pax_global_header00006660000000000000000000000064133350023050014504gustar00rootroot0000000000000052 comment=3012a1dbe2e4bd1391d42b32f0577cb7bbc7f005 toml-0.3.1/000077500000000000000000000000001333500230500124605ustar00rootroot00000000000000toml-0.3.1/.gitignore000066400000000000000000000000571333500230500144520ustar00rootroot00000000000000TAGS tags .*.swp tomlcheck/tomlcheck toml.test toml-0.3.1/.travis.yml000066400000000000000000000003211333500230500145650ustar00rootroot00000000000000language: go go: - 1.1 - 1.2 - 1.3 - 1.4 - 1.5 - 1.6 - tip install: - go install ./... - go get github.com/BurntSushi/toml-test script: - export PATH="$PATH:$HOME/gopath/bin" - make test toml-0.3.1/COMPATIBLE000066400000000000000000000001611333500230500140200ustar00rootroot00000000000000Compatible with TOML version [v0.4.0](https://github.com/toml-lang/toml/blob/v0.4.0/versions/en/toml-v0.4.0.md) toml-0.3.1/COPYING000066400000000000000000000020671333500230500135200ustar00rootroot00000000000000The MIT License (MIT) Copyright (c) 2013 TOML authors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. toml-0.3.1/Makefile000066400000000000000000000004411333500230500141170ustar00rootroot00000000000000install: go install ./... test: install go test -v toml-test toml-test-decoder toml-test -encoder toml-test-encoder fmt: gofmt -w *.go */*.go colcheck *.go */*.go tags: find ./ -name '*.go' -print0 | xargs -0 gotags > TAGS push: git push origin master git push github master toml-0.3.1/README.md000066400000000000000000000103571333500230500137450ustar00rootroot00000000000000## TOML parser and encoder for Go with reflection TOML stands for Tom's Obvious, Minimal Language. This Go package provides a reflection interface similar to Go's standard library `json` and `xml` packages. This package also supports the `encoding.TextUnmarshaler` and `encoding.TextMarshaler` interfaces so that you can define custom data representations. (There is an example of this below.) Spec: https://github.com/toml-lang/toml Compatible with TOML version [v0.4.0](https://github.com/toml-lang/toml/blob/master/versions/en/toml-v0.4.0.md) Documentation: https://godoc.org/github.com/BurntSushi/toml Installation: ```bash go get github.com/BurntSushi/toml ``` Try the toml validator: ```bash go get github.com/BurntSushi/toml/cmd/tomlv tomlv some-toml-file.toml ``` [![Build Status](https://travis-ci.org/BurntSushi/toml.svg?branch=master)](https://travis-ci.org/BurntSushi/toml) [![GoDoc](https://godoc.org/github.com/BurntSushi/toml?status.svg)](https://godoc.org/github.com/BurntSushi/toml) ### Testing This package passes all tests in [toml-test](https://github.com/BurntSushi/toml-test) for both the decoder and the encoder. ### Examples This package works similarly to how the Go standard library handles `XML` and `JSON`. Namely, data is loaded into Go values via reflection. For the simplest example, consider some TOML file as just a list of keys and values: ```toml Age = 25 Cats = [ "Cauchy", "Plato" ] Pi = 3.14 Perfection = [ 6, 28, 496, 8128 ] DOB = 1987-07-05T05:45:00Z ``` Which could be defined in Go as: ```go type Config struct { Age int Cats []string Pi float64 Perfection []int DOB time.Time // requires `import time` } ``` And then decoded with: ```go var conf Config if _, err := toml.Decode(tomlData, &conf); err != nil { // handle error } ``` You can also use struct tags if your struct field name doesn't map to a TOML key value directly: ```toml some_key_NAME = "wat" ``` ```go type TOML struct { ObscureKey string `toml:"some_key_NAME"` } ``` ### Using the `encoding.TextUnmarshaler` interface Here's an example that automatically parses duration strings into `time.Duration` values: ```toml [[song]] name = "Thunder Road" duration = "4m49s" [[song]] name = "Stairway to Heaven" duration = "8m03s" ``` Which can be decoded with: ```go type song struct { Name string Duration duration } type songs struct { Song []song } var favorites songs if _, err := toml.Decode(blob, &favorites); err != nil { log.Fatal(err) } for _, s := range favorites.Song { fmt.Printf("%s (%s)\n", s.Name, s.Duration) } ``` And you'll also need a `duration` type that satisfies the `encoding.TextUnmarshaler` interface: ```go type duration struct { time.Duration } func (d *duration) UnmarshalText(text []byte) error { var err error d.Duration, err = time.ParseDuration(string(text)) return err } ``` ### More complex usage Here's an example of how to load the example from the official spec page: ```toml # This is a TOML document. Boom. title = "TOML Example" [owner] name = "Tom Preston-Werner" organization = "GitHub" bio = "GitHub Cofounder & CEO\nLikes tater tots and beer." dob = 1979-05-27T07:32:00Z # First class dates? Why not? [database] server = "192.168.1.1" ports = [ 8001, 8001, 8002 ] connection_max = 5000 enabled = true [servers] # You can indent as you please. Tabs or spaces. TOML don't care. [servers.alpha] ip = "10.0.0.1" dc = "eqdc10" [servers.beta] ip = "10.0.0.2" dc = "eqdc10" [clients] data = [ ["gamma", "delta"], [1, 2] ] # just an update to make sure parsers support it # Line breaks are OK when inside arrays hosts = [ "alpha", "omega" ] ``` And the corresponding Go types are: ```go type tomlConfig struct { Title string Owner ownerInfo DB database `toml:"database"` Servers map[string]server Clients clients } type ownerInfo struct { Name string Org string `toml:"organization"` Bio string DOB time.Time } type database struct { Server string Ports []int ConnMax int `toml:"connection_max"` Enabled bool } type server struct { IP string DC string } type clients struct { Data [][]interface{} Hosts []string } ``` Note that a case insensitive match will be tried if an exact match can't be found. A working example of the above can be found in `_examples/example.{go,toml}`. toml-0.3.1/_examples/000077500000000000000000000000001333500230500144355ustar00rootroot00000000000000toml-0.3.1/_examples/example.go000066400000000000000000000022761333500230500164260ustar00rootroot00000000000000package main import ( "fmt" "time" "github.com/BurntSushi/toml" ) type tomlConfig struct { Title string Owner ownerInfo DB database `toml:"database"` Servers map[string]server Clients clients } type ownerInfo struct { Name string Org string `toml:"organization"` Bio string DOB time.Time } type database struct { Server string Ports []int ConnMax int `toml:"connection_max"` Enabled bool } type server struct { IP string DC string } type clients struct { Data [][]interface{} Hosts []string } func main() { var config tomlConfig if _, err := toml.DecodeFile("example.toml", &config); err != nil { fmt.Println(err) return } fmt.Printf("Title: %s\n", config.Title) fmt.Printf("Owner: %s (%s, %s), Born: %s\n", config.Owner.Name, config.Owner.Org, config.Owner.Bio, config.Owner.DOB) fmt.Printf("Database: %s %v (Max conn. %d), Enabled? %v\n", config.DB.Server, config.DB.Ports, config.DB.ConnMax, config.DB.Enabled) for serverName, server := range config.Servers { fmt.Printf("Server: %s (%s, %s)\n", serverName, server.IP, server.DC) } fmt.Printf("Client data: %v\n", config.Clients.Data) fmt.Printf("Client hosts: %v\n", config.Clients.Hosts) } toml-0.3.1/_examples/example.toml000066400000000000000000000012621333500230500167660ustar00rootroot00000000000000# This is a TOML document. Boom. title = "TOML Example" [owner] name = "Tom Preston-Werner" organization = "GitHub" bio = "GitHub Cofounder & CEO\nLikes tater tots and beer." dob = 1979-05-27T07:32:00Z # First class dates? Why not? [database] server = "192.168.1.1" ports = [ 8001, 8001, 8002 ] connection_max = 5000 enabled = true [servers] # You can indent as you please. Tabs or spaces. TOML don't care. [servers.alpha] ip = "10.0.0.1" dc = "eqdc10" [servers.beta] ip = "10.0.0.2" dc = "eqdc10" [clients] data = [ ["gamma", "delta"], [1, 2] ] # just an update to make sure parsers support it # Line breaks are OK when inside arrays hosts = [ "alpha", "omega" ] toml-0.3.1/_examples/hard.toml000066400000000000000000000015301333500230500162470ustar00rootroot00000000000000# Test file for TOML # Only this one tries to emulate a TOML file written by a user of the kind of parser writers probably hate # This part you'll really hate [the] test_string = "You'll hate me after this - #" # " Annoying, isn't it? [the.hard] test_array = [ "] ", " # "] # ] There you go, parse this! test_array2 = [ "Test #11 ]proved that", "Experiment #9 was a success" ] # You didn't think it'd as easy as chucking out the last #, did you? another_test_string = " Same thing, but with a string #" harder_test_string = " And when \"'s are in the string, along with # \"" # "and comments are there too" # Things will get harder [the.hard.bit#] what? = "You don't think some user won't do that?" multi_line_array = [ "]", # ] Oh yes I did ] toml-0.3.1/_examples/implicit.toml000066400000000000000000000001121333500230500171360ustar00rootroot00000000000000# [x] you # [x.y] don't # [x.y.z] need these [x.y.z.w] # for this to work toml-0.3.1/_examples/invalid-apples.toml000066400000000000000000000001011333500230500202320ustar00rootroot00000000000000# DO NOT WANT [fruit] type = "apple" [fruit.type] apple = "yes" toml-0.3.1/_examples/invalid.toml000066400000000000000000000013401333500230500167560ustar00rootroot00000000000000# This is an INVALID TOML document. Boom. # Can you spot the error without help? title = "TOML Example" [owner] name = "Tom Preston-Werner" organization = "GitHub" bio = "GitHub Cofounder & CEO\nLikes tater tots and beer." dob = 1979-05-27T7:32:00Z # First class dates? Why not? [database] server = "192.168.1.1" ports = [ 8001, 8001, 8002 ] connection_max = 5000 enabled = true [servers] # You can indent as you please. Tabs or spaces. TOML don't care. [servers.alpha] ip = "10.0.0.1" dc = "eqdc10" [servers.beta] ip = "10.0.0.2" dc = "eqdc10" [clients] data = [ ["gamma", "delta"], [1, 2] ] # just an update to make sure parsers support it # Line breaks are OK when inside arrays hosts = [ "alpha", "omega" ] toml-0.3.1/_examples/readme1.toml000066400000000000000000000001551333500230500166510ustar00rootroot00000000000000Age = 25 Cats = [ "Cauchy", "Plato" ] Pi = 3.14 Perfection = [ 6, 28, 496, 8128 ] DOB = 1987-07-05T05:45:00Z toml-0.3.1/_examples/readme2.toml000066400000000000000000000000261333500230500166470ustar00rootroot00000000000000some_key_NAME = "wat" toml-0.3.1/cmd/000077500000000000000000000000001333500230500132235ustar00rootroot00000000000000toml-0.3.1/cmd/toml-test-decoder/000077500000000000000000000000001333500230500165565ustar00rootroot00000000000000toml-0.3.1/cmd/toml-test-decoder/COPYING000066400000000000000000000020671333500230500176160ustar00rootroot00000000000000The MIT License (MIT) Copyright (c) 2013 TOML authors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. toml-0.3.1/cmd/toml-test-decoder/README.md000066400000000000000000000007771333500230500200500ustar00rootroot00000000000000# Implements the TOML test suite interface This is an implementation of the interface expected by [toml-test](https://github.com/BurntSushi/toml-test) for my [toml parser written in Go](https://github.com/BurntSushi/toml). In particular, it maps TOML data on `stdin` to a JSON format on `stdout`. Compatible with TOML version [v0.4.0](https://github.com/toml-lang/toml/blob/master/versions/en/toml-v0.4.0.md) Compatible with `toml-test` version [v0.2.0](https://github.com/BurntSushi/toml-test/tree/v0.2.0) toml-0.3.1/cmd/toml-test-decoder/main.go000066400000000000000000000037101333500230500200320ustar00rootroot00000000000000// Command toml-test-decoder satisfies the toml-test interface for testing // TOML decoders. Namely, it accepts TOML on stdin and outputs JSON on stdout. package main import ( "encoding/json" "flag" "fmt" "log" "os" "path" "time" "github.com/BurntSushi/toml" ) func init() { log.SetFlags(0) flag.Usage = usage flag.Parse() } func usage() { log.Printf("Usage: %s < toml-file\n", path.Base(os.Args[0])) flag.PrintDefaults() os.Exit(1) } func main() { if flag.NArg() != 0 { flag.Usage() } var tmp interface{} if _, err := toml.DecodeReader(os.Stdin, &tmp); err != nil { log.Fatalf("Error decoding TOML: %s", err) } typedTmp := translate(tmp) if err := json.NewEncoder(os.Stdout).Encode(typedTmp); err != nil { log.Fatalf("Error encoding JSON: %s", err) } } func translate(tomlData interface{}) interface{} { switch orig := tomlData.(type) { case map[string]interface{}: typed := make(map[string]interface{}, len(orig)) for k, v := range orig { typed[k] = translate(v) } return typed case []map[string]interface{}: typed := make([]map[string]interface{}, len(orig)) for i, v := range orig { typed[i] = translate(v).(map[string]interface{}) } return typed case []interface{}: typed := make([]interface{}, len(orig)) for i, v := range orig { typed[i] = translate(v) } // We don't really need to tag arrays, but let's be future proof. // (If TOML ever supports tuples, we'll need this.) return tag("array", typed) case time.Time: return tag("datetime", orig.Format("2006-01-02T15:04:05Z")) case bool: return tag("bool", fmt.Sprintf("%v", orig)) case int64: return tag("integer", fmt.Sprintf("%d", orig)) case float64: return tag("float", fmt.Sprintf("%v", orig)) case string: return tag("string", orig) } panic(fmt.Sprintf("Unknown type: %T", tomlData)) } func tag(typeName string, data interface{}) map[string]interface{} { return map[string]interface{}{ "type": typeName, "value": data, } } toml-0.3.1/cmd/toml-test-encoder/000077500000000000000000000000001333500230500165705ustar00rootroot00000000000000toml-0.3.1/cmd/toml-test-encoder/COPYING000066400000000000000000000020671333500230500176300ustar00rootroot00000000000000The MIT License (MIT) Copyright (c) 2013 TOML authors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. toml-0.3.1/cmd/toml-test-encoder/README.md000066400000000000000000000010051333500230500200430ustar00rootroot00000000000000# Implements the TOML test suite interface for TOML encoders This is an implementation of the interface expected by [toml-test](https://github.com/BurntSushi/toml-test) for the [TOML encoder](https://github.com/BurntSushi/toml). In particular, it maps JSON data on `stdin` to a TOML format on `stdout`. Compatible with TOML version [v0.4.0](https://github.com/toml-lang/toml/blob/master/versions/en/toml-v0.4.0.md) Compatible with `toml-test` version [v0.2.0](https://github.com/BurntSushi/toml-test/tree/v0.2.0) toml-0.3.1/cmd/toml-test-encoder/main.go000066400000000000000000000054271333500230500200530ustar00rootroot00000000000000// Command toml-test-encoder satisfies the toml-test interface for testing // TOML encoders. Namely, it accepts JSON on stdin and outputs TOML on stdout. package main import ( "encoding/json" "flag" "log" "os" "path" "strconv" "time" "github.com/BurntSushi/toml" ) func init() { log.SetFlags(0) flag.Usage = usage flag.Parse() } func usage() { log.Printf("Usage: %s < json-file\n", path.Base(os.Args[0])) flag.PrintDefaults() os.Exit(1) } func main() { if flag.NArg() != 0 { flag.Usage() } var tmp interface{} if err := json.NewDecoder(os.Stdin).Decode(&tmp); err != nil { log.Fatalf("Error decoding JSON: %s", err) } tomlData := translate(tmp) if err := toml.NewEncoder(os.Stdout).Encode(tomlData); err != nil { log.Fatalf("Error encoding TOML: %s", err) } } func translate(typedJson interface{}) interface{} { switch v := typedJson.(type) { case map[string]interface{}: if len(v) == 2 && in("type", v) && in("value", v) { return untag(v) } m := make(map[string]interface{}, len(v)) for k, v2 := range v { m[k] = translate(v2) } return m case []interface{}: tabArray := make([]map[string]interface{}, len(v)) for i := range v { if m, ok := translate(v[i]).(map[string]interface{}); ok { tabArray[i] = m } else { log.Fatalf("JSON arrays may only contain objects. This " + "corresponds to only tables being allowed in " + "TOML table arrays.") } } return tabArray } log.Fatalf("Unrecognized JSON format '%T'.", typedJson) panic("unreachable") } func untag(typed map[string]interface{}) interface{} { t := typed["type"].(string) v := typed["value"] switch t { case "string": return v.(string) case "integer": v := v.(string) n, err := strconv.Atoi(v) if err != nil { log.Fatalf("Could not parse '%s' as integer: %s", v, err) } return n case "float": v := v.(string) f, err := strconv.ParseFloat(v, 64) if err != nil { log.Fatalf("Could not parse '%s' as float64: %s", v, err) } return f case "datetime": v := v.(string) t, err := time.Parse("2006-01-02T15:04:05Z", v) if err != nil { log.Fatalf("Could not parse '%s' as a datetime: %s", v, err) } return t case "bool": v := v.(string) switch v { case "true": return true case "false": return false } log.Fatalf("Could not parse '%s' as a boolean.", v) case "array": v := v.([]interface{}) array := make([]interface{}, len(v)) for i := range v { if m, ok := v[i].