Lbfgsb.3.0/000755 000765 000024 00000000000 12001634537 013534 5ustar00jmoralesstaff000000 000000 Lbfgsb.3.0/algorithm.pdf000755 000765 000024 00000774237 11527003506 016242 0ustar00jmoralesstaff000000 000000 %PDF-1.2 %쏢 6 0 obj <> stream xTWU}y +"+ybNY*yv΃XeCU:KbQM&3vdw:PUn^i 5j_$35dqڙCI&4 Ljᬪ:gYQjݼGMYɳQJZj 9SyRdɚDg3)ik6;j&o{&o2ؔt26>vp9s9Y|jɜg3;͘& fmةr-䢼\TZ\T(/񒼒ҥE-)[xyqJDysGBUOJK.^QfPͮ<[+%I \K+srQ 82 \ʱWAFX\QM89a_pRsbފ8)ԮE :&Ë2뷈[/o5%wv]_kov2h܃ۼ{lڕq6|KS~mv)\Nt#n{CGiFdϧG?K Y#ݦ 7/UK3:ᛤ+ nՒV}{L<G P`xՂ<@d[p 'F/YJzykβ:K1P KTq vFP|}[ob'gm'QWZw .Ɵk3r Pԉx_u2)Cu}*\Y{g>[ߚcz|@z>Ola! bt!y#yx ?I06̄0I(!sX5 ' e.!E t]j;)2Pj74$LDLWP?Վ%\]1J&DQ.`(iM MsE'CljGW'XVb@8àȂÆ">HW_'nwC-G&Q'}֒ UtV4Ŋ4.6 ~&4,@ozoLXl8%Ic@۟ M:='hYziA̠ Dm$ŒR=Bn "вW{bðHDŽ?)ĒBEB:%_3@[`:`!f@3&A +n)G5 Є9yw(dR;L[ ya6$z idT2$edQ.@gnM1h5NǛF׵^p92=Y?&7F.31/5\DSӱ<endstream endobj 7 0 obj 1377 endobj 246 0 obj <> stream xYmWSW^ä8:mpKH="hZD[0j뻡(Zؚ1 q$df~go>ޛd@D3˵j~y6!!"wzM&!WthDG4h S!C^޳_#Gx}?ݿnW|Hާm?atBmFm|!ǔ:FEg:(&?+됅z{կ\?iho| lI=)=,.J+TҠ`tКtR^RN[&$5vI5$ pw5.D۠4HMͪiӀzX RO}]zK[R͍$&iSsn-Cx[Ď؍CB" r6$[k DRdv fsӍ|UAĄU,;:CU v-n{Z_!vC/ހ"HI\]7jUf!I_oyНg3䃺c-/l!@ 15%=f :kink H:נiz*X;._kAO<A S]1)ć/1^jZA[9ؘŜ!"h "T#=@WW'%Ď v_s`JxP% îKaA]9d$5bizK`#*¼Un Kևn/Ϸ ڠȼ}~igY6۲]f%ҹ'BET J waZ B<KV6̈́uzmvf#\e /rZ#oފ`)y,׺.B%Zy~Zhy6H܎vTFakw]׮,@&R\Ze?(`60s";T Lk[t)[YDzHpܒy q =Ts.+={1ur6ԡtL#_ =3=CIC"aD.|wi*^zpĕJZ< .[oLe}NeE+L9GD]HkF4uI+lJ:݈2S"o?ó3|[4e-~vtL-ʸ뱵HH o ,s.'.M 0ʢ cvt)ST8iR%UJZjRgcv7 #̇i}S̢/_4۟#ϒnhq>Uɦp##K(.PB&S"Aڽ _ܙr=Hp:;U=Wቯ/] S*@? EsRUQ`WlX̱֞s39/*tƭK7 O` 66Gd-&**SZ֍#sIߑ{w8wP܅Pf Ttwn:Dd,lc~3)t5e]aMK vhh& 3Ҙ}hi6/)/ o6<+8~tfå 7jUj0ʶ 2*Xsm R X%BJKS`=b3E"96CE g,pCtU!(ΚT&pNpbI 5h-)_D(k B*c7{y;QX7܉)ϲ}1K2Ah* ml_|њȶRh> sju V^PםHy ,2r^Ykg+5Ze+\b`~%R)@CU-쌼fB7”$SV/]޲ !|WQ8ã(wlu/ـx 9[*L:q*֙K >³ ,tg CPeaqMӼ00ʱiSDPQ"o@_whܺBr"gTGvG0a`s,eI,..UVlw@A#0!%/lW?㚈W|JAr .R2]cLlU6[ȇ9<9$vg-:cx:1>g"4,${d3,mvwYޥ{-)<1HBM 4X9~Vendstream endobj 247 0 obj 2781 endobj 333 0 obj <> stream x[Ys6AvcaoM +1‰8%U*$O.QFAeg +ٸ}P$P$ϑD\]PJv!@՗Ŷ(bϧa"C {b_@5I;~5L ^Y`o`(aC AkX[]AP5 VGFcojL)[ ZNr4NōمM1nS1 r%߅T%;{dO&?61+@6Dj KbV.Sċ49D9 BeߢpUbKMNIGORFcp r#v#ipC#&L$ F&UQPBuUg+\#8|j36k\܈]va/"yѷk'q )0]Wlt.ARrvah`m!Q!Qn ]}t\vpu$tU{>ͻgI:t㖰5ØAmЀvcz sm9]SvbD1 \ltfta9 (UÙ!$ʏ(u" 8-GC S*Wsp%|çP޳i4np{v='T s:NyO*H0 %%'h \톘 tdED(ZQcҰ&W*R~H0 ֧|kw6̛w7v=8Ce[ "V4N$p;K53S7և mV,PRE0ؼ'y7̕^yH@{ qSiH_L碄,ߋ*&c/y]Gоh3f? 2ģX jLkY_DP_ְ"(_駞ӓ}VcBɱ&O |S{ 3kݮjzC*kGv{LFo#|AaZc\|؍{3՞3JhR}y#,O^|8N,a7sC>is#M J=|/ .@+ kpP.p]B^&{=R0[U@;bxT<6O5*}F`:Gp0Yw o3$x2="Gi6l('v0F^ Po"@ض[ώ;BZm c80qpiCx[o_|qbe)HO"Fo&,{Gޭ1vt&%746yGDBIW`Au , {qkQ :.1$HHCȳ@gqӈ!dhK†Nftie5Սx:x}?Is~V-B8f2CT6M|qW1uN p{3.>+F'Hjx1J>{T Ĺ<ąc@мλMڹtC%E~WL$nG؅S(*`vxPFz?Cb&JiYm}H!1gYͳ"v$4* *fi=,,< Oɍ#my&jze尅}\/NRO^C+? fX'2Ij~5>G jn>_C5t).@ZY H=Ӝy^ޞg'sOe H2Ąa5PoUɬ.q+r*DR3ُ%,f'7l^x˥n@XnLAb ^( - HfΜ0`g_c(ܒ¾8WZ; fsseA"KNRг.qX> stream x\sיBlbq ck[뉡>ݧoN%Zk ";&GQj%ҊU(#QzvR}=执kwg$QT3}\ﻜYNX#~4TY~d6tEkCj"ߺP9_ WYg_Py?O_| > s|Ǿ˖m>N.^>6B /q+sߧr?h\YϿe_ۮE(x ǎ׋01u;4?^mB B~`z\W2ϾU_WBK|mLjD@XF#CBa'?2Qun_m^6eDk&wk{H7ۇCU'cUfi~)Tt-b$ğse>M}?9'߯#bFغyھԩ47~PǛUk o.m.0dM3~[gvn8R''v$O@\?.'i2Osho+/tm hPYqB_~Q+7Iy RyimqksIfLzw?Hݪ/?Yh &68y0G\XK<&=?\%\ȶEq3T6xma}¹ؘ46Eŭ`Nڗhlc*kw*H(ݻv r{afh 33#E.^j͂D[hn v! ?n8WD.kT; C Rԓ/++MidMn 8 6b$SR`mlcS74S] @Y4|A;#v\+ФUT!$VmQoFAO@Ґzڐrvl˅@q ש3ŮakZ+RC⍋`#1(8b1 W>f8 ;| l,+& ?KMwJ\b~Q1rĞn܈lgf "ؠmCmׅaa6 K7G_Ȯ1Ot,P"C.a>hF/ - {^1h[~60!9;4`.68>O.ܾvǤ X2M6Z1)|bcrT_ 0fZj^GDa Ƴ4&b$QW h\#aYolh,l8͕\CvHzA=w/cs >Sx=t$:B4wvqifk SF`򺴼h xUK`7h%*Yw@*C T A@ =54 ad3wTDI*CR١n&` i|BnZf~ϧx~H*y,DxGGlN; lC?>Ԋ .R8˅Bh53Qt (E*!TA$$ e1sf) .gM8(vZ`bģ/lg㴌tPlL~O'_GkE-nΎ4\}fbLB@ˠ ̧`6F1ׂWJfXiKq l깞Nl0 ) R7N^4qf@ZP;9 u"|g(V 389%QJϩt,>"5־hZê ۜ|i؆`Dc8ډRݢbYP Hi JqŊOu&,>ӽ}wz'd65Jp}%dvq!|]BSo&I^ /ߓLEi5Ni}M#,)iǧYyRëi#=Y>u3u4\m:-p:k9"]qw~Ni'q8%m.6[:0fH"Wqώ ڭ GRtVvzj-N<ι?9M3~)LBc$;3 FuEǨzWnF7E9NO*a?Wͤ51ɑ>OD7XdVBOѧ6D{0h#f끭>1@3+b䶲blSИa3Qk(.I2I1Y#]NrʮmY9;8 &BP#v5ÿͳ4 L# +> w~ w6]_cVD⨓vOf%/G:]nRF+l>268,]6*{=U8 ď.o@f}FVkP`umw $҄WCSg1309{+[#+y4( ( bÉ& IRTh̛gS'꿻hv#H70Y~G/GU,o"IR,e.FA] D2U{S?Gi FBt$OkP͢^w0h%( @n%Cg/c-.b:s 2ЂLp. X/NñMx>- v?Jg{V/bJF*KJqtZtk[:g::TkN!tX'꬗ កͩycldp{sQ&@uy쒌t o09qhS*< ols8b)<`ɊZ yQJ0)X5gk5BЏg5DӜF$oWyNW@zjQΨPocXF'.Ts&\8WXԏua`*![4L7D[Cݤ>B6wyuT7lLc1hPl0t-7Yc 9 mޯK]kV고zJUhWUaAu)`vkiLa~Q%4EQQyi0!H?hy̼2h@)3ż#/QuuQ{GxMfL |©YD0=کA}q)+~=xӘyAk"p>vfCI)0d TXx&>+, I # `Y!3kP=Iϥ&l"JK^RpUNqGYL3$וV75)awE;z^'p)j.ӣ(_La4BI&2c7ċMYbΣ]֒"f )_Ϳ,$ U=*߻-V_ز|k%yɍ2_·VF{KA I#O(OM$ e~ m␆,I0+֚bD7Pin^)nk񀰁/;^ZlL(H|)ݪK~^HD֩S=X-=:d\OP[K^h^FD鳤!K,8ܤ+d0n*6l=bUۇ cf]0|LV3MyHWYTrk.HMNlF0$\'FO ,2G'ש~$\oQo7vBj\UKEmaCh~A|zpnIjM^dDJyM͍f{"{7Fng? nDM"~rAFq/.: h@n0ږ3>cTOW7P;}岟>J) mN{fDq8F ,mn(<0po% =ύIfC| ;d'o9قs4S-Ni҆/D#A@rghƯ$ֳ XKiL/9޾%&70Qz%Jj,?|m$qvw}XD,C߄5H.k։B# (J}a > stream x[nOCفpKS7a93gn\@ 7*4NH ݍDTYv:b{Ӧb* 7/&u;{vBf\ΜW?ٛCsCsῩfo: !5cI*u,fΕC3Ǯ|6tx?yZ?#'N_)=|:aa,?D^GkqpWqprED~ڭ_3\A%q#|863VqќkP"yeG#6#tKGhětnUO4VDiWASdΠIaBzШGmL^=@2 Ole+-.Ax Z#{jX*]xǭveUu[[i8 Sm8Y~n$J}y6<^ ߨ.IBEh >,If&o8BI,&_Ln EO[KXRjle|К_n?BFWz|@[/Je/=oC?\{ܣ R|Y8x l-1zwH;}eV Tթ Lgؚ9/??fa iƠ[qrPT8_W tb&0\9^p!?߂..oU!@5#v6/2)"o- M( O>Q`kM>߸.+4.)֋cc 1=tE @1_hH2o5G R_Ҷ[T/نG#́8[R2¶lW4X;c{ $ :63|l%bX2|RjW8uu%k$ dBD@629H:_79̤@- vIgD @#NvKG;)n%.-q*wڇ9XE.7(ź:xu5zѳ^)՚;H?>7992JkyAB,宋E۷.&_L9$gWZbJ-6}e']i&IݥynQ@MrF%sFcF4Zna< dOԥ8oia@}u懟Z[!iNs>D1Odxl93\LfOh"߭8*Tz63>ô5}~ql2%";CU!+@v8ϝVJv>@` $~qqdk;.o7G;Aզ$y^KftA߲u45pUa,MvFkͽ*7~#*<ҠgFvmw4Vh]yXv8QDQeΣ2x)5w+ş\\ĽTA"̱e~'T;Ս:hYCvǸ:Lv2a$6֤&q0x/L^;*IYNA1W3Iim| (ĞDٖ{ة* TaXp =CpG ldp~<óJ%/?'L1ųfHT,A+~w~u 5FGtB'ԉw#;JGX6',쥆f!c(HI"`|?yGXs 3DKwhiNE#AJ+\2TjI2KY̦s8"nP!2 .i꾙9egGkf ~]-M'Hrt%Qєd#<T yb,YۭGӲ0go!% )7W-rޱ%-n-cO-)G_"ghVtY-0ܪb!~"E;> 2KdHv-=D7)=~}x& ElYcHOՎ} 4来;۾lͻŴz(Zd`IsGD]Ȋf84Ak7{A 2qL&D`GԸ"xH t3F84u! j+_2EYl۱ZYlM1K$?]@ nD*r(mNF%7Fqw3 ,*-;W \1R(%X4EO-O2Uq ~Cv3#e=iIXqQ\c"]Ӳcmj,W ٧ߛ7bތԱ HmvRma*7v*Q ʆ'2#zCt_(os2nEHslp^ԕ\#rwGffŰ ".*NėF{D{N4GHTBl`NI"o-ia.MF=Ӿ5ywy>GZt&>!Q2}#MM{٩ͷJ|"Rc_=yqRv"|[/Ұ-JVե 'yǙ v7i\ >iku~^=4x-ª@mpKxBbݶ?gƊJޢD IUw:7-" `NJYE{暙ZTyw٦uuc3b56݂ݼuTka@"~ |2Yl|&;ZgӤGpc{w6|{0mYȝb={ªl@ʑI/Dz]'a>X{+28ͻWr],D$6]<&FX uȆAj&Eؾ'{=Y)4J5ZIQdZ~R€.|/t\9M RNo Rʼn0jr&-FK+۟1&P{ ϣAc,5KgOE"Q=kK>op`hΉ* h Fa5cN^SC'?r_/öC&g.\+E-lRe.CP'&Λp,CjM rM{@diTϷV `gf; K夐"ӔKtA>`QҠc. "/endstream endobj 409 0 obj 4019 endobj 451 0 obj <> stream x[}sTWޔ !Vd7s;+! Kbڤ?LgLd7$vF뒩go@>Ak93M3ܴs %s8"Q8Jb'Nx4g. 3:oN퐁o\= \w8wT"TF2c QPɃH%P6ďUs0TM[x$Fq1iW12"VQ X'M|( ? I)q3sw[qxV2}>@:0}ILtcDr2PMi̪ fМ$S_&&Q(bk@Q vGx #@Sa4rJF/#v!0-7Zo7+h;{b8@7d r~ZagQcpCR=,cX|r==~! =D}Cl;}e{ QbA뼀0XjJPt$-0=4tiՉrS@% 9 t^G*Qwю|԰W2GRi$O& bIch84' ͤCϙJ=JSDku38O\R`\_1a P16b-l=8"Dy?2{Fu[ՙhLv^cv Uڳ*Y][Fc2t,l-h}H&4&E =iOr*E )2(Tdy/St3ʧOs! uڏYkuYcWgGLGK\|Wѳ]ZSRJ-T3N|VC8)>Ԍh6i}&1L%-aZEAd//)FhvUYkquYnv^!K> Kb*%4bSkZc<=`CҨ9.g|w2WjɽT7XDcR_'(SUyj=iyG暡"Vk~˂&ٶG;͒gqp+$\qN(ohVxT7qZaR6lΨ Ρsoݝ2CdQW6 =P^jCDY;Ht-2PvZwp·R )D4`4C^|Ryoџ~`nw&@'..uM8fJ͔FZ <MIA֎5.p056pTH S|$Z_'y|-Bq< Q.mM.6˨qE9_m3b4U;Z/h^D*@Q',נ 1>kJf;&r_lu!fX @õiDWPUtꓰHiQ jLOZ$T-S"B(~u+b=] rmĽZkXEn[]BO4|"\v bKN1Uǻ3 #&e[WQZ/(uXO=|ysf7*Տ`OzUYywf5ge4e HDa/e E{JmS̎ˎ͎])U[yNtJ EVa$q`JXyIu b*-H3d&Q}r"ڒ]H^ I/ĝ|=g\k bb$5B- ql'>8⤯4YO5秺+4F=.@OM5J74#uKe4!Kt4nU`٩;SѸ#@tUA[ 1o+5O\q!sbٺfYcxٚf*-z6 *K7@8yzNT[DƳ07DEAdY'sH1DPɆƜqkHB@ly~KpO'^pOTU}/V36=2u~#FL:xa<׮,H A '\!!RҫdF]- gJXt_QeVFUB*.Z3Bxmo6aDMM֗$4Rqߕ:WIH#|阆+N NFӧno2 ZɣO){#蝣ShS+$SQvUF/ hoZx ~YA+^fЬ/E6VX<45({@d}~l-!r|1ARqb DuwlTbi%ORGL_5*Ѩ z9= ,E"Nu r kBA@j[j$3ˬBɟBO4͏YP#͵-f.UVE.&qmN%T;OaH3[֝/ѱfD64(V>43]BPW"3[ w;~0xd}Zln0SagԆ>ۉ"ܛRVy)/tu*,/ЋWLSCד)a/aȘ* Y1\]-G߁=!Pa!uyN6h }ӏwm#.`2 ̾fؾ/K{0XE.Qq7M>8k&{3qQkc)h~3w凅E{.KoJ32oD{&4*.EDr'o FS|!n. l|5{zb/-b0(gà*K,{3#G$D\8_bBfnn4)B먯=ĩ kMx$[: Lt8vtcMF"^3Y2oȼ/QIRنV#Z*PI %󦟞Rdt}߾nœn4De#{$z3Po~eeY^ZZCQqmR!?A5yu yj&LBC q4 DڗE<L}y^J'S:ee4MD~_a endstream endobj 452 0 obj 4049 endobj 476 0 obj <> stream x[_oOD6Aڣ ,s?3@bS6J*H&lbE/X(BY} ¸*/'SFϽs9]-U(s;ιgD@1o _\ v!iy"Jқ](ֆV+[7KuA,N^* q|<01=LU4|f2թ7M${S='vЭwn[aĎ_NG/*[ӯ|:y@Z4ee\6#2&VE`X-|#O߄f7KU 7l'+dR1R>Lo,by7)vL3oSF}I-YBŜQ3z~)5=gMEɋ"P{It3!ŒUe}Ɖ\qiy07UV;q|-=aY=F`ȁm}Fv#+&?CoL`2r-h1R.,)UaN4}DZyVg4=mN!H|$\Hc9SdAr3D3#4w(0;~_2/lj$7+wNTFxcRzY{FW=O3ĀL)F% m<;ie1^ TщtWAx^&05>חQ:#5uH) i$w}{!g0ҧ!Bj,ʂiR/"ګ"E}dVjobj|dXj䬪SŌ~#rcDECOY_Δ !I-qs%ƺZqbz_I%+frres(χel, H6z +zKlV>4-a g1]>`ѵL7)HQvUh}F $Ɛ;> rw{ᐷJ٧"P'O2 ,DE>цyQ;,! ۓ(BDD⁢D6t\eG%e7Q^AbBVh[m59:o-JP h%ZAh>tqgHDXMO ӠAO$;ѹrz##Dp:HvisX5%io`f w`⾈RN )&q/x.~8Od}0OCJm KU+D"ˡADK5=*Dt82xYrf`ř_$܅n,Q%WW+l!?d҄8I"6J%=[vHuRyƶjkO]ޤ\}Ef7-m~&K|x=`*pլɿ4FƲ/I.4k#pv^7+YG*T vBdl!4 EUD)qo I$[-C&:2&rU|OA 0iӥ9¢Mjb!+c$%x|0ypoҽo g?H&?e W7 虺."`eU}*IZ8dCBxvd4Ѭ Z:i4EK>!)w a[kDH {v O#{_>I!xh]:?JJzevkB:\鶽uA^u)1XV됻G҃D~zbzߟ;$m y'B)_?$6a pM$a$.rg fE‰+ 6)s=9ϰo F/?Cu RiE#9VgB D-|:YnN jmŝ^_+ш2O)C.q\sCT7FTwUw,b lwv|\M2o.aэ4"94Vv3w\V"a; <>̎͟;A. ZHH=# Cp`:׼D"Fr a 0!.hiu S71x5nm#,ABp ] V\z׊e"xOTԮȟVQGS VK>1(_½K&.Věwv-)>h7=q}o:0*禬'DNq%v}%"a@m+_`dR:K&eR`E,ڳJR9 %`=g~)#ƨ'1^ĘEPЗQ^IMA_T7 } S+h zI&Z3&cvzIv@:D~,[6ƨi"11<ԉ&Br{I2PvQ"1xϘ!,RRKR y{fطhrh/ږv|Ppƺ' k-V~U+sҞG\҆dq1LDgG%UIԿAGWT\ڏ )fIwY6 ֬NǾOT4u ξkLgiCe/[[PxL /8BgRqXkK4˵W`ey;T!yeO982T,] |h> stream x\oIQ@ȩYAMޒ0*yiM  ݃Z$BD-&8}>Pj%ysyF|s\l* {fg.Y 9DwWW",<8Գ WҐO^ -,X|w۟-=g$_kNtکy9vٹp;A+V{n<=A_[7ZAHo?i ڛtZֻǺ$?TBM̒{G1yۭ; ']ZLewT䭨 KBpOHٚWf 8|S/MEV>#~}^A$| N2a$m a0[,9'IM&ARz|aR9d,b%vе&_`JF#3g#u] #$f邺{giv2^OK5Dnٗ3ƺ r$Y)H"ӫ>5riL[OCVZŝ1EۊjcFxptBho޲3'$3PV@.ޙ8`sΖioaW%`v ;ˀE_D_.rQR$jm%, $K٬ lฤMɂ]b4*ԡ^}Pl&_swS9.s {3''C7kĵ tkBg?嘃ۓJIp*.z ,?g`ON-\`WuWa UiD{[4Ҷu< ^ZAA_Z`Q4 3v$Q&HD\ǨEtҚcj:O*"F{CМ&zfRB-X_!H,}}Y{úyDԧ;*PS ϠLث3AU66*|G":uYPu yIR!C jB,xtvW;IYK:r@SO,@h/N2Eu>کIz!;#uǎhh$DpF:|- GX**VUn6:NMU'vnVe(ﱗ3m:>n͎eFB5 過&N HuXc1 eE$5f؄;DU'K$~pMP֜b4(!97e A6y$=iز x2RM3SaNO<(ē>p5e$xD7tdaYr2вVCqxYQ #^ +rNRdmdqp=)k(;9hrg?jEܩ܆[W1MGUWUpSojnv7;kB&N)N8_b/KVp'V4f )N!?56&BtٻHP3!Hl>Y_,~'~b| /d*~H chk%@iv7mx\zUq!|'>W; 5l"}I̫l6f'ᣊM6CL3~Q>^ IJGѥx@~N&>5ɆPQXC;#G^g C+j(uUYcK3S$1IYUiU{MZְa:9qg< Ov,5n$o ,x_ϸMӨLiae#[~ةCaJ5o%_)XK]w\IJ`5:3N)9ҫ;ZdHF e`ujϑۜO;-<!U~!𢟡AH3nsnIyM" ie @1^qr4[w$̋HV`\o1j<Ǹovy>9IEJ]];͵W+hغeÙH#nnZv.\kgjlӹOj믟 =)6+Luj˷oքpTgfw}M Wrm*!|wZ#<flClBGx8Ѩu3hMVRUSN 8S&LX6=c+Z)y5ۇQk@Z̔YM=ZI",DWҏ\Eg@^|wd7U:+O x|c1})n JcqРOƭ diڀ(546 XXz\ghwT{owy/x,ǩGvtu[ZK0{ >";pF$h֩c@ FPےFUabAc_މՐdJ"Vx׎_ZCCMzCW~[kYCfWØܺ?#,!wXoy \C,p3 zfF0k,ZB)ȨQ Q:).>xS8#O Mq =LFNQD7C2w r᪱y9g>-n.28,aZkz2[]Y,ahwkw6 t*f__D"^GyOljN%E_/0+-֯OuY}X׃;+蒘W#,,GnPG45BH/1MKAIyhExLLxL-z>03tFNcf?7Egnz !dt//O%b,endstream endobj 490 0 obj 3925 endobj 501 0 obj <> stream x[[s!ɖpIa֒f!["W*X؎KಉQ$+@Zʺ* _x1/tOwoŃؙu5a•k,Ÿ?+ֱCF[P^>8涼3tЉd;З^+tOG+CB2A(;0;xbmLݭsE鮪pVE#_UiIen,wdt'π QMC5n#Z.#muCPzK/9"J$y#|aKJ H>V VQP Q}AA•Bu*Jn{%Fhl=U]zH?beX*PJh:SLJVdzy| [I4ЌO`q4jn3,PP=ESТ)H3v4G~({a%䆧8Mt /{ c(`5.OG*haJ-(ɴ`50 =uaA/tKđ"AcTWU|xP4خLWŊ\\VJOD*C sJ1!FÑk~2A 10pd5t-@R!x#WƓڣ Z+{LШ,R҅Ð!ێSXܫh;e쌓 9dv^w {,\X{*pqabYKV24X_KΣSK0#d(>LnV͹yH3+3l Q+"> 0ܳWf89{"9OC:?G Zn5tMO<>h+K=e/950jaM]p~ҥ/yx\D.ʫ CFS( Ȁ* dii-zXN`<6Fo^IXP(RJ:2+OK_0<%aK>*m,|_TGjs64Cb5/*Ηt#0x,ɏ?ރ7͏ey(g{9g8l/%! Xp]{HMncۛzM. 򝕶DN\Cǀ}:IG8RsÓ-loÛ*xv4j;1u ݹ{KMo)cn \UUZӏABL7.^gcׯ773/bK/])*c~b~fq2x.ϛ#0{R'oՄ8pyFv{ Vm{:mߝ;L @q, \ 4So(δ?DF(:2| .Qhg9 ߦKk|zDM oF1D&ɨl՛B{&ש~5b2m4F`aH?̱2= #Uϝ]hitK Anf\u_FjS}{tb$T* %Xfacs@ ^>[Ju6}f΂4eDL-nccDmPBqgeO&FH̺WI1 LHƨEt.o*RxtDؤHJ.Eσ@tD +s"U뙤P_:5 NB:UmS~o^7LB}S*W9p14•{=o4 Nj| Pvmn$fH-Yʵ{AjY\$QMȪrfpvRQ R_w rhYiר}NrJRLrʦ+DFuU4fnT뚭<۾Mqy-kmԳ~=4ik Ț|G4|˩A;!js*;|%@V< cgq@߫[SnZsMfN XAKVbΟY8ET;M]/OvgF}j'UHls[>AoIH9;w=v6a˅ / j_~챝 1>Ljr ͡oOdw3sfn@}-kKs?=.bosbe^i 8eʬ9# _ƕ02G`uAvbwT1 cR.er ۛ(c?+=zk\7_66=PG|LSwvgz`WvF*%3bGyWvM/&y]0Òz@|L >BJTsRW[| %* kTdU6:7qGV4zy3׉4)c ^KM]VqUC6Uw HGưOb FZ[ \g3t%&F{Ue'Ҙ#lΡ< #;5ˈUYNM L2mkOezA@ȭ%K8'lّD -Q qӞ>YkN1{?;V{sq=9<b+FM$8 -_u))-K*ŵZJq[ ^%M1IqNgͪ3J9n;e2uI2'A^sf∢Ѿvl +u5ׅȥԮ'Eh]pİQS"" ||;wR1 J:i1Fڵn #N-&#Q]~*k>KZHm`:ҿC`Ճ(6Ї+~F&Dp-^p0&6di '׬89g4#]ʾ;6s?SGZ"ܤXuzbS|/'?+ca3endstream endobj 502 0 obj 4164 endobj 545 0 obj <> stream x[[svB"%x@ⵘr,{e̙:bI,pL)'k8T+S *ť iIvI"gySFzmNVE9>_wgd%boȒE3O50rj"'V 957/>OUMDoO6ӟ~Rh8tBZe~l_C⿺>-!8ϛ TCQǘmgh0n Pg>O~u3|4@bou!+NgSZ%}pXx>%VǷuc'> 'tIqDǧ& նt36ֹ̞K|o@l (!|oUT\J Ҙx C_N4pcS MCHŤ^kK/$-}Y,E'9iacn}0_"dӦL!{E͌0pe&h37D6"b& &I Hq.;|*X<5-hփ)bA4n:t*w@t1G4Q~pjX[+*S7΂{ HJE6HU~vxV4n 0wmMt?+dF ڂ@֓{T>+_þ|Eh/bvaH y[ȗsʭ>גrD;7ʎqH '`' ؅ԃ{19>0*{}cKHSaGED. "=A5#FP21FE{Eh`|/ T2/ zn(@7C dfK.Je <̠;K,:0j|8I=imG#޵8lw 93Ǘ+TMJlVݛbj/,1'`ȧ_nպ6*vo<@, mr,K(i8έv$B@Qk\<_:8kNB/OMg0T"Z?i> ]4P QH)nb*&sXh0 aRsw '=vicwڨm#<Ě_nCI+q՛sB6X:PJ g4=q BM?2`S֐mV_:DRB]JqpAP.|)ݍ&HR1a4U8CMmӽSTia!#tIr[n0#Bն6"ӁaQC&lBrĽ]D9/5˄.2lA!19SYfϖClA34}ʄ( [_Bp"f~(kd:@$& 0YiCDdٕnֹNBL&|Ɵ >XknsV˸W{[ZwaU5ZZ[ց:xdt2O]}TЀ0R1~0;b{uK7^8t@!O⚢%zUD}N ĥ]r8j{-0:CoMgxoȮuXv\+䦅xb䔄c)"~, 2)2?d#(VP@wE)Ϛs7i(u(4eZl_}0lTu XK+nµ_#.[j՚轼 9*1[,o`Du: f'.;ħlrR=έ"+x>Ub.+JB ~ <TUePP;#7ۮu q誗(|>;#mZf  +ٲ-Q'.5y5Gk>J<9a{gil쌏ͺs"bdWU{V!#HB6endstream endobj 546 0 obj 3370 endobj 554 0 obj <> stream x[moTNȆb;4@[sEv3w澘&u 4qĭ@4·6[S7BYc/mU?g'>o3zqH;wyysΌg=F<_O]7u{ x{Ъ!5I\{+F5fkYlerZ.԰җȏzĪ2F#S(o1_ջhL4f`ID V`W|= e|owVo/\H|۞BZc"=V.~dݖyxe'#0^ ! ;KuFEFKR4A䈓!n+c`(tMcGYbՅ&DWQP=l2Cl!/Oa1Q'# " l++D5+/"YyH'oc^/I0_ި6OKt/ϧƖ}= ^\f '}\fC3[*uvcn7owO(XG-gD(w35Bz`Յv( In"T|]3 h8yΥkԨzPH*mRqj!$LQZʸ[fOA u,ޛkK> zvy{¬ߛϢ5;<̱3dIXVhʾJ>9nB~=ixUe Z ~ynB+C%wc(^抐 C:dt8#ab_+|Ic*h WG\ XDA,61;G5~&~dJA6"%5RLUClCAt{ l ]Lxm^.+X}ԣ@$v[KDUq]%3\(@Ƶr΃L I{KNEs=!Ǐ@)ʋƝ,װneF b+!>)qwwGaq3YUR5ʀ0bܺtJL>"a>-md;f1C,>! 8Ac8Y "q_\7tap:-I,4~(ʫnQG^an]nUz?qg>CKarnilt9[eԞx@3N"vmmt!diD)XP_,Tl71ٙF9[9>GiYh8-Ospx긍[q$§2 ͉Efsh7Ƕ&b#jX;Y4 8YgPѫ& Bt+$gĖ]soe}bJ B.≦V1:IV}T1"W\M|ZhK։QВBJC?H9<텐W-;F%^9ɠ^MnANEH߾m TH4mXhJ = `@5L@.ҡKԫikA2s4y0zG/[X = (c Ȥ4؇Q_E{JM\@'+'_~:Aۤ{}oIvhРm&h7PR,(Ib7*=4uq 7w9FϞ͘|Gct!{pE=(O#8)X;B޴Y8yYxԖdՋ0Þlq ZCwϝ:*ZŜM[̯oyQODUF"fD}@;rlƬM3]z:4ݣD`jCu#o/ݞI0Ϥ Gx%4UU+{eP"^nmA9U,KnmijNp{Mu8r]#(urU "kd?OR`jac+ަl*LG:{lV_AEyTw*0ER6G)xqτJ2*K-v23=Ӆ{q26~:ZC*-9| ^VzGi[{-KL>OH=T#Y*j%6xES\Fr\z9gpNip`KcF(5W|3li^( ^ʹd>-uD$9RIJjskcucRqGYxE =wܓ6ǖfb<5jHzfv3? #}p6mt7uDEĮ+¯Xa=`J1&G,ϗ*boYg(έ'5s~)O=y<$n-,#؆"3~XD8Y2kdZ؁obhMƟgM AD"!9U=3z+U%'gU5^J8BRc D|Ż&x3vWy:J[Hux7;q^20G'_J)֠0;<U[gGzOR3| ;={aLΔ{Xˆn"5KW\9E4Wٮ_ zi}UjXO䍬weDIٕ_'j ni&B68bPU)0kG*h=\\:rd-"^ T(!R(MƞP"5T#a&=1N;yG~`jH4~ U7MOFIL#p$]T'ط((?b;IQK#j IbXIڷAaнy Rbh˼#{ԏa|O1^xR/4.M9m߀b^OIQF tR\siv{),3* ܨ6KY1!R+ l4D2>d ೊRΐ" Z|ئl.;9ſ nF\ivY.'fcTE-|*Alg$~gv#5 /zc> stream x\TGܚ4KA6L[8p=7@)].ZƮAt1I6%!&;;ZZGmg>7{3w^X1As  "\@3șG7MC4Ag48sqzg?jXQ_vܐu곇E&VO0晷ƫ_fM^\ jyh-vW6|Xarw;>i+ f$<9~=zOй aal;)r[\OtY bvluT/VhkÊ믡}*N!A%?_7*yb$2خkR"iR'O61@HZ#%!3i*S-f坫I?>)~= \3 ؒvf>8pp s>_v򰋭!l/JG._~Hb43fNM0vxf*x?(O,QL>G'EvS'ffE4M,R4 }8YjLap@u[aۘs7 P} 6%H甖PG6S^~ [Wo-t`*L!iݣXBF6 62@ԑϹ 7جp=N6A*&Y$:EΤ_ԫEIn3wj$u:bes YqpѮkv t)$Q aT ZnQОRlsWYs?@nHtP$bD0O 3 Cz:#-Y;6ic۶b=F%S\MFʣa:~fRUK>H BY 2`TkҰ'efEr,\q$Gvڹq(I[dϦ6?*E&*&CAO$el`H1\Ҿ^bFkbmgaX ;ˠ D+.N4H-Hmm4SK0VsT2+܏7ql6fnQL@6OeB@C;IqJILoTd 'rkܡbQfM5 0&q,e_`& aÏGݩ Y"BZRZ,4E Suh9"E2x s1nˁ:Z4I'IF:FpB3JAֲV@')rEx~]Uԅ \En,`,iOK1L<%~7$5 ThKbun/o֑|"^}5Y:Q%I{Hcp`eس,aβB1R һOV}`BVN7~_9+8>b倕QT6P>;ۭ5$j"XDox^gLpШfd<82.{oymU}xqJcAW=B=njxaƖ}s:eeNӜߗIuJ&M9)=9jYt)T\a5Aalh+b"b/ F*5%4o@By 1ryf+S *SCRՇ Ր׶c-2.=6Iנ6r>y1Z &=}99ȤؿW 5;eL@S^[R~yA:.Bp(s[PV􈟽E̞̭HX9_ >wW-!w,w hY4;f A&$kTJј{!9 w'#q-~@ x;Խj=(l<"xL~LپGᨳ/f3Cフ_#=Aǁb6+Kw+Õz[33D>{#p飇PD9_x 5!@uN+IҚ!Ug/ +xbu[-i\5m9 'l2z ,v*CbS+ \V{Y]62#U2"oO[ouyKKKSmKvK֎p9Mړ~3+&>?-*cJI!!}ifNkZ=p[U4.fu 0{Ƅ'fpgM1t">W+<.{endstream endobj 568 0 obj 4238 endobj 574 0 obj <> stream x[oTĉH$e G4Q6Ļs\l Hsٔ*iŮR)JVv uYmj.JFeKS²KlҪ$S?O;HU͑z}ÿ7#-KYu \3`Zj5Co5OuWII؍V=?q7FYj\lo]hn;0VezkӸ>?枈oN%`S߈WTz߸zDqT"JVqTD,W:>f~jbUAػrOxFRxEJJ뵵yOG=ee;˷u;XEXm&(q_K"ĂL?ڷVq`}BxXdfj?Ob Hq[/uhn#hic/!fJY,Yǒ۝RP*5!B Uk0JK0.(oY$$$%?ۮ(-_ւX֚@wbȸ/@ڰbLO'wP7HtY/:>RJ&W{~ 0ƚIb7PW=W?\fyt17w\<+}>z/"Є⫿<`b$Ӳ} +ύDֱ+r1$9#? <">Vb$EH@B+oէ'N'4ڻP[KļSės"^6kXc9a Gwc-~9ExR"/"YUU)6`m-<u ^ǡ_҃<6,p_' c}B4r](s~ U]6\C4,j=?o LFLa/瓗 =*9H\&Y` {^9:stď2|eϙ ps$o3ItHV#3G"6@dĜ߈ˆ3U4A[}é6l[8.@~C[$̌qvgؐ0hD=HVgQT%%F  %%^o,BH(4l+ MN0 '3TC@ $Fw~Hw\w&S#E.RdZ_2`7¥J4}.Hd))Uk v_]㮊PYᒢz>g3,t:dɊd<N<8' 'S2@6Ȥ#Lo@bEdQ5}ؤ 'F&cVaAΉ^a@7|Cy C%?k$!Q _BlPՒLFwji[vj%6*8AE'SDG>;Q*cM?D^ ob cL_YDYN }y"#BC㽩ﵷUs"kާ W&obz5Lo^Uu+;-MS򜙒nZ_]liW[3XoJ׭ҭE|3H&߇Ji>ߌW*cReq-3|Euhk@<zjQ 'Y5W`*zg}Yjgrr[«*\SaB8oO2 vs;1bS{kAB"w85\;r$܅DѶRzR Hٴtly!W!ؙƛ`_: 3kQK,[uB(tЊe{H*w\Dd*OS8x@# :D*VbrrtIܜo-zM@Ht0Ar{]12R;Z6oˡO莱 ļ$̽/>*}k#3LFsds i rSƋ+:ywo_|gY 9x{;xJWef0uCN tS`9NЀ"5֯8JI rhC"MaT :FM=:8݈B4M'3W$,?(ƥ5@-B_QL/D,{]WGzW? h\TA" +8jcAyF1=;R$NBc< 8*86w p;69y/J!w7xtðEg?fۊZ 7* a8F,1mk; 0heJSia#|bָ첈$8fe#hZ_K;j#KІ;+9̨ß.Q){L `;a؃=\Ԏ-IDf4':`C I-dGZ%SYnɢ6ycoj1"3ѠvE%~Ibŀ[: ^|L(\h7*)\= F/5[v)!&.ut0ݪ LY%*AVJVz:}ʳL!-^j CҙWylZ~ LnosgK |isLpjN-{8ŬO>[),Y;}v%QdBHaxuOĎׁwp e̙//D*xY8]ž&fj/MvOۯiM4׮7D%ڳ?ItUu375{Mg\³*`hW(Y[@Bzm-YA]H(19*.߮"W<:$޳4$ }Gԩov/t~3N8tPz 6ZM -j¨'Y`K1!jBi;GB Ġ1hf|o ʓ.VU9(QlTB# n:YGwq&mRMܤz+ȴqh+Gf> stream xZoT6`K҆sv˝sL׭[,P%8-nqTGj[c7USRgSݵ*;3g̭9^8]5Z9D<,r.\=;Q=JI\[W;zvF wFc|\޿/;ɷog^C33CGGILVO]:D(  Iܸpz2:tbd3s.I<ج\mHnurԥϡ}$ $Lzڥ g{YܪoշK&[#iV^~ ilmOh$YE#6WQ.5M0P$vNUCh*֍ב9Dy!Ύa,ԲşZsFUP46HDI(K6yC$jW[2AoDX\kZ# TAccjmLZ|m߲"\<_&-6Q+ĖyDž#ضd;eQᬏ4GLJ {|foo-:/mp7*+IeRGm".:@-A%c6ɋʸ!J1Pv[/BT$qfL9P=?"D>MG!8)ah)iVG(jw\_~%6,DEƶH`ﲎڀc}B# [jחwM܈A46OTPQv$Ժ]@vIfSAB!_!E]:hRQL%6teH-J`g PQj o6Vv ͥͣYſ¹pkZp:?N=Bd~qWF v +H4hw,{ٚ4Om$;RY]LKk%IES`j:DӜfp ԞX cn\BF\aјޕ{^Ǔ)*0]Ԥ6iknFsV':G ?x^Q0 ahT>Ao6@u S؀1^~7&xS`[©7dR5@*/NNvb`ki^QRmFl h~ WPCZDHR$VQ^4в h=咡P'{ؖb";R ;3|δЖΧrT4䗣'y-u9!;[en{Ad!ax "$Kr V; (SNEd>S FCFLA&P ;&8Wgv_j}j 4/1rITy+2iyps:k1=J$f] T+/@Sgy_CF^]9h9:34#mѕP"pH#-eg.yetȚ51!ۮc47͏{Fo"V hǮAv X!@]S[Bj1pA#J8{Q^£>Gl00)KT.T7V>#=l !5%Jqri~0tXB{pVuUЄ㒘%=4LBo\3k˻[šLQpHC:j0GAs>72y}pc[ O˂:`qз~QUWXIE۔kןD ~}@{x=07 9QdK3sd_9]86I4M<}gό^;7VCŐ0_E. 4м'ލOVMd |:4u>B *ve8J^F LؒʒKhmHaAl?ԊkR GHgl_0/G?Q^Fӯ";j3Hq6Qsg'qG_x/dK H]G6 *J={w=mQ8 ]ިiCQvk}W`iL:8FBغb ɡ~?NG9Mfv| *T\?Eݙ ?8bz!g?Tݓ⳾"kU$P'4~Ohw(D)QXD v8')ϣKbl˩o0JҢ3b{YƚEs>14lPbn-, }e946yA=Y2DGĵqtȕb̮;Ƙ̍K=L2E|N{&ϴif^FÈL{bZ4wz~9p P- G,fBx4gB~KI#uBUCdo!536i+ wVM7 ZEH1#<|CShl>{=s'eJ$iTj$u+P8wv 3RIϤń2~M t+z8ܬ9/i{+湏PvsFi\zLz~q)#J^õ5Gب=8`䓵5\G^N aA~ח^ ecȓ`ZM0-ƹon>~դ^<=2vteB)/˧An'~zT'Mc~ MIcK̇muڃ0gAAJ?7?endstream endobj 583 0 obj 3358 endobj 592 0 obj <> stream x[mo&ƠDF$b㎒̽smDAiiBjPB&^GnY9O=uܙ/w=<9]tqo̯_[^q`݇kfk˂X}h Zv6ó1Q4Fg-\:.S?ԑڳ7g,g VolS[_YqR !q6o#[x_~{ |=hV?VCR]n1d=3-L2.#i9l>XI [j:[,3ʃ V#gb>G0Zh٭l6W\0zw]9+;FS̀%8Rq.+feqI˜C4ÂҀIСxKq0Zx1z?>!r_@UA-"*Ty%rDK/kr=9fQ cojN<}7yN+3P@۹}J~V ܗJ4z@@d!3Юe:vhO|oo?$YpY=?:vPQ᠍p7pV¨b@`k;R|EY@t˳KX:ccE,tL0M&CJ}1+ ye~lѼsC3J@θJ:_6sIa3{Z(QAMRe. [EXv'=QaaU ި u iYJyvSTGAd0yReht?IEz/*^ ػW^{^{¼krhd@fWF܉$zVHG/T;4[M}G@'g@88+(We8s3p6y> (nB݀@agpβDOi1j*E-o?Tm0nQ8kDSa+"w.X4Z8:%1忸n*~O(7@/N_]x@Z3eS&8(o7uo{=5-5LUl"~<,p%>cT Rd 6.H)1 nA *Sm44@/!Đ$"A ٛ/,p<<4j 4-4;şh%]Zv>~f25JWJ}nQon*0t!c8Pb H#TRł[yZmLR+s cC$ ʌ ނD ֹ~|}t|_A\6|B :A%מ ts ~1*K1A)" RE?ܜ5uiX,#Pɬ7Rxi Decю2|8f'b؀o72J4" w Z#+ 4D_ck{ 5j<@!9oYSfmHz\>Ut 7pr3vćMb좑aqο'Ӓv3 "}CJcqPO k^枣ᛐ@oLTvZ 7ktEfeb$6)%WҧĬGgŢRECzwl\l %1fn{1%h}(Q"ݗ"^/eb(Յi]Dºw&$S HS}d eMmUR蔴OZ03abhi2]JXBCVVĢfCue93OD´MnO‚cdbHbOC vmlA}]}bs% 8E,y17B_q.-:̯q>jPt$qJ~"ԥo9۟ao"p]<;Q4xjoYkfBUhS@srQI`ڸC\dyU4&u@sSan,zO]~bpT*Qy%X^ }i>>(>Tw_E](42nEj"E4LP" G#_@Ji!OjZu3-mu4{Rx$kBZC6vl;$\cru< L|ҲrK.#%&'zhYAI5/aՍoN7S#>A4 ׫p0b;v28BJ pʧo^Ge1Hh &j,;?#.U8Dt\!Ί45Bӿo(hҰ.2(ݩ.j1g@oKLU|7E;η?;endstream endobj 593 0 obj 3927 endobj 600 0 obj <> stream x[mo\6!@c)USJ[ӈmܙ;s_c;qݺ1 Hb*Hv)UK]llxi6)?Կysf!T|{ܙ3i?#5bf4ҭz#lcVr0Te4Lnl/{ps6a4Fw~ C;p*G+bE1DʺܔryCa$ۦ=AlSˋ'S{*83kHyydzOevZ.)0`ȫ(~nfP5V c1(8n+Auej]aΚ}WG$c~@ŝ́]psQjaU1A Xpq}(қ*,1qKXS8D=[ݣ D ?6Dn#f=^aa}#wX$79'6$_m34GUHHNμk47n\kpg` w.;7jW+2 A4 DH]nh.خo;z1][;Y=j:t  jfѧGZ.E{A!&: d)cugmѤ1W\?nP2I fCEdMKؾǶlmCAd}&dJ$WP< o)gLL\LIag<ې"ԓ kj8f6ҹm?l!W!π;G@hl_v: 9,4cO`0S B(-E [" mEHi.^%P};Q"8~jL*()(O 9TI`S0%a!^tH v.ov #߶FlQtO `s؛ʵqΒ>tSśM~j!&%9Tь(4؝܄hjR&9qח T[ U'|r(F toǯ-q3Bd)֠S\ϐ"SmM&Tfe15Ѓ洇ݫ̨ɳ3dr Ҁ 6Dt!2F`ԃr҃rLs(Adiۺ %5 #MNK=:UǽՐ_ $&)e-b./V쪑**#иDS j$j̮ƃ)1u Zw%ՔWcѻf{kt|+Cs}pp_D, !Mti1X#ޛo$bFz<@qM}gS&PԄ1os4S)*d'Sl|p֤aH%@,O1;1-P[~ghӁz{g3ڮh1$n=}w#q**αa{iS@FDec)&-#iw'7U26/D0> DuRyX}Mb*z[J\;N8Z5Gek/ʯOG~FDKx(9$CC1É];w&.mA!(Ͽ͓!,vjS\)hx6)J8]d8~Z8 c-M  3#/U%TE˨PU⣪P Ĩ_qt?|&KLګx&0&W9 hJK|^dNeܴ&H >mJ2t: lnʳ09֜IooXu*d="p9. ]U=;B *<1 :]Nq=BIaʐ"Ti6_@ΠuZl*2!w:CLJ~Gз B)>zSV!ƹWmpkbJІ;.잵#_[trhokDdO;yD ZۮCtUr%7e:orܓV?(J)w8g`jv*!РO '/Ok;:H%@//( SUaVu\^ 8 :R}4vspDNWԇݎcb9 ǽ5yh{_˥-ƀBBluq1mRiKχ Ĝ3&/rdߜv;,'YT G̎@{.7.g=F̏ݙn$3dҸ {:Vy.^uyXj('vYoߡ}\O; \CyEZGZRTQETpkQn{l Ap'I^@y&/STG<䰸2)dVA)y V]#Ԑ.,P]fڟFѕY أrme~ҌJ&)Ԭ`39:m.R5RYsXףX7_~bc af$BR℉ >Y׭{*86*_>V̈exrXΑ杵횲g9w="H,ե% {<'{@a8F1{aVPwq!:)BM;LƂoOI]#5kELLgj1˩1U:h\tyUA8hT~ @NG[>\؎Lϙ8o(ERv|_*EU^M]5+5oَ(7?zDy`M@y[g#xZF|xH:ќE%8m>>|fdv luYptLVX0l1k< *8&OHR]Rob 0 HH3endstream endobj 601 0 obj 4116 endobj 606 0 obj <> stream x\mo ABY۾5q.U Pn@mhںI*ulG}Uq1UC??ٙ9{gk;U$;;;/<眙e)Z$w6W` \9a6?aA&x/8E4h$pL=?V?gt?*ǒjs 8Jo,JHxE6A(Dͺ^iq,qwU AT#bEU.VA@h qp>羛=Q'2G ۋ\N W1u!zK4EŃF(g*)A'q;3fy]`s`ilUT_EF>q<7i^!62(K8e$ q-Щ45!duL,! IcՈTԔ**EqV!Uh :.x?=^#"_.ZN#ZXh sHV}B"!%M5C>&1lT35Tz}L%=#+| C>2 C[L@ITYLhnFq$r'1xr{V[ȕ2p9G4A:BejfBEB8LYk]<|:Y"5ƒ Z져f`.UDγk7N2f-D +zqd4卵i?hꕞҳ^I+ɰ2ͦ,FESHK׏y#HB(\/ˀatRqsXh% eRǿ+CeJzLozL߁NCkƫhUN+da@ݓ{M=yNfsj[ 5ò5f TOa ,/>O/TG|n݇>XAMD'4*=i\7ck(Ǚa)2o_D(v| *ȴ }֢baQJ l@nчu@ꇍ@@ N&@"jyz{cRl*9ҵ VBm`6ӂY|~6*`EiQ!H =6J}&zz]tlc#֛#֤(O6_#3B)+BvbN# qLn`0V~6jnd͝Q#轣_Q?Dp4hW"wWXz=xV ΄⪼#$1*9Hl}>ZX 'WGOb,#`OQ{p֜TA%| y'"EfHGDOd٘3@ G͓hq6<Ƹ 3BX&#sN ^R92t=5,uT$0*Tc 8ӫƽ/t߽s[Fvny &ʞ;K8}};5aC9)L\ä́N 6N"&Q=C=0z,ko\eUu"bi]gPyԺyrIj؋1 :o} Y %+փI- oS4LX@&R1br9̲{W^mb K]0H1v-= .4^x;75{ hPB,>e CLO3cnHWhn .9!~⤬bqw **@ڳA 7ȋlPH0ƅU"CR2;* B2k[6.wsKBTrv Q!ìdo\O3wqQ7.\h\mg~#]ͧs*߭2P8x:Gg'՜fZliJ7/2҆FmZN!> stream x[ksU.P 9=0e^ d4!M:B+=6 qRsLt$aEz{??/>q:4g.y]r~x?o֩S*Sc[t36Uu~Di;cBf)RSQ.WWK^_b?dS^?0V?,^g" 8SW O1 JlEЋ)p;V*KV6?q"aȮ`3+tux\V{==}V13 O{Q(յ5y$lG_. ´E]곹H?^Ss"KSůgԂ~T(OR^<&*zI88kM]`46w|m Th3 `iue9eO__9ʦbV૿RL21N4#[~͜o阃coz=mu{+gm`mxS$̙I#d%?6;:_Vncm -]Z:k%sεn,Rslo)a/ܬ! XK$1bhkyw KF?;S-b" "=zI}GɢHCŸ5.TڦHw]f@70M1B1$e)ʹ5ij~L͖"3zG r7R G,oܐx~|QӃ&&9o6Q$Orzl&Ð^a/~Wx,p|o/TT*SN3kέѿFXGD-?SpW^ـQE(S<K/",iʌ!We'ړPe{JjN ]*34}O3s(ƠO? HJ@6\sX7!dEuy0AFMD6^aiX'R2&̇ȣ-w4ÏIfi&[A/0Ƒ :jf0EN!1Ѳ@ZE:̒d9"pK70Җ͈p#A h;D L\c[Xy"&(N)y(*KkC4H/hJkj HR WsZv6/xL<"|K<{x,p+ߒъ}0|צ< a mI?? FQɯDUݐA%HX6+L{hhI; y2DXSl?+w߁nʞ黲w{T[2{3đ;D/e5 $Dc$`Ja⸒`+[0ބ-Ѧm׀ru)ytD.I^+ P+ٵǏW".NJx3>~$'34qnm(r#C:Z>aOT~ B;ʊa72JxT6RWi] )Tgz%|ztCyb>wJ1Yn#MͩsAt)Y3{hbY-jyfEPA;$rB #1xq8L s\fc#Du$h'X7őB!NPxmT9;h-j h%4ZqGɻ3bSȻY,&ܟXzQIP`v"R)⢢oAKy(@_> Og܇)(n2WM`{:\` ƍ:h )@b榆*9%cPv91 u b~sś܈ȉCCwRa#H1pٰv]1¨XJ ' 72i2HGX][dZ%.|+wi6-vPI۴&e$%)h!kEzITCTӶ>h:Ocx " .9d,Y)Y1'ݷ\A%g)&Ѓ<|! }E-汅gO+hT[rO\ppz'᝿ <}IAygQ(:dQܽUc=P1]^ח #78,4ʟ/)r5\IMpG]IaTY7hS7@`F~\GU*s-25y=ԂYjjqT:Dl6cQ0LI|h" MO"{lxeԂLD+si $2^ZVm29 A(I$.5IS3vR@LZ)ICxvIeud2PA~5ii]dѼZ?ziѴ H1 ^ȭdn!Za3ASD/ж w4-.W:Qβ:-[S[MM[OD*y74BƜ (e41 L|׸5)Q.8֡[xy,%4ltK҇91Y|Vzk[`4c}WX,(>[S>}#蔩Y$%-j]fΧz/-TUv4L{ 89q]Ljdѣр&:DU8%uF3x(|, *A;Ο$ġ=0^rAԬo󣒨h.ˮ9ۗVL\mGN[1@w0x5i\%DZ^ ~vx ' #&0&&2waipgpA)zߟ8A^0$c/û:#t f'tG,,uEO*O6YJt̩ZU '` KuĨy~#ieߺْ4,U8 貿^9IXM o(jc76v3KϮt$^,1*uӆL20 (%eZMq`ҟBo/ kSt\Zެ)uLnD}WyCmaq WL=bo+wFM;P[3m42O*]X hf^(Ht

mJ /*j$>kى>KydbjX)j6vs.優*&VԤj*\}w'#,fcߢ?IMKUFsI!As%;֎DwF1@:2[GXz ]YܝFFѣ6IKzfvzr6w˭u5fy"6 pmJ}'˱jLCwjK]?+?R2 ۘntAt0iƳ8ۗTlđf^'< 閺EjN'JS -{ .2gEeBq;]Zal}5EM&;\)![}xPSۖVmkvqqS{y0vmYE_?*Jn+2,P쾀V!>1yjcp.j ٕ)I*x>\#+Q$Y_" n?i@}gM^Dha"ze9_Kendstream endobj 613 0 obj 4263 endobj 626 0 obj <> stream x\o/aIrTlĒX3wΗ ]"n@RPXw+EakDױשw[~SoϙsgvvR!Ν{=w~nŲ'eUU,)h]|W-b]^:΄cQ8X?<6.ު6.χ|z*ukܞLԽPkmbC"'i/{l|}! gx,|dp}3ڭZ9ڠ06z=5[יo[P9Fs][~}=e0dtHDK&"6( +q|MI oU&?.Zʗ7[Τ/׽}uoKLv@!M.zǶj=z//)_wЈ믡VZkplceBvC%!H4GkD_[N%|I-ϰARb8=Zin-=&;tГ;{dcz AZ\CH,ҨE&m ͣ iR>l [֙n Rqê0ҠZW]``Lз&ꓰs0*_k ;SUqD]2h\bP0@߹ݪ+ h 8|Jh âte=i`fp⥁cg _ʎ~[ c2 NMΟmO*o qykۚ䋶quI?r=.>Ze;%Fe[#6!' P\(d.2q(|pLL@k֨kh쮳_>^i_⻿YJ`HRho)$Rt |U('܅5ܟȭZsh>L?k 5~1d?O^[<~=9jtI1hB挵eWj T#6-7 'MSAIxlMRAJ@s!5K'8%M$^txv&Qv*7k'S ;ER>/r!ȳW KCX\S|Q]"Nz")AiLDfkd繜 Kb a& YF p:wկ4:ydrH2KqXlfpz8KX@mfgͭYE]lk9/KPrB0=tLT L-V=Ry 5>RTDpؓfAc"drOTP͋psmggi鿈hsy Ubhg<( 4x=) ^ƻ t#:e;B>?NxEy4͟J>Mn ԡ l9;,L:kimqS_H~a@'ዦGC=*eGo DfBq{rG#>3gPKnL.9N!:nh,Psk)(w}H:skvVUfL68|IQ7EڇڏTw)P~V%WEbpQ®v0r d/a92}yS[$/-gIAȑ>MB)) :5j͐{g3xz#78J t=ʊǚL@q),$5Z!XP\j3osu;UF^^ǣOQ7`s(Rir :H8n(ѰRDg7ז,({uZRhQ۟ZXњl!3&t¨i$UEq,:t ATȵǕ@"E4菲6;EhCӠ@nd[MDx:2vhjLV >\<*F`Od LaM8HfL J!Vŵ%=i_!"NjS|gx*z/EU$(ʶU5ƲuqP X&Y-{ K)pMq^,d1ocLfbR}זٱ~ hzYs7d;m'hlNJNvg$[t!ppR;& :Uy8.vU\JIbw#D+bh~i|e.! 0,FFڽmiP I]="<^Y["0 }88\8P]oxZv8zJT+q%)s=،xyz9hs(3͇Dy^vj(AjW_>n8q Q\Z+| ಷ Q1q 2_ Z>~/-ؚ BE* L΀Al7Ԧޣg6U{5F^~% ]K,@]OG35Qc{Ҍ8p階;''(ꮢ丸JĸH]7yeϚ%`NhfZ9u2ѸZ0`Vބ/**DX-73yxlD%i%׏1-~-aYrw,ctټ>% h{! =SQO2:hħ'Fç]pnYѾ(a= O&V=99q0btov@wYʑ FfI`g(Ȓ":it"K*ʂvc{i3QmVQ,j-1if邊U"d&8E7Gp/p㬉#F<\G&%U=f'9 Xm"gfA#PaN&qiV;,da ^VLB=䂸-۾qg\grTс8Z JgM߀pַRt fJ}{n{7\DVh{١A u\7ie!:+@<;G|u'K odendstream endobj 627 0 obj 5040 endobj 632 0 obj <> stream x]Em{k&GbOwvvKEj"z1V|5M?cC m) !//_?qge33;w1$-gwy74UB+#,xnoLLn*p%x~P 91ajNx{]YL9ri Su_sЖgCjwVo+4|z/ ԍRbDmz *!h3Z&X3e=}믂XAcBTaWj, 4KTTݏABAw;^Խ;Y3\^pva>۽/P+Yp R>|YKʼ{S\i(3ȎjdG .+KoڑͭB=hSC{JߊsǺ"`ZGQ/K)PEa#FnPnM , `!..|SgQ?!`?)TV sc!a=YvGx[KNt3.GE^>1H`1<;gq˒)ͳ~ŵٗ_!T,'+a_o38;:B R ~IM8B!\8lmdzPWOch ģF[ȱE O/ 'K"<Lj/CE1gqj@9 @ʔa@,B4j+r "k=])? w-eڻb鐎3 d٫n:bRQPWmsD'Aj n=IAj_$fmTNi)P\:Ӕia Vs_7ES*"Rw,AyBYhQdMlO b. J!e((``jDÝ%!@BT<Ӱ h>v$4W䲄Dv$H9 ph#D1H_.i`]6/&@/6̺%2Ūni7r (#HDbKNx%x0MMGy*K'%RW/ V,z_Wp3G}.cOaY5 }Sj^_2lkկ}EY-"ǡt/Þ pI NUgσP=Bĥ4y-h>4RӸص]` 8}!1+AIA(S-\NA<'c~[A*qB+HEKC {xoC(]nX>QVN;+n3 ]Dڇ2k"aaU=\7QM͡ʖ >- LY؜jLb9<%f=9,COz;$U&l!୯T"SS]Q,l$AGMsEUܠ36GV$7U5xd'*T؃E'V͊&h {F{O 撽_e- bꂭ>q8G4"鹤(dO"r0ȥZ&*C%竌. F`Ň T ƂA݈EE q Y"hpU5̑o];,KޏwH*9P 0ڂv.! G*fwXK"8#:ʔY|TFTh0eB a'h$4Ax )<h>eU'G؇o]5*'-P>*ٓiMo}M ZA"`\HRGzKZ/1~|9<VZ]ʼnq?v(4qCଓ#hg]$4819zѳ1cnǍ厣*9sȍUl8,) %Y/Ʊ[8\(DO\mEU] *lȒ~JRx?l`5p˹7qFQ6u6ݼ7NB}:ZDV!5)h@h2TOz kPzhSVM[+jXa}PI;`)jSendstream endobj 633 0 obj 5808 endobj 641 0 obj <> stream x͝]7Ǔl(%-A5G%PZѤPJKTT@%⢁6-$%k_ {*3yڐU%Qݫ+FhawαMfVn*&>u/|}ګ~{+{_qq ϭ~7ŭڈ;vӊ;UݦN5Y~+2jc+]msꚯ۴˯/}Ow?+?~sV׭:8~yQ}yKww/{vn(֞oڣQK96=X('1c|~`yv#[? #MMWl_Td`` vӷ7HKV :~n+{Qz+RXLvN̓ U/@5w3ĿgN{*tLGs35ȋDIeiZږqY;MSeYr+H=uYMKX~[5zw6֯LxQutSGt/{u}w5>5h6ü_q` I052o9<2\Y2qq>{`,/ cG難T Z%'>#F`Ax X?еxo^kS<'1ŤD~՘R"^,Sm)n#ړ ȾF_|ī4\*:Ah.U2%L-b!]:6~95guC ɦ`SuK c){Vǩ}e { '=40xDU*񘧔Ɣ^*A21+dM alXueQL 3#n!bɑaWPuUE6~}UPuUm{b 6:ܣ^QJ}8HR'%>K{v?5 ѣ'$歨F6pǼhMPT d8̣kxK<'+=R*/z9f.^pIeh\)'Y[Cg`%#Y*uF>ިY=4IOI4 +0 aU°bJf̰:.$96 ąZRŕ`ՊVkkC`~+k5iAx|b򆤰}>hw֛[" l#4-1SRc chB;Ypymݘ&OeuY/El6aNE5M7!iS\,0G`9]_.\4d.,AS&{Sc柿d/?e%N2[DS͆(>5h"^14IZBr9,5G0ы*Q͎DEuW"VqJ+Bu}~rrL)Db--(i4JRҴ oIR2Lcn&cq 4QKhBUB(iHH=*V ukw_0,ECCX4 R+.P"*T.BV"##?><:Bqv0OOqxj3E,1;#a*e$xwHH颊T`n@i nR02QEiDd9TЁI^'^~ U`MǬ _@TjL)'&Zb҆44:#-WZK|HlA6nT-$g@TjteP;eT{(e #T]c 8m ⸡JKb@ SXH[&mK^s4U|OF,yʇ7$: K͟5.O%JT@"&"jB,LGpAVh@A˕!`c7k<&`#p^ȟONxeV?A1~F:uB` TU)˅)e㥓rC\TM #K<ةwQ8+j_E|dhTJM^M{o!GmO5ƛwKTKb2 Ý0pHFZJ#N>ܛʩm2G, 3:S9L 98ߢRنI|!t̉%j}Ć@/&D郿(bH}e~JI`yFSJ&uɓqEhII UD;< .ͮ%~]mT;a[nX3?྘ؓjT࢖) 8jv HTd9\ c{J!jY=a-Ed_EnL\ gpټ$☆ sڃw"S#ėD*, Z Ψx n?L2K:[7mZL)esYTґD6iT*M8U~4+SJClUSFF4ܗS3q_/ ~ҫc@U(/C2)5Y-fpdlՉsDU76 (ZJZW9 Ӄ1a%BRxB)[UPKIRl02lFNh`),e3IJ;+q"0In4CЩqN qQC*MK%JS HKjRϱL!\upqiYUL2Ex0l2urBiO[ѨFhi^֗\~)Oyڹ}VTD)JB\ Y!V]p겫l % lOaj)]On 3ѝPyŴK`jrv'wD@SCvM?1+/5ggO%xtwdUC 4~_Btt܆n`.ةEL?%Nq}R1y<.=mG} / ytPF~Wxt@Z޻`?NTM蠦{Dg&!vUWsSv: |;~.;6xlOr|ڧC]'P  !i2eNxl CpT2MS;b)] >A8!9abɴI8*8 Q+ҥܳFrs! `(^R3ܩr]4{j3/W1&& lbJT )jpfw\R0cݥ[*=#PTGhncNP C}UvSgW:j_+0HD*Riӛ|Sӗa\Qmcƺ 41(hNj @3؍*J c DXsRRx.A3Q/U/ 6D)fHŘ1KHڂwΑd/-7EFJ.!9LL9sIU*&Uv9;UjÖFޙ(ĴB:{bR B٠IW |p%,lCWrlZ'lG(w7,`&B5w&3Iϔ?#AYiK( u*+;L [/|^W&9w &qgO;.N&o' !"o1쩳-A>H99W5+d>^य़^";uб8չGpu8Ҕ4ڥ9<T,Phhv!y2Vo?xoƧ6ƹw;it:;Go}7It>qEKwn >}pCo]_Ӽ ~L~ 7MWp_63ڬ6ϛMWwOW{<}r{ ނܻ>-qӛ;sw}'WcKt8}.?v9JvE(L+m+ <Ֆ:qWp6}ݯ_u_ޮ?p- ṸXO<33_W34/> stream x]G^ Pil#X*&V1FhREc %Ɣ /lx^z33왙3S pww -*G{ۗU͊?9MW݂5xE[!g+d̷h̗_~]_|~ޏH#F٪#U o4FCˋse m%?7+hXj_^^xϷ<3\|?C_|eo/^zEJe\h{>,j %;//dJتqO <I?o/Os0so1U 1HFi EzBz߂sj4C۶tK|"H:1f֍ꆇ Pfظ2 s&xσ'_g[U bKg~<:WvzWQPeXVo=u~3=3jl|7u~p9Yjohf\[1@}i .Q=2*b7Jp1sWl/^҃.MVGM#S`^])07=z/sCIo+? T,-ۖU&~ ?@E K|pd6K•l lK a !$9"΢Aڡh+b8RbIl<ƶv LMi 0\Fh.ÚpE{c@R N)x"n[G!=3|`=N~9N Y1|!z7iيmذ(M ߶^L3Yiﶴa#B9$ϒ\'fOPEXTU+ ={p^ʌ'W)3{߯/~LUJ#&5{H#_9 '1}" tc`6[-*+F\IJp /\& RY#! om'{lW.jrz#yHR~IHׂnod>M3s ' }$uT|dɥ#E+bϒ8IFO/PP0˃2r mjn]iUQME23 _]U8o9~\,sbXW"miXa)7&4҉ݿH@鑰**>u(vjZ?4PuMο="k qw&R<\mW +J;H[o<擾7Ռ_mM^vHcQf0 aX;ͻ&]O’5wIN$@qQ$vS[M]5')9G`S@%쏋;ReC^f$HF׬8W"v w AᐳxKY_T'g9 ]fhutf6B"SkjJAS㛕!>XcJ ;-c wŘ TB(+ ib"CdJ2("W \W hi->Y2|rҐ׃'D5.Hi Pz.nq)MoHh?ha KEŘ S}i@[0$3@s#K+=MMesǭ{׬nO.J*:#ѐm+Mjju%JmL CQWmɼu{350IV#x\cQ Ij%1D(*Ab*x`sBKCm'TEJ)]9;))\dIX'HIW`dI"KnRDgII_n^ME\ǒRbM%!IAq,FRFG!ᐔwQp1X&=51/M]Ѣ 2bv831yzxş)▾2OM \T\2c̱TXuRe3CuM 撐^BݺGZަ{"eBL"n\{¢p^e!W[ H), Q޶i/6096XI$JĨ<:#P8djFT5EgBz" ުqRT@ҼC,vF\'-+0L_]#ë7mv>b)J.*Ņ!iɤ@G1$aTW^b@M !(y t-pfc%FP"w$ ,˶gV%ӿNY^#?엌Z@z뀵ax{-_ߺ n q:sH>}\ý'^n-᫓}6kGL頋Wo~<8qs\Iy8α ď1W߿ g(sd}siTEۃ;Wv[1Lq)`;nKJ1m u".FDh˟Os9{ Td"Ǎ+-pݩG.KsS3IzB >vo_!Z0ߏ{~~3mKeCb.f; yy|8T1} Cv7sijQ-`?`Lendstream endobj 647 0 obj 5558 endobj 650 0 obj <> stream x\[o[וnYZuhcKsI: !OYA :@!eQ Ô)j* zc־P1 y.ַ٪Z R?[[U?Si>޺{WIyuiO6h _|vghg>޼צ9kjҩvwwo#/ *.閼r j7'ܳ/x!G>x>O"@i |65ҩGOy7%oum'u}x/`~p{Vt#>?гl}B\"'WDZ:hŸʽʑ 8b *a=\MX>͗( * ޾+ݒs 7OY!:xN{^k=[{jzx)đNr=lM+ߗc}>[[Kڕݺ60VN* moG n6lթE*H1n \pylk#Llv@1 |+>BW|} ]q_0+}POmQ0[i{!1eI_-Y|vtUG4]e.N}{o}Kk@ 0`_\¾;Vi\ 2lMc=tѴ2l L3uԾ>N`;nV<ot}u'VZi+dNh-e^J:V+sbX³Y<*Bd4/jM15 eP׈J*з t7;zk{7rHa TT$7#u詂'0j GS"F26 ()č'JINXJc 3wI,_S2XS LBYxc'QEd!ۿQE,d:Djx(!#bP9 ?sb u6;}0x.i)  1bT b9{;-|'v. X1~g>dx~kKg{R{q-J`U܉+ A'-F$KȶI~, FpV=ۯý[Rt4*wrK/VQVyՅ(2k2i-PAϹQ9|U]T\3J`at;2Ģ/GfQDN3O]1]^LvL_F r\76vgpBFo7KxlMs" 5<}jcSf9I28IA}q1vQKH3Zc%T_[Xu@)Yb|Աr(v=`73EeUĊ[*DS 6w '&-q qLԩ#zm$5!抑ˆf.[*(S]}pMx֤ _VExBr@r} yP˅20;gՊc$] H*NJul;C+5( K2dJ*Ѵ dxR!o;Ԇl{ڏR2UYx$Y+,.T&>."G͢,dBic|x*>t͝kqlaH !SD0˚(H#62^$_μlIxcGbƔƚ{O+yCWMCFDԁZhk]HfQ6_f)ޜrU`~-34fYuR+ZLO@x 4McjWVa4PYec‹<cjR"M>KkI&̍Fo' S,xG\t/vt]ըPut0bIs0Vgև+Ɓ1brP և? yEK~A01- òHbV6"Rp8)%|Nz )`Tm*f -5~)My؇LlaU%Y;F Dh>)חZ~p&4D"2-f)B{Nkta켓њM …Ad!cЩy2l]|+Rk}Qڈhe@_e,^%R ܢZK%?7 -nذCg}W,罼8@sͼ1 x8KY),_L%Ɯ٬35ؘ.~s)nvU_7&7{\'IwijĎ, d@pZn ׺AZ;gJ2HZHPf &H$56?M WB,_e|̹=JՃyh(@HHM+ɒOԦ“6e5"4F[5SP2b>XXwyL+(Pٿg;{ 'o߻+0wC5YMuYCk`>I.^vTn8yŲH1ܷu E}p dǛyo{IH-^l[蔼N۠w~`,Q+y ݙ8%WyU´3g3g/=],y@F3ӌ,c3 `<̱NLigTHDO;HnZe㤴bgɥ)<.SͺCb}qܛGȕclmB˴<8.چ93(j7YOXfqm?ЃlSv' Qq)Qu |M֌wlP2W)S{FT̘wLP7Y!6nnI}k_rP/vdTjOTm3*pQ z[Sa~Beޟ̆y;mc ԁ Wf ?Wz\B*dϮե+endstream endobj 651 0 obj 5262 endobj 658 0 obj <> stream x\sǵZD,]KȖ"&1vO/.VD\Ʌe,Ƚ^AR)Hl iEa!]K\>fk'FvV 8vssG3fw&o7oYcg֘<W-yE<_?N|>\G x"HlVA쭵;ehqpr~?~Cli.҃څKJ  E.DؙGŀU7-Xy~$\_GDzn Wr?O@oEݞu諑7Sl`%vd%# <)s6ʢѷ<4\݆^yZЫ0~&pžR7}z,3*'pMº7=)(bJSy FOqmMwsvm #huQF>޷K_&GɻIA =¢ B`"~= Ant 77`WylEe&!!T>ЕzV(q]G>-ĒW{qV-kCw} 3sހv9 91 xu Z. ۛ-vjC}|o2 3E|VN|ͫ=wJfhwMؗ{ͳA'wd 0~3l"{V{[m]*Er\*"kN7#El_j"Mɷ8||mhf|7Ɛ\/͗f; UZGۄŏTw4XД\#nT4je?}A+ޖ ?*|2{` 3szS4D΄%ܦh%n"5\:sdƤD&%^s%!xP^tۅK935v=i/`cxdls i)Mv eX G];nLاcg^~ ka_y B/bs K8eù-QF~2xB 5 V9)hk~l; ͦ87W%*nR LNj} 3-ZjiriL }D)¢Z;j?R Ů$f),'Xn3y$'Fh13Xߓ9cKExVX5$y=K5GJ]ͯ4#!rC6| BxCyr+ P&7n[n;C W/^*m,ܴ m)\5FKkS xD Z| p UxF763",=92,/uBf7IdrhAE8E 9R5:ז \g0ҍ.Z?Ry_wj`NJ#aZ;6{)^g(aG5q <ᤇ`*<W8rGwsǖ7 EXq[Ů` Hꂎd?OKصI7.%`ȤHףq= Rm87bVp1ÀyaK.Cf?p#t{TyLSyi!C7m]$мSXWȝ6X%(vęsXy aq?-(?k{6X*~ǗvPV*YQR+]NFdU4BGu|+"~kU1TA*x@1kf+bTA^]EZR *LR"mHye;<\!xrOhtHEtU< [>:g0Z ΔηUrwʄ5&py:Mt[_-ӿOzUcWeNc*L~'n0!4[>v MB%;t .#cZx`u1Ց~T ,"1`T AAm)ޢY lҵ@ RRt*kߗ N._rtJ6=V F [ѯ*wпTN=4S3Х!<'C' cZ@C)( Un x |hНl*O%Ղ稂e[mbrkP6j CQHϻN?uyBk\jXUҗP!q&3B=/mm'%Rܙ`d7QbL~<Ҷ+m ] e pKOťʵGM0N!*OR7HC "ubFMmҢ.xymGel ;~=͸P*/;nTF{3~y)! f2yҦ%OB;s:%󼔩aZkF22gZ}G`-ڱ5Si瞿ܻ3gD4Kє)Q]!tǵoڌ|Jt{,</Jyo FBQ9=5)S-`TrY8*FJ!x ì"a?Ua?_3SM$Yu3:V,.vQR,-N5qc@V#K83]di3vNU8TW8,!zɔ:,2{BW%/W\:-p)85pvduI'3dퟢx5ɉ!y "Bdv)pUUO)n97g/I?n(MO9 Yۑ|\'yUIH_ F w~(hq|G\P="endstream endobj 659 0 obj 5010 endobj 686 0 obj <> stream xZms6 JI`]Ės+'vfgvHa \2•pन,qETF] 俑ٝ}V&q;=3=O?ݳcG hk3x&odž[71|Ufhg8ۗ3of6m=^ h#KKo}4SI!4V(K<=<?IJ:|wAϗF|Usg^1pR\ƶr 7傦b-UQϕ۸pmskx\B-*0l6{`|gF!OdGÜ Ok" tRzO|R5Jtuk(ށӸj[=_es#oZ1Kk2VgG,*]`*+T2ӥ 1K|tLPmBYƘA%F^)$XKBeApHb'm kŕ%RV9Pqd o7nM!3}T![C٨+l&[Q ;pYſ?ZT&8©1貸DVc_7nWBm帿675ޫ/wcNW 7."suDK}m 0 P%cےuj(¾bmGN"dT M6@\7lJq#s#.ѽ%nUNl2x~K) 7([ 2ZƣƓ=lP$Rt 3=Ao&>Lb&|mKs"Lt}yոzn^KmXq{IdvYmFBk[ݎP p_'$ys?@th3C2j͡VQ2*Gٽl$?{6_빅>:f= ?&_5G x$vcElDl"6fIlP7hK~.ĨFr6pJǑX՟jOUn Pg0O2p6Az^G-w,8.QŖa>paȟjL$1v@bKb3HڶH]^yl%9ԓ,s^,.`\W8q'Q~ت99n v? XwKX+SH9WS_? 꺄:/'[{=_Jr.XˈiXUT *Fx7n%Gy$sn߲a6q3+NR G'F O?#\}[\*F|-S}Ac{5?jŌ5]\oQk=ƻ)],Vܘ(˕ղijR 2J\*p@ģL_Юymk$qwfqd)P T,g//3Y}2_ZX3 m~h>2}c%P;B֋/Ab|O6㲸DMԧ*K?g長&s{TǺg7jgsjٳL'ym:Lkp `Kvreж<74 S %k|q2!?!B͌/(C8Ru}qsNB$2$ʤ_a?tk=+]'@.ɆM*[3n)[ײ!zlT-Mծ䦪ǤO4 -S 13^mfe1ͯ]12Rr2h0Jw p%@q_KT]eu$`$ \޲3M`Ujس&{5!SR&`K+c5{~7n3r0*9H*Մ!gf#t,x*LZ,('5?$IH. ̞i@t wIu2]z!7ŬD2O~?/zV> N]PKb'Giqg>=lz[R>>FUz{7L{Hcx_aX9˱D"8Q͏2VRIAmH>z•l=J m|5WA/Q(0zJXW/Qux)=r֝,ľ*B쇄. /c=uW ܼXBگ]*V⮢iU 7&u28+6E~׺G֜4cԣGway[[).fNlMbmd( 3%\ _h-Rx]D=  ,_&$eX+͢jR9PE]KFՊ)yj4D㖲8^-{3ς4Aʌ'_ȃu'@.Cǻs'[;.6/_ Sź˩ ?#q-ZV2pw8/HThRqdSCٰJ7bL)Ą]D%9s a|"8, ^|8Faendstream endobj 687 0 obj 2990 endobj 5 0 obj <> /Contents 6 0 R >> endobj 245 0 obj <> /Contents 246 0 R >> endobj 332 0 obj <> /Contents 333 0 R >> endobj 381 0 obj <> /Contents 382 0 R >> endobj 407 0 obj <> /Contents 408 0 R >> endobj 450 0 obj <> /Contents 451 0 R >> endobj 475 0 obj <> /Contents 476 0 R >> endobj 488 0 obj <> /Contents 489 0 R >> endobj 500 0 obj <> /Contents 501 0 R >> endobj 544 0 obj <> /Contents 545 0 R >> endobj 553 0 obj <> /Contents 554 0 R >> endobj 566 0 obj <> /Contents 567 0 R >> endobj 573 0 obj <> /Contents 574 0 R >> endobj 581 0 obj <> /Contents 582 0 R >> endobj 591 0 obj <> /Contents 592 0 R >> endobj 599 0 obj <> /Contents 600 0 R >> endobj 605 0 obj <> /Contents 606 0 R >> endobj 611 0 obj <> /Contents 612 0 R >> endobj 625 0 obj <> /Contents 626 0 R >> endobj 631 0 obj <> /Contents 632 0 R >> endobj 640 0 obj <> /Contents 641 0 R >> endobj 645 0 obj <> /Contents 646 0 R >> endobj 649 0 obj <> /Contents 650 0 R >> endobj 657 0 obj <> /Contents 658 0 R >> endobj 685 0 obj <> /Contents 686 0 R >> endobj 3 0 obj << /Type /Pages /Kids [ 5 0 R 245 0 R 332 0 R 381 0 R 407 0 R 450 0 R 475 0 R 488 0 R 500 0 R 544 0 R 553 0 R 566 0 R 573 0 R 581 0 R 591 0 R 599 0 R 605 0 R 611 0 R 625 0 R 631 0 R 640 0 R 645 0 R 649 0 R 657 0 R 685 0 R ] /Count 25 >> endobj 1 0 obj <> endobj 4 0 obj <> endobj 10 0 obj <>stream 0 0 0 0 64 68 d1 64 0 0 68 0 0 cm BI /IM true /W 64 /H 68 /BPC 1 /D[1 0] /F/CCF /DP<> ID & ?r,/_/____ n EI endstream endobj 11 0 obj <>stream 0 0 0 -2 66 70 d1 66 0 0 72 0 -2 cm BI /IM true /W 66 /H 72 /BPC 1 /D[1 0] /F/CCF /DP<> ID &`CDYr>f? ?X|  X0</@/0x_4Ly@ EI endstream endobj 12 0 obj <> stream 74 0 0 0 0 0 d1 endstream endobj 13 0 obj <>stream 0 0 0 0 68 70 d1 68 0 0 70 0 0 cm BI /IM true /W 68 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &C("G?/f~N   A~N?Q EI endstream endobj 14 0 obj <> stream 77 0 0 0 0 0 d1 endstream endobj 15 0 obj <>stream 0 0 0 0 66 68 d1 66 0 0 68 0 0 cm BI /IM true /W 66 /H 68 /BPC 1 /D[1 0] /F/CCF /DP<> ID &PC/_Ix_ EI endstream endobj 16 0 obj <> stream 65 0 0 0 0 0 d1 endstream endobj 17 0 obj <>stream 0 0 0 0 64 68 d1 64 0 0 68 0 0 cm BI /IM true /W 64 /H 68 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?!@8 EI endstream endobj 18 0 obj <>stream 0 0 0 0 97 70 d1 97 0 0 70 0 0 cm BI /IM true /W 97 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &p_?Oa\ f?` (a cxf0_Xa  F)  EI endstream endobj 19 0 obj <> stream 72 0 0 0 0 0 d1 endstream endobj 20 0 obj <>stream 0 0 0 0 59 68 d1 59 0 0 68 0 0 cm BI /IM true /W 59 /H 68 /BPC 1 /D[1 0] /F/CCF /DP<> ID &9fx??AD EI endstream endobj 21 0 obj <> stream 106 0 0 0 0 0 d1 endstream endobj 22 0 obj <>stream 0 0 0 -2 44 70 d1 44 0 0 72 0 -2 cm BI /IM true /W 44 /H 72 /BPC 1 /D[1 0] /F/CCF /DP<> ID &SXP A_@^Aa pyfP@ EI endstream endobj 23 0 obj <> stream 67 0 0 0 0 0 d1 endstream endobj 24 0 obj <> stream 53 0 0 0 0 0 d1 endstream endobj 25 0 obj <> stream 75 0 0 0 0 0 d1 endstream endobj 26 0 obj <>stream 0 0 0 0 64 70 d1 64 0 0 70 0 0 cm BI /IM true /W 64 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &C dL A/Pfa"  EI endstream endobj 27 0 obj <> stream 105 0 0 0 0 0 d1 endstream endobj 28 0 obj <>stream 0 0 0 0 30 68 d1 30 0 0 68 0 0 cm BI /IM true /W 30 /H 68 /BPC 1 /D[1 0] /F/CCF /DP<> ID !8O 7@ EI endstream endobj 29 0 obj <>stream 0 0 0 0 68 70 d1 68 0 0 70 0 0 cm BI /IM true /W 68 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &p 7 ? Č @o EI endstream endobj 30 0 obj <> stream 36 0 0 0 0 0 d1 endstream endobj 31 0 obj <> stream 76 0 0 0 0 0 d1 endstream endobj 32 0 obj <> stream 68 0 0 0 0 0 d1 endstream endobj 33 0 obj <>stream 0 0 0 0 72 68 d1 72 0 0 68 0 0 cm BI /IM true /W 72 /H 68 /BPC 1 /D[1 0] /F/CCF /DP<> ID &܁?OC AC |N?06a EI endstream endobj 34 0 obj <> stream 70 0 0 0 0 0 d1 endstream endobj 35 0 obj <>stream 0 0 0 0 66 68 d1 66 0 0 68 0 0 cm BI /IM true /W 66 /H 68 /BPC 1 /D[1 0] /F/CCF /DP<> ID &X1!A20??_?C>'?Y EI endstream endobj 36 0 obj <>stream 0 0 0 24 37 68 d1 37 0 0 44 0 24 cm BI /IM true /W 37 /H 44 /BPC 1 /D[1 0] /F/CCF /DP<> ID &@O!`A `3Mo0_ 0 C@ EI endstream endobj 37 0 obj <>stream 0 0 0 24 46 87 d1 46 0 0 63 0 24 cm BI /IM true /W 46 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID QOOd< _O?FG@ EI endstream endobj 38 0 obj <> stream 43 0 0 0 0 0 d1 endstream endobj 39 0 obj <>stream 0 0 0 24 44 68 d1 44 0 0 44 0 24 cm BI /IM true /W 44 /H 44 /BPC 1 /D[1 0] /F/CCF /DP<> ID &D3 /2,  10@ EI endstream endobj 40 0 obj <> stream 57 0 0 0 0 0 d1 endstream endobj 41 0 obj <>stream 0 0 0 24 32 68 d1 32 0 0 44 0 24 cm BI /IM true /W 32 /H 44 /BPC 1 /D[1 0] /F/CCF /DP<> ID *S' / EI endstream endobj 42 0 obj <> stream 48 0 0 0 0 0 d1 endstream endobj 43 0 obj <>stream 0 0 0 5 30 68 d1 30 0 0 63 0 5 cm BI /IM true /W 30 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &s _3/?Č8c@ EI endstream endobj 44 0 obj <> stream 39 0 0 0 0 0 d1 endstream endobj 45 0 obj <>stream 0 0 0 24 80 68 d1 80 0 0 44 0 24 cm BI /IM true /W 80 /H 44 /BPC 1 /D[1 0] /F/CCF /DP<> ID AQO0f??> stream 38 0 0 0 0 0 d1 endstream endobj 47 0 obj <> stream 87 0 0 0 0 0 d1 endstream endobj 48 0 obj <>stream 0 0 0 24 49 68 d1 49 0 0 44 0 24 cm BI /IM true /W 49 /H 44 /BPC 1 /D[1 0] /F/CCF /DP<> ID 5g3# a EI endstream endobj 49 0 obj <>stream 0 0 0 24 44 68 d1 44 0 0 44 0 24 cm BI /IM true /W 44 /H 44 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?EOG8?X|?_ 0ƿ EI endstream endobj 50 0 obj <>stream 0 0 0 -2 36 68 d1 36 0 0 70 0 -2 cm BI /IM true /W 36 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &V'O&>  <0  EI endstream endobj 51 0 obj <> stream 66 0 0 0 0 0 d1 endstream endobj 52 0 obj <>stream 0 0 0 -2 22 68 d1 22 0 0 70 0 -2 cm BI /IM true /W 22 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID S@ EI endstream endobj 53 0 obj <> stream 28 0 0 0 0 0 d1 endstream endobj 54 0 obj <>stream 0 0 0 24 35 68 d1 35 0 0 44 0 24 cm BI /IM true /W 35 /H 44 /BPC 1 /D[1 0] /F/CCF /DP<> ID &DxO@0` |pa EI endstream endobj 55 0 obj <> stream 46 0 0 0 0 0 d1 endstream endobj 56 0 obj <> stream 41 0 0 0 0 0 d1 endstream endobj 57 0 obj <>stream 0 0 0 -2 22 68 d1 22 0 0 70 0 -2 cm BI /IM true /W 22 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID S\  EI endstream endobj 58 0 obj <> stream 30 0 0 0 0 0 d1 endstream endobj 59 0 obj <> stream 44 0 0 0 0 0 d1 endstream endobj 60 0 obj <> stream 64 0 0 0 0 0 d1 endstream endobj 61 0 obj <>stream 0 0 0 22 44 90 d1 44 0 0 68 0 22 cm BI /IM true /W 44 /H 68 /BPC 1 /D[1 0] /F/CCF /DP<> ID &Ȁ/y B)5_*~LpC?,?x_HpC#! EI endstream endobj 62 0 obj <> stream 55 0 0 0 0 0 d1 endstream endobj 63 0 obj <> stream 50 0 0 0 0 0 d1 endstream endobj 64 0 obj <> stream 29 0 0 0 0 0 d1 endstream endobj 65 0 obj <> stream 49 0 0 0 0 0 d1 endstream endobj 66 0 obj <>stream 0 0 0 -2 47 68 d1 47 0 0 70 0 -2 cm BI /IM true /W 47 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &D| ?_0\<`?5 EI endstream endobj 67 0 obj <>stream 0 0 0 -2 61 70 d1 61 0 0 72 0 -2 cm BI /IM true /W 61 /H 72 /BPC 1 /D[1 0] /F/CCF /DP<> ID &k>CD/`O ?X|  / _ƒ,0_ d  C@ EI endstream endobj 68 0 obj <> stream 86 0 0 0 0 0 d1 endstream endobj 69 0 obj <> stream 51 0 0 0 0 0 d1 endstream endobj 70 0 obj <>stream 0 0 0 24 49 68 d1 49 0 0 44 0 24 cm BI /IM true /W 49 /H 44 /BPC 1 /D[1 0] /F/CCF /DP<> ID &@L" /! EI endstream endobj 71 0 obj <>stream 0 0 0 0 85 75 d1 85 0 0 75 0 0 cm BI /IM true /W 85 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID & ؟x//aW0ap` B  EI endstream endobj 72 0 obj <>stream 0 0 0 0 64 75 d1 64 0 0 75 0 0 cm BI /IM true /W 64 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &A5 F 5U EI endstream endobj 73 0 obj <> stream 137 0 0 0 0 0 d1 endstream endobj 74 0 obj <>stream 0 0 0 0 40 75 d1 40 0 0 75 0 0 cm BI /IM true /W 40 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID & QG EI endstream endobj 75 0 obj <>stream 0 0 0 0 109 75 d1 109 0 0 75 0 0 cm BI /IM true /W 109 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &sA3!GH   a @0@ A @?@R?  EI endstream endobj 76 0 obj <> stream 120 0 0 0 0 0 d1 endstream endobj 77 0 obj <>stream 0 0 0 3 76 75 d1 76 0 0 72 0 3 cm BI /IM true /W 76 /H 72 /BPC 1 /D[1 0] /F/CCF /DP<> ID &A_(>stream 0 0 0 0 73 75 d1 73 0 0 75 0 0 cm BI /IM true /W 73 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &A5!A5D_  _ EI endstream endobj 79 0 obj <>stream 0 0 0 0 83 75 d1 83 0 0 75 0 0 cm BI /IM true /W 83 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &_3&W ?_ ~ /Q EI endstream endobj 80 0 obj <> stream 82 0 0 0 0 0 d1 endstream endobj 81 0 obj <> stream 81 0 0 0 0 0 d1 endstream endobj 82 0 obj <>stream 0 0 0 0 77 75 d1 77 0 0 75 0 0 cm BI /IM true /W 77 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &TWg(:!H 0X?8ɭ> stream 123 0 0 0 0 0 d1 endstream endobj 84 0 obj <>stream 0 0 0 0 88 75 d1 88 0 0 75 0 0 cm BI /IM true /W 88 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &0_A5  /PΠANa _-*  EI endstream endobj 85 0 obj <> stream 91 0 0 0 0 0 d1 endstream endobj 86 0 obj <>stream 0 0 0 0 90 75 d1 90 0 0 75 0 0 cm BI /IM true /W 90 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &J?[  ?X| Aa VE o EI endstream endobj 87 0 obj <> stream 139 0 0 0 0 0 d1 endstream endobj 88 0 obj <> stream 96 0 0 0 0 0 d1 endstream endobj 89 0 obj <>stream 0 0 0 0 85 75 d1 85 0 0 75 0 0 cm BI /IM true /W 85 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &A \XӐ G 3_//2E {5  . /gO'a4!?  EI endstream endobj 90 0 obj <> stream 99 0 0 0 0 0 d1 endstream endobj 91 0 obj <> stream 90 0 0 0 0 0 d1 endstream endobj 92 0 obj <> stream 94 0 0 0 0 0 d1 endstream endobj 93 0 obj <>stream 0 0 0 0 88 75 d1 88 0 0 75 0 0 cm BI /IM true /W 88 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID & ԃ^Π(" EI endstream endobj 94 0 obj <>stream 0 0 0 0 68 75 d1 68 0 0 75 0 0 cm BI /IM true /W 68 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &Wk?΢A|?_V EI endstream endobj 95 0 obj <> stream 80 0 0 0 0 0 d1 endstream endobj 96 0 obj <>stream 0 0 0 0 76 75 d1 76 0 0 75 0 0 cm BI /IM true /W 76 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &A!_a?___@Na??  O`4 EI endstream endobj 97 0 obj <> stream 135 0 0 0 0 0 d1 endstream endobj 98 0 obj <>stream 0 0 0 0 85 75 d1 85 0 0 75 0 0 cm BI /IM true /W 85 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &DOeA _P(  EI endstream endobj 99 0 obj <>stream 0 0 0 0 88 75 d1 88 0 0 75 0 0 cm BI /IM true /W 88 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &a _t//// / / C0_  EI endstream endobj 100 0 obj <> stream 98 0 0 0 0 0 d1 endstream endobj 101 0 obj <>stream 0 0 0 0 75 75 d1 75 0 0 75 0 0 cm BI /IM true /W 75 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &A.-Μ!r4 ? / ɯMi|p__d3kA q0iC< EI endstream endobj 102 0 obj <>stream 0 0 0 0 53 75 d1 53 0 0 75 0 0 cm BI /IM true /W 53 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID 0A#brf~f a`_D~C8C~^ L @kx\ L~Mo0ac!?  EI endstream endobj 103 0 obj <> stream 101 0 0 0 0 0 d1 endstream endobj 104 0 obj <> stream 142 0 0 0 0 0 d1 endstream endobj 105 0 obj <>stream 0 0 0 0 73 75 d1 73 0 0 75 0 0 cm BI /IM true /W 73 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &_k`1 $u V 3 EI endstream endobj 106 0 obj <>stream 0 0 0 0 61 75 d1 61 0 0 75 0 0 cm BI /IM true /W 61 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID & !Gpx?rf`a`?$p EI endstream endobj 107 0 obj <>stream 0 0 0 0 51 77 d1 51 0 0 77 0 0 cm BI /IM true /W 51 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID & !Lg Fs10 :~' EI endstream endobj 108 0 obj <>stream 0 0 0 29 51 99 d1 51 0 0 70 0 29 cm BI /IM true /W 51 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &N 5! fMA ?@ @@0A@ C EI endstream endobj 109 0 obj <> stream 58 0 0 0 0 0 d1 endstream endobj 110 0 obj <>stream 0 0 0 0 70 77 d1 70 0 0 77 0 0 cm BI /IM true /W 70 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &H p!sMB?a//a !"8179 pr ' 0|/ W@ EI endstream endobj 111 0 obj <>stream 0 0 0 0 27 75 d1 27 0 0 75 0 0 cm BI /IM true /W 27 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &GQx~BO1?_ EI endstream endobj 112 0 obj <> stream 78 0 0 0 0 0 d1 endstream endobj 113 0 obj <>stream 0 0 0 27 42 75 d1 42 0 0 48 0 27 cm BI /IM true /W 42 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &cU l? Q0d3?8?0xNA EI endstream endobj 114 0 obj <> stream 34 0 0 0 0 0 d1 endstream endobj 115 0 obj <>stream 0 0 0 -2 49 75 d1 49 0 0 77 0 -2 cm BI /IM true /W 49 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &Pfu>stream 0 0 0 27 47 75 d1 47 0 0 48 0 27 cm BI /IM true /W 47 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID & ß4g†P?( ? ?a` @ EI endstream endobj 117 0 obj <>stream 0 0 0 27 42 75 d1 42 0 0 48 0 27 cm BI /IM true /W 42 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &x~ ?)00>?΃80_  EI endstream endobj 118 0 obj <>stream 0 0 0 -2 51 75 d1 51 0 0 77 0 -2 cm BI /IM true /W 51 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID & ßp@3C (a?8?aa?CA *m? EI endstream endobj 119 0 obj <>stream 0 0 0 0 85 75 d1 85 0 0 75 0 0 cm BI /IM true /W 85 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID C A$r@e ? ?W 08<p06X  EI endstream endobj 120 0 obj <>stream 0 0 0 63 13 75 d1 13 0 0 12 0 63 cm BI /IM true /W 13 /H 12 /BPC 1 /D[1 0] /F/CCF /DP<> ID & EI endstream endobj 121 0 obj <>stream 0 0 0 0 73 75 d1 73 0 0 75 0 0 cm BI /IM true /W 73 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID @nMBa. ?_!??'΂(? a _ EI endstream endobj 122 0 obj <>stream 0 0 0 27 47 97 d1 47 0 0 70 0 27 cm BI /IM true /W 47 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &C F380??xf ?!'@ EI endstream endobj 123 0 obj <> stream 79 0 0 0 0 0 d1 endstream endobj 124 0 obj <> stream 52 0 0 0 0 0 d1 endstream endobj 125 0 obj <>stream 0 0 0 -17 30 34 d1 30 0 0 51 0 -17 cm BI /IM true /W 30 /H 51 /BPC 1 /D[1 0] /F/CCF /DP<> ID &O?@ EI endstream endobj 126 0 obj <> stream 62 0 0 0 0 0 d1 endstream endobj 127 0 obj <>stream 0 0 0 63 15 97 d1 15 0 0 34 0 63 cm BI /IM true /W 15 /H 34 /BPC 1 /D[1 0] /F/CCF /DP<> ID 0Çɟ EI endstream endobj 128 0 obj <>stream 0 0 0 0 73 75 d1 73 0 0 75 0 0 cm BI /IM true /W 73 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID @! 00( d.8x9 ?_  EI endstream endobj 129 0 obj <>stream 0 0 0 27 39 75 d1 39 0 0 48 0 27 cm BI /IM true /W 39 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &Ts3X| ? d/H&O Cd&A ? EI endstream endobj 130 0 obj <> stream 32 0 0 0 0 0 d1 endstream endobj 131 0 obj <>stream 0 0 0 27 49 75 d1 49 0 0 48 0 27 cm BI /IM true /W 49 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID & a? /0S080?p_!'@ EI endstream endobj 132 0 obj <>stream 0 0 0 27 54 75 d1 54 0 0 48 0 27 cm BI /IM true /W 54 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &x2X 0?_x3p EI endstream endobj 133 0 obj <>stream 0 0 0 27 49 97 d1 49 0 0 70 0 27 cm BI /IM true /W 49 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &k #g ?aCD<'†?Paa0  EI endstream endobj 134 0 obj <>stream 0 0 0 0 61 75 d1 61 0 0 75 0 0 cm BI /IM true /W 61 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID *<' _?ax? EI endstream endobj 135 0 obj <> stream 92 0 0 0 0 0 d1 endstream endobj 136 0 obj <>stream 0 0 0 -17 32 34 d1 32 0 0 51 0 -17 cm BI /IM true /W 32 /H 51 /BPC 1 /D[1 0] /F/CCF /DP<> ID &/?Æ``0 ??_@ EI endstream endobj 137 0 obj <> stream 59 0 0 0 0 0 d1 endstream endobj 138 0 obj <>stream 0 0 0 0 58 77 d1 58 0 0 77 0 0 cm BI /IM true /W 58 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &!0!5 0Na&0_?e~  EI endstream endobj 139 0 obj <> stream 113 0 0 0 0 0 d1 endstream endobj 140 0 obj <>stream 0 0 0 27 47 75 d1 47 0 0 48 0 27 cm BI /IM true /W 47 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &o(>pO /d8P0 0`Bn@ EI endstream endobj 141 0 obj <> stream 60 0 0 0 0 0 d1 endstream endobj 142 0 obj <>stream 0 0 0 0 85 75 d1 85 0 0 75 0 0 cm BI /IM true /W 85 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID fQ   `2a2x> @ lW EI endstream endobj 143 0 obj <> stream 84 0 0 0 0 0 d1 endstream endobj 144 0 obj <> stream 45 0 0 0 0 0 d1 endstream endobj 145 0 obj <>stream 0 0 0 -2 25 75 d1 25 0 0 77 0 -2 cm BI /IM true /W 25 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &f(f0~  EI endstream endobj 146 0 obj <> stream 56 0 0 0 0 0 d1 endstream endobj 147 0 obj <> stream 35 0 0 0 0 0 d1 endstream endobj 148 0 obj <> stream 63 0 0 0 0 0 d1 endstream endobj 149 0 obj <>stream 0 0 0 -2 75 77 d1 75 0 0 79 0 -2 cm BI /IM true /W 75 /H 79 /BPC 1 /D[1 0] /F/CCF /DP<> ID &! W AkG(a˃`ɬ2 ?x?a`| ? z@ EI endstream endobj 150 0 obj <> stream 33 0 0 0 0 0 d1 endstream endobj 151 0 obj <>stream 0 0 0 0 70 75 d1 70 0 0 75 0 0 cm BI /IM true /W 70 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID *AɬN ?C288?0p8p0<`?C?0?:p?