qM1eDJoB/mV426W+dcjH5Jg33A/spGn3hSnD7LRjxWXxeHL4P3z7++D1vd079+L77O+w7nPgXW
1438613941.950,1.000,0.001,HISTggAAAM542u1WSwpCMQxM0p8VwQt4F88meAMv6tKlC+tmYEgeD3GT2YTmM0naEHq5P24i55d8UJbUJe36lEQikUgkEonE76Ab7Ur05tglaDdiL+y/CPoKeiP8Bv5tyQ586If5O6nvQOr5ngfkbRA/gGc48YP004L+J+hngv0I9gFyOvkmuedK6ing15137lBnJfdqwbORd2Xzg3NdiF5JH2z+K5l3plcSb46fOnwsb3F4GY8F940F9xPbFxLsf+te3LtX/8Wjzp6NYm88vfc3b7gF4Q==
1438613942.950,1.000,0.001,HISTggAAANR42u1XyQ3CMBDcy04CSDRAL9SGRAdpjFIogQfxZ9DI4VDEY+ezWmc8sz6ySk7X+SJyvMkTvkRdop3vkkgkEolEIvGP0Kz3Ix8jfIPvQYOoJG/8CfIAHuYF9ALmO/DweYX5FfhO1tV0dkQ3QK+Nj6DP6m/xQMbRb4D9a/ke6pjAd4C62DkY8CuZVwk/YLyQ8ylk39h9MnI+Su5nJfpC/HQlzzv3nL0HWGcQXyP+RnScnHPPXzq6yv73On1krY+/2Z90o35pP+6f+qXOVut+0X0Ax/wFoQ==
1438613943.950,1.000,0.001,HISTggAAANl42u1WSw4CIQwtrcCMunHvIbyBZzPxBl7UI7gQNi95qfOJTmLf5gXavhbowJzvj5vI6SJvWOPUWK9PCQQCgUAg8J9IwLEf8+xL49JEPS+POnYjeQziu33H/iPBjvqef+cMfhniu9+R6NfGQ+NCdAeoIzs8wrgAj6Cbod49zFeI7+MD6FXQKaQ+1Blh/tP9MbK+SubN6Q88ZyXnmZ0+wH4Q0FOSN5O+Y3H4HbA6lNQrjr+X15x4cdYvM/1YnrXfhan331Loj983XXmfZCN6srH6vr2+9AKjXwUo
1438613944.950,1.000,0.001,HISTggAAANN42u2Xuw0CMRBEvWv7bCCgAXqhtpPogCYJKYEAk4z0ZKE7JIKdZOTb33j9ke9yu68pnR/pjTzYBvv1mQKBQCAQCAQC22E7+6vdwe4Tv1k9A9Z8Ju/Jz/cyuA+uoK/AWPMmyVfEvgA3iWsSfwT7In4H4S6sdTv0oUndLHlpHieJd+lrA30mOqrwIuMuuqro1b5mWA8Hu0E87YcMnKAu7ccKetrk/ND50DwF6jn9b8H65C916Hl0mL+Dfod+OvTb/vQetZ3vW/uRzq35bK9+vQC+rwX3
1438613945.950,1.000,0.000,HISTggAAAMl42u1WSwpCMQxM0ry2VsELeBB3nk3wBl7UI7iwD2FgiCLqJrMZ2qZJmk/J4XI9i+yP8kCZrJPtdJNEIpFIJBKJxHM+imA/tqtkrW/6ZUTOcT6E9TK5BnoM5k0n+gzO0Y9CuBH9C2G034mdBu9b7+9gv4GelTfEvy2JC8azkv0B90Zgr8P9AvJO9DG5SvIwSB6xjjqsndRPDeoF86zgj5E4a1CfrB4tYA/stuBdrI9Z/2nwD0T9LUT/p/+Ryn+gL/r7Lf/0DrH5BSI=
1438613946.950,1.000,0.001,HISTggAAAM542u2WPQ7CMAyFHbv5KSyMDNyFsyFxg160R2CgXR56cisRKiG/JUrqfHZcx+3tOT1ELld5y5YxLaPeZwmFQqFQKBT6R6WDuamTv+TYffzvORy0Y8+RX2DfOh9gXWFfBjvkjDCvsK+SODLxb4SLvEo467kbcE7ArxBPIfE14HpxjODnTPKN8+bkKRM/DdaN5K2QPNvO920b6xHreAC+knOJU4/m1DvWPaqQ+2XO/dOd904cnhA71id0Y3/4dn86qu+nH/vtHUe379sLC6EE9A==
1438613947.950,1.000,0.000,HISTggAAAMZ42u2XXQ7CIBCE2aW01Zh4Ae/i1TTxBl7UI/ggvEzyBZpG48POy2RhdvjpQujl8byndL6lD3Jlq+zXVwoEAoFAIBAI7If9yI/afaOvCxv0t/fjBONliE1i8tF20pXKq8SNZ+GWv4Bv8zlAnkO/chbd2pnPUdoXyW9+J5gv6WfYnyyxi95gf7yzf1Pn+6vOwN8H69JhHF1XgXGpHnOn/jWmulL/BHkJ1lPgfBv9xw3Om87/qH7rvWM770P/0v1qf6azNx7YBVc=
1438613948.950,1.000,0.001,HISTggAAANF42u1XSQ7CMAz0kqRlkfgAf+nbkPhBP9ojRw40l5FGCaDSA56LlcQeT1Jn6fU+30QuD3nBV6urtWmRQCAQCAQCgT2hfzo/7fSzzjz2YbxBfmYTviPJeH1vFvDL0Dbwx3blGyEe+w3yYf5MeKodGvnOMH4iegrw1fEj9A/Ac+jUV8BvJPpb65eBD20CXQ5xTvIkooN93wz141CXyCeknlh9Mh1O/ouc5ElkPziJ0y/3lZJ1Y/tGSDzCNz6PrcGnb557e90XulG8/ngeVN8TvFEF6g==
1438613949.950,1.000,0.001,HISTggAAAOJ42u2Xyw3CMBBE7fWfFMCFXqgNiQ5oinIogQMJh5FGm0ggFDHvsop3Z73+yjldb5cQjvfwIs02ztbOjyCEEEIIsYb4Y/3exvvt+Xu/5+A7k/hM4hF8LzJrRG+QB62BXeoqs52Iv0J7g7wd4jvkXfSD1NVAP0A/oL4C/VRoPxDdAH+DcVWwDWyFuieSrxB9I/OC65bJvupkPTtZ30TW06COTPxs/ydnvyenvRG9kXNSnHElJ19y+mHn3YuPzvmLK+8f5s8b4+PGe2sr6UP36Np5sbAPouoRQggh/ue//AkeOgXX
1438613950.950,1.000,0.000,HISTggAAAMp42u1WyQ3DMAyTLB9B++gC3aVrdJ0A3aCLdoQ+6nwIEAzyClDxQxiiRFmJndxf79Xs9rQfYrJPLo+PJRKJRCKROAc8R3DqufvBfCc6ti4ijjqD/zxk5RekbhF1t3ibXIV+qz9Ivov8TvIa1F0gD3Wd9L3xdfIF/BaiR98G6wG+leyng36AvkF/FXzY/JQO5xewNrLvDuziORXIZ+91CN8gcwkxhyLOEeszxLlh56cSP9/ZjxFdITp1/8TBe2pv3Ejf//bd8y8+nAUw
1438613951.950,1.000,0.000,HISTggAAANB42u1XywnDMAy1JFtOWugE3aWzFbpBl+sYGSGH2pcHDzvkUCh6FyErT7/IIrm/3s+Ubp/0hTUpTepjS4FAIBAI/DskWhD4wZzJyfkUIhEKUgb5MD/9OzFPxlfCw/MCdm9yIXlnsHf+CnrnXcBvgfg+sBvJq4Lu5LkF8u/+r5Af1usQfyV+se5CeBX8Yj8r8J3oCn4zyVvJe8X4Rv5DmF3JnCFPyfxi3excibTB/Avh5cG9UlJ3OnhvZXJv2OR+Yv2Ug/tqds+MoGf38A4juQWz
1438613952.950,1.000,0.000,HISTggAAAL942u2XPQ7CMAyFYzcNaRm4AAM36dmQuAEX5QgMhOWJT4lQBYvfYsV+/knqWOn5dr+mdLqkF6YmrUnfHikQCAQCgUDgEyyO4CfnZoP+3llTXAdp8j58I3/pP4v/LHblkTTQH2S9gl15VfKvwqvA130cmyyQR+tYIH6GfAXqrRBf/Qp8J83rHV4R/iL1ZOi/0umbGex5sM8c+nMajOP0P9SJQ3qDNd2/0XtP0kG/95yyneZaz987+//3/LYn5vIE+Q==
1438613953.950,1.000,0.001,HISTggAAAM942u2WyQ0CMQxFnWUyCxcKoAg6mNqQ6IBGKYEDMwg96cs5oUHyv1j58ao4Ti73x83sfLU3yibTJvP6tEAgEAgEAoHv/0HUf8w42bFPYr3bVfwHqbfzg+Ab/DXoVcgBUvEFfhfBN/C7vxFyEnmPsDthf4Geyn+CbMKO9VJvxv4MvQl+yPNcZ6yzyEedp/KXRH8xjom4SfDF8Ud99n9z8jCnP4tzr6pTv+KzyCcJvnbeX+vMp3f+ZMc+d86d3rl1tHcn/djuX9+tT7+9ADyUBQk=
1438613954.950,1.000,0.000,HISTggAAAMx42u1XSw5CIQzsB+pv4QW8i2d7iQv3XtQjuPCxmWRSQzQa09k0lKE/KITT5baIHK/yhK9SV2nnuxQKhUKhUPhvaJXgK/XTSb1N2jeiV5Ad+I2sc5gXMkbesLsl8078jnV7GGOcQwbxswH9DvJuwAuQnfhh+iD5DP4B4gjIswE/SB6e8FHfSd3Qbif1c6i/k3oE2X8h++jkvDpIIefGEj/432mkD5TY1yQudh6zuFh/e9Lf+uI9pEn/v5vH4rHJe/TT79SvvoP6AAXXBVc=
1438613955.950,1.000,0.001,HISTggAAAMN42u1WSQ7CMAy0sxa4cOTAX/o2JH7AR/uEHkgug0aOEFWL5LlYie2JEy/t/fl6iFxv8kZsUpsM8yIOh8PhcDgce0B39j/qPcOXfnHQXw37j/9FwpdBz3iQD/36OsG6NFlBn8Af9QX0k8F7hv1C+CvwdbsTOU+Mc7rdBeLLxC7DO07k3RLJL8tHBbtE8lMIP0q8RyTxpMF9lMWoVyX1Hoy6D4SH9cNoX1j9ZMVjzZG48Rzaat7pj+I86vfpX+PUFbIgBNo=
1438613956.950,1.000,0.001,HISTggAAAMx42u2WSw4CIRBEm4HhEzcewLt4NhNv4EU9gguZTSUvkOjoLLo2FaD6NzQwl/vjZnau9kbsHDov16c5HA6Hw+FwHBHh4PHDznF0foFxAH2YzDOCPgkvELfJeAW9cgLe7PX/Ve0r2Ot8Ey6ds+gK+Mlg30BfwV+R+nSs3znDuuaVod4E8bb1k8QrwgZ50v5p/2gdEfS6r3GyD1fQx0H/R+grG+QzqpPyV/90nmxwjskvxdF6bXB/2Ie6ve7V8OX4v7rH//1+Tef9Agm7BPU=
1438613957.950,1.000,0.001,HISTggAAAMx42u1V2w3CMAx0bKekERILsAuzVWIDlmEsRuCD9uekk0MlhBC+H8vN5S7Owz1fb4vI6S4v2BrLGvXykEQikUgkEolfQPmTusrgd4xK8sjHBnXQr8L4BHkl8zeeQ16JTwPeBOtuML+CvhM9B/4Mup3wNv8j5A3iAfSQZ2TdM+F3Un8HPye6BrxK9tWD8/DAT0l9Qs5FyTkZRCV8J/csuteV+HrwvoyM2+D6ovcoRM9IHaN67/YfRNQXPuVbdvbTMjhfv/Rf2r1vT0veBao=
1438613958.950,1.000,0.001,HISTggAAAMx42u1W2w3DIAzE2ED6iJQBsktnq9QNumhH6EfJz0knJ81PWvl+TsbmsImBzI/nPaVpSh9oZ+mcb68UCAQCgUDgGJDYgr/+nrJxXv5SNzvjBWwlNs5roLvEGcShDsYV4LFzJfEG6187D0R3sS+gN5L1T6CP65yBB6euBnYFNpg/gL+R/HAflNiV6CEb6YcK9SrkoaQOIzqsHwrp1+yMm3NeMvGzuEbyLCvr9PIWZ9w73+rYXr2y8V5Zm9fee/HX3zvZ6T/a/4G8AZOxBSQ=
1438613959.950,1.000,0.001,HISTggAAANB42u2Wyw3CMBBE92OCSUQHHOiE2pDogEYojRI4EDiMNLJ94BA077Kydj07m0SrnG73q9n5YW9yjb7GuDxNCCGEEEL8Dh/M+6DO97+ukc9BPRaDnAP6oJ8CcQcxyBnv1YZOQn4i9aVRN0P9Aucj+Kmg86k/QH4hPiaYeyb6tXPefWPuIM81G+8loU+S76KQegc9JzrsO0syF/o0Uuekb5J7bC7mx0lfI36xL+vnnXvDB/cS2xvRuRe2vo99Y37lUwghhBBCCCGEEP+KvwB1hAWn
1438613960.950,1.000,0.001,HISTggAAANN42u1VWw4CIQwsLSC+4h7Au3g2E2/gRT2CP/AzyaQYdxMTOz+T0tIO0O1eH8+7yCId1jl11ttLAoFAIBAIBP4JaaP9idiz69/qUCf/8GcSz2zcb0RH6VyhTgZ/gXwK6yNfg3ojz77zjpwHdRSIN7Dr5L4z2I3oGOsXovfU+QB8hPhCdDZyr+hXcn8KeZXUMWDUhX7sHyPvjO8kTv8pOQ/WqU5/Y99m0o/JOZc4us357tWZB7P11JkP5swNdeLWmpe/Ose3/h+s5f+0/mw+fQO3AgT7
1438613961.950,1.000,0.001,HISTggAAANJ42u2Wyw3CQAxE1/tLQg40QC/UFokOaIpyKIEDm8uTRkYKEhw8l5Hj2Vln145yud23lM6P9EYZbIPz9ZkCgUAgEAgEAr9Hxn+aIW/Q7egiT58ifHdUrM94XsDMd8T0K9BloZsGz+I9WM+MeM+vg0/wbYMXcBf6RezToOvQN/ix7glcsW5F3MQ5VdS3iHvg+dO3Ozp1n+wH9kH6sI9Yj4m81w/s8yb2S0JfRVzFPZgzn9mZzyLm3IRPEfNrjo85eg/2pe/YUdhBnR30/TfYCxrJBcc=
1438613962.950,1.000,0.000,HISTggAAAMh42u1UOQ4CMQz0kWQPhPgAf+FtSBT0fJQnUJBtRhrFK1EA8jQj2/GZxOfb4ypyussb3lk72+UpiUQikUgkEr8E/fI8GvS3nfmUsAX9HM4XEqeQeoywDmTMW4GZXwV9g3hHqHcFv02eO09gL0RfId/mv0B+tM+gX0FuEGchfR1Aj3Ms4I99YLwJWIndyRwwL8o2uE8n9+mkT/buCnlP2K8H/0Ub1K2kTw3+B4F6EHUQT4LxJWjfu9/YfrIP70eT/4QG560vPrMFaw==
1438613963.950,1.000,0.001,HISTggAAANN42u1X2w3CMAyMHylVKwQDsEtXYgUkNmBRRuCD9ufQKWmKEJV8P1au9sVxEke93B+3lM7X9IbNVmar0zMFAoFAIBDYF+TP9QJ10JX74hv3zQq6meSH1sAqieuAP0AczivAo76Dbgaefcf4EfQX/wH4Jf4E+Q8wzkSnA78j+PeQT0/4kazPQd8Jr4Q3Um8p1NUqzwXWF89JJvGJ+HlBB/P/+O8pzI/rFWKVjK1QD3YPhdxLIfFa2S+ksd/Lyv7U+n7Il/1a/fXH7+Be59mqJy/JggVc
1438613964.950,1.000,0.000,HISTggAAAMx42u2WzQnDMAyFrcR2nFDoAh2gW2S2Qjfooh2hhzpQHnzYKTSHoncR+vOTlVjocn/cQjhfwxtjlVblsD6Dw+FwOBwOx+d+8C88vbx28P1sp677G8WrfdC9D/xkj2DPUF+GepLERZGTxCXgG8EfRd/iFuDNIhepYwbeLf9UZZG4JPokeQXur/eZwV+gHu2/2ksjjuov0FcDHvoOCfqp/18CP/EZnNOSEXj0XOJp5Y+d5/W+U31ne+eMHTTHBuC1H83ZvfP76z68AFkHBP8=
1438613965.950,1.000,0.001,HISTggAAAMd42u1WSQ7CMAyM7SylggN3/sLbkPgBH+0TenEuI40MAiQkPJdR7WS8NHF7uT9upZyLw5zFWa9bSSQSiUQikUh8HxLY5UP6CjzR2P8g0avgN5KvgL8Cd+cD6HdYt4BOg3XzeSXrK8RB/wpsoI98dD6BfSH1YZ6TB+wbRA/tg9SF/VTSrw7+SvJSko+R/Ub0lZwrI++JnT8h581IPIzDYCTPFuSjQT2MJbif0X2K5ocE8ezN+SJPzq9X592v6OV36M/7sAOWgQTu
1438613966.950,1.000,0.001,HISTggAAAMF42u2WMQ7CMAxF7cRtWiYOwF04GxIDOxflCAyU5UlfXoLE4L98Nfb3d9vE7eX+vJmdH/ZBP9gPbteXFQqFQqFQKBTmwSfrHf9xTcQ9yfek/gJdT9ZZpyH/iwCz/wUc8BkiTt6gW8GbWCcH/E5JHfa5Q8+69BuoO5K+esI7eCAewn9Jnh/zGlj1E2IfZvu7Qc88E/7qHKjrED5N+KyiD0v8utj36r6zcz97/iidem89qeOT5uG/zOX6fv3I7w2RWAVk
1438613967.950,1.000,0.000,HISTggAAAMR42u2WSw7CMAxEnV/blM8JeheuBhI34KIcgQURiyeNEmCDhGczcmrPJHESdbveLmbHsz2RGofG8XQ3h8PhcDj+FcG3wPv5A36jOknUqfo4mGfqP7HDGfHUuCBOIn9BPnUz6g/Qpd4e+RU+c+MV44uY/w56K7giP4t4gk8d/D5jfQnjGXFBXkF/mZ/gP4nxIs5HEOdF9TuKc5mFHn1VfezoxE5M7u0f+6vup3V8wofvROrcdxPrfddHzTN8+c69+AFJTAVX
1438613968.950,1.000,0.001,HISTggAAAMd42u1WSQ7CMAz01jYIIfEA/sKVbyHxAz7KEzjQXEYauQrLAXkuozpje5xUaU+3+1XkeJEXfGVd2c4PKRQKhUKhUChshw6uY9ze7NfjMTiHsf9D0qfzBLoA7vUa6AzyUYd1sP4M8R3kL+DTQRfQfwZe4LkRf1n8QOIBfrpuT3w1sq6kLs7jZL/ZOu7PRM7VoA47L/ZeBey3J3olLMRXkHki6cd8GmFN8o340yTO6nsyf6bbep/oYP63dZ++t3/V9++/h0+baQVA
1438613969.950,1.000,0.001,HISTggAAAM542u1WOQ7DMAzT0cRJs3Ts0L/0bQX6g340T8jQeGFBKEbjTVwEygYl00fyeH9eIre7fOF71D3ac5VEIpFIJBKJf6BpQRcftdFvg/ELmW8wznR+/hsh76BjRL/GQvqsOgPRrXwCPpKI9WfSB/KFjM8QC/CF9IvzHDj2PRF/r6BXiA8WcCd8IOt1EoXsrwV9WKCjxEclfSg5N1F+DO5FIT5pcH41uEds/dZ4jzx4L1jeSF0hdY++79r5HTy7ngZ+HYV1/l5a4/yz9kE3Xp8FEg==
1438613970.950,1.000,0.001,HISTggAAANR42u1XsQ0CMQy0Eyf5QMEC7MJsSGzAYozCCBTkm4OT800qX2Ml9t/ZkW3pr4/nXeTyki/ysDpsur0lEAgEAoFA4B806lnKizzJiVOIw3MiPOx7I3wsPsO5gM7ubxDXCF8lvI3cV9BtxF/BX+B+r/s07HnYTvjRGsmnE90N6kH+DfJg9RXQRz70d+d98D2wPtQx0rdG8sT3Yf1lTj+hDpsXc/o0k7lI5L8pk/oz4WXzrI714uXgnMqkrjr7ZnYfze7F2fqP7s9Ve57llxbp//g/SkEFvw==
1438613971.950,1.000,0.001,HISTggAAAM142u1VWw4CIQzsg0VcE+MBvMtex2uYeAMv6hH8EH4mmbDrSuJH52dSSodSoFwfz7vI5SYfeGWtbMtLAoFAIBAIBAIcutO/VV935qUdNmCMcxLnxJ4qJ9A9VM6wDo4r2EZ0G8+wvoGNeRTQz6Df+AT6Le4MdoH5iegX4i9Qhxn4SPY/QTzWmdUddZzoZoj3TlwifnZP8FyUjPvK82X3O3Xuu65k9g6E6ObOexKy3615KXm/3/YPNt9+3IdG9+FR/fhf8hqtN+z/fAMZVgVQ
1438613972.950,1.000,0.001,HISTggAAANB42u1WyQ0DIQzENixL8kkB6SVtpJ1I6SCNpoQ8Ap+RRmaVQ/vwfEbGgw2LMXu+P24pna7pDessnfXyTIFAIBAIBAIBDvmy3vPrh+vA+UZ0Bnol/4vDzoSNcOm8kDgK/gx2AVZHN+IfwF5gfIV5FeJXMj7iNLKeDPFRX8l+jk6+DP5GdAX8jeyzkPNOEG8l57yQc8xQN5nobLJulNShkXo3J69svH/i1Ks6eSrJq8RW576Ksx8hepZ/tj/JJG/td/LjPryX9+Bf+XbzfV61dAVE
1438613973.950,1.000,0.001,HISTggAAANB42u2U3Q3CMAyEHeenFITEAOzCbEhswFKMwwg8kL6c9CkVqPDiezk1Ts7nOPX5dr+anR72Ru6cOvvlaYFAIBAIBAKB/yMJj/Yt8IGOw3oWdog7xHedK+xrcM5Bf9ErnWf51nOT5J/AVxE/s3xPwlni6mvRPXY+SFx9qF4VH1Xup0Aduq+J/h7qbdDvBqz+HeqvolcH76mufB/07rT/Bv030DG4P4M8JnUnyEv+MvQ1DfLR/2IfzgeaAyM9WveV82frOfkr/a3zBb7s1wtlfwWx
