simple-templates-0.8.0.1/ 0000755 0000000 0000000 00000000000 12645071602 013334 5 ustar 00 0000000 0000000 simple-templates-0.8.0.1/LICENSE 0000644 0000000 0000000 00000016744 12645071602 014355 0 ustar 00 0000000 0000000 GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc.
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.
0. Additional Definitions.
As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.
"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.
An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.
A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".
The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.
The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:
a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or
b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.
3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:
a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this license
document.
4. Combined Works.
You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:
a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.
c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.
d) Do one of the following:
0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.
1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user's computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.
e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)
5. Combined Libraries.
You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:
a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.
b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.
6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.
If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.
simple-templates-0.8.0.1/Setup.hs 0000644 0000000 0000000 00000000056 12645071602 014771 0 ustar 00 0000000 0000000 import Distribution.Simple
main = defaultMain
simple-templates-0.8.0.1/simple-templates.cabal 0000644 0000000 0000000 00000003320 12645071602 017603 0 ustar 00 0000000 0000000 -- Initial simple-session.cabal generated by cabal init. For further
-- documentation, see http://haskell.org/cabal/users-guide/
name: simple-templates
version: 0.8.0.1
synopsis: A basic template language for the Simple web framework
description:
A basic template language for the Simple web framework. The language supports
variable substitution, function invokation, loops and conditionals.
.
"Web.Simple.Templates" documents how to integrate into an app, while
"Web.Simple.Templates.Language" documents the templating language syntax
and semantics.
homepage: http://simple.cx
Bug-Reports: http://github.com/alevy/simple/issues
license: LGPL-3
license-file: LICENSE
author: Amit Aryeh Levy
maintainer: amit@amitlevy.com
category: Web
build-type: Simple
cabal-version: >=1.10
library
hs-source-dirs: src
ghc-options: -Wall -fno-warn-unused-do-bind
exposed-modules:
Web.Simple.Templates.Language
, Web.Simple.Templates.Parser
, Web.Simple.Templates.Types
build-depends:
base < 6
, aeson >= 0.7
, attoparsec
, scientific
, text
, unordered-containers
, vector
default-language: Haskell2010
test-suite test-simple-templates
type: exitcode-stdio-1.0
hs-source-dirs: test
main-is: Spec.hs
build-depends:
base < 6
, aeson >= 0.7
, attoparsec
, HUnit
, hspec
, scientific
, simple-templates
, vector
other-modules:
Web.Simple.Templates.LanguageSpec
, Web.Simple.Templates.ParserSpec
default-language: Haskell2010
source-repository head
type: git
location: http://github.com/alevy/simple.git
