invariant-0.6.3/0000755000000000000000000000000007346545000011704 5ustar0000000000000000invariant-0.6.3/CHANGELOG.md0000644000000000000000000001257507346545000013527 0ustar0000000000000000# 0.6.3 [2024.03.19] * Support building with `template-haskell-2.22.*` (GHC 9.10). # 0.6.2 [2023.08.06] * The Template Haskell machinery now uses `TemplateHaskellQuotes` when building with GHC 8.0+ instead of manually constructing each Template Haskell `Name`. A consequence of this is that `invariant` will now build with GHC 9.8, as `TemplateHaskellQuotes` abstracts over some internal Template Haskell changes introduced in 9.8. # 0.6.1 [2023.02.27] * Support `th-abstraction-0.5.*`. # 0.6 [2022.07.03] * Loosen the `Monad` constraint in the `Invariant(2)` instances for `Kleisli` to an `Invariant` constraint. * Loosen the `Comonad` constraint in the `Invariant2` instance for `Cokleisli` to an `Invariant` constraint. * Add `Invariant` instances for `PastroSum`, `CopastroSum`, `Environment`, `FreeMapping`, `Pastro`, and `FreeTraversing` from the `profunctors` library. * Add `Invariant(2)` instances for `Copastro` and `Coyoneda` from the `profunctors` library. # 0.5.6 [2022.05.07] * Add `InvariantProfunctor` and `InvariantArrow` newtypes that admit implementations of `invmap` that only require `Profunctor` or `Arrow` constraints, respectively. Also add top-level `invmapProfunctor` and `invmapArrow` functions. # 0.5.5 [2021.11.01] * Allow building with GHC 9.2. * Allow building with `transformers-0.6.*`. # 0.5.4 [2020.10.01] * Fix a bug in which `deriveInvariant2` would fail on certain data types with three or parameters if the first two parameters had phantom roles. * Fix a bug in which `deriveInvariant(2)` would fail on sufficiently complex uses of rank-n types in constructor fields. * Fix a bug in which `deriveInvariant(2)` would needlessly reject data types whose two last type parameters appear as oversaturated arguments to a type family. # 0.5.3 [2019.05.02] * Implement `foldMap'` in the `Foldable` instance for `WrappedFunctor` when building with `base-4.13` or later. # 0.5.2 [2019.04.26] * Support `th-abstraction-0.3.0.0` or later. * Only incur a `semigroups` dependency on old GHCs. # 0.5.1 [2018.07.15] * Depend on `QuickCheck-2.11` or later in the test suite. * Some Haddock fixes in `Data.Functor.Invariant.TH`. # 0.5 [2017.12.07] * `Data.Functor.Invariant.TH` now derives `invmap(2)` implementations for empty data types that are strict in the argument. * When using `Data.Functor.Invariant.TH` to derive `Invariant(2)` instances for data types where the last type variables are at phantom roles, generated `invmap(2)` implementations now use `coerce` for efficiency. * Add `Options` to `Data.Functor.Invariant.TH`, along with variants of existing functions that take `Options` as an argument. For now, the only configurable option is whether derived instances for empty data types should use the `EmptyCase` extension (this is disabled by default). # 0.4.3 [2017.07.31] * Add `Invariant(2)` instances for `Data.Profunctor.Yoneda.Yoneda`. # 0.4.2 [2017.04.24] * `invariant.cabal` used to incorrectly state the license was BSD3 when it was in fact BSD2. This is now fixed. # 0.4.1 * Fix the `Invariant V1` instance so as to `seq` its argument * Allow building with `template-haskell-2.12` # 0.4 * Allow TH derivation of `Invariant(2)` instances for datatypes containing unboxed tuple types * Ensure `Invariant(2)` instances are in-scope when importing `Data.Functor.Invariant` * Add `Invariant` and `Invariant2` instances for `Kleisli` and `Cokleisli` * Add `Category` and `Arrow`-like instances for `WrappedProfunctor` # 0.3.1 * Rewrote `Data.Functor.Invariant.TH`'s type inferencer. This avoids a nasty GHC 7.8-specific bug involving derived `Invariant(2)` instances for data families. * Add `Invariant` instances for `Data.Complex.Complex`, `Data.Monoid.Product`, and `Data.Monoid.Sum` # 0.3 * Require `bifunctors-5.2` and `profunctors-5.2`. Add `Invariant(2)` instances for newly introduced datatypes from those packages. * Add `ProfunctorFunctor`, `ProfunctorMonad`, `ProfunctorComonad`, `Mapping`, and `Traversing` instances for `WrappedProfunctor` * Add `StateVar` as a dependency. Add `Invariant` instances for `StateVar` and `SettableStateVar`. * Add `Invariant` instances for `URec` (added to `GHC.Generics` in `base-4.9.0.0`) # 0.2.2 * Add `genericInvmap` function (and make it the default implementation of `invmap` for `Invariant` instances) on GHC 7.2 or later * Make `Tagged` instance poly-kinded # 0.2.1 * Add `Foldable` and `Traversable` instances for `WrappedFunctor` * Fixed build on GHC HEAD # 0.2 * Support deriving `Invariant` and `Invariant2` instances with Template Haskell * Added `invmapFunctor`, `invmapContravariant`, `invmap2Bifunctor`, and `invmap2Profunctor` to make defining `Invmap` and `Invmap2` instances somewhat easier * Added `WrappedFunctor`, `WrappedContravariant`, `WrappedBifunctor`, and `WrappedProfunctor` data types to allow use of `invmap` and `invmap2` for data types that aren't `Invariant` or `Invariant2` instances. * Added `Invariant` instances for lazy `ST`, `ArrowMonad`, `Handler`, `Identity`, `First`, `Last`, `Alt`, `Proxy`, `ArgDescr`, `ArgOrder`, and `OptDescr` * Added `Invariant` and `Invariant2` instances for data types in the `array`, `bifunctors`, `containers`, `profunctors`, `semigroups`, `stm`, `tagged`, `transformers`, and `unordered-containers` libraries # 0.1.2 * Add `Invariant` instances for `Dual` and `Endo` # 0.1.1 * Bump `contravariant` upper version bounds # 0.1.0 * Initial commit invariant-0.6.3/LICENSE0000644000000000000000000000244607346545000012717 0ustar0000000000000000Copyright (c) 2012-2017, University of Kansas All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. invariant-0.6.3/README.md0000644000000000000000000000164607346545000013172 0ustar0000000000000000# `invariant` [![Hackage](https://img.shields.io/hackage/v/invariant.svg)][Hackage: invariant] [![Hackage Dependencies](https://img.shields.io/hackage-deps/v/invariant.svg)](http://packdeps.haskellers.com/reverse/invariant) [![Haskell Programming Language](https://img.shields.io/badge/language-Haskell-blue.svg)][Haskell.org] [![BSD3 License](http://img.shields.io/badge/license-BSD3-brightgreen.svg)][tl;dr Legal: BSD3] [![Build Status](https://github.com/nfrisby/invariant-functors/workflows/Haskell-CI/badge.svg)](https://github.com/nfrisby/invariant-functors/actions?query=workflow%3AHaskell-CI) [Hackage: invariant]: http://hackage.haskell.org/package/invariant "invariant package on Hackage" [Haskell.org]: http://www.haskell.org "The Haskell Programming Language" [tl;dr Legal: BSD3]: https://tldrlegal.com/license/bsd-3-clause-license-%28revised%29 "BSD 3-Clause License (Revised)" Haskell98 invariant functors invariant-0.6.3/Setup.hs0000644000000000000000000000005607346545000013341 0ustar0000000000000000import Distribution.Simple main = defaultMain invariant-0.6.3/invariant.cabal0000644000000000000000000000700307346545000014663 0ustar0000000000000000name: invariant version: 0.6.3 synopsis: Haskell98 invariant functors description: Haskell98 invariant functors (also known as exponential functors). . For more information, see Edward Kmett's article \"Rotten Bananas\": . category: Control, Data license: BSD2 license-file: LICENSE homepage: https://github.com/nfrisby/invariant-functors bug-reports: https://github.com/nfrisby/invariant-functors/issues author: Nicolas Frisby maintainer: Nicolas Frisby , Ryan Scott build-type: Simple cabal-version: >= 1.10 tested-with: GHC == 7.0.4 , GHC == 7.2.2 , GHC == 7.4.2 , GHC == 7.6.3 , GHC == 7.8.4 , GHC == 7.10.3 , GHC == 8.0.2 , GHC == 8.2.2 , GHC == 8.4.4 , GHC == 8.6.5 , GHC == 8.8.4 , GHC == 8.10.7 , GHC == 9.0.2 , GHC == 9.2.8 , GHC == 9.4.8 , GHC == 9.6.4 , GHC == 9.8.2 , GHC == 9.10.1 extra-source-files: CHANGELOG.md, README.md source-repository head type: git location: https://github.com/nfrisby/invariant-functors library exposed-modules: Data.Functor.Invariant , Data.Functor.Invariant.TH other-modules: Data.Functor.Invariant.TH.Internal , Paths_invariant hs-source-dirs: src default-language: Haskell2010 build-depends: array >= 0.3 && < 0.6 , base >= 4 && < 5 , bifunctors >= 5.2 && < 6 , comonad >= 5 && < 6 , containers >= 0.1 && < 0.8 , contravariant >= 0.5 && < 2 , ghc-prim , profunctors >= 5.2.1 && < 6 , StateVar >= 1.1 && < 2 , stm >= 2.2 && < 3 , tagged >= 0.7.3 && < 1 , template-haskell >= 2.4 && < 2.23 , th-abstraction >= 0.4 && < 0.8 , transformers >= 0.2 && < 0.7 , transformers-compat >= 0.3 && < 1 , unordered-containers >= 0.2.4 && < 0.3 ghc-options: -Wall if !impl(ghc >= 8.0) build-depends: semigroups >= 0.16.2 && < 1 test-suite spec type: exitcode-stdio-1.0 hs-source-dirs: test default-language: Haskell2010 main-is: Spec.hs other-modules: InvariantSpec THSpec build-depends: base >= 4 && < 5 , hspec >= 1.8 , invariant , QuickCheck >= 2.11 && < 3 , template-haskell build-tool-depends: hspec-discover:hspec-discover ghc-options: -Wall if impl(ghc >= 8.6) ghc-options: -Wno-star-is-type invariant-0.6.3/src/Data/Functor/0000755000000000000000000000000007346545000014764 5ustar0000000000000000invariant-0.6.3/src/Data/Functor/Invariant.hs0000644000000000000000000011643107346545000017261 0ustar0000000000000000{-# LANGUAGE CPP #-} #if !(MIN_VERSION_base(4,16,0)) || !(MIN_VERSION_transformers(0,6,0)) {-# OPTIONS_GHC -fno-warn-deprecations #-} #endif #define GHC_GENERICS_OK __GLASGOW_HASKELL__ >= 702 #if GHC_GENERICS_OK {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE TypeFamilies #-} #endif #if __GLASGOW_HASKELL__ >= 706 {-# LANGUAGE PolyKinds #-} #endif {-| Module: Data.Functor.Invariant Copyright: (C) 2012-2017 Nicolas Frisby, (C) 2015-2017 Ryan Scott License: BSD-style (see the file LICENSE) Maintainer: Ryan Scott Portability: Portable Haskell98 invariant functors (also known as exponential functors). For more information, see Edward Kmett's article \"Rotten Bananas\": -} module Data.Functor.Invariant ( -- * @Invariant@ Invariant(..) , invmapFunctor #if GHC_GENERICS_OK -- ** @GHC.Generics@ -- $ghcgenerics , genericInvmap #endif , WrappedFunctor(..) , invmapContravariant , invmapProfunctor , invmapArrow , WrappedContravariant(..) , InvariantProfunctor(..) , InvariantArrow(..) -- * @Invariant2@ , Invariant2(..) , invmap2Bifunctor , WrappedBifunctor(..) , invmap2Profunctor , WrappedProfunctor(..) ) where -- base import Control.Applicative as App import qualified Control.Arrow as Arr import Control.Arrow hiding (first, second) import qualified Control.Category as Cat import Control.Exception (Handler(..)) import Control.Monad (MonadPlus(..), liftM) import qualified Control.Monad.ST as Strict (ST) import qualified Control.Monad.ST.Lazy as Lazy (ST) #if MIN_VERSION_base(4,4,0) import Data.Complex (Complex(..)) #endif import qualified Data.Foldable as F (Foldable(..)) import qualified Data.Functor.Compose as Functor (Compose(..)) import Data.Functor.Identity (Identity) import Data.Functor.Product as Functor (Product(..)) import Data.Functor.Sum as Functor (Sum(..)) #if __GLASGOW_HASKELL__ < 711 import Data.Ix (Ix) #endif import Data.List.NonEmpty (NonEmpty(..)) import qualified Data.Monoid as Monoid (First(..), Last(..), Product(..), Sum(..)) #if MIN_VERSION_base(4,8,0) import Data.Monoid (Alt(..)) #endif import Data.Monoid (Dual(..), Endo(..)) import Data.Proxy (Proxy(..)) import qualified Data.Semigroup as Semigroup (First(..), Last(..)) #if !(MIN_VERSION_base(4,16,0)) import qualified Data.Semigroup as Semigroup (Option(..)) #endif import Data.Semigroup (Min(..), Max(..), Arg(..)) import qualified Data.Traversable as T (Traversable(..)) #if GHC_GENERICS_OK import GHC.Generics #endif import System.Console.GetOpt as GetOpt import Text.ParserCombinators.ReadP (ReadP) import Text.ParserCombinators.ReadPrec (ReadPrec) -- array import Data.Array (Array) -- bifunctors import Data.Bifunctor import Data.Bifunctor.Biff import Data.Bifunctor.Clown import Data.Bifunctor.Fix import Data.Bifunctor.Flip import Data.Bifunctor.Join import Data.Bifunctor.Joker import qualified Data.Bifunctor.Product as Bifunctor import qualified Data.Bifunctor.Sum as Bifunctor import Data.Bifunctor.Tannen import Data.Bifunctor.Wrapped -- comonad import Control.Comonad (Cokleisli(..)) -- containers import Data.IntMap (IntMap) import Data.Map (Map) import Data.Sequence (Seq, ViewL, ViewR) import Data.Tree (Tree) -- contravariant import Data.Functor.Contravariant import Data.Functor.Contravariant.Compose as Contravariant import Data.Functor.Contravariant.Divisible -- profunctors import Data.Profunctor as Pro import Data.Profunctor.Cayley import Data.Profunctor.Choice import Data.Profunctor.Closed import Data.Profunctor.Composition import Data.Profunctor.Mapping import Data.Profunctor.Monad import Data.Profunctor.Rep import Data.Profunctor.Ran import Data.Profunctor.Strong import Data.Profunctor.Traversing import Data.Profunctor.Unsafe import Data.Profunctor.Yoneda -- StateVar import Data.StateVar (StateVar(..), SettableStateVar(..)) -- stm import Control.Concurrent.STM (STM) -- tagged import Data.Tagged (Tagged(..)) -- transformers import Control.Applicative.Backwards (Backwards(..)) import Control.Applicative.Lift (Lift(..)) import Control.Monad.Trans.Cont (ContT) import Control.Monad.Trans.Except (ExceptT(..), runExceptT) import Control.Monad.Trans.Identity (IdentityT, mapIdentityT) import Control.Monad.Trans.Maybe (MaybeT, mapMaybeT) import qualified Control.Monad.Trans.RWS.Lazy as Lazy (RWST(..)) import qualified Control.Monad.Trans.RWS.Strict as Strict (RWST(..)) import Control.Monad.Trans.Reader (ReaderT, mapReaderT) import qualified Control.Monad.Trans.State.Lazy as Lazy (StateT(..)) import qualified Control.Monad.Trans.State.Strict as Strict (StateT(..)) import qualified Control.Monad.Trans.Writer.Lazy as Lazy (WriterT, mapWriterT) import qualified Control.Monad.Trans.Writer.Strict as Strict (WriterT, mapWriterT) #if !