bzlib-0.5.1.0/0000755000000000000000000000000007346545000011146 5ustar0000000000000000bzlib-0.5.1.0/CHANGELOG.md0000755000000000000000000000016407346545000012763 0ustar0000000000000000# Revision history for bzlib ## 0.5.1.0 -- 2020-06-08 * Added `MonadFail` instance * Constrained bounds on `base` bzlib-0.5.1.0/Codec/Compression/0000755000000000000000000000000007346545000014464 5ustar0000000000000000bzlib-0.5.1.0/Codec/Compression/BZip.hs0000644000000000000000000000721507346545000015671 0ustar0000000000000000----------------------------------------------------------------------------- -- | -- Copyright : (c) 2006-2008 Duncan Coutts -- License : BSD-style -- -- Maintainer : duncan@haskell.org -- Stability : provisional -- Portability : portable (H98 + FFI) -- -- Compression and decompression of data streams in the bzip2 format. -- -- bzip2 is a freely available, patent free, high-quality data compressor. It -- typically compresses files to within 10% to 15% of the best available -- techniques (the PPM family of statistical compressors), whilst being around -- twice as fast at compression and six times faster at decompression. -- -- -- ----------------------------------------------------------------------------- module Codec.Compression.BZip ( -- | This module provides pure functions for compressing and decompressing -- streams of data in the bzip2 format represented by lazy 'ByteString's. -- This makes it easy to use either in memory or with disk or network IO. -- -- For example a simple bzip compression program is just: -- -- > import qualified Data.ByteString.Lazy as ByteString -- > import qualified Codec.Compression.BZip as BZip -- > -- > main = ByteString.interact BZip.compress -- -- Or you could lazily read in and decompress a @.bz2@ file using: -- -- > content <- fmap BZip.decompress (readFile file) -- -- * Simple compression and decompression compress, decompress, -- * Extended api with control over compression parameters compressWith, decompressWith, CompressParams(..), defaultCompressParams, DecompressParams(..), defaultDecompressParams, -- ** The compression parameter types BlockSize(..), WorkFactor(..), MemoryLevel(..), ) where import Data.ByteString.Lazy (ByteString) import qualified Codec.Compression.BZip.Internal as Internal import Codec.Compression.BZip.Internal hiding (compress, decompress) -- | Decompress a stream of data in the bzip2 format. -- -- There are a number of errors that can occur. In each case an exception will -- be thrown. The possible error conditions are: -- -- * if the stream does not start with a valid gzip header -- -- * if the compressed stream is corrupted -- -- * if the compressed stream ends permaturely -- -- Note that the decompression is performed /lazily/. Errors in the data stream -- may not be detected until the end of the stream is demanded (since it is -- only at the end that the final checksum can be checked). If this is -- important to you, you must make sure to consume the whole decompressed -- stream before doing any IO action that depends on it. -- decompress :: ByteString -> ByteString decompress = Internal.decompress defaultDecompressParams -- | Like 'decompress' but with the ability to specify various decompression -- parameters. Typical usage: -- -- > decompressWith defaultDecompressParams { ... } -- decompressWith :: DecompressParams -> ByteString -> ByteString decompressWith = Internal.decompress -- | Compress a stream of data into the bzip2 format. -- -- This uses the default compression level which uses the largest compression -- block size for the highest compression level. Use 'compressWith' to adjust -- the compression block size. -- compress :: ByteString -> ByteString compress = Internal.compress defaultCompressParams -- | Like 'compress' but with the ability to specify compression parameters. -- Typical usage: -- -- > compressWith defaultCompressParams { ... } -- -- In particular you can set the compression block size: -- -- > compressWith defaultCompressParams { compressBlockSize = BlockSize 1 } -- compressWith :: CompressParams -> ByteString -> ByteString compressWith = Internal.compress bzlib-0.5.1.0/Codec/Compression/BZip/0000755000000000000000000000000007346545000015330 5ustar0000000000000000bzlib-0.5.1.0/Codec/Compression/BZip/Internal.hs0000644000000000000000000002445207346545000017447 0ustar0000000000000000{-# LANGUAGE CPP #-} ----------------------------------------------------------------------------- -- | -- Copyright : (c) 2006-2008 Duncan Coutts -- License : BSD-style -- -- Maintainer : duncan@haskell.org -- Stability : provisional -- Portability : portable (H98 + FFI) -- -- Pure stream based interface to lower level bzlib wrapper -- ----------------------------------------------------------------------------- module Codec.Compression.BZip.Internal ( -- * Compression compress, CompressParams(..), defaultCompressParams, -- * Decompression decompress, DecompressParams(..), defaultDecompressParams, -- * The compression parameter types Stream.BlockSize(..), Stream.WorkFactor(..), Stream.MemoryLevel(..), ) where import Prelude hiding (length) import Control.Monad (when) import Control.Exception (assert) import qualified Data.ByteString.Lazy as L import qualified Data.ByteString.Lazy.Internal as L import qualified Data.ByteString.Internal as S import qualified Codec.Compression.BZip.Stream as Stream import Codec.Compression.BZip.Stream (Stream) -- | The full set of parameters for compression. The defaults are -- 'defaultCompressParams'. -- -- The 'compressBufferSize' is the size of the first output buffer containing -- the compressed data. If you know an approximate upper bound on the size of -- the compressed data then setting this parameter can save memory. The default -- compression output buffer size is @16k@. If your extimate is wrong it does -- not matter too much, the default buffer size will be used for the remaining -- chunks. -- data CompressParams = CompressParams { compressBlockSize :: Stream.BlockSize, compressWorkFactor :: Stream.WorkFactor, compressBufferSize :: Int } -- | The full set of parameters for decompression. The defaults are -- 'defaultDecompressParams'. -- -- The 'decompressBufferSize' is the size of the first output buffer, -- containing the uncompressed data. If you know an exact or approximate upper -- bound on the size of the decompressed data then setting this parameter can -- save memory. The default decompression output buffer size is @32k@. If your -- extimate is wrong it does not matter too much, the default buffer size will -- be used for the remaining chunks. -- -- One particular use case for setting the 'decompressBufferSize' is if you -- know the exact size of the decompressed data and want to produce a strict -- 'Data.ByteString.ByteString'. The compression and deccompression functions -- use lazy 'Data.ByteString.Lazy.ByteString's but if you set the -- 'decompressBufferSize' correctly then you can generate a lazy -- 'Data.ByteString.Lazy.ByteString' with exactly one chunk, which can be -- converted to a strict 'Data.ByteString.ByteString' in @O(1)@ time using -- @'Data.ByteString.concat' . 'Data.ByteString.Lazy.toChunks'@. -- data DecompressParams = DecompressParams { decompressMemoryLevel :: Stream.MemoryLevel, decompressBufferSize :: Int } -- | The default set of parameters for compression. This is typically used with -- the @compressWith@ function with specific paramaters overridden. -- defaultCompressParams :: CompressParams defaultCompressParams = CompressParams { compressBlockSize = Stream.DefaultBlockSize, compressWorkFactor = Stream.DefaultWorkFactor, compressBufferSize = defaultCompressBufferSize } -- | The default set of parameters for decompression. This is typically used with -- the @compressWith@ function with specific paramaters overridden. -- defaultDecompressParams :: DecompressParams defaultDecompressParams = DecompressParams { decompressMemoryLevel = Stream.DefaultMemoryLevel, decompressBufferSize = defaultDecompressBufferSize } -- | The default chunk sizes for the output of compression and decompression -- are 16k and 32k respectively (less a small accounting overhead). -- defaultCompressBufferSize, defaultDecompressBufferSize :: Int defaultCompressBufferSize = 16 * 1024 - L.chunkOverhead defaultDecompressBufferSize = 32 * 1024 - L.chunkOverhead {-# NOINLINE compress #-} compress :: CompressParams -> L.ByteString -> L.ByteString compress (CompressParams blockSize workFactor initChunkSize) input = L.fromChunks $ Stream.run $ do Stream.compressInit blockSize Stream.Silent workFactor case L.toChunks input of [] -> fillBuffers 14 [] --bzip2 header is 14 bytes S.PS inFPtr offset length : chunks -> do Stream.pushInputBuffer inFPtr offset length fillBuffers initChunkSize chunks where -- we flick between two states: -- * where one or other buffer is empty -- - in which case we refill one or both -- * where both buffers are non-empty -- - in which case we compress until a buffer is empty fillBuffers :: Int -> [S.ByteString] -> Stream [S.ByteString] fillBuffers outChunkSize inChunks = do Stream.consistencyCheck -- in this state there are two possabilities: -- * no outbut buffer space is available -- - in which case we must make more available -- * no input buffer is available -- - in which case we must supply more inputBufferEmpty <- Stream.inputBufferEmpty outputBufferFull <- Stream.outputBufferFull assert (inputBufferEmpty || outputBufferFull) $ return () when outputBufferFull $ do outFPtr <- Stream.unsafeLiftIO (S.mallocByteString outChunkSize) Stream.pushOutputBuffer outFPtr 0 outChunkSize if inputBufferEmpty then case inChunks of [] -> drainBuffers [] S.PS inFPtr offset length : inChunks' -> do Stream.pushInputBuffer inFPtr offset length drainBuffers inChunks' else drainBuffers inChunks drainBuffers :: [S.ByteString] -> Stream [S.ByteString] drainBuffers inChunks = do inputBufferEmpty' <- Stream.inputBufferEmpty outputBufferFull' <- Stream.outputBufferFull assert(not outputBufferFull' && (null inChunks || not inputBufferEmpty')) $ return () -- this invariant guarantees we can always make forward progress let action = if null inChunks then Stream.Finish else Stream.Run status <- Stream.compress action case status of Stream.Ok -> do outputBufferFull <- Stream.outputBufferFull if outputBufferFull then do (outFPtr, offset, length) <- Stream.popOutputBuffer outChunks <- Stream.unsafeInterleave (fillBuffers defaultCompressBufferSize inChunks) return (S.PS outFPtr offset length : outChunks) else do fillBuffers defaultCompressBufferSize inChunks Stream.StreamEnd -> do inputBufferEmpty <- Stream.inputBufferEmpty assert inputBufferEmpty $ return () outputBufferBytesAvailable <- Stream.outputBufferBytesAvailable if outputBufferBytesAvailable > 0 then do (outFPtr, offset, length) <- Stream.popOutputBuffer Stream.finalise return [S.PS outFPtr offset length] else do Stream.finalise return [] {-# NOINLINE decompress #-} decompress :: DecompressParams -> L.ByteString -> L.ByteString decompress (DecompressParams memLevel initChunkSize) input = L.fromChunks $ Stream.run $ do Stream.decompressInit Stream.Silent memLevel case L.toChunks input of [] -> fillBuffers 4 [] --always an error anyway S.PS inFPtr offset length : chunks -> do Stream.pushInputBuffer inFPtr offset length fillBuffers initChunkSize chunks where -- we flick between two states: -- * where one or other buffer is empty -- - in which case we refill one or both -- * where both buffers are non-empty -- - in which case we compress until a buffer is empty fillBuffers :: Int -> [S.ByteString] -> Stream [S.ByteString] fillBuffers outChunkSize inChunks = do -- in this state there are two possabilities: -- * no outbut buffer space is available -- - in which case we must make more available -- * no input buffer is available -- - in which case we must supply more inputBufferEmpty <- Stream.inputBufferEmpty outputBufferFull <- Stream.outputBufferFull assert (inputBufferEmpty || outputBufferFull) $ return () when outputBufferFull $ do outFPtr <- Stream.unsafeLiftIO (S.mallocByteString outChunkSize) Stream.pushOutputBuffer outFPtr 0 outChunkSize if inputBufferEmpty then case inChunks of [] -> drainBuffers [] S.PS inFPtr offset length : inChunks' -> do Stream.pushInputBuffer inFPtr offset length drainBuffers inChunks' else drainBuffers inChunks drainBuffers :: [S.ByteString] -> Stream [S.ByteString] drainBuffers inChunks = do inputBufferEmpty' <- Stream.inputBufferEmpty outputBufferFull' <- Stream.outputBufferFull assert(not outputBufferFull' && (null inChunks || not inputBufferEmpty')) $ return () -- this invariant guarantees we can always make forward progress or at -- least detect premature EOF status <- Stream.decompress case status of Stream.Ok -> do outputBufferFull <- Stream.outputBufferFull if outputBufferFull then do (outFPtr, offset, length) <- Stream.popOutputBuffer outChunks <- Stream.unsafeInterleave (fillBuffers defaultDecompressBufferSize inChunks) return (S.PS outFPtr offset length : outChunks) else do -- We need to detect if we ran out of input: inputBufferEmpty <- Stream.inputBufferEmpty if inputBufferEmpty && null inChunks then fail "premature end of compressed stream" else fillBuffers defaultDecompressBufferSize inChunks Stream.StreamEnd -> do -- Note that there may be input bytes still available if the stream -- is embeded in some other data stream. Here we just silently discard -- any trailing data. outputBufferBytesAvailable <- Stream.outputBufferBytesAvailable if outputBufferBytesAvailable > 0 then do (outFPtr, offset, length) <- Stream.popOutputBuffer Stream.finalise return [S.PS outFPtr offset length] else do Stream.finalise return [] bzlib-0.5.1.0/Codec/Compression/BZip/Stream.hsc0000644000000000000000000004756307346545000017301 0ustar0000000000000000{-# LANGUAGE ForeignFunctionInterface #-} ----------------------------------------------------------------------------- -- | -- Copyright : (c) 2006-2008 Duncan Coutts -- License : BSD-style -- -- Maintainer : duncan.coutts@worc.ox.ac.uk -- Stability : experimental -- Portability : portable (H98 + FFI) -- -- BZlib wrapper layer -- ----------------------------------------------------------------------------- module Codec.Compression.BZip.Stream ( -- * The Zlib state monad Stream, run, unsafeInterleave, unsafeLiftIO, finalise, -- * Initialisation compressInit, decompressInit, -- ** Initialisation parameters BlockSize(..), WorkFactor(..), MemoryLevel(..), Verbosity(..), -- * The buisness compress, decompress, Status(..), Action(..), -- * Buffer management -- ** Input buffer pushInputBuffer, inputBufferEmpty, -- ** Output buffer pushOutputBuffer, popOutputBuffer, outputBufferBytesAvailable, outputBufferSpaceRemaining, outputBufferFull, -- * Debugging consistencyCheck, dump, trace, ) where import Foreign ( Word8, Ptr, nullPtr, plusPtr, peekByteOff, pokeByteOff, mallocBytes , ForeignPtr, FinalizerPtr, newForeignPtr_, addForeignPtrFinalizer , finalizeForeignPtr, withForeignPtr, touchForeignPtr ) #if __GLASGOW_HASKELL__ >= 702 import Foreign.ForeignPtr.Unsafe ( unsafeForeignPtrToPtr ) import System.IO.Unsafe ( unsafePerformIO ) #else import Foreign ( unsafeForeignPtrToPtr, unsafePerformIO ) #endif import Foreign.C import Data.ByteString.Internal (nullForeignPtr) import System.IO.Unsafe (unsafeInterleaveIO) import System.IO (hPutStrLn, stderr) #if !MIN_VERSION_base(4,13,0) import Control.Applicative (Applicative(..)) #endif import Control.Monad (liftM, ap) import Control.Exception (assert) import qualified Control.Monad.Fail as Fail import Prelude hiding (length) #include "bzlib.h" pushInputBuffer :: ForeignPtr Word8 -> Int -> Int -> Stream () pushInputBuffer inBuf' offset length = do -- must not push a new input buffer if the last one is not used up inAvail <- getInAvail assert (inAvail == 0) $ return () -- Now that we're setting a new input buffer, we can be sure that zlib no -- longer has a reference to the old one. Therefore this is the last point -- at which the old buffer had to be retained. It's safe to release now. inBuf <- getInBuf unsafeLiftIO $ touchForeignPtr inBuf -- now set the available input buffer ptr and length setInBuf inBuf' setInAvail length setInNext (unsafeForeignPtrToPtr inBuf' `plusPtr` offset) -- Note the 'unsafe'. We are passing the raw ptr inside inBuf' to zlib. -- To make this safe we need to hold on to the ForeignPtr for at least as -- long as zlib is using the underlying raw ptr. inputBufferEmpty :: Stream Bool inputBufferEmpty = getInAvail >>= return . (==0) pushOutputBuffer :: ForeignPtr Word8 -> Int -> Int -> Stream () pushOutputBuffer outBuf' offset length = do --must not push a new buffer if there is still data in the old one outAvail <- getOutAvail assert (outAvail == 0) $ return () -- Note that there may still be free space in the output buffer, that's ok, -- you might not want to bother completely filling the output buffer say if -- there's only a few free bytes left. outBuf <- getOutBuf unsafeLiftIO $ touchForeignPtr outBuf -- now set the available input buffer ptr and length setOutBuf outBuf' setOutFree length setOutNext (unsafeForeignPtrToPtr outBuf' `plusPtr` offset) setOutOffset offset setOutAvail 0 -- get that part of the output buffer that is currently full -- (might be 0, use outputBufferBytesAvailable to check) -- this may leave some space remaining in the buffer, use -- outputBufferSpaceRemaining to check. popOutputBuffer :: Stream (ForeignPtr Word8, Int, Int) popOutputBuffer = do outBuf <- getOutBuf outOffset <- getOutOffset outAvail <- getOutAvail -- there really should be something to pop, otherwise it's silly assert (outAvail > 0) $ return () setOutOffset (outOffset + outAvail) setOutAvail 0 return (outBuf, outOffset, outAvail) -- this is the number of bytes available in the output buffer outputBufferBytesAvailable :: Stream Int outputBufferBytesAvailable = getOutAvail -- you needen't get all the output immediately, you can continue until -- there is no more output space available, this tells you that amount outputBufferSpaceRemaining :: Stream Int outputBufferSpaceRemaining = getOutFree -- you only need to supply a new buffer when there is no more output buffer -- space remaining outputBufferFull :: Stream Bool outputBufferFull = getOutFree >>= return . (==0) -- you can only run this when the output buffer is not empty -- you can run it when the input buffer is empty but it doesn't do anything -- after running deflate either the output buffer will be full -- or the input buffer will be empty (or both) compress :: Action -> Stream Status compress action = do outFree <- getOutFree -- deflate needs free space in the output buffer assert (outFree > 0) $ return () result <- compress_ action outFree' <- getOutFree -- number of bytes of extra output there is available as a result of -- the call to deflate: let outExtra = outFree - outFree' outAvail <- getOutAvail setOutAvail (outAvail + outExtra) return result decompress :: Stream Status decompress = do outFree <- getOutFree -- inflate needs free space in the output buffer assert (outFree > 0) $ return () result <- decompress_ outFree' <- getOutFree -- number of bytes of extra output