simple-templates-0.8.0.1/test/ 0000755 0000000 0000000 00000000000 12645071602 014313 5 ustar 00 0000000 0000000 simple-templates-0.8.0.1/test/Spec.hs 0000644 0000000 0000000 00000000436 12645071602 015544 0 ustar 00 0000000 0000000 {-# LANGUAGE OverloadedStrings #-}
module Main where
import Test.Hspec
import qualified Web.Simple.Templates.LanguageSpec
import qualified Web.Simple.Templates.ParserSpec
main :: IO ()
main = hspec $ do
Web.Simple.Templates.LanguageSpec.spec
Web.Simple.Templates.ParserSpec.spec
simple-templates-0.8.0.1/test/Web/ 0000755 0000000 0000000 00000000000 12645071602 015030 5 ustar 00 0000000 0000000 simple-templates-0.8.0.1/test/Web/Simple/ 0000755 0000000 0000000 00000000000 12645071602 016261 5 ustar 00 0000000 0000000 simple-templates-0.8.0.1/test/Web/Simple/Templates/ 0000755 0000000 0000000 00000000000 12645071602 020217 5 ustar 00 0000000 0000000 simple-templates-0.8.0.1/test/Web/Simple/Templates/LanguageSpec.hs 0000644 0000000 0000000 00000001017 12645071602 023110 0 ustar 00 0000000 0000000 {-# LANGUAGE OverloadedStrings #-}
module Web.Simple.Templates.LanguageSpec where
import Data.Aeson
import Test.HUnit
import Test.Hspec
import Web.Simple.Templates.Language
spec :: Spec
spec = describe "Web.Simple.Templates.Language" $ do
describe "valueToText" $ do
it "renders whole number as decimal" $ do
let val = Number 4563
assertEqual "" "4563" (valueToText val)
it "renders rational number with decimal point" $ do
let val = Number 3432.5
assertEqual "" "3432.5" (valueToText val)
simple-templates-0.8.0.1/test/Web/Simple/Templates/ParserSpec.hs 0000644 0000000 0000000 00000017450 12645071602 022631 0 ustar 00 0000000 0000000 {-# LANGUAGE OverloadedStrings #-}
module Web.Simple.Templates.ParserSpec where
import Data.Aeson
import qualified Data.Attoparsec.Text as A
import Data.Maybe
import Data.Scientific
import qualified Data.Vector as V
import Test.HUnit
import Test.Hspec
import Web.Simple.Templates.Parser
import Web.Simple.Templates.Types
spec :: Spec
spec = describe "Web.Simple.Templates.Parser" $ do
describe "pEscapedDollar" $ do
it "reads $$ as escaped dollar" $ do
let parsedStr = A.parseOnly pEscapedDollar "$$"
assertEqual "" (Right "$") parsedStr
it "fails on single $" $ do
let parsedStr = A.maybeResult $ A.parse pEscapedDollar "$ "
assert $ isNothing parsedStr
describe "pRaw" $ do
it "fails on dollar-sign" $ do
let parsedStr = A.maybeResult $ A.parse pRaw "$blor doop"
assert $ isNothing parsedStr
it "reads non-dollar-sign text" $ do
let parsedStr = A.parseOnly pRaw "blor doop"
assertEqual "" (Right $ ASTLiteral (String "blor doop")) parsedStr
it "reads text until dollar sign" $ do
let parsedStr = A.parseOnly pRaw "blor doop$"
assertEqual "" (Right $ ASTLiteral (String "blor doop")) parsedStr
it "reads text with escaped dollar sing" $ do
let parsedStr = A.parseOnly pRaw "you owe me $$4"
assertEqual "" (Right $ ASTLiteral (String "you owe me $4")) parsedStr
describe "pLiteral" $ do
it "reads a number" $ do
let parsedStr = A.parseOnly pLiteral "12345.66"
assertEqual "" (Right $ fromLiteral (12345.66 :: Scientific)) parsedStr
it "reads a string" $ do
let parsedStr = A.parseOnly pLiteral "\"hello\""
assertEqual "" (Right $ fromLiteral ("hello" :: String)) parsedStr
it "reads a string with escaped quote" $ do
let parsedStr = A.parseOnly pLiteral "\"hello \\ \\\"world\""
assertEqual "" (Right $ fromLiteral ("hello \\ \"world" :: String))
parsedStr
it "reads array" $ do
let parsedStr = A.parseOnly pLiteral "[1]"
let expected = ASTArray $ V.fromList [fromLiteral (1 :: Int)]
assertEqual "" (Right expected) parsedStr
