jama-1.0.3/0000775000175000017500000000000012201203453011745 5ustar ebourgebourgjama-1.0.3/src/0000775000175000017500000000000012201203425012533 5ustar ebourgebourgjama-1.0.3/src/Jama/0000755000175000017500000000000012201203453013402 5ustar ebourgebourgjama-1.0.3/src/Jama/Matrix.java0000600000175000017500000007034112047301256015516 0ustar ebourgebourgpackage Jama; import java.text.NumberFormat; import java.text.DecimalFormat; import java.text.DecimalFormatSymbols; import java.util.Locale; import java.text.FieldPosition; import java.io.PrintWriter; import java.io.BufferedReader; import java.io.StreamTokenizer; import Jama.util.*; /** Jama = Java Matrix class.

The Java Matrix Class provides the fundamental operations of numerical linear algebra. Various constructors create Matrices from two dimensional arrays of double precision floating point numbers. Various "gets" and "sets" provide access to submatrices and matrix elements. Several methods implement basic matrix arithmetic, including matrix addition and multiplication, matrix norms, and element-by-element array operations. Methods for reading and printing matrices are also included. All the operations in this version of the Matrix Class involve real matrices. Complex matrices may be handled in a future version.

Five fundamental matrix decompositions, which consist of pairs or triples of matrices, permutation vectors, and the like, produce results in five decomposition classes. These decompositions are accessed by the Matrix class to compute solutions of simultaneous linear equations, determinants, inverses and other matrix functions. The five decompositions are:

Example of use:

Solve a linear system A x = b and compute the residual norm, ||b - A x||.

      double[][] vals = {{1.,2.,3},{4.,5.,6.},{7.,8.,10.}};
      Matrix A = new Matrix(vals);
      Matrix b = Matrix.random(3,1);
      Matrix x = A.solve(b);
      Matrix r = A.times(x).minus(b);
      double rnorm = r.normInf();
@author The MathWorks, Inc. and the National Institute of Standards and Technology. @version 5 August 1998 */ public class Matrix implements Cloneable, java.io.Serializable { /* ------------------------ Class variables * ------------------------ */ /** Array for internal storage of elements. @serial internal array storage. */ private double[][] A; /** Row and column dimensions. @serial row dimension. @serial column dimension. */ private int m, n; /* ------------------------ Constructors * ------------------------ */ /** Construct an m-by-n matrix of zeros. @param m Number of rows. @param n Number of colums. */ public Matrix (int m, int n) { this.m = m; this.n = n; A = new double[m][n]; } /** Construct an m-by-n constant matrix. @param m Number of rows. @param n Number of colums. @param s Fill the matrix with this scalar value. */ public Matrix (int m, int n, double s) { this.m = m; this.n = n; A = new double[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = s; } } } /** Construct a matrix from a 2-D array. @param A Two-dimensional array of doubles. @exception IllegalArgumentException All rows must have the same length @see #constructWithCopy */ public Matrix (double[][] A) { m = A.length; n = A[0].length; for (int i = 0; i < m; i++) { if (A[i].length != n) { throw new IllegalArgumentException("All rows must have the same length."); } } this.A = A; } /** Construct a matrix quickly without checking arguments. @param A Two-dimensional array of doubles. @param m Number of rows. @param n Number of colums. */ public Matrix (double[][] A, int m, int n) { this.A = A; this.m = m; this.n = n; } /** Construct a matrix from a one-dimensional packed array @param vals One-dimensional array of doubles, packed by columns (ala Fortran). @param m Number of rows. @exception IllegalArgumentException Array length must be a multiple of m. */ public Matrix (double vals[], int m) { this.m = m; n = (m != 0 ? vals.length/m : 0); if (m*n != vals.length) { throw new IllegalArgumentException("Array length must be a multiple of m."); } A = new double[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = vals[i+j*m]; } } } /* ------------------------ Public Methods * ------------------------ */ /** Construct a matrix from a copy of a 2-D array. @param A Two-dimensional array of doubles. @exception IllegalArgumentException All rows must have the same length */ public static Matrix constructWithCopy(double[][] A) { int m = A.length; int n = A[0].length; Matrix X = new Matrix(m,n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { if (A[i].length != n) { throw new IllegalArgumentException ("All rows must have the same length."); } for (int j = 0; j < n; j++) { C[i][j] = A[i][j]; } } return X; } /** Make a deep copy of a matrix */ public Matrix copy () { Matrix X = new Matrix(m,n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j]; } } return X; } /** Clone the Matrix object. */ public Object clone () { return this.copy(); } /** Access the internal two-dimensional array. @return Pointer to the two-dimensional array of matrix elements. */ public double[][] getArray () { return A; } /** Copy the internal two-dimensional array. @return Two-dimensional array copy of matrix elements. */ public double[][] getArrayCopy () { double[][] C = new double[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j]; } } return C; } /** Make a one-dimensional column packed copy of the internal array. @return Matrix elements packed in a one-dimensional array by columns. */ public double[] getColumnPackedCopy () { double[] vals = new double[m*n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { vals[i+j*m] = A[i][j]; } } return vals; } /** Make a one-dimensional row packed copy of the internal array. @return Matrix elements packed in a one-dimensional array by rows. */ public double[] getRowPackedCopy () { double[] vals = new double[m*n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { vals[i*n+j] = A[i][j]; } } return vals; } /** Get row dimension. @return m, the number of rows. */ public int getRowDimension () { return m; } /** Get column dimension. @return n, the number of columns. */ public int getColumnDimension () { return n; } /** Get a single element. @param i Row index. @param j Column index. @return A(i,j) @exception ArrayIndexOutOfBoundsException */ public double get (int i, int j) { return A[i][j]; } /** Get a submatrix. @param i0 Initial row index @param i1 Final row index @param j0 Initial column index @param j1 Final column index @return A(i0:i1,j0:j1) @exception ArrayIndexOutOfBoundsException Submatrix indices */ public Matrix getMatrix (int i0, int i1, int j0, int j1) { Matrix X = new Matrix(i1-i0+1,j1-j0+1); double[][] B = X.getArray(); try { for (int i = i0; i <= i1; i++) { for (int j = j0; j <= j1; j++) { B[i-i0][j-j0] = A[i][j]; } } } catch(ArrayIndexOutOfBoundsException e) { throw new ArrayIndexOutOfBoundsException("Submatrix indices"); } return X; } /** Get a submatrix. @param r Array of row indices. @param c Array of column indices. @return A(r(:),c(:)) @exception ArrayIndexOutOfBoundsException Submatrix indices */ public Matrix getMatrix (int[] r, int[] c) { Matrix X = new Matrix(r.length,c.length); double[][] B = X.getArray(); try { for (int i = 0; i < r.length; i++) { for (int j = 0; j < c.length; j++) { B[i][j] = A[r[i]][c[j]]; } } } catch(ArrayIndexOutOfBoundsException e) { throw new ArrayIndexOutOfBoundsException("Submatrix indices"); } return X; } /** Get a submatrix. @param i0 Initial row index @param i1 Final row index @param c Array of column indices. @return A(i0:i1,c(:)) @exception ArrayIndexOutOfBoundsException Submatrix indices */ public Matrix getMatrix (int i0, int i1, int[] c) { Matrix X = new Matrix(i1-i0+1,c.length); double[][] B = X.getArray(); try { for (int i = i0; i <= i1; i++) { for (int j = 0; j < c.length; j++) { B[i-i0][j] = A[i][c[j]]; } } } catch(ArrayIndexOutOfBoundsException e) { throw new ArrayIndexOutOfBoundsException("Submatrix indices"); } return X; } /** Get a submatrix. @param r Array of row indices. @param j0 Initial column index @param j1 Final column index @return A(r(:),j0:j1) @exception ArrayIndexOutOfBoundsException Submatrix indices */ public Matrix getMatrix (int[] r, int j0, int j1) { Matrix X = new Matrix(r.length,j1-j0+1); double[][] B = X.getArray(); try { for (int i = 0; i < r.length; i++) { for (int j = j0; j <= j1; j++) { B[i][j-j0] = A[r[i]][j]; } } } catch(ArrayIndexOutOfBoundsException e) { throw new ArrayIndexOutOfBoundsException("Submatrix indices"); } return X; } /** Set a single element. @param i Row index. @param j Column index. @param s A(i,j). @exception ArrayIndexOutOfBoundsException */ public void set (int i, int j, double s) { A[i][j] = s; } /** Set a submatrix. @param i0 Initial row index @param i1 Final row index @param j0 Initial column index @param j1 Final column index @param X A(i0:i1,j0:j1) @exception ArrayIndexOutOfBoundsException Submatrix indices */ public void setMatrix (int i0, int i1, int j0, int j1, Matrix X) { try { for (int i = i0; i <= i1; i++) { for (int j = j0; j <= j1; j++) { A[i][j] = X.get(i-i0,j-j0); } } } catch(ArrayIndexOutOfBoundsException e) { throw new ArrayIndexOutOfBoundsException("Submatrix indices"); } } /** Set a submatrix. @param r Array of row indices. @param c Array of column indices. @param X A(r(:),c(:)) @exception ArrayIndexOutOfBoundsException Submatrix indices */ public void setMatrix (int[] r, int[] c, Matrix X) { try { for (int i = 0; i < r.length; i++) { for (int j = 0; j < c.length; j++) { A[r[i]][c[j]] = X.get(i,j); } } } catch(ArrayIndexOutOfBoundsException e) { throw new ArrayIndexOutOfBoundsException("Submatrix indices"); } } /** Set a submatrix. @param r Array of row indices. @param j0 Initial column index @param j1 Final column index @param X A(r(:),j0:j1) @exception ArrayIndexOutOfBoundsException Submatrix indices */ public void setMatrix (int[] r, int j0, int j1, Matrix X) { try { for (int i = 0; i < r.length; i++) { for (int j = j0; j <= j1; j++) { A[r[i]][j] = X.get(i,j-j0); } } } catch(ArrayIndexOutOfBoundsException e) { throw new ArrayIndexOutOfBoundsException("Submatrix indices"); } } /** Set a submatrix. @param i0 Initial row index @param i1 Final row index @param c Array of column indices. @param X A(i0:i1,c(:)) @exception ArrayIndexOutOfBoundsException Submatrix indices */ public void setMatrix (int i0, int i1, int[] c, Matrix X) { try { for (int i = i0; i <= i1; i++) { for (int j = 0; j < c.length; j++) { A[i][c[j]] = X.get(i-i0,j); } } } catch(ArrayIndexOutOfBoundsException e) { throw new ArrayIndexOutOfBoundsException("Submatrix indices"); } } /** Matrix transpose. @return A' */ public Matrix transpose () { Matrix X = new Matrix(n,m); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[j][i] = A[i][j]; } } return X; } /** One norm @return maximum column sum. */ public double norm1 () { double f = 0; for (int j = 0; j < n; j++) { double s = 0; for (int i = 0; i < m; i++) { s += Math.abs(A[i][j]); } f = Math.max(f,s); } return f; } /** Two norm @return maximum singular value. */ public double norm2 () { return (new SingularValueDecomposition(this).norm2()); } /** Infinity norm @return maximum row sum. */ public double normInf () { double f = 0; for (int i = 0; i < m; i++) { double s = 0; for (int j = 0; j < n; j++) { s += Math.abs(A[i][j]); } f = Math.max(f,s); } return f; } /** Frobenius norm @return sqrt of sum of squares of all elements. */ public double normF () { double f = 0; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { f = Maths.hypot(f,A[i][j]); } } return f; } /** Unary minus @return -A */ public Matrix uminus () { Matrix X = new Matrix(m,n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = -A[i][j]; } } return X; } /** C = A + B @param B another matrix @return A + B */ public Matrix plus (Matrix B) { checkMatrixDimensions(B); Matrix X = new Matrix(m,n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j] + B.A[i][j]; } } return X; } /** A = A + B @param B another matrix @return A + B */ public Matrix plusEquals (Matrix B) { checkMatrixDimensions(B); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = A[i][j] + B.A[i][j]; } } return this; } /** C = A - B @param B another matrix @return A - B */ public Matrix minus (Matrix B) { checkMatrixDimensions(B); Matrix X = new Matrix(m,n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j] - B.A[i][j]; } } return X; } /** A = A - B @param B another matrix @return A - B */ public Matrix minusEquals (Matrix B) { checkMatrixDimensions(B); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = A[i][j] - B.A[i][j]; } } return this; } /** Element-by-element multiplication, C = A.*B @param B another matrix @return A.*B */ public Matrix arrayTimes (Matrix B) { checkMatrixDimensions(B); Matrix X = new Matrix(m,n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j] * B.A[i][j]; } } return X; } /** Element-by-element multiplication in place, A = A.*B @param B another matrix @return A.*B */ public Matrix arrayTimesEquals (Matrix B) { checkMatrixDimensions(B); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = A[i][j] * B.A[i][j]; } } return this; } /** Element-by-element right division, C = A./B @param B another matrix @return A./B */ public Matrix arrayRightDivide (Matrix B) { checkMatrixDimensions(B); Matrix X = new Matrix(m,n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j] / B.A[i][j]; } } return X; } /** Element-by-element right division in place, A = A./B @param B another matrix @return A./B */ public Matrix arrayRightDivideEquals (Matrix B) { checkMatrixDimensions(B); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = A[i][j] / B.A[i][j]; } } return this; } /** Element-by-element left division, C = A.\B @param B another matrix @return A.\B */ public Matrix arrayLeftDivide (Matrix B) { checkMatrixDimensions(B); Matrix X = new Matrix(m,n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = B.A[i][j] / A[i][j]; } } return X; } /** Element-by-element left division in place, A = A.\B @param B another matrix @return A.\B */ public Matrix arrayLeftDivideEquals (Matrix B) { checkMatrixDimensions(B); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = B.A[i][j] / A[i][j]; } } return this; } /** Multiply a matrix by a scalar, C = s*A @param s scalar @return s*A */ public Matrix times (double s) { Matrix X = new Matrix(m,n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = s*A[i][j]; } } return X; } /** Multiply a matrix by a scalar in place, A = s*A @param s scalar @return replace A by s*A */ public Matrix timesEquals (double s) { for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = s*A[i][j]; } } return this; } /** Linear algebraic matrix multiplication, A * B @param B another matrix @return Matrix product, A * B @exception IllegalArgumentException Matrix inner dimensions must agree. */ public Matrix times (Matrix B) { if (B.m != n) { throw new IllegalArgumentException("Matrix inner dimensions must agree."); } Matrix X = new Matrix(m,B.n); double[][] C = X.getArray(); double[] Bcolj = new double[n]; for (int j = 0; j < B.n; j++) { for (int k = 0; k < n; k++) { Bcolj[k] = B.A[k][j]; } for (int i = 0; i < m; i++) { double[] Arowi = A[i]; double s = 0; for (int k = 0; k < n; k++) { s += Arowi[k]*Bcolj[k]; } C[i][j] = s; } } return X; } /** LU Decomposition @return LUDecomposition @see LUDecomposition */ public LUDecomposition lu () { return new LUDecomposition(this); } /** QR Decomposition @return QRDecomposition @see QRDecomposition */ public QRDecomposition qr () { return new QRDecomposition(this); } /** Cholesky Decomposition @return CholeskyDecomposition @see CholeskyDecomposition */ public CholeskyDecomposition chol () { return new CholeskyDecomposition(this); } /** Singular Value Decomposition @return SingularValueDecomposition @see SingularValueDecomposition */ public SingularValueDecomposition svd () { return new SingularValueDecomposition(this); } /** Eigenvalue Decomposition @return EigenvalueDecomposition @see EigenvalueDecomposition */ public EigenvalueDecomposition eig () { return new EigenvalueDecomposition(this); } /** Solve A*X = B @param B right hand side @return solution if A is square, least squares solution otherwise */ public Matrix solve (Matrix B) { return (m == n ? (new LUDecomposition(this)).solve(B) : (new QRDecomposition(this)).solve(B)); } /** Solve X*A = B, which is also A'*X' = B' @param B right hand side @return solution if A is square, least squares solution otherwise. */ public Matrix solveTranspose (Matrix B) { return transpose().solve(B.transpose()); } /** Matrix inverse or pseudoinverse @return inverse(A) if A is square, pseudoinverse otherwise. */ public Matrix inverse () { return solve(identity(m,m)); } /** Matrix determinant @return determinant */ public double det () { return new LUDecomposition(this).det(); } /** Matrix rank @return effective numerical rank, obtained from SVD. */ public int rank () { return new SingularValueDecomposition(this).rank(); } /** Matrix condition (2 norm) @return ratio of largest to smallest singular value. */ public double cond () { return new SingularValueDecomposition(this).cond(); } /** Matrix trace. @return sum of the diagonal elements. */ public double trace () { double t = 0; for (int i = 0; i < Math.min(m,n); i++) { t += A[i][i]; } return t; } /** Generate matrix with random elements @param m Number of rows. @param n Number of colums. @return An m-by-n matrix with uniformly distributed random elements. */ public static Matrix random (int m, int n) { Matrix A = new Matrix(m,n); double[][] X = A.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { X[i][j] = Math.random(); } } return A; } /** Generate identity matrix @param m Number of rows. @param n Number of colums. @return An m-by-n matrix with ones on the diagonal and zeros elsewhere. */ public static Matrix identity (int m, int n) { Matrix A = new Matrix(m,n); double[][] X = A.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { X[i][j] = (i == j ? 1.0 : 0.0); } } return A; } /** Print the matrix to stdout. Line the elements up in columns * with a Fortran-like 'Fw.d' style format. @param w Column width. @param d Number of digits after the decimal. */ public void print (int w, int d) { print(new PrintWriter(System.out,true),w,d); } /** Print the matrix to the output stream. Line the elements up in * columns with a Fortran-like 'Fw.d' style format. @param output Output stream. @param w Column width. @param d Number of digits after the decimal. */ public void print (PrintWriter output, int w, int d) { DecimalFormat format = new DecimalFormat(); format.setDecimalFormatSymbols(new DecimalFormatSymbols(Locale.US)); format.setMinimumIntegerDigits(1); format.setMaximumFractionDigits(d); format.setMinimumFractionDigits(d); format.setGroupingUsed(false); print(output,format,w+2); } /** Print the matrix to stdout. Line the elements up in columns. * Use the format object, and right justify within columns of width * characters. * Note that is the matrix is to be read back in, you probably will want * to use a NumberFormat that is set to US Locale. @param format A Formatting object for individual elements. @param width Field width for each column. @see java.text.DecimalFormat#setDecimalFormatSymbols */ public void print (NumberFormat format, int width) { print(new PrintWriter(System.out,true),format,width); } // DecimalFormat is a little disappointing coming from Fortran or C's printf. // Since it doesn't pad on the left, the elements will come out different // widths. Consequently, we'll pass the desired column width in as an // argument and do the extra padding ourselves. /** Print the matrix to the output stream. Line the elements up in columns. * Use the format object, and right justify within columns of width * characters. * Note that is the matrix is to be read back in, you probably will want * to use a NumberFormat that is set to US Locale. @param output the output stream. @param format A formatting object to format the matrix elements @param width Column width. @see java.text.DecimalFormat#setDecimalFormatSymbols */ public void print (PrintWriter output, NumberFormat format, int width) { output.println(); // start on new line. for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { String s = format.format(A[i][j]); // format the number int padding = Math.max(1,width-s.length()); // At _least_ 1 space for (int k = 0; k < padding; k++) output.print(' '); output.print(s); } output.println(); } output.println(); // end with blank line. } /** Read a matrix from a stream. The format is the same the print method, * so printed matrices can be read back in (provided they were printed using * US Locale). Elements are separated by * whitespace, all the elements for each row appear on a single line, * the last row is followed by a blank line. @param input the input stream. */ public static Matrix read (BufferedReader input) throws java.io.IOException { StreamTokenizer tokenizer= new StreamTokenizer(input); // Although StreamTokenizer will parse numbers, it doesn't recognize // scientific notation (E or D); however, Double.valueOf does. // The strategy here is to disable StreamTokenizer's number parsing. // We'll only get whitespace delimited words, EOL's and EOF's. // These words should all be numbers, for Double.valueOf to parse. tokenizer.resetSyntax(); tokenizer.wordChars(0,255); tokenizer.whitespaceChars(0, ' '); tokenizer.eolIsSignificant(true); java.util.Vector vD = new java.util.Vector(); // Ignore initial empty lines while (tokenizer.nextToken() == StreamTokenizer.TT_EOL); if (tokenizer.ttype == StreamTokenizer.TT_EOF) throw new java.io.IOException("Unexpected EOF on matrix read."); do { vD.addElement(Double.valueOf(tokenizer.sval)); // Read & store 1st row. } while (tokenizer.nextToken() == StreamTokenizer.TT_WORD); int n = vD.size(); // Now we've got the number of columns! double row[] = new double[n]; for (int j=0; j v = new java.util.Vector(); v.addElement(row); // Start storing rows instead of columns. while (tokenizer.nextToken() == StreamTokenizer.TT_WORD) { // While non-empty lines v.addElement(row = new double[n]); int j = 0; do { if (j >= n) throw new java.io.IOException ("Row " + v.size() + " is too long."); row[j++] = Double.valueOf(tokenizer.sval).doubleValue(); } while (tokenizer.nextToken() == StreamTokenizer.TT_WORD); if (j < n) throw new java.io.IOException ("Row " + v.size() + " is too short."); } int m = v.size(); // Now we've got the number of rows. double[][] A = new double[m][]; v.copyInto(A); // copy the rows out of the vector return new Matrix(A); } /* ------------------------ Private Methods * ------------------------ */ /** Check if size(A) == size(B) **/ private void checkMatrixDimensions (Matrix B) { if (B.m != m || B.n != n) { throw new IllegalArgumentException("Matrix dimensions must agree."); } } private static final long serialVersionUID = 1; } jama-1.0.3/src/Jama/util/0000755000175000017500000000000012201202461014355 5ustar ebourgebourgjama-1.0.3/src/Jama/util/Maths.java0000644000175000017500000000066206560215346016321 0ustar ebourgebourgpackage Jama.util; public class Maths { /** sqrt(a^2 + b^2) without under/overflow. **/ public static double hypot(double a, double b) { double r; if (Math.abs(a) > Math.abs(b)) { r = b/a; r = Math.abs(a)*Math.sqrt(1+r*r); } else if (b != 0) { r = a/b; r = Math.abs(b)*Math.sqrt(1+r*r); } else { r = 0.0; } return r; } } jama-1.0.3/src/Jama/CholeskyDecomposition.java0000644000175000017500000001274312047301002020567 0ustar ebourgebourgpackage Jama; /** Cholesky Decomposition.