1438613974.950,1.000,0.001,HISTggAAAMx42u1WOQ4CMQyMncPL0dDzl30bEj+g4Zk8gYJNM9IoREgripnGyuHx2HK8e70/bildnumDvFnbrK+vJAiCIAiCsAdMuqfi2eQ+wuG8wP+gw7qQOJn4G+HpNojfQni7rXB+BL4GNsDPCU9A/EZ04b0F+CroOsO6gY6Ae92e4P6B5DXKN0g+jdQ5SH84qV8h9cmkvxrpM9Z/Dn3LeG3gj+fsPTBdLD7jNWLr5Ls0sj/SP+JLk/Pi2znnP85LG+jdez7ruyTdf1WfN18xBZQ=
1438613975.950,1.000,0.000,HISTggAAAMt42u2WMQ7CMAxFkzhtUlSJlYG7cDYkbsBFOQID6fKkLwNbwX+x7Njf1pdr9Xy7X1M6ntILNmwetlweKRAIBAKBwG8j74z333UugjeLPoyzvuI/8N35yTeBp4CffoafwFPAR56tfhl2hs9+B7wb+m15fdiGugY7w3bwN/ThnBX+KvRckL/Cr0Iv6sB5utA7C/4mdDOHZ4Kv8qvznZjYW7X/ag9N7K85epJXxZOIV0cH+/COmHMfvLmyo6+6G+XLu1acO7KbO/4EBWME6g==
1438613976.950,1.000,0.001,HISTggAAANN42u1W2w3CMAy0nRfliwHYhdmQugFLMQ4j8EGR0KGT3R9aJN+PpYt8Oad2mvN8u4qc7vJCWaIu0S4PSSQSiUQikfiEbqynf1bf2v0s6EODvgvoevh6D5KowbwKfAfegFei14F/5zeIA9YnWK+g00D/ALGCLsZG+CPsP0CX7T9B/iD+e5DHfCPny76Pd94V+qA7/VGdfjLi1+vDSuaB9aUSvjhziXWyOSvEhzjzpSv9G5k3CdYtRCcKpqvOPaVBn2vvvV/f33v5P21d927fK0/Z1gWX
1438613977.950,1.000,0.001,HISTggAAANl42u2WwQ3CMAxFY6dtqgYQA3QXZkNiAxZkBEbgQMrhSZYLAiSE/8WKXfn/2JHr+XQ+prS/pDtys9KsHq4pEAgEAoFA4BOQP73PY89y4rLSb/Er9jvyLf5hpQ7q9uIdzn2zBfwd4gPi1EPdBXm4zzJ/b+TJhl7GNzhPzVbwjdBX4F/sFvkW/w78E+LV0DEa9alG3flO2CfWrRp1zE4fxOC1dCTn3fI76lSHl/nV0OG9++zkE0O3OnWyoI4edeZMduaROHV6ds7Jl+bqq8jxf/yJPr39vjfrRwXb
1438613978.950,1.000,0.000,HISTggAAANN42u1WwQ3CMAy06yZpAYkF2IXZkNiABRiREXiQCOmkkxMU8fJ9rLixr7nabi73x03k/JQPrFqtdrm+JBAIBAKBQCDwhf64T/Ge5eRTYqVzLXC/6z3H4tgV8tqgP0O+TPa35wn8K8S1dal2g3WG86L/AHE78J5gf3F4MQ/qsRE90Db+I/AURw/UZQdejGP6msObCD/qh98Rz4f1baRPjNShdvaXkjxK6pzFJVLHLL859Y1+Gex7I33OdJTO+SOD78N4dNIc1cnzefZ8//t/6A3/xwWx
1438613979.950,1.000,0.001,HISTggAAANR42u1WQQ7CIBBkWUpp4s2rf/FtJv2BF5/pEzyIl0nGNbW1B2cuE2CWhYVlOc3XS0rHW3rCO1vnfL4nQRAEQRD2gSkEf3nOtvAeWMCoy8BGxvF/6EQXzfuyG4i+gA7bqEMegEewa50r6Ar0T6Sf2TWwG6Ef11VBF+kb8AHiN8G8hey3Qjyd+BvIOeJ6ncSZxdVJHCzw66RdiD3Lm+geZbIOnK98mFcsjzzwn4gexzM5D6bb6v2xL+uXbfQOrlVnbWV/S+vDr/8DttN+BUF4k5cP+eEFjA==
1438613980.950,1.000,0.001,HISTggAAAN942u1WOQ4CMQyMj3iPjp6/8DYkCno+yhMoWJqRRg4L2srTWEmcsePYTs63x7W10729YZuUTerl2QqFQqFQKBT+AakQ/BSHbJ/+yCdEIq+TdeQzYteJXeQN4Amw52TssK8D70TGQfQDeDvIIPMO/OhfkPEE50L+dZMz4e3kXB+5ED/R3078XyA+K6zPyf0YyR8jekH0MT4zmRfgU5J/SvLTB/0Qkj+aSE/qFO/VSBw9qeuW1LuSeRusd2bHkn4iCd+oPdnZB0f7pOzsz7qT7+j3SL/Ur3f9mP+OvABzTAVs
1438613981.950,1.000,0.000,HISTggAAAMZ42u1XSQ7CMAz0EtIGkPgAf+FtSBy496M8gQPJZaTBQeJSyXMZNZ54FDtN2utju4tcnvKBd9bOdntJIpFIJBKJfUCzBLvoj07G/6WL/G0yjnkKmV/xexL0TriQvAOt8wHY4dmIzoge/RvhAusrwfyhWzqv4Ntg/Aj6BfQnyFshPvRn4sfqUsl/AFufkz5X8LGg3xgXsl/YvmN91WBfG2GdHEd/VifmK0Gd2HuJeZ3kkaAOCJ88R2yyrr/C8h77fs6/Af9oBV8=
1438613982.950,1.000,0.001,HISTggAAANR42u1Wyw3CMAyNY7sNcGEAdmGNroPEBizKCBwIHJ705KYqF+R3sfyLX9w4zeX+uJVyXsob2qV0Wa/PkkgkEolEIpH4PWSlX8i7TTbW+b77Bnkp6JjvxF8h34jfIW6C9Wbwz7CeQZ5DXCVxyGMK6n301uWhyyOxN/Ab9HkGeSL8HOwG/UHeTHfgx/rm4G9gb9AP9h2NSCX9wH0ZOfdCzlN0zoTEaTB/TtYzwpvNWTTXSvKF9JvFsXnWYM5l430S6aP1ZJDXv/4H1t7be9XZfX8vJ/EFMQ==
1438613983.950,1.000,0.001,HISTggAAANN42u1XQQ4CIQxkigWMMX7Av/g2E3/g53yGT/AgXiaZgBvXvXQuE9jSzpYWwvl2v6Z0eqQ3cmd0tsszBQKBQCAQCKwJ/NgeG/8HNvaDST9L5/l7JrbOO7IzWp+FHWie7fY0bsQfe+9cOlcas15e57TOKX4Teg5Cb6F5Hlfhz0W8SrqLyMdR5LOJ/XORvyy4Cr+836yvkJ2qDxN1B/F+yaJubLLulB5M9oPyY4M+w4BtUp+JvnPRt+lLXUnkHZP7uPa5jYXnKla+l/51fwzjvACmLwW1
1438613984.950,1.000,0.001,HISTggAAANZ42u1WSQ7CMAyMHaclLIIjB/7C25D4AR/lCRxILiONnKocQHguoySd2OO6SS/3xy2l0zm9kRtLY70+UyAQCAQCgcAvQf7MjwzOi/O8AjOdLtwnA6N+alwaG8yjbgJW8h/b12fIr48r6Hv8A+grrPfxDua3sD/muYc8jcTZAB8hHtZzJvtWkv8EPpXko8R3AT9YbyP1N2CBMb5Hrx+M1COTvjTSn6yvM+l/GdSp4y+TfJR8T8WJv/bc8Hx6eh3UjcLzNepPPnyurj3HZaHfb7sn5QW+QwUm
1438613985.950,1.000,0.001,HISTggAAANp42u1WMQ7CMAyMbRJSEAM7f+nbkPgBH+UJLMly0smhUmgH32K5ObtnN3H6eL2fKd1TgzUrzer6SYFAIBAIBAJHhPw5bm/oYD0KVpw4tOqsM12ejo6FxJ3guUFcXz8Dr4Df82fgL5CngG8kP65X4BV4X4X4K+SpoKdCngvEZbAF4jr/5ugz8IvDw35n4meoF58byWukz+gzvpLvpQ7fBvc97i9x9iXqEVK3EF06eI6F9CWRukfPvTnzhp1z+XGuysZ5PGtui9OvrXpm3zOz+73X/XyY/4svlSEFBg==
1438613986.950,1.000,0.001,HISTggAAANp42u1WwQ3CMAx0HDcpRagLsAuzIbEBCzESI/Ag+Zx0ciIqXr6PFVu+cx3XyvXxvIvsL/kiN5ua1dtbAoFAIBAIBALHIZEzsyyvQx09ndRhdSm8FzPhx3oM4kb4kCeT89rs0myBuEG82wrxCvGucwLeAnkb5Bnk9fMF/Ni3hfh3otP5zlDXCjoV/BX4N/An4FtIH4z0r5B7zuQeC9y3OXNQSb+zM3dK5lmd/4LNpQ3OP9NLpE/q6Hh9Fef7bbA/Mrl38uA+G92HaXJv/rp3Z6HyH6SD6k8fIaEFvg==
1438613987.950,1.000,0.001,HISTggAAANJ42u2Wyw0CMQxEE+ezG04UQC/UhkQHNEJplMCBcHnSKFGEEBKey2jtseNNvPGerrdLCMd7eCF1jp3t/AgOh8PhcDh+C9Hf76/POU7u02y8Tebnf2KGPYi81JnQUV+g4/oVdsZxva3zAf4G/5t3cBH2hnoKuIr4DH+FP6HeivVYdxN5sojfhD9DV4S+YH936JLIb+K9ef4KSeQ3waN+NtFnqi/jID/PXfmj6Nck6skD/ex3r55tsB/qvkiL91ScrGvVvjpfPj1/fJ59aV4+AaSrBbs=
1438613988.950,1.000,0.000,HISTggAAAMp42u2UwQ3CMAxFnTpJKRy6ALswWyUGQGJRRuBAc/nSU1IhIQ7+FyuJ/7djJ77en5vZ+rAPfLdpt9PtZYFAIBAIBAKB3yPBOh3kTR099VN/4mfQI50K52qb7ix8F5vFuvAq+LU4J/Fr6wJ5zLK/dvhF9i+yr3kuEE/vRfp0r0X8K9TnDHXWPB36miG/Cfqgda7wbrT/FfrpEM9Bx4BvwDeoT+m8Z/qHmpfWJ3X+vXfi+cE5kgbj2uB8GJ1PBnU6yvs2rv27/hvphwV/
1438613989.950,1.000,0.018,HISTggAAAXd42u3a203DMBQA0Fw3fcEK7MJoCIkN2IApGIsN4KOtkK5kOUnTUNpzfqzGdn3jx1XU9Ont/bXrPj67g9WxjEPx8v381QEAsLzj81hXRraPge2yMrI+KnFGI65VKksqN436kupP1qksle/p0zgl9evT531qv03ttpX4T/136fO20W5TGe9UPqT6XYrzVP+Y4tynOPeVeesr87BK4z2m65vUL6/7prL+tXWOyvV1ZZ/lc9JXvmfV2EelcQ6jsR+jMk4M7F8a5yUa56IfmB/KwPywHphn4sw8N/Z6TBzn3DjjzPuLkXk+FpqXbub1KzPNz6Xjn2ucmOl6d+H2ZaH1X2p9pu6fmDneMnGcVl4+93wtPQ9j+5eF9v1c+T4utB//Or91M5+ja433XuJYKr640Xn6r78X3Ou+to7uDwB5GpAHAADPHwCA5wEAAAAAAG6D348BAAAAAAAAgEvxvwQAAAAAAIBpvGcBAAAAAACAX9f+/ix+ACPOB9I=
1438613990.950,1.000,0.002,HISTggAAARN42u2ZQW6DMBBFmbEJoZV6gt6ki56tUm+Qi/YIXRRvvvRlJ1RKFN7bjAb4wx8bbCTevy9f0/TxM/1RthhbzM92BgAAAOBYxEH6zH/WhYlOXySPTj7L8WJiu66Kvpr6LS6delpX86Z/MT5PWzyLXvOT5OsW3+Q+q8RJ9IsZx6Uzrqv4WgZ9FhmPFl8lLyafO/Os4zyb+a1XPifu+U2jC5OHOZ/mPtnRaf1q3qM079uoL+1TqYN9FDMfbp0oHf+3rlc5eDwG8xz0mTv9j+47caOuV+/R9r1r+3R95M5+Y6fP2Nk330P37fuo/fNdf5/68SQ+WIcAAFhH8Q8AAAAAAAAAAAAAAAAA8LzwH/dB5uEX/B0GDA==
1438613991.950,1.000,0.001,HISTggAAAMt42u1X2wnDMAyUrDzUUEoH6C6drdANumhGyEftn4PDIph+FN3PEck6yZJjksf78xK5u3xhlbVyee6SSCQSiUTiP6BZf2Jg30vnWYldyHenAbe4CeJm8Bfin8C/gn3u+Avh5l+AmT7ab5Uv4N9AbwPG/C3eIc5JvENdrc9Xss4h7wLxqKfATvqH/x04B4O+4HyU5F+DukbsbN49Pen0gZ1nI+uVvD9GzpcEdRhLZ/8SzFNO3iOsXxLUjeqPuv90sP6v9nG2Dj0AkVgFAQ==
1438613992.950,1.000,0.001,HISTggAAAM142u1WSQ7CMAz00qYQBBL3/oW3IfEDPsoTuCSXkUYOCCRUPBfL8TZZ7Ha93a8iZ2nwJrVJuzwkkUgkEolEYsvQP+Fjb/IwEq/B+qjE/BP5L3WQE9i7PhP/hfgV0DF+Bn7dfw/5FpK3EN7dbweyED/07/YT2A9NVqh7hLgK+SrZH/LD8zSwKznHEtwju3/cvw6+FyH1WF0HHd+VBHEerDNebF8e9IkS3Qf7i/WjBP1sg/7y4ryQQT7RPNOg3rfntH4oz69/p7YOewLePgTy
1438613993.950,1.000,0.000,HISTggAAAL142u1WSw5CIQzsBwSfMW5deBfPZuIN3kXfEVyIm0kmxefOdDaTtrTTAiHcnutD5HKVN3ywDrb7JolEIpFIJBKJ/4FOrrPA72BrwEbqYrx8WUchD/tqEC9Epw9eBh+Aj5DXQa/Auk9eBfsEdiN8hnzU6xDHfPzXO9F1sHHuhcxXCeP+ot+I7ux5GtRVcp+Q6+R9skBfia6T/i3w4/550E8hcSe2knvQgvklmNeC+jJ5Lnvfr1/r7H4/X4TXBPU=
1438613994.950,1.000,0.001,HISTggAAAMx42u1XOQ7DMAyT5CNOG6Af6F/ytgL9QT/asWOHxgsBwrG9dBAXQhElyohgwPfn6yFy+8gP4WA92Pa3OBwOh8PhcDj+Fzqo184+Z/UGjH6R6CPwQuoDyQfgikzyEfwTfK/xhdRVvoI+gW+tX0GfyXmrTwH9CrwRP3aOhfhkotsgxnyGeQr4hpNzFYhxHzLJF4ilsQc4lzX22sj7KLJ3E+kvxC+Q/U6kXohPbPhZox+bA/+Ddt4L2qnTyftsFDap08F5Zueerad9v3TKBfM=
1438613995.950,1.000,0.001,HISTggAAAMp42u1WSQ7CMAz00kChiAPnHvgJb0PqD/pRnsCB5jLSyEEUVZU8F8tL7HGTOB2n+Slyu8sHvkhdpD1ekkgkEolEIrEnaPJbBUb4Mh3/IxXyoHSQWLcjOsY78SOf6i+EtxPe1X4EyewF9J7U78i6Kg/EfyF9s/on6OtK4vtGfgPYz6Ab4TGQ/qxx31r338g6Jee6BPU9OMfROZcgL+rly7oa9KcBLwvuvwT3vXWuRfm0cV7qn+ao/hivK8dv9c7s5X3Kvjb+nm8gdwT6
1438613996.950,1.000,0.001,HISTggAAANB42u1Wyw3CMAyNP0kbcYAB2IXZKrEBCzAiI3Ag9PCkJ4v2gBB+l6fE3ya20/P1tpRyupcXbLAM1sujJBKJRCKRSCS2Q34k7vr/9+E+ypXIJZAbsIP8va6DJ9BX4k/B/gj2Dvo14HlwA/sJ5B3kHfRY/A55H0hcxg5rIXl0kq+SeBOcgxNuwXfOEKeR+qqwb+RejdSfknvF81DSL5GfQurVA/8G9h70Tw3ylCBfCfqd9WHU94WcVzR3LMhfds63rfayU/9bc/7f3r+1Xp+B2wWR
1438613997.950,1.000,0.001,HISTggAAAMx42u1WSQ7CMAy04yRtAwcewF/6NiR+wEd5Apf0MtLIAZQDwnMZOd7GaZr2en/cRC7SYZ21c9qfEggEAoFAIPAL0D+dJ03eFyV10mB9Lx/jMvyXHnEV7Az5GbgSzlBn6bxC3Ep0LcAN9G7A2K9A/UL6NvAffAYuoIfZXjyun2Cu5sy1wX4V8BvpU2FdyPM10tfIuRESj+eW2TZom+MXp7468yCrk8fez0J0Ksln94c6cWnw/VfSP315T6YP9c/6vuibfp2sZ1j3CwqcBP0=
1438613998.950,1.000,0.001,HISTggAAANZ42u1X2w3CMAy0nVdTQGIAdmE2JDZgQUZgBD5Ifk46JRIIKuT7OcWpz3bt9HG63i4ix7u8EBprYzs/xOFwOBwOh8PxPYQf6SlhGdi7vgGzfZaPkTiB6MXGCfwzXFdgncBu5Du4QJyuu4K9Nl5IvRl4Af0K+xW453sA/x5/13hP6qwQbyV5JOKXoZ44qDORtZH7mYgd56ngfwpZYz9xXiL4JdJ/nHPMdxTXyBzbpI5CvkL6a4PzY5PnldU9qzt6brDz/inon70H9M3rdGN5b60/+gRZHwXb
1438613999.950,1.000,0.001,HISTggAAANp42u1Wyw3CMAyN4zROUQ8MwABs0dmQ2IBFGYEDzeWhJ1NKDyC/i5X48+ynKMnperukdDynJ3Sxstg831MgEAgEAoHAL0D+fC7ZWSdxeAX+i8nx93UB2/cHiFfSh7ffoJ6BVfDX/s8Fa+BvkG8kTmGNc1bgRz06/wh5I+QdFjuReQz6rlDHgI/p30jfRvQoEDc58yvRg+mXnXNTyTlEfZWcn+TwZVJHSbyS/EL8gzN3IX0Wwo/IZK1EN+bXlfeS14+svH+28sqbcXvfv996zz6dZyvPi/8BFSwFEA==
1438614000.950,1.000,0.000,HISTggAAAMd42u1WwQ3CMAyMHadJK8EE7MJsldiA5RiDEXiQ8DjJuhR4+j6n2hc7PSVWLrf7ntL5kd7InaWzXp8pEAgEAoFA4J+QsGDKHyF+yUFfldRR0p/1U+c9iTzyFeLWeYH80DfnP3B9Bd2oV4Crk8e4OvVx3QI6c/o20K8QH7pT543svzn+meP3SvxZybfHG/TF81Agjv2zozfnfCrh4uht8pwWojNyD9JkX3P2L2QusHutZC4omRf5x3kyO5fk4Fz8Vvfx7wXviQWy
1438614001.950,1.000,0.000,HISTggAAAM942u1V2wnDMBC7s89OEyhZoLt0paxQ6AZdtCP0o/ZHBeJiMPTn9CPic06K/Mjt+XqI7Id8kRtr43R/SyAQCAQCgcAMaETwk4OezGk0t3Ty/UT8JOBM6gvU+3iFcSN17GOkjn0y8Ar1zhfwXUjfFXQLGe8+t8Y7mYd6C/jpz1fwUcl3GrxXSV4byVmIPsu3kjxxnQvxZ876m7NP1cklkXlsvyrRY+cB/RenjxI2cp7EyTU755P59uYr0R+9Z7KjP+u+/9f/YvR+nqb7AVaRBU8=
1438614002.950,1.000,0.001,HISTggAAAMt42u1W2w3CMAyMnTQpL3UBdmE2pG7AEozHCHyQ/Bw62SAhIfD9nBr5Feec9Lhezikt1/RA7iyd9XRLgUAgEAgEAt8A+dN6xRlXCL8bn8V5+l+E7wKs4K/Eb/DUuUKcsd7gO5O8ldhlWGf5mpF3Br8Rd+m86bwDu+G3J/lYfVvSjwn6eSD9KFBXIfvJRl/wnNHeqq8a/qi3Quyb83xR12inhp6ZroXoWQ2dK5mj5JwTa07Z3Kpz7tV578iL9561z199Bz79fsgds6IFhA==
1438614003.950,1.000,0.000,HISTggAAAL142u2WSwoCQQxEk86080HQA3gXzyZ4Ay/qEVzYbgoeQXDARWpTdCafmk4mzOX+uJmdzvZGDPbB7fq0QqFQKBQKhX+El46vdDicPfEP8J8+/4vw/CDcIU7tkdSdB68Q55J3Fl5E1yKsceo3QZ4V4jaIDzl3sa9wP3Oig1j9Q/J30LOJ/Qj6G/RB+9mg/2q3xC+SejqHNKct0UdzT3lach80rwbvb1DHk++Y9GX7gfxjpz201z799V72F3sxBOc=
1438614004.950,1.000,0.001,HISTggAAANR42u1VyQ0CMQy0ncRZVjwogALogtqQ6IBGKYEHyWekkRdxSEiej5XNjMfrXMfr7SJyOMkTZUQd0c53SSQSiUQikUhw6If0+qaPAa8EPjNWMi6QV4Ix+qJ+GbERHosKeaZ+BZ4T3vyfDnUUyIPfF6Kf/B3w9sBfQdcgol+HvJ34NJivwKsQndThpM+4bgZ6A70H62BQj5CxBfupBvU1sr+U8Nk+Y+fOgnMi0CcN/C3oF/o7qUM31s/6roGvbVyn6J6yF+uM5vXL9/Kv34G/ff8e+T8FIw==
1438614005.950,1.000,0.001,HISTggAAANV42u1WyQ0CMQz0kWRZDmkLoBdqQ6IDGqMUSuBB8hlptOHQahGej2XH9ji25OR4uZ5Fpps84VVqlXa6SyAQCAQCgcCS0JXWowvfSz/kMaIL/PswzklcIf2wGb4MPInENd4B4lq+DcQnsI8Qn6DuAjwFeAbCk8GO9SHvFvK3PFOVuyr34DeSeg/Al0ldmdyL9SVD/xP4Cfg50XEeTubP5m7E38jctDOfE3si+Zz4GfGTmXMl0l+sW9/cS9qps/0gnfbe/fitPfrr78za3re/+Vc8ALYEBc8=