@ EI endstream endobj 152 0 obj <>stream 0 0 0 0 68 75 d1 68 0 0 75 0 0 cm BI /IM true /W 68 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?^ *0__>stream 0 0 0 27 42 75 d1 42 0 0 48 0 27 cm BI /IM true /W 42 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &'u|?#?x@J| _a . 5 EI endstream endobj 154 0 obj <>stream 0 0 0 27 40 75 d1 40 0 0 48 0 27 cm BI /IM true /W 40 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &OA"?01 à + EI endstream endobj 155 0 obj <>stream 0 0 0 -2 54 75 d1 54 0 0 77 0 -2 cm BI /IM true /W 54 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID )5fGx_b?ɨO@ EI endstream endobj 156 0 obj <>stream 0 0 0 27 54 75 d1 54 0 0 48 0 27 cm BI /IM true /W 54 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID )5fGx_&!_@ EI endstream endobj 157 0 obj <>stream 0 0 0 0 24 75 d1 24 0 0 75 0 0 cm BI /IM true /W 24 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID !'?G? EI endstream endobj 158 0 obj <>stream 0 0 0 27 49 75 d1 49 0 0 48 0 27 cm BI /IM true /W 49 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &aI aH9/ ?!4K?A/ b@ EI endstream endobj 159 0 obj <>stream 0 0 0 -2 27 75 d1 27 0 0 77 0 -2 cm BI /IM true /W 27 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID !5  EI endstream endobj 160 0 obj <>stream 0 0 0 0 73 77 d1 73 0 0 77 0 0 cm BI /IM true /W 73 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &pH #M` _ P/?? A(  EI endstream endobj 161 0 obj <> stream 73 0 0 0 0 0 d1 endstream endobj 162 0 obj <>stream 0 0 0 27 51 97 d1 51 0 0 70 0 27 cm BI /IM true /W 51 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID )P`g f??__ /u)/$@ EI endstream endobj 163 0 obj <>stream 0 0 0 27 49 75 d1 49 0 0 48 0 27 cm BI /IM true /W 49 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &" p5_0A/ NCf5 EI endstream endobj 164 0 obj <>stream 0 0 0 27 37 75 d1 37 0 0 48 0 27 cm BI /IM true /W 37 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID )y5fș>stream 0 0 0 7 32 75 d1 32 0 0 68 0 7 cm BI /IM true /W 32 /H 68 /BPC 1 /D[1 0] /F/CCF /DP<> ID &9 |$o&C EI endstream endobj 166 0 obj <>stream 0 0 0 0 71 75 d1 71 0 0 75 0 0 cm BI /IM true /W 71 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID & r)a. //?/ @ / @ / / /d6$@ EI endstream endobj 167 0 obj <>stream 0 0 0 -2 75 75 d1 75 0 0 77 0 -2 cm BI /IM true /W 75 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID *?j) N /k  a_ap`@ 0@  EI endstream endobj 168 0 obj <>stream 0 0 0 0 90 75 d1 90 0 0 75 0 0 cm BI /IM true /W 90 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID & p?}? 7  f0qaT EI endstream endobj 169 0 obj <>stream 0 0 0 48 25 53 d1 25 0 0 5 0 48 cm BI /IM true /W 25 /H 5 /BPC 1 /D[1 0] /F/CCF /DP<> ID  EI endstream endobj 170 0 obj <>stream 0 0 0 3 44 77 d1 44 0 0 74 0 3 cm BI /IM true /W 44 /H 74 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?I'?X?aX 0<_`x_1@ EI endstream endobj 171 0 obj <>stream 0 0 0 3 44 77 d1 44 0 0 74 0 3 cm BI /IM true /W 44 /H 74 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?N 0 ?aAC9?3. `!e ><0g~px_1@ EI endstream endobj 172 0 obj <>stream 0 0 0 27 51 75 d1 51 0 0 48 0 27 cm BI /IM true /W 51 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &\@af ?(`~  EI endstream endobj 173 0 obj <>stream 0 0 0 27 32 75 d1 32 0 0 48 0 27 cm BI /IM true /W 32 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID & "!0xA ~NCd//; EI endstream endobj 174 0 obj <> stream 42 0 0 0 0 0 d1 endstream endobj 175 0 obj <>stream 0 0 0 -2 52 75 d1 52 0 0 77 0 -2 cm BI /IM true /W 52 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &!OA\~ 0Ț'?? Wҟ@ EI endstream endobj 176 0 obj <>stream 0 0 0 27 13 75 d1 13 0 0 48 0 27 cm BI /IM true /W 13 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &_ EI endstream endobj 177 0 obj <>stream 0 0 0 5 37 77 d1 37 0 0 72 0 5 cm BI /IM true /W 37 /H 72 /BPC 1 /D[1 0] /F/CCF /DP<> ID &a! EI endstream endobj 178 0 obj <> stream 100 0 0 0 0 0 d1 endstream endobj 179 0 obj <>stream 0 0 0 5 44 79 d1 44 0 0 74 0 5 cm BI /IM true /W 44 /H 74 /BPC 1 /D[1 0] /F/CCF /DP<> ID & f,>| ?p  ?# /?0/0\< k EI endstream endobj 180 0 obj <>stream 0 0 0 5 49 77 d1 49 0 0 72 0 5 cm BI /IM true /W 49 /H 72 /BPC 1 /D[1 0] /F/CCF /DP<> ID &C6 70Mof  EI endstream endobj 181 0 obj <>stream 0 0 0 0 23 39 d1 23 0 0 39 0 0 cm BI /IM true /W 23 /H 39 /BPC 1 /D[1 0] /F/CCF /DP<> ID &G EI endstream endobj 182 0 obj <>stream 0 0 0 14 56 77 d1 56 0 0 63 0 14 cm BI /IM true /W 56 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &` #\i _(?X /c&?31?  EI endstream endobj 183 0 obj <> stream 69 0 0 0 0 0 d1 endstream endobj 184 0 obj <>stream 0 0 0 38 39 77 d1 39 0 0 39 0 38 cm BI /IM true /W 39 /H 39 /BPC 1 /D[1 0] /F/CCF /DP<> ID &ΡEQω0A?_ @ EI endstream endobj 185 0 obj <>stream 0 0 0 38 70 77 d1 70 0 0 39 0 38 cm BI /IM true /W 70 /H 39 /BPC 1 /D[1 0] /F/CCF /DP<> ID ̌?ME> GFl! EI endstream endobj 186 0 obj <>stream 0 0 0 38 44 94 d1 44 0 0 56 0 38 cm BI /IM true /W 44 /H 56 /BPC 1 /D[1 0] /F/CCF /DP<> ID QOog&H ? _/|@ EI endstream endobj 187 0 obj <>stream 0 0 0 38 44 77 d1 44 0 0 39 0 38 cm BI /IM true /W 44 /H 39 /BPC 1 /D[1 0] /F/CCF /DP<> ID &oA31ƒ#  EI endstream endobj 188 0 obj <>stream 0 0 0 21 27 77 d1 27 0 0 56 0 21 cm BI /IM true /W 27 /H 56 /BPC 1 /D[1 0] /F/CCF /DP<> ID &^f ?&N@ EI endstream endobj 189 0 obj <>stream 0 0 0 38 34 77 d1 34 0 0 39 0 38 cm BI /IM true /W 34 /H 39 /BPC 1 /D[1 0] /F/CCF /DP<> ID &ΣD'0<?0f?[ > _8 EI endstream endobj 190 0 obj <>stream 0 0 0 38 30 77 d1 30 0 0 39 0 38 cm BI /IM true /W 30 /H 39 /BPC 1 /D[1 0] /F/CCF /DP<> ID *ɨ%@0` EI endstream endobj 191 0 obj <>stream 0 0 0 14 40 77 d1 40 0 0 63 0 14 cm BI /IM true /W 40 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &PGd ATa 0@eG 8: EI endstream endobj 192 0 obj <>stream 0 0 0 38 34 77 d1 34 0 0 39 0 38 cm BI /IM true /W 34 /H 39 /BPC 1 /D[1 0] /F/CCF /DP<> ID &ΣD'0<?C &3A? EI endstream endobj 193 0 obj <>stream 0 0 0 14 22 77 d1 22 0 0 63 0 14 cm BI /IM true /W 22 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID fcɨ7y@@ EI endstream endobj 194 0 obj <> stream 26 0 0 0 0 0 d1 endstream endobj 195 0 obj <>stream 0 0 0 38 44 77 d1 44 0 0 39 0 38 cm BI /IM true /W 44 /H 39 /BPC 1 /D[1 0] /F/CCF /DP<> ID 59 0a@ EI endstream endobj 196 0 obj <>stream 0 0 0 14 59 77 d1 59 0 0 63 0 14 cm BI /IM true /W 59 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &`bBL? l?QG@ EI endstream endobj 197 0 obj <>stream 0 0 0 38 40 77 d1 40 0 0 39 0 38 cm BI /IM true /W 40 /H 39 /BPC 1 /D[1 0] /F/CCF /DP<> ID &[30?r _$ a~ B EI endstream endobj 198 0 obj <> stream 40 0 0 0 0 0 d1 endstream endobj 199 0 obj <>stream 0 0 0 67 10 94 d1 10 0 0 27 0 67 cm BI /IM true /W 10 /H 27 /BPC 1 /D[1 0] /F/CCF /DP<> ID 0?g0?X/ EI endstream endobj 200 0 obj <>stream 0 0 0 14 59 77 d1 59 0 0 63 0 14 cm BI /IM true /W 59 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &` C@>p? g_†`?_,?? EI endstream endobj 201 0 obj <>stream 0 0 0 38 42 77 d1 42 0 0 39 0 38 cm BI /IM true /W 42 /H 39 /BPC 1 /D[1 0] /F/CCF /DP<> ID &h ~ 0,?X?u7@ EI endstream endobj 202 0 obj <>stream 0 0 0 38 30 77 d1 30 0 0 39 0 38 cm BI /IM true /W 30 /H 39 /BPC 1 /D[1 0] /F/CCF /DP<> ID 02@ < A~E/ a>stream 0 0 0 38 42 94 d1 42 0 0 56 0 38 cm BI /IM true /W 42 /H 56 /BPC 1 /D[1 0] /F/CCF /DP<> ID &8fp@`aX3o EI endstream endobj 204 0 obj <>stream 0 0 0 14 32 77 d1 32 0 0 63 0 14 cm BI /IM true /W 32 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &VtɨCH?p_ EI endstream endobj 205 0 obj <>stream 0 0 0 14 22 77 d1 22 0 0 63 0 14 cm BI /IM true /W 22 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID fc@ EI endstream endobj 206 0 obj <>stream 0 0 0 14 44 77 d1 44 0 0 63 0 14 cm BI /IM true /W 44 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &og3@~?/ɭ&!?7  EI endstream endobj 207 0 obj <>stream 0 0 0 14 54 77 d1 54 0 0 63 0 14 cm BI /IM true /W 54 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &BLs?C9l?`  Q EI endstream endobj 208 0 obj <> stream 54 0 0 0 0 0 d1 endstream endobj 209 0 obj <>stream 0 0 0 19 35 77 d1 35 0 0 58 0 19 cm BI /IM true /W 35 /H 58 /BPC 1 /D[1 0] /F/CCF /DP<> ID &>>pOE8 ,?0D#\>stream 0 0 0 19 35 77 d1 35 0 0 58 0 19 cm BI /IM true /W 35 /H 58 /BPC 1 /D[1 0] /F/CCF /DP<> ID &E  a?0a !  EI endstream endobj 211 0 obj <>stream 0 0 0 19 35 77 d1 35 0 0 58 0 19 cm BI /IM true /W 35 /H 58 /BPC 1 /D[1 0] /F/CCF /DP<> ID &aH8'\? y ` >stream 0 0 0 19 35 77 d1 35 0 0 58 0 19 cm BI /IM true /W 35 /H 58 /BPC 1 /D[1 0] /F/CCF /DP<> ID &. A?<  a < EI endstream endobj 213 0 obj <>stream 0 0 0 67 10 77 d1 10 0 0 10 0 67 cm BI /IM true /W 10 /H 10 /BPC 1 /D[1 0] /F/CCF /DP<> ID &_M`  EI endstream endobj 214 0 obj <>stream 0 0 0 14 61 77 d1 61 0 0 63 0 14 cm BI /IM true /W 61 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &4ɭbA? EI endstream endobj 215 0 obj <>stream 0 0 0 14 44 77 d1 44 0 0 63 0 14 cm BI /IM true /W 44 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID 59 ?@ EI endstream endobj 216 0 obj <>stream 0 0 0 38 61 77 d1 61 0 0 39 0 38 cm BI /IM true /W 61 /H 39 /BPC 1 /D[1 0] /F/CCF /DP<> ID &` /a`# ?Ax?/c:@ EI endstream endobj 217 0 obj <>stream 0 0 0 14 44 77 d1 44 0 0 63 0 14 cm BI /IM true /W 44 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &N >pO?/`2@@ EI endstream endobj 218 0 obj <>stream 0 0 0 14 59 77 d1 59 0 0 63 0 14 cm BI /IM true /W 59 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &Y  _ _ /U EI endstream endobj 219 0 obj <>stream 0 0 0 14 49 77 d1 49 0 0 63 0 14 cm BI /IM true /W 49 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID & ? ?fx@ EI endstream endobj 220 0 obj <>stream 0 0 0 38 39 96 d1 39 0 0 58 0 38 cm BI /IM true /W 39 /H 58 /BPC 1 /D[1 0] /F/CCF /DP<> ID &ΡL 8X2 ^ V'_>8 | )yb@ EI endstream endobj 221 0 obj <> stream 89 0 0 0 0 0 d1 endstream endobj 222 0 obj <>stream 0 0 0 14 61 77 d1 61 0 0 63 0 14 cm BI /IM true /W 61 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &BN| ?//3g/? EI endstream endobj 223 0 obj <>stream 0 0 0 55 24 60 d1 24 0 0 5 0 55 cm BI /IM true /W 24 /H 5 /BPC 1 /D[1 0] /F/CCF /DP<> ID  EI endstream endobj 224 0 obj <>stream 0 0 0 19 29 77 d1 29 0 0 58 0 19 cm BI /IM true /W 29 /H 58 /BPC 1 /D[1 0] /F/CCF /DP<> ID 95  EI endstream endobj 225 0 obj <>stream 0 0 0 17 37 77 d1 37 0 0 60 0 17 cm BI /IM true /W 37 /H 60 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?? 0?0 >  EI endstream endobj 226 0 obj <>stream 0 0 0 19 35 77 d1 35 0 0 58 0 19 cm BI /IM true /W 35 /H 58 /BPC 1 /D[1 0] /F/CCF /DP<> ID &aH8'>0?_?@ EI endstream endobj 227 0 obj <>stream 0 0 0 14 63 77 d1 63 0 0 63 0 14 cm BI /IM true /W 63 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID "?j)i'…@ x_b  ?_` EI endstream endobj 228 0 obj <>stream 0 0 0 14 61 77 d1 61 0 0 63 0 14 cm BI /IM true /W 61 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &ܧ A>|?y A@A _ 0 \ C EI endstream endobj 229 0 obj <> stream 71 0 0 0 0 0 d1 endstream endobj 230 0 obj <>stream 0 0 0 14 47 77 d1 47 0 0 63 0 14 cm BI /IM true /W 47 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &BLl@ EI endstream endobj 231 0 obj <>stream 0 0 0 14 64 77 d1 64 0 0 63 0 14 cm BI /IM true /W 64 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &` σp2 ) nkm/0 d cP EI endstream endobj 232 0 obj <>stream 0 0 0 0 27 39 d1 27 0 0 39 0 0 cm BI /IM true /W 27 /H 39 /BPC 1 /D[1 0] /F/CCF /DP<> ID \?`/&0@Ȥ@ EI endstream endobj 233 0 obj <>stream 0 0 0 14 54 77 d1 54 0 0 63 0 14 cm BI /IM true /W 54 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?<?f> stream 61 0 0 0 0 0 d1 endstream endobj 235 0 obj <> stream 93 0 0 0 0 0 d1 endstream endobj 236 0 obj <>stream 0 0 0 14 27 77 d1 27 0 0 63 0 14 cm BI /IM true /W 27 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID !k  EI endstream endobj 237 0 obj <>stream 0 0 0 19 35 77 d1 35 0 0 58 0 19 cm BI /IM true /W 35 /H 58 /BPC 1 /D[1 0] /F/CCF /DP<> ID &"0~_0^` ?Ç/ EI endstream endobj 238 0 obj <>stream 0 0 0 19 35 77 d1 35 0 0 58 0 19 cm BI /IM true /W 35 /H 58 /BPC 1 /D[1 0] /F/CCF /DP<> ID &p3Ç0?a<?>stream 0 0 0 38 10 94 d1 10 0 0 56 0 38 cm BI /IM true /W 10 /H 56 /BPC 1 /D[1 0] /F/CCF /DP<> ID 0?g0?X/g?&_ EI endstream endobj 240 0 obj <>stream 0 0 0 14 61 77 d1 61 0 0 63 0 14 cm BI /IM true /W 61 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &ܫ CS D !bgA ??_@ `p _`p 0 f\ A| ?@ EI endstream endobj 241 0 obj <> stream 83 0 0 0 0 0 d1 endstream endobj 242 0 obj <>stream 0 0 0 19 39 77 d1 39 0 0 58 0 19 cm BI /IM true /W 39 /H 58 /BPC 1 /D[1 0] /F/CCF /DP<> ID &7s1<0? EI endstream endobj 243 0 obj <> endobj 244 0 obj <> endobj 249 0 obj <>stream 0 0 0 0 64 75 d1 64 0 0 75 0 0 cm BI /IM true /W 64 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?$$ d62?___ _AȨcpN?_P/@ EI endstream endobj 250 0 obj <>stream 0 0 0 -2 44 77 d1 44 0 0 79 0 -2 cm BI /IM true /W 44 /H 79 /BPC 1 /D[1 0] /F/CCF /DP<> ID 0u?N?Â//eD_T>  . sC EI endstream endobj 251 0 obj <>stream 0 0 0 -2 63 77 d1 63 0 0 79 0 -2 cm BI /IM true /W 63 /H 79 /BPC 1 /D[1 0] /F/CCF /DP<> ID &u <0D>f_`a_?ɭ,?,0a// ! EI endstream endobj 252 0 obj <> stream 85 0 0 0 0 0 d1 endstream endobj 253 0 obj <>stream 0 0 0 0 68 70 d1 68 0 0 70 0 0 cm BI /IM true /W 68 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID Rp$/ ///g_ /<0_0 EI endstream endobj 254 0 obj <>stream 0 0 0 -2 49 68 d1 49 0 0 70 0 -2 cm BI /IM true /W 49 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID 5g3# H   EI endstream endobj 255 0 obj <>stream 0 0 0 24 32 68 d1 32 0 0 44 0 24 cm BI /IM true /W 32 /H 44 /BPC 1 /D[1 0] /F/CCF /DP<> ID 03A!?/h#@x_D`O0/ւχgC@ EI endstream endobj 256 0 obj <>stream 0 0 0 24 46 68 d1 46 0 0 44 0 24 cm BI /IM true /W 46 /H 44 /BPC 1 /D[1 0] /F/CCF /DP<> ID &lA#@ˇA`O@B:: EI endstream endobj 257 0 obj <>stream 0 0 0 24 34 68 d1 34 0 0 44 0 24 cm BI /IM true /W 34 /H 44 /BPC 1 /D[1 0] /F/CCF /DP<> ID >g?Ç8?|??Ga? EI endstream endobj 258 0 obj <>stream 0 0 0 -2 46 68 d1 46 0 0 70 0 -2 cm BI /IM true /W 46 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &H0>?:?@ EI endstream endobj 259 0 obj <>stream 0 0 0 24 66 68 d1 66 0 0 44 0 24 cm BI /IM true /W 66 /H 44 /BPC 1 /D[1 0] /F/CCF /DP<> ID &7.? <G.3 ?0\?((/Ne8o EI endstream endobj 260 0 obj <>stream 0 0 0 44 27 49 d1 27 0 0 5 0 44 cm BI /IM true /W 27 /H 5 /BPC 1 /D[1 0] /F/CCF /DP<> ID  EI endstream endobj 261 0 obj <>stream 0 0 0 58 11 68 d1 11 0 0 10 0 58 cm BI /IM true /W 11 /H 10 /BPC 1 /D[1 0] /F/CCF /DP<> ID &// EI endstream endobj 262 0 obj <>stream 0 0 0 -2 28 87 d1 28 0 0 89 0 -2 cm BI /IM true /W 28 /H 89 /BPC 1 /D[1 0] /F/CCF /DP<> ID &H DA?"3 џ0_ EI endstream endobj 263 0 obj <>stream 0 0 0 24 46 87 d1 46 0 0 63 0 24 cm BI /IM true /W 46 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &N ?80ax?ɨh ?xp a(@'P@ EI endstream endobj 264 0 obj <>stream 0 0 0 0 59 68 d1 59 0 0 68 0 0 cm BI /IM true /W 59 /H 68 /BPC 1 /D[1 0] /F/CCF /DP<> ID &Bs_8p`?7?// !?(  EI endstream endobj 265 0 obj <>stream 0 0 0 0 54 68 d1 54 0 0 68 0 0 cm BI /IM true /W 54 /H 68 /BPC 1 /D[1 0] /F/CCF /DP<> ID &_Ap/?/A)S  EI endstream endobj 266 0 obj <>stream 0 0 0 -2 68 70 d1 68 0 0 72 0 -2 cm BI /IM true /W 68 /H 72 /BPC 1 /D[1 0] /F/CCF /DP<> ID &u 2,aG'1XA /(_`, \ 0aQ@30s^ EI endstream endobj 267 0 obj <>stream 0 0 0 24 51 68 d1 51 0 0 44 0 24 cm BI /IM true /W 51 /H 44 /BPC 1 /D[1 0] /F/CCF /DP<> ID "MF2 0_ _  |a2`A EI endstream endobj 268 0 obj <> stream 27 0 0 0 0 0 d1 endstream endobj 269 0 obj <> stream 88 0 0 0 0 0 d1 endstream endobj 270 0 obj <>stream 0 0 0 -2 46 68 d1 46 0 0 70 0 -2 cm BI /IM true /W 46 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID 59 sa8 EI endstream endobj 271 0 obj <>stream 0 0 0 -2 80 68 d1 80 0 0 70 0 -2 cm BI /IM true /W 80 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &2 O!d3D&0ϟ`?Ç 9>ǐ/  EI endstream endobj 272 0 obj <>stream 0 0 0 0 85 75 d1 85 0 0 75 0 0 cm BI /IM true /W 85 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID @ c$i  /? 0'gf0 ?f7x pa0! p EI endstream endobj 273 0 obj <>stream 0 0 0 27 66 75 d1 66 0 0 48 0 27 cm BI /IM true /W 66 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &@B@1>f&p'f3a 0_O3|_BN  EI endstream endobj 274 0 obj <>stream 0 0 0 27 39 75 d1 39 0 0 48 0 27 cm BI /IM true /W 39 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &:w rk \?~/_p a , @ EI endstream endobj 275 0 obj <>stream 0 0 0 27 21 75 d1 21 0 0 48 0 27 cm BI /IM true /W 21 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?_?@ EI endstream endobj 276 0 obj <>stream 0 0 0 27 54 75 d1 54 0 0 48 0 27 cm BI /IM true /W 54 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID & F|O .ȕɨI'@ EI endstream endobj 277 0 obj <>stream 0 0 0 27 85 75 d1 85 0 0 48 0 27 cm BI /IM true /W 85 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID ) 3 p͆/|LN<&$B0G@ EI endstream endobj 278 0 obj <>stream 0 0 0 27 39 75 d1 39 0 0 48 0 27 cm BI /IM true /W 39 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID >? 8p``@ EI endstream endobj 279 0 obj <>stream 0 0 0 63 15 97 d1 15 0 0 34 0 63 cm BI /IM true /W 15 /H 34 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?a / EI endstream endobj 280 0 obj <> stream 31 0 0 0 0 0 d1 endstream endobj 281 0 obj <> stream 109 0 0 0 0 0 d1 endstream endobj 282 0 obj <>stream 0 0 0 0 52 70 d1 52 0 0 70 0 0 cm BI /IM true /W 52 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &c!|O2  a1dI/ H@ EI endstream endobj 283 0 obj <>stream 0 0 0 27 73 75 d1 73 0 0 48 0 27 cm BI /IM true /W 73 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &(0 X? /#?x0a_s`?^?̌k  EI endstream endobj 284 0 obj <>stream 0 0 0 24 49 99 d1 49 0 0 75 0 24 cm BI /IM true /W 49 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &01(>ha !O//2?k  ?A,?>stream 0 0 0 63 13 75 d1 13 0 0 12 0 63 cm BI /IM true /W 13 /H 12 /BPC 1 /D[1 0] /F/CCF /DP<> ID &_ EI endstream endobj 286 0 obj <>stream 0 0 0 0 71 77 d1 71 0 0 77 0 0 cm BI /IM true /W 71 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID & E9?&?˃O f 8_2? ec ? EI endstream endobj 287 0 obj <>stream 0 0 0 0 40 77 d1 40 0 0 77 0 0 cm BI /IM true /W 40 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?#? ?a<Af~N?0>stream 0 0 0 27 44 75 d1 44 0 0 48 0 27 cm BI /IM true /W 44 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &pG3 D??0s` `/BL? EI endstream endobj 289 0 obj <>stream 0 0 0 7 30 75 d1 30 0 0 68 0 7 cm BI /IM true /W 30 /H 68 /BPC 1 /D[1 0] /F/CCF /DP<> ID & `0<8??0 / @ EI endstream endobj 290 0 obj <>stream 0 0 0 0 56 75 d1 56 0 0 75 0 0 cm BI /IM true /W 56 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &/ r?(?? EI endstream endobj 291 0 obj <> stream 122 0 0 0 0 0 d1 endstream endobj 292 0 obj <>stream 0 0 0 0 47 77 d1 47 0 0 77 0 0 cm BI /IM true /W 47 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID & ke@ EI endstream endobj 293 0 obj <>stream 0 0 0 60 18 77 d1 18 0 0 17 0 60 cm BI /IM true /W 18 /H 17 /BPC 1 /D[1 0] /F/CCF /DP<> ID &f? 0_a|@ EI endstream endobj 294 0 obj <>stream 0 0 0 -5 46 77 d1 46 0 0 82 0 -5 cm BI /IM true /W 46 /H 82 /BPC 1 /D[1 0] /F/CCF /DP<> ID 5 Ho EI endstream endobj 295 0 obj <>stream 0 0 0 24 64 77 d1 64 0 0 53 0 24 cm BI /IM true /W 64 /H 53 /BPC 1 /D[1 0] /F/CCF /DP<> ID &) ?>stream 0 0 0 0 42 77 d1 42 0 0 77 0 0 cm BI /IM true /W 42 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &0C?h5 W53Xh~@ EI endstream endobj 297 0 obj <>stream 0 0 0 24 47 77 d1 47 0 0 53 0 24 cm BI /IM true /W 47 /H 53 /BPC 1 /D[1 0] /F/CCF /DP<> ID &)  y?V AC EI endstream endobj 298 0 obj <>stream 0 0 0 24 56 77 d1 56 0 0 53 0 24 cm BI /IM true /W 56 /H 53 /BPC 1 /D[1 0] /F/CCF /DP<> ID &AD00>stream 0 0 0 -7 64 77 d1 64 0 0 84 0 -7 cm BI /IM true /W 64 /H 84 /BPC 1 /D[1 0] /F/CCF /DP<> ID &AO'‡$ '  ?+ EI endstream endobj 300 0 obj <>stream 0 0 0 24 64 77 d1 64 0 0 53 0 24 cm BI /IM true /W 64 /H 53 /BPC 1 /D[1 0] /F/CCF /DP<> ID &AO'Ò EI endstream endobj 301 0 obj <>stream 0 0 0 24 49 77 d1 49 0 0 53 0 24 cm BI /IM true /W 49 /H 53 /BPC 1 /D[1 0] /F/CCF /DP<> ID & u3 0 k_? ? 1 !@ EI endstream endobj 302 0 obj <>stream 0 0 0 -10 28 77 d1 28 0 0 87 0 -10 cm BI /IM true /W 28 /H 87 /BPC 1 /D[1 0] /F/CCF /DP<> ID &)C?ȳ 0 EI endstream endobj 303 0 obj <>stream 0 0 0 0 34 75 d1 34 0 0 75 0 0 cm BI /IM true /W 34 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID !O Ĩ  EI endstream endobj 304 0 obj <> stream 103 0 0 0 0 0 d1 endstream endobj 305 0 obj <>stream 0 0 0 -2 39 75 d1 39 0 0 77 0 -2 cm BI /IM true /W 39 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &HC&5f a@ EI endstream endobj 306 0 obj <> stream 130 0 0 0 0 0 d1 endstream endobj 307 0 obj <>stream 0 0 0 0 106 77 d1 106 0 0 77 0 0 cm BI /IM true /W 106 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &\5OX?0X "s0 ̸AC >stream 0 0 0 -2 56 97 d1 56 0 0 99 0 -2 cm BI /IM true /W 56 /H 99 /BPC 1 /D[1 0] /F/CCF /DP<> ID &N G@` ?a?r& 0  EI endstream endobj 309 0 obj <>stream 0 0 0 -7 27 104 d1 27 0 0 111 0 -7 cm BI /IM true /W 27 /H 111 /BPC 1 /D[1 0] /F/CCF /DP<> ID &_  //_  3>stream 0 0 0 27 49 75 d1 49 0 0 48 0 27 cm BI /IM true /W 49 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &|98?@f/a?2 !h\ <2 /!@ EI endstream endobj 311 0 obj <>stream 0 0 0 -7 27 104 d1 27 0 0 111 0 -7 cm BI /IM true /W 27 /H 111 /BPC 1 /D[1 0] /F/CCF /DP<> ID 0 ?>stream 0 0 0 65 13 77 d1 13 0 0 12 0 65 cm BI /IM true /W 13 /H 12 /BPC 1 /D[1 0] /F/CCF /DP<> ID &_ EI endstream endobj 313 0 obj <>stream 0 0 0 2 29 99 d1 29 0 0 97 0 2 cm BI /IM true /W 29 /H 97 /BPC 1 /D[1 0] /F/CCF /DP<> ID &u!ɬ??_ f / EI endstream endobj 314 0 obj <>stream 0 0 0 -2 25 75 d1 25 0 0 77 0 -2 cm BI /IM true /W 25 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &|?08xpa?ȵ! EI endstream endobj 315 0 obj <>stream 0 0 0 5 63 92 d1 63 0 0 87 0 5 cm BI /IM true /W 63 /H 87 /BPC 1 /D[1 0] /F/CCF /DP<> ID &0ys *p?y/ssAy8j|.~c' PO 07?y A> stream 110 0 0 0 0 0 d1 endstream endobj 317 0 obj <>stream 0 0 0 27 54 75 d1 54 0 0 48 0 27 cm BI /IM true /W 54 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &`AA ?ʈ?aa?(_@ EI endstream endobj 318 0 obj <>stream 0 0 0 63 15 97 d1 15 0 0 34 0 63 cm BI /IM true /W 15 /H 34 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?a / EI endstream endobj 319 0 obj <>stream 0 0 0 5 44 77 d1 44 0 0 72 0 5 cm BI /IM true /W 44 /H 72 /BPC 1 /D[1 0] /F/CCF /DP<> ID &/?f3 xI ?.f? fC@ EI endstream endobj 320 0 obj <>stream 0 0 0 -5 73 77 d1 73 0 0 82 0 -5 cm BI /IM true /W 73 /H 82 /BPC 1 /D[1 0] /F/CCF /DP<> ID &p# }`3@< /! aF`0p? \?\/  ి __  ࡅ "8G EI endstream endobj 321 0 obj <>stream 0 0 0 3 44 37 d1 44 0 0 34 0 3 cm BI /IM true /W 44 /H 34 /BPC 1 /D[1 0] /F/CCF /DP<> ID &p3 ~43qB EI endstream endobj 322 0 obj <>stream 0 0 0 29 92 68 d1 92 0 0 39 0 29 cm BI /IM true /W 92 /H 39 /BPC 1 /D[1 0] /F/CCF /DP<> ID &y ffN5/A~/x_|@ EI endstream endobj 323 0 obj <> stream 111 0 0 0 0 0 d1 endstream endobj 324 0 obj <>stream 0 0 0 27 51 97 d1 51 0 0 70 0 27 cm BI /IM true /W 51 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &F_skzpOc00a?0_a?  EI endstream endobj 325 0 obj <> stream 108 0 0 0 0 0 d1 endstream endobj 326 0 obj <> stream 104 0 0 0 0 0 d1 endstream endobj 327 0 obj <>stream 0 0 0 27 56 75 d1 56 0 0 48 0 27 cm BI /IM true /W 56 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID & ?/<00Qa G_x/ " EI endstream endobj 328 0 obj <>stream 0 0 0 -2 51 75 d1 51 0 0 77 0 -2 cm BI /IM true /W 51 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID *j$////0A9\'G?ɨO@ EI endstream endobj 329 0 obj <>stream 0 0 0 0 71 75 d1 71 0 0 75 0 0 cm BI /IM true /W 71 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &@e WP  EI endstream endobj 330 0 obj <>stream 0 0 0 27 56 75 d1 56 0 0 48 0 27 cm BI /IM true /W 56 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID "&C9| _e|/ #> endobj 336 0 obj <>stream 0 0 0 -2 73 77 d1 73 0 0 79 0 -2 cm BI /IM true /W 73 /H 79 /BPC 1 /D[1 0] /F/CCF /DP<> ID &k nr;y xf? ?_// /C0o_ɭ /\ .1/N?!X? EI endstream endobj 337 0 obj <>stream 0 0 0 -7 18 101 d1 18 0 0 108 0 -7 cm BI /IM true /W 18 /H 108 /BPC 1 /D[1 0] /F/CCF /DP<> ID & EI endstream endobj 338 0 obj <>stream 0 0 0 -5 18 103 d1 18 0 0 108 0 -5 cm BI /IM true /W 18 /H 108 /BPC 1 /D[1 0] /F/CCF /DP<> ID 5 EI endstream endobj 339 0 obj <>stream 0 0 0 -2 20 17 d1 20 0 0 19 0 -2 cm BI /IM true /W 20 /H 19 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?>stream 0 0 0 -2 68 77 d1 68 0 0 79 0 -2 cm BI /IM true /W 68 /H 79 /BPC 1 /D[1 0] /F/CCF /DP<> ID &t ra0#C8aak`a  f  _2 EI endstream endobj 341 0 obj <>stream 0 0 0 0 61 75 d1 61 0 0 75 0 0 cm BI /IM true /W 61 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID & ?N  ?K EI endstream endobj 342 0 obj <>stream 0 0 0 -2 56 75 d1 56 0 0 77 0 -2 cm BI /IM true /W 56 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &y"j5?\? 0ǐ/@ EI endstream endobj 343 0 obj <>stream 0 0 0 3 44 77 d1 44 0 0 74 0 3 cm BI /IM true /W 44 /H 74 /BPC 1 /D[1 0] /F/CCF /DP<> ID &A `/? O0ȓ qCg0?0 # 7 EI endstream endobj 344 0 obj <>stream 0 0 0 5 44 79 d1 44 0 0 74 0 5 cm BI /IM true /W 44 /H 74 /BPC 1 /D[1 0] /F/CCF /DP<> ID &_0e aFpp EI endstream endobj 345 0 obj <>stream 0 0 0 3 44 77 d1 44 0 0 74 0 3 cm BI /IM true /W 44 /H 74 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?ȳ",>\8I_A_0c_ _. g3 !~  EI endstream endobj 346 0 obj <>stream 0 0 0 3 44 77 d1 44 0 0 74 0 3 cm BI /IM true /W 44 /H 74 /BPC 1 /D[1 0] /F/CCF /DP<> ID &/H`3??E/a~ _ 8 EI endstream endobj 347 0 obj <>stream 0 0 0 -2 87 75 d1 87 0 0 77 0 -2 cm BI /IM true /W 87 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &V2 yD|3 _ C9Ãa _d2p8Z} EI endstream endobj 348 0 obj <>stream 0 0 0 0 51 77 d1 51 0 0 77 0 0 cm BI /IM true /W 51 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID Mo>_>?75`0<~N0  2p_  EI endstream endobj 349 0 obj <>stream 0 0 0 -5 85 77 d1 85 0 0 82 0 -5 cm BI /IM true /W 85 /H 82 /BPC 1 /D[1 0] /F/CCF /DP<> ID &AWgԃ΁0 [a . 0 `cϬ?.-i EI endstream endobj 350 0 obj <>stream 0 0 0 -7 28 77 d1 28 0 0 84 0 -7 cm BI /IM true /W 28 /H 84 /BPC 1 /D[1 0] /F/CCF /DP<> ID &)3  EI endstream endobj 351 0 obj <>stream 0 0 0 24 52 77 d1 52 0 0 53 0 24 cm BI /IM true /W 52 /H 53 /BPC 1 /D[1 0] /F/CCF /DP<> ID &MH1~H 4 ʠo:_ x_ Bh EI endstream endobj 352 0 obj <>stream 0 0 0 -7 46 77 d1 46 0 0 84 0 -7 cm BI /IM true /W 46 /H 84 /BPC 1 /D[1 0] /F/CCF /DP<> ID &ĨMB`a /O EI endstream endobj 353 0 obj <>stream 0 0 0 -7 64 77 d1 64 0 0 84 0 -7 cm BI /IM true /W 64 /H 84 /BPC 1 /D[1 0] /F/CCF /DP<> ID &) ?>stream 0 0 0 24 59 77 d1 59 0 0 53 0 24 cm BI /IM true /W 59 /H 53 /BPC 1 /D[1 0] /F/CCF /DP<> ID &P_@_mH|C  k! ?E?/ __ EI endstream endobj 355 0 obj <>stream 0 0 0 24 59 103 d1 59 0 0 79 0 24 cm BI /IM true /W 59 /H 79 /BPC 1 /D[1 0] /F/CCF /DP<> ID &AB ~H"e ? C+_/"[V@@0&_b0 ? EI endstream endobj 356 0 obj <>stream 0 0 0 24 104 77 d1 104 0 0 53 0 24 cm BI /IM true /W 104 /H 53 /BPC 1 /D[1 0] /F/CCF /DP<> ID & RA ea$3(`b1=d6' EI endstream endobj 357 0 obj <>stream 0 0 0 36 37 92 d1 37 0 0 56 0 36 cm BI /IM true /W 37 /H 56 /BPC 1 /D[1 0] /F/CCF /DP<> ID &.f?A' a28|?y`R? EI endstream endobj 358 0 obj <>stream 0 0 0 0 76 75 d1 76 0 0 75 0 0 cm BI /IM true /W 76 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &_`4H!(?a? _A'A` ?0 / EI endstream endobj 359 0 obj <> stream 95 0 0 0 0 0 d1 endstream endobj 360 0 obj <>stream 0 0 0 0 88 48 d1 88 0 0 48 0 0 cm BI /IM true /W 88 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &('((A8? xf/ ?p 0aTa 0`\a0eτω "A EI endstream endobj 361 0 obj <>stream 0 0 0 34 68 63 d1 68 0 0 29 0 34 cm BI /IM true /W 68 /H 29 /BPC 1 /D[1 0] /F/CCF /DP<> ID &/<7ɬ  EI endstream endobj 362 0 obj <>stream 0 0 0 10 68 87 d1 68 0 0 77 0 10 cm BI /IM true /W 68 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &xHoOO EI endstream endobj 363 0 obj <>stream 0 0 0 -27 56 29 d1 56 0 0 56 0 -27 cm BI /IM true /W 56 /H 56 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?x??fb?@ EI endstream endobj 364 0 obj <>stream 0 0 0 46 63 51 d1 63 0 0 5 0 46 cm BI /IM true /W 63 /H 5 /BPC 1 /D[1 0] /F/CCF /DP<> ID & EI endstream endobj 365 0 obj <>stream 0 0 0 0 44 77 d1 44 0 0 77 0 0 cm BI /IM true /W 44 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &a䰉?X|/N$ ' EI endstream endobj 366 0 obj <>stream 0 0 0 7 32 75 d1 32 0 0 68 0 7 cm BI /IM true /W 32 /H 68 /BPC 1 /D[1 0] /F/CCF /DP<> ID & C0?? &MC EI endstream endobj 367 0 obj <>stream 0 0 0 0 76 75 d1 76 0 0 75 0 0 cm BI /IM true /W 76 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &oDG1C*pp ?0 _@h- EI endstream endobj 368 0 obj <> stream 112 0 0 0 0 0 d1 endstream endobj 369 0 obj <>stream 0 0 0 36 22 92 d1 22 0 0 56 0 36 cm BI /IM true /W 22 /H 56 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?x?1  EI endstream endobj 370 0 obj <>stream 0 0 0 0 32 89 d1 32 0 0 89 0 0 cm BI /IM true /W 32 /H 89 /BPC 1 /D[1 0] /F/CCF /DP<> ID !&?<C/8 EI endstream endobj 371 0 obj <>stream 0 0 0 87 13 121 d1 13 0 0 34 0 87 cm BI /IM true /W 13 /H 34 /BPC 1 /D[1 0] /F/CCF /DP<> ID @ EI endstream endobj 372 0 obj <>stream 0 0 0 0 35 185 d1 35 0 0 185 0 0 cm BI /IM true /W 35 /H 185 /BPC 1 /D[1 0] /F/CCF /DP<> ID & ~/_/ _G a?@ EI endstream endobj 373 0 obj <>stream 0 0 0 116 32 205 d1 32 0 0 89 0 116 cm BI /IM true /W 32 /H 89 /BPC 1 /D[1 0] /F/CCF /DP<> ID & p / /  EI endstream endobj 374 0 obj <>stream 0 0 0 17 63 80 d1 63 0 0 63 0 17 cm BI /IM true /W 63 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &QALV?uCTjדς3 1G ?&6LCnB?4y !?5O:AXS? ? EI endstream endobj 375 0 obj <>stream 0 0 0 15 51 82 d1 51 0 0 67 0 15 cm BI /IM true /W 51 /H 67 /BPC 1 /D[1 0] /F/CCF /DP<> ID &c4 !i/8/x_ /T00L+*h  EI endstream endobj 376 0 obj <>stream 0 0 0 17 63 80 d1 63 0 0 63 0 17 cm BI /IM true /W 63 /H 63 /BPC 1 /D[1 0] /F/CCF /DP<> ID &'/O 0Pine _!Q$S@ *k sCHe '_@ EI endstream endobj 377 0 obj <>stream 0 0 0 0 30 34 d1 30 0 0 34 0 0 cm BI /IM true /W 30 /H 34 /BPC 1 /D[1 0] /F/CCF /DP<> ID &t Dx/`  EI endstream endobj 378 0 obj <>stream 0 0 0 0 44 70 d1 44 0 0 70 0 0 cm BI /IM true /W 44 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID & Ah<*pO?P0aaXpAh8?@ EI endstream endobj 379 0 obj <>stream 0 0 0 -5 80 80 d1 80 0 0 85 0 -5 cm BI /IM true /W 80 /H 85 /BPC 1 /D[1 0] /F/CCF /DP<> ID &8 ~H?3pD??LJs8(20' ?|?@ EI endstream endobj 380 0 obj <> endobj 385 0 obj <>stream 0 0 0 -7 39 101 d1 39 0 0 108 0 -7 cm BI /IM true /W 39 /H 108 /BPC 1 /D[1 0] /F/CCF /DP<> ID &^p? _ 3reddy?` ?7? EI endstream endobj 386 0 obj <>stream 0 0 0 -2 58 77 d1 58 0 0 79 0 -2 cm BI /IM true /W 58 /H 79 /BPC 1 /D[1 0] /F/CCF /DP<> ID &x2q @A,? A^ EI endstream endobj 387 0 obj <>stream 0 0 0 0 28 75 d1 28 0 0 75 0 0 cm BI /IM true /W 28 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID & | 88pQaq<bџ EI endstream endobj 388 0 obj <>stream 0 0 0 -7 39 101 d1 39 0 0 108 0 -7 cm BI /IM true /W 39 /H 108 /BPC 1 /D[1 0] /F/CCF /DP<> ID !VMFN x Cy /8࿄9 2 EI endstream endobj 389 0 obj <>stream 0 0 0 -7 39 101 d1 39 0 0 108 0 -7 cm BI /IM true /W 39 /H 108 /BPC 1 /D[1 0] /F/CCF /DP<> ID 8_M`axa EI endstream endobj 390 0 obj <>stream 0 0 0 10 39 13 d1 39 0 0 3 0 10 cm BI /IM true /W 39 /H 3 /BPC 1 /D[1 0] /F/CCF /DP<> ID  EI endstream endobj 391 0 obj <>stream 0 0 0 44 54 102 d1 54 0 0 58 0 44 cm BI /IM true /W 54 /H 58 /BPC 1 /D[1 0] /F/CCF /DP<> ID &`I3 EI endstream endobj 392 0 obj <>stream 0 0 0 -2 52 75 d1 52 0 0 77 0 -2 cm BI /IM true /W 52 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID & ÓJࡆ ‡?a 0? 0a?CA6@ EI endstream endobj 393 0 obj <>stream 0 0 0 27 59 75 d1 59 0 0 48 0 27 cm BI /IM true /W 59 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &fȪ? AXd?`?8 ^ | 7 EI endstream endobj 394 0 obj <> stream 107 0 0 0 0 0 d1 endstream endobj 395 0 obj <>stream 0 0 0 -2 51 75 d1 51 0 0 77 0 -2 cm BI /IM true /W 51 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID 8 . & ap0p?0?`3O  /p4 EI endstream endobj 396 0 obj <>stream 0 0 0 0 6 108 d1 6 0 0 108 0 0 cm BI /IM true /W 6 /H 108 /BPC 1 /D[1 0] /F/CCF /DP<> ID & EI endstream endobj 397 0 obj <>stream 0 0 0 -2 58 97 d1 58 0 0 99 0 -2 cm BI /IM true /W 58 /H 99 /BPC 1 /D[1 0] /F/CCF /DP<> ID 04efa?B0a0r q?g\3? (\ 35 EI endstream endobj 398 0 obj <>stream 0 0 0 13 49 18 d1 49 0 0 5 0 13 cm BI /IM true /W 49 /H 5 /BPC 1 /D[1 0] /F/CCF /DP<> ID  EI endstream endobj 399 0 obj <>stream 0 0 0 -16 37 35 d1 37 0 0 51 0 -16 cm BI /IM true /W 37 /H 51 /BPC 1 /D[1 0] /F/CCF /DP<> ID & oMo2~a  EI endstream endobj 400 0 obj <>stream 0 0 0 -2 32 97 d1 32 0 0 99 0 -2 cm BI /IM true /W 32 /H 99 /BPC 1 /D[1 0] /F/CCF /DP<> ID & ?,>?@ /~/ L/a/A_&/8_.`C}@ | Aǃ EI endstream endobj 401 0 obj <>stream 0 0 0 5 63 92 d1 63 0 0 87 0 5 cm BI /IM true /W 63 /H 87 /BPC 1 /D[1 0] /F/CCF /DP<> ID &0NN !?4y 6~u5O:AXS? ?)cA^N5O + 4 EI endstream endobj 402 0 obj <>stream 0 0 0 0 66 75 d1 66 0 0 75 0 0 cm BI /IM true /W 66 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID & Q ' ! EI endstream endobj 403 0 obj <>stream 0 0 0 -2 71 77 d1 71 0 0 79 0 -2 cm BI /IM true /W 71 /H 79 /BPC 1 /D[1 0] /F/CCF /DP<> ID &A5>ABCl0?? ?a|8@?8_r3 6Ad,j EI endstream endobj 404 0 obj <> endobj 406 0 obj <>stream 0 0 0 0 56 77 d1 56 0 0 77 0 0 cm BI /IM true /W 56 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &AB p/C8 //Q *2Q `a_CE EI endstream endobj 410 0 obj <>stream 0 0 0 -5 71 77 d1 71 0 0 82 0 -5 cm BI /IM true /W 71 /H 82 /BPC 1 /D[1 0] /F/CCF /DP<> ID &A+!D   EI endstream endobj 411 0 obj <>stream 0 0 0 -5 116 77 d1 116 0 0 82 0 -5 cm BI /IM true /W 116 /H 82 /BPC 1 /D[1 0] /F/CCF /DP<> ID &ÀA3 ӧ·A aA @0  A>  EI endstream endobj 412 0 obj <>stream 0 0 0 24 66 101 d1 66 0 0 77 0 24 cm BI /IM true /W 66 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &[f?p<0X ??a,,?Xg" EI endstream endobj 413 0 obj <>stream 0 0 0 -5 83 77 d1 83 0 0 82 0 -5 cm BI /IM true /W 83 /H 82 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?VC(G4|__A2|I35 @ X7 EI endstream endobj 414 0 obj <> stream 114 0 0 0 0 0 d1 endstream endobj 415 0 obj <>stream 0 0 0 -5 73 77 d1 73 0 0 82 0 -5 cm BI /IM true /W 73 /H 82 /BPC 1 /D[1 0] /F/CCF /DP<> ID &WW/?? 2@ EI endstream endobj 416 0 obj <>stream 0 0 0 -5 92 77 d1 92 0 0 82 0 -5 cm BI /IM true /W 92 /H 82 /BPC 1 /D[1 0] /F/CCF /DP<> ID &Ts?" cQ5o#j_ ___ [̓[p p3kAg z2CCH EI endstream endobj 417 0 obj <>stream 0 0 0 -5 58 77 d1 58 0 0 82 0 -5 cm BI /IM true /W 58 /H 82 /BPC 1 /D[1 0] /F/CCF /DP<> ID 0 `džF'0HΡ850PjJ?.7 ~B_ /%@P㔀ӑPkBÅA#1X? EI endstream endobj 418 0 obj <> stream 117 0 0 0 0 0 d1 endstream endobj 419 0 obj <>stream 0 0 0 24 42 77 d1 42 0 0 53 0 24 cm BI /IM true /W 42 /H 53 /BPC 1 /D[1 0] /F/CCF /DP<> ID &aU<g0 ?  / V8( /N?_ EI endstream endobj 420 0 obj <>stream 0 0 0 27 40 75 d1 40 0 0 48 0 27 cm BI /IM true /W 40 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID & ? ]! _࿓`??0n@ EI endstream endobj 421 0 obj <>stream 0 0 0 27 49 97 d1 49 0 0 70 0 27 cm BI /IM true /W 49 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &7pX? 0`?!A? 0aTA  p?b  EI endstream endobj 422 0 obj <>stream 0 0 0 -2 49 75 d1 49 0 0 77 0 -2 cm BI /IM true /W 49 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &nN'??/ 0 3C?.|pH0O  EI endstream endobj 423 0 obj <>stream 0 0 0 19 54 77 d1 54 0 0 58 0 19 cm BI /IM true /W 54 /H 58 /BPC 1 /D[1 0] /F/CCF /DP<> ID &U`0A__0<a.aA0| X| Apaփ EI endstream endobj 424 0 obj <>stream 0 0 0 0 78 75 d1 78 0 0 75 0 0 cm BI /IM true /W 78 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &D_A (a@f7,?` @ˆ,_ăo EI endstream endobj 425 0 obj <> stream 24 0 0 0 0 0 d1 endstream endobj 426 0 obj <>stream 0 0 0 1 66 35 d1 66 0 0 34 0 1 cm BI /IM true /W 66 /H 34 /BPC 1 /D[1 0] /F/CCF /DP<> ID &p8/`a8?aÃcppqB?@ EI endstream endobj 427 0 obj <>stream 0 0 0 -2 61 77 d1 61 0 0 79 0 -2 cm BI /IM true /W 61 /H 79 /BPC 1 /D[1 0] /F/CCF /DP<> ID 0u y0?ɬa|/?!'x_ 7pip 4 EI endstream endobj 428 0 obj <>stream 0 0 0 -2 44 75 d1 44 0 0 77 0 -2 cm BI /IM true /W 44 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &W5ࡇ_Aa??  >stream 0 0 0 60 54 85 d1 54 0 0 25 0 60 cm BI /IM true /W 54 /H 25 /BPC 1 /D[1 0] /F/CCF /DP<> ID &O EI endstream endobj 430 0 obj <>stream 0 0 0 0 54 75 d1 54 0 0 75 0 0 cm BI /IM true /W 54 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID "aɨrf0x??@ EI endstream endobj 431 0 obj <>stream 0 0 0 0 109 77 d1 109 0 0 77 0 0 cm BI /IM true /W 109 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &`Ç???0\>|? f>?_`6x? ?? 8 EI endstream endobj 432 0 obj <>stream 0 0 0 0 107 75 d1 107 0 0 75 0 0 cm BI /IM true /W 107 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID & p9?!G03a0 Op|8~ |Af?!C!@2 7@ EI endstream endobj 433 0 obj <>stream 0 0 0 -42 21 136 d1 21 0 0 178 0 -42 cm BI /IM true /W 21 /H 178 /BPC 1 /D[1 0] /F/CCF /DP<> ID &@o EI endstream endobj 434 0 obj <> stream 132 0 0 0 0 0 d1 endstream endobj 435 0 obj <>stream 0 0 0 -42 20 136 d1 20 0 0 178 0 -42 cm BI /IM true /W 20 /H 178 /BPC 1 /D[1 0] /F/CCF /DP<> ID 5 ? EI endstream endobj 436 0 obj <>stream 0 0 0 -102 30 196 d1 30 0 0 298 0 -102 cm BI /IM true /W 30 /H 298 /BPC 1 /D[1 0] /F/CCF /DP<> ID 3@@ EI endstream endobj 437 0 obj <> stream 134 0 0 0 0 0 d1 endstream endobj 438 0 obj <>stream 0 0 0 0 80 75 d1 80 0 0 75 0 0 cm BI /IM true /W 80 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &O260eO`a//6_ EI endstream endobj 439 0 obj <>stream 0 0 0 0 64 75 d1 64 0 0 75 0 0 cm BI /IM true /W 64 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &C _?ax?? EI endstream endobj 440 0 obj <>stream 0 0 0 -169 29 129 d1 29 0 0 298 0 -169 cm BI /IM true /W 29 /H 298 /BPC 1 /D[1 0] /F/CCF /DP<> ID & EI endstream endobj 441 0 obj <> stream 97 0 0 0 0 0 d1 endstream endobj 442 0 obj <>stream 0 0 0 82 10 106 d1 10 0 0 24 0 82 cm BI /IM true /W 10 /H 24 /BPC 1 /D[1 0] /F/CCF /DP<> ID &sp  EI endstream endobj 443 0 obj <>stream 0 0 0 36 32 106 d1 32 0 0 70 0 36 cm BI /IM true /W 32 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &8h0350<! </eG EI endstream endobj 444 0 obj <>stream 0 0 0 -103 54 195 d1 54 0 0 298 0 -103 cm BI /IM true /W 54 /H 298 /BPC 1 /D[1 0] /F/CCF /DP<> ID & 5/' ^ _ x/࿅A~_> W@6Ea ??0x`2 @ EI endstream endobj 445 0 obj <>stream 0 0 0 0 47 97 d1 47 0 0 97 0 0 cm BI /IM true /W 47 /H 97 /BPC 1 /D[1 0] /F/CCF /DP<> ID &C Gf 0a`x??Ca? ? _ EI endstream endobj 446 0 obj <>stream 0 0 0 27 49 75 d1 49 0 0 48 0 27 cm BI /IM true /W 49 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID & Ó*8?/p~ p8 aa<<  EI endstream endobj 447 0 obj <>stream 0 0 0 0 88 75 d1 88 0 0 75 0 0 cm BI /IM true /W 88 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &  .Gpaa2px8?aÇC@c EI endstream endobj 448 0 obj <>stream 0 0 0 24 68 73 d1 68 0 0 49 0 24 cm BI /IM true /W 68 /H 49 /BPC 1 /D[1 0] /F/CCF /DP<> ID {5&{c EI endstream endobj 449 0 obj <> endobj 454 0 obj <>stream 0 0 0 57 32 113 d1 32 0 0 56 0 57 cm BI /IM true /W 32 /H 56 /BPC 1 /D[1 0] /F/CCF /DP<> ID &|38A ?  ?cx_0ap1  EI endstream endobj 455 0 obj <>stream 0 0 0 0 34 178 d1 34 0 0 178 0 0 cm BI /IM true /W 34 /H 178 /BPC 1 /D[1 0] /F/CCF /DP<> ID 3 @ EI endstream endobj 456 0 obj <>stream 0 0 0 176 8 241 d1 8 0 0 65 0 176 cm BI /IM true /W 8 /H 65 /BPC 1 /D[1 0] /F/CCF /DP<> ID  EI endstream endobj 457 0 obj <>stream 0 0 0 0 34 178 d1 34 0 0 178 0 0 cm BI /IM true /W 34 /H 178 /BPC 1 /D[1 0] /F/CCF /DP<> ID 3 @ EI endstream endobj 458 0 obj <>stream 0 0 0 0 76 77 d1 76 0 0 77 0 0 cm BI /IM true /W 76 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &pH D8/p0 0`c'?$ 0~ h* EI endstream endobj 459 0 obj <>stream 0 0 0 0 34 178 d1 34 0 0 178 0 0 cm BI /IM true /W 34 /H 178 /BPC 1 /D[1 0] /F/CCF /DP<> ID &  EI endstream endobj 460 0 obj <>stream 0 0 0 176 8 241 d1 8 0 0 65 0 176 cm BI /IM true /W 8 /H 65 /BPC 1 /D[1 0] /F/CCF /DP<> ID  EI endstream endobj 461 0 obj <>stream 0 0 0 0 34 178 d1 34 0 0 178 0 0 cm BI /IM true /W 34 /H 178 /BPC 1 /D[1 0] /F/CCF /DP<> ID & EI endstream endobj 462 0 obj <>stream 0 0 0 0 71 75 d1 71 0 0 75 0 0 cm BI /IM true /W 71 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID & 1!!20? A_P/@ EI endstream endobj 463 0 obj <>stream 0 0 0 0 61 75 d1 61 0 0 75 0 0 cm BI /IM true /W 61 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &Wa&(' !@ EI endstream endobj 464 0 obj <>stream 0 0 0 -7 30 104 d1 30 0 0 111 0 -7 cm BI /IM true /W 30 /H 111 /BPC 1 /D[1 0] /F/CCF /DP<> ID &a EI endstream endobj 465 0 obj <>stream 0 0 0 0 56 77 d1 56 0 0 77 0 0 cm BI /IM true /W 56 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID & Z,| D?0? EI endstream endobj 466 0 obj <>stream 0 0 0 -5 83 77 d1 83 0 0 82 0 -5 cm BI /IM true /W 83 /H 82 /BPC 1 /D[1 0] /F/CCF /DP<> ID &CI?fC+?_x_ Π/@ EI endstream endobj 467 0 obj <>stream 0 0 0 24 49 77 d1 49 0 0 53 0 24 cm BI /IM true /W 49 /H 53 /BPC 1 /D[1 0] /F/CCF /DP<> ID &/26O?`s_Y`80! EI endstream endobj 468 0 obj <>stream 0 0 0 -5 80 77 d1 80 0 0 82 0 -5 cm BI /IM true /W 80 /H 82 /BPC 1 /D[1 0] /F/CCF /DP<> ID &AgC9Pi!aAx_?g5Ag X0Xa34`N? 0CH EI endstream endobj 469 0 obj <> stream 118 0 0 0 0 0 d1 endstream endobj 470 0 obj <>stream 0 0 0 24 64 101 d1 64 0 0 77 0 24 cm BI /IM true /W 64 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID & O!4ɤ&g#a0 //IBW@ EI endstream endobj 471 0 obj <>stream 0 0 0 -14 37 37 d1 37 0 0 51 0 -14 cm BI /IM true /W 37 /H 51 /BPC 1 /D[1 0] /F/CCF /DP<> ID &aEϏ0X/_ _8 EI endstream endobj 472 0 obj <>stream 0 0 0 27 13 97 d1 13 0 0 70 0 27 cm BI /IM true /W 13 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID & EI endstream endobj 473 0 obj <>stream 0 0 0 0 92 48 d1 92 0 0 48 0 0 cm BI /IM true /W 92 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &@k@d2g `,X| @1 ?a0 /_0 A@a`p0 0_0A b? EI endstream endobj 474 0 obj <> endobj 479 0 obj <>stream 0 0 0 -2 80 75 d1 80 0 0 77 0 -2 cm BI /IM true /W 80 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &0ed/3H a`6x__~  fp_x__~  1  / EI endstream endobj 480 0 obj <>stream 0 0 0 0 71 77 d1 71 0 0 77 0 0 cm BI /IM true /W 71 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &t 1<> ./ `&DI EI endstream endobj 481 0 obj <>stream 0 0 0 27 47 75 d1 47 0 0 48 0 27 cm BI /IM true /W 47 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &f x@ P0 o!.f bpa@ EI endstream endobj 482 0 obj <>stream 0 0 0 0 25 15 d1 25 0 0 15 0 0 cm BI /IM true /W 25 /H 15 /BPC 1 /D[1 0] /F/CCF /DP<> ID 0_ɬ _ @ EI endstream endobj 483 0 obj <>stream 0 0 0 -14 20 28 d1 20 0 0 42 0 -14 cm BI /IM true /W 20 /H 42 /BPC 1 /D[1 0] /F/CCF /DP<> ID &Moa@ EI endstream endobj 484 0 obj <>stream 0 0 0 -2 70 75 d1 70 0 0 77 0 -2 cm BI /IM true /W 70 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &V2?y#d9l> H?0Ü/>stream 0 0 0 -4 32 30 d1 32 0 0 34 0 -4 cm BI /IM true /W 32 /H 34 /BPC 1 /D[1 0] /F/CCF /DP<> ID &+2&ܳ3??ᓆ3rk  EI endstream endobj 486 0 obj <> stream 102 0 0 0 0 0 d1 endstream endobj 487 0 obj <> endobj 492 0 obj <>stream 0 0 0 0 40 77 d1 40 0 0 77 0 0 cm BI /IM true /W 40 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &G# `3? ' 0x?J EI endstream endobj 493 0 obj <>stream 0 0 0 36 28 92 d1 28 0 0 56 0 36 cm BI /IM true /W 28 /H 56 /BPC 1 /D[1 0] /F/CCF /DP<> ID &N Cp|?0x 00 EI endstream endobj 494 0 obj <>stream 0 0 0 27 40 75 d1 40 0 0 48 0 27 cm BI /IM true /W 40 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &Ȫ9!?a RA6G?_ EI endstream endobj 495 0 obj <>stream 0 0 0 27 71 75 d1 71 0 0 48 0 27 cm BI /IM true /W 71 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &A 98gAτ A<?f 0`?aჃa? `1_ EI endstream endobj 496 0 obj <>stream 0 0 0 0 56 70 d1 56 0 0 70 0 0 cm BI /IM true /W 56 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &3dA ?X?_2<2q? EI endstream endobj 497 0 obj <> endobj 499 0 obj <>stream 0 0 0 0 40 48 d1 40 0 0 48 0 0 cm BI /IM true /W 40 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &T "# ^08AÃAH Gn@ EI endstream endobj 503 0 obj <>stream 0 0 0 0 53 3 d1 53 0 0 3 0 0 cm BI /IM true /W 53 /H 3 /BPC 1 /D[1 0] /F/CCF /DP<> ID  EI endstream endobj 504 0 obj <>stream 0 0 0 27 51 75 d1 51 0 0 48 0 27 cm BI /IM true /W 51 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &8 3 ' !k?@Π_5/. 8_|@ EI endstream endobj 505 0 obj <>stream 0 0 0 27 94 75 d1 94 0 0 48 0 27 cm BI /IM true /W 94 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID )Rɨa Ã?$| S1! / EI endstream endobj 506 0 obj <>stream 0 0 0 27 56 75 d1 56 0 0 48 0 27 cm BI /IM true /W 56 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID & `ɤ : 8O? kH? ~CHL'_ </p EI endstream endobj 507 0 obj <>stream 0 0 0 27 44 75 d1 44 0 0 48 0 27 cm BI /IM true /W 44 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &Ȥ~ O*a@ EI endstream endobj 508 0 obj <>stream 0 0 0 -2 59 75 d1 59 0 0 77 0 -2 cm BI /IM true /W 59 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &)l _///A _ ?Gᙆa|? EI endstream endobj 509 0 obj <>stream 0 0 0 58 18 75 d1 18 0 0 17 0 58 cm BI /IM true /W 18 /H 17 /BPC 1 /D[1 0] /F/CCF /DP<> ID &f? 0_a|@ EI endstream endobj 510 0 obj <>stream 0 0 0 0 68 75 d1 68 0 0 75 0 0 cm BI /IM true /W 68 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID %0H߇` ?<#8a0N A  EI endstream endobj 511 0 obj <>stream 0 0 0 27 46 75 d1 46 0 0 48 0 27 cm BI /IM true /W 46 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &8`q /A~˟ 3`2??>8a x0_@ EI endstream endobj 512 0 obj <>stream 0 0 0 27 80 75 d1 80 0 0 48 0 27 cm BI /IM true /W 80 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &xb… 0Çà ?`Oa ?fˇ0D2  EI endstream endobj 513 0 obj <>stream 0 0 0 -2 53 97 d1 53 0 0 99 0 -2 cm BI /IM true /W 53 /H 99 /BPC 1 /D[1 0] /F/CCF /DP<> ID &N0px?ɬ a? ?0 3gar  EI endstream endobj 514 0 obj <>stream 0 0 0 -2 70 97 d1 70 0 0 99 0 -2 cm BI /IM true /W 70 /H 99 /BPC 1 /D[1 0] /F/CCF /DP<> ID &N !ɬ 0xʟ8 ?~0 ?p_f _?g8_6@ EI endstream endobj 515 0 obj <>stream 0 0 0 27 56 97 d1 56 0 0 70 0 27 cm BI /IM true /W 56 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID *ɨ ?HFǘ 8?? ?0`00?_xN EI endstream endobj 516 0 obj <>stream 0 0 0 0 44 97 d1 44 0 0 97 0 0 cm BI /IM true /W 44 /H 97 /BPC 1 /D[1 0] /F/CCF /DP<> ID &N C50x??! P @ EI endstream endobj 517 0 obj <>stream 0 0 0 27 44 75 d1 44 0 0 48 0 27 cm BI /IM true /W 44 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID 0 GPa ?3\0?.02 ?H`0@ EI endstream endobj 518 0 obj <>stream 0 0 0 27 44 97 d1 44 0 0 70 0 27 cm BI /IM true /W 44 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID & Ah0<4<'†?Paa,8x 4?@ EI endstream endobj 519 0 obj <> stream 47 0 0 0 0 0 d1 endstream endobj 520 0 obj <>stream 0 0 0 -2 28 75 d1 28 0 0 77 0 -2 cm BI /IM true /W 28 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &)C? EI endstream endobj 521 0 obj <>stream 0 0 0 27 56 99 d1 56 0 0 72 0 27 cm BI /IM true /W 56 /H 72 /BPC 1 /D[1 0] /F/CCF /DP<> ID & |A}pi)5ᓆP_y6A8paO 1Y EI endstream endobj 522 0 obj <>stream 0 0 0 27 56 75 d1 56 0 0 48 0 27 cm BI /IM true /W 56 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID & |Ⱥ0850aCA EI endstream endobj 523 0 obj <>stream 0 0 0 -5 28 75 d1 28 0 0 80 0 -5 cm BI /IM true /W 28 /H 80 /BPC 1 /D[1 0] /F/CCF /DP<> ID &)3"?0 / EI endstream endobj 524 0 obj <>stream 0 0 0 5 37 75 d1 37 0 0 70 0 5 cm BI /IM true /W 37 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID & ? 53XcB EI endstream endobj 525 0 obj <>stream 0 0 0 -2 58 75 d1 58 0 0 77 0 -2 cm BI /IM true /W 58 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID )j2g$? _ "k EI endstream endobj 526 0 obj <>stream 0 0 0 27 18 75 d1 18 0 0 48 0 27 cm BI /IM true /W 18 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &f? 0_a~?NA?a|@ EI endstream endobj 527 0 obj <>stream 0 0 0 27 59 97 d1 59 0 0 70 0 27 cm BI /IM true /W 59 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &H#:`9| @? ` DJu EI endstream endobj 528 0 obj <>stream 0 0 0 27 58 75 d1 58 0 0 48 0 27 cm BI /IM true /W 58 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &X$ __2G@ EI endstream endobj 529 0 obj <>stream 0 0 0 27 58 75 d1 58 0 0 48 0 27 cm BI /IM true /W 58 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID )j2g$G > EI endstream endobj 530 0 obj <>stream 0 0 0 -2 46 75 d1 46 0 0 77 0 -2 cm BI /IM true /W 46 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &@p$j? EI endstream endobj 531 0 obj <>stream 0 0 0 27 46 75 d1 46 0 0 48 0 27 cm BI /IM true /W 46 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID Mb@gp`2 0́0`8`  EI endstream endobj 532 0 obj <>stream 0 0 0 -2 59 75 d1 59 0 0 77 0 -2 cm BI /IM true /W 59 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &X? 8/!_P/\ I?@ EI endstream endobj 533 0 obj <>stream 0 0 0 27 47 75 d1 47 0 0 48 0 27 cm BI /IM true /W 47 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &A?"O05/;Oaa   EI endstream endobj 534 0 obj <>stream 0 0 0 27 61 97 d1 61 0 0 70 0 27 cm BI /IM true /W 61 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &> b~0u>stream 0 0 0 0 39 43 d1 39 0 0 43 0 0 cm BI /IM true /W 39 /H 43 /BPC 1 /D[1 0] /F/CCF /DP<> ID &p?@?&_` //` EI endstream endobj 536 0 obj <>stream 0 0 0 0 87 77 d1 87 0 0 77 0 0 cm BI /IM true /W 87 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &Cz:30X` ?D?ᙆÇ0`2C6$  EI endstream endobj 537 0 obj <>stream 0 0 0 -29 40 41 d1 40 0 0 70 0 -29 cm BI /IM true /W 40 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &8e#8~x7|p EI endstream endobj 538 0 obj <>stream 0 0 0 -36 16 -4 d1 16 0 0 32 0 -36 cm BI /IM true /W 16 /H 32 /BPC 1 /D[1 0] /F/CCF /DP<> ID &O>stream 0 0 0 57 32 91 d1 32 0 0 34 0 57 cm BI /IM true /W 32 /H 34 /BPC 1 /D[1 0] /F/CCF /DP<> ID &H" LOA? 3 @ EI endstream endobj 540 0 obj <>stream 0 0 0 35 18 91 d1 18 0 0 56 0 35 cm BI /IM true /W 18 /H 56 /BPC 1 /D[1 0] /F/CCF /DP<> ID &a0 EI endstream endobj 541 0 obj <>stream 0 0 0 35 37 91 d1 37 0 0 56 0 35 cm BI /IM true /W 37 /H 56 /BPC 1 /D[1 0] /F/CCF /DP<> ID &|C1u?!0A0> stream 125 0 0 0 0 0 d1 endstream endobj 543 0 obj <> endobj 548 0 obj <>stream 0 0 0 0 39 48 d1 39 0 0 48 0 0 cm BI /IM true /W 39 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID :|??!xÃxf\<0  EI endstream endobj 549 0 obj <>stream 0 0 0 -11 25 37 d1 25 0 0 48 0 -11 cm BI /IM true /W 25 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?a9 EI endstream endobj 550 0 obj <>stream 0 0 0 0 51 77 d1 51 0 0 77 0 0 cm BI /IM true /W 51 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &Xg3X>p6$?&_ > >Fy5???@ EI endstream endobj 551 0 obj <>stream 0 0 0 -7 64 77 d1 64 0 0 84 0 -7 cm BI /IM true /W 64 /H 84 /BPC 1 /D[1 0] /F/CCF /DP<> ID &'2G>? C A H1  EI endstream endobj 552 0 obj <> endobj 557 0 obj <>stream 0 0 0 0 70 75 d1 70 0 0 75 0 0 cm BI /IM true /W 70 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID *ɬN_!iÇ`O~ ?x?2a? ?p? EI endstream endobj 558 0 obj <>stream 0 0 0 0 73 77 d1 73 0 0 77 0 0 cm BI /IM true /W 73 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID & E90/~` /? f?LJ ? EI endstream endobj 559 0 obj <>stream 0 0 0 0 46 70 d1 46 0 0 70 0 0 cm BI /IM true /W 46 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &`,>p6?_@ 0f`_g EI endstream endobj 560 0 obj <>stream 0 0 0 5 42 75 d1 42 0 0 70 0 5 cm BI /IM true /W 42 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID &#( _? EI endstream endobj 561 0 obj <>stream 0 0 0 27 54 99 d1 54 0 0 72 0 27 cm BI /IM true /W 54 /H 72 /BPC 1 /D[1 0] /F/CCF /DP<> ID &` a\_ɭ 8 ? EI endstream endobj 562 0 obj <>stream 0 0 0 0 42 48 d1 42 0 0 48 0 0 cm BI /IM true /W 42 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID & ߅ʏ   ?_A EI endstream endobj 563 0 obj <> stream 115 0 0 0 0 0 d1 endstream endobj 564 0 obj <> stream 116 0 0 0 0 0 d1 endstream endobj 565 0 obj <> endobj 570 0 obj <>stream 0 0 0 0 42 34 d1 42 0 0 34 0 0 cm BI /IM true /W 42 /H 34 /BPC 1 /D[1 0] /F/CCF /DP<> ID &f|8xp?#F   EI endstream endobj 571 0 obj <>stream 0 0 0 27 47 75 d1 47 0 0 48 0 27 cm BI /IM true /W 47 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &A8g  ?` | 0_xX?@  EI endstream endobj 572 0 obj <> endobj 577 0 obj <>stream 0 0 0 0 88 75 d1 88 0 0 75 0 0 cm BI /IM true /W 88 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID & 0'f* A.?A/ 0 ? x>8hCb@ EI endstream endobj 578 0 obj <> stream 127 0 0 0 0 0 d1 endstream endobj 579 0 obj <>stream 0 0 0 -44 37 7 d1 37 0 0 51 0 -44 cm BI /IM true /W 37 /H 51 /BPC 1 /D[1 0] /F/CCF /DP<> ID & a>M_8lP _/7?7 J EI endstream endobj 580 0 obj <> endobj 585 0 obj <>stream 0 0 0 5 46 75 d1 46 0 0 70 0 5 cm BI /IM true /W 46 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID Mo >2 ~ua>stream 0 0 0 -5 37 97 d1 37 0 0 102 0 -5 cm BI /IM true /W 37 /H 102 /BPC 1 /D[1 0] /F/CCF /DP<> ID &*Aq?p  S_@@ EI endstream endobj 587 0 obj <>stream 0 0 0 -53 95 127 d1 95 0 0 180 0 -53 cm BI /IM true /W 95 /H 180 /BPC 1 /D[1 0] /F/CCF /DP<> ID &pX|? ?_~_?/ /O@1 ?  EI endstream endobj 588 0 obj <>stream 0 0 0 27 51 99 d1 51 0 0 72 0 27 cm BI /IM true /W 51 /H 72 /BPC 1 /D[1 0] /F/CCF /DP<> ID < ɬ#? y?1?a 0 EI endstream endobj 589 0 obj <>stream 0 0 0 -19 95 101 d1 95 0 0 120 0 -19 cm BI /IM true /W 95 /H 120 /BPC 1 /D[1 0] /F/CCF /DP<> ID &p~ /|X|` ?_?@0 VLxa> endobj 595 0 obj <>stream 0 0 0 5 52 75 d1 52 0 0 70 0 5 cm BI /IM true /W 52 /H 70 /BPC 1 /D[1 0] /F/CCF /DP<> ID & O?X>?@ ࿅^ 2?ȧ/! EI endstream endobj 596 0 obj <>stream 0 0 0 27 40 75 d1 40 0 0 48 0 27 cm BI /IM true /W 40 /H 48 /BPC 1 /D[1 0] /F/CCF /DP<> ID &a?ă?l(?WA~ ~P.  <9y@ EI endstream endobj 597 0 obj <>stream 0 0 0 -2 59 75 d1 59 0 0 77 0 -2 cm BI /IM true /W 59 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &:+GGr?0_?Ȁ/(g@ EI endstream endobj 598 0 obj <> endobj 603 0 obj <>stream 0 0 0 58 35 92 d1 35 0 0 34 0 58 cm BI /IM true /W 35 /H 34 /BPC 1 /D[1 0] /F/CCF /DP<> ID &|C38 C?? 0 EI endstream endobj 604 0 obj <