For a symmetric, positive definite matrix A, the Cholesky decomposition is an lower triangular matrix L so that A = L*L'.

If the matrix is not symmetric or positive definite, the constructor returns a partial decomposition and sets an internal flag that may be queried by the isSPD() method. */ public class CholeskyDecomposition implements java.io.Serializable { /* ------------------------ Class variables * ------------------------ */ /** Array for internal storage of decomposition. @serial internal array storage. */ private double[][] L; /** Row and column dimension (square matrix). @serial matrix dimension. */ private int n; /** Symmetric and positive definite flag. @serial is symmetric and positive definite flag. */ private boolean isspd; /* ------------------------ Constructor * ------------------------ */ /** Cholesky algorithm for symmetric and positive definite matrix. Structure to access L and isspd flag. @param Arg Square, symmetric matrix. */ public CholeskyDecomposition (Matrix Arg) { // Initialize. double[][] A = Arg.getArray(); n = Arg.getRowDimension(); L = new double[n][n]; isspd = (Arg.getColumnDimension() == n); // Main loop. for (int j = 0; j < n; j++) { double[] Lrowj = L[j]; double d = 0.0; for (int k = 0; k < j; k++) { double[] Lrowk = L[k]; double s = 0.0; for (int i = 0; i < k; i++) { s += Lrowk[i]*Lrowj[i]; } Lrowj[k] = s = (A[j][k] - s)/L[k][k]; d = d + s*s; isspd = isspd & (A[k][j] == A[j][k]); } d = A[j][j] - d; isspd = isspd & (d > 0.0); L[j][j] = Math.sqrt(Math.max(d,0.0)); for (int k = j+1; k < n; k++) { L[j][k] = 0.0; } } } /* ------------------------ Temporary, experimental code. * ------------------------ *\ \** Right Triangular Cholesky Decomposition.

For a symmetric, positive definite matrix A, the Right Cholesky decomposition is an upper triangular matrix R so that A = R'*R. This constructor computes R with the Fortran inspired column oriented algorithm used in LINPACK and MATLAB. In Java, we suspect a row oriented, lower triangular decomposition is faster. We have temporarily included this constructor here until timing experiments confirm this suspicion. *\ \** Array for internal storage of right triangular decomposition. **\ private transient double[][] R; \** Cholesky algorithm for symmetric and positive definite matrix. @param A Square, symmetric matrix. @param rightflag Actual value ignored. @return Structure to access R and isspd flag. *\ public CholeskyDecomposition (Matrix Arg, int rightflag) { // Initialize. double[][] A = Arg.getArray(); n = Arg.getColumnDimension(); R = new double[n][n]; isspd = (Arg.getColumnDimension() == n); // Main loop. for (int j = 0; j < n; j++) { double d = 0.0; for (int k = 0; k < j; k++) { double s = A[k][j]; for (int i = 0; i < k; i++) { s = s - R[i][k]*R[i][j]; } R[k][j] = s = s/R[k][k]; d = d + s*s; isspd = isspd & (A[k][j] == A[j][k]); } d = A[j][j] - d; isspd = isspd & (d > 0.0); R[j][j] = Math.sqrt(Math.max(d,0.0)); for (int k = j+1; k < n; k++) { R[k][j] = 0.0; } } } \** Return upper triangular factor. @return R *\ public Matrix getR () { return new Matrix(R,n,n); } \* ------------------------ End of temporary code. * ------------------------ */ /* ------------------------ Public Methods * ------------------------ */ /** Is the matrix symmetric and positive definite? @return true if A is symmetric and positive definite. */ public boolean isSPD () { return isspd; } /** Return triangular factor. @return L */ public Matrix getL () { return new Matrix(L,n,n); } /** Solve A*X = B @param B A Matrix with as many rows as A and any number of columns. @return X so that L*L'*X = B @exception IllegalArgumentException Matrix row dimensions must agree. @exception RuntimeException Matrix is not symmetric positive definite. */ public Matrix solve (Matrix B) { if (B.getRowDimension() != n) { throw new IllegalArgumentException("Matrix row dimensions must agree."); } if (!isspd) { throw new RuntimeException("Matrix is not symmetric positive definite."); } // Copy right hand side. double[][] X = B.getArrayCopy(); int nx = B.getColumnDimension(); // Solve L*Y = B; for (int k = 0; k < n; k++) { for (int j = 0; j < nx; j++) { for (int i = 0; i < k ; i++) { X[k][j] -= X[i][j]*L[k][i]; } X[k][j] /= L[k][k]; } } // Solve L'*X = Y; for (int k = n-1; k >= 0; k--) { for (int j = 0; j < nx; j++) { for (int i = k+1; i < n ; i++) { X[k][j] -= X[i][j]*L[i][k]; } X[k][j] /= L[k][k]; } } return new Matrix(X,n,nx); } private static final long serialVersionUID = 1; } jama-1.0.3/src/Jama/QRDecomposition.java0000600000175000017500000001337012047301326017326 0ustar ebourgebourgpackage Jama; import Jama.util.*; /** QR Decomposition.

