pax_global_header00006660000000000000000000000064126626642260014526gustar00rootroot0000000000000052 comment=dbd0a623dc4dfb4b8169d5aecc6dd9aec2f22792 CMakeLists.txt000066400000000000000000000004371266266422600136360ustar00rootroot00000000000000CMAKE_MINIMUM_REQUIRED(VERSION 2.6 FATAL_ERROR) CMAKE_POLICY(VERSION 2.6) SET(src "") SET(luasrc ${CMAKE_CURRENT_SOURCE_DIR}/init.lua ${CMAKE_CURRENT_SOURCE_DIR}/cinterface.lua ${CMAKE_CURRENT_SOURCE_DIR}/types.lua) INSTALL(FILES ${luasrc} DESTINATION ${LUADIR}/cwrap) COPYRIGHT.txt000066400000000000000000000040011266266422600131760ustar00rootroot00000000000000Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert) Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu) Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu) Copyright (c) 2011-2013 NYU (Clement Farabet) Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston) Copyright (c) 2006 Idiap Research Institute (Samy Bengio) Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz) All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the names of Deepmind Technologies, NYU, NEC Laboratories America and IDIAP Research Institute nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. README.md000066400000000000000000000014351266266422600123540ustar00rootroot00000000000000# CWrap package # The __cwrap__ package helps you to automate the generation of Lua/C wrappers around existing C functions, such that these functions would be callable from Lua. This package is used by the __torch__ package, but does not depend on anything, and could be used by anyone using Lua. The documentation is organized as follows : * [Example Use Case](doc/example.md) * [High Level Interface](doc/highlevelinterface.md) * [Argument Types](doc/argumenttypes.md) * [User Types](doc/usertypes.md) __DISCLAIMER__ Before going any further, we assume the reader has a good knowledge of how to interface C functions with Lua. A good start would be the [Lua reference manual](http://www.lua.org/manual/5.1), or the book [Programming in Lua](http://www.inf.puc-rio.br/~roberto/pil2). cinterface.lua000066400000000000000000000261361266266422600137100ustar00rootroot00000000000000local CInterface = {} function CInterface.new() self = {} self.txt = {} self.registry = {} self.defaultArguments = {} setmetatable(self, {__index=CInterface}) return self end function CInterface:luaname2wrapname(name) return string.format("wrapper_%s", name) end function CInterface:print(str) table.insert(self.txt, str) end function CInterface:registerDefaultArgument(code) table.insert(self.defaultArguments, code) end function CInterface:wrap(luaname, ...) local txt = self.txt local varargs = {...} assert(#varargs > 0 and #varargs % 2 == 0, 'must provide both the C function name and the corresponding arguments') -- add function to the registry table.insert(self.registry, {name=luaname, wrapname=self:luaname2wrapname(luaname)}) self:__addchelpers() table.insert(txt, string.format("static int %s(lua_State *L)", self:luaname2wrapname(luaname))) table.insert(txt, "{") table.insert(txt, "int narg = lua_gettop(L);") for i, defaultArgCode in ipairs(self.defaultArguments) do table.insert(txt, defaultArgCode(string.format("default_arg%d", i))) end if #varargs == 2 then local cfuncname = varargs[1] local args = varargs[2] local helpargs, cargs, argcreturned = self:__writeheaders(txt, args) self:__writechecks(txt, args) table.insert(txt, 'else') table.insert(txt, '{') table.insert(txt, string.format('char type_buf[512];')) table.insert(txt, string.format('str_arg_types(L, type_buf, 512);')) table.insert(txt, string.format('luaL_error(L, "invalid arguments: %%s\\nexpected arguments: %s", type_buf);', table.concat(helpargs, ' '))) table.insert(txt, '}') self:__writecall(txt, args, cfuncname, cargs, argcreturned) else local allcfuncname = {} local allargs = {} local allhelpargs = {} local allcargs = {} local allargcreturned = {} table.insert(txt, "int argset = 0;") for k=1,#varargs/2 do allcfuncname[k] = varargs[(k-1)*2+1] allargs[k] = varargs[(k-1)*2+2] end local argoffset = 0 for k=1,#varargs/2 do allhelpargs[k], allcargs[k], allargcreturned[k] = self:__writeheaders(txt, allargs[k], argoffset) argoffset = argoffset + #allargs[k] end for k=1,#varargs/2 do self:__writechecks(txt, allargs[k], k) end table.insert(txt, 'else') local allconcathelpargs = {} for k=1,#varargs/2 do table.insert(allconcathelpargs, table.concat(allhelpargs[k], ' ')) end table.insert(txt, '{') table.insert(txt, string.format('char