pax_global_header00006660000000000000000000000064141112273300014504gustar00rootroot0000000000000052 comment=494271c4c016b36c8cee88480288f33b419cf7b0 hdrhistogram-go-1.1.2/000077500000000000000000000000001411122733000146035ustar00rootroot00000000000000hdrhistogram-go-1.1.2/.github/000077500000000000000000000000001411122733000161435ustar00rootroot00000000000000hdrhistogram-go-1.1.2/.github/release-drafter-config.yml000066400000000000000000000006251411122733000232010ustar00rootroot00000000000000name-template: 'Version $NEXT_PATCH_VERSION' tag-template: 'v$NEXT_PATCH_VERSION' categories: - title: 'Features' labels: - 'feature' - 'enhancement' - title: 'Bug Fixes' labels: - 'fix' - 'bugfix' - 'bug' - title: 'Maintenance' label: 'chore' change-template: '- $TITLE (#$NUMBER)' exclude-labels: - 'skip-changelog' template: | ## Changes $CHANGES hdrhistogram-go-1.1.2/.github/workflows/000077500000000000000000000000001411122733000202005ustar00rootroot00000000000000hdrhistogram-go-1.1.2/.github/workflows/codeql-analysis.yml000066400000000000000000000020001411122733000240030ustar00rootroot00000000000000name: "CodeQL" on: push: branches: [ master ] pull_request: # The branches below must be a subset of the branches above branches: [ master ] schedule: - cron: '27 23 * * 4' jobs: analyze: name: Analyze runs-on: ubuntu-latest permissions: actions: read contents: read security-events: write strategy: fail-fast: false matrix: language: [ 'go' ] steps: - name: Checkout repository uses: actions/checkout@v2 # Initializes the CodeQL tools for scanning. - name: Initialize CodeQL uses: github/codeql-action/init@v1 with: languages: ${{ matrix.language }} # Autobuild attempts to build any compiled languages (C/C++, C#, or Java). # If this step fails, then you should remove it and run the build manually (see below) - name: build uses: github/codeql-action/autobuild@v1 - run: | make - name: Perform CodeQL Analysis uses: github/codeql-action/analyze@v1 hdrhistogram-go-1.1.2/.github/workflows/coverage.yml000066400000000000000000000007061411122733000225210ustar00rootroot00000000000000on: [push, pull_request] name: Generate coverage report jobs: coverage: runs-on: ubuntu-latest steps: - name: Install Go uses: actions/setup-go@v2 with: go-version: 1.15.x - name: Checkout code uses: actions/checkout@v2 - name: Generate coverage report run: | make coverage - name: Upload coverage to Codecov uses: codecov/codecov-action@v1 with: file: ./coverage.txt hdrhistogram-go-1.1.2/.github/workflows/release-drafter.yml000066400000000000000000000010621411122733000237670ustar00rootroot00000000000000name: Release Drafter on: push: # branches to consider in the event; optional, defaults to all branches: - master jobs: update_release_draft: runs-on: ubuntu-latest steps: # Drafts your next Release notes as Pull Requests are merged into "master" - uses: release-drafter/release-drafter@v5 with: # (Optional) specify config name to use, relative to .github/. Default: release-drafter.yml config-name: release-drafter-config.yml env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} hdrhistogram-go-1.1.2/.github/workflows/unit-tests.yml000066400000000000000000000012221411122733000230370ustar00rootroot00000000000000on: [push, pull_request] name: Test jobs: test: strategy: matrix: go-version: [1.14.x, 1.15.x] os: [ubuntu-latest, macos-latest, windows-latest] runs-on: ${{ matrix.os }} steps: - name: Install Go uses: actions/setup-go@v2 with: go-version: ${{ matrix.go-version }} - name: Checkout code uses: actions/checkout@v2 - name: Test run: make test lint: runs-on: ubuntu-latest steps: - name: Install Go uses: actions/setup-go@v2 with: go-version: 1.15.x - name: Checkout code uses: actions/checkout@v2 - name: Lint run: make lint hdrhistogram-go-1.1.2/.gitignore000066400000000000000000000005411411122733000165730ustar00rootroot00000000000000.vscode/ .idea/ .DS_Store coverage.txt # Binaries for programs and plugins *.exe *.exe~ *.dll *.so *.dylib # Test binary, built with `go test -c` *.test # Test example output example.logV2.hlog # Output of the go coverage tool, specifically when used with LiteIDE *.out # Dependency directories (remove the comment below to include it) # vendor/ hdrhistogram-go-1.1.2/LICENSE000066400000000000000000000020641411122733000156120ustar00rootroot00000000000000The MIT License (MIT) Copyright (c) 2014 Coda Hale Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. hdrhistogram-go-1.1.2/Makefile000066400000000000000000000014311411122733000162420ustar00rootroot00000000000000# Go parameters GOCMD=GO111MODULE=on go GOBUILD=$(GOCMD) build GOINSTALL=$(GOCMD) install GOCLEAN=$(GOCMD) clean GOTEST=$(GOCMD) test GOGET=$(GOCMD) get GOMOD=$(GOCMD) mod GOFMT=$(GOCMD) fmt GODOC=godoc .PHONY: all test coverage all: test checkfmt: @echo 'Checking gofmt';\ bash -c "diff -u <(echo -n) <(gofmt -d .)";\ EXIT_CODE=$$?;\ if [ "$$EXIT_CODE" -ne 0 ]; then \ echo '$@: Go files must be formatted with gofmt'; \ fi && \ exit $$EXIT_CODE lint: $(GOGET) github.com/golangci/golangci-lint/cmd/golangci-lint golangci-lint run get: $(GOGET) -v ./... fmt: $(GOFMT) ./... test: get fmt $(GOTEST) -count=1 ./... coverage: get test $(GOTEST) -count=1 -race -coverprofile=coverage.txt -covermode=atomic . benchmark: get $(GOTEST) -bench=. -benchmem godoc: $(GODOC) hdrhistogram-go-1.1.2/README.md000066400000000000000000000063151411122733000160670ustar00rootroot00000000000000hdrhistogram-go =============== PkgGoDev [![Gitter](https://badges.gitter.im/Join_Chat.svg)](https://gitter.im/HdrHistogram/HdrHistogram) ![Test](https://github.com/HdrHistogram/hdrhistogram-go/workflows/Test/badge.svg?branch=master) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/HdrHistogram/hdrhistogram-go/blob/master/LICENSE) [![Codecov](https://codecov.io/gh/HdrHistogram/hdrhistogram-go/branch/master/graph/badge.svg)](https://codecov.io/gh/HdrHistogram/hdrhistogram-go) A pure Go implementation of the [HDR Histogram](https://github.com/HdrHistogram/HdrHistogram). > A Histogram that supports recording and analyzing sampled data value counts > across a configurable integer value range with configurable value precision > within the range. Value precision is expressed as the number of significant > digits in the value recording, and provides control over value quantization > behavior across the value range and the subsequent value resolution at any > given level. For documentation, check [godoc](https://pkg.go.dev/github.com/HdrHistogram/hdrhistogram-go). ## Getting Started ### Installing Use `go get` to retrieve the hdrhistogram-go implementation and to add it to your `GOPATH` workspace, or project's Go module dependencies. ```go go get github.com/HdrHistogram/hdrhistogram-go ``` To update the implementation use `go get -u` to retrieve the latest version of the hdrhistogram. ```go go get github.com/HdrHistogram/hdrhistogram-go ``` ### Go Modules If you are using Go modules, your `go get` will default to the latest tagged release version of the histogram. To get a specific release version, use `@` in your `go get` command. ```go go get github.com/HdrHistogram/hdrhistogram-go@v0.9.0 ``` To get the latest HdrHistogram/hdrhistogram-go master repository change use `@latest`. ```go go get github.com/HdrHistogram/hdrhistogram-go@latest ``` ### Repo transfer and impact on go dependencies ------------------------------------------- This repository has been transferred under the github HdrHstogram umbrella with the help from the orginal author in Sept 2020. The main reasons are to group all implementations under the same roof and to provide more active contribution from the community as the orginal repository was archived several years ago. Unfortunately such URL change will break go applications that depend on this library directly or indirectly, as discussed [here](https://github.com/HdrHistogram/hdrhistogram-go/issues/30#issuecomment-696365251). The dependency URL should be modified to point to the new repository URL. The tag "v0.9.0" was applied at the point of transfer and will reflect the exact code that was frozen in the original repository. If you are using Go modules, you can update to the exact point of transfter using the `@v0.9.0` tag in your `go get` command. ``` go mod edit -replace github.com/codahale/hdrhistogram=github.com/HdrHistogram/hdrhistogram-go@v0.9.0 ``` ## Credits ------- Many thanks for Coda Hale for contributing the initial implementation and transfering the repository here. hdrhistogram-go-1.1.2/example_hdr_test.go000066400000000000000000000072551411122733000204720ustar00rootroot00000000000000package hdrhistogram_test import ( "fmt" "github.com/HdrHistogram/hdrhistogram-go" "os" ) // This latency Histogram could be used to track and analyze the counts of // observed integer values between 1 us and 30000000 us ( 30 secs ) // while maintaining a value precision of 4 significant digits across that range, // translating to a value resolution of : // - 1 microsecond up to 10 milliseconds, // - 100 microsecond (or better) from 10 milliseconds up to 10 seconds, // - 300 microsecond (or better) from 10 seconds up to 30 seconds, // nolint func ExampleNew() { lH := hdrhistogram.New(1, 30000000, 4) input := []int64{ 459876, 669187, 711612, 816326, 931423, 1033197, 1131895, 2477317, 3964974, 12718782, } for _, sample := range input { lH.RecordValue(sample) } fmt.Printf("Percentile 50: %d\n", lH.ValueAtQuantile(50.0)) // Output: // Percentile 50: 931423 } // This latency Histogram could be used to track and analyze the counts of // observed integer values between 0 us and 30000000 us ( 30 secs ) // while maintaining a value precision of 3 significant digits across that range, // translating to a value resolution of : // - 1 microsecond up to 1 millisecond, // - 1 millisecond (or better) up to one second, // - 1 second (or better) up to it's maximum tracked value ( 30 seconds ). // nolint func ExampleHistogram_RecordValue() { lH := hdrhistogram.New(1, 30000000, 3) input := []int64{ 459876, 669187, 711612, 816326, 931423, 1033197, 1131895, 2477317, 3964974, 12718782, } for _, sample := range input { lH.RecordValue(sample) } fmt.Printf("Percentile 50: %d\n", lH.ValueAtQuantile(50.0)) // Output: // Percentile 50: 931839 } // The following example details the creation of an histogram used to track // and analyze the counts of observed integer values between 0 us and 30000000 us ( 30 secs ) // and the printing of the percentile output format // nolint func ExampleHistogram_PercentilesPrint() { lH := hdrhistogram.New(1, 30000000, 3) input := []int64{ 459876, 669187, 711612, 816326, 931423, 1033197, 1131895, 2477317, 3964974, 12718782, } for _, sample := range input { lH.RecordValue(sample) } lH.PercentilesPrint(os.Stdout, 1, 1.0) // Output: // Value Percentile TotalCount 1/(1-Percentile) // // 460031.000 0.000000 1 1.00 // 931839.000 0.500000 5 2.00 // 2478079.000 0.750000 8 4.00 // 3966975.000 0.875000 9 8.00 // 12722175.000 0.937500 10 16.00 // 12722175.000 1.000000 10 inf // #[Mean = 2491481.600, StdDeviation = 3557920.109] // #[Max = 12722175.000, Total count = 10] // #[Buckets = 15, SubBuckets = 2048] } // When doing an percentile analysis we normally require more than one percentile to be calculated for the given histogram. // // When that is the case ValueAtPercentiles() will deeply optimize the total time to retrieve the percentiles vs the other option // which is multiple calls to ValueAtQuantile(). // // nolint func ExampleHistogram_ValueAtPercentiles() { histogram := hdrhistogram.New(1, 30000000, 3) for i := 0; i < 1000000; i++ { histogram.RecordValue(int64(i)) } percentileValuesMap := histogram.ValueAtPercentiles([]float64{50.0, 95.0, 99.0, 99.9}) fmt.Printf("Percentile 50: %d\n", percentileValuesMap[50.0]) fmt.Printf("Percentile 95: %d\n", percentileValuesMap[95.0]) fmt.Printf("Percentile 99: %d\n", percentileValuesMap[99.0]) fmt.Printf("Percentile 99.9: %d\n", percentileValuesMap[99.9]) // Output: // Percentile 50: 500223 // Percentile 95: 950271 // Percentile 99: 990207 // Percentile 99.9: 999423 } hdrhistogram-go-1.1.2/example_log_writer_test.go000066400000000000000000000073501411122733000220660ustar00rootroot00000000000000package hdrhistogram_test import ( "bytes" "fmt" hdrhistogram "github.com/HdrHistogram/hdrhistogram-go" "io/ioutil" ) // The log format encodes into a single file, multiple histograms with optional shared meta data. // The following example showcases reading a log file into a slice of histograms // nolint func ExampleNewHistogramLogReader() { dat, _ := ioutil.ReadFile("./test/tagged-Log.logV2.hlog") r := bytes.NewReader(dat) // Create a histogram log reader reader := hdrhistogram.NewHistogramLogReader(r) var histograms []*hdrhistogram.Histogram = make([]*hdrhistogram.Histogram, 0) // Read all histograms in the file for hist, err := reader.NextIntervalHistogram(); hist != nil && err == nil; hist, err = reader.NextIntervalHistogram() { histograms = append(histograms, hist) } fmt.Printf("Read a total of %d histograms\n", len(histograms)) min := reader.RangeObservedMin() max := reader.RangeObservedMax() sigdigits := 3 overallHistogram := hdrhistogram.New(min, max, sigdigits) //// We can then merge all histograms into one and retrieve overall metrics for _, hist := range histograms { overallHistogram.Merge(hist) } fmt.Printf("Overall count: %d samples\n", overallHistogram.TotalCount()) fmt.Printf("Overall Percentile 50: %d\n", overallHistogram.ValueAtQuantile(50.0)) // Output: // Read a total of 42 histograms // Overall count: 32290 samples // Overall Percentile 50: 344319 } // The log format encodes into a single file, multiple histograms with optional shared meta data. // The following example showcases writing multiple histograms into a log file and then // processing them again to confirm a proper encode-decode flow // nolint func ExampleNewHistogramLogWriter() { var buff bytes.Buffer // Create a histogram log writer to write to a bytes.Buffer writer := hdrhistogram.NewHistogramLogWriter(&buff) writer.OutputLogFormatVersion() writer.OutputStartTime(0) writer.OutputLegend() // Lets create 3 distinct histograms to exemply the logwriter features // each one with a time-frame of 60 secs ( 60000 ms ) hist1 := hdrhistogram.New(1, 30000000, 3) hist1.SetStartTimeMs(0) hist1.SetEndTimeMs(60000) for _, sample := range []int64{10, 20, 30, 40} { hist1.RecordValue(sample) } hist2 := hdrhistogram.New(1, 3000, 3) hist1.SetStartTimeMs(60001) hist1.SetEndTimeMs(120000) for _, sample := range []int64{50, 70, 80, 60} { hist2.RecordValue(sample) } hist3 := hdrhistogram.New(1, 30000, 3) hist1.SetStartTimeMs(120001) hist1.SetEndTimeMs(180000) for _, sample := range []int64{90, 100} { hist3.RecordValue(sample) } writer.OutputIntervalHistogram(hist1) writer.OutputIntervalHistogram(hist2) writer.OutputIntervalHistogram(hist3) ioutil.WriteFile("example.logV2.hlog", buff.Bytes(), 0644) // read check // Lets read all again and confirm that the total sample count is 10 dat, _ := ioutil.ReadFile("example.logV2.hlog") r := bytes.NewReader(dat) // Create a histogram log reader reader := hdrhistogram.NewHistogramLogReader(r) var histograms []*hdrhistogram.Histogram = make([]*hdrhistogram.Histogram, 0) // Read all histograms in the file for hist, err := reader.NextIntervalHistogram(); hist != nil && err == nil; hist, err = reader.NextIntervalHistogram() { histograms = append(histograms, hist) } fmt.Printf("Read a total of %d histograms\n", len(histograms)) min := reader.RangeObservedMin() max := reader.RangeObservedMax() sigdigits := 3 overallHistogram := hdrhistogram.New(min, max, sigdigits) //// We can then merge all histograms into one and retrieve overall metrics for _, hist := range histograms { overallHistogram.Merge(hist) } fmt.Printf("Overall count: %d samples\n", overallHistogram.TotalCount()) // Output: // Read a total of 3 histograms // Overall count: 10 samples } hdrhistogram-go-1.1.2/go.mod000066400000000000000000000010161411122733000157070ustar00rootroot00000000000000module github.com/HdrHistogram/hdrhistogram-go go 1.14 require ( github.com/davecgh/go-spew v1.1.1 // indirect github.com/google/go-cmp v0.5.4 github.com/kr/text v0.2.0 // indirect github.com/niemeyer/pretty v0.0.0-20200227124842-a10e7caefd8e // indirect github.com/stretchr/testify v1.7.0 golang.org/x/exp v0.0.0-20191030013958-a1ab85dbe136 // indirect golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 // indirect gonum.org/v1/gonum v0.8.2 gopkg.in/check.v1 v1.0.0-20200227125254-8fa46927fb4f // indirect ) hdrhistogram-go-1.1.2/go.sum000066400000000000000000000143111411122733000157360ustar00rootroot00000000000000dmitri.shuralyov.com/gpu/mtl v0.0.0-20190408044501-666a987793e9/go.mod h1:H6x//7gZCb22OMCxBHrMx7a5I7Hp++hsVxbQ4BYO7hU= github.com/BurntSushi/xgb v0.0.0-20160522181843-27f122750802/go.mod h1:IVnqGOEym/WlBOVXweHU+Q+/VP0lqqI8lqeDx9IjBqo= github.com/ajstarks/svgo v0.0.0-20180226025133-644b8db467af/go.mod h1:K08gAheRH3/J6wwsYMMT4xOr94bZjxIelGM0+d/wbFw= github.com/creack/pty v1.1.9/go.mod h1:oKZEueFk5CKHvIhNR5MUki03XCEU+Q6VDXinZuGJ33E= github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38= github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c= github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38= github.com/fogleman/gg v1.2.1-0.20190220221249-0403632d5b90/go.mod h1:R/bRT+9gY/C5z7JzPU0zXsXHKM4/ayA+zqcVNZzPa1k= github.com/go-gl/glfw v0.0.0-20190409004039-e6da0acd62b1/go.mod h1:vR7hzQXu2zJy9AVAgeJqvqgH9Q5CA+iKCZ2gyEVpxRU= github.com/golang/freetype v0.0.0-20170609003504-e2365dfdc4a0/go.mod h1:E/TSTwGwJL78qG/PmXZO1EjYhfJinVAhrmmHX6Z8B9k= github.com/google/go-cmp v0.5.4 h1:L8R9j+yAqZuZjsqh/z+F1NCffTKKLShY6zXTItVIZ8M= github.com/google/go-cmp v0.5.4/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE= github.com/jung-kurt/gofpdf v1.0.3-0.20190309125859-24315acbbda5/go.mod h1:7Id9E/uU8ce6rXgefFLlgrJj/GYY22cpxn+r32jIOes= github.com/kr/pty v1.1.1/go.mod h1:pFQYn66WHrOpPYNljwOMqo10TkYh1fy3cYio2l3bCsQ= github.com/kr/text v0.1.0/go.mod h1:4Jbv+DJW3UT/LiOwJeYQe1efqtUx/iVham/4vfdArNI= github.com/kr/text v0.2.0 h1:5Nx0Ya0ZqY2ygV366QzturHI13Jq95ApcVaJBhpS+AY= github.com/kr/text v0.2.0/go.mod h1:eLer722TekiGuMkidMxC/pM04lWEeraHUUmBw8l2grE= github.com/niemeyer/pretty v0.0.0-20200227124842-a10e7caefd8e h1:fD57ERR4JtEqsWbfPhv4DMiApHyliiK5xCTNVSPiaAs= github.com/niemeyer/pretty v0.0.0-20200227124842-a10e7caefd8e/go.mod h1:zD1mROLANZcx1PVRCS0qkT7pwLkGfwJo4zjcN/Tysno= github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM= github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4= github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME= github.com/stretchr/testify v1.7.0 h1:nwc3DEeHmmLAfoZucVR881uASk0Mfjw8xYJ99tb5CcY= github.com/stretchr/testify v1.7.0/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg= golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w= golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI= golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= golang.org/x/exp v0.0.0-20190125153040-c74c464bbbf2/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= golang.org/x/exp v0.0.0-20190306152737-a1d7652674e8/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= golang.org/x/exp v0.0.0-20191030013958-a1ab85dbe136 h1:A1gGSx58LAGVHUUsOf7IiR0u8Xb6W51gRwfDBhkdcaw= golang.org/x/exp v0.0.0-20191030013958-a1ab85dbe136/go.mod h1:JXzH8nQsPlswgeRAPE3MuO9GYsAcnJvJ4vnMwN/5qkY= golang.org/x/image v0.0.0-20180708004352-c73c2afc3b81/go.mod h1:ux5Hcp/YLpHSI86hEcLt0YII63i6oz57MZXIpbrjZUs= golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js= golang.org/x/image v0.0.0-20190802002840-cff245a6509b/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0= golang.org/x/mobile v0.0.0-20190719004257-d2bd2a29d028/go.mod h1:E/iHnbuqvinMTCcRqshq8CkpyQDoeVncDDYHnLhea+o= golang.org/x/mod v0.1.0/go.mod h1:0QHyrYULN0/3qlju5TqG8bIK38QM8yzMo5ekMj3DlcY= golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg= golang.org/x/net v0.0.0-20190620200207-3b0461eec859/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s= golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ= golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ= golang.org/x/tools v0.0.0-20190206041539-40960b6deb8e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ= golang.org/x/tools v0.0.0-20191012152004-8de300cfc20a/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo= golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 h1:go1bK/D/BFZV2I8cIQd1NKEZ+0owSTG1fDTci4IqFcE= golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= gonum.org/v1/gonum v0.0.0-20180816165407-929014505bf4/go.mod h1:Y+Yx5eoAFn32cQvJDxZx5Dpnq+c3wtXuadVZAcxbbBo= gonum.org/v1/gonum v0.8.2 h1:CCXrcPKiGGotvnN6jfUsKk4rRqm7q09/YbKb5xCEvtM= gonum.org/v1/gonum v0.8.2/go.mod h1:oe/vMfY3deqTw+1EZJhuvEW2iwGF1bW9wwu7XCu0+v0= gonum.org/v1/netlib v0.0.0-20190313105609-8cb42192e0e0 h1:OE9mWmgKkjJyEmDAAtGMPjXu+YNeGvK9VTSHY6+Qihc= gonum.org/v1/netlib v0.0.0-20190313105609-8cb42192e0e0/go.mod h1:wa6Ws7BG/ESfp6dHfk7C6KdzKA7wR7u/rKwOGE66zvw= gonum.org/v1/plot v0.0.0-20190515093506-e2840ee46a6b/go.mod h1:Wt8AAjI+ypCyYX3nZBvf6cAIx93T+c/OS2HFAYskSZc= gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0= gopkg.in/check.v1 v1.0.0-20200227125254-8fa46927fb4f h1:BLraFXnmrev5lT+xlilqcH8XK9/i0At2xKjWk4p6zsU= gopkg.in/check.v1 v1.0.0-20200227125254-8fa46927fb4f/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0= gopkg.in/yaml.v3 v3.0.0-20200313102051-9f266ea9e77c h1:dUUwHk2QECo/6vqA44rthZ8ie2QXMNeKRTHCNY2nXvo= gopkg.in/yaml.v3 v3.0.0-20200313102051-9f266ea9e77c/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM= rsc.io/pdf v0.1.1/go.mod h1:n8OzWcQ6Sp37PL01nO98y4iUCRdTGarVfzxY20ICaU4= hdrhistogram-go-1.1.2/hdr.go000066400000000000000000000577101411122733000157210ustar00rootroot00000000000000// Package hdrhistogram provides an implementation of Gil Tene's HDR Histogram // data structure. The HDR Histogram allows for fast and accurate analysis of // the extreme ranges of data with non-normal distributions, like latency. package hdrhistogram import ( "fmt" "io" "math" "math/bits" "sort" ) // A Bracket is a part of a cumulative distribution. type Bracket struct { Quantile float64 Count, ValueAt int64 } // A Snapshot is an exported view of a Histogram, useful for serializing them. // A Histogram can be constructed from it by passing it to Import. type Snapshot struct { LowestTrackableValue int64 HighestTrackableValue int64 SignificantFigures int64 Counts []int64 } // A Histogram is a lossy data structure used to record the distribution of // non-normally distributed data (like latency) with a high degree of accuracy // and a bounded degree of precision. type Histogram struct { lowestDiscernibleValue int64 highestTrackableValue int64 unitMagnitude int64 significantFigures int64 subBucketHalfCountMagnitude int32 subBucketHalfCount int32 subBucketMask int64 subBucketCount int32 bucketCount int32 countsLen int32 totalCount int64 counts []int64 startTimeMs int64 endTimeMs int64 tag string } func (h *Histogram) Tag() string { return h.tag } func (h *Histogram) SetTag(tag string) { h.tag = tag } func (h *Histogram) EndTimeMs() int64 { return h.endTimeMs } func (h *Histogram) SetEndTimeMs(endTimeMs int64) { h.endTimeMs = endTimeMs } func (h *Histogram) StartTimeMs() int64 { return h.startTimeMs } func (h *Histogram) SetStartTimeMs(startTimeMs int64) { h.startTimeMs = startTimeMs } // Construct a Histogram given the Lowest and Highest values to be tracked and a number of significant decimal digits. // // Providing a lowestDiscernibleValue is useful in situations where the units used for the histogram's values are // much smaller that the minimal accuracy required. // E.g. when tracking time values stated in nanosecond units, where the minimal accuracy required is a microsecond, // the proper value for lowestDiscernibleValue would be 1000. // // Note: the numberOfSignificantValueDigits must be [1,5]. If lower than 1 the numberOfSignificantValueDigits will be // forced to 1, and if higher than 5 the numberOfSignificantValueDigits will be forced to 5. func New(lowestDiscernibleValue, highestTrackableValue int64, numberOfSignificantValueDigits int) *Histogram { if numberOfSignificantValueDigits < 1 { numberOfSignificantValueDigits = 1 } else if numberOfSignificantValueDigits > 5 { numberOfSignificantValueDigits = 5 } if lowestDiscernibleValue < 1 { lowestDiscernibleValue = 1 } // Given a 3 decimal point accuracy, the expectation is obviously for "+/- 1 unit at 1000". It also means that // it's "ok to be +/- 2 units at 2000". The "tricky" thing is that it is NOT ok to be +/- 2 units at 1999. Only // starting at 2000. So internally, we need to maintain single unit resolution to 2x 10^decimalPoints. largestValueWithSingleUnitResolution := 2 * math.Pow10(numberOfSignificantValueDigits) // We need to maintain power-of-two subBucketCount (for clean direct indexing) that is large enough to // provide unit resolution to at least largestValueWithSingleUnitResolution. So figure out // largestValueWithSingleUnitResolution's nearest power-of-two (rounded up), and use that: subBucketCountMagnitude := int32(math.Ceil(math.Log2(float64(largestValueWithSingleUnitResolution)))) subBucketHalfCountMagnitude := subBucketCountMagnitude if subBucketHalfCountMagnitude < 1 { subBucketHalfCountMagnitude = 1 } subBucketHalfCountMagnitude-- unitMagnitude := int32(math.Floor(math.Log2(float64(lowestDiscernibleValue)))) if unitMagnitude < 0 { unitMagnitude = 0 } subBucketCount := int32(math.Pow(2, float64(subBucketHalfCountMagnitude)+1)) subBucketHalfCount := subBucketCount / 2 subBucketMask := int64(subBucketCount-1) << uint(unitMagnitude) // determine exponent range needed to support the trackable value with no // overflow: smallestUntrackableValue := int64(subBucketCount) << uint(unitMagnitude) bucketsNeeded := getBucketsNeededToCoverValue(smallestUntrackableValue, highestTrackableValue) bucketCount := bucketsNeeded countsLen := (bucketCount + 1) * (subBucketCount / 2) return &Histogram{ lowestDiscernibleValue: lowestDiscernibleValue, highestTrackableValue: highestTrackableValue, unitMagnitude: int64(unitMagnitude), significantFigures: int64(numberOfSignificantValueDigits), subBucketHalfCountMagnitude: subBucketHalfCountMagnitude, subBucketHalfCount: subBucketHalfCount, subBucketMask: subBucketMask, subBucketCount: subBucketCount, bucketCount: bucketCount, countsLen: countsLen, totalCount: 0, counts: make([]int64, countsLen), startTimeMs: 0, endTimeMs: 0, tag: "", } } func getBucketsNeededToCoverValue(smallestUntrackableValue int64, maxValue int64) int32 { // always have at least 1 bucket bucketsNeeded := int32(1) for smallestUntrackableValue < maxValue { if smallestUntrackableValue > (math.MaxInt64 / 2) { // next shift will overflow, meaning that bucket could represent values up to ones greater than // math.MaxInt64, so it's the last bucket return bucketsNeeded + 1 } smallestUntrackableValue <<= 1 bucketsNeeded++ } return bucketsNeeded } // ByteSize returns an estimate of the amount of memory allocated to the // histogram in bytes. // // N.B.: This does not take into account the overhead for slices, which are // small, constant, and specific to the compiler version. func (h *Histogram) ByteSize() int { return 6*8 + 5*4 + len(h.counts)*8 } func (h *Histogram) getNormalizingIndexOffset() int32 { return 1 } // Merge merges the data stored in the given histogram with the receiver, // returning the number of recorded values which had to be dropped. func (h *Histogram) Merge(from *Histogram) (dropped int64) { i := from.rIterator() for i.next() { v := i.valueFromIdx c := i.countAtIdx if h.RecordValues(v, c) != nil { dropped += c } } return } // TotalCount returns total number of values recorded. func (h *Histogram) TotalCount() int64 { return h.totalCount } // Max returns the approximate maximum recorded value. func (h *Histogram) Max() int64 { var max int64 i := h.iterator() for i.next() { if i.countAtIdx != 0 { max = i.highestEquivalentValue } } return h.highestEquivalentValue(max) } // Min returns the approximate minimum recorded value. func (h *Histogram) Min() int64 { var min int64 i := h.iterator() for i.next() { if i.countAtIdx != 0 && min == 0 { min = i.highestEquivalentValue break } } return h.lowestEquivalentValue(min) } // Mean returns the approximate arithmetic mean of the recorded values. func (h *Histogram) Mean() float64 { if h.totalCount == 0 { return 0 } var total int64 i := h.iterator() for i.next() { if i.countAtIdx != 0 { total += i.countAtIdx * h.medianEquivalentValue(i.valueFromIdx) } } return float64(total) / float64(h.totalCount) } // StdDev returns the approximate standard deviation of the recorded values. func (h *Histogram) StdDev() float64 { if h.totalCount == 0 { return 0 } mean := h.Mean() geometricDevTotal := 0.0 i := h.iterator() for i.next() { if i.countAtIdx != 0 { dev := float64(h.medianEquivalentValue(i.valueFromIdx)) - mean geometricDevTotal += (dev * dev) * float64(i.countAtIdx) } } return math.Sqrt(geometricDevTotal / float64(h.totalCount)) } // Reset deletes all recorded values and restores the histogram to its original // state. func (h *Histogram) Reset() { h.totalCount = 0 for i := range h.counts { h.counts[i] = 0 } } // RecordValue records the given value, returning an error if the value is out // of range. func (h *Histogram) RecordValue(v int64) error { return h.RecordValues(v, 1) } // RecordCorrectedValue records the given value, correcting for stalls in the // recording process. This only works for processes which are recording values // at an expected interval (e.g., doing jitter analysis). Processes which are // recording ad-hoc values (e.g., latency for incoming requests) can't take // advantage of this. func (h *Histogram) RecordCorrectedValue(v, expectedInterval int64) error { if err := h.RecordValue(v); err != nil { return err } if expectedInterval <= 0 || v <= expectedInterval { return nil } missingValue := v - expectedInterval for missingValue >= expectedInterval { if err := h.RecordValue(missingValue); err != nil { return err } missingValue -= expectedInterval } return nil } // RecordValues records n occurrences of the given value, returning an error if // the value is out of range. func (h *Histogram) RecordValues(v, n int64) error { idx := h.countsIndexFor(v) if idx < 0 || int(h.countsLen) <= idx { return fmt.Errorf("value %d is too large to be recorded", v) } h.setCountAtIndex(idx, n) return nil } func (h *Histogram) setCountAtIndex(idx int, n int64) { h.counts[idx] += n h.totalCount += n } // ValueAtQuantile returns the largest value that (100% - percentile) of the overall recorded value entries // in the histogram are either larger than or equivalent to. // // The passed quantile must be a float64 value in [0.0 .. 100.0] // Note that two values are "equivalent" if `ValuesAreEquivalent(value1,value2)` would return true. // // Returns 0 if no recorded values exist. func (h *Histogram) ValueAtQuantile(q float64) int64 { return h.ValueAtPercentile(q) } // ValueAtPercentile returns the largest value that (100% - percentile) of the overall recorded value entries // in the histogram are either larger than or equivalent to. // // The passed percentile must be a float64 value in [0.0 .. 100.0] // Note that two values are "equivalent" if `ValuesAreEquivalent(value1,value2)` would return true. // // Returns 0 if no recorded values exist. func (h *Histogram) ValueAtPercentile(percentile float64) int64 { if percentile > 100 { percentile = 100 } countAtPercentile := int64(((percentile / 100) * float64(h.totalCount)) + 0.5) valueFromIdx := h.getValueFromIdxUpToCount(countAtPercentile) if percentile == 0.0 { return h.lowestEquivalentValue(valueFromIdx) } return h.highestEquivalentValue(valueFromIdx) } func (h *Histogram) getValueFromIdxUpToCount(countAtPercentile int64) int64 { var countToIdx int64 var valueFromIdx int64 var subBucketIdx int32 = -1 var bucketIdx int32 bucketBaseIdx := h.getBucketBaseIdx(bucketIdx) for { if countToIdx >= countAtPercentile { break } // increment bucket subBucketIdx++ if subBucketIdx >= h.subBucketCount { subBucketIdx = h.subBucketHalfCount bucketIdx++ bucketBaseIdx = h.getBucketBaseIdx(bucketIdx) } countToIdx += h.getCountAtIndexGivenBucketBaseIdx(bucketBaseIdx, subBucketIdx) valueFromIdx = int64(subBucketIdx) << uint(int64(bucketIdx)+h.unitMagnitude) } return valueFromIdx } // ValueAtPercentiles, given an slice of percentiles returns a map containing for each passed percentile, // the largest value that (100% - percentile) of the overall recorded value entries // in the histogram are either larger than or equivalent to. // // Each element in the given an slice of percentiles must be a float64 value in [0.0 .. 100.0] // Note that two values are "equivalent" if `ValuesAreEquivalent(value1,value2)` would return true. // // Returns a map of 0's if no recorded values exist. func (h *Histogram) ValueAtPercentiles(percentiles []float64) (values map[float64]int64) { sort.Float64s(percentiles) totalQuantilesToCalculate := len(percentiles) values = make(map[float64]int64, totalQuantilesToCalculate) countAtPercentiles := make([]int64, totalQuantilesToCalculate) for i, percentile := range percentiles { if percentile > 100 { percentile = 100 } values[percentile] = 0 countAtPercentiles[i] = int64(((percentile / 100) * float64(h.totalCount)) + 0.5) } total := int64(0) currentQuantileSlicePos := 0 i := h.iterator() for currentQuantileSlicePos < totalQuantilesToCalculate && i.nextCountAtIdx(h.totalCount) { total += i.countAtIdx for currentQuantileSlicePos < totalQuantilesToCalculate && total >= countAtPercentiles[currentQuantileSlicePos] { currentPercentile := percentiles[currentQuantileSlicePos] if currentPercentile == 0.0 { values[currentPercentile] = h.lowestEquivalentValue(i.valueFromIdx) } else { values[currentPercentile] = h.highestEquivalentValue(i.valueFromIdx) } currentQuantileSlicePos++ } } return } // Determine if two values are equivalent with the histogram's resolution. // Where "equivalent" means that value samples recorded for any two // equivalent values are counted in a common total count. func (h *Histogram) ValuesAreEquivalent(value1, value2 int64) (result bool) { result = h.lowestEquivalentValue(value1) == h.lowestEquivalentValue(value2) return } // CumulativeDistribution returns an ordered list of brackets of the // distribution of recorded values. func (h *Histogram) CumulativeDistribution() []Bracket { var result []Bracket i := h.pIterator(1) for i.next() { result = append(result, Bracket{ Quantile: i.percentile, Count: i.countToIdx, ValueAt: i.highestEquivalentValue, }) } return result } // SignificantFigures returns the significant figures used to create the // histogram func (h *Histogram) SignificantFigures() int64 { return h.significantFigures } // LowestTrackableValue returns the lower bound on values that will be added // to the histogram func (h *Histogram) LowestTrackableValue() int64 { return h.lowestDiscernibleValue } // HighestTrackableValue returns the upper bound on values that will be added // to the histogram func (h *Histogram) HighestTrackableValue() int64 { return h.highestTrackableValue } // Histogram bar for plotting type Bar struct { From, To, Count int64 } // Pretty print as csv for easy plotting func (b Bar) String() string { return fmt.Sprintf("%v, %v, %v\n", b.From, b.To, b.Count) } // Distribution returns an ordered list of bars of the // distribution of recorded values, counts can be normalized to a probability func (h *Histogram) Distribution() (result []Bar) { i := h.iterator() for i.next() { result = append(result, Bar{ Count: i.countAtIdx, From: h.lowestEquivalentValue(i.valueFromIdx), To: i.highestEquivalentValue, }) } return result } // Equals returns true if the two Histograms are equivalent, false if not. func (h *Histogram) Equals(other *Histogram) bool { switch { case h.lowestDiscernibleValue != other.lowestDiscernibleValue, h.highestTrackableValue != other.highestTrackableValue, h.unitMagnitude != other.unitMagnitude, h.significantFigures != other.significantFigures, h.subBucketHalfCountMagnitude != other.subBucketHalfCountMagnitude, h.subBucketHalfCount != other.subBucketHalfCount, h.subBucketMask != other.subBucketMask, h.subBucketCount != other.subBucketCount, h.bucketCount != other.bucketCount, h.countsLen != other.countsLen, h.totalCount != other.totalCount: return false default: for i, c := range h.counts { if c != other.counts[i] { return false } } } return true } // Export returns a snapshot view of the Histogram. This can be later passed to // Import to construct a new Histogram with the same state. func (h *Histogram) Export() *Snapshot { return &Snapshot{ LowestTrackableValue: h.lowestDiscernibleValue, HighestTrackableValue: h.highestTrackableValue, SignificantFigures: h.significantFigures, Counts: append([]int64(nil), h.counts...), // copy } } // Import returns a new Histogram populated from the Snapshot data (which the // caller must stop accessing). func Import(s *Snapshot) *Histogram { h := New(s.LowestTrackableValue, s.HighestTrackableValue, int(s.SignificantFigures)) h.counts = s.Counts totalCount := int64(0) for i := int32(0); i < h.countsLen; i++ { countAtIndex := h.counts[i] if countAtIndex > 0 { totalCount += countAtIndex } } h.totalCount = totalCount return h } func (h *Histogram) iterator() *iterator { return &iterator{ h: h, subBucketIdx: -1, } } func (h *Histogram) rIterator() *rIterator { return &rIterator{ iterator: iterator{ h: h, subBucketIdx: -1, }, } } func (h *Histogram) pIterator(ticksPerHalfDistance int32) *pIterator { return &pIterator{ iterator: iterator{ h: h, subBucketIdx: -1, }, ticksPerHalfDistance: ticksPerHalfDistance, } } func (h *Histogram) sizeOfEquivalentValueRange(v int64) int64 { bucketIdx := h.getBucketIndex(v) return h.sizeOfEquivalentValueRangeGivenBucketIdx(v, bucketIdx) } func (h *Histogram) sizeOfEquivalentValueRangeGivenBucketIdx(v int64, bucketIdx int32) int64 { subBucketIdx := h.getSubBucketIdx(v, bucketIdx) adjustedBucket := bucketIdx if subBucketIdx >= h.subBucketCount { adjustedBucket++ } return int64(1) << uint(h.unitMagnitude+int64(adjustedBucket)) } func (h *Histogram) valueFromIndex(bucketIdx, subBucketIdx int32) int64 { return int64(subBucketIdx) << uint(int64(bucketIdx)+h.unitMagnitude) } func (h *Histogram) lowestEquivalentValue(v int64) int64 { bucketIdx := h.getBucketIndex(v) return h.lowestEquivalentValueGivenBucketIdx(v, bucketIdx) } func (h *Histogram) lowestEquivalentValueGivenBucketIdx(v int64, bucketIdx int32) int64 { subBucketIdx := h.getSubBucketIdx(v, bucketIdx) return h.valueFromIndex(bucketIdx, subBucketIdx) } func (h *Histogram) nextNonEquivalentValue(v int64) int64 { bucketIdx := h.getBucketIndex(v) return h.lowestEquivalentValueGivenBucketIdx(v, bucketIdx) + h.sizeOfEquivalentValueRangeGivenBucketIdx(v, bucketIdx) } func (h *Histogram) highestEquivalentValue(v int64) int64 { return h.nextNonEquivalentValue(v) - 1 } func (h *Histogram) medianEquivalentValue(v int64) int64 { return h.lowestEquivalentValue(v) + (h.sizeOfEquivalentValueRange(v) >> 1) } func (h *Histogram) getCountAtIndex(bucketIdx, subBucketIdx int32) int64 { return h.counts[h.countsIndex(bucketIdx, subBucketIdx)] } func (h *Histogram) getCountAtIndexGivenBucketBaseIdx(bucketBaseIdx, subBucketIdx int32) int64 { return h.counts[bucketBaseIdx+subBucketIdx-h.subBucketHalfCount] } func (h *Histogram) countsIndex(bucketIdx, subBucketIdx int32) int32 { return h.getBucketBaseIdx(bucketIdx) + subBucketIdx - h.subBucketHalfCount } func (h *Histogram) getBucketBaseIdx(bucketIdx int32) int32 { return (bucketIdx + 1) << uint(h.subBucketHalfCountMagnitude) } // return the lowest (and therefore highest precision) bucket index that can represent the value // Calculates the number of powers of two by which the value is greater than the biggest value that fits in // bucket 0. This is the bucket index since each successive bucket can hold a value 2x greater. func (h *Histogram) getBucketIndex(v int64) int32 { var pow2Ceiling = int64(64 - bits.LeadingZeros64(uint64(v|h.subBucketMask))) return int32(pow2Ceiling - int64(h.unitMagnitude) - int64(h.subBucketHalfCountMagnitude+1)) } // For bucketIndex 0, this is just value, so it may be anywhere in 0 to subBucketCount. // For other bucketIndex, this will always end up in the top half of subBucketCount: assume that for some bucket // k > 0, this calculation will yield a value in the bottom half of 0 to subBucketCount. Then, because of how // buckets overlap, it would have also been in the top half of bucket k-1, and therefore would have // returned k-1 in getBucketIndex(). Since we would then shift it one fewer bits here, it would be twice as big, // and therefore in the top half of subBucketCount. func (h *Histogram) getSubBucketIdx(v int64, idx int32) int32 { return int32(v >> uint(int64(idx)+int64(h.unitMagnitude))) } func (h *Histogram) countsIndexFor(v int64) int { bucketIdx := h.getBucketIndex(v) subBucketIdx := h.getSubBucketIdx(v, bucketIdx) return int(h.countsIndex(bucketIdx, subBucketIdx)) } func (h *Histogram) getIntegerToDoubleValueConversionRatio() float64 { return 1.0 } type iterator struct { h *Histogram bucketIdx, subBucketIdx int32 countAtIdx, countToIdx, valueFromIdx int64 highestEquivalentValue int64 } // nextCountAtIdx does not update the iterator highestEquivalentValue in order to optimize cpu usage. func (i *iterator) nextCountAtIdx(limit int64) bool { if i.countToIdx >= limit { return false } // increment bucket i.subBucketIdx++ if i.subBucketIdx >= i.h.subBucketCount { i.subBucketIdx = i.h.subBucketHalfCount i.bucketIdx++ } if i.bucketIdx >= i.h.bucketCount { return false } i.countAtIdx = i.h.getCountAtIndex(i.bucketIdx, i.subBucketIdx) i.countToIdx += i.countAtIdx i.valueFromIdx = i.h.valueFromIndex(i.bucketIdx, i.subBucketIdx) return true } // Returns the next element in the iteration. func (i *iterator) next() bool { if !i.nextCountAtIdx(i.h.totalCount) { return false } i.highestEquivalentValue = i.h.highestEquivalentValue(i.valueFromIdx) return true } type rIterator struct { iterator countAddedThisStep int64 } func (r *rIterator) next() bool { for r.iterator.next() { if r.countAtIdx != 0 { r.countAddedThisStep = r.countAtIdx return true } } return false } type pIterator struct { iterator seenLastValue bool ticksPerHalfDistance int32 percentileToIteratorTo float64 percentile float64 } func (p *pIterator) next() bool { if !