there is available as a result of -- the call to inflate: let outExtra = outFree - outFree' outAvail <- getOutAvail setOutAvail (outAvail + outExtra) return result ---------------------------- -- Stream monad -- newtype Stream a = BZ { unZ :: ForeignPtr StreamState -> ForeignPtr Word8 -> ForeignPtr Word8 -> Int -> Int -> IO (ForeignPtr Word8 ,ForeignPtr Word8 ,Int, Int, a) } instance Functor Stream where fmap = liftM instance Applicative Stream where pure = return (<*>) = ap instance Monad Stream where (>>=) = thenZ -- m >>= f = (m `thenZ` \a -> consistencyCheck `thenZ_` returnZ a) `thenZ` f (>>) = thenZ_ return = returnZ #if !MIN_VERSION_base(4,13,0) fail = Fail.fail #endif instance Fail.MonadFail Stream where fail = (finalise >>) . failZ returnZ :: a -> Stream a returnZ a = BZ $ \_ inBuf outBuf outOffset outLength -> return (inBuf, outBuf, outOffset, outLength, a) {-# INLINE returnZ #-} thenZ :: Stream a -> (a -> Stream b) -> Stream b thenZ (BZ m) f = BZ $ \stream inBuf outBuf outOffset outLength -> m stream inBuf outBuf outOffset outLength >>= \(inBuf', outBuf', outOffset', outLength', a) -> unZ (f a) stream inBuf' outBuf' outOffset' outLength' {-# INLINE thenZ #-} thenZ_ :: Stream a -> Stream b -> Stream b thenZ_ (BZ m) f = BZ $ \stream inBuf outBuf outOffset outLength -> m stream inBuf outBuf outOffset outLength >>= \(inBuf', outBuf', outOffset', outLength', _) -> unZ f stream inBuf' outBuf' outOffset' outLength' {-# INLINE thenZ_ #-} failZ :: String -> Stream a failZ msg = BZ (\_ _ _ _ _ -> fail ("Codec.Compression.BZip: " ++ msg)) {-# NOINLINE run #-} run :: Stream a -> a run (BZ m) = unsafePerformIO $ do ptr <- mallocBytes (#{const sizeof(bz_stream)}) #{poke bz_stream, bzalloc} ptr nullPtr #{poke bz_stream, bzfree} ptr nullPtr #{poke bz_stream, opaque} ptr nullPtr #{poke bz_stream, next_in} ptr nullPtr #{poke bz_stream, next_out} ptr nullPtr #{poke bz_stream, avail_in} ptr (0 :: CUInt) #{poke bz_stream, avail_out} ptr (0 :: CUInt) stream <- newForeignPtr_ ptr (_,_,_,_,a) <- m stream nullForeignPtr nullForeignPtr 0 0 return a unsafeLiftIO :: IO a -> Stream a unsafeLiftIO m = BZ $ \_stream inBuf outBuf outOffset outLength -> do a <- m return (inBuf, outBuf, outOffset, outLength, a) -- It's unsafe because we discard the values here, so if you mutate anything -- between running this and forcing the result then you'll get an inconsistent -- stream state. unsafeInterleave :: Stream a -> Stream a unsafeInterleave (BZ m) = BZ $ \stream inBuf outBuf outOffset outLength -> do res <- unsafeInterleaveIO (m stream inBuf outBuf outOffset outLength) let select (_,_,_,_,a) = a return (inBuf, outBuf, outOffset, outLength, select res) getStreamState :: Stream (ForeignPtr StreamState) getStreamState = BZ $ \stream inBuf outBuf outOffset outLength -> do return (inBuf, outBuf, outOffset, outLength, stream) getInBuf :: Stream (ForeignPtr Word8) getInBuf = BZ $ \_stream inBuf outBuf outOffset outLength -> do return (inBuf, outBuf, outOffset, outLength, inBuf) getOutBuf :: Stream (ForeignPtr Word8) getOutBuf = BZ $ \_stream inBuf outBuf outOffset outLength -> do return (inBuf, outBuf, outOffset, outLength, outBuf) getOutOffset :: Stream Int getOutOffset = BZ $ \_stream inBuf outBuf outOffset outLength -> do return (inBuf, outBuf, outOffset, outLength, outOffset) getOutAvail :: Stream Int getOutAvail = BZ $ \_stream inBuf outBuf outOffset outLength -> do return (inBuf, outBuf, outOffset, outLength, outLength) setInBuf :: ForeignPtr Word8 -> Stream () setInBuf inBuf = BZ $ \_stream _ outBuf outOffset outLength -> do return (inBuf, outBuf, outOffset, outLength, ()) setOutBuf :: ForeignPtr Word8 -> Stream () setOutBuf outBuf = BZ $ \_stream inBuf _ outOffset outLength -> do return (inBuf, outBuf, outOffset, outLength, ()) setOutOffset :: Int -> Stream () setOutOffset outOffset = BZ $ \_stream inBuf outBuf _ outLength -> do return (inBuf, outBuf, outOffset, outLength, ()) setOutAvail :: Int -> Stream () setOutAvail outLength = BZ $ \_stream inBuf outBuf outOffset _ -> do return (inBuf, outBuf, outOffset, outLength, ()) ---------------------------- -- Debug stuff -- trace :: String -> Stream () trace = unsafeLiftIO . hPutStrLn stderr dump :: Stream () dump = do inNext <- getInNext inAvail <- getInAvail outNext <- getOutNext outFree <- getOutFree outAvail <- getOutAvail outOffset <- getOutOffset unsafeLiftIO $ hPutStrLn stderr $ "Stream {\n" ++ " inNext = " ++ show inNext ++ ",\n" ++ " inAvail = " ++ show inAvail ++ ",\n" ++ "\n" ++ " outNext = " ++ show outNext ++ ",\n" ++ " outFree = " ++ show outFree ++ ",\n" ++ " outAvail = " ++ show outAvail ++ ",\n" ++ " outOffset = " ++ show outOffset ++ "\n" ++ "}" consistencyCheck consistencyCheck :: Stream () consistencyCheck = do outBuf <- getOutBuf outOffset <- getOutOffset outAvail <- getOutAvail outNext <- getOutNext let outBufPtr = unsafeForeignPtrToPtr outBuf assert (outBufPtr `plusPtr` (outOffset + outAvail) == outNext) $ return () ---------------------------- -- zlib wrapper layer -- data Status = Ok -- ^ The requested action was completed successfully. | StreamEnd -- ^ Compression of data was completed, or the logical stream -- end was detected during decompression. toStatus :: CInt -> Status toStatus (#{const BZ_OK}) = Ok toStatus (#{const BZ_RUN_OK}) = Ok toStatus (#{const BZ_FLUSH_OK}) = Ok toStatus (#{const BZ_FINISH_OK}) = Ok toStatus (#{const BZ_STREAM_END}) = StreamEnd toStatus other = error ("unexpected bzip2 status: " ++ show other) failIfError :: CInt -> Stream () failIfError errno | errno >= 0 = return () | otherwise = fail (getErrorMessage errno) getErrorMessage :: CInt -> String getErrorMessage errno = case errno of #{const BZ_SEQUENCE_ERROR} -> "incorrect sequence of calls" #{const BZ_PARAM_ERROR} -> "incorrect parameter" #{const BZ_MEM_ERROR} -> "not enough memory" #{const BZ_DATA_ERROR} -> "compressed data stream is corrupt" #{const BZ_DATA_ERROR_MAGIC} -> "data stream is not a bzip2 file" #{const BZ_CONFIG_ERROR} -> "configuration error in bzip2 lib" other -> "unknown or impossible error code: " ++ show other data Action = Run | Flush | Finish fromAction :: Action -> CInt fromAction Run = #{const BZ_RUN} fromAction Flush = #{const BZ_FLUSH} fromAction Finish = #{const BZ_FINISH} -- | The block size affects both the compression ratio achieved, and the amount -- of memory needed for compression and decompression. -- -- @'BlockSize' 1@ through @'BlockSize' 9@ specify the block size to be 100,000 -- bytes through 900,000 bytes respectively. The default is to use the maximum -- block size. -- -- Larger block sizes give rapidly diminishing marginal returns. Most of the -- compression comes from the first two or three hundred k of block size, a -- fact worth bearing in mind when using bzip2 on small machines. It is also -- important to appreciate that the decompression memory requirement is set at -- compression time by the choice of block size. -- -- * In general, try and use the largest block size memory constraints allow, -- since that maximises the compression achieved. -- -- * Compression and decompression speed are virtually unaffected by block -- size. -- -- Another significant point applies to files which fit in a single block - -- that means most files you'd encounter using a large block size. The amount -- of real memory touched is proportional to the size of the file, since the -- file is smaller than a block. For example, compressing a file 20,000 bytes -- long with the flag @'BlockSize' 9@ will cause the compressor to allocate -- around 7600k of memory, but only touch 400k + 20000 * 8 = 560 kbytes of it. -- Similarly, the decompressor will allocate 3700k but only touch 100k + 20000 -- * 4 = 180 kbytes. -- data BlockSize = DefaultBlockSize -- ^ The default block size is also the maximum. | BlockSize Int -- ^ A specific block size between 1 and 9. fromBlockSize :: BlockSize -> CInt fromBlockSize DefaultBlockSize = 9 fromBlockSize (BlockSize n) | n >= 1 && n <= 9 = fromIntegral n | otherwise = error "BlockSize must be in the range 1..9" -- | For files compressed with the default 900k block size, decompression will -- require about 3700k to decompress. To support decompression of any file in -- less than 4Mb there is the option to decompress using approximately half -- this amount of memory, about 2300k. Decompression speed is also halved, -- so you should use this option only where necessary. -- data MemoryLevel = DefaultMemoryLevel -- ^ The default. | MinMemoryLevel -- ^ Use minimum memory dusing decompression. This -- halves the memory needed but also halves the -- decompression speed. fromMemoryLevel :: MemoryLevel -> CInt fromMemoryLevel DefaultMemoryLevel = 0 fromMemoryLevel MinMemoryLevel = 1 -- | The 'WorkFactor' parameter controls how the compression phase behaves when -- presented with worst case, highly repetitive, input data. If compression -- runs into difficulties caused by repetitive data, the library switches from -- the standard sorting algorithm to a fallback algorithm. The fallback is -- slower than the standard algorithm by perhaps a factor of three, but always -- behaves reasonably, no matter how bad the input. -- -- Lower values of 'WorkFactor' reduce the amount of effort the standard -- algorithm will expend before resorting to the fallback. You should set this -- parameter carefully; too low, and many inputs will be handled by the -- fallback algorithm and so compress rather slowly, too high, and your -- average-to-worst case compression times can become very large. The default -- value of 30 gives reasonable behaviour over a wide range of circumstances. -- -- * Note that the compressed output generated is the same regardless of -- whether or not the fallback algorithm is used. -- data WorkFactor = DefaultWorkFactor -- ^ The default work factor is 30. | WorkFactor Int -- ^ Allowable values range from 1 to 250 inclusive. fromWorkFactor :: WorkFactor -> CInt fromWorkFactor DefaultWorkFactor = 0 fromWorkFactor (WorkFactor n) | n >= 1 && n <= 250 = fromIntegral n | otherwise = error "WorkFactor must be in the range 1..250" -- | The 'Verbosity' parameter is a number between 0 and 4. 0 is silent, and -- greater numbers give increasingly verbose monitoring\/debugging output. -- data Verbosity = Silent -- ^ No output. This is the default. | Verbosity Int -- ^ A specific level between 0 and 4. fromVerbosity :: Verbosity -> CInt fromVerbosity Silent = 0 fromVerbosity (Verbosity n) | n >= 0 && n <= 4 = fromIntegral n | otherwise = error "Verbosity must be in the range 0..4" withStreamPtr :: (Ptr StreamState -> IO a) -> Stream a withStreamPtr f = do stream <- getStreamState unsafeLiftIO (withForeignPtr stream f) withStreamState :: (StreamState -> IO a) -> Stream a withStreamState f = do stream <- getStreamState unsafeLiftIO (withForeignPtr stream (f . StreamState)) setInAvail :: Int -> Stream () setInAvail val = withStreamPtr $ \ptr -> #{poke bz_stream, avail_in} ptr (fromIntegral val :: CUInt) getInAvail :: Stream Int getInAvail = liftM (fromIntegral :: CUInt -> Int) $ withStreamPtr (#{peek bz_stream, avail_in}) setInNext :: Ptr Word8 -> Stream () setInNext val = withStreamPtr (\ptr -> #{poke bz_stream, next_in} ptr val) getInNext :: Stream (Ptr Word8) getInNext = withStreamPtr (#{peek bz_stream, next_in}) setOutFree :: Int -> Stream () setOutFree val = withStreamPtr $ \ptr -> #{poke bz_stream, avail_out} ptr (fromIntegral val :: CUInt) getOutFree :: Stream Int getOutFree = liftM (fromIntegral :: CUInt -> Int) $ withStreamPtr (#{peek bz_stream, avail_out}) setOutNext :: Ptr Word8 -> Stream () setOutNext val = withStreamPtr (\ptr -> #{poke bz_stream, next_out} ptr val) getOutNext :: Stream (Ptr Word8) getOutNext = withStreamPtr (#{peek bz_stream, next_out}) decompressInit :: Verbosity -> MemoryLevel -> Stream () decompressInit verbosity memoryLevel = do err <- withStreamState $ \bzstream -> bzDecompressInit bzstream (fromVerbosity verbosity) (fromMemoryLevel memoryLevel) failIfError err getStreamState >>= unsafeLiftIO . addForeignPtrFinalizer bzDecompressEnd compressInit :: BlockSize -> Verbosity -> WorkFactor -> Stream () compressInit blockSize verbosity workFactor = do err <- withStreamState $ \bzstream -> bzCompressInit bzstream (fromBlockSize blockSize) (fromVerbosity verbosity) (fromWorkFactor workFactor) failIfError err getStreamState >>= unsafeLiftIO . addForeignPtrFinalizer bzCompressEnd decompress_ :: Stream Status decompress_ = do err <- withStreamState $ \bzstream -> bzDecompress bzstream failIfError err return (toStatus err) compress_ :: Action -> Stream Status compress_ action = do err <- withStreamState $ \bzstream -> bzCompress bzstream (fromAction action) failIfError err return (toStatus err) -- | This never needs to be used as the stream's resources will be released -- automatically when no longer needed, however this can be used to release -- them early. Only use this when you can guarantee that the stream will no -- longer be needed, for example if an error occurs or if the stream ends. -- finalise :: Stream () finalise = getStreamState >>= unsafeLiftIO . finalizeForeignPtr ---------------------- -- The foreign imports newtype StreamState = StreamState (Ptr StreamState) foreign import ccall unsafe "bzlib.h BZ2_bzDecompressInit" bzDecompressInit :: StreamState -> CInt -> CInt -> IO CInt foreign import ccall unsafe "bzlib.h BZ2_bzDecompress" bzDecompress :: StreamState -> IO CInt foreign import ccall unsafe "bzlib.h &BZ2_bzDecompressEnd" bzDecompressEnd :: FinalizerPtr StreamState foreign import ccall unsafe "bzlib.h BZ2_bzCompressInit" bzCompressInit :: StreamState -> CInt -> CInt -> CInt -> IO CInt foreign import ccall unsafe "bzlib.h BZ2_bzCompress" bzCompress :: StreamState -> CInt -> IO CInt foreign import ccall unsafe "bzlib.h &BZ2_bzCompressEnd" bzCompressEnd :: FinalizerPtr StreamState bzlib-0.5.1.0/LICENSE0000644000000000000000000000250407346545000012154 0ustar0000000000000000Copyright (c) 2006-2008, Duncan Coutts All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. This clause is intentionally left blank. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. bzlib-0.5.1.0/Setup.hs0000644000000000000000000000005607346545000012603 0ustar0000000000000000import Distribution.Simple main = defaultMain bzlib-0.5.1.0/bzlib.cabal0000644000000000000000000000425507346545000013242 0ustar0000000000000000name: bzlib version: 0.5.1.0 copyright: (c) 2006-2015 Duncan Coutts license: BSD3 license-file: LICENSE author: Duncan Coutts maintainer: Duncan Coutts category: Codec synopsis: Compression and decompression in the bzip2 format description: This package provides a pure interface for compressing and decompressing streams of data represented as lazy 'ByteString's. It uses the bz2 C library so it has high performance. . It provides a convenient high level API suitable for most tasks and for the few cases where more control is needed it provides access to the full bzip2 feature set. build-type: Simple cabal-version: >= 1.10 extra-source-files: cbits/bzlib_private.h cbits/LICENSE -- demo programs: examples/bzip2.hs examples/bunzip2.hs -- changelog CHANGELOG.md source-repository head type: darcs location: http://code.haskell.org/bzlib/ source-repository this type: git location: https://github.com/hackage-trustees/bzlib.git tag: 0.5.1.0 library default-language: Haskell2010 exposed-modules: Codec.Compression.BZip, Codec.Compression.BZip.Internal other-modules: Codec.Compression.BZip.Stream default-extensions: CPP, ForeignFunctionInterface build-depends: base >= 4.3 && < 4.15, bytestring == 0.9.* || == 0.10.* if !impl(ghc >=8.0) build-depends: fail ==4.9.* includes: bzlib.h ghc-options: -Wall if !os(windows) -- Normally we use the the standard system bz2 lib: extra-libraries: bz2 else -- However for the benefit of users of Windows (which does not have zlib -- by default) we bundle a complete copy of the C sources of bzip2-1.0.6 c-sources: cbits/blocksort.c cbits/bzlib.c cbits/compress.c cbits/crctable.c cbits/decompress.c cbits/huffman.c cbits/randtable.c include-dirs: cbits install-includes: bzlib.h bzlib-0.5.1.0/cbits/0000755000000000000000000000000007346545000012252 5ustar0000000000000000bzlib-0.5.1.0/cbits/LICENSE0000755000000000000000000000355507346545000013272 0ustar0000000000000000 -------------------------------------------------------------------------- This program, "bzip2", the associated library "libbzip2", and all documentation, are copyright (C) 1996-2010 Julian R Seward. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 3. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 4. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Julian Seward, jseward@bzip.org bzip2/libbzip2 version 1.0.6 of 6 September 2010 -------------------------------------------------------------------------- bzlib-0.5.1.0/cbits/blocksort.c0000644000000000000000000007374607346545000014441 0ustar0000000000000000 /*-------------------------------------------------------------*/ /*--- Block sorting machinery ---*/ /*--- blocksort.c ---*/ /*-------------------------------------------------------------*/ /* ------------------------------------------------------------------ This file is part of bzip2/libbzip2, a program and library for lossless, block-sorting data compression. bzip2/libbzip2 version 1.0.6 of 6 September 2010 Copyright (C) 1996-2010 Julian Seward Please read the WARNING, DISCLAIMER and PATENTS sections in the README file. This program is released under the terms of the license contained in the file LICENSE. ------------------------------------------------------------------ */ #include "bzlib_private.h" /*---------------------------------------------*/ /*--- Fallback O(N log(N)^2) sorting ---*/ /*--- algorithm, for repetitive blocks ---*/ /*---------------------------------------------*/ /*---------------------------------------------*/ static __inline__ void fallbackSimpleSort ( UInt32* fmap, UInt32* eclass, Int32 lo, Int32 hi ) { Int32 i, j, tmp; UInt32 ec_tmp; if (lo == hi) return; if (hi - lo > 3) { for ( i = hi-4; i >= lo; i-- ) { tmp = fmap[i]; ec_tmp = eclass[tmp]; for ( j = i+4; j <= hi && ec_tmp > eclass[fmap[j]]; j += 4 ) fmap[j-4] = fmap[j]; fmap[j-4] = tmp; } } for ( i = hi-1; i >= lo; i-- ) { tmp = fmap[i]; ec_tmp = eclass[tmp]; for ( j = i+1; j <= hi && ec_tmp > eclass[fmap[j]]; j++ ) fmap[j-1] = fmap[j]; fmap[j-1] = tmp; } } /*---------------------------------------------*/ #define fswap(zz1, zz2) \ { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; } #define fvswap(zzp1, zzp2, zzn) \ { \ Int32 yyp1 = (zzp1); \ Int32 yyp2 = (zzp2); \ Int32 yyn = (zzn); \ while (yyn > 0) { \ fswap(fmap[yyp1], fmap[yyp2]); \ yyp1++; yyp2++; yyn--; \ } \ } #define fmin(a,b) ((a) < (b)) ? (a) : (b) #define fpush(lz,hz) { stackLo[sp] = lz; \ stackHi[sp] = hz; \ sp++; } #define fpop(lz,hz) { sp--; \ lz = stackLo[sp]; \ hz = stackHi[sp]; } #define FALLBACK_QSORT_SMALL_THRESH 10 #define FALLBACK_QSORT_STACK_SIZE 100 static void fallbackQSort3 ( UInt32* fmap, UInt32* eclass, Int32 loSt, Int32 hiSt ) { Int32 unLo, unHi, ltLo, gtHi, n, m; Int32 sp, lo, hi; UInt32 med, r, r3; Int32 stackLo[FALLBACK_QSORT_STACK_SIZE]; Int32 stackHi[FALLBACK_QSORT_STACK_SIZE]; r = 0; sp = 0; fpush ( loSt, hiSt ); while (sp > 0) { AssertH ( sp < FALLBACK_QSORT_STACK_SIZE - 1, 1004 ); fpop ( lo, hi ); if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) { fallbackSimpleSort ( fmap, eclass, lo, hi ); continue; } /* Random partitioning. Median of 3 sometimes fails to avoid bad cases. Median of 9 seems to help but looks rather expensive. This too seems to work but is cheaper. Guidance for the magic constants 7621 and 32768 is taken from Sedgewick's algorithms book, chapter 35. */ r = ((r * 7621) + 1) % 32768; r3 = r % 3; if (r3 == 0) med = eclass[fmap[lo]]; else if (r3 == 1) med = eclass[fmap[(lo+hi)>>1]]; else med = eclass[fmap[hi]]; unLo = ltLo = lo; unHi = gtHi = hi; while (1) { while (1) { if (unLo > unHi) break; n = (Int32)eclass[fmap[unLo]] - (Int32)med; if (n == 0) { fswap(fmap[unLo], fmap[ltLo]); ltLo++; unLo++; continue; }; if (n > 0) break; unLo++; } while (1) { if (unLo > unHi) break; n = (Int32)eclass[fmap[unHi]] - (Int32)med; if (n == 0) { fswap(fmap[unHi], fmap[gtHi]); gtHi--; unHi--; continue; }; if (n < 0) break; unHi--; } if (unLo > unHi) break; fswap(fmap[unLo], fmap[unHi]); unLo++; unHi--; } AssertD ( unHi == unLo-1, "fallbackQSort3(2)" ); if (gtHi < ltLo) continue; n = fmin(ltLo-lo, unLo-ltLo); fvswap(lo, unLo-n, n); m = fmin(hi-gtHi, gtHi-unHi); fvswap(unLo, hi-m+1, m); n = lo + unLo - ltLo - 1; m = hi - (gtHi - unHi) + 1; if (n - lo > hi - m) { fpush ( lo, n ); fpush ( m, hi ); } else { fpush ( m, hi ); fpush ( lo, n ); } } } #undef fmin #undef fpush #undef fpop #undef fswap #undef fvswap #undef FALLBACK_QSORT_SMALL_THRESH #undef FALLBACK_QSORT_STACK_SIZE /*---------------------------------------------*/ /* Pre: nblock > 0 eclass exists for [0 .. nblock-1] ((UChar*)eclass) [0 .. nblock-1] holds block ptr exists for [0 .. nblock-1] Post: ((UChar*)eclass) [0 .. nblock-1] holds block All other areas of eclass destroyed fmap [0 .. nblock-1] holds sorted order bhtab [ 0 .. 