type_buf[512];')) table.insert(txt, string.format('str_arg_types(L, type_buf, 512);')) table.insert(txt, string.format('luaL_error(L, "invalid arguments: %%s\\nexpected arguments: %s", type_buf);', table.concat(allconcathelpargs, ' | '))) table.insert(txt, '}') for k=1,#varargs/2 do if k == 1 then table.insert(txt, string.format('if(argset == %d)', k)) else table.insert(txt, string.format('else if(argset == %d)', k)) end table.insert(txt, '{') self:__writecall(txt, allargs[k], allcfuncname[k], allcargs[k], allargcreturned[k]) table.insert(txt, '}') end table.insert(txt, 'return 0;') end table.insert(txt, '}') table.insert(txt, '') end function CInterface:__addchelpers() if not self.__chelpers_added then local txt = self.txt table.insert(txt, '#ifndef _CWRAP_STR_ARG_TYPES_4821726c1947cdf3eebacade98173939') table.insert(txt, '#define _CWRAP_STR_ARG_TYPES_4821726c1947cdf3eebacade98173939') table.insert(txt, '#include "string.h"') table.insert(txt, 'static void str_arg_types(lua_State *L, char *buf, int n) {') table.insert(txt, ' int i;') table.insert(txt, ' int nargs = lua_gettop(L);') table.insert(txt, ' if (nargs == 0) {') table.insert(txt, ' snprintf(buf, n, "no arguments provided");') table.insert(txt, ' return;') table.insert(txt, ' }') table.insert(txt, ' for (i = 1; i <= nargs; i++) {') table.insert(txt, ' int l;') table.insert(txt, ' const char *torch_type = luaT_typename(L, i);') table.insert(txt, ' if(torch_type && !strncmp(torch_type, "torch.", 6)) torch_type += 6;') table.insert(txt, ' if (torch_type) l = snprintf(buf, n, "%s ", torch_type);') table.insert(txt, ' else if(lua_isnil(L, i)) l = snprintf(buf, n, "%s ", "nil");') table.insert(txt, ' else if(lua_isboolean(L, i)) l = snprintf(buf, n, "%s ", "boolean");') table.insert(txt, ' else if(lua_isnumber(L, i)) l = snprintf(buf, n, "%s ", "number");') table.insert(txt, ' else if(lua_isstring(L, i)) l = snprintf(buf, n, "%s ", "string");') table.insert(txt, ' else if(lua_istable(L, i)) l = snprintf(buf, n, "%s ", "table");') table.insert(txt, ' else if(lua_isuserdata(L, i)) l = snprintf(buf, n, "%s ", "userdata");') table.insert(txt, ' else l = snprintf(buf, n, "%s ", "???");') table.insert(txt, ' if (l >= n) return;') table.insert(txt, ' buf += l;') table.insert(txt, ' n -= l;') table.insert(txt, ' }') table.insert(txt, '}') table.insert(txt, '#endif') self.__chelpers_added = true end end function CInterface:register(name) local txt = self.txt table.insert(txt, string.format('static const struct luaL_Reg %s [] = {', name)) for _,reg in ipairs(self.registry) do table.insert(txt, string.format('{"%s", %s},', reg.name, reg.wrapname)) end table.insert(txt, '{NULL, NULL}') table.insert(txt, '};') table.insert(txt, '') self.registry = {} end function CInterface:clearhistory() self.txt = {} self.registry = {} self.defaultArguments = {} end function CInterface:tostring() return table.concat(self.txt, '\n') end function CInterface:tofile(filename) local f = io.open(filename, 'w') f:write(table.concat(self.txt, '\n')) f:close() end local function bit(p) return 2 ^ (p - 1) -- 1-based indexing end local function hasbit(x, p) return x % (p + p) >= p end local function beautify(txt) local indent = 0 for i=1,#txt do if txt[i]:match('}') then indent = indent - 2 end if indent > 0 then txt[i] = string.rep(' ', indent) .. txt[i] end if txt[i]:match('{') then indent = indent + 2 end end end local function tableinsertcheck(tbl, stuff) if stuff and not stuff:match('^%s*$') then table.insert(tbl, stuff) end end function CInterface:__writeheaders(txt, args, argoffset) local argtypes = self.argtypes local helpargs = {} local cargs = {} local argcreturned argoffset = argoffset or 0 for i,arg in ipairs(args) do arg.i = i+argoffset arg.args = args -- in case we want to do stuff depending on other args assert(argtypes[arg.name], 'unknown type ' .. arg.name) setmetatable(arg, {__index=argtypes[arg.name]}) arg.