(MIN_VERSION_transformers(0,6,0)) import Control.Monad.Trans.Error (ErrorT(..)) import Control.Monad.Trans.List (ListT, mapListT) #endif import Data.Functor.Constant (Constant(..)) import Data.Functor.Reverse (Reverse(..)) -- unordered-containers import Data.HashMap.Lazy (HashMap) ------------------------------------------------------------------------------- -- The Invariant class ------------------------------------------------------------------------------- -- | Any @* -> *@ type parametric in the argument permits an instance of -- @Invariant@. -- -- Instances should satisfy the following laws: -- -- > invmap id id = id -- > invmap f2 f2' . invmap f1 f1' = invmap (f2 . f1) (f1' . f2') class Invariant f where invmap :: (a -> b) -> (b -> a) -> f a -> f b #if GHC_GENERICS_OK default invmap :: (Generic1 f, Invariant (Rep1 f)) => (a -> b) -> (b -> a) -> f a -> f b invmap = genericInvmap #endif -- | Every 'Functor' is also an 'Invariant' functor. invmapFunctor :: Functor f => (a -> b) -> (b -> a) -> f a -> f b invmapFunctor = flip $ const fmap -- | Every 'Contravariant' functor is also an 'Invariant' functor. invmapContravariant :: Contravariant f => (a -> b) -> (b -> a) -> f a -> f b invmapContravariant = const contramap -- | A 'Profunctor' with the same input and output types can be seen as an 'Invariant' functor. invmapProfunctor :: Profunctor p => (a -> b) -> (b -> a) -> p a a -> p b b invmapProfunctor = flip dimap -- | An 'Arrow' with the same input and output types can be seen as an 'Invariant' functor. invmapArrow :: Arrow arr => (a -> b) -> (b -> a) -> arr a a -> arr b b invmapArrow fn1 fn2 arrow = arr fn1 Cat.. arrow Cat.. arr fn2 ------------------------------------------------------------------------------- -- Invariant instances ------------------------------------------------------------------------------- instance Invariant Maybe where invmap = invmapFunctor instance Invariant [] where invmap = invmapFunctor instance Invariant IO where invmap = invmapFunctor instance Invariant (Strict.ST s) where invmap = invmapFunctor instance Invariant (Lazy.ST s) where invmap = invmapFunctor instance Invariant ReadP where invmap = invmapFunctor instance Invariant ReadPrec where invmap = invmapFunctor instance Invariant ((->) a) where invmap = invmapFunctor instance Invariant (Either a) where invmap = invmapFunctor instance Invariant ((,) a) where invmap = invmapFunctor instance Invariant ((,,) a b) where invmap f _ ~(a, b, x) = (a, b, f x) instance Invariant ((,,,) a b c) where invmap f _ ~(a, b, c, x) = (a, b, c, f x) instance Invariant ((,,,,) a b c d) where invmap f _ ~(a, b, c, d, x) = (a, b, c, d, f x) -- | from "Control.Applicative" instance Invariant (Const a) where invmap = invmapFunctor -- | from "Control.Applicative" instance Invariant ZipList where invmap = invmapFunctor -- | from "Control.Applicative" instance Monad m => Invariant (WrappedMonad m) where invmap = invmapFunctor -- | from "Control.Applicative" instance Arrow arr => Invariant (App.WrappedArrow arr a) where invmap f _ (App.WrapArrow x) = App.WrapArrow $ ((arr f) Cat.. x) -- | from "Control.Arrow" instance #if MIN_VERSION_base(4,4,0) Arrow a #else ArrowApply a #endif => Invariant (ArrowMonad a) where invmap f _ (ArrowMonad m) = ArrowMonad (m >>> arr f) -- | from "Control.Arrow" instance Invariant m => Invariant (Kleisli m a) where invmap f g (Kleisli m) = Kleisli (invmap f g . m) -- | from "Control.Exception" instance Invariant Handler where invmap f _ (Handler h) = Handler (fmap f . h) #if MIN_VERSION_base(4,4,0) -- | from "Data.Complex" instance Invariant Complex where invmap f _ (r :+ i) = f r :+ f i #endif -- | from "Data.Functor.Compose" instance (Invariant f, Invariant g) => Invariant (Functor.Compose f g) where invmap f g (Functor.Compose x) = Functor.Compose (invmap (invmap f g) (invmap g f) x) -- | from "Data.Functor.Identity" instance Invariant Identity where invmap = invmapFunctor -- | from "Data.Functor.Product" instance (Invariant f, Invariant g) => Invariant (Functor.Product f g) where invmap f g (Functor.Pair x y) = Functor.Pair (invmap f g x) (invmap f g y) -- | from "Data.Functor.Sum" instance (Invariant f, Invariant g) => Invariant (Functor.Sum f g) where invmap f g (InL x) = InL (invmap f g x) invmap f g (InR y) = InR (invmap f g y) -- | from "Data.List.NonEmpty" instance Invariant NonEmpty where invmap = invmapFunctor -- | from "Data.Monoid" instance Invariant Dual where invmap f _ (Dual x) = Dual (f x) -- | from "Data.Monoid" instance Invariant Endo where invmap f g (Endo x) = Endo (f . x . g) -- | from "Data.Monoid" instance Invariant Monoid.First where invmap f g (Monoid.First x) = Monoid.First (invmap f g x) -- | from "Data.Monoid" instance Invariant Monoid.Last where invmap f g (Monoid.Last x) = Monoid.Last (invmap f g x) -- | from "Data.Monoid" instance Invariant Monoid.Product where invmap f _ (Monoid.Product x) = Monoid.Product (f x) -- | from "Data.Monoid" instance Invariant Monoid.Sum where invmap f _ (Monoid.Sum x) = Monoid.Sum (f x) #if MIN_VERSION_base(4,8,0) -- | from "Data.Monoid" instance Invariant f => Invariant (Alt f) where invmap f g (Alt x) = Alt (invmap f g x) #endif -- | from "Data.Proxy" instance Invariant Proxy where invmap = invmapFunctor -- | from "Data.Semigroup" instance Invariant Min where invmap = invmapFunctor -- | from "Data.Semigroup" instance Invariant Max where invmap = invmapFunctor -- | from "Data.Semigroup" instance Invariant Semigroup.First where invmap = invmapFunctor -- | from "Data.Semigroup" instance Invariant Semigroup.Last where invmap = invmapFunctor -- | from "Data.Semigroup" instance Invariant (Arg a) where invmap = invmapFunctor #if !(MIN_VERSION_base(4,16,0)) -- | from "Data.Semigroup" instance Invariant Semigroup.Option where invmap = invmapFunctor #endif -- | from "System.Console.GetOpt" instance Invariant ArgDescr where invmap f _ (NoArg a) = NoArg (f a) invmap f _ (ReqArg g s) = ReqArg (f . g) s invmap f _ (OptArg g s) = OptArg (f . g) s -- | from "System.Console.GetOpt" instance Invariant ArgOrder where invmap _ _ RequireOrder = RequireOrder invmap _ _ Permute = Permute invmap f _ (ReturnInOrder g) = ReturnInOrder (f . g) -- | from "System.Console.GetOpt" instance Invariant OptDescr where invmap f g (GetOpt.Option a b argDescr c) = GetOpt.Option a b (invmap f g argDescr) c -- | from the @array@ package instance #if __GLASGOW_HASKELL__ < 711 Ix i => #endif Invariant (Array i) where invmap = invmapFunctor -- | from the @bifunctors@ package instance (Invariant2 p, Invariant g) => Invariant (Biff p f g a) where invmap f g = Biff . invmap2 id id (invmap f g) (invmap g f) . runBiff -- | from the @bifunctors@ package instance Invariant (Clown f a) where invmap = invmapFunctor -- | from the @bifunctors@ package instance Invariant2 p => Invariant (Fix p) where invmap f g = In . invmap2 (invmap f g) (invmap g f) f g . out -- | from the @bifunctors@ package instance Invariant2 p => Invariant (Flip p a) where invmap = invmap2 id id -- | from the @bifunctors@ package instance Invariant2 p => Invariant (Join p) where invmap f g = Join . invmap2 f g f g . runJoin -- | from the @bifunctors@ package instance Invariant g => Invariant (Joker g a) where invmap f g = Joker . invmap f g . runJoker -- | from the @bifunctors@ package instance (Invariant f, Invariant2 p) => Invariant (Tannen f p a) where invmap = invmap2 id id -- | from the @bifunctors@ package instance Bifunctor p => Invariant (WrappedBifunctor p a) where invmap = invmap2 id id -- | from the @comonad@ package instance Invariant (Cokleisli w a) where invmap = invmapFunctor -- | from the @containers@ package instance Invariant IntMap where invmap = invmapFunctor -- | from the @containers@ package instance Invariant (Map k) where invmap = invmapFunctor -- | from the @containers@ package instance Invariant Seq where invmap = invmapFunctor -- | from the @containers@ package instance Invariant ViewL where invmap = invmapFunctor -- | from the @containers@ package instance Invariant ViewR where invmap = invmapFunctor -- | from the @containers@ package instance Invariant Tree where invmap = invmapFunctor -- | from the @contravariant@ package instance Invariant Predicate where invmap = invmapContravariant -- | from the @contravariant@ package instance Invariant Comparison where invmap = invmapContravariant -- | from the @contravariant@ package instance Invariant Equivalence where invmap = invmapContravariant -- | from the @contravariant@ package instance Invariant (Op a) where invmap = invmapContravariant -- | from the @contravariant@ package instance (Invariant f, Invariant g) => Invariant (Contravariant.Compose f g) where invmap f g (Contravariant.Compose x) = Contravariant.Compose $ invmap (invmap f g) (invmap g f) x -- | from the @contravariant@ package instance (Invariant f, Invariant g) => Invariant (ComposeCF f g) where invmap f g (ComposeCF x) = ComposeCF $ invmap (invmap f g) (invmap g f) x -- | from the @contravariant@ package instance (Invariant f, Invariant g) => Invariant (ComposeFC f g) where invmap f g (ComposeFC x) = ComposeFC $ invmap (invmap f g) (invmap g f) x -- | from the @profunctors@ package instance Invariant f => Invariant (Star f a) where invmap = invmap2 id id -- | from the @profunctors@ package instance Invariant (Costar f a) where invmap = invmapFunctor -- | from the @profunctors@ package instance Arrow arr => Invariant (Pro.WrappedArrow arr a) where invmap f _ (Pro.WrapArrow x) = Pro.WrapArrow $ ((arr f) Cat.. x) -- | from the @profunctors@ package instance Invariant (Forget r a) where invmap = invmapFunctor -- | from the @profunctors@ package instance Invariant2 p => Invariant (Closure p a) where invmap = invmap2 id id -- | from the @profunctors@ package instance Invariant (Environment p a) where invmap = invmap2 id id -- | from the @profunctors@ package instance Invariant2 p => Invariant (Codensity p a) where invmap = invmap2 id id -- | from the @profunctors@ package instance Invariant2 p => Invariant (Coprep p) where invmap f g (Coprep h) = Coprep (h . invmap2 g f id id) -- | from the @profunctors@ package instance Invariant2 p => Invariant (Prep p) where invmap f g (Prep x p) = Prep x (invmap2 id id f g p) -- | from the @profunctors@ package instance Invariant2 p => Invariant (Procompose p q a) where invmap k k' (Procompose f g) = Procompose (invmap2 id id k k' f) g -- | from the @profunctors@ package instance Invariant2 p => Invariant (Rift p q a) where invmap bd db (Rift f) = Rift (f . invmap2 db bd id id) -- | from the @profunctors@ package instance Invariant2 q => Invariant (Ran p q a) where invmap bd db (Ran f) = Ran (invmap2 id id bd db . f) -- | from the @profunctors@ package instance Invariant2 p => Invariant (Tambara p a) where invmap = invmap2 id id -- | from the @profunctors@ package instance Invariant (PastroSum p a) where invmap = invmap2 id id -- | from the @profunctors@ package instance Invariant (FreeMapping p a) where invmap = invmap2 id id -- | from the @profunctors@ package instance Invariant (FreeTraversing p a) where invmap = invmap2 id id -- | from the @profunctors@ package instance Invariant (Pastro p a) where invmap = invmap2 id id -- | from the @profunctors@ package instance Invariant (Cotambara p a) where invmap = invmapFunctor -- | from the @profunctors@ package instance Invariant (Copastro p a) where invmap = invmap2 id id -- | from the @profunctors@ package instance Invariant (CopastroSum p a) where invmap = invmap2 id id -- | from the @profunctors@ package instance Invariant (CotambaraSum p a) where invmap = invmapFunctor -- | from the @profunctors@ package instance Invariant2 p => Invariant (TambaraSum p a) where invmap = invmap2 id id -- | from the @profunctors@ package instance Invariant (Yoneda p a) where invmap = invmapFunctor -- | from the @profunctors@ package instance Invariant (Coyoneda p a) where invmap = invmap2 id id -- | from the @StateVar@ package instance Invariant StateVar