bifunctors-5.4.2/0000755000000000000000000000000013075676571012107 5ustar0000000000000000bifunctors-5.4.2/CHANGELOG.markdown0000644000000000000000000000556213075676571015152 0ustar00000000000000005.4.2 ----- * Make `deriveBitraversable` use `liftA2` in derived implementations of `bitraverse` when possible, now that `liftA2` is a class method of `Applicative` (as of GHC 8.2) * Backport slightly more efficient implementations of `bimapDefault` and `bifoldMapDefault` 5.4.1 ----- * Add explicit `Safe`, `Trustworthy`, and `Unsafe` annotations. In particular, annotate the `Data.Bifoldable` module as `Trustworthy` (previously, it was inferred to be `Unsafe`). 5.4 --- * Only export `Data.Bifoldable` and `Data.Bitraversable` when building on GHC < 8.1, otherwise they come from `base` * Allow TH derivation of `Bifunctor` and `Bifoldable` instances for datatypes containing unboxed tuple types 5.3 --- * Added `bifoldr1`, `bifoldl1`, `bimsum`, `biasum`, `binull`, `bilength`, `bielem`, `bimaximum`, `biminimum`, `bisum`, `biproduct`, `biand`, `bior`, `bimaximumBy`, `biminimumBy`, `binotElem`, and `bifind` to `Data.Bifoldable` * Added `Bifunctor`, `Bifoldable`, and `Bitraversable` instances for `GHC.Generics.K1` * TH code no longer generates superfluous `mempty` or `pure` subexpressions in derived `Bifoldable` or `Bitraversable` instances, respectively 5.2.1 ---- * Added `Bifoldable` and `Bitraversable` instances for `Constant` from `transformers` * `Data.Bifunctor.TH` now compiles warning-free on GHC 8.0 5.2 ----- * Added several `Arrow`-like instances for `Tannen` so we can use it as the Cayley construction if needed. * Added `Data.Bifunctor.Sum` * Added `BifunctorFunctor`, `BifunctorMonad` and `BifunctorComonad`. * Backported `Bifunctor Constant` instance from `transformers` 5.1 --- * Added `Data.Bifunctor.Fix` * Added `Data.Bifunctor.TH`, which permits `TemplateHaskell`-based deriving of `Bifunctor`, `Bifoldable` and `Bitraversable` instances. * Simplified `Bitraversable`. 5 - * Inverted the dependency on `semigroupoids`. We can support a much wider array of `base` versions than it can. * Added flags 4.2.1 ----- * Support `Arg` from `semigroups` 0.16.2 * Fixed a typo. 4.2 --- * Bumped dependency on `tagged`, which is required to build cleanly on GHC 7.9+ * Only export `Data.Bifunctor` when building on GHC < 7.9, otherwise it comes from `base`. 4.1.1.1 ------- * Added documentation for 'Bifoldable' and 'Bitraversable' 4.1.1 ----- * Added `Data.Bifunctor.Join` * Fixed improper lower bounds on `base` 4.1.0.1 ------- * Updated to BSD 2-clause license 4.1 --- * Added product bifunctors 4.0 --- * Compatibility with `semigroupoids` 4.0 3.2 --- * Added missing product instances for `Biapplicative` and `Biapply`. 3.1 ----- * Added `Data.Biapplicative`. * Added the `Clown` and `Joker` bifunctors from Conor McBride's "Clowns to the left of me, Jokers to the right." * Added instances for `Const`, higher tuples * Added `Tagged` instances. 3.0.4 ----- * Added `Data.Bifunctor.Flip` and `Data.Bifunctor.Wrapped`. 3.0.3 --- * Removed upper bounds from my other package dependencies bifunctors-5.4.2/README.markdown0000644000000000000000000000071013075676571014606 0ustar0000000000000000bifunctors ========== [![Hackage](https://img.shields.io/hackage/v/bifunctors.svg)](https://hackage.haskell.org/package/bifunctors) [![Build Status](https://secure.travis-ci.org/ekmett/bifunctors.png?branch=master)](http://travis-ci.org/ekmett/bifunctors) Contact Information ------------------- Contributions and bug reports are welcome! Please feel free to contact me through github or on the #haskell IRC channel on irc.freenode.net. -Edward Kmett bifunctors-5.4.2/bifunctors.cabal0000644000000000000000000000544513075676571015261 0ustar0000000000000000name: bifunctors category: Data, Functors version: 5.4.2 license: BSD3 cabal-version: >= 1.8 license-file: LICENSE author: Edward A. Kmett maintainer: Edward A. Kmett stability: provisional homepage: http://github.com/ekmett/bifunctors/ bug-reports: http://github.com/ekmett/bifunctors/issues copyright: Copyright (C) 2008-2016 Edward A. Kmett synopsis: Bifunctors description: Bifunctors build-type: Simple tested-with: GHC == 7.0.4, GHC == 7.2.2, GHC == 7.4.2, GHC == 7.6.3, GHC == 7.8.4, GHC == 7.10.3, GHC == 8.0.2 extra-source-files: .travis.yml CHANGELOG.markdown README.markdown source-repository head type: git location: https://github.com/ekmett/bifunctors.git flag semigroups default: True manual: True description: You can disable the use of the `semigroups` package using `-f-semigroups`. . Disabing this is an unsupported configuration, but it may be useful for accelerating builds in sandboxes for expert users. flag tagged default: True manual: True description: You can disable the use of the `tagged` package using `-f-tagged`. . Disabing this is an unsupported configuration, but it may be useful for accelerating builds in sandboxes for expert users. library hs-source-dirs: src build-depends: base >= 4 && < 5, base-orphans >= 0.5.2 && < 1, comonad >= 4 && < 6, containers >= 0.1 && < 0.6, template-haskell >= 2.4 && < 2.13, transformers >= 0.2 && < 0.6, transformers-compat >= 0.5 && < 0.6 if flag(tagged) build-depends: tagged >= 0.7.3 && < 1 if flag(semigroups) build-depends: semigroups >= 0.8.3.1 && < 1 if impl(ghc<7.9) hs-source-dirs: old-src/ghc709 exposed-modules: Data.Bifunctor if impl(ghc<8.1) hs-source-dirs: old-src/ghc801 exposed-modules: Data.Bifoldable Data.Bitraversable if impl(ghc>=7.2) && impl(ghc<7.5) build-depends: ghc-prim == 0.2.0.0 exposed-modules: Data.Biapplicative Data.Bifunctor.Biff Data.Bifunctor.Clown Data.Bifunctor.Fix Data.Bifunctor.Flip Data.Bifunctor.Functor Data.Bifunctor.Join Data.Bifunctor.Joker Data.Bifunctor.Product Data.Bifunctor.Sum Data.Bifunctor.Tannen Data.Bifunctor.TH Data.Bifunctor.Wrapped other-modules: Data.Bifunctor.TH.Internal Paths_bifunctors ghc-options: -Wall test-suite bifunctors-spec type: exitcode-stdio-1.0 hs-source-dirs: tests main-is: Spec.hs other-modules: BifunctorSpec ghc-options: -Wall build-depends: base >= 4 && < 5, bifunctors, hspec >= 1.8, QuickCheck >= 2 && < 3, template-haskell, transformers, transformers-compat bifunctors-5.4.2/Setup.lhs0000644000000000000000000000016513075676571013721 0ustar0000000000000000#!/usr/bin/runhaskell > module Main (main) where > import Distribution.Simple > main :: IO () > main = defaultMain bifunctors-5.4.2/.travis.yml0000644000000000000000000001031013075676571014213 0ustar0000000000000000# This file has been generated -- see https://github.com/hvr/multi-ghc-travis language: c sudo: false cache: directories: - $HOME/.cabsnap - $HOME/.cabal/packages before_cache: - rm -fv $HOME/.cabal/packages/hackage.haskell.org/build-reports.log - rm -fv $HOME/.cabal/packages/hackage.haskell.org/00-index.tar matrix: include: - env: CABALVER=1.18 GHCVER=7.0.4 compiler: ": #GHC 7.0.4" addons: {apt: {packages: [cabal-install-1.18,ghc-7.0.4], sources: [hvr-ghc]}} - env: CABALVER=1.18 GHCVER=7.2.2 compiler: ": #GHC 7.2.2" addons: {apt: {packages: [cabal-install-1.18,ghc-7.2.2], sources: [hvr-ghc]}} - env: CABALVER=1.18 GHCVER=7.4.2 compiler: ": #GHC 7.4.2" addons: {apt: {packages: [cabal-install-1.18,ghc-7.4.2], sources: [hvr-ghc]}} - env: CABALVER=1.18 GHCVER=7.6.3 compiler: ": #GHC 7.6.3" addons: {apt: {packages: [cabal-install-1.18,ghc-7.6.3], sources: [hvr-ghc]}} - env: CABALVER=1.18 GHCVER=7.8.4 compiler: ": #GHC 7.8.4" addons: {apt: {packages: [cabal-install-1.18,ghc-7.8.4], sources: [hvr-ghc]}} - env: CABALVER=1.22 GHCVER=7.10.3 compiler: ": #GHC 7.10.3" addons: {apt: {packages: [cabal-install-1.22,ghc-7.10.3], sources: [hvr-ghc]}} - env: CABALVER=1.24 GHCVER=8.0.2 compiler: ": #GHC 8.0.2" addons: {apt: {packages: [cabal-install-1.24,ghc-8.0.2], sources: [hvr-ghc]}} - env: CABALVER=2.0 GHCVER=8.2.1 compiler: ": #GHC 8.2.1" addons: {apt: {packages: [cabal-install-2.0,ghc-8.2.1], sources: [hvr-ghc]}} - env: CABALVER=head GHCVER=head compiler: ": #GHC head" addons: {apt: {packages: [cabal-install-head,ghc-head], sources: [hvr-ghc]}} allow_failures: - env: CABALVER=1.18 GHCVER=7.0.4 - env: CABALVER=1.18 GHCVER=7.2.2 - env: CABALVER=head GHCVER=head before_install: - unset CC - export PATH=$HOME/.cabal/bin:/opt/ghc/$GHCVER/bin:/opt/cabal/$CABALVER/bin:$PATH install: - cabal --version - echo "$(ghc --version) [$(ghc --print-project-git-commit-id 2> /dev/null || echo '?')]" - if [ -f $HOME/.cabal/packages/hackage.haskell.org/00-index.tar.gz ]; then zcat $HOME/.cabal/packages/hackage.haskell.org/00-index.tar.gz > $HOME/.cabal/packages/hackage.haskell.org/00-index.tar; fi - travis_retry cabal update -v - sed -i 's/^jobs:/-- jobs:/' ${HOME}/.cabal/config - cabal install --only-dependencies --enable-tests --dry -v > installplan.txt - sed -i -e '1,/^Resolving /d' installplan.txt; cat installplan.txt # check whether current requested install-plan matches cached package-db snapshot - if diff -u installplan.txt $HOME/.cabsnap/installplan.txt; then echo "cabal build-cache HIT"; rm -rfv .ghc; cp -a $HOME/.cabsnap/ghc $HOME/.ghc; cp -a $HOME/.cabsnap/lib $HOME/.cabsnap/share $HOME/.cabsnap/bin $HOME/.cabal/; else echo "cabal build-cache MISS"; rm -rf $HOME/.cabsnap; mkdir -p $HOME/.ghc $HOME/.cabal/lib $HOME/.cabal/share $HOME/.cabal/bin; cabal install -j --only-dependencies --enable-tests; fi # snapshot package-db on cache miss - if [ ! -d $HOME/.cabsnap ]; then echo "snapshotting package-db to build-cache"; mkdir $HOME/.cabsnap; cp -a $HOME/.ghc $HOME/.cabsnap/ghc; cp -a $HOME/.cabal/lib $HOME/.cabal/share $HOME/.cabal/bin installplan.txt $HOME/.cabsnap/; fi # Here starts the actual work to be performed for the package under test; # any command which exits with a non-zero exit code causes the build to fail. script: - cabal configure -v2 --enable-tests # -v2 provides useful information for debugging - cabal build # this builds all libraries and executables (including tests/benchmarks) - cabal test --show-details=always - cabal haddock - cabal sdist # tests that a source-distribution can be generated - export SRC_TGZ=$(cabal info . | awk '{print $2 ".tar.gz";exit}') ; cd dist/; if [ -f "$SRC_TGZ" ]; then cabal install "$SRC_TGZ"; else echo "expected '$SRC_TGZ' not found"; exit 1; fi notifications: irc: channels: - "irc.freenode.org#haskell-lens" skip_join: true template: - "\x0313bifunctors\x0f/\x0306%{branch}\x0f \x0314%{commit}\x0f %{message} \x0302\x1f%{build_url}\x0f" # EOF bifunctors-5.4.2/LICENSE0000644000000000000000000000236413075676571013121 0ustar0000000000000000Copyright 2008-2016 Edward Kmett All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. bifunctors-5.4.2/old-src/0000755000000000000000000000000013075676571013452 5ustar0000000000000000bifunctors-5.4.2/old-src/ghc801/0000755000000000000000000000000013075676571014444 5ustar0000000000000000bifunctors-5.4.2/old-src/ghc801/Data/0000755000000000000000000000000013075676571015315 5ustar0000000000000000bifunctors-5.4.2/old-src/ghc801/Data/Bifoldable.hs0000644000000000000000000004012113075676571017672 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif #ifndef MIN_VERSION_semigroups #define MIN_VERSION_semigroups(x,y,z) 0 #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2011-2015 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : portable -- ---------------------------------------------------------------------------- module Data.Bifoldable ( Bifoldable(..) , bifoldr' , bifoldr1 , bifoldrM , bifoldl' , bifoldl1 , bifoldlM , bitraverse_ , bifor_ , bimapM_ , biforM_ , bimsum , bisequenceA_ , bisequence_ , biasum , biList , binull , bilength , bielem , bimaximum , biminimum , bisum , biproduct , biconcat , biconcatMap , biand , bior , biany , biall , bimaximumBy , biminimumBy , binotElem , bifind ) where import Control.Applicative import Control.Monad import Data.Functor.Constant import Data.Maybe (fromMaybe) import Data.Monoid #if MIN_VERSION_base(4,7,0) import Data.Coerce #else import Unsafe.Coerce #endif #if MIN_VERSION_base(4,9,0) || MIN_VERSION_semigroups(0,16,2) import Data.Semigroup (Arg(..)) #endif #ifdef MIN_VERSION_tagged import Data.Tagged #endif #if __GLASGOW_HASKELL__ >= 702 import GHC.Generics (K1(..)) #endif #if __GLASGOW_HASKELL__ >= 708 && __GLASGOW_HASKELL__ < 710 import Data.Typeable #endif -- | 'Bifoldable' identifies foldable structures with two different varieties -- of elements (as opposed to 'Foldable', which has one variety of element). -- Common examples are 'Either' and '(,)': -- -- > instance Bifoldable Either where -- > bifoldMap f _ (Left a) = f a -- > bifoldMap _ g (Right b) = g b -- > -- > instance Bifoldable (,) where -- > bifoldr f g z (a, b) = f a (g b z) -- -- A minimal 'Bifoldable' definition consists of either 'bifoldMap' or -- 'bifoldr'. When defining more than this minimal set, one should ensure -- that the following identities hold: -- -- @ -- 'bifold' ≡ 'bifoldMap' 'id' 'id' -- 'bifoldMap' f g ≡ 'bifoldr' ('mappend' . f) ('mappend' . g) 'mempty' -- 'bifoldr' f g z t ≡ 'appEndo' ('bifoldMap' (Endo . f) (Endo . g) t) z -- @ -- -- If the type is also a 'Bifunctor' instance, it should satisfy: -- -- > 'bifoldMap' f g ≡ 'bifold' . 'bimap' f g -- -- which implies that -- -- > 'bifoldMap' f g . 'bimap' h i ≡ 'bifoldMap' (f . h) (g . i) class Bifoldable p where -- | Combines the elements of a structure using a monoid. -- -- @'bifold' ≡ 'bifoldMap' 'id' 'id'@ bifold :: Monoid m => p m m -> m bifold = bifoldMap id id {-# INLINE bifold #-} -- | Combines the elements of a structure, given ways of mapping them to a -- common monoid. -- -- @'bifoldMap' f g ≡ 'bifoldr' ('mappend' . f) ('mappend' . g) 'mempty'@ bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> p a b -> m bifoldMap f g = bifoldr (mappend . f) (mappend . g) mempty {-# INLINE bifoldMap #-} -- | Combines the elements of a structure in a right associative manner. Given -- a hypothetical function @toEitherList :: p a b -> [Either a b]@ yielding a -- list of all elements of a structure in order, the following would hold: -- -- @'bifoldr' f g z ≡ 'foldr' ('either' f g) z . toEitherList@ bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> p a b -> c bifoldr f g z t = appEndo (bifoldMap (Endo #. f) (Endo #. g) t) z {-# INLINE bifoldr #-} -- | Combines the elments of a structure in a left associative manner. Given a -- hypothetical function @toEitherList :: p a b -> [Either a b]@ yielding a -- list of all elements of a structure in order, the following would hold: -- -- @'bifoldl' f g z ≡ 'foldl' (\acc -> 'either' (f acc) (g acc)) z . toEitherList@ -- -- Note that if you want an efficient left-fold, you probably want to use -- 'bifoldl'' instead of 'bifoldl'. The reason is that the latter does not -- force the "inner" results, resulting in a thunk chain which then must be -- evaluated from the outside-in. bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> p a b -> c bifoldl f g z t = appEndo (getDual (bifoldMap (Dual . Endo . flip f) (Dual . Endo . flip g) t)) z {-# INLINE bifoldl #-} #if __GLASGOW_HASKELL__ >= 708 {-# MINIMAL bifoldr | bifoldMap #-} #endif #if __GLASGOW_HASKELL__ >= 708 && __GLASGOW_HASKELL__ < 710 deriving instance Typeable Bifoldable #endif #if MIN_VERSION_base(4,9,0) || MIN_VERSION_semigroups(0,16,2) instance Bifoldable Arg where bifoldMap f g (Arg a b) = f a `mappend` g b #endif instance Bifoldable (,) where bifoldMap f g ~(a, b) = f a `mappend` g b {-# INLINE bifoldMap #-} instance Bifoldable Const where bifoldMap f _ (Const a) = f a {-# INLINE bifoldMap #-} instance Bifoldable Constant where bifoldMap f _ (Constant a) = f a {-# INLINE bifoldMap #-} #if __GLASGOW_HASKELL__ >= 702 instance Bifoldable (K1 i) where bifoldMap f _ (K1 c) = f c {-# INLINE bifoldMap #-} #endif instance Bifoldable ((,,) x) where bifoldMap f g ~(_,a,b) = f a `mappend` g b {-# INLINE bifoldMap #-} instance Bifoldable ((,,,) x y) where bifoldMap f g ~(_,_,a,b) = f a `mappend` g b {-# INLINE bifoldMap #-} instance Bifoldable ((,,,,) x y z) where bifoldMap f g ~(_,_,_,a,b) = f a `mappend` g b {-# INLINE bifoldMap #-} instance Bifoldable ((,,,,,) x y z w) where bifoldMap f g ~(_,_,_,_,a,b) = f a `mappend` g b {-# INLINE bifoldMap #-} instance Bifoldable ((,,,,,,) x y z w v) where bifoldMap f g ~(_,_,_,_,_,a,b) = f a `mappend` g b {-# INLINE bifoldMap #-} #ifdef MIN_VERSION_tagged instance Bifoldable Tagged where bifoldMap _ g (Tagged b) = g b {-# INLINE bifoldMap #-} #endif instance Bifoldable Either where bifoldMap f _ (Left a) = f a bifoldMap _ g (Right b) = g b {-# INLINE bifoldMap #-} -- | As 'bifoldr', but strict in the result of the reduction functions at each -- step. bifoldr' :: Bifoldable t => (a -> c -> c) -> (b -> c -> c) -> c -> t a b -> c bifoldr' f g z0 xs = bifoldl f' g' id xs z0 where f' k x z = k $! f x z g' k x z = k $! g x z {-# INLINE bifoldr' #-} -- | A variant of 'bifoldr' that has no base case, -- and thus may only be applied to non-empty structures. bifoldr1 :: Bifoldable t => (a -> a -> a) -> t a a -> a bifoldr1 f xs = fromMaybe (error "bifoldr1: empty structure") (bifoldr mbf mbf Nothing xs) where mbf x m = Just (case m of Nothing -> x Just y -> f x y) {-# INLINE bifoldr1 #-} -- | Right associative monadic bifold over a structure. bifoldrM :: (Bifoldable t, Monad m) => (a -> c -> m c) -> (b -> c -> m c) -> c -> t a b -> m c bifoldrM f g z0 xs = bifoldl f' g' return xs z0 where f' k x z = f x z >>= k g' k x z = g x z >>= k {-# INLINE bifoldrM #-} -- | As 'bifoldl', but strict in the result of the reduction functions at each -- step. -- -- This ensures that each step of the bifold is forced to weak head normal form -- before being applied, avoiding the collection of thunks that would otherwise -- occur. This is often what you want to strictly reduce a finite structure to -- a single, monolithic result (e.g., 'bilength'). bifoldl':: Bifoldable t => (a -> b -> a) -> (a -> c -> a) -> a -> t b c -> a bifoldl' f g z0 xs = bifoldr f' g' id xs z0 where f' x k z = k $! f z x g' x k z = k $! g z x {-# INLINE bifoldl' #-} -- | A variant of 'bifoldl' that has no base case, -- and thus may only be applied to non-empty structures. bifoldl1 :: Bifoldable t => (a -> a -> a) -> t a a -> a bifoldl1 f xs = fromMaybe (error "bifoldl1: empty structure") (bifoldl mbf mbf Nothing xs) where mbf m y = Just (case m of Nothing -> y Just x -> f x y) {-# INLINe bifoldl1 #-} -- | Left associative monadic bifold over a structure. bifoldlM :: (Bifoldable t, Monad m) => (a -> b -> m a) -> (a -> c -> m a) -> a -> t b c -> m a bifoldlM f g z0 xs = bifoldr f' g' return xs z0 where f' x k z = f z x >>= k g' x k z = g z x >>= k {-# INLINE bifoldlM #-} -- | Map each element of a structure using one of two actions, evaluate these -- actions from left to right, and ignore the results. For