__metatable = argtypes[arg.name] tableinsertcheck(txt, arg:declare()) local helpname = arg:helpname() if arg.returned then helpname = string.format('*%s*', helpname) end if arg.invisible and arg.default == nil then error('Invisible arguments must have a default! How could I guess how to initialize it?') end if arg.default ~= nil then if not arg.invisible then table.insert(helpargs, string.format('[%s]', helpname)) end elseif not arg.creturned then table.insert(helpargs, helpname) end if arg.creturned then if argcreturned then error('A C function can only return one argument!') end if arg.default ~= nil then error('Obviously, an "argument" returned by a C function cannot have a default value') end if arg.returned then error('Options "returned" and "creturned" are incompatible') end argcreturned = arg else table.insert(cargs, arg:carg()) end end return helpargs, cargs, argcreturned end function CInterface:__writechecks(txt, args, argset) local argtypes = self.argtypes local multiargset = argset argset = argset or 1 local nopt = 0 for i,arg in ipairs(args) do if arg.default ~= nil and not arg.invisible then nopt = nopt + 1 end end for variant=0,(2^nopt)-1 do local opt = 0 local currentargs = {} local optargs = {} local hasvararg = false for i,arg in ipairs(args) do if arg.invisible then table.insert(optargs, arg) elseif arg.default ~= nil then opt = opt + 1 if hasbit(variant, bit(opt)) then table.insert(currentargs, arg) else table.insert(optargs, arg) end elseif not arg.creturned then table.insert(currentargs, arg) end end for _,arg in ipairs(args) do if arg.vararg then if hasvararg then error('Only one argument can be a "vararg"!') end hasvararg = true end end if hasvararg and not currentargs[#currentargs].vararg then error('Only the last argument can be a "vararg"') end local compop if hasvararg then compop = '>=' else compop = '==' end if variant == 0 and argset == 1 then table.insert(txt, string.format('if(narg %s %d', compop, #currentargs)) else table.insert(txt, string.format('else if(narg %s %d', compop, #currentargs)) end for stackidx, arg in ipairs(currentargs) do table.insert(txt, string.format("&& %s", arg:check(stackidx))) end table.insert(txt, ')') table.insert(txt, '{') if multiargset then table.insert(txt, string.format('argset = %d;', argset)) end for stackidx, arg in ipairs(currentargs) do tableinsertcheck(txt, arg:read(stackidx)) end for _,arg in ipairs(optargs) do tableinsertcheck(txt, arg:init()) end table.insert(txt, '}') end end function CInterface:__writecall(txt, args, cfuncname, cargs, argcreturned) local argtypes = self.argtypes for i = 1, #self.defaultArguments do table.insert(cargs, i, string.format('default_arg%d', i)) end for _,arg in ipairs(args) do tableinsertcheck(txt, arg:precall()) end if argcreturned then table.insert(txt, string.format('%s = %s(%s);', argtypes[argcreturned.name].creturn(argcreturned), cfuncname, table.concat(cargs, ','))) else table.insert(txt, string.format('%s(%s);', cfuncname, table.concat(cargs, ','))) end for _,arg in ipairs(args) do tableinsertcheck(txt, arg:postcall()) end local nret = 0 if argcreturned then nret = nret + 1 end for _,arg in ipairs(args) do if arg.returned then nret = nret + 1 end end table.insert(txt, string.format('return %d;', nret)) end return CInterface doc/000077500000000000000000000000001266266422600116375ustar00rootroot00000000000000doc/argumenttypes.md000066400000000000000000000075751266266422600151060ustar00rootroot00000000000000 ## Argument Types ## Any `CInterface` is initialized with a default `argtypes` list, at creation. This list tells to `CInterface` how to handle type names given to the [wrap()](higherlevelinterface.md#CInterface.wrap) method. The user can add more types to this list, if wanted (see [the next section](usertypes.md#CInterface.userargtypes)). ### Standard C types ### Standard type names include `unsigned char`, `char`, `short`, `int`, `long`, `float` and `double`. They define the corresponding C types, which are converted to/from [lua_Number](http://www.lua.org/manual/5.1/manual.html#lua_Number). Additionaly, `byte` is an equivalent naming for `unsigned char`, and `boolean` is interpreted as a boolean in Lua, and an int in C. `real` will also be converted to/from a `lua_Number`, while assuming that it is defined in C as `float` or `double`. Finally, `index` defines a long C value, which is going to be automatically incremented by 1 when going from C to Lua, and decremented by 1, when going from Lua to C. This matches Lua policy of having table indices starting at 1, and C array indices starting at 0. For all these number values, the `default` field (when defining the argument in [wrap()](higherlevelinterface.md##CInterface.wrap)) can take two types: either a number or a function (taking the argument table as argument, and returning a string). Note that in case of an `index` type, the given default value (or result given by the default initialization function) will be decremented by 1 when initializing the corresponging C `long` variable. Here is an example of defining arguments with a default value: ```lua {name="int", default=0} ``` defines an optional argument which will of type `int` in C (lua_Number in Lua), and will take the value `0` if it is not present when calling the Lua function. A more complicated (but typical) example would be: ```lua {name="int", default=function(arg) return string.format("%s", arg.args[1]:carg()) end} ``` In this case, the argument will be set to the value of the first argument in the Lua function call, if not present at call time. ### Torch Tensor types ### `CInterface` also defines __Torch__ tensor types: `ByteTensor`, `CharTensor`, `ShortTensor`, `IntTensor`, `LongTensor`, `FloatTensor` and `DoubleTensor`, which corresponds to their `THByteTensor`, etc... counterparts. All of them assume that the [luaT](..:luaT) Tensor id (here for ByteTensor) ``` const void *torch_ByteTensor_id; ``` is defined beforehand, and properly initialized. Additionally, if you use C-templating style which is present in the TH library, you might want to use the `Tensor` typename, which assumes that `THTensor` is properly defined, as well as the macro `THTensor_()` and `torch_()` (see the TH library for more details). Another extra typename of interest is `IndexTensor`, which corresponds to a `THLongTensor` in C. Values in this LongTensor will be incremented/decremented when going from/to C/Lua to/from Lua/C. Tensor typenames `default` value in [wrap()](higherlevelinterface.md#CInterface.wrap) can take take two types: * A boolean. If `true`, the tensor will be initialized as empty, if not present at the Lua function call * A number (index). If not present at the Lua function call, the tensor will be initialized as _pointing_ to the argument at the given index (which must be a tensor of same type!). For e.g, the list of arguments: ```lua { {name=DoubleTensor, default=3}, {name=double, default=1.0}, {name=DoubleTensor} } ``` The first two arguments are optional. The first one is a DoubleTensor which will point on the last (3rd) argument if not given. The second argument will be initialized to `1.0` if not provided. Tensor typenames can also take an additional field `dim` (a number) which will force a dimension check. E.g., ```lua {name=DoubleTensor, dim=2} ``` expect a matrix of doubles. doc/example.md000066400000000000000000000025521266266422600136200ustar00rootroot00000000000000## Example Use Case As an example is often better than lengthy explanations, let's consider the case of a function ```c int numel(THDoubleTensor *t); ``` which returns the number of elements of `t`. Writing a complete wrapper of this function would look like: ```c static int wrapper_numel(lua_State *L) { THDoubleTensor *t; /* always good to check the number of arguments */ if(lua_gettop(L) != 1) error("invalid number of arguments: expected"); /* check if we have a tensor on the stack */ /* we use the luaT library, which deals with Torch objects */ /* we assume the torch_DoubleTensor_id has been already initialized */ t = luaT_checkudata(L, 1, torch_DoubleTensor_id); /* push result on stack */ lua_pushnumber(L, numel(t)); /* the number of returned variables */ return 1; } ``` For anybody familiar with the Lua C API, this should look very simple (and _it is simple_, Lua has been designed for that!). Nevertheless, the wrapper contains about 7 lines of C code, for a quite simple function. Writing wrappers for C functions with multiple arguments, where some of them might be optional, can become very quickly a tedious task. The __wrap__ package is here to help the process. Remember however that even though you might be able to treat most complex cases with __wrap__, sometimes it is also good to do everything by hand yourself! doc/highlevelinterface.md000066400000000000000000000170131266266422600160130ustar00rootroot00000000000000## High Level Interface ## __wrap__ provides only one class: `CInterface`. Considering our easy example, a typical usage would be: ```lua require 'wrap' interface = wrap.CInterface.new() interface:wrap( "numel", -- the Lua name "numel", -- the C function name, here the same -- now we describe the 'arguments' of the C function -- (or possible returned values) { {name="DoubleTensor"}, {name="int", creturned=true} -- this one is returned by the C function } ) print(interface:tostring()) ``` `CInterface` contains only few methods. [wrap()](highlevelinterface.md#CInterface.wrap) is the most important