For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n orthogonal matrix Q and an n-by-n upper triangular matrix R so that A = Q*R.

The QR decompostion always exists, even if the matrix does not have full rank, so the constructor will never fail. The primary use of the QR decomposition is in the least squares solution of nonsquare systems of simultaneous linear equations. This will fail if isFullRank() returns false. */ public class QRDecomposition implements java.io.Serializable { /* ------------------------ Class variables * ------------------------ */ /** Array for internal storage of decomposition. @serial internal array storage. */ private double[][] QR; /** Row and column dimensions. @serial column dimension. @serial row dimension. */ private int m, n; /** Array for internal storage of diagonal of R. @serial diagonal of R. */ private double[] Rdiag; /* ------------------------ Constructor * ------------------------ */ /** QR Decomposition, computed by Householder reflections. Structure to access R and the Householder vectors and compute Q. @param A Rectangular matrix */ public QRDecomposition (Matrix A) { // Initialize. QR = A.getArrayCopy(); m = A.getRowDimension(); n = A.getColumnDimension(); Rdiag = new double[n]; // Main loop. for (int k = 0; k < n; k++) { // Compute 2-norm of k-th column without under/overflow. double nrm = 0; for (int i = k; i < m; i++) { nrm = Maths.hypot(nrm,QR[i][k]); } if (nrm != 0.0) { // Form k-th Householder vector. if (QR[k][k] < 0) { nrm = -nrm; } for (int i = k; i < m; i++) { QR[i][k] /= nrm; } QR[k][k] += 1.0; // Apply transformation to remaining columns. for (int j = k+1; j < n; j++) { double s = 0.0; for (int i = k; i < m; i++) { s += QR[i][k]*QR[i][j]; } s = -s/QR[k][k]; for (int i = k; i < m; i++) { QR[i][j] += s*QR[i][k]; } } } Rdiag[k] = -nrm; } } /* ------------------------ Public Methods * ------------------------ */ /** Is the matrix full rank? @return true if R, and hence A, has full rank. */ public boolean isFullRank () { for (int j = 0; j < n; j++) { if (Rdiag[j] == 0) return false; } return true; } /** Return the Householder vectors @return Lower trapezoidal matrix whose columns define the reflections */ public Matrix getH () { Matrix X = new Matrix(m,n); double[][] H = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (i >= j) { H[i][j] = QR[i][j]; } else { H[i][j] = 0.0; } } } return X; } /** Return the upper triangular factor @return R */ public Matrix getR () { Matrix X = new Matrix(n,n); double[][] R = X.getArray(); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i < j) { R[i][j] = QR[i][j]; } else if (i == j) { R[i][j] = Rdiag[i]; } else { R[i][j] = 0.0; } } } return X; } /** Generate and return the (economy-sized) orthogonal factor @return Q */ public Matrix getQ () { Matrix X = new Matrix(m,n); double[][] Q = X.getArray(); for (int k = n-1; k >= 0; k--) { for (int i = 0; i < m; i++) { Q[i][k] = 0.0; } Q[k][k] = 1.0; for (int j = k; j < n; j++) { if (QR[k][k] != 0) { double s = 0.0; for (int i = k; i < m; i++) { s += QR[i][k]*Q[i][j]; } s = -s/QR[k][k]; for (int i = k; i < m; i++) { Q[i][j] += s*QR[i][k]; } } } } return X; } /** Least squares solution of A*X = B @param B A Matrix with as many rows as A and any number of columns. @return X that minimizes the two norm of Q*R*X-B. @exception IllegalArgumentException Matrix row dimensions must agree. @exception RuntimeException Matrix is rank deficient. */ public Matrix solve (Matrix B) { if (B.getRowDimension() != m) { throw new IllegalArgumentException("Matrix row dimensions must agree."); } if (!this.isFullRank()) { throw new RuntimeException("Matrix is rank deficient."); } // Copy right hand side int nx = B.getColumnDimension(); double[][] X = B.getArrayCopy(); // Compute Y = transpose(Q)*B for (int k = 0; k < n; k++) { for (int j = 0; j < nx; j++) { double s = 0.0; for (int i = k; i < m; i++) { s += QR[i][k]*X[i][j]; } s = -s/QR[k][k]; for (int i = k; i < m; i++) { X[i][j] += s*QR[i][k]; } } } // Solve R*X = Y; for (int k = n-1; k >= 0; k--) { for (int j = 0; j < nx; j++) { X[k][j] /= Rdiag[k]; } for (int i = 0; i < k; i++) { for (int j = 0; j < nx; j++) { X[i][j] -= X[k][j]*QR[i][k]; } } } return (new Matrix(X,n,nx).getMatrix(0,n-1,0,nx-1)); } private static final long serialVersionUID = 1; } jama-1.0.3/src/Jama/test/0000755000175000017500000000000012201202461014357 5ustar ebourgebourgjama-1.0.3/src/Jama/test/TestMatrix.java0000644000175000017500000012235412051250527017346 0ustar ebourgebourgpackage Jama.test; import Jama.*; import java.io.*; import java.util.zip.GZIPInputStream; import java.text.DecimalFormat; import java.text.DecimalFormatSymbols; import java.util.Locale; /** TestMatrix tests the functionality of the Jama Matrix class and associated decompositions.

Run the test from the command line using


 java Jama.test.TestMatrix 
Detailed output is provided indicating the functionality being tested and whether the functionality is correctly implemented. Exception handling is also tested.

The test is designed to run to completion and give a summary of any implementation errors encountered. The final output should be:


      TestMatrix completed.
      Total errors reported: n1
      Total warning reported: n2
If the test does not run to completion, this indicates that there is a substantial problem within the implementation that was not anticipated in the test design. The stopping point should give an indication of where the problem exists. **/ public class TestMatrix { public static void main (String argv[]) { Matrix A,B,C,Z,O,I,R,S,X,SUB,M,T,SQ,DEF,SOL; // Uncomment this to test IO in a different locale. // Locale.setDefault(Locale.GERMAN); int errorCount=0; int warningCount=0; double tmp, s; double[] columnwise = {1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.}; double[] rowwise = {1.,4.,7.,10.,2.,5.,8.,11.,3.,6.,9.,12.}; double[][] avals = {{1.,4.,7.,10.},{2.,5.,8.,11.},{3.,6.,9.,12.}}; double[][] rankdef = avals; double[][] tvals = {{1.,2.,3.},{4.,5.,6.},{7.,8.,9.},{10.,11.,12.}}; double[][] subavals = {{5.,8.,11.},{6.,9.,12.}}; double[][] rvals = {{1.,4.,7.},{2.,5.,8.,11.},{3.,6.,9.,12.}}; double[][] pvals = {{4.,1.,1.},{1.,2.,3.},{1.,3.,6.}}; double[][] ivals = {{1.,0.,0.,0.},{0.,1.,0.,0.},{0.,0.,1.,0.}}; double[][] evals = {{0.,1.,0.,0.},{1.,0.,2.e-7,0.},{0.,-2.e-7,0.,1.},{0.,0.,1.,0.}}; double[][] square = {{166.,188.,210.},{188.,214.,240.},{210.,240.,270.}}; double[][] sqSolution = {{13.},{15.}}; double[][] condmat = {{1.,3.},{7.,9.}}; double[][] badeigs = {{0,0,0,0,0}, {0,0,0,0,1},{0,0,0,1,0}, {1,1,0,0,1},{1,0,1,0,1}}; int rows=3,cols=4; int invalidld=5;/* should trigger bad shape for construction with val */ int raggedr=0; /* (raggedr,raggedc) should be out of bounds in ragged array */ int raggedc=4; int validld=3; /* leading dimension of intended test Matrices */ int nonconformld=4; /* leading dimension which is valid, but nonconforming */ int ib=1,ie=2,jb=1,je=3; /* index ranges for sub Matrix */ int[] rowindexset = {1,2}; int[] badrowindexset = {1,3}; int[] columnindexset = {1,2,3}; int[] badcolumnindexset = {1,2,4}; double columnsummax = 33.; double rowsummax = 30.; double sumofdiagonals = 15; double sumofsquares = 650; /** Constructors and constructor-like methods: double[], int double[][] int, int int, int, double int, int, double[][] constructWithCopy(double[][]) random(int,int) identity(int) **/ print("\nTesting constructors and constructor-like methods...\n"); try{ /** check that exception is thrown in packed constructor with invalid length **/ A = new Matrix(columnwise,invalidld); errorCount = try_failure(errorCount,"Catch invalid length in packed constructor... ", "exception not thrown for invalid input"); } catch ( IllegalArgumentException e ) { try_success("Catch invalid length in packed constructor... ", e.getMessage()); } try{ /** check that exception is thrown in default constructor if input array is 'ragged' **/ A = new Matrix(rvals); tmp = A.get(raggedr,raggedc); } catch ( IllegalArgumentException e ) { try_success("Catch ragged input to default constructor... ", e.getMessage()); } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { errorCount = try_failure(errorCount,"Catch ragged input to constructor... ", "exception not thrown in construction...ArrayIndexOutOfBoundsException thrown later"); } try{ /** check that exception is thrown in constructWithCopy if input array is 'ragged' **/ A = Matrix.constructWithCopy(rvals); tmp = A.get(raggedr,raggedc); } catch ( IllegalArgumentException e ) { try_success("Catch ragged input to constructWithCopy... ",e.getMessage()); } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { errorCount = try_failure(errorCount,"Catch ragged input to constructWithCopy... ","exception not thrown in construction...ArrayIndexOutOfBoundsException thrown later"); } A = new Matrix(columnwise,validld); B = new Matrix(avals); tmp = B.get(0,0); avals[0][0] = 0.0; C = B.minus(A); avals[0][0] = tmp; B = Matrix.constructWithCopy(avals); tmp = B.get(0,0); avals[0][0] = 0.0; if ( ( tmp - B.get(0,0) ) != 0.0 ) { /** check that constructWithCopy behaves properly **/ errorCount = try_failure(errorCount,"constructWithCopy... ","copy not effected... data visible outside"); } else { try_success("constructWithCopy... ",""); } avals[0][0] = columnwise[0]; I = new Matrix(ivals); try { check(I,Matrix.identity(3,4)); try_success("identity... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"identity... ","identity Matrix not successfully created"); } /** Access Methods: getColumnDimension() getRowDimension() getArray() getArrayCopy() getColumnPackedCopy() getRowPackedCopy() get(int,int) getMatrix(int,int,int,int) getMatrix(int,int,int[]) getMatrix(int[],int,int) getMatrix(int[],int[]) set(int,int,double) setMatrix(int,int,int,int,Matrix) setMatrix(int,int,int[],Matrix) setMatrix(int[],int,int,Matrix) setMatrix(int[],int[],Matrix) **/ print("\nTesting access methods...\n"); /** Various get methods: **/ B = new Matrix(avals); if (B.getRowDimension() != rows) { errorCount = try_failure(errorCount,"getRowDimension... ",""); } else { try_success("getRowDimension... ",""); } if (B.getColumnDimension() != cols) { errorCount = try_failure(errorCount,"getColumnDimension... ",""); } else { try_success("getColumnDimension... ",""); } B = new Matrix(avals); double[][] barray = B.getArray(); if ( barray != avals ) { errorCount = try_failure(errorCount,"getArray... ",""); } else { try_success("getArray... ",""); } barray = B.getArrayCopy(); if ( barray == avals ) { errorCount = try_failure(errorCount,"getArrayCopy... ","data not (deep) copied"); } try { check(barray,avals); try_success("getArrayCopy... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"getArrayCopy... ","data not successfully (deep) copied"); } double[] bpacked = B.getColumnPackedCopy(); try { check(bpacked,columnwise); try_success("getColumnPackedCopy... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"getColumnPackedCopy... ","data not successfully (deep) copied by columns"); } bpacked = B.getRowPackedCopy(); try { check(bpacked,rowwise); try_success("getRowPackedCopy... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"getRowPackedCopy... ","data not successfully (deep) copied by rows"); } try { tmp = B.get(B.getRowDimension(),B.getColumnDimension()-1); errorCount = try_failure(errorCount,"get(int,int)... ","OutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { try { tmp = B.get(B.getRowDimension()-1,B.getColumnDimension()); errorCount = try_failure(errorCount,"get(int,int)... ","OutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e1 ) { try_success("get(int,int)... OutofBoundsException... ",""); } } catch ( java.lang.IllegalArgumentException e1 ) { errorCount = try_failure(errorCount,"get(int,int)... ","OutOfBoundsException expected but not thrown"); } try { if (B.get(B.getRowDimension()-1,B.getColumnDimension()-1) != avals[B.getRowDimension()-1][B.getColumnDimension()-1] ) { errorCount = try_failure(errorCount,"get(int,int)... ","Matrix entry (i,j) not successfully retreived"); } else { try_success("get(int,int)... ",""); } } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { errorCount = try_failure(errorCount,"get(int,int)... ","Unexpected ArrayIndexOutOfBoundsException"); } SUB = new Matrix(subavals); try { M = B.getMatrix(ib,ie+B.getRowDimension()+1,jb,je); errorCount = try_failure(errorCount,"getMatrix(int,int,int,int)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { try { M = B.getMatrix(ib,ie,jb,je+B.getColumnDimension()+1); errorCount = try_failure(errorCount,"getMatrix(int,int,int,int)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e1 ) { try_success("getMatrix(int,int,int,int)... ArrayIndexOutOfBoundsException... ",""); } } catch ( java.lang.IllegalArgumentException e1 ) { errorCount = try_failure(errorCount,"getMatrix(int,int,int,int)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } try { M = B.getMatrix(ib,ie,jb,je); try { check(SUB,M); try_success("getMatrix(int,int,int,int)... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"getMatrix(int,int,int,int)... ","submatrix not successfully retreived"); } } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { errorCount = try_failure(errorCount,"getMatrix(int,int,int,int)... ","Unexpected ArrayIndexOutOfBoundsException"); } try { M = B.getMatrix(ib,ie,badcolumnindexset); errorCount = try_failure(errorCount,"getMatrix(int,int,int[])... ","ArrayIndexOutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { try { M = B.getMatrix(ib,ie+B.getRowDimension()+1,columnindexset); errorCount = try_failure(errorCount,"getMatrix(int,int,int[])... ","ArrayIndexOutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e1 ) { try_success("getMatrix(int,int,int[])... ArrayIndexOutOfBoundsException... ",""); } } catch ( java.lang.IllegalArgumentException e1 ) { errorCount = try_failure(errorCount,"getMatrix(int,int,int[])... ","ArrayIndexOutOfBoundsException expected but not thrown"); } try { M = B.getMatrix(ib,ie,columnindexset); try { check(SUB,M); try_success("getMatrix(int,int,int[])... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"getMatrix(int,int,int[])... ","submatrix not successfully retreived"); } } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { errorCount = try_failure(errorCount,"getMatrix(int,int,int[])... ","Unexpected ArrayIndexOutOfBoundsException"); } try { M = B.getMatrix(badrowindexset,jb,je); errorCount = try_failure(errorCount,"getMatrix(int[],int,int)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { try { M = B.getMatrix(rowindexset,jb,je+B.getColumnDimension()+1); errorCount = try_failure(errorCount,"getMatrix(int[],int,int)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e1 ) { try_success("getMatrix(int[],int,int)... ArrayIndexOutOfBoundsException... ",""); } } catch ( java.lang.IllegalArgumentException e1 ) { errorCount = try_failure(errorCount,"getMatrix(int[],int,int)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } try { M = B.getMatrix(rowindexset,jb,je); try { check(SUB,M); try_success("getMatrix(int[],int,int)... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"getMatrix(int[],int,int)... ","submatrix not successfully retreived"); } } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { errorCount = try_failure(errorCount,"getMatrix(int[],int,int)... ","Unexpected ArrayIndexOutOfBoundsException"); } try { M = B.getMatrix(badrowindexset,columnindexset); errorCount = try_failure(errorCount,"getMatrix(int[],int[])... ","ArrayIndexOutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { try { M = B.getMatrix(rowindexset,badcolumnindexset); errorCount = try_failure(errorCount,"getMatrix(int[],int[])... ","ArrayIndexOutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e1 ) { try_success("getMatrix(int[],int[])... ArrayIndexOutOfBoundsException... ",""); } } catch ( java.lang.IllegalArgumentException e1 ) { errorCount = try_failure(errorCount,"getMatrix(int[],int[])... ","ArrayIndexOutOfBoundsException expected but not thrown"); } try { M = B.getMatrix(rowindexset,columnindexset); try { check(SUB,M); try_success("getMatrix(int[],int[])... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"getMatrix(int[],int[])... ","submatrix not successfully retreived"); } } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { errorCount = try_failure(errorCount,"getMatrix(int[],int[])... ","Unexpected ArrayIndexOutOfBoundsException"); } /** Various set methods: **/ try { B.set(B.getRowDimension(),B.getColumnDimension()-1,0.); errorCount = try_failure(errorCount,"set(int,int,double)... ","OutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { try { B.set(B.getRowDimension()-1,B.getColumnDimension(),0.); errorCount = try_failure(errorCount,"set(int,int,double)... ","OutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e1 ) { try_success("set(int,int,double)... OutofBoundsException... ",""); } } catch ( java.lang.IllegalArgumentException e1 ) { errorCount = try_failure(errorCount,"set(int,int,double)... ","OutOfBoundsException expected but not thrown"); } try { B.set(ib,jb,0.); tmp = B.get(ib,jb); try { check(tmp,0.); try_success("set(int,int,double)... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"set(int,int,double)... ","Matrix element not successfully set"); } } catch ( java.lang.ArrayIndexOutOfBoundsException e1) { errorCount = try_failure(errorCount,"set(int,int,double)... ","Unexpected ArrayIndexOutOfBoundsException"); } M = new Matrix(2,3,0.); try { B.setMatrix(ib,ie+B.getRowDimension()+1,jb,je,M); errorCount = try_failure(errorCount,"setMatrix(int,int,int,int,Matrix)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { try { B.setMatrix(ib,ie,jb,je+B.getColumnDimension()+1,M); errorCount = try_failure(errorCount,"setMatrix(int,int,int,int,Matrix)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e1 ) { try_success("setMatrix(int,int,int,int,Matrix)... ArrayIndexOutOfBoundsException... ",""); } } catch ( java.lang.IllegalArgumentException e1 ) { errorCount = try_failure(errorCount,"setMatrix(int,int,int,int,Matrix)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } try { B.setMatrix(ib,ie,jb,je,M); try { check(M.minus(B.getMatrix(ib,ie,jb,je)),M); try_success("setMatrix(int,int,int,int,Matrix)... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"setMatrix(int,int,int,int,Matrix)... ","submatrix not successfully set"); } B.setMatrix(ib,ie,jb,je,SUB); } catch ( java.lang.ArrayIndexOutOfBoundsException e1 ) { errorCount = try_failure(errorCount,"setMatrix(int,int,int,int,Matrix)... ","Unexpected ArrayIndexOutOfBoundsException"); } try { B.setMatrix(ib,ie+B.getRowDimension()+1,columnindexset,M); errorCount = try_failure(errorCount,"setMatrix(int,int,int[],Matrix)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { try { B.setMatrix(ib,ie,badcolumnindexset,M); errorCount = try_failure(errorCount,"setMatrix(int,int,int[],Matrix)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e1 ) { try_success("setMatrix(int,int,int[],Matrix)... ArrayIndexOutOfBoundsException... ",""); } } catch ( java.lang.IllegalArgumentException e1 ) { errorCount = try_failure(errorCount,"setMatrix(int,int,int[],Matrix)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } try { B.setMatrix(ib,ie,columnindexset,M); try { check(M.minus(B.getMatrix(ib,ie,columnindexset)),M); try_success("setMatrix(int,int,int[],Matrix)... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"setMatrix(int,int,int[],Matrix)... ","submatrix not successfully set"); } B.setMatrix(ib,ie,jb,je,SUB); } catch ( java.lang.ArrayIndexOutOfBoundsException e1 ) { errorCount = try_failure(errorCount,"setMatrix(int,int,int[],Matrix)... ","Unexpected ArrayIndexOutOfBoundsException"); } try { B.setMatrix(rowindexset,jb,je+B.getColumnDimension()+1,M); errorCount = try_failure(errorCount,"setMatrix(int[],int,int,Matrix)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { try { B.setMatrix(badrowindexset,jb,je,M); errorCount = try_failure(errorCount,"setMatrix(int[],int,int,Matrix)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e1 ) { try_success("setMatrix(int[],int,int,Matrix)... ArrayIndexOutOfBoundsException... ",""); } } catch ( java.lang.IllegalArgumentException e1 ) { errorCount = try_failure(errorCount,"setMatrix(int[],int,int,Matrix)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } try { B.setMatrix(rowindexset,jb,je,M); try { check(M.minus(B.getMatrix(rowindexset,jb,je)),M); try_success("setMatrix(int[],int,int,Matrix)... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"setMatrix(int[],int,int,Matrix)... ","submatrix not successfully set"); } B.setMatrix(ib,ie,jb,je,SUB); } catch ( java.lang.ArrayIndexOutOfBoundsException e1 ) { errorCount = try_failure(errorCount,"setMatrix(int[],int,int,Matrix)... ","Unexpected ArrayIndexOutOfBoundsException"); } try { B.setMatrix(rowindexset,badcolumnindexset,M); errorCount = try_failure(errorCount,"setMatrix(int[],int[],Matrix)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { try { B.setMatrix(badrowindexset,columnindexset,M); errorCount = try_failure(errorCount,"setMatrix(int[],int[],Matrix)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } catch ( java.lang.ArrayIndexOutOfBoundsException e1 ) { try_success("setMatrix(int[],int[],Matrix)... ArrayIndexOutOfBoundsException... ",""); } } catch ( java.lang.IllegalArgumentException e1 ) { errorCount = try_failure(errorCount,"setMatrix(int[],int[],Matrix)... ","ArrayIndexOutOfBoundsException expected but not thrown"); } try { B.setMatrix(rowindexset,columnindexset,M); try { check(M.minus(B.getMatrix(rowindexset,columnindexset)),M); try_success("setMatrix(int[],int[],Matrix)... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"setMatrix(int[],int[],Matrix)... ","submatrix not successfully set"); } } catch ( java.lang.ArrayIndexOutOfBoundsException e1 ) { errorCount = try_failure(errorCount,"setMatrix(int[],int[],Matrix)... ","Unexpected ArrayIndexOutOfBoundsException"); } /** Array-like methods: minus minusEquals plus plusEquals arrayLeftDivide arrayLeftDivideEquals arrayRightDivide arrayRightDivideEquals arrayTimes arrayTimesEquals uminus **/ print("\nTesting array-like methods...\n"); S = new Matrix(columnwise,nonconformld); R = Matrix.random(A.getRowDimension(),A.getColumnDimension()); A = R; try { S = A.minus(S); errorCount = try_failure(errorCount,"minus conformance check... ","nonconformance not raised"); } catch ( IllegalArgumentException e ) { try_success("minus conformance check... ",""); } if (A.minus(R).norm1() != 0.) { errorCount = try_failure(errorCount,"minus... ","(difference of identical Matrices is nonzero,\nSubsequent use of minus should be suspect)"); } else { try_success("minus... ",""); } A = R.copy(); A.minusEquals(R); Z = new Matrix(A.getRowDimension(),A.getColumnDimension()); try { A.minusEquals(S); errorCount = try_failure(errorCount,"minusEquals conformance check... ","nonconformance not raised"); } catch ( IllegalArgumentException e ) { try_success("minusEquals conformance check... ",""); } if (A.minus(Z).norm1() != 0.) { errorCount = try_failure(errorCount,"minusEquals... ","(difference of identical Matrices is nonzero,\nSubsequent use of minus should be suspect)"); } else { try_success("minusEquals... ",""); } A = R.copy(); B = Matrix.random(A.getRowDimension(),A.getColumnDimension()); C = A.minus(B); try { S = A.plus(S); errorCount = try_failure(errorCount,"plus conformance check... ","nonconformance not raised"); } catch ( IllegalArgumentException e ) { try_success("plus conformance check... ",""); } try { check(C.plus(B),A); try_success("plus... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"plus... ","(C = A - B, but C + B != A)"); } C = A.minus(B); C.plusEquals(B); try { A.plusEquals(S); errorCount = try_failure(errorCount,"plusEquals conformance check... ","nonconformance not raised"); } catch ( IllegalArgumentException e ) { try_success("plusEquals conformance check... ",""); } try { check(C,A); try_success("plusEquals... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"plusEquals... ","(C = A - B, but C = C + B != A)"); } A = R.uminus(); try { check(A.plus(R),Z); try_success("uminus... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"uminus... ","(-A + A != zeros)"); } A = R.copy(); O = new Matrix(A.getRowDimension(),A.getColumnDimension(),1.0); C = A.arrayLeftDivide(R); try { S = A.arrayLeftDivide(S); errorCount = try_failure(errorCount,"arrayLeftDivide conformance check... ","nonconformance not raised"); } catch ( IllegalArgumentException e ) { try_success("arrayLeftDivide conformance check... ",""); } try { check(C,O); try_success("arrayLeftDivide... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"arrayLeftDivide... ","(M.\\M != ones)"); } try { A.arrayLeftDivideEquals(S); errorCount = try_failure(errorCount,"arrayLeftDivideEquals conformance check... ","nonconformance not raised"); } catch ( IllegalArgumentException e ) { try_success("arrayLeftDivideEquals conformance check... ",""); } A.arrayLeftDivideEquals(R); try { check(A,O); try_success("arrayLeftDivideEquals... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"arrayLeftDivideEquals... ","(M.\\M != ones)"); } A = R.copy(); try { A.arrayRightDivide(S); errorCount = try_failure(errorCount,"arrayRightDivide conformance check... ","nonconformance not raised"); } catch ( IllegalArgumentException e ) { try_success("arrayRightDivide conformance check... ",""); } C = A.arrayRightDivide(R); try { check(C,O); try_success("arrayRightDivide... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"arrayRightDivide... ","(M./M != ones)"); } try { A.arrayRightDivideEquals(S); errorCount = try_failure(errorCount,"arrayRightDivideEquals conformance check... ","nonconformance not raised"); } catch ( IllegalArgumentException e ) { try_success("arrayRightDivideEquals conformance check... ",""); } A.arrayRightDivideEquals(R); try { check(A,O); try_success("arrayRightDivideEquals... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"arrayRightDivideEquals... ","(M./M != ones)"); } A = R.copy(); B = Matrix.random(A.getRowDimension(),A.getColumnDimension()); try { S = A.arrayTimes(S); errorCount = try_failure(errorCount,"arrayTimes conformance check... ","nonconformance not raised"); } catch ( IllegalArgumentException e ) { try_success("arrayTimes conformance check... ",""); } C = A.arrayTimes(B); try { check(C.arrayRightDivideEquals(B),A); try_success("arrayTimes... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"arrayTimes... ","(A = R, C = A.*B, but C./B != A)"); } try { A.arrayTimesEquals(S); errorCount = try_failure(errorCount,"arrayTimesEquals conformance check... ","nonconformance not raised"); } catch ( IllegalArgumentException e ) { try_success("arrayTimesEquals conformance check... ",""); } A.arrayTimesEquals(B); try { check(A.arrayRightDivideEquals(B),R); try_success("arrayTimesEquals... ",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"arrayTimesEquals... ","(A = R, A = A.*B, but A./B != R)"); } /** I/O methods: read print serializable: writeObject readObject **/ print("\nTesting I/O methods...\n"); try { DecimalFormat fmt = new DecimalFormat("0.0000E00"); fmt.setDecimalFormatSymbols(new DecimalFormatSymbols(Locale.US)); PrintWriter FILE = new PrintWriter(new FileOutputStream("JamaTestMatrix.out")); A.print(FILE,fmt,10); FILE.close(); R = Matrix.read(new BufferedReader(new FileReader("JamaTestMatrix.out"))); if (A.minus(R).norm1() < .001 ) { try_success("print()/read()...",""); } else { errorCount = try_failure(errorCount,"print()/read()...","Matrix read from file does not match Matrix printed to file"); } } catch ( java.io.IOException ioe ) { warningCount = try_warning(warningCount,"print()/read()...","unexpected I/O error, unable to run print/read test; check write permission in current directory and retry"); } catch(Exception e) { try { e.printStackTrace(System.out); warningCount = try_warning(warningCount,"print()/read()...","Formatting error... will try JDK1.1 reformulation..."); DecimalFormat fmt = new DecimalFormat("0.0000"); PrintWriter FILE = new PrintWriter(new FileOutputStream("JamaTestMatrix.out")); A.print(FILE,fmt,10); FILE.close(); R = Matrix.read(new BufferedReader(new FileReader("JamaTestMatrix.out"))); if (A.minus(R).norm1() < .001 ) { try_success("print()/read()...",""); } else { errorCount = try_failure(errorCount,"print()/read() (2nd attempt) ...","Matrix read from file does not match Matrix printed to file"); } } catch ( java.io.IOException ioe ) { warningCount = try_warning(warningCount,"print()/read()...","unexpected I/O error, unable to run print/read test; check write permission in current directory and retry"); } } R = Matrix.random(A.getRowDimension(),A.getColumnDimension()); String tmpname = "TMPMATRIX.serial"; try { ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream(tmpname)); out.writeObject(R); ObjectInputStream sin = new ObjectInputStream(new FileInputStream(tmpname)); A = (Matrix) sin.readObject(); try { check(A,R); try_success("writeObject(Matrix)/readObject(Matrix)...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"writeObject(Matrix)/readObject(Matrix)...","Matrix not serialized correctly"); } } catch ( java.io.IOException ioe ) { warningCount = try_warning(warningCount,"writeObject()/readObject()...","unexpected I/O error, unable to run serialization test; check write permission in current directory and retry"); } catch(Exception e) { errorCount = try_failure(errorCount,"writeObject(Matrix)/readObject(Matrix)...","unexpected error in serialization test"); } /** LA methods: transpose times cond rank det trace norm1 norm2 normF normInf solve solveTranspose inverse chol eig lu qr svd **/ print("\nTesting linear algebra methods...\n"); A = new Matrix(columnwise,3); T = new Matrix(tvals); T = A.transpose(); try { check(A.transpose(),T); try_success("transpose...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"transpose()...","transpose unsuccessful"); } A.transpose(); try { check(A.norm1(),columnsummax); try_success("norm1...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"norm1()...","incorrect norm calculation"); } try { check(A.normInf(),rowsummax); try_success("normInf()...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"normInf()...","incorrect norm calculation"); } try { check(A.normF(),Math.sqrt(sumofsquares)); try_success("normF...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"normF()...","incorrect norm calculation"); } try { check(A.trace(),sumofdiagonals); try_success("trace()...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"trace()...","incorrect trace calculation"); } try { check(A.getMatrix(0,A.getRowDimension()-1,0,A.getRowDimension()-1).det(),0.); try_success("det()...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"det()...","incorrect determinant calculation"); } SQ = new Matrix(square); try { check(A.times(A.transpose()),SQ); try_success("times(Matrix)...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"times(Matrix)...","incorrect Matrix-Matrix product calculation"); } try { check(A.times(0.),Z); try_success("times(double)...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"times(double)...","incorrect Matrix-scalar product calculation"); } A = new Matrix(columnwise,4); QRDecomposition QR = A.qr(); R = QR.getR(); try { check(A,QR.getQ().times(R)); try_success("QRDecomposition...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"QRDecomposition...","incorrect QR decomposition calculation"); } SingularValueDecomposition SVD = A.svd(); try { check(A,SVD.getU().times(SVD.getS().times(SVD.getV().transpose()))); try_success("SingularValueDecomposition...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"SingularValueDecomposition...","incorrect singular value decomposition calculation"); } DEF = new Matrix(rankdef); try { check(DEF.rank(),Math.min(DEF.getRowDimension(),DEF.getColumnDimension())-1); try_success("rank()...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"rank()...","incorrect rank calculation"); } B = new Matrix(condmat); SVD = B.svd(); double [] singularvalues = SVD.getSingularValues(); try { check(B.cond(),singularvalues[0]/singularvalues[Math.min(B.getRowDimension(),B.getColumnDimension())-1]); try_success("cond()...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"cond()...","incorrect condition number calculation"); } int n = A.getColumnDimension(); A = A.getMatrix(0,n-1,0,n-1); A.set(0,0,0.); LUDecomposition LU = A.lu(); try { check(A.getMatrix(LU.getPivot(),0,n-1),LU.getL().times(LU.getU())); try_success("LUDecomposition...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"LUDecomposition...","incorrect LU decomposition calculation"); } X = A.inverse(); try { check(A.times(X),Matrix.identity(3,3)); try_success("inverse()...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"inverse()...","incorrect inverse calculation"); } O = new Matrix(SUB.getRowDimension(),1,1.0); SOL = new Matrix(sqSolution); SQ = SUB.getMatrix(0,SUB.getRowDimension()-1,0,SUB.getRowDimension()-1); try { check(SQ.solve(SOL),O); try_success("solve()...",""); } catch ( java.lang.IllegalArgumentException e1 ) { errorCount = try_failure(errorCount,"solve()...",e1.getMessage()); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"solve()...",e.getMessage()); } A = new Matrix(pvals); CholeskyDecomposition Chol = A.chol(); Matrix L = Chol.getL(); try { check(A,L.times(L.transpose())); try_success("CholeskyDecomposition...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"CholeskyDecomposition...","incorrect Cholesky decomposition calculation"); } X = Chol.solve(Matrix.identity(3,3)); try { check(A.times(X),Matrix.identity(3,3)); try_success("CholeskyDecomposition solve()...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"CholeskyDecomposition solve()...","incorrect Choleskydecomposition solve calculation"); } EigenvalueDecomposition Eig = A.eig(); Matrix D = Eig.getD(); Matrix V = Eig.getV(); try { check(A.times(V),V.times(D)); try_success("EigenvalueDecomposition (symmetric)...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"EigenvalueDecomposition (symmetric)...","incorrect symmetric Eigenvalue decomposition calculation"); } A = new Matrix(evals); Eig = A.eig(); D = Eig.getD(); V = Eig.getV(); try { check(A.times(V),V.times(D)); try_success("EigenvalueDecomposition (nonsymmetric)...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"EigenvalueDecomposition (nonsymmetric)...","incorrect nonsymmetric Eigenvalue decomposition calculation"); } try { print("\nTesting Eigenvalue; If this hangs, we've failed\n"); Matrix bA = new Matrix(badeigs); EigenvalueDecomposition bEig = bA.eig(); try_success("EigenvalueDecomposition (hang)...",""); } catch ( java.lang.RuntimeException e ) { errorCount = try_failure(errorCount,"EigenvalueDecomposition (hang)...", "incorrect termination"); } print("\nTestMatrix completed.\n"); print("Total errors reported: " + Integer.toString(errorCount) + "\n"); print("Total warnings reported: " + Integer.toString(warningCount) + "\n"); } /** private utility routines **/ /** Check magnitude of difference of scalars. **/ private static void check(double x, double y) { double eps = Math.pow(2.0,-52.0); if (x == 0 & Math.abs(y) < 10*eps) return; if (y == 0 & Math.abs(x) < 10*eps) return; if (Math.abs(x-y) > 10*eps*Math.max(Math.abs(x),Math.abs(y))) { throw new RuntimeException("The difference x-y is too large: x = " + Double.toString(x) + " y = " + Double.toString(y)); } } /** Check norm of difference of "vectors". **/ private static void check(double[] x, double[] y) { if (x.length == y.length ) { for (int i=0;i 1000*eps*Math.max(X.norm1(),Y.norm1())) { throw new RuntimeException("The norm of (X-Y) is too large: " + Double.toString(X.minus(Y).norm1())); } } /** Shorten spelling of print. **/ private static void print (String s) { System.out.print(s); } /** Print appropriate messages for successful outcome try **/ private static void try_success (String s,String e) { print("> " + s + "success\n"); if ( e != "" ) { print("> Message: " + e + "\n"); } } /** Print appropriate messages for unsuccessful outcome try **/ private static int try_failure (int count, String s,String e) { print("> " + s + "*** failure ***\n> Message: " + e + "\n"); return ++count; } /** Print appropriate messages for unsuccessful outcome try **/ private static int try_warning (int count, String s,String e) { print("> " + s + "*** warning ***\n> Message: " + e + "\n"); return ++count; } /** Print a row vector. **/ private static void print(double[] x, int w, int d) { // Use format Fw.d for all elements. System.out.print("\n"); new Matrix(x,1).print(w,d); print("\n"); } } jama-1.0.3/src/Jama/time/0000755000175000017500000000000007155547265014370 5ustar ebourgebourgjama-1.0.3/src/Jama/SingularValueDecomposition.java0000600000175000017500000003645312047301441021572 0ustar ebourgebourgpackage Jama; import Jama.util.*; /** Singular Value Decomposition.