a version that -- doesn't ignore the results, see 'Data.Bitraversable.bitraverse'. bitraverse_ :: (Bifoldable t, Applicative f) => (a -> f c) -> (b -> f d) -> t a b -> f () bitraverse_ f g = bifoldr ((*>) . f) ((*>) . g) (pure ()) {-# INLINE bitraverse_ #-} -- | As 'bitraverse_', but with the structure as the primary argument. For a -- version that doesn't ignore the results, see 'Data.Bitraversable.bifor'. -- -- >>> > bifor_ ('a', "bc") print (print . reverse) -- 'a' -- "cb" bifor_ :: (Bifoldable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f () bifor_ t f g = bitraverse_ f g t {-# INLINE bifor_ #-} -- | As 'Data.Bitraversable.bimapM', but ignores the results of the functions, -- merely performing the "actions". bimapM_:: (Bifoldable t, Monad m) => (a -> m c) -> (b -> m d) -> t a b -> m () bimapM_ f g = bifoldr ((>>) . f) ((>>) . g) (return ()) {-# INLINE bimapM_ #-} -- | As 'bimapM_', but with the structure as the primary argument. biforM_ :: (Bifoldable t, Monad m) => t a b -> (a -> m c) -> (b -> m d) -> m () biforM_ t f g = bimapM_ f g t {-# INLINE biforM_ #-} -- | As 'Data.Bitraversable.bisequenceA', but ignores the results of the actions. bisequenceA_ :: (Bifoldable t, Applicative f) => t (f a) (f b) -> f () bisequenceA_ = bifoldr (*>) (*>) (pure ()) {-# INLINE bisequenceA_ #-} -- | Evaluate each action in the structure from left to right, and ignore the -- results. For a version that doesn't ignore the results, see -- 'Data.Bitraversable.bisequence'. bisequence_ :: (Bifoldable t, Monad m) => t (m a) (m b) -> m () bisequence_ = bifoldr (>>) (>>) (return ()) {-# INLINE bisequence_ #-} -- | The sum of a collection of actions, generalizing 'biconcat'. biasum :: (Bifoldable t, Alternative f) => t (f a) (f a) -> f a biasum = bifoldr (<|>) (<|>) empty {-# INLINE biasum #-} -- | The sum of a collection of actions, generalizing 'biconcat'. bimsum :: (Bifoldable t, MonadPlus m) => t (m a) (m a) -> m a bimsum = bifoldr mplus mplus mzero {-# INLINE bimsum #-} -- | Collects the list of elements of a structure, from left to right. biList :: Bifoldable t => t a a -> [a] biList = bifoldr (:) (:) [] {-# INLINE biList #-} -- | Test whether the structure is empty. binull :: Bifoldable t => t a b -> Bool binull = bifoldr (\_ _ -> False) (\_ _ -> False) True {-# INLINE binull #-} -- | Returns the size/length of a finite structure as an 'Int'. bilength :: Bifoldable t => t a b -> Int bilength = bifoldl' (\c _ -> c+1) (\c _ -> c+1) 0 {-# INLINE bilength #-} -- | Does the element occur in the structure? bielem :: (Bifoldable t, Eq a) => a -> t a a -> Bool bielem x = biany (== x) (== x) {-# INLINE bielem #-} -- | Reduces a structure of lists to the concatenation of those lists. biconcat :: Bifoldable t => t [a] [a] -> [a] biconcat = bifold {-# INLINE biconcat #-} newtype Max a = Max {getMax :: Maybe a} newtype Min a = Min {getMin :: Maybe a} instance Ord a => Monoid (Max a) where mempty = Max Nothing {-# INLINE mappend #-} m `mappend` Max Nothing = m Max Nothing `mappend` n = n (Max m@(Just x)) `mappend` (Max n@(Just y)) | x >= y = Max m | otherwise = Max n instance Ord a => Monoid (Min a) where mempty = Min Nothing {-# INLINE mappend #-} m `mappend` Min Nothing = m Min Nothing `mappend` n = n (Min m@(Just x)) `mappend` (Min n@(Just y)) | x <= y = Min m | otherwise = Min n -- | The largest element of a non-empty structure. bimaximum :: forall t a. (Bifoldable t, Ord a) => t a a -> a bimaximum = fromMaybe (error "bimaximum: empty structure") . getMax . bifoldMap mj mj where mj = Max #. (Just :: a -> Maybe a) {-# INLINE bimaximum #-} -- | The least element of a non-empty structure. biminimum :: forall t a. (Bifoldable t, Ord a) => t a a -> a biminimum = fromMaybe (error "biminimum: empty structure") . getMin . bifoldMap mj mj where mj = Min #. (Just :: a -> Maybe a) {-# INLINE biminimum #-} -- | The 'bisum' function computes the sum of the numbers of a structure. bisum :: (Bifoldable t, Num a) => t a a -> a bisum = getSum #. bifoldMap Sum Sum {-# INLINE bisum #-} -- | The 'biproduct' function computes the product of the numbers of a -- structure. biproduct :: (Bifoldable t, Num a) => t a a -> a biproduct = getProduct #. bifoldMap Product Product {-# INLINE biproduct #-} -- | Given a means of mapping the elements of a structure to lists, computes the -- concatenation of all such lists in order. biconcatMap :: Bifoldable t => (a -> [c]) -> (b -> [c]) -> t a b -> [c] biconcatMap = bifoldMap {-# INLINE biconcatMap #-} -- | 'biand' returns the conjunction of a container of Bools. For the -- result to be 'True', the container must be finite; 'False', however, -- results from a 'False' value finitely far from the left end. biand :: Bifoldable t => t Bool Bool -> Bool biand = getAll #. bifoldMap All All {-# INLINE biand #-} -- | 'bior' returns the disjunction of a container of Bools. For the -- result to be 'False', the container must be finite; 'True', however, -- results from a 'True' value finitely far from the left end. bior :: Bifoldable t => t Bool Bool -> Bool bior = getAny #. bifoldMap Any Any {-# INLINE bior #-} -- | Determines whether any element of the structure satisfies the appropriate -- predicate. biany :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool biany p q = getAny #. bifoldMap (Any . p) (Any . q) {-# INLINE biany #-} -- | Determines whether all elements of the structure satisfy the appropriate -- predicate. biall :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool biall p q = getAll #. bifoldMap (All . p) (All . q) {-# INLINE biall #-} -- | The largest element of a non-empty structure with respect to the -- given comparison function. bimaximumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a bimaximumBy cmp = bifoldr1 max' where max' x y = case cmp x y of GT -> x _ -> y {-# INLINE bimaximumBy #-} -- | The least element of a non-empty structure with respect to the -- given comparison function. biminimumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a biminimumBy cmp = bifoldr1 min' where min' x y = case cmp x y of GT -> y _ -> x {-# INLINE biminimumBy #-} -- | 'binotElem' is the negation of 'bielem'. binotElem :: (Bifoldable t, Eq a) => a -> t a a-> Bool binotElem x = not . bielem x {-# INLINE binotElem #-} -- | The 'bifind' function takes a predicate and a structure and returns -- the leftmost element of the structure matching the predicate, or -- 'Nothing' if there is no such element. bifind :: Bifoldable t => (a -> Bool) -> t a a -> Maybe a bifind p = getFirst . bifoldMap finder finder where finder x = First (if p x then Just x else Nothing) {-# INLINE bifind #-} -- See Note [Function coercion] #if MIN_VERSION_base(4,7,0) (#.) :: Coercible b c => (b -> c) -> (a -> b) -> (a -> c) (#.) _f = coerce #else (#.) :: (b -> c) -> (a -> b) -> (a -> c) (#.) _f = unsafeCoerce #endif {-# INLINE (#.) #-} {- Note [Function coercion] ~~~~~~~~~~~~~~~~~~~~~~~~ Several functions here use (#.) instead of (.) to avoid potential efficiency problems relating to #7542. The problem, in a nutshell: If N is a newtype constructor, then N x will always have the same representation as x (something similar applies for a newtype deconstructor). However, if f is a function, N . f = \x -> N (f x) This looks almost the same as f, but the eta expansion lifts it--the lhs could be _|_, but the rhs never is. This can lead to very inefficient code. Thus we steal a technique from Shachaf and Edward Kmett and adapt it to the current (rather clean) setting. Instead of using N . f, we use N .## f, which is just coerce f `asTypeOf` (N . f) That is, we just *pretend* that f has the right type, and thanks to the safety of coerce, the type checker guarantees that nothing really goes wrong. We still have to be a bit careful, though: remember that #. completely ignores the *value* of its left operand. -} bifunctors-5.4.2/old-src/ghc801/Data/Bitraversable.hs0000644000000000000000000002506513075676571020446 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} #if __GLASGOW_HASKELL__ >= 704 {-# LANGUAGE Trustworthy #-} #endif #ifndef MIN_VERSION_semigroups #define MIN_VERSION_semigroups(x,y,z) 0 #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2011-2015 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : portable -- ---------------------------------------------------------------------------- module Data.Bitraversable ( Bitraversable(..) , bisequenceA , bisequence , bimapM , bifor , biforM , bimapAccumL , bimapAccumR , bimapDefault , bifoldMapDefault ) where import Control.Applicative import Control.Monad.Trans.Instances () import Data.Bifunctor import Data.Bifoldable import Data.Functor.Constant import Data.Functor.Identity import Data.Orphans () #if MIN_VERSION_base(4,7,0) import Data.Coerce (coerce) #else import Unsafe.Coerce (unsafeCoerce) #endif #if !(MIN_VERSION_base(4,8,0)) import Data.Monoid #endif #if MIN_VERSION_base(4,9,0) || MIN_VERSION_semigroups(0,16,2) import Data.Semigroup (Arg(..)) #endif #ifdef MIN_VERSION_tagged import Data.Tagged #endif #if __GLASGOW_HASKELL__ >= 702 import GHC.Generics (K1(..)) #endif #if __GLASGOW_HASKELL__ >= 708 && __GLASGOW_HASKELL__ < 710 import Data.Typeable #endif -- | 'Bitraversable' identifies bifunctorial data structures whose elements can -- be traversed in order, performing 'Applicative' or 'Monad' actions at each -- element, and collecting a result structure with the same shape. -- -- As opposed to 'Traversable' data structures, which have one variety of -- element on which an action can be performed, 'Bitraversable' data structures -- have two such varieties of elements. -- -- A definition of 'bitraverse' must satisfy the following laws: -- -- [/naturality/] -- @'bitraverse' (t . f) (t . g) ≡ t . 'bitraverse' f g@ -- for every applicative transformation @t@ -- -- [/identity/] -- @'bitraverse' 'Identity' 'Identity' ≡ 'Identity'@ -- -- [/composition/] -- @'Compose' . 'fmap' ('bitraverse' g1 g2) . 'bitraverse' f1 f2 -- ≡ 'traverse' ('Compose' . 'fmap' g1 . f1) ('Compose' . 'fmap' g2 . f2)@ -- -- where an /applicative transformation/ is a function -- -- @t :: ('Applicative' f, 'Applicative' g) => f a -> g a@ -- -- preserving the 'Applicative' operations: -- -- @ -- t ('pure' x) = 'pure' x -- t (f '<*>' x) = t f '<*>' t x -- @ -- -- and the identity functor 'Identity' and composition functors 'Compose' are -- defined as -- -- > newtype Identity a = Identity { runIdentity :: a } -- > -- > instance Functor Identity where -- > fmap f (Identity x) = Identity (f x) -- > -- > instance Applicative Identity where -- > pure = Identity -- > Identity f <*> Identity x = Identity (f x) -- > -- > newtype Compose f g a = Compose (f (g a)) -- > -- > instance (Functor f, Functor g) => Functor (Compose f g) where -- > fmap f (Compose x) = Compose (fmap (fmap f) x) -- > -- > instance (Applicative f, Applicative g) => Applicative (Compose f g) where -- > pure = Compose . pure . pure -- > Compose f <*> Compose x = Compose ((<*>) <$> f <*> x) -- -- Some simple examples are 'Either' and '(,)': -- -- > instance Bitraversable Either where -- > bitraverse f _ (Left x) = Left <$> f x -- > bitraverse _ g (Right y) = Right <$> g y -- > -- > instance Bitraversable (,) where -- > bitraverse f g (x, y) = (,) <$> f x <*> g y -- -- 'Bitraversable' relates to its superclasses in the following ways: -- -- @ -- 'bimap' f g ≡ 'runIdentity' . 'bitraverse' ('Identity' . f) ('Identity' . g) -- 'bifoldMap' f g = 'getConst' . 'bitraverse' ('Const' . f) ('Const' . g) -- @ -- -- These are available as 'bimapDefault' and 'bifoldMapDefault' respectively. class (Bifunctor t, Bifoldable t) => Bitraversable t where -- | Evaluates the relevant functions at each element in the structure, running -- the action, and builds a new structure with the same shape, using the -- elements produced from sequencing the actions. -- -- @'bitraverse' f g ≡ 'bisequenceA' . 'bimap' f g@ -- -- For a version that ignores the results, see 'bitraverse_'. bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> t a b -> f (t c d) bitraverse f g = bisequenceA . bimap f g {-# INLINE bitraverse #-} -- | Sequences all the actions in a structure, building a new structure with the -- same shape using the results of the actions. For a version that ignores the -- results, see 'bisequenceA_'. -- -- @'bisequenceA' ≡ 'bitraverse' 'id' 'id'@ bisequenceA :: (Bitraversable t, Applicative f) => t (f a) (f b) -> f (t a b) bisequenceA = bitraverse id id {-# INLINE bisequenceA #-} -- | As 'bitraverse', but uses evidence that @m@ is a 'Monad' rather than an -- 'Applicative'. For a version that ignores the results, see 'bimapM_'. -- -- @ -- 'bimapM' f g ≡ 'bisequence' . 'bimap' f g -- 'bimapM' f g ≡ 'unwrapMonad' . 'bitraverse' ('WrapMonad' . f) ('WrapMonad' . g) -- @ bimapM :: (Bitraversable t, Monad m) => (a -> m c) -> (b -> m d) -> t a b -> m (t c d) bimapM f g = unwrapMonad . bitraverse (WrapMonad . f) (WrapMonad . g) {-# INLINE bimapM #-} -- | As 'bisequenceA', but uses evidence that @m@ is a 'Monad' rather than an -- 'Applicative'. For a version that ignores the results, see 'bisequence_'. -- -- @ -- 'bisequence' ≡ 'bimapM' 'id' 'id' -- 'bisequence' ≡ 'unwrapMonad' . 'bisequenceA' . 'bimap' 'WrapMonad' 'WrapMonad' -- @ bisequence :: (Bitraversable t, Monad m) => t (m a) (m b) -> m (t a b) bisequence = bimapM id id {-# INLINE bisequence #-} #if __GLASGOW_HASKELL__ >= 708 && __GLASGOW_HASKELL__ < 710 deriving instance Typeable Bitraversable #endif #if MIN_VERSION_base(4,9,0) || MIN_VERSION_semigroups(0,16,2) instance Bitraversable Arg where bitraverse f g (Arg a b) = Arg <$> f a <*> g b #endif instance Bitraversable (,) where bitraverse f g ~(a, b) = (,) <$> f a <*> g b {-# INLINE bitraverse #-} instance Bitraversable ((,,) x) where bitraverse f g ~(x, a, b) = (,,) x <$> f a <*> g b {-# INLINE bitraverse #-} instance Bitraversable ((,,,) x y) where bitraverse f g ~(x, y, a, b) = (,,,) x y <$> f a <*> g b {-# INLINE bitraverse #-} instance Bitraversable ((,,,,) x y z) where bitraverse f g ~(x, y, z, a, b) = (,,,,) x y z <$> f a <*> g b {-# INLINE bitraverse #-} instance Bitraversable ((,,,,,) x y z w) where bitraverse f g ~(x, y, z, w, a, b) = (,,,,,) x y z w <$> f a <*> g b {-# INLINE bitraverse #-} instance Bitraversable ((,,,,,,) x y z w v) where bitraverse f g ~(x, y, z, w, v, a, b) = (,,,,,,) x y z w v <$> f a <*> g b {-# INLINE bitraverse #-} instance Bitraversable Either where bitraverse f _ (Left a) = Left <$> f a bitraverse _ g (Right b) = Right <$> g b {-# INLINE bitraverse #-} instance Bitraversable Const where bitraverse f _ (Const a) = Const <$> f a {-# INLINE bitraverse #-} instance Bitraversable Constant where bitraverse f _ (Constant a) = Constant <$> f a {-# INLINE bitraverse #-} #if __GLASGOW_HASKELL__ >= 702 instance Bitraversable (K1 i) where bitraverse f _ (K1 c) = K1 <$> f c {-# INLINE bitraverse #-} #endif #ifdef MIN_VERSION_tagged instance Bitraversable Tagged where bitraverse _ g (Tagged b) = Tagged <$> g b {-# INLINE bitraverse #-} #endif -- | 'bifor' is 'bitraverse' with the structure as the first argument. For a -- version that ignores the results, see 'bifor_'. bifor :: (Bitraversable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f (t c d) bifor t f g = bitraverse f g t {-# INLINE bifor #-} -- | 'biforM' is 'bimapM' with the structure as the first argument. For a -- version that ignores the results, see 'biforM_'. biforM :: (Bitraversable t, Monad m) => t a b -> (a -> m c) -> (b -> m d) -> m (t c d) biforM t f g = bimapM f g t {-# INLINE biforM #-} -- | left-to-right state transformer newtype StateL s a = StateL { runStateL :: s -> (s, a) } instance Functor (StateL s) where fmap f (StateL k) = StateL $ \ s -> let (s', v) = k s in (s', f v) {-# INLINE fmap #-} instance Applicative (StateL s) where pure x = StateL (\ s -> (s, x)) {-# INLINE pure #-} StateL kf <*> StateL kv = StateL $ \ s -> let (s', f) = kf s (s'', v) = kv s' in (s'', f v) {-# INLINE (<*>) #-} -- | The 'bimapAccumL' function behaves like a combination of 'bimap' and -- 'bifoldl'; it traverses a structure from left to right, threading a state -- of type @a@ and using the given actions to compute new elements for the -- structure. bimapAccumL :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e)) -> a -> t b d -> (a, t c e) bimapAccumL f g s t = runStateL (bitraverse (StateL . flip f) (StateL . flip g) t) s {-# INLINE bimapAccumL #-} -- | right-to-left state transformer newtype StateR s a = StateR { runStateR :: s -> (s, a) } instance Functor (StateR s) where fmap f (StateR k) = StateR $ \ s -> let (s', v) = k s in (s', f v) {-# INLINE fmap #-} instance Applicative (StateR s) where pure x = StateR (\ s -> (s, x)) {-# INLINE pure #-} StateR kf <*> StateR kv = StateR $ \ s -> let (s', v) = kv s (s'', f) = kf s' in (s'', f v) {-# INLINE (<*>) #-} -- | The 'bimapAccumR' function behaves like a combination of 'bimap' and -- 'bifoldl'; it traverses a structure from right to left, threading a state -- of type @a@ and using the given actions to compute new elements for the -- structure. bimapAccumR :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e)) -> a -> t b d -> (a, t c e) bimapAccumR f g s t = runStateR (bitraverse (StateR . flip f) (StateR . flip g) t) s {-# INLINE bimapAccumR #-} -- | A default definition of 'bimap' in terms of the 'Bitraversable' operations. -- -- @'bimapDefault' f g ≡ -- 'runIdentity' . 'bitraverse' ('Identity' . f) ('Identity' . g)@ bimapDefault :: forall t a b c d . Bitraversable t => (a -> b) -> (c -> d) -> t a c -> t b d bimapDefault = coerce (bitraverse :: (a -> Identity b) -> (c -> Identity d) -> t a c -> Identity (t b d)) {-# INLINE bimapDefault #-} -- | A default definition of 'bifoldMap' in terms of the 'Bitraversable' operations. -- -- @'bifoldMapDefault' f g ≡ -- 'getConst' . 'bitraverse' ('Const' . f) ('Const' . g)@ bifoldMapDefault :: forall t m a b . (Bitraversable t, Monoid m) => (a -> m) -> (b -> m) -> t a b -> m bifoldMapDefault = coerce (bitraverse :: (a -> Const m ()) -> (b -> Const m ()) -> t a b -> Const m (t () ())) {-# INLINE bifoldMapDefault #-} #if !