(p.countToIdx < p.h.totalCount) { if p.seenLastValue { return false } p.seenLastValue = true p.percentile = 100 return true } if p.subBucketIdx == -1 && !p.iterator.next() { return false } var done = false for !done { currentPercentile := (100.0 * float64(p.countToIdx)) / float64(p.h.totalCount) if p.countAtIdx != 0 && p.percentileToIteratorTo <= currentPercentile { p.percentile = p.percentileToIteratorTo halfDistance := math.Trunc(math.Pow(2, math.Trunc(math.Log2(100.0/(100.0-p.percentileToIteratorTo)))+1)) percentileReportingTicks := float64(p.ticksPerHalfDistance) * halfDistance p.percentileToIteratorTo += 100.0 / percentileReportingTicks return true } done = !p.iterator.next() } return true } // CumulativeDistribution returns an ordered list of brackets of the // distribution of recorded values. func (h *Histogram) CumulativeDistributionWithTicks(ticksPerHalfDistance int32) []Bracket { var result []Bracket i := h.pIterator(ticksPerHalfDistance) for i.next() { result = append(result, Bracket{ Quantile: i.percentile, Count: i.countToIdx, ValueAt: int64(i.highestEquivalentValue), }) } return result } // Output the percentiles distribution in a text format func (h *Histogram) PercentilesPrint(writer io.Writer, ticksPerHalfDistance int32, valueScale float64) (outputWriter io.Writer, err error) { outputWriter = writer dist := h.CumulativeDistributionWithTicks(ticksPerHalfDistance) _, err = outputWriter.Write([]byte(" Value\tPercentile\tTotalCount\t1/(1-Percentile)\n\n")) if err != nil { return } for _, slice := range dist { percentile := slice.Quantile / 100.0 inverted_percentile := 1.0 / (1.0 - percentile) var inverted_percentile_string = fmt.Sprintf("%12.2f", inverted_percentile) // Given that other language implementations display inf (instead of Go's +Inf) // we want to be as close as possible to them if math.IsInf(inverted_percentile, 1) { inverted_percentile_string = fmt.Sprintf("%12s", "inf") } _, err = outputWriter.Write([]byte(fmt.Sprintf("%12.3f %12f %12d %s\n", float64(slice.ValueAt)/valueScale, percentile, slice.Count, inverted_percentile_string))) if err != nil { return } } footer := fmt.Sprintf("#[Mean = %12.3f, StdDeviation = %12.3f]\n#[Max = %12.3f, Total count = %12d]\n#[Buckets = %12d, SubBuckets = %12d]\n", h.Mean()/valueScale, h.StdDev()/valueScale, float64(h.Max())/valueScale, h.TotalCount(), h.bucketCount, h.subBucketCount, ) _, err = outputWriter.Write([]byte(footer)) return } hdrhistogram-go-1.1.2/hdr_benchmark_test.go000066400000000000000000000074261411122733000207710ustar00rootroot00000000000000package hdrhistogram_test import ( hdrhistogram "github.com/HdrHistogram/hdrhistogram-go" "gonum.org/v1/gonum/stat/distuv" "math" "math/rand" "testing" ) // nolint func BenchmarkHistogramRecordValue(b *testing.B) { h := hdrhistogram.New(1, 10000000, 3) for i := 0; i < 1000000; i++ { if err := h.RecordValue(int64(i)); err != nil { b.Fatal(err) } } b.ResetTimer() b.ReportAllocs() for i := 0; i < b.N; i++ { h.RecordValue(100) } } func BenchmarkNew(b *testing.B) { b.ReportAllocs() for i := 0; i < b.N; i++ { hdrhistogram.New(1, 120000, 3) // this could track 1ms-2min } } // nolint func BenchmarkHistogramValueAtPercentile(b *testing.B) { rand.Seed(12345) var highestTrackableValue int64 = 1000000 var lowestDiscernibleValue int64 = 1 var sigfigs = 3 var totalDatapoints = 1000000 h, data := populateHistogramLogNormalDist(b, lowestDiscernibleValue, highestTrackableValue, sigfigs, totalDatapoints) quantiles := make([]float64, totalDatapoints) for i := range quantiles { data[i] = rand.Float64() * 100.0 } b.ResetTimer() b.ReportAllocs() for i := 0; i < b.N; i++ { h.ValueAtPercentile(data[i%totalDatapoints]) } } // nolint func BenchmarkHistogramValueAtPercentileGivenPercentileSlice(b *testing.B) { rand.Seed(12345) var highestTrackableValue int64 = 1000000 var lowestDiscernibleValue int64 = 1 var sigfigs = 3 var totalDatapoints = 1000000 h, data := populateHistogramLogNormalDist(b, lowestDiscernibleValue, highestTrackableValue, sigfigs, totalDatapoints) quantiles := make([]float64, b.N) for i := range quantiles { data[i] = rand.Float64() * 100.0 } percentilesOfInterest := []float64{50.0, 95.0, 99.0, 99.9} b.ResetTimer() b.ReportAllocs() for i := 0; i < b.N; i++ { for _, percentile := range percentilesOfInterest { h.ValueAtPercentile(percentile) } } } // nolint func BenchmarkHistogramValueAtPercentilesGivenPercentileSlice(b *testing.B) { rand.Seed(12345) var highestTrackableValue int64 = 1000000 var lowestDiscernibleValue int64 = 1 var sigfigs = 3 var totalDatapoints = 1000000 h, data := populateHistogramLogNormalDist(b, lowestDiscernibleValue, highestTrackableValue, sigfigs, totalDatapoints) quantiles := make([]float64, b.N) for i := range quantiles { data[i] = rand.Float64() * 100.0 } percentilesOfInterest := []float64{50.0, 95.0, 99.0, 99.9} b.ResetTimer() b.ReportAllocs() for i := 0; i < b.N; i++ { h.ValueAtPercentiles(percentilesOfInterest) } } func BenchmarkWindowedHistogramRecordAndRotate(b *testing.B) { w := hdrhistogram.NewWindowed(3, 1, 10000000, 3) b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { if err := w.Current.RecordValue(100); err != nil { b.Fatal(err) } if i%100000 == 1 { w.Rotate() } } } func BenchmarkWindowedHistogramMerge(b *testing.B) { w := hdrhistogram.NewWindowed(3, 1, 10000000, 3) for i := 0; i < 10000000; i++ { if err := w.Current.RecordValue(100); err != nil { b.Fatal(err) } if i%100000 == 1 { w.Rotate() } } b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { w.Merge() } } func populateHistogramLogNormalDist(b *testing.B, lowestDiscernibleValue int64, highestTrackableValue int64, sigfigs int, totalDatapoints int) (*hdrhistogram.Histogram, []float64) { dist := distuv.LogNormal{Mu: 0.0, Sigma: 0.5} h := hdrhistogram.New(lowestDiscernibleValue, highestTrackableValue, sigfigs) data := make([]float64, totalDatapoints) // Draw some random values from the lognormal distribution min := math.MaxFloat64 max := 0.0 for i := range data { data[i] = dist.Rand() if data[i] < min { min = data[i] } if data[i] > max { max = data[i] } } k := float64(highestTrackableValue) / (max - min) for i := range data { v := k * data[i] if err := h.RecordValue(int64(v)); err != nil { b.Fatal(err) } } return h, data } hdrhistogram-go-1.1.2/hdr_encoding.go000066400000000000000000000173561411122733000175710ustar00rootroot00000000000000// Histograms are encoded using the HdrHistogram V2 format which is based on an adapted ZigZag LEB128 encoding where: // consecutive zero counters are encoded as a negative number representing the count of consecutive zeros // non zero counter values are encoded as a positive number // A typical histogram (2 digits precision 1 usec to 1 day range) can be encoded in less than the typical MTU size of 1500 bytes. package hdrhistogram import ( "bytes" "compress/zlib" "encoding/base64" "encoding/binary" "fmt" "io/ioutil" ) const ( V2EncodingCookieBase int32 = 0x1c849303 V2CompressedEncodingCookieBase int32 = 0x1c849304 encodingCookie int32 = V2EncodingCookieBase | 0x10 compressedEncodingCookie int32 = V2CompressedEncodingCookieBase | 0x10 ENCODING_HEADER_SIZE = 40 ) // Encode returns a snapshot view of the Histogram. // The snapshot is compact binary representations of the state of the histogram. // They are intended to be used for archival or transmission to other systems for further analysis. func (h *Histogram) Encode(version int32) (buffer []byte, err error) { switch version { case V2CompressedEncodingCookieBase: buffer, err = h.dumpV2CompressedEncoding() default: err = fmt.Errorf("The provided enconding version %d is not supported.", version) } return } // Decode returns a new Histogram by decoding it from a String containing // a base64 encoded compressed histogram representation. func Decode(encoded []byte) (rh *Histogram, err error) { var decoded []byte decoded, err = base64.StdEncoding.DecodeString(string(encoded)) if err != nil { return } rbuf := bytes.NewBuffer(decoded[0:8]) r32 := make([]int32, 2) err = binary.Read(rbuf, binary.BigEndian, &r32) if err != nil { return } Cookie := r32[0] & ^0xf0 lengthOfCompressedContents := r32[1] if Cookie != V2CompressedEncodingCookieBase { err = fmt.Errorf("Encoding not supported, only V2 is supported. Got %d want %d", Cookie, V2CompressedEncodingCookieBase) return } decodeLengthOfCompressedContents := int32(len(decoded[8:])) if lengthOfCompressedContents > decodeLengthOfCompressedContents { err = fmt.Errorf("The compressed contents buffer is smaller than the lengthOfCompressedContents. Got %d want %d", decodeLengthOfCompressedContents, lengthOfCompressedContents) return } rh, err = decodeCompressedFormat(decoded[8:8+lengthOfCompressedContents], ENCODING_HEADER_SIZE) return } // internal method to encode an histogram in V2 Compressed format func (h *Histogram) dumpV2CompressedEncoding() (outBuffer []byte, err error) { // final buffer buf := new(bytes.Buffer) err = binary.Write(buf, binary.BigEndian, compressedEncodingCookie) if err != nil { return } toCompress, err := h.encodeIntoByteBuffer() if err != nil { return } uncompressedBytes := toCompress.Bytes() var b bytes.Buffer w, err := zlib.NewWriterLevel(&b, zlib.BestCompression) if err != nil { return } _, err = w.Write(uncompressedBytes) if err != nil { return } w.Close() // LengthOfCompressedContents compressedContents := b.Bytes() err = binary.Write(buf, binary.BigEndian, int32(len(compressedContents))) if err != nil { return } err = binary.Write(buf, binary.BigEndian, compressedContents) if err != nil { return } outBuffer = []byte(base64.StdEncoding.EncodeToString(buf.Bytes())) return } func (h *Histogram) encodeIntoByteBuffer() (*bytes.Buffer, error) { countsBytes, err := h.fillBufferFromCountsArray() if err != nil { return nil, err } toCompress := new(bytes.Buffer) err = binary.Write(toCompress, binary.BigEndian, encodingCookie) // 0-3 if err != nil { return nil, err } err = binary.Write(toCompress, binary.BigEndian, int32(len(countsBytes))) // 3-7 if err != nil { return nil, err } err = binary.Write(toCompress, binary.BigEndian, h.getNormalizingIndexOffset()) // 8-11 if err != nil { return nil, err } err = binary.Write(toCompress, binary.BigEndian, int32(h.significantFigures)) // 12-15 if err != nil { return nil, err } err = binary.Write(toCompress, binary.BigEndian, h.lowestDiscernibleValue) // 16-23 if err != nil { return nil, err } err = binary.Write(toCompress, binary.BigEndian, h.highestTrackableValue) // 24-31 if err != nil { return nil, err } err = binary.Write(toCompress, binary.BigEndian, h.getIntegerToDoubleValueConversionRatio()) // 32-39 if err != nil { return nil, err } err = binary.Write(toCompress, binary.BigEndian, countsBytes) if err != nil { return nil, err } return toCompress, err } func decodeCompressedFormat(compressedContents []byte, headerSize int) (rh *Histogram, err error) { b := bytes.NewReader(compressedContents) z, err := zlib.NewReader(b) if err != nil { return } defer z.Close() decompressedSlice, err := ioutil.ReadAll(z) if err != nil { return } decompressedSliceLen := int32(len(decompressedSlice)) cookie, PayloadLength, _, NumberOfSignificantValueDigits, LowestTrackableValue, HighestTrackableValue, _, err := decodeDeCompressedHeaderFormat(decompressedSlice[0:headerSize]) if err != nil { return } if cookie != V2EncodingCookieBase { err = fmt.Errorf("Encoding not supported, only V2 is supported. Got %d want %d", cookie, V2EncodingCookieBase) return } actualPayloadLen := decompressedSliceLen - int32(headerSize) if PayloadLength != actualPayloadLen { err = fmt.Errorf("PayloadLength should have the same size of the actual payload. Got %d want %d", actualPayloadLen, PayloadLength) return } rh = New(LowestTrackableValue, HighestTrackableValue, int(NumberOfSignificantValueDigits)) payload := decompressedSlice[headerSize:] err = fillCountsArrayFromSourceBuffer(payload, rh) return rh, err } func fillCountsArrayFromSourceBuffer(payload []byte, rh *Histogram) (err error) { var payloadSlicePos = 0 var dstIndex int64 = 0 var n int var count int64 var zerosCount int64 for payloadSlicePos < len(payload) { count, n, err = zig_zag_decode_i64(payload[payloadSlicePos:]) if err != nil { return } payloadSlicePos += n if count < 0 { zerosCount = -count dstIndex += zerosCount } else { rh.setCountAtIndex(int(dstIndex), count) dstIndex += 1 } } return } func (rh *Histogram) fillBufferFromCountsArray() (buffer []byte, err error) { buf := new(bytes.Buffer) // V2 encoding format uses a ZigZag LEB128-64b9B encoded long. Positive values are counts, // while negative values indicate a repeat zero counts. var countsLimit int32 = int32(rh.countsIndexFor(rh.Max()) + 1) var srcIndex int32 = 0 for srcIndex < countsLimit { count := rh.counts[srcIndex] srcIndex++ var zeros int64 = 0 // check for contiguous zeros if count == 0 { zeros = 1 for srcIndex < countsLimit && 0 == rh.counts[srcIndex] { zeros++ srcIndex++ } } if zeros > 1 { err = binary.Write(buf, binary.BigEndian, zig_zag_encode_i64(-zeros)) if err != nil { return } } else { err = binary.Write(buf, binary.BigEndian, zig_zag_encode_i64(count)) if err != nil { return } } } buffer = buf.Bytes() return } func decodeDeCompressedHeaderFormat(decoded []byte) (Cookie int32, PayloadLength int32, NormalizingIndexOffSet int32, NumberOfSignificantValueDigits int32, LowestTrackableValue int64, HighestTrackableValue int64, IntegerToDoubleConversionRatio float64, err error) { rbuf := bytes.NewBuffer(decoded[0:40]) r32 := make([]int32, 4) r64 := make([]int64, 2) err = binary.Read(rbuf, binary.BigEndian, &r32) if err != nil { return } err = binary.Read(rbuf, binary.BigEndian, &r64) if err != nil { return } err = binary.Read(rbuf, binary.BigEndian, &IntegerToDoubleConversionRatio) if err != nil { return } Cookie = r32[0] & ^0xf0 PayloadLength = r32[1] NormalizingIndexOffSet = r32[2] NumberOfSignificantValueDigits = r32[3] LowestTrackableValue = r64[0] HighestTrackableValue = r64[1] return } hdrhistogram-go-1.1.2/hdr_encoding_test.go000066400000000000000000000137641411122733000206270ustar00rootroot00000000000000package hdrhistogram_test import ( hdrhistogram "github.com/HdrHistogram/hdrhistogram-go" "github.com/stretchr/testify/assert" "testing" ) func TestHistogram_Load_Errors(t *testing.T) { // should throw an error when trying to decompress an histogram using V1 encoding v1 := []byte("HISTIgAAAFd42pNpmazIwMAYxgABTBDKT4GBgdnNYMcCBvsPUBkeBkYGZqA8MwMbAzsDC5DFBCTZgJCDQY1BjkGLQZRBlUEPCB8zWDCYMxgDZZkZhgJgHDibAY8JB/A=") _, err := hdrhistogram.Decode(v1) assert.NotNil(t, err) } func TestHistogram_Load(t *testing.T) { inputBase64 := []byte("HISTFAAAAB542pNpmSzMwMDAxAABzFCaEUoz2X+AMIKZAEARAtM=") rh, err := hdrhistogram.Decode(inputBase64) assert.Nil(t, err) assert.Equal(t, int64(1), rh.TotalCount()) assert.Equal(t, float64(42.0), rh.Mean()) rh, err = hdrhistogram.Decode([]byte("HISTFAAAAB94nJNpmSzMwMDABMSMQMzMAAGMUJoJxg9mAgA1TQGm")) assert.Nil(t, err) assert.Equal(t, int64(1), rh.TotalCount()) assert.Equal(t, float64(42.0), rh.Mean()) // empty histogram // 20,1000,3 empty := []byte("HISTFAAAABl4nJNpmSzMgADMUFoEyn1h/wHCAgBDogN4") rh, err = hdrhistogram.Decode(empty) assert.Nil(t, err) assert.Equal(t, int64(20), rh.LowestTrackableValue()) assert.Equal(t, int64(1000), rh.HighestTrackableValue()) assert.Equal(t, int64(3), rh.SignificantFigures()) assert.Equal(t, int64(0), rh.TotalCount()) bigBuffer := []byte("HISTFAAACGB42j1WQY4cuRGks7KzWWwOh1NTGo1GEmzBWCx0EAxjsdiTsdiTD4ZPfoa/4R/4o/7BOiKSrWnNVBWLzIyMiMzWp//897mUA7/62db1D/n3999//V8umBW74POTPds7+4In2/xq722zv9huj/bRbvZH+2oPdrV3vtu//AOeP9if8Ra7H7DlhlcPePyo+w1xrrh+84uZFzd7QkyEL/ZXJPgN295jC5bsii0FN084/BXXDQH+jqPMlhn5eYf1D/beb9h7BdSfseMJGG5C94h3BRFveibyZ9x9wR1KeaebR0P8J/vVfsCbHevv7DOxPxt2/1MrLOQz3j8BH2DjhOHpA/ZfEILRWaD9bZHyb7z60X6xRxByMzxsQEJsCPlNoP/BFI849WQP/iy+cHJHqG+4veIAWcf+DQ9Y51MRBRueHlRqEbOPXqQR74Ec28Dab9pseLpqI7na/bPCPuBz0xskIIAvUqVIpQdTcr7/Afje68RHpPwsBrXnUYE3UVy0AYubljZTggshU+gdlTHej6iyJEfXuOb+B51wcXdbzD/yaFkQNn+fXnHBY7In5Sgi4wb34IYciy83hbxSG/pJFipa+VnByeJXFMPD0pQMoUTc+i3BExV+bgKa98WYHqk2GnaH+bPg3Xl8X9AEZpcI4qCsDx/9kpfMWJyG3Xz3PQGWDI88N2myqfh1c9H10XQT4qoI1E19uC87cKMLtS2byDWs3u6Qnlyet7gqYvHtTnWaKXndXBZ6oo2IGJTnywxyuT/tstx+p2ZTBQKQql6F67ogJCWXxO4cIrhcJfwui1ouMTInwc1vi8RLtSUuJarJNYtGjgcpuPuDcHBgMMQqyiwZUF0C4ImHhRehVqurp7w0npbmm2yllFTJXEJv3wNJL/LEQlYxFw9bei3hmY9oWJO70goSLxpr3q+22EhF434Sa/i58M+yTSKGdHYJW6aETlouZMIyrSbqCgd6N6DyBJ3q4TUmLlNuUcJZoTasfmAtSLBpLssdC96+ig9Cu3PKZ0/RNZsyENkDXiZOrusmWXYcjs2yjbDX9ljQfV3ijoMPvEbiJvOeTIGRO0OXO5ll1U6W2bqhAsDelenq9/Zy+dnVAQv5fudVfUcAG15gGFRGvvrVy3cmNqa+eIlkZbkT7ighNrZEcwmtMaQno241JTed3URhOuOSE6wsDRapRVnFhpJdkxZfv3GLrJqu5LZLLi+XpOfFaRISd19d6BkMlmBcNOxW0zmF5odgllbO/lCxPEKDkP9lVjKULpF/WEXdeA1lYo3A3oSYXIa4KLWwQZitlaixpfXYzniV6nPbQDaPKIIu/SuTBk7JuVhWJJcXeSi80hQMmbTLh7Ws0qsoRIoadRNFZBY5NtoxP3jp6kjiR8BNdTFbLNRllIj8ErLOgcDV7qsXbKu0SFSK4FU80l7Yhr2DrHNjIAvh8FUGcxqDYlovqiPVCiXfKhfUcNnAcpHUjNWGjZi5iUiT3bpVYKucA0TM7S5QVWR6PkjCFBx7OuGRIzFcazgUwraS/sk6inedzENVRZnc0XL0izNrOKxQauPm3tgfqC2p1SqtxgQkpLgaTtR7qIPYghHihqe6NAhbLROaYT2/yJxKcJAJag67xn/6b6UgBtNHzcmH9Y7LgFTf86nRYCCqKiOrmODpyFlrpsKjKX3AayLK6OKarcUnrJckOKk3fW14fgWsdg0NsEySspJnygVIta7h17Nn2cClVc+5Fzp5SW9KQBJZt/Wl4voGoys13gsNjinMmu8y0lhdfLC1kgA1cLBdOoEnj9Sb2hVrfcIPECO8NfwB791rZ19RZ+yLjmrxjH9QrEPo5r0Ovnd2HQ4OvBit19oqtanRkL2hyOqNkwgP2BzHydZG5CYhu0yGfYFzzkFSOzB1Grnxq9GzE7ypsfxAFmIYDdfRG9gEUCTD+8ZJAHlG57CAnEgCCqczdMhvAFVUGRAP49xoqBr4bVLNNg2BmiplOoQFPsZ2nOnYxWZrfQBhVIwG1FZZFT5HdxWrTgweZm/JiCgV25kMEQfrl68rVUECyhTE3CIdELwJze0u0jgrrHfOCrgaK9hdR0eGMch+JXGpTggNzkKIThVqBVCUNBobodN+YAqFkUGUCUt0Dg5ALNNGdjwq5ixpnXVoevAAqGM0mgtniDlG5Zxx6HcGItlI7G1SyANyAQDVBFZYhFTiyhkMX1XBBY+9I2/OMucIxhYaAh+EmVg2+ik/eGO0Jzgg1Zw++iJBgEpWcGl10sUqFw6hd+vp+S0xOHIqC5fGrRIRq0IxTUZtloyDI9aP8kagP6fmk/us9HEos4YEzrEOCk1BWBtkYk6OXKObwHgMfN81sVnpdliHDPKLDnoWGRJGiK4xPzhjKruu9UYpQYh6ASv0lbe0DOdX6ayAmNEkyFoLv7JoQH6o/+CDoS3xt5wqjSpJhHjtjZr1OCA+Ys5ZDzYx/DL6iI4eG8dr6bOPA7hnbccc53gbPNJHqzgx5zE6/ImJQKMN3OFYe5mQ9qxv/RyvzY854QpIM/AX2/w8xoluoETnnONtvowxZjuPjiLbS61vwydCAu4x2tlfz47U3A75zonNmEHgZbzM3pAIaNuJQYbFMY8GaMjjAyv1PNtLf208c87XPlBEsLVeZ5/HGfWIAwyjodoJwmYMR6HH2SfcVnGnsYbTfPiENP316K8Dr8+K4hpIgdlHBUdgox3jBSk6K0YP9qMBzZzRX0CQgwTYPXBw1IHCQDLeI1kDG/0E0nqOA5+O8EA+XhFytKO1E5MJlZ4dvNY5zzpeHFkhH9K8sS/npFjIZZ8aM4e/NGjUx/BjvCHA0QnkBTHwFqGO2Y+jw24T0rNF/oT3/Zx06P8BChhtKw==") rh, err = hdrhistogram.Decode(bigBuffer) assert.Nil(t, err) assert.Equal(t, int64(10000), rh.TotalCount()) } func TestHistogram_Dump_empty(t *testing.T) { // empty histogram // 20,1000,3 empty := []byte("HISTFAAAABl4nJNpmSzMgADMUFoEyn1h/wHCAgBDogN4") loadedHist, err := hdrhistogram.Decode(empty) assert.Nil(t, err) assert.Equal(t, int64(20), loadedHist.LowestTrackableValue()) assert.Equal(t, int64(1000), loadedHist.HighestTrackableValue()) assert.Equal(t, int64(3), loadedHist.SignificantFigures()) } func TestHistogram_Dump_Load_Merge(t *testing.T) { h1 := hdrhistogram.New(1, 1000, 3) h2 := hdrhistogram.New(1, 1000, 3) for i := 0; i < 100; i++ { if err := h1.RecordValue(int64(i)); err != nil { t.Fatal(err) } } for i := 100; i < 200; i++ { if err := h2.RecordValue(int64(i)); err != nil { t.Fatal(err) } } bufferH1, err := h1.Encode(hdrhistogram.V2CompressedEncodingCookieBase) assert.Nil(t, err) bufferH2, err := h2.Encode(hdrhistogram.V2CompressedEncodingCookieBase) assert.Nil(t, err) h1Decoded, err := hdrhistogram.Decode(bufferH1) assert.Nil(t, err) assert.Equal(t, int64(1), h1Decoded.LowestTrackableValue()) assert.Equal(t, int64(1000), h1Decoded.HighestTrackableValue()) assert.Equal(t, int64(3), h1Decoded.SignificantFigures()) assert.Equal(t, int64(100), h1Decoded.TotalCount()) h2Decoded, err := hdrhistogram.Decode(bufferH2) assert.Nil(t, err) assert.Equal(t, int64(1), h2Decoded.LowestTrackableValue()) assert.Equal(t, int64(1000), h2Decoded.HighestTrackableValue()) assert.Equal(t, int64(3), h2Decoded.SignificantFigures()) assert.Equal(t, int64(100), h2Decoded.TotalCount()) dropped := h1Decoded.Merge(h2Decoded) assert.Equal(t, int64(0), dropped) assert.Equal(t, int64(200), h1Decoded.TotalCount()) assert.Equal(t, int64(1), h1Decoded.LowestTrackableValue()) assert.Equal(t, int64(1000), h1Decoded.HighestTrackableValue()) } hdrhistogram-go-1.1.2/hdr_encoding_whitebox_test.go000066400000000000000000000016011411122733000225230ustar00rootroot00000000000000package hdrhistogram import ( "github.com/google/go-cmp/cmp" "github.com/stretchr/testify/assert" "testing" ) func TestHistogram_encodeIntoByteBuffer(t *testing.T) { hist := New(1, 9007199254740991, 2) err := hist.RecordValue(42) assert.Nil(t, err) buffer, err := hist.encodeIntoByteBuffer() assert.Nil(t, err) assert.Equal(t, 42, buffer.Len()) } func TestHistogram_DumpLoadWhiteBox(t *testing.T) { hist := New(1, 100000, 3) for i := 1; i <= 100; i++ { err := hist.RecordValue(int64(i)) assert.Nil(t, err) } dumpedHistogram, err := hist.Encode(V2CompressedEncodingCookieBase) assert.Nil(t, err) hist2, err := Decode(dumpedHistogram) assert.Nil(t, err) assert.Equal(t, hist.totalCount, hist2.totalCount) assert.Equal(t, hist.countsLen, hist2.countsLen) if diff := cmp.Diff(hist.counts, hist2.counts); diff != "" { t.Errorf("counts differs: (-got +want)\n%s", diff) } } hdrhistogram-go-1.1.2/hdr_test.go000066400000000000000000000260031411122733000167470ustar00rootroot00000000000000package hdrhistogram_test import ( hdrhistogram "github.com/HdrHistogram/hdrhistogram-go" "github.com/stretchr/testify/assert" "math" "reflect" "testing" ) // nolint func TestHighSigFig(t *testing.T) { input := []int64{ 459876, 669187, 711612, 816326, 931423, 1033197, 1131895, 2477317, 3964974, 12718782, } hist := hdrhistogram.New(459876, 12718782, 5) for _, sample := range input { hist.RecordValue(sample) } if v, want := hist.ValueAtQuantile(50), int64(1048575); v != want { t.Errorf("Median was %v, but expected %v", v, want) } } func TestValueAtQuantile(t *testing.T) { h := hdrhistogram.New(1, 10000000, 3) for i := 0; i < 1000000; i++ { if err := h.RecordValue(int64(i)); err != nil { t.Fatal(err) } } data := []struct { q float64 v int64 }{ {q: 50, v: 500223}, {q: 75, v: 750079}, {q: 90, v: 900095}, {q: 95, v: 950271}, {q: 99, v: 990207}, {q: 99.9, v: 999423}, {q: 99.99, v: 999935}, } for _, d := range data { if v := h.ValueAtQuantile(d.q); v != d.v { t.Errorf("P%v was %v, but expected %v", d.q, v, d.v) } } } func TestMean(t *testing.T) { h := hdrhistogram.New(1, 10000000, 3) for i := 0; i < 1000000; i++ { if err := h.RecordValue(int64(i)); err != nil { t.Fatal(err) } } assert.InDelta(t, 500000, h.Mean(), 500000*0.001) } func TestStdDev(t *testing.T) { h := hdrhistogram.New(1, 10000000, 3) total := 0.0 for i := 0; i < 1000000; i++ { total += math.Pow(float64(i-500000.0), 2) if err := h.RecordValue(int64(i)); err != nil { t.Fatal(err) } } variance := total / float64(1000000-1) stdDev := math.Sqrt(variance) assert.InDelta(t, stdDev, h.StdDev(), stdDev*0.001) } func TestTotalCount(t *testing.T) { h := hdrhistogram.New(1, 10000000, 3) for i := 0; i < 1000000; i++ { if err := h.RecordValue(int64(i)); err != nil { t.Fatal(err) } if v, want := h.TotalCount(), int64(i+1); v != want { t.Errorf("TotalCount was %v, but expected %v", v, want) } } } func TestMax(t *testing.T) { h := hdrhistogram.New(1, 10000000, 3) for i := 0; i < 1000000; i++ { if err := h.RecordValue(int64(i)); err != nil { t.Fatal(err) } } if v, want := h.Max(), int64(1000447); v != want { t.Errorf("Max was %v, but expected %v", v, want) } } func TestReset(t *testing.T) { h := hdrhistogram.New(1, 10000000, 3) for i := 0; i < 1000000; i++ { if err := h.RecordValue(int64(i)); err != nil { t.Fatal(err) } } h.Reset() if v, want := h.Max(), int64(0); v != want { t.Errorf("Max was %v, but expected %v", v, want) } } func TestMerge(t *testing.T) { h1 := hdrhistogram.New(1, 1000, 3) h2 := hdrhistogram.New(1, 1000, 3) for i := 0; i < 100; i++ { if err := h1.RecordValue(int64(i)); err != nil { t.Fatal(err) } } for i := 100; i < 200; i++ { if err := h2.RecordValue(int64(i)); err != nil { t.Fatal(err) } } h1.Merge(h2) if v, want := h1.ValueAtQuantile(50), int64(99); v != want { t.Errorf("Median was %v, but expected %v", v, want) } } func TestMin(t *testing.T) { h := hdrhistogram.New(1, 10000000, 3) for i := 0; i < 1000000; i++ { if err := h.RecordValue(int64(i)); err != nil { t.Fatal(err) } } if v, want := h.Min(), int64(0); v != want { t.Errorf("Min was %v, but expected %v", v, want) } } func TestHistogram_ValueAtPercentiles(t *testing.T) { h := hdrhistogram.New(1, 3600*1000*1000, 3) for i := 0; i < 1000000; i++ { if err := h.RecordValue(int64(i)); err != nil { t.Fatal(err) } } // Ensure calculating the percentiles altogether returns the same values // multiple calls to ValueAtQuantile() values := h.ValueAtPercentiles([]float64{0.0, 50.0, 95.0, 99.0, 100.0}) assert.Equal(t, h.ValueAtQuantile(0.0), values[0.0]) assert.Equal(t, h.ValueAtQuantile(50.0), values[50.0]) assert.Equal(t, h.ValueAtQuantile(95.0), values[95.0]) assert.Equal(t, h.ValueAtQuantile(99.0), values[99.0]) assert.Equal(t, h.ValueAtQuantile(100.0), values[100.0]) // negative test using out of bounds percentiles assert.Equal(t, h.ValueAtQuantile(110.0), h.ValueAtPercentiles([]float64{110.0})[110.0]) // assert upper bound is enforced assert.Equal(t, h.ValueAtQuantile(100.0), h.ValueAtPercentiles([]float64{110.0})[110.0]) assert.Equal(t, h.ValueAtQuantile(-1.0), h.ValueAtPercentiles([]float64{-1.0})[-1.0]) // assert lower bound is enforced assert.Equal(t, h.ValueAtQuantile(0.0), h.ValueAtPercentiles([]float64{-1.0})[-1.0]) assert.Equal(t, int64(0), h.ValueAtPercentiles([]float64{-1.0})[-1.0]) h.Reset() for i := 0; i < 10000; i++ { if err := h.RecordValue(int64(1000)); err != nil { t.Fatal(err) } } if err := h.RecordValue(int64(100000000)); err != nil { t.Fatal(err) } // ensure that percentiles that are calculated using the count number will be properly computed values = h.ValueAtPercentiles([]float64{30.0, 99.0, 99.99, 99.999, 100.0}) assert.Equal(t, h.ValueAtQuantile(30.0), values[30.0]) assert.Equal(t, h.ValueAtQuantile(99.0), values[99.0]) assert.Equal(t, h.ValueAtQuantile(99.99), values[99.99]) assert.Equal(t, h.ValueAtQuantile(99.999), values[99.999]) assert.Equal(t, h.ValueAtQuantile(100.0), values[100.0]) } func TestByteSize(t *testing.T) { h := hdrhistogram.New(1, 100000, 3) if v, want := h.ByteSize(), 65604; v != want { t.Errorf("ByteSize was %v, but expected %d", v, want) } } func TestRecordCorrectedValue(t *testing.T) { h := hdrhistogram.New(1, 100000, 3) if err := h.RecordCorrectedValue(10, 100); err != nil { t.Fatal(err) } if v, want := h.ValueAtQuantile(75), int64(10); v != want { t.Errorf("Corrected value was %v, but expected %v", v, want) } } func TestRecordCorrectedValueStall(t *testing.T) { h := hdrhistogram.New(1, 100000, 3) if err := h.RecordCorrectedValue(1000, 100); err != nil { t.Fatal(err) } if v, want := h.ValueAtQuantile(75), int64(800); v != want { t.Errorf("Corrected value was %v, but expected %v", v, want) } } func TestCumulativeDistribution(t *testing.T) { h := hdrhistogram.New(1, 100000000, 3) for i := 0; i < 1000000; i++ { if err := h.RecordValue(int64(i)); err != nil { t.Fatal(err) } } actual := h.CumulativeDistribution() expected := []hdrhistogram.Bracket{ hdrhistogram.Bracket{Quantile: 0, Count: 1, ValueAt: 0}, hdrhistogram.Bracket{Quantile: 50, Count: 500224, ValueAt: 500223}, hdrhistogram.Bracket{Quantile: 75, Count: 750080, ValueAt: 750079}, hdrhistogram.Bracket{Quantile: 87.5, Count: 875008, ValueAt: 875007}, hdrhistogram.Bracket{Quantile: 93.75, Count: 937984, ValueAt: 937983}, hdrhistogram.Bracket{Quantile: 96.875, Count: 969216, ValueAt: 969215}, hdrhistogram.Bracket{Quantile: 98.4375, Count: 984576, ValueAt: 984575}, hdrhistogram.Bracket{Quantile: 99.21875, Count: 992256, ValueAt: 992255}, hdrhistogram.Bracket{Quantile: 99.609375, Count: 996352, ValueAt: 996351}, hdrhistogram.Bracket{Quantile: 99.8046875, Count: 998400, ValueAt: 998399}, hdrhistogram.Bracket{Quantile: 99.90234375, Count: 999424, ValueAt: 999423}, hdrhistogram.Bracket{Quantile: 99.951171875, Count: 999936, ValueAt: 999935}, hdrhistogram.Bracket{Quantile: 99.9755859375, Count: 999936, ValueAt: 999935}, hdrhistogram.Bracket{Quantile: 99.98779296875, Count: 999936, ValueAt: 999935}, hdrhistogram.Bracket{Quantile: 99.993896484375, Count: 1000000, ValueAt: 1000447}, hdrhistogram.Bracket{Quantile: 100, Count: 1000000, ValueAt: 1000447}, } if !reflect.DeepEqual(actual, expected) { t.Errorf("CF was %#v, but expected %#v", actual, expected) } } func TestDistribution(t *testing.T) { h := hdrhistogram.New(8, 1024, 3) for i := 0; i < 1024; i++ { if err := h.RecordValue(int64(i)); err != nil { t.Fatal(err) } } actual := h.Distribution() if len(actual) != 128 { t.Errorf("Number of bars seen was %v, expected was 128", len(actual)) } for _, b := range actual { if b.Count != 8 { t.Errorf("Count per bar seen was %v, expected was 8", b.Count) } } } func TestNaN(t *testing.T) { h := hdrhistogram.New(1, 100000, 3) if math.IsNaN(h.Mean()) { t.Error("mean is NaN") } if math.IsNaN(h.StdDev()) { t.Error("stddev is NaN") } } func TestSignificantFigures(t *testing.T) { const sigFigs = 4 h := hdrhistogram.New(1, 10, sigFigs) if h.SignificantFigures() != sigFigs { t.Errorf("Significant figures was %v, expected %d", h.SignificantFigures(), sigFigs) } } func TestLowestTrackableValue(t *testing.T) { const minVal = 2 h := hdrhistogram.New(minVal, 10, 3) if h.LowestTrackableValue() != minVal { t.Errorf("LowestTrackableValue figures was %v, expected %d", h.LowestTrackableValue(), minVal) } } func TestHighestTrackableValue(t *testing.T) { const maxVal = 11 h := hdrhistogram.New(1, maxVal, 3) if h.HighestTrackableValue() != maxVal { t.Errorf("HighestTrackableValue figures was %v, expected %d", h.HighestTrackableValue(), maxVal) } } func TestUnitMagnitudeOverflow(t *testing.T) { h := hdrhistogram.New(0, 200, 4) if err := h.RecordValue(11); err != nil { t.Fatal(err) } } // nolint func TestSubBucketMaskOverflow(t *testing.T) { hist := hdrhistogram.New(2e7, 1e8, 5) for _, sample := range [...]int64{1e8, 2e7, 3e7} { hist.RecordValue(sample) } for q, want := range map[float64]int64{ 50: 33554431, 83.33: 33554431, 83.34: 100663295, 99: 100663295, } { if got := hist.ValueAtQuantile(q); got != want { t.Errorf("got %d for %fth percentile. want: %d", got, q, want) } } } func TestExportImport(t *testing.T) { min := int64(1) max := int64(10000000) sigfigs := 3 h := hdrhistogram.New(min, max, sigfigs) for i := 0; i < 1000000; i++ { if err := h.RecordValue(int64(i)); err != nil { t.Fatal(err) } } s := h.Export() if v := s.LowestTrackableValue; v != min { t.Errorf("LowestTrackableValue was %v, but expected %v", v, min) } if v := s.HighestTrackableValue; v != max { t.Errorf("HighestTrackableValue was %v, but expected %v", v, max) } if v := int(s.SignificantFigures); v != sigfigs { t.Errorf("SignificantFigures was %v, but expected %v", v, sigfigs) } if imported := hdrhistogram.Import(s); !imported.Equals(h) { t.Error("Expected Histograms to be equivalent") } } func TestEquals(t *testing.T) { h1 := hdrhistogram.New(1, 10000000, 3) for i := 0; i < 1000000; i++ { if err := h1.RecordValue(int64(i)); err != nil { t.Fatal(err) } } h2 := hdrhistogram.New(1, 10000000, 3) for i := 0; i < 10000; i++ { if err := h1.RecordValue(int64(i)); err != nil { t.Fatal(err) } } if h1.Equals(h2) { t.Error("Expected Histograms to not be equivalent") } h1.Reset() h2.Reset() if !h1.Equals(h2) { t.Error("Expected Histograms to be equivalent") } } // nolint func TestHistogram_ValuesAreEquivalent(t *testing.T) { hist := hdrhistogram.New(1476573605, 1476593605, 3) assert.True(t, hist.ValuesAreEquivalent(1476583605, 2147483647)) // test large histograms hist = hdrhistogram.New(20000000, 100000000, 5) hist.RecordValue(100000000) hist.RecordValue(20000000) hist.RecordValue(30000000) assert.True(t, hist.ValuesAreEquivalent(20000000, hist.ValueAtQuantile(50.0))) assert.True(t, hist.ValuesAreEquivalent(100000000, hist.ValueAtQuantile(83.34))) assert.True(t, hist.ValuesAreEquivalent(100000000, hist.ValueAtQuantile(99.0))) } hdrhistogram-go-1.1.2/hdr_whitebox_test.go000066400000000000000000000010361411122733000206570ustar00rootroot00000000000000package hdrhistogram import ( "github.com/stretchr/testify/assert" "testing" ) func TestHistogram_New_internals(t *testing.T) { // test for numberOfSignificantValueDigits if higher than 5 the numberOfSignificantValueDigits will be forced to 5 hist := New(1, 9007199254740991, 6) assert.Equal(t, int64(5), hist.significantFigures) // test for numberOfSignificantValueDigits if lower than 1 the numberOfSignificantValueDigits will be forced to 1 hist = New(1, 9007199254740991, 0) assert.Equal(t, int64(1), hist.significantFigures) } hdrhistogram-go-1.1.2/log_reader.go000066400000000000000000000130701411122733000172360ustar00rootroot00000000000000package hdrhistogram import ( "bufio" "io" "math" "regexp" "strconv" "strings" ) type HistogramLogReader struct { log *bufio.Reader startTimeSec float64 observedStartTime bool baseTimeSec float64 observedBaseTime bool // scanner handling state absolute bool rangeStartTimeSec float64 rangeEndTimeSec float64 observedMax bool rangeObservedMax int64 observedMin bool rangeObservedMin int64 reStartTime *regexp.Regexp reBaseTime *regexp.Regexp reHistogramInterval *regexp.Regexp } func (hlr *HistogramLogReader) ObservedMin() bool { return hlr.observedMin } func (hlr *HistogramLogReader) ObservedMax() bool { return hlr.observedMax } // Returns the overall observed max limit ( up to the current point ) of the read histograms func (hlr *HistogramLogReader) RangeObservedMax() int64 { return hlr.rangeObservedMax } // Returns the overall observed min limit ( up to the current point ) of the read histograms func (hlr *HistogramLogReader) RangeObservedMin() int64 { return hlr.rangeObservedMin } func NewHistogramLogReader(log io.Reader) *HistogramLogReader { //# "#[StartTime: %f (seconds since epoch), %s]\n" reStartTime, _ := regexp.Compile(`#\[StartTime: ([\d\.]*)`) //# "#[BaseTime: %f (seconds since epoch)]\n" reBaseTime, _ := regexp.Compile(`#\[BaseTime: ([\d\.]*)`) //# 0.127,1.007,2.769,HISTFAAAAEV42pNpmSz... //# Tag=A,0.127,1.007,2.769,HISTFAAAAEV42pNpmSz //# "%f,%f,%f,%s\n" reHistogramInterval, _ := regexp.Compile(`([\d\.]*),([\d\.]*),([\d\.]*),(.*)`) // reader := bufio.NewReader(log) return &HistogramLogReader{log: reader, startTimeSec: 0.0, observedStartTime: false, baseTimeSec: 0.0, observedBaseTime: false, reStartTime: reStartTime, reBaseTime: reBaseTime, reHistogramInterval: reHistogramInterval, rangeObservedMin: math.MaxInt64, observedMin: false, rangeObservedMax: math.MinInt64, observedMax: false, } } func (hlr *HistogramLogReader) NextIntervalHistogram() (histogram *Histogram, err error) { return hlr.NextIntervalHistogramWithRange(0.0, math.MaxFloat64, true) } func (hlr *HistogramLogReader) NextIntervalHistogramWithRange(rangeStartTimeSec, rangeEndTimeSec float64, absolute bool) (histogram *Histogram, err error) { hlr.rangeStartTimeSec = rangeStartTimeSec hlr.rangeEndTimeSec = rangeEndTimeSec hlr.absolute = absolute return hlr.decodeNextIntervalHistogram() } func (hlr *HistogramLogReader) decodeNextIntervalHistogram() (histogram *Histogram, err error) { var line string var tag string = "" var logTimeStampInSec float64 var intervalLengthSec float64 for { line, err = hlr.log.ReadString('\n') if err != nil { if err == io.EOF { err = nil break } break } if line[0] == '#' { matchRes := hlr.reStartTime.FindStringSubmatch(line) if len(matchRes) > 0 { hlr.startTimeSec, err = strconv.ParseFloat(matchRes[1], 64) if err != nil { return } hlr.observedStartTime = true continue } matchRes = hlr.reBaseTime.FindStringSubmatch(line) if len(matchRes) > 0 { hlr.baseTimeSec, err = strconv.ParseFloat(matchRes[1], 64) if err != nil { return } hlr.observedBaseTime = true continue } continue } if strings.HasPrefix(line, "Tag=") { commaPos := strings.Index(line, ",") tag = line[4:commaPos] line = line[commaPos+1:] } matchRes := hlr.reHistogramInterval.FindStringSubmatch(line) if len(matchRes) >= 1 { // Decode: startTimestamp, intervalLength, maxTime, histogramPayload // Timestamp is expected to be in seconds logTimeStampInSec, err = strconv.ParseFloat(matchRes[1], 64) if err != nil { return } intervalLengthSec, err = strconv.ParseFloat(matchRes[2], 64) if err != nil { return } cpayload := matchRes[4] // No explicit start time noted. Use 1st observed time: if !hlr.observedStartTime { hlr.startTimeSec = logTimeStampInSec hlr.observedStartTime = true } // No explicit base time noted. // Deduce from 1st observed time (compared to start time): if !hlr.observedBaseTime { // Criteria Note: if log timestamp is more than a year in // the past (compared to StartTime), // we assume that timestamps in the log are not absolute if logTimeStampInSec < (hlr.startTimeSec - (365 * 24 * 3600.0)) { hlr.baseTimeSec = hlr.startTimeSec } else { hlr.baseTimeSec = 0.0 } hlr.observedBaseTime = true } absoluteStartTimeStampSec := logTimeStampInSec + hlr.baseTimeSec offsetStartTimeStampSec := absoluteStartTimeStampSec + hlr.startTimeSec // Timestamp length is expect to be in seconds absoluteEndTimeStampSec := absoluteStartTimeStampSec + intervalLengthSec var startTimeStampToCheckRangeOn float64 if hlr.absolute { startTimeStampToCheckRangeOn = absoluteStartTimeStampSec } else { startTimeStampToCheckRangeOn = offsetStartTimeStampSec } if startTimeStampToCheckRangeOn < hlr.rangeStartTimeSec { continue } if startTimeStampToCheckRangeOn > hlr.rangeEndTimeSec { return } histogram, err = Decode([]byte(cpayload)) if err != nil { return } if histogram.Max() > hlr.rangeObservedMax { hlr.rangeObservedMax = histogram.Max() } if histogram.Min() < hlr.rangeObservedMin { hlr.rangeObservedMin = histogram.Min() } histogram.SetStartTimeMs(int64(absoluteStartTimeStampSec * 1000.0)) histogram.SetEndTimeMs(int64(absoluteEndTimeStampSec * 1000.0)) if tag != "" { histogram.SetTag(tag) } return } } return } hdrhistogram-go-1.1.2/log_writer.go000066400000000000000000000141541411122733000173140ustar00rootroot00000000000000//The log format encodes into a single file, multiple histograms with optional shared meta data. package hdrhistogram import ( "fmt" "io" "regexp" "time" ) const HISTOGRAM_LOG_FORMAT_VERSION = "1.3" const MsToNsRatio float64 = 1000000.0 type HistogramLogOptions struct { startTimeStampSec float64 endTimeStampSec float64 maxValueUnitRatio float64 } func DefaultHistogramLogOptions() *HistogramLogOptions { return &HistogramLogOptions{0, 0, MsToNsRatio} } type HistogramLogWriter struct { baseTime int64 log io.Writer } // Return the current base time offset func (lw *HistogramLogWriter) BaseTime() int64 { return lw.baseTime } // Set a base time to subtract from supplied histogram start/end timestamps when // logging based on histogram timestamps. // baseTime is expected to be in msec since the epoch, as histogram start/end times // are typically stamped with absolute times in msec since the epoch. func (lw *HistogramLogWriter) SetBaseTime(baseTime int64) { lw.baseTime = baseTime } func NewHistogramLogWriter(log io.Writer) *HistogramLogWriter { return &HistogramLogWriter{baseTime: 0, log: log} } // Output an interval histogram, using the start/end timestamp indicated in the histogram, and the [optional] tag associated with the histogram. // The histogram start and end timestamps are assumed to be in msec units // // By convention, histogram start/end time are generally stamped with absolute times in msec // since the epoch. For logging with absolute time stamps, the base time would remain zero ( default ). // For logging with relative time stamps (time since a start point), the base time should be set with SetBaseTime(baseTime int64) // // The max value in the histogram will be reported scaled down by a default maxValueUnitRatio of 1000000.0 (which is the msec : nsec ratio). // If you need to specify a different start/end timestamp or a different maxValueUnitRatio you should use OutputIntervalHistogramWithLogOptions(histogram *Histogram, logOptions *HistogramLogOptions) func (lw *HistogramLogWriter) OutputIntervalHistogram(histogram *Histogram) (err error) { return lw.OutputIntervalHistogramWithLogOptions(histogram, nil) } // Output an interval histogram, with the given timestamp information and the [optional] tag associated with the histogram // // If you specify non-nil logOptions, and non-zero start timestamp, the the specified timestamp information will be used, and the start timestamp information in the actual histogram will be ignored. // If you specify non-nil logOptions, and non-zero start timestamp, the the specified timestamp information will be used, and the end timestamp information in the actual histogram will be ignored. // If you specify non-nil logOptions, The max value reported with the interval line will be scaled by the given maxValueUnitRatio, // otherwise a default maxValueUnitRatio of 1,000,000 (which is the msec : nsec ratio) will be used. // // By convention, histogram start/end time are generally stamped with absolute times in msec // since the epoch. For logging with absolute time stamps, the base time would remain zero ( default ). // For logging with relative time stamps (time since a start point), the base time should be set with SetBaseTime(baseTime int64) func (lw *HistogramLogWriter) OutputIntervalHistogramWithLogOptions(histogram *Histogram, logOptions *HistogramLogOptions) (err error) { tag := histogram.Tag() var match bool tagStr := "" if tag != "" { match, err = regexp.MatchString(".[, \\r\\n].", tag) if err != nil { return } if match { err = fmt.Errorf("Tag string cannot contain commas, spaces, or line breaks. Used tag: %s", tag) return } tagStr = fmt.Sprintf("Tag=%s,", tag) } var usedStartTime float64 = float64(histogram.StartTimeMs()) var usedEndTime float64 = float64(histogram.EndTimeMs()) var maxValueUnitRatio float64 = MsToNsRatio if logOptions != nil { if logOptions.startTimeStampSec != 0 { usedStartTime = logOptions.startTimeStampSec } if logOptions.endTimeStampSec != 0 { usedEndTime = logOptions.endTimeStampSec } maxValueUnitRatio = logOptions.maxValueUnitRatio } startTime := usedStartTime - float64(lw.baseTime)/1000.0 endTime := usedEndTime - float64(lw.baseTime)/1000.0 maxValueAsDouble := float64(histogram.Max()) / maxValueUnitRatio cpayload, err := histogram.Encode(V2CompressedEncodingCookieBase) if err != nil { return } _, err = lw.log.Write([]byte(fmt.Sprintf("%s%f,%f,%f,%s\n", tagStr, startTime, endTime, maxValueAsDouble, string(cpayload)))) return } // Log a start time in the log. // Start time is represented as seconds since epoch with up to 3 decimal places. Line starts with the leading text '#[StartTime:' func (lw *HistogramLogWriter) OutputStartTime(start_time_msec int64) (err error) { secs := start_time_msec / 1000 iso_str := time.Unix(secs, start_time_msec%int64(1000)*int64(1000000000)).Format(time.RFC3339) _, err = lw.log.Write([]byte(fmt.Sprintf("#[StartTime: %d (seconds since epoch), %s]\n", secs, iso_str))) return } // Log a base time in the log. // Base time is represented as seconds since epoch with up to 3 decimal places. Line starts with the leading text '#[BaseTime:' func (lw *HistogramLogWriter) OutputBaseTime(base_time_msec int64) (err error) { secs := base_time_msec / 1000 _, err = lw.log.Write([]byte(fmt.Sprintf("#[Basetime: %d (seconds since epoch)]\n", secs))) return } // Log a comment to the log. // A comment is any line that leads with '#' that is not matched by the BaseTime or StartTime formats. Comments are ignored when parsed. func (lw *HistogramLogWriter) OutputComment(comment string) (err error) { _, err = lw.log.Write([]byte(fmt.Sprintf("#%s\n", comment))) return } // Output a legend line to the log. // Human readable column headers. Ignored when parsed. func (lw *HistogramLogWriter) OutputLegend() (err error) { _, err = lw.log.Write([]byte("\"StartTimestamp\",\"Interval_Length\",\"Interval_Max\",\"Interval_Compressed_Histogram\"\n")) return } // Output a log format version to the log. func (lw *HistogramLogWriter) OutputLogFormatVersion() (err error) { return lw.OutputComment(fmt.Sprintf("[Histogram log format version %s]", HISTOGRAM_LOG_FORMAT_VERSION)) } hdrhistogram-go-1.1.2/log_writer_test.go000066400000000000000000000047061411122733000203550ustar00rootroot00000000000000package hdrhistogram import ( "bytes" "github.com/stretchr/testify/assert" "io/ioutil" "testing" ) func TestHistogramLogWriter_empty(t *testing.T) { var b bytes.Buffer writer := NewHistogramLogWriter(&b) err := writer.OutputLogFormatVersion() assert.Nil(t, err) var startTimeWritten int64 = 1000 err = writer.OutputStartTime(startTimeWritten) assert.Nil(t, err) err = writer.OutputLogFormatVersion() assert.Nil(t, err) err = writer.OutputLegend() assert.Nil(t, err) got, _ := b.ReadString('\n') want := "#[Histogram log format version 1.3]\n" assert.Equal(t, want, got) got, _ = b.ReadString('\n') // avoid failing tests due to GMT time differences ( so we want all to be equal up until the first + ) want = "#[StartTime: 1 (seconds since epoch), 1970-01-01" assert.Contains(t, got, want) } func TestHistogramLogWriterReader(t *testing.T) { var b bytes.Buffer writer := NewHistogramLogWriter(&b) err := writer.OutputLogFormatVersion() assert.Equal(t, nil, err) var startTimeWritten int64 = 1000 err = writer.OutputStartTime(startTimeWritten) assert.Nil(t, err) err = writer.OutputLogFormatVersion() assert.Nil(t, err) err = writer.OutputLegend() assert.Nil(t, err) histogram := New(1, 1000, 3) for i := 0; i < 10; i++ { err = histogram.RecordValue(int64(i)) assert.Nil(t, err) } err = writer.OutputIntervalHistogram(histogram) assert.Equal(t, nil, err) r := bytes.NewReader(b.Bytes()) reader := NewHistogramLogReader(r) outHistogram, err := reader.NextIntervalHistogram() assert.Equal(t, nil, err) assert.Equal(t, histogram.TotalCount(), outHistogram.TotalCount()) assert.Equal(t, histogram.LowestTrackableValue(), outHistogram.LowestTrackableValue()) assert.Equal(t, histogram.HighestTrackableValue(), outHistogram.HighestTrackableValue()) } func TestHistogramLogReader_logV2(t *testing.T) { dat, err := ioutil.ReadFile("./test/jHiccup-2.0.7S.logV2.hlog") assert.Equal(t, nil, err) r := bytes.NewReader(dat) reader := NewHistogramLogReader(r) for i := 0; i < 61; i++ { outHistogram, err := reader.NextIntervalHistogram() assert.Equal(t, nil, err) assert.NotNil(t, outHistogram) } } func TestHistogramLogReader_tagged_log(t *testing.T) { dat, err := ioutil.ReadFile("./test/tagged-Log.logV2.hlog") assert.Equal(t, nil, err) r := bytes.NewReader(dat) reader := NewHistogramLogReader(r) for i := 0; i < 42; i++ { outHistogram, err := reader.NextIntervalHistogram() assert.Equal(t, nil, err) assert.NotNil(t, outHistogram) } } hdrhistogram-go-1.1.2/test/000077500000000000000000000000001411122733000155625ustar00rootroot00000000000000hdrhistogram-go-1.1.2/test/jHiccup-2.0.1.logV0.hlog000066400000000000000000000335271411122733000214560ustar00rootroot00000000000000#[Logged with jHiccup version 2.0.1] #[Histogram log format version 1.01] #[StartTime: 1438869961.225 (seconds since epoch), Thu Aug 06 07:06:01 PDT 2015] "StartTimestamp","EndTimestamp","Interval_Max","Interval_Compressed_Histogram" 0.116,1.005,3.031,HISTiQAAAG542pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI+gDFYozQmlOaA0M5Rmg9LsUJoFjc+GZg4rmjkwdUxofG4obQeldaG0LJTmR1PvCKXVIRQjzL2BUFoYTT0jwyjABkbDZTSeR8FofI+CEQ4AUBEGxA== 1.121,1.000,0.442,HISTiQAAAGR42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA+hDEY0mhVKc0BpdijNAqW50NSx4dDPhqafDYf5OlDaGEpLQmleNPs8oLQy1LoYVD5cPcydUH+PglEwCkbBKBgFowAZAABAZwbC 2.121,0.999,0.459,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPcYsANmNJoNB82Jpo4Fjc8NpVlhFkJpLijNDqV1obQGlFZEMx+mLghKK0AoxigoXxVKi0NpRjT/MDKMglEwCkbBKBgFowAOAAw5Brw= 3.120,1.002,0.442,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPehDEYozYxGs0BpVjQ+F5o+dhz6OWAWoZkDU88GpXWhtCqU1kDTD9MXAqXVodb7QvlmUJoXzZ0w942CUTAKRsEoGAWjAAkAABrTBr4= 4.122,1.000,0.475,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPcYsAOoegY2ND6MZoHSXFCaHU09jM+Kpp4NB60DpfWhtByU5kYzLxBK60EoRncoXwNKS0BpZhz+YmQYBaNgFIyCUTAKRgEDAArJBrw= 5.122,1.000,0.442,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTHcZUAEjTAJKs0BpNjRxGJ8dSnOgibPioFlw8JWhtBqUloXSPFCaC0qHQWltqHPDoXwtKC2MZj4jwygYBaNgFIyCUTAKMAAA+GAGug== 6.122,1.001,0.459,HISTiQAAAGd42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTHcZsANGmAIozQKlWaE0M5RmQxOHqeNAU8eOpp4Lja8JpbWhtC6U5kQzPwRKa0CdaQPlm0JpYTRzGdHoUTAKRsEoGAWjYBQAAQD4sAa6 7.123,0.997,0.541,HISTiQAAAGt42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI+gDBYozYhGs6HJw/isaOpY0dTBaA4ozQmlmdHkeaG0HZR2gdKKUJodzV5VKO0Kpe9D6UooLQaludDcRywgVf0oGAWjYBSMglEwJAEAhtAHww== 8.120,1.001,0.459,HISTiQAAAGJ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTHcZsANGKM0MUwilWXHQMHXsaHwWNBomzonGl4PSulBaEUoLoZkrD6XdofQbKL0CSsuiqUf3zygYBaNgFIyCUTAKgAAAJX4HuQ== 9.121,0.999,0.442,HISTiQAAAGJ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI+hDBY0mhWNhomzodEweSYc5jDjMIcTjTaC0i5QWhVK86Cpk4DSDlD6NZSuh9KSUJoDSjMyjIJRMApGwSgYBaMAAwAAlsoHxQ== 10.120,1.001,0.459,HISTiQAAAGB42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA8ZUAETGs0KpZmhNDsazYKmDpd+GM2NQ582lFZDoznR7FeE0iEQilEKyi+E0vxo+mCAkWEUjIJRMApGwSgYBXAAADJXBsI= 11.121,1.000,0.442,HISTiQAAAGh42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPegDEYozQyTgNLsaOLMaOpZ0NSzQmkuHPIw8zjRzFOB0jpQWhFK80NpHigtDaVdoPR3KD0dSkug2Q9z5ygYBaNgFIyCUTAKkAAAOxAHuw== 12.121,2.238,1568.670,HISTiQAAAOl42u2aMQ7CMAxFnZaqILEhISQYOAIjJ2Bk40YM7FyAMzBxPCRwhkYqlUpTTPL+8uXEdv6312zO14uIFPLCcStSHnaP2zuU6VyacAF7VMraRyZBXAfnZcBVy71/Z6m8Vl55gUG+17tXviuflBct+sAwcIyAPQP2DNgz/vGNX3wb1OUy3QPzxreF/r+qz+1ddDOvGHWu572L1DdVXcyTPVvS5TrqrMTozEMn8xtHpzUujOtDJ3NMSV/Rk8sv6/+tH77pl6JO/18m/KfTxtbzUvPDfPAdM8//s5t1xGPloWeY+loA+IAnHpcMHQ== 14.359,0.761,0.459,HISTiQAAAGp42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTFZQBhuUZsHBZ4bSHFCaFY2Gms/AjqafFYe5MPP4oLQWlLaB0mJQWhhKc0FpfihtBKX7oHQilBZAswfmLkaGUTAKRsEoGAWjYBTAAQCDmgZz 