(map[string]interface{}); ok { array[i] = untag(m) } else { log.Fatalf("Arrays may only contain other arrays or "+ "primitive values, but found a '%T'.", m) } } return array } log.Fatalf("Unrecognized tag type '%s'.", t) panic("unreachable") } func in(key string, m map[string]interface{}) bool { _, ok := m[key] return ok } toml-0.3.1/cmd/tomlv/000077500000000000000000000000001333500230500143645ustar00rootroot00000000000000toml-0.3.1/cmd/tomlv/COPYING000066400000000000000000000020671333500230500154240ustar00rootroot00000000000000The MIT License (MIT) Copyright (c) 2013 TOML authors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. toml-0.3.1/cmd/tomlv/README.md000066400000000000000000000010421333500230500156400ustar00rootroot00000000000000# TOML Validator If Go is installed, it's simple to try it out: ```bash go get github.com/BurntSushi/toml/cmd/tomlv tomlv some-toml-file.toml ``` You can see the types of every key in a TOML file with: ```bash tomlv -types some-toml-file.toml ``` At the moment, only one error message is reported at a time. Error messages include line numbers. No output means that the files given are valid TOML, or there is a bug in `tomlv`. Compatible with TOML version [v0.4.0](https://github.com/toml-lang/toml/blob/master/versions/en/toml-v0.4.0.md) toml-0.3.1/cmd/tomlv/main.go000066400000000000000000000020031333500230500156320ustar00rootroot00000000000000// Command tomlv validates TOML documents and prints each key's type. package main import ( "flag" "fmt" "log" "os" "path" "strings" "text/tabwriter" "github.com/BurntSushi/toml" ) var ( flagTypes = false ) func init() { log.SetFlags(0) flag.BoolVar(&flagTypes, "types", flagTypes, "When set, the types of every defined key will be shown.") flag.Usage = usage flag.Parse() } func usage() { log.Printf("Usage: %s toml-file [ toml-file ... ]\n", path.Base(os.Args[0])) flag.PrintDefaults() os.Exit(1) } func main() { if flag.NArg() < 1 { flag.Usage() } for _, f := range flag.Args() { var tmp interface{} md, err := toml.DecodeFile(f, &tmp) if err != nil { log.Fatalf("Error in '%s': %s", f, err) } if flagTypes { printTypes(md) } } } func printTypes(md toml.MetaData) { tabw := tabwriter.NewWriter(os.Stdout, 0, 0, 2, ' ', 0) for _, key := range md.Keys() { fmt.Fprintf(tabw, "%s%s\t%s\n", strings.Repeat(" ", len(key)-1), key, md.Type(key...)) } tabw.Flush() } toml-0.3.1/decode.go000066400000000000000000000341141333500230500142350ustar00rootroot00000000000000package toml import ( "fmt" "io" "io/ioutil" "math" "reflect" "strings" "time" ) func e(format string, args ...interface{}) error { return fmt.Errorf("toml: "+format, args...) } // Unmarshaler is the interface implemented by objects that can unmarshal a // TOML description of themselves. type Unmarshaler interface { UnmarshalTOML(interface{}) error } // Unmarshal decodes the contents of `p` in TOML format into a pointer `v`. func Unmarshal(p []byte, v interface{}) error { _, err := Decode(string(p), v) return err } // Primitive is a TOML value that hasn't been decoded into a Go value. // When using the various `Decode*` functions, the type `Primitive` may // be given to any value, and its decoding will be delayed. // // A `Primitive` value can be decoded using the `PrimitiveDecode` function. // // The underlying representation of a `Primitive` value is subject to change. // Do not rely on it. // // N.B. Primitive values are still parsed, so using them will only avoid // the overhead of reflection. They can be useful when you don't know the // exact type of TOML data until run time. type Primitive struct { undecoded interface{} context Key } // DEPRECATED! // // Use MetaData.PrimitiveDecode instead. func PrimitiveDecode(primValue Primitive, v interface{}) error { md := MetaData{decoded: make(map[string]bool)} return md.unify(primValue.undecoded, rvalue(v)) } // PrimitiveDecode is just like the other `Decode*` functions, except it // decodes a TOML value that has already been parsed. Valid primitive values // can *only* be obtained from values filled by the decoder functions, // including this method. (i.e., `v` may contain more `Primitive` // values.) // // Meta data for primitive values is included in the meta data returned by // the `Decode*` functions with one exception: keys returned by the Undecoded // method will only reflect keys that were decoded. Namely, any keys hidden // behind a Primitive will be considered undecoded. Executing this method will // update the undecoded keys in the meta data. (See the example.) func (md *MetaData) PrimitiveDecode(primValue Primitive, v interface{}) error { md.context = primValue.context defer func() { md.context = nil }() return md.unify(primValue.undecoded, rvalue(v)) } // Decode will decode the contents of `data` in TOML format into a pointer // `v`. // // TOML hashes correspond to Go structs or maps. (Dealer's choice. They can be // used interchangeably.) // // TOML arrays of tables correspond to either a slice of structs or a slice // of maps. // // TOML datetimes correspond to Go `time.Time` values. // // All other TOML types (float, string, int, bool and array) correspond // to the obvious Go types. // // An exception to the above rules is if a type implements the // encoding.TextUnmarshaler interface. In this case, any primitive TOML value // (floats, strings, integers, booleans and datetimes) will be converted to // a byte string and given to the value's UnmarshalText method. See the // Unmarshaler example for a demonstration with time duration strings. // // Key mapping // // TOML keys can map to either keys in a Go map or field names in a Go // struct. The special `toml` struct tag may be used to map TOML keys to // struct fields that don't match the key name exactly. (See the example.) // A case insensitive match to struct names will be tried if an exact match // can't be found. // // The mapping between TOML values and Go values is loose. That is, there // may exist TOML values that cannot be placed into your representation, and // there may be parts of your representation that do not correspond to // TOML values. This loose mapping can be made stricter by using the IsDefined // and/or Undecoded methods on the MetaData returned. // // This decoder will not handle cyclic types. If a cyclic type is passed, // `Decode` will not terminate. func Decode(data string, v interface{}) (MetaData, error) { rv := reflect.ValueOf(v) if rv.Kind() != reflect.Ptr { return MetaData{}, e("Decode of non-pointer %s", reflect.TypeOf(v)) } if rv.IsNil() { return MetaData{}, e("Decode of nil %s", reflect.TypeOf(v)) } p, err := parse(data) if err != nil { return MetaData{}, err } md := MetaData{ p.mapping, p.types, p.ordered, make(map[string]bool, len(p.ordered)), nil, } return md, md.unify(p.mapping, indirect(rv)) } // DecodeFile is just like Decode, except it will automatically read the // contents of the file at `fpath` and decode it for you. func DecodeFile(fpath string, v interface{}) (MetaData, error) { bs, err := ioutil.ReadFile(fpath) if err != nil { return MetaData{}, err } return Decode(string(bs), v) } // DecodeReader is just like Decode, except it will consume all bytes // from the reader and decode it for you. func DecodeReader(r io.Reader, v interface{}) (MetaData, error) { bs, err := ioutil.ReadAll(r) if err != nil { return MetaData{}, err } return Decode(string(bs), v) } // unify performs a sort of type unification based on the structure of `rv`, // which is the client representation. // // Any type mismatch produces an error. Finding a type that we don't know // how to handle produces an unsupported type error. func (md *MetaData) unify(data interface{}, rv reflect.Value) error { // Special case. Look for a `Primitive` value. if rv.Type() == reflect.TypeOf((*Primitive)(nil)).Elem() { // Save the undecoded data and the key context into the primitive // value. context := make(Key, len(md.context)) copy(context, md.context) rv.Set(reflect.ValueOf(Primitive{ undecoded: data, context: context, })) return nil } // Special case. Unmarshaler Interface support. if rv.CanAddr() { if v, ok := rv.Addr().Interface().(Unmarshaler); ok { return v.UnmarshalTOML(data) } } // Special case. Handle time.Time values specifically. // TODO: Remove this code when we decide to drop support for Go 1.1. // This isn't necessary in Go 1.2 because time.Time satisfies the encoding // interfaces. if rv.Type().AssignableTo(rvalue(time.Time{}).Type()) { return md.unifyDatetime(data, rv) } // Special case. Look for a value satisfying the TextUnmarshaler interface. if v, ok := rv.Interface().(TextUnmarshaler); ok { return md.unifyText(data, v) } // BUG(burntsushi) // The behavior here is incorrect whenever a Go type satisfies the // encoding.TextUnmarshaler interface but also corresponds to a TOML // hash or array. In particular, the unmarshaler should only be applied // to primitive TOML values. But at this point, it will be applied to // all kinds of values and produce an incorrect error whenever those values // are hashes or arrays (including arrays of tables). k := rv.Kind() // laziness if k >= reflect.Int && k <= reflect.Uint64 { return md.unifyInt(data, rv) } switch k { case reflect.Ptr: elem := reflect.New(rv.Type().Elem()) err := md.unify(data, reflect.Indirect(elem)) if err != nil { return err } rv.Set(elem) return nil case reflect.Struct: return md.unifyStruct(data, rv) case reflect.Map: return md.unifyMap(data, rv) case reflect.Array: return md.unifyArray(data, rv) case reflect.Slice: return md.unifySlice(data, rv) case reflect.String: return md.unifyString(data, rv) case reflect.Bool: return md.unifyBool(data, rv) case reflect.Interface: // we only support empty interfaces. if rv.NumMethod() > 0 { return e("unsupported type %s", rv.Type()) } return md.unifyAnything(data, rv) case reflect.Float32: fallthrough case reflect.Float64: return md.unifyFloat64(data, rv) } return e("unsupported type %s", rv.Kind()) } func (md *MetaData) unifyStruct(mapping interface{}, rv reflect.Value) error { tmap, ok := mapping.(map[string]interface{}) if !ok { if mapping == nil { return nil } return e("type mismatch for %s: expected table but found %T", rv.Type().String(), mapping) } for key, datum := range tmap { var f *field fields := cachedTypeFields(rv.Type()) for i := range fields { ff := &fields[i] if ff.name == key { f = ff break } if f == nil && strings.EqualFold(ff.name, key) { f = ff } } if f != nil { subv := rv for _, i := range f.index { subv = indirect(subv.Field(i)) } if isUnifiable(subv) { md.decoded[md.context.add(key).String()] = true md.context = append(md.context, key) if err := md.unify(datum, subv); err != nil { return err } md.context = md.context[0 : len(md.context)-1] } else if f.name != "" { // Bad user! No soup for you! return e("cannot write unexported field %s.%s", rv.Type().String(), f.name) } } } return nil } func (md *MetaData) unifyMap(mapping interface{}, rv reflect.Value) error { tmap, ok := mapping.(map[string]interface{}) if !ok { if tmap == nil { return nil } return badtype("map", mapping) } if rv.IsNil() { rv.Set(reflect.MakeMap(rv.Type())) } for k, v := range tmap { md.decoded[md.context.add(k).String()] = true md.context = append(md.context, k) rvkey := indirect(reflect.New(rv.Type().Key())) rvval := reflect.Indirect(reflect.New(rv.Type().Elem())) if err := md.unify(v, rvval); err != nil { return err } md.context = md.context[0 : len(md.context)-1] rvkey.SetString(k) rv.SetMapIndex(rvkey, rvval) } return nil } func (md *MetaData) unifyArray(data interface{}, rv reflect.Value) error { datav := reflect.ValueOf(data) if datav.Kind() != reflect.Slice { if !datav.IsValid() { return nil } return badtype("slice", data) } sliceLen := datav.Len() if sliceLen != rv.Len() { return e("expected array length %d; got TOML array of length %d", rv.Len(), sliceLen) } return md.unifySliceArray(datav, rv) } func (md *MetaData) unifySlice(data interface{}, rv reflect.Value) error { datav := reflect.ValueOf(data) if datav.Kind() != reflect.Slice { if !datav.IsValid() { return nil } return badtype("slice", data) } n := datav.Len() if rv.IsNil() || rv.Cap() < n { rv.Set(reflect.MakeSlice(rv.Type(), n, n)) } rv.SetLen(n) return md.unifySliceArray(datav, rv) } func (md *MetaData) unifySliceArray(data, rv reflect.Value) error { sliceLen := data.Len() for i := 0; i < sliceLen; i++ { v := data.Index(i).Interface() sliceval := indirect(rv.Index(i)) if err := md.unify(v, sliceval); err != nil { return err } } return nil } func (md *MetaData) unifyDatetime(data interface{}, rv reflect.Value) error { if _, ok := data.(time.Time); ok { rv.Set(reflect.ValueOf(data)) return nil } return badtype("time.Time", data) } func (md *MetaData) unifyString(data interface{}, rv reflect.Value) error { if s, ok := data.(string); ok { rv.SetString(s) return nil } return badtype("string", data) } func (md *MetaData) unifyFloat64(data interface{}, rv reflect.Value) error { if num, ok := data.(float64); ok { switch rv.Kind() { case reflect.Float32: fallthrough case reflect.Float64: rv.SetFloat(num) default: panic("bug") } return nil } return badtype("float", data) } func (md *MetaData) unifyInt(data interface{}, rv reflect.Value) error { if num, ok := data.(int64); ok { if rv.Kind() >= reflect.Int && rv.Kind() <= reflect.Int64 { switch rv.Kind() { case reflect.Int, reflect.Int64: // No bounds checking necessary. case reflect.Int8: if num < math.MinInt8 || num > math.MaxInt8 { return e("value %d is out of range for int8", num) } case reflect.Int16: if num < math.MinInt16 || num > math.MaxInt16 { return e("value %d is out of range for int16", num) } case reflect.Int32: if num < math.MinInt32 || num > math.MaxInt32 { return e("value %d is out of range for int32", num) } } rv.SetInt(num) } else if rv.Kind() >= reflect.Uint && rv.Kind() <= reflect.Uint64 { unum := uint64(num) switch rv.Kind() { case reflect.Uint, reflect.Uint64: // No bounds checking necessary. case reflect.Uint8: if num < 0 || unum > math.MaxUint8 { return e("value %d is out of range for uint8", num) } case reflect.Uint16: if num < 0 || unum > math.MaxUint16 { return e("value %d is out of range for uint16", num) } case reflect.Uint32: if num < 0 || unum > math.MaxUint32 { return e("value %d is out of range for uint32", num) } } rv.SetUint(unum) } else { panic("unreachable") } return nil } return badtype("integer", data) } func (md *MetaData) unifyBool(data interface{}, rv reflect.Value) error { if b, ok := data.(bool); ok { rv.SetBool(b) return nil } return badtype("boolean", data) } func (md *MetaData) unifyAnything(data interface{}, rv reflect.Value) error { rv.Set(reflect.ValueOf(data)) return nil } func (md *MetaData) unifyText(data interface{}, v TextUnmarshaler) error { var s string switch sdata := data.(type) { case TextMarshaler: text, err := sdata.MarshalText() if err != nil { return err } s = string(text) case fmt.Stringer: s = sdata.String() case string: s = sdata case bool: s = fmt.Sprintf("%v", sdata) case int64: s = fmt.Sprintf("%d", sdata) case float64: s = fmt.Sprintf("%f", sdata) default: return badtype("primitive (string-like)", data) } if err := v.UnmarshalText([]byte(s)); err != nil { return err } return nil } // rvalue returns a reflect.Value of `v`. All pointers are resolved. func rvalue(v interface{}) reflect.Value { return indirect(reflect.ValueOf(v)) } // indirect returns the value pointed to by a pointer. // Pointers are followed until the value is not a pointer. // New values are allocated for each nil pointer. // // An exception to this rule is if the value satisfies an interface of // interest to us (like encoding.TextUnmarshaler). func indirect(v reflect.Value) reflect.Value { if v.Kind() != reflect.Ptr { if v.CanSet() { pv := v.Addr() if _, ok := pv.Interface().(TextUnmarshaler); ok { return pv } } return v } if v.IsNil() { v.Set(reflect.New(v.Type().Elem())) } return indirect(reflect.Indirect(v)) } func isUnifiable(rv reflect.Value) bool { if rv.CanSet() { return true } if _, ok := rv.Interface().(TextUnmarshaler); ok { return true } return false } func badtype(expected string, data interface{}) error { return e("cannot load TOML value of type %T into a Go %s", data, expected) } toml-0.3.1/decode_meta.go000066400000000000000000000062021333500230500152400ustar00rootroot00000000000000package toml import "strings" // MetaData allows access to meta information about TOML data that may not // be inferrable via reflection. In particular, whether a key has been defined // and the TOML type of a key. type MetaData struct { mapping map[string]interface{} types map[string]tomlType keys []Key decoded map[string]bool context Key // Used only during decoding. } // IsDefined returns true if the key given exists in the TOML data. The key // should be specified hierarchially. e.g., // // // access the TOML key 'a.b.c' // IsDefined("a", "b", "c") // // IsDefined will return false if an empty key given. Keys are case sensitive. func (md *MetaData) IsDefined(key ...string) bool { if len(key) == 0 { return false } var hash map[string]interface{} var ok bool var hashOrVal interface{} = md.mapping for _, k := range key { if hash, ok = hashOrVal.