(MIN_VERSION_base(4,7,0)) coerce :: a -> b coerce = unsafeCoerce #endif bifunctors-5.4.2/old-src/ghc709/0000755000000000000000000000000013075676571014453 5ustar0000000000000000bifunctors-5.4.2/old-src/ghc709/Data/0000755000000000000000000000000013075676571015324 5ustar0000000000000000bifunctors-5.4.2/old-src/ghc709/Data/Bifunctor.hs0000644000000000000000000001153113075676571017614 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE StandaloneDeriving #-} #if __GLASGOW_HASKELL__ >= 704 {-# LANGUAGE Safe #-} #elif __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif #ifndef MIN_VERSION_semigroups #define MIN_VERSION_semigroups(x,y,z) 0 #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2008-2015 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : portable -- ---------------------------------------------------------------------------- module Data.Bifunctor ( -- * Overview -- -- Bifunctors extend the standard 'Functor' to two arguments -- * Examples -- $examples Bifunctor(..) ) where import Control.Applicative import Data.Functor.Constant #if MIN_VERSION_semigroups(0,16,2) import Data.Semigroup #endif #ifdef MIN_VERSION_tagged import Data.Tagged #endif #if __GLASGOW_HASKELL__ >= 702 import GHC.Generics (K1(..)) #endif #if __GLASGOW_HASKELL__ >= 708 import Data.Typeable #endif -- | Minimal definition either 'bimap' or 'first' and 'second' -- | Formally, the class 'Bifunctor' represents a bifunctor -- from @Hask@ -> @Hask@. -- -- Intuitively it is a bifunctor where both the first and second arguments are covariant. -- -- You can define a 'Bifunctor' by either defining 'bimap' or by defining both -- 'first' and 'second'. -- -- If you supply 'bimap', you should ensure that: -- -- @'bimap' 'id' 'id' ≡ 'id'@ -- -- If you supply 'first' and 'second', ensure: -- -- @ -- 'first' 'id' ≡ 'id' -- 'second' 'id' ≡ 'id' -- @ -- -- If you supply both, you should also ensure: -- -- @'bimap' f g ≡ 'first' f '.' 'second' g@ -- -- These ensure by parametricity: -- -- @ -- 'bimap' (f '.' g) (h '.' i) ≡ 'bimap' f h '.' 'bimap' g i -- 'first' (f '.' g) ≡ 'first' f '.' 'first' g -- 'second' (f '.' g) ≡ 'second' f '.' 'second' g -- @ class Bifunctor p where -- | Map over both arguments at the same time. -- -- @'bimap' f g ≡ 'first' f '.' 'second' g@ bimap :: (a -> b) -> (c -> d) -> p a c -> p b d bimap f g = first f . second g {-# INLINE bimap #-} -- | Map covariantly over the first argument. -- -- @'first' f ≡ 'bimap' f 'id'@ first :: (a -> b) -> p a c -> p b c first f = bimap f id {-# INLINE first #-} -- | Map covariantly over the second argument. -- -- @'second' ≡ 'bimap' 'id'@ second :: (b -> c) -> p a b -> p a c second = bimap id {-# INLINE second #-} #if __GLASGOW_HASKELL__ >= 708 {-# MINIMAL bimap | first, second #-} #endif #if __GLASGOW_HASKELL__ >= 708 && __GLASGOW_HASKELL__ < 710 deriving instance Typeable Bifunctor #endif instance Bifunctor (,) where bimap f g ~(a, b) = (f a, g b) {-# INLINE bimap #-} #if MIN_VERSION_semigroups(0,16,2) instance Bifunctor Arg where bimap f g (Arg a b) = Arg (f a) (g b) #endif instance Bifunctor ((,,) x) where bimap f g ~(x, a, b) = (x, f a, g b) {-# INLINE bimap #-} instance Bifunctor ((,,,) x y) where bimap f g ~(x, y, a, b) = (x, y, f a, g b) {-# INLINE bimap #-} instance Bifunctor ((,,,,) x y z) where bimap f g ~(x, y, z, a, b) = (x, y, z, f a, g b) {-# INLINE bimap #-} instance Bifunctor ((,,,,,) x y z w) where bimap f g ~(x, y, z, w, a, b) = (x, y, z, w, f a, g b) {-# INLINE bimap #-} instance Bifunctor ((,,,,,,) x y z w v) where bimap f g ~(x, y, z, w, v, a, b) = (x, y, z, w, v, f a, g b) {-# INLINE bimap #-} instance Bifunctor Either where bimap f _ (Left a) = Left (f a) bimap _ g (Right b) = Right (g b) {-# INLINE bimap #-} instance Bifunctor Const where bimap f _ (Const a) = Const (f a) {-# INLINE bimap #-} instance Bifunctor Constant where bimap f _ (Constant a) = Constant (f a) {-# INLINE bimap #-} #if __GLASGOW_HASKELL__ >= 702 instance Bifunctor (K1 i) where bimap f _ (K1 c) = K1 (f c) {-# INLINE bimap #-} #endif #ifdef MIN_VERSION_tagged instance Bifunctor Tagged where bimap _ g (Tagged b) = Tagged (g b) {-# INLINE bimap #-} #endif -- $examples -- -- ==== __Examples__ -- -- While the standard 'Functor' instance for 'Either' is limited to mapping over 'Right' arguments, -- the 'Bifunctor' instance allows mapping over the 'Left', 'Right', or both arguments: -- -- > let x = Left "foo" :: Either String Integer -- -- In the case of 'first' and 'second', the function may or may not be applied: -- -- > first (++ "bar") x == Left "foobar" -- > second (+2) x == Left "foo" -- -- In the case of 'bimap', only one of the functions will be applied: -- -- > bimap (++ "bar") (+2) x == Left "foobar" -- -- The 'Bifunctor' instance for 2 element tuples allows mapping over one or both of the elements: -- -- > let x = ("foo",1) -- > -- > first (++ "bar") x == ("foobar", 1) -- > second (+2) x == ("foo", 3) -- > bimap (++ "bar") (+2) x == ("foobar", 3) bifunctors-5.4.2/src/0000755000000000000000000000000013075676571012676 5ustar0000000000000000bifunctors-5.4.2/src/Data/0000755000000000000000000000000013075676571013547 5ustar0000000000000000bifunctors-5.4.2/src/Data/Biapplicative.hs0000644000000000000000000001003713075676571016660 0ustar0000000000000000{-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Safe #-} #endif #ifndef MIN_VERSION_semigroups #define MIN_VERSION_semigroups(x,y,z) 0 #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2011-2015 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : portable -- ---------------------------------------------------------------------------- module Data.Biapplicative ( -- * Biapplicative bifunctors Biapplicative(..) , (<<$>>) , (<<**>>) , biliftA2 , biliftA3 , module Data.Bifunctor ) where import Control.Applicative import Data.Bifunctor #if !(MIN_VERSION_base(4,8,0)) import Data.Monoid #endif #if MIN_VERSION_base(4,9,0) || MIN_VERSION_semigroups(0,16,2) import Data.Semigroup (Arg(..)) #endif #ifdef MIN_VERSION_tagged import Data.Tagged #endif infixl 4 <<$>>, <<*>>, <<*, *>>, <<**>> (<<$>>) :: (a -> b) -> a -> b (<<$>>) = id {-# INLINE (<<$>>) #-} class Bifunctor p => Biapplicative p where bipure :: a -> b -> p a b (<<*>>) :: p (a -> b) (c -> d) -> p a c -> p b d -- | -- @ -- a '*>>' b ≡ 'bimap' ('const' 'id') ('const' 'id') '<<$>>' a '<<*>>' b -- @ (*>>) :: p a b -> p c d -> p c d a *>> b = bimap (const id) (const id) <<$>> a <<*>> b {-# INLINE (*>>) #-} -- | -- @ -- a '<<*' b ≡ 'bimap' 'const' 'const' '<<$>>' a '<<*>>' b -- @ (<<*) :: p a b -> p c d -> p a b a <<* b = bimap const const <<$>> a <<*>> b {-# INLINE (<<*) #-} (<<**>>) :: Biapplicative p => p a c -> p (a -> b) (c -> d) -> p b d (<<**>>) = biliftA2 (flip id) (flip id) {-# INLINE (<<**>>) #-} -- | Lift binary functions biliftA2 :: Biapplicative w => (a -> b -> c) -> (d -> e -> f) -> w a d -> w b e -> w c f biliftA2 f g a b = bimap f g <<$>> a <<*>> b {-# INLINE biliftA2 #-} -- | Lift ternary functions biliftA3 :: Biapplicative w => (a -> b -> c -> d) -> (e -> f -> g -> h) -> w a e -> w b f -> w c g -> w d h biliftA3 f g a b c = bimap f g <<$>> a <<*>> b <<*>> c {-# INLINE biliftA3 #-} instance Biapplicative (,) where bipure = (,) {-# INLINE bipure #-} (f, g) <<*>> (a, b) = (f a, g b) {-# INLINE (<<*>>) #-} #if MIN_VERSION_base(4,9,0) || MIN_VERSION_semigroups(0,16,2) instance Biapplicative Arg where bipure = Arg {-# INLINE bipure #-} Arg f g <<*>> Arg a b = Arg (f a) (g b) {-# INLINE (<<*>>) #-} #endif instance Monoid x => Biapplicative ((,,) x) where bipure = (,,) mempty {-# INLINE bipure #-} (x, f, g) <<*>> (x', a, b) = (mappend x x', f a, g b) {-# INLINE (<<*>>) #-} instance (Monoid x, Monoid y) => Biapplicative ((,,,) x y) where bipure = (,,,) mempty mempty {-# INLINE bipure #-} (x, y, f, g) <<*>> (x', y', a, b) = (mappend x x', mappend y y', f a, g b) {-# INLINE (<<*>>) #-} instance (Monoid x, Monoid y, Monoid z) => Biapplicative ((,,,,) x y z) where bipure = (,,,,) mempty mempty mempty {-# INLINE bipure #-} (x, y, z, f, g) <<*>> (x', y', z', a, b) = (mappend x x', mappend y y', mappend z z', f a, g b) {-# INLINE (<<*>>) #-} instance (Monoid x, Monoid y, Monoid z, Monoid w) => Biapplicative ((,,,,,) x y z w) where bipure = (,,,,,) mempty mempty mempty mempty {-# INLINE bipure #-} (x, y, z, w, f, g) <<*>> (x', y', z', w', a, b) = (mappend x x', mappend y y', mappend z z', mappend w w', f a, g b) {-# INLINE (<<*>>) #-} instance (Monoid x, Monoid y, Monoid z, Monoid w, Monoid v) => Biapplicative ((,,,,,,) x y z w v) where bipure = (,,,,,,) mempty mempty mempty mempty mempty {-# INLINE bipure #-} (x, y, z, w, v, f, g) <<*>> (x', y', z', w', v', a, b) = (mappend x x', mappend y y', mappend z z', mappend w w', mappend v v', f a, g b) {-# INLINE (<<*>>) #-} #ifdef MIN_VERSION_tagged instance Biapplicative Tagged where bipure _ b = Tagged b {-# INLINE bipure #-} Tagged f <<*>> Tagged x = Tagged (f x) {-# INLINE (<<*>>) #-} #endif instance Biapplicative Const where bipure a _ = Const a {-# INLINE bipure #-} Const f <<*>> Const x = Const (f x) {-# INLINE (<<*>>) #-} bifunctors-5.4.2/src/Data/Bifunctor/0000755000000000000000000000000013075676571015502 5ustar0000000000000000bifunctors-5.4.2/src/Data/Bifunctor/TH.hs0000644000000000000000000013764313075676571016367 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE PatternGuards #-} {-# LANGUAGE BangPatterns #-} #if __GLASGOW_HASKELL__ >= 704 {-# LANGUAGE Unsafe #-} #endif #ifndef MIN_VERSION_template_haskell #define MIN_VERSION_template_haskell(x,y,z) 1 #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2008-2016 Edward Kmett, (C) 2015-2016 Ryan Scott -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : portable -- -- Functions to mechanically derive 'Bifunctor', 'Bifoldable', -- or 'Bitraversable' instances, or to splice their functions directly into -- source code. You need to enable the @TemplateHaskell@ language extension -- in order to use this module. ---------------------------------------------------------------------------- module Data.Bifunctor.TH ( -- * @derive@- functions -- $derive -- * @make@- functions -- $make -- * 'Bifunctor' deriveBifunctor , makeBimap -- * 'Bifoldable' , deriveBifoldable , makeBifold , makeBifoldMap , makeBifoldr , makeBifoldl -- * 'Bitraversable' , deriveBitraversable , makeBitraverse , makeBisequenceA , makeBimapM , makeBisequence ) where import Control.Monad (guard, unless, when, zipWithM) import Data.Bifunctor.TH.Internal import Data.Either (rights) #if MIN_VERSION_template_haskell(2,8,0) && !(MIN_VERSION_template_haskell(2,10,0)) import Data.Foldable (foldr') #endif import Data.List import qualified Data.Map as Map (fromList, keys, lookup, size) import Data.Maybe import Language.Haskell.TH.Lib import Language.Haskell.TH.Ppr import Language.Haskell.TH.Syntax ------------------------------------------------------------------------------- -- User-facing API ------------------------------------------------------------------------------- {- $derive 'deriveBifunctor', 'deriveBifoldable', and 'deriveBitraversable' automatically generate their respective class instances for a given data type, newtype, or data family instance that has at least two type variable. Examples: @ {-# LANGUAGE TemplateHaskell #-} import Data.Bifunctor.TH data Pair a b = Pair a b $('deriveBifunctor' ''Pair) -- instance Bifunctor Pair where ... data WrapLeftPair f g a b = WrapLeftPair (f a) (g a b) $('deriveBifoldable' ''WrapLeftPair) -- instance (Foldable f, Bifoldable g) => Bifoldable (WrapLeftPair f g) where ... @ If you are using @template-haskell-2.7.0.0@ or later (i.e., GHC 7.4 or later), the @derive@ functions can be used data family instances (which requires the @-XTypeFamilies@ extension). To do so, pass the name of a data or newtype instance constructor (NOT a data family name!) to a @derive@ function. Note that the generated code may require the @-XFlexibleInstances@ extension. Example: @ {-# LANGUAGE FlexibleInstances, TemplateHaskell, TypeFamilies #-} import Data.Bifunctor.TH class AssocClass a b c where data AssocData a b c instance AssocClass Int b c where data AssocData Int b c = AssocDataInt1 Int | AssocDataInt2 b c $('deriveBitraversable' 'AssocDataInt1) -- instance Bitraversable (AssocData Int) where ... -- Alternatively, one could use $(deriveBitraversable 'AssocDataInt2) @ Note that there are some limitations: * The 'Name' argument to a @derive@ function must not be a type synonym. * With a @derive@ function, the last two type variables must both be of kind @*@. Other type variables of kind @* -> *@ are assumed to require a 'Functor', 'Foldable', or 'Traversable' constraint (depending on which @derive@ function is used), and other type variables of kind @* -> * -> *@ are assumed to require an 'Bifunctor', 'Bifoldable', or 'Bitraversable' constraint. If your data type doesn't meet these assumptions, use a @make@ function. * If using the @-XDatatypeContexts@, @-XExistentialQuantification@, or @-XGADTs@ extensions, a constraint cannot mention either of the last two type variables. For example, @data Illegal2 a b where I2 :: Ord a => a -> b -> Illegal2 a b@ cannot have a derived 'Bifunctor' instance. * If either of the last two type variables is used within a constructor argument's type, it must only be used in the last two type arguments. For example, @data Legal a b = Legal (Int, Int, a, b)@ can have a derived 'Bifunctor' instance, but @data Illegal a b = Illegal (a, b, a, b)@ cannot. * Data family instances must be able to eta-reduce the last two type variables. In other words, if you have a instance of the form: @ data family Family a1 ... an t1 t2 data instance Family e1 ... e2 v1 v2 = ... @ Then the following conditions must hold: 1. @v1@ and @v2@ must be distinct type variables. 2. Neither @v1@ not @v2@ must be mentioned in any of @e1@, ..., @e2@. -} {- $make There may be scenarios in which you want to, say, 'bimap' over an arbitrary data type or data family instance without having to make the type an instance of 'Bifunctor'. For these cases, this module provides several functions (all prefixed with @make@-) that splice the appropriate lambda expression into your source code. This is particularly useful for creating instances for sophisticated data types. For example, 'deriveBifunctor' cannot infer the correct type context for @newtype HigherKinded f a b c = HigherKinded (f a b c)@, since @f@ is of kind @* -> * -> * -> *@. However, it is still possible to create a 'Bifunctor' instance for @HigherKinded@ without too much trouble using 'makeBimap': @ {-# LANGUAGE FlexibleContexts, TemplateHaskell #-} import Data.Bifunctor import Data.Bifunctor.TH newtype HigherKinded f a b c = HigherKinded (f a b c) instance Bifunctor (f a) => Bifunctor (HigherKinded f a) where bimap = $(makeBimap ''HigherKinded) @ -} -- | Generates a 'Bifunctor' instance declaration for the given data type or data -- family instance. deriveBifunctor :: Name -> Q [Dec] deriveBifunctor = deriveBiClass Bifunctor -- | Generates a lambda expression which behaves like 'bimap' (without requiring a -- 'Bifunctor' instance). makeBimap :: Name -> Q Exp makeBimap = makeBiFun Bimap -- | Generates a 'Bifoldable' instance declaration for the given data type or data -- family instance. deriveBifoldable :: Name -> Q [Dec] deriveBifoldable = deriveBiClass Bifoldable -- | Generates a lambda expression which behaves like 'bifold' (without requiring a -- 'Bifoldable' instance). makeBifold :: Name -> Q Exp makeBifold name = appsE [ makeBifoldMap name , varE idValName , varE idValName ] -- | Generates a lambda expression which behaves like 'bifoldMap' (without requiring a -- 'Bifoldable' instance). makeBifoldMap :: Name -> Q Exp makeBifoldMap = makeBiFun BifoldMap -- | Generates a lambda expression which behaves like 'bifoldr' (without requiring a -- 'Bifoldable' instance). makeBifoldr :: Name -> Q Exp makeBifoldr = makeBiFun Bifoldr -- | Generates a lambda expression which behaves like 'bifoldl' (without requiring a -- 'Bifoldable' instance). makeBifoldl :: Name -> Q Exp makeBifoldl name = do f <- newName "f" g <- newName "g" z <- newName "z" t <- newName "t" lamE [varP f, varP g, varP z, varP t] $ appsE [ varE appEndoValName , appsE [ varE getDualValName , appsE [ makeBifoldMap name, foldFun f, foldFun g, varE t] ] , varE z ] where foldFun :: Name -> Q Exp foldFun n = infixApp (conE dualDataName) (varE composeValName) (infixApp (conE endoDataName) (varE composeValName) (varE flipValName `appE` varE n) ) -- | Generates a 'Bitraversable' instance declaration for the given data type or data -- family instance. deriveBitraversable :: Name -> Q [Dec] deriveBitraversable = deriveBiClass Bitraversable -- | Generates a lambda expression which behaves like 'bitraverse' (without requiring a -- 'Bitraversable' instance). makeBitraverse :: Name -> Q Exp makeBitraverse = makeBiFun Bitraverse -- | Generates a lambda expression which behaves like 'bisequenceA' (without requiring a -- 'Bitraversable' instance). makeBisequenceA :: Name -> Q Exp makeBisequenceA name = appsE [ makeBitraverse name , varE idValName , varE idValName ] -- | Generates a lambda expression which behaves like 'bimapM' (without requiring a -- 'Bitraversable' instance). makeBimapM :: Name -> Q Exp makeBimapM name = do f <- newName "f" g <- newName "g" lamE [varP f, varP g] . infixApp (varE unwrapMonadValName) (varE composeValName) $ appsE [makeBitraverse name, wrapMonadExp f, wrapMonadExp g] where wrapMonadExp :: Name -> Q Exp wrapMonadExp n = infixApp (conE wrapMonadDataName) (varE composeValName) (varE n) -- | Generates a lambda expression which behaves like 'bisequence' (without requiring a -- 'Bitraversable' instance). makeBisequence :: Name -> Q Exp makeBisequence name = appsE [ makeBimapM name , varE idValName , varE idValName ] ------------------------------------------------------------------------------- -- Code generation ------------------------------------------------------------------------------- -- | Derive a class instance declaration (depending on the BiClass argument's value). deriveBiClass :: BiClass -> Name -> Q [Dec] deriveBiClass biClass name = withType name fromCons where fromCons :: Name -> Cxt -> [TyVarBndr] -> [Con] -> Maybe [Type] -> Q [Dec] fromCons name' ctxt tvbs cons mbTys = (:[]) `fmap` do (instanceCxt, instanceType) <- buildTypeInstance biClass name' ctxt tvbs mbTys instanceD (return instanceCxt) (return instanceType) (biFunDecs biClass cons) -- | Generates a declaration defining the primary function(s) corresponding to a -- particular class (bimap for Bifunctor, bifoldr and bifoldMap for Bifoldable, and -- bitraverse for Bitraversable). -- -- For why both bifoldr and bifoldMap are derived for Bifoldable, see Trac #7436. biFunDecs :: BiClass -> [Con] -> [Q Dec] biFunDecs biClass cons = map makeFunD $ biClassToFuns biClass where makeFunD :: BiFun -> Q Dec makeFunD biFun = funD (biFunName biFun) [ clause [] (normalB $ makeBiFunForCons biFun cons) [] ] -- | Generates a lambda expression which behaves like the BiFun argument. makeBiFun :: BiFun -> Name -> Q Exp makeBiFun biFun name = withType name fromCons where fromCons :: Name -> Cxt -> [TyVarBndr] -> [Con] -> Maybe [Type] -> Q Exp fromCons name' ctxt tvbs cons mbTys = -- We force buildTypeInstance here since it performs some checks for whether -- or not the provided datatype can actually have bimap/bifoldr/bitraverse/etc. -- implemented