data-binary-ieee754-0.4.2.1/0000755000000000000000000000000011465652305013411 5ustar0000000000000000data-binary-ieee754-0.4.2.1/Setup.hs0000644000000000000000000000005611465652305015046 0ustar0000000000000000import Distribution.Simple main = defaultMain data-binary-ieee754-0.4.2.1/Tests.hs0000644000000000000000000001551711465652305015060 0ustar0000000000000000----------------------------------------------------------------------------- -- | -- Module: Tests -- Copyright: 2010 John Millikin -- License: MIT -- -- Maintainer: jmillikin@gmail.com -- Portability: portable -- ----------------------------------------------------------------------------- module Main (tests, main) where import Test.QuickCheck import qualified Test.Framework as F import Test.Framework.Providers.QuickCheck2 (testProperty) import qualified Data.ByteString.Lazy as B import Data.Word (Word8) import Data.Binary.Get (Get, runGetState) import Data.Binary.Put (Put, runPut) import Data.Binary.IEEE754 tests :: [F.Test] tests = [ F.testGroup "parsing" [ props_GetFloat16 "16" , props_GetFloat32 "32" , props_GetFloat64 "64" ] , F.testGroup "serialising" [ props_PutFloat32 "32" , props_PutFloat64 "64" ] , F.testGroup "passthrough" [ testPassthrough "32-le" putFloat32le getFloat32le , testPassthrough "32-be" putFloat32be getFloat32be , testPassthrough "64-le" putFloat64le getFloat64le , testPassthrough "64-be" putFloat64be getFloat64be ] , F.testGroup "passthrough NaN" [ testPassthroughNaN "32-le" putFloat32le getFloat32le , testPassthroughNaN "32-be" putFloat32be getFloat32be , testPassthroughNaN "64-le" putFloat64le getFloat64le , testPassthroughNaN "64-be" putFloat64be getFloat64be ] ] main :: IO () main = F.defaultMain tests props_GetFloat16 :: String -> F.Test props_GetFloat16 label = let check = checkGet getFloat16be getFloat16le in F.testGroup label [ check [0, 0] ((== 0.0) .&& (not . isNegativeZero)) , check [0x80, 0] isNegativeZero -- Normalised , check [0x3C, 0] (== 1.0) , check [0xBC, 0] (== -1.0) -- Denormalised , check [0x03, 0xFF] (== 6.097555e-5) , check [0x83, 0xFF] (== -6.097555e-5) -- Infinity , check [0x7C, 0] (== inf32) , check [0xFC, 0] (== -inf32) -- NaN , check [0x7E, 0] (isNaN .&& (not . isNegativeNaN)) , check [0xFE, 0] isNegativeNaN ] props_GetFloat32 :: String -> F.Test props_GetFloat32 label = let check = checkGet getFloat32be getFloat32le in F.testGroup label [ check [0, 0, 0, 0] ((== 0.0) .&& (not . isNegativeZero)) , check [0x80, 0, 0, 0] isNegativeZero -- Normalised , check [0x3F, 0x80, 0, 0] (== 1.0) , check [0xBF, 0x80, 0, 0] (== -1.0) -- Denormalised , check [0x00, 0x7F, 0xFF, 0xFF] (== 1.1754942106924411e-38) , check [0x80, 0x7F, 0xFF, 0xFF] (== -1.1754942106924411e-38) -- Infinity , check [0x7F, 0x80, 0, 0] (== inf32) , check [0xFF, 0x80, 0, 0] (== -inf32) -- NaN and negative NaN , check [0x7F, 0xC0, 0, 0] (isNaN .&& (not . isNegativeNaN)) , check [0xFF, 0xC0, 0, 0] isNegativeNaN ] props_GetFloat64 :: String -> F.Test props_GetFloat64 label = let check = checkGet getFloat64be getFloat64le in F.testGroup label [ check [0, 0, 0, 0, 0, 0, 0, 0] ((== 0.0) .&& (not . isNegativeZero)) , check [0x80, 0, 0, 0, 0, 0, 0, 0] isNegativeZero -- Normalised , check [0x3F, 0xF0, 0, 0, 0, 0, 0, 0] (== 1.0) , check [0xBF, 0xF0, 0, 0, 0, 0, 0, 0] (== -1.0) -- Denormalised , check [0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF] (== 2.2250738585072009e-308) , check [0x80, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF] (== -2.2250738585072009e-308) -- Infinity , check [0x7F, 0xF0, 0, 0, 0, 0, 0, 0] (== inf64) , check [0xFF, 0xF0, 0, 0, 0, 0, 0, 0] (== -inf64) -- NaN , check [0x7F, 0xF8, 0, 0, 0, 0, 0, 0] (isNaN .