For an m-by-n matrix A with m >= n, the singular value decomposition is an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and an n-by-n orthogonal matrix V so that A = U*S*V'.

The singular values, sigma[k] = S[k][k], are ordered so that sigma[0] >= sigma[1] >= ... >= sigma[n-1].

The singular value decompostion always exists, so the constructor will never fail. The matrix condition number and the effective numerical rank can be computed from this decomposition. */ public class SingularValueDecomposition implements java.io.Serializable { /* ------------------------ Class variables * ------------------------ */ /** Arrays for internal storage of U and V. @serial internal storage of U. @serial internal storage of V. */ private double[][] U, V; /** Array for internal storage of singular values. @serial internal storage of singular values. */ private double[] s; /** Row and column dimensions. @serial row dimension. @serial column dimension. */ private int m, n; /* ------------------------ Constructor * ------------------------ */ /** Construct the singular value decomposition Structure to access U, S and V. @param Arg Rectangular matrix */ public SingularValueDecomposition (Matrix Arg) { // Derived from LINPACK code. // Initialize. double[][] A = Arg.getArrayCopy(); m = Arg.getRowDimension(); n = Arg.getColumnDimension(); /* Apparently the failing cases are only a proper subset of (m= n"); } */ int nu = Math.min(m,n); s = new double [Math.min(m+1,n)]; U = new double [m][nu]; V = new double [n][n]; double[] e = new double [n]; double[] work = new double [m]; boolean wantu = true; boolean wantv = true; // Reduce A to bidiagonal form, storing the diagonal elements // in s and the super-diagonal elements in e. int nct = Math.min(m-1,n); int nrt = Math.max(0,Math.min(n-2,m)); for (int k = 0; k < Math.max(nct,nrt); k++) { if (k < nct) { // Compute the transformation for the k-th column and // place the k-th diagonal in s[k]. // Compute 2-norm of k-th column without under/overflow. s[k] = 0; for (int i = k; i < m; i++) { s[k] = Maths.hypot(s[k],A[i][k]); } if (s[k] != 0.0) { if (A[k][k] < 0.0) { s[k] = -s[k]; } for (int i = k; i < m; i++) { A[i][k] /= s[k]; } A[k][k] += 1.0; } s[k] = -s[k]; } for (int j = k+1; j < n; j++) { if ((k < nct) & (s[k] != 0.0)) { // Apply the transformation. double t = 0; for (int i = k; i < m; i++) { t += A[i][k]*A[i][j]; } t = -t/A[k][k]; for (int i = k; i < m; i++) { A[i][j] += t*A[i][k]; } } // Place the k-th row of A into e for the // subsequent calculation of the row transformation. e[j] = A[k][j]; } if (wantu & (k < nct)) { // Place the transformation in U for subsequent back // multiplication. for (int i = k; i < m; i++) { U[i][k] = A[i][k]; } } if (k < nrt) { // Compute the k-th row transformation and place the // k-th super-diagonal in e[k]. // Compute 2-norm without under/overflow. e[k] = 0; for (int i = k+1; i < n; i++) { e[k] = Maths.hypot(e[k],e[i]); } if (e[k] != 0.0) { if (e[k+1] < 0.0) { e[k] = -e[k]; } for (int i = k+1; i < n; i++) { e[i] /= e[k]; } e[k+1] += 1.0; } e[k] = -e[k]; if ((k+1 < m) & (e[k] != 0.0)) { // Apply the transformation. for (int i = k+1; i < m; i++) { work[i] = 0.0; } for (int j = k+1; j < n; j++) { for (int i = k+1; i < m; i++) { work[i] += e[j]*A[i][j]; } } for (int j = k+1; j < n; j++) { double t = -e[j]/e[k+1]; for (int i = k+1; i < m; i++) { A[i][j] += t*work[i]; } } } if (wantv) { // Place the transformation in V for subsequent // back multiplication. for (int i = k+1; i < n; i++) { V[i][k] = e[i]; } } } } // Set up the final bidiagonal matrix or order p. int p = Math.min(n,m+1); if (nct < n) { s[nct] = A[nct][nct]; } if (m < p) { s[p-1] = 0.0; } if (nrt+1 < p) { e[nrt] = A[nrt][p-1]; } e[p-1] = 0.0; // If required, generate U. if (wantu) { for (int j = nct; j < nu; j++) { for (int i = 0; i < m; i++) { U[i][j] = 0.0; } U[j][j] = 1.0; } for (int k = nct-1; k >= 0; k--) { if (s[k] != 0.0) { for (int j = k+1; j < nu; j++) { double t = 0; for (int i = k; i < m; i++) { t += U[i][k]*U[i][j]; } t = -t/U[k][k]; for (int i = k; i < m; i++) { U[i][j] += t*U[i][k]; } } for (int i = k; i < m; i++ ) { U[i][k] = -U[i][k]; } U[k][k] = 1.0 + U[k][k]; for (int i = 0; i < k-1; i++) { U[i][k] = 0.0; } } else { for (int i = 0; i < m; i++) { U[i][k] = 0.0; } U[k][k] = 1.0; } } } // If required, generate V. if (wantv) { for (int k = n-1; k >= 0; k--) { if ((k < nrt) & (e[k] != 0.0)) { for (int j = k+1; j < nu; j++) { double t = 0; for (int i = k+1; i < n; i++) { t += V[i][k]*V[i][j]; } t = -t/V[k+1][k]; for (int i = k+1; i < n; i++) { V[i][j] += t*V[i][k]; } } } for (int i = 0; i < n; i++) { V[i][k] = 0.0; } V[k][k] = 1.0; } } // Main iteration loop for the singular values. int pp = p-1; int iter = 0; double eps = Math.pow(2.0,-52.0); double tiny = Math.pow(2.0,-966.0); while (p > 0) { int k,kase; // Here is where a test for too many iterations would go. // This section of the program inspects for // negligible elements in the s and e arrays. On // completion the variables kase and k are set as follows. // kase = 1 if s(p) and e[k-1] are negligible and k