15.120,1.000,0.442,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPcZUAEjGs2GRnOi8VmgNDManxtNnBlNH9Q9DOxQWhBK60FpeTRxDijNC6XDofRpKH0JSguj2c/IMApGwSgYBaNgFIwCDAAAR8IHvQ== 16.120,1.002,0.475,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPehDEY0mhmNZoHS7Gg0CxoNU8+GQx4mzoTGl4PSulBaA0qLQGluKM0Ppb2g9EYofRdKi6Kph9nLgOa/UTAKRsEoGAWjYEQDAEgCB70= 17.122,1.001,0.475,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTE8ZUAEjlGaFKUCj2aA0N5RmgdLsaPIsOPgcaHyYuTZQ2hBKq0BpUSjNCaWFobQvlD4IpVdCaXEozYXmH3R6FIyCUTAKRsEoGNEAAK+GB8k= 18.123,1.001,0.426,HISTiQAAAGJ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI8ZsAOoegYWHDQblGZFo7mhNCeU5sKhnx2NlofSZlBaEUqLQmkOKC0EpcOg9H4ovQVKy6G5ZxSMglEwCkbBKBgFWAAAjYoHxQ== 19.124,0.996,0.426,HISTiQAAAGN42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTE9gDCjNBqVZ0GhmKM2KQx2MzwmleaA0OxrNhGYeTL0hlHaC0gY4zOOH0ilQeh2U7oHSMlCai2EUjIJRMApGwSgYBTgBAKssB8c= 20.120,1.003,0.459,HISTiQAAAGh42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI8ZUAFUHQMjlGZBo1mhNDsOPgeaek4ozQyluaA0N5p+ESitC6W10NTB3CUMpUOh9EYofQFKy6PZw4zmn1EwCkbBKBgFo2AUAAEAiFIHxQ== 21.123,0.997,0.442,HISTiQAAAGR42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTHdhDCjNiMaH0cxQmgNNnAuNzwalWdHMY0ETR1cnAaUdoLQylBZGswfG94bSZ6H0DigtCqV50OwfBaNgFIyCUTAKRgESAAArzge5 22.120,1.000,0.475,HISTiQAAAGh42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTO+gDBYozQylWaE0B5o8D5RmQ6PZoTQnmn6YODcanw3NvEQo7QGlZaA0L5r9YlDaHEp3Q+kVaPLo+mCAkWEUjIJRMApGwSgYBQwAU9cH2w== 23.120,1.002,0.442,HISTiQAAAGd42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA8ZUAFUHQMLGs0OpdmgNCuaOIzPCaWZ0fSzotFsaPaJQWkdKC0BpXnQaFEoHQulL0DpTVBaBkoLobljFIyCUTAKRsEoGAVIAABnpgfB 24.122,1.001,0.475,HISTiQAAAGh42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTM9gDDSahQEVsKGJc0JpdhzizFCaFUrzQGkONH1cUNoISjtDaTUoLYCmng9Ku0Dp+VD6KJQWgtL8DNgBI8MoGAWjYBSMglEwChgAxMAHyw== 25.123,0.997,0.459,HISTiQAAAGt42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA8ZsANmKM0CpbmgNCeUZofSrGh8DijNhmYejM+NZh7MfBkobQyllaE0H5q9wlDaD0qfh9KroLQ4mvlQfzMwMoyCUTAKRsEoGAWjAA4AcjYHwQ== 26.120,1.003,0.426,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTE8ZUAEjlGZFo5mhNBuU5oTSLGg0O5o+FjQ+OxoNk1eF0gZQ2gRK86GpF4LSPlB6I5Q+BaVFoTQvwygYBaNgFIyCUTAKcAIArGYHyQ== 27.123,0.997,0.475,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPcZUAEzGs0KpVmgNBuaOBcanxNNHQuaPIxmh9KMUFoMSutBaWUoLYLmHgkoHQ2l70DpJWjqOdHMR6dHwSgYBaNgFIyCEQ0ATtIHvQ== 28.120,1.004,0.623,HISTiQAAAG142pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI8ZUAEzlGaDKYDSrGjyXFCaHU2eA43PiKaPBc1cmD2SUNoUSqtDaX40+0SgdCCU3g+lT0JpYSjNg2Y/Aw4+uYBa5oyCUTAKRsEoGAUDAgCJQgfF 29.124,0.997,0.459,HISTiQAAAGd42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTM+gDGYozYJGc+CQZ4XS3FCaHUpzouljQ1PPhibPB6UNobQmlDZBM48LSotBaTcovQFKb4fSPGg0DDAyjIJRMApGwSgYBaMADgDKMAfL 30.121,0.999,0.475,HISTiQAAAG542pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI8YUAELlGZG48NoqDkMvFCaE0qz46A5oDQblOZCMx+mTgpKG0FpTSgtAKUFobQYlHaC0jCPHIfSslCaD0ozormbkWEUjIJRMApGwSgYBQwAgpgHww== 31.120,1.000,0.475,HISTiQAAAGp42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA8YUAEzlGaEKUATZ4PS7FCaBU0dB5RmRaNZ0PSxoYnLQmlrKK0GpfnQzJeG0o5Qei+UvgClJaE0J5q7GdD8NQpGwSgYBaNgFIxoAABYbAe/ 32.120,1.004,0.459,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA8ZUAEjlGaB0qxoNNQcBnY0deji6Hx0c2D6mKG0JJRWh9JKUFoQSnNCaSEonQil10HpJ1BaHIc7GBlGwSgYBaNgFIyCUQAHAGMmB8E= 33.124,0.996,0.492,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA+gDEY0mgVKM0NpNhw0K5Rmh9KcUJoDTR07DhomrwSlbaC0Mpo5MPVCUNoPSh+H0mugtCiU5oF5kAE7YGQYBaNgFIyCUTAKRjAAAGPcB78= 34.120,1.003,0.442,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTG+gDGYozYJGw8Q5oDQnlGZDk0cXZ0cT50QzlxVKc0NpHSjtAqWNobQgmj5xKG0NpTdD6RVQWhhK88E8yDAKRsEoGAWjYBSMAgwAACgzB9c= 35.123,0.998,0.475,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPdhDCjNiEazQGkOKM2KRjOj0Rxo5rGjqUc3ByYvC6X1obQulBaG0mxQWhRKu0LpLVD6MpQWgdJcaO5iQPPXKBgFo2AUjIJRMKIBAEwqB70= 36.121,1.003,0.475,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTE8ZUAELGg3Vx8CBJs4NpdmhNCuUZkZTx4qmDibOiWauHJQ2htLqUFoYSnNBaSEoHQylD0DpVWjmwNzHiIMeBaNgFIyCUTAKRjQAAK6eB8k= 37.124,0.998,0.442,HISTiQAAAGp42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI8YUAEHlGaB0sxQmg2NZofSrGg0Gxofpo4LzVwONFoBShtCaTUozQulOaG0EJQOgNI7oPRuKC0CpflgHmQYBaNgFIyCUTAKRgEGAACDQAfD 38.122,1.001,0.524,HISTiQAAAGt42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI+hDEYozQKl2dDE2dBomDpWKM2MQ54dSnOgyTOh8SWhtD6UVoPSvGjmSEDpFCj9GUo3Q2lhKM2D5i6YP3ABQvKjYBSMglEwCkbBsAIAi7IHxQ== 39.123,1.001,0.475,HISTiQAAAG542pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTO8YUAELlGaD0pxQmhtK80JpDjR1glCaC0ozo5nHgWYeE5q4LpQOhdLKUFoYSvNAaQko7QylJ0LpZWjqYe5kRPMfOn8UjIJRMApGwSgYkQAAVCcH2w== 40.124,1.000,0.442,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTC+hDEY0mhWN5ofSXFCaDUpzQGl2KM2MQ5wDh7kwcxSgtBmUNobSslBaCEpLQukgKL0FSvdCaREozQmlWRhGwSgYBaNgFIyCUYABAPuGB9E= 41.124,0.996,0.475,HISTiQAAAGd42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI+hDGaYAJRmgdJsUJoDjWZB08eFJs+OJg8TZ8WhThNKG0FpPSjNj0ZLQGlvKL0ISm+D0mJQmhPNP4xo9CgYBaNgFIyCUTCiAQCYogfF 42.120,1.004,0.475,HISTiQAAAGp42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTC9hDCjNCqXZ0PgsOMRhfHYozYEmzwyledDkWdDUKUBpWyhtCqXFoDQXlBaC0m5QeiGU3gmlRdHUwfwFA4wMo2AUjIJRMApGwShgAADzjgfR 43.124,0.996,0.442,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPcYUAFUHQMzlGZHE2dCE4fRLDhoDjQ+Nw5xGSitDaVVobQwlGaF0uJQOgVKL4bSu6C0CpQWgNKMDKNgFIyCUTAKRsEowAAAPDAHuw== 44.120,1.004,0.459,HISTiQAAAGN42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA8YUAEjDj4rTAManwVKs6PxOdDUM6OpY0WjRaC0NZRWhtICUJobTV0wlL4IpTdAaSUozYVmL7q/RsEoGAWjYBSMghENAFMcB78= 45.124,0.999,0.459,HISTiQAAAGN42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTDcZsANGmAI0mhlNnhVKs0FpFjT1rDhoFjS+GJTWgdKKUJofzXwYPwJK74fSl6G0KpTmQbOHkWEUjIJRMApGwSgYBXAAAN73B7E= 46.123,1.001,0.442,HISTiQAAAGh42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMzGxQBlSegQNKs0JpdijNB6W5oDQbGs2Bph5Gs8AsQqNZUNUxhkH5hVBaFs0cJjT75KG0C5S2Q3MHzHxGhlEwCkbBKBgFo2AUYAAAlrEGDQ== 47.124,1.409,1233.125,HISTiQAAAMt42u2asQ3CMBREzzZG0DEABSMwBSU1FdNQ0LMAYzAeEpiCL1kCR8YmeddcfvL/9925zfp0OUvyemC/kcJue7s+S8VjepgldnqHN6xMX8jsCWbezsXEh8SrTJ+tQV2QN/cMuGfAPZMHfvGN33/Q5/DNufhudo5r7A/d6Cav4fOucE+r7+giT3QP19VrjU7yQ2c9nb2w71QXOslxzPr8lxwK5369d2r78M2+En79txNNneOp9eGbvjH7WSZeGP70fa2+uQAA1XAH+BcJvg== 48.533,0.591,0.311,HISTiQAAAFR42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMjNegDKg8AxeUZkGjWdFoTijNjqaODY2GqWdEU8eMqo5RHMpPRnMHTN8oGAWjYBSMglEwCqgIAEz/Bas= 49.124,1.000,0.442,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTH+hDHYozQGlWaA0M5RmhdJsaDQ7Gp8Djc+Iwzw09YzcUH41lJZBs5cXzXxlKO0DpdOgNDeau6D+HgWjYBSMglEwCkYBMgAA774G+g== 50.124,1.000,0.442,HISTiQAAAGR42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTLcZUAETGp8ZSjNCaRYozYomz46mH5c+dhzmy0JpbSitBqX5oTQHlOaD0n5QeibUGph75ND0oftnFIyCUTAKRsEoGAVAAADL1Aa2 51.124,1.000,0.442,HISTiQAAAGN42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTHcZsANWKM2CxofR7FCaEYc6qH0MbGg0TJwTzRwY3xJKi0FpPijNgcaPhdIbofQjKK0EpbnQ3DcKRsEoGAWjYBSMAiQAACOuB7k= 52.124,1.000,0.475,HISTiQAAAGd42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI8YUAFUHQMrlGZD46PTHFCaB0ozo+lDp5nQ1PFDaVEobYDGh5nLAqUFoXQalJ4DpZ9DaXEozYlmDyMaPQpGwSgYBaNgFIxoAAB6gAfD 53.124,0.999,0.442,HISTiQAAAF542pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTO+gDHY0mhNK8+AQZ0UTZ8GhjhOH+TD9vFDaEUp7QGllKM2BZr4Mmrq5UHohmnkwfcwMo2AUjIJRMApGwSjAAABYjwfb 54.123,1.001,0.442,HISTiQAAAGt42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTJ+gDGYozQuluaE0B5RmgdJcUJodSvOgibOg0cxo6tnRxIWgtCuUjoTS0lCaD0pzoqk3h9IdUHorlBZHczcjwygYBaNgFIyCUTAKMAAAl8cH4w== 55.124,0.999,0.442,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI+gDEYozQylWaA0K5o41BwGNjRxbjQ+Kw5z0M3jhdJqUNocSkui0TB1IlDaD0pvhdLHobQglOZC89coGAWjYBSMglEwCpAAAH2wB8M= 56.123,1.001,0.442,HISTiQAAAGR42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTB9hDCjNCaU5oDQXDj4blObFoY4VBw2TZ4fSQlDaF0qbQGllKM2P5i5JKO0KpSdA6eVo5sHUMzKMglEwCkbBKBgFowADAACIDQfh 57.124,0.999,0.459,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTA8YUAEblGaE0swwhVCaA0qzQGl2KM2Kpg5dPTsazYKmThFKm0JpFSjNi2aOIJQOhdLLofQlKC2Npo4RjR4Fo2AUjIJRMApGARAAAFlsB78= 58.123,1.000,0.442,HISTiQAAAGB42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTHcZsAMmHDQLlGaE0hxQmg1Ks6PxWXHoZ0FTJwWlTaC0OpTmQzMHZl8glF4OpX+jqRdAc+coGAWjYBSMglEwCpAAACNmB7k= 59.123,1.001,0.442,HISTiQAAAF942pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTE9gDCjNgkZzoMmzQml2NHVsaHxmKM2Ipp4Zhz5dKO2KxudDs18QSjtD6alQ+gGUFsOhbxSMglEwCkbBKBgFSAAAnxwHxw== 60.124,0.999,0.492,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTLcZUAEjGs0GpVnQ+MxoNEyeFUqzo5nDiaafDU2dBJRWhdLSUJoDTT8flPaB0rOh9A8orQSlZXD4Cxd/FIyCUTAKRsEoGFEAAAFqB7U= 61.123,0.999,0.442,HISTiQAAAGB42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTDcYUAFUHQMjGh+XODMazQKl2QioY0VTLwqlDaG0MJTmRzNPEEqHQeldUPoLlJaF0lxo9o2CUTAKRsEoGAWjAAkAAMvVB68= 62.122,1.000,18.481,HISTiQAAAIp42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTI8ZsAMmHDQrlOaC0mxQmhlKc6Cpg9EsaOpg4pxQWgpKW0FpSSgthKZOFEo7Q2mYR95CaQEozYPDP4wMo2Akg9H4H43nUTAaz6NgNF5G/Tvq71H/Di5/jto76u9Rewev/YxDPBxGwSgYBUgAAP6WB8U= 63.122,1.001,0.459,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTM8ZUAErTAJKs0Fpdhx8VjQ+TB8LGp8Vhz6YeQlQ2hxKS0BpHijNBaX5obQ7lF4GpbdBaRk0cxnR6FEwCkbBKBgFo2AUAAEA1joHzQ== 64.123,1.000,0.442,HISTiQAAAGR42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPehDEaYAAMqYEGTZ4fSHGjqOdDUw2hWND4zGs0GpWWhtBEaXwBK80FpISgdA6VXQ+mLaPp40OwdBaNgFIyCUTAKRgESAABF0ge9 65.123,0.999,0.442,HISTiQAAAGR42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPcYUAEjlGaB0swE+Gxo4mxo8qxofA40cRgtC6UtoLQ8lOaF0lxQmhtKu0PpxVD6C5SWhNL8aP4ZBaNgFIyCUTAKRgESAAA10Ae7 66.122,1.001,0.459,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTM+hDFYozYxGw8TZoDQHmjg3mjyMZoTSLGjqYXx2NPNUoLQrlNaA0nxQmhNKC0Fpfyi9BErvgdLiaPoY0ehRMApGwSgYBaNgFAABANPaB80= 67.123,0.999,0.442,HISTiQAAAGF42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPdhDDSaHUqzoPFZoTQnlGaD0hw4zGFG04euHsaXg9KaUJoPSvOgqReF0hFQej2UfoBmDrp7RsEoGAWjYBSMglGABABLoge9 68.122,1.001,0.475,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTHcZsANGNBqqn4ENSrNCaWY0cRYCfG4ozQGl2aG0IJTWgdJiaPKcUJoPSsdC6R1Q+g2UlkWzDx0wMYyCUTAKRsEoGAWjgAEAIHYHuQ== 69.123,0.999,0.459,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTLcYiAOMUJoNSjOj8dnQ1LNCaXYozYmmjwVKc0BpAShtC6WFoDQ3mnoYPwFK74LSd6C0LJQWhHkQzf2jYBSMglEwCkbBKAACAO+JB7M= 70.122,1.001,0.442,HISTiQAAAGN42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTDcZsANGKM0CpZnRaFY0PhManw1NnAnNPFY0cUUobQSleaA0N5p7OKG0PZTuhkrbQvnSUFoEzfxRMApGwSgYBaNgFCABAKc4BrI= 71.123,0.999,0.426,HISTiQAAAFh42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTHehDBaYAAGaBQfNjEazofFZcfBhtDqUtofSEmjmwOwXgdKBULofQjGiy8PoUTAKRsEoGAWjYBRgAQDzCAa6 72.122,1.001,0.442,HISTiQAAAF142pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTNcZsANGHHwWKM2MRrPgoJnQaBYc+vigtAaUFoDSgmjqeKB0IpReBHWeDJQPo3lx+GMUjIJRMApGwSgYBUAAAIOkBq4= 73.123,1.001,0.475,HISTiQAAAGB42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTNcYsAOoegZGND4LGp8BTR0zGs2Kph6XuSJQ2hBKC0FpPjRzeKC0D5RuhhpnD+XLoulnweHOUTAKRsEoGAWjYEQDAHGaBqw= 74.124,0.999,0.442,HISTiQAAAGJ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTLcYsANGKM0MU4hGs0BpVjQ+G5o6mH52NHlWNHl5KG0JpYWgNBeaOhg/HErPgtJ/obQMmn4OhlEwCkbBKBgFo2AUYAAA7wEHsw== 75.123,1.000,0.459,HISTiQAAAGh42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTLehDGaYAJRmZEAFTGjq0NXDaBY0GqaOC0rzoIlzQGk1KK0DpQWgNBuUZkfTHwylm6HOlYPypdH0M6K5bxSMglEwCkbBKBgFQAAAzUwGtg== 76.123,1.000,0.475,HISTiQAAAGR42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTDcZUAFUHQMjGp8FBw1Tx4YmzoYmz4zDPJi8GJQ2htLCUFoQzTwRKO0BpeugxuhC+bJQWgjNPgY0+0bBKBgFo2AUjIIRDQCpiAay 77.123,1.001,0.459,HISTiQAAAGZ42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPcZsAOoegZmNBpdnBVKc0FpFjR5DjR9LGg0TFwbSptCaRkoLYBmviCUDobSG6D0BSitAKW50cxnZBgFo2AUjIJRMApGARwAAET6B70= 78.124,0.999,0.475,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTFcZsANGNBqqn4EFSrOh8WHqWNHUw2hmHPIwfZxQWgdK80FpDjSaF0p7Q+lpUGPsoXxRKC2Mw32MDKNgFIyCUTAKRsEoYAAAYlAGqg== 79.123,0.999,0.459,HISTiQAAAGV42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTPdgDCjNAqUZ0WiYPDOUZkMTZ8VhDisOdTB5TiitB6U9obQIlOZC0ycApV2gdC/UmTB3SqPpY0bzxygYBaNgFIyCUTAKgAAABCkGvA== 80.122,1.001,0.459,HISTiQAAAGN42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTNcY8ANGKM2Mxoeax8ACpVlxqGNDE0enYeaIQ2lVKC2Aph9Gc0DpWCg9HWqdDpQvCaVF0cxnZBgFo2AUjIJRMApGARwAAHIqBqw= 81.123,0.999,0.557,HISTiQAAAGl42pNpmdzBwMDAxAAGfgoMDMxuBjsWQLgMTFcZiANQ/QxsUJoRSrNAaWY0PjsaH109K5q5glBaHUrzQ2leNPUcUNobSndDjXeG8sWhtDCafQxo7iAEiFU3CkbBKBgFo2AUDEkAAGNwBqo= hdrhistogram-go-1.1.2/test/jHiccup-2.0.6.logV1.hlog000066400000000000000000000302671411122733000214620ustar00rootroot00000000000000#[Logged with jHiccup version 2.0.6] #[Histogram log format version 1.1] #[StartTime: 1438867590.285 (seconds since epoch), Thu Aug 06 06:26:30 PDT 2015] "StartTimestamp","Interval_Length","Interval_Max","Interval_Compressed_Histogram" 0.133,1.005,2.802,HISTIgAAAFd42pNpmazIwMAYxgABTBDKT4GBgdnNYMcCBvsPUBkeBkYGZqA8MwMbAzsDC5DFBCTZgJCDQY1BjkGLQZRBlUEPCB8zWDCYMxgDZZkZhgJgHDibAY8JB/A= 1.138,0.998,0.475,HISTIgAAAE542pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDDDACMQsQJKRgYOBlYEZCFmAkB3IB/HkGJQYJBi4gXIyDPGMTAxzGKQZ2EC6AJ7YBtg= 2.136,1.001,0.475,HISTIgAAAEt42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDDDACIfMYMjCwArEzEA9TEBSgkGJQZCBn4GLQYDBh+ESw2cGYSBkYWAEAKZvB9Q= 3.137,1.001,0.492,HISTIgAAAE542pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPUBlGsCwTkGYFYg4GFgZmIIsFDNmBcrIMGgz8DDxAMTGGNIZHDPsZpIFskHlMALndB9o= 4.138,0.999,0.492,HISTIgAAAE142pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPUBkWBjY4BpGsQMwOFGcG6mEBQl8GOwZRBj6gGBtDBMMOhpUMUgxcQDkmBkYAwSAH4w== 5.137,1.003,0.459,HISTIgAAAEx42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPcBmQHBuYZmZgZWABYnYgZmNgBLI5GXQYrBj4wSKiDB4MexgeMwgw8DKwAgCbcgfb 6.140,0.998,0.492,HISTIgAAAE542pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDMiAGaiClYGRgR3MYmdgA5JsQDYLgxKDBgM/kGYBkq4MFxg+MEgyCAFVAs0EALiCB9c= 7.138,1.001,0.475,HISTIgAAAE942pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDDDACMQsDMxAyAaE7ECaFcxnAdLMDMoMagxCDBxAcTGGIIZbDBcZRBm4geYxAQCqKAfZ 8.139,0.997,0.459,HISTIgAAAFB42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDDDACMTMQBXsDCxANguQzcLABoQsQMjKIMegzsADFGNmkGBIYGRmWMIgw8DLwAQAj9EG1Q== 9.136,1.004,0.475,HISTIgAAAEx42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDMiACYyZGRiBEESzACEzkMXCoMmgzCDAwM/AysDH4MXwhOE5gwiDIFA1IwCmuAfX 10.140,0.996,0.459,HISTIgAAAE142pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPUBk2IGYBQiYGZgZWIGQBk0wM7AyMQDYbgy6DOQMHAzeQJcTgzHAFCMWBfGYAm8UH2A== 11.136,1.233,1035.993,HISTIgAAAJx42pNpmazIwMD5jgECmCCUnwIDA7ObwY4FDPYfGFABRAUjGDNCWcxgzMnAChZjYeBn0GbQY2ADsoYCYBy1eRCYyjiA/mGkqnpGiuxiHBI2MxLQy0g12cFiMyNJNP1V0d5MRhTMiCGCC1Nb5cDYjB0y4ZShvUr6msgEhsxQGhUyU1lsIHXjMpEFClmxsLCLks4aHOawMDACAO56ClU= 12.369,0.771,0.459,HISTIgAAAEx42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPSDJMDCxAyMTADMSMQMwGJFmBIiC2NIM8gxADO1BMjMGdYT5DL4M4Ax8DEwCR7Acv 13.140,0.996,0.459,HISTIgAAAEp42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDAjACJRnYmBmYAHTrEAWI5hkAdKSDKoMXEDIxiDI4MlwnJGDQQLIYgIAjsYG0A== 14.136,1.001,0.459,HISTIgAAAE142pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDAjAyMACxMxAVSxAyAqk2YAYJMLAIMmgwSDIwAkUFWXwYzjL8JNBnEGAgREAlsUH1A== 15.137,1.002,0.459,HISTIgAAAEx42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPcBlGBmYGViCEkExAmomBBYp5GYwYdBkkGfgY2BiEGFwZLjJcYBBm4GJgBACcBQfc 16.139,0.998,0.475,HISTIgAAAEt42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDMiAEQiZGViBkAUIWcE62IEsZgYpBm0GHiCbk0GQwYfhAcMjBjEgC6geAKdjB9Q= 17.137,1.003,0.475,HISTIgAAAEl42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDMiACQxZGRgZ2ME0M5BkBrNUGLQZBICizAzcDL4M1xneMEgz8AFlGAGnqwfY 18.140,0.998,0.442,HISTIgAAAE142pNpmazIwMBgxgABTBDKT4GBgdnNYMcCBvsPDAxIcswMjAwsYMjAwAaErEBRFqAYI4MDgzKDKAMfgziDHIM5w0WGkwxiDLwAiiQH1Q== 19.138,1.000,0.459,HISTIgAAAE542pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDAjABITMDIwMXECanYGVgYWBDcxiBpKKDCoMQgzcQBEBBh+GjwynGCQZOBiYAJl6B9c= 20.138,1.002,0.557,HISTIgAAAFF42pNpmazIwMDgwgABTBDKT4GBgdnNYMcCBvsPUBlWBhagLAiyACEzWC0jkMUBxIwMbAyaDJYMfAzsQB4/gxvDM4ZTDNIMPEAZBGAEAP1VB+Y= 21.140,0.998,0.459,HISTIgAAAEt42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDDDACIRAYTBkY2AFqmVjYAFiBiCbmUGQQROIuYGiggwejLwMuxhkgCxGAI58BtQ= 22.138,1.000,0.475,HISTIgAAAE542pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDDDACJRlZGBlYIaqYmdgA0IWoBgjUEyGQZlBCMhnYhBlCGOUYFjLIMnACdIBAJ0WBtg= 23.138,0.998,0.492,HISTIgAAAEx42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDDDADJYFkSxADKLZgJgJyldmUGEQYOBhYGXgYwhlZGTYxyDMwM/ACNTBCACrbwbX 24.136,1.003,0.573,HISTIgAAAE942pNpmazIwMDgxgABTBDKT4GBgdnNYMcCBvsPDDDACITMQBXMDBxAkgUIQWxmMIuFQYFBkYGPgQ0oJsUQwsjMsJ1BkkEAZh7MBAD0rQbn 25.139,1.000,0.459,HISTIgAAAEx42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDDDACCbZGFiBkAOokpGBBchiY2AGQxkGTQZBoAgbAy+DKyM7wykgT4CBEQCPpwbX 26.139,0.997,0.475,HISTIgAAAEx42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPUBlGIGQFyjMDSVYGFjBkgoqyALEigzqDMAMnAy+DGIMfoyTDNAYhBh6QCgCfhQbZ 27.136,1.004,0.442,HISTIgAAAEp42pNpmazIwMBgxgABTBDKT4GBgdnNYMcCBvsPDDDAyMAMxixQdSxANgMDGxAyA6EigyoDJwM3AzsDH4M3w3eGGwyyDDwAhpMH1A== 28.140,0.996,0.459,HISTIgAAAEt42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPUBkWoBwIMgNZ7ECaHcxiYWAEk1wMBgxmDGIM3EC+IIMLw2eGTQz8QFEmAJxuB9k= 29.136,1.000,0.492,HISTIgAAAEp42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDKiAEQhZGNiAmBkIGRlYwXwWBmEGZQZ+MEuQIYWRi2EbgwoDB1AOqAMAqa0G1w== 30.136,1.003,0.459,HISTIgAAAE542pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDDDACIQgwMzAxsAChKxAmhlIMwJZzAxSDEoMvAzsQCjE4MPwnuE+gwQDPwMjAJclB9Y= 31.139,0.998,0.459,HISTIgAAAFF42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPUBkuBmagLBMDCwMbkGRkYAVCFiBmAGJmBj4GRQZdBlmgKjYg6cDwk2E+gwQDDwMzAJzYB9s= 32.137,0.999,0.459,HISTIgAAAEp42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPSDKMYMzCwM7AysAMFGEC0iAWCwM3gwyDBgM/mCfIEMfIzrAeSPMzMAIAj9AG1g== 33.136,1.004,0.459,HISTIgAAAE142pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDDDACJbnAGJWMGRiYAZCJgYWIGRmkGNQZRAAyjIzcDKEMrIy7GGQYRBkYAQAj3YG2g== 34.140,0.999,0.442,HISTIgAAAEl42pNpmazIwMBgxgABTBDKT4GBgdnNYMcCBvsPDDDACITMQMwGh6wMLEDIBBRjZZBiUGLgYeAAsngZ3BleMTxmkGHgBQCIIAfT 35.139,1.001,0.459,HISTIgAAAE142pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPcBkWIGZiYAZCCJuZgY2BFYhZgCQXgwmDNgM/AzuQJ8bgzHCX4TyDCAM3AyMAm0EH2g== 36.140,0.996,0.459,HISTIgAAAEp42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDMiAkYEFjNmAKpmhkBUImRjEGOQZ+BnYGTgYJBhCGD4zXGMQZeBhYAQAlpQH0Q== 37.136,1.004,0.475,HISTIgAAAE542pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPUBlGIGRgYAWqYGZgA5IsQJoFzAPxmRkUGYwZhIAsVgYZBmeG3wwHGCQYOEC6AKnrB9w= 38.140,0.996,0.492,HISTIgAAAE542pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDAjAyMAMhEwM7EDMCoZsQDEOoBgLgzyDIgMPkM/KIMJgxfCI4SODOAMv2DxGALigB9c= 39.136,1.000,0.459,HISTIgAAAEt42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDAjAysAIVMECpFmANBsDB5AG8ZiAWI5BhUEKLCbBEMzIyTCPQYyBl4EJAJEUBtg= 40.136,1.000,0.492,HISTIgAAAE942pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPUBkWIGYGQkYgZgGqY2JgB9LMYMgGhIYMDgyyDBwMrAz8DCEMzxlmMkgDWSDACAC9Gwfg 41.136,1.002,0.492,HISTIgAAAE542pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPcBkWIMkMJFmBkJmBF4hBLBYGTqAcO4Migw+DAAMHUFSMwYjhHMNNII8frJMRAL4nB+I= 42.138,0.998,0.475,HISTIgAAAE542pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDAjAyMAMxKxAyMTAAmSzAVnMQMgC5EszaDFwMXAAefwMngyvGZ4wiDIIgPQAAKfOB9U= 43.136,1.002,0.475,HISTIgAAAE542pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDAxIciwMzAxsQAgimYA8RiDJAeSxMygwKDEIMHAC2YIMvgwvGC4zSDHwA+UZAalrB9o= 44.138,1.002,0.492,HISTIgAAAEx42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDAjACMTMQMgKhCCaBcxiYmADyigyKDFwM7AzcDGIMzgzCjBsBdICQFmgLgCrjQbb 45.140,0.996,0.459,HISTIgAAAEt42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPUBkWBkYwZGFgBaoCYTYgyQ7EbEAxNgZjBiMGfjBfjMGB4QPDLgYhII8JAJv1B9g= 46.136,1.003,0.492,HISTIgAAAFF42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPcBlGIGZhYGVgBtLsDBxAmh3MYwHKsDMYMOgySDBwAfmiQNOOMDxiEGIQBsowMDACALywB+E= 47.139,1.001,0.475,HISTIgAAAE542pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDMiAkYGZgQWImYCYmYEViBmBJBNQTJxBg0GEgZOBjYGPIYjhGsNroIgwUIYRAKbXB9Y= 48.140,1.000,0.442,HISTIgAAAEt42pNpmazIwMBgxgABTBDKT4GBgdnNYMcCBvsPDAjAxMDIwAzG7AysDFxAkpmBBUwyMtgwGDIIM/AycDCIMpgz3GI4CaR5AItmB9k= 49.140,1.000,0.459,HISTIgAAAE142pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDMiAiYERCNkZmIGQlYENyGdmYAGKszCIMcgwcAMhFwM/QzjDK4anQBF+BkYAli4H0w== 50.140,2.452,1895.825,HISTIgAAAKx42pNpmazIwMB1hAECmCCUnwIDA7ObwY4FDPYfGGCAEYiZwWoYgZgZzGcCQwYGVgZhBhEGbgZ2BjYgW4+hjqGcgR/IYgSrohxQx5RRm+lpM+OA6aaXzYwDJDtQNjPiVUmKLC1V08pmRqJoRhqoHhw2E8aMA6aS9jYThkxEqSJe3eAykQkJMqPwSBMbSN2UmMjKwAKHrFRhDS1zOBk4gJATijmw8ge5GgDvng6P 52.592,0.546,0.442,HISTIgAAAEl42pNpmazIwMBgxgABTBDKT4GBgdnNYMcCBvsPUBlmoBwLEDMBWcxgkhEqxgpksTNIMQgxcDGwAfl8DDIM1Qy5DLwMrAB+SwaO 53.138,1.002,0.475,HISTIgAAAE142pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPcBlGBmYgZGRgAWImIMkMFmEDslgYOBnMGEwYJBjYGbgZeBkSGG4xrAXzgGoAq7YH3Q== 54.140,1.000,0.524,HISTIgAAAE942pNpmazIwMDgwAABTBDKT4GBgdnNYMcCBvsPDAjACIQgNWxAzMLACsTMQMwEZDEzKDLIMwgycANZ4gz+DI8Y7jBIM/AA5RghOgHYtgfd 55.140,0.996,0.475,HISTIgAAAEh42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDMiAGaiCBQwZwZgZCNnAumQY1Bh4gDwWBkEGZ4bLjMwMkgxCQBlGAJ0MBtI= 56.136,1.000,0.492,HISTIgAAAE942pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPUBkWoBwjEINIZgZWMIuVgQOIWRnYgLKaDPYMXGBRDgYvhhsMVxhkGASB+hgZGAG66gfd 57.136,1.003,0.492,HISTIgAAAFF42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDDDACIQMDCxAkomBFUizMLAxMANFmIF8NgZFBnUGYQYuoCgfgzfDR4brQB4/2DwmALhmB9s= 58.139,0.997,0.475,HISTIgAAAEt42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPUBlGqDwjAwsQsgFpNgZmKASJyDMoMAgx8AJV8DA4M9xheMsgziAClGMEAKc6B9M= 59.136,1.003,0.492,HISTIgAAAE542pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDAjACITMUMjIwAJUzczACsYsDHIMqgz8DNwM7AyCDN4MVxneM8gz8ABVAXUBALeqB9s= 60.139,0.999,0.459,HISTIgAAAE542pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPUBlmoBwLAyOQBrFAkBmMGYFyrAxcDGYMOgwiDAJANbwMrgznGB4ziDJwMjACAJn0B9c= 61.138,1.001,0.492,HISTIgAAAE942pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDDDACJRlYmBmYGVgY2AB8piBkAuIWYCiLAySDM4MQmAZMQZ/hg8MuxhEGHgg+gC7NQfe 62.139,0.999,0.475,HISTIgAAAEt42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDAgAkmUHklwMrAwsQMwMZINYTEAozaDEIAxkMzPIMKQy8jDMA/J4geKMAJ7UBto= 63.138,1.001,13.959,HISTIgAAAGJ42pNpmazIwMC8igECmCCUnwJQzM1gxwIG+w8MDHA5ZiBmZeBgYASS7AwsYD6IzQakVRjUGEQZuICyYgw2DDcY7gLZwkAVIMDIMNQA46jNA2YW45CwmZEikxhpJwsAR+UIUA== 64.139,0.997,0.492,HISTIgAAAE942pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDMiAhYGNgRUIWRiYGdiBmAUI2cGitgx6DJJAmp2BhyGU4SrDbgYBBg6gCkYGRgC9Qwfe 65.136,1.002,0.459,HISTIgAAAE142pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPcBkWBmYGNgZWMGQB8kFsJgZ2BkYg5mXQYNBnEGbgArL5GNwYXjAcANJ8DIwAnS0H3g== 66.138,0.998,0.459,HISTIgAAAEt42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDAjACIasDOxAkgWoloWBGQiZwGwFBjUGHgYOoBw3gx/DBYbfDMIMQgzMAJalB9I= 67.136,1.002,0.492,HISTIgAAAFF42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDDDAApRlYeBgYAOymYEkKxAyglnsQBjLYMEgwMDNwAkk7RiOMexi4GfgAsozMDACAMCHB+Y= 68.138,1.002,0.459,HISTIgAAAEp42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDDDAzMAKVgGiWYAQRHIAITOYJ89gySDMwAMUFWJwYtjD8JJBioGPgRkAmrYH2w== 69.140,1.212,763.363,HISTIgAAAKR42pNpmazIwMCZwwABTBDKT4GBgdnNYMcCBvsPDMiAEQiZgJgFiFnBqpmg+vgY+IEizGBxFYZshjQGbgZ2II8WgDamjtpMG5sZB8xu2tvMSJE87WRpYzYjSXxqqh4cNjOi0IxYRXHR9FdFfTMZoSQhTJyqgVVJqnnEQSYqq6OFSvJMZEKBzGh8XGLEq6SPieTrZgG2a1igED+LeJXYWYwAsfYJeg== 70.352,0.784,0.475,HISTIgAAAFJ42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPUBkuBm4GTgYWBl4gZmFgY+AAqmUEYhYGdiDNw2DGYAMk+YGQl0GLoZ6hDUizAfUxAgCtOgdN 71.136,1.001,0.492,HISTIgAAAEt42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDAjACMaMDKxAzMzADibZgCQLUESFQQ1I8gBFuBhCGLYzCjMIMYiAVTMBAKvBBtk= 72.137,1.003,0.475,HISTIgAAAEt42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDAjAyMAMxEApBhagSiYgyQjEELYsgzoDLwM7kMfFEMBwlpGLQYaBB6QHAJ0DBtc= 73.140,0.996,0.475,HISTIgAAAE942pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDDDACMTMQJKJgR1IsgLZIB4zAwsQszKIMWgyiANpVgZehgiGMwz3GeQZRIEyTACm5QfS 74.136,1.004,0.459,HISTIgAAAEx42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDAjACJZnZmBlYAFCJiBmBLKZgSQLgyiDJgM3AzsQ8jEkMjxkeAYU4WdgAgCWiAfX 75.140,0.997,0.492,HISTIgAAAEx42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDDDACJZnBkIWMIsNiFmBoiARJgZJBmUGYSCfnYGXoYCRiWEngwiQDdLDCACq1wbX 76.137,1.000,0.442,HISTIgAAAE142pNpmazIwMBgxgABTBDKT4GBgdnNYMcCBvsPDDDACJZnYmBmYANiJiCfmYEFCFmBLE4GeQYFBn4gzcIgxuDNcIzhB4M0gwgAho8H0g== 77.137,1.003,0.459,HISTIgAAAE942pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPDMiAkYGZgRWoioWBE8hiZmADirABeawMUgxaDHwMHECeAIMfw2WGrwwiDFwMzACYHQfY 78.140,1.000,0.459,HISTIgAAAFB42pNpmazIwMBgwQABTBDKT4GBgdnNYMcCBvsPUBlmIGYEyjMDISsDCwMbkAbx2IBsRgYOBj8GDwZJBnYgX4TBlmEdw2kGUQZ+BkYAnacH3g== 79.140,0.998,0.475,HISTIgAAAE142pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDAjACJRnApLsDMxgkoGBBchiA2JmBhEGHQZBoBgbAz+DL8Npht8M4gwCINUApvkH1A== 80.138,1.002,0.508,HISTIgAAAE542pNpmazIwMBgxwABTBDKT4GBgdnNYMcCBvsPDDDACIQsDMxAzMTACqSZgBgE2RjYgaQUgxaDIFhMnCGY4Q7DXQYJBn4gD6wTAMlCB90= 81.140,0.997,0.557,HISTIgAAAFB42pNpmazIwMDgwgABTBDKT4GBgdnNYMcCBvsPUBlWoBwjAzOQZAFCZiCbhYENyGOFimkz2DPwM/AB+dwMTgzHGJ4zCDDwgNXBACMA/WwH4w== 82.137,0.999,0.475,HISTIgAAAE542pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDDDACMZMQMjCwArEzAxsDJxgEWYgKc+gzsDHwA0UF2AIYrjK8IJBnIEfKMcIAKfXB9Y= 83.136,1.003,0.475,HISTIgAAAEx42pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPDAxwOUYgycrADIQscMwGFAexpBgUGbgZuBg4GAQZYhluMTxhEGYQAupgBACn3gfZ 84.139,1.001,0.492,HISTIgAAAEx42pNpmazIwMBgwwABTBDKT4GBgdnNYMcCBvsPDDDACIWsDMwMbGCVzGAeA5DHzCDBoMsgzMAB5MszeDI8ZLjCIMfAC1bBCAC31AfZ 85.140,0.996,0.442,HISTIgAAAEt42pNpmazIwMBgxgABTBDKT4GBgdnNYMcCBvsPUBl2IGQByrMCSTYGDiBkBfNYwSK8DG0M7gzCDJxAOX4GC4ZFDLMZRBg4AZVqB+U= 86.136,1.001,0.557,HISTIgAAAFF42pNpmazIwMDgwgABTBDKT4GBgdnNYMcCBvsPDAjACISsDCxAVSCSDUiD2MxAUTYGcQZNBiEgn5VBgiGU4Q7DYwYxBm6gDAMYg3UDAPppB+I= 87.137,0.999,0.541,HISTIgAAAE142pNpmazIwMDgxAABTBDKT4GBgdnNYMcCBvsPDAjACITMQDUsQJIVTLIAaRDJwiDMoAnEnAwcDCIMVgxXGP4ySDHwwMwD6QUA6PAH3Q== 88.136,1.002,0.475,HISTIgAAAE142pNpmazIwMBgxQABTBDKT4GBgdnNYMcCBvsPUBlGIGQCYxYGVgZ2IMkGxIwMzEAaREowaDLwM3AAebYM6ozdDE4MIkBVQF0An+EG3w== hdrhistogram-go-1.1.2/test/jHiccup-2.0.7S.logV2.hlog000066400000000000000000000174741411122733000216140ustar00rootroot00000000000000#[Logged with jHiccup version 2.0.7-SNAPSHOT] #[Histogram log format version 1.2] #[StartTime: 1441812279.474 (seconds since epoch), Wed Sep 09 08:24:39 PDT 2015] "StartTimestamp","Interval_Length","Interval_Max","Interval_Compressed_Histogram" 0.127,1.007,2.769,HISTFAAAAEV42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPEBEJISEuATEZMQ4uASkhIR4nrxg9v2lMaxhvMekILGZkKmcCAEf2CsI= 1.134,0.999,0.442,HISTFAAAAEJ42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWLj45FTExAT4pBSEBKa6UkAgBi1uM7xjfMMlwMDABAC0CCjM= 2.133,1.001,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBE+Ph4OLgk5OSkeIS4+LgEeswIDo1+MbmdYNASYAA51CSo= 3.134,1.001,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBExPiEpITEFGTkRKSEeOR6FkCg1hTeMXvNYlHhYABQ5CTo= 4.135,0.997,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBE2PiERBREpBREhER4+Hj4uvQAdrTlMBldYDDhYAAugCKk= 5.132,1.002,0.426,HISTFAAAAEF42pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPEBEWPhElOR4pARUpKTkpGQkxq2mMegZnGI0+MZuIcAEAHo8Jvw== 6.134,0.999,0.442,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWIS4FITEhDiEJERE+GT6ZkhZGLbl7jEqrWHREmFgAIbAJMw== 7.133,0.999,0.459,HISTFAAAAEJ42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNEhEtMQEBBTk5MQERCRkBEQEWlh9FJbg9jE+MS5ig1LhYmADkkCcE= 8.132,1.000,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWIREgEOIQEuGT4xHg41Oo0pIqu8LYwVImwMfGBAAfkgkw 9.132,1.751,1551.892,HISTFAAAAJZ42pNpmSzMwMB0nQECmCCUnwIDA7ObwY4FDPYfYDJMXFxsbGwMbBwszDwsDDxsHFw6RWJMLJMZmcqBMJrJmskSiA2ZZJmkgRBCgmheIORGI1H5rEzMQAyDzFhY2EWRWUwMWCBxQtQQhAIWJiyAaEHyFbKwsLHAADYWAWmiFeKS5gACLsIEzdQICAgBIQShEfhFABXDF+M= 10.883,0.250,0.426,HISTFAAAAD142pNpmSzMwMAgxQABTBDKT4GBgdnNYMcCBvsPEBEeFi4mPg4WLhY2BjY2FhYOBSkpASEtoRA+NgDkCQZR 11.133,1.003,0.524,HISTFAAAAER42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPUBk2HgkZKREpEQUeGSEBAQ6xSYxhCnp7GJ02sWgJsbCwMgEAO0AJSQ== 12.136,0.997,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPUBk2AT4eCQURHgkuEREOHjERlSQhhWuMSV9Y7ERYWAAa4gko 13.133,0.998,0.459,HISTFAAAAD942pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPMBkRIR4RMRk5KQE+PgEhMRmzEjWZJ4whW1hMBNiYAB42CTA= 14.131,1.000,0.492,HISTFAAAAEN42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPUBkWFhE5GT4FKQkRCR4ZCREpqwmMBhpHGG16WHx42JgYmAA6swk+ 15.131,1.001,0.442,HISTFAAAAD542pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPMBkuMTEFHgklFRkRATkJERGdKgudfYwRTSwGalwAF2IJOw== 16.132,1.001,0.524,HISTFAAAAEZ42pNpmSzMwMCgxAABTBDKT4GBgdnNYMcCBvsPEBE2IQEFCQkpGREpHj4hKS6NU4z7GDMkuBoYDSYw2wiwMLEyAQBQ3wne 17.133,0.998,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPUBk2DjElIR4RHiExKQE5IT61iCodtXWMdn0sKVJMTAAekAk0 18.131,1.000,0.459,HISTFAAAAEF42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPUBkWISERJSUJESklHhEJEREhqwZGLakPjDZdLBYCHCwAKOkJPg== 19.131,1.000,0.475,HISTFAAAAEF42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPUAk2HjkJBSk+Pi4BMT4xIQE9pxIluTOMPhtYbITY2JgAKLoJOQ== 20.131,1.004,0.475,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBFmPhEJOSEhDi4+ETEeASEhswIVi1+MFjtYvCRYGJgAIP8JNw== 21.135,0.999,0.492,HISTFAAAAEB42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNMhk1AjINDRECAj4+Hi49LKS5CS2EGo1kXa4ANExMDEwAmOQil 22.134,0.997,0.459,HISTFAAAAEB42pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPEBFmHhE+MRExCTEZAS4RMQERvRI1hSuMTidY3KQ4mAAXhgks 23.131,1.004,0.508,HISTFAAAAEB42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNMhotHSEBASEyMg09MQUSIT6tKS2YKY8gfFj8tJmYmJgAsowkz 24.135,0.998,0.492,HISTFAAAAEJ42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPEBEBLjkhETEpET4BISEhCR6FsqAQFY1jjBoTWPQEOJiZAC2aCUY= 25.133,1.002,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPUBkuHh4BITEpMSEpLiE5AS6FoAgdpQuMJk9YzMRYmAAdngk2 26.135,0.998,0.508,HISTFAAAAER42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPUAkOKSEJKTUJOT4+IQkeIT69LYwVCnIbGI0eMZtJsTAxMwEAQvkJyg== 27.133,0.998,0.442,HISTFAAAAEN42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPEBE2CQUZFTkZOSURKQkRMT6NKYwhbYxaOocY/a4xSUmwAQA4pQpb 28.131,1.002,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBGtFDcHIy0jDQUdPjENFZUzjNNYHCT4uBQkzJiYADIGCcY= 29.133,1.460,968.884,HISTFAAAAJZ42pNpmSzMwMDUwgABTBDKT4GBgdnNYMcCBvsPEBE5AwMDJSUFISk2ETYuAS6PQ0xSXCzsTEw7GZnKgdCTyZLJGog1maSZZIFYGkpLMnEz8QIhOolgcTKxAiEzmGRFYxMShbEYUCAalzRBsjSjARYmTIBNjDKFSIIsIMDGAgPYWJRJE1DIxQEEaAQHF2GCNDVsAE2dFJE= 30.593,0.541,0.459,HISTFAAAAEB42pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPEBEFCxUNBRkFMTE+Pj4ZHgGHFYwGIkJcMiIpbEwMTAAdQQhJ 31.134,0.997,0.737,HISTFAAAAER42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPEJGAHsYexqKaIAcPPRMVKTEhoR6mJUxqfBx8LFwCTOxM0kwAfR8KqA== 32.131,1.002,0.508,HISTFAAAAEJ42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNEJKCDMcHJw8jOTUfNSEZGQuUb4x9GHxkJDg2hMA4WViYmAHWrC2k= 33.133,1.000,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBGXGK8QHS09PRM9BRMxBa55jBOY03REhByE3DhYADicCkc= 34.133,0.998,0.442,HISTFAAAAEB42pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPEBE1NzsfJwMVEw0pFS0hOZm4FqYKPy2FAoUJjFIsTAA/mQql 35.131,1.000,0.459,HISTFAAAAEN42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPEBERMy0jPTk5LRUFJQk1GamYdUzHGO0UxIrUljBKsbEwAQBKXgqU 36.131,1.001,0.557,HISTFAAAAEd42pNpmSzMwMCgygABTBDKT4GBgdnNYMcCBvsPEBExJzcNMyU5PRUpLSkJKYWwHqYWRjslkTKNC4wKHGwMTExArUwAi/IKnA== 37.132,1.002,0.442,HISTFAAAAEJ42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPEBEFLRsVPQkTKTkhPT4ZBTm3V4yTGD20pFoYtZqYxESYAEjICok= 38.134,1.000,0.803,HISTFAAAAEJ42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNERM7Hwk3LRslMSkZMQExDLGQL0yTGIC2pKJ1VjCwcTJpMAFufCso= 39.134,0.997,0.492,HISTFAAAAEN42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPEBE5Oz8DPRsFORM5FQkNKaGCA8wtjCoSfBYSTYxCLEBtTABiWgor 40.131,1.000,0.442,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBExJQUNFTElFRUZBRUZDTGfJqYKHzmhHka5ZUwSQmwANK0J+g== 41.131,1.002,0.475,HISTFAAAAEV42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPEBE2Hj45PiEFGSU5EQkpKREJuVmMLYwaWk8YQyYwa3CxMTABAEOgCdQ= 42.133,1.000,0.459,HISTFAAAAD942pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPMBk+Lg4+ER4hMT4hIT4lLh69OAOZZ4wOr1hCpFiYABjUCSY= 43.133,1.002,0.442,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBFmLgEJMTERHjEuCRERBSERoww5rRuMendYPFRYAA3tCTM= 44.135,0.998,0.590,HISTFAAAAEJ42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPUBk+FT0lJTktJSUjOTE1OQGpmnOMdnorGF3WMemxCTIBAEAhCnU= 45.133,0.998,0.442,HISTFAAAAEJ42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWMS0DIyMFOSsNPTEFMSGNA4x+LxidfOp0VjBKcLAAAECLCv4= 46.131,1.004,0.442,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEuMS0VEyMlLSkzGQUJOSkJj6RnjE56WxjNWpik2JgAO34KfQ== 47.135,0.996,0.475,HISTFAAAAEF42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNUgk2GR0ZOQkSAR4aLS0KKTyNtDqOWxjVGu2fMGlJMTEwANsIJvA== 48.131,1.950,1803.551,HISTFAAAAKF42pNpmSzMwMD0mQECmCCUnwIDA7ObwY4FDPYfICKsTExMLCysLCxsbEwMTAIsDHIsWTwsbNsZmcqZKpncmayZLIFYnUmWSRoMIbQkEy8TNxQjkwgWJxMrGDJDaews/KIMKBCNSytBZCYqYGHCBNjEiBckoJAFBNhYYADBwipIhkIC0lwcQIBGcHARJqigBkwKCQgICSAIFA75IlwAeB8ZpQ== 50.081,0.050,0.393,HISTFAAAADl42pNpmSzMwMAgxgABTBDKT4GBgdnNYMcCBvsPEBE2BiYWNiYWZiYGJiZmJg4OLiYuFiYWAMWGBSM= 50.131,1.001,0.442,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBE2Lj4VAQkuJT45KTkOKSExI68eRgeDvB2MfcxxckwAJD8JyA== 51.132,0.999,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPUBk2NgUFGSkNAQEeJSkuKSmxhAojhZADjKuYiyS4WAAlWgm/ 52.131,1.002,0.557,HISTFAAAAER42pNpmSzMwMCgxAABTBDKT4GBgdnNYMcCBvsPUBkWPjEFGSMZKQMJJSEhPgkJiyodjZIHjB+YSvh4mBiYWJkAVc8KVw== 53.133,0.998,0.442,HISTFAAAAEJ42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBE2HjklJR0VPSUDHTUxJSkJs02MuxhtrLxKHjH6cbEAADjeCuw= 54.131,1.003,0.442,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPMBkNPzMLIw0NLQ0pFTERCTGLT4wpQSVbGFcwynExAQA/uwsC 55.134,0.997,0.426,HISTFAAAAD942pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPUBkWFTUjCy01BQ0VFRUJGSkJjRamiqA5jHmXGIV4ACoyCmo= 56.131,1.000,0.459,HISTFAAAAEF42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNUhk1FzsrAQElFQ0xCQkJOTEDnE6ObxwrGDsYuJjUODiYASN8KbA== 57.131,1.000,0.459,HISTFAAAAEF42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPMBk5FT0JAzUNKTklKQ0FMaGUJ4wJFjcYk+4wqnAwMAEAQooK6Q== 58.131,1.002,0.442,HISTFAAAAEB42pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPEBEuCRMNJwMlIzUtLR0ZMREZv6IHjFYGdUXLGE14WAA4OwsG 59.133,0.998,0.442,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPMBklExUdIwcdFRUlOTMZPhWXB4wBTssYsy4xKnGwAQA8bAry 60.131,1.000,0.524,HISTFAAAAEJ42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBFmIRcjPR0bFR0lDSk5KQkZpXlMXkF5qxh3MMqIcDIBADy8CoE= 61.131,1.000,26.083,HISTFAAAAF542pNpmSzMwMAQyAABTBDKT4GBgdnNYMcCBvsPMBkFHSMrCzEZLSUFCSkJOTmTf4xRQW2MYT8Y5diYdjIylTNVMrkzWTJZA7EmkzQYykJpSSZeJm4ghpAQFgATDg85 hdrhistogram-go-1.1.2/test/tagged-Log.logV2.hlog000066400000000000000000000127571411122733000214130ustar00rootroot00000000000000#[Logged with jHiccup version 2.0.7-SNAPSHOT, manually edited to duplicate contents with Tag=A] #[Histogram log format version 1.2] #[StartTime: 1441812279.474 (seconds since epoch), Wed Sep 09 08:24:39 PDT 2015] "StartTimestamp","Interval_Length","Interval_Max","Interval_Compressed_Histogram" 0.127,1.007,2.769,HISTFAAAAEV42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPEBEJISEuATEZMQ4uASkhIR4nrxg9v2lMaxhvMekILGZkKmcCAEf2CsI= Tag=A,0.127,1.007,2.769,HISTFAAAAEV42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPEBEJISEuATEZMQ4uASkhIR4nrxg9v2lMaxhvMekILGZkKmcCAEf2CsI= 1.134,0.999,0.442,HISTFAAAAEJ42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWLj45FTExAT4pBSEBKa6UkAgBi1uM7xjfMMlwMDABAC0CCjM= Tag=A,1.134,0.999,0.442,HISTFAAAAEJ42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWLj45FTExAT4pBSEBKa6UkAgBi1uM7xjfMMlwMDABAC0CCjM= 2.133,1.001,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBE+Ph4OLgk5OSkeIS4+LgEeswIDo1+MbmdYNASYAA51CSo= Tag=A,2.133,1.001,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBE+Ph4OLgk5OSkeIS4+LgEeswIDo1+MbmdYNASYAA51CSo= 3.134,1.001,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBExPiEpITEFGTkRKSEeOR6FkCg1hTeMXvNYlHhYABQ5CTo= Tag=A,3.134,1.001,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBExPiEpITEFGTkRKSEeOR6FkCg1hTeMXvNYlHhYABQ5CTo= 4.135,0.997,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBE2PiERBREpBREhER4+Hj4uvQAdrTlMBldYDDhYAAugCKk= Tag=A,4.135,0.997,0.426,HISTFAAAAD942pNpmSzMwMAgwwABTBDKT4GBgdnNYMcCBvsPEBE2PiERBREpBREhER4+Hj4uvQAdrTlMBldYDDhYAAugCKk= 5.132,1.002,0.426,HISTFAAAAEF42pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPEBEWPhElOR4pARUpKTkpGQkxq2mMegZnGI0+MZuIcAEAHo8Jvw== Tag=A,5.132,1.002,0.426,HISTFAAAAEF42pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPEBEWPhElOR4pARUpKTkpGQkxq2mMegZnGI0+MZuIcAEAHo8Jvw== 6.134,0.999,0.442,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWIS4FITEhDiEJERE+GT6ZkhZGLbl7jEqrWHREmFgAIbAJMw== Tag=A,6.134,0.999,0.442,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWIS4FITEhDiEJERE+GT6ZkhZGLbl7jEqrWHREmFgAIbAJMw== 7.133,0.999,0.459,HISTFAAAAEJ42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNEhEtMQEBBTk5MQERCRkBEQEWlh9FJbg9jE+MS5ig1LhYmADkkCcE= Tag=A,7.133,0.999,0.459,HISTFAAAAEJ42pNpmSzMwMCgwAABTBDKD8hndjPYsYDB/gNEhEtMQEBBTk5MQERCRkBEQEWlh9FJbg9jE+MS5ig1LhYmADkkCcE= 8.132,1.000,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWIREgEOIQEuGT4xHg41Oo0pIqu8LYwVImwMfGBAAfkgkw Tag=A,8.132,1.000,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBEWIREgEOIQEuGT4xHg41Oo0pIqu8LYwVImwMfGBAAfkgkw 9.132,1.751,1551.892,HISTFAAAAJZ42pNpmSzMwMB0nQECmCCUnwIDA7ObwY4FDPYfYDJMXFxsbGwMbBwszDwsDDxsHFw6RWJMLJMZmcqBMJrJmskSiA2ZZJmkgRBCgmheIORGI1H5rEzMQAyDzFhY2EWRWUwMWCBxQtQQhAIWJiyAaEHyFbKwsLHAADYWAWmiFeKS5gACLsIEzdQICAgBIQShEfhFABXDF+M= Tag=A,9.132,1.751,1551.892,HISTFAAAAJZ42pNpmSzMwMB0nQECmCCUnwIDA7ObwY4FDPYfYDJMXFxsbGwMbBwszDwsDDxsHFw6RWJMLJMZmcqBMJrJmskSiA2ZZJmkgRBCgmheIORGI1H5rEzMQAyDzFhY2EWRWUwMWCBxQtQQhAIWJiyAaEHyFbKwsLHAADYWAWmiFeKS5gACLsIEzdQICAgBIQShEfhFABXDF+M= 10.883,0.250,0.426,HISTFAAAAD142pNpmSzMwMAgxQABTBDKT4GBgdnNYMcCBvsPEBEeFi4mPg4WLhY2BjY2FhYOBSkpASEtoRA+NgDkCQZR Tag=A,10.883,0.250,0.426,HISTFAAAAD142pNpmSzMwMAgxQABTBDKT4GBgdnNYMcCBvsPEBEeFi4mPg4WLhY2BjY2FhYOBSkpASEtoRA+NgDkCQZR 11.133,1.003,0.524,HISTFAAAAER42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPUBk2HgkZKREpEQUeGSEBAQ6xSYxhCnp7GJ02sWgJsbCwMgEAO0AJSQ== Tag=A,11.133,1.003,0.524,HISTFAAAAER42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPUBk2HgkZKREpEQUeGSEBAQ6xSYxhCnp7GJ02sWgJsbCwMgEAO0AJSQ== 12.136,0.997,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPUBk2AT4eCQURHgkuEREOHjERlSQhhWuMSV9Y7ERYWAAa4gko Tag=A,12.136,0.997,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPUBk2AT4eCQURHgkuEREOHjERlSQhhWuMSV9Y7ERYWAAa4gko 13.133,0.998,0.459,HISTFAAAAD942pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPMBkRIR4RMRk5KQE+PgEhMRmzEjWZJ4whW1hMBNiYAB42CTA= Tag=A,13.133,0.998,0.459,HISTFAAAAD942pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPMBkRIR4RMRk5KQE+PgEhMRmzEjWZJ4whW1hMBNiYAB42CTA= 14.131,1.000,0.492,HISTFAAAAEN42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPUBkWFhE5GT4FKQkRCR4ZCREpqwmMBhpHGG16WHx42JgYmAA6swk+ Tag=A,14.131,1.000,0.492,HISTFAAAAEN42pNpmSzMwMCgyAABTBDKT4GBgdnNYMcCBvsPUBkWFhE5GT4FKQkRCR4ZCREpqwmMBhpHGG16WHx42JgYmAA6swk+ 15.131,1.001,0.442,HISTFAAAAD542pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPMBkuMTEFHgklFRkRATkJERGdKgudfYwRTSwGalwAF2IJOw== Tag=A,15.131,1.001,0.442,HISTFAAAAD542pNpmSzMwMAgywABTBDKT4GBgdnNYMcCBvsPMBkuMTEFHgklFRkRATkJERGdKgudfYwRTSwGalwAF2IJOw== 16.132,1.001,0.524,HISTFAAAAEZ42pNpmSzMwMCgxAABTBDKT4GBgdnNYMcCBvsPEBE2IQEFCQkpGREpHj4hKS6NU4z7GDMkuBoYDSYw2wiwMLEyAQBQ3wne Tag=A,16.132,1.001,0.524,HISTFAAAAEZ42pNpmSzMwMCgxAABTBDKT4GBgdnNYMcCBvsPEBE2IQEFCQkpGREpHj4hKS6NU4z7GDMkuBoYDSYw2wiwMLEyAQBQ3wne 17.133,0.998,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPUBk2DjElIR4RHiExKQE5IT61iCodtXWMdn0sKVJMTAAekAk0 Tag=A,17.133,0.998,0.459,HISTFAAAAEB42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPUBk2DjElIR4RHiExKQE5IT61iCodtXWMdn0sKVJMTAAekAk0 18.131,1.000,0.459,HISTFAAAAEF42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPUBkWISERJSUJESklHhEJEREhqwZGLakPjDZdLBYCHCwAKOkJPg== Tag=A,18.131,1.000,0.459,HISTFAAAAEF42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPUBkWISERJSUJESklHhEJEREhqwZGLakPjDZdLBYCHCwAKOkJPg== 19.131,1.000,0.475,HISTFAAAAEF42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPUAk2HjkJBSk+Pi4BMT4xIQE9pxIluTOMPhtYbITY2JgAKLoJOQ== Tag=A,19.131,1.000,0.475,HISTFAAAAEF42pNpmSzMwMAgzwABTBDKT4GBgdnNYMcCBvsPUAk2HjkJBSk+Pi4BMT4xIQE9pxIluTOMPhtYbITY2JgAKLoJOQ== 20.131,1.004,0.475,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBFmPhEJOSEhDi4+ETEeASEhswIVi1+MFjtYvCRYGJgAIP8JNw== Tag=A,20.131,1.004,0.475,HISTFAAAAEF42pNpmSzMwMAgxwABTBDKT4GBgdnNYMcCBvsPEBFmPhEJOSEhDi4+ETEeASEhswIVi1+MFjtYvCRYGJgAIP8JNw== hdrhistogram-go-1.1.2/test/ycsb.logV1.hlog000066400000000000000000006746301411122733000204040ustar00rootroot00000000000000#[Logging for: READ] #[Histogram log format version 1.1] #[StartTime: 1438613579.295 (seconds since epoch), Mon Aug 03 07:52:59 PDT 2015] "StartTimestamp","Interval_Length","Interval_Max","Interval_Compressed_Histogram" 1438613579.290,0.660,0.488,HISTggAAAkp42u3dwU1jMRAA0Iw50ASdcKA2JDqgAUqkA5CAEwIFnG9nxn7vsKvVkh977Bk7/tm/d0/Pj6e4fzl9uvn6PT5+vX17e3g9AQAAAEB2cebPu8dDv/ZodygF4gDy/pA6oI4AqKOAvAcAAAAAAAAAAAAAAAAAAAAAAAAAAACA1XiuOAAAAAA/cW6EeQbyBQAAsM8H+YT5or3GGwDrBCA/9427cQCwbooPyBvtxXhjHMRV/CHPPArx005xMD4A1g0Kj7f9srzcoZ8x+fXmPYD1Cn6bT7HovMvSL3krTpgP+mscmR/3MI/0c4P+VDtHD+Mmv/lzfHw/P+f7m9/yU7/UW3HO/bnOfMd4wJx6u1seyOu9x/O/P9/OvD4m52ckn/+jrn+jDujvRvFt9iVLjfNR5xnVvgcWi41/9jobm/W3yni3YvGNzfIlkrV/VHtWf65sdOZf9vsIVZ+34bkTfe8XSeZbXPi6OOh659o1K3/jl3oSk+NaLe+q1oHeuMdB+Z/lvuqo9le5b/w973s/h8+uU9c+P4grxYdj65A4zt3fZb/Ps1q7q+yLLq3rq53HzlrPVn3+0ej5cO1ztSz3Xb7/fZuUp9X+3cLo/eeseltt3csyTyLZz2f//LPr/xPXew7WkuV9lnUxDqoHR12n932zrmOts51t0DzovU/YBl1/9n626n4+JsWn2j4/6/oUSa+XdR2PQa/rvd9QpU70xiNrHc9+DjH6e1+X7nPJ+Xm2ynlkG1xXRueN+Tr3/Xb73rP5Y5zMQ5avF+/0KAca 1438613579.950,1.000,0.511,HISTggAAA3V42u3dy3HcMAyA4QV9SBOpJWkpLWQmHaTRdODMOLl6ViuJJAh+/8G+2BLxFEBS1Ndfv38+4tuPxz/e/v+Oj59f3t+//3kAAAAAADCKePHvW+f7xmT5Zl//mV7u1lsMlic+8acYpP+4+HftoD1Gj78Nsmcv+doi+QR98mEsNt678sljUbmNv6Z+g34AAAD0cQDEJQAAANSHAAAAAAAAAJbHvCIAyJ8AxDkAAAAAAAAAAAAAAKtjnR8A5HHjBv8H+4F/1JZDvAHib3f9BXtBvABDafweANQD5CbvIvIGfQH8jH0AiDP6B3vws5R6Zwf+SX/7yhVJxxOTxh2b2Cvrc0DexRF/4CfqRnXUOvcN+p0yvhAnW9UlsZmfsLs8qm7kL+Kb/PqV+fYN+upyP/PO+rDM8qqrAPm31zjj5LhjMX1FMXmy+W8U9Rt5pIbej/atsai+s8SVcy1yPMey+Xewe0raxTpp1Xypvul7v9F+Mvv61fZNxmR/yZ5PVt3fu3tf8Kqe1Cvn4kI8Y8f6uVoe2X0f2C7r1lFUn1XrsdXWke0TonfU6Z+AEXWN72+gpx2y7j88u44Xk/Xx2fWrnLsd/HirfjKS5oUs8d3r/q/mv7hZT3f191nmj7KNc3Q8eW+pZj5c9fm0SpzGov5w13Oml5xX7R+D9RiD/i9Lvrh6/5bEDtmfd9EpDnftA3vNE/Tyy9n5KZv/z/LTs/sY1NF97Lja+xy969vs74nP3h88Og/v9h5ADIqPVeq2XeYtVu1rq/QHq9VX1fqOVc6zlifl5Z3kv1qPzJ7XnTWPFTdfB3vEWdb105jk77P3IThf8948Okqf7aQ8zqPOIVf2PvptcDxmX0doRf13l/O/qr6Xt/o5cFXX4bNctxXx81HjdB45ZvZ3u88P7NYH9Orjs/jh6vuJVs339vfVzO++l0de9Q07rvo8m6WfXefvdvfHVdbHYrAfz6pbZu3/rFpfxBO/771eX60f6t1fZz3vdfY6Qtys52f5M262S5yU567nWZXvjWRfp5w9jnbQ347681X/yvKe0at5o53UX0viN1ff12yDxtkOjvvV/RZZ9lmtXj9dfW+8d5xns3O17+5VPU+92nnB2fuks/VB7/cvqvlFte/L7vL9o1nji+TjyDqerP6y2nx/1Xi07ik+K8jLj+l3il7+Anb5B94= 1438613580.950,1.000,0.303,HISTggAAAyh42u3d2W0bMRCAYQ0VIE3kNXWkNgPuII2mAwcInBcDwl7kckh+/4MNSSuKcw/3/PH+++0RPx+fPD//x7+/3z8+fv15AAAAALiXuPj51e3vGreWHNHJHkftdFbeuDjvOLh9+fL/7Pdf8erz54vfKy/k2dru1fjPjXGeX8Z7bmy3V//Pi/b6//63nXqNg/OJnXqODX2/8oOy009iY7s4Kf/jZLyWg3asHc9ROW/V+t7Z/LY3v8TF1631cjU/967f2er7LP3Zan1psCO56B2AOGc/8tEbAMgzACC/ARgu/uUpQD4CAHkMAAAAAGC9BkBeArBSfhj1Ok1A3RZn0I8CAIA6dde6EADWrAexuPzAEf+JzuMB8rs6wM/Mnz7Aj/g32Deb/uhfvIhjANbv+fMffUMcgJ7ZZUT5YzB7nJUnOukrkvpxKzlqPZ8xmx4iiR1GzaOeX5ZzXZdN7kg2j63nEs/in7Xzbpk8X9SSqzTSh+MQa9aLvc8bD3Yesg+fTQ+l0/zLZH402n6AUfrj2r83q91XPz7Vqj8ri+lFf6CPH7nOj1ZHI+m6IJLGT7b9U4B+vV99GGV/QK9xHX8n9531rlU8RpJxVvPfOPg66/rNOniO/raW/93tF3cdP4zGdo6k8pdGftOrjt6t797xMuv9HuJmu6ONHlfpI2Y5Hr7afjv9rXn1lO+u/QOlsx1a7W/Lfv5EOdlHl8b+dHSckA+G7LtGiZfRj3eO5vdBH/qsxPJZx69Z39T9uepc1vOx+OFc9ty7Xbm5L60tZ+lsr5jMj+867nf1e7F43D8q26PV+60ok9ozFpNLXzF3H9R7P3Ysoq/R84/nMJm3ujtOnAW/3fW7zhNfq9+Wf/m7erQ9D34ub9DTfLS6Djfb9YSz9l2t78ss/8hr6sE48vOrOf22Vx4f/TzLWvXzrjqQ5f50+q+1+oJs1xtn6bez3wdwtvOZVuljnA8F/iuf9qqn2fUjPwEAYH0AAPIlVvYnfiY+6RXgt+Bf/Bn8IZ/8rieGurJ//NXv5ynurukr2OEShX7ENTuBvgHICwAgr8nPEI/mB4gT8z8i319PvQcy 1438613581.950,1.000,0.096,HISTggAAAq542u3dTY6cMBCGYcq0corcJWeLlBvkIjlZlBtMFpNZBA2iAeN2meddzAhBG7v81Y+Bpr/++Pl9mn7/mt6Z//2P979vb9/+TAAAAAD+pyy2I0m/o/JxrfpTdrZXKs1nnBzPs5//WId92XmeWBlHefK45f6Pfjw29pfF9rN2WH5u3rDTsv3HSv/nlfGv2WPaGOdj5fNH/WhtnPNK/8rK/r36nU/6Rxy0w1b/Y6X95fZjp33XdB1P6jWetFccjANx8vi4OA61zgNn42w06mdW2IWdQNcAAHFe3gAA9TcAcQQAAABQfwIAAKizQIcAAAAAYJ0B+gDoH3QIQHzA9vtYRnmPSdAFcNs4zd8B3CVeiHfgt/yjl3VPJGt3NN3EIOOV19QbdIDRdEDP7NjT+IOdkVif2evZGGQcR/sb/CD1/KFvnZhPft/jOP1uTs56pPe6bzS/v6re4nfy/Uh28vsT6psz/Y9Kenv1822j5k3+2He91WvdV2tccTAObJ2/JNVLtvwQJ+fbc8v3rAtGWU9fvR6MRuehVxyp65Ejj4V5aXq+1tdXsjyXHI3zVq92iZ3bvdXxrftVphzIi7niUTa7yeP3yKOuX/Wtn637HL7/apx7zhfmjW4+oSSb53ix/l/VXqncr1rrwdHWTVc9lxUX96vVfYxSqZ4Z5fpBrfFEcr+4er+6ZKz10F393ryfazfbewyyPY8SN9fvXh26jqHfV6y/s9kpy32FXq4fZMu74lmO9WIMYu9C19Y1U3/3ZVvnuaC/IfSFsXV51To/bq7LXsYvTogLI8cZ+vj8uKjcXm86D358yM9q60M+GVNPvb6X4q7rOs9BQh0KOgTyrceAV9Zx7sft25bX+N8I/aI3QNxiD/WT/EQXGDuOe98l7jzfwU+MCwAAABitrv4LbUgIfA== 