(map[string]interface{}); !ok { return false } if hashOrVal, ok = hash[k]; !ok { return false } } return true } // Type returns a string representation of the type of the key specified. // // Type will return the empty string if given an empty key or a key that // does not exist. Keys are case sensitive. func (md *MetaData) Type(key ...string) string { fullkey := strings.Join(key, ".") if typ, ok := md.types[fullkey]; ok { return typ.typeString() } return "" } // Key is the type of any TOML key, including key groups. Use (MetaData).Keys // to get values of this type. type Key []string func (k Key) String() string { return strings.Join(k, ".") } func (k Key) maybeQuotedAll() string { var ss []string for i := range k { ss = append(ss, k.maybeQuoted(i)) } return strings.Join(ss, ".") } func (k Key) maybeQuoted(i int) string { quote := false for _, c := range k[i] { if !isBareKeyChar(c) { quote = true break } } if quote { return "\"" + strings.Replace(k[i], "\"", "\\\"", -1) + "\"" } return k[i] } func (k Key) add(piece string) Key { newKey := make(Key, len(k)+1) copy(newKey, k) newKey[len(k)] = piece return newKey } // Keys returns a slice of every key in the TOML data, including key groups. // Each key is itself a slice, where the first element is the top of the // hierarchy and the last is the most specific. // // The list will have the same order as the keys appeared in the TOML data. // // All keys returned are non-empty. func (md *MetaData) Keys() []Key { return md.keys } // Undecoded returns all keys that have not been decoded in the order in which // they appear in the original TOML document. // // This includes keys that haven't been decoded because of a Primitive value. // Once the Primitive value is decoded, the keys will be considered decoded. // // Also note that decoding into an empty interface will result in no decoding, // and so no keys will be considered decoded. // // In this sense, the Undecoded keys correspond to keys in the TOML document // that do not have a concrete type in your representation. func (md *MetaData) Undecoded() []Key { undecoded := make([]Key, 0, len(md.keys)) for _, key := range md.keys { if !md.decoded[key.String()] { undecoded = append(undecoded, key) } } return undecoded } toml-0.3.1/decode_test.go000066400000000000000000000745771333500230500153150ustar00rootroot00000000000000package toml import ( "fmt" "log" "math" "reflect" "strings" "testing" "time" ) func TestDecodeSimple(t *testing.T) { var testSimple = ` age = 250 andrew = "gallant" kait = "brady" now = 1987-07-05T05:45:00Z nowEast = 2017-06-22T16:15:21+08:00 nowWest = 2017-06-22T02:14:36-06:00 yesOrNo = true pi = 3.14 colors = [ ["red", "green", "blue"], ["cyan", "magenta", "yellow", "black"], ] [My.Cats] plato = "cat 1" cauchy = "cat 2" ` type cats struct { Plato string Cauchy string } type simple struct { Age int Colors [][]string Pi float64 YesOrNo bool Now time.Time NowEast time.Time NowWest time.Time Andrew string Kait string My map[string]cats } var val simple _, err := Decode(testSimple, &val) if err != nil { t.Fatal(err) } now, err := time.Parse("2006-01-02T15:04:05", "1987-07-05T05:45:00") if err != nil { panic(err) } nowEast, err := time.Parse("2006-01-02T15:04:05-07:00", "2017-06-22T16:15:21+08:00") if err != nil { panic(err) } nowWest, err := time.Parse("2006-01-02T15:04:05-07:00", "2017-06-22T02:14:36-06:00") if err != nil { panic(err) } var answer = simple{ Age: 250, Andrew: "gallant", Kait: "brady", Now: now, NowEast: nowEast, NowWest: nowWest, YesOrNo: true, Pi: 3.14, Colors: [][]string{ {"red", "green", "blue"}, {"cyan", "magenta", "yellow", "black"}, }, My: map[string]cats{ "Cats": {Plato: "cat 1", Cauchy: "cat 2"}, }, } if !reflect.DeepEqual(val, answer) { t.Fatalf("Expected\n-----\n%#v\n-----\nbut got\n-----\n%#v\n", answer, val) } } func TestDecodeEmbedded(t *testing.T) { type Dog struct{ Name string } type Age int type cat struct{ Name string } for _, test := range []struct { label string input string decodeInto interface{} wantDecoded interface{} }{ { label: "embedded struct", input: `Name = "milton"`, decodeInto: &struct{ Dog }{}, wantDecoded: &struct{ Dog }{Dog{"milton"}}, }, { label: "embedded non-nil pointer to struct", input: `Name = "milton"`, decodeInto: &struct{ *Dog }{}, wantDecoded: &struct{ *Dog }{&Dog{"milton"}}, }, { label: "embedded nil pointer to struct", input: ``, decodeInto: &struct{ *Dog }{}, wantDecoded: &struct{ *Dog }{nil}, }, { label: "unexported embedded struct", input: `Name = "socks"`, decodeInto: &struct{ cat }{}, wantDecoded: &struct{ cat }{cat{"socks"}}, }, { label: "embedded int", input: `Age = -5`, decodeInto: &struct{ Age }{}, wantDecoded: &struct{ Age }{-5}, }, } { _, err := Decode(test.input, test.decodeInto) if err != nil { t.Fatal(err) } if !reflect.DeepEqual(test.wantDecoded, test.decodeInto) { t.Errorf("%s: want decoded == %+v, got %+v", test.label, test.wantDecoded, test.decodeInto) } } } func TestDecodeIgnoredFields(t *testing.T) { type simple struct { Number int `toml:"-"` } const input = ` Number = 123 - = 234 ` var s simple if _, err := Decode(input, &s); err != nil { t.Fatal(err) } if s.Number != 0 { t.Errorf("got: %d; want 0", s.Number) } } func TestTableArrays(t *testing.T) { var tomlTableArrays = ` [[albums]] name = "Born to Run" [[albums.songs]] name = "Jungleland" [[albums.songs]] name = "Meeting Across the River" [[albums]] name = "Born in the USA" [[albums.songs]] name = "Glory Days" [[albums.songs]] name = "Dancing in the Dark" ` type Song struct { Name string } type Album struct { Name string Songs []Song } type Music struct { Albums []Album } expected := Music{[]Album{ {"Born to Run", []Song{{"Jungleland"}, {"Meeting Across the River"}}}, {"Born in the USA", []Song{{"Glory Days"}, {"Dancing in the Dark"}}}, }} var got Music if _, err := Decode(tomlTableArrays, &got); err != nil { t.Fatal(err) } if !reflect.DeepEqual(expected, got) { t.Fatalf("\n%#v\n!=\n%#v\n", expected, got) } } func TestTableNesting(t *testing.T) { for _, tt := range []struct { t string want []string }{ {"[a.b.c]", []string{"a", "b", "c"}}, {`[a."b.c"]`, []string{"a", "b.c"}}, {`[a.'b.c']`, []string{"a", "b.c"}}, {`[a.' b ']`, []string{"a", " b "}}, {"[ d.e.f ]", []string{"d", "e", "f"}}, {"[ g . h . i ]", []string{"g", "h", "i"}}, {`[ j . "ʞ" . 'l' ]`, []string{"j", "ʞ", "l"}}, } { var m map[string]interface{} if _, err := Decode(tt.t, &m); err != nil { t.Errorf("Decode(%q): got error: %s", tt.t, err) continue } if keys := extractNestedKeys(m); !reflect.DeepEqual(keys, tt.want) { t.Errorf("Decode(%q): got nested keys %#v; want %#v", tt.t, keys, tt.want) } } } func extractNestedKeys(v map[string]interface{}) []string { var result []string for { if len(v) != 1 { return result } for k, m := range v { result = append(result, k) var ok bool v, ok = m.(map[string]interface{}) if !ok { return result } } } } // Case insensitive matching tests. // A bit more comprehensive than needed given the current implementation, // but implementations change. // Probably still missing demonstrations of some ugly corner cases regarding // case insensitive matching and multiple fields. func TestCase(t *testing.T) { var caseToml = ` tOpString = "string" tOpInt = 1 tOpFloat = 1.1 tOpBool = true tOpdate = 2006-01-02T15:04:05Z tOparray = [ "array" ] Match = "i should be in Match only" MatcH = "i should be in MatcH only" once = "just once" [nEst.eD] nEstedString = "another string" ` type InsensitiveEd struct { NestedString string } type InsensitiveNest struct { Ed InsensitiveEd } type Insensitive struct { TopString string TopInt int TopFloat float64 TopBool bool TopDate time.Time TopArray []string Match string MatcH string Once string OncE string Nest InsensitiveNest } tme, err := time.Parse(time.RFC3339, time.RFC3339[:len(time.RFC3339)-5]) if err != nil { panic(err) } expected := Insensitive{ TopString: "string", TopInt: 1, TopFloat: 1.1, TopBool: true, TopDate: tme, TopArray: []string{"array"}, MatcH: "i should be in MatcH only", Match: "i should be in Match only", Once: "just once", OncE: "", Nest: InsensitiveNest{ Ed: InsensitiveEd{NestedString: "another string"}, }, } var got Insensitive if _, err := Decode(caseToml, &got); err != nil { t.Fatal(err) } if !reflect.DeepEqual(expected, got) { t.Fatalf("\n%#v\n!=\n%#v\n", expected, got) } } func TestPointers(t *testing.T) { type Object struct { Type string Description string } type Dict struct { NamedObject map[string]*Object BaseObject *Object Strptr *string Strptrs []*string } s1, s2, s3 := "blah", "abc", "def" expected := &Dict{ Strptr: &s1, Strptrs: []*string{&s2, &s3}, NamedObject: map[string]*Object{ "foo": {"FOO", "fooooo!!!"}, "bar": {"BAR", "ba-ba-ba-ba-barrrr!!!"}, }, BaseObject: &Object{"BASE", "da base"}, } ex1 := ` Strptr = "blah" Strptrs = ["abc", "def"] [NamedObject.foo] Type = "FOO" Description = "fooooo!!!" [NamedObject.bar] Type = "BAR" Description = "ba-ba-ba-ba-barrrr!!!" [BaseObject] Type = "BASE" Description = "da base" ` dict := new(Dict) _, err := Decode(ex1, dict) if err != nil { t.Errorf("Decode error: %v", err) } if !reflect.DeepEqual(expected, dict) { t.Fatalf("\n%#v\n!=\n%#v\n", expected, dict) } } func TestDecodeDatetime(t *testing.T) { const noTimestamp = "2006-01-02T15:04:05" for _, tt := range []struct { s string t string format string }{ {"1979-05-27T07:32:00Z", "1979-05-27T07:32:00Z", time.RFC3339}, {"1979-05-27T00:32:00-07:00", "1979-05-27T00:32:00-07:00", time.RFC3339}, { "1979-05-27T00:32:00.999999-07:00", "1979-05-27T00:32:00.999999-07:00", time.RFC3339, }, {"1979-05-27T07:32:00", "1979-05-27T07:32:00", noTimestamp}, { "1979-05-27T00:32:00.999999", "1979-05-27T00:32:00.999999", noTimestamp, }, {"1979-05-27", "1979-05-27T00:00:00", noTimestamp}, } { var x struct{ D time.Time } input := "d = " + tt.s if _, err := Decode(input, &x); err != nil { t.Errorf("Decode(%q): got error: %s", input, err) continue } want, err := time.ParseInLocation(tt.format, tt.t, time.Local) if err != nil { panic(err) } if !x.D.Equal(want) { t.Errorf("Decode(%q): got %s; want %s", input, x.D, want) } } } func TestDecodeBadDatetime(t *testing.T) { var x struct{ T time.Time } for _, s := range []string{ "123", "2006-01-50T00:00:00Z", "2006-01-30T00:00", "2006-01-30T", } { input := "T = " + s if _, err := Decode(input, &x); err == nil { t.Errorf("Expected invalid DateTime error for %q", s) } } } func TestDecodeMultilineStrings(t *testing.T) { var x struct { S string } const s0 = `s = """ a b \n c d e f """` if _, err := Decode(s0, &x); err != nil { t.Fatal(err) } if want := "a b \n c\nd e f\n"; x.S != want { t.Errorf("got: %q; want: %q", x.S, want) } const s1 = `s = """a b c\ """` if _, err := Decode(s1, &x); err != nil { t.Fatal(err) } if want := "a b c"; x.S != want { t.Errorf("got: %q; want: %q", x.S, want) } } type sphere struct { Center [3]float64 Radius float64 } func TestDecodeSimpleArray(t *testing.T) { var s1 sphere if _, err := Decode(`center = [0.0, 1.5, 0.0]`, &s1); err != nil { t.Fatal(err) } } func TestDecodeArrayWrongSize(t *testing.T) { var s1 sphere if _, err := Decode(`center = [0.1, 2.3]`, &s1); err == nil { t.Fatal("Expected array type mismatch error") } } func TestDecodeLargeIntoSmallInt(t *testing.T) { type table struct { Value int8 } var tab table if _, err := Decode(`value = 500`, &tab); err == nil { t.Fatal("Expected integer out-of-bounds error.") } } func TestDecodeSizedInts(t *testing.T) { type table struct { U8 uint8 U16 uint16 U32 uint32 U64 uint64 U uint I8 int8 I16 int16 I32 int32 I64 int64 I int } answer := table{1, 1, 1, 1, 1, -1, -1, -1, -1, -1} toml := ` u8 = 1 u16 = 1 u32 = 1 u64 = 1 u = 1 i8 = -1 i16 = -1 i32 = -1 i64 = -1 i = -1 ` var tab table if _, err := Decode(toml, &tab); err != nil { t.Fatal(err.Error()) } if answer != tab { t.Fatalf("Expected %#v but got %#v", answer, tab) } } func TestDecodeInts(t *testing.T) { for _, tt := range []struct { s string want int64 }{ {"0", 0}, {"+99", 99}, {"-10", -10}, {"1_234_567", 1234567}, {"1_2_3_4", 1234}, {"-9_223_372_036_854_775_808", math.MinInt64}, {"9_223_372_036_854_775_807", math.MaxInt64}, } { var x struct{ N int64 } input := "n = " + tt.s if _, err := Decode(input, &x); err != nil { t.Errorf("Decode(%q): got error: %s", input, err) continue } if x.N != tt.want { t.Errorf("Decode(%q): got %d; want %d", input, x.N, tt.want) } } } func TestDecodeFloats(t *testing.T) { for _, tt := range []struct { s string want float64 }{ {"+1.0", 1}, {"3.1415", 3.1415}, {"-0.01", -0.01}, {"5e+22", 5e22}, {"1e6", 1e6}, {"-2E-2", -2e-2}, {"6.626e-34", 6.626e-34}, {"9_224_617.445_991_228_313", 9224617.445991228313}, {"9_876.54_32e1_0", 9876.5432e10}, } { var x struct{ N float64 } input := "n = " + tt.s if _, err := Decode(input, &x); err != nil { t.Errorf("Decode(%q): got error: %s", input, err) continue } if x.N != tt.want { t.Errorf("Decode(%q): got %f; want %f", input, x.N, tt.want) } } } func TestDecodeMalformedNumbers(t *testing.T) { for _, tt := range []struct { s string want string }{ {"++99", "expected a digit"}, {"0..1", "must be followed by one or more digits"}, {"0.1.2", "Invalid float value"}, {"1e2.3", "Invalid float value"}, {"1e2e3", "Invalid float value"}, {"_123", "expected value"}, {"123_", "surrounded by digits"}, {"1._23", "surrounded by digits"}, {"1e__23", "surrounded by digits"}, {"123.", "must be followed by one or more digits"}, {"1.e2", "must be followed by one or more digits"}, } { var x struct{ N interface{} } input := "n = " + tt.s _, err := Decode(input, &x) if err == nil { t.Errorf("Decode(%q): got nil, want error containing %q", input, tt.want) continue } if !strings.Contains(err.Error(), tt.want) { t.Errorf("Decode(%q): got %q, want error containing %q", input, err, tt.want) } } } func TestDecodeBadValues(t *testing.T) { for _, tt := range []struct { v interface{} want string }{ {3, "non-pointer int"}, {(*int)(nil), "nil"}, } { _, err := Decode(`x = 3`, tt.v) if err == nil { t.Errorf("Decode(%v): got nil; want error containing %q", tt.v, tt.want) continue } if !strings.Contains(err.Error(), tt.want) { t.Errorf("Decode(%v): got %q; want error containing %q", tt.v, err, tt.want) } } } func TestUnmarshaler(t *testing.T) { var tomlBlob = ` [dishes.hamboogie] name = "Hamboogie with fries" price = 10.99 [[dishes.hamboogie.ingredients]] name = "Bread Bun" [[dishes.hamboogie.ingredients]] name = "Lettuce" [[dishes.hamboogie.ingredients]] name = "Real Beef Patty" [[dishes.hamboogie.ingredients]] name = "Tomato" [dishes.eggsalad] name = "Egg Salad with rice" price = 3.99 [[dishes.eggsalad.ingredients]] name = "Egg" [[dishes.eggsalad.ingredients]] name = "Mayo" [[dishes.eggsalad.ingredients]] name = "Rice" ` m := &menu{} if _, err := Decode(tomlBlob, m); err != nil { t.Fatal(err) } if len(m.Dishes) != 2 { t.Log("two dishes should be loaded with UnmarshalTOML()") t.Errorf("expected %d but got %d", 2, len(m.Dishes)) } eggSalad := m.Dishes["eggsalad"] if _, ok := interface{}(eggSalad).(dish); !ok { t.Errorf("expected a dish") } if eggSalad.Name != "Egg Salad with rice" { t.Errorf("expected the dish to be named 'Egg Salad with rice'") } if len(eggSalad.Ingredients) != 3 { t.Log("dish should be loaded with UnmarshalTOML()") t.Errorf("expected %d but got %d", 3, len(eggSalad.Ingredients)) } found := false for _, i := range eggSalad.Ingredients { if i.Name == "Rice" { found = true break } } if !found { t.Error("Rice was not loaded in UnmarshalTOML()") } // test on a value - must be passed as * o := menu{} if _, err := Decode(tomlBlob, &o); err != nil { t.Fatal(err) } } func TestDecodeInlineTable(t *testing.T) { input := ` [CookieJar] Types = {Chocolate = "yummy", Oatmeal = "best ever"} [Seasons] Locations = {NY = {Temp = "not cold", Rating = 4}, MI = {Temp = "freezing", Rating = 9}} ` type cookieJar struct { Types map[string]string } type properties struct { Temp string Rating int } type seasons struct { Locations map[string]properties } type wrapper struct { CookieJar cookieJar Seasons seasons } var got wrapper meta, err := Decode(input, &got) if err != nil { t.Fatal(err) } want := wrapper{ CookieJar: cookieJar{ Types: map[string]string{ "Chocolate": "yummy", "Oatmeal": "best ever", }, }, Seasons: seasons{ Locations: map[string]properties{ "NY": { Temp: "not cold", Rating: 4, }, "MI": { Temp: "freezing", Rating: 9, }, }, }, } if !reflect.DeepEqual(got, want) { t.Fatalf("after decode, got:\n\n%#v\n\nwant:\n\n%#v", got, want) } if len(meta.keys) != 12 { t.Errorf("after decode, got %d meta keys; want 12", len(meta.keys)) } if len(meta.types) != 12 { t.Errorf("after decode, got %d meta types; want 12", len(meta.types)) } } func TestDecodeInlineTableArray(t *testing.T) { type point struct { X, Y, Z int } var got struct { Points []point } // Example inline table array from the spec. const in = ` points = [ { x = 1, y = 2, z = 3 }, { x = 7, y = 8, z = 9 }, { x = 2, y = 4, z = 8 } ] ` if _, err := Decode(in, &got); err != nil { t.Fatal(err) } want := []point{ {X: 1, Y: 2, Z: 3}, {X: 7, Y: 8, Z: 9}, {X: 2, Y: 4, Z: 8}, } if !reflect.DeepEqual(got.Points, want) { t.Errorf("got %#v; want %#v", got.Points, want) } } func TestDecodeMalformedInlineTable(t *testing.T) { for _, tt := range []struct { s string want string }{ {"{,}", "unexpected comma"}, {"{x = 3 y = 4}", "expected a comma or an inline table terminator"}, {"{x=3,,y=4}", "unexpected comma"}, {"{x=3,\ny=4}", "newlines not allowed"}, {"{x=3\n,y=4}", "newlines not allowed"}, } { var x struct{ A map[string]int } input := "a = " + tt.s _, err := Decode(input, &x) if err == nil { t.Errorf("Decode(%q): got nil, want error containing %q", input, tt.want) continue } if !strings.Contains(err.Error(), tt.want) { t.Errorf("Decode(%q): got %q, want error containing %q", input, err, tt.want) } } } type menu struct { Dishes map[string]dish } func (m *menu) UnmarshalTOML(p interface{}) error { m.Dishes = make(map[string]dish) data, _ := p.(map[string]interface{}) dishes := data["dishes"].(map[string]interface{}) for n, v := range dishes { if d, ok := v.(map[string]interface{}); ok { nd := dish{} nd.UnmarshalTOML(d) m.Dishes[n] = nd } else { return fmt.Errorf("not a dish") } } return nil } type dish struct { Name string Price float32 Ingredients []ingredient } func (d *dish) UnmarshalTOML(p interface{}) error { data, _ := p.