one. [tostring()](highlevelinterface.md#CInterface.tostring) returns a string containing all the code produced until now. The wrapper generated by __wrap__ is quite similar to what one would write by hand: ```c static int wrapper_numel(lua_State *L) { int narg = lua_gettop(L); THDoubleTensor *arg1 = NULL; int arg2 = 0; if(narg == 1 && (arg1 = luaT_toudata(L, 1, torch_DoubleTensor_id)) ) { } else luaL_error(L, "expected arguments: DoubleTensor"); arg2 = numel(arg1); lua_pushnumber(L, (lua_Number)arg2); return 1; } ``` We know describe the methods provided by `CInterface`. ### new() ### Returns a new `CInterface`. ### wrap(luaname, cfunction, arguments, ...) ### Tells the `CInterface` to generate a wrapper around the C function `cfunction`. The function will be called from Lua under the name `luaname`. The Lua _list_ `arguments` must also be provided. It describes _all_ the arguments of the C function `cfunction`. Optionally, if the C function returns a value and one would like to return it in Lua, this additional value can be also described in the argument list. ```lua { {name="DoubleTensor"}, {name="int", creturned=true} -- this one is returned by the C function } ``` Each argument is described also as a list. The list must at least contain the field `name`, which tells to `CInterface` what type of argument you want to define. In the above example, ```lua {name="DoubleTensor"} ``` indicates to `CInterface` that the first argument of `numel()` is of type `DoubleTensor`. Arguments are defined into a table `CInterface.argtypes`, defined at the creation of the interface. Given a `typename`, the corresponding field in `interface.argtypes[typename]` must exist, such that `CInterface` knows how to handle the specified argument. A lot of types are already created by default, but the user can define more if needed, by filling properly the `argtypes` table. See the section [[argumenttypes.md#CInterface.argtypes]] for more details about defined types, and [how to define additional ones](usertypes.md#CInterface.userargtypes). #### Argument fields #### Apart the field `name`, each list describing an argument can contain several optional fields: `default`: this means the argument will optional in Lua, and the argument will be initialized with the given default value if not present in the Lua function call. The `default` value might have different meanings, depending on the argument type (see [[argumenttypes.md#CInterface.argtypes]] for more details). `invisible`: the argument will invisible _from Lua_. This special option requires `default` to be set, such that `CInterface` knows by what initialize this invisible argument. `returned`: if set to `true`, the argument will be returned by the Lua function. Note that several values might be returned at the same time in Lua. `creturned`: if `true`, tells to `CInterface` that this 'argument' is in fact the value returned by the C function. This 'argument' cannot have a `default` value. Also, as in C one can return only one value, only one 'argument' can contain this field! Mixing arguments which are `returned` and arguments which are `creturned` with `CInterface` is not recommended: use with care. While these optional fields are generic to any argument types, some types might define additional optional fields. Again, see [[argumenttypes.md#CInterface.argtypes]] for more details. #### Handling multiple variants of arguments #### Sometimes, one cannot describe fully the behavior one wants with only a set of possible arguments. Take the example of the `cos()` function: we might want to apply it to a number, if the given argument is a number, or to a Tensor, if the given argument is a Tensor. `wrap()` can be called with extra pairs of `cname, args` if needed. (There are no limitations on the number extra paris). For example, if you need to handle three cases, it might be ```lua interface:wrap(luaname, cname1, args1, cname2, args2, cname3, args3) ``` For each given C function name `cname`, the corresponding argument list `args` should match. As a more concrete example, here is a way to generate a wrapper for `cos()`, which would handle both numbers and DoubleTensors. ```lua interface:wrap("cos", -- the Lua function name "THDoubleTensor_cos", { -- C function called for DoubleTensor {name="DoubleTensor", default=true, returned=true}, -- returned tensor (if not present, we create an empty tensor) {name="DoubleTensor"} -- input tensor }, "cos", { -- the standard C math cos function {name="double", creturned="true"}, -- returned value {name="double"} -- input value } ) ``` ### print(str) ### Add some hand-crafted code to the existing generated code. You might want to do that if your wrapper requires manual tweaks. For e.g., in the example above, the "id" related to `torch.DoubleTensor` needs to be defined beforehand: ```lua interface:print([[ const void* torch_DoubleTensor_id; ]]) ``` ### luaname2wrapname(name) ### This method defines the name of each generated wrapping function (like `wrapper_numel` in the example above), given the Lua name of a function (say `numel`). In general, this has little importance, as the wrapper is a static function which is not going to be called outside the scope of the wrap file. However, if you generate some complex wrappers, you might want to have a control on this to avoid name clashes. The default is ```lua function CInterface:luaname2wrapname(name) return string.format("wrapper_%s", name) end ``` Changing it to something else can be easily done with (still following the example above) ```lua function interface:luaname2wrapname(name) return string.format("my_own_naming_%s", name) end ``` ### register(name) ### Produces C code defining a [luaL_Reg](http://www.lua.org/manual/5.1/manual.html#luaL_Reg) structure (which will have the given `name`). In the above example, calling ```lua interface:register('myfuncs') ``` will generate the following additional code: ```c static const struct luaL_Reg myfuncs [] = { {"numel", wrapper_numel}, {NULL, NULL} }; ``` This structure is meant to be passed as argument to [luaL_register](http://www.lua.org/manual/5.1/manual.html#luaL_register), such that Lua will be aware of your new functions. For e.g., the following would declare `mylib.numel` in Lua: ```lua interface:print([[ luaL_register(L, "mylib", myfuncs); ]]) ``` ### tostring() ### Returns a string containing all the code generated by the `CInterface` until now. Note that the history is not erased. ### tofile(filename) ### Write in the file (named after `filename`) all the code generated by the `CInterface` until now. Note that the history is not erased. ### clearhistory() ### Forget about all the code generated by the `CInterface` until now. doc/index.md000066400000000000000000000014171266266422600132730ustar00rootroot00000000000000# CWrap package # The __cwrap__ package helps you to automate the generation of Lua/C wrappers around existing C functions, such that these functions would be callable from Lua. This package is used by the __torch__ package, but does not depend on anything, and could be used by anyone using Lua. The documentation is organized as follows : * [Example Use Case](example.md) * [High Level Interface](highlevelinterface.md) * [Argument Types](argumenttypes.md) * [User Types](usertypes.md) __DISCLAIMER__ Before going any further, we assume the reader has a good knowledge of how to interface C functions with Lua. A good start would be the [Lua reference manual](http://www.lua.org/manual/5.1), or the book [Programming in Lua](http://www.inf.puc-rio.br/~roberto/pil2). doc/usertypes.md000066400000000000000000000127071266266422600142330ustar00rootroot00000000000000 ## User Types ## Types available by default in `CInterface` might not be enough for your needs. Also, sometimes you might need to change sliglty the behavior of existing types. In that sort of cases, you will need to know more about what is going on under the hood. When you do a call to [wrap()](highlevelinterface.md#CInterface.wrap), ```lua interface:wrap( "numel", -- the Lua name "numel", -- the C function name, here the same -- now we describe the 'arguments' of the C function -- (or possible returned values) { {name="DoubleTensor"}, {name="int", creturned=true} -- this one is returned by the C function } ) ``` the method will examine each argument you provide. For example, let's consider: ```lua {name="int", creturned=true} ``` Considering the argument field `name`, __wrap__ will check if the field `interface.argtypes['int']` exists or not. If it does not exist, an error will be raised. In order to describe what happens next, we will now denote ```lua arg = {name="int", creturned=true} ``` First thing which is done is assigning `interface.argtypes['int']` as a metatable to `arg`: ```lua setmetatable(arg, interface.argtypes[arg.name]) ``` Then, a number of fields are populated in `arg` by __wrap__: ```lua arg.i = 2 -- argument index (in the argument list) in the wrap() call arg.