where invmap f g (StateVar ga sa) = StateVar (fmap f ga) (lmap g sa) -- | from the @StateVar@ package instance Invariant SettableStateVar where invmap = invmapContravariant -- | from the @stm@ package instance Invariant STM where invmap = invmapFunctor -- | from the @tagged@ package instance Invariant (Tagged s) where invmap = invmapFunctor -- | from the @transformers@ package instance Invariant f => Invariant (Backwards f) where invmap f g (Backwards a) = Backwards (invmap f g a) -- | from the @transformers@ package instance Invariant f => Invariant (Lift f) where invmap f _ (Pure x) = Pure (f x) invmap f g (Other y) = Other (invmap f g y) -- | from the @transformers@ package instance Invariant (ContT r m) where invmap = invmapFunctor -- | from the @transformers@ package instance Invariant m => Invariant (ExceptT e m) where invmap f g = ExceptT . invmap (invmap f g) (invmap g f) . runExceptT -- | from the @transformers@ package instance Invariant m => Invariant (IdentityT m) where invmap f g = mapIdentityT (invmap f g) -- | from the @transformers@ package instance Invariant m => Invariant (MaybeT m) where invmap f g = mapMaybeT $ invmap (invmap f g) (invmap g f) -- | from the @transformers@ package instance Invariant m => Invariant (Lazy.RWST r w s m) where invmap f g m = Lazy.RWST $ \r s -> invmap (mapFstTriple f) (mapFstTriple g) $ Lazy.runRWST m r s where mapFstTriple :: (a -> b) -> (a, c, d) -> (b, c, d) mapFstTriple h ~(a, s, w) = (h a, s, w) -- | from the @transformers@ package instance Invariant m => Invariant (Strict.RWST r w s m) where invmap f g m = Strict.RWST $ \r s -> invmap (mapFstTriple f) (mapFstTriple g) $ Strict.runRWST m r s where mapFstTriple :: (a -> b) -> (a, c, d) -> (b, c, d) mapFstTriple h (a, s, w) = (h a, s, w) -- | from the @transformers@ package instance Invariant m => Invariant (ReaderT r m) where invmap f g = mapReaderT (invmap f g) -- | from the @transformers@ package instance Invariant m => Invariant (Lazy.StateT s m) where invmap f g m = Lazy.StateT $ \s -> invmap (mapFstPair f) (mapFstPair g) $ Lazy.runStateT m s where mapFstPair :: (a -> b) -> (a, c) -> (b, c) mapFstPair h ~(a, s) = (h a, s) -- | from the @transformers@ package instance Invariant m => Invariant (Strict.StateT s m) where invmap f g m = Strict.StateT $ \s -> invmap (mapFstPair f) (mapFstPair g) $ Strict.runStateT m s where mapFstPair :: (a -> b) -> (a, c) -> (b, c) mapFstPair h (a, s) = (h a, s) -- | from the @transformers@ package instance Invariant m => Invariant (Lazy.WriterT w m) where invmap f g = Lazy.mapWriterT $ invmap (mapFstPair f) (mapFstPair g) where mapFstPair :: (a -> b) -> (a, c) -> (b, c) mapFstPair h ~(a, w) = (h a, w) -- | from the @transformers@ package instance Invariant m => Invariant (Strict.WriterT w m) where invmap f g = Strict.mapWriterT $ invmap (mapFstPair f) (mapFstPair g) where mapFstPair :: (a -> b) -> (a, c) -> (b, c) mapFstPair h (a, w) = (h a, w) -- | from the @transformers@ package instance Invariant (Constant a) where invmap = invmapFunctor -- | from the @transformers@ package instance Invariant f => Invariant (Reverse f) where invmap f g (Reverse a) = Reverse (invmap f g a) #if !(MIN_VERSION_transformers(0,6,0)) -- | from the @transformers@ package instance Invariant m => Invariant (ErrorT e m) where invmap f g = ErrorT . invmap (invmap f g) (invmap g f) . runErrorT -- | from the @transformers@ package instance Invariant m => Invariant (ListT m) where invmap f g = mapListT $ invmap (invmap f g) (invmap g f) #endif -- | from the @unordered-containers@ package instance Invariant (HashMap k) where invmap = invmapFunctor ------------------------------------------------------------------------------- -- WrappedFunctor ------------------------------------------------------------------------------- -- | Wrap a 'Functor' to be used as a member of 'Invariant'. newtype WrappedFunctor f a = WrapFunctor { unwrapFunctor :: f a } deriving (Eq, Ord, Read, Show) instance Functor f => Invariant (WrappedFunctor f) where invmap = invmapFunctor instance Functor f => Functor (WrappedFunctor f) where fmap f = WrapFunctor . fmap f . unwrapFunctor x <$ WrapFunctor f = WrapFunctor (x <$ f) instance Applicative f => Applicative (WrappedFunctor f) where pure = WrapFunctor . pure WrapFunctor f <*> WrapFunctor x = WrapFunctor (f <*> x) WrapFunctor a *> WrapFunctor b = WrapFunctor (a *> b) WrapFunctor a <* WrapFunctor b = WrapFunctor (a <* b) instance Alternative f => Alternative (WrappedFunctor f) where empty = WrapFunctor empty WrapFunctor x <|> WrapFunctor y = WrapFunctor (x <|> y) some = WrapFunctor . some . unwrapFunctor many = WrapFunctor . many . unwrapFunctor instance Monad m => Monad (WrappedFunctor m) where WrapFunctor x >>= f = WrapFunctor (x >>= unwrapFunctor . f) #if !(MIN_VERSION_base(4,11,0)) return = WrapFunctor . return WrapFunctor a >> WrapFunctor b = WrapFunctor (a >> b) #endif instance MonadPlus m => MonadPlus (WrappedFunctor m) where mzero = WrapFunctor mzero WrapFunctor x `mplus` WrapFunctor y = WrapFunctor (x `mplus` y) instance F.Foldable f => F.Foldable (WrappedFunctor f) where fold = F.fold . unwrapFunctor foldMap f = F.foldMap f . unwrapFunctor foldr f z = F.foldr f z . unwrapFunctor foldl f q = F.foldl f q . unwrapFunctor foldr1 f = F.foldr1 f . unwrapFunctor foldl1 f = F.foldl1 f . unwrapFunctor #if MIN_VERSION_base(4,6,0) foldr' f z = F.foldr' f z . unwrapFunctor foldl' f q = F.foldl' f q . unwrapFunctor #endif #if MIN_VERSION_base(4,8,0) toList = F.toList . unwrapFunctor null = F.null . unwrapFunctor length = F.length . unwrapFunctor elem x = F.elem x . unwrapFunctor maximum = F.maximum . unwrapFunctor minimum = F.minimum . unwrapFunctor sum = F.sum . unwrapFunctor product = F.product . unwrapFunctor #endif #if MIN_VERSION_base(4,13,0) foldMap' f = F.foldMap' f . unwrapFunctor #endif instance T.Traversable f => T.Traversable (WrappedFunctor f) where traverse f = fmap WrapFunctor . T.traverse f . unwrapFunctor sequenceA = fmap WrapFunctor . T.sequenceA . unwrapFunctor mapM f = liftM WrapFunctor . T.mapM f . unwrapFunctor sequence = liftM WrapFunctor . T.sequence . unwrapFunctor ------------------------------------------------------------------------------- -- WrappedContravariant ------------------------------------------------------------------------------- -- | Wrap a 'Contravariant' functor to be used as a member of 'Invariant'. newtype WrappedContravariant f a = WrapContravariant { unwrapContravariant :: f a } deriving (Eq, Ord, Read, Show) instance Contravariant f => Invariant (WrappedContravariant f) where invmap = invmapContravariant instance Contravariant f => Contravariant (WrappedContravariant f) where contramap f = WrapContravariant . contramap f . unwrapContravariant x >$ WrapContravariant f = WrapContravariant (x >$ f) instance Divisible f => Divisible (WrappedContravariant f) where divide f (WrapContravariant l) (WrapContravariant r) = WrapContravariant $ divide f l r conquer = WrapContravariant conquer instance Decidable f => Decidable (WrappedContravariant f) where lose = WrapContravariant . lose choose f (WrapContravariant l) (WrapContravariant r) = WrapContravariant $ choose f l r ------------------------------------------------------------------------------- -- The Invariant2 class ------------------------------------------------------------------------------- -- | Any @* -> * -> *@ type parametric in both arguments permits an instance of -- @Invariant2@. -- -- Instances should satisfy the following laws: -- -- > invmap2 id id id id = id -- > invmap2 f2 f2' g2 g2' . invmap2 f1 f1' g1 g1' = -- > invmap2 (f2 . f1) (f1' . f2') (g2 . g1) (g1' . g2') class Invariant2 f where invmap2 :: (a -> c) -> (c -> a) -> (b -> d) -> (d -> b) -> f a b -> f c d -- | Every 'Bifunctor' is also an 'Invariant2' functor. invmap2Bifunctor :: Bifunctor f => (a -> c) -> (c -> a) -> (b -> d) -> (d -> b) -> f a b -> f c d invmap2Bifunctor f _ g _ = bimap f g -- | Every 'Profunctor' is also an 'Invariant2' functor. invmap2Profunctor :: Profunctor f => (a -> c) -> (c -> a) -> (b -> d) -> (d -> b) -> f a b -> f c d invmap2Profunctor _ f' g _ = dimap f' g ------------------------------------------------------------------------------- -- Invariant2 instances ------------------------------------------------------------------------------- instance Invariant2 (->) where invmap2 = invmap2Profunctor instance Invariant2 Either where invmap2 = invmap2Bifunctor instance Invariant2 (,) where invmap2 f _ g _ ~(x, y) = (f x, g y) instance Invariant2 ((,,) a) where invmap2 f _ g _ ~(a, x, y) = (a, f x, g y) instance Invariant2 ((,,,) a b) where invmap2 f _ g _ ~(a, b, x, y) = (a, b, f x, g y) instance Invariant2 ((,,,,) a b c) where invmap2 f _ g _ ~(a, b, c, x, y) = (a, b, c, f x, g y) -- | from "Control.Applicative" instance Invariant2 Const where invmap2 = invmap2Bifunctor -- | from "Control.Applicative" instance Arrow arr => Invariant2 (App.WrappedArrow arr) where invmap2 _ f' g _ (App.WrapArrow x) = App.WrapArrow $ arr g Cat.. x Cat.. arr f' -- | from "Control.Arrow" instance Invariant m => Invariant2 (Kleisli m) where invmap2 _ f' g g' (Kleisli m) = Kleisli $ invmap g g' . m . f' -- | from "Data.Semigroup" instance Invariant2 Arg where invmap2 = invmap2Bifunctor -- | from the @bifunctors@ package instance (Invariant2 p, Invariant f, Invariant g) => Invariant2 (Biff p f g) where invmap2 f f' g g' = Biff . invmap2 (invmap f f') (invmap f' f) (invmap g g') (invmap g' g) . runBiff -- | from the @bifunctors@ package instance Invariant f => Invariant2 (Clown f) where invmap2 f f' _ _ = Clown . invmap f f' . runClown -- | from the @bifunctors@ package instance Invariant2 p => Invariant2 (Flip p) where invmap2 f f' g g' = Flip . invmap2 g g' f f' . runFlip -- | from the @bifunctors@ package instance Invariant g => Invariant2 (Joker g) where invmap2 _ _ g g' = Joker . invmap g g' . runJoker -- | from the @bifunctors@ package instance (Invariant2 f, Invariant2 g) => Invariant2 (Bifunctor.Product f g) where invmap2 f f' g g' (Bifunctor.Pair x y) = Bifunctor.Pair (invmap2 f f' g g' x) (invmap2 f f' g g' y) -- | from the @bifunctors@ package instance (Invariant2 p, Invariant2 q) => Invariant2 (Bifunctor.Sum p q) where invmap2 f f' g g' (Bifunctor.L2 l) = Bifunctor.L2 (invmap2 f f' g g' l) invmap2 f f' g g' (Bifunctor.R2 r) = Bifunctor.R2 (invmap2 f f' g g' r) -- | from the @bifunctors@ package instance (Invariant f, Invariant2 p) => Invariant2 (Tannen f p) where invmap2 f f' g g' = Tannen . invmap (invmap2 f f' g g') (invmap2 f' f g' g) . runTannen -- | from the @bifunctors@ package instance Bifunctor p => Invariant2 (WrappedBifunctor p) where invmap2 = invmap2Bifunctor -- | from the @comonad@ package instance Invariant w => Invariant2 (Cokleisli w) where invmap2 f f' g _ (Cokleisli w) = Cokleisli $ g . w . invmap f' f -- | from the @contravariant@ package instance Invariant2 Op where invmap2 f f' g g' (Op x) = Op $ invmap2 g g' f f' x -- | from the @profunctors@ package instance Invariant f => Invariant2 (Star f) where invmap2 _ ba cd dc (Star afc) = Star $ invmap cd dc . afc . ba -- | from the @profunctors@ package instance Invariant f => Invariant2 (Costar f) where invmap2 ab ba cd _ (Costar fbc) = Costar $ cd . fbc . invmap ba ab -- | from the @profunctors@ package instance Arrow arr => Invariant2 (Pro.WrappedArrow arr) where invmap2 _ f' g _ (Pro.WrapArrow x) = Pro.WrapArrow $ arr g Cat.. x Cat.. arr f' -- | from the @profunctors@ package instance Invariant2 (Forget r) where invmap2 = invmap2Profunctor -- | from the @profunctors@ package instance (Invariant f, Invariant2 p) => Invariant2 (Cayley f p) where invmap2 f f' g g' = Cayley . invmap (invmap2 f f' g g') (invmap2 f' f g' g) . runCayley -- | from the @profunctors@ package instance Invariant2 p => Invariant2 (Closure p) where invmap2 f f' g g' (Closure p) = Closure $ invmap2 (f .) (f' .) (g .) (g' .) p -- | from the @profunctors@ package instance Invariant2 (Environment p) where invmap2 = invmap2Profunctor -- | from the @profunctors@ package instance Invariant2 p => Invariant2 (Codensity p) where invmap2 ac ca bd db (Codensity f) = Codensity (invmap2 id id bd db . f . invmap2 id id ca ac) -- | from the @profunctors@ package instance (Invariant2 p, Invariant2 q) => Invariant2 (Procompose p q) where invmap2 l l' r r' (Procompose f g) = Procompose (invmap2 id id r r' f) (invmap2 l l' id id g) -- | from the @profunctors@ package instance (Invariant2 p, Invariant2 q) => Invariant2 (Rift p q) where invmap2 ac ca bd db (Rift f) = Rift (invmap2 ac ca id id . f . invmap2 db bd id id) -- | from the @profunctors@ package instance (Invariant2 p, Invariant2 q) => Invariant2 (Ran p q) where invmap2 ac ca bd db (Ran f) = Ran (invmap2 id id bd db . f . invmap2 id id ca ac) -- | from the @profunctors@ package instance Invariant2 p => Invariant2 (Tambara p) where invmap2 f f' g g' (Tambara p) = Tambara $ invmap2 (first f) (first f') (first g) (first g') p -- | from