it "reads 'true' as boolean" $ do
let parsedStr = A.parseOnly pLiteral "true"
assertEqual "" (Right $ fromLiteral True) parsedStr
it "reads 'false' as boolean" $ do
let parsedStr = A.parseOnly pLiteral "false"
assertEqual "" (Right $ fromLiteral False) parsedStr
it "reads null as null value" $ do
let parsedStr = A.parseOnly pLiteral "null"
assertEqual "" (Right $ ASTLiteral Null) parsedStr
describe "pArray" $ do
it "matches array with literals" $ do
let parsedStr = A.parseOnly pArray "[1 ,2 ,3 , 4]"
let expected = ASTArray $ V.fromList $ map fromLiteral
[ 1 :: Int
, 2
, 3
, 4 ]
assertEqual "" (Right expected) parsedStr
it "matches array with mixed literals" $ do
let parsedStr = A.parseOnly pArray "[1,\"hello\"]"
let expected = ASTArray $ V.fromList
[ fromLiteral (1 :: Int)
, fromLiteral ("hello" :: String)]
assertEqual "" (Right expected) parsedStr
describe "pIdentifier" $ do
it "matches alphunumeric string starting with a letter" $ do
let parsedStr = A.parseOnly pIdentifier "l33Th8x0r"
assertEqual "" (Right "l33Th8x0r") parsedStr
it "must start with a letter" $ do
let parsedStr = A.maybeResult $ A.parse pIdentifier "3rd"
assert $ isNothing parsedStr
it "allows underscores and dashes" $ do
let parsedStr = A.parseOnly pIdentifier "l33Th-8x_r"
assertEqual "" (Right "l33Th-8x_r") parsedStr
describe "pIndex" $ do
it "matches an variable name on the left and an identifier on the right" $
do
let parsedStr = A.parseOnly pIndex "foo.bar.baz"
assertEqual "" (Right $ ASTIndex (ASTVar "foo") ["bar", "baz"])
parsedStr
describe "pVar" $ do
it "matches an identifier" $ do
let parsedStr = A.parseOnly pVar "foo"
assertEqual "" (Right $ ASTVar "foo") parsedStr
describe "pFunc" $ do
it "matches no argument function call" $ do
let parsedStr = A.parseOnly pFunc "foo()"
assertEqual "" (Right $ ASTFunc "foo" []) parsedStr
it "matches function call with one argument" $ do
let parsedStr = A.parseOnly pFunc "foo(1234)"
assertEqual "" (Right $ ASTFunc "foo" [ASTLiteral $ Number 1234])
parsedStr
it "matches function call with many arguments" $ do
let parsedStr = A.parseOnly pFunc "foo(1234, \"hello\", 5432)"
assertEqual "" (Right $ ASTFunc "foo" [ ASTLiteral $ Number 1234
, ASTLiteral $ String "hello"
, ASTLiteral $ Number 5432])
parsedStr
it "matches nested function calls" $ do
let parsedStr = A.parseOnly pFunc "foo(bar())"
assertEqual "" (Right $ ASTFunc "foo" [ASTFunc "bar" []]) parsedStr
it "matches function calls with index" $ do
let parsedStr = A.parseOnly pFunc "foo(bar.baz)"
assertEqual ""
(Right $ ASTFunc "foo" [ASTIndex (ASTVar "bar") ["baz"]])
parsedStr
describe "pIf" $ do
it "matches if with no false branch" $ do
let parsedStr = A.parseOnly pIf "if(1234)$hello world$endif"
assertEqual "" (Right $
ASTIf (ASTLiteral $ Number 1234)
(ASTRoot [ASTLiteral $ String "hello world"])
Nothing)
parsedStr
it "matches if with nested statement in true branch" $ do
let parsedStr = A.parseOnly pIf "if(1234)$hello $123$ world$endif"
assertEqual "" (Right $
ASTIf (ASTLiteral $ Number 1234)
(ASTRoot [ ASTLiteral $ String "hello "
, ASTLiteral $ Number 123
, ASTLiteral $ String " world"])
Nothing)
parsedStr
it "matches with a space after" $ do
let parsedStr = A.parseOnly pIf "if 1234$hello world$endif"
assertEqual "" (Right $
ASTIf (ASTLiteral $ Number 1234)
(ASTRoot [ASTLiteral $ String "hello world"])
Nothing)
parsedStr
it "matches with if/else" $ do
let parsedStr = A.parseOnly pIf "if(true)$$else$$endif"
assertEqual "" (Right $
ASTIf (ASTLiteral $ Bool True)
(ASTRoot [])
(Just $ ASTRoot []))
parsedStr
describe "pFor" $ do