2+(nblock/32) ] destroyed */ #define SET_BH(zz) bhtab[(zz) >> 5] |= (1 << ((zz) & 31)) #define CLEAR_BH(zz) bhtab[(zz) >> 5] &= ~(1 << ((zz) & 31)) #define ISSET_BH(zz) (bhtab[(zz) >> 5] & (1 << ((zz) & 31))) #define WORD_BH(zz) bhtab[(zz) >> 5] #define UNALIGNED_BH(zz) ((zz) & 0x01f) static void fallbackSort ( UInt32* fmap, UInt32* eclass, UInt32* bhtab, Int32 nblock, Int32 verb ) { Int32 ftab[257]; Int32 ftabCopy[256]; Int32 H, i, j, k, l, r, cc, cc1; Int32 nNotDone; Int32 nBhtab; UChar* eclass8 = (UChar*)eclass; /*-- Initial 1-char radix sort to generate initial fmap and initial BH bits. --*/ if (verb >= 4) VPrintf0 ( " bucket sorting ...\n" ); for (i = 0; i < 257; i++) ftab[i] = 0; for (i = 0; i < nblock; i++) ftab[eclass8[i]]++; for (i = 0; i < 256; i++) ftabCopy[i] = ftab[i]; for (i = 1; i < 257; i++) ftab[i] += ftab[i-1]; for (i = 0; i < nblock; i++) { j = eclass8[i]; k = ftab[j] - 1; ftab[j] = k; fmap[k] = i; } nBhtab = 2 + (nblock / 32); for (i = 0; i < nBhtab; i++) bhtab[i] = 0; for (i = 0; i < 256; i++) SET_BH(ftab[i]); /*-- Inductively refine the buckets. Kind-of an "exponential radix sort" (!), inspired by the Manber-Myers suffix array construction algorithm. --*/ /*-- set sentinel bits for block-end detection --*/ for (i = 0; i < 32; i++) { SET_BH(nblock + 2*i); CLEAR_BH(nblock + 2*i + 1); } /*-- the log(N) loop --*/ H = 1; while (1) { if (verb >= 4) VPrintf1 ( " depth %6d has ", H ); j = 0; for (i = 0; i < nblock; i++) { if (ISSET_BH(i)) j = i; k = fmap[i] - H; if (k < 0) k += nblock; eclass[k] = j; } nNotDone = 0; r = -1; while (1) { /*-- find the next non-singleton bucket --*/ k = r + 1; while (ISSET_BH(k) && UNALIGNED_BH(k)) k++; if (ISSET_BH(k)) { while (WORD_BH(k) == 0xffffffff) k += 32; while (ISSET_BH(k)) k++; } l = k - 1; if (l >= nblock) break; while (!ISSET_BH(k) && UNALIGNED_BH(k)) k++; if (!ISSET_BH(k)) { while (WORD_BH(k) == 0x00000000) k += 32; while (!ISSET_BH(k)) k++; } r = k - 1; if (r >= nblock) break; /*-- now [l, r] bracket current bucket --*/ if (r > l) { nNotDone += (r - l + 1); fallbackQSort3 ( fmap, eclass, l, r ); /*-- scan bucket and generate header bits-- */ cc = -1; for (i = l; i <= r; i++) { cc1 = eclass[fmap[i]]; if (cc != cc1) { SET_BH(i); cc = cc1; }; } } } if (verb >= 4) VPrintf1 ( "%6d unresolved strings\n", nNotDone ); H *= 2; if (H > nblock || nNotDone == 0) break; } /*-- Reconstruct the original block in eclass8 [0 .. nblock-1], since the previous phase destroyed it. --*/ if (verb >= 4) VPrintf0 ( " reconstructing block ...\n" ); j = 0; for (i = 0; i < nblock; i++) { while (ftabCopy[j] == 0) j++; ftabCopy[j]--; eclass8[fmap[i]] = (UChar)j; } AssertH ( j < 256, 1005 ); } #undef SET_BH #undef CLEAR_BH #undef ISSET_BH #undef WORD_BH #undef UNALIGNED_BH /*---------------------------------------------*/ /*--- The main, O(N^2 log(N)) sorting ---*/ /*--- algorithm. Faster for "normal" ---*/ /*--- non-repetitive blocks. ---*/ /*---------------------------------------------*/ /*---------------------------------------------*/ static __inline__ Bool mainGtU ( UInt32 i1, UInt32 i2, UChar* block, UInt16* quadrant, UInt32 nblock, Int32* budget ) { Int32 k; UChar c1, c2; UInt16 s1, s2; AssertD ( i1 != i2, "mainGtU" ); /* 1 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 2 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 3 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 4 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 5 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 6 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 7 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 8 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 9 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 10 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 11 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; /* 12 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); i1++; i2++; k = nblock + 8; do { /* 1 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 2 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 3 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 4 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 5 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 6 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 7 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; /* 8 */ c1 = block[i1]; c2 = block[i2]; if (c1 != c2) return (c1 > c2); s1 = quadrant[i1]; s2 = quadrant[i2]; if (s1 != s2) return (s1 > s2); i1++; i2++; if (i1 >= nblock) i1 -= nblock; if (i2 >= nblock) i2 -= nblock; k -= 8; (*budget)--; } while (k >= 0); return False; } /*---------------------------------------------*/ /*-- Knuth's increments seem to work better than Incerpi-Sedgewick here. Possibly because the number of elems to sort is usually small, typically <= 20. --*/ static Int32 incs[14] = { 1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573, 265720, 797161, 2391484 }; static void mainSimpleSort ( UInt32* ptr, UChar* block, UInt16* quadrant, Int32 nblock, Int32 lo, Int32 hi, Int32 d, Int32* budget ) { Int32 i, j, h, bigN, hp; UInt32 v; bigN = hi - lo + 1; if (bigN < 2) return; hp = 0; while (incs[hp] < bigN) hp++; hp--; for (; hp >= 0; hp--) { h = incs[hp]; i = lo + h; while (True) { /*-- copy 1 --*/ if (i > hi) break; v = ptr[i]; j = i; while ( mainGtU ( ptr[j-h]+d, v+d, block, quadrant, nblock, budget ) ) { ptr[j] = ptr[j-h]; j = j - h; if (j <= (lo + h - 1)) break; } ptr[j] = v; i++; /*-- copy 2 --*/ if (i > hi) break; v = ptr[i]; j = i; while ( mainGtU ( ptr[j-h]+d, v+d, block, quadrant, nblock, budget ) ) { ptr[j] = ptr[j-h]; j = j - h; if (j <= (lo + h - 1)) break; } ptr[j] = v; i++; /*-- copy 3 --*/ if (i > hi) break; v = ptr[i]; j = i; while ( mainGtU ( ptr[j-h]+d, v+d, block, quadrant, nblock, budget ) ) { ptr[j] = ptr[j-h]; j = j - h; if (j <= (lo + h - 1)) break; } ptr[j] = v; i++; if (*budget < 0) return; } } } /*---------------------------------------------*/ /*-- The following is an implementation of an elegant 3-way quicksort for strings, described in a paper "Fast Algorithms for Sorting and Searching Strings", by Robert Sedgewick and Jon L. Bentley. --*/ #define mswap(zz1, zz2) \ { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; } #define mvswap(zzp1, zzp2, zzn) \ { \ Int32 yyp1 = (zzp1); \ Int32 yyp2 = (zzp2); \ Int32 yyn = (zzn); \ while (yyn > 0) { \ mswap(ptr[yyp1], ptr[yyp2]); \ yyp1++; yyp2++; yyn--; \ } \ } static __inline__ UChar mmed3 ( UChar a, UChar b, UChar c ) { UChar t; if (a > b) { t = a; a = b; b = t; }; if (b > c) { b = c; if (a > b) b = a; } return b; } #define mmin(a,b) ((a) < (b)) ? (a) : (b) #define mpush(lz,hz,dz) { stackLo[sp] = lz; \ stackHi[sp] = hz; \ stackD [sp] = dz; \ sp++; } #define mpop(lz,hz,dz) { sp--; \ lz = stackLo[sp]; \ hz = stackHi[sp]; \ dz = stackD [sp]; } #define mnextsize(az) (nextHi[az]-nextLo[az]) #define mnextswap(az,bz) \ { Int32 tz; \ tz = nextLo[az]; nextLo[az] = nextLo[bz]; nextLo[bz] = tz; \ tz = nextHi[az]; nextHi[az] = nextHi[bz]; nextHi[bz] = tz; \ tz = nextD [az]; nextD [az] = nextD [bz]; nextD [bz] = tz; } #define MAIN_QSORT_SMALL_THRESH 20 #define MAIN_QSORT_DEPTH_THRESH (BZ_N_RADIX + BZ_N_QSORT) #define MAIN_QSORT_STACK_SIZE 100 static void mainQSort3 ( UInt32* ptr, UChar* block, UInt16* quadrant, Int32 nblock, Int32 loSt, Int32 hiSt, Int32 dSt, Int32* budget ) { Int32 unLo, unHi, ltLo, gtHi, n, m, med; Int32 sp, lo, hi, d; Int32 stackLo[MAIN_QSORT_STACK_SIZE]; Int32 stackHi[MAIN_QSORT_STACK_SIZE]; Int32 stackD [MAIN_QSORT_STACK_SIZE]; Int32 nextLo[3]; Int32 nextHi[3]; Int32 nextD [3]; sp = 0; mpush ( loSt, hiSt, dSt ); while (sp > 0) { AssertH ( sp < MAIN_QSORT_STACK_SIZE - 2, 1001 ); mpop ( lo, hi, d ); if (hi - lo < MAIN_QSORT_SMALL_THRESH || d > MAIN_QSORT_DEPTH_THRESH) { mainSimpleSort ( ptr, block, quadrant, nblock, lo, hi, d, budget ); if (*budget < 0) return; continue; } med = (Int32) mmed3 ( block[ptr[ lo ]+d], block[ptr[ hi ]+d], block[ptr[ (lo+hi)>>1 ]+d] ); unLo = ltLo = lo; unHi = gtHi = hi; while (True) { while (True) { if (unLo > unHi) break; n = ((Int32)block[ptr[unLo]+d]) - med; if (n == 0) { mswap(ptr[unLo], ptr[ltLo]); ltLo++; unLo++; continue; }; if (n > 0) break; unLo++; } while (True) { if (unLo > unHi) break; n = ((Int32)block[ptr[unHi]+d]) - med; if (n == 0) { mswap(ptr[unHi], ptr[gtHi]); gtHi--; unHi--; continue; }; if (n < 0) break; unHi--; } if (unLo > unHi) break; mswap(ptr[unLo], ptr[unHi]); unLo++; unHi--; } AssertD ( unHi == unLo-1, "mainQSort3(2)" ); if (gtHi < ltLo) { mpush(lo, hi, d+1 ); continue; } n = mmin(ltLo-lo, unLo-ltLo); mvswap(lo, unLo-n, n); m = mmin(hi-gtHi, gtHi-unHi); mvswap(unLo, hi-m+1, m); n = lo + unLo - ltLo - 1; m = hi - (gtHi - unHi) + 1; nextLo[0] = lo; nextHi[0] = n; nextD[0] = d; nextLo[1] = m; nextHi[1] = hi; nextD[1] = d; nextLo[2] = n+1; nextHi[2] = m-1; nextD[2] = d+1; if (mnextsize(0) < mnextsize(1)) mnextswap(0,1); if (mnextsize(1) < mnextsize(2)) mnextswap(1,2); if (mnextsize(0) < mnextsize(1)) mnextswap(0,1); AssertD (mnextsize(0) >= mnextsize(1), "mainQSort3(8)" ); AssertD (mnextsize(1) >= mnextsize(2), "mainQSort3(9)" ); mpush (nextLo[0], nextHi[0], nextD[0]); mpush (nextLo[1], nextHi[1], nextD[1]); mpush (nextLo[2], nextHi[2], nextD[2]); } } #undef mswap #undef mvswap #undef mpush #undef mpop #undef mmin #undef mnextsize #undef mnextswap #undef MAIN_QSORT_SMALL_THRESH #undef MAIN_QSORT_DEPTH_THRESH #undef MAIN_QSORT_STACK_SIZE /*---------------------------------------------*/ /* Pre: nblock > N_OVERSHOOT block32 exists for [0 .. nblock-1 +N_OVERSHOOT] ((UChar*)block32) [0 .. nblock-1] holds block ptr exists for [0 .. nblock-1] Post: ((UChar*)block32) [0 .. nblock-1] holds block All other areas of block32 destroyed ftab [0 .. 65536 ] destroyed ptr [0 .. nblock-1] holds sorted order if (*budget < 0), sorting was abandoned */ #define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8]) #define SETMASK (1 << 21) #define CLEARMASK (~(SETMASK)) static void mainSort ( UInt32* ptr, UChar* block, UInt16* quadrant, UInt32* ftab, Int32 nblock, Int32 verb, Int32* budget ) { Int32 i, j, k, ss, sb; Int32 runningOrder[256]; Bool bigDone[256]; Int32 copyStart[256]; Int32 copyEnd [256]; UChar c1; Int32 numQSorted; UInt16 s; if (verb >= 4) VPrintf0 ( " main sort initialise ...\n" ); /*-- set up the 2-byte frequency table --*/ for (i = 65536; i >= 0; i--) ftab[i] = 0; j = block[0] << 8; i = nblock-1; for (; i >= 3; i -= 4) { quadrant[i] = 0; j = (j >> 8) | ( ((UInt16)block[i]) << 8); ftab[j]++; quadrant[i-1] = 0; j = (j >> 8) | ( ((UInt16)block[i-1]) << 8); ftab[j]++; quadrant[i-2] = 0; j = (j >> 8) | ( ((UInt16)block[i-2]) << 8); ftab[j]++; quadrant[i-3] = 0; j = (j >> 8) | ( ((UInt16)block[i-3]) << 8); ftab[j]++; } for (; i >= 0; i--) { quadrant[i] = 0; j = (j >> 8) | ( ((UInt16)block[i]) << 8); ftab[j]++; } /*-- (emphasises close relationship of block & quadrant) --*/ for (i = 0; i < BZ_N_OVERSHOOT; i++) { block [nblock+i] = block[i]; quadrant[nblock+i] = 0; } if (verb >= 4) VPrintf0 ( " bucket sorting ...\n" ); /*-- Complete the initial radix sort --*/ for (i = 1; i <= 65536; i++) ftab[i] += ftab[i-1]; s = block[0] << 8; i = nblock-1; for (; i >= 3; i -= 4) { s = (s >> 8) | (block[i] << 8); j = ftab[s] -1; ftab[s] = j; ptr[j] = i; s = (s >> 8) | (block[i-1] << 8); j = ftab[s] -1; ftab[s] = j; ptr[j] = i-1; s = (s >> 8) | (block[i-2] << 8); j = ftab[s] -1; ftab[s] = j; ptr[j] = i-2; s = (s >> 8) | (block[i-3] << 8); j = ftab[s] -1; ftab[s] = j; ptr[j] = i-3; } for (; i >= 0; i--) { s = (s >> 8) | (block[i] << 8); j = ftab[s] -1; ftab[s] = j; ptr[j] = i; } /*-- Now ftab contains the first loc of every small bucket. Calculate the running order, from smallest to largest big bucket. --*/ for (i = 0; i <= 255; i++) { bigDone [i] = False; runningOrder[i] = i; } { Int32 vv; Int32 h = 1; do h = 3 * h + 1; while (h <= 256); do { h = h / 3; for (i = h; i <= 255; i++) { vv = runningOrder[i]; j = i; while ( BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv) ) { runningOrder[j] = runningOrder[j-h]; j = j - h; if (j <= (h - 1)) goto zero; } zero: runningOrder[j] = vv; } } while (h != 1); } /*-- The main sorting loop. --*/ numQSorted = 0; for (i = 0; i <= 255; i++) { /*-- Process big buckets, starting with the least full. Basically this is a 3-step process in which we call mainQSort3 to sort the small buckets [ss, j], but also make a big effort to avoid the calls if we can. --*/ ss = runningOrder[i]; /*-- Step 1: Complete the big bucket [ss] by quicksorting any unsorted small buckets [ss, j], for j != ss. Hopefully previous pointer-scanning phases have already completed many of the small buckets [ss, j], so we don't have to sort them at all. --*/ for (j = 0; j <= 255; j++) { if (j != ss) { sb = (ss << 8) + j; if ( ! (ftab[sb] & SETMASK) ) { Int32 lo = ftab[sb] & CLEARMASK; Int32 hi = (ftab[sb+1] & CLEARMASK) - 1; if (hi > lo) { if (verb >= 4) VPrintf4 ( " qsort [0x%x, 0x%x] " "done %d this %d\n", ss, j, numQSorted, hi - lo + 1 ); mainQSort3 ( ptr, block, quadrant, nblock, lo, hi, BZ_N_RADIX, budget ); numQSorted += (hi - lo + 1); if (*budget < 0) return; } } ftab[sb] |= SETMASK; } } AssertH ( !bigDone[ss], 1006 ); /*-- Step 2: Now scan this big bucket [ss] so as to synthesise the sorted order for small buckets [t, ss] for all t, including, magically, the bucket [ss,ss] too. This will avoid doing Real Work in subsequent Step 1's. --*/ { for (j = 0; j <= 255; j++) { copyStart[j] = ftab[(j << 8) + ss] & CLEARMASK; copyEnd [j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1; } for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) { k = ptr[j]-1; if (k < 0) k += nblock; c1 = block[k]; if (!bigDone[c1]) ptr[ copyStart[c1]++ ] = k; } for (j = (ftab[(ss+1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) { k = ptr[j]-1; if (k < 0) k += nblock; c1 = block[k]; if (!bigDone[c1]) ptr[ copyEnd[c1]-- ] = k; } } AssertH ( (copyStart[ss]-1 == copyEnd[ss]) || /* Extremely rare case missing in bzip2-1.0.0 and 1.0.1. Necessity for this case is demonstrated by compressing a sequence of approximately 48.5 million of character 251; 1.0.0/1.0.1 will then die here. */ (copyStart[ss] == 0 && copyEnd[ss] == nblock-1), 1007 ) for (j = 0; j <= 255; j++) ftab[(j << 8) + ss] |= SETMASK; /*-- Step 3: The [ss] big bucket is now done. Record this fact, and update the quadrant descriptors. Remember to update quadrants in the overshoot area too, if necessary. The "if (i < 255)" test merely skips this updating for the last bucket processed, since updating for the last bucket is pointless. The quadrant array provides a way to incrementally cache sort orderings, as they appear, so as to make subsequent comparisons in fullGtU() complete faster. For repetitive blocks this makes a big difference (but not big enough to be able to avoid the fallback sorting mechanism, exponential radix sort). The precise meaning is: at all times: for 0 <= i < nblock and 0 <= j <= nblock if block[i] != block[j], then the relative values of quadrant[i] and quadrant[j] are meaningless. else { if quadrant[i] < quadrant[j] then the string starting at i lexicographically precedes the string starting at j else if quadrant[i] > quadrant[j] then the string starting at j lexicographically precedes the string starting at i else the relative ordering of the strings starting at i and j has not yet been determined. } --*/ bigDone[ss] = True; if (i < 255) { Int32 bbStart = ftab[ss << 8] & CLEARMASK; Int32 bbSize = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart; Int32 shifts = 0; while ((bbSize >> shifts) > 65534) shifts++; for (j = bbSize-1; j >= 0; j--) { Int32 a2update = ptr[bbStart + j]; UInt16 qVal = (UInt16)(j >> shifts); quadrant[a2update] = qVal; if (a2update < BZ_N_OVERSHOOT) quadrant[a2update + nblock] = qVal; } AssertH ( ((bbSize-1) >> shifts) <= 65535, 1002 ); } } if (verb >= 4) VPrintf3 ( " %d pointers, %d sorted, %d scanned\n", nblock, numQSorted, nblock - numQSorted ); } #undef BIGFREQ #undef SETMASK #undef CLEARMASK /*---------------------------------------------*/ /* Pre: nblock > 0 arr2 exists for [0 .. nblock-1 +N_OVERSHOOT] ((UChar*)arr2) [0 .. nblock-1] holds block arr1 exists for [0 .. nblock-1] Post: ((UChar*)arr2) [0 .. nblock-1] holds block All other areas of block destroyed ftab [ 0 .. 65536 ] destroyed arr1 [0 .. nblock-1] holds sorted order */ void BZ2_blockSort ( EState* s ) { UInt32* ptr = s->ptr; UChar* block = s->block; UInt32* ftab = s->ftab; Int32 nblock = s->nblock; Int32 verb = s->verbosity; Int32 wfact = s->workFactor; UInt16* quadrant; Int32 budget; Int32 budgetInit; Int32 i; if (nblock < 10000) { fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb ); } else { /* Calculate the location for quadrant, remembering to get the alignment right. Assumes that &(block[0]) is at least 2-byte aligned -- this should be ok since block is really the first section of arr2. */ i = nblock+BZ_N_OVERSHOOT; if (i & 1) i++; quadrant = (UInt16*)(&(block[i])); /* (wfact-1) / 3 puts the default-factor-30 transition point at very roughly the same place as with v0.1 and v0.9.0. Not that it particularly matters any more, since the resulting compressed stream is now the same regardless of whether or not we use the main sort or fallback sort. */ if (wfact < 1 ) wfact = 1; if (wfact > 100) wfact = 100; budgetInit = nblock * ((wfact-1) / 3); budget = budgetInit; mainSort ( ptr, block, quadrant, ftab, nblock, verb, &budget ); if (verb >= 3) VPrintf3 ( " %d work, %d block, ratio %5.2f\n", budgetInit - budget, nblock, (float)(budgetInit - budget) / (float)(nblock==0 ? 