1438614006.950,1.000,0.001,HISTggAAANB42u1WyQ0CMRCLJwd7PKAAetm2+CLRAY1SAg+SjyUrKy1oAY0/o0Qez5FRkvPtfg3hdAkvxGpRrS2P4HA4HA6HY19gIw/ep5/KHxvPGSt5Vm2if2Ds6BnZxi9CL3f8D+TP+4PQm8TaSK/ZmXRHyrdQvEHoj6TD9U8d3Uz+zJ9Jt+0fSaeIOFH0J4t8iuCZOBdQHKP5Yl4SfIi5S2Jtgm9inoPoS+jkk4mXRByuD528VN1KR/UTnfvAVvLw5fcr3nxvfurdxE79+dd3FE9M4wV/
1438614007.950,1.000,0.001,HISTggAAANF42u1WSQ7CMAz0kpCAQOIBPKQ33obED/rRPoED4TLSyL20AuS5jBrHE8dxndye80PkOskbPlgH232RRCKRSCQSiX+A7qyHdtt4/SgeJ+OG7z/4VvAvwEbsTvbthJnOYXCD8Qrcwb/B+GfeafAR9FHvDDoX0O/AOB/jMNAv4N8CZvnoJC+d5LMGcTis4yR+dk7svA3ms3pzYi9BHbE6ruBXgjpX4sf2hXpG/ksl9SBk/x7osvhlpb8GcVrQd9b2U9uo/+7VN3/lPvqae/YFL+4FJA==
1438614008.950,1.000,0.001,HISTggAAAMZ42u2WTQrCQAyFJxOd/ijoAVx4E88meAMv6hFc2G4+eIQBBaF5m5Bk8pImbaaXx/NeyvlaPvBF2iLr7VUSiUQikUgktgz783qUTnsN/IZze9h3gb/if7LBr/hU3opztDfoI8457ORf5QC+A/TVfxJ5BpGvCZ4j9AlxlDN4JvSliX6Pol7GcS6zmHcL5uewM4+DrwbvpYs4lc+DeAvyqO8l4nXRrxLUX4Ln9KDOXtm7R6L90xtvnXzf3pf2o/272XvxDTOqBQ4=
1438614009.950,1.000,0.001,HISTggAAAM542u1XQQoCMQxMmrRdEcEH+BffJvgDP+oTvHQvA0O6uqBg5lKSTpLJtg3s5f64iZxlwMaqYy3XpyQSiUQikfgPaPb7lXiWpxAeiyskLqrLeEbyNrCNrOu+g98hj4OOCn4P6hwgzsCuwOvAW+0F7ErqHEEX8hv4kXcCu5N+O9HXyD7qXYLzwHOwoC+fPO9G7k0l+Qr7DwHbg7hK9GhwHzXwM12z70MJf7bf2XmAOiT4DhK8e9s493TjfNQ356zuNH/3muf6Ib/Ib0JfvSYE/w==
1438614010.950,1.000,0.001,HISTggAAANN42u2XzQ0CQQiFgZmd1ejBAizCDqzNxA5s1BI8uHv5DIHowWzCuxAG5vEThuye74+byOkib7RF6iLt+pRCoVAoFAqFLUMDfWv5W+Bv+K7z7BrI5viTh/GGE99g7w7/5NinJM+M8x30jvvkn3Fvgj6gr/IIf8oG/rXePXgH/JjXjLwPqIv5N/AMx591kcfre3fmwWCXZH86+sM4H/8rSXs0N7w3nHchzry24H1Z8H40uQc0ud9akIcF+8Sza5BPdv9mz+XLOP/az1uN/yuPvgBHRQUa
1438614011.950,1.000,0.001,HISTggAAAM542u2USwoCMRBE0/mqoIjruYtX8SqCN/CiHsGFmc3DIhFBELo2TfpbU9PJcrtfQzhewgupW+s2nh/B4XA4HA6H4xcwl+ArfaLIN8RtUKf6rP4i+iSRX7vNwjbks0+Bv6E+IU/5t4jvB7wyeO3Ql3wq7Alzmziv/DbwH+BXOhbEm+ifBc8qdOb/po4Fc1jXhF7UVeltIs79UnuTxJwi9p37NroHaXBW35HQl3yyuGcm6tX7YMLmyfcmDubYh3WzfP/l/Z3lH4PjrZ5PscUFXg==
1438614012.950,1.000,0.001,HISTggAAAMp42u1W2w3CQAzLo1zbLxZgF2ZDYoMuxEiMwAe9H0uWQbpKCMU/Ue6c1LXSu17u283s/LA3co++x7g+rVAoFAqFwn/AB/PKz2N99A/XWa7qe5wgT1gP/D8kPIM8Rd1M+mPfE4kBfXr9AryJ8Pt+g3yBugnWkT/Dfgrd+FysX8U++od6Vnhf5lcjPPQvBR/7B9GVhI/zEiTHuW3kuUbmzgW/kblVutT8K30m/EjxXQfRx/gpfBl1nvmX59hR5/Kv3Wc+SJe8f17LogWe
1438614013.950,1.000,0.000,HISTggAAAMx42u1UQQ7CMAyrk6xsCIkP8BfehsQPuPBMnsCB7WJkZXAAgeJL1CqO3SjN4Xw5tba/tgd8jpijHW+tUCgUCoVC4R+BH9Mzce8v1gfx+B6k5+Iewt8SB+J3igs/Ev6GYoi8EJF5W+KNdJ6Ef1XHqY5T3ih8gvQm0umksxN9NNFn7lMnH128kyP3hXmDqBvJPIXQCTFnPB8h5s9FniV5SqclfYJ4F0QdJP/QxP+25J9m/rFyLyHxu3afrd1H/uV9izf3Mz7k74l3B4AmBXc=
1438614014.950,1.000,0.001,HISTggAAANV42u1WSwpCMQzMp78nLjyAd/FsDzyA4EU9ggu7GhjyFH0gZDZDknaSlib0fL2vIqebvOCTdbJdHpJIJBKJRCKR2A/24T4lOroxjxLb4J/oZD/mK5Pb5Ap+A2b+hcQrOVeBuJE6GtHvsG6AXWHdEexG1jXCmAf1DhBHvQH3PuA8Dvsc8i7gb6DnRKeTe+7k3eB7wTqU6JXgPVawC6lbiB/1W9A/SurRoE4N+kQJs76woI9ZPSyfB3PCg/uQYN7oxrn07pyTnXR0Y/zX9X1L/9+gT2NiBX8=
1438614015.950,1.000,0.001,HISTggAAANB42u1Xyw3CMAx1bMctCMQC7NLZkNiA5RiDETiQ05OeHPWAevC7PMXusx0rv96fr4fI7S0/2OA2WLePFAqFQqFQKBQ42p/iKfFromv4voN3X/a9gU5JfqzDB3fgIPYOuoD8J8jTybw6jBeIu5L6Avwd9Auxow7jnwdfQX8heux3JHkd+rOCP0BnpH9B+hmkr0b6Z4SVjHHdOvkvyey4Xn1yPxlZ10bmrZP7ycHvJI4DS5KH7eesLp08Zxph2RnnKOcqqz+b/1Hvk731tS8P9AXD
1438614016.950,1.000,0.001,HISTggAAANF42u1WQQ4CMQgstFA1HvYB/sW3mfgDP+oTPLi9TDKhNTF7YS6EdoCh6dK9PV+PUratfFF3K7vV+7skEolEIpFIzECyv5/yyWI9mdSDPA3iKvAayVeJVeI7+Ebq4H+oge/AH/sd4jvsnyAPxg//TPJewHeif8RfgeegowNfSR8G8Z3ow77wPBvUV6K/ET1G9i2o78ArpD5bZ/fXgvtXQIcEfCX94XeBvpN7W4l+I+uymKcGc4Kdm07OC12cL9Fcqn+en0fNeTlI31HvrXwAOcsE3Q==
1438614017.950,1.000,0.000,HISTggAAAMh42u2W0Q3CMAxEYydtWhBiAYboBsyGxAYsygh80P6c9GSBivjx/Zzq+M5N4kS53B+3Us5LeaOubCv79VkSiUQikUjsA8slyP3+IM/g277UFXjvkd4D/TbeAt3GI+hn8anCqmvC08qD5HXw2/KPUn+GOl38B9GfwMfFb5b6XfggeUMwvxHGKU7zmOB/O+SZxLUPHPwc9q8GfaR1RujLFvSlgb9Dn1VYd4e4gb4F57YF60X50XkjUJ0Cfr7zvWd/vm9/5WMvl9UFNg==
1438614018.950,1.000,0.000,HISTggAAAMR42u1UQQ4CIQxsCwusJvoB/+LbTDx496M+wYNwmWRS1qyeOpcJ7dAOhXC5P28i54d8kDprZ7u+JBAIBAKBQCCwH3Qy7/HWuga65Ogz6Nj+oavEz8gvkMe6C6wxX8kcsP+oUyDfOp+gfiPrFepU4k9gH/Y1iON5D6A/Qr+VzCMDF4crcCbzKeAvk3tvZO5C5qRO3NMlolPnXRuZG7sXJXqMM8z6ZO/ciB9x6gg5v+dbv+S9/73Zf+tf//Gv+m329wbJ2gVJ
1438614019.950,1.000,0.000,HISTggAAAMp42u2WTQ4CIQyFKYXxL8YLeJe5glcy8QZe1CO4cNh8yQsjMbOxb/MCtK8FWsL18byndLmlD3xhWzjPrxQIBAKBQCDwT7Af+amxDfrljl7u2I3u0/BPbPoT7AqY/8oK+0noUn8n5hVX6BYxPsK++R+w7lgvyItMHeZP+xbnhPkzmOtV5M881Tka5g1+Wdx/i7cX4yJY3a+qkyzurYi6cVH/WeTvon5p7+J82Hd1ZX+quNbpS1/Zz0pn1N82fke3jvPtezwc5w0oDwVL
1438614020.950,1.000,0.001,HISTggAAAM542u1W2w3CMAyMnWcLiAW6C7MhsQHLMBYj8EHzc9LJQQUkhO/HsmP7XMdNslyu5xCOt/BEXKWsUk/34HA4HA6H47sQb8Ff7K+8eU5Q10F+If7dnomfJTsKvDNRJojLYI+QpxjrDfKgvZB3b7fvIf8EegMd66nAfwC9gR/WO8H6DOsZ+lWBfwf2Svoxk7oE4uLg/kTY90rmJhnzIoQ3kO/PxnyxeY+Eh/Grkdeq04pPpA9q/O86WM+r94xsPM9kMJ9s5P/U+fqz98sDRusFlw==
1438614021.950,1.000,0.001,HISTggAAAM142u1WQQ4CMQgESm1dD37Av/g2E3/g53yGT/BgvUwyoRt7MWEuk7YwsITSvdwfN5HzUz4og3WwXV+SSCQSiUQikVgPBf7VXwNdhf89pmNgN8sGOo3Eddh3sHdg1LfAXoPzA3AB+23wCfw68Eb0Ouh2ks/Xvw4+ku9ucN5I/SrEU9hnfg51ddIPlfSHEbsKdfGgzzTIx0i/VpJHCeIY0WVxjeSJ98xI3zMdIXk60WH3VSbXEswd3bmWybmjO/OQRfZRHVbN8b95b96lRwWl
1438614022.950,1.000,0.001,HISTggAAANh42u1W2w3CMAy08yqUgjoAuzAbEhuwHGMwAh/EPyedXIqQKuH7OSVx7HPiujnf7leR+SFv5M7aOV2eEggEAoFAILAFaOhapYuxwPvPkIidwnqC/TYuxK52buAP358NuDqcSRzjPVnfAU+dB5g3+xPRdYC80X8j8U332PlI9k8wPxJ9lZxfg3PIoHcAuwLjTO67Oveu4F+JHyF1UEh8ceqX1Tery+TUdyF6ipOXOv2B1YMSO/YdqrN/aX8Q53485C/jykr9svDcftXHt9r//+U/93EeL+5SBcU=
1438614023.950,1.000,0.000,HISTggAAAMx42u1WSQ7CMAz0kqSlQuID/IVvcUXiB3y0T+BAymGkkVNRbp6LFXc8E7tRlOvz9RC53OUD71F7tNsqiUQikUgkEonjoX/W+b7nSNxQiU4BvpP3ogQ+BXy2dQO9Svioh/kJ6lCvAs/AfwLe3OOJ8DDfgvwC+mfQW0gd7qOSfnGeyGN9GpmXET0lvg51GvwvI3rs3Cj4MH4j9UbOqRN9C9aFnH8n+8A5MJRgTkr6EcLfe8848ZNB/1G/0e8a9Bnlf71f7SCdvfX2BhW4BWc=
1438614024.950,1.000,0.001,HISTggAAAM942u1WSw4CIQyl0M4gcTEH8C6ezcQbeFGP4ELYvOSlfjBxkr5N09LPKwNlTtfbJaVtS0+ULqXLfL6nQCAQCAQC+4QEv13sw7e8hchX1wvoGfysSwW7gn+FfJn8X2LcQuJW4qfAy6A+8qwOX4N6Qz9A3QX8hmyw3iD/Cv1hvur0M+KPkKeRvpTYjXwne5PXSvIL4WFgz4QXO4fmnCdWD8+3knugDj9x7Ap1cF/FyVece4pxZdKcYMjOHPlUn8Vv1lz/1bsgk/z/7d2SB+a+BQA=
1438614025.950,1.000,0.000,HISTggAAAM542u1XOQ7CQAz0kXgXUvABHkKXtyHxAz7KEyhImpFGzko0CE9jrZOxR86spVwfz7vI5SYf+BZ1i7a+pFAoFAqFQuGXoH+mB+sbRIUz40+Ez/o48CbSb48nOAfwOjyfIe7vNTgH9HXgLZBfQM8MdYzU7URXh7qN6DxD3QAdWQwyhyDfg80pSB7n7FDHiF8a4QfxVeYPTfzkxCf4H4N+EKKH5dFHSvqzvnhfIrmHktw7O9hHEr4N7pFsv2T6R/eYHsxnur+1p0f3t74BJEAFMg==
1438614026.950,1.000,0.001,HISTggAAANV42u1WOw7CMAy1E6dpWLgAd+FsSNyAizIyMpAyPOnJAVq6+C2WW3/jT3K63i4ix4e8kDvVTtP5LoFAIBAIBAJbQjeW39vuqL9P+W/zeb/z4P23wBy5Qr5n4hf1MtE3oJXoofzU6QH4DDzaW+gMfIM8KrE/A9+IXfxfgW+QD8pVkofBORbHjkFcRs4V6yukPhORT0Qe+wrrI6S+megriU8gDnX6Vp3+nEjcicyJR43MozpzWxz/Mmg/De4Fb6/oj/tNyP5Zey8nWQf6Z7297id9AgRsBe4=
1438614027.950,1.000,0.001,HISTggAAANh42u2XTQ7CIBCFBwZKdWE8gAdx17OZeAMv6hFcWDdf8gKLRqPO27ww0Dc/DJCerreL2fFsT/jKaeW83C0QCAQCgcBvI71ZJ/1ZXbb2T3sW82Suqx0dh51cVp5gd+gXxPGa32E+i/Hc0W0YV7Ajzr3girgmcBN6Dd838X1BPrPQaSKeivUH4a+Kuql6MS/uP/uA+bjw42If+L8xiX4tYh37MHX6bPScmDgvLvzlQd0CVn5SJy4T9TOR7+h9oZDFWNnTYB65U/et35Gt7/Fveb8+9m49AGL7BSk=
1438614028.950,1.000,0.001,HISTggAAAMt42u1X2w3CMAy0nUcT+GABdmG2SmzAIozGCHzQ/Jx0ckAIAfL9nJy6PsetnfZ4vqwih6s8kDbWje10k0AgEAgEAoFfhn5pXjaZ51jPZJ2xOLa9WC+D70aD/BLwAvbwKyReBc4QRx3/4uh14EauG9hDfw/xmxO3Q/xKdBa4D/edgXdgN1JvBf9E6o92heeOdSygV4ku2p39dzi8gK4SHXyv02Sf2JP5sP0Wp+/KpL6SflJnfpijz9gcf3Hmxqfmsb453r+cP3oH16kFnA==
1438614029.950,1.000,0.001,HISTggAAAMt42u2W3Q3CMAyEY+en7QMSA7ALsyF1AxZgREbggTx9kuVWRBQJ38upqe/OTZSkl/V+S+n8SG/kztJZr88UCAQCgUAg8E+Qg3LUqdeNPrJTz/+/gnHqq6EjZ/hVw7eCG+r4PIMz9EvnyfCZUMd8+jfUq5HPnAJe8P7k9NUcno35KUZ/1CvWi/PH/sVYR+aqwfRRQ5+d3GLoxcn3+uH3NqM+OX7q7Iut/SRDX5x9Lc64fHjOjdLJzjoZ1Oe3zvdR83d0vz97T78AFF4FjQ==
1438614030.950,1.000,0.001,HISTggAAANV42u1WSw4CMQiFlnY6RpM5gHfxbCYu3HtRj+DCzuYlL2iNRiNvQ/iWAYZ2f7ocRZaz3JE71U7T4SqBQCAQCPwqNEoQ+MI50ME8mT4/aJeACuGz469gVxx9JudX8Dd8h4KdAV+J3dTpFuQbiIN8Af8ZqJG8J5IX5rPm2cAf7XdgVx1+zWsBeYNzjfQJ9TPpSyN9xb4VMk8GcnPmUsl8JTJX6swf9jmTOogTl1FzvkOc/yI78ZPTv/RknUb3EauXt7f0xX05uh8/fX/om+L+7f19AxF0BXk=
1438614031.950,1.000,0.001,HISTggAAAMp42u2Wyw3CMBBEvf5hwgEKoBfaoB0kOqBRSuCAc3nSyAEpCCk7l5Hj9c56so5zvj9uIZyu4Y3U2TrHyzM4HA6Hw+FwbBEGXhr/rc7ouQ04DuKj4Bm5cxH/hUnUmZCPY6VPvR3GWXBFfBX1ts6TiEuIa9CfhB7r3Xc+IL5invka6pj3dxS+J+GH8qFAh/ugvvInYR19LsIX1RfsI65X+2a/xkHf2CDvp+eF83nheVR1mHivSjeIutf+Dv1rHlvZj1/dL5u7V18KHAVF
1438614032.950,1.000,0.001,HISTggAAAM142u1Xyw3DIAz1Bwrk1AG6S2er1A26VMfpCD2UXp70ZBTlEsnvYuVhPwx2ILk9Xw+R61t+8Gl1Wrt/JJFIJBKJxDmguQWnhJE6alBfhe+3VX0Dq8RiXAXe4bkFfg34v98geh34ArYR3kG/wngHfpv2AvlsJK6Q9Q4yfwM7QA/jGI/zdTJ/IXGYtwJfSf1w3En/sTqgn5M+FJKXkXwQTF+Cfregb4z9Jy2uz4Pzmumtvsca5KGL54vs9JOdOkfprsIP1st7+xz7pF+ULAWu
1438614033.950,1.000,0.001,HISTggAAAMx42u2WTQ7CQAiFGYbWVhdewLt4NhNv4EVdunRh3XzJC1008Se8DQFm4AEtmdP1djE7PuyFvsi2SD/frVAoFAqFQuGf0b4krjrvia7uu/A73n30B/wh4u4WOcLuiPeWA+JS570R+gF5yWMG3wn+gD4hP+uYIXl+gn8PGaJPg7DHSjv9o+h3iLmEmLOLuQ+oc0jmZyKf+g7JuwvdoPeEryfxQvBQfWpJHdl/5Uk+E3zVPmhJ/yzhvda+1d7rK/fYp/f2r/Lwreb3BKGTBcw=
1438614034.950,1.000,0.000,HISTggAAAMZ42u2WQQ4CMQhFC7QdRhdewEN4A89m4g28qEdwYd385IemzpK3IWn5hTKUzPX5epRyuZUvNqwMq/d3SZIkSZIkSY5HFv10Ul/BL/JXsKg38r/4ow3rRNfBr8F6Jec7rDvoN9B3sEbi7UR/Jv4nonfY3+AcvLdBvH3yPk6+A6urBXVppO6N9I1BfxjpGyf1N+gXjBf1XSX7LfBXkreRehnJh72/HrwjnXxfmC/Dgjmhk3NEFueSHDzv5OA4/87X1fjyAXbVBR4=
1438614035.950,1.000,0.001,HISTggAAANB42u2WzQ3CMAyFnZ8mLT2wALswGxIbsBxjMAIH2ssnPRlEevO7PNmJHdt5qXq5P25m56d9UDZOG+frywKBQCAQCAQC3yOBj85Lu+7/cWJfdmxyEf6MdeaZ4K/Yv4j13W7IU2EXcEXcCft3njfuwr8iX8c662roZ0VdHfV05F9EvU2cx3kvoh/OuyFuEnNr8K+I6+KeknOf1Ocs9GWO7qrQZ0F8EzpU+jehpyy4Ou/P68Oc95edd/6r/e93Z1R8+vO8o/ocPZ/RfY+KS28gswW6
1438614036.950,1.000,0.000,HISTggAAAMF42u1UyQ0CMQz0kWOBBw3QC7SGRAc0uiXwIHxGGgXzi/B8Rusdj3ed2JfH8y5yvskbPlgH23WXRCKRSCQS/wVd3H+1PmuwXzqJf+tvRO+EG/Gt4NchjnkF4k58nDwXiOuk7jb4AFzBr4BPB30nfvg/nXzPR3cafCT5qCugr6Q+q9egXwV0Fe4B5ju5H21yTkbyFd6jTsh9EHL+NvHTYJ6SOTHSBzZvWHc2XxqcbzbPGtw/v+4lCe6h1RHu7wtlIQUL
1438614037.950,1.000,0.001,HISTggAAAM942u1WOw7CMAxNnp22DIgLcBfOhsQNuCgjIwPN8qSnmBapi99i+dPn2ondXh/PeymXd/nCVllXidurJBKJRCKRSCT2o26Mr/Sf1gGh93gP5gfxg2QjvxPfLPxdn4S/yxPFeZAHlH8i+0L8s5BGdTbBu5CfdRd5Oe5M/E3U2UR/jHhnilPnxv3ic2R+E/epij67yFvJDmFX/C7mAYN7z/NiQX4M5tHE3HB+BOvC4L0x2Av4cZ8guB9G+woH7cOoH3/Ke9RzW+ve/Z36ADHcBe4=
1438614038.950,1.000,0.000,HISTggAAANB42u2XzQ3CMAyFE6dJU37UBToAWzAbEhuwKCNwoLl80lOQSsUBv8uTE8fPTW2rXe6PWwjzJbyRVo4r2/UZHA6Hw+FwOP4BcWf/b+uSDd9zAbZ17EHkQ7v5jYiTwaljk1vcAjtjfUK8UZw/4HyzK+I0Pop8Z+jQf4JuWz9jPyNO8z+J+6jwK8iriOdR/qyLCj3DPQ7i/STBGfVCPepE8f+h6renH0V9D6KPUqefVP0nUfep05eqP9U92If9bhvni9pX+e41D381f7fqxBe7FwVA