it "matches basic for loop" $ do
let parsedStr = A.parseOnly pFor "for(i in [])$$i$$endfor"
assertEqual "" (Right $
ASTFor Nothing "i" (ASTArray (V.fromList []))
(ASTRoot [ASTVar "i"]) Nothing) parsedStr
it "matches with space after for" $ do
let parsedStr = A.parseOnly pFor "for i in []$$i$$endfor"
assertEqual "" (Right $
ASTFor Nothing "i" (ASTArray (V.fromList []))
(ASTRoot [ASTVar "i"]) Nothing) parsedStr
it "matches with separator" $ do
let parsedStr = A.parseOnly pFor "for(i in [])$$i$$sep$hello$endfor"
assertEqual "" (Right $
ASTFor Nothing "i" (ASTArray (V.fromList []))
(ASTRoot [ASTVar "i"])
(Just $ ASTRoot [ASTLiteral $ String "hello"]))
parsedStr
it "matches for loop with index" $ do
let parsedStr = A.parseOnly pFor "for(i,v in [])$$i$$endfor"
assertEqual "" (Right $
ASTFor (Just "i") "v" (ASTArray (V.fromList []))
(ASTRoot [ASTVar "i"]) Nothing) parsedStr
simple-templates-0.8.0.1/src/ 0000755 0000000 0000000 00000000000 12645071602 014123 5 ustar 00 0000000 0000000 simple-templates-0.8.0.1/src/Web/ 0000755 0000000 0000000 00000000000 12645071602 014640 5 ustar 00 0000000 0000000 simple-templates-0.8.0.1/src/Web/Simple/ 0000755 0000000 0000000 00000000000 12645071602 016071 5 ustar 00 0000000 0000000 simple-templates-0.8.0.1/src/Web/Simple/Templates/ 0000755 0000000 0000000 00000000000 12645071602 020027 5 ustar 00 0000000 0000000 simple-templates-0.8.0.1/src/Web/Simple/Templates/Types.hs 0000644 0000000 0000000 00000006633 12645071602 021477 0 ustar 00 0000000 0000000 {-# LANGUAGE FlexibleInstances, CPP, Trustworthy #-}
{- | Types and helpers to encode the language AST -}
module Web.Simple.Templates.Types where
import qualified Data.HashMap.Strict as H
import Data.Monoid
import Data.Text (Text)
import Data.Aeson
import qualified Data.Vector as V
-- | A funcation that's callable from inside a template
newtype Function = Function { call :: [Value] -> Value }
#define TypesConds(macro) \
macro(a1 -> a2, \
(FromJSON a1, FromJSON a2)); \
macro(a1 -> a2 -> a3, \
(FromJSON a1, FromJSON a2, FromJSON a3)); \
macro(a1 -> a2 -> a3 -> a4, \
(FromJSON a1, FromJSON a2, FromJSON a3, FromJSON a4)); \
macro(a1 -> a2 -> a3 -> a4 -> a5, \
(FromJSON a1, FromJSON a2, FromJSON a3, FromJSON a4, FromJSON a5)); \
macro(a1 -> a2 -> a3 -> a4 -> a5 -> a6, \
(FromJSON a1, FromJSON a2, FromJSON a3, FromJSON a4, FromJSON a5, FromJSON a6)); \
macro(a1 -> a2 -> a3 -> a4 -> a5 -> a6 -> a7, \
(FromJSON a1, FromJSON a2, FromJSON a3, FromJSON a4, FromJSON a5, FromJSON a6, FromJSON a7)); \
macro(a1 -> a2 -> a3 -> a4 -> a5 -> a6 -> a7 -> a8, \
(FromJSON a1, FromJSON a2, FromJSON a3, FromJSON a4, FromJSON a5, FromJSON a6, FromJSON a7, FromJSON a8))
class ToFunction a where
toFunction :: a -> Function
-- | Like 'fromJSON' but throws an error if there is a parse failure.
fromJSONStrict :: FromJSON a => Value -> a
fromJSONStrict val = case fromJSON val of
Error err -> error err
Success result -> result
#define TOFUNCTION(types, conds) \
instance (conds) => ToFunction (types -> Value) where { \
toFunction f = Function $ \args -> \
case args of { \
[] -> call (toFunction (f $ fromJSONStrict Null)) [] ; \
a:as -> call (toFunction (f $ fromJSONStrict a)) as} ; \
}
instance (FromJSON a) => ToFunction (a -> Value) where
toFunction f = Function $ \args ->
case args of
[] -> toJSON $ f $ fromJSONStrict Null
a:_ -> toJSON $ f $ fromJSONStrict a
TypesConds(TOFUNCTION)
type FunctionMap = H.HashMap Identifier Function
-- | A compiled template is a function that takes a 'FunctionMap' and a global
-- aeson 'Value' and renders the template.