1 : nblock) ); if (budget < 0) { if (verb >= 2) VPrintf0 ( " too repetitive; using fallback" " sorting algorithm\n" ); fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb ); } } s->origPtr = -1; for (i = 0; i < s->nblock; i++) if (ptr[i] == 0) { s->origPtr = i; break; }; AssertH( s->origPtr != -1, 1003 ); } /*-------------------------------------------------------------*/ /*--- end blocksort.c ---*/ /*-------------------------------------------------------------*/ bzlib-0.5.1.0/cbits/bzlib.c0000644000000000000000000013165307346545000013531 0ustar0000000000000000 /*-------------------------------------------------------------*/ /*--- Library top-level functions. ---*/ /*--- bzlib.c ---*/ /*-------------------------------------------------------------*/ /* ------------------------------------------------------------------ This file is part of bzip2/libbzip2, a program and library for lossless, block-sorting data compression. bzip2/libbzip2 version 1.0.6 of 6 September 2010 Copyright (C) 1996-2010 Julian Seward Please read the WARNING, DISCLAIMER and PATENTS sections in the README file. This program is released under the terms of the license contained in the file LICENSE. ------------------------------------------------------------------ */ /* CHANGES 0.9.0 -- original version. 0.9.0a/b -- no changes in this file. 0.9.0c -- made zero-length BZ_FLUSH work correctly in bzCompress(). fixed bzWrite/bzRead to ignore zero-length requests. fixed bzread to correctly handle read requests after EOF. wrong parameter order in call to bzDecompressInit in bzBuffToBuffDecompress. Fixed. */ #include "bzlib_private.h" /*---------------------------------------------------*/ /*--- Compression stuff ---*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ #ifndef BZ_NO_STDIO void BZ2_bz__AssertH__fail ( int errcode ) { fprintf(stderr, "\n\nbzip2/libbzip2: internal error number %d.\n" "This is a bug in bzip2/libbzip2, %s.\n" "Please report it to me at: jseward@bzip.org. If this happened\n" "when you were using some program which uses libbzip2 as a\n" "component, you should also report this bug to the author(s)\n" "of that program. Please make an effort to report this bug;\n" "timely and accurate bug reports eventually lead to higher\n" "quality software. Thanks. Julian Seward, 10 December 2007.\n\n", errcode, BZ2_bzlibVersion() ); if (errcode == 1007) { fprintf(stderr, "\n*** A special note about internal error number 1007 ***\n" "\n" "Experience suggests that a common cause of i.e. 1007\n" "is unreliable memory or other hardware. The 1007 assertion\n" "just happens to cross-check the results of huge numbers of\n" "memory reads/writes, and so acts (unintendedly) as a stress\n" "test of your memory system.\n" "\n" "I suggest the following: try compressing the file again,\n" "possibly monitoring progress in detail with the -vv flag.\n" "\n" "* If the error cannot be reproduced, and/or happens at different\n" " points in compression, you may have a flaky memory system.\n" " Try a memory-test program. I have used Memtest86\n" " (www.memtest86.com). At the time of writing it is free (GPLd).\n" " Memtest86 tests memory much more thorougly than your BIOSs\n" " power-on test, and may find failures that the BIOS doesn't.\n" "\n" "* If the error can be repeatably reproduced, this is a bug in\n" " bzip2, and I would very much like to hear about it. Please\n" " let me know, and, ideally, save a copy of the file causing the\n" " problem -- without which I will be unable to investigate it.\n" "\n" ); } exit(3); } #endif /*---------------------------------------------------*/ static int bz_config_ok ( void ) { if (sizeof(int) != 4) return 0; if (sizeof(short) != 2) return 0; if (sizeof(char) != 1) return 0; return 1; } /*---------------------------------------------------*/ static void* default_bzalloc ( void* opaque, Int32 items, Int32 size ) { void* v = malloc ( items * size ); return v; } static void default_bzfree ( void* opaque, void* addr ) { if (addr != NULL) free ( addr ); } /*---------------------------------------------------*/ static void prepare_new_block ( EState* s ) { Int32 i; s->nblock = 0; s->numZ = 0; s->state_out_pos = 0; BZ_INITIALISE_CRC ( s->blockCRC ); for (i = 0; i < 256; i++) s->inUse[i] = False; s->blockNo++; } /*---------------------------------------------------*/ static void init_RL ( EState* s ) { s->state_in_ch = 256; s->state_in_len = 0; } static Bool isempty_RL ( EState* s ) { if (s->state_in_ch < 256 && s->state_in_len > 0) return False; else return True; } /*---------------------------------------------------*/ int BZ_API(BZ2_bzCompressInit) ( bz_stream* strm, int blockSize100k, int verbosity, int workFactor ) { Int32 n; EState* s; if (!bz_config_ok()) return BZ_CONFIG_ERROR; if (strm == NULL || blockSize100k < 1 || blockSize100k > 9 || workFactor < 0 || workFactor > 250) return BZ_PARAM_ERROR; if (workFactor == 0) workFactor = 30; if (strm->bzalloc == NULL) strm->bzalloc = default_bzalloc; if (strm->bzfree == NULL) strm->bzfree = default_bzfree; s = BZALLOC( sizeof(EState) ); if (s == NULL) return BZ_MEM_ERROR; s->strm = strm; s->arr1 = NULL; s->arr2 = NULL; s->ftab = NULL; n = 100000 * blockSize100k; s->arr1 = BZALLOC( n * sizeof(UInt32) ); s->arr2 = BZALLOC( (n+BZ_N_OVERSHOOT) * sizeof(UInt32) ); s->ftab = BZALLOC( 65537 * sizeof(UInt32) ); if (s->arr1 == NULL || s->arr2 == NULL || s->ftab == NULL) { if (s->arr1 != NULL) BZFREE(s->arr1); if (s->arr2 != NULL) BZFREE(s->arr2); if (s->ftab != NULL) BZFREE(s->ftab); if (s != NULL) BZFREE(s); return BZ_MEM_ERROR; } s->blockNo = 0; s->state = BZ_S_INPUT; s->mode = BZ_M_RUNNING; s->combinedCRC = 0; s->blockSize100k = blockSize100k; s->nblockMAX = 100000 * blockSize100k - 19; s->verbosity = verbosity; s->workFactor = workFactor; s->block = (UChar*)s->arr2; s->mtfv = (UInt16*)s->arr1; s->zbits = NULL; s->ptr = (UInt32*)s->arr1; strm->state = s; strm->total_in_lo32 = 0; strm->total_in_hi32 = 0; strm->total_out_lo32 = 0; strm->total_out_hi32 = 0; init_RL ( s ); prepare_new_block ( s ); return BZ_OK; } /*---------------------------------------------------*/ static void add_pair_to_block ( EState* s ) { Int32 i; UChar ch = (UChar)(s->state_in_ch); for (i = 0; i < s->state_in_len; i++) { BZ_UPDATE_CRC( s->blockCRC, ch ); } s->inUse[s->state_in_ch] = True; switch (s->state_in_len) { case 1: s->block[s->nblock] = (UChar)ch; s->nblock++; break; case 2: s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; break; case 3: s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; break; default: s->inUse[s->state_in_len-4] = True; s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = (UChar)ch; s->nblock++; s->block[s->nblock] = ((UChar)(s->state_in_len-4)); s->nblock++; break; } } /*---------------------------------------------------*/ static void flush_RL ( EState* s ) { if (s->state_in_ch < 256) add_pair_to_block ( s ); init_RL ( s ); } /*---------------------------------------------------*/ #define ADD_CHAR_TO_BLOCK(zs,zchh0) \ { \ UInt32 zchh = (UInt32)(zchh0); \ /*-- fast track the common case --*/ \ if (zchh != zs->state_in_ch && \ zs->state_in_len == 1) { \ UChar ch = (UChar)(zs->state_in_ch); \ BZ_UPDATE_CRC( zs->blockCRC, ch ); \ zs->inUse[zs->state_in_ch] = True; \ zs->block[zs->nblock] = (UChar)ch; \ zs->nblock++; \ zs->state_in_ch = zchh; \ } \ else \ /*-- general, uncommon cases --*/ \ if (zchh != zs->state_in_ch || \ zs->state_in_len == 255) { \ if (zs->state_in_ch < 256) \ add_pair_to_block ( zs ); \ zs->state_in_ch = zchh; \ zs->state_in_len = 1; \ } else { \ zs->state_in_len++; \ } \ } /*---------------------------------------------------*/ static Bool copy_input_until_stop ( EState* s ) { Bool progress_in = False; if (s->mode == BZ_M_RUNNING) { /*-- fast track the common case --*/ while (True) { /*-- block full? --*/ if (s->nblock >= s->nblockMAX) break; /*-- no input? --*/ if (s->strm->avail_in == 0) break; progress_in = True; ADD_CHAR_TO_BLOCK ( s, (UInt32)(*((UChar*)(s->strm->next_in))) ); s->strm->next_in++; s->strm->avail_in--; s->strm->total_in_lo32++; if (s->strm->total_in_lo32 == 0) s->strm->total_in_hi32++; } } else { /*-- general, uncommon case --*/ while (True) { /*-- block full? --*/ if (s->nblock >= s->nblockMAX) break; /*-- no input? --*/ if (s->strm->avail_in == 0) break; /*-- flush/finish end? --*/ if (s->avail_in_expect == 0) break; progress_in = True; ADD_CHAR_TO_BLOCK ( s, (UInt32)(*((UChar*)(s->strm->next_in))) ); s->strm->next_in++; s->strm->avail_in--; s->strm->total_in_lo32++; if (s->strm->total_in_lo32 == 0) s->strm->total_in_hi32++; s->avail_in_expect--; } } return progress_in; } /*---------------------------------------------------*/ static Bool copy_output_until_stop ( EState* s ) { Bool progress_out = False; while (True) { /*-- no output space? --*/ if (s->strm->avail_out == 0) break; /*-- block done? --*/ if (s->state_out_pos >= s->numZ) break; progress_out = True; *(s->strm->next_out) = s->zbits[s->state_out_pos]; s->state_out_pos++; s->strm->avail_out--; s->strm->next_out++; s->strm->total_out_lo32++; if (s->strm->total_out_lo32 == 0) s->strm->total_out_hi32++; } return progress_out; } /*---------------------------------------------------*/ static Bool handle_compress ( bz_stream* strm ) { Bool progress_in = False; Bool progress_out = False; EState* s = strm->state; while (True) { if (s->state == BZ_S_OUTPUT) { progress_out |= copy_output_until_stop ( s ); if (s->state_out_pos < s->numZ) break; if (s->mode == BZ_M_FINISHING && s->avail_in_expect == 0 && isempty_RL(s)) break; prepare_new_block ( s ); s->state = BZ_S_INPUT; if (s->mode == BZ_M_FLUSHING && s->avail_in_expect == 0 && isempty_RL(s)) break; } if (s->state == BZ_S_INPUT) { progress_in |= copy_input_until_stop ( s ); if (s->mode != BZ_M_RUNNING && s->avail_in_expect == 0) { flush_RL ( s ); BZ2_compressBlock ( s, (Bool)(s->mode == BZ_M_FINISHING) ); s->state = BZ_S_OUTPUT; } else if (s->nblock >= s->nblockMAX) { BZ2_compressBlock ( s, False ); s->state = BZ_S_OUTPUT; } else if (s->strm->avail_in == 0) { break; } } } return progress_in || progress_out; } /*---------------------------------------------------*/ int BZ_API(BZ2_bzCompress) ( bz_stream *strm, int action ) { Bool progress; EState* s; if (strm == NULL) return BZ_PARAM_ERROR; s = strm->state; if (s == NULL) return BZ_PARAM_ERROR; if (s->strm != strm) return BZ_PARAM_ERROR; preswitch: switch (s->mode) { case BZ_M_IDLE: return BZ_SEQUENCE_ERROR; case BZ_M_RUNNING: if (action == BZ_RUN) { progress = handle_compress ( strm ); return progress ? BZ_RUN_OK : BZ_PARAM_ERROR; } else if (action == BZ_FLUSH) { s->avail_in_expect = strm->avail_in; s->mode = BZ_M_FLUSHING; goto preswitch; } else if (action == BZ_FINISH) { s->avail_in_expect = strm->avail_in; s->mode = BZ_M_FINISHING; goto preswitch; } else return BZ_PARAM_ERROR; case BZ_M_FLUSHING: if (action != BZ_FLUSH) return BZ_SEQUENCE_ERROR; if (s->avail_in_expect != s->strm->avail_in) return BZ_SEQUENCE_ERROR; progress = handle_compress ( strm ); if (s->avail_in_expect > 0 || !isempty_RL(s) || s->state_out_pos < s->numZ) return BZ_FLUSH_OK; s->mode = BZ_M_RUNNING; return BZ_RUN_OK; case BZ_M_FINISHING: if (action != BZ_FINISH) return BZ_SEQUENCE_ERROR; if (s->avail_in_expect != s->strm->avail_in) return BZ_SEQUENCE_ERROR; progress = handle_compress ( strm ); if (!progress) return BZ_SEQUENCE_ERROR; if (s->avail_in_expect > 0 || !isempty_RL(s) || s->state_out_pos < s->numZ) return BZ_FINISH_OK; s->mode = BZ_M_IDLE; return BZ_STREAM_END; } return BZ_OK; /*--not reached--*/ } /*---------------------------------------------------*/ int BZ_API(BZ2_bzCompressEnd) ( bz_stream *strm ) { EState* s; if (strm == NULL) return BZ_PARAM_ERROR; s = strm->state; if (s == NULL) return BZ_PARAM_ERROR; if (s->strm != strm) return BZ_PARAM_ERROR; if (s->arr1 != NULL) BZFREE(s->arr1); if (s->arr2 != NULL) BZFREE(s->arr2); if (s->ftab != NULL) BZFREE(s->ftab); BZFREE(strm->state); strm->state = NULL; return BZ_OK; } /*---------------------------------------------------*/ /*--- Decompression stuff ---*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ int BZ_API(BZ2_bzDecompressInit) ( bz_stream* strm, int verbosity, int small ) { DState* s; if (!bz_config_ok()) return BZ_CONFIG_ERROR; if (strm == NULL) return BZ_PARAM_ERROR; if (small != 0 && small != 1) return BZ_PARAM_ERROR; if (verbosity < 0 || verbosity > 4) return BZ_PARAM_ERROR; if (strm->bzalloc == NULL) strm->bzalloc = default_bzalloc; if (strm->bzfree == NULL) strm->bzfree = default_bzfree; s = BZALLOC( sizeof(DState) ); if (s == NULL) return BZ_MEM_ERROR; s->strm = strm; strm->state = s; s->state = BZ_X_MAGIC_1; s->bsLive = 0; s->bsBuff = 0; s->calculatedCombinedCRC = 0; strm->total_in_lo32 = 0; strm->total_in_hi32 = 0; strm->total_out_lo32 = 0; strm->total_out_hi32 = 0; s->smallDecompress = (Bool)small; s->ll4 = NULL; s->ll16 = NULL; s->tt = NULL; s->currBlockNo = 0; s->verbosity = verbosity; return BZ_OK; } /*---------------------------------------------------*/ /* Return True iff data corruption is discovered. Returns False if there is no problem. */ static Bool unRLE_obuf_to_output_FAST ( DState* s ) { UChar k1; if (s->blockRandomised) { while (True) { /* try to finish existing run */ while (True) { if (s->strm->avail_out == 0) return False; if (s->state_out_len == 0) break; *( (UChar*)(s->strm->next_out) ) = s->state_out_ch; BZ_UPDATE_CRC ( s->calculatedBlockCRC, s->state_out_ch ); s->state_out_len--; s->strm->next_out++; s->strm->avail_out--; s->strm->total_out_lo32++; if (s->strm->total_out_lo32 == 0) s->strm->total_out_hi32++; } /* can a new run be started? */ if (s->nblock_used == s->save_nblock+1) return False; /* Only caused by corrupt data stream? */ if (s->nblock_used > s->save_nblock+1) return True; s->state_out_len = 1; s->state_out_ch = s->k0; BZ_GET_FAST(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 2; BZ_GET_FAST(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 3; BZ_GET_FAST(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; BZ_GET_FAST(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; s->state_out_len = ((Int32)k1) + 4; BZ_GET_FAST(s->k0); BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; s->nblock_used++; } } else { /* restore */ UInt32 c_calculatedBlockCRC = s->calculatedBlockCRC; UChar c_state_out_ch = s->state_out_ch; Int32 c_state_out_len = s->state_out_len; Int32 c_nblock_used = s->nblock_used; Int32 c_k0 = s->k0; UInt32* c_tt = s->tt; UInt32 c_tPos = s->tPos; char* cs_next_out = s->strm->next_out; unsigned int cs_avail_out = s->strm->avail_out; Int32 ro_blockSize100k = s->blockSize100k; /* end restore */ UInt32 avail_out_INIT = cs_avail_out; Int32 s_save_nblockPP = s->save_nblock+1; unsigned int total_out_lo32_old; while (True) { /* try to finish existing run */ if (c_state_out_len > 0) { while (True) { if (cs_avail_out == 0) goto return_notr; if (c_state_out_len == 1) break; *( (UChar*)(cs_next_out) ) = c_state_out_ch; BZ_UPDATE_CRC ( c_calculatedBlockCRC, c_state_out_ch ); c_state_out_len--; cs_next_out++; cs_avail_out--; } s_state_out_len_eq_one: { if (cs_avail_out == 0) { c_state_out_len = 1; goto return_notr; }; *( (UChar*)(cs_next_out) ) = c_state_out_ch; BZ_UPDATE_CRC ( c_calculatedBlockCRC, c_state_out_ch ); cs_next_out++; cs_avail_out--; } } /* Only caused by corrupt data stream? */ if (c_nblock_used > s_save_nblockPP) return True; /* can a new run be started? */ if (c_nblock_used == s_save_nblockPP) { c_state_out_len = 0; goto return_notr; }; c_state_out_ch = c_k0; BZ_GET_FAST_C(k1); c_nblock_used++; if (k1 != c_k0) { c_k0 = k1; goto s_state_out_len_eq_one; }; if (c_nblock_used == s_save_nblockPP) goto s_state_out_len_eq_one; c_state_out_len = 2; BZ_GET_FAST_C(k1); c_nblock_used++; if (c_nblock_used == s_save_nblockPP) continue; if (k1 != c_k0) { c_k0 = k1; continue; }; c_state_out_len = 3; BZ_GET_FAST_C(k1); c_nblock_used++; if (c_nblock_used == s_save_nblockPP) continue; if (k1 != c_k0) { c_k0 = k1; continue; }; BZ_GET_FAST_C(k1); c_nblock_used++; c_state_out_len = ((Int32)k1) + 4; BZ_GET_FAST_C(c_k0); c_nblock_used++; } return_notr: total_out_lo32_old = s->strm->total_out_lo32; s->strm->total_out_lo32 += (avail_out_INIT - cs_avail_out); if (s->strm->total_out_lo32 < total_out_lo32_old) s->strm->total_out_hi32++; /* save */ s->calculatedBlockCRC = c_calculatedBlockCRC; s->state_out_ch = c_state_out_ch; s->state_out_len = c_state_out_len; s->nblock_used = c_nblock_used; s->k0 = c_k0; s->tt = c_tt; s->tPos = c_tPos; s->strm->next_out = cs_next_out; s->strm->avail_out = cs_avail_out; /* end save */ } return False; } /*---------------------------------------------------*/ __inline__ Int32 BZ2_indexIntoF ( Int32 indx, Int32 *cftab ) { Int32 nb, na, mid; nb = 0; na = 256; do { mid = (nb + na) >> 1; if (indx >= cftab[mid]) nb = mid; else na = mid; } while (na - nb != 1); return nb; } /*---------------------------------------------------*/ /* Return True iff data corruption is discovered. Returns False if there is no problem. */ static Bool unRLE_obuf_to_output_SMALL ( DState* s ) { UChar k1; if (s->blockRandomised) { while (True) { /* try to finish existing run */ while (True) { if (s->strm->avail_out == 0) return False; if (s->state_out_len == 0) break; *( (UChar*)(s->strm->next_out) ) = s->state_out_ch; BZ_UPDATE_CRC ( s->calculatedBlockCRC, s->state_out_ch ); s->state_out_len--; s->strm->next_out++; s->strm->avail_out--; s->strm->total_out_lo32++; if (s->strm->total_out_lo32 == 0) s->strm->total_out_hi32++; } /* can a new run be started? */ if (s->nblock_used == s->save_nblock+1) return False; /* Only caused by corrupt data stream? */ if (s->nblock_used > s->save_nblock+1) return True; s->state_out_len = 1; s->state_out_ch = s->k0; BZ_GET_SMALL(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 2; BZ_GET_SMALL(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 3; BZ_GET_SMALL(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; BZ_GET_SMALL(k1); BZ_RAND_UPD_MASK; k1 ^= BZ_RAND_MASK; s->nblock_used++; s->state_out_len = ((Int32)k1) + 4; BZ_GET_SMALL(s->k0); BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; s->nblock_used++; } } else { while (True) { /* try to finish existing run */ while (True) { if (s->strm->avail_out == 0) return False; if (s->state_out_len == 0) break; *( (UChar*)(s->strm->next_out) ) = s->state_out_ch; BZ_UPDATE_CRC ( s->calculatedBlockCRC, s->state_out_ch ); s->state_out_len--; s->strm->next_out++; s->strm->avail_out--; s->strm->total_out_lo32++; if (s->strm->total_out_lo32 == 0) s->strm->total_out_hi32++; } /* can a new run be started? */ if (s->nblock_used == s->save_nblock+1) return False; /* Only caused by corrupt data stream? */ if (s->nblock_used > s->save_nblock+1) return True; s->state_out_len = 1; s->state_out_ch = s->k0; BZ_GET_SMALL(k1); s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 