for it, and produces errors if it can't. buildTypeInstance (biFunToClass biFun) name' ctxt tvbs mbTys `seq` makeBiFunForCons biFun cons -- | Generates a lambda expression for the given constructors. -- All constructors must be from the same type. makeBiFunForCons :: BiFun -> [Con] -> Q Exp makeBiFunForCons biFun cons = do argNames <- mapM newName $ catMaybes [ Just "f" , Just "g" , guard (biFun == Bifoldr) >> Just "z" , Just "value" ] let ([map1, map2], others) = splitAt 2 argNames z = head others -- If we're deriving bifoldr, this will be well defined -- and useful. Otherwise, it'll be ignored. value = last others lamE (map varP argNames) . appsE $ [ varE $ biFunConstName biFun , if null cons then appE (varE errorValName) (stringE $ "Void " ++ nameBase (biFunName biFun)) else caseE (varE value) (map (makeBiFunForCon biFun z map1 map2) cons) ] ++ map varE argNames -- | Generates a lambda expression for a single constructor. makeBiFunForCon :: BiFun -> Name -> Name -> Name -> Con -> Q Match makeBiFunForCon biFun z map1 map2 con = do let conName = constructorName con (ts, tvMap) <- reifyConTys biFun conName map1 map2 argNames <- newNameList "_arg" $ length ts makeBiFunForArgs biFun z tvMap conName ts argNames -- | Generates a lambda expression for a single constructor's arguments. makeBiFunForArgs :: BiFun -> Name -> TyVarMap -> Name -> [Type] -> [Name] -> Q Match makeBiFunForArgs biFun z tvMap conName tys args = match (conP conName $ map varP args) (normalB $ biFunCombine biFun conName z args mappedArgs) [] where mappedArgs :: Q [Either Exp Exp] mappedArgs = zipWithM (makeBiFunForArg biFun tvMap conName) tys args -- | Generates a lambda expression for a single argument of a constructor. -- The returned value is 'Right' if its type mentions one of the last two type -- parameters. Otherwise, it is 'Left'. makeBiFunForArg :: BiFun -> TyVarMap -> Name -> Type -> Name -> Q (Either Exp Exp) makeBiFunForArg biFun tvMap conName ty tyExpName = makeBiFunForType biFun tvMap conName True ty `appEitherE` varE tyExpName -- | Generates a lambda expression for a specific type. The returned value is -- 'Right' if its type mentions one of the last two type parameters. Otherwise, -- it is 'Left'. makeBiFunForType :: BiFun -> TyVarMap -> Name -> Bool -> Type -> Q (Either Exp Exp) makeBiFunForType biFun tvMap conName covariant (VarT tyName) = case Map.lookup tyName tvMap of Just mapName -> fmap Right . varE $ if covariant then mapName else contravarianceError conName Nothing -> fmap Left $ biFunTriv biFun makeBiFunForType biFun tvMap conName covariant (SigT ty _) = makeBiFunForType biFun tvMap conName covariant ty makeBiFunForType biFun tvMap conName covariant (ForallT _ _ ty) = makeBiFunForType biFun tvMap conName covariant ty makeBiFunForType biFun tvMap conName covariant ty = let tyCon :: Type tyArgs :: [Type] tyCon:tyArgs = unapplyTy ty numLastArgs :: Int numLastArgs = min 2 $ length tyArgs lhsArgs, rhsArgs :: [Type] (lhsArgs, rhsArgs) = splitAt (length tyArgs - numLastArgs) tyArgs tyVarNames :: [Name] tyVarNames = Map.keys tvMap mentionsTyArgs :: Bool mentionsTyArgs = any (`mentionsName` tyVarNames) tyArgs makeBiFunTuple :: ([Q Pat] -> Q Pat) -> (Int -> Name) -> Int -> Q (Either Exp Exp) makeBiFunTuple mkTupP mkTupleDataName n = do args <- mapM newName $ catMaybes [ Just "x" , guard (biFun == Bifoldr) >> Just "z" ] xs <- newNameList "_tup" n let x = head args z = last args fmap Right $ lamE (map varP args) $ caseE (varE x) [ match (mkTupP $ map varP xs) (normalB $ biFunCombine biFun (mkTupleDataName n) z xs (zipWithM makeBiFunTupleField tyArgs xs) ) [] ] makeBiFunTupleField :: Type -> Name -> Q (Either Exp Exp) makeBiFunTupleField fieldTy fieldName = makeBiFunForType biFun tvMap conName covariant fieldTy `appEitherE` varE fieldName in case tyCon of ArrowT | not (allowFunTys (biFunToClass biFun)) -> noFunctionsError conName | mentionsTyArgs, [argTy, resTy] <- tyArgs -> do x <- newName "x" b <- newName "b" fmap Right . lamE [varP x, varP b] $ covBiFun covariant resTy `appE` (varE x `appE` (covBiFun (not covariant) argTy `appE` varE b)) where covBiFun :: Bool -> Type -> Q Exp covBiFun cov = fmap fromEither . makeBiFunForType biFun tvMap conName cov #if MIN_VERSION_template_haskell(2,6,0) UnboxedTupleT n | n > 0 && mentionsTyArgs -> makeBiFunTuple unboxedTupP unboxedTupleDataName n #endif TupleT n | n > 0 && mentionsTyArgs -> makeBiFunTuple tupP tupleDataName n _ -> do itf <- isTyFamily tyCon if any (`mentionsName` tyVarNames) lhsArgs || (itf && mentionsTyArgs) then outOfPlaceTyVarError conName else if any (`mentionsName` tyVarNames) rhsArgs then fmap Right . biFunApp biFun . appsE $ ( varE (fromJust $ biFunArity biFun numLastArgs) : map (fmap fromEither . makeBiFunForType biFun tvMap conName covariant) rhsArgs ) else fmap Left $ biFunTriv biFun ------------------------------------------------------------------------------- -- Template Haskell reifying and AST manipulation ------------------------------------------------------------------------------- -- | Boilerplate for top level splices. -- -- The given Name must meet one of two criteria: -- -- 1. It must be the name of a type constructor of a plain data type or newtype. -- 2. It must be the name of a data family instance or newtype instance constructor. -- -- Any other value will result in an exception. withType :: Name -> (Name -> Cxt -> [TyVarBndr] -> [Con] -> Maybe [Type] -> Q a) -> Q a withType name f = do info <- reify name case info of TyConI dec -> case dec of DataD ctxt _ tvbs #if MIN_VERSION_template_haskell(2,11,0) _ #endif cons _ -> f name ctxt tvbs cons Nothing NewtypeD ctxt _ tvbs #if MIN_VERSION_template_haskell(2,11,0) _ #endif con _ -> f name ctxt tvbs [con] Nothing _ -> error $ ns ++ "Unsupported type: " ++ show dec #if MIN_VERSION_template_haskell(2,7,0) # if MIN_VERSION_template_haskell(2,11,0) DataConI _ _ parentName -> do # else DataConI _ _ parentName _ -> do # endif parentInfo <- reify parentName case parentInfo of # if MIN_VERSION_template_haskell(2,11,0) FamilyI (DataFamilyD _ tvbs _) decs -> # else FamilyI (FamilyD DataFam _ tvbs _) decs -> # endif let instDec = flip find decs $ \dec -> case dec of DataInstD _ _ _ # if MIN_VERSION_template_haskell(2,11,0) _ # endif cons _ -> any ((name ==) . constructorName) cons NewtypeInstD _ _ _ # if MIN_VERSION_template_haskell(2,11,0) _ # endif con _ -> name == constructorName con _ -> error $ ns ++ "Must be a data or newtype instance." in case instDec of Just (DataInstD ctxt _ instTys # if MIN_VERSION_template_haskell(2,11,0) _ # endif cons _) -> f parentName ctxt tvbs cons $ Just instTys Just (NewtypeInstD ctxt _ instTys # if MIN_VERSION_template_haskell(2,11,0) _ # endif con _) -> f parentName ctxt tvbs [con] $ Just instTys _ -> error $ ns ++ "Could not find data or newtype instance constructor." _ -> error $ ns ++ "Data constructor " ++ show name ++ " is not from a data family instance constructor." # if MIN_VERSION_template_haskell(2,11,0) FamilyI DataFamilyD{} _ -> # else FamilyI (FamilyD DataFam _ _ _) _ -> # endif error $ ns ++ "Cannot use a data family name. Use a data family instance constructor instead." _ -> error $ ns ++ "The name must be of a plain data type constructor, " ++ "or a data family instance constructor." #else DataConI{} -> dataConIError _ -> error $ ns ++ "The name must be of a plain type constructor." #endif where ns :: String ns = "Data.Bifunctor.TH.withType: " -- | Deduces the instance context and head for an instance. buildTypeInstance :: BiClass -- ^ Bifunctor, Bifoldable, or Bitraversable -> Name -- ^ The type constructor or data family name -> Cxt -- ^ The datatype context -> [TyVarBndr] -- ^ The type variables from the data type/data family declaration -> Maybe [Type] -- ^ 'Just' the types used to instantiate a data family instance, -- or 'Nothing' if it's a plain data type -> Q (Cxt, Type) -- Plain data type/newtype case buildTypeInstance biClass tyConName dataCxt tvbs Nothing = let varTys :: [Type] varTys = map tvbToType tvbs in buildTypeInstanceFromTys biClass tyConName dataCxt varTys False -- Data family instance case -- -- The CPP is present to work around a couple of annoying old GHC bugs. -- See Note [Polykinded data families in Template Haskell] buildTypeInstance biClass parentName dataCxt tvbs (Just instTysAndKinds) = do #if !(MIN_VERSION_template_haskell(2,8,0)) || MIN_VERSION_template_haskell(2,10,0) let instTys :: [Type] instTys = zipWith stealKindForType tvbs instTysAndKinds #else let kindVarNames :: [Name] kindVarNames = nub $ concatMap (tyVarNamesOfType . tvbKind) tvbs numKindVars :: Int numKindVars = length kindVarNames givenKinds, givenKinds' :: [Kind] givenTys :: [Type] (givenKinds, givenTys) = splitAt numKindVars instTysAndKinds givenKinds' = map sanitizeStars givenKinds -- A GHC 7.6-specific bug requires us to replace all occurrences of -- (ConT GHC.Prim.*) with StarT, or else Template Haskell will reject it. -- Luckily, (ConT GHC.Prim.*) only seems to occur in this one spot. sanitizeStars :: Kind -> Kind sanitizeStars = go where go :: Kind -> Kind go (AppT t1 t2) = AppT (go t1) (go t2) go (SigT t k) = SigT (go t) (go k) go (ConT n) | n == starKindName = StarT go t = t -- If we run this code with GHC 7.8, we might have to generate extra type -- variables to compensate for any type variables that Template Haskell -- eta-reduced away. -- See Note [Polykinded data families in Template Haskell] xTypeNames <- newNameList "tExtra" (length tvbs - length givenTys) let xTys :: [Type] xTys = map VarT xTypeNames -- ^ Because these type variables were eta-reduced away, we can only -- determine their kind by using stealKindForType. Therefore, we mark -- them as VarT to ensure they will be given an explicit kind annotation -- (and so the kind inference machinery has the right information). substNamesWithKinds :: [(Name, Kind)] -> Type -> Type substNamesWithKinds nks t = foldr' (uncurry substNameWithKind) t nks -- The types from the data family instance might not have explicit kind -- annotations, which the kind machinery needs to work correctly. To -- compensate, we use stealKindForType to explicitly annotate any -- types without kind annotations. instTys :: [Type] instTys = map (substNamesWithKinds (zip kindVarNames givenKinds')) -- Note that due to a GHC 7.8-specific bug -- (see Note [Polykinded data families in Template Haskell]), -- there may be more kind variable names than there are kinds -- to substitute. But this is OK! If a kind is eta-reduced, it -- means that is was not instantiated to something more specific, -- so we need not substitute it. Using stealKindForType will -- grab the correct kind. $ zipWith stealKindForType tvbs (givenTys ++ xTys) #endif buildTypeInstanceFromTys biClass parentName dataCxt instTys True -- For the given Types, generate an instance context and head. Coming up with -- the instance type isn't as simple as dropping the last types, as you need to -- be wary of kinds being instantiated with *. -- See Note [Type inference in derived instances] buildTypeInstanceFromTys :: BiClass -- ^ Bifunctor, Bifoldable, or Bitraversable -> Name -- ^ The type constructor or data family name -> Cxt -- ^ The datatype context -> [Type] -- ^ The types to instantiate the instance with -> Bool -- ^ True if it's a data family, False otherwise -> Q (Cxt, Type) buildTypeInstanceFromTys biClass tyConName dataCxt varTysOrig isDataFamily = do -- Make sure to expand through type/kind synonyms! Otherwise, the -- eta-reduction check might get tripped up over type variables in a -- synonym that are actually dropped. -- (See GHC Trac #11416 for a scenario where this actually happened.) varTysExp <- mapM expandSyn varTysOrig let remainingLength :: Int remainingLength = length varTysOrig - 2 droppedTysExp :: [Type] droppedTysExp = drop remainingLength varTysExp droppedStarKindStati :: [StarKindStatus] droppedStarKindStati = map canRealizeKindStar droppedTysExp -- Check there are enough types to drop and that all of them are either of -- kind * or kind k (for some kind variable k). If not, throw an error. when (remainingLength < 0 || any (== NotKindStar) droppedStarKindStati) $ derivingKindError biClass tyConName let droppedKindVarNames :: [Name] droppedKindVarNames = catKindVarNames droppedStarKindStati -- Substitute kind * for any dropped kind variables varTysExpSubst :: [Type] varTysExpSubst = map (substNamesWithKindStar droppedKindVarNames) varTysExp remainingTysExpSubst, droppedTysExpSubst :: [Type] (remainingTysExpSubst, droppedTysExpSubst) = splitAt remainingLength varTysExpSubst -- All of the type variables mentioned in the dropped types -- (post-synonym expansion) droppedTyVarNames :: [Name] droppedTyVarNames = concatMap tyVarNamesOfType droppedTysExpSubst -- If any of the dropped types were polykinded, ensure that they are of kind * -- after substituting * for the dropped kind variables. If not, throw an error. unless (all hasKindStar droppedTysExpSubst) $ derivingKindError biClass tyConName let preds :: [Maybe Pred] kvNames :: [[Name]] kvNames' :: [Name] -- Derive instance constraints (and any kind variables which are specialized -- to * in those constraints) (preds, kvNames) = unzip $ map (deriveConstraint biClass) remainingTysExpSubst kvNames' = concat kvNames -- Substitute the kind variables specialized in the constraints with * remainingTysExpSubst' :: [Type] remainingTysExpSubst' = map (substNamesWithKindStar kvNames') remainingTysExpSubst -- We now substitute all of the specialized-to-* kind variable names with -- *, but in the original types, not the synonym-expanded types. The reason -- we do this is a superficial one: we want the derived instance to resemble -- the datatype written in source code as closely as possible. For example, -- for the following data family instance: -- -- data family Fam a -- newtype instance Fam String = Fam String -- -- We'd want to generate the instance: -- -- instance C (Fam String) -- -- Not: -- -- instance C (Fam [Char]) remainingTysOrigSubst :: [Type] remainingTysOrigSubst = map (substNamesWithKindStar (union droppedKindVarNames kvNames')) $ take remainingLength varTysOrig remainingTysOrigSubst' :: [Type] -- See Note [Kind signatures in derived instances] for an explanation -- of the isDataFamily check. remainingTysOrigSubst' = if isDataFamily then remainingTysOrigSubst else map unSigT remainingTysOrigSubst instanceCxt :: Cxt instanceCxt = catMaybes preds instanceType :: Type instanceType = AppT (ConT $ biClassName biClass) $ applyTyCon tyConName remainingTysOrigSubst' -- If the datatype context mentions any of the dropped type variables, -- we can't derive an instance, so throw an error. when (any (`predMentionsName` droppedTyVarNames) dataCxt) $ datatypeContextError tyConName instanceType -- Also ensure the dropped types can be safely eta-reduced. Otherwise, -- throw an error. unless (canEtaReduce remainingTysExpSubst' droppedTysExpSubst) $ etaReductionError instanceType return (instanceCxt, instanceType) -- | Attempt to derive a constraint on a Type. If successful, return -- Just the constraint and any kind variable names constrained to *. -- Otherwise, return Nothing and the empty list. -- -- See Note [Type inference in derived instances] for the heuristics used to -- come up with constraints. deriveConstraint :: BiClass -> Type -> (Maybe Pred, [Name]) deriveConstraint biClass t | not (isTyVar t) = (Nothing, []) | otherwise = case hasKindVarChain 1 t of Just ns -> ((`applyClass` tName) `fmap` biClassConstraint biClass 1, ns) _ -> case hasKindVarChain 2 t of Just ns -> ((`applyClass` tName) `fmap` biClassConstraint biClass 2, ns) _ -> (Nothing, []) where tName :: Name tName = varTToName t {- Note [Polykinded data families in Template Haskell] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In order to come up with the correct instance context and head for an instance, e.g., instance C a => C (Data a) where ... We need to know the exact types and kinds used to instantiate the instance. For plain old datatypes, this is simple: every type must be a type variable, and Template Haskell reliably tells us the type variables and their kinds. Doing the same for data families proves to be much harder for three reasons: 1. On any version of Template Haskell, it may not tell you what an instantiated type's kind is. For instance, in the following data family instance: data family Fam (f :: * -> *) (a :: *) data instance Fam f a Then if we use TH's reify function, it would tell us the TyVarBndrs of the data family declaration are: [KindedTV f (AppT (AppT ArrowT StarT) StarT),KindedTV a StarT] and the instantiated types of the data family instance are: [VarT f1,VarT a1] We can't just pass [VarT f1,VarT a1] to buildTypeInstanceFromTys, since we have no way of knowing their kinds. Luckily, the TyVarBndrs tell us what the kind is in case an instantiated type isn't a SigT, so we use the stealKindForType function to ensure all of the instantiated types are SigTs before passing them to buildTypeInstanceFromTys. 2. On GHC 7.6 and 7.8, a bug is present in which Template Haskell lists all of the specified kinds of a data family instance efore any of the instantiated types. Fortunately, this is easy to deal with: you simply count the number of distinct kind variables in the data family declaration, take that many elements from the front of the Types list of the data family instance, substitute the kind variables with their respective instantiated kinds (which you took earlier), and proceed as normal. 