&& (not . isNegativeNaN)) , check [0xFF, 0xF8, 0, 0, 0, 0, 0, 0] isNegativeNaN ] props_PutFloat32 :: String -> F.Test props_PutFloat32 label = let check = checkPut putFloat32be putFloat32le in F.testGroup label [ check [0, 0, 0, 0] 0.0 , check [0x80, 0, 0, 0] (-0.0) -- Normalised , check [0x3F, 0x80, 0, 0] 1.0 , check [0xBF, 0x80, 0, 0] (-1.0) -- Denormalised , check [0x00, 0x7F, 0xFF, 0xFF] 1.1754942106924411e-38 , check [0x80, 0x7F, 0xFF, 0xFF] (-1.1754942106924411e-38) -- Infinity , check [0x7F, 0x80, 0, 0] inf32 , check [0xFF, 0x80, 0, 0] (-inf32) -- NaN , check [0x7F, 0xC0, 0, 0] nan32 , check [0xFF, 0xC0, 0, 0] (-nan32) ] props_PutFloat64 :: String -> F.Test props_PutFloat64 label = let check = checkPut putFloat64be putFloat64le in F.testGroup label [ check [0, 0, 0, 0, 0, 0, 0, 0] 0.0 , check [0x80, 0, 0, 0, 0, 0, 0, 0] (-0.0) -- Normalised , check [0x3F, 0xF0, 0, 0, 0, 0, 0, 0] 1.0 , check [0xBF, 0xF0, 0, 0, 0, 0, 0, 0] (-1.0) -- Denormalised , check [0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF] 2.2250738585072009e-308 , check [0x80, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF] (-2.2250738585072009e-308) -- Infinity , check [0x7F, 0xF0, 0, 0, 0, 0, 0, 0] inf64 , check [0xFF, 0xF0, 0, 0, 0, 0, 0, 0] (-inf64) -- NaN , check [0x7F, 0xF8, 0, 0, 0, 0, 0, 0] nan64 , check [0xFF, 0xF8, 0, 0, 0, 0, 0, 0] (-nan64) ] checkGet :: (Show a, Eq a, RealFloat a) => Get a -- ^ big endian -> Get a -- ^ little endian -> [Word8] -- ^ big-endian bytes -> (a -> Bool) -- ^ verify result -> F.Test checkGet getBE getLE bytes f = testProperty "get" $ forAll (return bytes) (const valid) where valid = B.null remainingBE && B.null remainingLE && f xBE && f xLE (xBE, remainingBE, _) = runGetState getBE (B.pack bytes) 0 (xLE, remainingLE, _) = runGetState getLE (B.pack (reverse bytes)) 0 checkPut :: Show a => (a -> Put) -- ^ big endian -> (a -> Put) -- ^ little endian -> [Word8] -- ^ expected big-endian bytes -> a -> F.Test checkPut putBE putLE bytes x = testProperty "put" $ forAll (return x) (const valid) where valid = sameResult && bytes == B.unpack bytesBE sameResult = bytesBE == B.reverse bytesLE bytesBE = runPut (putBE x) bytesLE = runPut (putLE x) (.&&) :: (a -> Bool) -> (a -> Bool) -> a -> Bool (.&&) f g x = f x && g x isNegativeNaN :: RealFloat a => a -> Bool isNegativeNaN x = isNaN x && frac < 0 where (frac, _) = decodeFloat x -- Verify that the given put and get functions are inverses. testPassthrough :: (Arbitrary a, Show a, Eq a) => F.TestName -> (a -> Put) -> Get a -> F.Test testPassthrough name put get = testProperty name $ \x -> let bytes = runPut (put x) (x', remaining, _) = runGetState get bytes 0 in x == x' && B.null remaining testPassthroughNaN :: (Arbitrary a, RealFloat a, Read a) => F.TestName -> (a -> Put) -> Get a -> F.Test testPassthroughNaN name put get = testProperty name valid where nan = read "NaN" test x = decodeFloat x == decodeFloat x' && B.null remaining where bytes = runPut (put x) (x', remaining, _) = runGetState get bytes 0 valid = test nan && test (- nan) -- Pseudo-literals for special values inf32 :: Float inf32 = read "Infinity" inf64 :: Double inf64 = read "Infinity" nan32 :: Float nan32 = - (read "NaN") nan64 :: Double nan64 = - (read "NaN") data-binary-ieee754-0.4.2.1/License.txt0000644000000000000000000000204111465652305015531 0ustar0000000000000000Copyright (c) 2010 John Millikin Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. data-binary-ieee754-0.4.2.1/data-binary-ieee754.cabal0000644000000000000000000000213311465652305017734 0ustar0000000000000000name: data-binary-ieee754 version: 0.4.2.1 synopsis: Parser/Serialiser for IEEE-754 floating-point values description: Convert Float and Decimal values to/from raw octets. license: MIT license-file: License.txt author: John Millikin maintainer: jmillikin@gmail.com build-type: Simple cabal-version: >=1.6 category: Data stability: experimental bug-reports: mailto:jmillikin@gmail.com homepage: http://john-millikin.com/software/data-binary-ieee754/ tested-with: GHC==6.12.1 