1438614039.950,1.000,0.001,HISTggAAAOF42u2W3Q3CMAyE7TikLZQBkNiF2ZDYgKUYhxF4ILycdEp/EKrQfS8np7Vjt4mT8+1+NTs97E1U9arp8jQhhBBCCNHGV/r5zPeYBrEZidgJ74UQL4N6w96RvErVoeoI4wHaNewM/jvQPdgFxvuqB1JnAcXnI+TzmecI8Tuoe4Dv3IN/wHgieQWpG+MkEgfXE/MLsj5yI34m7wWZJzfmt4a/k/lKY90H2ZdB4vnMPNPEfTx1/1sjrk30X9v/0sJ+6Sv747f7ri+sw2b+j1+dM1uJ/y/nthBCCCHEZu83L3miBbc=
1438614040.950,1.000,0.001,HISTggAAANV42u1WSQ6DMAx04mwtqtTe+QtvQ+oP+tE+oZfkMtLIVBWUg+cS2UzGdnAM8/O1ijykQ/sa+hqXtzgcDofD4XA4/odAbP2Sz/al8d9HVqZTgYc6Cn60MZ8M/gzPo2EPfgG/FbfB/jvUV0H3Cn4FOwF/6F+Ah3ErqWPgBvoT8BuJh3rsXAt5j43EqYY+9ksh/aJGnzJdJf2uhId9HUifK+FhnGj0mRBdNXSTcV+zcf9l47xg9Vnny3SVnOev847le9TcDRvzk53q3mvfWb5np83zA3wDBPg=
1438614041.950,1.000,0.001,HISTggAAAMt42u2USw7CMAxEY6cp/Ww4AHfhGlwHiRtwUY7AgnQz0lOCukBUns2oTmYcu4kvj+c9pfMtfZArW2W/vlIgEAgEAoFAD+xgeX4Nb9RtnX0iH2LSD7I+wL4M3xl8dH2qXCQ+wv4t/1p5ljyat4jfBDyKn+o2XiCewbfAeZeGfpS+ruKnPItuq/8k7LLPoG8D3JMC/Tb4Xw73SH28kc8gn+qJM8QT1OOQtzdO7yzDu/eGjvQ0R6xzvhj42s559K3uqHPedq7/ff1vgacFLw==
1438614042.950,1.000,0.001,HISTggAAAM542u1UQQ4CMQgEym5dXbMf2L/4NhN/4Cc9+gQP1sskkxKz6kHmMimlDBDoermeRZabPFEaa2M73SWRSCQSiUTiG9A/rduCfUE2Yi9BHe/4aYcdGPWRHeIPpE6Hd+hvcD+SfFB3Bn/kqXEFvR3p+xH8Mc7rvJC4Ffz3oFdJ/ROJM8N7gzwG4APwCPEczoXYnfQH83Yyh+jvZA7ZXNbgvLD8enYP7oME65NgHCH73NtHDepKcP/Zf2SdenWj/11//P9+Oj/bSOft/j4ArTgF4A==
1438614043.950,1.000,0.000,HISTggAAAM142u1W2w3DIAw0JjyaVuoC3SWzVeoAlbJoRuhHw89JJxORj6ry/VjmzsaAA3m81qfI/S1fxN2G3eqyicPhcDgcDsc/IwzyZ8+HOtTrYH2RxGunP4HfbAY+EV3jC/j4HzqR+SqMZ2Meq75K+BnqnEFXoe4E+tKpx7gbqa/xV1JPsxfwk3EuBeJwX/FcsG7sj0T6DPOwfVPgMxnXzvVZ/c6+q0z6UEj+QNYnpD+VxKnxnUcjH8t/9J7pvbdG8/fy+iPvQzioO+v9CB8w/gWH
1438614044.950,1.000,0.001,HISTggAAANB42u1X2wkCQQxMNvvwQMEC7MXaBDuwOcuwBD9cfwaG8UBFMPMzJOTJZnN7h/PlZLa/2gMx2SeX480SiUQikUgkEu+DAxuRlb4AG7zn0M4FY7xK/Fn+IP4h7BvhAXGevEzukzcgd7BvoN9BfGaPdbB6hvDD/FvQB/SxgFxI/0PU0cG/gdwhfyXn1sR5BsRzoq+kLsZO6mPzyeYM58RJf2x+8P+orswf5J6x/jCPvXh/2f20lXGM1Kf2l9p3ReRRe+5X9/in7L8d72++v3dw3gXi
1438614045.950,1.000,0.000,HISTggAAAMp42u1WWwoCMQzMxHbdquAFvMtewSsJ3sCLegQ/3PoxMKQLCn5kfkKneTRpGnq5P25m56u9sVslVunL0xKJRCKRSCQS3wd+5O/zj6P/nYk1iC/Cfia+iXgu7Pe0VvGc+K5XSbLfImTXO4j4Pa8p4FXczh+Jb3SOE52jkf+Z7CM5kR+uQwv0OT8X91IFz/fppF/IP4Q+SB+iT2vQZ1Hfu3g3UR960LcQ+wjeuW/MB4PzA4E/DNYlilM22kV12DrfbLDO/zKn8QIyAQVN
1438614046.950,1.000,0.001,HISTggAAAN542u2UTQ7CQAiFh/m16hFceZFeTRNv4EU9ggtx85IXGjdN7fs2hIFhoFAuj+c9pestfSguzWWeX0kIIYQQ+8BWfs82Wsda36sQe4ZzptvCe8wP9UzyKoFfIe8MYq8um8sOfl/7RN6fSJwC9rPLg8uTyyPYO+gYt0Ec9B8Qt5O6OsQZkG+H8wF5V3K/kr530GswF6yfJZgDjI/zU4M8MO9GZA72g5E5smCekUbqif6zHNRtpF+snhzUmX/cP7ZwP6WFe2Zv+902Wp/9WR+EEEIIIYQQQgghxLrYG51yBXc=
1438614047.950,1.000,0.001,HISTggAAANZ42u2WwQnDMAxFZdmJnZ46QHdpVyt0gy7aEXpocvnwcAKmFKp/EZKlny8si1wez7vZ+WYf5NWm1fr1ZYFAIBAIBAL/jDQovvdc4Tt5vHOewBapT+IXqMvw/5iBf/MnsS51s/hbXoN4kTj5VeoW0LPlnURPg3gVmyVf+9T+quhR3iJ8s9hF+CfRWYFP770Bj8M8zHA+de65yFzSfdI8muRneAc0jw7foTknHd6ZX9JjoI909PYGvb+jddSfAS/tlaP7cfS+tC/t5dF6en7+Mf3d/t6w/gUs
1438614048.950,1.000,0.001,HISTggAAANN42u2XzQ3CMAyFEydpS+HAAAzQLZgNiQ1YlBE40Erok56cVuLmd3mq459nN43S2/P1SOm6pC/Kynllu79TIBAIBAKBwO/9IPr8T52jz4rpZ7CbE18d3Rn3x4Y4rlfULeBh5RGs8lasD7BPyMP1GVzht8Wf8FyF3gms+rkIPVudM+YyI55zbKjL99FgH4V/EXM3Me8m/h+SsFO37dy3an9mUU/5s98k+lP7l3msU4d1ngfZya/ml8T37aF0+pmT1ztfjp6DvXHWqX+vnoAzrw/QDQUR
1438614049.950,1.000,0.000,HISTggAAAMh42u1WwQ3CMAx0HKdpQIIF2IXZkBgAiUUZgQfJ56STG0R5+T6n2pez29hSL/fnTeT8kA9y59RZry8JBAKBQCAQCMxDJ/XJiRv4JsJCdEry2fFV9p8IPPpbQF8gb+S9hn4ldQc3qFPArwBXoi8Qb1B/nDtAvJBnPL8Ar6BrpE/0OXU+gs5Iner0qaCr5D6VfF915iMTHyH3ZNAnm2ucE3PmXjfujzl1t+4JMvbJ+svO3jNfb+/ly/ysXn6c30u3F/5VP70BgqwFhQ==
1438614050.950,1.000,0.001,HISTggAAAM942u1WSQ7CMAx07CZpBRIf4C+8rRI/4JM98gQOJJeRRg4QcfJcRna9TOvG7fX+2EUuh7xhjVNjvT0lEAgEAoFAIPA/JGKjX4n/07oL+Q8U8GNfA0Y9GJeJrUQP9lsbV1KnQFwB7nU3YIU6nc+Qn6H/RvwL0dHjTyQvE70V9FSon8kcK3kuOC82/+LMr0AdcfSoY+N7buS6OedBQV9y7lsn6U2D54TlMV0sDuNH94ORPWCD+0LI3NOkPcegX/YZ7S8/9p+la5b+4e/CC1BxBdE=
1438614051.950,1.000,0.001,HISTggAAAN942u1XOw7CMAyN7SQt5aMegLtwtkrcgIsyMjKQLE96SlNADPgtlu34E9d22/P1toQwP8ILVqgUqpd7cDgcDofD4XD0QwgvH/bP/CqxM3KuyiPIlcRV4DPYV/kA9hEofn9G8KdEPxaaQD4VeoT4mfifIE4GvwniZUKr/rDSrupPkBfep+a/A397Uge870DqnqCuyBvQROyN/UeQfkuNc0r6EO1ZXyjJS0kdpCFXMmdG+ED6m82TNuZVGnNoJE8272v3Se9+69Vv3Z+90DfvIxvr8626/Op5/M17+wnxswXp
1438614052.950,1.000,0.000,HISTggAAANF42u1WSw4CIQylfMqAGi/gXTybiQcw8aIewYW4eclLh8zMrm/z0h+0FBpuz/cjhOsr/JAGy+B4/wSHw+FwOBwOx3rIpH5vO+Ow0v7/D0biV4AV5Ax6hfUj6CvsW2GdSPIpIHeIV5LvMvgM+kbqugw+QbyQ82rgVyCvhdiV5NNgH4Xz6Ub+CvEd4vEcM+lHNe4N9quCnIx+ZiJHwon0Ae8TrhOg7kTqisY7ULBno95E3kEmdQjx3+vdW/NFNs6fWT/ZOD9n/Y6a+3JQfvIFetYFjw==
1438614053.950,1.000,0.000,HISTggAAAMZ42u2WTQ4CIQyFKcOPrLyAd/Fabk28gRf1CC6EzUu+gBPHVd+moeW1bwo0c3k87yGcb+GDrVvrNl5fweFwOBwOh8PBsIPzxMnaxK9r/b8z2Ec6DPyDl6WO1kvdFtivfvquk+wbtkq8SN0qeSroJX1aV/MOXhNeBX8D3Rn6Rfma8G3Ci5Jf65bJ/UnQtyrxBHy6h3QOEc4zQnyb3M+0qId06/vKwIsQX+1DgrxpcX7Qu947v2znnPuWZ+E/sB/5D9P3Buy5BVc=
1438614054.950,1.000,0.001,HISTggAAAM542u2Wyw0CMQxEnS+7ERIN0Au1IdEBDVICJXAge3nSKLDa3DyXkT+xJ1/l+njezS4v+yJ1Dp3j7W0Oh8PhcDgcjvkIwqY/Cr+KB/HPY5+4M492Ef23vAqOGFfVv1Tkb/EM/6nzKvzUcUbeirqsz3rU32CzThXcUHfjBdyEDupk3wRm3QxbrX8U+8hzsYi+WexnEuuUxbngPE2ci9H9KGI8dXO+JvJUXPUPg3ttg32wwb2Lf75D1FF+1HXU+7c3P9hchIP6zNY57P8BtpEFyA==
1438614055.950,1.000,0.000,HISTggAAAMV42u1UOQ7CQAy0vSaES3yAv/A2pBTp+ShPoCCmGGnkDVJE42ksH+PYk929Tc+HyHWWD9pidbF2f0mhUCgUCoXfoCVBYYPzo4nN6i2xjfjIV8g3+C7jNZIP36F+BzbqjhDfEx/jwTuA74Q3AD/8EeYP/0TmOEMd63+B+Qx448p9neiY6cv+t5O+RvoOEHfSd+25xHnYOWR7CIlrwjOyd+89wbk1iUtyz7P9sneB6c3yQvSTTn17+brR+9mry7/x1e0NcrUFdQ==
1438614056.950,1.000,0.000,HISTggAAANJ42u2WQQoCMQxF06ZjZxT0At7Fa3gdwRt4UY/gwtbFh0dBBxHM34Sk6U8ySds5Xm8Xs8PZnvAmU5P5dLdAIBAIBAL/jRR1fDWfBPrr/+zNfQ525XXQC9j7/s3Ar4j/JOsO9iL8GmduchGp/rPwd3uV9S53kI/GrxK3Qj2ddwt5qJ6Fbw9xquSjPIusq1+Bvhf4btqvCnXoXCWI52BPME8J8tT5z+BnUG+Gvk0Qn+bVBufOBueR6rVBnXSuDe4N//CeJD9fmW+te/RX3pP0AA9KBV8=
1438614057.950,1.000,0.001,HISTggAAAOB42u3V0W3CMBDG8buzk1DKCEzQJVihK1ViAxbtCDyQvHzSJyNUJIr+v5eTLd+dnQRzPF9+Ir6+46atMddYp98AAAD/S7KflzxPmvy8s08N1jfTpwbry+S5/CZxXuNi1nWpo/OTiSVjl1fSX9dv87s17qXOIrHkXE3q7ky9yfT7kPku9ScZb3mfMj6Y5z3J+5rN/mdzjjDn1ufcpV6Y/mXed5rvx62rQV4Mxs18JzkYa71+5/n6oG4M8ke//zT7iQfvlXzwXvrr+/JZfd7tfwcAAAAAAAAAAAB4JXkFXBIFQg==
1438614058.950,1.000,0.001,HISTggAAANd42u2XPQ7CMAyFYydpmwqJjYm7cDYkbsAlGTkCA5me9JQ0/Aih9y2WGzu2Gztqj5frOYTDLTyJVVqVfroHIYQQQnwHU11/VZ8P2lunH9qzeJGso18k34PM3hr7OMhU5QR2qGfQE7FfQZ9BTpDfUuUO1tG/gL5CfFzPJB/Mv4C+J/EXeF5AsveFcazRN5n4G+gz6InsP5HzT0SyvnPSB7mzb2Ojbid15kZ9Pjg3TvqR2bXmL3TOZ2tuR+85e/Fe3Gpvb9r/U/mFjeckhBBCiB/4f3sATIQF3w==
1438614059.950,1.000,0.001,HISTggAAAMx42u2Xyw3CQAxEvXY+mwOiAXqhNqR0QHOUQQkcSDg8abSIJJw8l5G9k9nR/qRc5vvN7PywN2LhsrBfn5ZIJBKJRCKR0Cjgf/lQ72KcfaXrGr4r96ipC+gG+LPvGB/FvPQfRJ6VK3yZi33WVYxX5DyJ9ZmgG0VuchX1CF/mm8A9vovGOrTYxXdqP9W6ujh3LnJGQ8dzG+KcB+oOuU3ck9b96MV8JnJ16r9LzBsb34etum99fKf3sDTeufJjPjsolx28P7ZT3k//Bck6BbA=
1438614060.950,1.000,0.001,HISTggAAAM542u1WywnDMAy1LFt1nUA7QHbpbIVu0EvH7Ag9VLk8eBhKKIToXR6y9U0k28vjeU/p+kpfqLM459s7BQKBQCAQCGwBOXi+spG+EJnpZ2CBd1+B9QL6CdYV9pX4X+UGfhqJs8pG7E/Ok3N1PhM/BewM5IvzDOsdWCGPGfYb4Q55TGBfIW6GPA30OqkP6yxgZ+Q/V+BMvqeSvhHiV0jf6aAvjfjRQRwdxGN9xuph88LisblkcUbz8us5MDof/nVe5p3dD3u7lw7/jvgA5fMFiQ==
1438614061.950,1.000,0.001,HISTggAAAM942u1WSw5CIQwE2iI8Y+IBvItnM/EGXtQjuCkuJpnwMHHz0tk0Le1Aafncnq9HStfkEJfZZbm/UyAQCAQCgf8iR16R/w983/8a6LpzHSOuujTCZ2S+Av9HBbsRO46P+BPoY10b8VewV5Bjng5xjfAZyA7zdOBvZH0b+F9cngmfQf4N9Ap6J/64b0rqaqR+Nuknm9TPJnUupP+E9G0hfadgF9LveeIvZJz1N+PPJF7IudOd51oIfyL7Obs38uK+lcV76Cjvxmp+h32/P75PBOg=
1438614062.950,1.000,0.001,HISTggAAAMt42u1V2w3CMAy0nQcpfLAAuzAbEhuwTMfqCHzQ/Jw4uRURSMj3c2rt2OfEcS73x03kPMsLaWVd2a6LBAKBQCAQCLyD/pl+HbwPOkifEbs5dbD8icTH70S4+2ViL+CXiB70KxvjFtB5INyAJ1jf/U6OfSLxK8Tveo7ABepoZJ8rqbNCvAzciG5cz84vE7/q6MLzyaT/jOTVjf3E7NgHRv6r05eF3J/s3EtWx1727rM5c4Dtt304v3XwPJOdc0oH5/n1O/G1d+0JZMUFkQ==
1438614063.950,1.000,0.000,HISTggAAANJ42u1WwQ3CMAy0ndQl9AEDMEC3YDYkNmBRRuBB+jnplIb2U+T7WHFs5+w4Vm7P10PkMssXqUqt0u5vCQQCgUAg8J/Qg/HRg9fZNtbDOuukDT3yGeA/mEBv7L9YZSbnnGA9gj3Gd1gb2CHPJX6B/QLSgccEegd+6Id8R4hzJfGWOGfwz2A3QT4OeRZSpwx8nOwncq43+sPI/Q/k3hPpE1l5z0pkIv2WO/tRSV1kpZ0Rv9zIQxp8tOHXOxeNvHNmn36cw73zSHeap1v1u833D98xBQk=
1438614064.950,1.000,0.000,HISTggAAAMd42u1WOQ7CQAz0kXizEhIf4C+8DYkf0PBMnkBB0ow0crYIFHiakS17bGed1V7uj5vI+Skf+Mq6sl1fUigUCoVCoXAk9M/mQr8R/wR+xkbecU70nOgbiTMSN0M89jGDv5E6jBvYnfBWZyH1HOwOdoC9gC5yJ30xvQDG74J+hz42PpG8gLgg5zAn5xhkP5z4W7KHE9kPS/ZWyP5leZbsvyb9ZDqx879g8yjJl6Tv0XuS6eyd1wbvr6Pvcf2Szuhc9qO+9Q1YcAWS
1438614065.950,1.000,0.001,HISTggAAAM142u1WWw7CMAxrnLIyQOIC3IWzIXEDLsSROAIftD+WrExsiJ/4x0rSuO5j1S73x62U87N84J2tM66vkkgkEolEIpFYDxM8gKBPxQoQugjGgf4LnfJj/ir6OL/vvBPjalBHMN+BmOcbfOzcKD9RvlJ+6M1Ud9Lh9Zyo3kjPKWYfUcz++Vya8D2J862kw/vn4jxmcZ88uIcm9s2DfTbh38Q9dRGDdItYv9KH+J4h+tR3jKBuC9+FsrDfvtTHSh9bv6O/0t/K19/9vAHr5QWR
1438614066.950,1.000,0.000,HISTggAAAM542u1XOQ4CMQz0kWRZQOID/IW3IVHQ81GeQEHSjDRyQKxoPI3lHDPjXSdSzrfHVeR0lze8R+3RLk9JJBKJRCKRSHwPncz1RzoW8KOOkf1OdMb4QnQcYoX5AnmF8ZE3GN8DrxG9AvsPPe4gNtDD/aO+I/GJPI34b7Deib8K+Qp6K3wHrGcBHvRbAp91sh4n/VBJP7GI/xF94rukwXqm54TfgnnsRwn630lfGzmHRuq1SR0j59dJ/bP3jQb8ttF9JQGPyn+gG6//2M8LiNEFeQ==
1438614067.950,1.000,0.000,HISTggAAAMN42u2Wyw3CQAxEHW82ISGiAnpJbUh0QBOURwkcSDg8NPJK5Oi5WP6O1/vRXu+Pm9nlaR+UTXab9PVliUQikUgkEol2dH/6W/NaeTr88yL/9x8oeByyCnsPf4F9hD4gLsrb/WeR5/Cz311O0Ef0Q/8JchT2Hvok5Iz4GfxV9Levd0E+57+gHvdlCPaV81fnkPEOvTTyVHE+XdSt6Id6EesoAY86v1FdE/fFGufoQV8W8Kh77UJX78FR7+DRdX943qOYBZY=
1438614068.950,1.000,0.001,HISTggAAANV42u1USQ7CMAz0kjQsQkLi2r/wDb6DxA/4KE/gQHIZaZS0qjiA5zJq7cnYWTw/nneRy00+8Mpa2a4vCQQCgUAgEAhw6JfzjOTpIFtHZ4Pr5soJdD74jf/behN8Z5JfIG6gd6ivEL8TySvEZwJu8QOss4M41lVIvOmOlc9Evyf9Z6hngrqcnLeDvgyeQyJ6FvdOPQL+CvlKdKwfJe8mEV8jfbB7LB0/I/5G9slIn8x36TvvzRlbqO9xb46NzkHbeM5uPd/X7vevwCTwT+cdWHkv3rssBUk=
1438614069.950,1.000,0.001,HISTggAAAMd42u1WyQ3DMAwz5diJX12gu3S2At0gi3S0jtBHnQ8BQjncn/ghYMmUFDmy76/1mdLtnX7IndHZHp8UCAQCgUAgEBgPHLTDWb+qbzvj8HrpPHVeSK/y+5LenRNxIXsVzH5Kb4s7U36FWMVZxL5MulucJvZXYTdaL6TL+c3k36jeJurn/nA8/k6slynfIs4BhJ+yQ+hzH82x4+A5S8LPHHsW/nDqMyc/iH5B1H/2f4WTr+eHwfMIg+fk1fl6Fvane2C3zhdorAWP
1438614070.950,1.000,0.001,HISTggAAAN542u1X2w3CMAz0Iw0FtRIDsEtXYCUkNmBRRuCD5uekk4NaIYF8P5Zj++I4qZNe7o+byPkqb/gqdZW2PCWRSCQSiUTin6Ab7XvDQArRNdAHYo/iCrwDhbwLHeYpICvYMa6S+APYndSl8Y1BPg68A/BUIkeIa/oM/I3vSPybPhH+CvFzsI4J/Jv9BPNhvbC+StZRwI7jBvnguUB+C/bPyT47ydMgLyfnVUkeSub5NL8SfKdO9g/HheQV9QO2LgnqoOw/rzO+t5/qxv6pQf/bq89rp9+v32Pf9g/5Xo1IBUg=
1438614071.950,1.000,0.001,HISTggAAAMh42u1XSQrDMAy0FtvpcugD+pe8rdAf9DN9Vp/QQ+PLwKDQQghUcxGWNFpi2SbX++NWyuVZPrBFyiJ1fpVEIpFIJBKJPUD+vA/9Mo4QvhJ/I35D76BvkKfDugZxGshKeEMeCa9BXIM4jfCxDgPZSX1TwGvAH7wz2A/g10lfaD8RvUN9GH8i6wJ8X7nfleyrED2bKzbfTuZAyP+LB34snxO7kfNmwXdby4/OpQb3AetXyPkXUo8G+q3uY/kx317fiaxro37eMtQFpQ==