> endobj 609 0 obj <>stream 0 0 0 0 60 6 d1 60 0 0 6 0 0 cm BI /IM true /W 60 /H 6 /BPC 1 /D[1 0] /F/CCF /DP<> ID @ EI endstream endobj 610 0 obj <> endobj 615 0 obj <>stream 0 0 0 0 56 77 d1 56 0 0 77 0 0 cm BI /IM true /W 56 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &C_DAg?AAXÅ~냂0?!?: CBO^ EI endstream endobj 616 0 obj <>stream 0 0 0 -5 95 77 d1 95 0 0 82 0 -5 cm BI /IM true /W 95 /H 82 /BPC 1 /D[1 0] /F/CCF /DP<> ID &!_&_/ _//  _ / P/@ EI endstream endobj 617 0 obj <>stream 0 0 0 -5 78 77 d1 78 0 0 82 0 -5 cm BI /IM true /W 78 /H 82 /BPC 1 /D[1 0] /F/CCF /DP<> ID &g ʯ a ? C(a@fk[@ EI endstream endobj 618 0 obj <>stream 0 0 0 24 66 77 d1 66 0 0 53 0 24 cm BI /IM true /W 66 /H 53 /BPC 1 /D[1 0] /F/CCF /DP<> ID PaH .A @0/!A?,>?@M`  EI endstream endobj 619 0 obj <>stream 0 0 0 58 73 92 d1 73 0 0 34 0 58 cm BI /IM true /W 73 /H 34 /BPC 1 /D[1 0] /F/CCF /DP<> ID &aCD@0&N0#0ra.  _ #\ 9<p @8a EI endstream endobj 620 0 obj <>stream 0 0 0 -16 32 35 d1 32 0 0 51 0 -16 cm BI /IM true /W 32 /H 51 /BPC 1 /D[1 0] /F/CCF /DP<> ID &"0ypA,>?0 _GĐ? EI endstream endobj 621 0 obj <>stream 0 0 0 46 30 56 d1 30 0 0 10 0 46 cm BI /IM true /W 30 /H 10 /BPC 1 /D[1 0] /F/CCF /DP<> ID @ EI endstream endobj 622 0 obj <>stream 0 0 0 0 80 77 d1 80 0 0 77 0 0 cm BI /IM true /W 80 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &`5 @~ ˁC0? ?_X?_Pe ? ?_X?@ EI endstream endobj 623 0 obj <>stream 0 0 0 -17 37 34 d1 37 0 0 51 0 -17 cm BI /IM true /W 37 /H 51 /BPC 1 /D[1 0] /F/CCF /DP<> ID &aE ?(?󨙟FG> endobj 629 0 obj <>stream 0 0 0 0 73 75 d1 73 0 0 75 0 0 cm BI /IM true /W 73 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &&2// // /^Oa03fg0~`AH:@ EI endstream endobj 630 0 obj <> endobj 635 0 obj <>stream 0 0 0 0 75 75 d1 75 0 0 75 0 0 cm BI /IM true /W 75 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID )?j)3N!/. /0  Â00?/ _"v/†`2    0GPC EI endstream endobj 636 0 obj <>stream 0 0 0 -2 68 97 d1 68 0 0 99 0 -2 cm BI /IM true /W 68 /H 99 /BPC 1 /D[1 0] /F/CCF /DP<> ID &N? ??1?e3?AyC!?x?.0a?k`  f  _2 EI endstream endobj 637 0 obj <>stream 0 0 0 0 75 77 d1 75 0 0 77 0 0 cm BI /IM true /W 75 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &`5>? AsX?X|pcfa`DH0PA EI endstream endobj 638 0 obj <>stream 0 0 0 -2 15 32 d1 15 0 0 34 0 -2 cm BI /IM true /W 15 /H 34 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?3?4 EI endstream endobj 639 0 obj <> endobj 644 0 obj <> endobj 648 0 obj <> endobj 653 0 obj <>stream 0 0 0 0 68 77 d1 68 0 0 77 0 0 cm BI /IM true /W 68 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &AQ?#fya!Dp|1/`0pxP 0 / KA`8_2 EI endstream endobj 654 0 obj <> endobj 656 0 obj <>stream 0 0 0 0 56 82 d1 56 0 0 82 0 0 cm BI /IM true /W 56 /H 82 /BPC 1 /D[1 0] /F/CCF /DP<> ID &8f ??0 O EI endstream endobj 660 0 obj <>stream 0 0 0 -12 51 41 d1 51 0 0 53 0 -12 cm BI /IM true /W 51 /H 53 /BPC 1 /D[1 0] /F/CCF /DP<> ID &7 0_8<<"p<0S'!?9g k CBXf8 @ EI endstream endobj 661 0 obj <>stream 0 0 0 0 75 75 d1 75 0 0 75 0 0 cm BI /IM true /W 75 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID %ӕ & g0g0? 0|?0A? _@0[ EI endstream endobj 662 0 obj <>stream 0 0 0 48 29 56 d1 29 0 0 8 0 48 cm BI /IM true /W 29 /H 8 /BPC 1 /D[1 0] /F/CCF /DP<> ID &_k EI endstream endobj 663 0 obj <>stream 0 0 0 -2 37 32 d1 37 0 0 34 0 -2 cm BI /IM true /W 37 /H 34 /BPC 1 /D[1 0] /F/CCF /DP<> ID &|/?… _ qpp`? EI endstream endobj 664 0 obj <>stream 0 0 0 -2 37 32 d1 37 0 0 34 0 -2 cm BI /IM true /W 37 /H 34 /BPC 1 /D[1 0] /F/CCF /DP<> ID &`O. g. / ?D`(_0_@ EI endstream endobj 665 0 obj <>stream 0 0 0 -7 39 101 d1 39 0 0 108 0 -7 cm BI /IM true /W 39 /H 108 /BPC 1 /D[1 0] /F/CCF /DP<> ID 8_M`axa EI endstream endobj 666 0 obj <>stream 0 0 0 -2 63 77 d1 63 0 0 79 0 -2 cm BI /IM true /W 63 /H 79 /BPC 1 /D[1 0] /F/CCF /DP<> ID 0u ?N  /CS_X?7I/@7^k[A?/? "|8@i?@ EI endstream endobj 667 0 obj <>stream 0 0 0 0 49 75 d1 49 0 0 75 0 0 cm BI /IM true /W 49 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID #`ǓP0< EI endstream endobj 668 0 obj <>stream 0 0 0 2 101 77 d1 101 0 0 75 0 2 cm BI /IM true /W 101 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID  &3 0f0 />f0<_?Aa  EI endstream endobj 669 0 obj <>stream 0 0 0 -2 70 77 d1 70 0 0 79 0 -2 cm BI /IM true /W 70 /H 79 /BPC 1 /D[1 0] /F/CCF /DP<> ID &5>CY a `?C 0?50n WCQ?@ EI endstream endobj 670 0 obj <> stream 148 0 0 0 0 0 d1 endstream endobj 671 0 obj <>stream 0 0 0 0 78 75 d1 78 0 0 75 0 0 cm BI /IM true /W 78 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID &܉?_/@AC3,>/,B$ `  EI endstream endobj 672 0 obj <> stream 136 0 0 0 0 0 d1 endstream endobj 673 0 obj <>stream 0 0 0 -2 42 75 d1 42 0 0 77 0 -2 cm BI /IM true /W 42 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &@ EI endstream endobj 674 0 obj <>stream 0 0 0 -2 66 75 d1 66 0 0 77 0 -2 cm BI /IM true /W 66 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID ' [_!ᙁp8 __/x__ @ EI endstream endobj 675 0 obj <>stream 0 0 0 -2 52 75 d1 52 0 0 77 0 -2 cm BI /IM true /W 52 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &2s__//_ /_@ EI endstream endobj 676 0 obj <>stream 0 0 0 -5 56 77 d1 56 0 0 82 0 -5 cm BI /IM true /W 56 /H 82 /BPC 1 /D[1 0] /F/CCF /DP<> ID &k?|2  / M`??2Yc u@ EI endstream endobj 677 0 obj <>stream 0 0 0 -2 47 75 d1 47 0 0 77 0 -2 cm BI /IM true /W 47 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &5?%G8jK EI endstream endobj 678 0 obj <>stream 0 0 0 -5 63 77 d1 63 0 0 82 0 -5 cm BI /IM true /W 63 /H 82 /BPC 1 /D[1 0] /F/CCF /DP<> ID &\C:`Ou? 3? A,? Ml/ / \ 3@ EI endstream endobj 679 0 obj <>stream 0 0 0 -2 64 75 d1 64 0 0 77 0 -2 cm BI /IM true /W 64 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &N( EI endstream endobj 680 0 obj <>stream 0 0 0 0 71 77 d1 71 0 0 77 0 0 cm BI /IM true /W 71 /H 77 /BPC 1 /D[1 0] /F/CCF /DP<> ID &@T#g,?0†0a`ˆ 0p'U EI endstream endobj 681 0 obj <>stream 0 0 0 0 75 75 d1 75 0 0 75 0 0 cm BI /IM true /W 75 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID +!MBW0f8x8?f p<Ax A?/_ -  EI endstream endobj 682 0 obj <>stream 0 0 0 3 37 75 d1 37 0 0 72 0 3 cm BI /IM true /W 37 /H 72 /BPC 1 /D[1 0] /F/CCF /DP<> ID &?x??;?? EI endstream endobj 683 0 obj <>stream 0 0 0 3 51 77 d1 51 0 0 74 0 3 cm BI /IM true /W 51 /H 74 /BPC 1 /D[1 0] /F/CCF /DP<> ID &f?  a88? d/@ EI endstream endobj 684 0 obj <> endobj 689 0 obj <>stream 0 0 0 0 53 75 d1 53 0 0 75 0 0 cm BI /IM true /W 53 /H 75 /BPC 1 /D[1 0] /F/CCF /DP<> ID 0Q5'Ãa` 0a> endobj 688 0 obj <>/FontBBox[0 0 53 75]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 2/Widths[ 0 0 73] >> endobj 655 0 obj <>/FontBBox[0 -48 101 115]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 55/Widths[ 0 0 80 0 90 0 53 0 60 0 27 0 70 86 43 0 63 0 62 0 85 0 98 148 45 0 65 72 69 84 66 77 136 0 56 0 51 0 81 0 0 74 0 0 76 40 115 0 106 101 0 79 0 93 0 54] >> endobj 652 0 obj <>/FontBBox[0 0 68 77]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 0/Widths[ 0] >> endobj 643 0 obj <>/FontBBox[0 0 1000 1000]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 0/Widths[ 0] >> endobj 634 0 obj <>/FontBBox[0 0 75 101]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 8/Widths[ 0 72 0 80 0 79 82 0 84] >> endobj 628 0 obj <>/FontBBox[0 0 73 75]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 1/Widths[ 0 76] >> endobj 614 0 obj <>/FontBBox[0 -58 95 87]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 17/Widths[ 0 0 122 0 77 0 87 0 48 0 62 0 72 65 0 86 0 41] >> endobj 608 0 obj <>/FontBBox[0 0 60 6]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 0/Widths[ 0] >> endobj 602 0 obj <>/FontBBox[0 -58 35 0]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 2/Widths[ 0 40 41] >> endobj 594 0 obj <>/FontBBox[0 -27 59 79]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 6/Widths[ 0 31 0 96 0 66 70] >> endobj 584 0 obj <>/FontBBox[0 -27 95 233]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 11/Widths[ 0 34 0 55 0 50 0 94 0 110 92 108] >> endobj 576 0 obj <>/FontBBox[0 0 88 95]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 6/Widths[ 0 0 127 117 0 94 112] >> endobj 569 0 obj <>/FontBBox[0 -27 47 34]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 3/Widths[ 0 0 0 79] >> endobj 556 0 obj <>/FontBBox[0 -27 73 77]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 15/Widths[ 0 0 100 110 53 0 0 36 108 0 103 0 84 115 56 116] >> endobj 547 0 obj <>/FontBBox[0 0 64 91]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 6/Widths[ 0 32 0 50 0 0 74] >> endobj 498 0 obj <>/FontBBox[0 -58 94 101]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 84/Widths[ 0 0 0 92 0 62 0 101 0 0 53 0 72 0 91 0 49 0 55 0 42 0 75 56 41 0 80 0 61 0 32 87 0 46 47 58 34 50 93 0 96 0 0 64 0 0 0 69 0 86 68 0 102 0 73 65 48 60 31 0 110 0 79 63 51 33 0 0 0 67 0 107 70 36 0 0 0 103 0 0 0 40 0 27 125] >> endobj 491 0 obj <>/FontBBox[0 -36 71 77]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 15/Widths[ 0 95 0 40 57 0 39 50 86 51 41 87 0 118 82 0] >> endobj 478 0 obj <>/FontBBox[0 -27 80 79]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 18/Widths[ 0 105 0 0 40 107 108 100 0 86 0 63 62 24 0 29 132 0 102] >> endobj 453 0 obj <>/FontBBox[0 -176 92 178]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 31/Widths[ 0 0 0 0 0 79 40 0 0 26 0 0 0 72 89 0 74 65 0 0 122 0 38 0 118 0 0 60 0 50 61 0] >> endobj 405 0 obj <>/FontBBox[0 -82 116 467]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 72/Widths[ 0 0 77 0 112 0 54 0 114 0 96 0 83 0 105 117 0 62 0 52 0 46 0 113 139 0 98 0 24 0 59 0 60 45 0 67 0 31 94 0 50 30 51 0 0 0 132 55 0 101 0 134 0 79 0 0 97 88 41 0 33 0 0 120 40 0 103 0 39 86 0 0 84] >> endobj 384 0 obj <>/FontBBox[0 -44 71 115]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 45/Widths[ 0 89 0 87 0 64 0 43 142 0 82 0 113 0 46 0 95 122 45 0 107 0 73 0 0 108 86 53 0 58 0 60 0 104 111 100 123 0 74 51 52 99 0 103 0 112] >> endobj 335 0 obj <>/FontBBox[0 -116 104 185]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 83/Widths[ 0 65 0 81 0 50 0 59 94 0 82 0 76 73 0 77 74 0 26 105 69 0 54 67 0 101 48 0 0 46 89 70 0 0 80 0 55 0 0 0 0 106 0 38 0 0 63 53 57 0 95 0 0 72 62 0 0 0 92 0 68 84 0 0 112 79 104 0 39 0 0 0 0 31 60 0 32 0 103 0 61 0 0 0] >> endobj 248 0 obj <>/FontBBox[0 -65 106 118]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 137/Widths[ 0 0 83 0 80 0 85 0 0 38 0 81 0 29 0 28 0 50 87 0 39 98 84 53 0 41 0 60 48 0 45 55 43 0 0 94 0 69 0 63 0 27 46 62 72 88 0 0 79 51 86 0 0 101 0 0 0 0 30 0 0 67 31 109 65 0 0 0 0 0 0 0 0 91 34 52 0 122 0 0 0 75 0 0 68 0 0 0 0 74 0 58 0 54 0 103 0 130 44 56 0 0 0 0 40 0 66 0 42 0 0 0 70 110 96 0 0 0 0 76 0 77 0 111 92 35 0 89 108 104 49 0 0 61 99 0 0 100] >> endobj 9 0 obj <>/FontBBox[0 -67 109 81]/FontMatrix[1 0 0 1 0 0]/FirstChar 0/LastChar 232/Widths[ 0 0 74 0 77 0 65 0 0 72 0 106 0 67 53 75 0 105 0 0 36 76 68 0 70 0 0 0 43 0 57 0 48 0 39 0 38 87 0 0 0 66 0 28 0 46 41 0 30 44 64 0 55 50 29 49 0 0 86 51 0 0 0 137 0 0 120 0 0 0 82 81 0 123 0 91 0 139 96 0 99 90 94 0 0 80 0 135 0 0 98 0 0 101 142 0 0 0 0 58 0 0 78 0 34 0 0 0 0 0 0 0 0 79 52 0 62 0 0 0 32 0 0 0 0 92 0 59 0 113 0 60 0 84 45 0 56 35 63 0 33 0 0 0 0 0 0 0 0 0 0 73 0 0 0 0 0 0 0 0 0 0 0 0 42 0 0 0 100 0 0 0 0 69 0 0 0 0 0 0 0 0 0 0 26 0 0 0 40 0 0 0 0 0 0 0 0 0 54 0 0 0 0 0 0 0 0 0 0 0 0 89 0 0 0 0 0 0 0 71 0 0 0 0 61 93 0 0 0 0 0 83 0] >> endobj 8 0 obj <> endobj 2 0 obj <>endobj xref 0 691 0000000000 65535 f 0000110260 00000 n 0000246303 00000 n 0000110008 00000 n 0000110308 00000 n 0000106118 00000 n 0000000015 00000 n 0000001462 00000 n 0000245182 00000 n 0000241637 00000 n 0000110363 00000 n 0000110622 00000 n 0000110891 00000 n 0000110955 00000 n 0000111214 00000 n 0000111278 00000 n 0000111501 00000 n 0000111565 00000 n 0000111794 00000 n 0000112089 00000 n 0000112153 00000 n 0000112395 00000 n 0000112460 00000 n 0000112726 00000 n 0000112790 00000 n 0000112854 00000 n 0000112918 00000 n 0000113161 00000 n 0000113226 00000 n 0000113431 00000 n 0000113682 00000 n 0000113746 00000 n 0000113810 00000 n 0000113874 00000 n 0000114119 00000 n 0000114183 00000 n 0000114427 00000 n 0000114650 00000 n 0000114886 00000 n 0000114950 00000 n 0000115185 00000 n 0000115249 00000 n 0000115455 00000 n 0000115519 00000 n 0000115735 00000 n 0000115799 00000 n 0000116038 00000 n 0000116102 00000 n 0000116166 00000 n 0000116382 00000 n 0000116606 00000 n 0000116830 00000 n 0000116894 00000 n 0000117099 00000 n 0000117163 00000 n 0000117385 00000 n 0000117449 00000 n 0000117513 00000 n 0000117721 00000 n 0000117785 00000 n 0000117849 00000 n 0000117913 00000 n 0000118174 00000 n 0000118238 00000 n 0000118302 00000 n 0000118366 00000 n 0000118430 00000 n 0000118673 00000 n 0000118934 00000 n 0000118998 00000 n 0000119062 00000 n 0000119278 00000 n 0000119531 00000 n 0000119754 00000 n 0000119819 00000 n 0000120027 00000 n 0000120329 00000 n 0000120394 00000 n 0000120624 00000 n 0000120877 00000 n 0000121128 00000 n 0000121192 00000 n 0000121256 00000 n 0000121520 00000 n 0000121585 00000 n 0000121852 00000 n 0000121916 00000 n 0000122167 00000 n 0000122232 00000 n 0000122296 00000 n 0000122571 00000 n 0000122635 00000 n 0000122699 00000 n 0000122763 00000 n 0000122997 00000 n 0000123233 00000 n 0000123297 00000 n 0000123551 00000 n 0000123616 00000 n 0000123864 00000 n 0000124135 00000 n 0000124200 00000 n 0000124470 00000 n 0000124734 00000 n 0000124800 00000 n 0000124866 00000 n 0000125105 00000 n 0000125363 00000 n 0000125609 00000 n 0000125865 00000 n 0000125930 00000 n 0000126207 00000 n 0000126444 00000 n 0000126509 00000 n 0000126740 00000 n 0000126805 00000 n 0000127069 00000 n 0000127315 00000 n 0000127540 00000 n 0000127807 00000 n 0000128065 00000 n 0000128245 00000 n 0000128514 00000 n 0000128780 00000 n 0000128845 00000 n 0000128910 00000 n 0000129113 00000 n 0000129178 00000 n 0000129372 00000 n 0000129620 00000 n 0000129856 00000 n 0000129921 00000 n 0000130168 00000 n 0000130420 00000 n 0000130686 00000 n 0000130922 00000 n 0000130987 00000 n 0000131216 00000 n 0000131281 00000 n 0000131521 00000 n 0000131587 00000 n 0000131822 00000 n 0000131887 00000 n 0000132170 00000 n 0000132235 00000 n 0000132300 00000 n 0000132532 00000 n 0000132597 00000 n 0000132662 00000 n 0000132727 00000 n 0000133006 00000 n 0000133071 00000 n 0000133342 00000 n 0000133575 00000 n 0000133803 00000 n 0000134028 00000 n 0000134265 00000 n 0000134487 00000 n 0000134698 00000 n 0000134940 00000 n 0000135152 00000 n 0000135417 00000 n 0000135482 00000 n 0000135725 00000 n 0000135956 00000 n 0000136167 00000 n 0000136390 00000 n 0000136662 00000 n 0000136920 00000 n 0000137217 00000 n 0000137385 00000 n 0000137631 00000 n 0000137910 00000 n 0000138141 00000 n 0000138376 00000 n 0000138441 00000 n 0000138694 00000 n 0000138888 00000 n 0000139102 00000 n 0000139168 00000 n 0000139432 00000 n 0000139674 00000 n 0000139868 00000 n 0000140120 00000 n 0000140185 00000 n 0000140401 00000 n 0000140629 00000 n 0000140859 00000 n 0000141068 00000 n 0000141283 00000 n 0000141498 00000 n 0000141700 00000 n 0000141954 00000 n 0000142165 00000 n 0000142371 00000 n 0000142436 00000 n 0000142645 00000 n 0000142884 00000 n 0000143109 00000 n 0000143174 00000 n 0000143362 00000 n 0000143601 00000 n 0000143818 00000 n 0000144036 00000 n 0000144272 00000 n 0000144491 00000 n 0000144694 00000 n 0000144926 00000 n 0000145170 00000 n 0000145235 00000 n 0000145486 00000 n 0000145716 00000 n 0000145955 00000 n 0000146195 00000 n 0000146372 00000 n 0000146594 00000 n 0000146815 00000 n 0000147057 00000 n 0000147290 00000 n 0000147546 00000 n 0000147771 00000 n 0000148018 00000 n 0000148083 00000 n 0000148331 00000 n 0000148499 00000 n 0000148702 00000 n 0000148924 00000 n 0000149158 00000 n 0000149400 00000 n 0000149655 00000 n 0000149720 00000 n 0000149937 00000 n 0000150200 00000 n 0000150412 00000 n 0000150649 00000 n 0000150714 00000 n 0000150779 00000 n 0000150984 00000 n 0000151225 00000 n 0000151461 00000 n 0000151661 00000 n 0000151959 00000 n 0000152024 00000 n 0000152249 00000 n 0000152280 00000 n 0000106288 00000 n 0000001482 00000 n 0000004337 00000 n 0000239479 00000 n 0000152310 00000 n 0000152566 00000 n 0000152826 00000 n 0000153090 00000 n 0000153155 00000 n 0000153402 00000 n 0000153632 00000 n 0000153857 00000 n 0000154083 00000 n 0000154303 00000 n 0000154543 00000 n 0000154797 00000 n 0000154965 00000 n 0000155144 00000 n 0000155370 00000 n 0000155617 00000 n 0000155865 00000 n 0000156094 00000 n 0000156370 00000 n 0000156605 00000 n 0000156670 00000 n 0000156735 00000 n 0000156973 00000 n 0000157243 00000 n 0000157524 00000 n 0000157789 00000 n 0000158025 00000 n 0000158222 00000 n 0000158446 00000 n 0000158693 00000 n 0000158920 00000 n 0000159117 00000 n 0000159182 00000 n 0000159248 00000 n 0000159495 00000 n 0000159756 00000 n 0000160030 00000 n 0000160209 00000 n 0000160467 00000 n 0000160719 00000 n 0000160958 00000 n 0000161186 00000 n 0000161411 00000 n 0000161477 00000 n 0000161694 00000 n 0000161879 00000 n 0000162093 00000 n 0000162320 00000 n 0000162552 00000 n 0000162771 00000 n 0000163008 00000 n 0000163265 00000 n 0000163492 00000 n 0000163724 00000 n 0000163946 00000 n 0000164158 00000 n 0000164224 00000 n 0000164454 00000 n 0000164520 00000 n 0000164835 00000 n 0000165093 00000 n 0000165340 00000 n 0000165595 00000 n 0000165846 00000 n 0000166025 00000 n 0000166255 00000 n 0000166487 00000 n 0000166764 00000 n 0000166830 00000 n 0000167078 00000 n 0000167275 00000 n 0000167526 00000 n 0000167854 00000 n 0000168077 00000 n 0000168291 00000 n 0000168357 00000 n 0000168623 00000 n 0000168689 00000 n 0000168755 00000 n 0000169007 00000 n 0000169256 00000 n 0000169494 00000 n 0000169734 00000 n 0000106443 00000 n 0000004359 00000 n 0000008804 00000 n 0000238122 00000 n 0000169774 00000 n 0000170051 00000 n 0000170281 00000 n 0000170494 00000 n 0000170683 00000 n 0000170953 00000 n 0000171188 00000 n 0000171432 00000 n 0000171697 00000 n 0000171927 00000 n 0000172187 00000 n 0000172438 00000 n 0000172717 00000 n 0000172969 00000 n 0000173250 00000 n 0000173465 00000 n 0000173702 00000 n 0000173937 00000 n 0000174180 00000 n 0000174426 00000 n 0000174708 00000 n 0000174969 00000 n 0000175210 00000 n 0000175479 00000 n 0000175544 00000 n 0000175826 00000 n 0000176014 00000 n 0000176233 00000 n 0000176461 00000 n 0000176632 00000 n 0000176862 00000 n 0000177093 00000 n 0000177340 00000 n 0000177406 00000 n 0000177624 00000 n 0000177838 00000 n 0000178013 00000 n 0000178293 00000 n 0000178511 00000 n 0000178776 00000 n 0000179018 00000 n 0000179285 00000 n 0000179495 00000 n 0000179748 00000 n 0000180021 00000 n 0000106598 00000 n 0000008826 00000 n 0000014147 00000 n 0000237297 00000 n 0000180071 00000 n 0000180329 00000 n 0000180588 00000 n 0000180824 00000 n 0000181082 00000 n 0000181328 00000 n 0000181496 00000 n 0000181703 00000 n 0000181971 00000 n 0000182225 00000 n 0000182291 00000 n 0000182542 00000 n 0000182750 00000 n 0000183047 00000 n 0000183215 00000 n 0000183438 00000 n 0000183723 00000 n 0000184001 00000 n 0000184251 00000 n 0000184533 00000 n 0000236086 00000 n 0000184593 00000 n 0000106753 00000 n 0000014169 00000 n 0000018262 00000 n 0000184864 00000 n 0000185096 00000 n 0000185410 00000 n 0000185670 00000 n 0000185936 00000 n 0000186002 00000 n 0000186245 00000 n 0000186534 00000 n 0000186809 00000 n 0000186875 00000 n 0000187120 00000 n 0000187359 00000 n 0000187626 00000 n 0000187901 00000 n 0000188166 00000 n 0000188425 00000 n 0000188490 00000 n 0000188734 00000 n 0000189008 00000 n 0000189270 00000 n 0000189453 00000 n 0000189676 00000 n 0000189994 00000 n 0000190316 00000 n 0000190584 00000 n 0000190650 00000 n 0000190891 00000 n 0000191145 00000 n 0000191211 00000 n 0000191473 00000 n 0000191711 00000 n 0000191998 00000 n 0000192063 00000 n 0000192251 00000 n 0000192483 00000 n 0000192863 00000 n 0000193118 00000 n 0000193364 00000 n 0000193622 00000 n 0000193815 00000 n 0000106908 00000 n 0000018284 00000 n 0000022407 00000 n 0000235474 00000 n 0000193885 00000 n 0000194124 00000 n 0000194343 00000 n 0000194520 00000 n 0000194736 00000 n 0000195015 00000 n 0000195253 00000 n 0000195430 00000 n 0000195668 00000 n 0000195919 00000 n 0000196156 00000 n 0000196405 00000 n 0000196645 00000 n 0000196885 00000 n 0000197123 00000 n 0000197398 00000 n 0000197464 00000 n 0000197715 00000 n 0000197938 00000 n 0000198147 00000 n 0000198432 00000 n 0000107063 00000 n 0000022429 00000 n 0000025864 00000 n 0000235041 00000 n 0000198512 00000 n 0000198781 00000 n 0000199037 00000 n 0000199287 00000 n 0000199475 00000 n 0000199678 00000 n 0000199942 00000 n 0000200160 00000 n 0000200226 00000 n 0000107218 00000 n 0000025886 00000 n 0000029885 00000 n 0000234661 00000 n 0000200316 00000 n 0000200568 00000 n 0000200796 00000 n 0000201032 00000 n 0000201296 00000 n 0000201554 00000 n 0000233287 00000 n 0000201644 00000 n 0000107373 00000 n 0000029907 00000 n 0000034145 00000 n 0000201874 00000 n 0000202039 00000 n 0000202268 00000 n 0000202514 00000 n 0000202751 00000 n 0000202965 00000 n 0000203216 00000 n 0000203401 00000 n 0000203646 00000 n 0000203897 00000 n 0000204178 00000 n 0000204434 00000 n 0000204727 00000 n 0000204988 00000 n 0000205241 00000 n 0000205490 00000 n 0000205745 00000 n 0000205810 00000 n 0000206022 00000 n 0000206290 00000 n 0000206517 00000 n 0000206734 00000 n 0000206959 00000 n 0000207192 00000 n 0000207395 00000 n 0000207637 00000 n 0000207857 00000 n 0000208077 00000 n 0000208308 00000 n 0000208536 00000 n 0000208784 00000 n 0000209012 00000 n 0000209263 00000 n 0000209465 00000 n 0000209729 00000 n 0000209961 00000 n 0000210157 00000 n 0000210373 00000 n 0000210585 00000 n 0000210823 00000 n 0000210889 00000 n 0000107528 00000 n 0000034167 00000 n 0000037611 00000 n 0000233036 00000 n 0000210999 00000 n 0000211230 00000 n 0000211444 00000 n 0000211702 00000 n 0000211956 00000 n 0000107683 00000 n 0000037633 00000 n 0000041710 00000 n 0000232646 00000 n 0000212076 00000 n 0000212350 00000 n 0000212609 00000 n 0000212858 00000 n 0000213070 00000 n 0000213314 00000 n 0000213537 00000 n 0000213603 00000 n 0000213669 00000 n 0000107838 00000 n 0000041732 00000 n 0000046044 00000 n 0000232443 00000 n 0000213779 00000 n 0000214001 00000 n 0000214242 00000 n 0000107993 00000 n 0000046066 00000 n 0000050323 00000 n 0000232198 00000 n 0000214352 00000 n 0000214635 00000 n 0000214701 00000 n 0000214933 00000 n 0000108148 00000 n 0000050345 00000 n 0000053777 00000 n 0000231871 00000 n 0000215063 00000 n 0000215305 00000 n 0000215547 00000 n 0000215886 00000 n 0000216136 00000 n 0000216436 00000 n 0000108303 00000 n 0000053799 00000 n 0000057800 00000 n 0000231618 00000 n 0000216566 00000 n 0000216818 00000 n 0000217055 00000 n 0000217303 00000 n 0000108458 00000 n 0000057822 00000 n 0000062012 00000 n 0000231418 00000 n 0000217423 00000 n 0000217644 00000 n 0000108613 00000 n 0000062034 00000 n 0000065931 00000 n 0000231247 00000 n 0000217774 00000 n 0000217939 00000 n 0000108768 00000 n 0000065953 00000 n 0000070290 00000 n 0000230840 00000 n 0000218099 00000 n 0000218369 00000 n 0000218652 00000 n 0000218914 00000 n 0000219161 00000 n 0000219425 00000 n 0000219657 00000 n 0000219828 00000 n 0000220095 00000 n 0000220329 00000 n 0000108923 00000 n 0000070312 00000 n 0000075426 00000 n 0000230655 00000 n 0000220469 00000 n 0000220743 00000 n 0000109078 00000 n 0000075448 00000 n 0000081330 00000 n 0000230376 00000 n 0000220833 00000 n 0000221116 00000 n 0000221419 00000 n 0000221682 00000 n 0000221879 00000 n 0000109233 00000 n 0000081352 00000 n 0000086892 00000 n 0000230211 00000 n 0000221979 00000 n 0000109388 00000 n 0000086914 00000 n 0000092546 00000 n 0000222089 00000 n 0000109543 00000 n 0000092568 00000 n 0000097904 00000 n 0000230039 00000 n 0000222189 00000 n 0000222512 00000 n 0000229078 00000 n 0000222612 00000 n 0000109698 00000 n 0000097926 00000 n 0000103010 00000 n 0000222849 00000 n 0000223112 00000 n 0000223370 00000 n 0000223545 00000 n 0000223764 00000 n 0000223985 00000 n 0000224231 00000 n 0000224511 00000 n 0000224733 00000 n 0000225052 00000 n 0000225331 00000 n 0000225397 00000 n 0000225653 00000 n 0000225719 00000 n 0000225930 00000 n 0000226183 00000 n 0000226435 00000 n 0000226685 00000 n 0000226901 00000 n 0000227169 00000 n 0000227382 00000 n 0000227652 00000 n 0000227915 00000 n 0000228141 00000 n 0000228402 00000 n 0000109853 00000 n 0000103032 00000 n 0000106096 00000 n 0000228890 00000 n 0000228522 00000 n 0000228770 00000 n trailer << /Size 691 /Root 1 0 R /Info 2 0 R >> startxref 246353 %%EOF Lbfgsb.3.0/code.pdf000755 000765 000024 00000540637 11527003510 015154 0ustar00jmoralesstaff000000 000000 %PDF-1.2 %쏢 5 0 obj <> stream xYr8ݳ <*U&C ̞d[v4ȉLj'#1$!dDӲJbW$nKG,?ޏߍy>8_^.rr>'! ER9cQOvb(Q* o6r5]}XVB'Qex$DW.A&Q;aJ9.՟K"+6ݕ뮩N?2ʙb:eSREJe w86ؕf@7x/&j.ߝw߽}ͧK cI fb36ˋ \߾_"r澻/x02Nt4I 2,,37Lpdկ# ~P R֧`$:Yq(Vmi@BK;v 'g(㲏/́Yi (Wɹos\UX_Y`CtuIeBuJK%*Z6AQ`.*s}Y9}<^]Tv\>#τ&ãw_D3pW4ř>\}ږœ+퐧@:EQJHAE4!qWcHsBߕ4̓Qi~}[K"TݶDڤ:W4U.2ެC!ڈ/Mi{#Nds/w0v!m+mDH1/B V&3]'g|UmU9ho @C"qo{~\p[ g : GY}.)]ΟI P!\b:y`#>jŮO ɀ_YGTD>VM׶uc|LSʼE qM8~U4ߐ9rC[I"7P }=2Mp"N K?]O]l"$=޾>bEtX ͉ڰ)lv'DpHQtCpG'-4cwSƕT,]$ɳ)|F]i juYQ` &{2?~Ly(vUԅ_0H}T"tJc wFD#`Ol}mk$usb6?68@T({C󵡒P2FU!}%ga`?J/iqt2-2 aQHw>P68t^!Td1؉Kfkdl* { R7#}#ZET7*M-G* Xc.U-sfSѬ35;l!lftmUϰE4u9? -m սKm3;u)2.MW/(K`.@H#trr|6z9{tͱ|W 5 5΂ޝ1OoϠ7z̠ C&u`0J3mZ$afS|& 4|tƀ>6,iȑl0k0)5Ǽn}-a%bVWrûC6lڪk:L/"Lm/I&\6j@4c۞`c=WF{dlZAUZroQP &G9D:N: /[LP?W„'*nl x|;dX 0'HئobJ(4z "xmāf#jϝH`Tןiv8NBOI<ınpr %9^$Oi⦼&O%4I!De8|JLlwuSlL+ ݦP>1RJ1Ut36" ?v<E UQ]oB;WwO;37pUz}6i_=4}Gf2ZBs0*c2' ( }%\aOzdgyfP! *N̐MhN>:{U0 ?wendstream endobj 6 0 obj 2491 endobj 238 0 obj <> stream x\Iȕ>ȣ NܗS7`g`!L)2ݔ"*;#C, $*|{ m%C7ͧDsK?\??ݘm:)o$*fDI(ϚB>uQFI4泇<iTQo ï%7V۴o:*b/BtOz"*6$ByY)':E30vA}7QY5}OQ55}/۟MTWMEv^:]zgYݱ;tK]U5J@=q8Q~G-/ԁ\RȽo/byl.Ҟm^LwmRR٭T@\ljz4Vҷ{Zn[Fnq^ W*H^&?~Чf*[ߦIԔqjc:?~M#5l~Y[GVIu5SBp\D*Q`c D$G`$*WhU+Xbf2'&uny}6L8PҠ3RF8aV2Ǩ$@ݜWƘь4IhʴGuԀ MU}TE|$?%ڧ'g9 Qi8gyb8_$#lHr1 s?`Q!>\k D|r8D 1$A^b\RWIӣe>w>i4Z`*.up\\@e<3 ;BHupA"Tr#: T>u <1-'D 0v닗lӨ0Q1#̇ t4)hĜ+mHɁ8\L#(҅ @7hI-jxBЄJ(SmaJz՞ѥȒ r&CufIʬr6#@ӟD;G[ g ui^OccRHV@d{!s )sX\S6T`5ICv@&l|KBF+:ju2@lBX(`6cSV  OU +ix|XN]oz8D!*y/-80dI@adwbI?䒙~).XBr6^A;^P'{ڱ?%)*ȷsP?]CGIA{W5eKy\| ]b X#`Udae#{ԋq"xK,6aO-V CHaɬ gx&I*h?l$;7) J9+M_k=Zĸ7arWHY|e ;A|t&u6O+ LVed6֙yq%5 F͛zCARBuilk;F k@wǽ؛9~7<˟ K!r*/xn( +pH5'֡^[;84 Hy9t ZնXa?r4w8J-8X%'5x{'KHjV=e2\YɍƤcKJ'_۸iY?ѥASI@^߯}hѻwH**m4^B.Z>n K.SR2YOR8mF' Pq\coTOjͩC =QRH!V&8VYhoűnvT B ta\ɤ"]ux NX77+b3x%yc'h11h>Ok"q gy,1ZVjQNL0]yg#W@Tzn 'QV -LY_j fÙZZ5B0=䑸@ *K8 :DLE.,^i$/N%H1Y6IH g,`? &Ȋd }lh{k|=: p@*٫cUx޴Vga^@ s1]WĶdXhnhv%:@ ڀOǾ^ RK5VzOywY"V?N84Or4AB5Y=W@ֱeT[PaXT^g%E .L QJr,^5@G\#$WuWnWDw2t] #k4+6y@4Hx)x=u85 "\?Y#Mw63j-/aN3#Zг{vGA9+UK "Jo.; +񦜰0T`7sbXmOߊvJW.QgR) `'8Mel- &9^=51_*Irḟֶܛ/*%?UP U*%rwvĐEŻ2?q;lLfͭ -.R2^ _-.L޼klx;gA,CO/x,?Ú?)&4@Wϯ47E_O[#p?&ՓNGһ4.iڐݭ-ێ. ֛ t=&,Xӏ0yLνIzhH)ޱzl;=×DQ+e=BR+DXG> stream x[KvUn,!gdْ8M b@@33M +W*}3 ho[߇E>Yz|}x./˛:Zqẹ(b_ ˛bmA9>on]M;`af7ʇI[! aWgIeAMXeZ ԋ|өWτ܋r7UڊHD)ي|'A٧U]V3&jf=NF=,(Jm/ԴV[b$ax ꣺{H<- k8w +‡j9E UYL}afиҷ:.Ӌ_o4N|b5Y8 z:$c2kġ10j9隡@iH㯶!^` M# XqH7pd8u QGX-0zeMl^ϐO:`$1}|'#~1_yͿLԽ ȡriTi V}ʠ2S5[#Uq%.| cک1 j)$`H(rDnSܽ=޹MM2QFF%^Mذ}MfP!f1 syޭ,U?L^/YhHGK*L@4ݨ"F͈~'YЌN 8M8=>΄Kq4^3paĒshvfIH֖*)nQ!m' & Bt;jnk2Y֡,n3g CE6 `!$IrƆ୩sZ`8)#U&tGOc ~0x@?ׯߢ?IZ+Q,9왯Ѳ@rtlCŐ}:T46zH*V%$@W| A"ܴ =]k!+C&LXPISٶTb&F^.C[06: Nb)b[I" k*α&IBch6ǺAؽ\0]3DE)ʝ&þi6敎r!B󹒤%"ts͟eaV GLݕ):YESbOJN}i<}ɷA; w<]lqĨQ_VIU_vq'U2d ZtgJhYJ93hK9oIT.6Mn@PU C2o?Z 5Z=FU:bT@!eQ^wqBt Venl"N4sO™\擋1\wy(HKͤG@ ݟӼG.hE2;ВWh|VFA6N (,"q5f!N`h>AcB…_AhءY'!_.|=fqoyj ]D lȀ5k3ڳ[!8T;1KPR&VѵAMRF{J ]#NQu'd!T]= 5w4l#kY`eQN#(>RpdߙoF#,-"(gBDt5@MFMIvo dpwܣ$ذӌL9FŒ:]Npg$I  p 5Z//V ģFCmRP'duDM(~;ݠ" `9 msTms.=Zs9cSE2%<;)MXwڎWIFN:l{mwͯ&ưv 'KbrVҰR:`/şO cѩ dQ3yґ;<XCd9eۮCd]%lc%4Fe$88|WTӰv }99Ӽ̡6tщQ66ϿQjRj4аkѧu(MMLi:d.TO2 A7D^d]#a1xd]u.WDH[d <a@yPU9 .p&W !VC ˶,c+{f`&O >-5!3uI%CO *wVct\ :tg Ox5L օqC3C9Di9ḿ884Ns5$z$ߚ ]Bb M8uFvtcA/yn!E)Ây[?HFU7MNά+d`z3!Qv=-] 14΂2cFC:\)ض{}C,'a%a1>> stream x[ݓ۶ϳC?@DLb'u܉;M|3ēHLR>_. i~Vz(I7,ВWRQիxEҟ8㣛^n>b"JҲ0ȩ(N^-"OY5ZQZN]УjyK(,N1ͪm1(j;J4VD[y89'My}iIe̕|.y#!bVk"*6VJŘU_8eM3qOVSW%TFtӶF˱WMrrSN::HZ>0,Qٮ OD^Q>:W"`XJ+J+)FJM+b>[AuUC4^xPHQR%'Qiq}/Mo6BT+¿D%D7SR /It!%%5%76;,~H/l۴^TL=dƳnʀ1efԂSaAUs"NhY#*nXnOZ2q9N3Hq",枺.M_ڃ\#\ݰlL 6+vlu:]Q}L#QLQ6M`-& صJ_`L VR÷Enjmb:92jj!SwАIZi /<=A==g|j N v܉i]IU=ڃ\-_B-Ȫ-`YpJ6SrZjq퀽=6[iY0U^o`v֜I3ԝ叺kQjJ>RBPU ɧqXF=l}?^xCҘX4qF i'M ؁ k P1P5oyr]`! [;%7p!ùSNGnNt2w@پ8h ӻwPJơӕDY ΂cB,l\-(53Be &a)K2bLT]|17 XAL&uh36Uc 7q)̊Xt%$使(1fhwf-"tN$Y9[0mK`W 0N}|/eHPIF4*Iݮ6܁pk(Y%/F%h>bA .@S [(V%;pG+BF =&DU-A&'sCj< ԑttє3m,|t\_I)$Ey1(P|##?xBݾfx[7}u&/7yNHk@B(F8++ _Oʣ笊&vS;1~R=aPۀҕƕ6 _W CE-.Oj^dg*@ jJ)<95@:K0u!].nޡFxj}S\HLx sh1 ddbԁkϨC(tuߣ>+ZAIԡIR!vO|Lcf_W.gckg$񴴚㷵Mp;63`2REl̖]Gǚ== .ALs ( 0V?[SB/M6 Q]z|!{PJ/gl R5;܆dw_#7<՜֧9z:1w Է6gSU׍fy$TOBdŪ_{rJ Bб<O5ތk#/5>Mhi+",ܿX)I)P f\75Q{2jöM@Z Xׅᕠ:Li_w$}^7,X!,)'8wvGsNha3RB\ů:R~rA,JŨrKC~9!/_9me]sj`POҖ0yH:u¼+ןצp)u1Lv1lz@<('{q\c3eImPAvWF뜏Wq!5n> eqkSRg`$CttO5FJ8۩v- FGC2ۍOܚjqi6+KQSӉc*W &vy7uPvWu_#ؑq?AaߟL3@Ʊhd 7pUs}{2wv(Ih~[8B(f2B:ʟ-..} N(AFӂ$t߅;AqPL]' 8u] l,NoC&BőMB=}ofSMLv)6!MĐDz*_j\Vx\i{|!`"^xӷT:-{%ngq5v(FׯIV;<~76t 1?vun`ѸT: KCkWO 炲Tx§i˛~>tXa@(ȓ $1fIxe<{3͎IN+^u FevlS:L-fNk&^R=gkQk9.ښ{seǚRȺSɽm2jF0WrZ|BNJZWR38+ݵiџ$YHs^{)dVW]&uo땅j}' %hSeگRW|u3S"m۟>f4T%epoJɃ`w_|3rsOH66#6#$&i t@ӫf5èQ}3hve)'Ru) ԼԸ"6 &>k)nR(<ih!]܏i?]}hK0Mh"]zwQϱuͨ;;8Yk0y%~nh!puLɭwgkQE~D/oWJZ(:l}d'9Ga*&?endstream endobj 309 0 obj 4418 endobj 344 0 obj <> stream x\KƑewݐH?zdU} =C!u#_~_WaBmWկWeEի rҟlUEU"BZׇWqTYUnWG,J #zvja^L*wQq* tsA}^}&XUJC'AݸtԨInkiI r<󰖏Lnxmv&?*,}&8 *ΎOh:- {Rk.Dj멢<̳QdHk Qƾw'%M+4Տ=DF^ޭwכT1m3uB"-Io=-*#~댅YZǡ"C{h+z2!./Ӗ.֓aޟFMȧMhv%͂Z+{S)itD{ܤp$Y3lU Wd'Af=jĥ ԴYhnazl"휗:A ,D&VL08` 9"Avn5|HaOn{_OCQvꁜ+*=\nlaI,^zKԠU&ЎS=ք2Z>qzՐk1!pm;64sB,~ 6 "!.R!B)8}et)Qf`1 JtB%NV87q}+ʇ~AgOUUe,Z8e|,~hVCca0-Ft~-HO"agoH9V{qTd4|ƑӠEȥzd^d?i%gKԎ9X.t2)jÃ2xzC hLI%@Ʈ@L(D|z" D=l/B^7qD9'KıZ08>nL;CKm-@&g& erm7v(1Rd\ p۾v]6W~"nx-ig &ϗr$giVDS YdD]wf`qjY1vbD!A}AH3bI(V:\$5TRZaa PbhIif*:b] U? ._K$ Y2.1C 6ϧq"ZCqL*u9Ni\B%)|7L3A-F`=p?dw_&c3%*3hm3 s4(!¦ .RVA><")OM39j^+bʡ%L4ЍPMXVNpv$!,.g,e; 0FB&ɔt{ l}#X@i օ7!^HJ{(KTN/$Gn=K^êE1ݛB.}UwK.[V.}zu"X=ėkODܬN% mɊؘ1`IsX' ėʄI nR`z8NH@&N!(h:z{{ dή%eGQ2ΨaC37?t!'H+)pDYlxaVzIހ%kNg2!LFFW,ן#(>j/QҴRrmڞ$R\NYMݩJ=B QA4~N/_H% 1RUf@q>\DI oCN755@kS*RqacY4ؑXNs%VK}PȼǟWXwuqvG'^w֌wv>j2"3_lB<ѽvIȺJ02M˙NQ"+ @j)ܘxBa/&|Uw!zk4P(QꪑN_٤u=녳:?ĞL=7.R 4DyJV߷hRpc.=϶9gZ}EU*/g.C mNd}5 jO*}#8Zٯ'WȠ2edf!"a Qxciۯ:kdcqq|bڝF7EW mcq#0ljc0|K ۖԂu}s~aNmG3#.lƢq?Z?b>-pwC{s,l4;W fȱIC識|f&F1nc<v3G @p "z"oŢ3wG2mH & y&6q(a:^%0:$Aendstream endobj 345 0 obj 4623 endobj 355 0 obj <> stream xZKܸy)QLkEQdήovcwx{Fz3ȟO,Ŗk U_}Uɿmm7{{Sl}ymGr{.C[B?d2Ssᵗj{>o1Gvg!1?gF~\cصB.~n.a~y_E>tG |nI.~,%!2ezm^ B]ÕX:e$x|JZQ_/7r)Sb,Ͻ[0Ss{7O^ث;pGvG1 Ud!ǃPǠ](rPa 8ʲЏ%|%}/_y'Ibyh^ϓ,~Ԏa1ŭ>6'Ypyk,;,X O~RN zi[PuJ],š$4Xuc`o1w$Ӎ[+ҡt:sݓ|]Z+g%]dǻ_s/݆* L5er{tٙڽ3# z>hDUY\a5 `G1:8' 28ΚӘrdNX?ʒ!!<r=>vD9oQd$ m[=AB|6H2$7AK2bql=[an)YXd<qxzi y; $Fwh `laٹ  CQ@4fF>}]4Y1?>iCWc`I3-gP9߀gg+;#nr02=wvYAFmBsPAѫBBm%DP6Dn ^K%W>\g$3jKΔ X| ^{]:A\L7^fUΧaj+Hw=z3VEYhP MŃ[9Mz*l=#3u|XMg1VƧTf^V>DGR)IET_!]z[] y[˵BM2+XWd{Y}'z7'k~"L1Ax% cƓ:Cv3UJ$)[sxҹv&,wVmYQ gfԱxJfoJû TSsA$U/釯}c`JV%Y,[fz0Cc`Vux1;b9]{˿唈F`]d|$dww`AҾ@}׺eW SW@)CB*(9+;ftΩӰҬ"LJ{_=Ӄ Q*cjQvŸN_{ 69>Oi:/]ÒW  C0]}1 M!L )@&yPJGW"f-yLu.B8sTe3mSu%{7s|$D o 'G3"yΤJ#OεB& H7*4wf7NVJ4Jgűg%Ux=TcySכȢ5E+mJNDLl$Zhrf&ש!v&!I&Y՜Y:#qLvkQi_P8`tumKd] \q&w3mكթά"5ħ䖶Y7vK2tc{Jy~#j0Y}D [yLAɿIL# OWp>|pIpr_ mW]suhۤ,>QEyZ M}ѐ_\G͚1'rNxfm&{TB ̺abG^F(B T*@)-b᪉20~%4wrpgͳ1:[U;,s W׏sWθILBJܲh[N,=q0SIR KF׍vO5h4_KK;65(C5/#%ǫhР -2֑C p/Q2JAԬL +\fk褘QZ̙0}{kY?DL\N4jwO?%w endstream endobj 356 0 obj 2497 endobj 361 0 obj <> stream xŝ[o MGƼs@,Evʒ#)mvJ+GZ~N9Ԭl$v2;9^̯ ?oޯ{ؼp/^]`Ӟ^,7Rqxٷ\}FȶSt~vyuؼ)F7_0m:/ԯ_2˚vJ .D'_Zmޫwr_xw?'.~w|0R߷." ;MŅ&59~ML-EHڂo/KQ) "0*UDR}kK1C볣ɘM+)dp޴[eTwz_roLJw{mz]|ee5w<}+CXj66W#Rw){PXVc\TvP*A}|z^Un:XyxdL}6Bӆa !պW>4D~Y %XPۆw%>Q; Q )mZu4,)*! qRZiɯh.9`W1Y.Mn!d_{(Dᘁ.cHā4892D * HS E " j' _xoPbU%eB傔MM4d:h9i8t#Ľn.}{i§c: gN!a ӭݣQYnF>,6E]EUZ }`R"%eRMKjC?Ӧj_I˱OLY<%a'̧_?nKgvDbzqL2?a؏̸TVFҜ2Z~`N+HI[7wibeRy r>O->A_7O@l|;qK0H!LM0UT |v(~ⷚ}!m~c7B۟Te ѱX koϑG6ÎFu6y1 M'GɆwUӦ |K5"kИeAg_)̚71#y?ᨯ3Z"7o$A9`I}1$L8 `Rp$<7,O8u1Z7X`Zty+r1*M4vqU&fFw=*Έ}sR5c#)ͪSCÂ>trKgYVT'UDggvuAC_5s.W{ fF}\Ebi ,̠DnWZ/z!5."{, @\= K2a˂;+Tِ4duZ&YՅvqSdҞk>9Y`i;f>U8n !h@tx\qW 8kjcQ^a}B4ً 6#0k6ʺnZV<+T ;Hk{'z|2nq0bW=#Gm^ e SVUe۠^j$ j% i@$걃-8˱Okec_㷃,SB6/)71 a0;l_=iOQȂ[~`RIe.&AXаA3{z:h9Q7ZGzS7/ U}Xe^!@ÑT]BšE!K1):9ZxWB;d*V-/N_ǐn#OdM}[gĦTLq ,ELyd  vLO2GUXbkY Z>ZY1h b"C1($F04L=U!%<5C;Ѝ%@BId# [@*.?<;(aLV 3 V4(@B3 F>ɒz8PZ#Z$`:iY~LEgTlSSX3씠ML ^g~ )ד4[ L`sSDC'YÔ f/b5ZV6SvRtQ_s6| 0MgXĨ􁼨p!w`L;@!EY|+0OԈ6mu+r Բb3U#NP: Δ=ⳇht5{opuC'\  ԡ LSMCyU7tҲșJ D CFfe4s֙CX ؾ CB2)g,j[`QJLQ+ze37QEqH+J+l֖9D[=P5LjNN3&]6$RK7-zqӦ:lAZ6SYvRքP"#s2;pm܁loB:%FCD%(3`>F CD+қV^ 1,t(B(t?>'Qz{`Hԅ&[gD#gu"ʨ//3ԝ~Տ୪,"G#VA ŀT ؗv"/Qf|%=,?܆}#^p0?I: >yO)/^콐X)gШNTq{i^QiEZz Ҳ3GQEy"ۆTKE@uD {$O K4 !$%hRfʡ#U@)FNXZ9SE"wRPM?3a`0U'W.OH3DS)@u $Ŀ)44f3CQE=îӈJa]Kk!h`;9*rOJҪOH' z(Ķrд~2iqXD `Y}9޷+%tԲɵQ2RE0wߕޝ?-]cts7fK2|߲/>.ONp@{d>ӍӃ7{o/3XH\}t@4MgGǧ%?I=ݮq5./a"_f휟 ||z^9mLze}z~@ɤ2.tVn5ŃjAó"{:p%o֏׷S|y|P|oډtý;+sqpy[hs{.#=q@tګ˔~̞ߐ*,(rN{]]6{-~~Z6 QY34.|$fx4WQd?=nLzPI<.%* U=*G7HZg%EVt]9/HqvL+9&ʧalr{R}*E'+'I\?-@-/\/` p B:8_/{E2kBŸ !a)eh__r4/+H CT퓍?qjh\Ĵh0ͥrf}[OI0 -z\Y߭Pxzx^6Lz&~:o:4i×/ǕW'CoyW~dFwibK:JbK.IemFa׳ >歽a̜4XM[^v#=?HľzڷަT-ט_~[.XCuk|/dˊfnƹao`qCaJwC qsh֫0pw2f(~=nҮI&zsCf1bƕSF5~Kr|&+珩J9Qí);O:8.d>5Y\\az{endstream endobj 362 0 obj 4902 endobj 391 0 obj <> stream xŝms7ǯjCR 1UXbK9Bi[{]/z0"0Pl6v(jÿOLj᠞6|q??n&'ӃoHMd#2j>QTӷӫ˳WL~аJFO?xe_#jHޞ\pm_?;}kX~7!HUҞ|{dx|˄|SOܳƒMM݃~R4{)8H*]^|o{Ҹ__Cլ -+ʤ_]8ɖ3g "D!쳌84gvn#5[A͜V"كm~bA~Ɋyұ>( պQEI!SiQIc+RT.7nC C-w7ىbZVRƏ?_?hע)]m?}΄AܫYQJȠIFvhʔq BQ)MpI5{)p Shv2Zamp~o@p2~q)!%'L@)ڑ2$[I3;܄oxmg-41B3 QR{_kn`EѵX ecE Be)Zd*tD;`rBB"iy04oj3N;Iךm&EI{KgZj jxz@`(v\ 4u6hTLP &d ((}󠱻ۈ @"R츸 /՞]3xȤ i$vB4="e T9ޡ:**@Qj IN؈=y'D]1lK↌}KNo31lMq㲂#VV|ٿB$ߡdf!KԜyN f3޿rŎ zxLdbrJg@︬uJMO qQ[bTF(HWAQg&EǬ@W<UOt x%"ߍ/wd;Tro 䎋 PYbIl&UᒂځD:'͋˝d(Q{p&PLݛ-Վ jxiȬA+MMDz{ewL%7Y㢂#T$+^ǣ_7㟕T|ݰ=Er?Rd1vi jGFtZ˔]Rll.*=d["sNLl5fD>2+rިJ<߀ZWΑq[xI;G-fn=fU8D΄M1GF n=B ] 5x-?+x%.W_- x Kd˪)f XixȬA>k:*YYAHl1{m(y+:YI :lVܻWW||8ޕ N#Çm$lP]?.i؆O7AȤp]Dcf:Х|\ٗ@E1gh^`vuʞ&+_3{O7 'oZdR~w&LSv"Y% oʤŽ-H;*aڷFо WN)[T Qqa!ZR!.F[*S'E'oQN|JdA!@@>4tA{()pR?V긴!QY1W2z*_dV †1 Fo㲆1ky*6dzEOwT2}* 8џƢx=.-åMH _#GNȱa%-d6ݿ*GkRW㹺2}Xgtg;uiƨ[f.ۦ"6,2:X~vhpY#bMA Jn7jG%9̃PI(r۫6 (pab"Ur4,&bRWmq5=e#DJJԁqAjZ!nQ9=S_T%M BhSY2`A踤 i/k? :G&IO~nO38YE-PB;>*q0e ~dz K A|knf ߻ OFuD&A<.k8wlnZqIAۓǓvTּ}Ǜ%v _f\7md>-9}ōMltߚ|l][KC?~D Sڪ7Ծ/h.޸9 $3kp7o̯ng7O˙K]w,nF=<ٽd)0g$r KbvseCNtԨ6o[6>tr,׹@ f޹_U-?f.kĻ^r~_QfmKe>=- b}}6fOQD1Y>>?zױ.Uk%uk|mԇ7r}&/ I/ovW96ijuKwԛendstream endobj 392 0 obj 4775 endobj 398 0 obj <> stream x͝[oƕMя2ԝ05c%%9`f4RXmZ:,Uf'XnvW9.<} `[~oퟛ θ\,4?: EQEyQ70_woW,Anzh.B)UWGխXIdznVK+f~9:b*TSUX SֵwiyO?Oُ?-M|.H.Hp) WAR ck)!\Vm<:ۯjٳSP%cX% &Ԭ,~!RU/e~] & +*9>i9a뜎dVPtJg%G eeaKۇeV\TJWzN%S}ZT!搤TsMi` ܅MZ#R wˬIP E*MUHmcY(*jUA 'd"T>c>%DmTe恸:q;-M:wHh4hR4) w(Y'ϑ@jۿjX5YχNW --3<̈Tˤ]`Sm vb]<|ǓzA~{D#_Dw*krhI}DXD“hMIۈdH'>"ɒu?4{6^u+i5;8.9g:1L+Uކk`DbPʢlTN Z^ x*yxc TipE@кAMjC(H/RVì'Dށr>FyӒ+V&Ɋa:k"Y}/w''.ޝeĬƎb띖W"Aw IjހF&FBh:-)eISStҴYiYcnUT課!t?_^>*}e{bT?pEpn:5k;X*H(iAډYc%M9bV?F65Y]߃5w+ջ,F3'T(YѵwvU3uĤ;R"xM؉Ik];+T6'FE>>*(?jZ%^VT%tʈ@uD`G1Q3p ' f_3^#uĜ(o)#aY6DmOLk[eErnǹCwyn3f {<K sʉaȽ6 `Y=BbHNC<-,:։V)T:نseONˊN㍯˥*z@;r34NL]{@Y,ZV촨3~tԴԥ^VT<Ơ^{y}[Nʿ1V˶wߊ'&Ž(H>67G7TXVj\<ĨMP Fi*g OPSDL4dO=j`Ϳ4קyp?[ݞIDvP5 ~% ZT'D*z tִa3%Q<b>~B Zf+7mm"i\q%Ҭ6?d9r UOKHm4hH(zZR\1|c1tV |ibl}vN~>7Ĩ>fQ 'ރ5m@L):%O!KL~04 r PI~0:öQC[O†Q>lPL!Dj8#PQӺ/gJQs"DtW0h-_K@\6pga<AC7Zo~3FACMz#c:j~@AԉA$ Ch1nyeu$n;^F2|I㏧s̬RIDbx4eӃY|@ ڦ}<=hEQ>=h4LiՋ2@AԙF$Ǥ ԡ@?AߴDcʃ҃ˠiQUfQ3 U#Ĩ8'Ȣl=P:3<dه|Ĭ(}z%0%Ew*2{FK#mf9-x1)*= F^yBNfMu*ta1!C+tЉY^y9z&YiQ[{ ю,R'FmC5I{ k}ԴL DUSw'kZ=NRG)*ށF<:\Ezw>V]T9-wYмƧ5^Δ4DIC, ՞"eEw:ʫUޑHVr=ỷIH8lG6P紤4F!)QQJ73 s]W?PzgP6tR `"F"`jv>5x`rlmExr$ @Uz^Y&E(iɫɩDܚr̽=vUo_ukdeQUQ|ncY>>o[ b D7y,(S'c\oO]zlTa*M.Uh}י]i*פ~j*/?Am~e,$g7vs}Z޺kYmu%×u y$Q_eD'\-poRxn* BC`&Tay[][ufAGlyslZiDpq<=3`S_V7WQ]M]]1gA Y^ߴԁ#xhT^efQ.mG,is^O0ꟚgBI5ݺk  zFZݶ0e};1<ݪfyts6ʽd:aݛG)*VmZU}><[F6hÛxG2Q8j{#5O> stream x͝[s;7M?j/2VJҌZmPT3|X,V\j$)?vY]Ym?n+ߧ_< 5oˏ퇎ȌRQQ>ST//94pp8_qd_{v %j]z_A~X^-׫r+uWwo7'~2rR Zf&5WU<;v^=,4#Ͼ;qrә++Dmm VO(֚T|u8FTힳmKQZioWo롚~ب,ГX0oVOc匱=+7C^inJN0A@ Ŭ41Ș%XNYf}(.*eJǬgE1B1RۡчE!C5"QE}RqLS5}*JOwkU)t6n$ɗ]D,($dRZOT.ujQ<4j}eI ]|N-sd=#vqK/lf~Oߜ<i_M%eRuSjJn(JJf\RV`Mmz0%2t~_1y/7: .>)}Y=u㦯IUNg+glʁ_l0g&\/N [\|J:';6Y5[ƋUJX6BI 6Eʔra8dH .)+))-ʓy32Ѥ՘^P?!;n n'aD~g_R6PʿsՆԱA([*Et“/ʳ[0 Ȭ$Dm Mʊel.+SČ o; )ԩhpa9ya-xؼe z,&iq.yk]+"X|u^+%밧5me8j.[#@#BE>.)E:Rэ]HYŲK`I]"F'H"IfyD'͛ZikIGF;aWܸksg Z Zx 7Ǥ hk=&M*u\ҠiMe6N'j]l mgZoGUN0YBȸ7 Z\@&HYVAAؤA Ҟy6 ZG&ڔg{?h}Ҽ'Y3 ?Mud\zKxS{dRz4@ȤA Ҟ֛ld Z%ڴ)HZZNg "}vSX/w:..h%"u\RzTIudRpҲ_O׺0:bN9vpMOv:.mXpiʰS3HQ}J& .2jbC1Nx5Ǩ2gSWǣιdy4vCp3iaw;^"S\S kbT)@񸬠&td*n!Ěm1Ϛb*yh|u &-j~e:894rc ÁS}¼qxauo]y/f(ht )+ ÆEeSWy邦8@ m:O7jD=$`R|񏉳ASt*JWIt"&M{@ P<2OĤ;N ;.jQĨңޡLyu H}pTm Zhi2/. #"G/6izxO}R%)ƫ'+O}`,=BCGP:.l862v r (ԅ1iĦx2k8jۄo*U:PxԼDY:LA{(d<ޞ-;_+"m|=nw5bVѲ%__"g#:_/W(n L("1AoNύS:2mXpi1 j/AجrJ5T*w;2kXkjvE#5%ƀawy7e! U}Bq38wp>6P>8$̄ |}:gdWL7 &MU.^aB >:Y;U&JFB>P .Cƅw5Ho L ҏHS)$G&a~-d{ďK nSے;/'JKb CZ* iB+YV:.,Dm:yEجrĪRy3qY!XK$x23W]ܚ@f #VRCH~_xt7{7Hܼwݛݶ Pj =M~_hřrc[o~q7^i)]Fv cm; 򷶥qy]˫z5^.>8˯;1XSWw>{uuY23nnWe-QwΘh3FM-جto+ܮ3~y{#qpq5_zSF|=Il[Ņ}M.s_rv? , хQa+FXV|nݴvmIu k69s+>D;Mr#Lykjq5Ík *1};ohRhkb ۔LJYmO#OHCz{?ZX-><\]/?mZ}7uN yU;<]z L`?bvԍnGɌfyU 5z+S꺳ڷ^uZ,BGE[݉h'wH kx_u\do(qk8;JUOQ[+oţ1:_o$_ǣzX׋v<`WcGUD׆2_7:jup:yam:o+/Fk˻ug A鋵/xmF I=4ZI;Tm_{UYv3V.STvQ0m\n6 dwV> stream xZMs6k@xk!H+7IZv$+)Ie5>3Јk;R-J%@wׯ0 a~j{rV㛃L3 vGAVaXKۃͿҸ]7هՃEZ7b+u) ]@ ~Ê<+2^"9++,w}BYRp3ʂ$ YC^7A6uA x:͊,vݗ~8q'AO(">51U`4Hө!,l`!](q[h;|,!08.7#;|6 ^TzxD. :\B],)f#jpvʔ+Ȉog"* .9[n^U5u I-`[6xcY ʃV{缝9+\LRE ΂xj׽ wp6#3lčYDiH|kxL|"BFAʧZ{zF4%BPk 0tPiP$Q!ϏUEƈ+~lMAF 3vzMap;B ℾ{0g*=?[UaSb] ;;~%o1S+ Io:9ݮyAg)W`fՆӠp^^#)G<(gȧ ]y fIWbJ5:;m8BptFr>U =m.Ϙ3 }I3tYmPT耑 S{6kUV/z$9hN 37q&}LlDi܈OYn^5C"k:Pv{Y=x{?̿zOi04˅^|@>#Vm' fA5% ٥4zwl+jsc .w85a՟0z1][M1{S5ܣ a{U;e6I듗:9ǣ8k|_qRcP5YpԛibCdQ|'c8mF/8uӇzd"Q!eU'H"5ܒL<)+y1)V땲-36LdnTvF<dlGxU˫\[s$ƏdiE|:>T啴bEOh4؏>4EN# 0 agXI$Px,CJȐLcq\y %&B%HB!yfۏ?wk#Kvvid1cXKiedf5-1¬׫Q7{XEm*Uų,KzL?.VmƖYZ]W WHAc2d 8W->9]b\#3SXxJ$CHJɔqO>xd  & 9O#Sgf!(6W,n{3^AkzZ{D%X׽ɔ#cI28ѠIP^QB~;+8kw  yt- n9*h /inw] irD3T0p8ia :5ўB ʴ`EȢ0Gd#ۖ!ݖ+iD$AI[x{%-^I hwu.t,!]1/7BSH^cWuُOL bX xD$V͂%F /NP3q?_5DQxM`px&} [Y:ڟ:ZkEUR<6m-so9dP^c?tendstream endobj 408 0 obj 3476 endobj 443 0 obj <> stream xXMoFK Xv7r-%TJtF`x]μm1"ce9o=2"ZC_.qJQe8!%Q9D|>5q |5j_,E,^Ub'Mq3.]QmQSx_WO[Y6=ĸ>f U*֜hRU<2瘚wy1O9b|7 Klr4Cq[gf/,̱XЀv Ei؂ lA1QYj.H< (omq0^NͿG\"Vg"L\F\IMw)_n7%-*8),|JYVA0f|ofnWҝgViʢMÂ=WY *ɒ&,ea]W>)!oU-;Asױ4u}țHY z?zJU5':e#]*2ڼT\+rjѝf?n٫H&#'wpp.r!gˆ,>9ib\ `ȡdǗ8žiObl{a_DM4|m k _fU]1xtTl"`ևZiۧzs)Y^t2,\QRAQt(5^e-Fq zht0B4=i#v{@h)~_|-^kUwr vM`,2|nA5bٖrGԈ8[DSP[ZGDAɱW51"5L L!Ă g&407q (1Uخ*O$EZa/"[[Ύơ&/VG启j<|κr;a1QUJY[9̀]]5Fc |$\d̫]57CMѺ_b3V4ciJ^r0bN4Œ#Jo`O'ჷ:|W{[!n6PCμ&'o_T%z;/M.]HT`AH`B7 9ͶOFSouo.\__~@W\vWқ]|==4*95S9 M/,^8'ḏR)z>C ݤendstream endobj 444 0 obj 1668 endobj 4 0 obj <> /Contents 5 0 R >> endobj 237 0 obj <> /Contents 238 0 R >> endobj 277 0 obj <> /Contents 278 0 R >> endobj 307 0 obj <> /Contents 308 0 R >> endobj 343 0 obj <> /Contents 344 0 R >> endobj 354 0 obj <> /Contents 355 0 R >> endobj 360 0 obj <> /Contents 361 0 R >> endobj 390 0 obj <> /Contents 391 0 R >> endobj 397 0 obj <> /Contents 398 0 R >> endobj 402 0 obj <> /Contents 403 0 R >> endobj 406 0 obj <> /Contents 407 0 R >> endobj 442 0 obj <> /Contents 443 0 R >> endobj 3 0 obj << /Type /Pages /Kids [ 4 0 R 237 0 R 277 0 R 307 0 R 343 0 R 354 0 R 360 0 R 390 0 R 397 0 R 402 0 R 406 0 R 442 0 R ] /Count 12 >> endobj 1 0 obj <> endobj 236 0 obj <> endobj 276 0 obj <> endobj 306 0 obj <> endobj 342 0 obj <> endobj 353 0 obj <> endobj 359 0 obj <> endobj 389 0 obj <> endobj 396 0 obj <> endobj 401 0 obj <> endobj 405 0 obj <> endobj 441 0 obj <> endobj 450 0 obj <> endobj 449 0 obj <>stream x31S0P0T52V05U0PH1*iHDLs2 LM ,  zdr.'BIQi*~8PPSr62wwvvrllt29y@-vv\. j l[uk/nB W dQ endstream endobj 446 0 obj <>stream x3T0P0b3K3#CB.7H9\q0m2 L\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OMH_hpq/o_ں_ zeU_?dgw Y.NMM  \ \\T@ endstream endobj 387 0 obj <>stream x31T0P0Q54W01U0TH1*iHDLs2 L@ L Ar@29ɓKW4K?KK)Yq62wwvvrllڹsJsZ<]\)<1k !_q t6/OgJKI5p04pz*rroTz endstream endobj 357 0 obj <>stream x36U0P0V5T06T01QH1*sP "9\\ y\ F@ & z ) ɥPRTʥTĥTå`ȥme˥{us;qy(a=OhuCfW58Kږ.6V4†#: \=٭C endstream endobj 116 0 obj <>stream x31R0P0R5T0T0PH1*sP "9\\ y\ @ }Fz@) ɥPRTʥTĥTå`ȥme˥{us;qy(-x&[//{_~r}={۴[E$08pz*rr>stream x36R0P0T5T02W05TH1*sP "uAtWBWPHHrU()*M*w pV0w62wwvvrllsJsZ<]z7?oxy6>ml" ,\ \\(> endstream endobj 110 0 obj <>stream x31R0P0V5T01T0PH1*sP "9\\ y\ AfKc=HrU()*M*w pV0w62wwvvrllsJsZ<]Qnwhʱ5w߽볏Dh5}ozr5mn8F$:ؔŠ I endstream endobj 107 0 obj <>stream x31S0P0Q5R01T0TH1*sP "9\\ y\ @ f &z ) ɥPRTʥTĥTå\ b݀}o]s~Nin^1P³LMx ?wIP-e~rGU[f7m>X٧}ynݨ[R!S[:08pz*rrR endstream endobj 104 0 obj <>stream x3T0P0bScSsCB.7 2E@*+\!P@Rz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<] \Iyqoǯe>g!3e寯7u h02pz*rr R endstream endobj 100 0 obj <>stream x33Q0P0bS 3#CB.7H9\q0m2 LM\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O,,M%-+2 Ͽw>zD|ہ:o_ x}뗾Qm9ĥ`&.WO@@.`U endstream endobj 97 0 obj <>stream x31U0P0Q5R01P03TH1*sP "9\\ y\ f@@9c=CHrU()*M*w pV0w62wwvvrllt29y@-vv\. j P/PE*nغj{׺OirM/ ~~WZ_޹MlmbP`rT FQ endstream endobj 94 0 obj <>stream x% a%MEMPfe!+Ԕr- q6vn@46=cIQ2K4Ԙ!E{pѥ fdUdR`Mjܐ ұH= ٲb;M[ 2*vk }~>t8.#lr@ endstream endobj 91 0 obj <>stream x31U0P0Q5R01P03TH1*sP "9\\ y\ f@@9c=CHrU()*M*w pV0w62wwvvrllt29y@-vv\. j %|p|(eFK%Mպvu-yTF$쩿ӧ.үzUoE(l8#V3W endstream endobj 88 0 obj <>stream x31U0P0Q5R01P03TH1*sP "9\\ y\ f@@9c=CHrU()*M*w pV0w62wwvvrllt29y@-vv\. j >8|ep4_Zk}߿_}l/ײ.msZ|"ov{ g]w+:3d/k6.WO@@.&O endstream endobj 85 0 obj <>stream x3P0P0W5R05S03RH1*sP "uAtWBW%P!P H$r9yr{*rq{p;8+rDrr;;66 @ܼb;;.ONȲ[(ߺׁD#V][5*N}\[-bGt$48\=vH endstream endobj 82 0 obj <>stream x35T0P0W5T05T01PH1*sP "9\\ y\ &&@ & z ) ɥPRTʥTĥTå\ b݀}on.