__metatable = interface.argtypes[arg.name] arg.args = ... -- the full list of arguments given in the wrap() call ``` [wrap()](highlevelinterface.md#CInterface.wrap) will then call a several methods which are assumed to be present in `arg` (see below for the list). Obviously, in most cases, methods will be found in the metatable of `arg`, that is in `interface.argtypes[arg.name]`. However, if you need to override a method behavior for one particular argument, this method could be defined in the table describing the argument, when calling [wrap()](highlevelinterface.md#CInterface.wrap). The extra fields mentionned above (populated by __wrap__) can be used in the argument methods to suit your needs (they are enough to handle most complex cases). We will now describe methods which must be defined for each type. We will take as example `boolean`, to make things more clear. If you want to see more complex examples, you can have a look into the `types.lua` file, provided by the __wrap__ package. ### helpname(arg) ### Returns a string describing (in a human readable fashion) the name of the given arg. Example: ```lua function helpname(arg) return "boolean" end ``` ### declare(arg) ### Returns a C code string declaring the given arg. Example: ```lua function declare(arg) return string.format("int arg%d = 0;", arg.i) end ``` ### check(arg, idx) ### Returns a C code string checking if the value at index `idx` on the Lua stack corresponds to the argument type. The string will appended in a `if()`, so it should not contain a final `;`. Example: ```lua function check(arg, idx) return string.format("lua_isboolean(L, %d)", idx) end ``` ### read(arg, idx) ### Returns a C code string converting the value a index `idx` on the Lua stack, into the desired argument. This method will be called __only if__ the C check given by [check()](#CInterface.arg.check) succeeded. Example: ```lua function read(arg, idx) return string.format("arg%d = lua_toboolean(L, %d);", arg.i, idx) end ``` ### init(arg) ### Returns a C code string initializing the argument by its default value. This method will be called __only if__ (1) `arg` has a `default` field and (2) the C check given by [check()](#CInterface.arg.check) failed (so the C code in [read()](#CInterface.arg.read) was not called). Example: ```lua function init(arg) local default if arg.default then default = 1 else default = 0 end return string.format("arg%d = %s;", arg.i, default) end ``` ### carg(arg) ### Returns a C code string describing how to pass the given `arg` as argument when calling the C function. In general, it is just the C arg name itself (except if you need to pass the argument "by address", for example). Example: ```lua function carg(arg) return string.format('arg%d', arg.i) end ``` ### creturn(arg) ### Returns a C code string describing how get the argument if it is returned from the C function. In general, it is just the C arg name itself (except if you need to assign a pointer value, for example). ```lua function creturn(arg) return string.format('arg%d', arg.i) end ``` ### precall(arg) ### Returns a C code string if you need to execute specific code related to `arg`, before calling the C function. For e.g., if you created an object in the calls before, you might want to put it on the Lua stack here, such that it is garbage collected by Lua, in case the C function call fails. ```lua function precall(arg) -- nothing to do here, for boolean end ``` ### postcall(arg) ### Returns a C code string if you need to execute specific code related to `arg`, after calling the C function. You can for e.g. push the argument on the stack, if needed. ```lua function postcall(arg) if arg.creturned or arg.returned then return string.format('lua_pushboolean(L, arg%d);', arg.i) end end ``` init.lua000066400000000000000000000002321266266422600125350ustar00rootroot00000000000000local cwrap = {} cwrap.types = require 'cwrap.types' cwrap.CInterface = require 'cwrap.cinterface' cwrap.CInterface.argtypes = cwrap.types return cwrap mkdocs.yml000066400000000000000000000005001266266422600130700ustar00rootroot00000000000000site_name: cwrap theme : simplex repo_url : https://github.com/torch/cwrap use_directory_urls : false markdown_extensions: [extra] docs_dir : doc pages: - [index.md, CWrap] - [example.md, Example Use Case] - [highlevelinterface.md, High Level Interface] - [argumenttypes.md, Argument Types] - [usertypes.md, User