(map[string]interface{}) d.Name, _ = data["name"].(string) d.Price, _ = data["price"].(float32) ingredients, _ := data["ingredients"].([]map[string]interface{}) for _, e := range ingredients { n, _ := interface{}(e).(map[string]interface{}) name, _ := n["name"].(string) i := ingredient{name} d.Ingredients = append(d.Ingredients, i) } return nil } type ingredient struct { Name string } func TestDecodeSlices(t *testing.T) { type T struct { S []string } for i, tt := range []struct { v T input string want T }{ {T{}, "", T{}}, {T{[]string{}}, "", T{[]string{}}}, {T{[]string{"a", "b"}}, "", T{[]string{"a", "b"}}}, {T{}, "S = []", T{[]string{}}}, {T{[]string{}}, "S = []", T{[]string{}}}, {T{[]string{"a", "b"}}, "S = []", T{[]string{}}}, {T{}, `S = ["x"]`, T{[]string{"x"}}}, {T{[]string{}}, `S = ["x"]`, T{[]string{"x"}}}, {T{[]string{"a", "b"}}, `S = ["x"]`, T{[]string{"x"}}}, } { if _, err := Decode(tt.input, &tt.v); err != nil { t.Errorf("[%d] %s", i, err) continue } if !reflect.DeepEqual(tt.v, tt.want) { t.Errorf("[%d] got %#v; want %#v", i, tt.v, tt.want) } } } func TestDecodePrimitive(t *testing.T) { type S struct { P Primitive } type T struct { S []int } slicep := func(s []int) *[]int { return &s } arrayp := func(a [2]int) *[2]int { return &a } mapp := func(m map[string]int) *map[string]int { return &m } for i, tt := range []struct { v interface{} input string want interface{} }{ // slices {slicep(nil), "", slicep(nil)}, {slicep([]int{}), "", slicep([]int{})}, {slicep([]int{1, 2, 3}), "", slicep([]int{1, 2, 3})}, {slicep(nil), "P = [1,2]", slicep([]int{1, 2})}, {slicep([]int{}), "P = [1,2]", slicep([]int{1, 2})}, {slicep([]int{1, 2, 3}), "P = [1,2]", slicep([]int{1, 2})}, // arrays {arrayp([2]int{2, 3}), "", arrayp([2]int{2, 3})}, {arrayp([2]int{2, 3}), "P = [3,4]", arrayp([2]int{3, 4})}, // maps {mapp(nil), "", mapp(nil)}, {mapp(map[string]int{}), "", mapp(map[string]int{})}, {mapp(map[string]int{"a": 1}), "", mapp(map[string]int{"a": 1})}, {mapp(nil), "[P]\na = 2", mapp(map[string]int{"a": 2})}, {mapp(map[string]int{}), "[P]\na = 2", mapp(map[string]int{"a": 2})}, {mapp(map[string]int{"a": 1, "b": 3}), "[P]\na = 2", mapp(map[string]int{"a": 2, "b": 3})}, // structs {&T{nil}, "[P]", &T{nil}}, {&T{[]int{}}, "[P]", &T{[]int{}}}, {&T{[]int{1, 2, 3}}, "[P]", &T{[]int{1, 2, 3}}}, {&T{nil}, "[P]\nS = [1,2]", &T{[]int{1, 2}}}, {&T{[]int{}}, "[P]\nS = [1,2]", &T{[]int{1, 2}}}, {&T{[]int{1, 2, 3}}, "[P]\nS = [1,2]", &T{[]int{1, 2}}}, } { var s S md, err := Decode(tt.input, &s) if err != nil { t.Errorf("[%d] Decode error: %s", i, err) continue } if err := md.PrimitiveDecode(s.P, tt.v); err != nil { t.Errorf("[%d] PrimitiveDecode error: %s", i, err) continue } if !reflect.DeepEqual(tt.v, tt.want) { t.Errorf("[%d] got %#v; want %#v", i, tt.v, tt.want) } } } func TestDecodeErrors(t *testing.T) { for _, s := range []string{ `x="`, `x='`, `x='''`, // Cases found by fuzzing in // https://github.com/BurntSushi/toml/issues/155. `""�`, // used to panic with index out of range `e="""`, // used to hang } { var x struct{} _, err := Decode(s, &x) if err == nil { t.Errorf("Decode(%q): got nil error", s) } } } // Test for https://github.com/BurntSushi/toml/pull/166. func TestDecodeBoolArray(t *testing.T) { for _, tt := range []struct { s string got interface{} want interface{} }{ { "a = [true, false]", &struct{ A []bool }{}, &struct{ A []bool }{[]bool{true, false}}, }, { "a = {a = true, b = false}", &struct{ A map[string]bool }{}, &struct{ A map[string]bool }{map[string]bool{"a": true, "b": false}}, }, } { if _, err := Decode(tt.s, tt.got); err != nil { t.Errorf("Decode(%q): %s", tt.s, err) continue } if !reflect.DeepEqual(tt.got, tt.want) { t.Errorf("Decode(%q): got %#v; want %#v", tt.s, tt.got, tt.want) } } } func ExampleMetaData_PrimitiveDecode() { var md MetaData var err error var tomlBlob = ` ranking = ["Springsteen", "J Geils"] [bands.Springsteen] started = 1973 albums = ["Greetings", "WIESS", "Born to Run", "Darkness"] [bands."J Geils"] started = 1970 albums = ["The J. Geils Band", "Full House", "Blow Your Face Out"] ` type band struct { Started int Albums []string } type classics struct { Ranking []string Bands map[string]Primitive } // Do the initial decode. Reflection is delayed on Primitive values. var music classics if md, err = Decode(tomlBlob, &music); err != nil { log.Fatal(err) } // MetaData still includes information on Primitive values. fmt.Printf("Is `bands.Springsteen` defined? %v\n", md.IsDefined("bands", "Springsteen")) // Decode primitive data into Go values. for _, artist := range music.Ranking { // A band is a primitive value, so we need to decode it to get a // real `band` value. primValue := music.Bands[artist] var aBand band if err = md.PrimitiveDecode(primValue, &aBand); err != nil { log.Fatal(err) } fmt.Printf("%s started in %d.\n", artist, aBand.Started) } // Check to see if there were any fields left undecoded. // Note that this won't be empty before decoding the Primitive value! fmt.Printf("Undecoded: %q\n", md.Undecoded()) // Output: // Is `bands.Springsteen` defined? true // Springsteen started in 1973. // J Geils started in 1970. // Undecoded: [] } func ExampleDecode() { var tomlBlob = ` # Some comments. [alpha] ip = "10.0.0.1" [alpha.config] Ports = [ 8001, 8002 ] Location = "Toronto" Created = 1987-07-05T05:45:00Z [beta] ip = "10.0.0.2" [beta.config] Ports = [ 9001, 9002 ] Location = "New Jersey" Created = 1887-01-05T05:55:00Z ` type serverConfig struct { Ports []int Location string Created time.Time } type server struct { IP string `toml:"ip,omitempty"` Config serverConfig `toml:"config"` } type servers map[string]server var config servers if _, err := Decode(tomlBlob, &config); err != nil { log.Fatal(err) } for _, name := range []string{"alpha", "beta"} { s := config[name] fmt.Printf("Server: %s (ip: %s) in %s created on %s\n", name, s.IP, s.Config.Location, s.Config.Created.Format("2006-01-02")) fmt.Printf("Ports: %v\n", s.Config.Ports) } // Output: // Server: alpha (ip: 10.0.0.1) in Toronto created on 1987-07-05 // Ports: [8001 8002] // Server: beta (ip: 10.0.0.2) in New Jersey created on 1887-01-05 // Ports: [9001 9002] } type duration struct { time.Duration } func (d *duration) UnmarshalText(text []byte) error { var err error d.Duration, err = time.ParseDuration(string(text)) return err } // Example Unmarshaler shows how to decode TOML strings into your own // custom data type. func Example_unmarshaler() { blob := ` [[song]] name = "Thunder Road" duration = "4m49s" [[song]] name = "Stairway to Heaven" duration = "8m03s" ` type song struct { Name string Duration duration } type songs struct { Song []song } var favorites songs if _, err := Decode(blob, &favorites); err != nil { log.Fatal(err) } // Code to implement the TextUnmarshaler interface for `duration`: // // type duration struct { // time.Duration // } // // func (d *duration) UnmarshalText(text []byte) error { // var err error // d.Duration, err = time.ParseDuration(string(text)) // return err // } for _, s := range favorites.Song { fmt.Printf("%s (%s)\n", s.Name, s.Duration) } // Output: // Thunder Road (4m49s) // Stairway to Heaven (8m3s) } // Example StrictDecoding shows how to detect whether there are keys in the // TOML document that weren't decoded into the value given. This is useful // for returning an error to the user if they've included extraneous fields // in their configuration. func Example_strictDecoding() { var blob = ` key1 = "value1" key2 = "value2" key3 = "value3" ` type config struct { Key1 string Key3 string } var conf config md, err := Decode(blob, &conf) if err != nil { log.Fatal(err) } fmt.Printf("Undecoded keys: %q\n", md.Undecoded()) // Output: // Undecoded keys: ["key2"] } // Example UnmarshalTOML shows how to implement a struct type that knows how to // unmarshal itself. The struct must take full responsibility for mapping the // values passed into the struct. The method may be used with interfaces in a // struct in cases where the actual type is not known until the data is // examined. func Example_unmarshalTOML() { var blob = ` [[parts]] type = "valve" id = "valve-1" size = 1.2 rating = 4 [[parts]] type = "valve" id = "valve-2" size = 2.1 rating = 5 [[parts]] type = "pipe" id = "pipe-1" length = 2.1 diameter = 12 [[parts]] type = "cable" id = "cable-1" length = 12 rating = 3.1 ` o := &order{} err := Unmarshal([]byte(blob), o) if err != nil { log.Fatal(err) } fmt.Println(len(o.parts)) for _, part := range o.parts { fmt.Println(part.Name()) } // Code to implement UmarshalJSON. // type order struct { // // NOTE `order.parts` is a private slice of type `part` which is an // // interface and may only be loaded from toml using the // // UnmarshalTOML() method of the Umarshaler interface. // parts parts // } // func (o *order) UnmarshalTOML(data interface{}) error { // // NOTE the example below contains detailed type casting to show how // // the 'data' is retrieved. In operational use, a type cast wrapper // // may be preferred e.g. // // // // func AsMap(v interface{}) (map[string]interface{}, error) { // // return v.(map[string]interface{}) // // } // // // // resulting in: // // d, _ := AsMap(data) // // // d, _ := data.(map[string]interface{}) // parts, _ := d["parts"].([]map[string]interface{}) // for _, p := range parts { // typ, _ := p["type"].(string) // id, _ := p["id"].(string) // // detect the type of part and handle each case // switch p["type"] { // case "valve": // size := float32(p["size"].(float64)) // rating := int(p["rating"].(int64)) // valve := &valve{ // Type: typ, // ID: id, // Size: size, // Rating: rating, // } // o.parts = append(o.parts, valve) // case "pipe": // length := float32(p["length"].(float64)) // diameter := int(p["diameter"].(int64)) // pipe := &pipe{ // Type: typ, // ID: id, // Length: length, // Diameter: diameter, // } // o.parts = append(o.parts, pipe) // case "cable": // length := int(p["length"].(int64)) // rating := float32(p["rating"].(float64)) // cable := &cable{ // Type: typ, // ID: id, // Length: length, // Rating: rating, // } // o.parts = append(o.parts, cable) // } // } // return nil // } // type parts []part // type part interface { // Name() string // } // type valve struct { // Type string // ID string // Size float32 // Rating int // } // func (v *valve) Name() string { // return fmt.Sprintf("VALVE: %s", v.ID) // } // type pipe struct { // Type string // ID string // Length float32 // Diameter int // } // func (p *pipe) Name() string { // return fmt.Sprintf("PIPE: %s", p.ID) // } // type cable struct { // Type string // ID string // Length int // Rating float32 // } // func (c *cable) Name() string { // return fmt.Sprintf("CABLE: %s", c.ID) // } // Output: // 4 // VALVE: valve-1 // VALVE: valve-2 // PIPE: pipe-1 // CABLE: cable-1 } type order struct { // NOTE `order.parts` is a private slice of type `part` which is an // interface and may only be loaded from toml using the UnmarshalTOML() // method of the Umarshaler interface. parts parts } func (o *order) UnmarshalTOML(data interface{}) error { // NOTE the example below contains detailed type casting to show how // the 'data' is retrieved. In operational use, a type cast wrapper // may be preferred e.g. // // func AsMap(v interface{}) (map[string]interface{}, error) { // return v.(map[string]interface{}) // } // // resulting in: // d, _ := AsMap(data) // d, _ := data.(map[string]interface{}) parts, _ := d["parts"].([]map[string]interface{}) for _, p := range parts { typ, _ := p["type"].(string) id, _ := p["id"].(string) // detect the type of part and handle each case switch p["type"] { case "valve": size := float32(p["size"].(float64)) rating := int(p["rating"].(int64)) valve := &valve{ Type: typ, ID: id, Size: size, Rating: rating, } o.parts = append(o.parts, valve) case "pipe": length := float32(p["length"].(float64)) diameter := int(p["diameter"].(int64)) pipe := &pipe{ Type: typ, ID: id, Length: length, Diameter: diameter, } o.parts = append(o.parts, pipe) case "cable": length := int(p["length"].(int64)) rating := float32(p["rating"].(float64)) cable := &cable{ Type: typ, ID: id, Length: length, Rating: rating, } o.parts = append(o.parts, cable) } } return nil } type parts []part type part interface { Name() string } type valve struct { Type string ID string Size float32 Rating int } func (v *valve) Name() string { return fmt.Sprintf("VALVE: %s", v.ID) } type pipe struct { Type string ID string Length float32 Diameter int } func (p *pipe) Name() string { return fmt.Sprintf("PIPE: %s", p.ID) } type cable struct { Type string ID string Length int Rating float32 } func (c *cable) Name() string { return fmt.Sprintf("CABLE: %s", c.ID) } toml-0.3.1/doc.go000066400000000000000000000021201333500230500135470ustar00rootroot00000000000000/* Package toml provides facilities for decoding and encoding TOML configuration files via reflection. There is also support for delaying decoding with the Primitive type, and querying the set of keys in a TOML document with the MetaData type. The specification implemented: https://github.com/toml-lang/toml The sub-command github.com/BurntSushi/toml/cmd/tomlv can be used to verify whether a file is a valid TOML document. It can also be used to print the type of each key in a TOML document. Testing There are two important types of tests used for this package. The first is contained inside '*_test.go' files and uses the standard Go unit testing framework. These tests are primarily devoted to holistically testing the decoder and encoder. The second type of testing is used to verify the implementation's adherence to the TOML specification. These tests have been factored into their own project: https://github.com/BurntSushi/toml-test The reason the tests are in a separate project is so that they can be used by any implementation of TOML. Namely, it is language agnostic. */ package toml toml-0.3.1/encode.go000066400000000000000000000351731333500230500142550ustar00rootroot00000000000000package toml import ( "bufio" "errors" "fmt" "io" "reflect" "sort" "strconv" "strings" "time" ) type tomlEncodeError struct{ error } var ( errArrayMixedElementTypes = errors.New( "toml: cannot encode array with mixed element types") errArrayNilElement = errors.New( "toml: cannot encode array with nil element") errNonString = errors.New( "toml: cannot encode a map with non-string key type") errAnonNonStruct = errors.New( "toml: cannot encode an anonymous field that is not a struct") errArrayNoTable = errors.New( "toml: TOML array element cannot contain a table") errNoKey = errors.New( "toml: top-level values must be Go maps or structs") errAnything = errors.New("") // used in testing ) var quotedReplacer = strings.NewReplacer( "\t", "\\t", "\n", "\\n", "\r", "\\r", "\"", "\\\"", "\\", "\\\\", ) // Encoder controls the encoding of Go values to a TOML document to some // io.Writer. // // The indentation level can be controlled with the Indent field. type Encoder struct { // A single indentation level. By default it is two spaces. Indent string // hasWritten is whether we have written any output to w yet. hasWritten bool w *bufio.Writer } // NewEncoder returns a TOML encoder that encodes Go values to the io.Writer // given. By default, a single indentation level is 2 spaces. func NewEncoder(w io.Writer) *Encoder { return &Encoder{ w: bufio.NewWriter(w), Indent: " ", } } // Encode writes a TOML representation of the Go value to the underlying // io.Writer. If the value given cannot be encoded to a valid TOML document, // then an error is returned. // // The mapping between Go values and TOML values should be precisely the same // as for the Decode* functions. Similarly, the TextMarshaler interface is // supported by encoding the resulting bytes as strings. (If you want to write // arbitrary binary data then you will need to use something like base64 since // TOML does not have any binary types.) // // When encoding TOML hashes (i.e., Go maps or structs), keys without any // sub-hashes are encoded first. // // If a Go map is encoded, then its keys are sorted alphabetically for // deterministic output. More control over this behavior may be provided if // there is demand for it. // // Encoding Go values without a corresponding TOML representation---like map // types with non-string keys---will cause an error to be returned. Similarly // for mixed arrays/slices, arrays/slices with nil elements, embedded // non-struct types and nested slices containing maps or structs. // (e.g., [][]map[string]string is not allowed but []map[string]string is OK // and so is []map[string][]string.) func (enc *Encoder) Encode(v interface{}) error { rv := eindirect(reflect.ValueOf(v)) if err := enc.safeEncode(Key([]string{}), rv); err != nil { return err } return enc.w.Flush() } func (enc *Encoder) safeEncode(key Key, rv reflect.Value) (err error) { defer func() { if r := recover(); r != nil { if terr, ok := r.(tomlEncodeError); ok { err = terr.error return } panic(r) } }() enc.encode(key, rv) return nil } func (enc *Encoder) encode(key Key, rv reflect.Value) { // Special case. Time needs to be in ISO8601 format. // Special case. If we can marshal the type to text, then we used that. // Basically, this prevents the encoder for handling these types as // generic structs (or whatever the underlying type of a TextMarshaler is). switch rv.Interface().