= -1; k--) { if (k == -1) { break; } if (Math.abs(e[k]) <= tiny + eps*(Math.abs(s[k]) + Math.abs(s[k+1]))) { e[k] = 0.0; break; } } if (k == p-2) { kase = 4; } else { int ks; for (ks = p-1; ks >= k; ks--) { if (ks == k) { break; } double t = (ks != p ? Math.abs(e[ks]) : 0.) + (ks != k+1 ? Math.abs(e[ks-1]) : 0.); if (Math.abs(s[ks]) <= tiny + eps*t) { s[ks] = 0.0; break; } } if (ks == k) { kase = 3; } else if (ks == p-1) { kase = 1; } else { kase = 2; k = ks; } } k++; // Perform the task indicated by kase. switch (kase) { // Deflate negligible s(p). case 1: { double f = e[p-2]; e[p-2] = 0.0; for (int j = p-2; j >= k; j--) { double t = Maths.hypot(s[j],f); double cs = s[j]/t; double sn = f/t; s[j] = t; if (j != k) { f = -sn*e[j-1]; e[j-1] = cs*e[j-1]; } if (wantv) { for (int i = 0; i < n; i++) { t = cs*V[i][j] + sn*V[i][p-1]; V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1]; V[i][j] = t; } } } } break; // Split at negligible s(k). case 2: { double f = e[k-1]; e[k-1] = 0.0; for (int j = k; j < p; j++) { double t = Maths.hypot(s[j],f); double cs = s[j]/t; double sn = f/t; s[j] = t; f = -sn*e[j]; e[j] = cs*e[j]; if (wantu) { for (int i = 0; i < m; i++) { t = cs*U[i][j] + sn*U[i][k-1]; U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1]; U[i][j] = t; } } } } break; // Perform one qr step. case 3: { // Calculate the shift. double scale = Math.max(Math.max(Math.max(Math.max( Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])), Math.abs(s[k])),Math.abs(e[k])); double sp = s[p-1]/scale; double spm1 = s[p-2]/scale; double epm1 = e[p-2]/scale; double sk = s[k]/scale; double ek = e[k]/scale; double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0; double c = (sp*epm1)*(sp*epm1); double shift = 0.0; if ((b != 0.0) | (c != 0.0)) { shift = Math.sqrt(b*b + c); if (b < 0.0) { shift = -shift; } shift = c/(b + shift); } double f = (sk + sp)*(sk - sp) + shift; double g = sk*ek; // Chase zeros. for (int j = k; j < p-1; j++) { double t = Maths.hypot(f,g); double cs = f/t; double sn = g/t; if (j != k) { e[j-1] = t; } f = cs*s[j] + sn*e[j]; e[j] = cs*e[j] - sn*s[j]; g = sn*s[j+1]; s[j+1] = cs*s[j+1]; if (wantv) { for (int i = 0; i < n; i++) { t = cs*V[i][j] + sn*V[i][j+1]; V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1]; V[i][j] = t; } } t = Maths.hypot(f,g); cs = f/t; sn = g/t; s[j] = t; f = cs*e[j] + sn*s[j+1]; s[j+1] = -sn*e[j] + cs*s[j+1]; g = sn*e[j+1]; e[j+1] = cs*e[j+1]; if (wantu && (j < m-1)) { for (int i = 0; i < m; i++) { t = cs*U[i][j] + sn*U[i][j+1]; U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1]; U[i][j] = t; } } } e[p-2] = f; iter = iter + 1; } break; // Convergence. case 4: { // Make the singular values positive. if (s[k] <= 0.0) { s[k] = (s[k] < 0.0 ? -s[k] : 0.0); if (wantv) { for (int i = 0; i <= pp; i++) { V[i][k] = -V[i][k]; } } } // Order the singular values. while (k < pp) { if (s[k] >= s[k+1]) { break; } double t = s[k]; s[k] = s[k+1]; s[k+1] = t; if (wantv && (k < n-1)) { for (int i = 0; i < n; i++) { t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t; } } if (wantu && (k < m-1)) { for (int i = 0; i < m; i++) { t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t; } } k++; } iter = 0; p--; } break; } } } /* ------------------------ Public Methods * ------------------------ */ /** Return the left singular vectors @return U */ public Matrix getU () { return new Matrix(U,m,Math.min(m+1,n)); } /** Return the right singular vectors @return V */ public Matrix getV () { return new Matrix(V,n,n); } /** Return the one-dimensional array of singular values @return diagonal of S. */ public double[] getSingularValues () { return s; } /** Return the diagonal matrix of singular values @return S */ public Matrix getS () { Matrix X = new Matrix(n,n); double[][] S = X.getArray(); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { S[i][j] = 0.0; } S[i][i] = this.s[i]; } return X; } /** Two norm @return max(S) */ public double norm2 () { return s[0]; } /** Two norm condition number @return max(S)/min(S) */ public double cond () { return s[0]/s[Math.min(m,n)-1]; } /** Effective numerical matrix rank @return Number of nonnegligible singular values. */ public int rank () { double eps = Math.pow(2.0,-52.0); double tol = Math.max(m,n)*s[0]*eps; int r = 0; for (int i = 0; i < s.length; i++) { if (s[i] > tol) { r++; } } return r; } private static final long serialVersionUID = 1; } jama-1.0.3/src/Jama/examples/0000755000175000017500000000000012201202461015216 5ustar ebourgebourgjama-1.0.3/src/Jama/examples/MagicSquareExample.java0000644000175000017500000001167306560231612021621 0ustar ebourgebourgpackage Jama.examples; import Jama.*; import java.util.Date; /** Example of use of Matrix Class, featuring magic squares. **/ public class MagicSquareExample { /** Generate magic square test matrix. **/ public static Matrix magic (int n) { double[][] M = new double[n][n]; // Odd order if ((n % 2) == 1) { int a = (n+1)/2; int b = (n+1); for (int j = 0; j < n; j++) { for (int i = 0; i < n; i++) { M[i][j] = n*((i+j+a) % n) + ((i+2*j+b) % n) + 1; } } // Doubly Even Order } else if ((n % 4) == 0) { for (int j = 0; j < n; j++) { for (int i = 0; i < n; i++) { if (((i+1)/2)%2 == ((j+1)/2)%2) { M[i][j] = n*n-n*i-j; } else { M[i][j] = n*i+j+1; } } } // Singly Even Order } else { int p = n/2; int k = (n-2)/4; Matrix A = magic(p); for (int j = 0; j < p; j++) { for (int i = 0; i < p; i++) { double aij = A.get(i,j); M[i][j] = aij; M[i][j+p] = aij + 2*p*p; M[i+p][j] = aij + 3*p*p; M[i+p][j+p] = aij + p*p; } } for (int i = 0; i < p; i++) { for (int j = 0; j < k; j++) { double t = M[i][j]; M[i][j] = M[i+p][j]; M[i+p][j] = t; } for (int j = n-k+1; j < n; j++) { double t = M[i][j]; M[i][j] = M[i+p][j]; M[i+p][j] = t; } } double t = M[k][0]; M[k][0] = M[k+p][0]; M[k+p][0] = t; t = M[k][k]; M[k][k] = M[k+p][k]; M[k+p][k] = t; } return new Matrix(M); } /** Shorten spelling of print. **/ private static void print (String s) { System.out.print(s); } /** Format double with Fw.d. **/ public static String fixedWidthDoubletoString (double x, int w, int d) { java.text.DecimalFormat fmt = new java.text.DecimalFormat(); fmt.setMaximumFractionDigits(d); fmt.setMinimumFractionDigits(d); fmt.setGroupingUsed(false); String s = fmt.format(x); while (s.length() < w) { s = " " + s; } return s; } /** Format integer with Iw. **/ public static String fixedWidthIntegertoString (int n, int w) { String s = Integer.toString(n); while (s.length() < w) { s = " " + s; } return s; } public static void main (String argv[]) { /* | Tests LU, QR, SVD and symmetric Eig decompositions. | | n = order of magic square. | trace = diagonal sum, should be the magic sum, (n^3 + n)/2. | max_eig = maximum eigenvalue of (A + A')/2, should equal trace. | rank = linear algebraic rank, | should equal n if n is odd, be less than n if n is even. | cond = L_2 condition number, ratio of singular values. | lu_res = test of LU factorization, norm1(L*U-A(p,:))/(n*eps). | qr_res = test of QR factorization, norm1(Q*R-A)/(n*eps). */ print("\n Test of Matrix Class, using magic squares.\n"); print(" See MagicSquareExample.main() for an explanation.\n"); print("\n n trace max_eig rank cond lu_res qr_res\n\n"); Date start_time = new Date(); double eps = Math.pow(2.0,-52.0); for (int n = 3; n <= 32; n++) { print(fixedWidthIntegertoString(n,7)); Matrix M = magic(n); int t = (int) M.trace(); print(fixedWidthIntegertoString(t,10)); EigenvalueDecomposition E = new EigenvalueDecomposition(M.plus(M.transpose()).times(0.5)); double[] d = E.getRealEigenvalues(); print(fixedWidthDoubletoString(d[n-1],14,3)); int r = M.rank(); print(fixedWidthIntegertoString(r,7)); double c = M.cond(); print(c < 1/eps ? fixedWidthDoubletoString(c,12,3) : " Inf"); LUDecomposition LU = new LUDecomposition(M); Matrix L = LU.getL(); Matrix U = LU.getU(); int[] p = LU.getPivot(); Matrix R = L.times(U).minus(M.getMatrix(p,0,n-1)); double res = R.norm1()/(n*eps); print(fixedWidthDoubletoString(res,12,3)); QRDecomposition QR = new QRDecomposition(M); Matrix Q = QR.getQ(); R = QR.getR(); R = Q.times(R).minus(M); res = R.norm1()/(n*eps); print(fixedWidthDoubletoString(res,12,3)); print("\n"); } Date stop_time = new Date(); double etime = (stop_time.getTime() - start_time.getTime())/1000.; print("\nElapsed Time = " + fixedWidthDoubletoString(etime,12,3) + " seconds\n"); print("Adios\n"); } } jama-1.0.3/src/Jama/EigenvalueDecomposition.java0000644000175000017500000006427112047301052021102 0ustar ebourgebourgpackage Jama; import Jama.util.*; /** Eigenvalues and eigenvectors of a real matrix.

If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. I.e. A = V.times(D.times(V.transpose())) and V.times(V.transpose()) equals the identity matrix.