1438614072.950,1.000,0.005,HISTggAAAQR42u3Xy03DQBAA0P34E4iQKAAppdAObSDRAY3SARwSX0YarQkXLL13GXl3POPY2XXy8vH5Xsrbc7nqt1iv4fL9+lUAANivDo7LzvltvN1Zp+6sv7dfnO/heAl58+C8bXxK8k+hbg/x8RbXEOdkPM7HvkuIW/2H0HcN52/5T2H8lPQ5h7ot1I3XEfv1MD8lfeZQP45ndebkucY+LcRz8rzX5Pn35PsyJ3k96R/vc03OW5LrzmJN6tUkvwyO22A9TIN12wbrOLuv2bruv9w32s79YFSn3pnXDrr//zXvaJ/rv9QFwP8xAMD7EQAA/C4HAAAAAAAAAAAAAAAAAADgCOoPJpAGfg==
1438614073.950,1.000,0.001,HISTggAAANd42u1W2w3CMAy0L2nSlB8GYBfWYQ0kNmBRRuCDIKRDp7QfSBXy/ZwUN+dHXCen2/1qdrzYC6mzd8b5YYFAIBAIBAKBz/to73GpOEH2RGziPci6oPVM65PgLPwmsr/9NKGTyM558XeVeO5cSId1K+k14ccp/kI8i/wb2RfiifJbSBe0vw7Ol+uViQ8iXgi9SvFkkSfXz8S5Y9CHLvpwEv0K0R9Z9LXqT6WDQVwm6q10iqg3Vv6fai74xvk1qrcP9mHlnMKP565vrNO/3RO+U/9f98oT2/8FSA==
1438614074.950,1.000,0.000,HISTggAAAM942u1Wyw3CMAyN7TgtBYkF2KUrsQISG7AoI3Ag5fCkJ7dcioTfxXLkX/xLLvfHrZTztbxhnUqnOj9LIpFIJBKJxD9BdrYvgdznnxbYUcLLRj/L/9DBTgVqRE9B38l5DfjW6QD8BPKNyNfAzhH8nTo9gP6iNwKdgEd/DvrMzkDk2X0N4nQS7wB5H6FeDudK6oB2lNQf+6AG/YF96MFcYP8Y5KkE/tbGryQfBn4auYcRXokfI/MrK+c4mm/5cl/Jxv0jwf7Rnfbvz747L9ycBWo=
1438614075.950,1.000,0.001,HISTggAAANl42u1XOQ7CQAxcH5sNBIkP8Je8DYkf8FFKSgo2zUgjk4PO01hWvDN2vLaS2+N5L+X6Ll9Yt9Ktzq+SSCQSiUQikTgOEjxXiJOdfCxe4fsP4UF+RvwGvoNd9E8Qt9gzObfwVtCtwNfAx/MOOmO3E/ANhKeCbZCPgz+AHp530EF9jB+Bv5H6LhA3EV3s00D6q+R/wYO+KOlzJX01ct8KeT9OeI3cewvucWQ9mE8lcybBHLE5Y/vAgnxQz37MS1bul6j+vXtKDtqra+uRjXlv1Zc/8a6FfgAClgXw
1438614076.950,1.000,0.000,HISTggAAANJ42u1XQQ4CIQykLXTltB/wL37Lq4k/8KM+wYOsh0kmRY2amM5lAgydwkLD7s+XUynrsdxhg2WwHq4lkUgkEolE4h8gP/Z5vK+e1Ec+QvQ2qa+gU8KV5G+EFdq7wY2MF+Kz5blAHId+h/gV9AtwA15IG+d30Dnk6yR+h7wa2Z/NZyV5OcSzYB0VdE72v8N8Jf8HPjkenQsh312CcyDEv5Fza8QP42GeNbhfSvajBOvVyfuoJO5svwV1RIPxGqxbXqxj9mZd/lQdly/5hPX8BhUYBV8=
1438614077.950,1.000,0.001,HISTggAAAM542u1V2w3CMAy046TlUcQC7MJsSGzAcozBCHwQ/5x0cigI8eH7OfnsxHbipqfr7SJyvMsL1lk7l/NDEolEIpFIJBLvQ3+0ToltREcuwEpsAb2SeM/biF8gDuucO09gV7AbMFuH+mZwvcdtwe/1HkD3+B3YzO/9LKQOzOfxe9AX8Buc90xYod+J3G8l94bnhPsZmS/sp5G4EsRZsG8h81/JfOvgvBvJV4P6JMgjg7qS74/5hfTTBvuP9LXvk3yoRyhffl/X1vF3/6UnbRAF1w==
1438614078.950,1.000,0.001,HISTggAAANN42u1WSQ7CMAy0szWlSPAA/sLbKvUHfJQncCDhMNLIbaGcPJeR47GdOItyWx6zyLXKG7GxNg73pzgcDofD4XA4vofu1H/+ZcBb45ORT+E/KOCPJG/nDDqM61zAj3aCfBXsBHHdHkidQsbPEFfBPza+kPER4icY7/oTmT+us5A+F9BNRM/6jP3JYA+gw31Lxj4nUp/lCQbnlXWt+8DOvZDzHkk+1gclOiX5lNwrIfeS6ZX0Nxjz043+aNTfi3DQu6k/enePftdl5Xn49zpo3RdEEwT1
1438614079.950,1.000,0.000,HISTggAAANZ42u1W2w3CMAyM7TipAMEC7MJa/CKxAYsyAh+En0OnhKBKIPl+Tm6cq+NH2uP1dknpcE5PWGNprKd7CgQCgUAgEPgFyJ/FKV+eQybPzfwNbP3wfdph9Mtgv/1nwnODfZnoeePauMD+Daw76FTgDDoF/HeNF7AL2Bn8XvFswXbwW0BvD3pGdAvolU6eKsm7Ez0n+TWSJyN1c1IHzBfrPyV9k8k6opJ9AnGN9qcRvdyJ24iukjnVwbll88/mlMXT82d5lsH66Ur35Nrfk9n7dzZ+eQAE7wVu
1438614080.950,1.000,0.001,HISTggAAAM142u1W2wnDMAy0HrZTSqEDdJeulBUK3aCLZoR81Pm5ctgpFFLQ/YhTcrIULsK35+uR0nVOb1iL0qLelxQIBAKBQCAQOD6EcNmpl516B66gM/L8494J+dxiIX1k0G2oLU7AC+SnTl5BfwLu0C+eU0DH+DbHGXglfTrwSuo70Vc47wLnGuiccJwf80reY/5C3ziZG32lxI9GfNXzH+u7DP5fWN+IX9FfSupkMn/q9N/73rkzx+g+0MF9pIN7yL7cW/++r48+36/7kBWd9gVo
1438614081.950,1.000,0.001,HISTggAAAM142u1VOQ7CMBDcwzgJpOAB/IW3IfEDPkpJSYHTjDRaQLFA0U4z8s6esWOfrreLyPEhL3hjbWznuyQSiUQikUj0gAL/W19b/d6f6mg3WHtgV9AZF7IukKe8qe+IH/br4L+sx8aHxhV4hLxD4wn8Bsg/Q/xi34PO6hTQHbhC3onM56CXYM5K6sxkDiX7ivsipC+FOtG+KuhG8imJM3LePThfRuphHPtPjPThQX4j8Rr0IaS+fXlPrO2/9n2sneN+PV/vd2Kr7yGd/wk3iAXe
1438614082.950,1.000,0.001,HISTggAAAM942u1WyQ3CQAy0vVeABymAXmiDdpDSAY1SAg+yn5FGjgJBCvJ8LDu+1+vsZXrcRcabvJFmqjO161MCgUAgEAgE/gG6s/z0Q7218T3aYfhuJHwGaiRuge8V3qedP4BeAbmAvMdt4K+AvPsfSDz0cwS9BvYjyE+gnyEPrKPzZ5JvI3EroXlhP7Bv1eknngOeWwI7Jbw3Txif+U9gb2T+kuMP61Iynwp2QupT536Yc7/N0RNSly3MQ4mftXvGvrSHt9p3v9rne/vvbN6PF+2gBVg=
1438614083.950,1.000,0.001,HISTggAAANB42u1VQQ7DIAwDJy1dd9kD9pe9bdJ+sI/uCbvAxZIFrdhO8SWCOomDwL2/3s+UbqnCasw14vFJgUAgEAgEAkeQY86/1MkizuoDyls7PBN62nenvEXsO8UieCbqFNJ7JV7b3ykPxOM6RfRt+xtFp/4b9VmJd6FotPZOX9Ba6Vfz7bTm81hEvol7wucEcS8yzZfFvMw30Ue9B65nQg869zgJvazLRR8TdSDOHYPvHeI9uuCf9Q8M+tGob6HjU0fr/dp/z/rs7P/iLL+Xer8zzwTw
1438614084.950,1.000,0.001,HISTggAAANZ42u1V2w3DIAzE2Dya/nSA7tLZInWDLtHxOkI/mvycdIKohY/K93PCOZsjYLjeH2sIl2f4QDeWjePtFRwOh8PhcDj+GTJYf7SuTFpPBJZOX0rikXxXUj8RXYLxXjdvbJBXQF9AlyC/QHznBca77gRjjGfCZ9BVUp+xQR6ubyF+EuQz3xU4E3+V7Avbj0j0uL8R8kPjPBg5t+y8RlJPSR1tcKs/jfhiflhfGZnfSP9K57zaqbdG32rDR+s+ksn3o3x5Tx6dXwb5HfUOyY//0/T3+w3UdwWu
1438614085.950,1.000,0.001,HISTggAAANV42u2XawoCMQyEk3S77eIV9CyeTfAGXsAjegR/WBEGhrguCOJ8f0IfyaTpA7o/X05mh6s9KMP6sHG8mRBCCCGEeOFf1ouVuv5hv5N5rB2kPQ1bwa9AfwG/CvEK+M8Qfya6BdoN7AL+HXQ75NMTPSd5ddCrJP4CFvPtyfpZnk+7g3mVxGlJfdG/kTrjPuB+BBlnda3kn8LOoSfnAfMIMl7JfH8zD0vuCYtTiP+U1HPt/Wd52cr7n+nGxnc2Nr57/0Yk77nQORJCCCGEEEL82D/lDqqmBZA=
1438614086.950,1.000,0.001,HISTggAAANV42u1W2w3CMAz0iwYqhDoAu3Q2JDZgUUbggxSkk06uaPnz/ZwcO37VSXq9P24i0yRveGftbPNTCoVCoVAoFApfKLAQ+V/wlXlpsv/zvwec+WN+A2QD+wOwEb+t8wB2jegV6jLQD8m+RT4CO+Sb+TtDH9DvCOsXYofxFvlE8grQN1hHZvUY6R/uG8l3wXwdOEg8nAcncxGJ3shcBbFj58jIPCk5J07iG+mDJufNkrpipd6SvmX3iCR17n0P2k73oyXr+mOeutFu6/uQ5b1X/2j8F6tWBQg=
1438614087.950,1.000,0.001,HISTggAAANJ42u1WSQ7CMAy0nY1UIPEA/tIr30LiB3yUJ3CguYw0ciWKKJLnYjkeL3HjpJf74yZyvsobaZG6SJufEggEAoFAIPDP0A/tv6pTN+IZsdtKPuMp/D8K6CgL6JnohcQf9gOsV1gf/h38sE/oN3gnp/4J+BV4DfQJ8hjwGsQ/Qv0N6mL76yR/B8n6nUi/MtRdiSyEbxDfnHNQyXksZN3IPlh+Ni/4/ZT0Izl8If6MbyvnjM2pOnOnRM8r7z/WP68+/dJ96N1rW78Pe4+/+/f3BYOPBUY=
1438614088.950,1.000,0.001,HISTggAAAMx42u1WwQ2DMAy0nZAE+HSAPrpJZ6vUDViUEfpo+Jx0Mg+o2sr3OTk5G2MHh+tzeYhcbvJG6qyd7b5KIBAIBAKBwDdD/yRfIzr9UD3weebkYUQvO+OgfvsPzWBvPACbo2uwXkicDDx3HjtX0FfYb44+w34hdgN7Am4QtxAewY/lg3aFODPUOZM6Yt8msI2cH9ZnXBfS70z6zvzMObeJnEfvu1TiNzjvj/7JscXJ28tLSb336ozU46h5pSfNVT1oXp49j/XH7jV9AdRTBQ4=
1438614089.950,1.000,0.001,HISTggAAAM542u1UyQ3CQAy0vd4j8KEAeqGFtIREBzSaEvJgXyONNpGQgOD5WL6P9fr6eN5FLrO8kDrVTu22SCAQCAQCgf+CHiy/fklfn5oP6x/5BBTtjOgT6I3EwzgZ5N5pAb88iFOJnwPfSLxE+jgTvYPdROpooG9Asb8K9gX0BewSyAv4nwb9Z5IH5Q7yicwlg30FuZH52WAPnewx21O2d07qNeKP72sk7tb/Nfo/Snghc7CddengLhiZh5O7Yhvvq+6s6113/dfuvR68Pl0BppIFMQ==
1438614090.950,1.000,0.001,HISTggAAANB42u1XQQ7CMAxr0nTthpB4AH/hbUgcdt9HeQIHOiEZWamQgEt8sbo5aZu5qXa+bdeUTmt6IneWznq5p0AgEAgEAoHAC/Lj/OLoGHt6hBI20BnJZxDH5sW8mcShrpDxzhXy7boJuIBugecK4wV47nzs3Mg8BlzhfSXzzDA2su5C8jbQZVLnQr7bAdbRgAXisa7NqQPz0+T4ohBf6KB/hfzv5EGfqnNePL+zc61OfbKzP9QlJ360z4zuTwb7jHzY5xjsT/057rvv5nnzxQPeugV+
1438614091.950,1.000,0.001,HISTggAAANN42u2WSw7CMAxEEyf9ABXiAByEHWdD4gZclCOwoN2M9JT0I1jUs7HGGjuOGye9Pl+PEC638EUabRyt3d/B4XA4HA7HPhA31u2tL1v1lezSdU3+82r1xJP4DfypEDfxFvI1Yid/Bl2WvM1MXQe8lzjNc5Z9HGF/nfBBuPoHyXMS3UHq03p70SXh1IcE9Wfog+qzxCX4fhF0LZx7g/UoD+kycDo3oRAfK+fHCvNOc0b9jaAnHiC+9j4iGOjiQr+trOdf79Ta+9pm+n/1Ls3O+wFNsQU/
1438614092.950,1.000,0.001,HISTggAAAMp42u1XSQ7CMAz0kkBDJdQH8BfehsQP+lGewIHkMtLIKZyQPJdRbNdb7S635/4Q2Tb5wDtrZ7u/JJFIJBKJRGIGmi34qV/6ZV+V2NlB/xb4RTuUj+/ISvQFuAKXgB3i4/lE4heSn4P+0rl1XjpfwX7EWUk9DewYN8LYj1HfmcRHvwb5r8RvBb8OeaB/dh3KMY9K5qYQvZF5w/sogZ2ReTfy34P74YQtsMP6BM4asAf5KfQt2mOf3GOZfD7owb5KIM/313/Uo2+5qAUC
1438614093.950,1.000,0.001,HISTggAAANl42u2Wyw0CMQxE7TjJLpwogF5og3aQ6IBGKYEDy2Wkp0T8Tp6LFSeesRXHu8fr7WJ2ONsTsVnfbDndLZFIJBKJRCIxDx+s3+VRFFi7/s/BeTqnul38DeJDeCrsq34V3io8HXi72JB1FX+F+JfubrN78QforKC3CE+F/SK6i/CuwlNEf5E8G+gF6Gr9HXj1PtogPqCvKI8G+RbgaaDj0Cc2uMdR/2k89XlM1j963w48VK/DHIjBO6R3aoO5YpN52OQ+zbNP5+e34/3LOj7p9z/X+/Pv4wOb4QVJ
1438614094.950,1.000,0.001,HISTggAAANF42u1VwQ3CMAx0HCdtQEgMwC5dhVWQ2IBFGYEH5XPSyUkRQgLfx4qvvjhXNz1dbxeR41meyGtMa9TlLoFAIBAIBH4D6Uv6Kax/y0+MCrG3Pjv8aF4JnwmvhMd8JXwBfiL8BNGI/kz0ZqiroF9Az5x9E9nnAPk91DXIv57bwbpBP4X00WBtcF48H/KZ+GLwHtAvJXPD5jITXTYveXBuK6yN6LF5Nadv6Ty/971Jp39K/GL13r1sTp06cev9Io5PXr1++B6WwX7+5b+/ua8HQKwFTQ==
1438614095.950,1.000,0.001,HISTggAAAMt42u1WyQ0CMQz0FZIVPCiAXqgNiQ5olBL4ZD8jjZIVl0Cej+VksMde493T9XYROUqHd6vd2vkuiUQikUgkEp+E/lkd9qJ4Ntkn3cizga8kjsH3YwDPCc8JL8Av5H4938F9Bd563+B3C/BRVwNeI/kwTiO2kLoW0BtwbnB+gDh7oo/pqKSfrG8V9DjpvxG9BayRPGwulcxLAB99J/MXk/Nsgzke6RTy3Nn/gflG6pJBHbpxP/jkntE378ln99qvvTf0y3lH+fUBXCcE6A==
1438614096.950,1.000,0.001,HISTggAAANB42u1VSQ7CMAyM7SxlOfAAHtEf8DYkfsBHeQIH0stIIxc1SBXyXEZ1nPGSxL0+nveULnP6wDpLZ729UiAQCAQCgcA/Q3aehzrrQnh0XCVxmN0IL/6Z+Cvw1LnBvgx+RurJoFNAr3Y+gM6yfgT7ifhViLfonUn+BfSbk9cEbKDXiF9z+o/x8LvAPlYH6lZyTkLOTQkbOV9x9DK5Bwp2I3Wwe4l5FPJu8pf33Ht3dWNf1s4Ldd41mx+2cj6lQX5b5/konb38f+THebn9egMb2AUd
1438614097.950,1.000,0.000,HISTggAAAMV42u2WQQ7CMAwEkzhpaS58gL9w5VuV+AEf5QkcSIU00soFgcTBe7Fc27vbNIl6ut7WlI6X9ISNmEcs53sKBAKBQCAQCLyQf1xX/Zwrom4f6hfMk3/LKyL1qviv5HMTvPQxjzihb0Ykf0MkzwE5+dV8g86C+pZ36CzQKaKviz76ot/Jef8qdJpYR5Wb0LOd6zVhX3Tn+1en7u1X77wkMad4FZ/ym4V/dS7N0VN5Fr736mRnnejH3rzPPL5/uZ+/rvcAbYoFRQ==
1438614098.950,1.000,0.001,HISTggAAANp42u1Xyw7CMAyLm+zBBBIfwL/wbUgcuPOjfAIHuoslqytCwCG+WM2c1JnSajtd7xez481e8MqoXM4PSyQSiUQikUhogNjE2jp1vft5Q4eNvtDZl4t6a3ygdVC8CF3h71KhmyqPpOM4KL7WmUkXtF4ob6Hnu8oHijNPwvdCfvb0PERfMzH3w30OIh4i34UuxHsNyhuFf67Dc+biv8SEzhp1vTHX3pizQvsU4SfE3I4iv2w8d+wHjfMF4QuNc2XCJzr9ovP+e/ce/NU936vDn/j6dD6+1A+e4OsFfw==
1438614099.950,1.000,0.001,HISTggAAAM942u1VSQ7CMAz0kqQE6IE7f+EbfAeJH/BRnsCBchlp5CDKoZLnMnJqj5PYTs/3x03kdJU3fGFd2C5PSSQSiUQikUj8Dl1Jx7/UVxJvg3FK/ApZV9D3YN0IV8LTwg3sAraRuE50GtF10P98n8E+gl+FfJ3s8wA6Few92OiP+3PgHeSv5H4MdDrUbSL9Nwd1Zftk/eUkTyHnbEF+1p+N9KWQeLQL8TfSBx6cU4N59cH5aoPzbsG7ooMs5B6Yjq38Luqf3tmt/RcSG6n3Cx96BU8=
1438614100.950,1.000,0.000,HISTggAAANh42u2WzQ3CMAyFkzikpfx0AXZhHdZAYgMWZQQONJcPPSWt4OZ3sZ5jxy9NbPXyeN5DmG/hA1tsXGy6voLD4XA4HA6H43+IsGp9KydSZ51WXuUZnP4deBZ5Bf+jhnxDXuWDqBOw70nEGeIm8AKdNX5c7BH7Feg6C501fw9b4w6oN6HOCF3krFca90LduXEPCX7uNzTu1RrviDoT3qnSybgs/EX4o3jPjFPnUf1gon+iiIui79in1qiXVs6N3nmSOudG3DgP187JsHG9d/6mH53v6zu+AdrrBWg=
1438614101.950,1.000,0.001,HISTggAAANl42u1VwQ3CMAyM3TjQ8mABdmG2SmzAoozAg+Rz0smOoBIP3+dk52Inbu3cHs+9lOurfLB0ls56HyuJRCKRSCQSx0Am/Ufl+7f7D2hwv4AebXXiC+ElmK+AvoJtnRv4Ua9BHvtWiGtO3sEnck8junG+DfwbrK9k3/CfiQ7PdwF7JdwgrkHeGqw72kbqXonOSP0b1LkRPfvvhHz3RnRC7oXfQ5w+FKcPF6cfsG+qo1eSv5I+9eYB61tz4mhw/ojD3jzT4DyU4LyUSf3sHP5V3G/fn8PexTcLZQXe
1438614102.950,1.000,0.001,HISTggAAANR42u1X2w3CMAz0I0lRQGIBdmE2JDZgCcZjBD5Ifk46mZafIvl+TnGcc3JNXfVyf9xEzk/5wAfrYLu+JJFIJBKJxH9B04Jd+6kb42vXeZBvwFEdC3iiQNyDeg5cgGd8GVxhHuOTD4MbqVvJ/NTrML/AGOsZ0Z18hH1ViHeIox+o10neCfIc6lSyD/QB/Uff2bmdrDPyv6HkXjp5bniPGty/Fugp8Q3PoSTfgjHT90CX+aDB+xmtYzol6CMa9I2t/UqCfvBrX9Uv+6OsPP9uv09vw+EFiw==
1438614103.950,1.000,0.000,HISTggAAAM142u2XTQ4CIQyFS2EGfxK9gHfxbCbewI3H9AguHGbxJS/gbFzYtyFMX19LKYS53B83s/PTPsjLmJbRry8LBAKBQCAQCGxH+rHO+q4TOqkzOt6J1CmC78I/w68inxm8Nt/he4W9CF6LP4HvQr9Cj3lUoTfBzjxOsO/Bm8W6MvhV8Kuoc9M/Is+C+QFxaKdfEXVmPbLYJxd6Jvap18ez6EsX/znsPx/07/V7L+7Wc6jOP+Mb4lI/D55zE7rWWf/o/fXtepP9N9a6vAHXdgWX