(type) { case time.Time, TextMarshaler: enc.keyEqElement(key, rv) return } k := rv.Kind() switch k { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String, reflect.Bool: enc.keyEqElement(key, rv) case reflect.Array, reflect.Slice: if typeEqual(tomlArrayHash, tomlTypeOfGo(rv)) { enc.eArrayOfTables(key, rv) } else { enc.keyEqElement(key, rv) } case reflect.Interface: if rv.IsNil() { return } enc.encode(key, rv.Elem()) case reflect.Map: if rv.IsNil() { return } enc.eTable(key, rv) case reflect.Ptr: if rv.IsNil() { return } enc.encode(key, rv.Elem()) case reflect.Struct: enc.eTable(key, rv) default: panic(e("unsupported type for key '%s': %s", key, k)) } } // eElement encodes any value that can be an array element (primitives and // arrays). func (enc *Encoder) eElement(rv reflect.Value) { switch v := rv.Interface().(type) { case time.Time: // Special case time.Time as a primitive. Has to come before // TextMarshaler below because time.Time implements // encoding.TextMarshaler, but we need to always use UTC. enc.wf(v.UTC().Format("2006-01-02T15:04:05Z")) return case TextMarshaler: // Special case. Use text marshaler if it's available for this value. if s, err := v.MarshalText(); err != nil { encPanic(err) } else { enc.writeQuoted(string(s)) } return } switch rv.Kind() { case reflect.Bool: enc.wf(strconv.FormatBool(rv.Bool())) case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: enc.wf(strconv.FormatInt(rv.Int(), 10)) case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64: enc.wf(strconv.FormatUint(rv.Uint(), 10)) case reflect.Float32: enc.wf(floatAddDecimal(strconv.FormatFloat(rv.Float(), 'f', -1, 32))) case reflect.Float64: enc.wf(floatAddDecimal(strconv.FormatFloat(rv.Float(), 'f', -1, 64))) case reflect.Array, reflect.Slice: enc.eArrayOrSliceElement(rv) case reflect.Interface: enc.eElement(rv.Elem()) case reflect.String: enc.writeQuoted(rv.String()) default: panic(e("unexpected primitive type: %s", rv.Kind())) } } // By the TOML spec, all floats must have a decimal with at least one // number on either side. func floatAddDecimal(fstr string) string { if !strings.Contains(fstr, ".") { return fstr + ".0" } return fstr } func (enc *Encoder) writeQuoted(s string) { enc.wf("\"%s\"", quotedReplacer.Replace(s)) } func (enc *Encoder) eArrayOrSliceElement(rv reflect.Value) { length := rv.Len() enc.wf("[") for i := 0; i < length; i++ { elem := rv.Index(i) enc.eElement(elem) if i != length-1 { enc.wf(", ") } } enc.wf("]") } func (enc *Encoder) eArrayOfTables(key Key, rv reflect.Value) { if len(key) == 0 { encPanic(errNoKey) } for i := 0; i < rv.Len(); i++ { trv := rv.Index(i) if isNil(trv) { continue } panicIfInvalidKey(key) enc.newline() enc.wf("%s[[%s]]", enc.indentStr(key), key.maybeQuotedAll()) enc.newline() enc.eMapOrStruct(key, trv) } } func (enc *Encoder) eTable(key Key, rv reflect.Value) { panicIfInvalidKey(key) if len(key) == 1 { // Output an extra newline between top-level tables. // (The newline isn't written if nothing else has been written though.) enc.newline() } if len(key) > 0 { enc.wf("%s[%s]", enc.indentStr(key), key.maybeQuotedAll()) enc.newline() } enc.eMapOrStruct(key, rv) } func (enc *Encoder) eMapOrStruct(key Key, rv reflect.Value) { switch rv := eindirect(rv); rv.Kind() { case reflect.Map: enc.eMap(key, rv) case reflect.Struct: enc.eStruct(key, rv) default: panic("eTable: unhandled reflect.Value Kind: " + rv.Kind().String()) } } func (enc *Encoder) eMap(key Key, rv reflect.Value) { rt := rv.Type() if rt.Key().Kind() != reflect.String { encPanic(errNonString) } // Sort keys so that we have deterministic output. And write keys directly // underneath this key first, before writing sub-structs or sub-maps. var mapKeysDirect, mapKeysSub []string for _, mapKey := range rv.MapKeys() { k := mapKey.String() if typeIsHash(tomlTypeOfGo(rv.MapIndex(mapKey))) { mapKeysSub = append(mapKeysSub, k) } else { mapKeysDirect = append(mapKeysDirect, k) } } var writeMapKeys = func(mapKeys []string) { sort.Strings(mapKeys) for _, mapKey := range mapKeys { mrv := rv.MapIndex(reflect.ValueOf(mapKey)) if isNil(mrv) { // Don't write anything for nil fields. continue } enc.encode(key.add(mapKey), mrv) } } writeMapKeys(mapKeysDirect) writeMapKeys(mapKeysSub) } func (enc *Encoder) eStruct(key Key, rv reflect.Value) { // Write keys for fields directly under this key first, because if we write // a field that creates a new table, then all keys under it will be in that // table (not the one we're writing here). rt := rv.Type() var fieldsDirect, fieldsSub [][]int var addFields func(rt reflect.Type, rv reflect.Value, start []int) addFields = func(rt reflect.Type, rv reflect.Value, start []int) { for i := 0; i < rt.NumField(); i++ { f := rt.Field(i) // skip unexported fields if f.PkgPath != "" && !f.Anonymous { continue } frv := rv.Field(i) if f.Anonymous { t := f.Type switch t.Kind() { case reflect.Struct: // Treat anonymous struct fields with // tag names as though they are not // anonymous, like encoding/json does. if getOptions(f.Tag).name == "" { addFields(t, frv, f.Index) continue } case reflect.Ptr: if t.Elem().Kind() == reflect.Struct && getOptions(f.Tag).name == "" { if !frv.IsNil() { addFields(t.Elem(), frv.Elem(), f.Index) } continue } // Fall through to the normal field encoding logic below // for non-struct anonymous fields. } } if typeIsHash(tomlTypeOfGo(frv)) { fieldsSub = append(fieldsSub, append(start, f.Index...)) } else { fieldsDirect = append(fieldsDirect, append(start, f.Index...)) } } } addFields(rt, rv, nil) var writeFields = func(fields [][]int) { for _, fieldIndex := range fields { sft := rt.FieldByIndex(fieldIndex) sf := rv.FieldByIndex(fieldIndex) if isNil(sf) { // Don't write anything for nil fields. continue } opts := getOptions(sft.Tag) if opts.skip { continue } keyName := sft.Name if opts.name != "" { keyName = opts.name } if opts.omitempty && isEmpty(sf) { continue } if opts.omitzero && isZero(sf) { continue } enc.encode(key.add(keyName), sf) } } writeFields(fieldsDirect) writeFields(fieldsSub) } // tomlTypeName returns the TOML type name of the Go value's type. It is // used to determine whether the types of array elements are mixed (which is // forbidden). If the Go value is nil, then it is illegal for it to be an array // element, and valueIsNil is returned as true. // Returns the TOML type of a Go value. The type may be `nil`, which means // no concrete TOML type could be found. func tomlTypeOfGo(rv reflect.Value) tomlType { if isNil(rv) || !rv.IsValid() { return nil } switch rv.Kind() { case reflect.Bool: return tomlBool case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64: return tomlInteger case reflect.Float32, reflect.Float64: return tomlFloat case reflect.Array, reflect.Slice: if typeEqual(tomlHash, tomlArrayType(rv)) { return tomlArrayHash } return tomlArray case reflect.Ptr, reflect.Interface: return tomlTypeOfGo(rv.Elem()) case reflect.String: return tomlString case reflect.Map: return tomlHash case reflect.Struct: switch rv.Interface().(type) { case time.Time: return tomlDatetime case TextMarshaler: return tomlString default: return tomlHash } default: panic("unexpected reflect.Kind: " + rv.Kind().String()) } } // tomlArrayType returns the element type of a TOML array. The type returned // may be nil if it cannot be determined (e.g., a nil slice or a zero length // slize). This function may also panic if it finds a type that cannot be // expressed in TOML (such as nil elements, heterogeneous arrays or directly // nested arrays of tables). func tomlArrayType(rv reflect.Value) tomlType { if isNil(rv) || !rv.IsValid() || rv.Len() == 0 { return nil } firstType := tomlTypeOfGo(rv.Index(0)) if firstType == nil { encPanic(errArrayNilElement) } rvlen := rv.Len() for i := 1; i < rvlen; i++ { elem := rv.Index(i) switch elemType := tomlTypeOfGo(elem); { case elemType == nil: encPanic(errArrayNilElement) case !typeEqual(firstType, elemType): encPanic(errArrayMixedElementTypes) } } // If we have a nested array, then we must make sure that the nested // array contains ONLY primitives. // This checks arbitrarily nested arrays. if typeEqual(firstType, tomlArray) || typeEqual(firstType, tomlArrayHash) { nest := tomlArrayType(eindirect(rv.Index(0))) if typeEqual(nest, tomlHash) || typeEqual(nest, tomlArrayHash) { encPanic(errArrayNoTable) } } return firstType } type tagOptions struct { skip bool // "-" name string omitempty bool omitzero bool } func getOptions(tag reflect.StructTag) tagOptions { t := tag.Get("toml") if t == "-" { return tagOptions{skip: true} } var opts tagOptions parts := strings.Split(t, ",") opts.name = parts[0] for _, s := range parts[1:] { switch s { case "omitempty": opts.omitempty = true case "omitzero": opts.omitzero = true } } return opts } func isZero(rv reflect.Value) bool { switch rv.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: return rv.Int() == 0 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64: return rv.Uint() == 0 case reflect.Float32, reflect.Float64: return rv.Float() == 0.0 } return false } func isEmpty(rv reflect.Value) bool { switch rv.Kind() { case reflect.Array, reflect.Slice, reflect.Map, reflect.String: return rv.Len() == 0 case reflect.Bool: return !rv.Bool() } return false } func (enc *Encoder) newline() { if enc.hasWritten { enc.wf("\n") } } func (enc *Encoder) keyEqElement(key Key, val reflect.Value) { if len(key) == 0 { encPanic(errNoKey) } panicIfInvalidKey(key) enc.wf("%s%s = ", enc.indentStr(key), key.maybeQuoted(len(key)-1)) enc.eElement(val) enc.newline() } func (enc *Encoder) wf(format string, v ...interface{}) { if _, err := fmt.Fprintf(enc.w, format, v...); err != nil { encPanic(err) } enc.hasWritten = true } func (enc *Encoder) indentStr(key Key) string { return strings.Repeat(enc.Indent, len(key)-1) } func encPanic(err error) { panic(tomlEncodeError{err}) } func eindirect(v reflect.Value) reflect.Value { switch v.Kind() { case reflect.Ptr, reflect.Interface: return eindirect(v.Elem()) default: return v } } func isNil(rv reflect.Value) bool { switch rv.Kind() { case reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: return rv.IsNil() default: return false } } func panicIfInvalidKey(key Key) { for _, k := range key { if len(k) == 0 { encPanic(e("Key '%s' is not a valid table name. Key names "+ "cannot be empty.", key.maybeQuotedAll())) } } } func isValidKeyName(s string) bool { return len(s) != 0 } toml-0.3.1/encode_test.go000066400000000000000000000351541333500230500153130ustar00rootroot00000000000000package toml import ( "bytes" "fmt" "log" "net" "testing" "time" ) func TestEncodeRoundTrip(t *testing.T) { type Config struct { Age int Cats []string Pi float64 Perfection []int DOB time.Time Ipaddress net.IP } var inputs = Config{ 13, []string{"one", "two", "three"}, 3.145, []int{11, 2, 3, 4}, time.Now(), net.ParseIP("192.168.59.254"), } var firstBuffer bytes.Buffer e := NewEncoder(&firstBuffer) err := e.Encode(inputs) if err != nil { t.Fatal(err) } var outputs Config if _, err := Decode(firstBuffer.String(), &outputs); err != nil { t.Logf("Could not decode:\n-----\n%s\n-----\n", firstBuffer.String()) t.Fatal(err) } // could test each value individually, but I'm lazy var secondBuffer bytes.Buffer e2 := NewEncoder(&secondBuffer) err = e2.Encode(outputs) if err != nil { t.Fatal(err) } if firstBuffer.String() != secondBuffer.String() { t.Error( firstBuffer.String(), "\n\n is not identical to\n\n", secondBuffer.String()) } } // XXX(burntsushi) // I think these tests probably should be removed. They are good, but they // ought to be obsolete by toml-test. func TestEncode(t *testing.T) { type Embedded struct { Int int `toml:"_int"` } type NonStruct int date := time.Date(2014, 5, 11, 20, 30, 40, 0, time.FixedZone("IST", 3600)) dateStr := "2014-05-11T19:30:40Z" tests := map[string]struct { input interface{} wantOutput string wantError error }{ "bool field": { input: struct { BoolTrue bool BoolFalse bool }{true, false}, wantOutput: "BoolTrue = true\nBoolFalse = false\n", }, "int fields": { input: struct { Int int Int8 int8 Int16 int16 Int32 int32 Int64 int64 }{1, 2, 3, 4, 5}, wantOutput: "Int = 1\nInt8 = 2\nInt16 = 3\nInt32 = 4\nInt64 = 5\n", }, "uint fields": { input: struct { Uint uint Uint8 uint8 Uint16 uint16 Uint32 uint32 Uint64 uint64 }{1, 2, 3, 4, 5}, wantOutput: "Uint = 1\nUint8 = 2\nUint16 = 3\nUint32 = 4" + "\nUint64 = 5\n", }, "float fields": { input: struct { Float32 float32 Float64 float64 }{1.5, 2.5}, wantOutput: "Float32 = 1.5\nFloat64 = 2.5\n", }, "string field": { input: struct{ String string }{"foo"}, wantOutput: "String = \"foo\"\n", }, "string field and unexported field": { input: struct { String string unexported int }{"foo", 0}, wantOutput: "String = \"foo\"\n", }, "datetime field in UTC": { input: struct{ Date time.Time }{date}, wantOutput: fmt.Sprintf("Date = %s\n", dateStr), }, "datetime field as primitive": { // Using a map here to fail if isStructOrMap() returns true for // time.Time. input: map[string]interface{}{ "Date": date, "Int": 1, }, wantOutput: fmt.Sprintf("Date = %s\nInt = 1\n", dateStr), }, "array fields": { input: struct { IntArray0 [0]int IntArray3 [3]int }{[0]int{}, [3]int{1, 2, 3}}, wantOutput: "IntArray0 = []\nIntArray3 = [1, 2, 3]\n", }, "slice fields": { input: struct{ IntSliceNil, IntSlice0, IntSlice3 []int }{ nil, []int{}, []int{1, 2, 3}, }, wantOutput: "IntSlice0 = []\nIntSlice3 = [1, 2, 3]\n", }, "datetime slices": { input: struct{ DatetimeSlice []time.Time }{ []time.Time{date, date}, }, wantOutput: fmt.Sprintf("DatetimeSlice = [%s, %s]\n", dateStr, dateStr), }, "nested arrays and slices": { input: struct { SliceOfArrays [][2]int ArrayOfSlices [2][]int SliceOfArraysOfSlices [][2][]int ArrayOfSlicesOfArrays [2][][2]int SliceOfMixedArrays [][2]interface{} ArrayOfMixedSlices [2][]interface{} }{ [][2]int{{1, 2}, {3, 4}}, [2][]int{{1, 2}, {3, 4}}, [][2][]int{ { {1, 2}, {3, 4}, }, { {5, 6}, {7, 8}, }, }, [2][][2]int{ { {1, 2}, {3, 4}, }, { {5, 6}, {7, 8}, }, }, [][2]interface{}{ {1, 2}, {"a", "b"}, }, [2][]interface{}{ {1, 2}, {"a", "b"}, }, }, wantOutput: `SliceOfArrays = [[1, 2], [3, 4]] ArrayOfSlices = [[1, 2], [3, 4]] SliceOfArraysOfSlices = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] ArrayOfSlicesOfArrays = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] SliceOfMixedArrays = [[1, 2], ["a", "b"]] ArrayOfMixedSlices = [[1, 2], ["a", "b"]] `, }, "empty slice": { input: struct{ Empty []interface{} }{[]interface{}{}}, wantOutput: "Empty = []\n", }, "(error) slice with element type mismatch (string and integer)": { input: struct{ Mixed []interface{} }{[]interface{}{1, "a"}}, wantError: errArrayMixedElementTypes, }, "(error) slice with element type mismatch (integer and float)": { input: struct{ Mixed []interface{} }{[]interface{}{1, 2.5}}, wantError: errArrayMixedElementTypes, }, "slice with elems of differing Go types, same TOML types": { input: struct { MixedInts []interface{} MixedFloats []interface{} }{ []interface{}{ int(1), int8(2), int16(3), int32(4), int64(5), uint(1), uint8(2), uint16(3), uint32(4), uint64(5), }, []interface{}{float32(1.5), float64(2.5)}, }, wantOutput: "MixedInts = [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]\n" + "MixedFloats = [1.5, 2.5]\n", }, "(error) slice w/ element type mismatch (one is nested array)": { input: struct{ Mixed []interface{} }{ []interface{}{1, []interface{}{2}}, }, wantError: errArrayMixedElementTypes, }, "(error) slice with 1 nil element": { input: struct{ NilElement1 []interface{} }{[]interface{}{nil}}, wantError: errArrayNilElement, }, "(error) slice with 1 nil element (and other non-nil elements)": { input: struct{ NilElement []interface{} }{ []interface{}{1, nil}, }, wantError: errArrayNilElement, }, "simple map": { input: map[string]int{"a": 1, "b": 2}, wantOutput: "a = 1\nb = 2\n", }, "map with interface{} value type": { input: map[string]interface{}{"a": 1, "b": "c"}, wantOutput: "a = 1\nb = \"c\"\n", }, "map with interface{} value type, some of which are structs": { input: map[string]interface{}{ "a": struct{ Int int }{2}, "b": 1, }, wantOutput: "b = 1\n\n[a]\n Int = 2\n", }, "nested map": { input: map[string]map[string]int{ "a": {"b": 1}, "c": {"d": 2}, }, wantOutput: "[a]\n b = 1\n\n[c]\n d = 2\n", }, "nested struct": { input: struct{ Struct struct{ Int int } }{ struct{ Int int }{1}, }, wantOutput: "[Struct]\n Int = 1\n", }, "nested struct and non-struct field": { input: struct { Struct struct{ Int int } Bool bool }{struct{ Int int }{1}, true}, wantOutput: "Bool = true\n\n[Struct]\n Int = 1\n", }, "2 nested structs": { input: struct{ Struct1, Struct2 struct{ Int int } }{ struct{ Int int }{1}, struct{ Int int }{2}, }, wantOutput: "[Struct1]\n Int = 1\n\n[Struct2]\n Int = 2\n", }, "deeply nested structs": { input: struct { Struct1, Struct2 struct{ Struct3 *struct{ Int int } } }{ struct{ Struct3 *struct{ Int int } }{&struct{ Int int }{1}}, struct{ Struct3 *struct{ Int int } }{nil}, }, wantOutput: "[Struct1]\n [Struct1.Struct3]\n Int = 1" + "\n\n[Struct2]\n", }, "nested struct with nil struct elem": { input: struct { Struct struct{ Inner *struct{ Int int } } }{ struct{ Inner *struct{ Int int } }{nil}, }, wantOutput: "[Struct]\n", }, "nested struct with no fields": { input: struct { Struct struct{ Inner struct{} } }{ struct{ Inner struct{} }{struct{}{}}, }, wantOutput: "[Struct]\n [Struct.Inner]\n", }, "struct with tags": { input: struct { Struct struct { Int int `toml:"_int"` } `toml:"_struct"` Bool bool `toml:"_bool"` }{ struct { Int int `toml:"_int"` }{1}, true, }, wantOutput: "_bool = true\n\n[_struct]\n _int = 1\n", }, "embedded struct": { input: struct{ Embedded }{Embedded{1}}, wantOutput: "_int = 1\n", }, "embedded *struct": { input: struct{ *Embedded }{&Embedded{1}}, wantOutput: "_int = 1\n", }, "nested embedded struct": { input: struct { Struct struct{ Embedded } `toml:"_struct"` }{struct{ Embedded }{Embedded{1}}}, wantOutput: "[_struct]\n _int = 1\n", }, "nested embedded *struct": { input: struct { Struct struct{ *Embedded } `toml:"_struct"` }{struct{ *Embedded }{&Embedded{1}}}, wantOutput: "[_struct]\n _int = 1\n", }, "embedded non-struct": { input: struct{ NonStruct }{5}, wantOutput: "NonStruct = 5\n", }, "array of tables": { input: struct { Structs []*struct{ Int int } `toml:"struct"` }{ []*struct{ Int int }{{1}, {3}}, }, wantOutput: "[[struct]]\n Int = 1\n\n[[struct]]\n Int = 3\n", }, "array of tables order": { input: map[string]interface{}{ "map": map[string]interface{}{ "zero": 5, "arr": []map[string]int{ { "friend": 5, }, }, }, }, wantOutput: "[map]\n zero = 5\n\n [[map.arr]]\n friend = 5\n", }, "(error) top-level slice": { input: []struct{ Int int }{{1}, {2}, {3}}, wantError: errNoKey, }, "(error) slice of slice": { input: struct { Slices [][]struct{ Int int } }{ [][]struct{ Int int }{{{1}}, {{2}}, {{3}}}, }, wantError: errArrayNoTable, }, "(error) map no string key": { input: map[int]string{1: ""}, wantError: errNonString, }, "(error) empty key name": { input: map[string]int{"": 1}, wantError: errAnything, }, "(error) empty map name": { input: map[string]interface{}{ "": map[string]int{"v": 1}, }, wantError: errAnything, }, } for label, test := range tests { encodeExpected(t, label, test.input, test.wantOutput, test.wantError) } } func TestEncodeNestedTableArrays(t *testing.T) { type song struct { Name string `toml:"name"` } type album struct { Name string `toml:"name"` Songs []song `toml:"songs"` } type springsteen struct { Albums []album `toml:"albums"` } value := springsteen{ []album{ {"Born to Run", []song{{"Jungleland"}, {"Meeting Across the River"}}}, {"Born in the USA", []song{{"Glory Days"}, {"Dancing in the Dark"}}}, }, } expected := `[[albums]] name = "Born to Run" [[albums.songs]] name = "Jungleland" [[albums.songs]] name = "Meeting Across the River" [[albums]] name = "Born in the USA" [[albums.songs]] name = "Glory Days" [[albums.songs]] name = "Dancing in the Dark" ` encodeExpected(t, "nested table arrays", value, expected, nil) } func TestEncodeArrayHashWithNormalHashOrder(t *testing.T) { type Alpha struct { V int } type Beta struct { V int } type Conf struct { V int A Alpha B []Beta } val := Conf{ V: 1, A: Alpha{2}, B: []Beta{{3}}, } expected := "V = 1\n\n[A]\n V = 2\n\n[[B]]\n V = 3\n" encodeExpected(t, "array hash with normal hash order", val, expected, nil) } func TestEncodeWithOmitEmpty(t *testing.T) { type simple struct { Bool bool `toml:"bool,omitempty"` String string `toml:"string,omitempty"` Array [0]byte `toml:"array,omitempty"` Slice []int `toml:"slice,omitempty"` Map map[string]string `toml:"map,omitempty"` } var v simple encodeExpected(t, "fields with omitempty are omitted when empty", v, "", nil) v = simple{ Bool: true, String: " ", Slice: []int{2, 3, 4}, Map: map[string]string{"foo": "bar"}, } expected := `bool = true string = " " slice = [2, 3, 4] [map] foo = "bar" ` encodeExpected(t, "fields with omitempty are not omitted when non-empty", v, expected, nil) } func TestEncodeWithOmitZero(t *testing.T) { type simple struct { Number int `toml:"number,omitzero"` Real float64 `toml:"real,omitzero"` Unsigned uint `toml:"unsigned,omitzero"` } value := simple{0, 0.0, uint(0)} expected := "" encodeExpected(t, "simple with omitzero, all zero", value, expected, nil) value.Number = 10 value.Real = 20 value.Unsigned = 5 expected = `number = 10 real = 20.0 unsigned = 5 ` encodeExpected(t, "simple with omitzero, non-zero", value, expected, nil) } func TestEncodeOmitemptyWithEmptyName(t *testing.T) { type simple struct { S []int `toml:",omitempty"` } v := simple{[]int{1, 2, 3}} expected := "S = [1, 2, 3]\n" encodeExpected(t, "simple with omitempty, no name, non-empty field", v, expected, nil) } func TestEncodeAnonymousStruct(t *testing.T) { type Inner struct{ N int } type Outer0 struct{ Inner } type Outer1 struct { Inner `toml:"inner"` } v0 := Outer0{Inner{3}} expected := "N = 3\n" encodeExpected(t, "embedded anonymous untagged struct", v0, expected, nil) v1 := Outer1{Inner{3}} expected = "[inner]\n N = 3\n" encodeExpected(t, "embedded anonymous tagged struct", v1, expected, nil) } func TestEncodeAnonymousStructPointerField(t *testing.T) { type Inner struct{ N int } type Outer0 struct{ *Inner } type Outer1 struct { *Inner `toml:"inner"` } v0 := Outer0{} expected := "" encodeExpected(t, "nil anonymous untagged struct pointer field", v0, expected, nil) v0 = Outer0{&Inner{3}} expected = "N = 3\n" encodeExpected(t, "non-nil anonymous untagged struct pointer field", v0, expected, nil) v1 := Outer1{} expected = "" encodeExpected(t, "nil anonymous tagged struct pointer field", v1, expected, nil) v1 = Outer1{&Inner{3}} expected = "[inner]\n N = 3\n" encodeExpected(t, "non-nil anonymous tagged struct pointer field", v1, expected, nil) } func TestEncodeIgnoredFields(t *testing.T) { type simple struct { Number int `toml:"-"` } value := simple{} expected := "" encodeExpected(t, "ignored field", value, expected, nil) } func encodeExpected( t *testing.T, label string, val interface{}, wantStr string, wantErr error, ) { var buf bytes.Buffer enc := NewEncoder(&buf) err := enc.Encode(val) if err != wantErr { if wantErr != nil { if wantErr == errAnything && err != nil { return } t.Errorf("%s: want Encode error %v, got %v", label, wantErr, err) } else { t.Errorf("%s: Encode failed: %s", label, err) } } if err != nil { return } if got := buf.String(); wantStr != got { t.Errorf("%s: want\n-----\n%q\n-----\nbut got\n-----\n%q\n-----\n", label, wantStr, got) } } func ExampleEncoder_Encode() { date, _ := time.Parse(time.RFC822, "14 Mar 10 18:00 UTC") var config = map[string]interface{}{ "date": date, "counts": []int{1, 1, 2, 3, 5, 8}, "hash": map[string]string{ "key1": "val1", "key2": "val2", }, } buf := new(bytes.Buffer) if err := NewEncoder(buf).Encode(config); err != nil { log.Fatal(err) } fmt.Println(buf.String()) // Output: // counts = [1, 1, 2, 3, 5, 8] // date = 2010-03-14T18:00:00Z // // [hash] // key1 = "val1" // key2 = "val2" } toml-0.3.1/encoding_types.go000066400000000000000000000010351333500230500160200ustar00rootroot00000000000000// +build go1.2 package toml // In order to support Go 1.1, we define our own TextMarshaler and // TextUnmarshaler types. For Go 1.2+, we just alias them with the // standard library interfaces. import ( "encoding" ) // TextMarshaler is a synonym for encoding.TextMarshaler. It is defined here // so that Go 1.1 can be supported. type TextMarshaler encoding.TextMarshaler // TextUnmarshaler is a synonym for encoding.TextUnmarshaler. It is defined // here so that Go 1.1 can be supported. type TextUnmarshaler encoding.TextUnmarshaler toml-0.3.1/encoding_types_1.1.go000066400000000000000000000007731333500230500164070ustar00rootroot00000000000000// +build !go1.2 package toml // These interfaces were introduced in Go 1.2, so we add them manually when // compiling for Go 1.1. // TextMarshaler is a synonym for encoding.TextMarshaler. It is defined here // so that Go 1.1 can be supported. type TextMarshaler interface { MarshalText() (text []byte, err error) } // TextUnmarshaler is a synonym for encoding.TextUnmarshaler. It is defined // here so that Go 1.1 can be supported. type TextUnmarshaler interface { UnmarshalText(text []byte) error } toml-0.3.1/lex.go000066400000000000000000000533071333500230500136070ustar00rootroot00000000000000package toml import ( "fmt" "strings" "unicode" "unicode/utf8" ) type itemType int const ( itemError itemType = iota itemNIL // used in the parser to indicate no type itemEOF itemText itemString itemRawString itemMultilineString itemRawMultilineString itemBool itemInteger itemFloat itemDatetime itemArray // the start of an array itemArrayEnd itemTableStart itemTableEnd itemArrayTableStart itemArrayTableEnd itemKeyStart itemCommentStart itemInlineTableStart itemInlineTableEnd ) const ( eof = 0 comma = ',' tableStart = '[' tableEnd = ']' arrayTableStart = '[' arrayTableEnd = ']' tableSep = '.' keySep = '=' arrayStart = '[' arrayEnd = ']' commentStart = '#' stringStart = '"' stringEnd = '"' rawStringStart = '\'' rawStringEnd = '\'' inlineTableStart = '{' inlineTableEnd = '}' ) type stateFn func(lx *lexer) stateFn type lexer struct { input string start int pos int line int state stateFn items chan item // Allow for backing up up to three runes. // This is necessary because TOML contains 3-rune tokens (""" and '''). prevWidths [3]int nprev int // how many of prevWidths are in use // If we emit an eof, we can still back up, but it is not OK to call // next again. atEOF bool // A stack of state functions used to maintain context. // The idea is to reuse parts of the state machine in various places. // For example, values can appear at the top level or within arbitrarily // nested arrays. The last state on the stack is used after a value has // been lexed. Similarly for comments. stack []stateFn } type item struct { typ itemType val string line int } func (lx *lexer) nextItem() item { for { select { case item := <-lx.items: return item default: lx.state = lx.state(lx) } } } func lex(input string) *lexer { lx := &lexer{ input: input, state: lexTop, line: 1, items: make(chan item, 10), stack: make([]stateFn, 0, 10), } return lx } func (lx *lexer) push(state stateFn) { lx.stack = append(lx.stack, state) } func (lx *lexer) pop() stateFn { if len(lx.stack) == 0 { return lx.errorf("BUG in lexer: no states to pop") } last := lx.stack[len(lx.stack)-1] lx.stack = lx.stack[0 : len(lx.stack)-1] return last } func (lx *lexer) current() string { return lx.input[lx.start:lx.pos] } func (lx *lexer) emit(typ itemType) { lx.items <- item{typ, lx.current(), lx.line} lx.start = lx.pos } func (lx *lexer) emitTrim(typ itemType) { lx.items <- item{typ, strings.TrimSpace(lx.current()), lx.line} lx.start = lx.pos } func (lx *lexer) next() (r rune) { if lx.atEOF { panic("next called after EOF") } if lx.pos >= len(lx.input) { lx.atEOF = true return eof } if lx.input[lx.pos] == '\n' { lx.line++ } lx.prevWidths[2] = lx.prevWidths[1] lx.prevWidths[1] = lx.prevWidths[0] if lx.nprev < 3 { lx.nprev++ } r, w := utf8.DecodeRuneInString(lx.input[lx.pos:]) lx.prevWidths[0] = w lx.pos += w return r } // ignore skips over the pending input before this point. func (lx *lexer) ignore() { lx.start = lx.pos } // backup steps back one rune. Can be called only twice between calls to next. func (lx *lexer) backup() { if lx.atEOF { lx.atEOF = false return } if lx.nprev < 1 { panic("backed up too far") } w := lx.prevWidths[0] lx.prevWidths[0] = lx.prevWidths[1] lx.prevWidths[1] = lx.prevWidths[2] lx.nprev-- lx.pos -= w if lx.pos < len(lx.input) && lx.input[lx.pos] == '\n' { lx.line-- } } // accept consumes the next rune if it's equal to `valid`. func (lx *lexer) accept(valid rune) bool { if lx.next() == valid { return true } lx.backup() return false } // peek returns but does not consume the next rune in the input. func (lx *lexer) peek() rune { r := lx.next() lx.backup() return r } // skip ignores all input that matches the given predicate. func (lx *lexer) skip(pred func(rune) bool) { for { r := lx.next() if pred(r) { continue } lx.backup() lx.ignore() return } } // errorf stops all lexing by emitting an error and returning `nil`. // Note that any value that is a character is escaped if it's a special // character (newlines, tabs, etc.). func (lx *lexer) errorf(format string, values ...interface{}) stateFn { lx.items <- item{ itemError, fmt.Sprintf(format, values...), lx.line, } return nil } // lexTop consumes elements at the top level of TOML data. func lexTop(lx *lexer) stateFn { r := lx.next() if isWhitespace(r) || isNL(r) { return lexSkip(lx, lexTop) } switch r { case commentStart: lx.push(lexTop) return lexCommentStart case tableStart: return lexTableStart case eof: if lx.pos > lx.start { return lx.errorf("unexpected EOF") } lx.emit(itemEOF) return nil } // At this point, the only valid item can be a key, so we back up // and let the key lexer do the rest. lx.backup() lx.push(lexTopEnd) return lexKeyStart } // lexTopEnd is entered whenever a top-level item has been consumed. (A value // or a table.) It must see only whitespace, and will turn back to lexTop // upon a newline. If it sees EOF, it will quit the lexer successfully. func lexTopEnd(lx *lexer) stateFn { r := lx.next() switch { case r == commentStart: // a comment will read to a newline for us. lx.push(lexTop) return lexCommentStart case isWhitespace(r): return lexTopEnd case isNL(r): lx.ignore() return lexTop case r == eof: lx.emit(itemEOF) return nil } return lx.errorf("expected a top-level item to end with a newline, "+ "comment, or EOF, but got %q instead", r) } // lexTable lexes the beginning of a table. Namely, it makes sure that // it starts with a character other than '.' and ']'. // It assumes that '[' has already been consumed. // It also handles the case that this is an item in an array of tables. // e.g., '[[name]]'. func lexTableStart(lx *lexer) stateFn { if lx.peek() == arrayTableStart { lx.next() lx.emit(itemArrayTableStart) lx.push(lexArrayTableEnd) } else { lx.emit(itemTableStart) lx.push(lexTableEnd) } return lexTableNameStart } func lexTableEnd(lx *lexer) stateFn { lx.emit(itemTableEnd) return lexTopEnd } func lexArrayTableEnd(lx *lexer) stateFn { if r := lx.next(); r != arrayTableEnd { return lx.errorf("expected end of table array name delimiter %q, "+ "but got %q instead", arrayTableEnd, r) } lx.emit(itemArrayTableEnd) return lexTopEnd } func lexTableNameStart(lx *lexer) stateFn { lx.skip(isWhitespace) switch r := lx.peek(); { case r == tableEnd || r == eof: return lx.errorf("unexpected end of table name " + "(table names cannot be empty)") case r == tableSep: return lx.errorf("unexpected table separator " + "(table names cannot be empty)") case r == stringStart || r == rawStringStart: lx.ignore() lx.push(lexTableNameEnd) return lexValue // reuse string lexing default: return lexBareTableName } } // lexBareTableName lexes the name of a table. It assumes that at least one // valid character for the table has already been read. func lexBareTableName(lx *lexer) stateFn { r := lx.next() if isBareKeyChar(r) { return lexBareTableName } lx.backup() lx.emit(itemText) return lexTableNameEnd } // lexTableNameEnd reads the end of a piece of a table name, optionally // consuming whitespace. func lexTableNameEnd(lx *lexer) stateFn { lx.skip(isWhitespace) switch r := lx.next(); { case isWhitespace(r): return lexTableNameEnd case r == tableSep: lx.ignore() return lexTableNameStart case r == tableEnd: return lx.pop() default: return lx.errorf("expected '.' or ']' to end table name, "+ "but got %q instead", r) } } // lexKeyStart consumes a key name up until the first non-whitespace character. // lexKeyStart will ignore whitespace. func lexKeyStart(lx *lexer) stateFn { r := lx.peek() switch { case r == keySep: return lx.errorf("unexpected key separator %q", keySep) case isWhitespace(r) || isNL(r): lx.next() return lexSkip(lx, lexKeyStart) case r == stringStart || r == rawStringStart: lx.ignore() lx.emit(itemKeyStart) lx.push(lexKeyEnd) return lexValue // reuse string lexing default: lx.ignore() lx.emit(itemKeyStart) return lexBareKey } } // lexBareKey consumes the text of a bare key. Assumes that the first character // (which is not whitespace) has not yet been consumed. func lexBareKey(lx *lexer) stateFn { switch r := lx.next(); { case isBareKeyChar(r): return lexBareKey case isWhitespace(r): lx.backup() lx.emit(itemText) return lexKeyEnd case r == keySep: lx.backup() lx.emit(itemText) return lexKeyEnd default: return lx.errorf("bare keys cannot contain %q", r) } } // lexKeyEnd consumes the end of a key and trims whitespace (up to the key // separator). func lexKeyEnd(lx *lexer) stateFn { switch r := lx.next(); { case r == keySep: return lexSkip(lx, lexValue) case isWhitespace(r): return lexSkip(lx, lexKeyEnd) default: return lx.errorf("expected key separator %q, but got %q instead", keySep, r) } } // lexValue starts the consumption of a value anywhere a value is expected. // lexValue will ignore whitespace. // After a value is lexed, the last state on the next is popped and returned. func lexValue(lx *lexer) stateFn { // We allow whitespace to precede a value, but NOT newlines. // In array syntax, the array states are responsible for ignoring newlines. r := lx.next() switch { case isWhitespace(r): return lexSkip(lx, lexValue) case isDigit(r): lx.backup() // avoid an extra state and use the same as above return lexNumberOrDateStart } switch r { case arrayStart: lx.ignore() lx.emit(itemArray) return lexArrayValue case inlineTableStart: lx.ignore() lx.emit(itemInlineTableStart) return lexInlineTableValue case stringStart: if lx.accept(stringStart) { if lx.accept(stringStart) { lx.ignore() // Ignore """ return lexMultilineString } lx.backup() } lx.ignore() // ignore the '"' return lexString case rawStringStart: if lx.accept(rawStringStart) { if lx.accept(rawStringStart) { lx.ignore() // Ignore """ return lexMultilineRawString } lx.backup() } lx.ignore() // ignore the "'" return lexRawString case '+', '-': return lexNumberStart case '.': // special error case, be kind to users return lx.errorf("floats must start with a digit, not '.'") } if unicode.IsLetter(r) { // Be permissive here; lexBool will give a nice error if the // user wrote something like // x = foo // (i.e. not 'true' or 'false' but is something else word-like.) lx.backup() return lexBool } return lx.errorf("expected value but found %q instead", r) } // lexArrayValue consumes one value in an array. It assumes that '[' or ',' // have already been consumed. All whitespace and newlines are ignored. func lexArrayValue(lx *lexer) stateFn { r := lx.next() switch { case isWhitespace(r) || isNL(r): return lexSkip(lx, lexArrayValue) case r == commentStart: lx.push(lexArrayValue) return lexCommentStart case r == comma: return lx.errorf("unexpected comma") case r == arrayEnd: // NOTE(caleb): The spec isn't clear about whether you can have // a trailing comma or not, so we'll allow it. return lexArrayEnd } lx.backup() lx.push(lexArrayValueEnd) return lexValue } // lexArrayValueEnd consumes everything between the end of an array value and // the next value (or the end of the array): it ignores whitespace and newlines // and expects either a ',' or a ']'. func lexArrayValueEnd(lx *lexer) stateFn { r := lx.next() switch { case isWhitespace(r) || isNL(r): return lexSkip(lx, lexArrayValueEnd) case r == commentStart: lx.push(lexArrayValueEnd) return lexCommentStart case r == comma: lx.ignore() return lexArrayValue // move on to the next value case r == arrayEnd: return lexArrayEnd } return lx.errorf( "expected a comma or array terminator %q, but got %q instead", arrayEnd, r, ) } // lexArrayEnd finishes the lexing of an array. // It assumes that a ']' has just been consumed. func lexArrayEnd(lx *lexer) stateFn { lx.ignore() lx.emit(itemArrayEnd) return lx.pop() } // lexInlineTableValue consumes one key/value pair in an inline table. // It assumes that '{' or ',' have already been consumed. Whitespace is ignored. func lexInlineTableValue(lx *lexer) stateFn { r := lx.next() switch { case isWhitespace(r): return lexSkip(lx, lexInlineTableValue) case isNL(r): return lx.errorf("newlines not allowed within inline tables") case r == commentStart: lx.push(lexInlineTableValue) return lexCommentStart case r == comma: return lx.errorf("unexpected comma") case r == inlineTableEnd: return lexInlineTableEnd } lx.backup() lx.push(lexInlineTableValueEnd) return lexKeyStart } // lexInlineTableValueEnd consumes everything between the end of an inline table // key/value pair and the next pair (or the end of the table): // it ignores whitespace and expects either a ',' or a '}'. func lexInlineTableValueEnd(lx *lexer) stateFn { r := lx.next() switch { case isWhitespace(r): return lexSkip(lx, lexInlineTableValueEnd) case isNL(r): return lx.errorf("newlines not allowed within inline tables") case r == commentStart: lx.push(lexInlineTableValueEnd) return lexCommentStart case r == comma: lx.ignore() return lexInlineTableValue case r == inlineTableEnd: return lexInlineTableEnd } return lx.errorf("expected a comma or an inline table terminator %q, "+ "but got %q instead", inlineTableEnd, r) } // lexInlineTableEnd finishes the lexing of an inline table. // It assumes that a '}' has just been consumed. func lexInlineTableEnd(lx *lexer) stateFn { lx.ignore() lx.emit(itemInlineTableEnd) return lx.pop() } // lexString consumes the inner contents of a string. It assumes that the // beginning '"' has already been consumed and ignored. func lexString(lx *lexer) stateFn { r := lx.next() switch { case r == eof: return lx.errorf("unexpected EOF") case isNL(r): return lx.errorf("strings cannot contain newlines") case r == '\\': lx.push(lexString) return lexStringEscape case r == stringEnd: lx.backup() lx.emit(itemString) lx.next() lx.ignore() return lx.pop() } return lexString } // lexMultilineString consumes the inner contents of a string. It assumes that // the beginning '"""' has already been consumed and ignored. func lexMultilineString(lx *lexer) stateFn { switch lx.next() { case eof: return lx.errorf("unexpected EOF") case '\\': return lexMultilineStringEscape case stringEnd: if lx.accept(stringEnd) { if lx.accept(stringEnd) { lx.backup() lx.backup() lx.backup() lx.emit(itemMultilineString) lx.next() lx.next() lx.next() lx.ignore() return lx.pop() } lx.backup() } } return lexMultilineString } // lexRawString consumes a raw string. Nothing can be escaped in such a string. // It assumes that the beginning "'" has already been consumed and ignored. func lexRawString(lx *lexer) stateFn { r := lx.next() switch { case r == eof: return lx.errorf("unexpected EOF") case isNL(r): return lx.errorf("strings cannot contain newlines") case r == rawStringEnd: lx.backup() lx.emit(itemRawString) lx.next() lx.ignore() return lx.pop() } return lexRawString } // lexMultilineRawString consumes a raw string. Nothing can be escaped in such // a string. It assumes that the beginning "'''" has already been consumed and // ignored. func lexMultilineRawString(lx *lexer) stateFn { switch lx.next() { case eof: return lx.errorf("unexpected EOF") case rawStringEnd: if lx.accept(rawStringEnd) { if lx.accept(rawStringEnd) { lx.backup() lx.backup() lx.backup() lx.emit(itemRawMultilineString) lx.next() lx.next() lx.next() lx.ignore() return lx.pop() } lx.backup() } } return lexMultilineRawString } // lexMultilineStringEscape consumes an escaped character. It assumes that the // preceding '\\' has already been consumed. func lexMultilineStringEscape(lx *lexer) stateFn { // Handle the special case first: if isNL(lx.next()) { return lexMultilineString } lx.backup() lx.push(lexMultilineString) return lexStringEscape(lx) } func lexStringEscape(lx *lexer) stateFn { r := lx.next() switch r { case 'b': fallthrough case 't': fallthrough case 'n': fallthrough case 'f': fallthrough case 'r': fallthrough case '"': fallthrough case '\\': return lx.pop() case 'u': return lexShortUnicodeEscape case 'U': return lexLongUnicodeEscape } return lx.errorf("invalid escape character %q; only the following "+ "escape characters are allowed: "+ `\b, \t, \n, \f, \r, \", \\, \uXXXX, and \UXXXXXXXX`, r) } func lexShortUnicodeEscape(lx *lexer) stateFn { var r rune for i := 0; i < 4; i++ { r = lx.next() if !isHexadecimal(r) { return lx.errorf(`expected four hexadecimal digits after '\u', `+ "but got %q instead", lx.current()) } } return lx.pop() } func lexLongUnicodeEscape(lx *lexer) stateFn { var r rune for i := 0; i < 8; i++ { r = lx.next() if !isHexadecimal(r) { return lx.errorf(`expected eight hexadecimal digits after '\U', `+ "but got %q instead", lx.current()) } } return lx.pop() } // lexNumberOrDateStart consumes either an integer, a float, or datetime. func lexNumberOrDateStart(lx *lexer) stateFn { r := lx.next() if isDigit(r) { return lexNumberOrDate } switch r { case '_': return lexNumber case 'e', 'E': return lexFloat case '.': return lx.errorf("floats must start with a digit, not '.'") } return lx.errorf("expected a digit but got %q", r) } // lexNumberOrDate consumes either an integer, float or datetime. func lexNumberOrDate(lx *lexer) stateFn { r := lx.next() if isDigit(r) { return lexNumberOrDate } switch r { case '-': return lexDatetime case '_': return lexNumber case '.', 'e', 'E': return lexFloat } lx.backup() lx.emit(itemInteger) return lx.pop() } // lexDatetime consumes a Datetime, to a first approximation. // The parser validates that it matches one of the accepted formats. func lexDatetime(lx *lexer) stateFn { r := lx.next() if isDigit(r) { return lexDatetime } switch r { case '-', 'T', ':', '.', 'Z', '+': return lexDatetime } lx.backup() lx.emit(itemDatetime) return lx.pop() } // lexNumberStart consumes either an integer or a float. It assumes that a sign // has already been read, but that *no* digits have been consumed. // lexNumberStart will move to the appropriate integer or float states. func lexNumberStart(lx *lexer) stateFn { // We MUST see a digit. Even floats have to start with a digit. r := lx.next() if !isDigit(r) { if r == '.' { return lx.errorf("floats must start with a digit, not '.'") } return lx.errorf("expected a digit but got %q", r) } return lexNumber } // lexNumber consumes an integer or a float after seeing the first digit. func lexNumber(lx *lexer) stateFn { r := lx.next() if isDigit(r) { return lexNumber } switch r { case '_': return lexNumber case '.', 'e', 'E': return lexFloat } lx.backup() lx.emit(itemInteger) return lx.pop() } // lexFloat consumes the elements of a float. It allows any sequence of // float-like characters, so floats emitted by the lexer are only a first // approximation and must be validated by the parser. func lexFloat(lx *lexer) stateFn { r := lx.next() if isDigit(r) { return lexFloat } switch r { case '_', '.', '-', '+', 'e', 'E': return lexFloat } lx.backup() lx.emit(itemFloat) return lx.pop() } // lexBool consumes a bool string: 'true' or 'false. func lexBool(lx *lexer) stateFn { var rs []rune for { r := lx.next() if !unicode.IsLetter(r) { lx.backup() break } rs = append(rs, r) } s := string(rs) switch s { case "true", "false": lx.emit(itemBool) return lx.pop() } return lx.errorf("expected value but found %q instead", s) } // lexCommentStart begins the lexing of a comment. It will emit // itemCommentStart and consume no characters, passing control to lexComment. func lexCommentStart(lx *lexer) stateFn { lx.ignore() lx.emit(itemCommentStart) return lexComment } // lexComment lexes an entire comment. It assumes that '#' has been consumed. // It will consume *up to* the first newline character, and pass control // back to the last state on the stack. func lexComment(lx *lexer) stateFn { r := lx.peek() if isNL(r) || r == eof { lx.emit(itemText) return lx.pop() } lx.next() return lexComment } // lexSkip ignores all slurped input and moves on to the next state. func lexSkip(lx *lexer, nextState stateFn) stateFn { return func(lx *lexer) stateFn { lx.ignore() return nextState } } // isWhitespace returns true if `r` is a whitespace character according // to the spec. func isWhitespace(r rune) bool { return r == '\t' || r == ' ' } func isNL(r rune) bool { return r == '\n' || r == '\r' } func isDigit(r rune) bool { return r >= '0' && r <= '9' } func isHexadecimal(r rune) bool { return (r >= '0' && r <= '9') || (r >= 'a' && r <= 'f') || (r >= 'A' && r <= 'F') } func isBareKeyChar(r rune) bool { return (r >= 'A' && r <= 'Z') || (r >= 'a' && r <= 'z') || (r >= '0' && r <= '9') || r == '_' || r == '-' } func (itype itemType) String() string { switch itype { case itemError: return "Error" case itemNIL: return "NIL" case itemEOF: return "EOF" case itemText: return "Text" case itemString, itemRawString, itemMultilineString, itemRawMultilineString: return "String" case itemBool: return "Bool" case itemInteger: return "Integer" case itemFloat: return "Float" case itemDatetime: return "DateTime" case itemTableStart: return "TableStart" case itemTableEnd: return "TableEnd" case itemKeyStart: return "KeyStart" case itemArray: return "Array" case itemArrayEnd: return "ArrayEnd" case itemCommentStart: return "CommentStart" } panic(fmt.Sprintf("BUG: Unknown type '%d'.", int(itype))) } func (item item) String() string { return fmt.Sprintf("(%s, %s)", item.typ.String(), item.val) } toml-0.3.1/parse.go000066400000000000000000000364501333500230500141310ustar00rootroot00000000000000package toml import ( "fmt" "strconv" "strings" "time" "unicode" "unicode/utf8" ) type parser struct { mapping map[string]interface{} types map[string]tomlType lx *lexer // A list of keys in the order that they appear in the TOML data. ordered []Key // the full key for the current hash in scope context Key // the base key name for everything except hashes currentKey string // rough approximation of line number approxLine int // A map of 'key.group.names' to whether they were created implicitly. implicits map[string]bool } type parseError string func (pe parseError) Error() string { return string(pe) } func parse(data string) (p *parser, err error) { defer func() { if r := recover(); r != nil { var ok bool if err, ok = r.(parseError); ok { return } panic(r) } }() p = &parser{ mapping: make(map[string]interface{}), types: make(map[string]tomlType), lx: lex(data), ordered: make([]Key, 0), implicits: make(map[string]bool), } for { item := p.next() if item.typ == itemEOF { break } p.topLevel(item) } return p, nil } func (p *parser) panicf(format string, v ...interface{}) { msg := fmt.Sprintf("Near line %d (last key parsed '%s'): %s", p.approxLine, p.current(), fmt.Sprintf(format, v...)) panic(parseError(msg)) } func (p *parser) next() item { it := p.lx.nextItem() if it.typ == itemError { p.panicf("%s", it.val) } return it } func (p *parser) bug(format string, v ...interface{}) { panic(fmt.Sprintf("BUG: "+format+"\n\n", v...)) } func (p *parser) expect(typ itemType) item { it := p.next() p.assertEqual(typ, it.typ) return it } func (p *parser) assertEqual(expected, got itemType) { if expected != got { p.bug("Expected '%s' but got '%s'.", expected, got) } } func (p *parser) topLevel(item item) { switch item.typ { case itemCommentStart: p.approxLine = item.line p.expect(itemText) case itemTableStart: kg := p.next() p.approxLine = kg.line var key Key for ; kg.typ != itemTableEnd && kg.typ != itemEOF; kg = p.next() { key = append(key, p.keyString(kg)) } p.assertEqual(itemTableEnd, kg.typ) p.establishContext(key, false) p.setType("", tomlHash) p.ordered = append(p.ordered, key) case itemArrayTableStart: kg := p.next() p.approxLine = kg.line var key Key for ; kg.typ != itemArrayTableEnd && kg.typ != itemEOF; kg = p.next() { key = append(key, p.keyString(kg)) } p.assertEqual(itemArrayTableEnd, kg.typ) p.establishContext(key, true) p.setType("", tomlArrayHash) p.ordered = append(p.ordered, key) case itemKeyStart: kname := p.next() p.approxLine = kname.line p.currentKey = p.keyString(kname) val, typ := p.value(p.next()) p.setValue(p.currentKey, val) p.setType(p.currentKey, typ) p.ordered = append(p.ordered, p.context.add(p.currentKey)) p.currentKey = "" default: p.bug("Unexpected type at top level: %s", item.typ) } } // Gets a string for a key (or part of a key in a table name). func (p *parser) keyString(it item) string { switch it.typ { case itemText: return it.val case itemString, itemMultilineString, itemRawString, itemRawMultilineString: s, _ := p.value(it) return s.(string) default: p.bug("Unexpected key type: %s", it.typ) panic("unreachable") } } // value translates an expected value from the lexer into a Go value wrapped // as an empty interface. func (p *parser) value(it item) (interface{}, tomlType) { switch it.typ { case itemString: return p.replaceEscapes(it.val), p.typeOfPrimitive(it) case itemMultilineString: trimmed := stripFirstNewline(stripEscapedWhitespace(it.val)) return p.replaceEscapes(trimmed), p.typeOfPrimitive(it) case itemRawString: return it.val, p.typeOfPrimitive(it) case itemRawMultilineString: return stripFirstNewline(it.val), p.typeOfPrimitive(it) case itemBool: switch it.val { case "true": return true, p.typeOfPrimitive(it) case "false": return false, p.typeOfPrimitive(it) } p.bug("Expected boolean value, but got '%s'.", it.val) case itemInteger: if !numUnderscoresOK(it.val) { p.panicf("Invalid integer %q: underscores must be surrounded by digits", it.val) } val := strings.Replace(it.val, "_", "", -1) num, err := strconv.ParseInt(val, 10, 64) if err != nil { // Distinguish integer values. Normally, it'd be a bug if the lexer // provides an invalid integer, but it's possible that the number is // out of range of valid values (which the lexer cannot determine). // So mark the former as a bug but the latter as a legitimate user // error. if e, ok := err.(*strconv.NumError); ok && e.Err == strconv.ErrRange { p.panicf("Integer '%s' is out of the range of 64-bit "+ "signed integers.", it.val) } else { p.bug("Expected integer value, but got '%s'.", it.val) } } return num, p.typeOfPrimitive(it) case itemFloat: parts := strings.FieldsFunc(it.val, func(r rune) bool { switch r { case '.', 'e', 'E': return true } return false }) for _, part := range parts { if !numUnderscoresOK(part) { p.panicf("Invalid float %q: underscores must be "+ "surrounded by digits", it.val) } } if !numPeriodsOK(it.val) { // As a special case, numbers like '123.' or '1.e2', // which are valid as far as Go/strconv are concerned, // must be rejected because TOML says that a fractional // part consists of '.' followed by 1+ digits. p.panicf("Invalid float %q: '.' must be followed "+ "by one or more digits", it.val) } val := strings.Replace(it.val, "_", "", -1) num, err := strconv.ParseFloat(val, 64) if err != nil { if e, ok := err.