}ܼb;;.O|5: Ws>stream x36U0P0aCCB.7H9\q0m2 ,\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OE-7_pl_rorUod㿭lu .DEE9^z^)5 ,\ \\Cq endstream endobj 76 0 obj <>stream x3P0P0bss3#CB.7H9\q0m2 ̍\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OMk?\56߮X|_ǂC짶qjbF.WO@@.jT3 endstream endobj 73 0 obj <>stream x31S0PT5T01S01PH1*sP "9\\ y\ @ & z@) ɥPRTʥTĥTå\ b݀}on.}ܼb;;.OT8>1IT;TnjSo֯wX?;jrз٥_o2+i!^.WO@@.CF endstream endobj 70 0 obj <>stream x3P0P0S5P02P04PH1*iHDLs2  M , Ar@29ɓKW4K?KK)YK%ڐ KM jw)+jtQP["m}ҥK]+8\=z1# endstream endobj 371 0 obj <>stream x31R0P0V5R0P05SH1*sP "9\\ y\ Ʀ@  z@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]v3snv3# AS!+ &O endstream endobj 275 0 obj <>stream x35V0P0bS 3CB.7H9\q0m2 Ĺ\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O .X~p>C{Cyab^+PO)K,zCB W _ endstream endobj 272 0 obj <>stream x31U0P0a3CCB.7H9\q0m2 @@)=C]=K 0UHrU()*M*w pVR.ц\\nn@n.P9?47ΎEAmA[͇l ;}k_j8n5=M\k.^ 3^Legu/.WO@@.K endstream endobj 269 0 obj <>stream x31U0P0Q5R01P03TH1*sP "9\\ y\ f@@9c=CHrU()*M*w pV0w62wwvvrllt29y@-vv\. jbD+zzݎ=qæ@y~! L}Zkg7߳*"fւKvVw˶K7 08pz*rrVP8 endstream endobj 266 0 obj <>stream x3P0P0b3cKCB.7H9\q0m2 LL\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O%6?&I%l[X]+ۥ3ˣ]^Uᗫ%/}yV!.WO@@.A endstream endobj 263 0 obj <>stream x37S0P0bsc3CB.7H9\q0m2 ̍\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O .x_i0bP'$eK]C w}Gb0J~e.X\=bl endstream endobj 260 0 obj <>stream x37T0P0W54Q03V0PH1*iHDLs2 L̀ Ar@29ɓKW4K?KK)YK%ڐ KM jw)+jtQP[aj@c"+QtUXU69ćlhm3U .WO@@.J endstream endobj 256 0 obj <>stream x31U0P0Q5T0P03QH1*iHDLs2 LL ,L Ar@29ɓKW4K?KK)YK%ڐ KM jw)+jtQP[!!{KzcBOǃm=TnU'/ߠ I5p04pz*rr X endstream endobj 252 0 obj <>stream x35W0P0bS#3#CB.7H9\q0m2 L,\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O'Wdȣ |V`}CB W F endstream endobj 249 0 obj <>stream x33R0P0Q5T0T01UH1*sP "9\\ y\ @@f &z@) ɥPRTʥTĥTå`ȥme˥{us;qy(-b;RG1P> 1;YMX\=OHa endstream endobj 246 0 obj <>stream x31S0P0b#SCB.7H9\q0m2 -\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OE]5r󄟫/ih[/g`rT }< endstream endobj 243 0 obj <>stream x} PEEO輗/>(.U-԰6X.\;) 10t0`#[u%vFE-: BA5DSZLH-ݯ \I&8-ipP{pfy>stream x35S0P0b3#J1*qs$@*+\!P23T53 S\.'O.}O_T.pR.}J.}gC.}hC.X.}7}gg7 7F[A(㜟SW bg颠/ŦM넢8ZVWe.ЗޯC6mzX]]= }Id׵K_ꇮzYdoҥ/&}z.G]%, \ \\MA endstream endobj 63 0 obj <>stream x31Q0P0W5T01U01PH1*iHDLs2 - L- Ar@29ɓKW4K?KK)YK%ڐ KM jw)+jtQP[$Y%ȡKkKGo?Y{Cfmm]zЍ? aˢ^އ1vD AS!+ MU endstream endobj 59 0 obj <>stream x3P0P0R5T01U0TH1*iHDLs2 L L- Ar@29ɓKW4K?KK)YK%ڐ KM jw)+jtQPf3ǀ;m~3omVQ_=:eߤɡ-nx'm8UO& endstream endobj 56 0 obj <>stream xT0P0bK3#CB.7 D@*+\!P@R&z z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]o}rEsKn'o{ b߈2:8LǿM`bPrT :o endstream endobj 53 0 obj <>stream x37S0P0S5T0T03VH1*sP "9\\ y\ Af3=CHrU()*M*w pV0w62wwvvrllsJsZ<]rf2b=F EPb`ۖ,6vC/̛|תx /Sr'fukeTth6]xĜM,8\=R endstream endobj 50 0 obj <>stream x0P0P0V5T07S03RH1*sP "9\\ y\ f z@) ɥPRTʥTĥTå`ȥme˥{us;qy((9bpB?>zo]s/6i9s$9$Z6::!B W |UC endstream endobj 47 0 obj <>stream x37V0P0b3 3CCB.7H9\q0m2 @ @R&z z@`aɥPRTʥTʥTɥ\ b݀}o]s~Nin^1PڎDD䷶߿uNM0OAS!+ M endstream endobj 44 0 obj <>stream x3T0P0b#CCB.7H9\q0 2  M\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O5/_.)kڵkm޼9'WEGG02pz*rrt3 endstream endobj 41 0 obj <>stream x33S0P0b3CJ1*qs$@*+\!P23T53 S\.'O.}O_T.pR.}J.}g me˥{+esJsZ<]X\$!߿kB?ȏ#cj? ,\ \\ƵO endstream endobj 38 0 obj <>stream x33V0PaS 3#CB.7H9\q0m2 LM\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.Of(6G__C?Y;^`hrT I endstream endobj 34 0 obj <>stream x35T0P0V5T0P03VH1*sP "9\\ y\ &@ f& z@) ɥPRTʥTĥTå`ȥme˥{us;qy(-TS˵y9/9n__$ro[ՙ7>wwȏ, \ \\ZYv endstream endobj 31 0 obj <>stream x31P0P0V5T06W01TH1*sP "uAtWBWH!P H$r9yr{*rq{p;8+rDrr;;66@\9y@-vv\. j &8|kbګkү/&{ݾm{1& ?, endstream endobj 28 0 obj <>stream x31U0P0R5T01R01TH1*s9\&ZDgp+q*( PH($s<=}JJSÁ=j ] b݀}on.}ܼb;;.O;gs|doH|porK/m7޶KsultGa7 } .WO@@.C endstream endobj 25 0 obj <>stream x36U0P0R5T0T05SH1*sP "9\\ y\ F@ Fz@) ɥPRTʥTĥTå`ȥme˥{us;qy(-ac'gT}fnE$m8fB endstream endobj 22 0 obj <>stream x35T0P0R5P01W01PH1*iHDLs2 LL L- Ar@29ɓKW4K?KK)YK%ڐ KM jw)+jtQP[l9#!‡F'WZ ~oo0/{߲۱e qGٸC01(pz*rrR endstream endobj 19 0 obj <>stream x3P0P0b333#CB.7H9\q0m2 L\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O韲$HgWD/2znEgݶ?:V|tݢ~OR08pz*rrM endstream endobj 440 0 obj <>stream x31S0P04P5R0T03TH1*hPD Ls2 -jFDr.'BIQi*~8PPS!K!A,`cﭠ q)+jtQP[cC_W//__X/Tmi(GaF.WO@@.1Q; endstream endobj 437 0 obj <>stream x31R0PT5P01Q01PH1*iHDLs2 M L-, Ar@29ɓKW4K?KK)YK%ڐ KM jw)+jtQP[p ֖[|.,7}ɵ-}eW{jj}۽u7$V>~}ߪ_Ro`hrT .Qy endstream endobj 434 0 obj <>stream xu PE'g#]VP7>$]w2&(ƀ;-~+3j11jB_|ņݮ \K&8+-ipPpe>stream x3P0P0S5R05V03UH1*sP "9\\ y\ &@@ fz@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]LsvQp|zu_yGK^meo}݉eRo 6+rl<ͣcDCB W K endstream endobj 348 0 obj <>stream x31U0P0R5T01Q01PH1*iHDLs2 L L- Ar@29ɓKW4K?KK)YK%ڐ KM jw)+jtQP[$sqB9k]o]kKd _}={׷݉>stream x36R0P0b#K3KCB.7H9\q0m2 L\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OER>stream x32U0P0bCsCCB.7 2D *+\!$@\PAH$r9yr{*re=S!K!A,C}C}b1pz*rr $ endstream endobj 310 0 obj <>stream xEA PD[S̪]~_2VDMDݤ#0of6]JٜGC0 .qF =?9]KRJkCPC mw(bm6a(!HRSӨkU\:_۾?i^f_d+. endstream endobj 16 0 obj <>stream x3P0P0V5R03Q03RH1*sP "uAtWBW!PH!P H$r9yr{*rq{p;8+9.ц\\nn@n.P9?47ΎEAɁ5n׽}ۥۦ1H&&#jW endstream endobj 13 0 obj <>stream x4V0P0R5R4P03RH1*sP "uAtWBWP+PDH($s<=}JJSÁ=j ] b݀}o]s~Nin^1P"(J9*l9]{ۗ%oYor}UZ_ ٍG/[}}e`rT en endstream endobj 10 0 obj <>stream x33W0P0V5R03S03RH1*sP "uAtWBW1P!P H$r9yr{*rq{p;8+rDrr;;66 @ܼb;;.OYXJ:XTdH8o?폏azxw1;7ߜu߿ ]:Tm:m6.WO@@.T[K endstream endobj 428 0 obj <>stream xMA P;t]辇& "3;3, endstream endobj 424 0 obj <>stream x33P0P0W5T03R01PH1*sP "9\\ y\ & z@) ɥPRTʥTĥTå\ b݀}on.}ܼb;;.OE2Ԅ~Wۻ_?jrB_56kC׭[Kmw]o6EVF.WO@@.}S endstream endobj 421 0 obj <>stream x36W0P0U5T0"CB.0?Hr `(ÕU`ljgɹ\N\ %E\@E\@5\N @%ڐ KM w)+jtQP[0qmoɥ f*--uˎ(`җUKM?tA jv.emule`rT VE endstream endobj 418 0 obj <>stream x0R0P0bKC3#CB.7H9\q0m2 ,̀\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OYH M_2=V\ \.WI2 U߽z__[﷚W?`bPrT :r8 endstream endobj 415 0 obj <>stream x35T0P0S5R05S03QH1*s9\(ÕU`jf@i=CHrU()*M*w pV0w62wwvvrllt29y@-vv\. j g\:d,qKٞ_{o~6ߨo8}̩[j߬.YٲhFf׌VVF.WO@@.V endstream endobj 412 0 obj <>stream x35S0P0W06T0P07UH1*sP "9\\ y\ &@ && z z ɹ\N\ %E\@E\@5\N @K!A,`cﭠ q)+jtQP[x@iEp|\+|^p/k k3PAEuۯ}]{)o ӭ[$"/VF.WO@@.CI endstream endobj 409 0 obj <>stream x35U0P0bSc3cCB.7 2E@*+\!P@Rz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]lɕ`cHΈ`˪-K_Vo , B W :S endstream endobj 380 0 obj <>stream x36Q0P0U0R0P02WH1*qsABDB p#SS=CC=K\.'O.}O_T.p.}.}gC.}hC.X.}7}gg7 7F[A(㜟SW bg颠)?T>̾ʷC<: ʻ XI ȖAS!+ W7w endstream endobj 374 0 obj <>stream x31R0P0V5R0P05SH1*sP "9\\ y\ Ʀ@  z@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]8Θ} G*IUK/}u7~q,9P76&r}\v[Ix8݈0XĠHCN endstream endobj 367 0 obj <>stream x35W0P0bSCSsCB.7H9\q0m2 L,\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OO8y-?o^҇M1ziˣl L\ \\J endstream endobj 364 0 obj <>stream x33V0PaSsJ1*qs$@*+\!P23T53 S\.'O.}O_T.pR.}J.}gC.}hC.X.}7}gg7 7F[A(㜟SW bg颠@T¢mw ? /e8]MM  \ \\gP endstream endobj 351 0 obj <>stream xP0P0b c3 CB.7H9\q0m2 -\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O-e߿Oi[so!8o]@?ъm{ \ \\1o endstream endobj 327 0 obj <>stream x-@DOe1wx1&PQ+1 *AbvwØedV1o찐v;iqL[YkCt4CAQ!Y_ 8WJS92 =^Y_g`YL#)- endstream endobj 323 0 obj <>stream x33R0P0b3S3#CB.7 2C@*+\!P@Rz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]ezP鞥_MU}d~Ϫi+M6e&&N\+tu dWL=%<3&*LpsY B W !N endstream endobj 320 0 obj <>stream xP0P0bKS3#CB.7H9\q0m2 ,\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OMskcO܊9]Mצ/kk3Ѹ`UPMvm~EJhmծqsÄ/wR<}#B W grE endstream endobj 301 0 obj <>stream x36W0P0V5T06Q01SH1*sP "9\\ y\ Ɔ@ & z@) ɥPRTʥTĥTåDrr;;66@\9y@-vv\. j Tr޿o믟"ҫKTջ3u_n]C\=Lt endstream endobj 297 0 obj <>stream x37Q0P0bs3 CB.7H9\q0m2 @@)c=C]=K 0UHrU()*M*w pV0w62wwvvrllt29y@-vv\. j',1PׯM9t+_?џS!+ >ZP endstream endobj 376 0 obj <>stream x31R0P0V5R0P05SH1*sP "9\\ y\ Ʀ@  z@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]έ(ͫwFfӭ{Q|E/_kr[]mtXMGS!+ >S endstream endobj 339 0 obj <>stream x-@DOe/9bA(8$^ TJL,zݝ721l#F? YlwထI8iMՙ=ğ~N7Hr!H^9*8+ ʰVi*GFG7ËI.Y6{֨K), endstream endobj 336 0 obj <>stream x35S0P0U5R0T03QH1*sP "9\\ y\ &@ ff z@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]lb?ī. jK_bLݻ'}p0=v~i߮Wߥz,c"% ,\ \\|nZ endstream endobj 333 0 obj <>stream x35V0PaSsCB.7H9\q0m2 Ab  egkg`  ɹ\N\ %E\@5\`)YK%ڐ KM V8qy(-=ߒK_}YTF8/{jeommmpL \ \\ I endstream endobj 330 0 obj <>stream x36V0P0V5T06T01WH1*sP "9\\ y\ F@ & z ) ɥPRTʥTĥTå`ȥme˥{us;qy(-8xEZ}S/^nzQ_(/k6em}Y+zؖm \ \\Ds endstream endobj 304 0 obj <>stream xE @Drb*xw1BHK )J$5_Q-vvͮ? Mٜ?*|G{Pᄒ Zr0dlz&}_#vPnۥ;B sKdkwP65C'Ğn .虾u<"u,P 00x endstream endobj 294 0 obj <>stream x35S0P0U5T05P03UH1*sP "9\\ y\ &@@93S=CHrU()*M*w pV0w62wwvvrllsJsZ<]ThRfTdo9R0s-}ko3 V]\Osow~;?nU% EM;-DD& %&.WO@@.eORz endstream endobj 291 0 obj <>stream x3T0P0b#CCCB.7H9\q0m2 Ab@ t Dr.'BIQi*~8PKL:8+rDrr;;66 @ܼbb;;.O5/_.)kڵkWX\=) endstream endobj 288 0 obj <>stream x3P0P0V5T05Q03VH1*sP "9\\ y\ @ f& z@) ɥPRTʥTĥTåDrr;;66@\9y@-vv\. j WInd`ϱ!C{~G[ OYn $mfmSvM+CS!+ Q endstream endobj 285 0 obj <>stream x3T0P0bS3CB.7H9\q0m2 LM\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O-|>stream x33R0P0bSK3KCB.7H9\q0m2 LM\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OERl+??go_G_z~/5"&.WO@@.S9T' endstream endobj 233 0 obj <>stream x35Q0P0bKSCCB.7H9\q0m2 L̀\%X*$r9yr{*rr{Ur;8+)hC.X.}7}gg7 7F[A(㜟SW bg颠ɕMIoo^}K z~@9/]bP`rT UJ endstream endobj 230 0 obj <>stream x3P0P0bcSSCCB.7H9\q0m2 \%X*$r9yr{*rr{Ur;8+)hC.X.}7}gg7 7F[A(㜟SW bg颠`@륯_V7__V7}ǏI?b"'6MX\=~F endstream endobj 227 0 obj <>stream x3P0P0V5R06Q05PH1*sP "9\\ y\ Ɔ@ @z@) ɥPRTʥTĥTåDrr;;66 @ܼb;;.O>2_po¹WW{_YnZ!n%iW|=sgotDLbL \ \\fG, endstream endobj 224 0 obj <>stream xM= @s}k"B0U R zooTa'nR1k3䁥xW^fŨG%/)j]Tai'ڳ.V]}RG(? endstream endobj 221 0 obj <>stream x35P0P0b3SCCB.7H9\q0m2 L@ @Rz z@`aɥPRTʥTʥTɥ\ b݀}o]s~Nin^1P+=o?SpB W CIX endstream endobj 218 0 obj <>stream x PC|E~{EotrС,z} 9!Iܢ=_ך_7X}0.1{&ܣQrooPv*\5*dBXi/Pq> endstream endobj 215 0 obj <>stream x3P0P0V5R06Q05PH1*sP "9\\ y\ Ɔ@ @z@) ɥPRTʥTĥTåDrr;;66 @ܼb;;.Oۛ}hUU~ ?`j6om\o(lfbP`rT tkE endstream endobj 212 0 obj <>stream x31T0P0T54S0P06RH1*iHDLs2 ́ L, zdr.'BIQi*~8PPS!K!A,`c ΥSW bg颠3gv{o{^|7o7o?n֏-#MUoE$map`rT wGW endstream endobj 209 0 obj <>stream x36P0P0R5T02W06QH1*sP "9\\ y\ F Ʀ Fz@) ɥPRTʥTĥTå`ȥme˥{us;qy(-9#B:ǃ̿}d>@Ym>+8oc&}wk.e mYaŠ=6 endstream endobj 206 0 obj <>stream x3P0P0bSSSCCB.7H9\q0m2 L\%X*$r9yr{*rr{Ur;8+)hC.X.}7}gg7 7F[A(㜟SW bg`}uBa0n!_QbB W }Ww endstream endobj 203 0 obj <>stream x31V0P0R5T01P06VH1*sP "9\\ y\ @@9#=CHrU()*M*w pV0w62wwvvrllsJsZ<]ԖT|r3kNSߪ^1AFfтC\=&A endstream endobj 200 0 obj <>stream x3P0P0R54W06S06QH1*iHDLs2 A@hj`gɹ\N\ %E\@U\@E\N @%ڐ KM jw)+jtQP[8M? \CoNyK/mc}v-n7uMWzmK/mSmnEI8&vD02pz*rrN8 endstream endobj 197 0 obj <>stream x32T0P0bC S#CB.7H9\q0m2  ̀\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.Oe?e <2AB W ?, endstream endobj 194 0 obj <>stream x3P0P0R5T06U06QH1*sP "9\\ y\ @ }Fz@) ɥPRTʥTĥTå`ȥme˥{us;qy(-h?P@#׽j_f~u}\׉-srq1(0qz*rr@=; endstream endobj 191 0 obj <>stream x36P0P0T5T02U01SH1*sP "9\\ y\ F& & z @"9ɓKW4K?KK)YK%ڐ KM w)+jtQP[׿^'(~r8"m{wmo0F.WO@@.> endstream endobj 188 0 obj <>stream x31V0P0R54U0T06VH1*iHDLs2 ́ L, Ar@29ɓKW4K?KK)YK%ڐ KM jw)+jtQP[R.PZ0OpZV-ۻaj=q B\=aeD endstream endobj 180 0 obj <>stream x37T0P0b3s3#CB.7H9\q0m2 L\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OÌ'WdHhH4'~חޗP q/%x_woĬp\.d ?#B W Y~ endstream endobj 177 0 obj <>stream x0V0PasK3#CB.7H9\q0m2 ̀\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O̓J4>LM[\s]`r /󡜮rC!>.01(pz*rrr endstream endobj 174 0 obj <>stream x36R0P0b3CB.7H9\q0m2 @@)c=C]=K 0UHrU()*M*w pV0w62wwvvrllt29y@-vv\. j 7Y"󡭈^_M T?9pr[0e L\ \\H endstream endobj 171 0 obj <>stream x31T0P0R5T06Q0PH1*sP "9\\ y\ F@ Fz@) ɥPRTʥTĥTå`ȥme˥{us;qy(-hg__Nc?_0pb&'-mC B W /C endstream endobj 168 0 obj <>stream x37Q0P0W5T07Q01PH1*sP "9\\ y\ f@ &@z@) ɥPRTʥTĥTå\ b݀}on.}ܼb;;.O|5vb ,ro$yf;5DzPuioҖ};ov|Zrcj+V(o˴_{UÈ F.WO@@.'W endstream endobj 165 0 obj <>stream x31P0P0bcScKCB.7H9\q0m2 @:RFz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]Զ?KRo/[nN_]ݪKXMU]җU/qKD`hrT T< endstream endobj 162 0 obj <>stream x35U0P0R5T05R01PH1*rErL4H<++\!P@M- Ar@29ɓKW4K?KK)YK%ڐ KM jw)+jtQP8Ϭ&2rzow,_|ua[`ok=q-YiCaL \ \\Mo endstream endobj 159 0 obj <>stream x35T0P0V5T05P01RH1*sP "9\\ y\ &@@9cc=CHrU()*M*w pV0w62wwvvrllsJsZ<]dgwy\a~#`OcLɬL] -/Ooe߶9"?)"DGgq#B W E endstream endobj 156 0 obj <>stream x31V0Pa 2TH1*qs$@*+\!P\$23T53 S\.'O.}O_T.pR.}J.}g me˥{+esJsZ<]iw_3kG_^1L \ \\e=g endstream endobj 153 0 obj <>stream x3P0P0Q5T05U01TH1*sP "uAtWBW!P+P!P H$r9yr{*rq{p;8+9.ц\\nn@n7P7s~Nin^1PڢYlN̚$?:x˷) ng9 J1E endstream endobj 150 0 obj <>stream x37T0P0U5R03U03QH1*s9\f(ÕU`fff z@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]Nd躞Ì?ٮ{n=e~_ᯯZe߯_x3>\[og]z#N"Q#[,y`aprT 0_8 endstream endobj 147 0 obj <>stream x%?aE9VT,6".b#[Ie $Įjgp#86JPm>/43#2y*hd`_Ĥ?]cESdf A"vڴ]஌MـM7SvCbRe 7rV(}]N=cpO*>SaOY*{_h{^Cs9cC.\|!A1 endstream endobj 144 0 obj <>stream x33U0P0U5R0CB.0?Hr `(ÕU`jj`f`gɹ\N\ %E\@E\@5\N @%ڐ KM V8qy(-3G Ay&އ,U&W4oǿ]wf~캯ۦ]mڭ\ "[x:08pz*rr`S endstream endobj 141 0 obj <>stream x31R0P0Q5R06W05SH1*sP "9\\ y\ @  &z@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]ԖŘ1=l}pu1z$~l?=~MPoiWwK]ҍD6mF.WO@@.Lf endstream endobj 138 0 obj <>stream x33R0P0R5R0T05WH1*sP "9\\ y\ A  Dr.'BIQi*~8PP S!K!A,`cﭠ q)+jtQP8l)˕qwfӷ[Ww%P-]ow.WO@@.Q;Q endstream endobj 135 0 obj <>stream x3T0P0b33SKCB.7H9\q0m2 L\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O dpTIs((4W8rUTeK/8?(wqe|2O3(F.WO@@.JZc endstream endobj 447 0 obj <>stream x31S0PT5R0T03TH1*s9\&(ÕU`bf z@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]ĜP/||K{㽯z~_/_[o{TmSH }m˴Ckuu&mYrM ZtÆL \ \\T endstream endobj 395 0 obj <>stream x3P0P0bS#SKCB.7H9\q0m2 LA @Rz z@`aɥPRTʥTʥTɥDrr;;66 @ܼb;;.O .h>nbQ>&C(!*_/y(}ryffX˧|`aprT 5W endstream endobj 388 0 obj <>stream x31S0P0bcSKCB.7H9\q0m2 L\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O .q(joPX2o{ OY=|<CB W R endstream endobj 384 0 obj <>stream x32V0P0bC3c3CB.7H9\q0m2 ,<%X*$r9yr{*r+Xr{r;8+rDrr;;66 @ܼbK;;.O : Z&fOHt`aprT /A endstream endobj 378 0 obj <>stream x33U0P0U54S0CB.@.pAd4H<++\!P@N$$s<=}JJSÁ= ] b݀}ov.}ܼb;;.OwHd>(/"E*ߗ&W__m?}ۥg9Q%Vt%FEW/~+Zѥm8t$~U^ҍ]`B W gdk endstream endobj 184 0 obj <>stream x36P0P0b#ccCB.7H9\q0m2  -@:Rfz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]͐-xT?SiǠ14 endstream endobj 132 0 obj <>stream x33P0P0R5T05W06SH1*sP "9\\ y\ Fz@) ɥPRTʥTĥTå`ȥme˥{us;qy(-)feܿ{^ڥ_oG{;ߖ{]/U}.WO@@.wP endstream endobj 129 0 obj <>stream x36W0P0V5T06Q0PH1*sP "9\\ y\ Ɔ@@͖ z@) ɥPRTʥTĥTåDrr;;66@\9y@-vv\. j %921e%K_e_OӸ^{=Ww˶KIq1(0qz*rr>^ endstream endobj 126 0 obj <>stream x31S0P0R5T01R0PH1*s9\&(ÕU`b Fz@) ɥPRTʥTĥTå`ȥme˥{us;qy(-0f?|ukk/_/Dq{/PecˎfVF.WO@@.M endstream endobj 123 0 obj <>stream x31S0P0bccsCB.7H9\q0m2 L \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎEAmIEc&~Gsu+JiQń3y30rz*rrDA endstream endobj 120 0 obj <>stream x31S0P0bcS CB.7H9\q0m2 L \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎEAmI!?) fe_ZL8?#B W N endstream endobj 117 0 obj <>stream x36V0P0bc 2WH1*qs$@*+\!PB$23T53 S\.'O.}O_T.pR.}J.}gC.}hC.X.}7}gg7 7F[A(㜟SW bg颠"'%(eׯMI~Zu?`bPrT ; endstream endobj 114 0 obj <>stream x36W0P0R5T06Q0PH1*sP "9\\ y\ F@ Ɩ Fz@) ɥPRTʥTĥTå`ȥme˥{us;qy(-hKLd>dP%|/?|=~׷lctS!+ l@ endstream endobj 111 0 obj <>stream x32V0P0aS CB.7H9\q0m2  -@@)#=C]=K 0UHrU()*M*w pV0w62wwvvrllt29y@-vv\. jK*?epS!+ R&Ac endstream endobj 108 0 obj <>stream x32V0P0aS3CB.7H9\q0m2  -@@)#=C]=K 0UHrU()*M*w pV0w62wwvvrllt29y@-vv\. jK<_6I/ ^i~Ġb? endstream endobj 105 0 obj <>stream x35Q0P0bS 2WH1*qs$@*+\!P\$23T53 S\.'O.}O_T.pR.}J.}gC.}hC.X.}7}gg7 7F[A(㜟SW bgJoO8s`bb, \ \\2O endstream endobj 102 0 obj <>stream x35R0P0b SsCB.7H9\q0m2 LL\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OM~>stream x36U0P0U52R02U0PH1*rEr4H<++\!P@-Fdr.'BIQi*~8PPS!K!A,`cﭠ q)+jtQcPZw}^ @xq[^S!+ sQ endstream endobj 95 0 obj <>stream x36S0P0V5T06R01TH1*sP "uAtWBW%P!P H$r9yr{*rq{p;8+rDrr;;66@\9y@-vv\. j yqH=pdT7?~y~K4ěn}pˉe7 _ګK[}8"pЁS!+ bB| endstream endobj 92 0 obj <>stream x31U0P0b#3#CB.7 2A@*+\!P@RFz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]Hz߮ V7Y\_뗵 pj `aprT yM endstream endobj 89 0 obj <>stream x31U0Pbcs3CCB.7H9\q0m2 ,\%X*$r9yr{*rr{Ur;8+)hC.X.}7}gg7 7F[A(㜟SW bg颠1{8d>stf *108pz*rr}A endstream endobj 86 0 obj <>stream x3P0P0bss3#CB.7H9\q0m2 ̍\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O9OhX_1ط;W-ݿ|Wzc_$+L}_W{~rP߂, \ \\ c endstream endobj 393 0 obj <>stream x0U0P0R5R0R05WH1*s9\(ÕU`a Fz@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]9r$ Cwo_%~Ykڥ_~+n3w^KuܭOzޒ \ \\j endstream endobj 383 0 obj <>stream x33U0P0b3SsCB.7H9\q0m2 Ab  egkg`  ɹ\N\ %E\@5\`)YK%ڐ KM V8qy(h1suc=wþ}{/}/ث/%/UBe~o`ۿ_S۰D"CB W M4U endstream endobj 358 0 obj <>stream x3P0P0V5T05Q03VH1*sP "9\\ y\ @ f& z@) ɥPRTʥTĥTåDrr;;66@\9y@-vv\. jfSTCP ;kz{=l:b c[;R04ppz*rrPu endstream endobj 273 0 obj <>stream x37T0P0U5W03U05VH1*s9\f(ÕU`f@T($s<=}JJSÁ\`)YK%ڐ KM V8qy(-c<=zrU$i[  \ \\TD endstream endobj 270 0 obj <>stream x31U0P0U5R01V03RH1*sP "uAtWBWP!P H$r9yr{*rq{p;8+rDrr;;66 @ܼb;;.O '}=Fj__ז,XXK}< \ \\B@F endstream endobj 267 0 obj <>stream x3P0P0V5P0"CB.@.pAd4H<++\!P@BX$$s<=}JJSÁ= ] b݀}ov.}ܼb;;.O;g37s]w4W/c xrc_-wD} {A4o`hrT *P endstream endobj 264 0 obj <>stream x31V0P0T5T01R01PH1*iHDLs2 L L- zdr.'BIQi*~8PPSme˥{s;qy(-XBCD1ߖ}B/M_:jCMn]fy8}8~_g[dff4q$620rz*rrP endstream endobj 261 0 obj <>stream x35R0P0R5T0P01PH1*sP "9\\ y\ &f@ & Fz@) ɥPRTʥTĥTå\ b݀}on.}ܼb;;.OE2l+'K _]~mfUC돭tkKuӫׯ7nw|ImB: \ \\JII endstream endobj 257 0 obj <>stream x35R0P0R5T01W01PH1*sP "9\\ y\ &@ & Fz@) ɥPRTʥTĥTå\ b݀}on.}ܼb;;.O%k^u襥_튭 q__w1پ-/K폸5oeɒ*9&g8%I8j`hrT J endstream endobj 253 0 obj <>stream x3T0P0bS3#CB.7H9\q0m2 L \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎEɕTm߿ɦ۷OpOeF.WO@@.O& endstream endobj 250 0 obj <>stream x35P0P0Q5T01CB.0?Hr `(ÕU`bl`gɹ\N\ %E\@E\@5\N \.ц\\nn@n7P7s~Nin^1PGA   />T>ه4Vݺlwf Xc .WO@@.+D endstream endobj 83 0 obj <>stream x31R0P0Q5T01V01PH1*iHDLs2 - L Ar@29ɓKW4K?KK)YK%ڐ KM jw)+jtQP[pCCDC%²U^[ٛ>_A_z[{C[mavzoqܖ-+5<=W%)&t`aprT L(RB endstream endobj 80 0 obj <>stream x33R0P0b3S3#CB.7 2C@*+\!P@Rz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]6>a'pWk__WoqzW)C#Fܘ7~_DTi.WO@@.#I endstream endobj 77 0 obj <>stream x3P0PbCKCCB.7 2D *+\!$@RPAH$r9yr{*re=S!K!A,?z  6 \ \\$` endstream endobj 74 0 obj <>stream x3P0P0W5T01R01PH1*sP "9\\ y\ Ʀ@ & z@) ɥPRTʥTĥTå\ b݀}on.}ܼb;;.O2J2_v!>stream x33S0P0U5R03Q03RH1*sP "uAtWBW%PH!P H$r9yr{*rq{p;8+rDrr;;66 @ܼb;;.OM&>p|~!__UlKU}Y%+ο_z@k]b׷"J\1kM8Z endstream endobj 67 0 obj <>stream x31S0P0S5T01S03VH1*s9\&(ÕU`bf& fz@) ɥPRTʥTĥTå`ȥme˥{us;qy(-l~ҽ<~BB=_ _"֯_/jݮPt}@lUV[kiH02pz*rrLTT endstream endobj 64 0 obj <>stream x31S0PT5T01U01PH1*sP "9\\ y\  & z@) ɥPRTʥTĥTå\ b݀}on.}ܼb;;.Os~x(T>d\W__YՒAo^}cnˆ#: \ \\ȽE& endstream endobj 61 0 obj <>stream x33U0P04Q5R07R03QH1*hPD Ls2 L- ̀FDr.'BIQi*~8PPS!K!A,`cﭠ q)+jtQP[p%™-RnMm;[J/MJThKUB__5/__S#MzW]-Eg消lHБ`hrT QT endstream endobj 57 0 obj <>stream x33Q0P0bS 3#CB.7H9\q0m2 L\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O]?[z(N(6{/KM}K׃ SUqj~Wl%ӗiK$)o`hrT UL endstream endobj 54 0 obj <>stream x0P0P0bsc3#CB.7 2G@*+\!P$egkg`  ɹ\N\ %E\@\@\N \.ц\\nn@n.P9?47ΎEA!a%ہ'W89и|N_7_V }h$cE%<  \ \\V$ endstream endobj 51 0 obj <>stream xu@D; x1&PQ+5 *?_ب{Z;dv.) DVוu)prUkVeHݯ \  N Cj٘\bǼ%OsiKf fG:yh%>?? endstream endobj 48 0 obj <>stream x3T0P0bs3cCB.7 2G@*+\!P@R&z z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]\7QGWmk~7?w0/Tpߏ~șC"&.WO@@.xT endstream endobj 45 0 obj <>stream x3T0P0S5T07R03VH1*sP "9\\ y\ ff@@& fz@) ɥPRTʥTĥTå`ȥme˥{us;qy(-R³͇_(pl_ror_&׿4_K/~F_nv.&tCǐ;[q.WO@@.V( endstream endobj 42 0 obj <>stream x0R0P0S5T07S03VH1*s9\(ÕU`nf& fz@) ɥPRTʥTĥTå`ȥme˥{us;qy(- 뜭YxK8~hUe˯_mR[;go';plxJĬj$?Iap`rT $Xc endstream endobj 39 0 obj <>stream x% @;<ż@ \!:U5caomlX =hԹ-{ LLi"lPx?V?SHQ;Hy6/JY&Gg7F×Nńg?3# endstream endobj 35 0 obj <>stream x33S0P0U5R03P03QH1*sP "9\\ y\ @@93S=CHrU()*M*w pV0w62wwvvrllt29y@-vv\. j H_mC#3p#۵2*_M_K]_ڿ~>v}tm;ru7L;ct3#"1ŨAS!+ 4S endstream endobj 372 0 obj <>stream x31R0P0bcsS3CB.7H9\q0m2 \%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.Og*4>d_!K~=oϬ{:VWo4 Yk^}G}]/?02pz*rrEe endstream endobj 349 0 obj <>stream x31V0P0Q5T06W01PH1*sP "9\\ y\ @͆ &z@) ɥPRTʥTĥTå\ b݀}on.}ܼb;;.Os~>stream x31W0P0V5T01W03VH1*sP "9\\ y\ &&@ f& z@) ɥPRTʥTĥTå`ȥme˥{us;qy(-\=!r+_?B(#RqEt%Ǘ [e}TS_ZZ>OU굷znoJsܲሚ6¡.WO@@.{X endstream endobj 318 0 obj <>stream x31P0P0bS3#CB.7H9\q0m2 L@:Rz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]45ook뿉\=VCH endstream endobj 315 0 obj <>stream x35S0P0bS#3SCB.7H9\q0m2 L,\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OK*zvY7}˪U@ח R:hrE B W ^M endstream endobj 247 0 obj <>stream x35S0P0V5T05R01SH1*sP "9\\ y\ &@ & z@) ɥPRTʥTĥTå`ȥme˥{us;qy(-DB@C!6F* ///OY[[37Llf;:\CB W CI endstream endobj 244 0 obj <>stream x33R0P0bSKSCB.7H9\q0m2 LM\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OE8l ~b2~G__ (xf \ \\cH endstream endobj 241 0 obj <>stream x35S0Pbs3SCB.7H9\q0m2 -\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OwnT=,ء*|r@W, \ \\0F endstream endobj 32 0 obj <>stream x32S0P0b#c3#CB.7 2B@*+\!P@Rz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<](m?N'kk~? #B W @ endstream endobj 29 0 obj <>stream x3P0P0bc3CB.7H9\q0m2 A @RFz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]RqOzo]> e\`T|?&.WO@@.8J endstream endobj 26 0 obj <>stream x37S0P0bsCB.7H9\q0 2  \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎEAm cDCf>)rfO^0|WukrjWrժ7?`bPrT OtR endstream endobj 23 0 obj <>stream x31U0P0V5T01Q01TH1*sP "uAtWBW!HM R@"9ɓKW4K?KK)Yq62wwvvrllsJsZ<]ev^'}c/o}?mpKX}!nKqio]~ڥ^y &iP8 K{ endstream endobj 20 0 obj <>stream x3T0P0b3c3#CB.7 2C@*+\!P@Rz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]ܑ4t0bo?p}￿5_{~.!"" ,\ \\vP endstream endobj 17 0 obj <>stream x36V0P0bc3#CB.7H9\q0m2 ,@@)#=C]=K 0UHrU()*M*w pV0w62wwvvrllt29y@-vv\. O9l8'ȅCB W  7C endstream endobj 14 0 obj <>stream x33R0P0bSK3#CB.7H9\q0m2 L̀\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O'WR7u'?۷o8焛K\kX\=KV endstream endobj 11 0 obj <>stream x33S0P0b3#3CCB.7H9\q0m2 L-\%X*$r9yr{*rr{Ur;8+)hC.X.}7}gg7 7F[A(㜟SW bg颠#9Mk7?nh˗O\=\J endstream endobj 8 0 obj <>stream x3P0P0b33#CB.7H9\q0m2  \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎE˄S}R߿?:NAS!+ tj endstream endobj 438 0 obj <>stream x31R0P04P5T01T03VH1*hPD Ls2  jLFDr.'BIQi*~8PPSme˥{us;qy(-oB=7/h/K~הƿٛ}e֪^M{ebbSCB W .PW endstream endobj 435 0 obj <>stream x3P0P04W5R07W03RH1*hP9\ y\ f hf4B($s<=}JJSÁ= ] b݀}o]s~Nin^1P0?-L_Z_c_}}m뗾v] 3s[l8c!aB W /Y0 endstream endobj 432 0 obj <>stream x35Q0PbK3cCB.7H9\q0m2 L \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎE! pb`?02pz*rr%15 endstream endobj 429 0 obj <>stream x33T0P0bSs3cCB.7H9\q0m2 LM\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O Έ__YV}WoAKq__][u¨?{AS!+ Ug endstream endobj 425 0 obj <>stream x35S0P0aC3#CB.7H9\q0m2 L@ @Rz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]vpn~tN}/җ/{ WW/bֿz+R=&ijvcP`rT ZI endstream endobj 422 0 obj <>stream x33U0P0 f )\\`~.pAd W*T05r @Rz z@`aɥPRTʥT˥Tʥ\ b݀}o]s~Nin^1P_2}Xa˺&WUǯo:qM, \ \\L endstream endobj 419 0 obj <>stream x37P0P04V5R07P03QH1*hPD Ls2 L@̀FDr.'BIQi*~8PPS!K!A,`cﭠ q)+jtQP[pOC#ۇ&ޗ-/͗ܛnUCeWWu{꯽~vKADVt"C<M65\aP`rT \# endstream endobj 416 0 obj <>stream x36U0PaS3#CB.7 2A@*+\!P@Rz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]4ook뿙GI|`drT fD endstream endobj 413 0 obj <>stream x31U0P04V06U01T03VH1*hPD Ls2 , @PDR!9ɓKW4K?(ͥ& ] b݀}o]s~Nin^1Pb= W[cULz5nuLW}#f~aL \ \\If:? endstream endobj 410 0 obj <>stream x37S0P0bscCB.7H9\q0 2  \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎEAᦀ'Wqhn[^[c5Wwlu׮WUw=[ۿ?voe]o8\=VtP endstream endobj 381 0 obj <>stream x%0 D$NXXiL TPR{:'tөUq T;r)U:3- ]M?v+=lwPx)(} $x endstream endobj 369 0 obj <>stream x%A P[Sv"S Ujhy.QёZُmfoff\ҤD|xtTRL@ѻgT&=KGQ;>JDlto8 x!pRx)ĴW4\nr CؘFv]]c0"?K+M endstream endobj 352 0 obj <>stream x0Q0P0V5T0V0PH1*s9\(ÕU`af z@) ɥPRTʥTĥTå`ȥme˥{us;qy((4. 9@Ƣ(Kˇo/[GAӣz?l) D(|T'lM\iʺ`B W  ` endstream endobj 328 0 obj <>stream x@D-$.R c11Q Vv\b6;3&%UIIi-.rTԡ'?G*P.9H-qJ!jo٘\"y+6C'I`3g:ޓkK%J|JK endstream endobj 324 0 obj <>stream xM10Cw' Heb:H כAdvz[1/⤋們)D6QH9OKirc )W*|(4ZR+ endstream endobj 321 0 obj <>stream x0S0P0U5R4Q03RH1*sP "uAtWBW%P!P H$r9yr{*rq{p;8+rDrr;;66 @ܼb;;.O--&i=i Q8to_W~追!{w]/{uk~9__z}o? \bP`rT ڠk endstream endobj 311 0 obj <>stream x31U0P04T52R06V0PH1*䂊@.Ipep+q*9@h 2E H&r9yr{*rq{Uq;8+rDrr;;66 @ܼb;;.O;]O4\I endstream endobj 368 0 obj <>stream x37S0P0bs#SsCB.7H9\q0m2 ,\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OS>stream x33P0P0U5R05Q0TH1*sP "9\\ y\ & f z@) ɥPRTʥTĥTå\ b݀}o]s~Nin^1PڂsYR1]pٖ/Ԭ=__+׫67|Gׯum{稶Ix'Hё`hrT ?Lg endstream endobj 340 0 obj <>stream x35U0B]CS# cCB.@.aS` p>stream x3P0P0b3SJ1*qs$@*+\!P23T53 S\.'O.}O_T.pR.}J.}gC.}hC.X.}7}gg7 7F[A(㜟SW bg颠`U׿^_ɯª{/sB8/k0폛/دq~CM \ \\V endstream endobj 334 0 obj <>stream x3T0P0V5R0P03RH1*sP "uAtWBW)P!P H$r9yr{*rq{p;8+rDrr;;66 @ܼb;;.OMjObԳ;Ͽ}~__7xV9 ~}uvZv]z=߮ZlR i`drT ׵Y endstream endobj 331 0 obj <>stream x35V0Pa3 3#CB.7H9\q0m2 L\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O韲LDdqWv*:Wtf-.*:Ktatln}OV vI endstream endobj 302 0 obj <>stream x%=@D#Le'.BqcL0VjbT7VR̼XS1>stream x340S0P0bCC3 CB.?H9\P Hgp+q*X 9=C]=K 0UHrU()*M*w pV0w62wwvvrllt29y@-vv\. ^׷>9W:mQ]?WF!K)d)\* Dt^ww.WO@@. LwE endstream endobj 295 0 obj <>stream x4Q0PaKCSCB.7H9\q0m2 ,́\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OE-df0h/jOvߴG }$cN2X\=Y endstream endobj 292 0 obj <>stream x35R0P0b33CB.7H9\q0 2 L \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎEAmS=--rUU&Mw']'Smof(K.q~zޗb/]-fAS!+ JF endstream endobj 289 0 obj <>stream x35U0P0bS#CB.7 2E *+\!P@RFz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]3g %W-_wDخ5p04pz*rrCA endstream endobj 286 0 obj <>stream x31Q0P0Q5T0T01SH1*sP "9\\ y\ Ʀ@@ &z@) ɥPRTʥTĥTå`ȥme˥{us;qy(-bf-hoB~$[5eu8ĺG5>ۇ\#߿W %`TAS!+ b[E endstream endobj 283 0 obj <>stream x35T0P0V5T01W01SH1*sP "9\\ y\ &&@ }z@) ɥPRTʥTĥTå`ȥme˥{us;qy(-ptHr<|ýU/͗˫04dymsulN8c:  B W C endstream endobj 280 0 obj <>stream x35S0P0a3SCB.7H9\q0m2 L@Rz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]tT<"'Pe"bEqo|{yZzm_GE/زҥ QQQގI/Kvy;M_d뱥׬1(0qz*rrJ endstream endobj 234 0 obj <>stream x33P0P0Q5R05U05VH1*sP "9\\ y\ @a=CHrU()*M*w pVr\ b݀}o]s~Nin^1P < ?pHTq̨}ikov_w-nvwbˆ[< 贝r`aprT Q endstream endobj 231 0 obj <>stream x3P0P0Q5R06S05PH1*sP "9\\ y\ F@ F &z@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]v9gKV ]7Eeu%lo_x48\=AO endstream endobj 228 0 obj <>stream x3P0P0Q5R06V05PH1*sP "9\\ y\ F@ F &z@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]huӍ8h9/_CQ\e7DݶiGt 6$:08pz*rrgJ endstream endobj 225 0 obj <>stream x3P0P0V5R06Q05PH1*sP "9\\ y\ Ɔ@ @z@) ɥPRTʥTĥTåDrr;;66 @ܼb;;.Oۛʛ/h}}/֣ewfтCkj׿˒iۄnI02pz*rrŎJ5 endstream endobj 222 0 obj <>stream x33P0P0Q5R05U05VH1*sP "9\\ y\ @a=CHrU()*M*w pVr\ b݀}o]s~Nin^1Pڂ;v\C&l9 ___e8 s='.ߺov=vYOm,yX}i`hrT R endstream endobj 219 0 obj <>stream x35U0P0bSCJ1*qs$@*+\!P23T53 S\.'O.}O_T.pR.}J.}g me˥{+esJsZ<]V6x~臎_}OXiAS!+ D endstream endobj 216 0 obj <>stream x3P0P0bccSCB.7H9\q0 2 ,\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O<s(7;_}i__}]+633t)\7)*nI\=Z@[ endstream endobj 213 0 obj <>stream x3P0P0aSSCCB.7H9\q0m2 \%X*$r9yr{*rr{Ur;8+)hC.X.}7}gg7 7F[A(㜟SW bgJZr.WO@@.O== endstream endobj 210 0 obj <>stream x3P0P0R5R05U05TH1*sP "9\\ y\ @ H($s<=}JJSÁ\`)YK%ڐ KM V8qy((2W[l,=`8@][vw u yt$\=KK endstream endobj 207 0 obj <>stream x31V0P0bS#CB.7H9\q0m2 -@@)#=C]=K 0UHrU()*M*w pV0w62wwvvrllt29y@-vv\. jK*?e2KWѾ\S&AS!+ 1I endstream endobj 204 0 obj <>stream x31V0P0Q5R0P05VH1*sP "9\\ y\ &@ &z@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]jm-hczA!K~ϬoԼ`\#wa _p\V#;{[{h .WO@@.0N endstream endobj 181 0 obj <>stream x33R0P0bS33#CB.7H9\q0m2 LA @Rz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]ⓙճ@N^җ=9 *3`aprT K< endstream endobj 178 0 obj <>stream x35T0P0bK3cCB.7H9\q0m2 L̀\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.Ov?M~Bu79_Z/][rժ08pz*rrNt endstream endobj 175 0 obj <>stream x3P0P0V5P05Q01TH1*iHDLs2 L L- Ar@29ɓKW4K?KK)Yq62wwvvrllڹsJsZ<] QSKP?xnoKo$ۄtoo )u B W yL endstream endobj 172 0 obj <>stream x3P0P0bSS3cCB.7H9\q0m2 L \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎEAm̶\~rճȷ/s /kk|4!CB W P endstream endobj 169 0 obj <>stream x36W0P0S5T06W01PH1*sP "9\\ y\ Ɔ@ & fz@) ɥPRTʥTĥTå\ b݀}on.}ܼb;;.Og:s>stream x%10Cw''?ЕR Heb::J 77ؒM:zO |[L8C9/19,U _#y@i~4 Dlgm%q1j%x endstream endobj 163 0 obj <>stream x31T0P0V5T06W01RH1*sP "9\\ y\ &@ & z@) ɥPRTʥTĥTå`ȥme˥{us;qy(-df-h_Bn~3(20 O| +m<4ݿQwyTE [9$48\=1>t endstream endobj 160 0 obj <>stream x3T0P0b#33cCB.7H9\q0m2 \%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OE3'r\ \ \\DP endstream endobj 157 0 obj <>stream x3T0P0b#S3CB.7H9\q0m2  \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎEAmJG1(0qz*rr$@C endstream endobj 154 0 obj <>stream xP0P0b SCCB.7H9\q0m2 , \%%r9yr{*rr{Ur;8+)hC.X.}7}gg7 7F[A(㜟SW bg颠hf:ϓMlrv?Bf\m]IڷWc?fhQ0#B W `S endstream endobj 151 0 obj <>stream x32U0P0bCsCCB.7 2D *+\!$@\PAH$r9yr{*re=S!K!A,C}C}b1pz*rr $ endstream endobj 394 0 obj <>stream x33R0P0b3SsCB.7H9\q0m2 L-@@)C=C]=K 0UHrU()*M*w pV0w62wwvvrllt29y@-vv\. \ N\f]mtfi殿v+:+=_w*^t0 GF.WO@@.JC endstream endobj 382 0 obj <>stream x31V0P0V5R0P05WH1*sP "9\\ y\ Ʀ@ z@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]ڟHw ߛ/ԢŌ}wsnvCǐGS!+ xC endstream endobj 375 0 obj <>stream x31R0PacKSsCB.7H9\q0m2 ́\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OS_߮OoU믃9M3 ?Z4e{~?,P0S!+ 7L endstream endobj 305 0 obj <>stream x31U0P0S0V0P01RH1*qs$@*+\!P@RLPHR!9ɓKW4K?KK)YK%ڐ KM V8qy(-xvm?7<9ƭnodm"&Q&&R!kЍ O3üy۹|\, \ \\3"A endstream endobj 201 0 obj <>stream x31V0P0V5T01T05RH1*sP "9\\ y\ @ z ) ɥPRTʥTĥTå`ȥme˥{us;qy(-RDAr Y?L~cAR'Wp`vMS!+ K endstream endobj 198 0 obj <>stream x36Q0P0R5T0"CB.0?Hr `(ÕU`d j`l`ɹ\N\ %E\@E\@5\N \.ц\\nn@n7P7s~Nin^1Pڂ̇l /[l+|z-.:,!aB W 9 endstream endobj 195 0 obj <>stream x32V0P0b#sScCB.7H9\q0m2 ̀\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O*y_{f_pE )˽?xTCB W  DC$ endstream endobj 192 0 obj <>stream x33U0P0b3#ccCB.7 2C@*+\!P@RFz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]ԖT%%Hdoəvߓ+/mYeߌe?rObyW \ \\Nj endstream endobj 189 0 obj <>stream x3P0P0V5T06W06QH1*sP "9\\ y\ AfSc=CHrU()*M*w pV0w62wwvvrllsJsZ<]I6 8|e}avq}BDǿ-Zqۥ\ S*fl`hrT (Al endstream endobj 186 0 obj <>stream x3T0P0bSSCCB.7H9\q0m2 LA @RFz z@`aɥPRTʥTʥTɥ\ b݀}o]s~Nin^1PY=gīw] ~}C}CQM =&30rz*rr./I6 endstream endobj 148 0 obj <>stream x3P0P5U5T"3#CB.H.ȁiDWWBW  C]=Br.'BIQi*~8PPSr62wwvvrllڹsJsZ<]Q?áiWӦYk7sU>stream x33T0P0V5R03P05WH1*sP "9\\ y\ A 4T03J\.'O.}O_T.p".}.}gC.}hC.X.}7}gg7 7F[A(㜟SW bg颠8ŕqGQQ÷o/}YvD=P 3\^u;Ҕwa&.WO@@.8VW endstream endobj 142 0 obj <>stream x36R0P0Q52P02V03RH1*iHDLs2  - ,L Ar@29ɓKW4K?KK)YK%ڐ KM V8qy(X(-߻w .Wq[_eˮK.u`hrT xM$ endstream endobj 139 0 obj <>stream x33R0P0bS 3CB.7H9\q0 2 LM\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OS/vտu~ℿ7u_˿pW8>stream x32V0P0W54S04WTH1*s@9\p $ÕU`hF z 9 ɥPRTʥTťTĥ`ȥme˥{s;qy(ml)kÙ^}ҥK\= 1 endstream endobj 133 0 obj <>stream x33R0P0bS SsCB.7H9\q0m2 LM\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O-?z ] >l|ܹ&!CB W UiP endstream endobj 130 0 obj <>stream x51 @D3X@d[5-TPAIjs+acx0ꙁbƶFc%5'v%0K14#o|-fn|(X2q~Y]pP endstream endobj 127 0 obj <>stream x31S0P0R5T01V06WH1*sP "9\\ y\ &@  Fz@) ɥPRTʥTĥTåDrr;;66@\9y@-vv\. jK*$l=OW|x?x^߲Dт ,\ \\usE endstream endobj 124 0 obj <>stream x31S0P0R54S01R06WH1*rErL4H<++\!P@M Ar@29ɓKW4K?KK)YK%ڐ KM jw)+jtQP[Ra"cij&uKw[ߦ_?̡c#G$oG, \ \\ KA endstream endobj 121 0 obj <>stream x32U0P0b#KSKCB.7H9\q0m2 ,\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O7s|l_"i~Dh5}r<) \ \\D endstream endobj 118 0 obj <>stream x31Q0P0R54W01T06SH1*iHDLs2 - Lr@29ɓKW4K?KK)YK%ڐ KM jw)+jtQ03kebos^Vwgzvۦߺuӟ&73*N-۴X\=?(J> endstream endobj 115 0 obj <>stream x31S0P0V5T01V0PH1*s9\&(ÕU`b z@) ɥPRTʥTĥTå`ȥme˥{us;qy(-QDz O8[*/h?e_믯_g|r]-"w+!eG8#F.WO@@.hPf endstream endobj 112 0 obj <>stream x3T0P0b33csCB.7H9\q0m2 L\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O%g(Q;!QZpړr>̬ ~YfeiKp?&.WO@@.\R{ endstream endobj 109 0 obj <>stream x36V0P0V5T0T0PH1*sP "9\\ y\ Ff@@@i=CHrU()*M*w pV0w62wwvvrllsJsZ<]͜p/&!s"l۷}q/c0ՐS!+ U@ endstream endobj 106 0 obj <>stream x33U0P0Q5R03P0TH1*sP "9\\ y\ f@ f &z@) ɥPRTʥTĥTå\ b݀}o]s~Nin^1Pڂ 1KLBv8pkbиK|__GrY?[Apu.pȿMʿGƐ!*.WO@@.qV endstream endobj 103 0 obj <>stream xM P>stream x31S0P0W5R0T03TH1*sP "9\\ y\ &F@ f z@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]pc0R^Ku뽯W_j^_7ˤ_Q9Ul8-P7.k1L8m.-٫뫷[s ٴ\ fbP`rT YR endstream endobj 445 0 obj <>stream x% @S%+O($.ȝ9|\0BuNI6hp' endstream endobj 385 0 obj <>stream x31Q0P0b#S CB.7 2A@*+\!P@RFz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]ԖTQ K繰G^}K_Џ~KrM?ۿBX\=P endstream endobj 377 0 obj <>stream x31R0P0V5R0P05SH1*sP "9\\ y\ Ʀ@  z@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]>stream x31U0P0V5R01T03TH1*sP "9\\ y\ @ f z ) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]6Q>"|ɽU׾4_SV;WmmnEgLhmfe`rT rNd endstream endobj 271 0 obj <>stream x0P0P0R5T07S01PH1*sP "9\\ y\ & & Fz@) ɥPRTʥTĥTå\ b݀}on.}ܼb;;.O3* 8|QNNQ&-C_6~_VeWV __^jШׯ ۷7>stream x35T0Pa 3CB.7H9\q0m2 Ĺ\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O .*ΏQ~ϡpOqʗ*M[X&(??6)? ,\ \\_=UO endstream endobj 99 0 obj <>stream x3P0P0b33SCB.7H9\q0m2  \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎEAm/!_=#s~bFW}?EДiD.WO@@.8X endstream endobj 96 0 obj <>stream x31U0P0Q5R01P03TH1*sP "9\\ y\ f@@9c=CHrU()*M*w pV0w62wwvvrllt29y@-vv\. j %|pc"QWKzۑ-$Į'}ȾK6Bޗv zZڭwӁ7\:#tAS!+ Y endstream endobj 93 0 obj <>stream x36U0PT52R0T0PH1*rEr4H<++\!P@-H$$s<=}JJSÁ= ] b݀}o]s~Nin^1P-[ltZݪk뽿e@}k;&.WO@@.HP endstream endobj 90 0 obj <>stream x32U0P0W5P!CB.@.pAd4H<++\!P@B\$$s<=}JJSÁ=hC.X.}7}gg7 7FK9?47ΎEAmv{f1U׽V5p04pz*rr0 endstream endobj 87 0 obj <>stream x32V0P0W5T02W03VH1*s9\F(ÕU`df& z@) ɥPRTʥTĥTå`ȥme˥{us;qy(-kc'<^q|Cc_'m8GH endstream endobj 84 0 obj <>stream x35W0P0a33#CB.7H9\q0m2 L \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎEAmak;+:qPo__[^jzREv \=:K< endstream endobj 81 0 obj <>stream x31R0P04P5T0"CB.@. pA4P<++\!P@$$s<=}JJSÁ=K!A,`c ͥSW bg颠S?| ]z{Uf_PWaLAV̓\e.l;ĝ#$&G>j endstream endobj 78 0 obj <>stream x33Q0P0b3S3#CB.7 2C@*+\!P@Rz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]6i>a>Mo_߾}ז5ˬYz ;jW/k_mWq_٫0E# AS!+ !Q endstream endobj 75 0 obj <>stream x31S0PT5T05P03VH1*sP "9\\ y\ &@@9K=CHrU()*M*w pVr\ b݀}on.}ܼb;;.OK'?!C mY|Vs_W/[kWE[^2"G[8\=U endstream endobj 72 0 obj <>stream x31R0PT5T01R01PH1*sP "9\\ y\ @ & z@) ɥPRTʥTĥTå\ b݀}on.}ܼb;;.Os,h>dBP Qz[YTV_tWܴ[qB9t nfbP`rT 23=# endstream endobj 69 0 obj <>stream x36U0P0b#KCB.7H9\q0m2 \%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O;q|h t*: endstream endobj 65 0 obj <>stream x3T0P0W5T0T01PH1*sP "9\\ y\ &F@ & z@) ɥPRTʥTĥTå\ b݀}on.}ܼb;;.OE2<''247Wz?4㪯'Wf:nZ?Kl=ebO .WO@@.c]L1 endstream endobj 62 0 obj <>stream x3P0P0W5T0T03TH1*sP "uAtWBWP!P H$r9yr{*rq{p;8+rDrr;;66@\9y@-vv\. j GOj싅/j_}ժ\Q+tj/M; F endstream endobj 58 0 obj <>stream x35T0P0R5T01W03VH1*sP "9\\ y\ &@ f& Fz@) ɥPRTʥTĥTå`ȥme˥{us;qy(-Uij?o)H\̿W;TzWgݲǠeGD3+#B W [8SB endstream endobj 55 0 obj <>stream x37T0P0b33#CB.7H9\q0m2 @ @Rz z@`aɥPRTʥTʥTɥDrr;;66 @ܼb;;.OYd,M9g!:'GEf? ,\ \\Hi endstream endobj 52 0 obj <>stream x3T0P0b3S3CCB.7H9\q0m2 ̌\%X*$r9yr{*rr{Ur;8+)hC.X.}7}gg7 7F[A(㜟SW bg颠{r@'v?ȏ"/O8~ B W =T endstream endobj 370 0 obj <>stream x33R0PaSKSsCB.7H9\q0m2 Ab ] Fz z@`aɥPRTʥTå& ] b݀}o]s~Nin^1Pڊ4N2{[l{}=Wwk-{];u۷Ŗe}{վ֭[7R~/}Gᑄ.WO@@.aU endstream endobj 347 0 obj <>stream x37T0P0W54Q03V0PH1*iHDLs2 L̀ Ar@29ɓKW4K?KK)YK%ڐ KM jw)+jtQP[q@U69ćlh D8&) M9tPDf-OIOj04ppz*rrK% endstream endobj 265 0 obj <>stream x3P0P0bS3cCB.7H9\q0m2 L\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.Ov`C_{eUœ_k}֚u*xTb4 B W  PX endstream endobj 262 0 obj <>stream x32U0P0W5P!CB.@.pAd4H<++\!P@B\$$s<=}JJSÁ=hC.X.}7}gg7 7FK9?47ΎEAmv{f1U׽V5p04pz*rr0 endstream endobj 258 0 obj <>stream x32W0P0V5T02V03VH1*s9\F(ÕU`df& z@) ɥPRTʥTĥTå`ȥme˥{us;qy(-kc',^o}n1XĠE endstream endobj 255 0 obj <>stream x35U0P0R5T05T01PH1*sP "9\\ y\ &@ & Fz ) ɥPRTʥTĥTå\ b݀}on.}ܼb;;.O3x7Дv!יW Z_-7W v6<߰]_۵maVF.WO@@.#L endstream endobj 251 0 obj <>stream x36R0P0b# sCB.7H9\q0 2 @ @R&z z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]pr_ߵk 6Ih'G|7p04pz*rrZE endstream endobj 248 0 obj <>stream x33R0P0Q5T0P0TH1*sP "9\\ y\ &@ @z@) ɥPRTʥTĥTå`ȥme˥{us;qy(-\asF ?5___SVqruyo8(#`GbOPCB W XV endstream endobj 245 0 obj <>stream x31Q0P0R5T06W03VH1*sP "9\\ y\ Ʀ@ f& Fz@) ɥPRTʥTĥTå`ȥme˥{us;qy(-lNo_^nq_mp}?{-.&&uAS!+ I endstream endobj 242 0 obj <>stream x36T0Pb#cCSCB.7H9\q0m2 Ab@, t Dr.'BIQi*~8PKL:8+rDrr;;66 @ܼbb;;.Oeٗ/iꝝͣ' endstream endobj 49 0 obj <>stream xEKQUT . AvT Q!QXzk?! YَkGy%I9ޢI,M ˗͒i!-bQ.cPZfdair .m׻ĐmnBX} ȀCmX+ѡ4'ع Tp\aBMynzMK5_㡡ShC _ endstream endobj 46 0 obj <>stream x3P0P0V5T07W03RH1*sP "9\\ y\ &@ f z@) ɥPRTʥTĥTå`ȥme˥{us;qy(:\st6=@Nǯ_}1vu< 'jrl۴mMPbP`rT DgV endstream endobj 43 0 obj <>stream x3P0P0S5T05T03VH1*sP "9\\ y\ &@@& fz ) ɥPRTʥTĥTå`ȥme˥{us;qy(-x"mWF.&^~k '0֬fP߾ھI)h){VlKytz8_Xb R" endstream endobj 40 0 obj <>stream x37Q0P0b3s3#CB.7H9\q0m2 @ @Rz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]dc<ӔÃp>i4ɷݟ_ॴЩU1aCB W CQ endstream endobj 36 0 obj <>stream x35T0P0V5T0T01PH1*sP "9\\ y\ &f@ & z@) ɥPRTʥTĥTå\ b݀}on.}ܼb;;.Ov,'b\y"`_}כ:ӯqoÎ \ \\qG endstream endobj 33 0 obj <>stream x31U0P0R52P01V01TH1*iHDLs2 A@hf`gɹ\N\ %E\@U\@E\N @%ڐ KM V8qy(-ƭOB!Qz1 G]CHN?z}tf -l ~jBoTWs|0"*|Vۣ] eۥ<M8t 808pz*rr/X endstream endobj 30 0 obj <>stream x32S0P0b#3cCB.7H9\q0m2  \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎEAmYk_~`drT C endstream endobj 27 0 obj <>stream x35T0P0bKCB.7H9\q0 2 L̀\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O6g JeW/__^.^z B W &F endstream endobj 24 0 obj <>stream x36S0P0bccCB.7H9\q0 2  \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎEAm3Cf8'/{1˅#1(0qz*rr>8 endstream endobj 21 0 obj <>stream x31P0P0R5T06W01TH1*sP "uAtWBWH!P H$r9yr{*rq{p;8+rDrr;;66@\9y@-vv\. j >8|p4_rorZK?\G.mD!7B W  5A endstream endobj 18 0 obj <>stream x3P0P0R5R03U03RH1*sP "uAtWBW1P!P H$r9yr{*rq{p;8+rDrr;;66 @ܼb;;.O-fOY.gT9 gW} {occ`hrT CT endstream endobj 15 0 obj <>stream x35T0P0U5R01U03QH1*s9\&(ÕU`bff z@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]5a`iMcÇڽo?_wmݵuZ3R!$Z[] =8\=X endstream endobj 12 0 obj <>stream x3P0P0b33#CB.7H9\q0m2  \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎEA?_7V$E#7϶  \ \\lNR endstream endobj 9 0 obj <>stream x37T0P0U5R03U03QH1*s9\f(ÕU`fff z@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]$o iVK{վ})kjyOӨe\o} D[]ctGaaCn \ \\;X endstream endobj 439 0 obj <>stream x31S0PbC3CCB.7H9\q0m2 \%X*$r9yr{*rr{Ur;8+)hC.X.}7}gg7 7F[A(㜟SW bg颠쵥^fH\F_c%Z:08pz*rrʺD endstream endobj 436 0 obj <>stream x33R0P0b333#CB.7H9\q0m2  \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎEAma'Ύ?jyu߮ޯhJ?˭^hVW_Wښ01(pz*rrDS endstream endobj 433 0 obj <>stream x33W0P0U5R03T03UH1*sP "9\\ y\ f@ f z ) ɥPRTʥTĥTå`ȥme˥{+esJsZ<],#|!~6* ܛ\Kn6 7l׫o;lt{D-x lpM  \ \\#>stream x @-bb [swh !BR+-ON/$׉(W}vog$դ2U;rیctdho ̘|rbI~IA9cbD vvgW]eQiHy[k/JC KQ# endstream endobj 426 0 obj <>stream x35T0P5V5T05V03QH1*䂊@.S W*T05``7ҳI*$r9yr{*rq{Uq;8+rDrr;;66@\9y@-vv\. j WyTwhdeK[?:ǣ4)_[ _Og7 _M-XeVF.WO@@.KZbb endstream endobj 423 0 obj <>stream x3P0P5V5T0T03QH1*䂊@.Ipep+q* 0Pj0K*$r9yr{*rq{Uq;8+rDrr;;66@\9y@-vv\. j xe_pOs9V/˾UBAYoE l8,Y endstream endobj 420 0 obj <>stream x31S0B]C SCB.@.pAd4H<++\!B@$$s<=}JJSÁ= ] b݀}ov.}ܼb;;.Oϙ $/~9|kMVo׿Y\~@olwՙ%Gy52ώAS!+ oS endstream endobj 417 0 obj <>stream x3P0P0b3#3SCB.7H9\q0m2 Ĺ\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OtK_+eo^@K*x#{_GMLݡhkF.WO@@.K endstream endobj 414 0 obj <>stream x31U0P0V06U06T03VH1*sP "9\\ y\ F@ X(egɥPRTʥN \.ц\\nn@n.P9?47ΎEAm>stream x31R0P0V5R0P05SH1*sP "9\\ y\ Ʀ@  z@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]%|p"'}Kw_0o{K]u1Vw W$~߾￿?׷57lG<˴[72t9;":08pz*rrDN endstream endobj 350 0 obj <>stream x35S0P0U5T05P03UH1*sP "9\\ y\ &@@93S=CHrU()*M*w pV0w62wwvvrllsJsZ<]Ԗ%Hqi{0nu;bvqO(Gssة%7~Wǩҍm>stream x33R0P0V5T05W01UH1*iHDLs2 LM L Ar@29ɓKW4K?KK)YK%ڐ KM jw)+jtQP[$bGCŏ1Ny .~]!`q^ϾVBfj=@(@8X?U  \ \\bR endstream endobj 313 0 obj <>stream x37T0P0Q5T03S06PH1*sP "9\\ y\ fF@ Ɔ &z@) ɥPRTʥTĥTå\ b݀}on.}ܼb;;.Om&46s4_ޝ-/U\=3v]Aqo^Y69{%9s  Esl8ŠL endstream endobj 411 0 obj <>stream x31W0P0Q5R01R03RH1*sP "uAtWBWP!P H$r9yr{*rq{p;8+rDrr;;66 @ܼb;;.O'rܮWUzW˦݊LlvLHXĠDzHI endstream endobj 400 0 obj <>stream x37V0P0R5T0T06WH1*sP "9\\ y\ f@  Fz@) ɥPRTʥTĥTå`ȥme˥{us;qy(-)Wc&`!3/kfs}Y˚rϯ+֯ZoRT?-%kЫ~]~}߾]Q驪M\p!сS!+ >stream x35W0P0bSSsCB.7H9\q0m2 L \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎEAa+)o+__?sF}-9AS!+ fR endstream endobj 363 0 obj <>stream x33R0P0V5R0P05WH1*sP "9\\ y\ @ z@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]'Nn,*0ػ>?N]t;vmml8cMAS!+ BQz endstream endobj 341 0 obj <>stream x31U0P0P01S06Q03VH1*hPD Ls2  ̀́F*Y*$r9yr{*rUq{q;8+rDrr;;66 @ܼb;;.O.]zm(n/-ߠ[  \ \\,) endstream endobj 338 0 obj <>stream x35U0B]C3# #CB.@.aS` p02pz*rrmZ endstream endobj 329 0 obj <>stream x37U0P0bs#3#CB.7H9\q0m2 ,\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OMz~T(81گ_ݏkү]]oغV_۵HL[Y2ec,%1R, \ \\T endstream endobj 326 0 obj <>stream x1@D-s"qcL0VjbT<.Xf" T`RG^z0vcB쎏pԮٌ=HV*HWB)Y&lbvw9߯<֖*|3J! endstream endobj 322 0 obj <>stream x31T0PaKSCB.7H9\q0m2 L,\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O/~?auM[kߊǯG"S!+ (B endstream endobj 319 0 obj <>stream x31V0P0V5T01R03QH1*sP "9\\ y\ Ɩ@ f z@) ɥPRTʥTĥTå`ȥme˥{us;qy(-0C{/U7^֯_oڎ_2X[үU/4޹޹ۦI08pz*rrR endstream endobj 303 0 obj <>stream x35U0P0Q5W0 )\\`~. pA$4P8++\!P (g`gɹ\N\ %E\@E\@5\N \.ц\\nn@n.P9?47ΎEAm9sͬb, \ \\A= endstream endobj 299 0 obj <>stream x35S0P0V52T05V01UH1*rErL4H<++\!P@ Ar@29ɓKW4K?KK)YK%ڐ KM V8qy(-`.ap!ƹ,zkn] po[]0Ł~? ^)<~zNMȿ}۔[o{6l:,kX\=u]m endstream endobj 296 0 obj <>stream x35Q0P0V5T05V01SH1*s9\(ÕU`j& z@) ɥPRTʥTĥTå`ȥme˥{us;qy(-lrИȠ[#%ofmuD''Y|x!"`uv] w|cR(poPEn Θ20rz*rrsH endstream endobj 293 0 obj <>stream x35R0P0Q5T01W03PH1*sP "9\\ y\ &@ f@z@) ɥPRTʥTĥTå\ b݀}on.}ܼb;;.OM,n-rU ܿ\>~݊1X-VWGR8 ~޷o~]g/*3Geۥm8t[.WO@@.#N endstream endobj 290 0 obj <>stream x35R0Pb3CB.7H9\q0 2 ̀\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O nTsWrE?6QAS!+ yaAO endstream endobj 287 0 obj <>stream x32U0P0W06U0P03VH1*sP "9\\ y\ @ F z &z ɹ\N\ %E\@E\@5\N @K!A,`cﭠ q)+jtQP۸Yk}muoU  \ \\(0 endstream endobj 284 0 obj <>stream x0S0P0bsK3 CB.7H9\q0m2 M\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OiO(?~w` A@}ӗ>g#(tXS!+ hW% endstream endobj 281 0 obj <>stream x3P0P0bsc3sCB.7H9\q0m2 ,\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.Oq8#1!o$SHjKiK\PLS!+ R endstream endobj 235 0 obj <>stream x3P0P0bSCCB.7H9\q0m2 L \%X*$r9yr{*rr{Ur;8+)hC.X.}7}gg7 7F[A(㜟SW bg颠Я$C2l$G}@@d= endstream endobj 232 0 obj <>stream x36P0P0b#3ccCB.7H9\q0m2 @:R&z z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<](TqP7'W._koooL֥<3ׄ30rz*rrp7 endstream endobj 229 0 obj <>stream x3P0P0bSJ1*qs$@*+\!P23T53 S\.'O.}O_T.pR.}J.}g %ڐ KM V8qy(-9 z ԛ_oKio_5;2/r 1\=N^ endstream endobj 226 0 obj <>stream x3P0P0bcCSCB.7H9\q0 2 L\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.Om,vR˧)u L\ \\> endstream endobj 223 0 obj <>stream x35W0P0R5R05S05TH1*sP "9\\ y\ &@ Fz@) ɥPRTʥTĥTå`ȥme˥{+esJsZ<]bddf=\'o_>g6?Д)v`drT kPT endstream endobj 220 0 obj <>stream x31V0P0R5T0T05RH1*sP "9\\ y\ @ Fz@) ɥPRTʥTĥTå`ȥme˥{us;qy(-rÞ& 5y_o}ߪ/˿Mg ^zDqt# \ \\~H endstream endobj 182 0 obj <>stream x] PC|EW\o(ɡ8ikv+BNQWEę'3#~Gx쩉|PHs R>C(۟P6hNt+ endstream endobj 179 0 obj <>stream x33S0P0R5T03V0TH1*sP "9\\ y\ f@ &@z@) ɥPRTʥTĥTåDrr;;66@\9y@-vv\. 7Eu˅uw׾]/}?#>/yח^o?^~oվ^T endstream endobj 176 0 obj <>stream x35R0P0V52P05P01TH1*iHDLs2 Ĺ   Ar@29ɓKW4K?KK)YHDrr;;66 @ܼb;;.OO(QoyBs~ޛtCt;lT>> =|cۇn8g!ޖm:ơuGʹS!+ 0u[4 endstream endobj 173 0 obj <>stream x35R0P0V5T0P01RH1*sP "9\\ y\ &@ & z@) ɥPRTʥTĥTå`ȥme˥{us;qy(-8`a+B^K/m\um_vC>stream x32U0P0W5P04W0TH1*rEr 4H<++\!P@M Ar@29ɓKW4K?KK)YK%ڐ KM jw)+jtQP۠Or~@`bOӈ> \ \\<8v endstream endobj 167 0 obj <>stream x36P0PP5T06V05WH1*sP "9\\ y\ F ͦ z@) ɥPRTʥTĥTå`ȥme˥{us;qy(-lf^`^M֯%j:e_տ]n`hrT "D endstream endobj 335 0 obj <>stream x3P0P0aKSCB.7H9\q0m2 Ab ] &z z@`aɥPRTʥTå& ] b݀}o]s~Nin^1Pڂ.[7A//տcM_+tKz_fMz7)E=AS!+ D endstream endobj 332 0 obj <>stream x33R0P0bS 3#CB.7H9\q0m2 LM\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OM,+:qPo__[^jz Sܯ08pz*rrKQ endstream endobj 217 0 obj <>stream x3P0P0V5R06Q05PH1*sP "9\\ y\ Ɔ@ @z@) ɥPRTʥTĥTåDrr;;66 @ܼb;;.Oۛ|}p)׺z[Ѽ[IE l?̿G9F^K%ɡo{nH&&& L> endstream endobj 214 0 obj <>stream x3P0P0V5R06Q05PH1*sP "9\\ y\ Ɔ@ @z@) ɥPRTʥTĥTåDrr;;66 @ܼb;;.O;?&4wo0饯_g{{3*ߗ"w־Z7}_e n1pЁS!+ hK endstream endobj 211 0 obj <>stream x31T0P0R5T0P06RH1*sP "9\\ y\ f@ Fz@) ɥPRTʥTĥTå`ȥme˥{us;qy(r٠ zu_݊zmy]w B W k<[ endstream endobj 208 0 obj <>stream x35U0P0T5T05V06RH1*sP "9\\ y\ F@ z @"9ɓKW4K?KK)YK%ڐ KM w)+jtQ0uwAy>stream x%K `ƛzg$ &I6D-4haM=4RR4iPj8(\ 'Ma{tӤէSMycC)r IBz&$\(KH$AixL2ߟ>ݫ3WTճ6F1g 3. endstream endobj 202 0 obj <>stream x35U0P0Q5R05P05VH1*sP "9\\ y\ &f@@9S=CHrU()*M*w pV0w62wwvvrllt29y@-vv\. j \Vp[a'`[xkmɼ۷k54;vnۻtiy[IE$1ir`aprT L endstream endobj 199 0 obj <>stream x32T0P0bC SCCB.7H9\q0m2  ̀\%X*$r9yr{*rr{Ur;8+)hC.X.}7}gg7 7F[A(㜟SW bg颠,_3k$\!S!+ HI; endstream endobj 196 0 obj <>stream x35R0P0bKSCCB.7H9\q0m2 L̀\%X*$r9yr{*rr{Ur;8+)hC.X.}7}gg7 7F[A(㜟SW bg颠rd[݃_S[Þ??ہ/_ ɋ \ \\[L endstream endobj 193 0 obj <>stream x31V0P0bccCB.7H9\q0m2 -@@)#=C]=K 0UHrU()*M*w pV0w62wwvvrllt29y@-vv\. jK*(|Q˸Gx1\y@ endstream endobj 190 0 obj <>stream x36P0P0b#sccCB.7H9\q0m2 @:Rz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]Ԗ{e_:(X. B W ^6V endstream endobj 187 0 obj <>stream x36Q0P0R5T0"CB.0?Hr `(ÕU`d j`l`ɹ\N\ %E\@E\@5\N \.ц\\nn@n7P7s~Nin^1P-Mx_M}5';m٥ÉmI01(pz*rr?;- endstream endobj 164 0 obj <>stream x}@-ʹb4!/* c&TzيNWb'!}jz:bɓF!D%q^%k4s}4g+$gRVPA%HP2&Gғ\[A6:X[(De endstream endobj 161 0 obj <>stream x3P0P0bSSCCB.7H9\q0m2 L \%X*$r9yr{*rr{Ur;8+)hC.X.}7}gg7 7F[A(㜟SW bg颠hf:‡?W|*}7G‘o`hrT {F# endstream endobj 158 0 obj <>stream x31S0P0V5T01CB.0?Hr `(ÕU`l j`b`gɹ\N\ %E\@E\@5\N \.ц\\nn@n7P7s~Nin^1Pڂ,-rf_Ue_1X,k]G61.WO@@.> endstream endobj 155 0 obj <>stream x3P0P0V5T01Q01RH1*sP "9\\ y\ &@ & z@) ɥPRTʥTĥTåDrr;;66@\9y@-vv\. j v*q T|ܫe_ٟOWdznЍik[ٸ\=> endstream endobj 152 0 obj <>stream xe @E@l|` D"BR Qb75l) :10`J>cPP-(BMj"m+ G6_x%!pk[XL>stream x32U0P0bCscKCB.7 2D@*+\!P@Rz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]6(ӟG?>dX3kD.WO@@.0 endstream endobj 146 0 obj <>stream x33R0P0bS SsCB.7H9\q0m2 LM\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.OS|]'ַ│4lGឺé\=_ endstream endobj 143 0 obj <>stream x33P0P0bS3SsCB.7H9\q0m2 LA @Rz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]v9cirn[8lZ7p04pz*rrH endstream endobj 140 0 obj <>stream x31R0P0bcSS3CB.7H9\q0m2 ,\%X*$r9yr{*rr{Ur;8+rDrr;;66 @ܼb;;.O͌Yg4 Y2S!+ ? endstream endobj 137 0 obj <>stream x36R0PP52P02W03RH1*iHDLs2  -, Ar@29ɓKW4K?KK)YK%ڐ KM V8qy(-8^WWߪoݻy\=M5 endstream endobj 134 0 obj <>stream x31Q0P0b#c3CB.7H9\q0m2 L@ @Rz z@`aɥPRTʥTʥTɥDrr;;66 @ܼb;;.OӮO4>stream x36P0P0a SsCB.7H9\q0m2 @:RFz z@`aɥPRTʥTʥTɥ`ȥme˥{+esJsZ<]\ *̭<#B W @V endstream endobj 128 0 obj <>stream x32U0P5Q54W"S3CB.H.ȁiDWWBW!sc]c=KBr.'BIQi*~8PPSme˥{s;qy(-lp|x)bD? xo+5Mﲶih04ppz*rrdE endstream endobj 125 0 obj <>stream x36W0P0bccc3CB.7H9\q0m2  \%X*$r9yr{*rr{Ur;8+9.ц\\nn@n.P9?47ΎEAm׿C&eWzKEtҫ֪,f񃡁S!+ g; endstream endobj 122 0 obj <>stream x31Q0P0R5T01T06SH1*sP "9\\ y\ Ɩ@ Fz ) ɥPRTʥTĥTå`ȥme˥{us;qy(vٻz\߱nKǷS!+ 0BA9 endstream endobj 119 0 obj <>stream x31R0P0R5P01P0PH1*iHDLs2 A@hj`gɹ\N\ %E\@U\@E\N \.ц\\nn@n7P;s~Nin^1Pڂ bg[$n4;i/е-mV[Qz7×YpUkf]zÜ,b\X\=u$WK endstream endobj 379 0 obj <>/FontMatrix[1 0 0 -1 0 0]/FontBBox[0 0 1000 1000]/FirstChar 3/LastChar 3/Widths[ 34] /Subtype/Type3>> endobj 451 0 obj <> endobj 325 0 obj <>/FontMatrix[1 0 0 -1 0 0]/FontBBox[0 0 1000 1000]/FirstChar 50/LastChar 55/Widths[ 55 55 55 55 55 55] /Subtype/Type3>> endobj 452 0 obj <> endobj 312 0 obj <>/FontMatrix[1 0 0 -1 0 0]/FontBBox[0 0 1000 1000]/FirstChar 0/LastChar 49/Widths[ 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 71] /Subtype/Type3>> endobj 453 0 obj <> endobj 454 0 obj <>stream x]1 EwNĩNKdhU1!Co_Cޗ60^G242XM5lIL4;/EE 7_H:ZҔI􈲷V &{$VVYEdeDֲSvw-%P;bF|W endstream endobj 455 0 obj 177 endobj 300 0 obj <>/FontMatrix[1 0 0 -1 0 0]/FontBBox[0 0 1000 1000]/FirstChar 18/LastChar 107/Widths[ 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37] /Subtype/Type3>> endobj 456 0 obj <> endobj 457 0 obj <>stream x]0 D|-S,@Hs2ԉtIJa`e(>SsO؄5lAf/;o߼jAS݇`FHFfmuV'<(WJx3 yר>/FontMatrix[1 0 0 -1 0 0]/FontBBox[0 0 1000 1000]/FirstChar 0/LastChar 107/Widths[ 71 0 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 71 71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 45] /Subtype/Type3>> endobj 459 0 obj <> endobj 460 0 obj <>stream x]1n0 EwB7XrZ%C 4Dg$:|"?WݝδKlt_-55lta}pUu/_*i PRs",j\I}攜= %F8:pd9pQ0fˈ89pbĞkjٲ@F%Av:3*80~W5|/)txFe,%;N-.4~tF endstream endobj 461 0 obj 235 endobj 254 0 obj <>/FontMatrix[1 0 0 -1 0 0]/FontBBox[0 0 1000 1000]/FirstChar 18/LastChar 121/Widths[ 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 25 0 0 0 0 0 68 0 0 75 0 0 0 0 40 0 0 62 88 0 0 0 0 69 56 0 0 0 86 0 53 62 0 0 0 0 0 0 0 0 0 47 0 45 43 0 0 0 0 27 80 55 0 0 0 0 43 0 52 0 0 52 45] /Subtype/Type3>> endobj 462 0 obj <> endobj 463 0 obj <>stream x]=1 "7 Fi؆bW+d0{}6?