3. On GHC 7.8, an even uglier bug is present (GHC Trac #9692) in which Template Haskell might not even list all of the Types of a data family instance, since they are eta-reduced away! And yes, kinds can be eta-reduced too. The simplest workaround is to count how many instantiated types are missing from the list and generate extra type variables to use in their place. Luckily, we needn't worry much if its kind was eta-reduced away, since using stealKindForType will get it back. Note [Kind signatures in derived instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It is possible to put explicit kind signatures into the derived instances, e.g., instance C a => C (Data (f :: * -> *)) where ... But it is preferable to avoid this if possible. If we come up with an incorrect kind signature (which is entirely possible, since our type inferencer is pretty unsophisticated - see Note [Type inference in derived instances]), then GHC will flat-out reject the instance, which is quite unfortunate. Plain old datatypes have the advantage that you can avoid using any kind signatures at all in their instances. This is because a datatype declaration uses all type variables, so the types that we use in a derived instance uniquely determine their kinds. As long as we plug in the right types, the kind inferencer can do the rest of the work. For this reason, we use unSigT to remove all kind signatures before splicing in the instance context and head. Data family instances are trickier, since a data family can have two instances that are distinguished by kind alone, e.g., data family Fam (a :: k) data instance Fam (a :: * -> *) data instance Fam (a :: *) If we dropped the kind signatures for C (Fam a), then GHC will have no way of knowing which instance we are talking about. To avoid this scenario, we always include explicit kind signatures in data family instances. There is a chance that the inferred kind signatures will be incorrect, but if so, we can always fall back on the make- functions. Note [Type inference in derived instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Type inference is can be tricky to get right, and we want to avoid recreating the entirety of GHC's type inferencer in Template Haskell. For this reason, we will probably never come up with derived instance contexts that are as accurate as GHC's. But that doesn't mean we can't do anything! There are a couple of simple things we can do to make instance contexts that work for 80% of use cases: 1. If one of the last type parameters is polykinded, then its kind will be specialized to * in the derived instance. We note what kind variable the type parameter had and substitute it with * in the other types as well. For example, imagine you had data Data (a :: k) (b :: k) (c :: k) Then you'd want to derived instance to be: instance C (Data (a :: *)) Not: instance C (Data (a :: k)) 2. We naïvely come up with instance constraints using the following criteria: (i) If there's a type parameter n of kind k1 -> k2 (where k1/k2 are * or kind variables), then generate a Functor n constraint, and if k1/k2 are kind variables, then substitute k1/k2 with * elsewhere in the types. We must consider the case where they are kind variables because you might have a scenario like this: newtype Compose (f :: k3 -> *) (g :: k1 -> k2 -> k3) (a :: k1) (b :: k2) = Compose (f (g a b)) Which would have a derived Bifunctor instance of: instance (Functor f, Bifunctor g) => Bifunctor (Compose f g) where ... (ii) If there's a type parameter n of kind k1 -> k2 -> k3 (where k1/k2/k3 are * or kind variables), then generate a Bifunctor n constraint and perform kind substitution as in the other case. -} -- Determines the types of a constructor's arguments as well as the last type -- parameters (along with their map functions), expanding through any type synonyms. -- The type parameters are determined on a constructor-by-constructor basis since -- they may be refined to be particular types in a GADT. reifyConTys :: BiFun -> Name -> Name -> Name -> Q ([Type], TyVarMap) reifyConTys biFun conName map1 map2 = do info <- reify conName (ctxt, uncTy) <- case info of DataConI _ ty _ #if !(MIN_VERSION_template_haskell(2,11,0)) _ #endif -> fmap uncurryTy (expandSyn ty) _ -> error "Must be a data constructor" let (argTys, [resTy]) = splitAt (length uncTy - 1) uncTy unapResTy = unapplyTy resTy -- If one of the last type variables is refined to a particular type -- (i.e., not truly polymorphic), we mark it with Nothing and filter -- it out later, since we only apply map functions to arguments of -- a type that it (1) one of the last type variables, and (2) -- of a truly polymorphic type. mbTvNames = map varTToName_maybe $ drop (length unapResTy - 2) unapResTy -- We use Map.fromList to ensure that if there are any duplicate type -- variables (as can happen in a GADT), the rightmost type variable gets -- associated with the map function. -- -- See Note [Matching functions with GADT type variables] tvMap = Map.fromList . catMaybes -- Drop refined types $ zipWith (\mbTvName sp -> fmap (\tvName -> (tvName, sp)) mbTvName) mbTvNames [map1, map2] if (any (`predMentionsName` Map.keys tvMap) ctxt || Map.size tvMap < 2) && not (allowExQuant (biFunToClass biFun)) then existentialContextError conName else return (argTys, tvMap) {- Note [Matching functions with GADT type variables] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When deriving Bifoldable, there is a tricky corner case to consider: data Both a b where BothCon :: x -> x -> Both x x Which fold functions should be applied to which arguments of BothCon? We have a choice, since both the function of type (a -> m) and of type (b -> m) can be applied to either argument. In such a scenario, the second fold function takes precedence over the first fold function, so the derived Bifoldable instance would be: instance Bifoldable Both where bifoldMap _ g (BothCon x1 x2) = g x1 <> g x2 This is not an arbitrary choice, as this definition ensures that bifoldMap id = Foldable.foldMap for a derived Bifoldable instance for Both. -} ------------------------------------------------------------------------------- -- Error messages ------------------------------------------------------------------------------- -- | Either the given data type doesn't have enough type variables, or one of -- the type variables to be eta-reduced cannot realize kind *. derivingKindError :: BiClass -> Name -> a derivingKindError biClass tyConName = error . showString "Cannot derive well-kinded instance of form ‘" . showString className . showChar ' ' . showParen True ( showString (nameBase tyConName) . showString " ..." ) . showString "‘\n\tClass " . showString className . showString " expects an argument of kind * -> * -> *" $ "" where className :: String className = nameBase $ biClassName biClass -- | One of the last two type variables appeard in a contravariant position -- when deriving Bifoldable or Bitraversable. contravarianceError :: Name -> a contravarianceError conName = error . showString "Constructor ‘" . showString (nameBase conName) . showString "‘ must not use the last type variable(s) in a function argument" $ "" -- | A constructor has a function argument in a derived Bifoldable or Bitraversable -- instance. noFunctionsError :: Name -> a noFunctionsError conName = error . showString "Constructor ‘" . showString (nameBase conName) . showString "‘ must not contain function types" $ "" -- | The data type has a DatatypeContext which mentions one of the eta-reduced -- type variables. datatypeContextError :: Name -> Type -> a datatypeContextError dataName instanceType = error . showString "Can't make a derived instance of ‘" . showString (pprint instanceType) . showString "‘:\n\tData type ‘" . showString (nameBase dataName) . showString "‘ must not have a class context involving the last type argument(s)" $ "" -- | The data type has an existential constraint which mentions one of the -- eta-reduced type variables. existentialContextError :: Name -> a existentialContextError conName = error . showString "Constructor ‘" . showString (nameBase conName) . showString "‘ must be truly polymorphic in the last argument(s) of the data type" $ "" -- | The data type mentions one of the n eta-reduced type variables in a place other -- than the last nth positions of a data type in a constructor's field. outOfPlaceTyVarError :: Name -> a outOfPlaceTyVarError conName = error . showString "Constructor ‘" . showString (nameBase conName) . showString "‘ must only use its last two type variable(s) within" . showString " the last two argument(s) of a data type" $ "" -- | One of the last type variables cannot be eta-reduced (see the canEtaReduce -- function for the criteria it would have to meet). etaReductionError :: Type -> a etaReductionError instanceType = error $ "Cannot eta-reduce to an instance of form \n\tinstance (...) => " ++ pprint instanceType #if !(MIN_VERSION_template_haskell(2,7,0)) -- | Template Haskell didn't list all of a data family's instances upon reification -- until template-haskell-2.7.0.0, which is necessary for a derived instance to work. dataConIError :: a dataConIError = error . showString "Cannot use a data constructor." . showString "\n\t(Note: if you are trying to derive for a data family instance," . showString "\n\tuse GHC >= 7.4 instead.)" $ "" #endif ------------------------------------------------------------------------------- -- Class-specific constants ------------------------------------------------------------------------------- -- | A representation of which class is being derived. data BiClass = Bifunctor | Bifoldable | Bitraversable -- | A representation of which function is being generated. data BiFun = Bimap | Bifoldr | BifoldMap | Bitraverse deriving Eq biFunConstName :: BiFun -> Name biFunConstName Bimap = bimapConstValName biFunConstName Bifoldr = bifoldrConstValName biFunConstName BifoldMap = bifoldMapConstValName biFunConstName Bitraverse = bitraverseConstValName biClassName :: BiClass -> Name biClassName Bifunctor = bifunctorTypeName biClassName Bifoldable = bifoldableTypeName biClassName Bitraversable = bitraversableTypeName biFunName :: BiFun -> Name biFunName Bimap = bimapValName biFunName Bifoldr = bifoldrValName biFunName BifoldMap = bifoldMapValName biFunName Bitraverse = bitraverseValName biClassToFuns :: BiClass -> [BiFun] biClassToFuns Bifunctor = [Bimap] biClassToFuns Bifoldable = [Bifoldr, BifoldMap] biClassToFuns Bitraversable = [Bitraverse] biFunToClass :: BiFun -> BiClass biFunToClass Bimap = Bifunctor biFunToClass Bifoldr = Bifoldable biFunToClass BifoldMap = Bifoldable biFunToClass Bitraverse = Bitraversable biClassConstraint :: BiClass -> Int -> Maybe Name biClassConstraint Bifunctor 1 = Just functorTypeName biClassConstraint Bifoldable 1 = Just foldableTypeName biClassConstraint Bitraversable 1 = Just traversableTypeName biClassConstraint biClass 2 = Just $ biClassName biClass biClassConstraint _ _ = Nothing biFunArity :: BiFun -> Int -> Maybe Name biFunArity Bimap 1 = Just fmapValName biFunArity Bifoldr 1 = Just foldrValName biFunArity BifoldMap 1 = Just foldMapValName biFunArity Bitraverse 1 = Just traverseValName biFunArity biFun 2 = Just $ biFunName biFun biFunArity _ _ = Nothing allowFunTys :: BiClass -> Bool allowFunTys Bifunctor = True allowFunTys _ = False allowExQuant :: BiClass -> Bool allowExQuant Bifoldable = True allowExQuant _ = False -- See Trac #7436 for why explicit lambdas are used biFunTriv :: BiFun -> Q Exp biFunTriv Bimap = do x <- newName "x" lamE [varP x] $ varE x -- The biFunTriv definitions for bifoldr, bifoldMap, and bitraverse might seem -- useless, but they do serve a purpose. -- See Note [biFunTriv for Bifoldable and Bitraversable] biFunTriv Bifoldr = do z <- newName "z" lamE [wildP, varP z] $ varE z biFunTriv BifoldMap = lamE [wildP] $ varE memptyValName biFunTriv Bitraverse = varE pureValName biFunApp :: BiFun -> Q Exp -> Q Exp biFunApp Bifoldr e = do x <- newName "x" z <- newName "z" lamE [varP x, varP z] $ appsE [e, varE z, varE x] biFunApp _ e = e biFunCombine :: BiFun -> Name -> Name -> [Name] -> Q [Either Exp Exp] -> Q Exp biFunCombine Bimap = bimapCombine biFunCombine Bifoldr = bifoldrCombine biFunCombine BifoldMap = bifoldMapCombine biFunCombine Bitraverse = bitraverseCombine bimapCombine :: Name -> Name -> [Name] -> Q [Either Exp Exp] -> Q Exp bimapCombine conName _ _ = fmap (foldl' AppE (ConE conName) . fmap fromEither) -- bifoldr, bifoldMap, and bitraverse are handled differently from bimap, since -- they filter out subexpressions whose types do not mention one of the last two -- type parameters. See -- https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/DeriveFunctor#AlternativestrategyforderivingFoldableandTraversable -- for further discussion. bifoldrCombine :: Name -> Name -> [Name] -> Q [Either Exp Exp] -> Q Exp bifoldrCombine _ zName _ = fmap (foldr AppE (VarE zName) . rights) bifoldMapCombine :: Name -> Name -> [Name] -> Q [Either Exp Exp] -> Q Exp bifoldMapCombine _ _ _ = fmap (go . rights) where go :: [Exp] -> Exp go [] = VarE memptyValName go es = foldr1 (AppE . AppE (VarE mappendValName)) es bitraverseCombine :: Name -> Name -> [Name] -> Q [Either Exp Exp] -> Q Exp bitraverseCombine conName _ args essQ = do ess <- essQ let argTysTyVarInfo :: [Bool] argTysTyVarInfo = map isRight ess argsWithTyVar, argsWithoutTyVar :: [Name] (argsWithTyVar, argsWithoutTyVar) = partitionByList argTysTyVarInfo args conExpQ :: Q Exp conExpQ | null argsWithTyVar = appsE (conE conName:map varE argsWithoutTyVar) | otherwise = do bs <- newNameList "b" $ length args let bs' = filterByList argTysTyVarInfo bs vars = filterByLists argTysTyVarInfo (map varE bs) (map varE args) lamE (map varP bs') (appsE (conE conName:vars)) conExp <- conExpQ let go :: [Exp] -> Exp go [] = VarE pureValName `AppE` conExp go [e] = VarE fmapValName `AppE` conExp `AppE` e go (e1:e2:es) = foldl' (\se1 se2 -> InfixE (Just se1) (VarE apValName) (Just se2)) (VarE liftA2ValName `AppE` conExp `AppE` e1 `AppE` e2) es return . go . rights $ ess {- Note [biFunTriv for Bifoldable and Bitraversable] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When deriving Bifoldable and Bitraversable, we filter out any subexpressions whose type does not mention one of the last two type parameters. From this, you might think that we don't need to implement biFunTriv for bifoldr, bifoldMap, or bitraverse at all, but in fact we do need to. Imagine the following data type: data T a b = MkT a (T Int b) In a derived Bifoldable T instance, you would generate the following bifoldMap definition: bifoldMap f g (MkT a1 a2) = f a1 <> bifoldMap (\_ -> mempty) g arg2 You need to fill in biFunTriv (\_ -> mempty) as the first argument to the recursive call to bifoldMap, since that is how the algorithm handles polymorphic recursion. -} bifunctors-5.4.2/src/Data/Bifunctor/Flip.hs0000644000000000000000000000502013075676571016725 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE DeriveGeneric #-} #endif #if __GLASGOW_HASKELL__ >= 704 {-# LANGUAGE Safe #-} #elif __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif #if __GLASGOW_HASKELL__ >= 706 {-# LANGUAGE PolyKinds #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Data.Bifunctor.Flip -- Copyright : (C) 2008-2016 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : portable -- ---------------------------------------------------------------------------- module Data.Bifunctor.Flip ( Flip(..) ) where #if __GLASGOW_HASKELL__ < 710 import Control.Applicative #endif import Data.Biapplicative import Data.Bifoldable import Data.Bifunctor.Functor import Data.Bitraversable #if __GLASGOW_HASKELL__ < 710 import Data.Foldable import Data.Monoid import Data.Traversable #endif #if __GLASGOW_HASKELL__ >= 708 import Data.Typeable #endif #if __GLASGOW_HASKELL__ >= 702 import GHC.Generics #endif -- | Make a 'Bifunctor' flipping the arguments of a 'Bifunctor'. newtype Flip p a b = Flip { runFlip :: p b a } deriving ( Eq, Ord, Show, Read #if __GLASGOW_HASKELL__ >= 702 , Generic #endif #if __GLASGOW_HASKELL__ >= 708 , Typeable #endif ) instance Bifunctor p => Bifunctor (Flip p) where first f = Flip . second f . runFlip {-# INLINE first #-} second f = Flip . first f . runFlip {-# INLINE second #-} bimap f g = Flip . bimap g f . runFlip {-# INLINE bimap #-} instance Bifunctor p => Functor (Flip p a) where fmap f = Flip . first f . runFlip {-# INLINE fmap #-} instance Biapplicative p => Biapplicative (Flip p) where bipure a b = Flip (bipure b a) {-# INLINE bipure #-} Flip fg <<*>> Flip xy = Flip (fg <<*>> xy) {-# INLINE (<<*>>) #-} instance Bifoldable p => Bifoldable (Flip p) where bifoldMap f g = bifoldMap g f . runFlip {-# INLINE bifoldMap #-} instance Bifoldable p => Foldable (Flip p a) where foldMap f = bifoldMap f (const mempty) . runFlip {-# INLINE foldMap #-} instance Bitraversable p => Bitraversable (Flip p) where bitraverse f g = fmap Flip . bitraverse g f . runFlip {-# INLINE bitraverse #-} instance Bitraversable p => Traversable (Flip p a) where traverse f = fmap Flip . bitraverse f pure . runFlip {-# INLINE traverse #-} instance BifunctorFunctor Flip where bifmap f (Flip p) = Flip (f p) bifunctors-5.4.2/src/Data/Bifunctor/Wrapped.hs0000644000000000000000000000704213075676571017443 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE EmptyDataDecls #-} {-# LANGUAGE TypeFamilies #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE DeriveGeneric #-} #endif #if __GLASGOW_HASKELL__ >= 706 {-# LANGUAGE PolyKinds #-} #endif #if __GLASGOW_HASKELL__ >= 708 {-# LANGUAGE Safe #-} #elif __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2008-2016 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : portable -- ---------------------------------------------------------------------------- module Data.Bifunctor.Wrapped ( WrappedBifunctor(..) ) where #if __GLASGOW_HASKELL__ < 710 import Control.Applicative #endif import Data.Biapplicative import Data.Bifoldable import Data.Bitraversable #if __GLASGOW_HASKELL__ < 710 import Data.Foldable import Data.Monoid import Data.Traversable #endif #if __GLASGOW_HASKELL__ >= 708 import Data.Typeable #endif #if __GLASGOW_HASKELL__ >= 702 import GHC.Generics #endif -- | Make a 'Functor' over the second argument of a 'Bifunctor'. newtype WrappedBifunctor p a b = WrapBifunctor { unwrapBifunctor :: p a b } deriving ( Eq, Ord, Show, Read #if __GLASGOW_HASKELL__ >= 702 , Generic #endif #if __GLASGOW_HASKELL__ >= 708 , Generic1 , Typeable #endif ) #if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ < 708 data WrappedBifunctorMetaData data WrappedBifunctorMetaCons data WrappedBifunctorMetaSel instance Datatype WrappedBifunctorMetaData where datatypeName = const "WrappedBifunctor" moduleName = const "Data.Bifunctor.Wrapped" instance Constructor WrappedBifunctorMetaCons where conName = const "WrapBifunctor" conIsRecord = const True instance Selector WrappedBifunctorMetaSel where selName = const "unwrapBifunctor" instance Generic1 (WrappedBifunctor p a) where type Rep1 (WrappedBifunctor p a) = D1 WrappedBifunctorMetaData (C1 WrappedBifunctorMetaCons (S1 WrappedBifunctorMetaSel (Rec1 (p a)))) from1 = M1 . M1 . M1 . Rec1 . unwrapBifunctor to1 = WrapBifunctor . unRec1 . unM1 . unM1 . unM1 #endif instance Bifunctor p => Bifunctor (WrappedBifunctor p) where first f = WrapBifunctor . first f . unwrapBifunctor {-# INLINE first #-} second f = WrapBifunctor . second f . unwrapBifunctor {-# INLINE second #-} bimap f g = WrapBifunctor . bimap f g . unwrapBifunctor {-# INLINE bimap #-} instance Bifunctor p => Functor (WrappedBifunctor p a) where fmap f = WrapBifunctor . second f . unwrapBifunctor {-# INLINE fmap #-} instance Biapplicative p => Biapplicative (WrappedBifunctor p) where bipure a b = WrapBifunctor (bipure a b) {-# INLINE bipure #-} WrapBifunctor fg <<*>> WrapBifunctor xy = WrapBifunctor (fg <<*>> xy) {-# INLINE (<<*>>) #-} instance Bifoldable p => Foldable (WrappedBifunctor