1438613582.950,1.000,0.090,HISTggAAAsx42u3dQY7bMAyF4VDOMXqXnq3A3GCu2UVvMF10VkENObZsU9L3L2YAw7Ek8pGiFDv+8fH56/H4/fhm+f4f//5+ff388wAAAMD9hH79t90YdLxxUj9KUn1FpX+v/W/t/63t1z631p9lZ79r56+1v2anteNR0cOyYp/ny/lLxR5RsUftc3vtUTt/2RgvZaPdYqOOX6/3XLnOml2XSntbdfBcuU550x41/ZbK+PeefzRPbo3/2Hj83X7V7BAH+/Nunilv9uPRyG6t7JylLmhlv9Z6y1YvZq1vs9eVrXQVg9oFoJu84xenAADzIjsBEF8AAED9AQAAAACw7gN6iwvxJO/Jy4D8AQAA+p4/zfd0B4yqc3GBnvNs0DPkOXYHvRgn2B24LU7El/zGHrjKP0GHkJ+q16c/8cpeqFEG0wldIoPOYnIdhzifyi9HfyefP8+1UwyeD0YZV7DPqe1nvX9klHwpj4tTuuF38B97jV93Zt/f631eO7rPVJLZK27WXTTWU+v34ZWLdTvr/HH2ewyDX24Zz+jvp9z6PtkYxG+j6z0mG0d0Or6t1zlab0UynY3+Pd7VddrV75merT6IQXQ5W902i76sC87ZDxBX7GLeyLMOcB/6vX45e912dd6e9X7IGCQfnNWO/Sl1xkjzpvpiznVAGUzPZ82DkUxvs+6r7p2XW83nd92n8Hq8nKyHo7ovO9tfLqrLsq/3o9P4bK2PbPV473XH3Xa0j9xHPeX5otz7Ca3uH8z6PXh05r9Z1ouR1E9H1wX2qzBjPB+ty3vLm37HDVfo/q51fZbnC7wvIXfdyh+54vbs+LtrfZBl/+Fqe4m7ueqjbPspfleD/mfyT6t828tz/rOs00e5j2/0/N/7/fPZ6nfzdl/9C3pK7Q92gnxl/LPXbZ5bAeRBAJCX++iH+QMjxxV9AwAwXn3bq73YD5DXAACVvPwXYwwHzw== 1438613583.950,1.000,0.102,HISTggAAAs142u3d0XHbMAzGcYNao7t0tt51gyzQEdsJ0of0odeLS8mSSJD8/R/iS2xJBPABJGQp+vL97dvj8evH44Ptz2t8/Hx///rzAQAAAODvdfJ4x41k9t+1nzh5vNI5jlH5XKlsV558Lir7L0/eLy/6tfb3rTL+2DmuZ/uNit/KznGXJ69Ref3389vO424HdRQ7dXM0f6LyftkZj737q9lXKvmwV8/Pjrvt9GMc1MHR+hMnf9/rn6PHLTfXvVfr4V5Kp+PW7C+N/Xm0nlw1jmhkV9zkn17rv0gyrkjil5LU/0CP+WO0OqXPH7MPj0Xibj4w70E+yzNxZD/EGYC8AwAAANC7f9CXAAAAANBHQVwAegcAAOZ5AOoUIC8AOhEXdvEjgDvyUp6uWSfFfW0dRNLt6RKAea6NPSGOANTD1Paof+aLHva6PxoYR/fyih4+2y9d0A89rLeOj0X0TP+YWRcx+Pb6yzHnj7Pjj0nrQnbdZr+u5OzzdmPyehCDxDFbHxJJx1sm0elVfmv13MrRdJmlfmQ5TxkX210Gy5e4KJ+yrpdmPR9eHnMz+3M4Y5A8wxrnA3rbGQfzhK7+Xz9azXut51f1MVcee44q5Mm685X8y9HHi3+fdc5q57+Ortt799e9/BQv7n/W7zOv1k3W9Wu2fmXW7/OvsqtcpM8s9aaXDmc/X5tlfrTebltn9FfX1K+zdpRkfp3lPkrn1cfoU9TXNfUxi3+umjeCvi/1z6jXyUXnvNsspZtQGukMbdfd4jTn+sO6iX0r5f9q51X9v8O+41h93rRuEPcR9j/aOqj1/a6r3Zef5bqGSKr/u/rM7eS4I1m+mf/myvdZ/UqndDSjn1zPp7/V39w3jt46cV2QfIR6ulqe62fAv/wKuhqhP5AXdKaO0gH7MINePE8OPf0U4kcH/CKPcChOnrfFLojraPEIcbMOgHhgLF3+BvILCGI= 1438613584.950,1.000,0.107,HISTggAAAtF42u3dQW7cMAyFYVNOb9ED9BY9W4HeoBftovtkka4GEMbOyDIlff8igwS2LJKPlOSxo++///zatn8/tk/2/5/x+fP9/effDQAA4EqC/exP0E7w96nzar+Xk+3uD+dF5XN7OG6vtBOV/rxVzt8r1/n2pL2otFMOfj767e2J3VHp716x77Hd/Ul7pXLd/Uk/y8F2juqkFu+tYu/2RV3uJ/VWGuVdHMyno+2cPX8/GJ+j8Ygv9jMuqlOvthcn7WvVn+zjTzTyp3naGP1bfV4K6xIAufMpFrWbnXPZRcf0AvHiV1zh/xBvADAOA5DfAAAAAAAAAAAAC+N7FtAnAADGN0AeQvwAeYT5KVxwS/7IN8D4yG7QB53JZ/4b2b5YxG75A7oA3a3tX+tB/RD/rx83+nzL/d5r7R1l/yN1yDqWrtjJ3zniSU/3+pf/AZhfjF0fy2B+e7YPY6/9eka/XzFKvpRJ41Q6xTl7XcvWnnntvfn1av2KxvnWav/dq+pyucnPV68ns++jPMs4NEo9XHUfxtn0kTUvSme9xcV+7RX3WZ8jXG1f0Gisu2ikk1H9u+q+dbOuD2Pw/F61n7Fo+55DwhXzTHEao97dtX6JTjq9W7cxWN7J2zH9aH5B75n6l2W+kP17vsf2S3Kd9RqvRlv3tb5ftjXSxat5cfa4uDmfz/a3TJ5HWceFePG87OvR3nUwJtFH6+vP9vxUlvF1tvcdI2ncZ7nvluX5mOzv749+v6d33R7l/pn3w8fKpzJJfO7Kj1Wfazjr91bHrZ6voI+R5nnZ5tWt/Od9cPVxpfl1tvV50Dmgvh38e7b3+3qtg7KvT1dbP4e8HYqymL30MpYuez+vKG4569FoeZh13pB9vlBu0gn6ztuNu1ghjvRIlyvbQf90y7/6B3Fjbzt77c8rzqAjOgFgHqAuYlw90CkA9VhdXGE88n9I6QjiCXTR7Qe5mAgK 1438613585.950,1.000,0.137,HISTggAAAq142u3dy3HbMBCAYS2odJFe0o7byEw6SKPpwDnYucjhgG8swO+/cCzZwL6xACnr+6/fPx8Rb48Pps9rfPz0/v7jzwMAAADtiM7G7dW+cZEda79fDpIjFuoZM/NH5VoWjlPTu/Z6mZHr8d/9y9frtHD8Ob3KzHw1uz4XzlPT71WOqfL3r9fnQnmnhXYuM/adXuYrC+Npzq7TSv++vv6s5FNU9C2VvPjHtxl5ykq5y8p6Egvlq+kbO+vJ1joXJ9W5s9a5q/RpLX+sfD8Okqt1PxKdj6+vZU+Mbwd+5h96AMfuE7LlgfyDdQLiCAAAWPfZAQDUGQAAAAAAAAAAAABwHxSQz+wCAFBvwa+AfAXEFf/yfzY/sL+6Bn5jX/A79D3ybUT91B9xCn7mB/LwP3+Jb/qzy375I7k+0WgccQ/16T72aVUfQjxcol8MlrdZv78jbhq3e7+nNgbNO/Kjpb/i4jjYK180skOWPiQGz9tIYtfezpGvOvds1R/14h/rZR/5ru8ay56j2avV99b3Tmm0Ll4dN7HSDtaVvvdd2fqL3uUIeQD18LT92WhxOaq8cXM7ZfWP+x7k7cFesXLfFeKr6Tp9l3zbWz9j47ijn0uvHaf3c4hINn8c7PcsfXscpLc+IWf/uTUOt8bnXc/L42S7Z7k/n/XcYe/4Jfl8Z9mn1X7Yvm+s/ijbetjrc9XyItd+Pvu61/s5wVX9ytVyWG/Yo4d5sz+fG+IlRXx4rrPvvkW/0ed+6Ki4CXkpnxP2L3f9nPnW+5zqeu75R/38yFn3JdbG+yj/LyHbcw7+f5u+WN/Ubn9tPULG/vys91uvY1nWO+dqYEfcNU7EPQD1a9+8e/te9ydzxYt9ey75xb04A+QPIJ/kHwB9A8QBAEB9BgCo2wAAAAAAdLZ//wuQBwdN 1438613586.950,1.000,0.125,HISTggAAAsF42u3dS27bMBCAYQ3V7nuA3iVnK9Ab9KK9QJEs0mwMCKJsSiKH37+I4UQSh/NmTEs/f//5tSz/fiyfrP9f4/Pn+/vb3wUAAADnEYPIUZLPvxXlZP2UyuPLzt+j8vdHzy8bx5WN92Xnenvj1463Plxn3ZErduTdOu/rut93jvv28BqV/lR25N+y/57e985bK/W5VOpvrZzn8qCnx/HWJ+Nua16xMc6WfdaDdtvST1TGQW2cLk/G6dH8U1s34uB5y0G9vJpX4+DxrercXfWv17obN9m31XWz9TP6ZgCA/A5AXsg/f/kXAAB9EAAAAABYDwGAfAQAAPQ9ACDvyZ/sDQDyEzsAAAB1lh4AyD/yHY7Ynf1zxxf70gf4WXb9BD/AgBQqAKAumRd/xEX6o+9z7UC/c/hdJNPTXevySDr/q/UGALi3TxulD2z13K4yqf+gb330up/mrucQRFL9vvqcx1n9PU4a56znNZ79HMK4WE+zrO9Hq1ut+qKo9K9W8s6el7L3SXGxfHf/H+7s+BxtPTpaPxOTxWd2Oe1XapMnY1J/a13/SuPxsvb5z+rpqn4lBtFrtnqSrY/qdf1Ij/qxM/JqsGvX6/B40Z7yRs51pjhi3zv7EXa4Z74xiJ3ZzfrvFflHixvMmXciSbzNms+y79eYpR5H5/EYF/tpNJL7av/2+WndeLPuTyyDyj/KfsZe62EMEp/yY9v8dtX5+irMrP9evy/d++cD4idH/bjbr/hRn3aO5P7B7/quU+yDDH7h+93kYPdx+48slEnis7f1UNmR46i8o+5f7rVPlA/NL+P66Vm5PHfH/Hqs463G7eW+CK/eHy4a93niRVzTH3BOHePf4AfgT/fO99nzy+R+4PMRcps/AIyT/+RFzFSX79o37/6u0A+fPw/1DNaBAP+H+3wD4th8AADyNNgZSBG3H8DGB/A= 1438613587.950,1.000,0.057,HISTggAAAm142u3dy3HbMBCAYS6UuIr0ktoykw7SRDpKG+nAPji5YAYDURSE1/dfOLZAAPvEQobJbz9//TiOP7+PT27/rvF5eX///vcAAADYiciuvcZ/dj8xmH572+fRfuKinlNWdx+Fnx+1X2TjROGaf34r/P442b40zn/esvu/FtrVxqmNG1n/R+W+3A7Zvuj4UrFDFO4r2b0kT/55bb6lcVKlfWT2SJX51+xVm3e60/9Kdr9V7Px2ZzzV/OZW8d9U0WctbtKdfhSV/JEezK+t1oE4GWf35r3W849G7c7K0Wo9Wq0uOzr596z10ijzisHnu2rcYO98CH5ALgDiDBAP7AXwRwAAAPUUAADAePWIegjiAQAAAFBfq9/tf8C+gLgEAMif89kj2BcAgOXrq9mepwOIW/W5/Sv7s8Pj4/KDueIkNpd/Ff+gV/FPX+bJ//rIrf7po4ddzhMm8S9PDiSXc7ziaUb5gx74s/0/f6TfrUib2HWX98IEuyxtb/mWvmbeB8Yi/fS2y2zvA1xF77vnidbr6mjr9lW/3e2c2avy0qvfExqDzi8GkytO+sGu5zBH+z7r1XktNZInLs5ntDwVT+5PfbNGnYU1/at1fl/Fr5K4lU/oi7yT1s+YY5/Sq+6/uv8Wt2vVb6PqffTn18jLff2k99/Ddv+/wlXjQVzPrd84uY+PTu348bl5p8nkPfv9ejRqt1rct5Y7vXjcdGCm/NXrfJS6ZA29hfGGXj/o6bn7cPtSeZTd5q07xCv417p+u9r5HfkDEJ/koxeMZ1d+IA6Bq/7q+Z/yErBKHgMA6yS56Zu+AQDyLrkANMkTHz4PCEs= 1438613588.950,1.000,0.043,HISTggAAAkd42u3dzXHbMBCGYS6kpIr0ktoy4w7cVapJB/YhPnGMAUUNxeXieS+coSgSux/2B7As/Xp7/7Msf5cvbl/H+H/4+Pj9bwEAAMDjxMHXn21HnDzurc+PjXbspb3I761zPjrH9n1/37X3tvH9t875+2Ac6/cvg/u21fHeuW/vuja43/p5951+XB9/Dq7vjevWmU9tML7o6DB6fuucvw/uGzvn423ln5Ee6/H/6JzvxUd05ncb+GHp2Nubr21jXD0a3zHIL1vzcjyYZ0avx5N5NWud22r3q+vrWf1HNZ3iYL2AmdYrqKE33XPEV0xmr3wFAPI8AABQnwFAfgMAqAMAIJ8CAAAA0L8DAAAAsM4Bf63tD/qA/oB4Yw8A+U1eAn1hHosj9k6oU/ADkC5v+L5GzFwfo4gd1fQN/i2Zr83772kX92+1/t481U/wy/7vF79afM+6DmJvrvmnXl+zX44X+dG6CPqSOvVhdntm7T+y7WPu7fdn/93Fs+M3kvgxqz9j0nxQLb+e/XuwV//8zlY/taUme9dnrZg91pfH0JLqma2+XXX81caXZd8+Jo33bH1A9brOjnP7AjqLl5n8wc859Ax6olD+qdL/Zdmfm22/GfKMfhN7dZxtfyjLOnnrft2r+914ch7t3Yd8dj5efR96tr9LVa2v2T6fevRzYlJ9s+vo/yFy6doOHg9dc/eD8WTcVqkXOHa9UDWfzlo3UCsuxCl9zA/A/AZdq/qJ/yFOjrt/8Jv8wz/8THcs1/0eB/EPABfNb5+gRQeX 1438613589.950,1.000,0.055,HISTggAAAol42u3dy5GcMBCAYVqss3AQzsCxucoZODfH4QzWh7UvU0shQEIS+v4LtSoYqZ90w8zq689fP5bl97flg/XfMT4O7+/f/ywAAAA1Ceu/ZZ6ofF1s/J073ispUx8pU97YuO7LzvVn508718XLeWnj+rRzXnzeT2we9z5vzfS3OCjP1jq29PUqV9oY/8/byzFt6GXN1MuyM3/srGdrfN0Zz/XbdUPeyIz3dNB/Uub4WihvvZ2M57N+ezTu9+L57PxHx+Og3a/KmzLPi8z8XPt+mquvo3KVup9Goc9Phee/Ks9Zf+y1Loyb5rlLD9GJvKP3IaXyuL7vWt+jTx8zTz1t/bM935gl/8/qhwD/ByCPAAAAqI8AAHB/Bvi7dUOcgD4xq//xXwCl84S8AgD6FvogJwAAAADoXwAAAKC+BfoiPTx+QvwOIY/8yB4t1xPsBvH9mPXEIHqX1yAv0C878z/yQz1177rO7lNTW0/+L3qf65v9OcHT9515iv+oI+a+f4/m5/qRZ9i19vOt3uyxLnMz+v5Qtev60fcXKrWP3137b17t20rvP9lbPNTab7PU/K375+gk7karB6Kyn9Re51P2/Rt1P9u7PicV9uun+0F0el1ctO8yqH5a1bFP7d9Gj+fS9bU+9Vl69P2iz+Nk1O9heO/VRj56t76R6rbZnsOrZ/oiFZKv9fO44EddzheTxpV8Q18zxmXv6+k9j159L1nqvt5aj9H4/FL1fuosrmrZLd0sf3R2fm95Ntfuo+qlN/tEp31Rr/PMWneRq22ctH6v4L3uHHLbz2Ru/fj9OH9Av35Vqz9q5d/iR/3FfgAgPwEj1rHiEezKfwEAgDpCnUSPAAAAOFDX/QXPKAfg 1438613590.950,1.000,0.053,HISTggAAAfV42u3dUVKDMBAA0GwQvYR38Tpewxlv4NG8iDeoH60/jBlIS0sC7/0wTqEkm90Q2o68fn59pPT9ns6GyzbOm9Pp7ScBALQoGjlfGIpNxyFfOQ4x2eaV8i0vPD5m2pMK7Su1e+nr+f91/+K4/P39fNm+FI4bCucZC68/TbZj4fhcaNc42daO/zATx1j4elrY7lJ8hpl8y4Xz5Jm6qJ2/cmWe5sr8T5XxzQvPmyvrbW5eWbp/7X63vs+t45tWbv+jroOx8nG9Xr+tO8R5y37LP/mrfgDo5frgegTmB+QDAAAAAAAAAAAAAABM+d06AK4H68VLHOUtAID1Wf3/8bR+BDDviR/GWX9BXeiXOK3XLuN/7DryPaZ8NP7txEPczXuYB6DHfPX8OnHpqV3XrgOisX630p7YKK+i0fw82n3YvfsbnfbLfWmfeR132n/u+c7Wm/toR26kzmKnebPWca3eJ8VO54XePn+Lyjo/+nqhV8NO4r1VfUUn79vqc8jVJ7gPcv0XP/1mL+steUrL+bH257zRWV2HupW/O7pPj4Pl1aM/T45G87rX+epo+Xq09WTsLE+hh3WEfK2ThQDML+Ijjhg/UFez51Pf5sWe4xmNjp/8wLymLsC8QGtxbu37NfklTli/GQ+MG2B+6f++AFBfd4/rL6SKB5Y= 1438613591.950,1.000,0.586,HISTggAAAMR42u3WwQ1AQBAF0J0oQAN6cVCZRAcaUpIOVoIWSHb2vQM34ZudmWnb1xLLUR7De4/7OtY6nwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgsxABgP4NAADYt+Usb+8H6HegrpPkEnL+5TvV5bf5RCN1kLU/RmfPy/Jf9aV/52a2fSg6yzkaPz+t74Hmgr4DOI9yBIB3Pl20mAYg 1438613592.950,1.000,1.546,HISTggAAA1142u3c3Y3UMBAA4NgJXSDRAh1QEjUg0QGN0sEhAU8ngn9iO3b2+x64h1t2k/F4PHbu7uP3H9+28PXz9sf+92v4/e+nt7cvPzcAAOCasNj7PuW6xAcA6wAAAIB9CwAAAAAAAAAAAAAAAAAAAMB7/r4CAAAAAK/EeRgAAADYXwMAAPp7AAAAsD8HANA3AQAAAAAAwIw8FwNQJ5FPAAD6IACsP4C6AKCeIC8BULfBPIF/56F8BHWbZ+eh/AXQbwCoO8ZBPAHUG3GEMfkXbsp380l8nhhP44a8QB4AqNuIr/iLK+LPM8YpiPctoqkydNyDeA39nPji8Rn93Ckslv+zxjtcfF1o9DlPq1ev8tzq7ryeZR5Yj/PuP3QeD/vG/8eldf7a/43d94SHxOWuvnGV+tdqXt4d37D4eF29z9n63jBZnofG49C7X4g395+vYrbzlDDJuIfC61vl7/SEwfO+9+t61bXWeXdXfvS6j1mve/V9Unix+191//H0z3vV/ioM7o/Czfcxqr8Kk8R/9PnAavOz976vV77Vjmvv8++nnJufzcvV+sFV+6re+f2U+veU8X76uOaO02zn3nHycW+9n1xlHQuDrzd1rjPr899Zn1df7a9mXX9K8+ZqfEOn/K/t92LjvCi13zTeo59/lc6D2Ph6w+D1MlTOj9T7xEF5WVsPRtXB2Pj1sz0P790Pt65zd/XLreMUC/uQ0ecMq/TNvfqH1eJZ29/Wrkux8XiPmq+9+9Je+85Y2L+M+vmF2fRe/3r18ftN8Vn193rufn511/zqvW+MF8ev9TlI73UkZOZVHJTXpecPMbFvO7vfWDnPzj43N1575rqVO8/fX8fROF9r+/DU/8uNa26fcSSu/0PjetDqOVwsnD+hMH/OHIV5H0/W6bPXxczx3yvzPHVe8/46jsr5lvq6F9axmPh6JPKitG5shddd+j7v69qemQ+586K2bzx7v+NiPp3dd27+X60PsTCftsLr3hL15qyulvZRe2ZehczrSn3/qKyfMbMe5d5fbj6V/pxe7jp+VNarVDzO5v+WWedLzxFKzxlq+6DU/e+F/ULMvJ+tsC7tifpe2t/mzq/c/rd23x8Lx/1qX5bKw9y4Xp2vs54DjX6e0fvnfsKg6272e06/AKGnCLs= 1438613593.950,1.000,1.237,HISTggAABFV42u3d243dNhCA4TPUugsDLiXVpJAA6SANuSR3sAaSPC0gHF1Iakh+/4MX8FmtOPchRR1+//ufv17x58/Xf2z//4x///3x+fnHrxcAAMDIxMn/zzbe6CTnXX2UpHoqJ+W8q6+v9/vYuW7v5959ype/923n97ad68rO5+/0Wd58vu2Me+8+2xv5y0F97F33Tn/bwb/7OminvXHHRb8rb+x31C/3rn9nx3LQbttBuT5O6vd10J5H7fc66e9n71Mq3e+sP96tf3fz/918X7v+Zq3ntf1iFHljUPtk6U9nvS85AP4M/jSTHuiZfxgnAAAAAADIiPUEAAAAAAAAPIn1KfB3gJ8AAAAA+nwA4h0AAHWMfPwMQJ84EYf0Se517cRuAOSRsetcTCYP1oyHEE8A1H80sBv7iVeAf9AvAPmA3saRw7pMH/3FIH4bk/gn6JWe55Mre/6bNd+VZP4mrox/JnnC34W44XfqKRau15G0/7yqt2DnIeQMdpDPyDOsHvWbufUd9JXaD61zzNlvqAPHPu8dX8GuQ443ktxvlHn77HaLQcdhPgR2Iw87sOvM/tD7PbVR5umxSDybh88xPwd9iWP5Cjn74RhcX7Osx8ZiehO38neG+eUs88KnxsHfII+LB4zdD2ffp736c6iorMfe881s/YXvbSbvCvOXrHqrlQ/KCzPF0SzPN2Mw+eRd8zjUr8Ot1xXsR5dPMsijD5vL/6Lz+oF4B/ug1zwM4g78grxr6+cpOxT+sMS8uJX88sda/hL8Ygl7117n5Q/0wK71/MBzTeNeeV606vlb/A/8g54xhp31aeIQeePResYccnpuAfBzcSJv8Q/6enq8/GkMPWX9Pp5W94tF42/VfX3Ol1mzvsUi/o02/uLcwL7j4c999ZmlH5l9HwO/7kOpFBfq+TF/9tyor1/Tm74c/e3k3LW+/eTs55G11qP8k0tv7CG/Y36/Cn47Zb+92vf6ZauDq74fdDcPtO4js6z/eA9vDv+Om7+nL79GaRwX9sm17eviYX2v8vxu9ueVUckPe9WFVecxtfzwqe+N7rXvpnY/0fvcp1r2jZP6eMq/R593jppvate1Ub9PcbU645yAMfNJq3NPsvVdV/e9tOqPaufT1Z5LZ8vD2c/7zqaHbHkvm/6tJ17L39njMLvde52DZh/csT4j6/6t0b9vlF7GipuscVAO+tXd9cNW67nl4nVxcRx35WvdB+xdt1XKN3HTnmfl3i7qsda69tn1oXLTv9+N+6jcpXJ+2U5e3+v9s9pxlGW/Ya/6fjaf1V4nLY3106pfyrLPo1bd671OmK0fGnWd8pUkHp/2g3g47q/qudzsD3rXnaf2RYz2PnvvelMr/iKJn92dx9auk63tOeu+0Gzv79xdH661zjnL86PW58Jlf871dP2Jxp9jDWY/f23UvlB8zqWfIJ/8IF8PN65W61Sr2b+XfPbZtxln630I8hnomz7S6vs3nPAJRQ== 1438613594.950,1.000,0.058,HISTggAAAld42u3dzXHbMBCGYS4odZEi0kFq84w7SHMpIx3YB+uEGQwpCSQI4HkvHFkiufj2DwBt+dfn349l+fd7+WF9HOPn8PX15/8CAACAejzmWUvKXrey46r6xJN2xpvvry/akzZelz4fG8f743jLzisdoxBfpfGVxlOKz7TT/lvB7tyO0vVzO++F9/P75Ne/b+iyFuxOhc/t1T23eynYnQr+TjvjKr/PuuHHUjzesvPXgj5b8bIV53vzKm2cv26M49n43qoTe8e77Mz79cU69ezP04t19ax6e/U+9Op4o5JOcVHdjrYrOvH3UaTB8gYYad1mHBDf4CdAPgEAAJjfAAAAAACAXrGPAADQdwB5I88BAIB5lvmN+Sa/A7C+BnqJY/kBAADMBwB5wc/sG9neqHwd9eEY3YM+7MJ0fmi13xn0B/QtiFPxBv6uokMazD8hHjBRnYrO8xL6oPHJk1bjH+U5QUweR/oLf7SsH2fVnb15PuvzzyT1pqgD+h27jqgLib7yYDl+X+WofZ/YGffRKM+utj8bg+flqPWi13leDO7Pd/9/eIj/LvrdWc8VxYO+MpJevc5X8ZxuSR6LR6jXb+4L1LIjBvdHiDeYZ0+rQ0yW561+Xz7kR9X7RiU/xCR6jbYuv9p9W893R+/D0TiOo7I/4iQdovH9z/a7Oi3PrUvE32j9yTq1D71i8nyi7zXt9T0wY8a7vwfva30zy/d16IN01B/ohLnnu9HZuMUv3QGoOzXq0mjroKuuX2fd34rB7zearuY5dKMvXQFxDH43XgAAoD831fcb7HQH0g== 1438613595.950,1.000,0.061,HISTggAAAj542u3dy03FMBCF4YyTXFECC3qhNiQ6oDyaoANYAJtIxs4lT+f7NxH3YXvOnLEdg8jT69tL170/dt/0P9f4vnx+Pn90AAAAexKNjTsajTvtnP+ofD8K447C9ffzw+TnvjLvqbL9lGl/2l6faXca11joJ6fLUBjXLRPHUIhv+vqY6XfMvJ9rb8joU5vHlHn/odBOn+nvNnl9zPTbFfKc8+lY8OFt8rmu0gepUDd9Rueu8LlhZp0MM+tr7nyRZr5eW9f3zptz57GonN9SpV7/XXfWWrdio3a2jv+s+xsss88D4L6RfgA/AgAAAHCfAACA9dR6D6hDAACsW+AfAACsa3QAAAD2EwDMD5BX8BO20Vm+AJhHjRsAsN18bR63jxAHAAD2EcaBrfMT/2w36Nl0/EGvVfwT6kw9X8i/a4/P/onPjhyn57CoD5zHZ/a96p+exn0V38ZF9Sydf53l+XytjKNV/7fyf0ud46wT39rPKV2qP+vgvj7Y+rw53dnuUc474mR+2Cu+WOh70Xjdun+ll7jWm1f2vn9Rp8Yl7vbnJXr9vX+Lg4yn1TzsdV8SF6+fVv0VdD5FfEE347e/a8ZPwQeH1N35DB/co9dVf38dfL2qnrXtpTv7ObrPj/L3mEt/z3nSMt+7yr46+ALy1WzcZ9c3zdxnqP9z3ZfGxXzvvJGOLeuyVP9JKg/lA/UG8z34D2deb4I/0HDe+JBfsZ3e8kEPutBh6bj5hd/pA/ANAADWefABAMB6gEPl5QvLwgfJ 1438613596.950,1.000,0.042,HISTggAAAg942u3d21HDMBCFYa/iMEMP9EJtzNABTVEOHcADPAk0SoyjrO3vf/HAKJL27EWrcMnT69vLNL2/T9+cfp7x/fj8fP6YAADAvonB8wW9V50n7qR7DNInOnbXlIV6lc73S2PcXI0/Vc96fGu+ep6Hhj31uue/+/hf654aX58a+5+reR6q9aKxfm3P3LC3Xic6+rb23Vq3XKhHb/y5M0/vdbW+j439RmN/9Xw9P82N108dP5QL8yQads2dZ/ln/vbysFxYl0pj39EZV1aqUzGo3vZ0znoOjzrHYiUds/YFe++L4kbrHb0/zX6/AOSBPIN4AeQZAAAAALjf0B0AAAD6KQCAcw0AoK4CgPoG8QIA6hwdAfnCDgDqBsQFxBP4DwDWqj+j/t+guplTX36A/LBvdfwYevAXlsSHuKELfcfvNzZudxwkLm7ld/VFncLt/BXiAPy6Gb34gX73oIgX9y7Iy53nbyTLv0iiXyT1V9Z6dq1uWT6Pzz14jD5Z8nrpuEiWJ5EsnrLFw7Wf87qXnztsvS9e6retfY7u1vy2NF8ieby5X7MLkGfyPWOfCvm4p/5dPCy758gPZNBz9Pvie33f171YPTqyXVnOv+D3Q9jn71z2EWdh/SH9xFr1OVu/GAfPn2z1Vx2+jz/9Po3zNcM+9fnsAgD1lJ72Ly7YS1dxCwDqEgAAzm0AAHD38/sL50EIYA== 1438613597.950,1.000,0.055,HISTggAAAih42u3b3W3bMBAAYB3peIru0q4WIBt0tuyRDdKHNC8EWLIJZZHS970INvRDHo9HSYZ/vPx+3rbXX9uH/HcbH5v3959vGwDADGKS68Ti/XtUe6Jxnhh0vujc/3ObOtvTe1wutp+eKseX582NbdmuW+U8t+I6T8V5atdv7Zcrn2v7le27F9/nyv61ftfiX/b3XnzORf9ulfZulfakSvzL86bKcbdG/LZKv6JxnnK87o3johGHVNkvNdqZOudx7jxf73zNjXZEZ/3JnfUldfar9/rxzevuVdd727XqOjfb+nrWdf8q47Z3e9MGAID7TgD1UxwAwLqJcQLzAQAAAAAAADia3w0Bzl3P1XnrNmC+AaijAJ7Xueb6GQddF76TV7H4vDPOAGvUK/XLOoP8WCX/wny79PO6eqy/ZxqHkH8MyB/5oB7rr/krX+QrjMrbvX5HjYOPP3rex6Dvz1YXY+frzBrHtNg4h3b8cxy177Hj5f33Wr6ah6vU9dnyMeSf57OJ8k/8z5H/ez0vjv5dRL5ds67Gg/Nv1riO7m807uesx6C+Y1zFa973AvLgmuMYxo0Bz/HGda3nvxi03yzx+Gp71YHHrDt7/09g9vfQR71/kt9rxcl4jY1fEpKl7x/9XqhOiOfx/ZVva47v1f4nvfr/U80z6wLqtboB1hXrFebJcc81jKk/veOVLh6n/90vLh4fz4G4vzI+AKjH4mi8xQvkLwAnWcf+ADvdB+0= 1438613598.950,1.000,0.048,HISTggAAAlV42u3cyY3cMBCFYRUl2yn44FwcmwFn4MCcijMYH2YwBwEE1d2UxOX7L0K3RmKx+GrRMv3j959fy/L3+/LO+rGN983b289/CwAAwJlE5ePiZLuiE//FxX6pPZ+0+xxPHr9kzhOF88dBP24Ze3P2rLv9+++3jP27Pv3z85rZnxt/K9iVO18U1qc0v9z4W2b//nypYM+X3fFr5vjcON8K808Ffa07O5bd55L/vmbsXzJ25UgP6ii3zY1fWs9c/GyZ8y2F9V0fjPdUiP+jeSwX/6W8kg6Ok/v70rouT45zVT5/9HzpZHuurtupk74BbesI9AQAQK26ot5APwL6BQD5AwAAABilj9bPAwDUAwAAAOhrAQAAAMD1U4vHAZg33wCAvDiXneoFAADqJID6cR8Xjyevua7jD/MG3cDvFkI+uEL/4ukcP/LrnH12NOrPoJcm86g8MUb8Bz/Q/4B9nPdhoS+nX3oZs468er1A72Pnidp1PL04Xq398WI8xMlx1WqfGE/6o1c9RyVdtz7vaExfo+fbo3EUlfTZut+is7zQe5yO0m/HxfGp35yrP+/9fsHV9dR7bK5f7yTxI93f6K8YZPxe+r9R6+uzdqRJ5jt7vfMe4DXzneV6vNU8eVZ98BxYn3qH/WF9MCCp0vV4Kd+nyvqd9T019+nqjt96Px6T6Ka3+cVNeqs13t3PAaLT9X61Tp5tzyz3F3rLZ70938BYOjxar9yfnEtH1ofeRtQHXY+1XtYTNfTg/6NgfQFAflZPMLIe/L6d+JfH+BsAAACYst/+DzOYB78= 1438613599.950,1.000,0.046,HISTggAAAiZ42u3d3W3CMBSG4RwHkLpDd+k6XaNSN+hc3aUb0AvaG0uWCSEQ2897E5UE/3zn87FjUnj9/PqYpu/36cL8d4zL4Xx++5kAAACwf2Ll+We1M13ZzlhZXhSuj+x9KVsX59fNhfLy95fOR+V8qfxD4fpjofxr9UmV+k+F13N9/v9+ydpV6t+88LqSjqlQXq7XsVBuyq6fKnHI9T4V2lPSf674ZS4cS/Gq1XdY6N+5MM7mig/Swv5PlX5Gpf81n9fyRVTiNl05rqPS3rX5Ny3sz1I91s4nt/Zr7fu3mifvRdr5emBvegE9+NJ44SfQn+4A5BeAnwDIM/IfAACAdRPdARjnAAAAAAAAQJvYHwMAeZUO4EuIO1+B/wEAAGDdBwDyGsQFwT9Dx0uc0JMvem+37w+CPKPdo/shNqpntPwafN9EfOmOEeZJPu9rvWJ/qQ9fG5fb6hp05mt67Pb57kf/7t2t9wPPvq+NB+sXxuGQ7R09b8fgetw7P/Y6vlrdV2plvzOerHNv9/XmN/W33L4wrrrI++JCrxb0i0bjudd2jzrPGq/Y0lcxSL2t5I3Qv6Hy5qP1s99v3a6/dKbTGPNGK/PtXvcJ7/V51V6fC7hXvb19XrW1n1v/vsQ0aJ60PuhTh9HuZ1p9Lsj4a9MvvTzf0+t+nv+7lH/o2M46nw/pA7hvBfgf/Av4HSbxB/h5XTlbP1dvnMpfz+w//4G/IJ4A8KA8+gu8BQfx 1438613600.950,1.000,0.071,HISTggAAAlR42u3dy23bQBAAUM5Q8iE1pJe0lWuAdJAOU4E7cA6OLwQW/EnaD987WLAkUrszsx/asvX9959f0/T35/Rp/n8bn18/Pn68TwDAc4T2cyDeMUg+4sHHb/0+NsZ3Ljw/Vx5fa++8sR25uC0dv7z/Xjh+Ljx/Lrzu8nxfj98W7Z0Lxy2/nxbH5+L8t0L73haPf93/bSWOWejn/WBcs3Bbis995/lKz8+V+5fneyvEIQtxzp31divEfV4ZT7kyDkvxj43nm1buj53zTxbqdut8Mm1s77QSj0f1Z+vz8+TrlM5zdt5/9XHPXrfPtisvum+Mxtpj/448tR83cQQAwPUD6gDUD+oYwLyBOgUAAABcb6N+wLjSP+RPfQKA9RUAAMbZZ9t/g+tr7T72+nGRfKhLeUJeYOQ6Nq7E44r5CHHSH/Gn0/VavWFcIo/aiXphrLrwOZP6Ly71Xsf4e047jIu6eT+bD5/j1uc8V/o8zt7zFQ+Oy7P7WWtdGv19O9aVc7JynGPQOojBxsvezxF+1vuwa+9DWhkH0VidtLLvufr1W63fE7aWF/+vRZxb7ketv1OKRo4P9XCoHVG5foxv/XnlOH/V8akuqu7zev255KOuk64yb+fg/bPOcKV8q49rrLOMOU+frYes1O7W17VsrB5q7VNz43HRWX1E4+3vbdwcjfco8c1B87p3nPf++71R389gH9nHPHmVPLUyzsI4q5r/GCTPvbfD3030GS/riX3Vla87AF61DwX7C+RL/AGwDgDGMWC+0U8AALBfBsC8DVB1PvwHcEYIPw== 1438613601.950,1.000,0.072,HISTggAAAeN42u3dy1HDMBAAUH2ccKUAeqE2ZuiAEmkgHYRDctKMkJyPI9vvHfAEhC2tVvI6wPDx/fMVwu97uMjXY7x8PJ8/TwEAWLcoBIvEJ4r/TXGKd7br/Xoq2uXi9VS0K7+eina9/U6N65Wmon3ZLlfOO1XGmSrXnTr7VxtvrZ/H6/Gt+PyhOE/v+XJx3mNjfnqPtXmdKvN5aMQ1VOKaGu1TYz5DY5yx8/tio/+50r/cmUe5kV+h8jrMjE9tPLkx7kft163rzt2PwszzxMZx7n3n0fFpjfNZ98O40HVGua+rK8QXrB/kl3yzvwAAqGcA6878AQAAAAAAALyen2+KC4D9GwDc/wCw/2Pe5BtYn4wXz2ie5Z04iJe8hmHyLFo38gvk8y7HHcVX/ugfO4+/fHtN/KJ8kCcr7p88Ycl6HM835nG8/sgj9deI9XActD+j122950uD5du9/w9zq/vz1uq2vT1vb+X3mdQJ67xfeP5cRrJO5OMG+iF/xZXtzlfUD/XZQHG1zv5vL57LjFO9te/xqM/cF2Dr603d+5h+u2/bp2+J01r+vjZuJD/Vn8azh7jcW197H0Y+Y/8Tn3Xv6+IHAKgPAAAAPIcgv/ayDqxb6wZxB6x/AAAAAACW4X1knpJXf4EGB50= 1438613602.950,1.000,0.034,HISTggAAAhh42u3dXW6dMBCGYY99km4ie+naKnUBlbqi7ig7SC+S3qBahoQf2zzvDToIzPx8MwaMdF5+/v6R0p9f6Z3ysY33zdvb99cEAABwB2LjcbFxvLzyuPii/dFpXFvbVIlXfDJ/0chDrlwnrxwvKuOkRt6jcf1o2Pm0OK5UziuV36Uy7qOx/Tf+88Kf2vFl8Ts39j9V7HteXP9bI35lo/+PRvzLyvPLSn2lSjzzRn3W9i/Hf6y0ozT0WKuDstHO2HjdaNRXWllHsbKvLPcv854a9fzZPnV0n4+N+9eSdx7vqPnvKP9nv98BXQB0Caib3upSXwAA8xIA9c9eAAAAwH0wAAAAAHgOAwAAADDyfbfnA3EAAMB8CAAwrwD0DrqDuN453vJOTyPaHXSNCeoqJvOHLuRJniH+98xT0BO/cXg+5HPfOIX4DtmH1BHUAT27P6YXzKf7mFSnva9fxKBxA+jzfn73cv29+3rcXB+9P9+fPY/HRfnKg+opdj4/BqufvePWW93ESXZ89X914yIdxM71gP/3w9xpfe+lw7yxTmZ9v3lU/Yz6PVFMktdR7LPeZb66Mg6+V+XPSHHI8k9HE9od8taF3aH+9Rd23T7vIT78u4H/+s6xcTlrnfSq9aSz1y9j5+PupudZvmeQ3z79NJ+Irzj119fXkjuNr/XEc+/zRn+fqU+KJ/8AQL8GoM7EG4D6A4CL+uxfBC8IIg== 1438613603.950,1.000,0.044,HISTggAAAhl42u3d0Y3bMAzGcVNOihuiu9xsB3SDjtVlukHuocmLAIE2XMeS/fu/GM45EkV+JBUlwP389ftrmv5MT+bnNf5dHo/PvxMAAMASYrB5YuNzsXHeGDxe5T/NFwv9U5LXX9waz2fjlcY1s7Mk9t2rffZc2Vk/PzfWMVfjteyfk3XU494TO1p21+973X807Kjv6/W35ns9/2OhH+fEL3Myb23frfH3lr+mxuv3hl3ReH9Lr5l9kaw3En2XZLzMrrIyT24L68uc6D6rH7GybkUS16Xx36tub+1LsfJ+a584uu/FweP00vcBAHAeAX4CAHUSwLXrgToHqFsAoF4AAPQj0AEAAADsBwEA0M9AV6AnAFD3IB7iAdA/+B0AAP0N9AZA/gPyAKBv/sDRcYqd7Ai6BE6rb3nKHyOuP8T9FJTB4xbyl/0Drufs9U49xxX6H9SbHta517lSdBbHoKcu9vk+p/el5xjML0vHKfK7y7q6drzoLI7RuO6ll7Od6/XSD7J5y0b99h637P8mx6A6vYrde9e3d+33YxB/Hq0L52LXqhtn2zfEyfI2TrIO9KnL4FdcOM/8TqTvzwm9zkc36rj+z390OIbdIc/lR0d6eNc5ZunMH0fN0/v3faPV5V7tWFv/z1oX9cEx4hL8OKQOYxC7/I4I4gM6A39v3+/TFd3RCwBA/wW/iRsgHwA6vHJeqAcAAH2hA79/A5E1B6Q= 1438613604.950,1.000,0.045,HISTggAAAiZ42u3dy3HbMBAAUC4oKU2kl9SWmXSQZtJDmnEHzsHWBcmGpCWYBPjehWOTArWLBUDqY3/98fP7NP3+Nb2Z37fxtnl9/fYyAQD8TxysnbXtxiD5a/34SI6Lnfs3Vj7P7Pg52X///fV9Wx48b60stHPff6m2c9LOXP1ct1+3Uz+u3t6Pu1V5iGR/SbZZu3dfkuNuSVy35Phr0n+Xf9/f/BVHVO1H8vg5iS/rn0uSl2vS31kdZP2atTMn7dbnn5I4YmF8lKT9y8bxUhbOV1aOn6XxGAv53jqvxMZxvXYdar1OrY279XoQG/PSy3VGmT5XfHB/HOx5HvX8ZbA8uA8RH/q91bqCOoVQT+IEAAAAAAAAOBHv+4LxDwCA6zL0L+pKXs73fWWA1vNZ7HRe6xuoMwCsJ9CqbkPd02H/q1Mw74gf1NnZ+ycGryd1C8cbB72NyzJIXObDbXmQL9SFvOydD69zWFdGzl90HnecfDyZ989xnxb646n7e81HDF4nof2u6roMEm8c/HFned1klHm/9f3nR/+v7WfX97P6Mzqpv1HG0VHvF0f7P7Zxkjoa9f4lButv9+f6dY/rAB673pvUq/Va/DRSpIBpvM+tms/lqYe69vdnjH/zoXhaxTl6nsqT83zWzzeZd/aNu9fPu+0V516vP3qdZIz87PX5Ku8/qMsz5s33Jftc74Bx1xPzCbi/Nk9gnZFfcaJuAMC6AgAAD183/wH0dwhd 1438613605.950,1.000,0.047,HISTggAAAgp42u3d3W2DMBAAYJ8hUYfoLp2tUjfoMl2iu3SD9CF9smQZUiBgvu8F5YcA57szhKp5/fh8T+n7K90Nf8u4L263t58EALCFOPnxxs7jnieu13o+N56PmftR+7yY+b4ozodT8ThPPN7cOK5LZbtjsRwqy/Jzr8Xjcn9z5fWh8v5LY3upEq9y/ZfKdq7FMlX2c2zEp9yPayW+qXg9Kp9/mbg/Y3F8tXEcGtvLlTjGxPVa67fytza+YyM/WnUwVOooNeLbqtvWdmNin4sH+0dMrPd4sN9OfT5m9qNH55de5uNYOP4sm0chzuC6CdQN8gdAPwUAzN8YbwDA+QXiBwCA801xA8D8Yv7CeAK77Cf6DgCYHwEwf4B6A/QV/cXxn3c8jDuoi7OMh3GVL/LTuJ89HuIkHuKE/Onjelxdym/2P86+b2bJfjH39/16iZf6MU85/v3HRZyPPe7P+h417zQP17o+i53W0VbzbTw5/uaXY89D+SDjtdbvlC/dP+Kf+99b/mf12EUd7f0+bSxc31ufV8TB89h9fOdBz5i/OUZ/A/XXT30t1c/X7kP6mPOXZ17HzV0v5Mcht3+0/y/me116yrve/z5S/TiPOfNxxsnqduvrnl7uA+w9L0O96rsLWOq+/Vr3t1236JM4/8N4yz/khfEC1BvG0ziDfAX0DwD9EeQHyH+AA/brXyZZCE8= 1438613606.950,1.000,0.044,HISTggAAAgd42u3d0U3DMBAA0JzTdgp2YQ3WQWIDxmIZNigfhR9LJydtQhPnvZ+okNT2+XxOS1FfPj7fh+HrbbgZf49xO1yvr98DAMCS4s7fx53ttK4rncUvOy9mnjc1buXO58sej0k70TiW5PzS6G+p2v17fKrOGye2NyaPs5+fquO5MY4hue5SXX+a2K9snKV6vkvSbhaP+rp6vk6N9krS70j6keVhSc67TJyfcxKnkpxXkvi28nFM+lmS8Y6NfBkb10V1fTTybpyY7631la3rIZnfqfWtTKw/U/efmLlPxMz6PCx0fsx8vrntLb1PL9X+VvbfWHicsdK8cKz7aOMQZ6x3kOccff7lFWA/Qz4CALhfAYAe9y/7KPIO5DMAAAB4/QsA2O8B9UM9BOsTAPUX7sv73j4Xbt1jXxI3oN915v/Z1Efkibw3T0eKV4iH/sPB89B6AtQX5Nl67YT1J582PL6l8zoWjnN0Nu/xz+3Gyu2ob4/F/dHvtT5anY+NrsO9rYO1vud2L3GMTtZPbLweRCfrZK3r/J3CuHuOi8/DrNOvEC95ZX7EE/m1o7x1P/Cc1xNHWQd7fz+1tzomTvvM81rZaBywX8svQH3p5/6l1/c9y8rxeXa8vN+5j3Fs9fVHyJNdjc/9dd/zb37lhbgB9FM31DXkFWA9M3f+5QXqFaC+AADQ/X3gD2EtCA0= 1438613607.950,1.000,0.039,HISTggAAAgZ42u3dQU7DMBCF4YzTcgruwtmQuAEXYsN9uEFZlAWyZNlJ0zZ2vn8TAak9fvNm4gREXj8+36fp+2u6Mv8d43q4XN5+JgAAgH/7g8OtKxrPj8afr9U1OstrbDRvujE/0TjfXDkvZcd54by1OPP5U+N4UYgn55SNm3/uVIkzFY7nwrilz52yefNx8njO2fFUmHcufF3StaTfXBhvqsxTW9dafSL7/ksh7pLPUkWXueCTKMR1LowfFX9FYfyo1PvcWM9pYb+Ixj5Tq9NoHDcq86SCTmnl9ai1f04L+1Yt7mlhH1kb19bX0Vg4ztrr57wwnq2v24/ex8VKP8aT4rv3PL3kbZT7gtjJONGJXu4/gfH8FnSwXkDdgd4AAAD2fwDUGQAAAAAAAIC74XkhAAAAALhPAn+OWifqGQDgegJ+hLwA6gaPz1/wAR884XyAj3BUn27VX/3/QvH2tK44mI70UU9A8L3+Ar4B/Xe4nuhcb/V5mw704/ce13G09yWp033mcTQft76Hz/NP9b3Hdd67Hp8Vv/7/2PuftFO/x4PH770/qKd95CM692F0onPiw033u/q2/icv/Aa+GEnvo7+v3N+5q/eRdAr5xAHq3O8/x9AjBs+fPspf1kkfeR1Tz+CfQ+2bPK+H/PIt/cAf6DVfIR4A0PfAVwDUP+gLAAAA2B/vU+dfoPgIPg== 1438613608.950,1.000,0.045,HISTggAAAdp42u3dS07DMBAA0IzTVCw5AHfhbEjcgGtxGG5QFoWNhWWXNq3jvLeJWpLUn5mxlSL15f3jbZo+n6ez+ecY58Pp9Po1AQBjC/28i1RoTww6n1HpZ+n91Niv0uvUOA7p7/1vsX1zdkyNn5tftxTOnyvXzZV25fc7ZO8fG+/36yk775jdr9T/JTvOWXtq/Tpkr5fK9bV+p8Z5TI1/Xwrnp0L7a3FyyI7HSlzU2lOKi6VxnGrzWxr31jwo5fVSud/UmK+t9SAa86BWx1rrbjSe33qf+Z91r3V9uHQduXbdWfv6e43LXvZT2F8DAID9OMBYdU/dBAAAAAAAAEp8nwjyBlB/AADAvpOtxoF4RVyCvME8i0fE0/7iWZ4iPtnqPIgPYCv1Qb3qa5xCXIibAforftaNH79DJO96lMSfeoVxND7G33zuZl8Zg8+n+DRvPbQjxDfcPJ739lw+Nt6fuPD1rdqx9vOouFM7R//9zjRIvYiV52O0OrN2XloHH1uP6LMuQY/ruv2zusfjxtW6/5h+z/KHHdVd8Wt8e+5HGDfjOED/t5o/134/sPZzQvtguD5/5Yl52eK8PWrd6WUdC/nXRTvkL8gHEP8AYB+g3QD4fwYAAAAA9iy+AeGbB5s= 1438613609.950,1.000,0.049,HISTggAAAfR42u3dy00DMRAAUI+TAEXQC7Uh0QEN0BGt0EE4ABeLkRMl2eza710i8tm1Z8ZjgxTx/Pb+WsrnR/mx+32Mn4fj8eWrAACcIpKfI3l9LeNcOh5rGV9ZSRxOjVNtXq/NY+l8rjbn3ey6JbnPQ+f+D831n5r3/z1/SD7fXqf+fz4v+854Dsnn2/tH8vpjMp9sXk/N+9vx7zvjyeLQzrc042/jcmjev0vqIzrxbe8bnbwfknGcer2S5D+r42xe9cL+08vDLqm/2un30RlfdK5Tr9wns7jtO/epZz5/7b4eF/ZZltm/lz6fxJ3uW9Sb9SH/ANP0edQDAAA4J8oHAADOawAA4LwL1gEA4FwA1jGAPjZD37QfiBsA9hvkHwDY5r7svKD+zA/QH+frOzF5fu0b6mykvhPifVb8Qt0hr+pmJfO0Lseqb/kUF9Sx+td/uF3cQzw4I84xWX3HIOtga9/niMHXz+j93PeHbjPu3v/NZe7zQwx+/630zTr5+llLnmIj85o1n1uLx+j9del5+D3eOYPt5tPf8eX3Fvvp7Pus9WGfNN75+uS98qbfoK+Yv/MU6kndq5dl7iM/jNDPQnzvGoetzq9ar8ijOE8+z5BnBs6fulhHXORhHXGWB3UB6so6AetU/EC9g3UA6hmwvgEm6rffmXcIOQ== 1438613610.950,1.000,0.036,HISTggAAAex42u3dy3HbQAwAUGKXUppIL3ZrmUkHLskNpQPn4M+BEwyoyOL3vQuHtijtYgEsLXnsn79ffg3D6/Pwrn8c4/3w9vb0ZwAAWELc+f21xnX29WnJeSTHoTjPvt6SY/W4+Pd97pexeJ6ePE9PHtdmXt+S1xuTeIzJ9z/PL5PzXhxbMf4xGedlEq/P666Tx1+S55uO81qs31ic9+T1WhK3nqz7UMTnWsRtus4/knlFMZ6YWVc9GXcU8Yhi3Fn+3VrXUYy/zewzvZhH1of6zH5Tqebdi3V51H6z9L4UK413K/NE/OURANiXxQtQt6CeAHULAAAAAMB2hPEfIg6gf4A8BvUoDiDPAfQp5AnyaA/jVz+APgvyFdQdAPqzOHHc9YwHXy//9xWfUEf6ifhtZj7yA/W23Lji5OsY+o59Gvlx8rhaT/B+l/UXd9S1+Vkf899PHNb+P6ex8Pzu/f3/+OZ53Hpdmzke7tMWrr9YOJ/ayvV7tM9vlu6j6v4cefaoPt+kBu6X9VU2+XOKPJYvR17ntfLd5zTfe9+pzxyzz3t/SZ/+n/mEOMlvYNX6unX/3tv9eCw0D/1xnnby+vN35dy3bHGcoS45UZ3GzusV+4z84uz3TXHyuKpv+zjiDwC4b7Cu5iOeoC6YsY5/AWYXB9A= 1438613611.950,1.000,0.035,HISTggAAAeN42u3d3W2jQBAAYGbBXIpIAeniajvpOriOUtF1kDzYeVlptNhGhoXve0HGGPZnZlicSH7/++/PMHx+DFfjbRvXzdfX7/8DAHBscbD2x86uHzudr7izvfHg+R4dp5/XpVqnDtX+lrE6viTX+9k/NY6/VMdNSf/fbttf1XGXql1jcv1qXT7M1f5LtZ2rz8/JeF6q12PS7+w6JenHnJxvSt6P5DwlGc85eX9szEM2fqXR/9b4Tkk/sniNZN7HJJ6jkVelkS8l2R8Lzz822j0k+bD0/Ev3Z/1o5XmrHmVxNCxs17RwvuLOevxsnY8nP/+q+9DW7dtq3bC39Vbv6z/r83P0X5wC6iWAOgsAcKT1lPUV4LnO+IJ8AQAAAAAAAIDz8vdzAADAcwKgzumP9kOf8S5/xIPxMr7Iwy3HzfjJlyNcTxwjb43PWu+H8ROX8pyV1tEhPrrOK9/X76PdcZB6sHV/4qBx/qp5k++w3vPX2vfpvf2O4qP1trw4r8eT1GnP933WB+PfV/uis37t7fd7rePUiSOf79nrFfEkfzuez7P8rniId+vsO+q3OoE6gPEEca//AH3WVXWbM8bB0u9j5EffdW2r/58XN+5/rDcv5gl5bbyfva64QL0BAAAAALYQ39rBB8k= 1438613612.950,1.000,0.025,HISTggAAAdZ42u3d0VHDMAzG8chOOwW7sA5bcNyxAYswGhvAQ+HFdzqHUtIk/v1fcmkTW5Y+S0r7kIfXt5dpen+aLtTvY1wOz5+PHxMAAMA9iZXvG8U/S8eNG89bmvPafL50vrLQ/nMzz5TM93N+as5rch7N9XNzXTt+ba6rneOczFc69rT3nZJx58TOdp658eOcjNvOF8l17TiRHGsSt1MSr9pZV+3Y2+pp7ug1i8+5o5+S2JHpMRbqNRL9lySekejhnPildPRzau7v2d3TXe2M0/s+Fua16OSZpePVf87ncaV9vx1/r3X3VnUqVrYP0JcC6+gpNq5z++bYfhvt94ygQ+uybgAAAEAfCwBQDwAAUG/VcwDwHAUAAAD9JEBnAOQj8CvoBbBPAToH//EPAEAdwo7jHvRj/wH2F8SfX0AP+lrxwCH2LZ3Rj/VD3PjlyP4NdgD6SftafCAuoAuI05Xr++v7lPRJ29BV7NRPW3nOj43ZF4Po2Pti/4fS8Ye+5L51LgbT8VH7hVHrxqjxUKdwhLwa9H3I58299eH0sY/9Nfr/acHOTdknb4gX1otDDK5fQN62T61v2frk3XX0Ueh/E+sK/gLkHf2M/MUf/ADx3pEfQjz3qasvEnUHgQ== 1438613613.950,1.000,0.069,HISTggAAAet42u3d3U3DMBAAYJ+TAkOwC7MhsQHLsA4bsEF5aJ8iLKclaRL7+x6I1Obn7JzPTluJ14/P95S+v9LFcN3G5e/5/PaTAID/ic7iDvfrUHHESvvFjcdPj8uF12vnzX+ua8vXm+6fKtc/Xbdj4fg82S8m+w+F96fnHwpxjIX2jYX3c+G6Q+H1XOifp8k2Va4zPS4X4jxV7sdQif+l0B+1PBgL+TBW8rKUB6kQb67k51DJ71SJM2aOp6jEN8y8D88zx09UxslYGb+18b1U3YqZ9WvpOhszt/e2b6n4842vH32dcPT1C9adAOoWAJjPAAAAAABa4vNcAAAA8FwNAOZdAAAAz1sAqNcAmFd6m3fMr8BS9UM9aav+Rif3NQ46nrIhJJ8eEHc03o8hX7vop5Afxpn26FftWCW+kBfy0/Pqw9bha/3fNPksXjwHuV/HPn/s7Py1+TkazfdYqd9jpfhi43xpvS6uned7XwfHxtfL/+wnedxXe/ZeF/Y6b64VVy/fe+aN77Pn023WV57H2liHaQ+0V1/8PhzwObq4xYvn7mONB/3bRt2yDmeP9dbnMPts/72/hzD/HLvuRSdxIc9pP096+5279TfIQ+QtAGD9gP7UXgD1VD8gP0BeA2DeMe/JCwAAAADYk/gFln4IXQ== 1438613614.950,1.000,0.035,HISTggAAAc142u3cy1HDMBAAUK/sACVwoBdqY4YO6IiK6CAcAheBRgr4o9jvXTw4xhKr3bXjZHh6fXsZhvfH4WL82sZlcz4/fwwAAMwnrtxfkxY6fzSeL2aaf1z5eips8/nk+6fC/lQZN2X3y1O2jez1U2F++fin3+/Df/ycjzdWtqlwfGm+38ffZfN6aJxnqow/ZfHNz3NfiMtUmFcprqfC+UrHDYV5p8Z1HgtxTo3jpz+ua23/UMjfVNlfWp9U6Tdjpe5q/SIq442VPpSu7GOt8xka4xuN/XSY6bjer2ux8nhbxS9ufJ3cfwHoL7D3+gn1DfIb1COsmr/yGQAAAAAAAABun8//xYfl80IegT6BOHPcfJGnAAD0LLnvxzrAKnk81/8lDPUP6L+L9B39C3Xm79AP6Pl9gvzklvqbPEWdHU/qfD30JfXA/Ovme3hwnLwO6yBOqDd1IB93MI9e3h+u/Xy5t/v2dPA6iBuZz9bPkV1Ptu3TvfSVXvp1L59Hx87iXav/NNN5tq7LOFh/APlzvLjHQr8nX3B9w7pYN/qPr+8hoi7gf/kof/UJ62L+WO+WceWbOpYH/cXR8235A6gvAHB9AwDcLyAfAXbUBz8BXd4HrQ== 1438613615.950,1.000,0.047,HISTggAAAdl42u3b0W2DMBAAUHyQJkN0l85WqRt0ru7SDdKPND+WTnZKUgi894Mg4Ji7szGN+vrx+T4MX9/Dxfi7LZfN+fx2/QQAWLsy8/PhwdezzziXZD+7z2gcL41t1s7186la947V8Wj0+5BcN3X25yX5nrq9Q2M/Gv26Hj9W55+q86Jq91hdH0n7Ue0PyXVT0v6YnP+SHK+/Z0ry2YpH3a9T0k7d30O1jaS9kuSrNOotkrrM6nls5KM0+hON8ZXFLYvj2DivNMZx7zzYO5/EjfPO1Dmv9O634jf3+R2d12X3HzPn9bjTdbe205uXez2neuvH+gRxkxdxAAAA8F4CxgcAniOgnkH9A2CeBwBgretO60/vGQDgOQcAANatAABYb1q3gvkDML7ZbjzVw7byEE+W/7KzejTe2GJ9qGvY3zgq+vFQYb7FOBCnld6PemML9e//ZveRd/llz8/xR81zZWNxepbn1VLxiYXyMC48bnr3l6qnstHxsrZ5oewkfnPnmXhQPGNl9VWeZBz4ffU+6yPvEagH+RIf1MH2+1n+eJ7fx5Fvls6jeuAZ617dArDndffe/k9q6fVr/NN9hCHjfdn9iwvyBQAAAADchb8TAphHAQCsd1hNvf0A1r0Img== 1438613616.950,1.000,0.039,HISTggAAAet42u3dy1HDMBAAUK/tJE3QC23QDjN0QE/UQwfhEDgg0EgOxLGl9y4ZjK3vamUnmcnDy+vzMLw9DRfT52tcXs7nx/cBAKAlUTgeK9V37Xm1ppXavdSYKT8Wtj8qyx1/v8/9cd6cnDdWvh6S8uZMfWl75uT/abnH5Ly03ClTT9rfOXO81M9jppxI+p22Lx2P9Pqvck+ZcqdCObl+zZk4SI/n4mUqxMmcKe9Q2a5TZp6ich7TOB0K1+XKz62vqGzfVJjfqXI9RiE/HCrzxViY36Fw3bX5OSqPx5X1l/LV0nbeel8aF5b31/pvtT8NG6lv7Xpjo/0H2Gp+BvEKgH0LxDMAAAAAAEBvfO4CAPvbt+3fAAAAbT/3gXjcTv+sSwDsp8YbQN7UX6Cv9S9fiA/Mf+9x1mretB8gPxk/433fcent9xKis3qtL/lBPwGgz/3Hfe867al9nir9viL3jYf//t7y3t7/iIV/t5YHrcs+n8di5/2Pla93X7FsP2nlc87Y2bqLleqPG41HK/tvr/tKa/nMvHquN74g3hA3mG/xCvtab73ex+/1e49bff9QPm9zXt0nrNuPMO67jAP57/s4GA9uEQfed8b4QZtxv/T7s8aVLcy3+JAHQTwibvXLOAPg/gDELwAN7BsfXN8H7A== 1438613617.950,1.000,0.031,HISTggAAAdR42u3dwU3DMBQA0PwkpRIzsAujISQ24MIuLMUGcGi5WPq4LWmT2u9dLIqdON/+jhMk+vT2/joMnx/DwXQs41C8fD9/DQDAbYQQiP+GrzPOrDeeefwxaR9JOVbOW/5+OvE8tf5NyfF+y92xnJN284ll1q4835xcZyT9eijq7Yr6u0r7Ml77oizjs0/azUm7h+R6H0+My5zEZU76F8l41uqPlfplvMfKfJ+K64yi/ZDU3yWfR2XeD8l4jJV2UVkXpiT+QyWPoxLfOHN9iCuvm/HP9a1Wb+l1O1sPa8ePheO31n02Fq4fN5o397qPuPQ6x0bjgTgaN7jN86d+AgDg+cb+EwAAAADol/eiAAAAAAD3wftcANwfYNt5JR8xH+h9Hpv3APYtQNv55//P9xmnaPR8IW/oeHxDP5qafyHvEDcw7zHexrmLeWWeGxfEHc/zbG/96O0987W+H9L9Zdl+X/t7oKLTfD81H1qdt7FSP6LRvG11HYsrH2fr33MXZ/689n3g0v1prJTfsbG4by1/YuE86nV/5e+urlcckQf624LJeK7af/P2PuJw6/cp5gXyVlzgL6N8gOb2f+KN+IgzwFbWJesh8gjAegcAYJ/R2Tj/ANErB64= 1438613618.950,1.000,0.035,HISTggAAAc142u3dQW7CMBAAwKyTwCf6l76tUn/QF/VHPfZGD8DF0soIaIKTmUtE1Njxer0xINS3z6+PYfj+Hc7GyzHOh9Pp/WcAAB4TQrCrOMaL9RtPai8Wus/rsVSvx+p8aVx3qF5fTZfj3Ggv6z/rb6zaPyTXZa/HRj9j0u6Y9B/VOOt2D0m7c9Lu9fwx+bs5abeOe308JvM2JeMak3yYkvmYk/PRaHdq5E99/dDob0riVpLzQyMP6zzL8r0kx2x82XqLG9dvacS7tX6zfkoS99KoI626cmu9at1Xq27Gk+rkcOd9P/qciCQ/4852ii3NovuF2Pj4AOtUfAEAwD4Y+QKg/gEA2CcBAADgfSQA6rf4gLw2LrC+QB4DANjfgHUA1g3mDZbM67Cu1CPxg1XzXL6zp32F5wWvmAchTl3HKzq9j9hpHnp+Ik/kbZhfOpgX871OXM0nW9rvb+V+Qv5t4v78Lo49x83n1fftx9aqL71/b7b3/1O/VN6o/9uM01LvF+VPH3n4X/Ptexl1CVBf2E/8QjzkrfGsPh6/T1FfkMfGA/JbfPe5z5MfxveMdkOcus4vdQJQD5DPvErczJv4AAD2ObQVIQDUbehnvfwBo7kIog== 1438613619.950,1.000,0.043,HISTggAAAcF42u3dy1HDMBAAUK0/oQkKoAtqY4YO6Ipq6CAcwoERs5FxbE9iv3fxJCPJ0molyyc/v3+8lfL5Ui76n2tcLufz61cBAPgtNmo3ZvYjZvY37iResVG/Y2Y8p/a7Va9rlO+qa6s/dXvVufZPO0PSbp/0a0h+P1XtD1U7Y9J+X9Ubk/qn6v+6fFeVG6vfrfv2Sf0xKVePZ6ziMFblh6TekMzz1HJZ/PoknpG00yX97ZM4xMQ49hPz7JTkcdafmNifmDj+oZGn2bosjfUZjftm9bP1XJJxleQ+Q2Of6m7cn8tK++d/9+lbn1u3Pj+Wfg7j3Kj/4iFeAIDnvHgC2P8QHwAA5zgAAOceAAAA7zWA9QsAOG+AvAUAnCcA6x3kP/LPOMXNvIkX8g/zLk7X72N+wP611bjtN8fQyY9drWvzgrwwH3GQPFj7+132YfuV+BnX3H7IY/l0xLgt/d1O88i1+Y6F8mBqXsfOxp3p7mzdhfX/kHH2/dpt94O9xSvkwa7Hbf+WB8YpDrDE+xniwfp5I7/EyXgfbx2GfIHD5q/19ljxNl/yB/MK8tJ6Eg/AukfeAIDnGgDgfAAAANzJe8c3l5oHyg== 1438613620.950,1.000,0.027,HISTggAAAat42u3dS07DMBAAUNv5tFKvwF04GkLiBlyFg3EDWBQ2I41caApp8t4mapv4MzN20rLg4eX1uZS3Yzkbvo71fHj6eHwvAAB/qV55fr2TcS/dX71yfLXzfvvhuGJ7LTxvZteNSTut08/QuW5I3m/JefE4h2PrjLck1w/h+lP4fErOH8N1U+jnlIz7kMx7Cu1+n38MxzmcN4bPW9L+HPov4fXcyc+QvF86+c1ej0n7U9JfS+LVknaz17G9Q2d844V12Tp1VpL8xHVWOush2xd65196bJ11Pvxwn6q/3D+vbe9W/f3X/aysdBzIPwDuM+578g/Wi/EA2N8AAMDzLwAAALAtfqcA6wr2sK6sS7AfiBMA4P5vXAC4zwGw7v3Xfs891Ls6BXxPAqx7cRcH81l7nKp6Qpzlf6fzrTvPU1XvnmcA623D8ZEHsI4816srcVmftvB8l/7/p+ppmf62Gu+9/n7W+7yupP56v/fVG9e1OltHna4tT3Xn+wTyZ/6A/UB8QD35nqW+zFPc1SvriKt8WD9gnex7/v4eDupN/swL+RU35BeAre6/9RNg9wcX 1438613621.950,1.000,0.031,HISTggAAAc542u3dSU7DMBQAUA8pVJyBu3A0hMQNuAh7LsUNYFFWX1hOKUnq5r1N1DSD/fM9pI2Ux9e3l5Q+3tNJ/Vnm0+L56+kzAQD7ksNytHJf6/G2Ok9eaLvcyZfe5xLWl85+Jayfwvw1Nbbrnb+G48X1NayP5ayNZfz+EJaxPHc/y2PYbgqfS1j/ED7fd+oXzxvPd2yUd2rUawrlb+3XqkfpxLk28iCeP8YxzzxuLH9txGlq7HdotINpZn5Pje1beX9o1LsVx7ntL3Xyu3Tae2mct3bKUTv1rjP7hzSzfOf2g/nM7euF/frc/i+f2Y+vNa7nC79fa9wcbX5z6/OuIpTyAdCOkNfqAQBg/gLoNwAAML8EAAAAhuN3AEbKN/kKYDxQTgAAMO8FAADzYtBOEV9gH/2Q/gnjJvJD3o5U7yyubBC3pd8bMurznnkneaI9isuer+tf36skP7Qncbi8XlmeyGOGib/55TJxy8q/Sn4Zf2+z3Yz2O0OWP5vEOYu38ovHauWVJ+Kzh+vgPdug3zS+r3u/5H4ecV4+LuIEoD9E3iIfbimv/uv+Uvva1/3PtT+Xv1W/cS3Pu/ifXTt2/VxHkO+4TgD6UwCAX+cj35IAB7w= 1438613622.950,1.000,0.578,HISTggAAAcF42u3aQU7DMBAAQK+TOx/gLxy48C0kfsBH+UGRgFMly06a1saZOVC1Kom9u3Y2UZ8/Pt9TvL6lX8vfa/z8fbpcXr4SAMAMQgh2xSE6jysKr7X/v36/VI5bkgvfy5XzRuP4St9frz6vjX9tPO5SOF7eOI/cmL+1Mo5ojHvp/dI431T4PDfmq1a3ufKadtZD3riOciWOsTHuW9dvaZ3kTvtP3Hj+dFAc0s46SDcez/VOn6DvAgBA3wfYXwAAAAAAAAAAAAAAgKP53T8AoE+QFwAAAPc3oP4BANd1+TJe5At1gDwC9iVxQn7FSzwAANd/AAD0k6BOxBUAAP0egH0QAEA/hTwBAACA+18AANA/AwAA7jMAAAAA7svzDgAAfRGAfRvUHfIrvoB9BHkSN/NGfkFdi4O8mj/yKQ7IJ/3jHeIsrhPXQUw6b/v0OeMl7+IJvddB6ft5kHX3X/q9OFndPPp8+eDxxuT53DufOEn9zT5u/dBj4hvyfsr5jf68z33yGNfNsG6HyHeI913kxrhbB67roM6P7d/iQfG2/4xd16Mff2+deb5i/3S96n8/G4OOy3ro239Yt/YRxJdJ1vU3gkAGiQ== 1438613623.950,1.000,1.374,HISTggAAA0d42u3c2W0bMRAAUA3VRoCUknpShoF0kEbTgQPk+DFgrJbncPe9jxhGZIk7HJJDrqQvP36+PeL7r8dfz38/48+/X9/fv/3/HwAAYBcx+PG7XV/v141N23/VfrlbnAEAsN8DAAAAAAAAAAAAAAAAAACAq/F5egAAAADYh/M8AAAAAACAudyfAeMAjD/A+AXMOwBgvQLAugAYtwBgfQaMdwCwDgMA1nPAuAUAAHU2YLwC5gXAOEY/6yf0k+ultl/1917jQ3+Beebuin4BzPPmqxNxCPFE/5O0X0O8jFPAeAbgsutAaDcN8Qx5gfEwPR9DfEkQd/0oHleMZyR7vH5iZf/cNb/ltf65cl7L72vn7V0/PySv1+ZPGG9cML/jpuNIXl8jr2PT/Fx9ju7c9B51SGl8/rufs8w+N43B/XG3dUBdkTsed+23UfXMLvPJ7t/7EI15PrtOy36unKUebW3HLp+jj8VxtE7uFZdV59Cr8yga2xUXy4PR88nsPLv7+8Vr4z27flrVb1natev3LcSm+V3bjnLzOicm91PveMcmeb37uNwlb+MgT3fbx8+ul6PxcWVyu2vbvzo/e7WzNP7d7Dow2zhbFbfZ69gu81Gvfc6qvFp1Lrrr9cbF4h2LXi8m9UfpFI9Z97l671OO4j07H2fVGb3yP9v9idH91VpPj77esvjva19n1uuerf8+jrvyye9Z9+3ReN2z23c0H5fF467Xuh2VeZ9lX/tYnB9H++bavO+VL+VkHmT7nNGr8VtVr3z0fHG9qb3/Oeo6zs5nrfX6rDyLkz+zz3erzyWzvA981vlatjpq1P6ldp6MQf03eh9/1K7SuJ7Ozq+SJJ97t3vUfD06Xs/O+42zdc+q84le90lHrYu17Z41P0dj3jw658eo+0tZ7j/3qidbja5PysnXffX6Zp0blEXzyKx8yXZ+92qcyqB2jlrf4+R4iMn5vZvSOE+svk/b61w+y34vWz5le990bd2w6n02vT5HPmvdqb2P3Xp/Jev3f8Tg8Xs2L0tlvF7Nq+fguGTZH/W6vtb6u3X/uPu+6TH4eWuf/+z+KSrrz+icP73iUXtO2jo/rnof0Oq6bNTnEHbdl2SpZ7M8f/wGkp0I0A== 1438613624.950,1.000,1.128,HISTggAAArN42u3dbU7bMBgA4LxOCj3EJI7CXXaCXWESN9hFd4MiMfhjyXNa2sR2nucHVaFN7ffDTqigP97+/J7i56/pn/nzNj6+vlwur38nAIAtRCOvH42Mp9W4leJT+n668rjzynykym1pXF/HP33eLpXjRHb/VLjNH7esfL1T9riU3f96/FPleKfC9yN7/nPheU+F+Zwr48+f95yN85w9LlXmm8+v9POlcL9UT3MlfqXjl/orFfId2f2lUNdzFpfSeGt1uVT6pXSbbuynqfL6c6UPp8I8ppWvV5pH7fjzndfLdOO6ee3P48bjP2pfaH1fjAc/r5e4xjcfH43kv5fzMOQNsN6IKwAAzvfMC/QJAAAAuH4FAHAeB/pAvwDgPAsAAOD+1z2ujwAes76CPkFckUfQN6hP81EXiDvoG30NAC3tc/ZX9B2gb9qbV3Qeb+vrWHFs5fMDt/68wdTYeFqpl9hovNaRdXGJjetKXrilHnpZ35KUbhLXvT6Xd6t92zrJyNdT6vuY8ZR3cTd/+VFn7JmHUA/IH8Bhfff3tb2+v2Ff6yPO0cj41LV5iY95wR716n1SaKfu9R3qCPSReMkP6Hvk8bpxqkfUAehH64L8A/oV9J++to6Kd8t5Uy8AHGG/kxeg937U7wDYH+SDY9VPqEdg0P62PokL6GfkAfSn8ZindRt9hPirL8B6Ie7igzzQb369X3nMeVln2KM+9q7rkB91bdzipK6N27wZ9Lyp1/9roi/UuzjRS55Gu95Up+p2xHpQ18eKj3zT83WQcboeXTOuGCzuMXgdRCPxP8r+mDbuP59/Yh8V53HHee99xN95IR/HjXOIKzvEWx4A7KP0F1+/3zE+rEOA9QDUsXFbN0BfGrc6QZ30Iok3+hLnVYA+Q50YN6hvAOs3Q+cr1Js++V883gFSvQhX 1438613625.950,1.000,0.055,HISTggAAAdR42u3dXU7CQBAA4M6WgolX8C5eTRNv4Nm8hzfAGPBlk8kWgf7Q73tphLo/s9PZBR98+fh877qvt+6kP1/jdDkeX787AGAbYqbfD6GfNR63XvcY2W5fXVvtluT+SN7P+i/JtR53Pb6/+4bGOA7n6666P/t5l4y37ndfvT9Urx+ScQ5JXIZknkPVzlMjbs9Jf/tGHKMRlz6JU0niVrffJe1HNb5IxpXlUzTyp2+Mt/V7XdJvaYwje16isX598vrYduLC/lvPZZb/uwv7z+pRjKxbl9aVsXXx2jpcVrq/lpHjmmu8ceX6Xbr/3SpvHv18MnW/zqPA2uuMOgYAAADL5/M7AOD8AwAAAMAv35sAAAA+54D89xwCAGs5LzhnAIDzAeD5Ej8eKY/kF/esT2v7/xL2BYBt1xn11bqYj+fAeogDyFPrAvLVfO4xzxC/RaxH3Hndpl5febLuvCz/zMt7jSesk7hsYL4x8/0hbzedt7HR+ft702PXvVudu/Fciqf5bGX+YX0mnbd6p77ID8C+DrD881Rc2e5U37uXG/W/9M83a9/f7K/zxFfc58nfqeNeFrJPgLqAfQ7UK3Ha5vzkmTgij0D+AgCAczAAAAAArE38ADpBCCQ= 1438613626.950,1.000,0.040,HISTggAAAap42u3cS07DMBAA0IyTFLgDd+FsSNyAO3EeluzKoi0Li5HTFpo0eW9j9ZP4O2OnSDy/vb923cdXd9AfyzgU+/3LZwcArFPc2X2XUm/c6Tz+1ffizO+1rqtfl+Tz0ij76rrh9/Ptz+u+uv70+Vi9PyTty+ofk/tF8v0haVdXXX8qHxr9ezyWT0m9Q9K+PmnX0Hh/1+jXmJT1+I9V+0vS37resTFvYzJfYzKvU/sXyfjW7crus0va1zfum8VHPzHuSrLuSxLHZeK6yNZXFjfdxH5fm3+iEa+RjMe1ebFcmCf7M/P0pfvRuddfW89S99eYqV6ArT4nAgAAAAC0+H0SAAAAAAAAAJbP3/cBlpEPw/iBdYR1AQA4v4B1ywbnPYyv9opD8wrYF0A8gfU3Q3/EJ/ID5m2e9sWN+x/Wv/xgPGfvj3XFEvYRnEO2nH/FzX2vN+fZdeSHqe0oxk/+31A+W9u5c67xLP/UrhB38tINxsN4AfKqeTTvAIDzqfYjTvA8ttR1aT0jP4iDteyfW/9/B7e6n30XAADW/3wFgH0AQN4DAGCuc118A4AaCKg= 1438613627.950,1.000,0.034,HISTggAAAY942u3dwVHDMBAAQF0kJ03QC1/aYoYOqIiO6AAeST6auZExTkzw7keT2JZl3Z2l8OHp7f21lI+XclYvbZybr6/nzwIA8BPhOWedH3/0eWLh+GPl/q8OXXs9ryXX15nXte54Ta7P+suui6St3X2vn0+Xduq+n7r7HJPv+3774y0ZX0vaqRtXS+ahJeNryfPU5DnqIH5tEJdpEJd+XKfBfdvMeY1BP3VwXUvO7/s7JJ+z+Edyn6xes/5rEueSfG6Dej8mcSyDcS09PmpL8vxz31ujOl86nq3W31i5v73sH5bGcS/7JACsmwB4fwMA1n8ArAcAAPZfAID13z4GAOuw9Q6wTwfUH/IA1BeoBwCwzgHgPQ3gfYo8Au5Rp2EeUCfyDfkO8kjcbtCPfLH/B6y7az5PiIc6kN+Y54d02Dguv/0/pbHTfA317P1yh3lZ6+8M5l8+PUJ9xk7qFOuK+Qd5vMX4rfeoQ/l3q3kM8UBcxcE8gPoCeQPqCgCwDwD1AvLY/LBhXOQBAAD8g98R37l0B9E= 1438613628.950,1.000,0.033,HISTggAAAbV42u3Zy03DQBAAUM/aSZBogQOdUBsSHdAQJdFBOAQuK43WCY7jz3sXKybez+zsx+Tl4/O9675eu4v+9xqXy/n89t0BAPxHzPzco8pdWnxj4ufHfq/ceL8ur2/8vTTaVZ1ru6G6/t0/VOUdq+eHpN5Dcj1Vz5WkHXU/D8nn0qi/JO0fqvKeq8+npL1Dox3H6v5T9f26/JLE85DUW5I41fVG0t4sPtn3Imlndj028rCv4pKNU5ZfQ2M8hkbeZ3kXjbj1SXkluWb1ZfM0e/7adau1DkWjH1Otk3Hl/VvLn3pdH9v+W9u31v04dlav/uC9BAAAAAAAAICM31XB/AcAwLkQALD/AgAAAN7nkb8YB4Atr6vWYfsiYD0A+bysfpv/gPXZOjlH/MRRfuv//uJt3q8rrsYL+TNdf8I47ar91s99jMNcv4eGfF31Or62c9rYckvHmPjZD9ah3Hm+xE7yfWn759bGLXZW/9zr6aP/Xx0rqycW0q7YaDyWnn9bmyfOa+x5f8d4wFLn29LOG86NAODcDY/Ma/NGfJfcb/kpD/QX5C3IU+QzxhnjDQAAANz1/f4HvckHxg== 1438613629.950,1.000,0.024,HISTggAAAZV42u3cy03DQBAA0N21HUfUQC+UhpDogD6og3LoAA4hlxEjm1ghtvPeZRUbj3dnv8mBx9e3l1LeP8pJ91PWU/H89fRZAAC4nrrw/tzn6sL6TF2vF9ajhevdzPjxegtlH+J14X6XvP9cDsn9GL8lz53LQ1LvManPGOL3Id4xxOuSv4/tP4T3HcPnkrTjmLS3hLhjeO78+SHEGZL6DEl7DqHskjxPxYnjZ5jo12z89Mn4jfXqk3HWfv/elfZ3myiz9/Uz52tN+rdNxKsT7RmSvHdJ/rK4mTZzfWoz17/2x3WtTNS7Xbj+Ll33y8z8rXW/W3v8e8mj8xbAvtdB6x3OMQCA/R7jCwAA50AAAAAAANg2v5+D+Sg/YBwCAAD43gSY3/qV+8mTfpd37Yd9ziPzzDqG/pUPgH2sZ/7vM+bPdutt3gL2C+1f03vsS84dwG3mXb3zvNSN9Zd19Tr5Xcs+WTeav1tp8rCo3tYR1jxenWPQ/2C+YNwAYJ/4j/fY78B8wn5gnMsHYD7LhzzoTwDY2b73De+EB9E= 1438613630.950,1.000,0.027,HISTggAAAXF42u3aS07DMBAAUE+ctHAHDsKOoyEkbsBZuBc3gEXJxtLICSW0oe9tLKWxHY/HHyQeXt9eSnl/LCf1u4xT8fz59FEAAMjFhetfyziHhfVjYf0hqV+b3+dyTJ4399syJc+HpP2237Hz/lwemt/n8i5p79iUY/K9bf2p097QvDc/v0/GMTXt1E5cp874D0m9YxKfqRlnmwc1Ge+YzM+UxKWdn7JyHockTpHkVax8b2k+1k67pdNO6fQbnfUdC/utnX7HTnvDwn3i3H2rLqwfK9+LX95vnVv7PEf/+nv3FpdbvQcCgPNIfAEAwL0XAAAAAAAAAAAA1vF/b+ID2CcAcA5hHpE3xg2A80Icri2+Yb5A3pgf5AMA4LzHvIL15PuuMi7iJf/WfL98EQfzJn+4TB7Exv2E9WD/uqH+3K+3GX9Yj5v2FzsbV9xYXjiPQP6A9QEAwN7vk/FPxvHT/tzLAfsBYJ8DAAAAf/ee2058AdpDByc= 1438613631.950,1.000,0.033,HISTggAAAZB42u3dUU6DQBAA0J0FWr2DB/AWns3EG3ghj+QN6kf1Z5PJ0opIy3s/pHQZhmV2ComJT2/vr6V8PJez4Xsb583p9PJZAABYX9zYebI4zfNluq2deGMyfkg+H5vjaxOnJvFLEm9qzv/QfD8mn4/NdkrGtfHb62jz/hn/2Mn7mMSZknHZ/na+Dp15jSTu2Ll/7feHJk505j06cYdOPrVzXE3yH5t82zyy46MzPjr5RWf8kNTNkKyrqbM+567XIdmfHTcm++vMPlM7+9t56sWbu79e2Sez7bV9em6ccuG8ll9e33/9Pi2dh+cH1w3qGUCfBdCXAAAAAAAAAIBL+HsA8wsAAOD9CAAA8B4CWH+g7t0/ULdw7/Vo3ZhX8wKgz6E+tpRvWF+Avo86WO286vQ26yF2Vt/qFP3fdSydd2wkH/3tvut5reex0Bd2XW9/9X9iY2frdet9f6k+sdX3iLjx9bv2Ogr3CzyPA/oZ7LiurAN1BgB4bpA/3Fe9WjcA+H1AfeI+APoNAAAAi7/PfQEULQfB 1438613632.950,1.000,0.022,HISTggAAAXR42u3d0U3DMBAA0NixG8QM7MJoCIkN2IJpGIUN4KPl58A6hVYlVd77iZTE8eWcu6Tig4eX1+dpenufjubTthw3T5+PHxMAwBaVnc371/guFW8N16vJ+W1lXHVwvP7+nfrj/Bjf9/mHcLyG+EbjehjfwvE2iKuFcfF6fRDPctreh3Fxvh7234X5erheG8Qb87qE/T2Zdwnzx3nnJD8tub9Dsn7zYH1G583JepdkXE/WZU7yWwd10cP8ZbC/DtapJvXVBtepyXkluZ+s/4zG16R+6+A6bWXfm5O4ysr+VM58H5Qz+3G50H7fB/IlL6AeAPUN6DsAgO8GAAAAwO9vAAAAAAAAAIj8HR0A7ylQR4A+gfUErldvRd2jXriRvPt/INuMWz3Jj3zJO7edV+vveXOfwH/Up3oG9Ev90PsCrlsXW+k/5crz6yPn5amoJ/Fu8PlS19zC+0dfBM+jfLpPAAAAYJ+/44u4drXe8ggAK95jX0XwB9A= 1438613633.950,1.000,0.032,HISTggAAAXh42u3Z3U3DMBAAYF9+oIgV2IXREBIbMBArsQE8lL4cOrktaRXS73ux2trJ5XyOm/bp7f21tY9d2xt/2tg3L1/Pnw0AuC0hBZuYt1ho3uPMftX704nHP/Qf0ueH13Mxbkz98vj71G9K7a44z5TGT+k4cyfOoThPjiPSuLvUVnEPxfVH6jcX4+Y0fizin4v4HtL5xk7+dp3r68VZze9jkaehyFP+vBXXUbVV3VV10bvO9Fz2qx2K+Kaif153Q1EPYzEu12Mr+rcj425Hvt873qn948T7z7n3u6ou44/77KXGrW3fjyuN79XN0vup73uA9Q4AALDO5x7PTXA76x0AAAAAAIDL8D8OAAAAAABsj9//UWegrgHrHsD91XXJn3nGOlH/qBt1D4D9GPOJOmG982YerU+2m98Qz1Xis97WnbeQn1XEGfL9r+Kxz91GnPYv+y/rz+/Wn9/Vo3kErrOO/N4BAAD4vg/WjfsCAPYbAAAAAACWEt+RQwci 1438613634.950,1.000,0.023,HISTggAAAYR42u3aS07DMBAA0EyctsAZOAg7joaQuAHX4HDcABYlLCyN3BYL5fPexmpwbGdsT5KWx7f312H4eBrOyk8Z5+Ll6/lzAADWJYRgEfGKTv3FlX+PG9u99Lyxqh83XndcWX+qjlfPrb/japXzeadGu3N5qMZxqurfVe3U541Jf3O9Y9J/Pa6pavdYlVPj+KH6/JAcL0k/8+f7qn7Wb33+WB0vVfwiie+hEddjMm/ZPE/JuMYk3tl1TY15m5J1WpL+StJOSeIwXrgvS2PfRXLdrfZKYx+PyTj/mjcuzV+t8/4774+d8nx0Hl8kebT3fXJpzyXRebxrfe6KnVwPALif0GtdWB8AAAAAbInvuwAAAAAAAFgSv18BAOB51vUCAADeC4D17nN5QX4H1rWvwngAkJfFc6fzb30j7yCe+4yDeVx23H1PAdvZ5/bPvvOO+d9GPMM6gcXvs9jYeLf6PhAbmT/2mYesG8/VAMjL5ose8d/L/89ad1gnAAAA3rMA2Pl96RscPAdN 1438613635.950,1.000,0.028,HISTggAAAZJ42u3dS07DMBAA0NhxPwuOwF04GkLiBtyFc3EDWJQsGDEYStNP8t7GUjKN7fGnjlSp988vT8Pw+jYcjJ9lORSP7w/THQCAr8ofrw8nil9Kni7d/zJTP2JcTeKn6y35fAtxNYmL5diJ34RyDOUmqTe2N8ZP9uF+C3EtaW9W1qS+lpTTc3dJf6dyG8r4nH2n/TV8/q7TzjHEZ/nZJvH7JK4l+Rq+f79J81qS8Y/jEed77dwfkuf05uuYzL9tZ53VJP9ZXLy+66zP3nrO1mNL2l06+8fYqXfu76vyy3bOtT+XG/u+LOpb1bln6ec3MP/B+gAA1n0uca4BAAAAAAAAAIDr5fc9AIDzCwD2cwAAAPC+jHEDsO+C+S5fxz3XOAEc1AvX7/8vwPlOvuQd7EMYT3n8b7vrwvNZbny8ysrmo31PP0+xTq41X9bvPPXM/b8y5+p/Xcg8KitZF8436xrfutD8Xss503vrvHmVX7AvYR6D+QjWHcYVsE7lE3n/uX/mG9Yp3PY8sy4AAADO9P71AXxlB/8= 1438613636.950,1.000,0.019,HISTggAAAYt42u3dUVKDMBAAUEKg9RDexaM5zngDz+D9vIF+2H64zhpoTQfxvR+mbQhhsyyhP9w/vzwNw+twUk/b8rl5fH94GwAA+K50bp/tXzZ2ntnvdeHn8/5j4/usn1a7ceE2xjcbx5T0PyX9HkL7uN8c9j80tiW0n0I/xyQ+WfvY//n7u/B5TsZbQ/tDIz7H8HtsH88ji3tN4jwl45xX5kVNxjUmeTKGOJQkX1vHqcl+cX6yvJyT45VG3IdG/tdwnFZ9GpPrcmjEozWOa+tuacSnrKx/48rx3ap+97pfXHqepVMc1vZbfrm/ra87APb2PAUAAIDnKwAAAOAr/wsAAID1NKAuAOC+Ix4g750HAADWhQAAYP1tvQ6en5EPALh/sM95MO994iCufeJRxOtPjEv+yyPjd12gbt+if9eVuMkL+co25mXpezh7H790yjd5uCwOe3sfp3kXv5/Oa2vvoy0bi/tW/t++dJ7UD/XIuNwfQL0TF5DX7HW+5A+gDqu/sPW8dr3IE+Cf1YkPFFwHCw== 1438613637.950,1.000,0.021,HISTggAAAXN42u3ZQU7DMBAAQG+ShvIH/sLTEBI/4BX8jiM3OBQhsWKVpkVp08xcrDSxY6/XTto+vLw+t/b20Q767zIOxdPn43sDAM4TQnBV8Y4z2w15+Ut3ZLtRHHep3KXzw9/vqT/HfWq3T+0N6TjXq9of0+d3Rf3qPvtifEPRTnWfVrST+7+baLcqx6L+VLyq+cr93xX3q/rfFdfn8Y/pfl063hf9HIt5uC/yLs/bmOZlODGfcr+qeRyKccbEfVtxfRyZV9X5XH+cOJ/jFCeWbea45l4fM/ex6nx/Zv2Y2Z9beX+ZO95Y6TgBYEs6IQDgCvn+h/wDAPDeBAAAAAAAACzP/4BgnQPrWXfWM3iuAgAAAGR+r0B+wLbWl3UtX4xP/AH7qHiZB+8blx9/WH8gf8ULADzvuOi8hHxcRb/ixOtjI+s1Nr6u/2uel45jt9C8e07ddr6bZ+BS71sAvicZJ2DfQNzFEbC/iANYByDvAVa3730B39oIBA== 1438613638.950,1.000,0.044,HISTggAAAX542u3YyVHDMBQAUH3LWeiBXqiNGTqgLJqhg3BIfNHMRw4JiZ28d9GICK1fy/j14/O9lK99OaqnNI7J4fD2XQAALhELqT+edH7/Oj/RKRdJueGUbpp8m45NvjTv0aHTTu3UWzvp2KSRlNsm+dLkN03a60ck5Uvz96n8LmmvJvlsnJvk921S3y75v2m+9814hqa+KX1J+t/Wk8VLbcpl/a6d9axJHNVk3bL4yOJ4SOajJvE8dtrN6iudemNmuZL0pyTtxpm/9/p37vlUO+WGmefZ3HaHC8/ja91Pl95fceX67nX/x43aedT30rO9j7yvxc8tztf/noewz1c1HvcR1h+WGZfiGgC8IwDA/WOeQVwBAAAAwLL4HgcA7mnA+QEAAACwVr6DLGsdrAc83rlpXyMeAOeBdcN8Im4B+9l5gn0D9g+ID7Cv9YtbrFuYJ6wX1veu4xbf646LWNn4QvwAAOCdhjgD7FfEB4BzBwAAAAB+4XsZAAAAAPAo4gddtQec 1438613639.950,1.000,0.021,HISTggAAAX542u3dS07DMBAA0Ex+rTgDd+FoCIkbcAmWHI0bwKLtZsooQW0JTd7bWLFj1+Nfomz6+Pr20jTvH81Bd0zjkDx/PX02AACci4Xajxv1L4rrmHlfVS+Xdz+/d56Vtym/Ldpti3qn6/6YDkV+P9FOO9FOTsdUb0zlD8d0V8R1yt8X6ZDq5f7si/iGIt0Vce5T/8fid9qZ7ef8sehnHs9mIo5uYh6bIj+K+e6L+RtSeRT974t2h1Qvj+dQ3NdOXGfjzPur8rGII4p9kdsdJvZrdW60v/ydql73R+fzped2zKx36Tlfna/XjnOp8V7Le0DcuP3/Fhc4FzBvWEeA/QWA5wUAAAAAADDF938AAAAA4F74ngkAAADAkkK/wL4Wr/E13+IFwPMCWOX+i5XHB1tep/Yn1uP647XPjaNx4rfzFdbZXfYnbtwf+5s1rIdrn3v39j+bsZF16H9XndtLjotxB/tKnObDvAJ4XgIAbP39yXsb4JzEvBhHNrruvgHaiwfV 1438613640.950,1.000,0.023,HISTggAAAXJ42u3W3U3DMBAA4NhxWmAGdmE0hMQGrMFQjMAG8FCK0ImTW1BLXL7vJXL+fLbPl9w+Pj1M0/PLtDN/HMvucP929zoBAJxD+eX1Ucc1WtzlwOu1c76G8+3AflryfP3+f/azHY81ua+F9t51eK4l711C+yqJexPa+/u2yXuWZJzbEF9LnltCv63Tb036y87H98Z+W5jvmySuuTPPcd22nXyqyXhbMt4lyYdNyIcl6acm1+dOnpYkH2tn/Utn39RO/sc8mpL1ys7HfT4n7dLZd1PnuV4dKgfWj9iuyfHYevdT9Uz1+tg6fqo4L+X76D/DuLH+o43bfgHUa+QRAAAAAAAAAAAAAAAAAAAA8FUxLgB1C+CEdaoMHj/4n7CvzAPywXqKy/r9ZVzWG8apG/ar+UO+ym95sOb6VwZ/P8Cl1if1c93zVgeLWz7xH/e1vL/s+qFuGr/5ZdR5tf6AOoN1BgAA/N+bB0DdAcD3Z5XxvQPulQfz 1438613641.950,1.000,0.015,HISTggAAAVx42u3aS07DMBAA0NjOT5yBu/QqXAWJG7DlkNwAFqWbgZHTKgLavreJmiYejz/TROrjy+vzMLw9DUft61iOh8PH4X0AAOB2lJ2vH8N15efnym/nT8eaxGmdfsT7s3hDEn8O55dOf09x1pB3zH8KcWsSd0ruW0N/lvD9HNp7SPKI1y+hvy3Jcw2fY56xvZbEXZPzcRzGzrqI30+dz2Ny/5jEjesvzmcNcaaN67km7QxJu3MnrzlpP9uHrTPPpTO+pXNsST5Dcr509mftXF87+deN9aptrG+l0245s16WjeN1aZ3e+/6927nW+PfW773yK2deBwCc/zt6788jAMDfvfcDqIMAgN9bAAAAAAAAAAC28D8RQP0BQJ0G+wzsA0AdUb8Az0cAAADgfdU4mncAddA4mTeud97qTvNtfXDJuijWl7punn9tnIwv9gPm57bztR8AAOAfvy98Al3VBx0= 1438613642.950,1.000,0.017,HISTggAAAVp42u3a0U3DMBAA0JydtHQHdmE0hMQGLMBIjMIG8NGWjxMnp1T9SHnvJyq1Y/t854aqj69vL9P0/jEd9dM1jpfnr6fPCQC4DyEEm45b3GhebeV4c2ofg/u1ov+Unjt70b9ab//9ufWnX0/jzcW8qvWc/74/XZfBuLui31zMJ4p55Pmc73M4XR+K++9SvyW166ndoWjfUrtejLMMXufxdmndo/i04j77wT7n/GhpvfsiD1oxn1a8jrTuZeV62iBv5+L9Ub1GMU6sPD9y+xiME4M67yvPl0vPubby/Ivi/XZhPGMwn7jyfB2t76/n/LXzvfXnlOcQcUA+wz3kkbwHdQQ4ZwAAAAAAAAAAgPvjd0cAAAAAwH/h+1AA8LkOqB8A5y/2UzwB9ScOyGu2Hlf7C+rPOuQhyL9t1kOoa9SLeIkT9lu+qaNNxtk+AQCeJ0H+AQAAG/7/5Rs/UQe6 1438613643.950,1.000,0.015,HISTggAAAVh42u3aS07DMBAA0IzdNnyuwF16NqQu2LPlkNwAFqWbgZHVFPoR722iRHE8HsefSHnavT5P09vLtNe/jrE/bD+27xMAALU4Uz1tYVxtEGe+virKtSKeSMfVke2Jop4+KNdSfYf714Pn9VRuk84P5eaiXE/PnVO9q8H5YzrfpPP7dP0h1RPpvqqedSq3SfHPRR6rduV4c97moj9yXLn/qutRxNl+/m75lseqv6Io34r3IAbxVvdHEffBXZGvaRBnFO3qg3HSB+OnGmej9vVB/7Ujx/905Hy1dH6OX6p/aZxL141T15tzrVeXXv9OzcO15elW+w3w3QMYP/obAAAAAAAAAAAAAPgr/tsFAMC+FgDAfsP+Sn4B4xcAAOzTATAvW1fAvKX9yAveDzBe5J/byGfcWL/7/w79efn3Iv7J+xzG91W3M8yTYF4AME8BvhsBgEvvBz4By6kHPg== 1438613644.950,1.000,0.031,HISTggAAAW142u3YS07DMBAA0Dixk3IH7sLREBI34CLsuRQ3gEVTFiONHNQPJXpvYyV1bHc8dtw+vr69DMPH+3A0rWU5Fs9fT58DALBv5Y/7KeJ01fGNF263dz0m/W6tl40/nFN/ruP9U7kkz4+h3mEt5/D56fm6li25H8exhPolXB+SdsdwvyZxaqF8CP0OYTxzqFdD/SmMK4vvlPTfkvjE52qn3ZqMp3XqtSSOWd5kcV+Sdqdk3rK4lM78ZeuiJfGvST7HfkpnPdTkflZ/TsZZkvU8ddbZuev/t/vUtHG/2tpu2Tiucub+eu5+7H3oe4mz+ZcfmF/gP61L+wJYDwAAAAC35n8YAAAA/P4EAO9BAAAAAOA2/F8IYL8GsE+Jv/GLFwCw7/dxcY4A+4o47PJ7yxvuKW/lI3gPgPw0D5gneWe+xMX5VHyxrrlk3It8wDrBvAAAzhvOKQD2R8A+Ig7IE/kKADhHAQAAwH3/7v0Ga8QH1Q== 1438613645.950,1.000,0.114,HISTggAAAZN42u3ZQVLCMBQA0CYpBe7gXbyWW2e8gRd15xIX1M2f+ZPCILbw3sJMoUnTJP+nxZePz/dh+H4bztpclvPf0+n1awAAYLly5XllZf3v9ad2jnvt1PB9TeqVpF48vyX1fj8/zOUY6rek3V0oD+G4hPZ24biF42kuj8l1p1DG67cwDvukHy3pVwvtj6E8hv7EfpdOv+P196Eck/GdkvZq0u4UjrP5a8l8tc71SjKOWf9r0p+WzE/tlKVzf1PSbhY3MS6nTvxl6yjLV63zfe3ki6X55tLzhs44lIV5uHfdtjCv1hvvJ5d+/lf7W7my/lr2u7U9FwAAwDPz3AzIKwAAAAAAAHB7/m9mHAAAAID/5XcJAAAAvA8DgP0Bnj1exD/WF+YfxBEAt83P8jfIB2DfQf4yHlhH1jNbXK/Wz2ONh/mEx49LcY79BfMGyE/uA/GjnwAAcL/nU8/h3g8A+wRY52xh3swz4sL9uC8A5HsAsA8D4goAAMB7GABgXwZxDQD2QbDuQPyAdQcgTwMAbPi56AdW+ghE 1438613646.950,1.000,0.026,HISTggAAAW942u3dS07DMBAA0IyTpkhcgbtwLXYIiRtwFC7GDWDRdjPS4BRQmpb3NlYT7Njjz6Sw4OH17WUY3p+Gg/FYxqF4/nz8GACAdYUQiPMVxC0W3h+L8nS/Hctd+ly104r6ud2p6NfU6Ue+vy+ePxb17orn7VK9qaifP89Fv3rtzcXzpzSuKNrZpXZyHOZUVtf3Rf9bsS5O1++L63MRnyHFf1y4rqZi/LFwnuZiPub0c60Y99RZr9HpXyxc53lec73WWV+t2O/VfozOfhyKfRhFe1W91jnXe3Faeq5V58/4R/kkFvZj7XwWG21v7fztfWEb8TAPWC8AAAAAAMBP+LsBAAAAAN/x+yMAAPCeDwCA9y4A5BnxNj4A5w/mF/NsvgCcI+IA9gPY74gz5hVwPogbcKl9HVfW33PrO9+4hfxqHcPl8wnn5V15eVvr7Vb+D3OY3389LucKAPIyAOD9A7CvxQuw38QNAACAX30f/AIEVweM 