ų)~VPb6ӑro3_r1L˓5TC=Ud͑o5P.l&7\SszpU`bnV^*^PޫCpft@ 8bD'~}PNpeKָ,!A\e!/j endstream endobj 464 0 obj 219 endobj 240 0 obj <>/FontMatrix[1 0 0 -1 0 0]/FontBBox[0 0 1000 1000]/FirstChar 42/LastChar 118/Widths[ 56 0 0 0 31 0 0 56 56 56 56 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 86 74 0 0 0 42 0 0 0 106 88 0 0 0 84 0 78 0 0 0 0 0 0 0 0 0 0 0 0 54 0 50 62 51 0 56 62 32 0 0 32 94 62 56 62 0 46 44 44 62 59] /Subtype/Type3>> endobj 465 0 obj <> endobj 466 0 obj <>stream x];0 "7CQ( ,@Hp:U(-6?~<)n:.Tp]PpI5"l wU?|}f$ O3*[Άixn5#U I#A$Zg*e{jՋV=L-^Cb#S9ȼ)/zw(&ywdvi g endstream endobj 467 0 obj 213 endobj 185 0 obj <>/FontMatrix[1 0 0 -1 0 0]/FontBBox[0 0 1000 1000]/FirstChar 44/LastChar 121/Widths[ 21 26 21 0 38 38 38 38 38 38 38 38 38 38 0 0 0 0 0 0 0 58 54 55 59 52 50 60 0 28 0 0 48 0 58 60 0 0 57 43 55 58 0 0 0 0 0 0 0 0 0 0 0 38 43 34 43 34 23 38 43 21 0 0 21 65 43 38 43 0 30 30 30 43 41 55 0 41] /Subtype/Type3>> endobj 468 0 obj <> endobj 183 0 obj <>/FontMatrix[1 0 0 -1 0 0]/FontBBox[0 0 1000 1000]/FirstChar 49/LastChar 50/Widths[ 30 30] /Subtype/Type3>> endobj 469 0 obj <> endobj 470 0 obj <>stream x]M FVӄэ6M 0A\evd^ɣ~p6=<1qc5'XUsm!0V r2QR#:t 9JUFh2%aCah۷GɇtjFk&IuWZ<S endstream endobj 471 0 obj 175 endobj 101 0 obj <>/FontMatrix[1 0 0 -1 0 0]/FontBBox[0 0 1000 1000]/FirstChar 11/LastChar 123/Widths[ 48 46 0 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 32 0 0 23 28 23 0 42 42 42 42 42 42 42 42 42 42 23 0 0 65 0 0 0 62 59 60 63 57 54 65 62 30 43 65 52 76 62 65 57 65 61 46 60 62 62 85 62 62 0 0 0 0 0 0 0 42 46 37 46 37 25 42 46 23 25 44 23 69 46 42 46 0 33 33 32 46 44 60 44 44 37 42] /Subtype/Type3>> endobj 472 0 obj <> endobj 68 0 obj <>/FontMatrix[1 0 0 -1 0 0]/FontBBox[0 0 1000 1000]/FirstChar 43/LastChar 53/Widths[ 55 0 0 0 0 0 35 35 0 0 35] /Subtype/Type3>> endobj 473 0 obj <> endobj 474 0 obj <>stream x]11 E"7 b2 EiX^ dLboϷa)(b)[vEw63-:25ϏI_蚋Wzqyx UuP*i(D"P1ޥk2\[[t 0nwa1: QeGYxG[g *QxxeNAF:>Z9$>υ>seSOh endstream endobj 475 0 obj 215 endobj 60 0 obj <>/FontMatrix[1 0 0 -1 0 0]/FontBBox[0 0 1000 1000]/FirstChar 12/LastChar 122/Widths[ 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 33 28 46 46 46 46 0 0 0 0 0 0 46 0 0 0 0 0 0 0 68 64 65 69 62 0 0 68 35 48 0 57 82 68 70 62 0 66 51 65 68 0 0 0 0 56 0 0 0 0 0 0 46 42 42 46 42 28 42 46 28 0 0 23 74 51 46 46 42 38 37 30 49 0 60 0 44 37] /Subtype/Type3>> endobj 476 0 obj <> endobj 477 0 obj <>stream x]1n0 EwB7 Z%Cd 4Dgɤ:Hv۹vmOmem|.| f_nt뻲 VHb}|JpY=OÒ^8P)W$x1h#pBIzQuЩYHFMexcKָz]_υ.V*.0?ug endstream endobj 478 0 obj 216 endobj 37 0 obj <>/FontMatrix[1 0 0 -1 0 0]/FontBBox[0 0 1000 1000]/FirstChar 45/LastChar 121/Widths[ 35 29 0 0 52 52 52 0 0 0 0 0 0 29 0 0 0 0 0 0 79 74 76 80 69 66 82 0 40 0 0 63 99 82 79 71 0 78 58 73 80 0 0 0 0 64 0 0 0 0 0 0 51 58 46 58 48 32 52 58 29 0 55 29 88 58 52 58 0 43 41 41 58 55 76 0 55] /Subtype/Type3>> endobj 479 0 obj <> endobj 427 0 obj <>/FontMatrix[1 0 0 -1 0 0]/FontBBox[0 0 1000 1000]/FirstChar 65/LastChar 84/Widths[ 61 0 58 0 54 0 0 0 0 0 0 49 0 64 67 0 0 0 0 62] /Subtype/Type3>> endobj 480 0 obj <> endobj 481 0 obj <>stream x]A EFkLqѦI{⢷.f_3:9h^=!Qc=*3,^SmU:t@& Cy [ t  89 DnPֈ]FT=,#^Dr.Wj\*79u;3(bFW? endstream endobj 482 0 obj 181 endobj 7 0 obj <>/FontMatrix[1 0 0 -1 0 0]/FontBBox[0 0 1000 1000]/FirstChar 11/LastChar 123/Widths[ 53 51 0 76 0 0 0 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 0 0 0 0 25 35 35 0 71 25 30 25 0 45 45 45 45 45 45 45 45 45 45 25 25 0 71 0 0 0 68 64 66 69 62 59 71 68 33 47 71 57 83 68 71 62 0 67 51 66 68 68 93 0 68 56 25 45 25 0 0 0 45 51 40 51 40 28 45 51 26 28 48 26 76 51 45 51 48 36 36 35 51 48 66 48 48 40 45] /Subtype/Type3>> endobj 483 0 obj <> endobj 386 0 obj <>/FontMatrix[1 0 0 -1 0 0]/FontBBox[0 0 1000 1000]/FirstChar 102/LastChar 109/Widths[ 41 0 0 0 0 0 0 73] /Subtype/Type3>> endobj 484 0 obj <> endobj 2 0 obj <>endobj xref 0 485 0000000000 65535 f 0000050076 00000 n 0000170703 00000 n 0000049928 00000 n 0000048104 00000 n 0000000015 00000 n 0000002576 00000 n 0000168789 00000 n 0000102148 00000 n 0000136434 00000 n 0000067277 00000 n 0000101889 00000 n 0000136180 00000 n 0000066969 00000 n 0000101592 00000 n 0000135862 00000 n 0000066705 00000 n 0000101357 00000 n 0000135594 00000 n 0000064325 00000 n 0000101072 00000 n 0000135317 00000 n 0000064035 00000 n 0000100777 00000 n 0000135065 00000 n 0000063775 00000 n 0000100499 00000 n 0000134806 00000 n 0000063496 00000 n 0000100240 00000 n 0000134571 00000 n 0000063221 00000 n 0000099990 00000 n 0000134246 00000 n 0000062924 00000 n 0000097465 00000 n 0000133986 00000 n 0000167039 00000 n 0000062667 00000 n 0000097255 00000 n 0000133687 00000 n 0000062393 00000 n 0000096933 00000 n 0000133367 00000 n 0000062144 00000 n 0000096619 00000 n 0000133068 00000 n 0000061880 00000 n 0000096338 00000 n 0000132795 00000 n 0000061615 00000 n 0000096112 00000 n 0000129776 00000 n 0000061301 00000 n 0000095817 00000 n 0000129505 00000 n 0000061025 00000 n 0000095525 00000 n 0000129219 00000 n 0000060730 00000 n 0000165538 00000 n 0000095206 00000 n 0000128940 00000 n 0000060415 00000 n 0000094927 00000 n 0000128647 00000 n 0000060113 00000 n 0000094636 00000 n 0000164903 00000 n 0000128408 00000 n 0000056543 00000 n 0000094321 00000 n 0000128131 00000 n 0000056255 00000 n 0000094055 00000 n 0000127828 00000 n 0000055993 00000 n 0000093867 00000 n 0000127519 00000 n 0000055720 00000 n 0000093585 00000 n 0000127242 00000 n 0000055430 00000 n 0000093282 00000 n 0000126978 00000 n 0000055161 00000 n 0000089797 00000 n 0000126727 00000 n 0000054853 00000 n 0000089553 00000 n 0000126485 00000 n 0000054547 00000 n 0000089275 00000 n 0000126208 00000 n 0000054283 00000 n 0000088991 00000 n 0000125890 00000 n 0000053978 00000 n 0000088721 00000 n 0000125608 00000 n 0000053675 00000 n 0000163370 00000 n 0000088469 00000 n 0000123421 00000 n 0000053390 00000 n 0000088195 00000 n 0000123106 00000 n 0000053078 00000 n 0000087946 00000 n 0000122827 00000 n 0000052788 00000 n 0000087710 00000 n 0000122549 00000 n 0000052532 00000 n 0000087434 00000 n 0000122260 00000 n 0000052254 00000 n 0000087181 00000 n 0000121973 00000 n 0000156071 00000 n 0000086917 00000 n 0000121714 00000 n 0000155806 00000 n 0000086660 00000 n 0000121430 00000 n 0000155541 00000 n 0000086379 00000 n 0000121171 00000 n 0000155277 00000 n 0000086108 00000 n 0000120982 00000 n 0000155043 00000 n 0000085816 00000 n 0000120731 00000 n 0000154766 00000 n 0000083837 00000 n 0000120491 00000 n 0000154491 00000 n 0000083580 00000 n 0000120201 00000 n 0000154249 00000 n 0000083284 00000 n 0000119922 00000 n 0000153989 00000 n 0000082977 00000 n 0000119626 00000 n 0000153720 00000 n 0000082706 00000 n 0000119360 00000 n 0000153476 00000 n 0000082381 00000 n 0000116432 00000 n 0000153250 00000 n 0000082122 00000 n 0000116152 00000 n 0000152970 00000 n 0000081869 00000 n 0000115903 00000 n 0000152692 00000 n 0000081570 00000 n 0000115667 00000 n 0000152433 00000 n 0000081290 00000 n 0000115383 00000 n 0000152210 00000 n 0000081020 00000 n 0000115196 00000 n 0000148430 00000 n 0000080699 00000 n 0000114909 00000 n 0000148175 00000 n 0000080436 00000 n 0000114642 00000 n 0000147891 00000 n 0000080171 00000 n 0000114354 00000 n 0000147566 00000 n 0000079877 00000 n 0000114087 00000 n 0000147269 00000 n 0000079578 00000 n 0000113810 00000 n 0000147082 00000 n 0000162824 00000 n 0000085578 00000 n 0000161685 00000 n 0000119080 00000 n 0000151942 00000 n 0000079300 00000 n 0000118798 00000 n 0000151693 00000 n 0000079045 00000 n 0000118529 00000 n 0000151438 00000 n 0000078773 00000 n 0000118272 00000 n 0000151160 00000 n 0000078537 00000 n 0000118006 00000 n 0000150915 00000 n 0000078232 00000 n 0000117720 00000 n 0000150614 00000 n 0000077976 00000 n 0000113505 00000 n 0000150378 00000 n 0000077715 00000 n 0000113244 00000 n 0000150096 00000 n 0000077439 00000 n 0000112988 00000 n 0000149838 00000 n 0000077159 00000 n 0000112757 00000 n 0000149547 00000 n 0000076888 00000 n 0000112479 00000 n 0000149243 00000 n 0000076703 00000 n 0000112229 00000 n 0000146804 00000 n 0000076436 00000 n 0000111921 00000 n 0000146510 00000 n 0000076251 00000 n 0000111630 00000 n 0000146268 00000 n 0000075960 00000 n 0000111339 00000 n 0000145988 00000 n 0000075686 00000 n 0000111071 00000 n 0000145722 00000 n 0000075409 00000 n 0000110767 00000 n 0000145474 00000 n 0000050124 00000 n 0000048255 00000 n 0000002596 00000 n 0000007349 00000 n 0000160486 00000 n 0000099744 00000 n 0000132569 00000 n 0000059885 00000 n 0000099482 00000 n 0000132301 00000 n 0000059627 00000 n 0000099190 00000 n 0000131999 00000 n 0000059363 00000 n 0000093000 00000 n 0000131742 00000 n 0000059105 00000 n 0000092723 00000 n 0000159327 00000 n 0000131445 00000 n 0000058817 00000 n 0000092421 00000 n 0000131193 00000 n 0000158415 00000 n 0000058534 00000 n 0000092126 00000 n 0000130950 00000 n 0000058235 00000 n 0000091820 00000 n 0000130662 00000 n 0000057954 00000 n 0000091526 00000 n 0000125333 00000 n 0000057653 00000 n 0000091250 00000 n 0000125006 00000 n 0000057361 00000 n 0000091016 00000 n 0000124720 00000 n 0000057077 00000 n 0000050227 00000 n 0000048402 00000 n 0000007371 00000 n 0000011482 00000 n 0000110465 00000 n 0000145206 00000 n 0000075140 00000 n 0000110178 00000 n 0000144914 00000 n 0000074876 00000 n 0000109884 00000 n 0000144668 00000 n 0000074579 00000 n 0000109630 00000 n 0000144423 00000 n 0000074355 00000 n 0000109336 00000 n 0000144115 00000 n 0000074042 00000 n 0000109055 00000 n 0000143811 00000 n 0000072108 00000 n 0000108773 00000 n 0000143481 00000 n 0000157633 00000 n 0000071815 00000 n 0000108555 00000 n 0000143244 00000 n 0000073815 00000 n 0000117428 00000 n 0000050308 00000 n 0000048557 00000 n 0000011504 00000 n 0000015996 00000 n 0000066475 00000 n 0000106628 00000 n 0000156988 00000 n 0000140240 00000 n 0000066286 00000 n 0000098910 00000 n 0000139946 00000 n 0000066050 00000 n 0000098668 00000 n 0000142938 00000 n 0000071510 00000 n 0000106326 00000 n 0000142680 00000 n 0000071208 00000 n 0000106136 00000 n 0000156647 00000 n 0000142452 00000 n 0000070992 00000 n 0000105906 00000 n 0000142144 00000 n 0000073534 00000 n 0000108278 00000 n 0000148975 00000 n 0000073271 00000 n 0000107955 00000 n 0000148698 00000 n 0000072943 00000 n 0000107667 00000 n 0000141919 00000 n 0000072726 00000 n 0000107442 00000 n 0000141677 00000 n 0000050413 00000 n 0000048712 00000 n 0000016018 00000 n 0000020715 00000 n 0000098357 00000 n 0000130376 00000 n 0000065731 00000 n 0000098069 00000 n 0000139632 00000 n 0000070723 00000 n 0000105600 00000 n 0000050544 00000 n 0000048867 00000 n 0000020737 00000 n 0000023308 00000 n 0000051972 00000 n 0000090726 00000 n 0000050649 00000 n 0000049014 00000 n 0000023330 00000 n 0000028306 00000 n 0000141411 00000 n 0000070445 00000 n 0000107139 00000 n 0000141125 00000 n 0000070175 00000 n 0000106860 00000 n 0000105368 00000 n 0000130068 00000 n 0000056790 00000 n 0000097779 00000 n 0000139327 00000 n 0000069871 00000 n 0000117154 00000 n 0000072411 00000 n 0000124417 00000 n 0000085242 00000 n 0000156385 00000 n 0000069605 00000 n 0000105183 00000 n 0000116898 00000 n 0000090436 00000 n 0000084997 00000 n 0000124133 00000 n 0000170407 00000 n 0000051685 00000 n 0000084722 00000 n 0000050741 00000 n 0000049169 00000 n 0000028328 00000 n 0000033177 00000 n 0000090106 00000 n 0000116621 00000 n 0000084442 00000 n 0000050811 00000 n 0000049324 00000 n 0000033199 00000 n 0000038051 00000 n 0000140806 00000 n 0000050881 00000 n 0000049479 00000 n 0000038073 00000 n 0000042746 00000 n 0000050951 00000 n 0000049634 00000 n 0000042768 00000 n 0000046318 00000 n 0000069318 00000 n 0000104889 00000 n 0000140550 00000 n 0000069018 00000 n 0000104628 00000 n 0000139069 00000 n 0000068700 00000 n 0000104388 00000 n 0000138794 00000 n 0000068396 00000 n 0000104066 00000 n 0000138494 00000 n 0000068123 00000 n 0000103795 00000 n 0000138204 00000 n 0000067816 00000 n 0000103508 00000 n 0000137869 00000 n 0000168116 00000 n 0000067588 00000 n 0000103219 00000 n 0000137622 00000 n 0000065430 00000 n 0000102980 00000 n 0000137307 00000 n 0000065202 00000 n 0000102700 00000 n 0000137002 00000 n 0000064902 00000 n 0000102409 00000 n 0000136748 00000 n 0000064609 00000 n 0000051021 00000 n 0000049781 00000 n 0000046340 00000 n 0000048082 00000 n 0000123943 00000 n 0000051382 00000 n 0000084132 00000 n 0000123609 00000 n 0000051142 00000 n 0000051100 00000 n 0000156562 00000 n 0000156894 00000 n 0000157274 00000 n 0000157362 00000 n 0000157612 00000 n 0000158057 00000 n 0000158164 00000 n 0000158394 00000 n 0000158890 00000 n 0000158998 00000 n 0000159306 00000 n 0000159995 00000 n 0000160173 00000 n 0000160465 00000 n 0000161195 00000 n 0000161378 00000 n 0000161664 00000 n 0000162611 00000 n 0000163015 00000 n 0000163101 00000 n 0000163349 00000 n 0000164642 00000 n 0000165133 00000 n 0000165229 00000 n 0000165517 00000 n 0000166509 00000 n 0000166729 00000 n 0000167018 00000 n 0000167906 00000 n 0000168403 00000 n 0000168514 00000 n 0000168768 00000 n 0000170116 00000 n 0000170612 00000 n trailer << /Size 485 /Root 1 0 R /Info 2 0 R /ID [(z$zt2]ѡ)(z$zt2]ѡ)] >> startxref 170814 %%EOF Lbfgsb.3.0/driver1.f000644 000765 000024 00000031203 12001634144 015250 0ustar00jmoralesstaff000000 000000 c c L-BFGS-B is released under the “New BSD License” (aka “Modified BSD License” c or “3-clause license”) c Please read attached file License.txt c c DRIVER 1 in Fortran 77 c -------------------------------------------------------------- c SIMPLE DRIVER FOR L-BFGS-B (version 3.0) c -------------------------------------------------------------- c c L-BFGS-B is a code for solving large nonlinear optimization c problems with simple bounds on the variables. c c The code can also be used for unconstrained problems and is c as efficient for these problems as the earlier limited memory c code L-BFGS. c c This is the simplest driver in the package. It uses all the c default settings of the code. c c c References: c c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited c memory algorithm for bound constrained optimization'', c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208. c c [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: FORTRAN c Subroutines for Large Scale Bound Constrained Optimization'' c Tech. Report, NAM-11, EECS Department, Northwestern University, c 1994. c c c (Postscript files of these papers are available via anonymous c ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.) c c * * * c c March 2011 (latest revision) c Optimization Center at Northwestern University c Instituto Tecnologico Autonomo de Mexico c c Jorge Nocedal and Jose Luis Morales, Remark on "Algorithm 778: c L-BFGS-B: Fortran Subroutines for Large-Scale Bound Constrained c Optimization" (2011). To appear in ACM Transactions on c Mathematical Software, c -------------------------------------------------------------- c DESCRIPTION OF THE VARIABLES IN L-BFGS-B c -------------------------------------------------------------- c c n is an INTEGER variable that must be set by the user to the c number of variables. It is not altered by the routine. c c m is an INTEGER variable that must be set by the user to the c number of corrections used in the limited memory matrix. c It is not altered by the routine. Values of m < 3 are c not recommended, and large values of m can result in excessive c computing time. The range 3 <= m <= 20 is recommended. c c x is a DOUBLE PRECISION array of length n. On initial entry c it must be set by the user to the values of the initial c estimate of the solution vector. Upon successful exit, it c contains the values of the variables at the best point c found (usually an approximate solution). c c l is a DOUBLE PRECISION array of length n that must be set by c the user to the values of the lower bounds on the variables. If c the i-th variable has no lower bound, l(i) need not be defined. c c u is a DOUBLE PRECISION array of length n that must be set by c the user to the values of the upper bounds on the variables. If c the i-th variable has no upper bound, u(i) need not be defined. c c nbd is an INTEGER array of dimension n that must be set by the c user to the type of bounds imposed on the variables: c nbd(i)=0 if x(i) is unbounded, c 1 if x(i) has only a lower bound, c 2 if x(i) has both lower and upper bounds, c 3 if x(i) has only an upper bound. c c f is a DOUBLE PRECISION variable. If the routine setulb returns c with task(1:2)= 'FG', then f must be set by the user to c contain the value of the function at the point x. c c g is a DOUBLE PRECISION array of length n. If the routine setulb c returns with taskb(1:2)= 'FG', then g must be set by the user to c contain the components of the gradient at the point x. c c factr is a DOUBLE PRECISION variable that must be set by the user. c It is a tolerance in the termination test for the algorithm. c The iteration will stop when c c (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch c c where epsmch is the machine precision which is automatically c generated by the code. Typical values for factr on a computer c with 15 digits of accuracy in double precision are: c factr=1.d+12 for low accuracy; c 1.d+7 for moderate accuracy; c 1.d+1 for extremely high accuracy. c The user can suppress this termination test by setting factr=0. c c pgtol is a double precision variable. c On entry pgtol >= 0 is specified by the user. The iteration c will stop when c c max{|proj g_i | i = 1, ..., n} <= pgtol c c where pg_i is the ith component of the projected gradient. c The user can suppress this termination test by setting pgtol=0. c c wa is a DOUBLE PRECISION array of length c (2mmax + 5)nmax + 11mmax^2 + 8mmax used as workspace. c This array must not be altered by the user. c c iwa is an INTEGER array of length 3nmax used as c workspace. This array must not be altered by the user. c c task is a CHARACTER string of length 60. c On first entry, it must be set to 'START'. c On a return with task(1:2)='FG', the user must evaluate the c function f and gradient g at the returned value of x. c On a return with task(1:5)='NEW_X', an iteration of the c algorithm has concluded, and f and g contain f(x) and g(x) c respectively. The user can decide whether to continue or stop c the iteration. c When c task(1:4)='CONV', the termination test in L-BFGS-B has been c satisfied; c task(1:4)='ABNO', the routine has terminated abnormally c without being able to satisfy the termination conditions, c x contains the best approximation found, c f and g contain f(x) and g(x) respectively; c task(1:5)='ERROR', the routine has detected an error in the c input parameters; c On exit with task = 'CONV', 'ABNO' or 'ERROR', the variable task c contains additional information that the user can print. c This array should not be altered unless the user wants to c stop the run for some reason. See driver2 or driver3 c for a detailed explanation on how to stop the run c by assigning task(1:4)='STOP' in the driver. c c iprint is an INTEGER variable that must be set by the user. c It controls the frequency and type of output generated: c iprint<0 no output is generated; c iprint=0 print only one line at the last iteration; c 0100 print details of every iteration including x and g; c When iprint > 0, the file iterate.dat will be created to c summarize the iteration. c c csave is a CHARACTER working array of length 60. c c lsave is a LOGICAL working array of dimension 4. c On exit with task = 'NEW_X', the following information is c available: c lsave(1) = .true. the initial x did not satisfy the bounds; c lsave(2) = .true. the problem contains bounds; c lsave(3) = .true. each variable has upper and lower bounds. c c isave is an INTEGER working array of dimension 44. c On exit with task = 'NEW_X', it contains information that c the user may want to access: c isave(30) = the current iteration number; c isave(34) = the total number of function and gradient c evaluations; c isave(36) = the number of function value or gradient c evaluations in the current iteration; c isave(38) = the number of free variables in the current c iteration; c isave(39) = the number of active constraints at the current c iteration; c c see the subroutine setulb.f for a description of other c information contained in isave c c dsave is a DOUBLE PRECISION working array of dimension 29. c On exit with task = 'NEW_X', it contains information that c the user may want to access: c dsave(2) = the value of f at the previous iteration; c dsave(5) = the machine precision epsmch generated by the code; c dsave(13) = the infinity norm of the projected gradient; c c see the subroutine setulb.f for a description of other c information contained in dsave c c -------------------------------------------------------------- c END OF THE DESCRIPTION OF THE VARIABLES IN L-BFGS-B c -------------------------------------------------------------- program driver c This simple driver demonstrates how to call the L-BFGS-B code to c solve a sample problem (the extended Rosenbrock function c subject to bounds on the variables). The dimension n of this c problem is variable. integer nmax, mmax parameter (nmax=1024, mmax=17) c nmax is the dimension of the largest problem to be solved. c mmax is the maximum number of limited memory corrections. c Declare the variables needed by the code. c A description of all these variables is given at the end of c the driver. character*60 task, csave logical lsave(4) integer n, m, iprint, + nbd(nmax), iwa(3*nmax), isave(44) double precision f, factr, pgtol, + x(nmax), l(nmax), u(nmax), g(nmax), dsave(29), + wa(2*mmax*nmax + 5*nmax + 11*mmax*mmax + 8*mmax) c Declare a few additional variables for this sample problem. double precision t1, t2 integer i c We wish to have output at every iteration. iprint = 1 c We specify the tolerances in the stopping criteria. factr=1.0d+7 pgtol=1.0d-5 c We specify the dimension n of the sample problem and the number c m of limited memory corrections stored. (n and m should not c exceed the limits nmax and mmax respectively.) n=25 m=5 c We now provide nbd which defines the bounds on the variables: c l specifies the lower bounds, c u specifies the upper bounds. c First set bounds on the odd-numbered variables. do 10 i=1,n,2 nbd(i)=2 l(i)=1.0d0 u(i)=1.0d2 10 continue c Next set bounds on the even-numbered variables. do 12 i=2,n,2 nbd(i)=2 l(i)=-1.0d2 u(i)=1.0d2 12 continue c We now define the starting point. do 14 i=1,n x(i)=3.0d0 14 continue write (6,16) 16 format(/,5x, 'Solving sample problem.', + /,5x, ' (f = 0.0 at the optimal solution.)',/) c We start the iteration by initializing task. c task = 'START' c ------- the beginning of the loop ---------- 111 continue c This is the call to the L-BFGS-B code. call setulb(n,m,x,l,u,nbd,f,g,factr,pgtol,wa,iwa,task,iprint, + csave,lsave,isave,dsave) if (task(1:2) .eq. 'FG') then c the minimization routine has returned to request the c function f and gradient g values at the current x. c Compute function value f for the sample problem. f=.25d0*(x(1)-1.d0)**2 do 20 i=2,n f=f+(x(i)-x(i-1)**2)**2 20 continue f=4.d0*f c Compute gradient g for the sample problem. t1=x(2)-x(1)**2 g(1)=2.d0*(x(1)-1.d0)-1.6d1*x(1)*t1 do 22 i=2,n-1 t2=t1 t1=x(i+1)-x(i)**2 g(i)=8.d0*t2-1.6d1*x(i)*t1 22 continue g(n)=8.d0*t1 c go back to the minimization routine. goto 111 endif c if (task(1:5) .eq. 'NEW_X') goto 111 c the minimization routine has returned with a new iterate, c and we have opted to continue the iteration. c ---------- the end of the loop ------------- c If task is neither FG nor NEW_X we terminate execution. stop end c======================= The end of driver1 ============================ Lbfgsb.3.0/driver1.f90000755 000765 000024 00000027351 12001633711 015434 0ustar00jmoralesstaff000000 000000 ! ! L-BFGS-B is released under the “New BSD License” (aka “Modified BSD License” ! or “3-clause license”) ! Please read attached file License.txt ! ! ! DRIVER1 in Fortran 90 ! -------------------------------------------------------------- ! ! L-BFGS-B is a code for solving large nonlinear optimization ! problems with simple bounds on the variables. ! ! The code can also be used for unconstrained problems and is ! as efficient for these problems as the earlier limited memory ! code L-BFGS. ! ! This is the simplest driver in the package. It uses all the ! default settings of the code. ! ! ! References: ! ! [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited ! memory algorithm for bound constrained optimization'', ! SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208. ! ! [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: FORTRAN ! Subroutines for Large Scale Bound Constrained Optimization'' ! Tech. Report, NAM-11, EECS Department, Northwestern University, ! 1994. ! ! ! (Postscript files of these papers are available via anonymous ! ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.) ! ! * * * ! ! March 2011 (latest revision) ! Optimization Center at Northwestern University ! Instituto Tecnologico Autonomo de Mexico ! ! Jorge Nocedal and Jose Luis Morales ! ! -------------------------------------------------------------- ! DESCRIPTION OF THE VARIABLES IN L-BFGS-B ! -------------------------------------------------------------- ! ! n is an INTEGER variable that must be set by the user to the ! number of variables. It is not altered by the routine. ! ! m is an INTEGER variable that must be set by the user to the ! number of corrections used in the limited memory matrix. ! It is not altered by the routine. Values of m < 3 are ! not recommended, and large values of m can result in excessive ! computing time. The range 3 <= m <= 20 is recommended. ! ! x is a DOUBLE PRECISION array of length n. On initial entry ! it must be set by the user to the values of the initial ! estimate of the solution vector. Upon successful exit, it ! contains the values of the variables at the best point ! found (usually an approximate solution). ! ! l is a DOUBLE PRECISION array of length n that must be set by ! the user to the values of the lower bounds on the variables. If ! the i-th variable has no lower bound, l(i) need not be defined. ! ! u is a DOUBLE PRECISION array of length n that must be set by ! the user to the values of the upper bounds on the variables. If ! the i-th variable has no upper bound, u(i) need not be defined. ! ! nbd is an INTEGER array of dimension n that must be set by the ! user to the type of bounds imposed on the variables: ! nbd(i)=0 if x(i) is unbounded, ! 1 if x(i) has only a lower bound, ! 2 if x(i) has both lower and upper bounds, ! 3 if x(i) has only an upper bound. ! ! f is a DOUBLE PRECISION variable. If the routine setulb returns ! with task(1:2)= 'FG', then f must be set by the user to ! contain the value of the function at the point x. ! ! g is a DOUBLE PRECISION array of length n. If the routine setulb ! returns with taskb(1:2)= 'FG', then g must be set by the user to ! contain the components of the gradient at the point x. ! ! factr is a DOUBLE PRECISION variable that must be set by the user. ! It is a tolerance in the termination test for the algorithm. ! The iteration will stop when ! ! (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch ! ! where epsmch is the machine precision which is automatically ! generated by the code. Typical values for factr on a computer ! with 15 digits of accuracy in double precision are: ! factr=1.d+12 for low accuracy; ! 1.d+7 for moderate accuracy; ! 1.d+1 for extremely high accuracy. ! The user can suppress this termination test by setting factr=0. ! ! pgtol is a double precision variable. ! On entry pgtol >= 0 is specified by the user. The iteration ! will stop when ! ! max{|proj g_i | i = 1, ..., n} <= pgtol ! ! where pg_i is the ith component of the projected gradient. ! The user can suppress this termination test by setting pgtol=0. ! ! wa is a DOUBLE PRECISION array of length ! (2mmax + 5)nmax + 11mmax^2 + 8mmax used as workspace. ! This array must not be altered by the user. ! ! iwa is an INTEGER array of length 3nmax used as ! workspace. This array must not be altered by the user. ! ! task is a CHARACTER string of length 60. ! On first entry, it must be set to 'START'. ! On a return with task(1:2)='FG', the user must evaluate the ! function f and gradient g at the returned value of x. ! On a return with task(1:5)='NEW_X', an iteration of the ! algorithm has concluded, and f and g contain f(x) and g(x) ! respectively. The user can decide whether to continue or stop ! the iteration. ! When ! task(1:4)='CONV', the termination test in L-BFGS-B has been ! satisfied; ! task(1:4)='ABNO', the routine has terminated abnormally ! without being able to satisfy the termination conditions, ! x contains the best approximation found, ! f and g contain f(x) and g(x) respectively; ! task(1:5)='ERROR', the routine has detected an error in the ! input parameters; ! On exit with task = 'CONV', 'ABNO' or 'ERROR', the variable task ! contains additional information that the user can print. ! This array should not be altered unless the user wants to ! stop the run for some reason. See driver2 or driver3 ! for a detailed explanation on how to stop the run ! by assigning task(1:4)='STOP' in the driver. ! ! iprint is an INTEGER variable that must be set by the user. ! It controls the frequency and type of output generated: ! iprint<0 no output is generated; ! iprint=0 print only one line at the last iteration; ! 0100 print details of every iteration including x and g; ! When iprint > 0, the file iterate.dat will be created to ! summarize the iteration. ! ! csave is a CHARACTER working array of length 60. ! ! lsave is a LOGICAL working array of dimension 4. ! On exit with task = 'NEW_X', the following information is ! available: ! lsave(1) = .true. the initial x did not satisfy the bounds; ! lsave(2) = .true. the problem contains bounds; ! lsave(3) = .true. each variable has upper and lower bounds. ! ! isave is an INTEGER working array of dimension 44. ! On exit with task = 'NEW_X', it contains information that ! the user may want to access: ! isave(30) = the current iteration number; ! isave(34) = the total number of function and gradient ! evaluations; ! isave(36) = the number of function value or gradient ! evaluations in the current iteration; ! isave(38) = the number of free variables in the current ! iteration; ! isave(39) = the number of active constraints at the current ! iteration; ! ! see the subroutine setulb.f for a description of other ! information contained in isave ! ! dsave is a DOUBLE PRECISION working array of dimension 29. ! On exit with task = 'NEW_X', it contains information that ! the user may want to access: ! dsave(2) = the value of f at the previous iteration; ! dsave(5) = the machine precision epsmch generated by the code; ! dsave(13) = the infinity norm of the projected gradient; ! ! see the subroutine setulb.f for a description of other ! information contained in dsave ! ! -------------------------------------------------------------- ! END OF THE DESCRIPTION OF THE VARIABLES IN L-BFGS-B ! -------------------------------------------------------------- ! program driver ! ! This simple driver demonstrates how to call the L-BFGS-B code to ! solve a sample problem (the extended Rosenbrock function ! subject to bounds on the variables). The dimension n of this ! problem is variable. implicit none ! ! Declare variables and parameters needed by the code. ! Note thar we wish to have output at every iteration. ! iprint=1 ! ! We also specify the tolerances in the stopping criteria. ! factr = 1.0d+7, pgtol = 1.0d-5 ! ! A description of all these variables is given at the beginning ! of the driver ! integer, parameter :: n = 25, m = 5, iprint = 1 integer, parameter :: dp = kind(1.0d0) real(dp), parameter :: factr = 1.0d+7, pgtol = 1.0d-5 ! character(len=60) :: task, csave logical :: lsave(4) integer :: isave(44) real(dp) :: f real(dp) :: dsave(29) integer, allocatable :: nbd(:), iwa(:) real(dp), allocatable :: x(:), l(:), u(:), g(:), wa(:) ! Declare a few additional variables for this sample problem real(dp) :: t1, t2 integer :: i ! Allocate dynamic arrays allocate ( nbd(n), x(n), l(n), u(n), g(n) ) allocate ( iwa(3*n) ) allocate ( wa(2*m*n + 5*n + 11*m*m + 8*m) ) ! do 10 i=1, n, 2 nbd(i) = 2 l(i) = 1.0d0 u(i) = 1.0d2 10 continue ! Next set bounds on the even-numbered variables. do 12 i=2, n, 2 nbd(i) = 2 l(i) = -1.0d2 u(i) = 1.0d2 12 continue ! We now define the starting point. do 14 i=1, n x(i) = 3.0d0 14 continue write (6,16) 16 format(/,5x, 'Solving sample problem.', & /,5x, ' (f = 0.0 at the optimal solution.)',/) ! We start the iteration by initializing task. task = 'START' ! The beginning of the loop do while(task(1:2).eq.'FG'.or.task.eq.'NEW_X'.or. & task.eq.'START') ! This is the call to the L-BFGS-B code. call setulb ( n, m, x, l, u, nbd, f, g, factr, pgtol, & wa, iwa, task, iprint,& csave, lsave, isave, dsave ) if (task(1:2) .eq. 'FG') then f=.25d0*( x(1)-1.d0 )**2 do 20 i=2, n f = f + ( x(i)-x(i-1 )**2 )**2 20 continue f = 4.d0*f ! Compute gradient g for the sample problem. t1 = x(2) - x(1)**2 g(1) = 2.d0*(x(1) - 1.d0) - 1.6d1*x(1)*t1 do 22 i=2, n-1 t2 = t1 t1 = x(i+1) - x(i)**2 g(i) = 8.d0*t2 - 1.6d1*x(i)*t1 22 continue g(n) = 8.d0*t1 end if end do ! end of loop do while end program driver Lbfgsb.3.0/driver2.f000644 000765 000024 00000017210 12001634165 015256 0ustar00jmoralesstaff000000 000000 c c L-BFGS-B is released under the “New BSD License” (aka “Modified BSD License” c or “3-clause license”) c Please read attached file License.txt c c DRIVER 2 in Fortran 77 c -------------------------------------------------------------- c CUSTOMIZED DRIVER FOR L-BFGS-B (version 3.0) c -------------------------------------------------------------- c c L-BFGS-B is a code for solving large nonlinear optimization c problems with simple bounds on the variables. c c The code can also be used for unconstrained problems and is c as efficient for these problems as the earlier limited memory c code L-BFGS. c c This driver illustrates how to control the termination of the c run and how to design customized output. c c References: c c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited c memory algorithm for bound constrained optimization'', c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208. c c [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: FORTRAN c Subroutines for Large Scale Bound Constrained Optimization'' c Tech. Report, NAM-11, EECS Department, Northwestern University, c 1994. c c c (Postscript files of these papers are available via anonymous c ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.) c c * * * c c February 2011 (latest revision) c Optimization Center at Northwestern University c Instituto Tecnologico Autonomo de Mexico c c Jorge Nocedal and Jose Luis Morales c Jorge Nocedal and Jose Luis Morales, Remark on "Algorithm 778: c L-BFGS-B: Fortran Subroutines for Large-Scale Bound Constrained c Optimization" (2011). To appear in ACM Transactions on c Mathematical Software, c c ************** program driver c This driver shows how to replace the default stopping test c by other termination criteria. It also illustrates how to c print the values of several parameters during the course of c the iteration. The sample problem used here is the same as in c DRIVER1 (the extended Rosenbrock function with bounds on the c variables). integer nmax, mmax parameter (nmax=1024, mmax=17) c nmax is the dimension of the largest problem to be solved. c mmax is the maximum number of limited memory corrections. c Declare the variables needed by the code. c A description of all these variables is given at the end of c driver1. character*60 task, csave logical lsave(4) integer n, m, iprint, + nbd(nmax), iwa(3*nmax), isave(44) double precision f, factr, pgtol, + x(nmax), l(nmax), u(nmax), g(nmax), dsave(29), + wa(2*mmax*nmax+5*nmax+11*mmax*mmax+8*mmax) c Declare a few additional variables for the sample problem. double precision t1, t2 integer i c We suppress the default output. iprint = -1 c We suppress both code-supplied stopping tests because the c user is providing his own stopping criteria. factr=0.0d0 pgtol=0.0d0 c We specify the dimension n of the sample problem and the number c m of limited memory corrections stored. (n and m should not c exceed the limits nmax and mmax respectively.) n=25 m=5 c We now specify nbd which defines the bounds on the variables: c l specifies the lower bounds, c u specifies the upper bounds. c First set bounds on the odd numbered variables. do 10 i=1,n,2 nbd(i)=2 l(i)=1.0d0 u(i)=1.0d2 10 continue c Next set bounds on the even numbered variables. do 12 i=2,n,2 nbd(i)=2 l(i)=-1.0d2 u(i)=1.0d2 12 continue c We now define the starting point. do 14 i=1,n x(i)=3.0d0 14 continue c We now write the heading of the output. write (6,16) 16 format(/,5x, 'Solving sample problem.', + /,5x, ' (f = 0.0 at the optimal solution.)',/) c We start the iteration by initializing task. c task = 'START' c ------- the beginning of the loop ---------- 111 continue c This is the call to the L-BFGS-B code. call setulb(n,m,x,l,u,nbd,f,g,factr,pgtol,wa,iwa,task,iprint, + csave,lsave,isave,dsave) if (task(1:2) .eq. 'FG') then c the minimization routine has returned to request the c function f and gradient g values at the current x. c Compute function value f for the sample problem. f=.25d0*(x(1)-1.d0)**2 do 20 i=2,n f=f+(x(i)-x(i-1)**2)**2 20 continue f=4.d0*f c Compute gradient g for the sample problem. t1=x(2)-x(1)**2 g(1)=2.d0*(x(1)-1.d0)-1.6d1*x(1)*t1 do 22 i=2,n-1 t2=t1 t1=x(i+1)-x(i)**2 g(i)=8.d0*t2-1.6d1*x(i)*t1 22 continue g(n)=8.d0*t1 c go back to the minimization routine. goto 111 endif c if (task(1:5) .eq. 'NEW_X') then c c the minimization routine has returned with a new iterate. c At this point have the opportunity of stopping the iteration c or observing the values of certain parameters c c First are two examples of stopping tests. c Note: task(1:4) must be assigned the value 'STOP' to terminate c the iteration and ensure that the final results are c printed in the default format. The rest of the character c string TASK may be used to store other information. c 1) Terminate if the total number of f and g evaluations c exceeds 99. if (isave(34) .ge. 99) + task='STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT' c 2) Terminate if |proj g|/(1+|f|) < 1.0d-10, where c "proj g" denoted the projected gradient if (dsave(13) .le. 1.d-10*(1.0d0 + abs(f))) + task='STOP: THE PROJECTED GRADIENT IS SUFFICIENTLY SMALL' c We now wish to print the following information at each c iteration: c c 1) the current iteration number, isave(30), c 2) the total number of f and g evaluations, isave(34), c 3) the value of the objective function f, c 4) the norm of the projected gradient, dsve(13) c c See the comments at the end of driver1 for a description c of the variables isave and dsave. write (6,'(2(a,i5,4x),a,1p,d12.5,4x,a,1p,d12.5)') 'Iterate' + ,isave(30),'nfg =',isave(34),'f =',f,'|proj g| =',dsave(13) c If the run is to be terminated, we print also the information c contained in task as well as the final value of x. if (task(1:4) .eq. 'STOP') then write (6,*) task write (6,*) 'Final X=' write (6,'((1x,1p, 6(1x,d11.4)))') (x(i),i = 1,n) endif c go back to the minimization routine. goto 111 endif c ---------- the end of the loop ------------- c If task is neither FG nor NEW_X we terminate execution. stop end c======================= The end of driver2 ============================ Lbfgsb.3.0/driver2.f90000755 000765 000024 00000016772 12001634007 015441 0ustar00jmoralesstaff000000 000000 ! ! L-BFGS-B is released under the “New BSD License” (aka “Modified BSD License” ! or “3-clause license”) ! Please read attached file License.txt ! ! ! DRIVER 2 in Fortran 90 ! -------------------------------------------------------------- ! CUSTOMIZED DRIVER FOR L-BFGS-B ! -------------------------------------------------------------- ! ! L-BFGS-B is a code for solving large nonlinear optimization ! problems with simple bounds on the variables. ! ! The code can also be used for unconstrained problems and is ! as efficient for these problems as the earlier limited memory ! code L-BFGS. ! ! This driver illustrates how to control the termination of the ! run and how to design customized output. ! ! References: ! ! [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited ! memory algorithm for bound constrained optimization'', ! SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208. ! ! [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: FORTRAN ! Subroutines for Large Scale Bound Constrained Optimization'' ! Tech. Report, NAM-11, EECS Department, Northwestern University, ! 1994. ! ! ! (Postscript files of these papers are available via anonymous ! ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.) ! ! * * * ! ! February 2011 (latest revision) ! Optimization Center at Northwestern University ! Instituto Tecnologico Autonomo de Mexico ! ! Jorge Nocedal and Jose Luis Morales ! ! ************** program driver ! This driver shows how to replace the default stopping test ! by other termination criteria. It also illustrates how to ! print the values of several parameters during the course of ! the iteration. The sample problem used here is the same as in ! DRIVER1 (the extended Rosenbrock function with bounds on the ! variables). implicit none ! Declare variables and parameters needed by the code. ! ! Note that we suppress the default output (iprint = -1) ! We suppress both code-supplied stopping tests because the ! user is providing his/her own stopping criteria. integer, parameter :: n = 25, m = 5, iprint = -1 integer, parameter :: dp = kind(1.0d0) real(dp), parameter :: factr = 0.0d0, pgtol = 0.0d0 character(len=60) :: task, csave logical :: lsave(4) integer :: isave(44) real(dp) :: f real(dp) :: dsave(29) integer, allocatable :: nbd(:), iwa(:) real(dp), allocatable :: x(:), l(:), u(:), g(:), wa(:) ! real(dp) :: t1, t2 integer :: i allocate ( nbd(n), x(n), l(n), u(n), g(n) ) allocate ( iwa(3*n) ) allocate ( wa(2*m*n + 5*n + 11*m*m + 8*m) ) ! ! This driver shows how to replace the default stopping test ! by other termination criteria. It also illustrates how to ! print the values of several parameters during the course of ! the iteration. The sample problem used here is the same as in ! DRIVER1 (the extended Rosenbrock function with bounds on the ! variables). ! We now specify nbd which defines the bounds on the variables: ! l specifies the lower bounds, ! u specifies the upper bounds. ! First set bounds on the odd numbered variables. do 10 i=1, n,2 nbd(i)=2 l(i)=1.0d0 u(i)=1.0d2 10 continue ! Next set bounds on the even numbered variables. do 12 i=2, n,2 nbd(i)=2 l(i)=-1.0d2 u(i)=1.0d2 12 continue ! We now define the starting point. do 14 i=1, n x(i)=3.0d0 14 continue ! We now write the heading of the output. write (6,16) 16 format(/,5x, 'Solving sample problem.', & /,5x, ' (f = 0.0 at the optimal solution.)',/) ! We start the iteration by initializing task. ! task = 'START' ! ------- the beginning of the loop ---------- do while( task(1:2).eq.'FG'.or.task.eq.'NEW_X'.or. & task.eq.'START') ! This is the call to the L-BFGS-B code. call setulb(n,m,x,l,u,nbd,f,g,factr,pgtol,wa,iwa,task,iprint, & csave,lsave,isave,dsave) if (task(1:2) .eq. 'FG') then ! the minimization routine has returned to request the ! function f and gradient g values at the current x. ! Compute function value f for the sample problem. f =.25d0*(x(1) - 1.d0)**2 do 20 i=2,n f = f + (x(i) - x(i-1)**2)**2 20 continue f = 4.d0*f ! Compute gradient g for the sample problem. t1 = x(2) - x(1)**2 g(1) = 2.d0*(x(1) - 1.d0) - 1.6d1*x(1)*t1 do 22 i= 2,n-1 t2 = t1 t1 = x(i+1) - x(i)**2 g(i) = 8.d0*t2 - 1.6d1*x(i)*t1 22 continue g(n)=8.d0*t1 ! else ! if (task(1:5) .eq. 'NEW_X') then ! ! the minimization routine has returned with a new iterate. ! At this point have the opportunity of stopping the iteration ! or observing the values of certain parameters ! ! First are two examples of stopping tests. ! Note: task(1:4) must be assigned the value 'STOP' to terminate ! the iteration and ensure that the final results are ! printed in the default format. The rest of the character ! string TASK may be used to store other information. ! 1) Terminate if the total number of f and g evaluations ! exceeds 99. if (isave(34) .ge. 99) & task='STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT' ! 2) Terminate if |proj g|/(1+|f|) < 1.0d-10, where ! "proj g" denoted the projected gradient if (dsave(13) .le. 1.d-10*(1.0d0 + abs(f))) & task='STOP: THE PROJECTED GRADIENT IS SUFFICIENTLY SMALL' ! We now wish to print the following information at each ! iteration: ! ! 1) the current iteration number, isave(30), ! 2) the total number of f and g evaluations, isave(34), ! 3) the value of the objective function f, ! 4) the norm of the projected gradient, dsve(13) ! ! See the comments at the end of driver1 for a description ! of the variables isave and dsave. write (6,'(2(a,i5,4x),a,1p,d12.5,4x,a,1p,d12.5)') 'Iterate' & , isave(30),'nfg =',isave(34),'f =',f,'|proj g| =',dsave(13) ! If the run is to be terminated, we print also the information ! contained in task as well as the final value of x. if (task(1:4) .eq. 'STOP') then write (6,*) task write (6,*) 'Final X=' write (6,'((1x,1p, 6(1x,d11.4)))') (x(i),i = 1,n) end if end if end if end do ! ---------- the end of the loop ------------- ! If task is neither FG nor NEW_X we terminate execution. end program driver !