2; BZ_GET_SMALL(k1); s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; s->state_out_len = 3; BZ_GET_SMALL(k1); s->nblock_used++; if (s->nblock_used == s->save_nblock+1) continue; if (k1 != s->k0) { s->k0 = k1; continue; }; BZ_GET_SMALL(k1); s->nblock_used++; s->state_out_len = ((Int32)k1) + 4; BZ_GET_SMALL(s->k0); s->nblock_used++; } } } /*---------------------------------------------------*/ int BZ_API(BZ2_bzDecompress) ( bz_stream *strm ) { Bool corrupt; DState* s; if (strm == NULL) return BZ_PARAM_ERROR; s = strm->state; if (s == NULL) return BZ_PARAM_ERROR; if (s->strm != strm) return BZ_PARAM_ERROR; while (True) { if (s->state == BZ_X_IDLE) return BZ_SEQUENCE_ERROR; if (s->state == BZ_X_OUTPUT) { if (s->smallDecompress) corrupt = unRLE_obuf_to_output_SMALL ( s ); else corrupt = unRLE_obuf_to_output_FAST ( s ); if (corrupt) return BZ_DATA_ERROR; if (s->nblock_used == s->save_nblock+1 && s->state_out_len == 0) { BZ_FINALISE_CRC ( s->calculatedBlockCRC ); if (s->verbosity >= 3) VPrintf2 ( " {0x%08x, 0x%08x}", s->storedBlockCRC, s->calculatedBlockCRC ); if (s->verbosity >= 2) VPrintf0 ( "]" ); if (s->calculatedBlockCRC != s->storedBlockCRC) return BZ_DATA_ERROR; s->calculatedCombinedCRC = (s->calculatedCombinedCRC << 1) | (s->calculatedCombinedCRC >> 31); s->calculatedCombinedCRC ^= s->calculatedBlockCRC; s->state = BZ_X_BLKHDR_1; } else { return BZ_OK; } } if (s->state >= BZ_X_MAGIC_1) { Int32 r = BZ2_decompress ( s ); if (r == BZ_STREAM_END) { if (s->verbosity >= 3) VPrintf2 ( "\n combined CRCs: stored = 0x%08x, computed = 0x%08x", s->storedCombinedCRC, s->calculatedCombinedCRC ); if (s->calculatedCombinedCRC != s->storedCombinedCRC) return BZ_DATA_ERROR; return r; } if (s->state != BZ_X_OUTPUT) return r; } } AssertH ( 0, 6001 ); return 0; /*NOTREACHED*/ } /*---------------------------------------------------*/ int BZ_API(BZ2_bzDecompressEnd) ( bz_stream *strm ) { DState* s; if (strm == NULL) return BZ_PARAM_ERROR; s = strm->state; if (s == NULL) return BZ_PARAM_ERROR; if (s->strm != strm) return BZ_PARAM_ERROR; if (s->tt != NULL) BZFREE(s->tt); if (s->ll16 != NULL) BZFREE(s->ll16); if (s->ll4 != NULL) BZFREE(s->ll4); BZFREE(strm->state); strm->state = NULL; return BZ_OK; } #ifndef BZ_NO_STDIO /*---------------------------------------------------*/ /*--- File I/O stuff ---*/ /*---------------------------------------------------*/ #define BZ_SETERR(eee) \ { \ if (bzerror != NULL) *bzerror = eee; \ if (bzf != NULL) bzf->lastErr = eee; \ } typedef struct { FILE* handle; Char buf[BZ_MAX_UNUSED]; Int32 bufN; Bool writing; bz_stream strm; Int32 lastErr; Bool initialisedOk; } bzFile; /*---------------------------------------------*/ static Bool myfeof ( FILE* f ) { Int32 c = fgetc ( f ); if (c == EOF) return True; ungetc ( c, f ); return False; } /*---------------------------------------------------*/ BZFILE* BZ_API(BZ2_bzWriteOpen) ( int* bzerror, FILE* f, int blockSize100k, int verbosity, int workFactor ) { Int32 ret; bzFile* bzf = NULL; BZ_SETERR(BZ_OK); if (f == NULL || (blockSize100k < 1 || blockSize100k > 9) || (workFactor < 0 || workFactor > 250) || (verbosity < 0 || verbosity > 4)) { BZ_SETERR(BZ_PARAM_ERROR); return NULL; }; if (ferror(f)) { BZ_SETERR(BZ_IO_ERROR); return NULL; }; bzf = malloc ( sizeof(bzFile) ); if (bzf == NULL) { BZ_SETERR(BZ_MEM_ERROR); return NULL; }; BZ_SETERR(BZ_OK); bzf->initialisedOk = False; bzf->bufN = 0; bzf->handle = f; bzf->writing = True; bzf->strm.bzalloc = NULL; bzf->strm.bzfree = NULL; bzf->strm.opaque = NULL; if (workFactor == 0) workFactor = 30; ret = BZ2_bzCompressInit ( &(bzf->strm), blockSize100k, verbosity, workFactor ); if (ret != BZ_OK) { BZ_SETERR(ret); free(bzf); return NULL; }; bzf->strm.avail_in = 0; bzf->initialisedOk = True; return bzf; } /*---------------------------------------------------*/ void BZ_API(BZ2_bzWrite) ( int* bzerror, BZFILE* b, void* buf, int len ) { Int32 n, n2, ret; bzFile* bzf = (bzFile*)b; BZ_SETERR(BZ_OK); if (bzf == NULL || buf == NULL || len < 0) { BZ_SETERR(BZ_PARAM_ERROR); return; }; if (!(bzf->writing)) { BZ_SETERR(BZ_SEQUENCE_ERROR); return; }; if (ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return; }; if (len == 0) { BZ_SETERR(BZ_OK); return; }; bzf->strm.avail_in = len; bzf->strm.next_in = buf; while (True) { bzf->strm.avail_out = BZ_MAX_UNUSED; bzf->strm.next_out = bzf->buf; ret = BZ2_bzCompress ( &(bzf->strm), BZ_RUN ); if (ret != BZ_RUN_OK) { BZ_SETERR(ret); return; }; if (bzf->strm.avail_out < BZ_MAX_UNUSED) { n = BZ_MAX_UNUSED - bzf->strm.avail_out; n2 = fwrite ( (void*)(bzf->buf), sizeof(UChar), n, bzf->handle ); if (n != n2 || ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return; }; } if (bzf->strm.avail_in == 0) { BZ_SETERR(BZ_OK); return; }; } } /*---------------------------------------------------*/ void BZ_API(BZ2_bzWriteClose) ( int* bzerror, BZFILE* b, int abandon, unsigned int* nbytes_in, unsigned int* nbytes_out ) { BZ2_bzWriteClose64 ( bzerror, b, abandon, nbytes_in, NULL, nbytes_out, NULL ); } void BZ_API(BZ2_bzWriteClose64) ( int* bzerror, BZFILE* b, int abandon, unsigned int* nbytes_in_lo32, unsigned int* nbytes_in_hi32, unsigned int* nbytes_out_lo32, unsigned int* nbytes_out_hi32 ) { Int32 n, n2, ret; bzFile* bzf = (bzFile*)b; if (bzf == NULL) { BZ_SETERR(BZ_OK); return; }; if (!(bzf->writing)) { BZ_SETERR(BZ_SEQUENCE_ERROR); return; }; if (ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return; }; if (nbytes_in_lo32 != NULL) *nbytes_in_lo32 = 0; if (nbytes_in_hi32 != NULL) *nbytes_in_hi32 = 0; if (nbytes_out_lo32 != NULL) *nbytes_out_lo32 = 0; if (nbytes_out_hi32 != NULL) *nbytes_out_hi32 = 0; if ((!abandon) && bzf->lastErr == BZ_OK) { while (True) { bzf->strm.avail_out = BZ_MAX_UNUSED; bzf->strm.next_out = bzf->buf; ret = BZ2_bzCompress ( &(bzf->strm), BZ_FINISH ); if (ret != BZ_FINISH_OK && ret != BZ_STREAM_END) { BZ_SETERR(ret); return; }; if (bzf->strm.avail_out < BZ_MAX_UNUSED) { n = BZ_MAX_UNUSED - bzf->strm.avail_out; n2 = fwrite ( (void*)(bzf->buf), sizeof(UChar), n, bzf->handle ); if (n != n2 || ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return; }; } if (ret == BZ_STREAM_END) break; } } if ( !abandon && !ferror ( bzf->handle ) ) { fflush ( bzf->handle ); if (ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return; }; } if (nbytes_in_lo32 != NULL) *nbytes_in_lo32 = bzf->strm.total_in_lo32; if (nbytes_in_hi32 != NULL) *nbytes_in_hi32 = bzf->strm.total_in_hi32; if (nbytes_out_lo32 != NULL) *nbytes_out_lo32 = bzf->strm.total_out_lo32; if (nbytes_out_hi32 != NULL) *nbytes_out_hi32 = bzf->strm.total_out_hi32; BZ_SETERR(BZ_OK); BZ2_bzCompressEnd ( &(bzf->strm) ); free ( bzf ); } /*---------------------------------------------------*/ BZFILE* BZ_API(BZ2_bzReadOpen) ( int* bzerror, FILE* f, int verbosity, int small, void* unused, int nUnused ) { bzFile* bzf = NULL; int ret; BZ_SETERR(BZ_OK); if (f == NULL || (small != 0 && small != 1) || (verbosity < 0 || verbosity > 4) || (unused == NULL && nUnused != 0) || (unused != NULL && (nUnused < 0 || nUnused > BZ_MAX_UNUSED))) { BZ_SETERR(BZ_PARAM_ERROR); return NULL; }; if (ferror(f)) { BZ_SETERR(BZ_IO_ERROR); return NULL; }; bzf = malloc ( sizeof(bzFile) ); if (bzf == NULL) { BZ_SETERR(BZ_MEM_ERROR); return NULL; }; BZ_SETERR(BZ_OK); bzf->initialisedOk = False; bzf->handle = f; bzf->bufN = 0; bzf->writing = False; bzf->strm.bzalloc = NULL; bzf->strm.bzfree = NULL; bzf->strm.opaque = NULL; while (nUnused > 0) { bzf->buf[bzf->bufN] = *((UChar*)(unused)); bzf->bufN++; unused = ((void*)( 1 + ((UChar*)(unused)) )); nUnused--; } ret = BZ2_bzDecompressInit ( &(bzf->strm), verbosity, small ); if (ret != BZ_OK) { BZ_SETERR(ret); free(bzf); return NULL; }; bzf->strm.avail_in = bzf->bufN; bzf->strm.next_in = bzf->buf; bzf->initialisedOk = True; return bzf; } /*---------------------------------------------------*/ void BZ_API(BZ2_bzReadClose) ( int *bzerror, BZFILE *b ) { bzFile* bzf = (bzFile*)b; BZ_SETERR(BZ_OK); if (bzf == NULL) { BZ_SETERR(BZ_OK); return; }; if (bzf->writing) { BZ_SETERR(BZ_SEQUENCE_ERROR); return; }; if (bzf->initialisedOk) (void)BZ2_bzDecompressEnd ( &(bzf->strm) ); free ( bzf ); } /*---------------------------------------------------*/ int BZ_API(BZ2_bzRead) ( int* bzerror, BZFILE* b, void* buf, int len ) { Int32 n, ret; bzFile* bzf = (bzFile*)b; BZ_SETERR(BZ_OK); if (bzf == NULL || buf == NULL || len < 0) { BZ_SETERR(BZ_PARAM_ERROR); return 0; }; if (bzf->writing) { BZ_SETERR(BZ_SEQUENCE_ERROR); return 0; }; if (len == 0) { BZ_SETERR(BZ_OK); return 0; }; bzf->strm.avail_out = len; bzf->strm.next_out = buf; while (True) { if (ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return 0; }; if (bzf->strm.avail_in == 0 && !myfeof(bzf->handle)) { n = fread ( bzf->buf, sizeof(UChar), BZ_MAX_UNUSED, bzf->handle ); if (ferror(bzf->handle)) { BZ_SETERR(BZ_IO_ERROR); return 0; }; bzf->bufN = n; bzf->strm.avail_in = bzf->bufN; bzf->strm.next_in = bzf->buf; } ret = BZ2_bzDecompress ( &(bzf->strm) ); if (ret != BZ_OK && ret != BZ_STREAM_END) { BZ_SETERR(ret); return 0; }; if (ret == BZ_OK && myfeof(bzf->handle) && bzf->strm.avail_in == 0 && bzf->strm.avail_out > 0) { BZ_SETERR(BZ_UNEXPECTED_EOF); return 0; }; if (ret == BZ_STREAM_END) { BZ_SETERR(BZ_STREAM_END); return len - bzf->strm.avail_out; }; if (bzf->strm.avail_out == 0) { BZ_SETERR(BZ_OK); return len; }; } return 0; /*not reached*/ } /*---------------------------------------------------*/ void BZ_API(BZ2_bzReadGetUnused) ( int* bzerror, BZFILE* b, void** unused, int* nUnused ) { bzFile* bzf = (bzFile*)b; if (bzf == NULL) { BZ_SETERR(BZ_PARAM_ERROR); return; }; if (bzf->lastErr != BZ_STREAM_END) { BZ_SETERR(BZ_SEQUENCE_ERROR); return; }; if (unused == NULL || nUnused == NULL) { BZ_SETERR(BZ_PARAM_ERROR); return; }; BZ_SETERR(BZ_OK); *nUnused = bzf->strm.avail_in; *unused = bzf->strm.next_in; } #endif /*---------------------------------------------------*/ /*--- Misc convenience stuff ---*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ int BZ_API(BZ2_bzBuffToBuffCompress) ( char* dest, unsigned int* destLen, char* source, unsigned int sourceLen, int blockSize100k, int verbosity, int workFactor ) { bz_stream strm; int ret; if (dest == NULL || destLen == NULL || source == NULL || blockSize100k < 1 || blockSize100k > 9 || verbosity < 0 || verbosity > 4 || workFactor < 0 || workFactor > 250) return BZ_PARAM_ERROR; if (workFactor == 0) workFactor = 30; strm.bzalloc = NULL; strm.bzfree = NULL; strm.opaque = NULL; ret = BZ2_bzCompressInit ( &strm, blockSize100k, verbosity, workFactor ); if (ret != BZ_OK) return ret; strm.next_in = source; strm.next_out = dest; strm.avail_in = sourceLen; strm.avail_out = *destLen; ret = BZ2_bzCompress ( &strm, BZ_FINISH ); if (ret == BZ_FINISH_OK) goto output_overflow; if (ret != BZ_STREAM_END) goto errhandler; /* normal termination */ *destLen -= strm.avail_out; BZ2_bzCompressEnd ( &strm ); return BZ_OK; output_overflow: BZ2_bzCompressEnd ( &strm ); return BZ_OUTBUFF_FULL; errhandler: BZ2_bzCompressEnd ( &strm ); return ret; } /*---------------------------------------------------*/ int BZ_API(BZ2_bzBuffToBuffDecompress) ( char* dest, unsigned int* destLen, char* source, unsigned int sourceLen, int small, int verbosity ) { bz_stream strm; int ret; if (dest == NULL || destLen == NULL || source == NULL || (small != 0 && small != 1) || verbosity < 0 || verbosity > 4) return BZ_PARAM_ERROR; strm.bzalloc = NULL; strm.bzfree = NULL; strm.opaque = NULL; ret = BZ2_bzDecompressInit ( &strm, verbosity, small ); if (ret != BZ_OK) return ret; strm.next_in = source; strm.next_out = dest; strm.avail_in = sourceLen; strm.avail_out = *destLen; ret = BZ2_bzDecompress ( &strm ); if (ret == BZ_OK) goto output_overflow_or_eof; if (ret != BZ_STREAM_END) goto errhandler; /* normal termination */ *destLen -= strm.avail_out; BZ2_bzDecompressEnd ( &strm ); return BZ_OK; output_overflow_or_eof: if (strm.avail_out > 0) { BZ2_bzDecompressEnd ( &strm ); return BZ_UNEXPECTED_EOF; } else { BZ2_bzDecompressEnd ( &strm ); return BZ_OUTBUFF_FULL; }; errhandler: BZ2_bzDecompressEnd ( &strm ); return ret; } /*---------------------------------------------------*/ /*-- Code contributed by Yoshioka Tsuneo (tsuneo@rr.iij4u.or.jp) to support better zlib compatibility. This code is not _officially_ part of libbzip2 (yet); I haven't tested it, documented it, or considered the threading-safeness of it. If this code breaks, please contact both Yoshioka and me. --*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ /*-- return version like "0.9.5d, 4-Sept-1999". --*/ const char * BZ_API(BZ2_bzlibVersion)(void) { return BZ_VERSION; } #ifndef BZ_NO_STDIO /*---------------------------------------------------*/ #if defined(_WIN32) || defined(OS2) || defined(MSDOS) # include # include # define SET_BINARY_MODE(file) setmode(fileno(file),O_BINARY) #else # define SET_BINARY_MODE(file) #endif static BZFILE * bzopen_or_bzdopen ( const char *path, /* no use when bzdopen */ int fd, /* no use when bzdopen */ const char *mode, int open_mode) /* bzopen: 0, bzdopen:1 */ { int bzerr; char unused[BZ_MAX_UNUSED]; int blockSize100k = 9; int writing = 0; char mode2[10] = ""; FILE *fp = NULL; BZFILE *bzfp = NULL; int verbosity = 0; int workFactor = 30; int smallMode = 0; int nUnused = 0; if (mode == NULL) return NULL; while (*mode) { switch (*mode) { case 'r': writing = 0; break; case 'w': writing = 1; break; case 's': smallMode = 1; break; default: if (isdigit((int)(*mode))) { blockSize100k = *mode-BZ_HDR_0; } } mode++; } strcat(mode2, writing ? "w" : "r" ); strcat(mode2,"b"); /* binary mode */ if (open_mode==0) { if (path==NULL || strcmp(path,"")==0) { fp = (writing ? stdout : stdin); SET_BINARY_MODE(fp); } else { fp = fopen(path,mode2); } } else { #ifdef BZ_STRICT_ANSI fp = NULL; #else fp = fdopen(fd,mode2); #endif } if (fp == NULL) return NULL; if (writing) { /* Guard against total chaos and anarchy -- JRS */ if (blockSize100k < 1) blockSize100k = 1; if (blockSize100k > 9) blockSize100k = 9; bzfp = BZ2_bzWriteOpen(&bzerr,fp,blockSize100k, verbosity,workFactor); } else { bzfp = BZ2_bzReadOpen(&bzerr,fp,verbosity,smallMode, unused,nUnused); } if (bzfp == NULL) { if (fp != stdin && fp != stdout) fclose(fp); return NULL; } return bzfp; } /*---------------------------------------------------*/ /*-- open file for read or write. ex) bzopen("file","w9") case path="" or NULL => use stdin or stdout. --*/ BZFILE * BZ_API(BZ2_bzopen) ( const char *path, const char *mode ) { return bzopen_or_bzdopen(path,-1,mode,/*bzopen*/0); } /*---------------------------------------------------*/ BZFILE * BZ_API(BZ2_bzdopen) ( int fd, const char *mode ) { return bzopen_or_bzdopen(NULL,fd,mode,/*bzdopen*/1); } /*---------------------------------------------------*/ int BZ_API(BZ2_bzread) (BZFILE* b, void* buf, int len ) { int bzerr, nread; if (((bzFile*)b)->lastErr == BZ_STREAM_END) return 0; nread = BZ2_bzRead(&bzerr,b,buf,len); if (bzerr == BZ_OK || bzerr == BZ_STREAM_END) { return nread; } else { return -1; } } /*---------------------------------------------------*/ int BZ_API(BZ2_bzwrite) (BZFILE* b, void* buf, int len ) { int bzerr; BZ2_bzWrite(&bzerr,b,buf,len); if(bzerr == BZ_OK){ return len; }else{ return -1; } } /*---------------------------------------------------*/ int BZ_API(BZ2_bzflush) (BZFILE *b) { /* do nothing now... */ return 0; } /*---------------------------------------------------*/ void BZ_API(BZ2_bzclose) (BZFILE* b) { int bzerr; FILE *fp; if (b==NULL) {return;} fp = ((bzFile *)b)->handle; if(((bzFile*)b)->writing){ BZ2_bzWriteClose(&bzerr,b,0,NULL,NULL); if(bzerr != BZ_OK){ BZ2_bzWriteClose(NULL,b,1,NULL,NULL); } }else{ BZ2_bzReadClose(&bzerr,b); } if(fp!=stdin && fp!=stdout){ fclose(fp); } } /*---------------------------------------------------*/ /*-- return last error code --*/ static const char *bzerrorstrings[] = { "OK" ,"SEQUENCE_ERROR" ,"PARAM_ERROR" ,"MEM_ERROR" ,"DATA_ERROR" ,"DATA_ERROR_MAGIC" ,"IO_ERROR" ,"UNEXPECTED_EOF" ,"OUTBUFF_FULL" ,"CONFIG_ERROR" ,"???" /* for future */ ,"???" /* for future */ ,"???" /* for future */ ,"???" /* for future */ ,"???" /* for future */ ,"???" /* for future */ }; const char * BZ_API(BZ2_bzerror) (BZFILE *b, int *errnum) { int err = ((bzFile *)b)->lastErr; if(err>0) err = 0; *errnum = err; return bzerrorstrings[err*-1]; } #endif /*-------------------------------------------------------------*/ /*--- end bzlib.c ---*/ /*-------------------------------------------------------------*/ bzlib-0.5.1.0/cbits/bzlib.h0000644000000000000000000001450707346545000013534 0ustar0000000000000000 /*-------------------------------------------------------------*/ /*--- Public header file for the library. ---*/ /*--- bzlib.h ---*/ /*-------------------------------------------------------------*/ /* ------------------------------------------------------------------ This file is part of bzip2/libbzip2, a program and library for lossless, block-sorting data compression. bzip2/libbzip2 version 1.0.6 of 6 September 2010 Copyright (C) 1996-2010 Julian Seward Please read the WARNING, DISCLAIMER and PATENTS sections in the README file. This program is released under the terms of the license contained in the file LICENSE. ------------------------------------------------------------------ */ #ifndef _BZLIB_H #define _BZLIB_H #ifdef __cplusplus extern "C" { #endif #define BZ_RUN 0 #define BZ_FLUSH 1 #define BZ_FINISH 2 #define BZ_OK 0 #define BZ_RUN_OK 1 #define BZ_FLUSH_OK 2 #define BZ_FINISH_OK 3 #define BZ_STREAM_END 4 #define BZ_SEQUENCE_ERROR (-1) #define BZ_PARAM_ERROR (-2) #define BZ_MEM_ERROR (-3) #define BZ_DATA_ERROR (-4) #define BZ_DATA_ERROR_MAGIC (-5) #define BZ_IO_ERROR (-6) #define BZ_UNEXPECTED_EOF (-7) #define BZ_OUTBUFF_FULL (-8) #define BZ_CONFIG_ERROR (-9) typedef struct { char *next_in; unsigned int avail_in; unsigned int total_in_lo32; unsigned int total_in_hi32; char *next_out; unsigned int avail_out; unsigned int total_out_lo32; unsigned int total_out_hi32; void *state; void *(*bzalloc)(void *,int,int); void (*bzfree)(void *,void *); void *opaque; } bz_stream; #ifndef BZ_IMPORT #define BZ_EXPORT #endif #ifndef BZ_NO_STDIO /* Need a definitition for FILE */ #include #endif #ifdef _WIN32 # include # ifdef small /* windows.h define small to char */ # undef small # endif # ifdef BZ_EXPORT # define BZ_API(func) WINAPI func # define BZ_EXTERN extern # else /* import windows dll dynamically */ # define BZ_API(func) (WINAPI * func) # define BZ_EXTERN # endif #else # define BZ_API(func) func # define BZ_EXTERN extern #endif /* Using WINAPI causes the function to be exported using the 'stdcall' * calling convention. We'd rather use the ordinary calling convention * so we redefine BZ_API to do nothing. */ #undef BZ_API #define BZ_API(func) func /*-- Core (low-level) library functions --*/ BZ_EXTERN int BZ_API(BZ2_bzCompressInit) ( bz_stream* strm, int blockSize100k, int verbosity, int workFactor ); BZ_EXTERN int BZ_API(BZ2_bzCompress) ( bz_stream* strm, int action ); BZ_EXTERN int BZ_API(BZ2_bzCompressEnd) ( bz_stream* strm ); BZ_EXTERN int BZ_API(BZ2_bzDecompressInit) ( bz_stream *strm, int verbosity, int small ); BZ_EXTERN