1438613647.950,1.000,0.024,HISTggAAAWR42u3a3U3DMBAAYP8kjRArsAsrsQFCYgP2YDY2gIfCy0knB2irpvm+FysGuz7b55iKh9e3l1Len8pR/y7rsXj+fPwoAAC3oG5snO3EcdZfPpdwP8z6i+PNnkuo7+F5SuKug/GE+2s5hP7m5HPnUC6h3SHpdw71UxJP7P+Q1E9Jf/eh3RLKltTH8f+4S+Z7Ttq1Qb9TKEtS35JyGuyHnszLkrRfQrs+2I/x97Jx1yTOnsxfS/Kjrlz3Nsi3LL6e7MdR3vRkPDVZt7oyzr+eu3XlebNWO9PnjeL973ycat5O9XPve+DS+SWP7TMAwH0A7A8AAAAAAAAAYOv8nwMAgHsc2113+wAAAPy9BwAAAMD/+D7mOua/Wnd2fE7Yj/If5NFlx+MccH5aBwDY1nvG+4895VfdaB7IU64hT/b2nm07i/dW46zynSuYr2re7C8AAPcPQN4CAAAAwFn4fo1N798vliAHZw== 1438613648.950,1.000,0.016,HISTggAAAVl42u3dyU3DQBQAUP8ZL0i0QC+pDYkOKCAt0gEcgi8DX2NCQAa/dxkl9p/Ns8WXPDw9Pw7D+WW4qO9pXJLT62m9AgDwNXHj+36qPnGw/l6VJi6S/GoS1ys/krjS5Dsl9RiTeq5xc3J9bPKdkzSa+DmJb8u9a+KW5vPY5Lckn2tS3pjct5Z732nn0nw/Nd8vSXtL0q/l898JH/KNpNyxiV+Sfq1JOXMyXqbk+pLk1xsvtZOWJI1kXpRk/rTzoib9MXauR6deQ5NPJHHRWT967e2VXzeuD9n6EleuN7GxfVvv3xpfvrnflCvLvXYf2Mv+F3+0/P9yfgAAOPp5UHsA8x4AAAC4Ne8LAAAAAIC98d4SAADnUgAAAACA/fMeFQD7CmDdQv/qP/0CAPZP+zE4B6u//tRePF88H8/xN8eB/3M99u866wtHmpfGOwCAcyEYfwBAup+/AYHDB64= 1438613649.950,1.000,0.017,HISTggAAAUB42u3aW06EMBQAUFoozsQtuBeXZkzcgStwFy7LHejHOD83uamRQICc89NAH/RdmMzT2/vrMHx8Djfjb1huwcv389cAALBEOUi+tcoZdl6f0im//LOcksTXP8bfTeH+FN5b5yRdjL+HLUnXwnPHpNyWXF9DvocQX5L4KYTxfgvXl6TdU1LvXj+MoT3XkO6S1K8l148h/Zz0c9b/LRnvIemPkuSbk/aNSRjHuSb5s3ncOuWPnXHt1bN2xjlbP711WZN8tRMufX7daH/s7Te9/ar3nLLRPrzVuVBWqufW5+Dezu+z1RfjCgB4zwAAAHwXAAAAAAAAAACwX/5fAnDOfd3+DgAAACzl9wXMcwBwvsFW8828BQDAe7N+AADnhvED60H74MjzvJx8nRy9HfVg/WV/xfrXLgAAAABgfeUHJPcHsw== 1438613650.950,1.000,0.027,HISTggAAAV142u3Zy03DQBAAUI/XSQg10AulISQ6oBUKowM4EF9WGg0Riu2Y9y6rJOP9zH6ySp7e3l+H4WO4aJcyfoqXr+fPAQBYVtxZveZl2XZioX5Xz41d3NS9ji5uTJ7r35+Sco4/FO21JG5M4oZkHFMXd+zKQ1HOceekX2Myjiwfp6T+ud7HLm5M4h66elrSz769czHe6Zf9PiXttyTv0fW7z0/WflZ/dP1oxTodi3qPyetqH7Rkn03FPqnWSxXfkvWe7f8onq+0K8+XSD5vyTir5/56/vX5rNq71fm79vd3bLyd2Eie1pqXWHne/kt7YF0CzhEAAPcuAAD3HAAAAABgq/w+aL4BAHC/018A5xsAAAAAAAD7538t8wQA4N4iX4DzBKxD+2vveQj5wzztNh/m7bo8hbwuMr6t1R872X9r59V5g+8vwDkEgHMc6w0AAACAe+V3HgCAG9+3vgFidgcb 1438613651.950,1.000,0.021,HISTggAAAUd42u3ZS07DMBAAUI+TNu0duAtbboWQuAGX4HjcABalEhoxcvmpDX1vY8WNx/FvEqk3j08PrT3ftYPpvYxDcf96+9IAAD6KC4tzrv7in69bnNg+Tow/ff692Xqq36Z2PZVzuj7G2aTfI8Xt6b5juSueayri5/pt0f88iD8X85LHt0/9zIPrpfg9x98U4+rpuffpvqVYj21qtynWvw/Wqxf3L8V9vaifU/+7In4U+y/XL0W/vZjXqZifzeB5o9h3rWgXg/MyDa7jxHNZ7c/RuWyD+ij2SW7XfjkfVfG/midH4730/B9n7n/t79m1fQcAAAAAAAAA/Ff+vwUAAAAAAAAAAAAArlU3BQDAhYqVx4drOEfAes+p/CBPA8h/AKw9L3uf2H8A4D0IzsV324V5NU7j4I/WzfrZ94B8AQAAAAAA8BPxBlMoBzc= 1438613652.950,1.000,0.029,HISTggAAAWh42u3dXU7CQBAA4O52i2A8gnfxaMbEG3gYPZY30AfAhwmTRTC2Kd/30mzZn+7sdCkkhMfXt5dheP8Y9sbDsewPz19PnwMAsE6lU+6dH66sX24sjpf2e+m6lDP7++04NWnXaz912o2nn0d/xptCOdbPrncM7TfJuLFck/N3SflYvx2Ou1A+jrsN7e9D+xrqT2GcXShncYnzjfFqSf8x3nEex9cfkv43yfVvk3i2ZB3isSXXt+nEYRvat856Tsl61k7+t6R+S/KgdvItu49qkt81qRfrT538Hjv3fW+fyu7La/e53j50brzmel+Yu5+ljFsWOt+1PZcAAADcKp/rrDMAAAAAAAAAAAAAAAAAAMCa+b01sLT9xr50Og7ignww/7niVoVOHoP7BQDA8wzyaOHxKOIsP80HeWdeLG4d/H8gf7EeRV4A/7Q/2R/ss4B9BQAAAID5+B4IAAAAAGCdfP/LovPzGwguB8s= 1438613653.950,1.000,0.013,HISTggAAASp42u3dS27CMBAAUH9C2iL1Bj1Ab8HZKvUGXJQbtAtgM9XISVUqUN7bWLGTeIwndlgg3j6PH6Uc38tZv5T1XBy+DqcCAGxTFfdN+6n/HFddeV1P2ls4jtdl7S0p43XTwuOncHyNd5fE0ZLze6jfhTI773rfOZwf44rx9uT+Me45lC3cpyZx9aT9JemvJuPeX8rXJB9if3My/n0S53Noj/M1JXkyDeY11veVeVmT8bYkH7K87sl8tKS+JOMfPX9l0F8dPHej9aEvfL6zcSztf239b9e7duN19F73z/pH48J7l88N8w9YZ0BeIQ8AAADfWwAA+y4AAAAAAAAAAAAAAACwDX7/BAAAAAA/3dv/DwKwrf1iK/EhfzAfPHZeyUusewAAG35f+wZiKAaW 1438613654.950,1.000,1.211,HISTggAAAWp42u3dwW0CMRAF0J2lDSRKoRkaQaIDGuXIDSTgioBdFjOe9w7JBRL7e2xPFBDrw3E/xO483K0e3+P2dXO5bE8DAAA8E3/ye8YXj4sPxxsT5znOnN/U8a1ePH9qPuNC6zm+me/c9Zyax1Lz/Pa+iZk/N748r1+fC0OScZinvAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyMvn2gIAAAAAAAAAAFV4vRQAAAAAAAAAvC/MGwAA0E8DACza/+ifAPx9CwAA1ftt/TcAALTvy4Hf7Tv7D/cJqGcAgCX7FX0N+nVQ36C+QV0D4P6QN/KWN/LOlrO8Aec3ALg35Q2A8xt5y1s+8qZt3qF+1HfDOomkeUfROml1jkTScVe9n7PmnfV9nL3f71nzdr7U3pfy1nf3eH73fr+Dvr7e+KJI3v9yfkdn9Vtl/1sH+cgd93yOcVf/P1/rPsP745zTLXMJ69lHfVwBAeYG9A== 1438613655.950,1.000,1.316,HISTggAAA8542u3dXW7UMBSG4RynpUhsAYlbdsF22AYSO2Cj7KBI0N4YWZl2Etsned6LRjO1nOPz89lOMjOff/76scT3r8s/1pdj/P375fn52+8FAAAgM3FR++Od/cSN/4+N9uXl+FC9XqvXrf7qdh9ubL823v9QHR+r12v1fuv/r+N5aoyrdZ66v6Xq77Hq77Eax0N1rMf7VL3+2GjXOl9p+O+h4Yc6Lq/tPjXOV8e7bNj52LBzyx+teKwN/64befnQyOf6/aXhz61jq07LRp3U511vbF/XxbIRn1b7pWHHlk5s2b1u+PVenWzZsaVncWP89tb3uLP9bPNp3Jgve/U/y/wfk/d3VP/Z11/WqwDoDAAA5jNAfgPXrr9Qx/IAAAAAAAAAAAAAwK64LwcAAAAA9mkAAPMHOwEAAGC9CAB0iy4D6hiAOqUr/LHHeEM+AADoKADAvABgkrqOk49PPvCHuED8AXUBAKDr/MU/gLzlN0CdQF4A8hpQf+A/fuJ/QN4D8g9QVwBA5wCAjgIAAPMwoC4AHFX/9AMwz9MD4P86UA90EvKIvYB6B6Du6Ag/Yly85QeuqF/y3jwEeQDIW/59q10hHu9qr46uWZeR1G6YT66s19l1gB6oV5w3/iHf5QP4374K8kfe0EPjpNuQZ8Yz0H7PYV1jvFfVcfE7t//MP+JI966r25E0L6+qjzHIvuznoWM56yzkNd1LPI44qV+zxs9651iKlKXbxsPfO/cvr4E8+Tf7OqCcPF70pa9f4mTju/d6TFzEf9mez4vBeXHveSNJXO/tJ/s+Wl4fq5f32hGTxquXv9dO9sdF63Fvfy9J/B2TxyHL/JfNH2VwHEbp9971N3q8sz0nGJPbN8s+a3R/e/fTe78zOg9GX7e42n3Lo3U6OsU7i/6P6veq142zPPeT/TrJrPutOFn+9F5Px0663XseiEnqorcen+W6w6g4Z5knZ/++zlHzXq99xDK4fmMy3Yid91Oj94ExuH6W5HbHQXrRW/e3zrO+0Z5ycLxv7a8k2+f22m/EwXbMsv4qg/KPbvddv8xeD0fZe5XPj5aD7R61Hj3a3+Wd5y2D7Z71cxOxs7+zfR531nnnrXUbk+dhbKxnZ5kHt/I/S35H5/ocXY+j8qPlb5/fOMbfLT+XwX6PO+szy7q3TOrP0fuyo67Xls56u5cuz/I8zlvvi2bNkyz3u49a9/VaD2f9HqDZr0vN/vuNvgdobn9nff6zJPH/rHqSTQePWtfGSet69H6n1/yUze6zf9/jbLoTSe3uNZ5seZf1fucoP6f9/cg/+1UJKw== 1438613656.950,1.000,0.025,HISTggAAAWB42u3czW3CMBQA4NiOKXSG7tLRqkps0AU6QkfrBu2B5vKkJwMKBcT3XSw5dpz34p+IAy/7j/dp+vqcDtpfWQ7F28/r9wQA3Idy5f6PkrdR+zpoX47sN2o/qi8r1bdBvHN4/pLUx/bx/jXpt5SbcH3p15P2PbRbym24T0+u11C/jP8Uyp6066FdjKMlcWxD/XPSvyf9dyHfmyQ/c5K/TZKnmP9dGH9O4srmSYyjJ+PUJI9zkveWzOuSzNM4P1syT/sgby1Zzy15rmy87H4lea6SvN9j4x/lpSRxZeu3Hbmf1BP3t3rmPn3qfrz2OVhWqp8G7+HWz/FH/b7gvuZDMZ8BAAAAAAAAAAAAAAAAAAAAAO6K/4MBAOen9wCAc8D5BACA7zsA+yLePwDOJbiMar2uun7Ljcf3X/crV8pTuVA/+7pzUbziB/MbsA+A9SXvAAAAAMA5/A4HAKTfCb866Ae4 1438613657.950,1.000,0.022,HISTggAAAUF42u3aW07CQBQA0Hm0FVyDe3Fb/hkSd+Ay3Jw70A/g58abFohS5Jyfm5ahc+dZJuHp7X1XysdL2euHWPfh9ev5swAA11Hlt4p21CvXe2p+x+t24fPbwnzn6hlCuRbux3JZ/j3cj+WOn48hPoTyY6hvSPLqC+OQXI/J/U3y+TFOh7gN+W+TdkxJezbhuY9JvlmeUxKHmX4cQt7xekrGM9bbkn7JxmFMvtdn5lf/+RyUzr+ezJs6E1uyjrK8y8J8e/LctrCenoxHm2lfmcn31H2i/vJ+eu7+Ws7cf8uF++ra39/1xvKFNawz8xjnV/hf87NaRwAAAM6LAAAAAAAAAAAAAABwY/yPHgAAAJzTwTwFAPwuAcB+D+Y5WDcA3Mu+X1fevnqn44L1+xf1Vf2JftU/AOD9BgAAAAAAsFr1Gww4B2I= 1438613658.950,1.000,0.026,HISTggAAAVB42u3ay03EMBAA0PiT7CJaoBdKQ0h0QAP0QGN0AIddOIw08q4S0Aa9d7FiPLEz8ScCHl5en6fp/W06aeeynIqnz8ePCQBgjXJl+ypfq9rVC+PKRuNtSf899BO+M3/alaSsSbuW1Mf2h2R839dLuJ6T8fekvznE91B/CP0sof54Lu+S+DmJu0/qe6ifk7iYvyWJb2Gcx3C/bJx9UF/Dz0sS15LnqYP5MSXzb07mS7Y+2uA63jd7vpaUZbBus/zUwXW2nloSd+m+MVqvZZDfOsjjqBztY9fGjfbHrc6hrfZZ/XoeefGewLrDfEDeAQAAAAAAAACAPfL/ToB9AgAAAAAAAPbD3+8AcB7hvQH2JQBwLsoTYL0CsKf9vvzy/W/1XHMeytst502e9/U+i/eI9eBcgT+cz9YN5gsAAAAAAKzj9+cAgO8PAODff398AYWnB60= 1438613659.950,1.000,0.020,HISTggAAAS542u3cQU7DMBAAQG+ckCC+wEO48TRUiR/wB97HD+BQuKxYWkdILWjmYjlxbGedrtMeev/8cmjt9aEd9c8yjsXT++NbAwAuI65snBCvP3m/02B/Mdiup3F6Kud0/ibVc3/T4HhLGmdN7ZdU5nlV85+L+eb72Ir2PY3biuNb0e9Xu9ui/ZLaV/VelGtRX4px1yJu1fXV/VTlXRGfat3mYl3y+HneUfQTRT1fvxXPYyuep+nM4y3NP058PnI82vff58rP2XxmXukn4h2D+WNvXtvb/zSYN2Nn3vyt8zF4vX1XHAAA+zQAAAAAAAAAAAAAAAAAAAAAAFwL//sDyD8AAAAAP/M7BgD2Ny4VN+t0HfG0DiBfyBvYb7znAMivAGCfBADwvgMA8E/emz4AIKEHMw== 1438613660.950,1.000,0.029,HISTggAAAVV42u3Zy03EMBAAUI/zWwlKoBdKQ0h0QDG0Qwl0AIeFy0hDDCsQ7L53sSJ/kozHdlZ78/B439rTczua3ss4Fnevty8NAPgbQgjE5ZP374P1cWL8qvH6Tpn7V+Wc2i/FfZZUrqn/ksaZUv81lR/1h3S/fJ8ttc/1V+l6TuNuxThranedrufUfivqo7h/no9D8Vwt9ctxyvHuqf1cxGcq5mEqyrVoNxd5sJePU5EfUYxTPWcVn6XoF0WcRtdLVV+NW73/UrRrO+uzfXMdt6J/DO5be/tbH3z+0f2tD9bHF/fJdmK/Sz1X45fGizOJFwA4vwAAwHc8AAAAfhcCAOB7EQAAAAAAAPhZ/pcD6w8AnEsA9mXMO4B9EXmCfAB5CtaRdQ7g3ECeyL9zfr8wf8CFrfcwf4infAEA56h5EwIAwPcJgH0LAAB8JwPYJ8G6gf+/Tt4AFqwIAA== 1438613661.950,1.000,0.020,HISTggAAAUN42u3ZS07DMBAAUH+SNL0Dd+FoCIkb9A6sORo3gEVhM9LIXqAWyHsbK4ljj1173KoPL5fnUl7fylX/Kuu1ePp4fC8AALdUb1S/Hny+RuXo/SXcb4NyTa5ruB/jWJN+eyhbuN5CWZL7PfTz3f4peS/2t4X6e2gvtr8mcZxC/SWUcV728HxN3juHfs6hnz08b5PxZOPfkvH2pL2e9N+TcW7hek/iivPWk3o9WV91sD5b0k5L9sWS7K+exFkH9dsgztl2yqD9PthvWR6qg3p1cp5n89Ts8zIZ973Pj1H7LZnfMvnebz//furz4j7fMwAA8L0KQN4FAAAAAAAA4Fb8PwwAAAAAAAAAAAD8V9W4xAXIBwDyKQA4xwBw/vyx8805CsfJT0fNK/Kc89W6wnqwbs0b1gPYfwAAAIDf3QB3z7ef4KgHuA== 1438613662.950,1.000,0.019,HISTggAAAUF42u3c203DMBQAUD+auuzALoyGkNiAGdiFcdgAPgo/V7pyqAqk7Tk/luPUdm78yk/vn1+eSnl9K0f9K63H5PHj4b0AAFyzGtKS5H+7/b+qJ97XkvIeymuSn9VbJ2lsf5fUtwvpCP1ckn5/Xz+E8rtQvoTftdBeD/kl1DOS8ti/WN8+5EdID8n1nvR7JHGKv4vxyOI2Qn4/iUvMt5Xx6ZP62iRfk/GblY/kPS8r338P4zNrr4S4Zf2sk/uyeZO11yf96ivncZZvk/m+dh3qP2z/XOvfqetu29g+de595b+fb6vng3LiON3qcxXvGQAA50wAAAAAAAAAAAAAAAAAAAAAbpT/qwCsgwCA8wDiAeaVeACA/VD84LLng3kB2GcxboBrnNf1Qvt9q+tt9Z0C1gcAAMB3AGBdAAC2d074BKZtB7k= 1438613663.950,1.000,0.013,HISTggAAAUF42u3aW07CQBQG4HY63IwPLsC9sDYTd6ALdQf6ALz8yUmVgAXyfS8n7TQzp3MFwuv7x9swfL4MB9Mxjoew/95/DQAAj2CcuV4qj6Xf89x+yed63M/y0+fM9TG2iKfnV3F/iriK9rK8F3EqrrPdU36bmfJW5PN8jNsoX0V9vahnF+VP0e42rnvk2+O5XZRnPb1ot8f4ZX67qG+K99lEO63IoxXj3Ypxqvot59F6Zh71YnyreZR5DkW726Lf1sX6yNiKdTb3fLWeWrF+e3G/6u+q/emP+8d05r40/LJf2pn1XmvfnBvPa58jS51zt36OjjeWDwAAgO8nAAAAAHA5ficDAAAAAAAAAACAy/P/PAB4/HPaeQ8AAAAAAPyX8c7qBfMSuMX1b38xL8wjzPvH7A/9hfUBgH0U4wl3sk5/AAYWBso= 1438613664.950,1.000,0.017,HISTggAAAS942u3cwU3DMBQGYMdJGhArsAujIaRuwARsxChsAIeSyxO/kopLG33fxXIax8/Ji+1c+nx+f2vt47NdjL/lcClev1++GgBwLMNBx3Nv4+p38lyGsk+s8fdy3lqfS30Kx1P7sbQ77eyntlvrSzme4ppLf0u4DzWuU7hO7XctH0I/j6WfGv8S2tdx1Phqvk2lvzrusfxe46zx9RLXU6mP4X6lPJhDOYXnuITxTSEfUpnys4e86SFPUj4Opd5CvYf5bdp4H8dw3fSetb+/A+O82jfi3Dsv953nb8Ux/HNeG65cJ/euN9fG1W98/b719QkA36kAYB0DAAAAAAAAAAAAAAAAAAAAAACA4/J/X+A9BnkKANgvAJiXALDeuD+eHwAAAL4jAfMPAADs3mf+AFfZB94= 1438613665.950,1.000,0.014,HISTggAAATZ42u3bS07DMBQFUDtNUgoTFsBeujYkdsAAlskOYNB28uAqrcoghXMmUezYz784SaU+vbw+t/b23g42x2M/HPaf+48GAFyna9dN9Xv45fHqK5/fIVzfF8ZjDOXHUC61ZxPKbUv+VPKHkp/Sa/4upJ/O5xB3W9p5Sr8r/Xs4Hu/L9bWfY4k3lvpq/B7KTaGexzCeu1JuCv2q49FCfUNoxxzqb2E+xzBeKV7/+fvl27qr9cxhvc1hHY0hTp2PpfO0PttC+hjiDmHepoV+9HJdWxi3FuKn9H7m/rPUn6V9uYf8S/fvfuX5pfvw8EffB/rK2gMAwG3/LgMAAAAAAAAAAAAAAAAAa+T/ceB+BwAAvK8DAAC+EwAA8F4HuJ/BfWz/ALC/81/HtesX5gkAPEcBYC3Pty+f5AdK 1438613666.950,1.000,0.018,HISTggAAASt42u3cS07DMBAA0IyT9IPEDbgLR0OVuAE34IQs2cGiZcGIkdOmQgW9t7GcTMZOYsde5eH55TAMr+/D0Xgq41g8fTy+DQAAl4h/1p+4Ut5YeTyKstI6eXr9jJRnLPJORXwU11X18ed9afd4leerX3MRv01x2/QcxuL6zancp3or2t8UcXNqd5fq9+l4LudU36f8UzofKf9dyjMV/ch5W3E/u+L+ctkWvv8cV72XtjB+LMbt0BknVb525vjsjedq3kbRj9bJHwvzRXF/sfJ71Gt/uLCddub39rfXo1h5ful1ceX4W13Pb20/AQAAAAAAAAAAAAAAAAAAAAAAAAD8Hf5rCPgeAQD2DfYj9oWeJ2C+AIB1HwCsF94fGJeA+QzmFwAAAADAd/EJIlwH6Q== 1438613667.950,1.000,0.017,HISTggAAAUh42u3Z3U3DMBQG0Dp/DWUFdmE0hMQGTMCGbAAPpTxc8altCFDRc14sx+6tc+04aXr39Py42by8bvb6j7Lti4e3+0MLAMAyzXgWja/9UT66I8e7EKd+rgvlEOKP4fyH0D4ciduXMo1jKvVtqc+l367UpzK+rhwvz9ef8acwrpsQdyrtY6jvyvcc6rchnzUPc8hvjd+H/nNp35b6EI7XPPQnrottWH9DmIc59B/DPPZH4g1hvaX1l66PMazPtC+0cD2m63cIn+9Lvz7EP7We9o3f2n+7E/e5tnB//O6+3c4c/9L7QfvhvKx937n0+zLg9wkAAAAAfMV7JgAAAIDL5v0NAAAAAAAA/4H/vQAAAADW5X2LeQHAvi+P8gNgH3QemE8AAM9l68VpFzYu5Feer299tCsZh/c9ztf6xPwBAAAAAMD62jvh/QgX 1438613668.950,1.000,0.014,HISTggAAATF42u3a203DMBQAUDvOgzADu3Qd1kBiA8SebAAfbYV0xVWiVEFpdc6PFdeP60ectsrL+8dbKZ+v5axd0npOTt+nrwIAwK+aXNfk8736rxvjLX9/7yvdQjstlIv1hqS/buU4Yv0+yW8h7ZPrLP8az3xJx6TeGOpPSXtziDO2U5N4utDPtdxTaK8l+XEcLbQ3hvJTEucQ1mVK+u2TenMyT30yv3XjutbQ/pjE05J6JYznOeSPC/1n7Wb7dEz2XUvGXZM42sL+Xnu/ZvMx3Hi+ZOfCkm5juW7l+ZaNZ6l+3fk8fvTnYblxPvdu5177BwAAAAAAAAAAAIAj874tAAAAAAAAAAAAAMCxee/buoJ9Z/4BAAAA/oP/L8wLuB8fO85qve963J5HAAB+D8Hh9+kPnagHHg== 1438613669.950,1.000,0.011,HISTggAAAS542u3aS07DMBAAUDt2wu8K3KVnQ2LFlouyZAeLtptBozRqhJr0vY0V1/E/E7fq6/vnWykf3+WondJ6TA4/h68CANy2utF+Dzcyb3Vn612vHP+wsJ1wfvyzrvG6Jff1UH4M1z2Un0K5FvKnUH4M+S3Jj/Vl/R7CfX2mvjEZ5/n6IanvManvKSk/N75Y7xjaP3/+ckqfk/XI+tuSNBt/C/W1mfrqhe1OF+6znpTLno+a3N+TfR/3yzDT75600xb2uyXjHWae+57s/zLT3tK4WhfGrbXaXeu9WVeOx2vF77Iwf6vnh72dhwAA5wXzDAAAAAAAAAAAAADAHvg/OQAAANwfvwcA4gQA3lNgvwMAzhEA/H/8FJ8BAMD3jL21B4hX9zLeal7Bft76+v0CETsHog== 1438613670.950,1.000,0.011,HISTggAAARJ42u3WS07DMBAAUDuJk3AH7tKzIbFhzWU4FjdoF2U10jARUlsQ722sNtOJP2PXz6/vL629fbSr+avt1+Z0Pn02AIDv9D/+nl58P91pnP1G/e9FfBxnC5+nIt+U5JnC/bLK10P8XKxDzL8l71uK+Bi3hLg9xI/wfBTjfkry7yF+C/Fr0t8Rnu9Jv2PcSPoR47bQrklczBPncw3rtRxcl5GsY1yPbFyxntZinbN5G0k9jqQ+56Qf88F9shR5q30+F/uyF/sw9uPo+fLT83Iqxnvrc+9e57D7gfvGI+pDPQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/11/8O/NKwDgfxjAeQb2L2D/mEfUD7+sDi7yrAdR 1438613671.950,1.000,0.023,HISTggAAAVl42u3ZwU3DMBQAUDtxWgoXBmAXRquQ2IA1GI4N4FC4fPRlGhqUkvcullv/2I5/nKR9eH55KuX1vpyMn2U9Fcf3x7cCAMDy6sx29cL9ZvWsn5a0H0JZwvNmC/UvU/J9C8fP6rF9C8fdhfoYPj+EuCGJ34f4KZQx7hDib0J8LPch/jbU78LxWjKOFvqL8xySecX1jOMYk/PSOuuRzTdrPyV5uOvk55CMJ+ZnTfodOu17/Yyd9lk5JvPO4munvzG5XrN59fornbh65v7WixvObP/T/e7S++ilj7N0P381zjIzH9Y+/jIzn5fqp25k3f9bvv82bq3XAde9PlWe4fnlaveHKn/MBwD7sfMBrjOu4rzLAwAAAAAAgG3wvxAAAAAAAHzn93MAAAC8B3tvBgAAvBcA4L6AvJP/gP0CWMv1bR8B9++tnzfrAQAAAAD0+B0RAADY3HvQB7t8BxU= 1438613672.950,1.000,0.016,HISTggAAATZ42u3bwU3DMBQAUDtOmyAYgQHYgtEqJDZgAUZkAziUXr705TTyoYreu3zFie0fO3baSn39/Poo5futXLX/WK/h8vv+UwAA9qh3lh/l/h6l3ZrE6c5+pqR+LG+d6+L5OZTH9p6TPGP9c6e9Uzgf821JezUc3+Ia4pJcF+MS8rkdP3XG5Ryua0k+cbxfQr0lxDX0t3bymDvjegpxCufnjc9Pdr9z53koybxOSf1zMh8tGY+2sb/Ybwn9tGQcYp4l5DUl7cb8snVbk/yzdktn36gb623d1/buT3Vnf6P21VH799b86+C86878Rpc/6vv4KPkA+B4KHHVdWe8AAAAAAAAAAAAAAAAAjOR/awAAAADAaH53BADwOQwA7wUA8F4Fz537N49gnWB+AfsdAAAAAMCx1D+94Qco 1438613673.950,1.000,0.012,HISTggAAASx42u3bQW7DIBAAQMDG8RNy6F/ytkq99pSP9gftIUkPK61wWlVJ5ZkLgsBig7NGkfLydn4t5f1YLqZrWS/F6fP0UQCA/61agl3sb/3h89CSetsYNxufzXM7b85JeziPfvebk36xPYvXBuPiPD2p9zDuEPqtoX0N5e06lqSM8y0hXg/xsvs4JPVsfadk/3uyHktor4P9acnzGu9zHezLlMSbk3pPxvfBfZfk+kfPV0vmqxvXK/u8bty3GKclccrg+5nljXkQtw3Gt43XUQZ5Kctno/w26l/uzH/3ahvz8m/f88/+3t/7ucS5zHoCPDLvyZsA8iMAAAAAAAAAAAAAAADslf8RAeD9AyB/AQAAAADAI/jdHXxfAAD+6vxTnaucXwEAnJd4lv3+AggXBrE= 1438613674.950,1.000,0.017,HISTggAAATh42u3cS07DMBAAULvOBySOwF04GkLqgj0n4IbcABZtNyON7IoIaHhvYzXN2ONfYnXRx+PbSynvr+Wknct6Kp4/nz4KAPA3Vfnuerx+Ku92ZR5ZGR065TQY18Ln7L45uV6T+6bB+HA+Tj+XTnsltHspl1C2Tn4PSfwc4tdzeZ/kvYR61lBe6rtL4tcQPyf9i/XGfNdQ/5yMQ/Z9Ddez/mXrKZvvKbl/SdZvnL+WjEdN9sHUyTfut6y+bF0unfsOSf51MG70+ZXty9JpL6u3t/9Kp/3R52ztPA9Lp73RuNF6y0b5lyvHY6v30Xf7d6vvc3733GTdAMD+f9/AuAMAAAAAAAAAAAAAAAAAAAAAAAAAAP+D/10FAJw3AADnEW5xPqr+2n/2D+Zzl+vDOgcAAAAAgO3ULys7B3E= 1438613675.950,1.000,0.018,HISTggAAAS142u3aS07DMBAA0EziJAWuwF04GkJiwZ4bcEJuAIu2m5FGTkspAt7bWI78GcefpJ/759enYXh7GfamQxr75PHj4X0AALiGMP6LGDv53F9sjGcsrkeRjkX/Lb135nRO+Zaut065lvrdFfWrOI7ll0N6k+JfU/tVXHMq34p6czH+luofr9+muNaULp325mLcuf5YtL+mendFe1X9fN+XlOZ1tRbt7jrrrRX3I9J9qNb3VORz+1Gsq6WzL6KYp7Eol/fd1CnX24+98cbG9oeN+aGIf2vcp56j58YXXzyX48R6lzr3f9vzM/5YP3jvBMC5j/kEAAAAAACuw+8EAAAAAAAAAAAAAN/L/zXBfgMAAAAAfH/3X+fJvAMAAPicBGGfAQAAAAAAAD8sPgFH9AeK 1438613676.950,1.000,0.010,HISTggAAASN42u3cUU6DQBAAUGYBadQD+OFderYmJh7Ai3oD/Sj9Gd0uBENM+97PpDDMDlu60H709e3j1HXvL91ZP8c4h+PX8bMDAK6LjfvvfX7W1smx7NzHXvPU6resPM/S2B6N/FLJj8r+Sxwaxw1pnMvrcY4Pc5zS/sv2Q4pjys/Hl0qdnDelun3KGyt9DJW8p8p4jynvkLY/p/GHRv6U8vtK/yXV6Sv9l8r7leuOlbpjZb7i9+8fP+oMjXGXXqelcb13jeOiMU5Z+XnqK5/bvtHf0nWhLFxfYmG/sXBelq4/a+vFxvVy7/vVrd+fY2Ne/PPzAwD3EwAAAAAAAAAAAAAAAAAAAAAAgL/nf50AADy/AQAAAFzj9wgAAG7pOTLutJ/4BsKlBqw= 1438613677.950,1.000,0.011,HISTggAAARp42u3XPU7DQBAGUK/trE1OQMFdcjYkSjoumhuEIkkz0idDEMIS7zUrr53Z8Yx/4pe3j9dheH8erqbb2K7D6XI6DwAAj2jy2tX5tB/WoYVxDvNb64/l/+dU5lvZvo+HsN60MT+VfOeQx6Hs72W+h3h1nTWs18P6S5lfwnzKL433459u4zHkMYc6LCHPtWwfy3aqe82v9rX2o4d4qZ+pTlOpQ43fwvFriFf7V/vWy/We6tvDfKrHHK73dF+1jftqCL+vcdL+cSPe1vOnffH5lM4zHTf+8nP10bz/6v3TvtkX710AoDkvAAAAAAAAAAAAAAAAAAAAAACAf63tPB7qDAAA+P4BAAAAfLerL+qtHoD7Xt3YTd8/AXBSBto= 1438613678.950,1.000,0.018,HISTggAAATt42u3aS07DMBAAUP+Slq44AHfhaAiJG3AELsgNYFG6GRilTahE0XsbK/X4G9tp1D68vD6X8nZfjvpXWo/J08fjewEA+Avqxrj6z8b5W+Wz+JbkZ/E9lBvhui+035L2T+kU6plD+X3I76HcHD4/9W8XrmP8HD5vSf0jGf8uiYvj2Sfxh5DfQtwh6e8cyp3quwvpCPM4hfp7Mn9zMt8j5I8z53NO1l1N5ivOf0360X5+z/l2P0ZSfiTrsyfrvif9H6H8tLA/pqR8S9ZZT/ZPWZjXsnDdk/yWtFPPPG/qxvPt0vOprIy/9vNjbft15XiXzvdbe97hPgDb9rf9j+cVgPMPAAAAAAAAAAAAAMD/lgEAAAAAAIBr8XskAADgfcH9c/8B8L0FsL/BegOcU4B9CgAAAAAA3J76CZutBw4= 1438613679.950,1.000,0.015,HISTggAAASl42u3bbUrDMBgA4CRtunoH77IreCXBG+yfp/QGCk5BXnhNRx06eZ4/IU3SvF0+Ggq7fzo9lvL8UM6mj7Sek+Pr8aUAAHw5H3Cj49I2th/l24VxzeGcmd2nhnqf6SHcJ9ZroXxOymsS1xLyPaRLSNek/hr6vUvareF6T+r1JP6s3Rz6jfHFuFry+y4b89NgPGI+3qeF+LLrPRnfOM7zYF5MSdx1MI8Og3kcf+eaxNUG8fakvCbzoCVptn6z+iXpL9s/snVbB+stS8vG8rZzX6xX2lcvbd929lev9Nz1h5//r59L6i/3DwDc3rnCex8AAAAAAAAAAAAAAACAPfxPDfMTwP4IAAAAwPd8jwEAAAAA4D/y/Rusc3GDfQAAvI8AAMC5+739G/gLBv0= 1438613680.950,1.000,0.014,HISTggAAASt42u3bS07DMBAAUI/dpBVcgbv0OlwDqTdA4pzcABZNN4aR088G8t7Gav3JeBI7iaq+nN7fSvl4LWdtKeNcHL+OnwUA2Kb4Y8eJB/WPf3reYuXnNshLTcavyedIxr/U75dy6trtknFaV79L6qeuPuvXunLu6vdJv9qVWft5cPxLnM9Leej6zcl4fd7mZP6ta5/Fd0jiHOX/aRBXSc5Hn68sj1MX3zSIL5J5Z+3L7+9BP75vg+s0u55ikL86WB9tsE5rUmbtYhBXtq7ryn1ytE/ElftRuXI+a+8Ht+7z9cpxR8dpd8YdN84rHhT/veN7bkLeAAAAAAAAAAAAAAAAAMj4/xkAAAAAAABb5HcyeQMAwHMeAIDnKwBwvwSsbwDcVwAAgI29Z3wDy9QHFw== 1438613681.950,1.000,0.009,HISTggAAASZ42u3aS07DMBAA0IyTNJQzcJeeDcSCPRflBiCRZjPSkNKqCRLvbSwntT3xt1H79Pr+3HUvb92sP6cxJ6fP00cHAPxP8Ufri43ivbbe2Gl8YuV6uzC+fL9P5buUbxe2t+THIr+0M6Xrh3M6pPt9EV+uP9cbqb6l/oeUH4vnOhTx5bRP+SnF9ZjuR7o+pvwxff6Y6s39FkU/Vf1dxTkU/ZvjacV45faHYr72RblI7Vblq/k9FePdivkTv5zXa+VbMS5dMc9asf6qdVelsbLe19Zvta/Ejfvg2nitlYsL49r6PLi2n+51Ht37/I6N2t/reff+vgQAzjHMJwAAAAAAAAAAAICf+d8igH0dzGMAAAAAAICZ3ykAAADwvgoAAAB8v49/AUcvBxI= 1438613682.950,1.000,0.008,HISTggAAASF42u3cS07DMBAAUNv5AldAgptwMyQkbsBFuQEs2rIYMXI/aiPEe5tRUnsysRvL2eTx/eOtlNfnsjPsY92Fp6+XzwIA/A/VEFw0LvVK1+mdr5329ch87cj8Lewby+/7yJ92LZwfQ/uYb0j6xbxj0m/axyXEw/k1HB/yzkm+NcQ5qeMhqWsOdRyO70LeWMecjMcS+t0n9xt/n8J8jeE6a7herC+bpzHErF3t1BHHYejM9xRiS+pqSZ1L8r9vSZw6dWXtpuS+sudr6tTdknxZv9J5nk597obOutKLw43W4XZm/nphu1auq545LlvtE+rG41A3um/7NADvwwAAAAAAAAAAAAAAAAAAAAAAAAAAt+B7igAAAHhPNG8A/JH1/hsVVAaz 1438613683.950,1.000,0.016,HISTggAAASF42u3cSU7DMBQA0NjOoPYM3KVXA4kbcIBesTeARSmLLz4OalEH3ttYaTzF30OURZ9e316GYf88HLXPtByT3fvuMAAA3ILyR+Xrg4xHWfl7TfLVzjjFetrKfGPSfmx37MSjJvnH0J8sjfnm5P4pnZL2TuWW79+fv663Id8c6p1DvUvSfus897IybaHeTbiekjhsO3GqyfPEcd104rUk7dUkXnE+ZXEuSb+zfsR2p878i+ulJeVKEo+axDtbt2Nyv7f+x864tc46bxfaD3r7zdp9fm358st9vlwo37nn1bXOyXvpX7nT+AAAAADALfPdDAAAAAAAAAAAAAAAAAAAAACA/8z/8AAAAADwE9+PAHBu8ehxN28AAAAAAIBrKx94MQco 1438613684.950,1.000,0.010,HISTggAAARh42u3a3U3DMBAAYP8FgliBXTobEhIDsATjsQE8lPBw0slJRRFSv+/F6vVinx3ZUas8vbw9l/L6Xs76d1vPzenz9FEAgNtUzfcm17NO6q2T/Lbzc5uM15J2hPwe4iMZryfxh3DdFr8L8fvQz5a3hHgP8dh/T+a19b+GtoZ61iQ/jrPlPybrE+tckvnEcVuyHiNcP0JdLfl+SfppSd4a6urJvEZy/+O8s/uwJHX0pG3JuDXJqzv3RYyXpN8y2Xdlsr/qzn15NJ6Ne7Sfo/O/tL4yWc9rPQfqhdf99vl+9Ly/Vn1/9fxsBQDw/wAAAAAAAAAAAAAA8N95nxkAAAAAAAAAAACAI7x/CuD8BQAA8LsFgJ/z/wuorgcv 1438613685.950,1.000,0.441,HISTggAAAX942u3X3U3DMBAA4JyTNLADa/DMbEhswFKMwwZFgvblpJNrVEF/vu+hltMkti/na/P09v46xfPH9GM+tPH9ue33L58TAMAtiUPbBs+v+n897974bfB4FHFpne+X1J9T2zr9uRivOu84/u7Qrmkex/7WuV9L5+XrHtLxXTq+dMZf03j5+mrdS9Hm8473eSzGy+2S+nm91Xl5/nNnfWsx3xzH/BzbiflS5cV6Yr5W+ZTjv53pfr16sRTri06eVHUsiv3eOvWjde4zdfZpDNan6NSfOPG6afC6GKyzv+1f6+9hXOi8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/E9YJAAAAeL+/yHEBAADwfgsA4H8IAADgPQbxB9QNxB9QLwBQzz0HYGxfxpXPH+QH2J/ID5Dv5ol8kdfce97Ia+w/uK78kdcA6if3k6fyFvD7J86Mx9vzkN/ym3PltXirMyDPxZk6ruItf2/6f+AXSzwH1A== 1438613686.950,1.000,0.466,HISTggAAAYR42u3aXUrDQBAA4Ex+GiN4Aw/im2cTvIEX9QYVtEUYHDYtWGP7fQ9dkmy2u5PNbEL7+Pr20sXTe/dlOJTx+Tnv98/HIwDArYmN9KPfeD/jQufHyvpxZv0q7tHY7lee12ov0vPo7lCORTvTj8+v38eHVG9M5Vwc36XjS2r3PtWbUnms91C0l/uR+xnFuKeivFs5rqGIW96/pPOWIj5j0Z+q3Xz9dsX+oYjvWFzvOe3vG2WuNzbmWTVPx6Ldaj7n74tiuzWvu3S8lSf7xv0+FP09NQ/3jXwyXDjf/ta6EH98/ta+L24sDlt5LgIAAAAAAAAAALh2/q8FAAAAAAAAAACcy/+PAAAAAAAAAK6L34HBfW58AID1GwAAAAAAAAC2x+/rAIDnHwAAALzHAYD1CADrHIA8BADWOwAAAO9lAAB4fgKQr8E8AwAA8B4GgLwtfmBeu06IGyAPiRuuDyBPACB/Y166X8wD40K8xds8EG/jAvMakFeuPe+FfhoH8D/zyQceGggM 1438613687.950,1.000,0.022,HISTggAAASd42u3cwU3EMBAAwKwTBxCiA3qhNIREB5RBA5RFB/C4y2ellYkiAQczH0vx2l4ntpPH6e6fX56m6fVtOpnPZZyKx4+H9wkA+FvCPP71/GNnXEvXW3F9St+TVdzWby/y2dovqX4r13N5neJ7Mf5a5LOkfu5SfU/tc//5+s0g/17kf5Xar6l9L+p7iluL/pc0zpLKuYibizx6MZ+5qM/3YSna3Q7uV863eu5VXAzWxzpYn3n9xGDfLMX4bZBvK9ZZFGUf7JdW9Fvt2yjm2Yr7uPe8qc6DKOL31h89774a3w7mdfQ8jwt9H4a88FwAwPsTAAAAAAAAAAAAAAAAAAAAgB/nfyoAAAAAAAAAAADg+/n9HtiX5gMAAAAAAAAAwCWJX9ZvfALmPQfJ 1438613688.950,1.000,0.008,HISTggAAARR42u3bS27CMBAAUNuBGNoeoYvehLMh9QZclBu0C5LNSNMkLYtGem8zwp+J7ThYkeD983Yt5fpRHoYp1ke4fF3uBQDgJ3Vj+dr6re3Ytu6xXftlnpbkjeVD8jmWH8J1xikeQ/1Svrldn+JbyBPbjck45v6nZBxzPCf1PSkfQzyFcWV5Yr/zwrxaKO/JuF9CfQ/rcQz5Dsk44zzG5D7Gzz3kz+Zfk/3aQnxN5l+S9cnWqyb94/7uSb+W7OeS3O8heZ6G5LolGd/a5zR7/pe+N9rK6649H+qT8vz13HjWubWXc23v46gb9xMAAAAAAAAAAAAAAADr+H8GAAAAAAAAAMC++L0HAADg/QYAAAD4t+/731RpBrM= 1438613689.950,1.000,0.011,HISTggAAARF42u3dO04DMRQF0HE8nwxrYBHsIGtDoqFmo9lBKEKBrvRkkEikiHMay5P4+cXxr5vnt4/XaXp/ma76V9muxelyOk8AAN/uBzz4/9OKetX+EGWLeuqD/jNej/oa5Vz0vxRxquc94s3RT9yDp6ci7hbxlyjX+N5axNvj8yXy2iPONhivLdpl/CreXozDMfLqxbhlu8wz81tinHvxfI76VuR3KMq1mK85n46DebUU87uK24p514s8q7htkEcr+qvWaRus/6rdaL32wT7w035H+9Nf7Ye/7e/W51670Xl7r/O6PVhcvxMAwP0EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4J68Fwaw3wD/fn/6BLcSBuE= 1438613690.950,1.000,0.008,HISTggAAAQR42u3cQW7CMBAFUNtJKPQMvQtXayUOUKkX7Q1gQbsZ6culolIl3ttYY8hkPCFOVrycPt5ae31vV8vX2K/D8Xz8bADAY+ta8C/702/8Xg/HpTwjxCnfEuJ1Evcyv5U4zdd8I4xbiJ9C/q3UtQuf17yHMr8r477ES8j/Xc/zZL7mXUsdtZ596OsI9aa+1OPWsO563sMkX72uW+hTvW59cr1HOF+KW8jbQ796qHMJfZr9/kdYf1rvCPdxuh9aybuEevuN93v/Yf9aOL7O32vf++t9+tGej33yfAG89wJgX7V+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4Hf/jD8BdnicXfZ0HUg== 1438613691.950,1.000,0.010,HISTggAAARF42u3cO04DMRAGYHtfIeIK3CVnQ0LiADQckxtAEaAY6Zc3KNXyfY1lrR+j9XgzVZ5e3p5be31vV/N326/N5fPy0QCA/617BYc8z9pOg/Pug+c/85fQL3Xmb38q/XmwzrpznamMr3Fs5Xkdt4U4TiHO2vaw7lrWWcP4KcR5LvPrug+lP4d9TmX9LcT1OBiX3ucS4lsH+VLjbiE/ziFva38L57+E/VuIJ8WxhvxL+bmEeNJ9Svc15f0S7ukSxred4+/1vRjNH+0z+g7t/f3q4dzbIL7pxjj6H7/PR68P+p3mq39AXgMA6gwAANR1AAAAAAAAAAAAAAAAAAAAAAAAAABwVP4vFABAXQfceN++AAE2By8= 1438613692.950,1.000,0.010,HISTggAAARF42u3dQW7CMBAAQDt2HOAN/Qtvq1RxrtSP9gftAXrZauVwQK3QzGVlsng3jnGOvLx9vJZyeS9X7RbrNZy/zp8FAPhfqiV4inWrD+qr3jneO8+SjGty/UdP8mexhe+1pK+WxDV8/3iLW8gbSZ011BtJ/hbiGuIhjEfI7yGOkB+vn5J1j32MZL41mX+EeeN6HUP+IVmPNfQZ7zuub3xuPRlvSZ0teU4tyY+fL6FOSdY39nWa7L+YXyb7vCb7bkn2Z5/8DltSvyf1+yQv67sl9Wf933s+LjvPz2XnOVcfdL7+1XtgNs/i/e8+AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKfg/wuBX+fCN8+OB0A= 1438613693.950,1.000,0.011,HISTggAAAQp42u3dO07EMBAA0Izz2fA5AgU32bMh0VBzUW4AxYZmpJFhlbAU7zWjJB5/Yytdnl7fX4bh7Xm4GLcYl3D+PH8MAAAcLw7Oq8qNvywfxfN8PW2xpfstxSnlj0Xs5UW6n/Oqeuctnra4bPEhPV9TfXPRbiva/a73sdOfNcUptTcV5YfU79zfJV3fp7xc/5rylmKceZ7uUvm5iNV65XU7Feu+dPo3d+Z5KfZBFPPSOuvcG08Uea3oRyv2RRTvV/ywfG8/VOOIK2NPb5yx87kZNz6H9zq/46D644/GvVf+rdfvv3wHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnq7+X/AXxe4GuA== 1438613694.950,1.000,0.009,HISTggAAARF42u3c0U3DMBAAUJ8TGrWswC5diRWo2IBF2QA+2vycdHKJKFDx3s8psc8+u4nbrz69vr20dnpuZ9MlxjkcP47vDQDgnsSN+/+1dcUvryvS78g19hQjxdw+D/Km1G8q4tq+u8SHoq5qvJx3SPfXuE/xkPLyOOs8S7qf2x+L/F1R734wT96/pahjLj6PXEcedx6ME8X+5/V/9Tnoxbqi2Ifd4LmpnqNqfS1dR1FXS/m53zLIm4r3uRfX0+A960Xdo/Oiyru2zl7UHRvPrSj2K67M6xvPz77xfI1vOmdj4zyxsc6f/n6MOx8fAAAAAAAAAAAAAAAAAAAAAAAAAG7J/+oBzgUAAAAAAACA/y0+AUHzBwg= 1438613695.950,1.000,0.007,HISTggAAAQl42u3cy00DMRAAUH/z6QGJUmiKBpDSAU1RDh3AIeEy0siLBFJWee8ystb22F7bm1OeLu9vpbx+lKt+i/Uanr9ePgsAwH+qD56n3sm4s7w9GcdPuSUxa9dDvZGUe4jHW5xJ/4dQbyzyHEJ/Wfkc8h1CfyO0G6HdTNr3Rd4479Ni3ucQR2if5R/J+p5CeYZ6x0X7kbzPmYwr62eG9zbD/Geyr+K6tGT+JdknNek328c1iavndXGe+qJe35ivLc5vpi3Of03WM5tfWaxr23gv1cXz9sf34G/v47px3Pd6/+/le/uo4/V7EAAAAAAAAAAAAAAAAAAAAAAAAADYO/9DCAAAALAP9RtHXQc1 1438613696.950,1.000,0.007,HISTggAAARR42u3c0U3DMBAAUNtJigtiAyRGYSgmQGIAJBZlA/ho83PSyW1KUYXe+zm1ic8XX+s0P316/3wr5fWjHEzHWA/h+fvlqwAAbFEtwZ9qgz7Ujf2rG/sbx09JnfH4Gpfweg7j1/fvwvFT552T/EtyfBrUuzvGHuranZivh/PXeh+T+pYwTw8xXsd63j7M85CMu0/GxeuLfepJv1pST03iPoyLeXuynvHzU5L1XkL+rK8tiSXk6YNxUzLfnNQ5qq8O6i5J3qwfJam3Dr7X7cS6rnVfGO177cz96tJ9s5w579Z1qb+c79J5243+ntjadwAAALhFnlsBAAAAAAAAAAAAAAAAAAAAAPjP/M8OAABw9eeOHzmpBwE= 1438613697.950,1.000,0.008,HISTggAAAQN42u3czU3DQBAG0P0lhhroJa2BlA5oinLoIDkEX0YarQEJOLx3GTnxfp5dx3ZyyfPl7bWUl/dy1z9rvZfz9fxRAAB+UzXvP1mnnuTu2+3gceP+cVx8v4Tth6SOsN9I8k+h7uO3MM+R1Mfk+D3k7PlPoW4hrye5+/YMeX0xjxGOF3Nn0scM+TOMPyXj47qOJDe+viV9j5Abz+NM1qUm/WfnsyfzqAf7GYvPWU2un69erzFvJvMtSR9tUfviusv6qIv7REn66ot5t8X4enD92jfXt/3wfloX+eB7FgDgeQwAAAAAAAAAAAAAAAAAAAAAAAAAAAAc4f+KAQAA+Fe/U2830Qdx 1438613698.950,1.000,0.009,HISTggAAARN42u3Xy03DQBAA0P04tqEGekk7tBEpHdBoOoBD2MvAyAkhCEXvXVbaz3hm7Xidl+PboZTDaznrn209N/v3/akAAPylqr67XKfemMeY35L1LRmP/T2JO/p3oX+0U2hH/xLizyH+iLeG8Smsn8P8JcyLde1C3nOyLstvCnFa6B9xn5M6WtL/FK67hDhxP+dk/3uS95rUGfPeGu/J/sS64ropmV+SeT2pZ02ep5rcl5bE6Um+JXlupu//d30Zbxv11o19qMnvtCfXLxfm3ZL4W/fj0vdLTeLcql35Pr7Xe/qndT36ufjfz9V65fOL70X7BwA4hwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+T/0AxRwG7w== 1438613699.950,1.000,0.011,HISTggAAARl42u3WS07DMBAAUH/alMIVuEu5GhIrtlyUG8CimMWIkROUSki8t7GcjMeu7dp5fHl7LuX1qVz1r7Jei8vH5b0AAHA7dec8dZK/rhzHqLdJ/vLzd+R3vYc8Leknizsk5Wh3TPKNuCXkP4b3PcS1EJe1OyZxLeS7D3Hj+SlpN/I/hPqIP4d859BPT8a3JPVR3oV+4zycknlYkvFn89dCvpasQw/5sv2wJOuerfMh2WdZmY2nTvL1yf+nT+IPK5/3lf3Pzo3ZOGfPSzKO7H2dnB81meeyMX/2fut5WH55rt76Hljbrm28N8rGfbP379vrXgQAgL/Edy4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/Vj8BVXQG9Q== 1438613700.950,1.000,0.005,HISTggAAAQp42u3cy03EMBAAUDvOD4kSkCiFdjhuC0h0QKN0AIfdXEYaOatEQsB7l5Ej7/jv5LRP7x9vpbxeylW7xXoNz18vnwUA+N+qKfhV61RPXu+WPB9ucQzlmsQh5Bt35tnKU/L7MdTP8mb9iHFrZ07am0KM+ePzx5Bviw9hPmOeNanfkn5t9ZZOeQ1xCXmy8cbyEuKUjHNO+rkm+Vuy3kMS1876xX1Qkvayfds68zOHvFNnf5VkXGPS7t5zNiX5e+c6zmfZOS/3nv/SKffq3fs+qgfvzWy8Z9/HZ9/XZed8l+Q+P9p+PZjPd5TvNQAAAAAAAAAAAAAAAAAAAAAAAAAAgL/op/4/tn4DVDUG2g== 1438613701.950,1.000,0.007,HISTggAAAQ142u3cS07DMBAA0PiTpMAVkDgK9+oOiRv0otwAFm02I41ckFoReG8zcjO2x4mTKJs+v5/epul4mM7aJZZzePl8/ZgAAPak/LN6y43mqYPjLckvIdYQW1LXkhzf2j1pb+POSV6soyd5Mdakrh7m2/IeL3Ed1Bn7b3mHkPcQYuy/hHlbmH9Jxt/6PyX1jdY7h3n6IC/WFa93vA7xvK5hP6yD69+SfqN9Mg/aPTm/2T4f7bPsPom/99Cek3W15D7Pxs/my8apSbte+dy5to6fPo/qYP3fjb/lub2391XZ2TrLncYrf3S9AID3NAAAAAAAAAAAAAAAAAAAAAAAAAAA7In/AQUAAO72/fEFHAYGcA== 1438613702.950,1.000,0.009,HISTggAAAQd42u3dTU7DMBAGUNv5gSAWHIC79GxIvQEX5QawaNhY+uQgAlKl9zaW5fF47Dppd329vr+Vcn0pN9Pe1ltz+bx8FACA/1AdwV2c43f+FtY7Oj6H+OlgXB8/d/00voS8z138FOIf93br+ktYp8/zsLdrN7528+ewr1Tf0uVZQt4W5m9d/NrVu3T7nUL8GurawuezhP5ov09h3hri03m1sM+j55/uXX+/aqijhfE6uPclrDcNnoP0fI6e11RHG9RdBvevDtYtYb+jOusP34/tpPftaN36y/xnxdeT6vO9j99LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcB/8j98fn+8XFewGuQ== 1438613703.950,1.000,0.006,HISTggAAAQJ42u3YS2rDMBAAUOtjxb1DoUfpnXqDQhbd96K5QbpIuxkY5NAGCn5vIyRLmpGsyJDn8+f7srx9LDftuyy34uX6elkAAPj/yoPmK5P526R/Tfr1UG9JvzXM00N7HF+T+gj1mMcpjFvDuC08H0k+Me6683kLefy0P4V4a4g7wvge8h1h3i1ZT7YvWbkm69hC/ZTEL5P5anIuYh6xvSbvPTsfYxKnhH4lideTeUaSd915btvk9xT7Z/dBubO9J+eiJu2z+2eW32zdv73/yh/dm3v3L1v3o+//e987x/7OW5f9AAAAADgy/8MAAAAAAAAAAAAAAAAAAAAAAAAAR1G+AFBTBt8= 1438613704.950,1.000,0.001,HISTggAAANt42u1VSQ7CMAz0kgYqOHHmAfyib0PiB3yUJ3AguYw0clWhgiLPZeRkajuO61wfz7vI5SYfeGNtbMtLEolEIpFIJEaGDp5X5MdAh2yEnegcuAQ6A123J9AJ2Vew2blKoOv7B+AevxI/DnaB9VPjufGR5D1BnBrErcQ+k/wczlWAWbxKvptgHXV4P3PQJ+w+ndStBvUvcM+F9J2QPtWgjhb0kQVxor5GOPHvwX+K53IyH5TkYyvnigY6I/bWOcby9p3nva5ct53i6Zf8jfqu64/roX9al83+3gxSBQ4= 1438613705.950,1.000,0.002,HISTggAAARR42u2XQY7CMAxFY4cWBq7ASWYz12I70tyAi3KEWUA2X/pKKSAKvLexEjuO6zhWuv87/pbyfShn6kXGRebPqQAAAMCyCFLwUXmOmfrefHTsV+09KPPV+EmRo9injJ3/EH2Tg6yvZv/B2IeRLc61jEdj1+RW/Kt+I37X5nsGmd/JuIi/Zv9l1ru87cy5aFyq1zxqHGnOTeMLE+9g6sPVwWjqIMUuOt/j8lY78ZTOvk6fpt6n3q9i6r1X31P3cXHVK/tUTuwvMXN9zOyTt/bfuLEfX9vn487+3uU98ejzT94pHxlnkIeXzPez8pncH/oK/W4x/7/cD/oGUB/kBwAAAAAAAPgfBQAAAADeVQAAC+nD/+VQBZQ= 1438613706.950,1.000,0.002,HISTggAAAPh42u3WQQ7CIBCFYaaAWF14Ae/iwgt5BRNv4EW9gS5aEvOSCW1jTKP/t5lAyzgUSzne7tcQzpcwiGO0IRyep0cAAAB4ZyvP9+/P22a2vfE2s57a30l/bW/GmOTcWeNWovYnade8eYxFonc9S54s9e2lvZPx2u5l/kXq13kn6Y+SJ8t9xZn/RubZO/mL0695shO952TOOur1JG2tO0qd1lh/7/9jzrpH6e+c+716ovNemFNvK39rvEn9wXmfWnnm7gfWeJ+n7gs2se6l+9zS3/fqWdt3yb487lfPFZwH8Il9AAAAAAAAAAAAAAAAAAAAAAAAoLIXQKYGpg== 1438613707.950,1.000,0.001,HISTggAAANh42u1XSQ7CMAz0QtJF4saRv/CtXpH4AR/lCRwIl5FGTlFRQfJcLDcTe+xaSXu+3a8ip0Ve8Ga1Wbs8JJFIJBKJRCLBoTvltU6ed+q3znqUxHeI40SvET4+L+AfwBbCH8BX4OH6SPK8eRPom5utwMN9I/BQ9ww8g/UjrOP+KYjjpL5K+ol9qeCz/heybwC/kjmz4D1qoMPJf4ySvkqgA+c8ymPAkyBPpIvVwfJaoN9W6vnUV3I+2I+dn7ry/Nz6HtAvx99K/1b17HU/5ndDIufm/+ZMnwgfBWw= 1438613708.950,1.000,0.001,HISTggAAAMt42u1USw4CMQjlM1NrNPEC3sWzTeINvKhHcOF085IXStTEBW9DKPCglHK9PzaRy1Pe8F3qLu02LIVCoVAoFAqFf4B+6Gdg10keJp3wDiwgG8SN8xV0B/8D+BnhbWDHOJSN6Ar8ndTXSf5G+Ef8CXhGnUdSP8pG6jqTvCvpJ/a/B/1ych/WFyV1L2R+8F1RV+KP507mjMV7MOeMV4N5kuCe7D9p8v8JiZfJ/25Jfw3ySHK/2OQe0+S+y+43Se7HX+/xb8WHfXgByCEF2Q== 1438613709.950,1.000,0.001,HISTggAAANN42u1UyQ0CMQyMj00ILwqgF2pD2g5ojFIogQe7n5FGDihaPp7PKNF45NiOr+vjXsrlWT6wjWVjvb1KIpFIJBKJROJ/kC91MqjTQR8FFqJfiN6InxDdfq4bn4L4nc+gx3jMwyDvSthB10i8Axv4YFyHvCt5vxO9w7lBXId7B3+si5Ozg08n9+z9jfTDSf+N9Bn9JZgv7A/ObSXzGvXTSb5G5kWDOPYfZfD/RP9Kg7glyMMCX4QO7i8J9smsfXjUPtZJPnKQj0yugxxU/5/zfQPrfQXP 1438613710.950,1.000,0.001,HISTggAAAMx42u2Xyw0CMQxE7Xx2A1wogF5ogZaQ6IBGKYEDy+VJowSBBIs8l1GcZDJ2PlIOl+vZbH+yB/LCvnA63iwQCAQCgUBgDfCV+PIX/av5/mZdEtjRtsH4E2XQXxXtDE7QbegvmD8jnhGnLsdTr4nxm4UnMPNoQm8r5u/QX9BPvQp/k8inwDd1Z3AS9eA5UPmmjg+1v3nwHKj94nnmv6Z26sfxqp068SrWzaKOLu6luk+8h7mjx3pZJ8/eOsrvp97hX33H/8W/f0nX76kmBTU= 1438613711.950,1.000,0.001,HISTggAAANp42u1WSQ7CMAzMOGs58QAO/IS3IfEDPsoTOFAuI42sVLmAPBfLqZfJtHFzeTzvKZ2v6YO8W+zWbq8UCAQCgUDgP4CQ4Kd0wEH+mMw3x4dT35znoHsm3zcL1cm0Xmm9k38S+d+8jfwmeHDeELwH8ajEdxCvTn2b4FGJzyBrol4VdTu9F8Vb6VQofiO+jeKK4FeIB+vOelfaL38fEHpk6tMpvglf9TGHTxffvYrPor46fxD7UnHqvEHo7/VR59s75zY5l+DYo/MSk3Nz1bzGojqr/w9YrAPeuYQFFw== 1438613712.950,1.000,0.001,HISTggAAAMh42u1VyQ3DMAzTYeco+ugA3aWzBegGXTQj5ON8iBKyCxRoAfFD2KEk2rHl+/O1idykwRtrY3vskkgkEolEIvFNaPp8Cxv0YZ06JXoDPnUTiUOdBvlLEOdEhxzpHMYLiTt5bVxBX2H9heSdyHiGuAV4hvo4f218gbysHsuDcQ7rq+Q76layP07q4f4KqaOQD89PJb6i/+5BPnbu0E8B3xacJ+30o8F9MJIP77UTPesDvX3FBvuiBj7kw/lffz/+5f0aXtcBXC0E9g== 1438613713.950,1.000,0.001,HISTggAAANB42u1WQQ4CIQwsLVtW48EH+Be/sd8x8Qd+1Cd4EC6TTIoeVg+dy6QttAMUwuX+uImcN3nDOpfOen1KIpFIJBKJROJ3ULBLYAv864SMZ4zjjOhYwI/j8V+5kHwjXokehfmts8O8BrZCveE/gu1B3Qp5GthO/CvR66DjQHQ2iEe2Q93BJ9i/Ferg+hZg1G2EZ/vBgn5g8Ury4nkryRfFy6Qu7H92b3zyvhWiI4obOT8J+pnddwvWo8F7o5Pv2awe+TDfXti73r/q+/bcygtKmQU5 1438613714.950,1.000,0.001,HISTggAAANp42u1VQQ4CIQykLQgYEn2AD/Hm20z8gR/1CR6EyyQTMO4mHjqXpqXtdGBhL4/nPYTzNXxg3Uq3ensFh8PhcDgcjl8grnOXfkJsWPRnfRTyDOIjL3abYN2gHutG/oHwJeiTIY7zGvTLJF4Ir4Ie1HsE/kJ0DFvBb92eoK4BT4I5UE8Dv5D5MumrZN8i1FWIR8JboY8RHUq+L8Zv5HyM+LP7wM6XzRfI9xrJXLqoN03uJavTybqQOZgeW3xflNxPxi+Tc9E/+U/I5B3cqt+32Gt/ZOM8Wv8G++UFMg== 1438613715.950,1.000,0.001,HISTggAAANh42u2WQQ7CMAwEbTdpqIAXwF94GxIH7nyUJ3Cguay0chESFLRzWTWOt66bpD1ebmezw9WeDLP6rHG6mxBCCCHEP+JvxtdaX4DiuMN/H/pF4mOQ37WAj8N4kHiAzwjxHfEZIa/CeIHxrnuId20wbwINiLfkvhvQAvO675bkN4jjcwT4T5CH/aykHuxnI4p14Xwn/cD3PBHfmqzzgdRtyXoq5LqQfrL1XMl+yuo0su49iZeFeUH2oy3c79m5wvbrqz7fOld/7X6+ku+PEEIIIYQQ4vP4A+ZnBY4= 1438613716.950,1.000,0.001,HISTggAAAN142u1XwQ3CMAx07LgpICEGYJfOhsQGLMF4jMCDhMdJp6Qqqnj4PpZd+85tGqe93h83kctTPrBqU7W6vCQQCAQCgUAgsB9Sxx+Nf7/nSL6S/NF6I3wGtsW92gxxvI58mdjGP0N/Dn6BuJM+G8/U0ZuA50jqHfRRB/WbzrnaA9TP4J9AR0G/AK+TdXDgx76VrG8hz0eIHtqJ3L8RvUzeP1aP8UR87bzXubNvjMR7eWzfMB4l/2ups/+NrLcOzhvWx+h8WTuvRvNk5VzUjXN4a96vz4V/593tvHwDMlAFjw== 1438613717.950,1.000,0.001,HISTggAAAM942u1WQQ4CIQxsCwusevABHvyJbzPxB37UJ3gQLpNMuoY18dC5NNMwpTSlcHk87yLnq3yQutVu7faSQCAQCAQCgcD+UId7/tn4Bv8/AW6gU6JLG3WoX8CfSZzWbSXrBy/gR96cvCvwE+gxToNzDP0B/Ab5FNCPfVbQFYiLdajkvCvJD7lXl0Ls0B3J/onUDeuRSb/gOnH6TIhuAZsIN9LX5vS9kTxYPRLpX3YfvXmQiZ/d863xZ+ePTvp1cu59m6fuNG//9V352Xv1Bhn1BRk= 1438613718.950,1.000,0.001,HISTggAAAMx42u2WQQ7DIAwEHQOBqJc+oH/p2yrlB/1on9ALuYy0IlXV5FDvZQXB64XYJLf1+TC7WkfqPHX2+8sCgUAgEAgEfonp5Ph/OcfRc/4Hkl3obOMsdB1cwIwvWL/5qp0XzDehQ67QbwNfar4KXw3+ZqxbhE4D0y/HF+gX4WcGV+GH55TE+2C8i31k5M1CzzDvou6yqC+eC+slifp14dPF/rLwqfrLB/lcrLdBv6WdecugjyfRn7Yzzj/0Y4N749t7/Oi4o+7j078nbwOrBOQ= 1438613719.950,1.000,0.001,HISTggAAAM942u2VSw7CMAxEYzstRUWIA3CXcjUkbsBFOQIL2s1Ij0TAgoVnM6ozjj9NnPPtfi3ldCkvxMq2si+PkkgkEolEIvEOlnV/5e/Cn8Zz0Fmnf0BeAXG8Yd/2qbKP7juC/050AXmG6Kt8T6IbJG6Irgpv+hl4FJ4gzl7WJ/Bz6Ndx5YP4zVKv8gD5ONgr1DWCnuoeoI8O54L6btAPb9jpPFrnOp3faORN9y2gDw7+Dv8pOu97gTpKY97UzvnlnfPJGv23H8/VfMf+5H18AkFSBVE= 1438613720.950,1.000,0.001,HISTggAAANp42u1X2w3CMAz0I0lbEIgBGIAtmA2JDViUEfig+Tnp5LZIFR++H8tu7mxXjtVen6+HyOUmX/hsdbZ2f0sikUgkEolEYjv0R54t1FViJdCJ9IzoKPEbfFca0XGi2+MF/K5bIV8FfueNs50gXsEfQM9JHxPEMd8Z4o3kw+cT1NHjJ+ijkn4anDvCeeQfwHfSvxP+AH2MgU6DeguZUzZXBeaksP+WYO6czE0l5zXQY7YSXlQXuxdC3oOTemXhXrDg/rN7b4Gurtx/tnLP7bV3t/L3qvNf6tEPKkgFBA== 1438613721.950,1.000,0.001,HISTggAAAM542u1WwQ0CMQyr015LEQ8GYBfWYQ0kNmBRRuDB9WPJ5FQJhFD8sZxrkipt0jvd7teUjpf0Ql4ZK9v5kQKBQCAQCAS+CUQJ3sJEvWxjXSH8IPLA0ZmY/Rfi4V+IQesqsYn/1UJ21ibiNvrOeZqzfsTbi/hDdyc/67H+IPw7+WWyd4q3I66kizinJuq5kL2JukGcbxH7N6H5vvE9L6SruOfZiQeHuU5qH9npGzj9C9EP2elXbLTPzglMzh9Mznl8aG7Oxv21d+lf9oMn0AkFSg== 1438613722.950,1.000,0.001,HISTggAAANJ42u2XzQ3CMAyFE6dNmp4YgF2YDYkNWJARGIED5fJJT06FQEj4XZ5i13+J47bHy/Wc0uGWnigb543tdE+BQCAQCAQCAR958DkDe35G16Ny6plPFnpll0V908ZV6BP0JuxnfKdWyKmf4IfyF6+wX1BPQ7zu2HfIF9hXyOl/FXWpPBrqa2Bz/Mxin5hvRt1d1KvOy8S5NMi9/jX1vyL6UeUz6t+c/E3Yq/4rzr0ywcynijjcv2nn/DDnvnvr8uZc3DsHPzWfvxXnX/3/zPv6AZVRBdU= 1438613723.950,1.000,0.001,HISTggAAAM142u1XyQ3CQAz0tWxEHjRAL9SGlA5ogvIogQdBQiONvIr2wcPzsRx7xxPLcZLr9riLXJ7yge9Wd2u3lxQKhUKhUCj8fh8U5vZTJ/XbkriTfLSoy0leDPJgXgPLeAPqx2Cc8ZwSvkZ4nOjvEF/AnsHvoONrV/AX8Dvw4fWAcwHxlejrhIf110n/GvA2EnfQj3NioEdJXSPzjrp0cL6C6PFkro3Ml5DzTv63guge3Q9Knm9EkL5Fcp+S1LFk/+jB/Xd0H87O+/v3yBv7FQWf 1438613724.950,1.000,0.004,HISTggAAAQl42u3bzU3EMBAGUMf5YyVKQKIUeqGTleiAJiiPDuCwcPnQyHtZFMF7F8vKeGxv7CQ+7MPL67m157d2MX+V06V4/Hh6bwAAf8l043z9l8d97Xx6ET9FucZ3YYv6EvmyzLjMP0e5FtfXYtx7EZ/j+o7b4voS+U8Rtxbxp8h7F/33aL8X9ewn579E/m0wjsy3Rfse9T3yZH/3xf1bivmvg99/Le5nnDt+3OceeedivU3Fes19mPMf5WvF+q/W21LEzcU+qNr3wf4YyXaj/Tt6XvTiedEHeaaibFfWj/I8v1W/R5nv0d+vAM4dAAAAAAAAAAAAAAAAAP+T/2cBAPgeBAAA4EDntE8xJgcO 1438613725.950,1.000,0.000,HISTggAAAMN42u2WQQ4CMQhFoWVapzHxAt7FK3glE2/gRT2CC8vmJz/UuDAxvA2BMjAw0Mz5/riJnK7ypk6pU5bLU5IkSZIkSZLfo4HO/HXRjueF/B8i7rcRP4zjNLA3ks/tBnoh+TuxG0gldoM4/vyBxCukDj/fpxzB++6QZxC/I/izvgyI10FvpO8byEbq7aQfncQxyGNBPyqROFcafA+c60rmpyzOL+YRMrfRHrG9qot12OKe6uLeR/k+vaf0z+5b+bYvL0UPBSI= 1438613726.950,1.000,0.001,HISTggAAANR42u1W2w3CMAy03YTSCtQF2IXZkNiABRmBEfgg+TnpdC0qfPl+Tm79uLiJm8v9cTNbnvbB0Ngbx/VliUQikUgkEon94cT2L+PQ7ve6EHXU+4HdEzf6VVIPdXa7AI/Ev+c9EC7gx7hAXEDdCvXR70z09byz0Is6lsbHxhPRieubQccI/tjHiTx3yI/9KBB/Ar8g+vC74j4woq+QfRJEtxMdLtap7CB6K6nLzoPS7eK8FaJTIcRcUfVj5XyKlfNr65y0nfKyvviP8puYt//+7/gbgiwFyw== 1438613727.950,1.000,0.000,HISTggAAAMV42u1XSw4CIQylhSklLryAd/FsJt7Ai3oENziLl7x0iHFh7Ns0bV8/zEADl/vjVsq5TNQpZUq9PksikUgkEonEL0D+pO5+TwPJeBL0qYSnxP++LzZS30h8g3gDfQR9bVN2yLcFfTXCR92hngX5HfQBcQb2AXlOYHeIcyI74Rn4nawTpZLvguu1IF+D+riPKumzkndIPbgv8f+w/VYIT4if8TrxK+m7BecxOm960C+L82h1HtTFfBLYvzV/5cP43f4CU1AE5Q== 1438613728.950,1.000,0.001,HISTggAAAM942u1WwQ3CMAy0YyekICEGYJd+WQuJDViUEXiQfk46JUXlAfg+p1rxnd3GSc+3+1XkdJEXrLE2TvNDAoFAIBAIBL4J+iN165v96CAn8v+HSMCo4yTfVvrmxgXiBXwc4ga6BfSW9TtSR4X4oaO76O0bH8HP4HkCfyd1ZqJrkG+kv0J8aicvwfMEepV8r0rqr8THiB/bX6P7R8CPrUudvg3YiX/uzJWT+fHBedSV8+Sdfrc6L3XwnJHBuHTOm3+5p3TwPX/qfttKn+XpE9LBBR8= 1438613729.950,1.000,0.000,HISTggAAAL142u2Uyw0CMQwF43yJQNAAvWxtSHRAA5RICRxYLk8aORLi5rk82Ulsx/Hu9f64pXR5pg9lV9s1b68UBEEQBEEQ/A8Df/kxXnb2ZVCDOjLEL6Am+vWPxTxVtEF+9Q9ZP4DdRauc17zTydfFbmKfxN8h7oQ6p8Q773qEfA36pPdusD7g3Yr0Jzv3L2DTnOp70JyYM380z+qvzjlbzJtgvcI++p4M4nn1dCc+9cGrS2mL/6G86PfuG0B/3ik+BYg= 1438613730.950,1.000,0.001,HISTggAAAMp42u1UyQ2DQAz0AbsIIqWB9JLakNJBGkpJKSGP8BppNCiBn+czWjM+1nh9ezxXs+vLvsiNfeO4v61QKBQKhUKhcBz8YD8nZ+Qg+iQ6RBAegNGOdSgdfh9JniS6RnSN3HsC7hvPEGcm+gnyd/BDe4d6MM5C9DPxW8DO+nAhfcZ+N1I3zs0IfcT/kWJOmtCFiB/CjvdR89vFewjyHlzMcxL/hLwh3vkg6gjRHyPn2Lk/jNwrhb+JveI7/X/dp37yXv43zll5/QMRKQW+ 1438613731.950,1.000,0.000,HISTggAAAMh42u1WyRECMQyzld2ELA8aoBdqY4YOaIASKYEH2Y9mNAkQftZHs44tx86xOd/uV7PTw95Ijb0xLk8LBAKBQCAQ+Cd8sl/gN4D6ncQ70dX7UehAcCadtfFC46Bx9gfF7Xykeex6B4pnLuSv7Mxb4yrikmCue6O4Rcy/dOIq2XMnX6V+sv4q7EX0EcKeaV143SDyct9435rYpxjc9xD6vXMAUY/6NpEvd/Kq+lyMq3M3qoPB/n16b/sknVn+o/WlyXpf/w9fGwAFig== 1438613732.950,1.000,0.001,HISTggAAANV42u1W2w3CMAy0TdI0CKQOwC5lNSQ2YFFG4IOEj5MOF7UIPnw/pzi2c7LzOl1vF5HpLE/sGmtjm+8SCAQCgUAg8A4aJdi0DrrST+Ff582//n3EzuI6J+BuH2CcyXpC8mL+DHEJ4guZRzaSv4BuXDcRe+cK8T3fAcadR8i3bzzBfAW/Cv5HUudC+mHAI6kf7oNM6pGdfnl+4vQV94OBLiX9UYeF6ML9ORCd6tiN6FfnHC49H0r6yXTZwnvFPqyfOPm3us/W3rffeqf+9f37tS59AG5PBR0= 1438613733.950,1.000,0.001,HISTggAAANx42u1VyQ0DIQzENtdqH0kB6SW1RUoHaS5lpIQ8dvmMNPLyiFaKPB8LY4bBGHN7vh4pXd9pg+1Wdqv3TwoEAoFAIBA4A/Kn55HJeHXyIgf9QniHzZP6R3whPOpYxm/AU2GciY4KtoG+Bfi7s08BHgP9HWwDnhXmKznfAvtV8K/gH3wXWNdJnhrYDjowT4XoYfoyOVch9y7kvg3qAcfq1K2R+jayzg6+FyX5wvXFeV9KdLL6F8LL5nWyDyjJbyJ+ceJY35KD/cSLm/XLj/vz2f/W7D4W//Km/wsMRAXY 1438613734.950,1.000,0.001,HISTggAAAM142u2VwQ3CMAxFEztNKXBgAHZhNiQ2YDnGYAQOhMuTviwBQiryv1j5db6dxHaPl+u5lMOtPOHD1mHtdC+JRCKRSCQSa0Zdebz6oa5h7cH3Cr4Gtgld6jTwLmyHv4HvQncGvwG/BT8Nuxd5Nfg16CzIZ8b+RZxnQh5d8K/9O6wX5KF0m7gHD96P/jw//Ses+V4u4nbhV6Cr6tFEHfA+Ix0XdU19F33kQZ+ZiFOCfrGgHlUfmsjH3pxT9uU5V9+M9+t5+2//pcS49wfvPwXK 1438613735.950,1.000,0.001,HISTggAAANF42u1XyQ0CMQz0kTgrPlAAvdAKraxEBzRKCTzY10gjR0gLAnk+kWNnfMRyds+3+ypyusoLvq26rXZ5SKFQKBQKhcIvQXfm1S+dZ3w2qdckDpSNyAPkDt+RDWQHO3YuYL+BP+QP4mchfpEvYD2CPfIP0DM/ncS5AM8B6h5EH0l+g9xPkDg6yQf3W1IP9Mfi8IRvkD71yb62pN8t6Xfcd3IvjeSDfJ3E58TO2X8Y0UsSL8vPkrpl82l2btnkfMn49U2eT8/hf3vn9gK+J/oEvW0FXg== 1438613736.950,1.000,0.001,HISTggAAANN42u2WwQ3CMAxFkzhNC+qBAdiFlVgBiQ1YlBE4kHL40pOL1CIO/hcrzve3ZcVWzvfHLaXTNb1h3eZuy+WZAoFAIBAIBAI+8sY6+Utdj+/pfv5/4De5N+Drf7I6OosdhG/ib92OUIfGV9DTukbRn8Q/SvxynoVP8UtdR6m7SR0z3E+g26CfHr9JXQa2Qv8P0HeNI34DvuZPzntTW8HvxQ3wPulMc6X9ornKoG8wL8WZ2+LMF8XZyvlfu99ov5Sd9+dWe3cvvV/nX7v//60/+QWK7gVY 1438613737.950,1.000,0.001,HISTggAAAMd42u1XWw7CMAxrmq7tJj44AHfhbEjcgItyhP20P5YsAxIIRPwTZYk997FIO11vl5SOacBHtBHz+Z4CgUAgEAgE/hn2Zl2mnwUP6y50MvBd8BnPHvQz80Wsx8n72PMCcfb1EeuIjfShTiM60/cB+rDeIN9AvxLeBnkl/jv4wDrrz8QP+nJSXyFfIBrZ30Z08VzZeRipV8g7uWdKn91LvA9J+FbfpZH1FPLfZYLnQr+I7yx/aK6pufDqPPyVef8s/1v3x3ZTfwTw 1438613738.950,1.000,0.001,HISTggAAANF42u1W2w3CMAyM7byokFiAXZitEhuwFOMwAh8kPyedElG1CMn3Y/lin904aXu9P9YQLs/wgTUrzertFRwOh8PhcBwL+TNdn89vdeVLvv/3KYlX4gvxjeT19Qg+8j2vAJ+ALxBfSR+52YXUiRBvoJeBP4G/gMX8QnQqPFcd5HX+DH1gXCK2Qp+Z7C/uD8ZFMv9MdCLUN4jD82KkDxucO5x7IPUS0QuTdY3wkfCZ9DV7P3E+7D4q0WH7oYN7v9Xf6z2oG+vL5Pre30k5OF/elJgFtQ== 1438613739.950,1.000,0.001,HISTggAAANV42u2VSQ7CMAxF7bjNwLBh3btwNiRuwKU4DkdAgnTzJetngZAofhsrTj0kdp3leruInO7yxrrULtP5IUEQBEEQBL+A/mme6kjcTyR+Arkyg96InRdPwZ/Bd7nLCWQhawV/q77Begb7CnY7R1/BvsF+gf013gHWFeIY2GUnLp7jCP4L1KOBfg/+Z1LXyakr3n9x8s4kHtZDSd94/WZOH43qxen3TM7P8k2D/5sRf949KLE3cn9sfhiZDzI4Z2RwLm1lrn/rvdAP+dn6OxsEr359AigyBb4= 1438613740.950,1.000,0.001,HISTggAAANF42u2WUQrCMAyGm3TdqlPwAB7CG3g2wRt4UY/ggy3CBz+biOJD/peQNMkfmjTb8Xq7pHQ4pSdyk9akn+8pEAgEAoFAIPCC/QmPLdgpHX5dL8K/iPiuD0KyrkHEj+AZxP8ozxk3NVlFPcq+Qb4dzpnfoWf4zdBHwd/tW9RRYZ8RNyF+D/8qeFmvi74U6Fn0Ja/sky/4mfAbxbwUMb/sVxZzam/OaRU8Ju7TcN/q3XD+TbxfF3xEFvmX9oSv9Lcv7UX70f79dF97fJfW8T8Au+4FKw== 1438613741.950,1.000,0.001,HISTggAAANF42u1WwQ3CMAxMbCdp4cMAPNiE2ZDYgEUZgQcpj5NONkICHr6PZfdqX53EzfF6u5RyOJUndNo6rZzvJZFIJBKJRCLxPbzuYUEeWgYhvEp4QnhK8qlTz8j3GbyH99E+7YDnnfgSjDfIOyC+kvimdwG/O+8P4Bvwt3x78Ecw/w54HXhK8ijUW0gc130ldQbpi5H90sg6oz5cf+yfd37Qt+D+F1JHyD5nlp0n1NEc/ey81TfnSCX9VKcv3vyIQoL6vflWg3PyU72//h/8na4HDDcFGw== 1438613742.950,1.000,0.001,HISTggAAAN542u1WQQ4CIQykLbiwevABHvyJbzPxB37UJ3hw8TDJpBhXo0nn0pTtDLRA2cPlek5pf0wP2GJlsXq6pUAgEAgEAoFvQFaO+/e8n/9j4AvhqaODekbidXAedeI3ZDyDXvcL2D5eiV6GPAziOm8CazCPAq/rNlIv1C1Er4KfgVdBt5H19nVtIa7B95nkuSN1xTrOoId5TSSPRvajkPzNqbuR86qgy+6HkX0TR5fxDNbH6ifOeffulZF7LIN8cfhC6uT1idE+lQb72Lt9UlZ6B+TDPHnR/7X3zd3XOxZxBRU= 1438613743.950,1.000,0.000,HISTggAAAM942u1WSQ7CMAz0koS0IF7AX3gbEj/oR3vkyIHmMtLIaiW44LlYTtIZO4md3p7LQ+T6kg98s7pZu6+SSCQSiUQi8Qvon+ZnB/dBiTX4r2O8Rsad8CIK4Uf9SnSdrDOwQ6fB+Anma+Ajj4PfwRbQq6A7/Bn8Cb5rsK4B/wV4O/gz+BPZv07yKYSX7bORcxvzZ7K+QDyoi/fJiR47p+h+KomLWSc6GtSLkPgV8mB12YK6j/qBk3MxEo8G9S5BX9CdfedoP7Sd/e9b74m+AZ2IBdQ= 1438613744.950,1.000,0.001,HISTggAAANJ42u1VQQ4CMQgstOCqFx/gX3zbJv7AT/kcn+DBbUwmmdBNXKMJcyHtUKAU6Pl6m0s53csLdZGySL08SiKRSCQSiUTiDfmSXQn2mR47p8F+5LeCVMIL8ErO9bXBfgNZYe1wbgd8tzORuNCegdwTfw7+MB9O7oXxHYHvcR6IPrMzkfw78OweaBfjMaLn5J2E8A68kfrwII9G/LG61MH3b0Q/qmeUFvR1Jf2FfqM+bEF/lkE7GsyF0fkgK+ebrJynW83bT83nreL9lXv//X/9BP0rBaQ= 1438613745.950,1.000,0.001,HISTggAAAM142u1WyQ0CMQz0sckmSEgUQC/UhkQHNEcZlMCD7GekkQNIwMPzGVnxMUm8Gx8v17PI4SZP+GAdbKe7JBKJRCKRSHwCTV0/0bfNdYbzHaljEBfpUTI/IleiB+tVyL8MXkmcwnol+Qrkc2IXsPvgBnaFeAN7F/ivkLcRvw681dmD3g52CdYX4BacdwU/VsfIPTC24F5Z/ynZh072eSF1PNBjk7o90Ouk/33yO5ZJXUr6WoJzY/ojPfKmX/SfeTXe5Lv493ck31fQ9QBgzAW3 1438613746.950,1.000,0.001,HISTggAAANR42u1WORLCMAzUyk5smBQ8gL/Q8i1m+AEf5QkUJM3OaNZQJI222ZF1Kz5yfb4eZpe7fVFWxsp+e1sikUgkEonEEUCO4Kc5QKwjWHdiBFyFndP/pAueSZ5E/VXwRPEq5VF+newXWt/itpVPQR8zcSPZKH+jOhrxQvkKyZ38N/2Z/EtQ30xxQPkr6Qvl47r64HxB+uj7837qYv9Voed9aoGMID/beXC+XOR3YQ/RD2ieZfD8RPdCGaxH+VnQHwbvHeV/9HuCnd4n1T/+jLP3+4QPN6IFQQ== 1438613747.950,1.000,0.001,HISTggAAANJ42u1VyQ0CMQz0kU1YkBAF0Au1IdEBDVAiJfAg+xlp5KzgASvPx4oyHh9xkvPtfhU5PeQN71a7tctTEolEIpFI/Dc0W/BRP/RH8tPBfBgv0vVBvgdxln0L4pVuJ2INeBX2HdaVrBX0JtA9kvgNeA66GG8X1LOHPGai00Cvgf/idyD+Bfyi/mA8rHMmfCPnhfuVnFcBi/5O5pNZDfiVzLmBH/IKmVuWhwzeJwvuMatLyVzj2kg/LLi3ZeW7p4P1rX2/JDinrf8z9mX9zf3jL/cFBZs= 1438613748.950,1.000,0.001,HISTggAAANN42u1XyRHCMAzUYccBP2iAXqiNGTqgIUqiBB7Yn53ZUT6Gj/ajcXR4JTlycn087yKXl3zhQ+qQdntLIpFIJBKJxC+gWYIldVT8viN+TvynfQ3i43rGK/CcrT2QBfhM/43EdaKvoN+J33nINuQJ4jTwr8CvEx4V9Mink3WB/Trhs4GdA/8deG6EH8pG+oV9Yf1sxN5IXwv7PwnOrwd8KjkvRvRYHwt4Hc3Pgzw98BfCx8h7L6R+SvYvJA7rgwVzJ5pXumj+/eue0YN56iJ++gGi+gWu 1438613749.950,1.000,0.001,HISTggAAAMt42u1XQQoCMQxskt24FhEf4F/2bYI/8CM+zSd4sL0MDKnCImLmEibJZNOQFvZ8vV1KOd3LC9asNKvroyQSiUQikUgkvgcJ4vpmvgzmRfWN+JXoFfImwntdB3/nc7M74F23h+91/xF0BnyBek7yPIhj3gJ9IcfzVYhjfwfgTuZXIa/C+Sro2JydzBt1M+GoY/tgJO6wT0b0rC7uF9tLjE9kz5VY+7BfIf9h7D4Zmb8N3jsN7rUEc7SN3jMZfH9+9Z3+93627l+elPQFtA== 1438613750.950,1.000,0.000,HISTggAAAMp42u2VMQ7CMBAE72wHOwKJD/AXvpUWiR/wUZ5AQdysNHICTYrb5pTNetdnXZzb8/Uwuy72RV6rrzXd3xYIBAKBQCBwRHj0uUnvO3UZ3ifhqapfgvVF8vr7CfgMfl1fgZ8kT/06f5JaZP0sOVX0CfjzWpvwXXeR/cyS32A/uo76reKTZR8Zcgro9bzofArwDeaswrP2TfNjotM5MJgj5Udz5pDj4GODPBt8b1QN5pn68AGv5zq6J3znfbXVx/+8/371Ocr/xD+xCQVn 1438613751.950,1.000,0.001,HISTggAAANN42u1WWw4CIQyk5bXozx7Au3gtf028gRf1CH4IP5NMStw1Mdr5mbSU2YEU2NPtfg1hvYQXYmfprOdHcDgcDofD4fgGyJ/5lA/pC+EBNeoxH4ED+6/snDoXqMsQN4gVeOhWyBfwkQ0W8MXqKugvEI/xI/HTIM6Qb+Cjkv1Z4DuoP8ZXmFfIOoTUDf8H0JVJnwr5CvMixKyfhOgp6VurLxPRT6Qv1KiLk+cpEV01zvfsOsXwo5P52fP/LnTyXpON99je9+WvvJt77ZNsrGO+5AkniAVj 1438613752.950,1.000,0.001,HISTggAAAMh42u1VOQ7CQAz0tSFBCD7AX/I2JH7ARykpKViakUbWhnR4mpEVe+K1vd7r/XETubzkA++snW19SqFQKBQKhcIe0Dr3T/FbdWyjvkI882tgO8QZ0XHCAboG31vCU+cD6Bn4BeQTJM5BdyL/acRGv7nzCfQx7gj2QurzjT+T+hroL0n9WP1n0idP+jSBfyRzECSfAD0nfpLMF54rCCMimX8lfcnuoZE5ZSzJfdXEP9snTvIf1WH7Y3Rf6uBes5327r++b/oGPtsF1A== 1438613753.950,1.000,0.001,HISTggAAANR42u2Wyw3CQAxE195PEsSBAuiF1kCiAxqlBA4kHEZ6WgiIXDwXa732jPfn5Hi9XVI6nNMTebY2Wz/dUyAQCAQCgUDge9ifeKwz9g/1vKPrEKdj8i//nwXqM5mvoLvwjJCn/E1sEZ4mfKPoF4lT3p2Ml7wJ+AeJG2R+D/4Geco/wbxDvQ3WOco+6bqVP8M5KK8Bb4VzLhA/Qf0V1k08vXta4J5l0TPQc7D0bjO8p9p5lwnqSLCv3ukrtrKv2Zt+X5m3db+2H/fVrb9LW+37S+cB7MsFfg== 1438613754.950,1.000,0.001,HISTggAAANB42u1VwQ3DIAzEBockrZQFuktmq9QNukTH6wh9FD4nnRxV9BP5Picu+GwjcG6P5z2l7ZW+yI2lse7vFAgEAoFAIHBGyMn6EKcvT9eD+TLJp8BG8hj4FIhDXWBtsL/rM4kzknci9dbGK/jMwCuJy8Bdv0Jc91nAZ2t8gToryVfBzyDOHH2CehdyrkrOnfko6AW+G1krnHsm9y6TfEr2F+eemuNbgNm7UhIvxE9IX4no6viqMw+8d350DijZL4PmrvxY16j5/u/4Uf8f+QDUrAWW 1438613755.950,1.000,0.001,HISTggAAAMp42u2WyQ0CMQxFbWeWsAhNAfRCbUh0QKOUwIGZy5eeEokLi//Fcub7x3a2Od/uV7NlsRfKan21cXlYIpFIJBKJxDfCf6wOf7P+Xp2A/0IHXgBPdVr8AvED8Eb5rnydt4rOLPxJdKvoFOFXyIN0jjLv5p9kPCR+Lzo7GZ/EbjoHyWuQ+Fb96mt/Z+jzCOtZoY8O6xiQv0HfDfZJwH6kfUJxdC5Iz6Auh7pL53lqnS+HvhCP7gfvvE97x6PhO+T7afd5/Ok75U9JxwT5 1438613756.950,1.000,0.001,HISTggAAAM142u1WwQ3CMAx04rihFSAG6BBswGxIbMCijMCD5MGhkyPBg0q+zykXn+M0VtL1dr+KnM7ygjZOjfPlIYFAIBAIBAJbQop9vQH/7xLJi6yDcay+DFwgrjj1GfEr6D1+13iCcQG9gl4hbyX+rh8bz6AjL7CPPt6DfnDWnZ36DXwG86gr+U4T+BaIN3IORs5bgQuZZ30jxK+Of7S/CukvIf2Vic+LF7JvI/GZ5GPrsHrSoN+rm91DefAeSF/ea7/Ot/X35V/et49zeQIeRwUU 1438613757.950,1.000,0.001,HISTggAAAOB42u2XXQ6CMBCEd7stUuMR9CyezcQbeCmP4xF8EHyYZFIwoCbM99KwXabTH9pyvN4uZqe7vYih9KFM54cJIYQQQvwzvvF+eSPfJ+q+73+NvAx5Be6RqBeQbxDPjfYLyQui0xGdMb4DXYwHxFleT3yO8UPDF+pW4ndP/FVor8J7Qfx0ZN4yeb+AD5yPHvy1dDLpZ5D1guOViG4i6xO/j9Y6son18WG9k2dj/2PkO0ykdDIeTN+Jjk30MXf/8pX2QZvp0xdud+n9fO3zzX/cr62c40IIIYQQQgjxLfwJVQQFvA== 1438613758.950,1.000,0.001,HISTggAAAMh42u1VQQoCMQxMmnS7CoIP8CHefJvgD/yoT/BgvQwMieAKQuYytJvMNNlt9nS7X0WOZ3nBJuvkdnlIoVAoFAqFHLRaUH3ZsD/65f42oqNJP8YG7ODH9p2c7607Jneil9XH/AUY41fIQ50O+YPoHuD5HvR3sGY6C/haED+Anfjge1vJmsWzPiL3oA4j/bZAV0mck+/LAx0l+43cDw/uA/MXEi/J+jQ4dyO6EtQTzQdJzgsJ8rJx+uHc043m8L/9F/XH/voEYQIFDw== 1438613759.950,1.000,0.001,HISTggAAAM142u1WwQ3CMAy03SQtAQnxZxdmq9QNWIxRGIEH8eekUwIfBPg+lhv7cpekac/bdRU53uSJqUVt0S53CQQCgUAg8B/Q0POT+6SD/Qr/gx6N1CEP61PIE+S5xRmeMz6vL5Ab0bMAf+7oSIR3Bj8Zos9Tyfie+Cwket+J6C/g08cPoGMHeSW+KvFXSF5gvRfgxXWdYH1fPS/Mt5D91E40ogfPXybvRyZ+bZBPOnqN+Ov1JTKvkj4h9aP3B+MZvYf0zXr98L36bd9FfQA15wXF 1438613760.950,1.000,0.001,HISTggAAANh42u1VSQ7CMAx0nIVCuXLjEfyAtyHxAz7KEzjQXEYaOZUoQmjmYsXLZGon6fn+uJmdLvZGXmxarF+fJgiCIAiCIGyHBNbIepRnFA51OeDLhKf7K/Dimu0X+RlPt4XoaBDfQV6BfRvEMX8P/gnqGsS7nUFXgfzOcxzkn0HXAXiRrwXzwb5NwFeJ/kT0VTIXNucazMWDuWA/nZzXSuKZ7OfB/SyD99gIL+q1QM/ae+NBP9j3ZaIrBXVpsC7yr30nWZ9/5V3fKv/b+v7lPytonoLw8fP4AiteBSg= 1438613761.950,1.000,0.001,HISTggAAANR42u1Wyw3CMAxN7HxcOLAAuzAbEhuwDGMxAgdSCT305EI5VMjvYjmx/ew4cXu8XM8pHW7pCR0yDymnewoEAoFAIBB4Rf5zvq3klR0eIfayMk8lcZTos2xDFvCf+SvsI8+sd+KPfHuI10Fv5P+2kDyNxNuB3iF+g/qM+E9gh/GM7BvwTITfSN2V9Af7wvqI8YycX3XOt5D+K7GrZF2c+95gXZw4Su6JkvejpJ5CzteT4rz7vHAulIXzxJsPXj7y5TyTD+fTVuf+r78XeaX/m90DTOMFnw== 1438613762.950,1.000,0.001,HISTggAAANh42u1W2w3CMAy047RNQEIMwC7MhsQGLMNYjMAHyc9Jp8ZVQULy/Zyc+BU7cXu5P24i56d8YI21cbq+JBAIBAKBQCDgh+5sj3Ii+8wuERn1cuPitE/sf7LxRPxkYMzfgGfQT8AZ9CcSv+8fYH+G9S6fGleIU4mfvr6An0IYz3Uk/cB4BeIskIfBupLzsvqyuhmxr2CXSX8yubfsnqG+Dfaf+WGyrdjb4L1nbM73K6Qua3XAPrP6CnlvMpiHd25556NunJP6pbm8NV/dyc+/ffd+fQ59Ax90Ba0= 1438613763.950,1.000,0.001,HISTggAAANF42u1VOQ4DIQwEg9nANnlA/pK3RcoP8tGUKVMEmpFGJuem8DSWr/GwYs3hfDmFsL+FB1K3sVs5XoPD4XA4HA6H431Ew3+VL07yMz8RHoH6RHwhfCOeIT98hbgSPQp8I1+6rd02iK/dLjC3EJ0V6hvER9+O9DXII4+Cjgz1xdCTCf8K/Phd1Dh/BT+DDiU8C/QlMicb/DJ5P4X0Z1LH+GWyDnVUci+V1IsRl8n/TwxeMeKze+LZ/RSNORb/t/bqr/f41no+9b5spfvv3uk78EgF7g== 1438613764.950,1.000,0.001,HISTggAAANd42u1WQQ4CIQwEWpBdPfgAD/sT32biD/yoT/AgXMZMSmKPncukpZSBLWVvz9cjpeuRvpDBeXC5v1MgEAgEAoFA4BcZ2CsfQzHimS2Gbpyn+D9IeOY9Da7gn9zALmQc809/B13V8Gey7jZ4H3whejvs6wy6OqynsB7ajcRX0LOBrkrOoUG8kHiF/DvsS4Hx/FGvkO/YyLiSOlNSn0L0MD/mrcTP6rYQHdWoV7xPGKeL/cJiK28x7veq7dWv1CnPal9l4+LctzOpF+/+7v2e/KvHnP8BYuAFHA== 1438613765.950,1.000,0.001,HISTggAAANN42u2WzQ3CMAyFYydpWiRgAXZhNiQ2YAnGYwQONJevstxCxcnvYrl+/okbu73cH7eUzs/0QZ6lzFKvrxQIBAKBQCAQWEJ25q3li6HLRr5+mUeN/0bayauIR/8Cuzr5Gp4XyAG8Ar3XM8E+Qk7gZ9TV7UcjfkU9J+gj/Kg34zwT5GDo7EuGnefq8Q+OH/teDSng8/0Wo6/q1J+ce1ehN+PeiJF/cOxi5MnOvKhTtzfX6syNOPF05fxnZy/oyv2TNvK27qm98v26t//1fVns5TfsowWd 