======================= The end of driver2 ============================ Lbfgsb.3.0/driver3.f000644 000765 000024 00000022125 12001634203 015251 0ustar00jmoralesstaff000000 000000 c c L-BFGS-B is released under the “New BSD License” (aka “Modified BSD License” c or “3-clause license”) c Please read attached file License.txt c c DRIVER 3 in Fortran 77 c -------------------------------------------------------------- c TIME-CONTROLLED DRIVER FOR L-BFGS-B (version 3.0) c -------------------------------------------------------------- c c L-BFGS-B is a code for solving large nonlinear optimization c problems with simple bounds on the variables. c c The code can also be used for unconstrained problems and is c as efficient for these problems as the earlier limited memory c code L-BFGS. c c This driver shows how to terminate a run after some prescribed c CPU time has elapsed, and how to print the desired information c before exiting. c c References: c c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited c memory algorithm for bound constrained optimization'', c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208. c c [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: FORTRAN c Subroutines for Large Scale Bound Constrained Optimization'' c Tech. Report, NAM-11, EECS Department, Northwestern University, c 1994. c c c (Postscript files of these papers are available via anonymous c ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.) c c * * * c c February 2011 (latest revision) c Optimization Center at Northwestern University c Instituto Tecnologico Autonomo de Mexico c c Jorge Nocedal and Jose Luis Morales, Remark on "Algorithm 778: c L-BFGS-B: Fortran Subroutines for Large-Scale Bound Constrained c Optimization" (2011). To appear in ACM Transactions on c Mathematical Software, c c c ************** program driver c This time-controlled driver shows that it is possible to terminate c a run by elapsed CPU time, and yet be able to print all desired c information. This driver also illustrates the use of two c stopping criteria that may be used in conjunction with a limit c on execution time. The sample problem used here is the same as in c driver1 and driver2 (the extended Rosenbrock function with bounds c on the variables). integer nmax, mmax parameter (nmax=1024,mmax=17) c nmax is the dimension of the largest problem to be solved. c mmax is the maximum number of limited memory corrections. c Declare the variables needed by the code. c A description of all these variables is given at the end of c driver1. character*60 task, csave logical lsave(4) integer n, m, iprint, + nbd(nmax), iwa(3*nmax), isave(44) double precision f, factr, pgtol, + x(nmax), l(nmax), u(nmax), g(nmax), dsave(29), + wa(2*mmax*nmax+5*nmax+11*mmax*mmax+8*mmax) c Declare a few additional variables for the sample problem c and for keeping track of time. double precision t1, t2, time1, time2, tlimit integer i, j c We specify a limite on the CPU time (in seconds). tlimit = 0.2 c We suppress the default output. (The user could also elect to c use the default output by choosing iprint >= 0.) iprint = -1 c We suppress the code-supplied stopping tests because we will c provide our own termination conditions factr=0.0d0 pgtol=0.0d0 c We specify the dimension n of the sample problem and the number c m of limited memory corrections stored. (n and m should not c exceed the limits nmax and mmax respectively.) n=1000 m=10 c We now specify nbd which defines the bounds on the variables: c l specifies the lower bounds, c u specifies the upper bounds. c First set bounds on the odd-numbered variables. do 10 i=1,n,2 nbd(i)=2 l(i)=1.0d0 u(i)=1.0d2 10 continue c Next set bounds on the even-numbered variables. do 12 i=2,n,2 nbd(i)=2 l(i)=-1.0d2 u(i)=1.0d2 12 continue c We now define the starting point. do 14 i=1,n x(i)=3.0d0 14 continue c We now write the heading of the output. write (6,16) 16 format(/,5x, 'Solving sample problem.', + /,5x, ' (f = 0.0 at the optimal solution.)',/) c We start the iteration by initializing task. c task = 'START' c ------- the beginning of the loop ---------- c We begin counting the CPU time. call timer(time1) 111 continue c This is the call to the L-BFGS-B code. call setulb(n,m,x,l,u,nbd,f,g,factr,pgtol,wa,iwa,task,iprint, + csave,lsave,isave,dsave) if (task(1:2) .eq. 'FG') then c the minimization routine has returned to request the c function f and gradient g values at the current x. c Before evaluating f and g we check the CPU time spent. call timer(time2) if (time2-time1 .gt. tlimit) then task='STOP: CPU EXCEEDING THE TIME LIMIT.' c Note: Assigning task(1:4)='STOP' will terminate the run; c setting task(7:9)='CPU' will restore the information at c the latest iterate generated by the code so that it can c be correctly printed by the driver. c In this driver we have chosen to disable the c printing options of the code (we set iprint=-1); c instead we are using customized output: we print the c latest value of x, the corresponding function value f and c the norm of the projected gradient |proj g|. c We print out the information contained in task. write (6,*) task c We print the latest iterate contained in wa(j+1:j+n), where c j = 3*n+2*m*n+11*m**2 write (6,*) 'Latest iterate X =' write (6,'((1x,1p, 6(1x,d11.4)))') (wa(i),i = j+1,j+n) c We print the function value f and the norm of the projected c gradient |proj g| at the last iterate; they are stored in c dsave(2) and dsave(13) respectively. write (6,'(a,1p,d12.5,4x,a,1p,d12.5)') + 'At latest iterate f =',dsave(2),'|proj g| =',dsave(13) else c The time limit has not been reached and we compute c the function value f for the sample problem. f=.25d0*(x(1)-1.d0)**2 do 20 i=2,n f=f+(x(i)-x(i-1)**2)**2 20 continue f=4.d0*f c Compute gradient g for the sample problem. t1=x(2)-x(1)**2 g(1)=2.d0*(x(1)-1.d0)-1.6d1*x(1)*t1 do 22 i=2,n-1 t2=t1 t1=x(i+1)-x(i)**2 g(i)=8.d0*t2-1.6d1*x(i)*t1 22 continue g(n)=8.d0*t1 endif c go back to the minimization routine. goto 111 endif c if (task(1:5) .eq. 'NEW_X') then c the minimization routine has returned with a new iterate. c The time limit has not been reached, and we test whether c the following two stopping tests are satisfied: c 1) Terminate if the total number of f and g evaluations c exceeds 900. if (isave(34) .ge. 900) + task='STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT' c 2) Terminate if |proj g|/(1+|f|) < 1.0d-10. if (dsave(13) .le. 1.d-10*(1.0d0 + abs(f))) + task='STOP: THE PROJECTED GRADIENT IS SUFFICIENTLY SMALL' c We wish to print the following information at each iteration: c 1) the current iteration number, isave(30), c 2) the total number of f and g evaluations, isave(34), c 3) the value of the objective function f, c 4) the norm of the projected gradient, dsve(13) c c See the comments at the end of driver1 for a description c of the variables isave and dsave. write (6,'(2(a,i5,4x),a,1p,d12.5,4x,a,1p,d12.5)') 'Iterate' + ,isave(30),'nfg =',isave(34),'f =',f,'|proj g| =',dsave(13) c If the run is to be terminated, we print also the information c contained in task as well as the final value of x. if (task(1:4) .eq. 'STOP') then write (6,*) task write (6,*) 'Final X=' write (6,'((1x,1p, 6(1x,d11.4)))') (x(i),i = 1,n) endif c go back to the minimization routine. goto 111 endif c ---------- the end of the loop ------------- c If task is neither FG nor NEW_X we terminate execution. stop end c======================= The end of driver3 ============================ Lbfgsb.3.0/driver3.f90000644 000765 000024 00000022202 12001634056 015424 0ustar00jmoralesstaff000000 000000 ! ! L-BFGS-B is released under the “New BSD License” (aka “Modified BSD License” ! or “3-clause license”) ! Please read attached file License.txt ! ! DRIVER 3 in Fortran 90 ! -------------------------------------------------------------- ! TIME-CONTROLLED DRIVER FOR L-BFGS-B ! -------------------------------------------------------------- ! ! L-BFGS-B is a code for solving large nonlinear optimization ! problems with simple bounds on the variables. ! ! The code can also be used for unconstrained problems and is ! as efficient for these problems as the earlier limited memory ! code L-BFGS. ! ! This driver shows how to terminate a run after some prescribed ! CPU time has elapsed, and how to print the desired information ! before exiting. ! ! References: ! ! [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited ! memory algorithm for bound constrained optimization'', ! SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208. ! ! [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: FORTRAN ! Subroutines for Large Scale Bound Constrained Optimization'' ! Tech. Report, NAM-11, EECS Department, Northwestern University, ! 1994. ! ! ! (Postscript files of these papers are available via anonymous ! ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.) ! ! * * * ! ! February 2011 (latest revision) ! Optimization Center at Northwestern University ! Instituto Tecnologico Autonomo de Mexico ! ! Jorge Nocedal and Jose Luis Morales ! ! ************** program driver ! This time-controlled driver shows that it is possible to terminate ! a run by elapsed CPU time, and yet be able to print all desired ! information. This driver also illustrates the use of two ! stopping criteria that may be used in conjunction with a limit ! on execution time. The sample problem used here is the same as in ! driver1 and driver2 (the extended Rosenbrock function with bounds ! on the variables). implicit none ! We specify a limit on the CPU time (tlimit = 10 seconds) ! ! We suppress the default output (iprint = -1). The user could ! also elect to use the default output by choosing iprint >= 0.) ! We suppress the code-supplied stopping tests because we will ! provide our own termination conditions ! We specify the dimension n of the sample problem and the number ! m of limited memory corrections stored. integer, parameter :: n = 1000, m = 10, iprint = -1 integer, parameter :: dp = kind(1.0d0) real(dp), parameter :: factr = 0.0d0, pgtol = 0.0d0, & tlimit = 10.0d0 ! character(len=60) :: task, csave logical :: lsave(4) integer :: isave(44) real(dp) :: f real(dp) :: dsave(29) integer, allocatable :: nbd(:), iwa(:) real(dp), allocatable :: x(:), l(:), u(:), g(:), wa(:) ! real(dp) :: t1, t2, time1, time2 integer :: i, j allocate ( nbd(n), x(n), l(n), u(n), g(n) ) allocate ( iwa(3*n) ) allocate ( wa(2*m*n + 5*n + 11*m*m + 8*m) ) ! This time-controlled driver shows that it is possible to terminate ! a run by elapsed CPU time, and yet be able to print all desired ! information. This driver also illustrates the use of two ! stopping criteria that may be used in conjunction with a limit ! on execution time. The sample problem used here is the same as in ! driver1 and driver2 (the extended Rosenbrock function with bounds ! on the variables). ! We now specify nbd which defines the bounds on the variables: ! l specifies the lower bounds, ! u specifies the upper bounds. ! First set bounds on the odd-numbered variables. do 10 i=1, n,2 nbd(i)=2 l(i)=1.0d0 u(i)=1.0d2 10 continue ! Next set bounds on the even-numbered variables. do 12 i=2, n,2 nbd(i)=2 l(i)=-1.0d2 u(i)=1.0d2 12 continue ! We now define the starting point. do 14 i=1, n x(i)=3.0d0 14 continue ! We now write the heading of the output. write (6,16) 16 format(/,5x, 'Solving sample problem.',& /,5x, ' (f = 0.0 at the optimal solution.)',/) ! We start the iteration by initializing task. task = 'START' ! ------- the beginning of the loop ---------- ! We begin counting the CPU time. call timer(time1) do while( task(1:2).eq.'FG'.or.task.eq.'NEW_X'.or. & task.eq.'START') ! This is the call to the L-BFGS-B code. call setulb(n,m,x,l,u,nbd,f,g,factr,pgtol,wa,iwa, & task,iprint, csave,lsave,isave,dsave) if (task(1:2) .eq. 'FG') then ! the minimization routine has returned to request the ! function f and gradient g values at the current x. ! Before evaluating f and g we check the CPU time spent. call timer(time2) if (time2-time1 .gt. tlimit) then task='STOP: CPU EXCEEDING THE TIME LIMIT.' ! Note: Assigning task(1:4)='STOP' will terminate the run; ! setting task(7:9)='CPU' will restore the information at ! the latest iterate generated by the code so that it can ! be correctly printed by the driver. ! In this driver we have chosen to disable the ! printing options of the code (we set iprint=-1); ! instead we are using customized output: we print the ! latest value of x, the corresponding function value f and ! the norm of the projected gradient |proj g|. ! We print out the information contained in task. write (6,*) task ! We print the latest iterate contained in wa(j+1:j+n), where j = 3*n+2*m*n+11*m**2 write (6,*) 'Latest iterate X =' write (6,'((1x,1p, 6(1x,d11.4)))') (wa(i),i = j+1,j+n) ! We print the function value f and the norm of the projected ! gradient |proj g| at the last iterate; they are stored in ! dsave(2) and dsave(13) respectively. write (6,'(a,1p,d12.5,4x,a,1p,d12.5)') & 'At latest iterate f =',dsave(2),'|proj g| =',dsave(13) else ! The time limit has not been reached and we compute ! the function value f for the sample problem. f=.25d0*(x(1)-1.d0)**2 do 20 i=2, n f=f+(x(i)-x(i-1)**2)**2 20 continue f=4.d0*f ! Compute gradient g for the sample problem. t1 = x(2) - x(1)**2 g(1) = 2.d0*(x(1)-1.d0)-1.6d1*x(1)*t1 do 22 i=2,n-1 t2=t1 t1=x(i+1)-x(i)**2 g(i)=8.d0*t2-1.6d1*x(i)*t1 22 continue g(n)=8.d0*t1 endif ! go back to the minimization routine. else if (task(1:5) .eq. 'NEW_X') then ! the minimization routine has returned with a new iterate. ! The time limit has not been reached, and we test whether ! the following two stopping tests are satisfied: ! 1) Terminate if the total number of f and g evaluations ! exceeds 900. if (isave(34) .ge. 900) & task='STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT' ! 2) Terminate if |proj g|/(1+|f|) < 1.0d-10. if (dsave(13) .le. 1.d-10*(1.0d0 + abs(f))) & task='STOP: THE PROJECTED GRADIENT IS SUFFICIENTLY SMALL' ! We wish to print the following information at each iteration: ! 1) the current iteration number, isave(30), ! 2) the total number of f and g evaluations, isave(34), ! 3) the value of the objective function f, ! 4) the norm of the projected gradient, dsve(13) ! ! See the comments at the end of driver1 for a description ! of the variables isave and dsave. write (6,'(2(a,i5,4x),a,1p,d12.5,4x,a,1p,d12.5)') 'Iterate' & ,isave(30),'nfg =',isave(34),'f =',f,'|proj g| =',dsave(13) ! If the run is to be terminated, we print also the information ! contained in task as well as the final value of x. if (task(1:4) .eq. 'STOP') then write (6,*) task write (6,*) 'Final X=' write (6,'((1x,1p, 6(1x,d11.4)))') (x(i),i = 1,n) endif endif end if end do ! If task is neither FG nor NEW_X we terminate execution. end program driver !======================= The end of driver3 ============================ Lbfgsb.3.0/iterate.dat000644 000765 000024 00000004742 12001634625 015670 0ustar00jmoralesstaff000000 000000 RUNNING THE L-BFGS-B CODE it = iteration number nf = number of function evaluations nseg = number of segments explored during the Cauchy search nact = number of active bounds at the generalized Cauchy point sub = manner in which the subspace minimization terminated: con = converged, bnd = a bound was reached itls = number of iterations performed in the line search stepl = step length used tstep = norm of the displacement (total step) projg = norm of the projected gradient f = function value * * * Machine precision = 2.220D-16 N = 25 M = 5 it nf nseg nact sub itls stepl tstep projg f 0 1 - - - - - - 1.030D+02 3.460D+03 1 5 25 24 --- 3 1.2D-02 4.2D+00 6.507D+01 2.398D+03 2 6 1 0 con 0 1.0D+00 4.2D+00 3.640D+01 1.438D+02 3 7 1 0 con 0 1.0D+00 6.8D-01 2.290D+01 7.282D+01 4 8 1 0 con 0 1.0D+00 1.1D+00 6.954D+00 1.603D+01 5 9 1 0 con 0 1.0D+00 6.5D-01 9.055D+00 5.187D+00 6 10 1 0 bnd 0 1.0D+00 6.1D-01 1.967D+01 2.127D+00 7 11 1 0 bnd 0 1.0D+00 1.8D-01 2.128D+00 2.076D-01 8 12 1 0 bnd 0 1.0D+00 9.0D-02 8.325D-01 5.327D-02 9 13 1 0 bnd 0 1.0D+00 5.3D-02 4.279D-01 1.305D-02 10 14 1 1 bnd 0 1.0D+00 2.5D-02 2.008D-01 3.860D-03 11 15 1 2 bnd 0 1.0D+00 2.0D-02 1.377D-01 7.457D-04 12 16 1 0 bnd 0 1.0D+00 7.8D-03 1.213D-01 3.540D-04 13 17 1 2 con 0 1.0D+00 3.1D-03 2.978D-02 7.425D-05 14 18 1 0 con 0 1.0D+00 1.1D-03 1.727D-02 3.741D-05 15 19 1 0 con 0 1.0D+00 2.1D-03 2.868D-02 1.098D-05 16 21 1 0 con 1 4.6D-01 4.8D-04 8.081D-03 3.908D-06 17 22 1 0 con 0 1.0D+00 2.2D-04 3.476D-03 1.995D-06 18 23 1 0 con 0 1.0D+00 2.2D-04 2.253D-03 8.258D-07 19 24 1 0 con 0 1.0D+00 2.4D-04 1.458D-03 1.992D-07 20 25 1 0 con 0 1.0D+00 1.8D-04 1.482D-03 5.758D-08 21 26 1 0 con 0 1.0D+00 6.8D-05 5.443D-04 1.463D-08 22 27 1 0 con 0 1.0D+00 2.3D-05 2.252D-04 2.363D-09 23 28 1 0 con 0 1.0D+00 8.0D-06 1.721D-04 1.083D-09 CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH Total User time 3.337E-03 seconds. Lbfgsb.3.0/lbfgsb.f000644 000765 000024 00000376670 12001634310 015152 0ustar00jmoralesstaff000000 000000 c c L-BFGS-B is released under the “New BSD License” (aka “Modified BSD License” c or “3-clause license”) c Please read attached file License.txt c c=========== L-BFGS-B (version 3.0. April 25, 2011 =================== c c This is a modified version of L-BFGS-B. Minor changes in the updated c code appear preceded by a line comment as follows c c c-jlm-jn c c Major changes are described in the accompanying paper: c c Jorge Nocedal and Jose Luis Morales, Remark on "Algorithm 778: c L-BFGS-B: Fortran Subroutines for Large-Scale Bound Constrained c Optimization" (2011). To appear in ACM Transactions on c Mathematical Software, c c The paper describes an improvement and a correction to Algorithm 778. c It is shown that the performance of the algorithm can be improved c significantly by making a relatively simple modication to the subspace c minimization phase. The correction concerns an error caused by the use c of routine dpmeps to estimate machine precision. c c The total work space **wa** required by the new version is c c 2*m*n + 11m*m + 5*n + 8*m c c the old version required c c 2*m*n + 12m*m + 4*n + 12*m c c c J. Nocedal Department of Electrical Engineering and c Computer Science. c Northwestern University. Evanston, IL. USA c c c J.L Morales Departamento de Matematicas, c Instituto Tecnologico Autonomo de Mexico c Mexico D.F. Mexico. c c March 2011 c c============================================================================= subroutine setulb(n, m, x, l, u, nbd, f, g, factr, pgtol, wa, iwa, + task, iprint, csave, lsave, isave, dsave) character*60 task, csave logical lsave(4) integer n, m, iprint, + nbd(n), iwa(3*n), isave(44) double precision f, factr, pgtol, x(n), l(n), u(n), g(n), c c-jlm-jn + wa(2*m*n + 5*n + 11*m*m + 8*m), dsave(29) c ************ c c Subroutine setulb c c This subroutine partitions the working arrays wa and iwa, and c then uses the limited memory BFGS method to solve the bound c constrained optimization problem by calling mainlb. c (The direct method will be used in the subspace minimization.) c c n is an integer variable. c On entry n is the dimension of the problem. c On exit n is unchanged. c c m is an integer variable. c On entry m is the maximum number of variable metric corrections c used to define the limited memory matrix. c On exit m is unchanged. c c x is a double precision array of dimension n. c On entry x is an approximation to the solution. c On exit x is the current approximation. c c l is a double precision array of dimension n. c On entry l is the lower bound on x. c On exit l is unchanged. c c u is a double precision array of dimension n. c On entry u is the upper bound on x. c On exit u is unchanged. c c nbd is an integer array of dimension n. c On entry nbd represents the type of bounds imposed on the c variables, and must be specified as follows: c nbd(i)=0 if x(i) is unbounded, c 1 if x(i) has only a lower bound, c 2 if x(i) has both lower and upper bounds, and c 3 if x(i) has only an upper bound. c On exit nbd is unchanged. c c f is a double precision variable. c On first entry f is unspecified. c On final exit f is the value of the function at x. c c g is a double precision array of dimension n. c On first entry g is unspecified. c On final exit g is the value of the gradient at x. c c factr is a double precision variable. c On entry factr >= 0 is specified by the user. The iteration c will stop when c c (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch c c where epsmch is the machine precision, which is automatically c generated by the code. Typical values for factr: 1.d+12 for c low accuracy; 1.d+7 for moderate accuracy; 1.d+1 for extremely c high accuracy. c On exit factr is unchanged. c c pgtol is a double precision variable. c On entry pgtol >= 0 is specified by the user. The iteration c will stop when c c max{|proj g_i | i = 1, ..., n} <= pgtol c c where pg_i is the ith component of the projected gradient. c On exit pgtol is unchanged. c c wa is a double precision working array of length c (2mmax + 5)nmax + 12mmax^2 + 12mmax. c c iwa is an integer working array of length 3nmax. c c task is a working string of characters of length 60 indicating c the current job when entering and quitting this subroutine. c c iprint is an integer variable that must be set by the user. c It controls the frequency and type of output generated: c iprint<0 no output is generated; c iprint=0 print only one line at the last iteration; c 0100 print details of every iteration including x and g; c When iprint > 0, the file iterate.dat will be created to c summarize the iteration. c c csave is a working string of characters of length 60. c c lsave is a logical working array of dimension 4. c On exit with 'task' = NEW_X, the following information is c available: c If lsave(1) = .true. then the initial X has been replaced by c its projection in the feasible set; c If lsave(2) = .true. then the problem is constrained; c If lsave(3) = .true. then each variable has upper and lower c bounds; c c isave is an integer working array of dimension 44. c On exit with 'task' = NEW_X, the following information is c available: c isave(22) = the total number of intervals explored in the c search of Cauchy points; c isave(26) = the total number of skipped BFGS updates before c the current iteration; c isave(30) = the number of current iteration; c isave(31) = the total number of BFGS updates prior the current c iteration; c isave(33) = the number of intervals explored in the search of c Cauchy point in the current iteration; c isave(34) = the total number of function and gradient c evaluations; c isave(36) = the number of function value or gradient c evaluations in the current iteration; c if isave(37) = 0 then the subspace argmin is within the box; c if isave(37) = 1 then the subspace argmin is beyond the box; c isave(38) = the number of free variables in the current c iteration; c isave(39) = the number of active constraints in the current c iteration; c n + 1 - isave(40) = the number of variables leaving the set of c active constraints in the current iteration; c isave(41) = the number of variables entering the set of active c constraints in the current iteration. c c dsave is a double precision working array of dimension 29. c On exit with 'task' = NEW_X, the following information is c available: c dsave(1) = current 'theta' in the BFGS matrix; c dsave(2) = f(x) in the previous iteration; c dsave(3) = factr*epsmch; c dsave(4) = 2-norm of the line search direction vector; c dsave(5) = the machine precision epsmch generated by the code; c dsave(7) = the accumulated time spent on searching for c Cauchy points; c dsave(8) = the accumulated time spent on c subspace minimization; c dsave(9) = the accumulated time spent on line search; c dsave(11) = the slope of the line search function at c the current point of line search; c dsave(12) = the maximum relative step length imposed in c line search; c dsave(13) = the infinity norm of the projected gradient; c dsave(14) = the relative step length in the line search; c dsave(15) = the slope of the line search function at c the starting point of the line search; c dsave(16) = the square of the 2-norm of the line search c direction vector. c c Subprograms called: c c L-BFGS-B Library ... mainlb. c c c References: c c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited c memory algorithm for bound constrained optimization'', c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208. c c [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: a c limited memory FORTRAN code for solving bound constrained c optimization problems'', Tech. Report, NAM-11, EECS Department, c Northwestern University, 1994. c c (Postscript files of these papers are available via anonymous c ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.) c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c c ************ c-jlm-jn integer lws,lr,lz,lt,ld,lxp,lwa, + lwy,lsy,lss,lwt,lwn,lsnd if (task .eq. 'START') then isave(1) = m*n isave(2) = m**2 isave(3) = 4*m**2 isave(4) = 1 ! ws m*n isave(5) = isave(4) + isave(1) ! wy m*n isave(6) = isave(5) + isave(1) ! wsy m**2 isave(7) = isave(6) + isave(2) ! wss m**2 isave(8) = isave(7) + isave(2) ! wt m**2 isave(9) = isave(8) + isave(2) ! wn 4*m**2 isave(10) = isave(9) + isave(3) ! wsnd 4*m**2 isave(11) = isave(10) + isave(3) ! wz n isave(12) = isave(11) + n ! wr n isave(13) = isave(12) + n ! wd n isave(14) = isave(13) + n ! wt n isave(15) = isave(14) + n ! wxp n isave(16) = isave(15) + n ! wa 8*m endif lws = isave(4) lwy = isave(5) lsy = isave(6) lss = isave(7) lwt = isave(8) lwn = isave(9) lsnd = isave(10) lz = isave(11) lr = isave(12) ld = isave(13) lt = isave(14) lxp = isave(15) lwa = isave(16) call mainlb(n,m,x,l,u,nbd,f,g,factr,pgtol, + wa(lws),wa(lwy),wa(lsy),wa(lss), wa(lwt), + wa(lwn),wa(lsnd),wa(lz),wa(lr),wa(ld),wa(lt),wa(lxp), + wa(lwa), + iwa(1),iwa(n+1),iwa(2*n+1),task,iprint, + csave,lsave,isave(22),dsave) return end c======================= The end of setulb ============================= subroutine mainlb(n, m, x, l, u, nbd, f, g, factr, pgtol, ws, wy, + sy, ss, wt, wn, snd, z, r, d, t, xp, wa, + index, iwhere, indx2, task, + iprint, csave, lsave, isave, dsave) implicit none character*60 task, csave logical lsave(4) integer n, m, iprint, nbd(n), index(n), + iwhere(n), indx2(n), isave(23) double precision f, factr, pgtol, + x(n), l(n), u(n), g(n), z(n), r(n), d(n), t(n), c-jlm-jn + xp(n), + wa(8*m), + ws(n, m), wy(n, m), sy(m, m), ss(m, m), + wt(m, m), wn(2*m, 2*m), snd(2*m, 2*m), dsave(29) c ************ c c Subroutine mainlb c c This subroutine solves bound constrained optimization problems by c using the compact formula of the limited memory BFGS updates. c c n is an integer variable. c On entry n is the number of variables. c On exit n is unchanged. c c m is an integer variable. c On entry m is the maximum number of variable metric c corrections allowed in the limited memory matrix. c On exit m is unchanged. c c x is a double precision array of dimension n. c On entry x is an approximation to the solution. c On exit x is the current approximation. c c l is a double precision array of dimension n. c On entry l is the lower bound of x. c On exit l is unchanged. c c u is a double precision array of dimension n. c On entry u is the upper bound of x. c On exit u is unchanged. c c nbd is an integer array of dimension n. c On entry nbd represents the type of bounds imposed on the c variables, and must be specified as follows: c nbd(i)=0 if x(i) is unbounded, c 1 if x(i) has only a lower bound, c 2 if x(i) has both lower and upper bounds, c 3 if x(i) has only an upper bound. c On exit nbd is unchanged. c c f is a double precision variable. c On first entry f is unspecified. c On final exit f is the value of the function at x. c c g is a double precision array of dimension n. c On first entry g is unspecified. c On final exit g is the value of the gradient at x. c c factr is a double precision variable. c On entry factr >= 0 is specified by the user. The iteration c will stop when c c (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch c c where epsmch is the machine precision, which is automatically c generated by the code. c On exit factr is unchanged. c c pgtol is a double precision variable. c On entry pgtol >= 0 is specified by the user. The iteration c will stop when c c max{|proj g_i | i = 1, ..., n} <= pgtol c c where pg_i is the ith component of the projected gradient. c On exit pgtol is unchanged. c c ws, wy, sy, and wt are double precision working arrays used to c store the following information defining the limited memory c BFGS matrix: c ws, of dimension n x m, stores S, the matrix of s-vectors; c wy, of dimension n x m, stores Y, the matrix of y-vectors; c sy, of dimension m x m, stores S'Y; c ss, of dimension m x m, stores S'S; c yy, of dimension m x m, stores Y'Y; c wt, of dimension m x m, stores the Cholesky factorization c of (theta*S'S+LD^(-1)L'); see eq. c (2.26) in [3]. c c wn is a double precision working array of dimension 2m x 2m c used to store the LEL^T factorization of the indefinite matrix c K = [-D -Y'ZZ'Y/theta L_a'-R_z' ] c [L_a -R_z theta*S'AA'S ] c c where E = [-I 0] c [ 0 I] c c snd is a double precision working array of dimension 2m x 2m c used to store the lower triangular part of c N = [Y' ZZ'Y L_a'+R_z'] c [L_a +R_z S'AA'S ] c c z(n),r(n),d(n),t(n), xp(n),wa(8*m) are double precision working arrays. c z is used at different times to store the Cauchy point and c the Newton point. c xp is used to safeguard the projected Newton direction c c sg(m),sgo(m),yg(m),ygo(m) are double precision working arrays. c c index is an integer working array of dimension n. c In subroutine freev, index is used to store the free and fixed c variables at the Generalized Cauchy Point (GCP). c c iwhere is an integer working array of dimension n used to record c the status of the vector x for GCP computation. c iwhere(i)=0 or -3 if x(i) is free and has bounds, c 1 if x(i) is fixed at l(i), and l(i) .ne. u(i) c 2 if x(i) is fixed at u(i), and u(i) .ne. l(i) c 3 if x(i) is always fixed, i.e., u(i)=x(i)=l(i) c -1 if x(i) is always free, i.e., no bounds on it. c c indx2 is an integer working array of dimension n. c Within subroutine cauchy, indx2 corresponds to the array iorder. c In subroutine freev, a list of variables entering and leaving c the free set is stored in indx2, and it is passed on to c subroutine formk with this information. c c task is a working string of characters of length 60 indicating c the current job when entering and leaving this subroutine. c c iprint is an INTEGER variable that must be set by the user. c It controls the frequency and type of output generated: c iprint<0 no output is generated; c iprint=0 print only one line at the last iteration; c 0100 print details of every iteration including x and g; c When iprint > 0, the file iterate.dat will be created to c summarize the iteration. c c csave is a working string of characters of length 60. c c lsave is a logical working array of dimension 4. c c isave is an integer working array of dimension 23. c c dsave is a double precision working array of dimension 29. c c c Subprograms called c c L-BFGS-B Library ... cauchy, subsm, lnsrlb, formk, c c errclb, prn1lb, prn2lb, prn3lb, active, projgr, c c freev, cmprlb, matupd, formt. c c Minpack2 Library ... timer c c Linpack Library ... dcopy, ddot. c c c References: c c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited c memory algorithm for bound constrained optimization'', c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208. c c [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: FORTRAN c Subroutines for Large Scale Bound Constrained Optimization'' c Tech. Report, NAM-11, EECS Department, Northwestern University, c 1994. c c [3] R. Byrd, J. Nocedal and R. Schnabel "Representations of c Quasi-Newton Matrices and their use in Limited Memory Methods'', c Mathematical Programming 63 (1994), no. 4, pp. 129-156. c c (Postscript files of these papers are available via anonymous c ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.) c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c c ************ logical prjctd,cnstnd,boxed,updatd,wrk character*3 word integer i,k,nintol,itfile,iback,nskip, + head,col,iter,itail,iupdat, + nseg,nfgv,info,ifun, + iword,nfree,nact,ileave,nenter double precision theta,fold,ddot,dr,rr,tol, + xstep,sbgnrm,ddum,dnorm,dtd,epsmch, + cpu1,cpu2,cachyt,sbtime,lnscht,time1,time2, + gd,gdold,stp,stpmx,time double precision one,zero parameter (one=1.0d0,zero=0.0d0) if (task .eq. 'START') then epsmch = epsilon(one) call timer(time1) c Initialize counters and scalars when task='START'. c for the limited memory BFGS matrices: col = 0 head = 1 theta = one iupdat = 0 updatd = .false. iback = 0 itail = 0 iword = 0 nact = 0 ileave = 0 nenter = 0 fold = zero dnorm = zero cpu1 = zero gd = zero stpmx = zero sbgnrm = zero stp = zero gdold = zero dtd = zero c for operation counts: iter = 0 nfgv = 0 nseg = 0 nintol = 0 nskip = 0 nfree = n ifun = 0 c for stopping tolerance: tol = factr*epsmch c for measuring running time: cachyt = 0 sbtime = 0 lnscht = 0 c 'word' records the status of subspace solutions. word = '---' c 'info' records the termination information. info = 0 itfile = 8 if (iprint .ge. 1) then c open a summary file 'iterate.dat' open (8, file = 'iterate.dat', status = 'unknown') endif c Check the input arguments for errors. call errclb(n,m,factr,l,u,nbd,task,info,k) if (task(1:5) .eq. 'ERROR') then call prn3lb(n,x,f,task,iprint,info,itfile, + iter,nfgv,nintol,nskip,nact,sbgnrm, + zero,nseg,word,iback,stp,xstep,k, + cachyt,sbtime,lnscht) return endif call prn1lb(n,m,l,u,x,iprint,itfile,epsmch) c Initialize iwhere & project x onto the feasible set. call active(n,l,u,nbd,x,iwhere,iprint,prjctd,cnstnd,boxed) c The end of the initialization. else c restore local variables. prjctd = lsave(1) cnstnd = lsave(2) boxed = lsave(3) updatd = lsave(4) nintol = isave(1) itfile = isave(3) iback = isave(4) nskip = isave(5) head = isave(6) col = isave(7) itail = isave(8) iter = isave(9) iupdat = isave(10) nseg = isave(12) nfgv = isave(13) info = isave(14) ifun = isave(15) iword = isave(16) nfree = isave(17) nact = isave(18) ileave = isave(19) nenter = isave(20) theta = dsave(1) fold = dsave(2) tol = dsave(3) dnorm = dsave(4) epsmch = dsave(5) cpu1 = dsave(6) cachyt = dsave(7) sbtime = dsave(8) lnscht = dsave(9) time1 = dsave(10) gd = dsave(11) stpmx = dsave(12) sbgnrm = dsave(13) stp = dsave(14) gdold = dsave(15) dtd = dsave(16) c After returning from the driver go to the point where execution c is to resume. if (task(1:5) .eq. 'FG_LN') goto 666 if (task(1:5) .eq. 'NEW_X') goto 777 if (task(1:5) .eq. 'FG_ST') goto 111 if (task(1:4) .eq. 'STOP') then if (task(7:9) .eq. 'CPU') then c restore the previous iterate. call dcopy(n,t,1,x,1) call dcopy(n,r,1,g,1) f = fold endif goto 999 endif endif c Compute f0 and g0. task = 'FG_START' c return to the driver to calculate f and g; reenter at 111. goto 1000 111 continue nfgv = 1 c Compute the infinity norm of the (-) projected gradient. call projgr(n,l,u,nbd,x,g,sbgnrm) if (iprint .ge. 1) then write (6,1002) iter,f,sbgnrm write (itfile,1003) iter,nfgv,sbgnrm,f endif if (sbgnrm .le. pgtol) then c terminate the algorithm. task = 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL' goto 999 endif c ----------------- the beginning of the loop -------------------------- 222 continue if (iprint .ge. 99) write (6,1001) iter + 1 iword = -1 c if (.not. cnstnd .and. col .gt. 0) then c skip the search for GCP. call dcopy(n,x,1,z,1) wrk = updatd nseg = 0 goto 333 endif cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c c Compute the Generalized Cauchy Point (GCP). c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc call timer(cpu1) call cauchy(n,x,l,u,nbd,g,indx2,iwhere,t,d,z, + m,wy,ws,sy,wt,theta,col,head, + wa(1),wa(2*m+1),wa(4*m+1),wa(6*m+1),nseg, + iprint, sbgnrm, info, epsmch) if (info .ne. 0) then c singular triangular system detected; refresh the lbfgs memory. if(iprint .ge. 1) write (6, 1005) info = 0 col = 0 head = 1 theta = one iupdat = 0 updatd = .false. call timer(cpu2) cachyt = cachyt + cpu2 - cpu1 goto 222 endif call timer(cpu2) cachyt = cachyt + cpu2 - cpu1 nintol = nintol + nseg c Count the entering and leaving variables for iter > 0; c find the index set of free and active variables at the GCP. call freev(n,nfree,index,nenter,ileave,indx2, + iwhere,wrk,updatd,cnstnd,iprint,iter) nact = n - nfree 333 continue c If there are no free variables or B=theta*I, then c skip the subspace minimization. if (nfree .eq. 0 .or. col .eq. 0) goto 555 cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c c Subspace minimization. c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc call timer(cpu1) c Form the LEL^T factorization of the indefinite c matrix K = [-D -Y'ZZ'Y/theta L_a'-R_z' ] c [L_a -R_z theta*S'AA'S ] c where E = [-I 0] c [ 0 I] if (wrk) call formk(n,nfree,index,nenter,ileave,indx2,iupdat, + updatd,wn,snd,m,ws,wy,sy,theta,col,head,info) if (info .ne. 0) then c nonpositive definiteness in Cholesky factorization; c refresh the lbfgs memory and restart the iteration. if(iprint .ge. 1) write (6, 1006) info = 0 col = 0 head = 1 theta = one iupdat = 0 updatd = .false. call timer(cpu2) sbtime = sbtime + cpu2 - cpu1 goto 222 endif c compute r=-Z'B(xcp-xk)-Z'g (using wa(2m+1)=W'(xcp-x) c from 'cauchy'). call cmprlb(n,m,x,g,ws,wy,sy,wt,z,r,wa,index, + theta,col,head,nfree,cnstnd,info) if (info .ne. 0) goto 444 c-jlm-jn call the direct method. call subsm( n, m, nfree, index, l, u, nbd, z, r, xp, ws, wy, + theta, x, g, col, head, iword, wa, wn, iprint, info) 444 continue if (info .ne. 0) then c singular triangular system detected; c refresh the lbfgs memory and restart the iteration. if(iprint .ge. 1) write (6, 1005) info = 0 col = 0 head = 1 theta = one iupdat = 0 updatd = .false. call timer(cpu2) sbtime = sbtime + cpu2 - cpu1 goto 222 endif call timer(cpu2) sbtime = sbtime + cpu2 - cpu1 555 continue cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c c Line search and optimality tests. c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c Generate the search direction d:=z-x. do 40 i = 1, n d(i) = z(i) - x(i) 40 continue call timer(cpu1) 666 continue call lnsrlb(n,l,u,nbd,x,f,fold,gd,gdold,g,d,r,t,z,stp,dnorm, + dtd,xstep,stpmx,iter,ifun,iback,nfgv,info,task, + boxed,cnstnd,csave,isave(22),dsave(17)) if (info .ne. 0 .or. iback .ge. 20) then c restore the previous iterate. call dcopy(n,t,1,x,1) call dcopy(n,r,1,g,1) f = fold if (col .eq. 0) then c abnormal termination. if (info .eq. 0) then info = -9 c restore the actual number of f and g evaluations etc. nfgv = nfgv - 1 ifun = ifun - 1 iback = iback - 1 endif task = 'ABNORMAL_TERMINATION_IN_LNSRCH' iter = iter + 1 goto 999 else c refresh the lbfgs memory and restart the iteration. if(iprint .ge. 1) write (6, 1008) if (info .eq. 0) nfgv = nfgv - 1 info = 0 col = 0 head = 1 theta = one iupdat = 0 updatd = .false. task = 'RESTART_FROM_LNSRCH' call timer(cpu2) lnscht = lnscht + cpu2 - cpu1 goto 222 endif else if (task(1:5) .eq. 'FG_LN') then c return to the driver for calculating f and g; reenter at 666. goto 1000 else c calculate and print out the quantities related to the new X. call timer(cpu2) lnscht = lnscht + cpu2 - cpu1 iter = iter + 1 c Compute the infinity norm of the projected (-)gradient. call projgr(n,l,u,nbd,x,g,sbgnrm) c Print iteration information. call prn2lb(n,x,f,g,iprint,itfile,iter,nfgv,nact, + sbgnrm,nseg,word,iword,iback,stp,xstep) goto 1000 endif 777 continue c Test for termination. if (sbgnrm .le. pgtol) then c terminate the algorithm. task = 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL' goto 999 endif ddum = max(abs(fold), abs(f), one) if ((fold - f) .le. tol*ddum) then c terminate the algorithm. task = 'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH' if (iback .ge. 10) info = -5 c i.e., to issue a warning if iback>10 in the line search. goto 999 endif c Compute d=newx-oldx, r=newg-oldg, rr=y'y and dr=y's. do 42 i = 1, n r(i) = g(i) - r(i) 42 continue rr = ddot(n,r,1,r,1) if (stp .eq. one) then dr = gd - gdold ddum = -gdold else dr = (gd - gdold)*stp call dscal(n,stp,d,1) ddum = -gdold*stp endif if (dr .le. epsmch*ddum) then c skip the L-BFGS update. nskip = nskip + 1 updatd = .false. if (iprint .ge. 1) write (6,1004) dr, ddum goto 888 endif cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c c Update the L-BFGS matrix. c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc updatd = .true. iupdat = iupdat + 1 c Update matrices WS and WY and form the middle matrix in B. call matupd(n,m,ws,wy,sy,ss,d,r,itail, + iupdat,col,head,theta,rr,dr,stp,dtd) c Form the upper half of the pds T = theta*SS + L*D^(-1)*L'; c Store T in the upper triangular of the array wt; c Cholesky factorize T to J*J' with c J' stored in the upper triangular of wt. call formt(m,wt,sy,ss,col,theta,info) if (info .ne. 0) then c nonpositive definiteness in Cholesky factorization; c refresh the lbfgs memory and restart the iteration. if(iprint .ge. 1) write (6, 1007) info = 0 col = 0 head = 1 theta = one iupdat = 0 updatd = .false. goto 222 endif c Now the inverse of the middle matrix in B is c [ D^(1/2) O ] [ -D^(1/2) D^(-1/2)*L' ] c [ -L*D^(-1/2) J ] [ 0 J' ] 888 continue c -------------------- the end of the loop ----------------------------- goto 222 999 continue call timer(time2) time = time2 - time1 call prn3lb(n,x,f,task,iprint,info,itfile, + iter,nfgv,nintol,nskip,nact,sbgnrm, + time,nseg,word,iback,stp,xstep,k, + cachyt,sbtime,lnscht) 1000 continue c Save local variables. lsave(1) = prjctd lsave(2) = cnstnd lsave(3) = boxed lsave(4) = updatd isave(1) = nintol isave(3) = itfile isave(4) = iback isave(5) = nskip isave(6) = head isave(7) = col isave(8) = itail isave(9) = iter isave(10) = iupdat isave(12) = nseg isave(13) = nfgv isave(14) = info isave(15) = ifun isave(16) = iword isave(17) = nfree isave(18) = nact isave(19) = ileave isave(20) = nenter dsave(1) = theta dsave(2) = fold dsave(3) = tol dsave(4) = dnorm dsave(5) = epsmch dsave(6) = cpu1 dsave(7) = cachyt dsave(8) = sbtime dsave(9) = lnscht dsave(10) = time1 dsave(11) = gd dsave(12) = stpmx dsave(13) = sbgnrm dsave(14) = stp dsave(15) = gdold dsave(16) = dtd 1001 format (//,'ITERATION ',i5) 1002 format + (/,'At iterate',i5,4x,'f= ',1p,d12.5,4x,'|proj g|= ',1p,d12.5) 1003 format (2(1x,i4),5x,'-',5x,'-',3x,'-',5x,'-',5x,'-',8x,'-',3x, + 1p,2(1x,d10.3)) 1004 format (' ys=',1p,e10.3,' -gs=',1p,e10.3,' BFGS update SKIPPED') 1005 format (/, +' Singular triangular system detected;',/, +' refresh the lbfgs memory and restart the iteration.') 1006 format (/, +' Nonpositive definiteness in Cholesky factorization in formk;',/, +' refresh the lbfgs memory and restart the iteration.') 1007 format (/, +' Nonpositive definiteness in Cholesky factorization in formt;',/, +' refresh the lbfgs memory and restart the iteration.') 