the @profunctors@ package instance Invariant2 (PastroSum p) where invmap2 = invmap2Profunctor -- | from the @profunctors@ package instance Invariant2 p => Invariant2 (CofreeMapping p) where invmap2 f f' g g' (CofreeMapping p) = CofreeMapping (invmap2 (fmap f) (fmap f') (fmap g) (fmap g') p) -- | from the @profunctors@ package instance Invariant2 (FreeMapping p) where invmap2 = invmap2Profunctor -- | from the @profunctors@ package instance Invariant2 p => Invariant2 (CofreeTraversing p) where invmap2 f f' g g' (CofreeTraversing p) = CofreeTraversing (invmap2 (fmap f) (fmap f') (fmap g) (fmap g') p) -- | from the @profunctors@ package instance Invariant2 (FreeTraversing p) where invmap2 = invmap2Profunctor -- | from the @profunctors@ package instance Invariant2 (Pastro p) where invmap2 = invmap2Profunctor -- | from the @profunctors@ package instance Invariant2 (Cotambara p) where invmap2 = invmap2Profunctor -- | from the @profunctors@ package instance Invariant2 (Copastro p) where invmap2 = invmap2Profunctor -- | from the @profunctors@ package instance Invariant2 (CopastroSum p) where invmap2 = invmap2Profunctor -- | from the @profunctors@ package instance Invariant2 (CotambaraSum p) where invmap2 = invmap2Profunctor -- | from the @profunctors@ package instance Invariant2 p => Invariant2 (TambaraSum p) where invmap2 f f' g g' (TambaraSum p) = TambaraSum (invmap2 (first f) (first f') (first g) (first g') p) -- | from the @profunctors@ package instance Invariant2 (Yoneda p) where invmap2 = invmap2Profunctor -- | from the @profunctors@ package instance Invariant2 (Coyoneda p) where invmap2 = invmap2Profunctor -- | from the @tagged@ package instance Invariant2 Tagged where invmap2 = invmap2Bifunctor -- | from the @transformers@ package instance Invariant2 Constant where invmap2 f _ _ _ (Constant x) = Constant (f x) ------------------------------------------------------------------------------- -- WrappedProfunctor ------------------------------------------------------------------------------- -- | Wrap a 'Profunctor' to be used as a member of 'Invariant2'. newtype WrappedProfunctor p a b = WrapProfunctor { unwrapProfunctor :: p a b } deriving (Eq, Ord, Read, Show) instance Profunctor p => Invariant2 (WrappedProfunctor p) where invmap2 = invmap2Profunctor instance Profunctor p => Invariant (WrappedProfunctor p a) where invmap = invmap2 id id instance Profunctor p => Profunctor (WrappedProfunctor p) where dimap f g = WrapProfunctor . dimap f g . unwrapProfunctor lmap f = WrapProfunctor . lmap f . unwrapProfunctor rmap g = WrapProfunctor . rmap g . unwrapProfunctor WrapProfunctor x .# f = WrapProfunctor (x .# f) g #. WrapProfunctor x = WrapProfunctor (g #. x) instance Cat.Category p => Cat.Category (WrappedProfunctor p) where id = WrapProfunctor Cat.id WrapProfunctor p1 . WrapProfunctor p2 = WrapProfunctor (p1 Cat.. p2) instance Arrow p => Arrow (WrappedProfunctor p) where arr = WrapProfunctor . arr first = WrapProfunctor . Arr.first . unwrapProfunctor second = WrapProfunctor . Arr.second . unwrapProfunctor WrapProfunctor p1 *** WrapProfunctor p2 = WrapProfunctor (p1 *** p2) WrapProfunctor p1 &&& WrapProfunctor p2 = WrapProfunctor (p1 &&& p2) instance ArrowZero p => ArrowZero (WrappedProfunctor p) where zeroArrow = WrapProfunctor zeroArrow instance ArrowPlus p => ArrowPlus (WrappedProfunctor p) where WrapProfunctor p1 <+> WrapProfunctor p2 = WrapProfunctor (p1 <+> p2) instance ArrowChoice p => ArrowChoice (WrappedProfunctor p) where left = WrapProfunctor . left . unwrapProfunctor right = WrapProfunctor . right . unwrapProfunctor WrapProfunctor p1 +++ WrapProfunctor p2 = WrapProfunctor (p1 +++ p2) WrapProfunctor p1 ||| WrapProfunctor p2 = WrapProfunctor (p1 ||| p2) instance ArrowLoop p => ArrowLoop (WrappedProfunctor p) where loop = WrapProfunctor . loop . unwrapProfunctor instance Strong p => Strong (WrappedProfunctor p) where first' = WrapProfunctor . first' . unwrapProfunctor second' = WrapProfunctor . second' . unwrapProfunctor instance Choice p => Choice (WrappedProfunctor p) where left' = WrapProfunctor . left' . unwrapProfunctor right' = WrapProfunctor . right' . unwrapProfunctor instance Costrong p => Costrong (WrappedProfunctor p) where unfirst = WrapProfunctor . unfirst . unwrapProfunctor unsecond = WrapProfunctor . unsecond . unwrapProfunctor instance Cochoice p => Cochoice (WrappedProfunctor p) where unleft = WrapProfunctor . unleft . unwrapProfunctor unright = WrapProfunctor . unright . unwrapProfunctor instance Closed p => Closed (WrappedProfunctor p) where closed = WrapProfunctor . closed . unwrapProfunctor instance Traversing p => Traversing (WrappedProfunctor p) where traverse' = WrapProfunctor . traverse' . unwrapProfunctor wander f = WrapProfunctor . wander f . unwrapProfunctor instance Mapping p => Mapping (WrappedProfunctor p) where map' = WrapProfunctor . map' . unwrapProfunctor instance ProfunctorFunctor WrappedProfunctor where promap f = WrapProfunctor . f . unwrapProfunctor instance ProfunctorMonad WrappedProfunctor where proreturn = WrapProfunctor projoin = unwrapProfunctor instance ProfunctorComonad WrappedProfunctor where proextract = unwrapProfunctor produplicate = WrapProfunctor #if GHC_GENERICS_OK ------------------------------------------------------------------------------- -- GHC Generics ------------------------------------------------------------------------------- -- | from "GHC.Generics" instance Invariant V1 where -- NSF 25 July 2015: I'd prefer an -XEmptyCase, but Haskell98. invmap _ _ x = x `seq` error "Invariant V1" -- | from "GHC.Generics" instance Invariant U1 where invmap _ _ _ = U1 -- | from "GHC.Generics" instance (Invariant l, Invariant r) => Invariant ((:+:) l r) where invmap f g (L1 l) = L1 $ invmap f g l invmap f g (R1 r) = R1 $ invmap f g r -- | from "GHC.Generics" instance (Invariant l, Invariant r) => Invariant ((:*:) l r) where invmap f g ~(l :*: r) = invmap f g l :*: invmap f g r -- | from "GHC.Generics" instance Invariant (K1 i c) where invmap _ _ (K1 c) = K1 c -- | from "GHC.Generics" instance Invariant2 (K1 i) where invmap2 f _ _ _ (K1 c) = K1 $ f c -- | from "GHC.Generics" instance Invariant f => Invariant (M1 i t f) where invmap f g (M1 fp) = M1 $ invmap f g fp -- | from "GHC.Generics" instance Invariant Par1 where invmap f _ (Par1 c) = Par1 $ f c -- | from "GHC.Generics" instance Invariant f => Invariant (Rec1 f) where invmap f g (Rec1 fp) = Rec1 $ invmap f g fp -- | from "GHC.Generics" instance (Invariant f, Invariant g) => Invariant ((:.:) f g) where invmap f g (Comp1 fgp) = Comp1 $ invmap (invmap f g) (invmap g f) fgp # if __GLASGOW_HASKELL__ >= 800 -- | from "GHC.Generics" instance Invariant UAddr where invmap _ _ (UAddr a) = UAddr a -- | from "GHC.Generics" instance Invariant UChar where invmap _ _ (UChar c) = UChar c -- | from "GHC.Generics" instance Invariant UDouble where invmap _ _ (UDouble d) = UDouble d -- | from "GHC.Generics" instance Invariant UFloat where invmap _ _ (UFloat f) = UFloat f -- | from "GHC.Generics" instance Invariant UInt where invmap _ _ (UInt i) = UInt i -- | from "GHC.Generics" instance Invariant UWord where invmap _ _ (UWord w) = UWord w # endif {- $ghcgenerics With GHC 7.2 or later, 'Invariant' instances can be defined easily using GHC generics like so: @ {-# LANGUAGE DeriveGeneric, FlexibleContexts #-} import Data.Functor.Invariant import GHC.Generics data T f a = T (f a) deriving Generic1 instance Invariant f => 'Invariant' (T f) @ Be aware that generic 'Invariant' instances cannot be derived for data types that have function arguments in which the last type parameter appears in a position other than the result type (e.g., @data Fun a = Fun (a -> a)@). For these, you can derive them using the "Data.Functor.Invariant.TH" module. -} -- | A generic implementation of 'invmap'. genericInvmap :: (Generic1 f, Invariant (Rep1 f)) => (a -> b) -> (b -> a) -> f a -> f b genericInvmap f g = to1 . invmap f g . from1 #endif ------------------------------------------------------------------------------- -- Wrappers ------------------------------------------------------------------------------- -- | A 'Profunctor' with the same input and output types can be seen as an 'Invariant' functor. newtype InvariantProfunctor p a = InvariantProfunctor (p a a) instance Profunctor p => Invariant (InvariantProfunctor p) where invmap fn1 fn2 (InvariantProfunctor f) = InvariantProfunctor (invmapProfunctor fn1 fn2 f) -- | An 'Arrow' with the same input and output types can be seen as an 'Invariant' functor. newtype InvariantArrow c a = InvariantArrow (c a a) instance Arrow c => Invariant (InvariantArrow c) where invmap fn1 fn2 (InvariantArrow arrow) = InvariantArrow (invmapArrow fn1 fn2 arrow) invariant-0.6.3/src/Data/Functor/Invariant/0000755000000000000000000000000007346545000016717 5ustar0000000000000000invariant-0.6.3/src/Data/Functor/Invariant/TH.hs0000644000000000000000000011011407346545000017564 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE PatternGuards #-} {-| Module: Data.Functor.Invariant.TH Copyright: (C) 2012-2017 Nicolas Frisby, (C) 2015-2017 Ryan Scott License: BSD-style (see the file LICENSE) Maintainer: Ryan Scott Portability: Template Haskell Functions to mechanically derive 'Data.Functor.Invariant.Invariant' or 'Data.Functor.Invariant.Invariant2' instances, or to splice 'Data.Functor.Invariant.invmap' or 'Data.Functor.Invariant.invmap2' into Haskell source code. You need to enable the @TemplateHaskell@ language extension in order to use this module. -} module Data.Functor.Invariant.TH ( -- * @deriveInvariant(2)@ -- $deriveInvariant deriveInvariant , deriveInvariantOptions -- $deriveInvariant2 , deriveInvariant2 , deriveInvariant2Options -- * @makeInvmap(2)@ -- $make , makeInvmap , makeInvmapOptions , makeInvmap2 , makeInvmap2Options -- * 'Options' , Options(..) , defaultOptions ) where import Control.Monad (unless, when) import Data.Functor.Invariant.TH.Internal import qualified Data.List as List import qualified Data.Map as Map ((!), fromList, keys, lookup, member, size) import Data.Maybe import Language.Haskell.TH.Datatype as Datatype import Language.Haskell.TH.Datatype.TyVarBndr import Language.Haskell.TH.Lib import Language.Haskell.TH.Ppr import Language.Haskell.TH.Syntax ------------------------------------------------------------------------------- -- User-facing API ------------------------------------------------------------------------------- -- | Options that further configure how the functions in -- "Data.Functor.Invariant.TH" should behave. newtype Options = Options { emptyCaseBehavior :: Bool -- ^ If 'True', derived instances for empty data types (i.e., ones with -- no data constructors) will use the @EmptyCase@ language extension. -- If 'False', derived instances will simply use 'seq' instead. -- (This has no effect on GHCs before 7.8, since @EmptyCase@ is only -- available in 7.8 or later.) } deriving (Eq, Ord, Read, Show) -- | Conservative 'Options' that doesn't attempt to use @EmptyCase@ (to -- prevent users from having to enable that extension at use sites.) defaultOptions :: Options defaultOptions = Options { emptyCaseBehavior = False } {- $deriveInvariant 'deriveInvariant' automatically generates an 'Data.Functor.Invariant.Invariant' instance declaration for a data type, newtype, or data family instance that has at least one type variable. This emulates what would (hypothetically) happen if you could attach a @deriving 'Data.Functor.Invariant.Invariant'@ clause to the end of a data declaration. Examples: @ {-# LANGUAGE TemplateHaskell #-} import Data.Functor.Invariant.TH data Pair a = Pair a a $('deriveInvariant' ''Pair) -- instance Invariant Pair where ... newtype Alt f a = Alt (f a) $('deriveInvariant' ''Alt) -- instance Invariant f => Invariant (Alt f) where ... @ If you are using @template-haskell-2.7.0.0@ or later (i.e., GHC 7.4 or later), 'deriveInvariant' can also be used to derive 'Data.Functor.Invariant.Invariant' instances for data family instances (which requires the @-XTypeFamilies@ extension). To do so, pass the name of a data or newtype instance constructor to 'deriveInvariant'. Note that the generated code may require the @-XFlexibleInstances@ extension. Some examples: @ {-# LANGUAGE FlexibleInstances, TemplateHaskell, TypeFamilies #-} import Data.Functor.Invariant.TH class AssocClass a b where data AssocData a b instance AssocClass Int b where data AssocData Int b = AssocDataInt1 Int | AssocDataInt2 b Int $('deriveInvariant' 'AssocDataInt1) -- instance Invariant (AssocData Int) where ... -- Alternatively, one could use $(deriveInvariant 'AssocDataInt2) data family DataFam a b newtype instance DataFam () b = DataFamB b $('deriveInvariant' 'DataFamB) -- instance Invariant (DataFam ()) @ Note that there are some limitations: * The 'Name' argument to 'deriveInvariant' must not be a type synonym. * With 'deriveInvariant', the argument's last type variable must be of kind @*@. For other ones, type variables of kind @* -> *@ are assumed to require an 'Data.Functor.Invariant.Invariant' context. For more complicated scenarios, use 'makeInvmap'. * If using the @-XDatatypeContexts@, @-XExistentialQuantification@, or @-XGADTs@ extensions, a constraint cannot mention the last type variable. For example, @data Illegal a where I :: Ord a => a -> Illegal a@ cannot have a derived 'Data.Functor.Invariant.Invariant' instance. * If the last type variable is used within a data field of a constructor, it must only be used in the last argument of the data type constructor. For example, @data Legal a = Legal (Either Int a)@ can have a derived 'Data.Functor.Invariant.Invariant' instance, but @data Illegal a = Illegal (Either a a)@ cannot. * Data family instances must be able to eta-reduce the last type variable. In other words, if you have a instance of the form: @ data family Family a1 ... an t data instance Family e1 ... e2 v = ... @ Then the following conditions must hold: 1. @v@ must be a type variable. 