newtype Template = Template
{ renderTemplate :: FunctionMap -> Value -> Text }
instance Monoid Template where
mempty = Template $ const $ const mempty
tm1 `mappend` tm2 = Template $ \fm global ->
renderTemplate tm1 fm global <> renderTemplate tm2 fm global
-- | A symbol identifier following the format [a-z][a-zA-Z0-9_-]*
type Identifier = Text
-- | 'AST's encode the various types of expressions in the language.
data AST = ASTRoot [AST] -- ^ A series of sub-ASTs
| ASTLiteral Value -- ^ A literal that does not require evaluation
| ASTFunc Identifier [AST] -- ^ A function call and list of arguments
| ASTVar Identifier -- ^ Variable dereference
| ASTIndex AST [Identifier] -- ^ Nested index into an object
| ASTArray (V.Vector AST)
-- ^ A literal array (may contain non-literals)
| ASTIf AST AST (Maybe AST)
-- ^ If - condition, true branch and optional false branch
| ASTFor (Maybe Identifier) Identifier AST AST (Maybe AST)
-- ^ for([k,]v in expr) body separator
deriving (Show, Eq)
-- | Lift a 'ToJSON' to an 'ASTLiteral'
fromLiteral :: ToJSON a => a -> AST
fromLiteral = ASTLiteral . toJSON
astListToArray :: [AST] -> AST
astListToArray = ASTArray . V.fromList
simple-templates-0.8.0.1/src/Web/Simple/Templates/Parser.hs 0000644 0000000 0000000 00000007063 12645071602 021625 0 ustar 00 0000000 0000000 {-# LANGUAGE OverloadedStrings, Trustworthy #-}
{-| Language parser -}
module Web.Simple.Templates.Parser
( reservedWords
, pAST
, pRaw
, pEscapedDollar
, pEscapedExpr, pExpr
, pIf, pFor
, pFunc, pValue, pVar
, pIndex, pIdentifier, pLiteral, pNull, pBoolean, pString, pNumber, pArray
, module Web.Simple.Templates.Types
) where
import Control.Applicative
import Control.Monad
import Data.Char (isAlphaNum)
import Data.Monoid
import Data.Text (Text)
import qualified Data.Text as T
import Data.Aeson
import qualified Data.Attoparsec.Text as A
import Web.Simple.Templates.Types
-- | Reserved words: for, endfor, sep, if, else, endif, true, false
reservedWords :: [Text]
reservedWords =
[ "for", "endfor", "sep"
, "if", "else", "endif"
, "true", "false"]
-- | Parse an AST
pAST :: A.Parser AST
pAST = ASTRoot <$> many (pRaw <|> pEscapedExpr)
pRaw :: A.Parser AST
pRaw = ASTLiteral . String . mconcat <$> (A.many1 $
A.takeWhile1 (/= '$') <|> pEscapedDollar)
pEscapedDollar :: A.Parser Text
pEscapedDollar = A.string "$$" >> return "$"
pEscapedExpr :: A.Parser AST
pEscapedExpr = do
A.char '$' *> pExpr <* A.char '$'
-- | Anything that can be evaluated: for, if or value
pExpr :: A.Parser AST
pExpr = pFor <|> pIf <|> pValue
pIf :: A.Parser AST
pIf = do
A.string "if"
brace <- A.satisfy (\c -> c == ' ' || c == '(')
cond <- pValue
when (brace == '(') $ A.char ')' >> return ()
A.char '$'
trueBranch <- pAST
falseBranch <- A.option Nothing $ do
A.string "$else$"
Just <$> pAST
A.string "$endif"
return $ ASTIf cond trueBranch falseBranch
pFor :: A.Parser AST
pFor = do
A.string "for"
brace <- A.satisfy (\c -> c == ' ' || c == '(')
mkeyName <- optional $ pIdentifier <* A.char ','
valName <- pIdentifier
A.string " in "
lst <- pValue
when (brace == '(') $ A.char ')' >> return ()
A.char '$'
loop <- pAST
sep <- A.option Nothing $ do
A.string "$sep$"
Just <$> pAST
A.string "$endfor"
return $ ASTFor mkeyName valName lst loop sep
-- | A variable, function call, literal, etc
pValue :: A.Parser AST
pValue = pFunc <|> pIndex <|> pVar <|> pLiteral
pFunc :: A.Parser AST
pFunc = do
funcName <- pIdentifier
A.char '('
args <- pValue `A.sepBy` (A.skipSpace *> A.char ',' *> A.skipSpace)
A.char ')'
return $ ASTFunc funcName args
pVar :: A.Parser AST
pVar = ASTVar <$> pIdentifier
pIndex :: A.Parser AST
pIndex = do
first <- pIdentifier <* A.char '.'