1008 format (/, +' Bad direction in the line search;',/, +' refresh the lbfgs memory and restart the iteration.') return end c======================= The end of mainlb ============================= subroutine active(n, l, u, nbd, x, iwhere, iprint, + prjctd, cnstnd, boxed) logical prjctd, cnstnd, boxed integer n, iprint, nbd(n), iwhere(n) double precision x(n), l(n), u(n) c ************ c c Subroutine active c c This subroutine initializes iwhere and projects the initial x to c the feasible set if necessary. c c iwhere is an integer array of dimension n. c On entry iwhere is unspecified. c On exit iwhere(i)=-1 if x(i) has no bounds c 3 if l(i)=u(i) c 0 otherwise. c In cauchy, iwhere is given finer gradations. c c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c c ************ integer nbdd,i double precision zero parameter (zero=0.0d0) c Initialize nbdd, prjctd, cnstnd and boxed. nbdd = 0 prjctd = .false. cnstnd = .false. boxed = .true. c Project the initial x to the easible set if necessary. do 10 i = 1, n if (nbd(i) .gt. 0) then if (nbd(i) .le. 2 .and. x(i) .le. l(i)) then if (x(i) .lt. l(i)) then prjctd = .true. x(i) = l(i) endif nbdd = nbdd + 1 else if (nbd(i) .ge. 2 .and. x(i) .ge. u(i)) then if (x(i) .gt. u(i)) then prjctd = .true. x(i) = u(i) endif nbdd = nbdd + 1 endif endif 10 continue c Initialize iwhere and assign values to cnstnd and boxed. do 20 i = 1, n if (nbd(i) .ne. 2) boxed = .false. if (nbd(i) .eq. 0) then c this variable is always free iwhere(i) = -1 c otherwise set x(i)=mid(x(i), u(i), l(i)). else cnstnd = .true. if (nbd(i) .eq. 2 .and. u(i) - l(i) .le. zero) then c this variable is always fixed iwhere(i) = 3 else iwhere(i) = 0 endif endif 20 continue if (iprint .ge. 0) then if (prjctd) write (6,*) + 'The initial X is infeasible. Restart with its projection.' if (.not. cnstnd) + write (6,*) 'This problem is unconstrained.' endif if (iprint .gt. 0) write (6,1001) nbdd 1001 format (/,'At X0 ',i9,' variables are exactly at the bounds') return end c======================= The end of active ============================= subroutine bmv(m, sy, wt, col, v, p, info) integer m, col, info double precision sy(m, m), wt(m, m), v(2*col), p(2*col) c ************ c c Subroutine bmv c c This subroutine computes the product of the 2m x 2m middle matrix c in the compact L-BFGS formula of B and a 2m vector v; c it returns the product in p. c c m is an integer variable. c On entry m is the maximum number of variable metric corrections c used to define the limited memory matrix. c On exit m is unchanged. c c sy is a double precision array of dimension m x m. c On entry sy specifies the matrix S'Y. c On exit sy is unchanged. c c wt is a double precision array of dimension m x m. c On entry wt specifies the upper triangular matrix J' which is c the Cholesky factor of (thetaS'S+LD^(-1)L'). c On exit wt is unchanged. c c col is an integer variable. c On entry col specifies the number of s-vectors (or y-vectors) c stored in the compact L-BFGS formula. c On exit col is unchanged. c c v is a double precision array of dimension 2col. c On entry v specifies vector v. c On exit v is unchanged. c c p is a double precision array of dimension 2col. c On entry p is unspecified. c On exit p is the product Mv. c c info is an integer variable. c On entry info is unspecified. c On exit info = 0 for normal return, c = nonzero for abnormal return when the system c to be solved by dtrsl is singular. c c Subprograms called: c c Linpack ... dtrsl. c c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c c ************ integer i,k,i2 double precision sum if (col .eq. 0) return c PART I: solve [ D^(1/2) O ] [ p1 ] = [ v1 ] c [ -L*D^(-1/2) J ] [ p2 ] [ v2 ]. c solve Jp2=v2+LD^(-1)v1. p(col + 1) = v(col + 1) do 20 i = 2, col i2 = col + i sum = 0.0d0 do 10 k = 1, i - 1 sum = sum + sy(i,k)*v(k)/sy(k,k) 10 continue p(i2) = v(i2) + sum 20 continue c Solve the triangular system call dtrsl(wt,m,col,p(col+1),11,info) if (info .ne. 0) return c solve D^(1/2)p1=v1. do 30 i = 1, col p(i) = v(i)/sqrt(sy(i,i)) 30 continue c PART II: solve [ -D^(1/2) D^(-1/2)*L' ] [ p1 ] = [ p1 ] c [ 0 J' ] [ p2 ] [ p2 ]. c solve J^Tp2=p2. call dtrsl(wt,m,col,p(col+1),01,info) if (info .ne. 0) return c compute p1=-D^(-1/2)(p1-D^(-1/2)L'p2) c =-D^(-1/2)p1+D^(-1)L'p2. do 40 i = 1, col p(i) = -p(i)/sqrt(sy(i,i)) 40 continue do 60 i = 1, col sum = 0.d0 do 50 k = i + 1, col sum = sum + sy(k,i)*p(col+k)/sy(i,i) 50 continue p(i) = p(i) + sum 60 continue return end c======================== The end of bmv =============================== subroutine cauchy(n, x, l, u, nbd, g, iorder, iwhere, t, d, xcp, + m, wy, ws, sy, wt, theta, col, head, p, c, wbp, + v, nseg, iprint, sbgnrm, info, epsmch) implicit none integer n, m, head, col, nseg, iprint, info, + nbd(n), iorder(n), iwhere(n) double precision theta, epsmch, + x(n), l(n), u(n), g(n), t(n), d(n), xcp(n), + wy(n, col), ws(n, col), sy(m, m), + wt(m, m), p(2*m), c(2*m), wbp(2*m), v(2*m) c ************ c c Subroutine cauchy c c For given x, l, u, g (with sbgnrm > 0), and a limited memory c BFGS matrix B defined in terms of matrices WY, WS, WT, and c scalars head, col, and theta, this subroutine computes the c generalized Cauchy point (GCP), defined as the first local c minimizer of the quadratic c c Q(x + s) = g's + 1/2 s'Bs c c along the projected gradient direction P(x-tg,l,u). c The routine returns the GCP in xcp. c c n is an integer variable. c On entry n is the dimension of the problem. c On exit n is unchanged. c c x is a double precision array of dimension n. c On entry x is the starting point for the GCP computation. c On exit x is unchanged. c c l is a double precision array of dimension n. c On entry l is the lower bound of x. c On exit l is unchanged. c c u is a double precision array of dimension n. c On entry u is the upper bound of x. c On exit u is unchanged. c c nbd is an integer array of dimension n. c On entry nbd represents the type of bounds imposed on the c variables, and must be specified as follows: c nbd(i)=0 if x(i) is unbounded, c 1 if x(i) has only a lower bound, c 2 if x(i) has both lower and upper bounds, and c 3 if x(i) has only an upper bound. c On exit nbd is unchanged. c c g is a double precision array of dimension n. c On entry g is the gradient of f(x). g must be a nonzero vector. c On exit g is unchanged. c c iorder is an integer working array of dimension n. c iorder will be used to store the breakpoints in the piecewise c linear path and free variables encountered. On exit, c iorder(1),...,iorder(nleft) are indices of breakpoints c which have not been encountered; c iorder(nleft+1),...,iorder(nbreak) are indices of c encountered breakpoints; and c iorder(nfree),...,iorder(n) are indices of variables which c have no bound constraits along the search direction. c c iwhere is an integer array of dimension n. c On entry iwhere indicates only the permanently fixed (iwhere=3) c or free (iwhere= -1) components of x. c On exit iwhere records the status of the current x variables. c iwhere(i)=-3 if x(i) is free and has bounds, but is not moved c 0 if x(i) is free and has bounds, and is moved c 1 if x(i) is fixed at l(i), and l(i) .ne. u(i) c 2 if x(i) is fixed at u(i), and u(i) .ne. l(i) c 3 if x(i) is always fixed, i.e., u(i)=x(i)=l(i) c -1 if x(i) is always free, i.e., it has no bounds. c c t is a double precision working array of dimension n. c t will be used to store the break points. c c d is a double precision array of dimension n used to store c the Cauchy direction P(x-tg)-x. c c xcp is a double precision array of dimension n used to return the c GCP on exit. c c m is an integer variable. c On entry m is the maximum number of variable metric corrections c used to define the limited memory matrix. c On exit m is unchanged. c c ws, wy, sy, and wt are double precision arrays. c On entry they store information that defines the c limited memory BFGS matrix: c ws(n,m) stores S, a set of s-vectors; c wy(n,m) stores Y, a set of y-vectors; c sy(m,m) stores S'Y; c wt(m,m) stores the c Cholesky factorization of (theta*S'S+LD^(-1)L'). c On exit these arrays are unchanged. c c theta is a double precision variable. c On entry theta is the scaling factor specifying B_0 = theta I. c On exit theta is unchanged. c c col is an integer variable. c On entry col is the actual number of variable metric c corrections stored so far. c On exit col is unchanged. c c head is an integer variable. c On entry head is the location of the first s-vector (or y-vector) c in S (or Y). c On exit col is unchanged. c c p is a double precision working array of dimension 2m. c p will be used to store the vector p = W^(T)d. c c c is a double precision working array of dimension 2m. c c will be used to store the vector c = W^(T)(xcp-x). c c wbp is a double precision working array of dimension 2m. c wbp will be used to store the row of W corresponding c to a breakpoint. c c v is a double precision working array of dimension 2m. c c nseg is an integer variable. c On exit nseg records the number of quadratic segments explored c in searching for the GCP. c c sg and yg are double precision arrays of dimension m. c On entry sg and yg store S'g and Y'g correspondingly. c On exit they are unchanged. c c iprint is an INTEGER variable that must be set by the user. c It controls the frequency and type of output generated: c iprint<0 no output is generated; c iprint=0 print only one line at the last iteration; c 0100 print details of every iteration including x and g; c When iprint > 0, the file iterate.dat will be created to c summarize the iteration. c c sbgnrm is a double precision variable. c On entry sbgnrm is the norm of the projected gradient at x. c On exit sbgnrm is unchanged. c c info is an integer variable. c On entry info is 0. c On exit info = 0 for normal return, c = nonzero for abnormal return when the the system c used in routine bmv is singular. c c Subprograms called: c c L-BFGS-B Library ... hpsolb, bmv. c c Linpack ... dscal dcopy, daxpy. c c c References: c c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited c memory algorithm for bound constrained optimization'', c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208. c c [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: FORTRAN c Subroutines for Large Scale Bound Constrained Optimization'' c Tech. Report, NAM-11, EECS Department, Northwestern University, c 1994. c c (Postscript files of these papers are available via anonymous c ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.) c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c c ************ logical xlower,xupper,bnded integer i,j,col2,nfree,nbreak,pointr, + ibp,nleft,ibkmin,iter double precision f1,f2,dt,dtm,tsum,dibp,zibp,dibp2,bkmin, + tu,tl,wmc,wmp,wmw,ddot,tj,tj0,neggi,sbgnrm, + f2_org double precision one,zero parameter (one=1.0d0,zero=0.0d0) c Check the status of the variables, reset iwhere(i) if necessary; c compute the Cauchy direction d and the breakpoints t; initialize c the derivative f1 and the vector p = W'd (for theta = 1). if (sbgnrm .le. zero) then if (iprint .ge. 0) write (6,*) 'Subgnorm = 0. GCP = X.' call dcopy(n,x,1,xcp,1) return endif bnded = .true. nfree = n + 1 nbreak = 0 ibkmin = 0 bkmin = zero col2 = 2*col f1 = zero if (iprint .ge. 99) write (6,3010) c We set p to zero and build it up as we determine d. do 20 i = 1, col2 p(i) = zero 20 continue c In the following loop we determine for each variable its bound c status and its breakpoint, and update p accordingly. c Smallest breakpoint is identified. do 50 i = 1, n neggi = -g(i) if (iwhere(i) .ne. 3 .and. iwhere(i) .ne. -1) then c if x(i) is not a constant and has bounds, c compute the difference between x(i) and its bounds. if (nbd(i) .le. 2) tl = x(i) - l(i) if (nbd(i) .ge. 2) tu = u(i) - x(i) c If a variable is close enough to a bound c we treat it as at bound. xlower = nbd(i) .le. 2 .and. tl .le. zero xupper = nbd(i) .ge. 2 .and. tu .le. zero c reset iwhere(i). iwhere(i) = 0 if (xlower) then if (neggi .le. zero) iwhere(i) = 1 else if (xupper) then if (neggi .ge. zero) iwhere(i) = 2 else if (abs(neggi) .le. zero) iwhere(i) = -3 endif endif pointr = head if (iwhere(i) .ne. 0 .and. iwhere(i) .ne. -1) then d(i) = zero else d(i) = neggi f1 = f1 - neggi*neggi c calculate p := p - W'e_i* (g_i). do 40 j = 1, col p(j) = p(j) + wy(i,pointr)* neggi p(col + j) = p(col + j) + ws(i,pointr)*neggi pointr = mod(pointr,m) + 1 40 continue if (nbd(i) .le. 2 .and. nbd(i) .ne. 0 + .and. neggi .lt. zero) then c x(i) + d(i) is bounded; compute t(i). nbreak = nbreak + 1 iorder(nbreak) = i t(nbreak) = tl/(-neggi) if (nbreak .eq. 1 .or. t(nbreak) .lt. bkmin) then bkmin = t(nbreak) ibkmin = nbreak endif else if (nbd(i) .ge. 2 .and. neggi .gt. zero) then c x(i) + d(i) is bounded; compute t(i). nbreak = nbreak + 1 iorder(nbreak) = i t(nbreak) = tu/neggi if (nbreak .eq. 1 .or. t(nbreak) .lt. bkmin) then bkmin = t(nbreak) ibkmin = nbreak endif else c x(i) + d(i) is not bounded. nfree = nfree - 1 iorder(nfree) = i if (abs(neggi) .gt. zero) bnded = .false. endif endif 50 continue c The indices of the nonzero components of d are now stored c in iorder(1),...,iorder(nbreak) and iorder(nfree),...,iorder(n). c The smallest of the nbreak breakpoints is in t(ibkmin)=bkmin. if (theta .ne. one) then c complete the initialization of p for theta not= one. call dscal(col,theta,p(col+1),1) endif c Initialize GCP xcp = x. call dcopy(n,x,1,xcp,1) if (nbreak .eq. 0 .and. nfree .eq. n + 1) then c is a zero vector, return with the initial xcp as GCP. if (iprint .gt. 100) write (6,1010) (xcp(i), i = 1, n) return endif c Initialize c = W'(xcp - x) = 0. do 60 j = 1, col2 c(j) = zero 60 continue c Initialize derivative f2. f2 = -theta*f1 f2_org = f2 if (col .gt. 0) then call bmv(m,sy,wt,col,p,v,info) if (info .ne. 0) return f2 = f2 - ddot(col2,v,1,p,1) endif dtm = -f1/f2 tsum = zero nseg = 1 if (iprint .ge. 99) + write (6,*) 'There are ',nbreak,' breakpoints ' c If there are no breakpoints, locate the GCP and return. if (nbreak .eq. 0) goto 888 nleft = nbreak iter = 1 tj = zero c------------------- the beginning of the loop ------------------------- 777 continue c Find the next smallest breakpoint; c compute dt = t(nleft) - t(nleft + 1). tj0 = tj if (iter .eq. 1) then c Since we already have the smallest breakpoint we need not do c heapsort yet. Often only one breakpoint is used and the c cost of heapsort is avoided. tj = bkmin ibp = iorder(ibkmin) else if (iter .eq. 2) then c Replace the already used smallest breakpoint with the c breakpoint numbered nbreak > nlast, before heapsort call. if (ibkmin .ne. nbreak) then t(ibkmin) = t(nbreak) iorder(ibkmin) = iorder(nbreak) endif c Update heap structure of breakpoints c (if iter=2, initialize heap). endif call hpsolb(nleft,t,iorder,iter-2) tj = t(nleft) ibp = iorder(nleft) endif dt = tj - tj0 if (dt .ne. zero .and. iprint .ge. 100) then write (6,4011) nseg,f1,f2 write (6,5010) dt write (6,6010) dtm endif c If a minimizer is within this interval, locate the GCP and return. if (dtm .lt. dt) goto 888 c Otherwise fix one variable and c reset the corresponding component of d to zero. tsum = tsum + dt nleft = nleft - 1 iter = iter + 1 dibp = d(ibp) d(ibp) = zero if (dibp .gt. zero) then zibp = u(ibp) - x(ibp) xcp(ibp) = u(ibp) iwhere(ibp) = 2 else zibp = l(ibp) - x(ibp) xcp(ibp) = l(ibp) iwhere(ibp) = 1 endif if (iprint .ge. 100) write (6,*) 'Variable ',ibp,' is fixed.' if (nleft .eq. 0 .and. nbreak .eq. n) then c all n variables are fixed, c return with xcp as GCP. dtm = dt goto 999 endif c Update the derivative information. nseg = nseg + 1 dibp2 = dibp**2 c Update f1 and f2. c temporarily set f1 and f2 for col=0. f1 = f1 + dt*f2 + dibp2 - theta*dibp*zibp f2 = f2 - theta*dibp2 if (col .gt. 0) then c update c = c + dt*p. call daxpy(col2,dt,p,1,c,1) c choose wbp, c the row of W corresponding to the breakpoint encountered. pointr = head do 70 j = 1,col wbp(j) = wy(ibp,pointr) wbp(col + j) = theta*ws(ibp,pointr) pointr = mod(pointr,m) + 1 70 continue c compute (wbp)Mc, (wbp)Mp, and (wbp)M(wbp)'. call bmv(m,sy,wt,col,wbp,v,info) if (info .ne. 0) return wmc = ddot(col2,c,1,v,1) wmp = ddot(col2,p,1,v,1) wmw = ddot(col2,wbp,1,v,1) c update p = p - dibp*wbp. call daxpy(col2,-dibp,wbp,1,p,1) c complete updating f1 and f2 while col > 0. f1 = f1 + dibp*wmc f2 = f2 + 2.0d0*dibp*wmp - dibp2*wmw endif f2 = max(epsmch*f2_org,f2) if (nleft .gt. 0) then dtm = -f1/f2 goto 777 c to repeat the loop for unsearched intervals. else if(bnded) then f1 = zero f2 = zero dtm = zero else dtm = -f1/f2 endif c------------------- the end of the loop ------------------------------- 888 continue if (iprint .ge. 99) then write (6,*) write (6,*) 'GCP found in this segment' write (6,4010) nseg,f1,f2 write (6,6010) dtm endif if (dtm .le. zero) dtm = zero tsum = tsum + dtm c Move free variables (i.e., the ones w/o breakpoints) and c the variables whose breakpoints haven't been reached. call daxpy(n,tsum,d,1,xcp,1) 999 continue c Update c = c + dtm*p = W'(x^c - x) c which will be used in computing r = Z'(B(x^c - x) + g). if (col .gt. 0) call daxpy(col2,dtm,p,1,c,1) if (iprint .gt. 100) write (6,1010) (xcp(i),i = 1,n) if (iprint .ge. 99) write (6,2010) 1010 format ('Cauchy X = ',/,(4x,1p,6(1x,d11.4))) 2010 format (/,'---------------- exit CAUCHY----------------------',/) 3010 format (/,'---------------- CAUCHY entered-------------------') 4010 format ('Piece ',i3,' --f1, f2 at start point ',1p,2(1x,d11.4)) 4011 format (/,'Piece ',i3,' --f1, f2 at start point ', + 1p,2(1x,d11.4)) 5010 format ('Distance to the next break point = ',1p,d11.4) 6010 format ('Distance to the stationary point = ',1p,d11.4) return end c====================== The end of cauchy ============================== subroutine cmprlb(n, m, x, g, ws, wy, sy, wt, z, r, wa, index, + theta, col, head, nfree, cnstnd, info) logical cnstnd integer n, m, col, head, nfree, info, index(n) double precision theta, + x(n), g(n), z(n), r(n), wa(4*m), + ws(n, m), wy(n, m), sy(m, m), wt(m, m) c ************ c c Subroutine cmprlb c c This subroutine computes r=-Z'B(xcp-xk)-Z'g by using c wa(2m+1)=W'(xcp-x) from subroutine cauchy. c c Subprograms called: c c L-BFGS-B Library ... bmv. c c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c c ************ integer i,j,k,pointr double precision a1,a2 if (.not. cnstnd .and. col .gt. 0) then do 26 i = 1, n r(i) = -g(i) 26 continue else do 30 i = 1, nfree k = index(i) r(i) = -theta*(z(k) - x(k)) - g(k) 30 continue call bmv(m,sy,wt,col,wa(2*m+1),wa(1),info) if (info .ne. 0) then info = -8 return endif pointr = head do 34 j = 1, col a1 = wa(j) a2 = theta*wa(col + j) do 32 i = 1, nfree k = index(i) r(i) = r(i) + wy(k,pointr)*a1 + ws(k,pointr)*a2 32 continue pointr = mod(pointr,m) + 1 34 continue endif return end c======================= The end of cmprlb ============================= subroutine errclb(n, m, factr, l, u, nbd, task, info, k) character*60 task integer n, m, info, k, nbd(n) double precision factr, l(n), u(n) c ************ c c Subroutine errclb c c This subroutine checks the validity of the input data. c c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c c ************ integer i double precision one,zero parameter (one=1.0d0,zero=0.0d0) c Check the input arguments for errors. if (n .le. 0) task = 'ERROR: N .LE. 0' if (m .le. 0) task = 'ERROR: M .LE. 0' if (factr .lt. zero) task = 'ERROR: FACTR .LT. 0' c Check the validity of the arrays nbd(i), u(i), and l(i). do 10 i = 1, n if (nbd(i) .lt. 0 .or. nbd(i) .gt. 3) then c return task = 'ERROR: INVALID NBD' info = -6 k = i endif if (nbd(i) .eq. 2) then if (l(i) .gt. u(i)) then c return task = 'ERROR: NO FEASIBLE SOLUTION' info = -7 k = i endif endif 10 continue return end c======================= The end of errclb ============================= subroutine formk(n, nsub, ind, nenter, ileave, indx2, iupdat, + updatd, wn, wn1, m, ws, wy, sy, theta, col, + head, info) integer n, nsub, m, col, head, nenter, ileave, iupdat, + info, ind(n), indx2(n) double precision theta, wn(2*m, 2*m), wn1(2*m, 2*m), + ws(n, m), wy(n, m), sy(m, m) logical updatd c ************ c c Subroutine formk c c This subroutine forms the LEL^T factorization of the indefinite c c matrix K = [-D -Y'ZZ'Y/theta L_a'-R_z' ] c [L_a -R_z theta*S'AA'S ] c where E = [-I 0] c [ 0 I] c The matrix K can be shown to be equal to the matrix M^[-1]N c occurring in section 5.1 of [1], as well as to the matrix c Mbar^[-1] Nbar in section 5.3. c c n is an integer variable. c On entry n is the dimension of the problem. c On exit n is unchanged. c c nsub is an integer variable c On entry nsub is the number of subspace variables in free set. c On exit nsub is not changed. c c ind is an integer array of dimension nsub. c On entry ind specifies the indices of subspace variables. c On exit ind is unchanged. c c nenter is an integer variable. c On entry nenter is the number of variables entering the c free set. c On exit nenter is unchanged. c c ileave is an integer variable. c On entry indx2(ileave),...,indx2(n) are the variables leaving c the free set. c On exit ileave is unchanged. c c indx2 is an integer array of dimension n. c On entry indx2(1),...,indx2(nenter) are the variables entering c the free set, while indx2(ileave),...,indx2(n) are the c variables leaving the free set. c On exit indx2 is unchanged. c c iupdat is an integer variable. c On entry iupdat is the total number of BFGS updates made so far. c On exit iupdat is unchanged. c c updatd is a logical variable. c On entry 'updatd' is true if the L-BFGS matrix is updatd. c On exit 'updatd' is unchanged. c c wn is a double precision array of dimension 2m x 2m. c On entry wn is unspecified. c On exit the upper triangle of wn stores the LEL^T factorization c of the 2*col x 2*col indefinite matrix c [-D -Y'ZZ'Y/theta L_a'-R_z' ] c [L_a -R_z theta*S'AA'S ] c c wn1 is a double precision array of dimension 2m x 2m. c On entry wn1 stores the lower triangular part of c [Y' ZZ'Y L_a'+R_z'] c [L_a+R_z S'AA'S ] c in the previous iteration. c On exit wn1 stores the corresponding updated matrices. c The purpose of wn1 is just to store these inner products c so they can be easily updated and inserted into wn. c c m is an integer variable. c On entry m is the maximum number of variable metric corrections c used to define the limited memory matrix. c On exit m is unchanged. c c ws, wy, sy, and wtyy are double precision arrays; c theta is a double precision variable; c col is an integer variable; c head is an integer variable. c On entry they store the information defining the c limited memory BFGS matrix: c ws(n,m) stores S, a set of s-vectors; c wy(n,m) stores Y, a set of y-vectors; c sy(m,m) stores S'Y; c wtyy(m,m) stores the Cholesky factorization c of (theta*S'S+LD^(-1)L') c theta is the scaling factor specifying B_0 = theta I; c col is the number of variable metric corrections stored; c head is the location of the 1st s- (or y-) vector in S (or Y). c On exit they are unchanged. c c info is an integer variable. c On entry info is unspecified. c On exit info = 0 for normal return; c = -1 when the 1st Cholesky factorization failed; c = -2 when the 2st Cholesky factorization failed. c c Subprograms called: c c Linpack ... dcopy, dpofa, dtrsl. c c c References: c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited c memory algorithm for bound constrained optimization'', c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208. c c [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: a c limited memory FORTRAN code for solving bound constrained c optimization problems'', Tech. Report, NAM-11, EECS Department, c Northwestern University, 1994. c c (Postscript files of these papers are available via anonymous c ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.) c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c c ************ integer m2,ipntr,jpntr,iy,is,jy,js,is1,js1,k1,i,k, + col2,pbegin,pend,dbegin,dend,upcl double precision ddot,temp1,temp2,temp3,temp4 double precision one,zero parameter (one=1.0d0,zero=0.0d0) c Form the lower triangular part of c WN1 = [Y' ZZ'Y L_a'+R_z'] c [L_a+R_z S'AA'S ] c where L_a is the strictly lower triangular part of S'AA'Y c R_z is the upper triangular part of S'ZZ'Y. if (updatd) then if (iupdat .gt. m) then c shift old part of WN1. do 10 jy = 1, m - 1 js = m + jy call dcopy(m-jy,wn1(jy+1,jy+1),1,wn1(jy,jy),1) call dcopy(m-jy,wn1(js+1,js+1),1,wn1(js,js),1) call dcopy(m-1,wn1(m+2,jy+1),1,wn1(m+1,jy),1) 10 continue endif c put new rows in blocks (1,1), (2,1) and (2,2). pbegin = 1 pend = nsub dbegin = nsub + 1 dend = n iy = col is = m + col ipntr = head + col - 1 if (ipntr .gt. m) ipntr = ipntr - m jpntr = head do 20 jy = 1, col js = m + jy temp1 = zero temp2 = zero temp3 = zero c compute element jy of row 'col' of Y'ZZ'Y do 15 k = pbegin, pend k1 = ind(k) temp1 = temp1 + wy(k1,ipntr)*wy(k1,jpntr) 15 continue c compute elements jy of row 'col' of L_a and S'AA'S do 16 k = dbegin, dend k1 = ind(k) temp2 = temp2 + ws(k1,ipntr)*ws(k1,jpntr) temp3 = temp3 + ws(k1,ipntr)*wy(k1,jpntr) 16 continue wn1(iy,jy) = temp1 wn1(is,js) = temp2 wn1(is,jy) = temp3 jpntr = mod(jpntr,m) + 1 20 continue c put new column in block (2,1). jy = col jpntr = head + col - 1 if (jpntr .gt. m) jpntr = jpntr - m ipntr = head do 30 i = 1, col is = m + i temp3 = zero c compute element i of column 'col' of R_z do 25 k = pbegin, pend k1 = ind(k) temp3 = temp3 + ws(k1,ipntr)*wy(k1,jpntr) 25 continue ipntr = mod(ipntr,m) + 1 wn1(is,jy) = temp3 30 continue upcl = col - 1 else upcl = col endif c modify the old parts in blocks (1,1) and (2,2) due to changes c in the set of free variables. ipntr = head do 45 iy = 1, upcl is = m + iy jpntr = head do 40 jy = 1, iy js = m + jy temp1 = zero temp2 = zero temp3 = zero temp4 = zero do 35 k = 1, nenter k1 = indx2(k) temp1 = temp1 + wy(k1,ipntr)*wy(k1,jpntr) temp2 = temp2 + ws(k1,ipntr)*ws(k1,jpntr) 35 continue do 36 k = ileave, n k1 = indx2(k) temp3 = temp3 + wy(k1,ipntr)*wy(k1,jpntr) temp4 = temp4 + ws(k1,ipntr)*ws(k1,jpntr) 36 continue wn1(iy,jy) = wn1(iy,jy) + temp1 - temp3 wn1(is,js) = wn1(is,js) - temp2 + temp4 jpntr = mod(jpntr,m) + 1 40 continue ipntr = mod(ipntr,m) + 1 45 continue c modify the old parts in block (2,1). ipntr = head do 60 is = m + 1, m + upcl jpntr = head do 55 jy = 1, upcl temp1 = zero temp3 = zero do 50 k = 1, nenter k1 = indx2(k) temp1 = temp1 + ws(k1,ipntr)*wy(k1,jpntr) 50 continue do 51 k = ileave, n k1 = indx2(k) temp3 = temp3 + ws(k1,ipntr)*wy(k1,jpntr) 51 continue if (is .le. jy + m) then wn1(is,jy) = wn1(is,jy) + temp1 - temp3 else wn1(is,jy) = wn1(is,jy) - temp1 + temp3 endif jpntr = mod(jpntr,m) + 1 55 continue ipntr = mod(ipntr,m) + 1 60 continue c Form the upper triangle of WN = [D+Y' ZZ'Y/theta -L_a'+R_z' ] c [-L_a +R_z S'AA'S*theta] m2 = 2*m do 70 iy = 1, col is = col + iy is1 = m + iy do 65 jy = 1, iy js = col + jy js1 = m + jy wn(jy,iy) = wn1(iy,jy)/theta wn(js,is) = wn1(is1,js1)*theta 65 continue do 66 jy = 1, iy - 1 wn(jy,is) = -wn1(is1,jy) 66 continue do 67 jy = iy, col wn(jy,is) = wn1(is1,jy) 67 continue wn(iy,iy) = wn(iy,iy) + sy(iy,iy) 70 continue c Form the upper triangle of WN= [ LL' L^-1(-L_a'+R_z')] c [(-L_a +R_z)L'^-1 S'AA'S*theta ] c first Cholesky factor (1,1) block of wn to get LL' c with L' stored in the upper triangle of wn. call dpofa(wn,m2,col,info) if (info .ne. 0) then info = -1 return endif c then form L^-1(-L_a'+R_z') in the (1,2) block. col2 = 2*col do 71 js = col+1 ,col2 call dtrsl(wn,m2,col,wn(1,js),11,info) 71 continue c Form S'AA'S*theta + (L^-1(-L_a'+R_z'))'L^-1(-L_a'+R_z') in the c upper triangle of (2,2) block of wn. do 72 is = col+1, col2 do 74 js = is, col2 wn(is,js) = wn(is,js) + ddot(col,wn(1,is),1,wn(1,js),1) 74 continue 72 continue c Cholesky factorization of (2,2) block of wn. call dpofa(wn(col+1,col+1),m2,col,info) if (info .ne. 0) then info = -2 return endif return end c======================= The end of formk ============================== subroutine formt(m, wt, sy, ss, col, theta, info) integer m, col, info double precision theta, wt(m, m), sy(m, m), ss(m, m) c ************ c c Subroutine formt c c This subroutine forms the upper half of the pos. def. and symm. c T = theta*SS + L*D^(-1)*L', stores T in the upper triangle c of the array wt, and performs the Cholesky factorization of T c to produce J*J', with J' stored in the upper triangle of wt. c c Subprograms called: c c Linpack ... dpofa. c c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c c ************ integer i,j,k,k1 double precision ddum double precision zero parameter (zero=0.0d0) c Form the upper half of T = theta*SS + L*D^(-1)*L', c store T in the upper triangle of the array wt. do 52 j = 1, col wt(1,j) = theta*ss(1,j) 52 continue do 55 i = 2, col do 54 j = i, col k1 = min(i,j) - 1 ddum = zero do 53 k = 1, k1 ddum = ddum + sy(i,k)*sy(j,k)/sy(k,k) 53 continue wt(i,j) = ddum + theta*ss(i,j) 54 continue 55 continue c Cholesky factorize T to J*J' with c J' stored in the upper triangle of wt. call dpofa(wt,m,col,info) if (info .ne. 0) then info = -3 endif return end c======================= The end of formt ============================== subroutine freev(n, nfree, index, nenter, ileave, indx2, + iwhere, wrk, updatd, cnstnd, iprint, iter) integer n, nfree, nenter, ileave, iprint, iter, + index(n), indx2(n), iwhere(n) logical wrk, updatd, cnstnd c ************ c c Subroutine freev c c This subroutine counts the entering and leaving variables when c iter > 0, and finds the index set of free and active variables c at the GCP. c c cnstnd is a logical variable indicating whether bounds are present c c index is an integer array of dimension n c for i=1,...,nfree, index(i) are the indices of free variables c for i=nfree+1,...,n, index(i) are the indices of bound variables c On entry after the first iteration, index gives c the free variables at the previous iteration. c On exit it gives the free variables based on the determination c in cauchy using the array iwhere. c c indx2 is an integer array of dimension n c On entry indx2 is unspecified. c On exit with iter>0, indx2 indicates which variables c have changed status since the previous iteration. c For i= 1,...,nenter, indx2(i) have changed from bound to free. c For i= ileave+1,...,n, indx2(i) have changed from free to bound. c c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c c ************ integer iact,i,k nenter = 0 ileave = n + 1 if (iter .gt. 0 .and. cnstnd) then c count the entering and leaving variables. do 20 i = 1, nfree k = index(i) c write(6,*) ' k = index(i) ', k c write(6,*) ' index = ', i if (iwhere(k) .gt. 0) then ileave = ileave - 1 indx2(ileave) = k if (iprint .ge. 100) write (6,*) + 'Variable ',k,' leaves the set of free variables' endif 20 continue do 22 i = 1 + nfree, n k = index(i) if (iwhere(k) .le. 0) then nenter = nenter + 1 indx2(nenter) = k if (iprint .ge. 100) write (6,*) + 'Variable ',k,' enters the set of free variables' endif 22 continue if (iprint .ge. 99) write (6,*) + n+1-ileave,' variables leave; ',nenter,' variables enter' endif wrk = (ileave .lt. n+1) .or. (nenter .gt. 0) .or. updatd c Find the index set of free and active variables at the GCP. nfree = 0 iact = n + 1 do 24 i = 1, n if (iwhere(i) .le. 0) then nfree = nfree + 1 index(nfree) = i else iact = iact - 1 index(iact) = i endif 24 continue if (iprint .ge. 99) write (6,*) + nfree,' variables are free at GCP ',iter + 1 return end c======================= The end of freev ============================== subroutine hpsolb(n, t, iorder, iheap) integer iheap, n, iorder(n) double precision t(n) c ************ c c Subroutine hpsolb c c This subroutine sorts out the least element of t, and puts the c remaining elements of t in a heap. c c n is an integer variable. c On entry n is the dimension of the arrays t and iorder. c On exit n is unchanged. c c t is a double precision array of dimension n. c On entry t stores the elements to be sorted, c On exit t(n) stores the least elements of t, and t(1) to t(n-1) c stores the remaining elements in the form of a heap. c c iorder is an integer array of dimension n. c On entry iorder(i) is the index of t(i). c On exit iorder(i) is still the index of t(i), but iorder may be c permuted in accordance with t. c c iheap is an integer variable specifying the task. c On entry iheap should be set as follows: c iheap .eq. 0 if t(1) to t(n) is not in the form of a heap, c iheap .ne. 0 if otherwise. c On exit iheap is unchanged. c c c References: c Algorithm 232 of CACM (J. W. J. Williams): HEAPSORT. c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c ************ integer i,j,k,indxin,indxou double precision ddum,out if (iheap .eq. 0) then c Rearrange the elements t(1) to t(n) to form a heap. do 20 k = 2, n ddum = t(k) indxin = iorder(k) c Add ddum to the heap. i = k 10 continue if (i.gt.1) then j = i/2 if (ddum .lt. t(j)) then t(i) = t(j) iorder(i) = iorder(j) i = j goto 10 endif endif t(i) = ddum iorder(i) = indxin 20 continue endif c Assign to 'out' the value of t(1), the least member of the heap, c and rearrange the remaining members to form a heap as c elements 1 to n-1 of t. if (n .gt. 1) then i = 1 out = t(1) indxou = iorder(1) ddum = t(n) indxin = iorder(n) c Restore the heap 30 continue j = i+i if (j .le. n-1) then if (t(j+1) .lt. t(j)) j = j+1 if (t(j) .lt. ddum ) then t(i) = t(j) iorder(i) = iorder(j) i = j goto 30 endif endif t(i) = ddum iorder(i) = indxin c Put the least member in t(n). t(n) = out iorder(n) = indxou endif return end c====================== The end of hpsolb ============================== subroutine lnsrlb(n, l, u, nbd, x, f, fold, gd, gdold, g, d, r, t, + z, stp, dnorm, dtd, xstep, stpmx, iter, ifun, + iback, nfgv, info, task, boxed, cnstnd, csave, + isave, dsave) character*60 task, csave logical boxed, cnstnd integer n, iter, ifun, iback, nfgv, info, + nbd(n), isave(2) double precision f, fold, gd, gdold, stp, dnorm, dtd, xstep, + stpmx, x(n), l(n), u(n), g(n), d(n), r(n), t(n), + z(n), dsave(13) c ********** c c Subroutine lnsrlb c c This subroutine calls subroutine dcsrch from the Minpack2 library c to perform the line search. Subroutine dscrch is safeguarded so c that all trial points lie within the feasible region. c c Subprograms called: c c Minpack2 Library ... dcsrch. c c Linpack ... dtrsl, ddot. c c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c c ********** integer i double precision ddot,a1,a2 double precision one,zero,big parameter (one=1.0d0,zero=0.0d0,big=1.0d+10) double precision ftol,gtol,xtol parameter (ftol=1.0d-3,gtol=0.9d0,xtol=0.1d0) if (task(1:5) .eq. 'FG_LN') goto 556 dtd = ddot(n,d,1,d,1) dnorm = sqrt(dtd) c Determine the maximum step length. stpmx = big if (cnstnd) then if (iter .eq. 0) then stpmx = one else do 43 i = 1, n a1 = d(i) if (nbd(i) .ne. 0) then if (a1 .lt. zero .and. nbd(i) .le. 2) then a2 = l(i) - x(i) if (a2 .ge. zero) then stpmx = zero else if (a1*stpmx .lt. a2) then stpmx = a2/a1 endif else if (a1 .gt. zero .and. nbd(i) .ge. 2) then a2 = u(i) - x(i) if (a2 .le. zero) then stpmx = zero else if (a1*stpmx .gt. a2) then stpmx = a2/a1 endif endif endif 43 continue endif endif if (iter .eq. 0 .and. .not. boxed) then stp = min(one/dnorm, stpmx) else stp = one endif call dcopy(n,x,1,t,1) call dcopy(n,g,1,r,1) fold = f ifun = 0 iback = 0 csave = 'START' 556 continue gd = ddot(n,g,1,d,1) if (ifun .eq. 0) then gdold=gd if (gd .ge. zero) then c the directional derivative >=0. c Line search is impossible. write(6,*)' ascent direction in projection gd = ', gd info = -4 return endif endif call dcsrch(f,gd,stp,ftol,gtol,xtol,zero,stpmx,csave,isave,dsave) xstep = stp*dnorm if (csave(1:4) .ne. 'CONV' .and. csave(1:4) .ne. 'WARN') then task = 'FG_LNSRCH' ifun = ifun + 1 nfgv = nfgv + 1 iback = ifun - 1 if (stp .eq. one) then call dcopy(n,z,1,x,1) else do 41 i = 1, n x(i) = stp*d(i) + t(i) 41 continue endif else task = 'NEW_X' endif return end c======================= The end of lnsrlb ============================= subroutine matupd(n, m, ws, wy, sy, ss, d, r, itail, + iupdat, col, head, theta, rr, dr, stp, dtd) integer n, m, itail, iupdat, col, head double precision theta, rr, dr, stp, dtd, d(n), r(n), + ws(n, m), wy(n, m), sy(m, m), ss(m, m) c ************ c c Subroutine matupd c c This subroutine updates matrices WS and WY, and forms the c middle matrix in B. c c Subprograms called: c c Linpack ... dcopy, ddot. c c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c c ************ integer j,pointr double precision ddot double precision one parameter (one=1.0d0) c Set pointers for matrices WS and WY. if (iupdat .le. m) then col = iupdat itail = mod(head+iupdat-2,m) + 1 else itail = mod(itail,m) + 1 head = mod(head,m) + 1 endif c Update matrices WS and WY. call dcopy(n,d,1,ws(1,itail),1) call dcopy(n,r,1,wy(1,itail),1) c Set theta=yy/ys. theta = rr/dr c Form the middle matrix in B. c update the upper triangle of SS, c and the lower triangle of SY: if (iupdat .gt. m) then c move old information do 50 j = 1, col - 1 call dcopy(j,ss(2,j+1),1,ss(1,j),1) call dcopy(col-j,sy(j+1,j+1),1,sy(j,j),1) 50 continue endif c add new information: the last row of SY c and the last column of SS: pointr = head do 51 j = 1, col - 1 sy(col,j) = ddot(n,d,1,wy(1,pointr),1) ss(j,col) = ddot(n,ws(1,pointr),1,d,1) pointr = mod(pointr,m) + 1 51 continue if (stp .eq. one) then ss(col,col) = dtd else ss(col,col) = stp*stp*dtd endif sy(col,col) = dr return end c======================= The end of matupd ============================= subroutine prn1lb(n, m, l, u, x, iprint, itfile, epsmch) integer n, m, iprint, itfile double precision epsmch, x(n), l(n), u(n) c ************ c c Subroutine prn1lb c c This subroutine prints the input data, initial point, upper and c lower bounds of each variable, machine precision, as well as c the headings of the output. c c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c c ************ integer i if (iprint .ge. 0) then write (6,7001) epsmch write (6,*) 'N = ',n,' M = ',m if (iprint .ge. 1) then write (itfile,2001) epsmch write (itfile,*)'N = ',n,' M = ',m write (itfile,9001) if (iprint .gt. 100) then write (6,1004) 'L =',(l(i),i = 1,n) write (6,1004) 'X0 =',(x(i),i = 1,n) write (6,1004) 'U =',(u(i),i = 1,n) endif endif endif 1004 format (/,a4, 1p, 6(1x,d11.4),/,(4x,1p,6(1x,d11.4))) 2001 format ('RUNNING THE L-BFGS-B CODE',/,/, + 'it = iteration number',/, + 'nf = number of function evaluations',/, + 'nseg = number of segments explored during the Cauchy search',/, + 'nact = number of active bounds at the generalized Cauchy point' + ,/, + 'sub = manner in which the subspace minimization terminated:' + ,/,' con = converged, bnd = a bound was reached',/, + 'itls = number of iterations performed in the line search',/, + 'stepl = step length used',/, + 'tstep = norm of the displacement (total step)',/, + 'projg = norm of the projected gradient',/, + 'f = function value',/,/, + ' * * *',/,/, + 'Machine precision =',1p,d10.3) 7001 format ('RUNNING THE L-BFGS-B CODE',/,/, + ' * * *',/,/, + 'Machine precision =',1p,d10.3) 9001 format (/,3x,'it',3x,'nf',2x,'nseg',2x,'nact',2x,'sub',2x,'itls', + 2x,'stepl',4x,'tstep',5x,'projg',8x,'f') return end c======================= The end of prn1lb ============================= subroutine prn2lb(n, x, f, g, iprint, itfile, iter, nfgv, nact, + sbgnrm, nseg, word, iword, iback, stp, xstep) character*3 word integer n, iprint, itfile, iter, nfgv, nact, nseg, + iword, iback double precision f, sbgnrm, stp, xstep, x(n), g(n) c ************ c c Subroutine prn2lb c c This subroutine prints out new information after a successful c line search. c c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c c ************ integer i,imod c 'word' records the status of subspace solutions. if (iword .eq. 0) then c the subspace minimization converged. word = 'con' else if (iword .eq. 1) then c the subspace minimization stopped at a bound. word = 'bnd' else if (iword .eq. 5) then c the truncated Newton step has been used. word = 'TNT' else word = '---' endif if (iprint .ge. 99) then write (6,*) 'LINE SEARCH',iback,' times; norm of step = ',xstep write (6,2001) iter,f,sbgnrm if (iprint .gt. 100) then write (6,1004) 'X =',(x(i), i = 1, n) write (6,1004) 'G =',(g(i), i = 1, n) endif else if (iprint .gt. 0) then imod = mod(iter,iprint) if (imod .eq. 0) write (6,2001) iter,f,sbgnrm endif if (iprint .ge. 1) write (itfile,3001) + iter,nfgv,nseg,nact,word,iback,stp,xstep,sbgnrm,f 1004 format (/,a4, 1p, 6(1x,d11.4),/,(4x,1p,6(1x,d11.4))) 2001 format + (/,'At iterate',i5,4x,'f= ',1p,d12.5,4x,'|proj g|= ',1p,d12.5) 3001 format(2(1x,i4),2(1x,i5),2x,a3,1x,i4,1p,2(2x,d7.1),1p,2(1x,d10.3)) return end c======================= The end of prn2lb ============================= subroutine prn3lb(n, x, f, task, iprint, info, itfile, + iter, nfgv, nintol, nskip, nact, sbgnrm, + time, nseg, word, iback, stp, xstep, k, + cachyt, sbtime, lnscht) character*60 task character*3 word integer n, iprint, info, itfile, iter, nfgv, nintol, + nskip, nact, nseg, iback, k double precision f, sbgnrm, time, stp, xstep, cachyt, sbtime, + lnscht, x(n) c ************ c c Subroutine prn3lb c c This subroutine prints out information when either a built-in c convergence test is satisfied or when an error message is c generated. c c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c c ************ integer i if (task(1:5) .eq. 'ERROR') goto 999 if (iprint .ge. 0) then write (6,3003) write (6,3004) write(6,3005) n,iter,nfgv,nintol,nskip,nact,sbgnrm,f if (iprint .ge. 100) then write (6,1004) 'X =',(x(i),i = 1,n) endif if (iprint .ge. 1) write (6,*) ' F =',f endif 999 continue if (iprint .ge. 0) then write (6,3009) task if (info .ne. 0) then if (info .eq. -1) write (6,9011) if (info .eq. -2) write (6,9012) if (info .eq. -3) write (6,9013) if (info .eq. -4) write (6,9014) if (info .eq. -5) write (6,9015) if (info .eq. -6) write (6,*)' Input nbd(',k,') is invalid.' if (info .eq. -7) + write (6,*)' l(',k,') > u(',k,'). No feasible solution.' if (info .eq. -8) write (6,9018) if (info .eq. -9) write (6,9019) endif if (iprint .ge. 1) write (6,3007) cachyt,sbtime,lnscht write (6,3008) time if (iprint .ge. 1) then if (info .eq. -4 .or. info .eq. -9) then write (itfile,3002) + iter,nfgv,nseg,nact,word,iback,stp,xstep endif write (itfile,3009) task if (info .ne. 0) then if (info .eq. -1) write (itfile,9011) if (info .eq. -2) write (itfile,9012) if (info .eq. -3) write (itfile,9013) if (info .eq. -4) write (itfile,9014) if (info .eq. -5) write (itfile,9015) if (info .eq. -8) write (itfile,9018) if (info .eq. -9) write (itfile,9019) endif write (itfile,3008) time endif endif 1004 format (/,a4, 1p, 6(1x,d11.4),/,(4x,1p,6(1x,d11.4))) 3002 format(2(1x,i4),2(1x,i5),2x,a3,1x,i4,1p,2(2x,d7.1),6x,'-',10x,'-') 3003 format (/, + ' * * *',/,/, + 'Tit = total number of iterations',/, + 'Tnf = total number of function evaluations',/, + 'Tnint = total number of segments explored during', + ' Cauchy searches',/, + 'Skip = number of BFGS updates skipped',/, + 'Nact = number of active bounds at final generalized', + ' Cauchy point',/, + 'Projg = norm of the final projected gradient',/, + 'F = final function value',/,/, + ' * * *') 3004 format (/,3x,'N',4x,'Tit',5x,'Tnf',2x,'Tnint',2x, + 'Skip',2x,'Nact',5x,'Projg',8x,'F') 3005 format (i5,2(1x,i6),(1x,i6),(2x,i4),(1x,i5),1p,2(2x,d10.3)) 3007 format (/,' Cauchy time',1p,e10.3,' seconds.',/ + ' Subspace minimization time',1p,e10.3,' seconds.',/ + ' Line search time',1p,e10.3,' seconds.') 3008 format (/,' Total User time',1p,e10.3,' seconds.',/) 3009 format (/,a60) 9011 format (/, +' Matrix in 1st Cholesky factorization in formk is not Pos. Def.') 9012 format (/, +' Matrix in 2st Cholesky factorization in formk is not Pos. Def.') 9013 format (/, +' Matrix in the Cholesky factorization in formt is not Pos. Def.') 9014 format (/, +' Derivative >= 0, backtracking line search impossible.',/, +' Previous x, f and g restored.',/, +' Possible causes: 1 error in function or gradient evaluation;',/, +' 2 rounding errors dominate computation.') 9015 format (/, +' Warning: more than 10 function and gradient',/, +' evaluations in the last line search. Termination',/, +' may possibly be caused by a bad search direction.') 9018 format (/,' The triangular system is singular.') 9019 format (/, +' Line search cannot locate an adequate point after 20 function',/ +,' and gradient evaluations. Previous x, f and g restored.',/, +' Possible causes: 1 error in function or gradient evaluation;',/, +' 2 rounding error dominate computation.') return end c======================= The end of prn3lb ============================= subroutine projgr(n, l, u, nbd, x, g, sbgnrm) integer n, nbd(n) double precision sbgnrm, x(n), l(n), u(n), g(n) c ************ c c Subroutine projgr c c This subroutine computes the infinity norm of the projected c gradient. c c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c c ************ integer i double precision gi double precision one,zero parameter (one=1.0d0,zero=0.0d0) sbgnrm = zero do 15 i = 1, n gi = g(i) if (nbd(i) .ne. 0) then if (gi .lt. zero) then if (nbd(i) .ge. 2) gi = max((x(i)-u(i)),gi) else if (nbd(i) .le. 2) gi = min((x(i)-l(i)),gi) endif endif sbgnrm = max(sbgnrm,abs(gi)) 15 continue return end c======================= The end of projgr ============================= subroutine subsm ( n, m, nsub, ind, l, u, nbd, x, d, xp, ws, wy, + theta, xx, gg, + col, head, iword, wv, wn, iprint, info ) implicit none integer n, m, nsub, col, head, iword, iprint, info, + ind(nsub), nbd(n) double precision theta, + l(n), u(n), x(n), d(n), xp(n), xx(n), gg(n), + ws(n, m), wy(n, m), + wv(2*m), wn(2*m, 2*m) c ********************************************************************** c c This routine contains the major changes in the updated version. c The changes are described in the accompanying paper c c Jose Luis Morales, Jorge Nocedal c "Remark On Algorithm 788: L-BFGS-B: Fortran Subroutines for Large-Scale c Bound Constrained Optimization". Decemmber 27, 2010. c c J.L. Morales Departamento de Matematicas, c Instituto Tecnologico Autonomo de Mexico c Mexico D.F. c c J, Nocedal Department of Electrical Engineering and c Computer Science. c Northwestern University. Evanston, IL. USA c c January 17, 2011 c c ********************************************************************** c c c Subroutine subsm c c Given xcp, l, u, r, an index set that specifies c the active set at xcp, and an l-BFGS matrix B c (in terms of WY, WS, SY, WT, head, col, and theta), c this subroutine computes an approximate solution c of the subspace problem c c (P) min Q(x) = r'(x-xcp) + 1/2 (x-xcp)' B (x-xcp) c c subject to l<=x<=u c x_i=xcp_i for all i in A(xcp) c c along the subspace unconstrained Newton direction c c d = -(Z'BZ)^(-1) r. c c The formula for the Newton direction, given the L-BFGS matrix c and the Sherman-Morrison formula, is c c d = (1/theta)r + (1/theta*2) Z'WK^(-1)W'Z r. c c where c K = [-D -Y'ZZ'Y/theta L_a'-R_z' ] c [L_a -R_z theta*S'AA'S ] c c Note that this procedure for computing d differs c from that described in [1]. One can show that the matrix K is c equal to the matrix M^[-1]N in that paper. c c n is an integer variable. c On entry n is the dimension of the problem. c On exit n is unchanged. c c m is an integer variable. c On entry m is the maximum number of variable metric corrections c used to define the limited memory matrix. c On exit m is unchanged. c c nsub is an integer variable. c On entry nsub is the number of free variables. c On exit nsub is unchanged. c c ind is an integer array of dimension nsub. c On entry ind specifies the coordinate indices of free variables. c On exit ind is unchanged. c c l is a double precision array of dimension n. c On entry l is the lower bound of x. c On exit l is unchanged. c c u is a double precision array of dimension n. c On entry u is the upper bound of x. c On exit u is unchanged. c c nbd is a integer array of dimension n. c On entry nbd represents the type of bounds imposed on the c variables, and must be specified as follows: c nbd(i)=0 if x(i) is unbounded, c 1 if x(i) has only a lower bound, c 2 if x(i) has both lower and upper bounds, and c 3 if x(i) has only an upper bound. c On exit nbd is unchanged. c c x is a double precision array of dimension n. c On entry x specifies the Cauchy point xcp. c On exit x(i) is the minimizer of Q over the subspace of c free variables. c c d is a double precision array of dimension n. c On entry d is the reduced gradient of Q at xcp. c On exit d is the Newton direction of Q. c c xp is a double precision array of dimension n. c used to safeguard the projected Newton direction c c xx is a double precision array of dimension n c On entry it holds the current iterate c On output it is unchanged c gg is a double precision array of dimension n c On entry it holds the gradient at the current iterate c On output it is unchanged c c ws and wy are double precision arrays; c theta is a double precision variable; c col is an integer variable; c head is an integer variable. c On entry they store the information defining the c limited memory BFGS matrix: c ws(n,m) stores S, a set of s-vectors; c wy(n,m) stores Y, a set of y-vectors; c theta is the scaling factor specifying B_0 = theta I; c col is the number of variable metric corrections stored; c head is the location of the 1st s- (or y-) vector in S (or Y). c On exit they are unchanged. c c iword is an integer variable. c On entry iword is unspecified. c On exit iword specifies the status of the subspace solution. c iword = 0 if the solution is in the box, c 1 if some bound is encountered. c c wv is a double precision working array of dimension 2m. c c wn is a double precision array of dimension 2m x 2m. c On entry the upper triangle of wn stores the LEL^T factorization c of the indefinite matrix c c K = [-D -Y'ZZ'Y/theta L_a'-R_z' ] c [L_a -R_z theta*S'AA'S ] c where E = [-I 0] c [ 0 I] c On exit wn is unchanged. c c iprint is an INTEGER variable that must be set by the user. c It controls the frequency and type of output generated: c iprint<0 no output is generated; c iprint=0 print only one line at the last iteration; c 0100 print details of every iteration including x and g; c When iprint > 0, the file iterate.dat will be created to c summarize the iteration. c c info is an integer variable. c On entry info is unspecified. c On exit info = 0 for normal return, c = nonzero for abnormal return c when the matrix K is ill-conditioned. c c Subprograms called: c c Linpack dtrsl. c c c References: c c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited c memory algorithm for bound constrained optimization'', c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208. c c c c * * * c c NEOS, November 1994. (Latest revision June 1996.) c Optimization Technology Center. c Argonne National Laboratory and Northwestern University. c Written by c Ciyou Zhu c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal. c c c ************ integer pointr,m2,col2,ibd,jy,js,i,j,k double precision alpha, xk, dk, temp1, temp2 double precision one,zero parameter (one=1.0d0,zero=0.0d0) c double precision dd_p if (nsub .le. 0) return if (iprint .ge. 99) write (6,1001) c Compute wv = W'Zd. pointr = head do 20 i = 1, col temp1 = zero temp2 = zero do 10 j = 1, nsub k = ind(j) temp1 = temp1 + wy(k,pointr)*d(j) temp2 = temp2 + ws(k,pointr)*d(j) 10 continue wv(i) = temp1 wv(col + i) = theta*temp2 pointr = mod(pointr,m) + 1 20 continue c Compute wv:=K^(-1)wv. m2 = 2*m col2 = 2*col call dtrsl(wn,m2,col2,wv,11,info) if (info .ne. 0) return do 25 i = 1, col wv(i) = -wv(i) 25 continue call dtrsl(wn,m2,col2,wv,01,info) if (info .ne. 0) return c Compute d = (1/theta)d + (1/theta**2)Z'W wv. pointr = head do 40 jy = 1, col js = col + jy do 30 i = 1, nsub k = ind(i) d(i) = d(i) + wy(k,pointr)*wv(jy)/theta + + ws(k,pointr)*wv(js) 30 continue pointr = mod(pointr,m) + 1 40 continue call dscal( nsub, one/theta, d, 1 ) c c----------------------------------------------------------------- c Let us try the projection, d is the Newton direction iword = 0 call dcopy ( n, x, 1, xp, 1 ) c do 50 i=1, nsub k = ind(i) dk = d(i) xk = x(k) if ( nbd(k) .ne. 0 ) then c if ( nbd(k).eq.1 ) then ! lower bounds only x(k) = max( l(k), xk + dk ) if ( x(k).eq.l(k) ) iword = 1 else c if ( nbd(k).eq.2 ) then ! upper and lower bounds xk = max( l(k), xk + dk ) x(k) = min( u(k), xk ) if ( x(k).eq.l(k) .or. x(k).eq.u(k) ) iword = 1 else c if ( nbd(k).eq.3 ) then ! upper bounds only x(k) = min( u(k), xk + dk ) if ( x(k).eq.u(k) ) iword = 1 end if end if end if c else ! free variables x(k) = xk + dk end if 50 continue c if ( iword.eq.0 ) then go to 911 end if c c check sign of the directional derivative c dd_p = zero do 55 i=1, n dd_p = dd_p + (x(i) - xx(i))*gg(i) 55 continue if ( dd_p .gt.zero ) then call dcopy( n, xp, 1, x, 1 ) write(6,*) ' Positive dir derivative in projection ' write(6,*) ' Using the backtracking step ' else go to 911 endif c c----------------------------------------------------------------- c alpha = one temp1 = alpha ibd = 0 do 60 i = 1, nsub k = ind(i) dk = d(i) if (nbd(k) .ne. 0) then if (dk .lt. zero .and. nbd(k) .le. 2) then temp2 = l(k) - x(k) if (temp2 .ge. zero) then temp1 = zero else if (dk*alpha .lt. temp2) then temp1 = temp2/dk endif else if (dk .gt. zero .and. nbd(k) .ge. 2) then temp2 = u(k) - x(k) if (temp2 .le. zero) then temp1 = zero else if (dk*alpha .gt. temp2) then temp1 = temp2/dk endif endif if (temp1 .lt. alpha) then alpha = temp1 ibd = i endif endif 60 continue if (alpha .lt. one) then dk = d(ibd) k = ind(ibd) if (dk .gt. zero) then x(k) = u(k) d(ibd) = zero else if (dk .lt. zero) then x(k) = l(k) d(ibd) = zero endif endif do 70 i = 1, nsub k = ind(i) x(k) = x(k) + alpha*d(i) 70 continue cccccc 911 continue if (iprint .ge. 99) write (6,1004) 1001 format (/,'----------------SUBSM entered-----------------',/) 1004 format (/,'----------------exit SUBSM --------------------',/) return end c====================== The end of subsm =============================== subroutine dcsrch(f,g,stp,ftol,gtol,xtol,stpmin,stpmax, + task,isave,dsave) character*(*) task integer isave(2) double precision f,g,stp,ftol,gtol,xtol,stpmin,stpmax double precision dsave(13) c ********** c c Subroutine dcsrch c c This subroutine finds a step that satisfies a sufficient c decrease condition and a curvature condition. c c Each call of the subroutine updates an interval with c endpoints stx and sty. The interval is initially chosen c so that it contains a minimizer of the modified function c c psi(stp) = f(stp) - f(0) - ftol*stp*f'(0). c c If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the c interval is chosen so that it contains a minimizer of f. c c The algorithm is designed to find a step that satisfies c the sufficient decrease condition c c f(stp) <= f(0) + ftol*stp*f'(0), c c and the curvature condition c c abs(f'(stp)) <= gtol*abs(f'(0)). c c If ftol is less than gtol and if, for example, the function c is bounded below, then there is always a step which satisfies c both conditions. c c If no step can be found that satisfies both conditions, then c the algorithm stops with a warning. In this case stp only c satisfies the sufficient decrease condition. c c A typical invocation of dcsrch has the following outline: c c task = 'START' c 10 continue c call dcsrch( ... ) c if (task .eq. 