Types] rocks/000077500000000000000000000000001266266422600122135ustar00rootroot00000000000000rocks/cwrap-scm-1.rockspec000066400000000000000000000010551266266422600160010ustar00rootroot00000000000000package = "cwrap" version = "scm-1" source = { url = "git://github.com/torch/cwrap.git", } description = { summary = "Advanced automatic wrapper for C functions", detailed = [[ ]], homepage = "https://github.com/torch/cwrap", license = "BSD" } dependencies = { "lua >= 5.1", } build = { type = "builtin", modules = { ["cwrap.init"] = "init.lua", ["cwrap.cinterface"] = "cinterface.lua", ["cwrap.types"] = "types.lua", }, install = { lua = { ["cwrap.README"] = "README.md" } } } types.lua000066400000000000000000000125041266266422600127430ustar00rootroot00000000000000local argtypes = {} local function interpretdefaultvalue(arg) local default = arg.default if type(default) == 'boolean' then if default then return '1' else return '0' end elseif type(default) == 'number' then return tostring(default) elseif type(default) == 'string' then return default elseif type(default) == 'function' then default = default(arg) assert(type(default) == 'string', 'a default function must return a string') return default elseif type(default) == 'nil' then return nil else error('unknown default type value') end end argtypes.index = { helpname = function(arg) return "index" end, declare = function(arg) -- if it is a number we initialize here local default = tonumber(interpretdefaultvalue(arg)) or 1 return string.format("long arg%d = %d;", arg.i, tonumber(default)-1) end, check = function(arg, idx) return string.format("lua_isnumber(L, %d)", idx) end, read = function(arg, idx) return string.format("arg%d = (long)lua_tonumber(L, %d)-1;", arg.i, idx) end, init = function(arg) -- otherwise do it here if arg.default then local default = interpretdefaultvalue(arg) if not tonumber(default) then return string.format("arg%d = %s-1;", arg.i, default) end end end, carg = function(arg) return string.format('arg%d', arg.i) end, creturn = function(arg) return string.format('arg%d', arg.i) end, precall = function(arg) if arg.returned then return string.format('lua_pushnumber(L, (lua_Number)arg%d+1);', arg.i) end end, postcall = function(arg) if arg.creturned then return string.format('lua_pushnumber(L, (lua_Number)arg%d+1);', arg.i) end end } for _,typename in ipairs({"real", "unsigned char", "char", "short", "int", "long", "float", "double"}) do argtypes[typename] = { helpname = function(arg) return typename end, declare = function(arg) -- if it is a number we initialize here local default = tonumber(interpretdefaultvalue(arg)) or 0 return string.format("%s arg%d = %g;", typename, arg.i, default) end, check = function(arg, idx) return string.format("lua_isnumber(L, %d)", idx) end, read = function(arg, idx) return string.format("arg%d = (%s)lua_tonumber(L, %d);", arg.i, typename, idx) end, init = function(arg) -- otherwise do it here if arg.default then local default = interpretdefaultvalue(arg) if not tonumber(default) then return string.format("arg%d = %s;", arg.i, default) end end end, carg = function(arg) return string.format('arg%d', arg.i) end, creturn = function(arg) return string.format('arg%d', arg.i) end, precall = function(arg) if arg.returned then return string.format('lua_pushnumber(L, (lua_Number)arg%d);', arg.i) end end, postcall = function(arg) if arg.creturned then return string.format('lua_pushnumber(L, (lua_Number)arg%d);', arg.i) end end } end argtypes.byte = argtypes['unsigned char'] argtypes.boolean = { helpname = function(arg) return "boolean" end, declare = function(arg) -- if it is a number we initialize here local default = tonumber(interpretdefaultvalue(arg)) or 0 return string.format("int arg%d = %d;", arg.i, tonumber(default)) end, check = function(arg, idx) return string.format("lua_isboolean(L, %d)", idx) end, read = function(arg, idx) return string.format("arg%d = lua_toboolean(L, %d);", arg.i, idx) end, init = function(arg) -- otherwise do it here if arg.default then local default = interpretdefaultvalue(arg) if not tonumber(default) then return string.format("arg%d = %s;", arg.i, default) end end end, carg = function(arg) return string.format('arg%d', arg.i) end, creturn = function(arg) return string.format('arg%d', arg.i) end, precall = function(arg) if arg.returned then return string.format('lua_pushboolean(L, arg%d);', arg.i) end end, postcall = function(arg) if arg.creturned then return string.format('lua_pushboolean(L, arg%d);', arg.i) end end } return argtypes