2. @v@ must not be mentioned in any of @e1@, ..., @e2@. -} -- | Generates an 'Data.Functor.Invariant.Invariant' instance declaration for the given -- data type or data family instance. deriveInvariant :: Name -> Q [Dec] deriveInvariant = deriveInvariantOptions defaultOptions -- | Like 'deriveInvariant', but takes an 'Options' argument. deriveInvariantOptions :: Options -> Name -> Q [Dec] deriveInvariantOptions = deriveInvariantClass Invariant {- $deriveInvariant2 'deriveInvariant2' automatically generates an 'Data.Functor.Invariant.Invariant2' instance declaration for a data type, newtype, or data family instance that has at least two type variables. This emulates what would (hypothetically) happen if you could attach a @deriving 'Data.Functor.Invariant.Invariant2'@ clause to the end of a data declaration. Examples: @ {-# LANGUAGE TemplateHaskell #-} import Data.Functor.Invariant.TH data OneOrNone a b = OneL a | OneR b | None $('deriveInvariant2' ''OneOrNone) -- instance Invariant2 OneOrNone where ... newtype Alt2 f a b = Alt2 (f a b) $('deriveInvariant2' ''Alt2) -- instance Invariant2 f => Invariant2 (Alt2 f) where ... @ The same restrictions that apply to 'deriveInvariant' also apply to 'deriveInvariant2', with some caveats: * With 'deriveInvariant2', the last type variables must both be of kind @*@. For other ones, type variables of kind @* -> *@ are assumed to require an 'Data.Functor.Invariant.Invariant' constraint, and type variables of kind @* -> * -> *@ are assumed to require an 'Data.Functor.Invariant.Invariant2' constraint. For more complicated scenarios, use 'makeInvmap2'. * If using the @-XDatatypeContexts@, @-XExistentialQuantification@, or @-XGADTs@ extensions, a constraint cannot mention either of the last two type variables. For example, @data Illegal2 a b where I2 :: Ord a => a -> b -> Illegal2 a b@ cannot have a derived 'Data.Functor.Invariant.Invariant2' instance. * If either of the last two type variables is used within a data field of a constructor, it must only be used in the last two arguments of the data type constructor. For example, @data Legal a b = Legal (Int, Int, a, b)@ can have a derived 'Data.Functor.Invariant.Invariant2' instance, but @data Illegal a b = Illegal (a, b, a, b)@ cannot. * Data family instances must be able to eta-reduce the last two type variables. In other words, if you have a instance of the form: @ data family Family a1 ... an t1 t2 data instance Family e1 ... e2 v1 v2 = ... @ Then the following conditions must hold: 1. @v1@ and @v2@ must be distinct type variables. 2. Neither @v1@ not @v2@ must be mentioned in any of @e1@, ..., @e2@. -} -- | Generates an 'Data.Functor.Invariant.Invariant2' instance declaration for -- the given data type or data family instance. deriveInvariant2 :: Name -> Q [Dec] deriveInvariant2 = deriveInvariant2Options defaultOptions -- | Like 'deriveInvariant2', but takes an 'Options' argument. deriveInvariant2Options :: Options -> Name -> Q [Dec] deriveInvariant2Options = deriveInvariantClass Invariant2 {- $make There may be scenarios in which you want to @invmap@ over an arbitrary data type or data family instance without having to make the type an instance of 'Data.Functor.Invariant.Invariant'. For these cases, this module provides several functions (all prefixed with @make-@) that splice the appropriate lambda expression into your source code. Example: This is particularly useful for creating instances for sophisticated data types. For example, 'deriveInvariant' cannot infer the correct type context for @newtype HigherKinded f a b c = HigherKinded (f a b c)@, since @f@ is of kind @* -> * -> * -> *@. However, it is still possible to create an 'Data.Functor.Invariant.Invariant' instance for @HigherKinded@ without too much trouble using 'makeInvmap': @ {-# LANGUAGE FlexibleContexts, TemplateHaskell #-} import Data.Functor.Invariant import Data.Functor.Invariant.TH newtype HigherKinded f a b c = HigherKinded (f a b c) instance Invariant (f a b) => Invariant (HigherKinded f a b) where invmap = $(makeInvmap ''HigherKinded) @ -} -- | Generates a lambda expression which behaves like -- 'Data.Functor.Invariant.invmap' (without requiring an -- 'Data.Functor.Invariant.Invariant' instance). makeInvmap :: Name -> Q Exp makeInvmap = makeInvmapOptions defaultOptions -- | Like 'makeInvmap', but takes an 'Options' argument. makeInvmapOptions :: Options -> Name -> Q Exp makeInvmapOptions = makeInvmapClass Invariant -- | Generates a lambda expression which behaves like -- 'Data.Functor.Invariant.invmap2' (without requiring an -- 'Data.Functor.Invariant.Invariant2' instance). makeInvmap2 :: Name -> Q Exp makeInvmap2 = makeInvmap2Options defaultOptions -- | Like 'makeInvmap2', but takes an 'Options' argument. makeInvmap2Options :: Options -> Name -> Q Exp makeInvmap2Options = makeInvmapClass Invariant2 ------------------------------------------------------------------------------- -- Code generation ------------------------------------------------------------------------------- -- | Derive an Invariant(2) instance declaration (depending on the InvariantClass -- argument's value). deriveInvariantClass :: InvariantClass -> Options -> Name -> Q [Dec] deriveInvariantClass iClass opts name = do info <- reifyDatatype name case info of DatatypeInfo { datatypeContext = ctxt , datatypeName = parentName , datatypeInstTypes = instTys , datatypeVariant = variant , datatypeCons = cons } -> do (instanceCxt, instanceType) <- buildTypeInstance iClass parentName ctxt instTys variant (:[]) `fmap` instanceD (return instanceCxt) (return instanceType) (invmapDecs iClass opts parentName instTys cons) -- | Generates a declaration defining the primary function corresponding to a -- particular class (invmap for Invariant and invmap2 for Invariant2). invmapDecs :: InvariantClass -> Options -> Name -> [Type] -> [ConstructorInfo] -> [Q Dec] invmapDecs iClass opts parentName instTys cons = [ funD (invmapName iClass) [ clause [] (normalB $ makeInvmapForCons iClass opts parentName instTys cons) [] ] ] -- | Generates a lambda expression which behaves like invmap (for Invariant), -- or invmap2 (for Invariant2). makeInvmapClass :: InvariantClass -> Options -> Name -> Q Exp makeInvmapClass iClass opts name = do info <- reifyDatatype name case info of DatatypeInfo { datatypeContext = ctxt , datatypeName = parentName , datatypeInstTypes = instTys , datatypeVariant = variant , datatypeCons = cons } -> -- We force buildTypeInstance here since it performs some checks for whether -- or not the provided datatype can actually have invmap/invmap2 -- implemented for it, and produces errors if it can't. buildTypeInstance iClass parentName ctxt instTys variant >> makeInvmapForCons iClass opts parentName instTys cons -- | Generates a lambda expression for invmap(2) for the given constructors. -- All constructors must be from the same type. makeInvmapForCons :: InvariantClass -> Options -> Name -> [Type] -> [ConstructorInfo] -> Q Exp makeInvmapForCons iClass opts _parentName instTys cons = do value <- newName "value" covMaps <- newNameList "covMap" numNbs contraMaps <- newNameList "contraMap" numNbs let mapFuns = zip covMaps contraMaps lastTyVars = map varTToName $ drop (length instTys - numNbs) instTys tvMap = Map.fromList $ zip lastTyVars mapFuns argNames = concat (List.transpose [covMaps, contraMaps]) ++ [value] lamE (map varP argNames) . appsE $ [ varE $ invmapConstName iClass , makeFun value tvMap ] ++ map varE argNames where numNbs :: Int numNbs = fromEnum iClass makeFun :: Name -> TyVarMap -> Q Exp makeFun value tvMap = do #if MIN_VERSION_template_haskell(2,9,0) roles <- reifyRoles _parentName let rroles = roles #endif case () of _ #if MIN_VERSION_template_haskell(2,9,0) | (length rroles >= numNbs) && (all (== PhantomR) (drop (length rroles - numNbs) rroles)) -> varE coerceValName `appE` varE value #endif | null cons && emptyCaseBehavior opts && ghc7'8OrLater -> caseE (varE value) [] | null cons -> appE (varE seqValName) (varE value) `appE` appE (varE errorValName) (stringE $ "Void " ++ nameBase (invmapName iClass)) | otherwise -> caseE (varE value) (map (makeInvmapForCon iClass tvMap) cons) ghc7'8OrLater :: Bool #if __GLASGOW_HASKELL__ >= 708 ghc7'8OrLater = True #else ghc7'8OrLater = False #endif -- | Generates a match for invmap(2) for a single constructor. makeInvmapForCon :: InvariantClass -> TyVarMap -> ConstructorInfo -> Q Match makeInvmapForCon iClass tvMap con@(ConstructorInfo { constructorName = conName , constructorContext = ctxt }) = do when (any (`predMentionsName` Map.keys tvMap) ctxt || Map.size tvMap < fromEnum iClass) $ existentialContextError conName parts <- foldDataConArgs iClass tvMap ft_invmap con match_for_con conName parts where ft_invmap :: FFoldType (Exp -> Q Exp) ft_invmap = FT { ft_triv = return , ft_var = \v x -> return $ VarE (fst (tvMap Map.! v)) `AppE` x , ft_co_var = \v x -> return $ VarE (snd (tvMap Map.! v)) `AppE` x , ft_fun = \g h x -> mkSimpleLam $ \b -> do gg <- g b h $ x `AppE` gg , ft_tup = mkSimpleTupleCase match_for_con , ft_ty_app = \contravariant argGs x -> do let inspect :: (Type, Exp -> Q Exp, Exp -> Q Exp) -> [Q Exp] inspect (argTy, g, h) -- If the argument type is a bare occurrence of one -- of the data type's last type variables, then we -- can generate more efficient code. -- This was inspired by GHC#17880. | Just argVar <- varTToName_maybe argTy , Just (covMap, contraMap) <- Map.lookup argVar tvMap = map (return . VarE) $ if contravariant then [contraMap, covMap] else [covMap, contraMap] | otherwise = [mkSimpleLam g, mkSimpleLam h] appsE $ varE (invmapName (toEnum (length argGs))) : concatMap inspect argGs ++ [return x] , ft_forall = \_ g x -> g x , ft_bad_app = \_ -> outOfPlaceTyVarError conName } -- Con a1 a2 ... -> Con (f1 a1) (f2 a2) ... match_for_con :: Name -> [Exp -> Q Exp] -> Q Match match_for_con = mkSimpleConMatch $ \conName' xs -> appsE (conE conName':xs) -- Con x1 x2 .. ------------------------------------------------------------------------------- -- Template Haskell reifying and AST manipulation ------------------------------------------------------------------------------- -- For the given Types, generate an instance context and head. Coming up with -- the instance type isn't as simple as dropping the last types, as you need to -- be wary of kinds being instantiated with *. -- See Note [Type inference in derived instances] buildTypeInstance :: InvariantClass -- ^ Invariant or Invariant2 -> Name -- ^ The type constructor or data family name -> Cxt -- ^ The datatype context -> [Type] -- ^ The types to instantiate the instance with -> DatatypeVariant -- ^ Are we dealing with a data family instance or not -> Q (Cxt, Type) buildTypeInstance iClass tyConName dataCxt varTysOrig variant = do -- Make sure to expand through type/kind synonyms! Otherwise, the -- eta-reduction check might get tripped up over type variables in a -- synonym that are actually dropped. -- (See GHC Trac #11416 for a scenario where this actually happened.) varTysExp <- mapM resolveTypeSynonyms varTysOrig let remainingLength :: Int remainingLength = length varTysOrig - fromEnum iClass droppedTysExp :: [Type] droppedTysExp = drop remainingLength varTysExp droppedStarKindStati :: [StarKindStatus] droppedStarKindStati = map canRealizeKindStar droppedTysExp -- Check there are enough types to drop and that all of them are either of -- kind * or kind k (for some kind variable k). If not, throw an error. when (remainingLength < 0 || any (== NotKindStar) droppedStarKindStati) $ derivingKindError iClass tyConName let droppedKindVarNames :: [Name] droppedKindVarNames = catKindVarNames droppedStarKindStati -- Substitute kind * for any dropped kind variables varTysExpSubst :: [Type] varTysExpSubst = map (substNamesWithKindStar droppedKindVarNames) varTysExp remainingTysExpSubst, droppedTysExpSubst :: [Type] (remainingTysExpSubst, droppedTysExpSubst) = splitAt remainingLength varTysExpSubst -- All