1438614104.950,1.000,0.001,HISTggAAAMx42u1WwQ3DIAy0wRCaNlIG6C6drVI36KIdoY/C56QTQY3USPV9TgSfMScMuT6ed5F1lQ9iZa0cbi9xOBwOh8Ph+Aa6c9y/+zXqpw7qAvkv1I35m95IXiVjA46gj6A7EV2qfAZdBp5gfob8La5AHPIEcYXkK1D3BfQZ5hsvsD9WfwI2WDcRf2fi80LqzsT3TPwJZGzkPDC2zvlj6xl8Z+dRO33G8mlnfxifNu5bO3FK+kdI//T6NRKfRu8T3em+O8p7oAfL8zMf3lg1BO8=
1438614105.950,1.000,0.001,HISTggAAAM942u2WUQoCMQxEk3S7u7qCF/Aunk3wBl7II3kEP1x/HgytCCKa+RmStJO0DW0P58vJbH+1B8rKvnIcb5ZIJBKJROK34A37V9b17/VG57iKf2CrTwI2/U8exf9yAHMe/QU8Q78Ke4LeFuPoX8ATeIN51GEdk4jTP6MO6ozIv8BW+71DvoB+iHw8L7WvBf4qzi2E3iD6p3T2A+Mm+ngQ52CNfmbfc19qY50huIh6XdTVilunnnWus8XRyO8i7i/ee/6h+/Zb341332m/Aw1PBaw=
1438614106.950,1.000,0.001,HISTggAAAM942u2Uyw0CMQxE43iTrBBIFEABdLG1IdEBjVICB3YvIz3t/+a5jCKPP3FiP96fV0r3Z/rDR7aR8/BNgUAgEAgEAoH9sI06m9GRPQsvrcPFzyCeskP+yb9C/Akd2MvITXRFdJ1wE3axVzn3wlfRVYl3EVZ/1TWpW/MWOZPd4V6a9wZxDeKVmb642KmeCu/p4GegM/gfPfwPh/7SXHQwF3P/nurLcB+aQ4c5zgvzUn/Tyrm1lfsqb9xXR+29pfvvqP1sO/3P8jsrzuq8P+trBSc=
1438614107.950,1.000,0.001,HISTggAAAMt42u2WQQ7CQAhFocw448LEA3gXz2bSG3gBj+gRXNi6eAlBa4zW8DekwMCHIXQO4/kksr/IHTZJneRwvEoikUgkEonEL0L/hNfj3bUwvj4ZV9/kJ4i3wfuReaiP/PhdIGd9Q34v33yuw7/Br0NW+FXIAvsW8WtgJ/8d9JQdcciHfTEnr3dfzfHrTt20mzNvvDdz8otTjzc/xcmrwdyTlwRxLKhDF/KUgC95l6DPEpyP+hHthSGo49U9pR/ao9/a87ryOtb639UbsUgFhg==
1438614108.950,1.000,0.001,HISTggAAAMl42u2WwQ3CMAxF4zhtU5AQA7ALsyGxAYt2hB4olyd9LJB6APlfrHzbP4mdNL3cH7dSzr084Zu1zdbrUhKJRCKRSPwGLEuQfX/jr+D53/dpHP2O/BF2EPFNzNuDfM7TodeQN4F38B1j8gPsS2cWeY71OeJPYv1H6NN/EPudRT1H6LIO1JnQZxd5TfSxizx1XiwYV/BN8BboNXF+K6wHfhP3y0R9ShBvQV3U/VbrNNEXC3Qt2Oe38OB7FfVjr/fNdtL9t/fcViKtBPc=
1438614109.950,1.000,0.001,HISTggAAAMN42u1WSQrCQBDsZTJD1IMP8CHe8jbBH/jRPMGDE4SComMCItJ1KWqmt/RsudwfN5HzVV7wztrZplkSiUQikUgkEm/oj9fDtG60N2A2vvxHDqCZXSHjCzcSt3Yewb8QuwIa+UTiHkA3Mt+IrqAb1Id+Htg7WYch6D/GOxI77JcTZvWw9bZgnXEfNDKOLEFdhexnJ7qSeV35PdE5wb4K8Rfij3628pxqkM+DvFvvP9t5n+qHefXL96vujPOv75g9ARLUBSo=
1438614110.950,1.000,0.000,HISTggAAAMh42u1XwQnDMAy0bCtuGkoX6C6ZrdAN+umYHaGPWp+DQ04J6Uf3EeLk02EZkdwez3tK11f6ovQoPeb1nQKBQCAQCAQCx0EcPu+sh7x9D2qPFeoEfGSoN74BbzoT1Ft+InWNnDOfM9RVR0dJP+MvwDfIM+Tq9Dv3uAC/gH8lfZnvAn7mjfeXYV6VzE+dc/geCpk7yzN516gzkb6V6LbB/onoCvs/cnQS8VccXXHuVwb9CtkXOnh+r73z6z46ep/+299WX/IBCBgFig==
1438614111.950,1.000,0.001,HISTggAAANV42u2WUQ6CQAxEt8susGriBbwLZzPxBl7OY3gEP4Sfl0xKQOOHnZ8Gtp0py9DlcrtfUzo/0hvdHG2OeXqmQCAQCAQCgX+E/ZhX5eWVPFn93zk65tR1iAXrzOtFXQ/+Cr6CvNMcG3QK6pc4oL5CvyGP+Q39jdAbkc/6I3SzqFP9L3kHsS8jdLjPg+A18HTi/Tenvyp0yNMj0r8mfJfFtfLZAH3Pn/RPEn6v4vmK8HVyvjNbed/ryxy9vfMnb5xrtlJn6/re+bl1rn/rPPi0jruvLyaeBb0=
1438614112.950,1.000,0.001,HISTggAAAMl42u1WWwoCMQzMo92tCOoBvItnE7yBF/UIftj8DAxdKoJo5mdIk0zT0M32fLtfRU5NXvDO2tkuD0kkEolEIpGYgX44/l/7ocTWjXnoNxJnxB/vxUrsyC9EbwG/w3og3qdr5z3ENdh3JXm4XyH+Rjj0D1DvsfMO4ozoV7Cd1I95eH7sbyXnxHrQbkSvkH4ukO9gY/7ovhjpj5N7U8k9LoRtwJWs++A7M7C3xpdBvBD/7BwQUufs3Brpz861d/W+db7/yv9Mn1zTBPU=
1438614113.950,1.000,0.001,HISTggAAAMR42u1WwQ3CMAy047ppyqcDsAuzIbEBizICDwyPk05uJRAf3+fk+HxxIjfq+Xa/imybvGDBGtwuDykUCoVCoVAo5NCD63vzv+7z898HjDojehZPwXOwEx9P6gf4YGywPsD3Ha/BPXgBH4xPUDdANwF30HWyL57DwGcl53PQLZBvkG/gM5N7xf7xXEbmw8h+Svo3otNEh/5C5tLJPFoSt4PzLaR/T+qz7w592D7s3pg+6zt7F/bqMrQ/vX9avt/p6wmzbQTv
1438614114.950,1.000,0.000,HISTggAAAMJ42u1WuQ3DMAzkJ0tJgEyQXTKbgWyQJmNmhBSxmgMOVOGS1xCiT0eKogk9Xu9d5P6RP/ywelh7fqVQKBQKhUKhcB408dtJerbIN/ArexeCvxH+BusBvAZ6AXzUn3od+B14uH/yrrCe/AvYqXcD/kbiBPEP0G1EB+Ox89miDvJG4sf8Gqkbq6sn94r3q0SP8YTsi6SPg/SRkf7sJC/2H2BcJ/kq+e7JOYXUMYuTzYMg+3RxztjiHGJ6vphnFs9+IJIFdw==
1438614115.950,1.000,0.001,HISTggAAANN42u1XSQrDMAy0lthOoNBjD/1L3lboD/rRPqGHxpeBQaXLIVRzEZY0I9nGdnK+3i6lHE/lCdusbFbXe0kkEolEIrFPSC7BrtZdAr4GdaK6GtQb8Yn4PdDDvMGvRH/YDmMF3tBrkNcg7kQX+1o2ewB/BV2sP4M+5nfwYx8LxCt8f6P+TPI6qedk34ysUyX9esCzIC7kvwJ5SvrF/VIynwZ8D/hO/Bb0IcF58UDHiR5igrG9eF8wXXvznmDnO+Kz+0u/dC+WD+fzq/fx395ZeQBwygT9
1438614116.950,1.000,0.001,HISTggAAAMt42u1XSw4CMQgFWsaOceEBvIvbuZaJN/CiHsGF04UveaHpSg1vQ/gUKExp53J/3ETOm7xRdqo7tetTEolEIpFIJL4ZmiX4fL8FdkbsbdBf553wFd6VnT8AX2F9AX4F+QJxFPw6sVvA7kTyw3jHQX9d3ogeKcZtoG9APYjn4LeAHuu/kvpjPzG/Qvqn5D8CzyXqnfTTiF8j/ir5PoX01wjF/dRgX0rqpiSv6BxqcK41kI/OQQvso3kwO3dn7XVy/a/fL/9yr+kLJmQFGw==
1438614117.950,1.000,0.001,HISTggAAANV42u1WQQ4CIQyElgWVxOjdv/g2E3/g53yGT/AgXsZMCkYNMZ1LA21nKNvt7uF8OYWwu4YHtNnYrBxvweFwOBwOh+MfEH/M82k95Hv5bwPL8pXoqBHPdAT8GdYJeATiBOI2zRawGPfMryR+aXZN/JX497BW0F0RnQLnypCfIV5J3hb8C+hXwpuM/UT0I+xnqFON5yCdfcH8SviSwaOkzwXqQb7Y+d4U0rdCeJLBx/QZTyB6YXCtxj1ac2Z0zsUvzcF39Wf9jozyz1JXnPTeus9xB1dDBc8=
1438614118.950,1.000,0.000,HISTggAAAM942u1WSw4CMQgthdqqk7h1MXfxbCbewIt6BBe2m5e80Mm4MJG3IdBHKZR+1sfzntLlmj7QLqXLfHulQCAQCAQC/wmJEvwE8kaekP2TyflRL/g/7PIA9gb8wTP4Zw6/M+gKfINxjNuI39BPhH904lTgL2QenK9AXhXsBexGxhdSR8wf/Q3WhbwK9ank/99IfTw/IX2BeRToLyN5ol1Jn2fSB8nJQ0l/4TrVOV9ePOank+dTJu9j754QwhMis3OPbH0fZKe+N/633jd5A7Y5BRA=
1438614119.950,1.000,0.001,HISTggAAAMx42u1W2w3CMAy0nRdtQSzQXZgNiQ1YhrEYgQ/Sn5NOjlR+AN+PFTv2neM27Xq7X0XOD3kjdavd2uUpgUAgEAgEvhMaOn5ybixuO+saqaPgz91W+H8sEG+QV8BueXO3B/AnyK+QX4GvkPgC6wn0HUEH9jmRus3hX6CvBn1t6xPwZLJvJvyV1MfzG/Un0KGkzwzWyLx1UIc6z6kSHnPOLZF9mfCiTiH1EYXUU4dHiE4jemzwfVWiW508b23OfPRD99ze+/Bfvzv6Ap5jBac=
1438614120.950,1.000,0.001,HISTggAAAMx42u1WSQ7CQAxLwrQdKpB4AH/p25D4AReeyRM40LlYstwigQqKL1Y8cWbpLD1fbxez091e2M3sM8f0sEQikUgkEoktwv98/PFm3SD9BMnD/z8H3UTc8jvQO+AC7YW0o94TX+MK+QPxN30P3PQjxAeIA/SR9Fuh3gh6L+aBeWpeVazXAN8J512IDzkW7gPlC2DcNz3Zj6yOkXpB1tmJT50TJ3ER5yoIs/vAyThVewifrezXV95fLsax1P+pe/9b78Wvv0tbXx9/AsTABY4=
1438614121.950,1.000,0.001,HISTggAAAMB42u1UOQ4CMQwcO1l2Q7Mf4C+8DYkf8ElKnkBBthlp5IgFROFpRr5iZ3KcrrcLsN7xQulsnf38QCKRSCQSiUTif+DERnEb9LuIF8Gqbw3qNm6ibuq8kH8WeZt9IOY87sv5C9nc70jxJvwr9XWyud8kWM3biHmdmdiCOOvYyFY61uD+8HlD5JdgHbb5vF3UK38N5ndxj9UcJmwE78mFPgj0ssF3jTf/hTKofzQvAj1+DdtZZx/aj+3s/3WdnpDOBc4=
1438614122.950,1.000,0.001,HISTggAAANJ42u1WQQ4CIQykBVlw9eDdv+jXTPyBH/UJHiyXSSYQXTVxO5fJlLSFUkiP19slhMM5PBGNxVhP9+BwOBwOh+M7EC/BS3WQldyHEC1v1k0JNySSR0EnMk82+0TWZ+NsXI03YM9gT+BfIQ/mRXuLszfegm5xC/AOzoH7wzwF7Kgz4Qo6gb2Q9ZnUO8K5A9zj1PFT8I+kb7AuzC91+k47fR5JP7H3oKSfI8nH9iUkDtPaeb+juvfuR88/+m8stb9P/aeysJ/8KM6/zhVrn2fkAcB9BUA=
1438614123.950,1.000,0.001,HISTggAAANF42u1WyQ3CQAzc8R5AeIQCKIAuqA2JDmiUEniw+xlp5ATCB3k+ltfjYx3Hyfn+uKV0uqQ3cpfo0q7PFAgEAoFAIBD4HFhox8Z5jP7vMp2Dzgeq4Kl4LBvpk+PfKG8jfnH4ELxh35N9+O+Iz7xZ9GMi3tAPXR7Jj+uYSW+kG9XXKL66B/tz3kr+fC/V90LzUcRzqOJeJuYJYi6LmDtz5hjOPED0x8ubRZzs1KXievWb817D2R9Y6WcL909euYew8vzbPbr1Xv6378zP8r4AQFkFJg==
1438614124.950,1.000,0.001,HISTggAAAM542u1USw4CIQylpQPoxHgB7+LZTLyBF/UILpxunnkBkwku7Ns09PugpZf745bS+ZneyJuUTerVLYFAIBAIBAL/AflR/Ky60vFXsGcS7/oFzgZ5jMS5bETvskB8AbvXWUkcSgPeJ+BxhDPTHyBPg/yN1HVZIR7tK8QzPyP3VNKHhcRhPyt550reOXf6g3xx3grordN/Np9K5hjnVwkfxhvP+F7a+Xd58H8hTyP52f3yoJ8Qvx7f0Tzy5b6SnfaZTN67e+3p2Tw+6r8A9MUF1Q==
1438614125.950,1.000,0.001,HISTggAAANh42u1W2w3CMAz0IyUtAsEA/WATZkNiAxZlBD5ofk46WWkFQsL3Yzmuz/HFSjrfHzeR80Xe8MXqYu36lEQikUgkEv8JTQm6dNGNepb2/0XitnKfSngUfCd1jPBhXiHxCXwjdXZgG98AdUYSR9t4KuGpsL8T5B0h3tYPhLfCvkbIx/rN34NvsO5QfyI6FfL9EOjrRBclc4k647k76UeB34J59WDdg7nCuXfSD/L2zr0HPELOQQMrQX8W6MXuAw/qadC/rrz3dOP9KV/O+/T716uDyW9BX0b9BRE=
1438614126.950,1.000,0.001,HISTggAAAMt42u1WOQ4CMQy0ncMLouAB/IWvLRI/4KM8gYKkGWnkXSig8DRWHMfjK9m93B83kfMqb5QhdUi7PiWRSCQSiUQi8Tk0WH/rV+E/roCdBbwKdgJ+8HwlvEZ4534ncTewm2sPzjvoDeIzUpdpfxjySOTcPxE+BzuH+DtZV9A34GU8C9hjfgupZyG8DvoKfrCvLYi/kryxLx7kUci8Gomrkzm2QM9kJXPK/KLsQbwa+LGN91123usoH9nIb6RP+ufvpeysa+LH380XL1QFaA==
1438614127.950,1.000,0.001,HISTggAAANd42u1WwQ3CMAx07KQJhQcDMABbMBsSG7AoI/Ag+Rw6OapA8PB9TlXsy9WNnZ5u96vI8SwvWOfUWS8PCQQCgUAgEAj4SBvzdKN+IqwkzmDdHD+D86SOsv/JST0jcWvnXedG8hrEjfzSeQG9BrySvAJ+M+hVeFbwsQDvYd8KjD6yU9dK/KJPg/Xh7wB6C8SZw0rqhuvou5BzY8S3kfcQci6UfDcj9czET3HOc4V81nesj430H9vP02F95s0NI3VIH55fOulndv79en7Ll3392331pvMEEZcFLA==
1438614128.950,1.000,0.001,HISTggAAAMx42u1X2w3CMAz0IylQkGCA7sJsSGzAQozECHyQ/Jx0cgSqQML3c3Kccxw3cdvleruIHO/ygjfWxnZ+SCKRSCQSicQvQv80P8XvNTKOfhmcz+Ia4UjnMN7tDdg14K4vwD3Ojui2ZJ2um8Du/n3jQ+MZ4iGfwJ5JXhPJr5A6lUBfYHwidXKSdyXPEeujJA+FeAp+BxZyjtj+LdBpsF88J0b+e/zNdfGeV7BH40lwbyMYyceCuGwfPtjHLJinK/VF+7B/rq379vtJnzV4Ba0=
1438614129.950,1.000,0.001,HISTggAAAMd42u1WWw4CIRCbgQHcjR8ewAN4C89m4g28qEfwQ/xp0gw+NsFk+tMstJSFWZbj9XYROZzkidxZO6fzXQKBQCAQCARmhP5Zrm40DyXt6UsfssGzwv0RuZH7JeYa8Ku/gn9Hxl2ADfwV2tfOBcZrkFPAj/kGugX0BXSN5O5J3gr+0fEraTfiL2QfUJec/kb2tTp1xOpJnbrB+s7EnwdzjOiZTwZ13vsmMp/irIP3HauTKx/q3j2PGNKPdbOd+7P8JzZflwfRigUW
1438614130.950,1.000,0.001,HISTggAAAMt42u2W0Q3CMAxEncRtQAWxALswGxIbsATjMQIfpEJ60slF8On7OdU9n13XqXq+3a9mp4e90QaXwfXytEQikUgkEonE5//oX7oovwo/5U99CfTKt23sh3FHfkN8gr4Jvxl5HfoKv4brPXyY3+HvIv8gdOxrBq91dtCvvgv8V59j0N8i6nQwn4N9sN9JzJX3yQW+0XtxsRcu9o9+JuIe7GkVe10Fqzz2ZYHeRT0Te+/Budh6DouoV4O6tnFuag725XfGfownxnxeLnsFng==
1438614131.950,1.000,0.001,HISTggAAAM142u1Wyw3CMAyN7ZAmUg8MwC7MhsQGLMoIHNpcnvTk0PZQgd/F8ufZrd04vT1fj5Su77TAVimr1Hv3BAKBQCAQOCvk5PkCx/RdHV3ALsR+1PwV/h+zU/8CcRn4nVfAjryuV9AV4gr4jdRtENf1CWQl/AK8RniN8Lt/JvEV6mTSpwp9aKR/RubXIK8SHs5PwD85c2Hfjzl5bdCupK44cV486xvLZxvPqTjnkPnV4W2th++TBvfM3ufXL/fR6D6TnXvv3+9L+dG68gGdfwXM
1438614132.950,1.000,0.001,HISTggAAAMt42u1WQQoCMQxM0tStiuIDfIg33yb4Az/qEzzYvQwMqSIFIXMZSJNJtk3aPd8fN5HTRd4onbWzXZ+SSCQSiUQikZgH/dJug3FKWIiOkTz431gDP2QJdNZ4B78N8WP2BusHsFfgBbiA/xb0Gvjvgdf1Xecj2FG3gj7WsYB/I3VX2D8nOg46uO+sDmQPzpOdjxId7FcPmPVhgXxG+hO/uwZ9LME8lMF5tWAeozlmc21BXiVzOJpPAr1P7zuddI/Kj/Lp5Li/eb9eVDQFMg==
1438614133.950,1.000,0.001,HISTggAAANR42u1WSQ7CMAz0kjahXHgAf+FtlfgBF57JEzjQXEYauVCJRXguI7uJJ04dJ8fzZRY5XOUBX1gXttNNEolEIpFIJP4B+mPrMzLOiM3m4/eIWbwCrOR9ifYQ+LveDsaNRLdzBXYyv+vswd/tCfwV7B6vEd0GOqjbwN9Ivg77gXkY0RnJ/y5kXiU8kXyV7Aeus4IOq69C6sJJHaK/kvoZSP3aynNhpI4lOCdGxluQvwfxJNhHX9kH1vZBfbLPMN7ah/XFvLb2+U/fD99+P70rD70D60MFeA==
1438614134.950,1.000,0.001,HISTggAAAMd42u1W2w3CMAz0oySpaCUGYJeuxApIbMCijMAH7c9JJ+ejQjx8P6ekd7ZjR23Pt/tV5HSRF3xlXdmWhyQSiUQikUjsCf3y+L/SP+vMo0SPdRzgf3IAVrJGvRH/BHkKPMf9LU6FPBV8BfwNGH1HkreBbiLnGMG36efgXA3WbH+G/ZH0uZL6jDD2q5G5G4nvwBL48d45WeN8lJyrBHGM3E927wupYwjqV8Ie6CSox4leyTyl09f7vngXbGfdv31f9EPz6BPevQVn
1438614135.950,1.000,0.001,HISTggAAANl42u1WwQ3CMAx04rQpAQnx7y7MhsQGLMcYjMCD9MGhk93Cg4fvYznnOM7JdTpfbxeR411e0G5Tt/n8kEAgEAgEAoF/QAoJ3nTw6pFJfCJxlu7MV8iD5w6w/vHfSfZhfO22AN9gfTlvAjtCngz8ieyvxG8kP+4/AL8Hv8G+Arwa91jid2CRr0TvauisRN+B1KPkPhP4hfSRkn4fSV1K+kWhXwdyn+Lsx2LwSupLzvyMz8b3bPFC9MjG9y/OOr1zOm+cd7JxPnnn59q5uvZdSl/W/bP34wlVtgXl
1438614136.950,1.000,0.001,HISTggAAAM142u1WMQ7DIAzEGAjp1LFD/9K3VeoP+tE+IUPocurJFkrbxbecbAw2Bzi5Pp73lM6XtEMHy+B8e6VAIBAIBAKBT5CQwKWHfEnXd1wh82Qyn+D/4OBKxhXmZ1JXAVaIV+BC1muDO9i4bgV/NbiBvQxegTG+Gf4V1kN/g312YKwTxxdSbzF0V6N+1K8TfU/kHLFuNc5ZnPF4L7Phr8Y98+ZhNnsPjYxX8u6Kcz+Z5PO+Y7StfuDVXQ7qb3myn8lBffXX30P5U97pfBtrbQUQ