p a) where foldMap f = bifoldMap (const mempty) f . unwrapBifunctor {-# INLINE foldMap #-} instance Bifoldable p => Bifoldable (WrappedBifunctor p) where bifoldMap f g = bifoldMap f g . unwrapBifunctor {-# INLINE bifoldMap #-} instance Bitraversable p => Traversable (WrappedBifunctor p a) where traverse f = fmap WrapBifunctor . bitraverse pure f . unwrapBifunctor {-# INLINE traverse #-} instance Bitraversable p => Bitraversable (WrappedBifunctor p) where bitraverse f g = fmap WrapBifunctor . bitraverse f g . unwrapBifunctor {-# INLINE bitraverse #-} bifunctors-5.4.2/src/Data/Bifunctor/Joker.hs0000644000000000000000000000637013075676571017116 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE EmptyDataDecls #-} {-# LANGUAGE TypeFamilies #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE DeriveGeneric #-} #endif #if __GLASGOW_HASKELL__ >= 706 {-# LANGUAGE PolyKinds #-} #endif #if __GLASGOW_HASKELL__ >= 708 {-# LANGUAGE Safe #-} #elif __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2008-2016 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : portable -- -- From the Functional Pearl \"Clowns to the Left of me, Jokers to the Right: Dissecting Data Structures\" -- by Conor McBride. ---------------------------------------------------------------------------- module Data.Bifunctor.Joker ( Joker(..) ) where #if __GLASGOW_HASKELL__ < 710 import Control.Applicative #endif import Data.Biapplicative import Data.Bifoldable import Data.Bitraversable #if __GLASGOW_HASKELL__ < 710 import Data.Foldable import Data.Traversable #endif #if __GLASGOW_HASKELL__ >= 708 import Data.Typeable #endif #if __GLASGOW_HASKELL__ >= 702 import GHC.Generics #endif -- | Make a 'Functor' over the second argument of a 'Bifunctor'. -- -- Mnemonic: C__l__owns to the __l__eft (parameter of the Bifunctor), -- joke__r__s to the __r__ight. newtype Joker g a b = Joker { runJoker :: g b } deriving ( Eq, Ord, Show, Read #if __GLASGOW_HASKELL__ >= 702 , Generic #endif #if __GLASGOW_HASKELL__ >= 708 , Generic1 , Typeable #endif ) #if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ < 708 data JokerMetaData data JokerMetaCons data JokerMetaSel instance Datatype JokerMetaData where datatypeName _ = "Joker" moduleName _ = "Data.Bifunctor.Joker" instance Constructor JokerMetaCons where conName _ = "Joker" conIsRecord _ = True instance Selector JokerMetaSel where selName _ = "runJoker" instance Generic1 (Joker g a) where type Rep1 (Joker g a) = D1 JokerMetaData (C1 JokerMetaCons (S1 JokerMetaSel (Rec1 g))) from1 = M1 . M1 . M1 . Rec1 . runJoker to1 = Joker . unRec1 . unM1 . unM1 . unM1 #endif instance Functor g => Bifunctor (Joker g) where first _ = Joker . runJoker {-# INLINE first #-} second g = Joker . fmap g . runJoker {-# INLINE second #-} bimap _ g = Joker . fmap g . runJoker {-# INLINE bimap #-} instance Functor g => Functor (Joker g a) where fmap g = Joker . fmap g . runJoker {-# INLINE fmap #-} instance Applicative g => Biapplicative (Joker g) where bipure _ b = Joker (pure b) {-# INLINE bipure #-} Joker mf <<*>> Joker mx = Joker (mf <*> mx) {-# INLINE (<<*>>) #-} instance Foldable g => Bifoldable (Joker g) where bifoldMap _ g = foldMap g . runJoker {-# INLINE bifoldMap #-} instance Foldable g => Foldable (Joker g a) where foldMap g = foldMap g . runJoker {-# INLINE foldMap #-} instance Traversable g => Bitraversable (Joker g) where bitraverse _ g = fmap Joker . traverse g . runJoker {-# INLINE bitraverse #-} instance Traversable g => Traversable (Joker g a) where traverse g = fmap Joker . traverse g . runJoker {-# INLINE traverse #-} bifunctors-5.4.2/src/Data/Bifunctor/Product.hs0000644000000000000000000000624313075676571017463 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE EmptyDataDecls #-} {-# LANGUAGE TypeFamilies #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE DeriveGeneric #-} #endif #if __GLASGOW_HASKELL__ >= 706 {-# LANGUAGE PolyKinds #-} #endif #if __GLASGOW_HASKELL__ >= 708 {-# LANGUAGE Safe #-} #elif __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2008-2016 Jesse Selover, Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : portable -- -- The product of two bifunctors. ---------------------------------------------------------------------------- module Data.Bifunctor.Product ( Product(..) ) where #if __GLASGOW_HASKELL__ < 710 import Control.Applicative #endif import Data.Biapplicative import Data.Bifoldable import Data.Bifunctor.Functor import Data.Bitraversable #if __GLASGOW_HASKELL__ < 710 import Data.Monoid hiding (Product) #endif #if __GLASGOW_HASKELL__ >= 708 import Data.Typeable #endif #if __GLASGOW_HASKELL__ >= 702 import GHC.Generics #endif -- | Form the product of two bifunctors data Product f g a b = Pair (f a b) (g a b) deriving ( Eq, Ord, Show, Read #if __GLASGOW_HASKELL__ >= 702 , Generic #endif #if __GLASGOW_HASKELL__ >= 708 , Generic1 , Typeable #endif ) #if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ < 708 data ProductMetaData data ProductMetaCons instance Datatype ProductMetaData where datatypeName _ = "Product" moduleName _ = "Data.Bifunctor.Product" instance Constructor ProductMetaCons where conName _ = "Pair" instance Generic1 (Product f g a) where type Rep1 (Product f g a) = D1 ProductMetaData (C1 ProductMetaCons ((:*:) (S1 NoSelector (Rec1 (f a))) (S1 NoSelector (Rec1 (g a))))) from1 (Pair f g) = M1 (M1 (M1 (Rec1 f) :*: M1 (Rec1 g))) to1 (M1 (M1 (M1 f :*: M1 g))) = Pair (unRec1 f) (unRec1 g) #endif instance (Bifunctor f, Bifunctor g) => Bifunctor (Product f g) where first f (Pair x y) = Pair (first f x) (first f y) {-# INLINE first #-} second g (Pair x y) = Pair (second g x) (second g y) {-# INLINE second #-} bimap f g (Pair x y) = Pair (bimap f g x) (bimap f g y) {-# INLINE bimap #-} instance (Biapplicative f, Biapplicative g) => Biapplicative (Product f g) where bipure a b = Pair (bipure a b) (bipure a b) {-# INLINE bipure #-} Pair w x <<*>> Pair y z = Pair (w <<*>> y) (x <<*>> z) {-# INLINE (<<*>>) #-} instance (Bifoldable f, Bifoldable g) => Bifoldable (Product f g) where bifoldMap f g (Pair x y) = bifoldMap f g x `mappend` bifoldMap f g y {-# INLINE bifoldMap #-} instance (Bitraversable f, Bitraversable g) => Bitraversable (Product f g) where bitraverse f g (Pair x y) = Pair <$> bitraverse f g x <*> bitraverse f g y {-# INLINE bitraverse #-} instance BifunctorFunctor (Product p) where bifmap f (Pair p q) = Pair p (f q) instance BifunctorComonad (Product p) where biextract (Pair _ q) = q biduplicate pq@(Pair p _) = Pair p pq biextend f pq@(Pair p _) = Pair p (f pq) bifunctors-5.4.2/src/Data/Bifunctor/Clown.hs0000644000000000000000000000627413075676571017131 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE EmptyDataDecls #-} {-# LANGUAGE TypeFamilies #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE DeriveGeneric #-} #endif #if __GLASGOW_HASKELL__ >= 706 {-# LANGUAGE PolyKinds #-} #endif #if __GLASGOW_HASKELL__ >= 708 {-# LANGUAGE Safe #-} #elif __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2008-2016 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : portable -- -- From the Functional Pearl \"Clowns to the Left of me, Jokers to the Right: Dissecting Data Structures\" -- by Conor McBride. ---------------------------------------------------------------------------- module Data.Bifunctor.Clown ( Clown(..) ) where #if __GLASGOW_HASKELL__ < 710 import Control.Applicative #endif import Data.Biapplicative import Data.Bifoldable import Data.Bitraversable #if __GLASGOW_HASKELL__ < 710 import Data.Foldable import Data.Monoid import Data.Traversable #endif #if __GLASGOW_HASKELL__ >= 708 import Data.Typeable #endif #if __GLASGOW_HASKELL__ >= 702 import GHC.Generics #endif -- | Make a 'Functor' over the first argument of a 'Bifunctor'. -- -- Mnemonic: C__l__owns to the __l__eft (parameter of the Bifunctor), -- joke__r__s to the __r__ight. newtype Clown f a b = Clown { runClown :: f a } deriving ( Eq, Ord, Show, Read #if __GLASGOW_HASKELL__ >= 702 , Generic #endif #if __GLASGOW_HASKELL__ >= 708 , Generic1 , Typeable #endif ) #if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ < 708 data ClownMetaData data ClownMetaCons data ClownMetaSel instance Datatype ClownMetaData where datatypeName _ = "Clown" moduleName _ = "Data.Bifunctor.Clown" instance Constructor ClownMetaCons where conName _ = "Clown" conIsRecord _ = True instance Selector ClownMetaSel where selName _ = "runClown" instance Generic1 (Clown f a) where type Rep1 (Clown f a) = D1 ClownMetaData (C1 ClownMetaCons (S1 ClownMetaSel (Rec0 (f a)))) from1 = M1 . M1 . M1 . K1 . runClown to1 = Clown . unK1 . unM1 . unM1 . unM1 #endif instance Functor f => Bifunctor (Clown f) where first f = Clown . fmap f . runClown {-# INLINE first #-} second _ = Clown . runClown {-# INLINE second #-} bimap f _ = Clown . fmap f . runClown {-# INLINE bimap #-} instance Functor (Clown f a) where fmap _ = Clown . runClown {-# INLINE fmap #-} instance Applicative f => Biapplicative (Clown f) where bipure a _ = Clown (pure a) {-# INLINE bipure #-} Clown mf <<*>> Clown mx = Clown (mf <*> mx) {-# INLINE (<<*>>) #-} instance Foldable f => Bifoldable (Clown f) where bifoldMap f _ = foldMap f . runClown {-# INLINE bifoldMap #-} instance Foldable (Clown f a) where foldMap _ = mempty {-# INLINE foldMap #-} instance Traversable f => Bitraversable (Clown f) where bitraverse f _ = fmap Clown . traverse f . runClown {-# INLINE bitraverse #-} instance Traversable (Clown f a) where traverse _ = pure . Clown . runClown {-# INLINE traverse #-} bifunctors-5.4.2/src/Data/Bifunctor/Biff.hs0000644000000000000000000000715313075676571016712 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE EmptyDataDecls #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE DeriveGeneric #-} #endif #if __GLASGOW_HASKELL__ >= 706 {-# LANGUAGE PolyKinds #-} #endif #if __GLASGOW_HASKELL__ >= 708 {-# LANGUAGE Safe #-} #elif __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2008-2016 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : portable -- ---------------------------------------------------------------------------- module Data.Bifunctor.Biff ( Biff(..) ) where #if __GLASGOW_HASKELL__ < 710 import Control.Applicative #endif import Data.Biapplicative import Data.Bifoldable import Data.Bitraversable #if __GLASGOW_HASKELL__ < 710 import Data.Foldable import Data.Monoid import Data.Traversable #endif #if __GLASGOW_HASKELL__ >= 708 import Data.Typeable #endif #if __GLASGOW_HASKELL__ >= 702 import GHC.Generics #endif -- | Compose two 'Functor's on the inside of a 'Bifunctor'. newtype Biff p f g a b = Biff { runBiff :: p (f a) (g b) } deriving ( Eq, Ord, Show, Read #if __GLASGOW_HASKELL__ >= 702 , Generic #endif #if __GLASGOW_HASKELL__ >= 708 , Typeable #endif ) #if __GLASGOW_HASKELL__ >= 702 # if __GLASGOW_HASKELL__ >= 708 deriving instance Functor (p (f a)) => Generic1 (Biff p f g a) # else data BiffMetaData data BiffMetaCons data BiffMetaSel instance Datatype BiffMetaData where datatypeName = const "Biff" moduleName = const "Data.Bifunctor.Biff" instance Constructor BiffMetaCons where conName = const "Biff" conIsRecord = const True instance Selector BiffMetaSel where selName = const "runBiff" instance Functor (p (f a)) => Generic1 (Biff p f g a) where type Rep1 (Biff p f g a) = D1 BiffMetaData (C1 BiffMetaCons (S1 BiffMetaSel (p (f a) :.: Rec1 g))) from1 = M1 . M1 . M1 . Comp1 . fmap Rec1 . runBiff to1 = Biff . fmap unRec1 . unComp1 . unM1 . unM1 . unM1 # endif #endif instance (Bifunctor p, Functor f, Functor g) => Bifunctor (Biff p f g) where first f = Biff . first (fmap f) . runBiff {-# INLINE first #-} second f = Biff . second (fmap f) . runBiff {-# INLINE second #-} bimap f g = Biff . bimap (fmap f) (fmap g) . runBiff {-# INLINE bimap #-} instance (Bifunctor p, Functor g) => Functor (Biff p f g a) where fmap f = Biff . second (fmap f) . runBiff {-# INLINE fmap #-} instance (Biapplicative p, Applicative f, Applicative g) => Biapplicative (Biff p f g) where bipure a b = Biff (bipure (pure a) (pure b)) {-# INLINE bipure #-} Biff fg <<*>> Biff xy = Biff (bimap (<*>) (<*>) fg <<*>> xy) {-# INLINE (<<*>>) #-} instance (Bifoldable p, Foldable g) => Foldable (Biff p f g a) where foldMap f = bifoldMap (const mempty) (foldMap f) . runBiff {-# INLINE foldMap #-} instance (Bifoldable p, Foldable f, Foldable g) => Bifoldable (Biff p f g) where bifoldMap f g = bifoldMap (foldMap f) (foldMap g) . runBiff {-# INLINE bifoldMap #-} instance (Bitraversable p, Traversable g) => Traversable (Biff p f g a) where traverse f = fmap Biff . bitraverse pure (traverse f) . runBiff {-# INLINE traverse #-} instance (Bitraversable p, Traversable f, Traversable g) => Bitraversable (Biff p f g) where bitraverse f g = fmap Biff . bitraverse (traverse f) (traverse g) . runBiff {-# INLINE bitraverse #-} bifunctors-5.4.2/src/Data/Bifunctor/Join.hs0000644000000000000000000000445113075676571016741 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE UndecidableInstances #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE DeriveGeneric #-} #endif #if __GLASGOW_HASKELL__ >= 704 {-# LANGUAGE Safe #-} #elif __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif #if __GLASGOW_HASKELL__ >= 706 {-# LANGUAGE PolyKinds #-} #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2008-2016 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : non-portable -- ---------------------------------------------------------------------------- module Data.Bifunctor.Join ( Join(..) ) where #if __GLASGOW_HASKELL__ < 710 import Control.Applicative #endif import Data.Biapplicative import Data.Bifoldable import Data.Bitraversable #if __GLASGOW_HASKELL__ < 710 import Data.Foldable import Data.Traversable #endif #if __GLASGOW_HASKELL__ >= 708 import Data.Typeable #endif #if __GLASGOW_HASKELL__ >= 702 import GHC.Generics #endif -- | Make a 'Functor' over both arguments of a 'Bifunctor'. newtype Join p a = Join { runJoin :: p a a } deriving ( #if __GLASGOW_HASKELL__ >= 702 Generic #endif #if __GLASGOW_HASKELL__ >= 708 , Typeable #endif ) deriving instance Eq (p a a) => Eq (Join p a) deriving instance Ord (p a a) => Ord (Join p a) deriving instance Show (p a a) => Show (Join p a) deriving instance Read (p a a) => Read (Join p a) instance Bifunctor p => Functor (Join p) where fmap f (Join a) = Join (bimap f f a) {-# INLINE fmap #-} instance Biapplicative p => Applicative (Join p) where pure a = Join (bipure a a) {-# INLINE pure #-} Join f <*> Join a = Join (f <<*>> a) {-# INLINE (<*>) #-} Join a *> Join b = Join (a *>> b) {-# INLINE (*>) #-} Join a <* Join b = Join (a <<* b) {-# INLINE (<*) #-} instance Bifoldable p => Foldable (Join p) where foldMap f (Join a) = bifoldMap f f a {-# INLINE foldMap #-} instance Bitraversable p => Traversable (Join p) where traverse f (Join a) = fmap Join (bitraverse f f a) {-# INLINE traverse #-} sequenceA (Join a) = fmap Join (bisequenceA a) {-# INLINE sequenceA #-} bifunctors-5.4.2/src/Data/Bifunctor/Fix.hs0000644000000000000000000000434213075676571016567 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE UndecidableInstances #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE DeriveGeneric #-} #endif #if __GLASGOW_HASKELL__ >= 704 {-# LANGUAGE Safe #-} #elif __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif #if __GLASGOW_HASKELL__ >= 706 {-# LANGUAGE PolyKinds #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Data.Bifunctor.Fix -- Copyright : (C) 2008-2016 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : non-portable -- ----------------------------------------------------------------------------- module Data.Bifunctor.Fix ( Fix(..) ) where #if __GLASGOW_HASKELL__ < 710 import Control.Applicative #endif import Data.Biapplicative import Data.Bifoldable import Data.Bitraversable #if __GLASGOW_HASKELL__ < 710 import Data.Foldable import Data.Traversable #endif #if __GLASGOW_HASKELL__ >= 708 import Data.Typeable #endif #if __GLASGOW_HASKELL__ >= 702 import GHC.Generics #endif -- | Greatest fixpoint of a 'Bifunctor' (a 'Functor' over the first argument with zipping). newtype Fix p a = In { out :: p (Fix p a) a } deriving ( #if __GLASGOW_HASKELL__ >= 702 Generic #endif #if __GLASGOW_HASKELL__ >= 708 , Typeable #endif ) deriving instance Eq (p (Fix p a) a) => Eq (Fix p a) deriving instance Ord (p (Fix p a) a) => Ord (Fix p a) deriving instance Show (p (Fix p a) a) => Show (Fix p a) deriving instance Read (p (Fix p a) a) => Read (Fix p a) instance Bifunctor p => Functor (Fix p) where fmap f (In p) = In (bimap (fmap f) f p) {-# INLINE fmap #-} instance Biapplicative p => Applicative (Fix p) where pure a = In (bipure (pure a) a) {-# INLINE pure #-} In p <*> In q = In (biliftA2 (<*>) ($) p q) {-# INLINE (<*>) #-} instance Bifoldable p => Foldable (Fix p) where foldMap f (In p) = bifoldMap (foldMap f) f p {-# INLINE foldMap #-} instance Bitraversable p => Traversable (Fix p) where traverse f (In p) = In <$> bitraverse (traverse f) f p {-# INLINE traverse #-} bifunctors-5.4.2/src/Data/Bifunctor/Tannen.hs0000644000000000000000000001214613075676571017265 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE EmptyDataDecls #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE DeriveGeneric #-} #endif #if __GLASGOW_HASKELL__ >= 706 {-# LANGUAGE PolyKinds #-} #endif #if __GLASGOW_HASKELL__ >= 708 {-# LANGUAGE Safe #-} #elif __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2008-2016 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : portable -- ---------------------------------------------------------------------------- module Data.Bifunctor.Tannen ( Tannen(..) ) where import Control.Applicative import Control.Arrow as A import Control.Category import Control.Comonad import Data.Bifunctor as B import Data.Bifunctor.Functor import Data.Biapplicative import Data.Bifoldable import Data.Bitraversable #if __GLASGOW_HASKELL__ < 710 import Data.Foldable import Data.Monoid import Data.Traversable #endif #if __GLASGOW_HASKELL__ >= 708 import Data.Typeable #endif #if __GLASGOW_HASKELL__ >= 702 import GHC.Generics #endif import Prelude hiding ((.),id) -- | Compose a 'Functor' on the outside of a 'Bifunctor'. newtype Tannen f p a b = Tannen { runTannen :: f (p a b) } deriving ( Eq, Ord, Show, Read #if __GLASGOW_HASKELL__ >= 702 , Generic #endif #if __GLASGOW_HASKELL__ >= 708 , Typeable #endif ) #if __GLASGOW_HASKELL__ >= 702 # if __GLASGOW_HASKELL__ >= 708 deriving instance Functor f => Generic1 (Tannen f p a) # else data TannenMetaData data TannenMetaCons data TannenMetaSel instance Datatype TannenMetaData where datatypeName _ = "Tannen" moduleName _ = "Data.Bifunctor.Tannen" instance Constructor TannenMetaCons where conName _ = "Tannen" conIsRecord _ = True instance Selector TannenMetaSel where selName _ = "runTannen" instance