int BZ_API(BZ2_bzDecompress) ( bz_stream* strm ); BZ_EXTERN int BZ_API(BZ2_bzDecompressEnd) ( bz_stream *strm ); /*-- High(er) level library functions --*/ #ifndef BZ_NO_STDIO #define BZ_MAX_UNUSED 5000 typedef void BZFILE; BZ_EXTERN BZFILE* BZ_API(BZ2_bzReadOpen) ( int* bzerror, FILE* f, int verbosity, int small, void* unused, int nUnused ); BZ_EXTERN void BZ_API(BZ2_bzReadClose) ( int* bzerror, BZFILE* b ); BZ_EXTERN void BZ_API(BZ2_bzReadGetUnused) ( int* bzerror, BZFILE* b, void** unused, int* nUnused ); BZ_EXTERN int BZ_API(BZ2_bzRead) ( int* bzerror, BZFILE* b, void* buf, int len ); BZ_EXTERN BZFILE* BZ_API(BZ2_bzWriteOpen) ( int* bzerror, FILE* f, int blockSize100k, int verbosity, int workFactor ); BZ_EXTERN void BZ_API(BZ2_bzWrite) ( int* bzerror, BZFILE* b, void* buf, int len ); BZ_EXTERN void BZ_API(BZ2_bzWriteClose) ( int* bzerror, BZFILE* b, int abandon, unsigned int* nbytes_in, unsigned int* nbytes_out ); BZ_EXTERN void BZ_API(BZ2_bzWriteClose64) ( int* bzerror, BZFILE* b, int abandon, unsigned int* nbytes_in_lo32, unsigned int* nbytes_in_hi32, unsigned int* nbytes_out_lo32, unsigned int* nbytes_out_hi32 ); #endif /*-- Utility functions --*/ BZ_EXTERN int BZ_API(BZ2_bzBuffToBuffCompress) ( char* dest, unsigned int* destLen, char* source, unsigned int sourceLen, int blockSize100k, int verbosity, int workFactor ); BZ_EXTERN int BZ_API(BZ2_bzBuffToBuffDecompress) ( char* dest, unsigned int* destLen, char* source, unsigned int sourceLen, int small, int verbosity ); /*-- Code contributed by Yoshioka Tsuneo (tsuneo@rr.iij4u.or.jp) to support better zlib compatibility. This code is not _officially_ part of libbzip2 (yet); I haven't tested it, documented it, or considered the threading-safeness of it. If this code breaks, please contact both Yoshioka and me. --*/ BZ_EXTERN const char * BZ_API(BZ2_bzlibVersion) ( void ); #ifndef BZ_NO_STDIO BZ_EXTERN BZFILE * BZ_API(BZ2_bzopen) ( const char *path, const char *mode ); BZ_EXTERN BZFILE * BZ_API(BZ2_bzdopen) ( int fd, const char *mode ); BZ_EXTERN int BZ_API(BZ2_bzread) ( BZFILE* b, void* buf, int len ); BZ_EXTERN int BZ_API(BZ2_bzwrite) ( BZFILE* b, void* buf, int len ); BZ_EXTERN int BZ_API(BZ2_bzflush) ( BZFILE* b ); BZ_EXTERN void BZ_API(BZ2_bzclose) ( BZFILE* b ); BZ_EXTERN const char * BZ_API(BZ2_bzerror) ( BZFILE *b, int *errnum ); #endif #ifdef __cplusplus } #endif #endif /*-------------------------------------------------------------*/ /*--- end bzlib.h ---*/ /*-------------------------------------------------------------*/ bzlib-0.5.1.0/cbits/bzlib_private.h0000755000000000000000000003167407346545000015275 0ustar0000000000000000 /*-------------------------------------------------------------*/ /*--- Private header file for the library. ---*/ /*--- bzlib_private.h ---*/ /*-------------------------------------------------------------*/ /* ------------------------------------------------------------------ This file is part of bzip2/libbzip2, a program and library for lossless, block-sorting data compression. bzip2/libbzip2 version 1.0.6 of 6 September 2010 Copyright (C) 1996-2010 Julian Seward Please read the WARNING, DISCLAIMER and PATENTS sections in the README file. This program is released under the terms of the license contained in the file LICENSE. ------------------------------------------------------------------ */ #ifndef _BZLIB_PRIVATE_H #define _BZLIB_PRIVATE_H #include #ifndef BZ_NO_STDIO #include #include #include #endif #include "bzlib.h" /*-- General stuff. --*/ #define BZ_VERSION "1.0.6, 6-Sept-2010" typedef char Char; typedef unsigned char Bool; typedef unsigned char UChar; typedef int Int32; typedef unsigned int UInt32; typedef short Int16; typedef unsigned short UInt16; #define True ((Bool)1) #define False ((Bool)0) #ifndef __GNUC__ #define __inline__ /* */ #endif #ifndef BZ_NO_STDIO extern void BZ2_bz__AssertH__fail ( int errcode ); #define AssertH(cond,errcode) \ { if (!(cond)) BZ2_bz__AssertH__fail ( errcode ); } #if BZ_DEBUG #define AssertD(cond,msg) \ { if (!(cond)) { \ fprintf ( stderr, \ "\n\nlibbzip2(debug build): internal error\n\t%s\n", msg );\ exit(1); \ }} #else #define AssertD(cond,msg) /* */ #endif #define VPrintf0(zf) \ fprintf(stderr,zf) #define VPrintf1(zf,za1) \ fprintf(stderr,zf,za1) #define VPrintf2(zf,za1,za2) \ fprintf(stderr,zf,za1,za2) #define VPrintf3(zf,za1,za2,za3) \ fprintf(stderr,zf,za1,za2,za3) #define VPrintf4(zf,za1,za2,za3,za4) \ fprintf(stderr,zf,za1,za2,za3,za4) #define VPrintf5(zf,za1,za2,za3,za4,za5) \ fprintf(stderr,zf,za1,za2,za3,za4,za5) #else extern void bz_internal_error ( int errcode ); #define AssertH(cond,errcode) \ { if (!(cond)) bz_internal_error ( errcode ); } #define AssertD(cond,msg) do { } while (0) #define VPrintf0(zf) do { } while (0) #define VPrintf1(zf,za1) do { } while (0) #define VPrintf2(zf,za1,za2) do { } while (0) #define VPrintf3(zf,za1,za2,za3) do { } while (0) #define VPrintf4(zf,za1,za2,za3,za4) do { } while (0) #define VPrintf5(zf,za1,za2,za3,za4,za5) do { } while (0) #endif #define BZALLOC(nnn) (strm->bzalloc)(strm->opaque,(nnn),1) #define BZFREE(ppp) (strm->bzfree)(strm->opaque,(ppp)) /*-- Header bytes. --*/ #define BZ_HDR_B 0x42 /* 'B' */ #define BZ_HDR_Z 0x5a /* 'Z' */ #define BZ_HDR_h 0x68 /* 'h' */ #define BZ_HDR_0 0x30 /* '0' */ /*-- Constants for the back end. --*/ #define BZ_MAX_ALPHA_SIZE 258 #define BZ_MAX_CODE_LEN 23 #define BZ_RUNA 0 #define BZ_RUNB 1 #define BZ_N_GROUPS 6 #define BZ_G_SIZE 50 #define BZ_N_ITERS 4 #define BZ_MAX_SELECTORS (2 + (900000 / BZ_G_SIZE)) /*-- Stuff for randomising repetitive blocks. --*/ extern Int32 BZ2_rNums[512]; #define BZ_RAND_DECLS \ Int32 rNToGo; \ Int32 rTPos \ #define BZ_RAND_INIT_MASK \ s->rNToGo = 0; \ s->rTPos = 0 \ #define BZ_RAND_MASK ((s->rNToGo == 1) ? 1 : 0) #define BZ_RAND_UPD_MASK \ if (s->rNToGo == 0) { \ s->rNToGo = BZ2_rNums[s->rTPos]; \ s->rTPos++; \ if (s->rTPos == 512) s->rTPos = 0; \ } \ s->rNToGo--; /*-- Stuff for doing CRCs. --*/ extern UInt32 BZ2_crc32Table[256]; #define BZ_INITIALISE_CRC(crcVar) \ { \ crcVar = 0xffffffffL; \ } #define BZ_FINALISE_CRC(crcVar) \ { \ crcVar = ~(crcVar); \ } #define BZ_UPDATE_CRC(crcVar,cha) \ { \ crcVar = (crcVar << 8) ^ \ BZ2_crc32Table[(crcVar >> 24) ^ \ ((UChar)cha)]; \ } /*-- States and modes for compression. --*/ #define BZ_M_IDLE 1 #define BZ_M_RUNNING 2 #define BZ_M_FLUSHING 3 #define BZ_M_FINISHING 4 #define BZ_S_OUTPUT 1 #define BZ_S_INPUT 2 #define BZ_N_RADIX 2 #define BZ_N_QSORT 12 #define BZ_N_SHELL 18 #define BZ_N_OVERSHOOT (BZ_N_RADIX + BZ_N_QSORT + BZ_N_SHELL + 2) /*-- Structure holding all the compression-side stuff. --*/ typedef struct { /* pointer back to the struct bz_stream */ bz_stream* strm; /* mode this stream is in, and whether inputting */ /* or outputting data */ Int32 mode; Int32 state; /* remembers avail_in when flush/finish requested */ UInt32 avail_in_expect; /* for doing the block sorting */ UInt32* arr1; UInt32* arr2; UInt32* ftab; Int32 origPtr; /* aliases for arr1 and arr2 */ UInt32* ptr; UChar* block; UInt16* mtfv; UChar* zbits; /* for deciding when to use the fallback sorting algorithm */ Int32 workFactor; /* run-length-encoding of the input */ UInt32 state_in_ch; Int32 state_in_len; BZ_RAND_DECLS; /* input and output limits and current posns */ Int32 nblock; Int32 nblockMAX; Int32 numZ; Int32 state_out_pos; /* map of bytes used in block */ Int32 nInUse; Bool inUse[256]; UChar unseqToSeq[256]; /* the buffer for bit stream creation */ UInt32 bsBuff; Int32 bsLive; /* block and combined CRCs */ UInt32 blockCRC; UInt32 combinedCRC; /* misc administratium */ Int32 verbosity; Int32 blockNo; Int32 blockSize100k; /* stuff for coding the MTF values */ Int32 nMTF; Int32 mtfFreq [BZ_MAX_ALPHA_SIZE]; UChar selector [BZ_MAX_SELECTORS]; UChar selectorMtf[BZ_MAX_SELECTORS]; UChar len [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 code [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 rfreq [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; /* second dimension: only 3 needed; 4 makes index calculations faster */ UInt32 len_pack[BZ_MAX_ALPHA_SIZE][4]; } EState; /*-- externs for compression. --*/ extern void BZ2_blockSort ( EState* ); extern void BZ2_compressBlock ( EState*, Bool ); extern void BZ2_bsInitWrite ( EState* ); extern void BZ2_hbAssignCodes ( Int32*, UChar*, Int32, Int32, Int32 ); extern void BZ2_hbMakeCodeLengths ( UChar*, Int32*, Int32, Int32 ); /*-- states for decompression. --*/ #define BZ_X_IDLE 1 #define BZ_X_OUTPUT 2 #define BZ_X_MAGIC_1 10 #define BZ_X_MAGIC_2 11 #define BZ_X_MAGIC_3 12 #define BZ_X_MAGIC_4 13 #define BZ_X_BLKHDR_1 14 #define BZ_X_BLKHDR_2 15 #define BZ_X_BLKHDR_3 16 #define BZ_X_BLKHDR_4 17 #define BZ_X_BLKHDR_5 18 #define BZ_X_BLKHDR_6 19 #define BZ_X_BCRC_1 20 #define BZ_X_BCRC_2 21 #define BZ_X_BCRC_3 22 #define BZ_X_BCRC_4 23 #define BZ_X_RANDBIT 24 #define BZ_X_ORIGPTR_1 25 #define BZ_X_ORIGPTR_2 26 #define BZ_X_ORIGPTR_3 27 #define BZ_X_MAPPING_1 28 #define BZ_X_MAPPING_2 29 #define BZ_X_SELECTOR_1 30 #define BZ_X_SELECTOR_2 31 #define BZ_X_SELECTOR_3 32 #define BZ_X_CODING_1 33 #define BZ_X_CODING_2 34 #define BZ_X_CODING_3 35 #define BZ_X_MTF_1 36 #define BZ_X_MTF_2 37 #define BZ_X_MTF_3 38 #define BZ_X_MTF_4 39 #define BZ_X_MTF_5 40 #define BZ_X_MTF_6 41 #define BZ_X_ENDHDR_2 42 #define BZ_X_ENDHDR_3 43 #define BZ_X_ENDHDR_4 44 #define BZ_X_ENDHDR_5 45 #define BZ_X_ENDHDR_6 46 #define BZ_X_CCRC_1 47 #define BZ_X_CCRC_2 48 #define BZ_X_CCRC_3 49 #define BZ_X_CCRC_4 50 /*-- Constants for the fast MTF decoder. --*/ #define MTFA_SIZE 4096 #define MTFL_SIZE 16 /*-- Structure holding all the decompression-side stuff. --*/ typedef struct { /* pointer back to the struct bz_stream */ bz_stream* strm; /* state indicator for this stream */ Int32 state; /* for doing the final run-length decoding */ UChar state_out_ch; Int32 state_out_len; Bool blockRandomised; BZ_RAND_DECLS; /* the buffer for bit stream reading */ UInt32 bsBuff; Int32 bsLive; /* misc administratium */ Int32 blockSize100k; Bool smallDecompress; Int32 currBlockNo; Int32 verbosity; /* for undoing the Burrows-Wheeler transform */ Int32 origPtr; UInt32 tPos; Int32 k0; Int32 unzftab[256]; Int32 nblock_used; Int32 cftab[257]; Int32 cftabCopy[257]; /* for undoing the Burrows-Wheeler transform (FAST) */ UInt32 *tt; /* for undoing the Burrows-Wheeler transform (SMALL) */ UInt16 *ll16; UChar *ll4; /* stored and calculated CRCs */ UInt32 storedBlockCRC; UInt32 storedCombinedCRC; UInt32 calculatedBlockCRC; UInt32 calculatedCombinedCRC; /* map of bytes used in block */ Int32 nInUse; Bool inUse[256]; Bool inUse16[16]; UChar seqToUnseq[256]; /* for decoding the MTF values */ UChar mtfa [MTFA_SIZE]; Int32 mtfbase[256 / MTFL_SIZE]; UChar selector [BZ_MAX_SELECTORS]; UChar selectorMtf[BZ_MAX_SELECTORS]; UChar len [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 limit [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 base [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 perm [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 minLens[BZ_N_GROUPS]; /* save area for scalars in the main decompress code */ Int32 save_i; Int32 save_j; Int32 save_t; Int32 save_alphaSize; Int32 save_nGroups; Int32 save_nSelectors; Int32 save_EOB; Int32 save_groupNo; Int32 save_groupPos; Int32 save_nextSym; Int32 save_nblockMAX; Int32 save_nblock; Int32 save_es; Int32 save_N; Int32 save_curr; Int32 save_zt; Int32 save_zn; Int32 save_zvec; Int32 save_zj; Int32 save_gSel; Int32 save_gMinlen; Int32* save_gLimit; Int32* save_gBase; Int32* save_gPerm; } DState; /*-- Macros for decompression. --*/ #define BZ_GET_FAST(cccc) \ /* c_tPos is unsigned, hence test < 0 is pointless. */ \ if (s->tPos >= (UInt32)100000 * (UInt32)s->blockSize100k) return True; \ s->tPos = s->tt[s->tPos]; \ cccc = (UChar)(s->tPos & 0xff); \ s->tPos >>= 8; #define BZ_GET_FAST_C(cccc) \ /* c_tPos is unsigned, hence test < 0 is pointless. */ \ if (c_tPos >= (UInt32)100000 * (UInt32)ro_blockSize100k) return True; \ c_tPos = c_tt[c_tPos]; \ cccc = (UChar)(c_tPos & 0xff); \ c_tPos >>= 8; #define SET_LL4(i,n) \ { if (((i) & 0x1) == 0) \ s->ll4[(i) >> 1] = (s->ll4[(i) >> 1] & 0xf0) | (n); else \ s->ll4[(i) >> 1] = (s->ll4[(i) >> 1] & 0x0f) | ((n) << 4); \ } #define GET_LL4(i) \ ((((UInt32)(s->ll4[(i) >> 1])) >> (((i) << 2) & 0x4)) & 0xF) #define SET_LL(i,n) \ { s->ll16[i] = (UInt16)(n & 0x0000ffff); \ SET_LL4(i, n >> 16); \ } #define GET_LL(i) \ (((UInt32)s->ll16[i]) | (GET_LL4(i) << 16)) #define BZ_GET_SMALL(cccc) \ /* c_tPos is unsigned, hence test < 0 is pointless. */ \ if (s->tPos >= (UInt32)100000 * (UInt32)s->blockSize100k) return True; \ cccc = BZ2_indexIntoF ( s->tPos, s->cftab ); \ s->tPos = GET_LL(s->tPos); /*-- externs for decompression. --*/ extern Int32 BZ2_indexIntoF ( Int32, Int32* ); extern Int32 BZ2_decompress ( DState* ); extern void BZ2_hbCreateDecodeTables ( Int32*, Int32*, Int32*, UChar*, Int32, Int32, Int32 ); #endif /*-- BZ_NO_STDIO seems to make NULL disappear on some platforms. --*/ #ifdef BZ_NO_STDIO #ifndef NULL #define NULL 0 #endif #endif /*-------------------------------------------------------------*/ /*--- end bzlib_private.h ---*/ /*-------------------------------------------------------------*/ bzlib-0.5.1.0/cbits/compress.c0000644000000000000000000005012107346545000014250 0ustar0000000000000000 /*-------------------------------------------------------------*/ /*--- Compression machinery (not incl block sorting) ---*/ /*--- compress.c ---*/ /*-------------------------------------------------------------*/ /* ------------------------------------------------------------------ This file is part of bzip2/libbzip2, a program and library for lossless, block-sorting data compression. bzip2/libbzip2 version 1.0.6 of 6 September 2010 Copyright (C) 1996-2010 Julian Seward Please read the WARNING, DISCLAIMER and PATENTS sections in the README file. This program is released under the terms of the license contained in the file LICENSE. ------------------------------------------------------------------ */ /* CHANGES 0.9.0 -- original version. 0.9.0a/b -- no changes in this file. 0.9.0c -- changed setting of nGroups in sendMTFValues() so as to do a bit better on small files */ #include "bzlib_private.h" /*---------------------------------------------------*/ /*--- Bit stream I/O ---*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ void BZ2_bsInitWrite ( EState* s ) { s->bsLive = 0; s->bsBuff = 0; } /*---------------------------------------------------*/ static void bsFinishWrite ( EState* s ) { while (s->bsLive > 0) { s->zbits[s->numZ] = (UChar)(s->bsBuff >> 24); s->numZ++; s->bsBuff <<= 8; s->bsLive -= 8; } } /*---------------------------------------------------*/ #define bsNEEDW(nz) \ { \ while (s->bsLive >= 8) { \ s->zbits[s->numZ] \ = (UChar)(s->bsBuff >> 24); \ s->numZ++; \ s->bsBuff <<= 8; \ s->bsLive -= 8; \ } \ } /*---------------------------------------------------*/ static __inline__ void bsW ( EState* s, Int32 n, UInt32 v ) { bsNEEDW ( n ); s->bsBuff |= (v << (32 - s->bsLive - n)); s->bsLive += n; } /*---------------------------------------------------*/ static void bsPutUInt32 ( EState* s, UInt32 u ) { bsW ( s, 8, (u >> 24) & 0xffL ); bsW ( s, 8, (u >> 16) & 0xffL ); bsW ( s, 8, (u >> 8) & 0xffL ); bsW ( s, 8, u & 0xffL ); } /*---------------------------------------------------*/ static void bsPutUChar ( EState* s, UChar c ) { bsW( s, 8, (UInt32)c ); } /*---------------------------------------------------*/ /*--- The back end proper ---*/ /*---------------------------------------------------*/ /*---------------------------------------------------*/ static void makeMaps_e ( EState* s ) { Int32 i; s->nInUse = 0; for (i = 0; i < 256; i++) if (s->inUse[i]) { s->unseqToSeq[i] = s->nInUse; s->nInUse++; } } /*---------------------------------------------------*/ static void generateMTFValues ( EState* s ) { UChar yy[256]; Int32 i, j; Int32 zPend; Int32 wr; Int32 EOB; /* After sorting (eg, here), s->arr1 [ 0 .. s->nblock-1 ] holds sorted order, and ((UChar*)s->arr2) [ 0 .. s->nblock-1 ] holds the original block data. The first thing to do is generate the MTF values, and put them in ((UInt16*)s->arr1) [ 0 .. s->nblock-1 ]. Because there are strictly fewer or equal MTF values than block values, ptr values in this area are overwritten with MTF values only when they are no longer needed. The final compressed bitstream is generated into the area starting at (UChar*) (&((UChar*)s->arr2)[s->nblock]) These storage aliases are set up in bzCompressInit(), except for the last one, which is arranged in compressBlock(). */ UInt32* ptr = s->ptr; UChar* block = s->block; UInt16* mtfv = s->mtfv; makeMaps_e ( s ); EOB = s->nInUse+1; for (i = 0; i <= EOB; i++) s->mtfFreq[i] = 0; wr = 0; zPend = 0; for (i = 0; i < s->nInUse; i++) yy[i] = (UChar) i; for (i = 0; i < s->nblock; i++) { UChar ll_i; AssertD ( wr <= i, "generateMTFValues(1)" ); j = ptr[i]-1; if (j < 0) j += s->nblock; ll_i = s->unseqToSeq[block[j]]; AssertD ( ll_i < s->nInUse, "generateMTFValues(2a)" ); if (yy[0] == ll_i) { zPend++; } else { if (zPend > 0) { zPend--; while (True) { if (zPend & 1) { mtfv[wr] = BZ_RUNB; wr++; s->mtfFreq[BZ_RUNB]++; } else { mtfv[wr] = BZ_RUNA; wr++; s->mtfFreq[BZ_RUNA]++; } if (zPend < 2) break; zPend = (zPend - 2) / 2; }; zPend = 0; } { register UChar rtmp; register UChar* ryy_j; register UChar rll_i; rtmp = yy[1]; yy[1] = yy[0]; ryy_j = &(yy[1]); rll_i = ll_i; while ( rll_i != rtmp ) { register UChar rtmp2; ryy_j++; rtmp2 = rtmp; rtmp = *ryy_j; *ryy_j = rtmp2; }; yy[0] = rtmp; j = ryy_j - &(yy[0]); mtfv[wr] = j+1; wr++; s->mtfFreq[j+1]++; } } } if (zPend > 0) { zPend--; while (True) { if (zPend & 1) { mtfv[wr] = BZ_RUNB; wr++; s->mtfFreq[BZ_RUNB]++; } else { mtfv[wr] = BZ_RUNA; wr++; s->mtfFreq[BZ_RUNA]++; } if (zPend < 2) break; zPend = (zPend - 2) / 2; }; zPend = 0; } mtfv[wr] = EOB; wr++; s->mtfFreq[EOB]++; s->nMTF = wr; } /*---------------------------------------------------*/ #define BZ_LESSER_ICOST 0 #define BZ_GREATER_ICOST 15 static void sendMTFValues ( EState* s ) { Int32 v, t, i, j, gs, ge, totc, bt, bc, iter; Int32 nSelectors, alphaSize, minLen, maxLen, selCtr; Int32 nGroups, nBytes; /*-- UChar len [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; is a global since the decoder also needs it. Int32 code[BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; Int32 rfreq[BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE]; are also globals only used in this proc. Made global to keep stack frame size small. --*/ UInt16 cost[BZ_N_GROUPS]; Int32 fave[BZ_N_GROUPS]; UInt16* mtfv = s->mtfv; if (s->verbosity >= 3) VPrintf3( " %d in block, %d after MTF & 1-2 coding, " "%d+2 syms in use\n", s->nblock, s->nMTF, s->nInUse ); alphaSize = s->nInUse+2; for (t = 0; t < BZ_N_GROUPS; t++) for (v = 0; v < alphaSize; v++) s->len[t][v] = BZ_GREATER_ICOST; /*--- Decide how many coding tables to use ---*/ AssertH ( s->nMTF > 0, 3001 ); if (s->nMTF < 200) nGroups = 2; else if (s->nMTF < 600) nGroups = 3; else if (s->nMTF < 1200) nGroups = 4; else if (s->nMTF < 2400) nGroups = 5; else nGroups = 6; /*--- Generate an initial set of coding tables ---*/ { Int32 nPart, remF, tFreq, aFreq; nPart = nGroups; remF = s->nMTF; gs = 0; while (nPart > 0) { tFreq = remF / nPart; ge = gs-1; aFreq = 0; while (aFreq < tFreq && ge < alphaSize-1) { ge++; aFreq += s->mtfFreq[ge]; } if (ge > gs && nPart != nGroups && nPart != 1 && ((nGroups-nPart) % 2 == 1)) { aFreq -= s->mtfFreq[ge]; ge--; } if (s->verbosity >= 3) VPrintf5( " initial group %d, [%d .. %d], " "has %d syms (%4.1f%%)\n", nPart, gs, ge, aFreq, (100.0 * (float)aFreq) / (float)(s->nMTF) ); for (v = 0; v < alphaSize; v++) if (v >= gs && v <= ge) s->len[nPart-1][v] = BZ_LESSER_ICOST; else s->len[nPart-1][v] = BZ_GREATER_ICOST; nPart--; gs = ge+1; remF -= aFreq; } } /*--- Iterate up to BZ_N_ITERS times to improve the tables. ---*/ for (iter = 0; iter < BZ_N_ITERS; iter++) { for (t = 0; t < nGroups; t++) fave[t] = 0; for (t = 0; t < nGroups; t++) for (v = 0; v < alphaSize; v++) s->rfreq[t][v] = 0; /*--- Set up an auxiliary length table which is used to fast-track the common case (nGroups == 6). ---*/ if (nGroups == 6) { for (v = 0; v < alphaSize; v++) { s->len_pack[v][0] = (s->len[1][v] << 16) | s->len[0][v]; s->len_pack[v][1] = (s->len[3][v] << 16) | s->len[2][v]; s->len_pack[v][2] = (s->len[5][v] << 16) | s->len[4][v]; } } nSelectors = 0; totc = 0; gs = 0; while (True) { /*--- Set group start & end marks. --*/ if (gs >= s->nMTF) break; ge = gs + BZ_G_SIZE - 1; if (ge >= s->nMTF) ge = s->nMTF-1; /*-- Calculate the cost of this group as coded by each of the coding tables. --*/ for (t = 0; t < nGroups; t++) cost[t] = 0; if (nGroups == 6 && 50 == ge-gs+1) { /*--- fast track the common case ---*/ register UInt32 cost01, cost23, cost45; register UInt16 icv; cost01 = cost23 = cost45 = 0; # define BZ_ITER(nn) \ icv = mtfv[gs+(nn)]; \ cost01 += s->len_pack[icv][0]; \ cost23 += s->len_pack[icv][1]; \ cost45 += s->len_pack[icv][2]; \ BZ_ITER(0); BZ_ITER(1); BZ_ITER(2); BZ_ITER(3); BZ_ITER(4); BZ_ITER(5); BZ_ITER(6); BZ_ITER(7); BZ_ITER(8); BZ_ITER(9); BZ_ITER(10); BZ_ITER(11); BZ_ITER(12); BZ_ITER(13); BZ_ITER(14); BZ_ITER(15); BZ_ITER(16); BZ_ITER(17); BZ_ITER(18); BZ_ITER(19); BZ_ITER(20); BZ_ITER(21); BZ_ITER(22); BZ_ITER(23); BZ_ITER(24); BZ_ITER(25); BZ_ITER(26); BZ_ITER(27); BZ_ITER(28); BZ_ITER(29); BZ_ITER(30); BZ_ITER(31); BZ_ITER(32); BZ_ITER(33); BZ_ITER(34); BZ_ITER(35); BZ_ITER(36); BZ_ITER(37); BZ_ITER(38); BZ_ITER(39); BZ_ITER(40); BZ_ITER(41); BZ_ITER(42); BZ_ITER(43); BZ_ITER(44); BZ_ITER(45); BZ_ITER(46); BZ_ITER(47); BZ_ITER(48); BZ_ITER(49); # undef BZ_ITER cost[0] = cost01 & 0xffff; cost[1] = cost01 >> 16; cost[2] = cost23 & 0xffff; cost[3] = cost23 >> 16; cost[4] = cost45 & 0xffff; cost[5] = cost45 >> 16; } else { /*--- slow version which correctly handles all situations ---*/ for (i = gs; i <= ge; i++) { UInt16 icv = mtfv[i]; for (t = 0; t < nGroups; t++) cost[t] += s->len[t][icv]; } } /*-- Find the coding table which is best for this group, and record its identity in the selector table. --*/ bc = 999999999; bt = -1; for (t = 0; t < nGroups; t++) if (cost[t] < bc) { bc = cost[t]; bt = t; }; totc += bc; fave[bt]++; s->selector[nSelectors] = bt; nSelectors++; /*-- Increment the symbol frequencies for the selected table. --*/ if (nGroups == 6 && 50 == ge-gs+1) { /*--- fast track the common case ---*/ # define BZ_ITUR(nn) s->rfreq[bt][ mtfv[gs+(nn)] ]++ BZ_ITUR(0); BZ_ITUR(1); BZ_ITUR(2); BZ_ITUR(3); BZ_ITUR(4); BZ_ITUR(5); BZ_ITUR(6); BZ_ITUR(7); BZ_ITUR(8); BZ_ITUR(9); BZ_ITUR(10); BZ_ITUR(11); BZ_ITUR(12); BZ_ITUR(13); BZ_ITUR(14); BZ_ITUR(15); BZ_ITUR(16); BZ_ITUR(17); BZ_ITUR(18); BZ_ITUR(19); BZ_ITUR(20); BZ_ITUR(21); BZ_ITUR(22); BZ_ITUR(23); BZ_ITUR(24); BZ_ITUR(25); BZ_ITUR(26); BZ_ITUR(27); BZ_ITUR(28); BZ_ITUR(29); BZ_ITUR(30); BZ_ITUR(31); BZ_ITUR(32); BZ_ITUR(33); BZ_ITUR(34); BZ_ITUR(35); BZ_ITUR(36); BZ_ITUR(37); BZ_ITUR(38); BZ_ITUR(39); BZ_ITUR(40); BZ_ITUR(41); BZ_ITUR(42); BZ_ITUR(43); BZ_ITUR(44); BZ_ITUR(45); BZ_ITUR(46); BZ_ITUR(47); BZ_ITUR(48); BZ_ITUR(49); # undef BZ_ITUR } else { /*--- slow version which correctly handles all situations ---*/ for (i = gs; i <= ge; i++) s->rfreq[bt][ mtfv[i] ]++; } gs = ge+1; } if (s->verbosity >= 3) { VPrintf2 ( " pass %d: size is %d, grp uses are ", iter+1, totc/8 ); for (t = 0; t < nGroups; t++) VPrintf1 ( "%d ", fave[t] ); VPrintf0 ( "\n" ); } /*-- Recompute the tables based on the accumulated frequencies. --*/ /* maxLen was changed from 20 to 17 in bzip2-1.0.3. See comment in huffman.c for details. */ for (t = 0; t < nGroups; t++) BZ2_hbMakeCodeLengths ( &(s->len[t][0]), &(s->rfreq[t][0]), alphaSize, 17 /*20*/ ); } AssertH( nGroups < 8, 3002 ); AssertH( nSelectors < 32768 && nSelectors <= (2 + (900000 / BZ_G_SIZE)), 3003 ); /*--- Compute MTF values for the selectors. ---*/ { UChar pos[BZ_N_GROUPS], ll_i, tmp2, tmp; for (i = 0; i < nGroups; i++) pos[i] = i; for (i = 0; i < nSelectors; i++) { ll_i = s->selector[i]; j = 0; tmp = pos[j]; while ( ll_i != tmp ) { j++; tmp2 = tmp; tmp = pos[j]; pos[j] = tmp2; }; pos[0] = tmp; s->selectorMtf[i] = j; } }; /*--- Assign actual codes for the tables. --*/ for (t = 0; t < nGroups; t++) { minLen = 32; maxLen = 0; for (i = 0; i < alphaSize; i++) { if (s->len[t][i] > maxLen) maxLen = s->len[t][i]; if (s->len[t][i] < minLen) minLen = s->len[t][i]; } AssertH ( !(maxLen > 17 /*20*/ ), 3004 ); AssertH ( !(minLen < 1), 3005 ); BZ2_hbAssignCodes ( &(s->code[t][0]), &(s->len[t][0]), minLen, maxLen, alphaSize ); } /*--- Transmit the mapping table. ---*/ { Bool inUse16[16]; for (i = 0; i < 16; i++) { inUse16[i] = False; for (j = 0; j < 16; j++) if (s->inUse[i * 16 + j]) inUse16[i] = True; } nBytes = s->numZ; for (i = 0; i < 16; i++) if (inUse16[i]) bsW(s,1,1); else bsW(s,1,0); for (i = 0; i < 16; i++) if (inUse16[i]) for (j = 0; j < 16; j++) { if (s->inUse[i * 16 + j]) bsW(s,1,1); else bsW(s,1,0); } if (s->verbosity >= 3) VPrintf1( " bytes: mapping %d, ", s->numZ-nBytes ); } /*--- Now the selectors. ---*/ nBytes = s->numZ; bsW ( s, 3, nGroups ); bsW ( s, 15, nSelectors ); for (i = 0; i < nSelectors; i++) { for (j = 0; j < s->selectorMtf[i]; j++) bsW(s,1,1); bsW(s,1,0); } if (s->verbosity >= 3) VPrintf1( "selectors %d, ", s->numZ-nBytes ); /*--- Now the coding tables. ---*/ nBytes = s->numZ; for (t = 0; t < nGroups; t++) { Int32 curr = s->len[t][0]; bsW ( s, 5, curr ); for (i = 0; i < alphaSize; i++) { while (curr < s->len[t][i]) { bsW(s,2,2); curr++; /* 10 */ }; while (curr > s->len[t][i]) { bsW(s,2,3); curr--; /* 11 */ }; bsW ( s, 1, 0 ); } } if (s->verbosity >= 3) VPrintf1 ( "code lengths %d, ", s->numZ-nBytes ); /*--- And finally, the block data proper ---*/ nBytes = s->numZ; selCtr = 0; gs = 0; while (True) { if (gs >= s->nMTF) break; ge = gs + BZ_G_SIZE - 1; if (ge >= s->nMTF) ge = s->nMTF-1; AssertH ( s->selector[selCtr] < nGroups, 3006 ); if (nGroups == 6 && 50 == ge-gs+1) { /*--- fast track the common case ---*/ UInt16 mtfv_i; UChar* s_len_sel_selCtr = &(s->len[s->selector[selCtr]][0]); Int32* s_code_sel_selCtr = &(s->code[s->selector[selCtr]][0]); # define BZ_ITAH(nn) \ mtfv_i = mtfv[gs+(nn)]; \ bsW ( s, \ s_len_sel_selCtr[mtfv_i], \ s_code_sel_selCtr[mtfv_i] ) BZ_ITAH(0); BZ_ITAH(1); BZ_ITAH(2); BZ_ITAH(3); BZ_ITAH(4); BZ_ITAH(5); BZ_ITAH(6); BZ_ITAH(7); BZ_ITAH(8); BZ_ITAH(9); BZ_ITAH(10); BZ_ITAH(11); BZ_ITAH(12); BZ_ITAH(13); BZ_ITAH(14); BZ_ITAH(15); BZ_ITAH(16); BZ_ITAH(17); BZ_ITAH(18); BZ_ITAH(19); BZ_ITAH(20); BZ_ITAH(21); BZ_ITAH(22); BZ_ITAH(23); BZ_ITAH(24); BZ_ITAH(25); BZ_ITAH(26); BZ_ITAH(27); BZ_ITAH(28); BZ_ITAH(29); BZ_ITAH(30); BZ_ITAH(31); BZ_ITAH(32); BZ_ITAH(33); BZ_ITAH(34); BZ_ITAH(35); BZ_ITAH(36); BZ_ITAH(37); BZ_ITAH(38); BZ_ITAH(39); BZ_ITAH(40); BZ_ITAH(41); BZ_ITAH(42); BZ_ITAH(43); BZ_ITAH(44); BZ_ITAH(45); BZ_ITAH(46); BZ_ITAH(47); BZ_ITAH(48); BZ_ITAH(49); # undef BZ_ITAH } else { /*--- slow version which correctly handles all situations ---*/ for (i = gs; i <= ge; i++) { bsW ( s, s->len [s->selector[selCtr]] [mtfv[i]], s->code [s->selector[selCtr]] [mtfv[i]] ); } } gs = ge+1; selCtr++; } AssertH( selCtr == nSelectors, 3007 ); if (s->verbosity >= 3) VPrintf1( "codes %d\n", s->numZ-nBytes ); } /*---------------------------------------------------*/ void BZ2_compressBlock ( EState* s, Bool is_last_block ) { if (s->nblock > 0) { BZ_FINALISE_CRC ( s->blockCRC ); s->combinedCRC = (s->combinedCRC << 1) | (s->combinedCRC >> 31); s->combinedCRC ^= s->blockCRC; if (s->blockNo > 1) s->numZ = 0; if (s->verbosity >= 2) VPrintf4( " block %d: crc = 0x%08x, " "combined CRC = 0x%08x, size = %d\n", s->blockNo, s->blockCRC, s->combinedCRC, s->nblock ); BZ2_blockSort ( s ); } s->zbits = (UChar*) (&((UChar*)s->arr2)[s->nblock]); /*-- If this is the first block, create the stream header. --*/ if (s->blockNo == 1) { BZ2_bsInitWrite ( s ); bsPutUChar ( s, BZ_HDR_B ); bsPutUChar ( s, BZ_HDR_Z ); bsPutUChar ( s, BZ_HDR_h ); bsPutUChar ( s, (UChar)(BZ_HDR_0 + s->blockSize100k) ); } if (s->nblock > 0) { bsPutUChar ( s, 0x31 ); bsPutUChar ( s, 0x41 ); bsPutUChar ( s, 0x59 ); bsPutUChar ( s, 0x26 ); bsPutUChar ( s, 0x53 ); bsPutUChar ( s, 0x59 ); /*-- Now the block's CRC, so it is in a known place. --*/ bsPutUInt32 ( s, s->blockCRC ); /*-- Now a single bit indicating (non-)randomisation. As of version 0.9.5, we use a better sorting algorithm which makes randomisation unnecessary. So always set the randomised bit to 'no'. Of course, the decoder still needs to be able to handle randomised blocks so as to maintain backwards compatibility with older versions of bzip2. --*/ bsW(s,1,0); bsW ( s, 24, s->origPtr ); generateMTFValues ( s ); sendMTFValues ( s ); } /*-- If this is the last block, add the stream trailer. --*/ if (is_last_block) { bsPutUChar ( s, 0x17 ); bsPutUChar ( s, 0x72 ); bsPutUChar ( s, 0x45 ); bsPutUChar ( s, 0x38 ); bsPutUChar ( s, 0x50 ); bsPutUChar ( s, 0x90 ); bsPutUInt32 ( s, s->combinedCRC ); if (s->verbosity >= 2) VPrintf1( " final combined CRC = 0x%08x\n ", s->combinedCRC ); bsFinishWrite ( s ); } } /*-------------------------------------------------------------*/ /*--- end compress.c ---*/ /*-------------------------------------------------------------*/ bzlib-0.5.1.0/cbits/crctable.c0000644000000000000000000001132207346545000014174 0ustar0000000000000000 /*-------------------------------------------------------------*/ /*--- Table for doing CRCs ---*/ /*--- crctable.c ---*/ /*-------------------------------------------------------------*/ /* ------------------------------------------------------------------ This file is part of bzip2/libbzip2, a program and library for lossless, block-sorting data compression. bzip2/libbzip2 version 1.0.6 of 6 September 2010 Copyright (C) 1996-2010 Julian Seward Please read the WARNING, DISCLAIMER and PATENTS sections in the README file. This program is released under the terms of the license contained in the file LICENSE. ------------------------------------------------------------------ */ #include "bzlib_private.h" /*-- I think this is an implementation of the AUTODIN-II, Ethernet & FDDI 32-bit CRC standard. Vaguely derived from code by Rob Warnock, in Section 51 of the comp.compression FAQ. --*/ UInt32 BZ2_crc32Table[256] = { /*-- Ugly, innit? --*/ 0x00000000L, 0x04c11db7L, 0x09823b6eL, 0x0d4326d9L, 0x130476dcL, 0x17c56b6bL, 0x1a864db2L, 0x1e475005L, 0x2608edb8L, 0x22c9f00fL, 0x2f8ad6d6L, 0x2b4bcb61L, 0x350c9b64L, 0x31cd86d3L, 0x3c8ea00aL, 0x384fbdbdL, 0x4c11db70L, 0x48d0c6c7L, 0x4593e01eL, 0x4152fda9L, 0x5f15adacL, 0x5bd4b01bL, 0x569796c2L, 0x52568b75L, 0x6a1936c8L, 0x6ed82b7fL, 0x639b0da6L, 0x675a1011L, 0x791d4014L, 0x7ddc5da3L, 0x709f7b7aL, 0x745e66cdL, 0x9823b6e0L, 0x9ce2ab57L, 0x91a18d8eL, 0x95609039L, 0x8b27c03cL, 0x8fe6dd8bL, 0x82a5fb52L, 0x8664e6e5L, 0xbe2b5b58L, 0xbaea46efL, 0xb7a96036L, 0xb3687d81L, 0xad2f2d84L, 0xa9ee3033L, 0xa4ad16eaL, 0xa06c0b5dL, 0xd4326d90L, 0xd0f37027L, 0xddb056feL, 0xd9714b49L, 0xc7361b4cL, 0xc3f706fbL, 0xceb42022L, 0xca753d95L, 0xf23a8028L, 0xf6fb9d9fL, 0xfbb8bb46L, 0xff79a6f1L, 0xe13ef6f4L, 0xe5ffeb43L, 0xe8bccd9aL, 0xec7dd02dL, 0x34867077L, 0x30476dc0L, 0x3d044b19L, 0x39c556aeL, 0x278206abL, 0x23431b1cL, 0x2e003dc5L, 0x2ac12072L, 0x128e9dcfL, 0x164f8078L, 0x1b0ca6a1L, 0x1fcdbb16L, 0x018aeb13L, 0x054bf6a4L, 0x0808d07dL, 0x0cc9cdcaL, 0x7897ab07L, 0x7c56b6b0L, 0x71159069L, 0x75d48ddeL, 0x6b93dddbL, 0x6f52c06cL, 0x6211e6b5L, 0x66d0fb02L, 0x5e9f46bfL, 0x5a5e5b08L, 0x571d7dd1L, 0x53dc6066L, 0x4d9b3063L, 0x495a2dd4L, 0x44190b0dL, 0x40d816baL, 0xaca5c697L, 0xa864db20L, 0xa527fdf9L, 0xa1e6e04eL, 0xbfa1b04bL, 0xbb60adfcL, 0xb6238b25L, 0xb2e29692L, 0x8aad2b2fL, 0x8e6c3698L, 0x832f1041L, 0x87ee0df6L, 0x99a95df3L, 0x9d684044L, 0x902b669dL, 0x94ea7b2aL, 0xe0b41de7L, 0xe4750050L, 0xe9362689L, 0xedf73b3eL, 0xf3b06b3bL, 0xf771768cL, 0xfa325055L, 0xfef34de2L, 0xc6bcf05fL, 0xc27dede8L, 0xcf3ecb31L, 0xcbffd686L, 0xd5b88683L, 0xd1799b34L, 0xdc3abdedL, 0xd8fba05aL, 0x690ce0eeL, 0x6dcdfd59L, 0x608edb80L, 0x644fc637L, 0x7a089632L, 0x7ec98b85L, 0x738aad5cL, 0x774bb0ebL, 0x4f040d56L, 0x4bc510e1L, 0x46863638L, 0x42472b8fL, 0x5c007b8aL, 0x58c1663dL, 0x558240e4L, 0x51435d53L, 0x251d3b9eL, 0x21dc2629L, 0x2c9f00f0L, 0x285e1d47L, 0x36194d42L, 0x32d850f5L, 0x3f9b762cL, 0x3b5a6b9bL, 0x0315d626L, 0x07d4cb91L, 0x0a97ed48L, 0x0e56f0ffL, 0x1011a0faL, 0x14d0bd4dL, 0x19939b94L, 0x1d528623L, 0xf12f560eL, 0xf5ee4bb9L, 0xf8ad6d60L, 0xfc6c70d7L, 0xe22b20d2L, 0xe6ea3d65L, 0xeba91bbcL, 0xef68060bL, 0xd727bbb6L, 0xd3e6a601L, 0xdea580d8L, 0xda649d6fL, 0xc423cd6aL, 0xc0e2d0ddL, 0xcda1f604L, 0xc960ebb3L, 0xbd3e8d7eL, 0xb9ff90c9L, 0xb4bcb610L, 0xb07daba7L, 0xae3afba2L, 0xaafbe615L, 0xa7b8c0ccL, 0xa379dd7bL, 0x9b3660c6L, 0x9ff77d71L, 0x92b45ba8L, 0x9675461fL, 0x8832161aL, 0x8cf30badL, 0x81b02d74L, 0x857130c3L, 0x5d8a9099L, 0x594b8d2eL, 0x5408abf7L, 0x50c9b640L, 0x4e8ee645L, 0x4a4ffbf2L, 0x470cdd2bL, 0x43cdc09cL, 0x7b827d21L, 0x7f436096L, 0x7200464fL, 0x76c15bf8L, 0x68860bfdL, 0x6c47164aL, 0x61043093L, 0x65c52d24L, 0x119b4be9L, 0x155a565eL, 0x18197087L, 0x1cd86d30L, 0x029f3d35L, 0x065e2082L, 0x0b1d065bL, 0x0fdc1becL, 0x3793a651L, 0x3352bbe6L, 0x3e119d3fL, 0x3ad08088L, 0x2497d08dL, 0x2056cd3aL, 0x2d15ebe3L, 0x29d4f654L, 0xc5a92679L, 0xc1683bceL, 0xcc2b1d17L, 0xc8ea00a0L, 0xd6ad50a5L, 0xd26c4d12L, 0xdf2f6bcbL, 0xdbee767cL, 0xe3a1cbc1L, 0xe760d676L, 0xea23f0afL, 0xeee2ed18L, 0xf0a5bd1dL, 0xf464a0aaL, 0xf9278673L, 0xfde69bc4L, 0x89b8fd09L, 0x8d79e0beL, 0x803ac667L, 0x84fbdbd0L, 0x9abc8bd5L, 0x9e7d9662L, 0x933eb0bbL, 0x97ffad0cL, 0xafb010b1L, 0xab710d06L, 0xa6322bdfL, 0xa2f33668L, 0xbcb4666dL, 0xb8757bdaL, 0xb5365d03L, 0xb1f740b4L }; /*-------------------------------------------------------------*/ /*--- end crctable.c ---*/ /*-------------------------------------------------------------*/ bzlib-0.5.1.0/cbits/decompress.c0000644000000000000000000005066707346545000014600 0ustar0000000000000000 /*-------------------------------------------------------------*/ /*--- Decompression machinery ---*/ /*--- decompress.c ---*/ /*-------------------------------------------------------------*/ /* ------------------------------------------------------------------ This file is part of bzip2/libbzip2, a program and library for lossless, block-sorting data compression. bzip2/libbzip2 version 1.0.6 of 6 September 2010 Copyright (C) 1996-2010 Julian Seward Please read the WARNING, DISCLAIMER and PATENTS sections in the README file. This program is released under the terms of the license contained in the file LICENSE. ------------------------------------------------------------------ */ #include "bzlib_private.h" /*---------------------------------------------------*/ static void makeMaps_d ( DState* s ) { Int32 i; s->nInUse = 0; for (i = 0; i < 256; i++) if (s->inUse[i]) { s->seqToUnseq[s->nInUse] = i; s->nInUse++; } } /*---------------------------------------------------*/ #define RETURN(rrr) \ { retVal = rrr; goto save_state_and_return; }; #define GET_BITS(lll,vvv,nnn) \ case lll: s->state = lll; \ while (True) { \ if (s->bsLive >= nnn) { \ UInt32 v; \ v = (s->bsBuff >> \ (s->bsLive-nnn)) & ((1 << nnn)-1); \ s->bsLive -= nnn; \ vvv = v; \ break; \ } \ if (s->strm->avail_in == 0) RETURN(BZ_OK); \ s->bsBuff \ = (s->bsBuff << 8) | \ ((UInt32) \ (*((UChar*)(s->strm->next_in)))); \ s->bsLive += 8; \ s->strm->next_in++; \ s->strm->avail_in--; \ s->strm->total_in_lo32++; \ if (s->strm->total_in_lo32 == 0) \ s->strm->total_in_hi32++; \ } #define GET_UCHAR(lll,uuu) \ GET_BITS(lll,uuu,8) #define GET_BIT(lll,uuu) \ GET_BITS(lll,uuu,1) /*---------------------------------------------------*/ #define GET_MTF_VAL(label1,label2,lval) \ { \ if (groupPos == 0) { \ groupNo++; \ if (groupNo >= nSelectors) \ RETURN(BZ_DATA_ERROR); \ groupPos = BZ_G_SIZE; \ gSel = s->selector[groupNo]; \ gMinlen = s->minLens[gSel]; \ gLimit = &(s->limit[gSel][0]); \ gPerm = &(s->perm[gSel][0]); \ gBase = &(s->base[gSel][0]); \ } \ groupPos--; \ zn = gMinlen; \ GET_BITS(label1, zvec, zn); \ while (1) { \ if (zn > 20 /* the longest code */) \ RETURN(BZ_DATA_ERROR); \ if (zvec <= gLimit[zn]) break; \ zn++; \ GET_BIT(label2, zj); \ zvec = (zvec << 1) | zj; \ }; \ if (zvec - gBase[zn] < 0 \ || zvec - gBase[zn] >= BZ_MAX_ALPHA_SIZE) \ RETURN(BZ_DATA_ERROR); \ lval = gPerm[zvec - gBase[zn]]; \ } /*---------------------------------------------------*/ Int32 BZ2_decompress ( DState* s ) { UChar uc; Int32 retVal; Int32 minLen, maxLen; bz_stream* strm = s->strm; /* stuff that needs to be saved/restored */ Int32 i; Int32 j; Int32 t; Int32 alphaSize; Int32 nGroups; Int32 nSelectors; Int32 EOB; Int32 groupNo; Int32 groupPos; Int32 nextSym; Int32 nblockMAX; Int32 nblock; Int32 es; Int32 N; Int32 curr; Int32 zt; Int32 zn; Int32 zvec; Int32 zj; Int32 gSel; Int32 gMinlen; Int32* gLimit; Int32* gBase; Int32* gPerm; if (s->state == BZ_X_MAGIC_1) { /*initialise the save area*/ s->save_i = 0; s->save_j = 0; s->save_t = 0; s->save_alphaSize = 0; s->save_nGroups = 0; s->save_nSelectors = 0; s->save_EOB = 0; s->save_groupNo = 0; s->save_groupPos = 0; s->save_nextSym = 0; s->save_nblockMAX = 0; s->save_nblock = 0; s->save_es = 0; s->save_N = 0; s->save_curr = 0; s->save_zt = 0; s->save_zn = 0; s->save_zvec = 0; s->save_zj = 0; s->save_gSel = 0; s->save_gMinlen = 0; s->save_gLimit = NULL; s->save_gBase = NULL; s->save_gPerm = NULL; } /*restore from the save area*/ i = s->save_i; j = s->save_j; t = s->save_t; alphaSize = s->save_alphaSize; nGroups = s->save_nGroups; nSelectors = s->save_nSelectors; EOB = s->save_EOB; groupNo = s->save_groupNo; groupPos = s->save_groupPos; nextSym = s->save_nextSym; nblockMAX = s->save_nblockMAX; nblock = s->save_nblock; es = s->save_es; N = s->save_N; curr = s->save_curr; zt = s->save_zt; zn = s->save_zn; zvec = s->save_zvec; zj = s->save_zj; gSel = s->save_gSel; gMinlen = s->save_gMinlen; gLimit = s->save_gLimit; gBase = s->save_gBase; gPerm = s->save_gPerm; retVal = BZ_OK; switch (s->state) { GET_UCHAR(BZ_X_MAGIC_1, uc); if (uc != BZ_HDR_B) RETURN(BZ_DATA_ERROR_MAGIC); GET_UCHAR(BZ_X_MAGIC_2, uc); if (uc != BZ_HDR_Z) RETURN(BZ_DATA_ERROR_MAGIC); GET_UCHAR(BZ_X_MAGIC_3, uc) if (uc != BZ_HDR_h) RETURN(BZ_DATA_ERROR_MAGIC); GET_BITS(BZ_X_MAGIC_4, s->blockSize100k, 8) if (s->blockSize100k < (BZ_HDR_0 + 1) || s->blockSize100k > (BZ_HDR_0 + 9)) RETURN(BZ_DATA_ERROR_MAGIC); s->blockSize100k -= BZ_HDR_0; if (s->smallDecompress) { s->ll16 = BZALLOC( s->blockSize100k * 100000 * sizeof(UInt16) ); s->ll4 = BZALLOC( ((1 + s->blockSize100k * 100000) >> 1) * sizeof(UChar) ); if (s->ll16 == NULL || s->ll4 == NULL) RETURN(BZ_MEM_ERROR); } else { s->tt = BZALLOC( s->blockSize100k * 100000 * sizeof(Int32) ); if (s->tt == NULL) RETURN(BZ_MEM_ERROR); } GET_UCHAR(BZ_X_BLKHDR_1, uc); if (uc == 0x17) goto endhdr_2; if (uc != 0x31) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_BLKHDR_2, uc); if (uc != 0x41) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_BLKHDR_3, uc); if (uc != 0x59) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_BLKHDR_4, uc); if (uc != 0x26) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_BLKHDR_5, uc); if (uc != 0x53) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_BLKHDR_6, uc); if (uc != 0x59) RETURN(BZ_DATA_ERROR); s->currBlockNo++; if (s->verbosity >= 2) VPrintf1 ( "\n [%d: huff+mtf ", s->currBlockNo ); s->storedBlockCRC = 0; GET_UCHAR(BZ_X_BCRC_1, uc); s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_BCRC_2, uc); s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_BCRC_3, uc); s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_BCRC_4, uc); s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); GET_BITS(BZ_X_RANDBIT, s->blockRandomised, 1); s->origPtr = 0; GET_UCHAR(BZ_X_ORIGPTR_1, uc); s->origPtr = (s->origPtr << 8) | ((Int32)uc); GET_UCHAR(BZ_X_ORIGPTR_2, uc); s->origPtr = (s->origPtr << 8) | ((Int32)uc); GET_UCHAR(BZ_X_ORIGPTR_3, uc); s->origPtr = (s->origPtr << 8) | ((Int32)uc); if (s->origPtr < 0) RETURN(BZ_DATA_ERROR); if (s->origPtr > 10 + 100000*s->blockSize100k) RETURN(BZ_DATA_ERROR); /*--- Receive the mapping table ---*/ for (i = 0; i < 16; i++) { GET_BIT(BZ_X_MAPPING_1, uc); if (uc == 1) s->inUse16[i] = True; else s->inUse16[i] = False; } for (i = 0; i < 256; i++) s->inUse[i] = False; for (i = 0; i < 16; i++) if (s->inUse16[i]) for (j = 0; j < 16; j++) { GET_BIT(BZ_X_MAPPING_2, uc); if (uc == 1) s->inUse[i * 16 + j] = True; } makeMaps_d ( s ); if (s->nInUse == 0) RETURN(BZ_DATA_ERROR); alphaSize = s->nInUse+2; /*--- Now the selectors ---*/ GET_BITS(BZ_X_SELECTOR_1, nGroups, 3); if (nGroups < 2 || nGroups > 6) RETURN(BZ_DATA_ERROR); GET_BITS(BZ_X_SELECTOR_2, nSelectors, 15); if (nSelectors < 1) RETURN(BZ_DATA_ERROR); for (i = 0; i < nSelectors; i++) { j = 0; while (True) { GET_BIT(BZ_X_SELECTOR_3, uc); if (uc == 0) break; j++; if (j >= nGroups) RETURN(BZ_DATA_ERROR); } s->selectorMtf[i] = j; } /*--- Undo the MTF values for the selectors. ---*/ { UChar pos[BZ_N_GROUPS], tmp, v; for (v = 0; v < nGroups; v++) pos[v] = v; for (i = 0; i < nSelectors; i++) { v = s->selectorMtf[i]; tmp = pos[v]; while (v > 0) { pos[v] = pos[v-1]; v--; } pos[0] = tmp; s->selector[i] = tmp; } } /*--- Now the coding tables ---*/ for (t = 0; t < nGroups; t++) { GET_BITS(BZ_X_CODING_1, curr, 5); for (i = 0; i < alphaSize; i++) { while (True) { if (curr < 1 || curr > 20) RETURN(BZ_DATA_ERROR); GET_BIT(BZ_X_CODING_2, uc); if (uc == 0) break; GET_BIT(BZ_X_CODING_3, uc); if (uc == 0) curr++; else curr--; } s->len[t][i] = curr; } } /*--- Create the Huffman decoding tables ---*/ for (t = 0; t < nGroups; t++) { minLen = 32; maxLen = 0; for (i = 0; i < alphaSize; i++) { if (s->len[t][i] > maxLen) maxLen = s->len[t][i]; if (s->len[t][i] < minLen) minLen = s->len[t][i]; } BZ2_hbCreateDecodeTables ( &(s->limit[t][0]), &(s->base[t][0]), &(s->perm[t][0]), &(s->len[t][0]), minLen, maxLen, alphaSize ); s->minLens[t] = minLen; } /*--- Now the MTF values ---*/ EOB = s->nInUse+1; nblockMAX = 100000 * s->blockSize100k; groupNo = -1; groupPos = 0; for (i = 0; i <= 255; i++) s->unzftab[i] = 0; /*-- MTF init --*/ { Int32 ii, jj, kk; kk = MTFA_SIZE-1; for (ii = 256 / MTFL_SIZE - 1; ii >= 0; ii--) { for (jj = MTFL_SIZE-1; jj >= 0; jj--) { s->mtfa[kk] = (UChar)(ii * MTFL_SIZE + jj); kk--; } s->mtfbase[ii] = kk + 1; } } /*-- end MTF init --*/ nblock = 0; GET_MTF_VAL(BZ_X_MTF_1, BZ_X_MTF_2, nextSym); while (True) { if (nextSym == EOB) break; if (nextSym == BZ_RUNA || nextSym == BZ_RUNB) { es = -1; N = 1; do { /* Check that N doesn't get too big, so that es doesn't go negative. The maximum value that can be RUNA/RUNB encoded is equal to the block size (post the initial RLE), viz, 900k, so bounding N at 2 million should guard against overflow without rejecting any legitimate inputs. */ if (N >= 2*1024*1024) RETURN(BZ_DATA_ERROR); if (nextSym == BZ_RUNA) es = es + (0+1) * N; else if (nextSym == BZ_RUNB) es = es + (1+1) * N; N = N * 2; GET_MTF_VAL(BZ_X_MTF_3, BZ_X_MTF_4, nextSym); } while (nextSym == BZ_RUNA || nextSym == BZ_RUNB); es++; uc = s->seqToUnseq[ s->mtfa[s->mtfbase[0]] ]; s->unzftab[uc] += es; if (s->smallDecompress) while (es > 0) { if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR); s->ll16[nblock] = (UInt16)uc; nblock++; es--; } else while (es > 0) { if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR); s->tt[nblock] = (UInt32)uc; nblock++; es--; }; continue; } else { if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR); /*-- uc = MTF ( nextSym-1 ) --*/ { Int32 ii, jj, kk, pp, lno, off; UInt32 nn; nn = (UInt32)(nextSym - 1); if (nn < MTFL_SIZE) { /* avoid general-case expense */ pp = s->mtfbase[0]; uc = s->mtfa[pp+nn]; while (nn > 3) { Int32 z = pp+nn; s->mtfa[(z) ] = s->mtfa[(z)-1]; s->mtfa[(z)-1] = s->mtfa[(z)-2]; s->mtfa[(z)-2] = s->mtfa[(z)-3]; s->mtfa[(z)-3] = s->mtfa[(z)-4]; nn -= 4; } while (nn > 0) { s->mtfa[(pp+nn)] = s->mtfa[(pp+nn)-1]; nn--; }; s->mtfa[pp] = uc; } else { /* general case */ lno = nn / MTFL_SIZE; off = nn % MTFL_SIZE; pp = s->mtfbase[lno] + off; uc = s->mtfa[pp]; while (pp > s->mtfbase[lno]) { s->mtfa[pp] = s->mtfa[pp-1]; pp--; }; s->mtfbase[lno]++; while (lno > 0) { s->mtfbase[lno]--; s->mtfa[s->mtfbase[lno]] = s->mtfa[s->mtfbase[lno-1] + MTFL_SIZE - 1]; lno--; } s->mtfbase[0]--; s->mtfa[s->mtfbase[0]] = uc; if (s->mtfbase[0] == 0) { kk = MTFA_SIZE-1; for (ii = 256 / MTFL_SIZE-1; ii >= 0; ii--) { for (jj = MTFL_SIZE-1; jj >= 0; jj--) { s->mtfa[kk] = s->mtfa[s->mtfbase[ii] + jj]; kk--; } s->mtfbase[ii] = kk + 1; } } } } /*-- end uc = MTF ( nextSym-1 ) --*/ s->unzftab[s->seqToUnseq[uc]]++; if (s->smallDecompress) s->ll16[nblock] = (UInt16)(s->seqToUnseq[uc]); else s->tt[nblock] = (UInt32)(s->seqToUnseq[uc]); nblock++; GET_MTF_VAL(BZ_X_MTF_5, BZ_X_MTF_6, nextSym); continue; } } /* Now we know what nblock is, we can do a better sanity check on s->origPtr. */ if (s->origPtr < 0 || s->origPtr >= nblock) RETURN(BZ_DATA_ERROR); /*-- Set up cftab to facilitate generation of T^(-1) --*/ /* Check: unzftab entries in range. */ for (i = 0; i <= 255; i++) { if (s->unzftab[i] < 0 || s->unzftab[i] > nblock) RETURN(BZ_DATA_ERROR); } /* Actually generate cftab. */ s->cftab[0] = 0; for (i = 1; i <= 256; i++) s->cftab[i] = s->unzftab[i-1]; for (i = 1; i <= 256; i++) s->cftab[i] += s->cftab[i-1]; /* Check: cftab entries in range. */ for (i = 0; i <= 256; i++) { if (s->cftab[i] < 0 || s->cftab[i] > nblock) { /* s->cftab[i] can legitimately be == nblock */ RETURN(BZ_DATA_ERROR); } } /* Check: cftab entries non-descending. */ for (i = 1; i <= 256; i++) { if (s->cftab[i-1] > s->cftab[i]) { RETURN(BZ_DATA_ERROR); } } s->state_out_len = 0; s->state_out_ch = 0; BZ_INITIALISE_CRC ( s->calculatedBlockCRC ); s->state = BZ_X_OUTPUT; if (s->verbosity >= 2) VPrintf0 ( "rt+rld" ); if (s->smallDecompress) { /*-- Make a copy of cftab, used in generation of T --*/ for (i = 0; i <= 256; i++) s->cftabCopy[i] = s->cftab[i]; /*-- compute the T vector --*/ for (i = 0; i < nblock; i++) { uc = (UChar)(s->ll16[i]); SET_LL(i, s->cftabCopy[uc]); s->cftabCopy[uc]++; } /*-- Compute T^(-1) by pointer reversal on T --*/ i = s->origPtr; j = GET_LL(i); do { Int32 tmp = GET_LL(j); SET_LL(j, i); i = j; j = tmp; } while (i != s->origPtr); s->tPos = s->origPtr; s->nblock_used = 0; if (s->blockRandomised) { BZ_RAND_INIT_MASK; BZ_GET_SMALL(s->k0); s->nblock_used++; BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; } else { BZ_GET_SMALL(s->k0); s->nblock_used++; } } else { /*-- compute the T^(-1) vector --*/ for (i = 0; i < nblock; i++) { uc = (UChar)(s->tt[i] & 0xff); s->tt[s->cftab[uc]] |= (i << 8); s->cftab[uc]++; } s->tPos = s->tt[s->origPtr] >> 8; s->nblock_used = 0; if (s->blockRandomised) { BZ_RAND_INIT_MASK; BZ_GET_FAST(s->k0); s->nblock_used++; BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK; } else { BZ_GET_FAST(s->k0); s->nblock_used++; } } RETURN(BZ_OK); endhdr_2: GET_UCHAR(BZ_X_ENDHDR_2, uc); if (uc != 0x72) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_ENDHDR_3, uc); if (uc != 0x45) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_ENDHDR_4, uc); if (uc != 0x38) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_ENDHDR_5, uc); if (uc != 0x50) RETURN(BZ_DATA_ERROR); GET_UCHAR(BZ_X_ENDHDR_6, uc); if (uc != 0x90) RETURN(BZ_DATA_ERROR); s->storedCombinedCRC = 0; GET_UCHAR(BZ_X_CCRC_1, uc); s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_CCRC_2, uc); s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_CCRC_3, uc); s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); GET_UCHAR(BZ_X_CCRC_4, uc); s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); s->state = BZ_X_IDLE; RETURN(BZ_STREAM_END); default: AssertH ( False, 4001 ); } AssertH ( False, 4002 ); save_state_and_return: s->save_i = i; s->save_j = j; s->save_t = t; s->save_alphaSize = alphaSize; s->save_nGroups = nGroups; s->save_nSelectors = nSelectors; s->save_EOB = EOB; s->save_groupNo = groupNo; s->save_groupPos = groupPos; s->save_nextSym = nextSym; s->save_nblockMAX = nblockMAX; s->save_nblock = nblock; s->save_es = es; s->save_N = N; s->save_curr = curr; s->save_zt = zt; s->save_zn = zn; s->save_zvec = zvec; s->save_zj = zj; s->save_gSel = gSel; s->save_gMinlen = gMinlen; s->save_gLimit = gLimit; s->save_gBase = gBase; s->save_gPerm = gPerm; return retVal; } /*-------------------------------------------------------------*/ /*--- end decompress.c ---*/ /*-------------------------------------------------------------*/ bzlib-0.5.1.0/cbits/huffman.c0000644000000000000000000001551707346545000014053 0ustar0000000000000000 /*-------------------------------------------------------------*/ /*--- Huffman coding low-level stuff ---*/ /*--- huffman.c ---*/ /*-------------------------------------------------------------*/ /* ------------------------------------------------------------------ This file is part of bzip2/libbzip2, a program and library for lossless, block-sorting data compression. bzip2/libbzip2 version 1.0.6 of 6 September 2010 Copyright (C) 1996-2010 Julian Seward Please read the WARNING, DISCLAIMER and PATENTS sections in the README file. This program is released under the terms of the license contained in the file LICENSE. ------------------------------------------------------------------ */ #include "bzlib_private.h" /*---------------------------------------------------*/ #define WEIGHTOF(zz0) ((zz0) & 0xffffff00) #define DEPTHOF(zz1) ((zz1) & 0x000000ff) #define MYMAX(zz2,zz3) ((zz2) > (zz3) ? (zz2) : (zz3)) #define ADDWEIGHTS(zw1,zw2) \ (WEIGHTOF(zw1)+WEIGHTOF(zw2)) | \ (1 + MYMAX(DEPTHOF(zw1),DEPTHOF(zw2))) #define UPHEAP(z) \ { \ Int32 zz, tmp; \ zz = z; tmp = heap[zz]; \ while (weight[tmp] < weight[heap[zz >> 1]]) { \ heap[zz] = heap[zz >> 1]; \ zz >>= 1; \ } \ heap[zz] = tmp; \ } #define DOWNHEAP(z) \ { \ Int32 zz, yy, tmp; \ zz = z; tmp = heap[zz]; \ while (True) { \ yy = zz << 1; \ if (yy > nHeap) break; \ if (yy < nHeap && \ weight[heap[yy+1]] < weight[heap[yy]]) \ yy++; \ if (weight[tmp] < weight[heap[yy]]) break; \ heap[zz] = heap[yy]; \ zz = yy; \ } \ heap[zz] = tmp; \ } /*---------------------------------------------------*/ void BZ2_hbMakeCodeLengths ( UChar *len, Int32 *freq, Int32 alphaSize, Int32 maxLen ) { /*-- Nodes and heap entries run from 1. Entry 0 for both the heap and nodes is a sentinel. --*/ Int32 nNodes, nHeap, n1, n2, i, j, k; Bool tooLong; Int32 heap [ BZ_MAX_ALPHA_SIZE + 2 ]; Int32 weight [ BZ_MAX_ALPHA_SIZE * 2 ]; Int32 parent [ BZ_MAX_ALPHA_SIZE * 2 ]; for (i = 0; i < alphaSize; i++) weight[i+1] = (freq[i] == 0 ? 1 : freq[i]) << 8; while (True) { nNodes = alphaSize; nHeap = 0; heap[0] = 0; weight[0] = 0; parent[0] = -2; for (i = 1; i <= alphaSize; i++) { parent[i] = -1; nHeap++; heap[nHeap] = i; UPHEAP(nHeap); } AssertH( nHeap < (BZ_MAX_ALPHA_SIZE+2), 2001 ); while (nHeap > 1) { n1 = heap[1]; heap[1] = heap[nHeap]; nHeap--; DOWNHEAP(1); n2 = heap[1]; heap[1] = heap[nHeap]; nHeap--; DOWNHEAP(1); nNodes++; parent[n1] = parent[n2] = nNodes; weight[nNodes] = ADDWEIGHTS(weight[n1], weight[n2]); parent[nNodes] = -1; nHeap++; heap[nHeap] = nNodes; UPHEAP(nHeap); } AssertH( nNodes < (BZ_MAX_ALPHA_SIZE * 2), 2002 ); tooLong = False; for (i = 1; i <= alphaSize; i++) { j = 0; k = i; while (parent[k] >= 0) { k = parent[k]; j++; } len[i-1] = j; if (j > maxLen) tooLong = True; } if (! tooLong) break; /* 17 Oct 04: keep-going condition for the following loop used to be 'i < alphaSize', which missed the last element, theoretically leading to the possibility of the compressor looping. However, this count-scaling step is only needed if one of the generated Huffman code words is longer than maxLen, which up to and including version 1.0.2 was 20 bits, which is extremely unlikely. In version 1.0.3 maxLen was changed to 17 bits, which has minimal effect on compression ratio, but does mean this scaling step is used from time to time, enough to verify that it works. This means that bzip2-1.0.3 and later will only produce Huffman codes with a maximum length of 17 bits. However, in order to preserve backwards compatibility with bitstreams produced by versions pre-1.0.3, the decompressor must still handle lengths of up to 20. */ for (i = 1; i <= alphaSize; i++) { j = weight[i] >> 8; j = 1 + (j / 2); weight[i] = j << 8; } } } /*---------------------------------------------------*/ void BZ2_hbAssignCodes ( Int32 *code, UChar *length, Int32 minLen, Int32 maxLen, Int32 alphaSize ) { Int32 n, vec, i; vec = 0; for (n = minLen; n <= maxLen; n++) { for (i = 0; i < alphaSize; i++) if (length[i] == n) { code[i] = vec; vec++; }; vec <<= 1; } } /*---------------------------------------------------*/ void BZ2_hbCreateDecodeTables ( Int32 *limit, Int32 *base, Int32 *perm, UChar *length, Int32 minLen, Int32 maxLen, Int32 alphaSize ) { Int32 pp, i, j, vec; pp = 0; for (i = minLen; i <= maxLen; i++) for (j = 0; j < alphaSize; j++) if (length[j] == i) { perm[pp] = j; pp++; }; for (i = 0; i < BZ_MAX_CODE_LEN; i++) base[i] = 0; for (i = 0; i < alphaSize; i++) base[length[i]+1]++; for (i = 1; i < BZ_MAX_CODE_LEN; i++) base[i] += base[i-1]; for (i = 0; i < BZ_MAX_CODE_LEN; i++) limit[i] = 0; vec = 0; for (i = minLen; i <= maxLen; i++) { vec += (base[i+1] - base[i]); limit[i] = vec-1; vec <<= 1; } for (i = minLen + 1; i <= maxLen; i++) base[i] = ((limit[i-1] + 1) << 1) - base[i]; } /*-------------------------------------------------------------*/ /*--- end huffman.c ---*/ /*-------------------------------------------------------------*/ bzlib-0.5.1.0/cbits/randtable.c0000644000000000000000000000742407346545000014361 0ustar0000000000000000 /*-------------------------------------------------------------*/ /*--- Table for randomising repetitive blocks ---*/ /*--- randtable.c ---*/ /*-------------------------------------------------------------*/ /* ------------------------------------------------------------------ This file is part of bzip2/libbzip2, a program and library for lossless, block-sorting data compression. bzip2/libbzip2 version 1.0.6 of 6 September 2010 Copyright (C) 1996-2010 Julian Seward Please read the WARNING, DISCLAIMER and PATENTS sections in the README file. This program is released under the terms of the license contained in the file LICENSE. ------------------------------------------------------------------ */ #include "bzlib_private.h" /*---------------------------------------------*/ Int32 BZ2_rNums[512] = { 619, 720, 127, 481, 931, 816, 813, 233, 566, 247, 985, 724, 205, 454, 863, 491, 741, 242, 949, 214, 733, 859, 335, 708, 621, 574, 73, 654, 730, 472, 419, 436, 278, 496, 867, 210, 399, 680, 480, 51, 878, 465, 811, 169, 869, 675, 611, 697, 867, 561, 862, 687, 507, 283, 482, 129, 807, 591, 733, 623, 150, 238, 59, 379, 684, 877, 625, 169, 643, 105, 170, 607, 520, 932, 727, 476, 693, 425, 174, 647, 73, 122, 335, 530, 442, 853, 695, 249, 445, 515, 909, 545, 703, 919, 874, 474, 882, 500, 594, 612, 641, 801, 220, 162, 819, 984, 589, 513, 495, 799, 161, 604, 958, 533, 221, 400, 386, 867, 600, 782, 382, 596, 414, 171, 516, 375, 682, 485, 911, 276, 98, 553, 163, 354, 666, 933, 424, 341, 533, 870, 227, 730, 475, 186, 263, 647, 537, 686, 600, 224, 469, 68, 770, 919, 190, 373, 294, 822, 808, 206, 184, 943, 795, 384, 383, 461, 404, 758, 839, 887, 715, 67, 618, 276, 204, 918, 873, 777, 604, 560, 951, 160, 578, 722, 79, 804, 96, 409, 713, 940, 652, 934, 970, 447, 318, 353, 859, 672, 112, 785, 645, 863, 803, 350, 139, 93, 354, 99, 820, 908, 609, 772, 154, 274, 580, 184, 79, 626, 630, 742, 653, 282, 762, 623, 680, 81, 927, 626, 789, 125, 411, 521, 938, 300, 821, 78, 343, 175, 128, 250, 170, 774, 972, 275, 999, 639, 495, 78, 352, 126, 857, 956, 358, 619, 580, 124, 737, 594, 701, 612, 669, 112, 134, 694, 363, 992, 809, 743, 168, 974, 944, 375, 748, 52, 600, 747, 642, 182, 862, 81, 344, 805, 988, 739, 511, 655, 814, 334, 249, 515, 897, 955, 664, 981, 649, 113, 974, 459, 893, 228, 433, 837, 553, 268, 926, 240, 102, 654, 459, 51, 686, 754, 806, 760, 493, 403, 415, 394, 687, 700, 946, 670, 656, 610, 738, 392, 760, 799, 887, 653, 978, 321, 576, 617, 626, 502, 894, 679, 243, 440, 680, 879, 194, 572, 640, 724, 926, 56, 204, 700, 707, 151, 457, 449, 797, 195, 791, 558, 945, 679, 297, 59, 87, 824, 713, 663, 412, 693, 342, 606, 134, 108, 571, 364, 631, 212, 174, 643, 304, 329, 343, 97, 430, 751, 497, 314, 983, 374, 822, 928, 140, 206, 73, 263, 980, 736, 876, 478, 430, 305, 170, 514, 364, 692, 829, 82, 855, 953, 676, 246, 369, 970, 294, 750, 807, 827, 150, 790, 288, 923, 804, 378, 215, 828, 592, 281, 565, 555, 710, 82, 896, 831, 547, 261, 524, 462, 293, 465, 502, 56, 661, 821, 976, 991, 658, 869, 905, 758, 745, 193, 768, 550, 608, 933, 378, 286, 215, 979, 792, 961, 61, 688, 793, 644, 986, 403, 106, 366, 905, 644, 372, 567, 466, 434, 645, 210, 389, 550, 919, 135, 780, 773, 635, 389, 707, 100, 626, 958, 165, 504, 920, 176, 193, 713, 857, 265, 203, 50, 668, 108, 645, 990, 626, 197, 510, 357, 358, 850, 858, 364, 936, 638 }; /*-------------------------------------------------------------*/ /*--- end randtable.c ---*/ /*-------------------------------------------------------------*/ bzlib-0.5.1.0/examples/0000755000000000000000000000000007346545000012764 5ustar0000000000000000bzlib-0.5.1.0/examples/bunzip2.hs0000755000000000000000000000022107346545000014707 0ustar0000000000000000module Main where import qualified Data.ByteString.Lazy as B import qualified Codec.Compression.BZip as BZip main = B.interact BZip.decompress bzlib-0.5.1.0/examples/bzip2.hs0000755000000000000000000000021707346545000014351 0ustar0000000000000000module Main where import qualified Data.ByteString.Lazy as B import qualified Codec.Compression.BZip as BZip main = B.interact BZip.compress