1438613766.950,1.000,0.001,HISTggAAANV42u1WSQ7CMAy0szcICe78hbch8QM+yhM4EC4jjdxW6QnPZZRk7EyaxOnt+XqIXC/yRRysg8P9LQ6Hw+FwOByO+VBgIe1AxsPO+VgeNm8i/YH9PxJW0GO8EH0DH8nwkUFXoL+R/p++Akfio0KeCvnO0F4gT4V8ffAJ4jr4iKBDHwXm66BbyHfD+Aacid9C9j8Z+6ZkvIEuk7hM7lFa6QPPeyTjwWircb6V3JO48T6qUT/UqBdWfNiZTzfWnbV1TCfX1b06OdiHTF6/HLyuv32vP+SVBQs= 1438613767.950,1.000,0.001,HISTggAAANF42u2XzQ2DMAyFYzskcOsA3aWzVeoAlbpoR+ihnD7pKYA4VJXf5cnB/3ECXB+veymXZ/kiVraV/fYuiUQikUgktsGyBYkT5scG82QH/Sn4wL5uzNMHcdvKM+SAfYXc4G/Ceoddgzwh7iTidujR7yzyqmDD8wXxOtZn0R/mvQzqbULPRd20o16FnwBXURf7EGI/Qvx/kLvYfzU3IeYyRH6s20V+jOcDf6ouNS97z62J8+sbz6XvvG8CfSo78zx63/3Le/nXvw/sZP2z67UPFiAFbQ== 1438613768.950,1.000,0.000,HISTggAAAMl42u2WTQoCMQyFk2ba+QHxAt7F63gNwRt4UY/gwnHzwaMzIoKQtwlJXpI2bUNPt/vV7HixF2KVvspyflgikUgkEolE4v/gHX8RPOd/sMMzwVf2AfoIveBf+uZX5J2Rv0IWYed6GuoE+AFeRf0F/gn+wD4r9Bn2A/I02EeRb4Icxf6qiB9E/5tYZ4W/iTzq3F30NTben+j4F3GPSme/Dp3xTfRRxZuo66JPfD/R4W+dA7Hx/drG97933uyt+624T+ek22/gT1ksBVE= 1438613769.950,1.000,0.001,HISTggAAAMV42u1XWwrCMBDcR9K0ingB7+LZBG/QC3kkj+CHyc/AuCJFEXZ+hmyGmXSbpPR0XS8ix5s84Z21s53vkkgkEolEIvEKmi34av/0zXrkaxu/RwdfZCVjJfqpcwH/Broa6LE+kZwKzHIr8ZthfowX0A+fHdTxORbgBvN7YIfcBjzqB8jFfCP9q7BuC/ptRFfJf4eT/VBIjgc+TnwinZJ+sD4JWbcH+94DnX94bgphI+ef+Ub3jAa+/3oP60b34a+/i/oAjdkFpQ== 1438613770.950,1.000,0.001,HISTggAAAMx42u1XwQ3CMAy045gQ4NEB2KWzIbEBizEKI/AgfE46OQ8qQPJ9Tq6dsxM7VXu+3i4iy11esME6uKwPSSQSiUQikUj8Hgp8t7HnyCWwUaeQOCPxEuStYL91duBncWgbqa+RvD64Q17kDryQOCfr9lBHhzoOZN8NdI/gx7wN+BTkZefaiL6TfmLfClmvpE8YZ8Hcsbm1yfVK/ncYO5lrC/Sjc66gV4N765P3Vsk9Zvbse0JIvRFYPRb4Z3U/FbcVvp1/6/r0z/avT/zLBb0= 1438613771.950,1.000,0.001,HISTggAAAMt42u1VQQ4CMQiE0m531Rgf4F98m4k/8KM+wYPbyySTMb1pmAuhUIaWQq+P593sstoHsUvfZbm9LJFIJBKJROIX4X+at0/uK2LdSTwn/gvYg8Rzwj/WK9hRNsITYK+wPvI7gh6EZ4E4Q3bCi/4n0FfYv8E+lAfif4ZzdIi/kTwX8MPzG7n/DvfK4rrwb8DTRB0q+BXB20icJvRCzh3i3QZ5j+zdmugflocTu+pPrGsQqfJx0ccmeE30vX05h3xy7s3Ox/zfSF3e1N0E/g== 1438613772.950,1.000,0.001,HISTggAAAM542u1XQQ4CIQykBeqixvgA/+LbTPyBH/UJXsplkknNblYvncuEtpQBShNuz9ejlGtxVGdx1vu7JBKJRCKRSCS2Q/40L2Il8yr4JdCDcR3sGuRvYG/gr8TfiC70Tz0HGM98g/gb2BeIH8RuzkfgGXdxPgOfYF2DMa7D9jUgrwXnjP+BBcYG99GDe1bYj5Jzt6De2f1Wsn4n/5pK6j2qN1bPQs5Pid5O6ljJe2T7jt6TBDowPnrHurIPyZd5dKe+uLZvlh/n3UvnZl0fcMoE+w== 1438613773.950,1.000,0.001,HISTggAAANJ42u1XyQkDMQy0JB+7OSAF7COdpLZAOkijKSGPrD8Dg5wlsHloPkKyNR4ZS+Dl8byndLmmD2y1slq9vVIgEAgEAoHAP0OijiFeJetG9guJG/AVsj87+YXow7y+r8H6BPk9XiEP7Ql0ZOBXcs4MvoLfiMV6D6BzAv8I+Ux/5zmD3hlsc+qtJJ5JHHkK3IdA3Mi7wXtEXiX/k1F+gfoqxJtznpF3rcR6urE+c/pSSX8Wp1+F9JUQneLMHxmcC/rlHNk6D2Xnefpr3bKzrs18bz2LBSc= 1438613774.950,1.000,0.001,HISTggAAANF42u1Wyw3DMAg14E+cHrpAd+lslbpBl+yxI/RQ5/KkJ5xTJYt3QeAHBmyT3J6vR0rXd/rBhpQh9f5JgUAgEAgEAitBFslTQXp2jCuT60LiM13Afuh5yAL8DvwK/AZ6Bv8N/BvEKfCfq7BvJ/t2ohvRjdTZIa8L8DeS9+G3w/pOeA3qK8BrJF/0M/DPYK+kXuavwKvkfDK5v9lZF3K+RvqhpP94j43UL6RvyemHOO90Ng72g703deaJNyf05JySk3NE/jxHZ+frKt83av8CbbIF4g== 1438613775.950,1.000,0.001,HISTggAAANZ42u1W2w3CMAyM87BDi8QC7MJsSGzAYozCCHwQEDrp5BZRiQ/fzymOc7ETx+3xcj2ndLilJ8pgGZxP9xQIBAKBQCDwCYl8NtWVlTqyUuf9n0f8MowLWY86qNfIfAbdCuMXFOze+gn27YN3YK9EZ4J9UUchv3nwHvZR4A5s4N+Jv4EdxzPEY2BXkjeywXmYc14N4q8QRyH31oDVqSN236zeCqnj5vjrwjpndcPiYu8H581ZX533yvJPjj07fUOcdbJQZ6v++Kv++m08srB//sv3VB5qfwXF 1438613776.950,1.000,0.000,HISTggAAAMx42u2WSw7CMAxEnU+TFBZcgLuw7bWQuAEX5QgsqDdPGhXBCurZWE4cj+1O2p5v96vZabEXymrTavPlYYFAIBAIBPaJtDPeX30u6cs47mdYX6/w/b9xQh6u83yBX3HeeWfsN5xvsCq/19GR3/2DyOd2iL46eAb8o6i/I558zF9E/IR+muDhvGaxruZMniHm3UQ9VegnoU4TcVXo04Rei+iDela6yUI/6l6UjfuTN+pUeU3w2MY81D1Xc1N9fPo+fpf/X79r1Hd6AvduBSg= 1438613777.950,1.000,0.001,HISTggAAAMh42u1UyQ0CMQy04xwLD7YBeqG2leiAJiiPEniw+Yw08kLy4OH5jBzbIx9JrvfHJrI+5QPbWXdOt5cEAoFAIBAIBP4HetCfJsUr4R5fiK4RxvwKftQ1sLu/gV4m9TTIy2DjeSV2Ab1K4jufwMY6zmAvoNeAV9Dt5xfIx7wF6se5ZjJf7B91Mtljg7jq7J/tOzl7N1KnOfsu5J4noqtO/cWxjeiYE8fmhO+yfPlu2fu3g/+MTvqv9Ec9GcyTyX2NzmO0D30DpncFkQ== 1438613778.950,1.000,0.001,HISTggAAANF42u1W2w3CMAx0EqdJCkIM0CHYgNmQ2IBFGYEPEj5OOjkgISHh+zn5EdutY7fb9XYROZ7kidQ5dI7nuzgcDofD4XA4fg+v/zXDjn7JsEeiV4ifQFbQYz60L8RfiDzOZ5AXqDcbz1Mg7/CvIBfQY717Ug/yiLOSfEryraBvnQ+ddyROhfoU3sMC3ECuRv8L+GNf22S/M9ErOa+kHrQHcq8iuffJuPeB9JnNzey8qiGzOQ5kDpk9GHFn81j+7yJ+uO9kct99a9/+2/dl2v8BfpsFKA== 1438613779.950,1.000,0.001,HISTggAAANd42u1WwQ3CMAyM7SQNLUgM0AebMBsSG7AoI/Ag/Zx0cipVgofvYyU++xLXtbI+X4+Urrf0hXUr3er9nQKBQCAQCAQCx0Gctbfv5WVxSnhC/Ereh0Z4aPNg/MYrcN4CfCM6E+SbIL7CWsg5C8RX8FewjfgXwt/0znCfzX8B/VO3M/Bm0G9EF+uwkP0MeSqpt5DvZuSeHr+AVcLPg/2G8Y30nZF+MNBTUocJ1snpczxfGayTOnnU+f9lsE5sXpgzH2TnHBIyj349f0fnrRys929xu3U+DBAFHA== 1438613780.950,1.000,0.001,HISTggAAAMx42u1UyQ0CMQz0kWO1fCiAXmiHNpDogEYpgQd5jTRyuPLyfKxNxuNx5PXpdr+KHC/ygo+oI9r5IYlEIpFIJBKJz6GL+TaZZ5DvgW4ZsQLfIDrRV9BRwtvIvRN9/C5w3sB3J7FBPuYV4gPfZSc6G/AqqXMAPvrayb0H9Trxq+RciM9O3ht9YF0hfPauTuYF/VowV43MNauD81SJbiFzGM2tEL4Snxr8jzaZF0Xsa3Z/WLA3/M2+Zvegfrk3f73H9U+6srjP1fX0CXDfBUA= 1438613781.950,1.000,0.001,HISTggAAAM942u1WUQ7CMAiFQu00MdkBvItnW+INvKhH2IetH8+8sEQTs8j7IawUHgxIL7f7IjLP8oR1qV2W60MSiUQikUgk/hm6E174jnu954h9ITq7XyGOkPjIw8AP043EYd+d6MPvocsj6EM20CewryAbnKMd1qsRPw7xkKcT3g3kmdQn4m+kbk7q3Ehe4/xE8ke/QvJEntjfDnVw8r+xr5CHkr60YL5K0JdC6llJXA32SiHzacG8bt1XGuQpG+NIsE/2tj+/zffXfvRDP2/3V4YhBPM= 1438613782.950,1.000,0.001,HISTggAAAMt42u1XSQ7CMAy04yR16YUH8BfehsQP+ChP4JJeRhq5RPSA5LmM7E68VJab3p6vh8hVBmywDi73tyQSiUQikUgkzoeCXU4+x3Qdnhs5p8CVxGugM+BG8uG9dIE8BvZlsIN/Af3e30rqbqS+Pe4GcTCeg99JnexcA/8KfaCOsZN+kJ28zw55N6IrYFeSp+N/RmAbmUcl82EH54jND85hIXkjPeqifiupM+JC+pagLjsYV77cK9Ee0sl9JqROmYwvk/39Ks/ffI8+b4cE+A== 1438613783.950,1.000,0.001,HISTggAAAMp42u2Vyw3CQAxEvd5PAiQSBdALtIZEBzRKCRzYXJ5kOUGROOC5jCbrX7K2c3k87yLnm3yQO6fOen1JIBAIBAKBQOD3SIbmcwV7ftZ5gc6OfwaroenXOg9GnAWHzhX1HWE/wp7vM8CuGnEXPqHOijg8n5C/IV5D/hl6cnhAHbOTL8NPoQv8R+f+GnSFLkYdvAcx4lj9ZvWPOixOH2YnH+3ZL+LEVWO+1JnD7GhvftfqtXWljXuqbswrX+6rvffqv/9X9vpO6Q1LcQVI 1438613784.950,1.000,0.001,HISTggAAAMp42u1W2w3CMAz0o2ki4IMB2IXZKrEBCzESI/BB83PSyQ0CqUi+n1Pc8yOuE+Vyuy8i54e84SvrynZ9SiKRSCQSiUTid9Avx5v6Ow7iR4z1GInjYMd8TuKXwG8KdGifIV8DfbefwF6Jbg50Pe8R9MgFGL83WB+gzkq4AeO+K1mzPmlQt2/sF/4n7COykrkyMkdO/JlfCeLgvtAuxF9Ifg/mX4jOBs+pk3m0jedPg/57cC9F94YN6kfvR5V9Q/+8rk/rt73u+wXODgW3 1438613785.950,1.000,0.001,HISTggAAAM542u2WwQ3CMAxF4yRtSLkwAAOwRWdDYgMWZQQOhMuTvkxFOeF/sZLYPz+u6+R8u19TOl3SC2VYGzavjxQIBAKBQCAQ8GE/4rEv9zG+72AJNV/xXsyC1xz/inERumaMJ8xPIr4I//d8G7ZDT8N4GfYAviPWO/zIQ70N8VwnT4P+LnQxnnnpTn4WobuBpyE+O9+F+7EuvHqoor68elZ1WMR/pPYjbxHnnoXOIuJN+NlGm0T+zOkDW/uP7dSP9uqrtvFceyH/yb3xcT6esHwFGA== 1438613786.950,1.000,0.001,HISTggAAANB42u1W2w3CMAy0HZcmIKQOwC7MhsQGLMNYjMAHKR+HTs5XhcD3c/IruTpulNP1dhFZ7vJC6ayd7fyQRCKRSCQS20CzBYkN5+b93iN+DfwYN3hPFpKP8bXOyX4OeRPUOzD61/wKtoP/CPYM+TvgStathJfOrfO+8wHsRnQ0st8MuibSl0rOpUDfWb6DDtzfQQc7X2QN5sXIegV0WlCP8UrmDPtopA8azGMheUr0SPC9RtYVco7s/5bB/sigXhmM64/dp/plev71PfIxr08/BAW9 1438613787.950,1.000,0.001,HISTggAAANd42u1WSQ7CMAy0naWBwoEbB/7C2yr1B3yUJ3AguQwaJVKlqkKey8iu19Sx8lhfi8jtLl+EylrZnm9xOBwOh8Ph2BPq9Q3lH63DBuPoYJ5A9C1PJPLPOxPk9r0QfeMJ5AR5EsQ38MvED3kiMuoL5DlXvoL9CfhSeYZ4c6ffAn1k0lcBOYGdQdxI/leBuvHccF4isTOSR4k/0+M8Y73Yl5C4RubIoN9I5pHNVyCciT+7R2yOhdxHG7zH2rHfuh9Ynt4+Y33qxjqPtv9NjoG9zuvv3icfT8kFEA== 1438613788.950,1.000,0.001,HISTggAAAM942u1VyQ3CQAz0sRuy4gEF0Au1RaIDGqDElMCDFY+RRiYRK3h4PiM7PsaK41xu90Xk/JAXvLN2tusqiUQikUgkEolxUGLrl+pt7efEj2ydK9gOfrQxv3SeIB51FPAfiI4K8YX0Q65Qt5E81meGfIe5Cpm3Qd6x8wmet6C/k/7or4Tx/RViG+ifAl3RHrA43FPUiftqZL886CdBvJE+TK8H9YTUF4hn36sFrMEd0Z1sRG90d/TD+XXn/dMf3eet+TpI1+j5/+3/+PY/AUcoBXY= 1438613789.950,1.000,0.001,HISTggAAANR42u1WyQ0CMQz0kYNlP1sAvdAG7SDRAY1SAg92PyONHM4H8nwsx0dsJ3ZyuFzPIstJHvCV6krteJNEIpFIJBKJd6ABn/hMXS3Q02DdgvNhesr+kUAr6G20gLwSeQF/LdCbV7oj68xu099DPAvIO9h18FshzonYT6A/g7wB30n+rK6N8E7Or0Kd0a4Se6yHk/o0uFed3BcDPxiPkrwtuIdoJ4N9UAL/2A8lyEtJ37I+ddLvHvA6OEdG43h2fvvg/JIX99Mvz9Vfv4dsf/uXd+sOe9cFNw== 1438613790.950,1.000,0.001,HISTggAAANV42u1Wyw3DIAy1MQSS5tABukvX6DqVskEW7Qg9lPbwpCcnl0SV/C4Wxj9sbLgt61Pk+pAPrFPtNN1fEggEAoFAIBA4HkrWHv/3jwO6124i9hT+jfh/zE4cjG+EP3RaQO7rp8F+Bf0G8pXojcQf6g0gP8M6A710OoE+2h0hrgb6M4l7grxg3Hi+CvuJ5FfBXyV1YfXKpK7m1N/gHlaIp5A8q7M2cn+wP4ojl0i/iNN3RvrNNvabbrTP7AjJt+ycK+y84uRJD5qTZ83ls/z/3bv2BgzYBVk= 1438613791.950,1.000,0.001,HISTggAAAMx42u2XMQ7CMAxF7SZpqCgSB+AurFwLiRtwUY7AQFi+9OR2QGLwW6xU9vdPY0Xt5fG8m51v9qGM6CNO15clSZIkSZIk/8cUrD1YK/odSFH7kQ+t+z6vUD+BD/VXQadJnGXd5XkX3QI6Req0/gD9TpC/jLhK/lHyNa+Dr1V8LHAOFfbTYX8z5DfpU0C/0v8FRBf9GsxLg/pojjzoTzq0L53/Fsy7wTkW8KPzb7CfyL/qbtUz0LOd90t0n/wK33g/2U5fHpxXMt7PG/apBS8= 1438613792.950,1.000,0.001,HISTggAAANh42u1WuQ3DMAwkKdmS88ALeJfMFiAbZKmMkxFSREpxwIEK4MIFryGoI4+UoG97PO8i60u+SM1qs3Z7SyAQCAQCgcCRoDHfv+J0UEfJf/D3L4R4g3jk52Yn4LstwHebIS6DRd2Z5Cfgu1/Bx7xC+q7AL5DX/TOpl0G3AF+h3wvozpC3wnjXv5I6C1nPPr8TWS8j/bP1nyA/Ez0jfaizD8zZfzieBvMS6UOAF3JOsqNjzjnM5BziPlYyHyH+6D3g9ZsGdRivTj3vPtOd7sOjvzO2c339APAwBc0= 1438613793.950,1.000,0.001,HISTggAAAMh42u1X2w3CMAy0nTShFRIMwC6dDYkNWJARGIEPws+hk/3BS8j3c0ru6lertD2czkeR3UXuKIN1sK1XSSQSiUQikfgE9M/7szf3r8G8ng/1x/fhNLjCGv2N5DXCGM8gL64b+AvRO8Svjo75OvE14M3gmegLqXsP13XQO+hbUsfizAH7FzLXGfoxp58efC4mwubc9+rsK9Hxf6aQuTGfAlfiM2ffHL8F8xvxexw9Byx4TmkwnlePV+erz8Fvv1f0R+I8zeUG0JkF2A== 1438613794.950,1.000,0.001,HISTggAAANF42u2X3Q3CMAyE4/y1ASQWYJfOhsQGLMoIPNDy8KFTqFClCvleLDvni+vEkXq53a8hnB/hhTRbm22clhWHw+FwOByO/4btTEchdnwigRdX6ibxXYwnrBfEK/wsfINPHeoVYavIH7DeEG/gH1BPRryJ/chvog8V+y92hK3QG8E/Cf0B53kU/S5in0H4CXkR+UGcL++Z4hdRnwnex3+MuI/UMTEfUdx7E3OVBW+tzZ05tU5fTfhpZX3hyzp67579+D7axu+q7Vxv63re/X0CGGIF2w== 1438613795.950,1.000,0.000,HISTggAAAM142u1Wyw1CMQxL0vSnB0zALsyGxAYsxiiMwIH2Ysn0CSRO8cV6chO3SfPU8+1+FTk95I00WAfb5SmBQCAQCAQCn6CL78C+uv0aZ1/6rPIpcCLvRtTbYp2CTx5cgGe8A1eIc8g347fBneid+BbIX4E72ecG56+wv5nvQPwqxDvoR/BvwJjPoa8O9XdyvkL8G7kHuM5AN9LHDLot7gdbl0l/C8nH7q2RuUiEBfwTmUcldVFyDif6ao7ZfMlOffVfN1I3Jf35N1j/7AW/swXM 1438613796.950,1.000,0.001,HISTggAAAMl42u1WQQ4CMQgsFGyTXnyAf/ELfsnEH/hRn+DB9TLJhLrVgwlzaSgzLF0I7el2v5ZyvJQX6rbKtur5URKJRCKRSCQS34cs+iO+fqhjeoF3IsKAX8FW4CHfCe8A8Qzst7+B7eRdi/4B+wN0neTp8N1O8nKwO+gG2I3wO8Qzku+sDv+bkHMo7GM9nMS3oN6sH7BujfQp81fSx6irpF+F8CXobyM8DeKUIC7LS4NzKtFF82GvbjaPWejiPNuL1Xn56/n+9/fdE/v6BUE= 1438613797.950,1.000,0.001,HISTggAAANJ42u1XOQ4CMQy0EzvLsQUP4C/b8i0kfsBHeQIFSTPSyIsQUgpPY63t8RUryl4fz7vI5SYf1C61y7K9JJFIJBKJRCIxD/RLPyW8gu8+sFvAN3g/VpLfIP6B8IbdSV1G/IdswPOgzgZ+o64T6Mf30uUK/ME7A28FvZH4BvEa5EO+gR31DvYCeY9k3k7qMuizEf8F5uvkvDQ4RyYliFt27hPucQ32XUn9snM/nfxneZCfzU2DviXwi/qL7hvWf3QPlZ35fr33/oUic0MnnZu+AVzeBT0= 1438613798.950,1.000,0.001,HISTggAAAMl42u2Wyw0CMQxE43w2AQ40QC/UthId0BxlUAIHksuTRgkXJITnMlrLHttry8rldt9DOD/CG6mzdY7XZ3A4HA6Hw+FYgXkfP1WHifdfEHb6D5TxbgRnxBXEJ9ipU9T7FPoV30fED/uhc4O9wb8KP+oMvw1cEF8Rt4n6qqiDfBJ9qjycQ4NfFjrsN4n6OXc13wZ7xB5FsWdZsE32NMA/iTwm7FHoz/Ixb5zo5UldSscW/+MMcfHu2If3yRbz/ct9ty/VN53LCxA7BcI= 1438613799.950,1.000,0.001,HISTggAAAMd42u2XSw7CMAxEYydNW8qCA3AXrgZSb8BFOQILshrpKQgE4uPZjBw7zsR10na/nk8p7Y7phtzYGvvhkgKBQCAQCAT+GfZjeh/1Z/heVFZ/kfGx8QBxJv4sdunoqY0niKuSp8h4FZ09HsRehGfY/wzrb4QXWWcLOhzqpPYoeqieRfIWyJvhuVWYrzq1Dxz0JPA79CnFVehXijewqU40v9D/Vuc8WSfe4dzea+dOnHfON90Tz96f/mF5vu09YS/S+6592hW2/AVf 1438613800.950,1.000,0.001,HISTggAAANR42u1WwQ3CMAy046SlggcDsAvrdA0kNmBRRuBBwuOkkxPa/nyfU2Ofc6lTq7fn6yFyXeULq6yV0/0tgUAgEAgEAoFxaGdc/6z3+18DVhJndTxdb9wIt/wMzHQTyVeia/lz5QLPLW+B5wTrmegn4BPEZ1hfiL4Q37jfhdQ9Q36BeHb8sPcixA/2wSCeSb1CzptI/xFG7lcZ1Cvpa3J8sfvNWJz7if0W4k8Jm/PdGumTOXNAOudEcvx5+dI5f2RQpzvN4a3z+6j9j6q3t5/N5/kAT94FaA== 1438613801.950,1.000,0.001,HISTggAAANl42u1WyQ0CMQz0kQTYgKAAeqE2JDqgMUqhBB4kPEYaZVkQ4uH5jOx1PNbGcXK8XM8i+5s84Y21sZ3uEggEAoFAIBDg0D/TR9vgnecL8yl5LyroIHckWF/Ieic6CbiAXcHuWAEnyLsGfyZ6RvJsoZ6p8abxgej0+B3YBeqooJuBsR6MK+CfwG/gT0Qnw75UUi+ykn5g/eKDONYv+D2TvkskXgf5BfZRSX4jfWiD88LyKTmXTurUmefaB/NiNAeE/B+dOR/1y/P23Xz2ob4urPPX982r3gdT4QXH 1438613802.950,1.000,0.001,HISTggAAAMV42u2WwQ3DIAxFsRNMmxyyQHfpbJG6QRfpaB2hh8LlS18mbVEvfpcvsLEtcAiX231PaXukN1NVqarXZwqCIAiCIAjGIR/6y8G40qmM9k5UmFewz+RdifaZrF+duEbmzyR/0wzrDda1fFvVU9UCfiupo4AajDNoIfZC6mv1LDC2zriLcw54nubsu0J97JwwTiZxtLNP0C+RPlPSB5PT/5n0Pfqps4+sbgb6Sef3x+o6em/Ij/KPvidH5/n2fv7bf+QFukEFnA== 1438613803.950,1.000,0.001,HISTggAAANJ42u1XwQ3CMAy0naSk5cMADMKvsyGxAYsyAg+Sz0knp0UCCXwfS/b54rquo55v96vI6SIvpGa1WVsfEggEAoFA4L+g0YKf7L8RfXXiCeLdFqJvkJeIn/FmiGfCn0k9BeI9fwJbiD+DraB3BH4luqjf85ZmD5BfyXkF+KyuxdEz0MH+FqcvLI7/Dxn8E5w3kbnJG+fHm18bnOME56vDw3nzvhdxeNgndfpqzvOP7hUl70FInd4+MYc3Wp9u3IP65j7cu591Zx2ful+/dY/rE09sBTo= 1438613804.950,1.000,0.001,HISTggAAAMJ42u1U2w3CMAz0I00L/HQAdmE2JDZgUUboR5Ofk05OQQgh+X5O59qu49i5Pp53kXWVHd5YG9vtJYlEIpFIJBKJ38MO+uuHfgasoJ2wAjvRnQv5D9pn0BX8u56AC+EKeSeoC/Ogf+cF+NL4BH4Yfwa/hWg8P37H/JXU50RH/cL7moP+GNGFzDFqJ/OG9bB9wPrZ3BaihcQZyROdz0k82zcN7BbsjQb2aP+j+FE++u7oYJ/0zXfu29A/zT96b7oBV7gE8g== 1438613805.950,1.000,0.001,HISTggAAAMd42u1WyQ0CMQyMPYQN2Q8F0Ast0BISHdAoJfAg8Bhp5DyQWCHPx/KxHttxoj3d7tdSjpfyAoa0If38KIlEIpFIJBKJ7eDznxb4WUYA6S74XPgZO/IvQ1bSQfb3d3vSOa5SHWxvJBfKy/kb2auIq6KuRv414OmCbxV1cz2d7F3Mt4r+TMzjIOYFknz+fD6gvnlvIPo3kReCR+2hBfmi/cbk3ru4NxD8Pqmre+RBvRbUr3jU/DAZ7z96B7f6Pv8L37fy2xMbUAVA 1438613806.950,1.000,0.001,HISTggAAANJ42u2Xyw3CMBBE17/EhEg0QC+pDYkOaJASKIEDyeWhkSEW4rJzWXl37JmsHUc5X28Xs9PdXkhrDGuMy8McDofD4XA4HP9H2MlT8yLiXiSMM3QDeAUxwQf9FuF3iwPGtaGTkZ9QH5Gv0BnA29Y5gl8Fb0Z9Fjoj/E7g0y91suh7gs5B9DmIPmbMr8hnsa8D/zPEftOfOrfkFcHj+UvifJrwzeeOoh5EvaWbGn6Vz9h4D62hZ431VT1+yf9Up/f+C533pnX66/X56+/C2z48AVSSBcE= 1438613807.950,1.000,0.001,HISTggAAAMh42u1WOw7DIAy1MRD6GXqA3iVnq9Qhey7aI3QoWZ70ZKgqdfFbnmzMwwZDcn/uD5HbJh9YZ+2c1pcEAoFAIBAIBP4PdWxvnk3OV/wvhHFz4pg/k7jD3zoXsk4mOod9AruAbu28AJ+JzgJ2g/gKdoP4QvJA/7XzBfy4LtaB9VSik508leTF9kXJORjhPHh+Xv+kwf5LpG+V3ItE/F59TNe7N6jv3cM0Wa8O5ieDfpt8b/TL8dn3TZz9HtX15s/mE/jRd+8NFFYFgw== 1438613808.950,1.000,0.001,HISTggAAAMh42u1WSQ7CMAx07DYhcOEB/IW3VeIHfJQncKC5jDRy2wMCaeZiJXbt8Rb19nguZteXfRCrLKv0+9AIgiAIgiAI34TvtC9EMjsWb4Kzk//ELB5+N8M5wK6Cn8GjgR55Btg10KOcQQ6/J7j3nfYXuEc+Q9+J3RnOQfKvkE8n9WqEryd9wLpi3XrSj0r8eBIP543NE/YBeRYy75HkP5H+x8Y98CQvI/kVwpPtrSd7bInfrfvL4vnB98WSOL+OIj5/UZfDebwBv1QF0Q== 1438613809.950,1.000,0.001,HISTggAAAMZ42u2UQQoCMQxFm7SdGRXBA3gXzyZ4Ay/qEVzY2Tz4RAVFIW/z6TT5KWk6x8v1XMphKQ/qUBvqp1tJkiRJkiRJfg+HmlCVF8UZ4hvWFepiX8Wv2sW5Kup26IS4GfuG/Bl5TZxjjdsO3UC78FuwZp0Jvh3198KX/i78mugXv1twDwb/nfBR99nE/bSg7x7MkQV11Ryyz1Mwzy7mXr2v+uK7oF8P/FmHVNFX5cNzlCfff0H//M18FVeC/9GnsS/n/Qt2B/zjBPw= 1438613810.950,1.000,0.000,HISTggAAAMJ42u1XwQ3CMAx0HMcl5cEC7MJsSAyAxKKMwIP2c+jkIFV5+T6WE/vOTR1LuT5ed5HLU76omy2b1dtbEolEIpFIJBLHoUzW0UBXSRzmj/KyvArWiL+jkbwG/Li/QNwJfId8J/wV9jvwd+DvRHdfX4N4J/Wj/pnEY70rnGsDf4H/5RCH8UrO39g7Anid8ER9VoI6ldRjpE9tsO8NfPZ90f2IdMrg/WO2kvsczZ3yp43ql8H1o+ehTp6zs+b3j+4HfFAFYA== 1438613811.950,1.000,0.001,HISTggAAANd42u1WyQ0DIQzE5lhCFGkLSCH7S22R0sE2mhLyCHxGGkH2kPLwfCybwTYGW9xf69O5eXFf+CqlSn28ncFgMBgMBoPhfyA/2nFdBtcV/odKeIH4Q34EfibxIsRt/ATrEfYl0HPHjwBvInGuJK8M/FLlBeweZARegfhN3oDX5AznKaBH8q8P4N9DnhPwAqlb7vAz6ELqwOoSSN6JvDchefTeK8vLkXsW0g9K3rF2+lOJnfVhGOxLHYwn5Nyj80E6fo+aW1vn2dY5eta+o+f1WXntPtcHMWoFOA== 1438613812.950,1.000,0.001,HISTggAAANl42u2WzQ3CMAyF4yRtKFwYgF2YrRIbsCAjMAIH0suTPqWhBXHwuzzF8V+c2Mrldp9DOD/CG6myVY7XZ3A4HA6Hw+Fw/A7WKY/6fwP92Ii71k73M/wjE+SVZa08VB5lrXL1u8Qron8QXuxPEGfRO0JclRewi7KfxG6CfIr4KaI3gf8i9R2gLgb3kERO+iOcyyB+hHwyvK8M73NovBs6D/XHCPsZ8jTw22IDOdWN+oc4QX9ao3/jh3Opd670zpu95mXo9L927trGPLeeN3y5Xv+a19552wtpNQXJ 1438613813.950,1.000,0.001,HISTggAAAMd42u2WSw7CMAxE3STNBzYcgLtwtkrcgItyBBakm4cGd4eEPJtRbHfi2I7S6/2xmV26vZEnL5PT7WmBQCAQCAQC37BECf6iHx//gfAnMONX2MvkCvvOHXHUNWGvIo46Hfm1ySesV3DBemDfJvz7fmfoNOHvIq6I+g2xpj7zrM65C+rZRF2z6HN26jhEfzhn6tyrmLcs9LKY1+rMOeeYdnIR9irmyOA/eq/UfU5Cz0T+JnST01dzvvfy9PaPd+Q3SEffkxdCOwUN 1438613814.950,1.000,0.001,HISTggAAAMp42u1WWwoCMRCb6bTb7oIf/nsXvZrgDbyoR/DDghAIU5+rMPkJZUMmnT62u9P5KLI9yA3WWTun/UUCgUAgEAgEAvf30dr19cW8ibCQsZHv+G7MxHcCfQE24lvBF3UZWIn/DLqZ5GqdF5JjAi6gx3ElvpX4NxgvTu6NUw/7U5z5NaKfQIf7A9cR+6REZ2Rfm8NpcD8zNie/OvkKOV9YRx/MkZzzqk4d1kd2f+Qn7xcdzD2K9Gf3rL7JXz5c51f/Z2uv79fmeQVRHAU/ 1438613815.950,1.000,0.002,HISTggAAAOl42u3VzQ3CMAyG4SQOtFAEC3BgE1gNiQ1YlA3g0ObySZYr/iTQ+1ysyk6cpiHsL9dzSqdDGtkU8xh29+MtAQAA/LP85Xmzk88vzlNm1lswjzfenH7VGW9ObOOWUr9w6szpZ/Lc5uskDk6+SN+W306xl3rtYzK+xbXUd06f6jxrXVvHRp5XEgfp18t8mtd9r8H3MuccWPA++h76HYtE77x6573MPN86fxecs+Kstwa/GwvWFY3PwfqjvNcn2o8c7HOamS9P3mPvvm8/da/jN/5/AQAAAAAAAAAAAAAAAAAAAABASvkBmZsGSQ== 1438613816.950,1.000,0.001,HISTggAAAM142u1WwRECIQxMQkA4PxZgL7ZyrThjBzZqCT6Ez87s4MPzHpf97ABhSYAEro/nXeSyygeps3a220sCgUAgEAgcG/rnebGf++xjIv/BAZvYG/4jO2dg7HfgBO1hVzqfQAfXL0QvE13UH/YN+itwATu0x3jPJI4Guhn8KGR+IzoLzK8k3kr2w4AXaFcSh5NzcaKrMK7kPB3WM3KPEhk34hfmF/PHJ3mhk/uFeeMkj4ys8y2zumE/qi+20XugG9VX3bmeyuS+HP4dfANrMwVM 1438613817.950,1.000,0.001,HISTggAAAM142u2U3Q3CMAyE7fy0UCHBAOzSlVgBiQ1YlBF4oHn5pFOKWsSL7+UU53xxEifXx/NudrnZB3lhXzjNLwsEAoFAIBAI/A++cb6n9w6nznyGX0Fegq7xCK5C3+ID1i2IZ8QrxkWsR3/mNd8DdG18XviI+kfhW6Gf4Mf5E3QT4gVxE/uu4rzUOQxiPzxH9sco7nsS/cF7ZR+YqCcLXRGs+rDX9yrfUK+LenrvZvjy3a2NJ1GP+gfW5nvHz3f699JO/+PWPP+RbwB98wbuEQVr 1438613818.950,1.000,0.001,HISTggAAAM142u1WQQ4CMQiEtnTX1Yt3/+LbTPyBH/UJHlwuk0yoh8ZomAsp0IGFZdnL/XETOa/yRt2l7rJcn5JIJBKJRCIxAp3s/+/10sl1L+SeEr9P7Q3s/l+5gN3Ajmf368BvJA7GPwV8C8geyDboj3FdrsTfgPcAej9vkIfrj4S/kXor+CvUsZP6bpBnJXWspP/IW0lc1BfCZ+S9ENJ3JX3BeTAStwV8QuxGnpvNK+Zlg3MYzbOQfguZHxm8r4PfMw3iz94z395ziR/f0y802QT/ 1438613819.950,1.000,0.001,HISTggAAANh42u2WzQ3CMAyF7TRpm54YgAHYgtmQ2IBFGYED5fJJTwmlXCq/y5Or55/Elpvz/XEzO13sjWFlXzldnxYIBAKBQOCY8LiCQ/VJ6VJDR/vzHszCTg0/vicHwVnomKesXGEz3gj/GXr6FeQZRf0jeIZfRd4FcWboaCd85zmqqKMIXRV+E/JlEZe8oM9ZzEcR8SfRT85RAg+iP6kxV+yfow7vnHM1x94ZJwm9C13rfhRbo27rPAfvVe0PtXe8cx/5xj3mf9qbtnM+//Kce/2HfWPffs77AqUGBSI= 1438613820.950,1.000,0.003,HISTggAAAPh42u3Wy23CQBQFUI9tbLASpYEUQQcpIhVFSgdpNB0kC2BzpadBiAUS52yemM+bj2ds3r9/vobh8zicTOfYTuHt7+N3AAB4ZO3J1906+5Dl4435p6J/ths75Wvku8T5HHfneCjG30VcIv+lfB+/h8izxbiHqN9H3q3Iu0b5Enlfi3m/RL815pH7sBT1W/TP/c91rtE/n+tS7O8c7dfiuYwRq3MzF+dgKvpV42d9npehOIdj0b512lfzq9ZZza917uPUmVfv3o5F++nKe9pufI+Md34P9Vw733t/R571u+P/AwAAAAAAAAAAAAAAAAAAAACPqP0DIDcGYw== 1438613821.950,1.000,0.000,HISTggAAAMh42u2WzQ3CMAyFEydpCQWxQHdhHdZAYgMWZQQOhMsnPSW59eB3eYpjO8/OT7u/3s8Qbo/wQ2ocG9v9ExwOh8PhcDiOgOgtGOpPnOwj40zYs4gz/Ef2+O+/IG8RbGJ92qm7ggv8K3RtmD8LPRvGl8ZX2CvyVNTN9U9g6l7FPOMX9IN27kcR+2Cir9Szijj6J7FfPabeReRLon6e39w5v6r+LPqk7k+vjiDG1rmHcfD+2+A7kCb9Z9+b2fdqNt+s7qN9f+IX5pUFYg== 1438613822.950,1.000,0.001,HISTggAAANR42u1VuQ3DMAwkKVqynSILZJfMFiAbZMmUGSFFrOaAAy3YQBpeQ1A68ZNwuj1fD5HrW34om9XN2v0jiUQikUgkEonj0MF1OYnPzhuJp4TX4eAX8A14DuudP4PfeQ34FfhTcK6CxfwTyY91YdwVeAvsLyT+DPU0sBfYX8HiHCvU0SAv9j8F8zUyB4d3UMj8sQ4n96fB/Tl5j4W8SyV9KOlLSXwn5534bA5K+BbU7cF9SLAf5WF6Ec1tr/7oTn3TQf3SQd07qoujOm3yX5z1b+gXMUUFzQ== 1438613823.950,1.000,0.001,HISTggAAANl42u1W2w3CMAy0nZimDYgF2IXZkNiA5RiDEfgg/Tl0SuCHh3w/VhzfxUrPbQ/ny0lkf5UHUovaoh1vEggEAoFAIPBN0D/pVwd5+qLOaP3Tfx/UGdTZIH/NZ8J3co4BD89JRN/IvkNc8wXWU4sb2F8g71BfIL/2M7e4a7GCzgz8LegsoOfAr+QeHHQr9Iu+mAg/w3mJ6BRSZ5DHtRB/ZPL8FPYz8asTnyrxH/OxEh8y3dH5kI5eInOBPO/MO/JSZ55YP733kL75Pu7V249+L/TDOqP3pncPIgXJ 1438613824.950,1.000,0.001,HISTggAAAN142u1XOQ7CMBDcw05MEAU9RX7C25D4AR/lCRTYzUgjGwogaKdZZa/xen3ldL1dRI6rPOFVapV2vksgEAgEAoHAO9CNx38bBnVopz4brH9Un/BdWGWG7wQSx9PkTOrCOAd9IbzIP0F889+BPcN4ZvDbA2+zL4RvIvkyyAR5FrAXoj8AT4F8DnHoJ6SeTOYL50fBbyL9S2QdYT/Zus7E30m/cR2wOB/My/qlZB8omQcjvNbZX0LyKvlPY3HWORek06dXz1Pv2G1wnL92/9iHeKTT/3+/5zb7vnkAl1IFIg== 1438613825.950,1.000,0.001,HISTggAAAM942u1Wyw7CMAxL2pU9QPAD/AvfhsQf8KMcOXIgu1iyvB44DMUXK63rNGqX9fp43s0ub/uiBntwub0skUgkEolE4p/gO8vvnfFWPyfvPxd6HG/4fgwegg8QK24irhAX0K3zC+Q/EF9cv+pOwaOoB+M5eAo+g24h/rjPWex/jY9EV4GbqH+Ac8R8E/EfiT+7X3huTNfgvlUxjvcP6y9kH2r9QL6DQhi/E5w3Ub8RvYn8Ltb39g0n9av+VDr9e/vNr/v41jze6bOX/6B/AKmjBdw= 1438613826.950,1.000,0.001,HISTggAAAM542u1U2w3CMAz0IzSFSogB2IXZkLpBF2QERuCD5OfQyVAV+PH9nOwk9iWxfZ6Xq8jpJk94Y21sl7skEolEIpFIJP4P/dAfxUG2YB33CdjIDnYBf+dK9lVgh/UhiDs2nkieAfzdPsB5zDuS88g74B53D3FY/kruqeA/El0TeS/UhfGU5Cvw707+HfOwOrWgPgqpvwJsxHZSr4XoMrJfSFwnfWNw/0gv6z8huhXyR/3tb/Z7NB+2mku6cv7Zl+bnVvrkR/oS697vpc4fR/sFvw== 1438613827.950,1.000,0.000,HISTggAAAMd42u2WwQ3CMAxF7SR1ChcWYBdWYRUkNmBRRuBAuTzpKy0qnPwvlpOfb1t13Jzvj5vZ6Wpv1MX6YsvlaYlEIpFIJBJ7wLPOn+q72F/Ld7wHC/gNvI8/Cb6L9yX1qRNY7+CTp/Rn+AfoBHgB64gf8CvyDOgzzoTzXdRDe0SeE3zWGUJ3FutdnFf1qf2139kH/aX6Tem3ga/yVfekgK/qGPV5EferifpNxFP3ugpdE+e3zok64I/myLfzcOv82msul3//J16O0AUs 1438613828.950,1.000,0.001,HISTggAAANJ42u1W2w3CMAy0Yzck7Q8DsAuzIbEBizICHyQ/J51SoLwk34/lxj7nUsft4Xw5ieyL3GHNarPpeJVAIBAIBAKBX4Q++Fw2iv+2Xh+sJ6KL6TSSzyzCgWcCPuR18Htebpb9l3beHanT/QV8A94M692fgb+AL2T/WBfPoRJ9FeIK2IXonSHfIS4Tv0K+A+9EdGfQi3oMrJNzwvevJN4G/ZZIPOtr1t9G+kDJPozs31beGx3YNLivunJe6aCuPFnn1XmrG8/Bd/H+y/fgU7r0BnEZBQM= 1438613829.950,1.000,0.001,HISTggAAAM942u1WuQ3DMAwkqc9PkwGyS2YLkA2yaEqXLiI1BxyoIkBc8BqC4h0fS5Z9f72fIrdDvkjdarf2+EggEAgEAoFA4H/QSZ4RPvr4v6dOHsZn68NmsJh3+AX8DXQVeFh/xBfQFfAX0KG+dbsS/YjvoN9JnQbzFIhvUG8FnQK/kryVzNXIPmQyZyXPuzr7kaFuIXOYc87wnCTiJ8I30gfGs+MXpz+d7CuROZT0ZeQ9wjrirCenjnevmHM/yGR8luf1pRe9j/Vi/cR38Ed1Tg+0Bfs= 1438613830.950,1.000,0.001,HISTggAAAMl42u1WOQ4CMQy0nd0cuw30/GXfhsQP+ChPoGDTjDRyAFEAnmbk2J44l5XT5XoWOR7kgbSz7mzbTQKBQCAQCAT+Efqldakzzlgc24An8n9MJD4RvT5eQbeBPZN5J6LX7QL5nRfiz8ReQD8DV5K3gn8Ff4NxXF+DfNz/CvGzs24h+1qccyxkHqZjZD8SsQ3q8+5Pdu6jkXueyftIhDPos3fD8pXUI4N68uS7VTLvaL9Qcg6j8a/2Kx3sX5/uz/pmvEngJ/8Dd2E+BOw= 1438613831.950,1.000,0.001,HISTggAAAMl42u1WuQ3DMAwkKclSkCYDZJe0WctANsiiHsFF7OaAw0VtwmsOJnk0H0HQ/fVezW5P+6Ac7AfHY7NEIpFIJBK/Bc8R/OWeXfCJSvwN/AHvR+RKvhewB3ADPuM71FMgrpM8FfwD7FeIHxCPOuSF6LD/QeY7oA7Mg3NAxnwd/CH2UUl8F30xXRH7dXFunOwRdReia6Rvdu4LnP8m+hlE76T+EHMIoffJ+lUd6v4PkpfFubh/1H1jk3r78r/KruZmk/58R5C4HYBqBUE= 1438613832.950,1.000,0.001,HISTggAAAM142u2WSw7CMAxE43yalg0X4C6cDYkbcEmWHIEF6eahkSskRCU8m5ETe+x86vR0vV1SOt7TC2WwDc7nRwoEAoFAIPDfsKhvl8gf7gP93v7/YJuYL+As6psG98ENcTPshDiVh3qT0Ft5Ac/Qm4XuAeNrngq/RcxXod8xTj3mr4IzbFVvgx/3l3l5zh3xxbkfPA/6FXHfmqNfHB3WV0WeLOY9LoKbc1+zsw7WY8JW35m3LhWv+kDauA4Tceb0n1/1bduJrn053+b34Alf6gXa 1438613833.950,1.000,0.001,HISTggAAANF42u2VSw7CMAxEEydNWiohsecA3IKzIXEDLsoRWNBunjRyhdoFkmczij9TOx/3+nw9Urrc0hdl4byw3d8pEAgEAoFAIHAc8kE6nq5hXZFHNsQVMP0GzsJewQPWDfYB+VwX5K06Hf4OHhc+IW4Sdaz2M/wj7Kxr9c/4/iz2oYEnUXeDjiFO1eGdaxXn2sX5c3893eLckyzizImrG/tT972I96T0m6PDOtQ7VP3TX504c+ZEEX0m0cev88oOmn95Z9288/yN/9d/17c1L38A5GkFGQ== 1438613834.950,1.000,0.001,HISTggAAAMt42u1Wyw3CMAy1nTQEuDAAuzBbJTZgQUboCD3QcnjS0wNVQoD8Lpb/tuI4OV9vo9npbg+UhfpC4zJZIpFIJBKJROLz8I1+z/8c0QehBv/CQuoJkA8kTpC6WPwOfhX41b6BntGB2DeIdwR9B/898KvdAewxLsobkav6d+DXSbwK+bF/xhfSX4fzwfis7gZ1q7kIkcdfnKNK+gpip+ZTzX0l/uxcQ9xTdT9D2BupK0R+F3vHxR7xN/eZC/nWPfgt/r/6jvz9+zoD8tsFtg== 1438613835.950,1.000,0.001,HISTggAAAMx42u1UyQ3CQAz0sSQbxIMC6IXaItEBTVAeJfBg9zPSyEkQkIfnM9r1NbYsX273WeT8kDe8sTa261MSiUQikUgkEvuDLvQz4KX++HZgzKtgL41H8Cukj84HUk8gvv9P8O7xFeqOhCeit8K75z2Cf/cbiJ4CcZgX45AHwmh3Mj+sg/YT2NkcKpm/Qd4CzPZEoa4FccgD2Q8L/o304YFOps/JPnugX1faNdCnRId9eD+iuyAr78vW+8b639rPv++y/qjuXubytXm/AI/9BZQ= 1438613836.950,1.000,0.001,HISTggAAAM542u1WyQ0CMQy0c2yyggcF0Au1IdEBjVICD5LPoJG9Wh6APJ9RvPas4zjH+Xa/ipy6vJAH6+B0eUggEAgEAoHfhEYJ/nI9GYsx9vpPJGCMf3s3Di7AathnXCX+C/wvg53FTd0O/qg7/RroHwcfIG4FbpBHB/tC7MhMn+W5Ev1O7IXUr5H1LTCv4uRqxGXSXwvpx2TkV0h/VDKuoOvdX83Z/8mYpxjf1bn/LTvTTRvPm7zzXtl6PiXn/Lznl3woX91YB91Zt295N+gT5+sE9A== 1438613837.950,1.000,0.001,HISTggAAAMN42u1WQQ7CMAxrk60UhsQH+MvehsQP+ChHjhxoORhZruAAQvElWuY67pSlPZ4vp5QOt/SAt5hbtPWaAoFAIBAIBAK/i0yik/vd8543qKP4BnECXq8/Ay+TfF9fWtwN6mxarIS3B93O3wK/5xfisxJ/C9FHXxXWFZEvZP+zqId8Bz5+byc8pmtE34hvE32JflTfuegLtl8T/wX2r4nnTN6P7stF/0+krpoHys+7cyUN5v3DeWZE/1vz9F/PjZf8HdYNBeY= 1438613838.950,1.000,0.001,HISTggAAANN42u2W3Q3CMAyEEztpy48QA7ALsyGxAQswIiPwQPrySafSUvUF38vJiZ1z0+iSy/1xS+n8TB9449zYrq8UCAQCgUAgEFiOvHLer30oHcN7kOPGd+JEHfMK5se4E+/QQ+MB7KJ+jCt4j7we89Q/YnwH7pHPPk9Cv2Cdijr2aUKP9RxX+1qwnol59uvQM/xHF30W8CDOEdnFuclCvyLPROwiVvpFsDrn/uX3JLFeJ/aniPqp/UsT/eaZ/qD8Yq7f2EK/W9tHbSO/3drn/+ZefQM2tgWd 1438613839.950,1.000,0.001,HISTggAAAM142u1WSQ7CMAy047RZ4MAD+Eu/wJeQ+AEf5QkcSC4jjVxOUMlzGTmNx0vtqtfH8y5yuckHNlgHp+0lgUAgEAgEAoHjwMBWwhNp5/1E2Ej8+TzDeSb++B+agRfg7OTTSB7o3+C8DD4NXoGxjgp+jeRbiT11O+gUEr9DHp3UV52+nYluhvqxTyvkZ0Q/k3nA/hXyHhV0V2e+2Lyy+Upk3hKJs8B9c+J7c57I/n67b0psc/ZenX4Y+U4wPS8fcfRkp9/RoD+u61/6qG9GnAVU 1438613840.950,1.000,0.001,HISTggAAAMd42u1WQQoDIQzUGI0LvfTev/Rthf1BP9Kn7RP2UL0MDGFLYWnJXIboJA4axdv6fKR0faU3yuA8WO5bCgQCgUAgEAicjwzsoXxpHQHOUB/XQb2S+ZlnJFaIFydfyX92xm1wHdyBDXQG+ln/AuOF5KGvDjpk5mchdQz8NOLLyHng+XXiu5L9EYiVnH8FZvMZ6rF+EtKnrA+ZjtVtxJ8694/dG9aPnk4cHwh18o++B5jv6bx9Ofr+fJp/1rv8r+sFfuR/sAO9OQWV 1438613841.950,1.000,0.001,HISTggAAAMt42u1XyQ0CMQzMOCQKpyiAAuiC2pDogEYpgQfJZ6SRQQEJgeczyvqIY3ud3cPlek5pf0wP5M7obKdbCgQCgUAg8F1AxPWXdcZk3vEmfYjvRpYb6fF68IK4dK7CXsmVHstXtK70fNhtOy+JN2L/EX8jvSzOtyb9SvLm8Ih35+Qjk98i8p7JfxH5ZjuIfZrTJ0nUCSKuIvrLyJ+p/xrBqj6qX/Fkn5s4jxd3cvThsPKn8m/Oe48X5w0m5w8m5+Gn76tZu1+7J3EHghEFDQ== 1438613842.950,1.000,0.001,HISTggAAANR42u1VSQ7CMAz0krYp9MAD+Eu/xRWJH/BRnsCB9DLSyOkFROW5jMZJHMdxnOvjeRe53OQDb6yNbX1JIpFIJBKJxB7ol/3qQfMSnRfZOuczOGgDu5P9Rhg3YCV2J1waD8AzjI8wvulK4ivkfBPwTOIs4B/9YlwTxLfA+gr7LWTdps+gT6AL2J3kqYK2IP/sPIVoJ3VlMM/IfRhZp2AfwF4CP1Ed4v07qW+F/Z28Lyfvz0l9Sud8JVqC96edfcSDPmJBn9Kd/U4P1ud//U/+fV7e1gcFeg== 1438613843.950,1.000,0.001,HISTggAAAMx42u1Xyw3CMAy146SUcGEAdmG2SmzAoozAgeTypCeHVOWA/C5P/jt1mrS3x3MTub7kA2usjdO9WwKBQCAQCAQCR0AdeVa/157g+zABC9Ezf2QFLmDPJJ+BP8on4AL5MG+Xz41XiK/gX8G+gh7jjcRXqMv67+tegC9kfZXUzyR/hjyFxBnUNzKfQuwLmaM3fwVZiL44fRnZL0r2JZOFxCv7nxrsR53nol+yDOrZe8/WPXu+6OQ56PU52sds/0ed87+u/+/35u58b5/dBdI= 1438613844.950,1.000,0.000,HISTggAAAL542u1WwQ3CMAy0HVOCQIIB2KXrsAYSG7AoI/Ag4XHSyWkB8fF9TnLOZzl1rZxv96vI8SIvlMba2OaHJBKJRCKRSCT+j/f77MP86FwXxo0wviudcNdvgAvwtvEE8dG8QvK6XwW9g95JnkPeCfy6bt94F9R30u9E+u33d4B4JXWwPyV+lejQV8l3xPtm82GBTglbMIeFzIsHutE6SuY7+g9YXAL/6F6iPaEr94gt9F+7fyL9t/1/vaeH9U8gaQUu 1438613845.950,1.000,0.001,HISTggAAAN942u2XzQ3CMAxG4/y0UMQG3BmD2ZDYgEUZgUt6sfTJKqiiRe9dPrmxncRyk/byeN5TuqZO6Wpd8+2VAAAAALaErey/NfLCfZqIsyC/ie/B4jSLuJkq/FR8czq4PD5ufn5w48pf5R1cnmPXUdRh6npy8bN9dnYTfqObt7n5J2dnsd4q8gxOW1CnaLyKddRgvhb0URH9k9V/iejrKrQE/VhFfl+XFPRzEnYUV8R7a8E6LaiLeu/VflXepefo2ufyp+e4fen36/tjr/fX3u9dAAAAAAAAAAAAAPhP7A2XSQUI 1438613846.950,1.000,0.001,HISTggAAANZ42u1WSw4CMQiFdrCdzMYDeBB3ns3EG3hRj+DC6eaZF8hk4ifhbUgpPAgB2tPtfhU5nuWFukpdZbk8JJFIJBKJROIb0D/n3xpHd7pXYu/pi2NXQKL+QPzGP3MKxjGQE/AMdPAfdg3yaeDf4czidMh3JnzjvBDeBvwL8BuRDeIb+HViPxN9Bb7u1APzNsKjpH4Gdnhfib04enX6rJC+xD7Evq+O3ps3rIc5czY581Sd+a/BPEpwP0jwXki+UTt1/HTj/ozuTd1pv/7qO/Sp9/Otrk8wowUA 1438613847.950,1.000,0.001,HISTggAAAMp42u1UuQ3DMAwk9dpuskB2yWwBvEEWTenSRaTmgANlJ0YaXkNQIo8nSuJ9fT1Fbpt8EJvVZsPjLQ6Hw+FwOByO66CD63oyfrROhPVE6nabSX63odkCfiLxGeIwH3kj4Z9gvYJO3J9BV/cXyJ9BJ/JkwlfJeRLUwT4sUCdD3kT0FdI3tIn0DXkZTz14n4W8F+YruXfLKvj4ThPRrcb7svSo0e9o/Kdg7Fv/Xww+If88GvGj8yd8Off04Hz811z+lb6r+U+feweubQXe 1438613848.950,1.000,0.001,HISTggAAAM542u1Wyw3DIAy1wQm0HLJAd+lslbpBl+h4GSGHcnrSk6GpevK7PNlg418It+frIbK95YPcWTun+y6BQCAQCAQCgXnon/wkR2Z+dPJcxXciML4jDeQF2MDOYL2AvpLzDLiAn0r2F+DqyBg/5s/yQ/218wX2tc5b5xU4QzwN/DYnzgX8YR1WUnfWx0r05tizOcpkXZx1Nv9K5iwRFuKXxYl2Xt8V7GUwH3Hq4n3HRvLRL++J5PRlNK588r5Mg/Z68hyZ7Ic48/7r/4Qeq9IFhA== 1438613849.950,1.000,0.001,HISTggAAAM942u2Xyw0CMQxE43iT/R1ogF6oDYkOaIayKIEDKyE9aZQsAsHBcxn5G8fZWNnj5XpO6XBLT/jGtnE+3VMgEAgEAoFA4PU++lfkzrpd2E34U8/3YgFTnwUPG0/QV9hHyAV1MK7A3yBX5M0iboT/DPuMuBV1LYinPGGdCfkWrLPCvyBuwPpF9E/tu3b2oYq+Do3zcOjV+Rn0hjpc2L3xvWXh5+o/SOzLBadOOb9537Korzbup+2cX/6h+Wed82nv/EqNfv16ftuX8zXlB3U9BbE= 1438613850.950,1.000,0.000,HISTggAAAM142u2WQQ4CIQxFS2EYx41x71082yTewI3H9AguHDYv+eIYNcb0bxoK/P/bAOFwOs9mu4vdkZeYlujHqwUCgUAgEAg8QvpzvW/7ULz+om4R+fbvG8CbMG/in5hFdJE3sb90+Dk/Qqf5r1jPOAlfTW8LfupXzFNXjZvupuNzgG4V9Q/wy77soVcwnkRd9M2+Ma/OiyMW+Evgc/hzUbfqQxZ+1DlK4j7Rvz15Pqk3Cj0T673D19u3Np9XrreOv/zh96/Xj19/19/OdwOAtwWA 1438613851.950,1.000,0.001,HISTggAAAMt42u1WSQ7CMAz0kji0XHgAf+FrIPEDPsoTONBeRhqZcgCEPJdR3LFlu3aU4/V2ETmc5QlfWBe2010KhUKhUCgUCr8Hg7MCC/nO/I3EQQ5iR/8GvL4zO+gD7HuwO8QJOAt7xyZ+QfKbE/2a3wQ8QD+Ad6S+meiD9LEn+g76ifhNpD4HDsif5eNJPCP/v5P5ccKN6BqZS0/m1GGOOpkLjD+SPTCSf1anJfub7Z2+uM+N9EcSe3aWN+8l/dI9qhvtW/vwqTj/Bn0Ab1gFhA== 1438613852.950,1.000,0.001,HISTggAAAMl42u1UwQ0CMQxL06ZXQEIMwC6swipIbMCijMCD9mPJSgFx8Ig/1jW1c23SHK+3i8jhLE/kzqmznu4SCAQCgUAgEJhHWlnHfNLk+qv5s+OvwLVzgf0KfgXWG+jR10jeDfghG3CD+NAvwJXw0G+J3wK+I+8evtk+A78G5x26Heib41PgHEbuHetdSX2V1KOQehvRsTjqlfS1TfaV559JHPOw/kd/9t4y0YujV/KuxHmf784hT68/nnv/Puc/nbtp5f/9+v09AAFoBTk= 1438613853.950,1.000,0.001,HISTggAAANB42u1WwQnDMAy0ZNlJQyALdJfOVugGXSLjZYQ+Gn8ODqUlhhZ0HyFOsiTnouT6eN5TWtb0Rt6t7FZvWwoEAoFAIPDfkJj3p+5FDvLSuZ5XJ4NViK/kPCX5Ld7If2fjR/ArxBdSr4Ct4BvEG+GbP4A/k/4K9DcBPwHf8i8QN0NdPH+BuOrMjfVwzgHiDPrC/EzuT52+M3neeB7TDdMh483RHerY06M4ustEn6zOSHh17st7z4Tw8uH+0ZP36Vn7Tg7m9d6b3+7pXt8beQFsTQW4 1438613854.950,1.000,0.001,HISTggAAAMV42u1WyQ3CQAz0sfEm4UED9EJtSHRAg5RACTwIn5FG3gchH8/Hcjwe29lDe7k/biLnp3zgm9XN2vUlhUKhUCgUCoX9oDvl66A+xo3wbNB39q4E/jfegDdBnOmiXUndGeoE6C6kn4D8hdhO+B3sCeZr4AeZt4HOCnUC+J34HfQa6T8S/kzWa4L+Db4r8VHfyX7B/exkflYH/6sM+pjfyPoY6UOTfS+JDjtn2fn2JM+Tvtn8mvCOuj+Pqv+ve/7n/bwB/0UFqw== 1438613855.950,1.000,0.001,HISTggAAANV42u1Xyw3CMAy1naQJFQcGYBeurIXEBl20I3AguTzpyRUIioTfxbLjv5M0Pd+Xm8jpKk+kTrVTu6wSCAQCgUDgt6F/FjfmvY339MyZozr+xrsxAy9EPuwnoJXoNZBXsEP/o54C8gTyidRfIW4BvUTWBz10Ond6hPVG8qtgV0idDXjMF/uJfmawN6f/LE+vn5XMJ+N/BpmDEf3s5JlJfbZx/yPFvAvxa2T/m5NHcvJIxL+R88riCeGV9F3JOZYP3TPv3nv6ov1e3zvdOf633wH6AAwKBSk= 1438613856.950,1.000,0.001,HISTggAAAM542u1XwQ3CMAy0XadpKyQWYBdmQ2IDFmIkRuBB8jl0chFQIeH7WL7YPtdNovZwvpxE9ld5YGhWm7XjTRKJRCKRSCS2hP55fd0or8c74Q38yArk9e/KAjxaXHeoW4AfgR/AOuExvutNsD4R3bnZCnyP34Ffod/uL6SOA4/9LMDPUN+J7kjmg/NF3UKes0I+07FA18l7d1LHyb5zoqcr94UG+wTrC/tvCs6Nvdi3kf4kOG9C+rUgX1fG65v3kQa6v3q/f6tP/dBcn+LuoloFng== 1438613857.950,1.000,0.001,HISTggAAAM142u2VyQ0CMQxFYyezhEU0QC/UhkQHNEYplMCB5PKlp2EOaJDwv3x5t2fi5Hy7X1M6PdIbubE19sszBQKBQCAQCPwzbKW8NfLCHMSUR+0u3P2KyJOw+g0iK5v46VxF8hfQ97i58aFxhX72jUdh6nOW+M47kav0NYpcJV/XHyHOIU+B/ifJr/GD6HWOAv/ZIU7tBnkczp3D+V1bz8SeYX7yoz6p7wzfk/aswD45+PtCvMEeJdgrW1nPF+6F/OH98qv359bvydfqvgCePwXN 1438613858.950,1.000,0.001,HISTggAAANB42u2XMQ7CMAxFYydpAmJgZOAuPRsSN+CiHIGBsjzJMokYQPgvVmLn+8dy3fZ8vV1SOp7SE3mzslld7ykQCAQCgcBvQkL/V+uRQX5+p4nDK86+GnF5UD/5FDwL1mVwTZ6KvA1+xtU3eWkL8nTcryL+5d/hvMXfwNOhq8EeNrvHPvN1+NXQWY16NejoRr3Iz74oTj8sTv+w/tmwVt7s9KU6+vlcWOezs59QXzXupdb/mKMvO/PAu7c6c2Z2Xo3Op9k5Kx+ew//yfp2u1wMkxwT6 1438613859.950,1.000,0.000,HISTggAAAM142u1VOQ4CMQz0ld3AFnyAv/C2lSjo+ShPoCDbjDQyLKJA8jRWFGfGsR3nfL2vIqebvODD6rB2eUihUCgUCoXCJ9BKwa586I912fpda4meg9+2bmCd8PdhJ/Df+ILwzcDbYR95URf1gvA46KH/AvFOYI8k7gOsZ/Dv4Ndgf0l4GqkH5kvIvZzkOeB+QepkhC9gX5P+YLysnpb0MfazJeeUxMnypeTdGYkX35Ek54ToCbmvJnPGEh1N5own84Xpyc459S//mH7Jr08lJAVs 1438613860.950,1.000,0.001,HISTggAAANZ42u1W2wnDMAyU/Hag0AG6S1fJKoVu0EU7Qj9q+nFwCIf0BbqfI3o48kmxc7reLiLHVZ6Ig3VwON/F4XA4HA6HYwb64+v9u646qdfrv47Y42Q+5gXix7g0OIM9kzoq5BWIK2T9BPUUsAvkIffBbfBC3lNh/QrxDfwddDmQuivhZsQvYG+gbyW6d7KPQvqbjb53Q98E8ew5kLkVo/84v5n0Xcl8IQKpi81/JP5E5pDpGMj+tn6HYvjVOC+s88E6r7fGfete0J3y9EN16Jt12v1efwAa9gVH 1438613861.950,1.000,0.001,HISTggAAANJ42u1WSQ7CMAyMx2loe+IB/IW3IfEDLjyTJ3AgXEYauaBSEPJcRrKdsV1n6eF8OZWyv5YHvLN1xvFWEolEIpFIJP4R9mN5bKH9XT0EehB2jneKd5HHiQfxv9k674hB/lHogPwQ9tp5Ih1eV8k/UF1P/yzsk6izEc+BX8Vx3Y3yV6qL49VcuB+e0yj2BeeHiKtibibWu5gn77dIl+eq6kWwv5W+C11f+B24DwvOoQV9qvpc6Hpw3hHktY3uW1tZ71Vgpfu7fLmPrd6fj72TdwTGBYQ= 1438613862.950,1.000,0.000,HISTggAAAMt42u2WwQ3CMAxF49S0oQixALt0HdZAYgMWZQQOpBye9GU4Var8L5ad2v52HSvXx/NeyuVWPhi6tC7r8iqJRCKRSCT2BcsW7Lqv33dcwK8K/xrUE8U5wF7xznTYHX4Ndur8nvY1zwS9QWedE+LyXdxwfhb5Vzkirgs+LviOkIxLnscuZ9GnWfi5qJ/5T+L/KT5V6C7mg+cWzA3n0YWu5jnyY151P1S9JegD567+eK/Jbwjum4KLfWFCqnPF0zbei7bRfv43j70BGWAFNQ== 1438613863.950,1.000,0.001,HISTggAAANZ42u2Yyw3CQAxE1473EzpAohdaA4kOaJQSOBAuI428QgJymHexnHXG3p+l5HS7X0s5XsqLZbO2WT8/ihBCCCHENzDpfqSPcQ7+MqlriR9k/J2vkfwB1qGuCj7qBcStRM9AB+MG+Cs8b5DHwD9AvgrvddDF8UbmHcQOiB9kXp3kqfBeh/pxPRrRjcl9wn1tJB7Xl+lX9j1CzmEl59RJfUHGg5xfT+pCXUvOp5E4JzqW3F827yzvrL4l99+SvvPr/jnb1/bW9/+dTwghhBBC7OT/yBM/JgVq 1438613864.950,1.000,0.001,HISTggAAAM142u2WwQ3CQAwEfTk7JMqHAuiF2pDogEYpgQcJj5VGhggkHt7Pyjl7vdHdOTldbxez42RP9JXbysP5boVCoVAoFAqF36FB/Pof26k7gE5L+ioc1nviOyRvFB/EAfUuOhp34YB44xnqD8KT+FO9UfJn8Reyrv22/AX6L5JHeiF9XeoD8jvskyfPA/L0nDnss0P/DvUGfeg9HM5jAx8O59iByWcW9+R+mvgdEt+W3Gu63zQPsvpsPrUP473zsn1J7925/O/fjV/ptQfTwATx 1438613865.950,1.000,0.001,HISTggAAAM142u1WyQ0CMQz0lbALPCiAXqgNiQ5ogBIpgQfhM9LIC68FPJ+RnXhsZ9dRjpfrWeRwkyd8sA62010KhUKhUCh8F7T6+au+9U2/4XsPbPQ7WRdYlyTuZcfgNngC/wY4YN8Meg1sI7r7wTvwd5LXSR0d9LeJ7kz6deJvJJ7l78CNnLcT/QZ9GIlHnYl8Twd9JYz1RLJPk34RkfzPBtwX1snOF+NYfpwbrCeSeQwyd0HmU5P5zfbLQnvpPfWpbnaf2cruZ11JHb+aXx9xCwWq 1438613866.950,1.000,0.001,HISTggAAANN42u1WQQ4CIQxsS5FFLz7Av/il/YKJP/CjPsGDcJlkQkwwkti5NLDDdOg2wOX+uImcd3kjtagt2vUpgUAgEAgE/hMavn6yL53Mkw/5/T1oLWbgGfAd348wb6B7IHkc8jnESt6rXa/AOAMf8zsZo5+N+OjxCONCfBXwVUC/rz+RvBl0DfgVvm+wjkXUr6AvpC5O+gbrb6QPHPRZHxnxy/otkT5Jg30zf0b61ch/SQOfSuorpN6YXwZ1GuVNk84NnXTerXa+65f5q90nq9zD+gL3jwVp 1438613867.950,1.000,0.000,HISTggAAAM942u2WSw7CMAxEE8dt2oLEBbhLz4bEDdhwTI7AgrJ5aJSWIlaezWic+NPEtXK+3i4pne7phbJwXtjmRwoEAoFAIBAI7Ef+U5wsdIsNftQOexb7Xdj5zuwWHrHu0D38BviruirWR2j6006uqIc8Ic4E/4L6K9YHsEMfhd87/wHaRZ0m8vbiPAt0he6xrxP3YKJP1vZradhd5LFGfYxTxH+h+jiJPjKRrxXPV353apxbasRRsI3x7cv5lHfOtbX77Mfzd++czhvv88P+BEhiBXM= 1438613868.950,1.000,0.001,HISTggAAAMx42u1WQQ4CMQiEdqH1YnyAf/FtJv7Aj/oED241mWRS1myMB+ZC2JZh2gXS8+1+FTl1eaGuVldbLg9JJBKJRCKRSHzeR9/uj/rvdxj5Ho3XoG4NnnPoWYjOCuuov4I9wP5hHSzyG8mH/C3I5yQ/3t8CvGhRX4dzNvCN+A3ih38EfTaxHuQ1og/rwGG9k/tj/92I76S+sB6N1F0h+Qupr0ryFlIfLD/rU4wvE55ZP7E+lI19zuKjPLpxHkbn2F7z9td8/6pHd86jTxkXBPk= 1438613869.950,1.000,0.001,HISTggAAANB42u1VSQ4CMQxrkgnDoArxAP7ClW8h8QM+yhM40F4sWSkwIA7xxWqSOu50meP1dinlcC5PWGNprKd7SSQSiUQikVgTkut/Ky/ARuoliEdjBX0L8kp0HOo2MJ4az5BX4BnqMe6QR+66Cxmj/hZ0sb7Hd40r1FXQRX0nfjrvg/kL8VuJbye+2bqc+DKyP8genB/so2R/J9LXyf6O9sfzwc6/kDj2YXl2P43cbw2+hwb3XIjeaLwEvj597+TFd3BUT770Dq89X37k6+/+dw9U8gVi 1438613870.950,1.000,0.000,HISTggAAANh42u1WyRHCMAzU4SQOx9AAvdAObTBDBzRKCTxwPsvsyJD80H524lV0xLKc8/1xEzld5Q1vrI3t8pREIpFIJBKJf4Su1Hvtf/WjnX4ceEEh/j7+B4FH0AvoGG8gfgR0J/lgnAHywPXleWpcQR9I3Ery3oG+xN0H+Ywk3gR8bDyDXSV5CdEniI/7UqCeAnGd1HmAfZjBr4K9EfZgPeo7J32K+gh1SNBPRtbZOSmk75x8bwnq10724ByxOWHEjwfvG5kr1jl37Mt5qMF822oOb30PrLXTF+VdBWI= 1438613871.950,1.000,0.001,HISTggAAAMl42u1WyQ0CMQyMj+wBElAAvVAbEh3QKCXwIPmMNHJW4np4PpYde8a761h7vt2vpRwf5QVrVprVSz9JJBKJRCKRSPwCEvij+cx2KP4HBjwdFeIW+KiH50uz3uwEeV1vhjjWVdBxyFsJ7w5095C/Al/3D0R/Bj4WP8G5Qz+oh/UL5DMefG9O+DT4DmwunMzFROaLxS2wQuasQn8W8OM84nNrUGdk3iTwldwzHbyvPng/ZeMe2bpvRveXfnlPfqpe/qzvd+nLEwVDBdQ= 1438613872.950,1.000,0.001,HISTggAAAM542u2XMQ7CMAxF7aRJCiyMDNylZ0PiBlyUIzBQloe+XDEgIfyXr7j2j+s4SXu+3i5mx5M9UVf2lctyt0QikUgkEv8BzxL85Hpx3UrAJr77KvwmEecinnYTOgN28oB/g31gvnnlDvskdKhXMd4jfgbvoPPyP4g8p2D+Bv2BcRN16mClV4ROQzzr1YN1Mvixz2oQ56Ifo/59+18Rz9nHNZinB/tF5c26cT+wL5uIU/mbeF8PzgPfeH4olI3njW/Mr3yYR+SX99aX750HPZoE9Q== 1438613873.950,1.000,0.000,HISTggAAANl42u2XzQ3CMAyF89eEgAQLsEvXYB0kNmBRRuBAw+GTnpxKiJPfxUpsP9uJY7XXx/MewuUWPsibjJtM6ys4HA6Hw+FwzCD6Efz0fKLw+36n7fQLBp9aJyEV/9Avwq/AP0M/1hU8FfrBc4Dd2G+Io/QN+iN4K/xOsDsjrw7/BB7KBvsu6usiT66ZR8M+6+K9VFE3z4/3WMEfRb8W0Ufsp0X8n2TR/1Hct3ovBXxZ9Ktlr/qX/lacLN6RNQeyqHN2biTj3as41txKO+3/PVfDzjlpIc3GfwNvxQVJ 1438613874.950,1.000,0.000,HISTggAAAMV42u1WOQ4CMQz0xImzqfgAf+FtSPyAhmfyBAqWZqRRIoFWFJ5mlMNjO+s4e77dr2anh73hO2PncnlaIpFIJBKJROL3wEF2heww0S2TcdB/44crjZuYL6RThb8qmO06+WO/jfZtwr4Lu02w07hT/Ox3UPwcT6P1mOTL5z6Eboh8YpLvWPx+QfPMXA9Odefi3EzoQOiG0IPQcVH/XOcQdhDrEFwW65zPb3afTexX9x2L/QVf6vlkHxb7Gw7ur//+LuAFr6AFgQ== 1438613875.950,1.000,0.002,HISTggAAAOZ42u3WwQ2CQBCF4ZldQNDYgaWYWJuJHdiQJVmCB8HDS16Akxr+7zLZdXdmVlA43e7XiPMj3uoYc4zl8gwAAIBflBs/5+d9zazTcZFYF9ZrZNyafGHeJxuJRcat7JvmO5OnNeeupo/G7N9JnOrtTb+DRM3Xyfy07ih5DvJ5NXHqq5e+BtN3L/ODOYeeu5X9Reb1+6rmunUyLmac5j5IyZvmOoZZl6b/kP6W1m1m7ucweYrpo5p1Yeq5/Dnze8+ZOnP71q6rK//Pyp88J7byfAEAAAAAAAAAAAAAAAAAAACAb8sXQekF0Q== 1438613876.950,1.000,0.000,HISTggAAAM142u1U2w0CQQhk2Qenl2gDFmAX1mZiBzZqCX54/IyZcHvfzA9ZmAH2xe31fopc7/JD3WzZrD4+kkgkEolEIpH4RwnWe3URr0zyShBXYjEuJN5hXYke4+4fQR9K8nrdBtb9Bn7XL8AbYHE/A3Se7wJ1DOqcQO/rlfRjpK+V9L0AD8/HyH5Yvw3yGfE3qI/32uHezuCv5DwxTyW6RnS68/0LeRfsvTXwd8hjhMf4jBdBJ/95NF90cq7IZJ6oH52cn3pwPh7d19F5Xb6FMAUQ 1438613877.950,1.000,0.001,HISTggAAAM142u2WwQ3CMAxFbadJSkGwALswG1I3YBFGYwQOJJcvfblBhZP/xbLjPNutEuW6Pu4il6d8lJrVZu32klAoFAqFQqHQ/6TE14370yDXSJ2t65gn4Hc7ER/fnxPYHq8O59DsQvgnwjdSv8czcDr/CPmZ+L2vAvEF4meHizz0Z+izwnqFuRLpC797gb4K4WD9DPkKcYP1RLjpy/9mZB7GVZJnxOJ5YvWF7DPnPJrDY/XY+TfnXvD69e6T0XttlKODc+1dR3aa91f79Q1wUwWW 1438613878.950,1.000,0.001,HISTggAAANZ42u2WwQ3CMAxF47hpUnFhAHZhLa5IbMCijMCB9vKkrxQBUpD8L1918h07cdycbvdrSsdLesFXtpXz+ZECgUAgEAiMDYst+AvkL5+nCVZ+8k698pPB27txhr2sXIXexfgEfy7sDXbOq/gmF/ip4IZ5Dt7yWKBbEOdmP4i41boNurkTb0VcFboJ+zyLceoL8lL7qc7LRT0UUY+snyLiZn3yXFjHvfVUXqruqVP3XN1333nfs9C5iM86edqb/abXF/Jg/dU+7Ke/+r/mQfdr1HeIPQG+YgVt 1438613879.950,1.000,0.001,HISTggAAANp42u1XQQ4CIQxsCwvrxoMP8C++bRN/4Md8ik/wIHiYZAKroonpXCbQUlrYtuzxfFlFDld5IBTWwna6icPhcDgcDsc/Q4FH2X9V//kuI/rWGGtjfqvfRuSR7KdEHuH9ORVOIGdsoJ/BfoB51KvyfeEd0Wd26v4z+FXjWGDMOAMv5DwSzEeyPkM8kcTD7M/kHtg4kXsJwLhOiZ401mHcRr67ifglxE8DjsR+IHqtPOjNW+vM61Y+snOVTn+U/B9+qq6FN+vh1vo9qr6P7kuj+8q3+trPz/MOC2MFvg== 1438613880.950,1.000,0.000,HISTggAAANB42u1USwpCMQxskr60BcELeBev5BUEb+BFPYIL+1wMDMEnikhmE9p0ZtL0c7hcz6XsT+UBm1Fm1OOtJBKJRCKR+E1ItuAv+iAb8wp5ITyB9YyPPCP8db4Sn2XGRnxRr5K6KvgZ6C/Ebx37jB34jfCZfic+A+rthO8Qd6DjsN8O+Ur2M8BnQN5Bp5FzjfqgoGfkPmCfPbg3NbjH0bwRXXavjeyf+WH9rB7GNzJW8i4KORfmH70TDd7/q/+mBv+LbOR96z+XN9fJh3Sf+TsqKQVP 1438613881.950,1.000,0.001,HISTggAAAMh42u2XwQ3CMAxF0yR1W1rBAt2F2ZDYgEUYjRE4kNOXnlwoEhz8L1+1nW/HiSN1vd4uKZ3u6YXSuGucz48UCAQCgUAgEPgcnfDW+L36nt3TobjcuEpcBX8RVn+F+F64wvfQeJT1E+gb6PWip/UcRHcQvWPjGfIVyKP1T7JuFv/o1LvIepM46qdBPwzqW+A8zTmvTvpB96jA/4k590XtBjqkr/OQN/ppvxlY69D5onktkD879nfnn/a59x38l/hfv/Nfz/8ERsgFxA== 1438613882.950,1.000,0.000,HISTggAAAMZ42u1WSQrDMAyUvDtQ+oEe+pO8rdAf5KN5Qg8VPQwMSiGFHjSXQc5YGtuK8e25PUSud3kjG6txWncJBAKBQCAQCPwP9ORxJbrPexDeiQm+F+Ds5MN5FeJm3EGfQZ+BMV8jeszfQdfJuhupi/UmxMN4Mb7A/AH1BviYxOcC8XDGG/E9yTlU8FWd/VQyjvnUiTG/EN9eX7FzKqSP1amfnP5OZB7qCunb4uwn1vH8yJf+vHsC/385qD/7Pks/vlf14H7qC8FgBQ8= 1438613883.950,1.000,0.001,HISTggAAANF42u1WyQ3DQAiEvbCdRxpIL6nNUjpIcy7DJeQR+zPSiFWyyYv5jFjYWbAA+fZ4riLXTd7IB+vB6b5LIBAIBAKBQGAc0of3FBjPEznvtQX+BzFf5ObkW0CvEZ1M7ELqbiSP0zbgCtxA/7RnsDGuQn4LxGV49wL3ZtAzsCfghXyPBn4j9VWSN75jRJ/Vb6TuCeIS6Sf0F2DWH+r0Y3H6xiBeib4Sf+qcCyVzwPrdq1Od+WT5sv2QnX2hzv6RTr8O3m8yaG9+q/er+uVfeb0Az84FvA== 1438613884.950,1.000,0.001,HISTggAAAM142u1WWwoCMQxskr5WETyAd9lr+St4Ay/qEfyw/gwMqYsgSuZnIJ2k2TZJ93S9XVI6ntMTNlgG63pPgUAgEAgEAv8A+dF8ZKOfTvqLY1fHLsSe4f9Sgaujw/UCOgP7S9fAvwAL0VXYfwF7I7wb3IEbyS+TuJX4N8hnT3QHJ26Dc+vkfDs5zwXsndxfJ3WQyf0mWMc6KmTdCCvRsX5Qp28K0ZlT/xgnO3qb7FMjcWfngGycP+J8/+x8enf/b81/Nv8+NZ/jXST5PACllgVx 1438613885.950,1.000,0.001,HISTggAAAM942u1WyQ0CMQy0nTh7iAcF0Au1IdEBzW0ZlMCD5DPSkN19AFp5Plac8RE71+X+uImcF3kjValV2vUpgUAgEAgEPkMPkq9GKw+x39b210C2+Uz0aJfx30j4XmWB/2azn4CXwJ+TODPhY14F/CCvzY+gz0RfQE4wHiBeG59IPQaQ1qlDJnYO+TqJh+OZ8J2ss+eP1T91+oD9x/VLpz55pZ2R/ZQ6vETOiUIflNg5yVOgTrbxnBuJKzvvAdnp91fvqH45jv7Z+uM93Mh/Aaz7Bb4= 1438613886.950,1.000,0.001,HISTggAAANV42u1WQQ7CMAxrmnRdgQPc+QtvQ+IHfJQncKBcLFmZ6CahKb5EjVLbidau18fzntLlnD7QHqXHfHulQCAQCAQCgS0hO9WTlfWyk0e9PDgHIWsjOkrqG3lnfnlm4MmQR73aY4H6I9QXWFfwg7oG/ieoQ71G+lGiP4PPQnxViIy3EZ5TjwcyRyP9KPFbnXoFvYnMle0zkk/kuxDQMaInJG+EN0OfSnzjOVOHX4kf1pd3votzv4hzL3j7lsJW4vl1nyyc32i/upP/0NZ88udzGO77DcJBBQc= 1438613887.950,1.000,0.001,HISTggAAANR42u1Wyw1CMQyL+wXehQEYgg2YDYkNWJQRONBeLFltkfgc4kuUvtRO89Kop9v9anY82wuxWTQbLg9zOBwOh8PhcHwPgd5jq8Cib+odSFbpcL5R8Pa43Gwiv8cV8hOtd52NfN63a7YK/Srik9BPtK/zHEg/E1+3e9pfBN9G+pV4ijhvpXz4fFnUMwmeKP4TBnXPon8C8XH/RPE9irgg7g3rqD4Mk30PUSeVH0QcRH5KD6LuKg6DezrK10RdMTkHsDi3ZufSr4E/43m3nuHDeeIJzl8FAw== 1438613888.950,1.000,0.001,HISTggAAANd42u2XwQ3CMAxFEydNSLkwALswWyU2YAnGYwQOtJcnfbWRiqiE/8Wq/b/tOFHTXu+PKYTLM3yQZhtna7dXcDgcDofD8d+IPoJDzCVujBuelVUwkUfVU3b5rqzIl4SteFb8E+oU2CWeoSsib0N8QD8j8jb4qSvQF9Q7Ix/7HlGnQcf5DNBV6Cp4al+K4CX4B8E3MXdbiZNXxXlOKzoT+xw6z2/orKf8JvLlFT91Wcyjdx3kZ8E38V+o8scvvx9/df/Eg/Sx99yscz1b74240z529/UGtFsFog== 1438613889.950,1.000,0.001,HISTggAAAOV42u1XWw7CMAxLmrU8dgE+uAtcDYkbcFGOwAfbjyUrXYUESPZPlC32kipJtfP9cTM7Xe2NWKwvtlyeJgiCIAiCIGyHD8b5YDzjlU4e0ymJnsPzAL9B3A7eT8BDi/GrX4Ffku866M7AX/X2YAP0AniYT4BfyXdWeyC8Bvroz+BjXg30K8Szunek7kbqbtAfWMeRnEOQvkC+A89Jn2Af1qQvUcc6dZ3UgedipC8y/SBzHMm81mR+S1KPdc6/JflNG/WyfVcG92vvXvVB/U/t81+9l/79HtU5CoIg6H9LeX6hzhf8ggVC 1438613890.950,1.000,0.001,HISTggAAANJ42u1WORLCMAyUfOZq6fgLb2OGH/AhnsQTKIibZXacdEB2G43i9UqWZTvn2/1qdnrYG3G1vtpweZogCIIgCMIvwf8kru/U//iP26iHvEDGm00bx5ufIb8MvGZH4BXgD+A3/QrzB9CtkG+BOBX4EfRQZ+nEmyBOgrxH8DPRm2H+TOpXSL0nsi+RrB+/o/5C6pXIegLJN3RsJn2ZdvKxj530QSJ9bZ08MR+sH/KMxHESF/fLOueanWcjOt7R8Z33xrffz0d/r1R3QRCEg7wrL3STBcU= 1438613891.950,1.000,0.001,HISTggAAANx42u1XMQ7CMAy04yZNgI2Vv/RtSPyAhWfyBAbS5aSTAZWog285xb7ajpuk6eV2v4qcH/KGddbOaXlKIBAIBAKBwB6hg5/b27wS6JXE8eyMMf5E/Ov9MTv1TcAG4+T4D51b5wJ5sQ70184zxJ1B18Beob7VfiR6I/mw7hnmZTA+QZwCdiP5E9gb0RfQF9LHCv3K5H1mYOwrrhtkIevBwJ/ZfwvozMnnrWeFsZG4SvQsbvqwPnH2o7dfvX7o4HNSN9Kpc75tPY9v8/0ad9T3SwflCQQCf7gfvgA9QQWu 1438613892.950,1.000,0.001,HISTggAAAMx42u2XQQ4CIQxFC4Vh1IUX8C6ezcQbeBGP5hFcOLN5yQ8jk+imf9MU+tsPFBIu98fN7Py0D3yxabH5+rJAIBAIBAKBwP+QBuNpc4fniEui/tb8ijcJXsU8xzN0lsUeELf6R4zP4DfEO+o38KlvBn/1T/AL9BfMM0+D/iLiJuiiXuqoyEefOpv4H5TOuVRhXdTleSbRjyqPiXW46O8idKu+rkKPizrs+16d0uF9e8+8c/96ft4Yv/edssH8eed7aIPr+9U+DO/fG5r5BZw= 1438613893.950,1.000,0.000,HISTggAAAM942u2Wyw0CMQxEnT+BAw3QC7Uh0QEXyqQEDmxAetIoCO2Ki+di2Y5jz67j5HS9XcyOd3shLTIsMp4f5nA4HA6Hw+H4vI+2Wr92fJxIIgt/gp3vxTDxF/XOhD1h/VjXRHyHbOCh9ASd9VXEDXmAn/kr9h36DrLATz0ibxX+PerqgkcR9an/yry0d/FduX8TfNhv7KMk6lP9wr7Ioo8i7Cq/6uv85TmNoh4Vp845+ZmoyybnajYfgtAVrxn/sPI8CxvNx195/Os+ecc9AYy+BXc= 1438613894.950,1.000,0.000,HISTggAAAMJ42u1UwRHCMAyL7TYpPGABdmEd1uCODVi0I/RB8tGdToUfPevjiy0rSpP69no/S7k+ygfRo/Xo97UkEolEIpFIHAF20HP4Tn6IPK4D9HHthD90ZogjXyE/QT/jO+Qn4I96I3WWD5If8dTjAusz+Guk70J8VOAF6DbYl/lBX/hdK/GJ9UX04/th9+fiPc3EjxEe6hm5N6w76S/knTnRVf+LE79KT/2fLs6n5pmL/WznfGB6yod9yft1/v37XLcNAMIFYA== 1438613895.950,1.000,0.013,HISTggAAAP542u3YQW7CMBAAQNtJSIEv8Beu/RYSH0B8tD9oDySXlVamhQOoM5dVnPXajp0gcThfT6VcPsvNsMR6C8fv41cBAPiP6ovUqXe21yRm94ckryX5a/sYYkvqbZY4LXEbrmPeEO4PyTj7zrw24XoO9WLdOO85zHdO6kxJ3Cf94nOL898m48R1xby1fZesa837SPZl7uzDLtm3qdOvJe1jcg7bH69rsr8lec6/PefZ+Y7jxPM2ddbZe19bMk7pvNex/tip25K8+uTv4KPfx/qkfn7PHmsHAAAAAOA1+B8XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB3Un8Ap8MG6Q== 1438613896.950,1.000,0.000,HISTggAAAM142u2WSw7CMAxEnThtISy4AAtuwtmQuAEX5QgsaFg8yXIJQWLh2YyS+DOTT9XT7X4VOZ7lBV05rZwvDwkEAoFAIBD4B6TBcb/W0Qvt1JOc+ff/neOnjQviyQl6Z+TRD3lC/M6owz6t/2LombFejH5tvEdexfwEfQXr1F/Rv6LOAj6g3uL4YH/qnA1Ww8+EfSzGPSjOfmbMk9U4RzXuZ3bOn36SodvSyXzp1KuOj62+ivE+9cP3LE6+bBznQd/BUXHWvn5bL/XmPwFE6AUg 1438613897.950,1.000,0.000,HISTggAAAMN42u2WTQoCMQyFm7SdsSp4Ae8y13IreAMv6hFcOCI8+AizURd5m5DOe/lh0tDz7X4t5XQpL9TV2mp9eZREIpFIJBKJxAf2J3k80Km+BTrSV3gnNno/wvcW8Lrw1Z9XO8n5299J3Ems6o8Qp0q8Jn4P6hiiG6Dfi9U+B+SbgroOAZ9sh//Wge/gO+gpvvbdYf7mYN5ozmh+O/At6KfKuQV1UX0OfPLp3hOf8lhw323jfoji+ca9aT/ev16+A+rDnzo1BXQ= 1438613898.950,1.000,0.001,HISTggAAANl42u1WwQ3CMAyMHTdJ4cMADMEGzIbEBizKCDxIPiedXBUq5eH7WHFz9tm13F6fr0dKl1v6Incr3er9nQKBQCAQCASOhEymQybTLT/yslOnF3/wbfwfAm8h8Q34rdsCvELuKzmfgF/BGpwz0ZFJnAy6MJ85foyLdaLeoWcl/ajwvEE/UH8h77USnWfwr04fC+RHHQ34WI+BLiVzxuZViR/n3MgcZ5LPnHiLk9+Lo0SPOPUI4SfnnpA+sz2hDn/rvhAnP6tnb769e/Ko/S0b88zy3ftb3R9cGAUd 1438613899.950,1.000,0.001,HISTggAAAM142u1XwQ0CMQxrmjRHEYgF2IXZkNiApRiHEXjQ+1iyUoQOPvHHSs9NclYbqefb/VrK6VHe0MEyuF6eJZFIJBKJRCIxD/mRfpZXWFAX91XCSuIGdYToG6wb+d4H7wYvoDPQNdCv9R32N9LHQnQOOgc+Dt6Tvh1iXG/EvwOph/kUYoP/cPCjE1+wLyM+sXNhk3GBdTwnSt4l8mE/eI57kFdJHczrQR4J7gO7Z1FfSvxDH9i8qMG8kUAfzYtv55v8ea5uNe9n/d6svxclPwXN 1438613900.950,1.000,0.001,HISTggAAANR42u1WMQ6DMAyMHQIGts79S7/FWqk/6Ed5AkPDctLJtE274Fss4ovPDomT6+N5T+mypBdytVKt3tYUCAQCgUAg8A0k6v0I+qaOOPrMr0RP4H2YyXiP70fCG6otMG7A3+N1YDHPHuLtvAl4E/hRxwhvhLwN/EbymKG+mfCZvoHFenE9Mb+BrGNx1q3A/Ezi4H5Q8o3jqK9OXBaf6Yizn718M5k3Qv5H46tz/jLZl51znti5Pqrn9QNp1M+0UR+Vxn31X/eU/Ih/tvs03icn+x8b1kAFdA== 1438613901.950,1.000,0.000,HISTggAAANR42u2WwQ3CMAxF4yRNCj2wALuwEisgsQGLMgIHmsuTvkxVDgj5Xywn3/6Om7o93x+3lE7X9EZZra02X54pEAgEAoHAf8KiBT/db4+fwTMRp9aLyFexTx2lm5GvYp//mWN/Wm2HT/3hN6wzXtXXwJuFHuuqiB9xC/J18BfwO/IcoEO/iXN18Hm+hvWhf3T6PIl6TDzH6tRZ4fM5Kpud+qpzL9T9zeJeZqHLfLPQZX8YX5z3rTg8c/Rs4xzw5kj+MM42ziv7Mi/trMt2zt+vfx9edUYFbA== 1438613902.950,1.000,0.001,HISTggAAANJ42u1W2w3CMAy0nTgl9IcB2IXZKjEAEosyAh8kPyed0iKkgvD9nPyIz4kaN+frfRE53eSF1Fgb2+UhgUAgEAgEAv8M3amerszXAXeU/r4jcfQbqWfABeKF5NlAxxtPYDu8UzPkHSAP44nUnYi/kHhtfCTruu5M+neiM8M5ZIhjP6hfyDrsr0JeBd1E6jnpp5D9C+gb2V96kxVsBz/Wx3viZN/s+5ZBnhC9TGwb3GNbeR+Zrm20WZ3R3NKVc2jr/Pv0vN37P6Ff1tevnr8+AeGzBYg= 1438613903.950,1.000,0.001,HISTggAAANJ42u1X2w3CMAy0nbgPEGIBdmE2JDZgOcZgBD6ohXTSyaio6o/v5xTH9jlJ47aX++Mmcn7KB21hXdiuLykUCoVCoVAofKEb+evG9cZ3ngErjDM/IXE4HsDeIT9yzDuMDXTD/wg6DvNhn4Cd6EW+kbBD3sPCMzD6z6A3wrrCfiL75CT/RNaPdiN6AzmvTvyVnKsT/07OX5P8LXkOG/lvkUQf68U6HPJYopPFsXvTSFwjdVnSH5TcExavf/Yd3Je1/UhX+uuP9e39fti771O9N8qKBbA= 1438613904.950,1.000,0.000,HISTggAAAMB42u1WwQ2DMAy0nThQaNUF2KWzVWKDLtoR+iB8TjoZpErtw/exHMf2cTiQZX09Re6jbCjdarf2eEsikUgkEonEGWhK8FPdsI7BOutj7D5I8hziuK9CPSf1ncT3++kAfiF9PfAL1POAL/K4QP4A6zPsvwX5rdsrWCd9GtSboK8H/J3oWYmuDeKV9GnkfQjkGeFngR/NrR6cP+SBuiqZGw38cvLcRfpUUoc9tx48/xbwEMLr29+rf/0/0Pn6ABhABO4= 1438613905.950,1.000,0.000,HISTggAAAM142u1WuQ3DMAykqM/O4wm8S2YLkA28pMuMkCJic8CBcVKk4TUHid9ZlAivj+0usuzyRh6cBuvtKYFAIBAIBAKB/yF9Gafk/86rg/7GdXABPwWusDZ0oitDHNYxPhNdlneCeNy3+EZ0Fogr4HcZfAW/GfTMTnyH755gv4NOy3MCO+pYyDk2qNdIH/HcKulTJvlYPzM5D+wvu0esrhIu5J4Vssb7pMSu5H0lR1cmeZS8P2YXxz8RO2P50N+bL95++nGOycH5dbSOvgD8aQXs 1438613906.950,1.000,0.001,HISTggAAAMZ42u1WSQ7CMBCbpNlaDnyAv/A2JH7AJ3vsEziQXFxZBqEKIY0vVjvOZLZEudwfN7Pzai9MnUPneN3M4XA4HA6Hw/E/iPCuQwTCu3eg8Ds4dc5EH0GHfgvRF7Kugr1A3BhPBR72BfwuYB88w/eJxJdBX0HfiD1DPWfQI1eybyN1iSKfRPpZwD/TNTEPifQxkb6bmCM1X+/O9UQ4CD2Lk61n5y4JfRb5sTqxvNX5N/HfxH3yrS4c5D98eH8erf+1390+TzUzBcM= 1438613907.950,1.000,0.001,HISTggAAANV42u2XUQqDMBBEdxM1SlvoAXoXe7VCb9CL9gj9qKHwYDAWwZ+dn+A6uzObxKi35+thdr3bF3kZfRnT/LZAIBAIBAKBwA9+kG6Cvm/06Ss8b8xz+BmWscP9gnjC92YW8YS8HteVdxL1MvgFPgfUHUT9CToF8epzRJ0JdWreWfQ1glegOwpezb+IPifwevgirxP+2AfXh/1nMZ/8z+B6J5HvjTzuN1vZt1nEW5+HJPRUPWv05Y1+lb+y0/mlfLTybeO87n0++599H/2+OMrn3vr+AchgBS4= 1438613908.950,1.000,0.000,HISTggAAAM142u1WMQ7CMAy046RJBBIf4C+8DYmBnY/yBAbq5dDJZaISvsVqfT7brR3lfHtcRU53ecNWq6stl6ckEolEIpFI/AN0Z/WUL+tTvMcRPeYX4rdAx/0V/KjvvAX8HteInufp5L46gd+JjtsD1LFA/gHPyDPgFaijA78T/QF6zjuSviboTOBXEjdIXY301aAv5DfynyuZAyNzVYiegS2Bnm3MoySO7YVurE/J/hjJK2S+JdjLSE+CPiSIj95vPXei+F+fs7pz/Y/v9QIvuAVg 1438613909.950,1.000,0.001,HISTggAAANR42u2WMQ7CMAxFY7tt2sLCzl24AldC4gZclCMwkC5PslzoQoX/8pXI/nZjx+n5/riVcrqWN6yxNNbLsyQSiUQikdgXZKd5SJbuK+hGewGbU4/Fr8daAu7ABn9z4neIt/Ch8ejokyvWM+JV6FfoHxtP2Ke9Ib8B+wadGToT/AbsMy/aVdjzHBTrEcw8q1On3vl+79zV6TvWfXDimdMXnl4PO3Hy0KA/u+D+mNPvGsw1z68E93Lt/Iy4BOeydh5/mrd8qKM/Nmdlo1++b//9fyQvWuwFOA== 1438613910.950,1.000,0.000,HISTggAAAM942u1WwQ3CMAy0HbehFIkFGIQfsyGxAYsyAg8SHiedXIoEj/o+JyfO2UkcK6fb/SpyPMsLpbE2tstDEolEIpFI/Be68fhbv2f98D50od3/fdbYg/kB/4nAlYwrrB8gXoV4I9i4roLfRPwwTuc9rN+BTtefwa4kLwOd7neAcTyXkexjJvudSJ5RfnieDjaOYz1gnuhXAjuK50HdCLlXVn+FMKtrJbYGOgrnYpCvk3040ROiz94xxivB/Np+EunYyr60FPZl//tV337zE1AZBTM= 1438613911.950,1.000,0.001,HISTggAAAMp42u2WwQ2DMAxFbUhSQg9doLt0NqRu0IU6UkfooeHypK8gRDn5X74c298OOFHuz9didnvbD2Njbzw8PhYIBAKBQCAQOB++05/4noO9vveyiBugw3XmJ/GOdKFzaVzgn6FTwI78BHtqXLFOvRnxGf4K/yj6JWfUpc1+quhn/U5XxDOf+y2CM/LU/01ifiaRT92EuqOYg63zp+ZOzbGKZ12D3dNJwm8b9+Mbz6WJvr1zrvzge6TXX0/HT77vjtLfq+N/rre7zy+VnAXB 