Functor f => Generic1 (Tannen f p a) where type Rep1 (Tannen f p a) = D1 TannenMetaData (C1 TannenMetaCons (S1 TannenMetaSel (f :.: Rec1 (p a)))) from1 = M1 . M1 . M1 . Comp1 . fmap Rec1 . runTannen to1 = Tannen . fmap unRec1 . unComp1 . unM1 . unM1 . unM1 # endif #endif instance Functor f => BifunctorFunctor (Tannen f) where bifmap f (Tannen fp) = Tannen (fmap f fp) instance (Functor f, Monad f) => BifunctorMonad (Tannen f) where bireturn = Tannen . return bibind f (Tannen fp) = Tannen $ fp >>= runTannen . f instance Comonad f => BifunctorComonad (Tannen f) where biextract = extract . runTannen biextend f (Tannen fp) = Tannen (extend (f . Tannen) fp) instance (Functor f, Bifunctor p) => Bifunctor (Tannen f p) where first f = Tannen . fmap (B.first f) . runTannen {-# INLINE first #-} second f = Tannen . fmap (B.second f) . runTannen {-# INLINE second #-} bimap f g = Tannen . fmap (bimap f g) . runTannen {-# INLINE bimap #-} instance (Functor f, Bifunctor p) => Functor (Tannen f p a) where fmap f = Tannen . fmap (B.second f) . runTannen {-# INLINE fmap #-} instance (Applicative f, Biapplicative p) => Biapplicative (Tannen f p) where bipure a b = Tannen (pure (bipure a b)) {-# INLINE bipure #-} Tannen fg <<*>> Tannen xy = Tannen ((<<*>>) <$> fg <*> xy) {-# INLINE (<<*>>) #-} instance (Foldable f, Bifoldable p) => Foldable (Tannen f p a) where foldMap f = foldMap (bifoldMap (const mempty) f) . runTannen {-# INLINE foldMap #-} instance (Foldable f, Bifoldable p) => Bifoldable (Tannen f p) where bifoldMap f g = foldMap (bifoldMap f g) . runTannen {-# INLINE bifoldMap #-} instance (Traversable f, Bitraversable p) => Traversable (Tannen f p a) where traverse f = fmap Tannen . traverse (bitraverse pure f) . runTannen {-# INLINE traverse #-} instance (Traversable f, Bitraversable p) => Bitraversable (Tannen f p) where bitraverse f g = fmap Tannen . traverse (bitraverse f g) . runTannen {-# INLINE bitraverse #-} instance (Applicative f, Category p) => Category (Tannen f p) where id = Tannen $ pure id Tannen fpbc . Tannen fpab = Tannen $ liftA2 (.) fpbc fpab instance (Applicative f, Arrow p) => Arrow (Tannen f p) where arr f = Tannen $ pure $ arr f first = Tannen . fmap A.first . runTannen second = Tannen . fmap A.second . runTannen Tannen ab *** Tannen cd = Tannen $ liftA2 (***) ab cd Tannen ab &&& Tannen ac = Tannen $ liftA2 (&&&) ab ac instance (Applicative f, ArrowChoice p) => ArrowChoice (Tannen f p) where left = Tannen . fmap left . runTannen right = Tannen . fmap right . runTannen Tannen ab +++ Tannen cd = Tannen $ liftA2 (+++) ab cd Tannen ac ||| Tannen bc = Tannen $ liftA2 (|||) ac bc instance (Applicative f, ArrowLoop p) => ArrowLoop (Tannen f p) where loop = Tannen . fmap loop . runTannen instance (Applicative f, ArrowZero p) => ArrowZero (Tannen f p) where zeroArrow = Tannen $ pure zeroArrow instance (Applicative f, ArrowPlus p) => ArrowPlus (Tannen f p) where Tannen f <+> Tannen g = Tannen (liftA2 (<+>) f g) bifunctors-5.4.2/src/Data/Bifunctor/Functor.hs0000644000000000000000000000257113075676571017463 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TypeOperators #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Safe #-} #endif #if __GLASGOW_HASKELL__ >= 706 {-# LANGUAGE PolyKinds #-} #endif module Data.Bifunctor.Functor ( (:->) , BifunctorFunctor(..) , BifunctorMonad(..) , biliftM , BifunctorComonad(..) , biliftW ) where -- | Using parametricity as an approximation of a natural transformation in two arguments. type (:->) p q = forall a b. p a b -> q a b infixr 0 :-> class BifunctorFunctor t where bifmap :: (p :-> q) -> t p :-> t q class BifunctorFunctor t => BifunctorMonad t where bireturn :: p :-> t p bibind :: (p :-> t q) -> t p :-> t q bibind f = bijoin . bifmap f bijoin :: t (t p) :-> t p bijoin = bibind id #if __GLASGOW_HASKELL__ >= 708 {-# MINIMAL bireturn, (bibind | bijoin) #-} #endif biliftM :: BifunctorMonad t => (p :-> q) -> t p :-> t q biliftM f = bibind (bireturn . f) {-# INLINE biliftM #-} class BifunctorFunctor t => BifunctorComonad t where biextract :: t p :-> p biextend :: (t p :-> q) -> t p :-> t q biextend f = bifmap f . biduplicate biduplicate :: t p :-> t (t p) biduplicate = biextend id #if __GLASGOW_HASKELL__ >= 708 {-# MINIMAL biextract, (biextend | biduplicate) #-} #endif biliftW :: BifunctorComonad t => (p :-> q) -> t p :-> t q biliftW f = biextend (f . biextract) {-# INLINE biliftW #-} bifunctors-5.4.2/src/Data/Bifunctor/Sum.hs0000644000000000000000000000471413075676571016610 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE EmptyDataDecls #-} {-# LANGUAGE TypeFamilies #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE DeriveGeneric #-} #endif #if __GLASGOW_HASKELL__ >= 706 {-# LANGUAGE PolyKinds #-} #endif #if __GLASGOW_HASKELL__ >= 708 {-# LANGUAGE Safe #-} #elif __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif module Data.Bifunctor.Sum where import Data.Bifunctor import Data.Bifunctor.Functor import Data.Bifoldable import Data.Bitraversable #if __GLASGOW_HASKELL__ < 710 import Data.Functor #endif #if __GLASGOW_HASKELL__ >= 708 import Data.Typeable #endif #if __GLASGOW_HASKELL__ >= 702 import GHC.Generics #endif data Sum p q a b = L2 (p a b) | R2 (q a b) deriving ( Eq, Ord, Show, Read #if __GLASGOW_HASKELL__ >= 702 , Generic #endif #if __GLASGOW_HASKELL__ >= 708 , Generic1 , Typeable #endif ) #if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ < 708 data SumMetaData data SumMetaConsL2 data SumMetaConsR2 instance Datatype SumMetaData where datatypeName _ = "Sum" moduleName _ = "Data.Bifunctor.Sum" instance Constructor SumMetaConsL2 where conName _ = "L2" instance Constructor SumMetaConsR2 where conName _ = "R2" instance Generic1 (Sum p q a) where type Rep1 (Sum p q a) = D1 SumMetaData ((:+:) (C1 SumMetaConsL2 (S1 NoSelector (Rec1 (p a)))) (C1 SumMetaConsR2 (S1 NoSelector (Rec1 (q a))))) from1 (L2 p) = M1 (L1 (M1 (M1 (Rec1 p)))) from1 (R2 q) = M1 (R1 (M1 (M1 (Rec1 q)))) to1 (M1 (L1 (M1 (M1 p)))) = L2 (unRec1 p) to1 (M1 (R1 (M1 (M1 q)))) = R2 (unRec1 q) #endif instance (Bifunctor p, Bifunctor q) => Bifunctor (Sum p q) where bimap f g (L2 p) = L2 (bimap f g p) bimap f g (R2 q) = R2 (bimap f g q) first f (L2 p) = L2 (first f p) first f (R2 q) = R2 (first f q) second f (L2 p) = L2 (second f p) second f (R2 q) = R2 (second f q) instance (Bifoldable p, Bifoldable q) => Bifoldable (Sum p q) where bifoldMap f g (L2 p) = bifoldMap f g p bifoldMap f g (R2 q) = bifoldMap f g q instance (Bitraversable p, Bitraversable q) => Bitraversable (Sum p q) where bitraverse f g (L2 p) = L2 <$> bitraverse f g p bitraverse f g (R2 q) = R2 <$> bitraverse f g q instance BifunctorFunctor (Sum p) where bifmap _ (L2 p) = L2 p bifmap f (R2 q) = R2 (f q) instance BifunctorMonad (Sum p) where bireturn = R2 bijoin (L2 p) = L2 p bijoin (R2 q) = q bibind _ (L2 p) = L2 p bibind f (R2 q) = f q bifunctors-5.4.2/src/Data/Bifunctor/TH/0000755000000000000000000000000013075676571016015 5ustar0000000000000000bifunctors-5.4.2/src/Data/Bifunctor/TH/Internal.hs0000644000000000000000000005233413075676571020134 0ustar0000000000000000{-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ >= 704 {-# LANGUAGE Unsafe #-} #endif {-| Module: Data.Bifunctor.TH.Internal Copyright: (C) 2008-2016 Edward Kmett, (C) 2015-2016 Ryan Scott License: BSD-style (see the file LICENSE) Maintainer: Edward Kmett Portability: Template Haskell Template Haskell-related utilities. -} module Data.Bifunctor.TH.Internal where import Control.Monad (liftM) import Data.Bifunctor (bimap) import Data.Foldable (foldr') import Data.List import qualified Data.Map as Map (fromList, findWithDefault, singleton) import Data.Map (Map) import Data.Maybe (fromMaybe, mapMaybe) import qualified Data.Set as Set import Data.Set (Set) import Language.Haskell.TH.Lib import Language.Haskell.TH.Syntax -- Ensure, beyond a shadow of a doubt, that the instances are in-scope import Data.Bifunctor () import Data.Bifoldable () import Data.Bitraversable () #ifndef CURRENT_PACKAGE_KEY import Data.Version (showVersion) import Paths_bifunctors (version) #endif ------------------------------------------------------------------------------- -- Expanding type synonyms ------------------------------------------------------------------------------- -- | Expands all type synonyms in a type. Written by Dan Rosén in the -- @genifunctors@ package (licensed under BSD3). expandSyn :: Type -> Q Type expandSyn (ForallT tvs ctx t) = fmap (ForallT tvs ctx) $ expandSyn t expandSyn t@AppT{} = expandSynApp t [] expandSyn t@ConT{} = expandSynApp t [] expandSyn (SigT t k) = do t' <- expandSyn t k' <- expandSynKind k return (SigT t' k') expandSyn t = return t expandSynKind :: Kind -> Q Kind #if MIN_VERSION_template_haskell(2,8,0) expandSynKind = expandSyn #else expandSynKind = return -- There are no kind synonyms to deal with #endif expandSynApp :: Type -> [Type] -> Q Type expandSynApp (AppT t1 t2) ts = do t2' <- expandSyn t2 expandSynApp t1 (t2':ts) expandSynApp (ConT n) ts | nameBase n == "[]" = return $ foldl' AppT ListT ts expandSynApp t@(ConT n) ts = do info <- reify n case info of TyConI (TySynD _ tvs rhs) -> let (ts', ts'') = splitAt (length tvs) ts subs = mkSubst tvs ts' rhs' = substType subs rhs in expandSynApp rhs' ts'' _ -> return $ foldl' AppT t ts expandSynApp t ts = do t' <- expandSyn t return $ foldl' AppT t' ts type TypeSubst = Map Name Type type KindSubst = Map Name Kind mkSubst :: [TyVarBndr] -> [Type] -> TypeSubst mkSubst vs ts = let vs' = map un vs un (PlainTV v) = v un (KindedTV v _) = v in Map.fromList $ zip vs' ts substType :: TypeSubst -> Type -> Type substType subs (ForallT v c t) = ForallT v c $ substType subs t substType subs t@(VarT n) = Map.findWithDefault t n subs substType subs (AppT t1 t2) = AppT (substType subs t1) (substType subs t2) substType subs (SigT t k) = SigT (substType subs t) #if MIN_VERSION_template_haskell(2,8,0) (substType subs k) #else k #endif substType _ t = t substKind :: KindSubst -> Type -> Type #if MIN_VERSION_template_haskell(2,8,0) substKind = substType #else substKind _ = id -- There are no kind variables! #endif substNameWithKind :: Name -> Kind -> Type -> Type substNameWithKind n k = substKind (Map.singleton n k) substNamesWithKindStar :: [Name] -> Type -> Type substNamesWithKindStar ns t = foldr' (flip substNameWithKind starK) t ns ------------------------------------------------------------------------------- -- Type-specialized const functions ------------------------------------------------------------------------------- bimapConst :: p b d -> (a -> b) -> (c -> d) -> p a c -> p b d bimapConst = const . const . const {-# INLINE bimapConst #-} bifoldrConst :: c -> (a -> c -> c) -> (b -> c -> c) -> c -> p a b -> c bifoldrConst = const . const . const . const {-# INLINE bifoldrConst #-} bifoldMapConst :: m -> (a -> m) -> (b -> m) -> p a b -> m bifoldMapConst = const . const . const {-# INLINE bifoldMapConst #-} bitraverseConst :: f (t c d) -> (a -> f c) -> (b -> f d) -> t a b -> f (t c d) bitraverseConst = const . const . const {-# INLINE bitraverseConst #-} ------------------------------------------------------------------------------- -- StarKindStatus ------------------------------------------------------------------------------- -- | Whether a type is not of kind *, is of kind *, or is a kind variable. data StarKindStatus = NotKindStar | KindStar | IsKindVar Name deriving Eq -- | Does a Type have kind * or k (for some kind variable k)? canRealizeKindStar :: Type -> StarKindStatus canRealizeKindStar t | hasKindStar t = KindStar | otherwise = case t of #if MIN_VERSION_template_haskell(2,8,0) SigT _ (VarT k) -> IsKindVar k #endif _ -> NotKindStar -- | Returns 'Just' the kind variable 'Name' of a 'StarKindStatus' if it exists. -- Otherwise, returns 'Nothing'. starKindStatusToName :: StarKindStatus -> Maybe Name starKindStatusToName (IsKindVar n) = Just n starKindStatusToName _ = Nothing -- | Concat together all of the StarKindStatuses that are IsKindVar and extract -- the kind variables' Names out. catKindVarNames :: [StarKindStatus] -> [Name] catKindVarNames = mapMaybe starKindStatusToName ------------------------------------------------------------------------------- -- Assorted utilities ------------------------------------------------------------------------------- -- isRight and fromEither taken from the extra package (BSD3-licensed) -- | Test if an 'Either' value is the 'Right' constructor. -- Provided as standard with GHC 7.8 and above. isRight :: Either l r -> Bool isRight Right{} = True; isRight _ = False -- | Pull the value out of an 'Either' where both alternatives -- have the same type. -- -- > \x -> fromEither (Left x ) == x -- > \x -> fromEither (Right x) == x fromEither :: Either a a -> a fromEither = either id id -- filterByList, filterByLists, and partitionByList taken from GHC (BSD3-licensed) -- | 'filterByList' takes a list of Bools and a list of some elements and -- filters out these elements for which the corresponding value in the list of -- Bools is False. This function does not check whether the lists have equal -- length. filterByList :: [Bool] -> [a] -> [a] filterByList (True:bs) (x:xs) = x : filterByList bs xs filterByList (False:bs) (_:xs) = filterByList bs xs filterByList _ _ = [] -- | 'filterByLists' takes a list of Bools and two lists as input, and -- outputs a new list consisting of elements from the last two input lists. For -- each Bool in the list, if it is 'True', then it takes an element from the -- former list. If it is 'False', it takes an element from the latter list. -- The elements taken correspond to the index of the Bool in its list. -- For example: -- -- @ -- filterByLists [True, False, True, False] \"abcd\" \"wxyz\" = \"axcz\" -- @ -- -- This function does not check whether the lists have equal length. filterByLists :: [Bool] -> [a] -> [a] -> [a] filterByLists (True:bs) (x:xs) (_:ys) = x : filterByLists bs xs ys filterByLists (False:bs) (_:xs) (y:ys) = y : filterByLists bs xs ys filterByLists _ _ _ = [] -- | 'partitionByList' takes a list of Bools and a list of some elements and -- partitions the list according to the list of Bools. Elements corresponding -- to 'True' go to the left; elements corresponding to 'False' go to the right. -- For example, @partitionByList [True, False, True] [1,2,3] == ([1,3], [2])@ -- This function does not check whether the lists have equal -- length. partitionByList :: [Bool] -> [a] -> ([a], [a]) partitionByList = go [] [] where go trues falses (True : bs) (x : xs) = go (x:trues) falses bs xs go trues falses (False : bs) (x : xs) = go trues (x:falses) bs xs go trues falses _ _ = (reverse trues, reverse falses) -- | Apply an @Either Exp Exp@ expression to an 'Exp' expression, -- preserving the 'Either'-ness. appEitherE :: Q (Either Exp Exp) -> Q Exp -> Q (Either Exp Exp) appEitherE e1Q e2Q = do e2 <- e2Q let e2' :: Exp -> Exp e2' = (`AppE` e2) bimap e2' e2' `fmap` e1Q -- | Returns True if a Type has kind *. hasKindStar :: Type -> Bool hasKindStar VarT{} = True #if MIN_VERSION_template_haskell(2,8,0) hasKindStar (SigT _ StarT) = True #else hasKindStar (SigT _ StarK) = True #endif hasKindStar _ = False -- Returns True is a kind is equal to *, or if it is a kind variable. isStarOrVar :: Kind -> Bool #if MIN_VERSION_template_haskell(2,8,0) isStarOrVar StarT = True isStarOrVar VarT{} = True #else isStarOrVar StarK = True #endif isStarOrVar _ = False -- | Gets all of the type/kind variable names mentioned somewhere in a Type. tyVarNamesOfType :: Type -> [Name] tyVarNamesOfType = go where go :: Type -> [Name] go (AppT t1 t2) = go t1 ++ go t2 go (SigT t _k) = go t #if MIN_VERSION_template_haskell(2,8,0) ++ go _k #endif go (VarT n) = [n] go _ = [] -- | Gets all of the type/kind variable names mentioned somewhere in a Kind. tyVarNamesOfKind :: Kind -> [Name] #if MIN_VERSION_template_haskell(2,8,0) tyVarNamesOfKind = tyVarNamesOfType #else tyVarNamesOfKind _ = [] -- There are no kind variables #endif -- | @hasKindVarChain n kind@ Checks if @kind@ is of the form -- k_0 -> k_1 -> ... -> k_(n-1), where k0, k1, ..., and k_(n-1) can be * or -- kind variables. hasKindVarChain :: Int -> Type -> Maybe [Name] hasKindVarChain kindArrows t = let uk = uncurryKind (tyKind t) in if (length uk - 1 == kindArrows) && all isStarOrVar uk then Just (concatMap tyVarNamesOfKind uk) else Nothing -- | If a Type is a SigT, returns its kind signature. Otherwise, return *. tyKind :: Type -> Kind tyKind (SigT _ k) = k tyKind _ = starK -- | If a VarT is missing an explicit kind signature, steal it from a TyVarBndr. stealKindForType :: TyVarBndr -> Type -> Type stealKindForType tvb t@VarT{} = SigT t (tvbKind tvb) stealKindForType _ t = t -- | Monadic version of concatMap concatMapM :: Monad m => (a -> m [b]) -> [a] -> m [b] concatMapM f xs = liftM concat (mapM f xs) -- | A mapping of type variable Names to their map function Names. For example, in a -- Bifunctor declaration, a TyVarMap might look like (a ~> f, b ~> g), where -- a and b are the last two type variables of the datatype, and f and g are the two -- functions which map their respective type variables. type TyVarMap = Map Name Name thd3 :: (a, b, c) -> c thd3 (_, _, c) = c -- | Extracts the name of a constructor. constructorName :: Con -> Name constructorName (NormalC name _ ) = name constructorName (RecC name _ ) = name constructorName (InfixC _ name _ ) = name constructorName (ForallC _ _ con) = constructorName con #if MIN_VERSION_template_haskell(2,11,0) constructorName (GadtC names _ _) = head names constructorName (RecGadtC names _ _) = head names #endif -- | Generate a list of fresh names with a common prefix, and numbered suffixes. newNameList :: String -> Int -> Q [Name] newNameList prefix n = mapM (newName . (prefix ++) . show) [1..n] -- | Extracts the kind from a TyVarBndr. tvbKind :: TyVarBndr -> Kind tvbKind (PlainTV _) = starK tvbKind (KindedTV _ k) = k -- | Convert a TyVarBndr to a Type. tvbToType :: TyVarBndr -> Type tvbToType (PlainTV n) = VarT n tvbToType (KindedTV n k) = SigT (VarT n) k -- | Applies a typeclass constraint to a type. applyClass :: Name -> Name -> Pred #if MIN_VERSION_template_haskell(2,10,0) applyClass con t = AppT (ConT con) (VarT t) #else applyClass con t = ClassP con [VarT t] #endif -- | Checks to see if the last types in a data family instance can be safely eta- -- reduced (i.e., dropped), given the other types. This checks for three conditions: -- -- (1) All of the dropped types are type variables -- (2) All of the dropped types are distinct -- (3) None of the remaining types mention any of the dropped types canEtaReduce :: [Type] -> [Type] -> Bool canEtaReduce remaining dropped = all isTyVar dropped && allDistinct droppedNames -- Make sure not to pass something