1438614137.950,1.000,0.001,HISTggAAANd42u1W2w3CMAy0r3nw+GEAdmGFroTEBizKCHzQ/Jx0cgtCCMn3c0rinB3XbnK+3a9mp9lemBb2hXF5WCKRSCQSiffgmYLEDwBRhx7YO70HlQ6ELq8XYhBPYt+Yb8RDZ79wJYbgKuLqND4IfR4XocP2nXSLYD6nC3+N8tNpHuS/kd1EesdgffBOxAMRXxfM35f98XwVdcvxVVFPReTTA12IuoToDwT9ourcxLry60H/qH62lX3vwX/EgnNE9x82xrf1PvWV9vhwvwf5/9a74d/fE/4EjJcFLg==
1438614138.950,1.000,0.000,HISTggAAAMd42u1XwQ0CMQxL0rQFTogF2OXW4ovEBizKCDxoP5asVLzuEX+iuo6TttFJd3+9nyK3h/xQRtQRbf9IIpFIJBKJROJ4KIs6XYwsz0iM/EqQh/076CroKuGdxKlrJP88Ygd+rjfQGfhN/gLrE/SB9R3q4PoKeU76Q9+N+HpQtwFvcL+dvA/uFzh/J3PUgHfib8CXYK6c6KN5ZXVYf0L2K/ufInPvRCfERxd92bmUvJ8G35eorgbfIyP3JgGvi3n/QuWY0C/mZwVt
1438614139.950,1.000,0.001,HISTggAAANR42u1XwQ3DIAzExlBaVeoC3aWzReoGXayjZIQ8Sj8nnUyC2pfvYwG2DzvYkPvztaR0e6cPcpfSpT7WFAgEAoFAILAHEin4a37l4PcQZ12JvsK7MTvzjA/XL4TnBHqtywp6pcsrjCvwVZBfvTPw4XyFfRpI5EM7g33YIE8mcRfiH/kb+MNxIXELiTfBWEk+KvhpEE9xzo+y/xNyfszxY+S826C9EnslMhM7I/Xl1aWS+tHB+hfHvzj5YX1gtA/pzr40e6/Ij/zO9t3Zfn743tgALKIFuA==
1438614140.950,1.000,0.000,HISTggAAAL942u2VMQ7CMAxFbScNlRBiZeAunK0SN+CiHKFDw/Klp6iAEIP/YsW1v+3YTq/3x2J2vtiG0qV3GbenJRKJRCKRSPwCnvV95Odfys938hU5h+gDeAvIQ5eT2L/OtcsmfmofA371n0E2iFslboM8j1CX8jfRK7/6nSAu1ad5z/K9wn22Ae8E/hrPRB/QL+o39dXFroodzQXNqQG/7kMFPwdemvfYmZdDniNeG9yDD/ab9tfefC8c8vv3/4Ovo6kE5w==
1438614141.950,1.000,0.001,HISTggAAAMx42u2X0Q3CMAxEbSdtEEKiAzAEG3Q2JDZgUUbgg/TnpKcIED/g+zk1se9c103V0/V2MVvO9kTp7J1jvVsikUgkEonfgmcL/vK5+iAu3szf8mrnSdYLcBV2ydt0dp1nWW+yXiDuIDoN6p1lnzgkPkS/gl8Dv33nRe7jKHEV+jLJPvkVuG6D/VF/Z/BzqSvAh+ZG2WHeaI5o7rS+CfIMfE3iqB7KD9Cr8D9mg/eV+lPAJwb6DnoOz/VVXTpv/MPz7dvnaX43B/16AJC5BS4=
1438614142.950,1.000,0.001,HISTggAAAM942u2WQQ4CMQhFS6EdHTXxAB7CG3g2E2/gRT2CCzublxA0ZuJC/uYHCpQB2unpdr+WcjyXF3SwDK6XR0kkEolEIpH4BSS/86s4EnC0P/V1sDn6ynek8760wM/g18AKvwZ5A71B7oNn2B8Q37A+Dd5DXuJuwfRf/HbIg3Yz4hvsO+wV+3bIc+DXnbqxfmT2eXJYnH6z783ppwbzVZ25Mmf+1JnzCn17c/9ortWRo3NkQX41ON8a5P8pR/WK1mWle+/T+1RWvof/9X8kT6fQBTU=
1438614143.950,1.000,0.001,HISTggAAAMl42u2Xyw3CQAxE7f0kSxASBdBLakOiAxqlBA4klyeNNkQ5gOS5jHZjj8fKfpLb43k3uzb7IC/sC6f5ZYFAIBAIBAKB34HvzEsiX40zuAi9JL4jVx7AnGf+iHrMa5ivyDtBt4rxCD7DxwSu0M/w0aA3Ycx+G3jVv4j+S6deEu9L9Tt04pOIo58i/DGO66Wo/w+wCR8u1oeLdeyiDvtXPlz4rxv1smAX/ead+7e3r10837qfvz2f/KDzyzp+/CD9o8/dv79v3ip4BPo=
1438614144.950,1.000,0.001,HISTggAAAMp42u2VwQ0CMQwE7SQkh/hQAAXQBbUh0QGNUgIPcp+VRgkH4oP3s/LJ2XjPTnK63a9mx7O9kDt753R5WCAQCAQCgUDgc7jwt/S2IglTfRnyyBfpuehl+F467zpXiUlH11eJV15gnyI6Vfys8V7WNYkX4YPo6v4NWPUq5C2SnyA/S1zAdxaf6qdBH9qgDup7gfkpEmfQJzaY4zKox2HuqC46Rwn0bfK8GPxnA58+eb5tsn5/8z4brfNBf7ben2nS76/u97971577xwT6
1438614145.950,1.000,0.001,HISTggAAANZ42u1WwQ3CMAy048QtlUDizwDdgtmQ2IBFGYEHyeekk4vgg+r7WInPl8Z20lzuj5vIeZU3rFvttlyfkkgkEolEIvEP0EzBpnzge08Jn/lLoIvxDfwN/MbeoWCHvxI9A753O3U7w3jEHYBfgTfB/NA5wnrox+9aiG4D/wLzuF8nPCNxFeZxXSf8ArwT2d9M6u+k3h7U30g/snyw/mwwZn2F/VyJbiNx7NwY4Wmgo6Qe7Jzah/rR+VbS1xLwovtENt4jJVjv1/e+fqmz9/+O7jwv+gJXJAUM
1438614146.950,1.000,0.001,HISTggAAANd42u1VQQ4CIQykLSxiPPgA/+KX9gsm/sCP+gQP4mWSSZHNJiZ2LpMWGFoo5XJ/3FI6r+kN6yyd9fpMgUAgEAgEAjOQP8tTB/OXL89JJs8V4/J0jPizkx9jI36FcdQvwEp0C6z/8AI2zqvOOLOPnQ8Q16lzA/0K61hcFXQqyafAPg3GMa4F9ArRZZxBF+NYyLka2M2pn0ruOcN8rA8jfqxbI8zqksXh1XFx+gGzxXmvMviu1ekH6tyDbewvOhiH1zfSxv44+//o5D57z/uVf3XvfeUFxDIFZA==
1438614147.950,1.000,0.001,HISTggAAANN42u1XSQrDMBCb8Zallzygf+m3ei30B/lontBD7YtAjAsOpWV0EWZsSR4cJ7k+94fIdpc3YmWtHG6HOBwOh8PhcPwC9M/zKBnrYJ1en0DqoZNT5UzqC9QLfK+2eROMM/AE+RZg1EFu82bI3eor+EWYt0HfEuiiXgY/3O9KfArpVwG/C/Fn6xPp/wy5MWcEvUTGgewH/0sS9DGSc2idOyW6bL0Y9UjyspyWvpJ10rkv6XwurT6we8XyFZL703rvfTpK51v3vJ6c4+z34vB+vgAutAVf
1438614148.950,1.000,0.001,HISTggAAAMZ42u1UOQ4DMQg04PV6t8kH8pe8LVJ+kI/mCSnW24w0AicpUjDNyDCAD8z18byXcnmVAzZYBuvt9CQSiUQikUgk/hkS1CnRC7AF9bg+9Z3YMT/WqcBt8ErWCvYF6qAdeSX1WH0D/0bydtB18Ddggzo76HfQ4f67c06MU2JvJE6dvsC4Su5rIe8kJM7jHuyjEuxHcc5Xib86fa1OfpZn9t8K0Wnw/7I54M0Zr65Mzi0L5v/VXPx23kpwv7PnkA/90/f0BmzHBcc=
1438614149.950,1.000,0.001,HISTggAAAMh42u1WyQ3DMAzT4SRKXx0gu2SFrlSgG3TRjtBHnQ8BQkkeBYqKHwIWJVkOHXh5PO8i15t84J21s60vKRQKhUKhUCj8PuygXuF9yOo4YdQbvjNBP3Qeia5BPDrPsO4QH6H+tj5BfIL8BhxJnY0vpC7uA+duoJ/JHNgHz431jeR82Dz4HYP0ZXOyeR3qol6BB+KbIH414tdG/Mj86sSPmZ+d7EfJfcvy9uYLOT9L7qkQvSR9Lcmzg/8bTeLZfs5Cv9zv36BvJa0FTQ==
1438614150.950,1.000,0.001,HISTggAAAMp42u1WwQ0CMQyL017bg88NwC7MhsQGLMoIPDg+lqycEOUVf6I2iZPUatXL/XEz2zZ7o+wWu/Xr0xKJRCKRSCQS8+H0D5sNBGvVFw72CfpfOq2r4C9kuY9G+Y3iOuUvgreRvxPvx66C50x5C9lBfrZN9Nkpf6W1i/lVnSHiTsTD5zLEeQyho9IZgc5V6FqFbiXQ10Vd9vvBvqvIi3g4z0T/HA+aqwbvA0QdBPcy4vGAF0JPC3TwL9+lX+3/+11V+z6pzqx58AL+yQTy
1438614151.950,1.000,0.001,HISTggAAANN42u1WwQ3DMAg0xrHjtFIX6C6ZrVI36GIdpSP00fA56YTVJn1xnxM2GIgB53p/3FK6PNMHurFsnNdXCgQCgUAgcAwkPkHc+w/1IDvHoSBnYGH/i8ROnHMy4UL0J9i3OCqsm9yInp0zg56td3KO6S/gbwGuwLZ+AvkMeXbwV4lcgGfIU8GukXw75D1BPEr84/13sq/OPXn1lcFOHH0l+4XUOfpvpJ7V8Vuc/vD6SUhfymD/qWOvg37U6dPkzAsZnG9eXEfPv2/n7L/j3Pv9kDdbugXI
1438614152.950,1.000,0.001,HISTggAAAMV42u1VOQ4CMQyMj40XQUFJwV94GxI/2I/uEygIzUgjU3CshKcZJY5nvInlPd+Wa2vHU3vABstgvaytUCgUCoVC4Z8gyfrd+r/SkYSV5Hmiq6BjRM9AD891iE+wz+Ls/AQ+M+H94MPggPwA7sSH1fn034FfwNrhHgP2g3zvTOJZfR3uX0l+J+/L6jDyvkJ8nfSjkf504q+JjpK+FNLPjFl92OdMz0g+3o8l88mTuaAvzg9JdOVDc0k3Oie//b/ZOvQO8c4E8A==
1438614153.950,1.000,0.001,HISTggAAAMp42u2WXQoCMQyE2/RnVwXxAN5lzyZ4Ay/qEXzpIgx8tBV8WMi8DF3yMylJtvfn6xHCLTSkxrGxbe/gcDgcDofD4fgiHkyn6jU5p8G6otgbvR/BPnf8S+NF7IvwKn47KsTVeBR397/Id42zSJ4MdVbhE9RJ9a1Q71nO10H9qqdIvAr59H6S8Cp2Ge5n6fRL6fRLgv4yyEf9pnYROHXsaH6oHwLop/ksoJvmNMN8k16b3B/24160wb1Ee2Z2H8+ej7rf//2/ih8yrQTu
1438614154.950,1.000,0.001,HISTggAAAMl42u2WzQ3CMAyF8xo3IT0xAEOwAbNVYgMWZQQOpJcnPTmthOjB38Vy7PivVtTb87WmdL2nL7lLdDk93ikIgiAIgiA4L9NOfwzqUP+H5K/smXQIPTn2Lc5M9k23Li9dVpKF/KqIu3TZKE8l+0xxG/mxnfM3oUPUU+i8Ds5jEXVy39npj+MWqgN0zt/PnPmbo1fR5yT6KGIPIe7znnr7rbDBvVb5uD6IuZhTD8c1px+Ie0ffFW9eOPjO4c/vZtrZF35c/9nABwJuBRs=
1438614155.950,1.000,0.001,HISTggAAAMB42u1WSQ7CMBCLJ5O2gIR4AH/p25D4QT/aJ3AgvViyphw4UMYXK55ktiRt7s/lUcptKm/Uzuhs81oSiUQikUj8J5AtOOS+YacOoQ/BPMVNvTeF7qQ3ig+hKz8jzW9k38Yn4s1+7nzpzO/nKzH7n8jvQP44v1HYnXS13kV9LvpQg7wrceTHqc5G++3inJiY5+Jc8H5XwSbOfRVxEdiVruIY9QHBOgR5YOe9tQ/vaRH5qDG+/N3CQf9Hv1IPXs36BOs=
1438614156.950,1.000,0.001,HISTggAAANd42u1WSQ7CMAy04yxNxYEH8Be+BhI/4KM8gQPpZaTBFWURkudixfEynqpWDpfrWWR/kgdsWB02HW8SCAQCgUAg8AwaEvxE50/pnqC+gl/IWeE96cXVYTPEGfEv8Q3OWKeAfxp2JveL3UH/CnkV+Deo3yE+kT6F6IB1itPf4D5DXAeeHfIKmQN1mmCeRnQ38h0M8meog3wyzFkgP5G+uvKcnXq68l6cfkbm9/qIw9Oc/z85+8LI/y2Of+teUoefEF3F4adv2qevxm3dw/pnfL/1ftA7XgwFiA==
1438614157.950,1.000,0.001,HISTggAAANt42u1W2w3CMAyMnSYpRZUYgF2YDYkNWIxRGIEPmp+TTidaXh++Hyt2fbaT2Onxcj2ndLilJ/IibZF+uqdAIBAIBAKBwHrYj+O6sNvKOpzwGPmvRJ4K64HwZpDd3oS9rwvwj2CvkB/q+3oCngniTZBXj7uDuN1/D/YZ/Bp810T+I8m7krxwfxvZ15nwN6i/gL2Qe2jkXDLxdyIbOTcn9yAL/UDuYRZxGE8h/VJFn6o+UnoX/A55GqnHxLxQ/e9ivtjG+WhCpjfzfmo+25f87UX9v71nm/f7AdoiBcw=
1438614158.950,1.000,0.001,HISTggAAANB42u1Xyw7CIBBkH4BNjPED/Be/rYkH7/6on+BBeplkAm2qvexcJgvs7HQDhN4erzml6zN9YY2lsd7fKRAIBAKBQCBwPGRnPSX6stIP47yynsC6DO/ThSvoZJI3NXbIMxgvEJ8aX0CvAFfIQ39L3hl0C6lfif8M8xNZj34U6ir5ToO4QiydPjjpc+34ctDNZJ8YjCvpt5N9kMi8kdiJP/Qt5P+p59fIfneirxvPP8uTwfHciUfvDeuc/9F49B769X3677ytdfRgH3v1Rz53MQV9
1438614159.950,1.000,0.001,HISTggAAAMp42u2WSw7CMAxEE+fPhgtwF86GxA24JEuOwILC4kmjRGWF8GysTP0ZJ3Xa0/V2CeF4Dy+kzcbN2vkRHA6Hw+Fw/Aeib8FP7F8U9eJOXZ//vsV4+iWhS+ks4LPQkWET7MDzNxrqVMR18BX5DuC70DOQNyO+IQ/Xyt/Asw71VvRbkL+JfpPgmafhfIroK2HdxflyH21iE9ZNvA9R8IxnH8qP/lXoGot6bJFX82ZiPmxx3vNkPm1yHyi9YaIjLvb37f3l38+dup9JOgXi
1438614160.950,1.000,0.001,HISTggAAANV42u1WSwpCMQzs9KtPBHHtXTyb4A28kEfyCC58dTEwpO8hiJjZhKTtJE3TtKfr7RLC4R5eSLPELOP5ERwOh8PhcPwH4Cn4qfxh4bz3/86YHw1+0L9RIQk9C3/dXsne5U6MF1rf9UZ+G60vQt+Q7PatwT9RXJV4+vqj4JuIt8s96UXsp1I8UeS9CXsW+UgirkzjVfit4pxHJYRUdQVRDzDqnfcPo56VP4h7ouKP4n4mcV+ToSt+qy8Ewy8G+8baPobBc1rbH7/Vn/EhHn//FsbzBIf3Bag=
1438614161.950,1.000,0.000,HISTggAAAMF42u2Uyw3CMBBE95N1+ElpgF7SEi0g0QGNUgIHnMtIo8UCJA77LiN7NpON7fh8u19Flou88K7a1daHFEVRFEVRFP+HJuNR/M28AH8C3yDPiGoyP4FibiS+J3moc9dD8p591x0o1m3zjYy3+iP4M+k/QBcYn0heg/kAn31nAzXwI9kHXNdG1t1JPxPJd3I+2b5bUm+kf3aenOQoUfZfYH9BnvfB/x/7l8F7wpK6zNcP7zP90v2m8ltG+8vq9QnYswVI
1438614162.950,1.000,0.001,HISTggAAANB42u1WSQ7CMAz0RlrKhQfwF75WJH7AR3kCB5LLSKOkAlU9eC5W7Bk7iey0t+frIXJd5QuvVqu1+1sSiUQikUgkEseBdvza4SFsMJ8D34jeyH8ly8fqtTxR7QniE/gbr4B+Al2QvAX4uDbwNztDPlw3/QLnvhD/ArqAeAEe1i2D55sJD23jn0kc793Bb8B3si8nFvMoWbM+jU6/sX4Nst/o9LeTcwnot86XkTlg86yduTLCZ+/C1ndFBvk2qNM/1VPZF3vX+/X+DvOd+wCb1wVi
1438614163.950,1.000,0.001,HISTggAAANN42u1Vuw1CMQy0nR95EhIDsAsrsBISG7AoI1CQNCed/EApXuFrLFuXs+PEyfX5eohc7vJFGlaHtdtbAoFAIBAIBALHgTpxg7g563Hd9DPhG+Gjn4iP62e8kbyJxCf/NGwBfiE6FfSm3UjdmKcDr5M6mH+GOjrkaaC/gU6B/hWiV0l92E/0K+g20MnkvArpO96/Ss7DyL4yiRvRF3JfldQrpB/JmQcjNjv7kZ3zwnjqzDfbL+tLduZYf3xf0p/v1ur3cC9fZQ1W6RztX1mm/wHg7wU+
1438614164.950,1.000,0.001,HISTggAAAM542u2WOw4CMQxE4yRe2IWCkmLvwtmQuAEX5QgU7DZPGiV8JEDyNFbseGzn42S+XM8pHY7pgbJIW2Q+3VIgEAgEAoHAL8Ginrf885O8in/9N1bwkr+K+UX4GewbjMnj8Od/1jGf/HvEGSBX/RbSYXfwjdAP0DPeJPgYv8BOfuY3on7KHeJkkR/3aUA+E3jpb4JH7WttnC91frKIVzv9lD/XwRvrkhrzTIwd4yruoXXeI/Kkzjx687XOfvFqn8ui73y7X3+6zn95H+0OQbIFFQ==
1438614165.950,1.000,0.000,HISTggAAAMJ42u1X2w3DIAz0AxJaVZ2gu3S2St2gi3aEfAR+TjqZKFL74/s5Bc7YGBuRx/vzErl/ZYd31s72HDOJRCKRSCQS56CZgr/kUfF9N6m3wC/qZuMyeHey9QZX0CNXols6F+IX7QqxX4EXYt9AN9a7db6AHtdr4H+F8UbGC9kvfg/9lcSJjPuK8tvI+aBOyfka+R9Rkjcl51uDOqqkbj3ol0L0TvwJzJegzhk76R8N+vJoHx+9B+xkXDIZn//o/tQNdQQFvw==
1438614166.950,1.000,0.001,HISTggAAAMt42u1W2w3CMAy0Yzdt4QMGYBdWA4kNWJQR+CDl46SToxaBkHw/p/hxdhon6ul2v4ocL/KCNdbG5fyQRCKRSCQSicT/QVeu3/+BJK4E8QbrhZ3Yjeh7kIf+MdAfwD4EXEHXwT8DG/AI/kXvAHoz0a+kr6nxnsTvSB81qDMF+3bQr6QOngPWNXI+DnNgZL6c+I3YMV/Id2DzK2SuWD9C8ti90M77aUF8IfmlMy5iCd4B6cyTTr8Efa99B7+Vv7Xup+roxvhf7VefY2cFUg==
1438614167.950,1.000,0.001,HISTggAAAM542u1WOw7CMAy1YzeltAMH4C49GxIDOxflCAwky5OenDIgBr/lyZ/Edmu7vd6fN5HLQz6wxtq47C9JJBKJRCKRSHDon8cr5JwSfSF29MP/RgviOPE3EtdB33kC2QL7BH5L47lxJfIJ5AXuwXPdfga/XsfWeIX8nNS7Qv4VZHxfmC/qN5J/Jc/TSZ1K4jGeIW+s14ie2Vk/SNAXrJ+NnBvtTw/mh+WvwXyzOYjmPNoXbB6j/aAH7y+D9+ngftOgXvtyb/56fycOfu/eMBwFYA==
1438614168.950,1.000,0.000,HISTggAAAM142u1WSQ7CMAz0uEnT0gMf4C+8DYkDdz7KEziQXEYapSpUKpLnYjkd25PFSS/3583s/LAPhmpRrV9fFggEAoFAILAHcLA8/zr/Bt/Ig9Cz1neyg/ivbH4in+Mmwc/VjqKOE5/rtPhC4zPVbd8XqgeR34nHOk+Uf6Fx1lEoPhE/CV2cZyb+RPoyjfP8i+CxLhP6c0dnEucEYn/VuvuPzuEozlMmPvdB6eiA8JU+E/NAp5+xsr/VOvnGvNa5F769D3Gwe3ivd0vu7xtTFAWE
1438614169.950,1.000,0.001,HISTggAAAM942u1WOw5CIRDcDx+fmngB7+LZTLyBF7W0tBCaSSYQtHjFTjNhmf0GCNfH8y5yecsX3lgb2+0lgUAgEAgEAoH9QoFX90cw4udE3+0JWIm9gB/6G/mvVhKvQtxu3xofQedEn4G7/gz2rj+BfQNOxK+QvjPsF5gH1n+AdYW6CuiwPyfzMvBLsC5kjjboB+Pa5PlNkC+T8+EQV4kuEZ2Qc55JnUb6xjxC9Gx+s/ffSN1sjjp573XQ7yiuTvrJ4nski++b/ljHv97vveTTD11pBdo=