source-repository head type: bazaar location: http://john-millikin.com/software/data-binary-ieee754/ flag test default: False library if true ghc-options: -Wall if impl(ghc >= 6.11) ghc-options: -fno-warn-unused-do-bind build-depends: base >= 3.0 && < 5 , binary >= 0.4 && < 0.6 exposed-modules: Data.Binary.IEEE754 executable data-binary-ieee754_tests main-is: Tests.hs if flag(test) build-depends: QuickCheck >= 2.2 && < 2.4 , test-framework >= 0.2 && < 0.4 , test-framework-quickcheck2 >= 0.2 && < 0.3 , bytestring >= 0.9 && < 0.10 else buildable: False data-binary-ieee754-0.4.2.1/Data/0000755000000000000000000000000011465652305014262 5ustar0000000000000000data-binary-ieee754-0.4.2.1/Data/Binary/0000755000000000000000000000000011465652305015506 5ustar0000000000000000data-binary-ieee754-0.4.2.1/Data/Binary/IEEE754.hs0000644000000000000000000000577711465652305017031 0ustar0000000000000000----------------------------------------------------------------------------- -- | -- Module: Data.Binary.IEEE754 -- Copyright: 2010 John Millikin -- License: MIT -- -- Maintainer: jmillikin@gmail.com -- Portability: portable -- ----------------------------------------------------------------------------- module Data.Binary.IEEE754 ( -- * Parsing getFloat16be, getFloat16le , getFloat32be, getFloat32le , getFloat64be, getFloat64le -- * Serializing , putFloat32be, putFloat32le , putFloat64be, putFloat64le -- * Float <-> Word conversion , floatToWord, wordToFloat , doubleToWord, wordToDouble ) where import Prelude hiding (exp) import Data.Bits (shiftL, shiftR, (.|.), (.&.)) import qualified Data.Binary.Get as G import qualified Data.Binary.Put as P import qualified Foreign as F getFloat16be :: G.Get Float getFloat16be = fmap toFloat16 G.getWord16be getFloat16le :: G.Get Float getFloat16le = fmap toFloat16 G.getWord16le getFloat32be :: G.Get Float getFloat32be = fmap toFloat G.getWord32be getFloat32le :: G.Get Float getFloat32le = fmap toFloat G.getWord32le getFloat64be :: G.Get Double getFloat64be = fmap toFloat G.getWord64be getFloat64le :: G.Get Double getFloat64le = fmap toFloat G.getWord64le putFloat32be :: Float -> P.Put putFloat32be = P.putWord32be . fromFloat putFloat32le :: Float -> P.Put putFloat32le = P.putWord32le . fromFloat putFloat64be :: Double -> P.Put putFloat64be = P.putWord64be . fromFloat putFloat64le :: Double -> P.Put putFloat64le = P.putWord64le . fromFloat floatToWord :: Float -> F.Word32 floatToWord = fromFloat wordToFloat :: F.Word32 -> Float wordToFloat = toFloat doubleToWord :: Double -> F.Word64 doubleToWord = fromFloat wordToDouble :: F.Word64 -> Double wordToDouble = toFloat toFloat :: (F.Storable word, F.Storable float) => word -> float toFloat word = F.unsafePerformIO $ F.alloca $ \buf -> do F.poke (F.castPtr buf) word F.peek buf fromFloat :: (F.Storable word, F.Storable float) => float -> word fromFloat float = F.unsafePerformIO $ F.alloca $ \buf -> do F.poke (F.castPtr buf) float F.peek buf toFloat16 :: F.Word16 -> Float toFloat16 word16 = toFloat (sign32 .|. word32) where sign16 = word16 .&. 0x8000 exp16 = word16 .&. 0x7C00 frac16 = word16 .&. 0x3FF sign32 = if sign16 > 0 then 0x80000000 -- -0.0 else 0 word32 :: F.Word32 word32 | word16 .&. 0x7FFF == 0 = 0 | exp16 == 0x7C00 = special | otherwise = shiftL exp32 23 .|. shiftL frac32 13 special = if frac16 == 0 -- Infinity then 0x7F800000 -- NaN; signals are maintained in lower 10 bits else 0x7FC00000 .|. fromIntegral frac16 (exp32, frac32) = if exp16 > 0 then normalised else denormalised normalised = (exp, frac) where exp = (fromIntegral exp16 `shiftR` 10) - 15 + 127 frac = fromIntegral frac16 denormalised = (exp, frac) where exp = (fromIntegral exp16 `shiftR` 10) - 15 + 127 - e (e, frac ) = step 0 (shiftL frac16 1) where step acc x = if x .&. 0x400 == 0 then step (acc + 1) (shiftL x 1) else (acc, fromIntegral x .&. 0x3FF)