rst <- pIdentifier `A.sepBy` A.char '.'
return $ ASTIndex (ASTVar first) $ rst
pIdentifier :: A.Parser Identifier
pIdentifier = A.string "@" <|> do
a <- T.singleton <$> A.letter
rst <- A.takeWhile (\c -> isAlphaNum c || c == '_' || c == '-')
let ident = a <> rst
guard $ ident `notElem` reservedWords
return ident
-- Literals --
pLiteral :: A.Parser AST
pLiteral = pArray <|>
pNumber <|>
pString <|>
pBoolean <|>
pNull
pNull :: A.Parser AST
pNull = A.string "null" *> (return $ ASTLiteral Null)
pBoolean :: A.Parser AST
pBoolean = A.string "true" *> (return $ fromLiteral True) <|>
A.string "false" *> (return $ fromLiteral False)
pString :: A.Parser AST
pString = ASTLiteral . String <$>
(A.char '"' *> (T.pack <$> many escapedChar) <* A.char '"')
where escapedChar = (A.char '\\' *> A.char '"') <|>
A.satisfy (/= '"')
pNumber :: A.Parser AST
pNumber = ASTLiteral . Number <$> A.rational
pArray :: A.Parser AST
pArray = do
A.char '['
A.skipSpace
vals <- pValue `A.sepBy` (A.skipSpace *> A.char ',' *> A.skipSpace)
A.skipSpace
A.char ']'
return $ astListToArray vals
simple-templates-0.8.0.1/src/Web/Simple/Templates/Language.hs 0000644 0000000 0000000 00000022177 12645071602 022117 0 ustar 00 0000000 0000000 {-# LANGUAGE OverloadedStrings, Trustworthy #-}
{-|
A simple templating system with variable substitution, function invokation, for
loops and conditionals. Most callers should use 'compileTemplate' and invoke
the template with 'renderTemplate'. E.g.:
> let myTemplate = compileTemplate "Hello, $@$!"