of the type variables mentioned in the dropped types -- (post-synonym expansion) droppedTyVarNames :: [Name] droppedTyVarNames = freeVariables droppedTysExpSubst -- If any of the dropped types were polykinded, ensure that there are of kind * -- after substituting * for the dropped kind variables. If not, throw an error. unless (all hasKindStar droppedTysExpSubst) $ derivingKindError iClass tyConName let preds :: [Maybe Pred] kvNames :: [[Name]] kvNames' :: [Name] -- Derive instance constraints (and any kind variables which are specialized -- to * in those constraints) (preds, kvNames) = unzip $ map (deriveConstraint iClass) remainingTysExpSubst kvNames' = concat kvNames -- Substitute the kind variables specialized in the constraints with * remainingTysExpSubst' :: [Type] remainingTysExpSubst' = map (substNamesWithKindStar kvNames') remainingTysExpSubst -- We now substitute all of the specialized-to-* kind variable names with -- *, but in the original types, not the synonym-expanded types. The reason -- we do this is a superficial one: we want the derived instance to resemble -- the datatype written in source code as closely as possible. For example, -- for the following data family instance: -- -- data family Fam a -- newtype instance Fam String = Fam String -- -- We'd want to generate the instance: -- -- instance C (Fam String) -- -- Not: -- -- instance C (Fam [Char]) remainingTysOrigSubst :: [Type] remainingTysOrigSubst = map (substNamesWithKindStar (List.union droppedKindVarNames kvNames')) $ take remainingLength varTysOrig isDataFamily <- case variant of Datatype -> return False Newtype -> return False DataInstance -> return True NewtypeInstance -> return True #if MIN_VERSION_th_abstraction(0,5,0) Datatype.TypeData -> typeDataError tyConName #endif let remainingTysOrigSubst' :: [Type] -- See Note [Kind signatures in derived instances] for an explanation -- of the isDataFamily check. remainingTysOrigSubst' = if isDataFamily then remainingTysOrigSubst else map unSigT remainingTysOrigSubst instanceCxt :: Cxt instanceCxt = catMaybes preds instanceType :: Type instanceType = AppT (ConT $ invariantClassName iClass) $ applyTyCon tyConName remainingTysOrigSubst' -- If the datatype context mentions any of the dropped type variables, -- we can't derive an instance, so throw an error. when (any (`predMentionsName` droppedTyVarNames) dataCxt) $ datatypeContextError tyConName instanceType -- Also ensure the dropped types can be safely eta-reduced. Otherwise, -- throw an error. unless (canEtaReduce remainingTysExpSubst' droppedTysExpSubst) $ etaReductionError instanceType return (instanceCxt, instanceType) -- | Attempt to derive a constraint on a Type. If successful, return -- Just the constraint and any kind variable names constrained to *. -- Otherwise, return Nothing and the empty list. -- -- See Note [Type inference in derived instances] for the heuristics used to -- come up with constraints. deriveConstraint :: InvariantClass -> Type -> (Maybe Pred, [Name]) deriveConstraint iClass t | not (isTyVar t) = (Nothing, []) | otherwise = case hasKindVarChain 1 t of Just ns | iClass >= Invariant -> (Just (applyClass invariantTypeName tName), ns) _ -> case hasKindVarChain 2 t of Just ns | iClass == Invariant2 -> (Just (applyClass invariant2TypeName tName), ns) _ -> (Nothing, []) where tName :: Name tName = varTToName t {- Note [Kind signatures in derived instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It is possible to put explicit kind signatures into the derived instances, e.g., instance C a => C (Data (f :: * -> *)) where ... But it is preferable to avoid this if possible. If we come up with an incorrect kind signature (which is entirely possible, since our type inferencer is pretty unsophisticated - see Note [Type inference in derived instances]), then GHC will flat-out reject the instance, which is quite unfortunate. Plain old datatypes have the advantage that you can avoid using any kind signatures at all in their instances. This is because a datatype declaration uses all type variables, so the types that we use in a derived instance uniquely determine their kinds. As long as we plug in the right types, the kind inferencer can do the rest of the work. For this reason, we use unSigT to remove all kind signatures before splicing in the instance context and head. Data family instances are trickier, since a data family can have two instances that are distinguished by kind alone, e.g., data family Fam (a :: k) data instance Fam (a :: * -> *) data instance Fam (a :: *) If we dropped the kind signatures for C (Fam a), then GHC will have no way of knowing which instance we are talking about. To avoid this scenario, we always include explicit kind signatures in data family instances. There is a chance that the inferred kind signatures will be incorrect, but if so, we can always fall back on the make- functions. Note [Type inference in derived instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Type inference is can be tricky to get right, and we want to avoid recreating the entirety of GHC's type inferencer in Template Haskell. For this reason, we will probably never come up with derived instance contexts that are as accurate as GHC's. But that doesn't mean we can't do anything! There are a couple of simple things we can do to make instance contexts that work for 80% of use cases: 1. If one of the last type parameters is polykinded, then its kind will be specialized to * in the derived instance. We note what kind variable the type parameter had and substitute it with * in the other types as well. For example, imagine you had data Data (a :: k) (b :: k) (c :: k) Then you'd want to derived instance to be: instance C (Data (a :: *)) Not: instance C (Data (a :: k)) 2. We naïvely come up with instance constraints using the following criteria: (i) If there's a type parameter n of kind k1 -> k2 (where k1/k2 are * or kind variables), then generate an Invariant n constraint, and if k1/k2 are kind variables, then substitute k1/k2 with * elsewhere in the types. We must consider the case where they are kind variables because you might have a scenario like this: newtype Compose (f :: k3 -> *) (g :: k1 -> k2 -> k3) (a :: k1) (b :: k2) = Compose (f (g a b)) Which would have a derived Invariant2 instance of: instance (Invariant f, Invariant2 g) => Invariant2 (Compose f g) where ... (ii) If there's a type parameter n of kind k1 -> k2 -> k3 (where k1/k2/k3 are * or kind variables), then generate a Invariant2 n constraint and perform kind substitution as in the other case. -} ------------------------------------------------------------------------------- -- Error messages ------------------------------------------------------------------------------- -- | Either the given data type doesn't have enough type variables, or one of -- the type variables to be eta-reduced cannot realize kind *. derivingKindError :: InvariantClass -> Name -> Q a derivingKindError iClass tyConName = fail . showString "Cannot derive well-kinded instance of form ‘" . showString className . showChar ' ' . showParen True ( showString (nameBase tyConName) . showString " ..." ) . showString "‘\n\tClass " . showString className . showString " expects an argument of kind " . showString (pprint . createKindChain $ fromEnum iClass) $ "" where className :: String className = nameBase $ invariantClassName iClass -- | The data type has a DatatypeContext which mentions one of the eta-reduced -- type variables. datatypeContextError :: Name -> Type -> Q a datatypeContextError dataName instanceType = fail . showString "Can't make a derived instance of ‘" . showString (pprint instanceType) . showString "‘:\n\tData type ‘" . showString (nameBase dataName) . showString "‘ must not have a class context involving the last type argument(s)" $ "" -- | The data type has an existential constraint which mentions one of the -- eta-reduced type variables. existentialContextError :: Name -> Q a existentialContextError conName = fail . showString "Constructor ‘" . showString (nameBase conName) . showString "‘ must be truly polymorphic in the last argument(s) of the data type" $ "" -- | The data type mentions one of the n eta-reduced type variables in a place other -- than the last nth positions of a data type in a constructor's field. outOfPlaceTyVarError :: Name -> Q a outOfPlaceTyVarError conName = fail . showString "Constructor ‘" . showString (nameBase conName) . showString "‘ must only use its last two type variable(s) within" . showString " the last two argument(s) of a data type" $ "" -- | One of the last type variables cannot be eta-reduced (see the canEtaReduce -- function for the criteria it would have to meet). etaReductionError :: Type -> Q a etaReductionError instanceType = fail $ "Cannot eta-reduce to an instance of form \n\tinstance (...) => " ++ pprint instanceType #if MIN_VERSION_th_abstraction(0,5,0) -- | We cannot implement class methods at the term level for @type data@ -- declarations, which only exist at the type level. typeDataError :: Name -> Q a typeDataError dataName = fail . showString "Cannot derive instance for ‘" . showString (nameBase dataName) . showString "‘, which is a ‘type data‘ declaration" $ "" #endif ------------------------------------------------------------------------------- -- Generic traversal for functor-like deriving ------------------------------------------------------------------------------- -- Much of the code below is cargo-culted from the TcGenFunctor module in GHC. data FFoldType a -- Describes how to fold over a Type in a functor like way = FT { ft_triv :: a -- ^ Does not contain variables , ft_var :: Name -> a -- ^ A bare variable , ft_co_var :: Name -> a -- ^ A bare variable, contravariantly , ft_fun :: a -> a -> a -- ^ Function type , ft_tup :: TupleSort -> [a] -> a -- ^ Tuple type. The [a] is the result of folding over the -- arguments of the tuple. , ft_ty_app :: Bool -> [(Type, a, a)] -> a -- ^ Type app, variables only in last argument. The [(Type, a, a)] -- represents the last argument types. That is, they form the -- argument parts of @fun_ty arg_ty_1 ... arg_ty_n@. -- -- The Bool is True if the Type is in a surrounding context that is -- contravariant, and False if the surrounding context is covariant. -- The two @a@ fields in [(Type, a, a)] represent the results of -- folding over the Type in a covariant and contravariant manner, -- respectively. , ft_bad_app :: a -- ^ Type app, variable other than in last arguments , ft_forall :: [TyVarBndrSpec] -> a -> a -- ^ Forall type } -- Note that in GHC, this function is pure. It must be monadic here since we: -- -- (1) Expand type synonyms -- (2) Detect type family applications -- -- Which require reification in Template Haskell, but are pure in Core. functorLikeTraverse :: InvariantClass -- ^ Invariant or Invariant2 -> TyVarMap -- ^ Variables to look for -> FFoldType a -- ^ How to fold -> Type -- ^ Type to process -> Q a functorLikeTraverse iClass tvMap (FT { ft_triv = caseTrivial, ft_var = caseVar , ft_co_var = caseCoVar, ft_fun = caseFun , ft_tup = caseTuple, ft_ty_app = caseTyApp , ft_bad_app = caseWrongArg, ft_forall = caseForAll }) ty = do ty' <- resolveTypeSynonyms ty (res, _) <- go False ty' return res where {- go :: Bool -- Covariant or contravariant context -> Type -> Q (a, Bool) -- (result of type a, does type contain var) -} go co t@AppT{} | (ArrowT, [funArg, funRes]) <- unapplyTy t = do (funArgR, funArgC) <- go (not co) funArg (funResR, funResC) <- go co funRes if funArgC || funResC then return (caseFun funArgR funResR, True) else trivial go co t@AppT{} = do let (f, args) = unapplyTy t (_, fc) <- go co f (xrs, xcs) <- fmap unzip $ mapM (go co) args (contraXrs, _) <- fmap unzip $ mapM (go (not co)) args let numLastArgs, numFirstArgs :: Int numLastArgs = min (fromEnum iClass) (length args) numFirstArgs = length args - numLastArgs -- tuple :: TupleSort -> Q (a, Bool) tuple tupSort = return (caseTuple tupSort xrs, True) -- wrongArg :: Q (a, Bool) wrongArg = return (caseWrongArg, True) case () of _ | not (or xcs) -> trivial -- Variable does not occur -- At this point we know that xrs, xcs is not empty, -- and at least one xr is True | TupleT len <- f -> tuple $ Boxed len #if MIN_VERSION_template_haskell(2,6,0) | UnboxedTupleT len <- f -> tuple $ Unboxed len #endif | fc || or (take numFirstArgs xcs) -> wrongArg -- T (..var..) ty_1 ... ty_n | otherwise -- T (..no var..) ty_1 ... ty_n -> do itf <- isInTypeFamilyApp tyVarNames f args if itf -- We can't decompose type families, so -- error if we encounter one here. then wrongArg else return ( caseTyApp co $ drop numFirstArgs $ zip3 args xrs contraXrs , True ) go co (SigT t k) = do (_, kc) <- go_kind co k if kc then return (caseWrongArg, True) else go co t go co (VarT v) | Map.member v tvMap = return (if co then caseCoVar v else caseVar v, True) | otherwise = trivial go co (ForallT tvbs _ t) = do (tr, tc) <- go co t let tvbNames = map tvName tvbs if not tc || any (`elem` tvbNames) tyVarNames then trivial else return (caseForAll tvbs tr, True) go _ _ = trivial {- go_kind :: Bool -> Kind -> Q (a, Bool) -} #if MIN_VERSION_template_haskell(2,9,0) go_kind = go #else go_kind _ _ = trivial #endif -- trivial :: Q (a, Bool) trivial = return (caseTrivial, False) tyVarNames :: [Name] tyVarNames = Map.keys tvMap -- Fold over the arguments of a data constructor in a Functor-like way. foldDataConArgs :: InvariantClass -> TyVarMap -> FFoldType a -> ConstructorInfo -> Q [a] foldDataConArgs iClass tvMap ft con = do fieldTys <- mapM resolveTypeSynonyms $ constructorFields con mapM foldArg fieldTys where -- foldArg :: Type -> Q a foldArg = functorLikeTraverse iClass tvMap ft -- Make a 'LamE' using a fresh variable. mkSimpleLam :: (Exp -> Q Exp) -> Q Exp mkSimpleLam lam = do n <- newName "n" lamE [varP n] (lam (VarE n)) -- "Con a1 a2 a3 -> fold [x1 a1, x2 a2, x3 a3]" -- -- @mkSimpleConMatch fold conName insides@ produces a match clause in -- which the LHS pattern-matches on @extraPats@, followed by a match on the -- constructor @conName@ and its arguments. The RHS folds (with @fold@) over -- @conName@ and its arguments, applying an expression (from @insides@) to each -- of the respective arguments of @conName@. mkSimpleConMatch :: (Name -> [a] -> Q Exp) -> Name -> [Exp -> a] -> Q Match mkSimpleConMatch fold conName insides = do varsNeeded <- newNameList "_arg" $ length insides let pat = ConP conName #if MIN_VERSION_template_haskell(2,18,0) [] #endif (map VarP varsNeeded) rhs <- fold conName (zipWith (\i v -> i $ VarE v) insides varsNeeded) return $ Match pat (NormalB rhs) [] -- Indicates whether a tuple is boxed or unboxed, as well as its number of -- arguments. For instance, (a, b) corresponds to @Boxed 2@, and (# a, b, c #) -- corresponds to @Unboxed 3@. data TupleSort = Boxed Int #if MIN_VERSION_template_haskell(2,6,0) | Unboxed Int #endif -- "case x of (a1,a2,a3) -> fold [x1 a1, x2 a2, x3 a3]" mkSimpleTupleCase :: (Name -> [a] -> Q Match) -> TupleSort -> [a] -> Exp -> Q Exp mkSimpleTupleCase matchForCon tupSort insides x = do let tupDataName = case tupSort of Boxed len -> tupleDataName len #if MIN_VERSION_template_haskell(2,6,0) Unboxed len -> unboxedTupleDataName len #endif m <- matchForCon tupDataName insides return $ CaseE x [m] invariant-0.6.3/src/Data/Functor/Invariant/TH/0000755000000000000000000000000007346545000017232 5ustar0000000000000000invariant-0.6.3/src/Data/Functor/Invariant/TH/Internal.hs0000644000000000000000000003613307346545000021350 0ustar0000000000000000{-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ >= 800 {-# LANGUAGE TemplateHaskellQuotes #-} #endif {-| Module: Data.Functor.Invariant.TH.Internal Copyright: (C) 2012-2017 Nicolas Frisby, (C) 2015-2017 Ryan Scott License: BSD-style (see the file LICENSE) Maintainer: Ryan Scott Portability: Template Haskell Template Haskell-related utilities. -} module Data.Functor.Invariant.TH.Internal where import Data.Foldable (foldr') import Data.Functor.Invariant () -- To import the instances import qualified Data.List as List import qualified Data.Map as Map (singleton) import Data.Map (Map) import Data.Maybe (fromMaybe, mapMaybe) import qualified Data.Set as Set import Data.Set (Set) import Language.Haskell.TH.Datatype import Language.Haskell.TH.Lib import Language.Haskell.TH.Syntax #if __GLASGOW_HASKELL__ >= 800 import Data.Coerce (coerce) import Data.Functor.Invariant (Invariant(..), Invariant2(..)) #else # ifndef CURRENT_PACKAGE_KEY import Data.Version (showVersion) import Paths_invariant (version) # endif #endif ------------------------------------------------------------------------------- -- Expanding type synonyms ------------------------------------------------------------------------------- applySubstitutionKind :: Map Name Kind -> Type -> Type #if MIN_VERSION_template_haskell(2,8,0) applySubstitutionKind = applySubstitution #else applySubstitutionKind _ t = t #endif substNameWithKind :: Name -> Kind -> Type -> Type substNameWithKind n k = applySubstitutionKind (Map.singleton n k) substNamesWithKindStar :: [Name] -> Type -> Type substNamesWithKindStar ns t = foldr' (flip substNameWithKind starK) t ns ------------------------------------------------------------------------------- -- Class-specific constants ------------------------------------------------------------------------------- -- | A representation of which @Invariant@ is being used. data InvariantClass = Invariant | Invariant2 deriving (Eq, Ord) instance Enum InvariantClass where fromEnum Invariant = 1 fromEnum Invariant2 = 2 toEnum 1 = Invariant toEnum 2 = Invariant2 toEnum i = error $ "No Invariant class for number " ++ show i invmapConstName :: InvariantClass -> Name invmapConstName Invariant = invmapConstValName invmapConstName Invariant2 = invmap2ConstValName invariantClassName :: InvariantClass -> Name invariantClassName Invariant = invariantTypeName invariantClassName Invariant2 = invariant2TypeName invmapName :: InvariantClass -> Name invmapName Invariant = invmapValName invmapName Invariant2 = invmap2ValName -- | A type-restricted version of 'const'. This constrains the map functions -- that are autogenerated by Template Haskell to be the correct type, even -- if they aren't actually used in an invmap(2) expression. This is useful -- in makeInvmap(2), since a map function might have its type inferred as -- @a@ instead of @a -> b@ (which is clearly wrong). invmapConst :: f b -> (a -> b) -> (b -> a) -> f a -> f b invmapConst = const . const . const {-# INLINE invmapConst #-} invmap2Const :: f c d -> (a -> c) -> (c -> a) -> (b -> d) -> (d -> b) -> f a b -> f c d invmap2Const = const . const . const . const . const {-# INLINE invmap2Const #-} ------------------------------------------------------------------------------- -- StarKindStatus ------------------------------------------------------------------------------- -- | Whether a type is not of kind *, is of kind *, or is a kind variable. data StarKindStatus = NotKindStar | KindStar | IsKindVar Name deriving Eq -- | Does a Type have kind * or k (for some kind variable k)? canRealizeKindStar :: Type -> StarKindStatus canRealizeKindStar t | hasKindStar t = KindStar | otherwise = case t of #if MIN_VERSION_template_haskell(2,8,0) SigT _ (VarT k) -> IsKindVar k #endif _ -> NotKindStar -- | Returns 'Just' the kind variable 'Name' of a 'StarKindStatus' if it exists. -- Otherwise, returns 'Nothing'. starKindStatusToName :: StarKindStatus -> Maybe Name starKindStatusToName (IsKindVar n) = Just n starKindStatusToName _ = Nothing -- | Concat together all of the StarKindStatuses that are IsKindVar and extract -- the kind variables' Names out. catKindVarNames :: [StarKindStatus] -> [Name] catKindVarNames = mapMaybe starKindStatusToName ------------------------------------------------------------------------------- -- Assorted utilities ------------------------------------------------------------------------------- -- | Returns True if a Type has kind *. hasKindStar :: Type -> Bool hasKindStar VarT{} = True #if MIN_VERSION_template_haskell(2,8,0) hasKindStar (SigT _ StarT) = True #else hasKindStar (SigT _ StarK) = True #endif hasKindStar _ = False -- Returns True is a kind is equal to *, or if it is a kind variable. isStarOrVar :: Kind -> Bool #if MIN_VERSION_template_haskell(2,8,0) isStarOrVar StarT = True isStarOrVar VarT{} = True #else isStarOrVar StarK = True #endif isStarOrVar _ = False -- | @hasKindVarChain n kind@ Checks if @kind@ is of the form -- k_0 -> k_1 -> ... -> k_(n-1), where k0, k1, ..., and k_(n-1) can be * or -- kind variables. hasKindVarChain :: Int -> Type -> Maybe [Name] hasKindVarChain kindArrows t = let uk = uncurryKind (tyKind t) in if (length uk - 1 == kindArrows) && all isStarOrVar uk then Just (freeVariables uk) else Nothing -- | If a Type is a SigT, returns its kind signature. Otherwise, return *. tyKind :: Type -> Kind tyKind (SigT _ k) = k tyKind _ = starK -- | A mapping of type variable Names to their map function Names. For example, in a -- Invariant declaration, a TyVarMap might look like: -- -- (a ~> (covA, contraA), b ~> (covB, contraB)) -- -- where a and b are the last two type variables of the datatype, and covA and covB -- are the two map functions for a and b in covariant positions, and contraA and -- contraB are the two map functions for a and b in contravariant positions. type TyVarMap = Map Name (Name, Name) fst3 :: (a, b, c) -> a fst3 (a, _, _) = a thd3 :: (a, b, c) -> c thd3 (_, _, c) = c -- Like 'lookup', but for lists of triples. lookup2 :: Eq a => a -> [(a, b, c)] -> Maybe (b, c) lookup2 _ [] = Nothing lookup2 key ((x,y,z):xyzs) | key == x = Just (y, z) | otherwise = lookup2 key xyzs -- | Generate a list of fresh names with a common prefix, and numbered suffixes. newNameList :: String -> Int -> Q [Name] newNameList prefix n = mapM (newName . (prefix ++) . show) [1..n] createKindChain :: Int -> Kind createKindChain = go starK where go :: Kind -> Int -> Kind go k 0 = k go k n = n `seq` go (arrowKCompat starK k) (n - 1) -- | Applies a typeclass constraint to a type. applyClass :: Name -> Name -> Pred #if MIN_VERSION_template_haskell(2,10,0) applyClass con t = AppT (ConT con) (VarT t) #else applyClass con t = ClassP con [VarT t] #endif -- | Checks to see if the last types in a data family instance can be safely eta- -- reduced (i.e., dropped), given the other types. This checks for three conditions: -- -- (1) All of the dropped types are type variables -- (2) All of the dropped types are distinct -- (3) None of the remaining types mention any of the dropped types canEtaReduce :: [Type] -> [Type] -> Bool canEtaReduce remaining dropped = all isTyVar dropped && allDistinct droppedNames -- Make sure not to pass something of type [Type], since Type -- didn't have an Ord instance until template-haskell-2.10.0.0 && not (any (`mentionsName` droppedNames) remaining) where droppedNames :: [Name] droppedNames = map varTToName dropped -- | Extract Just the Name from a type variable. If the argument Type is not a -- type variable, return Nothing. varTToName_maybe :: Type -> Maybe Name varTToName_maybe (VarT n) = Just n varTToName_maybe (SigT t _) = varTToName_maybe t varTToName_maybe _ = Nothing -- | Extract the Name from a type variable. If the argument Type is not a -- type variable, throw an error. varTToName :: Type -> Name varTToName = fromMaybe (error "Not a type variable!") . varTToName_maybe -- | Peel off a kind signature from a Type (if it has one). unSigT :: Type -> Type unSigT (SigT t _) = t unSigT t = t -- | Is the given type a variable? isTyVar :: Type -> Bool isTyVar (VarT _) = True isTyVar (SigT t _) = isTyVar t isTyVar _ = False -- | Detect if a Name in a list of provided Names occurs as an argument to some -- type family. This makes an effort to exclude /oversaturated/ arguments to -- type families. For instance, if one declared the following type family: -- -- @ -- type family F a :: Type -> Type -- @ -- -- Then in the type @F a b@, we would consider @a@ to be an argument to @F@, -- but not @b@. isInTypeFamilyApp :: [Name] -> Type -> [Type] -> Q Bool isInTypeFamilyApp names tyFun tyArgs = case tyFun of ConT tcName -> go tcName _ -> return False where go :: Name -> Q Bool go tcName = do info <- reify tcName case info of #if MIN_VERSION_template_haskell(2,11,0) FamilyI (OpenTypeFamilyD (TypeFamilyHead _ bndrs _ _)) _ -> withinFirstArgs bndrs #elif MIN_VERSION_template_haskell(2,7,0) FamilyI (FamilyD TypeFam _ bndrs _) _ -> withinFirstArgs bndrs #else TyConI (FamilyD TypeFam _ bndrs _) -> withinFirstArgs bndrs #endif #if MIN_VERSION_template_haskell(2,11,0) FamilyI (ClosedTypeFamilyD (TypeFamilyHead _ bndrs _ _) _) _ -> withinFirstArgs bndrs #elif MIN_VERSION_template_haskell(2,9,0) FamilyI (ClosedTypeFamilyD _ bndrs _ _) _ -> withinFirstArgs bndrs #endif _ -> return False where withinFirstArgs :: [a] -> Q Bool withinFirstArgs bndrs = let firstArgs = take (length bndrs) tyArgs argFVs = freeVariables firstArgs in return $ any (`elem` argFVs) names -- | Are all of the items in a list (which have an ordering) distinct? -- -- This uses Set (as opposed to nub) for better asymptotic time complexity. allDistinct :: Ord a => [a] -> Bool allDistinct = allDistinct' Set.empty where allDistinct' :: Ord a => Set a -> [a] -> Bool allDistinct' uniqs (x:xs) | x `Set.member` uniqs = False | otherwise = allDistinct' (Set.insert x uniqs) xs allDistinct' _ _ = True -- | Does the given type mention any of the Names in the list? mentionsName :: Type -> [Name] -> Bool mentionsName = go where go :: Type -> [Name] -> Bool go (AppT t1 t2) names = go t1 names || go t2 names go (SigT t _k) names = go t names #if MIN_VERSION_template_haskell(2,8,0) || go _k names #endif go (VarT n) names = n `elem` names go _ _ = False -- | Does an instance predicate mention any of the Names in the list? predMentionsName :: Pred -> [Name] -> Bool #if MIN_VERSION_template_haskell(2,10,0) predMentionsName = mentionsName #else predMentionsName (ClassP n tys) names = n `elem` names || any (`mentionsName` names) tys predMentionsName (EqualP t1 t2) names = mentionsName t1 names || mentionsName t2 names #endif -- | Construct a type via curried application. applyTy :: Type -> [Type] -> Type applyTy = List.foldl' AppT -- | Fully applies a type constructor to its type variables. applyTyCon :: Name -> [Type] -> Type applyTyCon = applyTy . ConT -- | Split an applied type into its individual components. For example, this: -- -- @ -- Either Int Char -- @ -- -- would split to this: -- -- @ -- [Either, Int, Char] -- @ unapplyTy :: Type -> (Type, [Type]) unapplyTy ty = go ty ty [] where go :: Type -> Type -> [Type] -> (Type, [Type]) go _ (AppT ty1 ty2) args = go ty1 ty1 (ty2:args) go origTy (SigT ty' _) args = go origTy ty' args #if MIN_VERSION_template_haskell(2,11,0) go origTy (InfixT ty1 n ty2) args = go origTy (ConT n `AppT` ty1 `AppT` ty2) args go origTy (ParensT ty') args = go origTy ty' args #endif go origTy _ args = (origTy, args) -- | Split a type signature by the arrows on its spine. For example, this: -- -- @ -- forall a b. (a ~ b) => (a -> b) -> Char -> () -- @ -- -- would split to this: -- -- @ -- (a ~ b, [a -> b, Char, ()]) -- @ uncurryTy :: Type -> (Cxt, [Type]) uncurryTy (AppT (AppT ArrowT t1) t2) = let (ctxt, tys) = uncurryTy t2 in (ctxt, t1:tys) uncurryTy (SigT t _) = uncurryTy t uncurryTy (ForallT _ ctxt t) = let (ctxt', tys) = uncurryTy t in (ctxt ++ ctxt', tys) uncurryTy t = ([], [t]) -- | Like uncurryType, except on a kind level. uncurryKind :: Kind -> [Kind] #if MIN_VERSION_template_haskell(2,8,0) uncurryKind = snd . uncurryTy #else uncurryKind (ArrowK k1 k2) = k1:uncurryKind k2 uncurryKind k = [k] #endif ------------------------------------------------------------------------------- -- Quoted names ------------------------------------------------------------------------------- #if __GLASGOW_HASKELL__ >= 800 -- With GHC 8.0 or later, we can simply use TemplateHaskellQuotes to quote each -- name. Life is good. invariantTypeName :: Name invariantTypeName = ''Invariant invariant2TypeName :: Name invariant2TypeName = ''Invariant2 invmapValName :: Name invmapValName = 'invmap invmap2ValName :: Name invmap2ValName = 'invmap2 invmapConstValName :: Name invmapConstValName = 'invmapConst invmap2ConstValName :: Name invmap2ConstValName = 'invmap2Const coerceValName :: Name coerceValName = 'coerce errorValName :: Name errorValName = 'error seqValName :: Name seqValName = 'seq #else -- On pre-8.0 GHCs, we do not have access to the TemplateHaskellQuotes -- extension, so we construct the Template Haskell names by hand. -- By manually generating these names we avoid needing to use the -- TemplateHaskell language extension when compiling the invariant library. -- This allows the library to be used in stage1 cross-compilers. invariantPackageKey :: String # ifdef CURRENT_PACKAGE_KEY invariantPackageKey = CURRENT_PACKAGE_KEY # else invariantPackageKey = "invariant-" ++ showVersion version # endif mkInvariantName_tc :: String -> String -> Name mkInvariantName_tc = mkNameG_tc invariantPackageKey mkInvariantName_v :: String -> String -> Name mkInvariantName_v = mkNameG_v invariantPackageKey invariantTypeName :: Name invariantTypeName = mkInvariantName_tc "Data.Functor.Invariant" "Invariant" invariant2TypeName :: Name invariant2TypeName = mkInvariantName_tc "Data.Functor.Invariant" "Invariant2" invmapValName :: Name invmapValName = mkInvariantName_v "Data.Functor.Invariant" "invmap" invmap2ValName :: Name invmap2ValName = mkInvariantName_v "Data.Functor.Invariant" "invmap2" invmapConstValName :: Name invmapConstValName = mkInvariantName_v "Data.Functor.Invariant.TH.Internal" "invmapConst" invmap2ConstValName :: Name invmap2ConstValName = mkInvariantName_v "Data.Functor.Invariant.TH.Internal" "invmap2Const" coerceValName :: Name coerceValName = mkNameG_v "ghc-prim" "GHC.Prim" "coerce" errorValName :: Name errorValName = mkNameG_v "base" "GHC.Err" "error" seqValName :: Name seqValName = mkNameG_v "ghc-prim" "GHC.Prim" "seq" #endif invariant-0.6.3/test/0000755000000000000000000000000007346545000012663 5ustar0000000000000000invariant-0.6.3/test/InvariantSpec.hs0000644000000000000000000000307107346545000015766 0ustar0000000000000000module InvariantSpec (main, spec) where import Data.Functor.Invariant import Test.Hspec import Test.Hspec.QuickCheck (prop) import Test.QuickCheck main :: IO () main = hspec spec data Proxy a = Proxy ----- -- These test could probably be simplified by appealing to parametricity. spec :: Spec spec = do describe "Invariant" . prop "satisfies the composition law" $ composition1 (Proxy :: Proxy Integer) (Proxy :: Proxy Bool) (Proxy :: Proxy [Bool]) describe "Invariant2" . prop "satisfies the composition law" $ composition2 (Proxy :: Proxy Integer) (Proxy :: Proxy Bool) (Proxy :: Proxy Integer) (Proxy :: Proxy Bool) (Proxy :: Proxy (Bool,Bool)) ----- composition1 :: (Eq (f c), Show (f c), Invariant f) => proxy b -> proxy c -> proxy (f a) -> Fun b c -> Fun c b -> Fun a b -> Fun b a -> f a -> Property composition1 _ _ _ (Fun _ f) (Fun _ f') (Fun _ g) (Fun _ g') x = (invmap f f' . invmap g g') x === invmap (f . g) (g' . f') x composition2 :: (Eq (f c1 c2), Show (f c1 c2), Invariant2 f) => proxy b1 -> proxy c1 -> proxy b2 -> proxy c2 -> proxy (f a1 a2) -> Fun b1 c1 -> Fun c1 b1 -> Fun b2 c2 -> Fun c2 b2 -> Fun a1 b1 -> Fun b1 a1 -> Fun a2 b2 -> Fun b2 a2 -> f a1 a2 -> Property composition2 _ _ _ _ _ (Fun _ f1) (Fun _ f1') (Fun _ f2) (Fun _ f2') (Fun _ g1) (Fun _ g1') (Fun _ g2) (Fun _ g2') x = (invmap2 f1 f1' f2 f2' . invmap2 g1 g1' g2 g2') x === invmap2 (f1 . g1) (g1' . f1') (f2 . g2) (g2' . f2') x invariant-0.6.3/test/Spec.hs0000644000000000000000000000005407346545000014110 0ustar0000000000000000{-# OPTIONS_GHC -F -pgmF hspec-discover #-} invariant-0.6.3/test/THSpec.hs0000644000000000000000000001667207346545000014361 0ustar0000000000000000{-# LANGUAGE CPP #-} {-# LANGUAGE EmptyDataDecls #-} {-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} #if __GLASGOW_HASKELL__ >= 708 {-# LANGUAGE EmptyCase #-} {-# LANGUAGE RoleAnnotations #-} #endif {-# OPTIONS_GHC -fno-warn-name-shadowing #-} {-# OPTIONS_GHC -fno-warn-unused-matches #-} #if __GLASGOW_HASKELL__ >= 800 {-# OPTIONS_GHC -fno-warn-unused-foralls #-} #endif module THSpec (main, spec) where import Data.Functor.Invariant import Data.Functor.Invariant.TH import Test.Hspec import Test.Hspec.QuickCheck (prop) import Test.QuickCheck (Arbitrary) ------------------------------------------------------------------------------- -- Adapted from the test cases from -- https://ghc.haskell.org/trac/ghc/attachment/ticket/2953/deriving-functor-tests.patch -- Plain data types data Strange a b c = T1 a b c | T2 [a] [b] [c] -- lists | T3 [[a]] [[b]] [[c]] -- nested lists | T4 (c,(b,b),(c,c)) -- tuples | T5 ([c],Strange a b c) -- tycons | T6 (b -> c) -- function types | T7 (b -> (c,a)) -- functions and tuples | T8 ((c -> b) -> a) -- continuation data NotPrimitivelyRecursive a b = S1 (NotPrimitivelyRecursive (a,a) (b, a)) | S2 a | S3 b newtype Compose f g a b = Compose (f (g a b)) deriving (Arbitrary, Eq, Show) data ComplexConstraint f a b = ComplexConstraint (f Int Int (f Bool Bool a,a,b)) data Universal a = Universal (forall b. (b,[a])) | Universal2 (forall f. Invariant f => (f a)) | Universal3 (forall a. a -> Int) -- reuse a | NotReallyUniversal (forall b. a) data Existential b = forall a. ExistentialList [a] | forall f. Invariant f => ExistentialFunctor (f b) | forall b. SneakyUseSameName (b -> Bool) type IntFun a b = b -> a data IntFunD a b = IntFunD (IntFun a b) data Empty1 a b data Empty2 a b #if __GLASGOW_HASKELL__ >= 708 type role Empty2 nominal nominal #endif data TyCon18 a b c = TyCon18 c (TyCon18 a a c) data TyCon19 a b = TyCon19a (forall c. c -> (forall d. a -> d) -> a) | TyCon19b (Int -> forall c. c -> b) type family F :: * -> * -> * type instance F = Either data TyCon20 a b = TyCon20 (F a b) -- Data families data family StrangeFam a b c data instance StrangeFam a b c = T1Fam a b c | T2Fam [a] [b] [c] -- lists | T3Fam [[a]] [[b]] [[c]] -- nested lists | T4Fam (c,(b,b),(c,c)) -- tuples | T5Fam ([c],Strange a b c) -- tycons | T6Fam (b -> c) -- function types | T7Fam (b -> (c,a)) -- functions and tuples | T8Fam ((c -> b) -> a) -- continuation data family NotPrimitivelyRecursiveFam a b data instance NotPrimitivelyRecursiveFam a b = S1Fam (NotPrimitivelyRecursive (a,a) (b, a)) | S2Fam a | S3Fam b data family ComposeFam (f :: * -> *) (g :: * -> * -> *) a b newtype instance ComposeFam f g a b = ComposeFam (f (g a b)) deriving (Arbitrary, Eq, Show) data family ComplexConstraintFam (f :: * -> * -> * -> *) a b data instance ComplexConstraintFam f a b = ComplexConstraintFam (f Int Int (f Bool Bool a,a,b)) data family UniversalFam a data instance UniversalFam a = UniversalFam (forall b. (b,[a])) | Universal2Fam (forall f. Invariant f => (f a)) | Universal3Fam (forall a. a -> Int) -- reuse a | NotReallyUniversalFam (forall b. a) data family ExistentialFam b data instance ExistentialFam b = forall a. ExistentialListFam [a] | forall f. Invariant f => ExistentialFunctorFam (f b) | forall b. SneakyUseSameNameFam (b -> Bool) data family IntFunDFam a b data instance IntFunDFam a b = IntFunDFam (IntFun a b) data family TyFamily18 x y z data instance TyFamily18 a b c = TyFamily18 c (TyFamily18 a a c) data family TyFamily19 x y data instance TyFamily19 a b = TyFamily19a (forall c. c -> (forall d. a -> d) -> a) | TyFamily19b (Int -> forall c. c -> b) data family TyFamily20 x y data instance TyFamily20 a b = TyFamily20 (F a b) ------------------------------------------------------------------------------- -- Plain data types $(deriveInvariant ''Strange) $(deriveInvariant2 ''Strange) $(deriveInvariant ''NotPrimitivelyRecursive) $(deriveInvariant2 ''NotPrimitivelyRecursive) instance (Invariant f, Invariant (g a)) => Invariant (Compose f g a) where invmap = $(makeInvmap ''Compose) $(deriveInvariant2 ''Compose) instance Invariant (f Int Int) => Invariant (ComplexConstraint f a) where invmap = $(makeInvmap ''ComplexConstraint) instance (Invariant2 (f Bool), Invariant2 (f Int)) => Invariant2 (ComplexConstraint f) where invmap2 = $(makeInvmap2 ''ComplexConstraint) $(deriveInvariant ''Universal) $(deriveInvariant ''Existential) $(deriveInvariant ''IntFunD) $(deriveInvariant2 ''IntFunD) $(deriveInvariant ''Empty1) $(deriveInvariant2 ''Empty1) -- Use EmptyCase here $(deriveInvariantOptions defaultOptions{emptyCaseBehavior = True} ''Empty2) $(deriveInvariant2Options defaultOptions{emptyCaseBehavior = True} ''Empty2) $(deriveInvariant ''TyCon18) $(deriveInvariant2 ''TyCon18) $(deriveInvariant ''TyCon19) $(deriveInvariant2 ''TyCon19) $(deriveInvariant ''TyCon20) $(deriveInvariant2 ''TyCon20) #if MIN_VERSION_template_haskell(2,7,0) -- Data Families $(deriveInvariant 'T1Fam) $(deriveInvariant2 'T2Fam) $(deriveInvariant 'S1Fam) $(deriveInvariant2 'S2Fam) instance (Invariant f, Invariant (g a)) => Invariant (ComposeFam f g a) where invmap = $(makeInvmap 'ComposeFam) $(deriveInvariant2 'ComposeFam) instance Invariant (f Int Int) => Invariant (ComplexConstraintFam f a) where invmap = $(makeInvmap 'ComplexConstraintFam) instance (Invariant2 (f Bool), Invariant2 (f Int)) => Invariant2 (ComplexConstraintFam f) where invmap2 = $(makeInvmap2 'ComplexConstraintFam) $(deriveInvariant 'UniversalFam) $(deriveInvariant 'ExistentialListFam) $(deriveInvariant 'IntFunDFam) $(deriveInvariant2 'IntFunDFam) $(deriveInvariant 'TyFamily18) $(deriveInvariant2 'TyFamily18) $(deriveInvariant 'TyFamily19a) $(deriveInvariant2 'TyFamily19a) $(deriveInvariant 'TyFamily20) $(deriveInvariant2 'TyFamily20) #endif ------------------------------------------------------------------------------- -- | Verifies that @invmap id id = id@ (the other 'invmap' law follows -- as a free theorem: -- https://www.fpcomplete.com/user/edwardk/snippets/fmap). prop_invmapLaws :: (Eq (f a), Show (f a), Invariant f) => f a -> Expectation prop_invmapLaws x = invmap id id x `shouldBe` x -- | Verifies that @invmap2 id id id id = id@. prop_invmap2Laws :: (Eq (f a b), Show (f a b), Invariant2 f) => f a b -> Expectation prop_invmap2Laws x = invmap2 id id id id x `shouldBe` x ------------------------------------------------------------------------------- main :: IO () main = hspec spec spec :: Spec spec = do describe "Compose Maybe Either Int Int" $ do prop "satisfies the invmap laws" (prop_invmapLaws :: Compose Maybe Either Int Int -> Expectation) prop "satisfies the invmap2 laws" (prop_invmap2Laws :: Compose Maybe Either Int Int -> Expectation) #if MIN_VERSION_template_haskell(2,7,0) describe "ComposeFam Maybe Either Int Int" $ do prop "satisfies the invmap laws" (prop_invmapLaws :: ComposeFam Maybe Either Int Int -> Expectation) prop "satisfies the invmap2 laws" (prop_invmap2Laws :: ComposeFam Maybe Either Int Int -> Expectation) #endif