If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent the eigenvectors in the sense that A*V = V*D, i.e. A.times(V) equals V.times(D). The matrix V may be badly conditioned, or even singular, so the validity of the equation A = V*D*inverse(V) depends upon V.cond(). **/ public class EigenvalueDecomposition implements java.io.Serializable { /* ------------------------ Class variables * ------------------------ */ /** Row and column dimension (square matrix). @serial matrix dimension. */ private int n; /** Symmetry flag. @serial internal symmetry flag. */ private boolean issymmetric; /** Arrays for internal storage of eigenvalues. @serial internal storage of eigenvalues. */ private double[] d, e; /** Array for internal storage of eigenvectors. @serial internal storage of eigenvectors. */ private double[][] V; /** Array for internal storage of nonsymmetric Hessenberg form. @serial internal storage of nonsymmetric Hessenberg form. */ private double[][] H; /** Working storage for nonsymmetric algorithm. @serial working storage for nonsymmetric algorithm. */ private double[] ort; /* ------------------------ Private Methods * ------------------------ */ // Symmetric Householder reduction to tridiagonal form. private void tred2 () { // This is derived from the Algol procedures tred2 by // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. for (int j = 0; j < n; j++) { d[j] = V[n-1][j]; } // Householder reduction to tridiagonal form. for (int i = n-1; i > 0; i--) { // Scale to avoid under/overflow. double scale = 0.0; double h = 0.0; for (int k = 0; k < i; k++) { scale = scale + Math.abs(d[k]); } if (scale == 0.0) { e[i] = d[i-1]; for (int j = 0; j < i; j++) { d[j] = V[i-1][j]; V[i][j] = 0.0; V[j][i] = 0.0; } } else { // Generate Householder vector. for (int k = 0; k < i; k++) { d[k] /= scale; h += d[k] * d[k]; } double f = d[i-1]; double g = Math.sqrt(h); if (f > 0) { g = -g; } e[i] = scale * g; h = h - f * g; d[i-1] = f - g; for (int j = 0; j < i; j++) { e[j] = 0.0; } // Apply similarity transformation to remaining columns. for (int j = 0; j < i; j++) { f = d[j]; V[j][i] = f; g = e[j] + V[j][j] * f; for (int k = j+1; k <= i-1; k++) { g += V[k][j] * d[k]; e[k] += V[k][j] * f; } e[j] = g; } f = 0.0; for (int j = 0; j < i; j++) { e[j] /= h; f += e[j] * d[j]; } double hh = f / (h + h); for (int j = 0; j < i; j++) { e[j] -= hh * d[j]; } for (int j = 0; j < i; j++) { f = d[j]; g = e[j]; for (int k = j; k <= i-1; k++) { V[k][j] -= (f * e[k] + g * d[k]); } d[j] = V[i-1][j]; V[i][j] = 0.0; } } d[i] = h; } // Accumulate transformations. for (int i = 0; i < n-1; i++) { V[n-1][i] = V[i][i]; V[i][i] = 1.0; double h = d[i+1]; if (h != 0.0) { for (int k = 0; k <= i; k++) { d[k] = V[k][i+1] / h; } for (int j = 0; j <= i; j++) { double g = 0.0; for (int k = 0; k <= i; k++) { g += V[k][i+1] * V[k][j]; } for (int k = 0; k <= i; k++) { V[k][j] -= g * d[k]; } } } for (int k = 0; k <= i; k++) { V[k][i+1] = 0.0; } } for (int j = 0; j < n; j++) { d[j] = V[n-1][j]; V[n-1][j] = 0.0; } V[n-1][n-1] = 1.0; e[0] = 0.0; } // Symmetric tridiagonal QL algorithm. private void tql2 () { // This is derived from the Algol procedures tql2, by // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. for (int i = 1; i < n; i++) { e[i-1] = e[i]; } e[n-1] = 0.0; double f = 0.0; double tst1 = 0.0; double eps = Math.pow(2.0,-52.0); for (int l = 0; l < n; l++) { // Find small subdiagonal element tst1 = Math.max(tst1,Math.abs(d[l]) + Math.abs(e[l])); int m = l; while (m < n) { if (Math.abs(e[m]) <= eps*tst1) { break; } m++; } // If m == l, d[l] is an eigenvalue, // otherwise, iterate. if (m > l) { int iter = 0; do { iter = iter + 1; // (Could check iteration count here.) // Compute implicit shift double g = d[l]; double p = (d[l+1] - g) / (2.0 * e[l]); double r = Maths.hypot(p,1.0); if (p < 0) { r = -r; } d[l] = e[l] / (p + r); d[l+1] = e[l] * (p + r); double dl1 = d[l+1]; double h = g - d[l]; for (int i = l+2; i < n; i++) { d[i] -= h; } f = f + h; // Implicit QL transformation. p = d[m]; double c = 1.0; double c2 = c; double c3 = c; double el1 = e[l+1]; double s = 0.0; double s2 = 0.0; for (int i = m-1; i >= l; i--) { c3 = c2; c2 = c; s2 = s; g = c * e[i]; h = c * p; r = Maths.hypot(p,e[i]); e[i+1] = s * r; s = e[i] / r; c = p / r; p = c * d[i] - s * g; d[i+1] = h + s * (c * g + s * d[i]); // Accumulate transformation. for (int k = 0; k < n; k++) { h = V[k][i+1]; V[k][i+1] = s * V[k][i] + c * h; V[k][i] = c * V[k][i] - s * h; } } p = -s * s2 * c3 * el1 * e[l] / dl1; e[l] = s * p; d[l] = c * p; // Check for convergence. } while (Math.abs(e[l]) > eps*tst1); } d[l] = d[l] + f; e[l] = 0.0; } // Sort eigenvalues and corresponding vectors. for (int i = 0; i < n-1; i++) { int k = i; double p = d[i]; for (int j = i+1; j < n; j++) { if (d[j] < p) { k = j; p = d[j]; } } if (k != i) { d[k] = d[i]; d[i] = p; for (int j = 0; j < n; j++) { p = V[j][i]; V[j][i] = V[j][k]; V[j][k] = p; } } } } // Nonsymmetric reduction to Hessenberg form. private void orthes () { // This is derived from the Algol procedures orthes and ortran, // by Martin and Wilkinson, Handbook for Auto. Comp., // Vol.ii-Linear Algebra, and the corresponding // Fortran subroutines in EISPACK. int low = 0; int high = n-1; for (int m = low+1; m <= high-1; m++) { // Scale column. double scale = 0.0; for (int i = m; i <= high; i++) { scale = scale + Math.abs(H[i][m-1]); } if (scale != 0.0) { // Compute Householder transformation. double h = 0.0; for (int i = high; i >= m; i--) { ort[i] = H[i][m-1]/scale; h += ort[i] * ort[i]; } double g = Math.sqrt(h); if (ort[m] > 0) { g = -g; } h = h - ort[m] * g; ort[m] = ort[m] - g; // Apply Householder similarity transformation // H = (I-u*u'/h)*H*(I-u*u')/h) for (int j = m; j < n; j++) { double f = 0.0; for (int i = high; i >= m; i--) { f += ort[i]*H[i][j]; } f = f/h; for (int i = m; i <= high; i++) { H[i][j] -= f*ort[i]; } } for (int i = 0; i <= high; i++) { double f = 0.0; for (int j = high; j >= m; j--) { f += ort[j]*H[i][j]; } f = f/h; for (int j = m; j <= high; j++) { H[i][j] -= f*ort[j]; } } ort[m] = scale*ort[m]; H[m][m-1] = scale*g; } } // Accumulate transformations (Algol's ortran). for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { V[i][j] = (i == j ? 1.0 : 0.0); } } for (int m = high-1; m >= low+1; m--) { if (H[m][m-1] != 0.0) { for (int i = m+1; i <= high; i++) { ort[i] = H[i][m-1]; } for (int j = m; j <= high; j++) { double g = 0.0; for (int i = m; i <= high; i++) { g += ort[i] * V[i][j]; } // Double division avoids possible underflow g = (g / ort[m]) / H[m][m-1]; for (int i = m; i <= high; i++) { V[i][j] += g * ort[i]; } } } } } // Complex scalar division. private transient double cdivr, cdivi; private void cdiv(double xr, double xi, double yr, double yi) { double r,d; if (Math.abs(yr) > Math.abs(yi)) { r = yi/yr; d = yr + r*yi; cdivr = (xr + r*xi)/d; cdivi = (xi - r*xr)/d; } else { r = yr/yi; d = yi + r*yr; cdivr = (r*xr + xi)/d; cdivi = (r*xi - xr)/d; } } // Nonsymmetric reduction from Hessenberg to real Schur form. private void hqr2 () { // This is derived from the Algol procedure hqr2, // by Martin and Wilkinson, Handbook for Auto. Comp., // Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. // Initialize int nn = this.n; int n = nn-1; int low = 0; int high = nn-1; double eps = Math.pow(2.0,-52.0); double exshift = 0.0; double p=0,q=0,r=0,s=0,z=0,t,w,x,y; // Store roots isolated by balanc and compute matrix norm double norm = 0.0; for (int i = 0; i < nn; i++) { if (i < low | i > high) { d[i] = H[i][i]; e[i] = 0.0; } for (int j = Math.max(i-1,0); j < nn; j++) { norm = norm + Math.abs(H[i][j]); } } // Outer loop over eigenvalue index int iter = 0; while (n >= low) { // Look for single small sub-diagonal element int l = n; while (l > low) { s = Math.abs(H[l-1][l-1]) + Math.abs(H[l][l]); if (s == 0.0) { s = norm; } if (Math.abs(H[l][l-1]) < eps * s) { break; } l--; } // Check for convergence // One root found if (l == n) { H[n][n] = H[n][n] + exshift; d[n] = H[n][n]; e[n] = 0.0; n--; iter = 0; // Two roots found } else if (l == n-1) { w = H[n][n-1] * H[n-1][n]; p = (H[n-1][n-1] - H[n][n]) / 2.0; q = p * p + w; z = Math.sqrt(Math.abs(q)); H[n][n] = H[n][n] + exshift; H[n-1][n-1] = H[n-1][n-1] + exshift; x = H[n][n]; // Real pair if (q >= 0) { if (p >= 0) { z = p + z; } else { z = p - z; } d[n-1] = x + z; d[n] = d[n-1]; if (z != 0.0) { d[n] = x - w / z; } e[n-1] = 0.0; e[n] = 0.0; x = H[n][n-1]; s = Math.abs(x) + Math.abs(z); p = x / s; q = z / s; r = Math.sqrt(p * p+q * q); p = p / r; q = q / r; // Row modification for (int j = n-1; j < nn; j++) { z = H[n-1][j]; H[n-1][j] = q * z + p * H[n][j]; H[n][j] = q * H[n][j] - p * z; } // Column modification for (int i = 0; i <= n; i++) { z = H[i][n-1]; H[i][n-1] = q * z + p * H[i][n]; H[i][n] = q * H[i][n] - p * z; } // Accumulate transformations for (int i = low; i <= high; i++) { z = V[i][n-1]; V[i][n-1] = q * z + p * V[i][n]; V[i][n] = q * V[i][n] - p * z; } // Complex pair } else { d[n-1] = x + p; d[n] = x + p; e[n-1] = z; e[n] = -z; } n = n - 2; iter = 0; // No convergence yet } else { // Form shift x = H[n][n]; y = 0.0; w = 0.0; if (l < n) { y = H[n-1][n-1]; w = H[n][n-1] * H[n-1][n]; } // Wilkinson's original ad hoc shift if (iter == 10) { exshift += x; for (int i = low; i <= n; i++) { H[i][i] -= x; } s = Math.abs(H[n][n-1]) + Math.abs(H[n-1][n-2]); x = y = 0.75 * s; w = -0.4375 * s * s; } // MATLAB's new ad hoc shift if (iter == 30) { s = (y - x) / 2.0; s = s * s + w; if (s > 0) { s = Math.sqrt(s); if (y < x) { s = -s; } s = x - w / ((y - x) / 2.0 + s); for (int i = low; i <= n; i++) { H[i][i] -= s; } exshift += s; x = y = w = 0.964; } } iter = iter + 1; // (Could check iteration count here.) // Look for two consecutive small sub-diagonal elements int m = n-2; while (m >= l) { z = H[m][m]; r = x - z; s = y - z; p = (r * s - w) / H[m+1][m] + H[m][m+1]; q = H[m+1][m+1] - z - r - s; r = H[m+2][m+1]; s = Math.abs(p) + Math.abs(q) + Math.abs(r); p = p / s; q = q / s; r = r / s; if (m == l) { break; } if (Math.abs(H[m][m-1]) * (Math.abs(q) + Math.abs(r)) < eps * (Math.abs(p) * (Math.abs(H[m-1][m-1]) + Math.abs(z) + Math.abs(H[m+1][m+1])))) { break; } m--; } for (int i = m+2; i <= n; i++) { H[i][i-2] = 0.0; if (i > m+2) { H[i][i-3] = 0.0; } } // Double QR step involving rows l:n and columns m:n for (int k = m; k <= n-1; k++) { boolean notlast = (k != n-1); if (k != m) { p = H[k][k-1]; q = H[k+1][k-1]; r = (notlast ? H[k+2][k-1] : 0.0); x = Math.abs(p) + Math.abs(q) + Math.abs(r); if (x == 0.0) { continue; } p = p / x; q = q / x; r = r / x; } s = Math.sqrt(p * p + q * q + r * r); if (p < 0) { s = -s; } if (s != 0) { if (k != m) { H[k][k-1] = -s * x; } else if (l != m) { H[k][k-1] = -H[k][k-1]; } p = p + s; x = p / s; y = q / s; z = r / s; q = q / p; r = r / p; // Row modification for (int j = k; j < nn; j++) { p = H[k][j] + q * H[k+1][j]; if (notlast) { p = p + r * H[k+2][j]; H[k+2][j] = H[k+2][j] - p * z; } H[k][j] = H[k][j] - p * x; H[k+1][j] = H[k+1][j] - p * y; } // Column modification for (int i = 0; i <= Math.min(n,k+3); i++) { p = x * H[i][k] + y * H[i][k+1]; if (notlast) { p = p + z * H[i][k+2]; H[i][k+2] = H[i][k+2] - p * r; } H[i][k] = H[i][k] - p; H[i][k+1] = H[i][k+1] - p * q; } // Accumulate transformations for (int i = low; i <= high; i++) { p = x * V[i][k] + y * V[i][k+1]; if (notlast) { p = p + z * V[i][k+2]; V[i][k+2] = V[i][k+2] - p * r; } V[i][k] = V[i][k] - p; V[i][k+1] = V[i][k+1] - p * q; } } // (s != 0) } // k loop } // check convergence } // while (n >= low) // Backsubstitute to find vectors of upper triangular form if (norm == 0.0) { return; } for (n = nn-1; n >= 0; n--) { p = d[n]; q = e[n]; // Real vector if (q == 0) { int l = n; H[n][n] = 1.0; for (int i = n-1; i >= 0; i--) { w = H[i][i] - p; r = 0.0; for (int j = l; j <= n; j++) { r = r + H[i][j] * H[j][n]; } if (e[i] < 0.0) { z = w; s = r; } else { l = i; if (e[i] == 0.0) { if (w != 0.0) { H[i][n] = -r / w; } else { H[i][n] = -r / (eps * norm); } // Solve real equations } else { x = H[i][i+1]; y = H[i+1][i]; q = (d[i] - p) * (d[i] - p) + e[i] * e[i]; t = (x * s - z * r) / q; H[i][n] = t; if (Math.abs(x) > Math.abs(z)) { H[i+1][n] = (-r - w * t) / x; } else { H[i+1][n] = (-s - y * t) / z; } } // Overflow control t = Math.abs(H[i][n]); if ((eps * t) * t > 1) { for (int j = i; j <= n; j++) { H[j][n] = H[j][n] / t; } } } } // Complex vector } else if (q < 0) { int l = n-1; // Last vector component imaginary so matrix is triangular if (Math.abs(H[n][n-1]) > Math.abs(H[n-1][n])) { H[n-1][n-1] = q / H[n][n-1]; H[n-1][n] = -(H[n][n] - p) / H[n][n-1]; } else { cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q); H[n-1][n-1] = cdivr; H[n-1][n] = cdivi; } H[n][n-1] = 0.0; H[n][n] = 1.0; for (int i = n-2; i >= 0; i--) { double ra,sa,vr,vi; ra = 0.0; sa = 0.0; for (int j = l; j <= n; j++) { ra = ra + H[i][j] * H[j][n-1]; sa = sa + H[i][j] * H[j][n]; } w = H[i][i] - p; if (e[i] < 0.0) { z = w; r = ra; s = sa; } else { l = i; if (e[i] == 0) { cdiv(-ra,-sa,w,q); H[i][n-1] = cdivr; H[i][n] = cdivi; } else { // Solve complex equations x = H[i][i+1]; y = H[i+1][i]; vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q; vi = (d[i] - p) * 2.0 * q; if (vr == 0.0 & vi == 0.0) { vr = eps * norm * (Math.abs(w) + Math.abs(q) + Math.abs(x) + Math.abs(y) + Math.abs(z)); } cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi); H[i][n-1] = cdivr; H[i][n] = cdivi; if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) { H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x; H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x; } else { cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q); H[i+1][n-1] = cdivr; H[i+1][n] = cdivi; } } // Overflow control t = Math.max(Math.abs(H[i][n-1]),Math.abs(H[i][n])); if ((eps * t) * t > 1) { for (int j = i; j <= n; j++) { H[j][n-1] = H[j][n-1] / t; H[j][n] = H[j][n] / t; } } } } } } // Vectors of isolated roots for (int i = 0; i < nn; i++) { if (i < low | i > high) { for (int j = i; j < nn; j++) { V[i][j] = H[i][j]; } } } // Back transformation to get eigenvectors of original matrix for (int j = nn-1; j >= low; j--) { for (int i = low; i <= high; i++) { z = 0.0; for (int k = low; k <= Math.min(j,high); k++) { z = z + V[i][k] * H[k][j]; } V[i][j] = z; } } } /* ------------------------ Constructor * ------------------------ */ /** Check for symmetry, then construct the eigenvalue decomposition Structure to access D and V. @param Arg Square matrix */ public EigenvalueDecomposition (Matrix Arg) { double[][] A = Arg.getArray(); n = Arg.getColumnDimension(); V = new double[n][n]; d = new double[n]; e = new double[n]; issymmetric = true; for (int j = 0; (j < n) & issymmetric; j++) { for (int i = 0; (i < n) & issymmetric; i++) { issymmetric = (A[i][j] == A[j][i]); } } if (issymmetric) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { V[i][j] = A[i][j]; } } // Tridiagonalize. tred2(); // Diagonalize. tql2(); } else { H = new double[n][n]; ort = new double[n]; for (int j = 0; j < n; j++) { for (int i = 0; i < n; i++) { H[i][j] = A[i][j]; } } // Reduce to Hessenberg form. orthes(); // Reduce Hessenberg to real Schur form. hqr2(); } } /* ------------------------ Public Methods * ------------------------ */ /** Return the eigenvector matrix @return V */ public Matrix getV () { return new Matrix(V,n,n); } /** Return the real parts of the eigenvalues @return real(diag(D)) */ public double[] getRealEigenvalues () { return d; } /** Return the imaginary parts of the eigenvalues @return imag(diag(D)) */ public double[] getImagEigenvalues () { return e; } /** Return the block diagonal eigenvalue matrix @return D */ public Matrix getD () { Matrix X = new Matrix(n,n); double[][] D = X.getArray(); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { D[i][j] = 0.0; } D[i][i] = d[i]; if (e[i] > 0) { D[i][i+1] = e[i]; } else if (e[i] < 0) { D[i][i-1] = e[i]; } } return X; } private static final long serialVersionUID = 1; } jama-1.0.3/src/Jama/LUDecomposition.java0000600000175000017500000002002412047301311017310 0ustar ebourgebourgpackage Jama; /** LU Decomposition.