> print $ renderTemplate myTemplate mempty "World"
-}
module Web.Simple.Templates.Language
(
-- * Language Description
-- $lang_def
-- ** Literals
-- $literals
-- ** Variable substitution
-- $variables
-- ** Function Invokation
-- $functions
-- ** Conditionals
-- $conditionals
-- ** For Loops
-- $loops
-- * Compilation
compileTemplate, evaluate, evaluateAST
-- * Helpers
, valueToText, replaceVar
, module Web.Simple.Templates.Types
) where
import Control.Applicative
import qualified Data.HashMap.Strict as H
import Data.Aeson
import Data.Maybe
import Data.Monoid
import Data.Scientific
import Data.Text (Text)
import qualified Data.Text as T
import qualified Data.Vector as V
import qualified Data.Attoparsec.Text as A
import Web.Simple.Templates.Parser
import Web.Simple.Templates.Types
evaluateAST :: FunctionMap -- ^ Mapping of functions accessible to the template
-> Value -- ^ The global 'Object' or 'Value'
-> AST -> Value
evaluateAST fm global ast =
case ast of
ASTRoot asts -> foldl (\v iast ->
let val = evaluateAST fm global iast
in String $ valueToText v <> valueToText val)
(String "") asts
ASTLiteral val -> val
ASTFunc ident args ->
case H.lookup ident fm of
Nothing -> Null
Just func ->
let argVals = map (evaluateAST fm global) args
in call func argVals
ASTVar ident ->
if ident == "@" then global else
case global of
Object obj -> fromMaybe Null $ H.lookup ident obj
_ -> Null
ASTIndex objAst idents ->
foldl (\val ident ->
case val of
Object obj -> fromMaybe Null $ H.lookup ident obj
_ -> Null) (evaluateAST fm global objAst) idents
ASTArray asts -> Array $ V.map (evaluateAST fm global) asts
ASTIf cond trueBranch mfalseBranch ->
let condVal = evaluateAST fm global cond
falseBranch = fromMaybe (ASTLiteral $ String "") mfalseBranch
in if condVal == Null || condVal == Bool False then
evaluateAST fm global falseBranch
else evaluateAST fm global trueBranch
ASTFor mkeyName valName lst body msep ->
astForLoop fm global mkeyName valName lst body msep
astForLoop :: FunctionMap -> Value
-> Maybe Identifier -> Identifier
-> AST -> AST -> Maybe AST -> Value
astForLoop fm global mkeyName valName lst body msep =
case val of
Null -> String ""
Bool False -> String ""
Array vec ->
String $ go (zip [0..(V.length vec)] $ V.toList vec) mempty
Object obj -> String $ go (H.toList obj) mempty
v -> evaluateAST fm (replaceVar global valName v) body
where sep = maybe (String "") (evaluateAST fm global) msep
val = evaluateAST fm global lst
go [] accm = accm
go ((k,v):[]) accm =
let scope = replaceVar (mreplaceKey k) valName v
nv = evaluateAST fm scope body
in accm <> valueToText nv
go ((k,v):x1:xs) accm =
let scope = replaceVar (mreplaceKey k) valName v
nv = evaluateAST fm scope body
accmN =
accm <> valueToText nv <> valueToText sep
in go (x1:xs) accmN
mreplaceKey :: ToJSON a => a -> Value
mreplaceKey v =
maybe global (\k -> replaceVar global k $ toJSON v) mkeyName
replaceVar :: Value -> Identifier -> Value -> Value
replaceVar (Object orig) varName newVal = Object $ H.insert varName newVal orig
replaceVar _ varName newVal = object [varName .= newVal]
evaluate :: AST -> Template
evaluate ast = Template $ \fm global ->
valueToText $ evaluateAST fm global ast
valueToText :: Value -> Text
valueToText val =
case val of
String str -> str
Number n -> fromScientific n
Bool True -> "True"
Bool False -> "False"
Array _ -> "[array]"
Object _ -> "[object]"
Null -> ""
fromScientific :: Scientific -> Text
fromScientific n
| e < 0 = T.pack $ show n
| otherwise = T.pack $ show $ coefficient n * 10 ^ e
where e = base10Exponent n
compileTemplate :: Text -> Either String Template
compileTemplate tmpl = evaluate <$>
A.parseOnly pAST tmpl
-- $lang_def
-- A template may contain plain-text, which is reproduced as is, as well as
-- blocks of code, escaped by surrounding with dollar-signs ($), for variable
-- expansion, function invokation, conditionals and loops. For example, given
-- a global variable \"answer\" with the value /42/,
--
-- > The answer to the universe is $answer$.
--
-- would expand to
--
-- > The answer to the universe is 42.
--
-- Since the dollar-sign is used to denote code sections, it must be escaped
-- in plaintext sections by typing two dollar-signs. For example, to reproduce
-- the lyrics for /Bonzo Goes to Bitburg/, by The Ramones:
--
-- > Shouldn't wish you happiness,
-- > wish her the very best.