of type [Type], since Type -- didn't have an Ord instance until template-haskell-2.10.0.0 && not (any (`mentionsName` droppedNames) remaining) where droppedNames :: [Name] droppedNames = map varTToName dropped -- | Extract Just the Name from a type variable. If the argument Type is not a -- type variable, return Nothing. varTToName_maybe :: Type -> Maybe Name varTToName_maybe (VarT n) = Just n varTToName_maybe (SigT t _) = varTToName_maybe t varTToName_maybe _ = Nothing -- | Extract the Name from a type variable. If the argument Type is not a -- type variable, throw an error. varTToName :: Type -> Name varTToName = fromMaybe (error "Not a type variable!") . varTToName_maybe -- | Peel off a kind signature from a Type (if it has one). unSigT :: Type -> Type unSigT (SigT t _) = t unSigT t = t -- | Is the given type a variable? isTyVar :: Type -> Bool isTyVar (VarT _) = True isTyVar (SigT t _) = isTyVar t isTyVar _ = False -- | Is the given type a type family constructor (and not a data family constructor)? isTyFamily :: Type -> Q Bool isTyFamily (ConT n) = do info <- reify n return $ case info of #if MIN_VERSION_template_haskell(2,11,0) FamilyI OpenTypeFamilyD{} _ -> True #elif MIN_VERSION_template_haskell(2,7,0) FamilyI (FamilyD TypeFam _ _ _) _ -> True #else TyConI (FamilyD TypeFam _ _ _) -> True #endif #if MIN_VERSION_template_haskell(2,9,0) FamilyI ClosedTypeFamilyD{} _ -> True #endif _ -> False isTyFamily _ = return False -- | Are all of the items in a list (which have an ordering) distinct? -- -- This uses Set (as opposed to nub) for better asymptotic time complexity. allDistinct :: Ord a => [a] -> Bool allDistinct = allDistinct' Set.empty where allDistinct' :: Ord a => Set a -> [a] -> Bool allDistinct' uniqs (x:xs) | x `Set.member` uniqs = False | otherwise = allDistinct' (Set.insert x uniqs) xs allDistinct' _ _ = True -- | Does the given type mention any of the Names in the list? mentionsName :: Type -> [Name] -> Bool mentionsName = go where go :: Type -> [Name] -> Bool go (AppT t1 t2) names = go t1 names || go t2 names go (SigT t _k) names = go t names #if MIN_VERSION_template_haskell(2,8,0) || go _k names #endif go (VarT n) names = n `elem` names go _ _ = False -- | Does an instance predicate mention any of the Names in the list? predMentionsName :: Pred -> [Name] -> Bool #if MIN_VERSION_template_haskell(2,10,0) predMentionsName = mentionsName #else predMentionsName (ClassP n tys) names = n `elem` names || any (`mentionsName` names) tys predMentionsName (EqualP t1 t2) names = mentionsName t1 names || mentionsName t2 names #endif -- | Construct a type via curried application. applyTy :: Type -> [Type] -> Type applyTy = foldl' AppT -- | Fully applies a type constructor to its type variables. applyTyCon :: Name -> [Type] -> Type applyTyCon = applyTy . ConT -- | Split an applied type into its individual components. For example, this: -- -- @ -- Either Int Char -- @ -- -- would split to this: -- -- @ -- [Either, Int, Char] -- @ unapplyTy :: Type -> [Type] unapplyTy = reverse . go where go :: Type -> [Type] go (AppT t1 t2) = t2:go t1 go (SigT t _) = go t go (ForallT _ _ t) = go t go t = [t] -- | Split a type signature by the arrows on its spine. For example, this: -- -- @ -- forall a b. (a ~ b) => (a -> b) -> Char -> () -- @ -- -- would split to this: -- -- @ -- (a ~ b, [a -> b, Char, ()]) -- @ uncurryTy :: Type -> (Cxt, [Type]) uncurryTy (AppT (AppT ArrowT t1) t2) = let (ctxt, tys) = uncurryTy t2 in (ctxt, t1:tys) uncurryTy (SigT t _) = uncurryTy t uncurryTy (ForallT _ ctxt t) = let (ctxt', tys) = uncurryTy t in (ctxt ++ ctxt', tys) uncurryTy t = ([], [t]) -- | Like uncurryType, except on a kind level. uncurryKind :: Kind -> [Kind] #if MIN_VERSION_template_haskell(2,8,0) uncurryKind = snd . uncurryTy #else uncurryKind (ArrowK k1 k2) = k1:uncurryKind k2 uncurryKind k = [k] #endif ------------------------------------------------------------------------------- -- Manually quoted names ------------------------------------------------------------------------------- -- By manually generating these names we avoid needing to use the -- TemplateHaskell language extension when compiling the bifunctors library. -- This allows the library to be used in stage1 cross-compilers. bifunctorsPackageKey :: String #ifdef CURRENT_PACKAGE_KEY bifunctorsPackageKey = CURRENT_PACKAGE_KEY #else bifunctorsPackageKey = "bifunctors-" ++ showVersion version #endif mkBifunctorsName_tc :: String -> String -> Name mkBifunctorsName_tc = mkNameG_tc bifunctorsPackageKey mkBifunctorsName_v :: String -> String -> Name mkBifunctorsName_v = mkNameG_v bifunctorsPackageKey bimapConstValName :: Name bimapConstValName = mkBifunctorsName_v "Data.Bifunctor.TH.Internal" "bimapConst" bifoldrConstValName :: Name bifoldrConstValName = mkBifunctorsName_v "Data.Bifunctor.TH.Internal" "bifoldrConst" bifoldMapConstValName :: Name bifoldMapConstValName = mkBifunctorsName_v "Data.Bifunctor.TH.Internal" "bifoldMapConst" bitraverseConstValName :: Name bitraverseConstValName = mkBifunctorsName_v "Data.Bifunctor.TH.Internal" "bitraverseConst" dualDataName :: Name dualDataName = mkNameG_d "base" "Data.Monoid" "Dual" endoDataName :: Name endoDataName = mkNameG_d "base" "Data.Monoid" "Endo" wrapMonadDataName :: Name wrapMonadDataName = mkNameG_d "base" "Control.Applicative" "WrapMonad" functorTypeName :: Name functorTypeName = mkNameG_tc "base" "GHC.Base" "Functor" foldableTypeName :: Name foldableTypeName = mkNameG_tc "base" "Data.Foldable" "Foldable" traversableTypeName :: Name traversableTypeName = mkNameG_tc "base" "Data.Traversable" "Traversable" appEndoValName :: Name appEndoValName = mkNameG_v "base" "Data.Monoid" "appEndo" composeValName :: Name composeValName = mkNameG_v "base" "GHC.Base" "." idValName :: Name idValName = mkNameG_v "base" "GHC.Base" "id" errorValName :: Name errorValName = mkNameG_v "base" "GHC.Err" "error" flipValName :: Name flipValName = mkNameG_v "base" "GHC.Base" "flip" fmapValName :: Name fmapValName = mkNameG_v "base" "GHC.Base" "fmap" foldrValName :: Name foldrValName = mkNameG_v "base" "Data.Foldable" "foldr" foldMapValName :: Name foldMapValName = mkNameG_v "base" "Data.Foldable" "foldMap" getDualValName :: Name getDualValName = mkNameG_v "base" "Data.Monoid" "getDual" traverseValName :: Name traverseValName = mkNameG_v "base" "Data.Traversable" "traverse" unwrapMonadValName :: Name unwrapMonadValName = mkNameG_v "base" "Control.Applicative" "unwrapMonad" #if MIN_VERSION_base(4,6,0) && !(MIN_VERSION_base(4,9,0)) starKindName :: Name starKindName = mkNameG_tc "ghc-prim" "GHC.Prim" "*" #endif #if MIN_VERSION_base(4,8,0) bifunctorTypeName :: Name bifunctorTypeName = mkNameG_tc "base" "Data.Bifunctor" "Bifunctor" bimapValName :: Name bimapValName = mkNameG_v "base" "Data.Bifunctor" "bimap" pureValName :: Name pureValName = mkNameG_v "base" "GHC.Base" "pure" apValName :: Name apValName = mkNameG_v "base" "GHC.Base" "<*>" liftA2ValName :: Name liftA2ValName = mkNameG_v "base" "GHC.Base" "liftA2" mappendValName :: Name mappendValName = mkNameG_v "base" "GHC.Base" "mappend" memptyValName :: Name memptyValName = mkNameG_v "base" "GHC.Base" "mempty" #else bifunctorTypeName :: Name bifunctorTypeName = mkBifunctorsName_tc "Data.Bifunctor" "Bifunctor" bimapValName :: Name bimapValName = mkBifunctorsName_v "Data.Bifunctor" "bimap" pureValName :: Name pureValName = mkNameG_v "base" "Control.Applicative" "pure" apValName :: Name apValName = mkNameG_v "base" "Control.Applicative" "<*>" liftA2ValName :: Name liftA2ValName = mkNameG_v "base" "Control.Applicative" "liftA2" mappendValName :: Name mappendValName = mkNameG_v "base" "Data.Monoid" "mappend" memptyValName :: Name memptyValName = mkNameG_v "base" "Data.Monoid" "mempty" #endif #if MIN_VERSION_base(4,10,0) bifoldableTypeName :: Name bifoldableTypeName = mkNameG_tc "base" "Data.Bifoldable" "Bifoldable" bitraversableTypeName :: Name bitraversableTypeName = mkNameG_tc "base" "Data.Bitraversable" "Bitraversable" bifoldrValName :: Name bifoldrValName = mkNameG_v "base" "Data.Bifoldable" "bifoldr" bifoldMapValName :: Name bifoldMapValName = mkNameG_v "base" "Data.Bifoldable" "bifoldMap" bitraverseValName :: Name bitraverseValName = mkNameG_v "base" "Data.Bitraversable" "bitraverse" #else bifoldableTypeName :: Name bifoldableTypeName = mkBifunctorsName_tc "Data.Bifoldable" "Bifoldable" bitraversableTypeName :: Name bitraversableTypeName = mkBifunctorsName_tc "Data.Bitraversable" "Bitraversable" bifoldrValName :: Name bifoldrValName = mkBifunctorsName_v "Data.Bifoldable" "bifoldr" bifoldMapValName :: Name bifoldMapValName = mkBifunctorsName_v "Data.Bifoldable" "bifoldMap" bitraverseValName :: Name bitraverseValName = mkBifunctorsName_v "Data.Bitraversable" "bitraverse" #endif bifunctors-5.4.2/tests/0000755000000000000000000000000013075676571013251 5ustar0000000000000000bifunctors-5.4.2/tests/BifunctorSpec.hs0000644000000000000000000002554013075676571016361 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} {-# OPTIONS_GHC -fno-warn-name-shadowing #-} {-# OPTIONS_GHC -fno-warn-unused-matches #-} #if __GLASGOW_HASKELL__ >= 800 {-# OPTIONS_GHC -fno-warn-unused-foralls #-} #endif {-| Module: BifunctorSpec Copyright: (C) 2008-2015 Edward Kmett, (C) 2015 Ryan Scott License: BSD-style (see the file LICENSE) Maintainer: Edward Kmett Portability: Template Haskell @hspec@ tests for the "Data.Bifunctor.TH" module. -} module BifunctorSpec where import Data.Bifunctor import Data.Bifunctor.TH import Data.Bifoldable import Data.Bitraversable import Data.Char (chr) import Data.Functor.Classes (Eq1) import Data.Functor.Compose (Compose(..)) import Data.Functor.Identity (Identity(..)) import Data.Monoid import GHC.Exts (Int#) import Test.Hspec import Test.Hspec.QuickCheck (prop) import Test.QuickCheck (Arbitrary) #if !(MIN_VERSION_base(4,8,0)) import Control.Applicative (Applicative(..)) import Data.Foldable (Foldable) import Data.Traversable (Traversable) #endif ------------------------------------------------------------------------------- -- Adapted from the test cases from -- https://ghc.haskell.org/trac/ghc/attachment/ticket/2953/deriving-functor-tests.patch -- Plain data types data Strange a b c = T1 a b c | T2 [a] [b] [c] -- lists | T3 [[a]] [[b]] [[c]] -- nested lists | T4 (c,(b,b),(c,c)) -- tuples | T5 ([c],Strange a b c) -- tycons type IntFun a b = (b -> Int) -> a data StrangeFunctions a b c = T6 (a -> c) -- function types | T7 (a -> (c,a)) -- functions and tuples | T8 ((b -> a) -> c) -- continuation | T9 (IntFun b c) -- type synonyms data StrangeGADT a b where T10 :: Ord d => d -> StrangeGADT c d T11 :: Int -> StrangeGADT e Int T12 :: c ~ Int => c -> StrangeGADT f Int T13 :: i ~ Int => Int -> StrangeGADT h i T14 :: k ~ Int => k -> StrangeGADT j k T15 :: (n ~ c, c ~ Int) => Int -> c -> StrangeGADT m n data NotPrimitivelyRecursive a b = S1 (NotPrimitivelyRecursive (a,a) (b, a)) | S2 a | S3 b newtype OneTwoCompose f g a b = OneTwoCompose (f (g a b)) deriving (Arbitrary, Eq, Show) newtype ComplexConstraint f g a b = ComplexConstraint (f Int Int (g a,a,b)) data Universal a b = Universal (forall b. (b,[a])) | Universal2 (forall f. Bifunctor f => f a b) | Universal3 (forall a. Maybe a) -- reuse a | NotReallyUniversal (forall b. a) data Existential a b = forall a. ExistentialList [a] | forall f. Bitraversable f => ExistentialFunctor (f a b) | forall b. SneakyUseSameName (Maybe b) data IntHash a b = IntHash Int# Int# | IntHashTuple Int# a b (a, b, Int, IntHash Int (a, b, Int)) data IntHashFun a b = IntHashFun ((((a -> Int#) -> b) -> Int#) -> a) -- Data families data family StrangeFam x y z data instance StrangeFam a b c = T1Fam a b c | T2Fam [a] [b] [c] -- lists | T3Fam [[a]] [[b]] [[c]] -- nested lists | T4Fam (c,(b,b),(c,c)) -- tuples | T5Fam ([c],Strange a b c) -- tycons data family StrangeFunctionsFam x y z data instance StrangeFunctionsFam a b c = T6Fam (a -> c) -- function types | T7Fam (a -> (c,a)) -- functions and tuples | T8Fam ((b -> a) -> c) -- continuation | T9Fam (IntFun b c) -- type synonyms data family StrangeGADTFam x y data instance StrangeGADTFam a b where T10Fam :: Ord d => d -> StrangeGADTFam c d T11Fam :: Int -> StrangeGADTFam e Int T12Fam :: c ~ Int => c -> StrangeGADTFam f Int T13Fam :: i ~ Int => Int -> StrangeGADTFam h i T14Fam :: k ~ Int => k -> StrangeGADTFam j k T15Fam :: (n ~ c, c ~ Int) => Int -> c -> StrangeGADTFam m n data family NotPrimitivelyRecursiveFam x y data instance NotPrimitivelyRecursiveFam a b = S1Fam (NotPrimitivelyRecursive (a,a) (b, a)) | S2Fam a | S3Fam b data family OneTwoComposeFam (j :: * -> *) (k :: * -> * -> *) x y newtype instance OneTwoComposeFam f g a b = OneTwoComposeFam (f (g a b)) deriving (Arbitrary, Eq, Show) data family ComplexConstraintFam (j :: * -> * -> * -> *) (k :: * -> *) x y newtype instance ComplexConstraintFam f g a b = ComplexConstraintFam (f Int Int (g a,a,b)) data family UniversalFam x y data instance UniversalFam a b = UniversalFam (forall b. (b,[a])) | Universal2Fam (forall f. Bifunctor f => f a b) | Universal3Fam (forall a. Maybe a) -- reuse a | NotReallyUniversalFam (forall b. a) data family ExistentialFam x y data instance ExistentialFam a b = forall a. ExistentialListFam [a] | forall f. Bitraversable f => ExistentialFunctorFam (f a b) | forall b. SneakyUseSameNameFam (Maybe b) data family IntHashFam x y data instance IntHashFam a b = IntHashFam Int# Int# | IntHashTupleFam Int# a b (a, b, Int, IntHashFam Int (a, b, Int)) data family IntHashFunFam x y data instance IntHashFunFam a b = IntHashFunFam ((((a -> Int#) -> b) -> Int#) -> a) ------------------------------------------------------------------------------- -- Plain data types $(deriveBifunctor ''Strange) $(deriveBifoldable ''Strange) $(deriveBitraversable ''Strange) $(deriveBifunctor ''StrangeFunctions) $(deriveBifoldable ''StrangeGADT) $(deriveBifunctor ''NotPrimitivelyRecursive) $(deriveBifoldable ''NotPrimitivelyRecursive) $(deriveBitraversable ''NotPrimitivelyRecursive) $(deriveBifunctor ''OneTwoCompose) $(deriveBifoldable ''OneTwoCompose) $(deriveBitraversable ''OneTwoCompose) instance (Bifunctor (f Int), Functor g) => Bifunctor (ComplexConstraint f g) where bimap = $(makeBimap ''ComplexConstraint) instance (Bifoldable (f Int), Foldable g) => Bifoldable (ComplexConstraint f g) where bifoldr = $(makeBifoldr ''ComplexConstraint) bifoldMap = $(makeBifoldMap ''ComplexConstraint) instance (Bitraversable (f Int), Traversable g) => Bitraversable (ComplexConstraint f g) where bitraverse = $(makeBitraverse ''ComplexConstraint) $(deriveBifunctor ''Universal) $(deriveBifunctor ''Existential) $(deriveBifoldable ''Existential) $(deriveBitraversable ''Existential) $(deriveBifunctor ''IntHash) $(deriveBifoldable ''IntHash) $(deriveBitraversable ''IntHash) $(deriveBifunctor ''IntHashFun) #if MIN_VERSION_template_haskell(2,7,0) -- Data families $(deriveBifunctor 'T1Fam) $(deriveBifoldable 'T2Fam) $(deriveBitraversable 'T3Fam) $(deriveBifunctor 'T6Fam) $(deriveBifoldable 'T10Fam) $(deriveBifunctor 'S1Fam) $(deriveBifoldable 'S2Fam) $(deriveBitraversable 'S3Fam) $(deriveBifunctor 'OneTwoComposeFam) $(deriveBifoldable 'OneTwoComposeFam) $(deriveBitraversable 'OneTwoComposeFam) instance (Bifunctor (f Int), Functor g) => Bifunctor (ComplexConstraintFam f g) where bimap = $(makeBimap 'ComplexConstraintFam) instance (Bifoldable (f Int), Foldable g) => Bifoldable (ComplexConstraintFam f g) where bifoldr = $(makeBifoldr 'ComplexConstraintFam) bifoldMap = $(makeBifoldMap 'ComplexConstraintFam) instance (Bitraversable (f Int), Traversable g) => Bitraversable (ComplexConstraintFam f g) where bitraverse = $(makeBitraverse 'ComplexConstraintFam) $(deriveBifunctor 'UniversalFam) $(deriveBifunctor 'ExistentialListFam) $(deriveBifoldable 'ExistentialFunctorFam) $(deriveBitraversable 'SneakyUseSameNameFam) $(deriveBifunctor 'IntHashFam) $(deriveBifoldable 'IntHashTupleFam) $(deriveBitraversable 'IntHashFam) $(deriveBifunctor 'IntHashFunFam) #endif ------------------------------------------------------------------------------- prop_BifunctorLaws :: (Bifunctor p, Eq (p a b), Eq (p c d)) => (a -> c) -> (b -> d) -> p a b -> Bool prop_BifunctorLaws f g x = bimap id id x == x && first id x == x && second id x == x && bimap f g x == (first f . second g) x prop_BifunctorEx :: (Bifunctor p, Eq (p [Int] [Int])) => p [Int] [Int] -> Bool prop_BifunctorEx = prop_BifunctorLaws reverse (++ [42]) prop_BifoldableLaws :: (Eq a, Eq b, Eq z, Monoid a, Monoid b, Bifoldable p) => (a -> b) -> (a -> b) -> (a -> z -> z) -> (a -> z -> z) -> z -> p a a -> Bool prop_BifoldableLaws f g h i z x = bifold x == bifoldMap id id x && bifoldMap f g x == bifoldr (mappend . f) (mappend . g) mempty x && bifoldr h i z x == appEndo (bifoldMap (Endo . h) (Endo . i) x) z prop_BifoldableEx :: Bifoldable p => p [Int] [Int] -> Bool prop_BifoldableEx = prop_BifoldableLaws reverse (++ [42]) ((+) . length) ((*) . length) 0 prop_BitraversableLaws :: (Applicative f, Applicative g, Bitraversable p, Eq (g (p c c)), Eq (p a b), Eq (p d e), Eq1 f) => (a -> f c) -> (b -> f c) -> (c -> f d) -> (c -> f e) -> (forall x. f x -> g x) -> p a b -> Bool prop_BitraversableLaws f g h i t x = bitraverse (t . f) (t . g) x == (t . bitraverse f g) x && bitraverse Identity Identity x == Identity x && (Compose . fmap (bitraverse h i) . bitraverse f g) x == bitraverse (Compose . fmap h . f) (Compose . fmap i . g) x prop_BitraversableEx :: (Bitraversable p, Eq (p Char Char), Eq (p [Char] [Char]), Eq (p [Int] [Int])) => p [Int] [Int] -> Bool prop_BitraversableEx = prop_BitraversableLaws (replicate 2 . map (chr . abs)) (replicate 4 . map (chr . abs)) (++ "hello") (++ "world") reverse ------------------------------------------------------------------------------- main :: IO () main = hspec spec spec :: Spec spec = do describe "OneTwoCompose Maybe Either [Int] [Int]" $ do prop "satisfies the Bifunctor laws" (prop_BifunctorEx :: OneTwoCompose Maybe Either [Int] [Int] -> Bool) prop "satisfies the Bifoldable laws" (prop_BifoldableEx :: OneTwoCompose Maybe Either [Int] [Int] -> Bool) prop "satisfies the Bitraversable laws" (prop_BitraversableEx :: OneTwoCompose Maybe Either [Int] [Int] -> Bool) #if MIN_VERSION_template_haskell(2,7,0) describe "OneTwoComposeFam Maybe Either [Int] [Int]" $ do prop "satisfies the Bifunctor laws" (prop_BifunctorEx :: OneTwoComposeFam Maybe Either [Int] [Int] -> Bool) prop "satisfies the Bifoldable laws" (prop_BifoldableEx :: OneTwoComposeFam Maybe Either [Int] [Int] -> Bool) prop "satisfies the Bitraversable laws" (prop_BitraversableEx :: OneTwoComposeFam Maybe Either [Int] [Int] -> Bool) #endif bifunctors-5.4.2/tests/Spec.hs0000644000000000000000000000005413075676571014476 0ustar0000000000000000{-# OPTIONS_GHC -F -pgmF hspec-discover #-}