1438614170.950,1.000,0.001,HISTggAAAMx42u1V2w3CMAz0I24LBXWB7sJsSGzAIozGCHyQ/Jx0CqhI5cP3Y7V27mzHddfb/SqyPOQNr1artctTEolEIpFIJD6BZl2bYDvXp533pRPvJN5IfUF4DPiM6BSwQnQb/wD+9jxCPgPYgLhC/KdqjxDf4mY4j/4J7ELyDuiDE/8Z+EbSH9R3ojORfs3kvprOAeKD8OD56PBinkbuXcm8YT5svpT0W4mukblk+bPvSDr8Qup1ot/bM/rl3tON+0t/tLf+7f+ge+m+AE1MBZc=
1438614171.950,1.000,0.001,HISTggAAANB42u1WSQ7CMAy0HTcByoEH8BfehsQP+ChP4JJyGGnkBBVOnsuoXiaTpWmvj+dd5CIdpbN2tttLEolEIpFIJBL/gwILed5gpM6CfiU6OujLSF+UL8AOeWf/pZ0bxA+dF2ADHYxX0HMyzqa/dj5DvxMfjfg6QT/qOzD6MNCrED+S/EryyCVYj4WsW4W8k3OB+29Qz/avkLpCWMg5jOLot02ebwc9D9ZDg/E1eD918D7QYP6j7/2391JUL5M+ZnVl0r/uPO5e34Vf637m+wbY+ATY
1438614172.950,1.000,0.001,HISTggAAAMt42u2W3Q3CMAyE7fw0UCFYgF06GxIbsAijMQIPtC8nfXLFE0K+l1Mc+3pxKivX++NmdnnaB3VlX7ksL0skEolEIpFI/C78y7rt3VdExyVusNZ4C3R13SW/CbvsT7I/QbzD/gz1BXx34aPUH4Q3v0Pqinxf9RvUDeETnM/B/1n0Z/BL/ad+NfDfoZ8d1gN8aJ7D/9VA34Er+C6Bb4M81Y3yPKjvcI8V/HowB6gPU9Af3zlf9F4on+aI79S34FzU92he1j+b5/4GQCEFnA==
1438614173.950,1.000,0.001,HISTggAAAM942u1UQQoCMQxsmma7rYgf8C/7NsEf+FGPHj3YvQwMWXZFEDKXIW2TTNo01/vjltLllT7QwTI4L88UCAQCgUDgPyBRT7z7AX9x4mayn4mNrGS9wH4BxvN9sEFeBZ7AnoEN7DV+A78z2A38V66gG+NW0IV8IudmiNuh7gZ+RnRg3Ap1daKrEBvz4rtk8DPSD0r6SEifTOScknVz+o7p8vq5OHrF6XOWz/tv5vzDRO5XHNYvzQ3277fOq+zYe3XtnYu6UYcczPPreU/3367WBfc=
1438614174.950,1.000,0.001,HISTggAAANF42u1WSQ7CMAx0FjsBLjyAv/C2SvyAj/IEDqQcRho5RYAE8lxG9TZO0rg9Xa6LyPEmD5TBaXA+r55AIBAIBAKBwC/i+V9H7OgvEJcndbJTb7Ur2JHb4AqM+Qr+TvQxbzfYiK5B3B7YiB3rHCC+QZ9K8nF9LE+d/TMSj3Ub5HfYVyP+Rs65k76UnA/qVMgz8oz2TOqw95O9p9XpsxJdplede5Cd+4n9lMn1JMLYh5B7n5z5IS/Oha3zaOucm+3Hq5M+pP/uuf5t3b/9Tt4BQwYF/A==
1438614175.950,1.000,0.004,HISTggAAAPh42u3Vy03EMBAAUH8Sdlkh0QC90Ma2g0QHNEoHcFhyGWk0C+SwoPculp3xJ44zfnp9e2ntfG4X86vsl+Lx4/m9AQCQ6zc6fv9m3FaO8HwUcaPo15K4fuU6TqG+hPohqbcQf5e0b/FriDuE+hLWM0O/rf4Q+sdxeui3hrglWc99aD8l7UuYZ3t+TOZdk/nifh/DeHGfZtE+ku+b7ctM9jk7B0tynmZSjmS/Y/ty5fmfxTkfyXv2Im4U/201T2YW+aL6T0fxHu2H+afKX2On/Nd3yrO/zct95/Fu/T77b/czAAAAAAAAAAAAAAAAAAAAAAD8Bf0TEUcGgg==
1438614176.950,1.000,0.001,HISTggAAANZ42u1WyQ0CMQy0nWvhRQH0Qm1IdEBTlEMJPEg+g0bOCnGs5PlYTpzxWBs7e7xczyKHmzyRutVu7XSXQCAQCAQCgX+CbiyfvsmjH9KpxDcnzkhdbB33hy3OubGfu23wv2rg77qtYPF8JfyFxGXIM+IW8PdgG8QZ+AvwMr3Ig/UZ0dmI7kL4ColHPRnqZPmN+Nm5H4nEZScP48H16vQl5jfyfczpn+T0lZD7rpPnjOwzn+lOTt/qJL9O6pudk7pybsnknNKVc/Pb782v3y3duP4XngesZQWe
1438614177.950,1.000,0.001,HISTggAAAM142u1V2w3CMAz0I4+2XwzALqzECkhswKKMwAfNz0knV1CJSvh+LCfns9Payfn+uImcrvKGr1ZXa5enJBKJRCKRSPwz9GD12E71GtFTYiN9J3FDvwGvgO9Eh/Emst/Bb8CvsD7sDLyhs5B1J3kL5JkhTwV+J3UshFeA30G3kv2J+Bacq5H8heQrQTz2USN9IkFfOOmnSvov6jeBeBbHdHGelPj4Xdh5ajBPSubXAvvpfecB3zbyZCP/1/e47vwe6M71H+1d+vr/vADt2wV1
1438614178.950,0.125,0.000,HISTggAAAGt42pNpmdzIwMDnwAABzFCaEUoz2X9gGAWjYBSMglEwCkbBKBjMgHHUfzQBTDT2DyMBcUYS/Y/LPCYC/mOkkz+J9R+hcGEm0RxC4UisOUwkmsdAJXXkxjsjlexjpFP+ZqSR/oEqPxgBzSoDcw==
1438614179.075,0.004,0.000,HISTggAAAB142pNpmdzIwMDAwQABzFCaEUoz2X9gQAEAYqkC8g==
hdrhistogram-go-1.1.2/window.go 0000664 0000000 0000000 00000001765 14111227330 0016452 0 ustar 00root root 0000000 0000000 package hdrhistogram
// A WindowedHistogram combines histograms to provide windowed statistics.
type WindowedHistogram struct {
idx int
h []Histogram
m *Histogram
Current *Histogram
}
// NewWindowed creates a new WindowedHistogram with N underlying histograms with
// the given parameters.
func NewWindowed(n int, minValue, maxValue int64, sigfigs int) *WindowedHistogram {
w := WindowedHistogram{
idx: -1,
h: make([]Histogram, n),
m: New(minValue, maxValue, sigfigs),
}
for i := range w.h {
w.h[i] = *New(minValue, maxValue, sigfigs)
}
w.Rotate()
return &w
}
// Merge returns a histogram which includes the recorded values from all the
// sections of the window.
func (w *WindowedHistogram) Merge() *Histogram {
w.m.Reset()
for _, h := range w.h {
w.m.Merge(&h)
}
return w.m
}
// Rotate resets the oldest histogram and rotates it to be used as the current
// histogram.
func (w *WindowedHistogram) Rotate() {
w.idx++
w.Current = &w.h[w.idx%len(w.h)]
w.Current.Reset()
}
hdrhistogram-go-1.1.2/window_test.go 0000664 0000000 0000000 00000001061 14111227330 0017476 0 ustar 00root root 0000000 0000000 package hdrhistogram_test
import (
hdrhistogram "github.com/HdrHistogram/hdrhistogram-go"
"testing"
)
// nolint
func TestWindowedHistogram(t *testing.T) {
w := hdrhistogram.NewWindowed(2, 1, 1000, 3)
for i := 0; i < 100; i++ {
w.Current.RecordValue(int64(i))
}
w.Rotate()
for i := 100; i < 200; i++ {
w.Current.RecordValue(int64(i))
}
w.Rotate()
for i := 200; i < 300; i++ {
w.Current.RecordValue(int64(i))
}
if v, want := w.Merge().ValueAtQuantile(50), int64(199); v != want {
t.Errorf("Median was %v, but expected %v", v, want)
}
}
hdrhistogram-go-1.1.2/zigzag.go 0000664 0000000 0000000 00000007176 14111227330 0016440 0 ustar 00root root 0000000 0000000 package hdrhistogram
import "fmt"
const truncatedErrStr = "Truncated compressed histogram decode. Expected minimum length of %d bytes and got %d."
// Read an LEB128 ZigZag encoded long value from the given buffer
func zig_zag_decode_i64(buf []byte) (signedValue int64, n int, err error) {
buflen := len(buf)
if buflen < 1 {
return 0, 0, nil
}
var value = uint64(buf[0]) & 0x7f
n = 1
if (buf[0] & 0x80) != 0 {
if buflen < 2 {
err = fmt.Errorf(truncatedErrStr, 2, buflen)
return
}
value |= uint64(buf[1]) & 0x7f << 7
n = 2
if (buf[1] & 0x80) != 0 {
if buflen < 3 {
err = fmt.Errorf(truncatedErrStr, 3, buflen)
return
}
value |= uint64(buf[2]) & 0x7f << 14
n = 3
if (buf[2] & 0x80) != 0 {
if buflen < 4 {
err = fmt.Errorf(truncatedErrStr, 4, buflen)
return
}
value |= uint64(buf[3]) & 0x7f << 21
n = 4
if (buf[3] & 0x80) != 0 {
if buflen < 5 {
err = fmt.Errorf(truncatedErrStr, 5, buflen)
return
}
value |= uint64(buf[4]) & 0x7f << 28
n = 5
if (buf[4] & 0x80) != 0 {
if buflen < 6 {
err = fmt.Errorf(truncatedErrStr, 6, buflen)
return
}
value |= uint64(buf[5]) & 0x7f << 35
n = 6
if (buf[5] & 0x80) != 0 {
if buflen < 7 {
err = fmt.Errorf(truncatedErrStr, 7, buflen)
return
}
value |= uint64(buf[6]) & 0x7f << 42
n = 7
if (buf[6] & 0x80) != 0 {
if buflen < 8 {
err = fmt.Errorf(truncatedErrStr, 8, buflen)
return
}
value |= uint64(buf[7]) & 0x7f << 49
n = 8
if (buf[7] & 0x80) != 0 {
if buflen < 9 {
err = fmt.Errorf(truncatedErrStr, 9, buflen)
return
}
value |= uint64(buf[8]) << 56
n = 9
}
}
}
}
}
}
}
}
signedValue = int64((value >> 1) ^ -(value & 1))
return
}
// Writes a int64_t value to the given buffer in LEB128 ZigZag encoded format
// ZigZag encoding maps signed integers to unsigned integers so that numbers with a small
// absolute value (for instance, -1) have a small varint encoded value too.
// It does this in a way that "zig-zags" back and forth through the positive and negative integers,
// so that -1 is encoded as 1, 1 is encoded as 2, -2 is encoded as 3, and so on.
func zig_zag_encode_i64(signedValue int64) (buffer []byte) {
buffer = make([]byte, 0)
var value = uint64((signedValue << 1) ^ (signedValue >> 63))
if value>>7 == 0 {
buffer = append(buffer, byte(value))
} else {
buffer = append(buffer, byte((value&0x7F)|0x80))
if value>>14 == 0 {
buffer = append(buffer, byte(value>>7))
} else {
buffer = append(buffer, byte((value>>7)|0x80))
if value>>21 == 0 {
buffer = append(buffer, byte(value>>14))
} else {
buffer = append(buffer, byte((value>>14)|0x80))
if value>>28 == 0 {
buffer = append(buffer, byte(value>>21))
} else {
buffer = append(buffer, byte((value>>21)|0x80))
if value>>35 == 0 {
buffer = append(buffer, byte(value>>28))
} else {
buffer = append(buffer, byte((value>>28)|0x80))
if value>>42 == 0 {
buffer = append(buffer, byte(value>>35))
} else {
buffer = append(buffer, byte((value>>35)|0x80))
if value>>49 == 0 {
buffer = append(buffer, byte(value>>42))
} else {
buffer = append(buffer, byte((value>>42)|0x80))
if value>>56 == 0 {
buffer = append(buffer, byte(value>>49))
} else {
buffer = append(buffer, byte((value>>49)|0x80))
buffer = append(buffer, byte(value>>56))
}
}
}
}
}
}
}
}
return
}
hdrhistogram-go-1.1.2/zigzag_whitebox_test.go 0000664 0000000 0000000 00000005236 14111227330 0021403 0 ustar 00root root 0000000 0000000 package hdrhistogram
import (
"math"
"reflect"
"testing"
)
func Test_zig_zag_decode_i64(t *testing.T) {
largeV := int64(math.Exp2(50))
type args struct {
buffer []byte
}
tests := []struct {
name string
args args
wantSignedValue int64
wantBytesRead int
wantErr bool
}{
{"empty", args{[]byte{}}, 0, 0, false},
{"1", args{[]byte{1}}, -1, 1, false},
{"2", args{[]byte{2}}, 1, 1, false},
{"3", args{[]byte{3}}, -2, 1, false},
{"4", args{[]byte{4}}, 2, 1, false},
{"truncated 2nd byte", args{[]byte{128}}, 0, 1, true},
{"truncated 3rd byte", args{[]byte{128, 128}}, 0, 2, true},
{"truncated 4th byte", args{[]byte{128, 128, 128}}, 0, 3, true},
{"truncated 5th byte", args{[]byte{128, 128, 128, 128}}, 0, 4, true},
{"truncated 6th byte", args{[]byte{128, 128, 128, 128, 128}}, 0, 5, true},
{"truncated 7th byte", args{[]byte{128, 128, 128, 128, 128, 128}}, 0, 6, true},
{"truncated 8th byte", args{[]byte{128, 128, 128, 128, 128, 128, 128}}, 0, 7, true},
{"truncated 9th byte", args{[]byte{128, 128, 128, 128, 128, 128, 128, 128}}, 0, 8, true},
{"56", args{zig_zag_encode_i64(56)}, 56, 1, false},
{"-1515", args{zig_zag_encode_i64(-1515)}, -1515, 2, false},
{"456", args{zig_zag_encode_i64(456)}, 456, 2, false},
{"largeV", args{zig_zag_encode_i64(largeV)}, largeV, 8, false},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
gotSignedValue, gotBytesRead, gotErr := zig_zag_decode_i64(tt.args.buffer)
if gotSignedValue != tt.wantSignedValue {
t.Errorf("zig_zag_decode_i64() gotSignedValue = %v, want %v", gotSignedValue, tt.wantSignedValue)
}
if gotBytesRead != tt.wantBytesRead {
t.Errorf("zig_zag_decode_i64() gotBytesRead = %v, want %v", gotBytesRead, tt.wantBytesRead)
}
if gotErr == nil && tt.wantErr {
t.Errorf("zig_zag_decode_i64() gotErr = %v, wanted error", gotErr)
}
if tt.wantErr == false && gotErr != nil {
t.Errorf("zig_zag_decode_i64() gotErr = %v, wanted nil", gotErr)
}
})
}
}
func Test_zig_zag_encode_i64(t *testing.T) {
largeV := int64(math.Exp2(50))
type args struct {
value int64
}
tests := []struct {
name string
args args
wantBuffer []byte
}{
{"56", args{56}, []byte{112}},
{"-56", args{-56}, []byte{111}},
{"456", args{456}, []byte{144, 7}},
{"-456", args{-456}, []byte{143, 7}},
{"2^50", args{largeV}, []byte{128, 128, 128, 128, 128, 128, 128, 4}},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
if gotBuffer := zig_zag_encode_i64(tt.args.value); !reflect.DeepEqual(gotBuffer, tt.wantBuffer) {
t.Errorf("zig_zag_encode_i64() = %v, want %v", gotBuffer, tt.wantBuffer)
}
})
}
}