(*strconv.NumError); ok && e.Err == strconv.ErrRange { p.panicf("Float '%s' is out of the range of 64-bit "+ "IEEE-754 floating-point numbers.", it.val) } else { p.panicf("Invalid float value: %q", it.val) } } return num, p.typeOfPrimitive(it) case itemDatetime: var t time.Time var ok bool var err error for _, format := range []string{ "2006-01-02T15:04:05Z07:00", "2006-01-02T15:04:05", "2006-01-02", } { t, err = time.ParseInLocation(format, it.val, time.Local) if err == nil { ok = true break } } if !ok { p.panicf("Invalid TOML Datetime: %q.", it.val) } return t, p.typeOfPrimitive(it) case itemArray: array := make([]interface{}, 0) types := make([]tomlType, 0) for it = p.next(); it.typ != itemArrayEnd; it = p.next() { if it.typ == itemCommentStart { p.expect(itemText) continue } val, typ := p.value(it) array = append(array, val) types = append(types, typ) } return array, p.typeOfArray(types) case itemInlineTableStart: var ( hash = make(map[string]interface{}) outerContext = p.context outerKey = p.currentKey ) p.context = append(p.context, p.currentKey) p.currentKey = "" for it := p.next(); it.typ != itemInlineTableEnd; it = p.next() { if it.typ != itemKeyStart { p.bug("Expected key start but instead found %q, around line %d", it.val, p.approxLine) } if it.typ == itemCommentStart { p.expect(itemText) continue } // retrieve key k := p.next() p.approxLine = k.line kname := p.keyString(k) // retrieve value p.currentKey = kname val, typ := p.value(p.next()) // make sure we keep metadata up to date p.setType(kname, typ) p.ordered = append(p.ordered, p.context.add(p.currentKey)) hash[kname] = val } p.context = outerContext p.currentKey = outerKey return hash, tomlHash } p.bug("Unexpected value type: %s", it.typ) panic("unreachable") } // numUnderscoresOK checks whether each underscore in s is surrounded by // characters that are not underscores. func numUnderscoresOK(s string) bool { accept := false for _, r := range s { if r == '_' { if !accept { return false } accept = false continue } accept = true } return accept } // numPeriodsOK checks whether every period in s is followed by a digit. func numPeriodsOK(s string) bool { period := false for _, r := range s { if period && !isDigit(r) { return false } period = r == '.' } return !period } // establishContext sets the current context of the parser, // where the context is either a hash or an array of hashes. Which one is // set depends on the value of the `array` parameter. // // Establishing the context also makes sure that the key isn't a duplicate, and // will create implicit hashes automatically. func (p *parser) establishContext(key Key, array bool) { var ok bool // Always start at the top level and drill down for our context. hashContext := p.mapping keyContext := make(Key, 0) // We only need implicit hashes for key[0:-1] for _, k := range key[0 : len(key)-1] { _, ok = hashContext[k] keyContext = append(keyContext, k) // No key? Make an implicit hash and move on. if !ok { p.addImplicit(keyContext) hashContext[k] = make(map[string]interface{}) } // If the hash context is actually an array of tables, then set // the hash context to the last element in that array. // // Otherwise, it better be a table, since this MUST be a key group (by // virtue of it not being the last element in a key). switch t := hashContext[k].(type) { case []map[string]interface{}: hashContext = t[len(t)-1] case map[string]interface{}: hashContext = t default: p.panicf("Key '%s' was already created as a hash.", keyContext) } } p.context = keyContext if array { // If this is the first element for this array, then allocate a new // list of tables for it. k := key[len(key)-1] if _, ok := hashContext[k]; !ok { hashContext[k] = make([]map[string]interface{}, 0, 5) } // Add a new table. But make sure the key hasn't already been used // for something else. if hash, ok := hashContext[k].([]map[string]interface{}); ok { hashContext[k] = append(hash, make(map[string]interface{})) } else { p.panicf("Key '%s' was already created and cannot be used as "+ "an array.", keyContext) } } else { p.setValue(key[len(key)-1], make(map[string]interface{})) } p.context = append(p.context, key[len(key)-1]) } // setValue sets the given key to the given value in the current context. // It will make sure that the key hasn't already been defined, account for // implicit key groups. func (p *parser) setValue(key string, value interface{}) { var tmpHash interface{} var ok bool hash := p.mapping keyContext := make(Key, 0) for _, k := range p.context { keyContext = append(keyContext, k) if tmpHash, ok = hash[k]; !ok { p.bug("Context for key '%s' has not been established.", keyContext) } switch t := tmpHash.(type) { case []map[string]interface{}: // The context is a table of hashes. Pick the most recent table // defined as the current hash. hash = t[len(t)-1] case map[string]interface{}: hash = t default: p.bug("Expected hash to have type 'map[string]interface{}', but "+ "it has '%T' instead.", tmpHash) } } keyContext = append(keyContext, key) if _, ok := hash[key]; ok { // Typically, if the given key has already been set, then we have // to raise an error since duplicate keys are disallowed. However, // it's possible that a key was previously defined implicitly. In this // case, it is allowed to be redefined concretely. (See the // `tests/valid/implicit-and-explicit-after.toml` test in `toml-test`.) // // But we have to make sure to stop marking it as an implicit. (So that // another redefinition provokes an error.) // // Note that since it has already been defined (as a hash), we don't // want to overwrite it. So our business is done. if p.isImplicit(keyContext) { p.removeImplicit(keyContext) return } // Otherwise, we have a concrete key trying to override a previous // key, which is *always* wrong. p.panicf("Key '%s' has already been defined.", keyContext) } hash[key] = value } // setType sets the type of a particular value at a given key. // It should be called immediately AFTER setValue. // // Note that if `key` is empty, then the type given will be applied to the // current context (which is either a table or an array of tables). func (p *parser) setType(key string, typ tomlType) { keyContext := make(Key, 0, len(p.context)+1) for _, k := range p.context { keyContext = append(keyContext, k) } if len(key) > 0 { // allow type setting for hashes keyContext = append(keyContext, key) } p.types[keyContext.String()] = typ } // addImplicit sets the given Key as having been created implicitly. func (p *parser) addImplicit(key Key) { p.implicits[key.String()] = true } // removeImplicit stops tagging the given key as having been implicitly // created. func (p *parser) removeImplicit(key Key) { p.implicits[key.String()] = false } // isImplicit returns true if the key group pointed to by the key was created // implicitly. func (p *parser) isImplicit(key Key) bool { return p.implicits[key.String()] } // current returns the full key name of the current context. func (p *parser) current() string { if len(p.currentKey) == 0 { return p.context.String() } if len(p.context) == 0 { return p.currentKey } return fmt.Sprintf("%s.%s", p.context, p.currentKey) } func stripFirstNewline(s string) string { if len(s) == 0 || s[0] != '\n' { return s } return s[1:] } func stripEscapedWhitespace(s string) string { esc := strings.Split(s, "\\\n") if len(esc) > 1 { for i := 1; i < len(esc); i++ { esc[i] = strings.TrimLeftFunc(esc[i], unicode.IsSpace) } } return strings.Join(esc, "") } func (p *parser) replaceEscapes(str string) string { var replaced []rune s := []byte(str) r := 0 for r < len(s) { if s[r] != '\\' { c, size := utf8.DecodeRune(s[r:]) r += size replaced = append(replaced, c) continue } r += 1 if r >= len(s) { p.bug("Escape sequence at end of string.") return "" } switch s[r] { default: p.bug("Expected valid escape code after \\, but got %q.", s[r]) return "" case 'b': replaced = append(replaced, rune(0x0008)) r += 1 case 't': replaced = append(replaced, rune(0x0009)) r += 1 case 'n': replaced = append(replaced, rune(0x000A)) r += 1 case 'f': replaced = append(replaced, rune(0x000C)) r += 1 case 'r': replaced = append(replaced, rune(0x000D)) r += 1 case '"': replaced = append(replaced, rune(0x0022)) r += 1 case '\\': replaced = append(replaced, rune(0x005C)) r += 1 case 'u': // At this point, we know we have a Unicode escape of the form // `uXXXX` at [r, r+5). (Because the lexer guarantees this // for us.) escaped := p.asciiEscapeToUnicode(s[r+1 : r+5]) replaced = append(replaced, escaped) r += 5 case 'U': // At this point, we know we have a Unicode escape of the form // `uXXXX` at [r, r+9). (Because the lexer guarantees this // for us.) escaped := p.asciiEscapeToUnicode(s[r+1 : r+9]) replaced = append(replaced, escaped) r += 9 } } return string(replaced) } func (p *parser) asciiEscapeToUnicode(bs []byte) rune { s := string(bs) hex, err := strconv.ParseUint(strings.ToLower(s), 16, 32) if err != nil { p.bug("Could not parse '%s' as a hexadecimal number, but the "+ "lexer claims it's OK: %s", s, err) } if !utf8.ValidRune(rune(hex)) { p.panicf("Escaped character '\\u%s' is not valid UTF-8.", s) } return rune(hex) } func isStringType(ty itemType) bool { return ty == itemString || ty == itemMultilineString || ty == itemRawString || ty == itemRawMultilineString } toml-0.3.1/session.vim000066400000000000000000000000671333500230500146630ustar00rootroot00000000000000au BufWritePost *.go silent!make tags > /dev/null 2>&1 toml-0.3.1/type_check.go000066400000000000000000000047021333500230500151300ustar00rootroot00000000000000package toml // tomlType represents any Go type that corresponds to a TOML type. // While the first draft of the TOML spec has a simplistic type system that // probably doesn't need this level of sophistication, we seem to be militating // toward adding real composite types. type tomlType interface { typeString() string } // typeEqual accepts any two types and returns true if they are equal. func typeEqual(t1, t2 tomlType) bool { if t1 == nil || t2 == nil { return false } return t1.typeString() == t2.typeString() } func typeIsHash(t tomlType) bool { return typeEqual(t, tomlHash) || typeEqual(t, tomlArrayHash) } type tomlBaseType string func (btype tomlBaseType) typeString() string { return string(btype) } func (btype tomlBaseType) String() string { return btype.typeString() } var ( tomlInteger tomlBaseType = "Integer" tomlFloat tomlBaseType = "Float" tomlDatetime tomlBaseType = "Datetime" tomlString tomlBaseType = "String" tomlBool tomlBaseType = "Bool" tomlArray tomlBaseType = "Array" tomlHash tomlBaseType = "Hash" tomlArrayHash tomlBaseType = "ArrayHash" ) // typeOfPrimitive returns a tomlType of any primitive value in TOML. // Primitive values are: Integer, Float, Datetime, String and Bool. // // Passing a lexer item other than the following will cause a BUG message // to occur: itemString, itemBool, itemInteger, itemFloat, itemDatetime. func (p *parser) typeOfPrimitive(lexItem item) tomlType { switch lexItem.typ { case itemInteger: return tomlInteger case itemFloat: return tomlFloat case itemDatetime: return tomlDatetime case itemString: return tomlString case itemMultilineString: return tomlString case itemRawString: return tomlString case itemRawMultilineString: return tomlString case itemBool: return tomlBool } p.bug("Cannot infer primitive type of lex item '%s'.", lexItem) panic("unreachable") } // typeOfArray returns a tomlType for an array given a list of types of its // values. // // In the current spec, if an array is homogeneous, then its type is always // "Array". If the array is not homogeneous, an error is generated. func (p *parser) typeOfArray(types []tomlType) tomlType { // Empty arrays are cool. if len(types) == 0 { return tomlArray } theType := types[0] for _, t := range types[1:] { if !typeEqual(theType, t) { p.panicf("Array contains values of type '%s' and '%s', but "+ "arrays must be homogeneous.", theType, t) } } return tomlArray } toml-0.3.1/type_fields.go000066400000000000000000000145071333500230500153250ustar00rootroot00000000000000package toml // Struct field handling is adapted from code in encoding/json: // // Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the Go distribution. import ( "reflect" "sort" "sync" ) // A field represents a single field found in a struct. type field struct { name string // the name of the field (`toml` tag included) tag bool // whether field has a `toml` tag index []int // represents the depth of an anonymous field typ reflect.Type // the type of the field } // byName sorts field by name, breaking ties with depth, // then breaking ties with "name came from toml tag", then // breaking ties with index sequence. type byName []field func (x byName) Len() int { return len(x) } func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] } func (x byName) Less(i, j int) bool { if x[i].name != x[j].name { return x[i].name < x[j].name } if len(x[i].index) != len(x[j].index) { return len(x[i].index) < len(x[j].index) } if x[i].tag != x[j].tag { return x[i].tag } return byIndex(x).Less(i, j) } // byIndex sorts field by index sequence. type byIndex []field func (x byIndex) Len() int { return len(x) } func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] } func (x byIndex) Less(i, j int) bool { for k, xik := range x[i].index { if k >= len(x[j].index) { return false } if xik != x[j].index[k] { return xik < x[j].index[k] } } return len(x[i].index) < len(x[j].index) } // typeFields returns a list of fields that TOML should recognize for the given // type. The algorithm is breadth-first search over the set of structs to // include - the top struct and then any reachable anonymous structs. func typeFields(t reflect.Type) []field { // Anonymous fields to explore at the current level and the next. current := []field{} next := []field{{typ: t}} // Count of queued names for current level and the next. count := map[reflect.Type]int{} nextCount := map[reflect.Type]int{} // Types already visited at an earlier level. visited := map[reflect.Type]bool{} // Fields found. var fields []field for len(next) > 0 { current, next = next, current[:0] count, nextCount = nextCount, map[reflect.Type]int{} for _, f := range current { if visited[f.typ] { continue } visited[f.typ] = true // Scan f.typ for fields to include. for i := 0; i < f.typ.NumField(); i++ { sf := f.typ.Field(i) if sf.PkgPath != "" && !sf.Anonymous { // unexported continue } opts := getOptions(sf.Tag) if opts.skip { continue } index := make([]int, len(f.index)+1) copy(index, f.index) index[len(f.index)] = i ft := sf.Type if ft.Name() == "" && ft.Kind() == reflect.Ptr { // Follow pointer. ft = ft.Elem() } // Record found field and index sequence. if opts.name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct { tagged := opts.name != "" name := opts.name if name == "" { name = sf.Name } fields = append(fields, field{name, tagged, index, ft}) if count[f.typ] > 1 { // If there were multiple instances, add a second, // so that the annihilation code will see a duplicate. // It only cares about the distinction between 1 or 2, // so don't bother generating any more copies. fields = append(fields, fields[len(fields)-1]) } continue } // Record new anonymous struct to explore in next round. nextCount[ft]++ if nextCount[ft] == 1 { f := field{name: ft.Name(), index: index, typ: ft} next = append(next, f) } } } } sort.Sort(byName(fields)) // Delete all fields that are hidden by the Go rules for embedded fields, // except that fields with TOML tags are promoted. // The fields are sorted in primary order of name, secondary order // of field index length. Loop over names; for each name, delete // hidden fields by choosing the one dominant field that survives. out := fields[:0] for advance, i := 0, 0; i < len(fields); i += advance { // One iteration per name. // Find the sequence of fields with the name of this first field. fi := fields[i] name := fi.name for advance = 1; i+advance < len(fields); advance++ { fj := fields[i+advance] if fj.name != name { break } } if advance == 1 { // Only one field with this name out = append(out, fi) continue } dominant, ok := dominantField(fields[i : i+advance]) if ok { out = append(out, dominant) } } fields = out sort.Sort(byIndex(fields)) return fields } // dominantField looks through the fields, all of which are known to // have the same name, to find the single field that dominates the // others using Go's embedding rules, modified by the presence of // TOML tags. If there are multiple top-level fields, the boolean // will be false: This condition is an error in Go and we skip all // the fields. func dominantField(fields []field) (field, bool) { // The fields are sorted in increasing index-length order. The winner // must therefore be one with the shortest index length. Drop all // longer entries, which is easy: just truncate the slice. length := len(fields[0].index) tagged := -1 // Index of first tagged field. for i, f := range fields { if len(f.index) > length { fields = fields[:i] break } if f.tag { if tagged >= 0 { // Multiple tagged fields at the same level: conflict. // Return no field. return field{}, false } tagged = i } } if tagged >= 0 { return fields[tagged], true } // All remaining fields have the same length. If there's more than one, // we have a conflict (two fields named "X" at the same level) and we // return no field. if len(fields) > 1 { return field{}, false } return fields[0], true } var fieldCache struct { sync.RWMutex m map[reflect.Type][]field } // cachedTypeFields is like typeFields but uses a cache to avoid repeated work. func cachedTypeFields(t reflect.Type) []field { fieldCache.RLock() f := fieldCache.m[t] fieldCache.RUnlock() if f != nil { return f } // Compute fields without lock. // Might duplicate effort but won't hold other computations back. f = typeFields(t) if f == nil { f = []field{} } fieldCache.Lock() if fieldCache.m == nil { fieldCache.m = map[reflect.Type][]field{} } fieldCache.m[t] = f fieldCache.Unlock() return f }