-- > $$50,000 dress
-- > Shaking hands with your highness
-- $literals
-- 'Data.Aeson.Bool's, 'Number's, 'String's, 'Array's and 'Null' can be typed
-- as literals.
--
-- * 'Data.Aeson.Bool's are the lower-case \"true\" and \"false\"
--
-- * 'Number's are simply typed as decimals
--
-- > Pi is approximately $3.14159$
--
-- * 'String's are surrounded by double-quotes (\"). Double-quotes inside a
-- string can be escaped by proceeding it with a backslash (\\\"), however
-- backslashes themselves do not need to be escaped:
--
-- > And then, Dr. Evil said: $"Mini Me, stop humping the \"laser\"."$
--
-- * 'Array's are surrounded by square-brackets (\[ \]) and elements are comma
-- separated. Elements can be literals, variables or function invokations, and
-- do not have to be the same type:
--
-- > $["Foo", 42, ["bar", "baz"], length([1, 2, 3, 6])]$
--
-- * 'Null' is type as the literal /null/ (in lower case):
--
-- > $null$
--
-- $variables
-- Templates are evaluated with a single global variable called /@/. For
-- example, you can refernce the global in your template like so:
--
-- > The value in my global is $@$.
--
-- If the global is an 'Object', it can be indexed using dot-notation:
--
-- > The Sex Pistols' bassist was $@.bassist.name.first$
--
-- In this case, you may also discard the /@/ global reference and simply name
-- the field in the global object, for example:
--
-- > Field 'foo' is $foo$.
-- > Field 'bar.baz' is $bar.baz$.
--
-- 'String's, 'Number's and 'Data.Aeson.Bool's are meaningful when evaluated to
-- text in a template, while 'Object's, 'Array's and 'Null's simply render as
-- strings representing their types (e.g. \"[object]\"). However, all types can
-- be used as arguments to functions, or in conditionals and loops.
-- $functions
-- Functions are invoked with similar syntax to imperative languages:
--
-- > $myfunc(arg1, arg2, arg3)$
--
-- where arguments can be literals, variables or other function calls --
-- basically anything that can be evaluated can be an argument to a function.
-- Function names are in a separate namespace than variables, so there can be
-- a function and variable both named /foo/ and they are differentiated by
-- their use. For example:
--
-- > $mysymbol$
--
-- is a variable expansion, whereas
--
-- > $mysymbol()$
--
-- is a function invokation.
--
-- $conditionals
-- Branching is supported through the common /if/ statement with an optional
-- /else/ branch. Conditions can be any expression. /false/ and /null/ are
-- evaluated as /false/, while everything else is evaluated as /true/.
--
-- /if/ blocks are surround by an /if/-statement and and /endif/, each
-- surrounded separately by dollar signs. Optionally, the /else/ branch is
-- declared by with \"$else$\". The blocks themselves are templates and may
-- contain regular text as well as evaluable expressions.
--
-- > Should I stay or should I go?
-- > $if(go)$
-- > Trouble will be $trouble$.
-- > $else$
-- > Trouble will be $double(trouble)$
-- > $endif$
--
-- $loops
-- For loops iterate over collections, setting a variable name to one element
-- in the collection for each iteration of the loop. Collections are usually
-- 'Array's, however non-false expressions (e.g., 'String's and 'Number's) are
-- treated as collections with one element. A loop starts with a
-- /for/-statement surrounded by dollar-signs and end with an \"$endfor$\":
--
-- >
The Clash
-- >
-- > $for(member in band)$
-- > - $member.name$ played the $member.instrument$
-- > $endfor$
-- >
--
-- There is also an optional \"$sep$\" (for /separator/) clause, which is
-- rendered /between/ iterations. So if I have a collection with three items,
-- the /sep/ clause will be rendered after the first and second, but not third
-- elements:
--
-- > Grocery list
-- >
-- > $for(item in groceries)$
-- > $item.quantity$ $item.name$(s).
-- > $sep$
-- >
-- > $endfor$
-- >
--
-- Will render something like:
--
-- > Grocery list
-- >
-- > 2 MC(s).
-- >
-- > 1 DJ(s)
-- >
-- >
--