1438613912.950,1.000,0.000,HISTggAAAMV42u1Wyw3CMAyN7ZAmLWICdulsSGzQRToaI3DAuTzpKUWUm9/lyY5/+djK/bk9Urrt6QNzFmddXykQCAQCgUAg8H/IyXZ60F/x/0fs2Drj4pzhn9nliei7X3O+ACv4Z1jHvJi/gX91XkCeQcb4ldRbiF0jdhPE7/VeQW5Q1wz7WuB8jMQ1IhdyThiH3Vsm+dh7NKJn7xHzCNmvQTysq4JeST0sDztfHfShDvKN+i8N+nHU5/LlPJGD80VOmjs/z883RWUFpA== 1438613913.950,1.000,0.000,HISTggAAAMR42u1W2w3CMAz0o05b8cEC7MJKrFCJDViUEfgg/Jx0ciqBQMj3c6od2+fWSXq63jaR40We8M7a2c53KRQKhUKhUHgH9M/06Yd1aGLPmMUZ/PcJ2NHvJI+TPJ7oevmD5FnBPwEv4J87N7AHWRdEx4HUb8CoZyY6UC8+L0k97H8l9Vh/kbxHIfHIWJd9R4P8DnZc15J5CzJfE6nH5t9JnCX7wnfuJxvUle0fVs9IX1kcgw2eG7923uugXXfm+fb9pA94dAVS 1438613914.950,1.000,0.000,HISTggAAAMp42u1Xyw3CMAyN7ZCkigQLsAsrsQISG7BoR+iBcnnoyRTlEsnvEtnx5znOp70+X4+ULvf0hu2j7KPe1hQIBAKBQGBOSCzBFOslB2U9GNerSx29gfyJl/G7EfQn8M/ErxK7DnEqjJnYN6ijgL6D3xniNpAX4Id2DXh2EqcCH1YX5umkbuRRoA8LySOgz04/9cf9wPpdyLxBn5CHknlz+LF9mtj/DrFndkbOF8uvzjlUsh466L4QEk/+vPdkkH62d0oG8/3q0wa3swVZ 1438613915.950,1.000,0.001,HISTggAAAMh42u1WwQ3DIAy0DYY0/XSADtJfZqvUDbJoRuij9HPSiVBVSh6+zwk7PmPAkPtrfYrcHvJBaqyNbdkkEAgEAoFAYA80luAvsB/XG//jkI3Yhfhz53v0J+Cv30l8BXuFuNzRvTSewV5Ab2p8BZ6gbof4AvYKeRPRw/wVdGYyP4cx03MyzqQO9GOcQz3W0c9Qh5N9Qj08n4X4cZ+NcCF52PnvnSsn/adkXrKzP0b7Wwf7PQ3q2eB9pAfd80e/J3bSOs7+zuobcrQFKg== 1438613916.950,1.000,0.001,HISTggAAAMt42u1WSQ7CMAz0kqahHPgAf+FtSPyAT3LkCRzwaaSRiVShHjyXURJvdcZRr4/nXeTyki88WIPt9pZCoVAoFAqFwn7Qnf1ZPANWwsL+A4Ex3xLcwN9JHgf7BvGd2A1Yr8FbcId6TuR8JXZn2Mfv2sC/Q10Yr4Ofw74ldWO9A9YG9qyPA7gDN7gfvBfsQyd6aokejOTzpO+W6IjpyUk/lMS1RPfsXBL9GpmzhcyTTs63/zj/muSbfWcyP5t8x+xg763KMfCvOvQDh/UFzQ== 1438613917.950,1.000,0.001,HISTggAAANJ42u1UyQ0CMQz0kd1s4EMB9EJtSHRAo5Swj918Rho5RPDzfCwfYztO4vvr/RS5feSAn1JPaY/uSSQSiUQikUj8Ahroo/xRnpF4tDtIrFfAvxC+EamE32WD+BXqKtg34BfwX6Fej68Qt0KeyN75F9Ab4VcS56DjeTaSr0E+nJcH88H5V3KfBnYnczHIj/dgpH4h74PVX0j/Rt4J04W8RyFzKKQvC/pVIkvwry347xr889G9M8uL+hjdbzq533RyD367Z0fPM5tX/pQnMTn/HT4LBeE= 1438613918.950,1.000,0.000,HISTggAAAMp42u1XSQ7CMAz0krYpIPgAf+FtSPygn+yRJ3AguYw0cipx4OC5jFK704mTWOn9tT1Frrt84Y21sT3ekkgkEolEIpH4HyiwkHGHAeugTsF7IXCPT3CPrEQX85W8b6DTn8+Q3/UW0KuQbzCuoFNJfAWuwOfGJ9C7gS8negv4c9Bh31/Br4MeqwfW7ULW28l6TCS/kP3F4jP77wj2qQfxQvYVm58RH070I39Yp2ieOnhO5eC51aBvSOBfg/5jP+5joz6P6gz7+ADN8gXV 1438613919.950,1.000,0.001,HISTggAAANB42u1XQRLCIAwkaQJUPfgA/+LbnOkP+hGf5hM8iJed2aF1bPWQveyEQJamEOAyzbeUzvf0wtBYGuv1kQKBQCAQCASWQCIFm+RNOv2YX4ktZLwSuzY28OeVcd62QzyDe6gDZ+hXgY/gH4FPjQv5ngzs0G+E8Q7taGO8QvQOJI84z0LyUUkeGTvoOrn/585/GICN2NpZD4wxvrJ3CmlnOrh+DfJuRNeIXiL+pfuAzdM7+1q+VG9kZT2SDu99DsjOep/Wcf2x/r+dy1vNR56ywQWh 1438613920.950,1.000,0.001,HISTggAAAMV42u1W2w3CMAyMHykJCLEAuzAbEht0kY7GCHyQ/Jx0MkhIgOT7ObW279zUSXu+rddSTlt5wgbLYL3cSyKRSCQSiUTi+5A340ruGzDWa+Djgyvx2wFPnw55nfx/LuBjoIf+TvKd+BvUI0+fA+jsIa9DvMF1B71G6hZSb8Rv8jFYh0r8Hd5DhT4qPG+DuEF9NA/oZ0FcSH9MpwZzgrpsTpzMo5N1UsIS7Ndon1mwjzXQlaCPV3UY9EPn06+eo3/7fXgAD5cFqw== 1438613921.950,1.000,0.000,HISTggAAAMR42u1WyQ3DMAyTbMc5GqALdIBs0dkKZIMs2hH6qPMhQNAo8uhD/BCOZFESZCGP/XiZ3Tf7Ijf2xun5tkAgEAgEAoHA/8MFJzjjvUz+BxGJxEOdgcQvwInYR+C58QT+57kCY9wR7Of3G9GpUMcq/BawL516mfRthfoG4JnUz/KbSJ+xPw46mfSD9bUKHayzED8X86bmz4gezjmb0wR5ufDL4l0Vkad31mPiXTrosT3RG0/tjV/jq/111T68yo/e/wDzNQUl 1438613922.950,1.000,0.000,HISTggAAAMV42u2WwQ3CMAxF4zRpWnpgAXZhtSKxAYsyAgfC5UlfpioIDv4XS7bzv53EUU7X2yWl45qeGLq1bvP5ngKBQCAQCAQCv4M5/uz4TfAU+Cv+g4NYX5w88ihe1qf4JuS/4iMs9RriWf13kdegOwn/Af6K/SngXbqdEWedFToV8Rm2ib4H6Czo19MfBU+GfnL6z859M5Fv4pzIx/0ycd7lzXkZd9ZXnHgSc8H5ZP1q/m3je5I3rrOdeval9+/f3udP12kPubYFZQ== 1438613923.950,1.000,0.001,HISTggAAAMB42u1WOQ4CMQz0EZINFHyAv/C2lfgBH6WkpCA0I42iCHkrT2M5dsYTW17t7fHcRa5v+cKH1WHt/pJEIpFIJBKJRBwM/r+i4ZP4T0eZ6DKi30m9Aj7aE7GN8DewRu5XqN/A78NuwFPhvAHvBnln8C+Qj7o71EN9Fe4X0g/M71C/TvqC73DSt0L4bDJHJzw4TyO+Ej4lcabHCb/9GXeyN07m64t7X0j+bC/loO+KLp5H8WnQuzUoXw/Ss8z/AY4wBdk= 1438613924.950,1.000,0.000,HISTggAAAM142u2Wyw3CQAxEvd5PEjjQAL3QBu0g0QGNUgIHksuTRo4EuXku1jpjzyTxrvb6fD3MLnf7oq6xrNFvb0skEolEIpFIHIfy5/rC+9xOPfIb7ocdfOZZv8UJ/Rz8hjiw7tCrIj9hvYg4gz+h36Z7EjodPhfwZ+Qr8gNx0z+jfxc+F3xH9quB/1nosB/rHGtDvgteE304hyOYWxf/wYWPEcwl58/Ec/powo/ad0XUmfie0T72YN/7zvMi4peDzic7SO9Xn/96P4/O2Q9vMwU3 1438613925.950,1.000,0.000,HISTggAAAM542u2WQQoCMQxFm7SdqQ7iBbzLnE3wBm48pkdwYWfz4NMBBRHyN580aX+Tadq53O7XlM6P9EbubJ19faZAIBAIBAKBwO9h/E8TcRm2C7+a70JP6Wdw7VyEn/obz50XrDNh3mHgL/BnxDnsBfpH6DTBE+bVQV6M23ROYMbRboivYMP++B24f6VTRF0bbBd1LqIeWZwjMvdhIr8Z4+r883yyr4rI20Qd9vZdGfSPi/VtZ51scF+4GFe26v80yNu+fM+N7r9P1/vbd+AFP28FoQ== 1438613926.950,1.000,0.000,HISTggAAAM542u1WyQ0CMQy0nXNBiAbohbb4ItEBjVICD5LPSCOzu/DzfEbxMXE2ibOXx/Mucr7JB2mwDrbrSwKBQCAQCAQC66Er7cyvf6qLsZD/wgSMKIMzjFG/gb9C3uQF/BV0Kuh0Yi/EbpDXiV4m+ZXMO8cnWO/UOZD4RtZZIG9x6i1kP3D/mrOvRuosEG/kOx0hrhN9IToKdnX8zckzcr4zObcGnIjdnHubyD1Izj01J16desRZv63sV/plf9KNfXFvX/31fLazTtv4DugbMSMFag== 1438613927.950,1.000,0.001,HISTggAAAMl42u2VwQ3CMAxFbSehhRMDsAuzIbEByzAWI3CgvTzpK74gOPhfrHx//7qJm17uj5vZ+WkftC36FuP6skKhUCgUCoXC7+HJfIAPkadfE/xAXUBvgmdcsFa+Dn0XfgO6BfwB6w4+hI7Ppe8q9Dt/Svazgl9QT30Tfux3j0fEBv8u9p2+PjkXh38X9UPoupgfF+fPOVZzxXlR80uefXG+h+ijJb9H9V42WUfyPnCRV9+/T3wj6Z/Nz/bHkn3ZpP7b923hT/+Tb/gJBaE= 1438613928.950,1.000,0.001,HISTggAAAM542u2WSw7CMAxE4zhpUxBI7HsXtlwLiRtwUY7AgnbzpFH4LpA8m9GkiWM7jtP5cj2ndDilB3xhWzgfbykQCAQCgUDgHVik4Cf5VJzFeA8F8x32CpjrOF/p1X4FO/S6rkEPsDNiXHGFvzthX/m3wfyVJ/Ae+zTBFf5voRu0ykeDfxPiG8W+PNcqzrMiL/w+iHgYv4k6K/CH9VJe1FXUm4tz9o7u1XsS9887cZqIO4t7q+5x/rDv2pN9Ru1rnTzkL/e7eMfif+Ev47oDnVwFWA== 1438613929.950,1.000,0.006,HISTggAAAPZ42u3Wy03EMBAA0IwTb7ILJSCxndAQTSDRAY3SARyWXEYaWXtYfnrvYtke2yN/ojy8vr1M0/N5upi/yrgUjx9P7xMA8D/FN4/jNufVBvFRxEf6/5sH8a2I29sPRfySyij6I9XXNG9P9bnIay7y6UX9mNY7Fnnfp/Fr6u9p/Z769/atiN/zPRXzHtL4u7Rvp2LdpRi/DvJtRX5bcX/yvubzi8F59SKPXqwTg/swOv8l3fNtcH/boJzTfMvg3cXgvbaif9TeBu94uvJ7ET/8fbt2XNw4n/il8wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAf1d8ApriBnM= 1438613930.950,1.000,0.001,HISTggAAANR42u1WwQ3CMAyM7bhp4cMA7MJsSGzAYozCCDxIPied0tJWAuH7WJfEZ8dtLJ9v92tKp0d6w6qVavXyTIFAIBAIBAJrIH+Wh2wcf64ecp25Lzj/VZuJTuNO/JvfQHSczJ3ob8CdxG26hejmjk7p5Hsg5wz4EfhU7QjrhfBM9B32J/AbCXfiP5B1gXUl9cukvk7ua+R7KoljJJ/c+U+tk7eSfPTD+xu8CyNxlJxXUj+sa+89K9lPJO7SfqMLz8tO/WxtX9+6/8uX6fz6fLB3HeQF8LUFtw== 1438613931.950,1.000,0.001,HISTggAAAMp42u2WwQ3CMAxF7TgtqUCIAdiF2ZDYgGUYixE4EC5feipFXFr5X76c2s633aQ93+5Xs9PD3ojO3rlcnpZIJBKJRCKxZvjG6ikL6/Mv4xw4JN7hv7EKh/Ag+1V47mAb6KniX4Q/6yPwrvPUuQlXyHMUu4neEeL34j/BusY30TuATvVz6OsB5knzC/BT/xH0BfSxQF6H/GXmvdB9VGeZ0a99CogvEBdwXrVuQsDcbKHtcP4d+mwz+9qfdK3tnv1V91rq3dr30V/nBAWk 1438613932.950,1.000,0.001,HISTggAAANx42u1WSQ7CMAz0ko32wgP4C29D4gd8gufxBA60l5FGSYq4IM9l1NgeO2ns9nJ/3ETOT/nAN9aN7fqSQCAQCAQCgcA49GCcTer7ZF78z9POOnICvdzRMWDvcCHxBTgR3u0V4iv47c+NrGdixzoWsK+kzkzyruDn4FfI+S1gd9A9AWfww7oy6DXyXrCeRuxK8uF9SMTPB++rkfNGfSX7NZJfSH85qaOSvJXoYJ2sX1gfGul3Ng+sMx9YPhmcC2wfvfmlg/NTv5yrs/NaD8aN6v1qH//2PRzWfwMDWgWy 1438613933.950,1.000,0.001,HISTggAAANV42u1WuQ3DMAwkqddxlzq7ZDYD2SCLeDSPkCJyc8BBhhwXAXjNQRR1JAWK0OP1XkTuq3wRGmtje27icDgcDofD4ehDT/rpYDxkAz/r+MdOHrhOwEbiJPhfJvLfZPt7XhnsmdgLcCa8696I7gQ6kdhr45nYJ9iv4Mfqx7iVrBPYDeJi3YnwDPkU0EP9QOxK+kKJXgE9I/dinb5heoHEDZ0+Z+8okrqFxGV5CMnHSF5Yv5B9GXzXOjhnjp6zg3qjc/DX8/kqnbN16sX343D89f/rAxhZBas= 1438613934.950,1.000,0.000,HISTggAAAMt42u2UwQ3CMAxFk9hJQy8swC6sxApIbMCijMCB5vKlpxQEEgf/i2XH3/l1HZ9u92tKx0t6wTabN1vOjxQIBAKBQCAQ+B3yTl/jBnlF4mVSJ090OdQrcD50NfAd9Go+6W5yXsUqf/hd8vS+oesg8Sr8LvwOeavU7XDvIlb1uvCoT1XyF4mv0O8q+U36Td/noM92/tcGc2GTOTHQ6cBzsAbvRXk0hz6JF+An6SfVp3daP3zXtB9oz8z2yN66396Hs734L3v8bf4TKrUFUw== 1438613935.950,1.000,0.001,HISTggAAAMx42u1WSQ7CMAz0UqdlVR/AX3gbEj/gozyBS3oZaeSAOCDhuVheYk+aSZXL/XETWaXDu9Vu7fqUQqFQKBT+BVqfoPDDetHBvCV1E6nH/kbqHOwE65zwctLXEx4bgrxXG8Qb8NrB+oD83O2J1DWwB8gvkJ8hf0zm4rwtvifzzjDXoC/2b8RHHeD8hZw7zsF4kP0p0aFDvRL9BNGfJzyYToLcFyU6NuhjhJcRnUaSR3/0PjP+mtwnH+wnybmM+t/6v8mH/Oqd8OY+X0ZqBOs= 1438613936.950,1.000,0.001,HISTggAAAM542u2UMQ7DIAxFjYHQpEvHDr1LzlapN+hFe4QOjTp86QmqRpn8ly+M+XwM5vZ43s0uV/sgb5w29vVlgUAgEAgEAoHjkYRpnuIu8QzxX304zBcYN+EMnEC3gg89zyT5J4kXyDuDvyrjSXiWvAbrXHyrL913hvVax0X0KtSriY6LfoNzUj20nhn2WSSvdupTQL+Ab713B70K78uBE+xLfeCdd0NcOn2boR+pbgY+fPA/sU4f2uD6f/81H/yn0qDuXn73ytvL19G6X/030z0E9w== 1438613937.950,1.000,0.001,HISTggAAAM942u1WSQoDMQyzs0wyUOgH+pe+rdAf9JM99gk9NHMRCGUKuVkXY1uRHU8m5PZ8Pcyub/shD+vDpvvHAoFAIBAIBALrkcB3wXcRT0SX1XVimS76bdhK6h7vzCLqNeCj/sHroLcBr5A82gv0XSHfQRd95HWis5P9NWF30MH9VDHfCnH0cV6ZxDvkMzlnhfSVyXcpQsdh/UbOlZF1G+gqfiF89j9kso7l1fxc1E3ET4Jnoo6Jej55D6XJe8tP6hqZ2yz8T57bGqzSPd3HF0l8BdQ= 1438613938.950,1.000,0.000,HISTggAAAMl42u2WwQ3CMAxFYzcpRRxYgF1YiRWQ2IBFOwIH0stHT6YtEhf/i9XU/j+1HTeXx/NeyvlW3hi6tW79OpdEIpFIJBKJxCfsz/q+cn+m9zy6/4G/vq+wDwd+taPwVNH5Ns5l/dBtE1vFbxD/Zf0I8U38yJ90NM6AJ+LTfDX4bgfdKVhfeE/QHw3236BeFeqlPOqnPA46xO/Qzx70rQGfBXkwqJuewxH0DfJa4Tx5MBc8mAu2cq5F+dqqV34ct3VO287n3f+TFwKYBU4= 1438613939.950,1.000,0.000,HISTggAAAM142u1Vyw3CMAyNHTupxIEF2IXZkNigCzAiI/TQ9vKkJ4eCBBJ+FyuOP8+Ok1zu862U86OsqJuUTer1WRKJRCKRSCT+CfKjfGSQpwbxKomrsK4g9SBfA3+Mt+930KN9A4l6JfU5yVch776ewM5B38Cvwz7qndRp4Hci60Z4RvE7+E+kDif9Q30j/Bs5ByPnL2TOcJ6NxFMyj+x+OMnP9Eb6YIS/kLnWgC/2ld3zyF8DXnLw3spgf+1F+9F3KuL/7jut5TPQL/0jsgDMIgVz 1438613940.950,1.000,0.001,HISTggAAAM142u2WTQ4CIQyFoYVhdBZewLt4NhNv4EU9ggsZE7+kKf5kEpO+TQPtK22hwPFyPad0uKUHtMvcpZxWTSAQCAQCgcArcpTgrbrkjer7/McZevnQrkCvsBNHz/iq8f8sjn6GXRnkL4iHfiZI+lll63KH+T3WmeFPwFvgr8Ge9ZvA45jxMc8KnpW/V/8KfoMd+dwndfaN82qM1eDJoB/mV426W+dcjH5Jg33A/spGn3hSnD7LRjxWXxeHL4P3z7++D1vd079+L77O+w7nPgXW 1438613941.950,1.000,0.001,HISTggAAAM542u1WSwpCMQxM0p8VwQt4F88meAMv6tKlC+tmYEgeD3GT2YTmM0naEHq5P24i55d8UJbUJe36lEQikUgkEonE76Ab7Ur05tglaDdiL+y/CPoKeiP8Bv5tyQ586If5O6nvQOr5ngfkbRA/gGc48YP004L+J+hngv0I9gFyOvkmuedK6ing15137lBnJfdqwbORd2Xzg3NdiF5JH2z+K5l3plcSb46fOnwsb3F4GY8F940F9xPbFxLsf+te3LtX/8Wjzp6NYm88vfc3b7gF4Q== 1438613942.950,1.000,0.001,HISTggAAANR42u1XyQ3CMBDcy04CSDRAL9SGRAdpjFIogQfxZ9DI4VDEY+ezWmc8sz6ySk7X+SJyvMkTvkRdop3vkkgkEolEIvGP0Kz3Ix8jfIPvQYOoJG/8CfIAHuYF9ALmO/DweYX5FfhO1tV0dkQ3QK+Nj6DP6m/xQMbRb4D9a/ke6pjAd4C62DkY8CuZVwk/YLyQ8ylk39h9MnI+Su5nJfpC/HQlzzv3nL0HWGcQXyP+RnScnHPPXzq6yv73On1krY+/2Z90o35pP+6f+qXOVut+0X0Ax/wFoQ== 1438613943.950,1.000,0.001,HISTggAAANl42u1WSw4CIQwtrcCMunHvIbyBZzPxBl7UI7gQNi95qfOJTmLf5gXavhbowJzvj5vI6SJvWOPUWK9PCQQCgUAg8J9IwLEf8+xL49JEPS+POnYjeQziu33H/iPBjvqef+cMfhniu9+R6NfGQ+NCdAeoIzs8wrgAj6Cbod49zFeI7+MD6FXQKaQ+1Blh/tP9MbK+SubN6Q88ZyXnmZ0+wH4Q0FOSN5O+Y3H4HbA6lNQrjr+X15x4cdYvM/1YnrXfhan331Loj983XXmfZCN6srH6vr2+9AKjXwUo 1438613944.950,1.000,0.001,HISTggAAANN42u2Xuw0CMRBEvWv7bCCgAXqhtpPogCYJKYEAk4z0ZKE7JIKdZOTb33j9ke9yu68pnR/pjTzYBvv1mQKBQCAQCAQC22E7+6vdwe4Tv1k9A9Z8Ju/Jz/cyuA+uoK/AWPMmyVfEvgA3iWsSfwT7In4H4S6sdTv0oUndLHlpHieJd+lrA30mOqrwIuMuuqro1b5mWA8Hu0E87YcMnKAu7ccKetrk/ND50DwF6jn9b8H65C916Hl0mL+Dfod+OvTb/vQetZ3vW/uRzq35bK9+vQC+rwX3 1438613945.950,1.000,0.000,HISTggAAAMl42u1WSwpCMQxM0ry2VsELeBB3nk3wBl7UI7iwD2FgiCLqJrMZ2qZJmk/J4XI9i+yP8kCZrJPtdJNEIpFIJBKJxHM+imA/tqtkrW/6ZUTOcT6E9TK5BnoM5k0n+gzO0Y9CuBH9C2G034mdBu9b7+9gv4GelTfEvy2JC8azkv0B90Zgr8P9AvJO9DG5SvIwSB6xjjqsndRPDeoF86zgj5E4a1CfrB4tYA/stuBdrI9Z/2nwD0T9LUT/p/+Ryn+gL/r7Lf/0DrH5BSI= 1438613946.950,1.000,0.001,HISTggAAAM542u2WPQ7CMAyFHbv5KSyMDNyFsyFxg160R2CgXR56cisRKiG/JUrqfHZcx+3tOT1ELld5y5YxLaPeZwmFQqFQKBT6R6WDuamTv+TYffzvORy0Y8+RX2DfOh9gXWFfBjvkjDCvsK+SODLxb4SLvEo467kbcE7ArxBPIfE14HpxjODnTPKN8+bkKRM/DdaN5K2QPNvO920b6xHreAC+knOJU4/m1DvWPaqQ+2XO/dOd904cnhA71id0Y3/4dn86qu+nH/vtHUe379sLC6EE9A== 1438613947.950,1.000,0.000,HISTggAAAMZ42u2XXQ7CIBCE2aW01Zh4Ae/i1TTxBl7UI/ggvEzyBZpG48POy2RhdvjpQujl8byndL6lD3Jlq+zXVwoEAoFAIBAI7If9yI/afaOvCxv0t/fjBONliE1i8tF20pXKq8SNZ+GWv4Bv8zlAnkO/chbd2pnPUdoXyW9+J5gv6WfYnyyxi95gf7yzf1Pn+6vOwN8H69JhHF1XgXGpHnOn/jWmulL/BHkJ1lPgfBv9xw3Om87/qH7rvWM770P/0v1qf6azNx7YBVc= 1438613948.950,1.000,0.001,HISTggAAANF42u1XSQ7CMAz0kqRlkfgAf+nbkPhBP9ojRw40l5FGCaDSA56LlcQeT1Jn6fU+30QuD3nBV6urtWmRQCAQCAQCgT2hfzo/7fSzzjz2YbxBfmYTviPJeH1vFvDL0Dbwx3blGyEe+w3yYf5MeKodGvnOMH4iegrw1fEj9A/Ac+jUV8BvJPpb65eBD20CXQ5xTvIkooN93wz141CXyCeknlh9Mh1O/ouc5ElkPziJ0y/3lZJ1Y/tGSDzCNz6PrcGnb557e90XulG8/ngeVN8TvFEF6g== 1438613949.950,1.000,0.001,HISTggAAAOJ42u2Xyw3CMBBE7fWfFMCFXqgNiQ5oinIogQMJh5FGm0ggFDHvsop3Z73+yjldb5cQjvfwIs02ztbOjyCEEEIIsYb4Y/3exvvt+Xu/5+A7k/hM4hF8LzJrRG+QB62BXeoqs52Iv0J7g7wd4jvkXfSD1NVAP0A/oL4C/VRoPxDdAH+DcVWwDWyFuieSrxB9I/OC65bJvupkPTtZ30TW06COTPxs/ydnvyenvRG9kXNSnHElJ19y+mHn3YuPzvmLK+8f5s8b4+PGe2sr6UP36Np5sbAPouoRQggh/ue//AkeOgXX 1438613950.950,1.000,0.000,HISTggAAAMp42u1WyQ3DMAyTLB9B++gC3aVrdJ0A3aCLdoQ+6nwIEAzyClDxQxiiRFmJndxf79Xs9rQfYrJPLo+PJRKJRCKROAc8R3DqufvBfCc6ti4ijjqD/zxk5RekbhF1t3ibXIV+qz9Ivov8TvIa1F0gD3Wd9L3xdfIF/BaiR98G6wG+leyng36AvkF/FXzY/JQO5xewNrLvDuziORXIZ+91CN8gcwkxhyLOEeszxLlh56cSP9/ZjxFdITp1/8TBe2pv3Ejf//bd8y8+nAUw 1438613951.950,1.000,0.000,HISTggAAANB42u1XywnDMAy1JFtOWugE3aWzFbpBl+sYGSGH2pcHDzvkUCh6FyErT7/IIrm/3s+Ubp/0hTUpTepjS4FAIBAI/DskWhD4wZzJyfkUIhEKUgb5MD/9OzFPxlfCw/MCdm9yIXlnsHf+CnrnXcBvgfg+sBvJq4Lu5LkF8u/+r5Af1usQfyV+se5CeBX8Yj8r8J3oCn4zyVvJe8X4Rv5DmF3JnCFPyfxi3excibTB/Avh5cG9UlJ3OnhvZXJv2OR+Yv2Ug/tqds+MoGf38A4juQWz 1438613952.950,1.000,0.000,HISTggAAAL942u2XPQ7CMAyFYzcNaRm4AAM36dmQuAEX5QgMhOWJT4lQBYvfYsV+/knqWOn5dr+mdLqkF6YmrUnfHikQCAQCgUDgEyyO4CfnZoP+3llTXAdp8j58I3/pP4v/LHblkTTQH2S9gl15VfKvwqvA130cmyyQR+tYIH6GfAXqrRBf/Qp8J83rHV4R/iL1ZOi/0umbGex5sM8c+nMajOP0P9SJQ3qDNd2/0XtP0kG/95yyneZaz987+//3/LYn5vIE+Q== 1438613953.950,1.000,0.001,HISTggAAAM942u2WyQ0CMQxFnWUyCxcKoAg6mNqQ6IBGKYEDMwg96cs5oUHyv1j58ao4Ti73x83sfLU3yibTJvP6tEAgEAgEAoHv/0HUf8w42bFPYr3bVfwHqbfzg+Ab/DXoVcgBUvEFfhfBN/C7vxFyEnmPsDthf4Geyn+CbMKO9VJvxv4MvQl+yPNcZ6yzyEedp/KXRH8xjom4SfDF8Ud99n9z8jCnP4tzr6pTv+KzyCcJvnbeX+vMp3f+ZMc+d86d3rl1tHcn/djuX9+tT7+9ADyUBQk= 1438613954.950,1.000,0.000,HISTggAAAMx42u1XSw5CIQzsB+pv4QW8i2d7iQv3XtQjuPCxmWRSQzQa09k0lKE/KITT5baIHK/yhK9SV2nnuxQKhUKhUPhvaJXgK/XTSb1N2jeiV5Ad+I2sc5gXMkbesLsl8078jnV7GGOcQwbxswH9DvJuwAuQnfhh+iD5DP4B4gjIswE/SB6e8FHfSd3Qbif1c6i/k3oE2X8h++jkvDpIIefGEj/432mkD5TY1yQudh6zuFh/e9Lf+uI9pEn/v5vH4rHJe/TT79SvvoP6AAXXBVc= 1438613955.950,1.000,0.001,HISTggAAAMN42u1WSQ7CMAy0sxa4cOTAX/o2JH7AR/uEHkgug0aOEFWL5LlYie2JEy/t/fl6iFxv8kZsUpsM8yIOh8PhcDgce0B39j/qPcOXfnHQXw37j/9FwpdBz3iQD/36OsG6NFlBn8Af9QX0k8F7hv1C+CvwdbsTOU+Mc7rdBeLLxC7DO07k3RLJL8tHBbtE8lMIP0q8RyTxpMF9lMWoVyX1Hoy6D4SH9cNoX1j9ZMVjzZG48Rzaat7pj+I86vfpX+PUFbIgBNo= 1438613956.950,1.000,0.001,HISTggAAAMx42u2WSw4CIRBEm4HhEzcewLt4NhNv4EU9gguZTSUvkOjoLLo2FaD6NzQwl/vjZnau9kbsHDov16c5HA6Hw+FwHBHh4PHDznF0foFxAH2YzDOCPgkvELfJeAW9cgLe7PX/Ve0r2Ot8Ey6ds+gK+Mlg30BfwV+R+nSs3znDuuaVod4E8bb1k8QrwgZ50v5p/2gdEfS6r3GyD1fQx0H/R+grG+QzqpPyV/90nmxwjskvxdF6bXB/2Ie6ve7V8OX4v7rH//1+Tef9Agm7BPU= 1438613957.950,1.000,0.001,HISTggAAAMx42u1V2w3CMAx0bKekERILsAuzVWIDlmEsRuCD9uekk0MlhBC+H8vN5S7Owz1fb4vI6S4v2BrLGvXykEQikUgkEolfQPmTusrgd4xK8sjHBnXQr8L4BHkl8zeeQ16JTwPeBOtuML+CvhM9B/4Mup3wNv8j5A3iAfSQZ2TdM+F3Un8HPye6BrxK9tWD8/DAT0l9Qs5FyTkZRCV8J/csuteV+HrwvoyM2+D6ovcoRM9IHaN67/YfRNQXPuVbdvbTMjhfv/Rf2r1vT0veBao= 1438613958.950,1.000,0.001,HISTggAAAMx42u1W2w3DIAzE2ED6iJQBsktnq9QNumhH6EfJz0knJ81PWvl+TsbmsImBzI/nPaVpSh9oZ+mcb68UCAQCgUDgGJDYgr/+nrJxXv5SNzvjBWwlNs5roLvEGcShDsYV4LFzJfEG6187D0R3sS+gN5L1T6CP65yBB6euBnYFNpg/gL+R/HAflNiV6CEb6YcK9SrkoaQOIzqsHwrp1+yMm3NeMvGzuEbyLCvr9PIWZ9w73+rYXr2y8V5Zm9fee/HX3zvZ6T/a/4G8AZOxBSQ= 1438613959.950,1.000,0.001,HISTggAAANB42u2Wyw3CMBBE92OCSUQHHOiE2pDogEYojRI4EDiMNLJ94BA077Kydj07m0SrnG73q9n5YW9yjb7GuDxNCCGEEEL8Dh/M+6DO97+ukc9BPRaDnAP6oJ8CcQcxyBnv1YZOQn4i9aVRN0P9Aucj+Kmg86k/QH4hPiaYeyb6tXPefWPuIM81G+8loU+S76KQegc9JzrsO0syF/o0Uuekb5J7bC7mx0lfI36xL+vnnXvDB/cS2xvRuRe2vo99Y37lUwghhBBCCCGEEP+KvwB1hAWn 1438613960.950,1.000,0.001,HISTggAAANN42u1VWw4CIQwsLSC+4h7Au3g2E2/gRT2CP/AzyaQYdxMTOz+T0tIO0O1eH8+7yCId1jl11ttLAoFAIBAIBP4JaaP9idiz69/qUCf/8GcSz2zcb0RH6VyhTgZ/gXwK6yNfg3ojz77zjpwHdRSIN7Dr5L4z2I3oGOsXovfU+QB8hPhCdDZyr+hXcn8KeZXUMWDUhX7sHyPvjO8kTv8pOQ/WqU5/Y99m0o/JOZc4us357tWZB7P11JkP5swNdeLWmpe/Ose3/h+s5f+0/mw+fQO3AgT7 1438613961.950,1.000,0.001,HISTggAAANJ42u2Wyw3CQAxE1/tLQg40QC/UFokOaIpyKIEDm8uTRkYKEhw8l5Hj2Vln145yud23lM6P9EYZbIPz9ZkCgUAgEAgEAr9Hxn+aIW/Q7egiT58ifHdUrM94XsDMd8T0K9BloZsGz+I9WM+MeM+vg0/wbYMXcBf6RezToOvQN/ix7glcsW5F3MQ5VdS3iHvg+dO3Ozp1n+wH9kH6sI9Yj4m81w/s8yb2S0JfRVzFPZgzn9mZzyLm3IRPEfNrjo85eg/2pe/YUdhBnR30/TfYCxrJBcc= 1438613962.950,1.000,0.000,HISTggAAAMh42u1UOQ4CMQz0kWQPhPgAf+FtSBT0fJQnUJBtRhrFK1EA8jQj2/GZxOfb4ypyussb3lk72+UpiUQikUgkEr8E/fI8GvS3nfmUsAX9HM4XEqeQeoywDmTMW4GZXwV9g3hHqHcFv02eO09gL0RfId/mv0B+tM+gX0FuEGchfR1Aj3Ms4I99YLwJWIndyRwwL8o2uE8n9+mkT/buCnlP2K8H/0Ub1K2kTw3+B4F6EHUQT4LxJWjfu9/YfrIP70eT/4QG560vPrMFaw== 1438613963.950,1.000,0.001,HISTggAAANN42u1X2w3CMAyMHylVKwQDsEtXYgUkNmBRRuCD9ufQKWmKEJV8P1au9sVxEke93B+3lM7X9IbNVmar0zMFAoFAIBDYF+TP9QJ10JX74hv3zQq6meSH1sAqieuAP0AczivAo76Dbgaefcf4EfQX/wH4Jf4E+Q8wzkSnA78j+PeQT0/4kazPQd8Jr4Q3Um8p1NUqzwXWF89JJvGJ+HlBB/P/+O8pzI/rFWKVjK1QD3YPhdxLIfFa2S+ksd/Lyv7U+n7Il/1a/fXH7+Be59mqJy/JggVc 1438613964.950,1.000,0.000,HISTggAAAMx42u2WzQnDMAyFrcR2nFDoAh2gW2S2Qjfooh2hhzpQHnzYKTSHoncR+vOTlVjocn/cQjhfwxtjlVblsD6Dw+FwOBwOx+d+8C88vbx28P1sp677G8WrfdC9D/xkj2DPUF+GepLERZGTxCXgG8EfRd/iFuDNIhepYwbeLf9UZZG4JPokeQXur/eZwV+gHu2/2ksjjuov0FcDHvoOCfqp/18CP/EZnNOSEXj0XOJp5Y+d5/W+U31ne+eMHTTHBuC1H83ZvfP76z68AFkHBP8= 1438613965.950,1.000,0.001,HISTggAAAMd42u1WSQ7CMAyM7SylggN3/sLbkPgBH+0TenEuI40MAiQkPJdR7WS8NHF7uT9upZyLw5zFWa9bSSQSiUQikUh8HxLY5UP6CjzR2P8g0avgN5KvgL8Cd+cD6HdYt4BOg3XzeSXrK8RB/wpsoI98dD6BfSH1YZ6TB+wbRA/tg9SF/VTSrw7+SvJSko+R/Ub0lZwrI++JnT8h581IPIzDYCTPFuSjQT2MJbif0X2K5ocE8ezN+SJPzq9X592v6OV36M/7sAOWgQTu 1438613966.950,1.000,0.001,HISTggAAAMF42u2WMQ7CMAxF7cRtWiYOwF04GxIDOxflCAyU5UlfXoLE4L98Nfb3d9vE7eX+vJmdH/ZBP9gPbteXFQqFQqFQKBTmwSfrHf9xTcQ9yfek/gJdT9ZZpyH/iwCz/wUc8BkiTt6gW8GbWCcH/E5JHfa5Q8+69BuoO5K+esI7eCAewn9Jnh/zGlj1E2IfZvu7Qc88E/7qHKjrED5N+KyiD0v8utj36r6zcz97/iidem89qeOT5uG/zOX6fv3I7w2RWAVk 1438613967.950,1.000,0.000,HISTggAAAMR42u2WSw7CMAxEnV/blM8JeheuBhI34KIcgQURiyeNEmCDhGczcmrPJHESdbveLmbHsz2RGofG8XQ3h8PhcDj+FcG3wPv5A36jOknUqfo4mGfqP7HDGfHUuCBOIn9BPnUz6g/Qpd4e+RU+c+MV44uY/w56K7giP4t4gk8d/D5jfQnjGXFBXkF/mZ/gP4nxIs5HEOdF9TuKc5mFHn1VfezoxE5M7u0f+6vup3V8wofvROrcdxPrfddHzTN8+c69+AFJTAVX 1438613968.950,1.000,0.001,HISTggAAAMd42u1WSQ7CMAz01jYIIfEA/sKVbyHxAz7KEzjQXEYauQrLAXkuozpje5xUaU+3+1XkeJEXfGVd2c4PKRQKhUKhUChshw6uY9ze7NfjMTiHsf9D0qfzBLoA7vUa6AzyUYd1sP4M8R3kL+DTQRfQfwZe4LkRf1n8QOIBfrpuT3w1sq6kLs7jZL/ZOu7PRM7VoA47L/ZeBey3J3olLMRXkHki6cd8GmFN8o340yTO6nsyf6bbep/oYP63dZ++t3/V9++/h0+baQVA 1438613969.950,1.000,0.001,HISTggAAAM542u1WOQ7DMAzT0cRJs3Ts0L/0bQX6g340T8jQeGFBKEbjTVwEygYl00fyeH9eIre7fOF71D3ac5VEIpFIJBKJf6BpQRcftdFvg/ELmW8wznR+/hsh76BjRL/GQvqsOgPRrXwCPpKI9WfSB/KFjM8QC/CF9IvzHDj2PRF/r6BXiA8WcCd8IOt1EoXsrwV9WKCjxEclfSg5N1F+DO5FIT5pcH41uEds/dZ4jzx4L1jeSF0hdY++79r5HTy7ngZ+HYV1/l5a4/yz9kE3Xp8FEg== 1438613970.950,1.000,0.001,HISTggAAANR42u1XsQ0CMQy0Eyf5QMEC7MJsSGzAYozCCBTkm4OT800qX2Ml9t/ZkW3pr4/nXeTyki/ysDpsur0lEAgEAoFA4B806lnKizzJiVOIw3MiPOx7I3wsPsO5gM7ubxDXCF8lvI3cV9BtxF/BX+B+r/s07HnYTvjRGsmnE90N6kH+DfJg9RXQRz70d+d98D2wPtQx0rdG8sT3Yf1lTj+hDpsXc/o0k7lI5L8pk/oz4WXzrI714uXgnMqkrjr7ZnYfze7F2fqP7s9Ve57llxbp//g/SkEFvw== 1438613971.950,1.000,0.001,HISTggAAAM142u1VWw4CIQzsg0VcE+MBvMtex2uYeAMv6hH8EH4mmbDrSuJH52dSSodSoFwfz7vI5SYfeGWtbMtLAoFAIBAIBAIcutO/VV935qUdNmCMcxLnxJ4qJ9A9VM6wDo4r2EZ0G8+wvoGNeRTQz6Df+AT6Le4MdoH5iegX4i9Qhxn4SPY/QTzWmdUddZzoZoj3TlwifnZP8FyUjPvK82X3O3Xuu65k9g6E6ObOexKy3615KXm/3/YPNt9+3IdG9+FR/fhf8hqtN+z/fAMZVgVQ 1438613972.950,1.000,0.001,HISTggAAANB42u1WyQ0DIQzENixL8kkB6SVtpJ1I6SCNpoQ8Ap+RRmaVQ/vwfEbGgw2LMXu+P24pna7pDessnfXyTIFAIBAIBAIBDvmy3vPrh+vA+UZ0Bnol/4vDzoSNcOm8kDgK/gx2AVZHN+IfwF5gfIV5FeJXMj7iNLKeDPFRX8l+jk6+DP5GdAX8jeyzkPNOEG8l57yQc8xQN5nobLJulNShkXo3J69svH/i1Ks6eSrJq8RW576Ksx8hepZ/tj/JJG/td/LjPryX9+Bf+XbzfV61dAVE 1438613973.950,1.000,0.001,HISTggAAANB42u2U3Q3CMAyEHeenFITEAOzCbEhswFKMwwg8kL6c9CkVqPDiezk1Ts7nOPX5dr+anR72Ru6cOvvlaYFAIBAIBAKB/yMJj/Yt8IGOw3oWdog7xHedK+xrcM5Bf9ErnWf51nOT5J/AVxE/s3xPwlni6mvRPXY+SFx9qF4VH1Xup0Aduq+J/h7qbdDvBqz+HeqvolcH76mufB/07rT/Bv030DG4P4M8JnUnyEv+MvQ1DfLR/2IfzgeaAyM9WveV82frOfkr/a3zBb7s1wtlfwWx 1438613974.950,1.000,0.001,HISTggAAAMx42u1WOQ4CMQyMncPL0dDzl30bEj+g4Zk8gYJNM9IoREgripnGyuHx2HK8e70/bildnumDvFnbrK+vJAiCIAiCsAdMuqfi2eQ+wuG8wP+gw7qQOJn4G+HpNojfQni7rXB+BL4GNsDPCU9A/EZ04b0F+CroOsO6gY6Ae92e4P6B5DXKN0g+jdQ5SH84qV8h9cmkvxrpM9Z/Dn3LeG3gj+fsPTBdLD7jNWLr5Ls0sj/SP+JLk/Pi2znnP85LG+jdez7ruyTdf1WfN18xBZQ= 1438613975.950,1.000,0.000,HISTggAAAMt42u2WMQ7CMAxFkzhtUlSJlYG7cDYkbsBFOQID6fKkLwNbwX+x7Njf1pdr9Xy7X1M6ntILNmwetlweKRAIBAKBwG8j74z333UugjeLPoyzvuI/8N35yTeBp4CffoafwFPAR56tfhl2hs9+B7wb+m15fdiGugY7w3bwN/ThnBX+KvRckL/Cr0Iv6sB5utA7C/4mdDOHZ4Kv8qvznZjYW7X/ag9N7K85epJXxZOIV0cH+/COmHMfvLmyo6+6G+XLu1acO7KbO/4EBWME6g== 1438613976.950,1.000,0.001,HISTggAAANN42u1W2w3CMAy0nRfliwHYhdmQugFLMQ4j8EGR0KGT3R9aJN+PpYt8Oad2mvN8u4qc7vJCWaIu0S4PSSQSiUQikfiEbqynf1bf2v0s6EODvgvoevh6D5KowbwKfAfegFei14F/5zeIA9YnWK+g00D/ALGCLsZG+CPsP0CX7T9B/iD+e5DHfCPny76Pd94V+qA7/VGdfjLi1+vDSuaB9aUSvjhziXWyOSvEhzjzpSv9G5k3CdYtRCcKpqvOPaVBn2vvvV/f33v5P21d927fK0/Z1gWX 1438613977.950,1.000,0.001,HISTggAAANl42u2WwQ3CMAxFY6dtqgYQA3QXZkNiAxZkBEbgQMrhSZYLAiSE/8WKXfn/2JHr+XQ+prS/pDtys9KsHq4pEAgEAoFA4BOQP73PY89y4rLSb/Er9jvyLf5hpQ7q9uIdzn2zBfwd4gPi1EPdBXm4zzJ/b+TJhl7GNzhPzVbwjdBX4F/sFvkW/w78E+LV0DEa9alG3flO2CfWrRp1zE4fxOC1dCTn3fI76lSHl/nV0OG9++zkE0O3OnWyoI4edeZMduaROHV6ds7Jl+bqq8jxf/yJPr39vjfrRwXb 1438613978.950,1.000,0.000,HISTggAAANN42u1WwQ3CMAy06yZpAYkF2IXZkNiABRiREXiQCOmkkxMU8fJ9rLixr7nabi73x03k/JQPrFqtdrm+JBAIBAKBQCDwhf64T/Ge5eRTYqVzLXC/6z3H4tgV8tqgP0O+TPa35wn8K8S1dal2g3WG86L/AHE78J5gf3F4MQ/qsRE90Db+I/AURw/UZQdejGP6msObCD/qh98Rz4f1baRPjNShdvaXkjxK6pzFJVLHLL859Y1+Gex7I33OdJTO+SOD78N4dNIc1cnzefZ8//t/6A3/xwWx 1438613979.950,1.000,0.001,HISTggAAANR42u1WQQ7CIBBkWUpp4s2rf/FtJv2BF5/pEzyIl0nGNbW1B2cuE2CWhYVlOc3XS0rHW3rCO1vnfL4nQRAEQRD2gSkEf3nOtvAeWMCoy8BGxvF/6EQXzfuyG4i+gA7bqEMegEewa50r6Ar0T6Sf2TWwG6Ef11VBF+kb8AHiN8G8hey3Qjyd+BvIOeJ6ncSZxdVJHCzw66RdiD3Lm+geZbIOnK98mFcsjzzwn4gexzM5D6bb6v2xL+uXbfQOrlVnbWV/S+vDr/8DttN+BUF4k5cP+eEFjA== 1438613980.950,1.000,0.001,HISTggAAAN942u1WOQ4CMQyMj3iPjp6/8DYkCno+yhMoWJqRRg4L2srTWEmcsePYTs63x7W10729YZuUTerl2QqFQqFQKBT+AakQ/BSHbJ/+yCdEIq+TdeQzYteJXeQN4Amw52TssK8D70TGQfQDeDvIIPMO/OhfkPEE50L+dZMz4e3kXB+5ED/R3078XyA+K6zPyf0YyR8jekH0MT4zmRfgU5J/SvLTB/0Qkj+aSE/qFO/VSBw9qeuW1LuSeRusd2bHkn4iCd+oPdnZB0f7pOzsz7qT7+j3SL/Ur3f9mP+OvABzTAVs 1438613981.950,1.000,0.000,HISTggAAAMZ42u1XSQ7CMAz0EtIGkPgAf+FtSBy496M8gQPJZaTBQeJSyXMZNZ54FDtN2utju4tcnvKBd9bOdntJIpFIJBKJfUCzBLvoj07G/6WL/G0yjnkKmV/xexL0TriQvAOt8wHY4dmIzoge/RvhAusrwfyhWzqv4Ntg/Aj6BfQnyFshPvRn4sfqUsl/AFufkz5X8LGg3xgXsl/YvmN91WBfG2GdHEd/VifmK0Gd2HuJeZ3kkaAOCJ88R2yyrr/C8h77fs6/Af9oBV8= 1438613982.950,1.000,0.001,HISTggAAANR42u1Wyw3CMAyNY7sNcGEAdmGNroPEBizKCBwIHJ705KYqF+R3sfyLX9w4zeX+uJVyXsob2qV0Wa/PkkgkEolEIpH4PWSlX8i7TTbW+b77Bnkp6JjvxF8h34jfIW6C9Wbwz7CeQZ5DXCVxyGMK6n301uWhyyOxN/Ab9HkGeSL8HOwG/UHeTHfgx/rm4G9gb9AP9h2NSCX9wH0ZOfdCzlN0zoTEaTB/TtYzwpvNWTTXSvKF9JvFsXnWYM5l430S6aP1ZJDXv/4H1t7be9XZfX8vJ/EFMQ== 1438613983.950,1.000,0.001,HISTggAAANN42u1XQQ4CIQxkigWMMX7Av/g2E3/g53yGT/AgXiaZgBvXvXQuE9jSzpYWwvl2v6Z0eqQ3cmd0tsszBQKBQCAQCKwJ/NgeG/8HNvaDST9L5/l7JrbOO7IzWp+FHWie7fY0bsQfe+9cOlcas15e57TOKX4Teg5Cb6F5Hlfhz0W8SrqLyMdR5LOJ/XORvyy4Cr+836yvkJ2qDxN1B/F+yaJubLLulB5M9oPyY4M+w4BtUp+JvnPRt+lLXUnkHZP7uPa5jYXnKla+l/51fwzjvACmLwW1 1438613984.950,1.000,0.001,HISTggAAANZ42u1WSQ7CMAyMHaclLIIjB/7C25D4AR/lCRxILiONnKocQHguoySd2OO6SS/3xy2l0zm9kRtLY70+UyAQCAQCgcAvQf7MjwzOi/O8AjOdLtwnA6N+alwaG8yjbgJW8h/b12fIr48r6Hv8A+grrPfxDua3sD/muYc8jcTZAB8hHtZzJvtWkv8EPpXko8R3AT9YbyP1N2CBMb5Hrx+M1COTvjTSn6yvM+l/GdSp4y+TfJR8T8WJv/bc8Hx6eh3UjcLzNepPPnyurj3HZaHfb7sn5QW+QwUm 1438613985.950,1.000,0.001,HISTggAAANp42u1WMQ7CMAyMbRJSEAM7f+nbkPgBH+UJLMly0smhUmgH32K5ObtnN3H6eL2fKd1TgzUrzer6SYFAIBAIBAJHhPw5bm/oYD0KVpw4tOqsM12ejo6FxJ3guUFcXz8Dr4Df82fgL5CngG8kP65X4BV4X4X4K+SpoKdCngvEZbAF4jr/5ugz8IvDw35n4meoF58byWukz+gzvpLvpQ7fBvc97i9x9iXqEVK3EF06eI6F9CWRukfPvTnzhp1z+XGuysZ5PGtui9OvrXpm3zOz+73X/XyY/4svlSEFBg== 1438613986.950,1.000,0.001,HISTggAAANp42u1WwQ3CMAx0HDcpRagLsAuzIbEBCzESI/Ag+Zx0ciIqXr6PFVu+cx3XyvXxvIvsL/kiN5ua1dtbAoFAIBAIBALHIZEzsyyvQx09ndRhdSm8FzPhx3oM4kb4kCeT89rs0myBuEG82wrxCvGucwLeAnkb5Bnk9fMF/Ni3hfh3otP5zlDXCjoV/BX4N/An4FtIH4z0r5B7zuQeC9y3OXNQSb+zM3dK5lmd/4LNpQ3OP9NLpE/q6Hh9Fef7bbA/Mrl38uA+G92HaXJv/rp3Z6HyH6SD6k8fIaEFvg== 1438613987.950,1.000,0.001,HISTggAAANJ42u2Wyw0CMQxEE+ezG04UQC/UhkQHNEJplMCBcHnSKFGEEBKey2jtseNNvPGerrdLCMd7eCF1jp3t/AgOh8PhcDh+C9Hf76/POU7u02y8Tebnf2KGPYi81JnQUV+g4/oVdsZxva3zAf4G/5t3cBH2hnoKuIr4DH+FP6HeivVYdxN5sojfhD9DV4S+YH936JLIb+K9ef4KSeQ3waN+NtFnqi/jID/PXfmj6Nck6skD/ex3r55tsB/qvkiL91ScrGvVvjpfPj1/fJ59aV4+AaSrBbs= 1438613988.950,1.000,0.000,HISTggAAAMp42u2UwQ3CMAxFnTpJKRy6ALswWyUGQGJRRuBAc/nSU1IhIQ7+FyuJ/7djJ77en5vZ+rAPfLdpt9PtZYFAIBAIBAKB3yPBOh3kTR099VN/4mfQI50K52qb7ix8F5vFuvAq+LU4J/Fr6wJ5zLK/dvhF9i+yr3kuEE/vRfp0r0X8K9TnDHXWPB36miG/Cfqgda7wbrT/FfrpEM9Bx4BvwDeoT+m8Z/qHmpfWJ3X+vXfi+cE5kgbj2uB8GJ1PBnU6yvs2rv27/hvphwV/ 1438613989.950,1.000,0.018,HISTggAAAXd42u3a203DMBQA0Fw3fcEK7MJoCIkN2IApGIsN4KOtkK5kOUnTUNpzfqzGdn3jx1XU9Ont/bXrPj67g9WxjEPx8v381QEAsLzj81hXRraPge2yMrI+KnFGI65VKksqN436kupP1qksle/p0zgl9evT531qv03ttpX4T/136fO20W5TGe9UPqT6XYrzVP+Y4tynOPeVeesr87BK4z2m65vUL6/7prL+tXWOyvV1ZZ/lc9JXvmfV2EelcQ6jsR+jMk4M7F8a5yUa56IfmB/KwPywHphn4sw8N/Z6TBzn3DjjzPuLkXk+FpqXbub1KzPNz6Xjn2ucmOl6d+H2ZaH1X2p9pu6fmDneMnGcVl4+93wtPQ9j+5eF9v1c+T4utB//Or91M5+ja433XuJYKr640Xn6r78X3Ou+to7uDwB5GpAHAADPHwCA5wEAAAAAAG6D348BAAAAAAAAgEvxvwQAAAAAAIBpvGcBAAAAAACAX9f+/ix+ACPOB9I= 1438613990.950,1.000,0.002,HISTggAAARN42u2ZQW6DMBBFmbEJoZV6gt6ki56tUm+Qi/YIXRRvvvRlJ1RKFN7bjAb4wx8bbCTevy9f0/TxM/1RthhbzM92BgAAAOBYxEH6zH/WhYlOXySPTj7L8WJiu66Kvpr6LS6delpX86Z/MT5PWzyLXvOT5OsW3+Q+q8RJ9IsZx6Uzrqv4WgZ9FhmPFl8lLyafO/Os4zyb+a1XPifu+U2jC5OHOZ/mPtnRaf1q3qM079uoL+1TqYN9FDMfbp0oHf+3rlc5eDwG8xz0mTv9j+47caOuV+/R9r1r+3R95M5+Y6fP2Nk330P37fuo/fNdf5/68SQ+WIcAAFhH8Q8AAAAAAAAAAAAAAAAA8LzwH/dB5uEX/B0GDA== 1438613991.950,1.000,0.001,HISTggAAAMt42u1X2wnDMAyUrDzUUEoH6C6drdANumhGyEftn4PDIph+FN3PEck6yZJjksf78xK5u3xhlbVyee6SSCQSiUTiP6BZf2Jg30vnWYldyHenAbe4CeJm8Bfin8C/gn3u+Avh5l+AmT7ab5Uv4N9AbwPG/C3eIc5JvENdrc9Xss4h7wLxqKfATvqH/x04B4O+4HyU5F+DukbsbN49Pen0gZ1nI+uVvD9GzpcEdRhLZ/8SzFNO3iOsXxLUjeqPuv90sP6v9nG2Dj0AkVgFAQ== 1438613992.950,1.000,0.001,HISTggAAAM142u1WSQ7CMAz00qYQBBL3/oW3IfEDPsoTuCSXkUYOCCRUPBfL8TZZ7Ha93a8iZ2nwJrVJuzwkkUgkEolEYsvQP+Fjb/IwEq/B+qjE/BP5L3WQE9i7PhP/hfgV0DF+Bn7dfw/5FpK3EN7dbweyED/07/YT2A9NVqh7hLgK+SrZH/LD8zSwKznHEtwju3/cvw6+FyH1WF0HHd+VBHEerDNebF8e9IkS3Qf7i/WjBP1sg/7y4ryQQT7RPNOg3rfntH4oz69/p7YOewLePgTy 1438613993.950,1.000,0.000,HISTggAAAL142u1WSw5CIQzsBwSfMW5deBfPZuIN3kXfEVyIm0kmxefOdDaTtrTTAiHcnutD5HKVN3ywDrb7JolEIpFIJBKJ/4FOrrPA72BrwEbqYrx8WUchD/tqEC9Epw9eBh+Aj5DXQa/Auk9eBfsEdiN8hnzU6xDHfPzXO9F1sHHuhcxXCeP+ot+I7ux5GtRVcp+Q6+R9skBfia6T/i3w4/550E8hcSe2knvQgvklmNeC+jJ5Lnvfr1/r7H4/X4TXBPU= 1438613994.950,1.000,0.001,HISTggAAAMx42u1XOQ7DMAyT5CNOG6Af6F/ytgL9QT/asWOHxgsBwrG9dBAXQhElyohgwPfn6yFy+8gP4WA92Pa3OBwOh8PhcDj+Fzqo184+Z/UGjH6R6CPwQuoDyQfgikzyEfwTfK/xhdRVvoI+gW+tX0GfyXmrTwH9CrwRP3aOhfhkotsgxnyGeQr4hpNzFYhxHzLJF4ilsQc4lzX22sj7KLJ3E+kvxC+Q/U6kXohPbPhZox+bA/+Ddt4L2qnTyftsFDap08F5Zueerad9v3TKBfM= 1438613995.950,1.000,0.001,HISTggAAAMp42u1WSQ7CMAz00kChiAPnHvgJb0PqD/pRnsCB5jLSyEEUVZU8F8tL7HGTOB2n+Slyu8sHvkhdpD1ekkgkEolEIrEnaPJbBUb4Mh3/IxXyoHSQWLcjOsY78SOf6i+EtxPe1X4EyewF9J7U78i6Kg/EfyF9s/on6OtK4vtGfgPYz6Ab4TGQ/qxx31r338g6Jee6BPU9OMfROZcgL+rly7oa9KcBLwvuvwT3vXWuRfm0cV7qn+ao/hivK8dv9c7s5X3Kvjb+nm8gdwT6 1438613996.950,1.000,0.001,HISTggAAANB42u1Wyw3CMAyNP0kbcYAB2IXZKrEBCzAiI3Ag9PCkJ4v2gBB+l6fE3ya20/P1tpRyupcXbLAM1sujJBKJRCKRSCS2Q34k7vr/9+E+ypXIJZAbsIP8va6DJ9BX4k/B/gj2Dvo14HlwA/sJ5B3kHfRY/A55H0hcxg5rIXl0kq+SeBOcgxNuwXfOEKeR+qqwb+RejdSfknvF81DSL5GfQurVA/8G9h70Tw3ylCBfCfqd9WHU94WcVzR3LMhfds63rfayU/9bc/7f3r+1Xp+B2wWR 1438613997.950,1.000,0.001,HISTggAAAMx42u1WSQ7CMAy04yRtAwcewF/6NiR+wEd5Apf0MtLIAZQDwnMZOd7GaZr2en/cRC7SYZ21c9qfEggEAoFAIPAL0D+dJ03eFyV10mB9Lx/jMvyXHnEV7Az5GbgSzlBn6bxC3Ep0LcAN9G7A2K9A/UL6NvAffAYuoIfZXjyun2Cu5sy1wX4V8BvpU2FdyPM10tfIuRESj+eW2TZom+MXp7468yCrk8fez0J0Ksln94c6cWnw/VfSP315T6YP9c/6vuibfp2sZ1j3CwqcBP0= 1438613998.950,1.000,0.001,HISTggAAANZ42u1X2w3CMAy0nVdTQGIAdmE2JDZgQUZgBD5Ifk46JRIIKuT7OcWpz3bt9HG63i4ix7u8EBprYzs/xOFwOBwOh8PxPYQf6SlhGdi7vgGzfZaPkTiB6MXGCfwzXFdgncBu5Du4QJyuu4K9Nl5IvRl4Af0K+xW453sA/x5/13hP6qwQbyV5JOKXoZ44qDORtZH7mYgd56ngfwpZYz9xXiL4JdJ/nHPMdxTXyBzbpI5CvkL6a4PzY5PnldU9qzt6brDz/inon70H9M3rdGN5b60/+gRZHwXb 1438613999.950,1.000,0.001,HISTggAAANp42u1Wyw3CMAyN4zROUQ8MwABs0dmQ2IBFGYEDzeWhJ1NKDyC/i5X48+ynKMnperukdDynJ3Sxstg831MgEAgEAoHAL0D+fC7ZWSdxeAX+i8nx93UB2/cHiFfSh7ffoJ6BVfDX/s8Fa+BvkG8kTmGNc1bgRz06/wh5I+QdFjuReQz6rlDHgI/p30jfRvQoEDc58yvRg+mXnXNTyTlEfZWcn+TwZVJHSbyS/EL8gzN3IX0Wwo/IZK1EN+bXlfeS14+svH+28sqbcXvfv996zz6dZyvPi/8BFSwFEA== 1438614000.950,1.000,0.000,HISTggAAAMd42u1WwQ3CMAyMHadJK8EE7MJsldiA5RiDEXiQ8DjJuhR4+j6n2hc7PSVWLrf7ntL5kd7InaWzXp8pEAgEAoFA4J+QsGDKHyF+yUFfldRR0p/1U+c9iTzyFeLWeYH80DfnP3B9Bd2oV4Crk8e4OvVx3QI6c/o20K8QH7pT543svzn+meP3SvxZybfHG/TF81Agjv2zozfnfCrh4uht8pwWojNyD9JkX3P2L2QusHutZC4omRf5x3kyO5fk4Fz8Vvfx7wXviQWy 1438614001.950,1.000,0.000,HISTggAAAM942u1V2wnDMBC7s89OEyhZoLt0paxQ6AZdtCP0o/ZHBeJiMPTn9CPic06K/Mjt+XqI7Id8kRtr43R/SyAQCAQCgcAMaETwk4OezGk0t3Ty/UT8JOBM6gvU+3iFcSN17GOkjn0y8Ar1zhfwXUjfFXQLGe8+t8Y7mYd6C/jpz1fwUcl3GrxXSV4byVmIPsu3kjxxnQvxZ876m7NP1cklkXlsvyrRY+cB/RenjxI2cp7EyTU755P59uYr0R+9Z7KjP+u+/9f/YvR+nqb7AVaRBU8= 1438614002.950,1.000,0.001,HISTggAAAMt42u1W2w3CMAyMnTQpL3UBdmE2pG7AEozHCHyQ/Bw62SAhIfD9nBr5Feec9Lhezikt1/RA7iyd9XRLgUAgEAgEAt8A+dN6xRlXCL8bn8V5+l+E7wKs4K/Eb/DUuUKcsd7gO5O8ldhlWGf5mpF3Br8Rd+m86bwDu+G3J/lYfVvSjwn6eSD9KFBXIfvJRl/wnNHeqq8a/qi3Quyb83xR12inhp6ZroXoWQ2dK5mj5JwTa07Z3Kpz7tV578iL9561z199Bz79fsgds6IFhA== 1438614003.950,1.000,0.000,HISTggAAAL142u2WSwoCQQxEk86080HQA3gXzyZ4Ay/qEVzYbgoeQXDARWpTdCafmk4mzOX+uJmdzvZGDPbB7fq0QqFQKBQKhX+El46vdDicPfEP8J8+/4vw/CDcIU7tkdSdB68Q55J3Fl5E1yKsceo3QZ4V4jaIDzl3sa9wP3Oig1j9Q/J30LOJ/Qj6G/RB+9mg/2q3xC+SejqHNKct0UdzT3lach80rwbvb1DHk++Y9GX7gfxjpz201z799V72F3sxBOc= 1438614004.950,1.000,0.001,HISTggAAANR42u1VyQ0CMQy0ncRZVjwogALogtqQ6IBGKYEHyWekkRdxSEiej5XNjMfrXMfr7SJyOMkTZUQd0c53SSQSiUQikUhw6If0+qaPAa8EPjNWMi6QV4Ix+qJ+GbERHosKeaZ+BZ4T3vyfDnUUyIPfF6Kf/B3w9sBfQdcgol+HvJ34NJivwKsQndThpM+4bgZ6A70H62BQj5CxBfupBvU1sr+U8Nk+Y+fOgnMi0CcN/C3oF/o7qUM31s/6roGvbVyn6J6yF+uM5vXL9/Kv34G/ff8e+T8FIw== 1438614005.950,1.000,0.001,HISTggAAANV42u1WyQ0CMQz0kWRZDmkLoBdqQ6IDGqMUSuBB8hlptOHQahGej2XH9ji25OR4uZ5Fpps84VVqlXa6SyAQCAQCgcCS0JXWowvfSz/kMaIL/PswzklcIf2wGb4MPInENd4B4lq+DcQnsI8Qn6DuAjwFeAbCk8GO9SHvFvK3PFOVuyr34DeSeg/Al0ldmdyL9SVD/xP4Cfg50XEeTubP5m7E38jctDOfE3si+Zz4GfGTmXMl0l+sW9/cS9qps/0gnfbe/fitPfrr78za3re/+Vc8ALYEBc8= 1438614006.950,1.000,0.001,HISTggAAANB42u1WyQ0CMRCLJwd7PKAAetm2+CLRAY1SAg+SjyUrKy1oAY0/o0Qez5FRkvPtfg3hdAkvxGpRrS2P4HA4HA6HY19gIw/ep5/KHxvPGSt5Vm2if2Ds6BnZxi9CL3f8D+TP+4PQm8TaSK/ZmXRHyrdQvEHoj6TD9U8d3Uz+zJ9Jt+0fSaeIOFH0J4t8iuCZOBdQHKP5Yl4SfIi5S2Jtgm9inoPoS+jkk4mXRByuD528VN1KR/UTnfvAVvLw5fcr3nxvfurdxE79+dd3FE9M4wV/ 1438614007.950,1.000,0.001,HISTggAAANF42u1WSQ7CMAz0kpCAQOIBPKQ33obED/rRPoED4TLSyL20AuS5jBrHE8dxndye80PkOskbPlgH232RRCKRSCQSiX+A7qyHdtt4/SgeJ+OG7z/4VvAvwEbsTvbthJnOYXCD8Qrcwb/B+GfeafAR9FHvDDoX0O/AOB/jMNAv4N8CZvnoJC+d5LMGcTis4yR+dk7svA3ms3pzYi9BHbE6ruBXgjpX4sf2hXpG/ksl9SBk/x7osvhlpb8GcVrQd9b2U9uo/+7VN3/lPvqae/YFL+4FJA== 1438614008.950,1.000,0.001,HISTggAAAMZ42u2WTQrCQAyFJxOd/ijoAVx4E88meAMv6hFc2G4+eIQBBaF5m5Bk8pImbaaXx/NeyvlaPvBF2iLr7VUSiUQikUgktgz783qUTnsN/IZze9h3gb/if7LBr/hU3opztDfoI8457ORf5QC+A/TVfxJ5BpGvCZ4j9AlxlDN4JvSliX6Pol7GcS6zmHcL5uewM4+DrwbvpYs4lc+DeAvyqO8l4nXRrxLUX4Ln9KDOXtm7R6L90xtvnXzf3pf2o/272XvxDTOqBQ4= 1438614009.950,1.000,0.001,HISTggAAAM542u1XQQoCMQxMmrRdEcEH+BffJvgDP+oTvHQvA0O6uqBg5lKSTpLJtg3s5f64iZxlwMaqYy3XpyQSiUQikfgPaPb7lXiWpxAeiyskLqrLeEbyNrCNrOu+g98hj4OOCn4P6hwgzsCuwOvAW+0F7ErqHEEX8hv4kXcCu5N+O9HXyD7qXYLzwHOwoC+fPO9G7k0l+Qr7DwHbg7hK9GhwHzXwM12z70MJf7bf2XmAOiT4DhK8e9s493TjfNQ356zuNH/3muf6Ib/Ib0JfvSYE/w== 1438614010.950,1.000,0.001,HISTggAAANN42u2XzQ0CQQiFgZmd1ejBAizCDqzNxA5s1BI8uHv5DIHowWzCuxAG5vEThuye74+byOkib7RF6iLt+pRCoVAoFAqFLUMDfWv5W+Bv+K7z7BrI5viTh/GGE99g7w7/5NinJM+M8x30jvvkn3Fvgj6gr/IIf8oG/rXePXgH/JjXjLwPqIv5N/AMx591kcfre3fmwWCXZH86+sM4H/8rSXs0N7w3nHchzry24H1Z8H40uQc0ud9akIcF+8Sza5BPdv9mz+XLOP/az1uN/yuPvgBHRQUa 1438614011.950,1.000,0.001,HISTggAAAM542u2USwoCMRBE0/mqoIjruYtX8SqCN/CiHsGFmc3DIhFBELo2TfpbU9PJcrtfQzhewgupW+s2nh/B4XA4HA6H4xcwl+ArfaLIN8RtUKf6rP4i+iSRX7vNwjbks0+Bv6E+IU/5t4jvB7wyeO3Ql3wq7Alzmziv/DbwH+BXOhbEm+ifBc8qdOb/po4Fc1jXhF7UVeltIs79UnuTxJwi9p37NroHaXBW35HQl3yyuGcm6tX7YMLmyfcmDubYh3WzfP/l/Z3lH4PjrZ5PscUFXg== 1438614012.950,1.000,0.001,HISTggAAAMp42u1W2w3CQAzLo1zbLxZgF2ZDYoMuxEiMwAe9H0uWQbpKCMU/Ue6c1LXSu17u283s/LA3co++x7g+rVAoFAqFwn/AB/PKz2N99A/XWa7qe5wgT1gP/D8kPIM8Rd1M+mPfE4kBfXr9AryJ8Pt+g3yBugnWkT/Dfgrd+FysX8U++od6Vnhf5lcjPPQvBR/7B9GVhI/zEiTHuW3kuUbmzgW/kblVutT8K30m/EjxXQfRx/gpfBl1nvmX59hR5/Kv3Wc+SJe8f17LogWe 1438614013.950,1.000,0.000,HISTggAAAMx42u1UQQ7CMAyrk6xsCIkP8BfehsQPuPBMnsCB7WJkZXAAgeJL1CqO3SjN4Xw5tba/tgd8jpijHW+tUCgUCoVC4R+BH9Mzce8v1gfx+B6k5+Iewt8SB+J3igs/Ev6GYoi8EJF5W+KNdJ6Ef1XHqY5T3ih8gvQm0umksxN9NNFn7lMnH128kyP3hXmDqBvJPIXQCTFnPB8h5s9FniV5SqclfYJ4F0QdJP/QxP+25J9m/rFyLyHxu3afrd1H/uV9izf3Mz7k74l3B4AmBXc= 1438614014.950,1.000,0.001,HISTggAAANV42u1WSwpCMQzMp78nLjyAd/FsDzyA4EU9ggu7GhjyFH0gZDZDknaSlib0fL2vIqebvOCTdbJdHpJIJBKJRCKR2A/24T4lOroxjxLb4J/oZD/mK5Pb5Ap+A2b+hcQrOVeBuJE6GtHvsG6AXWHdEexG1jXCmAf1DhBHvQH3PuA8Dvsc8i7gb6DnRKeTe+7k3eB7wTqU6JXgPVawC6lbiB/1W9A/SurRoE4N+kQJs76woI9ZPSyfB3PCg/uQYN7oxrn07pyTnXR0Y/zX9X1L/9+gT2NiBX8= 1438614015.950,1.000,0.001,HISTggAAANB42u1Xyw3CMAx1bMctCMQC7NLZkNiA5RiDETiQ05OeHPWAevC7PMXusx0rv96fr4fI7S0/2OA2WLePFAqFQqFQKBQ42p/iKfFromv4voN3X/a9gU5JfqzDB3fgIPYOuoD8J8jTybw6jBeIu5L6Avwd9Auxow7jnwdfQX8heux3JHkd+rOCP0BnpH9B+hmkr0b6Z4SVjHHdOvkvyey4Xn1yPxlZ10bmrZP7ycHvJI4DS5KH7eesLp08Zxph2RnnKOcqqz+b/1Hvk731tS8P9AXD 1438614016.950,1.000,0.001,HISTggAAANF42u1WQQ4CMQgstFA1HvYB/sW3mfgDP+oTPLi9TDKhNTF7YS6EdoCh6dK9PV+PUratfFF3K7vV+7skEolEIpFIzECyv5/yyWI9mdSDPA3iKvAayVeJVeI7+Ebq4H+oge/AH/sd4jvsnyAPxg//TPJewHeif8RfgeegowNfSR8G8Z3ow77wPBvUV6K/ET1G9i2o78ArpD5bZ/fXgvtXQIcEfCX94XeBvpN7W4l+I+uymKcGc4Kdm07OC12cL9Fcqn+en0fNeTlI31HvrXwAOcsE3Q== 1438614017.950,1.000,0.000,HISTggAAAMh42u2W0Q3CMAxEYydtWhBiAYboBsyGxAYsygh80P6c9GSBivjx/Zzq+M5N4kS53B+3Us5LeaOubCv79VkSiUQikUjsA8slyP3+IM/g277UFXjvkd4D/TbeAt3GI+hn8anCqmvC08qD5HXw2/KPUn+GOl38B9GfwMfFb5b6XfggeUMwvxHGKU7zmOB/O+SZxLUPHPwc9q8GfaR1RujLFvSlgb9Dn1VYd4e4gb4F57YF60X50XkjUJ0Cfr7zvWd/vm9/5WMvl9UFNg== 1438614018.950,1.000,0.000,HISTggAAAMR42u1UQQ4CIQxsCwusJvoB/+LbTDx496M+wYNwmWRS1qyeOpcJ7dAOhXC5P28i54d8kDprZ7u+JBAIBAKBQCCwH3Qy7/HWuga65Ogz6Nj+oavEz8gvkMe6C6wxX8kcsP+oUyDfOp+gfiPrFepU4k9gH/Y1iON5D6A/Qr+VzCMDF4crcCbzKeAvk3tvZO5C5qRO3NMlolPnXRuZG7sXJXqMM8z6ZO/ciB9x6gg5v+dbv+S9/73Zf+tf//Gv+m329wbJ2gVJ 1438614019.950,1.000,0.000,HISTggAAAMp42u2WTQ4CIQyFKYXxL8YLeJe5glcy8QZe1CO4cNh8yQsjMbOxb/MCtK8FWsL18byndLmlD3xhWzjPrxQIBAKBQCDwT7Af+amxDfrljl7u2I3u0/BPbPoT7AqY/8oK+0noUn8n5hVX6BYxPsK++R+w7lgvyItMHeZP+xbnhPkzmOtV5M881Tka5g1+Wdx/i7cX4yJY3a+qkyzurYi6cVH/WeTvon5p7+J82Hd1ZX+quNbpS1/Zz0pn1N82fke3jvPtezwc5w0oDwVL 1438614020.950,1.000,0.001,HISTggAAAM542u1W2w3CMAyMnWcLiAW6C7MhsQHLMBYj8EHzc9LJQQUkhO/HsmP7XMdNslyu5xCOt/BEXKWsUk/34HA4HA6H47sQb8Ff7K+8eU5Q10F+If7dnomfJTsKvDNRJojLYI+QpxjrDfKgvZB3b7fvIf8EegMd66nAfwC9gR/WO8H6DOsZ+lWBfwf2Svoxk7oE4uLg/kTY90rmJhnzIoQ3kO/PxnyxeY+Eh/Grkdeq04pPpA9q/O86WM+r94xsPM9kMJ9s5P/U+fqz98sDRusFlw== 1438614021.950,1.000,0.001,HISTggAAAM142u1WQQ4CMQgESm1dD37Av/g2E3/g53yGT/BgvUwyoRt7MWEuk7YwsITSvdwfN5HzUz4og3WwXV+SSCQSiUQikVgPBf7VXwNdhf89pmNgN8sGOo3Eddh3sHdg1LfAXoPzA3AB+23wCfw68Eb0Ouh2ks/Xvw4+ku9ucN5I/SrEU9hnfg51ddIPlfSHEbsKdfGgzzTIx0i/VpJHCeIY0WVxjeSJ98xI3zMdIXk60WH3VSbXEswd3bmWybmjO/OQRfZRHVbN8b95b96lRwWl 1438614022.950,1.000,0.001,HISTggAAANh42u1W2w3CMAy08yqUgjoAuzAbEhuwHGMwAh/EPyedXIqQKuH7OSVx7HPiujnf7leR+SFv5M7aOV2eEggEAoFAILAFaOhapYuxwPvPkIidwnqC/TYuxK52buAP358NuDqcSRzjPVnfAU+dB5g3+xPRdYC80X8j8U332PlI9k8wPxJ9lZxfg3PIoHcAuwLjTO67Oveu4F+JHyF1UEh8ceqX1Tery+TUdyF6ipOXOv2B1YMSO/YdqrN/aX8Q53485C/jykr9svDcftXHt9r//+U/93EeL+5SBcU= 1438614023.950,1.000,0.000,HISTggAAAMx42u1WSQ7CMAz0kqSlQuID/IVvcUXiB3y0T+BAymGkkVNRbp6LFXc8E7tRlOvz9RC53OUD71F7tNsqiUQikUgkEonjoX/W+b7nSNxQiU4BvpP3ogQ+BXy2dQO9Svioh/kJ6lCvAs/AfwLe3OOJ8DDfgvwC+mfQW0gd7qOSfnGeyGN9GpmXET0lvg51GvwvI3rs3Cj4MH4j9UbOqRN9C9aFnH8n+8A5MJRgTkr6EcLfe8848ZNB/1G/0e8a9Bnlf71f7SCdvfX2BhW4BWc= 1438614024.950,1.000,0.001,HISTggAAAM942u1WSw4CIQyl0M4gcTEH8C6ezcQbeFGP4ELYvOSlfjBxkr5N09LPKwNlTtfbJaVtS0+ULqXLfL6nQCAQCAQC+4QEv13sw7e8hchX1wvoGfysSwW7gn+FfJn8X2LcQuJW4qfAy6A+8qwOX4N6Qz9A3QX8hmyw3iD/Cv1hvur0M+KPkKeRvpTYjXwne5PXSvIL4WFgz4QXO4fmnCdWD8+3knugDj9x7Ap1cF/FyVece4pxZdKcYMjOHPlUn8Vv1lz/1bsgk/z/7d2SB+a+BQA= 1438614025.950,1.000,0.000,HISTggAAAM542u1XOQ7CQAz0kXgXUvABHkKXtyHxAz7KEyhImpFGzko0CE9jrZOxR86spVwfz7vI5SYf+BZ1i7a+pFAoFAqFQuGXoH+mB+sbRIUz40+Ez/o48CbSb48nOAfwOjyfIe7vNTgH9HXgLZBfQM8MdYzU7URXh7qN6DxD3QAdWQwyhyDfg80pSB7n7FDHiF8a4QfxVeYPTfzkxCf4H4N+EKKH5dFHSvqzvnhfIrmHktw7O9hHEr4N7pFsv2T6R/eYHsxnur+1p0f3t74BJEAFMg== 1438614026.950,1.000,0.001,HISTggAAANV42u1WOw7CMAy1E6dpWLgAd+FsSNyAizIyMpAyPOnJAVq6+C2WW3/jT3K63i4ix4e8kDvVTtP5LoFAIBAIBAJbQjeW39vuqL9P+W/zeb/z4P23wBy5Qr5n4hf1MtE3oJXoofzU6QH4DDzaW+gMfIM8KrE/A9+IXfxfgW+QD8pVkofBORbHjkFcRs4V6yukPhORT0Qe+wrrI6S+megriU8gDnX6Vp3+nEjcicyJR43MozpzWxz/Mmg/De4Fb6/oj/tNyP5Zey8nWQf6Z7297id9AgRsBe4= 1438614027.950,1.000,0.001,HISTggAAANh42u2XTQ7CIBCFBwZKdWE8gAdx17OZeAMv6hFcWDdf8gKLRqPO27ww0Dc/DJCerreL2fFsT/jKaeW83C0QCAQCgcBvI71ZJ/1ZXbb2T3sW82Suqx0dh51cVp5gd+gXxPGa32E+i/Hc0W0YV7Ajzr3girgmcBN6Dd838X1BPrPQaSKeivUH4a+Kuql6MS/uP/uA+bjw42If+L8xiX4tYh37MHX6bPScmDgvLvzlQd0CVn5SJy4T9TOR7+h9oZDFWNnTYB65U/et35Gt7/Fveb8+9m49AGL7BSk= 1438614028.950,1.000,0.001,HISTggAAAMt42u1X2w3CMAy0nUcT+GABdmG2SmzAIozGCHzQ/Jx0ckAIAfL9nJy6PsetnfZ4vqwih6s8kDbWje10k0AgEAgEAoFfhn5pXjaZ51jPZJ2xOLa9WC+D70aD/BLwAvbwKyReBc4QRx3/4uh14EauG9hDfw/xmxO3Q/xKdBa4D/edgXdgN1JvBf9E6o92heeOdSygV4ku2p39dzi8gK4SHXyv02Sf2JP5sP0Wp+/KpL6SflJnfpijz9gcf3Hmxqfmsb453r+cP3oH16kFnA== 1438614029.950,1.000,0.001,HISTggAAAMt42u2W3Q3CMAyEY+en7QMSA7ALsyF1AxZgREbggTx9kuVWRBQJ38upqe/OTZSkl/V+S+n8SG/kztJZr88UCAQCgUAg8E+Qg3LUqdeNPrJTz/+/gnHqq6EjZ/hVw7eCG+r4PIMz9EvnyfCZUMd8+jfUq5HPnAJe8P7k9NUcno35KUZ/1CvWi/PH/sVYR+aqwfRRQ5+d3GLoxcn3+uH3NqM+OX7q7Iut/SRDX5x9Lc64fHjOjdLJzjoZ1Oe3zvdR83d0vz97T78AFF4FjQ== 1438614030.950,1.000,0.001,HISTggAAANV42u1WSw4CMQiFlnY6RpM5gHfxbCYu3HtRj+DCzuYlL2iNRiNvQ/iWAYZ2f7ocRZaz3JE71U7T4SqBQCAQCPwqNEoQ+MI50ME8mT4/aJeACuGz469gVxx9JudX8Dd8h4KdAV+J3dTpFuQbiIN8Af8ZqJG8J5IX5rPm2cAf7XdgVx1+zWsBeYNzjfQJ9TPpSyN9xb4VMk8GcnPmUsl8JTJX6swf9jmTOogTl1FzvkOc/yI78ZPTv/RknUb3EauXt7f0xX05uh8/fX/om+L+7f19AxF0BXk= 1438614031.950,1.000,0.001,HISTggAAAMp42u2Wyw3CMBBEvf5hwgEKoBfaoB0kOqBRSuCAc3nSyAEpCCk7l5Hj9c56so5zvj9uIZyu4Y3U2TrHyzM4HA6Hw+FwbBEGXhr/rc7ouQ04DuKj4Bm5cxH/hUnUmZCPY6VPvR3GWXBFfBX1ts6TiEuIa9CfhB7r3Xc+IL5invka6pj3dxS+J+GH8qFAh/ugvvInYR19LsIX1RfsI65X+2a/xkHf2CDvp+eF83nheVR1mHivSjeIutf+Dv1rHlvZj1/dL5u7V18KHAVF 1438614032.950,1.000,0.001,HISTggAAAM142u1Xyw3DIAz1Bwrk1AG6S2er1A26VMfpCD2UXp70ZBTlEsnvYuVhPwx2ILk9Xw+R61t+8Gl1Wrt/JJFIJBKJxDmguQWnhJE6alBfhe+3VX0Dq8RiXAXe4bkFfg34v98geh34ArYR3kG/wngHfpv2AvlsJK6Q9Q4yfwM7QA/jGI/zdTJ/IXGYtwJfSf1w3En/sTqgn5M+FJKXkXwQTF+Cfregb4z9Jy2uz4Pzmumtvsca5KGL54vs9JOdOkfprsIP1st7+xz7pF+ULAWu 1438614033.950,1.000,0.001,HISTggAAAMx42u2WTQ7CQAiFGYbWVhdewLt4NhNv4EVdunRh3XzJC1008Se8DQFm4AEtmdP1djE7PuyFvsi2SD/frVAoFAqFQuGf0b4krjrvia7uu/A73n30B/wh4u4WOcLuiPeWA+JS570R+gF5yWMG3wn+gD4hP+uYIXl+gn8PGaJPg7DHSjv9o+h3iLmEmLOLuQ+oc0jmZyKf+g7JuwvdoPeEryfxQvBQfWpJHdl/5Uk+E3zVPmhJ/yzhvda+1d7rK/fYp/f2r/Lwreb3BKGTBcw= 1438614034.950,1.000,0.000,HISTggAAAMZ42u2WQQ4CMQhFC7QdRhdewEN4A89m4g28qEdwYd385IemzpK3IWn5hTKUzPX5epRyuZUvNqwMq/d3SZIkSZIkSY5HFv10Ul/BL/JXsKg38r/4ow3rRNfBr8F6Jec7rDvoN9B3sEbi7UR/Jv4nonfY3+AcvLdBvH3yPk6+A6urBXVppO6N9I1BfxjpGyf1N+gXjBf1XSX7LfBXkreRehnJh72/HrwjnXxfmC/Dgjmhk3NEFueSHDzv5OA4/87X1fjyAXbVBR4= 1438614035.950,1.000,0.001,HISTggAAANB42u2WzQ3CMAyFnZ8mLT2wALswGxIbsBxjMAIH2ssnPRlEevO7PNmJHdt5qXq5P25m56d9UDZOG+frywKBQCAQCAQC3yOBj85Lu+7/cWJfdmxyEf6MdeaZ4K/Yv4j13W7IU2EXcEXcCft3njfuwr8iX8c662roZ0VdHfV05F9EvU2cx3kvoh/OuyFuEnNr8K+I6+KeknOf1Ocs9GWO7qrQZ0F8EzpU+jehpyy4Ou/P68Oc95edd/6r/e93Z1R8+vO8o/ocPZ/RfY+KS28gswW6 1438614036.950,1.000,0.000,HISTggAAAMF42u1UyQ0CMQz0kWOBBw3QC7SGRAc0uiXwIHxGGgXzi/B8Rusdj3ed2JfH8y5yvskbPlgH23WXRCKRSCQS/wVd3H+1PmuwXzqJf+tvRO+EG/Gt4NchjnkF4k58nDwXiOuk7jb4AFzBr4BPB30nfvg/nXzPR3cafCT5qCugr6Q+q9egXwV0Fe4B5ju5H21yTkbyFd6jTsh9EHL+NvHTYJ6SOTHSBzZvWHc2XxqcbzbPGtw/v+4lCe6h1RHu7wtlIQUL 1438614037.950,1.000,0.001,HISTggAAAM942u1WOw7CMAxNnp22DIgLcBfOhsQNuCgjIwPN8qSnmBapi99i+dPn2ondXh/PeymXd/nCVllXidurJBKJRCKRSCT2o26Mr/Sf1gGh93gP5gfxg2QjvxPfLPxdn4S/yxPFeZAHlH8i+0L8s5BGdTbBu5CfdRd5Oe5M/E3U2UR/jHhnilPnxv3ic2R+E/epij67yFvJDmFX/C7mAYN7z/NiQX4M5tHE3HB+BOvC4L0x2Av4cZ8guB9G+woH7cOoH3/Ke9RzW+ve/Z36ADHcBe4= 1438614038.950,1.000,0.000,HISTggAAANB42u2XzQ3CMAyFE6dJU37UBToAWzAbEhuwKCNwoLl80lOQSsUBv8uTE8fPTW2rXe6PWwjzJbyRVo4r2/UZHA6Hw+FwOP4BcWf/b+uSDd9zAbZ17EHkQ7v5jYiTwaljk1vcAjtjfUK8UZw/4HyzK+I0Pop8Z+jQf4JuWz9jPyNO8z+J+6jwK8iriOdR/qyLCj3DPQ7i/STBGfVCPepE8f+h6renH0V9D6KPUqefVP0nUfep05eqP9U92If9bhvni9pX+e41D381f7fqxBe7FwVA 1438614039.950,1.000,0.001,HISTggAAAOF42u2W3Q3CMAyE7TikLZQBkNiF2ZDYgKUYhxF4ILycdEp/EKrQfS8np7Vjt4mT8+1+NTs97E1U9arp8jQhhBBCCNHGV/r5zPeYBrEZidgJ74UQL4N6w96RvErVoeoI4wHaNewM/jvQPdgFxvuqB1JnAcXnI+TzmecI8Tuoe4Dv3IN/wHgieQWpG+MkEgfXE/MLsj5yI34m7wWZJzfmt4a/k/lKY90H2ZdB4vnMPNPEfTx1/1sjrk30X9v/0sJ+6Sv747f7ri+sw2b+j1+dM1uJ/y/nthBCCCHEZu83L3miBbc= 1438614040.950,1.000,0.001,HISTggAAANV42u1WSQ6DMAx04mwtqtTe+QtvQ+oP+tE+oZfkMtLIVBWUg+cS2UzGdnAM8/O1ijykQ/sa+hqXtzgcDofD4XA4/odAbP2Sz/al8d9HVqZTgYc6Cn60MZ8M/gzPo2EPfgG/FbfB/jvUV0H3Cn4FOwF/6F+Ah3ErqWPgBvoT8BuJh3rsXAt5j43EqYY+9ksh/aJGnzJdJf2uhId9HUifK+FhnGj0mRBdNXSTcV+zcf9l47xg9Vnny3SVnOev847le9TcDRvzk53q3mvfWb5np83zA3wDBPg= 1438614041.950,1.000,0.001,HISTggAAAMt42u2USw7CMAxEY6cp/Ww4AHfhGlwHiRtwUY7AgnQz0lOCukBUns2oTmYcu4kvj+c9pfMtfZArW2W/vlIgEAgEAoFAD+xgeX4Nb9RtnX0iH2LSD7I+wL4M3xl8dH2qXCQ+wv4t/1p5ljyat4jfBDyKn+o2XiCewbfAeZeGfpS+ruKnPItuq/8k7LLPoG8D3JMC/Tb4Xw73SH28kc8gn+qJM8QT1OOQtzdO7yzDu/eGjvQ0R6xzvhj42s559K3uqHPedq7/ff1vgacFLw== 1438614042.950,1.000,0.001,HISTggAAAM542u1UQQ4CMQgEym5dXbMf2L/4NhN/4Cc9+gQP1sskkxKz6kHmMimlDBDoermeRZabPFEaa2M73SWRSCQSiUTiG9A/rduCfUE2Yi9BHe/4aYcdGPWRHeIPpE6Hd+hvcD+SfFB3Bn/kqXEFvR3p+xH8Mc7rvJC4Ffz3oFdJ/ROJM8N7gzwG4APwCPEczoXYnfQH83Yyh+jvZA7ZXNbgvLD8enYP7oME65NgHCH73NtHDepKcP/Zf2SdenWj/11//P9+Oj/bSOft/j4ArTgF4A== 1438614043.950,1.000,0.000,HISTggAAAM142u1W2w3DIAw0JjyaVuoC3SWzVeoAlbJoRuhHw89JJxORj6ry/VjmzsaAA3m81qfI/S1fxN2G3eqyicPhcDgcDsc/IwzyZ8+HOtTrYH2RxGunP4HfbAY+EV3jC/j4HzqR+SqMZ2Meq75K+BnqnEFXoe4E+tKpx7gbqa/xV1JPsxfwk3EuBeJwX/FcsG7sj0T6DPOwfVPgMxnXzvVZ/c6+q0z6UEj+QNYnpD+VxKnxnUcjH8t/9J7pvbdG8/fy+iPvQzioO+v9CB8w/gWH 1438614044.950,1.000,0.001,HISTggAAANB42u1X2wkCQQxMNvvwQMEC7MXaBDuwOcuwBD9cfwaG8UBFMPMzJOTJZnN7h/PlZLa/2gMx2SeX480SiUQikUgkEu+DAxuRlb4AG7zn0M4FY7xK/Fn+IP4h7BvhAXGevEzukzcgd7BvoN9BfGaPdbB6hvDD/FvQB/SxgFxI/0PU0cG/gdwhfyXn1sR5BsRzoq+kLsZO6mPzyeYM58RJf2x+8P+orswf5J6x/jCPvXh/2f20lXGM1Kf2l9p3ReRRe+5X9/in7L8d72++v3dw3gXi 1438614045.950,1.000,0.000,HISTggAAAMp42u1WWwoCMQzMxHbdquAFvMtewSsJ3sCLegQ/3PoxMKQLCn5kfkKneTRpGnq5P25m56u9sVslVunL0xKJRCKRSCQS3wd+5O/zj6P/nYk1iC/Cfia+iXgu7Pe0VvGc+K5XSbLfImTXO4j4Pa8p4FXczh+Jb3SOE52jkf+Z7CM5kR+uQwv0OT8X91IFz/fppF/IP4Q+SB+iT2vQZ1Hfu3g3UR960LcQ+wjeuW/MB4PzA4E/DNYlilM22kV12DrfbLDO/zKn8QIyAQVN 1438614046.950,1.000,0.001,HISTggAAAN542u2UTQ7CQAiFh/m16hFceZFeTRNv4EU9ggtx85IXGjdN7fs2hIFhoFAuj+c9pestfSguzWWeX0kIIYQQ+8BWfs82Wsda36sQe4ZzptvCe8wP9UzyKoFfIe8MYq8um8sOfl/7RN6fSJwC9rPLg8uTyyPYO+gYt0Ec9B8Qt5O6OsQZkG+H8wF5V3K/kr530GswF6yfJZgDjI/zU4M8MO9GZA72g5E5smCekUbqif6zHNRtpF+snhzUmX/cP7ZwP6WFe2Zv+902Wp/9WR+EEEIIIYQQQgghxLrYG51yBXc= 1438614047.950,1.000,0.001,HISTggAAANZ42u2WwQnDMAxFZdmJnZ46QHdpVyt0gy7aEXpocvnwcAKmFKp/EZKlny8si1wez7vZ+WYf5NWm1fr1ZYFAIBAIBAL/jDQovvdc4Tt5vHOewBapT+IXqMvw/5iBf/MnsS51s/hbXoN4kTj5VeoW0LPlnURPg3gVmyVf+9T+quhR3iJ8s9hF+CfRWYFP770Bj8M8zHA+de65yFzSfdI8muRneAc0jw7foTknHd6ZX9JjoI909PYGvb+jddSfAS/tlaP7cfS+tC/t5dF6en7+Mf3d/t6w/gUs 1438614048.950,1.000,0.001,HISTggAAANN42u2XzQ3CMAyFEydpS+HAAAzQLZgNiQ1YlBE40Erok56cVuLmd3mq459nN43S2/P1SOm6pC/Kynllu79TIBAIBAKBwO/9IPr8T52jz4rpZ7CbE18d3Rn3x4Y4rlfULeBh5RGs8lasD7BPyMP1GVzht8Wf8FyF3gms+rkIPVudM+YyI55zbKjL99FgH4V/EXM3Me8m/h+SsFO37dy3an9mUU/5s98k+lP7l3msU4d1ngfZya/ml8T37aF0+pmT1ztfjp6DvXHWqX+vnoAzrw/QDQUR 1438614049.950,1.000,0.000,HISTggAAAMh42u1WwQ3CMAx0HKdpQIIF2IXZkBgAiUUZgQfJ56STG0R5+T6n2pez29hSL/fnTeT8kA9y59RZry8JBAKBQCAQCMxDJ/XJiRv4JsJCdEry2fFV9p8IPPpbQF8gb+S9hn4ldQc3qFPArwBXoi8Qb1B/nDtAvJBnPL8Ar6BrpE/0OXU+gs5Iner0qaCr5D6VfF915iMTHyH3ZNAnm2ucE3PmXjfujzl1t+4JMvbJ+svO3jNfb+/ly/ysXn6c30u3F/5VP70BgqwFhQ== 1438614050.950,1.000,0.001,HISTggAAAM942u1WSQ7CMAx07CZpBRIf4C+8rRI/4JM98gQOJJeRRg4QcfJcRna9TOvG7fX+2EUuh7xhjVNjvT0lEAgEAoFAIPA/JGKjX4n/07oL+Q8U8GNfA0Y9GJeJrUQP9lsbV1KnQFwB7nU3YIU6nc+Qn6H/RvwL0dHjTyQvE70V9FSon8kcK3kuOC82/+LMr0AdcfSoY+N7buS6OedBQV9y7lsn6U2D54TlMV0sDuNH94ORPWCD+0LI3NOkPcegX/YZ7S8/9p+la5b+4e/CC1BxBdE= 1438614051.950,1.000,0.001,HISTggAAAN942u1XOw7CMAyN7SQt5aMegLtwtkrcgIsyMjKQLE96SlNADPgtlu34E9d22/P1toQwP8ILVqgUqpd7cDgcDofD4XD0QwgvH/bP/CqxM3KuyiPIlcRV4DPYV/kA9hEofn9G8KdEPxaaQD4VeoT4mfifIE4GvwniZUKr/rDSrupPkBfep+a/A397Uge870DqnqCuyBvQROyN/UeQfkuNc0r6EO1ZXyjJS0kdpCFXMmdG+ED6m82TNuZVGnNoJE8272v3Se9+69Vv3Z+90DfvIxvr8626/Op5/M17+wnxswXp 1438614052.950,1.000,0.000,HISTggAAANF42u1WSw4CIQylfMqAGi/gXTybiQcw8aIewYW4eclLh8zMrm/z0h+0FBpuz/cjhOsr/JAGy+B4/wSHw+FwOBwOx3rIpH5vO+Ow0v7/D0biV4AV5Ax6hfUj6CvsW2GdSPIpIHeIV5LvMvgM+kbqugw+QbyQ82rgVyCvhdiV5NNgH4Xz6Ub+CvEd4vEcM+lHNe4N9quCnIx+ZiJHwon0Ae8TrhOg7kTqisY7ULBno95E3kEmdQjx3+vdW/NFNs6fWT/ZOD9n/Y6a+3JQfvIFetYFjw== 1438614053.950,1.000,0.000,HISTggAAAMZ42u2WTQ4CIQyFKcOPrLyAd/Fabk28gRf1CC6EzUu+gBPHVd+moeW1bwo0c3k87yGcb+GDrVvrNl5fweFwOBwOh8PBsIPzxMnaxK9r/b8z2Ec6DPyDl6WO1kvdFtivfvquk+wbtkq8SN0qeSroJX1aV/MOXhNeBX8D3Rn6Rfma8G3Ci5Jf65bJ/UnQtyrxBHy6h3QOEc4zQnyb3M+0qId06/vKwIsQX+1DgrxpcX7Qu947v2znnPuWZ+E/sB/5D9P3Buy5BVc= 1438614054.950,1.000,0.001,HISTggAAAM542u2Wyw0CMQxEnS+7ERIN0Au1IdEBDVICJXAge3nSKLDa3DyXkT+xJ1/l+njezS4v+yJ1Dp3j7W0Oh8PhcDgcjvkIwqY/Cr+KB/HPY5+4M492Ef23vAqOGFfVv1Tkb/EM/6nzKvzUcUbeirqsz3rU32CzThXcUHfjBdyEDupk3wRm3QxbrX8U+8hzsYi+WexnEuuUxbngPE2ci9H9KGI8dXO+JvJUXPUPg3ttg32wwb2Lf75D1FF+1HXU+7c3P9hchIP6zNY57P8BtpEFyA== 1438614055.950,1.000,0.000,HISTggAAAMV42u1UOQ7CQAy0vSaES3yAv/A2pBTp+ShPoCCmGGnkDVJE42ksH+PYk929Tc+HyHWWD9pidbF2f0mhUCgUCoXfoCVBYYPzo4nN6i2xjfjIV8g3+C7jNZIP36F+BzbqjhDfEx/jwTuA74Q3AD/8EeYP/0TmOEMd63+B+Qx448p9neiY6cv+t5O+RvoOEHfSd+25xHnYOWR7CIlrwjOyd+89wbk1iUtyz7P9sneB6c3yQvSTTn17+brR+9mry7/x1e0NcrUFdQ== 1438614056.950,1.000,0.000,HISTggAAANJ42u2WQQoCMQxF06ZjZxT0At7Fa3gdwRt4UY/gwtbFh0dBBxHM34Sk6U8ySds5Xm8Xs8PZnvAmU5P5dLdAIBAIBAL/jRR1fDWfBPrr/+zNfQ525XXQC9j7/s3Ar4j/JOsO9iL8GmduchGp/rPwd3uV9S53kI/GrxK3Qj2ddwt5qJ6Fbw9xquSjPIusq1+Bvhf4btqvCnXoXCWI52BPME8J8tT5z+BnUG+Gvk0Qn+bVBufOBueR6rVBnXSuDe4N//CeJD9fmW+te/RX3pP0AA9KBV8= 