'FG') then c Evaluate the function and the gradient at stp c goto 10 c end if c c NOTE: The user must no alter work arrays between calls. c c The subroutine statement is c c subroutine dcsrch(f,g,stp,ftol,gtol,xtol,stpmin,stpmax, c task,isave,dsave) c where c c f is a double precision variable. c On initial entry f is the value of the function at 0. c On subsequent entries f is the value of the c function at stp. c On exit f is the value of the function at stp. c c g is a double precision variable. c On initial entry g is the derivative of the function at 0. c On subsequent entries g is the derivative of the c function at stp. c On exit g is the derivative of the function at stp. c c stp is a double precision variable. c On entry stp is the current estimate of a satisfactory c step. On initial entry, a positive initial estimate c must be provided. c On exit stp is the current estimate of a satisfactory step c if task = 'FG'. If task = 'CONV' then stp satisfies c the sufficient decrease and curvature condition. c c ftol is a double precision variable. c On entry ftol specifies a nonnegative tolerance for the c sufficient decrease condition. c On exit ftol is unchanged. c c gtol is a double precision variable. c On entry gtol specifies a nonnegative tolerance for the c curvature condition. c On exit gtol is unchanged. c c xtol is a double precision variable. c On entry xtol specifies a nonnegative relative tolerance c for an acceptable step. The subroutine exits with a c warning if the relative difference between sty and stx c is less than xtol. c On exit xtol is unchanged. c c stpmin is a double precision variable. c On entry stpmin is a nonnegative lower bound for the step. c On exit stpmin is unchanged. c c stpmax is a double precision variable. c On entry stpmax is a nonnegative upper bound for the step. c On exit stpmax is unchanged. c c task is a character variable of length at least 60. c On initial entry task must be set to 'START'. c On exit task indicates the required action: c c If task(1:2) = 'FG' then evaluate the function and c derivative at stp and call dcsrch again. c c If task(1:4) = 'CONV' then the search is successful. c c If task(1:4) = 'WARN' then the subroutine is not able c to satisfy the convergence conditions. The exit value of c stp contains the best point found during the search. c c If task(1:5) = 'ERROR' then there is an error in the c input arguments. c c On exit with convergence, a warning or an error, the c variable task contains additional information. c c isave is an integer work array of dimension 2. c c dsave is a double precision work array of dimension 13. c c Subprograms called c c MINPACK-2 ... dcstep c c MINPACK-1 Project. June 1983. c Argonne National Laboratory. c Jorge J. More' and David J. Thuente. c c MINPACK-2 Project. October 1993. c Argonne National Laboratory and University of Minnesota. c Brett M. Averick, Richard G. Carter, and Jorge J. More'. c c ********** double precision zero,p5,p66 parameter(zero=0.0d0,p5=0.5d0,p66=0.66d0) double precision xtrapl,xtrapu parameter(xtrapl=1.1d0,xtrapu=4.0d0) logical brackt integer stage double precision finit,ftest,fm,fx,fxm,fy,fym,ginit,gtest, + gm,gx,gxm,gy,gym,stx,sty,stmin,stmax,width,width1 c Initialization block. if (task(1:5) .eq. 'START') then c Check the input arguments for errors. if (stp .lt. stpmin) task = 'ERROR: STP .LT. STPMIN' if (stp .gt. stpmax) task = 'ERROR: STP .GT. STPMAX' if (g .ge. zero) task = 'ERROR: INITIAL G .GE. ZERO' if (ftol .lt. zero) task = 'ERROR: FTOL .LT. ZERO' if (gtol .lt. zero) task = 'ERROR: GTOL .LT. ZERO' if (xtol .lt. zero) task = 'ERROR: XTOL .LT. ZERO' if (stpmin .lt. zero) task = 'ERROR: STPMIN .LT. ZERO' if (stpmax .lt. stpmin) task = 'ERROR: STPMAX .LT. STPMIN' c Exit if there are errors on input. if (task(1:5) .eq. 'ERROR') return c Initialize local variables. brackt = .false. stage = 1 finit = f ginit = g gtest = ftol*ginit width = stpmax - stpmin width1 = width/p5 c The variables stx, fx, gx contain the values of the step, c function, and derivative at the best step. c The variables sty, fy, gy contain the value of the step, c function, and derivative at sty. c The variables stp, f, g contain the values of the step, c function, and derivative at stp. stx = zero fx = finit gx = ginit sty = zero fy = finit gy = ginit stmin = zero stmax = stp + xtrapu*stp task = 'FG' goto 1000 else c Restore local variables. if (isave(1) .eq. 1) then brackt = .true. else brackt = .false. endif stage = isave(2) ginit = dsave(1) gtest = dsave(2) gx = dsave(3) gy = dsave(4) finit = dsave(5) fx = dsave(6) fy = dsave(7) stx = dsave(8) sty = dsave(9) stmin = dsave(10) stmax = dsave(11) width = dsave(12) width1 = dsave(13) endif c If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the c algorithm enters the second stage. ftest = finit + stp*gtest if (stage .eq. 1 .and. f .le. ftest .and. g .ge. zero) + stage = 2 c Test for warnings. if (brackt .and. (stp .le. stmin .or. stp .ge. stmax)) + task = 'WARNING: ROUNDING ERRORS PREVENT PROGRESS' if (brackt .and. stmax - stmin .le. xtol*stmax) + task = 'WARNING: XTOL TEST SATISFIED' if (stp .eq. stpmax .and. f .le. ftest .and. g .le. gtest) + task = 'WARNING: STP = STPMAX' if (stp .eq. stpmin .and. (f .gt. ftest .or. g .ge. gtest)) + task = 'WARNING: STP = STPMIN' c Test for convergence. if (f .le. ftest .and. abs(g) .le. gtol*(-ginit)) + task = 'CONVERGENCE' c Test for termination. if (task(1:4) .eq. 'WARN' .or. task(1:4) .eq. 'CONV') goto 1000 c A modified function is used to predict the step during the c first stage if a lower function value has been obtained but c the decrease is not sufficient. if (stage .eq. 1 .and. f .le. fx .and. f .gt. ftest) then c Define the modified function and derivative values. fm = f - stp*gtest fxm = fx - stx*gtest fym = fy - sty*gtest gm = g - gtest gxm = gx - gtest gym = gy - gtest c Call dcstep to update stx, sty, and to compute the new step. call dcstep(stx,fxm,gxm,sty,fym,gym,stp,fm,gm, + brackt,stmin,stmax) c Reset the function and derivative values for f. fx = fxm + stx*gtest fy = fym + sty*gtest gx = gxm + gtest gy = gym + gtest else c Call dcstep to update stx, sty, and to compute the new step. call dcstep(stx,fx,gx,sty,fy,gy,stp,f,g, + brackt,stmin,stmax) endif c Decide if a bisection step is needed. if (brackt) then if (abs(sty-stx) .ge. p66*width1) stp = stx + p5*(sty - stx) width1 = width width = abs(sty-stx) endif c Set the minimum and maximum steps allowed for stp. if (brackt) then stmin = min(stx,sty) stmax = max(stx,sty) else stmin = stp + xtrapl*(stp - stx) stmax = stp + xtrapu*(stp - stx) endif c Force the step to be within the bounds stpmax and stpmin. stp = max(stp,stpmin) stp = min(stp,stpmax) c If further progress is not possible, let stp be the best c point obtained during the search. if (brackt .and. (stp .le. stmin .or. stp .ge. stmax) + .or. (brackt .and. stmax-stmin .le. xtol*stmax)) stp = stx c Obtain another function and derivative. task = 'FG' 1000 continue c Save local variables. if (brackt) then isave(1) = 1 else isave(1) = 0 endif isave(2) = stage dsave(1) = ginit dsave(2) = gtest dsave(3) = gx dsave(4) = gy dsave(5) = finit dsave(6) = fx dsave(7) = fy dsave(8) = stx dsave(9) = sty dsave(10) = stmin dsave(11) = stmax dsave(12) = width dsave(13) = width1 return end c====================== The end of dcsrch ============================== subroutine dcstep(stx,fx,dx,sty,fy,dy,stp,fp,dp,brackt, + stpmin,stpmax) logical brackt double precision stx,fx,dx,sty,fy,dy,stp,fp,dp,stpmin,stpmax c ********** c c Subroutine dcstep c c This subroutine computes a safeguarded step for a search c procedure and updates an interval that contains a step that c satisfies a sufficient decrease and a curvature condition. c c The parameter stx contains the step with the least function c value. If brackt is set to .true. then a minimizer has c been bracketed in an interval with endpoints stx and sty. c The parameter stp contains the current step. c The subroutine assumes that if brackt is set to .true. then c c min(stx,sty) < stp < max(stx,sty), c c and that the derivative at stx is negative in the direction c of the step. c c The subroutine statement is c c subroutine dcstep(stx,fx,dx,sty,fy,dy,stp,fp,dp,brackt, c stpmin,stpmax) c c where c c stx is a double precision variable. c On entry stx is the best step obtained so far and is an c endpoint of the interval that contains the minimizer. c On exit stx is the updated best step. c c fx is a double precision variable. c On entry fx is the function at stx. c On exit fx is the function at stx. c c dx is a double precision variable. c On entry dx is the derivative of the function at c stx. The derivative must be negative in the direction of c the step, that is, dx and stp - stx must have opposite c signs. c On exit dx is the derivative of the function at stx. c c sty is a double precision variable. c On entry sty is the second endpoint of the interval that c contains the minimizer. c On exit sty is the updated endpoint of the interval that c contains the minimizer. c c fy is a double precision variable. c On entry fy is the function at sty. c On exit fy is the function at sty. c c dy is a double precision variable. c On entry dy is the derivative of the function at sty. c On exit dy is the derivative of the function at the exit sty. c c stp is a double precision variable. c On entry stp is the current step. If brackt is set to .true. c then on input stp must be between stx and sty. c On exit stp is a new trial step. c c fp is a double precision variable. c On entry fp is the function at stp c On exit fp is unchanged. c c dp is a double precision variable. c On entry dp is the the derivative of the function at stp. c On exit dp is unchanged. c c brackt is an logical variable. c On entry brackt specifies if a minimizer has been bracketed. c Initially brackt must be set to .false. c On exit brackt specifies if a minimizer has been bracketed. c When a minimizer is bracketed brackt is set to .true. c c stpmin is a double precision variable. c On entry stpmin is a lower bound for the step. c On exit stpmin is unchanged. c c stpmax is a double precision variable. c On entry stpmax is an upper bound for the step. c On exit stpmax is unchanged. c c MINPACK-1 Project. June 1983 c Argonne National Laboratory. c Jorge J. More' and David J. Thuente. c c MINPACK-2 Project. October 1993. c Argonne National Laboratory and University of Minnesota. c Brett M. Averick and Jorge J. More'. c c ********** double precision zero,p66,two,three parameter(zero=0.0d0,p66=0.66d0,two=2.0d0,three=3.0d0) double precision gamma,p,q,r,s,sgnd,stpc,stpf,stpq,theta sgnd = dp*(dx/abs(dx)) c First case: A higher function value. The minimum is bracketed. c If the cubic step is closer to stx than the quadratic step, the c cubic step is taken, otherwise the average of the cubic and c quadratic steps is taken. if (fp .gt. fx) then theta = three*(fx - fp)/(stp - stx) + dx + dp s = max(abs(theta),abs(dx),abs(dp)) gamma = s*sqrt((theta/s)**2 - (dx/s)*(dp/s)) if (stp .lt. stx) gamma = -gamma p = (gamma - dx) + theta q = ((gamma - dx) + gamma) + dp r = p/q stpc = stx + r*(stp - stx) stpq = stx + ((dx/((fx - fp)/(stp - stx) + dx))/two)* + (stp - stx) if (abs(stpc-stx) .lt. abs(stpq-stx)) then stpf = stpc else stpf = stpc + (stpq - stpc)/two endif brackt = .true. c Second case: A lower function value and derivatives of opposite c sign. The minimum is bracketed. If the cubic step is farther from c stp than the secant step, the cubic step is taken, otherwise the c secant step is taken. else if (sgnd .lt. zero) then theta = three*(fx - fp)/(stp - stx) + dx + dp s = max(abs(theta),abs(dx),abs(dp)) gamma = s*sqrt((theta/s)**2 - (dx/s)*(dp/s)) if (stp .gt. stx) gamma = -gamma p = (gamma - dp) + theta q = ((gamma - dp) + gamma) + dx r = p/q stpc = stp + r*(stx - stp) stpq = stp + (dp/(dp - dx))*(stx - stp) if (abs(stpc-stp) .gt. abs(stpq-stp)) then stpf = stpc else stpf = stpq endif brackt = .true. c Third case: A lower function value, derivatives of the same sign, c and the magnitude of the derivative decreases. else if (abs(dp) .lt. abs(dx)) then c The cubic step is computed only if the cubic tends to infinity c in the direction of the step or if the minimum of the cubic c is beyond stp. Otherwise the cubic step is defined to be the c secant step. theta = three*(fx - fp)/(stp - stx) + dx + dp s = max(abs(theta),abs(dx),abs(dp)) c The case gamma = 0 only arises if the cubic does not tend c to infinity in the direction of the step. gamma = s*sqrt(max(zero,(theta/s)**2-(dx/s)*(dp/s))) if (stp .gt. stx) gamma = -gamma p = (gamma - dp) + theta q = (gamma + (dx - dp)) + gamma r = p/q if (r .lt. zero .and. gamma .ne. zero) then stpc = stp + r*(stx - stp) else if (stp .gt. stx) then stpc = stpmax else stpc = stpmin endif stpq = stp + (dp/(dp - dx))*(stx - stp) if (brackt) then c A minimizer has been bracketed. If the cubic step is c closer to stp than the secant step, the cubic step is c taken, otherwise the secant step is taken. if (abs(stpc-stp) .lt. abs(stpq-stp)) then stpf = stpc else stpf = stpq endif if (stp .gt. stx) then stpf = min(stp+p66*(sty-stp),stpf) else stpf = max(stp+p66*(sty-stp),stpf) endif else c A minimizer has not been bracketed. If the cubic step is c farther from stp than the secant step, the cubic step is c taken, otherwise the secant step is taken. if (abs(stpc-stp) .gt. abs(stpq-stp)) then stpf = stpc else stpf = stpq endif stpf = min(stpmax,stpf) stpf = max(stpmin,stpf) endif c Fourth case: A lower function value, derivatives of the same sign, c and the magnitude of the derivative does not decrease. If the c minimum is not bracketed, the step is either stpmin or stpmax, c otherwise the cubic step is taken. else if (brackt) then theta = three*(fp - fy)/(sty - stp) + dy + dp s = max(abs(theta),abs(dy),abs(dp)) gamma = s*sqrt((theta/s)**2 - (dy/s)*(dp/s)) if (stp .gt. sty) gamma = -gamma p = (gamma - dp) + theta q = ((gamma - dp) + gamma) + dy r = p/q stpc = stp + r*(sty - stp) stpf = stpc else if (stp .gt. stx) then stpf = stpmax else stpf = stpmin endif endif c Update the interval which contains a minimizer. if (fp .gt. fx) then sty = stp fy = fp dy = dp else if (sgnd .lt. zero) then sty = stx fy = fx dy = dx endif stx = stp fx = fp dx = dp endif c Compute the new step. stp = stpf return end Lbfgsb.3.0/License.txt000644 000765 000024 00000010715 12001620733 015654 0ustar00jmoralesstaff000000 000000 3-clause license ("New BSD License" or "Modified BSD License") New BSD License Author Regents of the University of California Publisher Public Domain Published July 22, 1999[8] DFSG compatible Yes[7] FSF approved Yes[1] OSI approved Yes[3] GPL compatible Yes[1] Copyleft No[1] Copyfree Yes Linking from code with a different license Yes The advertising clause was removed from the license text in the official BSD on July 22, 1999 by William Hoskins, Director of the Office of Technology Licensing for UC Berkeley.[8] Other BSD distributions removed the clause, but many similar clauses remain in BSD-derived code from other sources, and unrelated code using a derived license. While the original license is sometimes referred to as "BSD-old", the resulting 3-clause version is sometimes referred to by "BSD-new." Other names include "New BSD", "revised BSD", "BSD-3", or "3-clause BSD". This version has been vetted as an Open source license by the OSI as the "The BSD License".[3] The Free Software Foundation, which refers to the license as the "Modified BSD License", states that it is compatible with the GNU GPL. The FSF encourages users to be specific when referring to the license by name (i.e. not simply referring to it as "a BSD license" or "BSD-style") to avoid confusion with the original BSD license.[1] This version allows unlimited redistribution for any purpose as long as its copyright notices and the license's disclaimers of warranty are maintained. The license also contains a clause restricting use of the names of contributors for endorsement of a derived work without specific permission. Copyright (c) , All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. References 1. ^ a b c d e "Various Licenses and Comments about Them - GNU Project - Free Software Foundation (FSF): Modified BSD license". Free Software Foundation. Retrieved 02 October 2010. 2. ^ a b c d e "Various Licenses and Comments about Them - GNU Project - Free Software Foundation (FSF): FreeBSD license". Free Software Foundation. Retrieved 02 October 2010. 3. ^ a b c d e f "Open Source Initiative OSI - The BSD License:Licensing". Open Source Initiative. Retrieved 06 December 2009. 4. ^ a b c d "Various Licenses and Comments about Them - GNU Project - Free Software Foundation (FSF): Original BSD license". Free Software Foundation. Retrieved 02 October 2010. 5. ^ The year given is the year 4.3BSD-Tahoe was released. Whether this is the first use of the license is not known. 6. ^ The year given is the year 4.3BSD-Reno was released. Whether this is the first use of the license is not known. 7. ^ a b "Debian -- License information". Debian. Retrieved 18 February 2010. 8. ^ a b c "To All Licensees, Distributors of Any Version of BSD". University of California, Berkeley. 1999-07-22. Retrieved 2006-11-15. 9. ^ Richard Stallman. "The BSD License Problem". Free Software Foundation. Retrieved 2006-11-15. 10. ^ "The FreeBSD Copyright". The FreeBSD Project. Retrieved 6 December 2009. 11. ^ "NetBSD Licensing and Redistribution". The NetBSD Foundation. Retrieved 06 December 2009. Lbfgsb.3.0/Makefile000644 000765 000024 00000002414 11551413735 015201 0ustar00jmoralesstaff000000 000000 FC = gfortran FFLAGS = -O -Wall -fbounds-check -g -Wno-uninitialized DRIVER1_77 = driver1.f DRIVER2_77 = driver2.f DRIVER3_77 = driver3.f DRIVER1_90 = driver1.f90 DRIVER2_90 = driver2.f90 DRIVER3_90 = driver3.f90 LBFGSB = lbfgsb.f LINPACK = linpack.f BLAS = blas.f TIMER = timer.f all : lbfgsb_77_1 lbfgsb_77_2 lbfgsb_77_3 lbfgsb_90_1 lbfgsb_90_2 lbfgsb_90_3 lbfgsb_77_1 : $(DRIVER1_77) $(LBFGSB) $(LINPACK) $(BLAS) $(TIMER) $(FC) $(FFLAGS) $(DRIVER1_77) $(LBFGSB) $(LINPACK) $(BLAS) $(TIMER) -o x.lbfgsb_77_1 lbfgsb_77_2 : $(DRIVER2_77) $(LBFGSB) $(LINPACK) $(BLAS) $(TIMER) $(FC) $(FFLAGS) $(DRIVER2_77) $(LBFGSB) $(LINPACK) $(BLAS) $(TIMER) -o x.lbfgsb_77_2 lbfgsb_77_3 : $(DRIVER3_77) $(LBFGSB) $(LINPACK) $(BLAS) $(TIMER) $(FC) $(FFLAGS) $(DRIVER3_77) $(LBFGSB) $(LINPACK) $(BLAS) $(TIMER) -o x.lbfgsb_77_3 lbfgsb_90_1 : $(DRIVER1_90) $(LBFGSB) $(LINPACK) $(BLAS) $(TIMER) $(FC) $(FFLAGS) $(DRIVER1_90) $(LBFGSB) $(LINPACK) $(BLAS) $(TIMER) -o x.lbfgsb_90_1 lbfgsb_90_2 : $(DRIVER2_90) $(LBFGSB) $(LINPACK) $(BLAS) $(TIMER) $(FC) $(FFLAGS) $(DRIVER2_90) $(LBFGSB) $(LINPACK) $(BLAS) $(TIMER) -o x.lbfgsb_90_2 lbfgsb_90_3 : $(DRIVER3_90) $(LBFGSB) $(LINPACK) $(BLAS) $(TIMER) $(FC) $(FFLAGS) $(DRIVER3_90) $(LBFGSB) $(LINPACK) $(BLAS) $(TIMER) -o x.lbfgsb_90_3 Lbfgsb.3.0/OUTPUTS/000755 000765 000024 00000000000 11542502522 014714 5ustar00jmoralesstaff000000 000000 Lbfgsb.3.0/README000644 000765 000024 00000023666 12001633261 014422 0ustar00jmoralesstaff000000 000000 L-BFGS-B is released under the “New BSD License” (aka “Modified BSD License” or “3-clause license”) Please read attached file License.txt L-BFGS-B (version 3.0) march, 2011 This directory contains the modified/corrected limited memory code for solving bound constrained optimization problems. _______________________________________________________________________ o f77 routines blas.f subset of blas linpack.f subset of linpack lbfgsb.f main routine timer.f routine to compute CPU time o f77 and f90 drivers driver1.f driver1.f90 driver2.f driver2.f90 driver3.f driver3.f90 We recommend that the user read driver1.f/driver1.f90, which give a good idea of how the code works o Makefile Linux/Unix users. To run the code on a Linux/Unix machine simply type make This will create the files x.lbfgsb_77_1 x.lbfgsb_90_1 x.lbfgsb_77_2 x.lbfgsb_90_2 x.lbfgsb_77_3 x.lbfgsb_90_3 which are the executable files for the drivers in the package. One can execute the program by typing the name of the executable file. o Output files are provided for each executable file in directory OUPUTS output_77_1 output_90_1 output_77_2 output_90_2 output_77_3 output_90_3 o The following four articles are also included [1] algorithm.pdf - describes the algorithm [2] compact.pdf - presents the compact form of matrices [3] code.pdf - describes the code [4] acm-remark.pdf - describes the modification/correction The most useful articles for those who only wish to use the code are [3,4]. Users interested in understanding the algorithm should read [1] and possibly also [2]. ________________________________________________________________________ For questions and help contact Jorge Nocedal Jose Luis Morales ________________________________________________________________________ How to use L-BFGS-B ************************************************************************ The simplest way to use the code is to modify one of the drivers provided in the package. Most users will only need to make a few changes to the drivers to run their applications. L-BFGS-B is written in FORTRAN 77, in double precision. The user is required to calculate the function value f and its gradient g. In order to allow the user complete control over these computations, reverse communication is used. The routine setulb.f must be called repeatedly under the control of the variable task. The calling statement of L-BFGS-B is call setulb(n,m,x,l,u,nbd,f,g,factr,pgtol,wa,iwa,task,iprint, + csave,lsave,isave,dsave) Following is a description of all the parameters used in this call. c n is an INTEGER variable that must be set by the user to the c number of variables. It is not altered by the routine. c c m is an INTEGER variable that must be set by the user to the c number of corrections used in the limited memory matrix. c It is not altered by the routine. Values of m < 3 are c not recommended, and large values of m can result in excessive c computing time. The range 3 <= m <= 20 is recommended. c c x is a DOUBLE PRECISION array of length n. On initial entry c it must be set by the user to the values of the initial c estimate of the solution vector. Upon successful exit, it c contains the values of the variables at the best point c found (usually an approximate solution). c c l is a DOUBLE PRECISION array of length n that must be set by c the user to the values of the lower bounds on the variables. If c the i-th variable has no lower bound, l(i) need not be defined. c c u is a DOUBLE PRECISION array of length n that must be set by c the user to the values of the upper bounds on the variables. If c the i-th variable has no upper bound, u(i) need not be defined. c c nbd is an INTEGER array of dimension n that must be set by the c user to the type of bounds imposed on the variables: c nbd(i)=0 if x(i) is unbounded, c 1 if x(i) has only a lower bound, c 2 if x(i) has both lower and upper bounds, c 3 if x(i) has only an upper bound. c c f is a DOUBLE PRECISION variable. If the routine setulb returns c with task(1:2)= 'FG', then f must be set by the user to c contain the value of the function at the point x. c c g is a DOUBLE PRECISION array of length n. If the routine setulb c returns with taskb(1:2)= 'FG', then g must be set by the user to c contain the components of the gradient at the point x. c c factr is a DOUBLE PRECISION variable that must be set by the user. c It is a tolerance in the termination test for the algorithm. c The iteration will stop when c c (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch c c where epsmch is the machine precision which is automatically c generated by the code. Typical values for factr on a computer c with 15 digits of accuracy in double precision are: c factr=1.d+12 for low accuracy; c 1.d+7 for moderate accuracy; c 1.d+1 for extremely high accuracy. c The user can suppress this termination test by setting factr=0. c c pgtol is a double precision variable. c On entry pgtol >= 0 is specified by the user. The iteration c will stop when c c max{|proj g_i | i = 1, ..., n} <= pgtol c c where pg_i is the ith component of the projected gradient. c The user can suppress this termination test by setting pgtol=0. c c wa is a DOUBLE PRECISION array of length c (2mmax + 5)nmax + 11mmax^2 + 8mmax used as workspace. c This array must not be altered by the user. c c iwa is an INTEGER array of length 3nmax used as c workspace. This array must not be altered by the user. c c task is a CHARACTER string of length 60. c On first entry, it must be set to 'START'. c On a return with task(1:2)='FG', the user must evaluate the c function f and gradient g at the returned value of x. c On a return with task(1:5)='NEW_X', an iteration of the c algorithm has concluded, and f and g contain f(x) and g(x) c respectively. The user can decide whether to continue or stop c the iteration. c When c task(1:4)='CONV', the termination test in L-BFGS-B has been c satisfied; c task(1:4)='ABNO', the routine has terminated abnormally c without being able to satisfy the termination conditions, c x contains the best approximation found, c f and g contain f(x) and g(x) respectively; c task(1:5)='ERROR', the routine has detected an error in the c input parameters; c On exit with task = 'CONV', 'ABNO' or 'ERROR', the variable task c contains additional information that the user can print. c This array should not be altered unless the user wants to c stop the run for some reason. See driver2 or driver3 c for a detailed explanation on how to stop the run c by assigning task(1:4)='STOP' in the driver. c c iprint is an INTEGER variable that must be set by the user. c It controls the frequency and type of output generated: c iprint<0 no output is generated; c iprint=0 print only one line at the last iteration; c 0100 print details of every iteration including x and g; c When iprint > 0, the file iterate.dat will be created to c summarize the iteration. c c csave is a CHARACTER working array of length 60. c c lsave is a LOGICAL working array of dimension 4. c On exit with task = 'NEW_X', the following information is c available: c lsave(1) = .true. the initial x did not satisfy the bounds; c lsave(2) = .true. the problem contains bounds; c lsave(3) = .true. each variable has upper and lower bounds. c c isave is an INTEGER working array of dimension 44. c On exit with task = 'NEW_X', it contains information that c the user may want to access: c isave(30) = the current iteration number; c isave(34) = the total number of function and gradient c evaluations; c isave(36) = the number of function value or gradient c evaluations in the current iteration; c isave(38) = the number of free variables in the current c iteration; c isave(39) = the number of active constraints at the current c iteration; c c see the subroutine setulb.f for a description of other c information contained in isave c c dsave is a DOUBLE PRECISION working array of dimension 29. c On exit with task = 'NEW_X', it contains information that c the user may want to access: c dsave(2) = the value of f at the previous iteration; c dsave(5) = the machine precision epsmch generated by the code; c dsave(13) = the infinity norm of the projected gradient; c c see the subroutine setulb.f for a description of other c information contained in dsave c ************************************************************************ Lbfgsb.3.0/timer.f000644 000765 000024 00000002205 12001634241 015012 0ustar00jmoralesstaff000000 000000 c c L-BFGS-B is released under the “New BSD License” (aka “Modified BSD License” c or “3-clause license”) c Please read attached file License.txt c subroutine timer(ttime) double precision ttime c real temp c c This routine computes cpu time in double precision; it makes use of c the intrinsic f90 cpu_time therefore a conversion type is c needed. c c J.L Morales Departamento de Matematicas, c Instituto Tecnologico Autonomo de Mexico c Mexico D.F. c c J.L Nocedal Department of Electrical Engineering and c Computer Science. c Northwestern University. Evanston, IL. USA c c January 21, 2011 c temp = sngl(ttime) call cpu_time(temp) ttime = dble(temp) return end Lbfgsb.3.0/OUTPUTS/output_77_1000644 000765 000024 00000004662 11542502374 016751 0ustar00jmoralesstaff000000 000000 Solving sample problem. (f = 0.0 at the optimal solution.) RUNNING THE L-BFGS-B CODE * * * Machine precision = 2.220D-16 N = 25 M = 5 At X0 0 variables are exactly at the bounds At iterate 0 f= 3.46000D+03 |proj g|= 1.03000D+02 At iterate 1 f= 2.39769D+03 |proj g|= 6.50700D+01 At iterate 2 f= 1.43806D+02 |proj g|= 3.64039D+01 At iterate 3 f= 7.28161D+01 |proj g|= 2.29042D+01 At iterate 4 f= 1.60308D+01 |proj g|= 6.95409D+00 At iterate 5 f= 5.18725D+00 |proj g|= 9.05481D+00 At iterate 6 f= 2.12716D+00 |proj g|= 1.96729D+01 At iterate 7 f= 2.07568D-01 |proj g|= 2.12849D+00 At iterate 8 f= 5.32739D-02 |proj g|= 8.32469D-01 At iterate 9 f= 1.30450D-02 |proj g|= 4.27926D-01 At iterate 10 f= 3.86031D-03 |proj g|= 2.00812D-01 At iterate 11 f= 7.45653D-04 |proj g|= 1.37723D-01 At iterate 12 f= 3.54016D-04 |proj g|= 1.21274D-01 At iterate 13 f= 7.42511D-05 |proj g|= 2.97814D-02 At iterate 14 f= 3.74062D-05 |proj g|= 1.72742D-02 At iterate 15 f= 1.09832D-05 |proj g|= 2.86815D-02 At iterate 16 f= 3.90757D-06 |proj g|= 8.08085D-03 At iterate 17 f= 1.99502D-06 |proj g|= 3.47648D-03 At iterate 18 f= 8.25796D-07 |proj g|= 2.25283D-03 At iterate 19 f= 1.99224D-07 |proj g|= 1.45773D-03 At iterate 20 f= 5.75772D-08 |proj g|= 1.48245D-03 At iterate 21 f= 1.46326D-08 |proj g|= 5.44304D-04 At iterate 22 f= 2.36329D-09 |proj g|= 2.25244D-04 At iterate 23 f= 1.08349D-09 |proj g|= 1.72052D-04 * * * Tit = total number of iterations Tnf = total number of function evaluations Tnint = total number of segments explored during Cauchy searches Skip = number of BFGS updates skipped Nact = number of active bounds at final generalized Cauchy point Projg = norm of the final projected gradient F = final function value * * * N Tit Tnf Tnint Skip Nact Projg F 25 23 28 47 0 0 1.721D-04 1.083D-09 F = 1.083490083518441E-009 CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH Cauchy time 1.000E-03 seconds. Subspace minimization time 0.000E+00 seconds. Line search time 0.000E+00 seconds. Total User time 2.000E-03 seconds. Lbfgsb.3.0/OUTPUTS/output_77_2000644 000765 000024 00000007266 11542502404 016747 0ustar00jmoralesstaff000000 000000 Solving sample problem. (f = 0.0 at the optimal solution.) Iterate 1 nfg = 5 f = 2.39769D+03 |proj g| = 6.50700D+01 Iterate 2 nfg = 6 f = 1.43806D+02 |proj g| = 3.64039D+01 Iterate 3 nfg = 7 f = 7.28161D+01 |proj g| = 2.29042D+01 Iterate 4 nfg = 8 f = 1.60308D+01 |proj g| = 6.95409D+00 Iterate 5 nfg = 9 f = 5.18725D+00 |proj g| = 9.05481D+00 Iterate 6 nfg = 10 f = 2.12716D+00 |proj g| = 1.96729D+01 Iterate 7 nfg = 11 f = 2.07568D-01 |proj g| = 2.12849D+00 Iterate 8 nfg = 12 f = 5.32739D-02 |proj g| = 8.32469D-01 Iterate 9 nfg = 13 f = 1.30450D-02 |proj g| = 4.27926D-01 Iterate 10 nfg = 14 f = 3.86031D-03 |proj g| = 2.00812D-01 Iterate 11 nfg = 15 f = 7.45653D-04 |proj g| = 1.37723D-01 Iterate 12 nfg = 16 f = 3.54016D-04 |proj g| = 1.21274D-01 Iterate 13 nfg = 17 f = 7.42511D-05 |proj g| = 2.97814D-02 Iterate 14 nfg = 18 f = 3.74062D-05 |proj g| = 1.72742D-02 Iterate 15 nfg = 19 f = 1.09832D-05 |proj g| = 2.86815D-02 Iterate 16 nfg = 21 f = 3.90757D-06 |proj g| = 8.08085D-03 Iterate 17 nfg = 22 f = 1.99502D-06 |proj g| = 3.47648D-03 Iterate 18 nfg = 23 f = 8.25796D-07 |proj g| = 2.25283D-03 Iterate 19 nfg = 24 f = 1.99224D-07 |proj g| = 1.45773D-03 Iterate 20 nfg = 25 f = 5.75772D-08 |proj g| = 1.48245D-03 Iterate 21 nfg = 26 f = 1.46326D-08 |proj g| = 5.44304D-04 Iterate 22 nfg = 27 f = 2.36329D-09 |proj g| = 2.25244D-04 Iterate 23 nfg = 28 f = 1.08349D-09 |proj g| = 1.72052D-04 Iterate 24 nfg = 29 f = 3.49043D-10 |proj g| = 5.78820D-05 Iterate 25 nfg = 30 f = 8.43998D-11 |proj g| = 2.04504D-05 Iterate 26 nfg = 31 f = 2.29812D-11 |proj g| = 1.74854D-05 Iterate 27 nfg = 32 f = 5.56238D-12 |proj g| = 1.29349D-05 Iterate 28 nfg = 33 f = 6.17073D-13 |proj g| = 3.52399D-06 Iterate 29 nfg = 34 f = 2.06920D-13 |proj g| = 9.74653D-07 Iterate 30 nfg = 35 f = 1.07949D-13 |proj g| = 6.84427D-07 Iterate 31 nfg = 36 f = 3.27200D-14 |proj g| = 7.46523D-07 Iterate 32 nfg = 38 f = 2.20380D-14 |proj g| = 6.32502D-07 Iterate 33 nfg = 39 f = 1.37189D-14 |proj g| = 2.83064D-07 Iterate 34 nfg = 40 f = 8.06341D-15 |proj g| = 1.25600D-07 Iterate 35 nfg = 41 f = 6.30621D-15 |proj g| = 6.63279D-08 Iterate 36 nfg = 42 f = 6.12906D-15 |proj g| = 9.93648D-08 Iterate 37 nfg = 43 f = 5.83506D-15 |proj g| = 1.10012D-08 Iterate 38 nfg = 44 f = 5.82125D-15 |proj g| = 8.09738D-09 Iterate 39 nfg = 45 f = 5.81201D-15 |proj g| = 2.04600D-08 Iterate 40 nfg = 47 f = 5.80895D-15 |proj g| = 4.71360D-09 Iterate 41 nfg = 48 f = 5.80786D-15 |proj g| = 1.97091D-09 Iterate 42 nfg = 49 f = 5.80716D-15 |proj g| = 1.10044D-09 Iterate 43 nfg = 50 f = 5.80705D-15 |proj g| = 3.49651D-10 Iterate 44 nfg = 51 f = 5.80703D-15 |proj g| = 2.29788D-10 Iterate 45 nfg = 52 f = 5.80702D-15 |proj g| = 1.51178D-10 Iterate 46 nfg = 53 f = 5.80702D-15 |proj g| = 6.61970D-11 STOP: THE PROJECTED GRADIENT IS SUFFICIENTLY SMALL Final X= 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0001D+00 1.0002D+00 1.0003D+00 1.0006D+00 1.0013D+00 1.0026D+00 1.0052D+00 1.0105D+00 1.0210D+00 1.0425D+00 1.0867D+00 1.1810D+00 1.3947D+00 1.9452D+00 3.7837D+00 Lbfgsb.3.0/OUTPUTS/output_77_3000644 000765 000024 00000037206 11542502414 016746 0ustar00jmoralesstaff000000 000000 Solving sample problem. (f = 0.0 at the optimal solution.) Iterate 1 nfg = 5 f = 9.98226D+04 |proj g| = 4.92220D+01 Iterate 2 nfg = 6 f = 5.97672D+03 |proj g| = 7.29734D+00 Iterate 3 nfg = 7 f = 3.02885D+03 |proj g| = 7.40956D+00 Iterate 4 nfg = 8 f = 7.16214D+02 |proj g| = 6.00527D+00 Iterate 5 nfg = 9 f = 2.20946D+02 |proj g| = 4.08022D+00 Iterate 6 nfg = 10 f = 5.61473D+01 |proj g| = 5.17435D+00 Iterate 7 nfg = 11 f = 3.39145D+01 |proj g| = 2.09576D+01 Iterate 8 nfg = 12 f = 1.36320D+00 |proj g| = 9.93231D+00 Iterate 9 nfg = 13 f = 3.50771D-01 |proj g| = 5.91099D+00 Iterate 10 nfg = 14 f = 1.52466D-02 |proj g| = 6.13600D-01 Iterate 11 nfg = 15 f = 7.36312D-03 |proj g| = 3.39884D-01 Iterate 12 nfg = 16 f = 1.25124D-03 |proj g| = 1.17803D-01 Iterate 13 nfg = 17 f = 4.68586D-04 |proj g| = 7.22477D-02 Iterate 14 nfg = 18 f = 5.50022D-05 |proj g| = 4.40414D-02 Iterate 15 nfg = 19 f = 1.82587D-05 |proj g| = 1.49985D-02 Iterate 16 nfg = 20 f = 6.79533D-06 |proj g| = 7.05805D-03 Iterate 17 nfg = 21 f = 1.59803D-06 |proj g| = 3.57847D-03 Iterate 18 nfg = 22 f = 4.67168D-07 |proj g| = 2.96329D-03 Iterate 19 nfg = 24 f = 1.61224D-07 |proj g| = 1.61125D-03 Iterate 20 nfg = 25 f = 5.27054D-08 |proj g| = 6.79899D-04 Iterate 21 nfg = 26 f = 2.21706D-08 |proj g| = 3.98553D-04 Iterate 22 nfg = 27 f = 7.85699D-09 |proj g| = 8.29301D-04 Iterate 23 nfg = 28 f = 2.57367D-09 |proj g| = 3.95843D-04 Iterate 24 nfg = 29 f = 9.39513D-10 |proj g| = 8.04745D-05 Iterate 25 nfg = 30 f = 5.42208D-10 |proj g| = 5.75104D-05 Iterate 26 nfg = 31 f = 1.13904D-10 |proj g| = 3.88455D-05 Iterate 27 nfg = 32 f = 2.19270D-11 |proj g| = 2.48929D-05 Iterate 28 nfg = 34 f = 5.89247D-12 |proj g| = 5.98559D-06 Iterate 29 nfg = 35 f = 3.05886D-12 |proj g| = 3.88360D-06 Iterate 30 nfg = 36 f = 6.64922D-13 |proj g| = 2.57655D-06 Iterate 31 nfg = 37 f = 1.82984D-13 |proj g| = 1.54163D-06 Iterate 32 nfg = 38 f = 5.06020D-14 |proj g| = 1.46067D-06 Iterate 33 nfg = 39 f = 2.03549D-14 |proj g| = 2.88905D-07 Iterate 34 nfg = 40 f = 1.27697D-14 |proj g| = 2.09331D-07 Iterate 35 nfg = 41 f = 2.59126D-15 |proj g| = 2.75406D-07 Iterate 36 nfg = 43 f = 1.13639D-15 |proj g| = 1.13897D-07 Iterate 37 nfg = 44 f = 5.29416D-16 |proj g| = 6.22050D-08 Iterate 38 nfg = 45 f = 1.24096D-16 |proj g| = 2.30404D-08 Iterate 39 nfg = 46 f = 3.14643D-17 |proj g| = 1.56779D-08 Iterate 40 nfg = 47 f = 1.56638D-17 |proj g| = 1.19498D-08 Iterate 41 nfg = 48 f = 2.80290D-18 |proj g| = 4.46387D-09 Iterate 42 nfg = 49 f = 1.32837D-18 |proj g| = 2.55881D-09 Iterate 43 nfg = 50 f = 2.54553D-19 |proj g| = 1.17505D-09 Iterate 44 nfg = 52 f = 8.23941D-20 |proj g| = 9.01753D-10 Iterate 45 nfg = 53 f = 2.79611D-20 |proj g| = 8.62939D-10 Iterate 46 nfg = 54 f = 1.08724D-20 |proj g| = 2.44455D-10 Iterate 47 nfg = 55 f = 5.32479D-21 |proj g| = 1.66311D-10 Iterate 48 nfg = 56 f = 1.26618D-21 |proj g| = 1.90418D-10 Iterate 49 nfg = 58 f = 5.35057D-22 |proj g| = 9.73814D-11 STOP: THE PROJECTED GRADIENT IS SUFFICIENTLY SMALL Final X= 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0001D+00 1.0002D+00 1.0003D+00 1.0007D+00 1.0014D+00 1.0028D+00 1.0055D+00 1.0111D+00 1.0223D+00 1.0451D+00 1.0923D+00 1.1930D+00 1.4233D+00 2.0257D+00 4.1035D+00 Lbfgsb.3.0/OUTPUTS/output_90_1000644 000765 000024 00000004662 11542502434 016741 0ustar00jmoralesstaff000000 000000 Solving sample problem. (f = 0.0 at the optimal solution.) RUNNING THE L-BFGS-B CODE * * * Machine precision = 2.220D-16 N = 25 M = 5 At X0 0 variables are exactly at the bounds At iterate 0 f= 3.46000D+03 |proj g|= 1.03000D+02 At iterate 1 f= 2.39769D+03 |proj g|= 6.50700D+01 At iterate 2 f= 1.43806D+02 |proj g|= 3.64039D+01 At iterate 3 f= 7.28161D+01 |proj g|= 2.29042D+01 At iterate 4 f= 1.60308D+01 |proj g|= 6.95409D+00 At iterate 5 f= 5.18725D+00 |proj g|= 9.05481D+00 At iterate 6 f= 2.12716D+00 |proj g|= 1.96729D+01 At iterate 7 f= 2.07568D-01 |proj g|= 2.12849D+00 At iterate 8 f= 5.32739D-02 |proj g|= 8.32469D-01 At iterate 9 f= 1.30450D-02 |proj g|= 4.27926D-01 At iterate 10 f= 3.86031D-03 |proj g|= 2.00812D-01 At iterate 11 f= 7.45653D-04 |proj g|= 1.37723D-01 At iterate 12 f= 3.54016D-04 |proj g|= 1.21274D-01 At iterate 13 f= 7.42511D-05 |proj g|= 2.97814D-02 At iterate 14 f= 3.74062D-05 |proj g|= 1.72742D-02 At iterate 15 f= 1.09832D-05 |proj g|= 2.86815D-02 At iterate 16 f= 3.90757D-06 |proj g|= 8.08085D-03 At iterate 17 f= 1.99502D-06 |proj g|= 3.47648D-03 At iterate 18 f= 8.25796D-07 |proj g|= 2.25283D-03 At iterate 19 f= 1.99224D-07 |proj g|= 1.45773D-03 At iterate 20 f= 5.75772D-08 |proj g|= 1.48245D-03 At iterate 21 f= 1.46326D-08 |proj g|= 5.44304D-04 At iterate 22 f= 2.36329D-09 |proj g|= 2.25244D-04 At iterate 23 f= 1.08349D-09 |proj g|= 1.72052D-04 * * * Tit = total number of iterations Tnf = total number of function evaluations Tnint = total number of segments explored during Cauchy searches Skip = number of BFGS updates skipped Nact = number of active bounds at final generalized Cauchy point Projg = norm of the final projected gradient F = final function value * * * N Tit Tnf Tnint Skip Nact Projg F 25 23 28 47 0 0 1.721D-04 1.083D-09 F = 1.083490083461424E-009 CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH Cauchy time 0.000E+00 seconds. Subspace minimization time 0.000E+00 seconds. Line search time 0.000E+00 seconds. Total User time 1.000E-03 seconds. Lbfgsb.3.0/OUTPUTS/output_90_2000644 000765 000024 00000007266 11542502442 016744 0ustar00jmoralesstaff000000 000000 Solving sample problem. (f = 0.0 at the optimal solution.) Iterate 1 nfg = 5 f = 2.39769D+03 |proj g| = 6.50700D+01 Iterate 2 nfg = 6 f = 1.43806D+02 |proj g| = 3.64039D+01 Iterate 3 nfg = 7 f = 7.28161D+01 |proj g| = 2.29042D+01 Iterate 4 nfg = 8 f = 1.60308D+01 |proj g| = 6.95409D+00 Iterate 5 nfg = 9 f = 5.18725D+00 |proj g| = 9.05481D+00 Iterate 6 nfg = 10 f = 2.12716D+00 |proj g| = 1.96729D+01 Iterate 7 nfg = 11 f = 2.07568D-01 |proj g| = 2.12849D+00 Iterate 8 nfg = 12 f = 5.32739D-02 |proj g| = 8.32469D-01 Iterate 9 nfg = 13 f = 1.30450D-02 |proj g| = 4.27926D-01 Iterate 10 nfg = 14 f = 3.86031D-03 |proj g| = 2.00812D-01 Iterate 11 nfg = 15 f = 7.45653D-04 |proj g| = 1.37723D-01 Iterate 12 nfg = 16 f = 3.54016D-04 |proj g| = 1.21274D-01 Iterate 13 nfg = 17 f = 7.42511D-05 |proj g| = 2.97814D-02 Iterate 14 nfg = 18 f = 3.74062D-05 |proj g| = 1.72742D-02 Iterate 15 nfg = 19 f = 1.09832D-05 |proj g| = 2.86815D-02 Iterate 16 nfg = 21 f = 3.90757D-06 |proj g| = 8.08085D-03 Iterate 17 nfg = 22 f = 1.99502D-06 |proj g| = 3.47648D-03 Iterate 18 nfg = 23 f = 8.25796D-07 |proj g| = 2.25283D-03 Iterate 19 nfg = 24 f = 1.99224D-07 |proj g| = 1.45773D-03 Iterate 20 nfg = 25 f = 5.75772D-08 |proj g| = 1.48245D-03 Iterate 21 nfg = 26 f = 1.46326D-08 |proj g| = 5.44304D-04 Iterate 22 nfg = 27 f = 2.36329D-09 |proj g| = 2.25244D-04 Iterate 23 nfg = 28 f = 1.08349D-09 |proj g| = 1.72052D-04 Iterate 24 nfg = 29 f = 3.49043D-10 |proj g| = 5.78820D-05 Iterate 25 nfg = 30 f = 8.43998D-11 |proj g| = 2.04504D-05 Iterate 26 nfg = 31 f = 2.29812D-11 |proj g| = 1.74854D-05 Iterate 27 nfg = 32 f = 5.56238D-12 |proj g| = 1.29349D-05 Iterate 28 nfg = 33 f = 6.17073D-13 |proj g| = 3.52399D-06 Iterate 29 nfg = 34 f = 2.06920D-13 |proj g| = 9.74653D-07 Iterate 30 nfg = 35 f = 1.07949D-13 |proj g| = 6.84427D-07 Iterate 31 nfg = 36 f = 3.27200D-14 |proj g| = 7.46523D-07 Iterate 32 nfg = 38 f = 2.20380D-14 |proj g| = 6.32502D-07 Iterate 33 nfg = 39 f = 1.37189D-14 |proj g| = 2.83064D-07 Iterate 34 nfg = 40 f = 8.06341D-15 |proj g| = 1.25600D-07 Iterate 35 nfg = 41 f = 6.30621D-15 |proj g| = 6.63280D-08 Iterate 36 nfg = 42 f = 6.12906D-15 |proj g| = 9.93648D-08 Iterate 37 nfg = 43 f = 5.83506D-15 |proj g| = 1.10011D-08 Iterate 38 nfg = 44 f = 5.82125D-15 |proj g| = 8.09738D-09 Iterate 39 nfg = 45 f = 5.81201D-15 |proj g| = 2.04599D-08 Iterate 40 nfg = 47 f = 5.80895D-15 |proj g| = 4.71361D-09 Iterate 41 nfg = 48 f = 5.80786D-15 |proj g| = 1.97091D-09 Iterate 42 nfg = 49 f = 5.80716D-15 |proj g| = 1.10044D-09 Iterate 43 nfg = 50 f = 5.80705D-15 |proj g| = 3.49639D-10 Iterate 44 nfg = 51 f = 5.80703D-15 |proj g| = 2.29804D-10 Iterate 45 nfg = 52 f = 5.80702D-15 |proj g| = 1.51167D-10 Iterate 46 nfg = 53 f = 5.80702D-15 |proj g| = 6.62041D-11 STOP: THE PROJECTED GRADIENT IS SUFFICIENTLY SMALL Final X= 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0001D+00 1.0002D+00 1.0003D+00 1.0006D+00 1.0013D+00 1.0026D+00 1.0052D+00 1.0105D+00 1.0210D+00 1.0425D+00 1.0867D+00 1.1810D+00 1.3947D+00 1.9452D+00 3.7837D+00 Lbfgsb.3.0/OUTPUTS/output_90_3000644 000765 000024 00000037206 11542502451 016742 0ustar00jmoralesstaff000000 000000 Solving sample problem. (f = 0.0 at the optimal solution.) Iterate 1 nfg = 5 f = 9.98226D+04 |proj g| = 4.92220D+01 Iterate 2 nfg = 6 f = 5.97672D+03 |proj g| = 7.29734D+00 Iterate 3 nfg = 7 f = 3.02885D+03 |proj g| = 7.40956D+00 Iterate 4 nfg = 8 f = 7.16214D+02 |proj g| = 6.00527D+00 Iterate 5 nfg = 9 f = 2.20946D+02 |proj g| = 4.08022D+00 Iterate 6 nfg = 10 f = 5.61473D+01 |proj g| = 5.17435D+00 Iterate 7 nfg = 11 f = 3.39145D+01 |proj g| = 2.09576D+01 Iterate 8 nfg = 12 f = 1.36320D+00 |proj g| = 9.93231D+00 Iterate 9 nfg = 13 f = 3.50771D-01 |proj g| = 5.91099D+00 Iterate 10 nfg = 14 f = 1.52466D-02 |proj g| = 6.13600D-01 Iterate 11 nfg = 15 f = 7.36312D-03 |proj g| = 3.39884D-01 Iterate 12 nfg = 16 f = 1.25124D-03 |proj g| = 1.17803D-01 Iterate 13 nfg = 17 f = 4.68586D-04 |proj g| = 7.22477D-02 Iterate 14 nfg = 18 f = 5.50022D-05 |proj g| = 4.40414D-02 Iterate 15 nfg = 19 f = 1.82587D-05 |proj g| = 1.49985D-02 Iterate 16 nfg = 20 f = 6.79533D-06 |proj g| = 7.05805D-03 Iterate 17 nfg = 21 f = 1.59803D-06 |proj g| = 3.57847D-03 Iterate 18 nfg = 22 f = 4.67168D-07 |proj g| = 2.96329D-03 Iterate 19 nfg = 24 f = 1.61224D-07 |proj g| = 1.61125D-03 Iterate 20 nfg = 25 f = 5.27054D-08 |proj g| = 6.79899D-04 Iterate 21 nfg = 26 f = 2.21706D-08 |proj g| = 3.98553D-04 Iterate 22 nfg = 27 f = 7.85699D-09 |proj g| = 8.29301D-04 Iterate 23 nfg = 28 f = 2.57367D-09 |proj g| = 3.95843D-04 Iterate 24 nfg = 29 f = 9.39513D-10 |proj g| = 8.04745D-05 Iterate 25 nfg = 30 f = 5.42208D-10 |proj g| = 5.75104D-05 Iterate 26 nfg = 31 f = 1.13904D-10 |proj g| = 3.88455D-05 Iterate 27 nfg = 32 f = 2.19270D-11 |proj g| = 2.48929D-05 Iterate 28 nfg = 34 f = 5.89247D-12 |proj g| = 5.98559D-06 Iterate 29 nfg = 35 f = 3.05886D-12 |proj g| = 3.88360D-06 Iterate 30 nfg = 36 f = 6.64922D-13 |proj g| = 2.57655D-06 Iterate 31 nfg = 37 f = 1.82984D-13 |proj g| = 1.54163D-06 Iterate 32 nfg = 38 f = 5.06020D-14 |proj g| = 1.46067D-06 Iterate 33 nfg = 39 f = 2.03549D-14 |proj g| = 2.88905D-07 Iterate 34 nfg = 40 f = 1.27697D-14 |proj g| = 2.09331D-07 Iterate 35 nfg = 41 f = 2.59125D-15 |proj g| = 2.75406D-07 Iterate 36 nfg = 43 f = 1.13639D-15 |proj g| = 1.13897D-07 Iterate 37 nfg = 44 f = 5.29416D-16 |proj g| = 6.22050D-08 Iterate 38 nfg = 45 f = 1.24096D-16 |proj g| = 2.30404D-08 Iterate 39 nfg = 46 f = 3.14643D-17 |proj g| = 1.56779D-08 Iterate 40 nfg = 47 f = 1.56638D-17 |proj g| = 1.19498D-08 Iterate 41 nfg = 48 f = 2.80291D-18 |proj g| = 4.46388D-09 Iterate 42 nfg = 49 f = 1.32837D-18 |proj g| = 2.55882D-09 Iterate 43 nfg = 50 f = 2.54555D-19 |proj g| = 1.17507D-09 Iterate 44 nfg = 52 f = 8.23938D-20 |proj g| = 9.01720D-10 Iterate 45 nfg = 53 f = 2.79609D-20 |proj g| = 8.62899D-10 Iterate 46 nfg = 54 f = 1.08725D-20 |proj g| = 2.44452D-10 Iterate 47 nfg = 55 f = 5.32476D-21 |proj g| = 1.66320D-10 Iterate 48 nfg = 56 f = 1.26624D-21 |proj g| = 1.90396D-10 Iterate 49 nfg = 58 f = 5.35121D-22 |proj g| = 9.74083D-11 STOP: THE PROJECTED GRADIENT IS SUFFICIENTLY SMALL Final X= 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00 1.0001D+00 1.0002D+00 1.0003D+00 1.0007D+00 1.0014D+00 1.0028D+00 1.0055D+00 1.0111D+00 1.0223D+00 1.0451D+00 1.0923D+00 1.1930D+00 1.4233D+00 2.0257D+00 4.1035D+00