For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n unit lower triangular matrix L, an n-by-n upper triangular matrix U, and a permutation vector piv of length m so that A(piv,:) = L*U. If m < n, then L is m-by-m and U is m-by-n.

The LU decompostion with pivoting always exists, even if the matrix is singular, so the constructor will never fail. The primary use of the LU decomposition is in the solution of square systems of simultaneous linear equations. This will fail if isNonsingular() returns false. */ public class LUDecomposition implements java.io.Serializable { /* ------------------------ Class variables * ------------------------ */ /** Array for internal storage of decomposition. @serial internal array storage. */ private double[][] LU; /** Row and column dimensions, and pivot sign. @serial column dimension. @serial row dimension. @serial pivot sign. */ private int m, n, pivsign; /** Internal storage of pivot vector. @serial pivot vector. */ private int[] piv; /* ------------------------ Constructor * ------------------------ */ /** LU Decomposition Structure to access L, U and piv. @param A Rectangular matrix */ public LUDecomposition (Matrix A) { // Use a "left-looking", dot-product, Crout/Doolittle algorithm. LU = A.getArrayCopy(); m = A.getRowDimension(); n = A.getColumnDimension(); piv = new int[m]; for (int i = 0; i < m; i++) { piv[i] = i; } pivsign = 1; double[] LUrowi; double[] LUcolj = new double[m]; // Outer loop. for (int j = 0; j < n; j++) { // Make a copy of the j-th column to localize references. for (int i = 0; i < m; i++) { LUcolj[i] = LU[i][j]; } // Apply previous transformations. for (int i = 0; i < m; i++) { LUrowi = LU[i]; // Most of the time is spent in the following dot product. int kmax = Math.min(i,j); double s = 0.0; for (int k = 0; k < kmax; k++) { s += LUrowi[k]*LUcolj[k]; } LUrowi[j] = LUcolj[i] -= s; } // Find pivot and exchange if necessary. int p = j; for (int i = j+1; i < m; i++) { if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) { p = i; } } if (p != j) { for (int k = 0; k < n; k++) { double t = LU[p][k]; LU[p][k] = LU[j][k]; LU[j][k] = t; } int k = piv[p]; piv[p] = piv[j]; piv[j] = k; pivsign = -pivsign; } // Compute multipliers. if (j < m & LU[j][j] != 0.0) { for (int i = j+1; i < m; i++) { LU[i][j] /= LU[j][j]; } } } } /* ------------------------ Temporary, experimental code. ------------------------ *\ \** LU Decomposition, computed by Gaussian elimination.

This constructor computes L and U with the "daxpy"-based elimination algorithm used in LINPACK and MATLAB. In Java, we suspect the dot-product, Crout algorithm will be faster. We have temporarily included this constructor until timing experiments confirm this suspicion.

@param A Rectangular matrix @param linpackflag Use Gaussian elimination. Actual value ignored. @return Structure to access L, U and piv. *\ public LUDecomposition (Matrix A, int linpackflag) { // Initialize. LU = A.getArrayCopy(); m = A.getRowDimension(); n = A.getColumnDimension(); piv = new int[m]; for (int i = 0; i < m; i++) { piv[i] = i; } pivsign = 1; // Main loop. for (int k = 0; k < n; k++) { // Find pivot. int p = k; for (int i = k+1; i < m; i++) { if (Math.abs(LU[i][k]) > Math.abs(LU[p][k])) { p = i; } } // Exchange if necessary. if (p != k) { for (int j = 0; j < n; j++) { double t = LU[p][j]; LU[p][j] = LU[k][j]; LU[k][j] = t; } int t = piv[p]; piv[p] = piv[k]; piv[k] = t; pivsign = -pivsign; } // Compute multipliers and eliminate k-th column. if (LU[k][k] != 0.0) { for (int i = k+1; i < m; i++) { LU[i][k] /= LU[k][k]; for (int j = k+1; j < n; j++) { LU[i][j] -= LU[i][k]*LU[k][j]; } } } } } \* ------------------------ End of temporary code. * ------------------------ */ /* ------------------------ Public Methods * ------------------------ */ /** Is the matrix nonsingular? @return true if U, and hence A, is nonsingular. */ public boolean isNonsingular () { for (int j = 0; j < n; j++) { if (LU[j][j] == 0) return false; } return true; } /** Return lower triangular factor @return L */ public Matrix getL () { Matrix X = new Matrix(m,n); double[][] L = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (i > j) { L[i][j] = LU[i][j]; } else if (i == j) { L[i][j] = 1.0; } else { L[i][j] = 0.0; } } } return X; } /** Return upper triangular factor @return U */ public Matrix getU () { Matrix X = new Matrix(n,n); double[][] U = X.getArray(); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i <= j) { U[i][j] = LU[i][j]; } else { U[i][j] = 0.0; } } } return X; } /** Return pivot permutation vector @return piv */ public int[] getPivot () { int[] p = new int[m]; for (int i = 0; i < m; i++) { p[i] = piv[i]; } return p; } /** Return pivot permutation vector as a one-dimensional double array @return (double) piv */ public double[] getDoublePivot () { double[] vals = new double[m]; for (int i = 0; i < m; i++) { vals[i] = (double) piv[i]; } return vals; } /** Determinant @return det(A) @exception IllegalArgumentException Matrix must be square */ public double det () { if (m != n) { throw new IllegalArgumentException("Matrix must be square."); } double d = (double) pivsign; for (int j = 0; j < n; j++) { d *= LU[j][j]; } return d; } /** Solve A*X = B @param B A Matrix with as many rows as A and any number of columns. @return X so that L*U*X = B(piv,:) @exception IllegalArgumentException Matrix row dimensions must agree. @exception RuntimeException Matrix is singular. */ public Matrix solve (Matrix B) { if (B.getRowDimension() != m) { throw new IllegalArgumentException("Matrix row dimensions must agree."); } if (!this.isNonsingular()) { throw new RuntimeException("Matrix is singular."); } // Copy right hand side with pivoting int nx = B.getColumnDimension(); Matrix Xmat = B.getMatrix(piv,0,nx-1); double[][] X = Xmat.getArray(); // Solve L*Y = B(piv,:) for (int k = 0; k < n; k++) { for (int i = k+1; i < n; i++) { for (int j = 0; j < nx; j++) { X[i][j] -= X[k][j]*LU[i][k]; } } } // Solve U*X = Y; for (int k = n-1; k >= 0; k--) { for (int j = 0; j < nx; j++) { X[k][j] /= LU[k][k]; } for (int i = 0; i < k; i++) { for (int j = 0; j < nx; j++) { X[i][j] -= X[k][j]*LU[i][k]; } } } return Xmat; } private static final long serialVersionUID = 1; } jama-1.0.3/ChangeLog0000644000175000017500000000313512047304334013527 0ustar ebourgebourg2012-11-09 Bruce Miller * Version 1.0.3 Released. * Patched hqr2 method in Jama.EigenvalueDecomposition to avoid infinite loop; Thanks Frederic Devernay * Updated unchecked type coding in Matrix read. * Added serialization ID to Jama.Matrix and Decomposition classes. * Cleaned up javadoc documentation to Jama.Matrix and Decomposition classes. 2005-07-13 Bruce Miller * Version 1.0.2 Released. 2005-07-12 Bruce Miller * Although SVD sometimes fails on cases m < n, the test code, apparently successfully, invokes SVD to compute rank on an m * Version 1.0.1 Released. 2000-09-11 Bruce Miller * Jama.Matrix print methods which create a NumberFormat, now set its Locale to US so that the reader will recognize them even when the default locale is not US. Similar change to Jama.test.TestMatrix. (Thanks Ulrich Eberhardinger ) 1998-08-05 The Jama Team * Initial Version released (1.0.0)