1438614057.950,1.000,0.001,HISTggAAAOB42u3V0W3CMBDG8buzk1DKCEzQJVihK1ViAxbtCDyQvHzSJyNUJIr+v5eTLd+dnQRzPF9+Ir6+46atMddYp98AAAD/S7KflzxPmvy8s08N1jfTpwbry+S5/CZxXuNi1nWpo/OTiSVjl1fSX9dv87s17qXOIrHkXE3q7ky9yfT7kPku9ScZb3mfMj6Y5z3J+5rN/mdzjjDn1ufcpV6Y/mXed5rvx62rQV4Mxs18JzkYa71+5/n6oG4M8ke//zT7iQfvlXzwXvrr+/JZfd7tfwcAAAAAAAAAAAB4JXkFXBIFQg== 1438614058.950,1.000,0.001,HISTggAAANd42u2XPQ7CMAyFYydpmwqJjYm7cDYkbsAlGTkCA5me9JQ0/Aih9y2WGzu2Gztqj5frOYTDLTyJVVqVfroHIYQQQnwHU11/VZ8P2lunH9qzeJGso18k34PM3hr7OMhU5QR2qGfQE7FfQZ9BTpDfUuUO1tG/gL5CfFzPJB/Mv4C+J/EXeF5AsveFcazRN5n4G+gz6InsP5HzT0SyvnPSB7mzb2Ojbid15kZ9Pjg3TvqR2bXmL3TOZ2tuR+85e/Fe3Gpvb9r/U/mFjeckhBBCiB/4f3sATIQF3w== 1438614059.950,1.000,0.001,HISTggAAAMx42u2Xyw3CQAxEvXY+mwOiAXqhNqR0QHOUQQkcSDg8abSIJJw8l5G9k9nR/qRc5vvN7PywN2LhsrBfn5ZIJBKJRCKR0Cjgf/lQ72KcfaXrGr4r96ipC+gG+LPvGB/FvPQfRJ6VK3yZi33WVYxX5DyJ9ZmgG0VuchX1CF/mm8A9vovGOrTYxXdqP9W6ujh3LnJGQ8dzG+KcB+oOuU3ck9b96MV8JnJ16r9LzBsb34etum99fKf3sDTeufJjPjsolx28P7ZT3k//Bck6BbA= 1438614060.950,1.000,0.001,HISTggAAAM542u1WywnDMAy1LFt1nUA7QHbpbIVu0EvH7Ag9VLk8eBhKKIToXR6y9U0k28vjeU/p+kpfqLM459s7BQKBQCAQCGwBOXi+spG+EJnpZ2CBd1+B9QL6CdYV9pX4X+UGfhqJs8pG7E/Ok3N1PhM/BewM5IvzDOsdWCGPGfYb4Q55TGBfIW6GPA30OqkP6yxgZ+Q/V+BMvqeSvhHiV0jf6aAvjfjRQRwdxGN9xuph88LisblkcUbz8us5MDof/nVe5p3dD3u7lw7/jvgA5fMFiQ== 1438614061.950,1.000,0.001,HISTggAAAM942u1WSw5CIQwE2iI8Y+IBvItnM/EGXtQjuCkuJpnwMHHz0tk0Le1Aafncnq9HStfkEJfZZbm/UyAQCAQCgf8iR16R/w983/8a6LpzHSOuujTCZ2S+Av9HBbsRO46P+BPoY10b8VewV5Bjng5xjfAZyA7zdOBvZH0b+F9cngmfQf4N9Ap6J/64b0rqaqR+Nuknm9TPJnUupP+E9G0hfadgF9LveeIvZJz1N+PPJF7IudOd51oIfyL7Obs38uK+lcV76Cjvxmp+h32/P75PBOg= 1438614062.950,1.000,0.001,HISTggAAAMt42u1V2w3CMAy0nQcpfLAAuzAbEhuwTMfqCHzQ/Jw4uRURSMj3c2rt2OfEcS73x03kPMsLaWVd2a6LBAKBQCAQCLyD/pl+HbwPOkifEbs5dbD8icTH70S4+2ViL+CXiB70KxvjFtB5INyAJ1jf/U6OfSLxK8Tveo7ABepoZJ8rqbNCvAzciG5cz84vE7/q6MLzyaT/jOTVjf3E7NgHRv6r05eF3J/s3EtWx1727rM5c4Dtt304v3XwPJOdc0oH5/n1O/G1d+0JZMUFkQ== 1438614063.950,1.000,0.000,HISTggAAANJ42u1WwQ3CMAy0ndQl9AEDMEC3YDYkNmBRRuBB+jnplIb2U+T7WHFs5+w4Vm7P10PkMssXqUqt0u5vCQQCgUAg8J/Qg/HRg9fZNtbDOuukDT3yGeA/mEBv7L9YZSbnnGA9gj3Gd1gb2CHPJX6B/QLSgccEegd+6Id8R4hzJfGWOGfwz2A3QT4OeRZSpwx8nOwncq43+sPI/Q/k3hPpE1l5z0pkIv2WO/tRSV1kpZ0Rv9zIQxp8tOHXOxeNvHNmn36cw73zSHeap1v1u833D98xBQk= 1438614064.950,1.000,0.000,HISTggAAAMd42u1WOQ7CQAz0kXizEhIf4C+8DYkf0PBMnkBB0ow0crYIFHiakS17bGed1V7uj5vI+Skf+Mq6sl1fUigUCoVCoXAk9M/mQr8R/wR+xkbecU70nOgbiTMSN0M89jGDv5E6jBvYnfBWZyH1HOwOdoC9gC5yJ30xvQDG74J+hz42PpG8gLgg5zAn5xhkP5z4W7KHE9kPS/ZWyP5leZbsvyb9ZDqx879g8yjJl6Tv0XuS6eyd1wbvr6Pvcf2Szuhc9qO+9Q1YcAWS 1438614065.950,1.000,0.001,HISTggAAAM142u1WWw7CMAxrnLIyQOIC3IWzIXEDLsSROAIftD+WrExsiJ/4x0rSuO5j1S73x62U87N84J2tM66vkkgkEolEIpFYDxM8gKBPxQoQugjGgf4LnfJj/ir6OL/vvBPjalBHMN+BmOcbfOzcKD9RvlJ+6M1Ud9Lh9Zyo3kjPKWYfUcz++Vya8D2J862kw/vn4jxmcZ88uIcm9s2DfTbh38Q9dRGDdItYv9KH+J4h+tR3jKBuC9+FsrDfvtTHSh9bv6O/0t/K19/9vAHr5QWR 1438614066.950,1.000,0.000,HISTggAAAM542u1XOQ4CMQz0kWRZQOID/IW3IVHQ81GeQEHSjDRyQKxoPI3lHDPjXSdSzrfHVeR0lze8R+3RLk9JJBKJRCKRSHwPncz1RzoW8KOOkf1OdMb4QnQcYoX5AnmF8ZE3GN8DrxG9AvsPPe4gNtDD/aO+I/GJPI34b7Deib8K+Qp6K3wHrGcBHvRbAp91sh4n/VBJP7GI/xF94rukwXqm54TfgnnsRwn630lfGzmHRuq1SR0j59dJ/bP3jQb8ttF9JQGPyn+gG6//2M8LiNEFeQ== 1438614067.950,1.000,0.000,HISTggAAAMN42u2Wyw3CQAxEHW82ISGiAnpJbUh0QBOURwkcSDg8NPJK5Oi5WP6O1/vRXu+Pm9nlaR+UTXab9PVliUQikUgkEol2dH/6W/NaeTr88yL/9x8oeByyCnsPf4F9hD4gLsrb/WeR5/Cz311O0Ef0Q/8JchT2Hvok5Iz4GfxV9Levd0E+57+gHvdlCPaV81fnkPEOvTTyVHE+XdSt6Id6EesoAY86v1FdE/fFGufoQV8W8Kh77UJX78FR7+DRdX943qOYBZY= 1438614068.950,1.000,0.001,HISTggAAANV42u1USQ7CMAz0kjQsQkLi2r/wDb6DxA/4KE/gQHIZaZS0qjiA5zJq7cnYWTw/nneRy00+8Mpa2a4vCQQCgUAgEAhw6JfzjOTpIFtHZ4Pr5soJdD74jf/behN8Z5JfIG6gd6ivEL8TySvEZwJu8QOss4M41lVIvOmOlc9Evyf9Z6hngrqcnLeDvgyeQyJ6FvdOPQL+CvlKdKwfJe8mEV8jfbB7LB0/I/5G9slIn8x36TvvzRlbqO9xb46NzkHbeM5uPd/X7vevwCTwT+cdWHkv3rssBUk= 1438614069.950,1.000,0.001,HISTggAAAMd42u1WyQ3DMAwz5diJX12gu3S2At0gi3S0jtBHnQ8BQjncn/ghYMmUFDmy76/1mdLtnX7IndHZHp8UCAQCgUAgEBgPHLTDWb+qbzvj8HrpPHVeSK/y+5LenRNxIXsVzH5Kb4s7U36FWMVZxL5MulucJvZXYTdaL6TL+c3k36jeJurn/nA8/k6slynfIs4BhJ+yQ+hzH82x4+A5S8LPHHsW/nDqMyc/iH5B1H/2f4WTr+eHwfMIg+fk1fl6Fvane2C3zhdorAWP 1438614070.950,1.000,0.001,HISTggAAAN542u1X2w3CMAz0Iw0FtRIDsEtXYCUkNmBRRuCD5uekk4NaIYF8P5Zj++I4qZNe7o+byPkqb/gqdZW2PCWRSCQSiUTin6Ab7XvDQArRNdAHYo/iCrwDhbwLHeYpICvYMa6S+APYndSl8Y1BPg68A/BUIkeIa/oM/I3vSPybPhH+CvFzsI4J/Jv9BPNhvbC+StZRwI7jBvnguUB+C/bPyT47ydMgLyfnVUkeSub5NL8SfKdO9g/HheQV9QO2LgnqoOw/rzO+t5/qxv6pQf/bq89rp9+v32Pf9g/5Xo1IBUg= 1438614071.950,1.000,0.001,HISTggAAAMh42u1XSQrDMAy0FtvpcugD+pe8rdAf9DN9Vp/QQ+PLwKDQQghUcxGWNFpi2SbX++NWyuVZPrBFyiJ1fpVEIpFIJBKJPUD+vA/9Mo4QvhJ/I35D76BvkKfDugZxGshKeEMeCa9BXIM4jfCxDgPZSX1TwGvAH7wz2A/g10lfaD8RvUN9GH8i6wJ8X7nfleyrED2bKzbfTuZAyP+LB34snxO7kfNmwXdby4/OpQb3AetXyPkXUo8G+q3uY/kx317fiaxro37eMtQFpQ== 1438614072.950,1.000,0.005,HISTggAAAQR42u3Xy03DQBAA0P34E4iQKAAppdAObSDRAY3SARwSX0YarQkXLL13GXl3POPY2XXy8vH5Xsrbc7nqt1iv4fL9+lUAANivDo7LzvltvN1Zp+6sv7dfnO/heAl58+C8bXxK8k+hbg/x8RbXEOdkPM7HvkuIW/2H0HcN52/5T2H8lPQ5h7ot1I3XEfv1MD8lfeZQP45ndebkucY+LcRz8rzX5Pn35PsyJ3k96R/vc03OW5LrzmJN6tUkvwyO22A9TIN12wbrOLuv2bruv9w32s79YFSn3pnXDrr//zXvaJ/rv9QFwP8xAMD7EQAA/C4HAAAAAAAAAAAAAAAAAADgCOoPJpAGfg== 1438614073.950,1.000,0.001,HISTggAAANd42u1W2w3CMAy0L2nSlB8GYBfWYQ0kNmBRRuCDIKRDp7QfSBXy/ZwUN+dHXCen2/1qdrzYC6mzd8b5YYFAIBAIBAKBz/to73GpOEH2RGziPci6oPVM65PgLPwmsr/9NKGTyM558XeVeO5cSId1K+k14ccp/kI8i/wb2RfiifJbSBe0vw7Ol+uViQ8iXgi9SvFkkSfXz8S5Y9CHLvpwEv0K0R9Z9LXqT6WDQVwm6q10iqg3Vv6fai74xvk1qrcP9mHlnMKP565vrNO/3RO+U/9f98oT2/8FSA== 1438614074.950,1.000,0.000,HISTggAAAM942u1Wyw3CMAyN7TgtBYkF2KUrsQISG7AoI3Ag5fCkJ7dcioTfxXLkX/xLLvfHrZTztbxhnUqnOj9LIpFIJBKJxD9BdrYvgdznnxbYUcLLRj/L/9DBTgVqRE9B38l5DfjW6QD8BPKNyNfAzhH8nTo9gP6iNwKdgEd/DvrMzkDk2X0N4nQS7wB5H6FeDudK6oB2lNQf+6AG/YF96MFcYP8Y5KkE/tbGryQfBn4auYcRXokfI/MrK+c4mm/5cl/Jxv0jwf7Rnfbvz747L9ycBWo= 1438614075.950,1.000,0.001,HISTggAAANl42u1XOQ7CQAxcH5sNBIkP8Je8DYkf8FFKSgo2zUgjk4PO01hWvDN2vLaS2+N5L+X6Ll9Yt9Ktzq+SSCQSiUQikTgOEjxXiJOdfCxe4fsP4UF+RvwGvoNd9E8Qt9gzObfwVtCtwNfAx/MOOmO3E/ANhKeCbZCPgz+AHp530EF9jB+Bv5H6LhA3EV3s00D6q+R/wYO+KOlzJX01ct8KeT9OeI3cewvucWQ9mE8lcybBHLE5Y/vAgnxQz37MS1bul6j+vXtKDtqra+uRjXlv1Zc/8a6FfgAClgXw 1438614076.950,1.000,0.000,HISTggAAANJ42u1XQQ4CIQykLXTltB/wL37Lq4k/8KM+wYOsh0kmRY2amM5lAgydwkLD7s+XUynrsdxhg2WwHq4lkUgkEolE4h8gP/Z5vK+e1Ec+QvQ2qa+gU8KV5G+EFdq7wY2MF+Kz5blAHId+h/gV9AtwA15IG+d30Dnk6yR+h7wa2Z/NZyV5OcSzYB0VdE72v8N8Jf8HPjkenQsh312CcyDEv5Fza8QP42GeNbhfSvajBOvVyfuoJO5svwV1RIPxGqxbXqxj9mZd/lQdly/5hPX8BhUYBV8= 1438614077.950,1.000,0.001,HISTggAAAM542u1V2w3CMAy046TlUcQC7MJsSGzAcozBCHwQ/5x0cigI8eH7OfnsxHbipqfr7SJyvMsL1lk7l/NDEolEIpFIJBLvQ3+0ToltREcuwEpsAb2SeM/biF8gDuucO09gV7AbMFuH+mZwvcdtwe/1HkD3+B3YzO/9LKQOzOfxe9AX8Buc90xYod+J3G8l94bnhPsZmS/sp5G4EsRZsG8h81/JfOvgvBvJV4P6JMgjg7qS74/5hfTTBvuP9LXvk3yoRyhffl/X1vF3/6UnbRAF1w== 1438614078.950,1.000,0.001,HISTggAAANN42u1WSQ7CMAy0szWlSPAA/sLbKvUHfJQncCDhMNLIbaGcPJeR47GdOItyWx6zyLXKG7GxNg73pzgcDofD4XA4vofu1H/+ZcBb45ORT+E/KOCPJG/nDDqM61zAj3aCfBXsBHHdHkidQsbPEFfBPza+kPER4icY7/oTmT+us5A+F9BNRM/6jP3JYA+gw31Lxj4nUp/lCQbnlXWt+8DOvZDzHkk+1gclOiX5lNwrIfeS6ZX0Nxjz043+aNTfi3DQu6k/enePftdl5Xn49zpo3RdEEwT1 1438614079.950,1.000,0.000,HISTggAAANZ42u1W2w3CMAyM7TipAMEC7MJa/CKxAYsyAh+En0OnhKBKIPl+Tm6cq+NH2uP1dknpcE5PWGNprKd7CgQCgUAgEPgFyJ/FKV+eQybPzfwNbP3wfdph9Mtgv/1nwnODfZnoeePauMD+Daw76FTgDDoF/HeNF7AL2Bn8XvFswXbwW0BvD3pGdAvolU6eKsm7Ez0n+TWSJyN1c1IHzBfrPyV9k8k6opJ9AnGN9qcRvdyJ24iukjnVwbll88/mlMXT82d5lsH66Ur35Nrfk9n7dzZ+eQAE7wVu 1438614080.950,1.000,0.001,HISTggAAAM142u1W2wnDMAy0HrZTSqEDdJeulBUK3aCLZoR81Pm5ctgpFFLQ/YhTcrIULsK35+uR0nVOb1iL0qLelxQIBAKBQCAQOD6EcNmpl516B66gM/L8494J+dxiIX1k0G2oLU7AC+SnTl5BfwLu0C+eU0DH+DbHGXglfTrwSuo70Vc47wLnGuiccJwf80reY/5C3ziZG32lxI9GfNXzH+u7DP5fWN+IX9FfSupkMn/q9N/73rkzx+g+0MF9pIN7yL7cW/++r48+36/7kBWd9gVo 1438614081.950,1.000,0.001,HISTggAAAM142u1VOQ7CMBDcwzgJpOAB/IW3IfEDPkpJSYHTjDRaQLFA0U4z8s6esWOfrreLyPEhL3hjbWznuyQSiUQikUj0gAL/W19b/d6f6mg3WHtgV9AZF7IukKe8qe+IH/br4L+sx8aHxhV4hLxD4wn8Bsg/Q/xi34PO6hTQHbhC3onM56CXYM5K6sxkDiX7ivsipC+FOtG+KuhG8imJM3LePThfRuphHPtPjPThQX4j8Rr0IaS+fXlPrO2/9n2sneN+PV/vd2Kr7yGd/wk3iAXe 1438614082.950,1.000,0.001,HISTggAAAM942u1WyQ3CQAy0vVeABymAXmiDdpDSAY1SAg+yn5FGjgJBCvJ8LDu+1+vsZXrcRcabvJFmqjO161MCgUAgEAgE/gG6s/z0Q7218T3aYfhuJHwGaiRuge8V3qedP4BeAbmAvMdt4K+AvPsfSDz0cwS9BvYjyE+gnyEPrKPzZ5JvI3EroXlhP7Bv1eknngOeWwI7Jbw3Txif+U9gb2T+kuMP61Iynwp2QupT536Yc7/N0RNSly3MQ4mftXvGvrSHt9p3v9rne/vvbN6PF+2gBVg= 1438614083.950,1.000,0.001,HISTggAAANB42u1VQQ7DIAwDJy1dd9kD9pe9bdJ+sI/uCbvAxZIFrdhO8SWCOomDwL2/3s+UbqnCasw14vFJgUAgEAgEAkeQY86/1MkizuoDyls7PBN62nenvEXsO8UieCbqFNJ7JV7b3ykPxOM6RfRt+xtFp/4b9VmJd6FotPZOX9Ba6Vfz7bTm81hEvol7wucEcS8yzZfFvMw30Ue9B65nQg869zgJvazLRR8TdSDOHYPvHeI9uuCf9Q8M+tGob6HjU0fr/dp/z/rs7P/iLL+Xer8zzwTw 1438614084.950,1.000,0.001,HISTggAAANZ42u1V2w3DIAzE2Dya/nSA7tLZInWDLtHxOkI/mvycdIKohY/K93PCOZsjYLjeH2sIl2f4QDeWjePtFRwOh8PhcDj+GTJYf7SuTFpPBJZOX0rikXxXUj8RXYLxXjdvbJBXQF9AlyC/QHznBca77gRjjGfCZ9BVUp+xQR6ubyF+EuQz3xU4E3+V7Avbj0j0uL8R8kPjPBg5t+y8RlJPSR1tcKs/jfhiflhfGZnfSP9K57zaqbdG32rDR+s+ksn3o3x5Tx6dXwb5HfUOyY//0/T3+w3UdwWu 1438614085.950,1.000,0.001,HISTggAAANV42u2XawoCMQyEk3S77eIV9CyeTfAGXsAjegR/WBEGhrguCOJ8f0IfyaTpA7o/X05mh6s9KMP6sHG8mRBCCCGEeOFf1ouVuv5hv5N5rB2kPQ1bwa9AfwG/CvEK+M8Qfya6BdoN7AL+HXQ75NMTPSd5ddCrJP4CFvPtyfpZnk+7g3mVxGlJfdG/kTrjPuB+BBlnda3kn8LOoSfnAfMIMl7JfH8zD0vuCYtTiP+U1HPt/Wd52cr7n+nGxnc2Nr57/0Yk77nQORJCCCGEEEL82D/lDqqmBZA= 1438614086.950,1.000,0.001,HISTggAAANV42u1W2w3CMAz0iwYqhDoAu3Q2JDZgUUbggxSkk06uaPnz/ZwcO37VSXq9P24i0yRveGftbPNTCoVCoVAoFApfKLAQ+V/wlXlpsv/zvwec+WN+A2QD+wOwEb+t8wB2jegV6jLQD8m+RT4CO+Sb+TtDH9DvCOsXYofxFvlE8grQN1hHZvUY6R/uG8l3wXwdOEg8nAcncxGJ3shcBbFj58jIPCk5J07iG+mDJufNkrpipd6SvmX3iCR17n0P2k73oyXr+mOeutFu6/uQ5b1X/2j8F6tWBQg= 1438614087.950,1.000,0.001,HISTggAAANJ42u1WSQ7CMAy0nY1UIPEA/tIr30LiB3yUJ3CguYw0ciWKKJLnYjkeL3HjpJf74yZyvsobaZG6SJufEggEAoFAIPDP0A/tv6pTN+IZsdtKPuMp/D8K6CgL6JnohcQf9gOsV1gf/h38sE/oN3gnp/4J+BV4DfQJ8hjwGsQ/Qv0N6mL76yR/B8n6nUi/MtRdiSyEbxDfnHNQyXksZN3IPlh+Ni/4/ZT0Izl8If6MbyvnjM2pOnOnRM8r7z/WP68+/dJ96N1rW78Pe4+/+/f3BYOPBUY= 1438614088.950,1.000,0.001,HISTggAAAMx42u1WwQ2DMAy0nZAE+HSAPrpJZ6vUDViUEfpo+Jx0Mg+o2sr3OTk5G2MHh+tzeYhcbvJG6qyd7b5KIBAIBAKBwDdD/yRfIzr9UD3weebkYUQvO+OgfvsPzWBvPACbo2uwXkicDDx3HjtX0FfYb44+w34hdgN7Am4QtxAewY/lg3aFODPUOZM6Yt8msI2cH9ZnXBfS70z6zvzMObeJnEfvu1TiNzjvj/7JscXJ28tLSb336ozU46h5pSfNVT1oXp49j/XH7jV9AdRTBQ4= 1438614089.950,1.000,0.001,HISTggAAAM542u1UyQ3CQAy0vd4j8KEAeqGFtIREBzSaEvJgXyONNpGQgOD5WL6P9fr6eN5FLrO8kDrVTu22SCAQCAQCgf+CHiy/fklfn5oP6x/5BBTtjOgT6I3EwzgZ5N5pAb88iFOJnwPfSLxE+jgTvYPdROpooG9Asb8K9gX0BewSyAv4nwb9Z5IH5Q7yicwlg30FuZH52WAPnewx21O2d07qNeKP72sk7tb/Nfo/Snghc7CddengLhiZh5O7Yhvvq+6s6113/dfuvR68Pl0BppIFMQ== 1438614090.950,1.000,0.001,HISTggAAANB42u1XQQ7CMAxr0nTthpB4AH/hbUgcdt9HeQIHOiEZWamQgEt8sbo5aZu5qXa+bdeUTmt6IneWznq5p0AgEAgEAoHAC/Lj/OLoGHt6hBI20BnJZxDH5sW8mcShrpDxzhXy7boJuIBugecK4wV47nzs3Mg8BlzhfSXzzDA2su5C8jbQZVLnQr7bAdbRgAXisa7NqQPz0+T4ohBf6KB/hfzv5EGfqnNePL+zc61OfbKzP9QlJ360z4zuTwb7jHzY5xjsT/057rvv5nnzxQPeugV+ 1438614091.950,1.000,0.001,HISTggAAANN42u2WSw7CMAxEEyf9ABXiAByEHWdD4gZclCOwoN2M9JT0I1jUs7HGGjuOGye9Pl+PEC638EUabRyt3d/B4XA4HA7HPhA31u2tL1v1lezSdU3+82r1xJP4DfypEDfxFvI1Yid/Bl2WvM1MXQe8lzjNc5Z9HGF/nfBBuPoHyXMS3UHq03p70SXh1IcE9Wfog+qzxCX4fhF0LZx7g/UoD+kycDo3oRAfK+fHCvNOc0b9jaAnHiC+9j4iGOjiQr+trOdf79Ta+9pm+n/1Ls3O+wFNsQU/ 1438614092.950,1.000,0.001,HISTggAAAMp42u1XSQ7CMAz0kkBDJdQH8BfehsQP+lGewIHkMtLIKZyQPJdRbNdb7S635/4Q2Tb5wDtrZ7u/JJFIJBKJRGIGmi34qV/6ZV+V2NlB/xb4RTuUj+/ISvQFuAKXgB3i4/lE4heSn4P+0rl1XjpfwX7EWUk9DewYN8LYj1HfmcRHvwb5r8RvBb8OeaB/dh3KMY9K5qYQvZF5w/sogZ2ReTfy34P74YQtsMP6BM4asAf5KfQt2mOf3GOZfD7owb5KIM/313/Uo2+5qAUC 1438614093.950,1.000,0.001,HISTggAAANl42u2Wyw0CMQxE7TjJLpwogF5og3aQ6IBGKYEDy2Wkp0T8Tp6LFSeesRXHu8fr7WJ2ONsTsVnfbDndLZFIJBKJRCIxDx+s3+VRFFi7/s/BeTqnul38DeJDeCrsq34V3io8HXi72JB1FX+F+JfubrN78QforKC3CE+F/SK6i/CuwlNEf5E8G+gF6Gr9HXj1PtogPqCvKI8G+RbgaaDj0Cc2uMdR/2k89XlM1j963w48VK/DHIjBO6R3aoO5YpN52OQ+zbNP5+e34/3LOj7p9z/X+/Pv4wOb4QVJ 1438614094.950,1.000,0.001,HISTggAAANF42u1VwQ3CMAx0HCdtQEgMwC5dhVWQ2IBFGYEH5XPSyUkRQgLfx4qvvjhXNz1dbxeR41meyGtMa9TlLoFAIBAIBH4D6Uv6Kax/y0+MCrG3Pjv8aF4JnwmvhMd8JXwBfiL8BNGI/kz0ZqiroF9Az5x9E9nnAPk91DXIv57bwbpBP4X00WBtcF48H/KZ+GLwHtAvJXPD5jITXTYveXBuK6yN6LF5Nadv6Ty/971Jp39K/GL13r1sTp06cev9Io5PXr1++B6WwX7+5b+/ua8HQKwFTQ== 1438614095.950,1.000,0.001,HISTggAAAMt42u1WyQ0CMQz0FZIVPCiAXqgNiQ5olBL4ZD8jjZIVl0Cej+VksMde493T9XYROUqHd6vd2vkuiUQikUgkEp+E/lkd9qJ4Ntkn3cizga8kjsH3YwDPCc8JL8Av5H4938F9Bd563+B3C/BRVwNeI/kwTiO2kLoW0BtwbnB+gDh7oo/pqKSfrG8V9DjpvxG9BayRPGwulcxLAB99J/MXk/Nsgzke6RTy3Nn/gflG6pJBHbpxP/jkntE378ln99qvvTf0y3lH+fUBXCcE6A== 1438614096.950,1.000,0.001,HISTggAAANB42u1VSQ7CMAyM7SxlOfAAHtEf8DYkfsBHeQIH0stIIxc1SBXyXEZ1nPGSxL0+nveULnP6wDpLZ729UiAQCAQCgcA/Q3aehzrrQnh0XCVxmN0IL/6Z+Cvw1LnBvgx+RurJoFNAr3Y+gM6yfgT7ifhViLfonUn+BfSbk9cEbKDXiF9z+o/x8LvAPlYH6lZyTkLOTQkbOV9x9DK5Bwp2I3Wwe4l5FPJu8pf33Ht3dWNf1s4Ldd41mx+2cj6lQX5b5/konb38f+THebn9egMb2AUd 1438614097.950,1.000,0.000,HISTggAAAMV42u2WQQ7CMAwEkzhpaS58gL9w5VuV+AEf5QkcSIU00soFgcTBe7Fc27vbNIl6ut7WlI6X9ISNmEcs53sKBAKBQCAQCLyQf1xX/Zwrom4f6hfMk3/LKyL1qviv5HMTvPQxjzihb0Ykf0MkzwE5+dV8g86C+pZ36CzQKaKviz76ot/Jef8qdJpYR5Wb0LOd6zVhX3Tn+1en7u1X77wkMad4FZ/ym4V/dS7N0VN5Fr736mRnnejH3rzPPL5/uZ+/rvcAbYoFRQ== 1438614098.950,1.000,0.001,HISTggAAANp42u1Xyw7CMAyLm+zBBBIfwL/wbUgcuPOjfAIHuoslqytCwCG+WM2c1JnSajtd7xez481e8MqoXM4PSyQSiUQikUhogNjE2jp1vft5Q4eNvtDZl4t6a3ygdVC8CF3h71KhmyqPpOM4KL7WmUkXtF4ob6Hnu8oHijNPwvdCfvb0PERfMzH3w30OIh4i34UuxHsNyhuFf67Dc+biv8SEzhp1vTHX3pizQvsU4SfE3I4iv2w8d+wHjfMF4QuNc2XCJzr9ovP+e/ce/NU936vDn/j6dD6+1A+e4OsFfw== 1438614099.950,1.000,0.001,HISTggAAAM942u1VSQ7CMAz0kqQE6IE7f+EbfAeJH/BRnsCBchlp5CDKoZLnMnJqj5PYTs/3x03kdJU3fGFd2C5PSSQSiUQikUj8Dl1Jx7/UVxJvg3FK/ApZV9D3YN0IV8LTwg3sAraRuE50GtF10P98n8E+gl+FfJ3s8wA6Few92OiP+3PgHeSv5H4MdDrUbSL9Nwd1Zftk/eUkTyHnbEF+1p+N9KWQeLQL8TfSBx6cU4N59cH5aoPzbsG7ooMs5B6Yjq38Luqf3tmt/RcSG6n3Cx96BU8= 1438614100.950,1.000,0.000,HISTggAAANh42u2WzQ3CMAyFkzikpfx0AXZhHdZAYgMWZQQONJcPPSWt4OZ3sZ5jxy9NbPXyeN5DmG/hA1tsXGy6voLD4XA4HA6H43+IsGp9KydSZ51WXuUZnP4deBZ5Bf+jhnxDXuWDqBOw70nEGeIm8AKdNX5c7BH7Feg6C501fw9b4w6oN6HOCF3krFca90LduXEPCX7uNzTu1RrviDoT3qnSybgs/EX4o3jPjFPnUf1gon+iiIui79in1qiXVs6N3nmSOudG3DgP187JsHG9d/6mH53v6zu+AdrrBWg= 1438614101.950,1.000,0.001,HISTggAAANl42u1VwQ3CMAyM3TjQ8mABdmG2SmzAoozAg+Rz0smOoBIP3+dk52Inbu3cHs+9lOurfLB0ls56HyuJRCKRSCQSx0Am/Ufl+7f7D2hwv4AebXXiC+ElmK+AvoJtnRv4Ua9BHvtWiGtO3sEnck8junG+DfwbrK9k3/CfiQ7PdwF7JdwgrkHeGqw72kbqXonOSP0b1LkRPfvvhHz3RnRC7oXfQ5w+FKcPF6cfsG+qo1eSv5I+9eYB61tz4mhw/ojD3jzT4DyU4LyUSf3sHP5V3G/fn8PexTcLZQXe 1438614102.950,1.000,0.001,HISTggAAANR42u1X2w3CMAz0I0lRQGIBdmE2JDZgCcZjBD5Ifk46mZafIvl+TnGcc3JNXfVyf9xEzk/5wAfrYLu+JJFIJBKJxH9B04Jd+6kb42vXeZBvwFEdC3iiQNyDeg5cgGd8GVxhHuOTD4MbqVvJ/NTrML/AGOsZ0Z18hH1ViHeIox+o10neCfIc6lSyD/QB/Uff2bmdrDPyv6HkXjp5bniPGty/Fugp8Q3PoSTfgjHT90CX+aDB+xmtYzol6CMa9I2t/UqCfvBrX9Uv+6OsPP9uv09vw+EFiw== 1438614103.950,1.000,0.000,HISTggAAAM142u2XTQ4CIQyFS2EGfxK9gHfxbCbewI3H9AguHGbxJS/gbFzYtyFMX19LKYS53B83s/PTPsjLmJbRry8LBAKBQCAQCGxH+rHO+q4TOqkzOt6J1CmC78I/w68inxm8Nt/he4W9CF6LP4HvQr9Cj3lUoTfBzjxOsO/Bm8W6MvhV8Kuoc9M/Is+C+QFxaKdfEXVmPbLYJxd6Jvap18ez6EsX/znsPx/07/V7L+7Wc6jOP+Mb4lI/D55zE7rWWf/o/fXtepP9N9a6vAHXdgWX 1438614104.950,1.000,0.001,HISTggAAAMx42u1WwQ3DIAy0wRCaNlIG6C6drVI36KIdoY/C56QTQY3USPV9TgSfMScMuT6ed5F1lQ9iZa0cbi9xOBwOh8Ph+Aa6c9y/+zXqpw7qAvkv1I35m95IXiVjA46gj6A7EV2qfAZdBp5gfob8La5AHPIEcYXkK1D3BfQZ5hsvsD9WfwI2WDcRf2fi80LqzsT3TPwJZGzkPDC2zvlj6xl8Z+dRO33G8mlnfxifNu5bO3FK+kdI//T6NRKfRu8T3em+O8p7oAfL8zMf3lg1BO8= 1438614105.950,1.000,0.001,HISTggAAAM942u2WUQoCMQxEk3S7u7qCF/Aunk3wBl7II3kEP1x/HgytCCKa+RmStJO0DW0P58vJbH+1B8rKvnIcb5ZIJBKJROK34A37V9b17/VG57iKf2CrTwI2/U8exf9yAHMe/QU8Q78Ke4LeFuPoX8ATeIN51GEdk4jTP6MO6ozIv8BW+71DvoB+iHw8L7WvBf4qzi2E3iD6p3T2A+Mm+ngQ52CNfmbfc19qY50huIh6XdTVilunnnWus8XRyO8i7i/ee/6h+/Zb341332m/Aw1PBaw= 1438614106.950,1.000,0.001,HISTggAAAM942u2Uyw0CMQxE43iTrBBIFEABdLG1IdEBjVICB3YvIz3t/+a5jCKPP3FiP96fV0r3Z/rDR7aR8/BNgUAgEAgEAoH9sI06m9GRPQsvrcPFzyCeskP+yb9C/Akd2MvITXRFdJ1wE3axVzn3wlfRVYl3EVZ/1TWpW/MWOZPd4V6a9wZxDeKVmb642KmeCu/p4GegM/gfPfwPh/7SXHQwF3P/nurLcB+aQ4c5zgvzUn/Tyrm1lfsqb9xXR+29pfvvqP1sO/3P8jsrzuq8P+trBSc= 1438614107.950,1.000,0.001,HISTggAAAMt42u2WQQ7CQAhFocw448LEA3gXz2bSG3gBj+gRXNi6eAlBa4zW8DekwMCHIXQO4/kksr/IHTZJneRwvEoikUgkEonEL0L/hNfj3bUwvj4ZV9/kJ4i3wfuReaiP/PhdIGd9Q34v33yuw7/Br0NW+FXIAvsW8WtgJ/8d9JQdcciHfTEnr3dfzfHrTt20mzNvvDdz8otTjzc/xcmrwdyTlwRxLKhDF/KUgC95l6DPEpyP+hHthSGo49U9pR/ao9/a87ryOtb639UbsUgFhg== 1438614108.950,1.000,0.001,HISTggAAAMl42u2WwQ3CMAxF4zhtU5AQA7ALsyGxAYt2hB4olyd9LJB6APlfrHzbP4mdNL3cH7dSzr084Zu1zdbrUhKJRCKRSPwGLEuQfX/jr+D53/dpHP2O/BF2EPFNzNuDfM7TodeQN4F38B1j8gPsS2cWeY71OeJPYv1H6NN/EPudRT1H6LIO1JnQZxd5TfSxizx1XiwYV/BN8BboNXF+K6wHfhP3y0R9ShBvQV3U/VbrNNEXC3Qt2Oe38OB7FfVjr/fNdtL9t/fcViKtBPc= 1438614109.950,1.000,0.001,HISTggAAAMN42u1WSQrCQBDsZTJD1IMP8CHe8jbBH/jRPMGDE4SComMCItJ1KWqmt/RsudwfN5HzVV7wztrZplkSiUQikUgkEm/oj9fDtG60N2A2vvxHDqCZXSHjCzcSt3Yewb8QuwIa+UTiHkA3Mt+IrqAb1Id+Htg7WYch6D/GOxI77JcTZvWw9bZgnXEfNDKOLEFdhexnJ7qSeV35PdE5wb4K8Rfij3628pxqkM+DvFvvP9t5n+qHefXL96vujPOv75g9ARLUBSo= 1438614110.950,1.000,0.000,HISTggAAAMh42u1XwQnDMAy0bCtuGkoX6C6ZrdAN+umYHaGPWp+DQ04J6Uf3EeLk02EZkdwez3tK11f6ovQoPeb1nQKBQCAQCAQCx0EcPu+sh7x9D2qPFeoEfGSoN74BbzoT1Ft+InWNnDOfM9RVR0dJP+MvwDfIM+Tq9Dv3uAC/gH8lfZnvAn7mjfeXYV6VzE+dc/geCpk7yzN516gzkb6V6LbB/onoCvs/cnQS8VccXXHuVwb9CtkXOnh+r73z6z46ep/+299WX/IBCBgFig== 1438614111.950,1.000,0.001,HISTggAAANV42u2WUQ6CQAxEt8susGriBbwLZzPxBl7OY3gEP4Sfl0xKQOOHnZ8Gtp0py9DlcrtfUzo/0hvdHG2OeXqmQCAQCAQCgX+E/ZhX5eWVPFn93zk65tR1iAXrzOtFXQ/+Cr6CvNMcG3QK6pc4oL5CvyGP+Q39jdAbkc/6I3SzqFP9L3kHsS8jdLjPg+A18HTi/Tenvyp0yNMj0r8mfJfFtfLZAH3Pn/RPEn6v4vmK8HVyvjNbed/ryxy9vfMnb5xrtlJn6/re+bl1rn/rPPi0jruvLyaeBb0= 1438614112.950,1.000,0.001,HISTggAAAMl42u1WWwoCMQzMo92tCOoBvItnE7yBF/UIftj8DAxdKoJo5mdIk0zT0M32fLtfRU5NXvDO2tkuD0kkEolEIpGYgX44/l/7ocTWjXnoNxJnxB/vxUrsyC9EbwG/w3og3qdr5z3ENdh3JXm4XyH+Rjj0D1DvsfMO4ozoV7Cd1I95eH7sbyXnxHrQbkSvkH4ukO9gY/7ovhjpj5N7U8k9LoRtwJWs++A7M7C3xpdBvBD/7BwQUufs3Brpz861d/W+db7/yv9Mn1zTBPU= 1438614113.950,1.000,0.001,HISTggAAAMR42u1WwQ3CMAy047ppyqcDsAuzIbEBizICDwyPk05uJRAf3+fk+HxxIjfq+Xa/imybvGDBGtwuDykUCoVCoVAo5NCD63vzv+7z898HjDojehZPwXOwEx9P6gf4YGywPsD3Ha/BPXgBH4xPUDdANwF30HWyL57DwGcl53PQLZBvkG/gM5N7xf7xXEbmw8h+Svo3otNEh/5C5tLJPFoSt4PzLaR/T+qz7w592D7s3pg+6zt7F/bqMrQ/vX9avt/p6wmzbQTv 1438614114.950,1.000,0.000,HISTggAAAMJ42u1WuQ3DMAzkJ0tJgEyQXTKbgWyQJmNmhBSxmgMOVOGS1xCiT0eKogk9Xu9d5P6RP/ywelh7fqVQKBQKhUKhcB408dtJerbIN/ArexeCvxH+BusBvAZ6AXzUn3od+B14uH/yrrCe/AvYqXcD/kbiBPEP0G1EB+Ox89miDvJG4sf8Gqkbq6sn94r3q0SP8YTsi6SPg/SRkf7sJC/2H2BcJ/kq+e7JOYXUMYuTzYMg+3RxztjiHGJ6vphnFs9+IJIFdw== 1438614115.950,1.000,0.001,HISTggAAANN42u1XSQrDMAy0lthOoNBjD/1L3lboD/rRPqGHxpeBQaXLIVRzEZY0I9nGdnK+3i6lHE/lCdusbFbXe0kkEolEIrFPSC7BrtZdAr4GdaK6GtQb8Yn4PdDDvMGvRH/YDmMF3tBrkNcg7kQX+1o2ewB/BV2sP4M+5nfwYx8LxCt8f6P+TPI6qedk34ysUyX9esCzIC7kvwJ5SvrF/VIynwZ8D/hO/Bb0IcF58UDHiR5igrG9eF8wXXvznmDnO+Kz+0u/dC+WD+fzq/fx395ZeQBwygT9 1438614116.950,1.000,0.001,HISTggAAAMt42u1XSw4CMQgFWsaOceEBvIvbuZaJN/CiHsGF04UveaHpSg1vQ/gUKExp53J/3ETOm7xRdqo7tetTEolEIpFIJL4ZmiX4fL8FdkbsbdBf553wFd6VnT8AX2F9AX4F+QJxFPw6sVvA7kTyw3jHQX9d3ogeKcZtoG9APYjn4LeAHuu/kvpjPzG/Qvqn5D8CzyXqnfTTiF8j/ir5PoX01wjF/dRgX0rqpiSv6BxqcK41kI/OQQvso3kwO3dn7XVy/a/fL/9yr+kLJmQFGw== 1438614117.950,1.000,0.001,HISTggAAANV42u1WQQ4CIQyElgWVxOjdv/g2E3/g53yGT/AgXsZMCkYNMZ1LA21nKNvt7uF8OYWwu4YHtNnYrBxvweFwOBwOh+MfEH/M82k95Hv5bwPL8pXoqBHPdAT8GdYJeATiBOI2zRawGPfMryR+aXZN/JX497BW0F0RnQLnypCfIV5J3hb8C+hXwpuM/UT0I+xnqFON5yCdfcH8SviSwaOkzwXqQb7Y+d4U0rdCeJLBx/QZTyB6YXCtxj1ac2Z0zsUvzcF39Wf9jozyz1JXnPTeus9xB1dDBc8= 1438614118.950,1.000,0.000,HISTggAAAM942u1WSw4CMQgthdqqk7h1MXfxbCbewIt6BBe2m5e80Mm4MJG3IdBHKZR+1sfzntLlmj7QLqXLfHulQCAQCAQC/wmJEvwE8kaekP2TyflRL/g/7PIA9gb8wTP4Zw6/M+gKfINxjNuI39BPhH904lTgL2QenK9AXhXsBexGxhdSR8wf/Q3WhbwK9ank/99IfTw/IX2BeRToLyN5ol1Jn2fSB8nJQ0l/4TrVOV9ePOank+dTJu9j754QwhMis3OPbH0fZKe+N/633jd5A7Y5BRA= 1438614119.950,1.000,0.001,HISTggAAAMx42u1W2w3CMAy0nRdtQSzQXZgNiQ1YhrEYgQ/Sn5NOjlR+AN+PFTv2neM27Xq7X0XOD3kjdavd2uUpgUAgEAgEvhMaOn5ybixuO+saqaPgz91W+H8sEG+QV8BueXO3B/AnyK+QX4GvkPgC6wn0HUEH9jmRus3hX6CvBn1t6xPwZLJvJvyV1MfzG/Un0KGkzwzWyLx1UIc6z6kSHnPOLZF9mfCiTiH1EYXUU4dHiE4jemzwfVWiW508b23OfPRD99ze+/Bfvzv6Ap5jBac= 1438614120.950,1.000,0.001,HISTggAAAMx42u1WSQ7CQAxLwrQdKpB4AH/p25D4AReeyRM40LlYstwigQqKL1Y8cWbpLD1fbxez091e2M3sM8f0sEQikUgkEoktwv98/PFm3SD9BMnD/z8H3UTc8jvQO+AC7YW0o94TX+MK+QPxN30P3PQjxAeIA/SR9Fuh3gh6L+aBeWpeVazXAN8J512IDzkW7gPlC2DcNz3Zj6yOkXpB1tmJT50TJ3ER5yoIs/vAyThVewifrezXV95fLsax1P+pe/9b78Wvv0tbXx9/AsTABY4= 1438614121.950,1.000,0.001,HISTggAAAMB42u1UOQ4CMQwcO1l2Q7Mf4C+8DYkf8ElKnkBBthlp5IgFROFpRr5iZ3KcrrcLsN7xQulsnf38QCKRSCQSiUTif+DERnEb9LuIF8Gqbw3qNm6ibuq8kH8WeZt9IOY87sv5C9nc70jxJvwr9XWyud8kWM3biHmdmdiCOOvYyFY61uD+8HlD5JdgHbb5vF3UK38N5ndxj9UcJmwE78mFPgj0ssF3jTf/hTKofzQvAj1+DdtZZx/aj+3s/3WdnpDOBc4= 1438614122.950,1.000,0.001,HISTggAAANJ42u1WQQ4CIQykBVlw9eDdv+jXTPyBH/UJHiyXSSYQXTVxO5fJlLSFUkiP19slhMM5PBGNxVhP9+BwOBwOh+M7EC/BS3WQldyHEC1v1k0JNySSR0EnMk82+0TWZ+NsXI03YM9gT+BfIQ/mRXuLszfegm5xC/AOzoH7wzwF7Kgz4Qo6gb2Q9ZnUO8K5A9zj1PFT8I+kb7AuzC91+k47fR5JP7H3oKSfI8nH9iUkDtPaeb+juvfuR88/+m8stb9P/aeysJ/8KM6/zhVrn2fkAcB9BUA= 1438614123.950,1.000,0.001,HISTggAAANF42u1WyQ3CQAzc8R5AeIQCKIAuqA2JDmiUEniw+xlp5ATCB3k+ltfjYx3Hyfn+uKV0uqQ3cpfo0q7PFAgEAoFAIBD4HFhox8Z5jP7vMp2Dzgeq4Kl4LBvpk+PfKG8jfnH4ELxh35N9+O+Iz7xZ9GMi3tAPXR7Jj+uYSW+kG9XXKL66B/tz3kr+fC/V90LzUcRzqOJeJuYJYi6LmDtz5hjOPED0x8ubRZzs1KXievWb817D2R9Y6WcL909euYew8vzbPbr1Xv6378zP8r4AQFkFJg== 1438614124.950,1.000,0.001,HISTggAAAM542u1USw4CIQylpQPoxHgB7+LZTLyBF/UILpxunnkBkwku7Ns09PugpZf745bS+ZneyJuUTerVLYFAIBAIBAL/AflR/Ky60vFXsGcS7/oFzgZ5jMS5bETvskB8AbvXWUkcSgPeJ+BxhDPTHyBPg/yN1HVZIR7tK8QzPyP3VNKHhcRhPyt550reOXf6g3xx3grordN/Np9K5hjnVwkfxhvP+F7a+Xd58H8hTyP52f3yoJ8Qvx7f0Tzy5b6SnfaZTN67e+3p2Tw+6r8A9MUF1Q== 1438614125.950,1.000,0.001,HISTggAAANh42u1W2w3CMAz0IyUtAsEA/WATZkNiAxZlBD5ofk46WWkFQsL3Yzmuz/HFSjrfHzeR80Xe8MXqYu36lEQikUgkEv8JTQm6dNGNepb2/0XitnKfSngUfCd1jPBhXiHxCXwjdXZgG98AdUYSR9t4KuGpsL8T5B0h3tYPhLfCvkbIx/rN34NvsO5QfyI6FfL9EOjrRBclc4k647k76UeB34J59WDdg7nCuXfSD/L2zr0HPELOQQMrQX8W6MXuAw/qadC/rrz3dOP9KV/O+/T716uDyW9BX0b9BRE= 1438614126.950,1.000,0.001,HISTggAAAMt42u1WOQ4CMQy0ncMLouAB/IWvLRI/4KM8gYKkGWnkXSig8DRWHMfjK9m93B83kfMqb5QhdUi7PiWRSCQSiUQi8Tk0WH/rV+E/roCdBbwKdgJ+8HwlvEZ4534ncTewm2sPzjvoDeIzUpdpfxjySOTcPxE+BzuH+DtZV9A34GU8C9hjfgupZyG8DvoKfrCvLYi/kryxLx7kUci8Gomrkzm2QM9kJXPK/KLsQbwa+LGN91123usoH9nIb6RP+ufvpeysa+LH380XL1QFaA== 1438614127.950,1.000,0.001,HISTggAAANd42u1WwQ3CMAx07KQJhQcDMABbMBsSG7AoI/Ag+Rw6OapA8PB9TlXsy9WNnZ5u96vI8SwvWOfUWS8PCQQCgUAgEAj4SBvzdKN+IqwkzmDdHD+D86SOsv/JST0jcWvnXedG8hrEjfzSeQG9BrySvAJ+M+hVeFbwsQDvYd8KjD6yU9dK/KJPg/Xh7wB6C8SZw0rqhuvou5BzY8S3kfcQci6UfDcj9czET3HOc4V81nesj430H9vP02F95s0NI3VIH55fOulndv79en7Ll3392331pvMEEZcFLA== 1438614128.950,1.000,0.001,HISTggAAAMx42u1X2w3CMAz0IylQkGCA7sJsSGzAQozECHyQ/Jx0cgSqQML3c3Kccxw3cdvleruIHO/ygjfWxnZ+SCKRSCQSicQvQv80P8XvNTKOfhmcz+Ia4UjnMN7tDdg14K4vwD3Ojui2ZJ2um8Du/n3jQ+MZ4iGfwJ5JXhPJr5A6lUBfYHwidXKSdyXPEeujJA+FeAp+BxZyjtj+LdBpsF88J0b+e/zNdfGeV7BH40lwbyMYyceCuGwfPtjHLJinK/VF+7B/rq379vtJnzV4Ba0= 1438614129.950,1.000,0.001,HISTggAAAMd42u1WWw4CIRCbgQHcjR8ewAN4C89m4g28qEfwQ/xp0gw+NsFk+tMstJSFWZbj9XYROZzkidxZO6fzXQKBQCAQCARmhP5Zrm40DyXt6UsfssGzwv0RuZH7JeYa8Ku/gn9Hxl2ADfwV2tfOBcZrkFPAj/kGugX0BXSN5O5J3gr+0fEraTfiL2QfUJec/kb2tTp1xOpJnbrB+s7EnwdzjOiZTwZ13vsmMp/irIP3HauTKx/q3j2PGNKPdbOd+7P8JzZflwfRigUW 1438614130.950,1.000,0.001,HISTggAAAMt42u2W0Q3CMAxEncRtQAWxALswGxIbsATjMQIfpEJ60slF8On7OdU9n13XqXq+3a9mp4e90QaXwfXytEQikUgkEonE5//oX7oovwo/5U99CfTKt23sh3FHfkN8gr4Jvxl5HfoKv4brPXyY3+HvIv8gdOxrBq91dtCvvgv8V59j0N8i6nQwn4N9sN9JzJX3yQW+0XtxsRcu9o9+JuIe7GkVe10Fqzz2ZYHeRT0Te+/Budh6DouoV4O6tnFuag725XfGfownxnxeLnsFng== 1438614131.950,1.000,0.001,HISTggAAAM142u1Wyw3CMAyN7ZAmUg8MwC7MhsQGLMoIHNpcnvTk0PZQgd/F8ufZrd04vT1fj5Su77TAVimr1Hv3BAKBQCAQOCvk5PkCx/RdHV3ALsR+1PwV/h+zU/8CcRn4nVfAjryuV9AV4gr4jdRtENf1CWQl/AK8RniN8Lt/JvEV6mTSpwp9aKR/RubXIK8SHs5PwD85c2Hfjzl5bdCupK44cV486xvLZxvPqTjnkPnV4W2th++TBvfM3ufXL/fR6D6TnXvv3+9L+dG68gGdfwXM 1438614132.950,1.000,0.001,HISTggAAAMt42u1WQQoCMQxM0tStiuIDfIg33yb4Az/qEzzYvQwMqSIFIXMZSJNJtk3aPd8fN5HTRd4onbWzXZ+SSCQSiUQikZgH/dJug3FKWIiOkTz431gDP2QJdNZ4B78N8WP2BusHsFfgBbiA/xb0Gvjvgdf1Xecj2FG3gj7WsYB/I3VX2D8nOg46uO+sDmQPzpOdjxId7FcPmPVhgXxG+hO/uwZ9LME8lMF5tWAeozlmc21BXiVzOJpPAr1P7zuddI/Kj/Lp5Li/eb9eVDQFMg== 1438614133.950,1.000,0.001,HISTggAAANR42u1WSQ7CMAz0kjahXHgAf+FtlfgBF57JEzjQXEYauVCJRXguI7uJJ04dJ8fzZRY5XOUBX1gXttNNEolEIpFIJP4B+mPrMzLOiM3m4/eIWbwCrOR9ifYQ+LveDsaNRLdzBXYyv+vswd/tCfwV7B6vEd0GOqjbwN9Ivg77gXkY0RnJ/y5kXiU8kXyV7Aeus4IOq69C6sJJHaK/kvoZSP3aynNhpI4lOCdGxluQvwfxJNhHX9kH1vZBfbLPMN7ah/XFvLb2+U/fD99+P70rD70D60MFeA== 1438614134.950,1.000,0.001,HISTggAAAMd42u1W2w3CMAz0oySpaCUGYJeuxApIbMCijMAH7c9JJ+ejQjx8P6ekd7ZjR23Pt/tV5HSRF3xlXdmWhyQSiUQikUjsCf3y+L/SP+vMo0SPdRzgf3IAVrJGvRH/BHkKPMf9LU6FPBV8BfwNGH1HkreBbiLnGMG36efgXA3WbH+G/ZH0uZL6jDD2q5G5G4nvwBL48d45WeN8lJyrBHGM3E927wupYwjqV8Ie6CSox4leyTyl09f7vngXbGfdv31f9EPz6BPevQVn 1438614135.950,1.000,0.001,HISTggAAANl42u1WwQ3CMAx04rQpAQnx7y7MhsQGLMcYjMCD9MGhk93Cg4fvYznnOM7JdTpfbxeR411e0G5Tt/n8kEAgEAgEAoF/QAoJ3nTw6pFJfCJxlu7MV8iD5w6w/vHfSfZhfO22AN9gfTlvAjtCngz8ieyvxG8kP+4/AL8Hv8G+Arwa91jid2CRr0TvauisRN+B1KPkPhP4hfSRkn4fSV1K+kWhXwdyn+Lsx2LwSupLzvyMz8b3bPFC9MjG9y/OOr1zOm+cd7JxPnnn59q5uvZdSl/W/bP34wlVtgXl 1438614136.950,1.000,0.001,HISTggAAAM142u1WMQ7DIAzEGAjp1LFD/9K3VeoP+tE+IUPocurJFkrbxbecbAw2Bzi5Pp73lM6XtEMHy+B8e6VAIBAIBAKBT5CQwKWHfEnXd1wh82Qyn+D/4OBKxhXmZ1JXAVaIV+BC1muDO9i4bgV/NbiBvQxegTG+Gf4V1kN/g312YKwTxxdSbzF0V6N+1K8TfU/kHLFuNc5ZnPF4L7Phr8Y98+ZhNnsPjYxX8u6Kcz+Z5PO+Y7StfuDVXQ7qb3myn8lBffXX30P5U97pfBtrbQUQ 1438614137.950,1.000,0.001,HISTggAAANd42u1W2w3CMAy0r3nw+GEAdmGFroTEBizKCHzQ/Jx0cgtCCMn3c0rinB3XbnK+3a9mp9lemBb2hXF5WCKRSCQSiffgmYLEDwBRhx7YO70HlQ6ELq8XYhBPYt+Yb8RDZ79wJYbgKuLqND4IfR4XocP2nXSLYD6nC3+N8tNpHuS/kd1EesdgffBOxAMRXxfM35f98XwVdcvxVVFPReTTA12IuoToDwT9ourcxLry60H/qH62lX3vwX/EgnNE9x82xrf1PvWV9vhwvwf5/9a74d/fE/4EjJcFLg== 1438614138.950,1.000,0.000,HISTggAAAMd42u1XwQ0CMQxL0rQFTogF2OXW4ovEBizKCDxoP5asVLzuEX+iuo6TttFJd3+9nyK3h/xQRtQRbf9IIpFIJBKJROJ4KIs6XYwsz0iM/EqQh/076CroKuGdxKlrJP88Ygd+rjfQGfhN/gLrE/SB9R3q4PoKeU76Q9+N+HpQtwFvcL+dvA/uFzh/J3PUgHfib8CXYK6c6KN5ZXVYf0L2K/ufInPvRCfERxd92bmUvJ8G35eorgbfIyP3JgGvi3n/QuWY0C/mZwVt 1438614139.950,1.000,0.001,HISTggAAANR42u1XwQ3DIAzExlBaVeoC3aWzReoGXayjZIQ8Sj8nnUyC2pfvYwG2DzvYkPvztaR0e6cPcpfSpT7WFAgEAoFAILAHEin4a37l4PcQZ12JvsK7MTvzjA/XL4TnBHqtywp6pcsrjCvwVZBfvTPw4XyFfRpI5EM7g33YIE8mcRfiH/kb+MNxIXELiTfBWEk+KvhpEE9xzo+y/xNyfszxY+S826C9EnslMhM7I/Xl1aWS+tHB+hfHvzj5YX1gtA/pzr40e6/Ij/zO9t3Zfn743tgALKIFuA== 1438614140.950,1.000,0.000,HISTggAAAL942u2VMQ7CMAxFbScNlRBiZeAunK0SN+CiHKFDw/Klp6iAEIP/YsW1v+3YTq/3x2J2vtiG0qV3GbenJRKJRCKRSPwCnvV95Odfys938hU5h+gDeAvIQ5eT2L/OtcsmfmofA371n0E2iFslboM8j1CX8jfRK7/6nSAu1ad5z/K9wn22Ae8E/hrPRB/QL+o39dXFroodzQXNqQG/7kMFPwdemvfYmZdDniNeG9yDD/ab9tfefC8c8vv3/4Ovo6kE5w== 1438614141.950,1.000,0.001,HISTggAAAMx42u2X0Q3CMAxEbSdtEEKiAzAEG3Q2JDZgUUbgg/TnpKcIED/g+zk1se9c103V0/V2MVvO9kTp7J1jvVsikUgkEonfgmcL/vK5+iAu3szf8mrnSdYLcBV2ydt0dp1nWW+yXiDuIDoN6p1lnzgkPkS/gl8Dv33nRe7jKHEV+jLJPvkVuG6D/VF/Z/BzqSvAh+ZG2WHeaI5o7rS+CfIMfE3iqB7KD9Cr8D9mg/eV+lPAJwb6DnoOz/VVXTpv/MPz7dvnaX43B/16AJC5BS4= 1438614142.950,1.000,0.001,HISTggAAAM942u2WQQ4CMQhFS6EdHTXxAB7CG3g2E2/gRT2CCzublxA0ZuJC/uYHCpQB2unpdr+WcjyXF3SwDK6XR0kkEolEIpH4BSS/86s4EnC0P/V1sDn6ynek8760wM/g18AKvwZ5A71B7oNn2B8Q37A+Dd5DXuJuwfRf/HbIg3Yz4hvsO+wV+3bIc+DXnbqxfmT2eXJYnH6z783ppwbzVZ25Mmf+1JnzCn17c/9ortWRo3NkQX41ON8a5P8pR/WK1mWle+/T+1RWvof/9X8kT6fQBTU= 1438614143.950,1.000,0.001,HISTggAAAMl42u2Xyw3CQAxE7f0kSxASBdBLakOiAxqlBA4klyeNNkQ5gOS5jHZjj8fKfpLb43k3uzb7IC/sC6f5ZYFAIBAIBAKB34HvzEsiX40zuAi9JL4jVx7AnGf+iHrMa5ivyDtBt4rxCD7DxwSu0M/w0aA3Ycx+G3jVv4j+S6deEu9L9Tt04pOIo58i/DGO66Wo/w+wCR8u1oeLdeyiDvtXPlz4rxv1smAX/ead+7e3r10837qfvz2f/KDzyzp+/CD9o8/dv79v3ip4BPo= 1438614144.950,1.000,0.001,HISTggAAAMp42u2VwQ0CMQwE7SQkh/hQAAXQBbUh0QGNUgIPcp+VRgkH4oP3s/LJ2XjPTnK63a9mx7O9kDt753R5WCAQCAQCgUDgc7jwt/S2IglTfRnyyBfpuehl+F467zpXiUlH11eJV15gnyI6Vfys8V7WNYkX4YPo6v4NWPUq5C2SnyA/S1zAdxaf6qdBH9qgDup7gfkpEmfQJzaY4zKox2HuqC46Rwn0bfK8GPxnA58+eb5tsn5/8z4brfNBf7ben2nS76/u97971577xwT6 1438614145.950,1.000,0.001,HISTggAAANZ42u1WwQ3CMAy048QtlUDizwDdgtmQ2IBFGYEHyeekk4vgg+r7WInPl8Z20lzuj5vIeZU3rFvttlyfkkgkEolEIvEP0EzBpnzge08Jn/lLoIvxDfwN/MbeoWCHvxI9A753O3U7w3jEHYBfgTfB/NA5wnrox+9aiG4D/wLzuF8nPCNxFeZxXSf8ArwT2d9M6u+k3h7U30g/snyw/mwwZn2F/VyJbiNx7NwY4Wmgo6Qe7Jzah/rR+VbS1xLwovtENt4jJVjv1/e+fqmz9/+O7jwv+gJXJAUM 1438614146.950,1.000,0.001,HISTggAAANd42u1VQQ4CIQykLSxiPPgA/+KX9gsm/sCP+gQP4mWSSZHNJiZ2LpMWGFoo5XJ/3FI6r+kN6yyd9fpMgUAgEAgEAjOQP8tTB/OXL89JJs8V4/J0jPizkx9jI36FcdQvwEp0C6z/8AI2zqvOOLOPnQ8Q16lzA/0K61hcFXQqyafAPg3GMa4F9ArRZZxBF+NYyLka2M2pn0ruOcN8rA8jfqxbI8zqksXh1XFx+gGzxXmvMviu1ekH6tyDbewvOhiH1zfSxv44+//o5D57z/uVf3XvfeUFxDIFZA== 1438614147.950,1.000,0.001,HISTggAAANN42u1XSQrDMBCb8Zallzygf+m3ei30B/lontBD7YtAjAsOpWV0EWZsSR4cJ7k+94fIdpc3YmWtHG6HOBwOh8PhcPwC9M/zKBnrYJ1en0DqoZNT5UzqC9QLfK+2eROMM/AE+RZg1EFu82bI3eor+EWYt0HfEuiiXgY/3O9KfArpVwG/C/Fn6xPp/wy5MWcEvUTGgewH/0sS9DGSc2idOyW6bL0Y9UjyspyWvpJ10rkv6XwurT6we8XyFZL703rvfTpK51v3vJ6c4+z34vB+vgAutAVf 1438614148.950,1.000,0.001,HISTggAAAMZ42u1UOQ4DMQg04PV6t8kH8pe8LVJ+kI/mCSnW24w0AicpUjDNyDCAD8z18byXcnmVAzZYBuvt9CQSiUQikUgk/hkS1CnRC7AF9bg+9Z3YMT/WqcBt8ErWCvYF6qAdeSX1WH0D/0bydtB18Ddggzo76HfQ4f67c06MU2JvJE6dvsC4Su5rIe8kJM7jHuyjEuxHcc5Xib86fa1OfpZn9t8K0Wnw/7I54M0Zr65Mzi0L5v/VXPx23kpwv7PnkA/90/f0BmzHBcc= 1438614149.950,1.000,0.001,HISTggAAAMh42u1WyQ3DMAzT4SRKXx0gu2SFrlSgG3TRjtBHnQ8BQkkeBYqKHwIWJVkOHXh5PO8i15t84J21s60vKRQKhUKhUCj8PuygXuF9yOo4YdQbvjNBP3Qeia5BPDrPsO4QH6H+tj5BfIL8BhxJnY0vpC7uA+duoJ/JHNgHz431jeR82Dz4HYP0ZXOyeR3qol6BB+KbIH414tdG/Mj86sSPmZ+d7EfJfcvy9uYLOT9L7qkQvSR9Lcmzg/8bTeLZfs5Cv9zv36BvJa0FTQ== 1438614150.950,1.000,0.001,HISTggAAAMp42u1WwQ0CMQyL017bg88NwC7MhsQGLMoIPDg+lqycEOUVf6I2iZPUatXL/XEz2zZ7o+wWu/Xr0xKJRCKRSCQS8+H0D5sNBGvVFw72CfpfOq2r4C9kuY9G+Y3iOuUvgreRvxPvx66C50x5C9lBfrZN9Nkpf6W1i/lVnSHiTsTD5zLEeQyho9IZgc5V6FqFbiXQ10Vd9vvBvqvIi3g4z0T/HA+aqwbvA0QdBPcy4vGAF0JPC3TwL9+lX+3/+11V+z6pzqx58AL+yQTy 1438614151.950,1.000,0.001,HISTggAAANN42u1WwQ3DMAg0xrHjtFIX6C6ZrVI36GIdpSP00fA56YTVJn1xnxM2GIgB53p/3FK6PNMHurFsnNdXCgQCgUAgcAwkPkHc+w/1IDvHoSBnYGH/i8ROnHMy4UL0J9i3OCqsm9yInp0zg56td3KO6S/gbwGuwLZ+AvkMeXbwV4lcgGfIU8GukXw75D1BPEr84/13sq/OPXn1lcFOHH0l+4XUOfpvpJ7V8Vuc/vD6SUhfymD/qWOvg37U6dPkzAsZnG9eXEfPv2/n7L/j3Pv9kDdbugXI 1438614152.950,1.000,0.001,HISTggAAAMV42u1VOQ4CMQyMj40XQUFJwV94GxI/2I/uEygIzUgjU3CshKcZJY5nvInlPd+Wa2vHU3vABstgvaytUCgUCoVC4Z8gyfrd+r/SkYSV5Hmiq6BjRM9AD891iE+wz+Ls/AQ+M+H94MPggPwA7sSH1fn034FfwNrhHgP2g3zvTOJZfR3uX0l+J+/L6jDyvkJ8nfSjkf504q+JjpK+FNLPjFl92OdMz0g+3o8l88mTuaAvzg9JdOVDc0k3Oie//b/ZOvQO8c4E8A== 1438614153.950,1.000,0.001,HISTggAAAMp42u2WXQoCMQyE2/RnVwXxAN5lzyZ4Ay/qEXzpIgx8tBV8WMi8DF3yMylJtvfn6xHCLTSkxrGxbe/gcDgcDofD4fgiHkyn6jU5p8G6otgbvR/BPnf8S+NF7IvwKn47KsTVeBR397/Id42zSJ4MdVbhE9RJ9a1Q71nO10H9qqdIvAr59H6S8Cp2Ge5n6fRL6fRLgv4yyEf9pnYROHXsaH6oHwLop/ksoJvmNMN8k16b3B/24160wb1Ee2Z2H8+ej7rf//2/ih8yrQTu 1438614154.950,1.000,0.001,HISTggAAAMl42u2WzQ3CMAyF8xo3IT0xAEOwAbNVYgMWZQQOpJcnPTmthOjB38Vy7PivVtTb87WmdL2nL7lLdDk93ikIgiAIgiA4L9NOfwzqUP+H5K/smXQIPTn2Lc5M9k23Li9dVpKF/KqIu3TZKE8l+0xxG/mxnfM3oUPUU+i8Ds5jEXVy39npj+MWqgN0zt/PnPmbo1fR5yT6KGIPIe7znnr7rbDBvVb5uD6IuZhTD8c1px+Ie0ffFW9eOPjO4c/vZtrZF35c/9nABwJuBRs= 1438614155.950,1.000,0.001,HISTggAAAMB42u1WSQ7CMBCLJ5O2gIR4AH/p25D4QT/aJ3AgvViyphw4UMYXK55ktiRt7s/lUcptKm/Uzuhs81oSiUQikUj8J5AtOOS+YacOoQ/BPMVNvTeF7qQ3ig+hKz8jzW9k38Yn4s1+7nzpzO/nKzH7n8jvQP44v1HYnXS13kV9LvpQg7wrceTHqc5G++3inJiY5+Jc8H5XwSbOfRVxEdiVruIY9QHBOgR5YOe9tQ/vaRH5qDG+/N3CQf9Hv1IPXs36BOs= 1438614156.950,1.000,0.001,HISTggAAANd42u1WSQ7CMAy04yxNxYEH8Be+BhI/4KM8gQPpZaTBFWURkudixfEynqpWDpfrWWR/kgdsWB02HW8SCAQCgUAg8AwaEvxE50/pnqC+gl/IWeE96cXVYTPEGfEv8Q3OWKeAfxp2JveL3UH/CnkV+Deo3yE+kT6F6IB1itPf4D5DXAeeHfIKmQN1mmCeRnQ38h0M8meog3wyzFkgP5G+uvKcnXq68l6cfkbm9/qIw9Oc/z85+8LI/y2Of+teUoefEF3F4adv2qevxm3dw/pnfL/1ftA7XgwFiA== 1438614157.950,1.000,0.001,HISTggAAANt42u1W2w3CMAyMnSYpRZUYgF2YDYkNWIxRGIEPmp+TTidaXh++Hyt2fbaT2Onxcj2ndLilJ/IibZF+uqdAIBAIBAKBwHrYj+O6sNvKOpzwGPmvRJ4K64HwZpDd3oS9rwvwj2CvkB/q+3oCngniTZBXj7uDuN1/D/YZ/Bp810T+I8m7krxwfxvZ15nwN6i/gL2Qe2jkXDLxdyIbOTcn9yAL/UDuYRZxGE8h/VJFn6o+UnoX/A55GqnHxLxQ/e9ivtjG+WhCpjfzfmo+25f87UX9v71nm/f7AdoiBcw= 1438614158.950,1.000,0.001,HISTggAAANB42u1Xyw7CIBBkH4BNjPED/Be/rYkH7/6on+BBeplkAm2qvexcJgvs7HQDhN4erzml6zN9YY2lsd7fKRAIBAKBQCBwPGRnPSX6stIP47yynsC6DO/ThSvoZJI3NXbIMxgvEJ8aX0CvAFfIQ39L3hl0C6lfif8M8xNZj34U6ir5ToO4QiydPjjpc+34ctDNZJ8YjCvpt5N9kMi8kdiJP/Qt5P+p59fIfneirxvPP8uTwfHciUfvDeuc/9F49B769X3677ytdfRgH3v1Rz53MQV9 1438614159.950,1.000,0.001,HISTggAAAMp42u2WSw7CMAxEE+fPhgtwF86GxA24JEuOwILC4kmjRGWF8GysTP0ZJ3Xa0/V2CeF4Dy+kzcbN2vkRHA6Hw+Fw/Aeib8FP7F8U9eJOXZ//vsV4+iWhS+ks4LPQkWET7MDzNxrqVMR18BX5DuC70DOQNyO+IQ/Xyt/Asw71VvRbkL+JfpPgmafhfIroK2HdxflyH21iE9ZNvA9R8IxnH8qP/lXoGot6bJFX82ZiPmxx3vNkPm1yHyi9YaIjLvb37f3l38+dup9JOgXi 1438614160.950,1.000,0.001,HISTggAAANV42u1WSwpCMQzs9KtPBHHtXTyb4A28kEfyCC58dTEwpO8hiJjZhKTtJE3TtKfr7RLC4R5eSLPELOP5ERwOh8PhcPwH4Cn4qfxh4bz3/86YHw1+0L9RIQk9C3/dXsne5U6MF1rf9UZ+G60vQt+Q7PatwT9RXJV4+vqj4JuIt8s96UXsp1I8UeS9CXsW+UgirkzjVfit4pxHJYRUdQVRDzDqnfcPo56VP4h7ouKP4n4mcV+ToSt+qy8Ewy8G+8baPobBc1rbH7/Vn/EhHn//FsbzBIf3Bag= 1438614161.950,1.000,0.000,HISTggAAAMF42u2Uyw3CMBBE95N1+ElpgF7SEi0g0QGNUgIHnMtIo8UCJA77LiN7NpON7fh8u19Flou88K7a1daHFEVRFEVRFP+HJuNR/M28AH8C3yDPiGoyP4FibiS+J3moc9dD8p591x0o1m3zjYy3+iP4M+k/QBcYn0heg/kAn31nAzXwI9kHXNdG1t1JPxPJd3I+2b5bUm+kf3aenOQoUfZfYH9BnvfB/x/7l8F7wpK6zNcP7zP90v2m8ltG+8vq9QnYswVI 1438614162.950,1.000,0.001,HISTggAAANB42u1WSQ7CMAz0RlrKhQfwF75WJH7AR3kCB5LLSKOkAlU9eC5W7Bk7iey0t+frIXJd5QuvVqu1+1sSiUQikUgkEseBdvza4SFsMJ8D34jeyH8ly8fqtTxR7QniE/gbr4B+Al2QvAX4uDbwNztDPlw3/QLnvhD/ArqAeAEe1i2D55sJD23jn0kc793Bb8B3si8nFvMoWbM+jU6/sX4Nst/o9LeTcwnot86XkTlg86yduTLCZ+/C1ndFBvk2qNM/1VPZF3vX+/X+DvOd+wCb1wVi 1438614163.950,1.000,0.001,HISTggAAANN42u1Vuw1CMQy0nR95EhIDsAsrsBISG7AoI1CQNCed/EApXuFrLFuXs+PEyfX5eohc7vJFGlaHtdtbAoFAIBAIBALHgTpxg7g563Hd9DPhG+Gjn4iP62e8kbyJxCf/NGwBfiE6FfSm3UjdmKcDr5M6mH+GOjrkaaC/gU6B/hWiV0l92E/0K+g20MnkvArpO96/Ss7DyL4yiRvRF3JfldQrpB/JmQcjNjv7kZ3zwnjqzDfbL+tLduZYf3xf0p/v1ur3cC9fZQ1W6RztX1mm/wHg7wU+ 1438614164.950,1.000,0.001,HISTggAAAM542u2WOw4CMQxE4yRe2IWCkmLvwtmQuAEX5QgU7DZPGiV8JEDyNFbseGzn42S+XM8pHY7pgbJIW2Q+3VIgEAgEAoHAL8Ginrf885O8in/9N1bwkr+K+UX4GewbjMnj8Od/1jGf/HvEGSBX/RbSYXfwjdAP0DPeJPgYv8BOfuY3on7KHeJkkR/3aUA+E3jpb4JH7WttnC91frKIVzv9lD/XwRvrkhrzTIwd4yruoXXeI/Kkzjx687XOfvFqn8ui73y7X3+6zn95H+0OQbIFFQ== 1438614165.950,1.000,0.000,HISTggAAAMJ42u1X2w3DIAz0AxJaVZ2gu3S2St2gi3aEfAR+TjqZKFL74/s5Bc7YGBuRx/vzErl/ZYd31s72HDOJRCKRSCQS56CZgr/kUfF9N6m3wC/qZuMyeHey9QZX0CNXols6F+IX7QqxX4EXYt9AN9a7db6AHtdr4H+F8UbGC9kvfg/9lcSJjPuK8tvI+aBOyfka+R9Rkjcl51uDOqqkbj3ol0L0TvwJzJegzhk76R8N+vJoHx+9B+xkXDIZn//o/tQNdQQFvw== 1438614166.950,1.000,0.001,HISTggAAAMt42u1W2w3CMAy0Yzdt4QMGYBdWA4kNWJQR+CDl46SToxaBkHw/p/hxdhon6ul2v4ocL/KCNdbG5fyQRCKRSCQSicT/QVeu3/+BJK4E8QbrhZ3Yjeh7kIf+MdAfwD4EXEHXwT8DG/AI/kXvAHoz0a+kr6nxnsTvSB81qDMF+3bQr6QOngPWNXI+DnNgZL6c+I3YMV/Id2DzK2SuWD9C8ti90M77aUF8IfmlMy5iCd4B6cyTTr8Efa99B7+Vv7Xup+roxvhf7VefY2cFUg== 1438614167.950,1.000,0.001,HISTggAAAM542u1WOw7CMAy1YzeltAMH4C49GxIDOxflCAwky5OenDIgBr/lyZ/Edmu7vd6fN5HLQz6wxtq47C9JJBKJRCKRSHDon8cr5JwSfSF29MP/RgviOPE3EtdB33kC2QL7BH5L47lxJfIJ5AXuwXPdfga/XsfWeIX8nNS7Qv4VZHxfmC/qN5J/Jc/TSZ1K4jGeIW+s14ie2Vk/SNAXrJ+NnBvtTw/mh+WvwXyzOYjmPNoXbB6j/aAH7y+D9+ngftOgXvtyb/56fycOfu/eMBwFYA== 1438614168.950,1.000,0.000,HISTggAAAM142u1WSQ7CMAz0uEnT0gMf4C+8DYkDdz7KEziQXEYapSpUKpLnYjkd25PFSS/3583s/LAPhmpRrV9fFggEAoFAILAHcLA8/zr/Bt/Ig9Cz1neyg/ivbH4in+Mmwc/VjqKOE5/rtPhC4zPVbd8XqgeR34nHOk+Uf6Fx1lEoPhE/CV2cZyb+RPoyjfP8i+CxLhP6c0dnEucEYn/VuvuPzuEozlMmPvdB6eiA8JU+E/NAp5+xsr/VOvnGvNa5F769D3Gwe3ivd0vu7xtTFAWE 1438614169.950,1.000,0.001,HISTggAAAM942u1WOw5CIRDcDx+fmngB7+LZTLyBF7W0tBCaSSYQtHjFTjNhmf0GCNfH8y5yecsX3lgb2+0lgUAgEAgEAoH9QoFX90cw4udE3+0JWIm9gB/6G/mvVhKvQtxu3xofQedEn4G7/gz2rj+BfQNOxK+QvjPsF5gH1n+AdYW6CuiwPyfzMvBLsC5kjjboB+Pa5PlNkC+T8+EQV4kuEZ2Qc55JnUb6xjxC9Gx+s/ffSN1sjjp573XQ7yiuTvrJ4nski++b/ljHv97vveTTD11pBdo= 1438614170.950,1.000,0.001,HISTggAAAMx42u1V2w3CMAz0I24LBXWB7sJsSGzAIozGCHyQ/Jx0CqhI5cP3Y7V27mzHddfb/SqyPOQNr1artctTEolEIpFIJD6BZl2bYDvXp533pRPvJN5IfUF4DPiM6BSwQnQb/wD+9jxCPgPYgLhC/KdqjxDf4mY4j/4J7ELyDuiDE/8Z+EbSH9R3ojORfs3kvprOAeKD8OD56PBinkbuXcm8YT5svpT0W4mukblk+bPvSDr8Qup1ot/bM/rl3tON+0t/tLf+7f+ge+m+AE1MBZc= 1438614171.950,1.000,0.001,HISTggAAANB42u1WSQ7CMAy0HTcByoEH8BfehsQP+ChP4JJyGGnkBBVOnsuoXiaTpWmvj+dd5CIdpbN2tttLEolEIpFIJBL/gwILed5gpM6CfiU6OujLSF+UL8AOeWf/pZ0bxA+dF2ADHYxX0HMyzqa/dj5DvxMfjfg6QT/qOzD6MNCrED+S/EryyCVYj4WsW4W8k3OB+29Qz/avkLpCWMg5jOLot02ebwc9D9ZDg/E1eD918D7QYP6j7/2391JUL5M+ZnVl0r/uPO5e34Vf637m+wbY+ATY 1438614172.950,1.000,0.001,HISTggAAAMt42u2W3Q3CMAyE7fw0UCFYgF06GxIbsAijMQIPtC8nfXLFE0K+l1Mc+3pxKivX++NmdnnaB3VlX7ksL0skEolEIpFI/C78y7rt3VdExyVusNZ4C3R13SW/CbvsT7I/QbzD/gz1BXx34aPUH4Q3v0Pqinxf9RvUDeETnM/B/1n0Z/BL/ad+NfDfoZ8d1gN8aJ7D/9VA34Er+C6Bb4M81Y3yPKjvcI8V/HowB6gPU9Af3zlf9F4on+aI79S34FzU92he1j+b5/4GQCEFnA== 1438614173.950,1.000,0.001,HISTggAAAM942u1UQQoCMQxsmma7rYgf8C/7NsEf+FGPHj3YvQwMWXZFEDKXIW2TTNo01/vjltLllT7QwTI4L88UCAQCgUDgPyBRT7z7AX9x4mayn4mNrGS9wH4BxvN9sEFeBZ7AnoEN7DV+A78z2A38V66gG+NW0IV8IudmiNuh7gZ+RnRg3Ap1daKrEBvz4rtk8DPSD0r6SEifTOScknVz+o7p8vq5OHrF6XOWz/tv5vzDRO5XHNYvzQ3277fOq+zYe3XtnYu6UYcczPPreU/3367WBfc= 1438614174.950,1.000,0.001,HISTggAAANF42u1WSQ7CMAx0FjsBLjyAv/C2SvyAj/IEDqQcRho5RYAE8lxG9TZO0rg9Xa6LyPEmD5TBaXA+r55AIBAIBAKBwC/i+V9H7OgvEJcndbJTb7Ur2JHb4AqM+Qr+TvQxbzfYiK5B3B7YiB3rHCC+QZ9K8nF9LE+d/TMSj3Ub5HfYVyP+Rs65k76UnA/qVMgz8oz2TOqw95O9p9XpsxJdplede5Cd+4n9lMn1JMLYh5B7n5z5IS/Oha3zaOucm+3Hq5M+pP/uuf5t3b/9Tt4BQwYF/A== 1438614175.950,1.000,0.004,HISTggAAAPh42u3Vy03EMBAAUH8Sdlkh0QC90Ma2g0QHNEoHcFhyGWk0C+SwoPculp3xJ44zfnp9e2ntfG4X86vsl+Lx4/m9AQCQ6zc6fv9m3FaO8HwUcaPo15K4fuU6TqG+hPohqbcQf5e0b/FriDuE+hLWM0O/rf4Q+sdxeui3hrglWc99aD8l7UuYZ3t+TOZdk/nifh/DeHGfZtE+ku+b7ctM9jk7B0tynmZSjmS/Y/ty5fmfxTkfyXv2Im4U/201T2YW+aL6T0fxHu2H+afKX2On/Nd3yrO/zct95/Fu/T77b/czAAAAAAAAAAAAAAAAAAAAAAD8Bf0TEUcGgg== 1438614176.950,1.000,0.001,HISTggAAANZ42u1WyQ0CMQy0nWvhRQH0Qm1IdEBTlEMJPEg+g0bOCnGs5PlYTpzxWBs7e7xczyKHmzyRutVu7XSXQCAQCAQCgX+CbiyfvsmjH9KpxDcnzkhdbB33hy3OubGfu23wv2rg77qtYPF8JfyFxGXIM+IW8PdgG8QZ+AvwMr3Ig/UZ0dmI7kL4ColHPRnqZPmN+Nm5H4nEZScP48H16vQl5jfyfczpn+T0lZD7rpPnjOwzn+lOTt/qJL9O6pudk7pybsnknNKVc/Pb782v3y3duP4XngesZQWe 1438614177.950,1.000,0.001,HISTggAAAM142u1V2w3CMAz0I4+2XwzALqzECkhswKKMwAfNz0knV1CJSvh+LCfns9Payfn+uImcrvKGr1ZXa5enJBKJRCKRSPwz9GD12E71GtFTYiN9J3FDvwGvgO9Eh/Emst/Bb8CvsD7sDLyhs5B1J3kL5JkhTwV+J3UshFeA30G3kv2J+Bacq5H8heQrQTz2USN9IkFfOOmnSvov6jeBeBbHdHGelPj4Xdh5ajBPSubXAvvpfecB3zbyZCP/1/e47vwe6M71H+1d+vr/vADt2wV1 1438614178.950,0.125,0.000,HISTggAAAGt42pNpmdzIwMDnwAABzFCaEUoz2X9gGAWjYBSMglEwCkbBKBjMgHHUfzQBTDT2DyMBcUYS/Y/LPCYC/mOkkz+J9R+hcGEm0RxC4UisOUwkmsdAJXXkxjsjlexjpFP+ZqSR/oEqPxgBzSoDcw== 1438614179.075,0.004,0.000,HISTggAAAB142pNpmdzIwMDAwQABzFCaEUoz2X9gQAEAYqkC8g== hdrhistogram-go-1.1.2/window.go000066400000000000000000000017651411122733000164520ustar00rootroot00000000000000package hdrhistogram // A WindowedHistogram combines histograms to provide windowed statistics. type WindowedHistogram struct { idx int h []Histogram m *Histogram Current *Histogram } // NewWindowed creates a new WindowedHistogram with N underlying histograms with // the given parameters. func NewWindowed(n int, minValue, maxValue int64, sigfigs int) *WindowedHistogram { w := WindowedHistogram{ idx: -1, h: make([]Histogram, n), m: New(minValue, maxValue, sigfigs), } for i := range w.h { w.h[i] = *New(minValue, maxValue, sigfigs) } w.Rotate() return &w } // Merge returns a histogram which includes the recorded values from all the // sections of the window. func (w *WindowedHistogram) Merge() *Histogram { w.m.Reset() for _, h := range w.h { w.m.Merge(&h) } return w.m } // Rotate resets the oldest histogram and rotates it to be used as the current // histogram. func (w *WindowedHistogram) Rotate() { w.idx++ w.Current = &w.h[w.idx%len(w.h)] w.Current.Reset() } hdrhistogram-go-1.1.2/window_test.go000066400000000000000000000010611411122733000174760ustar00rootroot00000000000000package hdrhistogram_test import ( hdrhistogram "github.com/HdrHistogram/hdrhistogram-go" "testing" ) // nolint func TestWindowedHistogram(t *testing.T) { w := hdrhistogram.NewWindowed(2, 1, 1000, 3) for i := 0; i < 100; i++ { w.Current.RecordValue(int64(i)) } w.Rotate() for i := 100; i < 200; i++ { w.Current.RecordValue(int64(i)) } w.Rotate() for i := 200; i < 300; i++ { w.Current.RecordValue(int64(i)) } if v, want := w.Merge().ValueAtQuantile(50), int64(199); v != want { t.Errorf("Median was %v, but expected %v", v, want) } } hdrhistogram-go-1.1.2/zigzag.go000066400000000000000000000071761411122733000164400ustar00rootroot00000000000000package hdrhistogram import "fmt" const truncatedErrStr = "Truncated compressed histogram decode. Expected minimum length of %d bytes and got %d." // Read an LEB128 ZigZag encoded long value from the given buffer func zig_zag_decode_i64(buf []byte) (signedValue int64, n int, err error) { buflen := len(buf) if buflen < 1 { return 0, 0, nil } var value = uint64(buf[0]) & 0x7f n = 1 if (buf[0] & 0x80) != 0 { if buflen < 2 { err = fmt.Errorf(truncatedErrStr, 2, buflen) return } value |= uint64(buf[1]) & 0x7f << 7 n = 2 if (buf[1] & 0x80) != 0 { if buflen < 3 { err = fmt.Errorf(truncatedErrStr, 3, buflen) return } value |= uint64(buf[2]) & 0x7f << 14 n = 3 if (buf[2] & 0x80) != 0 { if buflen < 4 { err = fmt.Errorf(truncatedErrStr, 4, buflen) return } value |= uint64(buf[3]) & 0x7f << 21 n = 4 if (buf[3] & 0x80) != 0 { if buflen < 5 { err = fmt.Errorf(truncatedErrStr, 5, buflen) return } value |= uint64(buf[4]) & 0x7f << 28 n = 5 if (buf[4] & 0x80) != 0 { if buflen < 6 { err = fmt.Errorf(truncatedErrStr, 6, buflen) return } value |= uint64(buf[5]) & 0x7f << 35 n = 6 if (buf[5] & 0x80) != 0 { if buflen < 7 { err = fmt.Errorf(truncatedErrStr, 7, buflen) return } value |= uint64(buf[6]) & 0x7f << 42 n = 7 if (buf[6] & 0x80) != 0 { if buflen < 8 { err = fmt.Errorf(truncatedErrStr, 8, buflen) return } value |= uint64(buf[7]) & 0x7f << 49 n = 8 if (buf[7] & 0x80) != 0 { if buflen < 9 { err = fmt.Errorf(truncatedErrStr, 9, buflen) return } value |= uint64(buf[8]) << 56 n = 9 } } } } } } } } signedValue = int64((value >> 1) ^ -(value & 1)) return } // Writes a int64_t value to the given buffer in LEB128 ZigZag encoded format // ZigZag encoding maps signed integers to unsigned integers so that numbers with a small // absolute value (for instance, -1) have a small varint encoded value too. // It does this in a way that "zig-zags" back and forth through the positive and negative integers, // so that -1 is encoded as 1, 1 is encoded as 2, -2 is encoded as 3, and so on. func zig_zag_encode_i64(signedValue int64) (buffer []byte) { buffer = make([]byte, 0) var value = uint64((signedValue << 1) ^ (signedValue >> 63)) if value>>7 == 0 { buffer = append(buffer, byte(value)) } else { buffer = append(buffer, byte((value&0x7F)|0x80)) if value>>14 == 0 { buffer = append(buffer, byte(value>>7)) } else { buffer = append(buffer, byte((value>>7)|0x80)) if value>>21 == 0 { buffer = append(buffer, byte(value>>14)) } else { buffer = append(buffer, byte((value>>14)|0x80)) if value>>28 == 0 { buffer = append(buffer, byte(value>>21)) } else { buffer = append(buffer, byte((value>>21)|0x80)) if value>>35 == 0 { buffer = append(buffer, byte(value>>28)) } else { buffer = append(buffer, byte((value>>28)|0x80)) if value>>42 == 0 { buffer = append(buffer, byte(value>>35)) } else { buffer = append(buffer, byte((value>>35)|0x80)) if value>>49 == 0 { buffer = append(buffer, byte(value>>42)) } else { buffer = append(buffer, byte((value>>42)|0x80)) if value>>56 == 0 { buffer = append(buffer, byte(value>>49)) } else { buffer = append(buffer, byte((value>>49)|0x80)) buffer = append(buffer, byte(value>>56)) } } } } } } } } return } hdrhistogram-go-1.1.2/zigzag_whitebox_test.go000066400000000000000000000052361411122733000214030ustar00rootroot00000000000000package hdrhistogram import ( "math" "reflect" "testing" ) func Test_zig_zag_decode_i64(t *testing.T) { largeV := int64(math.Exp2(50)) type args struct { buffer []byte } tests := []struct { name string args args wantSignedValue int64 wantBytesRead int wantErr bool }{ {"empty", args{[]byte{}}, 0, 0, false}, {"1", args{[]byte{1}}, -1, 1, false}, {"2", args{[]byte{2}}, 1, 1, false}, {"3", args{[]byte{3}}, -2, 1, false}, {"4", args{[]byte{4}}, 2, 1, false}, {"truncated 2nd byte", args{[]byte{128}}, 0, 1, true}, {"truncated 3rd byte", args{[]byte{128, 128}}, 0, 2, true}, {"truncated 4th byte", args{[]byte{128, 128, 128}}, 0, 3, true}, {"truncated 5th byte", args{[]byte{128, 128, 128, 128}}, 0, 4, true}, {"truncated 6th byte", args{[]byte{128, 128, 128, 128, 128}}, 0, 5, true}, {"truncated 7th byte", args{[]byte{128, 128, 128, 128, 128, 128}}, 0, 6, true}, {"truncated 8th byte", args{[]byte{128, 128, 128, 128, 128, 128, 128}}, 0, 7, true}, {"truncated 9th byte", args{[]byte{128, 128, 128, 128, 128, 128, 128, 128}}, 0, 8, true}, {"56", args{zig_zag_encode_i64(56)}, 56, 1, false}, {"-1515", args{zig_zag_encode_i64(-1515)}, -1515, 2, false}, {"456", args{zig_zag_encode_i64(456)}, 456, 2, false}, {"largeV", args{zig_zag_encode_i64(largeV)}, largeV, 8, false}, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { gotSignedValue, gotBytesRead, gotErr := zig_zag_decode_i64(tt.args.buffer) if gotSignedValue != tt.wantSignedValue { t.Errorf("zig_zag_decode_i64() gotSignedValue = %v, want %v", gotSignedValue, tt.wantSignedValue) } if gotBytesRead != tt.wantBytesRead { t.Errorf("zig_zag_decode_i64() gotBytesRead = %v, want %v", gotBytesRead, tt.wantBytesRead) } if gotErr == nil && tt.wantErr { t.Errorf("zig_zag_decode_i64() gotErr = %v, wanted error", gotErr) } if tt.wantErr == false && gotErr != nil { t.Errorf("zig_zag_decode_i64() gotErr = %v, wanted nil", gotErr) } }) } } func Test_zig_zag_encode_i64(t *testing.T) { largeV := int64(math.Exp2(50)) type args struct { value int64 } tests := []struct { name string args args wantBuffer []byte }{ {"56", args{56}, []byte{112}}, {"-56", args{-56}, []byte{111}}, {"456", args{456}, []byte{144, 7}}, {"-456", args{-456}, []byte{143, 7}}, {"2^50", args{largeV}, []byte{128, 128, 128, 128, 128, 128, 128, 4}}, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { if gotBuffer := zig_zag_encode_i64(tt.args.value); !reflect.DeepEqual(gotBuffer, tt.wantBuffer) { t.Errorf("zig_zag_encode_i64() = %v, want %v", gotBuffer, tt.wantBuffer) } }) } }